

B i c M O S / c M O S

D A T

\bullet
\odot
K

How To Use This Book

This book has been organized by product type, beginning with Product Information. The products are next, starting with SRAMs, then PROMs, EPLDs, FIFOs, Logic, RISC, Modules, ECL, and bus interface products. A section containing military information is next, followed by the Design and Programming Tools section. Quality and Reliability aspects are next, then Thermal Data and Packages. Within each section, data sheets are arranged in order of part number. All module data sheets are printed in full in the Module section with single-page references in the SRAM and Logic sections.

A Numeric Device Index, included after the Table of Contents, identifies products by numeric order rather than by device type. To further help you in identifying parts, a product line Cross Reference Guide is in the Product Information section. It can be used to find the Cypress part number that is comparable to another manufacturer's part number.

[^0]PRODUCT 1 INFORMATION
STATIC RAMS 2
PROMS 3
EPLDS 4
FIFOS 5
LOGIC 6
RISC 7
MODULES 8
ECL 9
BUS INTERFACE PRODUCTS 10
MILITARY 11
DESIGN AND 12 PROGRAMMING TOOLS
QUALITY AND 13RELIABILITY
PACKAGES 14

Table of Contents

Numeric Device Index
ix

General Product Information

Cypress Semiconductor Background 1-1
Cypress Process Technology 1-2
Product Selector Guide 1-3
Ordering Information 1-9
Product Line Cross Reference 1-11
Static RAMs (Random Access Memory)
Device Number Description
CY2147 4096×1 Static R/W RAM 2-1
CY2148 1024×4 Static R/W RAM 2-6
CY21L48 1024×4 Static R/W RAM, Low Power 2-6
CY2149 1024×4 Static R/W RAM 2-6
CY21L49 1024×4 Static R/W RAM, Low Power 2-6
CY6116 2048×8 Static R/W RAM 2-12
CY6116A 2048×8 Static R/W RAM 2-19
CY6117A 2048×8 Static R/W RAM 2-19
CY7C101 $262,144 \times 4$ Static R/W RAM with Separate I/O 2-26
CY7C102 $262,144 \times 4$ Static R/W RAM with Separate I/O 2-26
CY7C106 $262,144 \times 4$ Static R/W RAM 2-32
CY7C107 1,048,576 x 1 Static R/W RAM 2-39
CY7C108 $131,072 \times 8$ Static R/W RAM 2-45
CY7C109 $131,072 \times 8$ Static R/W RAM 2-45
CY7C122 256×4 Static R/W RAM Separate I/O 2-52
CY7C123 256×4 Static R/W RAM Separate I/O 2-59
CY7C128 2048×8 Static R/W RAM 2-65
CY7C128A 2048×8 Static R/W RAM 2-72
CY7C130 1024×8 Dual-Port Static RAM 2-80
CY7C131 1024×8 Dual-Port Static RAM 2-80
CY7C140 1024×8 Dual-Port Static RAM 2-80
CY7C141 1024×8 Dual-Port Static RAM 2-80
CY7C132 2048×8 Dual-Port Static RAM 2-92
CY7C136 2048×8 Dual-Port Static RAM 2-92
CY7C142 2048×8 Dual-Port Static RAM 2-92
CY7C146 2048×8 Dual-Port Static RAM 2-92
CY7B134 $4 \mathrm{~K} \times 8$ Dual-Port Static RAM 2-104
CY7B135CY7B1342$4 \mathrm{~K} \times 8$ Dual-Port Static RAM2-104CY7B138$4 \mathrm{~K} \times 8$ Dual-Port Static RAM with Semaphores2-104
CY7B144 $8 \mathrm{~K} \times 8$ Dual-Port Static RAM with Semaphores, $\overline{\text { INT }}$, and BUSY 2-1284K x 8 Dual-Port Static RAM with Semaphores, $\overline{\text { INT }}$, and BUSY2-114
CY7C147 4096×1 Static RAM 2-142
CY7C148
CY7C149 1024×4 Static RAM 2-149
CY7C150 1024×4 Static R/W RAM 2-156
CY7B153 65,536 x 4 Expandable Static R./W RAM 2-164
CY7B154 65,536 x 4 Expandable Static R./W RAM 2-164
CY7B155 16K x 16 Synchronous Static RAM 2-171
CY7B156 16K x 16 Synchronous Static RAM 2-171
CY7C157A 16,384 x 16 Static R/W Cache Storage Unit 2-177
CY7B160 Expandable $16,384 \times 4$ Static RAM 2-179

Static RAMs (Random Access Memory) (continued)

Device NumberCY7B161CY7B162CY7C161CY7C162CY7C161ACY7C162ACY7B163CY7B164CY7B166CY7C164CY7C166CY7C164A
CY7C166A
CY7C167
CY7C167A
CY7C168
CY7C169
CY7C168A
CY7C169A
CY7C170
CY7C170A
CY7C171
CY7C172
CY7C171ACY7C172ACY7B173CY7B174
Description
16,384 x 4 Static RAM Separate I/O 2-184
16,384 x 4 Static RAM Separate I/O 2-184
16,384 x 4 Static R/W RAM Separate I/O 2-190
$16,384 \times 4$ Static R/W RAM Separate I/O 2-190
$16,384 \times 4$ Static R/W RAM Separate I/O 2-197
$16,384 \times 4$ Static R/W RAM Separate I/O 2-197
Expandable $262,144 \times 1$ Static R/W RAM with Separate I/O 2-205
16,384 x 4 Static R/W RAM 2-211
16,384 x 4 Static R/W RAM 2-211
$16,384 \times 4$ Static R/W RAM 2-217
16,384 x 4 Static R/W RAM with Output Enable 2-217
$16,384 \times 4$ Static R/W RAM 2-224
16,384 44 Static R/W RAM with Output Enable 2-224
16,384 x 1 Static R/W RAM 2-233
16,384 x 1 Static RAM 2-240
4096×4 Static RAM 2-247
4096×4 Static RAM 2-247
4096×4 R/W RAM 2-254
4096×4 R/W RAM 2-254
4096×4 Static R/W RAM 2-263
4096×4 Static R/W RAM 2-268
4096×4 Static R/W RAM Separate I/O 2-274
4096×4 Static R/W RAM Separate I/O 2-274
4096×4 Static R/W RAM Separate I/O 2-280
4096×4 Static R/W RAM Separate I/O 2-280
$32,768 \times 9$ Synchronous Cache R/W RAM 2-288
32,768 x 9 Synchronous Cache R/W RAM 2-288
CY7B180 4K x 18 Cache Tag 2-297
CY7B181 $4 \mathrm{~K} \times 18$ Cache Tag 2-297CY7C182CY7C183CY7C184CY7B185
8,192 x 9 Static R/W RAM 2-316
$2 \times 4096 \times 16$ Cache RAM 2-321
$2 \times 4096 \times 16$ Cache RAM 2-321
$8,192 \times 8$ Static RAM 2-329
$8,192 \times 8$ Static RAM 2-329
$8,192 \times 8$ Static R/W RAM 2-334
8,192 x 8 Static R/W RAM 2-334
8,192 x 8 Static R/W RAM 2-341
$8,192 \times 8$ Static R/W RAM 2-341
65,536 x 1 Static R/W RAM 2-349
65,536 $\times 1$ Static R/W RAM 2-356
16×4 Static R/W RAM 2-365
16×4 Static R/W RAM 2-365
65,536 x 4 Static R/W RAM Separate I/O 2-372
65,536 x 4 Static R/W RAM Separate I/O 2-372
65,536 x 4 Static R/W RAM Separate I/O 2-379
65,536 x 4 Static R/W RAM Separate I/O 2-379
$262,144 \times 1$ Static R/W RAM 2-386
65,536 x 4 Static R/W RAM 2-393
65,536 $\times 4$ Static R/W RAM with Output Enable 2-393
65,536 x 4 Static R/W RAM with Output Enable 2-393
65,536 x 4 Static R/W RAM 2-401

Static RAMs (Random Access Memory) (continued)

Device Number
CY7C195
CY7C196
CY7B197
CY7C197
CY7B198
CY7B199
CY7C198
CY7C199
CY74S189
CY27LS03
CY27S03
CY27S07
CY93422A
CY93L422A
CY93422
CY93L422
CYM1240
CYM1420
CYM1422
CYM1423
CYM1441
CYM1460
CYM1461
CYM1464
CYM1465
CYM1466
CYM1471
CYM1481
CYM1540
CYM1560
CYM1610
CYM1611
CYM1620
CYM1621
CYM1622
CYM1624
CYM1641
CYM1720
CYM1821
CYM1822
CYM1828
CYM1830
CYM1831
CYM1832
CYM1838
CYM1840
CYM1841
CYM1910
CYM1911
CY7M194
CY7M199

Description

65,536 x 4 Static R/W RAM with Output Enable . 2-401
65,536 x 4 Static R/W RAM with Output Enable . 2-401
262,144 x 1 Static R/W RAM . 2-409
262,144 x 1 Static R/W RAM . 2 .415
$32,768 \times 8$ Static R/W RAM . 2-422
$32,768 \times 8$ Static R/W RAM . 2-422
$32,768 \times 8$ Static R/W RAM . 2-429
$32,768 \times 8$ Static R/W RAM . 2-429
16×4 Static R/W RAM . 2-437
16 x 4 Static R/W RAM . 2-437
16×4 Static R/W RAM . 2-437
16×4 Static R/W RAM . 2-437
256×4 Static R/W RAM 2-443
256×4 Static R/W RAM 2 . 443
256×4 Static R/W RAM . 2-443
256 x 4 Static R/W RAM 2-443
256K x 4 Static RAM Module . 2-449
128K x 8 Static RAM Module . 2-450
128 K x 8 Static RAM Module . 2-451
128K x 8 Static RAM Module . 2-452
256 K x 8 Static RAM Module . 2-453
512 K x 8 Static RAM Module . 2-454
512K x 8 Static RAM Module . 2-455
512K x 8 Static RAM Module . 2-456
512K x 8 Static RAM Module . 2-457
$512 \mathrm{~K} x 8$ Static RAM Module . 2-458
1024K x 8 Static RAM Module . 2-459
$2048 \mathrm{~K} \times 8$ Static RAM Module . 2-459
256K x 9 Buffered Static RAM Module with Separate I/O 2-460
1024K x 9 Buffered Static RAM Module with Separate I/O . 2-461
16K x 16 Static RAM Module . 2-462
$16 \mathrm{~K} \times 16$ Static RAM Module . 2-463
64 K x 16 Static RAM Module . 2-464
64 K x 16 Static RAM Module . 2-465
$64 \mathrm{~K} \times 16$ Static RAM Module . 2-466
64K x 16 Static RAM Module . 2-467
$256 \mathrm{~K} x 16$ Static RAM Module . 2-468
32K x 24 Static RAM Module . 2-469
16K x 32 Static RAM Module . 2-470
$16 \mathrm{~K} \times 32$ Static RAM Module with Separate I/O . 2-471
32K x 32 Static RAM Module 2 . 472
$64 \mathrm{~K} \times 32$ Static RAM Module . 2-473
$64 \mathrm{~K} \times 32$ Static RAM Module . 2-474
$64 \mathrm{~K} \times 32$ Static RAM Module 475
128K x 32 Static RAM Module . 2-476
256K X 32 Static RAM Module . 2-477
256K x 32 Static RAM Module . 2-478
16K x 68 Static RAM Module . 2-479
$16 \mathrm{~K} \times 68$ Static RAM Module . 2-480
64K x 4 Static RAM Module 2-481
32K x 8 Static RAM Module . 2-482
PROMs (Programmable Read Only Memory) Page Number
Introduction to PROMs 3-1
Device Number Description
CY7B201 $131,072 \times 8$ Reprogrammable PROM 3-4
CY7B210 65,536 x 16 Reprogrammable Registered PROM 3-5
CY7B211 65,536 x 16 Reprogrammable Registered PROM 3-5
CY7C225 512×8 Registered PROM 3-7
CY7C235 1024×8 Registered PROM 3-14
CY7C245 2048×8 ReprogrammableReigstered PROM 3-21
CY7C245A 2048×8 ReprogrammableRegistered PROM 3-30
CY7C251 16,384 $\times 8$ Power Switched and Reprogrammable PROM 3-38
CY7C254 16,384 x 8 Reprogrammable PROM 3-38
CY7C261 8192×8 Power Switched and Reprogrammable PROM 3-44
CY7C263 8192×8 Reprogrammable PROM 3-44
CY7C264 8192×8 Reprogrammable PROM 3-44
CY7C265 64K Registered PROM 3-53
CY7C266 8192×8 Power Switched and Reprogrammable PROM 3-61
CY7C268 64K Registered Diagnostic PROM 3-67
CY7C269 64K Registered Diagnostic PROM 3-67
CY7C271 32,768 x 8 Power Switched and Reprogrammable PROM 3-77
CY7C274 $32,768 \times 8$ Reprogrammable PROM 3-77
CY7C277 $32,768 \times 8$ Reprogrammable Registered PROM 3-83
CY7C279 32,768 x 8 Reprogrammable Registered PROM 3-83
CY7C281 1024×8 PROM 3-92
CY7C282 1024×8 PROM 3-92
CY7C285 65,536 x 8 Reprogrammable Fast Column Access PROM 3-101
CY7C289 65,536 x 8 Reprogrammable Fast Column Access PROM 3-101
CY7C286 65,536 x 8 Reprogrammable Registered PROM 3-108
CY7C287 65,536 x 8 Reprogrammable Registered PROM 3-108
CY7C291 2048×8 Reprogrammable PROM 3-113
CY7C292 2048×8 Reprogrammable PROM 3-113
CY7C291A 2048×8 Reprogrammable PROM 3-120
CY7C292A 2048×8 Reprogrammable PROM 3-120
CY7C293A 2048×8 Reprogrammable PROM 3-120
PROM Programming Information 3-127
EPLDs (Erasable Programmable Logic Devices)
Introduction to Cypress PLDs 4-1
Device Number
PAL® C 20 Series
Description
Reprogrammable CMOS PAL C 16L8, 16R8, 16R6, 16R4 4-7
PLD C 18G8 CMOS Generic 20-Pin Programmable Logic Device 4-26
PAL C 20G10B CMOS Generic 24-Pin Reprogrammable Logic Device 4-33
PAL C 20G10 CMOS Generic 24-Pin Reprogrammable Logic Device 4-33
PLD 20RA10 Reprogrammable Asynchronous CMOS Logic Device 4-44
PAL C 22V10B Reprogrammable CMOS PAL Device 4-53
PAL C 22V10 Reprogrammable CMOS PAL Device 4-53
PAL 22V10C Universal PAL Device 4-64
PAL 22VP10C Universal PAL Device 4-64
CY7B326 Multipurpose BiCMOS PLD 4-73
CY7C330 CMOS Programmable Synchronous State Machine 4-80
CY7C331 Asynchronous Registered EPLD 4-92
PAL is a registered trademark of Advanced Micro Devices, Inc.

EPLDs (Erasable Programmable Logic Devices) (continued)

Device Number

CY7C332
CY7B333
CY7B336
CY7B337
CY7B338
CY7B339
CY7C340 EPLD Family
CY7C341
CY7C342
CY7C343
CY7C344
CY7C361
PLD Programming Information

Description

Registered Combinatorial EPLD . 4-104
General-Purpose Synchronous BiCMOS PLD . 4-114
6-ns BiCMOS PAL with Input Registers . 4-121
7-ns BiCMOS PAL with Input Registers . 4-127
6-ns BiCMOS PAL with Output Latches . 4-133
7-ns BiCMOS PAL with Output Latches . 4-139
Multiple Array Matrix High-Density EPLDs . 4-145
192-Macrocell MAX EPLD 4-154
128-Macrocell MAX EPLD . 4-165
64-Macrocell MAX EPLD . 4-178
32-Macrocell MAX EPLD . 4-190
Ultra High Speed State Machine EPLD . 4-201
Ultra High Speed State Machine EPLD . 4-201

FIFOs

Device NumberCY3341 64×4 Serial Memory FIFO5-1
CY7C401 64×4 Cascadeable FIFO 5-6
CY7C402 64×5 Cascadeable FIFO 5-6
CY7C403 64×4 Cascadeable FIFO with Output Enable 5-6
CY7C404 64×5 Cascadeable FIFO with Output Enable 5-6CY7C408A
64×8 Cascadeable FIFO 5-16Y7
64×9 Cascadeable FIFO 5-16
CY7C420 512×9 Cascadeable FIFO 5-30
CY7C421 512×9 Cascadeable FIFO 5-30
CY7C424 1024 x 9 Cascadeable FIFO 5-30
CY7C425 1024 x 9 Cascadeable FIFO 5-30
CY7C428 2048 x 9 Cascadeable FIFO 5-30
CY7C429 2048 x 9 Cascadeable FIFO 5-30
CY7C432 4096 x 9 Cascadeable FIFO 5-45
CY7C433 4096 x 9 Cascadeable FIFO 5-45
CY7C439 2048 x 9 Bidirectional FIFO 5-58
CY7C441 512×9 Synchronous FIFO 5-70
CY7C443 $2 \mathrm{~K} \times 9$ Synchronous FIFO 5-70
CY7C451 512×9 Cascadeable Clocked FIFO 5-83
CY7C453 2K x 9 Cascadeable Clocked FIFO 5-83
CY7C460 8 K x 9 Cascadeable FIFO 5-104
CY7C462 16K x 9 Cascadeable FIFO 5-104
CY7C464 32K x 9 Cascadeable FIFO 5-104
CY7C470 $8 \mathrm{~K} \times 9$ FIFO 5-116
CY7C472 16K x 9 FIFO 5-1.16
CY7C474 $32 \mathrm{~K} \times 9$ FIFO 5-116
CYM4210 Cascadeable 8K x 9 FIFO 5-128
CYM4220 Cascadeable 16 K x 9 FIFO 5-128
CYM4241 64 K x 9 FIFO 5-129

LOGIC

Device Number

CY2901C
CY2909A
CY2911A
CY2910A
CY7C510
CY7C516
CY7C517
CY7C901
CY7C909
CY7C911
CY7C910
CY7C9101
CY7C9115
CY7C9116
CY7C9117

RISC

\qquad

Device Number

Description
CY7C601A
32-Bit RISC Processor . 7-6
CY7C602A
Floating-Point Unit7-14
CY7C604A Cache Controller and Memory Management Unit 7-20
CY7C605A Cache Controller and Memory Management Unit 7-29
CY7C611A 32-Bit RISC Controller 7-39
Modules
Custom Module Capabilities 8-1
Device NumberCYM1240256K x 4 Static RAM Module8-5CYM1420$128 \mathrm{~K} \times 8$ Static RAM Module8-10
CYM1422 $128 \mathrm{~K} \times 8$ Static RAM Module 8-15
CYM1423 128K x 8 Static RAM Module 8-20
CYM1441 $256 \mathrm{~K} \times 8$ Static RAM Module 8-25
CYM1460 512K x 8 Static RAM Module 8-30
CYM1461 512K x 8 Static RAM Module 8-35
CYM1464 $512 \mathrm{~K} \times 8$ Static RAM Module 8-41
CYM1465 $512 \mathrm{~K} \times 8$ Static RAM Module 8-46
CYM1466 $512 \mathrm{~K} \times 8$ Static RAM Module 8-51
CYM1471 $1024 \mathrm{~K} \times 8$ Static RAM Module 8-58
CYM1481 $2048 \mathrm{~K} \times 8$ Static RAM Module 8-58
CYM1540 $256 \mathrm{~K} \times 9$ Buffered Static RAM Module with Separate I/O 8-64
CYM1560 1024K x 9 Buffered Static RAM Module with Separate I/O 8-69
CYM1610 $16 \mathrm{~K} \times 16$ Static RAM Module 8-74
CYM1611 $16 \mathrm{~K} \times 16$ Static RAM Module 8-81
CYM1620 $64 \mathrm{~K} \times 16$ Static RAM Module 8-87
CYM1621 $64 \mathrm{~K} \times 16$ Static RAM Module 8-92
CYM1622 $64 \mathrm{~K} \times 16$ Static RAM Module 8-98
CYM1624 $64 \mathrm{~K} \times 16$ Static RAM Module 8-103
CYM1641 256K x 16 Static RAM Module 8-108
CYM1720 $32 \mathrm{~K} \times 24$ Static RAM Module 8-113
CYM1821 $16 \mathrm{~K} \times 32$ Static RAM Module 8-118

Modules (continued)

Device Number CYM1822
Description
$16 \mathrm{~K} \times 32$ Static RAM Module with Separate I/O 8-125
CYM1828 $32 \mathrm{~K} \times 32$ Static RAM Module 8-132
CYM1830 $64 \mathrm{~K} \times 32$ Static RAM Module 8-138
CYM1831 $64 \mathrm{~K} \times 32$ Static RAM Module 8-143
CYM1832 $64 \mathrm{~K} \times 32$ Static RAM Module 8-148
CYM1838 128 K x 32 Static RAM Module 8-153
CYM1840 256K X 32 Static RAM Module 8-154
CYM1841 256K x 32 Static RAM Module 8-159
CYM1910 16 K x 68 Static RAM Module 8-164
CYM1911 $16 \mathrm{~K} \times 68$ Static RAM Module 8-170
CYM4210 Cascadeable $8 \mathrm{~K} \times 9$ FIFO 8-177
CYM4220 Cascadeable $16 \mathrm{~K} \times 9$ FIFO 8-177
CYM4241 64K x 9 FIFO 8-186
CY7M194 64K x 4 Static RAM Module 8-192
CY7M199 $32 \mathrm{~K} \times 8$ Static RAM Module 8-197

ECL

Device Number

CY10E301
CY100E301
Description
Combinatorial ECL 16P4 Programmable Logic Device 9-1
Combinatorial ECL 16P4 Programmable Logic Device . 9-1
Combinatorial ECL 16P4 Programmable Logic Device . 9-6
Combinatorial ECL 16P4 Programmable Logic Device ... 9-6
Combinatorial ECL 16P4 Programmable Logic Device . 9-6
ECL/TTL Translator and High-Speed Bus Driver . 9-11
ECL/TTL Translator and High-Speed Bus Driver . 9-11
256×4 ECI, Static RAM 9-16
256×4 ECL Static RAM . 9-16
4096×1 ECL Static RAM 9-23
4096×1 ECL Static RAM . 9-23
1024 x 4 ECL Static RAM 9-28
1024 x 4 ECL Static RAM 9-28
4096×4 ECL Static RAM 9-35
4096×4 ECL Static RAM .. 9-35
4096×4 ECL Static RAM 9 . 35
16,384 x 4 ECL Static RAM . 9-37
16,384 x 4 ECL Static RAM . 9- 37
16,384 x 4 ECL Static RAM . 9-37
Bus Interface Products

Device Number	Description
VIC068	VMEbus Interface Controller . 10-1

VAC068
VMEbus Address Controller . 10-15

Military Information

Military Product Selector Guide . 11-2

Design and Programming Tools

Device Number
CY3101
CY3200
CY3210
CY3300

Description
PLD ToolKit12-1
PLDS-MAX + PLUS Design System 12-3
PLS-EDIF Bidirectional Netlist Interface 12-8
QuickPro II 12-15
Quality and ReliabilityQuality, Reliability, and Process Flows13-1
Tape and Reel Specifications 13-16
Packages
Page Number
Thermal Management and Component Reliability 14-1
Package Diagrams 14-8
Sales Representatives and Distributors
Direct Sales Offices
North American Sales Representatives
International Sales Representatives
Distributors

Device Number

10E301
10E302
10E383

10E422

10E470

10E474

10E484

10E494

100E301
100E302
100 E302
100 E 422
100E470
100E474
100E484
100E494
101E383
101E484
101E494
2147
2148
21L48
2149
21LA9
27LS03
27S03
27S07
2909A
2910A
2911A
3101
3200
3210
3300
3341
6116
6116A
6117A
74S189
7B134
7B135
7B138
7B144
7B153
7B154
7B155
7B156
7B160
7B161
7B162
7B163
7B164

Description

Page Number

Combinatorial ECL 16P4 Programmable Logic Device 9-1
Combinatorial ECL 16P4 Programmable Logic Device 9-6
ECL/TTL Translator and High-Speed Bus Driver 9-11
256×4 ECL Static RAM 9-16
4096×1 ECL Static RAM 9-23
1024×4 ECL Static RAM 9-28
4096×4 ECL Static RAM 9-35
$16,384 \times 4$ ECL Static RAM 9-37
Combinatorial ECL 16P4 Programmable Logic Device 9-1
Combinatorial ECL 16P4 Programmable Logic Device 9-6
Combinatorial ECL 16P4 Programmable Logic Device 9-6
256×4 ECL Static RAM 9-16
4096×1 ECL Static RAM 9-23
1024×4 ECL Static RAM 9-28
4096×4 ECL Static RAM 9-35
16,384 x 4 ECL Static RAM 9-37
ECL/TTL Translator and High-Speed Bus Driver 9-11
4096×4 ECL Static RAM 9-35
16,384 x 4 ECL Static RAM 9-37
4096×1 Static R/W RAM 2-1
1024×4 Static R/W RAM 2-6
1024×4 Static R/W RAM, Low Power 2-6
1024×4 Static R/W RAM 2-6
1024×4 Static R/W RAM, Low Power 2-6
16×4 Static R/W RAM 2-437
16×4 Static R/W RAM 2-437
16×4 Static R/W RAM 2-437
CMOS Microprogram Sequencers 6-9
CMOS Microprogram Controller 6-14
CMOS Microprogram Sequencers 6-9
PLD ToolKit 12-1
PLDS-MAX + PLUS Design System 12-3
PLS-EDIF Bidirectional Netlist Interface 12-8
QuickPro II 12-15
64×4 Serial Memory FIFO 5-1
2048×8 Static R/W RAM 2-12
2048×8 Static R/W RAM 2-19
2048×8 Static R/W RAM 2-19
16×4 Static R/W RAM 2-437
4K x 8 Dual-Port Static RAM 2-104
4K x 8 Dual-Port Static RAM 2-104
4K x 8 Dual-Port Static RAM with Semaphores, $\overline{\text { INT }}$, and $\overline{\text { BUSY }}$ 2-114
$8 \mathrm{~K} \times 8$ Dual-Port Static RAM with Semaphores, $\overline{\mathrm{INT}}$, and $\overline{\text { BUSY }}$ 2-128
65,536 x 4 Expandable Static R./W RAM 2-164
65,536 x 4 Expandable Static R./W RAM 2-164
16K x 16 Synchronous Static RAM 2-171
16K x 16 Synchronous Static RAM 2-171
Expandable $16,384 \times 4$ Static RAM 2-179
$16,384 \times 4$ Static RAM Separate I/O 2-184
$16,384 \times 4$ Static RAM Separate I/O 2-184
Expandable $262,144 \times 1$ Static R/W RAM with Separate I/O 2-205
$16,384 \times 4$ Static R/W RAM 2-211
Device Number
Description
Page Number7B166
16,384 x 4 Static R/W RAM 2-211
$32,768 \times 9$ Synchronous Cache R/W RAM 2-288
$32,768 \times 9$ Synchronous Cache R/W RAM 2-288
7B174
$4 \mathrm{~K} \times 18$ Cache Tag
$4 \mathrm{~K} \times 18$ Cache Tag 2-297 2-297
7B181 $4 \mathrm{~K} \times 18$ Cache Tag 2-297
78185 $8,192 \times 8$ Static RAM 2-329
7B186 $8,192 \times 8$ Static RAM 2-329
7B191 65,536 x 4 Static R/W RAM Separate I/O 2-372
7B192 65,536 x 4 Static R/W RAM Separate I/O 2-372
7B1937B194262,144 x 1 Static R/W RAM2-386
$65,536 \times 4$ Static R/W RAM 2-393
7B197 262,144 x 1 Static R/W RAM 2-409
7B195$65,536 \times 4$ Static R/W RAM with Output Enable2-393
7B196 $65,536 \times 4$ Static R/W RAM with Output Enable 2-393
7B198 $32,768 \times 8$ Static R/W RAM 2-422
7B199 32,768 $\times 8$ Static R/W RAM 2-422
7B1342$4 \mathrm{~K} \times 8$ Dual-Port Static RAM with Semaphores2-104
7B201 131,072 x 8 Reprogrammable PROM 3-4
7B2107B21165,536 x 16 Reprogrammable Registered PROM3-5
65,536 x 16 Reprogrammable Registered PROM 3-5
7B326 Multipurpose BiCMOS PLD 4-73
7B333 General-Purpose Synchronous BiCMOS PLD 4-114
7B336 6-ns BiCMOS PAL with Input Registers 4-121
7B337 7-ns BiCMOS PAL with Input Registers 4-127
7B338 6-ns BiCMOS PAL with Output Latches 4-133
7B339 7-ns BiCMOS PAL with Output Latches 4-139
7C101 $262,144 \times 4$ Static R/W RAM with Separate I/O 2-26
7C102 $262,144 \times 4$ Static R/W RAM with Separate I/O 2-26
7C106 262,144 x 4 Static R/W RAM 2-32
7 C 107 $1,048,576 \times 1$ Static R/W RAM 2-39
7 C 108 $131,072 \times 8$ Static R/W RAM 2-45
7C109 131,072 $\times 8$ Static R/W RAM 2-45
7 C 122 256×4 Static R/W RAM Separate I/O 2-52
7C123 256×4 Static R/W RAM Separate I/O 2-59
7 C 128 2048×8 Static R/W RAM 2-65
7C128A 2048×8 Static R/W RAM 2-72
7C130 1024×8 Dual-Port Static RAM 2-80
7 C131 1024×8 Dual-Port Static RAM 2-80
7 C 132 2048×8 Dual-Port Static RAM 2-92
7C136 2048×8 Dual-Port Static RAM 2-92
7C140 1024×8 Dual-Port Static RAM 2-80
7C141 1024×8 Dual-Port Static RAM 2-80
7C142 2048×8 Dual-Port Static RAM 2-92
7 C 146 2048×8 Dual-Port Static RAM 2-92
7C147 4096×1 Static RAM 2-142
7 C 148 1024×4 Static RAM 2-149
7C149 1024×4 Static RAM 2-149
7C150 1024×4 Static R/W RAM 2-156
7C157A $16,384 \times 16$ Static R/W Cache Storage Unit 2-177
7C161 16,384 x 4 Static R/W RAM Separate I/O 2-1907C161A$16,384 \times 4$ Static R/W RAM Separate I/O2-197
7C162 16,384 x 4 Static R/W RAM Separate I/O 2-190

Device Number

Description

Page Number

7C162A

7C164
7C164A
7C166
7C166A
7 C 167
7C167A
7 C 168
7C168A
7C169
7C169A

7 C 170

7C170A
7C171
7C171A

7C172

7C172A
7C182
7C183
7C184
7 C 185

7C186

7C185A
7C186A
7C187
7C187A

7C189

7 C 190
7 C 191
7C192
7C194
7 C 195
7 C 196
7 C 197

7C198

7 C 199
7 C 225
7 C 235
7C245
7C245A
7C251
7 C 254
7 C 261
7С263
7C264
7C265
7 C 266
7 C 268
7C269
7 C 271
7C274
7 C 277
$16,384 \times 4$ Static R/W RAM Separate I/O 2 -197
16,384 x 4 Static R/W RAM . 2-217
16,384 x 4 Static R/W RAM . 2-224
16,384 x 4 Static R/W RAM with Output Enable .. 2-217
16,384 x 4 Static R/W RAM with Output Enable 2-224
16,384x 1 Static R/W RAM . 2-233
16,384 x 1 Static RAM . 2-240
4096 x 4 Static RAM . 2-247
4096 x 4 R/W RAM . 2-254
4096 x 4 Static RAM . 2-247
4096 x 4 R/W RAM . 2-254
4096×4 Static R/W RAM . 2-263
4096×4 Static R/W RAM . 2-268
4096×4 Static R/W RAM Separate I/O . 2-274
4096×4 Static R/W RAM Separate I/O . 2-280
4096×4 Static R/W RAM Separate I/O . 2-274
4096×4 Static R/W RAM Separate I/O . 2-280
8,192x 9 Static R/W RAM . 2-316
$2 \times 4096 \times 16$ Cache RAM . 2-321
$2 \times 4096 \times 16$ Cache RAM . 2-321
8,192 x 8 Static R/W RAM . 2-334
8,192 x 8 Static R/W RAM . 2-334
8,192 x 8 Static R/W RAM . 2-341
8,192x 8 Static R/W RAM . 2-341
65,536x 1 Static R/W RAM . 2-349
65,536x 1 Static R/W RAM . 2-356
16x 4 Static R/W RAM . 2-365
16×4 Static R/W RAM 2-365
$65,536 \times 4$ Static R/W RAM Separate I/O . 2-379
65,536 x 4 Static R/W RAM Separate I/O . 2-379
65,536 x 4 Static R/W RAM . 2-401
65,536 x 4 Static R/W RAM with Output Enable 2-401
$65,536 \times 4$ Static R/W RAM with Output Enable . 2-401
262,144 x 1 Static R/W RAM . 2-415
$32,768 \times 8$ Static R/W RAM . 2-429
32,768 x 8 Static R/W RAM . 2-429
512×8 Registered PROM . 3-7
1024 x 8 Registered PROM . 3-14
2048 x 8 ReprogrammableReigstered PROM . 3-21
2048 x 8 ReprogrammableRegistered PROM . 3-30
16,384 x 8 Power Switched and Reprogrammable PROM . 3-38
$16,384 \times 8$ Reprogrammable PROM . 3-38
8192×8 Power Switched and Reprogrammable PROM . 3-44
8192×8 Reprogrammable PROM . 3-44
8192×8 Reprogrammable PROM . 3-44
64K Registered PROM . 3-53
8192×8 Power Switched and Reprogrammable PROM . 3-61
64K Registered Diagnostic PROM . 3-67
64K Registered Diagnostic PROM . 3-67
32,768 x 8 Power Switched and Reprogrammable PROM . 3-77
$32,768 \times 8$ Reprogrammable PROM . 3-77
32,768 x 8 Reprogrammable Registered PROM . 3-83

Device Number

7 C 279
Description
Page Number

7C281
7 C 282
7 C 285
7 C 286
7C287
7 C 289
7 C 291
7C291A
7 C 292
7C292A
7C293A
7 C 330
7C331
7 C 332
7C340 EPLD Family
7C341
7C342
7 C 343
7 C 344
7 C 361
7C401
7 C 402
7 C 403
7 C 404
7C408A
7C409A
7 C 420
7 C 421
7 C 424
7C425
$7 \mathrm{C428}$
7C429
7 C 432
7 C 433
7 C 439
7C441
7C443
7C451

7C453

7C460
7 C 462
7C464
$7 \mathrm{C470}$.
7C472
7 C 474
7C510
7 C 516
7 C 517
7C601A
7C602A
7C604A
$32,768 \times 8$ Reprogrammable Registered PROM . 3-83
1024 x 8 PROM 3-92
1024 x 8 PROM . 3-92
65,536 x 8 Reprogrammable Fast Column Access PROM . 3-101
65,536 x 8 Reprogrammable Registered PROM . 3-108
$65,536 \times 8$ Reprogrammable Registered PROM . 3-108
$65,536 \times 8$ Reprogrammable Fast Column Access PROM 3-101
2048×8 Reprogrammable PROM . 3-113
2048×8 Reprogrammable PROM . 3-120
2048 x 8 Reprogrammable PROM . 3-113
2048×8 Reprogrammable PROM . 3-120
2048×8 Reprogrammable PROM . 3-120
CMOS Programmable Synchronous State Machine ... 4-80
Asynchronous Registered EPLD . 4-92
Registered Combinatorial EPLD 4-104
Multiple Array Matrix High-Density EPLDs 4-145
192-Macrocell MAX EPLD . 4-154
128-Macrocell MAX EPLD . 4-165
64-Macrocell MAX EPLD . 4-178
32-Macrocell MAX EPLD . 4-190
Ultra High Speed State Machine EPLD 4-201
64×4 Cascadeable FIFO 5-6
64×5 Cascadeable FIFO 6
64×4 Cascadeable FIFO with Output Enable . 5-6
64×5 Cascadeable FIFO with Output Enable . 5-6
64×8 Cascadeable FIFO . 5-16
64×9 Cascadeable FIFO 16
512×9 Cascadeable FIFO 5-30
512 x 9 Cascadeable FIFO 30
1024×9 Cascadeable FIFO . 5-30
1024 x 9 Cascadeable FIFO . 5-30
2048×9 Cascadeable FIFO . 5-30
2048 x 9 Cascadeable FIFO . 5- 30
4096×9 Cascadeable FIFO . 5-45
4096×9 Cascadeable FIFO . 5-45
2048×9 Bidirectional FIFO . 5-58
512×9 Synchronous FIFO . 5-70
2K x 9 Synchronous FIFO . 5-70
512×9 Cascadeable Clocked FIFO . 5-83
2K x 9 Cascadeable Clocked FIFO . 5-83
8K x 9 Cascadeable FIFO . 5-104
16K x 9 Cascadeable FIFO . 5-104
32K x 9 Cascadeable FIFO . 5-104
8K x 9 FIFO 5-116
16K x 9 FIFO 5-116
32K x 9.FIFO . 5-116
16×16 Multiplier Accumulator . 6-19
16×16 Multipliers 6-31
16×16 Multipliers 6-31
32-Bit RISC Processor . 7-6
Floating-Point Unit . 7-14
Cache Controller and Memory Management Unit . 7-20
7C605A
7C611A7C9017 C 0097 C 9117C9107C91017C91157C91167 C 9117
7M194
7M199
93422A
93L422A9342293L422
M1240
M1420
M1422
M1423
M1441M1460
M1461
M1464
M1465
M1466
M1471
M1481
M1540
M1560
M1610
M1611
M1620M1621
M1622M1624
M1641
M1720M1821M1822M1828
M1830
M1831M1832
M1838
M1840
M1841M1910
M1911
M4210
M4220
M4241
Device Number
DescriptionPage NumberCache Controller and Memory Management Unit7-29
32-Bit RISC Controller 7-39
CMOS 4-Bit Slice 6-43
CMOS Microprogram Sequencers 6-58
CMOS Microprogram Sequencers 6-58
CMOS Microprogram Controller 6-69
CMOS 16-Bit Slice 6-80
CMOS 16-Bit Microprogrammed ALU 6-97
CMOS 16-Bit Microprogrammed ALU 6-97
CMOS 16-Bit Microprogrammed ALU 6-97
$64 \mathrm{~K} \times 4$ Static RAM Module 8-192
32K x 8 Static RAM Module 8-197
256×4 Static R/W RAM 2-443
$256 \mathrm{~K} \times 4$ Static RAM Module 8-5
$128 \mathrm{~K} \times 8$ Static RAM Module 8-10
$128 \mathrm{~K} \times 8$ Static RAM Module 8-15
$128 \mathrm{~K} \times 8$ Static RAM Module 8-20
$256 \mathrm{~K} \times 8$ Static RAM Module 8-25
$512 \mathrm{~K} \times 8$ Static RAM Module. 8-30
$512 \mathrm{~K} \times 8$ Static RAM Module 8-35
$512 \mathrm{~K} \times 8$ Static RAM Module 8-41
$512 \mathrm{~K} \times 8$ Static RAM Module 8-46
$512 \mathrm{~K} \times 8$ Static RAM Module 8-51
1024K x 8 Static RAM Module 8-58
2048K x 8 Static RAM Module 8-58
256K x 9 Buffered Static RAM Module with Separate I/O 8-64
1024K x 9 Buffered Static RAM Module with Separate I/O 8-69
$16 \mathrm{~K} \times 16$ Static RAM Module 8-74
$16 \mathrm{~K} \times 16$ Static RAM Module 8-81
$64 \mathrm{~K} \times 16$ Static RAM Module 8-87
$64 \mathrm{~K} \times 16$ Static RAM Module 8-92
$64 \mathrm{~K} \times 16$ Static RAM Module 8-98
$64 \mathrm{~K} \times 16$ Static RAM Module 8-103
256K x 16 Static RAM Module 8-108
$32 \mathrm{~K} \times 24$ Static RAM Module 8-113
$16 \mathrm{~K} \times 32$ Static RAM Module 8-118
$16 \mathrm{~K} \times 32$ Static RAM Module with Separate I/O 8-125
$32 \mathrm{~K} \times 32$ Static RAM Module 8-132
$64 \mathrm{~K} \times 32$ Static RAM Module 8-138
$64 \mathrm{~K} \times 32$ Static RAM Module 8-143
$64 \mathrm{~K} \times 32$ Static RAM Module 8-148
$128 \mathrm{~K} \times 32$ Static RAM Module 8-153
256K X 32 Static RAM Module 8-154
$256 \mathrm{~K} \times 32$ Static RAM Module 8-159
16K x 68 Static RAM Module 8-164
16K x 68 Static RAM Module 8-170
Cascadeable $8 \mathrm{~K} \times 9$ FIFO 8-177
Cascadeable $16 \mathrm{~K} \times 9$ FIFO 8-177
$64 \mathrm{~K} \times 9$ FIFO 8-186
Device NumberDescriptionPage Number
PAL 22V10C Universal PAL Device 4-64
PAL 22VP10C Universal PAL Device 4-64
PAL C 20 Series Reprogrammable CMOS PAL C 16L8, 16R8, 16R6, 16R4 4-7
PALC 20G10 CMOS Generic 24-Pin Reprogrammable Logic Device 4-33
PAL C 20G10B CMOS Generic 24-Pin Reprogrammable Logic Device 4-33
PAL C 22V10 Reprogrammable CMOS PAL Device 4-53
PALC 22V10B Reprogrammable CMOS PAL Device 4-53
PLD C 18 G 8 CMOS Generic 20-Pin Programmable Logic Device 4-26
16L8 4-26
16R4 4-26
16R6 4-26
16R8 4-26
PLD 20RA10 Reprogrammable Asynchronous CMOS Logic Device 4-44
VIC068 VMEbus Interface Controller 10-1
VAC068 VMEbus Address Controller 10-15
BUS INTERFACE PRODUCTS 10
MILITARY 11
DESIGN AND 12
PROGRAMMING TOOLS
QUALITY AND 13RELIABILITY
PACKAGES 14

Section Contents
General Product Information Page Number
Cypress Semiconductor Background 1-1
Cypress Process Technology 1-2
Product Selector Guide 1-3
Ordering Information 1-9
Product Line Cross Reference 1-11

Cypress Semiconductor Background

Cypress Semiconductor was founded in April 1983 with the stated goal of serving the high-performance semiconductor market. This market is served by producing the highest-performance integrated circuits using state-of-the-art processes and circuit design. Cypress is a complete semiconductor manufacturer, performing its own process development, circuit design, wafer fabrication, assembly, and text. The company went public in May 1986 and was listed on the New York Stock Exchange in October 1988.
The initial semiconductor process, a CMOS process employing $1: 2$-micron geometries, was introduced in March 1984. This process is used in the manufacturing of Static RAMs and Logic circuits. In the third quarter of 1984, a 1.2-micron CMOS EPROM process was introduced for the production of programmable products. At the time of introduction, these processes were the most advanced production processes in the industry. Following the 1.2 -micron processes, a 0.8 -micron CMOS SRAM process was implemented in the first quarter of 1986 , and a 0.8 -micron EPROM process in the third quarter of 1987. Tostay at the forefront of process technology, Cypress's 1-megabyte SRAM is manufactured using its proprietary 0.65 -micron CMOS process.
In keeping with the strategy of serving the high-performance markets with state-of-the-art integrated circuits, Cypress introduced two new processes in 1989. These were a bipolar submicron process, targeted for ECL circuits, and a BiCMOS process to be used for most types of TTL and ECL circuits.
The circuit design technology used by Cypress is also state of the art. This design technology, along with advanced process technology, allows Cypress to introduce the fastest, highest-performance circuits in the industry. Cypress's products fall into seven families: high-speed Static RAMs, PROMS, Erasable Programmable Logic Devices, Logic, RISC microprocessors, ECL SRAMs and PLDs, and module products. Members of the CMOS Static RAM family include devices in densities of 64 bits to 1 Mbit, and performance from 7 ns to 35 ns . The various organizations, 16×4, 256×4 through 1 Mbit $\times 1,256 \mathrm{~K} \times 4$, and $128 \mathrm{~K} \times 8$ provide optimal solutions for applications such as large mainframes, high-speed controllers, communications, and graphics display. Cypress's BiCMOS family of 64 K and 256 K SRAMs in $16 \mathrm{~K} \times 4$ and $32 \mathrm{~K} x 8$ configurations offers speeds as fast as 8 ns . Cypress's CMOS cache RAMs include a $4 \mathrm{~K} \times 18$ cache tag RAM at 12 ns match, a 32 K x 9 cache RAM with a 14 -ns access time, an $8 \mathrm{~K} \times 16$ cache RAM with a 25 -ns access time, and a $16 \mathrm{~K} \times 16$ cache RAM with a 12 -ns access time.
Cypress's CMOS programmable products consist of high-speed PROMs and Erasable Programmable Logic Devices (EPLDs), both employing an EPROM programming element. Like the high-speed Static RAM family, these products are the natural choice to replace older devices because they provide superior performance at one half of the power consumption. PROM densities range from 4 to 512 kilobits in byte-wide organization. EPLD products range from 20 pins to 84 pins with performance as fast as 156 MHz . To support new programmable products, Cypress introduced the QuickPro ${ }^{\text {®w }}$ programming system (CY3000) for PLDs and PROMs, and the PLD ToolKit for PLDs. QuickPro is a development tool that includes a single, IBM PC® compatible add-on board and a software utility program. The PLD ToolKit is a software design tool that assembles and simulates logic functions, generates JEDEC files, and reverse assembles to create source files. Both QuickPro and the PLD ToolKit software are updated via floppy disk, thereby allowing quick support of all Cypress programmable products.

Logic products include circuits such as 4-bit and 16-bit slices, 16 x 16 multipliers and 16 -bit microprogrammable ALUs, a family of $1 \mathrm{~K} / 2 \mathrm{~K} \times 8$ and $4 \mathrm{~K} / 8 \mathrm{~K} \times 8$ dual-port SRAMS, as well as a family of FIFOs that range from 64×4 to $32 \mathrm{~K} \times 9$. Cypress also offers application-specific FIFOs such as the $2 \mathrm{~K} \times 9$ bidirectional FIFO and the $512 / 2 \mathrm{~K} \times 9$ clocked FIFO. FIFOs provide the interface between digital information paths of widely varying speeds. This allows the information source to operate at its own intrinsic speed, while the results may be processed or distributed at a speed commensurate with need.
Until 1988, all Cypress products were TTL I/O-compatible. In 1989, Cypress introduced ECL products having access times (propagation delays) of less than 3.5 ns in either of the popular I/O configurations, 100 K or $10 \mathrm{~K} / 10 \mathrm{KH}$. ECL RAMs include 256 x 4, 1K x 4, and $16 \mathrm{~K} \times 4$ RAM families with balanced read/write cycles. The ECL PLDs are combinatorial 16P8 and 16P4 devices that can be programmed on QuickPro and other commercially available programming tools. Both the RAMs and PLDs are offered in low-power versions, reducing operating power by 30 to 40 percent while achieving 4-ns access times (RAM) and 6-ns tpD (PLD).
The module family consists of both standard and custom modules incorporating circuits from the other six product families. This capability provides a fast, low-risk solution for designs requiring the ultimate in system performance and density. SRAM and FIFO module configurations are available depending on height and board real estate constraints. Modules include Single-In-Line, Dual-In-Line, Dual Single-In-line, Vertical Dual-In-Line, Quad-In-Line, and (Staggered) Zig-Zag-In-Line packages.
Cypress's CY7C600 family of RISC microprocessor products provides state-of-the-art high-performance computing for applications ranging from UNIX-based business computers and workstations to embedded controls. Based on the SPARC® RISC architecture, the family provides a complete solution with Integer Unit (IU), Floating-Point Unit (FPU), Cache Control and Memory Management Unit (CMU), and Cache RAMs (CRAMs). The family is functionally partitioned to provide a range of features, performance, and price to suit each type of application.
Situated in California's Silicon Valley (San Jose) and Round Rock (Austin), Texas, Cypress houses R\&D, design, wafer fabrication, assembly, and administration. The facilities are designed to the most demanding technical and environmental specifications in the industry. At the Texas facility, the entire wafer fabrication area is specified to be a Class 1 environment. This means that the ambient air has less than 1 particle of greater than 0.2 microns in diameter per cubic foot of air. Other environmental considerations are carefully insured: temperature is controlled to a ± 0.2 degree Fahrenheit tolerance; filtered air is completely exchanged more than 10 times each minute throughout the fab; and critical equipment is situated on isolated slabs to minimize vibration.
Attention to assembly is equally as critical. Cypress assembles 80% of its packages in the United States at its San Jose, California plant. Assembly is completed in a clean room until the silicon die is sealed in a package. Lead frames are handled in carriers or cassettes through the entire operation. Automated robots remove and replace parts into cassettes. Using sophisticated automated equipment, parts are assembled and tested in less than five days. The Cypress assembly line is the most flexible, automated line in the United States.
The Cypress motto has always been "only the best - the best facilities, the best equipment, the best employees . . . all striving to make the best CMOS, BiCMOS, and bipolar products.

Cypress Process Technology

In the last decade, there has been a tremendous need for highperformance semiconductor products manufactured with a balance of SPEED, RELIABILITY, and POWER. Cypress Semiconductor has overcome the classically held perceptions that CMOS is a moderate-performance technology.
Cypress initially introduced a 1.2 -micron " N " well technology with double-layer poly and a single-layer metal. The process employs lightly doped extensions of the heavily doped source and drain regions for both " N " and " P " channel transistors for significant improvement in gate delays. Further improvements in performance, through the use of substrate bias techniques, have added the benefit of eliminating the input and output latch-up characteristics associated with the older CMOS technologies.

Cypress pushed process development to new limits in the areas of PROMs (Programmable Read Only Memory) and EPLDs (Eraseable Programmable Logic Devices). Both PROMs and EPLDs have existed since the early 1970s in a bipolar process that employed various fuse technologies and was the only viable highspeed nonvolatile process available. Cypress PROMs and EPLDs use EPROM technology, which has also been in use in MOS (Metal Oxide Silicon) also since the early 1970s. EPROM technology has traditionally emphasized density advantages while forsaking performance. Through improved technology, Cypress has produced the first high-performance CMOS PROMs and EPLDs, replacing their bipolar counterparts.
To maintain our leadership position in CMOS technology, Cypress has introduced a sub-micron technology into production. This 0.8 micron breakthrough makes Cypress's CMOS one of the most advanced production processes in the world. The drive to maintain leadership in process technology has not stopped with the 0.8 -micron devices. Cypress will bring a 0.65 -micron process to production in 1991 with the introduction of its 1-megabyte SRAM.
To further enhance the technology from the reliability direction, improvements have been incorporated in the process and design, minimizing electrostatic discharge and input signal clipping problems.
Finally, although not a requirement in the high-performance arena, CMOS technology substantially reduces the power consumption for any device. This improves reliability by allowing the device to operate at a lower die temperature. Now higher levels of integration are possible without trading performance for power.

For instance, devices may now be delivered in plastic packages without any impact on reliability.
While addressing the performance issues of CMOS technology, Cypress has not ignored the quality and reliability aspects of technology development. Rather, the traditional failure mechanisms of electrostatic discharge (ESD) and latch-up have been addressed and solved through process and design technology innovation.
ESD-induced failure has been a generic problem for many highperformance MOS and bipolar products. Although in its earliest years, MOS technology experienced oxide reliability failures, this problem has largely been eliminated through improved oxide growth techniques and a better understanding of the ESD problem. The effort to adequately protect against ESD failures is perturbed by circuit delays associated with ESD protection circuits. Focusing on these constraints, Cypress has developed ESD protection circuitry specific to 1.2 - and 0.8 -micron CMOS process technology. Cypress products are designed to withstand voltage and energy levels in excess of 2001 volts and 0.4 milli-joules.
Latch-up, a traditional problem with CMOS technologies, has been eliminated through the use of substrate bias generation techniques, the elimination of the "P" MOS pull-ups in the output drivers, the use of guardring structures and care in the physical layout of the products.
Cypress has also developed additional process innovations and enhancements: the use of multilayer metal interconnections, advanced metal deposition techniques, silicides, exclusive use of plasma for etching and ashing process steps, and 100 percent stepper technology with the world's most advanced equipment.
A wholly owned subsidiary of Cypress, Aspen Semiconductor, has developed a BiCMOS technology to augment the capabilities of the Cypress CMOS processes. The new BiCMOS technology is based on the Cypress 0.8 -micron CMOS process for enhanced manufacturability. Like CMOS, the process is scalable, to take advantage of finer line lithography. Where speed is critical, Cypress BiCMOS allows increased transistor performance. It also allows reduced power in the non-speed critical sections of the design to optimize the speed/power balance. The BiCMOS process makes memories and logic operating up to 400 MHz possible.
Cypress technologies have been carefully designed, creating products that are "only the best" in high-speed, excellent reliability, and low power.

IBM PC is a registered trademark of International Business Corporation.
QuickPro is a trademark of Cypress Semiconductor Corporation.
SPARC is a registered trademark of SPARC International, Inc.
tatic RAMs

Size	Organization	Pins	Part Number	Speed (ns)	$\mathbf{I}_{\mathbf{C C}} / \mathbf{I}_{\mathbf{S B}} / \mathbf{I}_{\mathbf{C C D R}}$ (mA @ ns)	Packages	Availability
64	16x4-Inverting	16	CY7C189	$\mathrm{t}_{\mathrm{AA}}=15,25$	55 @ 25	D,L,P	Now
64	16×4-Non-Inverting	16	CY7C190	$\mathrm{t}_{\mathrm{AA}}=15,25$	55@25	D,L,P	Now
64	16×4-Inverting	16	CY74S189	$\mathrm{t}_{\mathrm{AA}}=35$	90@35	D, P	Now
64	16×4 - Inverting	16	CY27S03A	$\mathrm{t}_{\mathrm{AA}}=25,35$	90@ 25	D, L, P	Now
64	16×4-Non-Inverting	16	CY27S07A	$\mathrm{t}_{\mathrm{AA}}=25,35$	90@ 25	D, L, P	Now
64	16×4 - Inverting Low Power	16	CY27LS03M	$\mathrm{t}_{\mathrm{AA}}=65$	38 @ 65	D,L	Now
1K	256x4	22	CY7C122	$\mathrm{t}_{\mathrm{AA}}=15,25,35$	60@25	D,L,P,S	Now
1K	256×4	24S	CY7C123	$\mathrm{t}_{\mathrm{AA}}=7,9,10,12,15$	120@7	D, L, P, V	Now
1K	256x 4	22	CY9122/91L22	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	120@25	D, P	Now
1K	256x4	22	CY93422A/93L422	$\mathrm{t}_{\mathrm{AA}}=35,45,60$	80@45	D, L, P	Now
4K	4Kx1-CS Power-Down	18	CY7C147	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	80/10@35	D, L, P, S	Now
4K	4Kx1-CS Power-Down	18	CY2147/21L47	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	125/25@35	D, P	Now
4K	1Kx4-CS Power-Down	18	CY7C148	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	80/10@35	D, L, P, S	Now
4K	1Kx4-CS Power-Down	18	CY2148/21L48	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/20@35	D, P, S	Now
4K	$1 \mathrm{Kx4}$	18	CY7C149	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	80@35	D, L, P, S	Now
4K	1 Kx 4	18	CY2149/21L49	$\mathrm{t}_{\text {AA }}=35,45,55$	120@35	D, P	Now
4K	1Kx4-Separate I/O, Reset	24 S	CY7C150	$\mathrm{t}_{\mathrm{AA}}=10,12,15,25,35$	90@12	D,L,P,S	Now
8K	$1 \mathrm{~K} \times 8$-Dual Port Master	48	CY7C130	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	170@25	D, L, P	Now
8K	1K×8-Dual Port Slave	48	CY7C140	$t_{\text {AA }}=25,35,45,55$	170@25	D, L, P	Now
8K	$1 \mathrm{Kx8}$-Dual Port Master	52	CY7C131	$\mathrm{t}_{\text {AA }}=25,35,45,55$	170@25	L., J	Now
8K	1K×8-Dual Port Slave	52	CY7C141	$\mathrm{t}_{\text {AA }}=25,35,45,55$	170@25	L, J	Now
16K	2Kx8-CS Power-Down	24 S	CY7C128	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	90/20@ 55	D, L, P, V	Now
16K	2Kx8-CS Power-Down	24	CY7C128A	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45,55$	90/20@ 55	D, L, P, V	Now
16 K	2Kx8-CS Power-Down	24	CY6116	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/20@55	D, L	Now
16K	2Kx8-CS Power-Down	24	CY6116A	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45,55$	80/20@55	D,L	Now
16K	2Kx8-CS Power-Down	32	CY6117A	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45,55$	80/20@55	L	Now
16K	16Kx1-CS Power-Down	20	CY7C167	$\mathrm{t}_{\mathrm{AA}}=35,45$	50/15@25	D,L,P, V	Now
16K	16Kx 1-CS Power-Down	20	CY7C167A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	50/15@45	D, L, P, V	Now
16K	4Kx4-CS Power-Down	20	CY7C168	$\mathrm{t}_{\mathrm{AA}}=35,45$	90/15@25	D,L,P, V	Now
16K	4Kx4-CS Power-Down	20	CY7C168A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	70/15@45	D,L, P, V	Now
16K	4Kx4	20	CY7C169	$\mathrm{t}_{\mathrm{AA}}=35,40$	90@ 25	D,L,P, V	Now
16K	4Kx4	20	CY7C169A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	$70 @ 45$	D, L, P, V	Now
16K	4Kx4-Output Enable	22 S	CY7C170	$\mathrm{t}_{\mathrm{AA}}=35,45$	90@45	D, L, P, V	Now
16K	4Kx4-Output Enable	22S	CY7C170A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	90@45	D, L, P, V	Now
16K	4K×4-Separate I/O	24 S	CY7C171	$\mathrm{t}_{\mathrm{AA}}=35,45$	90/15@25	D,L,P, V	Now
16K	4K×4-Separate I/O	24S	CY7C171A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	90@45	D,L,P, V	Now
16K	4K×4-Separate I/O	24S	CY7C172	$\mathrm{t}_{\mathrm{AA}}=35,45$	90/15@25	D,L,P,S	Now
16 K	4Kx4-Separate I/O	24S	CY7C172A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	90@45	D, L, P, V	Now
16 K	2Kx8-Dual Port Master	48	CY7C132	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	170@25	D,L,P	Now
16K	$2 \mathrm{~K} \times 8$-Dual Port Slave	48	CY7C142	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	170@25	D,L,P	Now
16K	2Kx8-Dual Port Master	52	CY7C136	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	170@25	L, J	Now
16K	2Kx8-Dual Port Slave	52	CY7C146	$t_{\text {AA }}=25,35,45,55$	170@25	L, J	Now
32K	4 Kx 8 -Dual Port, No Arbitration	48	CY7B134	$\mathrm{t}_{\mathrm{AA}}=20,25,35$	240	D, P, J, L	2 Q 91
32K	4Kx8-Dual Port, w/Semaph	52	CY7B1342	$\mathrm{t}_{\text {AA }}=20,25,35$	240	J, L	$2 \mathrm{Q91}$
32K	4Kx8-Dual Port, No Arbitration	52	CY7B135	$\mathrm{t}_{\text {AA }}=20,25,35$	240	J, L	2Q91
32K	4Kx8-Dual Port, w/Semaph, Busy, Int	68	CY7B138	$\mathrm{t}_{\mathrm{AA}}=15,25,35$	260	G, J,L	2Q91
64K	8Kx8-Dual Port,w/Semaph, Busy, Int	68	CY7B144	$\mathrm{t}_{\text {AA }}=15,25,35$	260	G, J, L	2Q91
64K	8Kx 8-CS Power-Down	28 S	CY7B185	$\mathrm{t}_{\mathrm{AA}}=10,12,15$	140/40@ 12	D, P, V	Now
64K	8Kx 8-CS Power-Down	28	CY7B186	$\mathrm{t}_{\mathrm{AA}}=12,15$	140/40@12	D, P, V	Now
64K	8Kx8-CS Power-Down	28S	CY7C185A	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	120/20@15	D,L, P, V	Now
64 K	8Kx8-CS Power-Down	28	CY7C186A	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	120/20@15	D, P	Now
64 K	16Kx4-CS Power-Down	22 S	CY7B164	$\mathrm{t}_{\mathrm{AA}}=10,12$	130/40@10	D,P, V	Now
64K	16Kx4-CS Power-Down	22S	CY7C164A	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	115/40@20	D, L, P, V	Now
64K	16 Kx 4 -Linear Decode with 5 CSs	28 S	CY7B160	$\mathrm{t}_{\mathrm{AA}}=10,12,15$	120/40@ 12	L, V	Now
64 K	16Kx4-Output Enable	24S	CY7B166	$\mathrm{t}_{\mathrm{AA}}=10,12$	130/40@10	D, P, V	Now
64K	16Kx4-Output Enable	24S	CY7C166A	$t_{A A}=15,20,25,35,45$	115/40@15	D,L,P, V	Now
64K	16Kx4-Separate I/O,Transparent Write	28S	CY7B161	$\mathrm{t}_{\mathrm{AA}}=10,12$	130/40@10	D, P, V	Now
64K	$16 \mathrm{~K} \times 4$-Separate I/O	28S	CY7B162	$\mathrm{t}_{\mathrm{AA}}=10,12$	130/40@10	D, P, V	Now
64K	16 Kx 4 -Separate I/O, Transparent Write	28S	CY7C161A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	115/40@15	D, L, P, V	Now
64 K	16 Kx 4 -Separate I/O	28S	CY7C162A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	115/40@15	D, L, P, V	Now

Static RAMs (continued)

Size	Organization	Pins	Part Number	Speed (ns)	$\mathbf{I}_{\mathbf{C C}} / \mathbf{I}_{\mathbf{S B}} / \mathbf{I}_{\mathbf{C C D R}}$ (mA @ ns)	Packages	Availability
64K	64Kx 1-CS Power-Down	22S	CY7C187A	$t_{A A}=15,20,25,35,45$	90/40@15	D, L, P, V	Now
72K	8 Kx 9	28S	CY7C182	$\mathrm{t}_{\text {AA }}=25,35,45,55$	140/35@25	D, P, V	Now
76K	4K×18-Cache Tag, Multiprocessing	68	CY7C180	$\mathrm{t}_{\text {MATCH }}=12,15,20$	250@12	G, J, L	2Q91
76K	$4 \mathrm{~K} \times 18$-Cache Tag, Uniprocessing	68	CY7C181	$\mathrm{t}_{\text {MATCH }}=12,15,20$	250@12	G, J, L	2Q91
128K	8K $\times 16$ - Addresses Latched except A12	52	CY7C183	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	220 @ 25	J	Now
128 K	$8 \mathrm{~K} \times 16$ - Addresses Latched	52	CY7C184	$t_{\text {AA }}=25,35,45$	220@ 25	J	Now
256 K	16K×16-SPARC Cache RAM	52	CY7C157	$t_{\text {AA }}=20,24,33$	250	J, L	Now
256K	16Kx 16-Cache	52	CY7C155	$\mathrm{t}_{\mathrm{AA}}=12,15,20$	200@12	J, L	3Q91
256K	$16 \mathrm{~K} \times 16$ - Cache	52	CY7C156	$t_{A A}=12,15,20$	200@12	J, L	3Q91
256 K	32Kx 8 -CS Power-Down	28	CY7C198	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	170/35@25	L	Now
256 K	32Kx 8-CS Power-Down	28 S	CY7C199	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$.	170/35@25	D, L, P, V	Now
256 K	32Kx 8 -CS Power-Down	28	CY7B198	$\mathrm{t}_{\mathrm{AA}}=12,15,20$	155@12	L	3Q91
256 K	32Kx 8 -CS Power-Down	28S	CY7B199	$\mathrm{t}_{\mathrm{AA}}=12,15,20$	155@12	P, V, D	3 Q 91
256K	64Kx4-CS Power-Down	24S	CY7C194	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	120/35@25	D, L, P, V	Now
256 K	64Kx 4-CS Power Down with OE	28S	CY7C196	$\mathrm{t}_{\text {AA }}=25,35,45$	120/35@ 25	D,L, P, V	Now
256K	64 Kx 4 -Separate I/O, Transparent Write	28S	CY7C191	$t_{\text {AA }}=25,35,45$	120/35@25	D,L, P, V	Now
256 K	64 Kx 4 -Separate I/O	28S	CY7C192	$t_{\text {AA }}=25,35,45$	120/35@25	D,L, P, V	Now
256K	64Kx4-Common I/O, Linear Decode	28S	CY7B153	$t_{\text {AA }}=12,15,20$	135@12	P, V, D, L	4Q91
256 K	64Kx4-Common I/O, Linear Decode	28S	CY7B154	$\mathrm{t}_{\mathrm{AA}}=12,15,20$	135@12	P, V, D, L	4Q91
256K	64K×4-Separate I/O, Transparent Write	28S	CY7B191	$\mathrm{t}_{\mathrm{AA}}=12,15,20$	135 @ 12	P, V, D, L	4Q91
256K	64 Kx 4 -Separate I/O	28S	CY7B192	$\mathrm{t}_{\mathrm{AA}}=12,15,20$	135@12	P, V, D, L	4Q91
256 K	64Kx 4-CS Power-Down	24S	CY7B194	$\mathrm{t}_{\mathrm{AA}}=12,15,20$	135@12	P, V, D, L	3Q91
256K	64Kx4-CS Power-Down w/ OE	28S	CY7B195	$\mathrm{t}_{\mathrm{AA}}=12,15,20$	135@12	P, V, D, L	3Q91
256K	64Kx4-CS Power-Down w/OE, Second CS	28S	CY7B196	$t_{\text {AA }}=12,15,20$	135@12	P, V, D, L	3Q91
256K	64Kx4-CS Power-Down w/OE	28 S	CY7C195	$t_{\text {AA }}=25,35,45$	120/35@25	P,V,D,L	Now
256K	256 Kx 1 -Common I/Ow/OE	24S	CY7B193	$\mathrm{t}_{\mathrm{AA}}=12,15,20$	110@12	P, V, D, L	4Q91
256 K	256Kx 1-CS Power-Down	24S	CY7B197	$\mathrm{t}_{\mathrm{AA}}=12,15,20$	110@12	P, V, D, L	$3 \mathrm{Q91}$
256 K	256K x 1 - CS Power-Down	24S	CY7C197	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	100/35@25	P,V,D,L	Now
256K	256K x 1 - Linear Decode	28 S	CY7B163	$\mathrm{t}_{\mathrm{AA}}=12,15,20$	110 @ 12	P, V, D, L	4Q91
288K	32K x 9-Cache, 486 Burst Mode	44	CY7C173	$\mathrm{t}_{\text {AA }}=14,18,21$	250@14	J, L	3Q91
288K	32K x 9-Cache, Linear Burst Mode	44	CY7C174	$\mathrm{t}_{\mathrm{AA}}=14,18,21$	250@14	J, L	3Q91
1 M	$128 \mathrm{~K} \times 8$ - CS Power-Down	32	CY7C108	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	160@ 25	L	3Q91
1 M	128 Kx 8 -CS Power-Down	32	CY7C109	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	160@ 25	V, D	2Q91
1 M	256Kx4-CS Power-Down w/OE	28	CY7C106	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	130@ 25	V,D,L	3Q91
1 M	$256 \mathrm{~K} \times 4$-Separate I/O, Transparent Write	32	CY7C101	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	130@ 25	D, L	3 Q 91
1 M	256 Kx 4 -Separate I/O	32	CY7C102	$t_{\text {AA }}=25,35,45$	130@ 25	V,D,L	3Q91
1 M	1Mx1-CS Power-Down	28	CY7C107	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	130@ 25	V, D, L	3Q91

ECL SRAMs

Size	Organization	Pins	Part Number	Speed (ns)	$\mathrm{I}_{\text {EE }}$	Packages	Availability
1 K	$256 \times 4-10 \mathrm{~K} / 10 \mathrm{KH}$	24.4	CY10E422	$\mathrm{t}_{\mathrm{AA}}=5$	220	D, L, K, Y	Now
1 K	$256 \times 4-10 \mathrm{~K} / 10 \mathrm{KH}$	24.4	CY10E422L	$\mathrm{t}_{\mathrm{AA}}=5,7$	150	D, L, J, K	Now
1K	256x4-100K	24.4	CY100E422	$\mathrm{t}_{\mathrm{AA}}=5$	220	D, L, K, Y	Now
1K	$256 \times 4-100 \mathrm{~K}$	24.4	CY100E422L	$\mathrm{t}_{\mathrm{AA}}=5,7$	150	D, L, J, K	Now
4K	$4 \mathrm{Kx} 1-10 \mathrm{~K}$	18.3	CY10E470	$\mathrm{t}_{\mathrm{AA}}=5,7$	200	D	Now
4K	$4 \mathrm{Kx} 1-100 \mathrm{~K}$	18.3	CY100E470	$\mathrm{t}_{\mathrm{AA}}=5,7$	200	D	Now
4K	$1024 \times 4-10 \mathrm{~K} / 10 \mathrm{KH}$	24.4	CY10E474	$\mathrm{t}_{\mathrm{AA}}=4,5$	275	D, L, K, Y	Now
4K	$1024 \times 4-10 \mathrm{~K} / 10 \mathrm{KH}$	24.4	CY10E474L	$\mathrm{t}_{\mathrm{AA}}=5,7$	190	D, L, J, K	Now
4K	$1024 \times 4-100 \mathrm{~K}$	24.4	CY100E474	$\mathrm{t}_{\mathrm{AA}}=3.5,5$	275	D, L, K, Y	Now
4K	1024 x 4-100K	24.4	CY100E474L	$\mathrm{t}_{\mathrm{AA}}=5,7$	190	D, L, J, K	Now
16K	$4 \mathrm{Kx} 4-10 \mathrm{~K} / 10 \mathrm{KH}$	28.4	CY10E484	$\mathrm{t}_{\mathrm{AA}}=5$	320	D, K	4Q91
16K	$4 \mathrm{Kx} 4-10 \mathrm{~K} / 10 \mathrm{KH}$	28.4	CY10E484L	$\mathrm{t}_{\mathrm{AA}}=7,8$	180	D, K	4Q91
16K	$4 \mathrm{Kx} 4-100 \mathrm{~K}$	28.4	CY101E484	$\mathrm{t}_{\mathrm{AA}}=5$	320	D, K	4Q91
16K	$4 \mathrm{~K} \times 4-100 \mathrm{~K}$	28.4	CY100E484L	$\mathrm{t}_{\mathrm{AA}}=7,8$	180	D, K	4Q91
64K	$16 \mathrm{Kx} 4-10 \mathrm{~K} / 10 \mathrm{KH}$	28.4	CY10E494	$\mathrm{t}_{\mathrm{AA}}=7,8,10$	190	D, K, V	Now
64 K	$16 \mathrm{~K} \times 4-10 \mathrm{~K} / 10 \mathrm{KH}$	28.4	CY10E494L	$\mathrm{t}_{\mathrm{AA}}=12$	135	D, K, V	Now
64 K	$16 \mathrm{~K} \times 4-100 \mathrm{~K}$	28.4	CY101E494	$\mathrm{t}_{\mathrm{AA}}=7,8,10$	190	D, K, V	Now
64 K	$16 \mathrm{Kx} 4-100 \mathrm{~K}$	28.4	CY100E494L	$\mathrm{t}_{\mathrm{AA}}=12$	135	D, K, V	Now

SRAM Modules

Size	Organization	Pins	Part Number	Speed (ns)	$\mathbf{I}_{\mathbf{C C}} / \mathbf{I}_{\mathbf{S B}} / \mathbf{I}_{\mathbf{C C D R}}$ (mA@ns)	Packages	Availability
256K	64Kx4-SRAM (JEDEC)	24	CY7M194	$\mathrm{t}_{\mathrm{AA}}=12,15$	325@10	HD	Now
256K	64Kx4-SRAM (JEDEC)	24	CYM1220	$\mathrm{t}_{\mathrm{AA}}=12,15$	325@10	HD	Now
256K	32Kx8-SRAM (JEDEC)	28	CY7M199	$\mathrm{t}_{\mathrm{AA}}=12,15$	375@10	HD	Now
256K	32K $\times 8$-SRAM (JEDEC)	28	CYM1400	$\mathrm{t}_{\mathrm{AA}}=12,15$	375@10	HD	Now
256K	16K $\times 16$-SRAM (JEDEC)	40	CYM1610	$\mathrm{t}_{\mathrm{AA}}=12,15$	$\begin{aligned} & 550 @ 12 \\ & 330 @ 70 \end{aligned}$	$\begin{aligned} & \mathrm{HD} \\ & \mathrm{HD} \end{aligned}$	Now Now
256K	16K×16-SRAM	36	CYM1611	$\begin{aligned} & \mathrm{t}_{\mathrm{AA}}=12,15 \\ & \mathrm{t}_{\mathrm{AA}}=20,25,30,35,45 \end{aligned}$	$\begin{aligned} & 550 @ 12 \\ & 330 @ 20 \end{aligned}$	$\begin{aligned} & \text { HV, PV } \\ & \text { HV, PV } \end{aligned}$	Now Now
512K	16K $\times 32$-SRAM (JEDEC)	64	CYM1821	$\begin{aligned} & \mathrm{t}_{\mathrm{AA}}=12,15 \\ & \mathrm{t}_{\mathrm{AA}}=20,25,30,35,45 \end{aligned}$	$\begin{aligned} & 960 @ 12 \\ & 720 @ 25 \end{aligned}$	$\begin{aligned} & \mathrm{PZ}, \mathrm{PM} \\ & \mathrm{PZ}, \mathrm{PM} \end{aligned}$	Now Now
512K	16K×32-SRAM	88	CYM1822	$\begin{aligned} & \mathrm{t}_{\mathrm{AA}}=12,15 \\ & \mathrm{t}_{\mathrm{AA}}=20,25,30,35,45 \end{aligned}$	$\begin{aligned} & 960 @ 12 \\ & 720 @ 25 \end{aligned}$	$\begin{aligned} & \mathrm{HV} \\ & \mathrm{HV} \end{aligned}$	Now Now
768K	32Kx 24 -SRAM	56	CYM1720	$\mathrm{t}_{\mathrm{AA}}=25,30,35$	330@ 25	PZ	Now
1M	256K x 4 -SRAM (JEDEC)	28	CYM1240	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45$	480@25	HD	Now
1M	$128 \mathrm{~K} \times 8$-SRAM (JEDEC)	32	CYM1420	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45,55$	210@30	HD, PD	Now
1M	128 Kx 8 -SRAM	30	CYM1422	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	200@35	PS	Now
1M	$128 \mathrm{~K} \times 8$-SRAM (JEDEC)	32	CYM1423	$\mathrm{t}_{\mathrm{AA}}=45,55,70$	210@45	PD	Now
1M	32K×32-SRAM	66	CYM1828	$\mathrm{t}_{\mathrm{AA}}=35,45,55,70$	400@45	HG	Now
1M	64K×16-SRAM (JEDEC)	40	CYM1620	$\mathrm{t}_{\text {AA }}=25,30,35,45,55$	340 @ 25	HD, PD	Now
1 M	$64 \mathrm{~K} \times 16$-SRAM	40	CYM1621	$\mathrm{t}_{\mathrm{AA}}=20,25,30,35,45$	1250@20	HD	Now
1M	$64 \mathrm{~K} \times 16$-SRAM	40	CYM1622	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45$	400@ 25	HV	Now
1M	64K×16-SRAM (JEDEC)	40	CYM1624	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	500@ 25	PV	Now
1M	16Kx68-SRAM, Registered Address	104	CYM1910	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	1900@ 25	PV	Now
1M	16Kx68-SRAM, Latched Address	104	CYM1911	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	1900@25	PV	Now
2M	$256 \mathrm{~K} \times 8$-SRAM (JEDEC)	60	CYM1441	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	960@ 25	PZ	Now
2M	64K×32-SRAM	60	CYM1830	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45,55$	880@ 25	HD	Now
2M	64K×32-SRAM (JEDEC)	64	CYM1831	$\mathrm{t}_{\mathrm{AA}}=20,25,30,35,45$	$720 @ 20$	PZ, PM	Now
2M	64K×32-SRAM	60	CYM1832	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	980@ 25	PZ	Now
2.25 M	256Kx9-SRAM	44	CYM1540	$\mathrm{t}_{\mathrm{AA}}=30,35,45$	1125@30	PS, PF	Now
4M	512 Kx 8 --SRAM (JEDEC)	32	CYM1466	$\begin{gathered} \mathrm{t}_{\mathrm{AA}}=35,45,55,70,85 \\ 100,120 \end{gathered}$	$\begin{aligned} & 350 @ 35 \\ & 184 @ 55 \\ & 84 @ 100 \end{aligned}$	HD	1Q91
4M	512 Kx 8 -SRAM	36	CYM1460	$\mathrm{t}_{\mathrm{AA}}=35,45,55,70$	625@35	PF, PS	Now
4M	512Kx8-SRAM	36	CYM1461	$\mathrm{t}_{\mathrm{AA}}=70,85,100$	150@70	PF, PS	Now
4M	512Kx8-SRAM (JEDEC)	32	CYM1464	$\mathrm{t}_{\mathrm{AA}}=35,45,55,70$	300@35	PD	Now
4M	512Kx 8-SRAM (JEDEC)	32	CYM1465	$\mathrm{t}_{\mathrm{AA}}=85,100,120,150$	110@85	PD	Now
4M	$256 \mathrm{~K} \times 16$-SRAM	40	CYM1644	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45$	480@ 25	PV	1Q91
4M	$256 \mathrm{~K} \times 16$-SRAM	48	CYM1641	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45,55$	1800@25	HD	Now
8M	$256 \mathrm{~K} \times 32-\mathrm{SRAM}$	60	CYM1840	$t_{\text {AA }}=25,30,35,45,55$	1120@25	HD, PD	1Q91
8M	$256 \mathrm{~K} \times 32$-SRAM (JEDEC)	64	CYM1841	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45,55$	960@ 25	PZ, PM	Now
8M	1Mx8-SRAM	36	CYM1471	$\mathrm{t}_{\mathrm{AA}}=85,100,120$	110@85	PS	1Q91
9M	1Mx9-SRAM	44	CYM1560	$\mathbf{t}_{\text {AA }}=30,35,45$	1200@30	PS	1Q91
16M	2Mx8-SRAM	36	CYM1481	$\mathrm{t}_{\mathrm{AA}}=85,100,120$	110@85	PF,PS	Now

PROMs

Size	Organization	Pins	Part Number	Speed (ns)	$\underset{\substack{\mathbf{I C C}_{(\mathrm{mA} @ \mathrm{~ns})} / \mathrm{I}_{\mathbf{S B}} / \mathbf{I}_{\mathbf{C D R R}}}}{ }$	Packages	Availability
4K	512x8-Registered	24S	CY7C225	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=25 / 12,30 / 15$	90	D, L, P	Now
8 K	1024×8-Registered	24S	CY7C235	$\mathrm{t}_{\text {SACO }}=25 / 12,30 / 15$	90	D, L, P	Now
8K	1 Kx 8	24S	CY7C281	$\mathrm{t}_{\mathrm{AA}}=30,45$	90	D, L, P	Now
8K	1 Kx 8	24	CY7C282	$\mathrm{t}_{\mathrm{AA}}=30,45$	90	D, L, P	Now
16K	2Kx8-Registered	24S	CY7C245/L	${ }^{\text {t }}$ S $/$ CO $=25 / 12,35 / 15$	100,60	D, L, P, Q, W, S	Now
16K	2Kx8-Registered	24S	CY7C245A/	$\mathrm{t}_{\text {SACO }}=15 / 10,18 / 12$	60@35	D,L, P, Q, W, S	Now
16K	2 Kx 8	24S	CY7C291/L	$\mathrm{t}_{\text {AA }}=35,40$	90,60	D, L, P, Q, W, S	Now
16K	2 Kx 8	24S	CY7C291A/L	$\mathrm{t}_{\mathrm{AA}}=25,30,35,50$	60@35	D, L, P, Q, W, S	Now
16K	2 Kx 8	24	CY7C292/L	$\mathrm{t}_{\mathrm{AA}}=35,50$	90,60	D, P	Now
16K	2Kx8-CS Power-Down	24S	CY7C293A/L	$\mathrm{t}_{\mathrm{AA}}=25,30,35,50$	60/15@35	D,L, P, Q, W, S	Now
64K	8 Kx 8 -CS Power-Down	24S	CY7C261	$\mathrm{t}_{\mathrm{AA}}=20,25,30,35,4045,55$	100/30	D,L,P,Q,W,S	Now
64K	8 Kx 8	24S	CY7C263	$\mathrm{t}_{\mathrm{AA}}=20,25,30,35,40,45,55$	100	D, L, P, Q, W, S	Now
64 K	8 Kx 8	24	CY7C264	$\mathrm{t}_{\text {AA }}=20,25,30,35,40,45,55$	100	D, P	Now
64 K	$8 \mathrm{~K} \times 8$-Registered	28 S	CY7C265	$\mathrm{t}_{\text {SA/CO }}=40 / 20,15 / 12$	80	D, L, P, Q, W, S	Now

PROMs (continued)

Size	Organization	Pins	Part Number	Speed (ns)	$\mathbf{I}_{\mathbf{C C}} / \mathbf{I}_{\mathbf{S B}} / \mathbf{I}_{\mathbf{C C D R}}$ (mA@ns)	Packages	Availability
64K	8Kx8-EPROM Pinout	28	CY7C266	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45,55$	80/15	D, L, P, Q, W	Now
64K	8K'x 8-Registered, Diagnostic	28S	CY7C269	$\mathrm{t}_{\text {SA/CO }}=40 / 20,50 / 25$	100	D, L, P, Q, W, S	Now
64K	8Kx8-Registered, Diagnostic	32	CY7C268	$\mathrm{t}_{\text {SA/CO }}=40 / 20,50 / 25$	100	D,L, Q, W	Now
128K	16 Kx 8 --CS Power-Down	28S	CY7C251	$\mathrm{t}_{\mathrm{AA}}=45,55,65$	100/30	D,L,P, Q, W	Now
128K	16 Kxx 8	28	CY7C254	$\mathrm{t}_{\mathrm{AA}}=45,55,65$	100	D, P	Now
256K	32Kx 8 -CS Power-Down	28S	CY7C271	$\mathrm{t}_{\mathrm{AA}}=35,45,55,65$	100/30	D,L,P, Q, W	Now
256K	$32 \mathrm{~K} \times 8$-EPROM Pinout	28	CY7C274	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/30	D,L,P, Q, W	Now
256K	$32 \mathrm{~K} \times 8$-Registered	28S	CY7C277	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=40 / 20$	120/30	D, L, P, Q, W	Now
256K	32 Kx 8 -Latched	28	CY7C279	$\mathrm{t}_{\text {AA }}=35,45,55$	120	D, L, P, Q, W	Now
512K	64 Kx 8	28	CY7C286	$\mathrm{t}_{\mathrm{AA}}=60$	120/40	Q,W	Now
512K	64Kx8-Registered	28S	CY7C287	$\mathrm{t}_{\mathrm{CO}}=20$	180	Q,W	Now
512K	$64 \mathrm{~K} \times 8$ with ALE	28 S	CY7C285	$t_{\text {AA }}=65 / 20$	180	Q, W	Now
512K	64 Kx 8 with ALE	32S	CY7C289	$\mathrm{t}_{\text {AA }}=65 / 20$	180	Q, W	Now

PLDs

Size	Organization	Pins	Part Number	Speed (ns)	$\underset{(\mathrm{mA} @ \mathrm{~ns})}{\mathbf{I}_{\mathbf{C C}} / \mathbf{I}_{\mathbf{S B}} / \mathbf{I}_{\mathbf{C C D R}}}$	Packages	Availability
PAL20	16L8	20	PALC16L8/L	$\mathrm{t}_{\mathrm{PD}}=20$	70,45	D, L, P, Q, V, W	Now
PAL20	16R8	20	PALC16R8/L	$\mathrm{t}_{\text {S/CO }}=15 / 12$	70,45	D, L, P, Q, V, W	Now
PAL20	16R6	20	PALC16R6/L	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=20 / 20 / 15$	70,45	D, L, P, Q, V, W	Now
PAL20	16R4	20	PALC16R4/L	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=20 / 20 / 15$	70,45	D, L, P, Q, V, W	Now
PLD20	18G8-Generic	20	PLDC18G8	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=12 / 8 / 10$	90/70	D, L, P, Q, V, W, J	Now
PLD24	22V10-Macrocell	24S	PALC22V10/L	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=25 / 15 / 15,20 / 12 / 12$	90,55	D, L, P, Q, W, J	Now
PLD24	22V10-Macrocell	24S	PALC22V10B	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=15 / 10 / 10$	90	D, L, P, Q, W, J, H	Now
PLD24	22V10-Macrocell	24S	PAL22V10C	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=7.5,13 / 6,10 / 3.6 / 7.5$	190	D, L, P, J	Now
PLD24	22VP10-Macrocell	24S	PAL22VP10C	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=7.5, / 3 / 6,10 / 3.6 / 7.5$	190	D, L, P, J	Now
PLD24	20G10-Generic	24S	PLDC20G10	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=25 / 15 / 15$	55	D, L, P, Q, W, J	Now
PLD24	20G10-Generic	24S	PLDC20G10B	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=15 / 12 / 10$	70	D, L, P, Q, W, J, H	Now
PLDB24	20G10-Generic	24S	PLDC20G10C	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=10 / 3.6 / 7.5,12 / 4.5 / 9.5$	190	D, L, P, J	2Q91
PLD24	20RA10-Asynchronous	24S	PLD20RA10	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=15 / 10 / 15$	80	D, L, P, Q, W, J, H	Now
PLD24	7B326-16 Macrocell	24S	CY7B326	$\mathrm{t}_{\mathrm{PD}}=12$	170	D, J, K, L, P, Y	4Q91
PLD28	7C330-State Machine	28S	CY7C330	$\mathrm{f}_{\mathrm{MAX}}, \mathrm{t}_{\mathrm{IS}}, \mathrm{t}_{\mathrm{CO}}=66 \mathrm{MHz} / 3 \mathrm{~ns} / 12 \mathrm{~ns}$	$130 @ 50 \mathrm{MHz}$	D, L, P, Q, W, J, H	Now
PLD28	7C331-Asynchronous, Registered	28S	CY7C331	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=20 / 12 / 20$	120@25 ns	D, L, P, Q, W, J, H	Now
PLD28	7C332-Input Registered, Combinatorial	28S	CY7C332	$\mathrm{t}_{\mathrm{PD}}=20$	120@20ns	D, L, P, Q, W, J, H	Now
PLD28	7B333-16 Macrocell	28 S	CY7B333	$\mathbf{t}_{\text {PD/S/CO }}=10 / 8 / 8$	170	D, J, K, L, P, Y	4Q91
PLD28	7B336 - Input Reg., 2 PTs	28 S	CY7B336	$\mathrm{f}_{\text {MAXD }}=156 \mathrm{MHz}$	180	D, J, L, P, V	Now
PLD28	7B337-Input Reg., 4 PTs	28 S	CY7B337	$\mathrm{f}_{\text {MAXD }}=142 \mathrm{MHz}$	180	D, J, L, P, V	Now
PLD28	7B338-Output Latched, 2 PTs	28S	CY7B338	$\mathrm{f}_{\mathrm{MAXD}}=156 \mathrm{MHz}$	180	D, J, L, P, V	Now
PLD28	$\begin{aligned} & \text { 7B339-Output Latched, } \\ & 4 \text { PTs } \end{aligned}$	28S	CY7B339	$\mathrm{f}_{\mathrm{MAXD}}=142 \mathrm{MHz}$	180	D, J, L, P, V	Now
PLD28	7C361-32 Macrocell	28 S	CY7C361	$\mathrm{f}_{\mathrm{MAX}}=125 \mathrm{MHz}$	140	D, J,L, P, Q, W, H	Now
MAX28	7C344-32 Macrocell	28S	CY7C344	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=20 / 10 / 15$	120	D, L, P, Q, W, J, H	Now
MAX44	7C343-64 Macrocell	44	CY7C343	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=30 / 22 / 16$	155/100	J, H	Now
MAX68	7C342-128 Macrocell	68	CY7C342	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=30 / 22 / 15$	310/200	L, J, G, H, R	Now
MAX84	7C341-192 Macrocell	84	CY7C341	$\mathrm{t}_{\mathrm{PD}}=35$	470/340	J, H	Now

ECL PLDs

Organization	Pins	Part Number	Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathrm{EE}} \\ (\mathrm{~mA} @ \mathrm{~ns}) \end{gathered}$	Packages	Availability
$16 \mathrm{P} 8-10 \mathrm{KH}$	24	CY10E301	$\mathrm{t}_{\mathrm{PD}}=3.5,4$	240	D, K, Y	Now
$16 \mathrm{P} 8-10 \mathrm{KH}$	24	CY10E301L	$\mathrm{t}_{\mathrm{PD}}=6$	170	P, J	Now
16P8-100K	24	CY100E301	$\mathrm{t}_{\mathrm{PD}}=3.5,4$	240	D, K, Y	Now
16P8-100K	24	CY100E301L	$t_{P D}=6$	170	P, J	Now

iCL PLDs

Organization	Pins	Part Number	Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathrm{EE}} \\ (\mathbf{m A @ n s)} \end{gathered}$	Packages	Availability
$16 \mathrm{P} 4-10 \mathrm{KH}$	24	CY10E302	$\mathrm{t}_{\mathrm{PD}}=3,4$	220	D, K, Y	Now
$16 \mathrm{P} 4-10 \mathrm{KH}$	24	CY10E302L	$\mathrm{t}_{\mathrm{PD}}=4$	170	P, J	Now
16P4-100K	24	CY100E302	$t_{\text {PD }}=3,4$	220	D, K, Y	Now
16P4-100K	24	CY100E302L	$t_{P D}=4$	170	P, J	Now

'IFOs

Organization	Pins	Part Number	Speed	$I_{C C} / I_{S B}$ (mA @ ns)	Packages	Availability
64×4	16	CY3341	1.2, 2 MHz	45	D, P	Now
64×4	16	CY7C401	$5,10,15,25 \mathrm{MHz}$	75	D, L, P	Now
64x4-w/OE	16	CY7C403	$10,15,25 \mathrm{MHz}$	75	D, L, P	Now
64×5	18	CY7C402	$5,10,15,25 \mathrm{MHz}$	75	D, L, P	Now
64×5-w/OE	18	CY7C404	$10,15,25 \mathrm{MHz}$	75	D, L, P	Now
$64 \times 8-w / O E$ and Almost Flags	$28 S$	CY7C408A	15, $25,35 \mathrm{MHz}$	120	D, L, P, V	Now
64×9-w/Almost Flags	28S	CY7C409A	$15,25,35 \mathrm{MHz}$	120	D, L, P, V	Now
$512 \times 9-$ w/Half Full Flag	28	CY7C420	20, 25, $30,40,65 \mathrm{~ns}$	142/30	D,P	Now
512×9-w/Half Full Flag	28 S	CY7C421	20, 25, $30,40,65 \mathrm{~ns}$	142/30	D, J, L, P, V	Now
512×9-Clocked	28S	CY7C441	14, $20,30 \mathrm{ns*}$	180	D, L, J, P, V	1Q91
512×9-Clockedw/Prog. Flags	32	CY7C451	$14,20,30 \mathrm{~ns}{ }^{*}$	180	D, L, J	1 Q 91
1K×9-w/Half Full Flag	28	CY7C424	20, 25, $30,40,65 \mathrm{~ns}$	142/30	D, P	Now
1Kx9-w/Half Full Flag	28 S	CY7C425	$20,25,30,40,65 \mathrm{~ns}$	142/30	D, J, L, P	Now
$2 \mathrm{~K} \times 9-\mathrm{w} /$ Half Full Flag	28	CY7C428	20, 25, 30, 40, 65 ns	142/30	D, P	Now
2K×9-w/Half Full Flag	28S	CY7C429	20, 25, 30, 40,65 ns	142/30	D, J, L, P, V	Now
$2 \mathrm{~K} \times 9$-Bidirectional	28S	CY7C439	$30,40,65 \mathrm{~ns}$	140/40	D, J, L, P, V	Now
2K x 9-Clocked	28 S	CY7C443	$14,20,30 \mathrm{~ns} *$	180	D, L, J, P, V	1 Q 91
2Kx9-Clocked w/ Prog. Flags	32	CY7C453	14,20, $30 \mathrm{~ns}{ }^{*}$	180	D, L, J	$1 \mathrm{Q91}$
4K×9-w/Half Full Flag	28	CY7C432	25,30, $40,65 \mathrm{~ns}$	142/25	D, P	Now
4Kx9-w/Half Full Flag	28S	CY7C433	25, $30,40,65 \mathrm{~ns}$	142/25	D, J, L, P, V	Now
$8 \mathrm{~K} \times 9$-Module	28	CYM4210	$30,40,50,65 \mathrm{~ns}$	540/120	HD	Now
$8 \mathrm{~K} \times 9$-w/Half Full Flag	28	CY7C460	$15,25,40 \mathrm{~ns}$	180	D, J, L, P	2 Q 91
8K x 9-w/Prog. Flags	28	CY7C470	$15,25,40 \mathrm{~ns}$	180	D, J, L, P	2 Q 91
$16 \mathrm{~K} \times 9-\mathrm{w} /$ Half Full Flag	28	CY7C462	$15,25,40 \mathrm{~ns}$	180	D, J, L, P	2 Q 91
16K x 9-w/ Prog. Flags	28	CY7C472	$15,25,40 \mathrm{~ns}$	180	D, J, L, P	2Q91
$16 \mathrm{~K} \times 9$-Module	28	CYM4220	$30,40,50,65 \mathrm{~ns}$	540/120	HD	Now
$32 \mathrm{~K} \times 9$-w/Half Full Flag	28	CY7C464	$15,25,40 \mathrm{~ns}$	180	D, J, L, P	2 Q 91
32K x 9-w/Prog. Flags	28	CY7C474	$15,25,40 \mathrm{~ns}$	180	D, J, L, P	$2 \mathrm{Q91}$
$64 \mathrm{~K} \times 9$-Module	28	CYM4241	$85,100 \mathrm{~ns}$	240@85	PD	Now

Logic

Organization	Pins	Part Number	Speed (ns)	$\underset{(\mathrm{mA} @ \mathbf{n s})}{\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathbf{S B}} / \mathrm{I}_{\mathrm{CCDR}}}$	Packages	Availability
2901-4-BitSlice	40	CY7C901	$\mathrm{t}_{\mathrm{CLK}}=23,31$	70	D, L, P, J	Now
2901-4-BitSlice	40	CY2901	C	140	D, P	Now
4×2901 - 16-BitSlice	64	CY7C9101	$\mathrm{t}_{\text {CLk }}=30,40$	60	D, L, P, J	Now
29116-16-Bit Controller	52	CY7C9116	$\mathrm{t}_{\mathrm{CLk}}=35,45,53,79,100$	145	D,L,G, J	Now
29116-16-Bit Controller	52	CY7C9115	$\mathrm{t}_{\mathrm{CLk}}=35,45,53,79,100$	145	J	Now
29117-16-Bit Controller	68	CY7C9117	$\mathrm{t}_{\mathrm{CLk}}=35,45,53,79,100$	145	L, G, J	Now
2909-Sequencer	28	CY7C909	$\mathrm{t}_{\mathrm{CLk}}=30,40$	55	D, L, P, J	Now
2911-Sequencer	20	CY7C911	$\mathrm{t}_{\text {CLk }}=30,40$	55	D, L, P, J	Now
ICL/TTLTranslator -10 KH	84	CY10E383	$\mathrm{t}_{\mathrm{PD}}=3 / 4 \mathrm{~ns}$	255	\mathbf{J}	2 Q 91
ICL/TTLTranslator -100 K	84	CY101E383	$\mathrm{t}_{\text {PD }}=3 / 4 \mathrm{~ns}$	255	J	2 Q 91

Note:

* Clocked FIFO [CY7C441/443/451/453] times are cycle times.

Logic (continued)

Organization	Pins	Part Number	Speed (ns)	$\underset{(\mathrm{mACO} \mathrm{n})}{\mathbf{I C C D}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{SB}} / \mathrm{I}_{\mathrm{CCDR}}}$	Packages	Availability
2909-Sequencer	28	CY2909	A	70	D, P	Now
2911-Sequencer	20	CY2911	A	70	D, P	Now
2910 - Controller (17-word Stack)	40	CY7C910	$t_{\text {CLK }}=40,50,93$	100	D, L, P, J	Now
2910-Controller (9-wordStack)	40	CY2910	A.	170	D, L, P, J	Now
16×16 Multiplier	64	CY7C516	$\mathrm{t}_{\mathrm{MC}}=38,45,55,75$	$100 @ 10 \mathrm{MHz}$	D, L, P, G, J	Now
16×16 Multiplier	64	CY7C517	$\mathrm{t}_{\mathrm{MC}}=38,45,55,75$	$100 @ 10 \mathrm{MHz}$	D, L, P, G, J	Now
16×16 Multiplier/Accumulator	64	CY7C510	$\mathrm{t}_{\mathrm{MC}}=45,55,65,75$	$100 @ 10 \mathrm{MHz}$	D, L, P, G, J	Now

RISC

Desc.	Organization	Pins	Part Number	Speed (ns)	$\underset{(\mathrm{mA} @ 40 \mathrm{MHz})}{\mathbf{I}_{\mathbf{C C}} / \mathbf{I}_{\mathbf{S B}} / \mathbf{I}_{\mathbf{C C D R}}}$	Packages	Availability
IU	SPARC 32-bit Integer Unit	207	CY7C601A	Freq. $=40,33,25 \mathrm{MHz}$	675	G	Now
FPU	Floating-Point Unit (Controller and Processor)	143	CY7C602A	Freq. $=40,33,25 \mathrm{MHz}$	350	G	Now'
CMU	Cache-Controlled Memory Management Unit	243	CY7C604A	Freq. $=40,33,25 \mathrm{MHz}$	650	G	Now
$\begin{aligned} & \text { CMU } \\ & \text {-MP } \end{aligned}$	Cache Controller and Multiprocessing Memory Management Unit	243	CY7C605A	Freq. $=40,33,25 \mathrm{MHz}$	850	G	$\begin{aligned} & 25 \mathrm{MHz} \text { Now } \\ & 33 \mathrm{MHz} 2 \mathrm{Q} 91 \\ & 40 \mathrm{MHz} 3 \mathrm{WQ} 91 \end{aligned}$
IU	SPARC 32-bit Integer Unit for Embedded Control	160	CY7C611A	Freq. $=25 \mathrm{MHz}$	600	P	Now
CSU	SPARC Cache Storage Unit	52	CY7C157A	Freq. $=40,33,25 \mathrm{MHz}$	250	J	Now

Design and Programming Tools

Part Name	Type	Part Number
QuickProII	Programmer	CY3300
PLD ToolKit	Design Tool	CY3101
MAX+PLUS	Design Tool	CY3201
QP2-MAX PLD Programmer	Programmer	CY3202
MAX+PLUS PLS-EDIF	Design tool	CY3210

Notes:
The above specifications are for the commercial temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ product processed to MIL-STD-883 Revision C is also available for most products. Speed and power selections may vary from those above. Contact your local sales office for more information.

Commercial grade product is available in plastic, CERDIP, or LCC. Military grade product is available in CERDIP, LCC, or PGA. F, K, and T packages are special order only.
All power supplies are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\left(\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%\right.$ for RISC $)$.
$22 \mathrm{~S}, 24 \mathrm{~S}, 28 \mathrm{~S}$ stands for 300 mil . 22-pin, 24-pin, 28-pin, respectively. 28.4 stands for 28 -pin 400 mil , 24.4 stands for 24 -pin 400 mil .
PLCC, SOJ, and SOIC packages are available on some products.
F, K, and T packages are special order only.
MAX and MAX + PLUS are trademarks of Altera Corporation.

Package Code:

B = PLASTIC PIN GRID ARRAY
$\mathrm{D}=$ CERDIP
$F=$ FLATPAK
$\mathrm{G}=$ PIN GRID ARRAY (PGA)
$\mathrm{H}=$ WINDOWED HERMETIC LCC
$\mathrm{J}=\mathrm{PLCC}$
$K=$ CERPAK
L = LEADED CHIP CARRIER (LCC)
$\mathrm{N}=$ PLASTIC QUAD FLATPACK
$P=P L A S T I C$
$Q=$ WINDOWED LCC
$\mathrm{R}=$ WINDOWED PGA

```
S = SOIC
    T = WINDOWED CERPAK
    U = WINDOWED CERAMIC QUAD FLATPACK
    V = SO.
    W = WINDOWED CERDIP
    X = DICE
HD = HERMETIC DIP
HV = HERMETIC VERTICAL DIP
PF = PLASTIC FLAT SIP
PS = PLASTIC SIP
PZ = PLASTIC ZIP
Y = CERAMIC LCC
```


Ordering Information

In general, the codes for all products (except modules) follow the format below.

FAMILY

PAL 20
LOW POWER PAL 20
PAL 24 VARIABLE PRODUCT TERMS
GENERIC PLD 24
PLD SYNCHRONOUS STATE MACHINE
10 K ECL PLD
100K ECL PLD
RAM, PROM, FIFO, μ P, ECL

PREFIX	DEVICE
CY	${ }^{7} 7128$
CY	7B185
CY	7 C 245
CY	7 C 404
CY	7 C 901
CY	$10 \mathrm{E415}$
CY	100E415

FAMILY
CMOS SRAM
BiCMOS SRAM
PROM
FIFO
$\mu \mathrm{P}$
10 K ECL SRAM
100K ECL SRAM

PROCESSING
B = HI REL MIL STD 883C FOR MILITARY PRODUCT
= LEVEL 2 PROCESSING FOR COMMERCIAL PRODUCT
T = SURFACE-MOUNTED DEVICES (V \& S PACKAGE) TO
BE TAPE AND REELED
R = LEVEL 2 PROCESSING ON TAPE AND REEL DEVICES
TEMPERATURE RANGE
$\mathrm{C}=\operatorname{COMMERCIAL}\left(0^{\circ} \mathrm{C}\right.$ TO $\left.70^{\circ} \mathrm{C}\right)$
$\mathrm{I}=$ INDUSTRIAL $\left(-40^{\circ} \mathrm{C}\right.$ TO $\left.+85^{\circ} \mathrm{C}\right)$
$\mathrm{M}=\operatorname{MILITARY}\left(-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}\right)$
PACKAGE
B = PLASTIC PIN GRID ARRAY
D = CERDIP
$\mathrm{F}=\mathrm{FLATPAK}$
G = PIN GRID ARRAY (PGA)
H = WINDOWED LEADED CHIP CARRIER
$\mathrm{J}=\mathrm{PLCC}$
$\mathrm{K}=$ CERPAK (GLASS-SEALED FLAT PACKAGE)
L = LEADLESS CHIP CARRIER
$\mathrm{N}=$ PLASTIC QUAD FLATPACK
$\mathrm{P}=\mathrm{PLASTIC}$
Q = WINDOWED LEADLESS CHIP CARRIER
$\mathrm{R}=$ WINDOWED PGA
$\mathrm{S}=$ SOIC (GULL WING)
T = WINDOWED CERPAK
$\mathrm{U}=$ WINDOWED CERAMIC QUAD FLATPACK
$\mathrm{V}=\mathrm{SOIC}$ (J LEAD)
W = WINDOWED CERDIP
$\mathrm{X}=$ DICE (WAFFLE PACK)
$\mathrm{Y}=\mathrm{CERAMIC}$ LEADED CHIP CARRIER

SPEED (ns or MHz)
L = LOW-POWER OPTION
A, B, C = REVISION LEVEL

The codes for module products follow the the format below.

Cypress FSCM \#65786

CYPRESS	CYPRESS
2147-35C	7C147-35C
2147-45C	2147-35C
2147-45C	7C147-45C
2147-45M +	$7 \mathrm{C} 147-45 \mathrm{M}+$
2147-55C	2147-45C
2147-55M	2147-45M
2148-35C	21L48-35C
2148-35C	7C148-35C
2148-35M	7C148-35M
2148-45C	2148-35C
2148-45C	21L48-45C
2148-45M	2148-35M
2148-45M +	7C148-45M+
2148-55C	2148-45C
2148-55C	21L48-55C
2148-55M	2148-45M
2149-35C	21L49-35C
2149-35C	7C149-35C
2149-35M	7C149-35M
2149-45C	21L49-45C
2149-45M	2149-35M
2149-45M	7C149-45M
2149-55C	2149-45C
2149-55C	21L49-55C
2149-55M	2149-45M
21LA8-35C	7 C 148 -35C
21L48-45C	21L48-35C
21L48-45C	7C148-45C
21L48-55C	21L48-45C
21L49-35C	7C149-25C
21L49-45C	21L49-35C
21L49-45C	7C149-45C
21L49-55C	21L49-45C
27S03AC	7C189-25C
27S03AM	7C189-25M
27S03C	27S03AC
27S03C	74S189C
27S03M	27S03AM
27S03M	54S189M
27S07AC	$7 \mathrm{C} 190-25 \mathrm{C}$
27S07AM	7C190-25M
27S07C	27S07AC
27S07M	27S07AM
27S07M	7C190-25M
2901CC	7C901-31C
2901CM	7C901-32M
2909AC	7C909-40C
2909AM	7C909-40M
2910AC	$7 \mathrm{C} 910-50 \mathrm{C}$
2910AM	7C910-51M
2910C	2910AC
2910M	2910AM
2911AC	7C911-40C
2911AM	7C911-40M
3341-2C	7C401-5C+
3341-2M	7C401-10M
3341 C	3341-2C
3341M	3341-2M
54S189M	27S03M
6116-45C	6116-35C
6116-55C	6116-45C
6116-55M	6116-45M

CYPRESS	CYPRESS
74S189C	27S03C
7C122-25C	7C122-15C+
$7 \mathrm{C} 122-35 \mathrm{C}$	$7 \mathrm{C} 122-25 \mathrm{C}$
7C122-35M	7C122-25M
7C123-12C	7C123-7C
7C128-35C	$7 \mathrm{C} 128-25 \mathrm{C}$
7C128-45C	$7 \mathrm{C} 128-35 \mathrm{C}$
7C128-45M	$7 \mathrm{C} 128-35 \mathrm{M}+$
7C128-55C	$7 \mathrm{C} 128-45 \mathrm{C}+$
7C128-55M	7C128-45M+
7C130-45C	$7 \mathrm{C} 130-35 \mathrm{C}$
7C130-55C	7C130-45C
7C130-55M	7C130-45M
7C131-45C	7C131-35C
7C131-55C	$7 \mathrm{C} 131-45 \mathrm{C}$
7C131-55M	7C131-45M
7C132-45C	7C132-35C
7C132-55C	7C132-45C
7C132-55M	7C132-45M
7C136-45C	7C136-35C
7C136-55C	7C136-45C
7C136-55M	7C136-45M
7C140-35C	$7 \mathrm{C} 140-25 \mathrm{C}$
7C140-45C	7C140-35C
7C140-55C	7C140-45C
7C141-35C	7C141-25C
7C141-45C	7C141-35C
7C141-55C	$7 \mathrm{C} 141-45 \mathrm{C}$
7C147-35C	$7 \mathrm{C} 147-25 \mathrm{C}+$
7C147-45C	7C147-35C
7 C 148 -35C	$7 \mathrm{C} 148-25 \mathrm{C}+$
7C148-45C	7 C 148 -35C
7C149-35C	7C149-25C+
7C149-45C	7C149-35C
7C149-45M	7C149-35M
7C150-25C	$7 \mathrm{C} 150-15 \mathrm{C}$
$7 \mathrm{C} 150-35 \mathrm{C}$	$7 \mathrm{C} 150-25 \mathrm{C}$
7C150-35M	7C150-25M
7C167-35C	7C167-25C
7C167-45M	7C167-35M+
7C168-35C	7C168-25C
7C168-45M	7C168-35M +
7C169-35C	7C169-25C
7C169-40M	$7 \mathrm{C} 169-35 \mathrm{M}+$
7C170-35C	7C170-25C
7C170-45C	$7 \mathrm{C} 170-35 \mathrm{C}$
7C170-45M	7C170-35M
7C171-35C	7 C 171 -25C
7C171-45M	7C171-35M +
7C172-35C	$7 \mathrm{C} 172-25 \mathrm{C}$
7C172-45M	7C172-35M +
7C186L-45M	7C186-45M
7C189-25C	7C189-15C+
7C190-25C	7C190-15C+
7C191-45M	7C191-35M
7C192-45M	7C192-35M
7C194-35C	$7 \mathrm{C} 194-25 \mathrm{C}$
7C194-45C	$7 \mathrm{C} 194-35 \mathrm{C}+$
7C194-45M	7C194-35M
7C196-35C	7C196-25C
7C196-45C	7C196-35C+
7C197-35C	7C197-25C

CYPRESS	CYPRESS
7C197-45C	7C197-35C+
7C197-45M	7C197-35M
7C198-45C	7C198-35C
$7 \mathrm{C} 198-55 \mathrm{C}$	$7 \mathrm{C} 198-45 \mathrm{C}+$
7C198-55M	7C198-45M
7C199-45C	7C199-35C
7C199-55C	7C199-45C+
7C199-55M	7C199-45M
7C225-30C	7C225-25C
7C225-30M	7C225-25M
7C225-40C	7C225-30C
7C225-40M	7C225-35M
7C235-40C	7C235-30C
7C245-35C	7C245-25C
7C245-45C	$7 \mathrm{C} 245-35 \mathrm{C}$
7C245-45M	7C245-35M
7C245A-25C	$7 \mathrm{C} 245 \mathrm{~A}-18 \mathrm{C}$
7C245A-35C	7C245AL-35C
7C245A-35M	7C245A-25M
7C245AL-35C	$7 \mathrm{C} 245 \mathrm{~A}-25 \mathrm{C}+$
7C245L-35C	7C245-35C+
7C245L-45C	7C245L-35C
7C251-55C	7C251-45C
7C251-65C	7C251-55C
7C251-65C	7C251-55C
7C251-65M	7C251-55M
7C253-65M	7C253-55M
7C254-55C	7C254-45C
7C254-65C	7C254-55C
7C254-65M	7C254-55M
7C261-45C	7C261-35C
7C261-55C	7C261-45C
7C261-55M	7C261-45M
7C263-45C	$7 \mathrm{C} 263-35 \mathrm{C}$
7C263-55C	7C263-45C
7C263-55M	7C263-45M
7C264-45C	7C264-35C
7C264-55C	7C264-45C
7C264-55M	7C264-45M
$7 \mathrm{C} 268-50 \mathrm{C}$	7C268-40C+
7C268-60C	7 C 268 -50C
7C268-60M	7 C 268 -50M +
7C269-50C	7C269-40C+
7C269-60C	$7 \mathrm{C} 269-50 \mathrm{C}$
7C269-60M	$7 \mathrm{C} 269-50 \mathrm{M}+$
7C281-45C	$7 \mathrm{C} 281-30 \mathrm{C}$
7C282-45C	7C282-30C+
7C291-35C	7C291-25C+
7C291-50C	7C291-35C
7C291-50M	7C291-35M
7C291A-35C	7C291AL-35C
7C291A-35M	7C291A-30M
7C291A-50C	7C291AL-50C
7C291A-50M	$7 \mathrm{C} 291 \mathrm{~A}-35 \mathrm{M}$
7C291AL-35C	7C291A-25C+
7C291AL-50C	7C291AL-35C
7C291L-35C	7C291-35C+
7C291L-50C	7C291L-35C
7C292-35C	7C292-25C+
7C292-50C	7C292-35C
7C292L-35C	7C292-35C+
7C292L-50C	7C292L-35C

CYPRESS	CYPRESS	CYPRESS	CYPRESS	ALTERA	CYPRESS
7C293A-35C	7C293AL-35C	7C517-55M	7C517-42M	PREFIX:EPM	PREFIX:CY
7C293A-35M	7C293A-30M	7C517-75C	7C517-55C	5032DC	7C344-25WC
7C293A-50C	7C293AL-50C	7C517-75M	7C517-55M	5032DC-2	7C344-20WC
7C293A-50M	7C293A-35M	7C901-31C	7C901-23C+	5032DM	7C344-25WMB
7C293AL-35C	7C293A-20C+	7C901-32M	7C901-27M	5032JC	7C344-25HC
7C293AL-50C	7C293AL-35C	7C909-40C	7C909-30C	5032JC-2	7C344-20HC
7C401-10C	7C401-15C	7C909-40M	$7 \mathrm{C} 909-30 \mathrm{M}$	5032JM	7C344-225HMB
7C401-10M	7C401-15M	7C910-50C	7C910-40C	5032LC	7C344-25JC
7C401-5C	7C401-10C	7C910-51M	$7 \mathrm{C} 910-46 \mathrm{M}$	5032LC-2	7C344-20JC
$7 \mathrm{C402-10C}$	7C402-15C	7C910-93C	7C910-50C	5032 PC	7C344-25PC
7C402-10M	7C402-15M	7C910-99M	7C910-51M	$5032 \mathrm{PC}-2$	7C344-20PC
7C402-5C	7C402-10C	7C9101-40C	7C9101-30C	5064JC	7C343-35HC
7C403-10C	7C403-15C	7C9101-45M	7C9101-35M	5064JC-2	$7 \mathrm{C} 343-30 \mathrm{HC}$
7C403-10M	7C403-15M	$7 \mathrm{C} 911-40 \mathrm{C}$	7C911-30C	5064 JM	7 C 343 -35HMB
7C403-15C	7C403-25C	7C911-40M	7C911-30M	5128GC	7C342-35RC
7C403-15M	7C403-25M	9122-25C	7C122-15C	5128GC-2	7C342-30RC
7C404-10C	7C404-15C	9122-25C	91L22-25C	5128 GM	7C342-3RMB
7C404-10M	7C404-15M	9122-35C	9122-25C	5128JC	7C342-35HC
7C404-15C	7C404-25C	9122-35C	91L22-35C	5128JC-2	7C342-30HC
7C404-15M	7C404-25M	9122-45C	93L422C	5128 JM	7C342-35HMB
$7 \mathrm{C408-15C}$	$7 \mathrm{C408-25C}$	91L22-25C	$7 \mathrm{C} 122-25 \mathrm{C}$	5128LC	7C342-35JC
7C408-15M	7C408-25M	91L22-35C	7C122-35C	5128LC-2	7C342-30JC
7C408-25C	7C408-35C	91L22-45C	931422AC		
$7 \mathrm{C} 409-15 \mathrm{C}$	7C409-25C	93422AC	7 C 122 -35C	AMD	CYPRESS
7C409-15M	7C409-25M	93422AC	9122-35C	PREFIX:Am	PREFIX:CY
$7 \mathrm{C409-25C}$	7C409-35C	93422AM	7C122-35M	PREFIX:SN	PREFIX:CY
7C420-40C	7C420-30C	93422C	93L422AC	SUFFIX:B	SUFFIX:B
7C420-40M	$7 \mathrm{C} 420-30 \mathrm{M}$	93422M	93422AM	SUFFIX:D	SUFFIX:D
7C420-65C	$7 \mathrm{C} 420-40 \mathrm{C}$	93422M	93L422AM	SUFFIX: F	SUFFIX: F
7C420-65M	7C420-40M	93L422AC	7C122-35C	SUFFIX:L	SUFFIX:L
7C421-40C	7C421-30C	93L422AC	91L22-45C	SUFFIX:P	SUFFIX:P
7C421-40M	7C421-30M	93L422AM	7C122-35M	2130-100C	7C130-55C
7C421-65C	7C421-40C	93L422C	93L422AC	2130-120C	7C130-55C
7C421-65M	7C421-40M	93L422M	93LA22AM	2130-70C	$7 \mathrm{C} 130-55 \mathrm{C}$
$7 \mathrm{C} 424-40 \mathrm{C}$	$7 \mathrm{C} 424-30 \mathrm{C}$	PALC16L8-25C	PALC16L8L-25C	2147-35C	2147-35C
7C424-40M	7C424-30M	PALC16L8-30M	PALC16L8-20M	2147-45C	2147-45C
7C424-65C	7C424-40C	PALC16L8-35C	PALC16L8-25C	2147-45M	2147-45M
7C424-65M	7C424-40M	PALC16L8-40M	PALC16L8-30M	2147-55C	2147-55C
7C425-40C	7C425-30C	PALC16L8L-35C	PALC16L8L-25C	2147-55M	2147-55M
7C425-40M	$7 \mathrm{C} 425-30 \mathrm{M}$	PALC16R4-25C	PALC16R4L-25C	2147-70C	2147-55C
7C425-65C	7C425-40C	PALC16R4-30M	PALC16R4-20M	2147-70M	2147-55M
7C425-65M	7C425-40M	PALC16R4-35C	PALC16R4-25C	2148-35C	2148-35C
7C428-40C	$7 \mathrm{C} 428-30 \mathrm{C}$	PALC16R4-40M	PALC16R4-30M	2148-35M	2148-35M
$7 \mathrm{C} 428-40 \mathrm{M}$	$7 \mathrm{C} 428-30 \mathrm{M}$	PALC16R4L-35C	PALC16R4L-25C	2148-45C	2148-45C
7C428-65C	7C428-40C	PALC16R6-25C	PALC16R6L-25C	2148-45M	2148-45M
7C428-65M	7C428-40M	PALC16R6-30M	PALC16R6-20M	2148-55C	2148-55C
$7 \mathrm{C429-40C}$	$7 \mathrm{C429-30C}$	PALC16R6-35C	PALC16R6-25C	2148-55M	2148-55M
7C429-40M	7C429-30M	PALC16R6-40M	PALC16R6-30M	2148-70C	2148-55C
7C429-65C	7C429-40C	PALC16R6L-35C	PALC16R6L-25C	2148-70M	2148-55M
7C429-65M	7C429-40M	PALC16R8-25C	PALC16R8L-25C	2149-35C	2149-35C
7C510-55C	7C510-45C	PALC16R8-30M	PALC16R8-20M	2149-45C	2149-45C
7C510-65C	7C510-55C	PALC16R8-35C	PALC16R8-25C	2149-45M	2149-45M
7C510-65M	7C510-55M	PALC16R8-40M	PALC16R8-30M	2149-55C	2149-55C
7C510-75C	7C510-65C	PALC16R8L-35C	PALC16R8L-25C	2149-55M	2149-55M
7C510-75M	7C510-65M	PALC22V10-35C	PALC22V10-25C	2149-70C	2149-55C
7C516-45C	7C516-38C	PALC22V10-40M	PALC22V10-30M	2149-70M	2149-55M
7C516-55C	7C516-45C	PALC22V10L-25C	PALC22V10-25C	2167-35C	7C167-35C
7C516-55M	7C516-42M	PALC22V10L-35C	PALC22V10L-25C	2167-35M	7C167-35M
7C516-75C	7C516-55C	PLDC20G10-35C	PLDC20G10-25C	2167-45C	7C167-45C
7C516-75M	7C516-55M	PLDC20G10-40M	PLDC20G10-30M	2167-45M	7C167-45M
$7 \mathrm{C} 517-45 \mathrm{C}$	7C517-38C			2167-55C	7C167-45C
$7 \mathrm{C} 517-55 \mathrm{C}$	7C517-45C			2167-55M	7C167-45M

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on I_{SB};
$+=$ meets all performance specs but may not meet I_{CC} or I_{SB};

* = meets all performance specs except 2 V data retention - may not meet I_{CC} or I_{SB};
- = functionally equivalent.
$\dagger=$ SOIC only
$\ddagger=32$-pin LCC crosses to the 7 C 198 M

AMD	CYPRESS	AMD	CYPRESS
2167-70C	7C167-45C	27C291-45M	7C291A-35M
2167-70M	7C167-45M	$27 \mathrm{C} 291 \mathrm{~A}-30 \mathrm{M}$	$7 \mathrm{C} 291 \mathrm{~A}-30 \mathrm{M}$
2168-35C	7C168-35C	67C401-10	7C401-10
2168-45C	7C168-45C	67C401-15	7C401-15
2168-45M	7C168-45M	67C401-25	7C401-25
2168-55C	7C168-45C	67C403-10	7C403-10
2168-55M	7C168-45M	67C403-15	7C403-15
2168-70C	$7 \mathrm{C} 168-45 \mathrm{C}$	67C403-25	7C403-25
2168-70M	7C168-45M	67C402-10	7C402-10
2169-40C	7C169-40C	67C402-15	7C402-15
2169-50C	7C169-40C	67C402-25	7C402-25
2169-50M	7C169-40M	67C4023-10	7C404-10
2169-70C	7C169-40C	67C4023-15	7C404-15
2169-70M	7C169-40M	27LS03C	27LS03C
21L47-45C	7C147-45C	27LS03M	27LS03M+
21LA7-55C	7C147-45C	27LS07C	27S07C+
21L47-70C	7C147-45C	27LS191C	7C292-35C
21L48-45C	21148-45C	27LS291C	7C291-35C
21L48-55C	21L48-55C	27LS291M	7C291-35M
21L48-70C	21L48-55C	27PS181AC	7C282-45C
21L49-45C	21L49-45C	27PS181AM	7C282-45M +
21L49-55C	21L49-55C	27PS181C	7C282-45C
21L49-70C	21L49-55C	27PS181M	7C282-45M +
27C64-55C	7C266-55C	27PS191AC	7C292-50C
27C64-70C	7C266-55C	27PS191AM	7C292-50M+
27C64-75C	7C266-55C	27PS191C	7C292-50C
27C64-90C	7C266-55C	27PS191M	7C292-50M +
27C64-90M	7C266-55C	27PS281AC	7C281-45C
27C64-95C	7C266-55C	27PS281AM	7C281-45M+
27C64-120C	7C266-55C	27PS281C	7C281-45C
27C64-120M	7C266-55C	27PS281M	7C281-45M+
27C64-125C	7C266-55C	27PS291AC	7C291-50C
27C64-150C	7C266-55C	27PS291AM	7C291-50M+
27C64-150M	7C266-55C	27PS291C	7 C 291 -50C
27C64-155C	7C266-55C	27PS291M	7C291-50M +
27C64-200C	7C266-55C	27S03AC	27S03AC
27-64-200M	7C266-55C	27S03AM	$27 \mathrm{S03AM}$
27C64-205C	7C266-55C	27S03C	27S03C
27C64-250C	7C266-55C	27S03M	27S03M
$27 \mathrm{C} 64-250 \mathrm{M}$	7 C 266 -55C	27S07AC	27S07AC
27C64-255C	7C266-55C	27S07AM	27S07AM
27C64-300C	7C266-55C	27S07C	27S07C
27C64-300M	7C266-55C	27S07M	27S07M,
27C191-25C	7C292A-25C	27S181AC	7C282-30C
27C191-35C	7C291A-25C+	27S181AM	7C282-45M
27C191-35C	7C291A-35C	27S181C	7C282-45C
27C191-35C	7C292A-35C	27S181M	7C282-45M
27C191-35C	7C292AL-35C	27S191AC	7C292-35C
27C191-35M	7C292A-30M	27S191AM	7C292-50M
27C191-45M	7C291A-45M	27S191C	7C292-50C
27C256-170C	7C274-55C	27S191M	7C292-50M
27C256-170M	7C274-55M	27S191SAC	7C292A-20C
27C256-175C	$7 \mathrm{C} 274-55 \mathrm{C}$	27S25AC	$7 \mathrm{C} 225-30 \mathrm{C}$
27C256-200C	7C274-55C	27S25AM	7C225-35M
27C256-200M	7C274-55M	27S25C	7C225-40C
27C256-205C	7C274-55C	27S25M	7C225-40M
27C256-250C	7C274-55C	27S25SAC	7C225-25C
27C256-250M	7C274-55M	27S25SAM	7C225-35M
27-256-255C	7C274-55C	27S281AC	7C281-30C
27C256-300C	7C274-55C	27S281AM	7C281-45M
27C291-25C	7C291A-25C	27S281C	7C281-45C
27C291-35C	7C291AL-35C	27S281M	7C281-45M

AMD	CYPRESS
27S291AC	7C291-35C
27S291AM	7C291-50M
27S291C	7C291-50C
27S291M	7C291-50M
27S291SAC	7C291A-25C
27S291SAM	7C291A-30M
27S35AC	$7 \mathrm{C} 235-30 \mathrm{C}$
27S35AM	7C235-40M
27S35C	$7 \mathrm{C} 235-40 \mathrm{C}$
27S35M	7C235-40M
27S45AC	7C245-35C
27S45AM	7C245-45M
27S45C	7C245-45C
27S45M	7C245-45M
27S45SAC	7C245-25C
27S45SAM	$7 \mathrm{C} 245 \mathrm{~A}-25 \mathrm{M}-$
27549-30M	7C264-30MB
27549-30M	7C263-30MB
27549-40	7C264-40C
27549-40	7C263-40C
27549-55	7C264-55
27549-55	7C263-55
27549-55M	7C264-55MB
27549-55M	7C263-55MB
27S51C	7C254-55C
27S51M	7C254-65M
2841AC	3341C
2841AM	3341M
2841C	3341C
2841M	3341M
2901BC	2901CC
2901BM	2901CM
2901CC	2901CC
2901CM	2901CM
2909AC	2909 AC
2909AM	2909AM
2909C	2909AC
2909M	2909M
2910-1C	2910C
2910-1M	2910M
2910AC	2910AC
2910AM	2910AM
2910C	2910C
2910M	2910M
29116AC	7C9116AC
29116AM	7C9116AM
29116C	7C9116AC
29116M	7C9116AM
29117C	7C9117AC
29117M	7C9117AM
2911AC	2911AC
2911AM	2911AM
2911C	2911AC
2911M	2911M
29510C	7C510-75C
29510M	7C510-75M
29516AM	7C516-55M
29516C	7C516-55C
29516M	7C516-55M
29517AC	7C517-38C
29517C	7C517-55C
29517M	7C517-55M

AMD	CYPRESS	AMD	CYPRESS	AMD	CYPRESS
29701C	27S07C	7204-80	7C432-65	99C68-55M	7C168-45M*
29701M	27S07M	74S189C	$74 \mathrm{S189}$ C	$99 \mathrm{C} 68-70 \mathrm{C}$	$7 \mathrm{C} 168-45 \mathrm{C}^{*}$
29703C	27S03C	9122-25C	9122-25C	99C68-70M	7C168-45M*
29703M	27S03M	9122-35C	9122-35C	$99 \mathrm{C} 88 \mathrm{H}-35 \mathrm{C}$	7C186-35C
$29 \mathrm{C01-1C}$	7C901-23C+	9122-35M	7C122-35M	$99 \mathrm{C} 88 \mathrm{H}-45 \mathrm{C}$	7C186-45C
29 C 01 BA	7C901-32M	9128-100C	6116-55C	$99 \mathrm{C} 88 \mathrm{H}-45 \mathrm{M}$	7C186-45M
$29 \mathrm{C01BC}{ }^{\prime}$	7C901-31C	$9128-120 \mathrm{M}$	6116-55M	99C88H-55C	7C186-55C
29 C 01 C	7C901-31C	9128-150C	6116-55C	99C88H-55M	7C186-55M
$29 \mathrm{C01CC}$	7C901-31C	$9128-150 \mathrm{M}$	6116-55M	99C88H-70C	7C186-55C
$29 \mathrm{C} 10-1 \mathrm{C}$	7C910-40C	9128-200C	6116-55C	99C88H-70M	7C186-55M
29 C 101 C	7C9101-40C	9128-200M	6116-55M	99CL68-35C	7 C 168 -35C
29 C 101 M	7C9101-35M	9128-70C	6116-55C	99CL68-45C	$7{ }^{\text {C168-45C* }}$
29 C 10 ABA	7C910-51M	9128-90M	6116-55M	99CL68-45M	7C168-45M*
29 C 10 AC	7C910-50C	9150-20C	$7 \mathrm{C} 150-15 \mathrm{C}$	99CL68-55C	$7 \mathrm{C} 168-45 \mathrm{C}^{*}$
29 C 10 AC	7C910-93C	9150-25C	$7 \mathrm{C} 150-25 \mathrm{C}$	99CL6855M	$7 \mathrm{C} 168-45 \mathrm{M}^{*}$
29 C 116 C	7C9116AC	9150-25M	7C150-25M	99CL68-70C	$7{ }^{7} 168-45 C^{*}$
29C116M	7 C 9116 AM	9150-35C	$7 \mathrm{C} 150-35 \mathrm{C}$	99CL68-70M	7C168-45M*
29C117C	7 C 9117 AC	9150-35M	7C150-35M	PAL16L8A-4C	PALC16L8L-35C
29L116AC	7C9116AC	9150-45C	$7 \mathrm{C} 150-35 \mathrm{C}$	PAL16L8A-4M	PALC16L8-40M
29L116AM	7C9116AM	9150-45M	7C150-35M	PAL16L8AC	PALC16L8-25C
29L510C	7C510-75C	91L22-35C	91L22-35C	PAL16L8ALC	PALC16L8-25C
29L510M	7C510-75M	91L22-35M	7C122-35M	PAL16L8ALM	PALC16L8-30M
29L516C	7C516-75C	91L22-45C	91L22-45C	PAL16L8AM	PALC16L8-30M
29L516M	7C516-75M	91L22-45M	7C122-35M	PAL16L8BM	PALC16L8-20M
29L517C	7C517-75C	91L22-60C	7C122-35C+	PAL16L8C	PALC16L8-35C
29L517M	7C517-75M	91L50-25C	$7 \mathrm{C} 150-25 \mathrm{C}$	PAL16L8LC	PALC16L8-35C
3341C	3341C	91150-35C	7C150-35C	PAL16L8LM	PALC16L8-40M
3341M	3341M	91L50-45C	$7 \mathrm{C} 150-35 \mathrm{C}$	PAL16L8M	PALC16L8-40M
7201-25	7C420-25	93422AC	93422AC	PAL16L8QC	PALC16L8L-35C
7201-35	7C420-30	93422AM	93422AM	PAL16L8QM	PALC16L8-40M
7201-50	7C420-40	93422C	93422C	PAL16R4A-4C	PALC16R4L-35C
7201-65	7C420-65	93422M	93422M	PAL16R4A-4M	PALC16R4-40M
7201-80	7C420-65	93L422AC	93L422AC	PAL16R4ALC	PALC16R4-25C
7201-25R	7C421-25	93L422AM	93L422AM	PAL16R4ALM	PALC16R4-30M
7201-35R	7C421-30	93L422C	931422C	PAL16R4AM	PALC16R4-30M
7201-50R	7C421-40	93L422M	93L422M	PAL16R4BM	PALC16R4-20M
7201-65R	7C421-65	99C164-35C	7C164-35C+	PAL16R4C	PALC16R4-35C
7201-80R	7C421-65	99C164-45C	7C164-45C+	PAL16R4LC	PALC16R4-35C
7202-25	7C424-25	99C164-45M	$7 \mathrm{C} 164-45 \mathrm{M}+$	PAL16R4LM	PALC16R4-40M
7202-35	7C424-30	99C164-55C	$7 \mathrm{C} 164-45 \mathrm{C}+$	PAL16R4M	PALC16R4-40M
7202-50	7C424-40	99C164-55M	7C164-45M+	PAL16R4QC	PALC16R4L-35C
7202-65	7C424-65	99C164-70C	7C164-45C+	PAL16R4QM	PALC16R4-40M
7202-80	7C424-65	$99 \mathrm{C} 164-70 \mathrm{M}$	7C164-45M	PAL16R6A-4C	PALC16R6L-35C
7202-25R	7C425-25	$99 \mathrm{C} 165-35 \mathrm{C}$	7C166-35C+	PAL16R6A-4M	PALC16R6-40M
7202-35R	7C425-30	99C165-45C	7C166-45C+	PAL16R6AC	PALC16R6-25C
7202-50R	7C425-40	99C165-45M	7C166-45M+	PAL16R6ALC	PALC16R6-25C
7202-65R	7C425-65	99C165-55C	7C166-45C+	PAL16R6ALM	PALC16R6-30M
7202-80R	7C425-65	99C165-55M	7C166-45M+	PAL16R6AM	PALC16R6-30M
7203-25	7C428-25	99C165-70C	$7 \mathrm{C} 166-45 \mathrm{C}+$	PAL16R6BM	PALC16R6-20M
7203-35	7C428-30	99C165-70M	$7 \mathrm{C} 166-45 \mathrm{M}+$	PAL16R6C	PALC16R6-35C
7203-50	7C428-40	99C641-25C	7C187-25C	PAL16R6LC	PALC16R6-35C
7203-65	7C428-65	99C641-35C	7C187-35C	PAL16R6LM	PALC16R6-40M
7203-80	7C428-65	99C641-45C	7C187-45C ${ }^{\text {' }}$	PAL16R6M	PALC16R6-40M
7203-25R	7C429-25	99C641-45M	7C187-45M	PAL16R6QC	PALC16R6L-35C
7203-35R	7C429-30	99C641-55C	7C187-45C	PAL16R6QM	PALC16R6-40M
7203-50R	7C429-40	99C641-55M	$7 \mathrm{C} 187-45 \mathrm{M}$	PAL16R8A-4C	PALC16R8L-35
7203-65R	7C429-65	99C641-70C	7C187-45C	PAL16R8A-4M	PALC16R8-40M
7203-80R	7C429-65	99C641-70M	7C187-45M	PAL16R8AC	PALC16R8-25C
7204-25	7C432-25	99C68-35C	7 C 168 -35C	PAL16R8ALC	PALC16R8-25C
7204-35	7C432-30	99C68-45C	7C168-45C**	PAL16R8ALM	PALC16R8-30M
7204-50	7C432-40	99C68-45M	$7 \mathrm{C} 168-45 \mathrm{M}^{*}$	PAL16R8AM	PALC16R8-30M
7204-65	7C432-65	99C68-55C	7C168-45C*	PAL16R8BM	PALC16R8-20M

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on I_{SB};
$+=$ meets all performance specs but may not meet I_{CC} or I_{SB};
$*=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB};

- = functionally equivalent.
$\dagger=$ SOIC only
$\ddagger=32$-pin LCC crosses to the 7 C 198 M

AMD	CYPRESS	DENSEPAK	CYPRESS	FAIRCHILD	CYPRESS
PAL16R8C	PALC16R8-35C	6432-45C	1830HD-45C	1620M45	7C164-45M
PAL16R8LC	PALC16R8-35C	6432-55C	1830HD-55C	1621C25	7C164-25C+
PAL16R8LM	PALC16R8-40M	6432-55C	1830HD-55C	1622C25	7C166-25C+
PAL16R8M	PALC16R8-40M	8M624-100C	1623HD-85C	1622C35	7 C 166 -35C+
PAL16R8QC	PALC16R8L-35	8M624-85C	$1623 \mathrm{HD}-100 \mathrm{C}$	1622M35	7C166-35M
PAL16R8QM	PALC16R8-40M	8M656-35C	1610HD-35C	1622M45	7C166-45M
PAL22V10AC	PALC22V10-25C	8M656-70C	1610HD-70C	16L8A	PALC16L8-20M
PAL22V10AM	PALC22V10-30M			16L8A	PALC16L8-25C
PAL22V10C	PALC22V10-35C	EDI	CYPRESS	16P8A	PALC16L8-20M
PAL22V10M	PALC22V10-40M	PREFIX:ED	PREFIX:CYM	16P8A	PALC16L8-25C-
PAL22V10-10	PAL22V10C-10	816H16C-25	1611HV-25C	16R4A	PALC16R4-20M
PAL22V10-15	PAL22V10C-15M	816H16C-35	1611HV-35C	16R4A	PALC16R4-25C
		816H16C-45	1611HV-45C	16R6A	PALC16R6-20M
ANALOG DEV	CYPRESS	8M8128C-100	1421HD-85C	16R6A	PALC16R6-25C
PREFIX:ADSP	PREFIX:CY	8M8128C-70	1421HD-70C	16R8A	PALC16R8-20M
SUFFIX:883B	SUFFIX:B	H816H16C-25CC-	1611HV-25C	16R8A	PALC16R8-25C
SUFFIX:D	SUFFIX:D	H816H16C-35CC-	1611HV-35C	16RP4A	PALC16R4-20M
SUFFIX:	SUFFIX:L	H816H16C-45CC-	1611HV-45C	16RP4A	PALC16R4-25C
SUFFIX:F	SUFFIX:F	H816H16C-55CC-	1611HV-45C	16RP6A	PALC16R6-20M
SUFFIX:G	SUFFIX:G	H816H64C-35CC	1621HD-35C	16RP6A	PALC16R6-25C
1010A	7C510-65C+	H816H64C-35MHR	1621HD-35MB	16RP8A	PALC16R8-20M
1010J	7C510-75C+	H816H64C-45CC	1621HD-45C	16RP8A	PALC16R8-25C
1010K	7C510-75C+	H816H64C-45MHR	1621HD-45MB	3341AC	3341C
1010S	7C510-75M+	H816H64C-55CC	1621HD-45C	3341C	3341C
1010T	7C510-75M+	H816H64C-55MHR	1621HD-45MB	54F189	7C189-25M-
7C901-27M	7C910-32M	H816H64C-70CC	1621HD-45C	54F219	7C190-25M-
7C901-32M	2901CM	H816H64C-70MHR	$1621 \mathrm{HD}-45 \mathrm{MB}$	54 F 413	7C401-15M
		18464C-45	7C194-45	54S189M	54S189M
ATMEL	CYPRESS	18M1664C-100CC	$1623 \mathrm{HD}-100 \mathrm{C}$	74AC1010-40	7C510-45C
PREFIX:AT	PREFIX:CY	I8M1664C-60CC	1623HD-55C	74F189	7C189-25C-
28HC191/L	7C292A	18M1664C-70CC	1623HD-70C	74F219	7C190-25C-
28HC291/L	7C293A	I8M1664C-85CC	1623HD-85C	74F413	$7 \mathrm{C401-15C}$
28HC642	7 C 261	18M8128C-100CB	1420HD-55MB	74LS189	27LS03C
22V10	PALC22V10	18M8128C-100CC	1421HD-85C	74S189	74S189C
22V10-15	PALC22V10B	18M8128C-60CB	1420HD-55MB	93422AC	93422AC
		18M8128C-60CC	1420HD-55C	93422AM	93422AM
Dallas	CYPRESS	18M8128C-70CB	$1421 \mathrm{HD}-55 \mathrm{MB}$	93422C	93422C
PREFIX:DS	PREFIX:CY	I8M8128C-70CC	1421HD-70C	93422M	93422M
2009	7C420-PC	18M8128C-80CC	1421HD-70C	93475C	2149-45C
2010	7C424-PC	18M8128C-90CB	1421HD-55MB	93L422AC	93L422AC
2011	7C428-PC	18M8128C-90CC	1421HD-85C	93L422AM	93L422AM
				93LA22C	93L422C
DENSEPAK	CYPRESS	FAIRCHILD	CYPRESS	93L422M	93L422M
PREFIX:DPS	PREFIX:CYM	PREFIX: 5	PREFIX:CY	93Z451AC	7C282-30C
1027-25C	1621HD-25C	SUFFIX:D	SUFFIX:D	93Z451AM	7C282-45M
1027-25C	161HD-25C	SUFFIX:	SUFFIX:F	93Z451C	$7 \mathrm{C} 282-30 \mathrm{C}$
1027-35C	1621HD-30C	SUFFIX:L	SUFFIX:L	93Z451M	7C282-45M
1027-35C	1621HD-35C	SUFFIX:P	SUFFIX:P	93Z511C	$7 \mathrm{C} 292-35 \mathrm{C}$
1027-45C	1621HD-45C	SUFFIX:QB	SUFFIX:B	93Z511M	$7 \mathrm{C} 292-50 \mathrm{M}$
1027-55C	1621HD-55C	100E422-5	100E422-5C	93 Z 565 AC	7C264-45C
16X17-25C	1611HV-25C	100E422-7	100E422-7C	$93 \mathrm{Z565AM}$	7C264-55M
16X17-25C	1611HV-25C	10E422-7	10E422-7C	93Z565C	7C264-55C
16X17-35C	1611HV-35C	100E474-7	100E474-7C	93Z565M	7C264-55M
16X17-35C	1611HV-35C	10E474-7	10E474-7C	93Z611C	7C292-25C
16X17-45C	1611HV-45C	1600 C 45	7C187-45C	93Z611M	7C291A-30M
16X17-45C	1611HV-45C	1600C55	7C187-45C	93Z665C	7C264-35C
16X17-55C	1611HV-55C	1600 C 70	7C187-45C	93Z665M	7C264-45M
41288-100C	1421HD-85C	1600M55	7C187-45M	93Z667C	$7 \mathrm{C} 263-35 \mathrm{C}$
41288-100C	1421HD-100C	1600M70	7C187-45M	93Z667M	7C261-45M
41288-70C	1421HD-70C	1601C55	7C187-45C		
41288-85C	1421HD-85C	1620 C 35	7C164-35C+	FUJITSU	CYPRESS
41288-85C	1421HD-85C	1620M35	7C164-35M	PREFIX:MB	PREFIX:CY

FUJTISU	CYPRESS	FUJTISU	CYPRESS	HARRIS	CYPRESS
PREFIX:MBM	PREFIX:CY	2764-25C	7C266-55C	PREFIX:HM	PREFIX:CY
SUFFIX:F'	SUFFIX:F	2764-30C	7C266-55C	PREFIX:HPL	PREFIX:CY
SUFFIX:M	SUFFIX:P	27-64-20C	7C266-55C	SUFFIX: 8	SUFFIX:B
SUFFIX:Z	SUFFIX:D	27C64-25C	7C266-55C	PREFIX:1	SUFFIX:D
100422A-5C	100E422-5C	27C64-30C	7C266-55C	PREFIX:9	SUFFIX:F
100422A-7C	100E422L-7C	7132E	7C282-45C	PREFIX:4	SUFFIX:L
100422AC	100E422L-7C	7132E-SK	7C281-45C	PREFIX:3	SUFFIX:P
10470A-7	10E470-7C	$7132 \mathrm{E}-\mathrm{W}$	7C282-45M	16LC8-5	PALC16L8L-35C
10470A-10C	10E470-7C	7132 H	7C282-45C	16LC8-8	PALC16L8-40M
10470A-15C	10E470-7C	7132H-SK	7C281-45C	16LC8-9	PALC16L8-40M
10470A-20C	10E470-7C	7132Y	7C282-30C	16RC4-5	PALC16R4L-35C
100470A-7	100E470-7C	7132Y-SK	7C281-30C	16RC4-8	PALC16R4-40M
100470A-10	100E470-7C	7138 E	7C292-50C	16RC4-9	PALC16R4-40M
100470A-15	100E470-7C	$7138 \mathrm{E}-\mathrm{SK}$	7C291-50C	16RC6-5	PALC16R6L-35C
100474A-3C	100E474-3.5C	$7138 \mathrm{E}-\mathrm{W}$	7C292-50M	16RC6-8	PALC16R6-40M
100474A-5C	100E474-5C	7138 H	7C292-35C	16RC6-9	PALC16R6-40M
100474A-7C	100E474L-7C	$7138 \mathrm{H}-\mathrm{SK}$	7C291-35C	16RC8-5	PALC16R8L-35C
100474AC	100E474L-7C	7138Y	7C292-35C	16RC8-8	PALC16R8-40M
100484A-10	100E484L-7C	7138Y-SK	7C291-35C	16RC8-9	PALC16R8-40M
100484A-8	100E484L-7C	7144E	7C264-55C	6-76161-2	7C291-50M
100484-15	100E484L-7C	$7144 \mathrm{E}-\mathrm{W}$	7C264-55M	6-76161-5	7C291-50C
100C494-15	100E494L-12C	7144H	$7 \mathrm{C} 264-55 \mathrm{C}$	6-76161A-2	7C291-50M
101A484-5	101E484-5C	7144 Y	7C264-45C	6-76161A-5	7C291-50C
101494-7	101E494-7	7226RA-20	7C225-30C	6-76161B-5	7C291-35C
101494-8	101E494-8	7226RA-25	7C225-30C	6-7681-5	7C281-45C
10422A-5C	10E422-5C	7232RA-20	7C235-30C	6-7681A-5	7C281-45C
10422A-7C	10E422L-7C	7232RA-25	7C235-30C	65162-5	6116-55C*
10422AC	10E422L-7C	7238RA-20	7C245-25C	65162-8	6116-55M*
10474A-3C	10E474-4C	7238RA-25	7C245-35C	65162-9	6116-55M*
10474A-5C	10E474-5C	8128-10	7C128-55C	65162B-5	$6116-55 \mathrm{C}^{*}$
10474A-7C	10E474L-7C	8128-15	$7 \mathrm{C} 128-55 \mathrm{C}$	65162B-8	6116-55M*
10474 AC	10E474L-7C	8167-70w	7C167-45M	65162B-9	6116-55M*
10484-15	10E484L-7C	8167A-55	7C167-45C	65162C-8	6116-55M*
10484A-8	10E484L-7C	8167A-70	$7 \mathrm{C} 167-45 \mathrm{C}$	65162C-9	$6116-55 \mathrm{M}^{*}$
10484A-10	10E484L-7C	8168-55	7C168-45C	65162S-5	6116-55C**
10484A-5	10E484-5C	8168-70	7C168-45C	65162S-9	$6116-55 \mathrm{M}^{*}$
10494-7	10E494-7C	8168-70W	7C168-45M	65262-8	7C167-45M*
10C494-15	10E494L-12C	8171-55	7C187-45	65262-9	7C167-45M*
$2147 \mathrm{H}-35$	2147-35C	8171-70	7C187-45C	65262B-8	7C167-45M*
$2147 \mathrm{H}-45$	2147-45C	81C67-35	7C167-35C	65252B-9	7C167-45M*
$2147 \mathrm{H}-55$	2147-55C	81C67-45	7C167-45C	65262C-9	7C167-45M*
$2147 \mathrm{H}-70$	2147-55C	81C67-55W	7C167-45M	65262S-9	7C167-45M*
2148-55L	21L48-55C	81C68-45	7C168-45C	76161-2	7C292-50M
2148-70L	21L48-55C	81C68-55W	$7 \mathrm{C} 168-45 \mathrm{M}+$	76161A-2	7C292-50M
2149-45	2149-45C	81C71-45	7C187-45C	76161A-5	7C292-50C
2149-55L	21L49-55C	81C71-55	7C187-45C	76161B-5	$7 \mathrm{C} 292-35 \mathrm{C}$
2149-70L	21L49-55C	81C74-25	7C164-25C	76641-2	7C264-55M
27256-17C	7C274-55C	81C74-35	7C164-35C+	76641-5	7C264-55C
27256-20C	7C274-55C	81C74-45	7C164-45C	76641A-5	7C264-45C
27256-25C	7C274-55C	81C75-25	7C166-25C	7681-2	7C282-45M
27256A-15C	7C274-55C	81C75-35	7C166-35C	7681-5	7C282-45C
27256A-17C	7C274-55C	81C78-45	7C186-45C	7681A-5	7C282-45C
27256A-20C	7C274-55C	81C78-55	7C186-55C		
27256A-25C	7C274-55C	81C81A-35	7C197-35	HITACHI	CYPRESS
$27256 \mathrm{H}-10 \mathrm{C}$	7C274-55C	$81 \mathrm{C} 81 \mathrm{~A}-45$	7C197-45	PREFIX:HM	PREFIX:CY
27256H-12C	7C274-55C	81C84A-35	7C194-35	PREFIX:HN	PREFIX:CY
27C512-15C	7C286-55C	81C84A-45	7C194-45	SUFFIX:CG	SUFFIX:L
27C512-17C	7C286-55C	81C86-70	7C192-45C+	SUFFIX:G	SUFFIX:D
27C512-20C	7C286-55C	8287-35	7C199-35	SUFFIX:P	SUFFIX:P
27C512-25C	7C286-55C	8287-45	7C199-45	100422C	100E422L-7C
27C512-30C	7C286-55C	8464L-100	7C185-55C+	100474-10C	100E474L-7C
2764-20C	7C266-55C	8464L-70	7C185-45C +	100474-8C	100E474L-7C

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on I_{SB};
$t=$ meets all performance specs but may not meet I_{CC} or I_{SB};
$*=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB};

- = functionally equivalent.
$\dagger=$ SOIC only
$\ddagger=32-$ pin LCC crosses to the 7 C 198 M

HITACHI	CYPRESS
100474C	100E474L-7C
100494-10	101E494-10C
100494-12	100E494L-12C
101494-10	101E494-10C
101494-12	101E494L-10C
10422C	10E422L-7C
10474-10C	100E474L-7C
10474-8C	10E474L-7C
10474C	10E474L-7C
10494-10	10E494-10C
10494-12	10E494L-12C
25089	$7 \mathrm{C} 282-45 \mathrm{C}$
25089S	7C282-45C
25169S	7C292-50C
27256G-25C	7C274-55C
27256G-30C	7C274-55C
27C256G-17C	7C274-55C
$27 \mathrm{C} 256 \mathrm{G}-20 \mathrm{C}$	7C274-55C
$27 \mathrm{C} 256 \mathrm{G}-25 \mathrm{C}$	7C274-55C
$27 \mathrm{C} 256 \mathrm{G}-30 \mathrm{C}$	7C274-55C
$27 \mathrm{C} 256 \mathrm{GHG}-70 \mathrm{C}$	7C274-55C
27C256GHG-85C	7C274-55C
27512G-25C	7C286-70C
27512G-30C	7C286-70C
4847	2147-55C
4847-2	2147-45C
4847-3	2147-55C
6116ALS-12	6116-55C**
6116ALS-15	6116-55C*
6116ALS-20	6116-55C**
6116AS-12	6116-55C+
6116AS-15	6116-55C+
6116AS-20	6116-55C+
6147	7C147-45C**
6147-3	$7 \mathrm{C} 147-45 \mathrm{C}^{*}$
$6147 \mathrm{H}-35$	7C147-35C+
$6147 \mathrm{H}-45$	7C147-45C+
6147H-55	7C147-45C+
6147HL-35	7C147-35C*
6147HL-45	7C147-45C**
6147HL-55	7C147-55C*
6148	$7 \mathrm{C} 148-45 \mathrm{C}$
$6148 \mathrm{H}-35$	21L48-35C
6148H-45	7C148-45C+
6148H-55	$7 \mathrm{C} 14845 \mathrm{C}+$
$6148 \mathrm{HL}-35$	21L48-35C**
6148HL-45	$7 \mathrm{C} 148-45 \mathrm{C}^{*}$
6148HL-55	$7 \mathrm{C} 148-45 \mathrm{C}^{*}$
6148L	$7 \mathrm{C} 148-45 \mathrm{C}^{*}$
6167-6	7C167-45C+
6167-8	7C167-45C+
$6167 \mathrm{H}-55$	7C167-45C
$6167 \mathrm{H}-70$	7C167-45C
6167HL-55	7C167-45C*
$6167 \mathrm{HL}-70$	$7 \mathrm{C} 167-45 \mathrm{C}^{*}$
6167L-6	$7 \mathrm{C} 167-45 \mathrm{C}^{*}$
6167L-8	$7 \mathrm{C} 167-45 \mathrm{C}^{*}$
6168H-45	7C168-45C+
6168H-55	7C168-45C+
6168H-70	7C168-45C+
6168HL-45	7C168-45C*
6168HL-55	$7 \mathrm{C} 168-45 \mathrm{C}^{*}$

HITACHI	CYPRESS
6168HL-70	$7 \mathrm{C} 168-45 \mathrm{C}^{*}$
6207P-35	7C197-35
6207P-45	7C197-45
6208P-35	7C194-35
6208P-45	7C194-45
62256	7C198*
6264-10	7C186-55C+
6264-12	7C186-55C+
6264-15	7C186-55C+
6267-35	7C167-35C+
6267-45	$7 \mathrm{C} 167-45 \mathrm{C}$
6268-25	7C168-25C
6268-35	7 C 168 -35C
62832H	7C199+
62832	7 C 199
6287-45	7C187-45C
6287-55	$7 \mathrm{C} 187-45 \mathrm{C}$
6287-70	7C187-45C
6288-35	7C164-35C
6288-45	7C164-45C
6288-55	7C164-45C
6707J-25	7C197-25
6707P-25	7C197-25
6708J-25	7C194-25
6708P-25	7C194-25
6716	$7 \mathrm{C} 128-25 \mathrm{C}$
6787-30	7C187-25C
6788-25	7C164-25C
6788-30	7C164-25C
6788HA-12	7B164-12C
6789HA-12	7B166-12C
IDT	CYPRESS
PREFIX:IDT	PREFIX:CY
PREFIX:IDT	PREFIX:CYM
SUFFIX:B	SUFFIX:B
SUFFIX:D	SUFFIX:D
SUFFIX:F	SUFFIX:F
SUFFIX:L	SUFFIX:L
SUFFIX:P	SUFFIX:P
100484S7	100E484L-7C
100494S8	101E494-8C
100494S10	101E494-10C
101484S7	100E484L-7C
101494S7	101E494-7C
101494S8	101E494-8C
101494S 10	101E494-10C
10484S7	10E484L-7C
10494S7	10E494-7C
10494S8	10E494-8C
10494 S10	10E494-10C
39 C 01 CB	$7 \mathrm{C} 901-32 \mathrm{M}+$
39 C 01 CC	$2901 \mathrm{CC}+$
39 C 01 CM	$2901 \mathrm{CM}+$
39 C 01 DB	7C901-27M+
$39 \mathrm{C01DC}$	7C901-23C+
39 C 09 A	7C909-40C+
39 C 09 AB	7C909-40M
39 C 10 B	7C910-50C-
39C10BB	7C910-51M
39C11A	7C911-40C+
39 C 11 AB	7C911-40M +

IDT	CYPRESS
49C401	7C9101-40C-
49C401	7C9101-45M-
6116SA25	7C128A-25C
6116SA35	7C128A-35C
616SA35	6116A-35C
6116SA35B	7C128A-35MB
6116SA35B	6116A-35MB
6116SA45	7C128A-45C
6116SA45	6116A-45C
6116SA45B	7C128A-45MB
6116SA45B	6116A-45MB
616SA55B	7C128A-55MB
6116SA55B	6116A-55MB
6116SA70B	7C128A-55MB
6116SA90B	6116A-55MB
6116SA120B	7C128A-55MB
6116SA150B	6116A-55MB
61298SA25	7C196-25C
61298SA25B	7C196-25MB
61988SA35	7C196-35C
61298SA35B	7C196-35MB
61298SA45	7C196-45C
61298SA45B	7C196-45MB
61298SA55	7C196-45
61298SA55B	7C196-45MB
61298SA70B	7C196-45MB
6167S55BA	7C167-25C
6167SA35	7C167-35C
6167SA35B	7C167-35MB
6167SA45B	7C167-45MB
6167SA55B	7C167-45MB
6167SA70B	7C167-45MB
6167SA85B	7C167-45MB
6167SA100B	7C167-45MB
6168SA15	7C168-15C
6168SA20	7C168-20C
6168SA25	7C168-25C
6168SA25B	7C168-25MB
6168SA35	7C168-35C
6168SA35B	7C168-35MB
6168SA45B	7C168-45MB
6168SA55B	7C168-45MB
6168SA70B	7C168-45MB
6168SA90B	7C168-45MB
6168SA100B	7C168-45MB
6168SA25	7C168A-25C
6168SA35	7C168A-35C
6168SA35B	7C168A-35MB
6168SA45B	7C168A-45MB
6168SA55B	7C168A-45MB
6168SA70B	7C168A-45MB
6168SA90B	7C168A-45MB
6168SA100B	7C168A-45MB
6197SA25	7C170-25C
6197SA35	7C170-35C
6197SA35B	7C170-35MB
6197SA45B	7C170-45MB
6197SA55	7C170-45C
6197SA55B	7C170-45MB
6198SA15	7C166-15C
6198SA19	7C166-15C
	7C166-20C

IDT	CYPRESS	IDT	CYPRESS	IDT	CYPRESS
6198SA20B	7C166-A20MB	71282SA	$7 \mathrm{C} 192-45 \mathrm{MB}$	7140SA70L32	7C141-55C
6198SA25	7C166-25C	7130SA25	$7 \mathrm{C} 130-25 \mathrm{C}$	7140SA70L32B	7C141-55MB
6198SA25B	7C166-A25MB	7130SA25L52	$7 \mathrm{C} 131-25 \mathrm{C}$	7140SA90	7C140-55C
6198SA30	7C166-25C	7130SA30	7C130-25C	7140SA90B	7C140-55MB
6198SA30B	7C166-A25MB	7130SA30L52	7C131-25C	7140SA90L32	7C141-55C
6198SA45	7C166-45C	7130SA35	7C130-35C	7140SA90L32B	7C141-55MB
6198SA45B	7C166-A45MB	7130SA35L52	7C131-35C	7140 SA100	7C140-55C
6198SA55B	7C166-A45MB	7130 SA45	$7 \mathrm{C} 130-45 \mathrm{C}$	7140SA100B	7C140-55MB
6198SA70B	7C166-A45MB	7130SA45B	$7 \mathrm{C} 130-45 \mathrm{MB}$	7140SA100L32	7C141-55C
6198SA85B	7C166-A45MB	7130SA45L32	$7 \mathrm{C} 131-45 \mathrm{C}$	7140SA100L32B	7C141-55MB
71024SA45	7C108-45	7130SA45L32B	$7 \mathrm{C} 131-45 \mathrm{MB}$	71421S25	7C142-25C
71024SA55	7C108-45	7130SA55	7C130-55C	71421S35	7C142-35C
71024SA70	7C108-45	7130SA55B	$7 \mathrm{C} 130-55 \mathrm{M}$	71421545	7C142-45C
71024SA90	7C108-45	7130SA55L32	7C131-55C	71421555	7C142-55C
71256SA25	7C198-25C	7130SA55L32B	$7 \mathrm{C} 131-55 \mathrm{MB}$	71421570	7C142-55C
71256SA30	7C198-25C	7130 SA 70	$7 \mathrm{C} 130-55 \mathrm{C}$	71421S90	7C142-55C
71256SA30B	7C198-25MB	7130SA70B	$7 \mathrm{C} 130-55 \mathrm{MB}$	7188SA35	7C164-35C
71256SA35	7C198-35C	7130SA70L32	$7 \mathrm{C} 131-55 \mathrm{C}$	7188SA35B	$7 \mathrm{C} 164 \mathrm{~A}-35 \mathrm{MB}$
71256SA35B	7C198-35MB	7130SA70L32B	$7 \mathrm{C} 131-55 \mathrm{MB}$	7188SA45	7C164-45C
71256SA45	7C198-45C	7130 SA90	7C130-55C	7188SA45B	7C164A-45MB
71256SA45B	7C198-45MB	7130SA90B	$7 \mathrm{C} 130-55 \mathrm{MB}$	7188SA55B	7C164A-45MB
71256SA55	7C198-55C	7130SA90L32	$7 \mathrm{C} 131-55 \mathrm{C}$	7188SA70B	7C164A-45MB
71256SA55B	7C198-55MB	7130SA90L32B	7C131-55MB	7188SA85B	7C164A-45MB
71256 SA 70	7C198-55C	7130 SA100	7C130-55C	7164SA20	7C185-20C
71256SA70B	7C198-55MB	7130SA100B	$7 \mathrm{C} 130-55 \mathrm{MB}$	7164SA20P	7C186-20C
71256SA85B	7C198-55MB	7130SA100L32	7C131-55C	7164SA25	7C185-25C
71256SA100B	7C198-55MB	7130SA100L32B	7C131-55MB	7164SA25B	7C185-25MB
71257 SA 25	7C197-25C	7132 L 100	7C132-55C*	7164SA25P	7C186-25C
71257SA25B	7C197-25MB	7132L100B	7C132-55M*	7164SA25PB	7C186-25MB
71257SA35	7C197-35C	7132L120B	7C132-55M*	7164SA30	7C185-25C
71257SA35B	7C197-35MB	7132L55	7C132-55C**	7164SA30B	7C185-25MB
71257SA45	7C197-45C	7132L70	7C132-55C*	7164SA30P	7C186-25C
71257SA45B	7C197-45MB	7132L70B	7C132-55M*	7164SA30PB	7C186-25MB
71257 SA 55	7C197-45C	7132L90	7C132-55C*	7164SA35	7C185-35C
71257SA55B	7C197-45MB	7132L90B	7C132-55M*	7164SA35B	7C185-35MB
71257SA70B	7C197-45MB	7132 S 100	7C132-55C+	7164SA35P	7C186-35C
71258SA25	7C194-25C	7132 S 100 B	7C132-55M+	7164SA35PB	7C186-35MB
71258SA25B	7C194-25MB	7132 S 120 B	7C132-55M+	7164SA45	7C185-45C
71258SA35	7C194-35C	7132 S 55	7C132-55C+	7164SA45B	7C185-45MB
71258SA35B	7C194-35MB	7132S70	7C132-55C+	7164SA45P	7C186-45C
71258 SA45	7C194-45C	7132S70B	7C132-55M +	7164SA45PB	7C186-45MB
71258SA45B	7C194-45MB	7132S90	7C132-55C+	7164SA55B	7C185-55MB
71258SA55	7C194-45C	7132S90B	7C132-55M +	7164SA55BP	7C185-55MB
71258SA55B	7C194-45MB	71321 S 25	7C132-25C	7164SA70B	7C186-55MB
71258SA70B	7C194-45MB	71321S35	7C132-35C	7164SA70BP	7C186-55MB
71281SA25	7C191-25C	71321S45	7C132-45C	7164SA85B	7C185-55MB
71281SA25B	7C191-25MB	7140SA25	7C140-25C	7164SA85BP	7C185-55MB
71281SA35	7C191-35C	7140SA25L52	7C141-25C	71681SA25	7C170A-25C
71281SA35B	7C191-35MB	7140 SA 30	7C140-25C	71681SA25B	7C170A-25MB
71281SA45	7C191-45C	7140SA30L52	7C141-25C	71681SA35	7C170A-35C
71281SA45B	7C191-45MB	7140SA35	7C140-35C	71681SA35B	$7 \mathrm{C} 170 \mathrm{~A}-35 \mathrm{MB}$
71281SA55	7C191-45C	7140SA35L52	7C141-35C	71681SA45	7C170A-45C
71281SA55B	7C191-45MB	7140 SA45	7C140-45C	71681SA45B	7C170A-45MB
71281SA70B	7C191-45MB	7140SA45B	7C140-45MB	71681SA55B	7C170A-45MB
71282SA	7C192-25C	7140SA45L32	7C141-45C	71681SA70B	7C170A-45MB
71282SA	7C192-25MB	7140SA45L32B	7C141-45MB	71681SA85B	7C170A-45MB
71282SA	7C192-35C	7140 SA 55	7C140-55C	71681SA100B	7C170A-45MB
71282SA	7C192-35MB	7140SA55B	7C140-55MB	71682SA25	7C172A-25C
71282SA	7C192-45C	7140SA55L32	7C141-55C	71682SA25B	7C172A-25MB
71282SA	$7 \mathrm{C} 192-45 \mathrm{MB}$	7140SA55L32B	7C141-55MB	71682SA35	7C172A-35C
71282SA	7C192-45C	7140 SA 70	7C140-55C	71682SA35B	7C172A-35MB
71282SA	$7 \mathrm{C} 192-45 \mathrm{MB}$	7140SA70B	7C140-55MB	71682 SA45	7C172A-45C

[^1]| IDT | CYPRESS |
| :---: | :---: |
| 71682SA45B | 7C172A-45MB |
| 71682SA55B | 7C172A-45MB |
| 71682SA70B | 7C172A-45MB |
| 71682SA85B | 7C172A-45MB |
| 71682SA100B | 7C172A-45MB |
| 7187SA15 | $7 \mathrm{C} 187-15 \mathrm{C}$ |
| 7187SA20 | $7 \mathrm{C} 187-20 \mathrm{C}$ |
| 7187SA25 | 7C187-25C |
| 7187SA25B | 7C187-25MB |
| 7187SA30 | $7 \mathrm{C} 187-25 \mathrm{C}$ |
| 7187SA30B | 7C187-25MB |
| 7187SA35 | $7 \mathrm{C} 187-35 \mathrm{C}$ |
| 7187SA35B | 7 C 187 -35MB |
| 7187SA45 | 7C187-45C |
| 7187SA45B | 7C187-45MB |
| 7187SA55B | 7C187-45MB |
| 7187SA70B | 7C187-45MB |
| 7187SA85B | 7C187-45MB |
| 7188SA15 | $7 \mathrm{C} 164-15 \mathrm{C}$ |
| 7188SA20 | $7 \mathrm{C} 164-20 \mathrm{C}$ |
| 7188SA20B | 7C164A-20MB |
| 7188SA25 | 7C164-25C |
| 7188SA25B | 7C164A-25MB |
| 7188SA30 | 7C164-25C |
| 71981S35 | 7C161-35C |
| 71981S35B | 7C161-35M |
| 71981 S 45 | $7 \mathrm{C} 161-45 \mathrm{C}$ |
| 71981S45B | 7C161-45M |
| 71981555 | 7C161-45C |
| 71981S55B | 7C161-45M |
| 71981570 | $7 \mathrm{C} 161-45 \mathrm{C}$ |
| 71981S70B | 7C161-45M |
| 71981S85B | $7 \mathrm{C} 161-45 \mathrm{M}$ |
| 71982 S35 | $7 \mathrm{C} 162-35 \mathrm{C}$ |
| 71982S35B | 7C162-35M |
| 71982 S 45 | 7 C 162 -45C |
| 71982S45B | 7C162-45M |
| 71982 S55 | 7C162-45C |
| 71982S55B | 7C162-45M |
| 71982 S70 | $7 \mathrm{C} 162-45 \mathrm{C}$ |
| 71982S70B | 7C162-45M |
| 71982S85B | 7C162-45M |
| 7198 S 35 | 7C166-35C |
| 7198S35B | 7C166-35M |
| 7198 S45 | 7C166-45C |
| 7198S45B | 7C166-45M |
| 7198 S 55 | 7C166-45C |
| 7198S55B | 7C166-45M |
| 7198S70 | 7C166-45C |
| 7198S70B | 7C166-45M |
| 7198S85B | 7C166-45M |
| 7201LA120 | 7C420-65C+ |
| 7201LA120B | 7C420-65M+ |
| 7201LA35 | 7C420-30C + |
| 7201LA40B | $7 \mathrm{C} 420-40 \mathrm{M}+$ |
| 7201 LA 50 | 7C420-40C+ |
| 7201LA50B | $7 \mathrm{C} 420-40 \mathrm{M}+$ |
| 7201LA65 | 7C420-65C+ |
| 7201LA65B | 7C420-65M + |
| 7201LA80 | 7C420-65C+ |
| 7201LA80B | 7C420-65M + |
| 7201SA120 | 7C420-65C |

IDT	CYPRESS
7201SA120B	7C420-65M
7201SA35	$7 \mathrm{C} 420-30 \mathrm{C}$
7201SA40B	7C420-40M
7201SA50	$7 \mathrm{C} 420-40 \mathrm{C}$
7201SA50B	7C420-40M
7201SA65	$7 \mathrm{C} 420-65 \mathrm{C}$
7201SA65B	7C420-65M
7201SA80	$7 \mathrm{C} 420-65 \mathrm{C}$
7201SA80B	7C420-65M
7201LA25T	7C421-25C
7201LA30TB	7C421-30M
7201LA35T	$7 \mathrm{C} 421-30 \mathrm{C}$
7201LA40TB	7C421-40M
7201LA50TB	7C421-40M
7201LA65T	7C421-65C
7201LA50T	$7 \mathrm{C} 421-40 \mathrm{C}$
7201LA65TB	7C421-65M
7201SA25T	7C421-25C
7201SA30TB	7C421-30M
7201SA35T	7 C 421 -30C
7201SA40TB	7C421-40M
7201SA50T	7C421-40C
7201SA50TB	$7 \mathrm{C} 421-40 \mathrm{M}$
7201SA65T	7C421-65C
7201SA65TB	7C421-65M
7202LA120	7C424-65C+
7202LA120B	7C424-65M +
7202LA25	7C424-25C
7202LA35	7C424-30C+
7202LA40B	$7 \mathrm{C} 424-40 \mathrm{M}+$
7202LA50	7C424-40C+
7202LA50B	7C424-40M+
7202LA65	7C424-65C+
7202LA65B	$7 \mathrm{C} 424-65 \mathrm{M}+$
7202 LA 80	7C424-65C+
7202LA80B	7C424-65M +
7202SA120	7C424-65C
7202SA120B	7C424-65M
7202SA25	7C424-25C
7202SA35	$7 \mathrm{C} 424-30 \mathrm{C}$
$7202 S A 40 B$	$7 \mathrm{C} 424-40 \mathrm{M}$
7202SA50	$7 \mathrm{C} 424-40 \mathrm{C}$
7202SA50B	7C424-40M
7202SA65	7C424-65C
7202SA65B	7C424-65M
7202SA80	7C424-65C
7202SA80B	7C424-65M
7202LA25T	$7 \mathrm{C} 425-25 \mathrm{C}$
7202LA30TB	$7 \mathrm{C} 425-30 \mathrm{M}$
7202LA35T	7C425-30C
7202LA40TB	7C425-40M
7202LA50T	$7 \mathrm{C} 425-40 \mathrm{C}$
7202LA50TB	7C425-40M
7202LA65T	7C425-65C
7202LA65TB	$7 \mathrm{C} 425-65 \mathrm{M}$
7202SA25T	7C425-25C
7202SA30TB	7C425-30M
7202SA35T	7C425-30C
7202 SA 40 TB	7C425-40M
7202SA50T	$7 \mathrm{C} 425-40 \mathrm{C}$
7202SA50TB	7C425-40M
7202SA65T	$7 \mathrm{C} 425-65 \mathrm{C}$

IDT	CYPRESS
7202SA65TB	7C425-65M
7203L50	$7 \mathrm{C} 428-40 \mathrm{C}$
7203L50B	$7 \mathrm{C} 428-40 \mathrm{M}$
7203L50T	$7 \mathrm{C} 429-40 \mathrm{C}$
7203L65	$7 \mathrm{C} 428-65 \mathrm{C}$
7203L65B	$7 \mathrm{C} 428-65 \mathrm{M}$
7203L65T	7C429-65C
7203850	$7 \mathrm{C} 428-40 \mathrm{C}$
7203S50B	$7 \mathrm{C} 428-40 \mathrm{M}$
7203S50T	$7 \mathrm{C429-40C}$
7203 S 65	7C428-65C
7203S65B	$7 \mathrm{C} 428-65 \mathrm{M}$
7203S65T	7C429-65C
72045S35D	$7 \mathrm{C} 432-30 \mathrm{D}+$
72045S35D	7C432-40D+
72045S35J	7C433-30LC+
72045S35P	7C432-30P+
72045S35P	7C433-65P +
72045S40J	7C433-40LMB
72045S50D	7C432-65D +
72045S50J	7C433-40LC +
72045S50P	7C433-40P+
72045S65J	7C433-65LC+
7210-120B	7C510-75M
7210-200B	7C510-75M +
7210-55B	7C510-55M
7210-65B	7C510-65M
7210-75B	$7 \mathrm{C} 510-75 \mathrm{M}$
7210-85B	7C510-75M
7210L-45	7C510-45C+
7210 L 100	7C510-75C+
7210 L165	7C510-75C+
7210L55	7C510-55C+
7210L65	7C510-65C+
7210 L 75	7C510-75C+
7216L120B	7C516-75M+
7216L140	7C516-75C+
7216L185B	7C516-75M+
7216 L 55	7C516-55C+
7216L55B	7C516-55M +
7216L65	7C516-65C+
7216L65B	7C516-65M
7216 L 75	7C516-75C+
7216L75B	7C516-75M
7216L90	7C516-75C+
7216L90B	7C516-75M+
7217L120B	7C517-75M+
7217L140	7C517-75C+
7217L185B	7C517-75M+
7217LA5	7C517-45C+
7217L55	7C517-55C+
7217L55	7C517-55C+
7217L55B	7C517-55M
7217L65	7C517-65C+
7217L65B	7C517-65M
7217L75	7C517-75C+
7217L75B	7C517-75M
7217L90	7C517-75C+
7217L90B	7C517-75M +
72401 L 10	7C401-10C
72401L10B	7C401-10MB
72401 L 15	7C401-15C

IDT	CYPRESS	IDT	CYPRESS	IDT	CYPRESS
72401L15B	7C401-15MB	7M624S30C	1621HD-30C	8M824S100N	1421HD-85C
72401 L 25	7C401-25C	7M624S35C	1621HD-35C	8M824S35C	1420HD-35C
72401L25B	7C401-25MB	7M624S35CB	$1621 \mathrm{HD}-35 \mathrm{MB}$	8M824S40C	1420HD-35C
72401 L35	7C401-25C	7M624S45C	1621HD-45C	8M824S45C	1420HD-45C
72401L35B	7C401-25MB	7M624S45CB	1621HD-45MB	8M824S45CB	1420HD-45MB
72401L45	7C401-25C	7M624S55C	1621HD-45C	8M824S45N	1423PD-45C
72402 L 10	$7 \mathrm{C} 402-10 \mathrm{C}$	7M624S55CB	1621HD-45MB	8M824S50C	1420HD-45C
72402L10B	7C402-10MB	7M624S65C	1621HD-45C	8M824S50CB	1420HD-45MB
72402 L 15	7C402-15C	7M624S65CB	1621HD-45MB	8M824S50N	1423PD-45C
72402L15B	7C402-15MB	7MC4005S20CV	1611HV-20C	8M824S60C	1420HD-55C
72402L25	7C402-25C	7 MC 4005 S 25 CV	1611HV-25C	8M824S60CB	1420HD-55MB
72402L25B	7C402-25MB	7MC4005S25CVB	1611HV-25MB	8M824S60N	1423PD-55C
72402 L 35	7C402-25C	7MC4005S30CV	1611HV-30C	8M824S70C	1421HD-70C
72402L35B	7C402-25MB	$7 \mathrm{MC4005S} 30 \mathrm{CVB}$	1611HV-30MB	8M824S70CB	1420HD-55MB
72402L45	7C402-25C	7MC4005S35CV	1611HV-35C	8M824S70N	1423PD-70C
72403 L 10	7C403-10C	7MC4005S35CVB	1611HV-35MB	8M824S85CB	1420HD-55MB
72403L10B	7C403-10MB	7MC4005S45CV	1611HV-45C	8M824S85N	1421HD-85C
72403L15	7C403-15C	7MC4005S45CVB	1611HV-45MB	8MP624S40S	1626PS-35C
72403L15B	7C403-15MB	7MC4005S55CV	1611HV-45C	8MP624S45S	1626PS-45C
72403L25	7C403-25C	7MC4005S55CVB	1611HV-45MB	8MP624S50S	1626PS-45C
72403L25B	7C403-25MB	7MC4032S20CV	1822HV-20C	8MP624S60S	1626PS-45C
72403 L 35	$7 \mathrm{C403-25C}$	7MC4032S25CV	1822HV-25C	8MP824S40S	1422PS-35C
72403L35B	7C403-25MB	7MC4032S25CVB	1822HV-25MB	8MP824S45S	1422PS-45C
72403L45	7C403-25C	7MC4032S30CV	1822HV-30C	8MP824S50S	1422PS-45C
72404 L 10	$7 \mathrm{C} 404-10 \mathrm{C}$	$7 \mathrm{MC4032S30CVB}$	$1822 \mathrm{HV}-30 \mathrm{MB}$	8MP824S60S	1422PS-55C
72404L10B	7C404-10MB	7MC4032S40CV	$1822 \mathrm{HV}-35 \mathrm{C}$	8MP824S70S	1422PS-55C
72404L15	7C404-15C	7MC4032S40CVB	1822HV-35MB		
72404L15B	7C404-15MB	7MC4032S50CV	1822HV-45C	INMOS	CYPRESS
72404L25	7C404-25C	7MC4032S50CVB	1822HV-45MB	PREFIX:IMS	PREFIX:CY
72404L25B	7C404-25MB	7MC4032S70CVB	1822HV-45MB	SUFFIX:B	SUFFIX:B
72404L35	7C404-25C	7MP4008L100S	1461PS-100C	SUFFIX:P	SUFFIX:P
72404L35B	$7 \mathrm{C} 404-25 \mathrm{MB}$	7MP4008L70S	1461PS-70C	SUFFIX:S	SUFFIX:D
72404LA5	7C404-25C	7MP4008L85S	1461PS-85C	SUFFIX:W	SUFFIX:L
7M205S40C	M4210-40C	7MP4008S35S	1460PS-35C	1203-25	7C147-25C+
7M205S40CB	M4210-40MB	7MP4008S45S	1460PS-45C	1203-35	7C147-35C+
7 M 205550 C	M4210-50C	7MP4008S55S	1460PS-55C	1203-45	7C147-45C+
7M205S50CB	M4210-50MB	7MP4008S70S	1460PS-70C	1203M-35	7C147-35M +
7M205S70C	M4210-65C	8M624S100CB	$1620 \mathrm{HD}-55 \mathrm{MB}$		
7M205S70CB	M4210-65MB	8M624S35C	1620HD-35C	INTEL	CYPRESS
7M206S40C	M4210-40C	8M624S40C	1620HD-35C	PREFIX:D	SUFFIX:D
7M206S40CB	M4210-40MB	8M624S45C	1620HD-45C	PREFIX:L	SUFFIX:L
7M206S50C	M4210-50C	8M624S50C	1620HD-45C	PREFIX:P	SUFFIX:P
7M206S50CB	M4210-50MB	8M624S50CB	1620HD-45MB	SUFFIX:/B	SUFFIX:B
7M206S70C	M4210-65C	8M624S60C	1620HD-55C	1223-25	7C148-25C
7M206S70CB	M4210-65MB	8M624S60CB	$1620 \mathrm{HD}-55 \mathrm{MB}$	1223-35	$7 \mathrm{C} 148-35 \mathrm{C}$
7M4016S25C	1641HD-25C	8M624S70C	1620HD-55C	1223-45	7C148-45C
7M4016S35C	1641HD-35C	8N624S70CB	$1620 \mathrm{HD}-55 \mathrm{MB}$	1223M-35	7C148-25M +
7M4016S35CB	1641HD-35MB	8N624S85CB	$1620 \mathrm{HD}-55 \mathrm{MB}$	1223M-45	7C148-45M+
7M4016S45C	1641HD-45C	8M656S40C	1610HD-35C	1400-35	7C167-35C
7M4016S45CB	1641HD-45MB	8M656S50C	1610HD-45C	1400-45	7C167-45C
7M4016S55C	1641HD-55C	8M656S50CB	1610HD-45MB	1400-55	7C167-45C
7M4016S55CB	1641HD-55MB	8M656S60C	$1610 \mathrm{HD}-45 \mathrm{C}$	1400M-45	7C167-45M
7M4016S70CB	1641HD-55MB	8M656S60CB	1610HD-45MB	$1400 \mathrm{M}-55$	7C167-45M
7M4017S40C	1830HD-35C	8M656S70C	1610HD-45C	1400M-70	7C167-45M
7N4017S45C	1830HD-45C	8M656S70CB	1610HD-45MB	1403-25	7C167-25C
7M4017S50C	1830HD-45C	8M656S85C	1610HD-45C	1403-35	7C167-35C+
7M4017S50CB	1830HD-45MB	8M656S85CB	1610HD-45MB	1403-45	7C167-45C+
7M4017S55C	1830HD-55C	8M824L100C	1421HD-85C	1403-55	7C167-45C+
7M4017S60C	1830HD-55C	8M824L100N	1421HD-85C	1403LM-35	7C167-35M*
7M4017S60CB	1830HD-55MB	8M824L85C	1421HD-85C	1403M-35	7C167-35M+
7M4017S70C	1830HD-55C	8M824L85N	1421HD-85C	1403M-45	7C167-45M+
7M4017S70CB	$1830 \mathrm{HD}-55 \mathrm{MB}$	8M824S100CB	$1420 \mathrm{HD}-55 \mathrm{MB}$	1403M-55	7C167-45M+

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on I_{SB};
$+=$ meets all performance specs but may not meet I_{CC} or I_{SB};

* $=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB};
- = functionally equivalen.
$\dagger=$ SOIC only
$\ddagger=32$-pin LCC crosses to the 7 C 198 M

INTEL	CYPRESS
1403M-70	7C167-45M +
1420-45	7C168-35C
1420-55	7C168-45C
1420M-55	7C168-45M+
1420M-70	7C168-45M
1421C-40	7C169-40C
1423-25	7C168-25C+
1423-35	7C168-35C+
1423-40	7C168-45C+
1423M-35	7C168-35M*
1423M-45	7C168-45M*
1423M-55	7C168-45M*
1433-30	7C128-25C+
1433-35	7C128-35C+
1433-45	7C128-45C+
1433-55	7C128-55C+
1433M-35	7C128-35M+
1433M-45	$7 \mathrm{C} 128-45 \mathrm{M}+$
1433M-55	7C128-55M+
1600-35	7C187-35C
1600-45	7C187-45C
1600-55	7C187-45C
1600-70	7C187-45C
$1600 \mathrm{M}-45$	7C187-45M+
$1600 \mathrm{M}-55$	7C187-45M +
1600M-70	7C187-45M+
1601LM-45	7C187-45M+
1601LM-55	7C187-45M +
1601LM-70	7C187-45M+
1620-35	7C164-35C
1620-45	7C164-45C+
1620-55	7C164-45C+
1620-70	7C164-45C +
$1620 \mathrm{M}-45$	7C164-45M
1620M-55	7C164-45M
$1620 \mathrm{M}-70$	7C164-45M
1624-35	7C166-35C+
1624-45	7C166-45C +
1624-55	7C166-45C+
1624-70	7C166-45C+
$1624 \mathrm{M}-45$	7C166-45M
$1624 \mathrm{M}-55$	7C166-45M
1624M-70	7C166-45M
1625-25	7C164-25C
1625-35	7C164-35C
$1625 \mathrm{M}-35$	7C164-45M
1625M-45	7C164-45M
1630-45	7C186-45C+
1630-55	7C186-55C+
1630-70	7C186-55C+
1630LM-70	7C186-55M
$1630 \mathrm{M}-45$	7C186-45M
1630M-55	7C186-55M +
$1630 \mathrm{M}-70$	7C186-55M
1800-30	7C197-25C
1800-35	7C197-35C
1800-45	7C197-45C
1800M-35	7C197-35M
1800M-45	7C197-45M
1800P-35	7C194-35
1820-25	7C194-25C
1820-35	7C194-35C

INTEL	CYPRESS
1820-45	7C194-45C
1820P-35	7C194-35
1820P-45	7C194-45
1830-45	7C198-45
2147 H	2147-55C
$2147 \mathrm{H}-1$	2147-35C
2147H-2	2147-45C
2147H-3	2147-55C
2147 HL	7C147-45C
2148H	2148-55C
2148H-2	2148-45C
2148H-3	2148-55C
2148 HL	21L48-55C
$2148 \mathrm{HL}-3$	21L48-55C
2149 H	2149-55C
2149H-1	2149-35C
2149H-2	2149-45C
2149H-3	2149-55C
2149HL	21149-55C
27256-1C	7C274-55C
27256-2C	7C274-55C
27512-17	7C286-70C
27512-20	7C286-70C
27512-25	7C286-70C
27512-30	7C286-70C
2764A-1	7C266-55C
2764A-2	7C266-55C
51C66-25	7C167-25C-
51C66-30	7C167-25C-
51C66-35	7C167-25C-
51C66-35L	7C167-25C-
51C67-30	7C167-25C+
51C67-35	7C167-35C+
51C67-35L	7C167-35C+
51C68-30	7C168-25C+
51C68-35	7C168-35C+
M $2147 \mathrm{H}-3$	7C169-40M
M2148H	2148-55M
M2149H	2149-55M
M2149H-2	2149-45M
M2149H-3	2149-55M
LATTICE	CYPRESS
PREFIX:EE	PREFIX:CY
PREFIX:GAL	PREFIX:CY
PREFIX:ST	PREFIX:CY
SUFFIX:B	SUFFIX:B
SUFFIX:D	SUFFIX:D
SUFFIX:L	SUFFIX:L
SUFFIX:P	SUFFIX:P
16K4-25	7C168-25C
16K4-35	7 C 168 -35C
16K4-35M	7C168-35M
16K4-45	7C168-45C
16K4-45M	7C168-45M
16K8-35	7C128-35C+
16K8-55	7C128-45C+
16V8-25	PALC16L8-25C
16V8-25	PALC16R4-25C
16V8-25	PALC16R6-25C
16V8-25	PALC16R8-25C
16V8-25L	PALC16L8-25C

LATTICE	CYPRESS
16V8-25L	PALC16R4-25C
16V8-25L	PALC16R6-25C
16V8-25L	PALC16R8-25C
$16 \mathrm{~V} 8-25 \mathrm{Q}$	PALC16L8L-25C
16V8-25Q	PALC16R4L-25
16V8-25Q	PALC16R6L-25
16V8-25Q	PALC16R8L-25
16V8-30	PALC16L8-30M
16V8-30	PALC16R4-30M
16V8-30	PALC16R6-30M
16V8-30	PALC16R8-30M
16V8-30L	PALC16L8-30M
16V8-30L	PALC16R4-30M
16V8-30L	PALC16R6-30M
$16 \mathrm{~V} 8-30 \mathrm{~L}$	PALC16R8-30M
16V8-30Q	PALC16L8-30M
16V8-30Q	PALC16R4-30M
16V8-30Q	PALC16R6-30M
$16 \mathrm{~V} 8-30 \mathrm{Q}$	PALC16R8-30M
16V8-35	PALC16L8-35C
16V8-35	PALC16R4-35C
16V8-35	PALC16R6-35C
16V8-35	PALC16R8-35C
16V8-35L	PALC16L8-35C
16V8-35L	PALC16R4-35C
16V8-35L	PALC16R6-35C
16V8-35L	PALC16R8-35C
16V8-35Q	PALC16L8L-35C
16V8-35Q	PALC16R4L-35C
16V8-35Q	PALC16R6L-35C
16V8-35Q	PALC16R8L-35C
16V8A	PALC16L8
16V8A	PALC16R4
16V8A	PALC16R6
16V8A	PALC16R8
16V8A/883C	PALC16L8-MB
16V8A/883C	PALC16R4-MB
16V8A/883C	PALC16R6-MB
16V8A/883C	PALC16R8-MB
20RA10	PLDC20RA10
20RA10/883C	PLDC20RA10-MB
20V8-25	PLDC20G10-25C
20V8-25L	PLDC20G10-25C
20V8-25Q	PLDC20G10-25C
20V8-35	PLDC20G10-30M
20V8-35	PLDC20G10-35C
20V8-35L	PLDC20G10-30M
20V8-35L	PLDC20G10-35C
20V8-35Q	PLDC20G10-30M
20V8-35Q	PLDC20G10-35C
20V8A	PALC20G10
20V8A/883C	PALC20G10-MB
22V10	PAL22V10
22V10/883C	PAL22V10-MB
26 CV 12	PAL22V10
26CV12/883C	PAL22V10-MB
64E4-35	7C166-35C
64E4-45	7C155-45C
64E4-55	7C166-45C
64K1-35	7C187-35C
64K1-45	7C187-45C
$64 \mathrm{~K} 1-45 \mathrm{M}$	7C187-45M

LATTICE	CYPRESS	MICRON	CYPRESS	MICRON	CYPRESS
64K1-55	7C187-45C	5C2561-25	7C197-25C	5C6405-12C	7B166-12C
64K1-55M	7C187-45M	5C2561-25M	$7 \mathrm{C} 197-25 \mathrm{MB}$	5C6405-15	7C166-15C
64K4-35	7C164-35C	5C2561-30	7C197-25C	5C6405-20C	7C166-20C
64K4-45	7C164-45C	5C2561-35	7C197-35C	5C6405-25C	7C166-25C
64K4-45M	7C164-45M	5C2561-35M	$7 \mathrm{C} 197-35 \mathrm{MB}$	5C6405-30	7C166-25C
64K4-55	7C164-45C	5C2561-45	7C197-45C	5C6405-35C	7C166-35C
64K4-55M	7C164-45M	5C2561-45M	$7 \mathrm{C} 197-45 \mathrm{MB}$	5C6406-12C	7B161-12C
64K8-35	7C186-35C	5C2564-25	$7 \mathrm{C} 194-25 \mathrm{C}$	5C6406-15	$7 \mathrm{C} 161-15 \mathrm{C}$
64K8-45	7C186-45C	5C2564-25M	$7 \mathrm{C} 194-25 \mathrm{MB}$	5C6406-20	7C161-20C
64K8-45	7C264-45C	5C2564-30	7C194-25C	5C6406-25	7C161-25C
64K8-45M	7C186-45M	5C2564-35	$7 \mathrm{C} 194-35 \mathrm{C}$	5C6406-30	7C161-25C
64K8-55	7C186-55C	5C2564-35M	7C194-35MB	5C6406-35	7C161-35C
64K8-55	7C264-55C	5C2564-45	7C194-45C	5C6407-12C	7B162-12C
64K8-55M	7C186-45M	5C2564-45M	$7 \mathrm{C} 194-45 \mathrm{MB}$	5C6407-15	7C162-15C
64K8-70	7C264-55C	5C2565-25	7C196-25C	5C6407-20	$7 \mathrm{C} 162-20 \mathrm{C}$
L1010-45	7C510-45C+	5C2565-30	7C196-25C	5C6407-25	7C162-25C
L1010-65	7C510-65C+	5C2565-35	7C196-35C	5C6407-30	7C162-25C
L1010-65B	7C510-65M+	5C2565-45	$7 \mathrm{C} 196-45 \mathrm{C}$	5C6407-35	7C162-35C
L1010-90	7C510-75C+	5C2568-25	$7 \mathrm{C} 199-25 \mathrm{C}$	5C6408-12	7B185-12C
L1010-90B	7C510-75M +	5C2568CW-25	$7 \mathrm{C} 198-25 \mathrm{C}$	5C6408-15	7B185-15C
		5C2568W-25	$7 \mathrm{C} 198-25 \mathrm{C}$	5C6408-20C	7C185-20C
MICRON	CYPRESS	5C2568-25M	7C199-25MB	5C6408-20M	7C185A-20MB
PREFIX:MT	PREFIX:CY	5C2568CW-25M	$7 \mathrm{C} 198-25 \mathrm{MB}$	5C6408-25C	7C185-25C
5C1008-25	7C108-25C	5C2568W-25M	$7 \mathrm{C} 198-25 \mathrm{MB}$	5C6408-25M	7C185-25M
5C1008-25	7C109-25C	5C2568-30	7C199-25C	5C6408-30	7C185A-25C
5C1008-35	7C108-35C	5C2568CW-30	$7 \mathrm{C} 198-25 \mathrm{C}$	5C6408-30M	7C185A-25MB
5C1008-35	7C109-35C	5C2568W-30	$7 \mathrm{C} 198-25 \mathrm{C}$	5C6408-35C	7C185-35C
5C1008-45	7C108-45C	5C2568-35	7C199-35C	5C6408-35M	7C185-35M
5C1008-45	7C109-45C	$5 \mathrm{C} 2568 \mathrm{CW}-35$	7C198-35C	85C1664-30C	1620HD-30C
5C1601-15	7C167A-15C	5C2568W-35	7C198-35C	85C1664-35C	1620HD-35C
5C1601-20C	7C167A-20C	5C2568-35M	$7 \mathrm{C} 199-35 \mathrm{MB}$	85C1664-45C	1620HD-45C
5C1601-25C	7C167A-25C	5C2568CW-35M	$7 \mathrm{C} 198-35 \mathrm{MB}$	$85 \mathrm{C} 8128-30 \mathrm{C}$	1420HD-30C
5C1601-30	7C167A-25C	5C2568W-35M	$7 \mathrm{C} 198-35 \mathrm{MB}$	85C8128-35C	1420HD-35C
5C1601-35C	7C167A-35C	5C2568-45	7C199-45C	85C8128-45C	1420HD-45C
5C1604-15	7C168A-15C	5C2568CW-45	7C198-45C	85C8128-45C	1423PD-45C
5C1604-20C	7C168A-20C	5C2568W-45	7C198-45C		
5C1604-25C	7C168A-25C	5C2568-45B	$7 \mathrm{C} 199-45 \mathrm{MB}$	MITSUBISHI	CYPRESS
5C1604-30	7C168A-25C	5C2568CW-45B	$7 \mathrm{C} 198-45 \mathrm{MB}$	PREFIX:M5L	PREFIX:CY
5C1604-35C	7C168A-35C	5C2568W-45B	7C198-45MB	PREFIX:M5M	PREFIX:CY
5C1605-15	7C170A-15C	5C6401-15	7 C 187 -15C	SUFFIX:AP	SUFFIX:L
5C1605-20C	7C170A-20C	5C6401-20	7C187-20C	SUFFIX:FP	SUFFIX:F
$5 \mathrm{C} 1605-25 \mathrm{C}$	7C170A-25C	5C6401-20C	7C187-20C	SUFFIX:K	SUFFIX:D
5C1605-30	7C170A-25C	5C6401-20M	$7 \mathrm{C} 187-20 \mathrm{MB}$	SUFFIX:P	SUFFIX:P
5C1605-35C	7C170A-35C	5C6401-25.	$7 \mathrm{C} 187-25 \mathrm{C}$	21C67P-35	7C167-35C
5C1606-15	7C171A-15C	5C6401-25C	$7 \mathrm{C} 187-25 \mathrm{C}$	21C67P-45	7C167-45C
5C1606-20C	7C171A-20C	5C6401-25M	7C187-25MB	21C67P-55	$7 \mathrm{C} 167-45 \mathrm{C}$
5C1606-25C	$7 \mathrm{C} 171 \mathrm{~A}-25 \mathrm{C}$	5C6401-30	7C187-25C	21C68P-35	$7 \mathrm{C} 168-35 \mathrm{C}$
5C1606-30	7C171A-25C	5C6401-30M	7C187-25MB	21C68P-45	$7 \mathrm{C} 168-45 \mathrm{C}$
5C1606-35C	7C171A-35C	5C6401-35	7C187-35C	21-688-55	7C168-45C
5C1607-15	7C172A-15C	5C6401-35C	7 C 187 -35C	$27256 \mathrm{~K}-2 \mathrm{C}$	7C274-55C
5C1607-20C	7C172A-20C	5C6401-35M	$7 \mathrm{C} 187-35 \mathrm{MB}$	27256K-IC	7C274-55M
5C1607-25C	7C172A-25C	5C6401-45C	7C187-45C	27256K-12C	7C274-55C
5C1607-30	7C172A-25C	5C6404-12C	7B164-12C	27256K-15C	7C274-5CM
5C1607-35C	7C172A-35C	5C6404-15	$7 \mathrm{C} 164-15 \mathrm{C}$	$272112 \mathrm{~K}-17 \mathrm{C}$	7C286-70C
5C1608-15	$7 \mathrm{C} 128 \mathrm{~A}-15 \mathrm{C}$	5C6404-20	7C164-20C	272112K-2C	7C286-70C
5C1608-20C	7C128A-20C	5C6404-20M	$7 \mathrm{C} 164-20 \mathrm{MB}$	272112K-I	7C286-70M
5C1608-30	7C128A-25C	5C6404-25	7C164-25C	272112AK-10	7C286-70C
$5 \mathrm{C} 1608-30 \mathrm{M}$	7C128A-25M	5C6404-25M	$7 \mathrm{C} 164-25 \mathrm{MB}$	272112AK-12	7C286-70C
$5 \mathrm{C} 1608-25 \mathrm{C}$	$7 \mathrm{C} 128 \mathrm{~A}-25 \mathrm{C}$	5C6404-30	7C164-25C	272112AK-15	7C286-70C
5C1608-25M	7C128A-25M	5C6404-30M	$7 \mathrm{C} 164-25 \mathrm{MB}$	5165L-100	7C186-55C +
5C1608-35C	7C128A-35C	5C6404-35	$7 \mathrm{C} 164-35 \mathrm{C}$	5165L-120	7C186-55C+
$5 \mathrm{C} 1608-35 \mathrm{M}$	7C128A-35M	5C6404-35M	7C164-35MB	5165L-70	7C186-55C+

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on I_{SB};

[^2]| MITSUBISHI | CYPRESS |
| :---: | :---: |
| 5165P-100 | 7C186-55C+ |
| 5165P-120 | 7C186-55C+ |
| 5165P-70 | 7C186-55C+ |
| 5178P-45 | 7C186-45C+ |
| 5178P-55 | 7C186-55C+ |
| 5187P-25 | 7C187-25C |
| 5187P-35 | 7C187-35C |
| 5187P-45 | 7C187-45C |
| 5187P-55 | 7C187-45C |
| 5188P-25 | 7C164-25C |
| 5188P-35 | 7C164-35C |
| 5188P-45 | 7C164-45C |
| 5188P-55 | 7C164-45C |
| 5257J-35 | 7C197-35 |
| 5257J-45 | 7C197-45 |
| 5257P-35 | 7C197-35 |
| 5257P-45 | 7C197-45 |
| 5258J-45 | 7C194-45 |
| $5258 \mathrm{P}-35$ | 7C194-35 |
| 5258P-45 | 7C194-45 |
| MMI/AMD | CYPRESS |
| SUFFIX:883B | SUFFIX:B |
| SUFFIX:F | SUFFIX:F |
| SUFFIX:J | SUFFIX:D |
| SUFFIX:L | SUFFIX:L |
| SUFFIX:N | SUFFIX:P |
| SUFFIX:SHRP | SUFFIX:B |
| 5381-1 | 7C282-45M |
| 5381-2 | 7C282-45M |
| 5381S-1 | 7C281-45M |
| 5381S-2 | 7C281-45M |
| 53RA1681AS | 7C245-35M- |
| 53RA1681S | 7C245-45M- |
| 53RA481AS | 7C225-35M |
| 53RA481S | 7C225-40M |
| 53R1681AS | 7C245-35M- |
| 53RS1681S | 7C245-45M- |
| 53RS881AS | 7C235-40M |
| 53RS881S | 7C235-40M- |
| 53 S 1681 | 7C292-50M |
| 53S1681AS | 7C291-35M |
| 53S1681S | 7C291-50M |
| 535881 | 7C282-45M |
| 535881 A | 7C282-45M |
| 53S881AS | 7C281-45M |
| 53S881S | 7C281-45M |
| 57401 | 7C401-10M |
| 57401A | 7C401-10M |
| 57402 | $7 \mathrm{C} 402-10 \mathrm{M}$ |
| 57402A | 7C402-10M |
| 6381-1 | 7C282-45C |
| 6381-2 | 7C282-45C |
| 6381S-1 | 7C281-45C |
| 6381S-2 | 7C281-45C |
| 63RA1681AS | 7C245-35C- |
| 63RA1681S | 7C245-35C- |
| 63RA481AS | 7C225-25C |
| 63RA481S | 7C225-30C |
| 63RS1681AS | $7 \mathrm{C} 245-35 \mathrm{C}$ - |
| 63RS1681S | 7C245-35C- |
| 63RS881AS | $7 \mathrm{C} 235-30 \mathrm{C}$ - |

MMI/AMD	CYPRESS
63RS881S	7C235-30C-
63 S 1681	$7 \mathrm{C} 292-50 \mathrm{C}$
63S1681A	$7 \mathrm{C} 292-35 \mathrm{C}$
63S1681AS	7C291-35C
63S1681S	$7 \mathrm{C} 291-50 \mathrm{C}$
635881	$7 \mathrm{C} 281-45 \mathrm{C}$
63 S 881	$7 \mathrm{C} 282-45 \mathrm{C}$
63S881A	$7 \mathrm{C} 281-30 \mathrm{C}$
63S881A	$7 \mathrm{C} 282-30 \mathrm{C}$
67401	7 C 401 -10C
67401A	7C401-15C
67401B	7C403-25C
67401D	7C403-25C
67402	$7 \mathrm{C} 402-10 \mathrm{C}$
67402A	7 C 402 -15C
67402B	7C402-25C
67402D	$7 \mathrm{C} 404-25 \mathrm{C}$
67411	$7 \mathrm{C} 403-25 \mathrm{C}$
67412	7C402-25C
671402	7C402-10C
C57401	7C401-10M
C57401A	7C401~10M
C57402	7C402-10M
C57402A	7C402-10M
C67401A	7C401-15C
C67401B	7C403-25C
C67402	$7 \mathrm{C} 402-10 \mathrm{C}$
C67402A	$7 \mathrm{C} 402-15 \mathrm{C}$
C67402B	7C404-25C
C67LA01	7C401-5C
C67401D	7C401-15C
C67402D	$7 \mathrm{C402-15C}$
PAL12L10C	PLDC20G10-35C
PAL12L10M	PLDC20G10-40M
PAL14L8C	PLDC20G10-35C
PAL14L8M	PLD20G10-40M
PAL16L6C	PLD20G10-35C
PAL16L6M	PLDC20G10-40M
PAL16L8A-2C	PALC16L8-35C
PAL16L8A-2M	PALC16L8-40M
PAL16L8A-4C	PALC16L8L-35C
PAL16L8A-4M	PALC16L8-40M
PAL16L8AC	PALC16L8-25C
PAL16L8AM	PALC16L8-30M
PAL16L8B-2C	PALC16L8-35C
PAL16L8B-2M	PALC16L8-30M
PAL16L8B-4C	PALC16L8L-35C
PAL16L8B-4M	PALC16L8-40M
PAL16L8BM	PALC16L8-20M
PAL16L8C	PALC16L8-35C
PAL16L8D-4C	PALC16L8L-25C
PAL16L8D-4M	PALC16L8-30M
PAL16L8M	PALC16L8-40M
PAL16R4A-2C	PALC16R4-35C
PAL16R4A-2M	PALC16R4-40M
PAL16R4A-4C	PALC16R4L-35C
PAL16R4A-4M	PALC16R4-40M
PAL16R4AC	PALC16R4-25C
PAL16R4AM	PALC16R4-30M
PAL16R4B-2C	PALC16R4-25C
PAL16R4B-2M	PALC16R4-30M
PAL16R4B-4C	PALC16R4L-35C

MMI/AMD	CYPRESS
PAL16R4B-4M	PALC16R4-40M
PAL16R4BM	PALC16R4-20M
PAL16R4C	PALC16R4-35C
PAL16R4D-4C	PALC16R4L-25C
PAL16R4M	PALC16R4-40M
PAL16R6A-2C	PALC16R6-35C
PAL16R6A-2M	PALC16R6-40M
PAL16R6A-4C	PALC16R6L-35C
PAL16R6A-4M	PALC16R6-40M
PAL16R6AC	PALC16R6-25C
PAL16R6AM	PALC16R6-30M
PAL16R6B-2C	PALC16R6-25C
PAL16R6B-2M	PALC16R6-30M
PAL16R6B-4C	PALC16R6L-35C
PAL16R6B-4M	PALC16R6-40M
PAL16R6BM	PALC16R6-20M
PAL16R6C	PALC16R6-35C
PAL16R6D-4C	PALC16R6L-25C
PAL16R6M	PALC16R6-40M
PAL16R8A-2C	PALC16R8-35C
PAL16R8A-2M	PALC16R8-40M
PAL16R8A-4C	PALC16R8L-35C
PAL16R8A-4M	PALC16R8-40M
PAL16R8AC	PALC16R8-25C
PAL16R8AM	PALC16R8-30M
PAL16R8B-2C	PALC16R8-25C
PAL16R8B-2M	PALC16R8-30M
PAL16R8B-4C	PALC16R8L-35C
PAL16R8B-4M	PALC16R8-40M
PAL16R8BM	PALC16R8-20M
PAL16R8C	PALC16R8-35C
PAL16R8D-4C	PALC1648L-25C
PAL16R8M	PALC16R8-40M
PAL18L4C	PLDC20G10-35C
PAL18L4M	PLDC20G10-40M
PAL20L10AC	PLDC20G10-35C
PAL20L10AM	PLDC20G10-30M
PAL20L10C	PLDC20G10-35C
PAL20L10M	PLDC20G10-40M
PAL20L2C	PLDC20G10-35C
PAL20L2M	PLDC20G10-40M
PAL20L8A-2C	PLDC20G10-35C
PAL20L8A-2M	PLDC20G10-40M
PAL20L8AC	PLDC20G10-25C
PAL20L8AM	PLDC20G10-30M
PAL20LSC	PLDC20G10-35C
PAL20L8M	PLDC20G10-40M
PAL20R4A-2C	PLDC20G10-35C
PAL20R4A-2M	PLDC20G10-40M
PAL20R4AC	PLDC20G10-25C
PAL20R4AM	PLDC20G10-30M
PAL20R4C	PLDC20G10-35C
PAL20R4M	PLDC20G10-40M
PAL20R6A-2C	PLDC20G10-35C
PAL20R6A-2M	PLDC20G10-40M
PAL20R6AC	PLDC20G10-25C
PAL20R6AM	PLDC20G10-30M
PAL20R6C	PLDC20G10-35C
PAL20R6M	PLDC20G10-40M
PAL20R8A-2C	PLDC20G10-35C
PAL20R8A-2M	PLDC20G10-40M
PAL20R8AC	PLDC20G10-25C

MOTOROLA	CYPRESS
60256A-85	7C198-55C
6064-10	7C186-55C
6064-12	7C186-55C
6147-55	7C147-45C**
6147-70	7C147-45C*
6164-45	7C186-45C
6164-55	$7 \mathrm{C} 186-55 \mathrm{C}$
6164-70	7C186-55C
6168-35	7C168-35C+
6168-45	7C168-45C+
6168-55	7C168-45C+
6168-70	7C168-45C +
61L47-55	7C147-45C**
61L47-70	7C147-45C*
61L64-45	7C186-45C
61L64-55	7C186-55C
61L64-70	7C186-55C
6206-35	7C198-35C
6206-45	7C198-45
6206-45	$7 \mathrm{C} 198-45 \mathrm{C}$
6206-55	7C198-55
6206-70	7C198-55
6206P-45	7C198-45
6207-25	7C197-25
6207-25	7C1987-25C
6207-35	7C197-35
6208-25	7C194-25
6208-25	7C194-25C
6208-35	7C194-35
6264-15C	7B185-15C
6264-25	7C185-25C
6264-25	7C186-25C
6264-30	7C185-25C
6264-30	7C186-25C
6264-35	7C185-35C
6264-35	7C186-35C
6264-45	7C185-45C
6264-45	7C186-45C
6264-55	7C185-55C
6264-55	$7 \mathrm{C} 186-55 \mathrm{C}$
6268-25	7C168-25C
6268-35	7C168-35C
6268P-25	7C168-25C
6268P-35	7C168-35
6268P-35	7C168-35C
6268P-40	7C168-40C
6268P-45	7C168-45
6268P-45	7C168-45C
6269-25	7C169-25C
6269-35	7C169-35C
6270-25	7C170-25C
6270-35	$7 \mathrm{C} 170-35 \mathrm{C}$
6270-45	$7 \mathrm{C} 170-45 \mathrm{C}$
6287-15	7C187-15C
6287-20	7C187-20C
6287-25	7C187-25C
6287-35	7C187-35
6287-35	7C187-35C
6287-45	7C187-45
6287-45	7C187-45C
6288-12C	7B164-12C
6288-15	7C164-15C

MOTOROLA	CYPRESS
6288-25	7C164-25C
6288-25C	$7 \mathrm{C} 164-25 \mathrm{C}$
6288-30	7C164-25C
6288-35	7C164-35
6288-35	$7 \mathrm{C} 164-35 \mathrm{C}$
6288-35C	$7 \mathrm{C} 164-35 \mathrm{C}$
6288-35M	7C164-35M
6288-45	7C164-45
6288-45	7C164-45C
6288-45M	7C164-45M
6290-12C	7B166-12C
6290-15	$7 \mathrm{C} 166-15 \mathrm{C}$
6290-20	$7 \mathrm{C} 166-20 \mathrm{C}$
6290-25	$7 \mathrm{C} 166-25 \mathrm{C}$
6290-25C	7C166-25C
6290-30	7C166-25C
6290-35	7 C 166 -35C
6290-35C	7 C 166 -35C
6290-35M	7C166-35M
6290-45	7C166-45C
6290-45C	7C166-45C
6290-45M	7C166-45M
62L87-25	7C187-25C
62L87-35	7C187-35C+
7681	7C282-45C
7681A	7C282-45C
93422	93422 C
93422	93422M
93422A	93422AC
93422A	93422AM
93L422	93L422C
93L422	93L422M
931422A	93L422AC
93L422A	93L422AM
NATIONAL	CYPRESS
PREFIX:DM	PREFIX:CY
PREIFX:IDM	PREFIX:CY
PREFIX:NM	PREFIX:CY
PREFIX:NMC	PREFIX:CY
SUFFIX:J	SUFFIX:D
SUFFIX:N	SUFFIX:P
100422-10C	100E422L-7C
100422-5C	100E422-5C
100422A-7C	100E422L-7C
100422AC	100E422L-7C
100474A-10C	100E474L-7C
100474A-8C	100E474L-7C
10422-10C	10E422L-7C
10422-5C	10E422-5C
10422A-7C	10E422L-7C
10422AC	10E422L-7C
1047A-10C	10E474L-7C
10474A-8C	10E474L-7C
100494-15	100E494L-12C
100494-18	$100 \mathrm{E} 494 \mathrm{~L}-12 \mathrm{C}$
10494-10	10E494-10C
10494-12	10E494L-12C
10494-15	10E494L-12C
12L10C	PLDC20G10-35C
14L8C	PLDC20G10-35C
14L8M	PLDC20G10-40M

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on I_{SB};
$t=$ meets all performance specs but may not meet I_{CC} or I_{SB};

* $=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or $\mathrm{I}_{\text {SB }}$;
- = functionally equivalent.
$\dagger=$ SOIC only
$\ddagger=32-$ pin LCC crosses to the 7 C 198 M

NATIONAL	CYPRESS
16L6C	PLDC20G10-35C
16L6M	PLDC20G10-40M
18LAC	PLDC20G10-35C
18L4M	PLDC20G10-40M
20L2M	PLDC20G10-40M
2147 H	2147-55C
2147 H	2147-55M
$2147 \mathrm{H}-1$	2147-35C
$2147 \mathrm{H}-2$	2147-45C
$2147 \mathrm{H}-3$	2147-55C
$2147 \mathrm{H}-3$	2147-55M
2147H-3L	7C147-45C
2148H	2148-55C
2148 H	7C148-C
2148H	2148-C
2148H	21L48-C
2148H-2	2148-45C
$2148 \mathrm{H}-3$	2148-55C
2148H-3L	21148-55C
2148HL	21L48-55C
2901A-1C	7C901-31C
2901A-1M	7C901-32M
2901A-2C	7C901-31C
2901A-2M	7C901-32M
2901AC	7C901-31C
2901AM	7C901-32M
2909AC	2909AC
2909AM	2909M
2911AC	2911AC
2911AM	2911M
54S189	54S189M
54S189	7C189-M
54S189	74S189-M
54S189	27S03A-M
54S189	27LS03A-M
54S189A	7C189-25M
54S189A	7C189-M
54S189A	74S189-M
54S189A	27S03A-M
54S189A	27LS03A-M
74S189	74S189C
74 S 189	7C189-C
74 S 189	74S189-C
74S189	27S03A-C
74 S 189	27LS03A-C
74S189A	27S03AC
74S189A	7C189-C
74S189A	74S189-C
74S189A	27S03A-C
74S189A	27LS03A-C
74S289A	7C189-C
74S289A	74S189-C
74S289A	27S03A-C
74S289A	27LS03A-C
$75 \mathrm{S07}$	7C190-25M
75S07A	27S07AM
77LS181	7C282-45M
77S181	7C282-45M
77S181A	7C282-45M
77 S 191	7C292-50M
77S191A	7C292-50M
77S191B	7C292-50M

NATIONAL	CYPRESS	NATIONAL	CYPRESS
77S281	7C281-45M	PAL16R4B2C	PALC16R4-25C
77S281A	7C281-45M	PAL16R4B2M	PALC16R4-30M
77S291	$7 \mathrm{C} 291-50 \mathrm{M}$	PAL16R4B4C	PALC16R4L-35C
77S291A	7C291-50M	PAL16R4B4M	PALC16R4-40M
77S291B	7C291-50M	PAL16R4BM	PALC16R4-20M
77S401	7C401-10M	PAL16R4C	PALC16R4-35C
77S401A	7C401-10M	PAL16R4M	PALC16R4-40M
77 S 402	$7 \mathrm{C} 402-10 \mathrm{M}$	PAL16R6A2C	PALC16R6-35C
77S402A	7C402-10M	PAL16R6A2M	PALC16R6-40M
77SR181	$7 \mathrm{C} 235-40 \mathrm{M}$	PAL16R6AC	PALC16R6-25C
77SR25	$7 \mathrm{C} 225-40 \mathrm{M}$	PAL16R6AM	PALC16R6-30M
77SR25B	$7 \mathrm{C} 225-40 \mathrm{M}$	PAL16R6B2C	PALC16R6-25C
77ST476	7C225-40M-	PAL16R6B2M	PALC16R6-30M
77SR476B	7C225-40M-	PAL16R6B4C	PALC16R6L-35C
85S07	27S07C	PAL16R6B4M	PALC16R6-40M
85S07A	27S07AC	PAL16R6BM	PALC16R6-20M
85S07A	7C128-45C+	PAL16R6C	PALC16R6-35C
87LS181	7C282-45C	PAL16R6M	PALC16R6-40M
87S181	7C282-45C	PAL16R8A2C	PALC16R8-35C
87S191	7C292-50C	PAL16R8A2M	PALC16R8-40M
87S191A	7C292-35C	PAL16R8AC	PALC16R8-25C
87S191B	7C292-35C	PAL16R8AM	PALC16R8-30M
87S281	7C281-45C	PAL16R8B2C	PALC16R8-25C
87S281A	7C281-45C	PAL16R8B2M	PALC16R8-30M
87 S 291	7C291-50C	PAL16R8B4C	PALC16R8L-35C
87S291A	7C291-35C	PAL16R8B4M	PALC16R8-40M
87S291B	7C291-35C	PAL16R8BM	PALC16R8-20M
87S401	7C401-10C	PAL16R8C	PALC16R8-35C
87S401A	7C401-15C	PAL16R8M	PALC16R8-40M
87S402	7C402-10C	PAL20L10B2C	PLDC20G10-25C
87S402A	7C402-15C	PAL20L10B2M	PLDC20G10-30M
87SR181	7C235-30C	PAL20L10C	PLDC20G10-35C
87S625	7C225-40C	PAL20L10M	PLDC20G10-40M
87SR25B	7C225-30C	PAL20L2C	PLDC20G10-35C
87SR476	7C225-40C-	PAL20L8AC	PLDC20G10-25C
87SR476B	7C225-30C-	PAL20L8AM	PLDC20G10-30M
93L422A	7C122-C	PAL20L8BC	PLDC20G10-25C
93L422A	93422A-C	PAL20L8BM	PLDC20G10-30M
93L422A	93L422-C	PAL20L8C	PLDC20G10-35C
PAL10016P4-4C	100E302L-4C	PAL20L8M	PLDC20G10-40M
PAL10016P4-6C	100E302L-4C	PAL20R4AC	PLDC20G10-25C
PAL10016P8-4C	100E301-4C	PAL20R4AM	PLDC20G10-30M
PAL10016P8-6C	100E301L-6C	PAL20R4BC	PLDC20G10-25C
PAL1016P4-4C	10E302L-4C	PAL 20R4BM	PLDC20G10-30M
PAL1016P4-6C	10E302L-4C	PAL20R4C	PLDC20G10-35C
PAL1016P8-4C	10E301-4C	PAL20R4M	PLDC20G10-40M
PAL1016P8-6C	10E301L-6C	PAL20R6AC	PLDC20G10-25C
PAL16L8A2C	PALC16L8-35C	PAL20R6AM	PLDC20G10-30M
PAL16L8A2M	PALC16L8-40M	PAL20R6BC	PLDC20G10-25C
PAL16L8AC	PALC16L8-25C	PAL20R6BM	PLDC20G10-30M
PAL16L8AM	PALC16L8-30M	PAL20R6C	PLDC20G10-35C
PAL16L8B2C	PALC16L8-25C	PAL20R6M	PLDC20G10-40M
PAL16L8B2M	PALC16L8-30M	PAL20R8AC	PLDC20G10-25C
PAL16L8B4C	PALC16L8L-35C	PAL20R8AM	PLDC20G10-30M
PAL16L8B4M	PALC16L8-40M	PAL20R8BC	PLDC20G10-25C
PAL16L8BM	PALC16L8-20M	PAL20R8BM	PLDC20G10-30M
PAL16L8C	PALC16L8-35C	PAL20R8C	PLDC20G10-35C
PAL16L8M	PALC16L8-40M	PAL20R8M	PLDC20G10-40M
PAL16R4A2C	PALC16R4-35C		
PAL164A2M	PALC16R4-40M	NEC	CYPRESS
PAL16R4AC	PALC16R4-25C	PREFIX:UPD	PREFIX:CY
PAL16R4AM	PALC16R4-30M	SUFFIX:C	SUFFIX:P

PERFORMANCE	CYPRESS
29VP864SB	7C263-55M
29VS864SB	7C261-55M
39VP864D	7C264-55C
39VP864S	7C263-55C
39VS864S	7C261-55C
41256-35	7C199-35
41256-45	7C199-45
4C1256-25	7C199-25
4C1256-35	7C199-35
4C1256-45	7C198-45
4C1257-25	7C197-25
4C1257-35	7C197-35
4C1257-45	7C197-45
4C1258-25	7C194-25
4C1258-35	7C194-35
4C1258-45	7C194-45
4C150-12C	7C150-12C
4C150-15C	7C150-15C
4C150-15M	7C150-15M
4C150-20C	7C150-15C
4C150-20M	7C150-15M
4C150-25C	7C150-25C
$4 \mathrm{C} 150-25 \mathrm{M}$	7C150-25M
4C150-35M	7C150-35M
4C164P-20C	7C185-20C
4C164DW-20C	7C186-20C
4C164P-25C	7C185-25C
4C164DW-25C	7C186-25C
4C164P-25M	7C185-25M
4C164DW-25M	7C186-25M
4C164P-35C	7C185-35C
4C164DW-35C	7C186-35C
4C164P-35M	7C185-35M
4C164DW-35M	7C186-35M
4C164P-45C	7C185-45C
4C164DW-45C	7C186-45C
4C164P-45M	7C185-45M
4C164DW-45M	7C186-45M
4C164P-55C	7C185-55C
4C164DW-55C	7C186-55C
4C164P-55M	7C185-55M
4C164DW-55M	7C186-55M
4C1681-25C	7C171-25C
4C1681-35C	7C171-35C
4C1681-35M	7C171-35M
4C1681-45C	7C171-45C
4C1681-45M	7C171-45M
4C1682-25C	7C172-25C
4C1682-35C	7C172-35C
4C1682-35M	7C172-35M
4C1682-45C	7C172-45C
4C1682-45M	7C172-45M
4C169-25C	7C169-25C
4C169-30C	7C169-25C
4C169-35C	7C169-35C
4C169-35M .	7C169-35M
$4 \mathrm{C} 169-45 \mathrm{M}$	7C169-45M
4C187-20C	7C187-20C
4C187-25C	7C187-25C
4C187-25M	7C187-25M
4C187-35M	7C187-35M
$4 \mathrm{C} 188-20 \mathrm{C}$	7C164-20C

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on I_{SB};

[^3]| PERFORMANCE | CYPRESS |
| :---: | :---: |
| 4C188-25C | 7C164-25C |
| 4C188-25M | 7C164-25M |
| 4 C 188 -35C | 7C164-35C |
| 4C188-35M | 7C164-35M |
| 4C188-45M | 7C164-45M |
| 4C1981-20C | 7C161-20C |
| 4C1981-25C | 7C161-25C |
| 4C1981-25M | 7C161-25M |
| 4C1981-35C | 7C161-35C |
| 4C1981-35M | 7C161-35M |
| 4C1981-45M | 7C161-45M |
| 4C1981-55M | 7C161-55M |
| 4C1982-20C | 7C162-20C |
| 4C1982-25C | 7C162-25C |
| 4C1982-25M | 7C162-25M |
| 4C1982-35C | 7C162-35C |
| 4C1982-35M | 7C162-35M |
| 4C1982-45M | 7C162-45M |
| 4C1982-55M | 7 C 162 -55M |
| 4C198-20C | 7C166-20C |
| 4C198-25C | 7C166-25C |
| 4C198-25M | 7C166-25M |
| 4C198-35C | 7C166-35C |
| 4C198-35M | 7C166-35M |
| 4C198-45M | 7C166-45M |
| 93U422-35C | 7C122-15C |
| 93U422-35C | $7 \mathrm{C} 122-25 \mathrm{C}$ |
| 93U422-35C | 7C122-35C |
| 93U422-35M | 7C122-25M |
| 93U422-35M | 7C122-35M |
| RAYTHEON | CYPRESS |
| PREFIX:R | PREFIX:CY |
| SUFFIX:B | SUFFIX:B |
| SUFFIX:D | SUFFIX:D |
| SUFFIX:F | SUFFIX:F |
| SAMSUNG | CYPRESS |
| PREFIX:KM | PREFIX:CY |
| 61257A-25 | 7V197-25C |
| 61257A-35 | 7V197-35C |
| 61257A-45 | 7V197-45C |
| 62256A-8 | 7C198-55C |
| 62256A-10 | 7C198-55C |
| 62256A-12 | 7C198-55C |
| 6264B-7 | 7C185-55C |
| 6264B-7 | 7C186-55C |
| 6264B-10 | 7C185-55C |
| 6264B-10 | 7C186-55C |
| 6264B-12 | 7C185-55C |
| 6264B-12 | 7C186-55C |
| 64257A-25 | 7C194-25C |
| 64257A-35 | 7C194-35C |
| 64257A-45 | 7C194-45C |
| 75C01A-20 | 7C421-20C |
| $75 \mathrm{C} 01 \mathrm{~A}-25$ | 7C421-25C |
| $75 \mathrm{C} 01 \mathrm{~A}-35$ | 7C421-30C |
| $75 \mathrm{C} 01 \mathrm{~A}-50$ | 7C421-40C |
| $75 \mathrm{C} 01 \mathrm{~A}-80$ | 7C421-65C |
| $75 \mathrm{C} 01 \mathrm{AP}-20$ | 7C420-20C |
| $75 \mathrm{C} 01 \mathrm{AP}-25$ | 7C420-25C |
| $75 \mathrm{C} 01 \mathrm{AP}-35$ | 7C420-35C |

SAMSUNG	CYPRESS
$75 \mathrm{C} 01 \mathrm{AP}-50$	7C420-50C
$75 \mathrm{C} 01 \mathrm{AP}-80$	7C420-80C
75C02A-20	7C425-20C
75C02A-25	7C425-25C
75C02A-35	7C425-30C
$75 \mathrm{C} 02 \mathrm{~A}-50$	7C425-40C
$75 \mathrm{C} 02 \mathrm{~A}-80$	7C425-65C
$75 \mathrm{C} 02 \mathrm{AP}-20$	7C424-20C
$75 \mathrm{C} 02 \mathrm{AP}-25$	7C424-25C
$75 \mathrm{C} 02 \mathrm{AP}-35$	7C424-30C
$75 \mathrm{C} 02 \mathrm{AP}-50$	7C424-40C
$75 \mathrm{C} 02 \mathrm{AP}-80$	7C424-65C
75C03A-20	7C429-20C
$75 \mathrm{C} 03 \mathrm{~A}-25$	7C429-25C
75C03A-35	7C429-30C
$75 \mathrm{C03A}-50$	7C429-40C
75C03A-80	7C429-65C
75C03AP-20	7C428-20C
$75 \mathrm{C} 03 \mathrm{AP}-25$	7C428-25C
$75 \mathrm{C} 03 \mathrm{AP}-35$	$7 \mathrm{C} 428-30 \mathrm{C}$
$75 \mathrm{C} 03 \mathrm{AP}-50$	7C428-40C
75C03AP-80	7C428-65C
75C102A-20	7C425-20C
75C102A-25	7C425-25C
75C102A-35	7C425-25C
75C102A-80	7C425-65C
$75 \mathrm{C} 102 \mathrm{AP}-20$.	7C424-20C
75C102AP-25	7C424-25C
$75 \mathrm{C} 102 \mathrm{AP}-35$	7C424-25C
75C102AP-80	7C424-65C
SHARP	CYPRESS
PREFIX:LH	PREFIX:CY
52251-35	7C197-35
52251-45	7C197-45
52252-35	7C194-35
52252-45	7C194-45
52254D-25	7C199-25
52254D-35	7C199-35
52254D-45	7C199-45
5481-15	7C408A-15
5481-25	7C408A-25
5481-35	7C408A-35
5491-15	$7 \mathrm{C} 409 \mathrm{~A}-15$
5491-25	$7 \mathrm{C} 409 \mathrm{~A}-25$
5491-35	$7 \mathrm{C} 409 \mathrm{~A}-35$
5496-20	7C420-20
5496-35	7C420-30
5496-50	7C420-40
5496D-20	7C421-20
5496D-35	7C421-30
5496D-50	7C421-40
5497-20	7C424-20
5497-35	7C424-30
5497-50	7C424-40
5497D-20	7C425-20
5497D-35	7C425-30
5497D-50	7C425-40
5498-20	7C428-20
5498-35	7C428-30
5498-50	7C428-40
5498D-20	7C429-20

SHARP	CYPRESS
5498D-35	7C429-30
5498D-50	7C429-40
5499-35	7C432-30
5499-50	7C432-40
5499D-35	7C43-30
5499D-50	7C433-40
5749J-55C	7C264-55C
5749J-70C	7C264-55C
57254J-70C	7C274-55C
57254J-90C	7C274-55C
57255J-10C	7C274-55C
5725JJ-12C	7C274-55C
57256J-12C	7C274-55C
57256J-15C	7C274-55C
5762J-55C	7C266-55C
5762J-70C	7C266-55C
5763J-70C	7C266-55C
5763J-90C	7C266-55C
5764J-20C	7C26-55C
5764J-25C	7C266-55C
SIGNETICS	CYPRESS
PREFIX:N	PREFIX:CY
PREFIX:S	PREFIX:CY
SUFFIX:883B	SUFFIX:B
SUFFIX:F	SUFFIXD
SUFFIX:G	SUFFIX:L
SUFFIX:N	SUFFIX:P
SUFFIX:R	SUFFIX:F
100422BC	100E422-7C
100422CC	100E422-7C
100474AC	100E474-7C
10422BC	10E422-7C
10422CC	10E422-7C
10474AC	10474-7C
N74S189	74S189C
N82HS641	7C264-55C
N82HS641A	7C264-45C
N82HS641B	7C264-35C
N82LS181	7C282-45C
N82S181	7C282-45C
N82S181A	7C282-45C
N82S181B	7C282-45C
N82S191A-3	7C291-50C
N82S191A-6	7C292-50C
N82S191B-3	7C291-35C
N82S191B-6	7C292-35C
N82S191-3	7C291-50C
N82S191-6	7C292-50C
SS4S189	54S189M
S82HS641	7C264-55M
S82LS181	7C282-45M
S82S181	7C282-45M
S82S181A	7C282-45M
S82S191A-3	7C291-50M
S82S191A-6	7C292-50M
S82S191B-3	7C291-50M
S82S191B-6	7C292-50M
S82S191-3	7C91-50M
7C292-50M	

SONY	CYPRESS	TI	CYPRESS	TI	CYPRESS
PREFIX:CXK	PREFIX:CY	27C512-3C	7C286-70C	PAL16R4-20M	PALC16R4-20M
51256P-35	7C197-35	27C512-30C	7C286-70C	PAL16R4-25C	PALC16R4-25C
51256P-45	7C197-45	27C512-20M	7C286-70M	PAL16R4-30M	PALC16R4-30M
54256P-35	7C194-35	27C512-25M	7C286-70M	PAL16R4A-2C	PALC16R4-25C
54256P-45	7C194-45	27C512-30M	7C286-70M	PAL16R4A-2M	PALC16R4-40M
58255AP-25	7C199-25	28L166W	7C292-50C	PAL16R4AC	PALC16R4-25C
58255AJ-25	7C199-25	28L86AMW	7C282-45M	PAL16R4AM	PALC16R4-30M
58258P-35	7C198-35	28L86AW	$7 \mathrm{C} 282-45 \mathrm{C}$	PAL16R6-20M	PALC16R6-20M
58258P-45	7C198-45	28S166W	7C292-50C	PAL16R6-25C	PALC16R6-25C
58258SP-35	7C199-35	28S86AMW	7C282-45M	PAL16R6-30M	PALC16R6-30M
58258SP-45	7C199-45	28S86AW	7C282-45C	PAL16R6A-2C	PALC16R6-25C
		320C601-25	7C601-25	PAL16R6A-2M	PALC16R6-40M
TI	CYPRESS	320C601-33	7C601-33	PAL16R6AC	PALC16R6-25C
PREFIX:JBP	PREFIX:CY	320C602-25	7C602-25	PAL16R6AM	PALC16R6-30M
PREFIX:PAL	SUFFIX:P	320C602-33	7C602-33	PAL16R8-20M	PALC16R8-20M
PREFIX:SM	PREFIX:CY	320C604-25	7C604-25	PAL16R8-25C	PALC16R8-25C
PREFIX:SMJ	PREFIX:CY	320C604-33	7C604-33	PAL16R8-30M	PALC16R8-30M
PREFIX:SN	PREFIX:CY	38L165-35C	7C291-35C	PAL16R8A-2C	PALC16R8-25C
PREFIX:TBP	PREFIX:CY	38L165-45C	7C291-35C	PAL16R8A-2M	PALC16R8-40M
PREFIX:TIB	PREFIX:CY	38L166-35	7C292-35C	PAL16R8AC	PALC16R8-25C
PREFIX:TMS	PREFIX:CY	38L166-45	7C292-35C	PAL16R8AM	PALC16R8-30M
SUFFIX:F	SUFFIX:F	38L85-45C	7C281-45C	PAL20L10A-2C	PLDC20G10-25C
SUFFIX:J	SUFFIX:L	38R165-18C	7C245-25C	PAL20L10A-2M	PLDC20G10-30M
SUFFIX:N	SUFFIX:D	38R165-25C	7C245-35C	PAL20L10AC	PLDC20G10-35C
10016P8-6C	100E301L-6C	38R85-15C	7C235-30C	PAL20L10AM	PLDC20G10-30M
10H16P8-6C	10E301L-6C	38S165-25C	7C291A-25C	PAL20L8A-2C	PLDC20G10-25C
22V10AC	PALC22V10-25C	38S165-35C	7C291-35C	PAL20L8A-2M	PLDC20G10-30M
22V10AM	PALC22V10-30M	38S85-30C	7C281-30C	PAL20L8AC	PLDC20G10-25C
2764-17C	7C266-55C	$54 \mathrm{HC189}$	7C189-25M	PAL20L8AM	PLDC20G10-30M
2764-20C	7C266-55C	54HCT189	7C189-25M	PAL20R4A-2C	PLDC20G10-25C
2764-25C	7C266-55C	54LS189A	27LS03M	PAL20R4A-2M	PLDC20G10-30M
2764-45C	7C266-55C	54LS219A	7C190-25M +	PAL20R4AC	PLDC20G10-25C
27-256-12C	7C274-55C	54S189A	54S189M	PAL20R4AM	PLDC20G10-30M
27C256-120C	7C274-55C	61CD256-35	7C197-35	PAL20R6A-2C	PLDC20G10-25C
27C256-15C	7C274-55C	61CD256-45	7C197-45	PAL20R6A-2M	PLDC20G10-30M
27C256-150C	7C274-55C	64C256-35	7C194-35	PAL20R6AC	PLDC20G10-25C
27C256-17C	7C274-55C	64C256-45	7C194-45	PAL20R6AM	PLDC20G10-30M
27C256-1C	7C274-55C	68CE256-35	7C198-35	PAL20R8A-2C	PLDC20G10-25C
27C256-2C	7C274-55C	68CE256-45	7C198-45	PAL20R8A-2M	PLDC20G10-30M
27C256-20C	7C274-55C	7489	7C189-25C	PAL20R8AC	PLDC20G10-25C
27C256-25C	7C274-55C	74ACT29116	7 C 9116 AC	PAL20R8AM	PLDC20G10-30M
27C256-20M	7C274-55M	74ACT29116-1	7 C 9116 AC		
27C256-25M	7C274-55M	$74 \mathrm{HC1} 89$	7C189-25C	TOSHIBA	CYPRESS
27C291-3	7C291L-35C+	74HC219	7C190-25C	PREFIX:P	SUFFIX:P
27C291-30	7C291L-35C+	74HCT189	7C189-25C	PREFIX:TC	PREFIX:CY
27C291-5	7C291L-50C+	74LS189A	27LS03C	PREFIX:TMM	PREFIX:CY
27C291-50	7C291L-50C+	74LS219A	27S07C+	SUFFIX:D	SUFFIX:D
27C292-3	7C292L-35C+	74S189A	74S189C	2015A-10	7C128-55C+
27C292-35	7C292L-35C+	74S189B	7C189-25C	2015A-12	7C128-55C+
27C292-5	7C292L-50C+	HCT9510E	7C510-75C+	2015A-15	7C128-55C+
27C292-50	7C292L-50C+	HCT9510E-10	7C510-75C+	2015A-90	7C128-55C+
27C49-4C	7C264-45C	HCT9510M	7C510-75M +	2018-25	7C128-25C
27C49-45C	7C264-45C	J61CD256-35	7C197-35	2018-35	7C128-35C
27C49-5C	7C264-55C	J64C256-35	7C194-35	2018-45	$7 \mathrm{C} 128-45 \mathrm{C}$
27C49-55C	7C264-55C	J68CE256-35	7C198-35	2018-55	7C128-55C+
27C512-30M	7C286-70M	PAL16L8-20M	PALC16L8-20M	2018AP-35	7C128-35C
27C512-1C	7C286-70C	PAL16L8-25C	PALC16L8-25C	2018AP-45	7C128-45C
27C512-12C	7C286-70C	PAL16L8-30M	PALC16L8-30M	2068-25	7C168-25C
27C512-17C	7C286-70C	PAL16L8A-2C	PALC16L8-35C	2068-35	7C168-35C
27C512-2C	7C286-70C	PAL16L8A-2M	PALC16L8-40M	2068-45	7C168-45C
27C512-20C	7C286-70C	PAL16L8AC	PALC16L8-25C	2068-55	7C168-45C
27C512-25C	7C286-70C	PAL16L8AM	PALC16L8-30M	2069-35	$7 \mathrm{C} 169-35 \mathrm{C}$

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on $\mathrm{I}_{\text {CC }}$ and 5 mA on $\mathrm{I}_{\text {SB }}$;
$t=$ meets all performance specs but may not meet I_{CC} or I_{SB};
$*=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB};

- = functionally equivalent.
$\dagger=$ SOIC only
$\ddagger=32-$ pin LCC crosses to the 7 C 198 M

TRW	CYPRESS	TRW	CYPRESS	VTI	CYPRESS
2078-35	7C170-35C	5565-12	7C186-55C	20C79-25C	7C170A-25C
2078-45	$7 \mathrm{C} 170-45 \mathrm{C}$	5565-15	7C186-55C	20C79-35	$7 \mathrm{C} 170-35 \mathrm{C}$
2078-55	$7 \mathrm{C} 170-45 \mathrm{C}$	5588P/J-20	7C185-20C	20C79-35C	7C170A-35C
2088-35	7C186-35C	5588P/J-25	7C185-25C	20C79-45	7C170-45C
2088-45	7C186-45C	5589P/J-25	7C182-25C	20C98-15C	$7 \mathrm{C} 185-15 \mathrm{C}$
2088-55	7C186-55C	57256AD-12C	7C274-55C	20C98-20C	$7 \mathrm{C} 185-20 \mathrm{C}$
27512AD-17C	7C286-70C	57256AD-120C	7C274-55C	20C98-25C	$7 \mathrm{C} 185-25 \mathrm{C}$
27512AD-20C	7C286-70C	57256AD-15C	7C274-55C	20C98-35	7C185-35C+
27512AD-200C	7 C 286 -70C	57256AD-150C	7C274-55C	20C98-35C	7C185-35C
27512AD-25C	7 C 286 -70C	$57256 \mathrm{AD}-20 \mathrm{C}$	7C274-55C	20C98-45	7C185-45C+
27512AD-250C	7C286-72C	$57512 \mathrm{AD}-15 \mathrm{C}$	7C286-70C	20C98L-15C	$7 \mathrm{C} 185-15 \mathrm{C}$
27512ADI-20C	7C286-70M	57512AD-20C	7C286-70C	$20 \mathrm{C} 98 \mathrm{~L}-20 \mathrm{C}$	7C185-20C
27512ADI-25C	7C286-70M	57H2556D-70C	7C274-55C	20C98L-25C	$7 \mathrm{C} 185-25 \mathrm{C}$
27256BD-15C	7C274-55C	57H2556D-85C	7C274-55C	20C98L-35C	$7 \mathrm{C} 185-35 \mathrm{C}$
27256BD-150C	7C274-55C	MPY016HA	7C516-75M	20C99-35	$7 \mathrm{C} 185-35 \mathrm{C}$
27256BD-20C	7C274-55C	MPY016HC	7C516-75C	20C99-45	$7 \mathrm{C} 185-45 \mathrm{C}$
27256BD-200C	7C274-55C	MPY016KA	7C516-75M	2130-10C	$7 \mathrm{C} 130-55 \mathrm{C}$
27256BDI-15C	7C274-55M	MPY016KC	7C516-75C	2130-12C	$7 \mathrm{C} 130-55 \mathrm{C}$
27256BDI-20C	7C274-55M	TDC1010A	7C510-75M	2130-15C	7C130-55C
315	2147-55C	TDC1010C	7C510-75C	6285H-15C	$7 \mathrm{C} 161-15 \mathrm{C}$
315-1	2147-55C	TMC2010A	7C510-75M+	6285HL-15C	7 C 161 -15C
55257-10	7C199-55C	TMC2010C	7C510-75C+	6285H-20C	$7 \mathrm{C} 161-20 \mathrm{C}$
55257-12	7C199-55C	TMC2110A	7C510-75M	6285HL-20C	$7 \mathrm{C} 161-20 \mathrm{C}$
55257-70	7C199-55C	TMC2110C	7C510-75C	6285H-25C	7C161-25C
55257-85	$7 \mathrm{C} 199-55 \mathrm{C}$	TMC216HA	7C516-75M	6285HL-25C	$7 \mathrm{C} 161-25 \mathrm{C}$
55328-25	7C199-25	TMC216HC	7C516-75C+	6285H-35C	$7 \mathrm{C} 161-35 \mathrm{C}$
55328-35	7C199-35			6285HL-35C	7 C 161 -35C
55328P/J-25	7C199-25C	VTI	CYPRESS	6286H-15C	$7 \mathrm{C} 162-15 \mathrm{C}$
55328P/J-35	7C199-35C	PREFIX:VL	PREFIX:CY	6286HL-15C	$7 \mathrm{C} 162-15 \mathrm{C}$
55416-35	7C164-35C	PREFIX:VT	PREFIX:CY	$6286 \mathrm{H}-20 \mathrm{C}$	$7 \mathrm{C} 162-20 \mathrm{C}$
55416-45	7C164-45C	20C18-20C	7C128A-20C	6286HL-20C	$7 \mathrm{C} 162-20 \mathrm{C}$
55417-25	7 C 166 -25C	20C18-25	$7 \mathrm{C} 128-25 \mathrm{C}+$	6286H-25C	$7 \mathrm{C} 162-25 \mathrm{C}$
55417-35	7C166-35C	20C18-25C	$7 \mathrm{C128A}$-25C	6286HL-25C	$7 \mathrm{C} 162-25 \mathrm{C}$
55417-45	7C166-45C	20C18-35	$7 \mathrm{C} 128-35 \mathrm{C}+$	$6286 \mathrm{H}-35 \mathrm{C}$	7C162-35C
55417P/J-15	7C166-15C	20C18-35C	$7 \mathrm{C} 128 \mathrm{~A}-35 \mathrm{C}$	6286HL-35C	7C162-35C
55417P/J-20	7C166-20C	20C19-25	7C128-25C	6287H-15C	7 C 187 -15C
55417P/J-25	7C166-25C	20C19-35	7C128-35C	6287HL-15C	7 C 187 -15C
55417P/J-35	7C166-35C	20C50-15C	$7 \mathrm{C} 150-15 \mathrm{C}$	6287H-20C	7C187-20C
55464-25	7C194-25	20C50-20C	$7 \mathrm{C} 150-15 \mathrm{C}$	6287HL-20C	7C187-20C
55464-35	7C194-35	20C50-25C	7C150-25C	6287H-25C	7C187-25C
55464P/J-25	7C194-25C	20C68-15C	$7 \mathrm{Cl} 168 \mathrm{~A}-15 \mathrm{C}$	6287HL-25C	7C187-25C
55464P/J-35	7C194-35C	20C68-20C	7C168A-20C	6287H-35C	7C187-35C
55465-25	7C196-25	20C68-25	7C168-25C+	6287HL-35C	$7 \mathrm{C} 187-35 \mathrm{C}$
55465-35	7C196-35	20C68-25C	7C168A-25C	6288H-15C	$7 \mathrm{C} 164-15 \mathrm{C}$
55465P/J-25	7C196-25C	20C68-35	7C168-35C+	6288HL-15C	$7 \mathrm{C} 164-15 \mathrm{C}$
55465P/J-35	7C196-35C	20C68-35C	7C168A-35C	6288H-20C	$7 \mathrm{C} 164-20 \mathrm{C}$
5561-45	7C187-45C+	20C69-20C	7C169A-20C	6288HL-20C	7C164-20C
5561-55	7C187-45C+	20C69-25	7C169-25C	6288H-25C	$7 \mathrm{C} 164-25 \mathrm{C}$
5561-70	7C187-45C+	20C69-25C	7C169A-25C	6288HL-25C	7C164-25C
$5561 \mathrm{P} / \mathrm{J}-45$	7C187-45C	20C69-35	7C169-35C	6288H-35C	$7 \mathrm{C} 164-35 \mathrm{C}$
$5561 \mathrm{P} / \mathrm{J}-55$	7C187-35C	20C69-35C	7C169A-35C	6288HL-35C	7 C 164 -35C
$5561 \mathrm{P} / \mathrm{J}-70$	7C187-45C	20C69-45	7C169-45C	6289H-15C	7 C 166 -15C
5562-35	7C187-35C	20C71-25C	$7 \mathrm{C} 171 \mathrm{~A}-25 \mathrm{C}$	6289HL-15C	7 C 166 -15C
5562-45	7C187-45C	20C71-35C	7C171A-35C	$6289 \mathrm{H}-20 \mathrm{C}$	7C166-20C
5562-55	7C187-45C	20C72-15C	7C172A-15C	6289HL-20C	7C166-20C
5562P/J-35	$7 \mathrm{C} 187-45 \mathrm{C}$	20C72-25C	7C172A-25C	6289H-25C	7C166-25C
5562P/J-45	7C187-45C	20C72-35C	7C172A-35C	6289HL-25C	7C166-25C
5562P/J-55	7C187-45C	20C78-25	7C170-25C+	6289H-35C	7C166-35C
5563-10	7C185-55C	20C78-35	7C170-35C +	6289HL-35C	7 C 166 -35C
5563-12	$7 \mathrm{C} 185-55 \mathrm{C}$	20C78-45	7C170-45C+	7132-55	$7 \mathrm{C} 132-55 \mathrm{C}$
5563-15	7C185-55C	20C79-20C	7C170A-20C	7132-55C	$7 \mathrm{C} 132-55 \mathrm{C}$
5565-10	7C186-55C	20С79-25	$7 \mathrm{C} 170-25 \mathrm{C}$	7132-70	7C132-55C

VTI	CYPRESS	WSI	CYPRESS	WEITEK	CYPRESS
7132-70C	7C132-55C	57C291-45M	7C291-35M	2010DC	7C510-55C.
7132-90C	7C132-55C	57C291-55	$7 \mathrm{C} 291-50 \mathrm{C}$	2010DM	7C510-75M
7132A-25C	$7 \mathrm{C} 132-25 \mathrm{C}$	57C291-55M	7C291-50M	2010M	7C510-75M +
7132A-30C	7C132-25C	57C291-70	7C291-50C	2516AC	7C516-55C
7132A-35	7C132-35C	57C291-70M	7C291-50M	2516 AM	7C516-75M
7132A-35C	7C132-35C	57C45-20	7C245A-15C	2516C	7C516-75C
7132A-45	7C132-45C	57C45-25	7C245A-25C	2516DC	7C516-45C
7132A-45C	7C132-45C	57C45-25M	$7 \mathrm{C} 245 \mathrm{~A}-25 \mathrm{M}$	2516DM	7C516-55M
7142-55	7C142-55C	57C45-35	7C245A-35C	2516M	7C516-75M+
7142-55C	7C142-55C	57C45-35M	7C245A-35M	2517 AC	7C517-55C
7142-70	7 C 142 -55C	57C49	7C261	2517AM	7C517-75M
7142-70C	7C142-55C	57C49	7C263	2517 C	7C517-75C
7142-90C	7C142-55C	57C49B	7 C 261	2517M	7C517-75M+
$7142 \mathrm{~A}-25 \mathrm{C}$	7 C 142 -25C	57C49B	7 C 263		
7142A-30C	7C142-25C	57C49B-35	7C264-30C		
7142A-35	7C142-35C	57C49B-35T	$7 \mathrm{C} 261-30 \mathrm{C}$		
7142A-35C	7C142-35C	57C49B-45	$7 \mathrm{C} 264-40 \mathrm{C}$		
7142A-45	7C142-45C	57C49B-45T	7C261-40C		
7142A-45C	7C142-45C	57C49B-55	7C264-45C		
7C122-15	7C122-15C	57C49B-55T	7C261-45C		
7C122-15C	7C122-15C	57C49B-55TM	7C261-45M		
7C122-25	7C122-25C	$57 \mathrm{C} 49 \mathrm{~B}-55 \mathrm{TM}$	7C264-45M		
7 C 122 -25C	7C122-25C	57C291-55	7C291-50C		
7C122-35	7C122-35C	57C291-55	7C291-50C		
7 C 122 -35C	7C122-35C	57C49-55	7C264-55C+		
2010-65	7C510-65C	57C49-55M	7C264-55M		
2010-70	7C510-65C	57C49-70	7C264-55C+		
2010-90	7C510-75C	57C49-70M	7C264-55M		
64KS4-35	7C164-35C	57C49-90	7C264-55C+		
64KS4-45	7C164-45C	57C49-90M	7C264-55M		
64KS4-55	7C164-45C	57C51	7C251		
65KS4-35	$7 \mathrm{C} 166-35 \mathrm{C}$	57C51	7 C 255		
65KS4-45	7C166-45C	57C51B	7 C 251		
65KS4-55	7C166-45C	57C51B	7C254		
		59016C	7C9101-40C		
WSI	CYPRESS	59016C	7C9101-45M		
PREFIX:WS	PREFIX:CY	5901C	2901CC+		
SUFFIX:C	PREFIX:CY	5901M	2901CM +		
SUFFIX:D	PREFIX:CY	5910AC	7C910-40C		
SUFFIX:M	SUFFIX:P	5910AM	7C910-46M		
SUFFIX:P	PREFIX:CY	59510	7 C 10		
${ }^{29} \mathrm{C} 01 \mathrm{C}$	7C901-31C	59516	7C516-45C		
57C128F-70	7C251-55C	59517	7C517-45C		
57C128F-70M	$7 \mathrm{C} 251-55 \mathrm{M}+$				
$57 \mathrm{C} 128 \mathrm{~F}-90$	$7 \mathrm{C} 251-55 \mathrm{C}$	WEITEK	CYPRESS		
57C128F-90M	7C251-55M+	1010AC	7C510-75C		
57C191B-35	7C292-35C	1010AM	7C510-75M		
57C191B-35M	7C292-35M	1010BC	7C510-75C		
57C191B-45	$7 \mathrm{C} 292-35 \mathrm{C}$	1010BM	7C510-75M		
57C191B-45M	7C292-35M	1010C	$7 \mathrm{C} 10-75 \mathrm{C}$		
57C191-45	$7 \mathrm{C} 292-35 \mathrm{C}$	1010M	7C510-75M		
57C191-45M	$7 \mathrm{C} 292-35 \mathrm{M}$	1516AC	7C516-75C		
57C191-55	7C292-50C	1516AM	7C516-75M		
57C191-55M	$7 \mathrm{C} 292-50 \mathrm{M}$	1516BC	7C516-55C		
57C191-70	7C292-50C	1516BM	7C516-75M		
57C191-70M	7C292-50M	1516C	7C516-75C		
57C256F	7 C 274	1516M	7C516-75M		
57C291B-35	7C291-35C	2010AC	7C510-55C		
57C291B-35M	7C291-35M	2010AM	7C510-75M		
57C291B-45	$7 \mathrm{C} 291-35 \mathrm{C}$	2010BC	7C510-45C		
57C291B-45M	7C291-35M	2010BM	7C510-55M		
57C291-45	7C291-35C	2010 C	7C510-75C		

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on I_{SB};
$+=$ meets all performance specs but may not meet I_{CC} or I_{SB};
$*=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB};

- = functionally equivalent.
$\dagger=$ SOIC only
$\ddagger=32$-pin LCC crosses to the 7 C 198 M

Static RAMs (Random Access Memory)

Page Number

Device Number Description
CY2147 4096×1 Static R/W RAM 2-1
CY2148
CY21L48
CY2149
CY21L49
CY6116CY6116A1024×4 Static R/W RAM2-6
1024×4 Static R/W RAM, Low Power 2-6
1024×4 Static R/W RAM 2-6
1024×4 Static R/W RAM, Low Power 2-6
2048×8 Static R/W RAM 2-12CY6117A2048×8 Static R/W RAM2-19
CY7C101$2048 \times 8$ Static R/W RAM2-19
$262,144 \times 4$ Static R/W RAM with Separate I/O 2-26
CY7C102 $262,144 \times 4$ Static R/W RAM with Separate I/O 2-26
CY7C106 262,144 x 4 Static R/W RAM 2-32
CY7C107 $1,048,576 \times 1$ Static R/W RAM 2-39
CY7C108 $131,072 \times 8$ Static R/W RAM 2-45
CY7C109 $131,072 \times 8$ Static R/W RAM 2-45
CY7C122 256×4 Static R/W RAM Separate I/O 2-52
CY7C123 256×4 Static R/W RAM Separate I/O 2-59
CY7C128CY7C128ACY7C130CY7C131CY7C140
2048×8 Static R/W RAM 2-65
2048×8 Static R/W RAM 2-72
1024×8 Dual-Port Static RAM 2-80
1024×8 Dual-Port Static RAM 2-80
1024×8 Dual-Port Static RAM 2-80
CY7C141 1024×8 Dual-Port Static RAM 2-80
2048×8 Dual-Port Static RAM 2-92
$4 \mathrm{~K} \times 8$ Dual-Port Static RAM 2-104
4K x 8 Dual-Port Static RAM 2-104
4K x 8 Dual-Port Static RAM with Semaphores 2-104
$4 \mathrm{~K} \times 8$ Dual-Port Static RAM with Semaphores, INT, and BUSY 2-114
$8 \mathrm{~K} \times 8$ Dual-Port Static RAM with Semaphores, $\overline{\mathrm{INT}}$, and BUSY 2-128
4096×1 Static RAM 2-142
1024×4 Static RAM 2-149
1024×4 Static RAM 2-149
1024×4 Static R/W RAM 2-156
65,536 x 4 Expandable Static R./W RAM 2-164
65,536 x 4 Expandable Static R./W RAM 2-164
16K x 16 Synchronous Static RAM 2-171
16K x 16 Synchronous Static RAM 2-171
$16,384 \times 16$ Static R/W Cache Storage Unit 2-177
Expandable $16,384 \times 4$ Static RAM 2-179
$16,384 \times 4$ Static RAM Separate I/O 2-184
$16,384 \times 4$ Static RAM Separate I/O 2-184
$16,384 \times 4$ Static R/W RAM Separate I/O 2-190
16,384 x 4 Static R/W RAM Separate I/O 2-190
16,384x 4 Static R/W RAM Separate I/O 2-197
16,384 x 4 Static R/W RAM Separate I/O 2-197
Expandable 262,144 x 1 Static R/W RAM with Separate I/O 2-205
$16,384 \times 4$ Static R/W RAM 2-211
$16,384 \times 4$ Static R/W RAM 2-211
$16,384 \times 4$ Static R/W RAM 2-217

Static RAMs (Random Access Memory) (continued)

Page Number

Device Number Description
CY7C166CY7C164ACY7C166ACY7C167CY7C167CY7C167A
CY7C168
CY7C169
CY7C168A
CY7C169A
CY7C170
CY7C170A
CY7C171
CY7C172
CY7C171A
16,384 x 4 Static R/W RAM with Output Enable 2-217
16,384 x 4 Static R/W RAM 2-224
$16,384 \times 4$ Static R/W RAM with Output Enable 2-224
$16,384 \times 1$ Static R/W RAM 2-233
$16,384 \times 1$ Static RAM 2-240
4096×4 Static RAM 2-247
4096×4 Static RAM 2-247
4096×4 R/W RAM 2-254
4096×4 R/W RAM 2-254
4096×4 Static R/W RAM 2-263
4096×4 Static R/W RAM 2-268
4096×4 Static R/W RAM Separate I/O 2-274
4096×4 Static R/W RAM Separate I/O 2-274
4096×4 Static R/W RAM Separate I/O 2-280
CY7C172A 4096×4 Static R/W RAM Separate I/O 2-280
CY7B173 $32,768 \times 9$ Synchronous Cache R/W RAM 2-288
CY7B174 $32,768 \times 9$ Synchronous Cache R/W RAM 2-288
CY7B180 $4 \mathrm{~K} \times 18$ Cache Tag 2-297
CY7B181 $4 \mathrm{~K} \times 18$ Cache Tag 2-297
CY7C182 $8,192 \times 9$ Static R/W RAM 2-316
CY7C183 $2 \times 4096 \times 16$ Cache RAM 2-321
CY7C184 $2 \times 4096 \times 16$ Cache RAM 2-321
CY7B185 $8,192 \times 8$ Static RAM 2-329
CY7B186 $8,192 \times 8$ Static RAM 2-329
CY7C185 $8,192 \times 8$ Static R/W RAM 2-334
CY7C186 $8,192 \times 8$ Static R/W RAM 2-334
CY7C185A $8,192 \times 8$ Static R/W RAM 2-341
CY7C186A 8,192 x 8 Static R/W RAM 2-341
CY7C187 65,536 x 1 Static R/W RAM 2-349
CY7C187A 65,536 x 1 Static R/W RAM 2-356
CY7C189 16×4 Static R/W RAM 2-365
CY7C190 16×4 Static R/W RAM 2-365
CY7B191 65,536 x 4 Static R/W RAM Separate I/O 2-372
CY7B192 65,536 x 4 Static R/W RAM Separate I/O 2-372
CY7C191 65,536 x 4 Static R/W RAM Separate I/O 2-379
CY7C192 65,536 x 4 Static R/W RAM Separate I/O 2-379
CY7B193 262,144 x 1 Static R/W RAM 2-386
CY7B194 65,536 x 4 Static R/W RAM 2-393
CY7B195 $65,536 \times 4$ Static R/W RAM with Output Enable 2-393
CY7B196 $65,536 \times 4$ Static R/W RAM with Output Enable 2-393
CY7C194 65,536 x 4 Static R/W RAM 2-401
CY7C195 $65,536 \times 4$ Static R/W RAM with Output Enable 2-401
CY7C196 $65,536 \times 4$ Static R/W RAM with Output Enable 2-401
CY7B197 262,144 x 1 Static R/W RAM 2-409
CY7C197 $262,144 \times 1$ Static R/W RAM 2-415
CY7B198 $32,768 \times 8$ Static R/W RAM 2-422
CY7B199 $32,768 \times 8$ Static R/W RAM 2-422
CY7C198 $32,768 \times 8$ Static R/W RAM 2-429
CY7C199 $32,768 \times 8$ Static R/W RAM 2-429
CY74S189 16×4 Static R/W RAM 2-437
CY27LS03 16×4 Static R/W RAM 2-437

Static RAMs (Random Access Memory) (continued)

Page Number

Device Number

CY27S03
CY27S07
CY93422A
CY93L 422 A
CY93422
CY93L422
CYM1240
CYM1420
CYM1422
CYM1423
CYM1441
CYM1460
CYM1461
CYM1464
CYM1465
CYM1466
CYM1471
CYM1481
CYM1540
CYM1560
CYM1610
CYM1611
CYM1620
CYM1621
CYM1622
CYM1624
CYM1641
CYM1720
CYM1821
CYM1822
CYM1828
CYM1830
CYM1831
CYM1832
CYM1838
CYM1840
CYM1841
CYM1910
CYM1911
CY7M194
CY7M199

Description

16×4 Static R/W RAM . 2-437
16×4 Static R/W RAM . 2-437
256×4 Static R/W RAM . 2-443
256×4 Static R/W RAM . 2-443
256×4 Static R/W RAM . 2-443
256 x 4 Static R/W RAM . 2-443
256K x 4 Static RAM Module . 2-449
128K x 8 Static RAM Module . 2-450
128K x 8 Static RAM Module . 2-451
128K x 8 Static RAM Module . 2-452
256K x 8 Static RAM Module . 2-453
512K x 8 Static RAM Module . 2-454
512K x 8 Static RAM Module . 2-455
512K x 8 Static RAM Module . 2-456
$512 \mathrm{~K} \times 8$ Static RAM Module . 2-457
512K x 8 Static RAM Module . 2-458
1024K x 8 Static RAM Module . 2-459
2048K x 8 Static RAM Module . 2-459
256K x 9 Buffered Static RAM Module with Separate I/O 2-460
1024K x 9 Buffered Static RAM Module with Separate I/O . 2-461
$16 \mathrm{~K} \times 16$ Static RAM Module . 2-462
$16 \mathrm{~K} \times 16$ Static RAM Module . 2-463
64K x 16 Static RAM Module . 2-464
64K x 16 Static RAM Module . 2-465
64K x 16 Static RAM Module . 2-466
$64 \mathrm{~K} \times 16$ Static RAM Module . 2-467
256K x 16 Static RAM Module . 2-468
32K x 24 Static RAM Module . 2-469
$16 \mathrm{~K} \times 32$ Static RAM Module $2-470$
$16 \mathrm{~K} \times 32$ Static RAM Module with Separate I/O . 2-471
32K x 32 Static RAM Module . 2-472
$64 \mathrm{~K} \times 32$ Static RAM Module . 2-473
$64 \mathrm{~K} \times 32$ Static RAM Module . 2-474
$64 \mathrm{~K} \times 32$ Static RAM Module . 2-475
128K x 32 Static RAM Module . 2-476
256K X 32 Static RAM Module . 2-477
$256 \mathrm{~K} \times 32$ Static RAM Module . 2-478
16K x 68 Static RAM Module . 2-479
16K x 68 Static RAM Module . 2-480
64K x 4 Static RAM Module . 2-481
$32 \mathrm{~K} x 8$ Static RAM Module . 2-482

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
- 35 ns
- Low active power
- 690 mW (commercial)
- 770 mW (military)
- Low standby power
- 140 mW
- TTL-compatible imputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY2147 is a high-performance CMOS static RAM organized as 4096 by 1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{C E}$) and three-state drivers. The CY2147 has an automatic power-down feature, reducing the power consumption by 80% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A_{0} through A_{11}).

Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}})$ LOW while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data output (DO) pin.
The output pin stays in high-impedance state when chip enable ($\overline{\mathrm{CE}}$) is HIGH or write enable ($\overline{\mathrm{WE}}$) is LOW.

Pin Configuration

2147-2

Selection Guide (For higher performance and lower power, refer to CY7C147 data sheet.)

		$\mathbf{2 1 4 7 - 3 5}$	$\mathbf{2 1 4 7 - 4 5}$	$\mathbf{2 1 4 7 - 5 5}$
Maximum Access Time (ns)		35	45	55
Maximum Operating Current (mA)	Commerical	125	125	125
	Military		140	140
Maximum Standby Current (mA)	Commerical	25	25	25

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Ambient Temperature with Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Current	$>200 \mathrm{~mA}$
Supply Voltage to Ground	-0.5 V to +7.0 V	Operating Range	

DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage . -3.0 V to +7.0 V
Output Current into Outputs (Low) 20 mA

Range	Ambient Temperature	\mathbf{V}_{CC}
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		2147		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$			0.4	V
V_{IH}	Input HIGH Voltage			2.0	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{cC}}, \\ & \text { Output Disabled } \end{aligned}$		-50	+50	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350	mA
I_{CC}	$\mathrm{V}_{\text {cc }}$ Operating Supply Current	$\mathrm{V}_{\mathrm{Cc}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Com'l		125	mA
			Mil		140	
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current ${ }^{[4]}$	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}$	Com'l		25	mA
			Mil		25	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Duration of the short circuit should not exceed 30 seconds.
4. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

Equivalent to: THÉVENIN EQUIVALENT

(b) 1.90 V

CY2147

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	2147-35		2147-45		2147-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		35		45		55	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	5		5		5		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		30		30		30	ns
t_{Pu}	$\overline{\text { CE LOW to Power-Up }}$	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to Power-Down		20		20		20	ns
WRITE CYCLE ${ }^{[9]}$								
t_{wc}	Write Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {sce }}$	$\overline{\mathrm{CE}}$ LOW to Write End	35		45		45		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	35		45		45		ns
t_{HA}	Address Hold from Write End	0		0		10		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0	,	0		ns
$t_{\text {Pwe }}$	$\overline{\text { WE Pulse Width }}$	20		25	.	25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	20		25		25		ns
t_{HD}	Data Hold from Write End	10		10		10		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[7]}$		20		25		25	ns
t Lzwe	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7,8]}$	0		0		0		ns

Notes:
6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for all devices.
8. $t_{\text {HZCE }}$ and $t_{\text {HZWE }}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[9]}$

Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{\text {[9, 13] }}$

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY2147-35PC	P3	Commercial
	CY2147-35DC	D4	
45	CY2147-45PC	P3	Commercial
	CY2147-45DC	D4	
	CY2147-45DMB	D4	Military
	CY2147-55PC	P3	Commercial
	CY2147-55DC	D4	
	CY2147-55DMB	D4	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00023-B

Features

- Automated power-down when deselected (2148)
- CMOS for optimum speed/power
- Low power
- 660 mW (commercial)
- 770 mW (military)
- 5 -volt power supply $\pm 10 \%$ tolerance both commercial and military
- TTL-compatible inputs and outputs

Functional Description

The CY2148 and CY2149 are high-performance CMOS static RAMs organized as 1024 by 4 bits. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and three-state outputs. The CY2148 and CY2149 are identical except that the CY2148 includes an automatic ($\overline{\mathrm{CS}}$) power-down feature. The CY2148 remains in a low-power mode as long as the device remains deselected, i.e., ($\overline{\mathrm{CS}}$) is HIGH, thus reducing the average power requirements of the device. The chip select (CS) of the CY2149 does not affect the power dissipation of the device.
An active LOW write enable signal ($\overline{\mathrm{WE}})$ controls the writing/reading operation of the memory. When the chip select $(\overline{\mathrm{CS}})$
and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW, data on the four data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location addressed by the address present on the address pins (A_{0} through A_{9}).
Reading the device is accomplished by selecting the device, ($\overline{\mathrm{CS}}$) active LOW, while (WE) remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins (A_{0} through A_{9}) is present on the four data input/output pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\mathrm{I} / \mathrm{O}_{3}$).
The input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) remain in a high-impedance state unless the chip is selected and write enable ($\overline{\mathrm{WE}}$) is HIGH.

Logic Block Diagram

Pin Configuration

2148-2

Selection Guide (For higher performance and lower power refer to the CY7C148/9 data sheet)

			$\mathbf{2 1 4 8 - 3 5}$ $\mathbf{2 1 4 9 - 3 5}$	21L48-35 21L49-35	$\mathbf{2 1 4 8 - 4 5}$ $\mathbf{2 1 4 9 - 4 5}$	21L48-45 21L49-45	2148-55 2149-55
21L48-55							
Maximum Access Time (ns)	35	35	45	45	55	55	
Maximum Operating Current (mA)	Commercial	140	120	140	120	140	120
	Military			140		140	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 18 to Pin 9) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V

Output Current into Outputs (Low)
20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{aligned} & 2148 \\ & 2149 \end{aligned}$		$\begin{aligned} & \text { 21L48 } \\ & \text { 21LA9 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
I_{OH}	Output HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$		2.4		2.4		mA
$\mathrm{I}_{\text {OL }}$	Output LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	mA
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	6.0	2.0	6.0	V
V_{IL}	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Load Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{OH}},$ Output Disabled	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	- 50	$+50$	- 50	$+50$	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\mathrm{IL}} \\ & \text { Output Open } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		140		120	mA
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		140			
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} \overline{\mathrm{CS}} \leq \mathrm{V}_{\mathrm{IL}} \\ & (2148 \text { only }) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		30		20	mA
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		30			
I_{PO}	Peak Power-On Current ${ }^{[3]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\mathrm{IL}} \\ & (2148 \text { only }) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		50		30	mA
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		50			
I_{OS}	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{Cc}}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		± 275		± 275	mA
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		± 350			

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$		8
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	pF	

Notes

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power up. Otherwise, current will exceed values give (CY2148 only).

AC Test Loads and Waveforms

4. For test purposes, not more than 1 output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT O—O 1.73 V

Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	$\begin{aligned} & 2148-35 \\ & 2149-35 \end{aligned}$		$\begin{aligned} & 2148-45 \\ & 2149-45 \end{aligned}$		$\begin{aligned} & 2148-55 \\ & 2149-55 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Address Valid to Address Do Not Care Time (Read Cycle Time)	35		45		55		ns
t_{AA}	Address Valid to Data Out Valid Delay (Address Access Time)		35		45		55	ns
	Chip Select LOW to Data Out Valid (CY2148 only)		35		45		55	ns
$\mathrm{taCs} 2^{[7]}$			45		55		65	ns
$\mathrm{t}_{\text {ACS }}$	Chip Select LOW to Data Out Valid (CY2149 only)		15		20		25	ns
$\mathrm{t}_{\mathrm{Lz}}{ }^{[8]}$	Chip Select LOW to Data Out Valid	10		10		10		ns
		5		5		5		
$\mathrm{t}_{\mathrm{Hz}}{ }^{[8]}$	Chp Select HIGH to Data Out Off	0	20	0	20	0	20	ns
t_{OH}	Address Unknown to Data Out Unknown Time	0		5		5		ns
t_{PD}	Chip Select HIGH to Power-Down Delay 2148		30		30		30	ns
t_{PU}	Chip Select LOW to Power-Up Delay 2149	0		0		0		ns
WRITE CYCLE								
t_{wc}	Address Valid to Address Do Not Care (Write Cycle Time)	35		45		55		ns
$\mathrm{twp}^{[9]}$	Write Enable LOW to Write Enable HIGH	30		35		40		ns
t_{WR}	Address Hold from Write End	5		5		5		ns
$\mathrm{twz}^{[8]}$	Write Enable LOW to Output in High Z	0	10	0	15	0	20	ns
t_{DW}	Data-In Valid to Write Enable HIGH	20		20		20		ns
t_{DH}	Data Hold Time	0		0		0		ns
$\mathrm{t}_{\text {AS }}$	Address Valid to Write Enable LOW	0		0		0		ns
$\mathrm{t}_{\mathrm{cw}}{ }^{[9]}$	Chip Select LOW to Write Enable HIGH	30		40		50		ns
$\mathrm{t}_{\text {ow }}{ }^{[8]}$	Write Enable HIGH to Output in Low Z	0		0		0		ns
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	30		35		50		ns

Notes:
6. Chip deselected greater than 55 ns prior to selection.
7. Chip deselected less than 55 ns prior to selection.
8. At any given temperature and voltage condition, $t_{H Z}$ is less than $t_{L Z}$ for all devices. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage with specified loading in part (b) of AC Test Loads.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. ${ }^{[10,11]}$

Read Cycle No. $2^{[10,12]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled)

Notes:

10. WE is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
13. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[13]}$

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
33	CY2148-35PC	P3	Commercial
	CY2148-35DC	D4	
45	CY2148-45PC	P3	Commercial
	CY2148-45DC	D4	
	CY2148-45DMB	D4	Military
55	CY2148-55PC	P3	Commercial
	CY2148-55DC	D4	
	CY2148-55DMB	D4	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY2149-35PC	P3	Commercial
	CY2149-35DC	D4	
45	CY2149-45PC	P3	Commercial
	CY2149-45DC	D4	
	CY2149-45DMB	D4	Military
55	CY2149-55PC	P3	Commercial
	CY2148-55DC	D4	
	CY2148-55DMB	D4	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY21L48-35PC	P 3	Commercial
	CY21L48-35DC	D 4	
45	CY21L48-45PC	P 3	Commercial
	CY21L48-45DC	D 4	
55	CY21L48-55PC	P3	Commercial
	CY21L48-20DC	D 4	

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY21L49-35PC	P3	Commercial
	CY21L49-35DC	D4	
45	CY21L49-45PC	P3	Commercial
	CY21L49-45DC	D4	
55	CY21L49-55PC	P3	Commercial
	CY21L49-55DC	D4	

MILITARY SPECIFICATIONS Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
I_{OH}	$1,2,3$
I_{OL}	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[14]}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}{ }^{[14]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 2}{ }^{[14]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{Acs}}{ }^{[15]}$	$7,8,9,10,11$
t_{OH}	$7,8,9,10,11$
WRITE CYCLE $^{\|c\|}$	
t_{WC}	$7,8,9,10,11$
t_{WP}	$7,8,9,10,11$
t_{WR}	$7,8,9,10,11$
t_{DW}	$7,8,9,10,11$
t_{DH}	$7,8,9,10,11$
t_{As}	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$

Notes:
14. CY2148 only.
15. CY2149 only.

Document \#: 38-00024-B

CY6116

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
- 35 ns
- Low active power
- 660 mW
- Low standby power
$-110 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY6116 is a high-performance CMOS Static RAM organized as 2048 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}})$ and active LOW output enable ($\overline{\mathrm{OE}}$) and three-state drivers. The CY6116 has an automatic power-down feature, reducing the power consumption by 83% when deselected.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip enable ($\overline{\mathrm{CE}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW, data on the eight data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the
memory location addressed by the address present on the address pins (A_{0} through A_{10}). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ active LOW, while $\overline{\mathrm{WE}}$ remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.
The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.
The CY6116 utilizes a die coat to insure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide

		CY6116-35	CY6116-45	CY6116-55
Maximum Access Time (ns)		35	45	55
Maximum Standby Current (mA)	Commercial	120	120	120
	Military	130	130	130
Maximum Standby Current (mA)	Commercial	20	20	20
	Military	20	20	20

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $\ldots \ldots \ldots \ldots \ldots \ldots \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .3 .0 \mathrm{~V}$ to +7.0 V
Output Current into Outputs (Low) $\ldots \ldots \ldots \ldots \ldots \ldots .20 \mathrm{~mA}$

Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		CY6116		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{cc}}$ Output Disabled			+10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300	mA
I_{CC}	V_{cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		120	mA
			Mil		130	
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}} \end{aligned}$	Com'l		20	mA
			Mil		20	

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT O__ } 167 \Omega
$$

3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[2,5]}$

Parameters	Description	CY6116-35		CY6116-45		CY6116-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
toha	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\overline{C E}}$ LOW to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		20		25	ns
$\mathfrak{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[6]}$		15		15		20	ns
t LZCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	5		5		5		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\overline{C E}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		15		20		20	ns
$t_{\text {Pu }}$	$\overline{\overline{C E}}$ LOW to Power-Up	0		0		0		ns
t_{PD}	$\overline{\text { CE }}$ HIGH to Power-Down		20		25		25	ns
WRITE CYCLE ${ }^{[8]}$								
t_{wc}	Write Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	30		40		40		ns
$t_{\text {AW }}$	Address Set-Up to Write End	30		40		40		ns
$t_{\text {HA }}$	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		25		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\text { WE }}$ LOW to High $\mathbf{Z}^{[6]}$		15		15		20	ns
$\mathrm{t}_{\text {Lzwe }}$	WE HIGH to Low Z	0		0		0		ns

Notes:

5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. $t_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, $\mathbf{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. $\overline{W E}$ is HIGH for read cycle.
10. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
12. Data I/O pins enter high-impedance state, as shown, when $\overline{\mathrm{OE}}$ is held LOW during write.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

Read Cycle No. $2^{[9,11]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) $)^{[8,12]}$

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) $)^{[8,12,13]}$

6116-10

Typical DC and AC Characteristics

OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

Typical DC and AC Characteristics (continued)

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY6116-35PC	P11	Commercial
	CY6116-35DC	D12	
	CY6116-35LC	L64	
	CY6116-35DMB	D12	Military
	CY6116-35LMB	L64	
45	CY6116-45PC	P11	Commercial
	CY6116-45DC	D12	
	CY6116-45LC	L64	
	CY6116-45DMB	D12	Military
	CY6116-45LMB	L64	
55	CY6116-55PC	P11	Commercial
	CY6116-55DC	D12	
	CY6116-55LC	L64	
	CY6116-55DMB	D12	Military
	CY6116-55LMB	L64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	$7,8,9,10,11$
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

[^4]
SEMICONDUCTOR

2048 x 8 Static R/W RAM

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-20 \mathrm{~ns}$
- Low active power
- 550 mW
- Low standby power
$-110 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY6116A and CY6117A are high-performance CMOS static RAMs organized as 2048 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable $(\overline{\mathrm{CE}})$ and active LOW output enable $(\overline{\mathrm{OE}})$, and three-state drivers. The CY6116A and CY6117A have an automatic power-down feature, reducing the power consumption by 83% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs are both LOW. Data on the I / O pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{7}\right)$ is written into the memory location specified on the address pins (A_{0} thorugh A_{10}).

Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and output enable ($\overline{\mathrm{OE} \text {) }}$ LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memeory location specified on the address pins will appear on the I/O pins.
The I/O pins remain in high-impedance state when chip enable ($\overline{\mathrm{CE}}$) is HIGH or write enable ($\overline{\mathrm{WE}}$) is LOW.
The CY6116A and CY6117A utilize a die coat to insure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide

		$\begin{aligned} & \hline 6116 \mathrm{~A}-20 \\ & 6117 \mathrm{~A}-20 \end{aligned}$	$\begin{aligned} & 6116 \mathrm{~A}-25 \\ & 6117 \mathrm{~A}-25 \end{aligned}$	$\begin{aligned} & 6116 \mathrm{~A}-35 \\ & 617 \mathrm{~A}-35 \end{aligned}$	$\begin{aligned} & \text { 6116A-45 } \\ & \text { 6117A-45 } \end{aligned}$	$\begin{aligned} & \text { 6116A-55 } \\ & 6117 \mathrm{~A}-55 \end{aligned}$
Maximum Access Time (ns)		20	25	35	45	55
Maximum Operating Current (mA)	Commercial	100	100	100	100	80
	Military		125	100	100	100
Maximum Standby Current (mA)	Commercial	40/20	20	20	20	20
	Military		40	20	20	20

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots{ }^{\circ} 5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12)	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	20 mA

Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current................................... $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions			$\begin{aligned} & \text { 6116A-20 } \\ & 6117 \mathrm{~A}-20 \end{aligned}$		$\begin{aligned} & \text { 6116A-25, 35, } 45 \\ & \text { 6117A-25, 35, } 45 \end{aligned}$		$\begin{aligned} & \text { 6116A-55 } \\ & \text { 6117A-55 } \end{aligned}$		Units
					Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$			2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage				2.2	V_{cc}	2.2	V_{CC}	2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ${ }^{\text {[3] }}$				-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{Cc}}$			-10	+10	-10	+10	-10	+ 10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{cc}}, \\ & \text { Output Disabled } \end{aligned}$			-10	+10	-10	+10	-10	+ 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$				-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{f}=\mathrm{f}_{\text {MAX }}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l			100		100		80	mA
			Mil	25				125		100	
				35, 45				100			
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current - TTL Inputs	$\begin{aligned} & \text { Max. } V_{C C} \\ & \overline{C E}>V_{I H} \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'l			40		20		20	mA
			Mil	25				40		20	
				35, 45, 55				20			
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current - CMOS Inputs	$\begin{aligned} & \mathrm{Max} . \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \\ & \mathrm{f}=0 \end{aligned}$	Com'			20		20		20	mA
			Mil					20		20	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{CO}}=5.0 \mathrm{~V}$		10	pF	

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\mathrm{V}_{\mathrm{IL}(\min .)}=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT OUTPUT Q
Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	6116A-20		6116A-25		6116A-35		6116A-45		6116A-55		Units
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	20		25		35		45		55		ns
t_{AA}	Address to Data Valid		20		25		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	5		5		5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\overline{C E}}$ LOW to Data Valid		20		25		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		12		15		20		25	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\text { OE LOW to Low Z }}$	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HzOE}}$	$\overline{\text { OE }}$ HIGH to High $\mathrm{Z}^{[7]}$		8		10		12		15		20	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\text { CE }}$ HIGH to High Z ${ }^{[7,7]}$		8		10		15		15		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0	.	0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		20		20		20		25		25	ns

WRITE CYCLE ${ }^{[9]}$

t_{WC}	Write Cycle Time	20		20		25		40		50		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE LOW to Write End }}$	15		20		25		30		40		ns
t_{AW}	Address Set-Up to Write End	15		20		25		30		40		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	15		15		20		20		25		ns
t_{SD}	Data Set-Up to Write End	10		10		15		15		25		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\mathrm{HZWE}}$	$\overline{\text { WE }}$ LOW to High Z		7		7		10		15		20	ns
$\mathrm{t}_{\mathrm{LZWE}}$	$\overline{\mathrm{WE}}$ HIGH to Low Z	5		5		5		5		5		ns

Notes:
6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than ${ }^{t_{\text {LZCE }}}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input set up and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. Data I/O pins enter high-impedance state, as shown, when $\overline{\mathrm{OE}}$ is held LOW during write.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. ${ }^{[10,11]}$

6116A-7

Read Cycle No. $2^{[10,12]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[9,13]}$

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[9,13,14]}$

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT
vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME
vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

Typical DC and AC Characteristics (continued)

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY6116A-20PC	P11	Commercial
	CY6116A-20DC	D12	
25	CY6116A-25PC	P11	Commercial
	CY6116A-25DC	D12	
	CY6116A-25LC	L64	
	CY6116A-25DMB	D12	Military
	CY6116A-25LMB	L64	
35	CY6116A-35PC	P11	Commercial
	CY6116A-35DC	D12	
	CY6116A-35LC	L64	
	CY6116A-35DMB	D12	Military
	CY6116A-35LMB	L64	
45	CY6116A-45PC	P11	Commercial
	CY6116A-45DC	D12	
	CY6116A-45LC	L64	
	CY6116A-45DMB	D12	Military
	CY6116A-45LMB	L64	
55	CY6116A-55PC	P11	Commercial
	CY6116A-55DC	D12	
	CY6116A-55LC	L64	
	CY6116A-55DMB	D12	Military
	CY6116A-55LMB	L64	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY6117A-25LMB	L55	Military
35	CY6117A-35LMB	L55	Military
45	CY6117A-45LMB	L55	Military
55	CY6117A-55LMB	L55	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	$7,8,9,10,11$
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00105-A

262,144 x 4 Static R/W RAM with Separate I/O

Features

- High speed
$-t_{A A}=25 \mathrm{~ns}$
- Transparent write (7C101)
- CMOS for optimum speed/power
- Low active power
$-715 \mathrm{~mW}$
- Low standby power
- $\mathbf{1 6 5} \mathrm{mW}$
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7C101 and CY7C102 are high-performance CMOS static RAMs organized as $262,144 \times 4$ bits with separate I/O. Easy memory expansion is provided by active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. They have an automatic powerdown feature, reducing the power consumption by more than 70% when deselected.
Writing to the device is accomplished by taking both chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs LOW. Data on the four input pins (I_{0} through I_{3}) is written into the memory location specified on the address pins (A_{0} through A_{17}).

Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW while write enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four data output pins $\left(\mathrm{O}_{0}\right.$ through $\left.\mathrm{O}_{3}\right)$.
The data output pins on the CY7C101 and the CY7C102 are placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}} \mathrm{HIGH}$). The CY7C102's outputs are also placed in a high-impedance state during a write operation ($\overline{\mathrm{CE}}$ and WE LOW). In a write operation on the CY7C101, the output pins will track the inputs after a specified delay.
The CY7C101 and 7C102 are available in 32-pin leadless chip carriers and standard 400 -mil-wide cerDIPs and SOJs.

Logic Block Diagram

Pin Configurations

Selection Guide

		$\begin{aligned} & \hline \text { 7C101-25 } \\ & 7 \mathrm{C} 102-25 \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{C} 101-35 \\ & \text { 7C102-35 } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{C} 101-45 \\ & 7 \mathrm{C} 102-45 \end{aligned}$
Maximum Access Time (ns)		25	35	45
Maximum Operating Current (mA)	Commercial	130	130	130
	Military		140	140
Maximum Standby Current (mA)	Commercial	30	30	30
	Military		35	35

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$\ldots \ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]} .-0.5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs
in High Z State ${ }^{11}$ \qquad -0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$ \qquad -0.5 V to +7.0 V
Current into Outputs (Low) 20 mA

Static Discharge Voltage >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current.............................. $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature ${ }^{[2]}$	V $_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical CharacteristicsOver the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		12
		pF		

Notes:

1. $V_{\mathrm{IL}(\min))}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

C101-4
Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	$\begin{aligned} & \hline 7 \mathrm{C} 101-25 \\ & \text { 7C102-25 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C101-35 } \\ & \text { 7C102-35 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C101-45 } \\ & \text { 7C102-45 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\text { CE }}$ LOW to Low $\mathrm{Z}^{[7]}$	5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathbf{Z}^{[7,8]}$		10		15		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		ns
t_{PD}	$\overline{\text { CE HIGH to Power-Down }}$		25		35		45	ns
WRITE CYCLE ${ }^{[9]}$								
t_{wc}	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	20		25		30		ns
t_{AW}	Address Set-Up to Write End	20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		25		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	0		0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	5		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		15		20		25	ns
$\mathrm{t}_{\text {DWE }}$	WE LOW to Data Valid (7C101)		20		25		30	ns
$\mathrm{t}_{\text {DCE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid (7C101)		25		35		45	ns
$\mathrm{t}_{\mathrm{ADV}}$	Data Valid to Output Valid (7C101)		20		25		30	ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HzCE}}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
8. t_{HZCE}, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{C E}$ and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. ${ }^{[10,11]}$

Read Cycle No. $2^{[11,12]}$

Write Cycle No. 1 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[9,13]}$

Notes:

10. Device is continuously selected. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state (7 C 102 only).

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[9]}$

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\mathbf{O}_{\mathbf{0}}-\mathbf{O}_{\mathbf{3}}$	Mode	Power
\mathbf{H}	X	High Z	Power-Down	Standby ($\mathrm{I}_{\mathbf{S B}}$)
L	H	Data Out	Read	Active (I_{CC})
L	L	High Z	7C102: StandardWrite	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	Input Tracking	7C101: Transparent Write ${ }^{[14]}$	Active (ICC)

Notes:

14. Outputs track inputs after specified delay.

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C101-25VC	V33	Commercial
	CY7C101-25DC	D44	
	CY7C101-25LC	L55	
35	CY7C101-35VC	V33	Commercial
	CY7C101-35DC	D44	
	CY7C101-35LC	L55	
	CY7C101-35DMB	D44	Military
	CY7C101-35LMB	L55	
45	CY7C101-45VC	V33	Commercial
	CY7C101-45DC	D44	
	CY7C101-45LC	L55	
	CY7C101-45DMB	D44	Military
	CY7C101-45LMB	L55	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C102-25VC	V33	Commercial
	CY7C102-25DC	D44	
	CY7C102-25LC	L55	
35	CY7C102-35VC	V33	Commercial
	CY7C102-35DC	D44	
	CY7C102-35LC	L55	
	CY7C102-35DMB	D44	Military
	CY7C102-35LMB	L55	
45	CY7C102-45VC	V33	
	CY7C102-45DC	D44	
	CY7C102-45LC	L55	
	CY7C102-45DMB	D44	Military
	CY7C102-45LMB	L55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DWE}}{ }^{[15]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}{ }^{[15]}$	$7,8,9,10,11$

Note:

15. 7C101 only.

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=\mathbf{2 5} \mathrm{ns}$
- CMOS for optimum speed/power
- Low active power
- 715 mW
- Low standby power
- 165 mW
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7C106 is a high-performance CMOS static RAM organized as 262,144 words by 4 bits. Easy memory expansion is provided by an active LOW chip enable (CE), an active LOW output enable ($\overline{\mathrm{OE}}$), and three-state drivers. The device has an automatic power-down feature that reduces power consumption by more than 70% when deselected.
Writing to the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs LOW. Data on the four I/O pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is then written into the location specified on the address pins (A_{0} through A_{17}).

Reading from the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and output enable ($\overline{\mathrm{OE}}$) LOW while forcing write enable ($\overline{\mathrm{WE} \text {) }}$ HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the four I/O pins.
The four input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} /$ O_{3}) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), orduring a write operation ($\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ LOW).
The CY7C106 is available in 32-pin leadless chip carriers and standard 28 -pin, 400 -milwide cerDIPs and SOJs.

Pin Configurations

Selection Guide

		$\mathbf{7 C 1 0 6 - 2 5}$	7 C106-35	7C106-45
Maximum Access Time (ns)			25	35
Maximum Operating Current (mA)	Commercial	130	130	45
	Military		140	130
Maximum Standby Current (mA)	Commercial	30	30	30
	Military		35	35

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]}$. -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$ -0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$ -0.5 V to +7.0 V
Current into Outputs (LOW)
20 mA

Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	$>200 \mathrm{~mA}$

Latch-Up Current .
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature ${ }^{[2]}$	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{Out}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	12	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\text { min. })}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

C106-5

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	7C106-25		7C106-35		7C106-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{trc}^{\text {c }}$	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		25		35		45	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		15		20	ns
tizoe	$\overline{\text { OE }}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {hzoe }}$	$\overline{\text { OE HIGH to High } \mathrm{Z}^{[7]}}$		10		15		20	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HzCE}}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[7,8]}$		10		15		20	ns
tpu	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE }}$ HIGH to Power-Down		25		35		45	ns
WRITE CYCLE ${ }^{[9,10]}$								
t_{wc}	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	20		25		30		ns
$t_{\text {Aw }}$	Address Set-Up to Write End	20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low ${ }^{[7]}$	5		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		15		20		25	ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} /_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. $t_{\text {HZOE }}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HzCE}}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ and WE LOW. $\overline{\text { CE }}$ and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
10. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}} \mathrm{LOW}$) is the sum of $\mathrm{t}_{\mathrm{HZWE}}$ and t_{SD}.

Switching Waveforms

Read Cycle No. $1^{[11,12]}$

Read Cycle No. $2\left(\overline{\mathrm{OE}}\right.$ Controlled) ${ }^{[11,13]}$

Write Cycle No. 1 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[14,15]}$

Notes:

11. Device is continuously selected. $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. $\overline{W E}$ is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state.
15. Data I/O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

Switching Waveforms

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[14,15]}$

Write Cycle No. 3 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[10,15]}$

Truth Table

$\stackrel{\text { CE }}{ }$	$\overline{\mathbf{O E}}$	$\overline{\text { WE }}$	I/ $/ \mathbf{O}_{\mathbf{0}}-\mathrm{I} / \mathrm{O}_{\mathbf{3}}$	Mode	Power
H	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	L	H	Data Out	Read	Active (I_{CC})
L	X	L	Data In	Write	Active (I_{CC})
L	H	H	High Z	Selected, Outputs Disabled	Active ($\mathrm{ICC}^{\text {) }}$

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C106-25VC	V33	Commercial
	CY7C106-25DC	D44	
	CY7C106-25LC	L55	
	CY7C106-35VC	V33	Commercial
	CY7C106-35DC	D44	
	CY7C106-35DMB	D44	Military
	CY7C106-35LMB	L55	
45	CY7C106-45VC	V33	Commercial
	CY7C106-45DC	D44	
	CY7C106-45DMB	D44	Military
	CY7C106-45LMB	L55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{Hi}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	$7,8,9,10,11$
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00149

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=25 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
$-715 \mathrm{~mW}$
- Low standby power
$-165 \mathrm{~mW}$
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7C107 is a high-performance CMOS static RAM organized as $1,048,576$ words by 1 bit. Easy memory expansion is provided by an active LOW chip enable $(\overline{\mathrm{CE}})$ and three-state drivers. The device has an automatic power-down feature that reduces power consumption by more than 70% when deselected.
Writing to the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs LOW. Data on the input pin ($\mathrm{D}_{\text {IN }}$) is written into the memory location specified on the address pins (A_{0} through A_{19}).

Reading from the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the data output ($\mathrm{D}_{\mathrm{OUT}}$) pin.
The output pin ($\mathrm{D}_{\mathrm{OUT}}$) is placed in a high-impedance state when the device is deselected (CE HIGH) or during a write operation (CE and WE LOW).
The CY7C107 is available in 32 -pin leadless chip carriers and standard 400 -mil-wide cerDIPs and SOJs.

Logic Block Diagram

Pin Configurations

Selection Guide

		7C107-25	7C107-35	7C107-45
Maximum Access Time (ns)		25	35	45
Maximum Operating Current (mA)	Commercial	130	130	130
	Military		140	140
Maximum Standby Current (mA)	Commercial	30	30	30
	Military		35	35

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad
Supply Voltage on VCC Relative to
DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$ \qquad -0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]} \ldots .5 \mathrm{~V}$ to +7.0 V
Current into Outputs (Low) 20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current. $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature ${ }^{[2]}$	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics ${ }^{[3]}$ Over the Operating Range

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	12	pF

Notes:

1. $\mathrm{V}_{\mathrm{lL}(\min)}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(b)

C107-5

Equivalent to: THÉVENIN EQUIVALENT c107-4
(a)

$$
\text { OUTPUT } 0<1.73 \mathrm{~V}
$$

Switching Characteristics ${ }^{[2,6]}$ Over the Operating Range

Parameters	Description	7C107-25		7C107-35		7C107-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
toha	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\text { CE }}$ LOW to Low $\mathrm{Z}^{[7]}$	5		5		5		ns
$\mathrm{t}_{\text {HzCE }}$	CE HIGH to High $\mathrm{Z}^{[7,8]}$		10		15		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE LOW }}$ to Power-Up	0		0		0		ns
t_{PD}	$\overline{\mathrm{CE}}$ HIGH to Power-Down		25		35		45	ns

WRITE CYCLE ${ }^{[9]}$

$\mathrm{t}_{\text {wc }}$	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE LOW }}$ to Write End	20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		30		ns
tsD	Data Set-Up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low ${ }^{[7]}$	5		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		15		20		25	ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
8. $t_{\text {HZCE }}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. ${ }^{[10,11]}$

Read Cycle No. 2 ${ }^{[11,12]}$

Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[13]}$

[^5]13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state.

Switching Waveforms

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[13]}$

Truth Table

$\overline{\mathrm{CE}}$	WE	$\mathrm{D}_{\text {OUT }}$	Mode	Power
H	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	H	Data Out	Read	Active (I_{CC})
L	L	High Z	Write	Active (I_{CC})

SEMEONDUCTOR
Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C107-25VC	V33	Commercial
	CY7C107-25DC	D44	
	CY7C107-25LC	L55	
35	CY7C107-35VC	V33	Commercial
	CY7C107-35DC	D44	
	CY7C107-35LC	L55	
	CY7C107-35DMB	D44	Military
	CY7C107-35LMB	L55	

Speed (ns)	Ordering Code	Package Type	Operating Range
45	CY7C107-45VC	V33	Commercial
	CY7C107-45DC	D44	
	CY7C107-45LC	L55	
	CY7C107-45DMB	D44	Military
	CY7C107-45LMB	L55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Document \#: 38-00150

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7, 8, 9, 10, 11
$t_{\text {AA }}$	7, 8, 9, 10, 11
toha	7, 8, 9, 10, 11
$\mathrm{t}_{\text {ACE }}$	7, 8, 9, 10, 11
WRITE CYCLE	
$t_{\text {wc }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SCE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AW }}$	7, 8, 9, 10, 11
tha	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PWE }}$	7, 8, 9, 10, 11
$t_{\text {SD }}$	7, 8, 9, 10, 11
t_{HD}	7, 8, 9, 10, 11

Features

- High speed
$-t_{A A}=25 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
$-880 \mathrm{~mW}$
- Low standby power
- 275 mW
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\mathbf{C E}}_{1}$, CE_{2}, and $\overline{\mathrm{OE}}$ options

Functional Description

The CY7C108 and CY7C109 are high-performance CMOS static RAMs organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}_{1}$), an active HIGH chip enable $\left(\mathrm{CE}_{2}\right)$, an active LOW output enable ($\left.\overline{\mathrm{OE}}\right)$, and three-state drivers. Both devices have an automatic power-down feature that reduces power consumption by more than 60% when deselected.
Writing to the device is accomplished by taking chip enable one ($\overline{C E}_{1}$) and write enable (WE) inputs LOW and chip enable two $\left(\mathrm{CE}_{2}\right)$ input HIGH. Data on the eight I / O pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is then written into the location specified on the address pins (A_{0} through A_{16}).

Reading from the device is accomplished by taking chip enable one ($\overline{\mathrm{CE}}_{1}$) and output enable (OE) LOW while forcing write enable (WE) and chip enable two $\left(\mathrm{CE}_{2}\right)$ HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I / O pins.
The eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} /$ O_{7}) are placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}}_{1} \mathrm{HIGH}$ or CE_{2} LOW), the outputs are disabled ($\overline{\mathrm{OE}}$ HIGH), or during a write operation (CE_{1} LOW, CE_{2} HIGH, and WE LOW).
The CY7C108 is available in a 32 -pin rectangular leadless chip carrier and standard 600 -mil-wide cerDIPs. The CY7C109 is available in standard 400 -mil-wide cerDIPs, and SOJs.

Pin Configurations

Selection Guide

		$\mathbf{7 C 1 0 8 - 2 5}$ $\mathbf{7 C 1 0 9 - 2 5}$	$\mathbf{7 C 1 0 8 - 3 5}$ $\mathbf{7 C 1 0 9 - 3 5}$	7C108-45 $\mathbf{7 C 1 0 9 - 4 5}$
Maximum Access Time (ns)		25	35	45
Maximum Operating Current (mA)	Commercial	160	160	160
	Military		170	170
Maximum Standby Current (mA)	Commercial	50	50	50
	Military		60	60

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]} .-0.5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$ \qquad -0.5 V to +7.0 V

Current into Outputs (Low) 20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current................................ $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	12	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\min .)}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT OUTPUT 0 - 1.73 V

Switching Characteristics ${ }^{[2,6]}$ Over the Operating Range

Parameters	Description	$\begin{aligned} & \hline 7 \mathrm{C} 108-25 \\ & \text { 7C109-25 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 108-35 \\ & 7 \mathrm{C} 109-35 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C108-45} \\ & \text { 7C109-45 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Data Valid, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		15		20	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low Z }}$	0		0		0		ns
$\mathrm{t}_{\text {HzoE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[7]}$		10		15		20	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Low Z, CE_{2} HIGH to Low $\mathrm{Z}^{[8]}$	5		5		5		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\mathrm{CE}}_{1}$ HIGH to High Z , CE_{2} LOW to High $\mathrm{Z}^{[7,8]}$		10		15		20	ns
$t_{\text {PU }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Power-Up, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1} \mathrm{HIGH}$ to Power-Down, CE_{2} LOW to PowerDown		25		35		45	ns
WRITE CYCLE ${ }^{[9,10]}$								
t_{wc}	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\mathrm{WE}}$ Pulse Width	20		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	5		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		10		15		20	ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. $t_{\text {HZOE }}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}, t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{C E}_{1}$ LOW, $\mathrm{CE}_{2} \mathrm{HIGH}$, and \bar{W} LOW. CE_{1} and WE must be LOW and CE_{2} HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
10. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ controlled, $\overline{O E} L O W$) is the sum of $t_{H Z W E}$ and $t_{S D}$.

Switching Waveforms

Read Cycle No. ${ }^{[11,12]}$

Read Cycle No. $2\left(\overline{\mathrm{OE}}\right.$ Controlled) ${ }^{[11,13]}$

Write Cycle No. $1\left(\overline{\mathbf{C E}}_{1}\right.$ or $\mathbf{C E}_{2}$ Controlled) ${ }^{[14,15]}$

Notes:
11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.
12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}$ transition LOW and CE_{2} transition HIGH.
14. Data I / O is high impedance if $\mathrm{OE}=\mathrm{V}_{\mathrm{IH}}$
15. If $\overline{\mathrm{CE}}_{1}$ goes HIGH or CE_{2} goes LOW simultancously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state.

Switching Waveforms

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[14,13]}$

Write Cycle No. 3 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[10,13]}$

Truth Table

$\overline{\mathrm{CE}}_{1}$	CE_{2}	$\overline{\mathrm{OE}}$	$\overline{\text { WE }}$	$\mathbf{I} / \mathbf{O}_{\mathbf{0}}-\mathbf{I} / \mathbf{O}_{7}$	Mode	Power
H	X	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
X	L	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	H	L	H	Data Out	Read	Active (I_{CC})
L	H	X	L	Data In	Write	Active (I_{CC})
L	H	H	H	High Z	Selected, Outputs Disabled	Active (I_{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C108-25DC	D20	Commercial
	CY7C108-25LC	L55	
35	CY7C108-35DC	D20	Commercial
	CY7C108-35LC	L55	
	CY7C108-35DMB	D20	Military
	CY7C108-35LMB	L55	
45	CY7C108-45DC	D20	
	CY7C108-45LC	L55	
	CY7C108-45DMB	D20	Military
	CY7C108-45LMB	L55	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C109-25VC	V33	Commercial
	CY7C109-25DC	D44	
35	CY7C109-35VC	V33	Commercial
	CY7C109-35DC	D44	
	CY7C109-35DMB	D44	Military
	CY7C109-45VC	V33	Commercial
	CY7C109-45DC	D44	
	CY7C109-45DMB	D44	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

[^6]
Features

- 256×4 static RAM for control store in high-speed computers
- CMOS for optimum speed/power
- High speed
- 15 ns (commercial)
-25 ns (military)
- Low power
-330 mW (commercial)
- 495 mW (military)
- Separate inputs and outputs
- 5-volt power supply $\pm \mathbf{1 0 \%}$ tolerance, both commercial and military
- Capable of withstanding greater than 2001V static discharge
- TTL-compatible inputs and outputs

Functional Description

The CY7C122 is a high-performance CMOS static RAM organized as 256 words by 4 bits. Easy memory expansion is provided by an active LOW chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ input, an active HIGH chip select two $\left(\mathrm{CS}_{2}\right)$ input, and three-state outputs.
An active LOW write enable input ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ and write enable ($\overline{\mathrm{WE}}$) inputs are LOW and the chip select two $\left(\mathrm{CS}_{2}\right)$ input is HIGH, the information on the four data inputs $\left(D_{0}\right.$ to $\left.D_{3}\right)$ is written into the addressed memory word and the output circuitry is preconditioned so that the correct data is present at the outputs when the write cycle is complete. This precondition-
ing operation insures minimum write recovery times by eliminating the "write recovery glitch".
Reading is performed with the chip select one ($\left(\overline{\mathrm{CS}}_{1}\right)$ input is LOW, the chip select two input $\left(\mathrm{CS}_{2}\right)$ and write enable (WE) inputs are HIGH, and the output enable (OE) input is LOW. The information stored in the addressed word is read out on the four non-inverting outputs $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}\right)$.
The outputs of the memory go to an active high-impedance state whenever chip select one $\left(\mathrm{CS}_{1}\right)$ is HIGH, chip select two $\left(\mathrm{CS}_{2}\right)$ is LOW, output enable ($\overline{\mathrm{OE} \text {) is }}$ HIGH , or during the writing operation when write enable ($\overline{\mathrm{WE}}$) is LOW.

Logic Block Diagram

Pin Configurations

SOIC

C122-3
C122-

Selection Guide

		7C122-15	7C122-25	7C122-35
Maximum Access Time (ns)	Commercial	15	25	35
	Military		25	35
Maximum Operating Current (mA)	Commercial	90	60	60
	Military		90	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots . . .65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$ Ambient Temperature with	Static Discharge Voltage >2001V (per MIL-STD-883, Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Cur		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential (Pin 22 to Pin 8) -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State . -0.5 V to +7.0 V	Range	Ambient Temperature	$\mathrm{V}_{\text {cc }}$
DC Input Voltage - 3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current into Outputs (Low)	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
C C OUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

Logic Table ${ }^{[6]}$

Inputs					Outputs	Mode
$\overline{\mathrm{OE}}$	$\overline{\mathrm{CS}}_{1}$	CS_{2}	$\overline{\text { WE }}$	$\mathrm{D}_{0}-\mathrm{D}_{3}$		
X	H	X	X	X	High Z	Not Selected
X	X	L	X	X	High Z	Not Selected
L	L	H	H	X	$\mathrm{O}_{0}-\mathrm{O}_{3}$	Read Stored Data
X	L	H	L	L	High Z	Write "0"
X	L	H	L	H	High Z	Write "1"
H	L	H	H	X	High Z	Output Disabled

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. The CMOS process does not provide a clamp diode. However, the CY7C122 is insensitive to -3 V DC input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
4. For test purposes, not more than 1 output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.
6. $\mathbf{H}=$ HIGH Voltage, $\mathrm{L}=$ LOW Voltage, $\mathrm{X}=$ Don't Care, and High $\mathrm{Z}=$ High-Impedance

AC Test Loads and Waveforms

(a)

(b)

C122-6

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[7.8]}$

Parameters	Description	7C122-15		7C122-25		7C122-35		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	15		25		35		ns
$\mathrm{t}_{\text {Acs }}$	Chip Select Time		8		15		25	ns
$t_{\text {zRCS }}$	Chip Select to High $\mathrm{Z}^{[9]}$		12		20		30	ns
$\mathrm{t}_{\text {AOS }}$	Output Enable Time		8		15		25	ns
$\mathrm{t}_{\text {zros }}$	Output Enable to High $\mathbf{Z}^{[8]}$		12		20		30	ns
t_{AA}	Address Access Time		15		25		35	ns
WRITE CYCLE								
t_{wc}	Write Cycle Time	15		25		35		ns
$\mathrm{t}_{\text {zws }}$	Write Disable to High $\mathrm{Z}^{[8]}$		12		20		30	ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time		12		20		25	ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }{ }^{[6]}}$	11		15		25		ns
$\mathrm{t}_{\text {wsD }}$	Data Set-Up Time Prior to Write	0		5		5		ns
$\mathrm{t}_{\text {whD }}$	Data Hold Time After Write	2		5		5		ns
$\mathrm{t}_{\text {wSA }}$	Address Set-Up Time ${ }^{[6]}$	0		5		10		ns
$\mathrm{t}_{\text {WHA }}$	Address Hold Time	4		5		5		ns
$\mathrm{t}_{\text {wscs }}$	Chip Select Set-Up Time	0		5		5		ns
$\mathrm{t}_{\text {whes }}$	Chip Select Hold Time	2		5		5		ns

Notes:
7. t_{W} measured at $\mathrm{t}_{\mathrm{WSA}}=\min . ; \mathrm{t}_{\mathrm{WSA}}$ measured at $\mathrm{t}_{\mathrm{W}}=\mathrm{min}$.
8. Test conditions assume signal transition times of 5 ns or less for the -15 product and 10 ns or less for the -25 and -35 product. Timing reference levels of 1.5 V .
9. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from 1.5 V level on the input with load as shown in part (b) of AC Test Loads.

Switching Waveforms

Read Cycle ${ }^{[10]}$

Write Cycle ${ }^{[9,11]}$

C122-8

Notes:

10 . Measurements are referenced to 1.5 V unless otherwise stated.
11. The timing diagram represents one solution that results in an optimum cycle time. Timing may be changed in varous applications as long as the worst-case limits are not violated.

SEMICONDUCTOR

Typical DC and AC Characteristics

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A_{0}	AX0	4
$\mathrm{~A}_{1}$	AX1	3
$\mathrm{~A}_{2}$	AX2	2
$\mathrm{~A}_{3}$	AX3	1
$\mathrm{~A}_{4}$	AX4	21
$\mathrm{~A}_{5}$	AY0	5
$\mathrm{~A}_{6}$	AY1	6
$\mathrm{~A}_{7}$	AY2	7

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C122-15PC	P7	Commercial
	CY7C122-15DC	D8	
	CY7C122-15SC	S13	
25	CY7C122-25PC	P7	Commercial
	CY7C122-25DC	D8	
	CY7C122-25SC	S13	
	CY7C122-25LC	L53	
	CY7C122-25DMB	D8	Military
35	CY7C122-35PC	P7	Commercial
	CY7C122-35SC	S13	
	CY7C122-35DC	D8	
	CY7C122-35LC	L53	
	CY7C122-35DMB	D8	Military
	CY7C122-35LMB	I.53	

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OCS}}$	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
t_{WR}	$7,8,9,10,11$
$\mathrm{t}_{\text {PWE }}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{WSD}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{WHD}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{WSA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{WHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{WSCS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{WHCS}}$	$7,8,9,10,11$

[^7]
Features

- 256×4 static RAM for control store in high-speed computers
- CMOS for optimum speed/power
- High speed
- 7 ns (commercial)
- 10 ns (military)
- Low power
-660 mW (commercial)
-825 mW (military)
- Separate inputs and outputs
- 5-volt power supply $\pm 10 \%$ tolerance both commercial and military
- TTI-compatible inputs and outputs
- 24 pins
- 300-mil package

Functional Description

The CY7C123 is a high-performance CMOS static RAM organized as 256 words by 4 bits. Easy memory expansion is provided by an active LOW chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ input, an active HIGH chip select two $\left(\mathrm{CS}_{2}\right)$ input, and three-state outputs.
Writing to the device is accomplished when the chip select one ($\overline{\mathrm{CS}}_{1}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW and the chip select two input is HIGH. Data on the four data inputs (D_{0} through D_{3}) is written into the memory location specified on the address pins (A_{0} through A_{7}). The outputs are preconditioned so that the write data is present at the outputs when the write cycle is complete. This precondition opera-
tion ensures minimum write recovery times by eliminating the "write recovery glitch." Reading the device is accomplished by taking the chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ and output enable ($\overline{\mathrm{OE}})$ inputs LOW, while the write enable ($\overline{\mathrm{WE}}$) and chip select two $\left(\overline{\mathrm{CS}}_{2}\right)$ inputs remain HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four output pins (O_{0} through O_{3}). The output pins remain in high-impedance state when chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ or output enable $(\overline{\mathrm{OE}})$ is HIGH , or write enable ($\overline{\mathrm{WE}})$ or chip select two $\left(\overline{\mathrm{CS}}_{2}\right)$ is LOW.
A die coat is used to insure alpha immunity.

Selection Guide

		7C123-7	7C123-9	7C123-10	7C123-12	7C123-15
Maximum Access Time (ns)	Commercial	7	9		12	
	Military			10	12	15
Maximum Operating Current (mA)	Commercial	120	120		120	
	Military			150	150	150

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Output Current into Outputs (Low) 20 mA		
Ambient Temperature with	Latch-Up Curr		$>200 \mathrm{~mA}$
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
Supply Voltage to Ground Potential ${ }^{\text {a }}$ (Pins 24 and 18 to Pins 7 and 12$)^{[1]}-0.5 \mathrm{~V}$ to +7.0 V	Operating Range		
(Pins 24 and 18 to Pins 7 and 12$)^{[1]} \ldots \ldots . .-0.5 \mathrm{~V}$ to +7.0 V		Ambient	
DC Voltage Applied to Outputs 	Range	Temperature ${ }^{[2]}$	$\mathrm{V}_{\text {cc }}$
min	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
	Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

Logic Table ${ }^{[5]}$

Inputs					Outputs	Mode
$\overline{\mathrm{OE}}$	$\overline{\mathrm{CS}}_{1}$	CS_{2}	$\overline{W E}$	$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{3}$		
X	H	X	X	X	High Z	Not Selected
X	X	L	X	X	High Z	Not Selected
L	L	H	H	X	$\mathrm{O}_{0}-\mathrm{O}_{3}$	Read Stored Data
X	L	H	L	L	High Z	Write " 0 '
X	L	H	L	H	High Z	Write " 1 '
H	L	H	H	X	High Z	Output Disabled

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\mathrm{Min} .)}=-3.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Tested initially and after any design or process changes that may affect these parameters.
5. $\mathbf{H}=$ High Voltage, $\mathrm{L}=$ Low Voltage, $\mathrm{X}=$ Don't Care, and High $\mathrm{Z}=$ High Impedance.

AC Test Loads and Waveforms

(a)

(b)

C123-5

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	7C123-7		7C123-9		7C123-10		7-123-12		7C123-15		Units
		Min.	Max.									
READ CYCLE												
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	7		9		10		12	\cdots	15		ns
t_{AA}	Address to Data Valid		7		9		10		12		15	ns
$\mathrm{t}_{\text {ACS }}$	Chip Select to Data Valid		7		8		8		8		10	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		7		8		8		8		10	ns
$\mathrm{t}_{\mathrm{HzCS}}$	Chip Select to High $\mathbf{Z}^{[6,7]}$		5		6		6		6.5		8	ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathbf{Z}^{[6]}$		5		6		6		6.5		8	ns
$\mathrm{t}_{\text {LzCS }}$	Chip Select to Low $\mathrm{Z}^{[7]}$	2		2		2		2		2		ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	2		2		2		2		2		ns
WRITE CYCLE												
t_{wc}	Write Cycle Time	7		9		10		12		15		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathbf{Z}^{[6]}$		5.5		6		6		7		8	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	2		2		2		2		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	5		6.5		7		8		11		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	5		6		7		8		11		ns
t_{HD}	Data Hold from Write End	1		1		1		1		1		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0.5		1		1		2		2		ns
t_{HA}	Address Hold from Write End	1.5		1.5		2		2		2		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	5		6.5		7		8		11		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	5.5		7.5		8		10		13		ns

Notes:

6. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from 1.5 V level on the input with load shown in part (b) of AC Test Loads.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HzCS}}$ is less than $t_{\text {LzCS }}$ for any given device.

Switching Waveforms

Read Cycle ${ }^{[8,9]}$

Write Cycle ${ }^{[7,8]}$

Notes:
8. Measurements are referenced to 1.5 V unless otherwise stated.
9. Timing diagram represents one solution that results in an optimum cycle time. Timing may be changed in varous applications as long as the worst case limits are not violated.

Typical DC and AC Characteristics

TYPICAL POWER-ON CURRENT
vs. SUPPLY VOLTAGE

TOTAL ACCESS TIME CHANGE
vs. OUTPUT LOADING

NORMALIZED I $C C$ vs. CYCLE TIME

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
7	CY7C123-7PC	P13A	Commercial
	CY7C123-7VC	V13	
	CY7C123-7DC	D14	
	CY7C123-7LC	L53	
9	CY7C123-9PC	P13A	Commercial
	CY7C123-9VC	V13	
	CY7C123-9DC	D14	
	CY7C123-9LC	L53	
10	CY7C123-10DMB	D14	Military
	CY7C123-10LMB	L53	
	CY7C123-10KMB	K73	
12	CY7C123-12PC	P13A	Commercial
	CY7C123-12VC	V13	
	CY7C123-12DC	D14	
	CY7C123-12LC	L53	
	CY7C123-12DMB	D14	Military
	CY7C123-12LMB	L53	
	CY7C123-12KMB	K73	
15	CY7C123-15DMB	D14	Military
	CY7C123-15LMB	L53	
	CY7C123-15KMB	K73	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
\mathbf{t}_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
\mathbf{t}_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{sCS}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$

2048 x 8 Static R/W RAM

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
- 35 ns
- Low active power
- 660 mW (commercial)
- 825 mW (military)
- Low standby power
$-110 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C128 is a high-performance CMOS static RAM organized as 2048 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE), and active LOW output enable ($\overline{\mathrm{OE}}$) and three-state drivers. The CY7C128 has an automatic power-down feature, reducing the power consumption by 83% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs are both LOW. Data on the eight I / O pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the memory location specified on the address pins (A_{0} through A_{10}).

Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and output enable ($\overline{\mathrm{OE} \text {) }}$ LOW while write enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the eight I/O pins. The I/O pins remain in high-impedance state when chip enable $(\overline{\mathrm{CE}})$ or output enable $(\overline{\mathrm{OE}})$ is HIGH or write enable ($\overline{\mathrm{WE}}$) is low. The 7C128 utilizes a die coat to ensure alpha immunity.

Logic Block Diagram

Pin Configurations

C128-2

Selection Guide

		7C128-35	7C128-45	7C128-55
Maximum Access Time (ns)	35	45	55	
Maximum Operating Current (mA) Commercial 120 120 Military 130 Maximum Standby Current (mA) Commercial 20 20 Military		20	20	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . .0 .5 \mathrm{~F}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V

Output Current into Outputs (Low) 20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathbf{f}=1 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

(a)

(b)
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

Equivalent to: THEVENIN EQUIVALENT C128-4
Equivalent to: THEVENIN EQUIVALENT c128-4

SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[2,5]}$

Parameters	Description	7C128-35		7C128-45		7C128-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\overline{C E}}$ LOW to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {Doe }}$	$\overline{\text { OE }}$ LOW to Data Valid		15		20		25	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[6]}$		15		15		20	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\overline{C E}}$ LOW to Low $\mathrm{Z}^{7]}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		15		20		20	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		ns
t_{PD}	$\overline{\text { CE }}$ HIGH to Power-Down		20		25		25	ns
WRITE CYCLE ${ }^{[8]}$								
t_{wc}	Write Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\overline{C E}}$ LOW to Write End	30		40		50		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	30		40		50		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\overline{W E}}$ Pulse Width	20		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6]}$		15		15		20	ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	0		0		0		ns

Notes:

5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. $t_{\text {HZOE }}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, $\mathrm{t}_{\text {HZCE }}$ is less than $t_{\text {LZCE }}$ for any given device.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
12. Data I/O pins enter high-impedance state, as shown, when $\overline{\mathrm{OE}}$ is held LOW during write.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. ${ }^{[9,10]}$

Read Cycle No. $2^{[9,11]}$

Write Cycle No. 1 (产E Controlled) ${ }^{[9,12]}$

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[9,12,13]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY7C128-35PC	P13	Commercial
	CY7C128-35VC	V12	
	CY7C128-35DC	D14	
	CY7C128-35LC	L53	
45	CY7C128-45PC	P13	Commercial
	CY7C128-45VC	V13	
	CY7C128-45DC	D14	
	CY7C128-45LC	L53	
	CY7C128-45DMB	D14	Military
	CY7C128-45LMB	L53	
	CY7C128-45KMB	K73	
55	CY7C128-55PC	P13	Commercial
	CY7C128-55VC	V13	
	CY7C128-55DC	D14	
	CY7C128-55LC	L53	
	CY7C128-55DMB	D14	Military
	CY7C128-55LMB	L53	
	CY7C128-55KMB	K73	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$\mathrm{t}_{\text {RC }}$	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	$7,8,9,10,11$
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00026-C

CY7C128A

CYPRESS SEMICONDUCTOR

2048×8 Static R/W RAM

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-15 \mathrm{~ns}$
- Low active power
- 440 mW (commercial)
- 550 mW (military)
- Low standby power
- 110 mW
- SOJ package
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge
- $V_{\text {III }}$ of 2.2 V

Functional Description

The CY7C128A is a high-performance CMOS static RAM organized as 2048 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable $(\overline{\mathrm{CE}})$, and active LOW output enable $(\overline{\mathrm{OE}})$ and three-state drivers. The CY7C128A has an automatic power-down feature, reducing the power consumption by 83% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW.

Data on the eight I / O pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{7}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{10}).
Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and output enable ($\overline{\mathrm{OE} \text {) }}$ LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the eight I/O pins. The I/O pins remain in high-impedance state when chip enable $(\overline{\mathrm{CE}})$ or output enable $(\overline{\mathrm{OE}})$ is HIGH or write enable (WE) is LOW. The 7C128A utilizes a die coat to insure alpha immunity.

Selection Guide

		7C128A-15	7C128A-20	7C128A-25	7C128A-35	7C128A-45	7C128A-55
Maximum Access Time (ns)	15	20	25	35	45	55	
Maximum Operating Current (mA)	Commercial	120	100	100	100	100	80
	Military		125	125	100	100	100
Maximum Standby Current (mA)	Commercial	$40 / 40$	$40 / 20$	20	20	20	20
	Military		$40 / 20$	40	20	20	20

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 28 to Pin 14) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Output Current into Outputs (Low) 20 mA

Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions			7C128A-15		7C128A-20		$\begin{gathered} \text { 7C128A-25, } \\ 35,45 \end{gathered}$		7C128A-55		Units
					Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$			2.4		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.4		0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage				2.2	V_{Cc}	2.2	V_{Cc}	2.2	V_{CC}	2.2	V_{Cc}	V
V_{IL}	Input LOW Voltage ${ }^{[3]}$				-0.5	0.8	-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$			-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled			-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$				-300		-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l			120		100		100		80	mA
			Mil	25				125		125		125	
				35,45				125		125		125	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \\ & \hline \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH},} \\ & \text { Min. Duty Cycle } \\ & =100 \% \end{aligned}$	Com'l			40		40		20		20	mA
			Mil	25				40		40		20	
				35,45				40		20		20	
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\left\|\begin{array}{l} \text { Max. } V_{\mathrm{CC}}, \\ \overline{C E}_{1} \geq V_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ \text { or } \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V} \end{array}\right\|$	Com'l			40		20		20		20	mA
			Mil					20		20		20	

Notes

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\mathrm{V}_{\mathrm{IL}} \min .=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF	

5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT 0_167
Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	7C128A-15		7C128A-20		7C128A-25		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	15		20		25		ns
t_{AA}	Address to Data Valid		15		20		25	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE }}$ LOW to Data Valid		15		20		25	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		10		12	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low Z }}$	3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE }}$ HIGH to High $\mathrm{Z}^{[7]}$		8		8		10	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathbf{Z}^{[8]}$	5		5		5		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\mathrm{CE}}$ HIGH to High ${ }^{\text {[}}{ }^{[7,7]}$		8		8		10	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		15		20		20	ns
WRITE CYCLE ${ }^{[9]}$								
t_{wc}	Write Cycle Time	15		20		20		ns
$\mathrm{t}_{\text {Sce }}$	$\overline{\mathrm{CE}}$ LOW to Write End	12		15		20		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		20		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	WE Pulse Width	12		15		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		10		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[7]}$		7		7		7	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	5		5		5		ns

Switching Characteristics Over the Operating Range (continued)

Parameters	Description	7C128A-35		7C128A-45		7C128A-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
toha	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE }}$ LOW to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		15		20		25	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[7]}$		12		15		20	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		15		15		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE }}$ HIGH to Power-Down		20		25		25	ns

t_{wc}	Write Cycle Time	25		40		50		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	25		30		40		ns
$\mathrm{t}_{\text {Aw }}$	Address Set-Up to Write End	25		30		40		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		15		25		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {HZwE }}$	WE LOW to High $\mathbf{Z}^{[7]}$		10		15		20	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	5		5		5		ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. Data I/O pins enter high-impedance state, as shown, when $\widetilde{\mathrm{OE}}$ is held LOW during write.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

C128A-6

Read Cycle No. $2^{[10,12]}$

C128A-7

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[9,13]}$

C128A-8

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[9,12,14]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C128A-15PC	P13	Commercial
	CY7C128A-15VC	V13	
	CY7C128A-15DC	D14	
	CY7C128A-15LC	L53	
20	CY7C128A-20PC	P13	Commercial
	CY7C128A-20VC	V13	
	CY7C128A-20DC	D14	
	CY7C128A-20LC	L53	
	CY7C128A-20DMB	D14	Military
	CY7C128A-20LMB	L53	
	CY7C128A-20KMB	K73	
25	CY7C128A-25PC	P13	Commercial
	CY7C128A-25VC	V13	
	CY7C128A-25DC	D14	
	CY7C128A-25LC	L53	
	CY7C128A-25DMB	D14	Military
	CY7C128A-25LMB	L53	
	CY7C128A-25KMB	K73	

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY7C128A-35PC	P13	Commercial
	CY7C128A-35VC	V13	
	CY7C128A-35DC	D14	
	CY7C128A-35LC	L53	
	CY7C128A-35DMB	D14	Military
	CY7C128A-35LMB	L53	
	CY7C128A-35KMB	K73	
45	CY7C128A-45PC	P13	Commercial
	CY7C128A-45VC	V13	
	CY7C128A-45DC	D14	
	CY7C128A-45LC	L53	
	CY7C128A-45DMB	D14	Military
	CY7C128A-45LMB	L53	
	CY7C128A-45KMB	K73	
55	CY7C128A-55PC	P13	Commercial
	CY7C128A-55VC	V13	
	CY7C128A-55DC	D14	
	CY7C128A-55LC	L53	
	CY7C128A-55DMB	D14	Military
	CY7C128A-55LMB	L53	
	CY7C128A-55KMB	K73	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$\mathrm{t}_{\text {RC }}$	
$\mathrm{t}_{\text {AA }}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\text {ACE }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {DOE }}$	$7,8,9,10,11$
WRITE CYCLE	$7,8,9,10,11$
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

[^8]
Features

- 0.8-micron CMOS for optimum speed/power
- Automatic power-down
- TTL compatible
- Capable of withstanding greater than 2001V electrostatic discharge
- Fully asynchronous operation
- Master CY7C130/CY7C131 easily expands data bus width to 16 or more bits using SLAVE CY7C140/ CY7C141
- $\overline{\text { BUSY }}$ output flag on CY7C130/ CY7C131; BUSY input on CY7C140/CY7C141

Functional Description

The CY7C130/CY7C131/CY7C140/
CY7C141 are high-speed CMOS 1 K by 8 dual-port static RAMs. Two ports are provided permitting independent access to any location in memory. The CY7C130/
CY7C131 can be utilized as either a standalone 8-bit dual-port static RAM or as a master dual-port RAM in conjunction with the CY7C140/CY7C141 slave dualport device in systems requiring 16 -bit or greater word widths. It is the solution to applications requiring shared or buffered data, such as cache memory for DSP, bitslice, or multiprocessor designs.

1024 x 8 Dual-Port
 Static RAM

Each port has independent control pins; chip enable ($\overline{\mathrm{CE}}$), write enable ($\mathrm{R} / \overline{\mathrm{W}}$), and output enable (OE). Two flags are provided on each port, $\overline{\text { BUSY }}$ and INT. $\overline{\text { BUSY }}$ signals that the port is trying to access the same location currently being accessed by the other port. $\overline{\text { INT }}$ is an interrupt flag indicating that data has been placed in a unique location by the other port. An automatic power-down feature is controlled independently on each port by the chip enable ($\overline{\mathrm{CE}}$) pins.
The CY7C130 and CY7C140 are available in both 48 -pin DIP and 48 -pin LCC. The CY7C131 and CY7C141 are available in both 52-pin LCC and PLCC.
A die coat is used to insure alpha immunity.

- INT flag for port-to-port communication

Logic Block Diagram

Notes:

1. CY7C130/CY7C131 (Master): $\overline{\mathrm{BUSY}}$ is open drain output and requires pull-up resistor. CY7C140/CY7C141 (Slave): $\overline{\mathrm{BUSY}}$ is input.
2. Open drain outputs: pull-up resistor required.

Pin Configurations

Pin Configurations (continued)

Selection Guide

		7C130-25 7.3] 7C131-25 7C140-25 7C141-25	$\begin{aligned} & \text { 7C130-30 } \\ & \text { 7C131-30 } \\ & \text { 7C140-30 } \\ & \text { 7C141-30 } \end{aligned}$	7C130-35 7C131-35 7C140-35 7C141-35	$\begin{aligned} & \text { 7C130-45 } \\ & \text { 7C131-45 } \\ & \text { 7C140-45 } \\ & \text { 7C141-45 } \end{aligned}$	$\begin{aligned} & \text { 7C130-55 } \\ & \text { 7C131-55 } \\ & \text { 7C140-55 } \\ & \text { 7C141-55 } \end{aligned}$
Maximum Access Time (ns)		25	30	35	45	55
Maximum Operating Current (mA)	Commercial	170	170	120	90	90
	Military			170	120	120
Maximum Standby Current (mA)	Commercial	65	65	45	35	35
	Military			65	45	45

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots . \ldots \ldots . .65^{\circ} \mathrm{C}$ to $+150^{\circ}{ }^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 48 to Pin 24)	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Voltage Applied to Outputs in High Z State.	-0.5 V to +7.0 V
C Input Voltage	-3.5 V to +7.0 V
Output Current into Outputs (LOW)	20 mA

Notes:

3. 25 -ns version available only in PLCC/LCC packages.

Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)
Latch-Up Current . > 200 mA
Operating Range

Range	Ambient Temperature	V cc $^{\text {R }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[4]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[5]}$

Capacitance ${ }^{[9]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	15	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:
5. See the last page of this specification for Group A subgroup testing information.
6. At $\mathrm{f}=\mathrm{f}_{\mathrm{MAX}}$, address and data inputs (except output enable; $\overline{\mathrm{OE}}=$ V_{IL}) are cycling at the maximum frequency of read cycle of $1 / \mathrm{t}_{\mathrm{rc}}$ and using AC Test Waveforms input levels of GND to 3 V .
7. $\overline{B U S Y}$ and $\overline{\mathrm{INT}}$ pins only.
8. Duration of the short circuit should not exceed 30 seconds.
9. Tested initially and after any design or process changes that may affect these parameters.
10. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and $30-\mathrm{pF}$ load capacitance.
11. $t_{\text {LZCE }}, \mathrm{t}_{\text {LZWE }}, \mathrm{t}_{\text {HZOE }}, \mathrm{t}_{\text {LZOE }}, \mathrm{t}_{\text {HZCE }}$ and $\mathrm{t}_{\text {HZWE }}$ are tested with $\mathrm{C}_{\mathrm{L}}=$ 5 pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady state voltage.
12. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device.
13. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and $\mathrm{R} / \overline{\mathrm{W}}$ LOW. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input set-up and hold timing should be referencd to the rising edge of the signal that terminates the write.

CYPRESS
AC Test Loads and Waveforms

(a)

(b)

BUSY Output Load (CY7C130/CY7C131 ONLY)

Equivalent to:
THEVENIN EQUIVALENT

C130-6

Switching Characteristics Over the Operating Range ${ }^{[5,10]}$

Parameters	Description	$\begin{gathered} \hline \text { 7C130-25 [3] } \\ \text { 7C131-25 } \\ \text { 7C140-25 } \\ \text { 7C141-25 } \end{gathered}$		$\begin{aligned} & \hline \text { 7C130-30 } \\ & \text { 7C131-30 } \\ & \text { 7C140-30 } \\ & \text { 7C141-30 } \end{aligned}$		$\begin{aligned} & \text { 7C130-35 } \\ & \text { 7C131-35 } \\ & \text { 7C140-35 } \\ & \text { 7C141-35 } \end{aligned}$		$\begin{aligned} & \text { 7C130-45 } \\ & \text { 7C131-45 } \\ & \text { 7C140-45 } \\ & \text { 7C141-45 } \end{aligned}$		$\begin{aligned} & \text { 7C130-55 } \\ & \text { 7C131-55 } \\ & \text { 7C140-55 } \\ & \text { 7C141-55 } \end{aligned}$		Units
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	25		30		35		45	.	55		ns
t_{AA}	Address to Data Valid		25		30		35		45		55	ns
toha	Data Hold from Address Change	0		0		0		0		0		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		30		30		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		15		20		20		25		25	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	3		3		3		3		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[11]}$		15		15		20		20		25	ns
${ }^{1}$ LZCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[11,12]}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[11,12]}$		15		15		20		20		25	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to Power-Down		25		25		35		35		35	ns
WRITE CYCLE ${ }^{[13]}$												
t_{WC}	Write Cycle Time	25		30		35		45		55		ns
$t_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	20		25		30		35		40		ns
t_{AW}	Address Set-Up to Write End	20		25		30		35		40		ns
t_{HA}	Address Hold from Write End	2		2		2		2		2		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		0		0		ns
$\mathfrak{t}_{\text {PWE }}$	R/̄̄ Pulse Width	20		25		25		30		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		15		15		20		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	R//̄ LOW to High Z		15		15		20		20		25	ns
$\mathrm{t}_{\text {LZWE }}$	R/产 HIGH to Low Z	0		0		0		0		0		ns

Switching Characteristics Over the Operating Range ${ }^{[5,10]}$ (continued)

Parameters	Description	7C130-25 7C131-25 7C140-25 7C141-25		7C130-307C131-307C140-307C141-30		$\begin{aligned} & \text { 7C130-35 } \\ & \text { 7C131-35 } \\ & \text { 7C140-35 } \\ & \text { 7C141-35 } \end{aligned}$		7C130-457C131-457C140-457C141-45		$\begin{aligned} & \text { 7C130-55 } \\ & \text { 7C131-55 } \\ & \text { 7C140-55 } \\ & \text { 7C141-55 } \end{aligned}$		Units
		Min.	Max.									
BUSY/INTERRUPT TIMING												
$\mathrm{t}_{\text {BLA }}$	BUSY LOW from Address Match		20		20		20		25		30	ns
$\mathrm{t}_{\text {BHA }}$	BUSY HIGH from Address Mismatch ${ }^{[14]}$		20		20		20		25		30	ns
$\mathrm{t}_{\text {BLC }}$	$\overline{\text { BUSY }}$ LOW from $\overline{\mathrm{CE}}$ LOW		20		20		20		25		30	ns
$\mathrm{t}_{\text {BHC }}$	$\overline{\text { BUSY }}$ HIGH from $\overline{\mathrm{CE}} \mathrm{HIGH}^{[14]}$		20		20		20		25		30	ns
$\mathrm{t}_{\text {PS }}$	Port Set Up for Priority	5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{WB}}{ }^{[15]}$	R/W LOW after BUSY LOW	0		0		0		0		0		ns
t_{WH}	R/్̄W HIGH after BUSY HIGH	20		30		30		35		35		ns
$\mathrm{t}_{\text {BDD }}$	$\overline{\text { BUSY }}$ HIGH to Valid Data		25		30		35		45		45	ns
$\mathrm{t}_{\text {DDD }}$	Write Data Valid to Read Data Valid		$\begin{array}{\|c} \text { Note } \\ 16 \end{array}$		Note 16		Note 16		Note 16		$\begin{array}{\|c\|} \hline \text { Note } \\ 16 \end{array}$	ns
$\mathrm{t}_{\text {wDD }}$	Write Pulse to Data Delay		Note 16		Note 16		$\begin{gathered} \text { Note } \\ 16 \end{gathered}$		Note		$\begin{array}{\|c} \hline \text { Note } \\ 16 \end{array}$	ns
INTERRUPT TIMING												
$\mathrm{t}_{\text {wins }}$	R/W		25		25		25		35		45	ns
$\mathrm{t}_{\text {EINS }}$	$\overline{\mathrm{CE}}$ to INTERRUPT Set Time		25		25		25		35		45	ns
$\mathrm{t}_{\text {INS }}$	Address to $\overline{\text { INTERRUPT }}$ Set Time		25		25		25		35		45	ns
toinr	$\begin{aligned} & \overline{\text { OE }} \text { to INTERRUPT } \\ & \text { Reset Time }{ }^{[14]} \end{aligned}$		25		25		25		35		45	ns
$\mathrm{t}_{\text {Einr }}$	$\begin{aligned} & \overline{\overline{\mathrm{CE}} \text { to } \overline{\text { INTERRUPT }}} \\ & \text { Reset Time }{ }^{[14]} \end{aligned}$		25		25		25		35		45	ns
$\mathrm{t}_{\text {INR }}$	$\begin{aligned} & \text { Address to INTERRUPT } \\ & \text { Reset Time }{ }^{[14]} \end{aligned}$		25		25		25		35		45	ns

Notes:
14. These parameters are measured from the input signal changing, until the output pin goes to a high-impedance state.
15. CY7C140/CY7C141 only.
16. A write operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following:
A. $\overline{\mathrm{BUSY}}$ on Port B goes HIGH.
B. Port B's address is toggled.
C. $\overline{\mathrm{CE}}$ for Port B is toggled.
D. R/W for Port B is toggled.
17. $\mathrm{R} / \overline{\mathrm{W}}$ is HIGH for read cycle.
18. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{lL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
19. Address valid prior to or coincident with $\overline{C E}$ transition LOW.
20. If $\overline{\mathrm{OE}}$ is LOW during a $\mathrm{R} / \widetilde{W}$ controlled write cycle, the write pulse width must be the larger of $t_{\text {PWE }}$ or $t_{\text {HZWE }}+t_{\text {SD }}$ to allow the data I/O pins to enter high impedance and for data to be placed on the bus for the required t_{SD}.
21. If the $\overline{\mathrm{CE}}$ LOW transition occurs simultaneously with or after the $\mathrm{R} / \overline{\mathrm{W}}$ LOW transition, the outputs remain in the high-impedance state.

Switching Waveforms

Read Cycle No. ${ }^{[177,18]}$

3

Switching Waveforms (continued)

Write Cycle No. ${ }^{[13,20]}$

Switching Waveforms (continued)
Write Cycle No. $2^{[13,21]}$

Busy Timing Diagram No. 1 ($\overline{\mathrm{CE}}$ Arbitration)
$\overline{\mathbf{C E}}_{\mathrm{L}}$ Valid First:

C130-12
$\overline{\mathbf{C E}}_{\mathrm{R}}$ Valid First:

Switching Waveforms (continued)
Busy Timing Diagram No. 2 (Address Arbitration)
Left Address Valid First:

C130-14
Right Address Valid First:

Busy Timing Diagram No. 3

Write with BUSY (Slave: CY7C140/CY7C141)

Switching Waveforms (continued)

Interrupt Timing Diagrams

Right Side Clears $\overline{\text { INT }}_{\mathbf{R}}$

$\mathrm{ADDR}_{\mathrm{R}}$

$\overline{C E}_{\mathrm{R}}$

R / \bar{W}_{R}

$\overline{\mathbb{N T}}_{R}$

Right Side Sets $\overline{\mathrm{INT}}_{\mathrm{L}}$

Left Side Clears $\overline{\mathrm{INT}}_{\mathrm{L}}$

CYPRESS
Typical DC and AC Characteristics

SUPPLY VOLTAGE (V)

NORMALIZED SUPPLY CURRENT
vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

NORMALIZED I ${ }_{\text {CC }}$ vs. CYCLE TIME

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C130-25LC	L68	
30	CY7C130-30PC	P25	Commercial
	CY7C130-30DC	D26	
	CY7C130-30LC	L68	
35	CY7C130-35PC	P25	Commercial
	CY7C130-35DC	D26	
	CY7C130-35LC	L68	
	CY7C130-35DMB	D26	Military
	CY7C130-35LMB	L68	
45	CY7C130-45PC	P25	Commercial
	CY7C130-45DC	D26	
	CY7C130-45LC	L68	
	CY7C130-45DMB	D26	Military
	CY7C130-45LMB	L68	
55	CY7C130-55PC	P25	Commercial
	CY7C130-55DC	D26	
	CY7C130-55LC	L68	
	CY7C130-55DMB	D26	Military
	CY7C130-55LMB	L68	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C140-25LC	L68	
30	CY7C140-30PC	P25	Commercial
	CY7C140-30DC	D26	
	CY7C140-30LC	L68	
35	CY7C140-35PC	P25	Commercial
	CY7C140-35DC	D26	
	CY7C140-35LC	L68	
	CY7C140-35DMB	D26	Military
	CY7C140-35LMB	L68	
45.	CY7C140-45PC	P25	Commercial
	CY7C140-45DC	D26	
	CY7C140-45LC	L68	
	CY7C140-45DMB	D26	Military
	CY7C140-45LMB	L68	
55	CY7C140-55PC	P25	Commercial
	CY7C140-55DC	D26	
	CY7C140-55LC	L68	
	CY7C140-55DMB	D26	Military
	CY7C140-55LMB	L68	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C131-25LC	L69	Commercial
	CY7C131-25JC	J69	
30	CY7C131-30LC	L69	Commercial
	CY7C131-30JC	J69	
35	CY7C131-35LC	L69	Commercial
	CY7C131-35JC	J69	
	CY7C131-35LMB	L69	Military
45	CY7C131-45LC	L69	Commercial
	CY7C131-45JC	J69	
	CY7C131-45LMB	L69	Military
55	CY7C131-55LC	L69	Commercial
	CY7C131-55JC	J69	
	CY7C131-55LMB	L69	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C141-25LC	L69	Commercial
	CY7C141-25JC	J69	
30	CY7C141-30LC	L69	Commercial
	CY7C141-30JC	J69	
35	CY7C141-35LC	L69	Commercial
	CY7C141-35JC	J69	
	CY7C141-35LMB	L69	Military
	CY7C141-45LC	L69	Commercial
	CY7C141-45JC	J69	
	CY7C141-45LMB	L69	Military
55	CY7C141-55LC	L69	Commercial
	CY7C141-55JC	L69	
	CY7C141-55LMB	L69	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 3}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 4}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$t_{\text {RC }}$	$7,8,9,10,11$
$t_{\text {AA }}$	$7,8,9,10,11$
$t_{\text {ACE }}$	$7,8,9,10,11$
$t_{\text {DOE }}$	$7,8,9,10,11$
WRITE CYCLE	
$t_{\text {WC }}$	$7,8,9,10,11$
$t_{\text {SCE }}$	$7,8,9,10,11$
$t_{\text {AW }}$	$7,8,9,10,11$
$t_{\text {HA }}$	$7,8,9,10,11$
$t_{\text {SA }}$	$7,8,9,10,11$
$t_{\text {PWE }}$	$7,8,9,10,11$
$t_{\text {SD }}$	$7,8,9,10,11$
$t_{\text {HD }}$	$7,8,9,10,11$

Parameters	Subgroups
BUSY/INTERRUPT TIMING	
$\mathrm{t}_{\text {BLA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BHA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BLC }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{BHC}}$.	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PS }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {wins }}$	7, 8, 9, 10, 11
teins	7, 8, 9, 10, 11
$\mathrm{t}_{\text {INS }}$	7, 8, 9, 10, 11
toink	7, 8, 9, 10, 11
$\mathrm{t}_{\text {EINR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {INR }}$	7, 8, 9, 10, 11
BUSY TIMING	
$\mathrm{tws}^{\text {[2] }}$	7, 8, 9, 10, 11
t_{WH}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BDD }}$	7, 8, 9, 10, 11

Note:
22. CY7C140/CY7C141 only.

2048 x 8 Dual-Port Static RAM

Features

- 0.8-micron CMOS for optimum speed/power
- Automatic power-down
- TTL compatible
- Capable of withstanding greater than 2001V electrostatic discharge
- Fully asynchronous operation
- MASTER CY7C132/CY7C136 easily expands data bus width to 16 or more bits using SLAVE
CY7C142/CY7C146
- BUSY output flag on CY7C132/ CY7C136; BUSY input on CY7C142/CY7C142
- $\overline{\text { INT }}$ flag for port-to-port communication (52-pin LCC/PLCC versions)

Functional Description

The CY7C132/CY7C136/CY7C142/ CY7C146 are high-speed CMOS 2 K by 8 dual-port static RAMS. Two ports are provided permitting independent access to any location in memory. The CY7C132/
CY7C136 can be utilized as either a standalone 8-bit dual-port static RAM or as a MASTER dual-port RAM in conjunction with the CY7C142/CY7C146 SLAVEdualport device in systems requiring 16-bit or greater word widths. It is the solution to applications requiring shared or buffered data such as cache memory for DSP, bitslice, or multiprocessor designs.
Each port has independent control pins; chip enable $(\overline{\mathrm{CE}})$, write enable $(\mathrm{R} / \overline{\mathrm{W}})$, and
output enable $(\overline{\mathrm{OE}}) . \overline{\mathrm{BUSY}}$ flags are provided on each port. In addition, an interrupt flag (INT) is provided on each port of the 52 -pin LCC and PLCC versions. $\overline{\text { BUSY }}$ signals that the port is trying to access the same location currently being accessed by the other port. On the LCC/PLCC versions, $\overline{\text { INT }}$ is an interrupt flag indicating that data has been placed in a unique location by the other port.
An automatic power-down feature is controlled independently on each port by the chip enable ($\overline{\mathrm{CE}}$) pins.
The CY7C132/CY7C142 are available in both 48-pin DIP and 48-pin LCC. The CY7C136/CY7C146 are available in both 52 -pin LCC and 52-pin PLCC.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configuration

Notes:

1. CY7C132/CY7C136 (Master): $\overline{\mathrm{BUSY}}$ is open drain output and requires pull-up resistor. CY7C142/CY7C146 (Slave): BUSY is input.
2. Open drain outputs; pull-up resistor required.

SEMCONDUCTOR
Pin Configurations (continued)

Selection Guide

		7C132-2[13] 7C136-25 7C142-25 7C146-25	7C132-30 7C136-30 7C142-30 7C146-30	7C132-35 7C136-35 7C142-35 7C146-35	7C132-45 7C136-45 7C142-45 7C146-45	7C132-55 7C136-55 7C142-55 7C146-55
	25	30	35	45	55	
Maximum Operating Current (mA)	Commercial	170	170	120	90	90
	Military			170	120	120
Maximum Standby Current (mA)	Commercial	65	65	45	35	35
	Military			65	45	45

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 48 to Pin 24)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage . -3.5 V to +7.0 V
Output Current into Outputs (Low)
20 mA

Notes:

3. 25-ns version available in LCC and PLCC packages only.

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MILSTD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{v}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[4]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

4. T_{A} is the "instant on" case temperature

Electrical Characteristics Over the Operating Range ${ }^{(5) \mid}$

Parameter	Description	Test Conditions		$\begin{array}{\|r} \hline \text { 7C132 } \\ \text { 7C13 } \\ \text { 7C14 } \\ \text { 7C14 } \end{array}$	$\begin{aligned} & 25,30^{[3]} \\ & \hline-25,30 \\ & -25,30 \\ & -25,30 \end{aligned}$	7C13 7C13 7C1 7C1	$\begin{aligned} & \hline 32-35 \\ & 36-35 \\ & 12-35 \\ & 16-35 \end{aligned}$	7C13 7C13 7C14 7C14	$\begin{aligned} & -45,55 \\ & -45,55 \\ & -45,55 \\ & -45,55 \end{aligned}$	Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$			0.4		0.4		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}^{[7]}$			0.5		0.5		0.5	
V_{IH}	Input HIGH Voltage			2.2		2.2		2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8		0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{cc}}$		-5	+5	-5	+5	- 5	+5	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{o}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[8]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} ., \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$			-350		-350		-350	mA
I_{CC}	$V_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \\ & \text { Outputs Open, } \\ & \mathrm{f}=\mathrm{f}_{\text {MAX }}{ }^{[6]} \end{aligned}$	Com'l		170		120		90	mA
			Mil				170		120	
$\mathrm{I}_{\text {SB1 }}$	Standby Current Both Ports, TTL Inputs	$\begin{aligned} & \overline{\mathrm{CE}}_{\mathrm{L}} \text { and } \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}{ }^{[6]} \end{aligned}$	Com'l		65		45		35	mA
			Mil				65		45	
$\mathrm{I}_{\text {SB2 }}$	Standby Current One Port, TTL Inputs	$\begin{aligned} & \overline{C E}_{L} \text { or } \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Active Port Outputs Open, } \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}{ }^{[6]} \end{aligned}$	Com'l		115		90		75	mA
			Mil				115		90	
$\mathrm{I}_{\text {SB3 }}$	Standby Current Both Ports, CMOS Inputs	Both Ports $\overline{\mathrm{CE}}_{\mathrm{L}}$ and $\overline{C E}_{R} \geq V_{C C}-0.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \mathrm{f}=0$	Com'l		15		15		15	mA
			Mil				15		15	
$\mathrm{I}_{\text {SB4 }}$	Standby Current One Port, CMOS Inputs	One Port $\overline{C E}_{\text {L }}$ or $\mathrm{CE}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{Cc}}-0.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$, Active Port Outputs Open, $\mathrm{f}=\mathrm{f}_{\mathrm{MAX}}{ }^{[6]}$	Com'l Mil		105		85		70 85	mA

Capacitance ${ }^{[9]}$

Parameters	Description	Test Conditions	Max.	Units
C_{NN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	15	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:
5. See the last page of this specification for Group A subgroup testing information.
6. At $\mathrm{f}=\mathrm{f}_{\mathrm{MAX}}$, address and data inputs (except output enable; $\overline{\mathrm{OE}}=$ V_{IL}) are cycling at the maximum frequency of read cycle of $1 / \mathrm{t}_{\mathrm{rc}}$ and using AC Test Waveforms input levels of GND to 3 V .
7. $\overline{B U S Y}$ and $\overline{\text { INT }}$ pins only.
8. Duration of the short circuit should not exceed 30 seconds.
9. Tested initially and after any design or process changes that may affect these parameters.
10. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and $30-\mathrm{pF}$ load capacitance.
11. $t_{\text {LZCE }}, t_{\text {LZWE }}, t_{\text {HZOE }}, t_{\text {LZOE }}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are tested with $\mathrm{C}_{\mathrm{L}}=$ 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ form steady state voltage.
12. At any given temperature and voltage condition, $t_{H Z C E}$ is less than $t_{\text {LZCE }}$ for any given device.
13. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and R/W LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referencd to the rising edge of the signal that terminates the write.

CYPRESS
SEMICONDUCTOR

BUSY Output Load (CY7C132/CY7C136 ONLY)

Equivalent to: THEVENIN EQUIVALENT OUTPUT 0 O 1.4 V

(b)

Switching Characteristics Over the Operating Range ${ }^{[5,10]}$

Parameters	Description	7C132-255 7C136-25 7C142-25 7C146-25		7C132-307C136-307C142-307C146-30		7C132-357C136-357C142-357C146-35		7C132-457C136-457C142-457C146-45		7C132-557C136-557C142-557C146-55		Units
		Min.	Max.									
READ CYCLE												
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	25		30		35		45		55		ns
t_{AA}	Address to Data Valid		25		30		35		45		55	ns
$\mathrm{t}_{\text {Oha }}$	Data Hold from Address Change	0		0		0		0		0		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		30		30		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		20		20		25		25	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	3		3		3		3		3		ns
$\mathrm{t}_{\text {HzOE }}$	$\overline{\mathrm{OE}}$ HIGH to $\operatorname{High} \mathrm{Z}^{[11]}$		15		15		20		20		25	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\text { CE }}$ LOW to Low ${ }^{[12]}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[11,12]}$		15		15		20		20		25	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE LOW }}$ to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		25		25		35		35		35	ns
WRITE CYCLE ${ }^{[13]}$												
t_{wc}	Write Cycle Time	25		30		35		45		55		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	20		25		30		35		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		35		40		ns
t_{HA}	Address Hold from Write End	2		2		2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
${ }_{\text {t }}{ }_{\text {PWE }}$	R/W Pulse Width	20		25		25		30		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		15		15		20		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	R//̄ LOW to High Z		15		15		20		20		25	ns
$\mathrm{t}_{\text {LZwE }}$	R// W HIGH to Low Z	0		0		0		0		0		ns

CYPRESS
SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[5,10]}$ (continued)

Parameters	Description	7C132-257C136-257C142-257C146-25		$\begin{aligned} & \hline \text { 7C132-30 } \\ & \text { 7C136-30 } \\ & \text { 7C142-30 } \\ & \text { 7C146-30 } \end{aligned}$		$\begin{aligned} & \text { 7C132-35 } \\ & \text { 7C136-35 } \\ & \text { 7C142-35 } \\ & \text { 7C146-35 } \end{aligned}$		$\begin{aligned} & \text { 7C132-45 } \\ & \text { 7C136-45 } \\ & \text { 7C142-45 } \\ & \text { 7C146-45 } \end{aligned}$		7C132-557C136-557C142-557C146-55		Units
		Min.	Max.									
BUSY/INTERRUPT TIMING												
$\mathrm{t}_{\text {BLA }}$	$\overline{\text { BUSY }}$ LOW from Address Match		20		20		20		25		30	ns
$\mathrm{t}_{\mathrm{BHA}}$	BUSY HIGH from Address Mismatch ${ }^{[14]}$		20		20		20		25		30	ns
$\mathrm{t}_{\mathrm{BLC}}$	B̄USY LOW from $\overline{C E}$ LOW		20		20		20		25		30	ns
$\mathrm{t}_{\text {BHC }}$	$\overline{\bar{B} U S Y}$ HIGH from $\overline{\mathrm{CE}} \mathrm{HIGH}^{[14]}$		20		20		20		25		30	ns
$\mathrm{t}_{\text {PS }}$	Port Set Up for Priority	5		5		5		5		5		ns
$\mathrm{twB}^{[15]}$	R/ $\overline{\mathrm{W}}$ LOW after $\overline{\text { BUSY }}$ LOW	0		0		0		0		0		ns
t_{WH}	R/W HIGH after BUSY HIGH	20		30		30		35		35		ns
$\mathrm{t}_{\text {BDD }}$	BUSY HIGH to Valid Data		25		30		35		45		45	ns
$t_{\text {dDD }}$	Write Data Valid to Read Data Valid		$\begin{array}{\|c} \hline \text { Note } \\ 16 \end{array}$		$\begin{array}{\|c} \text { Note } \\ 16 \end{array}$		$\begin{array}{\|c\|} \hline \text { Note } \\ 16 \end{array}$		Note 16		$\begin{array}{\|c} \hline \text { Note } \\ 16 \end{array}$	ns
$\mathrm{t}_{\text {wDD }}$	Write Pulse to Data Delay		$\begin{array}{\|c\|} \hline \text { Note } \\ 16 \\ \hline \end{array}$		$\begin{array}{\|c} \hline \text { Note } \\ 16 \\ \hline \end{array}$		$\begin{array}{\|c} \hline \text { Note } \\ 16 \\ \hline \end{array}$		Note 16		Note 16	ns

INTERRUPT TIMING ${ }^{[17]}$							
$\mathrm{t}_{\text {wINs }}$	R/产 to INTERRUPT Set Time	25	25	25	35	45	ns
teins	$\overline{\text { CE }}$ to INTERRUPT Set Time	25	25	25	35	45	ns
$\mathrm{t}_{\text {INS }}$	Address to $\overline{\overline{I N T E R R U P T}}$ Set Time	25	25	25	35	45	ns
$\mathrm{t}_{\text {OINR }}$	$\begin{aligned} & \overline{\text { OE }} \text { to } \overline{\text { INTERRUPT }} \\ & \text { Reset Time }{ }^{[14]} \end{aligned}$	25	25	25	35	45	ns
$\mathrm{t}_{\text {EINR }}$	$\begin{aligned} & \overline{\overline{\mathrm{CE}} \text { to } \overline{\overline{\text { INTERRUPT }}}} \\ & \text { Reset Time }{ }^{[14]} \end{aligned}$	25	25	25	35	45	ns
$\mathrm{t}_{\mathrm{INR}}$	$\begin{aligned} & \text { Address to INTERRUPT } \\ & \text { Reset Time }{ }^{[14]} \\ & \hline \end{aligned}$	25	25	25	35	45	ns

Notes:
14. These parameters are measured from the input signal changing, until the output pin goes to a high-impedance state.
15. CY7C142/CY7C146 only.
16. A write operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following:
A. $\overline{\text { BUSY }}$ on Port B goes HIGH.
B. Port B's address toggled.
C. $\overline{\mathrm{CE}}$ for Port B is toggled.
D. R / \bar{W} for Port B is toggled.
17. 52-pin LCC/PLCC versions only.
18. $\mathrm{R} / \overline{\mathrm{W}}$ is HIGH for read cycle.
19. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{LL}}$.
20. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
21. If $\overline{\mathrm{OE}}$ is LOW during a $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle, the write pulse width must be the larger of $t_{\text {PWE }}$ or $t_{\text {HZWE }}+t_{\text {SD }}$ to allow the data I/O pins to enter high impedance and for data to be placed on the bus for the required t_{SD}.
22. If the $\overline{\mathrm{CE}}$ LOW transition occurs simultaneously with or after the $\mathrm{R} / \overline{\mathrm{W}}$ LOW transition, the outputs remain in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[18,19]}$

Switching Waveforms (continued)

Switching Waveforms (continued)
Write Cycle No. $2^{[13,22]}$
Either Port

Busy Timing Diagram No. $1(\overline{\mathrm{CE}}$ Arbitration)
$\overline{\mathrm{CE}}_{\mathrm{L}}$ Valid First:

C132-12
$\overline{\mathrm{CE}}_{\mathrm{R}}$ Valid First:

C132-13

Switching Waveforms (continued)
Busy Timing Diagram No. 2 (Address Arbitration)

Right Address Valid First:

Busy Timing Diagram No. 3 (Write with $\overline{\text { BUSY, }}$ Slave: CY7C142/CY7C146)

Switching Waveforms (continued)

Interrupt Timing Diagrams ${ }^{[17]}$
Left Side Sets $\overline{\mathbf{I N T}}_{\mathrm{R}}$

ADDRESS $_{\text {R }}$

Right Side Sets $\overline{\mathrm{INT}}_{\mathrm{L}}$

Typical DC and AC Characteristics

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

TYPICAL ACCESS TIME CHANGE
vs. OUTPUT LOADING

CYPRESS
Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C132-25LC	L68	Commercial
30	CY7C132-30PC	P25	Commercial
	CY7C132-30DC	D26	
	CY7C132-30LC	L68	
35	CY7C132-35PC	P25	Commercial
	CY7C132-35DC	D26	
	CY7C132-35LC	L68	
	CY7C132-35DMB	D26	Military
	CY7C132-35LMB	L68	
45	CY7C132-45PC	P25	Commercial
	CY7C132-45DC	D26	
	CY7C132-45LC	L68	
	CY7C132-45DMB	D26	Military
	CY7C132-45LMB	L68	
55	CY7C132-55PC	P25	Commercial
	CY7C132-55DC	D26	
	CY7C132-55LC	L68	
	CY7C132-55DMB	D26	Military
	CY7C132-55LMB	L68	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C142-25LC	L68	Commercial
30	CY7C142-30PC	P25	Commercial
	CY7C142-30DC	D26	
	CY7C142-30LC	L68	
35	CY7C142-35PC	P25	Commercial
	CY7C142-35DC	D26	
	CY7C142-35LC	L68	
	CY7C142-35DMB	D26	Military
	CY7C142-35LMB	L68	
45	CY7C142-45PC	P25	Commercial
	CY7C142-45DC	D26	
	CY7C142-45LC	L68	
	CY7C142-45DMB	D26	Military
	CY7C142-45LMB	L68	
55	CY7C142-55PC	P25	Commercial
	CY7C142-55DC	D26	
	CY7C142-55LC	L68	
	CY7C142-55DMB	D26	Military
	CY7C142-55LMB	L68	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C136-25LC	L69	Commercial
	CY7C136-25JC	J69	
30	CY7C136-30LC	L69	Commercial
	CY7C136-30JC	J69	
	CY7C136-35LC	L69	Commercial
	CY7C136-35JC	J69	
	CY7C136-35LMB	L69	Military
45	CY7C136-45LC	L69	Commercial
	CY7C136-45JC	J69	
	CY7C136-45LMB	L69	Military
	CY7C136-55LC	L69	Commercial
	CY7C136-55JC	J69	
	CY7C136-55LMB	L69	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C146-25LC	L69	Commercial
	CY7C146-25JC	J69	
30	CY7C146-30LC	L69	Commercial
	CY7C146-30JC	J69	
	CY7C146-35LC	L69	Commercial
	CY7C146-35JC	J69	
	CY7C146-35LMB	L69	Military
55	CY7C146-45LC	L69	Commercial
	CY7C146-45JC	J69	
	CY7C146-45LMB	L69	Military
	CY7C146-55LC	L69	Commercial
	CY7C146-55JC	L69	
	CY7C146-55LMB	L69	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 3}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 4}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\text {SCE }}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Parameters	Subgroups
BUSY/INTERRUPT TIMING	
$\mathrm{t}_{\mathrm{BLA}}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{BHA}}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BLC }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BHC }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PS }}$	7, 8, 9, 10, 11
$t_{\text {WINS }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {Eins }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {INS }}$	7, 8, 9, 10, 11
toink	7, 8, 9, 10, 11
$t_{\text {EINR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {INR }}$	7, 8, 9, 10, 11
BUSY TIMING	
$\mathrm{t}_{\mathrm{WB}}{ }^{[23]}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {WH }}$	7, 8, 9, 10, 11
$t_{\text {BDD }}$	7, 8, 9, 10, 11

Note:
23. CY7C142/CY7C146 only.

Features

- 0.8-micron BiCMOS for high performance
- High-speed access
- $\mathbf{2 0} \mathbf{n s}$ (commercial)
-25 ns (military)
- Automatic power-down
- Fully asynchronous operation
- 7B1342 includes semaphores
- 7B134 available in 48-pin DIP, 48-pin LCC
- 7B135/7B1342 available in 52-pin LCC/PLCC

Functional Description

The CY7B134, CY7B135, and CY7B1342 are high-speed BiCMOS $4 \mathrm{~K} \times 8$ dual-port static RAMs. The CY7B1342 includes semaphores that provide a means to allocate portions of the dual-port RAM or any shared resource. Two ports are provided permitting independent, asynchronous access for reads and writes to any location in memory. Application areas include interprocessor/multiprocessor designs, communications status buffering, and dualport video/graphics memory.
Each port has independent control pins: chip enable ($\overline{\mathrm{CE}}$), read or write enable $(\overline{\mathrm{R}} /$ $\overline{\mathrm{W}}$), and output enable ($\overline{\mathrm{OE}) \text {. The }}$ CY7B134/135 are suited for those systems
that do not require on-chip arbitration or are intolerant of wait states. Therefore, the user must be aware that simultaneous access to a location is possible. Semaphores are offered on the CY7B1342 to assist in arbitrating between ports. The semaphore logic is comprised of eight shared latches. Only one side can control the latch (semaphore) at any time. Control of a semaphore indicates that a shared resource is in use. An automatic power-down feature is controlled independently on each port by a chip enable ($\overline{\mathrm{CE}})$ pin or $\overline{\mathrm{SEM}}$ pin (CY7B1342 only).
The CY7B134 is available in 48 -pin DIP and 48-pin LCC. The CY7B135 and CY7B1342 are available in 52 -pin LCC/ PLCC.

Logic Block Diagram

Selection Guide

Pin Configurations

Pin Definitions

Left Port	Right Port	Description
$\mathrm{A}_{0 \mathrm{~L}-11 \mathrm{~L}}$	$\mathrm{A}_{\text {OR-11R }}$	Address Lines
$\overline{\mathrm{CE}}_{\mathrm{L}}$	$\overline{\mathrm{CE}}_{\mathrm{R}}$	Chip Enable
$\overline{\mathrm{OE}}_{\mathrm{L}}$	$\overline{\mathrm{O}}_{\mathrm{E}}$	Output Enable
$\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{L}}$	$\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{R}}$	Read/Write Enable
$\overline{\mathrm{SEM}}_{1}$ (CY7B1342 only)	$\begin{aligned} & \overline{\mathrm{SEM}}_{\mathrm{R}} \\ & \text { (CY7B1342 only) } \end{aligned}$	Semaphore Enable. When asserted LOW, allows access to eight semaphores. The three least significant bits of the address lines will determine which semaphore to write or read. The $\mathrm{I} / \mathrm{O}_{0}$ pin is used when writing to a semaphore. Semaphores are requested by writing a 0 into the respective location.

Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	\mathbf{V}_{CC}
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad
Supply Voltage to Ground Potential
(Pin 48 to Pin 24)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DC Voltage Applied to Outputs
in High Z State .
-0.5 V to +7.0 V

DC Input Voltage ${ }^{[1]}$
-0.5 V to +7.0 V

Electrical Characteristics Over the Operating Range ${ }^{[4]}$

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max. ${ }^{[6]}$	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		
		10	pF	

Notes:

1. Pulse width $<20 \mathrm{~ns}$.
2. T_{A} is the "instant on" case temperature.
3. $f_{\text {MAX }}=1 / t_{\mathrm{RC}}=$ All inputs cyclingat $\mathrm{f}=1 / \mathrm{t}_{\mathrm{RC}}$ (except output enable). $\mathrm{f}=0$ meas no address or control lines change. This applies only to inputs at CMOS level standby ISB3.
4. See the last page of this specification for Group A subgroup testing information.
5. Tested initially and after any design or process changes that may affect these parameters.
6. For all packages except DIP and cerDIP (D26, P25), which have maximums of $\mathrm{C}_{1 \mathrm{~N}}=15 \mathrm{pF}, \mathrm{C}_{\mathrm{OUT}}=15 \mathrm{pF}$.

PRELIMINARY
CYPRESS
SEMICONDUCTOR

AC Test Loads and Waveforms

(a) Normal Load (Load 1)

(a) Thévenin Equivalent (Load 1)

(a) Three-State Delay (Load 3)

Load (Load 2)

Switching Characteristics Over the Operating Range ${ }^{[7,8]}$

Parameters	Description	$\begin{gathered} \text { 7B134-20 } \\ \text { 7B135-20 } \\ \text { 7B1342-20 } \end{gathered}$		$\begin{gathered} \text { 7B134-25 } \\ \text { 7B135-25 } \\ \text { 7B1342-25 } \end{gathered}$		$\begin{array}{r} 7 \mathrm{PB134-35} \\ 7 \mathrm{~B} 135-35 \\ 7 \mathrm{~B} 1342-35 \end{array}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	20		25		35		ns
t_{AA}	Address to Data Valid		20		25		35	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold From Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		20		25		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		13		15		20	ns
$\mathrm{t}_{\text {LzoE }}{ }^{[9]}$	$\overline{\mathrm{OE}}$ Low to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HzOE}}{ }^{[9]}$	$\overline{\mathrm{OE}}$ HIGH to High Z		13		15		20	ns
$\mathrm{t}_{\mathrm{LzCE}}{ }^{[9]}$	$\overline{\mathrm{CE}}$ LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}{ }^{[9]}$	$\overline{\text { CE }}$ HIGH to High Z		13		15		20	ns
t_{pu}	$\overline{\overline{C E}}$ LOW to Power Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to Power Down		20		25		35	ns
WRITE CYCLE								
t_{Wc}	Write Cycle Time	20		25		35		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	15		20		30		ns
t_{AW}	Address Set-Up to Write End	15		20		30		ns
t_{HA}	Address Hold From Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Setup to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	Write Pulse Width	15		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	13		15		15		ns
t_{HD}	Data Hold From Write End	0		0		0		ns
$\mathrm{t}_{\mathrm{HZWE}}{ }^{[9]}$	R/ $\overline{\mathrm{W}}$ LOW to High Z		13		15		20	ns
$\mathrm{t}_{\mathrm{LZWE}}{ }^{[9]}$	R// $\overline{\mathrm{W}}$ HIGH to Low Z	3		3		3		ns

SEMICONDUCTOR
PRELIMINARY
CY7B1342

Switching Characteristics Over the Operating Range ${ }^{[7,8]}$ (continued)

Parameters	Description	$\begin{gathered} \text { 7B134-20 } \\ \text { 7B135-20 } \\ \text { 7B1342-20 } \end{gathered}$		$\begin{aligned} & \hline 7 \mathrm{~B} 134-25 \\ & \text { 7B135-25 } \\ & 7 \mathrm{~B} 1342-25 \end{aligned}$		$\begin{gathered} 7 B 134-35 \\ \text { 7B135-35 } \\ 7 \mathrm{~B} 1342-35 \end{gathered}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
WRITE CYCLE (continued)								
$\mathrm{t}_{\text {WDD }}{ }^{[10]}$	Write Pulse to Data Delay		40		50		60	ns
$\mathrm{t}_{\text {DDD }}{ }^{[10]}$	Write Data Valid to Read Data Valid		30		30		35	ns
SEMAPHORE TIMING ${ }^{[1]}$								
$\mathrm{t}_{\text {SOP }}$	SEM Flag Update Pulse ($\overline{\mathrm{OE}}$ or $\overline{\text { SEM }}$)	10		10		15		ns
tswrd	SEM Flag Write to Read Time	5		5		5		ns
$\mathrm{t}_{\text {sps }}$	SEM Flag Contention Window	5		5		5		ns

Notes:

7. See the last page of this specification for Group A subgroup testing information.
8. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance
9. Test conditions used are Load 3
10. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Port-toPort Delay waveform.
11. Semaphore timing applies only to CY7B1342.
12. $\mathrm{R} / \overline{\mathrm{W}}$ is HIGH for read cycle.
13. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
14. Address valid prior to or coincident with CE transition LOW.

Switching Waveforms

Read Cycle No. ${ }^{[12,13]}$
Either Port Address Access

Read Cycle No. $2^{[12,14]}$
 PRELIMINARY

CY7B135

Switching Waveforms

Read Timing with Port-to-Port Delay ${ }^{[15]}$

Write Cycle No. 1: $\overline{\text { OE }}$ Tri-States Data I/Os (Either Port) ${ }^{[16,17,18]}$

Note:

15. $\overline{\mathrm{CE}}_{\mathrm{L}}=\overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{LOW} ; \mathrm{R} / \overline{\mathrm{W}}_{\mathrm{L}}=\mathrm{HIGH}$
16. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ or SEM LOW and R/W LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
17. $\mathrm{R} / \overline{\mathrm{W}}$ must be HIGH during all address transactions.
18. If $\overline{\mathrm{OE}}$ is LOW during a $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle, the write pulse width must be the larger of $t_{\text {PWE }}$ or ($\left.t_{\text {HZWE }}+t_{\text {SD }}\right)$ to allow the I/O drivers to turn off and data to be placed on the bus for the required $\mathrm{t}_{\text {SD }}$. If $\overline{\mathrm{OE}}$ is HIGH during a $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle (as in this example), this requirement does not apply and the write pulse can be as short as the specified $t_{\text {PWE. }}$
19. $\overline{\text { SEM }}$ only applies to CY7B1342

Switching Waveforms (continued)
Write Cycle No. 2: R/W Tri-States Data I/Os (Either Port) ${ }^{[17,20]}$

1342-15

Semaphore Read After Write Timing, Either Side (CY7B1342 only) ${ }^{[21]}$

1342-16

Notes:
20. Data I/O pins enter high-impedance when $\overline{\mathrm{OE}}$ is held LOW during write.
21. $\overline{\mathrm{CE}}=\mathrm{HIGH}$ for the duration of the above timing (both write and read cycle).

Switching Waveforms (continued)

Timing Diagram of Semaphore Contention (CY7B1342 only) ${ }^{[22,23,24]}$

[^9]24. If $\mathrm{t}_{\text {sps }}$ is violated, it is gauranteed that only one side will gain itcerss to the semaphore.

Architecture

The CY7B134 and CY7B135 consist of an array of 4 K words of 8 bits each of dual-port RAM cells, I/O and address lines, and control signals ($\overline{\mathrm{CE}}, \overline{\mathrm{OE}, \mathrm{R}} / \mathrm{W}$). Two semaphore control pins exist for the CY7B1342 ($\left.\overline{\mathrm{SEM}}_{\mathrm{LR}}\right)$.

Functional Description

Write Operation

Data must be set up for a duration of t_{sD} before the rising edge of $\mathrm{R} / \overline{\mathrm{W}}$ in order to guarantee a valid write. Since there is no on-chip arbitration, the user must be sure that a specific location will not be accessed simultaneously by both ports or erroneous data could result. A write operation is controlled by either the $\overline{\mathrm{OE}}$ pin (see Write Cycle No. 1 timing diagram) or the $\mathrm{R} / \overline{\mathrm{W}}$ pin (see Write Cycle No. 2 timing diagram). Data can be written $\mathrm{t}_{\text {RZOE }}$ after the $\overline{\mathrm{OE}}$ is deasserted or $\mathrm{t}_{\mathrm{HZWE}}$ after the falling edge of R / W. Required inputs for write operations are summarized in Table 1.
If a location is being written to by one port and the opposite port attempts to read the same location, a port-to-port flowthrough delay is met before the data is valid on the output. Data will be valid on the port wishing to read the location $t_{\text {DDD }}$ after the data is presented on the writing port.

Read Operation

When reading the device, the user must assert both the $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ pins. Data will be available $\mathrm{t}_{\mathrm{ACE}}$ after $\overline{\mathrm{CE}}$ or $\mathrm{t}_{\text {DOE }}$ after $\overline{\mathrm{OE}}$ are asserted. If the user of the CY7B1342 wishes to access a semaphore, the $\overline{\text { SEM }}$ pin must be asserted instead of the $\overline{\mathrm{CE}}$ pin. Required inputs for read operations are summarized in Table 1.

Semaphore Operation

The CY7B1342 provides eight semaphore latches which are separate from the dual port memory locations. Semaphores are used to reserve resources which are shared between the two ports. The state of the semaphore indicates that a resource is in use. For example, if the left port wants to request a given resource, it sets a latch by writing a zero to a semaphore location. The left port then verifies its success in setting the latch by reading it. After writing to the semaphore, $\overline{\text { SEM }}$ or $\overline{O E}$ must be deasserted for $t_{\text {sop }}$ before attempting to read the semaphore. The semaphore value will be available $t_{\text {sWRD }}+t_{\text {DOE }}$ after the rising edge of the semaphore write. If the left port was successful (reads a zero), it assumes control over the shared resource, otherwise (reads a one) it assumes the right port has control and continues to poll the semaphore. When the right side has relinquished control of the semaphore (by writing a one), the left side will succeed in gaining control of the semaphore. If the left side no longer requires the semaphore, a one is written to cancel its request.
Semaphores are accessed by asserting $\overline{\text { SEM }}$ LOW. The $\overline{\text { SEM }}$ pin functions as a chip enable for the semaphore latches. $\overline{\mathrm{CE}}$ must remain HIGH during $\overline{\text { SEM }}$ LOW. A A_{0-2} represents the semaphore address. $\overline{\mathrm{OE}}$ and $\mathrm{R} / \overline{\mathrm{W}}$ are used in the same manner as a normal memory access. When writing or reading a semaphore, the other address pins have no effect.
When writing to the semaphore, only $\mathrm{I} / \mathrm{O}_{0}$ is used. If a 0 is written to the left port of an unused semaphore, a one will appear at the same semaphore address on the right port. That semaphore can now only be modified by the side showing a zero (the left port in
this case). If the left port now relinquishes control by writing a one to the semaphore, the semaphore will be set to one for both sides. However, if the right port had requested the semaphore (written a zero) while the left port had control, the right port would immediately own the semaphore. Table 2 shows sample semaphore operations.
When reading a semaphore, all eight data lines output the semaphore value. The read value is latched in an output register to prevent the semaphore from changing state during a write from the other port. If both ports request a semaphore control by writing a 0 to a semaphore within $t_{\text {sps }}$ of each other, it is guaranteed that only one side will gain access to the semaphore.

Table 1. Non-contending Read/Write

Inputs					Outputs
Operation					
	$\mathbf{R} / \overline{\mathbf{W}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{S E M}}$	$\mathbf{I} / \mathbf{O}_{0}-\mathbf{I} / \mathbf{O}_{7}$	Op-D
H	X	X	H	High Z	Power-Down
H	H	L	L	Data Out	Read Data $_{\text {IN }}$ Semaphore
X	X	H	X	High Z	I/O Lines Disabled
H	-	X	L	Data In	Write to Semaphore
L	H	L	H	Data Out	Read
L	L	X	H	Data In	Write
L	X	X	L		Illegal Condition

Table 2. Semaphore Operation Example

Function	$\mathbf{I} / \mathbf{O}_{\mathbf{0}}$ Left	$\mathbf{I} / \mathbf{O}_{\mathbf{0}}$ Right	Status
No Action	1	1	Semaphore free
Left port writes semaphore	0	1	Left port obtains semaphore
Right port writes 0 to semaphore	0	1	Right side is denied access
Left port writes 1 to semaphore	1	0	Right port is granted access to Semaphore
Left port writes 0 to semaphore	1	0	No change. Left port is denied access
Right port writes 1 to semaphore	0	1	Left port obtains semaphore
Left port writes 1 to semaphore	1	1	No port accessing semaphore address
Right port writes 0 to semaphore	1	0	Right port obtains semaphore
Right port writes 1 to semaphore	1	1	No port accessing semaphore
Left port writes 0 to semaphore	0	1	Left port obtains semaphore
Left port writes 1 to semaphore	1	1	No port accessing semaphore

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7B134-20PC	P25	Commercial
	CY7B134-20DC	D26	
	CY7B134-20LC	L68	
25	CY7B134-25PC	P25	Commercial
	CY7B134-25DC	D26	
	CY7B134-25LC	L68	
	CY7B134-25PI	P25	Industrial
	CY7B134-25DI	D26	
	CY7B134-25DMB	D26	Military
	CY7B134-25LMB	L68	
35	CY7B134-35PC	P25	Commercial
	CY7B134-35DC	D26	
	CY7B134-35LC	L68	
	CY7B134-35PI	P25	Industrial
	CY7B134-35DI	D26	
	CY7B134-35DMB	D26	Military
	CY7B134-35LMB	L68	

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7B135-20LC	L69	Commercial
	CY7B135-20JC	J69	
25	CY7B135-25LC	L69	Commercial
	CY7B135-25JC	J69	
	CY7B135-25JI	J69	Industrial
	CY7B135-25LMB	L69	Military
	CY7B135-35LC	L69	Commercial
	CY7B135-35JC	J69	
	CY7B135-35JI	J69	Industrial
	CY7B135-35LMB	L69	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7B1342-20LC	L69	Commercial
	CY7B1342-20JC	J69	
25	CY7B1342-25LC	L69	Commercial
	CY7B1342-25JC	J69	
	CY7B1342-25JI	J69	Industrial
	CY7B1342-25LMB	L69	Military
	CY7B1342-35LC	L69	Commercial
	CY7B1342-35JC	J69	
	CY7B1342-35JI	J69	Industrial
	CY7B1342-35LMB	L69	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 3}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 4}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
SEMAPHORE CYCLE	
$\mathrm{t}_{\text {SOD }}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SWRD}}$	$7,8,9,10,11$
$\mathrm{t}_{\text {SPS }}$	$7,8,9,10,11$

Document \#: 38-00161

Features

- 0.8-micron BiCMOS for high performance
- High-speed access
-15 ns (com'l)
-25 ns (mil)
- Automatic power-down
- Fully asynchronous operation
- Master /Slave select pin allows bus width expansion to 16 bits or more
- Busy arbitration scheme provided
- Semaphores included to permit software handshaking between ports
- INT flag for port-to-port communication
- Available in 68-pin LCC/PLCC/PGA
- TTL compatible

Functional Description

The CY7B138 is a high-speed BiCMOS 4K x 8 dual-port static RAM. Various arbitration schemes are included on the CY7B138 to handle situations when multiple processors access the same piece of data. Two ports are provided permitting independent, asynchronous access for reads and writes to any location in memory. The CY7B138 can be utilized as a standalone 64-Kbit dual-port static RAM or multiple devices can be combined in order to function as a 16 -bit or wider master/slave dual-port static RAM. An M/ $\overline{\mathbf{S}}$ pin is provided for implementing 16 -bit or wider memory applications without the need for separate master and slave devices or additional discrete logic. Application areas include interprocessor/multiprocessor designs, communications status buffering, and dual-port video/graphics memory.

4K x 8 Dual-Port Static RAM with Sem, Int, Busy

Each port has independent control pins: chip enable ($\overline{\mathrm{CE}}$), read or write enable
$(\mathrm{R} / \overline{\mathrm{W}})$, and output enable $(\overline{\mathrm{OE}})$. Two flags are provided on each port (BUSY and $\overline{\text { INT }}$. $\overline{\text { BUSY }}$ signals that the port is trying to access the same location currently being accessed by the other port. The interrupt flag (INT) permits communication between ports or systems by means of mail box or message center. The semaphores are used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphore logic is comprised of eight shared latches. Only one side can control the latch (semaphore) at any time. Control of a semaphore indicates that a shared resource is in use. An automatic power-down feature is controlled independently on each port by a chip enable ($\overline{\mathrm{CE}}$) pin or SEM pin.
The CY7B138 is available in 68 -pin LCCs, PLCCs, and PGAs.

Logic Block Diagram

Pin Configurations

68-Pin PGA
Top View

Pin Definitions

Left Port	Right Port	Description
$\mathrm{I} / \mathrm{O}_{0 L-7 \mathrm{~L}}$	$\mathrm{I} / \mathrm{O}_{0 \mathrm{R}-7 \mathrm{R}}$	Data Bus Input/Output
$\mathrm{A}_{0 \mathrm{~L}-11 \mathrm{~L}}$	$\mathrm{~A}_{0 \mathrm{R}-11 \mathrm{R}}$	Address Lines
$\overline{\mathrm{CE}}_{\mathrm{L}}$	$\overline{\mathrm{CE}}_{\mathrm{R}}$	Chip Enable
$\overline{\mathrm{OE}}_{\mathrm{L}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	Output Enable
$\mathrm{R} / \overline{\bar{W}}_{\mathrm{L}}$	$\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{R}}$	Read/Write Enable
$\overline{\mathrm{SEM}}_{\mathrm{L}}$	$\overline{\mathrm{SEM}}_{\mathrm{R}}$	$\begin{array}{l}\text { Semaphore Enable. When asserted LOW, allows access to eight semaphores. } \\ \text { The three leastsignificant bits of the address lines will determine which sema- } \\ \text { phore to write or read. The I/O pin is used when writing to a semaphore. } \\ \text { Semaphores are requested by writing a 0 into the respective location. }\end{array}$
$\overline{\mathrm{INT}}_{\mathrm{L}}$	$\overline{\mathrm{INT}}_{\mathrm{R}}$	$\begin{array}{l}\text { Interrupt Flag. } \overline{I N T}_{\mathrm{L}} \text { is set when right port writes location FFE and is cleared } \\ \text { when left port reads location FFE. } \overline{\mathrm{INT}} \\ \mathrm{R}\end{array}$
FFF is set when left port writes location		

Selection Guide

		$\mathbf{7 B 1 3 8 - 1 5}$	$7 \mathrm{~B} 138-\mathbf{2 5}$	7B138-35
Maximum Access Time (ns)	15	25	35	
Maximum Operating Current (mA)	Commercial	260	220	210
	Military		280	250
Maximum Standby Current (mA)	Commercial	90	75	70
	Military		80	75

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ}{ }^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$ -3.5 V to +7.0 V
Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[4]}$

Notes:

1. Pulse width $<20 \mathrm{~ns}$.
2. T_{A} is the "instant on" case temperature.
3. $\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}}=$ All inputs cycling at $\mathrm{f}=1 / \mathrm{t}_{\mathrm{RC}}$ (except output enable). $\mathrm{f}=0$ meas no address or control lines change. This applies only to inputs at CMOS level standby $\mathrm{I}_{\text {SB3 }}$.
4. See the last page of this specification for Group A subgroup testing information.
5. Tested initially and after any design or process changes that may affect these parameters.

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range ${ }^{[6,7]}$

Parameters	Description	78138-15		7B138-25		7B138-35		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	15		25		35		ns
t_{AA}	Address to Data Valid		15		25		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold From Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		15		25		35	ns
$\mathrm{t}_{\text {doe }}$	OE LOW to Data Valid		10		15		20	ns
$\mathrm{t}_{\text {LZOE }}{ }^{[8]}$	$\overline{\mathrm{OE}}$ Low to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HzOE}}{ }^{[8]}$	$\overline{\mathrm{OE}}$ HIGH to High Z		10		15		20	ns
$\mathrm{t}_{\text {LZCE }}{ }^{[8]}$	$\overline{\mathrm{CE}}$ LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}{ }^{[8]}$	$\overline{\mathrm{CE}}$ HIGH to High Z		10		15		20	ns
t_{PU}	$\overline{\overline{C E}}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		15		25		35	ns
WRITE CYCLE								
t_{wc}	Write Cycle Time	15		25		35		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\overline{C E}}$ LOW to Write End	12		20		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		20		30		ns
t_{HA}	Address Hold From Write End	2		2		2		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PwE }}$	Write Pulse Width	10		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		15		15		ns
t_{HD}	Data Hold From Write End	0		0		0		ns
$\mathrm{t}_{\text {HzWE }}{ }^{[8]}$	R/W LOW to High Z		10		15		20	ns
$\mathrm{t}_{\text {LZWE }}{ }^{[8]}$	R/W HIGH to Low Z	3		3		3		ns
$\mathrm{t}_{\text {WDD }}{ }^{[9]}$	Write Pulse to Data Delay		30		50		60	ns
$\mathrm{t}_{\text {DDD }}{ }^{[9]}$	Write Data Valid to Read Data Valid		25		30		35	ns

Switching Characteristics Over the Operating Range ${ }^{[6,7]}$ (continued)

Parameters	Description	7B138-15		7B138-25		7B138-35		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
BUSY TIMING ${ }^{\text {l10] }}$								
$\mathrm{t}_{\text {BLA }}$	BŪ̄Y LOW from Address Match		20		20		20	ns
$\mathrm{t}_{\text {BHA }}$	$\overline{\text { BUSY }}$ HIGH from Address Mismatch		20		20		20	ns
$\mathrm{t}_{\text {BLC }}$	$\overline{\text { BUSY }}$ LOW from $\overline{\text { CE }}$ LOW		20		20		20	ns
$\mathrm{t}_{\text {BHC }}$	BUSY HIGH from CE HIGH		20		20		20	ns
$\mathrm{tPS}^{\text {P }}$	Port Set-Up for Priority		5		5		5	ns
$t_{\text {WB }}$	$\overline{\text { WE }}$ LOW after $\overline{\text { BUSY }}$ LOW		0		0		0	ns
twH	$\overline{\text { WE }}$ HIGH after $\overline{\text { BUSY }} \mathrm{HIGH}$		13		20		30	ns
$\mathrm{t}_{\text {BDD }}$	$\overline{\text { BUSY }}$ HIGH to Data Valid		15		25		35	ns
INTERRUPT TIMING ${ }^{[10]}$								
$\mathrm{t}_{\text {ins }}$	$\overline{\text { INT }}$ Set Time		20		25		25	ns
$\mathrm{t}_{\text {INR }}$	$\overline{\text { INT }}$ Reset Time		20		25		25	ns
SEMAPHORE TIMING								
$\mathrm{t}_{\text {SOP }}$	SEM Flag Update Pulse ($\overline{\mathrm{OE}}$ or $\overline{\text { SEM }}$)	10		10		15		ns
$\mathrm{t}_{\text {SWRD }}$	SEM Flag Write to Read Time	5		5		5		ns
tsps	SEM Flag Contention Window	5		5		5		ns

Notes:
6. See the last page of this specification for Group A subgroup testing information.
7. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
8. Test conditions used are Load 3.
9. For information on part-to-part delay through RAM cells from writing port to reading port, refer to Read Timing with Port-to-Port Delay waveform.
10. Test conditions used are Load 2.

Switching Waveforms

Read Cycle No. ${ }^{[15,16]}$

Read Cycle No. $\mathbf{2}^{[13,14,15]}$

Read Timing with Port-to-Port Delay (M/ $\overline{\mathbf{S}}=\mathbf{L})^{[11,12]}$

Notes:

11. $\overline{\mathrm{BUSY}}=\mathrm{HIGH}$ for the writing port.
12. $\overline{\mathrm{CE}}_{\mathrm{L}}=\overline{\mathrm{CE}}_{\mathrm{R}}=$ LOW.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
14. $\overline{\mathrm{CE}}_{\mathrm{L}}=\mathrm{L}, \overline{\mathrm{SEM}}=\mathrm{H}$ when accessing RAM. $\overline{\mathrm{CE}}=\mathrm{H}, \overline{\mathrm{SEM}}=\mathrm{L}$ when accessing semaphores.
15. $\mathrm{R} / \overline{\mathrm{W}}$ is HIGH for read cycle.
16. Device is continuously selected $\overline{\mathrm{CE}}=$ LOW and $\overline{\mathrm{OE}}=$ LOW. This waveform cannot be used for semaphore reads.

Switching Waveforms (continued)
Write Cycle No. 1: $\overline{\mathbf{O E}}$ Tri-States Data I/Os (Either Port) ${ }^{[17,18,19]}$

Write Cycle No. 2: R/ $\overline{\mathbf{W}}$ Tri-States DATA I/Os (Either Port) ${ }^{[17,19,20]}$

B138-13

Notes:

17. The internal write time of the memory is defined by the overlap of $\overline{C E}$ or SEM LOW and R/W LOW. Both signals must be LOW to initiate a write, and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
18. If $\overline{\mathrm{OE}}$ is LOW during a $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle, the write pulse width must be the larger of $t_{\text {PWE }}$ or $\left(t_{\text {HZWE }}+t_{S D}\right)$ to allow the I/O drivers to turn off and data to be placed on the bus for the required $t_{\text {SD }}$. If $\overline{\mathrm{OE}}$ is HIGH during a R $/ \overline{\mathrm{W}}$ controlled write cycle (as in this example), this requirement does not apply and the write pulse can be as short as the specified $t_{\text {PWE }}$.
19. $\mathrm{R} / \overline{\mathrm{W}}$ must be HIGH during all address transitions.
20. Data I/O pins enter high impedance when $\overline{\mathrm{OE}}$ is held LOW during write.

Switching Waveforms (continued)

Semaphore Read After Write Timing, Either Side ${ }^{[24]}$

Timing Diagram of Semaphore Contention ${ }^{[21,22,23]}$

Notes:
21. $\mathrm{I} / \mathrm{O}_{0 \mathrm{R}}=\mathrm{I} / \mathrm{O}_{0 \mathrm{~L}}=\mathrm{LOW}$ (request semaphore); $\overline{\mathrm{CE}}_{\mathrm{R}}=\overline{\mathrm{CE}}_{\mathrm{L}}=\mathrm{HIGH}$
22. Semaphores are reset (available to both ports) at cycle start.
23. If $t_{\text {SPS }}$ is violated, the semaphore will definitely be obtained by one side or the other, but there is noguarantee which side will control the semaphore.
24. $\overline{\mathrm{CE}}=\mathrm{HIGH}$ for the duration of the above timing (both write and read cycle).

Switching Waveforms (continued)

Timing Diagram of Read with $\overline{\text { BUSY }}(\mathbf{M} / \overline{\mathbf{S}}=\mathbf{H I G H})^{[12]}$

Write Timing with Busy Input (M/ $\overline{\mathbf{S}}=$ LOW)

B138-17

Switching Waveforms (continued)

Busy Timing Diagram No. 1 ($\overline{\text { CE }}$ Arbitration) ${ }^{[25]}$
$\overline{\mathbf{C E}}_{\mathbf{L}}$ Valid First:

$\overline{\mathbf{C E}}_{\mathrm{R}}$ Valid First:

Busy Timing Diagram No. 2 (Address Arbitration) ${ }^{[25]}$
Left Address Valid First:

Right Address Valid First:

[^10]Switching Waveforms (continued)

Interrupt Timing Diagrams

Right Side Sets $\overline{\mathrm{INT}}_{\mathbf{L}}$:

Notes:

26. t_{HA} depends on which enable pin $\left(\overline{\mathrm{CE}}_{\mathrm{L}}\right.$ or $\left.\mathrm{R} \overline{\mathcal{W}}_{\mathrm{L}}\right)$ is deasserted first. 27. $\mathrm{t}_{\mathrm{INS}}$ or $\mathrm{t}_{\mathrm{INR}}$ depends on which enable pin $\left(\overline{\mathrm{CE}}_{\mathrm{L}}\right.$ or $\left.\mathrm{R} / \bar{W}_{\mathrm{L}}\right)$ is asserted last.
is an output. $\overline{\text { BUSY }}$ can then be used to send the arbitration outcome to a slave.

Semaphore Operation

The CY7B138 provides eight semaphore latches, which are separate from the dual-port memory locations.Semaphores are used to reserve resources that are shared between the two ports. The state of the semaphore indicates that a resource is in use. For example, if the left port wants to request a given resource, it sets a latch by writing a zero to a semaphore location. The left port then verifies its success in setting the latch by reading it. After writing to the semaphore, $\overline{\mathrm{SEM}}$ or $\overline{\mathrm{OE}}$ must be deasserted for $\mathrm{t}_{\text {sop }}$ before attempting to read the semaphore. The semaphore value will be available $t_{\text {swRD }}+t_{\text {DOE }}$ after the rising edge of the semaphore write. If the left port was successful (reads a zero), it assumes control over the shared resource, otherwise (reads a one) it assumes the right port has control and continues to poll the semaphore. When the right side has relinquished control of the semaphore (by writing a one), the left side will succeed in gaining control of the a semaphore. If the left side no longer requires the semaphore, a one is written to cancel its request.
Semaphores are accessed by asserting SEM LOW. The $\overline{\text { SEM }}$ pin functions as a chip enable for the semaphore latches ($\overline{\mathrm{CE}}$ must remain HIGH during $\overline{\text { SEM }}$ LOW). A_{0-2} represents the sempahore address. $\overline{O E}$ and $\mathrm{R} / \overline{\mathrm{W}}$ are used in the same manner as a normal memory access. When writing or reading a semaphore, the other address pins have no effect.
When writing to the semaphore, only $\mathrm{I} / \mathrm{O}_{0}$ is used. If a zero is written to the left port of an unused semaphore, a one will appear at the same semaphore address on the right port. That semaphore can now only be modified by the side showing zero (the left port in this case). If the left port now relinquishes control by writing a one to the semaphore, the semaphore will be set to one for both sides. However, if the right port had requested the semaphore (written a zero) while the left port had control, the right port would immediately own the semaphore as soon as the left port released it. Table 3 shows sample semaphore operations.
When reading a semaphore, all eight data lines output the semaphore value. The read value is latched in an output register to prevent the semaphore from changing state during a write from the other port. If both ports attempt to access the semaphore within $\mathrm{t}_{\text {sps }}$ of each other, the semaphore will definitely be obtained by one side or the other, but there is no guarantee which side will control
the semaphore.

Table 1. Non-Contending Read/Write

Inputs				Outputs	Operation
$\overline{\text { CE }}$	R/ $\overline{\mathbf{W}}$	$\overline{\mathrm{OE}}$	$\overline{\text { SEM }}$	I/ $\mathbf{O}_{\mathbf{0 - 7}}$	
H	X	X	H	High Z	Power-Down
H	H	L	L	Data Out	Read Data in Semaphore
X	X	H	X	High Z	I/O lines Disabled
H	-	X	L	Data In	Write to Semaphore
L	H	L	H	Data Out	Read
L	L	X	H	Data In	Write
L	X	X	L		Illegal Condition

Functional Description

Write Operation

Data must be set up for a duration of $t_{\text {sD }}$ before the rising edge of $\mathrm{R} / \overline{\mathrm{W}}$ in order to guarantee a valid write. A write operation is controlled by either the OE pin (see Write Cycle No. 1 waveform) or the R/W pin (see Write Cycle No. 2 waveform). Data can be written to the device $t_{\text {HzoE }}$ after the $\overline{O E}$ is deasserted or $t_{\text {HZwE }}$ after the falling edge of R / W. Required inputs for non-contention operations are summarized in Table 1.
If a location is being written to by one port and the opposite port attempts to read that location, a port-to-port flowthrough delay must be met before the data is read on the output. Data will be valid on the port wishing to read the location $t_{\text {DDD }}$ after the data is presented on the other port.

Read Operation

When reading the device, the user must assert both the $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ pins. Data will be available $\mathrm{t}_{\mathrm{ACE}}$ after $\overline{\mathrm{CE}}$ or $\mathrm{t}_{\text {DOE }}$ after $\overline{\mathrm{OE}}$ is asserted. If the user of the CY7B138 wishes to access a semaphore flag, then the SEM pin must be asserted instead of the $\overline{\mathrm{CE}}$ pin.

Interrupts

The interrupt flag ($\overline{\mathrm{INT}}$) permits communications between ports. When the left port writes to location FFF, the right port's interrupt flag ($\overline{\mathrm{INTR}}$) is set. This flag is cleared when the right port reads that same location. Setting the left port's interrupt flag (INTL) is accomplished when the right port writes to location FFE. This flag is cleared when the left port reads location FFE. The message at FFF or FFE is user-defined. See Table 2 for input requirements for $\overline{\mathrm{INT}}$.

Busy

The CY7B138 provides on-chip arbitration to alleviate simultaneous memory location access (contention). If both ports' $\overline{\text { CEs }}$ are asserted or an address match occurs within t_{PS} of each other the Busy logic will determine which port has access. If $t_{p s}$ is violated, one port will definitely gain permission to the location, but it is not guaranteed which one. BUSY will be asserted $\mathrm{t}_{\text {BLA }}$ after an address match or $\mathrm{t}_{\mathrm{BLC}}$ after $\overline{\mathrm{CE}}$ is taken LOW.

Master/Slave

A M / \bar{S} pin is provided in order to expand the word width by configuring the device as either a master or a slave. The slave has BUSY pins configured as inputs. This will allow the device to interface to a master device with no external components. Writing of slave devices must be delayed until after the BUSY input has settled. Otherwise, the slave chip may begin a write cycle during a contention situation. When presented as a HIGH input, the $\mathrm{M} / \overline{\mathrm{S}}$ pin allows the device to be used as a master and therefore the BUSY line

Table 2. Interrupt Operation Example (assumes $\overline{\mathrm{BUSY}}_{\mathrm{L}}=\overline{\mathbf{B U S Y}}_{\mathrm{R}}=\mathbf{H I G H}$)

	Left Port					Right Port				
Function	R/产	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	A_{0-11}	$\overline{\text { INT }}$	R//	$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}$	A_{0-11}	$\overline{\text { INT }}$
Set Left INT	X	X	X	X	L	L	L	X	$\overline{\mathrm{FFE}}$	X
Reset Left $\overline{\text { INT }}$	X	L	L	$\overline{\mathrm{FFE}}$	H	X	X	X	X	X
Set Right $\overline{\mathrm{INT}}$	L	L	X	$\overline{\mathrm{FFF}}$	X	X	X	X	X	L
Reset Right $\overline{\mathrm{INT}}$	X	X	X	X	X	X	L	L	$\overline{\text { FFF }}$	H

Table 3. Semaphore Operation Example

Function	1/O 0 Left	I/O 0 Right	Status
No action	1	1	Semaphore free
Left port writes semaphore	0	1	Left port obtains semaphore
Right port writes 0 to semaphore	0	1	Right side is denied access
Left port writes 1 to semaphore	1	0	Right port is granted access to semaphore
Left port writes 0 to semaphore	1	0	No change. Left port is denied access
Right port writes 1 to semaphore	0	1	Left port obtains semaphore
Left port writes 1 to semaphore	1	1	No port accessing semaphore address
Right port writes 0 to semaphore	1	0	Right port obtains semaphore
Right port writes 1 to semaphore	1	1	No port accessing semaphore
Left port writes 0 to semaphore	0	1	Left port obtains semaphore
Left port writes 1 to semaphore	1	1	No port accessing semaphore

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7B138-15LC	L81	Commercial
	CY7B138-15JC	J81	
	CY7B138-15GC	G68	
25	CY7B138-25LC	L81	Commercial
	CY7B138-25JC	J81	
	CY7B138-25GC	G68	
	CY7B138-25JI	J81	Industrial
	CY7B138-25LMB	L81	Military
35	CY7B138-35LC	L81	Commercial
	CY7B138-35JC	J81	
	CY7B138-35GC	G68	
	CY7B138-35JI	J81	Industrial
	CY7B138-35LMB	L81	Military

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$	$1,2,3$
I_{LX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 3}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 4}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$

Features

- 0.8-micron BiCMOS for high performance
- High-speed access
-15 ns (commercial)
-25 ns (military)
- Automatic power-down
- Fully asynchronous operation
- Master /Slave select pin allows bus width expansion to 16 bits or more
- Busy arbitration scheme provided
- Semaphores included to permit software handshaking between ports
- INT flag for port-to-port communication
- Available in 68-pin LCC/PLCC/PGA
- TTL compatible

Functional Description

The CY7B144 is a high-speed BiCMOS $8 \mathrm{~K} \times 8$ dual port static RAM. Various arbitration schemes are included on the CY7B144 in order to handle situations when multiple processors access the same piece of data. Two ports are provided permitting independent, asynchronous access for reads and writes to any location in memory. The CY7B144 can be utilized as a standalone 64 Kbit dual-port static RAM or multiple devices can be combined in order to function as a 16 -bit or wider master/ slave dual-port static RAM. An M/ $\overline{\mathbf{S}}$ pin is provided for implementing 16-bit or wider memory applications without the need for separate master and slave devices or additional discrete logic. Application areas include interprocessor/multiprocessor designs, communications status buffering, and dual-port video/graphics memory.

Each port has independent control pins: chip enable ($\overline{\mathrm{CE}}$), read or write enable $(\mathrm{R} / \overline{\mathrm{W}})$, and output enable $(\overline{\mathrm{OE}})$. Two flags, BUSY and INT, are provided on each port. $\overline{\text { BUSY }}$ signals that the port is trying to access the same location currently being accessed by the other port. The interrupt flag (INT) permits communication between ports or systems by means of mail box or message center. The semaphores are used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphore logic is comprised of eight shared latches. Only one side can control the latch (semaphore) at any time. Control of a semaphore indicates that a shared resource is in use. An automatic power-down feature is controlled independently on each port by a chip enable ($\overline{\mathrm{CE}}$) pin or $\overline{\mathrm{SEM}}$ pin.
The CY7B144 is available in 68-pin LCCs, PLCCs, and PGAs.

Logic Block Diagram

Pin Configurations

68-Pin PGA
Top View

	$\begin{gathered} 119 \\ A_{s d} \end{gathered}$	$\begin{gathered} 118 \\ A_{4 L} \end{gathered}$	$\begin{gathered} 116 \\ A_{x} \end{gathered}$	$\begin{aligned} & 114 \\ & A_{a} \end{aligned}$	$\left\lvert\, \begin{array}{\|c\|} 112 \\ \hline \mathrm{BUSY}_{1} \end{array}\right.$	$\begin{gathered} 110 \\ \mathrm{M} / \overline{\mathrm{S}} \end{gathered}$	$\frac{108}{\overline{\mathbb{N}}_{\mathrm{R}}}$	$\begin{aligned} & 106 \\ & \mathrm{~A}_{1 R} \end{aligned}$	$\begin{gathered} 104 \\ \mathrm{~A}_{3 \mathrm{R}} \end{gathered}$	
${ }_{A_{7}}^{121}$	$\begin{gathered} 120 \\ A_{\mathrm{GL}} \end{gathered}$	$\begin{gathered} 117 \\ \mathrm{~A}_{3} \end{gathered}$	$\begin{gathered} 115 \\ A_{11} \end{gathered}$	$\frac{113}{\mathbb{N T}_{\mathrm{L}}}$	$\begin{array}{r} 111 \\ \text { GND } \end{array}$	\|109 BUSY $_{8}$	$\begin{gathered} 107 \\ A_{\text {OR }} \end{gathered}$	$\begin{aligned} & 105 \\ & A_{2 R} \end{aligned}$	$\begin{gathered} 103 \\ \mathrm{~A}_{4 \mathrm{R}} \end{gathered}$	${ }_{A_{S A}}^{102}$
$\begin{gathered} 123 \\ A_{Q} \end{gathered}$	$\begin{gathered} 122 \\ \mathrm{~A}_{\mathrm{glt}} \end{gathered}$	78144							$\begin{gathered} 100 \\ \mathrm{~A}_{7 R} \end{gathered}$	${ }_{A_{\text {CR }}}^{101}$
$\begin{aligned} & 125 \\ & A_{111} \end{aligned}$	$\begin{gathered} 124 \\ A_{1 \alpha} \end{gathered}$								${ }_{A_{S R}}^{98}$	${ }^{999}{ }^{98}$
$\begin{aligned} & 127 \\ & v_{\mathrm{cc}} \end{aligned}$	$\begin{gathered} 126 \\ A_{12} \end{gathered}$								$\begin{array}{r} 96 \\ \mathrm{~A}_{1, \mathrm{R}} \end{array}$	$\begin{array}{r}97 \\ \mathrm{~A}_{108} \\ \hline\end{array}$
$\begin{aligned} & 129 \\ & \text { NC } \end{aligned}$	$\begin{gathered} 128 \\ \mathrm{NC} \end{gathered}$								94 GND	$\begin{array}{r}95 \\ \mathrm{~A}_{128} \\ \hline\end{array}$
$\frac{131}{\operatorname{SEM}_{2}}$	$\frac{130}{C_{L}}$								$\begin{gathered} 92 \\ \mathrm{NC} \end{gathered}$	93 NC
$\frac{133}{0_{L}}$	$\begin{array}{r} 132 \\ \mathrm{R} \bar{W}_{\mathrm{L}} \end{array}$								\% $\begin{array}{r}90 \\ \text { SEM }^{2}\end{array}$	$\stackrel{91}{\mathrm{CE}_{\text {R }}}$
$\begin{array}{r} 135 \\ 1 / O_{\alpha} \end{array}$	134								$\frac{88}{0 E_{\mathrm{g}}}$	$\begin{array}{r} 89 \\ \mathrm{R} \bar{W}_{\mathrm{R}} \end{array}$
$\begin{array}{r} 136 \\ 1 / O_{11} \end{array}$	$\begin{array}{r} 69 \\ 1 / O_{\mathrm{x}} \end{array}$	$\begin{array}{r} 71 \\ 1 / O_{4 L} \end{array}$	$\begin{array}{r} 73 \\ \text { GND } \end{array}$	$\begin{array}{r} 75 \\ 1 / O_{7} \end{array}$	$\begin{array}{r} 77 \\ \text { GND } \end{array}$	$\begin{array}{r} 79 \\ \mathrm{~V} \mathrm{O}_{\mathrm{iR}} \end{array}$	$v_{c c}^{81}$	$\begin{array}{\|c} 83 \\ \mathrm{~V} / \mathrm{O}_{4 \mathrm{R}} \end{array}$	$\begin{array}{\|r\|} 86 \\ 1 / O_{7 R} \end{array}$	87 $N C$
	$\begin{array}{r} 70 \\ \mathrm{~V} / \mathrm{O}_{\mathfrak{x}} \end{array}$	$\begin{array}{r} 72 \\ 1 / O_{5 L} \end{array}$	$\begin{array}{r} 74 \\ 1 / O_{6 L} \end{array}$	$\begin{array}{r} 76 \\ v_{\mathrm{cc}} \end{array}$	$\begin{array}{r} 78 \\ 1 / O_{O R} \end{array}$	$\begin{array}{r} 80 \\ 1 / \mathrm{O}_{2 \mathrm{R}} \end{array}$	$\begin{array}{r} 82 \\ 1 / O_{3 A} \end{array}$	$\begin{array}{r} 84 \\ \mathrm{~V} / \mathrm{O}_{5 \mathrm{~S}} \end{array}$	$\begin{array}{\|r\|} \hline 85 \\ 1 / O_{6 P} \\ \hline \end{array}$	

Pin Definitions

Left Port	Right Port	Description
$\mathrm{I} / \mathrm{O}_{0 \mathrm{~L}-7 \mathrm{~L}}$	$\mathrm{I} / \mathrm{O}_{0 \mathrm{R}-7 \mathrm{R}}$	Data bus Input/Output
$\mathrm{A}_{0 \mathrm{~L}-12 \mathrm{~L}}$	$\mathrm{A}_{0 \mathrm{R}-12 \mathrm{R}}$	Address Lines
$\overline{\mathrm{CE}}_{\mathrm{L}}$	$\overline{\mathrm{CE}}_{\mathrm{R}}$	Chip Enable
$\overline{\mathrm{OE}}_{\mathrm{L}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	Output Enable
$\mathrm{R} / \overline{\mathrm{W}}_{L}$	$\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{R}}$	Read/Write Enable
$\overline{\mathrm{SEM}}_{\mathrm{L}}$	$\overline{\mathrm{SEM}}_{\mathrm{R}}$	Semaphore Enable. When asserted LOW, allows access to eight semaphores. The three least significant bits of the address lines will determine which semaphore to write or read. The $\mathrm{I} / \mathrm{O}_{0}$ pin is used when writing to a semaphore. Semaphores are requested by writing a 0 into the respective location.
$\overline{\mathrm{INT}}_{\mathrm{L}}$	$\overline{\overline{\mathrm{INT}}}_{\mathrm{R}}$	Interrupt Flag. $\overline{\mathrm{INT}}_{\mathrm{L}}$ is set when right port writes location IFFE and is cleared when left port reads location IFFE. $\overline{\mathrm{INT}}_{\mathrm{R}}$ is set when left port writes location IFFF and is cleared when right port reads location IFFF.
	$\overline{\text { BUSY }}_{\text {R }}$	Busy Flag
M/S		Master or Slave Select
V_{CC}		Power
GND		Ground

Selection Guide

		7B144-15	7B144-25	7B144-35
Maximum Access Time (ns)	15	25	35	
Maximum Operating Current (mA)	Commercial	260	220	210
	Military		280	250
	Commercial	90	75	70
	Military		80	75

Maximum Rating

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ}{ }^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$ -3.5 V to +7.0 V
Output Current into Outputs (LOW) .20 mA
Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[4]}$

Notes:

1. Pulse width $<20 \mathrm{~ns}$.
2. T_{A} is the "instant on" case temperature.
3. $\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}}=$ All inputs cycling at $\mathrm{f}=1 / \mathrm{t}_{\mathrm{RC}}$ (except output enable). $\mathrm{f}=0$ means no address or control lines change. This applies only to inputs at CMOS level standby ISB3 .
4. See the last page of this specification for Group A subgroup testing information.
5. Tested initially and after any design or process changes that may affect these parameters.

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range ${ }^{[6,7]}$

Parameters	Description	7B144-15		7B144-25		7B144-35		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	15		25		35		11 s
$t_{\text {AA }}$	Address to Data Valid		15		25		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold From Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		15		25		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		15		20	ns
$\mathrm{t}_{\text {LZOE }}{ }^{[8]}$	$\overline{\mathrm{OE}}$ Low to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HZOE}}{ }^{[8]}$	OE HIGH to High Z		10		15		20	ns
$\mathrm{t}_{\mathrm{LZCE}}{ }^{[8]}$	$\overline{\mathrm{CE}}$ LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HzCE}}{ }^{[8]}$	$\overline{\text { CE }}$ HIGH to High Z		10		15		20	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to Power-Down		15		25		35	ns
WRITE CYCLE								
t_{wc}	Write Cycle Time	15		25		35		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\overline{C E}}$ LOW to Write End	12		20		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		20		30		ns
$t_{\text {HA }}$	Address Hold From Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	Write Pulse Width	10		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		15		15		ns
t_{HD}	Data Hold From Write End	0		0		0		ns
$\mathrm{t}_{\mathrm{HZWE}}{ }^{[8]}$	R/ \bar{W} LOW to High Z	10			15		20	ns
$\mathrm{t}_{\text {LZWE }}{ }^{[8]}$	R/ \bar{W} HIGH to Low Z	3		3		3		ns
$\mathrm{t}_{\text {WDD }}$	Write Pulse to Data Delay	30			50		60	ns
$\mathrm{t}_{\text {DDD }}$	Write Data Valid to Read Data Valid	25			30		35	ns

Switching Characteristics Over the Operating Range ${ }^{[6,7]}$

Parameters	Description	7B144-15		7B144-25		7B144-35		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
BUSY TIMING ${ }^{(9]}$								
$\mathrm{t}_{\text {BLA }}$	BUSY LOW from Address Match		20		20		20	ns
$\mathrm{t}_{\text {BHA }}$	BUSY HIGH from Address Mismatch		20		20		20	ns
$\mathrm{t}_{\text {BLC }}$	$\overline{\text { BUSY }}$ LOW from $\overline{\text { CE }}$ LOW		20		20		20	ns
$\mathrm{t}_{\text {BHC }}$	$\overline{\text { BUSY }}$ HIGH from $\overline{\text { CE }}$ HIGH		20		20		20	ns
tps	Port Set-Up for Priority		5		5		5	ns
$\mathrm{t}_{\text {WB }}$	$\overline{\text { WE LOW after } \overline{\text { BUSY }} \text { LOW }}$		0		0		0	ns
t_{WH}	$\overline{\text { WE HIGH after BUSY }}$ HIGH		13		20		30	ns
$\mathrm{t}_{\text {BDD }}$	BUSY HIGH to Data Valid		15		25		35	ns
INTERRUPT TIMING ${ }^{[9]}$								
$\mathrm{t}_{\text {INS }}$	$\overline{\text { INT }}$ Set Time		20		25		25	ns
$\mathrm{t}_{\text {INR }}$	INT Reset Time		20		25		25	ns
SEMAPHORE TIMING								
$\mathrm{t}_{\text {SOP }}$	SEM Flag Update Pulse ($\overline{\mathrm{OE}}$ or $\overline{\text { SEM }}$)	10		10		15		ns
$\mathrm{t}_{\text {SWRD }}$	SEM Flag Write to Read Time	5		5		5		ns
$\mathrm{t}_{\text {SPS }}$	SEM Flag Contention Window	5		5		5		ns

Notes:

6. See the last page of this specification for Group A subgroup testing information.
7. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
8. Test conditions used are Load 3.
9. Test conditions used are Load 2.

Switching Waveforms

Read Cycle No. $1^{[14,15]}$

Read Timing with Port-to-Port Delay $(\mathbf{M} / \overline{\mathbf{S}}=\mathbf{L})^{[10,11]}$

Notes:

10. $\overline{\mathrm{BUSY}}=\mathrm{HIGH}$ for the writing port.
11. $\overline{\mathrm{CE}}_{\mathrm{L}}=\overline{\mathrm{CE}}_{\mathrm{R}}=$ LOW.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. $\overline{\mathrm{CE}}_{\mathrm{L}}=\mathrm{L}, \overline{\mathrm{SEM}}=\mathrm{H}$ when accessing RAM. $\overline{\mathrm{CE}}=\mathrm{H}, \overline{\mathrm{SEM}}=\mathrm{L}$ when accessing semaphores.
14. $\mathrm{R} / \overline{\mathrm{W}}$ is HIGH for read cycle.
15. Device is continuously selected $\overline{\mathrm{CE}}=\mathrm{LOW}$ and $\overline{\mathrm{OE}}=$ LOW. This waveform cannot be used for semaphore reads.

Switching Waveforms (continued)

Write Cycle No. 1: $\overline{\mathbf{O E}}$ Tri-States DATA I/Os (Either Port) ${ }^{[16,17,19]}$

Write Cycle No. 2: R/ $\overline{\mathbf{W}}$ Tri-States DATA I/Os (Either Port) ${ }^{[16,18,19]}$

[^11]
Notes:

16. The internal write time of the memory is defined by the oveilap of $\overline{\mathrm{CE}}$ or SEM LOW and R/W LOW. Both signals must be LOW to initiate a write, and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
17. If $\overline{\mathrm{OE}}$ is LOW during a $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle, the write pulse width must be the larger of $t_{\text {PWE }}$ or ($\mathrm{t}_{\mathrm{HZWE}}+\mathrm{t}_{\mathrm{SD}}$) to allow the $1 / \mathrm{O}$ drivers to turn off and data to be placed on the bus for the required t_{SD}. If $\overline{\mathrm{OE}}$ is HIGH during a R/W controlled write cycle (as in this example), this requirement does not apply and the write pulse can be as short as the specified $t_{\text {Pwe }}$.
18. Data I/O pins enter high impedance when $\overline{\mathrm{OE}}$ is held LOW during write.
19. $\mathrm{R} / \overline{\mathrm{W}}$ must be HIGH during all address transitions.

Switching Waveforms (continued)
Semaphore Read After Write Timing, Either Side ${ }^{[23]}$

Timing Diagram of Semaphore Contention ${ }^{[20,21,22]}$

Notes:

20. $\mathrm{I} / \mathrm{O}_{0 \mathrm{R}}=\mathrm{I} / \mathrm{O}_{0 \mathrm{~L}}=\mathrm{LOW}$ (request semaphore); $\overline{\mathrm{CE}}_{\mathrm{R}}=\overline{\mathrm{CE}}_{\mathrm{L}}=\mathrm{HIGH}$
21. Semaphores are reset (available to both ports) at cycle start.
22. If $t_{\text {SPs }}$ is violated, the semaphore will definitely be obtained by one side or the other, but there is no gaurantee which side will control the semaphore.
23. $\overline{\mathrm{CE}}=\mathrm{HIGH}$ for the duration of the above timing (both write and read cycle).

Switching Waveforms (continued)

Timing Diagram of Read with $\overline{\text { BUSY }}(\mathbf{M} / \overline{\mathrm{S}}=\mathbf{H I G H})^{[11]}$

Write Timing with Busy Input (M/ $\overline{\mathbf{S}}=$ LOW)

Switching Waveforms (continued)

Busy Timing Diagram No. 1 ($\overline{\mathrm{CE}}$ Arbitration) ${ }^{[24]}$
$\overline{\mathrm{CE}}_{\mathrm{L}}$ Valid First:

$\overline{\mathbf{C E}}_{\mathrm{R}}$ Valid First:

Busy Timing Diagram No. 2 (Address Arbitration) ${ }^{[24]}$
Left Address Valid First:

Note:

24. If t_{PS} is violated, the busy signal will be asserted on one side or the other, but there is no guarantee on which side BUSY will be asserted
25. t_{HA} depends on which enable pin $\left(\overline{\mathrm{CE}}_{\mathrm{L}}\right.$ or $\left.\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{L}}\right)$ is deasserted first.
26. $\mathrm{t}_{\text {INS }}$ or $\mathrm{t}_{\mathrm{INR}}$ depends on which enable pin $\left(\overline{\mathrm{CE}}_{\mathrm{L}}\right.$ or $\left.\mathrm{R} / \bar{W}_{\mathrm{L}}\right)$ is asserted last.

Switching Waveforms (continued)
Interrupt Timing Diagrams

Right Side Sets $\overline{\mathbf{N}}_{\mathbf{L}}$:

Architecture

The CY7B144 consists of a an array of 8 K words of 8 bits each of dual-port RAM cells, I/O and address lines, and control signals ($\overline{\mathrm{CE}}, \overline{\mathrm{OE}}, \mathrm{R} / \overline{\mathrm{W}}$). These control pins permit independent access for reads or writes to any location in memory. To handle simultaneous writes/reads to the same location, a BUSY pin is provided on each port. Two interrupt ($\overline{\text { INT }}$) pins can be utilized for port-to-port communication. Two semaphore ($\overline{\mathrm{SEM}}$) control pins are used for allocating shared resources. With the M/̄̄ pin, the CY7B144 can function as a Master ($\overline{\text { BUSY }}$ pins are outputs) or as a slave ($\overline{\mathrm{BUSY}}$ pins are inputs). The CY7B144 has an automatic power-down feature controlled by $\overline{\mathrm{CE}}$. Each port is provided with its own output enable control $(\overline{\mathrm{OE}})$, which allows data to be read from the device.

Functional Description

Write Operation

Data must be set up for a duration of $t_{S D}$ before the rising edge of $\mathrm{R} / \overline{\mathrm{W}}$ in order to guarantee a valid write. A write operation is controlled by either the $\overline{\mathrm{OE}}$ pin (see Write Cycle No. 1 waveform) or the R/W pin (see Write Cycle No. 2 waveform). Data can be written to the device $\mathrm{t}_{\mathrm{HzOE}}$ after the $\overline{\mathrm{OE}}$ is deasserted or $\mathrm{t}_{\mathrm{HZwE}}$ after the falling edge of R / W. Required inputs for non-contention operations are summarized in Table 1.
If a location is being written to by one port and the opposite port attempts to read that location, a port-to-port flowthrough delay must be met before the data is read on the output. Data will be valid on the port wishing to read the location $t_{\text {DDD }}$ after the data is presented on the other port.

Read Operation

When reading the device, the user must assert both the $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ pins. Data will be available $\mathrm{t}_{\mathrm{ACE}}$ after $\overline{\mathrm{CE}}$ or $\mathrm{t}_{\mathrm{DOE}}$ after $\overline{\mathrm{OE}}$ are asserted. If the user of the CY7B144 wishes to access a semaphore flag, then the $\overline{S E M}$ pin must be asserted instead of the $\overline{\mathrm{CE}}$ pin.

Interrupts

The interrupt flag ($\overline{\mathrm{INT}}$) permits communications between ports. When the left port writes to location IFFF, the right port's interrupt flag (INTR) is set. This flag is cleared when the right port reads that same location. Setting the left port's interrupt flag (INTL) is accomplished when the right port writes to location IFFE. This flag is cleared when the left port reads location IFFE. The message at IFFF or IFFE is user-defined. See Table 2 for input requirements for $\overline{\mathrm{INT}}$.

Busy

The CY7B144 provides on-chip arbitration to alleviate simultaneous memory location access (contention). If both ports' $\overline{\mathrm{CE}}$ are asserted or an address match occurs within t_{PS} of each other the Busy logic will determine which port has access. If t_{ps} is violated, one port will definitely gain permission to the location, but it is not guaranteed which one. BUSY will be asserted $\mathrm{t}_{\text {BLA }}$ after an address match or $\mathrm{t}_{\mathrm{BLC}}$ after $\overline{\mathrm{CE}}$ is taken LOW.

Master/Slave

A M / \bar{S} pin is provided in order to expand the word width by configuring the device as either a master or a slave. The slave has BUSY pins configured as inputs. This will allow the device to interface to a master device with no external components. Writing of slave devices must be delayed until after the BUSY input has settled. Otherwise, the Slave chip may begin a write cycle during a conten-
tion situation. When presented a HIGH input, the M/Spin allows the device to be used as a master and therefore the BUSY line is an output. BUSY can then be used to send the arbitration outcome to a slave.

Semaphore Operation

The CY7B144 provides eight semaphore latches which are separate from the dual-port memory locations.Semaphores are used to reserve resources that are shared between the two ports.The state of the semaphore indicates that a resource is in use. For example, if the left port wants to request a given resource, it sets a latch by writing a zero to a semaphore location. The left port then verifies its success in setting the latch by reading it. After writing to the semaphore, $\overline{\mathrm{SEM}}$ or $\overline{\mathrm{OE}}$ must be deasserted for $\mathrm{t}_{\text {sop }}$ before attempting to read the semaphore. The semaphore value will be available $t_{\text {swrd }}+t_{\text {DOE }}$ after the rising edge of the semaphore write. If the left port was successful (reads a zero), it assumes control over the shared resource, otherwise (reads a one) it assumes the right port has control and continues to poll the semaphore. When the right side has relinquished control of the semaphore (by writing a one), the left side will succeed in gaining control of the a semaphore. If the left side no longer requires the semaphore, a one is written to cancel its request.
Semaphores are accessed by asserting $\overline{\text { SEM }}$ LOW. The $\overline{\text { SEM }}$ pin functions as a chip enable for the semaphore latches ($\overline{\mathrm{CE}}$ must remain HIGH during $\overline{\text { SEM }}$ LOW). A_{0-2} represents the sempahore address. $\overline{\mathrm{OE}}$ and $\mathrm{R} / \overline{\mathrm{W}}$ are used in the same manner as a normal memory access. When writing or reading a semaphore, the other address pins have no effect.
When writing to the semaphore, only $\mathrm{I} / \mathrm{O}_{0}$ is used. If a zero is written to the left port of an unused semaphore, a one will appear at the same semaphore address on the right port. That semaphore can now only be modified by the side showing zero (the left port in this case). If the left port now relinquishes control by writing a one to the semaphore, the semaphore will be set to one for both sides. However, if the right port had requested the semaphore (written a zero) while the left port had control, the right port would immediately own the semaphore as soon as the left port released it. Table 3 shows sample semaphore operations.
When reading a semaphore, all eight data lines output the semaphore value. The read value is latched in an output register to prevent the semaphore from changing state during a write from the other port. If both ports attempt to access the semaphore within $\mathrm{t}_{\text {sPs }}$ of each other, the semaphore will definitely be obtained by one side or the other, but there is no guarantee which side will control the semaphore.

Table 1. Non-Contending Read/Write

Inputs				Outputs	Operation
$\overline{\mathrm{CE}}$	R/ $\overline{\mathbf{W}}$	$\overline{\mathrm{OE}}$	$\overline{\text { SEM }}$	I/O $\mathbf{0}_{0-7}$	
H	X	X	H	High Z	Power-Down
H	H	L	L	Data Out	Read Data in Semaphore
X	X	H	X	High Z	I/O lines Disabled
H	-	X	L	Data In	Write to Semaphore
L	H	L	H	Data Out	Read
L	L	X	H	Data In	Write
L	X	X	L		Illegal Condition

Table 2. Interrupt Operation Example (assumes $\overline{\mathrm{BUSY}}_{\mathrm{L}}=\overline{\mathbf{B U S Y}}_{\mathrm{R}}=\mathbf{H I G H}$)

	Left Port					Right Port				
Function	R/ $\overline{\mathbf{W}}$	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	$\mathrm{A}_{\mathbf{0}-12}$	$\overline{\text { INT }}$	R/产	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	A_{0-12}	$\overline{\text { INT }}$
Set Left $\overline{\text { INT }}$	X	X	X	X	L	L	L	X	$\overline{\text { 1FFE }}$	X
Reset Left $\overline{\text { INT }}$	X	L	L	$\overline{\overline{1 F F E}}$	H	X	L	L	X	X
Set Right $\overline{\text { INT }}$	L	L	X	$\overline{\text { 1FFF }}$	X	X	X	X	X	L
Reset Right INT	X	X	X	X	X	X	L	L	$\overline{\text { 1FFF }}$	H

Table 3. Semaphore Operation Example

Function	I/O 0 Left	I/O 0 Right	Status
No action	1	1	Semaphore free
Left port writes semaphore	0	1	Left port obtains semaphore
Right port writes 0 to semaphore	0	1	Right side is denied access
Left port writes 1 to semaphore	1	0	Right port is granted access to semaphore
Left port writes 0 to semaphore	1	0	No change. Left port is denied access
Right port writes 1 to semaphore	0	1	Left port obtains semaphore
Left port writes 1 to semaphore	1	1	No port accessing semaphore address
Right port writes 0 to semaphore	1	0	Right port obtains semaphore
Right port writes 1 to semaphore	1	1	No port accessing semaphore
Left port writes 0 to semaphore	0	1	Left port obtains semaphore
Left port writes 1 to semaphore	1	1	No port accessing semaphore

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7B144-15LC	L81	Commercial
	CY7B144-15JC	J81	
	CY7B144-15GC	G68	
	CY7B144-25LC	L81	
	CY7B144-25JC	J81	
	CY7B144-25GC	G68	
	CY7B144-25JI	J81	Industrial
	CY7B144-25LMB	L81	Military
35	CY7B144-35LC	L81	Commercial
	CY7B144-35JC	J81	
	CY7B144-35GC	G68	
	CY7B144-35JI	J81	Industrial
	CY7B144-35LMB	L81	Military

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$	$1,2,3$
I_{LX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 3}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 4}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7, 8, 9, 10, 11
$t_{\text {AA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{OHA}}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {ACE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{DOE}}$	7, 8, 9, 10, 11
WRITE CYCLE	
$t_{\text {wc }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SCE }}$	7, 8, 9, 10, 11
$t_{\text {AW }}$	7, 8, 9, 10, 11
t_{HA}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SA }}$	7, 8, 9, 10, 11
$t_{\text {pwe }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SD }}$	7, 8, 9, 10, 11
t_{HD}	7, 8, 9, 10, 11
BUSY/INTERRUPT TIMING	
$\mathrm{t}_{\text {BLA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BHA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BLC }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BHC }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PS }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {INs }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {INR }}$	7, 8, 9, 10, 11
BUSY TIMING	
$\mathrm{t}_{\text {WB }}$	7, 8, 9, 10, 11
t_{wh}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BDD }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DDD }}$	7, 8, 9, 10, 11
$t_{\text {wDD }}$	7, 8, 9, 10, 11

Document \#: 38-00163

SEMICONDUCTOR

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed $-25 \mathrm{~ns}$
- Low active power
- 440 mW (commercial)
-605 mW (military)
- Low standby power
$-55 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C147 is a high-performance CMOS static RAMs organized as 4096 words by 1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7C147 has an automatic power-down feature, reducing the power consumption by 80% when deselected.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input $\operatorname{pin}(\mathrm{DI})$ is written into the memory loca-

4096 x 1 Static RAM

tion specified on the address pins (A_{0} through A_{11}).
Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) LOW while ($\overline{\mathrm{WE}}$) remains HIGH. Under these condintions, the contents of the location specified on the address pins will appear on the data output (DO) pin.
The output pin remains in a high-impedance state when chip enable is HIGH, or write enable ($\overline{\mathrm{WE}}$) is LOW.

Selection Guide

		7C147-25	7C147-35	7C147-45
Maximum Access Time (ns)	Commercial	25	35	45
	Military		35	45
	Commercial	90	80	80
Maximum Standby Current (mA)	Military		110	110

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots{ }^{\circ}{ }^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 18 to Pin 9)	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (LOW)	20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current . > 200 mA

Operating Range

Range	Ambient Temperature	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		7C147-25		7C147-35,45		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I		2.4		2.4		V
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.,			0.4		0.4	V
V_{IH}	Input High Voltage			2.0	6.0	2.0	6.0	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \text { GND } \leq \mathrm{V}_{\mathrm{O}} \leq \\ & \text { Output Disable } \end{aligned}$		-50	$+50$	-50	+50	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		90		80	mA
			Mil				110	
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CE}}^{[4]}$ Power-Down Current	$\frac{\text { Max. }}{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}},$	Com'l		15		10	mA
			Mil				10	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Duration of the short circuit should not exceed 30 seconds.
4. A pull-up resistor to $V_{C C}$ on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during VCC power-up, otherwise $I_{\text {SB }}$ will exceed values given.
5. Tested initially and after any design or process changes that may affect these parameters.
6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for all devices.
8. $t_{\text {HZCE }}$ and $t_{\text {HZWE }}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and WE LOW. Both signals must be LOW to intiate a write and either signal can teminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. WE is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

AC Test Loads and Waveforms

(a)

(b)

C147-5 Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[6]}$

Parameters	Description	7C147-25		7C147-35		7C147-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\overline{C E}}$ LOW to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		20		30		30	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE LOW to Power-Up }}$	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\overline{C E}}$ HIGH to Power-Down		20		20		20	ns
WRITE CYCLE ${ }^{[9]}$								
twc	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {SCE }}$	CE LOW to Write End	25		35		45		ns
t_{AW}	Address Set-Up to Write End	25		35		45		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	WE Pulse Width	15		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	0		10		10		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low $\mathrm{Z}^{[7]}$	0		0		0		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		15		20		25	ns

Switching Waveforms

Read Cycle No. ${ }^{[10,11]}$

Read Cycle No. $\mathbf{2}^{[10,12]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) $)^{[9]}$

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[9,13]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A_{0}	X_{0}	1
$\mathrm{~A}_{1}$	X_{1}	2
$\mathrm{~A}_{2}$	X_{2}	3
$\mathrm{~A}_{3}$	X_{3}	4
$\mathrm{~A}_{4}$	Y_{0}	5
$\mathrm{~A}_{5}$	Y_{1}	6
$\mathrm{~A}_{6}$	X_{4}	17
$\mathrm{~A}_{7}$	X_{5}	16
$\mathrm{~A}_{8}$	Y_{2}	15
$\mathrm{~A}_{9}$	Y_{3}	14
$\mathrm{~A}_{10}$	Y_{4}	13
$\mathrm{~A}_{11}$	Y_{5}	12

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C147-25PC	P3	Commercial
	CY7C147-25DC	D4	
	CY7C147-25LC	L50	
35	CY7C147-35PC	P3	Commercial
	CY7C147-35DC	D4	
	CY7C147-35LC	L50	
	CY7C147-35DMB	D4	Military
	CY7C147-35KMB	K70	
	CY7C147-35LMB	L50	
45	CY7C147-45PC	P3	Commercial
	CY7C147-45DC	D4	
	CY7C147-45LC	L50	
	CY7C147-45DMB	D4	Military
	CY7C147-45KMB	K70	
	CY7C147-45LMB	L50	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	$7,8,9,10,11$
t_{WC}	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00030-B

Features

- Automatic power-down when deselected (7C148)
- CMOS for optimum speed/power
- 25-ns access time
- Low active power
- 440 mW (commercial)
- 605 mW (military)
- Low standby power (7C148)
-82.5 mW ($\mathbf{2 5}-\mathrm{ns}$ version)
-55 mW (all others)
- 5-volt power supply $\pm 10 \%$ tolerance, both commercial and military
- TTL-compatible inputs and outputs

Functional Description

The CY7C148 and CY7C149 are high-performance CMOS static RAMs organized as 1024 by 4 bits. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and three-state outputs. The CY7C148 remains in a low-power mode as long as the device remains unselected; i.e., ($\overline{\mathrm{CS}}$) is HIGH , thus reducing the average power requirements of the device. The chip select ($\overline{\mathrm{CS}}$) of the CY7C149 does not affect the power dissipation of the device.

Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE})}$ inputs are both LOW. Data on the I/O pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the

1024×4 Static RAM

Logic Block Diagram

Pin Configurations

Selection Guide

		7C148-25	7C148-35	7C148-45	7C149-25	7C149-35	7C149-45
Maximum Access Time (ns)		25	35	45	25	35	45
Maximum Operating Current (mA)	Commercial	90	80	80	90	80	80
	Military		110	110		110	110
Maximum Standby Current (mA)	Commercial	15	10	10			
	Military		10	10			

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 18 to Pin 9)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V

Output Current into Outputs (Low)
20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions			7C148/9-25		7C148/9-35,45		Units
					Min.	Max.	Min.	Max.	
I_{OH}	Output High Current	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$			2.4		2.4		V
I_{OL}	Output Low Current	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.4		0.4	V
V_{IH}	Input High Voltage				2.0	6.0	2.0	6.0	V
V_{IL}	Input Low Voltage				-3.0	0.8	-3.0	0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$			-10	10	-10	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Oz }}$	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled			-50	50	-50	50	$\mu \mathrm{A}$
I_{CC}	V_{Cc} Operating Supply Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \text { Output Open } \end{aligned}$		Com'l		90		80	mA
				Mil				110	
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$	7C148 only	Com'l		15		10	mA
				Mil				10	
$\mathrm{IPO}_{\text {P }}$	Peak Power-On Current ${ }^{[3]}$	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$	$\begin{array}{\|l\|} \hline \text { 7C148 } \\ \text { only } \end{array}$	Com'l		15		10	mA
				Mil				10	
Ios	$\begin{aligned} & \text { Output Short } \\ & \text { Circuit Current }{ }^{[4]} \end{aligned}$	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		Com'l		± 275		± 275	mA
				Mil				± 350	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. A pull-up resistor to $V_{C C}$ on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{\text {cc }}$ power-up. Otherwise current will exceed values given (CY7C148 only).
4. For test purposes, not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.
6. Chip deselected greater than 25 ns prior to selection.
7. Chip deselected less than 25 ns prior to selection.
8. At any given temperature and voltage condition, $t_{H Z}$ is less than $t_{L Z}$
for all devices. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage with specified loading in part (b) of AC Test Loads.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to intiate a write and either signal can terminate a write by going high. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. WE is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
13. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

AC Test Loads and Waveforms

(a)

(b)

C148-5

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $0 \longrightarrow 1.73 \mathrm{~V}$
Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description		$\begin{aligned} & \hline \text { 7C148-25 } \\ & \text { 7C149-25 } \end{aligned}$		$\begin{aligned} & \text { 7C148-35 } \\ & \text { 7C149-35 } \end{aligned}$		$\begin{aligned} & \text { 7C148-45 } \\ & 7 \mathrm{C} 149-45 \end{aligned}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE									
t_{RC}	Address Valid to Address Do Not Care Time (Read Cycle Time)		25		35		45		ns
$\mathrm{t}_{\text {AA }}$	Address Valid to Data Out Valid Delay (Address Access Time)			25		35		45	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{ACS} 1} \\ & \mathrm{t}_{\mathrm{ACS} 2} \end{aligned}$	Chip Select LOW to Data Out Valid (7C148only)			$25^{[6]}$		35		45	ns
				$30^{[7]}$		35		45	ns
$\mathrm{t}_{\text {ACS }}$	Chip Select LOW to Data Out Valid (7C149 only)			15		15		20	ns
$\mathrm{t}_{\mathrm{LZ}}{ }^{[8]}$	$\begin{aligned} & \text { Chip Select LOW to } \\ & \text { Data Out On } \end{aligned}$	7 C 148	8		10		10		ns
		7 C 149	5		5		5		
$\mathrm{t}_{\mathrm{Hz}}{ }^{[8]}$	Chip Select HIGH to Data Out Off		0	15	0	20	0	20	ns
t_{OH}	Address Unknown to Data Out Unknown Time		0		0		5		ns
${ }_{\text {tpd }}$	Chip Select HIGH to Power-Down Delay	7C148		20		30		30	ns
$t_{\text {Pu }}$	Chip Select LOW to Power-Up Delay	7C148	0		0		0		ns
WRITE CYCLE									
${ }^{\text {tw }}$	Address Valid to Address Do Not Care (Write Cycle Time)		25		35		45		ns
$\mathrm{twr}^{[9]}$	Write Enable LOW to Write Enable HIGH		20		30		35		ns
$t_{\text {wR }}$	Address Hold from Write End		5		5		5		ns
$\mathrm{twz}^{[8]}$	Write Enable to Output in High Z		0	8	0	8	0	8	ns
$t_{\text {bw }}$	Data in Valid to Write Enable HIGH		12		20		20		ns
t_{DH}	Data Hold Time		0		0		0		ns
$\mathrm{t}_{\text {As }}$	Address Valid to Write Enable LOW		0		0		0		ns
$\mathrm{t}_{\mathrm{cw}}{ }^{[9]}$	Chip Select LOW to Write Enable HIGH		20		30		40		ns
$t_{\text {ow }}{ }^{[8]}$	Write Enable HIGH to Output in Low Z		0		0		0		ns
t_{AW}	Address Valid to End of Write		20		30		35		

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

Read Cycle No. $\mathbf{2}^{[10,12]}$

C148-7
Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled)

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathrm{CS}}$ Controlled) ${ }^{[13]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics

NORMALIZED I ${ }_{\text {cc }}$ vs. ACCESS TIME

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A_{0}	Y_{0}	5
$\mathrm{~A}_{1}$	Y_{1}	6
$\mathrm{~A}_{2}$	Y_{2}	7
$\mathrm{~A}_{3}$	Y_{3}	4
$\mathrm{~A}_{4}$	X_{0}	3
$\mathrm{~A}_{5}$	X_{3}	2
$\mathrm{~A}_{6}$	X_{2}	1
$\mathrm{~A}_{7}$	X_{5}	17
$\mathrm{~A}_{8}$	X_{4}	16
$\mathrm{~A}_{9}$	X_{1}	15

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C148-25PC	P3	Commercial
	CY7C148-25DC	D4	
	CY7C148-25LC	L50	
35	CY7C148-35PC	P3	Commercial
	CY7C148-35DC	D4	
	CY7C148-35LC	L50	
	CY7C148-35DMB	D4	Military
	CY7C148-35KMB	K70	
	CY7C148-35LMB	L50	
45	CY7C148-45PC	P3	Commercial
	CY7C148-45DC	D4	
	CY7C148-45LC	L50	
	CY7C148-45DMB	D4	Military
	CY7C148-45KMB	K70	
	CY7C148-45LMB	L50	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C149-25PC	P3	Commercial
	CY7C149-25DC	D4	
	CY7C149-25LC	L50	
35	CY7C149-35PC	P3	Commercial
	CY7C149-35DC	D4	
	CY7C149-35LC	L50	
	CY7C149-35DMB	D4	Military
	CY7C149-35KMB	K70	
	CY7C149-35LMB	L50	
45	CY7C149-45PC	P3	Commercial
	CY7C149-45DC	D4	
	CY7C149-45LC	L50	
	CY7C149-45DMB	D4	Military
	CY7C149-45KMB	K70	
	CY7C149-45LMB	L50	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
I_{OH}	$1,2,3$
I_{OL}	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[14]}$	$1,2,3$

Document \#: 38-00031-B

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}{ }^{[14]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 2}{ }^{[14]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}{ }^{[15]}$	$7,8,9,10,11$
t_{OH}	$7,8,9,10,11$
WRITE CYCLE $^{\|c\|}$	
t_{WC}	$7,8,9,10,11$
t_{WP}	$7,8,9,10,11$
t_{WR}	$7,8,9,10,11$
t_{DW}	$7,8,9,10,11$
t_{DH}	$7,8,9,10,11$
t_{AS}	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$

Notes:
14. 7C148 only.
15. 7C149 only.

Features

- Memory reset function
- 1024×4 static RAM for control store in high-speed computers
- CMOS for optimum speed/power
- High speed
-10 ns (commercial)
- 12 ns (military)
- Low power
-495 mW (commercial)
-550 mW (military)
- Separate inputs and outputs
- 5-volt power supply $\pm \mathbf{1 0 \%}$ tolerance in both commercial and military
- Capable of withstanding greater than 2001V static discharge
- TTL-compatible inputs and outputs

Functional Description

The CY7C150 is a high-performance CMOS static RAM designed for use in cache memory, high-speed graphics, and data-acquisition applications. The CY7C150 has a memory reset feature that allows the entire memory to be reset in two memory cycles.
Separate I/O paths eliminates the need to multiplex data in and data out, providing for simpler board layout and faster system performance. Outputs are tri-stated during write, reset, deselect, or when output enable ($\overline{\mathrm{OE}})$ is held HIGH, allowing for easy memory expansion.
Reset is initiated by selecting the device $(\overline{\mathrm{CS}}=\mathrm{LOW})$ and taking the reset $(\overline{\mathrm{RS}})$ input LOW. Within two memory cycles all bits are internally cleared to zero. Since chip select must be LOW for the device to be reset, a global reset signal can be em-
ployed, with only selected devices being cleared at any given time.
Writing to the device is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable (WE) inputs are both LOW. Data on the four data inputs $\left(D_{0}-D_{3}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{9}).
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable (OE) LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four output pins (O_{0} through O_{3}).
The output pins remain in high-impedance state when chip enable $(\overline{\mathrm{CE}})$ or output enable $(\overline{\mathrm{OE}})$ is HIGH , or write enable $(\overline{\mathrm{WE}})$ or reset $(\overline{\mathrm{RS}})$ is LOW.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide

		7C150-10	7C150-12	7C150-15	7C150-25	7C150-35
Maximum Access Time (ns)	Commercial	10	12	15	25	35
	Military		12	15	25	35
Maximum Operating Current (mA)	Commercial	90	90	90	90	90
	Military		100	100	100	100

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12)	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Voltage Applied to Outputs in High Z State	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	20 mA

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than 1 output should be shorted at a time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.
5. Test conditions assume signal transition times of 5 ns or less, timing referenece levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.

Switching Characteristics Over the Operating Range ${ }^{[2,5]}$

Parameters	Description	7C150-10		7C150-12		7C150-15		7C150-25		7C150-35		Units
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	10		12		15		25		35		ns
t_{AA}	Address to Data Valid		10		12		15		25		35	ns
toha	Output Hold from Address Change	2		2		2		2		2		ns
$\mathrm{t}_{\text {ACs }}$	$\overline{\text { CS }}$ LOW to Data Valid		8		10		12		15		20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[6]}$	0		0		0		0		0		ns
$\mathrm{t}_{\mathrm{Hzcs}}$	$\overline{\text { CS }}$ HIGH to High Z ${ }^{[6,7]}$		6		8		11		20		25	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		6		8		10		15		20	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[9]}$	0		0		0		0		0		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\overline{O E}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[6,7]}$		6		8		9		20		25	ns

WRITE CYCLE ${ }^{[8]}$

$\mathrm{twc}_{\text {w }}$	Write Cycle Time	10		12		15		25		35		ns
tscs	$\overline{\mathrm{CS}}$ LOW to Write End	6		8		11		15		20		ns
$\mathrm{t}_{\text {Aw }}$	Address Set-Up to Write End	8		10		13		20		30		ns
t_{HA}	Address Hold from Write End	2		2		2		5		5		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		2		5		5		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	6		8		11		15		20		ns
${ }_{\text {tsD }}$	Data Set-Up to Write End	6		8		11		15		20		ns
t_{HD}	Data Hold from Write End	2		2		2		5		5		ns
$\mathrm{t}_{\text {LZwe }}$	$\overline{\text { WE }}$ HIGH to Low ${ }^{[9]}$	0		0		0		0		0		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$		6		8		12		20		25	ns

RESET CYCLE

$\mathrm{t}_{\text {RRC }}$	Reset Cycle Time	20		24		30		50		70		ns
${ }_{\text {t }}^{\text {S }}$ AR	Address Valid to Beginning of Reset	0		0		0		0		0		ns
$\mathrm{t}_{\text {SWER }}$	Write Enable HIGH to Beginning of Reset	0		0		0		0		0		ns
${ }_{\text {tscsR }}$	Chip Select LOW to Beginning of Reset	0		0		0		0		0		ns
ters	Reset Pulse Width	10		12		15		20		30		ns
$\mathrm{t}_{\text {HCSR }}$	Chip Select Hold After End of Reset	0		0		0		0		0		ns
$t_{\text {thwer }}$	Write Enable Hold After End of Reset	8		12		15		30		40		ns
$\mathrm{t}_{\text {HAR }}$	Address Hold After End of Reset	10		12		15		30		40		ns
t LZRS	Reset HIGH to Output in Low ${ }^{[6]}$	0		0		0		0		0		ns
$t_{\text {thzrs }}$	Reset LOW to Output in High $\mathbf{Z}^{[6,7]}$		6		8		12		20		25	ns

Notes:

6. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{IIZ}}$ is less than t_{LZ} for any given device.
7. $t_{\mathrm{HzCS}}, \mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZR}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be reference to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

Read Cycle No. $2^{[10,11]}$

c150-7

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) $)^{[8]}$

Notes:

9. WE is HIGH for read cycle.
10. Address prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
11. Device is continuously selected, $\overline{\mathrm{CS}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms (continued)

Write Cycle No. $2(\overline{\text { CS }} \text { Controlled })^{[8,12]}$

Notes:

12. If $\overline{\mathrm{CS}}$ goes HIGH with $\overline{\mathrm{WE}}$ HIGH, the output remains in a highimpedance state.
13. Reset cycle is defined by the overlap of $\overline{\mathrm{RS}}$ and $\overline{\mathrm{CS}}$ for the minimum reset pulse width.

CYPRESS

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME
vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME
vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

NORMALIZED ICC vs. CYCLE TIME

Address Designators

Address Name	Address Function	Pin Number
A_{0}	X_{0}	21
$\mathrm{~A}_{1}$	X_{1}	22
$\mathrm{~A}_{2}$	X_{2}	23
$\mathrm{~A}_{3}$	X_{3}	1
$\mathrm{~A}_{4}$	X_{4}	2
$\mathrm{~A}_{5}$	X_{5}	3
$\mathrm{~A}_{6}$	Y_{0}	4
$\mathrm{~A}_{7}$	Y_{1}	5
$\mathrm{~A}_{8}$	Y_{2}	6
$\mathrm{~A}_{9}$	Y_{3}	7

Truth Table

Inputs				Outputs	Mode
$\overline{\mathbf{C S}}$	WE	$\overline{\mathbf{O E}}$	$\overline{\mathrm{RS}}$		
H	X	X	X	High Z	Not Selected
L	H	X	L	High Z	Reset
L	L	X	H	High Z	Write
L	H	L	H	$\mathrm{O}_{0}-\mathrm{O}_{3}$	Read
L	X	H	H	High Z	Output Disable

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
10	CY7C150-10PC	P13A	Commercial
	CY7C150-10DC	D14	
	CY7C150-10LC	L54	
	CY7C150-10SC	S13	
12	CY7C150-12PC	P13A	Commercial
	CY7C150-12DC	D14	
	CY7C150-12LC	L54	
	CY7C150-12SC	S13	
	CY7C150-12DMB	D14	Military
	CY7C150-12LMB	L54	
15	CY7C150-15PC	P13A	Commercial
	CY7C150-15DC	D14	
	CY7C150-15LC	L54	
	CY7C150-15SC	S13	
	CY7C150-15DMB	D14	Military
	CY7C150-15LMB	L54	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C150-25PC	P13A	Commercial
	CY7C150-25DC	D14	
	CY7C150-25LC	L54	
	CY7C150-25SC	S13	
	CY7C150-25DMB	D14	Military
	CY7C150-25LMB	L54	
35	CY7C150-35PC	P13A	Commercial
	CY7C150-35DC	D14	
	CY7C150-35LC	L54	
	CY7C150-35SC	S13	
	CY7C150-35DMB	D14	Military
	CY7C150-35LMB	L54	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7, 8, 9, 10, 11
$t_{\text {AA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {OHA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {ACS }}$	7, 8, 9, 10, 11
WRITE CYCLE	
$t_{\text {wc }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {scs }}$	7, 8, 9, 10, 11
t_{AW}	7, 8, 9, 10, 11
t_{HA}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PWE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SD }}$	7, 8, 9, 10, 11
t_{HD}	7, 8, 9, 10, 11
RESET CYCLE	
$\mathrm{t}_{\text {RRC }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SAR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SWER }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SCSR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PRS }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{HCSR}}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {HWER }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{HAR}}$	7, 8, 9, 10, 11

Document \#: 38-00028-B

Features

- High speed
$-12 \mathrm{~ns}_{\mathrm{tA}}$
- Easy memory expansion with: $\overline{\mathrm{CE}}_{1}$, $\mathrm{CE}_{2}, \mathrm{CE}_{3}$ (7B154 only), $\mathrm{CE}_{4}, \mathrm{CE}_{5}$ (7B153 only), and OE
- BiCMOS for optimum speed/power
- Low active power
- 743 mW
- Low standby power
- 275 mW
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7B153 and CY7B154 are high-performance BiCMOS static RAMs organized as 65,536 words by 4 bits. Easy memory expansion is provided by an active LOW output enable ($\overline{\mathrm{OE}})$ and four chip enables for each part: $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}, \overline{\mathrm{CE}}_{3}$ (CY7B154 only), CE_{4}, and CE_{5} (CY7B153 only). The active HIGH and active LOW chip enables provide on-chip address decoding, eliminating the need for external decoder logic. Both devices have an automatic power-down feature, reducing the power consumption by more than 70% when deselected.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When $\overline{\mathrm{CE}}_{1,2,3}$ and $\overline{\mathrm{WE}}$ inputs are both LOW and $\mathrm{CE}_{4,5}$ are HIGH, data on the four data input/output pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$

Expandable 65,536 x 4 Static R/W RAM

through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}_{1,2,3}$) and output enable ($\overline{\mathrm{OE})}$ LOW, while write enable (WE) and chip enable ($\mathrm{CE}_{4,5}$) are HIGH. Under these conditions, the contents of the location specified on the address pins is present on the four data input/output pins.
The four input output pins are in a high-impedance state when the device is deselected (any of: $\overline{\mathrm{CE}}_{12,3} \mathrm{HIGH}$ or $\mathrm{CE}_{4,5} \mathrm{LOW}$), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), or during a write operation ($\overline{\mathrm{WE}}$ and $\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\left.\mathrm{CE}_{4,5} \mathrm{HIGH}\right)$.
The CY7B153 and CY7B154 are available in leadless chip carriers and space-saving 300 -mil-wide DIPs and SOJs.

Logic Block Diagram

Pin Configurations

Selection Guide

		$\begin{aligned} & \hline 78153-12 \\ & 7 \mathrm{~B} 154-12 \end{aligned}$	$\begin{aligned} & \text { 7B153-15 } \\ & \text { 7B154-15 } \end{aligned}$	$\begin{aligned} & \text { 7B153-20 } \\ & \text { 7B154-20 } \end{aligned}$
Maximum Access Time (ns)		12	15	20
Maximum Operating Current (mA)	Commercial	135	135	135
	Military		145	145
Maximum Standby Current (mA)	Commercial	50	50	50
	Military		60	60

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Power Applied
ture win
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{Cc} Relative to $\mathrm{GND}^{[1]}$. -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$ \qquad -0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$
-0.5 V to +7.0 V
Current into Outputs (LOW)
20 mA

Operating Range

Range	Ambient Temperature ${ }^{[2]}$	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics ${ }^{[3]}$ Over the Operating Range

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
C $\mathrm{V}_{\mathrm{OC}}=5.0 \mathrm{~V}$		10	pF	

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\min .)}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(b)
(a)

THÉVENIN EQUIVALENT
Equivalent to: THÉNENIN EQUIVALENT
OUTPUT $0<1.73 \mathrm{~V}$

Switching Characteristics ${ }^{[2,6]}$ Over the Operating Range

Parameters	Description	$\begin{aligned} & \hline 7 \mathrm{~B} 153-12 \\ & \text { 7B154-12 } \end{aligned}$		$\begin{aligned} & \text { 7B153-15 } \\ & \text { 7B154-15 } \end{aligned}$		$\begin{aligned} & \text { 7B153-20 } \\ & \text { 7B153-20 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	12		15		20		ns
t_{AA}	Address to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {OhA }}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\mathrm{CE}_{4,5} \mathrm{HIGH}$ to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		7		10		12	ns
$\mathrm{t}_{\text {LIZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[7]}$	2		2		2		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE }}$ HIGH to High $\mathrm{Z}^{[7,8]}$		7		8		10	ns
t LzCE	$\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\mathrm{CE}_{4,5}$ HIGH to Low $\mathrm{Z}^{[7]}$	3		3		3		ns
$t_{\text {HzCe }}$	$\overline{\mathrm{CE}}_{1,2,3}, \mathrm{HIGH}$ or $\mathrm{CE}_{4,5}$ LOW to High $\mathrm{Z}^{[7,8]}$		7		8		10	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\mathrm{CE}_{4,5}$ HIGH to Power-Up		0		0		0	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1,2,3,}$ HIGH or $\mathrm{CE}_{4,5}$ LOW to Power-Down		12		15		20	ns
WRITE CYCLE ${ }^{[9,10]}$								
t_{Wc}	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\mathrm{CE}_{4,5}$ HIGH to Write End	9		10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9		10		15		ns
$t_{\text {HA }}$	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {S }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	9		10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low $\mathrm{Z}^{[7]}$	2		2		2		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		7		7		10	ns

Notes:
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $20-\mathrm{pF}$ load capacitance.
7. $t_{\text {HZOE }}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}, t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWW }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1,2,3} \mathrm{LOW}, \mathrm{CE}_{4,5} \mathrm{HIGH}$, and $\overline{\mathrm{WE}}$ LOW. All signals must be appropriately set to initiate a write and any of these signals can terminate a write. The input data set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{O E}$ LOW) is the sum of $t_{\text {HZWE }}$ and $t_{\text {SD }}$.

Switching Waveforms

Read Cycle No. ${ }^{[11,12]}$

Read Cycle No. $2\left(\overline{\mathrm{OE}}\right.$ Controlled) ${ }^{[12,13]}$

Write Cycle No. $1\left(\overline{\mathbf{C E}}_{1}, \overline{\mathbf{C E}}_{2}, \overline{\mathbf{C E}}_{3}, \mathbf{C E}_{4}\right.$, or $\mathbf{C E}_{5}$ Controlled) ${ }^{[14,15]}$

B153-9

Notes:

11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}_{1,2,3}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE}_{4,5}=\mathrm{V}_{\mathrm{IH}}$.
12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1,2,3}$ transition LOW and $\mathrm{CE}_{4,5}$ transition HIGH.
14. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
15. If any of $\overline{\mathrm{CE}}_{1,2,3}$ go HIGH or $\mathrm{CE}_{4,5}$ goes LOW simultaneously with $\overline{\text { WE }}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[14,15]}$

Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[10,15]}$

CY7B153 Truth Table

$\overline{\mathbf{C E}}_{1}$	$\overline{\mathbf{C E}}_{2}$	CE_{4}	CE_{5}	$\overline{\mathbf{O E}}$	$\overline{\text { WE }}$	I/O $\mathbf{O}_{\mathbf{0}}-\mathrm{I} / \mathrm{O}_{3}$	Mode	Power
H	X	X	X	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
X	H	X	X	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
X	X	L	X	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
X	X	X	L	X	X	High Z	Power-Down	Standby (I_{SB})
L	L	H	H	L	H	Data Out	Read	Active (I_{Cc})
L	L	H	H	X	L	Data In	Write	Active (I_{CC})
L	L	H	H	H	H	High Z	Selected	Active (I_{Cc})

CY7B154 Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\overline{\mathbf{C E}}_{\mathbf{2}}$	$\overline{\mathbf{C E}}_{\mathbf{3}}$	$\mathbf{C E}_{\mathbf{4}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}$	$\mathbf{I} / \mathbf{O}_{\mathbf{0}}-\mathbf{I} / \mathbf{O}_{\mathbf{3}}$	Mode	Power
H	X	X	X	X	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
X	H	X	X	X	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
X	X	H	X	X	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
X	X	X	L	X	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
L	L	L	H	L	H	Data Out	Read	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	L	H	X	L	Data In	Write	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	L	L	H	H	H	High Z	Selected	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B153-12PC	P21	Commercial
	CY7B153-12DC	D22	
	CY7B153-12LC	L55	
	CY7B153-12VC	V21	
15	CY7B153-15PC	P21	Commercial
	CY7B153-15DC	D22	
	CY7B153-15LC	L55	
	CY7B153-15VC	V21	
	CY7B153-15DMB	D22	Military
	CY7B153-15LMB	L55	
20	CY7B153-20PC	P21	Commercial
	CY7B153-20DC	D22	
	CY7B153-20LC	L55	
	CY7B153-20VC	V21	
	CY7B153-20DMB	D22	Military
	CY7B153-20LMB	L55	

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B154-12PC	P21	Commercial
	CY7B154-12DC	D22	
	CY7B154-12LC	L55	
	CY7B154-12VC	V21	
15	CY7B154-15PC	P21	Commercial
	CY7B154-15DC	D22	
	CY7B154-15LC	L55	
	CY7B154-15VC	V21	
	CY7B154-15DMB	D22	Military
	CY7B154-15LMB	L55	
20	CY7B154-20PC	P21	Commercial
	CY7B154-20DC	D22	
	CY7B154-20LC	L55	
	CY7B154-20VC	V21	
	CY7B154-20DMB	D22	Military
	CY7B154-20LMB	L55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

[^12]
16K x 16 Synchronous Static RAM

Features

- $16 \mathrm{~K} \times 16$ common I/O
- BiCMOS for optimum speed/power
- 12 ns maximum access delay (clock to output)
- Input address latch
- Input data latch with separate latch control signal (DLE)
- 8-bit address counter with 2 - and 8-bit wraparound operations (7B156 only)
- Supports Intel 486 burst address sequence (7B155 only)
- Supports suspended burst
- Simple counter control
- Self-timed write with synchronous user-adjustable write trigger
- Byte write supported
- 52-pin PLCC, LCC, and QFP packages

Functional Description

The CY7B155 and CY7B156 are 16 K by 16 synchronous static RAMs targeted for high-performance burst-oriented applications. Address-increment logic is provided in both versions. Counter control is simple and involves only three signals: clock, load enable, and count enable.
In the CY7B156, an integrated 8-bit wraparound counter automatically increments addresses for a maximum of 256 consecutive references. The counter can be switched from an 8 -bit wraparound mode to a 2-bit wraparound mode via a control input. In the CY7B155, A_{0} through A_{7} are sequenced based on the 2-bit Intel 80486 burst order (see Table 1).
Write operations are synchronously triggered and self-timed to simplify processor interface. A delayed write mechanism supporting a user-adjustable write trigger provides maximum checking time for external
protection circuits; if the write access is determined to be faulty, memory will not be modified.
The write enable inputs are sampled on the falling edge of the delayed clock (DCLK) input. Write is initiated only when one or both sampled values are LOW. Because the DCLK is a variable input signal, the user can hand-tune the write sampling point by adjusting the amount of the delay on DCLK.
Each byte can be written individually with its own write enable input. A 16-bit data latch is provided on-chip to capture write data from the processor. This latch can be bypassed by connecting the data latch enable (DLE) input to a high level. Memory expansion is also simplified by the incorporation of four self-decoding chip select inputs. Up to four memory banks can be supported without any external decoding logic. Maximum access delay from clock rise to output is 12 ns .

Pin Configuration

B155-2

B155-1

Selector Guide

	$\mathbf{7 B 1 5 5 - 1 2}$ $\mathbf{7 B 1 5 6 - 1 2}$	$\mathbf{7 B 1 5 5 - 1 5}$ $\mathbf{7 B 1 5 6 - 1 5}$	$\mathbf{7 B 1 5 5 - 2 0}$ $\mathbf{7 B 1 5 6 - 2 0}$
Maximum Access Time (ns)	12	15	20
Maximum Operating Current (mA)	250	250	250

Table 1. Burst Read/Write Sequence

First Address							
$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$
$\mathbf{0}$	0	0	1	1	0	1	1
0	1	0	0	1	1	1	0
1	0	1	1	0	0	0	1
1	1	1	0	0	1	0	0

Pin Definitions

Signal Name	I/O	Description
$\mathrm{A}_{0}-\mathrm{A}_{13}$	I	Address Inputs
CLK	I	Clock
DCLK	I	Delayed Clock
$\overline{\mathrm{WE}}_{0}$	I	Low Byte Write Enable
$\overline{\mathrm{WE}}_{1}$	I	High Byte Write Enable
$\overline{\mathrm{OE}}$	I	Output Enable
$\overline{\mathrm{CS}}_{0}, \overline{\mathrm{CS}}_{1}$	I	Chip Selects 0,1
$\mathrm{CS}_{2}, \mathrm{CS}_{3}$	I	Chip Selects 2,3
$\overline{\mathrm{LE}}$	I	Load Enable
$\overline{\mathrm{CE}}$	I	Counter Enable
CC	I	Count Control (CY7B156 only)
DLE	I	Data Latch Enable
$\mathrm{D}_{0}-\mathrm{D}_{15}$	I / O	Data I/O
V_{CC}	-	+5V Power Supply
V_{ss}	-	Ground

Application Example

Figure 1 shows a 64-Kbyte cache using two CY7B156 cache RAMs with burst capability and a CY7B181 high-speed cache tag. The complexity of the cache controller is reduced because the CY7B181 generates the write enable signal to the RAM automatically during write hits.

Figure 1. Cache Using CY7B156s

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to GND..-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to $\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$

Current into Outputs (LOW)
20 mA

Static Discharge Voltage . >2001V (per MIL-STD-883, Method 3015)
Latch-Up Current................................... $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	$\begin{aligned} & \hline 7 \mathrm{~B} 155-12 \\ & 7 \mathrm{~B} 156-12 \end{aligned}$		$\begin{aligned} & 7 \mathrm{~B} 155-15,20 \\ & 7 \mathrm{~B} 156-15,20 \end{aligned}$		Units
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	6.0	2.2	6.0	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-300		-300	mA
I_{CC}	$V_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{CYC}} \end{aligned}$		250		250	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10
		pF		

Notes:

1. $\quad \mathrm{V}_{\mathrm{IL}(\min .)}=-1.5 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

AC Test Loads and Waveforms

(a)
(b)

B155-3
4. Tested initially and after any design or process changes that may affect these parameters.

Equivalent to: THEVENIN EQUIVALENT

ADVANCED INFORMATION
Switching CharacteristicsOver the Operating Range ${ }^{[5]}$

Parameters	Description	$\begin{aligned} & \hline 7 \mathrm{~B} 155-12 \\ & 7 \mathrm{~B} 156-12 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 155-15 \\ & 7 \mathrm{~B} 156-15 \end{aligned}$		$\begin{aligned} & 7 \mathrm{7B155-20} \\ & 7 \mathrm{~B} 155-20 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {cyc }}$	Clock Cycle Time	20		25		30		ns
t_{AD}	Access Delay for Clock Rise	12		15		20		ns
$\mathrm{t}_{\text {DOH }}$	Data Output Hold After Clock Rise	3		3		3		ns
$\mathrm{t}_{\text {As }}$	Address Set-Up Before CLK Rise	3		4		5		ns
t_{AH}	Address Hold After CLK Rise	3		4		4		ns
$\mathrm{t}_{\text {LES }}$	Load Enable Set-Up Before CLK Rise	3		4		5		ns
$\mathrm{t}_{\text {LEH }}$	Load Enable Hold After CLK Rise	3		4		4		ns
$\mathrm{t}_{\text {WES }}$	Write Enable Set-Up Before DCLK Fall	2		3		4		ns
$t_{\text {weh }}$	Write Enable Hold After DCLK Fall	4		5		6		ns
$\mathrm{t}_{\text {EOZ }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to Output High $\mathrm{Z}^{[6]}$		7		8		9	ns
$\mathrm{t}_{\text {EOV }}$	$\overline{\mathrm{OE}}$ LOW to Output Valid		7		8		9	ns

Notes:
5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $50-\mathrm{pF}$ load capacitance.
6. $t_{E O Z}$ is specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.

Switching Waveforms

Read Access

$\overline{O E}$

SEMICONDUCTOR
Switching Waveforms (continued)
Latched Write

DATA IN

Burst Read Sequence with Three Accesses

SEEMICONDUCTOR

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B155-12JC	J69	Commercial
	CY7B155-12LC	L69	
15	CY7B155-15JC	J69	Commercial
	CY7B155-15LC	L69	
20	CY7B155-20JC	J69	Commercial
	CY7B155-20LC	L69	

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B156-12JC	J69	Commercial
	CY7B156-12LC	L69	
15	CY7B156-15JC	J69	Commercial
	CY7B156-15LC	L69	
20	CY7B156-20JC	J69	Commercial
	CY7B156-20LC	L69	

Document \#: 38-00152

Features

- Optimized for use with CY7C600 SPARC ${ }^{\circledR}$ product family
- Address and $\overline{W E}$ registers
- CMOS for optimum speed/power
- High speed
$-20 \mathrm{~ns}$
- Data In and Data Out latches
- Self-timed write
- Common I/O
- Capable of withstanding greater than 2000 V electrostatic discharge
- TTL-compatible inputs and outputs

Functional Description

The CY7C157A cache storage unit is a high-performance CMOS static RAM organized as $16,384 \times 16$ bits. It is intended specifically for use as a high-speed cache memory device with the CY7C600 SPARC(${ }^{(1)}$ family of devices. The CY7C157A employs common I/O architecture, a self-timed byte write mechanism, and on-chip address update latches.
Reading the device is accomplished by taking WE HIGH and $\overline{\text { OE LOW. On the ris- }}$ ing edge of CLOCK, addresses A_{0} through A_{13} are loaded into the input registers. A memory access occurs, and data is held after

SPARC is a registered trademark of SPARC International, Inc.

Pin Timing Cross Reference

Pin Name	Timing Reference	Description
Clock	C	Clock Inputs
$\mathrm{A}_{0}-\mathrm{A}_{13}$	A	Address Inputs
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{15}$ (Input)	D	Data Inputs
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{15}$ (Output)	Q	Data Outputs
$\overline{\mathrm{WE}}_{0}, \overline{\mathrm{WE}}_{1}, \overline{\mathrm{WE}}_{\mathbf{X}}$	W	Write Enable
$\overline{\mathrm{OE}}$	G	Output Enable

Pin Diagram

Selection Guide

	7C157A-20	7C157A-24	7C157A-33
Maximum Clock to Output (ns)	20	24	33
Maximum Output Enable to Output Time (ns)	8	10	15
Maximum Current (mA)	350	300	250

Features

- Ultra high speed
$-10 \mathrm{~ns} \mathrm{t}_{\mathrm{AA}}$
- Output enable ($\overline{\mathrm{OE}})$ feature
- Five chip enables ($\overline{\mathbf{C E}}_{1,2,3}$ and $\mathrm{CE}_{4,5}$) to expand memory
- BiCMOS for optimum speed/power
- Low active power
$-650 \mathrm{~mW}$
- Low standby power
- 200 mW
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge.

Functional Description

The CY7B160 is a high-performance BiCMOS static RAM organized as 16,348 x 4 bits. A memory expansion feature is provided to save access time by eliminating the need for an external decoder when stacking CY 7 B 160 s . Five chip enable inputs ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}, \overline{\mathrm{CE}}_{3}, \mathrm{CE}_{4}$, and CE_{5}) make it easy to increase memory depth with up to four CY7B160s. The primary chip enable ($\overline{\mathrm{CE}}_{1}$) can be used to enable or power down all four devices together while chip enables $\overline{\mathrm{CE}}_{2}, \overline{\mathrm{CE}}_{3}, \mathrm{CE}_{4}$, and CE_{5} can be used as extra address pins to enable or power down each device individually.
Memory expansion is facilitated by threestate drivers and an active LOW output enable $(\overline{\mathrm{OE}})$. The device has a power-down
feature, reducing the power consumption by 67% when deselected by any CE input.
Writing to the device is accomplished when $\mathrm{CE}_{1,2,3}$ and WE inputs are LOW while $\mathrm{CE}_{4,5}$ inputs are HIGH. Data on the four input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking chip enables $\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\overline{\mathrm{OE}}$ LOW while write enable ($\overline{\mathrm{WE}}$) and chip enables $\mathrm{CE}_{4,5}$ remain HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.
The I/O pins stay in high-impedance state when $\overline{\mathrm{CE}}_{1,2,3}$ or $\overline{\mathrm{OE}}$ is HIGH , or when WE or $\mathrm{CE}_{4,5}$ are LOW.

Pin Configurations

Selection Guide

		7B160-10	7B160-12	7B160-15
Maximum Access Time (ns)		10	12	15
Maximum Operating	Commercial	130	120	115
Current (mA)	Military		145	135
Maximum Standby	Commercial	40	40	40
Current (mA)	Military		60	50

[^13]
Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied \qquad
\qquad
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$ -3.0 V to +7.0 V
Output Current into Outputs (Low)
20 mA
Static Discharge Voltage
> 2001V (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	Test Conditions			7B160-10		7B160-12		78160-15		Units
					Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	Com'l	2.4		2.4		2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	Mil							
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage				2.2	V_{Cc}	2.2	V_{CC}	2.2	V_{Cc}	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$				-0.5	0.8	-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {LX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{cc}}$			-10	$+10$	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled			-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	V_{Cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{f}=\mathrm{f} \mathrm{max} . \end{aligned}$		Com'l		130		120		115	mA
				Mil				145		135	
$\mathrm{I}_{\text {SB }}$	$\overline{\mathrm{CE}}$ Power-Down Current	$\left(\overline{\mathrm{CE}}_{1}, \text { or } \overline{\mathrm{CE}}_{2}, \text { or } \overline{\mathrm{CE}}_{3}\right) \geq \mathrm{V}_{\mathrm{IH}}$ or $\left(\mathrm{CE}_{4}\right.$ or $\left.\mathrm{CE}_{5}\right) \leq \mathrm{V}_{\mathrm{IL}}$		Com'l		40		40		40	mA
				Mil				60		50	

Shaded area contains preliminary information.
Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max. ${ }^{[5]}$	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		7	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}} \min .=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Tested initially and after any design or process changes that may affect these parameters.
5. For all packages except Cerdip (D22), which has maximums of C_{IN} $=8 \mathrm{pF}, \mathrm{C}_{\mathrm{OUT}}=9 \mathrm{pF}$.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } 0 ـ \underbrace{167 \Omega}_{1.73 \mathrm{~V}}
$$

CY7B160

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	7B160-10		78160-12		7B160-15		Units
		Max.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	10		12		15		ns
t_{AA}	Address to Data Valid		10		12		15	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\mathrm{CE}_{4,5}$ HIGH to Data Valid		10		12		15	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		5		6		8	ns
tezoe	$\overline{\mathrm{OE}}$ LOW to Low Z	2		2		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[7]}$		5		6		7	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}_{1,2,3}$ LOW, $\mathrm{CE}_{4,5}$ HIGH to Low $\mathrm{Z}^{[8]}$	2		2		3		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\mathrm{CE}}_{1,2,3,4,5} \mathrm{HIGH}$ to High $\mathrm{Z}^{[7,8]}$		5		6		7	ns
WRITE CYCLE ${ }^{[9]}$								
t_{wc}	Write Cycle Time	10		12		15		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\mathrm{CE}_{4,5}$ HIGH to Write End	8		8		10		ns
t_{AW}	Address Set-Up to Write End	8		8		10		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	8		8		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	5		6		7		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$	2		2		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$	0	5	0	6	0	7	ns

6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$.
7. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
8. $t_{\text {HZCE }}, t_{\text {HZWE }}, t_{\text {HZOE }}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1,2,3}$ LOW, $\mathrm{CE}_{4,5} \mathrm{HIGH}$, and WE LOW. All signals must be in this
state to initiate a write and any signal can terminate a write by changing state. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. Data I/O will be high-impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

Switching Waveforms (continued)

Read Cycle No. $\overbrace{}^{[10,12]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[9,13]}$

Write Cycle No. $2\left(\overline{\mathbf{C E}}_{1}, \overline{\mathbf{C E}}_{2}, \overline{\mathbf{C E}}_{3}, \mathbf{C E}_{4}\right.$, or CE_{5} Controlled) ${ }^{[9,13]}$

Truth Table

$\overline{\mathbf{C E}}_{1}$	$\overline{\mathbf{C E}}_{2}$	$\overline{\mathbf{C E}}_{3}$	CE_{4}	CE_{5}	$\overline{\text { WE }}$	$\overline{\mathrm{OE}}$	Inputs/Outputs	Mode
L	L	L	H	H	H	L	Data Out	Read
L	L	L	H	H	L	X	Data In	Write
L	L	L	H	H	H	H	High Z	Deselect
H	X	X	X	X	X	X	High Z	Deselect Power-Down
X	H	X	X	X	X	X	High Z	Deselect Power-Down
X	X	H	X	X	X	X	High Z	Deselect Power-Down
X	X	X	L	X	X	X	High Z	Deselect Power-Down
X	X	X	X	L	X	X	High Z	Deselect Power-Down

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
10	CY7B160-10VC	V21	Commercial
	CY7B160-10LC	L54	
12	CY7B160-12VC	V21	Commercial
	CY7B160-12LC	L54	
	CY7B160. 20 MB	D22	Miliary
	CY7B160. 121 MB	154	
15	CY7B160-15VC	V21	Commercial
	CY7B160-15DMB	D22	Military
	CY7B160-15LMB	L54	

Shaded area contains preliminary information.
MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
$\mathrm{t}_{\mathrm{SCE}}$	
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{tWE}}$	$7,8,9,10,11$
t_{SD}	
t_{HD}	$7,8,9,10,11$

Document \#: 38-A-00021-B

Features

- Ultra high speed
$-10 n s t_{A A}$
- Low active power
$-650 \mathrm{~mW}$
- Low standby power
- 200 mW
- Transparent write (7B161)
- BiCMOS for optimum speed/power
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge.

Functional Description

The CY7B161 and CY7B162 are high-performance BiCMOS static RAMs organized as 16,384 by 4 bits with separate I/O. These RAMs are developed by Aspen Semiconductor Corporation, a subsidiary of Cypress Semiconductor. Easy memory expansion is provided by active LOW chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and three-state drivers. They have a $\overline{\mathrm{CE}}$ power-down feature, reducing the power consumption by 67% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and write enable ($\overline{\mathrm{WE}}$) inputs are all LOW. Data on

16,384 x 4 Static RAM Separate I/O

the four input pins $\left(\mathrm{I}_{0}\right.$ through $\left.\mathrm{I}_{3}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and $\overline{\mathrm{OE}}$ LOW, while write enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four data output pins (O_{0} through O_{3}).
The output pins remain in high-impedance state when write enable ($\overline{\mathrm{WE}}$) is LOW (7B162 only), or one of the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) is HIGH, or $\overline{\mathrm{OE}}$ is HIGH.

Selection Guide

		$\begin{aligned} & \hline 7 \mathrm{~B} 161-10 \\ & 7 \mathrm{~B} 162-10 \end{aligned}$	$\begin{aligned} & \hline 7 B 161-12 \\ & \text { 7B162-12 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~B} 161-15 \\ & 7 \mathrm{~B} 162-15 \end{aligned}$
Maximum Access Time (ns)		10	12	15
Maximum Operating Current (mA)	Commercial	130	120	
	Military		145	135
Maximum Standby Current (mA)	Commercial	40	40	
	Military		60	50

[^14]
Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad
Supply Voltage to Ground Potential

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Static Discharge Voltage
$>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

DC Voltage Applied to Outputs
in High Z State .
-0.5 V to +7.0 V

DC Input Voltage ${ }^{[1]}$
-0.5 V to +7.0 V

Output Current into Outputs (Low)
-3.0 V to +7.0 V
20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Shaded area contains preliminary information.

Notes:

1. $\mathrm{V}_{\mathrm{IL}}(\mathrm{min})=.-3.0 \mathrm{~V}$ for pulse width $<20 \mathrm{~ns}$.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max. ${ }^{[5]}$	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

AC Test Loads and Waveforms

(a)

(b) B161-4

B161-5
Equivalent to: THÉVENIN EQUIVALENT
OUTPUT O——O

Switching Characteristics Over the Operating Range ${ }^{[3,6,7]}$

Parameters	Description	$\begin{aligned} & \text { 7B161-10 } \\ & \text { 7B162-10 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 161-12 \\ & \text { 7B162-12 } \end{aligned}$		$\begin{aligned} & \text { 7B161-15 } \\ & 7 \mathrm{~B} 162-15 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{KC}	Read Cycle Time	10		12		15		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		10		12		15	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		10		12		15	ns
$\mathrm{t}_{\text {DOE }}$	OE LOW to Data Valid		5		6		8	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW }}$ to Low Z	2		2		3		ns
$\mathbf{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[8]}$		5		6		7	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{(9]}$	2		2		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[8,9]}$		5		6		7	ns
WRITE CYCLE ${ }^{[10]}$								
t_{wc}	Write Cycle Time	10		12		15		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	8		8		10		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	8		8		10		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	8		8		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	5		6		7		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low ${ }^{[9]}$ (7B162)	2		2		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[8,9]}$ (7B162)		5		6		7	ns
$\mathrm{t}_{\text {AWE }}$	WE LOW to Data Valid (7B161)		10		12		15	ns
$\mathrm{t}_{\text {ADV }}$	Data Valid to Output Valid (7B161)		10		12		15	ns

Switching Waveforms ${ }^{[7]}$

Notes:

4. Tested initially and after any design or process changes that may affect these parameters.
5. For all packages except CerDIP (D22), which has maximums of $\mathrm{C}_{\mathrm{IN}}=8 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{OUT}}=9 \mathrm{pF}$.
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$.
7. Both $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are represented by $\overline{\mathrm{CE}}$ in the Switching Characteristics and Waveforms section.
8. $t_{\mathrm{HZCE}}, \mathrm{t}_{\mathrm{HZOE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage.
9. At any given temperature and voltage condition, $t_{H Z}$ is less than $t_{L Z}$ for any given device.
10. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, $\overline{\mathrm{CE}}_{2}$ LOW, and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. Device is continuously selected, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{IL}}$.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ transtion $L O W$.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state (7B162 only).

Switching Characteristics (continued)
Read Cycle No. $2^{[11,13]}$

7B161 Truth Table

$\overline{\mathrm{CE}}_{1}$	$\overline{\mathbf{C E}}_{2}$	WE	$\overline{\mathrm{OE}}$	Outputs	Inputs	Mode
H	X	X	X	High Z	X	Deselect/Power-Down
X	H	X	X	High Z	X	Deselect/Power-Down
L	L	H	L	Data Out	X	Read
L	L	L	L	Data In	Data In	Write
L	L	L	H	High Z	Data In	Write
L	L	H	H	High Z	X	Deselect

7B162 Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\overline{\mathbf{C E}}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Outputs	Inputs	Mode
H	\mathbf{X}	\mathbf{X}	X	High Z	\mathbf{X}	Deselect/Power-Down
X	H	\mathbf{X}	X	High Z	\mathbf{X}	Deselect/Power-Down
L	L	H	L	Data Out	\mathbf{X}	Read
L	L	L	X	High Z	Data In	Write
L	L	H	H	High Z	X	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
10	CY7B161-10PC	P21	Commercial
	CY7B161-10VC	V21	
	CY7B161-10DC	D22	
12	CY7B161-12PC	P21	Commercial
	CY7B161-12VC	V21	
	CY7B161-12DC	D22	
	$97 \mathrm{Bl61} 12 \mathrm{OMB}$	D22	Military
	CYB161. $12 . \mathrm{MB}$	154	
15	CY7B161-15DMB	D22	Military
	CY7B161-15LMB	L54	

Speed (ns)	Ordering Code	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
10	CY7B162-10PC	P21	Commercial
	CY7B162-10VC	V21	
	CY7B162-10DC	D22	
12	CY7B162-12PC	P21	Commercial
	CY7B162-12VC	V21	
	CY7B162-12DC	D22	
	CY7 162 120MB	D22.	Military:
	CY7 162 -12M ${ }^{\text {a }}$	154	
15	CY7B162-15DMB	D22	Military
	CY7B162-15LMB	L54	

Shaded area contains preliminary information.

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
$\mathrm{t}_{\mathrm{SCE}}$	7
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}{ }^{[15]}$	$7,8,9,10,11$

Note:
15. 7B161 only.

$16,384 \times 4$ Static R/W RAM Separate I/O

Features

- Automatic power-down when deselected
- Transparent write (7C161)
- CMOS for optimum speed/power
- High speed
$-15 \mathrm{~ns} \mathrm{t}_{\mathrm{AA}}$
- Low active power
$-633 \mathrm{~mW}$
- Low standby power
$-220 \mathrm{~mW}$
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2001 V electrostatic discharge.

Functional Description

The CY7C161 and CY7C162 are high-performance CMOS static RAMs organized as 16,384 by 4 bits with separate I/O. Easy memory expansion is provided by active LOW chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and threestate drivers. They have an automatic pow-er-down feature, reducing the power consumption by 65% when deselected.
Writing to the device is accomplished when the chip enable $\left(\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}\right)$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input pins (I_{0} through I_{3}) is written
into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) LOW while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.
The output pins stay in high-impedance state when write enable (WE) is LOW (7C162 only), or one of the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) are HIGH.
A die coat is used to insure alpha immunity.

Selection Guide

	7C161-15 7C162-15	7C161-20 7C162-20	7C161-25 7C162-25	7C161-35 7C162-35	7C161-45 7C162-45
Maximuin Access Time (ns)	15	20	25	35	45
Maximum Operating Current (mA)	115	80	70	70	50
Maximum Standby Current (mA)	$40 / 20$	$40 / 20$	$20 / 20$	$20 / 20$	$20 / 20$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelincs, not tested.)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$	Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Ambient Temperature with			
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up	200 mA

Supply Voltage to Ground Potential
(Pin 24 to Pin 12) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State .
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Output Current into Outputs (Low) 20 mA

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	$\begin{aligned} & \hline \text { 7C161-15 } \\ & 7 \mathrm{C} 162-15 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 161-20 \\ & 7 \mathrm{C} 162-20 \end{aligned}$		$\begin{aligned} & \hline \text { 7C161-25,35 } \\ & 7 \mathrm{C} 162-25,35 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 161-45 \\ & \text { 7C162-45 } \end{aligned}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$	2.4		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$		0.4		0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{Cc}	2.2	V_{CC}	2.2	V_{cc}	2.2	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-3.0	0.8	-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$	-10	+10	-10	+ 10	-10	+ 10	-10	+ 10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-10	+ 10	-10	+ 10	-10	+ 10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[2]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$		-350		-350		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		115		80		70		50	mA
$\mathrm{I}_{\text {SB } 1}$	Automatic $\overline{\mathrm{CE}}_{1}$ PowerDown Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \\ & \overline{C E}_{1} \geq V_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		40		40		20		20	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ PowerDown Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}} \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{Cc}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V} \end{aligned}$		20		20		20		20	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. $\quad \mathrm{V}_{\mathrm{IL}} \mathrm{min}$. $=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
2. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

C162-4

C162-5

Equivalent to:
OUTPUT 0 _ 1.73 V
Switching Characteristics Over the Operating Range ${ }^{[4,5]}$

Parameters	Description	$\begin{aligned} & \text { 7C161-15 } \\ & \text { 7C162-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C161-20 } \\ & \text { 7C162-20 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C161-25 } \\ & \text { 7C162-25 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C161-35 } \\ & \text { 7C162-35 } \end{aligned}$		$\begin{aligned} & \text { 7C161-45 } \\ & \text { 7C162-45 } \end{aligned}$		Units
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	15		20		25		35		45		ns
$t_{\text {AA }}$	Address to Data Valid		15		20		25		35		45	ns
toha	Output Hold from Address Change	3		5		5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\overline{C E}}$ LOW to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		10		12		15		20	ns
tizoe	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	3		3		3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High Z		8		8		10		12		15	ns
tizce	$\overline{\text { CE }}$ LOW to Low $\mathrm{Z}^{[6]}$	3		5		5		5		5		ns
$\mathrm{t}_{\text {Hzce }}$	$\overline{\text { CE }}$ HIGH to High ${ }^{[6,7]}$		8		8		10		15		15	ns
$\mathrm{t}_{\text {pu }}$	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		0		0		0		ns
$t_{\text {PD }}$	$\overline{\text { CE }}$ HIGH to Power-Down		15		20		20		20		25	ns
WRITE CYCLE ${ }^{[8]}$												
$t_{\text {wc }}$	Write Cycle Time	15		20		20		25		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\overline{C E}}$ LOW to Write End	12		15		20		25		30		ns
$t_{\text {AW }}$	Address Set-Up to Write End	12		15		20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
${ }^{\text {S }}$ A	Address Set-Up to Write Start	0		0		0		0		0		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	12		15		15		20		20		ns
tsd	Data Set-Up to Write End	10		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$ (7C162)	5		5		5		5		5		ns
$t_{\text {thzwe }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,9]}$ (7C162)		7		7		7		10		15	ns
$t_{\text {awe }}$	$\overline{\text { WE LOW to Data Valid (7C161) }}$		15		20		25		30		35	ns
$\mathrm{t}_{\text {ADV }}$	Data Valid to Output Valid (7C161)		15		20		20		30		35	ns

Notes:

4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. Both $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are represented by $\overline{\mathrm{CE}}$ in the Switching Characteristics and Waveforms sections.
6. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
7. $\mathbf{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.

Switching Waveforms ${ }^{[7]}$

Read Cycle No. $1^{[9,10]}$

Read Cycle No. $\mathbf{2}^{[9,11]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[8]}$

8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, $\overline{\mathrm{CE}}_{2}$ LOW, and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ transition LOW.
12. if $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{W E}$ HIGH, the output remains in a high-impedance state (7 C 162 only).

Switching Waveforms ${ }^{[7]}$ (continued)

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A5	X3	1
A6	X4	2
A7	X5	3
A8	X6	4
A9	X7	5
A10	Y0	6
A11	Y1	7
A12	Y5	8
A13	Y4	9
A0	Y3	23
A1	Y2	24
A2	X0	25
A3	X1	26
A4	X2	27

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C161-15PC	P21	Commercial
	CY7C161-15VC	V21	
	CY7C161-15DC	D22	
	CY7C161-15LC	L54	
20	CY7C161-20PC	P21	Commercial
	CY7C161-20VC	V21	
	CY7C161-20DC	D22	
	CY7C161-20LC	L54	
25	CY7C161-25PC	P21	Commercial
	CY7C161-25VC	V21	
	CY7C161-25DC	D22	
	CY7C161-25LC	L54	
35	CY7C161-35PC	P21	Commercial
	CY7C161-35VC	V21	
	CY7C161-35DC	D22	
	CY7C161-35LC	L54	
45	CY7C161-45PC	P21	Commercial
	CY7C161-45VC	V21	
	CY7C161-45DC	D22	
	CY7C161-45LC	L54	

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C162-15PC	P21	Commercial
	CY7C162-15VC	V21	
	CY7C162-15DC	D22	
	CY7C162-15LC	L54	
20	CY7C162-20PC	P21	Commercial
	CY7C162-20VC	V21	
	CY7C162-20DC	D22	
	CY7C162-20LC	L54	
25	CY7C162-25PC	P21	Commercial
	CY7C162-25VC	V21	
	CY7C162-25DC	D22	
	CY7C161-25LC	L54	
35	CY7C162-35PC	P21	Commercial
	CY7C162-35VC	V21	
	CY7C162-35DC	D22	
	CY7C162-35LC	L54	
45	CY7C162-45PC	P21	Commercial
	CY7C162-45VC	V21	
	CY7C162-45DC	D22	
	CY7C162-45LC	L54	

Document \#: 38-00029

- Capable of withstanding greater than 2001V electrostatic discharge.

Functional Description

The CY7C161A and CY7C162A are highperformance CMOS static RAMs organizes as 16,384 by 4 bits with separate I/O. Easy memory expansion is provided by active LOW chip enables $\left(\overline{C E}_{1}, \overline{\mathrm{CE}}_{2}\right)$ and three-state drivers. They have an automatic power-down feature, reducing the power consumption by 60% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input pins (I_{0} through I_{3}) is written

16,384 x 4 Static R/W RAM

 Separate I/Ointo the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.
The output pins stay in high-impedance state when write enable (WE) is LOW (7C162A only), or one of the chip enables $\left(\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}\right)$ are HIGH.
A die coat is used to insure alpha immunity.

Features

- Automatic power-down when deselected
- Transparent write (7C161A)
- CMOS for optimum speed/power
- High speed
$-15 \mathrm{~ns} \mathrm{t}_{\mathrm{AA}}$
- Low active power
- 550 mW
- Low standby power
- 220 mW
- TTL-compatible inputs and outputs

Logic Block Diagram

Selection Guide

		7C161A-15 7C162A-15	7C161A-20 7C162A-20	7C161A-25 7C162A-25	7C161A-35 7C162A-35	7C161A-45 7C162A-45
Maximum Access Time (ns)		15	20	25	35	45
Maximum Operating Current (mA)	Commercial	115	100	100	100	100
	Military		100	100	100	100
Maximum Standby Current (mA)	Commercial	$40 / 20$	20	$30 / 20$	$30 / 20$	$30 / 20$
	Military		$40 / 20$	$40 / 20$	$30 / 20$	$30 / 20$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Output Current into Outputs (Low)
20 mA

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MILSTD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	\mathbf{V}_{CC}
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C161A-15 } \\ & \text { 7C162A-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C161A-20 } \\ & \text { 7C162A-20 } \end{aligned}$		$\begin{aligned} & \text { 7C161A-25 } \\ & 7 \mathrm{C} 162 \mathrm{~A}-25 \end{aligned}$		$\begin{aligned} & \text { 7C161A-35,45 } \\ & \text { 7C162A-35,45 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{cc}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[3]}$			-3.0	0.8	-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	$+10$	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{O Z}}$	Output Leakage Current	$\begin{aligned} & \text { GND } \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$		- 10	+ 10	- 10	$+10$	-10	+ 10	-10	$+10$	$\mu \mathrm{A}$
Ios	$\begin{array}{\|l} \hline \text { Output Short } \\ \text { Circuit Current }{ }^{[4]} \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$			-350		-350		-350		-350	mA
ICC	V_{Cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		115		100		100		100	mA
			Mil				100		100		100	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	Max. $V_{\text {CC }}$, $\overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}$, Min. Duty Cycle $=100 \%$	Com'l		40		40		30		30	mA
			Mil				40		40		30	
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\left\{\begin{array}{l} \text { Max. }^{V_{C C},} \\ \mathrm{CE}_{1} \geq V_{C C}-0.3 \mathrm{~V}, \\ \text { or } V_{\mathrm{IN}} \leq 0.3 \mathrm{~V}=0.3 \mathrm{~V} \end{array}\right.$	Com'l		20		20		20		20	mA
			Mil				20		20		20	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {out }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\mathrm{V}_{\mathrm{IL}} \min .=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .

AC Test Loads and Waveforms

4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

Equivalent to:
THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[2,6,7]}$

Parameters	Description	$\begin{aligned} & \text { 7C161A-15 } \\ & 7 \mathrm{C} 162 \mathrm{~A}-15 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C161A}-20 \\ & \text { 7C162A-20 } \end{aligned}$		$\begin{aligned} & \text { 7C161A-25 } \\ & \text { 7C162A-25 } \end{aligned}$		$\begin{aligned} & \text { 7C161A-35 } \\ & \text { 7C162A-35 } \end{aligned}$		$\begin{aligned} & \text { 7C161A-45 } \\ & 7 \mathrm{C} 162 \mathrm{~A}-45 \end{aligned}$		Units
		Min.	Max.									

t_{RC}	Read Cycle Time	15		20		25		35		45		ns
t_{AA}	Address to Data Valid		15		20		25		35		45	ns
toha	Output Hold from Address Change	3		5		5		5		5		ns
$\mathrm{t}_{\text {Ace }}$	$\overline{\text { CE }}$ LOW to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		10		10		12		15		20	ns
tizoe	$\overline{\text { OE LOW }}$ to LOW Z	3		3		3		3		3		ns
thzoe $^{\text {l }}$	$\overline{\text { OE HIGH to HIGH }} \mathbf{Z}$		8		8		10		12		15	ns
t LzCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	5		5		5		5		5		ns
thzCe $^{\text {che }}$	$\begin{array}{\|l} \hline \overline{\mathrm{CE}} \mathrm{HIGH} \text { to } \\ \text { High } \mathrm{Z}^{[8,9]} \end{array}$		8		8		10		15		15	ns
tpu	$\overline{\text { CE LOW to Power-Up }}$	0		0		0		0		0		ns
tpd	$\begin{array}{\|l\|} \hline \overline{\mathrm{CE}} \text { HIGH to } \\ \text { Power-Down } \end{array}$		15		20		20		20		25	ns

WRITE CYCLE ${ }^{[10]}$

t_{wc}	Write Cycle Time	15		20		20		25		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	12		15		20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	12		15		15		20		20		ns
$\mathrm{t}_{\text {sD }}$	Data Set-Up to Write End	10		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {Lzwe }}$	WE HIGH to Low $\mathbf{Z}^{[8]}$ (7C162A)	5		5		5		5		5		ns
$\mathrm{t}_{\text {HzwE }}$	WE LOW to High $Z^{[8,9]}$ (7C162A)		7		7		7		10		15	ns
$\mathrm{t}_{\text {AWE }}$	WE LOW to Data Valid (7C161A)		15		20		25		30		35	ns
$\mathrm{t}_{\text {ADV }}$	$\begin{array}{\|l\|} \hline \text { Data Valid to } \\ \text { Output Valid (7C161A) } \end{array}$		15		20		20		30		35	ns

Notes:
6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. Both $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are represented by $\overline{\mathrm{CE}}$ in the Switching Characteristics and Waveforms sections.
8. At any given temperature and voltage condition, $t_{H Z}$ is less than $t_{L Z}$ for any given device.
9. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, $\overline{\mathrm{CE}}_{2}$ LOW, and $\overline{W E}$ LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
11. $\bar{W} E$ is HIGH for read cycle.
12. Device is continuously selected, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{IL}}$.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ transition LOW.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state (7 C 162 A only).

Switching Waveforms ${ }^{[7]}$

Read Cycle No. ${ }^{\left[11, i^{2}\right]}$

Read Cycle No. $\mathbf{2}^{[11,13]}$

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[10]}$

Switching Waveforms (continued)

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

NORMALIZED I ${ }_{\text {CC }}$ vs. CYCLE TIME

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A5	X3	1
A6	X4	2
A7	X5	3
A8	X6	4
A9	X7	5
A10	Y0	6
A11	Y1	7
A12	Y5	8
A13	Y4	9
A0	Y3	23
A1	Y2	24
A2	X0	25
A3	X1	26
A4	X2	27

Ordering Information

Speed (ns)	Ordering Code	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
15	CY7C161A-15PC	P21	Commercial
	CY7C161A-15VC	V21	
	CY7C161A-15DC	D22	
	CY7C161A-15LC	L54	
20	CY7C161A-20PC	P21	Commercial
	CY7C161A-20VC	V21	
	CY7C161A-20DC	D22	
	CY7C161A-20LC	L54	
	CY7C161A-20DMB	D22	Military
	CY7C161A-20LMB	L54	
25	CY7C161A-25PC	P21	Commercial
	CY7C161A-25VC	V21	
	CY7C161A-25DC	D22	
	CY7C161A-25LC	L54	
	CY7C161A-25DMB	D22	Military
	CY7C161A-25LMB	L54	
35	CY7C161A-35PC	P21	Commercial
	CY7C161A-35VC	V21	
	CY7C161A-35DC	D22	
	CY7C161A-35LC	L54	
	CY7C161A-35DMB	D22	Military
	CY7C161A-35LMB	L54	
45	CY7C161A-45PC	P21	Commercial
	CY7C161A-45VC	V21	
	CY7C161A-45DC	D22	
	CY7C161A-45LC	L54	
	CY7C161A-45DMB	D22	Military
	CY7C161A-45LMB	L54	

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C162A-15PC	P21	Commercial
	CY7C162A-15VC	V21	
	CY7C162A-15DC	D22	
	CY7C162A-15LC	L54	
20	CY7C162A-20PC	P21	Commercial
	CY7C162A-20VC	V21	
	CY7C162A-20DC	D22	
	CY7C162A-20LC	L54	
	CY7C162A-20DMB	D22	Military
	CY7C162A-20LMB	L54	
	CY7C162A-20KMB	K74	
25	CY7C162A-25PC	P21	Commercial
	CY7C162A-25VC	V21	
	CY7C162A-25DC	D22	
	CY7C161A-25LC	L54	
	CY7C162A-25DMB	D22	Military
	CY7C162A-25LMB	L54	
	CY7C162A-25KMB	K74	
35	CY7C162A-35PC	P21	Commercial
	CY7C162A-35VC	V21	
	CY7C162A-35DC	D22	
	CY7C162A-35LC	L54	
	CY7C162A-35DMB	D22	Military
	CY7C162A-35LMB	L54	
	CY7C162A-35KMB	K74	
45	CY7C162A-45PC	P21	Commercial
	CY7C162A-45VC	V21	
	CY7C162A-45DC	D22	
	CY7C162A-45LC	L54	
	CY7C162A-45DMB	D22	Military
	CY7C162A-45LMB	L54	
	CY7C162A-45KMB	K74	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{X}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWE}}{ }^{[15]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}{ }^{[15]}$	$7,8,9,10,11$

Notes:
15. 7C161A only.

Document \#: 38-00116

Features

- High speed
$-12 \mathrm{~ns}_{\mathrm{t}}$
- Five chip enables ($\overline{\mathrm{CE}}_{1,2,3}$ and $\mathrm{CE}_{4,5}$) to expand memory
- BiCMOS for optimum speed/power
- Low active power
$-605 \mathrm{~mW}$
- Low standby power
$-275 \mathrm{~mW}$
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7B163 is a high-performance BiCMOS static RAM organized as 262,144 words by 1 bit. Easy memory expansion is provided five chip enables for each part ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}, \overline{\mathrm{CE}}_{3}, \mathrm{CE}_{4}$, and CE_{5}). The active HIGH and active LOW chip enables provide on-chip address decoding, eliminating the need for external decoder logic.
The CY7B163 has an automatic powerdown feature, reducing the power consumption by more than 60% when deselected by any CE input.
Writing to the device is accomplished when $\overline{\mathrm{CE}}_{1,2,3}$ and $\overline{\mathrm{WE}}$ are LOW, and $\mathrm{CE}_{4,5}$ are HIGH. Data on the input pin $\left(\mathrm{D}_{\text {IN }}\right)$ is written
into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking chip enables $\overline{\mathrm{CE}}_{1}, 2,3$ LOW while $\overline{W E}$ and chip enables $\mathrm{CE}_{4,5}$ remain HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the data output pin ($\mathrm{D}_{\mathrm{OUT}}$).
The output pin ($\mathrm{D}_{\text {our }}$) is in a high-impedance state when the device is deselected (any of: $\overline{\mathrm{CE}}_{1,2,3} \mathrm{HIGH}$ or $\mathrm{CE}_{4,5} \mathrm{LOW}$), or during a write operation ($\overline{\mathrm{WE}}$ and $\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\mathrm{CE}_{4,5} \mathrm{HIGH}$).
The CY7B163 is available in leadless chip carriers and space-saving 300 -mil-wide DIPs and SOJs.

Selection Guide

		7B163-12	7B163-15	7B163-20
Maximum Access Time (ns)		12	15	20
Maximum Operating Current (mA)	Commercial	110	110	110
Maximum Standby Current (mA)	Military		120	120

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} relative to $\mathrm{GND}^{[1]} \ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$ \qquad -0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$
-0.5 V to +7.0 V
Current into Outputs (LOW) 20 mA

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current.................................... . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\mathrm{Min})}=-3.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b) B163-4

B163-5

Equivalent to: THEVENIN EQUIVALENT
OUTPUT $O-167 \Omega$

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	7B163-12		7B163-15		7B163-20		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	12		15		20		ns
t_{AA}	Address to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\mathrm{CE}_{4,5} \mathrm{HIGH}$ to Data Valid		12		15		20	ns
t LzCE	$\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\mathrm{CE}_{4,5} \mathrm{HIGH}$ to Low $\mathrm{Z}^{[7]}$	3		3		3		ns
$t_{\text {HzCe }}$	$\overline{\mathrm{CE}}_{1,2,3} \mathrm{HIGH}$ or $\mathrm{CE}_{4,5}$ LOW to High $\mathrm{Z}^{[7,8]}$		7		8		10)	ns
$t_{\text {Pu }}$	$\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\mathrm{CE}_{4,5} \mathrm{HIGH}$ to Power-Up		0		0		0	ns
$t_{\text {PD }}$	$\overline{\mathrm{CE}}_{1,2,3} \mathrm{HIGH}$ or $\mathrm{CE}_{4,5}$ LOW to Power-Down		12		15		20	ns
WRITE CYCLE ${ }^{[9]}$								
t_{wc}	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}_{1,2,3}$ LOW and $\mathrm{CE}_{4,5} \mathrm{HIGH}$ to Write End	9		10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9		10		15		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$t_{\text {Pwe }}$	$\overline{\text { WE Pulse Width }}$	9		10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	2		2		2		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		7		7		10	ns

Notes:
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 20 pF load capacitance.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
8. $t_{\text {HZCE }}$ and $\mathrm{t}_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (b) in AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1,2,3}$ LOW, $\mathrm{CE}_{4,5}$ HIGH, and WE LOW. All signals must be asserted to initiate a write, and by being deasserted, any signal can terminate a write. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. ${ }^{[12]}$

B163-7
Write Cycle No. 1 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[13]}$

DATA OUT HIGH IMPEDANCE
B163-8

Notes:

10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}_{1,2,3} \leq \mathrm{V}_{\mathrm{IL}}$ and $\mathrm{CE}_{4,5} \geq \mathrm{V}_{\mathrm{IH}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. If any of $\overline{\mathrm{CE}}_{1,2,3}$ goes HIGH or $\mathrm{CE}_{4,5}$ goes LOW simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[13]}$

Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\overline{\mathbf{C E}}_{\mathbf{2}}$	$\overline{\mathbf{C E}}_{\mathbf{3}}$	$\mathbf{C E}_{\mathbf{4}}$	$\mathbf{C E}_{\mathbf{5}}$	$\overline{\mathrm{WE}}$	Dout	Mode	Power
L	L	L	H	H	H	Data Out	Read	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	L	L	H	H	L	High Z	Write	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
H	X	X	X	X	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
X	H	X	X	X	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
X	X	H	X	X	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
X	X	X	L	X	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
X	X	X	X	L	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B163-12PC	P21	Commercial
	CY7B163-12VC	V21	
	CY7B163-12DC	D22	
	CY7B163-12LC	L55	
15	CY7B163-15PC	P21	Commercial
	CY7B163-15VC	V21	
	CY7B163-15DC	D22	
	CY7B163-15LC	L55	
	CY7B163-15DMB	D22	Military
	CY7B163-15LMB	L55	

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7B163-20PC	P21	Commercial
	CY7B163-20VC	V21	
	CY7B163-20DC	D22	
	CY7B163-20LC	L55	
	CY7B163-20DMB	D22	Military
	CY7B163-20LMB	L55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\text {SCE }}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\text {PWE }}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

[^15]
Features

- BiCMOS for optimum speed/power
- High speed
$-\mathrm{t}_{\mathrm{AA}}=10 \mathrm{~ns}$
- Low active power
$-650 \mathrm{~mW}$
- Low standby power
$-200 \mathrm{~mW}$
- Output Enable ($(\overline{\mathrm{OE}})$ feature (7B166)
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7B164 and CY7B166 are high-performance BiCMOS static RAMs organized as $16,384 \times 4$ bits. Easy memory expansion is provided by an active LOW chip enable (CE) and three-state drivers. The CY7B166 has an active LOW output enable ($\overline{\mathrm{OE}})$ feature. Both devices have an automatic power-down feature, reducing the power consumption by 67% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE})}$ inputs are both LOW. Data on the four
input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW (and $\overline{\mathrm{OE}}$ LOW for 7B166) while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.
The I/O pins stay in high-impedance state when chip enable $(\overline{\mathrm{CE}})$ is HIGH , or write enable ($\overline{\mathrm{WE}}$) is LOW (or output enable ($\overline{\mathrm{OE}}$) is HIGH for 7B166).

Selection Guide

		$\begin{aligned} & \hline 7 B 164-10 \\ & 7 \mathrm{~B} 166-10 \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~B} 164-12 \\ & \text { 7B166-12 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{7B164-15} \\ & 7 \mathrm{~B} 166-15 \end{aligned}$
Maximum Access Time (ns)		10	12	15
Maximum Operating Current (mA)	Commercial	130	120	
	Military		483	135
Maximum Standby Current (mA)	Commercial	40	40	
	Military		60\%	50

Shaded area contains preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$ -3.0 V to +7.0 V
Output Current into Outputs (Low) 20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current................................... $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Shaded area contains preliminary information.
Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max. ${ }^{[5]}$	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$		5
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	pF	
		7	pF	

Notes:

1. V_{IL} (min.) $=-3.0 \mathrm{~V}$ for pulse width $<20 \mathrm{~ns}$.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Tested initially and after any design or process changes that may affect these parameters.
5. For all packages except CERDIP (D10, D14), which has maximums of $C_{\text {IN }}=8 \mathrm{pF}, C_{\text {OUT }}=9 \mathrm{pF}$.

AC Test Loads and Waveforms

THÉVENIN EQUIVALENT
Equivalent to:

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description		$\begin{aligned} & 7 \mathrm{7B} 164-10 \\ & 7 \mathrm{~B} 166-10 \end{aligned}$		$\begin{aligned} & \hline 7 B 164-12 \\ & 7 \mathrm{~B} 166-12 \end{aligned}$		$\begin{aligned} & \hline 7 B 164-15 \\ & \text { 7B166-15 } \end{aligned}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE									
t_{RC}	Read Cycle Time		10		12		15		ns
t_{AA}	Address to Data Valid			10		12		15	ns
toha	Output Hold from Address Ch		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE }}$ LOW to Data Valid			10		12		15	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid	7B166		5		5		6	ns
t Lzoe	$\overline{\text { OE LOW }}$ to Low Z	7B166	2		2		2		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE }}$ HIGH to High $\mathbf{Z}^{[7]}$	7B166		5		6		7	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low ${ }^{[8]}$		2		2		3		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$			5		6		7	ns
WRITE CYCLE ${ }^{[9]}$									
t_{wc}	Write Cycle Time		10		12		15		ns
${ }^{\text {t }}$ SCE	$\overline{\overline{C E}}$ LOW to Write End		8		8		10		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End		8		8		10		ns
t_{HA}	Address Hold from Write End		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start		0		0		0		ns
$t_{\text {PWE }}$	WE Pulse Width		8		8		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End		5		6		7		ns
t_{HD}	Data Hold from Write End		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z		2		2		3		ns
$\mathrm{t}_{\mathrm{HzWE}}$	$\overline{\text { WE }}$ LOW to High $\mathbf{Z}^{[7]}$		0	5	0	6	0	7	ns

Notes:
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$.
7. $t_{\text {HZCE }}, t_{\text {HZWE, }}$ and $t_{\text {HZOE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) in AC Test Loads. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device. These parameters are guaranteed and not 100% tested.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. 1 ${ }^{[10,11]}$

Read Cycle No. ${ }^{[10,12]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[9,13]}$

B164-11

Notes:
10. WE is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \cdot\left(7 \mathrm{~B} 166: \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}\right.$ also $)$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. 7B166 only: Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. $2(\overline{\mathbf{C E}} \text { Controlled })^{〔 9,12,14]}$

7B164 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

7B166 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
10	CY7B164-10PC	P9	Commercial
	CY7B164-10VC	V13	
	CY7B164-10DC	D10	
12	CY7B164-12PC	P9	Commercial
	CY7B164-12VC	V13	
	CY7B164-12DC	D10	
	\% 1216120 MB	DH	Milian
	\%11 14.24 Mm	15%	
15	CY7B164-15DMB	D10	Military
	CY7B164-15LMB	L52	

Shaded area contains preliminary information.

Speed (ns)	Ordering Code	Package Type	Operating Range
10	CY7B166-10PC	P13	Commercial
	CY7B166-10VC	V13	
	CY7B166-10DC	D14	
12	CY7B166-12PC	P13	Commercial
	CY7B166-12VC	V13	
	CY7B166-12DC	D14	
	M1160, 2 HM	114	Millaty
		144	
15	CY7B166-15DMB	D14	Military
	CY7B166-15LMB	L54	

Shaded area contains preliminary information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}{ }^{[15]}$	$7,8,9,10,11$
WRITE $^{\text {CYCLE }}$	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Note:
15. 7B166 only.

Document \#: 38-A-00015-D

Features

- Automatic power-down when deselected
- Output Enable ($\overline{\mathrm{OE}}$) feature (7C166)
- CMOS for optimum speed/power
- High speed
$-\mathbf{t}_{\mathrm{AA}}=15 \mathrm{~ns}$
- Low active power
$-633 \mathrm{~mW}$
- Low standby power

- 220 mW

- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001 V electrostatic discharge

Functional Description

The CY7C164 and CY7C166 are high-performance CMOS static RAMs organized as 16,384 by 4 bits. Easy memory expansion is provided by an active LOW chip enable $(\overline{\mathrm{CE}})$ and three-state drivers. The CY7C166 has an active low output enable ($\overline{\mathrm{OE}}$) feature. Both devices have an automatic power-down feature, reducing the power consumption by 65% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW (and the output enable ($\overline{\mathrm{OE}}$) is LOW for the 7C166). Data
on the four input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW (and $\overline{\mathrm{OE}}$ LOW for 7C166), while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.
The I/O pins stay in high-impedance state when chip enable ($\overline{\mathrm{CE}}$) is HIGH, or write enable ($\overline{\mathrm{OE})}$) is HIGH for 7C166). A die coat is used to insure alpha immunity.

Selection Guide

	7C164-15 7C166-15	7C164-20 7C166-20	7C164-25 7C166-25	7C164-35 7C166-35	7C164-45 7C166-45
Maximum Access Time (ns)	15	20	25	35	45
Maximum Operating Current (mA)	115	80	70	70	50
Maximum Standby Current (mA)	$40 / 20$	$40 / 20$	$20 / 20$	$20 / 20$	$20 / 20$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	. -0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current. $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	$\begin{aligned} & \text { 7C164-15 } \\ & \text { 7C166-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C164-20 } \\ & \text { 7C166-20 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { 7C164-25,35 } \\ \text { 7C166-25,35 } \end{array}$		$\begin{aligned} & \hline \text { 7C164-45 } \\ & \text { 7C166-45 } \end{aligned}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$	2.4		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \\ & \hline \end{aligned}$		0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	2.2	V_{CC}	2.2	V_{cc}	2.2	V_{cc}	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$		-3.0	0.8	-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	-10	+10	-10	+ 10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[2]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max.}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		-350		-350		-350		-350	mA
I_{CC}	V_{Cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \hline \end{aligned}$		115		80		70		50	mA
$\mathrm{I}_{\text {SB } 1}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current ${ }^{[3]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }= \\ & 100 \% \end{aligned}$		40		40		20		20	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current ${ }^{[3]}$	$\begin{aligned} & \text { Max. } V_{C C}, \\ & \overline{C E} \geq V_{C C}-0.3 \mathrm{~V}, \\ & V_{\text {IN }} \geq V_{C c}-0.3 \mathrm{~V} \\ & \text { or } V_{\text {IN }} \leq 0.3 \mathrm{~V} \end{aligned}$		20		20		20		20	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
C $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10	pF	

Notes:

1. $\mathrm{V}_{\mathrm{IL}} \min .=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
2. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
3. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(b)

C164-7

ALL INPUT PULSES

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } 0 \text { 1.73V }
$$

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description		$\begin{aligned} & \hline \text { 7C164-15 } \\ & \text { 7C166-15 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 164-20 \\ & \text { 7C166-20 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C164-25 } \\ & \text { 7C166-25 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 164-35 \\ & \text { 7C166-35 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 164-45 \\ & \text { 7C166-45 } \end{aligned}$		Units
			Min.	Max.									
READ CYCLE													
$\mathrm{t}_{\text {RC }}$	Read Cycle Time		15		20		25		35		45		ns
$t_{\text {AA }}$	Address to Data Valid			15		20		25		35		45	ns
toha	Output Hold from Addre Change		3		5		5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid			15		20		25		35		45	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\text { OE LOW to Data Valid }}$	7C166		10		10		12		15		20	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	7 C 166	3		3		3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High Z	7C166		8		8		10		12		15	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\text { CE }}$ LOW to Low $\mathrm{Z}^{[6]}$		3		5		5		5		5		ns
$\mathrm{t}_{\text {HzCe }}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[6,7]}$			8		8		10		15		15	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE LOW }}$ to Power-Up		0		0		0		0		0		ns
t $_{\text {PD }}$	$\overline{\text { CE }}$ HIGH to Power-Dow			15		20		20		20		25	ns
WRITE CYCLE ${ }^{[8]}$													
t_{wc}	Write Cycle Time		15		20		20		25		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE LOW to Write End }}$		12		15		20	-	25		30		ns
$\mathrm{t}_{\text {Aw }}$	Address Set-Up to Write	End	12		15		20		25		30		ns
t_{HA}	Address Hold from Write	End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write	Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$		12		15		15		20		20		ns
$\mathrm{t}_{\text {sD }}$	Data Set-Up to Write En		10		10		10		15		15		ns
t_{HD}	Data Hold from Write End		0		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$		5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{HzWE}}$	$\overline{\text { WE }}$ LOW to High $\mathbf{Z}^{[6,7]}$			7		7		7		10		15	ns

Notes:
5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}$ for any given device. These parameters are guaranteed and not 100% tested.
7. t_{HZCE} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) in AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WELOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

C164-9
Read Cycle No. $2^{[9,11]}$

C164-10
Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[8,12]}$

Notes:

9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \cdot\left(7 \mathrm{C} 166: \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}\right.$ also $)$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
12. 7C166 only: Data I/O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. $2\left(\overline{\text { CE }}\right.$ Controlled) ${ }^{[8,12,13]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

7C164 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Bit Map

7C164 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	H	Data In	Write
L	H	H	High Z	Write

Address Designators

Address Name	Address Function	Pin Number
A5	X3	1
A6	X4	2
A7	X5	3
A8	X6	4
A9	X7	5
A10	Y5	6
A11	Y4	7
A12	Y0	8
A13	Y1	9
A0	Y2	17
A1	Y3	18
A2	X0	19
A3	X1	20
A4	X2	21

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C164-15PC	P9	Commercial
	CY7C164-15VC	V13	
	CY7C164-15DC	D10	
	CY7C164-15LC	L.52	
20	CY7C164-20PC	P9	Commercial
	CY7C164-20VC	V13	
	CY7C164-20DC	D10	
	CY7C164-20LC	L52	
25	CY7C164-25PC	P9	Commercial
	CY7C164-25VC	V13	
	CY7C164-25DC	D10	
	CY7C164-25LC	L52	
35	CY7C164-35PC	P9	Commercial
	CY7C164-35VC	V13	
	CY7C164-35DC	D10	
	CY7C164-35LC	L52	
45	CY7C164-45PC	P9	Commercial
	CY7C164-45VC	V13	
	CY7C164-45DC	D10	
	CY7C164-45LC	L52	

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C166-15PC	P13	Commercial
	CY7C166-15VC	V13	
	CY7C166-15DC	D14	
	CY7C166-15LC	L54	
20	CY7C166-20PC	P13	Commercial
	CY7C166-20VC	V13	
	CY7C166-20DC	D14	
	CY7C166-20LC	L54	
25	CY7C166-25PC	P13	Commercial
	CY7C166-25VC	V13	
	CY7C166-25DC	D14	
	CY7C166-25LC	L54	
35	CY7C166-35PC	P13	Commercial
	CY7C166-35VC	V13	
	CY7C166-35DC	D14	
	CY7C166-35LC	L54	
45	CY7C166-45PC	P13	Commercial
	CY7C166-45VC	V13	
	CY7C166-45DC	D14	
	CY7C166-45LC	L54	

Features

- Automatic power-down when deselected
- Output Enable ($\overline{\mathbf{O E}})$ feature (7C166A)
- CMOS for optimum speed/power
- High speed
$-\mathbf{t}_{\mathrm{AA}}=15 \mathrm{~ns}$
- Low active power
$-550 \mathrm{~mW}$
- Low standby power
$-220 \mathrm{~mW}$
- TTL-compatible imputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C164A and CY7C166A are highperformance CMOS static RAMs organized as 16,384 by 4 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7C166A has an active low output enable $(\overline{\mathrm{OE}})$ feature. Both devices have an automatic power-down feature, reducing the power consumption by 60% when deselected.

Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs are both LOW (and the output enable ($\overline{O E}$) is LOW for the 7C166A). Data on the four input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through
$\left.\mathrm{I} / \mathrm{O}_{3}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW (and $\overline{\mathrm{OE}}$ LOW for 7C166A), while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.
The I/O pins stay in high-impedance state when chip enable ($\overline{\mathrm{CE}}$) is HIGH, or write enable ($\overline{\mathrm{OE}}$) is HIGH for 7C166A).
A die coat is used to insure alpha immunity.

Selection Guide

		7C164A-15 7C166A-15	7C164A-20 7C166A-20	7C164A-25 7C166A-25	7C164A-35 7C166A-35	7C164A-45 7C166A-45
		15	20	25	35	45
Maximum Operating Current (mA)	Commercial	115	100	100	100	100
	Military		100	100	100	100
Maximum Standby Current (mA)	Commercial	$40 / 20$	$40 / 20$	30	30	30
	Military		$40 / 20$	$40 / 20$	30	30

CYPRESS

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots . .65^{\circ} \mathrm{C}$ to $+150^{\circ}{ }^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Notes

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\mathrm{V}_{\mathrm{IL}} \mathrm{min}$. $=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
6. Tested initially and after any design or process changes that may affect these parameters.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms

Equivalent to: THEVENIN EQUIVALENT

CYPRESS

Switching Characteristics Over the Operating Range ${ }^{[2,7]}$

Parameters	Description	$\begin{aligned} & \text { 7C164A-15 } \\ & \text { 7C166A-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C164A-20 } \\ & \text { 7C166A-20 } \end{aligned}$		$\begin{aligned} & \text { 7C164A-25 } \\ & \text { 7C166A-25 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C164A-35 } \\ & \text { 7C166A-35 } \end{aligned}$		$\begin{aligned} & \text { 7C164A-45 } \\ & \text { 7C166A-45 } \end{aligned}$		Units
		Min.	Max.									

t_{RC}	Read Cycle Time		15		20		25		35		45		ns
t_{AA}	Address to Data Valid			15		20		25		35		45	ns
toha	Output Hold from Change	Address	3		3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid			15		20		25		35		45	ns
$\mathrm{t}_{\text {Doe }}$	$\overline{\text { OE }}$ LOW to Data Valid	7C166A		10		10		12		15		20	ns
$\mathrm{t}_{\text {LHzoe }}$	$\overline{\text { OELOW to LOW Z }}$	7C166A	3		3		3		3		3		ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to HIGH Z	7C166A		8		8		10		12		15	ns
$\mathrm{t}_{\text {LzCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$		3		5		5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathbf{Z}^{[8,9]}$			8		8		10		15		15	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}$ LOW to Power-Up		0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE HIGH to Power-Down }}$			15		20		20		20		25	ns

WRITE CYCLE ${ }^{[10]}$

t_{wc}	Write Cycle Time	15		20		20		25		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	12		15		20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
$t_{\text {PWE }}$	WE Pulse Width	12		15		15		20		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[8,9]}$		7		7		7		10		15	ns

Notes:

7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device. These parameters are guaranteed and not 100% tested.
9. t_{HZCE} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) in AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \cdot\left(7 \mathrm{C} 166: \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}\right.$ also $)$.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
14. 7C166 only: Data I/O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[11,12]}$

Read Cycle No. $2^{[11,13]}$

C164A-10
Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[10,14]}$

Switching Waveforms (continued)

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

7C164A Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

7C166A Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

SEMICONDUCTOR

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C164A-15PC	P9	Commercial
	CY7C164A-15VC	V13	
	CY7C164A-15DC	D10	
	CY7C164A-15LC	L52	
20	CY7C164A-20PC	P9	Commercial
	CY7C164A-20VC	V13	
	CY7C164A-20DC	D10	
	CY7C164A-20LC	L52	
	CY7C164A-20DMB	D10	Military
	CY7C164A-20LMB	L52	
	CY7C164A-20KMB	K73	
25	CY7C164A-25PC	P9	Commercial
	CY7C164A-25VC	V13	
	CY7C164A-25DC	D10	
	CY7C164A-25LC	L52	
	CY7C164A-25DMB	D10	Military
	CY7C164A-25LMB	L52	
	CY7C164A-25KMB	K73	
35	CY7C164A-35PC	P9	Commercial
	CY7C164A-35VC	V13	
	CY7C164A-35DC	D10	
	CY7C164A-35LC	LS2	
	CY7C164A-35DMB	D10	Military
	CY7C164A-35LMB	L52	
	CY7C164A-35KMB	K73	
45	CY7C164A-45PC	P9	Commercial
	CY7C164A-45VC	V13	
	CY7C164A-45DC	D10	
	CY7C164A-45LC	L52	
	CY7C164A-45DMB	D10	Military
	CY7C164A-45LMB	L52	
	CY7C164A-45KMB	K73	

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C166A-15PC	P13	Commercial
	CY7C166A-15VC	V13	
	CY7C166A-15DC	D10	
	CY7C166A-15LC	L52	
20	CY7C166A-20PC	P13	Commercial
	CY7C166A-20VC	V13	
	CY7C166A-20DC	D14	
	CY7C166A-20LC	L54	
	CY7C166A-20DMB	D14	Military
	CY7C166A-20LMB	L54	
	CY7C166A-20KMB	K73	
25	CY7C166A-25PC	P13	Commercial
	CY7C166A-25VC	V13	
	CY7C166A-25DC	D14	
	CY7C166A-25LC	L54	
	CY7C166A-25DMB	D14	Military
	CY7C166A-25LMB	L54	
	CY7C166A-25KMB	K73	
35	CY7C166A-35PC	P13	Commercial
	CY7C166A-35VC	V13	
	CY7C166A-35DC	D14	
	CY7C166A-35LC	L54	
	CY7C166A-35DMB	D14	Military
	CY7C166A-35LMB	L54	
	CY7C166A-35KMB	K73	
45	CY7C166A-45PC	P13	Commercial
	CY7C166A-45VC	V13	
	CY7C166A-45DC	D14	
	CY7C166A-45LC	L54	
	CY7C166A-45DMB	D14	Military
	CY7C166A-45LMB	L54	
	CY7C166A-45KMB	K73	

Bit Map

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{Os}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$

Document \#: 38-00113

Address Designators

Address Name	Address Function	Pin Number
A5	X 3	1
A6	X 4	2
A7	X 5	3
A8	X 6	4
A9	X 7	5
A10	Y5	6
A11	Y 4	7
A12	Y0	8
A13	Y 1	9
A0	Y 2	17
A1	Y3	18
A2	X0	19
A3	X1	20
A4	X2	21

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
\mathbf{t}_{RC}	$7,8,9,10,11$
\mathbf{t}_{AA}	$7,8,9,10,11$
$\mathbf{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathbf{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathbf{t}_{\mathrm{DOE}}{ }^{[16]}$	$7,8,9,10,11$
WRITE CYCLE	
\mathbf{t}_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
\mathbf{t}_{AW}	$7,8,9,10,11$
\mathbf{t}_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Note:

16. 7C166A only.

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-25 \mathrm{~ns}$
- Low active power
- 275 mW
- Low standby power
$-83 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C167 is a high-performance CMOS static RAM organized as 16,384 words by 1 bit . Easy memory expansion is provided by an active LOW chip enable (CE) and three-state drivers. The CY7C167 has an automatic power-down feature, reducing the power consumption by 67% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A_{0} through A_{13}).

Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data output (DO) pin.
The output pin stays in high-impedance state when chip enable ($\overline{\mathrm{CE}}$) is HIGH or write enable ($\overline{\mathrm{WE})}$ is LOW.
The 7 C 167 utilizes a die coat to insure alpha immunity.

Logic Block Diagram

Selection Guide

		7C167-25	7C167-35	7C167-45
Maximum Access Time (ns)	25	35	45	
Maximum Operating Current (mA)	Commercial	60	60	50
	Military		60	50

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 26 to Pin 10)	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Voltage Applied to Outputs in High Z State .	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs	20 m

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions			7C167-20		7C167-35		7C167-45		Units
					Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$			2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$.	$\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$	Com'l		0.4		0.4		0.4	V
			$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Mil		0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage				2.0	V_{Cc}	2.0	V_{Cc}	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				-3.0	0.8	-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {LX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$			-10	+10	-10	$+10$	-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$			-50	$+50$	-50	$+50$	-50	$+50$	$\mu \mathrm{A}$
I_{Os}	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$				-350		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		Com'l		60		60		50	mA
				Mil						50	
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CE}}{ }^{[3]}$ Power Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}} \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}} \end{aligned}$		Com'l		20		20		15	mA
				Mil						20	

Capacitance ${ }^{(5)}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	10	pF
Cout	Output Capacitance		10	pF
Cout	Chip Enable Capacitance		5	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is requited to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
4. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT

C167-5

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description		7C167-25		7C167-35		7C167-45		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE									
t_{RC}	Read Cycle Time	Com'l	25		30		40		ns
		Mil	25		35		40		ns
$t_{\text {AA }}$	Address to Data Valid	Com'l		25		30		40	ns
		Mil				35		40	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid			25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$		5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$			15		20		25	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE LOW }}$ to Power Up		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power Down			20		25		30	ns
WRITE CYCLE ${ }^{[9]}$									
t_{wc}	Write Cycle Time		25		30		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End		25		30		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End		25		30		40		ns
t_{HA}	Address Hold from Write End		0		0		0		ns
t_{SA}	Address Set-Up to Write Start		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$		15		20		20		ns
${ }^{\text {ts }}$	Data Set-Up to Write End		15		15		15		ns
t_{HD}	Data Hold from Write End		0		0		0		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$			15		20		20	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$		0		0		0		ns

Notes:

6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device.
8. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH . The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

Read Cycle No. $2^{[10,12]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{(9]}$

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) ${ }^{[9,13]}$

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

Typical DC and AC Characteristics (continued)

Ordering Information

Speed (ns)	$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathbf{C C}}}$	Ordering Code	Package Type	Operating Range
25	60	CY7C167-25PC	P5	Commercial
		CY7C167-25DC	D16	
		CY7C167-25LC	L51	
		CY7C167-25VC	V5	
35	60	CY7C167-35PC	P5	Commercial
		CY7C167-35DC	D6	
		CY7C167-35LC	L51	
		CY7C167-35VC	V5	
45	50	CY7C167-45PC	P5	Commercial
		CY7C167-45DC	D6	
		CY7C167-45LC	L51	
		CY7C167-45VC	V5	
		CY7C167-45DMB	D6	Military
		CY7C167-45LMB	LS1	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{LX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7, 8, 9, 10, 11
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {ACE }}$	7, 8, 9, 10, 11
WRITE CYCLE	
$t_{\text {wc }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SCE }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {AW }}$	7, 8, 9, 10, 11
t_{HA}	$7,8,9,10,11$
$\mathrm{t}_{\text {SA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PWE }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {SD }}$	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00033-D

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-15 \mathrm{~ns}$
- Low active power
$-275 \mathrm{~mW}$
- Low standby power
$-83 \mathrm{~mW}$
- TTLecompatible inputs and outputs
- Capable of withstanding greater than 2001 V electrostatic discharge
- V_{iH} of 2.2 V

Functional Description

The CY7C167A is a high-performance CMOS static RAM organized as 16,384 words by 1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7C167A has an automatic power-down feature, reducing the power consumption by 67% when deselected.

Writing to the device is accomplished when the chip select ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A_{0} through A_{13}).

16,384 x 1 Static RAM

Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) LOW, while (WE) remains HIGH. Under these condintions, the contents of the location specified on the address pins will appear on the data output (DO) pin.

The output pin remains in a high-impedance state when chip enable is HIGH, or write enable ($\overline{\mathrm{WE}}$) is LOW.

A die coat is used to insure alpha immunity.

Selection Guide

		7C167A-15	7C167A-20	7C167A-25	7C167A-35	7C167A-45
Maximum Access Time (ns)	15	20	25	35	45	
Maximum Operating Current (mA)	Commercial	90	80	60	60	50
	Military		80	70	60	50

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage . >2001V (per MIL-STD-883, Method 3015)		
Ambient Temperature with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Cur		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential (Pin 20 to Pin 10) -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State . -0.5 V to +7.0 V	Range	Ambient Temperature	$\mathrm{V}_{\text {cc }}$
DC Input Voltage . -3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current into Outputs (LOW) 20 mA	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		7C167A-15		7C167A-20		7C167A-25		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I	$-4.0 \mathrm{~mA}$	$2 . .4$		$2 . .4$		$2 . .4$		V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & 8.0 \mathrm{~mA} \text { Mil } \end{aligned}$	$12.0 \mathrm{~mA} \text {, }$		0.4		0.4		0.4	V
V_{IH}	Input High Voltage			2.2	V_{CC}	2.2	V_{cc}	2.2	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage ${ }^{[3]}$			-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \text { GND } \leq \mathrm{V}_{\mathrm{O}} \leq \\ & \text { Output Disabl } \end{aligned}$		-10	+ 10	-10	+10	-10	+ 10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$.,	= GND		-350		-350		-350	mA
I_{CC}	$V_{\text {cc }}$ Operating	$V_{C C}=\operatorname{Max} .$	Com'l		90		80		60	mA
	Supply Current	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Mil				80		70	
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CE}}$	Max. Vcc	Com'l		40		40		20	mA
	Power-Down Current ${ }^{(5)}$	$\mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}}$	Mil				40		20	

Parameters	Description	Test Conditions		7C167A-35		7C167A-45		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		$2 . .4$		$2 . .4$		V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}, \\ & 8.0 \mathrm{~mA} \mathrm{Mil} \end{aligned}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage			2.2	V_{cc}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage ${ }^{[3]}$	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq$		-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current			-10	+ 10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-10	$+10$	-10	+ 10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		60		50	mA
			Mil		60		50	
$\mathrm{I}_{\text {SB }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CE}} \\ & \text { Power-Down Current }{ }^{[5]} \end{aligned}$	$\frac{\text { Max. }}{\frac{V_{C C}}{}}$	Com'l		20		15	mA
			Mil		20		20	

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance		10	pF
C_{CE}	Chip Enable Capacitance		6	pF

AC Test Loads and Waveforms

ALL INPUT PULSES

(a)
(b) $\quad{ }_{13} 167$

Equivalent to:

THÉVENIN EQUIVALENT

OUTPUT $0=$ Military $_{167 \Omega}^{0} 1.73 \mathrm{~V}$

Switching Characteristics Over the Operating Range ${ }^{[2,7]}$

Parameters	Description	7C167A-15		7C167A-20		7C167A-25		7C167A-35		7C167A-45		Units
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	15		20		25		30		40		ns
				20		25		35		40		ns
t_{AA}	Address to Data Valid		15		20		25		30		40	ns
					20		25		35		40	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	5		5		5		5	,	5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[8,9]}$		8		8		10		15		15	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		0		0		0		ns
t_{PD}	$\overline{\overline{C E}}$ HIGH to Power-Down		15		20		20		20		25	ns
WRITE CYCLE ${ }^{[10]}$												
t_{wc}	Write Cycle Time	15		20		20		25		40		ns
$\mathrm{t}_{\text {sce }}$	$\overline{\mathrm{CE}}$ LOW to Write End	12		15		20		25		30		ns
t_{AW}	Address Set-Up to Write End	12		15		20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {PwE }}$	WE Pulse Width	12		15		15		20		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[8,9]}$		7		7		7		10		15	ns
$\mathrm{t}_{\text {Lzwe }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$	5		5		5		5		5		ns

Notes:

3. $\mathrm{V}_{\mathrm{IL}} \mathrm{min} .=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
4. Duration of the short circuit should not exceed 30 seconds.
5. A pull-up resistor to $V_{C C}$ on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during VCC power-up, otherwise I_{SB} will exceed values given.

Switching Waveforms

Read Cycle No. $2^{[11,13]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[10]}$

Notes:

6. Tested initially and after any design or process changes that may affect these parameters.
7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
8. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
9. $t_{\text {HZCE }}$ and $t_{\text {HZWE }}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signal must be LOW to initiate a write
and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
11. $\overline{W E}$ is high for read cycle.
12. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[10,14]}$

C167A-18

Typical DC and AC Characteristics

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

Typical DC and AC Characteristics (continued)

Ordering Information

Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \end{gathered}$	Ordering Code	Package Type	Operating Range
15	80	CY7C167A-15PC	P5	Commercial
		CY7C167A-15DC	D6	
		CY7C167A-15VC	V5	
20	80	CY7C167A-20PC	P5	Commercial
		CY7C167A-20DC	D6	
		CY7C167A-20LC	L51	
		CY7C167A-20VC	V5	
		CY7C167A-20DMB	D6	Military
		CY7C167A-20LMB	L51	
		CY7C167A-20KMB	K71	
25	60	CY7C167A-25PC	P5	Commercial
		CY7C167A-25DC	D6	
		CY7C167A-25LC	L51	
		CY7C167A-25VC	V5	
		CY7C167A-25DMB	D6	Military
		CY7C167A-25LMB	L51	
		CY7C167A-25KMB	K71	

Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathrm{IC}} \\ (\mathrm{~mA}) \end{gathered}$	Ordering Code	Package Type	Operating Range
35	60	CY7C167A-35PC	P5	Commercial
		CY7C167A-35DC	D6	
		CY7C167A-35LC	L51	
		CY7C167A-35VC	V5	
		CY7C167A-35DMB	D6	Military
		CY7C167A-35LMB	L51	
		CY7C167A-35KMB	K71	
45	50	CY7C167A-45PC	P5	Commercial
		CY7C167A-45DC	D6	
		CY7C167A-45LC	L51	
		CY7C167A-45VC	V5	
		CY7C167A-45DMB	D6	Military
		CY7C167A-45LMB	L51	
		CY7C167A-45KMB	K71	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{sD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00093-B

Features

- Automatic power-down when deselected (7C168)
- CMOS for optimum speed/power
- High speed
$-\mathbf{t}_{\mathbf{A A}}=25 \mathrm{~ns}$
$-\mathbf{t}_{\mathrm{ACE}}=15 \mathrm{~ns}$ (7C169)
- Low active power
$-385 \mathrm{~mW}$
- Low standby power (7C168)
$-83 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C168 and CY7C169 are high-performance CMOS static RAMs organized as 4096 by 4 bits. Easy memory expansion is provided by an active LOW chip enable $(\overline{\mathrm{CE}})$ and three-state drivers. The CY7C168 has an automatic power-down feature, reducing the power consumption by 77% when deselected.
Writing to the device is accomplished when the chip select (CE) and write enable (WE) inputs are both LOW. Data on the four data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location specified on the address pins (A_{0} through A_{11}).

4096 x 4 Static RAM

Reading the device is accomplished by taking the chip enable (CE) LOW while (WE) remains HIGH. Under these condintions, the contents of the location specified on the address pins will appear on the four data input/output pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\mathrm{I} / \mathrm{O}_{3}$).
The input/output pins remain in a highimpedance state when chip enable is HIGH, or write enable (WE) is LOW.

A die coat is used to insure alpha immunity

Logic Block Diagram

Pin Configurations

Selection Guide

		7C168-25 7C169-25	7C168-35 7C169-35	7C169-40	7C168-45
Maximum Access Time (ns)		25	35	40	45
Maximum Operating Current (mA)	Commercial	90	90	70	70
	Military		90	70	70

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 28 to Pin 14)	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Voltage Applied to Outputs in High Z State.	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	20 m

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	V $\mathbf{C C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C168-25 } \\ & \text { 7C169-25 } \end{aligned}$		$\begin{aligned} & \text { 7C168-35 } \\ & \text { 7C169-35 } \end{aligned}$		$\begin{aligned} & \text { 7C168-45 } \\ & \text { 7C169-40 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input High Voltage			2.0	V_{CC}	2.0	V_{CC}	2.0	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	10	-10	10	-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{cc}}$ Output Disabled		-50	50	-50	50	-50	50	$\mu \mathrm{A}$
$\mathrm{I}_{0 S}$	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350		-350		-350	mA
I_{CC}	$V_{\text {cc }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		90		70		70	mA
			Mil				90		70	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\frac{\mathrm{Max}}{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}},$	Com'l		20		20		15	mA
			Mil				20		20	
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \operatorname{Max}_{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-.0 .3 \mathrm{~V} \end{aligned}$	Com'l		11		11		11	mA
			Mil				20		20	

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
C C OUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.
5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
7. t_{HZCE} and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. $\overline{W E}$ is high for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
12. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

AC Test Loads and Waveforms

(b)
(a)

C168-4
THÉVENIN EQUIVALENT
OUTPUT -167Ω
Switching Characteristics Over the Operating Range ${ }^{[2,5]}$

WRITE CYCLE ${ }^{[8]}$

t_{wc}	Write Cycle Time	25		35		40		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	25		30		30		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		30		40		35		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		30		35		35		ns
$\mathrm{t}_{\text {sD }}$	Data Set-Up to Write End	10		15		15		15		ns
t_{HD}	Data Hold from Write End	0		0		3		3		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\overline{W E}}$ HIGH to Low $\mathrm{Z}^{[6]}$	6		6		6		6		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$		10		15		20		20	ns

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

C168-6
Read Cycle ${ }^{[9,11]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[8]}$

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[8,12]}$

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT
vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME
vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

Typical DC and AC Characteristics (continued)

Ordering Information

Speed (ns)	$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathbf{C C}}}$	Ordering Code	Package Type	Operating Range
25	90	CY7C168-25PC	P5	Commercial
		CY7C168-25DC	D6	
		CY7C168-25LC	L51	
		CY7C168-25VC	V5	
35	90	CY7C168-35PC	P5	Commercial
		CY7C168-35DC	D6	
		CY7C168-35LC	L51	
		CY7C168-35VC	V5	
		CY7C168-35DMB	D6	Military
		CY7C168-35LMB	L51	
45	70	CY7C168-45PC	P5	Commercial
		CY7C168-45DC	D6	
		CY7C168-45LC	L51	
		CY7C168-45VC	V5	
		CY7C168-45DMB	D6	Military
		CY7C168-45LMB	L51	

Speed (ns)	$\begin{gathered} \mathrm{I}_{\mathrm{CC}} \\ (\mathrm{~mA}) \end{gathered}$	Ordering Code	Package Type	Operating Range
25	90	CY7C169-25PC	P5	Commercial
		CY7C169-25DC	D6	
		CY7C169-25LC	L51	
		CY7C169-25VC	V5	
35	90	CY7C169-35PC	P5	Commercial
		CY7C169-35DC	D6	
		CY7C169-35LC	L51	
		CY7C169-35VC	V5	
		CY7C169-35DMB	D6	Military
		CY7C169-35LMB	L51	
40	70	CY7C169-40PC	P5	Commercial
		CY7C169-40DC	D6	
		CY7C169-40LC	L51	
		CY7C169-40VC	V5	
		CY7C169-40DMB	D6	Military
		CY7C169-40LMB	L51	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}{ }^{[13]}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}{ }^{[13]}$	$1,2,3$

Notes:
13. 7 C 168 only.

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{RCS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{RCH}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00034-D

SEMICONDUCTOR

Features

- Automatic power-down when deselected (7C168A)
- CMOS for optimum speed/power
- High speed
$-\mathrm{t}_{\mathrm{MA}}=15 \mathrm{~ns}$
$-\mathbf{t}_{\text {ACE }}=10 \mathrm{~ns}$ (7C169A)
- Low active power
$-385 \mathrm{~mW}$
- Low standby power (7C168)
$-83 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- V_{IH} of $\mathbf{2 . 2 V}$
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C168A and CY7C169A are highperformance CMOS static RAMs organized as 4096 by 4 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7C168A has an automatic power-down feature, reducing the power consumption by 77% when deselected.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$)

4096 x 4 R/W RAM

is written into the memory location specified on the address pins (A_{0} through A_{11}).
Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) LOW, while (WE) remains HIGH. Under these conditions, the contents of the location specified on the address pins will appear on the four data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$).

The input/output pins remain in a highimpedance state when chip enable is HIGH or write enable ($\overline{\mathrm{WE}}$) is LOW.

A die coat is used to insure alpha immunity.

Selection Guide

| | 7C168A-15
 7C169A-15 | 7C168A-20
 7C169A-20 | 7C168A-25
 7C169A-25 | 7C168A-35
 7C169A-35 | 7C169A-40 | 7C168A-45 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum Access Time (ns) | 15 | 20 | 25 | 35 | 40 | 45 |
| Maximum
 Operating
 Current (mA) Commercial | 115 | 90 | 70 | 70 | 50 | 50 |

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)		
Ambient Temperature with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Curre		\ldots. $>200 \mathrm{~mA}$
Supply Voltage to Ground Potential (Pin 20 to Pin 10) -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High ZState -0.5 V to +7.0 V	Range	Ambient Temperature	$\mathbf{V}_{\text {CC }}$
DC Input Voltage - 3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current into Outputs (Low) 20 mA	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C168A-15 } \\ & \text { 7C169A-15 } \end{aligned}$		$\begin{aligned} & \text { 7C168A-20 } \\ & \text { 7C169A-20 } \\ & \hline \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		2.2	V_{CC}	2.2	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[3]}$			-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-10	+10	-10	+10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		115		90	mA
			Mil				90	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}} \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}} \end{aligned}$	Com'l		40		40	mA
			Mil				40	
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \\ & \mathrm{CE} \geq \mathrm{VCC}-.0 .3 \mathrm{~V} \end{aligned}$	Com'l		20		20	mA
			Mil				20	

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\quad \mathrm{V}_{\mathrm{IL}} \mathrm{min} .=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms

Equivalent to: THÉvENIN EQUiVALENT

Notes:

5. Tested initially and after any design or process changes that may affect these parameters.
6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

Parameters	Description	$\begin{aligned} & \text { 7C168A-15 } \\ & \text { 7C169A-15 } \end{aligned}$		$\begin{aligned} & \text { 7C168A-20 } \\ & \text { 7C169A-20 } \end{aligned}$		$\begin{aligned} & \text { 7C168A-25 } \\ & \text { 7C169A-25 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	15		20		25		ns
t_{AA}	Address to Data Valid		15		20		25	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	Power Supply Current $\quad 7 \mathrm{C} 168 \mathrm{~A}$		15		20		25	ns
	7C169A		10		12		15	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7.8]}$	5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[7,9]}$		8		8		10	ns
t_{PU}	$\overline{\overline{C E}}$ LOW to Power Up (7C168)	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down (7C168)		15		20		20	ns
$\mathrm{t}_{\mathrm{RCS}}$	Read Command Set-Up	0		0		0		ns
$\mathrm{t}_{\text {RCH }}$	Read Command Hold	0		0		0		ns
WRITE CYCLE ${ }^{[10]}$								
t_{Wc}	Write Cycle Time	15		20		20		ns
$t_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	12		15		20		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		20		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	12		15		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		10		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	7		7		7		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,9]}$		5		5		5	ns

Notes:

7. At any given temperature and voltage condition, \mathbf{T}_{HZ} is less than t_{LZ} for all devices. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage with specified loading in part (b) of AC Test Loads and Waveforms.
8. 3-ns minimum for the CY7C169A.
9. $t_{\text {HZCE }}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (a) of Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and $\overline{W E}$ LOW. Both signal must be LOW to initiate a write
and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$ (continued)

	Description	$\begin{aligned} & \text { 7C168A-35 } \\ & \text { 7C169A-35 } \end{aligned}$		7C169A-40		7C168A-45		Units
Parameters		Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE									
t_{RC}	Read Cycle Time		35		40		45		ns
t_{AA}	Address to Data Valid			35		40		45	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change		5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	Power Supply Current	7C168A		35		40		45	ns
		7C169A		25		25			ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7.8]}$		5		5		5		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,9]}$			15		15		15	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power Up (7C168)		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to Power-Down (7C168)			20		20		25	ns
$\mathrm{t}_{\mathrm{RCS}}$	Read Command Set-Up		0		0		0		ns
$\mathrm{t}_{\mathrm{RCH}}$	Read Command Hold		0		0		0		ns

WRITE CYCLE ${ }^{[10]}$

t_{WC}	Write Cycle Time	25		35		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	25		30		30		ns
t_{AW}	Address Set-Up to Write End	25		30		30		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	Data Set-Up to Write End	20		20		20	
t_{sD}	Data Hold from Write End	15		15		15	ns	
t_{HD}	$\overline{\mathrm{WE}}$ HIGH to Low $\mathrm{Z}^{[7]}$	0		0		0		ns
$\mathrm{t}_{\mathrm{LZWE}}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[7,9]}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HZWE}}$			10		15		15	ns

Switching Waveforms

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[10]}$

Write Cycle No. 2 ($\overline{\mathrm{CS}}$ Controlled) ${ }^{[10,14]}$

CY7C168A
CY7C169A

Typical DC and AC Characteristics

TYPICAL ACCESS TIME CHANGE
vs. OUTPUT LOADING

NORMALIZED ICC vs. CYCLE TIME

CYPRESS
SEMICONDUCTOR

Ordering Information

Speed (ns)	$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \\ & (\mathrm{~mA}) \end{aligned}$	Ordering Code	Package Type	Operating Range
15	115	CY7C168A-15PC	P5	Commercial
		CY7C168A-151)C	D6	
		CY7C168A-15VC	V5	
20	90	CY7C168A-20PC	P5	Commercial
		CY7C1(68A-20I)	D6	
		CY7C168A-20VC	V5	
		CY7C168A-20DMB	D6	Military
		CY7C168A-20LMB	L51	
		CY7C168A-20FMB	F71	
		CY7C168A-20KMB	K71	
25	71	C Y7C1168A-25PC:	P5	Commercial
		CY7C168A-25DC	D6	
		CY7C168A-25LC	L51	
		CY7C168A-25VC	V5	
	80	CY7C168A-25DMB	D6	Military
		CY7C168A-25IMB	I51	
		CY7C168A 251M ${ }^{\text {C }}$	1.71	
		CY7C168A-25KMB	K71	
35	70	CY7C168A-35PC	P5	Commercial
		CY7C168A-351)	I) 6	
		CY7'1(\$A 3511°	1.51	
		CY7C168A-35VC	V5	
		CY7C168A-35DMB	D6	Military
		CY7C168A-35LMB	L51	
		CY7C168A-35FMB	F71	
		CY7C168A-35KMB	K71	
45	50	CY7C168A-45PC	P5	Commercial
		CY7C168A-45DC	D6	
		CY7C168A-45LC	L51	
		CY7C168A-45VC	V5	
	70	CY7C168^-45DMB	D6	Military
		CY7C168A-45LMB	L51	
		CY7C168A-45FMB	F71	
		CY7C168A-45KMB	K71	

Speed (ns)	$\begin{gathered} \mathrm{I}_{\mathrm{cc}} \\ (\mathrm{~mA}) \end{gathered}$	Ordering Code	Package Type	Operating Range
15	115	CY7C169A-15PC	1'5	Commercial
		CY7C169A-15DC	1)6	
		CY7C169A-15VC	V5	
20	90	CY7C169A-20PC	P5	Commercial
		CY7C169A-20DC	D6	
		CY7C169A-20VC	V5	
		CY7C169A-20DMB	D6	Military
		CY7C169A-20LMB	I51	
		CY7C169A-20FMB	171	
		CY7C169A-20KMB	K71	
25	70	CY7C169A-25PC	P5	Commercial
		CY7C169^-251)	D6	
		CY7C169A-25LC	L51	
		CY7C169A-25VC	V5	
	80	CY7C169A-25DMB	D6	Military
		CY7C169A-25LMB	L51	
		CY7C169A-25FMB	F71	
		('Y7(169) 25 KMB	K71	
35	70	C $\mathrm{Y}^{(1) 169)} 35 \mathrm{PC}^{\circ}$	15	Commercial
		('Y7(1694-351) ${ }^{\text {c }}$	16	
		CY7(169) $351{ }^{\circ}$	1.51	
		CY7C169A-35V:	V5	
		CY7C169A-35DMB	D6	Military
		CY7C169A-35LMB	L51	
		CY7C169A-35FMB	F71	
		CY7C169A-35KMB	K71	
45	50	CY7C169A-45PC	P5	Commercial
		CY7C169A-45DC	D6	
		CY7C169A-45LC	L51	
		CY7C169A-45VC	V5	
	70	CY7C169A-45DMB	D6	Military
		CY7C169A-45LMB	L51	
		CY7C169A-45FMB	F71	
		CY7C169A-45KM13	K71	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}{ }^{[15]}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}{ }^{[15]}$	$1,2,3$

Note:
15. 7C168 only.

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$t_{\text {RC }}$	$7,8,9,10,11$
$t_{\text {AA }}$	$7,8,9,10,11$
$t_{\text {thA }}$	$7,8,9,10,11$
$t_{\text {ACE }}$	$7,8,9,10,11$
$t_{\text {RCS }}$	$7,8,9,10,11$
$t_{\text {RCH }}$	$7,8,9,10,11$
WRITE CYCLE	
$t_{\text {WC }}$	$7,8,9,10,11$
$t_{\text {SCE }}$	$7,8,9,10,11$
$t_{\text {AW }}$	$7,8,9,10,11$
$t_{\text {HA }}$	$7,8,9,10,11$
$t_{\text {SA }}$	$7,8,9,10,11$
$t_{\text {PWE }}$	$7,8,9,10,11$
$t_{\text {SD }}$	$7,8,9,10,11$
$t_{\text {HD }}$	$7,8,9,10,11$

Document \#: 38-00095-D

CY7C170

Features

- CMOS for optimum speed/power
- High speed
$-\mathrm{t}_{\mathrm{AA}}=25 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{ACS}}=15 \mathrm{~ns}$
- Low active power
- 495 mW (commercial)
-660 mW (military)
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge
- Output enable

Functional Description

The CY7C170 is a high-performance CMOS static RAM organized as 4096 words by 4 bits. Easy memory expansion is provided by an active LOW chip select $(\overline{\mathrm{CS}})$, an active LOW output enable $(\overline{\mathrm{OE}})$, and three-state drivers.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE} \text {) }}$ inputs are both LOW. Data on the four I/O pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location specified on the address pins (A_{0} through A_{11}).

Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable ($\overline{\mathrm{OE})}$ LOW, while write enable ($\overline{\mathrm{WE} \text {) remains }}$ HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the I/O pins.
The I/O pins stay in high-impedance state when chip select $(\overline{\mathrm{CS}})$ or output enable $(\overline{\mathrm{OE}})$ is HIGH, or write enable ($\overline{\mathrm{WE}}$) is LOW.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide

		7C170-25	7C170-35	7C170-45
Maximum Access Time (ns)			25	35
Maximum Operating Current (mA)	Commercial	90	90	45
	Military		120	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 22 to Pin 11)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Output Current into Outputs (Low)
20 mA

Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)
Latch-Up Current................................... $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		7C170		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I^{\prime}			0.4	V
V_{IH}	Input HIGH Voltage			2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
I_{IX}	Input Load Current	GND $\leq \mathrm{V}_{1} \leq$		-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq$	Disabled	-50	$+50$	$\mu \mathrm{A}$
I_{os}	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}^{\text {d }}$			-350	mA
I_{CC}	$V_{\text {cc }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		90	mA
			Mil		120	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

(a)

(b)

C170-4
Equivalent to:
THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[2,5]}$

Parameters	Description	7C170A-25		7C170A-35		7C170A-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		15		25		30	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		15		20	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\overline{O E}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE HIGH }}$ to High $\mathrm{Z}^{[6]}$		15		15		15	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		5		5		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		15		20		25	ns
WRITE CYCLE ${ }^{[8]}$								
t_{wc}	Write Cycle Time	25		35		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CS}}$ LOW to Write End	25		35		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		30		35		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	WE Pulse Width	20		30		35		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		3		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\text { WE }}$ HIGH to High Z		10		15		20	ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	6		6		6		ns

Notes:
5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$, and $30-\mathrm{pF}$ load capacitance.
6. ${ }^{\mathrm{t}}$ HZOE ${ }^{\mathrm{t}}{ }^{\mathrm{HzCC}}$, and $\mathrm{t}_{\text {HZWE }}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than ${ }^{t}$ Lzcs for any given device.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input setup and hold timing should be referencd to the rising edge of the signal that terminates the write.
9. WE is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
12. Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

Switching Waveforms (continued)

Read Cycle No. $2^{[9,11]}$

C170-7

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) $)^{[8,12]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[8,12,13]}$

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C170-25PC	P9	Commercial
	CY7C170-25DC	D10	
	CY7C170-25VC	V13	
35	CY7C170-35PC	P9	Commercial
	CY7C170-35DC	D10	
	CY7C170-35VC	V13	
	CY7C170-35DMB	D10	Military
45	CY7C170-45PC	P9	Commercial
	CY7C170-45DC	D10	
	CY7C170-45VC	V13	
	CY7C170-45DMB	D10	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{SCS}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

CY7C170A

SEMICONDUCTOR

4096 x 4 Static R/W RAM

Features

- CMOS for optimum speed/power
- High speed
$-\mathrm{t}_{\mathrm{A}}=15 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{Acs}}=10 \mathrm{~ns}$
- Low active power
- 495 mW (commercial)
- 660 mW (military)
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge
- Output enable
- $\mathrm{V}_{\mathbf{I H}}$ of $\mathbf{2 . 2 V}$

Functional Description

The CY7C170A is a high-performance CMOS static RAM organized as 4096 words by 4 bits. Easy memory expansion is provided by an active LOW chip select $(\overline{\mathrm{CS}})$, an active LOW output enable ($\overline{\mathrm{OE})}$ and three-state drivers.

Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location specified on the address pins (A_{0} through A_{11}).

Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable ($\overline{\mathrm{OE})}$ LOW, while write enable ($\overline{\mathrm{WE} \text {) remains }}$ HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four data I/O pins.
The I/O pins stay in high-impedance state when chip select $(\overline{\mathrm{CS}})$ or output enable $(\overline{\mathrm{OE}})$ is HIGH, or write enable ($\overline{\mathrm{WE}})$ is LOW.
A die coat is used to insure alpha immunity.

Logic Block Diagram

C170A-1

Pin Configurations

C170A-2
SOJ
Top View

C170A-3

Selection Guide

		7C170A-15	7C170A-20	7C170A-25	7C170A-35	7C170A-45
Maximum Access Time (ns)		15	20	25	35	45
Maximum Operating Current (mA)	Commercial	115	90	90	90	90
	Military		120	120	120	120

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	to $+150^{\circ}{ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 22 to Pin 21)	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State	-0.5 V to +7.0 V
C Input Voltage	-3.0 V to +7.0 V
Current	

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
C $_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[1,5]}$

Parameters	Description	7C170A-15		7C170A-20		7C170A-25		7C170A-35		7C170A-45		Units
		Min.	Max.									
READ CYCLE												
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	15		20		25		35		45		ns
$t_{\text {AA }}$	Address to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	5		5		5		5		5		ns
$\mathrm{t}_{\text {Acs }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		10		15		15		25		30	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		10		12		15		20	ns
tizoe	. $\overline{\mathrm{OE}}$ LOW to Low Z	3		3		3		3		3		ns
$t_{\text {hzoe }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[6]}$		8		8		10		12		15	ns
tizcs	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[7]}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {HzCs }}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[6,7]}$		8		8		10		15		15	ns
WRITE CYCLE ${ }^{[8]}$												

t_{WC}	Write Cycle Time	15		20		20		25		40		ns
$\mathrm{t}_{\mathrm{sCs}}$	$\overline{\mathrm{CS}}$ LOW to Write End	12		15		20		25		30		ns
t_{AW}	Address Set-Up to Write End	12		15		20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\mathrm{WE}}$ Pulse Width	12		15		15		20		20		ns
t_{sD}	Data Set-Up to Write End	10		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE HIGH to High Z }}$		7		7		7		10		15	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\mathrm{WE}}$ HIGH to Low Z	5		5		5		5		5		ns

Notes:
5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$, and $30-\mathrm{pF}$ load capacitance.
6. $t_{\text {HZCE }}$ and $t_{\text {HZWE }}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LzCS }}$ for any given device. These parameters are sampled and not 100% tested.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input setup and hold timing should be referencd to the rising edge of the signal that terminates the write.
9. $\overline{W E}$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Data I/O will be high-impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
13. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

ADDRESS
data out

CY7C170A
Switching Waveforms (continued)
Read Cycle No. $2^{[9,11]}$

C170A-7

Write Cycle No. $1^{[8,12]}$

Write Cycle No. $2^{[8,12,13]}$

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C170A-15PC	P9	Commercial
	CY7C170A-15DC	D10	
	CY7C170A-15VC	V13	
20	CY7C170A-20PC	P9	Commercial
	CY7C170A-20DC	D10	
	CY7C170A-20VC	V13	
	CY7C170A-20DMB	D10	Military
	CY7C170A-20KMB	K73	
25	CY7C170A-25PC	P9	Commercial
	CY7C170A-25DC	D10	
	CY7C170A-25VC	V13	
	CY7C170A-25DMB	D10	Military
	CY7C170A-25KMB	K73	
35	CY7C170A-35PC	P9	Commercial
	CY7C170A-35DC	D10	
	CY7C170A-35VC	V13	
	CY7C170A-35DMB	D10	Military
	CY7C170A-35KMB	K73	
45	CY7C170A-45PC	P9	Commercial
	CY7C170A-45DC	D10	
	CY7C170A-45VC	V13	
	CY7C170A-45DMB	D10	Military
	CY7C170A-45KMB	K73	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups	
READ CYCLE		
t_{RC}	$7,8,9,10,11$	
t_{AA}	$7,8,9,10,11$	
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$	
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$	
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$	
WRITE CYCLE		
t_{wC}		
$\mathrm{t}_{\mathrm{SCS}}$	$7,8,9,10,11$	
t_{AW}	$7,8,9,10,11$	
t_{HA}	$7,8,9,10,11$	
t_{SA}	$7,8,9,10,11$	
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$	
t_{SD}	$7,8,9,10,11$	
t_{HD}	$7,8,9,10,11$	

Document \#: 38-00096-B

4096 x 4 Static R/W RAM Separate I/O

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-\mathbf{t}_{\mathrm{AA}}=\mathbf{2 5} \mathbf{n s}$
- Transparent Write (7C171)
- Low active power
- $\mathbf{3 8 5} \mathrm{mW}$
- Low standby power
$-83 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C171 and CY7C172 are high-performance CMOS static RAMs organized as 4096 by 4 bits with separate I/O. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. They have an automatic powerdown feature, reducing the power consumption by 77% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs are both LOW. Data on the four input pins (I_{0} through I_{3}) is written into the memory location specified on the address pins (A_{0} through A_{11}).

Reading the device is accomplished by taking chip enable (CE) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four data output pins $\left(\mathrm{O}_{0}\right.$ through $\left.\mathrm{O}_{3}\right)$. The output pins stay in high-impedance state when write enable ($\overline{\mathrm{WE}}$) is LOW (7C171 only), or chip enable ($\overline{\mathrm{CE}}$) is HIGH.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

C171-2

C171-3

Selection Guide

		7C171-25 7C172-25	7C171-35 7C172-35	7C171-45 7C172-45
Maximum Access Time (ns)	25	35	45	
Maximum Operating Current (mA)	Commerical	90	90	70
	Military		90	70

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Appliedure with
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Output Current into Outputs (Low)
20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current............................... $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters

AC Test Loads and Waveforms

Equivalent to:
THÉVENIN EQUIVALENT
OUTPUT O—O 1.73 V

ALL INPUT PULSES

Switching Characteristics Over the Operating Range ${ }^{[2,5]}$

Parameters	Description	$\begin{aligned} & \hline 7 \mathrm{C} 171-25 \\ & \text { 7C172-25 } \end{aligned}$		$\begin{aligned} & \text { 7C171-35 } \\ & \text { 7C172-35 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C171-45 } \\ & \text { 7C172-45 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
$t_{\text {AA }}$	Address to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {AcE }}$	$\overline{\text { CE LOW to Data Valid }}$		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\text { CE }}$ LOW to Low $\mathrm{Z}^{[6]}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HzCE}}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[6,7]}$		10		20		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		ns
t_{PD}	$\overline{\mathrm{CE}}$ HIGH to Power-Down		25		25		30	ns
$\mathrm{t}_{\mathrm{RCS}}$	Read Command Set-up	0		0		0		ns
$\mathrm{t}_{\text {RCH }}$	Read Command Hold	0		0		0		ns
WRITE CYCLE ${ }^{[8]}$								
$\mathrm{t}_{\text {wc }}$	Write Cycle Time	25		35		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	25		30		35		ns
t_{AW}	Address Set-Up to Write End	20		30		35		ns
$\mathrm{t}_{\text {HA }}$	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {S }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		3		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[6]}$ (7C172)	0		0		0	.	ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$ (7C172)		10		5		20	ns
$\mathrm{t}_{\text {AWE }}$	$\overline{\text { WE LOW }}$ to Data Valid (7C171)		25		30		35	ns
$\mathrm{t}_{\text {ADV }}$	Data Valid to Output Valid (7C171)		25		30		35	ns

Notes:
5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$, and $30-\mathrm{pF}$ load capacitance.
6. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
7. $t_{\text {HZCE }}$ and $t_{\text {HZwE }}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and WE LOW. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referencd to the rising edge of the signal that terminates the write.
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms

Switching Waveforms

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[8]}$

Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[8,12]}$

Typical DC and AC Characteristics

OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE
vs. OUTPUT LOADING

NORMALIZED I ${ }_{\text {CC }}$ vs. CYCLE TIME

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C171-25PC	P13	Commerical
	CY7C171-25DC	D14	
	CY7C171-25LC	L64	
	CY7C171-25VC	V13	
35	CY7C171-35PC	P13	Commerical
	CY7C171-35DC	D14	
	CY7C171-35LC	L64	
	CY7C171-35VC	V13	
	CY7C171-35DMB	D14	Military
	CY7C171-35LMB	L64	
45	CY7C171-45PC	P13	
	CY7C171-45DC	D14	
	CY7C171-45LC	L64	
	CY7C171-45VC	V13	
	CY7C171-45DMB	D14	Military
	CY7C171-45LMB	L64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Document \#: 38-00036-E

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C172-25PC	P13	Commerical
	CY7C172-25DC	D14	
	CY7C172-25LC	L64	
	CY7C172-25VC	V13	
35	CY7C172-35PC	P13	Commerical
	CY7C172-35DC	D14	
	CY7C172-35LC	L64	
	CY7C172-35VC	V13	
	CY7C172-35DMB	D14	Military
	CY7C172-35LMB	L64	
45	CY7C172-45PC	P13	Commerical
	CY7C172-45DC	D14	
	CY7C172-45LC	L64	
	CY7C172-45VC	V13	
	CY7C172-45DMB	D14	Military
	CY7C172-45LMB	L64	

2

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{RCS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{RCH}}$	$7,8,9,10,11$
WRITE CYCLE $^{\|c\|}$	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\text {SCE }}$	$7,8,9,10,11$
t_{AW}	
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\text {PWE }}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	
$\mathrm{t}_{\mathrm{AWE}}{ }^{[13]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}{ }^{[13]}$	$7,8,9,10,11$

Note:

13. 7C171 only.

4096 x 4 Static R/W RAM Separate I/O

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-t_{A A}=15 \mathrm{~ns}$
- Transparent write (7C171A)
- Low active power
$-375 \mathrm{~mW}$
- Low standby power
$-93 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C171A and CY7C172A are highperformance CMOS static RAMs organized as 4096 by 4 bits with separate I/O. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and threestate drivers. They have an automatic pow-er-down feature, reducing the power consumption by 77% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input/output pins (I_{0} through I_{3}) is written into the memory location specified on the address pins (A_{0} through A_{11}).

Reading the device is accomplished by taking chip enable ((CE) LOW, while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.
The output pins remain in a high-impedance state when write enable ($\overline{\mathrm{WE}}$) is LOW (7C172A only), or chip enable is HIGH, or ($\overline{\mathrm{OE}}$) is HIGH.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

C171A-2

Selection Guide

	7C171A-15 7C172A-15	7C171A-20 7C172A-20	7C171A-25 7C172A-25	7C171A-35 7C172A-35	7C171A-45 7C172A-45		
	Maximum Access Time (ns)		15	20	25	35	45
Maximum Operating Current (mA)	Commercial	115	80	70	70	50	
	Military		90	80	70	70	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	C to $+150^{\circ}{ }^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C171A-15 } \\ & \text { 7C172A-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C171A-20 } \\ & \text { 7C172A-20 } \end{aligned}$		$\begin{aligned} & \text { 7C171A-25 } \\ & \text { 7C172A-25 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{Cc}	2.2	V_{CC}	2.2	V_{cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{cc}},$ Output Disabled		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$			-350		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		115		80		70	mA
			Mil				90		80	mA
$\mathrm{I}_{\text {SB1 }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CE}} \\ & \text { Power-Down Current } \end{aligned}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$	Com'l		40		40		20	mA
			Mil				40		20	
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \\ & \frac{\mathrm{CE}}{} \geq \mathrm{V}_{\mathrm{IH}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$	Com'l		20		20		20	mA
			Mil				20		20	

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters

Electrical Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms

(a)

(b)

C171A-5
Equivalent to:
THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[2,5]}$

Parameters	Description	$\begin{aligned} & \hline \text { 7C171A-15 } \\ & \text { 7C172A-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C171A-20 } \\ & \text { 7C172A-20 } \end{aligned}$		$\begin{aligned} & \text { 7C171A-25 } \\ & \text { 7C172A-25 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C171A-35 } \\ & \text { 7C172A-35 } \end{aligned}$		$\begin{aligned} & \text { 7C171A-45 } \\ & \text { 7C172A-45 } \end{aligned}$		Units
		Min.	Max.									

t_{RC}	Read Cycle Time	15		20		25		35		45		ns
t_{AA}	Address to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold from Address Change	5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\mathrm{LZCE}}$	$\overline{\mathrm{CE}}$ LOW to LOW Z ${ }^{[6]}$	5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}$ HIGH to HIGH Z $\mathrm{Z}^{[6,7]}$		8		8		10		15		15	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power Up	0		0		0		0		0		ns
t_{PD}	$\overline{\mathrm{CE}}$ HIGH to Power Down		15		20		20		20		25	ns
$\mathrm{t}_{\mathrm{RCS}}$	Read Command Set-up	0		0		0		0		0		ns
$\mathrm{t}_{\mathrm{RCH}}$	Read Command Hold	0		0		0		0		0		ns

WRITE CYCLE ${ }^{[8]}$

$\mathrm{I}_{\text {wc }}$	Write Cycle Time	15		20		20		25		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	12		15		20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	12		15		15		20		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$ (7C172A)	5		5		5		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW }}$ to High $\mathrm{Z}^{[6,7]}$ (7C172A)		7		7		7		10		15	ns
$\mathrm{t}_{\text {AWE }}$	$\overline{\text { WE LOW to Data Valid (7C171A) }}$		15		20		25		30		35	ns
$\mathrm{t}_{\mathrm{ADV}}$	Data Valid to Output Valid (7C171A)		15		20		25		30		35	ns

Notes:
5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
7. $t_{\text {HZCE }}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and $\overline{W E}$ LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input setup and hold timing should be referencd to the rising edge of the signal that terminates the write.
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
12. If $\overline{C E}$ goes HIGH simultaneously with $\overline{W E}$ HIGH, the output remains in a high-impedance state (7 C 172 A).

Switching Waveforms

Switching Waveforms

Read Cycle No. $2^{[9,11]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled ${ }^{[8]}$

Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[8,12]}$

1
CYPRESS
SEMICONDUCTOR

CY7C171A
 CY7C172A

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

NORMALIZED ICc vs. CYCLE TIME

Ordering Information

$\begin{gathered} \text { Speed } \\ (\mathrm{ns}) \end{gathered}$	Ordering Code	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
15	CY7C171A-15PC	P13	Commercial
	CY7C171A-15DC	D14	
	CY7C171A-15LC	L64	
	CY7C171A-15VC	V13	
20	CY7C171A-20PC	P13	Commercial
	CY7C171A-20DC	D14	
	CY7C171A-20LC	L64	
	CY7C171A-20VC	V13	
	CY7C171A-DMB	D14	Military
	CY7C171A-LMB	L64	
	CY7C171A-KMB	K73	
25	CY7C171A-25PC	P13	Commercial
	CY7C171A-25DC	D14	
	CY7C171A-25LC	L64	
	CY7C171A-25CC	V13	
	CY7C171A-25DMB	D14	Military
	CY7C171A-25LMB	L64	
	CY7C171A-25KMB	K73	
35	CY7C171A-35PC	P13	Commercial
	CY7C171A-35DC	D14	
	CY7C171A-35LC	L64	
	CY7C171A-35VC	V13	
	CY7C171A-35DMB	D14	Military
	CY7C171A-35LMB	L64	
	CY7C171A-35KMB	K73	
45	CY7C171A-45PC	P13	Commercial
	CY7C171A-45DC	D14	
	CY7C171A-45LC	L64	
	CY7C171A-45VC	V13	
	CY7C171A-45DMB	D14	Military
	CY7C171A-45LMB	L64	
	CY7C171A-45KMB	K73	

Speed (ns)	Ordering Code	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
15	CY7C172A-15PC	P13	Commercial
	CY7C172A-15DC	D14	
	CY7C172A-15LC	L64	
	CY7C172A-15VC	V13	
20	CY7C172A-20PC	P13	Commercial
	CY7C172A-20DC	D14	
	CY7C172A-20LC	L64	
	CY7C172A-20VC	V13	
	CY7C172A-20DMB	D14	Military
	CY7C172A-20LMB	L64	
	CY7C172A-20KMB	K73	
25	CY7C172A-25PC	P13	Commercial
	CY7C172A-25DC	D14	
	CY7C172A-25LC	L64	
	CY7C172A-25VC	V13	
	CY7C172A-25DMB	D14	Military
	CY7C172A-25LMB	L64	
	CY7C172A-25KMB	K73	
35	CY7C172A-35PC	P13	Commercial
	CY7C172A-35DC	D14	
	CY7C172A-35LC	L64	
	CY7C172A-35VC	V13	
	CY7C172A-35DMB	D14	Military
	CY7C172A-35LMB	L64	
	CY7C172A-35KMB	K73	
45	CY7C172A-45PC	P13	Commercial
	CY7C172A-45DC	D14	
	CY7C172A-45LC	L64	
	CY7C172A-45VC	V13	
	CY7C172A-45DMB	D14	Military
	CY7C172A-45LMB	L64	
	CY7C172A-45KMB	K73	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\text {RCS }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {RCH }}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWE}}{ }^{[13]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}{ }^{[13]}$	$7,8,9,10,11$

Note:
13. 7C171A only.

Document : 38-00104-B

SEMICONDUCTOR

Features

- 32K by 9 common I/O
- BiCMOS for optimum speed/power
- 14-ns access delay (clock to output)
- Two-bit wraparound counter supporting the 486 burst sequence (7B173)
- Two-bit wraparound counter supporting the linear burst sequence (7 B 174)
- Separate address strobes from processor and from cache controller
- Synchronous self-timed write
- Direct interface with the processor and external cache controller
- Two complementary synchronous chip selects
- Asynchronous output enable
- 44-pin PLCC and LCC

Functional Description

The CY7B173 and CY7B174 are 32 K by 9 synchronous cache RAMs designed to interface with high-speed microprocessors with minimum glue logic. Maximum access delay from clock rise is 14 ns . A 2-bit onchip counter captures the first address in a burst and increments the address automatically for the rest of the burst access.
The CY7B173 is designed for Intel i486-based systems; its counter follows the burst sequence of the i486. The CY7B174

32,768 x 9 Synchronous Cache R/W RAM

is architected for other processors with linear burst sequences. Burst accesses can be initiated with the processor address strobe ($\overline{\mathrm{ADSP}}$) or the cache controller address strobe ($\overline{\mathrm{ADSC}}$) inputs. Address advancement is controlled by the address advancement ($\overline{\mathrm{ADV}}$) input.
A synchronous self-timed write mechanism is provided to simplify the write interface. Two complementary synchronous chip select inputs are provided to support two banks of memory (256 Kbytes) with no external logic. These signals, in conjunction with the asynchronous output enable ($\overline{\mathrm{OE}}$) signal, greatly simplify memory bank selection.

Selector Guide

	7B173-14 7B174-14	7B173-18 $\mathbf{7 B 1 7 4 - 1 8}$	7B173-21 $\mathbf{7 B 1 7 4 - 2 1}$
Maximum Access Time (ns)	14	18	21
Maximum Operating Current (mA)	250	250	250

Functional Description (continued)

Single Write Accesses Intitiated by $\overline{\text { ADSP }}$

This access is initiated when the following conditions are satisfied at clock rise: (1) $\mathrm{CS}_{0}=1$ and $\overline{\mathrm{CS}}_{1}=0$ and (2) $\overline{\mathrm{ADSP}}$ is LOW. $\overline{\mathrm{ADSP}}$ triggered write cycles are completed in two clock periods. The address at A_{0} through A_{14} is loaded into the address advancement logic and delivered to the RAM core. The write signal is ignored in this cycle because the cache tag or other external logic use this clock period to perform address comparisons or protection checks. If the write is allowed to proceed, the write input to the CY7B173 and CY7B174 will be pulled LOW before the next clock rise.
If $\overline{W E}$ is LOW at the next clock rise, information presented at D_{0} through D_{8} will be stored into the location specified by the address advancement logic. Because the CY7B173 and CY7B174 are common I/O devices, the output enable signal ($\overline{\mathrm{OE}})$ must be deasserted before data from the CPU is delivered to D_{0} through D_{8}. As a safety precaution, the data lines (D_{0} through D_{8}) are threestated in the cycle where WE is sampled LOW, regardless of the state of the $\overline{\mathrm{OE}}$ input.

Single Write Accesses Intitiated by $\overline{\text { ADSC }}$

This write access is initiated when the following conditions are satisfied at rising edge of the clock: (1) $\mathrm{CS}_{0}=1$ and $\overline{\mathrm{CS}}_{1}=0$, (2) $\overline{\text { ADSC }}$ is LOW, and (3) $\overline{\mathrm{WE}}$ is LOW. ADSC trigger accesses are completed in a single clock cycle.
The address at A_{0} through A_{14} is loaded into the address advancement logic and delivered to the RAM core. Information preseneted at D_{0} through D_{8} will be stored into the location specified by the address advancement logic. Since the CY7B173 and CY7B174 are common I/O devices, the output enable signal ($\overline{\mathrm{OE}})$ must be deasserted before data from the cache controller is delivered to D_{0} through D_{8}. As a safety precaution, the data lines (D_{0} through D_{8}) are three-stated in the cycle where $\overline{W E}$ is sampled LOW regardless of the state of the $\overline{\mathrm{OE}}$ input.

Single Read Accesses

A single read access is initiated when the following conditions are satisfied at clock rise: (1) $\mathrm{CS}_{0}=1$ and $\overline{\mathrm{CS}}_{1}=0$, (2) $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW, and (3) $\overline{\mathrm{WE}}$ is HIGH. The address at A_{0} through A_{14} is
stored into the address advancement logic and delivered to the RAM core. If the output enable ($\overline{\mathrm{OE}})$ signal is asserted (LOW), data will be available at D_{0} through D_{8} a maximum of 14 ns after clock rise.

Burst Sequences

The CY7B173 provides a two-bit wraparound counter implementing the Intel 80486 sequence (see Table 1). Note that the burst sequence depends on the location of the first burst address.

Table 1. Counter Implementation for the Intel 80486 Sequence

First Address		Second Address		Third Address		Fourth Address	
$\mathbf{A}_{\mathbf{X}+1}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}+1}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}+1}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}}+1$	$\mathbf{A}_{\mathbf{X}}$
0	0	0	1	1	0	1	1
0	1	0	0	1	1	1	0
1	0	1	1	0	0	0	1
1	1	1	0	0	1	0	0

The CY7B174 provides a two-bit wraparound counter implementing a linear sequence (see Table 2).

Table 2. Counter Implementation for a Linear Sequence

First Address		Second Address		Third Address		Fourth Address	
$\mathbf{A}_{\mathbf{X}+1}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}}+1$	$\mathbf{A}_{\mathbf{x}}$	$\mathbf{A}_{\mathbf{X}}+1$	$\mathbf{A}_{\mathbf{x}}$	$\mathbf{A}_{\mathbf{X}}+1$	$\mathbf{A}_{\mathbf{x}}$
0	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0
1	0	1	1	0	0	0	1
1	1	0	0	0	1	1	0

Application Example

Figure 1 shows a 128-Kbyte secondary cache for the 1486 using four CY7B173 cache RAMs and a CY7B181 cache tag. Address from the $i 486$ is checked by the cache tag at the beginning of each access. Match reset is delivered to the cache controller after 12 ns .

Figure 1. Cache Using Four CY7B173s

Pin Definitions

Signal Name	I/O	Description
$\mathrm{A}_{0}-\mathrm{A}_{14}$	I	Address Inputs
CLK	I	Clock
$\overline{\mathrm{WE}}$	I	Write Enable
$\overline{\mathrm{OE}}$	I	Output Enable
$\mathrm{CS}_{0}, \overline{\mathrm{CS}}_{1}$	I	Chip Select
ADV	I	Address Advance
$\overline{\mathrm{ADSP}}$	I	Processor Address Strobe
$\overline{\mathrm{ADSC}}$	I	Cache Controller Address Strobe
$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{8}$	I / O	Data I/O
V_{CC}	-	+5V Power Supply
V_{ss}	-	Ground
$\mathrm{V}_{\mathrm{CCQ}}$	-	Output Buffer (Driver) Power Supply
$\mathrm{V}_{\mathrm{SSQ}}$	-	Output Buffer (Driver) Ground
RESV	-	Reserved

Pin Descriptions

Input Signals	
CLK	Clock signal used as the reference for most on-chip operations.
$\overline{\text { ADSP }}$	Address strobe signal from the processor: $\overline{\mathrm{ADSP}}$ is asserted when the processor address is valid. If $\overline{\mathrm{ADSP}}$ is LOW at clock rise, the address at A_{0} through A_{14} will be loaded into the address register and the address advancement logic. The write signal, $\overline{\mathrm{WE}}$, is ignored in the clock cycle where $\overline{\mathrm{ADSP}}$ is asserted. If both $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ are active at clock rise, only ADSP will be recognized.
$\overline{\text { ADSC }}$	Address strobe signal from the cache controller: $\overline{\mathrm{ADSC}}$ is asserted when a new address generated by the cache controller is ready to be strobed into the CY7B173/4. The write signal, WE, is recognized in the clock cycle where ADSC is asserted. If both $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{ADSC}}$ are active at clock rise, only $\overline{\mathrm{ADSP}}$ will be recognized.
$\mathrm{A}_{0}-\mathrm{A}_{14}$	Address lines: These address inputs are loaded into the address register and the address advancement logic at clock rise if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW. They are used to select one of the 32 K locations.
$\overline{\text { WE }}$	Write Enable: This signal is sampled at the rising edge of the clock signal. If $\overline{\mathrm{WE}}=0$, a self-timed write operation will be initiated and data on $\mathrm{D}_{0}-\mathrm{D}_{8}$ will be stored into the selected memory location. The only exception occurs if both $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{WE}}$ are LOW at clock rise. In this case, the write signal is ignored.
$\overline{\text { ADV }}$	Address Advance input: $\overline{\mathrm{ADV}}$ is sampled at the rising edge of the clock. In the case of the CY7B173, LOW at this input will advance the address in the advancement logic according to the Intel 80486 burst sequence. In the case of the CY7B174, the addresses will be advanced linearly. This input is ignored if ADSP or ADSC is active (LOW).
$\mathrm{CS}_{0}-\overline{\mathrm{CS}}_{1}$	Chip Select inputs: CS_{0} is active HIGH and $\overline{\mathrm{CS}}_{1}$ is active LOW. Both inputs are sampled at clock rise if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW. The RAM is selected if $\mathrm{CS}_{0}=1$ and $\overline{\mathrm{CS}}_{1}=0$.
$\overline{\mathrm{OE}}$	Output Enable $-\overline{\mathrm{OE}}$ is an asynchronous signal that disables all output drivers $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right)$ when it is deasserted. $\overline{\mathrm{OE}}$ should be deasserted during write cycles because the CY7B173,/4 is a common I/O device and three-state conflict may occur at the data pins.
RESV	Reserved: RESV must be tied to ground.
Bidirectional Signals	
$\mathrm{D}_{0}-\mathrm{D}_{8}$	Data I/O lines: During a read cycle, if $\overline{\mathrm{OE}}$ is asserted, data in the selected location will appear at these pins. During a write cycle, data presented at these pins is captured at clock rise and stored into the selected RAM location if WE is LOW. All nine outputs will be placed in a three-state condition when OE is deasserted, when the RAM is deselected via the chip select inputs, or during a write cycle.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on $V_{C C}$ Relative to GND .. -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State \qquad -0.5 V to $\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]} \ldots \ldots \ldots \ldots . . .$.
Current into Outputs (LOW)
20 mA

Operating Range

Range	Ambient Temperature	V $_{\text {cc }}$

Electrical CharacteristicsOver the Operating Range

Capacitance ${ }^{[4]}$

Parameters	Description	Test-Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{out}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		
		10	pF	

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\min .)}=-1.5 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

AC Test Loads and Waveforms

(b)
4. Tested initially and after any design or process changes that may affect these parameters.

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	$\begin{aligned} & \hline 7 \mathrm{B173-14} \\ & \text { 7B174-14 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{B173-18} \\ & \text { 7B174-18 } \end{aligned}$		$\begin{aligned} & \text { 7B173-21 } \\ & \text { 7B173-21 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{cYC}}$	Clock Cycle Time	20		25		30		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency		50		40		33	MHz
t_{CH}	Clock HIGH	8		10		12		ns
t_{CL}	Clock LOW	8		10		12		ns
$\mathrm{t}_{\text {As }}$	Address Set-Up Before CLK Rise	3		4		5		ns
t_{AH}	Address Hold After CLK Rise	2		3		4		ns
$\mathrm{t}_{\text {cDV }}$	Data Output Valid After CLK Rise		14		18		21	ns
$\mathrm{t}_{\text {DOH }}$	Data Output Hold After CLK Rise	3		3		3		ns
$\mathrm{t}_{\text {ADS }}$	$\overline{\text { ADSP, }}$, $\overline{\text { ADSC }}$ Set-Up Before CLK Rise	3		4		5		ns
$\mathrm{t}_{\text {ADH }}$	$\overline{\text { ADSP }}, \overline{\text { ADSC }}$ Hold After CLK Rise	2		3		4		ns
$\mathrm{t}_{\text {WES }}$	$\overline{\text { WE }}$ Set-Up Before CLK Rise	3		4		5		ns
$\mathrm{t}_{\text {WEH }}$	$\overline{\text { WE }}$ Hold After CLK Rise	2		3		4		ns
$\mathrm{t}_{\text {ADVs }}$	$\overline{\text { ADV }}$ Set-Up Before CLK Rise	3		4		5		ns
$\mathrm{t}_{\text {AdVh }}$	$\overline{\text { ADV }}$ Hold After CLK Rise	2		3		4		ns
t_{DS}	Data Input Set-Up Before CLK Rise	3		4		5		ns
$t_{\text {DH }}$	Data Input Hold After CLK Rise	2		3		4		ns
$\mathrm{t}_{\text {css }}$	Chip Select Set-Up	3		4		5		ns
$\mathrm{t}_{\text {cSH }}$	Chip Select Hold After CLK Rise	2		3		4		ns
tcsoz	Chip Select Sampled to Output High $\mathrm{Z}^{[6]}$		7		9		11	ns
tcsov	Chip Select Sampled to Output Valid		7		9		11	ns
$\mathrm{t}_{\text {EOZ }}$	$\overline{\mathrm{OE}}$ HIGH to Output High $\mathrm{Z}^{[6]}$		7		9		11	ns
$\mathrm{t}_{\text {Eov }}$	$\overline{\text { OE LOW to Output Valid }}$		7		9		11	ns
$\mathrm{t}_{\text {weoz }}$	WE Sampled LOW to Output High Z ${ }^{[6]}$		7		9		11	ns
$t_{\text {WEOV }}$	WE Sampled HIGH to Output Valid		7		9		11	ns

Notes:

5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $50-\mathrm{pF}$ load capacitance.
6. $\mathbf{t}_{\mathrm{CSOZ}}, \mathrm{t}_{\mathrm{EOZ}}$, and $\mathrm{t}_{\text {WEOZ }}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.

Switching Waveforms

Single Read

Single 486 Write

Switching Waveforms (continued)

Single Cache Controller Write

Burst Read Sequence with Four Accesses

Switching Waveforms (continued)

Cache Controller Burst Write Sequence with Four Accesses Followed by a Single Read Cycle

Output (Controlled by $\overline{\mathbf{O E}}$)

B173-10

Switching Waveforms (continued)

Output Timing (Controlled by CS)

Output Timing (Controlled by $\overline{\mathbf{W E}}$)

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
14	CY7B173-14JC	J67	Commercial
	CY7B173-14LC	L67	
18	CY7B173-18JC	J 67	Commercial
	CY7B173-18LC	L67	
22	CY7B173-21JC	J67	Commercial
	CY7B173-21LC	L67	

Speed (ns)	Ordering Code	Package Type	Operating Range
14	CY7B174-14JC	J 67	Commercial
	CY7B174-14LC	L 67	
18	CY7B174-18JC	J 67	Commercial
	CY7B174-18LC	L67	
21	CY7B174-21JC	J67	Commercial
	CY7B174-21LC	L67	

Document \#: 38-00154 SEMICONDUCTOR

Features

- $4 \mathrm{~K} \times 18$ tag organization
- Can be used as $4 \mathrm{~K} \times 18$ SRAM
- BiCMOS for optimum speed/power
- High speed
- 12-ns match delay
- 15-ns tag SRAM access
- Selectable clock and latch modes
- Input address and data latches
- Supports multiprocessing (7B180) with two cache status bits per entry
- Supports dirty and valid bits (7B181)
- Dirty-bit set on write hit (7B181)
- Two-cycle tag invalidation (7B181)
- Match qualified by valid bit (7B181)
- Write output to cache RAM asserted during write hit
- Cascadeable
- up to four cache tags

Functional Description

The CY7B180 and CY7B181 are high-performance BiCMOS cache tag RAMs organized as 4096 words by 18 bits. Each word contains a 16 -bit address tag field and a 2-bit status field. Because the CY7B180 is optimized for multiprocessor applications where cache coherency is important, the two status bits are unassigned and can be used to store multiprocessing cache status information. Uniprocessor applications implementing write-through or copy-back cache policies are best supported by the CY7B181. The two status bits are assigned as the valid bit and the dirty bit. To simplify the cache controller logic, the dirty bit is set automatically during a write hit. The tag field and the status field can be loaded separately via a dedicated I/O data port.
The twelve address lines select one of the 4096 words in the tag RAM. The 16 -bit tag address is matched against data presented at the Compare Data inputs. In the CY7B181, the match output is qualified by the valid bit of the chosen word. Match is asserted only if the comparison is success-

4K x 18 Cache Tag

ful and the valid bit is set. The contents of the tag and status fields in the selected entry are available to external logic as direct output pins.
In many cache systems, generating the write signal to the cache RAMs is a timeconsuming process because the write signal must be qualified with the match signal from the cache tag. The CY7B180/ CY7B181 incorporates this function onchip by asserting the write output ($\overline{\mathrm{WO} \text {) }}$ whenever a write hit is detected.

Tag invalidation in the CY7B181 is controlled by the INVAL input. Holding this input low for two consecutive cycles will invalidate the entire tag RAM. Individual entries can be invalidated by writing a zero into the valid bit of that entry.
With a match delay of 12 ns and selectable clock or latch mode, the CY7B180 and CY7B181 can be used with all major highspeed microprocessors currently offered. The $15-\mathrm{ns}$ address access of these parts also allows them to be used as 4 K by 18 cache data RAMs.

CYPRESS

Pin Configurations

> LCC \& PLCC
> Top View

* Note: The INVAL input is only available on the 7C181

Selection Guide

	$\mathbf{7 B 1 8 0 - 1 2}$ $\mathbf{7 B 1 8 1 - 1 2}$	$\mathbf{7 B 1 8 0 - 1 5}$ $\mathbf{7 B 1 8 1 - 1 5}$	$\mathbf{7 B 1 8 0 - 2 0}$ $\mathbf{7 B 1 8 1 - 2 0}$
Access Time (ns)	12	15	20
Maximum Operating Current (mA)	250	250	250

Functional Description (continued)

Clock Mode

The CLOCK mode is selected when the MODE input is LOW. The address, compare data, chip select, and tag select are sampled at the rising edge of CLK. Write data is sampled on the falling edge of CLK. The tag write and status write inputs are different in that they are level sampled by CLK. If CLK is HIGH, the input latches associated with the tag write and status write inputs are transparent, and these inputs are allowed to ripple into the 7B180/7B181. These inputs are latched when CLK goes LOW.

Latch Mode

The LATCH mode is selected when the MODE input is HIGH. All inputs are level sampled by LE. If LE is high, the input latches are transparent and the inputs are allowed to ripple into the 7B180/7B181. When LE goes LOW, the inputs are latched and are no longer sampled.

Tag Storage

The 7B180/7B181 provides 4096 cache tag entries. Each 7B181 entry contains a 16 -bit cache tag address, a valid (V) bit, and a dirty (D) bit. The same two bits in the 7B180 are generic status bits, and their meanings must be interpreted and controlled by the external processor.
On the 7B181, the valid bit specifies the validity of the tag entry. A match is detected only when the 16 -bit tag of the selected entry matches the 16 compare inputs and the valid bit is set. The dirty bit on the 7B181 indicates whether the cache line associated with the tag entry has been modified and its value is available to external logic as the DIRTY output. The D bit in a selected entry on the 7C181 is set if the current access is a write and a hit is detected. The valid bit in the selected entry is also available as the VALID output so that external logic can determine the cause of a miss:

- If the V bit is HIGH, then the miss is caused by tag mismatch.
- If the V bit is LOW, then the miss is caused by either a tag mismatch or an invalid, or both.
The cache tag entry format is shown in Figure 1.

Tag Compare

A tag compare cycle is initiated if tag select $(\overline{\mathrm{TS}})$ is HIGH. $\overline{\mathrm{TS}}$ is sampled at the rising edge of CLK (in the clock mode) or captured by the positive level of LE (in the latch mode). Once a tag entry is selected by A_{0} through A_{11}, its 16 -bit tag address is compared against CD_{0} through CD_{15}. The compare result is delivered to the match logic.
The match output of the CY7B180 is driven HIGH if the compare is successful. For the CY7B181, the compare result is qualified by

8180-5
Figure 1. Cache Tag Entry Format
the state of the valid (V) bit in the selected entry. MATCH is driven HIGH only when the compare is successful and the valid bit is set.
In addition, the write output ($\overline{\mathrm{WO}}$) of the CY7B180/CY7B181 is asserted whenever a match is detected in a CPU write cycle (TS $=1$ and $\overline{\mathrm{TWR}}=0$). In some applications, this signal may be connected directly to the write input of the cache RAM.

Tag Access

The tag access cycle is initiated by asserting the tag select $(\overline{\mathrm{TS}})$ input. Reading and writing is controlled by the tag write ($\overline{\mathrm{TWR}}$) and status write (SWR) inputs. In both clock and latch modes, the state of TWR and SWR are captured by the positive level of the CLK/ LE input. The MATCH and WO outputs remain HIGH during tag access cycles.
If TWR is HIGH, the tag address of the selected entry is driven onto data lines D_{0} through D_{15} provided output enable $(\overline{\mathrm{OE}})$ is LOW. For the CY7B180, the state of the two generic status bits are available at the S_{0} and S_{1} outputs if $\overline{S W R}$ is HIGH. For the CY7B181, the valid and dirty bits of the chosen entry are dirven onto the valid and dirty outputs.
Changing the tag content is accomplished by asserting the TWR and $\overline{S W R}$ inputs. TWR controls the loading of the tag address field while SWR controls the loading of the status field ($\mathrm{S}_{0}, \mathrm{~S}_{1}$ in the CY7B180, valid and dirty in the CY7B181). Because the CY7B180/CY7B181 are common I/O devices, OE must be driven HIGH before data is placed on the data inputs and the status inputs.

Cascade Operation

Up to four CY7B180/7B181s can be used in a system by connecting appropriate address lines to the four chip select inputs. A cache tag is selected only if $\overline{\mathrm{CS}}_{0}=\overline{\mathrm{CS}}_{1}=0$ and $\mathrm{CS}_{2}=\mathrm{CS}_{3}=1$. Once selected, the CY7B180/CY7B181 will either execute a tag comparison cycle or a tag access cycle (depending on the state of the TS input). If a cache tag is de-selected, it disables the comparison logic and three-states match, valid, dirty, and D_{15} through D_{0} outputs.
The four chip selects are sampled at the positive edge of CLK (in clock mode) or sampled by the positive level of LE (in latch mode). By connecting the chip selects to the appropriate address bits or logic levels (see the following table), four cache tags can be cascaded with no external logic.

Pin Descriptions

The cache tag RAM is packaged in a 68 -pin PGA, PLCC, and LCC. The following sections are brief descriptions of the pin functions:

Supplies

VCC -3 pins, connected to the +5 V power supply.
GND-6 pins, connected to ground.

Input Signals

$\mathbf{A}_{11}-\mathbf{A}_{\mathbf{0}}$-Address from the processor, 12 pins. These inputs are registered/latched and are controlled by CLK/LE. In the clock mode, the register is positive-edge triggered. In the LATCH mode, the latch is positive-level triggered. While in LATCH mode, if the LE input is HIGH, the latch is transparent and the addresses are allowed to ripple into the 7B180/7B181 to start a new access. These 12 address inputs are used to select one of the 4096 cache tag entries.
MODE-Mode select, 1 pin. The clock mode is selected if mode is LOW and the LATCH mode is selected if mode is HIGH.

Table 1. Chip Select Connections for Four Cache Tags

Tag 1				Tag 2			
CS_{3}	CS_{2}	$\overline{\mathbf{C S}}_{1}$	$\overline{\mathrm{CS}}_{\mathbf{0}}$	CS_{3}	CS_{2}	$\overline{\mathbf{C S}}_{1}$	$\overline{\mathbf{C S}}_{\mathbf{0}}$
H	H	$\begin{aligned} & \mathrm{Adr} \\ & \mathrm{X}+1 \end{aligned}$	$\begin{gathered} \text { Adr } \\ \text { X } \end{gathered}$	H	$\begin{gathered} \text { Adr } \\ \text { X } \end{gathered}$	L	$\begin{gathered} \mathrm{Adr} \\ \mathrm{X}+1 \end{gathered}$
Tag 3				Tag 4			
CS_{3}	CS_{2}	$\overline{\mathrm{CS}}_{1}$	$\overline{\mathbf{C S}}_{0}$	CS_{3}	CS 2	$\overline{\mathbf{C S}}_{1}$	$\overline{\mathbf{C S}}_{\mathbf{0}}$
H	$\begin{gathered} \mathrm{Adr} \\ \mathbf{X}+1 \end{gathered}$	L	$\begin{gathered} \text { Adr } \\ \text { X } \end{gathered}$	$\begin{gathered} \mathrm{Adr} \\ \mathrm{X}+1 \end{gathered}$	$\begin{gathered} \text { Adr } \\ \text { X } \end{gathered}$	L	L

Tag 1 is selected when $\operatorname{Adr} \mathbf{X}+1$, Adr $\mathbf{X}=\mathrm{LL}$
Tag 2 is selected when Adr $\mathrm{X}+1$, Adr $\mathrm{X}=\mathrm{LH}$
Tag 3 is selected when Adr $\mathrm{X}+1$, Adr $\mathrm{X}=\mathrm{HL}$
Tag 4 is selected when Adr $\mathrm{X}+1$, $\operatorname{Adr} \mathbf{X}=\mathrm{HH}$

Pin Summary

Signal	Dir.	\# of Pins	Description
V_{Cc}		3	$+5 \mathrm{~V}$
GND		6	Ground
$\mathrm{A}_{11}-\mathrm{A}_{0}$	I	12	Tag Address
CLK/LE	I	1	Clock/Latch
MODE	I	1	Mode Select
$\mathrm{CD}_{15}-\mathrm{CD}_{0}$	I	16	Compare Data
$\overline{\mathrm{CS}}_{1}-\overline{\mathrm{CS}}_{0}$	I	2	Chip Selects 1 \& 0
$\mathrm{CS}_{3}-\mathrm{CS}_{2}$	I	2	Chip Selects 3 \& 2
$\overline{\mathrm{TS}}$	I	1	Tag Select
TWR	I	1	Tag Write Signal
SWR	I	1	Status Write Signal
$\overline{\text { INVAL }}$	I	1	Tag Invalidate (7B181 only)
MATCH	O	1	Cache Match
WO	0	1	Cache Write Match
VALID/S ${ }_{0}$	I/O	1	Valid/Status Bit 0
DIRTY/S ${ }_{1}$	I/O	1	Dirty/Status Bit 1
$\mathrm{D}_{15}-\mathrm{D}_{0}$	I/O	16	Processor Data
$\overline{\mathrm{OE}}$	I	1	Output Enable

Pin Descriptions (continued)

CLK/LE-Clock/Latch input, 1 pin. This input controls all input registers and latches.
$\mathbf{C D}_{15}-\mathbf{C D}_{0}-$ Compare data, 16 pins. These inputs are registered/ latched by CLK/LE. In the clock mode, the register is positiveedge triggered. In the latch mode, the latch is positive-level triggered. While in the latch mode, if the LE input is HIGH, the latch is transparent and the compare data is allowed to ripple into the 7B180/7B181 to the comparison logic. The contents of the compare register/latch are compared with the 16-bit tag address in the selected tag entry.
$\overline{\mathbf{C S}}_{\mathbf{0}}-\overline{\mathbf{C S}}_{1}-$ Chip select $0-1$, active LOW, 2 pins. These inputs are registered/latched by CLK/LE. In the clock mode, the register is
positive-edge triggered. In the LATCH mode, the latch is positivelevel triggered. While in the LATCH mode, if the LE input is HIGH, the latch is transparent and the chip select inputs are allowed to ripple into the $7 \mathrm{~B} 180 / 7 \mathrm{~B} 181$. If $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{0}$ are LOW and $\mathrm{CS}_{2}, \mathrm{CS}_{3}$ are HIGH, the comparison logic and output drivers are enabled, otherwise, the comparison logic will be disabled and all output drivers will be three-stated.
$\mathbf{C S}_{2}, \mathbf{C S}_{3}$-Chip select 2-3, active HIGH, 2 pins. These inputs are registered/latched CLK/LE. In the clock mode, the register is posi-tive-edge triggered. In the latch mode, the latch is positive-level triggered. While in the latch mode, if the LE input is HIGH, the latch is transparent and the chip select inputs are allowed to ripple into the $7 \mathrm{~B} 180 / 7 \mathrm{~B} 181$. If $\mathrm{CS}_{2}, \mathrm{CS}_{3}$ are HIGH and $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{0}$ are LOW, the comparison logic wand output drivers are enabled, otherwise, the comparison logic will be disabled and all output drivers will be three-stated.
TS-Tag select, active LOW, 1 pin. This input is registered/latched by CLK/LE. In the clock mode, the register is positive-edge triggered. In the latch mode, the latch is positive-level triggered. While in the latch mode, if LE is HIGH , the latch is transparent and the $\overline{\mathrm{TS}}$ is allowed to ripple into the $7 \mathrm{~B} 180 / 7 \mathrm{~B} 181$. If $\overline{\mathrm{TS}}$ is LOW, external logic is allowed to modify (read or write) the tag entries. If $\overline{\mathrm{TS}}$ is HIGH, the tag entries are available only for address comparisons.
TWR-Tag write indicator, active LOW, 1 pin. This input is latched and is controlled by CLK/LE. In both the clock and latch modes, the latch is positive-level triggered. While CLK/LE is HIGH, the latch is transparent and TWR is allowed to ripple into the 7B180/7B181. TWR is handled according to the access mode: tag access mode or tag compare mode. In the tag access mode (TS $=0$), TWR controls the access direction of the tag: a HIGH indicates a read while a LOW indicates a write. Assertion of $\overline{T W R}$ will store data on D_{15} through D_{0} into the 16-bit tag address field of the selected entry. In the tag compare mode $(\overline{\mathrm{TS}}=1)$ of the 7 B 181 , TWR determines the setting of the dirty bit in the selected tag entry; the D bit is set if a tag match is detected and TWR is LOW. The TWR input of the CY7B180 is ignored in the tag compare mode; the status bits S_{0} and S_{1} are not modified.
SWR-Status write indicator, active LOW, 1 pin. This input is latched by CLK/LE. In both the clock and latch modes, the latch is positive-level triggered. While CLK/LE is HIGH, the latch is transparent and TWR is allowed to ripple into the CY7B180/CY7B181. $\overline{S W R}$ is handled according to the access mode: tag access mode or tag compare mode. In the tag access mode ($\overline{\mathrm{TS}}=0$), $\overline{\mathrm{SWR}}$ controls the access direction of the status bits in the selected tag: a HIGH indicates a read while a LOW indicates a write. Assertion of $\overline{S W R}$ will store the data presented at the status inputs into the status bits of the selected entry. In the tag compare mode ($\overline{\mathrm{TS}}=1$), the state of $\overline{\mathrm{SWR}}$ is ignored.
$\overline{\text { INVAL }}-T a g$ invalidate input, active LOW, 1 pin. This input is only available in the CY7B181. It is registered, and is controlled by CLK/LE. The register is positive-edge triggered. Assertion of INVALoverrides all other operations and clears all of the valid bits in the tag storage. The CY7B181 does not have to be selected to do an invalidation. An invalidation requires two cycles to complete; therefore, the INVAL input must be held for two rising edges of the CLK or LE signal. If the INVAL input is asserted, MATCH is forced LOW, $\overline{\text { WO }}$ is forced HIGH, VALID is forced LOW, DIRTY goes to an unknown state, and the data outputs (D_{0} through D_{15}) go to an unknown state. The INVAL input must be asserted during power-up to ensure that all of the valid bits in the tag are cleared.
$\stackrel{\rightharpoonup}{\mathbf{O E}}-$ Output enable, 1 pin. When $\overline{\mathrm{OE}}$ is HIGH, all outputs except match will be placed in a three-state condition. This pin must be asserted before the beginning of a tag write cycle to allow the external processor to drive data into the $7 \mathrm{~B} 180 / 7 \mathrm{~B} 181$.

Output Signals

MATCH-Cache match signal, active HIGH, one pin. A HIGH at this pin indicates a cache hit while a LOW indicates a cache miss. This output is HIGH during all tag access cycles ($\overline{\mathrm{TS}}=0$), except on the 7 B 181 when the INVAL input is asserted. If the INVAL input on the 7 B 181 is asserted, the match output is forced LOW. Match is placed in a three-state condition when the tag is deselected via the chip select signals. $\overline{\mathrm{OE}}$ has no effect on the match output.
WO-Cache write match signal, active LOW, one pin. A LOW at this pin indicates a cache hit during a memory write. A HIGH indicates a cache miss during a memory write. If the INVAL input on the 7B181 is asserted, the WO output is forced HIGH. This output is HIGH during all tag access cycles ($\overline{\mathrm{TS}}=0$). WO is placed in a three-state condition when the tag is deselected via the chip select signals or when $\overline{\mathrm{OE}}$ is HIGH.

Input/Output Signals

$\mathbf{D}_{15}-\mathbf{D}_{\mathbf{0}}-$ Data lines to/from the processor, 16 pins. These pins are used during both tag access $(\overline{\mathrm{TS}}=0)$ and tag compare ($\overline{\mathrm{TS}}=1$) cycles. During tag reads or tag compares, these pins are driven by the 7B180/7B181. If the INVAL input on the 7B181 is asserted, the data outputs will go to an unknown state. During tag writes, the $\overline{\mathrm{OE}}$ input must be deasserted to three-state the output drivers so that these pins may be driven by the external processor. The data
inputs are registered/latched by the 7B180/7B181. In the clock mode, the register is negative edge triggered. In the latch mode, the latch is positive level triggered. While in the latch mode, if LE is HIGH, the latch is transparent and the data is allowed to ripple into the 7B180/7B181. All 16 outputs will be placed in a three-state condition if the OE input id deasserted (HIGH) or when the cache tag is deselected via the four chip select inputs.
VALID/ $\mathbf{S}_{\mathbf{0}}$ - Valid bit (active HIGH) in CY7B181, status bit S_{0} in CY7B180, one pin. During tag comparison and status read cycles, this pin reflects the state of the Valid bit (in CY7B181) or status bit S_{0} (in CY7B180) of the selected entry. During status write cycles (TS and SWR LOW), data presented at this pin is registered/ latched. In the clock mode, the register is negative-edge triggered. In the latch mode, the latch is positive-level triggered. This pin can be placed in a three-state condition via the chip select and output enable signals. If the INVAL input of the CY7B181 is asserted, the VALID output is forced LOW.
DIRTY/ \mathbf{S}_{1}-Dirty bit (active HIGH) in CY7B181, status bit \mathbf{S}_{1} in CY7B180, one pin. During tag comparison and status read cycles, this pin reflects the state of the Dirty bit (in CY7B181) or status bit S_{1} (in CY7B180) of the selected entry. In copy-back caches using the CY7B181, the cache controller can examine this output to determine whether the cache line to be replaced should be copied back to the main memory. During status write cycles (TS and SWR LOW), data presented at this pin is registered/latched. In the clock mode, the register is negative-edge triggered. In the latch mode, the latch is positive-level triggered. This pin can be placed in a three-state condition via the chip select and output enable signals. If the INVAL input of the CY7B181 is asserted, the Dirty output will enter an unknown state.

SEMICONDUCTOR

Application Examples

A 64-Kbyte cache using two CY7B156 cache RAMs with burst capability and a high-speed cache tag. The complexity of the cache controller is reduced because the CY7B181 generates the write enable signal to the RAM auto-

Figure 3
A 128 -Kbyte secondary cache for the 1486 using four CY7B173 cache RAMs and a CY7B181 Cache Tag. Address from the $i 486$ is checked by the cache tag at the beginning of each access. Match result is delivered to the cache controller after 12 ns .

ADVANCED INFORMATION

CY7B180
CY7B181

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to GND $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State.....................5V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{(1)} \ldots \ldots \ldots \ldots \ldots-0.5 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into Outputs (LOW) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .20 \mathrm{~mA}$

Range	Ambient Temperature ${ }^{[2]}$	\mathbf{V}_{Cc}
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	$\begin{aligned} & 7 \mathrm{7B180-12}, 15,20 \\ & 7 \mathrm{~B} 181-12,15,20 \end{aligned}$		Units
			Min.	Max.	
$\mathrm{T}_{\text {AMB }}$	Ambient Temperature		0	70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage		4.5	5.5	V
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{cc}}$	-10	+ 10	$\mu \mathrm{A}$
I_{OH}	Output HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$., $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	-2.0		mA
I_{OL}	Output LOW Current	$\mathrm{V}_{\mathrm{Cc}}=$ Max., $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	4.0		mA
$\mathrm{I}_{\text {OZH }}$	Output HIGH Three-State Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{OL}}=2.7 \mathrm{~V}$		100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Output LOW Three-State Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	-100		$\mu \mathrm{A}$
I_{H}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$		10	$\mu \mathrm{A}$
I_{IL}	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	-10		$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$, Output Disabled	-10	$+10$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-300	mA
I_{CC}	V CC Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}} \mathrm{MATCH}=0 \mathrm{~mA}, \\ & \mathrm{OE} \mathrm{HIGH}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{CYC}} \end{aligned}$		250	mA

Notes:

1. $\mathrm{V}_{\mathrm{IL} \text { (min.) }}=-1.5 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. Not more than one output should be shorted at a time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\mathbf{I N}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		10

AC Test Loads and Waveforms

(a)

(b) Three-State Delay Load

Equivalent to: THEVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	$\begin{aligned} & \hline 7 \mathrm{~B} 180-12 \\ & 7 \mathrm{~B} 181-12 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 180-15 \\ & 7 \mathrm{~B} 181-15 \end{aligned}$		$\begin{aligned} & \hline 7 B 180-20 \\ & 7 \mathrm{~B} 181-20 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Clock Cycle Time	20		24		33		ns
$\mathrm{t}_{\mathbf{C H}}$	Clock HIGH	8		10		13		ns
$\mathrm{t}_{\mathbf{C L}}$	Clock LOW	8		10		13		ns
toedz	$\overline{\text { OE HIGH to Output High } \mathrm{Z}^{[6]}}$		7		9		12	ns
toedv	$\overline{\mathrm{OE}}$ LOW to Output Valid		7		9		12	ns
CLOCK MODE ($\mathrm{RE}=$ Rising Edge, $\mathrm{FE}=$ Falling Edge)								
$\mathrm{t}_{\text {MCH }}$	Match Valid After CLK RE		12		15		20	ns
$\mathrm{t}_{\text {MHLD }}$	Match Hold After CLK RE	2		2		2		ns
$\mathrm{t}_{\text {csD }}$	Status Valid After CLK RE		12		15		20	ns
$\mathrm{t}_{\text {SHLD }}$	Status Hold After CLK RE	2		2		2		ns
$\mathrm{t}_{\text {TWRWO }}$	Write Match Valid After TWR LOW		8		10		13	ns
$\mathrm{t}_{\text {wo }}$	Write Match Valid After CLK RE		12		15		20	ns
$\mathrm{t}_{\text {WOHLD }}$	Write Match Hold After CLK RE	2		2		2		ns
t_{AD}	Access Delay from CLK RE		15		18		25	ns
$\mathrm{t}_{\text {DOH }}$	Output Data Hold After CLK RE	3		3		3		ns
$\mathrm{t}_{\mathrm{DIS}}$	Input Data Set-Up Before CLK FE	4		5		6		ns
$\mathrm{t}_{\mathrm{DIH}}$	Input Data Hold After CLK FE	2		3		4		ns
$\mathrm{t}_{\text {tss }}$	$\overline{\text { TS Set-Up Before CLK RE }}$	3		4		5		ns
$\mathrm{t}_{\text {TSH }}$	$\overline{\text { TS Hold After CLK RE }}$	3		4		5		ns
$\mathrm{t}_{\text {AS }}$	Address Set-Up Before CLK RE	3		4		5		ns
t_{AH}	Address Hold After CLK RE	3		4		5		ns
$\mathrm{t}_{\mathrm{CDS}}$	Compare Data Set-Up Before CLK RE	3		4		5		ns
${ }^{\text {t }}$ CDH	Compare Data Hold After CLK RE	3		4		5		ns
$\mathrm{t}_{\text {css }}$	Chip Select Set-Up Before CLK RE	3		4		5		ns
$\mathrm{t}_{\text {CSH }}$	Chip Select Hold After CLK RE	3		4		5		ns
$\mathrm{t}_{\text {csoz }}$	Output Three-State After CLK RE (chip deselected via CS inputs)		8		10		13	ns
$\mathbf{t}_{\text {csov }}$	Output Valid After CLK RE (chip deselected via CS inputs)		8		10		13	ns

Switching Characteristics Over the Operating Range ${ }^{[5]}$ (continued)

Parameters	Description	$\begin{aligned} & 7 \mathrm{~B} 180-12 \\ & 7 \mathrm{~B} 181-12 \end{aligned}$		$\begin{aligned} & \text { 7B180-15 } \\ & \text { 7B181-15 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 180-20 \\ & \text { 7B181-20 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {WRS }}$	$\overline{\text { WR }}$ Set-Up Before CLK FE	3		4		5		ns
$\mathrm{t}_{\text {WRH }}$	$\overline{\text { WR }}$ Hold After CLK FE	3		4		5		ns
$\mathrm{t}_{\text {Invs }}$	$\overline{\text { INVAL Set-Up Before CLK RE }}$	3		4		5		ns
$\mathrm{t}_{\text {INVH }}$	$\overline{\text { INVAL }}$ Hold After CLK RE	3		4		5		ns
$\mathrm{t}_{\text {MCHL }}$	MATCH LOW After CLK RE Due to INVAL LOW		8		10		13	ns
$\mathrm{t}_{\text {WOH }}$	WO HIGH After CLK RE Due to INVAL LOW		8		10		13	ns
$\mathrm{t}_{\text {vall }}$	VALID LOW After CLK RE Due to INVAL LOW		8		10		13	ns

LATCH MODE

$\mathrm{t}_{\text {LRLR }}$	LE Rise to Next LE Rise	20		24		33		ns
$\mathrm{t}_{\text {LW }}$	Width of LE Pulse	5		6		8		ns
$\mathrm{t}_{\text {LFLR }}$	LE Fall to LE Rise	8		10		13		ns
$\mathrm{t}_{\text {ASLC }}$	Address Set-Up Before Latch Close	3		4		5		ns
$\mathrm{t}_{\text {AHLC }}$	Address Hold After Latch Close	3		4		5		ns
$\mathrm{t}_{\text {csic }}$	Chip Select Set-Up Before Latch Close	3		4		5		ns
$\mathrm{t}_{\text {chle }}$	Chip Select Hold After Latch Close	3		4		5		ns
$\mathrm{t}_{\text {TSLC }}$	Tag Select Set-Up Before Latch Close	3		4		5		ns
$\mathrm{t}_{\text {THLC }}$	Tag Select Hold After Latch Close	3		4		5		ns
$\mathrm{t}_{\text {WSLC }}$	Write Set-Up Before Latch Close	3		4		5		ns
$\mathrm{t}_{\text {wHLC }}$	Write Hold After Latch Close	3		4		5		ns
$\mathrm{t}_{\text {cdsLe }}$	Comp Data Set-Up Before Latch Close	3		4		5		ns
$\mathrm{t}_{\text {cDiLC }}$	Comp Data Hold After Latch Close	3		4		5		ns
$\mathrm{t}_{\text {DSLC }}$	Data In Set-Up Before Latch Close	4		5		6		ns
$\mathrm{t}_{\text {DHLC }}$	Data In Hold After Latch Close	2		3		4		ns
$\mathrm{t}_{\text {CDMCH }}$	Comp Data Valid to Match Valid		12		15		20	ns
$\mathrm{t}_{\text {TSMCH }}$	Tag Select Valid to Match Valid		12		15		20	ns
$\mathrm{t}_{\text {CSMCH }}$	Chip Select Valid to Match Valid		12		15		20	ns
$\mathrm{t}_{\text {AMCH }}$	Address Valid to Match Valid		12		15		20	ns
$\mathrm{t}_{\text {LOMCH }}$	Latch Open to Match Valid		12		15		20	ns
$\mathrm{t}_{\text {Lomx }}$	Latch Open to Match Change	2		2		2		ns
$\mathrm{t}_{\text {TSS }}$	Tag Select Valid to Status Valid		12		15		20	ns
$\mathrm{t}_{\text {css }}$	Chip Select Valid to Status Valid		12		15		20	ns
$\mathrm{t}_{\text {As }}$	Address Valid to Status Valid		12		15		20	ns
$\mathrm{t}_{\text {LOS }}$	Latch Open to Status Valid		12		15		20	ns
$\mathrm{t}_{\text {Losx }}$	Latch Open to Status Change	2		2		2		ns
$\mathrm{t}_{\text {TWRWO }}$	$\overline{\text { TWR }}$ VALID to $\overline{W O}$ Valid		8		10		13	ns

Switching Characteristics Over the Operating Range ${ }^{[5]}$ (continued)

Parameters	Description	$\begin{aligned} & 7 \mathrm{7B180-12} \\ & 7 \mathrm{~B} 181-12 \end{aligned}$		$\begin{aligned} & 7 \mathrm{7B180-15} \\ & 7 \mathrm{~B} 181-15 \end{aligned}$		$\begin{array}{r} 7 \mathrm{~B} 180-20 \\ 7 \mathrm{~B} 181-20 \end{array}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
tcdwo	Comp Data Valid to WO Valid		12		15		20	ns
$\mathrm{t}_{\text {TSwo }}$	Tag Select Valid to WO Valid		12		15		20	ns
tcswo	Chip Select Valid to $\bar{W} \bar{O}$ Valid		12		15		20	ns
$\mathrm{t}_{\text {Awo }}$	Address Valid to WO Valid		12		15		20	ns
thowo	Latch Open to प̄О Valid		12		15		20	ns
t Lowox	Latch Open to $\overline{\text { WO }}$ Change	2		2		2		ns
$\mathrm{t}_{\text {TSDV }}$	Tag Select Valid to Data Out Valid		15		18		25	ns
t csbv	Chip Select Valid to Data Out Valid		15		18		25	ns
$\mathrm{t}_{\text {ADV }}$	Address Valid to Data Out Valid		15		18		25	ns
trodv	Latch Open to Data Out Valid		15		18		25	ns
$\mathrm{t}_{\text {Lodx }}$	Latch Open to Data Out Change	2		2		2		ns
$\mathrm{t}_{\text {TSLM }}$	Tag Select LOW to Match HIGH		8		10		13	ns
$\mathrm{t}_{\text {TSLWOH }}$	Tag Select LOW to WO HIGH		8		10		13	ns
$\mathrm{t}_{\text {csoz }}$	Output High Z After the Tag is Deselected via Chip Select Inputs ${ }^{[6]}$		8		10		13	ns
tcsov	Output Valid After the Tag is Selected via Chip Select Inputs		8		10		13	ns
$\mathrm{t}_{\text {INVS }}$	$\overline{\overline{\text { INVAL }} \text { Set-Up Before CLK RE }}$	3		4		5		ns
tinve	INVAL Hold After CLK RE	3		4		5		ns
$\mathrm{t}_{\text {MCHL }}$	MATCH LOW After CLK RE Due to INVAL LOW		8		10		13	ns
${ }^{\text {twoh }}$	WO HIGH After CLK RE Due to INVAL LOW		8		10		13	ns
$\mathrm{t}_{\text {vall }}$	VALID LOW After CLK RE Due to INVAL LOW		8		10		13	ns

Notes:
5. Test conditions assume signal transmission time of 3 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$ and 35 pF load capacitance, as in part (a) of AC Test Load and Waveforms, unless otherwise specified.
6. t_{OEDZ} and $\mathrm{t}_{\mathrm{CSOZ}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured at $\pm 500 \mathrm{mV}$ from steady-state voltage.

ADVANCED INFORMATION
CY7B180
ADNCED INFORMATION CY7B181

Switching Waveforms

Tag Match Timing in Clock Mode (Showing a Hit)

Switching Waveforms (continued)

Tag Read Timing in Clock Mode

Switching Waveforms (continued)
Tag Write Timing in Clock Mode

Switching Waveforms (continued)

Chip Deselect Timing in Clock Mode

7B181 Tag Invalidation in Clock Mode

Switching Waveforms (continued)

Switching Waveforms (continued)
Tag Read Timing in Latch Mode

Switching Waveforms (continued)

Switching Waveforms (continued)

Chip Select Timing in Latch Mode

Chip Deselect Timing in Latch Mode

7B181 Tag Invalidation in Latch Mode

SEMICONDUCTOR

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B180-12GC	G68	Commercial
	CY7B180-12JC	J81	
	CY7B180-12LC	L81	
	CY7B180-15GC	G68	
	CY7B180-15JC	J81	
	CY7B180-15LC	L81	
20	CY7B180-20GC	G68	
	CY7B180-20JC	J81	
	CY7B180-20LC	L81	

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B181-12GC	G68	Commercial
	CY7B181-12JC	J 81	
	CY7B181-12LC	L81	
	CY7B181-15GC	G68	
	CY7B181-15JC	J81	
	CY7B181-15LC	L81	
20	CY7B181-20GC	G68	Commercial
	CY7B181-20JC	J81	
	CY7B181-20LC	L81	

Features

- Fast access time
- Commercial: 25/35/45 ns (max.)
- Military: 35/45/55 ns (max.)
- Low power consumption
- Active: 770 mW (max.)
- 300-mil-width package
- Low standby power
- 193 mW
- TTL-compatible inputs and outputs
- Asynchronous
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C182 is a high-speed CMOS static RAM organized as 8,192 by 9 bits and it is manufactured using Cypress's high-performance CMOS technology. Access times as fast as 25 ns are available with maximum power consumption of only 770 mW .
The CY7C182, which is oriented toward cache memory applications, features fully static operation requiring no external clocks or timing strobes. The automatic power-down feature reduces the power consumption by more than 70% when the circuit is deselected. Easy memory expansion is provided by an active LOW chip enable $\left(\overline{C E}_{1}\right)$, an active HIGH chip enable (CE_{2}), an active LOW output enable ($\overline{\mathrm{OE}}$), and three-state drivers.

An active LOW write enable signal ($\overline{\mathrm{WE} \text {) }}$ controls the writing/reading operation of the memory. When $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{WE}}$ inputs are both LOW, data on the nine data input/output pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{8}\right)$ is written into the memory location addressed by the address present on the address pins (A_{0} through A_{12}). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{OE}}$ active LOW and CE_{2} active HIGH), while ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the nine data input/output pins.
The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide

		7C182-25	7C182-35	7C182-45	7C182-55
Maximum Access Time (ns)		25	35	45	55
Maximum Operating Current (mA)	Commercial	140	140	140	140
	Military		150	150	150
Maximum Standby Current (mA)	Commercial	35	35	35	35
	Military		45	45	45

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage >2001V (per MIL-STD-883, Method 3015.2)		
Power Applied	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ch-Up Cur		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential ${ }^{[1]}$	-0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State ${ }^{[1]}$	-0.5 V to +7.0 V	Range	$\underset{\text { Temperature }{ }^{[2]}}{\text { Ambient }}$	$\mathbf{V}_{\mathbf{C C}}$
DC Input Voltage ${ }^{[1]}$	-0.5 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current into Outputs (Low)	20 mA	Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions		7C182		Units
				Min.	Max.	
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	V_{CC} Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$.		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	V_{CC} Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {LH }}$	Input HIGH Voltage			2.2	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.5	0.8	V
I_{IX}	Input Load Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{GND}<\mathrm{V}_{\mathrm{OuT}}<\mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$		-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {Out }}=\mathrm{GND}$		-10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\text {Cc }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { Max., Output Current }=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{Max}^{2}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \end{aligned}$	Com'l		140	mA
			Mil		150	
$\mathrm{I}_{\text {SB1 }}$	Automatic Power-Down Current - TTL Inputs	$\begin{aligned} & \mathrm{Max}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{CE}_{2} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'l		35	mA
			Mil		45	
$\mathrm{I}_{\text {SB2 }}$	Automatic Power-Down Current - CMOS Inputs	$\begin{aligned} & \operatorname{Max} \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \mathrm{CE}_{2} \leq 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \\ & \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'l		25	mA
			Mil		35	

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
C_{IN}	Input Capacitance		10	pF

Note:

1. $\mathrm{V}_{\mathrm{LL}(\min .)}=-3.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. Duration of the short circuit should not exceed 30 seconds. Not more than 1 output should be shorted at one time.

AC Test Loads and Waveforms

4. Tested initially and after any design or process changes that may affect these parameters.

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range

Parameters	Description	7C182-25		7C182-35		7C182-45		7C182-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE ${ }^{[8]}$										
t_{RC}	Read Cycle Time	25		35		45		55		ns
t_{AA}	Address to Data Valid		25		35		45		55	ns
$\mathrm{t}_{\mathrm{OHA}}$	Address Valid to Low Z	3		3		3		3		ns
$\mathrm{t}_{\text {ACE1 }}$	$\overline{\mathrm{CE}}_{1}$ Access Time		25		35		45		55	ns
$\mathrm{t}_{\text {ACE2 }}$	CE_{2} Access Time		25		25		45		55	ns
tezcei	$\overline{\mathrm{CE}}_{1}$ LOW to Low Z	5		5		5		5		ns
tlzce2	CE_{2} HIGH to Low Z	5		5		5		5		ns
thzcei^{1}	$\overline{\mathrm{CE}}_{1}$ HIGH to High $\mathrm{Z}^{[5]}$		20		20		25		25	ns
$\mathrm{t}_{\text {HZCE } 2}$	CE_{2} LOW to High $\mathrm{Z}^{[5]}$		20		20		25		25	
t_{PU}	$\overline{\mathrm{CE}}_{1}$ LOW to Power-Up	0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1}$ HIGH to Power-Down		20		20		25		25	ns
$\mathrm{t}_{\text {Doe }}$	$\overline{\mathrm{OE}}$ Access Time		20		20		20		25	ns
tizoe	$\overline{\mathrm{OE}}$ LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE }}$ HIGH to High $\mathrm{Z}^{[5]}$		20		20		25		30	ns

WRITE CYCLE ${ }^{[6]}$

t_{wc}	Write Cycle Time	25		35		45		50		ns
$\mathrm{t}_{\text {S }}$	Address Set-Up Time	0		0		0		0		ns
$t_{\text {Aw }}$	Address Valid to End of Write	20		30		40		50		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	18		20		25		30		ns
$\mathrm{t}_{\text {SCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End	20		30		40		50		ns
$\mathrm{t}_{\text {SCE } 2}$	CE_{2} HIGH to Write End	20		30		40		50		ns
$\mathrm{t}_{\text {Hzwe }}$	Write LOW to High $\mathrm{Z}^{[5,7,10]}$		13		15		20		25	ns
$t_{\text {Pwe }}$	$\overline{\text { WE Pulse Width }}$	20		25		30		35		ns
t_{HA}	Address Hold from End of Write	5		5		5		5		ns
t_{HD}	Data Hold Time	0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	Write HIGH to Low $\mathrm{Z}^{[7]}$	3		3		3		3		ns

Notes:
5. $t_{\text {HZCE }}$ and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, CE_{2} HIGH, and WE LOW. All three signals must be asserted to initiate a write and any signal can terminate a write by being deasserted. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
7. At any given temperature and voltage condition, $t_{\text {LZWE }}$ is less than $t_{\text {HzWE }}$ for any given device. These parameters are sampled and not 100% tested.
8. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
9. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}} . \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.
10. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW and CE_{2} transition HIGH.
11. If $\overline{\mathrm{CE}}_{1}$ goes HIGH and CE_{2} goes LOW simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $2^{[8,10]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[6]}$

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[6,11]}$

Truth Table

$\overline{\mathbf{C E}}_{1}$	CE_{2}	$\overline{\mathrm{OE}}$	$\overline{\text { WE }}$	Data-In	Data-Out	Mode
H	X	X	X	Z	Z	Deselect/Power-Down
L	H	L	H	Z	Valid	Read
L	H	X	L	Valid	Z	Write
L	H	H	H	Z	Z	Output Disable
X	L	X	X	Z	Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C182-25PC	P21	Commercial
	CY7C182-25VC	V21	
	CY7C182-25DC	D22	
35	CY7C182-35PC	P21	Commercial
	CY7C182-35VC	V21	
	CY7C182-35DC	D22	
	CY7C182-35DMB	D22.	Military
	CY7C182-351MB	154	
45	CY7C182-45PC	P21	Commercial
	CY7C182-45VC	V21	
	CY7C182-45DC	D22	
	CY7C182-45DMB	D22.	Military
	CY7C182-451MB	154	
55	CY7C182-55DMB	D22.	Military
	CY7C182-55LMB	154	

Shaded area contains preliminary information.
Document \#: 38-00110-B

Features

- Pin-programmable into directmapped or two-way set-associative format
- CMOS for optimum speed/power
- High speed
$-25 \mathrm{~ns}$
- Common I/O
- Internal address latch
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge
- Compatible with Intel 82385 Cache Controller

Functional Description

The CY7C183 and CY7C184 are highperformance monolithic CMOS static RAMs that contain 128 kbits organized into either two, two-way set-associative blocks of $4 \mathrm{~K} \times 16$ RAM, or one directly mapped $8 \mathrm{~K} \times 16$-bit RAM.

They are designed specifically for use with the Intel 82385 Cache Controller, and their addresses are latched on the falling edge of the Address Latch Enable (ALE) signal. When ALE is HIGH, the latch is transparent. The CY7C183 has all address bits latched by the ALE signal except A_{12}, which is unlatched. A_{12}, which bypasses the latch, has a faster access time. All address bits are latched by the ALE signal in the CY7C184. The mode pin controls whether they are configured as direct-mapped 8 K x 16 or two-way set-associative $2 \times 4 \mathrm{~K} \times 16$ RAMs. When mode is HIGH, the circuits are placed in the two-way mode. In the twoway mode, the upper address bit, A_{12} is a "don't care," and is externally wired to ground. When mode is LOW, the circuits are placed in the direct mode.
Writing is accomplished in the two-way mode by taking $\overline{\mathrm{CE}}$ LOW and by inserting the respective CS_{x} and $\overline{\mathrm{WE}}_{\mathrm{x}}$ signals LOW. $\overline{\mathrm{CS}}_{0}$ enables bits $\mathrm{D}_{0}-\mathrm{D}_{7}$ while $\overline{\mathrm{CS}}_{1}$ enables bits $D_{8}-D_{15} . W E_{A}$ enables cache bank A,
and $\overline{W E}_{B}$ enables cache bank B to receive whatever data resides on the data bus. $\overline{\mathrm{OE}}_{\mathrm{A}}$ and $\overline{\mathrm{OE}}_{\mathrm{B}}$ similarly enable cache banks A and B , respectively, to drive the data bus.
Writing is accomplished, in the direct mode, by tying $\overline{W E}_{A}$ and $\overline{W E}_{B}$ together externally, and using A_{12} to determine which $4 \mathrm{~K} \times 16$ memory bank is selected.
Reading is accomplished in the two-way mode by taking CE LOW, inserting the respective $\overline{\mathrm{OE}}_{x}$ and $\overline{\mathrm{CS}}_{\mathrm{x}}$ signals LOW and the respective $\overline{W E}_{x}$ signal HIGH . The contents of the memory location specified on the address pins will appearon the 16 outputs. Activation of $\overline{\mathrm{OE}}_{\mathrm{A}}$ and $\overline{\mathrm{OE}}_{\mathrm{B}}$ simultaneously will cause both banks to be deselected. Reading is accomplished in the direct mode by tying $\overline{\mathrm{OE}}_{\mathrm{A}}$ and $\overline{\mathrm{OE}}_{\mathrm{B}}$ together externally. A_{12} will determine which $4 \mathrm{~K} \times 16$ memory bank is enabled.

Logic Block Diagrams

Pin Diagrams

Selection Guide

	7C183-25 7C184-25	7C183-35 7C184-35	7C183-45 $\mathbf{7 C 1 8 4 - 4 5}$	
	Commercial	25	35	45
	Military	25	35	45
Maximum Output Enable Access Time (ns)	Commercial	10	14	16
	Military	125	14	16
Maximum Operating Current (mA)	Commercial	220	170	140
	Military		200	160

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots . \ldots . .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State .	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	20 mA

Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)
Latch-Up Current................................... . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms

(a)

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } 0 \text { 2.00V }
$$

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. At a given duty cycle, Write Cycle \mathbf{I}_{CC} is equal to 1.4 times Read Cycle I_{CC}.
5. Tested initially and after any design or process changes that may affect these parameters.
6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	$\begin{aligned} & \text { 7C183-25 } \\ & \text { 7C184-25 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 183-35 \\ & 7 \mathrm{C} 184-35 \end{aligned}$		$\begin{aligned} & \text { 7C183-45 } \\ & \text { 7C184-45 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE ${ }^{[7]}$								
t_{RC}	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
$\mathrm{t}_{\mathrm{AA}} \mathrm{A}_{12}{ }^{[8]}$	Address to Data Valid A_{12}		17		25		35	ns
$\mathrm{t}_{\text {CE }}$	Chip Enable to Data Valid		12		15		20	ns
t_{Cs}	Chip Select to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {OE }}$	Output Enable to Data Valid		10		14		16	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {OHL }}$	Output Hold from ALE HIGH	3		3		3		ns
$\mathrm{t}_{\text {LZCE }}$	Chip Enable to Low Z	3		3		3		ns
$\mathrm{t}_{\text {LZOE }}$	Output Enable to Low Z	0		0		0		ns
$\mathrm{t}_{\mathrm{HzCE}}$	Chip Enable to High Z		15		25		30	ns
$\mathrm{t}_{\text {HzoE }}$	Output Enable to High Z		9		10		12	ns
$\mathrm{t}_{\text {Pale }}$	ALE Pulse Width	8		10		12		ns
$\mathrm{t}_{\text {SALE }}$	Address Set-Up to ALE Low	4		6		8		ns
$\mathrm{t}_{\text {Hale }}$	Address Hold to ALE Low	4		4		4		ns
WRITE CYCLE ${ }^{[9]}$								
t_{wc}	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		30		40		ns
$\mathrm{t}_{\text {SCE }}$	Chip Enable to Write End	20		25		30		ns
$\mathrm{t}_{\text {scs }}$	Chip Select to Write End	20		25		30		ns
${ }_{\text {S }}$	Data Set-Up to Write End	10		10		10		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	0		0		0		ns
tpwe	Write Enable Pulse Width	20		25		30		ns
$\mathrm{t}_{\text {S }}$	Address Set-Up to Write Enable	0		0		0		ns
t_{HA}	Address Hold from Write Enable	0		0		0		ns
$\mathrm{t}_{\text {Lzwe }}$	Write Enable HIGH to Low Z	3		3		3		ns
$\mathrm{t}_{\text {HzwE }}$	$\overline{\text { WE }}$ LOW to High Z		15		15		20	ns
$\mathrm{t}_{\text {PaLE }}$	ALE Pulse Width	8		10		12		ns
$\mathrm{t}_{\text {SALE }}$	Address Set-Up to ALE Low	4		6		8		ns
$\mathrm{t}_{\text {hale }}$	Address Hold to ALE Low	4		4		4		ns

Notes:
7. Both $\overline{W E}_{A}$ and $\overline{W E}_{B}$ must be HIGH for read cycle.
8. CY7C183 only.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$, $\overline{\mathrm{CS}}_{\mathrm{x}}$, and $\overline{W E}_{\mathrm{x}}$. All signals must be LOW to initiate a write and any signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. Device is continuously selected, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CS}}$ are LOW.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
13. $\overline{\mathrm{OE}}$ is deselected (HIGH).

Switching Waveforms

Read Cycle No. 3 (ALE $=\mathbf{H I G H})^{[11,12]}$

Switching Waveforms (continued)

Write Cycle No. 1 (ALE $=$ CLOCK, $\overrightarrow{\text { WE }}$ Controlled) ${ }^{[13]}$

Write Cycle No. 2 (ALE $=\mathbf{C L O C K}, \overline{\mathbf{C E}} / \overline{\mathbf{C S}}$ Controlled) ${ }^{[13]}$

Write Cycle No. 3 (ALE $=$ HIGH, $\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$ Controlled) ${ }^{[13]}$

Truth Tables

Two-Way Mode (Mode $=$ HIGH)

$\overline{\mathbf{C E}}$	$\overline{\mathrm{CS}}_{0}$	$\overline{\mathrm{CS}}_{1}$	$\overline{\mathrm{OE}}_{\mathrm{A}}$	$\overline{\mathrm{OE}}_{\mathrm{B}}$	$\overline{\mathbf{W E}}_{\mathbf{A}}$	$\overline{\mathbf{W E}}_{\text {B }}$	Operation	
H	X	X	X	X	X	X	Outputs High Z, Write Disabled	
L	H	H	X	X	X	X	Outputs High Z, Write Disabled	
X	X	X	H	H	X	X	Outputs High Z	
X	X	X	L	L	X	X	Outputs High Z	
L	L	H	L	H	H	H	Read I/ $\mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Way A
L	L	H	H	L	H	H	Read I/ $\mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Way B
L	H	L	L	H	H	H	Read I/O $\mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$	Way A
L	H	L	H	L	H	H	Read I/O $\mathrm{O}_{8} \mathrm{I} / \mathrm{O}_{15}$	Way B
L	L	L	L	H	H	H	Read I/O $\mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{15}$	Way A
L	L	L	H	L	H	H	Read I/O $\mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{15}$	Way B
L	L	H	X	X	L	H	Write $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Way A
L	L	H	X	X	H	L	Write $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Way B
L	H	L	X	X	L	H	Write $\mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$	Way A
L	H	L	X	X	H	L	Write $\mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$	Way B
L	L	L	X	X	L	H	Write $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{15}$	Way A
L	L	L	X	X	H	L	Write $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{15}$	Way B
L	L	H	X	X	L	L	Write $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Way A \& B
L	H	L	X	X	L	L	Write $\mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$	Way A \& B
L	L	L	X	X	L	L	Write $\mathrm{I} / \mathrm{O}^{2} 0_{-/ / \mathrm{O}} 15$	Way A \& B

Direct Mode $($ Mode $=$ LOW $)$

$\overline{\mathbf{C E}}$	$\overline{\mathbf{C S}}_{\mathbf{0}}$	$\overline{\mathbf{C S}}_{1}$	$\overline{\mathbf{O E}}_{\mathbf{A}}$	$\overline{\mathbf{O E}}_{\mathbf{B}}$	$\overline{\mathbf{W E}}_{\mathbf{A}}$	$\overline{\mathbf{W E}}_{\mathbf{B}}$	Operation
H	X	X	X	X	X	X	Outputs High Z, Write Disabled
L	H	H	X	X	X	X	Outputs High Z, Write Disabled
X	X	X	H	H	X	X	Outputs High Z
L	L	H	L	L	H	H	Read I/O $\mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$
L	H	L	L	L	H	H	$\operatorname{Read} \mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$
L	L	L	L	L	H	H	$\operatorname{Read} \mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{15}$
L	L	H	X	X	L	L	$\operatorname{Read} \mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$
L	H	L	X	X	L	L	$\operatorname{Read} \mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$
L	L	L	X	X	L	L	$\operatorname{Read} \mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{15}$

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C183-25JC	J69	Commercial
35	CY7C183-35JC	J69	Commercial
	CY7C183-35LMB	L68	Military
45	CY7C183-45JC	J69	Commercial
	CY7C183-45LMB	L68	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C184-25JC	J69	Commercial
35	CY7C184-35JC	J69	Commercial
	CY7C184-35LMB	L68	Military
45	CY7C184-4JJC	J69	Commercial
	CY7C184-45LMB	L68	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$\mathbf{t}_{\text {RC }}$	$7,8,9,10,11$
\mathbf{t}_{AA}	$7,8,9,10,11$
$\mathbf{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathbf{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathbf{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
\mathbf{t}_{WC}	$7,8,9,10,11$
$\mathbf{t}_{\text {SCE }}$	$7,8,9,10,11$
\mathbf{t}_{AW}	$7,8,9,10,11$
\mathbf{t}_{HA}	$7,8,9,10,11$
\mathbf{t}_{SA}	$7,8,9,10,11$
$\mathbf{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
\mathbf{t}_{SD}	$7,8,9,10,11$
\mathbf{t}_{HD}	$7,8,9,10,11$

Document \#: 38-00090-A

CY7B185
 CY7B186

Features

- BiCMOS for optimum speed/power
- Ultra high speed
$-10 \mathrm{~ns}$
- Low active power
$-750 \mathrm{~mW}$
- Low standby power $-250 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7B185 and CY7B186 are high-performance BiCMOS static RAMs organized as 8,192 words by 8 bits. These RAMs are developed by Aspen Semiconductor Corporation, a subsidiary of Cy press Semiconductor. Easy memory expansion is provided by an active LOW chip enable ($\left(\overline{\mathrm{CE}}_{1}\right)$, an active HIGH chip enable $\left(\mathrm{CE}_{2}\right)$, and active LOW output enable $(\overline{\mathrm{OE}})$ and three-state drivers. Both devices have a power-down feature $\left(\overline{\mathrm{CE}}_{1}\right)$ that reduces the power consumption by 67% when deselected. The CY7B185 is in the space saving 300 -mil-wide DIP package and leadless chip carrier. The CY7B186 is in the standard 600 -mil-wide package.

8, 192×8 Static RAM

An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When $\overline{\mathrm{CE}}_{1}$ and WE inputs are both LOW, data on the eight data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the memory location addressed by (A_{0} through A_{12}). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{OE}}$ active LOW, CE_{2} active HIGH , while $\overline{\mathrm{WE}}$ remains HIGH. Under these conditions, the contents of the location addressed by the information on the address pins is present on the eight data input/output pins.
The input/output pins remain in a highimpedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.

Logic Block Diagram

Pin Configurations

B185-2

Selection Guide

		7118540	$\begin{aligned} & \hline 78185-12 \\ & 7 \mathrm{7B186-12} \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~B} 185-15 \\ & 7 \mathrm{~B} 186-15 \end{aligned}$
Maximum Access Time (ns)		10	12	15
Maximum Operating Current (mA)	Commercial	S30	140	135
	Military			145
Maximum Standby Current (mA)	Commercial	50,	40	40
	Military			50

Shaded area contains preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)

Ambient Temperature withPower Applied	
Supply Voltage to Ground Potential -0.5 V to +7.0 V	
DC Voltage Applied to Outputs in High ZState .	-0.5 V to + 7.0 V
Input Voltage ${ }^{[1]}$	3.0 V to +7.0
Output Current into Outputs (Low)	

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	Test Conditions			$\begin{aligned} & \text { \#ns. } \\ & \text { mis } \end{aligned}$		$\begin{aligned} & 7 B 185-12 \\ & 7 \mathrm{BB186-12} \end{aligned}$		$\begin{aligned} & \text { 7B185-15 } \\ & \text { 7B186-15 } \end{aligned}$		Units
					Min.	Mム\#	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$.	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	Com'l	\%		2.4		2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	Mil	2.4.		2.4		2.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage					0,4.		0.4		0.4	V
V_{IH}	Input HIGH Level	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			\%	Vemk	2.2	V_{CC}	2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$				\%	0,	-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{cc}}$			§\#\#	\#1)	- 10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$ Output Disabled			§サ\#	\#0.	-10	+10	- 10	+ 10	$\mu \mathrm{A}$
I_{CC}	V_{Cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{f}=\mathrm{f} \text { max } . \end{aligned}$		Com'l		S		140		135	mA
				Mil						145	mA
$\mathrm{I}_{\text {SB }}$	$\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{mA} \end{aligned}$		Com'l		50		40		40	mA
				Mil						50	mA

Shaded area contains preliminary information.
Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max. ${ }^{[5]}$	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

Notes:

1. $V_{\mathrm{IL}}(\min)=.-3.0 \mathrm{~V}$ for pulse width $<20 \mathrm{~ns}$.
2. \mathbf{T}_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Tested initially and after any design or process changes that may affect these parameters.
5. For all packages except CERDIP (D16, D22), which has maximums of $\mathrm{C}_{\mathrm{IN}}=8 \mathrm{pF}, \mathrm{C}_{\text {out }}=9 \mathrm{pF}$.

AC Test Loads and Waveforms

(b)
(a)

ALL INPUT PULSES

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

Parameters	Description	73185．10		$\begin{aligned} & \hline 7 B 185-12 \\ & \text { 7B186-12 } \end{aligned}$		$\begin{aligned} & 7 B 185-15 \\ & 7 \mathrm{~B} 186-15 \end{aligned}$		Units
		Minı．	May	Min．	Max．	Min．	Max．	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	10		12		15		ns
t_{AA}	Address to Data Valid	＊	\＃		12		15	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	\％	【．．．込	3		3		ns
$\mathrm{t}_{\text {ACE } 1}$	$\overline{\mathrm{CE}}_{1}$ LOW to Data Valid		10		12		15	ns
$\mathrm{t}_{\text {ACE } 2}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid	／	\％		12		15	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		¢		6		8	ns
tlzoe	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	2		2		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE HIGH to High } \mathrm{Z}^{[7]}}$		§		6		7	ns
$\mathrm{t}_{\text {LZCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Low $\mathrm{Z}^{[8]}$	2	\＃\＃\＃	2		3		ns
$\mathrm{t}_{\text {LZCE2 }}$	CE_{2} HIGH to Low $\mathrm{Z}^{[8]}$	\％		2		3		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\mathrm{CE}}_{1}$ HIGH to High $\mathrm{Z}^{[6,7]}$ CE_{2} LOW to High Z				6		7	ns
WRITE CYCLE ${ }^{[9]}$								
t_{wc}	Write Cycle Time	\＃		12		15		ns
$\mathrm{t}_{\text {SCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End	§		8		10		ns
$\mathrm{t}_{\text {scE } 2}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	§		8		10		ns
$\mathrm{t}_{\text {AW }}$	Address Set－Up to Write End	§		8		10		ns
t_{HA}	Address Hold from Write End	\＃		0		0		ns
$\mathrm{t}_{\text {S }}$	Address Set－Up to Write Start	\＃		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	\％		8		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set－Up to Write End	§	为	6		7		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	§		0		0		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6]}$	\＃	乡	0	6	0	7	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	\％	\％	2		3		ns

Shaded area contains preliminary information．

Notes：

6．Test conditions assume signal transition times of 3 ns or less，timing reference levels of 1.5 V ，input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ ，and $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ ．
7．$t_{\text {HZOE }}, t_{\text {HZCE }}$ ，and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part（b） of AC Test Loads．Transition is measured $\pm 200 \mathrm{mV}$ from steady－state voltage．

8．At any given temperature and voltage condition， $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device．
9．The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW，CE 2 HIGH，and WE LOW．The data input set－up and hold tim－ ing should be referenced to the rising edge of the signal that terminates the write．All three signals must be active to initiate a write，and either signal can terminate a write by going inactive．

Switching Waveforms

Read Cycle No. $2{ }^{[10,12]}$

Write Cycle No. 1 (产E Controlled) ${ }^{[8,13]}$

Notes:

10. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}} \cdot \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$ 11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. Data I/O is HIGH impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) ${ }^{[8,12,14]}$

Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\mathbf{C E}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	\mathbf{X}	\mathbf{X}	High Z	Deselect/Power- Down
X	L	X	X	High Z	Deselect
L	H	H	L	Data Out	Read
L	H	L	X	Data In	Write
L	H	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
\%	\&438310Y\%	Y21	Commerchas
12	CY7B185-12PC	P21	Commercial
	CY7B185-12VC	V21	
	CY7B185-12DC	D22	
15	CY7B185-15PC	P21	Commercial
	CY7B185-15VC	V21	
	CY7B185-15DC	D22	
	CY7B185-15DMB	D22	Military
	CY7B185-15LMB	L54	

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B186-12PC	P15	Commercial
15	CY7B186-15PC	P15	Commercial
	CY7B186-15DMB	D16	Military

[^16]
Features

－Automatic power－down when deselected
－CMOS for optimum speed／power
－High speed
$-20 \mathrm{~ns}$
－Low active power
$-550 \mathrm{~mW}$
－Low Standby Power
$-110 \mathrm{~mW}$
－TTL－compatible inputs and outputs
－Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C185 and CY7C186 are high－per－ formance CMOS static RAMs organized as 8192 words by 8 bits．Easy memory expan－ sion is provided by an active LOW chip en－ able（ CE_{1} ），an active HIGH chip enable （ CE_{2} ），and active LOW output enable（ $\left.\overline{\mathrm{OE}}\right)$ and three－state drivers．Both devices have an automatic power－down feature（ $\overline{\mathrm{CE}}_{1}$ ）， reducing the power consumption by 73% when deselected．The CY7C185 is in the space－saving 300 －mil－wide DIP package and leadless chip carrier．The CY7C186 is in the standard 600 －mil－wide package．
An active LOW write enable signal（ $\overline{\mathrm{WE}}$ ） controls the writing／reading operation of the memory．When CE_{1} and WE inputs are

8，192 x 8 Static R／W RAM

both LOW and CE_{2} is HIGH，data on the eight data input／output pins（ $\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} /$ O_{7} ）is written into the memory location ad－ dressed by the address present on the ad－ dress pins（ A_{0} through A_{12} ）．Reading the de－ vice is accomplished by selecting the device and enabling the outputs， CE_{1} and $\overline{\mathrm{OE}}$ active LOW， CE_{2} active HIGH，while WE remains inactive or HIGH．Under these conditions， the contents of the location addressed by the information on address pins is present on the eight data input／output pins．
The input／output pins remain in a high－im－ pedance state unless the chip is selected，out－ puts are enabled，and write enable（ $\overline{\mathrm{WE}}$ ）is HIGH．A die coat is used to insure alpha im－ munity．

Logic Block Diagram

Pin Configurations

DIP／SOJ
Top View

C185－2
LCC
\＆8を馀宸

Selection Guide

	7C185－20 $\mathbf{7 C 1 8 6 - 2 0}$	7C185－25 $\mathbf{7 C 1 8 6 - 2 5}$	7C185－35 7C186－35	7C185－45 7C186－45	7C185－55 7C186－55
Maximum Access Time（ns）	20	25	35	45	55
Maximum Operating Current（mA）	120	100	100	100	80
Maximum Standby Current（mA）	$20 / 20$	$20 / 20$	$20 / 20$	$20 / 20$	$20 / 20$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State \qquad -0.5 V to +7.0 V
DC Input Voltage \qquad -3.0 V to +7.0 V
Output Current into Outputs (Low) 20 mA

Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)
Latch-Up Current.................................. . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	$\begin{aligned} & \hline \text { 7C185-20 } \\ & \text { 7C186-20 } \end{aligned}$		$\begin{array}{r} \text { 7C185-25,35,45 } \\ \text { 7C186-25,35,45 } \end{array}$		$\begin{aligned} & \hline \text { 7C185-55 } \\ & \text { 7C186-55 } \end{aligned}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{Cc}	2.2	V_{cc}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{\text {[1] }}$		-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-10	$+10$	-10	+10	-10	+ 10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[2]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max.}, \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$		-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \hline \end{aligned}$		120		100		80	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}}$, Min. Duty Cycle $=100 \%$		20		20		20	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{C E}_{1} \geq V_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		20		20		20	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$		10
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	pF	
		10	pF	

Notes:

1. $\quad \mathrm{V}_{\mathrm{IL}}$ min. $=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
2. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

ALL INPUT PULSES
 C185-5
Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameters	Description	$\begin{aligned} & \hline \text { 7C185-20 } \\ & \text { 7C186-20 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C185-25 } \\ & 7 \mathrm{C} 186-25 \end{aligned}$		$\begin{aligned} & \hline \text { 7C185-35 } \\ & \text { 7C186-35 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C185-45 } \\ & \text { 7C186-45 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C185-55 } \\ & \text { 7C186-55 } \end{aligned}$		Units
		Min.	Max.									

$\mathrm{t}_{\text {RC }}$	Read Cycle Time	20		25		35		45		55		ns
t_{AA}	Address to Data Valid		20		25		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	5		5		5		5		5		ns
$\mathrm{t}_{\text {ACE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Data Valid		20		25		35		45		55	ns
$\mathrm{t}_{\text {ACE } 2}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		20		25		25		30		40	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		12		15		20		25	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	3		3		3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[5]}$		8		10		12		15		20	ns
$\mathrm{t}_{\text {LZCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Low $\mathrm{Z}^{[6]}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {LZCE2 }}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Low Z	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HzCE}}$	$\overline{\mathrm{CE}}_{1} \mathrm{HIGH}$ to High $\mathrm{Z}^{[7,8]}$ CE_{2} LOW to High Z		8		10		15		15		20	ns
t_{PU}	$\overline{\mathrm{CE}}_{1}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1} \mathrm{HIGH}$ to Power-Down		20		20		20		25		25	ns

WRITE CYCLE ${ }^{[7]}$

$t_{\text {wc }}$	Write Cycle Time	20		20		25		40		50		ns
$\mathrm{t}_{\text {SCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End	15		20		25		30		40		ns
$\mathrm{t}_{\text {SCE } 2}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	15		20		20		25		30		ns
t_{AW}	Address Set-Up to Write End	15		20		25		30		40		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {pwe }}$	$\overline{\text { WE Pulse Width }}$	15		15		20		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		15		15		25		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7]}$		7		7		10		15		20	ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	5		5		5		5		5		ns

Notes:

4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. $t_{\text {HZOE }} t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
6. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device.
7. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, CE_{2} HIGH, and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
8. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \cdot \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.
9. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.

Switching Waveforms

Read Cycle No. $2^{[10,11]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) $)^{[9,11]}$

Notes:
11. Data I / O is high impedance if $\overline{O E}=V_{I H}$.
12. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[9,11,12]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\mathbf{C E}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	X	High Z	Deselect/Power-Down
X	L	X	X	High Z	Deselect
L	H	H	L	Data Out	Read
L	H	L	X	Data In	Write
L	H	H	H	High Z	Deselect

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A4	X3	2
A5	X4	3
A6	X5	4
A7	X6	5
A8	X7	6
A9	Y1	7
A10	Y4	8
A11	Y3	9
A12	Y0	10
A0	Y2	21
A1	X0	23
A2	X1	24
A3	X2	25

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7C185-20PC	P21	Commercial
	CY7C185-20VC	V21	
	CY7C185-20DC	D22	
	CY7C185-20LC	L54	
25	CY7C185-25PC	P21	Commercial
	CY7C185-25VC	V21	
	CY7C185-25DC	D22	
	CY7C185-25LC	L54	
35	CY7C185-35PC	P21	Commercial
	CY7C185-35VC	V21	
	CY7C185-35DC	D22	
	CY7C185-35LC	L54	
45	CY7C185-45PC	P21	Commercial
	CY7C185-45VC	V21	
	CY7C185-45DC	D22	
	CY7C185-45LC	L54	
55	CY7C185-55PC	P21	Commercial
	CY7C185-55VC	V21	
	CY7C185-55DC	D22	
	CY7C185-55LC	L54	

20	CY7C186-20PC	P15	Commercial
	CY7C186-20DC	D16	
25	CY7C186-25PC	P15	Commercial
	CY7C186-25DC	D16	
33	CY7C186-35PC	P15	Commercial
	CY7C186-35DC	D16	
45	CY7C186-45PC	P15	Commercial
	CY7C186-45DC	D16	
	CY7C186-55PC	P15	Commercial
	CY7C186-55DC	D16	

Document \#: 38-00037-F

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-20 \mathrm{~ns}$
- Low active power
$-688 \mathrm{~mW}$
- Low standby Power
- 220 mW
- TTL-compatible imputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C185A and CY7C186A are highperformance CMOS static RAMs organized as 8192 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\left(\overline{\mathrm{CE}}_{1}\right)$, an active HIGH chip enable (CE_{2}), an active LOW output enable (OE), and three-state drivers. Both devices have an automatic power-down feature (CE_{1}), reducing the power consumption by 68% when deselected. The CY7C185A is in the space saving 300 -mil-wide DIP package and leadless chip carrier. The CY7C186A is in the standard 600 -mil-wide package.
Writing to the device is accomplished when the chip enable one ($\overline{\mathrm{CE}}_{1}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW, and the chip

8,192 x 8 Static R/W RAM

enable two $\left(\mathrm{CE}_{2}\right)$ input is HIGH. Data on the eight I / O pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{7}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{12}).
Reading the device is accomplished by taking chip enable one ($\overline{\mathrm{CE}}_{1}$) and output enable (OE) LOW, while taking write enable ($\overline{\mathrm{WE} \text {) }}$ and chip enable two (CE_{2}) HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the I/O pins.
The I/O pins remain in high-impedance state when chip enable one (CE_{1}) or output enable $(\overline{\mathrm{OE}})$ is HIGH, or write enable $(\overline{\mathrm{WE}})$ or chip enable two $\left(\mathrm{CE}_{2}\right)$ is LOW.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations
DIP/SOJ

C185A-2
LCC
Top View
\& \&\%

Selection Guide

		7C185A-20 7C186A-20	7C185A-25 7C186A-25	7C185A-35 7C186A-35	7C185A-45 7C186A-45	7C185A-55 7C186A-55	
	Maximum Access Time (ns)		20	25	35	45	55
Maximum Operating Current (mA)	Commercial	125	125	125	125	125	
	Military	135	125	125	125	125	
Maximum Standby Current (mA)	Commercial	$40 / 20$	$30 / 20$	$30 / 20$	$30 / 20$	$30 / 20$	
	Military	$40 / 20$	$40 / 20$	$30 / 20$	$30 / 20$	$30 / 20$	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage . . . (per MIL-STD-883, Method 3015)	>2001V
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Current	200 m

Supply Voltage to Ground Potential

(Pin 28 to Pin 14)	5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State .	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	20 mA

Operating Range

Range	Ambient Temperature	\mathbf{V}_{CC}
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C185A-20 } \\ & 7 \mathrm{C} 186 \mathrm{~A}-20 \end{aligned}$		$\begin{aligned} & \text { 7C185A-25 } \\ & 7 \end{aligned}$		$\begin{aligned} & \text { 7C185A-35,45,55 } \\ & \text { 7C186A-35,45,55 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{Cc}	2.2	V_{Cc}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[3]}$			-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-10	+10	-10	+10	-10	+ 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S }}$	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\text {cc }}=$ Max., $\mathrm{V}_{\text {OUt }}=\mathrm{GND}$			-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		125		125		125	mA
			Mil		135		125		125	mA
$\mathbf{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CE}_{1}>\mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty } \\ & \text { Cycle }=100 \% \\ & \hline \end{aligned}$	Com'l		40		30		30	mA
			Mil		40		40		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}} \\ & \mathrm{CE}_{1} \geq V_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \geq 0.3 \mathrm{~V} \end{aligned}$	Com'l		20		20		20	mA
			Mil		20		20		20	mA

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. \mathbf{T}_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. \mathbf{V}_{IL} (min.) $=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after may design or process changes that may affect these parameters.
6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse leveis of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. $t_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\mathrm{LZCE}}$ for any given device.
9. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} . \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.
10. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, CE_{2} HIGH, and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
13. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

AC Test Loads and Waveforms

(a)

(b) C185A-4

C185A-5

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } 0 \quad \underbrace{167 \Omega} \text { O } 1.73 \mathrm{~V}
$$

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	$\begin{aligned} & \text { 7C185A-20 } \\ & \text { 7C186A-20 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 185 \mathrm{~A}-25 \\ & \text { 7C186A-25 } \end{aligned}$		$\begin{aligned} & \text { 7C185A-35 } \\ & 7 \mathrm{C} 186 \mathrm{~A}-35 \end{aligned}$		$\begin{aligned} & \hline \text { 7C185A-45 } \\ & \text { 7C186A-45 } \end{aligned}$		$\begin{aligned} & \text { 7C185A-55 } \\ & 7 \mathrm{C} 186 \mathrm{~A}-55 \end{aligned}$		Units
		Min.	Max.									
READ CYCLE												
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	20		25		35		45		55		ns
t_{AA}	Address to Data Valid		20		25		35		45		55	ns
${ }^{\text {OHA }}$	Data Hold from Address Change	3		3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Data Valid		20		25		35		45		55	ns
$\mathrm{t}_{\text {ACE } 2}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		20		25		25		30		40	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		12		15		20		25	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	3		3		3		3		3		ns
$\mathrm{t}_{\text {Izoe }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[7]}$		8		10		12		15		20	ns
$\mathrm{t}_{\text {LZCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Low $\mathrm{Z}^{[8]}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {LZCE2 }}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Low Z	3		3		3		3		3		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\mathrm{CE}}_{1}$ HIGH to High $\mathbf{Z}^{[7,8]}$ CE_{2} LOW to High Z		8		10		15		15		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1} \mathrm{HIGH}$ to Power-Down		20		20		20		25		25	ns
WRITE CYCLE ${ }^{[9]}$												
t_{wc}	Write Cycle Time	20		20		25		40		50		ns
$\mathrm{t}_{\text {SCEI }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End	15		20		25		30		40		ns
$\mathrm{t}_{\text {SCE } 2}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	15		20		20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	15		20		25		30		40		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	15		15		20		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		15		15		25		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7]}$		7		7		10		15		20	ns
$\mathrm{t}_{\text {LzwE }}$	$\overline{\text { WE }}$ HIGH to Low Z	5		5		5		5		5		ns

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

Read Cycle No. $2{ }^{[10,11]}$

Write Cycle No. 1 (") $\overline{\text { WE }}$ Controlled) ${ }^{[12,13]}$

CY7C185A
 CY7C186A

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[12,13,14]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\mathbf{C E}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathrm{OE}}$	Inputs/Outputs	Mode
H	\mathbf{X}	\mathbf{X}	\mathbf{X}	High Z	Deselect/Power-Down
X	L	\mathbf{X}	X	High Z	Deselect
L	H	H	L	Data Out	Read
L	H	L	X	Data In	Write
L	H	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7C185A-20PC	P21	Commercial
	CY7C185A-20VC	V21	
	CY7C185A-20DC	D22	
	CY7C185A-20LC	L54	
	CY7C185A-20DMB	D22	Military
	CY7C185A-20LMB	L54	
	CY7C185A-20KMB	K74	
25	CY7C185A-25PC	P21	Commercial
	CY7C185A-25VC	V21	
	CY7C185A-25DC	D22	
	CY7C185A-25LC	L54	
	CY7C185A-25DMB	D22	Military
	CY7C185A-25LMB	L54	
	CY7C185A-25KMB	K74	
35	CY7C185A-35PC	P21	Commercial
	CY7C185A-35VC	V21	
	CY7C185A-35DC	D22	
	CY7C185A-35LC	L54	
	CY7C185A-35DMB	D22	Military
	CY7C185A-35LMB	L54	
	CY7C185A-35KMB	K74	
45	CY7C185A-45PC	P21	Commercial
	CY7C185A-45VC	V21	
	CY7C185A-45DC	D22	
	CY7C185A-45LC	L54	
	CY7C185A-45DMB	D22	Military
	CY7C185A-45LMB	L54	
	CY7C185A-45KMB	K74	
55	CY7C185A-55PC	P21	Commercial
	CY7C185A-55VC	V21	
	CY7C185A-55DC	D22	
	CY7C185A-55LC	L54	
	CY7C185A-55DMB	D22	Military
	CY7C185A-55LMB	L54	
	CY7C185A-55KMB	K74	

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7C186A-20PC	P15	Commercial
	CY7C186A-20DC	D16	
	CY7C186A-20DMB	P15	Military
	CY7C186A-25PC	P15	Commercial
	CY7C186A-25DC	D16	
	CY7C186A-25DMB	D16	Military
33	CY7C186A-35PC	P15	Commercial
	CY7C186A-35DC	D16	
	CY7C186A-35DMB	D16	Military
55	CY7C186A-45PC	P15	Commercial
	CY7C186A-45DC	D16	
	CY7C186A-45DMB	D16	Military
	CY7C186A-55PC	P15	Commercial
	CY7C186A-55DC	D16	
	CY7C186A-55DMB	D16	Military

CY7C185A
CY7C186A

Bit Map

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{Os}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Address Designators

Address Name	Address Function	Pin Number
A4	X3	2
A5	X 4	3
A6	X5	4
A7	X 6	5
A8	X7	6
A9	Y1	7
A10	Y 4	8
A11	Y 3	9
A12	Y 0	10
A0	Y2	21
A1	X0	23
A2	X1	24

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE} 2}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE} 2}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

65,536 x 1 Static R/W RAM

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-15 \mathrm{~ns}$
- Low active power
$-495 \mathrm{~mW}$
- Low standby power
- 220 mW
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C187 is a high-performance CMOS static RAM organized as 65,536 words x 1 bit. Easy memory expansion is provided by an active LOW chip enable $(\overline{C E})$ and three-state drivers. The CY7C187 has an automatic power-down feature, reducing the power consumption by 56% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A_{0} through A_{15}).

Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}})$ LOW, while write enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data output (DO) pin.
The output pin stays in high-impedance state when chip enable ($\overline{\mathrm{CE}}$) is HIGH or write enable (WE) is LOW.
The 7 C 187 utilizes a die coat to insure alpha immunity.

Logic Block Diagram

Pin Configurations

C187-2

Selection Guide

	7C187-15	7C187-20	7C187-25	7C187-35	7C187-45
Maximum Access Time (ns)	15	20	25	35	45
Maximum Operating Current (mA)	90	80	70	70	50
Maximum Standby Current (mA)	$40 / 20$	$20 / 20$	$20 / 20$	$20 / 20$	$20 / 20$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$
Supply Voltage to Ground Potential
(Pin 22 to Pin 11) \qquad -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low) 20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	7C187-15		7C187-20		7C187-25,35		7C187-45		Units
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$	2.4		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA} \end{aligned}$		0.4		0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{cc}	2.2	V_{cc}	2.2	V_{cc}	2.2	V_{cc}	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$		-3.0	0.8	-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{L}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled	-10	+10	-10	+ 10	-10	+ 10	-10	$+10$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[2]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} ., \\ & \mathrm{V}_{\text {out }}=\mathrm{GND} \end{aligned}$		-350		-350		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		90		80		70		50	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ PowerDown Current ${ }^{[3]}$	Max. $\mathrm{V}_{\mathrm{Cc}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}$		40		40		20		20	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{Cc}} \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		20		20		20		20	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. $\quad \mathrm{V}_{\mathrm{lL}} \mathrm{min}$. $=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
2. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
3. A pull-up resistor to $V_{C C}$ on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{\text {SB }}$ will exceed values given.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

ALL INPUT PULSES

C187-7
Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $0 \underbrace{167 \Omega}_{\text {Military }}$ - 1.73 V

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	7C187-15		7C187-20		7C187-25		7C187-35		7C187-45		Units
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	15		20		25		35		45		ns
t_{AA}	Address to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	3		5		5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\overline{C E}}$ LOW to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[6]}$	3		5		5		5		5		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[7,8]}$		8		8		10		15		15	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE }}$ HIGH to Power Down		15		20		20		20		25	ns
WRITE CYCLE ${ }^{[8]}$												
t_{wc}	Write Cycle Time	15		20		20		25		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	12		15		20		25		30		ns
t_{AW}	Address Set-up to Write End	12		15		20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	12		15		15		20		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	10		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[8,9]}$		7		7		7		10		15	ns

Notes:
5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}$ for any given device.
7. $t_{\text {HZCE }}$ and $t_{\text {HZWE }}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

Read Cycle No. $2^{[9,11]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[10]}$

C187-10

Notes:

9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
12. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[10,12]}$

C187-11

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A0	X3	1
A1	X4	2
A2	X5	3
A3	X6	4
A4	X7	5
A5	Y7	6
A6	Y6	7
A7	Y2	8
A8	Y3	14
A9	Y1	15
A10	Y0	16
A11	Y4	17
A12	Y5	18
A13	X0	19
A14	X1	20
A15	X2	21

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C187-15PC	P9	Commercial
	CY7C187-15VC	V13	
	CY7C187-15DC	D10	
	CY7C187-15LC	L52	
20	CY7C187-20PC	P9	Commercial
	CY7C187-20VC	V13	
	CY7C187-20DC	D10	
	CY7C187-20LC	L52	
25	CY7C187-25PC	P9	Commercial
	CY7C187-25VC	V13	
	CY7C187-25DC	D10	
	CY7C187-25LC	L52	
35	CY7C187-35PC	P9	Commercial
	CY7C187-35VC	V13	
	CY7C187-35DC	D10	
	CY7C187-35LC	L52	
45	CY7C187-45PC	P9	Commercial
	CY7C187-45VC	V13	
	CY7C187-45DC	D10	
	CY7C187-45LC	L52	

Document \#: 38-00038-G

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-15 \mathrm{~ns}$
- Low active power
- 440 mW
- Low standby power
$-220 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C187A is a high-performance CMOS static RAM organized as 65,536 words by 1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}})$ and three-state drivers. The CY7C187A has an automatic power-down feature, reducing the power consumption by 50% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A_{0} through A_{15}).

Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) LOW, while write enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data output (DO) pin.
The output pin stays in high-impedance state when chip enable ($\overline{\mathrm{CE}}$) is HIGH or write enable ($\overline{\mathrm{WE}}$) is LOW.
The 7C187A utilizes a die coat to insure alpha immunity.

Selection Guide

		7C187A-15	7C187A-20	7C187A-25	7C187A-35	7C187A-45
Maximum Access Time (ns)	15	20	25	35	45	
Maximum Operating Current (mA)	Commercial	90	80	80	80	80
	Military		90	80	80	80
Maximum Standby Current (mA)	Commercial	$40 / 20$	$40 / 20$	$30 / 20$	$30 / 20$	$30 / 20$
	Military		$40 / 20$	$40 / 20$	$30 / 20$	$30 / 20$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	C
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 22 to Pin 11)	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	20 mA

Static Discharge Voltage
2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions			7C187A-15		7C187A-20		Units
					Min.	Max.	Min.	Max.	
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$			2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Min}$	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Com'l		0.4		0.4	V
			$\mathrm{I}_{\text {OL }}=12.0 \mathrm{~mA}$	Mil		0.4		0.4	V
V_{IH}	Input HIGH Voltage				2.2	V_{cc}	2.2	V_{cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[3]}$				-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$			-10	+10	-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled			-10	+10	-10	+10	$\mu \mathrm{A}$
I_{os}	$\begin{array}{\|l} \text { Output Short } \\ \text { Circuit Current }{ }^{[4]} \end{array}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max} ., \mathrm{V}_{\text {OUT }}=\mathrm{GND}$				-350		-350	mA
I_{CC}	$V_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		Com'l		90		80	mA
				Mil				90	
$\mathrm{I}_{\text {SB1 }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CE}} \\ & \text { Power-Down Current }{ }^{[5]} \end{aligned}$	$\begin{aligned} & \text { Max. } V_{C C} \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}} \end{aligned}$		Com'l		40		40	mA
				Mil				40	
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current ${ }^{[5]}$	$\begin{aligned} & \text { Max. } V_{\mathrm{Cc},} \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{cc}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{Cc}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		Com'l		20		20	mA
				Mil				20	

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\quad \mathrm{V}_{\mathrm{IL}} \mathrm{min} .=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. A pull-up resistor to \mathbf{V}_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{\text {SB }}$ will exceed values given.
6. Tested initially and after any design or process changes that may affect these parameters.
7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Parameters	Description	Test Conditions			7C187A-25		7C187A-35, 45		Units
					Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$			2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$	$\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$	Com'l		0.4		0.4	V
			$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Mil		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage				2.2	V_{cc}	2.2	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[3]}$				-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Load Current	GND $\leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$			-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{cc}}, \\ & \text { Output Disabled } \end{aligned}$			-10	$+10$	-10	+ 10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$				-350		-350	mA
I_{CC}	V cc Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		Com'l		80		80	mA
				Mil		80		80	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$Power Down Current ${ }^{[5]}$	$\begin{aligned} & \text { Max. } V_{C C} \\ & \mathrm{CE} \geq V_{I H} \end{aligned}$		Com'l		30		30	mA
				Mil		40		30	
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$Power Down Current ${ }^{[5]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		Com'l		20		20	mA
				Mil		20		20	

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms

(a)

(b)

C187A-6

C187A-7

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[2,7]}$

Parameters	Description	7C187A-15		7C187A-20		7C187A-25		7C187A-35		7C187A-45		Units
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	15		20		25		35		45		ns
t_{AA}	Address to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	3		3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\text {LzCE }}$	$\overline{\text { CE }}$ LOW to Low $\mathrm{Z}^{[8]}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[8,9]}$		8		8		10		15		15	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE HIGH to Power-Down }}$		15		20		20		20		25	ns
WRITE CYCLE ${ }^{[10]}$												
$\mathrm{t}_{\text {wc }}$	Write Cycle Time	15		20		20		25		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\overline{C E}}$ LOW to Write End	12		15		20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {PwE }}$	$\overline{\text { WE Pulse Width }}$	12		15		15		20		20		ns
$\mathrm{t}_{\text {sD }}$	Data Set-Up to Write End	10		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low } \mathrm{Z}^{[8]}}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathbf{Z}^{[8,9]}$		7		7		7		10		15	ns

Notes:

8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{L Z C E}$ for any given device.
9. ${ }^{t_{H Z C E}}$ and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and \bar{W} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-
up and hold timing should be referenced to the rising edge of the signal that terminates the write.
11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. ${ }^{[11,12]}$

Switching Waveforms

Read Cycle No. $2^{[11,13]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[10]}$

Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) $)^{[10,14]}$

Typical DC and AC Characteristics

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

NORMALIZED ICC vs. CYCLE TIME

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A0	X 3	1
A1	X 4	2
A2	X 5	3
A3	X 6	4
A4	X 7	5
A5	Y 7	6
A6	Y 6	7
A7	Y 2	8
A8	Y 3	14
A9	Y 1	15
A 10	Y 0	16
A11	Y 4	17
A12	Y 5	18
A 13	X 0	19
A 14	X 1	20
A 15	X 2	21

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C187A-15PC	P9	Commercial
	CY7C187A-15VC	V13	
	CY7C187A-15DC	D10	
	CY7C187A-15LC	L52	
20	CY7C187A-20PC	P9	Commercial
	CY7C187A-20VC	V13	
	CY7C187A-20DC	D10	
	CY7C187A-20LC	L52	
	CY7C187A-20DMB	D10	Military
	CY7C187A-20LMB	L52	
	CY7C187A-20KMB	K73	
25	CY7C187A-25PC	P9	Commercial
	CY7C187A-25VC	V13	
	CY7C187A-25DC	D10	
	CY7C187A-25LC	L52	
	CY7C187A-25DMB	D10	Military
	CY7C187A-25LMB	L52	
	CY7C187A-25KMB	K73	

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY7C187A-35PC	P9	Commercial
	CY7C187A-35VC	V13	
	CY7C187A-35DC	D10	
	CY7C187A-35LC	L52	
	CY7C187A-35DMB	D10	Military
	CY7C187A-35LMB	L52	
	CY7C187A-35KMB	K73	
45	CY7C187A-45PC	P9	Commercial
	CY7C187A-45VC	V13	
	CY7C187A-45DC	D10	
	CY7C187A-45LC	L52	
	CY7C187A-45DMB	D10	Military
	CY7C187A-45LMB	L52	
	CY7C187A-45KMB	K73	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE $^{\|c\|}$	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00115

16 x 4 Static R/W RAM

Features

- Fully decoded, 16 word x 4-bit highspeed CMOS RAMs
- Inverting outputs CY7C189
- Non-inverting outputs CY7C190
- High speed
-15 ns and 25 ns (commercial)
-25 ns (military)
- Low power
-303 mW at 25 ns
-495 mW at 15 ns
- Power supply $5 \mathrm{~V} \pm \mathbf{1 0 \%}$
- Advanced high-speed CMOS processing for optimum speed/power product
- Capable of withstanding greater than 2001 V static discharge
- Three-state outputs
- TTL-compatible interface levels

Functional Description

The CY7C189 and CY7C190 are extremely high performance 64-bit static RAMs organized as 16 words by 4 bits. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and three-state outputs. The devices are provided with inverting (CY7C189) and non-inverting (CY7C190) outputs.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE})}$ inputs are both LOW. Data on the four data inputs (D_{0} through D_{3}) is written into the memory location specified on the address pins (A_{0} through A_{3}). The outputs are preconditioned such that the correct data is present
at the data outputs (O_{0} through O_{3}) when the write cycle is complete. This precondition operation insures minimum write recovery times by eliminating the "write recovery glitch."
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) LOW, while write enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four output pins $\left(\mathrm{O}_{0}\right.$ through O_{3}) in inverted (CY 7 C 189) or non-inverted (CY7C190) format.
The four output pins remain in high-impedance state when chip select $(\overline{\mathrm{CS}})$ is HIGH or write enable (WE) is LOW.

Logic Block Diagram

Pin Configurations

Selection Guide

		$\mathbf{7 C 1 8 9 - 1 5}$ $\mathbf{7 C 1 9 0 - 1 5}$	7C189-25 7C190-25
Maximum Access Time (ns)	Commercial	15	25
	Military		25
Maximum Operating Current (mA)	Commercial	90	55
	Military		70

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\quad . \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 16 to Pin 8) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V

Output Current, into Outputs (Low)
10 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C189-15 } \\ & \text { 7C190-15 } \end{aligned}$		$\begin{array}{r} 7 \mathrm{C} 189-25 \\ \text { 7C190-25 } \end{array}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{Cc}}=$ Min., I		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I			0.45			V
V_{IH}	Input HIGH Voltage			2.0	V_{Cc}	2.0	V_{cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq$		-10	+ 10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage							
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq$		-40	+40	-40	+40	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., ${ }^{\text {, }}$			-90		-90	mA
Ios	Power Supply Current	$\mathrm{V}_{\text {cc }}=$ Max.,	Com'l		90		55	mA
		$\mathrm{I}_{\text {Out }}=0 \mathrm{~mA}$	Mil				70	mA

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

Notes:

1. \mathbf{T}_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. The CMOS process does not provide a clamp diode. However these devices are insensitive to -3 V DC input levels and -5 V undershoot pulses of less than 5 ns (measured at 50% points).
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to:
THÉVENIN EQUIVALENT
OUTPUT O—OM $92 \Omega=1.92 \mathrm{~V}$
Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	$\begin{aligned} & \hline \text { 7C189-15 } \\ & \text { 7C190-15 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 189-25 \\ & 7 \mathrm{C} 190-25 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	
READ CYCLE						
t_{RC}	Read Cycle Time	15		25		ns
t_{AA}	Address to Data Valid ${ }^{[7]}$		15		25	ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid ${ }^{[7]}$		12		15	ns
$\mathrm{t}_{\mathrm{HzCs}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[8,9]}$		12		15	ns
tizcs	$\overline{\mathrm{CS}}$ LOW to Low Z		12		15	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	5		5		
WRITE CYCLE ${ }^{[10,11]}$						
t_{wc}	Write Cycle Time	15		20		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[8,9]}$		12		20	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z		12		20	ns
$\mathrm{t}_{\text {AWE }}$	$\overline{\text { WE }}$ HIGH to Data Valid ${ }^{[7]}$		12		20	ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		ns
t_{HD}	Data Hold from Write End	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		ns
t_{HA}	Address Hold from Write End	0		0		ns

Notes:
6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the spcified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and $30-\mathrm{pF}$ load capacitance.
7. $t_{A A}, t_{A C S}$, and $t_{A W E}$ are tested with $C_{L}=30 \mathrm{pF}$ as in part (a) of AC Test Loads. Timing is referenced to 1.5 V on the inputs and outputs.
8. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from 1.5 V level on the input.
9. $\mathrm{t}_{\text {HZCS }}$ and $\mathrm{t}_{\text {HZWE }}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads.
10. Output is preconditioned to data in (inverted or non-inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)
11. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WELOW. Both signals must be LOW to initiate a write and either signal can terminate the write.

Switching Waveforms

Read Cycle

Write Cycle ${ }^{[12,13]}$

Notes:

12. All measurements referenced to 1.5 V .
13. Timing diagram represents one solution which results in optimum cycle time. Timing may be changed in various applications as long as the worst case limits are not violated.
14. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from 1.5 V level on the input.

Typical DC and AC Characteristics

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

ACCESS TIME CHANGE
ACCESS TIME CHANGE
vs. OUTPUT LOADING

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A_{0}	AXO	1
$\mathrm{~A}_{1}$	AX 1	15
$\mathrm{~A}_{2}$	$\mathrm{AY0}$	14
$\mathrm{~A}_{3}$	AY 1	13

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C189-15PC	P1	Commercial
	CY7C189-15DC	D2	
	CY7C189-15LC	L61	
	CY7C189-25PC	P1	
	CY7C189-25DC	D2	
	CY7C189-25LC	L61	
	CY7C189-25DMB	D2	Military
	CY7C189-25LMB	L61	

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C190-15PC	P1	Commercial
	CY7C190-15DC	D2	
	CY7C190-15LC	L61	
	CY7C190-25PC	P1	
	CY7C190-25DC	D2	
	CY7C190-25LC	L61	
	CY7C190-25DMB	D2	Military
	CY7C190-25LMB	L61	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
t_{AA}	
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$

[^17]
Features

- High speed
$-12 \mathrm{~ns}_{\mathrm{AA}}$
- Automatic power-down when deselected
- Transparent write (7B191)
- BiCMOS for optimum speed/power
- Low active power
$-745 \mathrm{~mW}$
- Low standby power
$-275 \mathrm{~mW}$
- TTL-compatible inputs and outputs

Functional Description

The CY7B191 and CY7B192 are high-performance BiCMOS static RAMs organized as 65,536 words by 4 bits with separate I/O. Easy memory expansion is provided by an active LOW chip enable $(\overline{\mathrm{CE}})$ and threestate drivers. Both devices have an automatic power-down feature, reducing the power consumption by more than 55% when deselected.
Writing to the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs LOW. Data on the four input pins (I_{0} through I_{3}) is written into the memory location specified on the address pins (A_{0} through A_{15}).

Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW while the write enable (WE) remains HIGH. Under these conditions, the contents of the location specified on the address pins will appear on the four data output pins.
The four output pins $\left(\mathrm{O}_{0}\right.$ through $\left.\mathrm{O}_{3}\right)$ are in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}} \mathrm{HIGH}$) or during a write operation ($\overline{\mathrm{WE}}$ and $\overline{\mathrm{CE}}$ LOW).
The CY7B191 and CY7B192 are available in leadless chip carriers and in space-saving 300 -mil-wide DIPs, and SOJs.

Pin Configurations

B191-2

B191-3

Selection Guide

		$\mathbf{7 B 1 9 1 - 1 2}$	$\mathbf{7 B 1 9 1 - 1 5}$	7B191-20
$\mathbf{7 B 1 9 2 - 1 2}$	$\mathbf{7 B 1 9 2 - 1 5}$	$\mathbf{7 B 1 9 2 - 2 0}$		
Maximum Access Time (ns)	12	15	20	
Maximum Operating Current (mA)	Commercial	135	135	135
	Military		145	145
Maximum Standby Current (mA)	Commercial	50	50	50
	Military		60	60

Maximum Ratings

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Ambient Temperature with Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Current	$>200 \mathrm{~mA}$

Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]} .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[1]} \ldots .5 \mathrm{~V}$ to +7.0 V

Current into Outputs (LOW)
20 mA
Operating Range

Range	Ambient Temperature ${ }^{[2]}$	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10
		pF		

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\min .)}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

SEMICONDUCTOR

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics ${ }^{[2,6]}$ Over the Operating Range

Parameters	Description	$\begin{aligned} & \hline 7 \mathrm{~B} 191-12 \\ & \text { 7B192-12 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{7B191-15} \\ & 7 \mathrm{B192-15} \end{aligned}$		$\begin{aligned} & 78191-20 \\ & 7 B 191-20 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	12		15		20		ns
t_{AA}	Address to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		ns
$t_{\text {AcE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		12		15		20	ns
t LzCE	$\overline{\text { CE }}$ LOW to Low ${ }^{(7]}$	3		3		3		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[7,8]}$		7		8		10	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE LOW }}$ to Power-Up		0		0		0	ns
$t_{\text {PD }}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to Power-Down		12		15		20	ns
WRITE CYCLE ${ }^{[9]}$								
$t_{\text {wc }}$	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	9		10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9		10		15		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	9		10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	0		0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	2		2		2		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		7		7		10	ns
$t_{\text {dwe }}$	$\overline{\text { WE LOW to Data Valid (7B191) }}$		12		15		20	ns
$\mathrm{t}_{\text {DCE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid (7B191)		12		15		20	ns
$\mathrm{t}_{\text {ADV }}$	Data Valid to Output Valid (7B191)		12		15		20	ns

Notes:

6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $20-\mathrm{pF}$ load capacitance.
7. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$.
8. t_{HZCE} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal will terminate a write by going HIGH. The input data setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

Read Cycle No. $2^{[11,12]}$

Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[13]}$

[^18]13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[15]}$

B191-9

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\mathbf{O}_{\mathbf{0}}-\mathbf{O}_{\mathbf{3}}$	Mode	Power
H	\mathbf{X}	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
L	H	Data Out	Read	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	L	High Z	7B192: Standard Write	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	L	Data In	7B191: Transparent Write ${ }^{[14]}$	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$

Notes:
14. Outputs track inputs after specified delay.

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B191-12PC	P21	Commercial
	CY7B191-12DC	D22	
	CY7B191-12VC	V21	
	CY7B191-12LC	L55	
15	CY7B191-15PC	P21	Commercial
	CY7B191-15DC	D22	
	CY7B191-15VC	V21	
	CY7B191-15LC	L55	
	CY7B191-15DMB	D22	Military
	CY7B191-15LMB	L55	
20	CY7B191-20PC	P21	Commercial
	CY7B191-20DC	D22	
	CY7B191-20VC	V21	
	CY7B191-20LC	L55	
	CY7B191-20DMB	D22	Military
	CY7B191-20LMB	L55	

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B192-12PC	P21	Commercial
	CY7B192-12DC	D22	
	CY7B192-12VC	V21	
	CY7B192-12VC	L55	
15	CY7B192-15PC	P21	Commercial
	CY7B192-15DC	D22	
	CY7B192-15VC	V21	
	CY7B192-15LC	L55	
	CY7B192-15DMB	D22	Military
	CY7B192-15LMB	L55	
20	CY7B192-20PC	P21	Commercial
	CY7B192-20DC	D22	
	CY7B192-20VC	V21	
	CY7B192-20LC	L55	
	CY7B192-20DMB	D22	Military
	CY7B192-20LMB	L55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	$7,8,9,10,11$
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DWE}}{ }^{[15]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}$	$7,8,9,10,11$

Notes:
15. 7B191 only.

Document \#: 38-00156

65,536 x 4 Static R/W RAM Separate I/O

Features

- Automatic power-down when deselected
- Transparent write (7C191)
- CMOS for optimum speed/power
- High speed
$-\mathrm{t}_{\mathrm{AA}}=25 \mathrm{~ns}$
- Low active power
$-660 \mathrm{~mW}$
- Low standby power
- 193 mW
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C191 and CY7C192 are high-performance CMOS static RAMs organized as $65,536 \times 4$ bits with separate I/O. Easy memory expansion is provided by active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. They have an automatic powerdown feature, reducing the power consumption by 71% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW.

Data on the four input pins (I_{0} through I_{3}) is written into the memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) LOW while the write enable ($\overline{\mathrm{WE}}$) reamins HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.
The output pins stay in high-impedance state when write enable (WE) is LOW (7C192 only), or chip enable ($\overline{\mathrm{CE}}$) is HIGH.
A die coat is used to insure alpha immunity.

Selection Guide

		7C191-25 7C192-25	7C191-35 7C192-35	7C191-45 7C192-45
Maximum Access Time (ns)		25	35	45
Maximum Operating Current (mA)	Commercial	120	120	120
	Military	130	130	130
Maximum Standby Current (mA)		35	35	35

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 28 to Pin 14)	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL_STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C191-25, 35, } 45 \\ & 7 \mathrm{C} 192-25,35,45 \end{aligned}$		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~m}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-10	+10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350	mA
I_{CC}	V_{cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'1		120	mA
			Mil		130	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current-TTL Inputs	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$			35	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{C E}$ Power-Down Current-CMOS Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$			20	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	10	pF
Cout	Output Capacitance		10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THEVENIN EQUIVALENT
OUTPUT $\quad 167 \Omega$

Switching Characteristics Over the Operating Range ${ }^{[2,5]}$

Parameters	Description	$\begin{aligned} & \hline \text { 7C191-25 } \\ & \text { 7C192-25 } \end{aligned}$		$\begin{aligned} & \text { 7C191-35 } \\ & \text { 7C192-35 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 191-45 \\ & \text { 7C192-45 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[6]}$	3		3		3		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		13		15		20	ns
t_{PU}	CE LOW to Power-Up	0		0	.	0		ns
t_{PD}	$\overline{\text { CE }}$ HIGH to Power-Down		25		35		45	ns

WRITE CYCLE ${ }^{[8]}$

t_{wc}	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	20		30		40		ns
t_{AW}	Address Set-Up to Write End	20		25		35		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	WE Pulse Width	20		25		30		ns
tsD	Data Set-Up to Write End	15		17		20		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low Z (7C192) ${ }^{[6]}$	3		3		3		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\mathrm{WE}}$ LOW to High Z (7C192) ${ }^{[6,7]}$		13		15		20	ns
$\mathrm{t}_{\text {Awe }}$	$\overline{\text { WE LOW }}$ to Data Valid (7C191)		25		30		35	ns
$\mathrm{t}_{\text {ADV }}$	Data Valid to Output Valid (7C191)		20		30		35	ns

Notes:

5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCEE }}, \mathrm{t}_{\text {HZWE }}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device. These parameters are guaranteed and not 100% tested.
7. $t_{\text {HZCE }}$ and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
12. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state (7C192 only).

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

Read Cycle No. ${ }^{[9,11]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[8]}$

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[88,12]}$

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

NORMALIZED ACCESS TIME
vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

Typical DC and AC Characteristics (continued)

Ordering Information

Speed (ns)	Ordering Code	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
25	CY7C191-25PC	P21	Commercial
	CY7C191-25VC	V21	
	CY7C191-25DC	D22	
	CY7C191-25LC	L54	
35	CY7C191-35PC	P21	Commercial
	CY7C191-35VC	V21	
	CY7C191-35DC	D22	
	CY7C191-35LC	L54	
	CY7C191-35DMB	D22	Military
	CY7C191-35LMB	L54	
	CY7C191-35KMB	K74	
45	CY7C191-45PC	P21	Commercial
	CY7C191-45VC	V21	
	CY7C191-45DC	D22	
	CY7C191-45LC	L54	
	CY7C191-45DMB	D22	Military
	CY7C191-45LMB	L54	
	CY7C191-45KMB	K74	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C192-25PC	P21	Commercial
	CY7C192-25VC	V21	
	CY7C192-25DC	D22	
	CY7C192-25LC	L54	
35	CY7C192-35PC	P21	Commercial
	CY7C192-35VC	V21	
	CY7C192-35DC	D22	
	CY7C192-35LC	L54	
	CY7C192-35DMB	D22	Military
	CY7C192-35LMB	L54	
	CY7C192-35KMB	K74	
45	CY7C192-45PC	P21	Commercial
	CY7C192-45VC	V21	
	CY7C192-45DC	D22	
	CY7C192-45LC	L54	
	CY7C192-45DMB	D22	Military
	CY7C192-45LMB	L54	
	CY7C192-45KMB	K74	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{sCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWE}}{ }^{[13]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}{ }^{[13]}$	$7,8,9,10,11$

Note:
13. 7C191 only

Document \#: 38-00076-F

Features

- High speed
$-\mathbf{t}_{\mathrm{M}}=12 \mathrm{~ns}$
- BiCMOS for optimum speed/power
- Low active power
$-605 \mathrm{~mW}$
- Low standby power
- 275 mW
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7B193 is a high-performance BiCMOS static RAM organized as 262,144 words by 1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$), an active LOW output enable ($\overline{\mathrm{OE})}$, and three-state drivers. The device has an automatic power-down feature that reduces its power consumption by more than 50% when it is deselected.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When CE and WE inputs are both LOW, data on the input/output pin is written into the memory location specified on the address pins (A_{0} through A_{17}).

Reading the device is accomplished by taking chip enable $(\overline{\mathrm{CE}})$ and output enable $(\overline{\mathrm{OE}})$ LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the location specified on the address pins is present on the data input/output pin (I/O).
The input/output (I/O) is in a high-impedance when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (WE and CE LOW).
The CY7B193 is available in leadless chip carriers and in space-saving 300 -mil-wide DIPs and SOJs.

Logic Block Diagram

Pin Configurations

Selection Guide

		7B193-12	7B193-15	7B193-20
Maximum Access Time (ns)	12	15	20	
Maximum Operating Current (mA)	Commercial	110	110	110
	Military		120	120
Maximum Standby Current (mA)	Commercial	50	50	50
	Military		60	60

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

	Static Discharge Voltage $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)		
Ambient Temperature with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Curr		>200 mA
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]} .-0.5 \mathrm{~V}$ to +7.0 V	Operating Range		
DC Voltage Applied to Outputs 	Range	Ambient Temperature ${ }^{[2]}$	$\mathbf{V}_{\mathbf{c c}}$
DC Input Voltage ${ }^{[1]} \ldots-0.5 \mathrm{~V}$ to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
	Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	Test Conditions		7B193-12		7B193-15, 20		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	-0.3	0.8	V
I_{I}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	+10	-10	$+10$	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		110		110	mA
			Mil				120	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current - TTL Inputs	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \overline{\mathrm{V}}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'l		50		50	mA
			Mil				60	
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current - CMOS Inputs	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \\ & \mathrm{f}=0 \end{aligned}$	Com'l		30		30	mA
			Mil				40	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10
		pF		

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\text { min. })}=-3.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

Parameters	Description	7B193-12		7B193-15		7B193-20		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	12		15		20		ns
t_{AA}	Address to Data Valid		12		15		20	ns
toha	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		12		15		20	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		7		10		12	ns
tizoe	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[8]}$	2		2		2		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE }}$ HIGH to High $\mathrm{Z}^{[7,8]}$		7		8		10	ns
LIzCE	$\overline{\text { CE }}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		3		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[7,7]}$		7		8		10	ns
$\mathrm{t}_{\text {Pu }}$	$\overline{\text { CE }}$ LOW to Power-Up		0		0		0	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15		20	ns
WRITE CYCLE ${ }^{[9,10]}$								
$\mathrm{t}_{\text {wc }}$	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\overline{C E}}$ LOW to Write End	9		10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9		10		15		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{tpWE}^{\text {P }}$	$\overline{\text { WE Pulse Width }}$	9		10		15		ns
tsD	Data Set-Up to Write End	7		8		10		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
tezwe	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	2		2		2		ns
$\mathrm{t}_{\text {HzWE }}$	WE LOW to High $\mathrm{Z}^{[7,8]}$		7		7		10	ns

Notes:

6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $20-\mathrm{pF}$ load capacitance.
7. $t_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}, \mathrm{t}_{\text {HZOE }}$ is less than $\mathrm{t}_{\text {LZOE }}$, and $\mathrm{t}_{\text {HZWE }}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal will terminate a write by going HIGH. The input data setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overrightarrow{O E}$ LOW) is the sum of $t_{\text {HZWE }}$ and $t_{S D}$.

Switching Waveforms

Read Cycle No. $1^{[11,12]}$

Read Cycle No. $2^{[12,13]}$

Write Cycle No. $1\left(\overline{\mathbf{C E}}\right.$ Controlled) ${ }^{[14,15]}$

[^19]14. Data I / O is high impedance if $\overline{O E}=V_{I H}$.
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Write Cycle No. 2 ($\overline{\text { WE }}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[14,15]}$

Write Cycle No. 3 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[10,15]}$

B193-11

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	I/O	Mode	Power
H	X	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
L	H	L	Data Out	Read	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	X	Data In	Write	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	H	H	High Z	Selected, Output Disabled	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$

CYPRESS
Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B193-12PC	P21	Commercial
	CY7B193-12DC	D22	
	CY7B193-12VC	V21	
	CY7B193-12LC	L55	
15	CY7B193-15PC	P21	Commercial
	CY7B193-15DC	D22	
	CY7B193-15VC	V21	
	CY7B193-15LC	L55	
	CY7B193-15DMB	D22	Military
	CY7B193-15LMB	L55	
20	CY7B193-20PC	P21	Commercial
	CY7B193-20DC	D22	
	CY7B193-20VC	V21	
	CY7B193-20LC	L55	
	CY7B193-20DMB	D22	Military
	CY7B193-20LMB	L55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	$7,8,9,10,11$
\mathbf{t}_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

[^20]
Features

- High speed
$-12 \mathrm{~ns} \mathrm{t}_{\mathrm{A}}$
- BiCMOS for optimum speed/power
- Low active power
$-743 \mathrm{~mW}$
- Low standby power
- 275 mW
- Automatic power-down when deselected
- Output enable ($\overline{\mathrm{OE}})$ feature (CY7B195 and CY7B196 only)
- TTL-compatible inputs and outputs

Functional Description

The CY7B194, 7B195, and CY7B196 are high-performance BiCMOS static RAMs organized as 65,536 words by 4 bits. Easy memory expansion is provided by an active LOW chip enable ($\left(\overline{\mathrm{CE}}_{1}\right)$, an active LOW chip enable ($\overline{\mathrm{CE}}_{2}, \mathrm{CY} 7 \mathrm{~B} 196$ only), an active LOW output enable ($\overline{\mathrm{OE}}, \mathrm{CY} 7 \mathrm{~B} 195$ and CY7B196 only), and three-state drivers. Both devices have an automatic powerdown feature that reduces power consumption by more than 60% when deselected.
Writing to the device is accomplished by taking chip enable one ($\overline{\mathrm{CE}}_{1}$) and write enable (WE) inputs LOW and chip enable two ($\overline{\mathrm{CE}}_{2}, \mathrm{CY} 7 \mathrm{~B} 196$ only) input LOW. Data on the I / O pin $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{3}\right)$ is then written into the location specified on the address pins (A_{0} through A_{15}).

$65,536 \times 4$ Static R/W RAM

Reading from the device is accomplished by taking chip enable one ($\overline{\mathrm{CE}}_{1}$), chip enable two (CE_{2}, CY7B196. only), and output enable (OE) LOW, while forcing write enable ($\overline{\mathrm{WE}}$) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the $1 / O$ pins.
The four input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} /$ O_{3}) are placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}}_{1} \mathrm{HIGH}$, or $\overline{\mathrm{CE}}_{2}$ HIGH CY7B196 only), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), or during a write operation ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2} \mathrm{CY} 7 \mathrm{~B} 196$ only, and WE LOW).
The CY7B194, CY7B195, and CY7B196 are available in leadless chip carriers and in 300-mil-wide DIPs, and SOJs.

Logic Block Diagram

B194-1

Pin Configurations

Selection Guide

		$\begin{aligned} & \text { 7B194-12 } \\ & \text { 7B195-12 } \\ & \text { 7B196-12 } \end{aligned}$	$\begin{aligned} & \hline \text { 7B194-15 } \\ & \text { 7B195-15 } \\ & \text { 7B196-15 } \end{aligned}$	$\begin{aligned} & \hline \text { 7B194-20 } \\ & \text { 7B195-20 } \\ & \text { 7B196-20 } \end{aligned}$
Maximum Access Time (ns)		12	15	20
Maximum Operating Current (mA)	Commercial	135	135	135
	Military		145	145
Maximum Standby Current (mA)	Commercial	50	50	50
	Military		60	60

Package Diagrams (continued)

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]} .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$ \qquad -0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$ -0.5 V to +7.0 V
Current into Outputs (LOW) 20 mA

Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	200 mA

Operating Range

Range	Ambient Temperature	
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics ${ }^{[3]}$ Over the Operating Range

Parameters	Description	Test Conditions		$\begin{aligned} & \hline \text { 7B194-12 } \\ & \text { 7B195-12 } \\ & \text { 7B196-12 } \end{aligned}$		$\begin{aligned} & \text { 7B194-15, } 20 \\ & 7 B 195-15,20 \\ & 7 B 196-15,20 \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{Cc}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-10	+10	-10	$+10$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		135		135	mA
			Mil				145	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current - TTL Inputs	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}} \overline{\mathrm{CE}} \text { or } \overline{\mathrm{CE}}_{2} \geq \mathrm{V}_{\mathrm{IH}}, \\ & V_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \overline{\mathrm{V}}_{\mathrm{IL}}, \\ & \mathbf{f = f _ { \text { MAX } }} \end{aligned}$	Com'l		50		50	mA
			Mil				60	
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current - CMOS Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \text { or } \overline{\mathrm{CE}}_{2} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \\ & \mathrm{f}=0 \end{aligned}$	Com'l		30		30	mA
			Mil				40	

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\min .)}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms

ALL INPUT PULSES

(b)
B194-7
B194-8

Equivalent to: THÉVENIN EQUIVALENT OUTPUT $0 \longrightarrow 1.73 \mathrm{~V}$

Switching Characteristics ${ }^{[3,6]}$ Over the Operating Range

Parameters	Description	$\begin{aligned} & \text { 7B194-12 } \\ & \text { 7B195-12 } \\ & \text { 7B196-12 } \end{aligned}$		$\begin{aligned} & \text { 7B194-15 } \\ & \text { 7B195-15 } \\ & \text { 7B196-15 } \end{aligned}$		$\begin{aligned} & \text { 7B194-20 } \\ & \text { 7B194-20 } \\ & \text { 7B196-20 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	12		15		20		ns
t_{AA}	Address to Data Valid		12		15		20	ns
toha	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {DoE }}$	$\overline{\text { OE LOW to Data Valid }}$		7		10		12	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE }}$ LOW to Low $\mathrm{Z}^{[8]}$	2		2		2		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		7		8		10	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low ${ }^{[8]}$	3		3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		7		8		10	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power-Up		0		0		0	ns
$t_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15		20	ns

WRITE CYCLE ${ }^{[9,10]}$

t_{WC}	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\mathrm{SCE}}$	$\overline{\text { CE }}$ LOW to Write End	9		10		15		ns
t_{AW}	Address Set-Up to Write End	9		10		15		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\mathrm{PWE}}$	$\overline{\mathrm{WE}}$ Pulse Width	9		10		15		ns
t_{SD}	Data Set-Up to Write End	7		8		10		ns
t_{HD}	Data Hold from Write End	0		0		$\mathbf{0}$		ns
$\mathrm{t}_{\mathrm{ZZWE}}$	$\overline{\mathrm{WE}}$ HIGH to Low Z ${ }^{[8]}$	2		2		2		ns
$\mathrm{t}_{\mathrm{HZWE}}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[7,8]}$		7		7		$\mathbf{1 0}$	ns

Notes:

6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $20-\mathrm{pF}$ load capacitance.
7. $t_{\text {HZOE }}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }} t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, $\overline{\mathrm{CE}}_{2}$ LOW and $\overline{\mathrm{WE}}$ LOW. All signals must be LOW to initiate a write and any signal will terminate a write by going HIGH. The input data set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}} \mathrm{LOW}$) is the sum of $\mathrm{t}_{\text {HZWE }}$ and t_{SD}.

Switching Waveforms

Read Cycle No. ${ }^{[11,12]}$

Read Cycle No. $2^{[12,13]}$

Write Cycle No. 1 ($\overline{\mathrm{CE}}_{1}$ or $\overline{\mathbf{C E}}_{2}$ Controlled) ${ }^{[14,15]}$

[^21]14. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
15. If $\overline{\mathrm{CE}}_{1}\left(\overline{\mathrm{CE}}_{1}\right.$ or $\overline{\mathrm{CE}}_{2}$ on the 7B196) goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms

Write Cycle No. 2 ($\overline{\text { WE }}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write for 7B195 and 7B196 only) ${ }^{[14,15]}$

Write Cycle No. 3 ($\overline{\text { WE }}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[10,15\}}$

B194-13

7B194 Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\overline{\mathbf{W E}}$	$\mathbf{I} / \mathbf{O}_{\mathbf{0}}-\mathbf{I} / \mathbf{O}_{\mathbf{3}}$	Mode	Power
H	\mathbf{X}	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathbf{S B}}\right)$
L	H	Data Out	Read	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	L	Data In	Write	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$

7B195 Truth Table

$\overline{\mathrm{CE}}_{1}$	$\overline{\text { WE }}$	$\overline{\text { OE }}$	$\mathbf{I} / \mathbf{O}_{0}-\mathbf{I} / \mathbf{O}_{3}$	Mode	Power
H	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {sc }}$)
L	H	L	Data Out	Read	Active (I_{cc})
L	L	X	Data In	Write	Active (I_{cc})
L	H	H	High Z	Selected, Output Disabled	Active (I_{cc})

7C196 Truth Table

$\overline{\mathbf{C E}}_{1}$	$\overline{\mathbf{C E}}_{2}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode	Power
H	X	X	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
X	H	X	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
L	L	H	L	Data Out	Read	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	L	L	X	Data In	Write	Active $\left(\mathrm{I}_{\mathrm{cc}}\right)$
L	L	H	H	High Z	Selected, Output Disabled	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B195-12PC	P13	Commercial
	CY7B195-12DC	D14	
	CY7B195-12LC	I55	
	CY7B195-12VC	V21	
15	CY7B195-15PC	P13	Commercial
	CY7B195-15DC	D14	
	CY7B195-15LC	L55	
	CY7B195-15VC	V21	
	CY7B195-15DMB	D22	Military
	CY7B195-15LMB	L55	
20	CY7B195-20PC	P13	Commercial
	CY7B195-20DC	D14	
	CY7B195-20LC	L55	
	CY7B195-20VC	V21	
	CY7B195-20DMB	D22	Military
	CY7B195-20LMB	L55	

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B196-12PC	P13	Commercial
	CY7B196-12DC	D14	
	CY7B196-12LC	L55	
	CY7B196-12VC	V21	
15	CY7B196-15PC	P13	Commercial
	CY7B196-15DC	D14	
	CY7B196-15LC	L55	
	CY7B196-15VC	V21	
	CY7B196-15DMB	D22	Military
	CY7B196-15LMB	L55	
20	CY7B196-20PC	P13	Commercial
	CY7B196-20DC	D14	
	CY7B196-20LC	LA5	
	CY7B196-20VC	V21	
	CY7B196-20DMB	D22	Military
	CY7B196-20LMB	L55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	$7,8,9,10,11$
t_{WC}	7
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

[^22]
65,536 x 4 Static R/W RAM

Features

- Automatic power-down when deselected
- Output Enable ($\overline{\mathrm{OE}}$) feature (7C195 and 7C196)
- CMOS for optimum speed/power
- High speed
$-t_{A A}=25 \mathrm{~ns}$
- Low active power
$-660 \mathrm{~mW}$
- Low standby power
- 193 mW
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C194, CY7C195, and CY7C196 are high-performance CMOS static RAMs organized as 65,536 by 4 bits. Easy memory expansion is provided by active LOW chip enable(s) $\overline{\mathrm{CE}}$ on the CY 7 C 194 and CY7C195, $\mathrm{CE}_{1}, \mathrm{CE}_{2}$ on the CY7C196) and three-state drivers. They have an automatic power-down feature, reducing the power consumption by 71% when deselected.
Writing to the device is accomplished when the chip enable(s) ($\overline{\mathrm{CE}}$ on the CY7C194
and $\mathrm{CY} 7 \mathrm{C} 195, \overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ on the CY 7 C 196) and write enable ($\overline{\mathrm{WE}}$)inputs are both LOW. Data on the four input pins ($\mathrm{I} / \mathrm{O}_{0}$ through I/ O_{3}) is written into the memory location, specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking the chip enable(s) ($\overline{\mathrm{CE}}$ on the CY7C194 and CY7C195, $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$ on the CY7C196) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.

A die coat is used to ensure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide

		$\begin{aligned} & \text { 7C194-25 } \\ & \text { 7C195-25 } \\ & \text { 7C196-25 } \end{aligned}$	$\begin{aligned} & \text { 7C194-35 } \\ & \text { 7C195-35 } \\ & \text { 7C196-35 } \end{aligned}$	$\begin{aligned} & \text { 7C194-45 } \\ & \text { 7C195-45 } \\ & \text { 7C196-45 } \end{aligned}$
Maximum Access Time (ns)		25	35	45
Maximum Operating Current (mA)	Commercial	120	120	120
	Military		130	130
Maximum Standby Current (mA)		35	35	35

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Cu		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential - 0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High ZState -0.5 V to +7.0 V	Range	Ambient Temperature ${ }^{[1]}$	$\mathbf{V}_{\mathbf{c c}}$
DC Input Voltage . - 3.0	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current into Outputs (Low) 20 mA	Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		7C194-25, 35, 45 7C195-25, 35, 45 7C196-25, 35, 45		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{0 \mathrm{Z}}$	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{cc}},$ Output Disabled		-10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350	mA
$\mathrm{I}_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\text {Out }}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		120	mA
			Mil		130	
$\mathrm{I}_{\text {ISB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current-TTL Inputs ${ }^{[4]}$	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1,2} \geq \mathrm{V}_{\mathrm{IH}}, V_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$			35	mA
$\mathrm{I}_{1 S B 2}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current-CMOS Inputs ${ }^{[4]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1,2} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$			20	mA

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10
		pF		

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description		$\begin{aligned} & \text { 7C194-25 } \\ & \text { 7C195-25 } \\ & \text { 7C196-25 } \end{aligned}$		$\begin{aligned} & \text { 7C194-35 } \\ & \text { 7C195-35 } \\ & \text { 7C196-35 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C194-45 } \\ & \text { 7C195-45 } \\ & \text { 7C196-45 } \end{aligned}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE									
$\mathrm{t}_{\text {RC }}$	Read Cycle Time		25		35		45		ns
t_{AA}	Address to Data Valid			25		35		45	ns
toha	Output Hold from Addre	Change	3		3		3		ns
$\mathrm{t}_{\text {ACE1, }}$ ACE2	$\overline{\mathrm{CE}}$ LOW to Data Valid			25		35		45	ns
$\mathrm{t}_{\text {Doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid	7C195, 7C196		15		20		20	ns
t lzoe	$\overline{\mathrm{OE}}$ LOW to Low Z	7C195, 7C196	3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[8]}$	7C195, 7C196		13		15		20	ns
$\mathrm{t}_{\text {LZCE1 }}$, CE2	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$		3		3		3		ns
$\mathrm{t}_{\text {HZCE1, }}$ CE2	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[7,8]}$			13		15		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE LOW to Power-Up }}$		0		0		0		ns
$t_{\text {PD }}$	$\overline{\text { CE }}$ HIGH to Power-Down			25		35		45	ns

WRITE CYCLE ${ }^{[9]}$

t_{wc}	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	20		30		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		35		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		17		20		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathbf{Z}^{[7,8]}$	0	13	0	15	0	20	ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
7. At any given temperature and voltage condition, t_{HZCE} is less than $t_{\text {LZCE }}$ and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
8. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, $\overline{\mathrm{CE}}_{2}$ LOW, and $\overline{\mathrm{WE}}$ LOW. All signals must be LOW to initiate a write and any signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. ${ }^{[10,11]}$

C194-8

Read Cycle No. $2^{[10,12]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[9,13]}$

Notes:

10. $\overline{\text { WE }}$ is HIGH for read cycle.
11. Device is continuously selected: $\overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{IL}}$ (7C196), and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ (7C195 and 7C196).
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ transition low.
13. Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ (7 C 195 and 7 C 196).
14. If any $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.
$2{ }^{2}{ }^{3}$

Switching Waveforms (continued)
Write Cycle No. $2(\overline{\mathrm{CE}} \text { Controlled })^{[9,12,14]}$

Typical DC and AC Characteristics

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

Typical DC and AC Characteristics (continued)

7C194 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Data I/O	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

7C195 Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Data I/O	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

7C196 Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\overline{\mathbf{C E}}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Data I/O	Mode
H	X	X	X	High Z	Deselect/Power- Down
X	H	X	X		
L	L	H	L	Data Out	Read
L	L	L	X	Data In	Write
L	L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C194-25PC	P13	Commercial
	CY7C194-25VC	V13	
	CY7C194-25DC	D14	
	CY7C194-25LC	L54	
35	CY7C194-35PC	P13	Commercial
	CY7C194-35VC	V13	
	CY7C194-35DC	D14	
	CY7C194-35LC	L54	
	CY7C194-35DMB	D14	Military
	CY7C194-35LMB	L54	
	CY7C194-35KMB	K73	
45	CY7C194-45PC	P13	Commercial
	CY7C194-45VC	V13	
	CY7C194-45DC	D14	
	CY7C194-45LC	L54	
	CY7C194-45DMB	D14	Military
	CY7C194-45LMB	L54	
	CY7C194-45KMB	K73	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C195-25PC	P21	Commercial
	CY7C195-25VC	V21	
	CY7C195-25DC	D22	
	CY7C195-25LC	L54	
35	CY7C195-35PC	P21	Commercial
	CY7C195-35VC	V21	
	CY7C195-35DC	D22	
	CY7C195-35LC	I54	
	CY7C195-35DMB	D22	Military
	CY7C195-35LMB	L54	
	CY7C195-35KMB	K74	
45	CY7C195-45PC	P21	Commercial
	CY7C195-45VC	V21	
	CY7C195-45DC	D22	
	CY7C195-45LC	L54	
	CY7C195-45DMB	D22	Military
	CY7C195-45LMB	L54	
	CY7C195-45KMB	K74	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C196-25PC	P21	Commercial
	CY7C196-25VC	V21	
	CY7C196-25DC	D22	
	CY7C196-25LC	L54	
35	CY7C196-35PC	P21	Commercial
	CY7C196-35VC	V21	
	CY7C196-35DC	D22	
	CY7C196-35LC	L54	
	CY7C196-35DMB	D22	Military
	CY7C196-35LMB	L54	
	CY7C196-35KMB	K74	
45	CY7C196-45PC	P21	Commercial
	CY7C196-45VC	V21	
	CY7C196-45DC	D22	
	CY7C196-45LC	L54	
	CY7C196-45DMB	D22	Military
	CY7C196-45LMB	L54	
	CY7C196-45KMB	K74	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$, ACE 2	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}{ }^{[15]}$	$7,8,9,10,11$
WRITE CYCLE	$7,8,9,10,11$
t_{WC}	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}$	$7,8,9,10,11$

Note:
15. 7C195 and 7C196 only.

Document \#: 38-00081-E

Features

- High speed
$-\mathrm{t}_{\mathrm{M}}=12 \mathrm{~ns}$
- BiCMOS for optimum speed/power
- Low active power
$-605 \mathrm{~mW}$
- Low standby power
- 275 mW
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7B197 is a high-performance BiCMOS static RAM organized as 262,144 words by 1 bit. Easy memory expansion is provided by an active LOW chip enable $(\overline{\mathrm{CE}})$ and three-state drivers. The CY7B197 has an automatic power-down feature, reducing the power consumption by more than 50% when deselected.
Writing to the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs LOW. Data on the input pin (D_{IN}) is written into the memory location specified on the address pins (A_{0} through A_{17}).

Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified by the address pins will appear on the data output ($\mathrm{D}_{\mathrm{OUT}}$) pin.
The output pin ($\mathrm{D}_{\text {Out }}$) is placed in a high-impedance state when the device is deselected (CE HIGH) or during a write operation ($\overline{\mathrm{CE}}$ and WE LOW).
The CY7B197 is available in a leadless chip carrier and space-saving 300 -mil-wide DIPs and SOJs. It utilizes a die coat to insure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide

		7B197-12	7B197-15	7B197-20
Maximum Access Time (ns)		12	15	20
Maximum Operating Current (mA)	Commercial	110	110	110
	Military		120	120
Maximum Standby Current (mA)	Commercial	50	50	50
	Military		60	60

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots .6{ }^{\text {a }}$ Ambient Temperature with	Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)		
Power Applied $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Curr		$>200 \mathrm{~mA}$
Supply Voltage on V_{Cc} relative to $\mathrm{GND}^{[1]} . .-0.5 \mathrm{~V}$ to +7.0 V	Operating Range		
DC Voltage Applied to Outputs 	Range	Ambient Temperature ${ }^{[2]}$	$\mathbf{V}_{\text {cc }}$
DC Input Voltage ${ }^{[1]}$. -0.5 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
	Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\mathrm{Min})}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

Parameters	Description	7B197-12		7B197-15		7B197-20		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	12		15		20		ns
$t_{\text {AA }}$	Address to Data Valid		12		15		20	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE }}$ LOW to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {LzCE }}$	$\overline{\text { CE }}$ LOW to Low ${ }^{[7]}$	3		3		3		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathbf{Z}^{[7,8]}$		7		8		10	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE LOW to Power-Up }}$	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15		20	ns
WRITE CYCLE ${ }^{[9]}$								
t_{wc}	Write Cycle Time	12		15		20		ns
${ }^{\text {t }}$ SCE	$\overline{\mathrm{CE}}$ LOW to Write End	9		10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9		10		15		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	9		10		15		ns
$\mathrm{t}_{\text {sD }}$	Data Set-Up to Write End	7		8		10		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {Lzwe }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	2		2		2		ns
$\mathrm{t}_{\text {Hzwe }}$	WEE LOW to High $\mathrm{Z}^{[7,8]}$		7		7		10	ns

Notes:
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 20 pF load capacitance.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
8. $t_{\text {HZCE }}$ and $t_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (b) in AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and $\overline{W E}$ LOW. Both signals must be LOW to initiate a write and either signal will terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. ${ }^{[10,11]}$

Read Cycle No. $\mathbf{2 ~}^{[10,12]}$

Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[13]}$

Notes:

10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address Valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[13]}$

7B197 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Dout	Mode	Power
H	X	High Z	Deselect/Power-Down	Standby $\left(\mathrm{I}_{\text {SB }}\right)$
L	H	Data Out	Read	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	High Z	Write	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B197-12PC	P13	Commercial
	CY7B197-12VC	V21	
	CY7B197-12DC	D14	
	CY7B197-12LC	L55	
15	CY7B197-15PC	P13	Commercial
	CY7B197-15VC	V21	
	CY7B197-15DC	D14	
	CY7B197-15LC	L55	
	CY7B197-15DMB	D14	Military
	CY7B197-15LMB	L55	

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7B197-20PC	P13	Commercial
	CY7B197-20VC	V21	
	CY7B197-20DC	D14	
	CY7B197-20LC	S197-k55	
	CY7B197-20DMB	D14	Military
	CY7B197-20LMB	L55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$t_{\text {RC }}$	7, 8, 9, 10, 11
$t_{\text {AA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {OHA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {ACE }}$	7, 8, 9, 10, 11
WRITE CYCLE	
$t_{\text {wc }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SCE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {Aw }}$	7, 8, 9, 10, 11
$t_{\text {HA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SA }}$	7, 8, 9, 10, 11
tpwe	7, 8, 9, 10, 11
$t_{\text {sb }}$	7, 8, 9, 10, 11
t_{HD}	7, 8, 9, 10, 11

Document \#: 38-00159

262,144 x 1 Static R/W RAM

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
- 20 ns
- Low active power
$-550 \mathrm{~mW}$
- Low standby power
- 193 mW
- TTL-compatible imputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C197 is a high-performance CMOS static RAM organized as 262,144 words by 1 bit. Easy memory expansion is provided by an active LOW chip enable (CE) and three-state drivers. The CY7C197 has an automatic power-down feature, reducing the power consumption by 65% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input pin ($\mathrm{D}_{\text {IN }}$) is written into the memory location specified on the address pins (A_{0} through A_{17}).

Reading the device is accomplished by taking chip enable (CE) LOW while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data output ($\mathrm{D}_{\text {out }}$) pin.
The output pin stays in high-impedance state when chip enable ($\overline{\mathrm{CE}})$ is HIGH or write enable (WE) is LOW.
The 7C197 utilizes a die coat to insure alpha immunity.

Logic Block Diagram

Pin Configurations

C197-2

Selection Guide

		7C197-20	7C197-25	7C197-35	7C197-45					
Maximum Access Time (ns)			20	25	35					
Maximum Operating Current (mA)	Commercial	100	100	100	45					
	Military		110	110	100					
Maximum Standby Current (mA)							35	35	35	35

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	to $+150{ }^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12)	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	

Static Discharge Voltage . >2001V (per MIL-STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	
Commercial	$0^{\circ}{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions			7C197-20, 25, 35, 45		Units
					Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$			2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$.	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Mil		0.4	V
			$\mathrm{I}_{\text {OL }}=12.0 \mathrm{~mA}$	Com'l		0.4	V
V_{IH}	Input HIGH Voltage				2.2	V_{Cc}	V
V_{IL}	Input LOW Voltage				-3.0	0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$			-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$			-50	$+50$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$				-350	mA
I_{CC}	Vcc Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$		Com'l		100	mA
				Mil		110	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current-TTL Inputs ${ }^{[4]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$				35	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current-CMOS Inputs ${ }^{[4]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}<0.3 \mathrm{~V} \end{aligned}$				20	mA

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10	pF	

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

C197-5

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	7C197-20		7C197-25		7C197-35		7C197-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE										
t_{RC}	Read Cycle Time	20		25		35		45		ns
$t_{\text {AA }}$	Address to Data Valid		20		25		35		45	ns
toha	Output Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		20		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\text { CE }}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$	0	12	0	13	0	15	0	20	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE }}$ HIGH to Power-Down		20		20		25		30	ns

WRITE CYCLE ${ }^{[9]}$

t_{WC}	Write Cycle Time	20		25		35		45		ns
$\mathrm{t}_{\mathrm{sCE}}$	CE LOW to Write End	15		20		30		40		ns
t_{AW}	Address Set-Up to Write End	15		20		30		40		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{W E}$ Pulse Width	15		20		25		30		ns
t_{SD}	Data Set-Up to Write End	12		15		17		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\mathrm{LZWE}}$	$\overline{\mathrm{WE}}$ HIGH to Low $\mathrm{Z}^{[7]}$	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZWE}}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[7,8]}$	0	12	0	13	0	15	0	20	ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
8. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) in AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

C197-7

Write Cycle No. 1 (产E Controlled) ${ }^{[10]}$

C197-8

Notes:
10. $\overline{W E}$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[10,12]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

7C197 Truch Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7C197-20PC	P13	Commercial
	CY7C197-20VC	V13	
25	CY7C197-25PC	P13	Commercial
	CY7C197-25VC	V13	
	CY7C197-25DC	D14	
	CY7C197-25LC	L54	
	CY7C197-25DMB	D14	Military
	CY7C197-25LMB	L54	
	CY7C197-25KMB	K73	
35	CY7C197-35PC	P13	Commercial
	CY7C197-35VC	V13	
	CY7C197-35DC	D14	
	CY7C197-35LC	L54	
	CY7C197-35DMB	D14	Military
	CY7C197-35LMB	L54	
	CY7C197-35KMB	K73	
45	CY7C197-45PC	P13	Commercial
	CY7C197-45VC	V13	
	CY7C197-45DC	D14	
	CY7C197-45LC	L54	
	CY7C197-45DMB	D14	Military
	CY7C197-45LMB	L54	
	CY7C197-45KMB	K73	

[^23]
MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

[^24]
Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- BiCMOS for optimum speed/power
- Low active power
$-853 \mathrm{~mW}$
- Low standby power
- 275 mW
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7B198 and CY7B199 are high-performance BiCMOS static RAMs organized as 32,768 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$), an active LOW output enable ($\overline{\mathrm{OE}}$), and three-state drivers. Both devices have an automatic power-down feature, reducing the power consumption by more than 60% when deselected.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing operation of the memory. When $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ inputs are both LOW, data on the eight data input/ output pins ($/ / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the memory location specified on the address pins (A_{0} through A_{14}).

Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and output enable ($\overline{\mathrm{OE} \text {) }}$ LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the location specified on the address pins is present on the eight data input/output pins.
The eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), or during a write operation ($\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ LOW).
The CY7B198 is available in a leadless chip carrier. The CY7B199 is available in spacesaving 300 -mil-wide DIPs, and SOJs.

Pin Configurations

B198-2
Top View

B198-3

Selection Guide

		$\begin{aligned} & \hline 7 \mathrm{~B} 198-12 \\ & 7 \mathrm{~B} 199-12 \end{aligned}$	$\begin{aligned} & 7 \mathrm{B198-15} \\ & 7 \mathrm{~B} 199-15 \end{aligned}$	$\begin{aligned} & 7 \mathrm{7B198-20} \\ & 7 \mathrm{B199-20} \end{aligned}$
Maximum Access Time (ns)		12	15	20
Maximum Operating Current (mA)	Commercial	155	155	155
	Military		170	170
Maximum Standby Current (mA)	Commercial	50	50	50
	Military		60	60

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]}$	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State ${ }^{[1]}$	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V
Current into Outputs (LOW)	20

Static Discharge Voltage . $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature ${ }^{[2]}$	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics ${ }^{[3]}$ Over the Operating Range

Parameters	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{7B198-12} \\ & 7 \mathrm{~B} 199-12 \end{aligned}$		$\begin{aligned} & \text { 7B198-15, } 20 \\ & 7 \mathrm{~B} 199-15,20 \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		155		155	mA
			Mil				170	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current - TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq V_{I \mathrm{H}} \text { or } \overline{\mathrm{V}}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'l		50		50	mA
			Mil				60	
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current - CMOS Inputs	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \\ & \mathrm{f}=0 \end{aligned}$	Com'l		30		30	mA
			Mil				40	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\text { min. })}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

B198-5
Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } 0 \longrightarrow 1.73 \mathrm{~V}
$$

Switching Characteristics ${ }^{[3,6]}$ Over the Operating Range

Parameters	Description	$\begin{aligned} & 7 \mathrm{7B198-12} \\ & 7 \mathrm{~B} 199-12 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 198-15 \\ & 7 \mathrm{~B} 199-15 \end{aligned}$		$\begin{aligned} & 7 \mathrm{BB} 198-20 \\ & \text { 7B198-20 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	12		15		20	.	ns
t_{AA}	Address to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\overline{C E}}$ LOW to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		7		10		12	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[8]}$	2		2		2		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE }}$ HIGH to High $\mathrm{Z}^{[7,8]}$		7		8		10	ns
t lzce	$\overline{\overline{C E}}$ LOW to Low $\mathrm{Z}^{[8]}$	3	.	3		3		ns
$\mathrm{t}_{\mathrm{HzCE}}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		7		8		10	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\overline{C E}}$ LOW to Power-Up		0		0		0	ns
tpd	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15		20	ns
WRITE CYCLE ${ }^{[9,10]}$								
t_{wc}	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	9		10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9		10		15		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	9		10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low } \mathrm{Z}^{[7]}}$	2		2		2		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[7,8]}$		7		7		10	ns

Notes:
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $20-\mathrm{pF}$ load capacitance.
7. $t_{\text {HZOE }}, t_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}, \mathrm{t}_{\text {HZOE }}$ is less than $\mathrm{t}_{\text {LZOE }}$, and $\mathrm{t}_{\text {HZWE }}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal will terminate a write by going HIGH. The input data setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. The minimum write cycle time for Write Cycle No. 3 (䃘Controlled, $\overline{O E}$ LOW) is the sum of $t_{\text {HZWE }}$ and $t_{\text {SD }}$.

Switching Waveforms

Read Cycle No. ${ }^{[11,12]}$

Read Cycle No. $2^{[12,13]}$

Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[14,15]}$

Notes:

11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. $\overline{\text { WE }}$ is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
14. Data I / O is high impedance if $\overline{O E}=V_{\mathrm{IH}}$.
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\text { WE }}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms

Write Cycle No. 2 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[14,15]}$

Write Cycle No. 3 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[10,15]}$

B198-10

Truth Table

$\overline{\overline{\mathbf{C E}}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	$\mathbf{I}_{\mathbf{O}}^{\mathbf{0}} \mathbf{- I / \mathbf { O } _ { \mathbf { 7 } }}$	Mode	Power
H	X	X	High Z	Power-Down	Standby ($\left.\mathrm{I}_{\mathrm{SB}}\right)$
L	H	L	Data Out	Read	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	X	Data In	Write	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	H	H	High Z	Selected, Output Disabled	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B198-12LC	L55	Commercial
15	CY7B198-15LC	L55	Commercial
	CY7B198-15LMB	L55	Military
20	CY7B198-20LC	L55	Commercial
	CY7B198-20LMB	L55	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7B199-12PC	P21	Commercial
	CY7B199-12DC	D22	
	CY7B199-12VC	V21	
	CY7B199-15PC	P21	Commercial
	CY7B199-15DC	D22	
	CY7B199-15VC	V21	
	CY7B199-15DMB	D22	Military
20	CY7B199-20PC	P21	Commercial
	CY7B199-20DC	D22	
	CY7B199-20VC	V21	
	CY7B199-20DMB	D22	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	$7,8,9,10,11$
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00160

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-25 \mathrm{~ns}$
- Low active power
$-935 \mathrm{~mW}$
- Low standby power
- 193 mW
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C198 and CY7C199 are high-performance CMOS static RAMs organized as 32,768 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and active LOW output enable $(\overline{\mathrm{OE}})$ and three-state drivers. Both devices have an automatic power-down feature, reducing the power consumption by at least 77% when deselected. The CY7C199 is in the space-saving 300 -mil-wide DIP package and leadless chip carrier. The CY7C198 is in the standard 600 -mil-wide package.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When CE and WE inputs are
both LOW, data on the eight data input/output pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{7}\right)$ is written into the memory location addressed by the address present on the address pins (A_{0} through A_{14}). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ active LOW, while $\overline{\mathrm{WE}}$ remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.
The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH. A die coat is used to ensure alpha immunity.

Selection Guide

		$\begin{aligned} & 7 \mathrm{C} 198-25 \\ & \text { 7C199-25 } \end{aligned}$	$\begin{aligned} & \text { 7C198-35 } \\ & \text { 7C199-35 } \end{aligned}$	$\begin{aligned} & \text { 7C198-45 } \\ & \text { 7C199-45 } \end{aligned}$	$\begin{aligned} & \text { 7C198-55 } \\ & \text { 7C199-55 } \end{aligned}$
Maximum Access Time (ns)		25	35	45	55
Maximum Operating Current (mA)	Commercial	170	150	150	150
	Military		160	160	160
Maximum Standby Current (mA)		35	35	35	35

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature . .	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage >2001V (per MIL-STD-883, Method 3015)		
Ambient Temperature with Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Cur		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential (Pin 28 to Pin 14) -0.5 V to +7.0 V		Operating Range		
DC Voltage Applied to Outputs in High Z State	$\ldots-0.5 \mathrm{~V}$ to +7.0 V	Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C c}}$
兂	-3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current into Outputs (Low)	20 mA	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$		10
$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	pF			
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance		10	pF

Notes

1. \mathbf{T}_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)
(b)

ALL INPUT PULSES

Equivalent to: THEVENIN EQUIVALENT
OUTPUT 0-
Switching Characteristics Over the Operating Range ${ }^{[2, S]}$

Parameters	Description	$\begin{aligned} & 7 \mathrm{C} 198-25 \\ & \text { 7C199-25 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C198-35} \\ & \text { 7C199-35 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C198-45} \\ & \text { 7C199-45 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C198-55 } \\ & \text { 7C199-55 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	25		35		45		55		ns
t_{AA}	Address to Data Valid		25		35		45		55	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\overline{C E}}$ LOW to Data Valid		25		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		20		20		20	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathbf{Z}^{[6,7]}$		13		15		20		25	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		3		3		ns
$\mathrm{t}_{\text {HzCe }}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[6,7]}$		13		15		20		25	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		20		20		25		25	ns

WRITE CYCLE ${ }^{[8]}$

t_{wC}	Write Cycle Time	25		35		45		55		ns
$\mathrm{t}_{\mathrm{sCE}}$	$\overline{\text { CE LOW to Write End }}$	20		30		40		50		ns
t_{AW}	Address Set-Up to Write End	20		30		40		50		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		30		40		ns
t_{SD}	Data Set-Up to Write End	15		17		20		25		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW to High } Z^{[6]}}$		13		15		20		25	ns
$\mathrm{t}_{\mathrm{LZWE}}$	$\overline{\text { WE HIGH to Low } Z^{[7]}}$	3		3		3		3		ns

Notes:

5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. $t_{\text {HZOE }}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}, t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WELOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

Read Cycle No. ${ }^{[10,11]}$

C198-8
Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[8,12]}$

Notes:
9. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
10. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. Data I / O is high impedance if $\overline{O E}=V_{I H}$.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[8,12,13]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Truth Table

$\overline{\text { CE }}$	$\overline{\mathbf{W E}}$	$\overline{\mathrm{OE}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C198-25DC	D16	Commercial
	CY7C198-25LC	L55	
	CY7C198-25PC	P15	
35	CY7C198-35DC	D16	Commercial
	CY7C198-35LC	L55	
	CY7C198-35PC	P15	
	CY7C198-35DMB	D16	Military
	CY7C198-35LMB	L55	
45	CY7C198-45DC	D16	Commercial
	CY7C198-45LC	L55	
	CY7C198-45PC	P15	
	CY7C198-45DMB	D16	Military
	CY7C198-45LMB	L55	
55	CY7C198-55DC	D16	Commercial
	CY7C198-55LC	L55	
	CY7C198-55PC	P15	
	CY7C198-55DMB	D16	Military
	CY7C198-55LMB	L55	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C199-25PC	P21	Commercial
	CY7C199-25VC	V21	
	CY7C199-25DC	D22	
	CY7C199-25LC	L54	
35	CY7C199-35PC	P21	Commercial
	CY7C199-35VC	V21	
	CY7C199-35DC	D22	
	CY7C199-35LC	L54	
	CY7C199-35DMB	D22	Military
	CY7C199-35LMB	L54	
	CY7C199-35KMB	K74	
45	CY7C199-45PC	P21	Commercial
	CY7C199-45VC	V21	
	CY7C199-45DC	D22	
	CY7C199-45LC	L54	
	CY7C199-45DMB	D22	Military
	CY7C199-45LMB	L54	
	CY7C199-45KMB	K74	
55	CY7C199-55PC	P21	Commercial
	CY7C199-55VC	V21	
	CY7C199-55DC	D22	
	CY7C199-55LC	L54	
	CY7C199-55DMB	D22	Military
	CY7C199-55LMB	L54	
	CY7C199-55KMB	K74	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{H}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00077-G

Features

- Fully decoded, 16 word x 4-bit highspeed CMOS RAMs
- Inverting outputs 27 S 03 , 27LS03, 74S189
- Non-inverting outputs 27S07
- High speed
$-25 \mathrm{~ns}$
- Low power
- 210 mW (27LS03)
- Power supply 5V $\pm \mathbf{1 0 \%}$
- Advanced high-speed CMOS processing for optimum speed/power product
- Capable of withstanding greater than 2001V static discharge
- Three-state outputs
- TTL-compatible inteface levels

Functional Description

These devices are high-performance 64-bit static RAMs organized as 16 words by 4 bits. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and three-state outputs. The devices are provided with inverting and non-inverting outputs.
Writing to the device is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs (D_{0} through D_{3}) is written into the memory location specified on the address pins (A_{0} through A_{3}). The outputs are pre-
conditioned so that the write data is present at the outputs when the write cycle is complete. This precondition operation ensures minimum write recovery times by eliminating the "write recovery glitch."
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable (OE) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four output pins (O_{0} through O_{3}) in inverted or non-inverted (CY27S07) format.
The output pins remain in a high-impedance state when chip select ($\overline{\mathrm{CS}}$) is HIGH, or write enable ($\overline{\mathrm{WE}}$) is LOW.

Logic Block Diagram

27S03, 27LS03, 74S189

S189-1

Pin Configurations

Selection Guide (For higher performance and lower power, refer to the CY7C189/90 data sheet.)

		27S03A 27S07A	27S03, 27S07 74S189	27LS03
Maximum Access Time (ns)	Commercial	25	35	
	Military	25	35	65
Maximum Operating Current (mA)	Commercial	90	90	
	Military	100	100	38

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots .-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Temperature with	Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Curr		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State . -0.5 V to +7.0 V	Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
DC Input Voltage -3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current, into Outpus (Low) 10 mA	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{gathered} 74 \mathrm{~S} 189, \\ 27 \mathrm{~S} 03,27 \mathrm{~S} 07 \end{gathered}$		27LS03		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I			0.45			V
		$\mathrm{V}_{\mathrm{CC}}=$ Min., I					0.45	V
V_{IH}	Input HIGH Voltage			2.0	V_{cc}	2.0	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Leakage Current	GND $\leq \mathrm{V}_{1} \leq$		-10	$+10$	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage							
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq$		-40	+ 40	-40	$+40$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., V			-90		-90	mA
Ios	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		90			mA
			Mil		100		38	mA

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\mathbf{I N}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. The CMOS process does not provide a clamp diode. However these devices are insensitive to - 3 V DC input levels and -5 V undershoot pulses of less than 5 ns (measured at 50% points).
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to:

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	$\begin{aligned} & \text { 27S03A } \\ & \text { 27S07A } \end{aligned}$		$\begin{aligned} & \text { 27S03 } \\ & 27 \mathrm{~S} 07 \end{aligned}$		74S189		27LS03		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	25		35		35		65		ns
t_{AA}	Address to Data Valid ${ }^{[7]}$		25		35		35		65	ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid ${ }^{[7]}$		15		17		22		35	ns
$t_{\text {HZCS }}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[8,9,10]}$		15		20		17		35	ns
WRITE CYCLE ${ }^{[6,11,12]}$										
t_{wc}	Write Cycle Time	25		35		35		65		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		0		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\text { CS Set-Up to Write Start }}$					0				ns
$\mathrm{t}_{\mathrm{HCS}}$	$\overline{\mathrm{CS}}$ Hold from Write End					0				ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	20		25		20		55		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		20		55		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[8,9,10]}$		20		25		20		35	ns
$\mathrm{t}_{\text {awe }}$	$\overline{\text { WE }}$ HIGH to Output Valid ${ }^{[7]}$		20		35		30		35	ns

Notes:

6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the spcified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. $t_{A A}, t_{A C S}$, and $t_{A W E}$ are tested with $C_{L}=30 \mathrm{pF}$ as in part (a) of AC Test Loads. Timing is referenced to 1.5 V on the inputs and outputs.
8. Transition is measured at steady-state HIGH level -500 mV or steadystate LOW level +500 mV on the output from 1.5 V level on the input.
9. $t_{\text {HZCS }}$ and $\mathrm{t}_{\text {HZWE }}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads.
10. At any given temperature and voltage condition, $\mathbf{t}_{\mathrm{HZCS}}$ is less than tlzcs for any given device.
11. Output is preconditioned to data in (inverted or non-inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)
12. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminates the write.

Switching Waveforms

Read Cycle

Write Cycle ${ }^{[13,14]}$

Notes:
13. All measurements referenced to 1.5 V .
14. Timing diagram represents one solution which results in optimum cycle time. Timing may be changed in various applications as long as the worst case limits are not violate.

CY74S189, CY27LS03 CY27S03, CY27S07

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A_{0}	AXO	1
$\mathrm{~A}_{1}$	AX 1	15
$\mathrm{~A}_{2}$	AY0	14
$\mathrm{~A}_{3}$	AY1	13

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY27S03APC	P1	Commercial
	CY27S03ADC	D2	
	CY27S03ALMB	L61	Military
	CY27S03ADMB	D2	
35	CY27S03PC	P1	Commercial
	CY27S03DC	D2	
	CY27S03LC	L61	
	CY27S03LMB	L61	Military
	CY27S03DMB	D2	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY27S07APC	P1	Commercial
	CY27S07ADC	D2	
	CY27S07ALMB	L61	Military
	CY27S07ADMB	D2	
35	CY27S07PC	P1	Commercial
	CY27S07DC	D2	
	CY27S07LC	L61	
	CY27S07LMB	L61	Military
	CY27S07DMB	D2	

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY74S189PC	P1	Commercial
	CY74S189DC	D2	

Speed (ns)	Ordering Code	Package Type	Operating Range
65	CY27LS03LMB	L61	Military
	CY27LS03DMB	D2	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{HH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HCS}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWE}}$	$7,8,9,10,11$

Document \#: 38-00041-C

Features

- 256×4 static RAM for control stores in high-speed computers
- Processed with high-speed CMOS for optimum speed/power
- Separate inputs and outputs
- Low power
- Standard power:

660 mW (commercial) 715 mW (military

- Low power:

440 mW (commercial) 495 mW (military)

- 5-volt power supply $\mathbf{\pm 1 0 \%}$ tolerance both commercial and military
- Capable of withstanding greater than 2001V static discharge

Functional Description

The CY93422 is a high-performance CMOS static RAM organized as 256 by 4 bits. Easy memory expansion is provided by an active LOW chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ input, an active HIGH chip select two $\left(\mathrm{CS}_{2}\right)$ input, and three-state outputs.
An active LOW write enable input ($\overline{\mathrm{WE} \text {) }}$ controls the writing/reading operation of the memory. When the chip select one ($\overline{\mathrm{CS}}_{1}$) and write enable ($\overline{\mathrm{WE}}$) inputs are LOW and the chip select two $\left(\mathrm{CS}_{2}\right)$ input is HIGH, the information on the four data inputs $\left(\mathrm{D}_{0}\right.$ to $\left.\mathrm{D}_{3}\right)$ is written into the addressed memory word and the output circuitry is preconditioned so that the correct data is present at the outputs when the
write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch."
Reading is performed with the chip select one ($\overline{\mathrm{CS}}_{1}$) input LOW, the chip select two input $\left(\mathrm{CS}_{2}\right)$ and write enable (WE) inputs HIGH, and the output enable input ($\overline{\mathrm{OE}})$ LOW. The information stored in the addressed word is read out on the four noninverting outputs (O_{0} to O_{3}).
The outputs of the memory go to an active high-impedance state whenever chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ is HIGH, chip select two $\left(\mathrm{CS}_{2}\right)$ is LOW, output enable ($\overline{\mathrm{OE} \text {) is }}$ HIGH, or during the writing operation when write enable ($\overline{\mathrm{WE}}$) is LOW.

Logic Block Diagram

Pin Configuration

422A-2

Selection Guide (For higher performance and lower power, refer to the CY7C122 data sheet.)

		93422 A	93LA22A	93422	93LA22
Maximum Access Time (ns)	Commercial	35	45	45	60
	Military	45	55	60	75
Maximum Operating Current (mA)	Commercial	120	80	120	80
	Military	130	90	130	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

(Pin 22 to Pin 8)
DC Voltage Applied to Outputs
in High Output State $\ldots5 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{CC}} \mathrm{Max}$.

Output Current into Outputs (Low) 20 mA
DC Input Current $\ldots \ldots \ldots$.

Static Discharge Voltage
$>2001 \mathrm{~V}$
hod 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

| Range | Ambient
 Temperature | V $_{\text {cC }}$ |
| :---: | :---: | :---: |$|$| $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ | $5 \mathrm{~V} \pm 10 \%$ |
| :---: | :---: |
| Commercial | Military ${ }^{[1]}$ |
| | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{array}{r} \hline 93422 \\ 93422 \mathrm{~A} \end{array}$		$\begin{gathered} 93 \mathrm{LA22} \\ 93 \mathrm{LA22A} \\ \hline \end{gathered}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{Cc}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=$	5.2 mA	2.4		2.4		V
V_{OL}	Output LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=$	0 mA		0.45		0.45	V
V_{IH}	Input HIGH Level ${ }^{[3]}$	Guaranteed Input L Voltage for all Inpu	ical HIGH	2.1		2.1		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level ${ }^{[3]}$	Guaranteed Input L Voltage for all Inpu	ical LOW		0.8		0.8	V
I_{IL}	Input LOW Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}$	0.4V		-300		-300	$\mu \mathrm{A}$
I_{IH}	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}$	4.5 V		40		40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}$	0.0 V		-90		-90	mA
I_{CC}	Power Supply Current	All Inputs = GND	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		110		70	mA
		$V_{\text {cc }}=$ Max.	$\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$		110		70	
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		120		80	
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		130		90	
V_{CL}	Input Clamp Voltage			See Note 5		See Note 5		
$\mathrm{I}_{\text {CEX }}$	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$			50		50	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=$ Max.		-50		-50		

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

Function Table ${ }^{[7]}$

Inputs					Outputs \mathbf{O}_{n}	Mode
CS_{2}	$\overline{\mathbf{C S}}_{1}$	$\overline{\text { WE }}$	$\overline{\mathrm{OE}}$	D_{n}		
L	X	X	X	X	High Z	Not Selected
X	H	X	X	X	High Z	Not Selected
H	L	H	H	X	High Z	Output Disable
H	L	H	L	X	Selected Data	Read Data
H	L	L	X	L	High Z	Write "0'
H	L	L	X	H	High Z	Write "1'

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

AC Test Loads and Waveforms

ALL INPUT PULSES

Commercial Switching Characteristics Over the Operating Range ${ }^{[8,9]}$

Parameters	Description	93422A		93LA22A		93422		931422		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\begin{array}{\|l} \hline \mathrm{t}_{\mathrm{PLH}(\mathrm{~A})} \mathrm{t}_{\text {PHL }(\mathrm{A})} \end{array}$	Delay from Address to Output (Address Access Time)		35		45		45		60	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{t} \mathrm{tzH}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \\ & \mathrm{t}_{\mathrm{PZH}}\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right) \end{aligned}$	Delay from Chip Select to Active Output and Correct Data		25		30		30		35	ns
$\begin{array}{\|l} \begin{array}{l} \mathrm{t}_{\text {pZH }}(\overline{\mathrm{WE}}) \\ \mathrm{t}_{\mathrm{pZL}}(\overline{\mathrm{WE}}) \end{array} \end{array}$	Delay from Write Enable to Active Output and Correct Data (Write Recovery)		25		40		40		45	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tzH}}(\overline{\mathrm{OE}}) \\ & \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{OE}}) \end{aligned}$	Delay from Output Enable to Active Output and Correct Data		25		30		30		35	ns
t_{S} (A)	Set-Up Time Address (Prior to Initiation of Write)	5		5		10		5		ns
t_{h} (A)	Hold Time Address (After Terminiation of Write)	5		5		5		5		ns
$\mathrm{t}_{5}(\mathrm{DI})$	Set-Up Time Data Input (Prior to Initiation of Write)	5		5		5		5		ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{DI})$	Hold Time Data Input (After Terminitation of Write)	5		5		5		5		ns
$\mathrm{ts}_{\text {S }}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$	Set-Up Time Chip Select (Prior to Initiation of Write)	5		5		5		5		ns
$\mathrm{t}_{\mathrm{h}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$	Hold Time Chip Select (After Termination of Write)	5		5		5		5		ns
$\mathrm{t}_{\mathrm{pw}}(\overline{\mathrm{WE}})$	Minimum Write Enable Pulse Width to Insure Write	20		40		30		45		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tHZ}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \\ & \mathrm{t}_{\mathrm{tLZ}}\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right) \end{aligned}$	Delay from Chip Select to Inactive Output (High Z)		30		40		30		45	ns
$\begin{array}{\|l} \hline \mathrm{t}_{\mathrm{pHZ}}(\overline{\mathrm{WE}}) \\ \mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{WE}}) \\ \hline \end{array}$	Delay from Write Enable to Inactive Output (High Z)		30		40		30		45	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pHZ}}(\overline{\mathrm{OE}}) \\ & \mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{OE}}) \end{aligned}$	Delay from Output Enable to Inactive Output (High Z)		30		40		30		45	ns

Military Switching Characteristics Over the Operating Range ${ }^{[8,9]}$

Parameters	Description	93422A		93L422A		93422		93 L 422		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\begin{array}{\|l} \hline t_{\text {PLH }(A)}[10] \\ \mathrm{t}_{\mathrm{PHL}(\mathbf{A})} \end{array}$	Delay from Address to Output (Address Access Time)		45		55		60		75	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \\ & \mathrm{t}_{\mathrm{PzL}}\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right) \end{aligned}$	Delay from Chip Select to Active Output and Correct Data		35		40		45		45	ns
$\begin{aligned} & \operatorname{tp}_{\text {pZH }}(\overline{\mathrm{WE}}) \\ & \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}}) \end{aligned}$	Delay from Write Enable to Active Output and Correct Data (Write Recovery)		40		45		50		50	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{t} \text { PZH }}(\overline{\mathrm{OE}}) \\ & \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{OE}}) \end{aligned}$	Delay from Output Enable to Active Output and Correct Data		35		40		45		45	ns
t_{s} (A)	Set-Up Time Address (Prior to Initiation of Write)	5		10		10		10		ns
t_{H} (A)	Hold Time Address (After Terminiation of Write)	5		5		5		10		ns
t_{S} (DI)	Set-Up Time Data Input (Prior to Initiation of Write)	5		5		5		5		ns
t_{h} (DI)	Hold Time Data Input (After Terminitation of Write)	5		5		5		5		ns
$\mathrm{t}_{5}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$	Set-Up Time Chip Select (Prior to Initiation of Write)	5		5		5		5		ns
$\mathrm{t}_{\mathrm{h}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$	Hold Time Chip Select (After Termination of Write)	5		5		5		10		ns
$\mathrm{t}_{\mathrm{ph}}(\overline{\mathrm{WE}})$	Minimum Write Enable Pulse Width to Insure Write	35		40		40		45		ns
$\begin{array}{\|l} \mathrm{t}_{\text {PHZ }}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \\ \mathrm{t}_{\mathrm{PLZ}}\left(\mathrm{CSS}_{1}, \mathrm{CS}_{2}\right) \\ \hline \end{array}$	Delay from Chip Select to Inactive Output (High Z)		35		40		45		45	ns
	Delay from Write Enable to Inactive Output (High Z)		40		40		45		45	ns
$\begin{array}{\|l} \hline \mathrm{t}_{\mathrm{phz}}(\overline{\mathrm{OE}}) \\ \mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{OE}}) \\ \hline \end{array}$	Delay from Output Enable to Inactive Output (High Z)		35		40		45		45	ns

Notes:

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. The CMOS process does not provide a clamp diode. However, the CY93422 is insensitive to -3 V DC input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
6. Tested initially and after any design or process changes that may affect these parameters.
7. $\mathbf{H}=$ High Voltage Level, $L=$ Low Voltage Level, $X=$ Don't Care. High Z implies outputs are disabled or off. This condition is defined as a high-impedance state for the CY93422.
8. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ and $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise noted.
9. $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PZH}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$, and $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{OE}})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, and with both the input and output timing refer-
enced to 1.5 V . $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PZL}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$, and $\mathrm{t}_{\text {PZL }}(\overline{\mathrm{OE}})$ are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, and with both the input and output timing referenced to $1.5 \mathrm{~V} \cdot \mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{WE}}) . \mathrm{t}_{\mathrm{PHZ}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$, and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{OE}})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}<5 \mathrm{pF}$, and are measured between the 1.5 V level on the input to the $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ level on the output. $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PLZ}}\left(\overline{\mathrm{CS}_{1}}, \mathrm{CS}_{2}\right)$, and $\mathrm{t}_{\mathrm{PLZ}}(\mathrm{OE})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}<5 \mathrm{pF}$, and are measured between the 1.5 V level on the input and the $\nabla_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.
10. $t_{\text {PLH(A) }}$ and $\mathrm{t}_{\mathrm{PHL}(\mathrm{A})}$ are tested with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
11. Switching delays from the address, output enable, and chip select inputs to the data output. The CY93422 disabled output in the "OFF" condition is represented by a single center line.

Switching Waveforms

Read Cycle ${ }^{[11]}$

Write Cycle (with $\overline{\mathrm{OE}}=$ LOW)

[^25]Ordering Information

Speed (ns)	Ordering Code		Package Type	Operating Range
	Standard Power	Low Power		
35	CY93422APC		P7	Commercial
	CY93422ADC		D8	
45	CY93422PC	CY93LA22APC	P7	Commercial
	CY93422DC	CY93L422ADC	D8	
	CY93422ADMB		D8	Military
55		CY93L422ADMB	D8	Military
		CY93LA22ALMB	L54	
60		CY93L422PC	P7	Commercial
		CY93L422DC	D8	
	CY93422DMB		D8	Military
75		CY93L422DMB	D8	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IL}	$1,2,3$
I_{LH}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{CEX}}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\mathrm{PLH}(\mathrm{A})}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PHL}(\mathrm{A})}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PZH}}\left(\overline{\mathrm{CS}_{1}}, \mathrm{CS}_{2}\right)$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PZL}}\left(\overline{\mathrm{CS}}, \mathrm{CS}_{2}\right)$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{WE}})$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{OE}})$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{OE}})$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{S}}(\mathrm{A})$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{h}}(\mathrm{A})$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{s}}(\mathrm{DI})$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{h}}(\overline{\mathrm{DI})}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{S}}\left(\overline{\mathrm{CS}} \overline{1}_{1}, \mathrm{CS}_{2}\right)$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{h}}\left(\overline{\mathrm{CS}}, \mathrm{CS}_{2}\right)$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{pw}}(\overline{\mathrm{WE}})$	$7,8,9,10,11$

Document \#: 38-00022-C

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs - Access time of $\mathbf{2 5} \mathbf{~ n s}$
- Low active power
- 2.6W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
— Max. height of 0.3 in.
- Small PCB footprint
-0.62 sq. in.

Functional Description

The CYM 1240 is a very high performance 1-megabit static RAM module organized as 256 K words by 4 bits. The module is constructed using four $256 \mathrm{~K} \times 1$ static RAMs in leadless chip carriers mounted onto a ceramic substrate with pins. It is socketcomptaible with monolithic $256 \mathrm{~K} \times 4$ SRAMs.
Writing to the memory module is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE} \text {) inputs are both LOW. Data }}$ on the four input/output pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through
$\mathrm{I} / \mathrm{O}_{3}$) of the device is written into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) LOW while $\overline{\mathrm{WE}}$ remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropkiate data input/output pins.
The data input/outparf pins remain in a high-impedance state when $\overline{\mathrm{CS}}$ is HIGH or WE is LOH.

Selection Guide

		1240-25	1240-30	1240-35	1240-45
Maximum Access Time (ns)		25	30	35	45
Maximum Operating Current (mA)	Commercial	480	480	480	480
	Military	880	480	480	480
Maximum Standby Current (mA)	Commercial	160	160	160	160
	Military	16	160	160	160

[^26]
CYM1420

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 20 ns
- 32-pin, 0.6-inch-wide DIP package
- Low active power - 1.2W (max.)
- Hermetic or plastic SMD technology
- TTL-compatible inputs and outputs
- JEDEC-compatible pinout
- Commercial and military temperature ranges

Functional Description

The CYM1420 is a very high performance 1-megabit static RAM module organized as 128 K words by 8 bits. The module is constructed using four $32 \mathrm{~K} \times 8$ static RAMs mounted onto a substrate. A decoder is used to interpret the higher-order addresses A_{15} and A_{16} and to select one of the four RAMs.
Writing to the memory module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input/output pins ($/ / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$)
is written into the memory locationspecified on the address pins ($\mathrm{A}_{0}-\mathrm{A}_{16}$).
Reading the device is accomplished by taking chip select $(\overline{\mathrm{CS}})$ and output enable (OE) LOW while WE remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the eight input/output pins.
The input/output pins cemain in a highimpedance state u(ress the module is selected, outputs are trabled, and write enable (WE is NLGA)

Logic Block Diagram

Selection Guide

		1420-20	1420-25	1420-30	1420-35	1420-45	1420-55
Maximum Access Time (ns)		20	25	30	35	45	55
Maximum Operating Current (mA)	Commercial	210	210	210	210	210	210
	Military			210	210	210	210
Maximum Standby Current (mA)	Commercial	140	140	140	140	140	140
	Military			140	140	140	140

[^27]
Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 35 ns
- Low active power
- 1.1W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of 0.65 in .
- Small PCB footprint -0.8 sq . in.

Functional Description

The CYM1422 is a high-performance 1-megabit static RAM module organized as 128 K words by 8 bits. The module is constructed using four $32 \mathrm{~K} \times 8$ static RAMs in SOICs mounted onto a single-sided multilayer epoxy laminate board with pins. A decoder is used to interpret the higher-order addresses $\left(\mathrm{A}_{15}\right.$ and $\left.\mathrm{A}_{16}\right)$ and to select one of the four RAMs.
Writing to the memory module is accomplished when the chip select ($\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through
$\mathrm{I} / \mathrm{O}_{7}$) is written into the memory location specified on the address pins (A_{0} through A_{16}).
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable ($\overline{\mathrm{OE}})$ LOW while WE remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the eight data input/output pins
The input/output 8 R8) emain in a highimpedance statedryess the module is selected, outputs are enabled, and write enable (MF NSMGH.

Selection Guide

	$\mathbf{1 4 2 2 - 3 5}$	$\mathbf{1 4 2 2 - 4 5}$	$\mathbf{1 4 2 2 - 5 5}$
Maximum Access Time (ns)	35	45	55
Maximum Operating Current (mA)	200	200	200
Maximum Standby Current (mA)	140	140	140

CYM1423

$128 \mathrm{~K} \times 8$ Static RAM Module

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{4 5} \mathbf{n s}$
- 32-pin, 0.6-inch-wide DIP package
- JEDEC-compatible pinout
- Low active power
- 1.2W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Commercial temperature range
- Small PCB footprint
- 1.1 sq. in.

Functional Description

The CYM1423 is a high-performance 1-megabit static RAM module organized as 128 K words by 8 bits. This module is constructed using four $64 \mathrm{~K} \times 4$ static RAMs in SOJ packages mounted onto an epoxy laminate board with pins. A decoder is used to interpret the higher-order address and select two of the four RAMs.

Writing to the module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) of the device is written into the
memory location specified on the address pins (A_{0} through A_{16}). Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable ($\overline{\mathrm{OE}}) \mathrm{LOW}$, while write enable ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} thoy A_{16}) will appear on the eight inputtountey pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$).
The inputrougut pins remain in a highimpetamerstate unless the module is seleeted dutputs are enabled, and write enable (WE) is HIGH.

Selectionguide

	1423PD-45	1423PD-55	1423PD-70
Maximum Access Time (ns)	45	55	70
Maximum Operating Current (mA)	210	210	210
Maximum Standby Current (mA)	80	80	80

Features

- High-density 2-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{2 5} \mathbf{n s}$
- Low active power
- 5.3W (max.)
- SMD technology
- Separate Data I/O
- 60-pin ZIP package
- TTL-compatible inputs and outputs
- Low profile
- Max. height of 0.5 in.
- Small PCB footprint
$-1.14 \mathrm{sq} . \mathrm{in}$.

Functional Description

The CYM1441 is a very high performance 2-megabit static RAM module organized as 256 K words by 8 bits. The module is constructed using eight $256 \mathrm{~K} \times 1$ static RAMs in SOJ packages mounted onto an epoxy laminate substrate with pins. Two chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{L}}\right.$ and $\left.\overline{\mathrm{CS}}_{\mathrm{U}}\right)$ are used to independently enable the upper and lower 4 bits of the data word.
Writing to the memory module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input pins $\left(\mathrm{DI}_{0}\right.$ through $\left.\mathrm{DI}_{7}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{17}).

Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) LOW while output enable $(\overline{\mathrm{OE}})$ and write enable $\overline{\mathrm{WE}}$ remain inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropriate data output pins (DO_{0} through DO_{7}).
The data output pins remain in a highimpedance state unless the module is selected, outputs are eqraghled, and write enable (WE) is Hy
Two pins (PD and $\mathrm{P}_{\mathrm{P}} \mathrm{D}_{1}$) are used to identify modyke memory density in applications we.ere alternate versions of the JE-DEC-standird modules can be interchanged.

1441-1
Pin Configuration
ZIP Top View
(OPEN)

ZIP Top View

Selection Guide

	$\mathbf{1 4 4 1 - 2 5}$	$\mathbf{1 4 4 1 - 3 5}$	$\mathbf{1 4 4 1 - 4 5}$
Maximum Access Time (ns)	25	35	45
Maximum Operating Current (mA)	960	960	960
Maximum Standby Current (mA)	320	320	320

512K x 8 Static RAM Module

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 35 ns
- Low active power
- 3.4W (max.)
- Double-sided SMD technology
- TTL-compatible inputs and outputs
- Low profile version (PF)
- Max. height of . 345 in.
- Small footprint SIP version (PS)
- PCB layout area of 1.2 sq . in.

Functional Description

The CYM1460 is a high-performance 4-megabit static RAM module organized as 512 K words by 8 bits. This module is constructed from sixteen $32 \mathrm{~K} \times 8$ SRAMs in plastic surface mount packages on an epoxy laminate board with pins. Two choices of pins are available for vertical (PS) or horizontal (PF) through-hole mounting. On-board decoding selects one of the sixteen SRAMs from the highorder address lines, keeping the remaining fifteen devices in standby mode for minimum power consumption.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of
the memory. When $\overline{\text { MS }}$ and $\overline{\text { WE }}$ inputs are both LOW, data on the eight data input/output pins is written into the memory location specified on the address pins. Reading the device is accomplished by selecting the device and enabling the outputs, MS and $\overline{\mathrm{OE}}$, active LOW, while $\overline{\mathrm{WE}}$ remains inactive or HIGH. Under these conditions, the content of the location addressed by the information on the address pins is present on the eight data input/output pins. $\}$
The input/outpyt 1 Pa u main in a highimpedance state urtess the module is selected, outofus are enabled, and write enable (V)

Selection Guide

	1460PS-35 1460PF-35	1460PS-45 $\mathbf{1 4 6 0 P F - 4 5}$	1460PS-55 1460PF-55	1460PS-70 1460PF-70
Maximum Access Time (ns)	35	45	55	70
Maximum Operating Current (mA)	625	625	625	625
Maximum Standby Current (mA)	560	560	560	560

CYM1461

512K x 8 Static RAM Module

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 70 ns
- Low active power
-825 mW (max.)
- Double-sided SMD technology
- TTL-compatible inputs and outputs
- Low profile version (PF)
- Max. height of . 315 in.
- Small footprint SIP version (PS)
- PCB layout area of $\mathbf{1 . 5} \mathbf{~ s q}$. in.
- 2 V data retention (L version)

Functional Description

The CYM1461 is a high-performance 4-megabit static RAM module organized as 512 K words by 8 bits. This module is constructed from sixteen $32 \mathrm{~K} \times 8$ SRAMs in plastic surface mount packages on an epoxy laminate board with pins. Two choices of pins are available for vertical (PS) or horizontal (PF) through-hole mounting. On-board decoding selects one of the sixteen SRAMs from the highorder address lines keeping the remaining fifteen devices in standby mode for minimum power consumption.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of
the memory. When $\overline{\mathrm{MS}}$ and $\overline{\mathrm{WE}}$ inputs are both LOW, data on the eight data input/output pins is written into the memory location specified on the address pins. Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\mathrm{MS}}$ and $\overline{\mathrm{OE}}$ active LOW, while WE remains inactive or HIGH. Under these conditions, the content of the location addressed by the information on the address pins is present on the eight data input/output pins. ₹
The input/output 1 多多 rèmain in a highimpedance stateyutess the module is selected, outputs are enabled, and write enable (WED NIGH.

Logic Block Diagram

Selection Guide

	1461PS-70 $\mathbf{1 4 6 1 P F - 7 0}$	$\mathbf{1 4 6 1 P S}-85$ $\mathbf{1 4 6 1 P F}$	$\mathbf{1 4 6 1 P S}$ $\mathbf{1 4 6 1 P F}$
Maximum Access Time (ns)	70	85	100
Maximum Operating Current (mA)	150	150	150
Maximum Standby Current (mA)	50	50	50

CYM1464

512K x 8 SRAM Module

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{3 5}$ ns
- Low active power
-1.65 W (max.)
- JEDEC-compatible pinout
- 32-pin, 0.6-inch-wide DIP package
- TTL-compatible inputs and outputs
- Low profile
- Max. height of . 34 inches
- Small PCB footprint -0.98 sq. in.

Functional Description

The CYM1464 is a high-performance 4 -megabit static RAM module organized as 512 K words by 8 bits. This module is constructed using four $256 \mathrm{~K} \times 4$ static RAMs in SOJ packages mounted on an epoxy laminate substrate with pins. A decoder is used to interpret the higher-order address $\left(\mathrm{A}_{18}\right)$ and to select one of the four RAMs.
Writing to the module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable (WE) inputs are both LOW. Data on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through I / O_{7}) of the device is written into the memory
location specified on the address pins (A_{0} through A_{18}). Reading the device is accomplished by taking chip select and output enable ($\overline{\mathrm{OE}}$) LOW, while write enable (WE) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{18}) will appear on the eight appropriate data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$). $\left.\leqslant\right\}$
The input/output pors xemain in a highimpedance state unless the module is selected, outputs afegnabled, and write enable (WE) IECHOH.

Selection Guide

	$\mathbf{1 4 6 4 - 3 5}$	$\mathbf{1 4 6 4 - 4 5}$	$\mathbf{1 4 6 4 - 5 5}$	$\mathbf{1 4 6 4 - 7 0}$
Maximum Access Time (ns)	35	45	55	70
Maximum Operating Current (mA)	300	300	300	300
Maximum Standby Current (mA)	240	240	240	240

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 85 ns
- Low active power
-605 mW (max.)
- JEDEC-compatible pinout
- 32-pin, 0.6-inch-wide DIP package
- TTL-compatible inputs and outputs
- Low profile
- Max. height of .23 inches
- Small PCB footprint
-0.98 sq. in.

Functional Description

The CYM 1465 is a high-performance 4 -megabit static RAM module organized as 512 K words by 8 bits. This module is constructed using four $128 \mathrm{~K} \times 8$ RAMs mounted on a substrate with pins. A decoder is used to interpret the higher-order addresses (A_{17} and A_{18}) and to select one of the four RAMs. Two packaging options are offered: VSOP packages on FR4 substrate for commercial temperature range operation, and SOIC packages on ceramic substrate for industrial temperature range operation.
Writing to the module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable
($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input/output pins (I / O_{0} through $\mathrm{I} / \mathrm{O}_{7}$) of the device is written into the memory location specified on the address pins (A_{0} through A_{18}). Reading the device is accomplished by taking chip select and output enable(OE) LOW while write enable remains inactive or HIGH. Under these conditions, the contents of the memory location spesified on the address pins (A_{0} through Aton eight appropriate aras input/output pins (I/O) $)_{0}$ through (IVO)
The input ontive pins remain in a highimpedance satay unless the module is selected outpyts are enabled, and write enable is KI GH .

Logic Block Diagram

Selection Guide

	1465PD-85	1465PD-100	1465PD-120	1465PD-150
Maximum Access Time (ns)	85	100	120	150
Maximum Operating Current (mA)	110	110	110	110
Maximum Standby Current (mA)	12	12	12	12

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{3 5} \mathbf{n s}$
- Low active power
- 1.9W (max.)
- JEDEC-compatible pinout
- 32-pin, 0.6-inch-wide DIP package
- TTL-compatible inputs and outputs

Functional Description

The CYM1466 is a high-performance 4-megabit static RAM module organized as 512 K words by 8 bits. This module is constructed using four $128 \mathrm{~K} \times 8$ RAMs in ceramic leadless chip carrier packages mounted on a ceramic substrate. A decoder is used to interpret the higher-order addresses $\left(\mathrm{A}_{17}\right.$ and $\left.\mathrm{A}_{18}\right)$ and to select one of the four RAMs.
Writing to the module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable (WE) inputs are both LOW. Data on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through I/

$$
\mathrm{O}_{7} \text {) of the device is written into the memory }
$$

location specified on the address pins (A_{0} through A_{18}). Reading the device is accomplished by taking chip select and output enable $(\overline{\mathrm{OE}})$ LOW while write enable remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{18}) will appear on the eight appropriate data input/output pins (I/O) through $\mathrm{I} / \mathrm{O}_{7}$).
The input/output ping semain in a highimpedance state miss the module is selected, outputs are anabled, and write enable is H ©

Logic Block Diagram

Pin Configuration

1466-2

Selection Guide

		$1466-35$	$\mathbf{1 4 6 6 - 4 5}$	$\mathbf{1 4 6 6 - 5 5}$	$\mathbf{1 4 6 6 - 7 0}$	$\mathbf{1 4 6 6 - 8 5}$	$\mathbf{1 4 6 6 - 1 0 0}$	$\mathbf{1 4 6 6 - 1 2 0}$
Maximum Access Time (ns)		35	45	55	70	85	100	120
Maximum Operating Current (mA)	Com'l	350	350	184	184	184	84	84
	Mil	350	350	184	184	184	84	84
Maximum Standby Current (mA)	Com'l	240	240	70	70	70	12	12
	Mil	204	240	70	70	70	12	12

CYM1471
PRELIMINARY
CYM1481

Features

- High-density 8-/16-megabit SRAM modules
- High-speed CMOS SRAMs
- Access time of 85 ns
- Low active power
-605 mW (max.), 2M x 8
- Double-sided SMD technology
- TTL-compatible inputs and outputs
- Very low profile version (PF)
- Max. height of 0.205 in .
- Small footprint SIP version (PS)
- PCB layout area of $\mathbf{0 . 7 2} \mathbf{s q}$. in.
- 2 V data retention (L version)
- Compatible with CYM1460/CYM1461

Functional Description

The CYM1471 and CYM1481 are highperformance 8 -megabit and 16 -megabit static RAM modules organized as 1024 K words (1471) or 2048 K words (1481) by 8 bits. These modules are constructed from eight (1471) or sixteen (1481) $128 \mathrm{~K} \times 8$ SRAMs in plastic surface-mount packages on an epoxy laminate board with pins. Two choices of pins are available for vertical (PS) or horizontal (PF) through-hole mounting. On-board decoding selects one of the SRAMs from the high-order address lines, keeping the remaining devices in standby mode for minimum power consumption.

1024K x 8 SRAM Module 2048K x 8 SRAM Module

An active LOW write enable signal ($\overline{\mathrm{WE}})$
controls the writing/reading operation of

Selection Guide

	CYM1471			CYM1481		
Maximum Access Time (ns)	85	100	120	85	100	120
Maximum Operating Current (mA)	95	95	95	110	110	110
Maximum Standby Current (mA)	16	16	16	32	32	32

Features

- High-density 2-megabit SRAM module with parity
- High-speed CMOS SRAMs
- Access time of $\mathbf{3 0} \mathbf{n s}$
- Buffered address and control inputs
- Low active power
- 6.2W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of .52 in.
- Small PCB footprint
-1.6 sq . in.

Functional Description

The CYM1540 is a very high performance 2-megabit static RAM module organized as 256 K words by 9 bits. This module is constructed using nine $256 \mathrm{~K} \times 1$ static RAMs in SOJ packages mounted on an epoxy laminate board with pins. Input buffers are provided on the address and control lines to reduce input capacitance and loading.
Writing to the module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE} \text {) inputs are both LOW. Data on }}$ the data input pins $\left(\mathrm{DI}_{0}\right.$ through $\left.\mathrm{DI}_{8}\right)$ of
the device is written into the memory location specified on the address pins (A_{0} through A_{17}). Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{17}) wil (eprear on the appropriate data output f ns (DO_{0} through DO_{8}). The dataporeut pins remain in a highimpedancestate when chip select $(\overline{\mathrm{CS}})$ is $\mathrm{HI} H$ On when write enable ($\overline{\mathrm{WE}}$) is LOW

Logic Block Diagram

1540-1

Pin Configuration

Selection Guide

	1540PF-30 1540PS-30	1540PF-35 1540PS-35	1540PF-45 1540PS-45
Maximum Access Time (ns)	30	35	45
Maximum Operating Current (mA)	1125	1125	1125
Maximum Standby Current (mA)	350	350	350

Features

- High-density 8-megabit SRAM module plus parity
- High-speed CMOS SRAMs
- Access time of 30 ns
- Buffered address and control inputs
- Low active power
- 6.2W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of 0.53 in .
- Small PCB footprint
-1.5 sq. in.

Functional Description

The CYM1560 is a very high performance 8 -megabit static RAM module organized as $1,024 \mathrm{~K}$ words by 9 bits. This module is constructed using nine $1,024 \mathrm{~K} \times 1$ static RAMs in SOJ packages mounted on an epoxy laminate board with pins. Input buffers are provided on the address and control lines to reduce input capacitance and loading.
Writing to the module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the data input pins (DI_{0} through DI_{8}) of the device is written into the memory location
specified on the address pins (A_{0} through A_{19}). Reading the device is accomplished by taking chip select LOW while write enable remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropriate data output pins.
The data output pins seirain in a high-impedance state wherfetop select is HIGH or when write enathentow.

Logic Block Diagram

Selection Guide

	CYM1560-30	CYM1560-35	CYM1560-45
Maximum Access Time (ns)	30	35	45
Maximum Operating Current (mA)	1125	1125	1125
Maximum Standby Current (mA)	350	350	350

$16 \mathrm{~K} \times 16$ Static RAM
 Module

Features

－High－density 256K－bit SRAM module
－High－speed CMOS SRAMs
－Access time of 12 ns
－Low active power
－3W（max．）
－Hermetic SMD technology
－TTL－compatible inputs and outputs
－Low profile
— Max．height of $\mathbf{. 2 1 5} \mathrm{in}$.
－Small PCB footprint
-1.2 sq．in．
－JEDEC－deined pinout
－Independent byte select
－2V data retention（L version）

Functional Description

The CYM1610 is a high－performance 256－kbit static RAM module organized as 16 K words by 16 bits．This module is constructed from four $16 \mathrm{~K} \times 4$ SRAMs in leadless chip carriers mounted on a ceramic substrate with pins．
Selecting the device is achieved by a chip select input pin as well as two byte select pins $(\overline{\mathrm{UB}}, \overline{\mathrm{LB}})$ for independently selecting upper or lower byte for read or write operations．
Writing to the memory module is accom－ plished when the chip select $(\overline{\mathrm{CS}})$ ，byte select（ $\overline{\mathrm{UB}}, \overline{\mathrm{LB}}$ ）and write enable（ $\overline{\mathrm{WE}}$ ） inputs are LOW．Data on the input／output pins of the selected byte（ $\mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$ ，
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$ ）is written into the memory location specified on the address pins（ A_{0} through A_{13} ）．
Reading the device is accomplished by taking chip select（ $\overline{\mathrm{CS}}$ ），byte select（ $\overline{\mathrm{UB}}$ ， $\overline{\mathrm{LB}})$ and output enable（ $\overline{\mathrm{OE}}$ ）LOW，while $\overline{\mathrm{WE}}$ remains inactive or HIGH．Under these conditions，the contents of the memory location specified on the address pins will appear on the appropriate data input／output pins．
The input／output pins remain in a high－ impedance state wherehip select（ $\overline{\mathrm{CS}}$ ）， byte select（ $\overline{(V B}, \overline{\mathrm{B}}$ ）or output enable $(\overline{\mathrm{OE}})$ is HuGH

Logic Block Diagram

Pin Configuration

	$\underset{\text { Top View }}{\text { DIP }}$	
	$1 \sim 40$	V Vcc
CS ${ }^{\text {C }}$	239	向 WE
$1 / 0_{15} \square^{3}$	$3 \quad 38$	曰 UB
$1 / 0_{14}{ }^{4}$	$4 \quad 37$	日 $\overline{\text { LB }}$
$1 / O_{13} \square^{5}$	$5 \quad 36$	民 NC
$1 / 0_{12} \square^{6}$	$6 \quad 35$	民 A_{13}
$1 / O_{11} \mathrm{C}^{7}$	$7 \quad 34$	民 A_{12}
$1 / 0_{10} \square^{8}$	$8 \quad 33$	曰 A_{11}
$1 / 0_{9} \mathrm{~B}^{9}$	$9 \quad 32$	ص A_{10}
$1 / \mathrm{O}_{8} \mathrm{~S}^{10}$	1031	民 A_{9}
GND ${ }^{11}$	$11 \quad 30$	曰 GND
$1 / 0_{7}{ }^{12}$	$12 \quad 29$	民 A_{8}
$1 / \mathrm{O}_{6} \mathrm{~B}^{13}$	$13 \quad 28$	民 A_{7}
$1 / \mathrm{O}_{5} \mathrm{C}^{14}$	$14 \quad 27$	民 A_{6}
$1 / \mathrm{O}_{4}$－${ }^{15}$	$15 \quad 26$	Q A_{5}
$1 / O_{3}{ }^{16}$	$16 \quad 25$	民 A_{4}
$1 / \mathrm{O}_{2} \mathrm{H}^{17}$	$17 \quad 24$	民 A_{3}
$1 / 0_{1}{ }^{18}$	$18 \quad 23$	民 A_{2}
$1 / O_{0} \square^{19}$	19 22	ص A_{1}
OE ${ }^{20}$	$20 \quad 21$	］A_{0}

Selection OHene

（－）		610110 12	161041 1 H	1610HD－20	$1610 \mathrm{HD}-25$	1610HD－35	$1610 \mathrm{HD}-45$	1610HD－50
Maximum Access Time（ns）		12	15	20	25	35	45	50
Maximum Operating Current(mA)	Com＇l	550	550	330	330	330	330	330
	Mil		50	550	360	330	330	330
Maximum Standby Current （mA）	Com＇1	200	S00．	60	60	60	60	60
	Mil	，	250	25	60	60	60	60

Features

- High-density 256-kilobit SRAM module
- High-speed
- Access time of $\mathbf{1 2} \mathbf{n s}$
- 16-bit-wide organization
- Low active power
-1.8 W (max.) at 25 ns
- TTL-compatible inputs and outputs
- Low profile
— Max. height of 0.5 in.
- Small PCB footprint
-0.4 sq . in. (ceramic version)
-0.6 sq . in. (plastic version)
- 2V data retention (L version)

Functional Description

The CYM1611 is a very high performance 256-kilobit static RAM module organized as 16 K words by 16 bits. The module is constructed using four $16 \mathrm{~K} \times 4$ static RAMs mounted on a vertical substrate with pins. The vertical DIP format minimizes board space while still keeping a maximum height of 0.5 in .
Writing to the memory module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE})}$ inputs are both LOW. Data on the sixteen input/output pins (D_{0} through D_{15}) is written into the memory
location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking chip select $\overline{\mathrm{CS}}$ and output enable ($\overline{\mathrm{OE}}$) LOW while write enable (WE) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the sixteen data input/outhut pins.
The input/output pins cersain in a highimpedance state u(r8s) the module is selected, outputs qee trabled, and write enable (WE) is H (GHE).

Logic Block Diagram

1611-1
1611-2

Selection Guide

	$\mathbf{1 6 1 1 - 1 2}$	$\mathbf{1 6 1 1 - 1 5}$	$\mathbf{1 6 1 1 - 2 0}$	$\mathbf{1 6 1 1 - 2 5}$	$\mathbf{1 6 1 1 - 3 0}$	$\mathbf{1 6 1 1 - 3 5}$	$\mathbf{1 6 1 1 - 4 5}$
Maximum Access Time (ns)	12	15	20	25	30	35	45
Maximum Operating Current (mA)	550	550	330	330	330	330	330
Maximum Standby Current (mA)	250	250	80	80	80	80	80

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 20 ns
- 40-pin, 0.6-inch-wide DIP package
- Low active power
- 1.9W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- JEDEC-compatible pinout
- Commercial and military temperature ranges

Functional Description

The CYM1620 is a very high performance 1-megabit static RAM module organized as 64 K words by 16 bits. The module is constructed using four 32K x 8 static RAMs mounted onto a substrate. A decoder is used to interpret the higher-order address A_{15} and select one of the two pairs of RAMs.
Writing to the memory module is accomplished when the chip select ($\overline{\mathrm{CS}}$), byte select ($\overline{\mathrm{UB}}, \overline{\mathrm{LB}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins of the selected byte ($/ / \mathrm{O}_{8}$ through $\mathrm{I} / \mathrm{O}_{15}, \mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into
the memory location specified on the address pins (\mathbf{A}_{0} through \mathbf{A}_{15}).
Reading the device is accomplished by taking chip select $(\overline{\mathrm{CS}})$, byte select ($\overline{\mathrm{UB}}, \overline{\mathrm{LB}})$ and output enable (WE) LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropiate data input/output pins.
The input/output $م$ Rry jemain in a highimpedance statory byte select $\overline{\mathrm{C}},(\vec{B})$ or output enable $(\overline{\mathrm{OE}})$ is $-5 \mathrm{H}(\mathrm{H})$ or write enable $(\overline{\mathrm{WE}})$ is
LOW

Logic Block Diagram

Pin Configuration

Selection Guide

		$1620-20$	1620-25	1620-30	1620-35	1620-45	1620-55
Maximum Access Time (ns)		20	25	30	35	45	55
Maximum Operating Current (mA)	Commercial	340	340	340	340	340	340
	Military			340	340)	340	340
Maximum Standby Current (mA)	Commercial	40	140	140	140	140	140
	Military			40	140.	140	140

[^28]
$64 \mathrm{~K} \times 16$ Static RAM Module

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 20 ns
- Customer configurable
- x4, x8, x16
- Low active power
- 6.8W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Low profile
— Max. height of $\mathbf{2 7 0}$ in.
- Small PCB footprint
- 2 sq. in.
- 2V data retention (L version)

Functional Description

The CYM1621 is a high-performance 1-megabit static RAM module organized as 64 K words by 16 bits. This module is constructed from sixteen $64 \mathrm{~K} \times 1$ SRAMs in leadless chip carriers mounted on a ceramic substrate with pins. Four separate $\overline{\mathrm{CS}}$ pins are used to control each 4-bit nibble of the 16 -bit word. This feature permits the user to configure this module as either $256 \mathrm{~K} \times 4,128 \mathrm{~K} \times 8$ or $64 \mathrm{~K} \times 16$ organization through external decoding and appropriate pairing of the outputs. Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}_{\mathrm{xx}}$) and write enable ((WE) inputs are both LOW. Data on the data lines $\left(\mathrm{D}_{\mathbf{x}}\right)$ is written into the
memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking the chip select $\left(\overline{\mathrm{CS}}_{\mathrm{xx}}\right)$ LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data lines $\left(\mathrm{D}_{\mathbf{x}}\right)$.
The data output is in the high-impedance state when chip enable $\left(\overline{\mathrm{CS}}_{\mathrm{xx}}\right)$ is HIGH or write enable ($\overline{\mathrm{WE}}$) is LOW.
Power is consumed ine each 4-bit nibble only when the apportiate $\overline{\mathrm{CS}}$ is enabled, thus reducingoyver in the $x 4$ or $x 8$ mode.

Logic Block Diagram

Selection Guide

		$\mathbf{1 6 2 1 H D}-20$	$\mathbf{1 6 2 1 H D}-25$	$\mathbf{1 6 2 1 H D}-30$	$\mathbf{1 6 2 1 H D}-35$	$\mathbf{1 6 2 1 H D}-45$
Maximum Access Time (ns)	20	25	30	35	45	
Maximum Operating Current (mA)	Commercial	1250	1250	1250	1250	1250
	Military		1250	1250	1250	1250
Maximum Standby Current (mA)	Commercial	320	320	320	320	320
	Military		320	320	320	320

CYM1622

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{2 5} \mathbf{~ n s}$
- Low active power
- 2.2W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Pinout compatible with CYM1611 and CYM1624
- Low profile
- Max. height of .50 in
- Small PCB footprint
-0.5 sq. in. (ceramic)
-0.68 sq. .n. (FR4)

Functional Description

The CYM1622 is a very high performance 1-megabit static RAM module organized as 64 K words by 16 bits. The module is constructed using four $64 \mathrm{~K} \times 4$ static RAMs mounted onto a vertical substrate with pins. The pinout of this module is compatible with two other Cypress modules (CYM1611 and CYM1624) to maximize system flexibility.
Writing to the memory module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable (WE) inputs are both LOW. Data on the sixteen input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{15}$) of the device is written into
the memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable $(\overline{\mathrm{OE}})$ LOW while write enable ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropriate data input/output pins.
The input/output p rors gemain in a highimpedance stat odrliess the module is selected, outputs ale enabled, and write en-
able (WE $A M$ GH. able (W马 N N AlGH.

Logic Block Diagram

1622-1

Pin Configuration

Selection Guide

	$\mathbf{1 6 2 2 - 2 5}$	$\mathbf{1 6 2 2 - 3 0}$	$\mathbf{1 6 2 2 - 3 5}$	$\mathbf{1 6 2 2 - 4 5}$
Maximum Access Time (ns)	25	30	35	45
Maximum Operating Current (mA)	400	400	400	400
Maximum Standby Current (mA)	140	140	140	140

CYM1624

64 K x 16 SRAM Module

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{2 5} \mathbf{n s}$
- Low active power
- 2.75W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Pin layout compatible with CYM1611 and CYM1622
- Low profile
— Max. height of .54 in.
- Small PCB footprint
-0.7 sq. in.

Functional Description

The CYM1624 is a very high performance 1-megabit static RAM module organized as 64 K words by 16 bits. This module is constructed using four $64 \mathrm{~K} \times 4$ static RAMs in SOJ packages mounted on an epoxy laminate board with pins. The pinout of this module is compatible with two other Cypress modules (CYM1611 and CYM1622) to maximize system flexibility.
Writing to the module is accomplished when the chip select $(\overline{\mathrm{CE}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the sixteen input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{15}$) of the device is written 80
into the memory location specified on the address pins (A_{0} through A_{15}). Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} throug A_{15}) will appear on the appropriates ata input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $14 \mathrm{~S}_{15}$).
The dara rapur/output pins remain in a high-impedance state when chip select (CS) IE 14 GH or when write enable ($\overline{\mathrm{WE}}$) LOW.

Logic Block Diagram

1624-1

Pin Configuration
Plastic VDIP

1624-2

Selection Guide

	$\mathbf{1 6 2 4 P V}-\mathbf{2 5}$	$\mathbf{1 6 2 4 P V}-\mathbf{3 5}$	1624PV-45
Maximum Access Time (ns)	25	35	45
Maximum Operating Current (mA)	500	500	500
Maximum Standby Current (mA)	160	160	160

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- Customer configurable
$-\mathrm{x4}, \mathrm{x8}, \times 16$
- Low active power
- 10W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of . 300 in.
- Small PCB footprint - 2.2 sq. in.

Functional Description

The CYM1641 is a high-performance 4-megabit static RAM module organized as 256 K words by 16 bits. This module is constructed from sixteen $256 \mathrm{~K} \times 1$ SRAMs in leadless chip carriers mounted on a ceramic substrate with pins. Four separate $\overline{\mathrm{CS}}$ pins are used to control each 4-bit nibble of the 16 -bit word. This feature permits the user to configure this module as either $1 \mathrm{M} \times 4,512 \mathrm{~K} \times 8$ or $256 \mathrm{~K} \times 16$ organization through external decoding and appropriate pairing of the outputs.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}_{\mathrm{Xx}}$) and write enable $\left(\overline{W E}_{U, L}\right)$ inputs are both LOW. Data on
the data lines $\left(\mathrm{D}_{\mathrm{x}}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking the chip select ($\overline{\mathrm{CS}}_{\mathrm{xx}}$) LOW, while write enable ($\overline{W E}_{U, L}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data lines $\left(\mathrm{D}_{\mathrm{x}}\right)$.
The data output is in the high-impedance state when chip end $18 \mathbb{C S}_{\mathrm{Cx}}$) is HIGH or write enable (WEy) is LOW.
Power is 00 保cuned in each 4-bit nibble only when tite appropriate $\overline{\mathrm{CS}}$ is enabled, thus cedreng power in the x 4 or x 8 mode.

Selection Guide

		$\mathbf{1 6 4 1 - 2 5}$	$\mathbf{1 6 4 1 - 3 0}$	$\mathbf{1 6 4 1 - 3 5}$	$\mathbf{1 6 4 1 - 4 5}$	$\mathbf{1 6 4 1 - 5 5}$
Maximum Access Time (ns)	25	30	35	45	55	
Maximum Operating Current (mA)	Commercial	1800	1800	1800	1800	1800
	Military			1800	1800	1800
Maximum Standby Current (mA)	Commercial	560	560	560	560	560
	Military			560	560	560

Features

- High-density 768-kilobit SRAM module
- High-speed CMOS SRAMs
- Access time of 15 ns
- 56-pin, 0.5-inch-high ZIP package
- Low active power
$-1.8 W$ (max. for $\mathrm{t}_{\mathrm{AA}}=25 \mathrm{~ns}$)
- SMD technology
- TTL-compatible inputs and outputs
- Commercial temperature range
- Small PCB footprint
-0.66 sq . in.

Functional Description

The CYM1720 is a high-performance 768 -kilobit static RAM module organized as 32 K words by 24 bits. This module is constructed using three $32 \mathrm{~K} \times 8$ static RAMs in SOJ packages mounted onto an epoxy laminate board with pins.
Writing to the device is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/ output pins ($\mathrm{I} / \mathrm{O}_{0}$ thorugh $\mathrm{I} / \mathrm{O}_{23}$) of the device is written into the memory location specified on the address pins (A_{0} through A_{14}).

Reading the device is accomplished by taking the chip select $(\overline{\mathrm{CS}})$ and output enable $(\overline{\mathrm{OE}})$ LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the input/output pins.
The input/output pins remain in a highimpedance state unless the module is selected, outputs are enambed, and write enable is HIGH.

Logic Block Diagram

Pin Configuration

ZIP
Top View

Selection Guide

	1720.15	1720.20	1720-25	1720-30	1720-35
Maximum Access Time (ns)	15	20	25	30	35
Maximum Operating Current (mA)	450	450	330	330	330
Maximum Standby Current (mA)	120	120.	60	60	60

[^29]$\xrightarrow{3}$

Features

- High-density 512-kbit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{1 2} \mathbf{~ n s}$
- Low active power - $4 \mathbf{W}$ (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of .50 in .
- Small PCB footprint $\mathbf{- 1 . 0}$ sq. in.
- JEDEC-compatible pinout
- 2V data retention (L version)
- SIMM version socket-compatible with CYM1831 and CYM1841

Functional Description

The CYM1821 is a high-performance 512-Kbit static RAM module organized as 16 K words by 32 bits. This module is constructed from eight 16k x 4 SRAM SOJ packages mounted on an epoxy laminate board with pins. Four chip selects $\left(\overline{\mathrm{CS}}_{1}\right.$, $\overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$, and $\overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{x}}$) is written into the memory location specified on the address pins (A_{0} through A_{13}).

Selection Guide

	1821.12	1821-15	1821-20	1821-25	1821-35	1821-45
Maximum Access Time (ns)	12	15	20	25	35	45
Maximum Operating Current (mA)	961.	960	720	720	720	720
Maximum Standby Current (mA)	450	450	160	160	160	160

[^30]
Features

- High-density 512K-bit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{1 2} \mathbf{n s}$
- Low active power
- 5.3W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of .52 in.
- Small PCB footprint
$-\mathbf{1 . 0}$ sq. in.
- 2 V data retention (L version)

Functional Description

The CYM1822 is a high-performance 512-kbit static RAM module organized as 16 K words by 32 bits. This module is constructed from eight $16 \mathrm{~K} \times 4$ separate I/O SRAMs in ladles chip carriers mounted on a ceramic substrate with pins. Two chip selects ($\overline{\mathrm{CS}}_{\mathrm{U}}$ and $\overline{\mathrm{CS}}_{\mathrm{L}}$) are used to independently enable the upper and lower 16-bit data words.
Writing to the device is accomplished when the chip selects ($\overline{\mathrm{CS}}_{\mathrm{U}}$ and/ or $\overline{\mathrm{CS}}_{\mathrm{L}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input pins $\left(\mathrm{DI}_{\mathrm{x}}\right)$ is
written into the memory location specified on the address pins (A_{0} through A_{13}). Reading the device is accomplished by taking the chip selects ($\overline{\mathrm{CS}}_{\mathrm{U}}$ and/or $\overline{\mathrm{CS}}_{\mathrm{L}}$) and output enable ($\overline{\mathrm{OE}}$) LOW, while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data output pins ($\mathrm{DO}_{\mathbf{x}}$). The output pins stay in the high-impedance state when write enable ($\overline{\mathrm{WE}}$) is LOW, the appropreafechip selects are HIGH , or $\overline{\mathrm{OE}}$ is A Gl.

Logic Block Diagram

Pin Configuration

Selection Guide

Shaded area contains preliminary information.

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- 66-pin, 1.1-inch-square PGA package
- Low active power - 3.3W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Commercial and military temperature ranges

Functional Description

The CYM1828 is a very high performance 1-megabit static RAM module organized as 32 K words by 32 bits. The module is constructed using four $32 \mathrm{~K} \times 8$ static RAMs mounted onto a multilayer ceramic substrate. Four chip selects ($\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$, $\overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable $\left(\overline{\mathrm{WE}}_{\mathrm{N}}\right)$ inputs are both LOW.

Data on the input/output pins ($\mathrm{I} / \mathrm{O}_{\mathbf{x}}$) is written into the memory location specified on the address pins (A_{0} through A_{14}).
Reading the device is accomplished by taking chip selects LOW while write enable remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins,
The data input/outpit ins remain in a high- impedance s $\AA 8$ ghen write enable is LOW or the HIGH.

Pin Configuration

Logic Block Diagram

1828-2

Selection Guide

		$\mathbf{1 8 2 8 - 2 5}$	$\mathbf{1 8 2 8 - 3 0}$	$\mathbf{1 8 2 8 - 3 5}$	$\mathbf{1 8 2 8 - 4 5}$	$\mathbf{1 8 2 8 - 5 5}$	$\mathbf{1 8 2 8 - 7 0}$
Maximum Access Time (ns)		25	30	35	45	55	70
Maximum Operating Current (mA)	Commercial	600	600	600	600	600	600
	Military			600	600	600	600
Maximum Standby Current (mA)	Commercial	200	200	200	200	200	200
	Military			200	200	200	200

$64 \mathrm{~K} \times 32$ Static RAM Module

Features

－High－density 2－megabit SRAM module
－High－speed CMOS SRAMs
－Access time of $\mathbf{2 5} \mathbf{~ n s}$
－Independent byte and word controls
－Low active power
－4．8W（max．）
－Hermetic SMD technology
－TTL－compatible inputs and outputs
－Low profile
－Max．height of ． 270 in．
－Small PCB footprint
-1.8 sq ．in．

Functional Description

The CYM1830 is a high－performance 2－megabit static RAM module organized as 64 K words by 32 bits．This module is constructed from eight $64 \mathrm{~K} \times 4$ SRAMs in LCC packages mounted on a ceramic sub－ strate with pins．Four chip selects（ $\overline{\mathrm{CS}}_{0}$ $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}$ and $\overline{\mathrm{CS}}_{3}$ ）are used to independ－ ently enable the four bytes．Two write en－ ables（ $\overline{\mathrm{WE}}_{0}$ and $\overline{\mathrm{WE}}_{1}$ ）are used to inde－ pendently write to either upper or lower 16 －bit word of RAM．Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects and write enables．
Writing to each byte is accomplished when the appropriate chip select $\left(\overline{\mathrm{CS}}_{\mathrm{x}}\right)$ and write
enable（ $\overline{\mathrm{WE}}_{\mathrm{x}}$ ）inputs are both LOW．Data on the input／output pins $\left(\bar{I} / \mathrm{O}_{\mathrm{x}}\right)$ is written into the memory location specified on the address pins（ A_{0} through A_{15} ）．
Reading the device is accomplished by taking the chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{x}}\right)$ LOW，while write enables $\left(\overline{\mathrm{WE}}_{\mathrm{x}}\right)$ remains HIGH．Un－ der these conditions the contents of the memory location specified on the address pins will appear on the data input／output pins $\left(\overline{\mathrm{I}}_{\mathrm{I}}^{\mathrm{x}}\right.$ ）．
The Data input／outhupins stay in the high－impedance（fिधि when write enables （ $\overline{W E}_{\mathrm{x}}$ ）are I＠v，or the appropriate chip selects ararin．

DIP

	$\underbrace{\text { DIP }}$	
$V_{c c} \square^{1}$		
$\mathrm{A}_{0} \mathrm{~L}^{2}$		صl／ O_{31}
$1 / \mathrm{O}_{0} \mathrm{~S}^{3}$		$21 / \mathrm{O}_{30}$
$1 / \mathrm{O}_{1} \mathrm{~S}^{4}$		$1 / 0_{29}$
$1 / \mathrm{O}_{2}$－${ }^{5}$		民1／O8
$1 / \mathrm{O}_{3}$		R ${ }^{\text {c }}$
$\mathrm{CSO}_{0}{ }^{7}$		日 NC
$\mathrm{A}_{1}{ }^{8}$		$\bigcirc \mathrm{CS}_{3}$
$1 / \mathrm{O}_{4} \mathrm{~B}^{9}$		已 $1 / \mathrm{O}_{27}$
$1 / \mathrm{O}_{5} \mathrm{Cl}^{10}$		
$1 / 0_{6}{ }^{11}$		日1／025
$1 / \mathrm{O}_{7} \mathrm{~S}^{12}$		日1／024
$\mathrm{A}_{2} \mathrm{~S}^{13}$		成 ${ }^{24}$
$\mathrm{A}_{3} \mathrm{Cl}^{14}$		民 A_{14}
$\mathrm{WE}_{0} \mathrm{C}^{15}$		صWE ${ }^{\text {W }}$
$\mathrm{A}_{4}{ }^{16}$		曰 A_{13}
$\mathrm{A}_{5} \mathrm{~S}^{17}$		民 A_{12}
$1 / \mathrm{O}_{8}{ }^{18}$		曰1／O23
$1 / 0_{9}{ }^{19}$		
$1 / \mathrm{O}_{10} \mathrm{O}^{20}$		曰 $1 / O_{21}^{22}$
$1 / \mathrm{O}_{11} \mathrm{C}^{21}$		
$\mathrm{A}_{6}{ }^{22}$		右 A_{11}
$\mathrm{A}_{7} \mathrm{~S}_{23}$		A ${ }_{10}$
CS ${ }_{14}$		CS_{2}
$1 / O_{12}$－${ }^{25}$		$\square^{1 / O_{19}}$
$1 / O_{13}{ }^{-1}$		己 $1 / O_{18}$
$1 / 0_{14}{ }^{\text {r }}$ 27		万1／ 0_{17}
$1 / O_{15}{ }^{\text {－}} 28$		$]^{1 / O_{16}}$
$\mathrm{A}_{8}{ }^{-1}$		成 ${ }_{9}$
GND ${ }^{\text {a }}$		ص Vcc

Logic Block Diagram

Selectionguide

		$\mathbf{1 8 3 0 H D}-\mathbf{2 5}$	$\mathbf{1 8 3 0 H D}-\mathbf{3 0}$	$\mathbf{1 8 3 0 H D}-\mathbf{3 5}$	$\mathbf{1 8 3 0 H D}-\mathbf{4 5}$	$\mathbf{1 8 3 0 H D}-\mathbf{5 5}$
Maximum Access Time（ns）		25	30	35	45	55
Maximum Operating Current（mA）	Commercial	880	880	880	880	880
	Military			880	880	880
Maximum Standby Current（mA）	Commercial	320	320	320	320	320
	Military			320	320	320

Features

- High-density 2-Mbit SRAM module
- High-speed CMOS SRAMs
- Access time of 20 ns
- Low active power
- 4W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of .50 in .
- Small PCB footprint
-1.2 sq. in.
- JEDEC-compatible pinout

Functional Description

The CYM1831 is a high-performance 2-Mbit static RAM module organized as 64 K words by 32 bits. This module is constructed from eight $64 \mathrm{~K} \times 4$ SRAMs in SOJ packages mounted on an epoxy laminate board with pins. Four chip selects ($\overline{\mathrm{CS}}_{1}$, $\overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$ and $\overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{x}}$) is written into the memory location specified on the address pins (A_{0} through A_{15}).

Reading the device is accomplished by taking the chip selects ($\left.\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ LOW and output enable ($\overline{\mathrm{OE}})$ LOW while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data input/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{x}}$).
The data input/output pins stay in the high-impedance state when write enable (WE) is LOW or the appropriate chip selects are HIGH. O
Two pins (PD \varnothing वRad -PD 1) are used to identify medune matery density in applicatisss ©here alternate versions of the 1 (1) 8 -standard modules can be interchaged.

Selection Guide

	$\mathbf{1 8 3 1 - 2 0}$	$\mathbf{1 8 3 1 - 2 5}$	$\mathbf{1 8 3 1 - 3 0}$	$\mathbf{1 8 3 1 - 3 5}$	$\mathbf{1 8 3 1 - 4 5}$
Maximum Access Time (ns)	20	25	30	35	45
Maximum Operating Current (mA)	960	720	720	720	720
Maximum Standby Current (mA)	160	160	160	160	160

$64 \mathrm{~K} \times 32$ Static RAM Module

Features

- High-density 2M-bit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{2 5} \mathbf{n s}$
- Low active power
- 5.4W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
— Max. height of .50 in.
- Small PCB footprint
- $\mathbf{1 . 0}$ sq. in.

Functional Description

The CYM 1832 is a high-performance 2-Mbit static RAM module organized as 64 K words by 32 bits. This module is constructed from eight $64 \mathrm{~K} \times 4$ SRAMs in SOJ packages mounted on an epoxy laminate board with pins. Four chip selects ($\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$, and $\overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable ($\overline{\mathrm{WE})}$ inputs are both LOW. Data on the input/output pins
($/ / \mathrm{O}_{\mathrm{x}}$) is written into the memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking the chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data input/output pins $\left(\mathrm{I} / \mathrm{O}_{\mathbf{x}}\right)$.
The data input/output pins stay in the high-impedance state when write enable ($\overline{\mathrm{WE}}$) is LOW, of the appropriate chip selects are HIgre

Logic Block Diagram

1832-1
1832-2

Selection Guide

	1832PZ-25	1832PZ-35	1832PZ-45	1832PZ-55
Maximum Access Time (ns)	25	35	45	55
Maximum Operating Current (mA)	980	980	980	980
Maximum Standby Current (mA)	240	240	240	240

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 30 ns
- 66-pin, 1.1-inch-square PGA package
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Commercial and military temperature ranges

Functional Description

The CYM1838 is a very high performance 4-megabit static RAM module organized as 128 K words by 32 bits. The module is constructed using four $128 \mathrm{~K} \times 8$ static RAMs mounted onto a ceramic substrate. Four chip selects ($\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}, \overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable ($\overline{\mathrm{WE}}_{\mathrm{N}}$) inputs are both LOW.

Data on the input/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{x}}$) is written into the memory location specified on the address pins (A_{0} through A_{16}).
Reading the device is accomplished by taking chip selects LOW while write enable remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pinsy
The data input/output pins remain in a high- impedance sate is LOW or the HIGH.

Document \#: 38-M-00046

$256 \mathrm{~K} \times 32$ Static RAM
 Module

Features

- High-density 8-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{2 5}$ ns
- Independent byte and word controls
- Low active power
- 6.2W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of . 290 in. (HD)
- Small PCB footprint
-1.8 sq. in.

Functional Description

The CYM1840 is a high-performance 8 -megabit static RAM module organized as 256 K words by 32 bits. This module is constructed from eight $256 \mathrm{~K} \times 4$ SRAMs in LCC packages mounted on a ceramic substrate with pins. Four chip selects ($\overline{\mathrm{CS}}_{0}$, $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}$, and $\overline{\mathrm{CS}_{3}}$) are used to independently enable the four bytes. Two write enables ($\overline{W E}_{0}$ and $\overline{W E}_{1}$) are used to independently write to either the upper or lower 16-bit word of RAM. Reading or writing can be executed on individual bytes or on any combination of multiple bytes through the proper use of selects and write enables.
Writing to each byte is accomplished when the appropriate chip select ($\overline{\mathrm{CS}_{\mathrm{X}}}$) and wrig
enable $\left(\overline{W E}_{x}\right)$ inputs are both LOW. Data on the input/output pins $\left(\overline{\mathrm{I} / \mathrm{O}_{\mathrm{X}}}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking the chip selects ($\overline{\mathrm{CS}}_{\mathrm{x}}$) LOW, while write enables ($\overline{W E}_{\mathrm{X}}$) remain HIGH. Under these conditionsture contents of the memory location speadieds on the address pins will appear on (he) data input/output pins ($\overline{\mathrm{I}} / \mathrm{O}_{\mathrm{x}}$).
The Datenmpteatput pins stay in the high-inpedance state when write enables (WEX) O OW or the appropriate chip selects are IIIGH.

Logic Block Diagram

Pin Configuration DIP

Vcc \square^{1}	60	1 GND
$A_{0} \square^{2}$	59	$\square 1 / O_{31}$
$1 / \mathrm{O}_{0} \square^{3}$	58	$\underline{1} / \mathrm{O}_{30}$
$1 / 0_{1}{ }^{4}$	57	$\underline{1 / 0}$
$1 / \mathrm{O}_{2} \square^{5}$	56	$\underline{1 / 0}$
$1 / \mathrm{O}_{3} \square^{6}$	55] $A_{17}{ }^{2}$
CS ${ }^{\text {c }}$	54	ב A_{16}
$\mathrm{A}_{1} 8^{8}$	53	$\square \mathrm{CS}_{3}$
$1 / \mathrm{O}_{4} \square^{9}$	52	$1 / O_{27}$
$1 / \mathrm{O}_{5} \mathrm{~S}^{10}$	51	$\underline{1} / O_{26}$
$1 / \mathrm{O}_{6} \mathrm{~S}_{11}$	50	$1 / \mathrm{O}_{25}$
$1 / \mathrm{O}_{7} \square^{12}$	49]//024
$A_{2} \square_{13}$	48	$\geq \mathrm{A}_{15}$
$A_{3} \square_{14}$	47	$2 A_{14}$
WE $\square_{0} 15$	46] WE ${ }_{1}$
$A_{4} \square^{16}$	45	$2 \mathrm{~A}_{13}$
$A_{5}{ }^{\text {d }} 17$	44] A_{12}
$1 / \mathrm{O}_{8} \square^{18}$	43	$\underline{1} / \mathrm{O}_{23}$
$1 / \mathrm{O}_{9} \mathrm{~B}_{19}$	42	$\square 1 / O_{22}$
$1 / \mathrm{O}_{10} \square^{20}$	41	$\underline{1} / O_{21}$
$1 / \mathrm{O}_{11} \mathrm{~S}_{21}$	40] $1 / \mathrm{O}_{20}$
$\mathrm{A}_{6} \mathrm{C}^{22}$	39	${ }^{2} A_{11}$
$\mathrm{A}_{7} \mathrm{H}_{2}$	38	$\geq A_{10}$
$\mathrm{CS}_{1} \square_{2}$	37	CS_{2}
$\mathrm{l}^{\left(\mathrm{O}_{12} \square_{25}\right.}$	36	$1 / \mathrm{O}_{19}$
$1 / O_{13} \square^{26}$	35	$]^{1 / O_{18}}$
$1 / O_{14} \square^{-1}$	34	$1 / O_{17}$
$1 / \mathrm{O}_{15} \mathrm{C}_{28}$	33	$1 / \mathrm{O}_{16}$
$\mathrm{A}_{8} \square_{29}$	32	$2 \mathrm{Ag}^{6}$
GND \square_{30}	31	V Vcc

Selection Guide

		$\mathbf{1 8 4 0 - 2 5}$	$\mathbf{1 8 4 0 - 3 0}$	$\mathbf{1 8 4 0 - 3 5}$	$\mathbf{1 8 4 0 - 4 5}$	$\mathbf{1 8 4 0 - 5 5}$
Maximum Access Time (ns)	25	30	35	45	55	
Maximum Operating Current (mA)	Commercial	1120	1120	1120	1120	1120
	Military			1120	1120	1120
Maximum Standby Current (mA)	Commercial	320	320	320	320	320
	Military			320	320	320

Features

- High-density 8-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- Low active power
- 5.3W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
— Max. height of .58 in .
- Small PCB footprint
-1.3 sq . in.
- JEDEC-compatible pinout
- Available in SIMM or ZIP format

Functional Description

The CYM1841 is a high-performance 8 -megabit static RAM module organized as 256 K words by 32 bits. This module is constructed from eight $256 \mathrm{~K} \times 4$ SRAMs in SOJ packages mounted on an epoxy laminate board with pins. Four chip selects ($\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}, \overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip select $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins (I / O_{x}) is written
into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking the chip select ($\overline{\mathrm{CS}}_{\mathrm{N}}$) LOW while write enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins ($/ \mathrm{O}_{\mathrm{x}}$).
The data input/outgans stay at the high-impedance statexshen write enable is LOW or the appotstiate chip selects are HIGH.
Two pins $\left(\mathrm{PO}_{\mathrm{g}}\right.$ and PD_{1}) are used to identify modutememory density in applications where attephate versions of the JEDECstandard modules can be interchanged.

Logic Block Diagram

Pin Configuration

Selection Guide

	$\mathbf{1 8 4 1 - 2 5}$	$\mathbf{1 8 4 1 - 3 0}$	$\mathbf{1 8 4 1 - 3 5}$	$\mathbf{1 8 4 1 - 4 5}$	$\mathbf{1 8 4 1 - 5 5}$
Maximum Access Time (ns)	25	30	35	45	55
Maximum Operating Current (mA)	960	960	960	960	960
Maximum Standby Current (mA)	480	480	480	480	480

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- Low active power
- 10.4W (max.)
- SMD technology
- Registered address inputs
- Four completely independent memory banks
- Small PCB footprint
- 1.9 sq. in.

Functional Description

The CYM1910 is a very high performance 1-megabit static RAM module organized as 16 K words by 68 bits. This module is constructed using seventeen $16 \mathrm{~K} \times 4$ static RAMs in SOJ packages mounted onto an epoxy laminate board with pins. The memory is organized as three banks of $16 \mathrm{~K} \times 16$ and one of $16 \mathrm{~K} \times$ 20, each of which has its own chip select, write enable, and output enable signals. Writing to the module is accomplished when the appropriate chip select $\left(\overline{\mathrm{CS}}_{\mathrm{x}}\right)$ and write enable ($\overline{\mathrm{WE}}_{\mathrm{x}}$) inputs are both LOW. Data on the appropriate input/out put pins $\left(\mathrm{I} / \mathrm{O}_{\mathrm{nn}}\right)$ of the device is writter

16K x 68 SRAM Module

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- Low active power
- 10.4W (max.)
- SMD technology
- Latched address inputs
- Four completely independent memory banks
- Small PCB footprint
- $\mathbf{1 . 9}$ sq. in.

Functional Description

The CYM1911 is a very high performance 1-megabit static RAM
module organized as 16 K words by 68 bits. This module is constructed using seventeen 16 K x 4 static RAMs in SOJ packages mounted onto an epoxy laminate board with pins. The memory is organized as three banks of $16 \mathrm{~K} \times 16$ and one of $16 \mathrm{~K} \times 20$, each of which has its own chip select, write enable, and output enable signals.
Writing to the module is accomplished when the appropriate chip select ($\overline{\mathrm{CS}}_{\mathrm{X}}$) and write enable ($\overline{W E}_{\mathrm{X}}$) inputs are both LOW. If Latch Enable (ALE) is HIGH, data on the appropriate input/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{nn}}$) of the device is written into the memory location specified on the address pins (A_{0} through A_{13}). If ALE is LQu $\int(0$ data is written into the address speciged
by the contents of the address latch. The value in this latch is updated on the falling edge of ALE.
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}_{\mathrm{x}}$) and output enable (OE_{X}) LOW while $\overline{W E}_{\mathrm{X}}$ remains inactive or HIGH. If anch Enable (ALE) is HIGH, the conegro of the memory location specifies on the address pins (A_{0} through $A 13$) will appear on the appropriate araramput/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{nn}}$). If $A E$ is $x O W$, the contents of the memryy the address latch will appear on $\mathrm{I} / \mathrm{O}_{\mathrm{nn}}$. (10) $\%$ data input/output pins remain in a bigh-impedance state when chip select $\left(\overline{\mathrm{CS}}_{\mathrm{X}}\right)$ or output enable $\left(\overline{\mathrm{OE}}_{\mathrm{X}}\right)$ is HIGH, or when write enable ($\overline{\mathrm{WE}}_{\mathrm{x}}$) is LOW.

Pin Configuration
Plastic VDIP

1911-2

Features

- Very high speed 256K SRAM module - Access time of 10 nsec.
- 300-mil-wide hermetic DIP package
- Low active power
$-1.8 W$ (max.)
- SMD technology
- TTL-compatible inputs and outputs
- On-chip decode for speed and density
- JEDEC pinout-compatible with 7C194 monolithic SRAMs
- Small PCB footprint
-0.36 sq. in.

Functional Description

The CY7M194 is an extremely high performance 256 -kilobit static RAM module organized as 65,536 words by 4 bits. This module is constructed using four $16 \mathrm{~K} \times 4$ static RAMs in LCC packages mounted on a 300 -mil-wide ceramic substrate. Extremely high speed and density are achieved by using BiCMOS SRAMs containing internal address decoding logic.
Writing to the module is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) of
the device is written into the memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}) \mathrm{LOW}$, while write enable ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{15}) will appear on the four output pins (($/\left(\mathrm{O}_{0}\right.$, through $\mathrm{I} / \mathrm{O}_{3}$).
The data output pinsigh ain in a high-impedance state (uale ${ }^{5}$ the module is selected and write erable ($\overline{\mathrm{WE}}$) is HIGH.

Logic Block Diagram

Pin Configuration

Selection Guide

		7 M 19410	$7 \mathrm{M194}, 12$	7M194-15	7M194-20
Maximum Aceess time (ns)		10	12.	15	20
Maximunonerating Curren ($(\underset{\sim}{\circ} A)$	Commercial	325	32 S	325	20
	Military		375	375	375
Maximum Standby Current (mA)	Commercial	200	20.	200	
	Military		250.	250	250

Shaded area contains preliminary information.

Features

- Very high speed 256k SRAM module - Access time of $\mathbf{1 0} \mathbf{n s e c}$.
- 300-mil-wide hermetic DIP package
- Low active power
- 2.1W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- On-chip decode for speed and density
- JEDEC pinout-compatible with 7C199 monolithic SRAMs
- Small PCB footprint -0.42 sq . in.

Functional Description

The CY7M199 is an extremely high performance 256 -kilobit static RAM module organized as 32,768 words by 8 bits. This module is constructed using four 16k x 4 static RAMs in LCC packages mounted on a 300 -mil-wide ceramic substrate. Extremely high speed and density are achieved by using biCMOS SRAMs containing internal address decoding logic.
Writing to the module is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) of the device is written into the memory loc-
ation specified on the address pins (A_{0} through A_{14}).
Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) and output enable ($\overline{\mathrm{OE}}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{14}) will appear on the eight output pins ($\mathrm{I} / \mathrm{O}_{0}$ through K_{7}).
The data output pingemain in a high-impedance state waleps the module is selected, outpyts ape nabled, and write enable (WS NS $\mathrm{H} M \mathrm{GH}$.

3 Configuration

M199-2

Selection Guide

-		$7 \mathrm{M199} 10$	$7 \mathrm{M199} 12$.	7M199-15	7M199-20
Maximum Aceess finge (ns)		10.	12.	15	20
Maximumprerating Curren (mA)	Commercial	375	375	375	
	Military		425	425	425
Maximum Standby Current (mA)	Commercial	200	200	200	
	Military	\&	250	250	250

Shaded area contains preliminary information.
PRODUCT 1 INFORMATION
STATIC RAMS 2
PROMS 3
EPLDS 4
FIFOS 5
LOGIC 6
RISC 7
MODULES 8
ECL 9
BUS INTERFACE PRODUCTS 10
MILITARY 11
DESIGN AND 12
PROGRAMMING TOOLS
QUALITY AND 13 RELIABILITY
PACKAGES 14
PROMs (Programmable Read Only Memory) Page Number
Introduction to PROMs 3-1
Device Number Description
CY7B201 $131,072 \times 8$ Reprogrammable PROM 3-4
CY7B210 65,536 x 16 Reprogrammable Registered PROM 3-5
CY7B211 65,536 x 16 Reprogrammable Registered PROM 3-5
CY7C225 512×8 Registersted PROM 3-7
CY7C235 1024×8 Registered PROM 3-14
CY7C245 2048×8 ReprogrammableReigstered PROM 3-21
CY7C245A 2048×8 ReprogrammableRegistered PROM 3-30
CY7C251 16,384 x 8 Power Switched and Reprogrammable PROM 3-38
CY7C254 16,384 x 8 Reprogrammable PROM 3-38
CY7C261 8192×8 Power Switched and Reprogrammable PROM 3-44
CY7C263 8192×8 Reprogrammable PROM 3-44
CY7C264 8192×8 Reprogrammable PROM 3-44
CY7C265 64K Registered PROM 3-53
CY7C266 8192×8 Power Switched and Reprogrammable PROM 3-61
CY7C268 64K Registered Diagnostic PROM 3-67
CY7C269 64K Registered Diagnostic PROM 3-67
CY7C271 $32,768 \times 8$ Power Switched and Reprogrammable PROM 3-77
CY7C274 32,768 x 8 Reprogrammable PROM 3-77
CY7C277 32,768 x 8 Reprogrammable Registered PROM 3-83
CY7C279 32,768 x 8 Reprogrammable Registered PROM 3-83
CY7C281 1024 x 8 PROM 3-92
CY7C282 1024×8 PROM 3-92
CY7C285 65,536 $\times 8$ Reprogrammable Fast Column Access PROM 3-101
CY7C289 65,536 x 8 Reprogrammable Fast Column Access PROM 3-101
CY7C286 65,536 x 8 Reprogrammable Registered PROM 3-108
CY7C287 65,536 x 8 Reprogrammable Registered PROM 3-108
CY7C291 2048×8 Reprogrammable PROM 3-113
CY7C292 2048×8 Reprogrammable PROM 3-113
CY7C291A 2048×8 Reprogrammable PROM 3-120
CY7C292A 2048×8 Reprogrammable PROM 3-120
CY7C293A 2048 x 8 Reprogrammable PROM 3-120
PROM Programming Information 3-127

1: Product Line Overview

The Cypress CMOS family of PROMs span 4 K to 512 K bit densities, three functional configurations, and are all byte-wide. The product line is available in both 0.3 and 0.6 inch wide dual-in-line plastic and CERDIP as well as LCC and PLCC packages. The programming technology is EPROM and therefore windowed packages are available in both dual-in-line and LCC configurations, providing erasable products. These byte-wide products are available in registered versions at the $512,1 \mathrm{~K}, 2 \mathrm{~K}, 8 \mathrm{~K}, 32 \mathrm{~K}$, and 64 K by 8 densities and in non-registered versions at the $1 \mathrm{~K}, 2 \mathrm{~K}$, $8 \mathrm{~K}, 16 \mathrm{~K}, 32 \mathrm{~K}$, and 64 K by 8 densities. The registered devices operate in either synchronous or asynchronous output enable modes and may have an initialize feature to preload the pipeline register. The 8 K by 8 registered devices feature a diagnostic shadow register which allows the pipeline register to be loaded or examined via a serial path.
Cypress PROMs perform at the level of their bipolar equivalents or beyond with reduced power levels of CMOS technology. They are capable of 2001 volts of ESD and operate with 10% power supply tolerances.

2: Technology Introduction

Cypress PROMs are executed in an " N " well CMOS EPROM process. Densities of 128 K and under with the exception of the " A " series devices use the 1.2 micron PROM I technology. The 16K "A" series devices and the future 256 K PROMs use the 0.8 micron PROM II technology with a single ended memory cell. The process provides basic gate delays of 235 picoseconds for a fanout of one at a power consumption of 45 femto joules. The process provides the basis for the development of LSI products that outperform the fastest bipolar products currently available.
Although CMOS static RAMs have challenged bipolar RAMs for speed, CMOS EPROMs have always been a factor of three to ten times slower than bipolar fuse PROMs. There have been two major limitations on CMOS EPROM speed; 1) the single transistor EPROM cell is inherently slower than the bipolar fuse element, and 2) CMOS EPROM technologies have been optimized for cell programmability and density, almost always at the expense of speed. In the Cypress CMOS EPROM technology, both of the aformentioned limitations have been overcome to create CMOS PROMs with performance superior to PROMs implemented in bipolar technology.
In all Cypress PROMs, speed and programmability are optimized independently by separating the read and write transistor functions. Also, for the first time a substrate bias generator is employed in an EPROM technology to improve performance and raise latchup immunity to greater than 200 mA . The result is a CMOS EPROM technology that challenges bipolar fuse technology for both density and speed. In addition, at higher densities, performance and density surpasses the best that bipolar can provide. Limitations of devices implemented in the bipolar fuse technology such as PROGRAMMING YIELD, POWER DISSIPATION and HIGHER DENSITY PERFORMANCE are eliminated or greatly reduced using Cypress CMOS EPROM technology.

3: Design Approach

A. Four Transistor Differential Memory Cell

The $4 \mathrm{~K}, 8 \mathrm{~K}$, and 16 K PROM (except " A " version) use an N -Well CMOS technology along with a new differential four transistor EPROM cell that is optimized for speed. The area of the four transistor cell is 0.43 square mils and the die size is 19,321 square mils for the 2 K by 8 PROM (Figure 1). The floating gate cell is optimized for high read current and fast programmability. This is accomplished by separating the read and program transistors (Figure 2). The program transistor has a separate implant to maximize the generation and collection of hot electrons while the read transistor implant dose is chosen to provide a large read current. Both the n and p channel peripheral transistors have self-aligned, shallow, lightly doped drain (LDD) junctions. The LDD structure reduces overlap capacitance for speed improvement and minimizes hot electron injection for improved reliability. Although common for NMOS static and dynamic RAMs, an on-chip substrate bias generator is used for the first time in an EPROM technology. The results are improved speed, greater than 200 mA latch-up immunity and high parasitic field inversion voltages during programming.

Figure 1

0034-2
Figure 2. Non-volatile cell optimized for speed and programmability
Access times of less than 35 ns at 16 K densities and 30 ns at 4 K and 8 K densities over the full operating range are achieved by using differential design techniques and by to-

Figure 3. Differential sensing
tally separating the read and program paths. This allows the read path to be optimized for speed. The X and Y decoding paths are predecoded to optimize the power-delay product. A differentail sensing scheme and the four transistor cell are used to sense bit-line swings as low as 100 mV at high speed. The sense amplifier (Figure 3) consists of three stages of equal gain. A gain of 4 per stage was found to be optimum. The Cascode stage amplifies the bit line swings and feeds them into a differential amplifier. The output of the differential amplifier is further amplified and voltages shifted by a level shifter and latch. This signal is then fed into an output buffer having a TTL fan-out of ten.

B. Two Transistor Memory Cell

The Cypress 64 K and greater density PROMs use a two transistor memory cell. This cell uses a single ended sensing scheme with the exception of the 256 K device which uses a differential sensing circuit. This combination allows for a more compact design and reduced manufacturing costs. This is an excellent compromise between performance and high density, allowing the development of devices with performance of 35 ns and 45 ns access times at densities from 64 K to 256 K bits and 25 ns for the " A " series 16 K using the PROM II technology. This two transistor cell still uses the high speed read transistor and the optimized EPROM transistor for performance and reliable programming. The sense amplifier uses a reference voltage on one input and the read transistor on the other, instead of two read transistors. This single ended sensing is a more conventional technique and has the effect of causing an erased device to contain all " 0 " s.

4: Programming

A. Differential Memory Cells

Cypress PROMs are programmed a BYTE at a time by applying 12 to 14 volts on one pin and the desired logic
levels to input pins. Both logic "ONE" and logic "ZERO" are programmed into the differential cell. A BIT is programmed by applying 12 to 14 volts on the control gate and 9 volts on the drain of the floating gate write transistor. This causes hot electrons from the channel to be injected onto the floating gate thereby raising the threshold voltage. Because the read transistor shares a common floating gate with the program transistor, the threshold of the read transistor is raised from about 1 volt to greater than 5 volts resulting in a transistor that is turned "OFF" when selected in a read mode of operation. Since both sides of the differential cell are at equal potential before programming, a threshold shift of 100 mV is enough to be determined as the correct logic state. Because an unprogrammed cell has neither a ONE nor a ZERO in it before programming, a special BLANK CHECK mode of operation is implemented. In this mode the output of each half of the cell is compared against a fixed reference which allows distinction of a programmed or unprogrammed cell. A MARGIN mode is also provided to monitor the thresholds of the individual BITs allowing the monitoring of the quality of programming during the manufacturing operation.

B. Single Ended Memory Cells

The programming mechanism of the EPROM transistor in a single ended memory cell is the same as its counterpart in a double ended memory cell. The difference is that only ones " 1 "s are programmed in a single ended cell. A " 1 " applied to the I / O pin during programming causes an erased EPROM transistor to be programmed while a " 0 " allows the EPROM transistor to remain unprogrammed.

5: Erasability

For the first time at PROM speeds, Cypress PROMs using CMOS EPROM technology offer reprogrammability when packaged in windowed CERDIP. This is available at densities of 16 K and larger, both registered and non-registered.

Some devices are sensitive to photo-electric effects during programming. Cypress recommends covering the windows of reprogrammable devices during programming.

6: Reliability

The CMOS EPROM approach to PROMs has some significant benefits to the user in the area of programming and functional yield. Since a cell may be programmed and erased multiple times, CMOS PROMs from Cypress can be tested 100% for programmability during the manufacturing process. Because each CMOS PROM contains a PHANTOM array, both the functionality and performance of the devices may be tested after they are packaged thus assuring the user that not only will every cell program, but that the product performs to the specification.

Features

- BiCMOS for optimum speed/power
- High speed
$-\mathrm{t}_{\mathrm{AA}}=30 \mathrm{~ns}$
- Low power
-180 mA active
- 25 mA standby
- EPROM technology, 100% programmable
- Standard 600-mil packaging available
- Windowed for reprogrammability
- $\mathbf{5 V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$
- TTL-compatible I/O
- Capable of withstanding > 2001V static discharge

Functional Description

The CY7B201 is a high-performance 131,072 by 8 -bit BiCMOS PROM with an access time of 30 ns. Power consumption for the device is 180 mA in the active mode and 25 mA in the standby mode. The output enable is user programmable to be active HIGH or active LOW to support memory bank selection.
The CY7B201 is packaged in $600-\mathrm{mil}$, 32 -pin DIPs and $600-\mathrm{mil}$, 32 -pin LCCs, both standard JEDEC 1 Meg EPROM pinouts. It is also available in a cerDIP package equipped with an erasure window to provide reprogrammability. When exposed to UV light, it is erased and can be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and word-wide intelligent programming
algorithms. An EPROM cell requires only 12.5 V for the supervoltage, while low current requirements allow for gang programming.
The EPROM cells allow for each memory location to be 100% tested, with each location being written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.
Reading is accomplished by placing an active LOW on $\overline{\mathrm{CE}}$ and the appropriate active signal on output enable. The contents of the memory location addressed by the address lines (A_{0} through A_{16}) will become available on the output line (O_{0} through O_{7}).

Document \#: 38-00147

Features

- BiCMOS for optimum speed/power
- High speed
$-\mathbf{t}_{\mathrm{AA}}=30 \mathrm{~ns}(7 \mathrm{~B} 210)$
$-\mathbf{t}_{\mathbf{S A}}=\mathbf{2 0} \mathbf{n s}(7 \mathrm{~B} 211)$
$-\mathrm{t}_{\mathrm{CO}}=15 \mathrm{~ns}$ (7B211)
- 16-bit words
- Low power
-180 mA active
-25 mA standby (7B210)
- User-programmed 16-bit state word (7B211)
- Onboard output register (7B211)
- EPROM technology, 100% programmable
- Standard 600-mil packaging available
- Windowed for reprogrammability
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$
- TTL-compatible I/O
- Capable of withstanding > 2001V static discharge

Functional Description

The CY7B210 and the CY7B211 are highperformance 65,536 by 16 -bit BiCMOS PROMs. The CY7B210 is an asynchronous device, while the CY7B211 is a synchronous device with onboard output registers. Access time for the CY7B210 is 30 ns. The CY7B211 has an address set-up time of 20 ns and the time from clock HIGH to output valid is 15 ns . Power consumption for both devices is 180 mA in the active mode. For the CY7B210, power consumption is 25 mA in the standby mode. For both devices, the output enable is user programmable to be active HIGH or active LOW to support memory bank selection. The CY7B211 has an asynchronous INIT function so that the user can load a preprogrammed 16-bit state word into the output registers at any time. The INIT function is also user programmable to be active HIGH or active LOW.

Both parts are packaged in 600-mil, 40-pin DIPs and $600-\mathrm{mil}, 44$ pin LCCs, both standard JEDEC 1 Meg EPROM pinouts. They are also available in a cerDIP package equipped with an erasure window to provide reprogrammability. When exposed to UV light, the PROM is erased and can be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and word-wide intelligent programming algorithms. An EPROM cell requires only 12.5 V for the supervoltage, while low current requirements allow for gang programming.
The EPROM cells allow for each memory location to be 100% tested, with each location being written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.

Pin Configurations (continued)

	DIP Top View	
$\overline{\text { INTIT(INIT }}$ / $N_{\text {PP }}$	$1 \sim 40$	V_{cc}
CLK	239] PGM
O_{15}	3	$] \mathrm{NC}$
0_{14}	4 37	A_{15}
O_{13}	5 36	$] A_{14}$
O_{12}	6] A_{13}
0_{11}	7	A_{12}
0_{10}	83] A_{11}
O_{9}	$9 \quad 32$] A_{10}
O_{8}	$10 \bigcirc 31$	A_{9}
GND	$11 \bigcirc 30$	GND
O_{7}	12×29	$\square A_{8}$
O_{6}	$1_{13}{ }^{76211} \quad 28$	$]^{\prime}{ }_{7}$
O_{6}	$14 \quad 27$	A_{6}
O_{4}	$15 \quad 26$	$7 A_{5}$
O_{3}	16	A_{4}
O_{2}	$17 \quad 24$	A_{3}
O_{1}	$18 \quad 23$	$]^{\prime} A_{2}$
O_{0}	19 22	A_{1}
OE/OE	2021] A_{0}
		C210-3

Document \#: 38-00146

CY7C225

Features

- CMOS for optimum speed/power
- High speed
- 25 ns max set-up
- $\mathbf{1 2}$ ns clock to output
- Low power
- 495 mW (commercial)
- 660 mW (military)
- Synchronous and asynchronous output enables
- On-chip edge-triggered registers
- Buffered Common PRESET and CLEAR inputs
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- Slim, $300 \mathrm{mil}, 24$ pin plastic or hermetic DIP, or 28 pin LCC
- $\mathbf{5 V} \pm 10 \% V_{C C}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 1500 V static discharge

Product Characteristics

The CY7C225 is a high performance 512 word by 8 bit electrically Programmable Read Only Memory packaged in a slim 300 mil plastic or hermetic DIP and 28 pin Leadless Chip Carrier. The memory cells utilize proven EPROM
floating gate technology and byte-wide intelligent programming algorithms.
The CY7C225 replaces bipolar devices and offers the advantages of lower power, superior performance and high programming yield. The EPROM cell requires only 13.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercized prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specification limits.
The CY7C225 has asynchronous PRESET and CLEAR functions.

Logic Block Diagram

0020-1

Pin Configurations

Selection Guide

		7C225-25	7C225-30	7C225-35	7C225-40
Maximum Set-up Time (ns)		25	30	35	40
Maximum Clock to Ouput (ns)		12	15	20	25
Maximum Operating Current (mA)	Commercial	90	90		90
	Military		120	120	120

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)...................... . -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
DC Program Voltage (Pins 7, 18, 20)
. 14.0 V

Static Discharge Voltage . $>1500 \mathrm{~V}$
(Per MIL-STD-883 Method 3015)
Latch-up Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	V $_{\mathrm{CC}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[6]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[7]}$

Parameters	Description	Test Conditions		Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}_{\mathrm{I},} \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=-16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\text {IL }} \end{aligned}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[2]}$		2.0		V
$V_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All inputs ${ }^{[2]}$			0.8	V
I_{IX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	$+10$	$\mu \mathrm{A}$
$V_{\text {CD }}$	Input Clamp Diode Voltage	Note 1				
IOZ	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled ${ }^{[4]}$		-40	+40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[3]}$		-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \end{aligned}$	Commercial		90	mA
			Military		120	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF
COUT	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. The CMOS process does not provide a clamp diode. However, the CY7C225 is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
5. Tested initially and after any design or process changes that may affect these parameters.
6. T_{A} is the "instant on" case temperature.
7. See the last page of this specification for Group A subgroup testing information.

Notes:

1. Applies only when the synchronous ($\overline{\mathrm{E}}_{\mathrm{S}}$) function is used.
2. Applies only when the asynchronous $(\overline{\mathrm{E}})$ function is used.
3. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from the 1.5 V level on the input with loads shown in Figure $1 b$.
4. Tests are performed with rise and fall times of 5 ns or less.
5. See Figure $1 a$ for all switching characteristics except t_{HZ}.
6. See Figure $1 b$ for t_{Hz}.
7. All device test loads should be located within $2^{\prime \prime}$ of device outputs.
8. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms ${ }^{[5,6,7]}$

Figure 1a

Figure 1b

0020-5
Figure 2

Equivalent to:
THÉVENIN EQUIVALENT

0020-4

Functional Description

The CY7C225 is a CMOS electrically Programmable Read Only Memory organized as 512 words x 8 -bits and is a pin-for-pin replacement for bipolar TTL fusible link PROMs. The CY7C225 incorporates a D-type, master-slave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with synchronous (\bar{E}_{S}) and asynchronous (\bar{E}) output enables, and CLEAR and PRESET inputs.
Upon power-up, the synchronous enable (\bar{E}_{S}) flip-flop will be in the set condition causing the outputs ($\mathrm{O}_{0}-\mathrm{O}_{7}$) to be in the OFF or high impedance state. Data is read by
applying the memory location to the address inputs ($\mathrm{A}_{0}-$ A_{8}) and a logic LOW to the enable (E_{5}) input. The stored data is accessed and loaded into the master flip-flops of the data register during the address set-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs ($\mathrm{O}_{0}-$ O_{7}) provided the asynchronous enable $(\overline{\mathrm{E}})$ is also LOW.

The outputs may be disabled at any time by switching the asynchronous enable ($\overline{\mathrm{E}}$) to a logic HIGH , and may be returned to the active state by switching the enable to a logic LOW.

Functional Description (Continued)

Regardless of the condition of $\overline{\mathrm{E}}$, the outputs will go to the OFF or high impedance state upon the next positive clock edge after the synchronous enable ($\overline{\mathrm{E}}_{S}$) input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state if $\overline{\mathrm{E}}$ is LOW. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next low to high transition of the clock. This unique feature allows the CY7C225 decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.
System timing is simplified in that the on-chip edge triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.

The CY7C225 has buffered asynchronous $\overline{\text { CLEAR }}$ and PRESET input ($\overline{\text { INIT }}$). The initialize function is useful during power-up and time-out sequences.
Applying a LOW to the $\overline{\text { PRESET input causes an immedi- }}$ ate load of all ones into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). Applying a LOW to the CLEAR input, resets the flip-flops to all zeros. The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable ($\overline{\mathrm{E}}$) LOW.
When power is applied the (internal) synchronous enable flip-flop will be in a state such that the outputs will be in the high impedance state. In order to enable the outputs a clock must occur and the $\overline{\mathrm{E}}_{\text {S }}$ input pin must be LOW at least a setup time prior to the clock LOW to HIGH transition. The $\overline{\mathrm{E}}$ input may then be used to enable the outputs.

Switching Waveforms

Notes on Testing

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device \mathbf{V}_{CC} and ground terminals. Multiple capacitors are recommended, including a $0.1 \mu \mathrm{~F}$ or larger capacitor and a $0.01 \mu \mathrm{~F}$ or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input norse immunity.
4. Output levels are measured at 1.5 V reference levels.
5. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from the 1.5 V level on inputs with load shown in Figure $1 b$.

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT vs. SUPPLY VOLTAGE

CLOCK TO OUTPUT TIME

OUTPUT SOURCE CURRENT

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED SETUP TIME vs. SUPPLY VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

CLOCK TO OUTPUT TIME

NORMALIZED SETUP TIME

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

0020-7

Ordering Information

Speed ns		Ordering Code	Package Type	Operating Range
tsA	t_{CO}			
25	12	CY7C225-25PC	P13	Commercial
		CY7C225-25DC	D14	
		CY7C225-25LC	L64	
30	15	CY7C225-30PC	P13	Commercial
		CY7C225-30DC	D14	
		CY7C225-30LC	L64	
		CY7C225-30DMB	D14	Military
		CY7C225-30LMB	L64	
35	20	CY7C225-35DMB	D14	Military
		CY7C225-35LMB	L64	
40	25	CY7C225-40PC	P13	Commercial
		CY7C225-40DC	D14	
		CY7C225-40LC	L64	
		CY7C225-40DMB	D14	Military
		CY7C225-40LMB	L64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{DP}	$7,8,9,10,11$
t_{RP}	$7,8,9,10,11$

Document \#: 38-00002-C

Features

- CMOS for optimum speed/power
- High speed
- 25 ns max set-up
- $\mathbf{1 2}$ ns clock to output
- Low power
- 495 mW (commercial)
- 660 mW (military)
- Synchronous and asynchronous output enables
- On-chip edge-triggered registers
- Programmable asynchronous register ($\overline{\mathrm{INIT}}$)
- EPROM dechnology, $\mathbf{1 0 0 \%}$ programmable
- Slim, $\mathbf{3 0 0}$ mil, 24 pin plastic or hermetic DIP or 28 pin LCC
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 1500 V static discharge

Product Characteristics

The CY7C235 is a high performance 1024 word by 8 bit electrically Programmable Read Only Memory packaged in a slim 300 mil plastic or hermetic DIP or 28-pin Leadless Chip carrier. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C235 replaces bipolar devices and offers the advantages of lower

Logic Block Diagram

Pin Configurations

0005-2

0005-12

Selection Guide

		7C235-25	7C235-30	7C235-40
Maximum Set-up Time (ns)		25	30	40
Maximum Clock to Output (ns)		12	15	20
Maximum Operating Current (mA)	Commercial	90	90	90
	Military		120	120

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Volume . $>1500 \mathrm{~V}$ (Per MIL-STD-883 Method 3015)		
Power Applied $-55^{\circ}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-up Cur		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12 for DIP). -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State. -0.5 V to +7.0 V	Range	Ambient Temperature	$\mathrm{V}_{\text {CC }}$
DC Input Voltage -3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
DC Program Voltage	Military ${ }^{\text {[6] }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[7]}$

Parameters	Description	Test Conditions		Min.	Max.	Units
$\mathrm{VOH}^{\text {O }}$	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}_{\mathrm{I} .,} \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			0.4	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[2]}$		2.0		V
$V_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[2]}$			0.8	V
IIX	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage	Note 1				
Ioz	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled ${ }^{[4]}$		-40	$+40$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[3]}$		-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max. } \end{aligned}$	Commercial		90	mA
			Military		120	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Notes:

1. The CMOS process does not provide a clamp diode. However, the CY7C235 is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
5. Tested initially and after any design or process changes that may affect these parameters.
6. T_{A} is the "instant on" case temperature.
7. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over Operating Range ${ }^{[4, ~ 8]}$

Parameters	Description	7C235-25		7C235-30		7C235-40		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
tsA	Address Setup to Clock HIGH	25		30		40		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		ns
t_{CO}	Clock HIGH to Valid Output		12		15		20	ns
tPWC	Clock Pulse Width	12		15		20		ns
$\mathrm{t}_{\text {SES }}$	$\bar{E}_{\text {S }}$ Setup to Clock HIGH	10		10		15		ns
$\mathrm{t}_{\mathrm{HES}}$	$\mathrm{E}_{\text {S }}$ Hold from Clock HIGH	5		5		5		ns
t_{DI}	Delay from INIT to Valid Output		25		25		35	ns
t_{RI}	INIT Recovery to Clock HIGH	20		20		20		ns
tpwI	INIT Pulse Width	20		20		25		ns
tcos	Inactive to Valid Output from Clock HIGH ${ }^{[1]}$		20		20		25	ns
$\mathrm{t}_{\mathrm{HZC}}$	Inactive Output from Clock HIGH ${ }^{[1,3]}$		20		20		25	ns
tote	Valid Output from E LOW[2]		20		20		25	ns
$\mathrm{t}_{\mathrm{HZE}}$	Inactive Output from $\overline{\mathbf{E}}$ HIGH ${ }^{\text {[2, 3] }}$		20		20		25	ns

Notes:

1. Applies only when the synchronous ($\overline{\mathrm{E}}_{\mathrm{S}}$) function is used.
2. Applies only when the asynchronous (E) function is used.
3. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input with loads shown in Figure $1 b$.
4. Tests are performed with rise and fall times of 5 ns or less.
5. See Figure $1 a$ for all switching characteristics except t_{HZ}.
6. See Figure $1 b$ for t_{HZ}.
7. All device test loads should be located within $2^{\prime \prime}$ of device outputs.
8. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms $[5,6,7]$

Figure 1a

Figure 1b

Equivalent to:

Functional Description

The CY7C235 is a CMOS electrically Programmable Read Only Memory organized as 1024 word x 8 -bits and is a pin-for-pin replacement for bipolar TTL fusible link PROMs. The CY7C235 incorporates a D-type, master-slave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with synchronous (\bar{E}_{S}) and asynchronous ($\overline{\mathrm{E}}$) output enables and asynchronous initialization (INIT). Upon power-up, the synchronous enable (\bar{E}_{S}) flip-flop will be in the set condition causing the outputs ($\mathrm{O}_{0}-\mathrm{O}_{7}$) to be in the OFF or high impedance state. Data is read by
applying the memory location to the address input ($\mathrm{A}_{0}-$ A_{9}) and a logic LOW to the enable ($\overline{\mathrm{E}}_{\mathrm{S}}$) input. The stored data is accessed and loaded into the master flip-flops of the data register during the address set-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs ($\mathrm{O}_{0}-$ O_{7}) provided the asynchronous enable $(\overline{\mathrm{E}})$ is also LOW.
The outputs may be disabled at any time by switching the asynchronous enable ($\overline{\mathrm{E}}$) to a logic HIGH, and may be returned to the active state by switching the enable to a logic LOW.

Functional Description (Continued)

Regardless of the condition of $\overline{\mathrm{E}}$, the outputs will go to the OFF or high impedance state upon the next positive clock edge after the synchronous enable (E_{S}) input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state if $\overline{\mathrm{E}}$ is LOW. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next low to high transition of the clock. This unique feature allows the CY7C235 decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.
System timing is simplified in that the on-chip edge triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.
The CY7C235 has an asynchronous initialize input (ㅍIT). The initialize function is useful during power-up and timeout sequences and can facilitate implementation of other sophisticated functions such as a built-in "jump start" address. When activated the initialize control input causes the contents of a user programmed 1025 th 8 -bit word to be loaded into the on-chip register. Each bit is programmable
and the initialize function can be used to load any desired combination of " 1 "s and " 0 " s into the register. In the unprogrammed state, activating INIT will generate a register CLEAR (all outputs LOW). If all the bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).
Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable ($\overline{\mathrm{E}}$) LOW.
When power is applied the (internal) synchronous enable flip-flop will be in a state such that the outputs will be in the high impedance state. In order to enable the outputs, a clock must occur and the ES input pin must be LOW at least a setup time prior to the clock LOW to HIGH transition. The \bar{E} input may then be used to enable the outputs. When the asynchronous initialize input, INIT, is LOW, the data in the initialize byte will be asynchronously loaded into the output register. It will not, however, appear on the output pins until they are enabled, as described in the preceding paragraph.

Switching Waveforms

Notes on Testing

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals. Multiple capacitors are recommended, including a $0.1 \mu \mathrm{~F}$ or larger capacitor and a $0.01 \mu \mathrm{~F}$ or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.
4. Output levels are measured at 1.5 V reference levels.
5. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from the 1.5 V level on inputs with load shown in Figure $1 b$.

Typical DC and AC Characteristics

NORMALIZED CLOCK TO
OUTPUT TIME vs. VCC

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

Ordering Information

Speed (ns)		Ordering Code	Package Type	Operating Range
tsA	t_{CO}			
25	12	CY7C235-25PC	P13	Commercial
		CY7C235-25DC	D14	
30	15	CY7C235-30PC	P13	
		CY7C235-30DC	D14	
		CY7C235-30JC	J64	
		CY7C235-30DMB	D14	Military
		CY7C235-30LMB	L64	
40	20	CY7C235-40PC	P13	Commercial
		CY7C235-40DC	D14	
		CY7C235-40DMB	D14	Military
		CY7C235-40LMB	L64	

\qquad
MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
\mathbf{V}_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
\mathbf{V}_{IL}	$1,2,3$
I_{IX}	$1,2,3$
\mathbf{I}_{OZ}	$1,2,3$
\mathbf{I}_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
\mathbf{t}_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$

Document \#: 38-00003-C

CY7C245

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 25 ns max set-up
- $\mathbf{1 2}$ ns clock to output
- Low power

$-35 \mathrm{~ns},-45 \mathrm{~ns}$
- 660 mW (military)
- Programmable synchronous or asynchronous output enable
- On-chip edge-triggered registers
- Programmable asynchronous register (INIT)
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- Slim, $\mathbf{3 0 0}$ mil, 24 pin plastic or hermetic DIP
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2000 V static discharge

Logic Block Diagram

Pin Configurations

0016-2

0016-13

Selection Guide

			7C245-25	7C245-35	7C245-45
Maximum Setup Time (ns)			25	35	45
Maximum Clock to Output (ns)			12	15	25
Maximum Operating Current (mA)	STD	Commercial	90	90	90
			120	120	

Product Characteristics

The CY7C245 is a high performance 2048 word by 8 bit electrically Programmable Read Only Memory packaged in a slim 300 mil plastic or hermetic DIP. The ceramic package may be equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C245 replaces bipolar devices and offers the advantages of lower power, reprogrammability, superior performance and high programming yield. The EPROM cell requires only 13.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercized prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specification limits. The CY7C245 has an asynchronous initialize function (INIT). This function acts as a 2049th 8-bit word loaded into the on-chip register. It is user programmable with any desired word or may be used as a PRESET or CLEAR function on the outputs.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
DC Program Voltage (Pins 7, 18, 20) 13.0V
UV Erasure . 7258 Wsec/cm²
Static Discharge Voltage . $>2001 \mathrm{~V}$
(Per MIL-STD-883 Method 3015)
Latchup Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[7]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[6]}$

Parameters	Description	Test Conditions		7C245L-35, 45		7C245-25		7C245-35, 45		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}= \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$4.0 \mathrm{~mA}$	2.4	.	2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}= \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Lo Voltage for All Input	cal HIGH	2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Log Voltage for All Inputs	al LOW		0.8		0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	- 10	+10	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage	Note 5		Note 5						
IOZ	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ $\text { Output Disabled } 3 \text { [3] }$		-40	+ 40	-40	+40	-40	+ 40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{v}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[2]}$		-20	-90	-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max. } \end{aligned}$	Commercial		60		90		90	mA
			Military						120	

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	
COUT	Output Capacitance			

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
2. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
3. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
4. Tested initially and after any design or process changes that may affect these parameters.
5. The CMOS process does not provide a clamp diode. However, the CY7C245 is insensitive to -3 V de input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
6. See the last page of this specification for Group A subgroup testing information.
7. T_{A} is the "instant on" case temperature.

OR
istics Over Operating Range ${ }^{[8]}$

Parameters	Description	7C245-25		7C245-35		7C245-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
tSA	Address Setup to Clock HIGH	25		35		45		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		ns
t_{CO}	Clock HIGH to Valid Output		12		15		25	ns
tPWC	Clock Pulse Width	15		20		20		ns
$\mathrm{tsES}^{\text {S }}$	Es Setup to Clock HIGH	12		15		15		ns
thes	Es Hold from Clock HIGH	5		5		5		ns
tDI	Delay from INIT to Valid Output		20		20		35	ns
t_{RI}	INIT Recovery to Clock HIGH	15		20		20		ns
tPWI	INIT Pulse Width	15		20		25		ns
${ }^{t} \mathrm{COS}$	Valid Output from Clock HIGH ${ }^{[1]}$		15		20		30	ns
$\mathrm{t}_{\mathrm{HZC}}$	Inactive Output from Clock HIGH ${ }^{\text {[1, 3] }}$		15		20		30	ns
t ${ }^{\text {dOE }}$	Valid Output from E LOW [2]		15		20		30	ns
${ }^{\text {thZE }}$	Inactive Output from $\overline{\mathrm{E}} \mathrm{HIGH}^{[2,3]}$		15		20		30	ns

Notes:

1. Applies only when the synchronous (E_{S}) function is used.
2. Applies only when the asynchronous ($\overline{\mathrm{E}}$) function is used.
3. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input with loads shown in Figure $1 b$.
4. Tests are performed with rise and fall times of 5 ns or less.

AC Test Loads and Waveforms ${ }^{[5,6,7]}$

Figure 1b

5. See Figure $1 a$ for all switching characteristics except t_{HZ} -
6. See Figure $1 b$ for t_{HZ}.
7. All device test loads should be located within $2^{\prime \prime}$ of device outputs.
8. See the last page of this specification for Group A subgroup testing information.

Figure 1a

THÉVENIN EQUIVALENT

Functional Description

The CY7C245 is a CMOS electrically Programmable Read Only Memory organized as 2048 words x 8 -bits and is a pin-for-pin replacement for bipolar TTL fusible link PROMs. The CY7C245 incorporates a D-type, masterslave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with a programmable synchronous ($\overline{\mathrm{E}}_{\mathrm{S}}$) or asynchronous ($\overline{\mathrm{E}}$) output enable and asynchronous initialization (INIT).
Upon power-up the state of the outputs will depend on the programmed state of the enable function ($\overline{\mathrm{E}}_{\mathrm{S}}$ or $\overline{\mathrm{E}}$). If the synchronous enable ($\overline{\mathrm{E}}_{\mathrm{S}}$) has been programmed, the register will be in the set condition causing the outputs

0016-5
Figure 2
$\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ to be in the OFF or high impedance state. If the asynchronous enable $(\overline{\mathrm{E}})$ is being used, the outputs will come up in the OFF or high impedance state only if the enable ($\overline{\mathbf{E}}$) input is at a HIGH logic level. Data is read by applying the memory location to the address inputs ($\mathrm{A}_{0}-\mathrm{A}_{10}$) and a logic LOW to the enable input. The stored data is accessed and loaded into the master flip-flops of the data register during the address set-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.
If the asynchronous enable $(\overline{\mathrm{E}})$ is being used, the outputs may be disabled at any time by switching the enable to a

Functional Description (Continued)

logic HIGH, and may be returned to the active state by switching the enable to a logic LOW.
If the synchronous enable ($\overline{\mathrm{E}}_{S}$) is being used, the outputs will go to the OFF or high impedance state upon the next positive clock edge after the synchronous enable input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next low to high transition of the clock. This unique feature allows the CY7C245 decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.
System timing is simplified in that the on-chip edge triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.

The CY7C245 has an asynchronous initialize input (INIT). The initialize function is useful during power-up and timeout sequences and can facilitate implementation of other sophisticated functions such as a built-in "jump start" address. When activated the initialize control input causes the contents of a user programmed 2049th 8-bit word to be loaded into the on-chip register. Each bit is programmable and the initialize function can be used to load any desired combination of " 1 " s and " 0 "s into the register. In the unprogrammed state, activating INIT will generate a register CLEAR (all outputs LOW). If all the bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).
Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable $(\overline{\mathrm{E}})$ LOW.

Switching Waveforms

Notes on Testing

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device \mathbf{V}_{CC} and ground terminals. Multiple capacitors are recommended, including a $0.1 \mu \mathrm{~F}$ or larger capacitor and a $0.01 \mu \mathrm{~F}$ or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.
4. Output levels are measured at 1.5 V reference levels.
5. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from the 1.5 V level on inputs with load shown in Figure 1 b.

Typical DC and AC Characteristics

CLOCK TO OUTPUT TIME vs. TEMPERATURE

OUTPUT SOURCE CURRENT vs. VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED SETUP TIME vs. SUPPLY VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

CLOCK TO OUTPUT TIME

NORMALIZED SETUP TIME vs. TEMPERATURE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C245. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultra-
violet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately $30-35$ minutes. The 7C245 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity UV light for an extended period of time. 7258 $\mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Mode Selection

Table 3

Mode		Pin Function					$\begin{gathered} \text { Outputs } \\ (9-11,13-17) \end{gathered}$
	Read or Output Disable	A_{2}	CP	$\overline{\mathbf{E}} / \overline{\mathbf{E}}_{\mathbf{S}}$	$\overline{\text { INIT }}$	A_{1}	
	Other	A_{2}	$\overline{\text { PGM }}$	$\overline{\text { VFY }}$	$\mathbf{V P P}_{\text {PP }}$	A_{1}	
	Pin	(6)	(18)	(19)	20	(7)	
Read ${ }^{\text {[2,3] }}$		X	X	$\mathrm{V}_{\text {IL }}$	V_{IH}	X	Data Out
Output Disable ${ }^{[5]}$		X	X	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	X	High Z
Program ${ }^{\text {[1,4] }}$		X	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	X	Data In
Program Verify [1,4]		X	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\mathbf{P P}}$	X	Data Out
Program Inhibit ${ }^{\text {[1,4] }}$		X	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	X	High Z
Intelligent Program ${ }^{[1,4]}$		X	$V_{\text {ILP }}$	$V_{\text {IHP }}$	V_{PP}	X	Data In
Program Synch Enable ${ }^{\text {[4] }}$		$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	$\mathrm{V}_{\text {PP }}$	High Z
Program Initial Byte ${ }^{[4]}$		$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	V_{PP}	Data In
Blank Check Ones ${ }^{[1,4]}$		X	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	X	Ones
Blank Check Zeros ${ }^{[1,4]}$		X	$V_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	X	Zeros

Notes:

1. $X=$ Don't care but not to exceed $V_{P P}$.
2. During read operation, the output latches are loaded on a " 0 " to " 1 " transition of CP.
3. If the registered device is being operated in a synchronous mode, pin 19 must be LOW prior to the " 0 " to " 1 " transition on CP (18) that loads the register.

Figure 3. Programming Pinouts
4. During programming and verification, all unspecified pins to be at $V_{\text {ILP }}$.
5. If the registered device is being operated in a synchronous mode, pin 19 must be HIGH prior to the " 0 " to " 1 " transition on CP (18) that loads the register.

The CY7C245 programming algorithm allows significantly faster programming than the "worst case" specification of 10 msec .

Typical programming time for a byte is less than 2.5 msec . The use of EPROM cells allows factory testing of programmed cells, measurement of data retention and erasure to ensure reliable data retention and functional performance. A flowchart of the algorithm is shown in Figure 4.
The algorithm utilizes two different pulse types: initial and overprogram. The duration of the $\overline{\mathrm{PGM}}$ pulse (t_{PP}) is 0.1 msec which will then be followed by a longer overprogram pulse of $24(0.1)(\mathrm{X}) \mathrm{msec} . \mathrm{X}$ is an iteration counter and is equal to the NUMBER of the initial 0.1 msec pulses applied before verification occurs. Up to four 0.1 msec pulses are provided before the overprogram pulse is applied.
The entire sequence of program pulses and byte verifications is performed at $\mathrm{V}_{\mathrm{CCP}}=5.0 \mathrm{~V}$. When all bytes have been programmed all bytes should be compared (Read mode) to original data with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Bit Map Data

Programmer	Address	RAM Data
Decimal	Hex	Contents
0	0	DATA
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
2047	\bullet	DFF
2048	800	INIT BYTE
2049	801	CONTROL BYTE

Control Byte
00 Asynchronous output enable (default state)
01 Synchronous output enable

Programming the Initialization Byte

The CY7C245 registered PROM has a 2049th byte of data used to initialize the value of the register. This initial byte is value " 0 " when the part is received. If the user desires to have a value other than " 0 " for register initialization, this must be programmed into the 2049th byte. This byte is programmed in a similar manner to the 2048 normal bytes in the array except for two considerations. First, since all of the normal addresses of the part are used up, a super voltage will be used to create additional effective addresses. The actual address has $V_{P P}$ on A_{1} pin 7 , and $V_{\text {ILP }}$ on A_{2}, pin 6, per Table 3. The programming and verification of "INITIAL BYTE" is accomplished operationally by performing an initialize function.

Programming Synchronous Enable

The CY7C245 provides for both a synchronous and asynchronous enable function. The device is delivered in an asynchronous mode of operation and only requires that the user alter the device if synchronous operation is required. The determination of the option is accomplished thru the use of an EPROM cell which is programmed only if synchronous operation is required. As with the INITIAL byte, this function is addressed thru the use of a supervoltage. Per Table 3, V_{PP} is applied to pin $7\left(\mathrm{~A}_{1}\right)$ with $\operatorname{pin} 6\left(\mathrm{~A}_{2}\right)$ at $\mathrm{V}_{\text {IHP }}$. This addresses the cell that programs synchronous enable. Programming the cell is accomplished with a 10 ms program pulse on pin 18 ($\overline{\mathrm{PGM}}$) but does not require any data as there is no choice as to how synchronous enable may be programmed, only if it is to be programmed.

Verification of Synchronous Enable

Verification of the synchronous enable function is accomplished operationally. Power the device for read operation with pin 20 at V_{IH}, cause clock pin 18 to transition from V_{IL} to V_{IH}. The output should be in a High Z state. Take pin 20, ENABLE, to V_{IL}. The outputs should remain in a high Z state. Transition the clock from $V_{I L}$ to $V_{I H}$, the outputs should now contain the data that is present. Again set pin 19 to $\mathrm{V}_{\text {IH }}$. The output should remain driven. Clocking pin 18 once more from $\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{\text {IH }}$ should place the outputs again in a High Z state.

Blank Check

A virgin device contains neither one's nor zero's because of the differential cell used for high speed. To verify that a PROM is unprogrammed, use the two blank check modes provided in Table 3. In both of these modes, address and read locations 0 thru 2047. A device is considered virgin if all locations are respectively " 1 's" and " 0 's" when addressed in the "BLANK ONES AND ZEROS" modes.
Because a virgin device contains neither ones nor zeros, it is necessary to program both one's and zero's. It is recommended that all locations be programmed to ensure that ambiguous states do not exist.

Ordering Information

Speed (ns)		$\begin{array}{\|l\|} \hline \mathbf{I}_{\mathbf{C C}} \\ \mathbf{m A} \end{array}$	Ordering Code	Package Type	Operating Range
$\mathrm{t}_{\text {SA }}$	tco				
25	12	90	CY7C245-25PC	P13	Commercial
			CY7C245-25WC	W14	
35	15	60	CY7C245L-35PC	P13	Commercial
			CY7C245L-35WC	W14	
		90	CY7C245-35PC	P13	
			CY7C245-35SC	S13	
			CY7C245-35WC	W14	
			CY7C245-35LC	L64	
		120	CY7C245-35DMB	D14	Military
			CY7C245-35QMB	Q64	
			CY7C245-35WMB	W14	
			CY7C245-35LMB	L64	

Speed (ns)		$\left\lvert\, \begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & \mathrm{mA} \end{aligned}\right.$	Ordering Code	Package Type	Operating Range
$t_{\text {SA }}$	t CO				
45	25	60	CY7C245L-45PC	P13	Commercial
			CY7C245L-45WC	W14	
		90	CY7C245-45PC	P13	
			CY7C245-45SC	S13	
			CY7C245-45WC	W14	
			CY7C245-45LC	L64	
		120	CY7C245-45WMB	W14	Military
			CY7C245-45LMB	L64	
			CY7C245-45DMB	D14	
			CY7C245-45QMB	Q64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$t_{\text {SA }}$	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$

Document \#: 38-00004-E

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 15 ns max set-up
- $\mathbf{1 0}$ ns clock to output
- Low power
- 330 mW (commercial) for $-35 \mathrm{~ns}$
- 660 mW (military)
- Programmable synchronous or asynchronous output enable
- On-chip edge-triggered registers
- Programmable asynchronous register (INIT)
- EPROM technology, $\mathbf{1 0 0} \%$ programmable
- Slim, $\mathbf{3 0 0}$ mil, 24 pin plastic or hermetic DIP
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2000 V static discharge

Logic Bl ock Diagram

Pin Configurations

0121-2

Selection Guide

		7C245A-15	7C245A-18	7C245A-25	7C245A-35
Maximum Setup Time (ns)		15	18	25	35
Maximum Clock to Output (ns)		10	12	12	15
Maximum Operating Current (mA)	STD	Commercial	120	120	90
			120	120	90
	L	Commercial			

Product Characteristics

The CY7C245A is a high performance 2048 word by 8 bit electrically Programmable Read Only Memory packaged in a slim 300 mil plastic or hermetic DIP. The ceramic package may be equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C245A replaces bipolar devices and offers the advantages of lower power, reprogrammability, superior performance and high programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercized prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specification limits.
The CY7C245A has an asynchronous initialize function (ㅍIIT). This function acts as a 2049th 8 -bit word loaded into the on-chip register. It is user programmable with any desired word or may be used as a PRESET or CLEAR function on the outputs.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)...................... -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.......................... -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
DC Program Voltage (Pins 7, 18, 20) 13.0V
UV Erasure . 7258 Wsec/cm²
Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latchup Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[4]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range[7]

Parameters	Description	Test Conditions		7C245A-15, 18		7C245A-25, 35		7C245AL-35		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}= \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$-4.0 \mathrm{~mA}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \mathrm{I}_{\mathrm{OL}}= \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \end{aligned}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Level	Guaranteed Input Log Voltage for All Inputs	$\begin{gathered} \text { cal } \mathrm{HIGH} \\ \text { lid } \end{gathered}$	2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Log Voltage for All Inputs	al LOW		0.8		0.8		0.8	V
IIX	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+ 10	-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage	Note 5		Note 5						
IOZ	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ $\text { Output Disabled }[3]$		-40	+ 40	-40	+ 40	-40	$+40$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[2]}$		-20	-90	-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max. } \end{aligned}$	Commercial		120		90		60	mA
			Military		120		120			

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
2. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
3. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
4. T_{A} is the "instant on" case temperature.
5. The CMOS process does not provide a clamp diode. However, the CY7C245A is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
6. Tested initially and after any design or process changes that may affect these parameters.
7. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over Operating Range ${ }^{[8]}$

Parameters	Description	7C245A-15		7C245A-18		7C245A-25		7C245A-35		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {SA }}$	Address Setup to Clock HIGH	15		18		25		35		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		0		ns
t_{CO}	Clock HIGH to Valid Output		10		12		12		15	ns
tPWC	Clock Pulse Width	10		12		15		20		ns
tSES	$\bar{E}_{\text {S }}$ Setup to Clock HIGH	10		10		12		15		ns
t_{HE}	$\bar{E}_{\text {S }}$ Hold from Clock HIGH	5		5		5		5		ns
t_{DI}	Delay from INIT to Valid Output		15		20		20		20	ns
t_{RI}	INIT Recovery to Clock HIGH	10		15		15		20		ns
tPWI	INIT Pulse Width	10		15		15		20		ns
$t^{\text {cos }}$	Valid Output from Clock HIGH ${ }^{[1]}$		15		15		15		20	ns
$\mathrm{t}_{\mathrm{HZC}}$	Inactive Output from Clock HIGH ${ }^{\text {[1, 3] }}$		15		15		15		20	ns
$\mathrm{t}_{\text {DOE }}$	Valid Output from E LOW[2]		12		15		15		20	ns
$\mathrm{t}_{\mathrm{HZE}}$	Inactive Output from $\overline{\mathrm{E}} \mathrm{HIGH}^{[2,3]}$		15		15		15		20	ns

Notes:

1. Applies only when the synchronous (\bar{E}_{S}) function is used.
2. Applies only when the asynchronous $(\overline{\mathrm{E}})$ function is used.
3. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input with loads shown in Figure 1 b.
4. Tests are performed with rise and fall times of 5 ns or less.
5. See Figure $1 a$ for all switching characteristics except t_{HZ}.
6. See Figure Ib for t_{HZ}.
7. All device test loads should be located within $2^{\prime \prime}$ of device outputs.
8. See the last page of this specification for Group A subgroup testing information.

0121-5
Figure 2

Figure 1a

Figure 1b

Equivalent to:

THÉVENIN EQUIVALENT

OUTPUT O——

Functional Description

The CY7C245A is a CMOS electrically Programmable Read Only Memory organized as 2048 words x 8 -bits and is a pin-for-pin replacement for bipolar TTL fusible link PROMs. The CY7C245A incorporates a D-type, masterslave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with a programmable synchronous ($\overline{\mathrm{E}}_{S}$) or asynchronous ($\overline{\mathrm{E}}$) output enable and asynchronous initialization (INIT).
Upon power-up the state of the outputs will depend on the programmed state of the enable function ($\overline{\mathrm{E}}_{\mathrm{S}}$ or $\overline{\mathrm{E}}$). If the synchronous enable ($\overline{\mathrm{E}}_{S}$) has been programmed, the register will be in the set condition causing the outputs
$\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ to be in the OFF or high impedance state. If the asynchronous enable ($\overline{\mathrm{E}}$) is being used, the outputs will come up in the OFF or high impedance state only if the enable ($\overline{\mathrm{E}}$) input is at a HIGH logic level. Data is read by applying the memory location to the address inputs ($\mathrm{A}_{0}-\mathrm{A}_{10}$) and a logic LOW to the enable input. The stored data is accessed and loaded into the master flip-flops of the data register during the address set-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.
If the asynchronous enable $(\overline{\mathrm{E}})$ is being used, the outputs may be disabled at any time by switching the enable to a

Functional Description (Continued)

logic HIGH, and may be returned to the active state by switching the enable to a logic LOW.
If the synchronous enable (E_{S}) is being used, the outputs will go to the OFF or high impedance state upon the next positive clock edge after the synchronous enable input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next low to high transition of the clock. This unique feature allows the CY7C245A decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.
System timing is simplified in that the on-chip edge triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.

The CY7C245A has an asynchronous initialize input (INIT). The initialize function is useful during power-up and time-out sequences and can facilitate implementation of other sophisticated functions such as a built-in "jump start" address. When activated the initialize control input causes the contents of a user programmed 2049th 8-bit word to be loaded into the on-chip register. Each bit is programmable and the initialize function can be used to load any desired combination of " 1 "s and " 0 "s into the register. In the unprogrammed state, activating INIT will generate a register CLEAR (all outputs LOW). If all the bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).
Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable ($\overline{\mathrm{E}}$) LOW.

Switching Waveforms

Notes on Testing

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals. Multiple capacitors are recommended, including a $0.1 \mu \mathrm{~F}$ or larger capacitor and a $0.01 \mu \mathrm{~F}$ or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.
4. Output levels are measured at 1.5 V reference levels.
5. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from the 1.5 V level on inputs with load shown in Figure $1 b$.

Typical DC and AC Characteristics

NORMALIZED SETUP TIME vs. TEMPERATURE

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7 C 245 A . For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.

The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV
intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately $30-35$ minutes. The 7C245A needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity UV light for an extended period of time. 7258 $\mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Bit Map Data

Programmer Address		RAM Data	
Decimal	Hex	Contents	
0	0	DATA	
\bullet	\bullet	\bullet	
\bullet	\bullet	\bullet	
2047	7 FF	DATA	
2048	800	INIT BYTE	
2049	801	CONTROL BYTE	

Programming the Initialization Byte

The CY7C245A registered PROM has a 2049th byte of data used to initialize the value of the register. This initial byte is value " 0 " when the part is received. If the user desires to have a value other than " 0 " for register initialization, this must be programmed into the 2049th byte. This byte is programmed in a similar manner to the 2048 normal bytes in the array except for two considerations. First, since all of the normal addresses of the part are used up, a super voltage will be used to create additional effective addresses. The actual address has V_{PP} on A_{0} pin 8, and $\mathrm{V}_{\text {ILP }}$ on A_{3}, pin 5, per Table 3. The programming and verification of "INITIAL BYTE" is accomplished operationally by performing an initialize function.

Programming Synchronous Enable

The CY7C245A provides for both a synchronous and asynchronous enable function. The device is delivered in an asynchronous mode of operation and only requires that the user alter the device if synchronous operation is required. The determination of the option is accomplished thru the use of an EPROM cell which is programmed only if synchronous operation is required. As with the INITIAL byte, this function is addressed thru the use of a supervoltage.

Per Table 3, $V_{\text {Pp }}$ is applied to pin $8\left(\mathrm{~A}_{0}\right)$ with pin $5\left(\mathrm{~A}_{3}\right)$ at $\mathrm{V}_{\text {IHP }}$. This addresses the cell that programs synchronous enable. Programming the cell is accomplished with a 10 ms program pulse on pin 18 ($\overline{\mathrm{PGM}})$ but does not require any data as there is no choice as to how synchronous enable may be programmed, only if it is to be programmed.

Verification of Synchronous Enable

Verification of the synchronous enable function is accomplished operationally. Power the device for read operation with pin 19 at V_{IH}, cause clock pin 18 to transition from $\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{\text {IH }}$. The output should be in a High Z state. Take pin 19, ENABLE, to VIL. The outputs should remain in a high Z state. Transition the clock from $\mathrm{V}_{\text {IL }}$ to V_{IH}, the outputs should now contain the data that is present. Again set pin 19 to $\mathrm{V}_{\text {IH }}$. The output should remain driven. Clocking pin 18 once more from $\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{\text {IH }}$ should place the outputs again in a High Z state.

Blank Check

A virgin device contains all zeros. To blank check this PROM, use the verify mode to read locations 0 thru 2047. A device is considered virgin if all locations are " 0 ' s " when addressed.

Ordering Information

Speed (ns)		$\begin{aligned} & \mathrm{I}_{\mathbf{m A}} \end{aligned}$	Ordering Code	Package Type	Operating Range
$\mathbf{t S A}_{\text {S }}$	t_{CO}				
15	10	120	CY7C245A-15PC	P13	Commercial
			CY7C245A-15WC	W14	
18	12	120	CY7C245A-18PC	P13	Commercial
			CY7C245A-18WC	W14	
			CY7C245A-18DMB	D14	Military
			CY7C245A-18QMB	Q64	
			CY7C245A-18WMB	W14	
			CY7C245A-18LMB	L64	
25	15	90	CY7C245A-25PC	P13	Commercial
			CY7C245A-25SC	S13	
			CY7C245A-25WC	W14	
			CY7C245A-25LC	L64	
		120	CY7C245A-25DMB	D14	Military
			CY7C245A-25QMB	Q64	
			CY7C245A-25WMB	W14	
			CY7C245A-25LMB	L64	

Speed (ns)		$\left\lvert\, \begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & \mathbf{m A} \end{aligned}\right.$	Ordering Code	Package Type	Operating Range
${ }_{\text {t }}$ A	t_{CO}				
35	20	60	CY7C245AL-35PC	P13	Commercial
			CY7C245AL-35WC	W14	
		90	CY7C245A-35PC	P13	
			CY7C245A-35SC	S13	
			CY7C245A-35WC	W14	
			CY7C245A-35LC	L64	
		120	CY7C245A-35WMB	W14	Military
			CY7C245A-35LMB	L64	
			CY7C245A-35DMB	D14	
			CY7C245A-35QMB	Q64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$

Document \# : 38-00004-C

SEMICONDUCTOR

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
- 45 ns (commercial)
- 55 ns (military)
- Low power
- 550 mW (commercial)
- 660 mW (military)
- Super low standby power (7C251)
- Less than 165 mW when desele'.ced
- Fast access: 50 ns
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Slim $\mathbf{3 0 0}$ mil or standard 600 mil packaging available
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O

16,384 x 8 PROM Power Switched and Reprogrammable

The CY7C251 and CY7C254 are plugin replacements for bipolar devices and offer the advantages of lower power, superior performance and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Reading is accomplished by placing all four chip selects in their active states. The contents of the memory location addressed by the address lines ($\mathrm{A}_{0}-$ A_{13}) will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Logic Block Diagram

Pin Configurations

0086-2

0086-11

Top View

Selection Guide

		$\begin{aligned} & \text { 7C251-45 } \\ & \text { 7C254-45 } \end{aligned}$	$\begin{array}{r} \text { 7C251-55 } \\ 7 \mathrm{C} 254-55 \end{array}$	$\begin{aligned} & \text { 7C251-65 } \\ & 7 \mathrm{C} 254-65 \end{aligned}$
Maximum Access Time (ns)		45	55	65
Maximum Operating Current (mA)	Commercial	100	100	100
	Military		120	120
Standby Current (mA) (7C251 only)	Commercial	30	30	30
	Military		35	35

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 28 to Pin 14)...................... . . -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
DC Program Voltage (Pin 22) 13.5 V

Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)

Latchup Current . $>200 \mathrm{~mA}$
UV Exposure . 7258 Wsec/cm²
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Rangel ${ }^{[6]}$

Parameters	Description	Test Conditions		$\begin{array}{r} 7 C 251-45 \\ \text { 7C254-45 } \end{array}$		$\begin{array}{r} 7 \mathrm{C} 251-55,65 \\ 7 \mathrm{C} 254-55,65 \end{array}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~m}$			0.5		0.5	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level ${ }^{[1]}$			2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level[1]				0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Current	$\mathrm{GND} \geq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 2		Note 2		
IOZ	Output Leakage Current	$\mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{OH}}$, Output Disabled		-40	$+40$	-40	+40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-20	-90	-20	-90	mA
ICC	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Maxax}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Commercial		100		100	mA
			Military				120	mA
ISB	Standby Supply Current (7C251)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Commercial		30		30	mA
			Military				35	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
CoUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
2. The CMOS process does not provide a clamp diode. However, the CY7C251 and CY7C254 are insensitive to -3V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over the Operating Range ${ }^{[6,7]}$

Parameters	Description	$\begin{aligned} & \hline 7 \mathrm{C} 251-45 \\ & \text { 7C254-45 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 251-55 \\ & \text { 7C254-55 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 251-65 \\ & \text { 7C254-65 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		45		55		65	ns
$\mathrm{t}_{\mathrm{HZCS}}$	Chip Select Inactive to High Z ${ }^{\text {[8, }} 9$]		25		30		35	ns
$\mathrm{t}_{\mathrm{HZCS}}^{2}$	Chip Select Inactive to High Z (7C251, $\overline{\mathrm{CS}}_{1}$ Only ${ }^{\text {[8] }}$		50		60		70	ns
$\mathrm{t}_{\mathrm{ACS}}{ }_{1}$	Chip Select Active to Output Valid ${ }^{[9]}$		25		30		35	ns
$\mathrm{t}_{\mathrm{ACS}}^{2}$	Chip Select Active to Output Valid (7C251, $\overline{\mathrm{CS}}_{1}$ Only)		50		60		70	ns
t_{PU}	Chip Select Active to Power Up (7C251)	0		0		0		ns
$t_{\text {PD }}$	Chip Select Inactive to Power Down (7C251)		50		60		70	ns

AC Test Loads and Waveforms

Figure 1a

Figure 1b

0086-6
Figure 2. Input Pulses

Equivalent to: THÉVENIN EQUIVALENT

Notes:
7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and loads shown in Figure 1a, $1 b$.

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C251 and 7C254 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) or $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately 45 minutes. The 7 C 251 or 7 C 254 needs to be within 1 inch of the lamp during
8. $\mathrm{t}_{\mathrm{HZCS}}$ is tested with load shown in Figure 1b. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input.
9. $\mathrm{t}_{\mathrm{HZCS}}^{1}$ and $\mathrm{t}_{\mathrm{ACS}_{1}}$ refers to 7 C 254 (all chip selects); and $7 \mathrm{C} 251\left(\overline{\mathrm{CS}}_{2}\right.$, CS_{3} and $\overline{\mathrm{CS}}_{4}$ only).
erasure. Permanent damage may result if the PROM is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{~W} \times \mathrm{sec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Blankcheck

Blankcheck is accomplished by performing a verify cycle ($\overline{\mathrm{VFY}}$ toggles on each address), sequencing through all memory address locations, where all the data read will be " 0 "s.

Typical AC and DC Characteristics

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
45	CY7C251-45PC	P21	Commercial
	CY7C251-45WC	W22	
	CY7C254-45WC	W16	
	CY7C254-45PC	P15	
	CY7C254-45DC	D16	
55	CY7C251-55PC	P21	
	CY7C251-55WC	W22	
	CY7C254-55WC	W16	
	CY7C254-55PC	P15	
	CY7C254-55DC	D16	
	CY7C251-55WMB	W22	Military
	CY7C251-55DMB	D22	
	CY7C254-55WMB	W16	
	CY7C254-55DMB	D16	
65	CY7C251-65PC	P21	Commercial
	CY7C251-65WC	W22	
	CY7C254-65WC	W16	
	CY7C254-65PC	P15	
	CY7C254-65DC	D16	
	CY7C251-65WMB	W22	Military
	CY7C251-65DMB	D22	
	CY7C251-65LMB	L55	
	CY7C251-65QMB	Q55	
	CY7C254-65WMB	W16	
	CY7C254-65LMB	L55	
	CY7C254-65QMB	Q55	
	CY7C254-65DMB	D16	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{IB}[2]}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}[1]$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 2}[2]$	$7,8,9,10,11$

Notes:

1. 7 C 254 and $7 \mathrm{C} 251\left(\overline{\mathrm{CS}}_{2}, \mathrm{CS}_{3}\right.$ and $\overline{\mathrm{CS}}_{4}$ only $)$.
2. 7 C 251 ($\overline{\mathrm{CS}}_{1}$ only).

Document \#: 38-00056-D

SEMICONDUCTOR

8192×8 Power-Switched and Reprogrammable PROM

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
-20 ns (commercial)
-25 ns (military)
- Low power
-770 mW (commercial)
-960 mW (military)
- Super low standby power (7C261)
- Less than 250 mW when deselected
- Fast access: 20 ns
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Slim 300-mil or standard $\mathbf{6 0 0}$-mil packaging available
- $\mathbf{5 V} \pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs

Functional Description

The CY7C261, CY7C263, and CY7C264 are high-performance 8192 word by 8 bit CMOS PROMs. When deselected, the 7C261 automatically powers down into a low-power standby mode. It is packaged in the 300 -mil-wide package. The 7C263 and 7C264 are packaged in 300 -mil-wide and 600 -mil-wide packages respectively, and do not power down when deselected. The reprogrammable CerDIP packages are equipped with an erasure window; when exposed to UV light, these PROMs are erased and can then be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms.

The CY7C261, CY7C263, and CY7C264 are plug-in replacements for bipolar devices and offer the advantages of lower power, superior performance and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Read is accomplished by placing an active LOW signal on CS. The contents of the memory location addressed by the address line $\left(\mathrm{A}_{0}-\mathrm{A}_{12}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Logic Block Diagram

Pin Configurations

C261-1

Selection Guide

		$\begin{aligned} & \pi / 263.20 \\ & 7 \% \end{aligned}$	$\begin{aligned} & 142611 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { 7C261-30 } \\ & \text { 7C263-30 } \\ & \text { 7C264-30 } \end{aligned}$	$\begin{aligned} & \text { 7C261-35 } \\ & \text { 7C263-35 } \\ & \text { 7C264-35 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 261-40 \\ & 7 \mathrm{C} 263-40 \\ & \text { 7C264-40 } \end{aligned}$	$\begin{aligned} & \text { 7С261-45 } \\ & \text { 7С263-45 } \\ & \text { 7C264-45 } \end{aligned}$	$\begin{aligned} & \text { 7C261-55 } \\ & \text { 7C263-55 } \\ & \text { 7C264-55 } \end{aligned}$
Maximum Access Time (ns)		20	2S	30	35	40	45	55
Maximum Operating Current (mA)	Commercial	410	[40	140	100	100	100	100
	Military				120		120	120
Maximum Standby Current (mA)	Commercial	40	40	40	30	30	30	30
	Military		59,		30		30	30

[^31]
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)
0.5 V to +7.0 V

DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
DC Program Voltage
(Pin 19 DIP, Pin 23 LCC)
13.0 V

Static Discharge Voltage
$>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$
UV Exposure $7258{\mathrm{Wsec} / \mathrm{cm}^{2}}^{2}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions				$\begin{aligned} & \text { Te } 26125 \\ & \text { 7e } 264 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { 7C261-30 } \\ & \text { 7C263-30 } \\ & \text { 7C264-30 } \end{aligned}$		Units
				Mines	M1\%.	Min.	Ma).	Min.	Max.	
V_{OH}	Output HIGH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$.,	Com'l			得	\%			V
	Voltage	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	Mil		\#	\#\#	\#"			
V_{OH}	Output HIGH	$\mathrm{V}_{\mathrm{CC}}=\text { Min., }$	Com'l	\%4		2\%	\%/.	2.4		V
			Mil			,	/.			
$\mathrm{V}_{\text {OL }}$	Output LOW	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} .,$	Com'l				\%.			V
			Mil				\%			
$\mathrm{V}_{\text {OL }}$	Output LOW	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$,	Com'l		0,	/.	04		0.4	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & (6 \mathrm{~mA} \mathrm{Mil}) \\ & \hline \end{aligned}$	Mil				104			
$\mathrm{V}_{\text {IH }}$	Input HIGH Level ${ }^{[3]}$			20		2\%	\%/	2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level ${ }^{[3]}$				0.8		0\%		0.8	V
I_{IX}	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		\%10	\#\#1	\% 10	+10,	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage									
I_{Oz}	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{OH}}, \\ & \text { Output Disabled }, \end{aligned}$		40.	4.40	40	40	-40	$+40$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[5]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		\% 20	\#90\%	20.	90	-20	-90	mA
I_{CC}	Power Supply	$\begin{array}{\|l\|} \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} ., \\ \mathrm{V}_{\mathrm{n}}=20 \mathrm{y} \end{array}$	Com'l		I40		40		140	mA
			Mil				17\%			
$\mathrm{I}_{\text {SB }}$	Standby Supply	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max} ., \overline{\mathrm{C}} \geq \mathrm{V}_{\mathrm{IH}}$	Com'l		40		40		40	mA
	Current (7C261)	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Mil	亿.	<	\% \times,	50.			

Shaded area contains preliminary information.

Electrical Characteristics Over the Operating Ran2e ${ }^{[6}$ (continued)

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C261-35 } \\ & \text { 7C263-35 } \\ & \text { 7C264-35 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C261-40 } \\ & \text { 7C263-40 } \\ & \text { 7C264-40 } \end{aligned}$		$\begin{aligned} & \text { 7C261-45, } 55 \\ & 7 \mathbf{C 2 6 3 - 4 5}, 55 \\ & \text { 7C264-45, } 55 \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$	Com'l	2.4		2.4		2.4		V
			Mil	2.4				2.4		
$\mathrm{V}_{\text {OH }}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Output HIGH } \\ \text { Voltage } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$	Com'l							V
			Mil					2.4		
$\mathrm{V}_{\text {OL }}$	$\begin{array}{\|l} \text { Output LOW } \\ \text { Voltage } \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$	Com'l		0.4		0.4		0.4	V
			Mil		0.4				0.4	
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	Com'l							V
			Mil							
V_{IH}	Input HIGH Level ${ }^{[3]}$			2.0		2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level ${ }^{[3]}$				0.8		0.8		0.8	V
I_{LX}	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{V}_{C D}$	Input Diode Clamp Voltage			Note 4						
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{Out}} \leq \mathrm{V}_{\mathrm{OH}}, \\ & \text { Output } \\ & \text { Disabled } \end{aligned}$		-40	+40	-40	+40	-40	+ 40	$\mu \mathrm{A}$
Ios	$\begin{aligned} & \text { Output Short } \\ & \text { Circuit Current }{ }^{[5]} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		-20	-90	- 20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \\ & \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	Com'l		100		100		100	mA
			Mil		120				120	
$\mathrm{I}_{\text {SB }}$	Standby SupplyCurrent (7C261)	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		30		30		30	mA
			Mil		30				30	

Capacitance

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\mathbf{I N}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathbf{C C}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. The CMOS process does not provide a clamp diode. However, the CY7C261, CY7C263, and CY7C264 are insensitive to - 3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

AC Test Loads and Waveforms

(a)

C261-5

$\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$	$-2 \mathrm{~mA} / 8 \mathrm{~mA}$	$-4 \mathrm{~mA} / 16 \mathrm{~mA}$
R 1	500Ω $(658 \Omega \mathrm{Mil})$	250Ω
R 2	333Ω $(403 \Omega \mathrm{Mil})$	167Ω
R_{TH}	200Ω $(250 \Omega \mathrm{Mil})$	100Ω

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[1,2]}$

Parameters	Description					$\begin{aligned} & \hline \text { 7C261-30 } \\ & \text { 7C263-30 } \\ & \text { 7C264-30 } \end{aligned}$		$\begin{aligned} & \text { 7C261-35 } \\ & \text { 7C263-35 } \\ & \text { 7C264-35 } \end{aligned}$		Units
		M1\%.	Mav.	Min.	Man.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		20		23		30		35	ns
$\mathrm{t}_{\mathrm{HzCS} 1}$	Chip Select Inactive to High $\mathrm{Z}^{[6]}$		12		IS		25		25	ns
$\mathrm{t}_{\mathrm{HzCS} 2}$	Chip Select Inactive to High $\mathrm{Z}^{[6]}$ (7C261)		20		25		30		30	ns
$\mathrm{t}_{\text {ACS } 1}$	Chip Select Active to Output Valid		12		\}		20		20	ns
$\mathrm{t}_{\text {ACS2 }}$	Chip Select Active to Output Valid (7C261)		20		25		35		40	ns
$\mathrm{t}_{\text {PU }}$	Chip Select Active to Power-Up (7C261)	0		〇		0		0		ns
$\mathrm{t}_{\text {PD }}$	Chip Select Inactive to Power-Down (7C261)		20		25		30		35	ns

Switching Characteristics Over the Operating Range ${ }^{[1,2]}$ (continued)

Parameters	Description	$\begin{aligned} & \hline \text { 7C261-40 } \\ & \text { 7C263-40 } \\ & \text { 7C264-40 } \end{aligned}$		$\begin{aligned} & \text { 7C261-45 } \\ & \text { 7C263-45 } \\ & \text { 7C264-45 } \end{aligned}$		$\begin{aligned} & \text { 7C261-55 } \\ & \text { 7C263-55 } \\ & \text { 7C264-55 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		40		45		55	ns
$\mathrm{t}_{\mathrm{HzCS} 1}$	Chip Select Inactive to High $\mathrm{Z}^{[6]}$		25		30		35	ns
$\mathrm{t}_{\mathrm{HzCS} 2}$	Chip Select Inactive to High Z ${ }^{[6]}$ (7C261)		35		45		55	ns
tacs 1	Chip Select Active to Output Valid		25		30		35	ns
$\mathrm{t}_{\mathrm{ACS} 2}$	Chip Select Active to Output Valid (7C261)		45		45		55	ns
$\mathrm{t}_{\text {PU }}$	Chip Select Active to Power-Up (7C261)	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	Chip Select Inactive to Power-Down (7C261)		40		45		55	ns

Notes:
6. thzCs is tested using the load as shown in part (a) of AC Test Loads and Waveforms. The transition time is measured from 1.5 V on the CS LOW to HIGH transition to the output transition through the ± 500 mV level respective to the 2.0 V bias voltage $\left(\mathrm{V}_{\mathrm{THZCSL}}=1.5 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{THZCSH}}=2.5 \mathrm{~V}$).

Erasure Characteristics

Wavelengths of light less than 4000 angstroms begin to erase the devices in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity x exposure time) or $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a 12 $\mathrm{mW} / \mathrm{cm}^{2}$ power rating. the exposure time would be approximately 45 minutes. The 7C261 or 7C263 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. 7258 W x sec/ cm^{2} is the recommended maximum dosage.

Operating Modes

Read

Read is the normal operating mode for a programmed device. In this mode, all signals are normal TTL levels. The PROM is addressed with a 13 -bit field, a chip select, (active LOW), is applied to the $\overline{\mathrm{CS}}$ pin, and the contents of the addressed location appear on the data out pins.

Program, Program Inhibit, Program Verify

These modes are entered by placing a high voltage V_{PP} on pin 19, with pins 18 and 20 set to $V_{\text {ILP }}$. In this state, pin 21 becomes a latch signal, allowing the upper 5 address bits to be latched into an onboard register, pin 22 becomes an active LOW program ($\overline{\mathrm{PGM}}$) signal and pin 23 becomes an active LOW verify (VFY) signal. Pins 22 and 23 should never be active LOW at the same time. The PROGRAM mode exists when PGM is LOW, and VFY is HIGH. The verify mode exists when the reverse is true, $\overline{\mathrm{PGM}}$ HIGH and $\overline{\text { VFY }}$ LOW and the program inhibit mode is entered with both PGM and VFY HIGH. Program inhibit is specifically provided to allow data to be placed on and removed from the data pins without conflict.

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7C261-20PC	P13	Commercial
	CY7C261-20WC	W14	
25	CY7C261-25PC	P13	Commercial
	CY7C261-25WC	W14	
	CY7C261-25DMB	D14	Military
	CY7C261-25WMB	W14	
	CY7C261-25LMB	L64	
	CY7C261-25QMB	Q64	
30	CY7C261-30PC	P13	Commercial
	CY7C261-30WC	W14	
35	CY7C261-35PC	P13	Commercial
	CY7C261-35WC	W14	
	CY7C261-35DMB	D14	Military
	CY7C261-35WMB	W14	
	CY7C261-35LMB	L64	
	CY7C261-35QMB	Q64	
40	CY7C261-40PC	P13	Commercial
	CY7C261-40WC	W14	
45	CY7C261-45PC	P13	Commercial
	CY7C261-45WC	W14	
	CY7C261-45DMB	D14	Military
	CY7C261-45WMB	W14	
	CY7C261-45LMB	L64	
	CY7C261-45QMB	Q64	
55	CY7C261-55PC	P13	Commercial
	CY7C261-55WC	W14	
	CY7C261-55DMB	D14	Military
	CY7C261-55WMB	W14	
	CY7C261-55LMB	L64	
	CY7C261-55QMB	Q64	

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7C263-20PC	P13	Commercial
	CY7C263-20WC	W14	
25	CY7C263-25PC	P13	Commercial
	CY7C263-25WC	W14	
	CY7C263-25DMB	D14	Military
	CY7C263-25WMB	W14	
	CY7C263-25LMB	L64	
	CY7C263-25QMB	Q64	
30	CY7C263-30PC	P13	Commercial
	CY7C263-30WC	W14	
35	CY7C263-35PC	P13	Commercial
	CY7C263-35WC	W14	
	CY7C263-35DMB	D14	Military
	CY7C263-35WMB	W14	
	CY7C263-35LMB	L64	
	CY7C263-35QMB	Q64	
40	CY7C263-40PC	P13	Commercial
	CY7C263-40WC	W14	
45	CY7C263-45PC	P13	Commercial
	CY7C263-45WC	W14	
	CY7C263-45DMB	D14	Military
	CY7C263-45WMB	W14	
	CY7C263-45LMB	L64	
	CY7C263-45QMB	Q64	
55	CY7C263-55PC	P13	Commercial
	CY7C263-55WC	W14	
	CY7C263-55DMB	D14	Military
	CY7C263-55WMB	W14	
	CY7C263-55LMB	L64	
	CY7C263-55QMB	Q64	

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HZCS} 1}{ }^{[8]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HZCS} 2}{ }^{[7]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}{ }^{[8]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 2}{ }^{[8]}$	$7,8,9,10,11$

Notes:
7. 7C261 only.
8. 7 C 263 and 7 C 264 only.

Document \#: 38-00005-G

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{XX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[7]}$	$1,2,3$

Features

- CMOS for optimum speed/power
- High speed
-15 ns max. set-up
-12 ns clock to output
- Low power
-770 mW (commercial)
- 965 mW (military)
- On-chip edge-triggered registers
- Ideal for pipelined microprogrammed systems
- EPROM technology
- 100\% programmable
- Reprogrammable (7C265W)
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{Cc}}$, commercial and military
- Capable of withstanding $>\mathbf{2 0 0 1 V}$ static discharge
- Slim 28-pin, 300-mil plastic or hermetic DIP

Functional Description

The CY7C 265 is a 64 K registered PROM. It is organized as 8,192 words by 8 bits wide, and has a pipeline output register. In addition, the device features a programmable initialize byte that may be loaded into the pipeline register with the initialize signal. The programmable initialize byte is the 8,193 rd byte in the PROM and its value is programmed at the time of use.
Packaged with 28 pins, the PROM has 13 address signals $\left(\mathrm{A}_{0}\right.$ through A_{12}), 8 data out signals (O_{0} through O_{7}), $\mathrm{E} / \overline{\mathrm{I}}$ (enable or initialize), and CLOCK.
CLOCK functions as a pipeline clock, loading the contents of the addressed memory location into the pipeline register on each rising edge. The data will appear on the outputs if they are enabled. One pin on the CY7C265 is programmed to perform either the enable or the initialize function.

If the asynchronous enable $(\overline{\mathrm{E}})$ is being used, the outputs may be disabled at any time by switching the enable to a logic HIGH, and may be returned to the active state by switching the enable to a logic LOW.
If the synchronous enable $\left(\overline{\mathrm{E}}_{\mathrm{S}}\right)$ is being used, the outputs will go to the OFF or high-impedance state upon the next positive clock edge after the synchronous enable input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next LOW-toHIGH transition of the clock. This unique feature allows the CY7C265 decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.

Pin Configurations

C265-3
LCC
Top View

Functional Description (continued)

If the $\overline{\mathrm{E}} / \overline{\mathrm{I}}$ pin is used for $\overline{\mathrm{INIT}}$ (asynchronous), then the outputs are permanently enabled. The initialize function is useful during power-up and time-out sequences, and can facilitate implementation of other sophisticated functions such as a built-in "jump start" address. When activated, the initialize control input causes the contents of a user programmed 8193 rd 8 -bit word to be loaded into the on-chip register. Each bit is programmable and the initialize function can be used to load any desired combination of 1 's and

0 's into the register. In the unprogrammed state, activating $\overline{\text { INIT }}$ will generate a register clear (all outputs LOW). If all the bits of the initialize word are programmed, activating INIT performs a register preset (all outputs HIGH).
Applying a LOW to the $\overline{\text { INIT }}$ input causes an immediate load of the programmed initialize word into the pipeline register and onto the outputs. The INIT LOW disables clock and must return HIGH to enable clock independent of all other inputs, including the clock.

Selection Guides

		7C265-15	7C265-18	7C265-25	7C265-40	7C265-50	7C265-60
Maximum Set-Up Time (ns)	15	18	25	40	50	60	
Maximum Clock to Output (ns)	12	15	20	20	25	25	
Maximum Operating Current (mA)	Com'1	140	140		100	80	80
	Mil		175	175		120	100

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V

DC Program Voltage . 13.0 V
UV Exposure . $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$
Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)
Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		7C265-15		7C265-18		7C265-25		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I_{O}		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I	Com'l		0.4		0.4		0.4	V
		$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Min} ., \mathrm{I}$	Mil		0.4		0.4		0.4	
V_{IH}	Input HIGH Voltage			2.0		2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8		0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	$+10$	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \text { GND } \leq V_{\text {out }} \leq \mathrm{V}_{\mathrm{Cc}}, \\ & \text { Output Disabled } \end{aligned}$		-40	+40	-40	+40	-40	$+40$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			90		90		90	mA
I_{CC}	$\mathrm{V}_{\text {cc }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		140		140			mA
			Mil				175		175	

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		7C265-40		7C265-50		7C265-60		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$	Com'l		0.4		0.4		0.4	V
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Mil		0.4		0.4		0.4	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0		2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8		0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{cc}}$		- 10	+10	-10	+10	-10	+ 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	$\begin{aligned} & \text { GND } \leq \mathrm{V}_{\text {out }} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$		-40	+40	-40	+40	-40	+40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=$ GND			90		90		90	mA
$\mathrm{I}_{\text {cc }}$	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'1		100		80		80	mA
			Mil				120		100	

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \end{aligned}$	10	pF
Cout	Output Capacitance		10	pF

AC Test Loads and Waveform

(a)

(b)

C265-5

Equivalent to: THÉVENIN EQUIVALENT

${\mathbf{I O H} / /_{\text {OL }}}$		-2 mA/8 mA	-2 mA/12 mA
R1		500Ω (658 ${ }^{\text {Mil) }}$	250Ω
R2		333Ω (403Ω Mil)	167Ω
$\mathrm{R}_{\text {TH }}$		200Ω (250 ${ }^{\text {Mil) }}$	100Ω
C_{L}		30 pF	50 pF
$\mathrm{V}_{\text {TH }}$	Com'l	2.0 V	2.11
	Mil	1.9 V	2.0

CYPRESS
Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	7C265-15		7C265-18		7C265-25		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {As }}$	Address Set-Up to Clock	15		18		25		ns
t_{HA}	Address Hold from Clock	0		0		0		ns
tco	Clock to Output Valid		12		15		20	ns
$\mathrm{t}_{\text {PW }}$	Clock Pulse Width	12		15		20		ns
$\mathrm{t}_{\text {SES }}$	$\overline{\mathrm{E}}_{\text {S }}$ Set-Up to Clock (Sync. Enable Only)	12		15		20		ns
$\mathrm{t}_{\text {HES }}$	$\overline{\mathrm{E}}_{\mathrm{S}}$ Hold from Clock	5		7		10		ns
t_{DI}	$\overline{\text { INIT }}$ to Output Valid		15		18		25	ns
t_{RI}	INIT Recovery to Clock	12		15		20		ns
$\mathrm{t}_{\text {PWI }}$	INIT Pulse Width	12		15		20		ns
$\mathrm{t}_{\cos }$	Output Valid from Clock (Sync. Mode)		12		15		20	ns
$\mathrm{t}_{\mathrm{HzC}}$	Output Inactive from Clock (Sync. Mode)		12		15		20	ns
$\mathrm{t}_{\text {DOE }}$	Output Valid from $\overline{\mathrm{E}}$ LOW (Async. Mode)		12		15		20	ns
$\mathrm{t}_{\text {HZE }}$	Output Inactive from E HIGH (Async. Mode)		12		15		20	ns

Parameters	Description	7C265-40		7C265-50		7C265-60		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AS}	Address Set-Up to Clock	40		50		60		ns
t_{HA}	Address Hold from Clock	0		0		0		ns
t_{CO}	Clock to Output Valid		20		25		25	ns
t_{PW}	Clock Pulse Width	15		20		20		ns
$\mathrm{t}_{\text {SES }}$	$\overline{\mathrm{E}}_{\text {S }}$ Set-Up to Clock (Sync. Enable Only)	15		15		15		ns
$\mathrm{t}_{\text {HES }}$	$\overline{\mathrm{E}}_{\mathrm{S}}$ Hold from Clock	5		5		5		ns
t_{DJ}	INIT to Output Valid		25		35		35	ns
t_{RI}	INIT Recovery to Clock	20		25		25		ns
$\mathrm{t}_{\text {PWI }}$	INIT Pulse Width	25		35		35		ns
$\mathrm{t}_{\cos }$	Output Valid from Clock (Sync. Mode)		20		25		25	ns
$\mathrm{t}_{\mathrm{HzC}}$	Output Inactive from Clock (Sync. Mode)		20		25		25	ns
$\mathrm{t}_{\text {DOE }}$	Output Valid from $\overline{\mathrm{E}}$ LOW (Async. Mode)		20		25		25	ns
$\mathrm{t}_{\text {HZE }}$	Output Inactive from $\overline{\mathrm{E}}$ HIGH (Async. Mode)		20		25		25	ns

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Tested initially and after any design or process changes that may affect these parameters.

SEMICONDUCTOR

Switching Waveform

Notes on Testing:

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.
A. Ensure that adequate decoupling capacitance is employed across the device $V_{\text {Cc }}$ and ground terminals. Multiple capacitors are recommended, including a $0.1-\mu \mathrm{F}$ or larger capacitor and a $0.01-\mu \mathrm{F}$ or smaller capactor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
B. Do not leave any inputs disconnected (floating) during any tests.
C. Do not attempt to perform threshold tests under AC conditions. Lar-ge-amplitude, fast ground-current transients normally occur as the device outputs discharge the load capacitances. These transients, which flow through the parasitic inductance between the device ground pin and the test system ground, can create significant reductions in observable input noise immunity.
D. Output levels are measured at 1.5 V reference levels.
E. Transition is measured at steady-state HIGH level -500 mV or steadystate LOW level +500 mV on the output from the 1.5 V level on inputs with load as shown in (b) of AC Test Loads and Waveforms.

Programming Algorithm for the Architecture

The 7C265 offers a limited selection of programmed architecture. Programming these features should be done with a single $10-\mathrm{ms}-$ wide pulse in place of the intelligent algorithm, mainly because these features are verified operationally, not with the $\overline{\mathrm{VFY}} \mathrm{pin}$. Architecture programming is implemented by applying the supervoltage to two additional pins during programming. In programming the 7C265 architecture, V_{PP} is applied to pins 3,9, and 22. The choice of a particular mode depends on the states of the other pins during programming, so it is important that the condition of the other pins be met as set forth in the mode table. The considerations that apply with respect to power-up and power-down during intelligent programming also apply during architecture programming. Once the supervoltages have been established and the correct logic states exist on the other device pins, programming may begin. Programming is accomplished by pulling PGM from HIGH to LOW and then back to HIGH with a pulse width equal to 10 ms.

Erasure Characteristics

Wavelengths of light less than 4000 angstroms begin to erase the 7 C 265 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity \bullet exposure time) or $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a 12 $\mathrm{mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately 45 minutes. The 7C265 needs to be within one inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Mode Table

Mode Select	$\begin{aligned} & \mathbf{P 2} \\ & \mathbf{A}_{6} \end{aligned}$	$\begin{aligned} & \text { P3 } \\ & \mathbf{A}_{\mathbf{s}} \end{aligned}$	$\begin{gathered} \text { P26 } \\ \mathbf{A g}_{9} \end{gathered}$	$\begin{aligned} & \text { P6 } \\ & \mathbf{A}_{2} \end{aligned}$	$\frac{\mathbf{P 7}}{\mathrm{PGM}}$	$\begin{gathered} \text { P8 } \\ \text { CLK } \end{gathered}$	$\begin{aligned} & \mathbf{P 9} \\ & \mathbf{A}_{1} \end{aligned}$	$\begin{gathered} \mathrm{P} 10 \\ \mathbf{A}_{\mathbf{0}} \end{gathered}$	$\frac{\mathrm{P} 20}{\mathrm{VFY}}$	$\begin{gathered} \mathbf{P 2 4} \\ \mathbf{A}_{11} \end{gathered}$	$\begin{aligned} & \hline \mathbf{P 2 2} \\ & \overline{\mathbf{E} / \bar{I}} \\ & \mathbf{V}_{P P} \end{aligned}$	$\begin{gathered} \mathbf{P 2 3} \\ \mathbf{A}_{12} \end{gathered}$
Normal Read	A_{6}	A_{5}	A_{9}	A_{2}	L	L/H	A_{1}	A_{0}	HIZ	A_{11}	H/L	A_{12}
Program (Memory)	A_{6}	A_{5}	A_{9}	A_{2}	L	L	A_{1}	A_{0}	H	A_{11}	V_{PP}	A_{12}
Program Verify	A_{6}	A_{5}	A_{9}	A_{2}	H	L	A_{1}	A_{0}	L	A_{11}	$\mathrm{V}_{\text {PP }}$	A_{12}
Program Inhibit	A_{6}	A_{5}	A_{9}	A_{2}	H	L	A_{1}	A_{0}	H	A_{11}	V_{PP}	A_{12}
Async. Enable Read	A_{6}	A_{5}	A_{9}	A_{2}	L	L	A_{1}	A_{0}	HIZ	A_{11}	L	A_{12}
Sync. Enable Read	A_{6}	A_{5}	A_{9}	A_{2}	L	L/H	A_{1}	A_{0}	HIZ	A_{11}	L	A_{12}
Async. Init. Read	A_{6}	A_{5}	A_{9}	A_{2}	L	L	A_{1}	A_{0}	HIZ	A_{11}	L	A_{12}
Program Sync. Enable ${ }^{[4]}$	H	V_{PP}	A_{9}	H	L	L	V_{PP}	L	H	H	V_{PP}	H
Program Initialize ${ }^{[5]}$	H	V_{PP}	A_{9}	L	L	L	V_{PP}	L	H	H	V_{PP}	L
Program Initial Byte	H	V_{PP}	A_{9}	L	L	L	V_{PP}	H	H	L	V_{PP}	A_{12}

Notes:
4. Default is asynchronous enable.

Bit Map Data

Programmer Address (Hex.)		RAM Data
Decimal	Hex	Contents
$\mathbf{0}$	0	Data
\cdot	\cdot	\cdot
8191	1FFF	Data
8192	2000	INIT Byte
8193	2001	Control Byte

Control Byte
00 Asynchronous output enable (default condition)
01 Synchronous output enable
02 Asynchronous initialize
5. Default is enable.

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	$\begin{aligned} & \mathbf{I}_{\mathrm{Cc}} \\ & (\mathrm{~mA}) \end{aligned}$	Ordering Code	Package Type	Operating Range
15	140	CY7C265-15PC	P21	Commercial
		CY7C265-15DC	D22	
		CY7C265-15LC	L64	
		CY7C265-15QC	Q64	
		CY7C265-15WC	W22	
18	140	CY7C265-18PC	P 21	Commercial
		CY7C265-18DC	D22	
		CY7C265-18LC	L64	
		CY7C265-18QC	Q64	
		CY7C265-18WC	W22	
	175	CY7C265-18DMB	D22	Military
		CY7C265-18WMB	W22	
		CY7C265-18LMB	L64	
		CY7C265-18QMB	Q64	
25	175	CY7C265-25DMB	D22	Military
		CY7C265-25WMB	W22	
		CY7C265-25LMB	L64	
		CY7C265-25QMB	Q64	
40	100	CY7C265-40PC	P21	Commercial
		CY7C265-40DC	D22	
		CY7C265-40LC	L64	
		CY7C265-40QC	Q64	
		CY7C265-40WC	W22	
50	80	CY7C265-50PC	P21	Commercial
		CY7C265-50DC	D22	
		CY7C265-50LC	L64	
		CY7C265-500C	Q64	
		CY7C265-50WC	W22	
	175	CY7C265-50DMB	D22	Military
		CY7C265-50WMB	W22	
		CY7C265-50LMB	L64	
		CY7C265-50QMB	Q64	
60	80	CY7C265-60PC	P21	Commercial
		CY7C265-60DC	D22	
		CY7C265-60LC	L64	
		CY7C265-60QC	Q64	
		CY7C265-60WC	W22	
	100	CY7C265-60DMB	D22	Military
		CY7C265-60WMB	W22	
		CY7C265-60LMB	L64	
		CY7C265-60QMB	Q64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AS}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{PW}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SES}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HES}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{COS}}$	$7,8,9,10,11$

Document \#: 38-00084-B

8192 x 8 PROM Power Switched and Reprogrammable

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
-20 ns (commercial)
-25 ns (military)
- Low power
- 770 mW (commercial)
-965 mW (military)
- Super low standby power
- Less than 85 mW when deselected
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military

- TTL-compatible I/O

- Direct replacement for EPROMs

Functional Description

The CY7C266 is a high-performance 8192 word by 8 bit CMOS PROM. When deselected, the CY7C266 automatically powers down into a low-power standby mode. It is packaged in the 600 -mil-wide package. The reprogrammable CerDIP packages are equipped with an erasure window; when exposed to UV light, these PROMs are erased and can then be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms.
The CY7C266 is a plug-in replacement for EPROM devices. The EPROM cell requires
only 12.5 V for the super voltage and lowcurrent requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.
Reading is accomplished by placing an active LOW signal on $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$. The contents of the memory location addressed by the address lines (A_{0} through A_{12}) will become available on the output lines $\left(\mathrm{O}_{0}\right.$ through O_{7}).

Logic Block Diagram

Pin Configurations

Selection Guide

		7C266-20	7C266-25	7C266-35	7C266-45	7C266-55
Maximum Access Time (ns)	20	25	35	45	55	
Maximum Operating Current (mA)	Commercial	140	140	100	100	100
	Military		175		125	125
Maximum Standby Current (mA)	Commercial	15	15	15	15	15
	Military		15		15	15

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$	Latch-Up Current . $>200 \mathrm{~mA}$		
Ambient Temperature with	UV Exposure		$7258 \mathrm{Wsec} / \mathrm{cm}^{2}$
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
Supply Voltage to Ground Potential	Operating Range		
(Pin 28 to Pin 14) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .0 .0 .5 \mathrm{~V}$ to +7.0 V		Ambient Temperature	$V_{\text {cc }}$
DC Voltage Applied to Outputs in High Z State -0.5 V to +7.0 V	Range		cc
	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC Program Voltage
. 14.0 V
Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. The CMOS process does not provide a clamp diode. However, the CY7C266 is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
6. Tested initially and after any design or process changes that may affect these parameters.
7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and loads shown in parts (a) and (b) of AC Test Loads and Waveforms.
8. $t_{\text {HZCE }}$ and $t_{\text {HZOE }}$ is tested with load shown in part (b) of AC Test Loads and Waveforms. Transition is measured at steady-state HIGII level -500 mV or steady-state LOW level +500 mV on the output from the 1.5 V level on the input.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Parameter	Description	Test Conditions		7C266-35		7C266-45		7C266-55		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	Com'l	2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}$	Com'l		0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage ${ }^{[3]}$			2.0		2.0				V
V_{LL}	Input LOW Voltage ${ }^{[3]}$				0.8		0.8			V
I_{L}	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 4						
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{OH}} \\ & \text { Output Disabled } \end{aligned}$		-10	+10	-10	+ 10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-20	-90	-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max.}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		100		100		100	mA
			Mil				125		125	
$\mathrm{I}_{\text {SB }}$	Standby Supply Current	Chip Enable Inactive, $\overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}$	Com'l		15		15		15	mA
			Mil				15		15	

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms

(a)

$\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$	$-2 \mathrm{~mA} / 8 \mathrm{~mA}$	$-4 \mathrm{~mA} / 16 \mathrm{~mA}$
R 1	500Ω $(658 \Omega \mathrm{Mil})$	250Ω
R 2	333Ω $(403 \Omega \mathrm{Mil})$	167Ω
R_{TH}	200Ω $(250 \Omega \mathrm{Mil})$	100Ω

Equivalent to: THÉVENIN EQUIVALENT

AC Test Loads and Waveforms (continued)

C266-6
Switching Characteristics Over the Operating Range ${ }^{[1,2,7]}$

Parameters	Description		7C266-20		7C266-25		7C266-35		7C266-45		7-266-55		Units
			Min.	Max.									
t_{AA}	Address to Output Valid	Com'l		20		25		35		45		55	ns
		Mil				25		35		45		55	
$\mathrm{t}_{\mathrm{HZCE}}{ }^{[6,8]}$	Chip Enable Inactive to High Z	Com'l		25		30		40		45		55	ns
		Mil				30		40		45		55	
$\mathrm{t}_{\mathrm{HZO}}{ }^{[6,8]}$	Output Enable Inactive to High Z	Com'l		12		15		20		20		20	ns
		Mil				15		20		20		20	
$\mathrm{t}_{\text {AOE }}$	Output Enable Active to Output Valid	Com'l		12		15		20		20		20	ns
		Mil				15		20		20		20	
$\mathrm{t}_{\text {ACE }}$	Chip Enable Active to Output Valid	Com'l		25		30		40		45		55	ns
		Mil				30		40		45		55	
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	Com'l	3		3		3		3		3		ns
		Mil			3		3		3		3		

Erasure Characteristics

Wavelengths of light less than 4000 angstroms begin to erase the devices in the windowed package. For this reason, an opaque label should be placed over the window if the EPROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum does (UV intensity x ex-
posure time) or $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a 12 $\mathrm{mW} / \mathrm{cm}^{2}$ power rating, the exposure time would be approximately 45 minutes. The CY7C266 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the EPROM is exposed to high-intensity UV light for an extended period of time. $7258 \mathrm{~W} \times \mathrm{sec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Typical DC and AC Characteristics

TYPICAL ACCESS TIME CHANGE
vs. OUTPUT LOADING

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7C266-20PC	P15	Commercial
	CY7C266-20WC	W16	
	CY7C266-20DC	D16	
25	CY7C266-25PC	P15	Commercial
	CY7C266-25WC	W16	
	CY7C266-25DC	D16	
	CY7C266-25WMB	W16	Military
	CY7C266-25DMB	D16	
	CY7C266-25LMB	L55	
	CY7C266-25QMB	Q55	
35	CY7C266-35PC	P15	Commercial
	CY7C266-35WC	W16	
	- Y7C266-35DC	D16	
45	CY7C266-45PC	P15	Commercial
	CY7C266-45WC	W16	
	CY7C266-45DC	D16	
	CY7C266-45WMB	W16	Military
	CY7C266-45DMB	D16	
	CY7C266-45LMB	L55	
	CY7C266-45QMB	Q55	
55	CY7C266-55PC	P15	Commercial
	CY7C266-55WC	W16	
	CY7C266-55DC	D16	
	CY7C266-55WMB	W16	Military
	CY7C266-55DMB	D16	
	CY7C266-55LMB	L55	
	CY7C266-55QMB	Q55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AOE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$

Document \#: 38-00086-B

Features

- CMOS for optimum speed/power
- High speed
- 15-ns max set-up
- 12-ns clock to output
- Low power
- 770 mW (commercial)
-965 mW (military)
- On-chip edge-triggered registers
- Ideal for pipelined microprogrammed systems
- On-chip diagnostic shift register
- For serial observability and controlability of the output register
- EPROM technology
- $\mathbf{1 0 0 \%}$ programmable
- Reprogrammable (7C269W)
- $\mathbf{5 V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- Capable of withstanding >2001V static discharge
- Slim 300-mil, 28-pin plastic or hermetic DIP (7C269)

Functional Description

The CY7C268 and the CY7C269 are 64 K registered diagnostic PROMs. They are both organized as 8,192 words by 8 bits wide, and they have both a pipeline output register and an onboard diagnostic shift register. Both devices feature a programmable initialize byte that may be loaded into the pipeline register with the initialize signal. The programmable initialize byte is the 8,193rd byte in the PROM, and may be programmed to any desired value.
The CY7C268 has 32 pins and features full diagnostic capabilities while the CY7C269 provides limited diagnostics and is available in a space-efficient 28 -pin package. This allows the designers to optimize designs for either board-area efficiency with the CY7C269, or combine the CY7C268 with other diagnostic products using the standard interface.

CY7C268

The CY7C268 provides 13 address signals (A_{0} through A_{12}), 8 data out signals (O_{0} through O_{7}), ENA (enable), PCLK (pipeline clock) and INIT (initialize) for control.

64K Registered Diagnostic PROM

The full standard feature diagnostics of the CY7C268 utilize the SDI and SDO (shift in and shift out), MODE, and DCLK signals. These signals allow serial data to be shifted into and out of the diagnostic shift register at the same time the pipeline register is used for normal operation. The MODE signal is used to control the transfer of the information in the diagnostic register to the pipeline register, or the data on the output bus into the diagnostic register. The data on the output bus may be provided from the pipeline register or from an external source.
When the MODE signal is LOW, the PROM operates in a normal pipeline mode. The contents of the addressed memory location are loaded into the pipeline register on the rising edge of PCLK. the outputs are enabled with the ENA signal either synchronously or asynchronously, depending on how the device is configured when programmed. If programmed for asynchronous enable, ENA LOW enables the outputs. If configured for synchronous enable, ENA LOW will enable the outputs synchronously with PCLK during the rising edge of PCLK. ENA

Logic Block Diagram

C268-1

Functional Description (continued)

HIGH will synchronously disable the outputs during the rising edge of PCLK. The asynchronous initialize signal, INIT, transfers the initialize byte into the pipeline register on a HIGH to LOW transition. INIT LOW disables PCLK and must transition back to a HIGH in order to enable PCLK. DCLK shifts data into SDI and out of SDO on each rising edge.
When MODE is HIGH, the rising edge of the PCLK signal loads the pipeline register with the contents of the diagnostic register. Similarly, DCLK, in this mode, loads the diagnostic register with the information on the data output pins. The information loaded will be either the contents of the pipeline register if the outs are enabled, or data on the bus if the outputs are disabled (in a highimpedance state).

CY7C269

The CY7C269 is optimized for applications that require diagnostics in a minimum amount of board area. Packaged in 28 pins, it has 13 address signals (A_{0} through A_{12}), 8 data out signals (O_{0} through O_{7}), $\overline{\mathrm{E}} / \overline{\mathrm{I}}$ (Enable or Initialize), and CLOCK (pipeline and diagnostic clock). Additional diagnostic signals consist of MODE, SDI (shift in) and SDO (shift out). Normal pipelined operation and diagnostic operation are mutually exclusive.
When the MODE signal is LOW, the 7C269 operates in a normal pipelined mode. CLOCK functions as a pipeline clock, loading the contents of the addressed memory location into the pipeline register on each rising edge. The data will appear on the outputs if they are enabled. One pin on the 7C269 is programmed to perform either the Enable or the Initialize function. If the $\overline{\mathrm{E}} / \overline{\mathrm{I}}$ pin is used for
a $\overline{\text { INIT }}$ (asynchronous initialize) function, the outputs are permanently enabled and the initialize word is loaded into the pipeline register on a HIGH to LOW transition of the INIT signal. The INIT LOW disables CLOCK and must return high to re-enable CLOCK. If the \bar{E} / \bar{I} pin is used for an enable signal, it may be programmed for either synchronous or asynchronous operation. This enable function then operates exactly the same as the 7C268.
When the MODE signal is HIGH, the 7 C 269 operates in the diagnostic mode. The \bar{E} / I signal becomes a secondary mode signal designating whether to shift the diagnostic shift register or to load either the diagnostic register or the pipeline register. If $\overline{\bar{E}} / \overline{\mathrm{I}}$ is HIGH , CLOCK performs the function of DCLK, shifting SDI into the least-significant location of the diagnostic register and all bits one location toward the most-significant location on each rising edge. The contents of the most-significant location in the diagnostic register are available on the SDO pin.
If the \bar{E} / \bar{I} signal is LOW, SDI becomes a direction signal, transferring the contents of the diagnostic register into the pipeline register when SDI is LOW. When SDI is HIGH, the contents of the output pins are transferred into the diagnostic register. Both transfers occur on a LOW to HIGH transition of the CLOCK. If the outputs are enabled, the contents of the pipeline register are transferred into the diagnostic register. If the outputs are disabled, an external source of data may be loaded into the diagnostic register. In this condition, the SDO signal is internally driven to be the same as the SDI signal, thus propagating the "direction of transfer information" to the next device in the string.

Selection Guide

		7C269-15	7C269-18	7C269-25
Maximum Set-Up Time (ns)			15	18
Maximum Clock to Output (ns)	12	15	25	
Maximum Operating Current (mA)	Commercial	140	140	
	Military		175	175

		$\begin{aligned} & \hline 7 \mathrm{C} 268-40 \\ & 7 \mathrm{C} 269-40 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 268-50 \\ & 7 \mathrm{C} 269-50 \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{C} 268-60 \\ & \text { 7C269-60 } \end{aligned}$
Maximum Set-Up Time (ns)		40	50	60
Maximum Clock to Output (ns)		20	25	25
Maximum Operating Current (mA)	Commercial	100	80	80
	Military		120	100

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Cu		. $>200 \mathrm{~mA}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs 	Range	Ambient Temperature	$\mathrm{V}_{\mathbf{c c}}$
DC Program Voltage . 13.0V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
UV Exposure $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description			7C269-15		7C269-18		7C269-25		Units
		Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	Com'l	2.4		2.4		2.4		V
			Mil	2.4		2.4		2.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Com'l		0.4		0.4		0.4	V
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=6.0 \mathrm{~mA}$	Mil		0.4		0.4		0.4	
V_{IH}	Input HIGH Voltage		Com'l	2.0		2.0		2.0		V
			Mil	2.0		2.0		2.0		
V_{IL}	Input LOW Voltage		Com'l		0.8		0.8		0.8	V
			Mil		0.8		0.8		0.8	
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	Com'l	-10	+10	-10	+10	-10	$+10$	$\mu \mathrm{A}$
			Mil	-10	$+10$	-10	+10	- 10	+10	
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{OuT}} \leq \mathrm{V}_{\mathrm{Cc}}, \\ & \text { Output Disabled } \end{aligned}$	Com'l	-40	$+40$	-40	$+40$	-40	$+40$	$\mu \mathrm{A}$
			Mil	-40	$+40$	-40	$+40$	-40	$+40$	
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$	Com'l		90		90		90	mA
			Mil		90		90		90	
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}$	Com'l		140		140			mA
			Mil				175		175	

Parameters	Description	Test Conditions		$\begin{aligned} & \hline 7 \mathrm{C} 268-40 \\ & \text { 7C269-40 } \\ & \hline \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 268-50 \\ & 7 \mathrm{C} 269-50 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 268-60 \\ & 7 \mathrm{C} 269-60 \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	Com'l	2.4		2.4		2.4		V
			Mil	2.4		2.4		2.4		
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$	Com'l		0.4		0.4		0.4	V
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Mil		0.4		0.4		0.4	
V_{IH}	Input HIGH Voltage		Com'l	2.0		2.0		2.0		V
			Mil	2.0		2.0		2.0		
V_{IL}	Input LOW Voltage		Com'l		0.8		0.8		0.8	V
			Mil		0.8		0.8		0.8	
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	Com'l	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
			Mil	-10	$+10$	-10	+ 10	- 10	+10	
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\text {Out }} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$	Com'l	-40	$+40$	-40	$+40$	-40	$+40$	$\mu \mathrm{A}$
			Mil	-40	$+40$	-40	$+40$	-40	$+40$	
I_{OS}	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\text {OUT }}=\mathrm{GND}$	Com'l		90		90		90	mA
			Mil		90		90		90	
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Com'l		100		80		80	mA
			Mil				120		100	

Notes

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:
3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

C268-7

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $0 \longrightarrow \mathrm{~V}_{\text {TH }}$

$\mathbf{I}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$		$-\mathbf{2} \mathbf{~ m A} / 6 \mathrm{~mA}$
$\mathbf{R} 1$		$\mathbf{- 2} \mathbf{~ m A} / 12 \mathrm{~mA}$
R 2		$333 \Omega(658 \Omega \mathrm{Mil})$
R_{TH}		$338(500 \mathrm{Mil})$
C_{L}		$200 \Omega(250 \Omega \mathrm{Mil})$
V_{TH}	Com'l	$248(333 \mathrm{Mil})$
	Mil	30 pF

Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	7C269-15		7C269-18		7C269-25		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {AS }}$	Address Set-Up to Clock	15		18		25		ns
t_{HA}	Address Hold from Clock	0		0		0		ns
t_{co}	Clock to Output Valid		12		15		20	ns
$\mathrm{t}_{\text {PW }}$	Clock Pulse Width	12		15		20		ns
$\mathrm{t}_{\text {SES }}$	$\overline{\mathrm{E}}_{\text {S }}$ Set-Up to Clock (Sync Enable Only)	12		15		20		ns
$\mathrm{t}_{\text {HES }}$	$\overline{\mathrm{E}}_{\mathrm{s}}$ Hold from Clock	5		7		10		ns
$\mathrm{t}_{\text {DI }}$	$\overline{\overline{\text { INIT }} \text { to Out Valid }}$		15		18		25	ns
t_{RI}	$\overline{\text { INIT }}$ Recovery to Clock	12		15		20		ns
$\mathrm{t}_{\text {PWI }}$	INIT Pulse Width	12		18		25		ns
$\mathrm{t}_{\mathrm{cos}}$	Output Valid from Clock (Sync. Mode)		12		15		20	ns
$\mathrm{t}_{\text {HzS }}$	Output Inactive from Clock (Sync. Mode)		12		15		20	ns
$\mathrm{t}_{\text {DOE }}$	Output Valid from E LOW (Asynch. Mode)		12		15		20	ns
$\mathrm{t}_{\text {HZE }}$	Output Inactive from $\overline{\mathrm{E}}$ HIGH (Async. Mode)		12		15		20	ns

Switching Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Parameters	Description	$\begin{aligned} & 7 \mathrm{C} 268-40 \\ & \text { 7C269-40 } \end{aligned}$		$\begin{aligned} & \text { 7C268-50 } \\ & \text { 7C269-50 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 268-60 \\ & 7 \mathrm{C} 269-60 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {As }}$	Address Set-Up to Clock	40		50		60		ns
t_{HA}	Address Hold from Clock	0		0		0		ns
t_{co}	Clock to Output Valid		20		25		25	ns
$\mathrm{t}_{\text {PW }}$	Clock Pulse Width	15		20		20		ns
$\mathrm{t}_{\text {SES }}$	$\overline{\mathrm{E}}_{\text {S }}$ Set-Up to Clock (Sync Enable Only)	15		15		15		ns
$\mathrm{t}_{\text {HES }}$	$\overline{\mathrm{E}}_{\text {S }}$ Hold from Clock	5		5		5		ns
t_{DI}	INIT to Output Valid		25		35		35	ns
t_{RI}	$\overline{\text { INIT Recovery to Clock }}$	20		25		25		ns
$\mathrm{t}_{\text {PWI }}$	INIT Pulse Width	25		35		35		ns
$\mathrm{t}_{\cos }$	Output Valid from Clock (Sync. Mode)		20		25		25	ns
$\mathrm{t}_{\mathrm{HzS}}$	Output Inactive from Clock (Sync. Mode)		20		25		25	ns
$\mathrm{t}_{\text {doe }}$	Output Valid from $\overline{\mathrm{E}}$ LOW (Asynch. Mode)		20		25		25	ns
$\mathrm{t}_{\text {HZE }}$	Output Inactive from $\overline{\mathrm{E}}$ HIGH (Async. Mode)		20		25		25	ns

Diagnostic Mode Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description		7C269-15		7C269-18		7C269-25		$\begin{array}{r} 7 \mathrm{C} 268-40,50,60 \\ \text { 7C269-40,50,60 } \\ \hline \end{array}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {SSDI }}$	Set-Up SDI to Clock	Com'1	20		25				30		ns
		Mil			25		30		35		
$\mathrm{t}_{\text {HSDI }}$	SDI Hold from Clock	Com'l	0		0				0		ns
		Mil			0		0		0		
$\mathrm{t}_{\text {DSDO }}$	SDO Delay from Clock	Com'l		20		25				30	ns
		Mil				25		30		40	
$\mathrm{t}_{\text {DCL }}$	Minimum Clock LOW	Com'l	20		25				25		ns
		Mil			25		30		25		
$\mathrm{t}_{\mathrm{DCH}}$	Minimum Clock HIGH	Com'l	20		25				25		ns
		Mil			25		30		25		
$\mathrm{t}_{\text {SM }}$	Set-Up to Mode Change	Com'l	20		25				25		ns
		Mil			25		30		30		
t_{HM}	Hold from Mode Change (7C269)	Com'l	0		0				0		ns
		Mil			0		0		0		
t_{MS}	Mode to SDO	Com'l		20		25				25	ns
		Mil				25		30		30	
$\mathrm{t}_{\text {ss }}$	SDI to SDO	Com'l		30		35				40	ns
		Mil				35		40		45	
$\mathrm{t}_{\text {so }}$	Data Set-Up to DCLK	Com'l	20		25				25		ns
		Mil			25		30		30		
t_{HO}	Data Hold from DCLK	Com'1	10		13				10		ns
		Mil			13		18		15		

Switching Waveforms

Pipeline Operation $($ Mode $=0)$

Diagnostic Waveform for the 7C268

Notes on Testing:

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.
A. Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals. Multiple capacitors are recommended, including a $0.1-\mu \mathrm{F}$ or larger capacitor and a $0.01-\mu \mathrm{F}$ or smaller capactor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
B. Do not leave any inputs disconnected (floating) during any tests.
C. Do not attempt to perform threshold tests under AC conditions. Lar-ge-amplitude, fast ground-current transients normally occur as the device outputs discharge the load capacitances. These transients, flowing through the parasitic inductance between the device ground pin and the test system ground, can create significant reductions in observable input noise immunity.
D. Output levels are measured at 1.5 V reference levels.
E. Transition is measured at steady-state HIGH level -500 mV or steadystate LOW level +500 mV on the output from the 1.5 V level on inputs with load as shown in (b) of AC Test Loads and Waveforms.

Switching Waveforms (continued)

Diagnostic Application for the 7C269 (Shifting the Shadow Register)

Diagnostic Application for the 7C269 (Parallel Data Transfer)

Notes:

4. Asynchronous enable mode only.
5. The mode transition to HIGH latches the asynchronous enable state. If the enable state is changed and held before leaving the diagnostic mode (mode $\mathrm{H} \rightarrow \mathrm{L}$) then the output impedance change delay is t_{MS}.

Bit Map Data

Programmer Address (Hex.)		RAM Data
Decimal	Hex	Contents
0	0	Data
\cdot	\cdot	\cdot
8191	1 FFF	Data
8192	2000	Init Byte
8193	2001	Control Byte

Control Byte

00 Asynchronous output enable (default condition)
01 Synchronous output enable
02 Asynchronous initialize (CY7C269 only)

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

Ordering Information

Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \end{gathered}$	Ordering Code	Package Type	Operating Range
40	100	CY7C268-40DC	D20	Commercial
		CY7C268-40WC	W20	
50	80	CY7C268-50DC	D20	Commercial
		CY7C268-50WC	W20	
	120	CY7C268-50DMB	D20	Military
		CY7C268-50WMB	W20	
		CY7C268-50LMB	L55	
		CY7C268-50QMB	Q55	
60	80	CY7C268-60DC	D20	Commercial
		CY7C268-60WC	W20	
	100	CY7C268-60DMB	D20	Military
		CY7C268-60WMB	W20	
		CY7C268-60LMB	L55	
		CY7C268-600MB	Q55	

Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \end{gathered}$	Ordering Code	Package Type	Operating Range
15	140	CY7C269-15DC	D22	Commercial
		CY7C269-15LC	L64	
		CY7C269-15QC	Q64	
		CY7C269-15PC	P21	
		CY7C269-15WC	W22	
18	140	CY7C269-18DC	D22	Commercial
		CY7C269-18LC	L64	
		CY7C269-18QC	Q64	
		CY7C269-18PC	P21	
		CY7C269-18WC	W22	
	175	CY7C269-18DMB	D22	Military
		CY7C269-18WMB	W22	
		CY7C269-18LMB	L64	
		CY7C269-18QMB	Q64	
25	175	CY7C269-25DMB	D22	Military
		CY7C269-25WMB	W22	
		CY7C269-25LMB	L64	
		CY7C269-25QMB	Q64	
40	100	CY7C269-40DC	D22	Commercial
		CY7C269-40PC	P21	
		CY7C269-40WC	W22	
50	80	CY7C269-50DC	D22	Commercial
		CY7C269-50PC	P21	
		CY7C269-50WC	W22	
	120	CY7C269-50DMB	D22	Military
		CY7C269-50WMB	W22	
		CY7C269-50LMB	L64	
		CY7C269-50QMB	Q64	
60	80	CY7C269-60DC	D22	Commercial
		CY7C269-60PC	P21	
		CY7C269-60WC	W22	
	100	CY7C269-60DMB	D22	Military
		C7C269Y-60WMB	W22	
		CY7C269-60LMB	L64	
		CY7C269-60QMB	Q64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AS}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{PW}	$7,8,9,10,11$
$\mathrm{t}_{\text {SES }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {HES }}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{COS}}$	$7,8,9,10,11$

Diagnostic Mode Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\mathrm{SSDI}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HSDI}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DSDO}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DCL}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DCH}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HM}}{ }^{[6]}$	$7,8,9,10,11$
t_{MS}	$7,8,9,10,11$
t_{SS}	$7,8,9,10,11$

Notes:
6. 7C269 only.

Document \#: 38-00069-B

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
- 35 ns (commercial)
-45 ns (military)
- Low power
- 660 mW (commercial)
- 715 mW (military)
- Super low standby power
- Less than 165 mW when deselected
- EPROM technology 100% programmable
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Slim 300 mil package (7C271)
- Direct replacement for bipolar PROMs
- Capable of withstanding $>2001 \mathrm{~V}$ static discharge

Product Characteristics

The CY7C271 and CY7C274 are high performance 32,768 word by 8 bit CMOS PROMS. When disabled ($\overline{\mathrm{CE}}$ HIGH), the 7C271/274 automatically powers down into a low power standby mode. The CY7C271 is packaged in the 300 mil slim package. The CY7C274 is packaged in the industry standard 600 mil package. Both the 7 C 271 and 7 C 274 are available in a CERDIP package equipped with an erasure window to provide for reprogrammability. When exposed to UV light, the PROM is erased and can be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C271 and CY7C274 offer the advantage of lower power, superior
performance and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be 100% tested, with each location being written into, erased and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Reading the 7C271 is accomplished by placing active LOW signals on $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CE}}$, and an active HIGH on CS_{2}.
Reading the 7 C 274 is accomplished by placing active LOW signals on $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$. The contents of the memory location addressed by the address lines ($\mathrm{A}_{0}-\mathrm{A}_{14}$) will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Selection Guide

		7C271-35 7C274-35	7C271-45 7C274-45	7C271-55 7C274-55
Maximum Access Time (ns)		35	45	55
Maximum Operating Current (mA)	Commercial	120	120	120
	Military		130	130

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied $\ldots \ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State \qquad $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Input Vc.iage 3.0 V to +7.0 V
DC Program Voltage
13.0 V

Static Discharge Voltage . 2001 V (per MIL-STD-883, Method 3015)
Latchup Current $>200 \mathrm{~mA}$
UV Exposure 7258 Wsec/cm ${ }^{2}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[4]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[5]}$

* 6.0 mA military

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
2. The CMOS process does not provide a clamp diode. However, the CY7C271 and CY7C274 are insensitive to -3V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. T_{A} is the "instant on" case temperature.
5. See the last page of this specification for Group A subgroup testing information.
6. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics Over the Operating Range ${ }^{[5,7]}$

Parameters	Description	$\begin{array}{r} \text { 7C271-35 } \\ \text { 7C274-35 } \\ \hline \end{array}$		$\begin{aligned} & \text { 7C271-45 } \\ & \text { 7C274-45 } \\ & \hline \end{aligned}$		$\begin{array}{r} \text { 7C271-55 } \\ \text { 7C274-55 } \\ \hline \end{array}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		35		45		55	ns
$\mathrm{t}_{\mathrm{HZCS}}$	Chip Select Inactive to High $\mathrm{Z}^{[8]}\left(\overline{\mathrm{CS}}_{1}\right.$ and $\mathrm{CS}_{2}-7 \mathrm{C} 271$ Only $)$		25		30		30	ns
$\mathrm{t}_{\mathrm{ACS}}$	Chip Select Active to Output Valid ($\overline{\mathrm{CS}}_{1}$ and $\mathrm{CS}_{2}-7 \mathrm{C} 271$ Only)		25		30		30	ns
$\mathrm{t}_{\text {HZOE }}$	Output Enable Inactive to High $\mathrm{Z}^{[8]}$ ($\overline{\mathrm{OE}}-7 \mathrm{C} 274$ Only)		25		25		30	ns
t_{OE}	Output Enable Active to Output Valid ($\overline{\mathrm{OE}}-7 \mathrm{C} 274$ Only)		25		25		30	ns
$\mathrm{t}_{\mathrm{HZCE}}$	Chip Enable Inactive to High $\mathrm{Z}^{[8]}$ ($\overline{\mathrm{CE}}$ Only)		40		50		60	ns
$\mathrm{t}_{\text {ACE }}$	Chip Enable Active to Output Valid ($\overline{\mathrm{CE}}$ Only)		40		50		60	ns
t_{PU}	Chip Enable Active to Power Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	Chip Enable Inactive to Power Down		40		50		60	ns
$\mathrm{tOH}^{\text {O}}$	Output Hold from Address Change	0		0		0		ns

AC Test Loads and Waveforms

Figure 1a

0102-4

Figure 1b

Figure 2. Input Pulses

Equivalent to: THÉVENIN EQUIVALENT

0102-5

Notes:
7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and loads shown in Figure 1a, 1 b.
8. $\mathrm{t}_{\mathrm{HZCS}(\mathrm{E})}$ and $\mathrm{t}_{\mathrm{HZOE}}$ are tested with the load shown in Figure $1 b$. Transition is measured at steady state High level -500 mV or steady

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C271 and 7C274 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV
state Low level +500 mV on the output from the 1.5 level on the input.
9. CS_{2} and $\overline{\mathrm{CS}}_{1}$ are used on the 7 C 271 only. $\overline{\mathrm{OE}}$ is used on the 7 C 274 only.
intensity \times exposure time) or $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately 45 minutes. The 7C271 and 7C274 need to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{~W} \times \mathrm{sec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Typical DC and AC Characteristics

OR :
-

Read Mode Table

Part	V $_{\text {PP }}$	PGM	VFY
7C271	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$
7C274	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$

Reading PROMs

Below are timing diagrams for the final read of the PROMs. Use 1μ s timing for pulse widths and overlaps.

DATA

Figure 4. PROM Programming Waveforms

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY7C271-35PC	P21	Commercial
	CY7C271-35WC	W22	
45	CY7C271-45PC	P21	Commercial
	CY7C271-45WC	W22	
	CY7C271-45DMB	D22	Military
	CY7C271-45WMB	W22	
	CY7C271-45LMB	L55	
	CY7C271-45QMB	Q55	
55	CY7C271-55PC	P21	
	CY7C271-55WC	W22	
	CY7C271-55DMB	D22	Military
	CY7C271-55WMB	W22	
	CY7C271-55LMB	L55	
	CY7C271-55QMB	Q55	

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY7C274-35PC	P15	Commercial
	CY7C274-35WC	W16	
45	CY7C274-45PC	P15	Commercial
	CY7C274-45WC	W16	
	CY7C274-45DMB	D16	Military
	CY7C274-45WMB	W16	
	CY7C274-45LMB	L55	
	CY7C274-45QMB	Q55	
55	CY7C274-55PC	P15	Commercial
	CY7C274-55WC	W16	
	CY7C274-55DMB	D16	
	CY7C274-55WMB	W16	
	CY7C274-55LMB	L55	
	CY7C274-55QMB	Q55	

SEMICONDUCTOR
MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}{ }^{[1]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OE}}{ }^{[2]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$

Notes:

1. 7C271 only.
2. 7C274 only.

Document \#: 38-00068-D

Reprogrammable 32,768 x 8 Registered PROM

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 30 ns max set-up
- 15 ns clock to output
- Low power
- 660 mW (commercial)
- 715 mW (military)
- Programmable address latch enable input
- Programmable synchronous or asynchronous output enable (7C277)
- On-chip edge-triggered output registers (7C277)
- Optional registered/latched address inputs (7C279)
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- Slim 300 mil, 28-pin plastic or hermetic DIP
- 5V $\pm 10 \% V_{C C}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2000 V static discharge

Selection Guide

		7C279-35	7C277-30	7C279-45	7C277-40	7C279-55	7C277-50
Maximum Access Time (ns)		35		45		55	
Maximum Setup Time (ns)			30		40		50
Maximum Clock to Output (ns)			15		20		25
Maximum Operating Current (mA)	Commercial	120	120	120	120	120	120
	Military			130	130	130	130
Maximum Standby Current (mA)	Commercial	30		30		30	
	Military			40		40	

\qquad
\qquad
Product Characteristics

The CY7C277 and CY7C279 are high performance 32,768 word by 8 bit CMOS PROMs. When deselected, the 7C279 automatically powers down into a low power standby mode. The 7C277 and the 7C279 both are packaged in the slim 28 pin 300 mil package. The ceramic package may be equipped with an erasure window; when exposed to UV light, the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide algorithms.
The CY7C277 and CY7C279 offer the advantages of lower power, reprogrammability, superior performance and high programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be 100% tested, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the project will meet DC and AC specification limits.
On the 7 C 277 , the outputs are pipelined through a masterslave register. On the rising edge of $C P$, data is loaded into the 8 bit edge triggered output register. The $\overline{\mathrm{E}} / \overline{\mathrm{E}}_{\mathrm{s}}$ provides a programmable bit to select between asynchronous and synchronous operation. The default condition is
asynchronous. When the asynchronous mode is selected, the $\overline{\mathrm{E}} / \overline{\mathrm{E}}_{\mathrm{S}}$ pin is sampled continuously and operates as an output enable. If the synchronous mode is selected, then the $\overline{\mathrm{E}} / \overline{\mathrm{E}}_{\text {s }}$ pin is sampled only when CP is HIGH. Enabling the outputs in this mode is accomplished by bringing the \bar{E}_{S} pin LOW and pulsing CP HIGH to latch the output enable state. The 7C277 also provides a programmable bit to enable the ADDRESS LATCH ENABLE (ALE) pin. If this bit is not programmed, then the device will ignore the ALE pin. If the ALE function is selected, the user may define the polarity of the ALE signal with the default being

ACTIVE HIGH.

On the 7C279, address registers are provided to easily interface with the Cypress 7C601 and other microprocessors that clock their addresses. A programmable bit is provided to select between Latched and Registered address inputs. The default is registered inputs, which will sample the address on the RISING EDGE of CP and load the address register. The Latched address option will recognize any address changes while the ALE pin is ACTIVE and load the address into the address latches on the DEACTIVATING EDGE of ALE. If the latched address option is selected, then another programmable bit is provided for the user to select the polarity that will define ALE ACTIVE, with the default being ACTIVE HIGH.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)...................... . . -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. \qquad -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
DC Program Voltage (Pins 7, 18, 20) 13.0V
UV Erasure . 7258 Wsec/cm²

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latchup Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[3]}$

Capacitance ${ }^{[8]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Notes:

1. The 7C279 only has a standby mode.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
5. The CMOS process does not provide a clamp diode. However, the CY7C277 and CY7C279 are insensitive to - 3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
6. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
7. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
8. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics Over Operating Range ${ }^{[8]}$

Parameters	Description	7C277-30		7C277-40		7C277-50		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AL}	Address Setup to ALE Active	5		10		10		ns
t_{LA}	Address Hold from ALE Inactive	10		10		15		ns
$t_{\text {LL }}$	ALE Pulse Width	10		10		15		ns
$\mathrm{t}_{\text {SA }}$	Address Setup to Clock HIGH	30		40		50		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		ns
tses	\bar{E}_{S} Setup to Clock HIGH	12		15		15		ns
$\mathrm{t}_{\text {HES }}$	$\bar{E}_{\text {S }}$ Hold from Clock HIGH	5		10		10		ns
$\mathrm{t}_{\mathrm{CO}}{ }^{\text {[14] }}$	Clock HIGH to Output Valid		15		20		25	ns
tPWC	Clock Pulse Width	15		20		20		ns
$\mathrm{t}_{\text {LZC }}$	Output Low Z from Clock HIGH		20		20		30	ns
$\mathrm{t}_{\mathrm{HZC}}{ }^{[14,9]}$	Output High Z from Clock HIGH		20		20		30	ns
${ }^{\text {t }}$ LZE	Output Low Z from $\overline{\mathrm{E}}$ LOW		20		20		30	ns
$\mathrm{t}_{\mathrm{HZE}}{ }^{[15,9]}$	Output High Z from E HIGH		20		20		30	ns
tcest	Chip Enable Setup to Latch Close	10		10		10		ns

Switching Characteristics Over Operating Range ${ }^{[8]}$ (Continued)

Parameters	Description	7C279-35		7C279-45		7C279-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{tcO}^{[12]}$	Clock to Output Valid		35		45		55	ns
$\mathrm{t}_{\mathrm{HZCS}}$	Chip Select Inactive to High Z		25		30		30	ns
$\mathrm{t}_{\mathrm{ACS}}$	Chip Select Active to Output Valid		25		30		30	ns
$\mathrm{taR}_{\text {AR }}$	Address Register Setup to ALE Active	3		10		10		ns
t_{RA}	Address Hold from ALE Active	6		10		10		ns
$t_{\text {tadH }}$	Data Hold from ALE Active	5		5		5		ns
$\mathrm{t}_{\text {PU }}$	Chip Enable Active to Power Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	Chip Enable Inactive to Power Down		40		50		60	ns
$\mathrm{toH}^{[12]}$	Output Hold from Address Change	0		0		0		ns
tpWA	Address Register Pulse Width		10		20		30	ns
${ }^{\text {t CESC }}$	Chip Enable Setup to Clock Rise	10		10		10		ns

Notes:
9. $\mathrm{t}_{\text {HZCS }}$ and thZE are tested wtih the load shown in Figure 1b. Transition is measured at steady state high level -500 mV or steady state low level +500 mV on the output from the 1.5 V level on the input.
10. These parameters apply to the 7 C 277 only.
11. These parameters apply to the 7 C 279 only.
12. t_{AA} and t_{OH} apply only when the latched mode is selected.
13. Tests are performed with rise and fall times of 5 ns or less.
14. Applies only when the synchronous (E_{S}) function is used.
15. Applies only when the asynchronous (\bar{E}) function is used.
16. See Figure Ia for all switching characteristics except $\mathrm{t}_{\mathrm{HZCS}}$ and ${ }^{\text {thZE }}$
17. See the last page of this specification for Group A subgroup testing information.
18. All device test loads should be located within $2^{\prime \prime}$ of device outputs.

AC Test Loads and Waveforms ${ }^{[9,16,18]}$

Figure 1a

0136-8

Figure 1b

Equivalent to: THÉVENIN EQUIVALENT

Architecture Configuration Bits

Architecture Bit	Device	Architecture Verify$\mathrm{D}_{7}-\mathrm{D}_{\mathbf{0}}$		Function
ALE	7C277	D_{1}	$0=$ DEFAULT	Input Transparent
			1 = PGMED	Input Latched
ALE	7C279	D 1	$0=$ DEFAULT	Input Registered
			1 = PGMED	Input Latched
ALEP	7C277	D_{2}	$0=$ DEFAULT	ALE $=$ ACTIVE HIGH
			1 = PGMED	ALE = ACTIVE LOW
ALEP	7C279	D_{2}	$0=$ DEFAULT	ALE = ACTIVE HIGH
			1 = PGMED	ALE $=$ ACTIVE LOW
$\overline{\mathrm{E}} / \overline{\mathrm{E}}_{S}$	7C277	D_{0}	$0=$ DEFAULT	Asynchronous Output Enable ($\overline{\mathrm{E}}$)
			1 = PGMED	Synchronous Output Enable (ES)

Bit Map

Programmer Address (Hex)	RAM Data
0000	Data
\bullet	\vdots
\bullet	\vdots
7FFF	Data
8000	Control Byte

Architecture Byte (8000)
$\mathrm{D}_{7} \quad \mathrm{D}_{0}$
$\mathrm{C}_{7} \mathrm{C}_{6} \mathrm{C}_{5} \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{0}$

R

\qquad

Typical DC and AC Characteristics

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

0136-15

Timing Diagram (7C277)

Timing Diagram (7C279)

Registered

ALE is shown with positive polarity.

Positive ALE

Negative ALE is a programmable option.

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY7C277-30PC	P21	Commercial
	CY7C277-30WC	W22	
	CY7C279-35PC	P21	
	CY7C279-35WC	W22	
45	CY7C277-40PC	P21	Commercial
	CY7C277-40WC	W22	
	CY7C279-45PC	P21	
	CY7C279-45WC	W22	
	CY7C277-40DMB	D22	Military
	CY7C277-40WMB	W22	
	CY7C277-40LMB	L55	
	CY7C277-40QMB	Q55	
	CY7C279-45DMB	D22	
	CY7C279-45WMB	W22	
	CY7C279-45LMB	L55	
	CY7C279-45QMB	Q55	
55	CY7C277-50 PC	P21	Commercial
	CY7C277-50WC	W22	
	CY7C279-55PC	P21	
	CY7C279-55 WC	W22	
	CY7C277-50DMB	D22	Military
	CY7C277-50WMB	W22	
	CY7C277-50LMB	L55	
	CY7C277-50QMB	Q55	
	CY7C279-55DMB	D22	
	CY7C279-55WMB	W22	
	CY7C279-55LMB	L55	
	CY7C279-55QMB	Q55	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[11]}$	$1,2,3$

Switching Characteristics

Device	Parameters	Subgroups
7C277	$\mathrm{t}_{\text {SA }}$	7,8,9,10,11
	t_{HA}	7,8,9,10,11
	t_{CO}	7,8,9,10,11
7C279	t_{AR}	7,8,9,10,11
	tra	7,8,9,10,11
	tDHA	7,8,9,10,11

Note:
11. These parameters apply to the 7C279 only.

Document \# : 38-00085-B

Features

- CMOS for optimum speed/ power
- High speed
- 30 ns (commercial)
- 45 ns (military)
- Low power
- 495 mW (commercial)
- 660 mW (military)
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Slim 300 or standard 600 mil DIP or 28 pin LCC
- $\mathbf{5 V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding $>1500 \mathrm{~V}$ static discharge

Product Characteristics

The CY7C281 and CY7C282 are high performance 1024 word by 8 bit CMOS PROMs. They are functionally identical, but are packaged in 300 mil and 600 mil wide packages respectively.
The CY7C281 is also available in a 28 pin leadless chip carrier. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C281 and CY7C282 are plugin replacements for bipolar devices and offer the advantages of lower power, superior performance and programming yield. The EPROM cell requires only 13.5 V for the supervoltage and

Logic Block Diagram

low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercized prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Reading is accomplished by placing an active LOW signal on $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$, and active HIGH signals on CS_{3} and CS_{4}. The contents of the memory location addressed by the address lines ($\mathrm{A}_{0}-\mathrm{A}_{9}$) will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Pin Configurations

0009-2

Selection Guide

		7C281-30 7C282-30	7C281-45 7C282-45
Maximum Access Time (ns)		30	45
Maximum Operating Current (mA)	Commercial	100	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V

DC Program Voltage (Pins 18, 20) 14.0V

Static Discharge Voltage . $>1500 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-up Current . . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C281-30 } \\ & \text { 7C282-30 } \end{aligned}$		$\begin{aligned} & \text { 7C281-45 } \\ & \text { 7C282-45 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.,	. mA	2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I^{1}	mA		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level ${ }^{[3]}$			2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level ${ }^{[3]}$				0.8		0.8	V
I_{IX}	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+ 10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 4		Note 4		
IOZ	Output Leakage Current	$\mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{OH}}$, Output Disabled		-40	+40	-40	$+40$	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		100		90	mA
			Military				120	mA

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. The CMOS process does not provide a clamp diode.

However, the CY7C281 \& CY7C282 are insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
6. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics Over the Operating Range ${ }^{[2,7]}$

Parameters	Description	$\begin{aligned} & \text { CY7C281-30 } \\ & \text { CY7C282-30 } \end{aligned}$		$\begin{aligned} & \text { CY7C281-45 } \\ & \text { CY7C282-45 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		30		45	ns
$\mathrm{t}_{\mathrm{HZCS}}$	Chip Select Inactive to High Z[8]		20		25	ns
$\mathrm{taCS}^{\text {d }}$	Chip Select Active to Output Valid		20		25	ns

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Equivalent to: THÉVENIN EQUIVALENT

0009-5

Notes:
7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and loads shown in Figure 1a, 1 b.

0009-6
Figure 2. Input Pulses
OUTPUT O—_

8. $\mathrm{t}_{\mathrm{HzCS}}$ is tested with load shown in Figure $1 b$. Transition is measured at steady state High level +500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input.

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT

AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

OUTPUT SOURCE CURRENT

NORMALIZED ACCESS TIME
vs. SUPPLY VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPU'T LOADING

0009-9

Figure 3. Programming Pinout

Programming Algorithm

0009-10
The CY7C281 and CY7C282 programming algorithm allows significantly faster programming than the "worst case" specification of 10 msec .
Typical programming time for a byte is less than 2.5 msec . The use of EPROM cells allows factory testing of programmed cells, measurement of data retention and erasure to ensure reliable data retention and functional performance. A flowchart of the algorithm is shown in Figure 4.
The algorithm utilizes two different pulse types: initial and overprogram. The duration of the PGM pulse (tPP) is 0.1 msec which will then be followed by a longer overprogram pulse of $24(0.1)(\mathrm{X}) \mathrm{msec}$. X is an iteration counter and is equal to the NUMBER of the initial 0.1 msec pulses applied before verification occurs. Up to four 0.1 msec pulses are provided before the overprogram pulse is applied.
The entire sequence of program pulses and byte verification is performed at $\mathrm{V}_{\mathrm{CC}}=5.0$. When all bytes have been programmed all bytes should be compared (Read mode) to original data with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Figure 4. Programming Flowchart

Programming Information

The 7C281 and 7C282 1K x 8 CMOS PROMs are implemented with a differential EPROM memory cell. The PROMS are delivered in an erased state, containing neither " 1 s " nor " 0 s ". This erased condition of the array may be assessed using the "BLANK CHECK ONES" and "BLANK CHECK ZEROS" function, see below.

DC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Blank Check

A virgin device contains neither ones nor zeros because of the differential cell used for high speed. To verify that a PROM is unprogrammed, use the two blank check modes provided in Table 3. In both of these modes, address and read locations 0 thru 1023. A device is considered virgin if all locations are respectively " $1 s$ " and " $0 s$ " when addressed in the "BLANK ONES AND ZEROS" modes.
Because a virgin device contains neither ones nor zeros, it is neccessary to program both ones and zeros. It is recommended that all locations be programmed to ensure that ambiguous states do not exist.

Table 1

Parameter	Description	Min.	Max.	Units
$\mathrm{V}_{\mathbf{P P}}$	Programming Voltage[1]	13.0	14.0	V
$\mathrm{~V}_{\mathrm{CCP}}$	Supply Voltage	4.75	5.25	V
$\mathrm{~V}_{\text {IHP }}$	Input HIGH Voltage	3.0		V
$\mathrm{~V}_{\mathrm{ILP}}$	Input LOW Voltage		0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage $[2]$	2.4		V
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage $[2]$		0.4	V
I_{PP}	Programming Supply Current		50	mA

AC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Table 2

Parameter	Description	Min.	Max.	Units
tpp	Programming Pulse Width ${ }^{\text {[3] }}$	100	10,000	$\mu \mathrm{s}$
$\mathrm{taS}_{\text {A }}$	Address Setup Time	1.0		$\mu \mathrm{s}$
$t_{\text {DS }}$	Data Setup Time	1.0		$\mu \mathrm{s}$
$\mathrm{t}_{\text {AH }}$	Address Hold Time	1.0		$\mu \mathrm{s}$
t_{DH}	Data Hold Time	1.0		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	$\mathrm{V}_{\text {PP }}$ Rise and Fall Time ${ }^{[3]}$	1.0		$\mu \mathrm{s}$
tvD	Delay to Verify	1.0		$\mu \mathrm{s}$
tvP	Verify Pulse Width	2.0		$\mu \mathrm{s}$
$t_{\text {dV }}$	Verify Data Valid		1.0	$\mu \mathrm{s}$
tDZ	Verify to High Z		1.0	$\mu \mathrm{s}$

Notes:

1. $\mathrm{V}_{\mathrm{CCP}}$ must be applied prior to V_{PP}.
2. Measured 10% and 90% points.
3. During verify operation.

Mode Selection
Table 3

Mode		Pin Function				$\begin{gathered} \text { Outputs } \\ (9-11,13-17) \end{gathered}$
	Read or Output Disable	CS_{4}	CS_{3}	$\overline{\mathrm{CS}}_{2}$	$\overline{\mathrm{CS}}_{1}$	
	Other	$\overline{\text { PGM }}$	$\overline{\text { VFY }}$	$V_{\text {PP }}$	$\overline{C S}_{1}$	
	Pin Number	(18)	(19)	(20)	(21)	
Read		$\mathrm{V}_{\text {IH }}$	V_{IH}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	Data Out
Output Disable ${ }^{[4]}$		X	X	$\mathrm{V}_{\text {IH }}$	X	High Z
Output Disable ${ }^{[4]}$		X	$\mathrm{V}_{\text {IL }}$	X	X	High Z
Output Disable ${ }^{[4]}$		$\mathrm{V}_{\text {IL }}$	X	X	X	High Z
Output Disable ${ }^{[4]}$		X	X	X	$\mathrm{V}_{\text {IH }}$	High Z
Program		$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	Data In
Program Verify		$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$V_{\text {ILP }}$	Data Out
Program Inhibit		$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$V_{\text {ILP }}$	High Z
Intelligent Program		$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$V_{\text {ILP }}$	Data In
Blank Check Ones		$V_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	Ones
Blank Check Zeros		$V_{P P}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	Zeros

Notes:

4. $\mathrm{X}=$ Don't care but not to exceed $\mathrm{V}_{\mathrm{CC}}+5 \%$.

Programming Sequence 1K x 8

Power the device for normal read mode operation with pin 18, 19, 20, and 21 at V_{IH}. Per Figure 5 take pin 20 to V_{Pp}. The device is now in the program inhibit mode of operation with the output lines in a high impedance state; see Tables 3 and 4. Again per Figure 5 address program and verify one byte of data. Repeat this for each location to be programmed.
If the brute force programming method is used, the pulse width of the program pulse should be 10 ms , and each
5. During programming and verification, all unspecified pins to be at $\mathrm{V}_{\mathrm{ILP}}$.
location is programmed with a single pulse. Any location that fails to verify causes the device to be rejected.
If the intelligent programming technique is used, the program pulse width should be $100 \mu \mathrm{~s}$. Each location is ultimately programmed and verified until it verifies correctly up to and including 4 times. When the location verifies, one additional programming pulse should be applied of duration $24 \times$ the sum of the previous programming pulses before advancing to the next address to repeat the process.

Figure 5. Programming Waveforms

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
30 ns	CY7C281-30PC	P13	Commercial
	CY7C282-30PC	P11	
	CY7C281-30DC	D14	
	CY7C281-30LC	L64	
45 ns	CY7C282-30DC	D12	
	CY7C281-45PC	P13	Commercial
	CY7C282-45PC	P11	
	CY7C281-45DC	D14	
	CY7C281-45LC	L64	
	CY7C282-45DC	D12	
	CY7C281-45DMB	D14	Military
	CY7C281-45LMB	L64	
	CY7C282-45DMB	D12	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$

Document \#: 38-00006-B

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- Unique fast column access
$-\mathrm{t}_{\mathrm{A}}=\mathbf{2 0} \mathbf{n s}$ (commercial)
$-\mathrm{t}_{\mathrm{AA}}=25 \mathrm{~ns}$ (military)
- WAIT signal
- Chip select decoding
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{cc}}$, commercial and military
- TTL-compatible I/O
- Slim 300-mil package
- Capable of withstanding $>\mathbf{2 0 0 1 V}$ static discharge

Functional Description

The CY7C285 and the CY7C289 are highperformance 65,536 by 8 -bit CMOS PROMs. The CY7C285 is available in a 28 -pin 300 -mil package. It features a unique fast column access feature that allow access times as fast as 20 ns for each byte in a 64-byte page. There are 1024 pages in the device. The access time when changing pages will be 65 ns . In order to easily facilitate the use of the fast column access feature, a WAIT signal will be generated to advise the processor of a page change. The CY7C289 also incorporates the fast column access feature and through the use of the ALE option adds either synchronous address registers or asynchronous address latches. The CY7C289 is particularly well suited to support applications using the CY7C601 as well as other RISC or CISC microprocessors. It is available in a 32-pin 300-mil package.
The CY7C285 and CY7C289 offer the advantage of low power, superior performance,
and programming yield. The EPROM cell requires only 12.5 V for the super voltage and low current requirements. The EPROM cells allow for each memory location to be 100% tested, with each location being written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Reading the CY7C285 is accomplished by placing an active LOW signal on the CS pin. Reading the CY7C289 is accomplished by placing an active LOW signal on the CE pin and by placing active HIGH signals on the CS_{1} or CS_{2} pins as appropriate. The contents of the memory location addressed by the address lines $\left(\mathrm{A}_{0}-\mathrm{A}_{15}\right)$ will become available on the output lines ($\mathrm{O}_{0}-\mathrm{O}_{7}$).

Logic Block Diagram

Pin Configurations

Selection Guide

	Description		$\begin{aligned} & \hline \text { 7C285-65 } \\ & \text { 7C289-65 } \end{aligned}$	$\begin{aligned} & \text { 7C285-75 } \\ & \text { 7C289-75 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C285-85 } \\ & \text { 7C289-85 } \end{aligned}$
Maximum Access Time (ns)	Page Access Time		65	75	85
	Column Access Time		20	25	35
Maximum Operating Current (mA)		Commercial	180	180	180
		Military		200	200

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	UV Exposure . $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$		
Ambient Temperature with Power Applied	$-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	Static Discharge Voltage . >2001V (per MIL-STD-883, Method 3015)		
Supply Voltage to Ground Potential (CY7C285: Pin 28 to Pin 14) (CY7C289 Pin 32 to Pin 12, 21)	-0.5 V to +7.0 V	Latch-Up Current \qquad $>200 \mathrm{~mA}$ Operating Range		
DC Voltage Applied to Outputs in High Z State	-0.5 V to +7.0 V	Range	Ambient Temperature	$V_{\text {cc }}$
DC Input Voltage	-3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
DC Program Voltage (CY7C285: Pins 21, 22)		Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

(CY7C285: Pins 21, 22)
(CY7C289 Pins 24, 26).
13.0 V

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \hline 7 \mathrm{C} 285-65,75,85 \\ & \text { 7C289-65, } 75,85 \\ & \hline \end{aligned}$		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}^{[3]}$			0.4	V
$\mathrm{V}_{\mathrm{H}}{ }^{[4]}$	Input HIGH Level			2.0	V_{cc}	V
$\mathrm{V}_{\mathrm{LL}}{ }^{[3]}$	Input LOW Level				0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$.
V_{CD}	Input Diode Clamp Voltage			Note 5		
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\text {Out }} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-40	+40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[6]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUr }}=\mathrm{GND}$		-20	-90	mA
I_{CC}	V cc Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Com'l		180	mA
			Mil		200	mA

Capacitance ${ }^{[7]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF	

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\mathrm{I}_{\mathrm{OL}}=6.0 \mathrm{~mA}$ for military $7 \mathrm{C} 285, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$ for commercial 7 C 289 , and $\mathrm{I}_{\mathrm{OL}}=3.0 \mathrm{~mA}$ for military 7C289.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
5. The CMOS process does not provide a clamp diode. However, the CY7C285 and CY7C289 are insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at the 50% point).
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
7. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveform ${ }^{[8,9]}$

(a)

Equivalent to:
THÉVENIN EQUIVALENT

(b)
OUTPUT O Commercial $_{200 \Omega}^{\text {Com }} 2.0 \mathrm{~V}$

C285-7

3

7C285 Switching Characteristics Over the Operating Range

Parameters	Description	7C285-65		7C285-75		7C285-85		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {RAC }}$	Slow Address Access Time ($\mathrm{A}_{6}-\mathrm{A}_{15}$)		65		75		85	ns
$\mathrm{t}_{\text {cas }}$	Fast Address Access Time ($\mathrm{A}_{0}-\mathrm{A}_{5}$)		20		25		35	ns
$\mathrm{t}_{\mathrm{HzCs}}$	Output Tri-State from $\overline{\mathrm{CS}}$		15		20		25	ns
$\mathrm{t}_{\text {Acs }}$	Output Valid from $\overline{\mathrm{CS}}$		15		20		25	ns
t_{wd}	Wait Delay from First Slow Address Change		20		25		35	ns
t_{DW}	Wait Hold from Data Valid	0		0		0		ns
$t_{\text {ww }}$	Wait Recovery from Last Address Change		90		110		120	ns
$\mathrm{t}_{\text {PWD }}$	Wait Pulse Width	10		12		15		ns

7C289 Switching Characteristics Over the Operating Range

Parameters	Description		7C289-65		7C289-75		7C289-85		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {RAC1 }}$	Slow Address Access Time ($\mathrm{A}_{6}-\mathrm{A}_{15}$)			65		75		85	ns
$\mathrm{t}_{\text {CAA } 1}$	Fast Address Access Time ($\mathrm{A}_{0}-\mathrm{A}_{5}$)			20		25		35	ns
$\mathrm{t}_{\text {AR } 1}$	Register Address Set-Up Time		2		4		8		ns
$\mathrm{t}_{\text {RA1 }}$	Register Address Hold Time		6		6		10		ns
$\mathrm{taR2}^{[10]}$	Register Address Set-Up		8		10		15		ns
$\mathrm{t}_{\text {RA2 }}{ }^{[10]}$	Register Address Hold Time		2		4		8		ns
$\mathrm{t}_{\mathrm{HzCS}}$	Output Tri-State from Clock HIGH			20		20		25	ns
$\mathrm{t}_{\text {ACS }}$	Output Valid from Clock HIGH			20		20		25	ns
$\mathrm{t}_{\text {PWC }}$	Clock Pulse Width		11		13		15		ns
$\mathrm{t}_{\text {ADH }}$	Data Hold Time	Com'l	5		5		5		ns
		Mil			5		5		ns
$\mathrm{t}_{\text {SCE }}$	Chip Enable Set-Up		2		4		8		ns
$\mathrm{t}_{\mathrm{HCE}}$	Chip Enable Hold		6		6		10		ns
$\mathrm{t}_{\text {WD1 }}$	Wait Delay from Clock LOW		0	19	0	25	0	30	ns
$\mathrm{t}_{\mathrm{WD} 3}{ }^{[11]}$	Wait Delay from Clock HIGH		0	16	0	20	0	25	ns

Switching Characteristics for the 7C289 Over the Operating Range (continued)

Parameters	Description	7C289-65		7C289-75		7C289-85		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {RAC2 }}{ }^{[12]}$	Slow Address Access Time ($\mathrm{A}_{6}-\mathrm{A}_{15}$)		65		75		85	ns
$\mathrm{t}_{\mathrm{CAA}{ }^{[12]}}$	Fast Address Access Time ($\mathrm{A}_{0}-\mathrm{A}_{5}$)		22		30		35	ns
$\mathrm{t}_{\mathrm{ACE}}{ }^{[12]}$	Output Valid from $\overline{\mathrm{CE}}$		20		25		30	ns
$\mathrm{t}_{\mathrm{HZCE}}{ }^{[12]}$	Output Tri-state from $\overline{\mathbf{C E}}$		20		25		30	ns
$\mathrm{t}_{\mathrm{AL}}{ }^{[12]}$	Address Set-Up Time	5		8		12		ns
$\mathrm{t}_{\mathrm{LA}}{ }^{[12]}$	Address Hold Time	10		12		15		ns
$\mathrm{t}_{\mathrm{LL}}{ }^{[12]}$	ALE Pulse Width	10		12		15		ns
$\mathrm{t}_{\text {PWD }}{ }^{[12]}$	Wait Pulse Width	10		12		15		ns
$\mathrm{t}_{\text {WD2 }}{ }^{[12]}$	Wait Delay from First Slow Address Change		21		25		30	ns
$\mathrm{t}_{\mathrm{Dw} 2}{ }^{[12]}$	Wait Hold from Data Valid	0		0		0		ns
$\mathrm{t}_{\mathrm{WW} 2}{ }^{[12]}$	Wait Recovery from Last Address Change		90		110		120	ns
$\mathrm{t}_{\mathrm{CES}}{ }^{[13]}$	$\overline{\text { CE }}$ Set-Up Time for Tri-State Outputs	3		4		8		ns

Architecture Configuration Bits

Architecture Bit	Device	Architecture Verify $\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{7}$		Function
TAS	7C289	D_{1}	$0=$ Erased	Address Set-Up < Address Hold
			1 = PGMED	Address Set-Up > Address Hold
ALE	7 C 289	D_{2}	0 = Erased	Input Registered (ADDR, $\overline{\mathrm{CE}}, \mathrm{CS}_{1}, \mathrm{CS}_{2}$)
			1 = PGMED	Input Latched (ADDR, $\overline{\mathrm{CE}}, \mathrm{CS}_{1}, \mathrm{CS}_{2}$)
ALEP	7 C 289	D_{3}	$0=$ Erased	ALE = LOW, Addresses Latched
			1 = PGMED	ALE $=$ HIGH, Addresses Latched
WAITC	7С289	D_{4}	0 = Erased	WAIT Follows the Falling Edge of CP
			1 = PGMED	WAIT Follows the Rising Edge of CP
WAITP	7C289	D_{5}	0 = Erased	WAIT Signal Active LOW
			1 = PGMED	WAIT Signal Active HIGH
CS1E	7С289	D_{6}	0 = Erased	CS_{1} (Pin 24) $=$ LOW, Disables Outputs
			1 = PGMED	$\mathrm{CS}_{1}($ Pin 24$)=$ HIGH, Disables Outputs
CS2E	7 C 289	D_{7}	$0=$ Erased	CS_{2} (Pin 16) $=$ LOW, Disables Outputs
			1 = PGMED	CS_{2} (Pin 16) $=$ HIGH, Disables Outputs

Bit Map

Programmer Address (Hex.)	RAM Data
0000	Data
$\dot{\cdot}$	$\dot{子}$
FFFF	Data
10000	Control Byte

Notes:

8. R1 is a resistor connected from the output to $V_{C C}$ and $R 2$ is connected between the output and ground for testing purposes.
9. Note that R 1 and R 2 for the 7 C 7 C 289 will be 961Ω and 561Ω for commercial (Thevenin equivalent is 300Ω to 1.73 V) and 1250Ω and 588Ω for military (Thevenin equivalent is 250Ω to 1.6 V).
10. Parameters for the 7 C 289 with t_{AS} option enabled.

Architecture Byte $(10000 \mathrm{H})$ $\begin{array}{lllllllll}\mathrm{D}_{7} & \mathrm{C}_{7} & \mathrm{C}_{6} & \mathrm{C}_{5} & \mathrm{C}_{4} & \mathrm{C}_{3} & \mathrm{C}_{2} & \mathrm{C}_{1} & \mathrm{C}_{0}\end{array}$
11. Parameters for the 7C289 with WAITC option enabled.
12. Parameters for the 7C289 with ALE option enabled.
13. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and loads shown in parts (a) and (b) of AC Test Loads and Waveform.

Switching Waveform for the 7C285

Switching Waveform for the 7C289
Fast Column Access

Switching Waveforms for the 7 C 289 (continued)
Using WAIT

ALE Option

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
65	CY7C285-65PC	P21	Commercial
	CY7C285-65WC	W22	
75	CY7C285-75PC	P21	Commercial
	CY7C285-75WC	W22	
	CY7C285-75DMB	D22	Military
	CY7C285-75WMB	W22	
	CY7C285-75LMB	L55	
	CY7C285-75QMB	Q55	
85	CY7C285-85PC	P21	Commercial
	CY7C285-85WC	W22	
	CY7C285-85DMB	D22	Military
	CY7C285-85WMB	W22	
	CY7C285-85LMB	L55	
	CY7C285-85QMB	Q55	

Speed (ns)	Ordering Code	Package Type	Operating Range
65	CY7C289-65WC	W32	Commercial
75	CY7C289-75WC	W32	Commercial
	CY7C289-75DMB	D32	Military
	CY7C289-75WMB	W32	
	CY7C289-75LMB	L55	
	CY7C289-75QMB	Q55	
85	CY7C289-85WC	W32	
	CY7C289-85DMB	D32	Military
	CY7C289-85WMB	W32	
	CY7C289-85LMB	L55	
	CY7C289-85QMB	Q55	

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}{ }^{[14]}$	$7,8,9,10,11$

Notes:

14. CY7C289 only.

Document \#: 38-00097-C

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
$-\mathrm{t}_{\mathrm{sA}}=45$ ns (7C287)
$-\mathrm{t}_{\mathrm{co}}=15 \mathrm{~ns}$ (7C287)
$-\mathrm{t}_{\mathrm{ACC}}=\mathbf{5 0} \mathbf{n s}$ (7C286)
- Low power
- 120 mA active (7C286)
- $\mathbf{4 0} \mathrm{mA}$ standby
- On-chip, edge-triggered registers (7C287)
- Programmable synchronous (7C287 only) or asynchronous output enable
- EPROM technology, 100\% programmable
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Slim 300-mil package (7C287)
- Capable of withstanding $>2001 \mathrm{~V}$ static discharge

Functional Description

The CY7C286 and the CY7C287 are highperformance 65,536 by 8 -bit CMOS PROMs. The CY7C286 is configured in the JEDEC-standard 512K EPROM pinout and is available in a 28 -pin, $600-\mathrm{mil}$ package. Power consumption is 120 mA in the active mode and 40 mA in the standby mode. Access time is 50 ns . The CY7C287 has registered outputs and operates in the synchronous mode. \bar{E} can also be programmed into the synchronous mode, $\overline{\mathrm{E}}_{\mathbf{s}}$. It is available in a 28 -pin, 300 -mil package. The address set-up time is 45 ns and the time from clock HIGH to output valid is 15 ns.
Both the CY7C286 and the CY7C287 are available in a cerDIP package equipped with an erasure window to provide reprogrammability. When exposed to UV light, the PROM is erased and can be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and bytewide intelligent programming algorithms.

65,536 x 8 Reprogrammable Registered PROM

The CY7C286 and the CY7C287 offer the advantage of low power, superior performance, and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be 100% tested with each location being written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that the product will meet DC and AC specification limits after customer programming.
Reading the CY7C286 is accomplished by placing active LOW signals on the $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ pins. Reading the CY7C287 is accomplished by placing an active LOW signal on $\overline{\mathrm{E}} / \mathrm{E}_{\mathrm{s}}$. The contents of the memory location addressed by the address lines (A_{0} - A_{15}) will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Logic Block Diagram

Pin Configurations

C286-2
C286-5

C286-1

LCC
Top View
『

LCC

Selection Guides

		7C286-50	7C286-60	7C286-70
Maximum Access Time (ns)		50	60	70
Maximum Operating Current (mA)	Com'l	120	120	90
	Mil		150	120

		$\mathbf{7 C 2 8 7 - 4 5}$	7C287-55	7C287-65
Maximum Access Time (ns)	45	55	65	
Maximum Clock to Output (ns)	15	20	25	
Maximum Operating Current (mA)	Com'1	150	150	150
	Mil		200	200

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
(Pin 28 to Pin 14)
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
DC Program Voltage (Pins 21, 22) 13.0 V

UV Exposure
$7258 \mathrm{Wsec} / \mathrm{cm}^{2}$
Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015.2)
Latch-Up Current . > 200 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		7C28	6-50	7C2	6-60	7C28	6-70	Units
				7C287-45,55, 65						
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I_{0}	Com'l		0.4		0.4		0.4	V
		$\mathrm{V}_{\mathrm{cc}}=$ Min., I_{O}	Mil		0.4		0.4		0.4	
$\mathrm{V}_{\text {IH }}{ }^{[3]}$	Input HIGH Voltage			2.0	V_{Cc}	2.0	V_{cc}	2.0	V_{Cc}	V
$\mathrm{V}_{\text {II }}{ }^{[4]}$	Input LOW Voltage				0.8		0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 4						
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$		-40	+40	-40	+40	-40	$+40$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}^{[5]}$		-20	-90	-20	-90	-20	-90	mA
I CC (7C286)	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		120		120		120	mA
			Mil		150		150		150	
$\mathrm{I}_{\mathrm{CC}}(7 \mathrm{C} 287)$	V_{cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'1		150		150		150	mA
			Mil		200		200		200	
$\mathrm{ISB}^{[6]}$	Standby Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		40		40		30	mA
			Mil				50		40	

Capacitance ${ }^{[7]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveform

acteristics Over the Operating Range ${ }^{[8]}$

Parameters	Description		7C286-50		7C286-60		7C286-70		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {ACC }}$	Address Access Time ($\mathrm{A}_{6}-\mathrm{A}_{15}$)			50		60		70	ns
$\mathrm{t}_{\text {CE }}$	Output Valid from $\overline{\mathrm{CE}}$	Commercial		50		60		70	ns
		Military				60		80	ns
toe	Output Valid from $\overline{\mathrm{OE}}$			18		20		25	ns
t_{DF}	Output Tri-State from $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}$			18		20		25	ns
$\mathrm{t}_{\text {PU }}$	Chip Enable to Power-Up		0		0		0		ns
t_{PD}	Chip Disable to Power-Down			40		50		60	ns

7C287 Switching Characteristics Over the Operating Range ${ }^{[8]}$

Parameters	Description	7C287-45		7C287-55		7C287-65		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Clock HIGH	45		55		65		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		ns
t_{co}	Clock HIGH to Output Valid		15		20		25	ns
$\mathrm{t}_{\text {HZE }}$	Output Tri-State from E		15		20		25	ns
$\mathrm{t}_{\text {DOE }}$	Output Valid from $\overline{\mathrm{E}}$		15		20		25	ns
$\mathrm{t}_{\text {PWC }}$	Clock Pulse Width	15		20		25		ns
$\mathrm{t}_{\text {SEs }}{ }^{[9]}$	$\overline{\mathrm{E}}_{\text {S }}$ Set-Up to Clock HIGH	12		15		18		ns
$\mathrm{t}_{\mathrm{HEs}}{ }^{[9]}$	$\overline{\mathrm{E}}_{\mathrm{S}}$ Hold from Clock HIGH	5		8		10		ns
$\mathrm{t}_{\mathrm{HzC}}{ }^{[9]}$	Output Tri-State from CLK/E $\overline{\mathrm{E}}_{\text {S }}$		20		25		30	ns
$\mathrm{t}_{\mathrm{COs}^{\text {[9] }}}{ }^{\text {a }}$	Output Valid from CLK/ $\overline{\mathrm{E}}_{\text {S }}$		20		25		30	ns

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. The CMOS process does not provide a clamp diode. However, the CY7C286 and CY7C287 are insensitive to -3V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at the 50% point).
5. Short circuit test should not exceed $\mathbf{3 0}$ seconds.
6. Only the CY7C286 has a standby mode.
7. Tested initially and after any design or process changes that may affect these parameters.
8. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and loads as shown in parts (a) and (b) of AC Test Loads and Waveforms.
9. Parameters with synchronous $\overline{\mathrm{E}}_{\mathrm{S}}$ option.

Architecture Configuration Bits

Architecture Bit	Device	Architecture Verify $\mathbf{D}_{\mathbf{0}}$		Function
$\overline{\mathrm{E}} / \overline{\mathrm{E}}_{\mathbf{S}}$	7 C 287	D_{0}	$0=$ Erased	Asynchronous Output Enable $(\operatorname{Pin} 20=\overline{\mathrm{E}})$
			$1=$ PGMED	Synchronous Output Enable $\left(\operatorname{Pin} 20=\overline{\mathrm{E}}_{\mathbf{S}}\right)$

Bit Map

Programmer Address (Hex.)	RAM Data
0000	Data
\vdots	\vdots
FFFF	Data
10000	Control Byte

Architecture Byte $(10000 \mathrm{H})$
$\begin{array}{llllllllll}\mathrm{D}_{7} & \mathrm{C}_{6} & \mathrm{C}_{5} & \mathrm{C}_{4} & \mathrm{C}_{3} & \mathrm{C}_{2} & \mathrm{C}_{1} & \mathrm{D}_{0}\end{array}$

Switching Waveform for the 7C286

Switching Waveform for the 7C287

C286-9

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
50	CY7C286-50PC	P15	Commercial
	CY7C286-50WC	W16	
60	CY7C286-60PC	P15	Commercial
	CY7C286-60WC	W16	
	CY7C286-60DMB	D16	Military
	CY7C286-60WMB	W16	
	CY7C286-60LMB	L55	
	CY7C286-60QMB	Q55	
70	CY7C286-70PC	P15	Commercial
	CY7C286-70WC	W16	
	CY7C286-70DMB	D16	Military
	CY7C286-70WMB	W16	
	CY7C286-70LMB	L55	
	CY7C286-70QMB	Q55	

Speed (ns)	Ordering Code	Package Type	Operating Range
45	CY7C287-45PC	P21	Commercial
	CY7C287-45WC	W22	
55	CY7C287-55PC	P21	Commercial
	CY7C287-55WC	W22	
	CY7C287-55DMB	D22	Military
	CY7C287-55WMB	W22	
	CY7C287-55LMB	L55	
	CY7C287-55QMB	Q55	
65	CY7C287-65PC	P21	Commercial
	CY7C287-65WC	W22	
	CY7C287-65DMB	D22	Military
	CY7C287-65WMB	W22	
	CY7C287-65LMB	L55	
	CY7C287-65QMB	Q55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[10]}$	$1,2,3$

Notes:
10. CY7C286 only.

Switching Characteristics

Device	Parameters	Subgroups
7 C 286	$\mathrm{t}_{\mathrm{ACC}}$	$7,8,9,10,11$
	t_{CE}	$7,8,9,10,11$
	$\mathrm{t}_{\mathrm{DHA}}$	$7,8,9,10,11$
	t_{OE}	$7,8,9,10,11$
7 C 287	t_{SA}	$7,8,9,10,11$
	t_{HA}	$7,8,9,10,11$
	t_{CO}	$7,8,9,10,11$

[^32]

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 35 ns (commercial)
- 35 ns (military)
- Low power
- 330 mW (commercial)
- 413 mW (military)
- EPROM technology 100% programmable
- Slim 300 mil or standard 600 mil packaging available
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding $>\mathbf{2 0 0 0 V}$ static discharge

Product Characteristics

The CY7C291 and CY7C292 are high performance 2048 word by 8 bit CMOS PROMs. They are functionally identical, but are packaged in 300 mil and 600 mil wide plastic and hermetic DIP packages respectively. The 300 mil ceramic DIP package is equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C291 and CY7C292 are plugin replacements for bipolar devices and offer the advantages of lower power,
reprogrammability, superior performance and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Reading is accomplished by placing an active LOW signal on $\overline{\mathrm{CS}}_{1}$, and active HIGH signals on CS_{2} and CS_{3}. The contents of the memory location addressed by the address lines ($\mathrm{A}_{0}-\mathrm{A}_{10}$) will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Pin Configurations

0008-3
Window available on 300 mil cerdip only

Selection Guide

			7C291-35	7C291-50 7C292-50
Maximum Access Time (ns)			7C292-35	35
Maximum Operating Current (mA)	STD	Commercial	90	
		Military	90	90
	L	Commercial	120^{*}	120

[^33]
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots-0.5 \mathrm{~V}$ to +7.0 V (Pin 24 to Pin 12)

DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V
DC Input Voltage \qquad -3.0 V to +7.0 V
DC Program Voltage (Pins 18, 20) . 13.0 V
UV Exposure
\qquad $.7258 \mathrm{Wsec} / \mathrm{cm}^{2}$

Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)
Latchup Current
. $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[6]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C291L-35, } 50 \\ & \text { 7C292L-35, } 50 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 7C291-35, } 50 \\ & \text { 7C292-35, } 50 \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
$\mathrm{V}_{\mathbf{O H}}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.,	$-4.0 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I	16.0 mA		0.4		0.4	V
$\mathrm{V}_{\mathrm{IH}}{ }^{[1]}$	Input HIGH Voltage			2.0	V_{CC}	2.0	V_{CC}	V
$\mathrm{V}_{\mathrm{IL}}{ }^{[1]}$	Input LOW Voltage				0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 2		Note 2		
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$		-40	+40	-40	+40	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[1]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$		-20	-90	-20	-90	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{IOUT}=0 \mathrm{~mA} \end{aligned}$	Commercial		60		90	mA
			Military ${ }^{*}$				120	mA

*-35: 7C291 only

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
2. The CMOS process does not provide a clamp diode. However, the CY7C291 and CY7C292 are insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.
5. See the last page of this specification for Group A subgroup testing information.
6. T_{A} is the "instant on" case temperature.

Switching Characteristics Over the Operating Range $[5,7]$

Parameters	Description	$\begin{aligned} & \hline 7 \mathrm{C} 291-35 \\ & \text { 7C292-35 } \end{aligned}$		$\begin{array}{r} 7 \mathrm{C} 291-50 \\ \text { 7C292-50 } \\ \hline \end{array}$		Units
		Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {AA }}$	Address to Output Valid		35		50	ns
$\mathrm{t}_{\mathrm{HZCS}}$	Chip Select Inactive to High Z[8]		25		25	ns
$\mathrm{t}_{\mathrm{ACS}}$	Chip Select Active to Output Valid		25		25	ns

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Equivalent to: THÉVENIN EQUIVALENT

0008-5

Notes:

7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and loads shown in Figures Ia, Ib.
8. $\mathrm{t}_{\mathrm{HZCS}}$ is tested with load shown in Figure 1b. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input.

Typical DC and AC Characteristics

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

0008-9

Figure 3. Programming Pinout

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C291. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately $30-35$ minutes.
The 7C291 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{~W} \times \mathrm{sec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Blank Check

A virgin device contains neither ones nor zeros because of the differential cell used for high speed. To verify that a PROM is unprogrammed, use the two blank check modes provided in Table 3. In each of these modes, the locations 0 thru 2047 should be addressed and read. A device is considered virgin if all locations are respectively " 1 s " and " 0 s" when addressed in the "BLANK ONES AND ZEROS" modes.

Because a virgin device contains neither ones nor zeros, it is necessary to program both ones and zeros. It is recommended that all locations be programmed to ensure that ambiguous states do not exist.

Ordering Information

Speed (ns)	$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathbf{C C}}}$	Ordering Code	Package Type	Operating Range
35	60	CY7C291L-35PC	P13	Commercial
		CY7C291L-35WC	W14	
	90	CY7C291-35PC	P13	
		CY7C291-35SC	S13	
		CY7C291-35WC	W14	
		CY7C291-35LC	L64	
	120	CY7C291-35WMB	W14	Military
		CY7C291-35DMB	D14	
50	60	CY7C291L-50PC	P13	Commercial
		CY7C291L-50WC	W14	
	90	CY7C291-50PC	P13	
		CY7C291-50SC	S13	
		CY7C291-50WC	W14	
		CY7C291-50LC	L64	
	120	CY7C291-50WMB	W14	Military
		CY7C291-50DMB	D14	
		CY7C291-50LMB	L64	
		CY7C291-50QMB	Q64	
		CY7C291-50KMB	K73	

Speed (ns)	$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathbf{C C}}}$	Ordering Code	Package Type	Operating Range
35	60	CY7C292L-35PC	P11	Commercial
		CY7C292L-35DC	D12	
	90	CY7C292-35PC	P11	
		CY7C292-35DC	D12	
50	60	CY7C292L-50PC	P11	Commercial
		CY7C292L-50DC	D12	
	90	CY7C292-50PC	P11	
		CY7C292-50DC	D12	
	120	CY7C292-50DMB	D12	Military

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$

Document \#: 38-00007-D

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 20 ns (commercial)
- 25 ns (military)
- Low power
- 600 mW (commercial)
- 660 mW (military)
- Low standby power
- 165 mW (commercial)
- 220 mW (military)
- EPROM technology 100% programmable
- Slim $\mathbf{3 0 0} \mathbf{~ m i l}$ or standard 600 mil packaging available
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding $>\mathbf{2 0 0 1 V}$ static discharge

Product Characteristics

The CY7C291A, CY7C292A, and CY7C293A are high performance 2048 word by 8 bit CMOS PROMs. They are functionally identical, but are packaged in 300 mil (7C291A, 7C293A) and 600 mil wide plastic and hermetic DIP packages (7C292A). The CY7C293A has an automatic power down feature which reduces the power consumption by over 70% when deselected. The 300 mil ceramic DIP package is equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
for bipolar devices and offer the advantages of lower power, reprogrammability, superior performance and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Reading is accomplished by placing an active LOW signal on $\overline{\mathrm{CS}}_{1}$, and active HIGH signals on CS_{2} and CS_{3}. The contents of the memory location addressed by the address lines $\left(\mathrm{A}_{0}-\mathrm{A}_{10}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

The CY7C291A, CY7C292A, and CY7C293A are plug-in replacements

Logic Block Diagram

Pin Configurations

Window available on 7C291A and 7C293A only.

Selection Guide

			$\begin{aligned} & \text { 7C291A-20 } \\ & \text { 7C292AA-20 } \\ & \text { 7C293A-20 } \end{aligned}$	$\begin{aligned} & \text { 7C291A-25 } \\ & \text { 7C292A-25 } \\ & \text { 7C293A-25 } \end{aligned}$	7C291A-30 7C292A-30 7C293A-30	7C291A-35 7C292A-35 7C293A-35	$\begin{aligned} & \text { 7C291A-50 } \\ & \text { 7C292A-50 } \\ & \text { 7C293A-50 } \end{aligned}$
Maximum Access Time (ns)			20	25	30	35	50
Maximum Operating Current (mA)	STD	Commercial	120	90		90	90
		Military		120	120	90	90
	L	Commercial				60	60
$\begin{aligned} & \text { Standby Current (mA) } \\ & \text { 7C293A Only } \end{aligned}$		Commercial	40	30		30	30
		Military		40	40	40	40

SEMICONDUCTOR

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latchup Curre		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential $\ldots . .-0.5 \mathrm{~V}$ to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State. -0.5 V to +7.0 V	Range	Ambient Temperature	$\mathbf{V}_{\text {CC }}$
DC Input Voltage 3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
	Military ${ }^{[5]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Rangel ${ }^{[6]}$

Parameters	Description	Test Conditions		7C291A-20 7C292A-20 7C293A-20		$\begin{array}{\|l\|} \hline \text { 7C291A-25 } \\ \text { 7C292A-25 } \\ \text { 7C293A-25 } \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \text { 7C291A-30 } \\ \text { 7C292A-30 } \\ \text { 7C293A-30 } \\ \hline \end{array}$		$\begin{array}{\|l\|} \text { 7C291AL-35, } 50 \\ \text { 7C292AL-35,50 } \\ \text { 7C293AL-35, } 50 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \text { 7C291A-35, } 50 \\ \text { 7C292A-35, } 50 \\ \text { 7C293A-35, } 50 \\ \hline \end{array}$		Units
				Min.	Max.									
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathbf{v}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~m} \end{aligned}$		2.4		2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min.}, \\ & \mathrm{I}_{\mathrm{OL}}=-16.0 \mathrm{r} \end{aligned}$	mA		0.4		0.4		0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	2.0	VCC	v
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8		0.8		0.8		0.8	V
IX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq$	$\leq \mathrm{V}_{\mathrm{CC}}$	-10	+ 10	-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 2										
Ioz	Output Leakage Current	GND \leq Vout Output Disable	$\mathrm{T} \leq \mathrm{V}_{\mathrm{CC}}$ led	-10	+ 10	-10	+10	-10	+ 10	-10	+ 10	-10	+ 10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[1]}$	$\begin{aligned} & v_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$		-20	-90	-20	-90	-20	-90	-20	-90	-20	-90	mA
$\mathrm{I}_{\text {CC }}$	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		120		120				60		90	mA
			Military				120		90				90	mA
ISB	Standby Supply Current (7C293A Only)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \overline{\mathrm{CS}}_{1} \geq \mathrm{V}_{\mathrm{IH}} \end{aligned}$	Commercial		40		40				30		30	mA
			Military				40		40				40	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
CoUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
2. The CMOS process does not provide a clamp diode. However, the CY7C291A, CY7C292A and CY7C293A are insensitive to -3V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over the Operating Range ${ }^{[6,7]}$

Parameters	Description	$\begin{aligned} & \text { 7C291A-20 } \\ & \text { 7C292A-20 } \\ & \text { 7C293A-20 } \end{aligned}$		$\begin{aligned} & \text { 7C291A-25 } \\ & \text { 7C292A-25 } \\ & \text { 7C293A-25 } \end{aligned}$		$\begin{aligned} & \text { 7C291A-30 } \\ & \text { 7C292A-30 } \\ & \text { 7C293A-30 } \end{aligned}$		$\begin{aligned} & \text { 7C291A-35 } \\ & \text { 7C292A-35 } \\ & \text { 7C293A-35 } \end{aligned}$		$\begin{aligned} & \text { 7C291A-50 } \\ & \text { 7C292A-50 } \\ & \text { 7C293A-50 } \end{aligned}$		Units
		Min.	Max.									
$\mathrm{t}_{\text {AA }}$	Address to Output Valid		20		25		30		35		50	ns
$\mathrm{t}_{\mathrm{HZCS}}^{1}$	Chip Select Inactive to High $\mathbf{Z}^{[8]}$		15		20		20		25		25	ns
taCS_{1}	Chip Select Active to Output Valid		15		20		20		25		25	ns
tHZCS_{2}	Chip Select Inactive to High Z ${ }^{\text {[9] }}$ (7C293A $\overline{\mathrm{CS}}_{1}$ Only)		22		27		32		35		45	ns
$\mathrm{t}_{\mathrm{ACS}}^{2}$	Chip Select Active to Output Valid (7C293A CS ${ }_{1}$ Only) ${ }^{[9]}$		22		27		32		35		45	ns
tpu	Chip Select Active to Power Up (7C293A $\overline{\mathrm{CS}}_{1}$ Only)	0		0		0		0		0		ns
$t_{\text {PD }}$	Chip Select Inactive to Power Down (7C293A $\overline{\mathrm{CS}}_{1}$ Only)		22		27		32		35		45	ns

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Equivalent to: THÉVENIN EQUIVALENT

0120-6

Notes:
7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and loads shown in Figures Ia, Ib.

0120-5
Figure 2. Input Pulses

OUTPUT O-

0120-7
8. $\mathrm{t}_{\mathrm{HZCS}}$ is tested with load shown in Figure 1b. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input.
9. $\mathrm{t}_{\mathrm{HZCS}}^{2}$ and $\mathrm{t}_{\mathrm{ACS}}^{2}$ refer to $7 \mathrm{C} 293 \mathrm{~A} \mathrm{CS}_{1}$ only.

Typical DC and AC Characteristics

OUTPUT SOURCE CURRENT vs. VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

0120-9

Figure 3. Programming Pinout

CY7C291A CY7C292A/CY7C293A

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase these PROMs. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultra-
violet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately $30-35$ minutes.
These PROMs need to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{~W} \times \mathrm{sec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Ordering Information

Speed (ns)	$\begin{aligned} & \mathrm{I}_{\mathbf{C C}} \\ & (\mathrm{mA}) \end{aligned}$	Ordering Code	Package Type	Operating Range
20	120	CY7C291A-20PC	P13	Commercial
		CY7C291A-20WC	W14	
		CY7C292A-20PC	P11	
		CY7C292A-20DC	D12	
		CY7C293A-20PC	P13	
		CY7C293A-20WC	W14	
25	120	CY7C291A-25PC	P13	Commercial
		CY7C291A-25WC	W14	
		CY7C292A-25PC	P11	
		CY7C292A-25DC	D12	
		CY7C293A-25PC	P13	
		CY7C293A-25WC	W14	
		CY7C291A-25DMB	D14	Military
		CY7C291A-25WMB	W14	
		CY7C291A-25LMB	L64	
		CY7C291A-25QMB	Q64	
		CY7C292A-25DMB	D12	
		CY7C293A-25DMB	D14	
		CY7C293A-25WMB	W14	
		CY7C293A-25LMB	L64	
		CY7C293A-25QMB	Q64	
30	120	CY7C291A-30DMB	D14	Military
		CY7C291A-30WMB	W14	
		CY7C291A-30LMB	L64	
		CY7C291A-30QMB	Q64	
		CY7C292A-30DMB	D12	
		CY7C293A-30DMB	D14	
		CY7C293A-30WMB	W14	
		CY7C293A-30LMB	L64	
		CY7C293A-30QMB	Q64	
35	60	CY7C291AL-35PC	P13	Commercial
		CY7C291AL-35WC	W14	
		CY7C292AL-35PC	P11	
		CY7C293AL-35PC	P13	
		CY7C293AL-35WC	W14	
	90	CY7C291A-35PC	P13	Commercial
		CY7C291A-35DC	D14	
		CY7C291A-35WC	W14	
		CY7C291A-35LC	L64	

Speed (ns)	$\underset{(\mathrm{mA})}{\mathbf{I}_{\mathbf{C C}}}$	Ordering Code	Package Type	Operating Range
35	90	CY7C292A-35PC	P11	Commercial
		CY7C292A-35DC	D12	
		CY7C293A-35PC	P13	
		CY7C293A-35DC	D14	
		CY7C293A-35WC	W14	
		CY7C293A-35LC	L64	
	120	CY7C291A-35DMB	D14	Military
		CY7C291A-35WMB	W14	
		CY7C291A-35LMB	L64	
		CY7C291A-35QMB	Q64	
		CY7C292A-35DMB	D12	
		CY7C293A-35DMB	D14	
		CY7C293A-35WMB	W14	
		CY7C293A-35LMB	L64	
		CY7C293A-35QMB	Q64	
50	60	CY7C291AL-50PC	P13	Commercial
		CY7C291AL-50WC	W14	
		CY7C292AL-50PC	P11	
		CY7C293AL-50PC	P13	
		CY7C293AL-50WC	W14	
	90	CY7C291A-50PC	P13	Commercial
		CY7C291A-50DC	D14	
		CY7C291A-50WC	W14	
		CY7C291A-50LC	L64	
		CY7C292A-50PC	P11	
		CY7C292A-50DC	D12	
		CY7C293A-50PC	P13	
		CY7C293A-50DC	D14	
		CY7C293A-50WC	W14	
		CY7C293A-50LC	L64	
	120	CY7C291A-50DMB	D14	Military
		CY7C291A-50WMB	W14	
		CY7C291A-50LMB	L64	
		CY7C291A-50QMB	Q64	
		CY7C292A-50DMB	D12	
		CY7C293A-50DMB	D14	
		CY7C293A-50WMB	W14	
		CY7C293A-50LMB	L.64	
		CY7C293A-50QMB	Q64	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[2]}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}{ }^{[1]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 2}{ }^{[2]}$	$7,8,9,10,11$

Notes:

1. 7C291A and 7C292A only.
2. 7C293A only.

Document \#: 38-00075-D

Introduction

PROMs or Programmable Read Only Memories have existed since the early 1970's and continue to provide the highest speed non-volatile form of semiconductor memory available. Until the introduction of CMOS PROMs from Cypress, all PROMs were produced in bipolar technology, because bipolar technology provided the highest possible performance at an acceptable cost level. All bipolar PROMs use a fuse for the programming element. The fuses are in tact when the product is delivered to the user, and may be programmed or written once with a pattern and used or read infinitely. The fuses are literally blown using a high current supplied by a Programming System. Since the fuses may only be blown or programmed once, they may not be programmed during test. In addition, since they may not be programmed until the user determines the pattern, they may not be completely tested prior to shipment from the supplier. This inability to completely test, results in less than 100% yield during programming and use by the customer for two reasons. First, some percentage of the product fails to program. These devices fall out during the programming operation, and although a nuisance are easily identified. Additional yield is lost because the device fails to perform even though it programs correctly. This failure is normally due to the device being too slow. This is a more subtle failure, and can only be found by 100% post program AC testing, or even worse by trouble shooting an assembled board or system.
Cypress CMOS PROMs use an EPROM programming mechanism. This technology has been in use in MOS technologies since the early 1970s. However, as with most MOS technologies the emphasis has been on density, not performance. CMOS at Cypress is as fast as or faster than Bipolar and coupled with EPROM, becomes a viable alternative to bipolar PROMs from a performance point-ofview. In the arena of programming, EPROM has some significant advantages over fuse technology. EPROM cells are programmed by injecting charge on an isolated gate which permanently turns off the transistor. This mechanism can be reversed by irradiating the device with ultraviolet light. The fact that programming can be erased, totally changes the testing and programming situation and philosophy. All cells can be programmed during the manufacturing process and then erased prior to packaging and subsequent shipment. While these cells are programmed, the performance of each cell in the memory can be tested allowing the shipment of devices that program every time, and will perform as specified when programmed. In addition when these devices are supplied in a windowed package they can be programmed and erased indefinitely providing the designer a RE-PROGRAMMABLE PROM for development.

Programmable Technology

EPROM Process Technology

EPROM technology employs a floating or isolated gate between the normal control gate and the source/drain region of a transistor. This gate may be charged with electrons during the programming operation and when charged with electrons, the transistor is permanently turned off. When uncharged (the transistor is unprogrammed) the device may be turned on and off normally
with the control gate. The state of the floating gate, charged or uncharged, is permanent because the gate is isolated in an extremely pure oxide. The charge may be removed if the device is irradiated with ultraviolet energy in the form of light. This ultraviolet light allows the electrons on the gate to recombine and discharge the gate. This process is repeatable and therefore can be used during the processing of the device repeatedly if necessary to assure programming function and performance.

Two Transistor Cells

In order to provide an EPROM cell that is as fast as the fuse technology employed in bipolar processes, Cypress uses a two transistor EPROM cell. One transistor is optimized for reliable programming, and one transistor is optimized for high speed. The floating gates are connected such that charge injected on the floating gate of the programming transistor is conducted to the read transistor, biasing it off.

Differential Memory Cells

In the 4 K (CY7C225); 8K (CY7C235, CY7C281, CY7C282); and 16K (CY7C245, CY7C291, CY7C292) CMOS PROMs, Cypress employs a differential memory cell and sense amplifier technique. Higher density devices such as the 7C261, 7C263, 7C264 or 7C269 64K PROMs employ a single ended Cell and sense amplifier technique similar to the approach used in more conventional EPROMs.
In a conventional high density EPROM a single EPROM transistor is used to switch the input to one side of a differential sense amplifier. The other side of the sense amplifier is biased at an intermediate level with a dummy cell. An unprogrammed EPROM transistor will conduct and drive the sense amplifier to a logic " 0 ". A programmed EPROM transistor will not conduct, and consequently drives the sense amplifier to a logic " 1 ". A conventional EPROM cell therefore is delivered with a specific state " 0 " or " 1 " in it depending on the number of inversions after the sense amplifier and can always be programmed to the opposite state. Access time in this conventional approach is heavily dependent on the time the selected EPROM transistor takes to move the input of the sense amplifier from a quiescent condition to the threshold that the dummy cell is biasing the second input to the sense amplifier. This bias is several volts, and requires a significant delay before the sense amplifier begins to react.
Cypress PROMs employ a true differential cell approach, with EPROM cells attached to both inputs of the sense amplifier. As indicated above, the read transistor which is optimized for speed is actually the transistor attached to the sense amplifier. In the erased state, both EPROM transistors conduct when selected eccentrically biasing the input of the sense amplifier at the same level. If the inputs were at identical levels, the output of the sense amplifier would be in a mestastable condition or, neither a " 1 " nor " 0 ". In actual practice the natural bias and high gain of the sense amplifier combine to cause the output to favor one or the other stable conditions. The difference between the two conditions is however only a few millivolts and the memory cell should be considered to contain neither a " 1 " nor a " 0 ". As a result of this design approach, the memory cell must be programmed to either a " 1 " or a " 0 " depending on the desired condition and the conventional BLANK

CHECK mechanism is invalid. The benefit of the approach however is that only a small differential signal from the cell begins the sense amplifier switching and the access time of the memory is extremely fast.

Single Ended Memory Cells

Although a more conventional approach, single ended memory cells and sensing techniques offer a superior tradeoff between die size and performance than the differential cell for devices of 64 K densities and above. The Single ended technique employed by Cypress uses a dummy cell for the reference voltage thus providing a reference that tracks the programmed cell in process related parameters, power supply and temperature induced variations. The Memory cell used is a second generation two transistor cell derived from earlier work at the 16 K density level. It has an optimized READ transistor that is matched to the sense amplifier, and a second transistor optimized for programming. The floating gates of the two transistors that make up a memory cell are connected electrically so that the charge programmed onto one device controls the threshold of the second transistor.

Unlike the differential memory approach, the erased single ended device contains all " 0 "s and on the the ones are programmed. Therefore a " 1 " on the data pins during programming causes a " 1 " to be programmed into the addressed location.

Programming Algorithm
 Byte Addressing and Programming

All Cypress CMOS PROMs are addressed and programmed on a byte basis unlike the bipolar products that they replace. The address lines used to access the memory in a read mode are the same for programming, and the address map is identical. The information to be programmed into each byte is presented on the data out pins during the programming operation and the data is read from these same pins for verification that the byte has been programmed.

Blank Check for Differential Cells

Since a differential cell contains neither a " 1 " nor a " 0 " before it is programmed, the conventional BLANK CHECK is not valid. For this reason, all Cypress CMOS PROMs contain a special BLANK CHECK mode of operation. Blank check is performed by separately examining the " 0 " and " 1 " sides of the differential memory cell to determine whether either side has been independently programmed. This is accomplished in two passes one comparing the " 0 " side of the differential cell against a reference voltage applied to the opposite side of the sense amplifier and then repeating this operation for the " 1 "s side of the cell. The modes are called BLANK CHECK ONES, and BLANK CHECK ZEROS. These modes are entered by the application of a supervoltage to the device.

Blank Check for Single Ended Cells

Single ended cells BLANK CHECK in a conventional manner. An erased device contains all " 0 "s and a programmed call will contain a " 1 ". Cypress PROMs that use the single ended approach provide a specific mode to perform the BLANK CHECK which also provides the verify
function. This makes the need to switch high voltages unnecessary during the program verify operation. See specific data sheets for details.

Programming the Data Array

Programming is accomplished by applying a supervoltage to one pin of the device causing it to enter the programming mode of operation. This also provides the programming voltage for the cells to be programmed. In this mode of operation, the address lines of the device are used to address each location to be programmed, and the data is presented on the pins normally used for reading the contents of the device. Each device has a READ and a WRITE pin in the programming mode. These are active low signals and cause the data on the output pins to be written into the addressed memory location in the case of the WRITE signal or read out of the device in the case of the READ signal. When both the READ and WRITE signals are high, the outputs are disabled and in a high impedance state. Programming therefore is accomplished by placing data on the output pins, and writing it into the addressed location with the WRITE signal. Verification of data is accomplished by reading the information on the output pins while the READ signal is active.
The timing for actual programming is supplied in the unique programming specification for each device.

Special Features

Depending on the specific CMOS PROM in question, additional features that require programming may be available to the designer. Two of these features are a Programmable INITIAL BYTE and Programmable SYNCHRONOUS/ASYNCHRONOUS ENABLE available in some of the registered devices. Like programming the array, these features make use of EPROM cells and are programmed in a similar manner, using supervoltages. The specific timing and programming requirements are specified in the data sheet of the device employing the feature.

Programming Support

Programming support for Cypress CMOS PROMs is available from a number of programmer manufacturers, some of which are listed below.

Data I/O Corporation
10525 Willows Rd. N.E.
P.O. Box 97046

Redmond, WA
98073-9746
(206) 881-6444

Data I/O 29B Unipak II				
Cypress Part Number	Generic Part Number	Family Code and Pinout	Revision	
CY7C225	27 S25	F0	B6	V12
CY7C235	$27 S 35$	F0	B5	V09
CY7C245	27 S 45 A	F0	B0	V09
CY7C261/3/4	27 S49	EF	31	V11
CY7C281/2	27 S281/181	EE	B4	V09
CY7C291/2	27S291/191	F2	AF	V09

PROM Programming Information ${ }_{\text {(Continued) }}$

SEMICONDUCTOR
Cypress Semiconductor, Inc.
3901 North First St.
1600 Wyatt Dr.
Santa Clara, CA 95054
(408) 988-1118

Stag PPZ Zm2000			
Cypress Part Number	Generic Part Number	Family Code and Pinout	Revision
CY7C225	27S25		Rev 21
CY7C235	27S35	Menu	Rev21
CY7C245	27S45A	Driven	Rev24
CY7C281/2	27S281/181		Rev21
CY7C291/2	27S291/191		Rev 21

San Jose, CA 95134
(408) 943-2600

Cypress CY3000 QuickPro Rev. PROM 2.10		
Cypress Part Number	Generic Part Number	Family Code and Pinout
CY7C225		
CY7C235		
CY7C245	Menu	Menu
CY7C261/3/4	Driven	Driven
CY7C268		
CY7C269		
CY7C281/2		
CY7C291/2		

PRODUCT 1 INFORMATION
STATIC RAMS 2
PROMS 3

LOGIC 6
RISC 7
MODULES 8
ECL 9
BUS INTERFACE PRODUCTS 10
MILITARY 11
DESIGN AND 12
PROGRAMMING TOOLS
QUALITY AND13RELIABILITY
PACKAGES 14
EPLDs (Erasable Programmable Logic Devices) Page Number
Introduction to Cypresss PLDs 4-1
Device Number Description
PAL C 20 Series Reprogrammable CMOS PAL C 16L8, 16R8, 16R6, 16R4 4-7
PLD C 18G8 CMOS Generic 20-Pin Programmable Logic Device 4-26
PAL C 20G10B CMOS Generic 24-Pin Reprogrammable Logic Device 4-33
PAL C 20G10 CMOS Generic 24-Pin Reprogrammable Logic Device 4-33
PLD 20RA10 Reprogrammable Asynchronous CMOS Logic Device 4-44
PAL C 22V10B Reprogrammable CMOS PAL Device 4-53
PAL C 22V10 Reprogrammable CMOS PAL Device 4-53
PAL 22V10C Universal PAL Device 4-64
PAL 22VP10C Universal PAL Device 4-64
CY7B326 Multipurpose BiCMOS PLD 4-73
CY7C330 CMOS Programmable Synchronous State Machine 4-80
CY7C331 Asynchronous Registered EPLD 4-92
CY7C332 Registered Combinatorial EPLD 4-104
CY7B333 General-Purpose Synchronous BiCMOS PLD 4-114
CY7B336 6-ns BiCMOS PAL with Input Registers 4-121
CY7B337 7-ns BiCMOS PAL with Input Registers 4-127
CY7B338 6-ns BiCMOS PAL with Output Latches 4-133
CY7B339 7-ns BiCMOS PAL with Output Latches 4-139
CY7C340 EPLD Family Multiple Array Matrix High-Density EPLDs 4-145
CY7C341 192-Macrocell MAX EPLD 41.54
CY7C342 128-Macrocell MAX EPLD 416.5
CY7C343 64-Macrocell MAX EPLD 4-178
CY7C344 32-Macrocell MAX EPLD 4-190
CY7C361 Ultra High Speed State Machine EPLD 4-201
PLD Programming Information 4-211

Cypress PLD Family Features

Cypress Semiconductor's PLD family offers the user a wide range of programmable logic solutions which incorporate leading edge circuit design techniques as well as diverse process technology capabilities. This allows Cypress PLD users to select PLDs which best suit the needs of their particular high performance system, regardless of whether speed, power consumption, density, or device flexibility are the critical requirements imposed by the system.
Cypress offers enhanced performance industry standard 20 and 24 pin device architectures, proprietary 28 pin applications tailored architectures and highly flexible 28-84 pin universal device architectures. The range of technologies offered include leading edge 0.8 micron CMOS EPROM for high speed, low power and high density, 0.8 micron BICMOS fuse for very high speed TTL devices, and 0.8 micron BIPOLAR, for the highest speed ECL devices.
The EPROM cell used by Cypress serves the same purpose as the fuse used in most bipolar PLD devices. Before programming, the AND gates or Product Terms are connected via the EPROM cells to both the true and complement inputs. When the EPROM cell is programmed, the inputs from a gate or Product Term are disconnected. Programming alters the transistor threshold of each cell so that no conduction can occur, which is equivalent to disconnecting the input from the gate or Product Terms. This is similar to "blowing" the fuses of BICMOS or BIPOLAR fusible devices, which disconnects the input gate from the Product Term. Selective programming of each of these EPROM cells enables the specific logic function to be implemented by the user.

The programmability of Cypress' PLDs allows the users to customize every device in a number of ways to implement
their unique logic requirements. Using PLDs in place of SSI or MSI components results in more effective utilization of boardspace, reduced cost and increased reliability. The flexibility afforded by these PLDs allows the designer to quickly and effectively implement a number of logic functions ranging from random logic gate replacement to complex combinatorial logic functions.
The PLD family implements the familiar "sum of products" logic by using a programmable AND array whose output terms feed a fixed OR array. The sum of these can be expressed in a Boolean transfer function and is limited only by the number of product terms available in the AND-OR array. A variety of different sizes and architectures are available. This allows for more efficient logic optimization by matching input, output and product terms to the desired application.

PLD Notation

To reduce confusion and to have an orderly way of representing the complex logic networks, logic diagrams are provided for the various part types. In order to be useful, Cypress logic diagrams employ a common logic convention that is easy to use. Figure 1 shows the adopted convention. In Figure 1, an "x" represents an unprogrammed EPROM cell or intact fuse link that is used to perform the logical AND operation upon the input terms. The convention adopted does not imply that the input terms are connected on the common line that is indicated. A further extension of this convention is shown in Figure 2, which shows the implementation of a simple transfer function. The normal logic representation of the transfer function logic convention is shown in Figure 3.

Figure 2

Figure 3
of the register output. These buried registers, which are useful in state machines, may be implemented without sacrificing the use of the associated device pin as an input. In previous PLDs, when the feedback path was activated, the input pin-path to the logic array was blocked. The proprietary CY7C330 reprogrammable synchronous state machine macrocell illustrates, in Figure 7, the shared input multiplexer, which provides an alternative input path for the I/O pin associated with a buried macrocell register. Each pair of macrocells shares an input multiplexer and as long as alternate macrocells are buried, up to six of the twelve output registers can be buried without the loss of any I/O pins as inputs. The CY7C330 also contains four dedicated hidden macrocells with no external output, illustrated in Figure 8, that are used as additional state registers for creating high-performance state machines.

Asynchronous Register Control

Cypress also offers PLDs which may be used in asynchronous systems in which register clock, set and reset are controlled by the outputs of the product term array. The clock signal is created by the processing of external inputs and/or internal feedback by the logic of the product term array which is then routed to the register clock. The register set and reset are similarly controlled by product term outputs and can be triggered at any time independent of the register clock in response to external and/or feedback inputs processed by the logic array. The proprietary CY7C331 Asynchronous Registered PLD, for which the I/O macrocell is illustrated in Figure 9, is an example of such a device. The register clock, set and reset functions of the CY7C331 are all controlled by product terms and enable their respective functions dependent only on input signal timing and combinatorial delay through the device logic array.

Input Register Cell

Other Cypress PLDs provide input register cells which allow capture for processing of short duration inputs which would not otherwise be present at the inputs for sufficient time to allow the device to respond. Both the proprietary CY7C330 Reprogrammable Synchronous State Machine and the proprietary CY7C332 Combinatorial PLD provide these input register cells which are shown in Figure 11. The clock for the input register may be provided from one of two external clock input pins selectable by a configuration bit, C4, dedicated for this purpose for each input register. This choice of input register clock allows signals to be captured and processed from two independent system sources each controlled by its own independent clock. These input register cells are provided within I/O macrocells, as well as, for dedicated input pins.

Figure 4. Programmable I/O

Figure 5. Registered Outputs with Feedback

0024-7
Figure 6. CY7C330 I/O Macro Cell

Introduction to Cypress PLDs ${ }_{\text {(Continued) }}$

Figure 7. CY7C330 I/O Macro Cell Pair Shared Input MUX

Figure 8. CY7C330 Hidden State Register Macro Cell

Introduction to Cypress PLDs ${ }_{\text {(Coninued) }}$

Figure 9. CY7C331 Registered Asynchronous Macrocell

Figure 10. Programmable Macro Cell

Introduction to Cypress PLDs ${ }_{\text {(Continued) }}$

SEMICONDUCTOR

0024-11

Document \#: 38-00165

Features

- CMOS EPROM technology for reprogrammability
- High performance at quarter power
$-\mathbf{t P D}=25 \mathrm{~ns}$
$-\mathrm{ts}_{\mathrm{S}}=20 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=15 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{CC}}=45 \mathrm{~mA}$
- High performance at military temperature
- tPD $=20 \mathrm{~ns}$
$-\mathrm{t}_{\mathbf{S}}=20 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=15 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{CC}}=70 \mathrm{~mA}$
- Commercial and military temperature range
- High reliability
- Proven EPROM technology
- $>1500 \mathrm{~V}$ input protection from electrostatic discharge
- $100 \% \mathrm{AC} / \mathrm{DC}$ tested
- $\mathbf{1 0 \%}$ power supply tolerances
- High noise immunity
- Security feature prevents pattern duplication
- $\mathbf{1 0 0 \%}$ programming and functional testing

Functional Description

Cypress PAL C Series 20 devices are high speed electrically programmable and UV erasable logic devices produced in a proprietary " N " well CMOS EPROM process. These devices utilize the sum of products (AND-OR) structure providing users the ability to pro-
gram custom logic functions serving unique requirements.
PALs are offered in 20-pin plastic and ceramic DIP, Plastic SOJ, and ceramic LCC packages. The ceramic package can be equipped with an erasure window; when exposed to UV light, the PAL is erased and can then be reprogrammed.
Before programming, AND gates or PRODUCT TERMS are connected via EPROM cells to both TRUE and COMPLEMENT inputs. Programming an EPROM cell disconnects an INPUT TERM from a PRODUCT TERM. Selective programming of these cells allows a specific logic function to be implemented in a PAL C device. PAL C devices are supplied in four functional configurations, desig-

Logic Symbols and DIP and SOJ Pinouts

16R4

16L8

LCC Pinouts

[^34]CYPRESS SEMICONDUCTOR is a trademark of Cypress Semiconductor Corporation.

Functional Description (Continued)

nated 16R8, 16R6, 16R4 and 16L8. These eight devices have potentially 16 inputs and 8 outputs configurable by the user. Output configurations of 8 registers, 8 combinatorial, 6 registers and 2 combinatorial as well as 4 registers and 4 combinatorial are provided by the four functional variations of the product family. All combinatorial outputs on the 16R6 and 16R4 as well as 6 of the combinatorial outputs on the 16 L 8 may be used as optional inputs. All registered outputs have the $\overline{\mathrm{Q}}$ bar side of the register fed back into the main array. The registers are automatically initialized on power up to Q output LOW and \bar{Q} output HIGH. All unused inputs should be tied to ground.
All PAL C devices feature a SECURITY function which provides the user protection for the implementation of proprietary logic. When invoked, the contents of the normal array may no longer be accessed in the verify mode. Because EPROM technology is used as a storage mechanism, the content of the array is not visible under a microscope. The PAL C device also contains a PHANTOM ARRAY used for functional and performance testing. The content of this array is always accessible, even when security is invoked.
Cypress PAL C products are produced in an advanced 1.2 micron "N" well CMOS EPROM technology. The use of this proven EPROM technology is the basis for a superior product with inherent advantages in reliability, testability, programming and functional yield. EPROM technology has the inherent advantage that all programmable elements may be programmed, tested and erased during the manufacturing process. This also allows the device to be 100%
functionally tested during manufacturing. An ability to preload the registers of registered devices during the testing operation makes the testing easier and more efficient. The PHANTOM ARRAY and PHANTOM operating mode allow the device to be tested for functionality and performance after it has been packaged. Combining these inherent and designed-in features, an extremely high degree of functionality, programmability and assured AC performance are provided and testing becomes an easy task.
The REGISTER PRELOAD allows the user to initialize the registered devices to a known state prior to testing the device, significantly simplifying and shortening the testing procedure.
The PHANTOM MODE of operation provides a completely separate operating mode where the functionality of the device along with its AC performance may be ascertained. The user need not be encumbered by programmed cells in the normal operating mode. This PHANTOM MODE of operation allows additional input lines to be programmed to operate the PAL C device, exercising the device functionally and allowing AC performance measurements to be made. The PHANTOM MODE of operation acknowledges only the INPUT TERMS shown shaded in the functional block diagrams. Likewise, the normal PHANTOM INPUT TERMS do not exist in the normal mode of operation. During the final stages of manufacturing, some cells in the PHANTOM ARRAY are programmed for final AC and functional testing. These cells remain programmed, and may be used at incoming inspection to verify both functional and AC performance.

Commercial and Industrial Selection Guide

GenericPartNumber	Logic	Output Enable	Outputs	$\mathrm{I}_{\mathbf{C C}}(\mathrm{mA})$		$t_{\text {PD }}$ (ns)		$\mathrm{t}_{\mathbf{S}}(\mathrm{ns})$		$\mathrm{t}_{\mathbf{C O}}$ (ns)	
				L	COM'L/IND	-25	-35	-25	-35	-25	-35
16L8	(8) 7 -wide AND-OR-Invert	Programmable	(6) Bidirectional (2) Dedicated	45	70	25	35	-	-	-	-
16R8	(8) 8-wide AND-OR	Dedicated	Registered Inverting	45	70	-	-	20	30	15	25
16R6	(6) 8 -wide AND-OR	Dedicated	Registered Inverting	45	70	25	35	20	30	15	25
	(2) 7-wide AND-OR-Invert	Programmable	Bidirectional								
16R4	(4) 8-wide AND-OR	Dedicated	Registered Inverting	45	70	25	35	20	30	15	25
	(4) 7 -wide AND-OR-Invert	Programmable	Bidirectional								

Military Selection Guide

Generic Part Number	Logic	Output Enable	Outputs	$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathbf{C C}}}$	tPD (ns)			$\mathrm{ts}^{\text {(}} \mathrm{ns}$)			tco (ns)		
					-20	-30	-40	-20	-30	-40	-20	-30	-40
16L8	(8) 7-wide AND-OR-Invert	Programmable	(6) Bidirectional (2) Dedicated	70	20	30	40	-	-	-	-	-	-
16R8	(8) 8-wide AND-OR	Dedicated	Registered Inverting	70	-	-	-	20	25	35	15	20	25
16R6	(6) 8-wide AND-OR	Dedicated	Registered Inverting	70	20	30	40	20	25	35	15	20	25
	(2) 7-wide AND-OR-Invert	Programmable	Bidirectional										
16R4	(4) 8-wide AND-OR	Dedicated	Registered Inverting	70	20	30	40	20	25	35	15	20	25
	(4) 7 -wide AND-OR-Invert	Programmable	Bidirectional										

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage to Ground Potential
(Pin 20 to Pin 10)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage \qquad -3.0 V to +7.0 V
Output Current into Outputs (Low) .24 mA
DC Programming Voltage .14.0V

UV Exposure
$7258 \mathrm{Wsec} / \mathrm{cm}^{2}$
Static Discharge Voltage . $>1500 \mathrm{~V}$
(per MIL-STD-883 Method 3015)
Latchup Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[7]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range (Unless Otherwise Noted) [6]

Parameters	Description	Test Conditions			Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	Commercial/Industrial	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	Military			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	Commercial/Industrial		0.4	V
			$\mathrm{IOL}=12 \mathrm{~mA}$	Military			
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logic HIGH ${ }^{[1]}$ Voltage for all Inputs			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW[1] Voltage for all Inputs				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$			-10	10	$\mu \mathrm{A}$
V_{PP}	Programming Voltage	$\mathrm{IPP}=50 \mathrm{~mA} \mathrm{Max}$.			13.0	14.0	V
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[2]}$				-300	mA
ICC	Power Supply Current	$\begin{aligned} & \text { All Inputs = GND, } \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}[5] \end{aligned}$		"L"		45	mA
				COM'L/IND		70	mA
				MIL		70	mA
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}$			-100	100	$\mu \mathrm{A}$

Table 1

Parameter	$\mathbf{V}_{\mathbf{X}}$	Output Waveform-Measurement Level	
tPXZ $(-)$	1.5 V		$0038-26$
$\operatorname{tPXZ}^{(+)}$	2.6 V		0038-27
$\operatorname{tPZX}^{(+)}$	$\mathrm{V}_{\text {the }}$		0038-28
tPZX(-)	$\mathrm{V}_{\text {thc }}$		0038-29
$\mathrm{t}_{\text {ER }}(-)$	1.5 V		0038-26
$\mathrm{ter}^{(+)}$	2.6 V	$\mathrm{v}_{\mathrm{oL}} \frac{\frac{1}{0.5 \mathrm{~V}}-1}{\frac{1}{1}-\mathrm{v}_{\mathrm{x}}}$	0038-27
${ }_{\text {teA }}(+)$	$\mathrm{V}_{\text {thc }}$		0038-28
$t_{\text {EA }}(-)$	$\mathrm{V}_{\text {thc }}$		0038-29

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Switching Characteristics PAL C 20 Series Over Operating Range ${ }^{[4,6,8]}$

Parameters	Description	Commercial/Industrial				Military						Units
		-25		-35		-20		-30		-40		
		Min.	Max.									
tpd	Inpuit or Feedback to Non-Registered Output 16L8, 16R6, 16R4		25		35		20		30		40	ns
tea	Input to Output Enable 16L8, 16R6, 16R4		25		35		20		30		40	ns
ter	Input to Output Disable 16L8, 16R6, 16R4		25		35		20		30		40	ns
tPZX	Pin 11 to Output Enable 16R8, 16R6, 16R4		20		25		20		25		25	ns
tpXZ	Pin 11 to Output Disable 16R8, 16R6, 16R4		20		25		20		25		25.	ns
t_{CO}	Clock to Output 16R8, 16R6, 16R4		15		25		15		20		25	ns
ts	Input or Feedback Setup Time 16R8, 16R6, 16R4	20		30		20		25		35		ns
t_{H}	Hold Time 16R8, 16R6, 16R4	0		0		0		0		0		ns
${ }_{\text {tP }}$	Clock Period	35		55		35		45		60		ns
tw	Clock Width	15		20		12		20		25		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency		28.5		18		28.5		22		16.5	MHz

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure $I a$ test load used for all parameters except $t_{E A}, t_{E R} t_{P Z X}$ and tpxZ. Figure $I b$ test load used for $\mathrm{t}_{\mathrm{EA}}, \mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\mathrm{PZX}}$ and tPXZ^{2}.
5. $\mathrm{I}_{\mathrm{CC}}(\mathrm{AC})=(0.6 \mathrm{~mA} / \mathrm{MHz}) \times$ (Operating Frequency in MHz$)+$ $\mathrm{I}_{\mathrm{CC}(\mathrm{DC})} \cdot \mathrm{I}_{\mathrm{CC}(\mathrm{DC})}$ is measured with an unprogrammed device.
6. See the last page of this specification for Group A subgroup testing information.
7. T_{A} is the "instant on" case temperature.
8. The parameters t_{ER} and $\mathrm{t}_{\mathrm{PXZ}}$ are measured as the delay from the input disable logic threshold transition to $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ for an enabled HIGH output or $V_{\text {OL }}+0.5 \mathrm{~V}$ for an enabled LOW output. Please see Table 1 for waveforms and measurement reference levels.

AC Test Loads and Waveforms

Figure 1a. Commercial

Equivalent to:
THÉVENIN EQUIVALENT COMMERCIAL

0038-10

Figure 2

PAL ${ }^{\circledR}$ C 20 Series

Switching Waveforms

Figure 3

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the PAL C device. For this reason, an opaque label should be placed over the window if the device is exposed to sunlight or fluorescent lighting for extended periods of time. In addition, high ambient light levels can create holeelectron pairs which may cause "blank" check failures or "verify errors" when programming "windowed" parts. This phenomenon can be avoided by use of an opaque label over the window during programming in high ambient light environments.
The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV intensity x exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating, the exposure would be approximately 35 minutes. The PAL C device needs to be placed within 1 inch of the lamp during erasure. Permanent damage may result if the device is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Programming

PAL C devices are programmed a BYTE at a time using a voltage to transfer electrons to a floating gate. The array programmed is addressed as memory of 256 bytes, using address Tables 5 and 6. These addresses are supplied to the device over Pins 2 through 9. The data to be programmed is supplied on data inputs D0 through D7 (Pins 19 through

12 inclusive). In the unprogrammed state, all inputs are connected to product terms. A " 1 " on a data line causes a cell to be programmed, disconnecting an INPUT TERM from a PRODUCT TERM. During verify, an unprogrammed cell causes a " 1 " to appear on the output, while a programmed cell will appear as a " 0 ". Table 4 describes the operating modes of the device and the programming waveforms are described in Figures 6 through 9. The actual sequence required to program a cell is described in Figure 5 and applies for programming either standard or phantom portions of the array. The security bit should be programmed using a single 10 ms pulse, and verified per Figure 9 .

0038-15
Figure 4. Programming Pin Configuration

DC Programming Parameters Ambient Temperature $=25^{\circ} \mathrm{C}$
Table 2

Parameter	Description	Min.	Max.	Units	Notes
V_{PP}	Programming Voltage	13.0	14.0	V	
$\mathrm{~V}_{\mathrm{CCP}}$	Supply Voltage During Programming	4.75	5.25	V	
$\mathrm{~V}_{\mathrm{IHP}}$	Programming Input High Voltage	3.0		V	
$\mathrm{~V}_{\mathrm{ILP}}$	Programming Input Low Voltage		0.4	V	
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V	1
I_{PP}	Programming Supply Current		50	mA	

PAL ${ }^{\circledR}$ C 20 Series
SEMICONDUCTOR
AC Programming Parameters Ambient Temperature $=25^{\circ} \mathrm{C}$
Table 3

Parameter	Description	Min.	Max.	Units	Notes
$\mathrm{t}_{\text {PP }}$	Programming Pulse Width	100	10,000	$\mu \mathrm{~s}$	2
$\mathrm{t}_{\mathbf{S}}$	Setup Time	1.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathbf{H}}$	Hold Time	1.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	V $_{\text {PP }}$ Rise and Fall Time	1.0		$\mu \mathrm{~s}$	
t_{VD}	Delay to Verify	1.0		2	
t_{VP}	Verify Pulse Width	2.0		$\mu \mathrm{~s}$	
t_{DV}	Verify to Data Valid	20.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{D} Z}$	Verify to High Z		1.0	$\mu \mathrm{~s}$	

Table 4

Pin Name	$\mathbf{V P P}_{\text {PP }}$	PGM/ $\overline{\mathbf{O E}}$	A1	A2	A3	A4	A5	D7-D0	Notes
Pin Number	(1)	(11)	(3)	(4)	(5)	(6)	(7)	(12-19)	
Operating Modes									
PAL	X	X	X	X	X	X	X	Programmed Function	3,4
Program PAL	$V_{\text {PP }}$	$V_{P P}$	X	X	X	X	X	Data In	3,5
Program Inhibit	V_{PP}	$\mathrm{V}_{\text {IHP }}$	X	X	X	X	X	High Z	3,5
Program Verify/Blank Check	V_{PP}	$V_{\text {ILP }}$	X	X	X	X	X	Data Out	3, 5, 11
Phantom PAL	X	X	X	X	X	$\mathrm{V}_{\text {PP }}$	X	Programmed Function	3,6
Program Phantom PAL	$V_{\text {PP }}$	$\mathrm{V}_{\text {PP }}$	X	X	X	X	$\mathrm{V}_{\text {PP }}$	Data In	3,7
Phantom Program Inhibit	$V_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	X	X	X	X	$V_{\text {PP }}$	High Z	3,7
Phantom Program Verify	$V_{P P}$	$V_{\text {ILP }}$	X	X	X	X	$V_{P P}$	Data Out	3,7
Program Security Bit	V_{PP}	$\mathrm{V}_{\text {PP }}$	V_{PP}	X	X	X	X	High Z	3, 8
Verify Security Bit	X	X	Note 9	V_{PP}	X	X	X	High Z	3
Register Preload	X	X	X	X	$\mathrm{V}_{\text {PP }}$	X	X	Data In	3, 10

Notes:

1. During verify operation
2. Measured at 10% and 90% points
3. $\mathrm{V}_{\mathrm{SS}}<\mathrm{X}<\mathrm{V}_{\mathrm{CCP}}$
4. All " X " inputs operational per normal PAL function.
5. Address inputs occupy Pins 2 thru 9 inclusive, for both programming and verification see programming address Tables 5 and 6.
6. All " X " inputs operational per normal PAL function except that they operate on the function that occupies the phantom array.
7. Address inputs occupy Pins 2 thru 9 inclusive, for both programming and verification see programming address Tables 5 and 6. Pin 7

The programmable array is addressed as a basic 256 by 8 memory structure with a duplication of the phantom array located at the same addresses as columns $0,1,2$ and 3 . The ability to address the phantom array as differentiated from the first 4 columns of the normal array is accomplished by taking Pin 7 to $V_{\text {PP }}$ and entering the phantom mode of operation as shown in Tables 4 and 6. In either case, phantom or normal, product terms are addressed in groups of 8 per Table 5 . Notice that this is accomplished by modulo 8
is used to select the phantom mode of operation and must be taken to V_{PP} before selecting phantom program operation with V_{PP} on Pin 1.
8. See Figure 8 for security programming sequence.
9. The state of Pin 3 indicates if the security function has been invoked or not. If Pin $3=V_{\mathrm{OL}}$ security is in effect, if $\operatorname{Pin} 3=\mathrm{V}_{\mathrm{OH}}$, the data is unsecured and may be directly accessed.
10. For testing purposes, the output latch on the 16R8, 16R6 and 16R4 may be preloaded with data from the appropriate associated output line.
11. It is necessary to toggle Pin $11(\overline{\mathrm{OE}})$ HIGH during all address transitions while in the Program Verify or Blank Check mode.
selecting every eighth product term starting with $0,8,16$, 24, 32, 40, 48 and 56 corresponding to PROGRAMMED DATA INPUT on D0 through D7 respectively and incrementing each product term by one until all 64 PRODUCT TERMS are addressed. Each of the INPUT TERMS is addressed 8 times corresponding to the 8 groups of individual product terms addressed before being incremented.

Table 5

Product Term Addresses										
Binary Addresses			Line Number							
Pin Numbers										
(4)	(3)	(2)								
$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	0	8	16	24	32	40	48	56
$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	1	9	17	25	33	41	49	57
$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	2	10	18	26	34	42	50	58
$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	3	11	19	27	35	43	51	59
$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	4	12	20	28	36	44	52	60
$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	5	13	21	29	37	45	53	61
$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	6	14	22	30	38	46	54	62
$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	7	15	23	31	39	47	55	63
			D0	D1	D2	D3	D4	D5	D6	D7
Programmed Data Input										

Table 6

Input Term Addresses					
$\begin{gathered} \text { Input } \\ \text { Term } \\ \text { Numbers } \end{gathered}$	Binary Addresses				
	Pin Numbers				
	(9)	(8)	(7)	(6)	(5)
0	$\mathrm{V}_{\text {ILP }}$	VILP	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
1	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
2	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$
3	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
4	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
5	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
6	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
7	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
8	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
9	$\mathrm{V}_{\text {ILP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
10	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
11	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
12	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
13	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
14	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
15	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\text {IHP }}$
16	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$
17	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$

Input Term Addresses					
Input Term Numbers	Binary Addresses				
	Pin Numbers				
	(9)	(8)	(7)	(6)	(5)
18	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
19	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$
20	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$
21	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
22	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
23	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
24	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
25	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
26	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
27	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
28	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
29	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
30	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
31	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
P0	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	X	X
P1	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{P P}$	X	X
P2	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	VPP	X	X
P3	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	X	X

0038-16
Figure 5. Programming Flowchart

Figure 6. Programming Waveforms Normal Array

0038-18
Figure 7. Program Waveforms Phantom Array

Figure 8. Activating Program Security

Figure 9. Verify Program Security

SEMICONDUCTOR
Functional Logic Diagram PAL C 16L8

Functional Logic Diagram PAL C 16R4

Functional Logic Diagram PAL C 16R6
INPUTS (0-31)
$-D$
$-D$

Functional Logic Diagram PAL C 16R8

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT

DELTA PROPAGATION TIME vs. OUTPUT LOADING

NORMALIZED CLOCK TO OUTPUT TIME vs. SUPPLY VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

NORMALIZED SETUP TIME vs. SUPPLY VOLTAGE

NORMALIZED CLOCK TO OUTPUT
TIME vs. TEMPERATURE

OUTPUT SOURCE CURRENT vs. VOLTAGE

Ordering Information

$\begin{aligned} & \text { tpD } \\ & \text { (ns) } \end{aligned}$	$\underset{\text { (ns) }}{\mathbf{t S}_{5}}$	$\begin{aligned} & \mathbf{t}_{\mathrm{CO}} \\ & \mathrm{nss} \end{aligned}$	$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \end{gathered}$	Ordering Code	Package	Operating Range
20	-	-	70	PAL C 16L8-20DMB	D6	Military
				PAL C 16L8-20LMB	L61	
				PAL C 16L8-20WMB	W6	
				PAL C 16L8-20KMB	K71	
				PAL C 16L8-20QMB	Q61	
25	-	-	45	PAL C 16L8L-25PC	P5	Commercial
				PAL C 16L8L-25VC	V5	
				PAL C 16L8L-25LC	L61	
				PAL C 16L8L-25WC	W6	
			70	PAL C 16L8-25PC/PI	P5	
				PAL C 16L8-25VC/VI	V5	
				PAL C 16L8-25LC	L61	
				PAL C 16L8-25WC/WI	W6	
30	-	-	70	PAL C 16L8-30DMB	D6	Military
				PAL C 16L8-30LMB	L61	
				PAL C 16L8-30WMB	W6	
				PAL C 16L8-30KMB	K71	
				PAL C 16L8-30QMB	Q61	
35	-	-	45	PAL C 16L8L-35PC	P5	Commercial
				PAL C 16L8L-35VC	V5	
				PAL C 16L8L-35LC	L61	
				PAL C 16L8L-35WC	W6	
			70	PAL C 16L8-35PC/PI	P5	
				PAL C 16L8-35VC/VI	V5	
				PAL C 16L8-35LC	L61	
				PAL C 16L8-35WC/WI	W6	
40	-	-	70	PAL C 16L8-40DMB	D6	Military
				PAL C 16L8-40LMB	L61	
				PAL C 16L8-40WMB	W6	
				PAL C 16L8-40KMB	K71	
				PAL C 16L8-40QMB	Q61	
20	20	15	70	PAL C 16R4-20DMB	D6	Military
				PAL C 16R4-20LMB	L61	
				PAL C 16R4-20WMB	W6	
				PAL C 16R4-20KMB	K71	
				PAL C 16R4-20QMB	Q61	
25	20	15	45	PAL C 16R4L-25PC	P5	Commercial
				PAL C 16R4L-25VC	V5	
				PAL C 16R4L-25LC	L61	
				PAL C 16R4L-25WC	W6	
			70	PAL C 16R4-25PC/PI	P5	
				PAL C 16R4-25VC/VI	V5	
				PAL C 16R4-25LC	L61	
				PAL C 16R4-25WC/WI	W6	

PAL ${ }^{\circledR}$ C 20 Series

SEMICONDUCTOR
Ordering Information (Continued)

$\begin{aligned} & \text { tpD } \\ & \text { (ns) } \end{aligned}$	$\begin{gathered} \mathbf{t s}_{\mathbf{S}} \\ (\mathrm{ns}) \end{gathered}$	$\begin{aligned} & \text { tco } \\ & \text { (ns) } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{CC}} \\ (\mathrm{~mA}) \end{gathered}$	Ordering Code	Package	Operating Range
30	25	20	70	PAL C 16R4-30DMB	D6	Military
				PAL C 16R4-30LMB	L61	
				PAL C 16R4-30WMB	W6	
				PAL C 16R4-30KMB	K71	
				PAL C 16R4-30QMB	Q61	
35	30	25	45	PAL C 16R4L-35PC	P5	Commercial
				PAL C 16R4L-35VC	V5	
				PAL C 16R4L-35LC	L61	
				PAL C 16R4L-35WC	W6	
			70	PAL C 16R4-35PC/PI	P5	
				PALC 16R4-35VC/VI	V5	
				PAL C 16R4-35LC	L61	
				PAL C 16R4-35WC/WI	W6	
40	35	25	70	PAL C 16R4-40DMB	D6	Military
				PAL C 16R4-40LMB	L61	
				PAL C 16R4-40WMB	W6	
				PAL C 16R4-40KMB	K71	
				PAL C 16R4-40QMB	Q61	
20	20	15	70	PAL C 16R6-20DMB	D6	Military
				PAL C 16R6-20LMB	L61	
				PAL C 16R6-20WMB	W6	
				PAL C 16R6-20KMB	K71	
				PAL C 16R6-20QMB	Q61	
25	20	15	45	PAL C 16R6L-25PC	P5	Commercial
				PAL C 16R6L-25VC	V5	
				PAL C 16R6L-25LC	L61	
				PAL C 16R6L-25WC	W6	
			70	PAL C 16R6-25PC/PI	P5	
				PAL C 16R6-25VC/VI	V5	
				PAL C 16R6-25LC	L61	
				PAL C 16R6-25WC/WI	W6	
30	25	20	70	PAL C 16R6-30DMB	D6	Military
				PAL C 16R6-30LMB	L61	
				PAL C 16R6-30WMB	W6	
				PAL C 16R6-30KMB	K71	
				PAL C 16R6-30QMB	Q61	
35	30	25	45	PAL C 16R6L-35PC	P5	Commercial
				PAL C 16R6L-35VC	V5	
				PAL C 16R6L-35LC	L61	
				PAL C 16R6L-35WC	W6	
			70	PAL C 16R6-35PC/PI	P5	
				PAL C 16R6-35VC/VI	V5	
				PAL C 16R6-35LC	L61	
				PAL C 16R6-35WC/WI	W6	

PAL ${ }^{\circledR}$ C 20 Series

SEMICONDUCTOR
Ordering Information (Continued)

$\begin{aligned} & \text { trd } \\ & \text { (ns) } \end{aligned}$	$\underset{(\mathrm{ns})}{\mathbf{t s}_{\mathbf{S}}}$	$\begin{aligned} & \mathrm{t}_{\mathrm{tCO}} \\ & (\mathrm{~ns}) \end{aligned}$	$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathbf{C C}}}$	Ordering Code	Package	Operating Range
40	35	25	70	PAL C 16R6-40DMB	D6	Military
				PAL C 16R6-40LMB	L61	
				PAL C 16R6-40WMB	W6	
				PAL C 16R6-40KMB	K71	
				PAL C 16R6-40QMB	Q61	
-	20	15	70	PAL C 16R8-20DMB	D6	Military
				PAL C 16R8-20LMB	L61	
				PAL C 16R8-20WMB	W6	
				PAL C 16R8-20KMB	K71	
				PAL C 16R8-20QMB	Q61	
-	20	15	45	PAL C 16R8L-25PC	P5	Commercial
				PAL C 16R8L-25VC	V5	
				PAL C 16R8L-25LC	L61	
				PAL C 16R8L-25WC	W6	
			70	PAL C 16R8-25PC/PI	P5	
				PALC 16R8-25VC/VI	V5	
				PAL C 16R8-25LC	L61	
				PAL C 16R8-25WC/WI	W6	
-	25	20	70	PAL C 16R8-30DMB	D6	Military
				PAL C 16R8-30LMB	L61	
				PAL C 16R8-30WMB	W6	
				PAL C 16R8-30KMB	K71	
				PAL C 16R8-30QMB	Q61	
-	30	25	45	PAL C 16R8L-35PC	P5	Commercial
				PAL C 16R8L-35VC	V5	
				PAL C 16R8L-35LC	L61	
				PAL C 16R8L-35WC	W6	
			70	PAL C 16R8-35PC/PI	P5	
				PALC 16R8-35VC/VI	V5	
				PAL C 16R8-35LC	L61	
				PAL C 16R8-35WC/WI	W6	
-	35	25	70	PAL C 16R8-40DMB	D6	Military
				PAL C 16R8-40LMB	L61	
				PAL C 16R8-40WMB	W6	
				PAL C 16R8-40KMB	K71	
				PAL C 16R8-40QMB	Q61	

\qquad
MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
$\mathrm{~V}_{\mathrm{PP}}$	$1,2,3$
I_{CC}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$t_{P D}$	$9,10,11$
$t_{P Z X}$	$9,10,11$
t_{CO}	$9,10,11$
t_{S}	$9,10,11$
t_{H}	$9,10,11$

Document \#: 38-00001-C

Features

- Fast
- Commercial: tPD $=12$ ns, $\mathbf{t}_{\mathbf{C O}}=10 \mathrm{~ns}, \mathbf{t s}_{\mathrm{S}}=10 \mathrm{~ns}$
- Military/Industrial: $t_{\text {PD }}=15 \mathrm{~ns}, \mathbf{t}_{\text {CO }}=12 \mathrm{~ns}$, $\mathbf{t s}_{\mathrm{S}}=12 \mathrm{~ns}$
- Low power
- ICC max.: 110 mA
- Commercial, industrial, and military temperature range
- User-programmable output cells
- Selectable for registered or combinatorial operation
- Output polarity control
- Output enable source selectable from pin 11 or product term
- Generic architecture to replace standard logic functions including: 10H8, 12H6, 14H4, 16H2, 10L8, 12L6, 14L4, 16L2, 10P8, 12P6, 14P4, 16P2, 16H8, 16L8, 16P8, 16R8, 16R6, 16R4, 16RP8, 16RP6, 16RP4, 18P8, 16V8
- Eight product terms and one OE product term per output
- CMOS EPROM technology for reprogrammability
- Highly reliable
- Uses proven EPROM technology
- Fully AC and DC tested

- Security feature prevents logic pattern duplication
 $->2000 \mathrm{~V}$ input protection for electrostatic discharge

Functional Description

Cypress PLD devices are high speed electrically programmable Logic Devices. These devices utilize the sum of products (AND-OR) structure providing users the ability to program custom logic functions for unique requirements.

In an unprogrammed state the AND gates are connected via EPROM cells to both the true and complement of every input. By selectively programming the EPROM cells, AND gates may be

Logic Symbol, DIP and SOJ Pinout

18G8

0139-2
PLCC Pinout

0139-3

Selection Guide

Generic Part Number	ICC (mA)		tPD (ns)		tS		tCO	
	Com	Mil/Ind	Com	Mil/Ind	Com	Mil/Ind	Com	Mil/Ind
18 G8-12	90		12		10		10	
18 G8-15	90	110	15	15	12	12	12	12
18 G8-15L	70		15		12		12	
$18 G 8-20$		110		20		15		15

Functional Description (Continued)

connected to either the true or complement or disconnected from both true and complement inputs.
Cypress PLD C 18G8 uses an advanced 0.8 micron CMOS technology and a proven EPROM cell as the programmable element. This technology and the inherent advantage of being able to program and erase each cell enhances the reliability and testability of the circuit. This reduces the burden on the customer to test and to handle rejects.
A preload function allows the registered outputs to be preset to any pattern during testing. Preload is important for testing the functionality of the Cypress PLD device.

18G8 Functional Description

The PLD C 18 G 8 is a generic 20 pin device that can be programmed to logic functions which include but are not limited to: $10 \mathrm{H} 8,12 \mathrm{H} 6,14 \mathrm{H} 4,16 \mathrm{H} 2,10 \mathrm{~L} 8,12 \mathrm{~L} 6,14 \mathrm{~L} 4$, 16L2, 10P8, 12P6, 14P4, 16P2, 16H8, 16L8, 16P8, 16R8, 16R6, 16R4, 16RP8, 16RP6, 16RP4, 18P8, 16V8. Thus, the PLD C 18G8 provides significant design, inventory and programming flexibility over dedicated 20 pin devices. It is executed in a 20 pin 300 mil molded DIP and a 300 mil windowed Cerdip. It provides up to 18 inputs and 8 outputs. When the windowed CERDIP is exposed to UV light, the 18G8 is erased and then can be reprogrammed.
The Programmable Output Cell provides the capability of defining the architecture of each output individually. Each of the 10 output cells may be configured with "REGISTERED" or "COMBINATORIAL" outputs, "ACTIVE HIGH" or "ACTIVE LOW" outputs, and "PRODUCT TERM" or "PIN 11" generated output enables. Four Architecture Bits determine the configurations as shown in Table 1. A total of sixteen different configurations are possible. The default or unprogrammed state is REGIS-
TERED/ACTIVE/LOW/Pin 11 OE. The entire Programmable Output Cell is shown in Figure 1.
The architecture bit ' C 1 ' controls the REGISTERED/ COMBINATORIAL option. In either "COMBINATORIAL" or "REGISTERED" configuration, the output can serve as an I/O pin, or if the output is disabled, as an input only. Any unused inputs should be tied to ground. In either "REGISTERED" or "COMBINATORIAL" configuration, the output of the register may be fed back to the array. This allows the creation of state machines by pro-
viding storage and feedback of the current system state. The register is clocked by the signal from Pin 1. The register is initialized on power up to Q output LOW and \bar{Q} output HIGH.
In both the Combinatorial and Registered configurations, the source of the "OUTPUT ENABLE" signal can be individually chosen with architecture bit ' C 2 '. The OE signal may be generated within the array, or from the external $\overline{\mathrm{OE}}$ pin (Pin 11). The Pin 11 allows direct control of the outputs, hence having faster enable/disable times.
Each output cell can be configured for "OUTPUT POLARITY". The output can be either Active HIGH or Active LOW. This option is controlled by architecture bit ' C 0 '.

Along with this increase in functional density, the Cypress PLD C 18G8 provides lower power operation through the use of CMOS technology, increased testability with a register preload feature and guaranteed AC performance through the use of a phantom array. The phantom array allows the 18G8 to be programmed with a test pattern and tested prior to shipment for full AC specifications without using any of the functionality of the device specified for the product application. In addition, this same phantom array may be used to test the PLD C 18G8 at incoming inspection before committing the device to a specific function through programming.

Programmable Output Cell

Figure 1

PLD C 18G8

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots . \ldots \ldots . .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Temperature with	Static Discharge Voltage (per MIL-STD-883 Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latchup Curre		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential $\ldots .-0.5 \mathrm{~V}$ to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State. -0.5 V to +7.0 V	Range	Ambient Temperature	$\mathbf{V}_{\text {CC }}$
DC Input Voltage - 3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
output Current into Outputs (Low) 24 mA	Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
DC Programming Voltage . 13.0 ¢	Military ${ }^{[7]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range (Unless Otherwise Noted) ${ }^{[7]}$

Parameters	Description	Test Conditions			Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}=-3.2 \mathrm{~mA}$	Commercial	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	Military/Industrial			
V OL	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}=24 \mathrm{~mA}$	Commercial		0.5	V
			$\mathrm{IOL}=12 \mathrm{~mA}$	Military/Industrial			
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH ${ }^{[1]}$ Voltage for all Inputs			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW[1] Voltage for all Inputs				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$			-10	10	$\mu \mathrm{A}$
VPP		Programming Voltage @ $\mathrm{IPP}^{\text {P }}=50 \mathrm{~mA}$ Max.			12.0	13.0	V
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[2]}$			-30	-90	mA
ICC	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max. }, \text { IOUT }=0 \mathrm{~mA} \end{aligned}$	Commercial -15L			70	mA
			Commercial -12,-15			90	
			Military/Industrial			110	
Ioz	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			-40	40	$\mu \mathrm{A}$

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$10:$	

AC Test Loads and Waveforms (Commercial)

Figure 2a
Equivalent to: THÉVENIN EQUIVALENT (Commercial)

0139-5
Figure 2b
Equivalent to: THÉVENIN EQUIVALENT (Military/Industrial)

Configuration Table ${ }^{[8]}$

Table 1

$\mathbf{C}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	
0	0	0	0	Active LOW, Registered Mode, Regigtered Feedback, Pin 11 OE
0	0	0	1	Active HIGH, Registered Mode, Registered Feedback, Pin 11 OE
0	0	1	0	Active LOW, Combinatorial Mode, Registered Feedback, Pin 11 OE
0	0	1	1	Active HIGH, Combinatorial Mode, Registered Feedback, Pin 11 OE
0	1	0	0	Active LOW, Registered Mode, Registered Feedback, Product Term OE
0	1	0	1	Active HIGH, Registered Mode, Registered Feedback, Product Term OE
0	1	1	0	Active LOW, Combinatorial Mode, Registered Feedback, Product Term OE
0	1	1	1	Active HIGH, Combinatorial Mode, Registered Feedback, Product Term OE
1	0	0	0	Active LOW, Registered Mode, Pin Feedback, Pin 11 OE
1	0	0	1	Active HIGH, Registered Mode, Pin Feedback, Pin 11 OE
1	0	1	0	Active LOW, Combinatorial Mode, Pin Feedback, Pin 11 OE
1	0	1	1	Active HIGH, Combinatorial Mode, Pin Feedback, Pin 11 OE
1	1	0	0	Active LOW, Registered Mode, Pin Feedback, Product Term OE
1	1	0	1	Active HIGH, Registered Mode, Pin Feedback, Product Term OE
1	1	1	0	Active LOW, Combinatorial Mode, Pin Feedback, Product Term OE
1	1	1	1	Active HIGH, Combinatorial Mode, Pin Feedback, Product Term OE

Switching Characteristics PLD C 18G8 Over Operating Range ${ }^{[4, ~ 7, ~ 9] ~}$

Parameters	Description	Commercial				Military/Industrial				Units
		-12		-15, -15L		-15		-20		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {PD }}$	Input or Feedback to Non-Registered Output		12		15		15		20	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable		12		15		15		20	ns
ter	Input to Output Disable		12		15		15		20	ns
tPZX	Pin 11 to Output Enable		10		12		12		15	ns
tPXZ	Pin 11 to Output Disable		10		10		10		15	ns
t_{CO}	Clock to Output		10		12		12		15	ns
ts	Input or Feedback Setup Time	10		12		12		15		ns
t_{H}	Hold Time	0		0		0		0		ns
$\mathrm{tP}^{\text {[5] }}$	Clock Period	22		24		27		35		ns
twh	Clock High Time	7		8		9		10		ns
twl	Clock Low Time	8		9		10		11		ns
$\mathrm{f}_{\text {MAX }}{ }^{[6]}$	Maximum Frequency	50.0		41.6		41.6		33.3		MHz

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure $2 a$ test load used for all parameters except $t_{\text {ER }}$, tPZX and tPXZ. Figure $2 b$ test load used for $\mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\mathrm{PZX}}$ and $\mathrm{t}_{\mathrm{PXZ}}$ -
5. tp, minimum guaranteed clock period is that guaranteed for state machine operation and is calculated from $\mathrm{t}_{\mathrm{p}}=\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{CO}}$. The minimum guaranteed period for registered data path operation (no feedback) can be calculated as the greater of ($\mathrm{twH}_{\mathrm{W}}+\mathrm{twL}_{\mathrm{W}}$) or $\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$.
6. $\mathrm{f}_{\mathrm{MAX}}$, minimum guaranteed operating frequency, is that guaranteed for state machine operation and is calculated from $\mathrm{f}_{\mathrm{MAX}}=1 /\left(\mathrm{ts}_{s}+\right.$ t_{CO}). The minimum guaranteed $\mathrm{f}_{\mathrm{MAX}}$ for registered data path operation (no feedback) can be calculated as the lower of $1 /\left(\mathrm{twH}_{\mathrm{W}}+\mathrm{twL}\right)$ or $1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$.
7. T_{A} is the "instant on" case temperature.
8. In the virgin or unprogrammed state, a configuration bit location is in the " 0 " state.
9. The parameters tER and tPXZ are measured as the delay from the input disable logic threshold transition to $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ for an enabled HIGH output or $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ for an enabled LOW output.

Switching Waveform

Note:
For more information regarding PLD devices, refer to the Application Brief in the Appendix.

CYPRESS
PLD C 18G8
SEMICONDUCTOR
Functional Logic Diagram PLD C 18G8

INPUT LINES

Ordering Information

$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathrm{mA}) \end{gathered}$	Speed (ns)	Ordering Code	Package Type	Operating Range
90	12	PLD C 18G8-12PC	P5	Commercial
		PLD C 18G8-12WC	W6	
		PLD C 18G8-12VC	V5	
		PLD C 18G8-12JC	J61	
70	15	PLD C 18G8L-15PC	P5	Commercial
		PLD C 18G8L-15WC	W6	
		PLD C 18G8L-15VC	V5	
		PLD C 18G8L-15JC	J61	
90	15	PLD C 18G8-15PC	P5	Commercial
		PLD C 18G8-15WC	W6	
		PLD C 18G8-15VC	V5	
		PLD C 18G8-15JC	J61	
110	15	PLD C 18G8-15PI	P5	Industrial
		PLD C 18G8-15WI	W6	
		PLD C 18G8-15JI	J61	
110	15	PLD C 18G8-15DMB	D6	Military
		PLD C 18G8-15WMB	W6	
		PLD C 18G8-15LMB	L61	
		PLD C 18G8-15QMB	Q61	
		PLD C 18G8-15KMB	K71	
110	20	PLD C 18G8-20PI	P5	Industrial
		PLD C 18G8-20WI	W6	
		PLD C 18G8-20JI	J61	
110	20	PLD C 18G8-20DMB	D6	Military
		PLD C 18G8-20WMB	W6	
		PLD C 18G8-20LMB	L61	
		PLD C 18G8-20QMB	Q61	
		PLD C 18G8-20KMB	K71	

Document \#: 38-00080-B

Features

- Fast
- Commercial: tPD $=15 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{CO}}=10 \mathrm{~ns}, \mathrm{t}_{\mathrm{S}}=12 \mathrm{~ns}$
- Military: $\mathrm{t}_{\mathrm{PD}}=20 \mathrm{~ns}$, $\mathbf{t}_{\mathbf{C O}}=15 \mathrm{~ns}, \mathrm{t}_{\mathrm{S}}=15 \mathrm{~ns}$
- Low power
- ICC max.: 70 mA , Commercial
- ICC max.: 100 mA , Military
- Commercial and military temperature range
- User-programmable output cells
- Selectable for registered or combinatorial operation
- Output polarity control
- Output enable source selectable from pin 13 or product term
- Generic architecture to replace standard logic functions including: 20L10, 20L8, 20R8, 20R6, 20R4, 12L10, 14L8, 16L6, $18 \mathrm{~L} 4,20 \mathrm{~L} 2$ and 20 V 8
- Eight product terms and one OE product term per output
- CMOS EPROM technology for reprogrammability
- Highly reliable
- Uses proven EPROM technology
- Fully AC and DC tested
- Security feature prevents logic pattern duplication
- $\pm \mathbf{1 0 \%}$ power supply voltage and higher noise immunity

Functional Description

Cypress PLD devices are high speed electrically programmable Logic Devices. These devices utilize the sum of products (AND-OR) structure providing users the ability to program custom logic functions for unique requirements.
In an unprogrammed state the AND gates are connected via EPROM cells to both the true and complement of every input. By selectively programming the EPROM cells, AND gates may be connected to either the true or complement or disconnected from both true and complement inputs.
Cypress PLD C 20G10 uses an advanced 0.8 micron CMOS technology and a proven EPROM cell as the pro-

Logic Symbol

20G10

0053-15

LCC Pinout

STD PLCC Pinout

JEDEC PLCC Pinout ${ }^{[16]}$

CYPRESS

Selection Guide

Generic Part Number	$\mathrm{I}_{\mathbf{C C}}$			tPD		ts		tco	
	L	Com/Ind	Mil	Com/Ind	Mil	Com/Ind	Mil	Com/Ind	Mil
20G10B-15	-	70	-	15	-	12	-	10	-
20G10B-20	-	70	100	20	20	12	15	12	15
20G10B-25	-	-	100	-	25	-	18	-	15
20G10-25	-	55	-	25	-	15	-	15	-
20G10-30	-	-	80	-	30	-	20	-	20
20G10-35	-	55	-	35	-	30	-	25	-
20G10-40	-	-	80	-	40	-	35	-	25

Functional Description (Continued)

 grammable element. This technology and the inherent advantage of being able to program and erase each cell enhances the reliability and testability of the circuit. This reduces the burden on the customer to test and to handle rejects.A preload function allows the registered outputs to be preset to any pattern during testing. Preload is important for testing the functionality of the Cypress PLD device.

20G10 Functional Description

The PLD C 20 G 10 is a generic 24 pin device that can be programmed to logic functions which include but are not limited to: 20L10, 20L8, 20R8, 20R6, 20R4, 12L10, 14L8, 16L6, 18L4, 20L2 and 20V8. Thus, the PLD C 20G10 provides significant design, inventory and programming flexibility over dedicated 24 pin devices. It is executed in a 24 pin 300 mil molded DIP and a 300 mil windowed Cerdip. It provides up to 22 inputs and 10 outputs. When the windowed CERDIP is exposed to UV light, the 20G10 is erased and then can be reprogrammed.

The Programmable Output Cell provides the capability of defining the architecture of each output individually. Each of the 10 output cells may be configured with "REGIS-
TERED" or "COMBINATORIAL" outputs, "ACTIVE HIGH" or "ACTIVE LOW" outputs, and "PRODUCT TERM" or "PIN 13" generated output enables. Three Architecture Bits determine the configurations as shown in Table 1 and in Figures 2 through 9. A total of eight different configurations are possible, with the two most common shown in Figure 4 and Figure 6. The default or unprogrammed state is REGISTERED/ACTIVE LOW/ PRODUCT TERM OE as shown in Figure 2. The entire Programmable Output Cell is shown in Figure 1.
The architecture bit ' C 1 ' controls the REGISTERED/ COMBINATORIAL option. In the "COMBINATORIAL" configuration, the output can serve as an I/O pin, or if the output is disabled, as an input only. Any unused inputs should be tied to ground. In the "REGISTERED" configuration, the output of the register is fed back to the array. This allows the creation of control-state machines by providing the next state. The register is clocked by the
signal from Pin 1. The register is initialized on power up to Q output LOW and \bar{Q} output HIGH.
In both the Combinatorial and Registered configurations, the source of the "OUTPUT ENABLE" signal can be individually chosen with architecture bit ' C 2 '. The OE signal may be generated within the array, or from the external $\overline{\mathrm{OE}} \mathrm{pin}(\mathrm{Pin} 13)$. The Pin 13 allows direct control of the outputs, hence having faster enable/disable times.
Each output cell can be configured for "OUTPUT POLARITY". The output can be either Active HIGH or Active LOW. This option is controlled by architecture bit 'CO'.
Along with this increase in functional density, the Cypress PLD C 20G10 provides lower power operation through the use of CMOS technology, increased testability with a register preload feature and guaranteed AC performance through the use of a phantom array. The phantom array allows the 20G10 to be programmed with a test pattern and tested prior to shipment for full AC specifications without using any of the functionality of the device specified for the product application. In addition, this same phantom array may be used to test the PLD C 20G10 at incoming inspection before committing the device to a specific function through programming.

Programmable Output Cell

Figure 1

Configuration Table

Table 1

Figure	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	
2	0	0	0	Configuration
3	0	0	1	Product Term OE/Registered/Active LOW
6	0	1	0	Product Term OE/Registered/Active HIGH
7	0	1	1	Product Term OE/Combinatorial/Active LOW
4	1	0	0	Product Term OE/Combinatorial/Active HIGH
5	1	0	1	Pin 13 OE/Registered/Active LOW
8	1	1	0	Pin 13 OE/Registered/Active HIGH
9	1	1	1	Pin 13 OE/Combinatorial/Active LOW

Registered Output Configurations

Figure 2. Product Term OE/Active LOW
0053-37

$\mathrm{C}_{2}=1$
$\mathrm{C}_{1}=0$
$\mathrm{C}_{1}=0$

0053-39
Figure 4. Pin 13 OE/Active LOW
$\mathrm{C}_{1}=0$
$\mathrm{C}_{0}=0$

$\mathrm{C}_{2}=0$

Figure 3. Product Term OE/Active HIGH

0053-40

Figure 5. Pin 13 OE/Active HIGH
Combinatorial Output Configurations ${ }^{[5]}$

Figure 6. Product Term OE/Active LOW

Figure 8. Pin 13 OE/Active LOW
$C_{2}=1$
$C_{1}=1$
$\mathrm{C}_{0}=0$

Figure 7. Product Term OE/Active HIGH

Figure 9. Pin 13 OE/Active HIGH

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Latchup Current
$>200 \mathrm{~mA}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low) 16 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[7]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC Programming Voltage
PLD C 20G10B and CG7C323B-A 13.0V
PLD C 20G10 and CG7C323-A 14.0V
Electrical Characteristics Over Operating Range (Unless Otherwise Noted) ${ }^{[6]}$

Parameters	Description	Test Conditions			Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathbf{M i n} . \\ & \mathbf{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	COM'L/IND	2.4		V
			$\mathrm{IOH}=-2 \mathrm{~mA}$	Military			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	COM'L/IND		0.5	V
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Military			
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH [1] Voltage for all Inputs			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW[1] Voltage for all Inputs				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$			-10	10	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\mathbf{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}[2,3]$				-90	mA
ICC	Power Supply Current	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I} \\ & \text { Unprogrammed Device } \end{aligned}$	COM'L/IND -15, -20			70	mA
			COM'L/IND -25, -35			55	
			Military -20, -25			100	
			Military -30, -40			80	
IOZ	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$			-100	100	$\mu \mathrm{A}$

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {IN }}=0, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Switching Characteristics PLD C 20G10 Over Operating Range ${ }^{[4, ~ 6]}$

Parameters	Description	Commercial								Military								Units
		B-15		B-20		-25		-35		B-20		B-25		-30		-40		
		Min.	Max.															
tPD	Input to Output Propagation Delay ${ }^{[14]}$		15		20		25		35		20		25		30		40	ns
tea	Input to Output Enable Delay		15		20		25		35		20		25		30		40	ns
tER	Input to Output Disable Delay $[9]$		15		20		25		35		20		25		30		40	ns
$t_{\text {PZX }}$	$\overline{\mathrm{OE}}$ Input to Output Enable Delay		12		15		20		25		17		20		25		25	ns
tPZX	$\overline{\mathrm{OE}}$ Input to Output Disable Delay		12		15		20		25		17		20		25		25	ns
${ }^{\text {t }}$ O	Clock to Output Delay[14]		10		12		15		25		15		15		20		25	ns
$\mathrm{ts}^{\text {S }}$	Input or Feedback Setup Time	12		12		15		30		15		18		20		35		ns
t_{H}	Input Hold Time	0		0		0		0		0		0		0		0		ns
tP	External Clock Period ($\mathrm{T}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}$)	22		24		30		55		30		33		40		60		ns
twh	Clock Width HIGH ${ }^{[3,8]}$	8		10		12		17		12		14		16		22		ns
twL	Clock Width LOW ${ }^{[3,8]}$	8		10		12		17		12		14		16		22		ns
$\mathrm{f}_{\text {MAX1 }}$	External Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{ts}_{\mathrm{S}}\right)\right)^{[10]}$	45.4		41.6		33.3		18.1		33.3		30.3		25.0		16.6		MHz
$\mathrm{f}_{\text {MAX2 }}$	Data Path Maximum Frequency $\left(1 /\left(\text { twh }+\mathrm{t}_{\mathrm{WL}}\right)\right)^{[11]}$	62.5		50.0		41.6		29.4		41.6		35.7		31.2		22.7		MHz
$\mathrm{f}_{\text {MAX }}$	Internal Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[12]}$	66.6		45.4		35.7		20.8		33.3		32.2		28.5		18.1		MHz
${ }^{\text {t }}$ CF	Register Clock to Feedback Input [13]		3.0		10		13		18		13		13		15		20	ns

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure $11 a$ test load used for all parameters except $t_{E R}, t_{\text {PZX }}$ and tPXZ. Figure $11 b$ test load used for $\mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\mathrm{PZX}}$ and tPXZ . See Figure 10 for waveforms.
5. Bidirectional I/O configurations are possible only when the combinatorial output option is selected.
6. See the last page of this specification for Group A subgroup testing information.
7. T_{A} is the "instant on" case temperature.
8. Tested by periodically sampling production product.
9. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous high level has fallen to 0.5 volts below $\mathrm{V}_{\mathrm{OH}} \mathrm{Min}$. or a previous low level has risen to 0.5 volts above V_{OL} Max. Please see Figure 10 for enable and disable waveforms and measurement reference levels.
10. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feed back can operate.
11. This specification indicates the guaranteed maximum frequency at which an individual output register can be cycled.
12. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feed back can operate. This parameter is tested periodically by sampling production product.
13. This parameter is calculated from the clock period at $\mathrm{f}_{\text {MAX }}$ internal (f MAX3) as measured (see note 12 above) minus ts.
14. This specification is guaranteed for all device outputs changing state in a given access cycle.

Test Waveforms

Parameter	$\mathbf{V}_{\mathbf{X}}$	Output Waveform-Measurement Level
tPXZ (-)	1.5 V	
${ }_{\text {tPXZ }}(+)$	2.6 V	
tPZX (+)	$\mathrm{V}_{\text {thc }}$	
tpzX ()	$\mathrm{V}_{\text {the }}$	
ter(-)	1.5 V	
ter (+)	2.6 V	
$\mathrm{t}_{\mathrm{EA}}(+)$	$\mathrm{V}_{\text {the }}$	
$\mathrm{t}_{\mathrm{EA}(-)}$	$\mathrm{V}_{\text {thc }}$	

AC Test Loads and Waveforms (Commercial)

Figure 11a
Equivalent to:
THÉVENIN EQUIVALENT (Commercial)

$$
\text { OUTPUT } O-\underbrace{99 \Omega} \longrightarrow 2.08 \mathrm{~V}=\mathrm{V}_{\text {the }}
$$

Figure 11b

Figure 12
THÉVENIN EQUIVALENT (Military)

$$
\text { OUTPUT } O \longrightarrow \underbrace{136 \Omega} \longrightarrow 2.13 \mathrm{~V}=\mathrm{V}_{\text {thm }}
$$

Switching Waveforms

Note:
For more information regarding PLD devices, refer to the Application Brief in the Appendix.

Functional Logic Diagram PLD C 20G10

0053-23

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the PLD C 20G10. For this reason, an opaque label should be placed over the window if the device is exposed to sunlight or fluorescent lighting for extended periods of time. In addition, high ambient light levels can create holeelectron pairs which may cause "blank" check failures or "verify errors" when programming "windowed" parts. This phenomenon can be avoided by use of an opaque label over the window during programming in high ambient light environments.

The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating, the exposure would be approximately 35 minutes. The PLD C 20G10 needs to be placed within 1 inch of the lamp during erasure. Permanent damage may result if the device is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

SEMICONDUCTOR
Characteristics

NORMALIZED PROPAGATION DELAY vs. TEMPERATURE

ambient temperature $1^{\circ} \mathrm{C}$

NORMALIZED SETUP TIME vs. TEMPERATURE

DELTA CLOCK TO OUTPUT TIME vs. OUTPUT LOADING

DELTA PROPAGATION TIME vs. OUTPUT LOADING

NORMALIZED CLOCK TO OUTPUT TIME vs. SUPPLY VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

NORMALIZED SETUP TIME vs. SUPPLY VOLTAGE

SUPPLY VOLTAGE (V)
NORMALIZED CLOCK
TO OUTPUT
TIME vs. TEMPERATURE

AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$

OUTPUT SOURCE CURRENT vs. VOLTAGE

Ordering Information

$\begin{aligned} & \mathbf{t}_{\text {PD }} \\ & \text { (ns) } \\ & \hline \end{aligned}$	$\underset{(\mathrm{ns})}{\mathrm{ts}_{\mathbf{S}}}$	$\begin{aligned} & \text { tco } \\ & \text { (ns) } \\ & \hline \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{I}_{\mathbf{C C}}}$	Ordering Code	Package	Operating Range
15	12	10	70	PLD C 20G10B-15PC/PI	P13	Commercial/ Industrial
				PLD C 20G10B-15WC/WI	W14	
				PLD C 20G10B-15JC/JI*	J64	
				PLD C 20G10B-15HC	H64	
				CG7C323B-A15JC/JI ${ }^{\text {[15] }}$	J64	
				CG7C323B-A15HC	H64	
20	12	12	70	PLD C 20G10B-20PC/PI	P13	Commercial/ Industrial
				PLD C 20G10B-20WC/WI	W14	
				PLD C 20G10B-20JC/JI	J64	
				PLD C 20G10B-20HC	H64	
				CG7C323B-A20JC/JI ${ }^{[15]}$	J64	
				CG7C323B-A20HC	H64	
20	15	15	100	PLD C 20G10B-20DMB	D14	Military
				PLD C 20G10B-20WMB	W14	
				PLD C 20G10B-20LMB	L64	
25	15	15	55	PLD C 20G10-25PC/PI	P13	$\begin{aligned} & \text { Commercial/ } \\ & \text { Industrial } \end{aligned}$
				PLD C 20G10-25WC/WI	W14	
				PLD C 20G10-25JC/J1	J64	
				PLD C 20G10-25HC	H64	
				CG7C323-A25JC/J1 ${ }^{\text {[15] }}$	J64	
				CG7C323-A25HC	H64	
25	18	15	100	PLD C 20G10B-25DMB	D14	Military
				PLD C 20G10B-25WMB	W14	
				PLD C 20G10B-25LMB	L64	
30	20	20	80	PLD C 20G10-30DMB	D14	Military
				PLD C 20G10-30WMB	W14	
				PLD C 20G10-30LMB	L64	
35	30	25	55	PLD C 20G10-35PC/PI	P13	Commercial/ Industrial
				PLD C 20G10-35WC/WI	W14	
				PLD C 20G10-35JC/JI	J64	
				PLD C $20 \mathrm{G} 10-35 \mathrm{HC}$	H64	
				CG7C323-A35JC/JI ${ }^{\text {[15] }}$	J64	
				CG7C323-A35HC	H64	
40	35	25	80	PLD C 20G10-40DMB	D14	Military
				PLD C 20G10-40WMB	W14	
				PLD C 20G10-40LMB	L64	

Note:

15. The CG7C323 is the PLDC20G10 packaged in the JEDEC compatible 28 pin PLCC pinout. Pin function and pin order is identical for both PLCC pinouts. The principle difference is in the location of the "no connect" or NC pins.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
\mathbf{V}_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
\mathbf{V}_{IH}	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
$\mathbf{I}_{\mathbf{I X}}$	$1,2,3$
\mathbf{I}_{CC}	$1,2,3$
\mathbf{I}_{OZ}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\text {PD }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PZX }}$	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
$\mathrm{t}_{\mathbf{H}}$	$7,8,9,10,11$

Document \#: 38-00019-F

SEMICONDUCTOR

Features

- Advanced user programmable macro cell
- CMOS EPROM technology for reprogrammability
- Up to 20 input terms
- 10 programmable I/O macro cells
- Output macro cell programmable as combinatorial or asynchronous D-type registered output
- Product term control of register clock, reset and set and output enable
- Register preload and power-up reset
- Four data product terms per output macro cell
- Fast
- Commercial $\mathbf{t}_{\mathbf{P D}}=15 \mathrm{~ns}$
$t_{C O}=15 \mathrm{~ns}$
$\mathbf{t s u}_{\mathbf{S}}=7 \mathrm{~ns}$
- Military/Industrial
$\mathbf{t}_{\text {PD }}=20 \mathrm{~ns}$
$t_{\text {CO }}=20 \mathrm{~ns}$
$\mathbf{t}_{\mathbf{S U}}=10 \mathrm{~ns}$
- Low power
- ICC max $=80 \mathrm{~mA}$ Commercial
$-\mathrm{I}_{\mathrm{CC}} \max =85 \mathrm{~mA}$ Military
- High reliability
- Proven EPROM technology
- >2001V input protection
- $\mathbf{1 0 0 \%}$ programming and functional testing
- Windowed DIP, windowed LCC, DIP, LCC, PLCC available

Reprogrammable Asynchronous CMOS Logic Device

Functional Description

The Cypress PLD C 20RA 10 is a high performance, second generation programmable logic device employing a flexible macro cell structure which allows any individual output to be configured independently as a combinatorial output or as a fully asynchronous D-type registered output.
The Cypress PLD C 20RA10 provides lower power operation with superior speed performance than functionally equivalent bipolar devices through the use of high performance 0.8 micron CMOS manufacturing technology.
The PLD C 20RA10 is packaged in a 24 pin 300 mil molded DIP, a 300 mil windowed cerdip, and a 28 lead square leadless chip carrier and provides up to 20 inputs and 10 outputs. When the windowed device is exposed UV light, the 20RA10 is erased and then can be reprogrammed.

Block Diagram and DIP Pinout

Macro Cell Architecture

Figure 1 illustrates the architecture of the 20RA10 macro cell. The cell dedicates three product terms for fully asynchronous control of the register set, reset and clock functions, as well as, one term for control of the output enable function.
The output enable product term output is "AND'ed" with the input from pin 13 to allow either product term or hard wired external control of the output or a combination of control from both sources. If product term only control is selected, it is automatically chosen for all outputs since, for this case, the external output enable pin must be tied LOW. The active polarity of each output may be programmed independently for each output cell and is subsequently fixed. Figure 2 illustrates the output enable options available.
When an I/O cell is configured as an output, combinatorial only capability may be selected by forcing the set and reset product term outputs to be HIGH under all input conditions. This is achieved by programming all input term programming cells for these two product terms. Figure 3 illustrates the available output configuration options.
An additional four uncommitted product terms are provided in each output macro cell as resources for creation of user defined logic functions.

Programmable I/O

Because any of the $10 \mathrm{I} / \mathrm{O}$ pins may be selected as an input, the device input configuration programmed by the user may vary from a total of nine programmable plus ten dedicated inputs (a total of nineteen inputs) and one output down to a ten input, ten output configuration with all ten programmable I/O cells configured as outputs. Each input pin available in a given configuration is available as an input to the four control product terms and four uncom-
mitted product terms of each programmable I/O macro cell that has been configured as an output.
An I / O cell is programmed as an input by tying the output enable pin, pin 13, HIGH or by programming the output enable product term to provide a LOW, thereby disabling the output buffer, for all possible input combinations.
When utilizing the I/O macro cell as an output, the input path functions as a feedback path allowing the output signal to be fed back as an input to the product term array. When the output cell is configured as a registered output, this feed back path may be used to feed back the current output state to the device inputs to provide current state control of the next output state as required for state machine implementation.

Preload and Power-up Reset

Functional testability of programmed devices is enhanced by inclusion of register preload capability which allows the state of each register to be set by loading each register from an external source prior to exercising the device. Testing of complex state machine designs is simplified by the ability to load an arbitrary state without cycling through long test vector sequences to reach the desired state. Recovery from illegal states can be verified by loading illegal states and observing recovery. Preload of a particular register is accomplished by impressing the desired state on the register output pin and lowering the signal level on the preload control pin (pin 1) to a logic LOW level. If the specified preload set up, hold and pulse width minimums have been observed, the desired state is loaded into the register. To insure predictable system initialization, all registers are preset to a logic LOW state upon power up, thereby setting the active LOW outputs to a logic HIGH.

Figure 1. PLD C 20RA10 Macro Cell

Output Always Enabled

0118-13

External Pin

0118-15

Programmable

0118-14
Combination of
Programmable and Hard-Wired

0118-16

Figure 2. Four Possible Output Enable Alternatives for the PLD C 20RA10

Registered/Active LOW

Registered/Active HIGH

Combinatorial/Active LOW

0118-18

0118-17
Combinatorial/Active HIGH

0118-20

0118-19
Figure 3. Four Possible Macro Cell Configurations for the PLD C 20RA10

Selection Guide

Generic Part Number	tPD ns		tSU ns		$\mathrm{t}_{\mathrm{CO}} \mathrm{ns}$		$\mathrm{I}_{\mathrm{CC}} \mathrm{mA}$	
	Com	Mil/Ind	Com	Mil/Ind	Com	Mil/Ind	Com	Mil/Ind
20RA10-15	15	-	7	-	15	-	80	-
20RA10-20	20	20	10	10	20	20	80	85
20RA10-25	-	25	-	15	-	25	-	85
20RA10-30	30	-	15	-	30	-	80	-
20RA10-35	-	35	-	20	-	35	-	85

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Static Discharge Voltage . > 2001 V
(per MIL-STD-883 Method 3015)
Electrical Characteristics Over Operating Range ${ }^{[6]}$

Parameters	Description	Test Conditions			Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	COM'L	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	MIL/IND			
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}^{\text {O }}=8 \mathrm{~mA}$			0.5	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[1]}$			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs[1]				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {CC }}=$ Max.			-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$			-40	40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[2]}$			-30	-90	mA
$\mathrm{I}_{\mathrm{CC}}^{1}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=$ GND Outputs Open		COM'L		75	mA
				MIL/IND		80	mA
ICC_{2}	Power Supply Current at Frequency ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., Outputs Disabled (In High Z State) Device Operating at $\mathrm{f}_{\mathrm{MAX}}$		COM'L		80	mA
				MIL/IND		85	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Min.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure $4 a$ test load used for all parameters except teA, $\mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\mathrm{PZX}}$ and $t_{P X Z}$. Figure $4 b$ test load used for $t_{E A}, t_{E R}, t_{P Z X}$ and $t_{P X Z}$.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.
7. The parameters t_{ER} and $\mathrm{t}_{\mathrm{PXZ}}$ are measured as the delay from the input disable logic threshold transition to $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ for an enabled HIGH output or $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ for an enabled LOW output. Please see Table 1 for waveforms and measurement reference levels.
or
Switching Characteristics PLD C 20RA10 Over Operating Range ${ }^{[4,6,7]}$

Parameters	Description	Commercial						Military/Industrial						Units
		-15		-20		-30		-20		-25		-35		
		Min.	Max.											
tPD	Input or Feedback to Non-Registered Output		15		20		30		20		25		35	ns
tea	Input to Output Enable		15		25		30		20		30		35	ns
ter	Input to Output Disable		15		25		30		20		30		35	ns
tPZX	Pin 13 to Output Enable		12		15		20		15		20		25	ns
tPXZ	Pin 13 to Output Disable		12		15		20		15		20		25	ns
t_{CO}	Clock to Output		15		20		30		20		25		35	ns
$\mathrm{t}_{\text {SU }}$	Input or Feedback Setup Time	7		10		15		10		15		20		ns
t_{H}	Hold Time	3		5		5		3		5		5		ns
t_{P}	Clock Period (tsu $+\mathrm{t}_{\mathrm{CO}}$)	22		30		45		30		40		55		ns
twh	Clock Width HIGH	10		13		20		12		18		25		ns
twL	Clock Width LOW	10		13		20		12		18		25		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency ($1 / \mathrm{tp}$)	45.5		33.3		22.2		33.3		25.0		18.1		MHz
ts	Input to Asynchronous Set of Registered Output		15		20		35		20		25		40	ns
t_{R}	Input to Asynchronous Reset of Registered Output		15		20		35		20		25		40	ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Set/Reset Recovery Time	10		12		15		12		15		20		ns
twP	Preload Pulse Width	15		15		15		15		15		15		ns
tSUP	Preload Setup Time	15		15		15		15		15		15		ns
t_{HP}	Preload Hold Time	15		15		15		15		15		15		ns

AC Test Loads and Waveforms (Commercial)

Figure 4a

Figure 4b

Figure 5

Equivalent to: THÉVENIN EQUIVALENT (Commercial)

0118-8

STD PLCC and HLCC

Pinout

Equivalent to: THÉVENIN EQUIVALENT (Military/Industrial) OUTPUT O——~2.02V $=\mathrm{V}_{\text {thm }}$

0118-9

LCC Pinout

0118-21

Note:
8. The CG7C324 is the PLDC20RA10 packaged in the JEDEC compatible 28 -pin PLCC pinout. Pin function and pin order is identical for
both PLCC pinouts. The principle difference is in the location of the "no connect" or NC pins.

Table 1

Parameter	$\mathbf{V}_{\mathbf{X}}$	Output Waveform-Measurement Level	
$\mathrm{t}_{\text {PXZ }}(-)$	1.5V		0118-23
$\operatorname{tPXZ}^{(+)}$	2.6 V		0118-24
$\operatorname{tPZX}^{(+)}$	$\mathrm{V}_{\text {thc }}$		0118-25
tPZX(-)	$\mathrm{V}_{\text {the }}$		0118-26
ter $(-)$	1.5 V		0118-23
$\mathrm{t}_{\mathrm{ER}}(+)$	2.6 V		0118-24
$\mathrm{t}_{\mathrm{EA}}(+)$	$\mathrm{V}_{\text {thc }}$	$v_{x} \frac{\frac{1}{0.5 V}-}{\frac{1}{4}-} v_{\text {OH }}$	0118-25
$\mathrm{t}_{\mathrm{EA}}(-)$	$\mathrm{V}_{\text {the }}$		0118-26

Switching Waveforms

0118-10

Preload Switching Waveforms

Functional Logic Diagram PLD C 20RA10

0118-11

Ordering Information

$\begin{aligned} & \mathbf{I}_{\mathbf{C C}_{2}} \\ & (\mathbf{m A}) \end{aligned}$	$\begin{aligned} & \mathbf{t P D}_{\mathbf{P D}} \\ & \text { (ns) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { tsu } \\ & \text { (ns) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{t} \mathbf{C o} \\ & \mathrm{~ns}) \end{aligned}$	Ordering Code	Package	Operating Range
80	15	7	15	PLD C 20RA10-15PC	P13	Commercial
				PLD C 20RA10-15WC	W14	
				PLD C 20RA10-15JC	J64	
				PLD C 20RA10-15HC	H64	
				CG7C324-A15JC	J64	
				CG7C324-A15HC	H64	
80	20	10	20	PLD C 20RA $10-20 \mathrm{PC}$	P13	Commercial
				PLD C 20RA $10-20 \mathrm{WC}$	W14	
				PLD C 20RA10-20JC	J64	
				PLD C 20RA10-20HC	H64	
				CG7C324-A20JC	J64	
				CG7C324-A20HC	H64	
85	20	10	20	PLD C 20RA10-20PI	P13	Industrial
				PLD C 20RA10-20WI	W14	
				PLD C 20RA10-20JI	J64	
				PLD C 20RA10-20DI	D14	
				PLD C 20RA10-20DMB	D14	Military
				PLD C 20RA 10-20WMB	W14	
				PLD C 20RA 10-20HMB	H64	
				PLD C 20RA10-20LMB	L64	
				PLD C 20RA 10-20QMB	Q64	
85	25	15	25	PLD C 20RA 10-25PI	P13	Industrial
				PLD C 20RA $10-25 \mathrm{WI}$	W14	
				PLD C 20RA10-25JI	J64	
				PLD C 20RA10-25DI	D14	
				PLD C 20RA10-25DMB	D14	Military
				PLD C 20RA10-25WMB	W14	
				PLD C 20RA10-25HMB	H64	
				PLD C 20RA10-25LMB	L64	
				PLD C 20RA10-25QMB	Q64	
80	30	15	30	PLD C 20RA10-30PC	P13	Commercial
				PLD C 20RA10-30WC	W14	
				PLD C 20RA10-30JC	J64	
				PLD C 20RA10-30HC	H64	
				CG7C324-A30JC	J64	
				CG7C324-A30HC	H64	
85	35	20	35	PLD C 20RA10-35PI	P13	Industrial
				PLD C 20RA10-35WI	W14	
				PLD C 20RA10-35JI	J64	
				PLD C 20RA10-35DI	D14	
				PLD C 20RA10-35DMB	D14	Military
				PLD C 20RA10-35WMB	W14	
				PLD C 20RA 10-35HMB	H64	
				PLD C 20RA10-35LMB	L64	
				PLD C 20RA10-35QMB	Q64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{PD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PZX}}$	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{SU}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$

Document \# : 38-00073-C

Features

- Advanced second generation PAL architecture
- Low power
- 55 mA max "L"
- 90 mA max standard
- 120 mA max military
- CMOS EPROM technology for reprogrammability
- Variable product terms
- $2 \times$ (8 thru 16) product terms
- User programmable macro cell
- Output polarity control
- Individually selectable for registered or combinatorial operation
- " 15 " commercial \& industrial 10 ns $\mathrm{t}_{\mathrm{C}} \mathrm{O}$ 10 ns ts 15 ns tpD 50 MHz
- " 20 " military

15 ns tco
17 ns ts
20 ns tpD
31 MHz

- Up to 22 input terms and 10 outputs
- Enhanced test features
- Phantom array
- Top Test
- Bottom Test
- Preload
- High reliability
- Proven EPROM technology
- $\mathbf{1 0 0 \%}$ programming and functional testing
- Windowed DIP, windowed LCC, DIP, LCC, PLCC available

Functional Description

The Cypress PAL C 22 V 10 is a CMOS second generation Programmable Logic Array device. It is implemented with the familiar sum-of-products (AND-
OR) logic structure and a new concept, the "Programmable Macro Cell".
The PAL C 22 V 10 is executed in a 24 pin 300 mil molded DIP, a 300 mil windowed Cerdip, a 28 lead square ceramic leadless chip carrier, a 28 lead square plastic leaded chip carrier and provides up to 22 inputs and 10 outputs. When the windowed CERDIP is exposed to UV light, the 22 V 10 is erased and then can be reprogrammed. The Programmable Macro Cell provides the capability of defining the architecture of each output individually. Each of the 10 potential outputs may be specified to be "REGISTERED" or "'COMBINATORIAL". Polarity of

PAL® is a registered trademark of Monolithic Memories Inc.

Logic Symbol and Pinout

0023-1
LCC and PLCC Pinout

Functional Description (Continued)

each output may also be individually selected allowing complete flexibility of output configuration. Further configurability is provided through "ARRAY" configurable "OUTPUT ENABLE" for each potential output. This feature allows the 10 outputs to be reconfigured as inputs on an individual basis or alternately used as a combination I/O controlled by the programmable array.
The PAL C 22V10 features a "VARIABLE PRODUCT TERM" architecture. There are 5 pairs of product terms beginning at 8 product terms per output and incrementing by 2 to 16 product terms per output. By providing this variable structure the PAL C 22 V 10 is optimized to the configurations found in a majority of applications without creating devices that burden the product term structures with unuseable product terms and lower performance.
Additional features of the Cypress PAL C 22 V 10 include a synchronous PRESET and an asynchronous RESET product term. These product terms are common to all MACRO CELLS eliminating the need to dedicate standard product terms for initialization functions. The device automatically resets on power-up.
The PAL C 22 V 10 featuring programmable macro cells and variable product terms provides a device with the flexibility to implement logic functions in the 500 to 800 gate array complexity. Since each of the 10 output pins may be individually configured as inputs on a temporary or permanent basis, functions requiring up to 21 inputs and only a single output down to 12 inputs and 10 outputs are possible. The 10 potential outputs are enabled through the use of product terms. Any output pin may be permanently selected as an output or arbitrarily enabled as an output and an input through the selective use of individual product terms associated with each output. Each of these outputs is achieved through an individual programmable macro cell. These macro cells are programmable to provide a combinatorial or registered inverting or non-inverting output. In a
registered mode of operation, the output of the register is fed back into the array providing current status information to the array. This information is available for establishing the next result in applications such as control-statemachines. In a combinatorial configuration, the combinatorial output or, if the output is disabled, the signal present on the I/O pin is made available to the array. The flexibility provided by both programmable macro cell product term control of the outputs and variable product terms allows a significant gain in functional density through the use of programmable logic.
Along with this increase in functional density, the Cypress PAL C 22 V 10 provides lower power operation thru the use of CMOS technology, increased testability with a register preload feature and guaranteed AC performance through the use of a phantom array. This phantom array $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$ and the "TOP TEST" and "BOTTOM TEST" features allow the 22 V 10 to be programmed with a test pattern and tested prior to shipment for full AC specifications without using any of the functionality of the device specified for the product application. In addition, this same phantom array may be used to test the PAL C 22V10 at incoming inspection before committing the device to a specific function through programming. PRELOAD facilitates testing programmed devices by loading initial values into the registers.

Configuration Table 1

Registered/Combinatorial		
C_{1}	C_{0}	Configuration
0	0	Registered/Active Low
0	1	Registered/Active High
1	0	Combinatorial/Active Low
1	1	Combinatorial/Active High

Macrocell

Selection Guide

Generic Part Number	ICC1 mA			tPD ns		ts ns		tCO ns	
	"L"	Com/Ind	Mil	Com/Ind	Mil	Com/Ind	Mil	Com/Ind	Mil
22V10B-15		90	-	15	-	10	-	10	-
22 V10B-20	-	-	100	-	20	-	17	-	15
22 V10-20		90	-	20	-	12	-	12	-
22 V10-25	55	90	100	25	25	15	18	15	15
22 V10-30		-	100	-	30	-	20	-	20
22 V10-35	55	90	-	35	-	30	-	25	-
$22 V 10-40$		-	100	-	40	-	30	-	25

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12). -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low) 16 mA
UV Exposure
$.7258 \mathrm{Wsec} / \mathrm{cm}^{2}$

DC Programming Voltage
PAL C 22 V 10 B
13.0 V

PAL C 22V10 .14.0V
Latchup Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[6]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[5]}$

Parameters	Description	Test Conditions			Min.	Max.	Units
$\mathrm{V}_{\mathrm{OH} 1}$	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	COM'L/IND	2.4		V
			$\mathrm{IOH}^{\prime}=-2 \mathrm{~mA}$	MIL			
$\mathrm{V}_{\mathrm{OH} 2}$	HIGH Level CMOS Output Voltage ${ }^{[3]}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}_{\mathrm{L}}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	COM'L/IND		0.5	V
			$\mathrm{I}_{\text {OL }}=12 \mathrm{~mA}$	MIL			
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[1]}$			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[1]}$				0.8	V
IIX	Input Leakage Current	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.			-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			-40	40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}[2,3]$			-30	-90	mA
$\mathrm{I}_{\mathrm{CC1}}$	Standby Power Supply Current	$\mathbf{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=$ GND Outputs Open for Unprogrammed Device		"L"		55	mA
				COM'L/IND		90	mA
				MIL		100	mA
				MIL-20		100	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Operating Power Supply Current	$\mathrm{f}_{\text {toggle }}=\mathrm{F}_{\mathrm{MAX}}[3]$ Device Programmed with Worst Case Pattern, Outputs Tristated		COM'L/IND-15		90	mA
				MIL-20		100	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure $1 a$ test load used for all parameters except $t_{\mathrm{EA}}, \mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\mathrm{PZX}}$ and $\mathrm{t}_{\mathrm{PXZ}}$. Figure $1 b$ test load used for $\mathrm{t}_{\mathrm{EA}}, \mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\mathrm{PLX}}$ and $\mathrm{t}_{\mathrm{PXZ}}$.
5. See the last page of this specification for Group A subgroup testing information.
6. T_{A} is the "instant on" case temperature.

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Min.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	pF

Switching Characteristics PAL C 22V10 ${ }^{[4,5]}$

Parameters	Description	Commercial \& Industrial								Military								Units
		B-15		- 20		-25		-35		B-20		-25		-30		-40		
		Min.	Max.															
tpD	Input to Output Propagation Delay ${ }^{[13]}$		15		20		25		35		20		25		30		40	ns
${ }^{\text {teA }}$	Input to Output Enable Delay		15		20		25		35		20		25		25		40	ns
ter	Input to Output Disable Delay ${ }^{[8]}$		15		20		25		35		20		25		25		40	ns
${ }_{\text {t }} \mathrm{CO}$	Clock to Output Delay ${ }^{[14]}$		10		12		15		25		15		15		20		25	ns
ts	Input or Feedback Setup Time	10		12		15		30		17		18		20		30		ns
th_{H}	Input Hold Time	0		0		0		0		0		0		0		0		ns
tp	External Clock Period ($\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}$)	20		24		30		55		32		33		40		55		ns
twh	Clock Width HIGH ${ }^{[3]}$	6		10		12		17		12		14		16		22		ns
twL	Clock Width LOW ${ }^{[3]}$	6		10		12		17		12		14		16		22		ns
$\mathrm{f}_{\text {MAX1 }}$	External Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[9]}$	50.0		41.6		33.3		18.1		31.2		30.3		25.0		18.1		MHz
fmax 2	Data Path Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)\right)^{[3,10]}$	83.3		50.0		41.6		29.4		41.6		35.7		31.2		22.7		MHz
$\mathrm{fmax3}^{\text {max }}$	$\begin{array}{\|l} \hline \text { Internal Feedback } \\ \text { Maximum Frequency } \\ \left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[11]} \\ \hline \end{array}$	80.0		45.4		35.7		20.8		33.3		32.2		28.5		20.0		MHz
${ }^{\text {t }} \mathrm{CF}$	Register Clock to Feedback Input [12]		2.5		10		13		18		13		13		15		20	ns
taw	Asynchronous Reset Width	15		20		25		35		20		25		30		40		ns
${ }^{\text {taR }}$	Asynchronous Reset Recovery Time	10		20		25		35		20		25		30		40		ns
${ }^{t} A P$	Asynchronous Reset to Registered Output Delay		20		25		25		35		25		25		30		40	ns
tSPR	Synchronous Preset Recovery Time	10		20		25		35		20		25		30		40		ns
tPR	Power Up Reset Time ${ }^{[15]}$	1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		$\mu \mathrm{s}$

PAL C 22V10B/PAL C 22V10

Notes:
7. This parameter is sample tested periodically with the device clocked at $\mathrm{f}_{\text {MAX }}$ external (f MAX1) with all registers cycling on each cycle and outputs disabled (in high Z state).
8. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous high level has fallen to 0.5 volts below V_{OH} Min. or a previous low level has risen to 0.5 volts above Vol Max. Please see Figure 4 for enable and disable test waveforms and measurement reference levels.
9. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feed back can operate.
10. This specification indicates the guaranteed maximum frequency at which an individual output register can be cycled.
11. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feed back can operate. This parameter is tested periodically by sampling production product.
12. This parameter is calculated from the clock period at $\mathrm{f}_{\text {MAX }}$ internal ($1 / \mathrm{f}_{\mathrm{MAX}}$) as measured (see note 11 above) minus ts.
13. This specification is guaranteed for all device outputs changing state in a given access cycle. See Figure 3 for the minimum guaranteed negative correction which may be subtracted from tPD for cases in which fewer outputs are changing state per access cycle.
14. This specification is guaranteed for all device outputs changing state in a given access cycle. See Figure 3 for the minimum guaranteed negative correction which may be subtracted from tco for cases in which fewer outputs are changing state per access cycle.
15. The registers in the PAL C 22 V 10 have been designed with the capability to reset during system power-up. Following power-up, all registers will be reset to a logic LOW state. The output state will depend on the polarity of the output buffer. This feature is useful in establishing state machine initialization. To insure proper operation, the rise in V_{CC} must be monotonic and the timing constraints depicted in Figure 5 must be satisfied.
16. The clock signal input must be in a valid LOW state ($\mathrm{V}_{\text {IN }}$ less than 0.8 V) or a valid HIGH state ($\mathrm{V}_{\text {IN }}$ greater than 2.4 V) prior to occurrence of the 10% level on the monotonically rising power supply voltage as shown in Figure 5. In addition, the clock input signal must remain stable in that valid state as indicated until the 90% level on the power supply voltage has been reached. The clock signal may transition LOW to HIGH to clock in new data or to execute a synchronous preset after the indicated delay ($\mathrm{tPR}^{+}+\mathrm{ts}$) has been observed.

AC Test Loads and Waveforms (Commercial)

Equivalent to:
THÉVENIN EQUIVALENT (Commercial)

INPUT PULSES

Figure 2

Equivalent to:
THÉVENIN EQUIVALENT (Military)

Minimum Negative Correction to tPD and tco vs. Number of Outputs Switching

NUMBER OF DEVICE OUTPUTS CHANGING STATE PER ACCESS CYCLE

Figure 3

Parameter	\mathbf{V}_{X}	Output Waveform-Measurement Level	
ter(-)	1.5 V		0023-16
ter(+)	2.6 V		0023-17
${ }_{\text {teA }}(+)$	$\mathrm{V}_{\text {the }}$	$v_{x}=\frac{\frac{1}{0.5 \mathrm{~V}}}{\frac{1}{4} \mathrm{v}_{\mathrm{OH}}}$	0023-18
$t_{\text {EA }(-)}$	$\mathrm{V}_{\text {thc }}$		0023-19

Figure 4. Test Waveforms

Switching Waveform

Power-Up Reset Waveform ${ }^{[15,16]}$

Figure 5

Functional Logic Diagram PAL C 22V10

Typical DC and AC Characteristics

NORMALIZED PROPAGATION DELAY vs. TEMPERATURE

NORMALIZED SETUP TIME vs. TEMPERATURE

DELTA CLOCK TO OUTPUT TIME vs. OUTPUT LOADING

NORMALIZED STANDBY
SUPPLY CURRENT (I CC1) vs. AMBIENT TEMPERATURE

DELTA PROPAGATION TIME vs. OUTPUT LOADING

NORMALIZED CLOCK TO OUTPUT TIME vs. SUPPLY VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

NORMALIZED
PROPAGATION DELAY
vs. SUPPLY VOLTAGE

NORMALIZED SETUP TIME vs. SUPPLY VOLTAGE

NORMALIZED CLOCK TO OUTPUT
TIME vs. TEMPERATURE

OUTPUT SOURCE CURRENT vs. VOLTAGE

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the PAL C 22V10. For this reason, an opaque label should be placed over the window if the device is exposed to sunlight or fluorescent lighting for extended periods of time. In addition, high ambient light levels can create holeelectron pairs which may cause "blank" check failures or "verify errors" when programming "windowed" parts. This phenomenon can be avoided by use of an opaque label over the window during programming in high ambient light environments.

The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating, the exposure would be approximately 35 minutes. The PAL C 22 V 10 needs to be placed within 1 inch of the lamp during erasure. Permanent damage may result if the device is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Ordering Information

$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \end{gathered}$	$\begin{aligned} & \mathbf{t}_{\mathbf{P D}} \\ & \text { (ns) } \end{aligned}$	$\underset{\text { (ns) }}{\substack{\text { s }}}$	$\begin{aligned} & \mathrm{t}_{\mathrm{t} \mathbf{C O}} \\ & \text { (ns) } \\ & \hline \end{aligned}$	Ordering Code	Package	Operating Range
90	15	10	10	PAL C 22V10B-15PC/PI	P13	Commercial/Industrial
				PAL C 22V10B-15WC/WI	W14	
				PAL C 22V10B-15JC/JI	J64	
				PAL C $22 \mathrm{~V} 10 \mathrm{~B}-15 \mathrm{HC}$	H64	
90	20	12	12	PAL C $22 \mathrm{~V} 10-20 \mathrm{PC} / \mathrm{PI}$	P13	Commercial/Industrial
				PAL C 22V10-20WC/WI	W14	
				PAL C $22 \mathrm{~V} 10-20 \mathrm{JC} / \mathrm{JI}$	J64	
				PAL C $22 \mathrm{~V} 10-20 \mathrm{HC}$	H64	
120	20	17	15	PAL C 22V10B-20DMB	D14	Military
				PAL C 22V10B-20WMB	W14	
				PAL C 22V10B-20HMB	H64	
				PAL C 22V10B-20LMB	L64	
				PAL C 22V10B-20QMB	Q64	
				PAL C 22V10B-20KMB	K73	
55	25	15	15	PAL C 22V10L-25PC	P13	Commercial
				PAL C 22V10L-25WC	W14	
				PAL C 22V10L-25JC	J64	
				PAL C $22 \mathrm{~V} 10 \mathrm{~L}-25 \mathrm{HC}$	H64	
90	25	15	15	PAL C 22V10-25PC/PI	P13	Commercial/Industrial
				PAL C 22V10-25WC/WI	W14	
				PAL C $22 \mathrm{~V} 10-25 \mathrm{JC} / \mathrm{JI}$	J64	
				PAL C $22 \mathrm{~V} 10-25 \mathrm{HC}$	H64	
100	25	18	15	PAL C 22V10-25DMB	D14	Military
				PAL C 22V10-25WMB	W14	
				PAL C $22 \mathrm{~V} 10-25 \mathrm{HMB}$	H64	
				PAL C 22V10-25LMB	L64	
				PAL C $22 \mathrm{~V} 10-25 \mathrm{QMB}$	Q64	
				PAL C $22 \mathrm{~V} 10-25 \mathrm{KMB}$	K73	
100	30	20	20	PAL C 22V10-30DMB	D14	Military
				PAL C 22V10-30WMB	W14	
				PAL C $22 \mathrm{~V} 10-30 \mathrm{HMB}$	H64	
				PAL C 22V10-30LMB	L64	
				PAL C 22V10-30QMB	Q64	
				PAL C 22V10-30KMB	K73	
55	35	30	25	PAL C 22V10L-35PC	P13	Commercial
				PAL C 22V10L-35WC	W14	
				PAL C 22V10L-35JC	J64	
				PAL C 22V10L-35HC	H64	
90	35	30	25	PAL C 22V10-35PC/PI	P13	Commercial/Industrial
				PAL C $22 \mathrm{~V} 10-35 \mathrm{WC} / \mathrm{WI}$	W14	
				PAL C $22 \mathrm{~V} 10-35 \mathrm{JC} / \mathrm{JI}$	J64	
				PAL C $22 \mathrm{~V} 10-35 \mathrm{HC}$	H64	
100	40	30	25	PAL C 22V10-40DMB	D14	Military
				PAL C 22V10-40WMB	W14	
				PAL C $22 \mathrm{~V} 10-40 \mathrm{HMB}$	H64	
				PAL C 22V10-40LMB	L64	
				PAL C $22 \mathrm{~V} 10-40 \mathrm{QMB}$	Q64	
				PAL C $22 \mathrm{~V} 10-40 \mathrm{KMB}$	K73	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{PD}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$

[^35]
preliminary PAL22VP10C

Features

- Ultra high speed supports today's and tomorrow's fastest microprocessors
$-7.5-\mathrm{ns} \mathrm{t}_{\mathrm{PD}}, \mathbf{1 1 1 - M H z}, \mathrm{f}_{\mathrm{MAX}}$
- Up to 22 inputs and $\mathbf{1 0}$ outputs for more logic power
- Variable product terms
-8 to 16 per output
- 10 user-programmable output macrocells
- Output polarity control
- Registered or combinatorial operation
-2 new feedback paths (PAL22VP10C)
- Synchronous PRESET, asynchronous RESET, and PRELOAD capability for flexible design and testability
- High reliability
- Proven Ti-W fuse technology
-AC and DC tested at the factory
$->2001 \mathrm{~V}$ input protection
- Standard 300-mil PDIP and CDIP packages
- PLCC and LCC packages with additional $V_{\text {Cc }}$ and $V_{\text {Ss }}$ pins for improved performance
- Security Fuse

Functional Description
The Cypress PAL 22V10C and PAI 22VP10C are second-generation programmable array logic devices. Using BiCMOS process and Ti-W fuses, the PAL22V10C and PAL22VP10C use the familiar sum-ofproducts (AND-OR) logic structure and a
new concept, the programmable macrocell.
Both the PAL22V10C and PAL22VP10C provide 12 dedicated input pins and $10 \mathrm{I} / \mathrm{O}$ pins (see Logic Block Diagram). By selecting each I/O pin as either permanent or temporary input, up to 22 inputs can be achieved. Applications requiring up to 21 inputs and a single output, down to 12 inputs and 10 outputs can be realized. The "OUTPUT ENABLE" product term available on each I/O allows this selection.
The PAL22V10C and PAL22VP10C feature variable product term architecture, where 8 to 16 product terms are allocated to each output. This structure permits more applications to be implemented with these devices than with other PAL devices that have fixed number of product terms for each output.

[^36]
Functional Description (cont.)

Additional features include common synchronous PRESET and asynchronous RESET product terms. They eliminate the need to use standard product terms for initialization functions
Both the PAL22V10C and PAL22VP10C automatically reset on power-up. In addition, the PRELOAD capability allows the output registers to be set to any desired state during testing.
A security fuse is provided on each of these two devices to prevent copying of the device fuse pattern.
With the programmable macrocells and variable product term architecture, the PAL22V10C and PAL22VP10C can implement logic functions in the 700 to 800 gate array complexity, with the inherent advantages of programmable logic.

Programmable Macrocell

The PAL22V10C and PAL22VP10C each has 10 programmable output macro cells (see Macrocell). On the PAL22V10C two fuses (C 1 and C 0) can be programmed to configure output in one of four ways. Accordingly, each output can be "REGISTERED" or "COMBINATORIAL" with an active HIGH or active LOW polarity. The feedback to the array is also from this output (see Figure 1). An additional fuse (C2) in the PAL22VP10C provides for two additional feedback paths (see Figure 2).

Programming

The PAL22V10C and PAL22VP10C can be programmed using the QuickPro II programmer available from Cypress Semiconductor and also with Data I/O, Logical Devices, STAG and other programmers. Please contact your local Cypress representative for further information.

Macrocell

Output Macrocell Configuration

$\mathbf{C}_{\mathbf{2}}{ }^{[1]}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	Output Type	Polarity	Feedback
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	Registered	Active LOW	Registered
$\mathbf{0}$	0	1	Registered	Active HIGH	Registered
\mathbf{X}	1	0	Combinatorial	Active LOW	I/O
X	1	1	Combinatorial	Active HIGH	I / O
1	0	0	Registered	Active LOW	$\mathrm{I} / \mathrm{O}^{[1]}$
1	0	1	Registered	Active HIGH	$\mathrm{I} / \mathrm{O}^{[1]}$

Notes:

1. PAL22VP10C only.

REGISTER FEEDBACK, REGISTERED, ACTIVE-LOW OUTPUT

I/O FEEDBACK, COMBINATORIAL, ACTIVE-LOW OUTPUT

REGISTER FEEDBACK, REGISTERED, ACTIVE-HIGH OUTPUT

I/O FEEDBACK, COMBINATORIAL, ACTIVE-HIGH OUTPUT

Figure 1. PAL22V10C and PAL22VP10C Macrocell Configurations

Figure 2. Additional Macrocell Configurations for the PAL22VP10C

Selection Guide

		22V10C-7 22VP10C-7	$22 \mathrm{~V} 10 \mathrm{C}-10$ 22VP10C-10	$\begin{gathered} 22 \mathrm{~V} 10 \mathrm{C}-12 \\ 22 \mathrm{VP} 10 \mathrm{C}-12 \end{gathered}$	$\begin{aligned} & \text { 22V10C-15 } \\ & \text { 22VP10C-15 } \end{aligned}$
$\mathrm{I}_{\mathrm{CC}}(\mathrm{mA})$	Commercial	190	190	190	
	Military			190	190
$\mathrm{t}_{\text {PD }}(\mathrm{ns})$	Commercial	7.5	10	12	
	Military			12	15
t_{5} (ns)	Commercial	3.0	3.6	4.5	
	Military			4.5	7.5
$\mathrm{t}_{\mathrm{CO}}(\mathrm{ns})$	Commercial	6.0	7.5	9.5	
	Military			9.5	10
$\mathrm{f}_{\mathrm{MAX}}$ (MHz)	Commercial	111	90	71	
	Military			71	57

Maximum Rating

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DC Program Voltage		
Ambient Temperature with ${ }^{\text {P }}$ ($5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
Supply Voltage to Ground Potential -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State . -0.5 V to V_{cc} Max. DC Input Voltage -0.5 V to +5.5 V	Range	Ambient Temperature	V_{cc}
urrent -30 mA to +5 m	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
(except during programming)	Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Notes:
2. t_{A} is the "instant on" case temperature.
3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

Switching Characteristics PAL22V10C/PAL22VP10C ${ }^{[5]}$

Parameters	Description	Commercial						Military				Units
		-7		-10		-12		-12		-15		
		Min.	Max.									
$t_{\text {PD }}$	Input to Output Propagation Delay ${ }^{[6]}$		7.5		10		12		12		15	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay		7.5		10		12		12		15	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable Delay ${ }^{[7]}$		7.5		10		12		12		15	ns
t_{CO}	Clock to Output Delay ${ }^{[6]}$		6		7.5		9.5		9.5		10	ns
t_{s}	Input or Feedback Set-Up Time	3		3.6		4.5		4.5		7.5		ns
t_{H}	Input Hold Time	0		0		0		0		0		ns
t_{p}	External Clock Period (tco $+\mathrm{ts}_{\text {s }}$)	9		11.1		14		14		17.5		ns
$\mathrm{t}_{\mathbf{W H}}$	Clock Width HIGH ${ }^{[8]}$	3		3		3		3		6		ns
t_{WL}	Clock Width LOW ${ }^{[8]}$	3		3		3		3		6		ns
$\mathrm{f}_{\text {MAX1 }}$	External Maximum Frequenćy $\left(1 /\left(t_{\mathrm{CO}}+t_{\mathrm{s}}\right)\right)^{[9]}$	111		90		71		71		57		MHz
$\mathrm{f}_{\text {MAX2 }}$	Data Path Maximum Frequency $\left(1 /\left(t_{\mathrm{WH}}+t_{\mathrm{WL}}\right)\right)^{[8,10]}$	166		166		166		166		83		MHz
$\mathrm{f}_{\text {MAX3 }}$	Internal Feedback Maximum Frequency $\left(1 /\left(t_{\text {cF }}+t_{s}\right)\right)^{[11]}$	133		100		83		83		66		MHz
$\mathrm{t}_{\text {cF }}$	Register Clock to Feedback Input ${ }^{[12]}$		4.5		6.4		7.5		7.5		7.5	ns
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Width	8.5		10		12		12		15		ns
$\mathrm{taR}_{\text {A }}$	Asynchronous Reset Recovery Time	5		6		7		7		10	*	ns
t_{AP}	Asynchronous Reset to Registered Output Delay		12		12		14		14		20	ns
$\mathrm{t}_{\text {SPR }}$	Synchronous Preset Recovery Time	5		6		7		7		10		ns
t_{PR}	Power-Up Reset Time ${ }^{[13]}$	1		1		1		1		1		$\mu \mathrm{s}$

Notes:
5. AC test load used for all parameters except where noted.
6. This specification is guaranteed for all device outputs changing state in a given access cycle.
7. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below $V_{\text {OH }} \mathrm{min}$. or a previous LOW level has risen to 0.5 volts above $V_{\text {OL }}$ max.
8. Tested initially and after any design or process changes that may affect these parameters.
9. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
10. This specification indicates the guaranteed maximum frequency at which an individual output register can be cycled.
11. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate. This parameter is tested periodically by sampling production product.
12. This parameter is calculated from the clock period at $f_{\text {MAX }}$ internal ($\mathrm{f}_{\text {MAX3 }}$) as measured (see Note 11) minus t_{s}.
13. The registers in the PAL22V10C/PAL22VP10C have been designed with the capability to reset during system power-up. Following powerup, all registers will be reset to a logic LOW state. The output state will depend on the polarity of the output buffer. This feature is useful in establishing state machine initialization. To insure proper operation, the rise in $\mathrm{V}_{\mathbf{C C}}$ must be monotonic and the timing constraints depicted in power-up reset waveforms must be satisfied.

Capacitance ${ }^{[8]}$

Parameters	Description	Typical	Max.	Units
C_{IN}	Input Capacitance	11		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	9		pF

AC Test Loads and Waveforms

Specification	\mathbf{C}_{L}	Package	Measurement Level
$\mathrm{t}_{\mathrm{PD}}, \mathrm{t}_{\mathrm{CO}}, \mathrm{t}_{\mathrm{CF}}$	15 pF	PDIP, CDIP	1.5 V
	50 pF	PLCC, LCC	
t_{EA}	15 pF	PDIP, CDIP	See t_{EA} Waveform
	50 pF	PLCC, LCC	
t_{ER}	5 pF	All	See t_{ER} Waveform

Parameter	$\mathbf{V}_{\mathbf{X}}$	Output Waveform-Measurement Level	
$\mathrm{t}_{\text {ER (}-)}$	1.5 V	$\mathrm{V}_{\mathrm{OH}} \frac{1}{0.5 \mathrm{~V}-\frac{1}{4}} \mathrm{~V}_{\mathrm{X}}$	v10c-12
$\mathrm{t}_{\mathrm{ER}}^{(+)}$	2.6 V	$\mathrm{V}_{\mathrm{OL}} \xrightarrow{\left.0.5 \mathrm{~V} \frac{1}{4} \right\rvert\,} \mathrm{V}_{\mathrm{X}}$	v10c-13
$\mathrm{t}_{\mathrm{EA}}(+)$	$\mathrm{V}_{\text {thc }}$	$\mathrm{V}_{\mathrm{x}} \xrightarrow{0.5 \mathrm{~V} \frac{1}{4} / \mathrm{V} \text { 答 }}$	v10c-14
$\mathrm{t}_{\mathrm{EA}(-)}$	$\mathrm{V}_{\text {thc }}$		v10c-15

Switching Waveform

Notes:

14. Pins 4 (5), 5 (6), 7 (9) at $\mathrm{V}_{\mathrm{ILP}}$; Pins 10 (12) and 11 (13) at $\mathrm{V}_{\mathrm{IHP}}$; $\mathrm{V}_{\mathrm{CC}}\left(\operatorname{Pin} 24\right.$ (1 and 28)) at $\mathrm{V}_{\mathrm{CCP}}$.
15. Pins 2-8 (3-7, 9, 10), $10(12), 11(13)$ can be set at $\mathrm{V}_{\mathrm{IHP}}$ or $\mathrm{V}_{\mathrm{ILP}}$ to insure asynchronous reset is not active.

DIP (PLCC, LCC) Pinouts

Forced level on register pin during preload	Register Q output state after preload
$\mathrm{V}_{\text {IHP }}$	HIGH
$\mathrm{V}_{\mathrm{ILP}}$	LOW

Name	Description	Min.	Max.	Unit
V_{PP}	Programming Voltage	9.25	9.75	V
$\mathrm{t}_{\mathrm{DPR} 1}$	Delay for Preload	1		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{DPR} 2}$	Delay for Preload	0.5		$\mu \mathrm{~s}$
$\mathrm{~V}_{\mathrm{ILP}}$	Input LOW Voltage	0	0.4	V
$\mathrm{~V}_{\mathrm{IHP}}$	Input HIGH Voltage	3	4.75	V

Functional Logic Diagram for PAL22V10C/PAL22VP10C

Ordering Information

$\begin{aligned} & \mathbf{I}_{\mathrm{CC}} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \text { tpD } \\ & (\mathrm{ns}) \end{aligned}$	$\begin{gathered} \mathbf{f}_{\text {MAX }} \\ \text { (MHz) } \end{gathered}$	Ordering Code	Package Type	Operating Range
190	7.5	111	PAL22V10C-7PC	P13	Commercial
			PAL22V10C-7DC	D14	
			PAL22V10C-7JC	J64	
			PAL22VP10C-7PC	P13	
			PAL22VP10C-7DC	D14	
			PAL22VP10C-7JC	J64	
	10	90	PAL22V10C-10PC	P13	Commercial
			PAL22V10C-10DC	D14	
			PAL22V10C-10JC	J64	
			PAL22VP10C-10PC	P13	
			PAL22VP10C-10DC	D14	
			PAL22VP10C-10JC	J64	
	12	71	PAL22V10C-12PC	P13	Commercial
			PAL22V10C-12DC	D14	
			PAL22V10C-12JC	J64	
			PAL22VP10C-12PC	P13	
			PAL22VP10C-12DC	D14	
			PAL22VP10C-12JC	J64	
			PAL22V10C-12DMB	D14	Military
			PAL22V10C-12LMB	L64	
			PAL22VP10C-12DMB	D14	
			PAL22VP10C-12LMB	L64	
	15	57	PAL22V10C-15DMB	D14	Military
			PAL22V10C-15LMB	L64	
			PAL22VP10C-15DMB	D14	
			PAL22VP10C-15LMB	L64	

Document \#: 38-A-00020-B

Features

- 16 I/O macrocells, each having:
- Programmable combinatorial synchronous and asynchronous modes
- Registers configurable to T-type and D-type
- Array feedback from I/O pin or register
- 160 product terms
- Available in 24-pin, 300-mil PDIP and cerDIP, and 28 -pin, J-leaded chip carriers, PLCCs, and LCCs

Functional Description

The CY7B326 is a 24 -pin, multipurpose, high-performance PLD with $16 \mathrm{I} / \mathrm{O}$ macrocells, 4 dedicated inputs, and 2 global clock inputs.
CLK1 provides the synchronous clock input for one bank of eight macrocells, and CLK2 provides the synchronous clock input for the other bank of eight macrocells. Output enable and selection of asynchronous or synchronous clock source are controlled with one dedicated product term per macrocell. An asynchronous reset product term is provided for each macrocell.

Each macrocell also has a register that can be programmed to be a D-type or T-type register. Other programmable options include output polarity, registered or combinatorial output, feedback to the array from the I/O pin or from the register output, and whether the dedicated product term controls the output enable or the register clock.
The CY7B326 is available in a wide variety of packages including $24-\mathrm{pin}, 300-\mathrm{mil}$ plastic and ceramic DIPs, 28 -pin, square Jleaded, ceramic chip carriers, 28 -pin PLCCs, and 28 -pin ceramic LCCs.

Logic Block Diagram

Selection Guide

		7B326-10	$\mathbf{7 B 3 2 6 - 1 5}$	7B326-17
$\mathrm{I}_{\mathrm{CC} 1}(\mathrm{~mA})$	Commercial	150	150	
	Military		170	170
$\mathrm{t}_{\mathrm{PD}}(\mathrm{ns})$	Commercial	12	15	
	Military		15	17
$\mathrm{t}_{\mathrm{s}}(\mathrm{ns})$	Commercial	10	12	
	Military		12	15
$\mathrm{t}_{\mathrm{CO}}(\mathrm{ns})$	Commercial	10	12	
	Military		12	15

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots . \ldots \ldots65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DC Program Voltage . 9.9 .5 V		
Ambient Temperature with	Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
Supply Voltage to Ground Potential $\ldots-0.5 \mathrm{~V}$ to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State . 0.5 V to V_{CC} Max. DC Input Voltage	Range	Ambient Temperature	V_{cc}
DC Input Current - 30 mA to +5 mA	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
(except during programming)	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions			Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Min}_{1}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}_{\mathrm{I}}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[2]}$			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[2]}$				0.8	V
I_{IX}	Input Leakage Current	$\mathrm{V}_{\mathrm{Ss}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.			-250	50	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}^{\text {, }}$, $\mathrm{V}_{\text {Ss }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			-100	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Sc }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[3]}$			-30	-130	mA
$\mathrm{I}_{\mathrm{CC} 1}$	Power Supply Current Standby	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathbf{I H}}=$ GND, Outputs Open		Com'l		150	mA
				Mil		170	
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current at Frequency	$\mathrm{V}_{\mathrm{CC}}=$ Max., Outputs Disabled (in High Z State), Device Operating at $\mathrm{f}_{\mathrm{MAX}}$		Com' ${ }^{\text {l }}$		170	mA
				Mil		190	

Capacitance ${ }^{[4]}$

Parameters	Description	Typical	Max.	Units
$\mathrm{C}_{\mathbf{I N}}$	Input Capacitance	11	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	9	10	pF

Notes:

1. t_{A} is the "instant on" case temperature.
2. Minimum DC input voltage is -0.3 V . During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns .
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. V ${ }_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by ground degradation.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a) Normal Load (Load 1)

(b) Thévenin Equivalent (Load 1)

(c) Three-state Delay Load (Load 2)

B326-2

Parameter	$\mathbf{V}_{\mathbf{X}}$	Output Waveform-Measurement Level	
$\mathrm{t}_{\mathbf{E R}(-)}$	1.5 V	$\mathrm{V}_{\mathrm{OH}} \frac{+}{0.5 \mathrm{~V}} \frac{1}{4} \mathrm{~F}$	B326-3
$\mathrm{t}_{\mathrm{ER}(+)}$	2.6 V	$\mathrm{V}_{\mathrm{OL}} \xrightarrow{0.5 \mathrm{~V}+\underset{\sim}{+}+} \mathrm{V}_{\mathrm{x}}$	B326-4
$\mathrm{t}_{\mathrm{EA}(+)}$	$\mathrm{V}_{\text {TH }}$	$\mathrm{V}_{\mathrm{x}} \xrightarrow{0.5 \mathrm{~V}+\frac{1}{4}+} \mathrm{V}_{\mathrm{OH}}$	B326-5
$\mathrm{t}_{\text {EA }(-)}$	$\mathrm{V}_{\text {TH }}$	$v_{x} \frac{+}{0.5 \mathrm{~V}-1} \mathrm{v}_{\mathrm{OL}}$	B326-6

Switching Waveform

SEMICONDUCTOR
Switching Characteristics ${ }^{[5]}$

Parameters	Description		7B326-12		7B326-15		78326-17		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PD }}$	Input to Output Propagation Delay ${ }^{[7]}$	Com'1		12		15			ns
		Mil				15		17	
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay	Com'l		12		15			ns
		Mil				15		17	
t_{ER}	Input to Output Disable Delay ${ }^{[8]}$	Com'l		12		15			ns
		Mil				15		17	
tco	Clock to Output Delay ${ }^{[7]}$	Com'l		10		12			ns
		Mil				12		15	
t_{5}	Input or Feedback Set-Up Time	Com'l	10		12				ns
		Mil			12		15		
t_{H}	Input Hold Time	Com'l	0		0				ns
		Mil			0		0		
t_{p}	External Clock Period ($\mathrm{t}_{\mathrm{co}}+\mathrm{ts}^{\text {) }}$	Com'l	20		24				ns
		Mil			24		30		
t_{WH}	Clock Width HIGH ${ }^{[4]}$	Com'l	7		9				ns
		Mil			10		11		
${ }_{\text {twL }}$	Clock Width LOW ${ }^{[4]}$	Com'1	7		9				ns
		Mil			10		11		
$\mathrm{f}_{\text {MAX } 1}$	External Maximum Frequency $\left(1 /\left(t_{c o}+t_{s}\right)\right)^{[9]}$	Com'l	50		41.7				MHz
		Mil			41.7		33.3		
$\mathrm{f}_{\text {MAX2 }}$	Data Path Maximum Frequency $\left(1 /\left(t_{\mathrm{wH}}+t_{\mathrm{wL}}\right)\right)^{[4,10]}$	Com'l	71.4		55.6				MHz
		Mil			50		45.5		
$\mathrm{f}_{\text {MAX }}$	Internal Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CNT}}\right)\right)^{[6]}$	Com'l	50		40				MHz
		Mil			40		33.3		
${ }^{\text {chet }}$	Minimum Clock Period with Internal Feedback ${ }^{\left[1{ }^{\text {i }}\right]}$	Com'l		20		25			ns
		Mil				25		30	
t_{AW}	Asynchronous Reset Width	Com'l	8		10				ns
		Mil			10		12		
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset Recovery Time	Com'l	10		12				ns
		Mil			12		15		
t_{AP}	Asynchronous Reset to Registered Output Delay	Com'l		12		14			ns
		Mil				14		17	
t_{OH}	Output Data Stable Time from Synchronous Clock Input	Com'l	1		1				ns
		Mil			1		1		
t_{As}	Input Set-Up Time to Asynchronous Clock	Com'l	10		12				ns
		Mil			12		14	\cdots	
t_{AH}	Input Hold Time from Asynchronous Clock	Com'l	10		12				ns
		Mil			12		14		
$\mathrm{t}_{\mathrm{ACO}}$	Asynchronous Clock to Output Delay	Com'l		20		25			ns
		Mil				25		30	
$t_{\text {ACNT }}$	Minimum Asynchronous Clock Period with Internal Feedback	Com'l		20		25			ns
		Mil				25		30	

Switching Characteristics ${ }^{[5]}$ (continued)

Parameters	Description		7B326-12		78326-15		78326-17		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAXA1 }}$	External Maximum Frequency Asynchronous ($1 /\left(\mathrm{t}_{\mathrm{AS}}+\mathrm{t}_{\mathrm{ACO}}\right)$)	Com'l	33.3		27				MHz
		Mil			27		22.7		
$\mathrm{f}_{\text {MAXA } 2}$	Internal Maximum Frequency Asynchronous $1 / \mathrm{t}_{\mathrm{ACNT}}$	Com'l	50		40				MHz
		Mil			40		33.3		
taOH	Output Data Stable Time from Asynchronous Clock Input	Com'l	1.5		1.5				ns
		Mil			1		1		

Notes:
5. AC test load used for all parameters except where noted.
6. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate. This parmeter is tested periodically by sampling product.
7. This specification is guaranteed for all device outputs changing state in a given access cycle.
8. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous HIGH level has fallen to

Programming

The CY7B326 can be programmed using the QuickPro II programmer available from Cypress Semiconductor and also with Data I/O, Logical Devices, STAG, and other programmers. Please contact your local Cypress representative for further information.
0.5 volts below $\mathrm{V}_{\mathrm{OH}} \min$. or a previous LOW level has risen to 0.5 volts above V_{OL} max.
9. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
10. This specification indicates the guaranteed maximum frequency at which an individual output register can be cycled.
11. This parameter is calculated from the clock period at $f_{\text {MAX }}$ internal ($\mathrm{f}_{\mathrm{MAX}}$) as measured (see Note 10) minus t_{s}.

I/O Macrocell

GLOBAL SYNCHRONOUS

CLOCK (ONE PIN PER

Block Diagram

B326-12

Ordering Information

$\begin{aligned} & \mathbf{t}_{\mathbf{P D}} \\ & (\mathbf{n s}) \end{aligned}$	$\begin{gathered} \mathbf{f}_{(\mathbf{M A X}} \mathbf{2} \\ (\mathbf{M H z}) \end{gathered}$	Ordering Code	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
12	71	CY7B326-12PC	P13	Commercial
		CY7B326-12DC	D14	
		CY7B326-12JC	J64	
15	55	CY7B326-12PC	P13	Commercial
		CY7B326-15DC	D14	
		CY7B326-15JC	J64	
	50	CY7B326-15DMB	D14	Military
		CY7B326-15LMB	L64	
17	45	CY7B326-17DMB	D14	Military
		CY7B326-17LMB	L64	

Document \#: 38-00143-A

CMOS Programmable Synchronous State Machine

Features

- 12 I/O macro cells each having:
- registered, three-state \mathbf{I} / \mathbf{O} pins
- input register clock select multiplexer
- feed back multiplexer
- output enable (OE) multiplexer
- All twelve macro cell state registers can be hidden
- User configurable state registers-JK, RS, T, or D
- Input multiplexer per pair of I/O macro cells allows I/O pin associated with a hidden macro cell state register to be saved for use as an input
- 4 dedicated hidden registers
- 11 dedicated, registered inputs
- 3 separate clocks- 2 inputs, 1 output
- Common (PIN 14 controlled) or product term controlled output enable for each I/O pin
- 256 product terms- 32 per pair of macro cells, variable distribution
- Global, synchronous, product term controlled, state register set and reset-inputs to product term are clocked by input clock
- 66 MHz operation
- 3 ns input setup and 12 ns clock to output
- $\mathbf{1 5} \mathrm{ns}$ input register clock to state register clock
- Low power
-130 mA ICC $^{\text {C }}$
- 28 pin 300 mil DIP, LCC
- Erasable and reprogrammable

Product Characteristics

The CY7C330 is a high-performance, eraseable, programmable, logic device (EPLD) whose architecture has been optimized to enable the user to easily and efficiently construct very high performance synchronous state machines.

The unique architecture of the CY7C330, consisting of the user-configurable output macrocell, bi-directional I/O capability, input registers, and three separate clocks, enables the user to design high performance state machines that can communicate either with each other or with microprocessors over bi-directional parallel busses of user-definable widths.
The three separate clocks permit independent, synchronous state machines to be synchronized to each other. The two input clocks, $\mathrm{C} 1, \mathrm{C} 2$, enable the state machine to sample input signals that may be generated by another system and that may be available on its bus for a short period of time.
The user-configurable state register flip-flops enable the designer to designate JK, RS, T, or D type devices, so that the number of product terms required to implement the logic is minimized.

Block Diagram and DIP Pinout

Selection Guide

		CY7C330-66	CY7C330-50	CY7C330-40	CY7C330-33	CY7C330-28
Maximum Operating Frequency (MHz)	Commercial	66.6	50.0		33.3	
	Military		50.0	40.0		28.5
Power Supply Current ICC1 (mA)	Commercial	140	130		130	
	Military		160	150		150

Product Characteristics (Continued)

The major functional blocks of the CY7C330 are (1) the input registers and (input) clock multiplexers, (2) the EPROM (AND) cell array, (3) the twelve I/O macrocells and (4) the four hidden registers.

Input Registers and Clock Multiplexers

There are a total of eleven dedicated Input Registers. Each Input Register consists of a D flip-flop and a clock multiplexer. The clock multiplexer is user-programmable to select either CK1 or CK2 as the clock for the flip-flop. CK2 and $\overline{\mathrm{OE}}$ can alternatively be used as inputs to the array. The twenty-two outputs of the registers (i.e. the Q and $\overline{\mathrm{Q}}$ outputs of the input registers) drive the array of EPROM cells.
An architecture configuration bit (C4) is reserved for each Dedicated Input Register cell to allow selection of either input clock CK 1 or CK2 as the input register clock for each Dedicated Input Cell. If the CK2 clock is not needed that input may also be used as a general purpose array input. In this case the Input Register for this input can only be clocked by input clock CK1. Figure 1 illustrates the Dedicated Input Cell composed of input register, Input Clock Multiplexer, and architecture configuration bit C4 which determines the input clock selected.

I/O Macro Cell

The logic diagram of the CY7C330 I/O macro cell is shown in Figure 2. There are a total of twelve indentical macro cells.
Each macro cell consists of:

- An Output State Register which is clocked by the global state counter clock, CLK (PIN 1). The State Register can be configured as a D, JK, RS, or T flip-flop (default is a D-type flip-flop). Polarity can be controlled in the D flip-flop implementation by use of the exclusive or function. Data is sampled on the LOW to HIGH clock transition. All of the State Registers have a common reset and set which are controlled synchronously by Product Terms which are generated in the EPROM cell array.
- A Macro Cell Input Register which may be clocked by either the CK1 or CK2 input clock as programmed by the user by use of architecture configuration bit C2 which controls the I/O Macro Cell Input Clock Multiplexer. The Macro Cell Input Registers are initialized on power up such that all of the Q outputs are at logic LOW level and the \bar{Q} outputs are at a logic HIGH level.
- An Output Enable Multiplexer (OE), which is user-programmable, by architecture configuration bit C 0 , to select either the common $\overline{\mathrm{OE}}$ signal from pin 14 or, for each cell individually, the signal from the Output Enable product term associated with each macro cell. The Output Enable input signal to the array product term is clocked through the input register by the selected input register clock, CK1 or CK2.
- An input Feed Back Multiplexer which is user-programmable to select either the output of the State Register or the output of the Macro Cell Input Register to be fed back into the array. This option is programmed by architecture configuration bit C1. If the output of the Macro Cell Input Register is selected by the Feed Back Multiplexer, the I/O pin becomes bi-directional.

Macro Cell Input Multiplexer

Each pair of I/O macro cells share a Macro Cell Input Multiplexer which selects the output of one or the other of the pair's input registers to be fed to the input array. This multiplexer is shown in Figure 2. The Macro Cell Input Multiplexer allows the input pin of a macro cell, for which the state register has been hidden by feeding back its input to the input array, to be preserved for use as an input pin. This is possible as long as the other macro cell of the pair is not needed as a input or does not require State Register feed back. The input pin input register output which would normally be blocked by the hidden State Register feed back can be routed to the array input path of the companion macro cell for use as array input.

State Registers

By use of the exclusive or gate the State Register may be configured as a JK, RS or T Register. The default is a D-Type register. For the D-Type register, the exclusive or function can be used to select the polarity or the register output.
The set and reset of the State Register are global synchronous signals which are controlled by the logic of two global product terms for which input signals are clocked through the input registers by either of the input clocks, CK 1 or CK2.

Hidden Registers

In addition to the twelve macro cells, which contain a total of twenty-four registers, there are four hidden registers whose outputs are not brought out to the device output pins. The Hidden State Register Macro Cell is shown in Figure 3.
The four hidden registers are clocked by the same clock as the macrocell state registers. All of the hidden register flipflops have a common, synchronous set, S , as well as a common, synchronous reset, R, which over-ride the data at the D input. The S and R signals are PRODUCT TERMS that are generated in the array and are the same signals used to preset and reset the state register flip-flops.

Macrocell Product Term Distribution

Each pair of macrocells has a total of thirty-two product terms. Two product terms of each macrocell pair are used for the output enables (OEs) for the two output pins. Two product terms are also used as one input to each of the two exclusive OR gates in the macrocell pair. The number of product terms available to the designer is then $32-4=$ 28 for each macrocell pair. These product terms are divided between the macro cell state register flip-flops as shown in Table 1.

Table 1. Product Term Distribution

Macro Cell	Pin No.	Product Terms
0	28	9
1	27	19
2	26	11
3	25	17
4	24	13
5	23	15
6	20	15
7	19	13
8	18	17
9	17	11
10	16	19
11	15	9

SEMICONDUCTOR

Product Characteristics (Continued)

Hidden State Register Product Term Distribution

Each pair of hidden registers also has a total of 32 product terms. Two product terms are used as one input to each of the exclusive OR gates. However, because the register outputs do not go to any output pins, output enable product terms are not required. Therefore, 30 product terms are available to the designer for each pair of hidden registers. The product term distribution for the four hidden registers are shown in Table 2.

Table 2. Hidden State Register Product Term Distribution

Hidden Register Cell	Product Terms
0	19
1	11
2	17
3	13

Architecture Configuration Bits

The architecture configuration bits are used to program the multiplexers. The function of the architecture bits is outlined below.

Table 3. Architecture Configuration Bits

Architecture Configuration Bit		Number of Bits	Value	Function
C0	Output Enable Select MUX	12 Bits, 1 Per I/O Macro Cell	0-Virgin State	Output Enable Controlled by Product Term
			1-Programmed	Output Enable Controlled by Pin 14
C1	State Register Feed Back MUX	12 Bits, 1 Per I/O Macro Cell	0 -Virgin State	State Register Output is Fed Back to Input Array
			1-Programmed	I/O Macro Cell is Configured as an Input and Output of Input Register is Fed to Array
C2	I/O Macro Cell Input Register Clock Select MUX	12 Bits, 1 Per I/O Macro Cell	0-Virgin State	CK1 Input Register Clock (Pin 2) is Connected to I/O Macro Cell Input Register Clock Input
			1-Programmed	CK2 Input Register Clock (Pin 3) is Connected to I/O Macro Cell Input Register Clock Input
C3	I/O Macro Cell Pair Input Select MUX	6 Bits, 1 Per I/O Macro Cell Pair	0-Virgin State	Selects Data from I/O Macro Cell Input Register of Macro Cell A of Macro Cell Pair
			1-Programmed	Selects Data from I/O Macro Cell Input Register of Macro Cell B of Macro Cell Pair
C4	Dedicated Input Register Clock Select MUX	11 Bits, 1 Per Dedicated Input Cell	0-Virgin State	CK1 Input Register Clock (Pin 2) is Connected to Dedicated Input Register Clock Input
			1-Programmed	CK2 Input Register Clock (Pin 3) is Connected to Dedicated Input Register Clock Input

Figure 1. Dedicated Input Cell

0101-6
Figure 2. I/O Macro Cell and Shared Input Multiplexer

Figure 3. Hidden State Register Macro Cell

CY7C330
SEMICONDUCTOR
Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
wer Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
pply Voltage to Ground Potentia in 22 to Pins 8 and 21)	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
C Voltage Applied to Outputs High Z State.	$-0.5 \mathrm{~V} \text { to }+7 .$
DC Input Voltage	-3.0V to +7.0 V
Current in	

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883 Method 3015)
Latchup Current . $>200 \mathrm{~mA}$
DC Programming Voltage 13.0 V
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range[6]

Parameters	Description	Test Conditions			Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { or }} \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}=-3.2 \mathrm{~mA}$	COM'L	2.4		V
			$\mathrm{IOH}=-2 \mathrm{~mA}$	MIL			
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { or }} \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}=12 \mathrm{~mA}$	COM'L		0.5	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	MIL			
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs[1]			2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[1]}$				0.8	V
I_{IX}	Input Leakage Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.			-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max. $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$			-40	40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[2]}$			-30	-90	mA
ICC1	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$Outputs Open		COM'L (-66 MHz)		140	mA
				COM'L		130	mA
				MIL (-50 MHz)		160	mA
				MIL		150	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current at Frequency ${ }^{[3,7]}$	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max} .$ Outputs Disabled (in High Z State) Device Operating at $\mathrm{f}_{\mathrm{MAX}}$ External ($\mathrm{f}_{\mathrm{MAXI}}$)		$\mathrm{COM}^{\prime} \mathrm{L}(-33 \mathrm{MHz}$ \& -50 MHz)		160	mA
				COM'L (-66 MHz [15$]$		180	mA
				MIL (-28 MHz \& -40 MHz)		180	mA
				MIL (-50 MHz) ${ }^{\text {[15] }}$		200	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Min	Max	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	pF
CouT	Output Capacitance	$\mathrm{V}_{\mathrm{OUT}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure $4 a$ test load used for all parameters except $\mathrm{t}_{\mathrm{CEA}}, \mathrm{t}_{\mathrm{CER}}, \mathrm{t}_{\mathrm{PZX}}$ and $\mathrm{t}_{\mathrm{PXZ}}$. Figure $4 b$ test load for $\mathrm{t}_{\text {CEA }}, \mathrm{t}_{\text {CER }}, \mathrm{t}_{\text {PZX }}, \mathrm{t}_{\text {PXZ }}$.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.
7. This parameter is sample tested periodically.
8. This parameter is measured as the time after output register disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous high level has fallen to 0.5 V below $\mathrm{V}_{\mathrm{OH}} \mathrm{Min}$ or a previous low level has risen to 0.5 V above $\mathrm{V}_{\text {OL }}$ Max. Please see Figure 6 for enable and disable test waveforms and measurement reference levels.
9. This parameter is measured as the time after output register clock input that the previous output data state remains stable on the output.
10. This difference parameter is designed to guarantee that any CY7C330 output fed back to its own inputs externally or internally will satisfy the input register minimum input hold time. This parameter is guaranteed for a given individual device and is tested by a periodic sampling of production product.
11. This specification is intended to guarantee feeding of this signal to another 33X family input register cycled by the same clock with sufficient output data stable time to insure that the input hold time minimum of the following input register is satisfied. This parameter difference specification is guaranteed by periodic sampling of production product of CYC330 and CY7C332. This difference parameter is guaranteed to be met only for devices at the same ambient temperature and $V_{C C}$ supply voltage.
12. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feed back can operate.
13. This specification indicates the guaranteed maximum frequency at which an individual input or output register can be cycled.
14. This specification indicates the guaranteed maximum frequency at which a state machine configuration with only internal feedback can operate. This parameter tested periodically on a sample basis.

Switching Characteristics Over the Operating Range ${ }^{[4,6]}$

Parameters	Description	Commercial						Military						Units
		-66		-50		-33		-50		-40		-28		
		Min.	Max.											
$\mathrm{t}_{\text {IS }}$	Input or Feedback Setup Time to Input Register Clock	3		5		10		5		5		10		ns
tos	Input Register Clock to Output Register Clock	15		20		30		20		25		35		ns
t_{CO}	Output Register Clock to Output Delay		12		15		20		15		20		25	ns
t_{IH}	Input Register Hold Time	5		5		5		5		5		5		ns
${ }^{\text {t CEA }}$	Input Register Clock To Output Enable Delay		20		20		30		20		25		35	ns
tCER	Input Register Clock to Output Disable Delay ${ }^{[8]}$		20		20		30		20		25		35	ns
tPZX	Pin 14 Enable to Output Enable Delay		20		20		30		20		25		35	ns
tPXZ	Pin 14 Disable to Output Disable Delay ${ }^{[8]}$		20		20		30		20		25		35	ns
twh	Input or Output Clock Width High [3, 7]	6		8		12		8		10		15		ns
twL	Input or Output Clock Width Low ${ }^{[3,7]}$	6		8		12		8		10		15		ns
tP	External Clock Period ($\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{IS}}$) Input and Output Clock Common	15		20		30		20		25		35		ns
tOH	Output Data Stable Time from Synchronous Clock Input ${ }^{[9]}$	3		3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{OH}} \mathrm{t}_{\text {IH }}$	Output Data Stable Time This Device Minus I/P Reg Hold Time Same Device ${ }^{[10]}$	0		0		0		0		0		0		ns
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{OH}^{-}} \\ & \mathrm{t}_{\mathrm{IH}} 33 \mathrm{X} \end{aligned}\right.$	Output Data Stable Time Minus I/P Reg Hold Time 7C330 \& 7C332[11]	0		0		0		0		0		0		ns
f MAX1	External Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{IS}}\right)\right)^{[12]}$	66.6		50.0		33.3		50.0		40.0		28.5		MHz
f MAX2	Maximum Register Toggle Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)\right)^{[7,13]}$	83.3		62.5		41.6		62.5		50.0		33.3		MHz
fmax 3	Internal Maximum Frequency ${ }^{[14]}$	74.0		57.0		37.0		57.0		45.0		30.0		MHz

AC Test Loads and Waveforms (Commercial)

Figure 4a

Equivalent to: THEVENIN EQUIVALENT (Commercial)

$$
\text { OUTPUT } 0 \overbrace{-}^{125 \Omega} \overbrace{}^{2.00 \mathrm{~V}=\mathrm{V}_{\text {thc }}}
$$

0101-11

0101-9
Figure 4b

Figure 5

Equivalent to: THEVENIN EQUIVALENT (Military) OUTPUT $O-\underbrace{190 \Omega} \longrightarrow 2.02 \mathrm{~V}=\mathrm{V}_{\text {thm }}$

0101-12

Switching Waveforms

0101-13

0101-18
CY7C330 Block Diagram (Page 2 of 2)

Parameter	$\mathbf{V}_{\mathbf{x}}$	Output Waveform-Measurement Level	
$t_{\text {PXZ }}(-)$	1.5 V		0101-19
${ }_{\text {tPXZ }}(+)$	2.6 V		0101-20
${ }_{\text {t }}^{\text {PZX }}$ (+)	$\mathrm{V}_{\text {the }}$		0101-21
$\mathbf{t P Z X}^{(-)}$	$\mathrm{V}_{\text {thc }}$		0101-22
$\mathrm{t}_{\text {CER }}(-)$	1.5 V		0101-19
$\mathrm{t}_{\text {CER }}(+)$	2.6 V	$v_{\mathrm{OL}} \frac{\frac{1}{0.5 \mathrm{~V}}}{1}$	0101-20
$\mathrm{t}_{\text {CEA }}(+)$	$\mathrm{V}_{\text {the }}$		0101-21
$\mathrm{t}_{\text {CEA }}(-)$	$\mathrm{V}_{\text {the }}$		

Figure 6. Test Waveforms

Ordering Information

$\mathrm{f}_{\text {max }}(\mathbf{M H z})$	$\mathrm{I}_{\mathrm{CC1}}(\mathrm{~mA})$	Ordering Code	Package	Operating Range
66.6	140	CY7C330-66PC	P21	Commercial
		CY7C330-66WC	W22	
		CY7C330-66JC	J64	
		CY7C330-66HC.	H64	
50	160	CY7C330-50DMB	D22	Military
		CY7C330-50WMB	W22	
		CY7C330-50HMB	H64	
		CY7C330-50LMB	L64	
		CY7C330-50TMB	T74	
		CY7C330-50QMB	Q64	
50	130	CY7C330-50PC	P21	Commercial
		CY7C330-50WC	W22	
		CY7C330-50JC	J64	
		CY7C330-50HC	H64	
40	150	CY7C330-40DMB	D22	Military
		CY7C330-40WMB	W22	
		CY7C330-40HMB	H64	
		CY7C330-40LMB	L64	
		CY7C330-40TMB	T74	
		CY7C330-40QMB	Q64	
33.3	130	CY7C330-33PC	P21	Commercial
		CY7C330-33WC	W22	
		CY7C330-33JC	J64	
		CY7C330-33HC	H64	
28.5	150	CY7C330-28DMB	D22	Military
		CY7C330-28WMB	W22	
		CY7C330-28HMB	H64	
		CY7C330-28LMB	L64	
		CY7C330-28TMB	T74	
		CY7C330-28QMB	Q64	

\qquad
MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\mathrm{ISU}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OSU}}$	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CEA}}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PZX }}$	$7,8,9,10,11$

Document \#: 38-00064-C

CY7C331

Asynchronous Registered
 EPLD

Features

- 12 I/O macrocells each having:
- One state Flip-Flop with an XOR sum or products input
- One feedback Flip-Flop with input coming from the $1 / O$ pin
- Independent (product term) set, reset, and clock inputs on all registers
- Asynchronous bypass capability on all registers, under product term control $(\mathbf{r}=\mathbf{s}=1)$
- Global or local output enable on tristate I/O
- Feedback from either register to the array
- 192 product terms with variable distribution to macrocells
- 13 inputs, 12 feedback I/O pins, plus 6 shared I/O macrocell feedbacks for a total of 31 true and complementary inputs
- High speed: $\mathbf{2 0}$ tPD ns maximum
- Security bit
- Space saving 28 pin slim-line DIP package; also available in 28 pin PLCC
- Low power
- 90 mA typical ICC quiescent
- 180 mA I $_{\text {CC }}$ maximum
- UV-Eraseable and reprogrammable
- Programming and operation 100% testable

Product Characteristics

The CY7C331 is the most versatile PLD available for asynchronous designs. Central resources include 12 full D-type Flip-Flops with separate set, reset and clock capability. For increased utility, XOR gates are provided at the D -inputs and the product term allocation per Flip-Flop is variably distributed.

I/O Resources

Pins 1 through 7 and 9 through 14 serve as array inputs; pin 14 may also be used as a global output enable for the I/O macrocell tristate outputs. Pins 15 through 20 and 23 through 28 are connected to I/O macrocells and may be managed as inputs or outputs depending on the configuration and the macrocell OE terms.

Block Diagram and DIP Pinout

0100-1

Selection Guide

Generic Part Number	ICC1 mA		tPD ns		tS ns		tCO ns	
	Com	Mil	Com	Mil	Com	Mil	Com	Mil
CY7C331-20	130		20		12		20	
CY7C331-25	120	160	25	25	12	15	25	25
CY7C331-30		150		30		15		30
CY7C331-35	120		35		15		35	
CY7C331-40		150		40		20		40

CY7C331

I/O Resources (Continued)

It should be noted that there are two ground connections (pins 8 and 21) which, together with $\mathrm{V}_{\mathrm{CC}}(\operatorname{pin} 22)$ are located centrally on the package. The reason for this placement and dual ground structure is to minimize the groundloop noise when the outputs are driving simultaneously into a heavy capacitive load.

Figure 1. Macrocell

The CY7C331 has 12 macrocells. Each macrocell has two D-type Flip-Flops. One is fed from the array, and one is fed from the I/O pin. For each Flip-Flop there are 3 dedicated product terms driving the R, S, and Clock inputs respectively. Each macrocell has one input to the array and for each pair of macrocells there is one shared input to the array. The macrocell input to the array may be configured to come from the 'Q' output of either Flip-Flop.
The D-type Flip-Flop which is fed from the array (i.e., the state Flip-Flop) has a logical XOR function on its input which combines a single product term with a sum (OR) of a number of product terms. The single product term is used to set the polarity of the output or to implement toggling (by including the current output in the product term).
The R and S inputs to the Flip-Flops override the current setting of the ' Q ' output. The S input sets ' Q ' true and the R input 'resets' ' Q ' (sets it false). If both R and S are asserted (true) at once, then the output will follow the input ('Q' = 'D').

Table 1

\mathbf{R}	\mathbf{S}	\mathbf{Q}
1	0	0
0	1	1
1	1	D
R-S Truth Table		

0100-4
Figure 2. Shared Input Multiplexer

Shared Input Multiplexer

The input associated with each pair of macrocells may be configured by the shared input multiplexer to come from either macrocell; the 'Q' output of the Flip-Flop coming from the I/O pin is used as the input signal source.

Product Term Distribution

The product terms are distributed to the macrocells such that 32 product terms are distributed between two adjacent macrocells. The pairing of macrocells is the same as it is for the shared inputs. 8 of the product terms are used in each macrocell for set, reset, clock, OE and the upper part of the XOR gate. This leaves 16 product terms per pair of macrocells to be divided between the sum-of-product inputs to the two state registers. The following table shows the I/O pin pairing for shared inputs, and the product term (P-Term) allocation to macrocells associated with the I/O pins.

Table 2

Macrocell	Pin Number	Product Terms
0	28	4
1	27	12
2	26	6
3	25	10
4	24	8
5	23	8
6	20	8
7	19	8
8	18	10
9	17	6
10	16	12
11	15	4

The CY7C331 is configured by three arrays of configuration bits ($\mathrm{C} 0, \mathrm{C} 1, \mathrm{C} 2$). For each macrocell, there is one C 0 bit and one C1 bit. For each pair of macrocells, there is one C2 bit.
There are 12 C 0 bits. If C 0 is programmed for a macrocell, then the tristate enable (OE) will be controlled by pin 14 (the global OE). If CO is not programmed, then the OE product term for that macrocell will be used.
There is one C 1 bit for each macrocell. The C 1 bit selects input for the product term (PT) array from either the state register (if the bit is unprogrammed) or the input register.

I/O Resources (Continued)

There are 6 C 2 bits, providing one C 2 bit for each pair of macrocells. The C2 bit controls the shared input Multiplexer (Mux); if the C2 bit is not programmed, then the input to the product term array comes from the upper macrocell (A). If the C 2 bit is programmed, then the input comes from the lower macrocell (B).

The timing diagrams for the CY7C331 cover state register, input register, and various combinational delays. Since internal clocks are the outputs of product terms, all timing is from the transition of inputs causing the clock transition.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Supply Voltage to Group Potential
(Pin 22 to Pins 8 or 21) 0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low) 12 mA
Static Discharge Voltage . $>2001 \mathrm{~V}$
(per MIL-STD-883 Method 3015)

Latchup Current . $>200 \mathrm{~mA}$
DC Programming Voltage . 13.0V
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Rangel ${ }^{[6]}$

Parameters	Description	Test Conditions			Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	Commercial	2.4		V
			$\mathrm{IOH}=-2 \mathrm{~mA}$	Military			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}^{\text {O }}=12 \mathrm{~mA}$	Commercial		0.5	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	Military			
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed HIGH Input, all Inputs ${ }^{11]}$			2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed LOW Input, all Inputs ${ }^{[1]}$				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }},<\mathrm{V}_{\text {CC }}=$ Max.			-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {CC }}$			-40	40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ [2]			-30	-90	mA
ICCl^{1}	Standby Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}, \\ & \text { Outputs Open } \end{aligned}$		Commercial (-20)		130	mA
				Commercial		120	mA
				Military (-25)		160	mA
				Military		150	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current at Frequency [19]	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ Outputs Disabled (in HIGH Z State) Device Operating at $\mathrm{f}_{\mathrm{MAX}}$ External ($\mathrm{f}_{\mathrm{MAX}}$)		Commercial		180	mA
				Military		200	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Min.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure $3 a$ test load used for all parameters except tPZXI, $\mathbf{t P X Z I}^{\text {, }}$ tPZX and $\mathrm{t}_{\mathrm{PXZ}}$. Figure $3 b$ test load for $\mathrm{t}_{\mathrm{PZXI}}, \mathrm{t}_{\mathrm{PXZI}}, \mathrm{t}_{\mathrm{PZXX}}$ and $\mathrm{t}_{\mathrm{PXZ}}$. Figure $3 c$ shows test waveforms and measurement levels.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics ${ }^{[6]}$

Parameters	Description	Commercial						Military						Units
		-20		-25		-35		-25		-30		-40		
		Min.	Max.											
tpD	Input to Output Propagation Delay ${ }^{[7]}$		20		25		35		25		30		40	ns
$\mathrm{tICO}^{\text {coin }}$	Input Register Clock to Output Delay [8]		35		40		55		45		50		65	ns
$\mathrm{tIOH}^{\text {r }}$	Output Data Stable Time from Input Clock ${ }^{[8]}$	5		5		5		5		5		5		ns
tIS	Input or Feedback Setup Time to Input Register Clock ${ }^{[8]}$	2		2		2		5		5		5		ns
${ }_{\text {tin }}$	Input Register Hold Time from Input Clock ${ }^{[8]}$	11		13		15		13		15		20		ns
tiAR	Input to Input Register Asynchronous Reset Delay [8]		35		40		55		45		50		65	ns
tIRW	Input Register Reset Width ${ }^{\text {[8] }}$	35		40		55		45		50		65		ns
tIRR	Input Register Reset Recovery Time ${ }^{\text {[8] }}$	35		40		55		45		50		65		ns
${ }^{\text {tiAS }}$	Input to Input Register Asynchronous Set Delay ${ }^{[8]}$		35		40		55		45		50		65	ns
tisw	Input Register Set Width ${ }^{\text {[8] }}$	35		40		55		45		50		65		ns
tISR	Input Register Set Recovery Time ${ }^{[8]}$	35		40		55		45		50		65		ns
twh	Input \& Output Clock Width High [8, 9, 12]	12		15		20		15		20		25		ns
twL	Input \& Output Clock Width Low [8, 9, 12]	12		15		20		15		20		25		ns
f MAX1	Maximum Frequency with Feedback in Input Registered Mode ($\left.1 /\left(\mathrm{t}_{\mathrm{ICO}}+\mathrm{t}_{\mathrm{IS}}\right)\right)^{[13]}$	27.0		23.8		17.5		20.0		18.1		14.2		MHz
$\mathrm{fmaX}^{\text {m }}$	Maximum Frequency Data Path in Input Registered Mode (Lower of $1 / \mathrm{t}_{\mathrm{ICO}}, 1 /(\mathrm{twH}+\mathrm{twL}$) or $\left.1 /\left(\mathrm{t}_{\text {IS }}+\mathrm{t}_{\mathrm{IH}}\right)\right)^{[8]}$	28.5		25.0		18.1		22.2		20.0		15.3		ns
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{IOH}^{-}}- \\ & \mathrm{t}_{\mathrm{IH}} 33 \mathrm{X} \end{aligned}\right.$	Output Data Stable from Input Clock Minus Input Register Input Hold Time for 7C330 and 7C332[15, 18]	0		0		0		0		0		0		ns
t_{CO}	Output Register Clock to Output Delay $[9]$		20		25		35		25		30		40	ns
tor	Output Data Stable Time from Output Clock ${ }^{[9]}$	3		3		3		3		3		3		ns
ts	Output Register Input Set Up Time to Output Clock ${ }^{[9]}$	12		12		15		15		15		20		ns
${ }_{4}$	Output Register Input Hold Time from Output Clock ${ }^{[9]}$	8		8		10		10		10		12		ns
toar	Input to Output Register Asynchronous Reset Delay ${ }^{[9]}$		20		25		35		25		30		40	ns
torw	Output Register Reset Width 9]	20		25		35		25		30		40		ns
torr	Output Register Reset Recovery Time ${ }^{[9]}$	20		25		35		25		30		40		ns
toas	Input to Output Register Asynchronous Set Delay ${ }^{[9]}$		20		25		35		25		30		40	ns
tosw	Output Register Set Width ${ }^{\text {[9] }}$	20		25		35		25		30		40		ns
tosR	Output Register Set Recovery Time ${ }^{[9]}$	20		25		35		25		30		40		ns
tEA	Input to Output Enable Delay ${ }^{[4,10]}$		25		25		35		25		30		40	ns
ter	Input to Output Disable Delay [4, 10]		25		25		35		25		30		40	ns
tpZX	Pin 14 to Output Enable Delay ${ }^{[4,10]}$		20		20		30		20		25		35	ns
tPXZ	Pin 14 to Output Disable Delay ${ }^{[4,10]}$		20		20		30		20		25		35	ns
$\mathrm{fmAX}^{\text {max }}$	Maximum Frequency with Feedback in Output Registered Mode $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{ts}_{\mathrm{s}}\right)\right)^{[14,17]}$	31.2		27.0		20.0		25.0		22.2		16.6		MHz
$\mathrm{f}_{\text {MAX } 4}$	Max. Frequency Data Path in Output Registered Mode $\left(\text { Lower of } 1 / \mathrm{t}_{\mathrm{CO}}, 1 /\left(\mathrm{twH}+\mathrm{t}_{\mathrm{WL}}\right) \text { or } 1 /\left(\mathrm{ts}_{\mathrm{s}}+\mathrm{t}_{\mathrm{H}}\right)\right)^{[9]}$	41.6		33.3		25.0		33.3		25.0		20.0		MHz
$\left\lvert\, \begin{aligned} & \mathrm{tOH}^{-} \\ & \mathrm{t}_{\mathrm{IH}} \mathrm{H} 3 \mathrm{X} \end{aligned}\right.$	Output Data Stable from Output Clock Minus Input Register Input Hold Time for 7C330 and 7C332[16, 18]	0		0		0		0		0		0		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency Pipelined Mode ${ }^{[12, ~ 17] ~}$	35.0		30.0		22.0		28.0		23.5		18.5		MHz

Notes:
7. Refer to Figure 5 configuration 1.
8. Refer to Figure 5 configuration 2.
9. Refer to Figure 5 configuration 3.
10. Refer to Figure 5 configuration 4.
11. Refer to Figure 5 configuration 5.
12. Refer to Figure 5 configuration 6.
13. Refer to Figure 6 configuration 7.
14. Refer to Figure 6 configuration 8.
15. Refer to Figure 7 configuration 9.
16. Refer to Figure 7 configuration 10.
17. This specification is intended to guarantee that a state machine configuration created with internal or external feedback can be operated with output register and input register clocks controlled by the same source. These parameters are tested by periodic sampling of production product.
18. This specification is intended to guarantee interface compatibility of the other members of the CY7C330 family with the CY7C331. This specification is met for the devices noted operating at the same ambient temperature and at the same power supply voltage. These parameters are tested periodically by sampling of production product.

AC Test Loads and Waveforms

Figure 3a

Figure 3b

Figure 4
Equivalent to: THÉVENIN EQUIVALENT (Military)

Parameters	$\mathbf{V}_{\mathbf{x}}$	Output Waveform-Measurement Level	
tPXZ (-)	1.5 V		0100-16
$t_{\text {PXZ }}(+)$	2.6 V		0100-17
$t_{\text {PZXX }}(+)$	$\mathrm{V}_{\text {the }}$		0100-18
tPZX (-)	$\mathrm{V}_{\text {the }}$		0100-19
$t_{E R}(-)$	1.5 V		0100-16
$\mathrm{t}_{\text {ER }}(+)$	2.6 V		0100-17
${ }^{\text {EAA }}(+)$	$\mathrm{V}_{\text {the }}$		0100-18
$t_{E A}(-)$	$\mathrm{V}_{\text {the }}$		0100-19

Figure 3c. Test Waveforms and Measurement Levels

$=$

Switching Waveforms

0100-10

Notes:

19. Because these input signals are controlled by product terms, active input polarity may be of either polarity. Internal active input polarity has been shown for clarity.
20. Output register is set in Transparent Mode. Output register Set and Reset inputs are in a HIGH state.
21. Dedicated input or input register set in Transparent Mode. Input register Set and Reset inputs are in a HIGH state.
22. Combinatorial Mode. Reset and Set inputs of the input and output registers should remain in a HIGH state at least until the output responds at tpD. When returning Set and Reset inputs to a LOW state, one of these signals should go LOW a MINIMUM of tose (Set input) or torR (Reset input) prior to the other. This guarantees predictable register states upon exit from Combinatorial Mode.
23. When entering the Combinatorial Mode, input and output register Set and Reset inputs must be stable in a HIGH state a MINIMUM of $\mathrm{t}_{\text {ISR }}$ or $\mathrm{t}_{\text {IRR }}$ and $\mathrm{t}_{\mathrm{ISR}}$ or $\mathrm{t}_{\text {ORR }}$ respectively prior to application of logic input signals.
24. When returning to the input and/or output Registered Mode, register Set and Reset inputs must be stable in a LOW state a MINIMUM of $\mathrm{t}_{\text {ISR }}$ or $\mathrm{t}_{\text {IRR }}$ and toSR $^{\text {or } t_{\text {ORR }}}$ respectively prior to the application of the register clock input.

0100-11

0100-14

0100-15

CONFIGURATION 6

0100-20
Figure 5. Timing Configurations

CONFIGURATION 7

CONFIGURATION 8

Figure 6

Figure 7

Ordering Information

$\begin{aligned} & \mathrm{I}_{\mathrm{CC} 1} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \text { tPD } \\ & (\mathrm{ns}) \end{aligned}$	$\underset{(\mathrm{ns})}{\mathrm{ts}_{\mathrm{S}}}$	$\begin{aligned} & \mathbf{t}^{\mathrm{t} C O} \\ & \text { (ns) } \end{aligned}$	Ordering Code	Package Type	Operating Range
130	20	12	20	CY7C331-20PC	P21	Commercial
				CY7C331-20WC	W22	
				CY7C331-20JC	J64	
				CY7C331-20HC	H64	
160	25	15	25	CY7C331-25DMB	D22	Military
				CY7C331-25WMB	W22	
				CY7C331-25HMB	H64	
				CY7C331-25LMB	L64	
				CY7C331-25TMB	T74	
				CY7C331-25QMB	Q64	
120	25	12	25	CY7C331-25PC	P21	Commercial
				CY7C331-25WC	W22	
				CY7C331-25JC	J64	
				CY7C331-25HC	H64	
150	30	15	30	CY7C331-30DMB	D22	Military
				CY7C331-30WMB	W22	
				CY7C331-30HMB	H64	
				CY7C331-30LMB	L64	
				CY7C331-30TMB	T74	
				CY7C331-30QMB	Q64	
120	35	15	35	CY7C331-35PC	P21	Commercial
				CY7C331-35WC	W22	
				CY7C331-35JC	J64	
				CY7C331-35HC	H64	
150	40	20	40	CY7C331-40DMB	D22	Military
				CY7C331-40WMB	W22	
				CY7C331-40HMB	H64	
				CY7C331-40LMB	L64	
				CY7C331-40TMB	T74	
				CY7C331-40QMB	Q64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\text {IS }}$	7,8,9,10,11
$\mathrm{t}_{1 \mathrm{H}}$	7,8,9,10,11
$t_{\text {WH }}$	7,8,9,10,11
twL	7,8,9,10,11
t_{CO}	7,8,9,10,11
tpD	7,8,9,10,11
$\mathrm{t}_{\text {IAR }}$	7,8,9,10,11
$\mathrm{t}_{\text {IAS }}$	7,8,9,10,11
tpxz	7,8,9,10,11
tPZX	7,8,9,10,11
ter	7,8,9,10,11
teA	7,8,9,10,11
ts	7,8,9,10,11
t_{H}	7,8,9,10,11

Document \#: 38-00066-C

Features

- 12 I/O macrocells each having:
- Registered, latched, or transparent array input
- A choice of two clock sources
- Global or local output enable (OE)
- Up to 19 product terms (PT) per output
- Product term (PT) output polarity control
- 192 product terms with variable distribution to macrocells
- An average of 14 PT's per macrocell sum node
- Up to 19 PT's maximum for select nodes
- 2 clock inputs with configureable polarity control
- 13 input macrocells, each having:
- Complementary input
- Register, latch, or transparent access
- Two clock sources
- 20 ns max. delay
- Low power
- 120 mA typical I_{CC} quiescent
- 180 mA max.
- Power saving "Miser Bit" feature
- Security fuse
- 28 pin slim-line package; also available in 28 pin PLC
- UV-Eraseable and reprogrammable
- Programming and operation 100% testable

Product Characteristics

The CY7C332 is a versatile combinatorial PLD with I/O registers onboard. There are 25 array inputs; each has a macrocell which may be configured as a register, latch or simple buffer. Outputs have polarity and tristate control product terms. The allocation of product terms to I/O macrocells is varied so that functions of up to 19 product terms can be accommodated.

I/O Resources

Pins 1 through 7 and 9 through 14 function as dedicated array inputs. Pins 1 and 2 function as input clocks as well as normal inputs. Pin 14 functions as a global output enable as well as a normal input.

Block Diagram and Pinout

LCC and PLCC Pinout

Selection Guide

Generic Part Number	ICC1 mA		tICO/tpD ns $^{c \mid}$		$\mathbf{t}_{\mathbf{I S}}$ ns	
	Com	Mil	Com	Mil	Com	Mil
7C332-15	130		$18 / 15$		3	
7C332-20	120	160	20	$23 / 20$	3	4
7C332-25	120	150	25	25	3	4
7C332-30		150		30		4

I/O Resources (Continued)

0134-3
Figure 1. CK1 and CK2
Pins 15 through 20 and 23 through 28 are connected to I/O macrocells and may be combinatorial outputs as well as registered or direct inputs.

Input Macrocell

Figure 2. Input Macrocell

C3	C2	C1	C0	Input Register Option
\mathbf{X}	\mathbf{X}	0	0	Combinatorial
\mathbf{X}	\mathbf{X}	0	1	Illegal
0	0	1	1	Registered, CLK1, Rising Edge
0	1	1	1	Registered, CLK2, Rising Edge
1	0	1	1	Registered, CLK1, Falling Edge
1	1	1	1	Registered, CLK2, Falling Edge
0	0	1	0	Latched, CLK1, Low Transparent
0	1	1	0	Latched, CLK2, Low Transparent
1	0	1	0	Latched, CLK1, High Transparent
1	1	1	0	Latched, CLK2, High Transparent

There are 13 input macrocells, corresponding to pins 1 through 7 and 9 through 14 . Each macrocell has a clock which is selected to come from either pin 1 or pin 2 by configuration bit C 2 . Pins 1 and 2 are clocks as well as normal inputs. There is no C 2 configuration bit for either of these two input macrocells. Macrocells connected to pins 1 and 2 do not have a clock choice, but each has a clock coming from the other pin.
Each input macrocell can be configured as a register, latch or a simple buffer (transparent path) to the product term array. For a register the configuration bit, C 0 , is 1 (programmed) and Cl is 1 . For a Latch, C 0 is 0 and Cl is 1 . If both C 0 and C 1 are 0 (unprogrammed) then the macrocell is completely transparent.
Configuration bit C3 determines the clock edge on which the register is triggered or the polarity for which the latch is asserted. This clock polarity can be programmed independently for each input register. These configuration options are available on all inputs, including those in the I/O macrocell.
If C3 is 0 (unprogrammed), the clock will be rising edge triggered (register mode) or high asserted (latch mode).

If C3 is 1 (programmed), the clock will be falling edge triggered (register mode) or low asserted (latch mode).

I/O Macrocell

There are 12 I/O macrocells corresponding to pins 15 through 20 and 23 through 28 . Each macrocell has a tristate output control, an XOR product term to dynamically control polarity, and a configureable feedback path.
For each I/O macrocell, the tristate control for the output may be configured two ways. If the configuration bit, C 4 , is a 1 (programmed), then the global OE signal is selected. Otherwise, the OE product term is used.
For each I/O macrocell, the input/feedback path may be configured as a register, latch, or shunt. There are two configuration bits per I/O macrocell which configure the feedback path. These are programmed in the same way as for the input macrocells.
For each I/O macrocell, the input register clock (or Latch Enable) which is used for the input/feedback path may be selected as pin 1 (select bit, C2, not programmed) or pin 2 (select bit, C2, programmed).

Array Allocation to Output Macrocell

The number of product terms in each output macrocell sum is position dependent. The table below summarizes the allocation:

Table 1

Macrocell	Pin Number	Product Terms
0	28	9
1	27	19
2	26	11
3	25	17
4	24	13
5	23	15
6	20	15
7	19	13
8	18	17
9	17	11
10	16	19
11	15	9

Figure 3. I/O Macrocell

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad

$$
55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Supply Voltage to Ground Potential
(Pin 22 to Pins 8 and 21) -0.5 V to +7.0 V
DC Input Voltage . -3.0 V to +7.0 V
Output Current into Outputs (Low) 12 mA
Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)

Latch-up Current . $>200 \mathrm{~mA}$
DC Programming Voltage . 13.0V

Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions			Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	Commercial	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	Military			
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}^{\text {O }}=12 \mathrm{~mA}$	Commercial		0.5	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	Military			
$\mathrm{V}_{\text {IH }}$	Input LOW Level	Guaranteed HIGH Input, all Inputs ${ }^{\text {[1] }}$			2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed LOW Input, all Inputs ${ }^{[1]}$				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {CC }}=$ Max.			-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{CC}}$			-40	40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[2]}$			-30	-90	mA
$\mathrm{I}_{\mathrm{CC1}}$	Standby Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \\ & \text { Outputs Open } \end{aligned}$		Commercial		120	mA
				Commercial -15		130	mA
				Military		150	mA
				Military -20		160	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current at Frequency ${ }^{[6,8]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ Outputs Disabled (In High Z State) Device Operating at fMAX External (fMAX1)		Commercial		180	mA
				Military		200	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Min.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure $4 a$ test load used for all parameters except $t_{\text {EA, }} \mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\mathrm{PZX}}$ and $\mathrm{t}_{\mathrm{PXZ}}$. Figure $4 b$ test load for $\mathrm{t}_{\mathrm{EA}}, \mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\mathrm{PZX}}, \mathrm{t}_{\mathrm{PXZ}}$. Figure $4 c$ shows test waveforms and measurement reference levels.
5. T_{A} is the "instant on" case temperature.
6. Tested by periodic sampling of production product

Switching Characteristics Over the Operating Range ${ }^{[1]}$

Parameters	Description	Commercial						Military						Units
		-15[14]		-20		-25		-20[14]		-25		-30		
		Min.	Max.											
tPD	Input to Output Propagation Delay $[7]$		15		20		25		20		25		30	ns
tICO	Input Register Clock to Output Delay ${ }^{[8]}$		18		20		25		23		25		30	ns
tiS	Input or Feedback Setup Time to Input Register Clock ${ }^{[8]}$	3		3		3		4		4		4		ns
tiH	Input Register Hold Time ${ }^{[8]}$	3		3		3		4		4		4		ns
tEA	Input to Output Enable Delay ${ }^{\text {[4, }}$ 9]		20		20		25		25		25		30	ns
tER	Input to Output Disable Delay $[4,9]$		20		20		25		25		25		30	ns
tPZX	Pin 14 Enable to Output Enable Delay [4, 10]		15		15		20		20		20		25	ns
tPXZ	Pin 14 Disable to Output Disable Delay ${ }^{[4,10]}$		15		15		20		20		20		25	ns
twh	Input Clock Width High ${ }^{[6,8]}$	9		10		10		10		10		12		ns
twL	Input Clock Width Low ${ }^{[6,8]}$	9		10		10		10		10		12		ns
tIOH	Output Data Stable Time from Input Register Clock Input ${ }^{8}$, 14]	3		3		3		3		4		4		ns
$\mathrm{t}_{\mathrm{IOH}}{ }^{-\mathrm{t}_{\text {IH }}}$	Output Data Stable Time This Device Minus I/P Reg Hold Time Same Device ${ }^{[11,12,14]}$	0		0		0		0		0		0		ns
$\begin{array}{\|l\|} \mathrm{tOH}^{-} \\ \mathrm{t}_{\mathrm{IH}} 33 \mathrm{X} \\ \hline \end{array}$	Output Data Stable Time Minus I/P Reg Hold Time 7C330 \& 7C332 Device ${ }^{[13,14]}$	0		0		0		0		0		0		ns
tPE	External Clock Period ($\left.\mathrm{t}_{\mathrm{ICO}}+\mathrm{t}_{\mathrm{IS}}\right)^{[8]}$	21		23		28		27		29		34		ns
$\mathrm{fmaX1}^{\text {max }}$	Maximum External Operating Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{ICO}}+\mathrm{t}_{\mathrm{IS}}\right)\right)^{[8]}$	47.6		43.4		35.7		37		34.4		29.4		MHz
$\mathrm{f}_{\text {MAX2 }}$	Maximum Frequency Data Path ${ }^{[8]}$	55.5		50.0		40.0		50.0		40.0		33.3		MHz

Notes:
7. Refer to Figure 6 configuration 1.
8. Refer to Figure 6 configuration 2.
9. Refer to Figure 6 configuration 3.
10. Refer to Figure 6 configuration 4.
11. Refer to Figure 6 configuration 5.
12. This specification is intended to guarantee that configuration 5 of Figure 6 with input registered feedback can be operated with all input register clocks controlled by the same source. These parameters are tested by periodic sampling of production product.
13. This specification is intended to guarantee interface compatibility of the other members of the CY7C330 family with the CY7C332. This specification is met for the devices noted operating at the same ambient temperature and at the same power supply voltage. These parameters are tested periodically by sampling of production product.
14. Preliminary specifications.

Switching Waveforms

0134-10

Notes:

15. Because OE can be controlled by the $\overline{\mathrm{OE}}$ product term, input signal polarity for control of OE can be of either polarity. Internally the product term $\overline{\mathrm{OE}}$ signal is active high.
16. Since the input register clock polarity is programmable, the input clock may be rising or falling edge triggered.

AC Test Loads and Waveforms (Commercial)

Figure 5. Input Pulses

0134-7

Figure 4a
Figure 4b

Equivalent to: THÉVENIN EQUIVALENT (Commercial)

Equivalent to: THÉVENIN EQUIVALENT (Military)

Parameter	$\mathbf{V}_{\mathbf{X}}$	Output Waveform-Measurement Level	
$\operatorname{tpXZ}^{(-)}$	1.5V		0134-12
$\operatorname{tpXZ}^{(+)}$	2.6 V		0134-13
$t_{\text {PZX }}(+)$	$\mathrm{V}_{\text {the }}$		0134-14
tPZX (-)	$\mathrm{V}_{\text {the }}$		0134-15
$\mathrm{t}_{\mathrm{ER}}(-)$	1.5V		0134-12
$\mathrm{t}_{\mathrm{ER}}(+)$	2.6V		0134-13
${ }_{\text {teA }}(+)$	$\mathrm{V}_{\text {the }}$		0134-14
$t_{\text {EA }}(-)$	$\mathrm{V}_{\text {the }}$		0134-15

Figure 4c. Test Waveforms and Measurement Levels

SEMICONDUCTOR

0134-16
CY7C332 Logic Diagram (Upper Half)

CY7C332 Logic Diagram (Lower Half)

0134-18
Figure 6. Timing Configurations

SEMICONDUCTOR
Ordering Information

$\mathrm{I}_{\mathrm{CC} 1}(\max)$	$\mathbf{t I C O} / \mathbf{t p d}$ (ns)	tis (ns)	$\mathrm{t}_{\mathrm{IH}}(\mathrm{ns})$	Ordering Code	Package Type	Operating Range
120	18/15	3	3	CY7C332-15PC	P21	Commercial
				CY7C332-15WC	W22	
				CY7C332-15JC	J64	
				CY7C332-15HC	H64	
120	20	3	3	CY7C332-20PC	P21	Commercial
				CY7C332-20WC	W22	
				CY7C332-20JC	J64	
				CY7C332-20HC	H64	
160	23/20	4	4	CY7C332-20DMB	D22	Military
				CY7C332-20WMB	W22	
				CY7C332-20HMB	H64	
				CY7C332-20LMB	L64	
				CY7C332-20TMB	T74	
				CY7C332-20QMB	Q64	
120	25	3	3	CY7C332-25PC	P21	Commercial
				CY7C332-25WC	W22	
				CY7C332-25JC	J64	
				CY7C332-25HC	H64	
150	25	4	4	CY7C332-25DMB	D22	Military
				CY7C332-25WMB	W22	
				CY7C332-25HMB	H64	
				CY7C332-25LMB	L64	
				CY7C332-25TMB	T74	
				CY7C332-25QMB	Q64	
150	30	4	4	CY7C332-30DMB	D22	Military
				CY7C332-30WMB	W22	
				CY7C332-30HMB	H64	
				CY7C332-30LMB	L64	
				CY7C332-30TMB	T74	
				CY7C332-30QMB	Q64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CCl}}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{IS}	$7,8,9,10,11$
t_{IH}	$7,8,9,10,11$
t_{WH}	$7,8,9,10,11$
t_{WL}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICO}}$	$7,8,9,10,11$
t_{PD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PXZ}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PZX}}$	$7,8,9,10,11$
t_{ER}	$7,8,9,10,11$
t_{EA}	$7,8,9,10,11$

Document \# : 38-00067-C

General-Purpose Synchronous BiCMOS PLD

Features

- 16 I/O macrocells, each having:
- Choice of combinatorial or registered output
- Registers configurable to T-type, D-type, RS-type, or JK-type
- Independent (product term) output enable
- Synchronous clock input and asynchronous reset product term for each bank of 8 macrocells
- Programmable output polarity control
- Up to 8 macrocell registers may be buried while preserving the use of the I/O pin as an input and without using additional product terms
- 8 product terms per output
- 146 product terms total
- 2 clock inputs that can also be logic inputs
- High performance
-10 ns maximum propagation delay
- High noise immunity
- Advanced BiCMOS technology
- Available in 28-pin, 300-mil PDIP, cerDIP, PLCC, and LCC packages

Functional Description

The CY7B333 is a 28 -pin, multipurpose, high-performance PLD with 16 I/O macrocells, 7 dedicated inputs, and 2 global clock inputs.
CLK1 provides the synchronous clock input for one bank of macrocells, and CLK2 provides the synchronous clock input for
the other bank of macrocells. If no synchronous clock inputs are needed, the CLK1 and CLK2 inputs can function as standard logic inputs. Output enable is controlled with one dedicated product term per macrocell. An asynchronous reset product term is provided for each bank of macrocells.
Each macrocell has a register that can be programmed to be a T-type, D-type, RStype, or JK-type register. The macrocell architecture also allows up to one half of the macrocell registers to be buried without sacrificing any I/O pins and without using additional product terms.
The CY7B333 is available in a wide variety of packages including 28 -pin, 300 -mil plastic and ceramic DIPs, PLCCs, and LCCs.

Logic Block Diagram

Selection Guide

		7B333-10	7B333-12	7B333-15
$\mathrm{I}_{\mathrm{CC} 1}(\mathrm{~mA})$	Commercial	150	150	
	Military		170	170
$\mathrm{t}_{\mathrm{PD}}(\mathrm{ns})$	Commercial	10	12	
	Military		12	15
$\mathrm{t}_{\mathrm{s}}(\mathrm{ns})$	Commercial	8	10	
	Military		10	12
$\mathrm{t}_{\mathrm{CO} 1}(\mathrm{~ns})$	Commercial	8	10	
	Military		10	12

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DC Program		9.5 V
Ambient Temperature with Power Applied $-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	Static Discharge Voltage . > 2001V (per MIL-STD-883, Method 3015)		
Supply Voltage to Ground Potential $\ldots-0.5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs	Operating Range		
in High Z State -0.5 V to V_{CC} Max. DC Input Voltage $\ldots \ldots \ldots \ldots \ldots . .$.	Range	Ambient Temperature	$\mathrm{V}_{\mathbf{c c}}$
DC Input Current -30 mA to +5 mA	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
(except during programming)	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions			Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Min}_{\mathrm{I}}, \\ & \mathbf{V}_{\mathbf{I N}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs			2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[4]}$				0.8	V
I_{IX}	Input Leakage Current	$\mathrm{V}_{\mathrm{Ss}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.			-250	50	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{\text {Ss }} \leq \mathrm{V}_{\text {Out }} \leq \mathrm{V}_{\text {cc }}$			-100	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Sc }}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[5]}$			-30	-130	mA
$\mathrm{I}_{\mathrm{CC1}}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IH}}=\mathrm{GND}$, Outputs Open		Com'l		150	mA
				Mil		170	
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current at Frequency ${ }^{[2,3]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$. , Outputs Disabled (in High Z State), Device Operating at $\mathrm{f}_{\text {MAX }}$		Com'l		170	mA
				Mil		190	

Capacitance ${ }^{[2]}$

Parameters	Description	Typical	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	11	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	9	10	pF

Notes:

1. t_{A} is the "instant on" case temperature.
2. Tested initially and after any deisgn or process changes that may affect these parameters.
3. Measured with the device configured as a 16-bit counter.
4. Minimum DC input voltage is -0.3 volts. During transitions, the inputs may undershoot to -2.0 volts for periods less than 20 ns .
5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by ground degradation.

AC Test Loads and Waveforms

(a) Normal Load (Load 1)

(b) Thévenin Equivalent (Load 1)

(c) Three-state Delay Load (Load 2)
B333-7
ALL INPUT PULSES

(d)
8333-2

Parameter	$V_{\text {x }}$	Output Waveform-Measurement Level	
$\mathrm{t}_{\mathbf{E R}(-)}$	1.5 V	$\mathrm{V}_{\mathrm{OH}} \frac{1}{0.5 \mathrm{~V} \xlongequal[4]{4}}$	8333-3
$\mathrm{t}_{\mathrm{ER}(+)}$	2.6 V	$\mathrm{v}_{\mathrm{OL}} \frac{0.5 \mathrm{~V} \stackrel{1}{4} \mathrm{~F}}{\mathrm{~L}} \mathrm{v}_{\mathrm{x}}$	в3з3-4
$\mathrm{t}_{\mathrm{EA}(+)}$	$\mathrm{V}_{\text {TH }}$	$\mathrm{v}_{\mathrm{x}} \xrightarrow{0.5 \mathrm{~V}+} \mathrm{t}$	в333-5
$\mathrm{t}_{\mathrm{EA}(-)}$	$\mathrm{V}_{\text {TH }}$	$\mathrm{v}_{\mathrm{x}} \frac{t}{0.5 \mathrm{~V}-\frac{1}{4}} \mathrm{~V}_{\mathrm{OL}}$	B333-6

Switching Waveform

Switching Characteristics ${ }^{[6]}$

Parameters	Description		78333-10		78333-12		7B333-15		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {PD }}$	Input to Output Propagation Delay ${ }^{(9]}$	Com'l		10		12			ns
		Mil				12		15	
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay	Com'l		10		12			ns
		Mil				12		15	
t_{ER}	Input to Output Disable Delay ${ }^{[10]}$	Com'l		10		12			ns
		Mil				12		15	
$\mathrm{t}_{\mathrm{CO} 1}$	Clock to Output Delay ${ }^{[9]}$	Com'l		8		10			ns
		Mil				10		12	
$\mathrm{t}_{\mathrm{CO} 2}$	Clock to Registered Feedback to Combinatorial Output Delay ${ }^{[7]}$	Com'l		17	20				ns
		Mil				20		25	
t_{OH}	Output Data Stable Time from Input Clock	Com'l	1		1				ns
		Mil			1		1		
t_{5}	Input or Feedback Set-Up Time	Com'l	8		10				ns
		MII			10		12		
t_{H}	Input Hold Time	Com'1	0		0				ns
		Mil			0		0		
t_{p}	External Clock Period ($\mathrm{t}_{\mathrm{co}}+\mathrm{t}_{\mathrm{s}}$)	Com'l	16		20				ns
		Mil			20		24		
t_{WH}	Clock Width HIGH ${ }^{[2]}$	Com'l	6		9				ns
		Mil			9		10		
t_{wL}	Clock Width LOW ${ }^{[2]}$	Com'l	6		9				ns
		Mil			9		10		
$\mathrm{f}_{\text {MAX } 1}$	External Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{s}}\right)\right)^{[2,11]}$	Com'l	62.5		50				MHz
		Mil			50		41.6		
$\mathrm{f}_{\mathrm{MAX} 2}$	Data Path Maximum Frequency $\left(1 /\left(t_{w H}+t_{w L}\right)\right)^{[3]}$	Com'l	83.3		55.5				MHz
		Mil			55.5		50		
$\mathrm{f}_{\text {MAX }}$	Internal Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{s}}\right)\right)^{[8]}$	Com'l	80		58				MHz
		Mil			58		48		
$\mathrm{t}_{\text {CF }}$	Register Clock to Feedback Input ${ }^{[12]}$	Com'l		5		7			ns
		Mil				7		9	
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Width	Com'l	8		10				ns
		Mil			10		12		
t_{AR}	Asynchronous Reset Recovery Time	Com'l	10		12				ns
		Mil			12		15		
t_{AP}	Asynchronous Reset to Registered Output Delay	Com'l		12		14			ns
		Mil				14		17	

Notes:

6. AC test load used for all parameters except where noted.
7. Delay measured from clock of registered macrocell to feedback through logic array to second macrocell output configured as a combinatorial path.
8. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate. This parameter is tested periodically by sampling production product.
9. This specification is guaranteed for all devices outputs changing state in a given access cycle.
10. This parameter is measured as the time after the output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previuos HIGH level has fallen to 0.5 volts below $\mathrm{V}_{\mathrm{OH}} \mathrm{min}$. or a previous LOW level has risen to 0.5 volts above V_{OL} max.
11. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
12. This parameter is calculated from the clock period at $\mathrm{f}_{\text {MAX }}$ internal ($\mathrm{f}_{\mathrm{MAX} 3}$) as measured (see Note 7) minus t_{s}.

Programming

The 7B333 can be programmed using the QuickPro II programmer available from Cypress Semiconductor and also with Data I/O, Logical Devices, STAG, and other programmers. Please contact your local Cypress representative for further information.

Synchronous I/O Macrocell

Block Diagram

Ordering Information

$\underset{(\mathrm{mA})}{\mathrm{I}_{\mathrm{Cc}}}$	$\begin{aligned} & \mathbf{t}_{\mathbf{t D}} \\ & (\mathbf{n s}) \end{aligned}$	$\begin{gathered} \mathrm{f}_{\mathrm{MAX}} \\ (\mathrm{MHz}) \end{gathered}$	Ordering Code	Package Type	Operating Range
150	10	83.3	PAL7B333-10PC	P21	Commercial
			PAL7B333-10DC	D22	
			PAL7B333-10JC	J64	
	12	55.5	PAL7B333-12PC	P21	Commercial
			PAL7B333-12DC	D22	
			PAL7B333-12JC	J64	
170	12	55.5	PAL7B333-12DMB	D22	Military
			PAL7B333-12LMB	L64	
	15	50	PAL7B333-15DMB	D22	Military
			PAL7B333-15LMB	L64	

Document \#: 38-00099-A

Features

- Very high performance decoder
$-\mathrm{t}_{\mathrm{ICO}}=\mathbf{6} \mathrm{ns}$
$-\mathrm{f}_{\text {MAXD }}=156 \mathrm{MHz}$
- 12 input registers
- 8 outputs
- 2 product terms per output
- Asynchronous output enable
- Power-on reset
- High noise immunity
- >2001V input protection from electrostatic discharge
- Advanced BiCMOS technology
- Available in 28 -pin $\mathbf{3 0 0}$-mil PDIP and CerDIP, and in SOJ, PLCC, and LCC packages

Functional Description

The CY7B336 is a $6-\mathrm{ns}$, 28 -pin programmable logic device specially designed for decoding applications with high-performance RISC processors and fast state machines.
There are twelve input registers that capture data at the rising edge of the clock signal and forward the information to the 24 by 16 programmable array. Processed data from the programmable array is available to external logic via the eight output pins.
Each output provides two product terms. However, only one product term is used to

6-ns BiCMOS PAL® with Input Registers

sum products from the array; the other product term is used to control the tri-state output buffers. This output enable product term is ANDed with the complement of the output enable input pin to generate the output enable signal for each output buffer.
Additional features of the CY7B336 include a power-on reset circuit that initializes all input registers to a " 0 " upon powerup, and six centrally located power pins (two Vcc pins and four ground pins), which improve noise margins.
The CY7B336 is available in a wide variety of package types including 28 -pin, 300 -mil plastic and ceramic DIPs, SOJs, LCCs, and PLCCs.

Logic Block Diagram and DIP/SOJ Pinout

B336-2

Selection Guide

Generic Part Number	$\mathbf{t}_{\mathbf{I C O}}$ (ns)		$\mathbf{f}_{\text {MAxD }}$ (MHz)		$\mathbf{I}_{\mathbf{C C}}$ (mA)		$\mathbf{t}_{\text {IS }}$ (ns)	
	Com'l	Mil	Com'l	Mil	Com'l	Mil	Com'l	Mil
7B336-6	6		156		180		2	
7B336-7		7		131		180		2.5
7B336-8	8		113		180		3	
7B336-10		10		96		180		3
7B336-12		12		80		180		3.5

PAL is a registered trademark of Monolithic Memories Inc.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad
Ambient Temperature with
Power Applied
...................
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(Pins 7 and 22 to Pins 8, 20, 21, and 23) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
$\ldots \ldots \ldots \ldots \ldots \ldots . \omega_{-}-0.5 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{CC}}$ Max.
DC Input Voltage $. \ldots \ldots \ldots \ldots \ldots . .$.
Output Current into Outputs (LOW) 12 mA
DC Input Current $\ldots \ldots-30 \mathrm{~mA}$ to +5 mA
(Except during programming)

Operating Range

Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$	
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions			7B336		Units
					Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	Com'l	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	Mil	2.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Com'l		0.4	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	Mil		0.4	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs			2.2		V
V_{IL}	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs				0.8	V
I_{IX}	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $0.4 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 2.7 \mathrm{~V}$			-250	25	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., 0.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.7 \mathrm{~V}$			-100	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Sc }}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[2]}$			-30	-130	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., Outputs Disabled (in High Z State), Device Operating at $\mathrm{f}_{\text {MAX }}$		Com'l		180	mA
				Mil		180	

Capacitance ${ }^{[3]}$

Parameters	Description	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	11	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	9	10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. The normal test load is used for all parameters except for $t_{\text {CER }}, t_{\text {CEA }}$, $\mathrm{t}_{\mathrm{PXZ}}$, and $\mathrm{t}_{\mathrm{PZX}}$, which are tested using the three-state load.

AC Test Loads and Waveforms ${ }^{[4]}$

(b) Three-State Load

Equivalent to: THEVENIN EQUIVALENTS
OUTPUT $0 \overbrace{\text { Commercial }}^{125 \Omega} 01.90=V_{\text {thc }}$

AC Test Loads and Waveforms (continued)

Parameter	$\mathbf{V}_{\mathbf{x}}$	Output Waveform-Measurement Level
$\begin{aligned} & \operatorname{tcer} \\ & \operatorname{texz}^{(-)} \end{aligned}$	1.5 V	$\mathrm{v}_{\mathrm{OH}} \underset{0.5 \mathrm{~V} \xrightarrow[4]{+}+}{+} \mathrm{v}_{\mathrm{x}}$
$\begin{aligned} & \mathrm{t}_{\mathrm{cER}}(+) \\ & \mathrm{t}_{\mathrm{PxZ}}(+) \end{aligned}$	2.6 V	$\mathrm{V}_{\mathrm{oL}} \xrightarrow[4]{0.5 \mathrm{~V}+\mathrm{t}} \mathrm{v}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tEEA}}(+) \\ & \mathrm{t}_{\mathrm{PEX}}(++ \end{aligned}$	$\mathrm{V}_{\text {thc }}$	$\mathrm{v}_{\mathrm{x}}-\frac{0.5 \mathrm{~V} t}{\dagger} \mathrm{t}_{\mathrm{OH}}$
$\begin{aligned} & \boldsymbol{t}_{\text {ceA }}(-) \\ & t_{\text {PzX }}(-) \end{aligned}$	$\mathrm{V}_{\text {thc }}$	$\mathrm{v}_{\mathrm{x}} \frac{+}{0.5 \mathrm{~V}}+\mathrm{t}$

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	Commercial				Military						Units
		6		8		7		10		12		
		Min.	Max.									
tico	Input Register Clock to Output Delay		6		8		7		10		12	ns
t_{p}	Clock Period ($\mathrm{twH}^{+}+\mathrm{t}_{\mathrm{w}}$) ${ }^{[3]}$	6.4		8.8		7.6		10.4		12.4		ns
$\mathrm{f}_{\text {MAXD }}$	$\begin{array}{\|l} \text { Maximum } \\ \text { Path }\left(1 / t_{p}\right)^{[3]} \end{array} \text { Frequency Data }$		156		113		131		96		80	MHz
$\mathrm{t}_{\text {wh }}$	Clock Width HIGH ${ }^{[3]}$	3.2		4.4		3.8		5.2		6.2		ns
$\mathrm{t}_{\text {wL }}$	Clock Width LOW ${ }^{[3]}$	3.2		4.4		3.8		5.2		6.2		ns
t_{OH}	Qutput Hold After Clock High	0		0		0		0		0		ns
$\mathrm{t}_{\text {IS }}$	Input Set-Up Time	2		3		2.5		3		3.5		ns
t_{IH}	Input Hold Time	2		3		2.5		3		3.5		ns
$\mathrm{t}_{\text {Cer }}$	Input Register Clock to Output Disable Delay ${ }^{[6]}$		9		13		11		14		17	ns
$\mathrm{t}_{\text {CEA }}$	Input Register Clock to Output Enable Delay		9		13		11		14		17	ns
$\mathrm{t}_{\mathrm{PXZ}}$	Pin 15 to Output Disable Delay ${ }^{[6]}$		7		10		8.5		11.5		14.5	ns
$\mathrm{t}_{\mathrm{PZX}}$	Pin 15 to Output Enable Delay		7		10		8.5		11.5		14.5	ns
$\mathrm{t}_{\text {PR }}$	Power-Up Reset Time ${ }^{[7]}$		1		1		1		1		1	$\mu \mathrm{s}$

Notes:
5. AC test load is used for all parameters except where noted.
6. This parameter is measured as the time that the previous output data state remains stable after the output disable signal is received. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below V_{OH} Min. or a previous LOW level has risen to 0.5 volts above $V_{\text {OL }}$ Max.
7. This part has been designed with the capability to reset during system power-up. Following power-up, the input registers will be reset to a logic LOW state. The output state will depend on how the array is programmed. To insure proper operation, the rise in V_{CC} must be mono-
tonic and the timing constraints depicted in power-up reset waveforms must be satisfied. The clock signal input must be in a valid LOW state ($\mathrm{V}_{\text {IN }}$ less than 0.8 V) or a valid HIGH state ($\mathrm{V}_{\text {IN }}$ greater than 2.2 V) prior to occurrence of the 10% level on the monotonically rising power supply voltage. In addition, the clock input signal must remain stable in that valid state as indicated until the 90% level on the power supply voltage has been reached. The clock signal may transition LOW to HIGH to clock in new data or to execute a synchronous preset after the indicated delay ($t_{P R}+t_{I S}$) has been observed.

Switching Waveform

B336-6
Power-Up Reset Waveform ${ }^{[7]}$

B336-7

CY7B336

CY7B336 Logic Diagram

Ordering Information

$\begin{aligned} & \mathbf{t}_{\text {ICo }} \\ & (\mathrm{ns}) \end{aligned}$	$\begin{aligned} & \mathbf{f}_{\text {MAXD }} \\ & \text { (MHz) } \end{aligned}$	Ordering Code	Package Type	Operating Range
6	156	CY7B336-6PC	P21	Commercial
		CY7B336-6DC	D22	
		CY7B336-6JC	J64	
		CY7B336-6VC	V21	
7	131	CY7B336-7DMB	D22	Military
		CY7B336-7LMB	L64	
8	113	CY7B336-8PC	P21	Commercial
		CY7B336-8DC	D22	
		CY7B336-8JC	J64	
		CY7B336-8VC	V21	
10	96	CY7B336-10DMB	D22	Military
		CY7B336-10LMB	L64	
12	80	CY7B336-12DMB	D22	Military
		CY7B336-12LMB	L64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\mathrm{ICO}}$	$7,8,9,10,11$
t_{IS}	$7,8,9,10,11$
t_{IH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CXZ}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CZX}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PXZ}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PZX}}$	$7,8,9,10,11$

Document \#: 38-00134-B

SEMICONDUCTOR

Features

- Very high performance decoder
$-\mathrm{t}_{\mathrm{ICo}}=7 \mathrm{~ns}$
$-\mathrm{f}_{\mathrm{MAXD}}=142 \mathrm{MHz}$
- 12 input registers
- 8 outputs
- 4 product terms per output
- Asynchronous output enable
- Power-on reset
- High noise immunity
- >2001V input protection from electrostatic discharge
- Advanced BiCMOS technology

7-ns BiCMOS PAL® with Input Registers

- Available in 28-pin 300-mil PDIP and CerDIP, and in SOJ, PLCC, and LCC packages

Functional Description

The CY7B337 is a 7 -ns, 28 -pin programmable logic device specially designed for decoding applications with high-performance RISC processors and fast state machines.
There are twelve input registers that capture data at the rising edge of the clock signal and forward the information to the 24 by 32 programmable array. Processed data from the programmable array is available to external logic via the eight output pins.

Each output provides four product terms. All outputs can be tri-stated using the output enable signal.
Additional features of the CY7B337 include a power-on reset circuit that initializes all input registers to a " 0 " upon powerup, and six centrally located power pins (two $V_{C C}$ pins and four ground pins), which improve noise margins.
The CY7B337 is available in a wide variety of package types including 28 -pin, $300-\mathrm{mil}$ plastic and ceramic DIPs, SOJs, LCCs, and PLCCs.

Logic Block Diagram and DIP/SOJ Pinout

B337-2

B337-1

Selection Guide

Generic Part Number	$\mathbf{t}_{\mathbf{I C O}}$ (ns)		$\mathbf{f}_{\text {MAXD }}$ (MHz)		$\mathbf{I}_{\mathbf{C C}}(\mathbf{m A})$		$\mathbf{t}_{\text {IS }}$ (ns)	
	Com'l	Mil	Com'l	Mil	Com'l	Mil	Com'l	Mil
7B337-7	7		142		180		2	
7B337-8		8		125		180		2.5
7B337-9	9		111		180		3	
7B337-10		10		96		180		3
7B337-12		12		80		180		3.5

PAL is a registered trademark of Monolithic Memories Inc.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pins 7 and 22 to Pins 8, 20, 21, and 23)	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Voltage Applied to Outputs in High Z State.	$\mathrm{V}_{\mathrm{cc}} \text { Max. }$
DC Input Voltage	0.5 V to $+\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$
Output Current into Outputs (LOW)	12 mA
DC Input Current (Except during programming)	$\text { to }+5 \mathrm{~mA}$

Except during programming)
Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions			7B337		Units
					Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	Com'l	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	Mil	2.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Com'l		0.4	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	Mil		0.4	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs			2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs				0.8	V
I_{L}	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., 0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 2.7 \mathrm{~V}$			-250	25	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $0.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.7 \mathrm{~V}$			-100	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Sc }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[2]}$			-30	-130	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\text { Max., Outputs Disabled (in High Z State), }$ Device Operating at $\mathrm{f}_{\text {MAX }}$		Com'l		180	mA
				Mil		180	

Capacitance ${ }^{[3]}$

Parameters	Description	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	11	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	9	10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. The normal test load is used for all parameters except for $t_{\text {pXZ }}$ and ${ }^{\mathrm{P} P X}$, which are tested using the three-state load.

AC Test Loads and Waveforms ${ }^{[4]}$

(a) Normal Load

(b) Three-State Load

B337-3

Equivalent to: THEVENIN EQUIVALENTS

AC Test Loads and Waveforms (continued)

Parameter	$\mathbf{V}_{\mathbf{x}}$	Output Waveform-Measurement Level
$\mathrm{t}_{\text {PXZ }}(-)$	1.5V	
$\mathrm{t}_{\text {PXZ }}(+)$	2.6V	
$\mathrm{t}_{\text {PZX }}(+)$	$\mathrm{V}_{\text {thc }}$	$\mathrm{V}_{\mathrm{x}} \xrightarrow{0.5 \mathrm{~V}+} \mathrm{V}_{-}^{\perp} \mathrm{V}_{\mathrm{OH}}$
$\mathrm{t}_{\text {PZX }}(-)$	$\mathrm{V}_{\text {thc }}$	$\mathrm{V}_{\mathrm{x}} \frac{+}{0.5 \mathrm{~V}-\frac{1}{4}} \mathrm{~V}_{\mathrm{OL}}$

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	Commercial				Military						Units
		7		9		8		10		12		
		Min.	Max.									
$\mathrm{t}_{\mathrm{ICO}}$	Input Register Clock to Output Delay		7		9		8		10		12	ns
$\mathrm{t}_{\mathbf{p}}$	Clock Period ($\left.\mathrm{twH}_{\text {w }}+\mathrm{t}_{\mathrm{WL}}\right)^{[3]}$	6.4		8.8		7.6		10.4		12.4		ns
$\mathrm{f}_{\text {MAXD }}$	Maximum Frequency Data Path (Lower of $1 / \mathrm{t}_{\text {Ico }}$ and $\left.1 / \mathrm{t}_{\mathrm{p}}\right)^{[3,6]}$		142		111		125		96		80	MHz
t_{wH}	Clock Width HIGH ${ }^{[3]}$	3.2		4.4		3.8		5.2		6.2		ns
t_{wL}	Clock Width LOW ${ }^{[3]}$	3.2		4.4		3.8		5.2		6.2		ns
t_{OH}	Output Hold After Clock High	0		0		0		0		0		ns
$\mathrm{t}_{\text {IS }}$	Input Set-Up Time	2		3		2.5		3		3.5		ns
t_{IH}	Input Hold Time	2		3		2.5		3		3.5		ns
$\mathrm{t}_{\text {PXZ }}$	Pin 15 to Output Disable Delay ${ }^{\text {¹] }}$		7		10		8.5		11.5		14.5	ns
$\mathrm{t}_{\text {PZX }}$	Pin 15 to Output Enable Delay		7		10		8.5		11.5		14.5	ns
$\mathrm{t}_{\text {PR }}$	Power-Up Reset Time ${ }^{[8]}$		1		1		1		1		1	$\mu \mathrm{s}$

Notes:

5. AC test load is used for all parameters except where noted.
6. Maximum frequency data path ($f_{\text {MAXD }}$) is limited by $1 / t_{\text {ICO }}$ for the 7 and 9 -ns commercial and the $8-\mathrm{ns}$ military versions. Maximum frequency data path ($\mathrm{f}_{\mathrm{MAXD}}$) is limited by $1 / \mathrm{t}_{\mathrm{P}}$ for the 10 - and $12-\mathrm{ns}$ military versions.
7. This parameter is measured as the time that the previous output data state remains stable after the output disable signal is received. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below $\mathrm{V}_{\mathrm{OH}} \mathrm{Min}$. or a previous LOW level has risen to 0.5 volts above V_{OL} Max.
8. This part has been designed with the capability to reset during system power-up. Following power-up, the input registers will be reset to a
logic LOW state. The output state will depend on how the array is programmed. To insure proper operation, the rise in V_{CC} must be monotonic and the timing constraints depicted in power-up reset waveforms must be satisfied. The clock signal input must be in a valid LOW state ($\mathrm{V}_{1 \mathrm{~N}}$ less than 0.8 V) or a valid HIGH state ($\mathrm{V}_{\text {IN }}$ greater than 2.2 V) prior to occurrence of the 10% level on the monotonically rising power supply voltage. In addition, the clock input signal must remain stable in that valid state, as indicated, until the 90% level on the power supply voltage has been reached. The clock signal may transition LOW to HIGH to clock in new data or to execute a synchronous preset after the indicated delay ($\mathrm{t}_{\mathrm{PR}}+\mathrm{t}_{\mathrm{IS}}$) has been observed.

Switching Waveform

B337-6

Power-Up Reset Waveform ${ }^{[8]}$

CY7B337 Logic Diagram

Ordering Information

$\begin{aligned} & \mathrm{t}_{\mathrm{tco}}(\mathbf{n s}) \end{aligned}$	$\begin{aligned} & \mathbf{f}_{\text {MAXD }} \\ & (\mathbf{M H z}) \end{aligned}$	Ordering Code	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
7	142	CY7B337-7PC.	P21	Commercial
		CY7B337-7DC	D22	
		CY7B337-7JC	J64.	
		CY7B337-7VC	V21	
8	125	CY7B337-8DMB	D22	Military
		CY7B337-8LMB	L64	
9	111	CY7B337-9PC	P21	Commercial
		CY7B337-9DC	D22	
		CY7B337-9JC	J64	
		CY7B337-9VC	V21	
10	96	CY7B337-10DMB	D22	Military
		CY7B337-10LMB	L64	
12	80	CY7B337-12DMB	D22	Military
		CY7B337-12LMB	L64	

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{H}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\mathrm{ICO}}$	$7,8,9,10,11$
t_{IS}	$7,8,9,10,11$
t_{IH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PXZ}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PZX}}$	$7,8,9,10,11$

Document \#: 38-00139-B

Features

- Very high performance decoder with latched outputs
$-\mathbf{t}_{\mathrm{PD}}=6 \mathrm{~ns}$
$-\mathrm{t}_{\text {LEO }}=5.5 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{IS}}=3 \mathrm{~ns}$
- 12 inputs
- 8 latched outputs
- 2 product terms per output
- Asynchronous output enable
- Power-on reset
- High noise immunity
- >2001V input protection from electrostatic discharge
- Advanced BiCMOS technology
- Available in 28-pin 300-mil PDIP and CerDIP, and in SOJ, PLCC, and LCC packages

Functional Description

The CY7B338 is a 6 -ns, 28 -pin programmable logic device specially designed for decoding applications with high-performance general-purpose processors and fast state machines.
There are twelve inputs that feed into the 24 by 16 programmable array. Processed data from the programmable array is delivered to the eight output latches. When the latch enable input is HIGH, the output latches are transparent and data from the array is available to the output buffers. When the latch enable input goes from HIGH to LOW, the latch contents are frozen.

6-ns BiCMOS PAL® with Output Latches

There are two product terms per output. However, only one product term is used to sum products from the array; the other product term is used to control the tri-state output buffers. This output enable product term is ANDed with the complement of the output enable input pin to generate the output enable signal for each output buffer.

Additional features of the CY7B338 include a power-on reset circuit that initializes all output latches to a " 0 " upon powerup, and six centrally located power pins (two V_{CC} pins and four ground pins), which improve noise margins.
The CY7B338 is available in a wide variety of package types including 28 -pin, $300-\mathrm{mil}$ plastic and ceramic DIPs, SOJs, LCCs, and PLCCs.

Logic Block Diagram and DIP/SOJ Pinout

B338-2

B338-1

Selection Guide

Generic Part Number	t_{PD} (ns)		$\mathrm{t}_{\text {LEEO }}$ (ns)		$\mathrm{I}_{\mathrm{CC}}(\mathrm{mA})$		t_{IS} (ns)	
	Com'l	Mil	Com'l	Mil	Com'l	Mil	Com'1	Mil
7B338-6	6		5.5		180		3	
7B338-7		7		6.5		180		4
7B338-8	8		7.5		180		5	
7B338-10		10		8		180		5
7B338-12		12		9.5		180		6

PAL is a registered trademark of Monolithic Memories Inc.

\ldots

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pins 7 and 22 to Pins 8, 20, 21, and 23)	$.-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Voltage Applied to Outputs in High Z State.	$-0.5 \mathrm{~V} \text { to }+\mathrm{V}_{\mathrm{CC}} \mathrm{Max}$
DC Input Voltage	0.5 V to $+\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output Current into Outputs (LOW)	12 mA
DC Input Current (Except during programming)	$-30 \mathrm{~mA} \text { to }+5 \mathrm{~mA}$

Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pins 7 and 22 to Pins 8, 20, 21, and 23) $\ldots . .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
High Z State -0.5 V to $+\mathrm{V}_{\mathrm{cc}} \mathrm{Max}$

Output Current into Outputs (LOW) 12 mA
DC Input Current
-30 mA to +5 mA

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions			7B338		Units
					Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	Com'l	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	Mil	2.4		
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Com'l		0.4	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	Mil		0.4	
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs			2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs				0.8	V
I_{LX}	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 2.7 \mathrm{~V}$			-250	25	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., 0.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.7 \mathrm{~V}$			- 100	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Sc }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[2]}$			-30	-130	mA
I_{CC}	Power Supply Current	$V_{c c}=$ Max., Outputs Disabled (in High Z State), Device Operating at $\mathrm{f}_{\mathrm{MAX}}$		Com'l		180	mA
				Mil		180	

Capacitance ${ }^{[3]}$

Parameters	Description	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	11	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	9	10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. The normal test load is used for all parameters except for $\mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\mathrm{EA}}$, $\mathrm{t}_{\mathrm{PXZ}}$, and $\mathrm{t}_{\mathrm{PZX}}$, which are tested using the three-state load.

AC Test Loads and Waveforms ${ }^{[4]}$

(b) Three-State Load

B338-3
Equivalent to: THÉVENIN EQUIVALENTS

AC Test Loads and Waveforms (continued)

Parameter	$\mathbf{v}_{\mathbf{x}}$	Output Waveform-Measurement Level
$\mathrm{t}_{\mathrm{ER}}(-)$ $\mathrm{t}_{\mathrm{PXZ}}(-)$	1.5 V	v_{OH}
$\mathrm{t}_{\mathrm{ER}}(+)$ $\mathrm{t}_{\mathrm{PXZ}}(+)$	2.6 V	$\mathrm{~V}_{\mathrm{OL}}$
$\mathrm{t}_{\mathrm{EA}}(+)$ $\mathrm{t}_{\mathrm{PZX}}(+)$	$\mathrm{V}_{\mathrm{thc}}$	V_{x}
0.5 V		

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	Commercial				Military						Units
		6		8		7		10		12		
		Min.	Max.									
t_{PD}	Input to Output Propagation Delay		6		8		7		10		12	ns
t_{P}	Clock Period ($\left.\mathrm{twH}^{+}+\mathrm{t}_{\mathrm{WL}}\right)^{[3]}$	6.4		8.8		7.6		10.4		12.4		ns
$\mathrm{f}_{\text {MAXD }}$	Maximum Frequency Data Path $\left(1 / t_{p}\right)^{[3]}$		156		113		131		96		80	MHz
t_{wH}	Latch Enable HIGH ${ }^{[3]}$	3.2		4.4		3.8		5.2		6.2		ns
t_{wL}	Latch Enable LOW ${ }^{[3]}$	3.2		4.4		3.8		5.2		6.2		ns
$\mathrm{t}_{\text {LEO }}$	Latch Enable to Output Delay		5.5		7.5		6.5		8		9.5	ns
$\mathrm{t}_{\text {LOH }}$	Output Hold After Latch Enable	0		0		0		0		0		ns
$\mathrm{t}_{\text {IS }}$	Input Set-Up Time	3		5		4		5		6		ns
t_{IH}	Input Hold Time	0.5		0.5		0.5		0.5		0.5		ns
t_{ER}	Input to Output Disable Delay ${ }^{[6]}$		9		13		11		14		17	ns
t_{EA}	Input to Output Enable Delay		9		13		11		14		17	ns
$\mathrm{t}_{\text {PXz }}$	Pin 15 to Output Disable Delay ${ }^{15]}$		7		10		8.5		11.5		14.5	ns
$\mathrm{t}_{\text {PZX }}$	Pin 15 to Output Enable Delay		7		10		8.5		11.5		14.5	ns
t_{PR}	Power-Up Reset Time ${ }^{[7]}$		1		1		1		1		1	$\mu \mathrm{s}$

Notes:

5. AC test load is used for all parameters except where noted.
6. This parameter is measured as the time that the previous output data state remains stable after the output disable signal is received. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below V_{OH} Min. or a previous LOW level has risen to 0.5 volts above V_{OL} Max.
7. This part has been designed with the capability to reset during system power-up. Following power-up, the output latches will be reset to a logic LOW state. To insure proper operation, the rise in V_{CC} must be
monotonic and the timing constraints depicted in power-up reset waveforms must be satisfied. The latch enable input must be in a valid LOW state ($\mathrm{V}_{\text {IN }}$ less than 0.8 V) prior to occurrence of the 10% level on the monotonically rising power supply voltage. In addition, the latch enable signal must remain stable in that valid LOW state, as indicated, until the 90% level on the power supply voltage has been reached. The latch enable is allowed to change from its LOW state only after the indicated delay (t_{PR}) has been observed.

Switching Waveform

B338-6

Power-Up Reset Waveform ${ }^{[7]}$

B338-7
$L E D \longrightarrow D$

Ordering Information

$\begin{aligned} & \mathbf{t}_{\mathbf{P D}} \\ & (\mathrm{ns}) \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathbf{t}_{\text {LEO }} \\ (\mathrm{nS}) \end{array} \end{aligned}$	Ordering Code	Package Type	Operating Range
6	5.5	CY7B338-6PC	P21	Commercial
		CY7B338-6DC	D22	
		CY7B338-6JC	J64	
		CY7B338-6VC	V21	
7	6.5	CY7B338-7DMB	D22	Military
		CY7B338-7LMB	L64	
8	7.5	CY7B338-8PC	P21	Commercial
		CY7B338-8DC	D22	
		CY7B338-8JC	J64	
		CY7B338-8VC	V21	
10	8	CY7B338-10DMB	D22	Military
		CY7B338-10LMB	L64	
12	9.5	CY7B338-12DMB	D22	Military
		CY7B338-12LMB	L64	

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{PD}	$7,8,9,10,11$
t_{IS}	$7,8,9,10,11$
t_{IH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{LEO}}$	$7,8,9,10,11$
t_{ER}	$7,8,9,10,11$
t_{EA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PXZ}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PZX}}$	$7,8,9,10,11$

Document \#: 38-00133-B

Features

- Very high performance decoder with latched outputs
$-\mathbf{t}_{\mathbf{P D}}=7 \mathrm{~ns}$
$-\mathrm{t}_{\text {LEO }}=5.5 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{IS}}=4 \mathrm{~ns}$
- 12 inputs
- 8 latched outputs
- 4 product terms per output
- Asynchronous output enable
- Power-on reset
- High noise immunity
- $>\mathbf{2 0 0 1 V}$ input protection from electrostatic discharge
- Advanced BiCMOS technology
- Available in 28-pin 300-mil PDIP and CerDIP, and in SOJ, PLCC, and LCC packages

Functional Description

The CY7B339 is a $7-n s$, 28 -pin programmable logic device specially designed for decoding applications with high-performance general-purpose processors and fast state machines.
There are twelve inputs that feed into the 24 by 32 programmable array. Processed data from the programmable array is delivered to the eight output latches. When the latch enable input is HIGH, the output latches are transparent and data from the array is available to the output buffers. When the latch enable input goes from HIGH to LOW, the latch contents are frozen.

7-ns BiCMOS PAL® with Output Latches

There are four product terms per output and all outputs can be tri-stated using the output enable signal.
Additional features of the CY7B339 include a power-on reset circuit that initializes all output latches to a " 0 " upon powerup, and six centrally located power pins (two V_{Cc} pins and four ground pins), which improve noise margins.
The CY7B339 is available in a wide variety of package types including 28 -pin, $300-\mathrm{mil}$ plastic and ceramic DIPs, SOJs, LCCs, and PLCCs.

Logic Block Diagram and DIP/SOJ Pinout

B339-1

Selection Guide

Generic Part Number	$\mathbf{t}_{\text {PD }}$ (ns)		$\mathbf{t}_{\text {LEO }}$ ($\mathbf{n s}$)		$\mathbf{I}_{\text {CC }}(\mathbf{m A})$		$\mathbf{t}_{\mathbf{I S}}$ (ns)	
	Com'l	Mil	Com'l	Mil	Com'l	Mil	Com'l	Mil
7B339-7	7		5.5		180		4	
7B339-8		8		6.5		180		5
7B339-9	9		7.5		180		6	
7B339-10		10		8		180		6
7B339-12		12		9.5		180		7

PAL is a registered trademark of Monolithic Memories Inc.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Vottage to Ground Potential
(Pins 7 and 22 to Pins $8,20,21$, and 23) $\ldots . .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to $+\mathrm{V}_{\mathrm{cc}}$ Max.
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots-0.5 \mathrm{~F}$ to $+\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$
Output Current into Outputs (LOW) 12 mA
DC Input Current -30 mA to +5 mA
(Except during programming)

DC Programming Voltage . 9.5V
Static Discharge Voltage
> 2001V
(per MIL-STD-883 Method 3015)
Latch-Up Current. : $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	V $_{\text {cc }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions			7B339		Units
					Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	Com'l	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	Mil	2.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Com'l		0.4	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	Mil		0.4	
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs			2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs				0.8	V
I_{LX}	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., 0.4 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 2.7 \mathrm{~V}$			-250	25	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $0.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.7 \mathrm{~V}$			- 100	100	$\mu \mathrm{A}$
I ${ }_{\text {Sc }}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[2]}$			-30	-130	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., Outputs Disabled (in High Z State), Device Operating at $\mathrm{f}_{\mathrm{MAX}}$		Com'l		180	mA
				Mil		180	

Capacitance ${ }^{[3]}$

Parameters	Description	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	11	10	pF
C OUT	Output Capacitance	9	10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. The normal test load is used for all parameters except for $t_{\text {PXZ }}$ and $t_{\text {PZX }}$, which are tested using the three-state load.

AC Test Loads and Waveforms ${ }^{[4]}$

(a) Normal Load

(b) Three-State Load
Equivalent to: THÉVENIN EQUIVALENTS
OUTPUT $0 \underbrace{125 \Omega}_{\text {Commercial }} 0 \quad 1.90=V_{\text {thc }}$

AC Test Loads and Waveforms (continued)

Parameter	$\mathbf{v}_{\mathbf{x}}$	Output Waveform-Measurement Level
$\mathrm{t}_{\text {Pxz }}(-)$	1.5 V	$\mathrm{V}_{\mathrm{OH}} \xrightarrow[{0.5 \mathrm{~V} \xrightarrow[4]{t}}]{\mathrm{t}} \mathrm{v}_{\mathrm{x}}$
$\operatorname{trxz}^{(+)}$	2.6 V	
$\operatorname{trzx}^{(+)}$	$\mathrm{V}_{\mathrm{trc}}$	
$\mathrm{t}_{\text {Pzx }}(-)$	$\mathrm{V}_{\mathrm{tbc}}$	$\mathrm{v}_{\mathrm{x}} \frac{+}{0.5 \mathrm{~V}^{2}} 4$

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	Commercial				Military						Units
		7		9		8		10		12		
		Min.	Max.									
t_{PD}	Input to Output Propagation Delay		7		9		8		10		12	ns
t_{p}	Clock Period ($\left.\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)^{[3]}$	6.4		8.8		7.6		10.4		12.4		ns
$\mathrm{f}_{\text {MAXD }}$	Maximum Frequency Data Path (Lower of $1 / \mathrm{t}_{\mathrm{P}}$ and $\left.1 / \mathrm{t}_{\text {PD }}\right)^{[3,6]}$		142		111		125		96		80	MHz
t_{WH}	Latch Enable HIGH ${ }^{[3]}$	3.2		4.4		3.8		5.2		6.2		ns
t_{WL}	Latch Enable LOW ${ }^{[3]}$	3.2		4.4		3.8		5.2		6.2		ns
$\mathrm{t}_{\text {LEO }}$	Latch Enable to Output Delay		5.5		7.5		6.5	.	8		9.5	ns
$\mathrm{t}_{\text {LOH }}$	Output Hold After Latch Enable	0		0		0		0		0		ns
$\mathrm{t}_{\text {IS }}$	Input Set-Up Time	4		6		5		6		7		ns
t_{IH}	Input Hold Time	0.5		0.5		0.5		0.5		0.5		ns
$\mathrm{t}_{\text {PXZ }}$	Pin 15 to Output Disable Delay ${ }^{[7]}$		7		10		8.5		11.5		14.5	ns
$\mathrm{t}_{\text {PZX }}$	Pin 15 to Output Enable Delay		7		10		8.5		11.5		14.5	ns
$\mathrm{t}_{\text {PR }}$	Power-Up Reset Time ${ }^{[8]}$		1		1		1		1		1	$\mu \mathrm{s}$

Notes:

5. AC test load is used for all parameters except where noted.
6. Maximum frequency data path ($\mathrm{f}_{\mathrm{MAXD}}$) is limited by $1 / \mathrm{t}_{\mathrm{PD}}$ for the 7 and 9 -ns commercial and the 8 -ns military versions. Maximum frequency data path ($\mathrm{f}_{\text {MAXD }}$) is limited by $1 / \mathrm{t}_{\mathrm{P}}$ for the 10 -and $12-\mathrm{ns}$ military versions.
7. This parameter is measured as the time that the previous output data state remains stable after the output disable signal is received. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below V_{OH} Min. or a previous LOW level has risen to 0.5 volts above $\mathrm{V}_{\mathrm{OL}} \mathrm{Max}$.
8. This part has been designed with the capability to reset during system power-up. Following power-up, the output latches will be reset to a logic LOW state. To insure proper operation, the rise in $V_{C C}$ must be monotonic and the timing constraints depicted in power-up reset waveforms must be satisfied. The latch enable input must be in a valid LOW state ($\mathrm{V}_{\text {IN }}$ less than 0.8 V) prior to occurrence of the 10% level on the monotonically rising power supply voltage. In addition, the latch enable signal must remain stable in that valid LOW state, as indicated, until the 90% level on the power supply voltage has been reached. The latch enable is allowed to change from its LOW state only after the indicated delay ($t_{P R}$) has been observed.

Switching Waveform

Power-Up Reset Waveform ${ }^{[8]}$

SEMICONDUCTOR

CY7B339 Logic Diagram

Ordering Information

$\begin{gathered} \mathrm{t}_{\mathrm{tp}} \\ (\mathrm{~ns}) \end{gathered}$	$\begin{aligned} & \mathbf{t}_{\text {LEEO }}(\mathrm{ns}) \end{aligned}$	Ordering Code	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
7	5.5	CY7B339-7PC	P21	Commercial
		CY7B339-7DC	D22	
		CY7B339-7JC	J64	
		CY7B339-7VC	V21	
8	6.5	CY7B339-8DMB	D22	Military
		CY7B339-8LMB	164	
9	7.5	CY7B339-9PC	P21	Commercial
		CY7B339-9DC	D22	
		CY7B339-9JC	J64	
		CY7B339-9VC	V21	
10	8	CY7B339-10DMB	D22	Military
		CY7B339-10LMB	L64	
12	9.5	CY7B339-12DMB	D22	Military
		CY7B339-12LMB	L64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{PD}	$7,8,9,10,11$
t_{IS}	$7,8,9,10,11$
t_{IH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{LEO}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PXZ}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PZX}}$	$7,8,9,10,11$

Document \#: 38-00138-B

Features

- Erasable, user-configurable CMOS EPLDs capable of implementing high-density custom logic functions
- Advanced 0.8 -micron double-metal CMOS EPROM technology
- Multiple Array MatriX architecture optimized for speed, density, and straightforward design implementation
- Typical clock frequency $=\mathbf{5 0} \mathbf{~ M H z}$
- Programmable Interconnect Array (PIA) simplifies routing
- Flexible macrocells increase utilization
- Programmable clock control
- Expander product terms implement complex logic functions
- MAX + PLUS ${ }^{\circledR}$ development system eases design
- Runs on IBM PC/AT ${ }^{\circledR}$) and compatible machines
- Hierarchical schematic capture with $\mathbf{7 4 0 0}$ series TTL and custom macrofunctions
- State machine and Boolean entry
- Graphical delay path calculator
- Automatic error location
- Timing simulation
- Graphical interactive entry of waveforms

General Description

The Cypress Multiple Array MatriX (MAX ${ }^{(2)}$) family of EPLDs provides a user-configurable, high-density solution to general-purpose logic integration requirements. With the combination of innovative architecture and state-of-the-art process, the MAX EPLDs offer LSI density without sacrificing speed.
The MAX architecture makes it ideal for replacing large amounts of TTL SSI and MSI logic. For example, a 74161 counter utilizes only 3% of the 128 macrocells available in the CY7C342. Similarly, a 74151 8-to-1 multiplexer consumes less than 1% of the over 1,000 product terms in the CY7C342. This allows the designer to replace 50 or more TTL packages with just one MAX EPLD. The family comes in a range of densities, shown below. By standardizing on a few MAX building blocks, the designer can replace hundreds of different 7400 series part numbers currently used in most digital systems.
The family is based on an architecture of flexible macrocells grouped together into Logic Array Blocks (LABs). Within the $L A B$ is a group of additional product terms called expander product terms. These expanders are used and shared by the macrocells, allowing complex functions, up to 35 product terms, to be easily mplemented in a single macrocell. A Programmable Interconnect Array (PIA) globally routes all
signals within devices containing more than one LAB. This architecture is fabricated on the Cypress advanced 0.8 -micron, double-layer-metal CMOS EPROM process, yielding devices with significantly higher integration density and system clock speed than the largest of previous generation EPLDs.
The density and flexibility of the CY7C340 family is accessed using the MAX + PLUS development system. A PC-based design system, MAX + PLUS is optimized specifically for the CY7C340 family architecture, providing efficient design processing. A hierarchical schematic entry mechanism is used to capture the design. State machine, truth table, and Boolean equation entry mechanisms are also supported, and may be mixed with schematic capture. The powerful design processor performs minimization and logic synthesis, then automatically fits the design into the desired EPLD. Design verification is done using a timing simulator, which provides full A.C. simulation, along with an interactive graphic waveform editor package to speed waveform creation and debugging. During design processing a sophisticated automatic error locator shows exactly where the error occurred by popping the designer back into the schematic at the exact error location.

Max Family Members

Feature	CY7C344	CY7C343	CY7C342	CY7C341
Macrocells	32	64	128	192
MAX Flip-Flops	32	64	128	192
MAX Latches ${ }^{[1]}$	64	128	256	384
MAX Inputs ${ }^{[2]}$	23	35	59	71
MAX Outputs	16	28	52	64
Packages	$28 \mathrm{H}, \mathrm{J}$	$44 \mathrm{H}, \mathrm{J}$	$68 \mathrm{H}, \mathrm{J}$	68 G
	28 D		$84 \mathrm{R}, \mathrm{J}$	

Key: D-DIP G-Pin Grid Array H-Windowed Ceramic Leaded Chip Carrier J-J-Lead Chip Carrier R-Windowed Pin Grid Array W-Windowed Ceramic DIP

Notes:

1. When all expander product terms are used to implement latches. 2. With one output.

Figure 1. Key MAX Features

CY7C340 EPLD Family

Functional Description

The Logic Array Block

The logic array block, shown in Figure 2, is the heart of the MAX architecture. It consists of a macrocell array, expander product term array, and an I/O block. The number of macrocells, expanders, and I/O vary, depending upon the device used. Global feedback of all signals is provided within a LAB, giving each functional block complete access to the LAB resources. The LAB itself is fed by the programmable interaconnect array and dedicated input bus. The feedbacks of the macrocells and I/O pins feed the PIA, providing access to them through other LABs in the device. The CY7C340 family of EPLDs that have a single LAB use a global bus and a PIA is not needed (see Figure 3).

The MAX Macrocell

Traditionally, PLDs have been divided into either PLA (programmable AND, programmable OR), or PAL® (programmable AND, fixed OR) architectures. PLDs of the latter type provide faster input-to-output delays, but can be inefficient due to fixed allocation of product terms. Statistical analysis of PLD logic designs has shown that 70% of all logic functions (per macrocell) require three product terms or less.
The macrocell structure of MAX has been optimized to handle variable product term requirements. As shown in Figure 4, each macrocell consists of a product term array and a configurable register. In the macrocell, combinatorial logic is implemented with three product terms ORed together, which then feeds an XOR gate. The second input to the XOR gate is also controlled by a product term, providing the ability to control active HIGH or active LOW logic and to implement T- and JK-type flip-flops. The Max + PLUS sofware will aso use this gate to implement complex mutually exclusive-OR arithmetic logicfunctions, or to do DeMor-
gan's Inversion, reducing the number of product terms required to implement a function.
If more product terms are required to implement a given function, they may be added to the macrocell from the expander product term array. These additional product terms may be added to any macrocell, allowing the designer to build gate-intensive logic, such as address decoders, adders, comparators, and complex state machines, without using extra macrocells.
The register within the macrocell may be programmed for either D, T, JK, or RS operation. It may alternately be configured as a flow-through latch for minimum input-to-output delays, or bypassed entirely for purely combinatorial logic. In addition, each register supports both asynchronous preset and clear, allowing asynchronous loading of counters of shift registers, as found in many standard TTL functions. These registers may be clocked with a synchronous system clock, or clocked independently from the logic array.

Expander Product Terms

The expander product terms, as shown in Figure 5, are fed by the dedicated input bus, the programmable interconnect array, the macrocell feedback, the expanders themselves, and the I/O pin feedbacks. The outputs of the expanders then go to each and every product term in the macrocell array. This allows expanders to be "shared" by the product terms in the logic array block. One expander may feed all macrocells in the LAB, or even multiple product terms in the same macrocell. Since these expanders feed the secondary product terms (preset, clear, clock, and output enable) of each macrocell, complex logic funcitons may be implemented without utilizing another macrocell. Likewise, expanders may feed

C340-3

Figure 3. 7C344 LAB Block Diagram

Figure 4. Macrocell Block Diagram

C340-5

Figure 5. Expander Product Terms
and be shared by other expanders, to implement complex multilevel logic and input latches.

I/O Block

Separate from the macrocell array is the I/O control block of the LAB. Figure 6 shows the I/O block diagram. The three-state buffer is controlled by a macrocell product term and the drives the I/O pad. The input of this buffer comes from a macrocell within the associated LAB. The feedback path from the I/O pin may feed other blocks within the LAB, as well as the PIA.
By decoupling the I / O pins from the flip-flops, all the registers in the LAB are "buried," allowing the I/O pins to be used as dedicated outputs, bidirectional outputs, or as additional dedicated inputs. Therefore, applications requiring many buried flip-flops, such as counters, shift registers, and state machines, no longer consume both the macrocell register and the assoicated I/O pin, as in earlier devices.

The Programmable Interconnect Array

PLD density and speed has traditionally been limited by signal routing; i.e., getting signals from one macrocell to another. For smaller devices, a single array is used and all signals are available to all macrocells. But as the devices increase in density, the number of signals being routed becomes very large, increasing the amount

Functional Description (continued)

of silicon used for interconnections. Also, because the signal must be global, the added loading on the internal connection path reduces the overall speed performance of the device. The MAX architecture solves these problems. It is based on the concept of small, flexible logic array blocks, which, in the later devices, are interconnected by a PIA.
The PIA solves interconnect limitations by routing only the signals needed by each LAB. The architecture is designed so that every signal on the chip is within the PIA. The PIA is then programmed to give each LAB access to the signals that it requires. Consequently, each LAB receives only the signals needed. This effectively solves any routing problems that may arise in a design without degrading the performance of the device. Unlike masked or programmable gate arrays, which induce variable delays dependent on routing, the PIA has a fixed delay from point to point. This eliminates undesired skews among logic signals, which may cause glitches in internal or external logic.

MAX + PLUS Development System Description

The PLDS-MAX + PLUS (Programmable Logic Design System) is a unified CAE system for designing logic with Cypress's CY7C340 family of EPLDs (Figure 7). PLDS-MAX + PLUS includes design entry, design processing, timing simulation, and device programming support. PLDS-MAX + PLUS runs on IBM PS/2, PC-AT, or compatible machines, and provides tools to quickly and efficiently create and verify complex logic designs.
The MAX + PLUS software compiles designs for MAX EPLDs in minutes. Designs may be entered with a variety of design entry mechanisms. MAX + PLUS supports hierarchical entry of both Graphic Design Files (GDFs) with the MAX + PLUS Graphic Editor, and Text Design Files (TDFs) with the Advanced Hardware Description Language (AHDL). The Graphic Editor offers advanced features such as multiple hierarchy levels, symbol editing, and a library of 7400 series devices as well as basic SSI gates. AHDL designs may be mixed into any level of the hierarchy or used on a standalone basis. AHDL is tailored especially for EPLD designs and includes support for complex Boolean and arithmetic functions, relational comparisons, multiple hierarchy levels, state machines with automatic state variable assignment, truth tables, and function calls.

Figure 6. I/O Block Diagram

In addition to multiple design entry mechanisms, MAX + PLUS includes a sophisticated compiler that uses advanced logic synthesis and minimization techniques in conjunction with heuristic fitting rules to efficiently place designs within MAX EPLDs. A programming file created by the compiler is then used by MAX + PLUS to program MAX devices with the QP2-MAX programming hardware.
Simulations may be performed with a powerful, event-driven timing simulator. The MAX + PLUS Simulator interactively displays timing results in the MAX + PLUS Waveform Editor. Hardcopy table and waveform output is also available. With the Waveform Editor, input vector waveforms may be entered, modified, grouped, and ungrouped. In addition, the Waveform Editor compares simulation runs and highlights the differences.
The integrated structure of MAX + PLUS provides features such as automatic error location and delay prediction. If a design contains an error in either a schematic or a text file, MAX + PLUS flags the error and takes the user to the actual location of the error in the original schematic or text file. In addition, propagation delays of critical paths may be determined in both the Graphic and Text Editors with the delay predictor. After the source and destination nodes are tagged, the shortest and longest timing delays are calculated.
MAX + PLUS provides a seamless design framework using a consistent graphical user interface throughout. This framework simplifies all stages of the design cycle: design entry, processing, verification, and programming. In addition, MAX + PLUS offers online help to aid the user.

Design Entry

MAX + PLUS offers both graphic and text design entry methods. GDFs are entered with the MAX + PLUS Graphic Editor; Boolean equations, state machines, and truth tables may be entered with the MAX + PLUS Test Editor using AHDL. The ability to freely mix graphics and text files at all levels of the design hierarchy and to use either a top-down or bottom-up design method makes design entry simple and versatile.

Graphic Editor

The Graphic Editor provides a mouse-driven, multi-windowed environment in which commands are entered with pop-up menus or simple keystrokes. The Hierarchy Display window, shown at the top, lists all schematics used in a design. The designer navigates the hierarchy by placing the cursor on the name of the design to be edited and clicking the left mouse button. The Total View window (next to the Hierarchy window) shows the entire design. By clicking on an area in this window, the user is moved to that area of the schematic. The Error Report window lists all warnings and errors inthe compiled design; selecting an error with the cursor highlights the problem node and symbol. A design is edited in the main area, which may be enlarged by closing the auxiliary windows.
When entering a design, the user may choose from a library of over 2007400 series and special-purpose macrofunctions that are all optimized for MAX architecture. In addition, the designer my create custom functions that can be used in any MAX + PLUS design.
To take advantage of the hierarchy features, the user first saves the entered design so the Graphic Editor can automatically create a symbol representing the design. This symbol may be used in a higher-level schematic or in another design. It may also be modified with the Symbol Editor.

Figure 7. MAX + PLUS Block Diagram

Graphic Editor (continued)

Tag-and-drag editing is used to move individual symbols or entire areas. Lines stay connected with orthogonal rubberbanding. A design may be printed on an Epson FX-compatible printer, or plotted on an HP- or Houston Instruments-compatible plotter.

Symbol Editor

The MAX + PLUS Symbol Editor enables the designer to create or modify a custom symbol representing a GDF or TDF It is also possible to modify input and output pin placement of an automatically generated symbol.
The created symbol represents a lower-level design, described by a GDF or TDF. The lower-level design represented by the symbol may be displayed with a single command that invokes either the Graphic Editor for schematics or the Text Editor for AHDL designs.

AHDL

The Advanced Hardware Description Language (AHDL) is a high-level, modular language used to create logic designs for MAX EPLDs. It is completely integrated into MAX + PLUS, so AHDL files may be created, edited, compiled, simulated, and programmed from within MAX + PLUS.
AHDL provides support for state machine, truth tables, and Boolean equations, as well as srithmetic and relational operations. AHDL is hierarchical, which allows frequently used functions such as TTL and bus macrofunctions to be incorporated in a design. AHDL supports complex arithmetic and relational opeartions, such as addition, subtraction, equality, and magnitude comparisons, with the logic functions automatically generated. Standard Boolean functions, including AND, OR, NAND, NOR, XOR, and SNOR are also included. Groups are fully supported so operations may be performed on groups as well as on single variables. AHDL also allows the designer to specify the location of nodes within MAX EPLDs. Together, these features enable complex designs to be implemented in a concise, high-level description.

Text Editor

The MAX + PLUS Text Editor enables the user to view and edit text files within the MAX + PLUS environment. Any ASCII text file, including Vector Files, Table Files, Report Files, and AHDL Text Design Files (TDFs) may be viewed and edited wihtout having to exit to DOS.
The Text Editor parallels the Graphic Editor's menu structure. It has a Hierarchy Display and a Total View window for moving through the hierarchy levels and around the design. It includes automatic error location and hierarchy traversal. If an error is found in a TDF during compilation, the Text Editor is automatically invoked and the line of AHDL code where the error occurred is highlighted. In addition, a design may use both text and graphic files. As the designer t4raverses the hierarchy, the Text Editor is invoked for text files, and the Graphic Editor is invoked for schematics.

Symbol Libraries

The library provided with MAX + PLUS contains the most commonly used 7400 series devices such as counters, decoders, encoders, shift registers, flip-flops, latches, and multipliers, as well as special bus macrofunctions, all of which increase design productivity. Because of the flexible architecture of MAX EPLDs (that includes asynchronous preset and clear), true TTL device emulation is achieved. Cypress also provides special-purpose bus macrofunc-
tions for designs that use buses. All macrofunctions have been optimized to maximize speed and utilization. Refer to the MAX + PLUS TTL MacroFunctions manual for more information on TTL macrofunctions.

Design Processing

The MAX + PLUS Compiler processes MAX designs. The Compiler offers options that speed the processing and analysis of a design. The user can set the degree of detail of the Report File and the maximum number of errors generated. In addition, the user may select whether or not to extract a netlist file for simulation.
The Compiler compiles a design in increments. If a design has been previously processed, only the portion of the design that has been changed is re-extracted, which decreases the compilation time. This "Make" facility is an automatic feature of the Compile command.
The first module of the Compiler, the Compiler Netlist Extractor, extracts the netlist that is used to define the design from each file. At this time, design rules are checked for any errors. If errors are found, the Graphic Editor is invoked when the error appears in a GDF, and the Text Editor is invoked when the error appears in a TDF. The Error Report window in both editors highlights the location of the error. A successfully extracted design is built into a database to be used by the Logic Synthesizer.
The Logic Synthesizer module translates and optimizes the userdefined logic for the MAX architecture. Any unused logic within the design is automatically removed. The Logic Synthesizer uses expert system synthesis rules to factor and map logic within the multilevel MAX architecture. It then chooses the approach that ensures the most efficient use of silicon resources.
The next module, the Fitter, uses heuristic rules to optimally place the synthesized design into the chosen MAXEPLD. For MAX devices that have a Programmable Interconnect Array (PIA), the Fitter also routes the signals across this interconnect structure, so the designer doesn't have to worry about placement and routing issues. A Report File (.RPT) is issued by the Fitter, which shows design implementation as well as any unused resources in the EPLD. The designer can then determine how much additional logic may be placed in the EPLD.
A Simulator Netlist File (.SNF) may be extracted from the compiled design by the Simulator Netlist Extractor if simulation is desired. Finally, the Assembler creates a Programmer Object File (.POF) from the compiled design. This file is used with the QP2-MAX programming hardware to program the desired part.

Delay Prediction and Probes

MAX + PLUS includes powerful analysis tools to verify and analyze the completed design. Delay analysis with the delay predictor may be performed interactively in the Graphic Editor, or in the Simulator. The Simulator is interactive and event-driven, yielding true timing and functional charactersitics of the compiled design. The delay predictor provides instant feedback about the timing of the processed design. After selecting the start point and end point of a path, the designer may determine the shortest and longest propagation delays of speed-critical paths.
Also, a designer may use probes to mark internal nodes in a design. The designer may enter a probe by placing the cursor on any node in a graphic design, selecting the SPE (Symbol:Probe:Enter) command, and then entering a unique name to define the probe. This name may then be used in the Graphic Editor, Simulator, and Waveform Editor to reference that node, so that lengthy hierarchical path names are avoided.

Simulator

Input stimuli can be defined with a straightforward vector input language, or waveforms can be directly drawn using the Waveform Editor. Outputs may also be viewed in the Waveform Editor, or hardcopy table and waveform files may be printed.
The Simulator used the Simulator Netlist File (SNF) extracted from the compiled design to perform timing simulation with $1 / 10$-nanosecond resolution. A Command File may be used for batch operation, or commands may be entered interactively. Simulator commands allow the user to halt the simulation dependent on user-defined conditions, to force and group nodes, and perform AC detection.
If flip-flop set-up or hold times have been violated, the Simulator warns the user. In addition, the minimum pulse width and period of oscillation may be defined. If a pulse is shorter than the minimum pulse width specified, or if a node oscillates for longer than the specified time, the Simulator issues a warning.

Waveform Editor

The MAX + PLUS Waveform Editor provides a mouse-driven environment in which timing waveforms may be viewed and edited. It functions as a logic analyzer, enabling the user to observe simulation results. Simulated waveforms may be viewed and manipulated at multiple zoom levels. Nodes may be added, deleted, and combined into buses, which may contain up to 32 signals represented in binary, octal, decimal, or hexadecimal format. Logical opeartors may also be performed on pairs of waveforms, so that waveforms may be inverted, ORed, ANDed, or XORed together.
The Waveform Editor includes sophisticated editing features to define and modify input vectors. Input waveforms are created with the mouse and familiar text editing commands. Waveforms may be copied, patterns may be repeated, and blocks may be moved and copied. For example, all or part of a waveform may be contracted to simulate the increase in clock frequency.
The Waveform Editor also compares and highlights the difference between two different simulations. A user may simulate a design, observe and edit the results, and then resimulate the design, and the Waveform Editor will show the results superimposed upon each other to highlight the differences.

MAX + PLUS Timing Analyzer (MTA)

The MAX + PLUS Timing Analyzer (MTA) provides user-configurable reports that assist the designer in analyzing critical delay paths, set-up and hold timing, and overall system performance of any MAX EPLD design. Critical paths identified by these reports may be desplayed and highlighted.
Timing delays between multiple source and destination nodes may be calculated, thus creating a connection matrix giving the shortest and longest delay paths between all source and destination nodes specified. Or, the designer may specify that the detailed paths and delays between specific sources and destinations be shown.
The set-up/hold option provides set-up and hold requirements at the device pins for all pins that feed the D, CLK, or ENABLE inputs of flip-flops and latches. Critical source nodes may be specified individually, or set-up and hold at all pins may be calculated. This information is then displayed in a table, one set of set-up and hold times per flip-flop/latch.
The MTA also allows the user to print a complete list of all accessible nodes in a design,; i.e., all nodes that may be displayed during simulation or delay prediction.

All MTA options may be listed in an MTA command file. With this file, the user may specify all information needed to configure the output.

SNF2GDF Converter

SNF2GDF converts the SNF into logic schematics represented with basic gates and flip-flop elements. It uses the SNF's delay and connection information and creates a series of schematics fully annotated with propagation delay and set-up and hold information at each logic gate. Certain speed paths of a design may be specified for conversion, so the user may graphically analyze only the paths considered critical.
If State Machine or Boolean Equation design entry is used, SNF2GDF shows how the high-level description has been synthesized and placed into the MAX architecture.

Device Programming

PLDS-MAX contains the basic hardware and software for programming the MAX EPLD family. Adpaters are included for programming the CY7C344 (DIP and PLCC) and CY7C342 (PLCC) devices. Additional adapters supporting other MAX devices may be purchased separately. MAX + PLUS programming software drives the QP2-MAX programming hardware. The designer can use MAX + PLUS to program and verify MAX EPLDs. If the security bit of the device is not set to ON, the designer may also read the contents of a MAX device and use this information to program additional devices.

System Requirements

Minimum System Configuration

IBM PS/2 model 50 or higher, PC/AT or compatible computer.

PC-DOS version 3.1 or higher.
640 kbytes RAM.
EGA, VGA or Hercules monochrome display.
20-MB hard disk drive.
1.2-MB $5^{1 / 44^{\prime \prime}}$ or $1.44-\mathrm{MB} 3^{11 / 2 "}$ "floppy disk drive.

3-button serial port mouse.

Recommended System Configuration

IBM PS/ 2 model 70 or higher, or Compaq 386 20-Mhz computer.

PC-DOS version 3.3.
640 kbytes of RAM plus 1 MB of expanded memory with LIM 3.2-compatible EMS driver.

VGA graphics display.
20-MB hard disk drive.
1.2-MB 51/4" or $1.44-\mathrm{MB} 31 / 2$ " floppy disk drive.

3-button serial port mouse.

CY7C340 EPLD Family

Ordering Information

CY3200 PLDS-MAX + PLUS System including:

CY3201 | MAX + PLUS software, manuals |
| :--- |
| and key. |

CY3202 QP2-MAX PLD programmer with CY3342 \& CY3344 adapters.

Device Adapters

CY3340 Adapter for CY7C341 in PLCC packages.

CY3342 Adapter for CY7C342 in PLCC packages.
CY3344 Adapter for CY7C344 in DIP and PLCC packages.
CY3342R Adapter for CY7C342 in PGA packages.
CY33435 Adapter for CY7C343 in PLCC packages.

192-Macrocell MAX® EPLD

Features

- 192 macrocells in 12 LABs
- 8 dedicated inputs, 64 bidirectional I/O pins
- Programmable interconnect array
- 384 expander product terms
- Available in 84-pin JLCC, PLCC, and PGA packages

Functional Description

The CY7C341 is an Erasable Programmable Logic Device (EPLD) in which CMOS EPROM cells are used to configure logic functions within the device. The MAX architecture is 100% user configurable allowing the devices to accommodate a variety of independent logic functions.
The 192 macrocells in the CY7C341 are divided into 12 Logic Array Blocks (LABs), 16 per LAB. There are 384 expander product terms, 32 per LAB, to be used and shared by the macrocells within each LAB. Each LAB is interconnected with a programmable interconnect array, allowing all signals to be routed throughout the chip.
The speed and density of the CY7C341 allows it to be used in a wide range of applications, from replacement of large amounts of 7400 series TTL logic, to complex controllers and multifunction chips. With greater than 37 times the functionality of 20 -pin PLDs, the CY7C341 allows the replacement of over 75 TTL devices. By replacing large amounts of logic, the CY7C341 reduces board space, part count, and increases system reliability.
Each LAB contains 16 macrocells. In LABs A, F, G, and L, 8 macrocells are connected to I/O pins and 8 are buried, while for LABs B, C, D, E, H, I, J, and K, 4 macrocells are connected to I/O pins and 12 are buried. Moreover, in addition to the I/ O and buried macrocells, there are 32 single product term logic expanders in each LAB. Their use greatly enhances the capability of the macrocells without increasing the number of product terms in each macrocell.

Logic Array Blocks

There are 12 logic array blocks in the CY7C341. Each LAB consists of a macrocell array containing 16 macrocells, an expander product term array containing 32 expanders, and an I/O block. The LAB is fed by the programmable interconnect array and the dedicated input bus. All macrocell feedbacks go to the macrocell array, the expander array, and the programmable interconnect array. Expanders feed themselves and the macrocell array. All I/O feedbacks go to the programmable interconnect array so that they may be accessed by macrocells in other LABs as well as the macrocells in the LAB in which they are situated.
Externally, the CY7C341 provides 8 dedicated inputs, one of which may be used as a system clock. There are 64 I/O pins that may be individually configured for input, output, or bidirectional data flow.

Programmable Interconnect Array

The Programmable Interconnect Array (PIA) solves interconnect limitations by routing only the signals needed by each logic array block. The inputs to the PIA are the outputs of every macrocell within the device and the I/O pin feedback of every pin on the device.
Unlike masked or programmable gate arrays, which induce variable delay dependent on routing, the PIA has a fixed delay. This eliminates undesired skews among logic signals, which may cause glitches in internal or external logic. The fixed delay, regardless of programmable interconnect array configuration, simplifies design by assuring that internal signal skews or races are avoided. The result is ease of design implementation, often in a single pass, without the multiple internal logic placement and routing iterations required for a programmable gate array to achieve design timing objectives.

Timing Delays

Timing delays within the CY7C341 may be easily determined using MAX + PLUS ${ }^{\circledR}$
software or by the model shown in Figure 1. The CY7C 341 has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information, the MAX + PLUS software provides a timing simulator.

Design Recommendations

For proper operation, input and output pins must be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\mathrm{IN}}\right.$ or $\left.\mathrm{V}_{\mathrm{OUT}}\right) \leq \mathrm{V}_{\mathrm{CC}}$. Unused inputs must always be tied to an appropriate logic level (either V_{Cc} or GND). Each set of $V_{C C}$ and GND pins must be connected together directly at the device. Power supply decoupling capacitors of at least $0.2 \mu \mathrm{~F}$ must be connected between V_{CC} and GND. For the most effective decoupling, each V_{Cc} pin should be separately decoupled to GND, directly at the device. Decoupling capacitors should have good frequency response, such as monolithic ceramic types.

Design Security

The CY7C341 contains a programmable design security feature that controls the access to the data programmed into the device. If this programmable feature is used, a proprietary design implemented in the device cannot be copied or retrieved. This enables a high level of design control to be obtained since programmed data within EPROM cells is invisible. The bit that controls this function, along with all other program data, may be reset simply by erasing the device.
The CY7C341 is fully functionally tested and guaranteed through complete testing of each programmable EPROM bit and all internal logic elements thus ensuring 100% programming yield.
The erasable nature of these devices allows test programs to be used and erased during early stages of the production flow. The devices also contain on-board logic test circuitry to allow verification of function and AC specification once encapsulated in non-windowed packages.

Selection Guide

		$\mathbf{7 C 3 4 1 - 3 0}$	$7 \mathbf{C 3 4 1 - 3 5}$	7C341-40
Maximum Access Time (ns)	30	35	40	
Maximum Operating Current (mA) Commercial 310 40 Military Maximum Standby Current (mA)	Commercial	200	320	320
	Military		200	

MAX ${ }^{\circledR}$ and MAX + PLUS ${ }^{\circledR}$ are registered trademarks of Altera Corporation.

Logic Block Diagram

Figure 1. CY7C341 Internal Timing Model

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DC Program Voltage
-2.0 V to +13.5 V
Ambient Temperature with
Power Applied $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature
(Under Bias) $150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential 2.0 V to +7.0 V
Maximum Power Dissipation 2500 mW
DC V ${ }_{\text {CC }}$ or GND Current . 500 mA
DC Output Current, per Pin -25 mA to +25 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Case)	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		7C341		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level			2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level			-0.3	0.8	V
I_{LX}	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	$+10$	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{cc}}$ or GND		-40	$+40$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-30	-90	mA
$\mathrm{I}_{\mathrm{CC} 1}$	Power Supply Current (Standby)	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{cc}} \text { or } \mathrm{GND} \\ & \text { (No Load) } \end{aligned}$	Com'l		200	mA
			Mil		240	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{cc}} \text { or GND (No Load) } \\ & \mathrm{f}=1.0 \mathrm{MHz}^{3]} \end{aligned}$	Com'l		310	mA
			Mil		320	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
Cnout	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF	

Notes:

1. Minimum DC input is $\mathbf{- 0 . 3 V}$. During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
3. This parameter is measured with device programmed as a 16 -bit counter in each LAB and is tested periodically by sampling production material.

AC Test Loads and Waveforms

(a)

(b)
4. Part (a) in AC Test Load and Waveforms is used for all parameters except $t_{E R}$ and $t_{X Z}$, which is used for part (b) in AC Test Load and Waveforms. All external timing parameters are measured referenced to external pins of the device.

C341-4

Equivalent to: THÉVENIN EQUIVALENT (commercial/military)
OUTPUT $0 \longrightarrow 1.75 \mathrm{~V}$

External Synchronous Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameters			7C341-30		7C341-35		7C341-40		Units
	Description		Min.	Max.	Min.	Max.	Min.	Max.	
${ }^{\text {PDII }}$	Dedicated Input to Combinatorial Output Delay ${ }^{[5]}$	Com'l		30		35			ns
		Mil				35		40	
${ }_{\text {tPD2 }}$	I/O Input to Combinatorial Output Delay ${ }^{[6]}$	Com'l		45		55			ns
		Mil				55		65	
${ }_{\text {tpD3 }}$	Dedicated Input to Combinatorial Output Delay with Expander Delay ${ }^{[7]}$	Com'l		44		55			ns
		Mil				55		65	
${ }_{\text {tPD4 }}$	I/O Input to Combinatorial Output Delay with Expander Delay ${ }^{[8]}$	Com'l		60		75			ns
		Mil				75		90	
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay ${ }^{[5]}$	Com'l		30		35			ns
		Mil				35		40	
t_{ER}	Input to Output Disable Delay ${ }^{[5]}$	Com'l		30		35			ns
		Mil				35		40	
${ }^{\text {coll }}$	Synchronous Clock Input to Output Delay	Com'l		16		20			ns
		Mil				20		23	
${ }^{\text {c }}$ CO2	Synchronous Clock to Local Feedback to Combinatorial Output ${ }^{(9)}$	Com'l		35		42			ns
		Mil				42		50	
$\mathrm{t}_{\mathbf{s} 1}$	Dedicated Input or Feedback Set-up Time to Synchronous Clock Output ${ }^{55,10]}$	Com'l	22		25				ns
		Mil			25		28		
$\mathrm{t}_{\mathbf{s} 2}$	I/O Input Set-up Time to Synchronous Clock Input ${ }^{[6]}$	Com'l	39		45				ns
		Mil			45		52		
t_{H}	Input Hold Time from Synchronous Clock Input ${ }^{[5]}$	Com'l	0		0				ns
		Mil			0		0		
t_{WH}	Synchronous Clock Input High Time	Com'1	10		12.5				ns
		Mil			12.5		15		
$t_{\text {wL }}$	Synchronous Clock Input Low Time	Com'l	10		12.5				ns
		Mil			12.5		15		
t_{RW}	Asynchronous Clear Width ${ }^{[5]}$	Com'l	30		35				ns
		Mil			35		40		
t_{RR}	Asynchronous Clear Recovery ${ }^{[5]}$	Com'l	30		35				ns
		Mil			35		40		
t_{RO}	Asynchronous Clear to Registered Output Delay ${ }^{[5]}$	Com'l	30		35				ns
		Mil			35		40		
${ }_{\text {t }}^{\text {Pw }}$	Asynchronous Preset Width ${ }^{[5]}$	Com'l	30		35				ns
		Mil			35		40		
t_{PR}	Asynchronous Preset Recovery Time ${ }^{[5]}$	Com'l	30		35				ns
		Mil			35		40		

External Synchronous Switching Characteristics Over the Operating Range ${ }^{[4]}$ (continued)

Parameters	Description		7C341-30		7C341-35		7C341-40		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
t_{po}	Asynchronous Preset to Registered Output Delay ${ }^{[5]}$	Com'l		30		35			ns
		Mil				35		40	
$\mathrm{t}_{\text {cF }}$	Synchronous Clock to Local Feedback Input ${ }^{[11]}$	Com'1		3		6			ns
		Mil				6		9	
t_{p}	External Synchronous Clock Period $\left(\mathrm{t}_{\mathrm{CO} 1}+\mathrm{t}_{\mathrm{s} 1}\right)$	Com'l	38		45				ns
		Mil			45		51		
$\mathrm{f}_{\text {MAX }}$	External Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S} 1}\right)\right)^{12]}$	Com'l	26.3		22.2				MHz
		Mil			22.2		19.6		
$\mathrm{f}_{\text {MAX2 }}$	Internal Local Feedback Maximum Frequency, lesser of $\left(1 /\left(\mathrm{t}_{\mathrm{S} 1}+\mathrm{t}_{\mathrm{CF}}\right)\right)$ or $\left(1 / \mathrm{t}_{\mathrm{CO} 1}\right)^{[13]}$	Com'l	40.0		32.2				MHz
		Mil			32.2		28.5		
$\mathrm{f}_{\text {MAX } 3}$	Data Path Maximum Frequency, least of $1 /\left(\mathrm{t}_{\mathrm{wL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{s} 1}+\mathrm{t}_{\mathrm{H}}\right)$, or $\left(1 / \mathrm{t}_{\mathrm{CO}}\right)^{[14]}$	Com'l	45.4		40.0				MHz
		Mil			40.0		33.3		
$\mathrm{f}_{\text {MAX4 }}$	Maximum Register Toggle Frequency$\left(1 /\left(t_{w L}+t_{w H}\right)\right)^{15]}$	Com'1	50.0		40.0				MHz
		Mil			40.0		33.3		
t_{OH}	Output Data Stable Time from Synchronous Clock Input ${ }^{[16]}$	Com'1	3		3				ns
		Mil			3		3		

Notes:

5. This specification is a measure of the delay from input signal applied to a dedicated input (68-pin PLCC input pin 1, 2, 32, 34, 35, 66, or 68) to combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function.
When this note is applied to any parameter specification it indicates that the signal (data, asynchronous clock, asynchronous clear, and/or asynchronous preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.
If an input signal is applied to an I/O pin an additional delay equal to ${ }^{t}$ PIA should be added to the comparable delay for a dedicated input. If expanders are used, add the maximum expander delay $t_{\text {EXP }}$ to the overall delay for the comparable delay without expanders.
6. This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
7. This specification is a measure of the delay from an input signal applied to a dedicated input (68-pin PLCC input pin 1,2,32,34, 35, 36,66 , or 68) to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic functions and includes the worst-case expander logic delay for one pass through the expander logic.
8. This specification is a measure of the delay from an input signal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
9. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all feedback is within the same LAB. This parameter is tested periodically by sampling production material.
10. If data is applied to an I/O input for capture by a macrocell register, the I/O pin set-up time minimums should be observed. These parameters are $\mathrm{t}_{\mathrm{S} 2}$ for synchronous operation and $\mathrm{t}_{\mathrm{AS} 2}$ for asynchronous operation.
11. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array input. This delay plus the register set-up time, $\mathrm{t}_{\mathrm{S} 1}$, is the minimum internal period for an internal synchronous state machine configuration. This delay is for feedback within the same LAB. This parameter is tested periodically by sampling production material.
12. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can operate. It is assumed that all data inputs and feedback signals are applied to dedicated inputs. All feedback is assumed to be local originating within the same LAB.
13. This specification indicates the guaranteed maximum frequency at which a state machine, with internal-only feedback, can operate. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / \mathrm{t}_{\mathrm{CO} 1}$.
14. This frequency indicates the maximum frequency at which the device may operate in data path mode (dedicated input pin to output pin). This assumes data input signals are applied to dedicated input pins and no expander logic is used. If any of the data inputs are I/O pins, $\mathrm{t}_{\mathrm{S} 2}$ is the appropriate t_{S} for calculation.
15. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycle by a clock signal applied to the dedicated clock input pin.
16. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.

External Asynchronous Switching Characteristics Over the Operating Range ${ }^{[4]}$ (continued)

Parameters			7C341-30		7C341-35		7C341-40		Units
	Description		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {ACO1 }}$	Dedicated Clock Input to Output Delay ${ }^{[5]}$	Com'l		30		35			ns
		Mil				35		45.	
$\mathrm{t}_{\mathrm{ACO} 2}$	Asynchronous Clock Input to Local Feedback to Combinatorial Output ${ }^{[17]}$	Com'l		46		55			ns
		Mil				55		64	
$\mathrm{t}_{\text {AS } 1}$	Dedicated Input or Feedback Set-up Time to Asynchronous Clock Input ${ }^{[5]}$	Com'l	10		10				ns
		Mil			10		10		
$\mathfrak{t}_{\text {AS2 }}$	I/O Input Set-Up Time to Asynchronous Clock Input ${ }^{[5]}$	Com'l	27		30				ns
		Mil			30		33		
t_{AH}	Input Hold Time from Asynchronous Clock Input ${ }^{[5]}$	Com'l	15		15				ns
		Mil			15		15		
$\mathrm{t}_{\text {AWH }}$	Asynchronous Clock Input High Time ${ }^{[5]}$	Com'l	25		30				ns
		Mil			30		35		
$\mathrm{t}_{\text {AWL }}$	Asynchronous Clock Input Low Time ${ }^{[5]}$	Com'l	25		30				ns
		Mil			30		35		
$\mathrm{t}_{\text {ACF }}$	Aynchronous Clock to Local Feedback Input ${ }^{[18]}$	Com'l		18		22			ns
		Mil				22		26	
$\mathrm{t}_{\text {AP }}$	External Asynchronous Clock Period $\left(t_{A C O 1}+t_{A S 1}\right)$ or $\left(t_{A W H}+t_{A W L}\right)$	Com'l	50		60				ns
		Mil			60		70		
$\mathrm{f}_{\text {MAXA } 1}$	External Feedback Maximum Frequency in Asynchronous Mode ${ }^{[19]}$	Com'1	20		16.6				MHz
		Mil			16.6		14.2		
$\mathrm{f}_{\text {MAXA } 2}$	Maximum Internal Asynchronous Frequency ${ }^{[20]}$	Com'l	20		16.6				MHz
		Mil			16.6		14.2		
$\mathrm{f}_{\text {MAXA }}$	Data Path Maximum Frequncy in Asynchronous Mode ${ }^{[21]}$	Com'l	20		16.6				MHz
		Mil			16.6		14.2		
$\mathrm{f}_{\text {MAXA4 }}$	Maximum Asynchronous Register Toggle Frequency $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)^{[22]}$	Com'l	20		16.6				MHz
		Mil			16.6		14.2		
$\mathrm{t}_{\mathrm{AOH}}$	Output Data Stable Time from Asynchronous Clock Input ${ }^{[23]}$	Com'l	15		15				ns
		Mil			15		15		

Notes:

17. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input. The clock signal is applied to the dedicated clock input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production material.
18. This specification is a measure of the delay associated with the internal register feedback path for an asynchronous clock to LAB logic array input. This delay plus the asynchronous register set-up time, $t_{A S 1}$, is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay is for feedback within the same LAB, and assumes no expander logic in the clock path and the clock input signal is applied to a dedicated input pin. This parameter is tested periodically by sampling production material.
19. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that all data inputs, clock inputs, and feedback signals are applied to dedicated inputs, and that no expander logic is employed in the clock signal path or data path.
20. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate. This parameter is determined by the lesser of $\left.\left(1 / t_{\mathrm{ACF}}+\mathrm{t}_{\mathrm{AS}}\right)\right)$ or $\left(1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)\right)$. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / \mathrm{t}_{\mathrm{ACO}}$.
21. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined by the least of $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right), 1 /\left(\mathrm{t}_{\mathrm{AS} 1}+t_{\mathrm{AH}}\right)$ or $1 / \mathrm{t}_{\mathrm{ACO}}$. It assumes data and clock input signals are applied to dedicated input pins and no expander logic is used.
22. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode by a clock signal applied to an external dedicated input pin.
23. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input applied to an external dedicated input pin.

Switching Waveforms

External Combinatorial

External Asynchronous

Internal Switching Characteristics Over the Operating Range ${ }^{[1]}$

Parameters	Description		7C341-30		7C341-35		7C341-40		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{1 \times}$	Dedicated Input Pad and	Com'l		7		9			ns
		Mil				9		11	
t_{I}	I/O Input Pad and Buffer Delay	Com'l		6		9			ns
		Mil				9		12	
$\mathrm{t}_{\text {EXP }}$	Expander Array Delay	Com'l		14		20			ns
		Mil				20		25	
$\mathrm{t}_{\text {LAD }}$	Logic Array Data Delay	Com'l		14		16			ns
		Mil				16		18	
$\mathrm{t}_{\text {LAC }}$	Logic Array Control Delay	Com'l		12		13			ns
		Mil				13		14	
t_{OD}	Output Buffer and Pad Delay	Com'l		5		6			ns
		Mil				6		7	
t_{ZX}	Output Buffer Enable Delay ${ }^{[24]}$	Com'l		11		13			ns
		Mil				13		15	
$t_{x z}$	Output Buffer Disable Delay	Com'l		11		13			ns
		Mil				13		15	
$\mathrm{t}_{\text {RSU }}$	Register Set-Up Time Relative to Clock Signal at Register	Com'l	8		10				ns
		Mil			10		12		
t_{RH}	Register Hold Time Relative to Clock Signal at Register	Com'l	8		10				ns
		Mil			10		12		
$\mathrm{t}_{\text {LATCH }}$	Flow-Through Latch Delay	Com'l		4		4			ns
		Mil				4		4	
t_{RD}	Register Delay	Com'l		2		2			ns
		Mil				2		2	
$\mathrm{t}_{\text {COMB }}$	Transparent Mode Delay ${ }^{[25]}$	Com'l		4		4			ns
		Mil				4		4	
t_{CH}	Clock High Time	Com'l	10		12.5				ns
		Mil			12.5		15		
$\mathrm{t}_{\text {cL }}$	Clock Low Time	Com'l	10		12.5				ns
		Mil			12.5		15		
t_{IC}	Asynchronous Clock Logic Delay	Com'l		16		18			ns
		Mil				18		20	
$\mathrm{t}_{\text {ICS }}$	Synchronous Clock Delay	Com'l		2		3			ns
		Mil				3		4	
t_{id}	Feedback Delay	Com'l		1		2			ns
		Mil				2		3	
$\mathrm{t}_{\text {PRE }}$	Asynchronous Register Preset Time	Com'l		6		7			ns
		Mil				7		8	
$\mathrm{t}_{\text {cLR }}$	Asynchronous Register Clear Time	Com'l		6		7			ns
		Mil				7		8	
${ }_{\text {tpCw }}$	Asynchronous Preset and Clear Pulse Width	Com'l	6		7				ns
		Mil			7		8		
${ }_{\text {t PCR }}$	Asynchronous Preset and Clear Recovery Time	Com'l	6		7				ns
		Mil			7		8		
$\mathrm{t}_{\text {fiA }}$	Programmable Interconnect Array Delay Time	Com'l		16		20			ns
		Mil				20		24	

Notes:

24. Sample tested only for an output change of 500 mV .
25. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial operation.

Switching Waveforms (continued)
Internal Combinatorial

Internal Asynchronous

External Asynchronous

Switching Waveforms (continued)

Internal Synchronous

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CY7C341-30HC		Commercial
	CY7C341-30JC		
	CY7C341-30RC		
	CY7C341-30GC		
35	CY7C341-35HC		Commercial
	CY7C341-35JC		
	CY7C341-35RC		
	CY7C341-35GC		
	CY7C341-35HMB		Military
	CY7C341-35RMB		
40	CY7C341-40HC		Commercial
	CY7C341-40JC		
	CY7C341-40RC		
	CY7C341-40GC		
	CY7C341-40HMB		Military
	CY7C341-40RMB		

Document \#: 38-00137-B

128-Macrocell MAXTM EPLDs

Features

- 128 macrocells in 8 LABs
- 8 dedicated inputs, 52 bidirectional I/O pins
- Programmable interconnect array
- Available in 68-pin HLCC, PLCC, and PGA

Functional Description

The CY7C342 is an Erasable Programmable Logic Device (EPLD) in which CMOS EPROM cells are used to configure logic functions within the device. The MAX architecture is 100% user configurable, allowing the devices to accommodate a variety of independent logic functions.
The 128 macrocells in the CY7C342 are divided into 8 Logic Array Blocks (LABs), 16 per LAB. There are 256 expander product terms, 32 per LAB, to be used and shared by the macrocells within each LAB. Each LAB is interconnected with a programmable inter-
connect array, allowing all signals to be routed throughout the chip.
The speed and density of the CY7C342 allows it to be used in a wide range of applications, from replacement of large amounts of 7400 series TTL logic, to complex controllers and multi-function chips. With greater than 25 times the functionality of 20-pin PLDs, the CY7C342 allows the replacement of over 50 TTL devices. By replacing large amounts of logic, the CY7C342 reduces board space, part count, and increases system reliability.

Logic Block Diagram

SEMICONDUCTOR
Selection Guide

		7C342-30	7C342-35	7C342-40
Maximum Access Time (ns)			30	35
Maximum Operating Current (mA)	Commercial	310	310	40
	Military		320	
	Industrial	320	320	320
Maximum Standby Current (mA)	Commercial	200	200	320
	Military		240	240

Pin Configurations

PGA
Bottom View

Logic Array Blocks

There are eight logic array blocks in the CY7C342. Each LAB consists of a macrocell array containing 16 macrocells, an expander product term array containing 32 expanders, and an I/O block. The LAB is fed by the programmable interconnect array and the dedicated input bus. All macrocell feedbacks go to the macrocell array, the expander array, and the programmable interconnect array. Expanders feed themselves and the macrocell array. All I/O feedbacks go to the programmable interconnect array so
that they may be accessed by macrocells in other LABs as well as the macrocells in the LAB in which they are situated.
Externally, the CY7C342 provides eight dedicated inputs, one of which may be used as a system clock. There are 52 I/O pins which may be individually configured for input, output, or bidirectional data flow.

SEMICONDUCTOR

Figure 3. CY7C342 Internal Timing Model

Programmable Interconnect Array

The Programmable Interconnect Array (PIA) solves interconnect limitations by routing only the signals needed by each logic array block. The inputs to the PIA are the outputs of every macrocell within the device and the I/O pin feedback of every pin on the device.

Unlike masked or programmable gate arrays, which induce variable delay dependent on routing, the PIA has a fixed delay. This eliminates undesired skews among logic signals, which may cause glitches in internal or external logic. The fixed delay, regardless of programmable interconnect array configuration, simplifies design by assuring that internal signal skews or races are avoided. The result is ease of design implementation, often in a single pass, without the multiple internal logic placement and routing iterations required for a programmable gate array to achieve design timing objectives.

Timing Delays

Timing delays within the CY7C342 may be easily determined using MAX + PLUSTM software or by the model shown in Figure 3. The CY7C342 has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information the MAX + PLUS software provides a timing simulator.

Design Recommendations

Operation of the devices described herein with conditions above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure to absolute maximum ratings conditions for extended periods of time may affect device reliability. The CY7C342 contains circuitry to protect device pins from high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages.
For proper operation, input and output pins must be constrained to the range GND $\leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\left.\mathrm{V}_{\text {OUT }}\right) \leq \mathrm{V}_{\mathrm{CC}}$. Unused inputs must always be tied to an appropriate logic level (either V_{CC} or GND). Each set of V_{CC} and GND pins must be connected together directly at the device. Power supply decoupling capacitors of at least $0.2 \mu \mathrm{~F}$ must be connected between $V_{C C}$ and GND. For the most effective decoupling, each $V_{C C}$ pin should be separately decoupled to GND, directly at the device. Decoupling capacitors should have good frequency response, such as monolithic ceramic types.

Design Security

The CY7C342 contains a programmable design security feature that controls the access to the data programmed into the device. If this programmable feature is used, a propriety design implemented in the device cannot be copied or retrieved. This enables a high level of design control to be obtained since programmed data within EPROM cells is invisible. The bit that controls this function, along with all other program data, may be reset simply by erasing the device.

0175-9
Figure 4. Typical ICC vs f $\mathbf{M A X}$

Figure 5. Output Drive Current
The CY7C342 is fully functionally tested and guaranteed through complete testing of each programmable EPROM bit and all internal logic elements thus ensuring 100% programming yield.
The erasable nature of these devices allows test programs to be used and erased during early stages of the production flow. The devices also contain on-board logic test circuitry to allow verification of function and AC specification once encapsulated in non-windowed packages.

Timing Considerations

Unless otherwise stated, propagation delays do not include expanders. When using expanders add the maximum expander delay texp to the overall delay. Similarly, there is an additional tPIA delay for an input from an I/O pin when compared to a signal from a straight input pin.
When calculating synchronous frequencies, use $\mathrm{t}_{\mathrm{S}_{1}}$ if all inputs are on dedicated input pins. The parameter $\mathrm{t}_{\mathrm{S}_{2}}$ should be used if data is applied at an I/O pin. If t_{2} is greater than $\mathrm{t}_{\mathrm{CO}_{1}}, 1 / \mathrm{t}_{\mathrm{S}_{2}}$ becomes the limiting frequency in the data path mode unless $1 /\left(\right.$ twH $\left.^{+}+\mathrm{twL}_{\mathrm{L}}\right)$ is less than $1 / \mathrm{t}_{\mathrm{S}_{2}}$.
When expander logic is used in the data path, add the appropriate maximum expander delay, $\mathrm{t}_{\text {EXP }}$ to t_{S}. Determine which of $1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right), 1 / \mathrm{t}_{\mathrm{CO}}$, or $1 /\left(\mathrm{t}_{\mathrm{EXP}}+\mathrm{t}_{\mathrm{S}_{1}}\right)$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the synchronous configuration.
When calculating external asynchronous frequencies, use $t_{A S_{1}}$ if all inputs are on the dedicated input pins. If any data is applied to an I/O pin, $\mathrm{t}_{\mathrm{AS}_{2}}$ must be used as the required set up time. If $\left(\mathrm{t}_{\mathrm{AS}_{2}}+\mathrm{t}_{\mathrm{AH}}\right)$ is greater than $\mathrm{t}_{\mathrm{ACO}_{1}}, 1 /\left(\mathrm{t}_{\mathrm{AS}_{2}}+\mathrm{t}_{\mathrm{AH}}\right)$ becomes the limiting frequency in the data path mode unless $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)$ is less than $1 /\left(\mathrm{t}_{\mathrm{AS}_{2}}+\mathrm{t}_{\mathrm{AH}}\right)$.
When expander logic is used in the data path, add the appropriate maximum expander delay, $\mathrm{t}_{\text {EXP }}$ to t_{AS}. Determine which of $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right), 1 / \mathrm{t}_{\mathrm{ACO}_{1}}$, or $1 /\left(\mathrm{texp}+\mathrm{t}_{\mathrm{AS}}^{1}\right)$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the asynchronous configuration.
The parameter toH indicates the system compatibility of this device when driving other synchronous logic with positive input hold times, which is controlled by the same synchronous clock. If t_{OH} is greater than the minimum required input hold time of the subsequent synchronous logic, then the devices are guaranteed to function properly with a common synchronous clock under worst-case environmental and supply voltage conditions.
The parameter $\mathrm{t}_{\mathrm{AOH}}$ indicates the system compatibility of this device when driving subsequent registered logic with a positive hold time and using the same clock as the CY7C342.
In general, if $\mathrm{t}_{\mathrm{AOH}}$ is greater than the minimum required input hold time of the subsequent logic (synchronous or asynchronous) then the devices are guaranteed to function properly under worst-case environmental and supply voltage conditions, provided the clock signal source is the same. This also applies if expander logic is used in the clock signal path of the driving device, but not for the driven device. This is due to the expander logic in the second device's clock signal path adding an additional delay ($\mathrm{t}_{\mathrm{EXP}}$) causing the output data from the preceding device to change prior to the arrival of the clock signal at the following device's register.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots . .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Temperature with Power Applied $\ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Operating Range		
Maximum Junction Temperature (Under Bias) . $150^{\circ} \mathrm{C}$	Range	Ambient Temperature	$\mathrm{V}_{\mathbf{C C}}$
Supply Voltage to Ground Potential ... -2.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Maximum Power Dissipation 2500 mW	Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
DC $V_{\text {CC }}$ or $G N D$ Current . 500 mA DC Output Current, per Pin -25 mA to +25 mA	Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Case)	$5 \mathrm{~V} \pm 10 \%$

DC Input Voltage $[1]$. -2.0 V to +7.0 V

Operating Range

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level			2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level			-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Current	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	$+10$	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND		-40	+40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}[3,4]$		-30	-90	mA
I_{CC}	Power Supply Current (Standby)	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND (No Load)	Commercial		200	mA
			Military/Industrial		240	mA
$\mathrm{I}_{\mathrm{CC}_{2}}$	Power Supply Current ${ }^{[5]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND (No Load) } \\ & \mathbf{f}=1.0 \mathrm{MHz}^{[4]} \end{aligned}$	Commercial		310	mA
			Military/Industrial		320	mA

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	10	

Notes:

1. Minimum DC input is -0.3 V . During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

AC Test Loads and Waveforms ${ }^{[6]}$

Figure 1a

4. Guaranteed but not 100% tested.
5. This parameter is measured with device programmed as a 16 -bit counter in each LAB.
6. Figure $1 a$ in AC Test Load and Waveforms is used for all parameters except $t_{E R}$ and $t_{X Z}$, which is used for Figure 16 in AC Test Load and Waveforms. All external timing parameters are measured referenced to external pins of the device.

0175-10

Figure 1b

Figure 2

0175-11

Equivalent to: THÉVENIN EQUIVALENT (Commercial/Military)
OUTPUT $\mathrm{O} \longrightarrow \mathrm{Mr}^{163 \Omega} \longrightarrow 1.75 \mathrm{~V}$

External Synchronous Switching Characteristics ${ }^{[6]}$ Over Operating Range

Parameters	Description		CY7C342-30		CY7C342-35		CY7C342-40		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
tPD_{1}	Dedicated Input to Combinatorial Output Delay ${ }^{[7]}$	Com'l/Ind		30		35			ns
		Mil				35		40	
tPD_{2}	I/O Input to Combinatorial Output Delay ${ }^{[8]}$	Com'l/Ind		45		55			ns
		Mil				55		65	
tPD_{3}	Dedicated Input to Combinatorial Output Delay with Expander Delay[9]	Com'l/Ind		44		55			ns
		Mil				55		65	
tPD_{4}	I/O Input to Combinatorial Output Delay with Expander Delay [4, 10]	Com'//Ind		60		75			ns
		Mil				75		90	
tEA	Input to Output Enable Delay [4, 7]	Com'l/Ind		30		35			ns
		Mil				35		40	
ter	Input to Output Disable Delay ${ }^{[4,7]}$	Com'l/Ind		30		35			ns
		Mil				35		40	
tCO_{1}	Synchronous Clock Input to Output Delay	Com'l/Ind		16		20			ns
		Mil				20		23	
tCO_{2}	Synchronous Clock to Local Feedback to Combinatorial Output [4, 11]	Com'l/Ind		35		42			ns
		Mil				42		50	
${ }^{\text {t }}{ }_{1}$	Dedicated Input or Feedback Setup Time to Synchronous Clock Input $[7,12]$	Com'l/Ind	22		25				ns
		Mil			25		28		
t_{5}	I/O Input Setup Time to Synchronous Clock Input ${ }^{[7]}$	Com'l/Ind	39		45				ns
		Mil			45		52		
${ }^{\text {th }}$	Input Hold Time from Synchronous Clock Input ${ }^{[7]}$	Com'l/Ind	0		0				ns
		Mil			0		0		
twh	Synchronous Clock Input High Time	Com'l/Ind	10		12.5				ns
		Mil			12.5		15		
twl	Synchronous Clock Input Low Time	Com'l/Ind	10		12.5				ns
		Mil			12.5		15		
tRW	Asynchronous Clear Width ${ }^{[4,7]}$	Com'l/Ind	30		35				ns
		Mil			35		40		
trR	Asynchronous Clear Recovery Time ${ }^{[4,7]}$	Com'l/Ind	30		35				ns
		Mil			35		40		
tro	Asynchronous Clear to Registered Output Delay ${ }^{[7]}$	Com'l/Ind		30		35			ns
		Mil				35		40	
tpw	Asynchronous Preset Width ${ }^{[4,7]}$	Com'l/Ind	30		35				ns
		Mil			35		40		
tPR	Asynchronous Preset Recovery Time ${ }^{[4,7]}$	Com'l/Ind	30		35				ns
		Mil			35		40		
tPO	Asynchronous Preset to Registered Output Delay ${ }^{[7]}$	Com'l/Ind		30		35			ns
		Mil				35		40	
${ }^{\text {t }}$ CF	Synchronous Clock to Local Feedback Input ${ }^{4}$, 13]	Com'l/Ind		3		6			ns
		Mil				6		9	
tp	External Synchronous Clock Period$\left(\mathrm{t}_{\mathrm{CO}_{1}}+\mathrm{ts}_{1}\right)^{[4]}$	Com'l/Ind	38		45				ns
		Mil			45		51		

External Synchronous Switching Characteristics ${ }^{[6]}$ Over Operating Range (Continued)

Parameters	Description		CY7C342-30		CY7C342-35		CY7C342-40		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
fmax_{1}	External Feedback Maximum Frequency$\left(1 /\left(\mathrm{t}_{\mathrm{CO}_{1}}+\mathrm{t}_{\mathrm{S}_{1}}\right)\right)[4,14]$	Com'l/Ind	26.3		22.2				MHz
		Mil			22.2		19.6		
$\mathrm{f}_{\mathrm{MAX}}^{2}$	Internal Local Feedback Maximum Frequency, lesser of $1 /\left(\mathrm{t}_{1}+\mathrm{t}_{\mathrm{CF}}\right)$ or $\left(1 / \mathrm{t}_{\mathrm{CO}_{1}}\right)^{[4,15]}$	Com'l/Ind	40.0		32.2				MHz
		Mil			32.2		28.5		
$\mathrm{f}_{\mathrm{MAX}}^{3}$	Data Path Maximum Frequency, least of $\left(1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)\right),\left(1 /\left(\mathrm{t}_{\mathrm{S}_{1}}+\mathrm{t}_{\mathrm{H}}\right)\right)$ or $\left(1 / \mathrm{t}_{\mathrm{CO}_{1}}\right)^{[4,16]}$	Com'l/Ind	45.4		40.0				MHz
		Mil			40.0		33.3		
fmax_{4}	Maximum Register Toggle Frequency$\left(1 /\left(t_{W L}+t_{W H}\right)\right)^{[4,17]^{]}}$	Com'l/Ind	50.0		40.0				MHz
		Mil			40.0		33.3		
$\mathrm{tOH}^{\text {t }}$	Output Data Stable Time from Synchronous Clock Input [4, 18]	Com'1/Ind	3		3				ns
		Mil			3		3		

Notes:

7. This specification is a measure of the delay from input signal applied to a dedicated input, ($68-$ pin PLCC input pin 1, 2, 32, 34, 35, 66, or 68) to combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function.
When this note is applied to any parameter specification it indicates that the signal (data, asynchronous clock, asynchronous clear, and/or asynchronous preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.
If an input signal is applied to an I/O pin an additional delay equal to tPIA should be added to the comparable delay for a dedicated input. If expanders are used add the maximum expander delay texp to the overall delay for the comparable delay without expanders.
8. This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
9. This specification is a measure of the delay from an input signal applied to a dedicated input, (68-pin PLCC input pin 1, 2, 32, 34, 35, 36,66 , or 68) to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic.
10. This specification is a measure of the delay from an input signal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used to form the logic function and includes the worst case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
11. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all feedback is within the same LAB. This parameter is tested periodically by sampling production material.
12. If data is applied to an I/O input for capture by a macrocell register, the I/O pin input set-up time minimums should be observed. These parameters are $\mathrm{t}_{\mathrm{S}_{2}}$ for synchronous operation and $\mathrm{t}_{\mathrm{AS}_{2}}$ for asynchronous operation.
13. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array input. This delay plus the register set-up time, ${ }^{\mathrm{t}_{\mathrm{S}}}$, is the minimum internal period for an internal synchronous state machine configuration. This delay is for feedback within the same LAB. This parameter is tested periodically by sampling production material.
14. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can operate. It is assumed that all data inputs and feedback signals are applied to dedicated inputs. All feedback is assumed to be local originating within the same LAB.
15. This specification indicates the guaranteed maximum frequency at which a state machine with internal only feedback can operate. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / \mathrm{t}_{\mathrm{CO}_{1}}$.
16. This frequency indicates the maximum frequency at which the device may operate in data path mode (dedicated input pin to output pin). This assumes data input signals are applied to dedicated input pins and no expander logic is used. If any of the data inputs are I/O pins, $\mathrm{t}_{\mathrm{S}_{2}}$ is the appropriate ts for calculation.
17. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycled by a clock signal applied to the dedicated clock input pin.
18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.

External Asynchronous Switching Characteristics ${ }^{[6]}$ Over Operating Range

Parameters	Description		CY7C342-30		CY7C342-35		CY7C342-40		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
taCO_{1}	Asynchronous Clock Input to Output Delay ${ }^{[7]}$	Com'l/Ind		30		35			ns
		Mil				35		45	
taCO_{2}	Asynchronous Clock Input to Local Feedback to Combinatorial Output ${ }^{[19]}$	Com'l/Ind		46		55			ns
		Mil				55		64	
taS_{1}	Dedicated Input or Feedback Setup Time to Asynchronous Clock Input ${ }^{[7]}$	Com'l/Ind	10		10				ns
		Mil			10		10		
$\mathrm{t}_{\mathrm{AS}}{ }^{\text {a }}$	I/O Input Setup Time to Asynchronous Clock Input ${ }^{[7]}$	Com'l/Ind	27		30				ns
		Mil			30		33		
$\mathrm{t}_{\text {AH }}$	Input Hold Time from Asynchronous Clock Input ${ }^{[7]}$	Com'l/Ind	15		15				ns
		Mil			15		15		
$\mathrm{t}_{\text {AWH }}$	Asynchronous Clock Input High Time ${ }^{[7]}$	Com'l/Ind	25		30				ns
		Mil			30		35		
$t_{\text {AWL }}$	Asynchronous Clock Input Low Time ${ }^{[7]}$	Com'l/Ind	25		30				ns
		Mil			30		35		
$\mathrm{t}_{\mathrm{ACF}}$	Asynchronous Clock to Local Feedback Input ${ }^{[4,20]}$	Com'l/Ind		18		22			ns
		Mil				22		26	
t_{AP}	External Asynchronous Clock Period $\left(\mathrm{t}_{\mathrm{ACO}_{1}}+\mathrm{t}_{\mathrm{AS}_{1}}\right)$ or $\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)^{[4]}$	Com'l/Ind	50		60				ns
		Mil			60		70		
fmaxa_{1}	External Feedback Maximum Frequency in Asynchronous Mode ($\left.1 / \mathrm{t}_{\mathrm{AP}}\right)^{[4,21]}$	Com'l/Ind	20		16.6				MHz
		Mil			16.6		14.2		
$\mathrm{f}_{\mathrm{MAXA}_{2}}$	Maximum Internal Asynchronous Frequency $[4,24]$	Com'l/Ind	20		16.6				MHz
		Mil			16.6		14.2		
$\mathrm{f}_{\text {MAXA }}{ }^{\text {a }}$	Data Path Maximum Frequency in Asynchronous Model ${ }^{[4,23]}$	Com'l/Ind	20		16.6				MHz
		Mil			16.6		14.2		
fmaXA_{4}	Maximum Asynchronous Register Toggle Frequency $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)^{[4,22]}$	Com'l/Ind	20		16.6				MHz
		Mil			16.6		14.2		
$\mathrm{t}_{\mathrm{AOH}}$	Output Data Stable Time from Asynchronous Clock Input ${ }^{[4,25]}$	Com'l/Ind	15		15				ns
		Mil			15		15		

Notes:

19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input. The clock signal is applied to the dedicated clock input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production material.
20. This specification is a measure of the delay associated with the internal register feedback path for an asynchronous clock to LAB logic array input. This delay plus the asynchronous register setup time, ${ }^{t} S_{1}$, is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay is for feedback within the same LAB, assumes no expander logic in the clock path and assumes that the clock input signal is applied to a dedicated input pin. This parameter is tested periodically by sampling production material.
21. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that all data inputs, clock inputs, and feedback signals are applied to dedicated inputs and that no expander logic is employed in the clock signal path or data path.
22. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode by a clock signal applied to an external dedicated input pin.
23. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined by the least of $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right), 1 /\left(\mathrm{t}_{\mathrm{AS}}{ }_{1}+\right.$ t_{AH}) or $1 / \mathrm{t}_{\mathrm{ACO}}^{1}$. It asssumes data and clock input signals are applied to dedicated input pins and no expander logic is used.
24. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal only feedback can operate. This parameter is determined by the lesser of $\left(1 /\left(t_{\mathrm{ACF}}+t_{\mathrm{AS}}\right)\right)$ or $\left(1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)\right)$. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / t_{\mathrm{ACO}}^{1}$.
This specification assumes no expander logic is utilized, all data inputs and clock inputs are applied to dedicated inputs, and all state feedback is within a single LAB. This parameter is tested periodically by sampling production material.
25. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input applied to an external dedicated input pin.

Switching Waveforms

External Combinatorial

External Synchronous

External Asynchronous

Typical Internal Switching Characteristics Over Operating Range

Parameters	Description		CY7C342-30		CY7C342-35		CY7C342-40		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
t_{IN}	Dedicated Input Pad and Buffer Delay	Com'l/Ind		7		9			ns
		Mil				9		11	
t_{10}	I/O Input Pad and Buffer Delay	Com'l/Ind		6		9			ns
		Mil				9		12	
texp	Expander Array Delay	Com'l/Ind		14		20			ns
		Mil				20		25	
${ }^{\text {t }}$ LAD	Logic Array Data Delay	Com'l/Ind		14		16			ns
		Mil				16		18	
${ }^{\text {L }}$ LAC	Logic Array Control Delay	Com'l/Ind		12		13			ns
		Mil				13		14	
tod	Output Buffer and Pad Delay	Com'l/Ind		5		6			ns
		Mil				6		7	
tzx	Output Buffer Enable Delay [26]	Com'l/Ind		11		13			ns
		Mil				13		15	
${ }_{\text {t }} \mathrm{z}$	Output Buffer Disable Delay	Com'l/Ind		11		13			ns
		Mil				13		15	
$\mathrm{t}_{\text {RSU }}$	Register Setup Time Relative to Clock Signal at Register	Com'l/Ind	8		10				ns
		Mil			10		12		
$t_{\text {RH }}$	Register Hold Time Relative to Clock Signal at Register	Com'l/Ind	8		10				ns
		Mil			10		12		
${ }^{\text {t }}$ LATCH	Flow Through Latch Delay	Com'l/Ind		4		4			ns
		Mil				4		4	
$t_{\text {R }}$	Register Delay	Com'l/Ind		2		2			ns
		Mil				2		2	
tcomb	Transparent Mode Delay ${ }^{[27]}$	Com'1/Ind		4		4			ns
		Mil				4		4	
${ }^{\text {t }} \mathrm{CH}$	Clock High Time	Com'l/Ind	10		12.5				ns
		Mil			12.5		15		
${ }^{\text {t }} \mathrm{CL}$	Clock Low Time	Com'l/Ind	10		12.5				ns
		Mil			12.5		15		
${ }_{\text {I IC }}$	Asynchronous Clock Logic Delay	Com'l/Ind		16		18			ns
		Mil				18		20	
tics	Synchronous Clock Delay	Com'l/Ind		2		3			ns
		Mil				3		4	
${ }_{\text {tr }}$	Feedback Delay	Com'l/Ind		1		2			ns
		Mil				2		3	
tPre	Asynchronous Register Preset Time	Com'l/Ind		6		7			ns
		Mil				7		8	
tCLR	Asynchronous Register Clear Time	Com'l/Ind		6		7			ns
		Mil				7		8	
tPCW	Asynchronous Preset and Clear Pulse Width	Com'l/Ind	6		7				ns
		Mil			7		8		
${ }_{\text {tPCR }}$	Asynchronous Preset and Clear Recovery Time	Com'l/Ind	6		7				ns
		Mil			7		8		
${ }^{\text {tPIA }}$	Programmable Interconnect Array Delay Time	Com'1/Ind		16		20			ns
		Mil				20		24	

Notes:

26. Sample tested only for an output change of 500 mV .
27. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial operation.

Switching Waveforms (Continued)

Internal Combinatorial

Internal Asynchronous

Internal Synchronous

Switching Waveforms (Continued)

Internal Synchronous

0175-19

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CY7C342-30HC/HI	H81	Commercial/ Industrial
	CY7C342-30JC/JI	J81	
	CY7C342-30RC/RI	R68	
	CY7C342-30GC/GI	G68	
35	CY7C342-35HC/HI	H81	Commercial/ Industrial
	CY7C342-35JC/JI	J81	
	CY7C342-35RC/RI	R68	
	CY7C342-35GC/GI	G68	
	CY7C342-35HMB	H81	Military
	CY7C342-35RMB	R68	
40	CY7C342-40HC/HI	H81	Commercial/ Industrial
	CY7C342-40JC/JI	J81	
	CY7C342-40RC/RI	R68	
	CY7C342-40GC/GI	G68	
	CY7C342-40HMB	H81	Military
	CY7C342-40RMB	R68	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CCl}}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
tPD1	7,8,9,10,11
tPD2	7,8,9,10,11
tPD3	7,8,9,10,11
t_{CO}	7,8,9,10,11
tS 1	7,8,9,10,11
$\mathrm{t}_{\mathbf{S} 2}$	7,8,9,10,11
t_{H}	7,8,9,10,11
twh	7,8,9,10,11
twL	7,8,9,10,11
tro	7,8,9,10,11
tpo	7,8,9,10,11
$\mathrm{taCO}^{\text {a }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{ACO}}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{AS} 1}$	7,8,9,10,11
$\mathrm{t}_{\text {AS2 }}$	7,8,9,10,11
t_{AH}	7,8,9,10,11
tawh	7,8,9,10,11
$t_{\text {AWL }}$	7,8,9,10,11

Document \# : 38-00119-A

Features

- 64 MAX macrocells in 4 LABs
- 8 dedicated inputs, 28 threestateable, bidirectional I/O pins
- Programmable interconnect array
- Available in 44-pin HLCC, PLCC

Functional Description

The CY7C343 is a high-performance, high-density erasable programmable logic device, available in 44-pin PLCC and HLCC packages.
The CY7C343 contains 64 highly flexible macrocells and 128 expander product terms. These resources are divided into four Logic Array Blocks (LABs) connected through the Programmable Interconnect Array (PIA). There are

8 input pins, one of which doubles as a clock pin if needed. The CY7C343 also has 28 I/O pins, each connected to a macrocell (six for LABs A and C, and eight for LABs B and D). The remaining 36 macrocells are used for embedded logic.
The CY7C343 is excellent for a wide range of applications both synchronous and asynchronous.

Logic Block Diagram

Pin Configuration

HLCC

 Top View

0185-1

Selection Guide

		$\mathbf{7 C 3 4 3 - 3 0}$	$\mathbf{7 C 3 4 3 - 3 5}$	$\mathbf{7 C 3 4 3 - 4 0}$
Maximum Access Time (ns)		30	35	40
Maximum Operating Current (mA)	Commercial	135	135	
	Military		225	225
	Industrial	225	225	225
Maximum Standby Current (mA)	Commercial	120	120	
	Military		200	200
	Industrial	200	200	200

MAX and MAX + PLUS are registered trademarks of Altera Corporation.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
CIN $_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	10	

Notes:

1. Minimum DC input is -0.3 V . During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

2A. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Measured with device programmed as a 16 -bit counter in each LAB. This parameter is tested periodically by sampling production material.
4. Part (a) in AC Test Load and Waveforms is used for all parameters except $t_{E R}$ and $t_{X Z}$, which is used for part (b) in AC Test Load and Waveforms. All external timing parameters are measured referenced to external pins of the device.

AC Test Loads and Waveforms ${ }^{[4]}$

Figure 1a

0185-4
Figure 1b

Input Pulses

Figure 2

Equivalent to: THÉVENIN EQUIVALENT (Commercial/Military)

CY7C343 Timing Model

Programmable Interconnect Array

The Programmable Interconnect Array (PIA) solves interconnect limitations by routing only the signals needed by each logic array block. The inputs to the PIA are the outputs of every macrocell within the device and the I/O pin feedback of every pin on the device.
Unlike masked or programmable gate arrays, which induce variable delay dependent on routing, the PIA has a fixed delay. This eliminates undesired skews among logic signals, which may cause glitches in internal or external logic. The fixed delay, regardless of programmable interconnect array configuration, simplifies design by assuring that internal signal skews or races are avoided. The result is ease of design implementation, often in a single pass, without the multiple internal logic placement and routing iterations required for a programmable gate array to achieve design timing objectives.

Timing Delays

Timing delays within the CY7C343 may be easily determined using MAX + PLUSTM software or by the model shown in Figure 3. The CY7C343 has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information the MAX + PLUS software provides a timing simulator.

Design Recommendations

Operation of the devices described herein with conditions above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure to absolute maximum ratings conditions for extended periods of time may affect device reliability. The CY7C343 contains circuitry to protect device pins from high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages.
For proper operation, input and output pins must be constrained to the range GND ($\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}$) V_{CC}. Unused inputs must always be tied to an appropriate logic level (either V_{CC} or GND). Each set of V_{CC} and GND pins must be connected together directly at the device. Power supply decoupling capacitors of at least $0.2 \mu \mathrm{~F}$ must be connected between $V_{C C}$ and GND. For the most effective decoupling, each V_{CC} pin should be separately decoupled to GND, directly at the device. Decoupling capacitors should have good frequency response, such as monolithic ceramic types.

Timing Considerations

Unless otherwise stated, propagation delays do not include expanders. When using expanders add the maximum expander delay texp to the overall delay. Similarly, there is an additional tPIA delay for an input from an I/O pin when compared to a signal from a straight input pin.
When calculating synchronous frequencies, use $t_{S_{1}}$ if all inputs are on the input pins. $\mathrm{t}_{\mathrm{S}_{2}}$ should be used if data is applied at an I/O pin. If $\mathrm{t}_{\mathrm{S}_{2}}$ is greater than $\mathrm{t}_{\mathrm{CO}_{1}}$, $1 / \mathrm{t}_{\mathrm{S}_{2}}$ becomes the limiting frequency in the data path mode unless $1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)$ is less than $1 / \mathrm{t}_{\mathrm{S}_{2}}$.
When expander logic is used in the data path, add the appropriate maximum expander delay, $\mathrm{t}_{\mathrm{EXP}}$ to t_{S}. Determine which of $1 /\left(\mathrm{t}_{\mathrm{wH}}+\mathrm{t}_{\mathrm{wL}}\right), 1 / \mathrm{t}_{\mathrm{CO}}$, or $1 /\left(\mathrm{t}_{\mathrm{EXP}}+\mathrm{t}_{\mathrm{S}_{1}}\right)$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the synchronous configuration.
When calculating external asynchronous frequencies, use t_{AS} if all inputs are on dedicated input pins. If any data is applied to an I / O pin, $\mathrm{t}_{\mathrm{AS}}^{2}$ must be used as the required set up time. If $\left(\mathrm{t}_{\mathrm{AS}_{2}}+\mathrm{t}_{\mathrm{AH}}\right)$ is greater than $\mathrm{t}_{\mathrm{ACO}_{1}}, 1 /\left(\mathrm{t}_{\mathrm{AS}_{2}}+\right.$ $\left.\mathrm{t}_{\mathrm{AH}}\right)$ becomes the limiting frequency in the data path mode unless $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)$ is less than $1 /\left(\mathrm{t}_{\mathrm{AS}_{2}}+\mathrm{t}_{\mathrm{AH}}\right)$.
When expander logic is used in the data path, add the appropriate maximum expander delay, $\mathrm{t}_{\mathrm{EXP}}$ to $\mathrm{t}_{\mathrm{AS}_{1}}$. Determine which of $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right), 1 / \mathrm{t}_{\mathrm{ACO}}^{1} 10$, or
$1 /\left(\mathrm{t}_{\mathrm{EXP}}+\mathrm{t}_{\mathrm{AS}}\right)$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the asynchronous configuration.
The parameter t_{OH} indicates the system compatibility of this device when driving other synchronous logic with positive input hold times, which is controlled by the same synchronous clock. If $\mathrm{tOH}_{\mathrm{OH}}$ is greater than the minimum required input hold time of the subsequent synchronous logic, then the devices are guaranteed to function properly with a common synchronous clock under worst-case environmental and supply voltage conditions.
The parameter $\mathrm{t}_{\mathrm{AOH}}$ indicates the system compatibility of this device when driving subsequent registered logic with a positive hold time and using the same clock as the CY7C343.
In general, if $\mathrm{t}_{\mathrm{AOH}}$ is greater than the minimum required input hold time of the subsequent logic (synchronous or asynchronous) then the devices are guaranteed to function properly under worst-case environmental and supply voltage conditions, provided the clock signal source is the same. This also applies if expander logic is used in the clock signal path of the driving device, but not for the driven device. This is due to the expander logic in the second device's clock signal path adding an additional delay ($t_{\text {EXP }}$) causing the output data from the preceding device to change prior to the arrival of the clock signal at the following device's register.

External Synchronous Switching Characteristics ${ }^{[4]}$ Over Operating Range

Parameters	Description		CY7C343-30		CY7C343-35		CY7C343-40		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
${ }^{\text {P }}{ }^{\text {d }} 1$	Dedicated Input to Combinatorial Output Delay ${ }^{[5]}$	Com'l \& Ind		30		35			ns
		Mil				35		40	
${ }^{\text {P }}{ }^{\text {d }}$	I/O Input to Combinatorial Output Delay ${ }^{[6]}$	Com'l \& Ind		45		55			ns
		Mil				55		65	
tPD_{3}	Dedicated Input to Combinatorial Output Delay with Expander Delay ${ }^{[7]}$	Com'l \& Ind		47		55			ns
		Mil				55		62	
tPD_{4}	I/O Input to Combinatorial Output Delay with Expander Delay ${ }^{[8]}$	Com'1 \& Ind		64		72			ns
		Mil				72		80	
$t_{\text {EA }}$	Input to Output Enable Delay ${ }^{[5]}$	Com'l \& Ind		30		35			ns
		Mil				35		40	
$t_{\text {ER }}$	Input to Output Disable Delay ${ }^{[5]}$	Com'l \& Ind		30		35			ns
		Mil				35		40	
${ }^{\mathrm{C}} \mathrm{CO}_{1}$	Synchronous Clock Input to Output Delay	Com'l \& Ind		16		20			ns
		Mil				20		23	
${ }^{\mathbf{t} \mathrm{CO}_{2}}$	Synchronous Clock to Local Feedback to Combinatorial Output ${ }^{[9]}$	Com'l \& Ind		40		45			ns
		Mil				45		50	
$\mathrm{t}_{\mathrm{S}_{1}}$	Dedicated Input or Feedback Setup Time to Synchronous Clock Input $[5,10]$	Com'l \& Ind	22		25				ns
		Mil			25		28		
${ }^{\text {t }}{ }_{2}$	I/O Input Setup Time to Synchronous Clock Input ${ }^{5]}$	Com'l \& Ind	39		42				ns
		Mil			42		45		
t_{H}	Input Hold Time from Synchronous Clock Input ${ }^{[5]}$	Com'l \& Ind	0		0				ns
		Mil			0		0		
${ }^{\text {twh }}$	Synchronous Clock Input High Time	Com'l \& Ind	10		12.5				ns
		Mil			12.5		15		
${ }^{\text {twi }}$	Synchronous Clock Input Low Time	Com'l \& Ind	10		12.5				ns
		Mil			12.5		15		
t_{RW}	Asynchronous Clear Width ${ }^{[5]}$	Com'l \& Ind	30		35				ns
		Mil			35		40		
t_{RR}	Asynchronous Clear Recovery Time ${ }^{[5]}$	Com'l \& Ind	30		35				ns
		Mil			35		40		
t_{RO}	Asynchronous Clear to Registered Output Delay ${ }^{[5]}$	Com'l \& Ind		30		35			ns
		Mil				35		40	
tpw	Asynchronous Preset Width ${ }^{\text {[5] }}$	Com'l \& Ind	30		35				ns
		Mil			35		40		
$t_{\text {PR }}$	Asynchronous Preset Recovery Time ${ }^{[5]}$	Com'l \& Ind	30		35				ns
		Mil			35		40		
t_{PO}	Asynchronous Preset to Registered Output Delay ${ }^{[5]}$	Com'l \& Ind		30		35			ns
		Mil				35		40	
t_{CF}	Synchronous Clock to Local Feedback Input ${ }^{[11]}$	Com'l \& Ind		3		6			ns
		Mil				6		9	
t_{P}	External Synchronous Clock Period $\left(\mathrm{t}_{\mathrm{CO}_{1}}+\mathrm{t}_{\mathrm{S}_{1}}\right)$	Com'l \& Ind	37		43				ns
		Mil			45		51		

External Synchronous Switching Characteristics ${ }^{[4]}$ Over Operating Range (Continued)

Parameters	Description		CY7C343-30		CY7C343-35		CY7C343-40		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{f}_{\mathrm{MAX}_{1}}$	External Maximum Frequency$\left(1 /\left(\mathrm{t}_{\mathrm{CO}}^{1}+\mathrm{t}_{\mathrm{S}_{1}}\right)\right)^{[12]}$	Com'l \& Ind	27.0		23.2				MHz
		Mil			22.2		19.6		
$\mathrm{f}_{\mathrm{MAX}_{2}}$	Internal Local Feedback Maximum Frequency, lesser of $1 /\left(\mathrm{t}_{\mathrm{s}_{1}}+\mathrm{t}_{\mathrm{CF}}\right)$ or $\left(1 / \mathrm{t}_{\mathrm{CO}_{1}}\right)^{[13]}$	Com'l \& Ind	40.0		32.2				MHz
		Mil			33.3		28.5		
fmax_{3}	Data Path Maximum Frequency, least of $\left(1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)\right),\left(1 /\left(\mathrm{t}_{\mathrm{s}_{1}}+\mathrm{t}_{\mathrm{H}}\right)\right)$ or $\left(1 / \mathrm{t}_{\mathrm{CO}_{1}}\right)^{[14]}$	Com'l \& Ind	45.4		40.0				MHz
		Mil			40.0		30.0		
$\mathrm{f}_{\mathrm{MAX}}^{4}$	Maximum Register Toggle Frequency$1 /\left(t_{W L}+t_{W H}\right)^{[15]}$	Com'l \& Ind	50.0		40.0				MHz
		Mil			40.0		30.0		
toh	Output Data Stable Time from Synchronous Clock Input ${ }^{[16]}$	Com'l \& Ind	3		3				ns
		Mil			3		3		

Notes:
5. This specification is a measure of the delay from input signal applied to a dedicated input, (44-pin PLCC input pin 9, 11, 12, 13, 31, 33, 34 , or 35) to combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function. When this note is applied to any parameter specification it indicates that the signal (data, asynchronous clock, asynchronous clear, and/or asynchronous preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.
If an input signal is applied to an I/O pin an additional delay equal to tPIA should be added.
If expanders are used add the maximum expander delay texp to the overall delay.
6. This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
7. This specification is a measure of the delay from an input signal applied to a dedicated input, (44-pin PLCC input pin 9, 11, 12, 13, $31,33,34$, or 35) to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
8. This specification is a measure of the delay from an input signal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used to form the logic function and includes the worst case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
9. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all feedback is within the same LAB. This parameter is tested periodically by sampling production material.
10. If data is applied to an I/O input for capture by a macrocell register, the I/O pin input set-up time minimums should be observed. These parameters are $t_{S_{1}}$ for synchronous operation and $t_{A_{2}}$ for asynchronous operation.
11. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array input. This delay plus the register set-up time, t_{S}, is the minimum internal period for an internal synchronous state machine configuration. This delay is for feedback within the same
LAB. This parameter is tested periodically by sampling production material.
12. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can operate. It is assumed that all data inputs and feedback signals are applied to dedicated inputs.
13. This specification indicates the guaranteed maximum frequency at which a state machine with internal only feedback can operate. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / \mathrm{t}_{\mathrm{CO}_{1}}$. All feedback is assumed to be local, originating within the same LAB.
14. This frequency indicates the maximum frequency at which the device may operate in data path mode. This delay assumes data input signals are applied to dedicated inputs and no expander logic is used.
15. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycled.
16. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.

External Asynchronous Switching Characteristics ${ }^{[4]}$ Over Operating Range

Parameters	Description		CY7C343-30		CY7C343-35		CY7C343-40		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
taCO_{1}	Asynchronous Clock Input to Output Delay ${ }^{[5]}$	Com'l \& Ind		30		35			ns
		Mil		30		35		45	
taCO_{2}	Asynchronous Clock Input to Local Feedback to Combinatorial Output ${ }^{[17]}$	Com'l \& Ind		50		60			ns
		Mil				60		70	
taS_{1}	Dedicated Input or Feedback Setup Time to Asynchronous Clock Input ${ }^{[5]}$	Com'l \& Ind	10		10				ns
		Mil			10		10		
${ }^{\text {A }} \mathrm{S}_{2}$	I/O Input Setup Time to Asynchronous Clock Input ${ }^{[5]}$	Com'l \& Ind	27		30				ns
		Mil			30		33		
$\mathrm{t}_{\text {AH }}$	Input Hold Time from Asynchronous Clock Input[5]	Com'l \& Ind	15		15				ns
		Mil			15		15		
$\mathrm{t}_{\text {AWH }}$	Asynchronous Clock Input High Time ${ }^{[5]}$	Com'l \& Ind	25		30				ns
		Mil			30		35		
$\mathrm{t}_{\text {AWL }}$	Asynchronous Clock Input Low Time ${ }^{[5]}$	Com'l \& Ind	25		30				ns
		Mil			30		35		
$\mathrm{t}_{\mathrm{ACF}}$	Asynchronous Clock to Local Feedback Input ${ }^{[18]}$	Com'l \& Ind		18		22			ns
		Mil				22		26	
$\mathrm{t}_{\mathrm{A}} \mathrm{P}$	External Asynchronous Clock Period $\left(\mathrm{t}_{\mathrm{ACO}_{1}}+\mathrm{t}_{\mathrm{AS}_{1}}\right)$ or $\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)$	Com'l \& Ind	50		60				ns
		Mil			60		70		
fmaxa_{1}	External Maximum Frequency in Asynchronous Mode ($1 / \mathrm{t}_{\mathrm{AP}}$) ${ }^{[19]}$	Com'l \& Ind	20		16.6				MHz
		Mil			16.6		14.2		
$\mathrm{f}_{\mathrm{MAXA}}^{2}$	Maximum Internal Asynchronous Frequency ${ }^{[22]}$	Com'l \& Ind	20		16.6				MHz
		Mil			16.6		14.2		
fmaXA_{3}	Data Path Maximum Frequency in Asynchronous Mode ${ }^{[21]}$	Com'l \& Ind	20		16.6				MHz
		Mil			16.6		14.2		
fmaxa_{4}	Maximum Asynchronous Register Toggle Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)\right)^{[20]}$	Com'l \& Ind	20		16.6				MHz
		Mil			16.6		14.2		
$\mathrm{t}_{\mathrm{AOH}}$	Output Data Stable Time from Asynchronous Clock Input ${ }^{[23]}$	Com'l \& Ind	15		15				ns
		Mil			15		15		

Notes:

17. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input. The clock signal is applied to a dedicated input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production material.
18. This specification is a measure of the delay associated with the internal register feedback path for an asynchronous clock to LAB logic array input. This delay plus the asynchronous register setup time, $t_{A_{1}}$, is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay is for feedback within the same LAB, assumes no expander logic in the clock path and assumes that the clock input signal is applied to a dedicated input pin. This parameter is tested periodically by sampling production material.
19. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that all data inputs, clock inputs, and feedback signals are applied to dedicated inputs and that no expander logic is employed in the clock signal path or data path.
20. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode by a clock signal applied to an external dedicated input pin.
21. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined by the least of $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right), 1 /\left(\mathrm{t}_{\mathrm{AS}_{1}}+\right.$ t_{AH}) or $1 / \mathrm{t}_{\mathrm{ACO}_{1}}$. It asssumes data and clock input signals are applied to dedicated input pins and no expander logic is used.
22. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal only feedback can operate. This parameter is determined by the lesser of $\left(1 /\left(t_{A C F}+t_{A S}\right)\right)$ or $\left(1 /\left(t_{A W H}+t_{A W L}\right)\right)$. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / t_{\mathrm{ACO}}^{1}$.
This specification assumes no expander logic is utilized, all data inputs and clock inputs are applied to dedicated inputs, and all state feedback is within a single LAB. This parameter is tested periodically by sampling production material.
23. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input.

Switching Waveforms

External Combinatorial

External Synchronous

External Asynchronous

Internal Switching Characteristics ${ }^{[1]}$ Over Operating Range

Parameters	Description		CY7C343-30		CY7C343-35		CY7C343-40		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {IN }}$	Dedicated Input Pad and Buffer Delay	Com'1 \& Ind		7		9			ns
		Mil				9		11	
${ }_{\text {t }} \mathrm{O}$	I/O Input Pad and Buffer Delay	Com'l \& Ind		5		7			ns
		Mil				7		9	
texp	Expander Array Delay	Com'l \& Ind		14		20			ns
		Mil				20		25	
tLAD	Logic Array Data Delay	Com'l \& Ind		14		16			ns
		Mil				16		18	
${ }_{\text {t }}$ LAC	Logic Array Control Delay	Com'l \& Ind		12		13			ns
		Mil				13		14	
${ }^{\text {tod }}$	Output Buffer and Pad Delay	Com'l \& Ind		5		6			ns
		Mil				6		7	
tzx	Output Buffer Enable Delay ${ }^{[24]}$	Com' \& Ind		11		13			ns
		Mil				13		15	
${ }_{\text {tx }}$	Output Buffer Disable Delay	Com'l \& Ind		11		13			ns
		Mil				13		15	
${ }^{\text {tr SU }}$	Register Setup Time Relative to Clock Signal at Register	Com'l \& Ind	8		8				ns
		Mil			8		8		
tri	Register Hold Time Relative to Clock Signal at Register	Com'l \& Ind	8		12				ns
		Mil			12		14		
${ }^{\text {t LatCH }}$	Flow Through Latch Delay	Com'l \& Ind		4		4			ns
		Mil				4		4	
trd	Register Delay	Com'l \& Ind		2		2			ns
		Mil				2		2	
tСом	Transparent Mode Delay ${ }^{[25]}$	Com'l \& Ind		4		4			ns
		Mil				4		4	
${ }^{\text {t }} \mathrm{CH}$	Clock High Time	Com'l \& Ind	10		12.5				ns
		Mil			12.5		15		
${ }^{\text {t }}$ CL	Clock Low Time	Com'1 \& Ind	10		12.5				ns
		Mil			12.5		15		

Notes:

24. Sample tested only for an output change of 500 mV .
25. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial operation.

Internal Switching Characteristics ${ }^{[19]}$ Over Operating Range (Continued)

Parameters	Description		CY7C343-30		CY7C343-35		CY7C343-40		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
t_{IC}	Asynchronous Clock Logic Delay	Com'l \& Ind		16		18			ns
		Mil				18		20	
$\mathrm{t}_{\text {ICS }}$	Synchronous Clock Delay	Com'l \& Ind		2		3			ns
		Mil				3		4	
t_{FD}	Feedback Delay	Com'l \& Ind		1		2			ns
		Mil				2		3	
tPRE	Asynchronous Register Preset Time	Com'l \& Ind		6		7			ns
		Mil				7		8	
${ }^{\text {t }}$ CLR	Asynchronous Register Clear Time	Com'l \& Ind		6		7			ns
		Mil				7		8	
tpCW	Asynchronous Preset and Clear Pulse Width	Com'l \& Ind	6		7				ns
		Mil			7		8		
${ }^{\text {tPCR }}$	Asynchronous Preset and Clear Recovery Time	Com'l \& Ind	6		7				ns
		Mil			7		8		
tPIA	Programmable Interconnect Array Delay Time	Com'l \& Ind		16		20			ns
		Mil				20		24	

Switching Waveforms

Internal Combinatorial

Internal Asynchronous

Internal Synchronous

Switching Waveforms (Continued)

Output Mode

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
	CY7C343-30HC/HI	H67	Commercial/ Industrial
	CY7C343-30JC/JI	J67	
35	CY7C343-35HC/HI	H67	Commercial/

Document \#: 38-00128

Features

- High-performance, high-density replacement for TTL, 74HC, and custom logic
- 32 macrocells, 64 expander product terms in one LAB
- 8 dedicated inputs, 16 I/O pins
- 28-pin 300-mil DIP, Cerdip or 28-pin HLCC, PLCC package

Functional Description

Available in a 28 -pin $300-\mathrm{mil}$ DIP or windowed J-leaded ceramic chip
carrier (HLCC), the CY7C344 represents the densest EPLD of this size. 8 dedicated inputs and 16 bi-directional I/O pins communicate to one logic array block. In the CY7C344 LAB there are 32 macrocells and 64 expander product terms. When an I/O macrocell is used as an input, two expanders are used to create an input path. Even if all of the I/O pins are driven by macrocell registers, there are still 16 "buried" registers available. All inputs, macrocells, and I/O pins are interconnected
within the LAB.
The speed and density of the CY7C344 makes it a natural for all types of applications. With just this one device, the designer can implement complex state machines, registered logic, and combinatorial "glue" logic, without using multiple chips. This architectural flexibility allows the CY7C344 to replace multi-chip TTL solutions, whether they are synchronous, asynchronous, combinatorial, or all three.

Logic Block Diagram ${ }^{[1]}$

0184-1

Pin Configurations

HLCC

0184-2
Cerdip
Top View
INPUT-1

0184-3

Selection Guide

		$\mathbf{7 C 3 4 4 - 2 0}$	$\mathbf{7 C 3 4 4 - 2 5}$	$\mathbf{7 C 3 4 4 - 3 5}$
Maximum Access Time (ns) Maximum Operating Current (mA)			Commercial	20

[^37]MAX and MAX + PLUS are trademarks of Altera Corporation.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature
Ambient Temperature with
Power Applied .$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

DC Input Voltage ${ }^{[2]}$
2.0 V to +7.0 V

Maximum Junction Temperature
(Under Bias) $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
.................. $150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -2.0 V to +7.0 V
Maximum Power Dissipation 1500 mW
DC V ${ }_{\text {CC }}$ or GND Current 500 mA
DC Output Current, per Pin -25 mA to +25 mA

DC Program Voltage. -2.0 V to +13.5 V
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Case)	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range[5]

Capacitance

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	10	

Notes:
2. Minimum DC input is -0.3 V . During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. Guaranteed but not 100% tested.
5. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
6. Measured with device programmed as a 16 -bit counter
7. Figure la in AC Test Load and Waveforms is used for all parameters except ter and tXZ, which is used for Figure $1 b$ in AC Test Load and Waveforms. All external timing parameters are measured referenced to external pins of the device.

AC Test Loads and Waveforms ${ }^{[7]}$

Figure 2

Equivalent to: THÉVENIN EQUIVALENT (Commercial/Military)

CY7C344 Timing Model

0184-4

Timing Delays

Timing delays within the CY7C344 may be easily determined using MAX + PLUSTM software or by the model shown in Figure 3. The CY7C344 has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information the MAX + PLUS software provides a timing simulator.

Design Recommendations

Operation of the devices described herein with conditions above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure to absolute maximum ratings conditions for extended periods of time may affect device reliability. The CY7C344 contains circuitry to protect device pins from high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages.
For proper operation, input and output pins must be constrained to the range GND ($\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\mathrm{OUT}}$) V_{CC}. Unused inputs must always be tied to an appropriate logic level (either V_{CC} or GND). Each set of V_{CC} and GND pins must be connected together directly at the device. Power supply decoupling capacitors of at least $0.2 \mu \mathrm{~F}$ must be connected between $V_{C C}$ and GND. For the most effective decoupling, each $V_{C C}$ pin should be separately decoupled.

Timing Considerations

Unless otherwise stated, propagation delays do not include expanders. When using expanders add the maximum expander delay texp to the overall delay.
When calculating synchronous frequencies, use $t_{S_{1}}$ if all inputs are on the input pins. $\mathrm{t}_{\mathrm{S}_{2}}$ should be used if data is applied at an I/O pin. If $\mathrm{t}_{\mathrm{S}_{2}}$ is greater than $\mathrm{t}_{\mathrm{CO}_{1}}$, $1 / \mathrm{t}_{2}$ becomes the limiting frequency in the data path mode unless $1 /(\mathrm{twH}+\mathrm{twL})$ is less than $1 / \mathrm{t}_{\mathrm{S}_{2}}$.
When expander logic is used in the data path, add the appropriate maximum expander delay, tEXP to $\mathrm{t}_{\mathrm{S}_{1}}$. Determine which of $1 /\left(\mathrm{twH}_{\mathrm{W}}+\mathrm{twL}_{\mathrm{W}}\right), 1 / \mathrm{t}_{\mathrm{CO}_{1}}$, or $1 /\left(\mathrm{t}_{\mathrm{EXP}}+\mathrm{t}_{\mathrm{S}_{1}}\right)$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the synchronous configuration.
When calculating external asynchronous frequencies, use t_{AS} if all inputs are on dedicated input pins. If any data is applied to an I / O pin, $\mathrm{t}_{\mathrm{AS}}^{2}$ must be used as the required set up time. If $\left(\mathrm{t}_{\mathrm{AS}_{2}}+\mathrm{t}_{\mathrm{AH}}\right)$ is greater than $\mathrm{t}_{\mathrm{ACO}_{1}}, 1 /\left(\mathrm{t}_{\mathrm{AS}_{2}}+\right.$ $t_{A H}$) becomes the limiting frequency in the data path mode unless $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)$ is less than $1 /\left(\mathrm{t}_{\mathrm{AS}_{2}}+\mathrm{t}_{\mathrm{AH}}\right)$.
When expander logic is used in the data path, add the appropriate maximum expander delay, $\mathrm{t}_{\mathrm{EXP}}$ to t_{AS}. Determine which of $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right), 1 / \mathrm{t}_{\mathrm{ACO}}$, or $1 /\left(\mathrm{t}_{\mathrm{EXP}}+\mathrm{t}_{\mathrm{AS}}^{1}\right)$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the asynchronous configuration.

S (Continued)
The parameter toH indicates the system compatibility of this device when driving other synchronous logic with positive input hold times, which is controlled by the same synchronous clock. If toH is greater than the minimum required input hold time of the subsequent synchronous logic, then the devices are guaranteed to function properly with a common synchronous clock under worst-case environmental and supply voltage conditions.
The parameter $\mathrm{t}_{\mathrm{AOH}}$ indicates the system compatibility of this device when driving subsequent registered logic with a positive hold time and using the same clock as the CY7C344.

In general, if $\mathrm{t}_{\mathrm{AOH}}$ is greater than the minimum required input hold time of the subsequent logic (synchronous or asynchronous) then the devices are guaranteed to function properly under worst-case environmental and supply voltage conditions, provided the clock signal source is the same. This also applies if expander logic is used in the clock signal path of the driving device, but not for the driven device. This is due to the expander logic in the second device's clock signal path adding an additional delay ($\mathrm{t}_{\mathrm{EXP}}$) causing the output data from the preceding device to change prior to the arrival of the clock signal at the following device's register.

External Synchronous Switching Characteristics ${ }^{[7]}$ Over Operating Range

Parameters	Description		CY7C344-20		CY7C344-25		CY7C344-35		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
tPD_{1}	Dedicated Input to Combinatorial Output Delay ${ }^{[8]}$	Com'l/Ind		20		25			ns
		Mil				25		35	
tPD_{2}	I/O Input to Combinatorial Output Delay ${ }^{[9]}$	Com'l/Ind		20		25			ns
		Mil				25		35	
tPD_{3}	Dedicated Input to Combinatorial Output Delay with Expander Delay ${ }^{[10]}$	Com'1/Ind		30		40			ns
		Mil				40		60	
tPD_{4}	I/O Input to Combinatorial Output Delay with Expander Delay [4, 11]	Com'l/Ind		30		40			ns
		Mil				40		60	
tEA	Input to Output Enable Delay ${ }^{[4]}$	Com'l/Ind		20		25			ns
		Mil				25		35	
$t_{\text {ER }}$	Input to Output Disable Delay[4]	Com'l/Ind		20		25			ns
		Mil				25		35	
$\mathrm{t}_{\mathrm{CO}}^{1}$	Synchronous Clock Input to Output Delay	Com'l/Ind		12		15			ns
		Mil				15		23	
${ }^{\mathrm{t}} \mathrm{CO}_{2}$	Synchronous Clock to Local Feedback to Combinatorial Output [4, 12]	Com'l/Ind		22		30			ns
		Mil				30		46	
ts	Dedicated Input or Feedback Setup Time to Synchronous Clock Input	Com'l/Ind	12		15				ns
		Mil			15		21		
${ }^{\text {t }} \mathrm{H}$	Input Hold Time from Synchronous Clock Input ${ }^{[7]}$	Com'l/Ind	1		2.5				ns
		Mil			2.5		2.5		
${ }^{\text {twh }}$	Synchronous Clock Input High Time ${ }^{[4]}$	Com'l/Ind	7		8				ns
		Mil			8		10		
twL	Synchronous Clock Input Low Time ${ }^{[4]}$	Com'l/Ind	7		8				ns
		Mil			8		10		
trw	Asynchronous Clear Width ${ }^{[4]}$	Com'l/Ind	23		28				ns
		Mil			28		33		
$\mathrm{t}_{\mathrm{R} R}$	Asynchronous Clear Recovery Time ${ }^{[4]}$	Com'l/Ind	20		25				ns
		Mil			25		35		
t_{RO}	Asynchronous Clear to Registered Output Delay ${ }^{[4]}$	Com'l/Ind		23		28			ns
		Mil				28		33	
tpw	Asynchronous Preset Width ${ }^{[4]}$	Com'l/Ind	23		28				ns
		Mil			28		33		
$t_{\text {PR }}$	Asynchronous Preset Recovery Time ${ }^{[4]}$	Com'l/Ind		23		28			ns
		Mil				28		38	

External Synchronous Switching Characteristics ${ }^{[7]}$ Over Operating Range (Continued)

Parameters	Description		CY7C344-20		CY7C344-25		CY7C344-35		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
tpo	Asynchronous Preset to Registered Output Delay[4]	Com'l/Ind		23		28			ns
		Mil				28		33	
t_{CF}	Synchronous Clock to Local Feedback Input ${ }^{[4,13]}$	Com'l/Ind		4		7			ns
		Mil				7		13	
tp	External Synchronous Clock Period $\left(\mathrm{t}_{\mathrm{CO}_{1}}+\mathrm{ts}_{\mathrm{s}}\right)^{[4]}$	Com'l/Ind	24		30				ns
		Mil			30		44		
$\mathrm{f}_{\mathrm{MAX}}{ }_{1}$	External Maximum Frequency$\left(1 /\left(\mathrm{tcO}_{1}+\mathrm{t}_{\mathrm{s}}\right)\right)^{[4,14]}$	Com'l/Ind	41.6		33.3				MHz
		Mil			33.3		22.7		
$\mathrm{f}_{\mathrm{MAX}_{2}}$	Maximum Frequency with Internal Only Feedback $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{s}}\right)\right)^{[4,15]}$	Com'l/Ind	62.5		45.4				MHz
		Mil			45.4		29.4		
$\mathrm{f}_{\mathrm{MAX}}^{3}$	Data Path Maximum Frequency, least of $1 /\left(\mathrm{twL}_{\mathrm{L}}+\mathrm{t}_{\mathrm{WH}}\right),\left(1 /\left(\mathrm{t}_{\mathrm{S}_{1}}+\mathrm{t}_{\mathrm{H}}\right)\right)$ or $\left(1 / \mathrm{t}_{\mathrm{CO}_{1}}\right)^{[4,16]}$	Com'l/Ind	71.4		57.1				MHz
		Mil			57.1		42.5		
$\mathrm{f}_{\mathrm{MAX}}^{4}$	Maximum Register Toggle Frequency$1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)^{[4,17]}$	Com'l/Ind	71.4		62.5				MHz
		Mil			62.5		50.0		
$\mathrm{tOH}^{\text {O}}$	Output Data Stable Time from Synchronous Clock Input [4, 18]	Com'l/Ind	3		3				ns
		Mil			3		3		

Notes:

8. This parameter is the delay from an input signal applied to a dedicated input pin to a combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function.
9. This parameter is the delay associated with an input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
10. This parameter is the delay associated with an input signal applied to a dedicated input pin to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
11. This parameter is the delay associated with an input signal applied to an I/O macrocell pin to any output pin. This delay assumes expander terms are used to form the logic function and includes the worstcase expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
12. This specification is a measure of the delay from synchronous register clock input to internal feedback of the registered output signal to a combinatorial output for which the registered output signal is used as an input. This parameter assumes that no expanders are used in the logic of the combinatorial output and the register is synchronously clocked. This parameter is tested periodically by sampling production material.
13. This specification is a measure of the delay associated with the internal register feedback path. This delay plus the register setup time, $\mathbf{t}_{\mathbf{s}}$, is the minimum internal period for an internal state machine configuration. This parameter is tested periodically by sampling production material.
14. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external only feedback can operate.
15. This specification indicates the guaranteed maximum frequency at which a state machine with internal only feedback can operate. If register output states must also control external points, this frequency can still be observed as long as it is less than $1 / \mathrm{t}_{\mathrm{CO}_{1}}$. This specification assumes no expander logic is used. This parameter is tested periodically by sampling production material.
16. This frequency indicates the maximum frequency at which the device may operate in data path mode (dedicated input pin to output pin). This assumes that no expander logic is used.
17. This specification indicates the guaranteed maximum frequency in synchronous mode, at which an individual output or buried register can be cycled by a clock signal applied to either a dedicated input pin or an I/O pin.
18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.

External Asynchronous Switching Characteristics ${ }^{[7]}$ Over Operating Range

Parameters	Description		CY7C344-20		CY7C344-25		CY7C344-35		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
taCO_{1}	Asynchronous Clock Input to Output Delay	Com'l/Ind		20		25			ns
		Mil				25		35	
taCO_{2}	Asynchronous Clock Input to Local Feedback to Combinatorial Output ${ }^{[19]}$	Com'l/Ind		38		46			ns
		Mil				46		62	
$\mathrm{t}_{\text {AS }}$	Dedicated Input or Feedback Setup Time to Asynchronous Clock Input	Com'1/Ind	9		12				ns
		Mil			12		15		
$\mathrm{taH}_{\text {A }}$	Input Hold Time from Asynchronous Clock Input	Com'l/Ind	9		12				ns
		Mil			12		17.5		
$\mathrm{t}_{\text {AWH }}$	Asynchronous Clock Input High Time ${ }^{[4]}$	Com'l/Ind	15		20				ns
		Mil			20		30		
$\mathrm{t}_{\text {AWL }}$	Asynchronous Clock Input Low Time ${ }^{[4]}$	Com'l/Ind	15		20				ns
		Mil			20		30		
$\mathrm{t}_{\mathrm{ACF}}$	Asynchronous Clock to Local Feedback Input ${ }^{[4,20]}$	Com'l/Ind		18		21			ns
		Mil				21		27	
t_{AP}	External Asynchronous Clock Period $\left(\mathrm{t}_{\mathrm{ACO}_{1}}+\mathrm{t}_{\mathrm{AS}}\right)$ or $\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)^{[4]}$	Com'l/Ind	30		40				ns
		Mil			40		60		
fmaXA_{1}	External Maximum Frequency in Asynchronous Mode ($1 / \mathrm{t}_{\mathrm{AP}}$) ${ }^{[4,21]}$	Com'l/Ind	33.3		25.0				MHz
		Mil			25.0		16.6		
$\mathrm{f}_{\text {MAXA }}{ }_{2}$	Maximum Internal Asynchronous Frequency $1 /\left(\mathrm{t}_{\mathrm{ACF}}+\mathrm{t}_{\mathrm{AS}}\right)^{[4,24]}$	Com'1/Ind	33.3		25.0				MHz
		Mil			25.0		16.6		
$\mathrm{fmaxa3}^{\text {M }}$	Data Path Maximum Frequency in Asynchronous Mode ${ }^{[4,23]}$	Com'l/Ind	33.3		25.0				MHz
		Mil			25.0		16.6		
fmaXa_{4}	Maximum Asynchronous Register Toggle Frequency $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)^{[4,22]}$	Com'l/Ind	33.3		25.0				MHz
		Mil			25.0		16.6		
$\mathrm{t}_{\mathrm{AOH}}$	Output Data Stable Time from Asynchronous Clock Input ${ }^{[4,25]}$	Com'1/Ind	15		15				ns
		Mil			15		15		

Notes:

19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the registered output signal to a combinatorial output for which the registered output signal is used as an input. Assumes no expanders are used in logic of combinatorial output or the asynchronous clock input. This parameter is tested periodically by sampling production material.
20. This specification is a measure of the delay associated with the internal register feedback path for an asynchronously clocked register. This delay plus the asynchronous register setup time, t_{AS}, is the minimum internal period for an asynchronously clocked state machine configuration. This delay assumes no expander logic in the asynchronous clock path. This parameter is tested periodically by sampling production material.
21. This parameter indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that no expander logic is employed in the clock signal path or data input path.
22. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode by a clock signal applied to either a dedicated input or an I/O pin.
23. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode. If this frequency is less than $1 / \mathrm{t}_{\mathrm{ACO}}^{1}$ or $1 /\left(t_{A H}+t_{A S}\right)$. It also indicates the maximum frequency at which the device may operate in the asynchronously clocked data path mode. Assumes no expander logic is used.
24. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal only feedback can operate. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / \mathrm{t}_{\mathrm{ACO}}^{1}$. This specification assumes no expander logic is utilized. This parameter is tested periodically by sampling production material.
25. This parameter indicates the minimum time that the previous register output data is maintained on the output pin after an asynchronous register clock input to an external dedicated input or I/O pin.

Switching Waveforms

External Combinatorial

0184-8

External Synchronous

External Asynchronous

Typical Internal Switching Characteristics Over Operating Range

Parameters	Description		CY7C344-20		CY7C344-25		CY7C344-35		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
${ }^{\text {t }} \mathrm{N}$	Dedicated Input Pad and Buffer Delay	Com'l/Ind		5		7			ns
		Mil				7		11	
t_{10}	I/O Input Pad and Buffer Delay	Com'l/Ind		5		7			ns
		Mil				7		11	
texp	Expander Array Delay	Com'l/Ind		10		15			ns
		Mil				15		23	
${ }^{\text {t }}$ LAD	Logic Array Data Delay	Com'l/Ind		9		10		;	ns
		Mil				10		12	
${ }^{\text {t }}$ LAC	Logic Array Control Delay	Com'l/Ind		7		7			ns
		Mil				7		7	
tod	Output Buffer and Pad Delay	Com'l/Ind		5		5			ns
		Mil				5		5	
${ }^{\text {tzx }}$	Output Buffer Enable Delay ${ }^{[26]}$	Com'l/Ind		8		11			ns
		Mil				11		17	
${ }^{\text {t }} \mathrm{X} \mathrm{Z}$	Output Buffer Disable Delay	Com'l/Ind		8		11			ns
		Mil				11		17	
$t_{\text {RSU }}$	Register Setup Time Relative to Clock Signal at Register	Com'l/Ind	5		8				ns
		Mil			8		14		
${ }^{\text {trin }}$	Register Hold Time Relative to Clock Signal at Register	Com'l/Ind	9	*	12				ns
		Mil			12		18		
${ }^{\text {t }}$ LATCH	Flow Through Latch Delay	Com'l/Ind		1		3			ns
		Mil				3		7	
$t_{\text {RD }}$	Register Delay	Com'l/Ind		1		1			ns
		Mil				1		1	
${ }^{\text {t }}$ COMB	Transparent Mode Delay ${ }^{[27]}$	Com'l/Ind		1		3			ns
		Mil				3		7	
${ }^{\text {t }} \mathrm{CH}$	Clock High Time	Com'l/Ind	7		8				ns
		Mil			8		9		
${ }^{\text {t }} \mathrm{CL}$	Clock Low Time	Com'l/Ind	7		8		"		ns
		Mil			8		9		
${ }^{\text {IIC }}$	Asynchronous Clock Logic Delay	Com'l/Ind		8		10			ns
		Mil				10		12	
${ }_{\text {t }}$ CS	Synchronous Clock Delay	Com'l/Ind		2		3			ns
		Mil				3		5	
${ }^{\text {t }}$ FD	Feedback Delay	Com'l/Ind		1		1			ns
		Mil				1		1	
$t_{\text {Pre }}$	Asynchronous Register Preset Time	Com'l/Ind		6		9			ns
		Mil				9		15	
tcle	Asynchronous Register Clear Time	Com'l/Ind		6		9			ns
		Mil				9		15	
${ }_{\text {tPCW }}$	Asynchronous Preset and Clear Pulse Width	Com'l/Ind	6		7				ns
		Mil			7		9		
tPCR	Asynchronous Preset and Clear Recovery Time	Com'l/Ind	6		7				ns
		Mil			7		9		

Notes:

26. Sample tested only for an output change of 500 mV .
27. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial operation.

Switching Waveforms (Continued)

Internal Combinatorial

0184-11

Internal Asynchronous

Internal Synchronous (Input Path)

Switching Waveforms (Continued)

Internal Synchronous (Output Path)

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7C344-20PC/PI	P21	$\begin{gathered} \text { Commercial/ } \\ \text { Industrial } \end{gathered}$
	CY7C344-20DC/DI	D22	
	CY7C344-20WC/WI	W22	
	CY7C344-20HC/HI	H64	
	CY7C344-20JC/JI	J64	
25	CY7C344-25PC/PI	P21	$\begin{gathered} \text { Commercial/ } \\ \text { Industrial } \end{gathered}$
	CY7C344-25DC/DI	D22	
	CY7C344-25WC/WI	W22	
	CY7C344-25HC/HI	H64	
	CY7C344-25JC/JI	J64	
	CY7C344-25HMB	H64	Military
	CY7C344-25WMB	W22	
	CY7C344-25DMB	D22	
35	CY7C344-35HMB	H64	Military
	CY7C344-35WMB	W22	
	CY7C344-35DMB	D22	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$t_{\text {PD1 }}$	$7,8,9,10,11$
$t_{\text {PD2 }}$	$7,8,9,10,11$
$t_{\text {PD } 3}$	$7,8,9,10,11$
$t_{\mathrm{CO} 1}$	$7,8,9,10,11$
t^{2}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACO} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACO} 2}$	$7,8,9,10,11$
t_{AS}	$7,8,9,10,11$
t_{AH}	$7,8,9,10,11$

Document \#: 38-00127-A

Features

- High speed: 125 MHz conditional state control sequence generation
- Multiple, concurrent processes
- Multiway branch or join
- Full input field decode
- 32 synchronous macrocells
- Skew-controlled, OR output array
- Outputs are sum of states like PLA
- 3 ns skew
- Metastable hardened input registers
- 10 year MTBF metastable
- Configurable as 0,1 or 2 stages
- Clock enables on all input registers
- 8 to 12 inputs, 10 to 14 outputs, 1 clock
- Programmable clock doubler and conditioner
- 'Squares up’ input clock
- Security fuse
- Space saving 28 pin slim-line DIP package; also available in 28 pin PLCC
- Low power "L" versions - $\mathbf{1 5 0} \mathbf{~ m A}$ max at 125 MHz
- UV-erasable and reprogrammable
- Programming and operation 100% testable

Product Characteristics

The CY7C361 is a CMOS erasable, programmable logic device (EPLD)
with very high speed sequencing and arbitration capabilities.
Applications include: cache and I/O subsystem control for high speed microprocessor based systems, control of high speed numeric processors, and control of asynchronous systems including dataflow organizations.
An onboard clock doubler and conditioning circuit allows the device to operate at 125 MHz based on a 62.5 MHz input reference. The same circuit guards against asymmetric clock waveforms and thus allows for the use of a clock with an imperfect duty cycle. The CY7C361 has two arrays which serve in function similar to the arrays in a PLA except that the registers are placed between the two arrays and the long feedback path of the PLA is eliminated.

Block Diagram

LCC, PLCC and HLCC Pinout

0165-21

Selection Guide

Generic Part Number	$\mathbf{I C C ~ m A ~ a t ~}_{\text {f }}^{\text {MAX }}$				$\mathrm{fmax}_{\text {M }} \mathbf{M H z}$		$\mathrm{t}_{\text {IS }} \mathrm{ns}$		$\mathrm{t}_{\mathrm{CO}} \mathbf{n s}$	
	Com	Com "L"	Mil	Mil "L"	Com	Mil	Com	Mil	Com	Mil
CY7C361-125	200	150			125.0		2		15	
CY7C361-100	200	150	200	150	100.0	100.0	3	3	19	19
CY7C361-83		150		150	83.3	83.3	5	5	23	23
CY7C361-66		150		150	66.6	66.6	5	5	25	25

Product Characteristics (Continued)

In the CY7C361, the state information is contained in 32 macrocells sandwiched between the input and output arrays. The current state information is fed back in time to keep up with the 125 MHz operating frequency.
The output array performs an OR function over the state macrocell outputs. The signals from the output array are connected to 14 outputs; in addition they are connected to 3 groups of input macrocells to act as clock enables.

Input Macrocells

The CY7C361 has 12 input macrocells. Each macrocell can be configured to have 0,1 or 2 registers in the path of the input data. In the configuration where there is no input register, the setup time requirement is largest. In the single register configuration, the setup time is less than half. The double register configuration is used for asynchronous inputs.

Figure 1. Input Macrocell

Input Register Enables

The input macrocells are divided into 3 groups, each of which has a register clock enable signal coming from the output array. The purpose of the enable signal is to allow the inputs to be sampled at times controlled by the state of the device.
There is one enable signal per group of input macrocells. The assignment of enable signal node numbers to input macrocell groups is as follows:

Input Nodes	Enable Node
3, 5, 6, 9	29
10,11,12,13	30
1,2,14, 15	31

When the enable node is true, data is clocked into the registers of the input macrocells on the rising edge of the internal global clock.

Metastable Immunity

A high level of metastable immunity is afforded in the double register configuration. The CY7C361 input registers are of fast CMOS and resolve inputs in a minimal amount of time. With all inputs switching at the maximum frequency, one metastable event capable of violating the setup time window of the second input register occurs every 10 years. The probability of failure for the configured state machine is much lower than this calculation suggests, because there are more registers in the device and thus more decision time is allowed. No state machine failures due to metastable phenomena will be observed if the maximum frequency and double register operating mode are used.
The CY7C361 is thus a superior device for constructing state machines requiring arbitration.

Input Array

The input array has 41 condition decoders: one global reset decoder, 8 local reset decoders, and 32 macrocell decoders.

The array has 44 true/complement inputs or 88 inputs in total; for speed reasons, the feedback signals are folded.
Folding or partitioning of the feedback part of the array reduces the number of inputs per decoder to 56 . Because of the way the feedback signals are used, this array reduction has minimal impact on utility.
The CY7C361 condition decoder is shown in Figure 2. In a conventional PLA or PAL device, only PRODUCT 1 would be present in the first array and the output and feedback would be encoded by a second programmable or fixed OR array. The speed of state machines made from these conventional devices is limited mainly by the feedback path.

0165-4
Figure 2. Condition Decoder
The condition decoder of the CY7C361 forms a product of a product and a sum over the input field. Since there is immediate feedback information in the input field, multiway fork and join operations can be performed using this type of condition decoder. State transitions can be made in half the time because there is no "state encoding" delay.

State Machine Macrocells

0165-5
Figure 3. CY7C361 Macrocell
The CY7C361 has 32 state macrocells. The state macrocells each have a single condition decode and share a common clock and global reset condition. For each 4 macrocell group there is a local reset condition.

Figure 4. Start Configuration

Product Characteristics (Continued)

There are 3 macrocell configurations, named START, TERMINATE and TOGGLE. The purpose of the START configuration is to create a "token" based on a condition decode. The purpose of the TERMINATE configuration is to capture a token and maintain it until a particular condition is decoded, then terminate the token. The TOGGLE configuration is used to make counters.
The start configuration creates a token at the leading edge of the condition decode or C__IN. The token is represented by a true output on the macrocell register going to the output array and back as feedback to the input array. The CY7C361 consists of multiple machines or processes running concurrently, each with zero, one or more tokens active at a given time. As the output field is independent, the programmed pattern in the two arrays is one to one translatable to microcode. The microcode is concurrent in operation.

In addition to the main register going to the array, there is an R-S latch in the feedback path. The purpose of the R-S latch is to convert the input condition to a pulse.

In operation, the start macrocell starts from a reset condition (array input $=$ FALSE). When a condition decode "fires" or a token carries in (C__IN), the register output (Q going to array) goes true for exactly one cycle. The OR of the condition decode and the C__IN signal must go FALSE before the start configuration can "fire" again.
Configuration bit C2 is used in all state macrocells to select C__IN to be active $(\mathrm{C} 2=0)$ or inactive $(\mathrm{C} 2=1)$.

For the topmost macrocell (N32), the C2 bit is used to specify a reset option. If the bit is ' 0 ', then for the cycle immediately following a reset, the C__IN for this macrocell will be true. At all other times, or if the C 2 bit is ' 1 ', the C__IN signal will remain false. Note that this option facilitates efficient startup of state machines.

$\mathrm{C} 0, \mathrm{Cl}=1,0$: TERMINATE
0165-7

Figure 5. Terminate Configuration

Figure 5 shows the terminate configuration which is used to maintain state tokens until a condition occurs.
In operation, the terminate configuration "captures" a token via C-IN and the OR gate. The condition decode is normally false or 0 so the token circulates and the register stays set. When the condition decode "fires", the register resets.
The third configuration, TOGGLE, is for counting and signalling. If the condition decode or the C_IIN signal is true, then the register will toggle. The TOGGLE configuration is intended to make counters and state machines with simple control requirements.

$$
\mathrm{C} 0, \mathrm{Cl}=11: \text { TOGGLE }
$$

0165-8
Figure 6. Toggle Configuration
There is one local reset signal for each group of 4 macrocells. The local reset condition decoders will only work with TOGGLE configurations.

The Output Section

There are 3 types of outputs: normal, bidirectional and Mealy. All 3 types can function as normal outputs, but two types-the bidirectional type and the Mealy type-can be used for other purposes. The bidirectional type can be used as an input and the Mealy type can be used as a fast combinational output.

The different types of output structures are shown in Figure 7 . Note that the only output type that has configuration information to be programmed is the Mealy type.

0165-9
Figure 7. Output Types
A normal output signal from the device is a boolean sum of a subset of the macrocell outputs. The subset selection is programmed into the output array. The number of state machines in the device, and the output mappings of each are determined by the user. The architecture is thus "horizontally divisible" and offers advantages in coding efficiency and event response time over the non-divisible architectures found in most PLA and sequencer types.
A normal output pin is low asserted. The output gate performs an OR function over the flip-flop outputs of the state macrocells. The OR function includes only the outputs which are programmably connected to the OR line in the output array. When none of the connected state macrocell flip-flops are in the true or set condition, the output is high.

Product Characteristics (Continued)

If any connected macrocell flip-flop is asserted (or true) then the OR gate function is true and the output pin is low.
Forcing a false condition is easily accomplished by not connecting any state macrocells to the OR line. To force a true condition, line 33 (labelled V_{CC}) is included in the output array. Any OR line connected to line 33 will be permanently true which will cause a normal output to be low.
The bidirectional outputs are I/O pins which may be used as either inputs or outputs. Under state machine control, these pins may be tristated and used as inputs or outputs depending on how the OE term is programmed.

Each bidirectional output has an OE or output enable control and an associated input path to the first array. The OE control is an OR term from the output array which enables the output when the OR function is true. Thus, an OE
which has its OR term connected to line 33 will turn the output on permanently.
The Mealy outputs are designed to implement the fastest possible path between an input to the device and an output. Functions are available which combine the OR term and an input signal. These functions, XOR, AND, and OR, with true or negated assertion levels, are useful for data strobes and semaphore operations where signalling occurs depending on the state, but independent of a signal transition.
The AND and OR functions can be used to gate data strobe signals by the state. The XOR function can be used to implement 2 cycle signalling, which is used in self-timed systems to minimize signalling delays. If these functions are not needed, then the Mealy outputs can be configured as normal outputs.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Output Current into Outputs (Low)	mA
UV Exposure	$7258 \mathrm{Wsec} / \mathrm{cm}^{2}$
Static Discharge Voltage (per MIL-STD-883, Method 3015.2)	$>2001 \mathrm{~V}$
Latchup Current	>200

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range

Parameters	Description	Test Conditions		Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed HIGH Input, All Inputs ${ }^{[1]}$		2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed LOW Input, All Inputs ${ }^{[1]}$			0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.		-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{CC}}$		-40	40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[2]}$		-30	-110	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{IN}}=$ GND, Outputs Open, Operating at $\mathrm{f}=\mathrm{f}_{\mathrm{MAX}}$	Commercial "L"		150	mA
			Military "L"			
			Commercial		200	mA
			Military			

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

SEMICONDUCTOR

AC Test Loads and Waveforms

Figure 8a
Equivalent to: THÉVENIN EQUIVALENT

Figure 8b

Figure 9

0165-15

Switching Characteristics ${ }^{[7]}$

Parameters	Description	Commercial								Military						Units
		-125		-100		-83		-66		-100		-83		-66		
		Min.	Max.													
tPD1 ${ }^{[13]}$	Input to Mealy Output Delay	2	9	2	11	2	12	2	15	2	11	2	13	2	15	ns
$\mathrm{tPD}^{\text {[14] }}$	Input to Mealy Output Delay	2	8	2	10	2	11	2	14	2	10	2	12	2	14	ns
$\mathrm{t}_{\mathrm{CO} 1}[3,13]$	Clock to Output Delay	5	15	5	19	5	23	5	25	5	19	5	23	5	25	ns
$\mathrm{t}_{\mathrm{CO} 2}{ }^{[3,14]}$	Clock to Output Delay	5	14	5	18	5	22	5	24	5	18	5	22	5	24	ns
$\mathrm{t}_{\mathrm{CM} 1}[3,13]$	Clock to Mealy Output Delay	5	17	5	20	5	25	5	28	5	21	5	25	5	28	ns
$\mathrm{t}_{\mathrm{CM} 2}[3,14]$	Clock to Mealy Output Delay	5	16	5	19	5	24	5	27	5	20	5	24	5	27	ns
$\mathrm{t}_{\mathrm{IS}}{ }^{[3]}$	Input Register Input Set Up Time	2		3		5		5		3		5		5		ns
${ }^{\text {I }} \mathrm{H}^{\text {[3] }}$	Input Register Input Hold Time	3		4		5		5		4		5		5		ns
$\mathrm{t}_{5}[3,4]$	State Register Input Set Up Time	7		9		12		14		9		12		14		ns
$\mathrm{t}_{\mathrm{H}}{ }^{[3,4]}$	State Register Input Hold Time	0		0		0		0		0		0		0		ns
$\mathrm{tWH}^{[6]}$	Input Clock Pulse Width HIGH	6		7		9		11		7		9		11		ns
$\mathrm{tWL}^{\text {[6] }}$	Input Clock Pulse Width LOW	6		7		9		11		7		9		11		ns
$\mathbf{t S O 1}^{[3,11]}$	Output Skew		4		5		6		6		5		6		6	ns
$\mathbf{t S O} 2^{[3,12]}$	Output Skew		3		4		5		5		4		5		5	ns
$\mathrm{tSM1}^{[3,15]}$	Mealy Output Skew		4		5		6		6		5		6		6	ns
${ }_{\text {tSM2 }}{ }^{[3,16]}$	Mealy Output Skew		3		4		5		5		4		5		5	ns
$\mathrm{f}_{\text {MAX }}{ }^{[5]}$	Output Maximum Frequency	125.0		100.0		83.3		66.6		100.0		83.3		66.6		MHz
$\mathrm{t}_{\mathrm{CER}}{ }^{[3,7]}$	Clock to Output Disable Delay		16		20		22		25		20		22		25	ns
$\mathrm{t}_{\text {CEA }}{ }^{[3,8,9]}$	Clock to Output Enable Delay		16		20		22		25		20		22		25	ns

Notes:

3. Minimum clock pulse width 8 ns Commercial, 10 ns Military for measurement. Periodically sampled.
4. Input register bypassed.
5. Input clock frequency is $1 / 2 \mathrm{f}_{\mathrm{MAX}}$ when clock doubler is used.
6. The clock input is tested to accommodate a $60 / 40$ duty cycle waveform at the maximum frequency.
7. Output reference point on AC measurements is 1.5 V , except as noted in Figure 12:
$t_{\mathrm{CER}(-)}$ negative going is measured at $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$.
$t_{\text {CER }(+)}$ positive going is measured at $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
8. $\mathbf{R} 1$ is disconnected for $\mathrm{t}_{\text {CEA }}(+$) positive going (open circuited). (See Figures $8 a$ and $8 b$).
9. R 2 is disconnected for $\mathrm{t}_{\mathrm{CEA}}(-$) negative going (open circuited). (See Figures $8 a$ and $8 b$).
10. Figure $8 a$ test load is used for all parameters except $t_{\text {CEA }}$ and $t_{\text {CER }}$. Figure $8 b$ test load is used for $\mathrm{t}_{\text {CEA }}$ and $\mathrm{t}_{\text {CER }}$.
11. This parameter specifies the maximum allowable $t_{C O}$ clock to output delay difference, or skew, between any two outputs triggered by the same clock edge with all other device outputs changing state within the same clock cycle.
12. This parameter specifies the maximum allowable t_{CO} clock to output delay difference, or skew, between any two outputs triggered by the same clock edge with only the two device outputs changing state within the same clock cycle.
13. This specification is guaranteed for the worst case programmed pattern for which all device outputs are changing state on a given access or clock cycle.
14. This specification is guaranteed for two or fewer outputs changing state in a given access or clock cycle.
15. This parameter specifies the maximum allowable tPD difference between any two mealy outputs triggered by the same or simultaneous input signals with all other device outputs changing state within the same access or clock cycle.
16. This parameter specifies the maximum allowable $t_{P D}$ difference between any two mealy outputs triggered by the same or simultaneous input signals with only the two device outputs changing state within the given access cycle.

0165-12
Figure 10. AC Timing Waveforms

Figure 11a. CY7C361 Block Diagram (Upper Half)

Figure 11b. CY7C361 Block Diagram (Lower Half)

Parameters	$\mathbf{V}_{\mathbf{x}}$	Output Waveform-Measurement Level	
${ }_{\text {t }}^{\text {CER }}$ (- ${ }^{\text {) }}$	0.0 V		0165-22
$\mathrm{t}_{\text {CER }}(+)$	2.6 V		0165-23
$\mathrm{t}_{\text {CEA }}(+)$	0.0 V		0165-24
$\mathrm{t}_{\text {CEA }}(-)$	2.6 V		0165-25

Figure 12. Test Waveforms

Ordering Information

$\mathrm{I}_{\mathbf{C C}} \mathbf{m A}$	$\mathrm{f}_{\mathrm{MAX}} \mathbf{M H z}$	Ordering Code	Package Type	Operating Range
200	125.0	CY7C361-125PC	P21	Commercial
		CY7C361-125WC	W22	
		CY7C361-125JC	J64	
		CY7C361-125HC	H64	
150	125.0	CY7C361L-125PC	P21	Commercial
		CY7C361L-125WC	W22	
		CY7C361L-125JC	J64	
		CY7C361L-125HC	H64	
200	100.0	CY7C361-100PC	P21	Commercial
		CY7C361-100WC	W22	
		CY7C361-100JC	J64	
		CY7C361-100HC	H64	
150	100.0	CY7C361L-100PC	P21	Commercial
		CY7C361L-100WC	W22	
		CY7C361L-100JC	J64	
		CY7C361L-100HC	H64	
200	100.0	CY7C361-100WMB	W22	Military
		CY7C361-100DMB	D22	
		CY7C361-100QMB	Q64	
		CY7C361-100LMB	L64	
		CY7C361-100HMB	H64	
150	100.0	CY7C361L-100WMB	W22	Military
		CY7C361L-100DMB	D22	
		CY7C361L-100QMB	Q64	
		CY7C361L-100LMB	L64	
		CY7C361L-100HMB	H64	
150	83.3	CY7C361L-83PC	P21	Commercial
		CY7C361L-83WC	W22	
		CY7C361L-83JC	J64	
		CY7C361L-83HC	H64	
150	83.3	CY7C361L-83WMB	W22	Military
		CY7C361L-83DMB	D22	
		CY7C361L-83QMB	Q64	
		CY7C361L-83LMB	L64	
		CY7C361L-83HMB	H64	
150	66.6	CY7C361L-66PC	P21	Commercial
		CY7C361L-66WC	W22	
		CY7C361L-66JC	J64	
		CY7C361L-66HC	H64	
150	66.6	CY7C361L-66WMB	W22	Military
		CY7C361L-66DMB	D22	
		CY7C361L-66QMB	Q64	
		CY7C361L-66LMB	L64	
		CY7C361L-6HMB	H64	

Document \#: 38-00106-A

Introduction

PLDs, or programmable logic devices, provide an attractive alternative to logic implemented with discrete devices. Cypress Semiconductor is in the enviable position of being able to offer PLDs in several different process technologies, thus assuring our customers of a wide range of options for leading-edge speed as well as very low power consumption. Cypress optimizes the mix of technology and device architecture to insure that the programmable logic requirements of today's highest-performance electronics systems can be fully supported by a single PLD vendor.
Cypress offers a wide variety of PLDs based on our lead-ing-edge CMOS EPROM process technology. This technology facilitates the lowest power consumption and the highest logic density of any non-volatile PLD technology on the market today, at speeds that are nearly as fast as state-of-the-art BIPOLAR technology would provide. Furthermore, these devices offer the user the option of device erasure and reprogrammability in windowed packages. Cy press also offers a number of PLDs based on our state-of-the-art BICMOS and BIPOLAR technologies. These PLDs are targeted at applications where power consumption and density are not as critical as leading-edge speed. Thus, Cypress offers solutions for state-of-the-art systems regardless of what the optimal balance is between speed, power, and density in any particular system.

Programmable Technology

EPROM Process Technology

EPROM technology employs a floating or isolated gate between the normal control gate and the source/drain region of a transistor. This gate may be charged with electrons during the programming operation, permanently turning off the transistor. The state of the floating gate, charged or uncharged, is permanent because the gate is isolated in an extremely pure oxide. The charge may be removed if the device is irradiated with ultraviolet energy in the form of light. This ultraviolet light allows the electrons on the gate to recombine and discharge the gate. This process is repeatable and therefore can be used during the processing of the device, repeatedly if necessary, to assure programming function and performance.

Two Transistor Cells

Cypress uses a two transistor EPROM cell. One transistor is optimized for reliable programming, and one transistor is optimized for high speed. The floating gates are connected such that charge injected on the floating gate of the programming transistor is conducted to the read transistor biasing it off.

BICMOS and BIPOLAR Process
 Technology

In addition to CMOS, Cypress offers BICMOS TTL and BIPOLAR ECL I/O-compatible PLDs. The BICMOS devices offer the advantages of CMOS (high density and low power) and BIPOLAR (high speed). Both the BICMOS
and BIPOLAR devices are one-time fuse programmable. The fuses are $\mathrm{Ti}-\mathrm{W}$ and are connected directly to first metal. First metal is a reliable composite of Ti-TiW-AlSi-Ti to ensure excellent electromigration resistance, eliminate contact spiking, and minimize hillocking.

Programming Algorithm
 Byte Addressing and Programming

Most Cypress Programmable Logic Devices are addressed and programmed on BYTE or EXTENDED BYTE basis where an EXTENDED BYTE is a field that is as wide as the output path of the device. Each device or family of devices has a unique address map which is available in the product data sheet. Each BYTE or EXTENDED BYTE is written into the addressed location from the pins that serve as the output pins in normal operation. To program a cell, a " 1 " or HIGH is placed on the input pin and a " 0 " or LOW is placed on pins corresponding to cells that are not to be programmed. Data is also read from these pins in parallel for verification after programming. A " 1 " or HIGH during program verify operation indicates an unprogrammed cell, while a " 0 " or LOW indicates that the cell accessed has been programmed.

Blank Check

Before programming, all Programmable Logic Devices may be checked in a conventional manner to determine that they have not been previously programmed. This is accomplished in a program verify mode of operation by reading the contents of the array. During this operation, a " 1 " or HIGH output indicates that the addressed cell is unprogrammed, while a " 0 " or LOW indicates a programmed cell.

Programming The Data Array

Programming is accomplished by applying a supervoltage to one pin of the device causing it to enter the programming mode of operation. This also provides the programming voltage for the cells to be programmed. In this mode of operation (except for the CY7C361), the address lines of the device are used to address each location to be programmed, and the data is presented on the pins normally used for reading the contents of the device. Each device has a READ/WRITE pin in the programming mode. This signal causes a write operation when switched to a supervoltage, and a read operation when switched to a logic " 0 " or LOW. In the logic HIGH state " 1 " the device is in a program inhibit condition and the output pins are in a high impedance state. During a WRITE operation, the data on the output pins is written into the addressed array location. In a READ operation the contents of the addressed location are present on the output pins and may be verified. Programming therefore is accomplished by placing data on the output pins, and writing it into the addressed location. Verification of data is accomplished by examining the information on the output pins during a READ operation.
The timing for actual programming is supplied in the unique programming specification for each device.

Phantom Operating Modes

All Cypress Programmable Logic Devices contain a PHANTOM ARRAY for post assembly testing. This array is accessed, programmed and operated in a special PHANTOM mode of operation. In this mode, the normal array is disconnected from control of the logic, and in its place the PHANTOM ARRAY is connected. In normal operation the PHANTOM ARRAY is disconnected and control is only via the normal array. This special feature allows every device to be tested for both functionality and performance after packaging and, if desired, by the user before programming and use. The PHANTOM modes are entered through the use of supervoltages and are unique for each device or family of devices. See specific data sheets for details.

Special Features

Cypress Programmable Logic devices, depending on the device, have several special features. For example the security mechanism defeats the verify operation and therefore secures the contents of the device against unauthorized tampering or access. In advanced devices such as the PAL C 22V10, PLD C 20G10, and the CY7C330 the MACROCELLs are programmable through the use of the architecture bits. This allows the user to more effectively tailor the device architecture to his unique system requirements. These features are also programmed through the use of EPROM cells. Specific programming is detailed in the device data sheet.

Programming Support

Programming support for Cypress CMOS Programmable Logic Devices is available from a number of programmer manufacturers, some of which are listed as follows. They can be contacted directly for information regarding programming support of Cypress devices. Alternatively, all Cypress sales representatives and distributors have access to this information.
Data I/O Corporation
10525 Willows Rd. N.E.
P.O. Box 97046

Redmond, WA
98073-9746
(206) 881-6444

Document \#: 38-00164

Stag Microsystems
1600 Wyatt Dr.
Santa Clara, CA 95054
(408) 988-1118

STAG ZL32 Rev. 30A03
Cypress Semiconductor Inc. 3901 North First Street
San Jose, CA 95134
(408) 943-2600

Digelec Corporation
1602 Lawrence Ave.
Suite 113
Ocean, NJ 07712
(201) 493-2420

Logical Devices Inc.
1201 N.W. 65th Place
Ft. Lauderdale, FL 33309
(305) 974-0975

Kontron Electronics
1230 Charleston Road
Mountain View, CA
94039-7230
(415) 965-7020

Third Party Development Software
ABELTM
Data I/O Corporation
10525 Willows Rd. N.E.
P.O. Box 97046

Redmond, WA
98073-9746
(206) 881-6444

CUPLTM
Logical Devices Inc.
1201 N.W. 65th Place
Ft. Lauderdale, FL 33309
(305) 974-0975

LOG/iCTM
ISDATA GmbH
Haid-und-Neu-Strasse 7
D-7500 Karlsruhe 1 West Germany
(0721) 693092
PRODUCT 1 INFORMATION
STATIC RAMS 2
PROMS 3
EPLDS 4

LOGIC6
RISC 7
MODULES 8
ECL 9
BUS INTERFACE PRODUCTS 10
MILITARY 11
DESIGN AND12
PROGRAMMING TOOLS
QUALITY AND 13
RELIABILITY
PACKAGES 14

Section Contents

FIFOs

Page Number

Device NumberCY3341
Description
64×4 Serial Memory FIFO 5-1
CY7C401 64×4 Cascadeable FIFO 5-6

- 7 C40
CY7C402 64×5 Cascadeable FIFO 5-6
CY7C403 64×4 Cascadeable FIFO with Output Enable 5-6
CY7C404 64×5 Cascadeable FIFO with Output Enable 5-6
CY7C408A 64×8 Cascadeable FIFO 5-16
CY7C409A 64×9 Cascadeable FIFO 5-16CY7C420
CY7C421
512×9 Cascadeable FIFO 5-30
CY7C424$512 \times 9$ Cascadeable FIFO5-30
1024 x 9 Cascadeable FIFO 5-30CY7C425
5-30$1024 \times 9$ Cascadeable FIFO
CY7C428 2048×9 Cascadeable FIFO 5-30
CY7C429 2048 x 9 Cascadeable FIFO 5-30
CY7C432CY7C433
CY7C4394096 x 9 Cascadeable FIFO5-45
4096×9 Cascadeable FIFO 5-45
CY7C441$2048 \times 9$ Bidirectional FIFO5-58$512 \times 9$ Synchronous FIFO
5-70
CY7C443 2K x 9 Synchronous FIFO 5-70
CY7C451 512×9 Cascadeable Clocked FIFO 5-83
CY7C453 2K x 9 Cascadeable Clocked FIFO 5-83
CY7C460 $8 \mathrm{~K} \times 9$ Cascadeable FIFO 5-104
CY7C462 16K x 9 Cascadeable FIFO 5-104
CY7C464$32 \mathrm{~K} \times 9$ Cascadeable FIFO5-104
CY7C470
$8 \mathrm{~K} \times 9$ FIFO
CY7C472 5-116
$16 \mathrm{~K} \times 9$ FIFO
CY7C474 5-116
CYM4210 Cascadeable 8Kx 9 FIFO 5-128
CYM4220 Cascadeable $16 \mathrm{~K} \times 9$ FIFO 5-128
CYM4241
$64 \mathrm{~K} \times 9$ FIFO 5-129

Features

- $1.2 / 2 \mathrm{MHz}$ data rate
- Fully TTL compatible
- Independent asynchronous inputs and outputs
- Direct replacement for PMOS 3341
- Expandable in word length and width
- CMOS for optimum speed/ power
- Capable of withstanding greater than 2000 V electrostatic discharge

Functional Description

The 3341 is a 64 -word x 4 -bit First-In First-Out (FIFO) Serial Memory. The inputs and outputs are completely independent (no common clocks) making the 3341 ideal for asynchronous buffer applications.
Control signals are provided for both vertical and horizontal expansion.
The 3341 is manufactured using Cypress CMOS technology and is available in both ceramic and plastic packages.

Data Input

The four bits of data on the D_{0} through D_{3} inputs are entered into the first location when both Input Ready (IR) and Shift In (SI) are HIGH. This causes IR to go LOW but data will stay locked in the first bit location until both IR and SI are LOW. Then data will propagate to the second bit location, provided the location is empty. When data is transferred, IR will go HIGH indicating that the device is ready to accept new data. If the memory is full, IR will stay LOW.

Data Transfer

Once data is entered into the second cell, the transfer of any full cell to the adjacent (downstream) empty cell is automatic, activated by an on-chip control. Thus, data will stack up at the end of the device while empty locations will "bubble" to the front. thT defines the time required for the first data to travel from the input to the output of a previously empty device, or for the first empty space to travel from the output to the input of a previously full device.

Data Output

When data has been transferred into the last cell, Output Ready (OR) goes

HIGH, indicating the presence of valid data at the output pins Q_{0} through Q_{3}. The transfer of data is initiated when both the Output Ready output from the device and the Shift Out (SO) input to the device are HIGH. This causes OR to go LOW; output data, however, is maintained until both OR and SO are LOW. Then the content of the adjacent (upstream) cell (provided it is full) will be transferred into the last cell, causing OR to go HIGH again. If the memory has been emptied, OR will stay LOW.
Input Ready and Output Ready may also be used as status signals indicating that the FIFO is completely full (Input Ready stays LOW for at least $t_{\text {BT }}$) or completely empty (Output Ready stays LOW for at least $t_{B T}$).

Reset

When Master Reset ($\overline{\mathrm{MR}}$) goes LOW, the control logic is cleared, and the data outputs enter a LOW state. When MR returns HIGH, Output Ready
(OR) stays LOW, and Input Ready (IR) goes HIGH if Shift In (SI) was LOW.

Logic Block Diagram

Pin Configuration

0004-2
*Internally not connected

Selection Guide

		$\mathbf{3 3 4 1}$	$\mathbf{3 3 4 1 - 2}$
Maximum Operating Frequency		1.2 MHz	2.0 MHz
Maximum Operating Current (mA)	Commercial	45	45
	Military	60	60

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8).	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	$-0 .$
DC Input Voltage	7
Output Current, into Outputs (Low	

Static Discharge Voltage . $>2001 \mathrm{~V}$ (per MIL-STD-883 Method 3015)
Latchup Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{S S}}$	\mathbf{V}_{DD}	$\mathbf{V G G}_{\mathbf{G G}}{ }^{*}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$	GND	NC
Military $[3]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$	GND	NC

*Internally Not Connected.

Electrical Characteristics Over the Operating Range ${ }^{[4]}$

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	7	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{SS}}=5.0 \mathrm{~V}$	10	

Notes:

1. Not more than 1 output shouid be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to:
THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[4,5]}$

Parameters	Description	Test Conditions	3341		3341.2		Units
			Min.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX }}$	Operating Frequency	Note 6		1.2		2	MHz
tPHSI	SI HIGH Time		80		80		ns
tPLSI	SI LOW Time		80		80		ns
tDD	Data Setup to SI		0		0		ns
$\mathrm{t}_{\mathrm{HSI}}$	Data Hold from SI		200		100		ns
tIR +	Delay, SI HIGH to IR LOW		20	350	20	160	ns
$\mathrm{t}_{\text {IR }}$ -	Delay, SI LOW to IR HIGH		20	450	20	200	ns
tPHSO	SO HIGH Time		80		80		ns
tPLSO	SO LOW Time.		80		80		ns
tor +	Delay, SO HIGH to OR LOW		20	370	20	160	ns
tor -	Delay, SO LOW to OR HIGH		20	450	20	200	ns
$\mathrm{t}_{\text {DA }}$	Data Setup to OR HIGH		0		0		ns
t_{DH}	Data Hold from OR LOW		75		20		ns
$\mathrm{t}_{\text {BT }}$	Bubble through Time			1000		500	ns
$\mathrm{t}_{\text {MRW }}$	$\overline{\text { MR Pulse Width }}$		400		200		ns
$\mathrm{t}_{\text {DSI }}$	$\overline{\text { MR HIGH to SI HIGH }}$		30		30		ns
t ${ }_{\text {DOR }}$	$\overline{\text { MR LOW to OR LOW }}$			400		200	ns
$\mathrm{t}_{\text {DIR }}$	$\overline{\text { MR LOW to IR HIGH }}$			400		200	ns

Notes:
5. Test conditions assume signal transitions of 10 ns or less. Timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.

Switching Waveforms

Data In Timing Diagram

Data Out Timing Diagram

Switching Waveforms (Continued)

Master Reset Timing Diagram

Ordering Information

Ordering Code (1.2 MHz)	Package Type	Operating Range
CY3341PC	P1	Commercial
CY3341DC	D2	
CY3341DMB	D2	Military

Ordering Code (2 MHz)	Package Type	Operating Range
CY3341-2PC	P1	Commercial
CY3341-2DC	D2	Military
CY3341-2DMB	D2	

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{DD}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{f}_{\text {MAX }}$	7,8,9,10,11
tPHSI	7,8,9,10,11
tPLSI	7,8,9,10,11
$\mathrm{t}_{\text {DD }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{HSI}}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{IR}}+$	7,8,9,10,11
$\mathrm{tIR}^{\text {- }}$	7,8,9,10,11
tPHSO	7,8,9,10,11
tPLSO	7,8,9,10,11
tor +	7,8,9,10,11
tor -	7,8,9,10,11
$t_{\text {DA }}$	7,8,9,10,11
$\mathrm{t}_{\text {DH }}$	7,8,9,10,11
t_{BT}	7,8,9,10,11
$t_{\text {MRW }}$	7,8,9,10,11
$\mathrm{t}_{\text {DSI }}$	7,8,9,10,11
$\mathrm{t}_{\text {DOR }}$	7,8,9,10,11
$\mathrm{t}_{\text {DIR }}$	7,8,9,10,11

Document \#: 38-00011-B

Features

- 64×4 (CY7C401 and CY7C403) 64×5 (CY7C402 and CY7C404) High speed first-in first-out memory (FIFO)
- Processed with high-speed CMOS for optimum speed/power
- 25 MHz data rates
- 50 ns bubble-through time25 MHz
- Expandable in word width and/or length
- 5 volt power supply $\pm 10 \%$ tolerance both commercial and military
- Independent asynchronous inputs and outputs
- TTL compatible interface
- Output enable function available on CY7C403 and CY7C404
- Capable of withstanding greater than 2001V electrostatic discharge
- Pin compatible with MMI 67401A/67402A

Functional Description

The CY7C401 and CY7C403 are asynchronous first-in first-out memories (FIFOs) organized as 64 four bit words. The CY7C402 and CY7C404 are similar FIFOs organized as 64 five bit words. Both the CY7C403 and CY7C404 have an Output Enable (OE) function.
The devices accept $4 / 5$ bit words at the data input ($\mathrm{DI}_{0}-\mathrm{DI}_{\mathrm{n}}$) under the control of the Shift In (SI) input. The stored words stack up at the output ($\mathrm{DO}_{0}-\mathrm{DO}_{n}$) in the order they were entered. A read command on the Shift Out (SO) input causes the next to last word to move to the output and all data shifts down once in the stack. The Input Ready (IR) signal acts as a flag to indicate when the input is ready to accept new data (HIGH), to indicate when the FIFO is full (LOW), and to provide a signal for cascading. The

Output Ready (OR) signal is a flag to indicate the output contains valid data (HIGH), to indicate the FIFO is empty (LOW), and to provide a signal for cascading.
Parallel expansion for wider words is accomplished by logically ANDing the Input Ready (IR) and Output Ready (OR) signals to form composite signals.
Serial expansion is accomplished by tying the data inputs of one device to the data outputs of the previous device.
The Input Ready (IR) pin of the receiving device is connected to the Shift Out (SO) pin of the sending device, and the Output Ready (OR) pin of the sending device is connected to the Shift In (SI) pin of the receiving device.
Reading and writing operations are completely asynchronous, allowing the FIFO to be used as a buffer between two digital machines of widely differing operating frequencies. The 25 MHz operation makes these FIFOs ideal for high speed communication and controller applications.

Logic Block Diagram

0014-1

Pin Configurations

CY7C401 NC CY7C403 OE	16	$\square V_{C C}$
1R \square	215	$\square \mathrm{SO}$
Sl \square	314	$\square \mathrm{OR}$
$\mathrm{Di}_{0} \square$	$4 \begin{gathered} \mathrm{CY7C401} \\ \mathrm{CY} 7 \mathrm{C} 403 \end{gathered}$	$\square \mathrm{DO}_{0}$
DI, \square	512	$\square \mathrm{DO}_{1}$
$\mathrm{DI}_{2} \square$	611	$\square \mathrm{DO}_{2}$
$\mathrm{Dl}_{3} \square$	710	DO_{3}
GND	8 9	$\square \overline{\mathrm{MR}}$

0014-3

Selection Guide

		7C401/2-5	7C40X-10	7C40X-15	7C40X-25
Maximum Shift Rate (MHz)		5	10	15	25
Maximum Operating Current (mA)	Commercial	75	75	75	75
	Military	-	90	90	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \quad$ Static Discharge Voltage . $>2001 \mathrm{~V}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (per MIL-STD-883 Method 3015)

Latch-up Current . > 200 mA
Supply Voltage to Ground Potential ... -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Power Dissipation . 1.0 W
Output Current, into Outputs (Low) 20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range (Unless Otherwise Noted) ${ }^{[4]}$

Parameters	Description	Test Conditions		7C40X	15, 25	Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	6.0	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{CD}}{ }^{[1]}$	Input Diode Clamp Voltage ${ }^{[1]}$					
IOZ	Output Leakage Current	$\begin{aligned} & \text { GND } \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \text { Output Disabled }(\mathrm{CY} 7 \mathrm{C} 403 \text { and } \mathrm{CY} 7 \mathrm{C} 404) \end{aligned}$		-50	+ 50	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{\text {[2] }}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=$ GND			-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		75	mA
			Military		90	mA

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C IN $^{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	7	

Notes:

1. The CMOS process does not provide a clamp diode. However, the FIFO is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
2. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.
5. Tested initially and after any design or process changes that may affect these parameters.

SEMMCOSNDUCTOR

AC Test Load and Waveform

Figure 1a

Figure 1b

Equivalent to:
THÉVENIN EQUIVALENT

0014-6
Switching Characteristics Over the Operating Range ${ }^{[4,6]}$

Parameters	Description	Test Conditions	$\begin{aligned} & \text { 7C401-5 } \\ & \text { 7C402-5 } \end{aligned}$		7C40X-10		7C40X-15		7C40X-25 [12]		Units
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
f_{0}	Operating Frequency	Note 7		5		10		15		25	MHz
${ }_{\text {t PHSI }}$	SI HIGH Time		20		20		20		11		ns
$\mathrm{t}_{\text {PLSI }}$	SI LOW Time		45		30		25		20		ns
$\mathrm{t}_{\text {SSI }}$	Data Setup to SI	Note 8	0		0		0		0		ns
$\mathrm{t}_{\mathrm{HSI}}$	Data Hold from SI	Note 8	60		40		30		20		ns
$\mathrm{t}_{\text {DLIR }}$	Delay, SI HIGH to IR LOW			75		40		35		21/22	ns
$\mathrm{t}_{\text {DHIR }}$	Delay, SI LOW to IR HIGH			75		45		40		28/30	ns
$\mathrm{t}_{\text {PHSO }}$	SO HIGH Time		20		20		20		11		ns
$\mathrm{t}_{\text {PLSO }}$	SO LOW Time		45		25		25		20		ns
$\mathrm{t}_{\text {DLOR }}$	Delay, SO HIGH to OR LOW			75		40		35		19/21	ns
t ${ }_{\text {DHOR }}$	Delay, SO LOW to OR HIGH			80		55		40		34/37	ns
$\mathrm{t}_{\text {SOR }}$	Data Setup to OR HIGH		0		0		0		0		ns
$\mathrm{t}_{\mathrm{HSO}}$	Data Hold from SO LOW		5		5		5		5		ns
t_{BT}	Bubble through Time			200	10	95	10	65	10	50/60	ns
$\mathrm{t}_{\text {SIR }}$	Data Setup to IR	Note 9	5		5		5		5		ns
$\mathrm{t}_{\mathrm{HIR}}$	Data Hold from IR	Note 9	30		30		30		20		ns
$\mathrm{t}_{\text {PIR }}$	Input Ready Pulse HIGH		20		20		20		15		ns
tPOR	Output Ready Pulse HIGH		20		20		20		15		ns
tPMR	MR Pulse Width		40		30		25		25		ns
${ }^{\text {t }}$ DSI	MR HIGH to SI HIGH		40		35		25		10		ns
$\mathrm{t}_{\text {DOR }}$	MR LOW to OR LOW			85		40		35		35	ns
$\mathrm{t}_{\text {DIR }}$	MR LOW to IR HIGH			85		40		35		35	ns
$\mathrm{t}_{\text {LZMR }}$	MR LOW to Output LOW	Note 10		50		40		35		25	ns
$\mathrm{t}_{\text {OOE }}$	Output Valid from OE LOW			-		35		30		20	ns
$\mathrm{t}_{\text {HZOE }}$	Output HIGH-Z from OE HIGH	Note 11		-		30		25		15	ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance, as in Figure la.
7. $I / f_{O}>$ t $_{\text {PHSI }}+t_{\text {DHIR }}, I / f_{O}>$ t $_{\text {PHSO }}+t_{\text {DHOR }}$
8. $\mathrm{t}_{\mathrm{SSI}}$ and $\mathrm{t}_{\mathrm{HSI}}$ apply when memory is not full.
9. $\mathrm{t}_{\text {SIR }}$ and $\mathrm{t}_{\text {HIR }}$ apply when memory is full, SI is high and minimum bubble through (t_{BT}) conditions exist.
10. All data outputs will be at LOW level after reset goes high until data is entered into the FIFO.
11. HIGH-Z transitions are referenced to the steady-state $\mathrm{VOH}_{\mathrm{OH}}-500$ mV and $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ levels on the output. $\mathrm{t}_{\mathrm{HZOE}}$ is tested with 5 pF load capacitance as in Figure 1 b.
12. Commercial/Military

Operational Description

CONCEPT

Unlike traditional FIFOs these devices are designed using a dual port memory, read and write pointer, and control logic. The read and write pointers are incremented by the Shift Out (SO) and Shift In (SI) respectively. The availability of an empty space to shift in data is indicated by the Input Ready (IR) signal, while the presence of data at the output is indicated by the Output Ready (OR) signal. The conventional concept of bubble through is absent. Instead, the delay for input data to appear at the output is the time required to move a pointer and propagate an Output Ready (OR) signal. The Output Enable ($\overline{\mathrm{OE}}$) signal provides the capability to OR tie multiple FIFOs together on a common bus.

RESETTING THE FIFO

Upon power up, the FIFO must be reset with a Master Reset (MR) signal. This causes the FIFO to enter an empty condition signified by the Output Ready (OR) signal being LOW at the same time the Input Ready (IR) signal is HIGH. In this condition, the data outputs $\mathrm{DO}_{0}-\mathrm{DO}_{\mathrm{n}}$) will be in a LOW state.

SHIFTING DATA IN

Data is shifted in on the rising edge of the Shift In (SI) signal. This loads input data into the first word location of the FIFO. On the falling edge of the Shift In (SI) signal, the write pointer is moved to the next word position and the Input Ready (IR) signal goes HIGH indicating the readiness to accept new data. If the FIFO is full, the Input Ready (IR) will remain LOW until a word of data is shifted out.

SHIFTING DATA OUT

Data is shifted out of the FIFO on the falling edge of the Shift Out (SO) signal. This causes the internal read pointer to be advanced to the next word location. If data is present, valid data will appear on the outputs and the Output Ready (OR) signal will go HIGH. If data is not present, the Output Ready (OR) signal will stay LOW indicating the FIFO is empty. Upon the rising edge of Shift Out (SO), the Output Ready (OR) signal goes LOW. The data outputs of the FIFO should be sampled with edge sensitive type D flip-flop (or equivalent), using the SO signal as the clock input to the flip-flop.

BUBBLE THROUGH

Two bubble through conditions exist. The first is when the device is empty. After a word is shifted into an empty device, the data propagates to the output. After a delay, the Output Ready (OR) flag goes HIGH indicating valid data at the output.
The second bubble through condition occurs when the device is full. Shifting data out creates an empty location which propagates to the input. After a delay, the Input Ready (IR) flag goes HIGH. If the Shift In (SI) signal is HIGH at this time, data on the input will be shifted in.

APPLICATION OF THE 7C403-25/7C404-25 AT 25 MHz

Application of the CY7C403 or CY7C404 Cypress CMOS FIFO's requires attention to characteristics not easily spec-
ified in a Datasheet, but necessary for reliable operation under all conditions.
When an empty FIFO is filled with initial information, at maximum "shift in" SI frequency, followed by immediate shifting out of the data also at maximum "shift out" SO frequency, the designer must be aware of a window of time which follows the initial rising edge of the "output Ready" OR signal during which the SO signal is not recoginized. This condition exists only at high speed operation where more than one SO may be generated inside the prohibited window. This condition does not inhibit the operation of the FIFO at full frequency operation, but rather delays the full 25 MHz operation until after the window has passed.
There are several implementation techniques to manage the window so that all SO signals are recognized:

1. The first involves delaying SO operation such that it does not occur in the critical window. This can be accomplished by causing a fixed delay of 40 ns "initiated by the SI signal only when the FIFO is empty" to inhibit or gate the SO activity. This however requires that the SO operation at least temporarily be synchronized with the input SI operation. In synchronous applications this may well be possible and a valid solution.
2. Another solution not uncommon in synchronous applications is to only begin shifting data out of the FIFO when it is greater than half full. This is a common method of FIFO application, as earlier FIFOs could not be operated at maximum frequency when near full or empty. Although Cypress FIFOs do not have this limitation, any system designed in this manner will not encounter the window condition described above.
3. The window may also be managed by not allowing the first SO signal to occur until the window in question has passed. This can be accomplished by delaying the SO 40 ns from the rising edge of the initial OR "output ready" signal. This however involves the requirement that this only occurs on the first occurance of data being loaded into the FIFO from an empty condition and therefore requires the knowledge of "input ready" IR and SI conditions as well as SO.
4. Handshaking with the OR signal can be a third method of avoiding the window in question. With this technique the rising edge of SO, or the fact that the SO signal is HIGH, will cause the OR signal to go LOW. The SO signal is not taken low again, advancing the internal pointer to the next data, until the OR signal goes LOW. This assures that the SO pulse that is initiated in the window will be automatically extended sufficient time to be recognized.
5. There remains the decision as to what signal will be used to latch the data from the output of the FIFO into the receiving source. The leading edge of the SO signal is most appropriate because data is guaranteed to be stable prior to and after the SO leading edge for each FIFO. This is a solution for any number of FIFOs in parallel.
Any of the above solutions will provide a solution for correct operation of a Cypress FIFO at 25 MHz . The specific implementation is left to the designer and dependent on the specific application needs.

Switching Waveforms

Data In Timing Diagram

Data Out Timing Diagram

Bubble Through, Data Out To Data In Diagram

0014-9

Switching Waveforms (Continued)

Bubble Through, Data In To Data Out Diagram

Master Reset Timing Diagram

Output Enable Timing Diagram

Typical DC and AC Characteristics

NORMALIZED ICC

FIFO Expansion

128×4 Application

0014-14
FIFOs can be easily cascaded to any desired depth. The handshaking and associated timing between the FIFOs are handled by the inherent timing of the devices.
192×12 Application

0014-15
FIFOs are expandable in depth and width. However, in forming wider words two external gates are required to generate composite Input and Output Ready flags. This need is due to the variation of delays of the FIFOs.

User Notes:

1. When the memory is empty the last word read will remain on the outputs until the master reset is strobed or a new data word bubbles through to the output. However, OR will remain LOW, indicating data at the output is not valid.
2. When the output data changes as a result of a pulse on SO, the OR signal always goes LOW before there is any change in output data and stays LOW until the new data has appeared on the outputs. Anytime OR is HIGH, there is valid stable data on the outputs.
3. If SO is held HIGH while the memory is empty and a word is written into the input, that word will ripple through the memory to the output. OR will go HIGH for one internal cycle (at least tori) and then go back LOW again. The stored word will remain on the outputs. If more words are written into the FIFO, they will line up behind the first word and will not appear on the outputs until SO has been brought LOW.
4. When the master reset is brought LOW, the outputs are cleared to LOW, IR goes HIGH and OR goes LOW. If SI is HIGH when the master reset goes HIGH then the data on the inputs will be written into the memory and IR will return to the LOW state until SI is brought LOW. If SI is LOW when the master reset is ended, then IR will go HIGH, but the data on the inputs will not enter the memory until SI goes HIGH.
5. All Cypress FIFOs will cascade with other Cypress FIFOs. However, they may not cascade with pin-compatible FIFO's from other manufacturers.

Ordering Information

Ordering Code ($\mathbf{2 5} \mathbf{~ M H z) ~}$	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
CY7C401-25PC	P1	Com.
CY7C402-25PC	P3	
CY7C403-25PC	P1	
CY7C404-25PC	P3	
CY7C401-25DC	D2	
CY7C402-25DC	D4	
CY7C403-25DC	D2	
CY7C404-25DC	D4	
CY7C401-25LC	L61	
CY7C402-25LC	L61	
CY7C403-25LC	L61	
CY7C404-25LC	L61	
CY7C401-25DMB	D2	Mil.
CY7C402-25DMB	D4	
CY7C403-25DMB	D2	
CY7C404-25DMB	D4	
CY7C401-25LMB	L61	
CY7C402-25LMB	L61	
CY7C403-25LMB	L61	
CY7C404-25LMB	L61	

Ordering Code (15 MHz)	Package Type	Operating Range
CY7C401-15PC	P1	Com.
CY7C402-15PC	P3	
CY7C403-15PC	P1	
CY7C404-15PC	P3	
CY7C401-15DC	D2	
CY7C402-15DC	D4	
CY7C403-15DC	D2	
CY7C404-15DC	D4	
CY7C401-15LC	L61	
CY7C402-15LC	L61	
CY7C403-15LC	L61	
CY7C404-15LC	L61	
CY7C401-15DMB	D2	Mil.
CY7C402-15DMB	D4	
CY7C403-15DMB	D2	
CY7C404-15DMB	D4	
CY7C401-15LMB	L61	
CY7C402-15LMB	L61	
CY7C403-15LMB	L61	
CY7C404-15LMB	L61	

Ordering Code (10 MHz)	Package Type	Operating Range
CY7C401-10PC	P1	Com.
CY7C402-10PC	P3	
CY7C403-10PC	P1	
CY7C404-10PC	P3	
CY7C401-10DC	D2	
CY7C402-10DC	D4	
CY7C403-10DC	D2	
CY7C404-10DC	D4	
CY7C401-10LC	L61	
CY7C402-10LC	L61	
CY7C403-10LC	L61	
CY7C404-10LC	L61	
CY7C401-10DMB	D2	Mil.
CY7C402-10DMB	D4	
CY7C403-10DMB	D2	
CY7C404-10DMB	D4	
CY7C401-10LMB	L61	
CY7C402-10LMB	L61	
CY7C403-10LMB	L61	
CY7C404-10LMB	L61	

Ordering Code (5 MHz)	Package Type	Operating Range
CY7C401-5PC	P1	Com.
CY7C402-5PC	P3	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$\mathbf{1 , 2 , 3}$

Switching Characteristics

Parameters	Subgroups
f_{O}	7,8,9,10,11
tPHSI	7,8,9,10,11
tPLSI	7,8,9,10,11
$\mathrm{t}_{\text {SSI }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{HSI}}$	7,8,9,10,11
$\mathrm{t}_{\text {DLIR }}$	7,8,9,10,11
$t_{\text {DHIR }}$	7,8,9,10,11
tPHSO	7,8,9,10,11
tPLSO	7,8,9,10,11
$\mathrm{t}_{\text {DLOR }}$	7,8,9,10,11
$\mathrm{t}_{\text {DHOR }}$	7,8,9,10,11
tsor	7,8,9,10,11
$\mathrm{t}_{\mathrm{HSO}}$	7,8,9,10,11
t_{BT}	7,8,9,10,11
$\mathrm{t}_{\text {IIR }}$	7,8,9,10,11
thir	7,8,9,10,11
tPIR	7,8,9,10,11
tPOR	7,8,9,10,11
$\mathrm{t}_{\text {PMR }}$	7,8,9,10,11
$\mathrm{t}_{\text {DSI }}$	7,8,9,10,11
t DOR	7,8,9,10,11
$\mathrm{t}_{\text {DIR }}$	7,8,9,10,11
$t_{\text {LZMR }}$	7,8,9,10,11

Parameters	Subgroups
toOE	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HZOE}}$	$7,8,9,10,11$

Document \#: 38-00040-D

Features

- 64×8 and 64×9 first-in firstout (FIFO) buffer memory
- 35 MHz shift-in and shift-out rates
- Almost Full/Almost Empty and Half Full flags
- Dual port RAM architecture
- Fast, 50 ns, bubblethrough
- Independent asynchronous inputs and outputs
- Output Enable (CY7C408A)
- Expandable in word width and FIFO depth
- 5V $\pm 10 \%$ supply
- TTL compatible
- Capable of withstanding greater than 2000 V electrostatic discharge voltage
- 300 mil, 28-pin DIP

Functional Description

The CY7C408A and CY7C409A are 64 -word deep by 8 - or 9 -bit wide firstin first-out (FIFO) buffer memories. In addition to the industry standard handshaking signals, Almost Full/Almost Empty (AFE) and Half Full (HF) flags are provided.

AFE is HIGH when the FIFO is almost full or almost empty, otherwise AFE is LOW. HF is HIGH when the FIFO is half full, otherwise HF is LOW.
The CY7C408A has an Output Enable (OE) function.
The memory accepts 8 - or 9 -bit parallel words at its inputs $\left(\mathrm{DI}_{0}-\mathrm{DI}_{8}\right)$ under the control of the Shift-In (SI) input when the Input-Ready (IR) control signal is HIGH. The data is output, in the same order as it was stored, on the $\mathrm{DO}_{0}-\mathrm{DO}_{8}$ output pins under the control of the Shift-Out (SO) input when the Output-Ready (OR) control signal is HIGH. If the FIFO is full (IR LOW), pulses at the SI input are ignored: if the FIFO is empty (OR LOW), pulses at the SO input are ignored.
The IR and OR signals are also used to connect the FIFO's in parallel to make a wider word, or in series to make a deeper buffer, or both.
Parallel expansion for wider words is implemented by logically ANDing the IR and OR outputs (respectively) of the individual FIFOs together (Figure 7). The AND operation insures that all of the FIFOs are either ready to accept
more data (IR HIGH) or are ready to output data (OR HIGH) and thus compensate for variations in propagation delay times between devices.
Serial expansion (cascading) for deeper buffer memories is accomplished by connecting the data outputs of the FIFO closest to the data source (upstream device) to the data inputs of the following (downstream) FIFO (Figure 6). In addition, to insure proper operation, the SO signal of the upstream FIFO must be connected to the IR output of the downstream FIFO and the SI signal of the downstream FIFO must be connected to the OR output of the upstream FIFO. In this serial expansion configuration, the IR and OR signals are used to pass data through the FIFOs.

Reading and writing operations are completely asynchronous, allowing the FIFO to be used as a buffer between two digital machines of widely differing operating frequencies. The high shift-in and shift-out rates of these FIFOs, and their high throughput rate due to the fast bubblethrough time, which is due to their dual port RAM architecture, make them ideal for high speed communications and controllers.

Logic Block Diagram

0065-1
Flag Definitions

HF	AFE	Words Stored
L	H	$0-8$
L	L	$9-31$
H	L	$32-55$
H	H	$56-64$

Pin Configurations

0065-2

CYPRESS
SEMICONDUCTOR

CY7C409A

Selection Guide

		7C408A-15 7C409A-15	7C408A-25 7C409A-25	7C408A-35 7C409A-35
Maximum Shift Rate (MHz)		15	25	35
Maximum Operating	Commercial	115	125	135
Current (mA) ${ }^{[2]}$				

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Static Discharge Voltage
$>2001 \mathrm{~V}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential ... -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State (7C408A) -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Power Dissipation
. 1.0 W
(per MIL-STD-883 Method 3015)
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[4]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Output Current, into Outputs (Low) 20 mA
Electrical Characteristics Over Operating Range (Unless Otherwise Noted) ${ }^{[5]}$

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	7	

Notes:

1. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
2. $\mathbf{I}_{\mathrm{CC}}=\mathbf{I}_{\mathrm{CC}}+1 \mathrm{~mA} / \mathrm{MHz} \times\left(\mathrm{f}_{\mathrm{SI}}+\mathrm{f}_{\mathrm{SO}}\right) / 2$
3. Tested initially and after any design or process changes that may affect these parameters.
4. T_{A} is the "instant on" case temperature.
5. See the last page of this specification for Group A subgroup testing information.

AC Test Load and Waveforms

Figure 1a

Figure 1b

Equivalent to:
THÉVENIN EQUIVALENT
OUTPUT $\mathrm{O} \longrightarrow \mathrm{N}^{167 \Omega} \longrightarrow 1.73 \mathrm{~V}$

CYPRESS

Switching Characteristics Over the Operating Range ${ }^{[5,6]}$

Parameters	Description	Test Conditions	CY7C408A-15 CY7C409A-15		CY7C408A-25 CY7C409A-25		CY7C408A-35 CY7C409A-35		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
f_{0}	Operating Frequency	Note 7		15		25		35	MHz
tPHSI	SI HIGH Time	Note 7	23		11		9		ns
tPLSI	SI LOW Time	Note 7	25		24		17		ns
tsSI	Data Setup to SI	Note 8	0		0		0		ns
thSI	Data Hold from SI	Note 8	30		20		12		ns
t DLIR	Delay, SI HIGH to IR LOW			35		21		15	ns
t ${ }^{\text {dHIR }}$	Delay, SI LOW to IR HIGH			40		23		16	ns
tPHSO	SO HIGH Time	Note 7	23		11		9		ns
tPLSO	SO LOW Time	Note 7	25		24		17		ns
tplor	Delay, SO HIGH to OR LOW			35		21		15	ns
tDHOR	Delay, SO LOW to OR HIGH			40		23		16	ns
tsor	Data Setup to OR HIGH		0		0		0		ns
thSO	Data Hold from SO LOW		0		0		0		ns
t_{BT}	Fallthrough, Bubbleback Time		10	65	10	60	10	50	ns
tsIR	Data Setup to IR	Note 9	5		5		5		ns
thir	Data Hold from IR	Note 9	30		20		20		ns
tPIR	Input Ready Pulse HIGH	Note 10	6		6		6		ns
tPOR	Output Ready Pulse HIGH	Note 11	6		6		6		ns
tDLZOE	OE LOW to LOW Z (7C408)	Note 12		35		30.		25	ns
$\mathrm{t}_{\text {DHZOE }}$	OE HIGH to HIGH Z (7C408)	Note 12		35		30		25	ns
t ${ }^{\text {dHHF }}$	SI LOW to HF HIGH			65		55		45	ns
tDLHF	SO LOW to HF LOW			65		55		45	ns
t DLAFE	SO or SI LOW to AFE LOW			65		55		45	ns
t DHAFE	SO or SI LOW to AFE HIGH			65		55		45	ns
tPMR	$\overline{\text { MR Pulse Width }}$		55		45		35		ns
tDSI	$\overline{\text { MR HIGH to SI HIGH }}$		25		10		10		ns
tDOR	$\overline{\mathrm{MR}}$ LOW to OR LOW			55		45		35	ns
tDIR	MR LOW to IR HIGH			55		45		35	ns
$\mathrm{t}_{\text {LZMR }}$	$\overline{\text { MR LOW to Output LOW }}$	Note 13		55		45		35	ns
$\mathrm{t}_{\mathrm{AFE}}$	$\overline{\text { MR LOW to AFE HIGH }}$			55		45		35	ns
t_{HF}	$\overline{M R}$ LOW to HF LOW			55		45		35	ns
tod	SO LOW to Next Data Out Valid			28		20		16	ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance, as in Figure 1.
7. $1 / \mathrm{fo} \geq\left(\mathrm{t}_{\text {PHSI }}+\mathrm{t}_{\text {PLSI }}\right), 1 / \mathrm{f}_{\mathrm{O}} \geq\left(\mathrm{t}_{\text {PHSO }}+\mathrm{t}_{\text {PLSO }}\right)$.
8. tSSI and thSI apply when memory is not full.
9. tSIR and thir apply when memory is full, SI is HIGH and minimum bubblethrough (t_{BT}) conditions exist.
10. At any given operating condition $t_{\text {PIR }} \geq$ (tphso required).

11 At any given operating condition tPOR 2 (tPHSI required).
12. $\mathrm{t}_{\mathrm{DHZOE}}$ and $\mathrm{t}_{\mathrm{DLZOE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure $1 b$. $t_{\text {DHZOE }}$ transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage. tDLZOE transition is measured $\pm 100 \mathrm{mV}$ from steady state voltage. These parameters are guaranteed and not 100% tested.
13. All data outputs will be at LOW level after reset goes HIGH until data is entered into the FIFO.

Switching Waveforms

Data In Timing Diagram

HF

Data Out Timing Diagram

(2) FIFO Contains 9 Words

Switching Waveforms (Continued)

Data In Timing Diagram

Data Out Timing Diagram

AFE
(LOW)

(4) FIFO Contains 32 Words

Output Enable (CY7C408A only)

Switching Waveforms (Continued)

Data In Timing Diagram

Data Out Timing Diagram

Bubbleback, Data Out to Data In Diagram

Switching Waveforms (Continued)
Fallthrough, Data In to Data Out Diagram

(8) FIFO Is Empty

Master Reset Timing Diagram

Shifting Words In

0065-18
Figure 3

Shifting Words Out

Figure 4

Architecture of the CY7C408A and CY7C409A

The CY7C408A and CY7C409A FIFOs consist of an array of 64 words of 8 - or 9 -bits each (which are implemented using a dual port RAM cell), a write pointer, a read pointer and the control logic necessary to generate the handshaking (SI/IR, SO/OR) signals as well as the Almost Full/Almost Empty (AFE) and the Half Full (HF) flags. The handshaking signals operate in a manner identical to those of the industry standard CY7C401/402/403/404 FIFOs.

Dual Port RAM

The dual port RAM architecture refers to the basic memory cell used in the RAM. The cell itself enables the read and write operations to be independent of each other, which is necessary to achieve truly asynchronous operation of the inputs and outputs. A second benefit is that the time required to increment the read and write pointers is much less than the time that would be required for data to propagate through the memory, which would be the case if the memory were implemented using the conventional register array architecture.

Fallthrough and Bubbleback

The time required for data to propagate from the input to the output of an initially empty FIFO is defined as the Fallthrough time.
The time required for an empty location to propagate from the output to the input of an initially full FIFO is defined as the Bubbleback time.
The maximum rate at which data can be passed through the FIFO (called the throughput) is limited by the fall-
through time when it is empty (or near empty) and by the bubbleback time when it is full (or near full).
The conventional definitions of fallthrough and bubbleback do not apply to the CY7C408A and CY7C409A FIFOs because the data is not physically propagated through the memory. The read and write pointers are incremented instead of moving the data. However, the parameter is specified because it does represent the worst case propagation delay for the control signals. That is, the time required to increment the write pointer and propagate a signal from the SI input to the OR output of an empty FIFO or the time required to increment the read pointer and propagate a signal from the SO input to the IR output of a full FIFO.

Resetting the FIFO

Upon power up, the FIFO must be reset with a Master Reset (MR) signal. This causes the device to enter the empty condition, which is signified by the OR signal being LOW at the same time that the IR signal is HIGH. In this condition, the data outputs $\left(\mathrm{DO}_{0}-\mathrm{DO}_{8}\right)$ will be LOW. The AFE flag will be HIGH and the HF flag will be LOW.

Shifting Data Into the FIFO

The availability of an empty location is indicated by the HIGH state of the Input Ready (IR) signal. When IR is HIGH a LOW to HIGH transition on the Shift-In (SI) pin will clock the data on the $\mathrm{DI}_{0}-\mathrm{DI}_{8}$ inputs into the FIFO. Data propagates through the device at the falling edge of SI.
The IR output will then go LOW, indicating that the data has been sampled. The HIGH to LOW transition of the SI signal initiates the LOW to HIGH transition of the IR signal if the FIFO is not full. If the FIFO is full, IR will remain LOW.

Shifting Data Out of the FIFO

The availability of data at the outputs of the FIFO is indicated by the HIGH state of the Output Ready (OR) signal. After the FIFO is reset all data outputs ($\mathrm{DO}_{0}-\mathrm{DO}_{8}$) will be in the LOW state: As long as the FIFO remains empty the OR signal will be LOW and all Shift Out (SO) pulses applied to it will be ignored. After data is shifted into the FIFO the OR signal will go HIGH. The external control logic (designed by the user) should use the HIGH state of the OR signal to generate a SO pulse. The data outputs of the FIFO should be sampled with edge sensitive type D flip-flops (or equivalent), using the SO signal as the clock input to the flip-flop.

Interfacing to the FIFO Application Brief

See the application brief in the back of this databook for information regarding interfacing to the FIFO under asynchronous operating conditions.

AFE and HF Flags

Two flags, Almost Full/Almost Empty (AFE) and Half Full (HF), describe how many words are stored in the FIFO. AFE is HIGH when there are eight or less, or 56 or more, words stored in the FIFO. Otherwise the AFE flag is LOW. HF is HIGH when there are 32 or more words stored in the FIFO, otherwise the HF flag is LOW. Flag transitions occur relative to the falling edges of SI and SO (Figures 3 and 4).
Due to the asynchronous nature of the SI and SO signals, it is possible to encounter specific timing relationships which may cause short pulses on the AFE and HF flags. These pulses are entirely due to the dynamic relationship of the SI and SO signals. The flags, however, will always settle to their correct state after the appropriate delay (tDHAFE, $t_{\text {DLAFE }}$, DHHF or $\mathrm{t}_{\text {DLHF }}$). Therefore, use of level-sensitive rather than edge-sensitive flag detection devices is recommended to avoid false flag encoding.

Cascading the 7C408/9A-35 Above 25 MHz

If cascaded FIFOs are to be operated with an external clock rate greater than 25 MHz , the interface IR signal
must be inverted before being fed back to the interface SO pin (Figure 5). Two things should be noted when this configuration is implemented.
First, the capacity of N cascaded FIFOs is decreased from $\mathbf{N} \times 64$ to $(\mathbf{N} \times 63)+1$.
Secondly, the frequency at the cascade interface is less than the 35 MHz rate at which the external clocks may operate. Therefore, the first device has its data Shifted-In faster than it is Shifted-Out and eventually this device becomes momentarily full. When this occurs, the maximum sustainable external clock frequency changes from 35 MHz to the cascade interface frequency. ${ }^{\text {[14] }}$
When data packets ${ }^{[15]}$ are transmitted, this phenomenon does not occur unless more than three FIFOs are depth cascaded. For example, if two FIFOs are cascaded, a packet of $127(=2 \times 63+1)$ words may be shifted-in at up to 35 MHz and then the entire packet may be shifted-out at up to 35 MHz .
If data is to be shifted-out simultaneously with the data being shifted-in, the concept of "virtual capacity" is introduced. Virtual capacity is simply how large a packet of data can be shifted-in at a fixed frequency, e.g., 35 MHz , simultaneously with data being shifted-out at any given frequency. Figure 8 is a graph of packet size ${ }^{[16]}$ vs. shift-out frequency ($\mathrm{fSOx}^{\text {) }}$) for two different values of Shift-In frequency (fSIx) when two FIFOs are cascaded.
The exact complement of this occurs if the FIFOs initially contain data and a high Shift-Out frequency is to be maintained, i.e., a 35 MHz fSOx can be sustained when reading data packets from devices cascaded two or three deep. If data is shifted-in simultaneously, Figure 8 applies with fSIx and $\mathrm{fSOx}_{\mathrm{x}}$ interchanged.

Notes:

14. Because the data throughput in the cascade interface is dependent on the inverter delay, it is recommended that the fastest available inverter be used.
15. Transmission of data packets assumes that up to the maximum $\mathrm{cu}-$ mulative capacity of the FIFOs is Shifted-In without simultaneous Shift-Out clocks occurring. The complement of this holds when data is Shifted-Out as a packet.
16. These are typical packet sizes using an inverter whose delay is 4 ns .
17. Only devices with the same speed grade are specified to cascade together.

0065-22
Figure 5. Cascaded Configuration Above 25 MHz

FIFO Expansion

128×9 Configuration

Figure 6. Cascaded Configuration at or below 25 MHz
FIFOs can be easily cascaded to any desired depth. The handshaking and associated timing between the FIFOs are handled by the inherent timing of the devices.

User Notes referencing Figures 6 and 7:

1. When the memory is empty the last word read will remain on the outputs until the master reset is strobed or a new data word falls through to the output.
2. When the output data changes as a result of a pulse on SO, the OR signal always goes LOW before there is any change in output data and stays LOW until the new data has appeared on the outputs. Anytime OR is HIGH, there is valid stable data on the outputs.
3. If SO is held HIGH while the memory is empty and a word is written into the input, that word will fall through the memory to the output. OR will go HIGH for one internal cycle (at least tpOR) and then go back LOW again. The stored word will remain on the outputs. If more words are written into the FIFO, they will line up behind the first word and will not appear on the outputs until SO has been brought LOW.
4. When the master reset is brought LOW, the outputs are cleared to LOW, IR goes HIGH and OR goes LOW.

FIFO Expansion (Continued)

192×27 Configuration

0065-13
Figure 7. Depth and Width Expansion
FIFOs are expandable in depth and width. However, in forming wider words two external gates are required to generate composite Input and Output Ready flags. This need is due to the variation of delays of the FIFOs.

OUTPUT RATE ($\mathrm{f}_{\text {sOX }}$) OF BOTTOM FIFO (MHz)
0065-24
Figure 8. Virtual Capacity vs. Output Rate for Two FIFOs Cascaded Using an Inverter

Typical DC and AC Characteristics

NORMALIZED FREQUENCY

NORMALIZED FREQUENCY

Ordering Information

Frequency (MHz)	Ordering Code	Package Type	Operating Range
35	CY7C408A-35PC	P21	Commercial
	CY7C408A-35DC	D22	
	CY7C408A-35LC	L64	
	CY7C408A-35VC	V21	
25	CY7C408A-25PC	P21	Commercial
	CY7C408A-25DC	D22	
	CY7C408A-25LC	L64	
	CY7C408A-25VC	V21	
	CY7C408A-25DMB	D22	Military
	CY7C408A-25LMB	L64	
	CY7C408A-25KMB	K74	
15	CY7C408A-15PC	P21	Commercial
	CY7C408A-15DC	D22	
	CY7C408A-15LC	L64	
	CY7C408A-15VC	V21	
	CY7C408A-15DMB	D22	Military
	CY7C408A-15LMB	L64	
	CY7C408A-15KMB	K74	

Frequency (MHz)	Ordering Code	Package Type	Operating Range
35	CY7C409A-35PC	P21	Commercial
	CY7C409A-35DC	D22	
	CY7C409A-35LC	L64	
	CY7C409A-35VC	V21	
25	CY7C409A-25PC	P21	Commercial
	CY7C409A-25DC	D22	
	CY7C409A-25LC	L64	
	CY7C409A-25VC	V21	
	CY7C409A-25DMB	D22	Military
	CY7C409A-25LMB	L64	
	CY7C409A-25KMB	K74	
15	CY7C409A-15PC	P21	Commercial
	CY7C409A-15DC	D22	
	CY7C409A-15LC	L64	
	CY7C409A-15VC	V21	
	CY7C409A-15DMB	D22	Military
	CY7C409A-15LMB	L64	
	CY7C409A-15KMB	K74	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OS}	$1,2,3$
$\mathrm{I}_{\mathrm{CCQ}}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
f_{0}	7,8,9,10,11
$\mathrm{t}_{\text {PHSI }}$	7,8,9,10,11
tPLSI	7,8,9,10,11
tsSI	7,8,9,10,11
$\mathrm{t}_{\mathrm{HSI}}$	7,8,9,10,11
$t_{\text {DLIR }}$	7,8,9,10,11
tDHIR	7,8,9,10,11
tPHSO	7,8,9,10,11
tplso	7,8,9,10,11
$\mathrm{t}_{\text {DLOR }}$	7,8,9,10,11
t ${ }_{\text {DHOR }}$	7,8,9,10,11
tsor	7,8,9,10,11
thso	7,8,9,10,11
$\mathrm{t}_{\mathrm{B} T}$	7,8,9,10,11
tsir	7,8,9,10,11
$\mathrm{t}_{\text {HIR }}$	7,8,9,10,11
tPIR	7,8,9,10,11
tPOR	7,8,9,10,11
tsilr	7,8,9,10,11
tsoor	7,8,9,10,11
tDLZOE	7,8,9,10,11
t ${ }_{\text {DHZOE }}$	7,8,9,10,11
$\mathrm{t}_{\text {DHHF }}$	7,8,9,10,11
t DLHF	7,8,9,10,11

Parameters	Subgroups
t $_{\text {DLAFE }}$	$7,8,9,10,11$
t $_{\text {DHAFE }}$	$7,8,9,10,11$
t_{B}	$7,8,9,10,11$
$t_{\text {OD }}$	$7,8,9,10,11$
$t_{\text {PMR }}$	$7,8,9,10,11$
$t_{\text {DSI }}$	$7,8,9,10,11$
$t_{\text {DOR }}$	$7,8,9,10,11$
$t_{\text {DIR }}$	$7,8,9,10,11$
$t_{\text {LZMR }}$	$7,8,9,10,11$
$t_{\text {AFE }}$	$7,8,9,10,11$
$t_{\text {HF }}$	$7,8,9,10,11$

Document \#: 38-00059-E

CY7C420, CY7C421
 CY7C424, CY7C425
 CY7C428, CY7C429

SEMICONDUCTOR

Cascadeable 512×9 FIFO Cascadeable 1K x 9 FIFO Cascadeable 2 K x 9 FIFO

Features

- $512 \times 9,1,024 \times 9,2,048 \times 9$ FIFO buffer memory
- Dual-port RAM cell
- Asynchronous read/write
- High-speed 33.3-MHz read/write independent of depth/width
- Low operating power
$-I_{C C}($ max. $)=142 \mathrm{~mA}$
(commercial)
$-I_{\text {CC }}$ (max.) $=147 \mathrm{~mA}$ (military)
- Half Full flag in standalone
- Empty and Full flags
- Retransmit in standalone
- Expandable in width and depth
- Parallel cascade minimizes bubble-through
- $5 \mathrm{~V} \pm \mathbf{1 0 \%}$ supply
- 300-mil DIP packaging
- 300-mil SOJ packaging
- TTL compatible
- Three-state outputs
- Pin compatible and functional
equivalent to IDT7201, IDT7202, and IDT7203

Functional Description

The CY7C420/CY7C421, CY7C424/ CY7C425, and CY7C428/CY7C429 are first-in first-out (FIFO) memories offered in $600-\mathrm{mil}$ wide and $300-\mathrm{mil}$ wide packages. They are, respectively, 512, 1,024, and 2,048 words by 9 -bits wide. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Full and Empty flags are provided to prevent overrun and underrun. Three additional pins are also provided to facilitate unlimited expansion in width, depth, or both. The depth expansion technique steers the control signals from one device to another in parallel, thus eliminating the serial addition of propagation delays, so that throughput is not reduced. Data is steered in a similar manner.
The read and write operations may be asynchronous; each can occur at a rate of
33.3 MHz. The write operation occurs when the write $(\overline{\mathrm{W}})$ signal is LOW. Read occurs when read $(\overline{\mathrm{R}})$ goes LOW. The nine data outputs go to the high-impedance state when $\overline{\mathrm{R}}$ is HIGH.

A Half Full ($\overline{\mathrm{HF}}$) output flag is provided that is valid in the standalone and width expansion configurations. In the depth expansion configuration, this pin provides the expansion out $(\overline{\mathrm{XO}})$ information that is used to tell the next FIFO that it will be activated.

In the standalone and width expansion configurations, a LOW on the retransmit ($\overline{\mathrm{RT}}$) input causes the FIFOs to retransmit the data. Read enable $(\overline{\mathrm{R}})$ and write enable ($\overline{\mathrm{W}}$) must both be HIGH during retransmit, and then $\overline{\mathrm{R}}$ is used to access the data.
The CY7C420, CY7C421, CY7C424, CY7C425, CY7C428, and CY7C429 are fabricated using an advanced 0.8 -micron N -well CMOS technology. Input ESD protection is greater than 2000 V and latch-up is prevented by careful layout, guard rings, and a substrate bias generator.

Selection Guide

		7C420-20 7C421-20 7C424-20 7C425-20 7C428-20 7C429-20	7C420-25 7C421-25 7C424-25 7C425-25 7C428-25 7C429-25	7C420-30 7C421-30 7C424-30 7C425-30 7C428-30 7C429-30	$\begin{aligned} & \text { 7C420-40 } \\ & \text { 7CC21-40 } \\ & \text { 7CC424-40 } \\ & \text { 7C425-40 } \\ & \text { 7CC42-40 } \\ & \text { 7CC29-40 } \end{aligned}$	$\begin{aligned} & \text { 7C420-65 } \\ & \text { 7C421-65 } \\ & \text { 7C424-65 } \\ & \text { 7C42-65 } \\ & \text { 7C428-65 } \\ & \text { 7C429-65 } \\ & \hline \end{aligned}$
Frequency (MHz)		33.3	28.5	25	20	12.5
Maximum Access Time (ns)		20	25	30	40	65
Maximum Operating Current (mA)	Commercial	142	132	125	115	100
	Military/Industrial		147	140	130	115

Maximum Rating

(Above which the useful life may be impaired. For user guidelines, not tested.)

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C420-20 } \\ & \text { 7C421-20 } \\ & \text { 7С424-20 } \\ & \text { 7C 425-20 } \\ & \text { 7C428-20 } \\ & \text { 7С429-20 } \end{aligned}$		7C420-257C421-257C424-257C425-257C428-257C429-25		$\begin{aligned} & \text { 7C420-30 } \\ & \text { 7C421-30 } \\ & \text { 7C424-30 } \\ & \text { 7C425-30 } \\ & \text { 7C428-30 } \\ & \text { 7C429-30 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2$.	mA	2.4		$2 . .4$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
$\mathrm{V}_{\mathrm{IH}}{ }^{[3]}$	Input HIGH Voltage		Com'l	2.0	V_{Cc}	2.0	V_{cc}	2.0	V_{Cc}	V
			Mil/Ind			2.2	V_{cc}	2.2	$\mathrm{V}_{\text {cc }}$	
V_{IL}	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{LX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+ 10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{cc}}$		-10	+10	-10	+10	-10	+ 10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com' ${ }^{[4]}$		142		132		125	mA
			Mil/Ind ${ }^{[5]}$				147		140	
$\mathrm{I}_{\text {SB } 1}$	Standby Current	All Inputs $=\mathrm{V}_{\mathrm{IH}} \mathrm{Min}$.	Com'l		30		25		25	mA
			Mil/Ind				30		30	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	All Inputs $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Com'l		25		20		20	mA
			Mil/Ind				25		25	
I_{OS}	Output Short Circuit Current ${ }^{[6]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-90		-90		-90	mA

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\overline{\mathrm{XI}}$ must use CMOS levels with $\mathrm{V}_{\mathrm{IH}} \geq 3.5 \mathrm{~V}$.
4. $\mathrm{I}_{\mathrm{CC}}($ commercial $)=100 \mathrm{~mA}+[(\overline{\mathrm{f}}-12.5) * 2 \mathrm{~mA} / \mathrm{MHz}]$ for $\bar{f} \geq 12.5 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
5. I_{CC} (military) $=115 \mathrm{~mA}+\left[(\overline{\mathrm{f}}-12.5)^{*} 2 \mathrm{~mA} / \mathrm{MHz}\right]$
for $\overline{\mathrm{f}} \geq 12.5 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C420-40 } \\ & \text { 7CC21-40 } \\ & \text { 7C424-40 } \\ & \text { 7C425-40 } \\ & \text { 7CC28-40 } \\ & \text { 7C429-40 } \end{aligned}$		7C420-657CC21-657C424-657C425-657C428-657C429-65		Units
				Min.	Max.	Min.	Max.	
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-2.0$	mA	$2 . .4$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage		Com'l	2.0	V_{cc}	2.0	V_{Cc}	V
			Mil/Ind	2.2	V_{cc}	2.2	V_{Cc}	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	+10	-10	$+10$	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com' ${ }^{\text {[}}{ }^{[4]}$		115		100	mA
			Mil/Ind ${ }^{[5]}$		130		115	
$\mathrm{I}_{\text {SB1 }}$	Standby Current	All Inputs $=\mathrm{V}_{\mathrm{IH}} \mathrm{Min}$.	Com'l		25		25	mA
			Mil		30		30	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	All Inputs $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Com'l		20		20	mA
			Mil		25		25	
Ios	Output Short Circuit Current ${ }^{[6]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-90		-90	mA

Capacitance ${ }^{[7]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	pF	

Notes:
7. Tested initially and after any design or process changes that may affect
these parameters.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT

CY7C420, CY7C421, CY7C424 CY7C425, CY7C428, CY7C429

CYPPESS
SEMICONDUCTOR

tics Over the Operating Range ${ }^{[8,9]}$

Parameters	Description	7C420-20 7C421-20 7C424-20 7C425-20 7C428-20 7C429-20		7C420-257C421-257C424-257C425-257C428-257C429-25		7C420-307C421-307C424-307C425-307C428-307C429-30		$\begin{aligned} & \hline \text { 7C420-40 } \\ & \text { 7C421-40 } \\ & \text { 7C424-40 } \\ & \text { 7C425-40 } \\ & \text { 7CC28-40 } \\ & \text { 7C429-40 } \end{aligned}$		7C420-657C421-657C424-657C425-657C428-657C429-65		Units
		Min.	Max.									
t_{RC}	Read Cycle Time	30		35		40		50		80		ns
t_{A}	Access Time		20		25		30		40		65	ns
t_{RR}	Read Recovery Time	10		10		10		10		15		ns
$\mathrm{t}_{\text {PR }}$	Read Pulse Width	20		25		30		40		65		ns
$\mathrm{t}_{\text {LZR }}{ }^{[10]}$	Read LOW to Low Z	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{DVR}}{ }^{[10,11]}$	Read HIGH to Data Valid	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HzR}}{ }^{[10,11]}$	Read HIGH to High Z		15		18		20		25		30	ns
twc	Write Cycle Time	30		35		40		50		80		ns
$\mathrm{t}_{\text {PW }}$	Write Pulse Width	20		25		30		40		65		ns
$\mathrm{t}_{\mathrm{HWZ}}{ }^{[10]}$	Write HIGH to Low Z	10		10		10		10		10		ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	10		10		10		10		15		ns
$t_{\text {SD }}$	Data Set-Up Time	12		15		18		20		30		ns
t_{HD}	Data Hold Time	0		0		0		0		10		ns
$\mathrm{t}_{\text {MRSC }}$	$\overline{\text { MR Cycle Time }}$	30		35		40		50		80		ns
$\mathrm{t}_{\text {PMR }}$	$\overline{M R}$ Pulse Width	20		25		30		40		65		ns
$\mathrm{t}_{\text {RMR }}$	$\overline{\text { MR Recovery Time }}$	10		10		10		10		15		ns
$\mathrm{t}_{\text {RPW }}$	Read HIGH to MR HIGH	20		25		30		40		65		ns
$\mathrm{t}_{\text {wPW }}$	Write HIGH to $\overline{\text { MR }}$ HIGH	20		25		30		40		65		ns
$\mathrm{t}_{\text {RTC }}$	Retansmit Cycle Time	30		35		40		50		80		ns
$\mathrm{t}_{\text {PRT }}$	Retransmit Pulse Width	20		25		30		40		65		ns
$\mathrm{t}_{\text {RTR }}$	Retransmit Recovery Time	10		10		10		10		15		ns
$\mathrm{t}_{\text {EFL }}$	$\overline{\text { MR }}$ to EF LOW		30		35		40		50		80	ns
$\mathrm{t}_{\mathrm{HFH}}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{HF}} \mathrm{HIGH}$		30		35		40		50		80	ns
$\mathrm{t}_{\text {FFH }}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{FF}}$ HIGH		30		35		40		50		80	ns
$\mathrm{t}_{\text {REF }}$	Read LOW to EFF LOW		25		25		30		35		60	ns
$\mathrm{t}_{\text {RFF }}$	Read HIGH to $\overline{\text { FF }}$ HIGH		25		25		30		35		60	ns
$\mathrm{t}_{\text {weF }}$	Write HIGH to EF HIGH		25		25		30		35		60	ns
$\mathrm{t}_{\text {WFF }}$	Write LOW to $\overline{\mathrm{FF}}$ LOW		25		25		30		35		60	ns
$\mathrm{t}_{\text {whF }}$	Wrtie LOW to $\overline{\mathrm{HF}}$ LOW		30		35		40		50		80	ns
$\mathrm{t}_{\text {RHF }}$	Read HIGH to $\overline{\mathrm{HF}} \mathrm{HIGH}$		30		35		40		50		80	ns
$\mathrm{t}_{\text {RaE }}$	Effective Read from Write HIGH		20		25		30		35		60	ns
$\mathrm{t}_{\text {RPE }}$	Effective Read Pulse Width after EF HIGH	20		25		30		40		65		ns
$\mathrm{t}_{\text {WAF }}$	Effective Write from Read HIGH		20		25		30		35		60	ns
$\mathrm{t}_{\text {WPF }}$	Effective Write Pulse Width after $\overline{\mathrm{FF}} \mathrm{HIGH}$	20		25		30		40		65		ns
${ }_{\text {trou }}$	Expansion Out LOW Delay from Clock		20		25		30		40		65	ns
${ }^{\text {¢ }}$ ¢ ${ }^{\text {r }}$	Expansion Out HIGH Delay from Clock		20		25		30		40		65	ns

Switching Waveforms

Asynchronous Read and Write

Master Reset

Half-Full Flag

C420.9

Notes:

8. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance, as in part (a) of AC Test Load and Waveforms, unless otherwise specified.
9. See the last page of this specification for Group A subgroup testing information.
10. $t_{H Z R}$ transition is measured at +500 mV from V_{OL} and -500 mV from $\mathrm{V}_{\mathrm{OH}} \cdot \mathrm{t}_{\mathrm{DVR}}$ transition is measured at the 1.5 V level. $\mathrm{t}_{\mathrm{HWZ}}$ and $\mathrm{t}_{\mathrm{LZR}}$ transition is measured at $\pm 100 \mathrm{mV}$ from the steady state.
11. $t_{\text {HZR }}$ and $t_{\text {DVR }}$ use capacitance loading as in part (b) of AC Test Load and Waveforms.
12. $\overline{\mathrm{W}}$ and $\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}$ around the rising edge of $\overline{\mathrm{MR}}$.
13. $\mathbf{t}_{\mathrm{MRSC}}=\mathrm{t}_{\mathrm{PMR}}+\mathrm{t}_{\mathrm{RMR}}$.

Switching Waveforms (continued)

Last Write to First Read Full Flag

Last Read to First Write Empty Flag

Retransmit ${ }^{[14]}$

C420-12

Notes:
14. $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ may change state during retransmit as a result of the offset of the read and write pointers, but flags will be valid at $t_{R T C}$.
15. $\mathrm{t}_{\mathrm{RTC}}=\mathrm{t}_{\mathrm{PRT}}+\mathrm{t}_{\mathrm{RTR}}$.

Switching Waveforms (continued)
Empty Flag and Empty Boundary Timing Diagram

Full Flag and Full Boundary Timing Diagram

Switching Waveforms (continued)
Expansion Timing Diagrams

[^38]
Architecture

The CY7C420/421/424/425/428/429 FIFOs consist of an array of $512 / 1024 / 2048$ words of 9 bits each (implemented by an array of dual-port RAM cells), a read pointer, a write pointer, control signals ($\overline{\mathbf{W}}, \overline{\mathbf{R}}, \overline{\mathrm{XI}}, \overline{\mathrm{XO}}, \overline{\mathrm{FL}}, \overline{\mathrm{RT}}, \overline{\mathrm{MR}}$), and Full, Half Full, and Empty flags.

Dual-Port RAM

The dual-port RAM architecture refers to the basic memory cell used in the RAM. The cell itself enables the read and write operations to be independent of each other, which is necessary to achieve truly asynchronous operation of the inputs and outputs. A second benefit is that the time required to increment the read and write pointers is much less than the time that would be required for data propagation through the memory, which would be the case if the memory were implemented using the conventional register array architecture.

Resetting the FIFO

Upon power-up, the FIFO must be reset with a Master Reset ($\overline{\mathrm{MR}}$) cycle. This causes the FIFO to enter the empty condition signified by the Empty flag ($\overline{\mathrm{EF}}$) being LOW, and both the Half Full ($\overline{\mathrm{HF}}$) and Full flags ($\overline{\mathrm{FF}}$) being HIGH. Read ($\overline{\mathrm{R}}$) and write ($(\overline{\mathrm{W}})$ must be HIGH $\mathrm{t}_{\mathrm{RPW}} / \mathrm{t}_{\mathrm{WPW}}$ before and $\mathrm{t}_{\mathrm{RMR}}$ after the rising edge of $\overline{\mathrm{MR}}$ for a valid reset cycle. If reading from the FIFO after a reset cycle is attempted, the outputs will all be in the high-impedance state.

Writing Data to the FIFO

The availability of at least one empty location is indicated by a HIGH $\overline{\mathrm{FF}}$. The falling edge of $\overline{\mathrm{W}}$ initiates a write cycle. Data appearing at the inputs $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right) \mathrm{t}_{\mathrm{SD}}$ before and t_{HD} after the rising edge of \bar{W} will be stored sequentially in the FIFO.
The $\overline{E F}$ LOW-to-HIGH transition occurs $t_{\text {WEF }}$ after the first LOW-to-HIGH transition of \bar{W} for an empty FIFO. $\overline{H F}$ goes LOW $\mathrm{t}_{\text {whf }}$ after the falling edge of \bar{W} following the FIFO actually being Half Full. Therefore, the $\overline{\mathrm{HF}}$ is active once the FIFO is filled to half its capacity plus one word. $\overline{\mathrm{HF}}$ will remain LOW while less than one half of total memory is available for writing. The LOW-to-HIGH transition of $\overline{\mathrm{HF}}$ occurs $\mathrm{t}_{\text {RHF }}$ after the rising edge of $\overline{\mathrm{R}}$ when the FIFO goes from half full +1 to half full. $\overline{\mathrm{HF}}$ is available in standalone and width expansion modes. $\overline{\mathrm{FF}}$ goes LOW $\mathrm{t}_{\mathrm{WFF}}$ after the falling edge of \bar{W}, during the cycle in which the last available location is filled. Internal logic prevents overrunning a full FIFO. Writes to a full FIFO are ignored and the write pointer is not incremented. $\overline{\text { FF }}$ goes HIGH $t_{\text {REF }}$ after a read from a full FIFO.

Reading Data from the FIFO

The falling edge of $\overline{\mathrm{R}}$ initiates a read cycle if the $\overline{\mathrm{EF}}$ is not LOW. Data outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{8}$) are in a high-impedance condition between read operations ($\overline{\mathrm{R}}$ HIGH) when the FIFO is empty, or when the FIFO is not the active device in the depth expansion mode.

When one word is in the FIFO, the falling edge of $\overline{\mathrm{R}}$ initiates a HIGH-to-LOW transition of $\overline{\mathrm{EF}}$. When the FIFO is empty, the outputs are in a high-impedance state. Reads to an empty FIFO are ignored and do not increment the read pointer. From the empty condition, the FIFO can be read $t_{\text {wEF }}$ after a valid write.

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be acknowledged by the receiver and retransmitted if necessary.
The Retransmit ($\overline{\mathrm{RT}}$) input is active in the standalone and width expansion modes. The retransmit feature is intended for use when a number of writes equal to or less than the depth of the FIFO have occurred since the last $\overline{\mathrm{MR}}$ cycle. A LOW pulse on $\overline{\mathrm{RT}}$ resets the internal read pointer to the first physical location of the FIFO. \bar{R} and \bar{W} must both be HIGH while and $t_{\text {RTR }}$ after retransmit is LOW. With every read cycle after retransmit, previously accessed data is read and the read pointer is incremented until it is equal to the write pointer. Full, Half Full, and Empty flags are governed by the relative locations of the read and write pointers and are updated during a retransmit cycle. Data written to the FIFO after activation of $\frac{\mathrm{RT}}{}$ are transmitted also.
The full depth of the FIFO can be repeatedly transmitted.

Standalone/Width Expansion Modes

Standalone and width expansion modes are set by grounding Expansion In ($\overline{\mathrm{XI}}$) and tying First Load ($\overline{\mathrm{FL}}$) to V Cc . FIFOs can be expanded in width to provide word widths greater than nine in increments of nine. During width expansion mode, all control line inputs are common to all devices, and flag outputs from any device can be monitored.

Depth Expansion Mode (see Figure 1)

Depth expansion mode is entered when, during a $\overline{\mathrm{MR}}$ cycle, Expansion Out ($\overline{\mathrm{XO}})$ of one device is connected to Expansion In ($\overline{\mathrm{XI}})$ of the next device, with XO of the last device connected to XI of the first device. In the depth expansion mode the First Load ($\overline{\mathrm{FL}}$) input, when grounded, indicates that this part is the first to be loaded. All other devices must have this pin HIGH. To enable the correct FIFO, $\overline{\mathrm{XO}}$ is pulsed LOW when the last physical location of the previous FIFO is written to and pulsed LOW again when the last physical location is read. Only one FIFO is enabled for read and one for write at any given time. All other devices are in standby.
FIFOs can also be expanded simultaneously in depth and width. Consequently, any depth or width FIFO can be created of word widths in increments of 9 . When expanding in depth, a composite $\overline{\mathrm{FF}}$ must be created by ORing the $\overline{\mathrm{FF}}$ s together. Likewise, a composite $\overline{\mathrm{EF}}$ is created by ORing the $\overline{\mathrm{EFs}}$ together. $\overline{\mathrm{HF}}$ and $\overline{\mathrm{RT}}$ functions are not available in depth expansion mode.

Figure 1. Depth Expansion

Typical DC and AC Characteristics

SUPPLY VOLTAGE (N)

NORMALIZED SUPPLY CURRENT

NORMALIZED t_{A}
vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

Ordering Information

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Type	Operating Range
20	CY7C420-20PC	P15	Commercial
	CY7C420-20DC	D16	
25	CY7C420-25PC	P15	Commercial
	CY7C420-25DC	D16	
	CY7C420-25PI	P15	Industrial
	CY7C420-25DI	D16	
	CY7C420-25DMB	D16	Military
30	CY7C420-30PC	P15	Commercial
	CY7C420-30DC	D16	
	CY7C420-30PI	P15	Industrial
	CY7C420-30DI	D16	
	CY7C420-30DMB	D16	Military
40	CY7C420-40PC	P15	Commercial
	CY7C420-40DC	D16	
	CY7C420-40PI	P15	Industrial
	CY7C420-40DI	D16	
	CY7C420-40DMB	D16	Military
65	CY7C420-65PC	P15	Commercial
	CY7C420-65DC	D16	
	CY7C420-65PI	P15	Industrial
	CY7C420-65DI	D16	
	CY7C420-65DMB	D16	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7C421-20PC	P21	Commercial
	CY7C421-20JC	J65	
	CY7C421-20VC	V21	
	CY7C421-20DC	D22	
	CY7C421-20LC	L55	
25	CY7C421-25PC	P21	Commercial
	CY7C421-25JC	J65	
	CY7C421-25VC	V21	
	CY7C421-25DC	D22	
	CY7C421-25LC	L55	
	CY7C421-25PI	P21	Industrial
	CY7C421-25JI	J65	
	CY7C421-25DI	D22	
	CY7C421-25DMB	D22	Military
	CY7C421-25LMB	L55	
	CY7C421-25KMB	K74	
30	CY7C421-30PC	P21	Commercial
	CY7C421-30JC	J65	
	CY7C421-30VC	V21	
	CY7C421-30DC	D22	
	CY7C421-30LC	L55	
	CY7C421-30PI	P21	Industrial
	CY7C421-30JI	J65	
	CY7C421-30DI	D22	
	CY7C421-30DMB	D22	Military
	CY7C421-30LMB	L55	
	CY7C421-30KMB	K74	
40	CY7C421-40PC	P21	Commercial
	CY7C421-40JC	J65	
	CY7C421-40VC	V21	
	CY7C421-40DC	D22	
	CY7C421-40LC	L55	
	CY7C421-40PI	P21	Industrial
	CY7C421-40JI	J65	
	CY7C421-40DI	D22	
	CY7C421-40DMB	D22	Military
	CY7C421-40LMB	L55	
	CY7C421-40KMB	K74	
65	CY7C421-65PC	P21	Commercial
	CY7C421-65JC	J65	
	CY7C421-65VC	V21	
	CY7C421-65DC	D22	
	CY7C421-65LC	L55	
	CY7C421-65PI	P21	Industrial
	CY7C421-65JI	J65	
	CY7C421-65DI	D22	
	CY7C421-65DMB	D22	Military
	CY7C421-65LMB	L55	
	CY7C421-65KMB	K74	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7C424-20PC	P15	Commercial
	CY7C424-20DC	D16	
25	CY7C424-25PC	P15	Commercial
	CY7C424-25DC	D16	
	CY7C424-25PI	P15	Industrial
	CY7C424-25DI	D16	
	CY7C424-25DMB	D16	Military
30	CY7C424-30PC	P15	Commercial
	CY7C424-30DC	D16	
	CY7C424-30PI	P15	Industrial
	CY7C424-30DI	D16	
	CY7C424-30DMB	D16	Military
40	CY7C424-40PC	P15	Commercial
	CY7C424-40DC	D16	
	CY7C424-40PI	P15	Industrial
	CY7C424-40DI	D16	
	CY7C424-40DMB	D16	Military
65	CY7C424-65PC	P15	Commercial
	CY7C424-65DC	D16	
	CY7C424-65PI	P15	Industrial
	CY7C424-65DI	D16	
	CY7C424-65DMB	D16	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7C425-20PC	P21	Commercial
	CY7C425-20JC	J65	
	CY7C425-20VC	V21	
	CY7C425-20DC	D22	
	CY7C425-20LC	L55	
25	C77C425-25PC	P21	Commercial
	CY7C425-25JC	J65	
	CY7C425-25VC	V21	
	CY7C425-25DC	D22	
	CY7C425-25LC	L55	
	CY7C425-25PI	P21	Industrial
	CY7C425-25JI	J65	
	CY7C425-25DI	D22	
	CY7C425-25DMB	D22	Military
	CY7C425-25LMB	L55	
	CY7C425-25KMB	K74	
30	CY7C425-30PC	P21	Commercial
	CY7C425-30JC	J65	
	CY7C425-30VC	V21	
	CY7C425-30DC	D22	
	CY7C425-30LC	L55	
	CY7C425-30PI	P21	Industrial
	CY7C425-30JI	J65	
	CY7C425-30DI	D22	
	CY7C425-30DMB	D22	Military
	CY7C425-30LMB	L55	
	CY7C425-30KMB	K74	
40	CY7C425-40PC	P21	Commercial
	CY7C425-40JC	J65	
	CY7C425-40VC	V21	
	CY7C425-40DC	D22	
	CY7C425-40LC	L55	
	CY7C425-40PI	P21	Industrial
	CY7C425-40JI	J65	
	CY7C425-40DI	D22	
	CY7C425-40DMB	D22	Military
	CY7C425-40LMB	L55	
	CY7C425-40KMB	K74	
65	CY7C425-65PC	P21	Commercial
	CY7C425-65JC	J65	
	CY7C425-65VC	V21	
	CY7C425-65DC	D22	
	CY7C425-65LC	L55	
	CY7C425-65PI	P21	Industrial
	CY7C425-65JI	J65	
	CY7C425-65DI	D22	
	CY7C425-65DMB	D22	Military
	CY7C425-65LMB	L55	
	CY7C425-65KMB	K74	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
20	CY7C428-20PC	P15	Commercial
	CY7C428-20DC	D16	
25	CY7C428-25PC	P15	Commercial
	CY7C428-25DC	D16	
	CY7C428-25PI	P15	Industrial
	CY7C428-25DI	D16	
	CY7C42825DMB	D16	Military
30	CY7C428-30PC	P15	Commercial
	CY7C428-30DC	D16	
	CY7C428-30PI	P15	Industrial
	CY7C428-30DI	D16	
	CY7C428-30DMB	D16	Military
40	CY7C428-40PC	P15	Commercial
	CY7C428-40DC	D16	
	CY7C428-40PI	P15	Industrial
	CY7C428-40DI	D16	
	CY7C428-40DMB	D16	Military
65	CY7C428-65PC	P15	Commercial
	CY7C428-65DC	D16	
	CY7C428-65PI	P15	Industrial
	CY7C428-65DI	D16	
	CY7C428-65DMB	D16	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CY7C429-20PC	P21	Commercial
	CY7C429-20JC	J65	
	CY7C429-20VC	V21	
	CY7C429-20DC	D22	
	CY7C429-20LC	L55	
25	CY7C429-25PC	P21	Commercial
	CY7C429-25JC	J65	
	CY7C429-25VC	V21	
	CY7C429-25DC	D22	
	CY7C429-25LC	L55	
	CY7C429-25PI	P21	Industrial
	CY7C429-25JI	J65	
	CY7C429-25DI	D22	
	CY7C429-25DMB	D22	Military
	CY7C429-25LMB	L55	
	CY7C429-25KMB	K74	
30	CY7C429-30PC	P21	Commercial
	CY7C429-30JC	J65	
	CY7C429-30VC	V21	
	CY7C429-30DC	D22	
	CY7C429-30LC	L55	
	CY7C429-30PI	P21	Industrial
	CY7C429-30JI	J65	
	CY7C429-30DI	D22	
	CY7C429-30DMB	D22	Military
	CY7C429-30LMB	L55	
	CY7C429-30KMB	K74	
40	CY7C429-40PC	P21	Commercial
	CY7C429-40JC	J65	
	CY7C429-40VC	V21	
	CY7C429-40DC	D22	
	CY7C429-40LC	L55	
	CY7C429-40PI	P21	Industrial
	CY7C429-40JI	J65	
	CY7C429-40DI	D22	
	CY7C429-40DMB	D22	Military
	CY7C429-40LMB	L55	
	CY7C429-40KMB	K74	
65	CY7C429-65PC	P21	Commercial
	CY7C429-65JC	J65	
	CY7C429-65VC	V21	
	CY7C429-65DC	D22	
	CY7C429-65LC	L55	
	CY7C429-65PI	P21	Industrial
	CY7C429-65JI	J65	
	CY7C429-65DI	D22	
	CY7C429-65DMB	D22	Military
	CY7C429-65LMB	L55	
	CY7C429-65KMB	K74	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
I_{OS}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{RC}	9, 10, 11
t_{A}	9, 10, 11
t_{RR}	9, 10, 11
t_{PR}	9, 10, 11
$\mathrm{t}_{\text {LZR }}$	9, 10, 11
$\mathrm{t}_{\text {DVR }}$	9, 10, 11
$\mathrm{t}_{\mathrm{HZR}}$	9, 10, 11
t_{wc}	9, 10, 11
$t_{\text {PW }}$	9, 10, 11
$\mathrm{t}_{\mathrm{HWZ}}$	9, 10, 11
t_{WR}	9,10, 11
$\mathrm{t}_{\text {SD }}$	9,10, 11
t_{HD}	9,10, 11
$t_{\text {MRSC }}$	9,10, 11
$\mathrm{t}_{\text {PMR }}$	9,10, 11
$\mathrm{t}_{\text {RMR }}$	9, 10, 11
$\mathrm{t}_{\text {RPW }}$	9,10,11
$\mathrm{t}_{\text {WPW }}$	9, 10, 11
$\mathrm{t}_{\text {RTC }}$	9, 10, 11
$\mathrm{t}_{\text {PRT }}$	9, 10, 11
$\mathrm{t}_{\text {RTR }}$	9, 10, 11
$\mathrm{t}_{\text {EFL }}$	9, 10, 11
$\mathrm{t}_{\text {HFH }}$	9, 10, 11
$\mathrm{t}_{\text {FFH }}$	9,10,11
$\mathrm{t}_{\text {REF }}$	9, 10, 11
$\mathrm{t}_{\text {RFF }}$	9, 10, 11
$\mathrm{t}_{\text {WEF }}$	9, 10, 11
$\mathrm{t}_{\text {WFF }}$	9,10,11
$\mathrm{t}_{\text {WHF }}$	9, 10, 11
$\mathrm{t}_{\text {RHF }}$	9, 10, 11
$\mathrm{t}_{\text {RAE }}$	9, 10, 11
$\mathrm{t}_{\text {RPE }}$	9, 10, 11
$\mathrm{t}_{\text {WAF }}$	9, 10, 11
$\mathrm{t}_{\text {WPF }}$	9, 10, 11
$\mathrm{t}_{\text {XOL }}$	9, 10, 11
$\mathrm{t}_{\mathrm{XOH}}$	9, 10, 11

Document \#: 38-00079-G

Features

- 4096×9 FIFO buffer memory
- Dual-port RAM cell
- Asynchronous read/write
- High-speed $28.5-\mathrm{MHz}$ read/write independent of depth/width
- 25-ns access time
- Low operating power
$-I_{C C}($ max. $)=142 \mathrm{~mA}$ commercial
$-I_{\text {CC }}$ (max.) $=\mathbf{1 5 5} \mathbf{m A}$ military
- Half Full flag in standalone
- Empty and Full flags
- Restransmit in standalone
- Expandable in width and depth
- Parallel cascade minimizes bubble-through
- $\mathbf{5 V} \pm \mathbf{1 0 \%}$ supply
- 300-mil DIP packaging
- 300-mil SOJ packaging
- TTL compatible
- Three-state outputs
- Pin compatible and functionally equivalent to IDT7204

Function Description

The CY7C432 and CY7C433 are first-in first-out (FIFO) memories offered in $600-\mathrm{mil}$-wide and 300 -mil-wide packages, respectively. They are 4096 words by 9 bits wide. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Full and Empty flags are provided to prevent overrun and underrun. Three additional pins are also provided to facilitate unlimited expansion in width, depth, or both. The depth expansion technique steers the control signals from one device to another in parallel, thus eliminating the serial addition of propagation delays, so that throughput is not reduced. Data is steered in a similar manner.
The read and write operations may be asynchronous; each can occur at a rate of 28.5 MHz . The write operation occurs when the write $(\overline{\mathrm{W}})$ signal is LOW. Read occurs when read $(\overline{\mathrm{R}})$ goes LOW. The 9 data outputs go to the high-impedance state when $\overline{\mathrm{R}}$ is HIGH.

A Half Full ($\overline{\mathrm{HF}}$) output flag is provided that is valid in the standalone and width expansion configurations. In the depth expansion configuration, this pin provides the expansion out $(\overline{\mathrm{XO}})$ information that is used to tell the next FIFO that it will be activated.
In the standalone and width expansion configurations, a LOW on the restransmit $(\overline{\mathrm{RT}})$ input causes the FIFOs to restransmit the data. Read enable $(\overline{\mathrm{R}})$ and write enable ($\overline{\mathrm{W}}$) must both be HIGH during a restransmit cycle, and then $\overline{\mathrm{R}}$ is used to access the data.
The CY7C432 and CY7C433 are fabricated using advanced 0.8 -micron N -well CMOS technology. Input ESD protection is greater than 2000 V and latch-up is prevented by careful layout, guard rings, and a substrate bias generator.

Selection Guide

		$\begin{aligned} & \text { 7C432-25 } \\ & \text { 7C433-25 } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{C} 432-30 \\ & 7 \mathrm{C} 433-30 \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 432-40 \\ & \text { 7C433-40 } \end{aligned}$	$\begin{aligned} & \text { 7C432-65 } \\ & \text { 7C433-65 } \end{aligned}$
Frequency (MHz)		28.5	25	20	12.5
Access Time (ns)		25	30	40	65
Maximum Operating Current (mA)	Commercial	142	135	125	110
	Military/Industrial		155	145	130

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)		
Ambient Temperature with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up Cur	ethod 3015)	\ldots. $>200 \mathrm{~mA}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs 	Range	Ambient Temperature	$V_{\text {cc }}$
DC Input Voltage . -3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Power Dissipation . 0.88W	Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{C} 432-25 \\ & 7 \mathrm{C} 433-25 \end{aligned}$		$\begin{aligned} & 7 \mathbf{C 4 3 2 - 3 0} \\ & \text { 7C433-30 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		$2 . .4$		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
$\mathrm{V}_{\mathrm{IH}}{ }^{[3]}$	Input HIGH Voltage		Com'l	2.0	V_{CC}	2.0	V_{Cc}	V
			Mil/Ind			2.2	V_{Cc}	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'1 ${ }^{\text {[4] }}$		140		135	mA
			$\mathrm{Mil} / \mathrm{Ind}^{[5]}$				155	
$\mathrm{I}_{\text {SB1 }}$	Standby Current	All Inputs $=\mathrm{V}_{\mathrm{IH}} \mathrm{Min}$.	Com'l		25		25	mA
			Mil/Ind				30	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	All Inputs $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Com'l		20		20	mA
			Mil/Ind				25	
I OS	Output Short Circuit Current ${ }^{[6]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-90		-90	mA

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\overline{\mathrm{XI}}$ must use CMOS levels with $\mathrm{V}_{\mathrm{IH}} \geq 3.5 \mathrm{~V}$.
4. $\mathrm{I}_{\mathrm{CC}}($ commercial $)=110 \mathrm{~mA}+[(\overline{\mathrm{f}}-12.5) \cdot 2 \mathrm{~mA} / \mathrm{MHz}]$ for $\mathrm{f} \geq 12.5 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
5. IcC (military) $=130 \mathrm{~mA}+[(\overline{\mathrm{f}}-12.5) \cdot 2 \mathrm{~mA} / \mathrm{MHz}]$ for $\mathrm{f} \geq 12.5 \mathrm{MHz}$
where $\overline{\mathbf{f}}=$ the larger of the write or read operating frequency.
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C432-40 } \\ & \text { 7C433-40 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C432-65 } \\ & \text { 7C433-65 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$., $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$		2.4		$2 . .4$		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		Com'l	2.0	V_{Cc}	2.0	V_{cc}	V
			Mil/Ind	2.2	V_{cc}	2.2	V_{cc}	V
V_{IL}	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	$+10$	-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com ${ }^{[14]}$		125		110	mA
			$\begin{array}{\|l} \hline \mathrm{Mil}^{2} \\ \mathrm{Ind}^{[5]} \end{array}$		145		130	
$\mathrm{I}_{\text {SB1 }}$	Standby Current	All Inputs $=\mathrm{V}_{\mathrm{IH}} \mathrm{Min}$.	Com'l		25		25	mA
			Mil/Ind		30		30	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	All Inputs $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Com'l		20		20	mA
			Mil/Ind		25		25	
$\mathrm{I}_{\text {OS }}$	Output Current ${ }^{[6]}$ Short Circuit	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-90		-90	mA

Capacitance ${ }^{[7]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	10	pF

Notes:

7. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } 0<200 \Omega
$$

CY7C433
CYPRESS

Switching Characteristics Over the Operating Range ${ }^{[8,9]}$

Parameters	Description	$\begin{aligned} & \hline \text { 7C432-25 } \\ & \text { 7C433-25 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 432-30 \\ & \text { 7C433-30 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 432-40 \\ & 7 \mathrm{C} 433-40 \end{aligned}$		$\begin{aligned} & \text { 7C432-65 } \\ & \text { 7C433-65 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	35		40		50		80		ns
t_{A}	Access Time		25		30		40		65	ns
t_{RR}	Read Recovery Time	10		10		10		15		ns
t_{PR}	Read Pulse Width	25		30		40		65		ns
$\mathrm{t}_{\text {LZR }}{ }^{[10]}$	Read LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\mathrm{DVR}}{ }^{[10,11]}$	Read HIGH to Data Valid	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZR}}{ }^{[10,11]}$	Read HIGH to High Z		18		20		25		30	ns
t_{wc}	Write Cycle Time	35		40		50		80		ns
t_{PW}	Write Pulse Width	25		30		40		65		ns
$\mathrm{t}_{\mathrm{HWZ}}{ }^{[10]}$	Write HIGH to Low Z	10		10		10		10		ns
t_{WR}	Write Recovery Time	10		10		10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	15		18		20		30		ns
t_{HD}	Data Hold Time	0		0		0		10		ns
$\mathrm{t}_{\text {MRSC }}$	$\overline{\text { MR Cycle Time }}$	35		40		50		80		ns
$\mathrm{t}_{\text {PMR }}$	$\overline{\mathrm{MR}}$ Pulse Width	25		30		40		65		ns
$\mathrm{t}_{\text {RMR }}$	$\overline{\text { MR }}$ Recovery Time	10		10		10		15		ns
$\mathrm{t}_{\text {RPW }}$	Read HIGH to MR HIGH	25		30		40		65		ns
$t_{\text {WPW }}$	Write HIGH to $\overline{\mathrm{MR}} \mathrm{HIGH}$	25		30		40		65		ns
$\mathrm{t}_{\mathrm{RTC}}$	Retansmit Cycle Time	35		40		50		80		ns
$\mathrm{t}_{\text {PRT }}$	Retransmit Pulse Width	25		30		40		65		ns
$\mathrm{t}_{\mathrm{RTR}}$	Retransmit Recovery Time	10		10		10		15		ns
$\mathrm{t}_{\text {EFL }}$	$\overline{\mathrm{MR}}$ to EF LOW		35		40		50		80	ns
$\mathrm{t}_{\mathrm{HFH}}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{HF}} \mathrm{HIGH}$		35		40		50		80	ns
$\mathrm{t}_{\mathrm{FFH}}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{FF}}$ HIGH		35		40		50		80	ns
$\mathrm{t}_{\text {REF }}$	Read LOW to $\overline{\mathrm{EF}}$ LOW		25		30		35		60	ns
$\mathrm{t}_{\text {RFF }}$	Read HIGH to $\overline{\mathrm{FF}} \mathrm{HIGH}$		25		30		35		60	ns
$\mathrm{t}_{\text {WEF }}$	Write HIGH to $\overline{\mathrm{EF}}$ HIGH		25		30		35		60	ns
$\mathrm{t}_{\text {WFF }}$	Write LOW to $\overline{\mathrm{FF}}$ LOW		25		30		35		60	ns
$\mathrm{t}_{\text {WHF }}$	Wrtie LOW to $\overline{\text { HF }}$ LOW		35		40		50		80	ns
$\mathrm{t}_{\text {RHF }}$	Read HIGH to $\overline{\mathrm{HF}} \mathrm{HIGH}$		35		40		50		80	ns
$\mathrm{t}_{\text {RaE }}$	Effective Read from Write HIGH		25		30		35		60	ns
$\mathrm{t}_{\text {RPE }}$	Effective Read Pulse Width after $\overline{\mathrm{EF}}$ HIGH	25		30		40		65		ns
$\mathrm{t}_{\text {waf }}$	Effective Write from Read HIGH		25		30		35		60	ns
$\mathrm{t}_{\text {WPF }}$	Effective Write Pulse Width after $\overline{\overline{F F}}$ HIGH	25		30		40		65		ns
txol	Expansion Out LOW Delay from Clock		25		30		40		65	ns
${ }^{\text {t }}$ (${ }^{\text {OH}}$	Expansion Out HIGH Delay from Clock		25		30		40		65	ns

Notes:

8. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance, as in part (a) of AC Test Loads, unless otherwise specified.
9. See the last page of this specification for Group A subgroup testing information.
10. $t_{H Z R}$ transition is measured at +500 mV from V_{OL} and -500 mV from $\mathbf{V}_{\mathrm{OH}} \cdot \mathrm{t}_{\mathrm{DVR}}$ transition is measured at the 1.5 V level. $\mathrm{t}_{\mathrm{HWZ}}$ and $\mathrm{t}_{\mathrm{LZR}}$ transition is measured at $\pm 100 \mathrm{mV}$ from the steady state.
11. $\mathbf{t}_{\mathbf{H Z R}}$ and $\mathrm{t}_{\mathrm{DVR}}$ use capacitance loading as in part (a) of AC Test Loads.

Switching Waveforms

Asynchronous Read and Write

Half-Full Flag

Notes:

12. \bar{W} and $\bar{R} \geq V_{I H}$ for at least $t_{W P W}$ or $t_{R P R}$ before the rising edge of $\overline{M R}$.
13. $t_{\text {MRSC }}=t_{\text {PMR }}+t_{\text {RMR }}$.

Switching Waveforms (continued)
Last Write to First Read Full Flag

Last Read to First Write Empty Flag

Retransmit ${ }^{[14]}$

Notes:
14. $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ may change state during retransmit as a result of the offset of the read and write pointers, but flags will be valid at $\mathrm{t}_{\mathrm{RTC}}$.
15. $t_{\mathrm{RTC}}=\mathrm{t}_{\mathrm{PRT}}+\mathrm{t}_{\mathrm{RTR}}$.

Switching Waveforms (continued)

Empty Flag and Empty Boundary

Full Flag and Full Boundary

Switching Waveforms (continued)

Expansion

16. Expansion Out of device $1\left(\overline{\mathrm{XO}}_{1}\right)$ is connected to Expansion In of device $2\left(\overline{\mathrm{XI}_{2}}\right)$.

Architecture

The CY7C432/33 FIFOs consist of an array of 4096 words of 9 bits each (implemented by an array of dual-port RAM cells), a read pointer, a write pointer, control signals $(\overline{\mathrm{W}}, \overline{\mathrm{R}}, \overline{\mathrm{XI}}, \overline{\mathrm{XO}}, \overline{\mathrm{FL}}, \overline{\mathrm{RT}}$, MR), and Full, Half Full, and Empty flags.

Dual-Port RAM

The dual-port RAM architecture refers to the basic memory cell used in the RAM. The cell itself enables the read and write operations to be independent of each other, which is necessary to achieve truly asynchronous operations of the inputs and outputs. A second benefit is that the time required to increment the read and write pointers is much less than the time that would be required for data to propagate through the memory, which would be the case if the memory were implemented using the conventional register array architecture.

Resetting the FIFO

Upon power-up, the FIFO must be reset with a master reset ($\overline{\mathrm{MR}}$) cycle. This causes the FIFO to enter the empty condition signified by the empty flag ($\overline{\mathrm{EF}}$) being LOW, and both the Half Full ($\overline{\mathrm{HF}}$) and Full flag ($\overline{\mathrm{FF}})$ resetting to HIGH. Read $(\overline{\mathrm{R}})$ and write $(\overline{\mathrm{W}})$ must be HIGH $t_{R P W} / t_{\text {wPw }}$ before and $t_{\text {RMR }}$ after the rising edge of MR for a valid reset cycle.

Writing Data to the FIFO

The availability of an empty location is indicated by the HIGH state of the Full flag ($\overline{\mathrm{FF}}$). A falling edge of write ($\overline{\mathrm{W}}$) initiates a write cycle. Data appearing at the inputs $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right) \mathrm{t}_{\mathrm{sD}}$ before and $t_{H D}$ after the rising edge of \bar{W} will be stored sequentially in the FIFO.
The Empty flag ($\overline{\mathrm{EF}})$ LOW-to-HIGH transition occurs $\mathrm{t}_{\text {wEF }}$ after the first LOW-to-HIGH transition on the write clock of an empty FIFO. The Half Full flag ($\overline{\mathrm{HF}}$) will go LOW on the falling edge of the write clock following the occurrence of half full. $\overline{\mathrm{HF}}$ will remain LOW while less than one half of the total memory of this device is available for writing. The LOW-to-HIGH transition of the $\overline{\mathrm{HF}}$ flag occurs on the rising edge of read $(\overline{\mathrm{R}}) \cdot \overline{\mathrm{HF}}$ is available in single device mode only. The Full flag $(\overline{\mathrm{FF}})$ goes LOW on the falling edge of \bar{W} during the cycle in which the last available location in the FIFO is written, prohibiting overflow. $\overline{\mathrm{FF}}$ goes HIGH $\mathrm{t}_{\text {RFF }}$ after the completion of a valid read of a full FIFO.

Reading Data from the FIFO

The falling edge of read $(\overline{\mathrm{R}})$ initiates a read cycle if the Empty flag $(\overline{\mathrm{EF}})$ is not LOW. Data outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{8}\right)$ are in a high-impedance condition between read operations ($\overline{\mathrm{R}} \mathrm{HIGH}$), when the FIFO is empty, or when the FIFO is in the depth expansion mode but is not the active device.

The falling edge of $\overline{\mathrm{R}}$ during the last read cycle before the empty condition triggers a HIGH-to-LOW transition of EF, prohibiting any further read operations until $\mathrm{t}_{\text {WEF }}$ after a valid write.

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be interrogated by the receiver and retransmitted if necessary.
The retransmit $(\overline{\mathrm{RT}})$ input is active in the single device mode only. The retransmit feature is intended for use when 4096 or less writes have occurred since the previous $\overline{M R}$ cycle. A LOW pulse on $\overline{\text { RT }}$ resets the internal read pointer to the first physical location of the FIFO. The write pointer is unaffected. $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ must both be HIGH during a retransmit cycle. Full, Half Full, and Empty flags are governed by the relative locations of the read and write pointers and will be updated by a retransmit operation.
After a retransmit cycle, previously read data may be reaccessed using $\overline{\mathrm{R}}$ to initiate standard read cycles beginning with the first physical location.

Single Device/Width Expansion Modes

Single device and width expansion modes are entered by connecting XI to ground prior to an $\overline{\mathrm{MR}}$ cycle. During these modes the $\overline{\mathrm{HF}}$ and $\overline{\mathrm{RT}}$ features are available. FIFOs can be expanded in width to provide word widths greater than 9 in increments of 9 . During width expansion mode all control line inputs are common to all devices and flag outputs from any device can be monitored.

Depth Expansion Mode (see Figure 1)

Depth expansion mode is entered when, during a $\overline{M R}$ cycle, expansion Out $(\overline{\mathrm{XO}})$ of one device is connected to expansion in ($\overline{\mathrm{XI}})$ of the next device, with $\overline{\mathrm{XO}}$ of the last device connected to $\overline{\mathrm{XI}}$ of the first device. In the depth expansion mode the first load ($\overline{\mathrm{FL}}$) input, when grounded, indicates that this part is the first part to be loaded. All other devices must have this pin HIGH. To enable the correct FIFO, XO is pulsed LOW when the last physical location of the previous FIFO is written to and is pulsed LOW again when the last physical location is read. Only one FIFO is enabled for read and one is enabled for write at any given time. All other devices are in standby.
FIFOs can also be expanded simultaneously in depth and width. Consequently, any depth or width FIFO can be created of word widths in increments of 9 . When expanding in depth, a composite $\overline{\mathrm{FF}}$ must be created by ORing the $\overline{\mathrm{FF}}$ s together. Likewise, a composite $\overline{\mathrm{EF}}$ is created by ORing the $\overline{\mathrm{EF}}$ s together. $\overline{\mathrm{HF}}$ and $\overline{\mathrm{RT}}$ functions are not available in depth expansion mode.

Figure 1. Depth Expansion

Typical DC and AC Characteristics

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C432-25PC	P15	Commercial
	CY7C432-25DC	D16	
30	CY7C432-30PC	P15	Commercial
	CY7C432-30DC	D16	
	CY7C432-30PI	P15	Industrial
	CY7C432-30DI	D16	
	CY7C432-30DMB	D16	Military
40	CY7C432-40PC	P15	Commercial
	CY7C432-40DC	D16	
	CY7C432-40PI	P15	Industrial
	CY7C432-40DI	D16	
	CY7C432-40DMB	D16	Military
65	CY7C432-65PC	P15	Commercial
	CY7C432-65DC	D16	
	CY7C432-65PI	P15	Industrial
	CY7C432-65DI	D16	
	CY7C432-65DMB	D16	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C433-25PC	P21	Commercial
	CY7C433-25VC	V21	
	CY7C433-25DC	D22	
	CY7C433-25LC	L55	
	CY7C433-25JC	J65	
30	CY7C433-30PC	P21	Commercial
	CY7C433-30VC	V21	
	CY7C433-30DC	D22	
	CY7C433-30LC	L55	
	CY7C433-30JC	J65	
	CY7C433-30PI	P21	Industrial
	CY7C433-30DI	D22	
	CY7C433-30JI	J65	
	CY7C433-30DMB	D22	Military
	CY7C433-30LMB	L55	
	CY7C433-30KMB	K74	
40	CY7C433-40PC	P21	Commercial
	CY7C433-40VC	V21	
	CY7C433-40DC	D22	
	CY7C433-40LC	L55	
	CY7C433-40JC	J65	
	CY7C433-40PI	P21	Industrial
	CY7C433-40DI	D22	
	CY7C433-40JI	J65	
	CY7C433-40DMB	D22	Military
	CY7C433-40LMB	L55	
	CY7C433-40KMB	K74	
65	CY7C433-65PC	P21	Commercial
	CY7C433-65VC	V21	
	CY7C433-65DC	D22	
	CY7C433-65LC	L55	
	CY7C433-65JC	J65	
	CY7C433-65PI	P21	Industrial
	CY7C433-65DI	D22	
	CY7C433-65JI	J65	
	CY7C433-65DMB	D22	Military
	CY7C433-65LMB	L55	
	CY7C433-65KMB	K74	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{X}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
I_{OS}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{RC}	$9,10,11$
t_{A}	$9,10,11$
t_{RR}	$9,10,11$
t_{PR}	$9,10,11$
$\mathrm{t}_{\mathrm{LZR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{DVR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HZR}}$	$9,10,11$
t_{WC}	$9,10,11$
t_{PW}	$9,10,11$
$\mathrm{t}_{\mathrm{HWZ}}$	$9,10,11$
t_{WR}	$9,10,11$
t_{SD}	$9,10,11$
t_{HD}	$9,10,11$
$\mathrm{t}_{\mathrm{MRSC}}$	$9,10,11$

Features

- 2048×9 FIFO buffer memory
- Bidirectional operation
- High-speed 28.5-MHz asynchronous reads and writes
- Simple control interface
- Registered and transparent bypass modes
- Flags indicate Empty, Full, and Half Full conditions
- $5 \mathrm{~V} \pm 10 \%$ supply
- Available in 300-mil DIP, PLCC, LCC, and SOJ packages
- TTL compatible

Functional Description

The CY7C439 is a 2048×9 FIFO memory capable of bidirectional operation. As the term first-in first-out (FIFO) implies, data becomes available to the output port in the same order that it was presented to the input port. There are two pins that indicate the amount of data contained within the FIFO block- $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ (Empty/Full) and $\overline{\mathrm{HF}}$ (Half Full). These pins can be decoded to determine one of four states. Two 9-bit data ports are provided. The direction selected for the FIFO determines the input and output ports. The FIFO direction can be programmed by the user at any time through the use of the reset pin (MR) and the bypass/direction pin (BYPA). There are no control or status registers on the CY7C439, making the part simple to use
while meeting the needs of the majority of bidirectional FIFO applications.
FIFO read and write operations may occur simultaneously, and each can occur at up to 28.5 MHz . The port designated as the write port drives its strobe pin (STBX, X $=\mathrm{A}$ or B$)$ LOW to initiate the write operation. The port designated as the read port drives its strobe pin LOW to initiate the read operation. Output port pins go to a high-impedance state when the associated strobe pin is HIGH. All normal FIFO operations require the bypass control pin (BYPX, $\mathrm{X}=\mathrm{A}$ or B) to remain HIGH.
In addtion to the FIFO, two other data paths are provided; registered bypass and transparent bypass. Registered bypass can be considered as a single-word FIFO in the reverse direction to the main FIFO. The

bypass register provides a means of sending a 9-bit status or control word to the FIFO-write port. The bypass data available pin (BDA) indicates whether the bypass register is full or empty. The direction of the bypass register is always opposite to that of the main FIFO.
The port designated to write to the bypass register drives its bypass control pin (BYPX) LOW. The other port detects the presence of data by monitoring BDA and reads the data by driving its bypass control pin ($\overline{\mathrm{BYPX}})$ LOW. Registered bypass operations require that the associated FIFO strobe pin (STBX) remains HIGH. Registered bypass operations do not affect data residing in the FIFO, or FIFO operations at the other port.
Transparent bypass provides a means of transferring a single word (9 bits) of data immediately in either direction. This feature allows
the device to act as a simple 9-bit bidirectional buffer. This is useful for allowing the controlling circuitry to access a dumb peripheral for control/programming information.
For transparent bypass, the port wishing to send immediate data to the other side drives both its bypass and its strobe pins LOW simultaneously. This causes the buffered data to be driven out of the other port. On-chip circuitry detects conflicting use of the control pins and causes both data ports to enter a high-impedance state until the conflict is resolved.
The CY7C439 is fabricated using an advanced $0.8 \mu \mathrm{~N}$-well CMOS technology. Input ESD protection is greater than 2000 V and latchup is prevented by reliable layout techniques, guard rings, and a substrate bias generator.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $\ldots \ldots \ldots \ldots \ldots \ldots \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots \ldots . .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 .5 \mathrm{~F}$ to +7.0 V
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. . 3.0 V to +7.0 V
Power Dissipation..................................... 1.0W
Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)

Pin Definitions

Signal Name	I/O	Description
$\mathrm{A}_{(8-0)}$	I/O	Data Port Associated with $\overline{\mathrm{BYPA}}$ and $\overline{\text { STBA }}$
$\mathrm{B}_{(8-0)}$	I/O	Data Port Associated with $\overline{\text { BYPB }}$ and $\overline{\text { STBB }}$
$\overline{\mathrm{BYPA}}$	I	Registered Bypass Mode Select for A Side
$\overline{\mathrm{BYPB}}$	I	Registered Bypass Mode Selectr for B Side
$\overline{\mathrm{BDA}}$	O	Bypass Data Available Flag
$\overline{\text { STBA }}$	I	Data Strobe for A Side
$\overline{\text { STBB }}$	I	Data Strobe for B Side
$\overline{\mathrm{E} / \overline{\mathrm{F}}}$	O	Encoded Empty/Full Flag
$\overline{\mathrm{HF}}$	O	Half Full Flag
$\overline{\mathrm{MR}}$	I	Master Reset

Latch-Up Current . > 200 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Notes

1. T_{A} is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		7C439-25		7C439-30		7C439-40		7C439-65		Units
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		Com'l	2.2	$\mathrm{V}_{\text {cc }}$	2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
			Mil	2.2	V_{cc}	2.2	V_{Cc}	2.2	V_{Cc}	2.2	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	$+10$	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\begin{aligned} & \overline{\text { STBX }} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} . \\ & \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$		-10	+10	-10	+10	- 10	+10	- 10	+ 10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com' ${ }^{[3]}$		147		140		130		115	mA
			Mil ${ }^{[4]}$						160		145	
$\mathrm{I}_{\text {SBI }}$	Standby Current	All Inputs $=\mathrm{V}_{\mathrm{IH}} \mathrm{Min}$.	Com'l		40		40		40		40	mA
			Mil				45		45			
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	All Inputs $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Com'l		20		20		20		20	mA
			Mil						25		25	
IOS	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OuT}}=\mathrm{GND}$			-90		-90		-90		-90	mA

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	10	pF

Notes:
2. See the last page of this specification for Group A subgroup testing information.
3. $\mathrm{I}_{\mathrm{CC}}($ commercial $)=115 \mathrm{~mA}+[(\overline{\mathrm{f}}-12.5) \cdot 2 \mathrm{~mA} / \mathrm{MHz}]$ for $\overline{\mathrm{f}} \geq 12.5 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
4. $\mathrm{I}_{\mathrm{CC}}($ military $)=145 \mathrm{~mA}+[(\overline{\mathrm{f}}-12.5) \cdot 2 \mathrm{~mA} / \mathrm{MHz}]$ for $\overline{\mathrm{f}} \geq 12.5 \mathrm{MHz}$
where $\overline{\mathrm{f}}=\mathrm{t}$ the larger of the write or read operating frequency.

AC Test Loads and Waveform

(b)
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
6. Tested initially and after any design or process changes that may affect these parameters.

Equivalent to: THÉVENIN EQUVALENT

Switching Characteristics Over the Operating Range ${ }^{[7,8]}$

Parameters	Description	7C439-25		7C439-30		7C439-40		7C439-65		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	35		40		50		80		ns
$t_{\text {A }}$	Access Time		25		30		40		65	ns
t_{RR}	Read Recovery Time	10		10		10		15		ns
$\mathrm{t}_{\text {PR }}$	Read Pulse Width	25		30		40		65		ns
$\mathrm{t}_{\text {LZR }}{ }^{[9,10]}$	Read LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\mathrm{DVR}}{ }^{[9,10]}$	Read HIGH to Data Valid	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HzR}}{ }^{[9,10]}$	Read HIGH to High Z		18		20		25		30	ns
t_{wc}	Write Cycle Time	35		40		50		80		ns
$t_{\text {pw }}$	Write Pulse Width	25		30		40		65		ns
$\mathrm{t}_{\mathrm{HWz}}{ }^{[9,10]}$	Write HIGH to Low Z	10		10		10		10		ns
$\mathrm{t}_{\text {wr }}$	Write Recovery Time	10		10		10		15		ns
$t_{\text {sD }}$	Data Set-Up Time	15		18		20		30		ns
t_{HD}	Data Hold Time	0		0		0		10		ns
$\mathrm{t}_{\text {MRSC }}$	$\overline{\text { MR Cycle Time }}$	35		40		50		80		ns
$\mathrm{t}_{\text {PMR }}$	$\overline{\mathrm{MR}}$ Pulse Width	25		30		40		65		ns
$\mathrm{t}_{\mathrm{RMR}}$	$\overline{\mathrm{MR}}$ Recovery Time	10		10		10		15		ns
$\mathrm{t}_{\text {RPS }}$	$\overline{\text { STBX }} \mathrm{HIGH}$ to $\overline{\mathrm{MR}} \mathrm{HIGH}$	25		30		40		65		ns
$\mathrm{t}_{\text {RPBS }}$	$\overline{\overline{B Y P A}}$ to $\overline{\mathrm{MR}} \mathrm{HIGH}$	10		10		15		20		ns
$\mathrm{t}_{\text {RPBH }}$	$\overline{\text { BYPA }}$ Hold after $\overline{\text { MR }} \mathrm{HIGH}$	0		0		0		0		ns
$\mathrm{t}_{\text {BDH }}$	$\overline{\mathrm{MR}}$ LOW to $\overline{\mathrm{BDA}}$ HIGH		35		40		50		80	ns
$\mathrm{t}_{\text {BSR }}$	$\overline{\text { STBX }}$ HIGH to BYPA LOW	10		10		10		15		ns
$\mathrm{t}_{\text {EfL }}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ LOW		35		40		50		80	ns
$\mathrm{t}_{\mathrm{HFH}}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{HF}} \mathrm{HIGH}$		35		40		50		80	ns
$\mathrm{t}_{\text {BRS }}$	$\overline{\text { BYPX }}$ HIGH to $\overline{\text { STBX }}$ LOW	10		10		10		15		ns
$\mathrm{t}_{\text {ReF }}$			25		30		35		60	ns
$\mathrm{t}_{\text {RFF }}$	$\overline{\text { STBX }} \mathrm{HIGH}$ to $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ HIGH (Read)		25		30		35		60	ns
$t_{\text {WEF }}$	$\overline{\text { STBX }}$ HIGH to $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ HIGH (Write)		25		30		35		60	ns
$\mathrm{t}_{\text {wFF }}$	$\overline{\text { STBX }}$ LOW to E//F LOW (Write)		25		30		35		60	ns
$\mathrm{t}_{\text {BDA }}$	$\overline{\overline{B Y P X}} \mathrm{HIGH}$ to $\overline{\mathrm{BDA}}$ LOW (Write)		25		30		35		60	ns
$\mathrm{t}_{\text {BDB }}$	$\overline{\text { BYPX HIGH to } \overline{\text { BDA }} \text { HIGH (Read) }}$		25		30		35		60	ns
$\mathrm{t}_{\text {BA }}$	BYPX LOW to Data Valid (Read)		30		30		40		60	ns
$\mathrm{t}_{\mathrm{BHZ}}{ }^{[9,10]}$	$\overline{\text { BYPX }}$ HIGH to High Z (Read)		18		20		25		30	ns
$\mathrm{t}_{\text {TSB }}$	$\overline{\text { STBX }}$ HIGH to BYPX LOW Set-Up	10		10		10		15		ns
$\mathrm{t}_{\text {TBS }}$	$\overline{\text { STBX }}$ LOW after BYPX LOW	0	10	0	10	0	10	0	10	ns
$\mathrm{t}_{\text {TSN }}$	$\overline{\text { STBX }}$ HIGH Recovery Time	10		10		10		15		ns
$\mathrm{t}_{\text {TSD }}{ }^{[9,10]}$	STBX HIGH to Data High Z		18		20		25		30	ns
$\mathrm{t}_{\text {tBN }}$	$\overline{\text { BYPX HIGH Recovery Time }}$	10		10		10		15		ns
$\mathrm{t}_{\text {TBD }}$	BYPX HIGH to Data High Z		18		20		25		30	ns

Switching Characteristics Over the Operating Range ${ }^{[7,8]}$ (continued)

Parameters	Description	7C439-25		7C439-30		7C439-40		7C439-65		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {TPD }}{ }^{[9,10]}$	STBX LOW to Data Valid		20		20		30		55	ns
t_{DL}	Transparent Propagation Delay		20		20		25		30	ns
$\mathrm{t}_{\text {ESD }}{ }^{[9,10]}$	$\overline{\text { STBX LOW }}$ to High Z		18		20		25		30	ns
$\mathrm{t}_{\mathrm{EBD}}{ }^{[9,10]}$	$\overline{\text { BYPX LOW to High Z }}$		18		20		25		30	ns
$\mathrm{t}_{\text {EDS }}$	STBX HIGH to Low Z		18		20		25		30	ns
$\mathrm{t}_{\text {EDB }}$	$\overline{\text { BYPX HIGH to Low } \mathrm{Z}}$		18		20		25		30	ns
$\mathrm{t}_{\text {BPW }}$	$\overline{\text { BYPX Pulse Width (Trans.) }}$	25		30		40		65		ns
$\mathrm{t}_{\text {TSP }}$	$\overline{\text { STBX Pulse Width (Trans.) }}$	20		20		30		55		ns
$\mathbf{t}_{\mathrm{BLZ}}{ }^{[9,10]}$	BYPX LOW to Low Z (Read)	10		10		10		10		ns
$\mathrm{t}_{\text {bDV }}$	BYPX HIGH to Data Invalid (Read)	3		3		3		3		ns
$\mathrm{t}_{\text {WhF }}$	$\overline{\text { STBX }}$ LOW to $\overline{\mathrm{HF}}$ LOW (Write)		35		40		50		80	ns
$\mathrm{t}_{\text {RHF }}$	$\overline{\text { STBX }}$ HIGH to $\overline{\mathrm{HF}} \mathrm{HIGH}$ (Read)		35		40		50		80	ns
$\mathrm{t}_{\text {RAE }}$	Effective Read from Write HIGH		25		30		35		60	ns
$\mathrm{t}_{\text {RPE }}$	Effective Read Pulse Width after $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ HIGH	25		30		40		65		ns
$\mathrm{t}_{\text {WAF }}$	Effective Write from Read HIGH		25		30		35		60	ns
$\mathrm{t}_{\text {WPF }}$	Effective Write Pulse Width after $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ HIGH	25		30		40		65		ns
$\mathrm{t}_{\text {BSU }}$	Bypass Data Set-Up Time	15		18		20		30		ns
$\mathrm{t}_{\text {BHL }}$	Bypass Data Hold Time	0		0		0		10		ns

Notes:
7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance as in part (a) of AC Test Loads, unless otherwise specified.
8. See the last page of this specification for Group A subgroup testing information.
9. $t_{\text {DVR }}, t_{B D V}, t_{\text {HZR }}, t_{T B D}, t_{B H Z}, t_{E B D}, t_{E S D}, t_{\text {TSD }}, t_{\text {LZR }}, t_{H W Z}$, and $t_{\text {BLZ }}$ use capacitance loading as in part (b) of AC Test loads.
10. $t_{\mathrm{HZR}}, \mathrm{t}_{\mathrm{TBD}}, \mathrm{t}_{\mathrm{BHZ}}, \mathrm{t}_{\mathrm{EBD}}, \mathrm{t}_{\mathrm{ESD}}$, and $\mathrm{t}_{\mathrm{TSD}}$ transition is measured at +500 mV from V_{OL} and -500 mV from $\mathrm{V}_{\mathrm{OH}} \cdot \mathrm{t}_{\mathrm{DVR}}$ and $\mathrm{t}_{\mathrm{BDV}}$ transition is measured at the 1.5 V level. $\mathrm{t}_{\mathrm{LZR}}, \mathrm{t}_{\mathrm{HWZ}}$, and $\mathrm{t}_{\mathrm{BLZ}}$ transition is measured at $\pm 100 \mathrm{mV}$ from the steady state.

Switching Waveforms

Asynchronous Read and Write Timing Diagram

Switching Waveforms (continued)

Half-Full Flag Timing Diagram ${ }^{[12]}$

C439-8

Last Write to First Read Empty/Full Flag Timing Diagram ${ }^{[12]}$

Notes:
11. Direction selected Port A to Port B.
12. Direction selected as A to B.

Switching Waveforms (continued)

Last Read to First Write Empty/Full Flag Timing Diagram ${ }^{[12]}$

Empty/Full Flag and Read Bubble-Through Mode Timing Diagram ${ }^{[12]}$

Empty/Full Flag and Write Bubble-Through Mode Timing Diagram ${ }^{[12]}$

Switching Waveforms (continued)
Registered Bypass Read Timing Diagram ${ }^{[13]}$

C439-13
Registered Bypass Write Timing Diagram ${ }^{[14]}$

Transparent Bypass Read Timing Diagram ${ }^{[15]}$

Notes:

13. Port B selected to read bypass register (FIFO direction Port B to Port A).
14. Port A selected to write bypass register (FIFO direction Port B to Port A.
15. Diagram shows transparent bypass initiated by Port A. Times are identical if initiated by Port B.

Switching Waveforms (continued)

Exception Condition Timing Diagram ${ }^{[15]}$

Architecture

The CY7C439 consists of a 2048 by 9-bit dual-ported RAM array, a read pointer, a write pointer, data switching circuitry, buffers, a bypass register, control signals ($\overline{\mathrm{STBA}}, \overline{\mathrm{STBB}}, \overline{\mathrm{BYPA}}, \overline{\mathrm{BYPB}}, \overline{\mathrm{MR}}$), and flags ($\overline{\mathrm{E}} / \overline{\mathrm{F}}, \overline{\mathrm{HF}}, \overline{\mathrm{BDA}})$.

Operation at Power-On

Automatic power-on reset is provided; the FIFO is cleared, $\overline{\mathrm{BDA}}$ and $\overline{\mathrm{HF}}$ go HIGH, $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ goes LOW, FIFO direction is Port A to Port B. At power-on the user can initialize the device by choosing the direction of FIFO operation (see Table 1) and pulsing MR LOW. There is a minimum low period for $\overline{\mathrm{MR}}$, but no maximum time. The state of $\overline{\text { BYPA }}$ is latched internally by the rising edge of $\overline{\text { MR }}$ and used to determine the direction of subsequent data operations.

Resetting the FIFO

During the time $\overline{\mathrm{MR}}$ is LOW, the FIFO tri-states the data ports, sets $\overline{B D A}$ and $\overline{\mathrm{HF}}$ HIGH, $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ LOW, and ignores the state of $\overline{B Y P A} / \bar{B}$ and $\overline{\text { STBA }} / \bar{B}$. The bypass registers are initialized to zero. During this time the user is expected to set the direction of the FIFO by driving BYPA HIGH or LOW, and BYPB, STBA, and $\overline{\text { STBB }}$ HIGH. Following the rising edge of $\overline{\mathrm{MR}}$, the FIFO memory is cleared. If $\overline{B Y P A}$ is LOW (selecting direction B $>A$), the FIFO will then remain in a reset condition until the user terminates the reset operstion by driving BYPA HIGH. If BYPA is HIGH (selecting direction $\mathrm{A}>\mathrm{B}$), the reset condition terminates after the rising edge of $\overline{\mathrm{MR}}$. The entire reset phase can be accomplished in one cycle time of t_{RC}.

FIFO Operation

The operation of the FIFO requires only one control pin per port (STBX). The user determines the direction of the FIFO data flow by initiating an MR cycle (see Table 1), which clears the FIFO and bypass register and sets the data path and control signal multiplexers. The bypass register is configured in the opposite direction to the FIFO data flow. The FIFO direction can be reversed at any time by initiating another $\overline{M R}$ cycle. Data is written into the FIFO on the rising edge of the input, STBX, and read from the FIFO by a low level at the output, STBX. The two ports are asynchronous and independent. If the user attempts to read the FIFO when it is empty, no action takes place (the read pointer is not increm-
ented) until the other port writes to the FIFO. Then a bubblethrough read takes place, in which the read strobe is generated internally and the data becomes available at the read port shortly thereafter if the read strobe ($\overline{\mathrm{STBX}}$) is still LOW. Similarly, for an attempted write operation when the FIFO is full, no internal operation takes place until the other port performs a read operation, at which time the bubble-through write is performed if the write strobe (STBX) is still LOW.

Registered Bypass Operation

The registered bypass feature provides a means of transferring one 9 -bit word of data in the opposite direction to normal data flow without affecting either the FIFO contents or the FIFO write operations at the other port. The bypass register is configured during reset to provide a data path in the opposite direction to that of the FIFO (see Table 1). For example, if port A is writing data to the FIFO (hence port B is reading data from the FIFO) then $\overline{\mathrm{BYPB}}$ is used to write to the bypass register at port B, and BYPA is used to read a single word from the bypass register at port A . The bypass data available flag $(\overline{\mathrm{BDA}})$ is generated to notify port A that bypass data is available. BDA goes true on the trailing edge of the BYPX write operation and false upon the trailing edge of the BYPX read operation.
Data is written on the rising edge of $\overline{\mathrm{BYPX}}$ into the bypass register for later retrieval by the other port, regardless of the state of $\overline{\mathrm{BDA}}$. The bypass register is read by a low level at BYPX, regardless of the state of $\overline{\mathrm{BDA}}$.

Transparent Bypass Operation

The transparent bypass feature provides a means of sending immediate data "around" the FIFO in either direction. The FIFO contents are not affected by the use of transparent bypass, but the control signals for transparent bypass are shared with those of the normal FIFO operation. Hence there are limitations on the use of transparent bypass to ensure that data integrity and ease of use are preserved. The port wishing to send immediate data must ensure that the other port will not attempt a FIFO read or write during the transparent bypass cycle. If this is not possible, registered bypass or external circuitry should be used.

Architecture（continued）

Transparent bypass mode is initiated by bringing both BYPA and STBA LOW together．Care should be taken to observe the follow－ ing constraints on the timing relationships．Since STBA is used for normal FIFO operations，it must follow BYPA falling edge by $\mathrm{t}_{\mathrm{TBS}}$ to prevent erroneous FIFO read or write operations．Since BYPA is used alone to initiate registered bypass read and write，it is inter－ nally delayed before initiating registered bypass．If STBA falls dur－ ing this time，delay registered bypass is averted，and transparent bypass is initiated．Identical arguments apply to BYPB and STBB． If a transparent bypass sequence is successfully accomplished，data presented to the initiating port（port A in the above discussion）will
be buffered to the other（port B）after $\mathrm{t}_{\text {DL }}$ ．Either port can initiate a transparent bypass operation at any time，but if the control sig－ nals（ $\overline{\mathrm{STBA}} / \overline{\mathrm{B}}, \overline{\mathrm{BYPA}} / \overline{\mathrm{B}}$ ）are in conflict（exception condition），in－ ternal circuitry will switch both ports to high－impedance until the conflict is resolved．

Flag Operation

There are two flags，Empty／Full（ $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ ）and Half Full（ $\overline{\mathrm{HF}}$ ），which are used to decode four FIFO states（see Table 4）．The states are empty，1－1024 locations full，1025－2047 locations full，and full． Note that two conditions cause the $\bar{E} / \overline{\mathrm{F}}$ pin to go LOW，Empty and Full，hence both flag pins must be used to resolve the two condi－ tions．

Table 1．FIFO Direction Select Truth Table

$\overline{\mathbf{M R}}$	$\overline{\mathbf{B Y P A}}$	$\overline{\mathbf{B Y P B}}$	$\overline{\mathbf{S T B A}}$	$\overline{\mathbf{S T B B}}$	
1	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	Normal Operation
$\bar{\zeta}$	1	1	1	1	FlFO Direction A to B，Registered Bypass Direction B to A
Γ	0	1	1	1	FIFO Direction B to A，Registered Bypass Direction A to B
$\mathbf{0}$	\mathbf{X}	X	X	X	Internal Reset

Table 2．Bypass Operation Truth Table

Direction	$\overline{\text { STBA }}$	$\overline{\text { BYPA }}$	$\overline{\text { STBB }}$	$\overline{\text { BYPB }}$	Action
A $\mathrm{B}^{\text {B }}$	■	1	\square	1	Normal FIFO Operations，Write at A，Read at B
A ${ }^{\text {B }}$	1	LJ	\square	1	Normal FIFO Read at B，Bypass Register Read at A
A ${ }^{\text {B }}$	■	1	1	\square	Normal FIFO Write at A，Bypass Register Write at B
B ${ }_{\text {A }}$	\square	1	L5	1	Normal FIFO Operations，Write at B，Read at A
B ${ }^{\text {A }}$	1	凹	凹	1	Normal FIFO Write at B，Bypass Register Write at A
B A	】	1	1	\square	Normal FIFO Read at A，Bypass Register Read at B
X	0	0	1	1	No FIFO Operations，Transparent Data A to B
X	1	1	0	0	No FIFO Operations，Transparent Data B to A

Table 3．Exception Conditions：Operation Not Defined

Direction	$\overline{\text { STBA }}$	$\overline{\mathbf{B Y P A}}$	$\overline{\mathbf{S T B B}}$	$\overline{\mathbf{B Y B} \overline{\mathbf{P}}}$	
\mathbf{X}	0	1	0	0	Data Buses High Impedance
\mathbf{X}	1	0	0	0	Data Buses High Impedance
\mathbf{X}	0	0	0	0	Data Buses High Impedance
\mathbf{X}	0	0	1	0	Data Buses High Impedance
\mathbf{X}	0	0	0	1	Data Buses High Impedance

Table 4．Flag Truth Table

$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\mathbf{H F}}$	State
0	1	Empty
1	1	$1-1024$ Locations Full
1	0	$1025-2047$ Locations Full
0	0	Full

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C439-25PC	P21	Commercial
	CY7C439-25JC	J65	
	CY7C439-25VC	V21	
	CY7C439-25DC	D22	
	CY7C439-25LC	L55	
30	CY7C439-30PC	P21	Commercial
	CY7C439-30JC	J65	
	CY7C439-30VC	V21	
	CY7C439-30DC	D22	
	CY7C439-30LC	L55	
40	CY7C439-40PC	P21	Commercial
	CY7C439-40JC	J65	
	CY7C439-40VC	V21	
	CY7C439-40DC	D22	
	CY7C439-40LC	L55	
	CY7C439-40DMB	D22	Military
	CY7C439-40LMB	L55	
	CY7C439-40KMB	K74	
65	CY7C439-65PC	P21	Commercial
	CY7C439-65JC	J65	
	CY7C439-65VC	V21	
	CY7C439-65DC	D22	
	CY7C439-65LC	L55	
	CY7C439-65DMB	D22	Military
	CY7C439-65LMB	L55	
	CY7C439-65KMB	K74	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
I_{OS}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{RC}	9, 10, 11
t_{A}	9, 10, 11
t_{RR}	9, 10, 11
t_{PR}	9, 10, 11
$\mathrm{t}_{\text {LZR }}$	9, 10, 11
$\mathrm{t}_{\text {DVR }}$	9, 10, 11
$\mathrm{t}_{\mathrm{HZR}}$	9, 10, 11
$t_{\text {WC }}$	9, 10, 11
$\mathrm{t}_{\text {PW }}$	9, 10, 11
$t_{\text {HWZ }}$	9, 10, 11
$t_{\text {WR }}$	9, 10, 11
$\mathrm{t}_{\text {SD }}$	9, 10, 11
t_{HD}	9, 10, 11
$\mathrm{t}_{\text {MRSC }}$	9, 10, 11
$\mathrm{t}_{\text {PMR }}$	9, 10, 11
$\mathrm{t}_{\text {RMR }}$	9, 10, 11
$\mathrm{t}_{\text {RPS }}$	9, 10, 11
$\mathbf{t}_{\text {RPBS }}$	9, 10, 11
$\mathrm{t}_{\text {RPBH }}$	9, 10, 11
$\mathrm{t}_{\text {BDH }}$	9, 10, 11
$\mathrm{t}_{\text {BSR }}$	9, 10, 11
$\mathrm{t}_{\mathrm{EFL}}$	9, 10, 11
$\mathrm{t}_{\mathrm{HFH}}$	9, 10, 11
$\mathrm{t}_{\text {BRS }}$	9, 10, 11
$t_{\text {REF }}$	9, 10, 11
$\mathrm{t}_{\text {RFF }}$	9, 10, 11
$t_{\text {WEF }}$	9, 10, 11
$t_{\text {WFF }}$	9, 10, 11
$t_{\text {WHF }}$	9, 10, 11
$\mathrm{t}_{\text {RHF }}$	9, 10, 11
$\mathrm{t}_{\text {RAE }}$	9, 10, 11
$\mathrm{t}_{\text {RPE }}$	9, 10, 11
$t_{\text {waF }}$	9, 10, 11
$t_{\text {WPF }}$	9, 10, 11
$\mathrm{t}_{\text {BSU }}$	9, 10, 11
$\mathrm{t}_{\text {BHL }}$	9, 10, 11
$\mathrm{t}_{\text {BDA }}$	9, 10, 11
$t_{\text {BDB }}$	$9,10,11$
t_{BA}	9, 10, 11
$\mathrm{t}_{\mathrm{BHZ}}$	9, 10, 11
$\mathrm{t}_{\text {TSB }}$	9, 10, 11
$\mathrm{t}_{\text {TBS }}$	9, 10, 11
$\mathrm{t}_{\text {TSN }}$	9, 10, 11
$\mathrm{t}_{\text {TSD }}$	9, 10, 11
$\mathrm{t}_{\text {TBN }}$	9, 10, 11
$\mathrm{t}_{\text {TBD }}$	9, 10, 11
$\mathrm{t}_{\text {TPD }}$	9, 10, 11
t_{DL}	9, 10, 11

$\mathrm{t}_{\mathrm{ESD}}$	$9,10,11$
$\mathrm{t}_{\mathrm{EBD}}$	$9,10,11$
$\mathrm{t}_{\mathrm{EDS}}$	$9,10,11$
$\mathrm{t}_{\mathrm{EDB}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BPW}}$	$9,10,11$
$\mathrm{t}_{\mathrm{TSP}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BLZ}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BDV}}$	$9,10,11$

Document \#: 38-00126-B

Features

- 512×9 (CY7C441) and $2,048 \times 9$ (CY7C443) FIFO buffer memory
- High-speed 70-MHz operation
- Supports free-running $\mathbf{5 0 \%}$ duty cycle clock inputs
- Empty, Almost Empty, and Almost Full status flags
- Fully asynchronous and simultaneous read and write operation
- Width expandable
- Independent read and write enable pins
- Center power and ground pins for reduced noise
- Available in 300-mil 28-pin DIP, PLCC, LCC, and SOJ packages
- Proprietary 0.8μ CMOS technology
- TTL compatible

Functional Description

The CY7C441 and CY7C443 are highspeed, low-power, first-in first-out (FIFO) memories with clocked read and write interfaces. Both FIFOs are 9 bits wide. The CY7C441 has a 512 word by 9 bit memory array, while the CY7C443 has a 2048 word by 9 bit memory array. These devices provide solutions for a wide variety of data buffering needs, including high-speed data acquisition, multiprocessor interfaces, and communications buffering.
Both FIFOs have 9-bit input and output ports that are controlled by separate clock and enable signals. The input port is controlled by a free-running 50% duty cycle clock (CKW) and a write enable pin (ENW). When ENW is asserted, data is written into the FIFO on the rising edge of the CKW signal. While ENW is held active, data is continually written into the FIFO on each CKW cycle. The output port is controlled in a similar manner by a free-running read clock (CKR) and a read enable pin (ENR). The read (CKR) and write (CKW) clocks may be tied together for single-clock operation or the two clocks
may be run independently for asynchronous read/write applications. Clock frequencies up to 71.4 MHz are acceptable.
The CY7C441 and CY7C443 clocked FIFOs provide two status flag pins (F 1 and F2). These flags are decoded to determine one of four states: Empty, Almost Empty, Intermediate, and Almost Full (Table 1). The flags are synchronous i.e., change state relative to either the read clock (CKR) or the write clock (CKW). The Empty and Almost Empty states are updated exclusively by the CKR while Almost Full is updated exclusively by CKW. The synchronous flag architecture guarantees that the flags maintain their status for some minimum time. This time is typically equal to approximately one cycle time.
The CY7C441 and the CY7C443 use center power and ground for reduced noise. Both configurations are fabricated using an advanced $0.8 \mu \mathrm{~N}$-well CMOS technology. Input ESD protection is greater than 2001 V , and latch-up is prevented by reliable layout techniques, guard rings, and a substrate bias generator.

Logic Block Diagram

Pin Configurations

Selection Guide

	$\mathbf{7 C 4 4 1 - 1 4}$ $\mathbf{7 C 4 4 3 - 1 4}$	$\mathbf{7 C 4 4 1 - 2 0}$ $\mathbf{7 C 4 4 3 - 2 0}$	$\mathbf{7 C 4 4 1 - 3 0}$ $\mathbf{7 C 4 4 3 - 3 0}$
Maximum Frequency (MHz)	71.4	50	33.3
Maximum Access Time (ns)	10	15	20
Minimum Cycle Time (ns)	14	20	30
Minimum Clock HIGH Time (ns)	6.5	9	12
Minimum Clock LOW Time (ns)	6.5	9	12
Minimum Data or Enable Set-Up (ns)	7	9	12
Minimum Data or Enable Hold (ns)	0	0	0
Maximum Flag Delay (ns)	10	15	20
Maximum Standby Current (mA)	180	140	120

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Latch-Up Current . > 200 mA		
Ambient Temperature with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Operating Range		
Supply Voltage to Ground Potential $\ldots \ldots . .0 .0 .5 \mathrm{~V}$ to +7.0 V	Range	Ambient Temperature	V_{CC}
Uutput Current into Outputs (LOW) 20 mA	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
tatic Discharge Voltage . > 2001 V	Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
(per MIL-STD-883, Method 3015)	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Pin Definitions

Signal Name	I/O	Description
D_{0-8}	I	Data Inputs: when the FIFO is not full and $\overline{\text { ENW }}$ is active, CKW (rising edge) writes data ($\mathrm{D}_{0}-\mathrm{D}_{8}$) into the FIFO's memory
Q_{0-8}	O	Data Outputs: when the FIFO is not empty and ENR is active, CKR (rising edge) reads data $\left(\mathrm{Q}_{0}-\mathrm{Q}_{8}\right)$ out of the FIFO's memory
ENW	I	Enable Write: enables the CKW input
$\overline{\text { ENR }}$	I	Enable Read: enables the CKR input
CKW	I	Write Clock: the rising edge clocks data into the FIFO when $\overline{\text { ENW }}$ is LOW and updates the Almost Full flag state
CKR	I	Read Clock: the rising edge clocks data out of the FIFO when $\overline{\mathrm{ENR}}$ is LOW and updates the Almost Empty and Empty flag states
F1	O	Flag 1: is used in conjunction with Flag 2 to decode which state the FIFO is in (see Table 1)
F2	O	Flag 2: is used in conjunction with Flag 1 to decode which state the FIFO is in (see Table 1)
$\overline{\mathrm{MR}}$	I	Master Reset: resets the device to an empty condition

Note:

1. T_{A} is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \hline \text { 7C441-14 } \\ & \text { 7C443-14 } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { 7C441-20 } \\ & \text { 7C443-20 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C441-30 } \\ & \text { 7C443-30 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
V_{IL}	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{LX}	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$		-10	+ 10	-10	+ 10	- 10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S }}{ }^{[3]}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-90		-90		-90		mA
$\mathrm{I}_{\mathrm{CC}}{ }^{[4]}$	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		180		140		120	mA
			Mil/Ind		200		160		140	mA

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\mathbb{I}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	12	pF

Notes:

2. See the last page of this specification for Group A subgroup testing information.
3. Test no more than one output at a time and do not test any output for more than one second.

AC Test Loads and Waveform ${ }^{[6,7]}$

C441-4
Equivalent to: THÉVENIN EQUIVALENT

4. Input signals switch from 0 V to 3 V with a rise/fall time of less than 3 ns , clocks switch at maximum frequency ($\mathrm{f}_{\mathrm{MAX}}$), while data and enable inputs switch at $\mathrm{f}_{\text {MAX }} / 2$.
5. Tested initially and after any design or process changes that may affect these parameters.

SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[2,8]}$

Parameters	Description	$\begin{aligned} & \hline \text { 7C441-14 } \\ & \text { 7C443-14 } \end{aligned}$		$\begin{aligned} & \text { 7C441-20 } \\ & \text { 7C443-20 } \end{aligned}$		$\begin{aligned} & 7 \mathbf{C 4 4 1 - 3 0} \\ & 7 \mathbf{C 4 4 3 - 3 0} \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {ckw }}$	Write Clock Cycle	14		20		30		ns
$\mathrm{t}_{\text {CKR }}$	Read Clock Cycle	14		20		30		ns
$\mathrm{t}_{\text {CKH }}$	Clock HIGH	6.5		9		12		ns
$\mathrm{t}_{\mathrm{CKL}}$	Clock LOW	6.5		9		12		ns
t_{A}	Data Access Time		10		15		20	ns
t_{OH}	Previous Output Data Hold After Read HIGH	0		0		0		ns
$\mathrm{t}_{\text {FH }}$	Previous Flag Hold After Read/Write HIGH	0		0		0		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up	7		9		12		ns
t_{HD}	Data Hold	0		0		0		ns
$\mathrm{t}_{\text {SEN }}$	Enable Set-Up	7		9		12		ns
$\mathrm{t}_{\text {HeN }}$	Enable Hold	0		0		0		ns
t_{FD}	Flag Delay		10		15		20	ns
$\mathrm{t}_{\text {SKEW } 1}{ }^{[9]}$	Opposite Clock After Clock	14		20		30		ns
$\mathrm{t}_{\text {SKEW } 2}{ }^{[10]}$	Opposite Clock Before Clock	14		20		30		ns
$\mathrm{t}_{\text {PMR }}$	Master Reset Pulse Width ($\overline{\mathrm{MR}}$ LOW)	14		20		30		ns
$\mathrm{t}_{\text {SCMR }}$	Last Valid Clock LOW Set-Up to MR LOW	0		0		0		ns
tohmr	Data Hold From $\overline{\text { MR }}$ LOW	0		0		0		ns
$\mathrm{t}_{\text {MRR }}$	Master Reset Recovery ($\overline{\mathrm{MR}}$ HIGH Set-Up to First Enabled Write/Read)	14		20		30		ns
$\mathrm{t}_{\text {MRF }}$	$\overline{\text { MR }}$ HIGH to Flags Valid		14		20		30	ns
$\mathrm{t}_{\text {AMR }}$	$\overline{\mathrm{MR}} \mathrm{HIGH}$ to Data Outputs LOW		14		20		30	ns

Notes:

6. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ for all AC parameters.
7. All AC measurements are referenced to 1.5 V .
8. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and capacitance as in note 7 , unless otherwise specified.
9. tSKEW is the minimum time an opposite clock can occur after a clock and still be guaranteed not to be included in the current clock cycle (for purposes of flag update). If the opposite clock occurs less than $t_{\text {SKEW }}$ after the clock, the decision of whether or not to include the opposite clock in the current clock cycle is arbitrary. Note: The opposite clock is the signal to which a flag is not synchronized; i.e., CKW
is the opposite clock for Empty and Almost Empty flags, CKR is the the opposite clock for the Almost Full flag. The clock is the signal to which a flag is synchronized; i.e., CKW is the clock for the Almost Full flag, CKR is the clock for Empty and Almost Empty flags.
10. $\mathrm{t}_{\text {SKEW } 2}$ is the minimum time an opposite clock can occur before a clock and still be guaranteed to be included in the current clock cycle (for purposes of flag update). If the opposite clock occurs less than $\mathrm{t}_{\text {SKEW }}$ before the clock, the decision of whether or not to include the opposite clock in the current clock cycle is abritrary. See Note 9 for definition of clock and opposite clock.

Switching Waveforms

Write Clock Timing Diagram

Read Clock Timing Diagram

Switching Waveforms (continued)
Read to Empty Timing Diagram ${ }^{[15,17,18]}$

C441-10

Read to Empty Timing Diagram with Free-Running Clocks ${ }^{[15,16,17]}$

C441-9

Notes:

11. ENW or CKW must be inactive while $\overline{M R}$ is LOW.
12. $\overline{\mathrm{ENR}}$ or CKR must be inactive while $\overline{\mathrm{MR}}$ is LOW.
13. All data outputs $\left(Q_{0-8}\right)$ go LOW as a result of the rising edge of $\overline{M R}$.
14. In this example, Q_{0-8} will remain valid until toHMR if the first read shown did not occur or if the read occurred soon enough such that the valid data was caused by it.
15. "Count" is the number of words in the FIFO.
16. R 2 is ignored because the FIFO is empty (count $=0$). It is important to note that R3 is also ignored because W3, the first enabled write after empty, occurs less than ISKEW2 before R3. Therefore, the FIFO
still appears empty when R3 occurs. Because W3 occurs greater than $\mathrm{t}_{\text {SKEW }}$ before R4, R4 includes W3 in flag update.
17. CKR is clock and CKW is opposite clock.
18. R3 updates the flags to the Empty state by bringing F1 LOW. Because W1 occurs greater than $\mathrm{I}_{\text {SKEW }}$ after R3, R3 does not recognize W1 when updating flag status. But because W1 occurs tsKEw before R4, R4 includes W1 in clock cycle and therefore updates the FIFO to the Almost Empty state. It is important to note that R4 is a latent cycle; i.e., it only updates the flag status, regardless of the state of ENR. It does not change the count or the FIFO's data outputs.

Switching Waveforms (continued)

Read to Almost Empty Timing Diagram with Free-Running Clocks ${ }^{[15,17]}$

Read to Almost Empty Timing Diagram with Read Flag Update Cycle with Free-Running Clocks ${ }^{[15,17,19,20]}$

Notes:
19. R4 only updates the flag status. It does not affect the count because ENR is HIGH.
20. When making the transition from Almost Empty to Intermediate, the count must increase by two (16 18; two enabled writes: W2, W3) before a read (R4) can update flags to the Less Than Half Full state.

Switching Waveforms (continued)

Write to Almost Full Timing Diagram ${ }^{[15,21,22,23,24]}$

Write to Almost Full Timing Diagram with Free-Kunning Clocks ${ }^{[15,21,22]}$

Notes:

21. CKW is clock and CKR is opposite clock.
22. Count $=2032$ indicates Almost Full for CY7C443 and count $=496$ indicates Almost Full for CY7C441. Values for the CY7C441 count are shown in parentheses.
23. The dashed lines show W3 as flag update write rather than an enabled write because ENW is deasserted.
24. W2 updates the flags to the Almost Full state by bringing F1 LOW. Because R1 occurs greater than $\mathrm{t}_{\text {SKEW }}$ after W 2 , W2 does not recog-
nize R1 when updating the flag status. W3 includes R2 in flag update because R2 occurs greater than $t_{\text {SKEW }}$ before W3. Note that W3 does not have to be enabled to update flags.
25. When making the transition from Almost Full to Intermediate, the count must decrease by two (2032 2030; two enabled reads: R2, R3) before a write (W4) can update flags to Intermediate state.

Switching Waveforms (continued)

Architecture

The CY7C441/443 consist of an array of 512/2048 words of 9 bits each (implemented by an array of dual-port RAM cells), a read pointer, a write pointer, control signals (CKR, CKW, ENR, ENW, $\overline{\mathrm{MR}}$), and flags (F1, F2).

Resetting the FIFO

Upon power-up, the FIFO must be reset with a Master Reset (MR) cycle. This causes the FIFO to enter the Empty condition signified by both flags F1 and F2 being LOW. All data outputs $\left(\mathrm{Q}_{0-8}\right)$ go LOW at the rising edge of MR. In order for the FIFO to read to its default state, a falling edge must occur on $\overline{M R}$ and the user must not read or write while MR is LOW (unless ENR and/or ENW are HIGH). Upon completion of the Master Reset cycle, all data outputs will go LOW $\mathrm{t}_{\mathrm{AMR}}$ after $\overline{\mathrm{MR}}$ is deasserted. F_{1} and F_{2} are guaranteed to be valid $\mathrm{t}_{\mathrm{MRF}}$ after $\overline{\mathrm{MR}}$ is taken HIGH.

FIFO Operation

When the $\overline{E N W}$ signal is active (LOW), data on the D_{0-8} pins is written into the FIFO on each rising edge of the CKW signal. Similarly, when the ENR signal is active, data in the FIFO memory will be presented on the Q_{0-8} outputs. New data will be presented on each rising edge of CKR while ENR is active. $\overline{\text { ENR must set }}$ $u p t_{\text {sen }}$ before CKR for it to be a valid read duration. ENW must occur $\mathrm{t}_{\text {SEN }}$ before CKW for it to be a valid write function.
The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and underflow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO maintains the data of the last valid read on its Q_{0-8} outputs even after additional reads occur.

Flag Operation

The CY7C441/3 provide two flags, F1 and F2, which are used to decode four FIFO states (see Table 1). All flags are synchronous,
meaning that the change of states is relative to one of the clocks (CKR or CKW, as appropriate). The synchronous architecture guarantees some minimum valid time for the flags. This time is typically equal to approximately one cycle time. The Empty and Almost Empty flag states are exclusively updated by each rising edge of the read clock (CKR). For example, when the FIFO contains 1 word, the next read (rising edge of CKR while $\overline{\mathrm{ENR}}=\mathrm{LOW}$) causes the F1 and F2 pins to output a state signifying the Empty condition. The Almost Full flag is updated exclusively by the write clock (CKW). For example, if the CY7C443 FIFO contains 2031 words (2032 words or greater indicates Almost Full in the CY7C443), the next write (rising edge of CKW while $\overline{\text { ENW }}=$ LOW $)$ causes the F1 and F2 pins to output the Almost Full state.

Table 1. Flag Truth Table

F1	F2	State	CY7C441 Number of Words in FIFO	CY7C443 Number of Words in FIFO
0	0	Empty	0	0
1	0	Almost Empty	$1-16$	$1-16$
1	1	Intermediate Range	$17-495$	$17-2031$
0	1	Almost Full or Full	$496-512$	$2032-2048$

Since the flags denoting emptiness (Empty, Almost Empty) are only updated by CKR and the Almost Full flag is only updated by the CKW, careful attention must be given to the flag operation. The user must be aware that if a flag boundary (Empty, Almost Empty, and Almost Full) is crossed due to an operation from a clock that the flag is not synchronized to (i.e.,CKR does not effect Almost Full), a flag update is necessary to represent the FIFO's new state. This signal to which a flag is not synchronized will be referred to as the opposite clock (CKW is opposite clock for Empty and Almost Empty flags; CKR is the opposite clock for the Almost Full flag). Until the flag update cycle is executed, the synchronous flags do not show the true state of the FIFO. For example, if 2,040 writes are performed to an empty CY7C443 without a single read, F1 and F2 will still exhibit an Empty flag. This is because F2 is exclusively updated by the CKR, therefore, a single read (flag update cycle) is necessary to update flags to Almost Full state. It should be noted that this flag update read does not require ENR $=$ LOW, so a free-running read clock will initiate the flag update cycle.
When updating the flags, the CY7C441/443 decide whether or not the opposite clock was recognized when a clock updates the flag. For example, if a write occurs at least $t_{\text {SKEw }}$ after a read when updating the Empty flag, the write is guaranteed not to be included when CKR updates the flag. If a write occurs at least $\mathrm{t}_{\text {SKEW2 }}$ before a read, the write is guaranteed to be included when CKR updates the flag. If a write occurs within $\mathrm{t}_{\mathrm{SKEW}_{1}} / \mathrm{t}_{\text {SKEW }_{2}}$ after or before CKR, then the decision of whether or not to include the write when the flag is updated by CKR is arbitrary.
The update cycle for non-boundary flags (Almost Empty, Almost Full) is different from that used to update the boundary flag (Empty). Both operations are described below.

Boundary Flag (Empty)

The Empty flag is synchronized to the CKR signal. The Empty flag can only be updated by a clock pulse on the CKR pin. An empty FIFO that is written to will be described with an Empty flag state until a clock pulse is presented on the CKR pin. When making the transition from Empty to Almost Empty (or Empty to Intermediate or Empty to Almost Full), a clock cycle on the CKR is necessary to update the flags to the current state. Such a state (flags displaying empty even though data has been written to the FIFO) would require two read cycles to read data out of FIFO. The first read serves only to update the flags to the Almost Empty, Intermediate, or Almost Full state, and the second read outputs the data. This first read cycle is known as the latent or flag update cycle because it does not affect the data in the FIFO or the count (number of words in FIFO). It simply deasserts the Empty flag. The flags are updated regardless of the ENR state. Therefore the update occurs even when ENR is deasserted (HIGH) so that a valid read is not necessary to update the flags to correctly describe the FIFO. With a free-running clock connected to CKR, the flag updates with each cycle. Table 2 shows sample operations that update the Empty flag.
Although a Full flag is not supplied externally on the CY7C441/CY7C443, a Full flag exists internally. The operation of the FIFO at the Full boundary is similar to its operation at the Empty boundary.

Non-Boundary Flags (Almost Empty, Almost Full)

The flag status pins, F_{1} and F_{2}, exhibit the Almost Empty status when both the CY7C441 and the CY7C443 contain 16 words or less. The Almost Full Flag becomes active when the FIFO contains 16 or less empty locations. The CY7C441 becomes Almost Full when it contains 496 words. The CY7C443 becomes Almost Full when it contains 2032 words. The Almost Empty flag (like the Empty flag) is synchronous to the CKR signal, whereas the Almost Full flag is synchronous to the CKW signal. Non-boundary flags employ flag update cycles similar to the boundary flag latent cycles in order to update the FIFO state. For example, if the FIFO just reaches the Almost Empty state (16 words) and then two words are written, a read clock (CKR) will be required to update the flags to the Intermediate state. However, unlike the boundary (Empty) flag's update cycle, the state of the enable pin (ENR in this case) affects the operation. Therefore, ENR set-up ($\mathrm{t}_{\text {SEN }}$) and hold ($\mathrm{t}_{\text {HEN }}$) times must be met. If ENR is asserted (ENR = LOW) during the latent cycle, the count and data update in addition to F1 and F2. If $\overline{E N R}$ is not active ($\overline{\mathrm{ENR}}=1$) during the flag update cycle, only the flag is updated.
The same principles apply for updating the flags when a transition from the Almost Full to the Intermediate state occurs. If the CY7C443 just reaches the Almost Full state (2032 words) and then two words are read, a write clock (CKW) will be required to update the flag to the Intermediate state. If ENW is LOW during the flag update cycle, the count and data update in addition to the flags. If ENW is HIGH, only the flag is updated. Therefore, $\overline{\mathrm{ENW}}$ set-up ($\mathrm{t}_{\text {SEN }}$) and hold ($\left.\mathrm{t}_{\text {HEN }}\right)$ times must be met. Tables 3 and 4 show examples for a sequence of operations that affect the Almost Empty and Almost Full flags, respectively.

Width Expansion

The CY7C441/3 can be expanded in width to provide word width greater than 9 in increments of 9 . During width expansion mode, all control inputs are common. When the FIFO is being read near the Empty boundary, it is important to note that both sets of flags should be checked to see if they have been updated to the Not Empty condition on all devices.
Checking all sets of flags is critical so that data is not read from the FIFOs "staggered" by one clock cycle. This situation could occur when the first write to an empty FIFO and a read are very close together. If the read occurs less than $\mathrm{t}_{\mathrm{SKEW}}$ after the first write to two width expanded devices (A and B), device A may go Almost Empty (read recognized as flag update) while device B stays Empty (read ignored). The first write occurs because a read within tskew2 of the first write is only guaranteed to be either recognized or ignored, but which of the two is not guaranteed. The next read cycle outputs the first half of the first word on device A while device B updates its flags to Almost Empty. Subsequent reads will continue to outpout "staggered" data assuming more data has been written to the FIFOs.
In the width expansion configuration, any of the devices' flags may be monitored for the composite Almost Full status.

PRELIMINARY
CY7C441

Table 2. Empty Flag Operation Example ${ }^{[26]}$

Status Before Operation				Operation	Next State of FIFO	Status After Operation			
Current State of FIFO	F1	F2	Number of Words in FIFO			F1	F2	Number of Words in FIFO	Comments
Empty	0	0	0	$\begin{aligned} & \text { Write } \\ & (\overline{E N W}=\text { LOW }) \end{aligned}$	Empty	0	0	1	Write
Empty	0	0	1	$\left.\frac{\text { Write }}{(\text { ENW }}=\text { LOW }\right)$	Empty	0	0	2	Write
Empty	0	0	2	$\overline{\mathrm{Read}}=\mathrm{HIGH})$	AE	1	0	2	Flag Update
AE	1	0	2	$\begin{aligned} & \text { Read } \\ & (\mathrm{ENR}=\mathrm{LOW}) \end{aligned}$	AE	1	0	1	Read
AE	1	0	1	$\left.\begin{array}{l} \text { Read } \\ (\text { ENR } \end{array}=\text { LOW }\right)$	Empty	0	0	0	Read (Transition for Almost Empty to Empty)
Empty	0	0	0	$\frac{\text { Write }}{}(\text { LNW }=\text { LOW }$	Empty	0	0	1	Write
Empty	0	0	1	$\begin{aligned} & \text { Read } \\ & (\overline{\mathrm{ENR}}=\mathrm{X}) \end{aligned}$	AE	1	0	1	Flag Update
AE	1	0	1	$\left.\frac{\text { Read }}{(\mathrm{ENR}}=\mathrm{LOW}\right)$	Empty	0	0	0	Read (Transition from Almost Empty to Empty)

Table 3. Almost Empty Flag Operation Example ${ }^{[26]}$

Status Before Operation				Operation	Next State of FIFO	Status After Operation			
$\begin{gathered} \text { Current State } \\ \text { of FIFO } \end{gathered}$	F1	F2	Number of Words in FIFO			F1	F2	Number of Words in FIFO	Comments
AE	1	0	16	$\begin{aligned} & \text { Write } \\ & (\overline{\text { ENW }}=\text { LOW }) \end{aligned}$	AE	1	0	17	Write
AE	1	0	17	$\left.\frac{\text { Write }}{(\text { ENW }}=\text { LOW }\right)$	AE	1	0	18	Write
AE	1	0	18	$\overline{\mathrm{Read}}(\mathrm{ENR}=\mathrm{LOW})$	Intermediate	1	1	17	Flag Update and Read
Intermediate	1	1	17	$\left.\frac{\text { Read }}{(\text { ENR }}=\text { LOW }\right)$	AE	1	0	16	Read (Transition from Intermediate to Almost Empty)
AE	1	0	16	$\begin{aligned} & \text { Read } \\ & (\mathrm{ENR}=\mathrm{HIGH}) \end{aligned}$	AE	1	0	16	Ignored Read

Table 4. Almost Full Flag Operation Example ${ }^{[27,28]}$

Status Before Operation					Operation	Next State of FIFO	Status After Operation				
Current State of FIFO	F1	F2	Number of Words in FIFO CY7C441	Number of Words in FIFO CY7C443			F1	F2	Number of Words in FIFO CY7C441	Number of Words in FIFO CY7C443	Comments
AF	0	1	496	2032	$\left.\frac{\mathrm{Read}}{(\mathrm{ENR}}=\mathrm{LOW}\right)$	AF	0	1	495	2031	Read
AF	0	1	495	2031	$\begin{aligned} & \text { Read } \\ & (\overline{\text { ENR }}=\text { LOW }) \end{aligned}$	AF	0	1	494	2030	Read
AF	0	1	494	2030	$\begin{aligned} & \text { Write } \\ & \text { (ENW }=\mathrm{HIGH}) \end{aligned}$	Intermediate	1	1	494	2030	$\begin{aligned} & \text { Flag } \\ & \text { Update } \end{aligned}$
Intermediate	1	1	494	2030	$\left.\frac{\text { Write }}{(\text { ENW }}=\text { LOW }\right)$	Intermediate	1	1	495	2031	Write
Intermediate	1	1	495	2031	$\left.\begin{array}{\|l\|} \hline \text { Write } \\ (\mathrm{ENW} \end{array}=\text { LOW }\right)$	AF	0	1	496	2032	Write (Transition from Intermediate to Almost Full)

Note:
26. Applies to both the CY7C441 and CY7C443 operations.
27. The CY7C441 Almost Full state is represented by 496 or more words.
28. The CY7C443 Almost Full state is represented by 2032 or more words.

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
14	CY7C441-14PC	P21	Commercial
	CY7C441-14JC	J65	
	CY7C441-14VC	V21	
	CY7C441-14DC	D22	
	CY7C441-14LC	L55	
	CY7C441-14PI	P21	Industrial
	CY7C441-14JI	J65	
	CY7C441-14DI	D22	
	CY7C441-14DMB	D22	Military
	CY7C441-14LMB	L55	
	CY7C441-14KMB	K74	
20	CY7C441-20PC	P21	Commercial
	CY7C441-20JC	J65	
	CY7C441-20VC	V21	
	CY7C441-20DC	D22	
	CY7C441-20LC	L55	
	CY7C441-20PI	P21	Industrial
	CY7C441-20JI	J65	
	CY7C441-20DI	D22	
	CY7C441-20DMB	D22	Military
	CY7C441-20LMB	L55	
	CY7C441-20KMB	K74	
30	CY7C441-30PC	P21	Commercial
	CY7C441-30JC	J65	
	CY7C441-30VC	V21	
	CY7C441-30DC	D22	
	CY7C441-30LC	L55	
	CY7C441-30PI	P21	Industrial
	CY7C441-30JI	J65	
	CY7C441-30DI	D22	
	CY7C441-30DMB	D22	Military
	CY7C441-30LMB	L55	
	CY7C441-30KMB	K74	

Speed (ns)	Ordering Code	Package Type	Operating Range
14	CY7C443-14PC	P21	Commercial
	CY7C443-14JC	J65	
	CY7C443-14VC	V21	
	CY7C443-14DC	D22	
	CY7C443-14LC	L55	
	CY7C443-14PI	P21	Industrial
	CY7C443-14JI	J65	
	CY7C443-14DI	D22	
	CY7C443-14DMB	D22	Military
	CY7C443-14LMB	L55	
	CY7C443-14KMB	K74	
20	CY7C443-20PC	P21	Commercial
	CY7C443-20JC	J65	
	CY7C443-20VC	V21	
	CY7C443-20DC	D22	
	CY7C443-20LC	L55	
	CY7C443-20PI	P21	Industrial
	CY7C443-20JI	J65	
	CY7C443-20DI	D22	
	CY7C443-20DMB	D22	Military
	CY7C443-20LMB	L55	
	CY7C443-20KMB	K74	
30	CY7C443-30PC	P21	Commercial
	CY7C443-30JC	J65	
	CY7C443-30VC	V21	
	CY7C443-30DC	D22	
	CY7C443-30LC	L55	
	CY7C443-30PI	P21	Industrial
	CY7C443-30JI	J65	
	CY7C443-30DI	D22	
	CY7C443-30DMB	D22	Military
	CY7C443-30LMB	L55	
	CY7C443-30KMB	K74	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{CC}	$1,2,3$
I_{OS}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\mathrm{CKR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CKW}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CKH}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CKL}}$	$9,10,11$
t_{A}	$9,10,11$
t_{OH}	$9,10,11$
t_{FH}	$9,10,11$
t_{SD}	$9,10,11$
t_{HD}	$9,10,11$
$\mathrm{t}_{\mathrm{SEN}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HEN}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HENR}}$	$9,10,11$
t_{FD}	$9,10,11$
$\mathrm{t}_{\mathrm{SKEW}}$	$9,10,11$
$\mathrm{t}_{\mathrm{SKEW}}$	$9,10,11$
$\mathrm{t}_{\mathrm{PMR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{SCMR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{OHMR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{MRR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{MRF}}$	$9,10,11$
$\mathrm{t}_{\mathrm{AMR}}$	$9,10,11$

Document \#: 38-00124-B

CYPRESS
SEMICONDUCTOR

Features

- 512×9 (CY7C451) and $2,048 \times 9$ (CY7C453) FIFO buffer memory
- Expandable in width and depth
- High-speed 70-MHz standalone; $50-\mathrm{MHz}$ cascaded
- Supports free-running $\mathbf{5 0 \%}$ duty cycle clock inputs
- Empty, Almost Empty, Half Full, Almost Full, and Full status flags
- Programmable Almost Full/Empty flags
- Parity generation/checking
- Fully asynchronous and simultaneous read and write operation
- Output Enable ($\overline{\mathbf{O E}})$
- Independent read and write enable pins
- Center power and ground pins for reduced noise
- Available in 300-mil 32-pin DIP, PLCC, and LCC packages
- Proprietary 0.8μ CMOS technology
- TTL compatible

Functional Description

The CY7C451 and CY7C453 are highspeed, low-power, first-in first-out (FIFO) memories with clocked read and write interfaces. Both FIFOs are 9 bits wide. The CY7C451 has a 512 word by 9 bit memory array, while the CY7C453 has a 2048 word by 9 bit memory array. Devices can be cascaded to increase FIFO depth. Programmable features include Almost Full/Empty flags and generation/checking of parity. These FIFOs provide solutions for a wide variety of data buffering needs, including high-speed data acquisition, multiprocessor interfaces, and communications buffering.
Both FIFOs have 9-bit input and output ports that are controlled by separate clock and enable signals. The input port is controlled by a free-running 50% duty cycle clock (CKW) and a write enable pin (ENW). When ENW is asserted, data is written into the FIFO on the rising edge of the CKW signal. While ENW is held active, data is continually written into the FIFO on each CKW cycle. The output
port is controlled in a similar manner by a free-running read clock (CKR) and a read enable pin (ENR). The read (CKR) and write (CKW) clocks may be tied together for single-clock operation or the two clocks may be run independently for asynchronous read/write applications. Clock frequencies up to 71.4 MHz are acceptable in the standalone configuration, and up to 50 MHz is acceptable when FIFOs are cascaded for depth expansion.
Depth expansion is possible using the cascade input ($\overline{\mathrm{XI}}$) and cascade output ($\overline{\mathrm{XO}}$). The $\overline{\mathrm{XO}}$ signal is connected to the $\overline{\mathrm{XI}}$ of the next device, and the $\overline{\mathrm{XO}}$ of the last device should be connected to the $\overline{\mathrm{XI}}$ of the first device. In standalone mode, the input (XI) pin is simply tied to V_{Ss}.

The CY7C451 and CY7C453 provide three status pins to the user. These pins are decoded to determine one of six states: Empty, Almost Empty, Less than Half Full, Greater than Half Full, Almost Full, and Full (see Table 1). The Almost Empty/Full flag ($\overline{\mathrm{PAFE}}$) and $\overline{\mathrm{XO}}$ functions share the same pin. The Almost Empty/Full flag is

Functional Description (continued)

valid in the standalone and width expansion configurations. In the depth expansion, this pin provides the expansion out $(\overline{\mathrm{XO}})$ information that is used to signal the next FIFO when it will be activated.
The flags are synchronous i.e., they change state relative to either the read clock (CKR) or the write clock (CKW). When entering or exiting the Empty and Almost Empty states, the flags are updated exclusively by the CKR. The flags denoting Half Full, Almost Full, and Full states are updated exclusively by CKW. The
synchronous flag architecture guarantees that the flags maintain their status for some minimum time. This time is typically equal to approximately one cycle time.
The CY7C451 and the CY7C453 use center power and ground for reduced noise. Both configurations are fabricated using an advanced $0.8 \mu \mathrm{~N}$-well CMOS technology. Input ESD protection is greater than 2001 V , and latch-up is prevented by the use of reliable layout techniques, guard rings, and a substrate bias generator.

Selection Guide

	7C451-14 7C453-14	$\mathbf{7 C 4 5 1 - 2 0}$ 7C453-20	7C451-30 7C453-30
Maximum Frequency (MHz)	$71.4^{[1]}$	50	33.3
Maximum Cascadeable Frequency	$\mathbf{N} / \mathrm{A}^{[2]}$	50	33.3
Maximum Access Time (ns)	10	15	20
Minimum Cycle Time (ns)	14	20	30
Minimum Clock HIGH Time (ns)	6.5	9	12
Minimum Clock LOW Time (ns)	6.5	9	12
Minimum Data or Enable Set-Up (ns)	7	9	12
Minimum Data or Enable Hold (ns)	0	0	0
Maximum Flag Delay (ns)	10	15	20
Maximum Current (mA)	180	140	120

Notes:

1. \quad 71.4-MHz operation is available only in the standalone configuration.
2. The -14 device cannot be cascaded.
3. T_{A} is the "instant on" case temperature.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V

Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage . $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)

Latch-Up Current . > 200 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Pin Definitions

Signal Name	I/O	Description
D_{0-8}	I	Data Inputs: When the FIFO is not full and $\overline{\text { ENW }}$ is active, CKW (rising edge) writes data (D_{0-8}) into the FIFO's memory. If MR is asserted at the rising edge of CKW then data is written into the FIFO's programming register. D_{8} is ignored if the device is configured for parity generation.
Q_{0-7}	0	Data Outputs: When the FIFO is not empty and $\overline{\text { ENR }}$ is active, CKR (rising edge) reads data (Q_{0-7}) out of the FIFO's memory. If MR is active at the rising edge of CKR then data is read from the programming register.
$\mathrm{Q}_{8} / \mathrm{PG} / \overline{\mathrm{PE}}$	O	Function varies according to mode: Parity disabled - same function as Q_{0-7} Parity enabled, generation - parity generation bit (PG) Parity enabled, check - Parity Error Flag ($\overline{\mathrm{PE}}$)
ENW	I	Enable Write: enables the CKW input (for both non-program and program modes)
ENR	I	Enable Read: enables the CKR input (for both non-program and program modes)
CKW	I	Write Clock: the rising edge clocks data into the FIFO when ENW is LOW; updates Half Full, Almost Full, and Full flag states. When MR is asserted, CKW writes data into the program register.
CKR	I	Read Clock: the rising edge clocks data out of the FIFO when ENR is LOW; updates the Empty and Almost Empty flag states. When MR is asserted, CKR reads data out of the program register.
$\overline{\mathrm{HF}}$	O	Half Full Flag - synchronized to CKW.
$\overline{\mathrm{E}} / \overline{\mathrm{F}}$	O	Empty or Full Flag - $\overline{\mathrm{E}}$ is synchronized to CKR; $\overline{\mathrm{F}}$ is synchronized to CKW
$\overline{\text { PAFE/ } / \overline{X O}}$	O	Dual-Mode Pin: Not Cascaded - Programmable Almost Full is synchronized to CKW; Programmable Almost Empty is synchronized to CKR Cascaded - Expansion Out signal, connected to $\overline{\mathrm{XI}}$ of next device
$\overline{\mathrm{XI}}$	I	Not Cascaded - $\overline{\mathrm{XI}}$ is tied to $\mathrm{V}_{\text {SS }}$ Cascaded - Expansion Input, connected to $\overline{\mathrm{XO}}$ of previous device
$\overline{\mathrm{FL}}$	I	First Load Pin: Cascaded - the first device in the daisy chain will have $\overline{\mathrm{FL}}$ tied to V_{SS}; all other devices will have $\overline{\mathrm{FL}}$ tied to $V_{c c}$ (Figure1) Not Cascaded - tied to V_{Cc}
$\overline{\mathrm{MR}}$	I	Master Reset: resets device to empty condition. Non-Programming Mode: program register is reset to default condition of no parity and $\overline{\text { PAFE }}$ active at 16 or less locations from Full/Empty. Programming Mode: Data present on D_{0-8} is written into the programmable register on the rising edge of CKW. Program register contents appear on Q_{0-8} after the rising edge of CKR.
$\overline{\mathrm{OE}}$	I	Output Enable for Q_{0-7} and $\mathrm{Q}_{8} / \mathrm{PG} / \overline{\mathrm{PE}}$ pins

Electrical Characteristics Over the Operating Range ${ }^{[4]}$

Capacitance ${ }^{[8]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	12	pF

Notes:
4. See the last page of this specification for Group A subgroup testing information.
5. The $V_{I H}$ and $V_{I L}$ specifications apply for all inputs except $\overline{X I}$ and $\overline{F L}$ The XI pin is not a TTL input. It is connected to either XO of the previous device or $V_{S S}$. FL must be connected to either $V_{S S}$ or $V_{C C}$.
6. Test no more than one output at a time for not more than one second.

AC Test Loads and Waveforms ${ }^{[9,10,11,12,13]}$

7. Input signals switch from 0 V to 3 V with a rise/fall time of less than 3 ns, clocks switch at maximum frequency ($\mathrm{f}_{\mathrm{MAX}}$), while data snd enable inputs switch at $\mathrm{f}_{\mathrm{MAX}} / 2$.
8. Tested initially and after any design or process changes that may affect these parameters.

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } a \quad 200 \Omega
$$

Switching Characteristics Over the Operating Range ${ }^{[4,14]}$

Parameters	Description	$\begin{aligned} & \hline \text { 7C451-14 } \\ & \text { 7C453-14 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C451-20 } \\ & \text { 7C453-20 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 451-30 \\ & 7 \mathrm{C} 453-30 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {ckw }}$	Write Clock Cycle	14		20		30		ns
$\mathrm{t}_{\text {CKR }}$	Read Clock Cycle	14		20		30		ns
$\mathrm{t}_{\text {CKH }}$	Clock HIGH	6.5		9		12		ns
$\mathrm{t}_{\text {ckL }}$	Clock LOW	6.5		9		12		ns
t_{A}	Data Access Time		10		15		20	ns
t_{OH}	Previous Output Data Hold After Read HIGH	0		0		0		ns
t_{FH}	Previous Flag Hold After Read/Write HIGH	0		0		0		ns
tsd	Data Set-Up	7		9		12		ns
t_{HD}	Data Hold	0		0		0		ns
$\mathrm{t}_{\text {SEN }}$	Enable Set-Up	7		9		12		ns
${ }^{\text {then }}$	Enable Hold	0		0		0		ns
$\mathrm{t}_{\text {OE }}$	$\overline{\text { OE LOW to Output Data Valid }}$		10		15		20	ns
tolz	$\overline{\mathrm{OE}}$ LOW to Output Data in Low Z	0		0		0		ns
tohz	$\overline{\mathrm{OE}}$ HIGH to Output Data in High Z		10		15		20	ns
$\mathrm{tpg}^{\text {P }}$	Read HIGH to Parity Generation		10		15		20	ns
$\mathrm{t}_{\text {PE }}$	Read HIGH to Parity Error Flag		10		15		20	ns

Switching Characteristics Over the Operating Range ${ }^{[4,14]}$ (continued)

Parameters	Description	$\begin{aligned} & \hline 7 \mathbf{C 4 5 1 - 1 4} \\ & \text { 7C453-14 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C451-20 } \\ & 7 \mathrm{C} 453-20 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 451-30 \\ & 7 \mathrm{C} 453-30 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {ED }}$	Flag Delay		10		15		20	ns
$\mathrm{t}_{\text {SKEW } 1}{ }^{[15]}$	Opposite Clock After Clock	14		20		30		ns
$\mathrm{t}_{\text {SKEW2 }}{ }^{[16]}$	Opposite Clock Before Clock	14		20		30		ns
$\mathrm{t}_{\text {PMR }}$	Master Reset Pulse Width ($\overline{\mathrm{MR}}$ LOW)	14		20		30		ns
$\mathrm{t}_{\text {SCMR }}$	Last Valid Clock LOW Set-Up to $\overline{\text { MR }}$ LOW	0		0		0		ns
$\mathrm{t}_{\text {OHMR }}$	Data Hold From $\overline{\text { MR }}$ LOW	0		0		0		ns
$\mathrm{t}_{\text {MRR }}$	Master Reset Recovery ($\overline{\mathrm{MR}}$ HIGH Set-Up to First Enabled Write/Read)	14		20		30		ns
$\mathrm{t}_{\text {MRF }}$	$\overline{\text { MR }}$ HIGH to Flags Valid		14		20		30	ns
$\mathrm{t}_{\text {AMR }}$	$\overline{\text { MR }}$ HIGH to Data Outputs LOW		14		20		30	ns
$\mathrm{t}_{\text {SMRP }}$	Program Mode- $\overline{\mathrm{MR}}$ LOW Set-Up	10		15		25		ns
$\mathrm{t}_{\text {HMRP }}$	Program Mode- $\overline{\mathrm{MR}}$ LOW Hold	10		15		25		ns
$\mathrm{t}_{\text {FTP }}$	Program Mode-Write HIGH to Read HIGH	14		20		30		ns
$\mathrm{t}_{\text {AP }}$	Program Mode-Data Access Time		14		20		30	ns
tohp	Program Mode-Data Hold Time from MR HIGH	0		0		0		ns

Notes:
9. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ for all AC parameters except for $\mathrm{t}_{\mathrm{OHZ}}$.
10. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{OHZ}}$.
11. All AC measurements are referenced to 1.5 V except $\mathrm{t}_{\mathrm{OE}}, \mathrm{t}_{\mathrm{OLZ}}$, and ${ }^{\text {toHz }}$
12. t_{OE} and $\mathrm{t}_{\mathrm{OLZ}}$ are measured at $\pm 100 \mathrm{mV}$ from the steady state.
13. t_{OHZ} is measured at +500 mV from V_{OL} and -500 mV from V_{OH}.
14. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and capacitance as in notes 6 and 10, unless otherwise specified.
15. $\mathrm{t}_{\text {SKEW }}$ is the minimum time an opposite clock can occur after a clock and still be guaranteed not to be included in the current clock cycle (for purposes of flag update). If the opposite clock occurs less than ${ }^{\text {t SKEW }} 1$ after the clock, the decision of whether or not to include the
opposite clock in the current clock cycle is arbitrary. Note: The opposite clock is the signal to which a flag is not synchronized; i.e., CKW is the opposite clock for Empty and Almost Empty flags, CKR is the the opposite clock for the Almost Full, Half Full, and Full flags. The clock is the signal to which a flag is synchronized; i.e., CKW is the clock for the Almost Full flags, CKR is the clock for Empty and Almost Empty flags.
16. $\mathbf{t}_{\text {SKEW } 2}$ is the minimum time an opposite clock can occur before a clock and still be guaranteed to be included in the current clock cycle (for purposes of flag update). If the opposite clock occurs less than $\mathrm{t}_{\text {SKEW }}$ before the clock, the decision of whether or not to include the opposite clock in the current clock cycle is abritrary. See Note 15 for definition of clock and opposite clock.

Switching Waveforms

Master Reset (Default with Free-Running Clocks) Timing Diagram ${ }^{[17,18,19,20]}$

Switching Waveforms (continued)

Master Reset (Programming Mode with Free-Running Clocks) Timing Diagram ${ }^{[19,20]}$

C451-10

Notes:

17. To only perform reset (no programming), the following criteria must be met: ENW or CKW must be inactive while MR is LOW.
18. To only perform reset (no programming), the following criteria must be met: ENR or CKR must be inactive while MR is LOW.
19. All data outputs (Q_{0-8}) go LOW as a result of the rising edge of $\overline{\mathrm{MR}}$ after $\mathrm{t}_{\text {AMR }}$.
20. In this example, Q_{0-8} will remain valid until $\mathrm{t}_{\mathrm{OHMR}}$ if either the first read shown did not occur or if the read occurred soon enough such that the valid data was caused by it.

Switching Waveforms (continued)

Read to Empty Timing Diagram ${ }^{[21,24,25]}$

Read to Empty Timing Diagram with Free-Running Clocks ${ }^{[21,22,23,24]}$

Notes:

21. "Count" is the number of words in the FIFO.
22. The FIFO is assumed to be programmed with $\mathrm{P}>0$ (i.e., $\overline{\mathrm{PAFE}}$ does not transition at Empty or Full).
23. R 2 is ignored because the FIFO is empty (count $=0$). It is important to note that R3 is also ignored because W3, the first enabled write after empty, occurs less than $t_{\text {SKEW2 }}$ before R3. Therefore, the FIFO still appears empty when R3 occurs. Because W3 occurs greater than $\mathbf{t}_{\text {SKEW2 }}$ before R4, R4 includes W3 in the flag update.
24. CKR is clock; CKW is opposite clock.
25. R3 updates the flag to the Empty state by asserting $\overline{\mathrm{E}} / \overline{\mathrm{F}}$. Because W1 occurs greater than $\mathrm{t}_{\text {SKEW1 }}$ after R3, R3 does not recognize W1 when updating flag status. But because W1 occurs $\mathrm{t}_{\text {SKEW }}$ before R4, R4 includes W1 in clock cycle and, therefore, updates FIFO to Almost Empty state. It is important to note that R4 is a latent cycle; i.e., it only updates the flag status regardless of the state of ENR. It does not change the count or the FIFO's data outputs.

PRELIMINARY
CY7C453

Switching Waveforms (continued)

Read to Almost Empty Timing Diagram with Free-Running Clocks ${ }^{[21,24]}$

Read to Almost Empty Timing Diagram with Read Flag Update Cycle with Free-Running Clocks ${ }^{[21,24,26,27,28]}$

Notes:
26. The FIFO in this example is assumed to be programmed to its default flag values. Almost Empty is 16 words from Empty; Almost Full is 16 locations from Full.
27. R4 only updates the flag status. It does not affect the count because ENR is HIGH.
28. When making the transition from Almost Empty to Intermediate, the count must increase by two (16 18; two enabled writes: W2, W3) before a read (R4) can update flags to the Less Than Half Full state.

Switching Waveforms (continued)

Write to Half Full Timing Diagram with Free-Running Clocks ${ }^{[21,29,30,31]}$

Write to Half Full Timing Diagram with Write Flag Update Cycle with Free-Running Clocks ${ }^{[21,29,32,33]}$

Notes:

29. CKW is clock and CKR is opposite clock.
30. Count $=1,025$ indicates Half Full for the CY7C453 and count $=257$ indicates Half Full for the CY7C451. Values for CY 7 C 451 count are shown in parentheses.
31. When the FIFO contains 1,024 [256] words, the rising edge of the next enabled write causes the $\overline{\mathrm{HF}}$ to be true (LOW).
32. The $\overline{\mathrm{HF}}$ write flag update cycle does not affect the count because ENW is HIGH. It only updates $\overline{\mathrm{HF}}$ to HIGH.
33. When making the transition form Half Full to Less Than Half Full, the count must decrease by two (1,0251023 ; two enabled reads: R2 and R3) before a write (W4) can update flags to less than Half Full.

Switching Waveforms (continued)
Write to Almost Full Timing Diagram ${ }^{[21,26,29,34,35]}$

Write to Almost Full Timing Diagram with Free-Running Clocks ${ }^{[21,26,29]}$

Notes:

34. W2 updates the flag to the Almost Full state by asserting PAFE. Because R1 occurs greater than $\mathrm{t}_{\text {SKEW }}$ after W 2 , W2 does not recognize R1 when updating flag status. W3 includes R2 in flag update because R2 occurs greater than $\mathbf{t}_{\text {SKEW2 }}$ before W3. Note that W3 does not have to be enabled to update flags.
35. The dashed lines show W3 as a flag update write rather than an enabled write because ENW is deasserted.

Switching Waveforms (continued)

Write to Almost Full Timing Diagram with Write Flag Update Cycle and Free-Running Clocks ${ }^{[21,26,29]}$

Write to Full Flag Timing Diagram with Free-Running Clocks ${ }^{[21,23,29,36]}$

C451-20

Notes:

36. W2 is ignored because the FIFO is full (count $=2,048$ [512]). It is important to note that W3 is also ignored because R3, the first enabled read after full, occurs less than $\mathrm{t}_{\text {SKEW }} 2$ before W3. Therefore, the

FIFO still appears full when W3 occurs. Because R3 occurs greater than $\mathrm{t}_{\text {SKEW2 }}$ before W4, W4 includes R3 in flag update.

Switching Waveforms (continued)
Even Parity Generation Timing Diagram ${ }^{[37,38]}$

Even Parity Generation Timing Diagram ${ }^{[37,39]}$

Notes:
37. In this example, the FIFO is assumed to be programmed to generate even parity.
38. If Q_{0-7} "new word" also has an even number of 1 s , then PG stays LOW. 39. If Q_{0-7} "new word" also has odd number of 1 s , then PG stays HIGH.

Switching Waveforms (continued)

Even Parity Checking ${ }^{[40]}$

Output Enable Timing ${ }^{[41,42]}$

Notes:
40. In this example, the FIFO is assumed to be programmed to check for even parity.
41. This example assumes that the time from the CKR rising edge to valid word $M+1 \geq t_{A}$.
42. If $\overline{E N R}$ was HIGH around the rising edge of CKR (i.e., read disabled), the valid data at the far right would once again be word M instead of word $\mathbf{M + 1}$.

Architecture

The CY7C451 and CY7C453 consist of an array of 512/2048 words of 9 bits each (implemented by an array of dual-port RAM cells), a read pointer, a write pointer, control signals (CKR, CKW, ENR, $\overline{\mathrm{ENW}}, \overline{\mathrm{MR}}, \overline{\mathrm{OE}}, \overline{\mathrm{FL}}, \overline{\mathrm{XI}}, \overline{\mathrm{XO}}$), and flags ($\overline{\mathrm{HF}}, \overline{\mathrm{E}} / \overline{\mathrm{F}}, \overline{\mathrm{PAFE}}$).

Resetting the FIFO

Upon power-up, the FIFO must be reset with a Master Reset (MR) cycle. This causes the FIFO to enter the Empty condition signified by \bar{E} / \bar{F} and $\overline{\text { PAFE }}$ being LOW and $\overline{\mathrm{HF}}$ being HIGH. All data outputs $\left(\mathrm{Q}_{0-8}\right)$ go low at the rising edge of $\overline{\mathrm{MR}}$. In order for the FIFO to reset to its default state, a falling edge must occur on $\overline{\text { MR }}$ and the user must not read or write while MR is LOW (unless ENR and/or ENW are HIGH or unless the device is being programmed). Upon completion of the Master Reset cycle, all data outputs will go LOW $\mathrm{t}_{\mathrm{AMR}}$ after $\overline{\mathrm{MR}}$ is deasserted. All flags are guaranteed to be valid $\mathrm{t}_{\text {MRF }}$ after $\overline{\mathrm{MR}}$ is taken HIGH.

FIFO OPERATION

When the ENW signal is active (LOW), data present on the D_{0-8} pins is written into the FIFO on each rising edge of the CKW signal. Similarly, when the ENR signal is active, data in the FIFO memory will be presented on the Q_{0-8} outputs. New data will be presented on each rising edge of CKR while ENR is active. ENR must set up tsen before CKR for it to be a valid read function. ENW must occur tsen before CKW for it to be a valid write function.
An output enable ($\overline{\mathrm{OE}}$) pin is provided to tri-state the Q_{0-8} outputs when $\overline{O E}$ is not asserted. When $\overline{O E}$ is enabled, data in the output register will be available to Q_{0-8} outputs after toe. If devices are cascaded, the $\overline{\mathrm{OE}}$ function will only output data on the FIFO that is read enabled.
The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and underflow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO maintains the data of the last valid read on its Q_{0-8} outputs even after additional reads occur.

Programming

The CY7C451 and CY7C453 are programmed during a master reset cycle. If $\overline{\text { MR }}$ and $\overline{\text { ENW }}$ are LOW, a rising edge on CKW will write D_{0-8} inputs into the programming register. MR must be set up a minimum of $\mathrm{t}_{\text {SMRP }}$ before the program write rising edge and held $t_{\text {HMRP }}$ after the program write falling edge. The user has the ability to also perform a program read during the master reset cycle. This will occur at the rising edge of CKR when $\overline{M R}$ and ENR are asserted. The program read must be performed a minimum of $\mathrm{t}_{\text {FTP }}$ after a program write, and the program word will be available $t_{\text {AP }}$ after the read occurs. If a program write does not occur, a program read may occur a minimum of $\mathrm{t}_{\mathrm{SMRP}}$ after $\overline{\mathrm{MR}}$ is asserted. This will read the default program value.
When free-running clocks are tied to CKW and CKR, programming can still occur during a master reset cycle with the adherence to a few additional timing parameters. The enable pins must be set-up $t_{\text {sEN }}$ before the rising edge of CKW or CKR. Hold times of $t_{\text {HEN }}$ must also be met for $\overline{E N W}$ and $\overline{E N R}$.
Data present on D_{0-5} during a program write will determine the distance from Empty (Full) that the Almost Empty (Almost Full) flags will become active. See Table 1 for a description of the six possible FIFO states. P in Table 1 refers to the decimal equivalent of
the binary number represented by D_{0-5}. Programming options for the CY7C451 and CY7C453 are listed in Table 5. Programming resolution is 16 words for either device.
The programmable $\overline{\text { PAFE }}$ function is only valid when the CY7C451/453 are not cascaded. If the user elects not to program the FIFO's flags, the default $(\mathrm{P}=1)$ is as follows: Almost Empty condition (Almost Full condition) is activated when the CY7C451/453 contain 16 or less words (empty locations).
Parity is programmed with the D_{6-8} bits. See Table 7 for a summary of the various parity programming options. Data present on D_{6-8} during a program write will determine whether the FIFO will generate or check even/odd parity for the data present on D_{0-8} thereafter. If the user elects not to program the FIFO, the parity function is disabled. Flag operation and parity are described in greater detail in subsequent sections.

Flag Operation

The CY7C451/453 provide three status pins when not cascaded. The three pins, $\overline{\mathrm{E}} / \overline{\mathrm{F}}, \overline{\text { PAFE }}$, and $\overline{\mathrm{HF}}$, allow decoding of six FIFO states (Table 1). $\overline{\text { PAFE }}$ is not available when FIFOs are cascaded for depth expansion. All flags are synchronous, meaning that the change of states is relative to one of the clocks (CKR or CKW, as appropriate). The synchronous architecture guarantees some minimum valid time for the flags. This time is typically equal to approximately one cycle time. The Empty and Almost Empty flag states are exclusively updated by each rising edge of the read clock (CKR). For example, when the FIFO contains 1 word, the next read (rising edge of CKR while $\overline{\text { ENR }}=$ LOW) causes the flag pins to output a state that represents Empty. The Half Full, Almost Full, and Full flag states are updated exclusively by the write clock (CKW). For example, if the CY7C453 FIFO contains 2047 words (2048 words indicate Full for the CY7C453), the next write (rising edge of CKW while $\overline{E N W}=$ LOW) causes the flag pins to output a state that is decoded as Full.

Table 1. Flag Truth Table ${ }^{[43]}$

$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { PAFE }}$	$\overline{\mathbf{H F}}$	State	$\begin{aligned} & \text { CY7C451 } \\ & 512 \times 9 \\ & \text { Number of } \\ & \text { Words in } \\ & \text { FIF0 } \end{aligned}$	$\begin{aligned} & \text { CY7C453 } \\ & 2 \mathrm{~K} \times 9 \\ & \text { Number of } \\ & \text { Words in } \\ & \text { FIFO } \end{aligned}$
0	0	1	Empty	0	0
1	0	1	Almost Empty	$1 \rightarrow(16 \cdot P)$	$1 \rightarrow(16 \cdot P)$
1	1	1	Less than or Equal to Half Fuil	${ }_{256}^{(16 \cdot P)+1} \rightarrow$	$\underset{ }{(16 \bullet P)+1}{ }_{1024} \rightarrow$
1	1	0	Greater than Half Full	$\left\lvert\, \begin{aligned} & 257 \rightarrow \\ & 511-(16 \cdot P) \end{aligned}\right.$	$\xrightarrow{1025 \rightarrow} \underset{2047-16}{ } \cdot \mathrm{P}$
1	0	0	Almost Full	$\begin{aligned} & 512-(16 \cdot \mathrm{P}) \\ & \rightarrow 511 \end{aligned}$	$\begin{aligned} & 2048-(16 \cdot P) \\ & \rightarrow 2047 \end{aligned}$
0	0	0	Full	512	2048

Note:

43. P is the decimal value of the binary number represented by D_{0-5}. When programming the CY7C451/53, P can have values from 0 to 15 for the CY7C451 and values from 0 to 63 for the CY7C453. See Table 5 for D_{0-5} representation. $\mathrm{P}=0$ signifies Almost Empty state $=$ Empty state.

Flag Operation (continued)

Since the flags denoting emptiness (Empty, Almost Empty) are only updated by CKR and the flags signifying fullness (Half Full, Almost Full, Full) are exclusively updated by CKW, careful attention must be given to the flag operation. The user must be aware that if a boundary (Empty, Almost Empty, Half Full, Almost Full, or Full) is crossed due to an operation from a clock that the flag is not synchronized to (i.e., CKW does not affect Empty or Almost Empty), a flag update cycle is necessary to represent the FIFO's new state. The signal to which a flag is not synchronized will be referred to as the opposite clock (CKW is opposite clock for Empty and Almost Empty flags; CKR is the opposite clock for Half Full, Almost Full, and Full flags). Until a proper flag update cycle is executed, the synchronous flags will not show the "true" state of the FIFO.
When updating flags, the CY7C451/453 must make a decision as to whether or not the opposite clock was recognized when a clock updates the flag. For example (when updating the Empty flag), if a write occurs at least $\mathrm{t}_{\text {SKEW }}$ after a read, the write is guaranteed not to be included when CKR updates the flag. If a write occurs at least $\mathrm{t}_{\mathrm{SKEW}}^{2}$ before a read, the write is guaranteed to be included when CKR updates flag. If a write occurs within $\mathrm{t}_{\text {SKEw }} /$ tsKEw $^{\text {SK }}$ after or before CKR, then the decision of whether or not to include the write when the flag is updated by CKR is arbitrary.
The update cycle for non-boundary flags (Almost Empty, Half Full, Almost Full) is different from that used to update the boundary flags (Empty, Full). Both operations are described below.

Boundary and Non-Boundary Flags

Empty Flag

The Empty flag is synchronized to the CKR signal (ie. the Empty flag can only be updated by a clock pulse on the CKR pin). An empty FIFO that is written to will be described with an Empty flag state until a rising edge is presented to the CKR pin. When making the transition from Empty to Almost Empty (or Empty to Less than Half Full), a clock cycle on the CKR is necessary to update the flags to the current state. In such a state (flags showing Empty
even though data has been written to the FIFO), two read cycles are required to read data out of FIFO. The first read serves only to update the flags to the Almost Empty or Less than Half Full state, while the second read outputs the data. This first read cycle is known as the latent or flag update cycle because it does not affect the data in the FIFO or the count (number of words in FIFO). It simply deasserts the Empty flag. The flag is updated regardless of the ENR state. Therefore, the update occurs even when ENR is unasserted (HIGH), so that a valid read is not necessary to update the flags to correctly describe the FIFO. In this example, the write must occur at least $\mathrm{t}_{\text {SKEW }}$ before the flag update cycle in order for the FIFO to guarantee that the write will be included in the count when CKR updates the flags. When a free-running clock is connected to CKR, the flag is updated each cycle. Table 2 shows an example of a sequence of operations that update the Empty flag.

Boundary Flags (Full)

The Full flag is synchronized to the CKW signal (i.e., the Full flag can only be updated by a clock pulse on the CKW pin). A full FIFO that is read will be described with a Full flag until a rising edge is presented to the CKW pin. When making the transition from Full to Almost Full (or Full to Greater Than Half Full), a clock cycle on the CKW is necessary to update the flags to the current state. In such a state (flags showing Full even through data has been read from the FIFO), two write cycles are required to write data into the FIFO. The first write serves only to update the flags to the Almost Full or Greater Than Half Full state, while the second write inputs the data. This first write cycle is known as the latent or flag update cycle because it does not affect the data in the FIFO or the count (number of words in the FIFO). It simply deasserts the Full flag. The flag is updated regardless of the ENW state. Therefore, the update occurs even when ENW is deasserted (HIGH), so that a valid write is not necessary to update the flags to correctly describe the FIFO. In this example, the read must occur at least tskew $_{2}$ before the flag update cycle in order for the FIFO to guarantee that the read will be included in the count when CKW updates the flags. When a free-running clock is connected to CKW, the flag updates each cycle. Full flag operation is similar to the Empty flag operation described in Table 2.

Table 2. Empty Flag (Boundary Flag) Operation Example

Status Before Operation					Operation	Status After Operation					Comments
Current State of FIFO	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { AFE }}$	$\overline{\mathrm{HF}}$	Number of Words in FIFO		Next State of FIFO	$\overline{\mathrm{E}} / \overline{\mathbf{F}}$	$\overline{\text { AFE }}$	$\overline{\mathrm{HF}}$	Number of words in FIFO	
Empty	0	0	1	0	$\left.\begin{array}{\|l\|} \hline \frac{\text { Write }}{} \\ (E N W \end{array}=0\right)$	Empty	0	0	1	1	Write
Empty	0	0	1	1	$\begin{array}{\|l} \hline \text { Write } \\ \text { (ENW } \end{array}$	Empty	0	0	1	2	Write
Empty	0	0	1	2	$\left.\begin{array}{l} \mathrm{Read} \\ (\mathrm{ENR} \end{array}=\mathrm{X}\right)$	AE	1	0	1	2	Flag Update
AE	1	0	1	2	$\left.\frac{\text { Read }}{(E N R}=0\right)$	AE	1	0	1	1	Read
AE	1	0	1	1	$\begin{aligned} & \text { Read } \\ & (\overline{\text { ENR }}=0) \end{aligned}$	Empty	0	0	1	0	$\begin{array}{\|l\|} \hline \text { Read (transition from } \\ \text { Almost Empty to Empty) } \\ \hline \end{array}$
Empty	0	0	1	0	$\begin{aligned} & \frac{\text { Write }}{} \\ & (\mathrm{ENR}=0) \\ & \hline \end{aligned}$	Empty	0	0	1	1	Write
Empty	1	0	1	1	$\begin{aligned} & \mathrm{Read} \\ & \text { (ENR }=\mathrm{X}) \\ & \hline \end{aligned}$	AE	1	0	1	1	Flag Update
AE	1	0	1	1	$\begin{aligned} & \mathrm{Read} \\ & (\mathrm{ENR}=0) \\ & \hline \end{aligned}$	Empty	0	0	1	0	$\begin{array}{\|l} \hline \text { Read (transition from } \\ \text { Almost Empty to Empty) } \\ \hline \end{array}$

Non-Boundary Flags (Almost Empty, Half Full, Almost Full)

The CY7C451/453 feature programmable Almost Empty and Almost Full flags. Each flag can be programmed a specific distance from the corresponding boundary flags (Empty or Full). The flags can be programmed to be activated at the Empty or Full boundary, or at a distance of up to 1008 words/locations for the CY7C453 (240 words/locations for the CY7C451) from the Empty/Full boundary. The programming resolution is 16 words/locations. When the FIFO contains the number of words or fewer for which the flags have been programmed, the PAFE flag will be asserted signifyingthat the FIFO is Almost Empty. When the FIFO is within that same number of empty locations from being Full, the PAFE will also be asserted signifying that the FIFO is Almost Full. The $\overline{\mathrm{HF}}$ flag is decoded to distinguish the states.
The default distance (CY7C451/453 not programmed) from where PAFE becomes active to the boundary (Empty, Full) is 16 words/ locations. The Almost Full and Almost Empty flags can be programmed so that they are only active at Full and Empty boundaries. However, the operation will remain consistent with the non-boundary flag operation that is discussed below.
Almost Empty is only updated by CKR while Half Full and Almost Full are updated by CKW. Non-boundary flags employ flag update cycles similar to the boundary flag latent cycles in order to update the FIFO status. For example, if the FIFO just reaches the Greater than Half Full state, and then two words are read from the FIFO, a write clock (CKW) will be required to update the flags to the Less than Half Full state. However, unlike the boundary flag latent cycle, the state of the enable pin ($\overline{\mathrm{ENW}}$ in this case) affects the operation. Therefore, set-up and hold times for the enable pins must be met ($\mathrm{t}_{\text {SEN }}$ and $\mathrm{t}_{\text {HEN }}$). If the enable pin is active during the flag update cycle, the count and data are updated in addition to $\overline{\text { PAFE }}$ and HF. If the enable pin is not asserted during the flag update cycle, only the flags are updated. Tables 3 and 4 show an example of a sequence of operations that update the Almost Empty and Almost Full flags.

Programmable Parity

The CY7C451/453 also features even or odd parity checking and generation. D_{6-8} are used during a program write to describe the parity option desired. Table 6 gives a summary of programmable parity options. If user elects not to program the device, then parity is disabled. Parity information is provided on one multi-mode output pin ($\mathrm{Q} 8 / \mathrm{PG} / \mathrm{PE}$). The three possible modes are described in the following paragraphs. Regardless of the mode selected, the $\overline{\mathrm{OE}}$ pin retains tri-state control of all $9 \mathrm{Q}_{0-8}$ bits.

Parity Disabled (Q8 mode)

When parity is disabled (or user does not program parity option) the CY7C451/453 stores all 9 bits present on D_{0-8} inputs internally and will output all 9 bits on Q_{0-8}.

Parity Generate (PG mode)

This mode is used to generate either even or odd parity (as programmed) from $\mathrm{D}_{\mathrm{O}-7 .} \mathrm{D}_{8}$ input is ignored. The parity bit is stored internally as D_{8} and during a subsequent read will be available on the PG pin along with the data word from which the parity was generated (Q_{0-7}). For example, if parity generate is set to ODD and the D_{0-7} inputs have an EVEN number of 1s, PG will be HIGH.

Parity Check ($\overline{\text { PE }}$ mode)

If the CY7C451/453 is programmed for parity checking, the FIFO will compare the parity of D_{0-8} with the program register. If the
expected parity is present, D_{8} will be set HIGH internally. When this word is later read, PE will be HIGH. If a parity error occurs, D_{8} will be set LOW internally. When this word is later read, $\overline{\mathrm{PE}}$ will be LOW. For example, if parity check is set to odd and D_{0-8} have an even number of 1 s , a parity error occurs. When that word is later read, $\overline{\text { PE will be asserted (LOW). }}$

Width Expansion Modes

During width expansion all flags (programmable and nonprogrammable) are available. The CY7C451/453 can be expanded in width to provide word width greater than 9 in increments of 9 . During width expansion mode all control line inputs are common. When the FIFO is being read near the Empty (Full) boundary, it is important to note that both sets of flags should be checked to see if they have been updated to the Not Empty (Not Full) condition to insure that the next read (write) will perform the same operation on all devices.
Checking all sets of flags is critical so that data is not read from the FIFOs "staggered" by one clock cycle. This situation could occur when the first write to an empty FIFO and a read are very close together. If the read occurs less than $\mathrm{t}_{\mathrm{SKEW}_{2}}$ after the first write to two width-expanded devices, A and B, device A may go Almost Empty (read recognized as flag update) while device B stays Empty (read ignored). This occurs because a read can be either recognized or ignored if it occurs within skew $_{2}$ of a write. The next read cycle outputs the first half of the first word on device A while device B updates its flags to Almost Empty. Subsequent reads will continue to output "staggered" data assuming more data has been written to FIFOs.

Depth Expansion Mode

The CY7C451/453 can operate up to 50 MHz when cascaded. Depth expansion is accomplished by connecting expansion out (XO) of the first device to expansion in (XI) of the next device, with $\overline{\mathrm{XO}}$ of the last device connected to $\overline{\mathrm{XI}}$ of the first device. The first device has its first load pin ($\overline{\mathrm{FL}}$) tied to $\mathrm{V}_{\text {SS }}$ while all other devices must have this pin tied to V_{CC}. The first device will be the first to be write and read enabled after a master reset.
Proper operation also requires that all cascaded devices have common CKW, CKR, $\overline{\text { ENW }}, \overline{\text { ENR }}, \mathrm{D}_{0-8}, \mathrm{Q}_{0-8}$, and MR pins. When cascaded, one device at a time will be read enabled so as to avoid bus contention. By asserting XO when appropriate, the currently enabled FIFO alerts the next FIFO that it should be enabled. The next rising edge on CKR puts Q_{0-8} outputs of the first device into a high-impedance state. This occurs regardless of the state of ENR or the next FIFO's Empty flag. Therefore, if the next FIFO is empty or undergoing a latent cycle, the Q_{0-8} bus will be in a highimpedance state until the next device receives its first read, which brings its data to the Q_{0-8} bus.

Program Write/Read of Cascaded Devices

Programming of cascaded FIFOs is the same as for a single device. Because the controls of the FIFOs are in parallel when cascaded, they all get programmed the same. During program mode, only parity is programmed since Almost Full and Almost Empty flags are not available when CY7C451/453 are cascaded. Only the "first device" (FIFO with $\overline{\mathrm{FL}}=\mathrm{LOW}$) will output its program register contents on Q_{0-8} during a program read. Q_{0-8} of all other devices will remain in a high-impedance state to avoid bus contention.

Figure 1. Depth Expansion with CY7C451/3

Table 3. Almost Empty Flag (Non-Boundary Flag) Operation Example ${ }^{[44]}$

Status Before Operation					Operation	Status After Operation					Comments
Current State of FIFO	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { AFE }}$	$\overline{\mathbf{H F}}$	Number of Words in FIFO		Next State of FIFO	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { PAFE }}$	$\overline{\mathrm{HF}}$	Number of words in FIFO	
AE	1	0	1	32	$\begin{array}{\|l\|} \hline \text { Write } \\ \text { (ENW } \end{array}$	AE	1	0	1	33	Write
AE	1	0	1	33	$\begin{aligned} & \text { Write } \\ & \text { (ENW }=0) \\ & \hline \end{aligned}$	AE	1	0	1	34	Write
AE	1	0	1	34	$\begin{aligned} & \mathrm{Read} \\ & (\mathrm{ENR}=0) \\ & \hline \end{aligned}$	< HF	1	1	1	33	Flag Update and Read
< HF	1	1	1	33	$\left.\frac{\mathrm{Read}}{\mathrm{ENR}}=1\right)$	< HF	1	1	1	33	$\begin{aligned} & \begin{array}{l} \text { Ignored Read } \\ (\text { ENR }=1) \end{array} \end{aligned}$
$<\mathrm{HF}$	1	1	1	33	$\left.\frac{\mathrm{Read}}{(\mathrm{ENR}}=0\right)$	AE	1	0	1	32	Read (Transition from $<\mathrm{HF}$ to AE)

Table 4. Almost Full Flag Operation Example ${ }^{[45]}$

Status Before Operation						Operation	Status After Operation						Comments
Current State of FIFO	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { AFE }}$	$\overline{\mathbf{H F}}$	Number of Words in FIFO CY7C451	Number of Words in FIFO CY7C453		Next State of FIFO	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { PAFE }}$	$\overline{\mathbf{H F}}$	Number of Words in FIFO CY7C451	Number of Words in FIFO CY7C453	
AF	1	0	0	496	2032	$\begin{aligned} & \mathrm{Read} \\ & (\mathrm{ENR}=0) \\ & \hline \end{aligned}$	AF	1	0	0	495	2031	Read
AF	1	0	0	495	2031	$\begin{aligned} & \text { Read } \\ & (\mathrm{ENR}=0) \end{aligned}$	AF	1	0	0	494	2030	Read
AF	1	0	0	494	2030	$\begin{aligned} & \text { Write } \\ & \text { (ENW }=1) \\ & \hline \end{aligned}$	$>\mathrm{HF}$	1	1	0	494	2030	Flag Update
$>\mathrm{HF}$	1	1	0	494	2030	$\begin{aligned} & \text { Write } \\ & \text { (ENW }=0) \\ & \hline \end{aligned}$	$>\mathrm{HF}$	1	1	0	495	2031	Write
$>\mathrm{HF}$	1	1	0	495	2031	$\left.\frac{\text { Write }}{(\mathrm{ENW}}=0\right)$	AF	1	0	0	496	2032	Write (Transition from $>$ HF to AF)

Table 5. Programmable Almost Full/Almost Empty Options - CY7C451/CY7C453 ${ }^{[46]}$

D5	D4	D3	D2	D1	D0	PAFE Active when CY7C451/453 is:	$\mathbf{P}^{[47]}$
0	0	0	0	0	0	Completely Full and Empty.	0
0	0	0	0	0	1	16 or less locations from Empty/Full (default)	1
0	0	0	0	1	0	32 or less locations from Empty/Full	2
0	0	0	0	1	1	48 or less locations from Empty/Full	3

0	0	1	1	1	0	224 or less locations from Empty/Full	14
0	0	1	1	1	1	240 or less locations from Empty/Full	15

| \vdots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 0 | 992 or less locations from Empty/Full | 62 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1008 or less locations from Empty/Full | 63 |

Table 6. Programmable Parity Options

D8	D7	D6	Condition
0	X	X	Parity disabled.
1	0	0	Generate even parity on PG output pin.
1	0	1	Generate odd parity on PG output pin.
1	1	0	Check for even parity. Indicate error on $\overline{\text { PE }}$ output pin.
1	1	1	Check for odd parity. Indicate error on $\overline{\text { PE }}$ output pin.

Notes:

44. Applies to both CY7C451 and CY7C453 operations when devices are programmed so that Almost Empty becomes active when the FIFO contains 32 or fewer words.
45. Programmed so that Almost Full becomes active when the FIFO contains 16 or less empty locations.
46. D4 and D5 are don't care for CY7C451.
47. Referenced in Table 1.

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
14	CY7C451-14JC	J65	Commercial
	CY7C451-14DC	D32	
	CY7C451-14LC	L55	
	CY7C451-14JI	J65	Industrial
	CY7C451-14DI	D32	
	CY7C451-14DMB	D32	Military
	CY7C451-14LMB	L55	
20	CY7C451-20JC	J65	Commercial
	CY7C451-20DC	D32	
	CY7C451-20LC	L55	
	CY7C451-20JI	J65	Industrial
	CY7C451-20DI	D32	
	CY7C451-20DMB	D32	Military
	CY7C451-20LMB	L55	
30	CY7C451-30JC	J65	Commercial
	CY7C451-30DC	D32	
	CY7C451-30LC	L55	
	CY7C451-30JI	J65	Industrial
	CY7C451-30DI	D32	
	CY7C451-30DMB	D32	Military
	CY7C451-30LMB	L55	

Speed (ns)	Ordering Code	Package Type	Operating Range
14	CY7C453-14JC	J65	Commercial
	CY7C453-14DC	D32	
	CY7C453-14LC	L55	
	CY7C453-14JI	J65	Industrial
	CY7C453-14DI	D32	
	CY7C453-14DMB	D32	Military
	CY7C453-14LMB	L55	
20	CY7C453-20JC	J65	Commercial
	CY7C453-20DC	D32	
	CY7C453-20LC	L55	
	CY7C453-20JI	J65	Industrial
	CY7C453-20DI	D32	
	CY7C453-20DMB	D32	Military
	CY7C453-20LMB	L55	
30	CY7C453-30JC	J65	Commercial
	CY7C453-30DC	D32	
	CY7C453-30LC	L55	
	CY7C453-30JI	J65	Industrial
	CY7C453-30DI	D32	
	CY7C453-30DMB	D32	Military
	CY7C453-30LMB	L55	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{CC}	$1,2,3$
I_{OS}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\text {CKW }}$	9, 10, 11
$\mathrm{t}_{\text {CKR }}$	9, 10, 11
$\mathrm{t}_{\text {CKH }}$	9, 10, 11
$\mathrm{t}_{\mathrm{CKL}}$	9, 10, 11
t_{A}	9, 10, 11
t_{OH}	9,10, 11
t_{FH}	9, 10, 11
$\mathrm{t}_{\text {SD }}$	9, 10, 11
t_{HD}	9, 10, 11
$\mathrm{t}_{\text {SEN }}$	9, 10, 11
$\mathrm{t}_{\text {HEN }}$	9, 10, 11
t_{OE}	9, 10, 11
$\mathrm{t}_{\text {olz }}$	9, 10, 11
$\mathrm{t}_{\mathrm{OHZ}}$	9, 10, 11
$\mathrm{t}_{\text {PG }}$	9, 10, 11
$\mathrm{t}_{\text {PE }}$	9, 10, 11
t_{FD}	9, 10, 11
$\mathrm{t}_{\text {SKEW } 1}$	9, 10, 11
$\mathrm{t}_{\text {SKEW2 }}$	9, 10, 11
$\mathrm{t}_{\mathrm{PMR}}$	9, 10, 11
$\mathrm{t}_{\text {SCMR }}$	9, 10, 11
$\mathrm{t}_{\text {OHMR }}$	9, 10, 11
$\mathrm{t}_{\text {MRR }}$	9,10, 11
$\mathrm{t}_{\text {MRF }}$	9, 10, 11
$\mathrm{t}_{\text {AMR }}$	9, 10, 11
$\mathrm{t}_{\text {SMRP }}$	9, 10, 11
$\mathrm{t}_{\text {HMRP }}$	9, 10, 11
$\mathrm{t}_{\text {FTP }}$	9, 10, 11
t_{AP}	9, 10, 11
$\mathrm{t}_{\text {OHP }}$	9, 10, 11

Cascadeable 8 K x 9 FIFO Cascadeable 16K x 9 FIFO Cascadeable $32 \mathrm{~K} \times 9$ FIFO

Features

- $8 \mathrm{~K} \times 9$, $16 \mathrm{~K} \times 9$, 32K $\times 9$ FIFO buffer memory
- Asynchronous read/write
- High-speed 33.3-MHz read/write independent of depth/width
- Low operating power
$-I_{\text {Cc }}($ max. $)=160 \mathrm{~mA}$ (commercial)
$-I_{C C}$ (max.) $=180 \mathrm{~mA}$ (military)
- Half Full flag in standalone
- Empty and Full flags
- Retransmit in standalone
- Expandable in width and depth
- 5V $\pm 10 \%$ supply
- PLCC, LCC, and 600-mil DIP packaging
- TTL compatible
- Three-state outputs
- Pin compatible to IDT7205 and IDT7206

Functional Description

The CY7C460, CY7C462, and CY7C464 are respectively, $8 \mathrm{~K}, 16 \mathrm{~K}$, and 32 K words by 9 -bit wide first-in-first-out (FIFO) memories. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Full and Empty flags are provided to prevent overrun and underrun. Three additional pins are also provided to facilitate unlimited expansion in width, depth, or both. The depth expansion technique steers the control signals from one device to another in parallel, thus eliminating the serial addition of propagation delays, so that throughput is not reduced. Data is steered in a similar manner.
The read and write operations may be asynchronous; each can occur at a rate of 33.3 MHz . The write operation occurs when the write (\bar{W}) signal is LOW. Read occurs when read $(\overline{\mathrm{R}})$ goes LOW. The nine
data outputs go to the high-impedance state when $\overline{\mathrm{R}}$ is HIGH.
A Half Full ($\overline{\mathrm{HF}}$) output flag is provided that is valid in the standalone (single device) and width expansion configurations. In the depth expansion configuration, this pin provides the expansion out ($\overline{\mathrm{XO}}$) information that is used to tell the next FIFO that it will be activated.
In the standalone and width expansion configurations, a LOW on the retransmit ($\overline{\mathrm{RT}}$) input causes the FIFOs to retransmit the data. Read enable $(\overline{\mathrm{R}})$ and write enable (\bar{W}) must both be HIGH during a retransmit cycle, and then $\overline{\mathrm{R}}$ is used to access the data.
The CY7C460, CY7C462, and CY7C464 are fabricated using an advanced $0.8-\mathrm{mi}-$ cron N-well CMOS technology. Input ESD protection is greater than 2000 V and latch-up is prevented by careful layout, guard rings, and a substrate bias generator.

Selection Guide

		$\begin{aligned} & \text { 7C460-15 } \\ & \text { 7C462-15 } \\ & \text { 7C464-15 } \end{aligned}$	$\begin{aligned} & \text { 7C460-25 } \\ & \text { 7C462-25 } \\ & \text { 7C464-25 } \end{aligned}$	$\begin{aligned} & \text { 7C460-40 } \\ & \text { 7C462-40 } \\ & \text { 7C464-40 } \end{aligned}$
Frequency (MHz)		33.3	28.5	20
Maximum Access Time (ns)		15	25	40
Maximum Operating Current (mA)	Commercial	160	145	125
	Military	180	165	145

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. Outpats

DC Input Voltage
-0.5 V to +7.0 V

Power Dissipation
-3.0 V to +7.0 V

Output Current, into Outputs (LOW) 1.0 W

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C460-15 } \\ & \text { 7C462-15 } \\ & \text { 7C464-15 } \end{aligned}$		$\begin{aligned} & \text { 7C460-25 } \\ & \text { 7C462-25 } \\ & \text { 7C464-25 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C460-40 } \\ & \text { 7C462-40 } \\ & \text { 7C464-40 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		$2 . .4$		$2 . .4$		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		Com'l	2.0		2.0		2.0		V
			Mil/Ind	2.2		2.2		2.2		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8		0.8	V
I_{IX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	$+10$	-10	$+10$	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	+ 10	-10	+ 10	-10	+ 10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com' ${ }^{[3]}$		160		145		125	mA
			$\mathrm{Mil} /$ Ind $^{[4]}$		180		165		145	
$\mathrm{I}_{\text {SB1 }}$	Standby Current	All Inputs $=\mathrm{V}_{\text {IH }} \mathrm{Min}$.	Com'l		25		25		25	mA
			Mil/Ind		30		30		30	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	All Inputs $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Com'l		20		20		20	mA
			Mil/Ind		25		25		25	
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-90		-90		-90	mA

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\mathrm{I}_{\mathrm{CC}}($ commercial $)=125 \mathrm{~mA}+[(\overline{\mathrm{f}}-20) * 2.5 \mathrm{~mA} / \mathrm{MHz}]$
for $\mathrm{f} \geq 20 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
4. \mathbf{I}_{CC} (military) $\left.=145 \mathrm{~mA}+[\overline{\mathrm{f}}-20) * 2.5 \mathrm{~mA} / \mathrm{MHz}\right]$ for $\overline{\mathrm{f}} \geq 20 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
6. Tested initially and after any design or process changes that may affect these parameters.

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT Q—O2V
Switching Characteristics Over the Operating Range ${ }^{[2,7]}$

Parameters	Description	$\begin{aligned} & \text { 7C460-15 } \\ & \text { 7C462-15 } \\ & \text { 7C464-15 } \end{aligned}$		$\begin{aligned} & \text { 7C460-25 } \\ & \text { 7C462-25 } \\ & \text { 7C464.25 } \end{aligned}$		$\begin{aligned} & \text { 7C460-40 } \\ & \text { 7C462-40 } \\ & \text { 7C464-40 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	30		35		50		ns
t_{A}	Access Time		15		25		40	ns
t_{RR}	Read Recovery Time	15		10		10		ns
t_{PR}	Read Pulse Width	15		25		40		ns
$\mathrm{t}_{\mathrm{L} \text { ZR }}$	Read LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{DVR}}{ }^{\text {[8] }}$	Read HIGH to Data Valid	3		3		3		ns
$\mathrm{t}_{\mathrm{HzR}}{ }^{[8]}$	Read HIGH to High Z		15		18		25	ns
$t_{\text {wc }}$	Write Cycle Time	30		35		50		ns
$t_{\text {Pw }}$	Write Pulse Width	15		25		40		ns
$\mathrm{t}_{\text {HWZ }}$	Write HIGH to Low Z	5		5		5		ns
t_{WR}	Write Recovery Time	15		10		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	15		18		20		ns
t_{HD}	Data Hold Time	0		0		0		ns
$t_{\text {MRSC }}$	MR Cycle Time	30		35		50		ns
$\mathrm{t}_{\text {PMR }}$	$\overline{\mathrm{MR}}$ Pulse Width	15		25		40		ns
$\mathrm{t}_{\text {RMR }}$	$\overline{\mathrm{MR}}$ Recovery Time	15		10		10		ns
$\mathrm{t}_{\text {RPW }}$	Read HIGH to $\overline{\text { MR }} \mathrm{HIGH}$	15		25		40		ns
$\mathrm{t}_{\text {WPW }}$	Write HIGH to $\overline{\mathrm{MR}} \mathrm{HIGH}$	15		25		40		ns
$\mathrm{t}_{\text {RTC }}$	Retansmit Cycle Time	30		35		50		ns
$\mathrm{t}_{\text {PRT }}$	Retransmit Pulse Width	15		25		40		ns
$\mathrm{t}_{\text {RTR }}$	Retransmit Recovery Time	15		10		10		ns
$\mathrm{t}_{\mathrm{EFL}}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{EF}}$ LOW		30		35		50	ns
$\mathrm{t}_{\mathrm{HFH}}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{HF}} \mathrm{HIGH}$		30		35		50	ns
$\mathrm{t}_{\text {fFH }}$	$\overline{\text { MR }}$ to $\overline{\mathrm{FF}} \mathrm{HIGH}$		30		35		50	ns

Switching Characteristics Over the Operating Range ${ }^{\left[{ }^{[2,7]} \text { (continued) }\right.}$

Parameters	Description	7C460-157C462-157C464-15		$\begin{aligned} & \text { 7C460-25 } \\ & \text { 7C462-25 } \\ & \text { 7C464-25 } \end{aligned}$		$\begin{aligned} & 7 \mathbf{C 4 6 0 - 4 0} \\ & \text { 7C462-40 } \\ & \text { 7C464-40 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {REF }}$	Read LOW to $\overline{\mathrm{EF}}$ LOW		15		25		40	ns
$\mathrm{t}_{\text {RFF }}$	Read HIGH to $\overline{\mathrm{FF}} \mathrm{HIGH}$		15		25		40	ns
$\mathrm{t}_{\text {WEF }}$	Write HIGH to $\overline{\text { EF }}$ HIGH		15		25		40	ns
$\mathrm{t}_{\text {WFF }}$	Write LOW to $\overline{\mathrm{FF}}$ LOW		15		25		40	ns
$\mathrm{t}_{\text {WHF }}$	Write LOW to $\overline{\mathrm{HF}}$ LOW		30		35		50	ns
$\mathrm{t}_{\text {RHF }}$	Read HIGH to $\overline{\mathrm{HF}}$ HIGH		30		35		50	ns
$\mathrm{t}_{\text {RAE }}$	Effective Read from Write HIGH		15		25		40	ns
$\mathrm{t}_{\text {RPE }}$	Effective Read Pulse Width After EFF HIGH	15		25		40		ns
$\mathrm{t}_{\text {WAF }}$	Effective Write from Read HIGH		15		25		40	ns
$\mathrm{t}_{\text {WPF }}$	Effective Write Pulse Width After $\overline{\text { FF }}$ HIGH	15		25		40		ns
$\mathrm{t}_{\mathrm{XOL}}$	Expansion Out LOW Delay from Clock		15		25		40	ns
$\mathrm{t}_{\text {XOH }}$	Expansion Out HIGH Delay from Clock		15		25		40	ns

Switching Waveforms ${ }^{[9]}$

C460-7
Master Reset

C460-8

Notes:

7. Test conditions assume signal transmission time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance, as in part (a) of AC Test Load, unless otherwise specified.
8. $\mathrm{t}_{\mathrm{HZR}}$ and $\mathrm{t}_{\mathrm{DVR}}$ use capacitance loading as in part (b) of AC Test Load.
9. A high-to-low transition of either the write or read strobe causes a high-to-low transition of the responding flag. Correspondingly, a low-to-high strobe transition causes a low-to-high flag transition.
10. $\overline{\mathrm{W}}$ and $\overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IH}}$ around the rising edge of $\overline{\mathrm{MR}}$.
11. $\mathrm{t}_{\mathrm{MRSC}}=\mathrm{t}_{\mathrm{PMR}}+\mathrm{t}_{\mathrm{RMR}}$.

Switching Waveforms

Half Full Flag

Last Write to First Read Full Flag

Last READ to First WRITE Empty Flag

Retransmit ${ }^{[12,13]}$

C460-12

Notes:
12. $\mathrm{t}_{\mathrm{RTC}}=\mathrm{t}_{\mathrm{PRT}}+\mathrm{t}_{\mathrm{RTR}}$.
13. $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ may change state during retransmit as a result of the offset of the read and write pointers, but flags will be valid at $t_{R T C}$.

Switching Waveforms (continued)

Empty Flag and Read Bubble-Through Mode

Full Flag and Write Bubble-Through Mode

Switching Waveforms (continued)

Expansion Timing Diagrams

Notes:
14. Expansion out of device $1\left(\overline{\mathrm{XO}}_{1}\right)$ is connected to expansion in of device $2\left(\overline{\mathrm{XX}}_{2}\right)$.

SEMICONDUCTOR

Architecture

Resetting the FIFO

Upon power up, the FIFO must be reset with a master reset ($\overline{\mathrm{MR}}$) cycle. This causes the FIFO to enter the empty condition signified by the Empty flag $(\overline{\mathrm{EF}})$ being LOW, and both the Half Full $(\overline{\mathrm{HF}})$, and Full flags ($\overline{\mathrm{FF}}$) being HIGH. Read $(\overline{\mathrm{R}})$ and write $(\overline{\mathrm{W}})$ must be HIGH $\mathrm{t}_{\text {RPW }} / \mathrm{t}_{\text {wPw }}$ before and $\mathrm{t}_{\text {RMR }}$ after the rising edge of $\overline{\text { MR }}$ for a valid reset cycle. If reading from the FIFO after a reset cycle is attempted, the outputs will all be in the high-impedance state.

Writing Data to the FIFO

The availability of at least one empty location is indicated by a HIGH $\overline{\mathrm{FF}}$. The falling edge of $\overline{\mathrm{W}}$ initiates a write cycle. Data appearing at the inputs $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right)$ tsD $_{\mathrm{W}}$ before and t_{HD} after the rising edge of \bar{W} will be stored sequentially in the FIFO.
The $\overline{E F}$ LOW-to-HIGH transition occurs $t_{\text {WEF }}$ after the first LOW-to-HIGH transition of \bar{W} for an empty FIFO. $\overline{\text { HF }}$ goes LOW $t_{\text {WHF }}$ after the falling edge of \bar{W} following the FIFO actually being half full. Therefore, the HF is active once the FIFO is filled to half its capacity plus one word. $\overline{\mathrm{HF}}$ will remain LOW while less than one half of total memory is available for writing. The LOW-to-HIGH transition of $\overline{\text { HF occurs } t_{\text {RHF }} \text { after the rising edge }}$ of $\overline{\mathrm{R}}$ when the FIFO goes from half full +1 to half full. $\overline{\mathrm{HF}}$ is available in standalone and width expansion modes. $\overline{\mathrm{FF}}$ goes LOW $\mathrm{t}_{\text {WEF }}$ after the falling edge of \bar{W}, during the cycle in which the last available location is filled. Internal logic prevents overrunning a full FIFO. Writes to a full FIFO are ignored and the write pointer is not incremented. $\overline{\mathrm{FF}}$ goes $\mathrm{HIGH} \mathrm{t}_{\text {RFF }}$ after a read from a full FIFO.

Reading Data from the FIFO

The falling edge of $\overline{\mathrm{R}}$ initiates a read cycle if the $\overline{\mathrm{EF}}$ is not LOW. Data outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{8}$) are in a high-impedance condition between read operations ($\overline{\mathrm{R}}$ HIGH), when the FIFO is empty, or when the FIFO is not the active device in the depth expansion mode.
When one word is in the FIFO, the falling edge of $\overline{\mathrm{R}}$ initiates a HIGH-to-LOW transition of EF. When the FIFO is empty, the outputs are in a high-impedance state. Reads to an empty FIFO are ignored and do not increment the read pointer. From the empty condition, the FIFO can be read twEF after a valid write.

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be acknowledged by the receiver and retransmitted if necessary. The retransmit ($\overline{\mathrm{RT}}$) input is active in the standalone and width expansion modes. The retransmit feature is intended for use when a number of writes equal-to-or-less-than the depth of the FIFO have occurred since the last $\overline{\mathrm{MR}}$ cycle. A LOW pulse on $\overline{\mathrm{RT}}$ resets the internal read pointer to the first physical location of the FIFO. $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ must both be HIGH while and $\mathrm{t}_{\text {RTR }}$ after retransmit is LOW. With every read cycle after retransmit, previously accessed data is read and the read pointer incremented until equal to the write pointer. Full, Half Full, and Empty flags are governed by the relative locations of the read and write pointers and are updated during a retransmit cycle. Data written to the FIFO after activation of RT are transmitted also.
The full depth of the FIFO can be repeatedly retransmitted.

Standalone/Width Expansion Modes

Standalone and width expansion modes are set by grounding expansion in ($\overline{\mathrm{XI}}$) and tying first load ($\overline{\mathrm{FL}}$) to V_{cc} prior to a $\overline{\mathrm{MR}}$ cycle. FIFOs can be expanded in width to provide word widths greater than nine in increments of nine. During width expansion mode, all control line inputs are common to all devices, and flag outputs from any device can be monitored.

Depth Expansion Mode (see Figure 1)

Depth expansion mode is entered when, during a $\overline{\mathrm{MR}}$ cycle, expansion out (XO) of one device is connected to expansion in (XI) of the next device, with $\overline{\mathrm{XO}}$ of the last device connected to $\overline{\mathrm{XI}}$ of the first device. In the depth expansion mode, the first load ($\overline{\mathrm{FL}}$) input, when grounded, indicates that this is the first part to be loaded. All other devices must have this pin HIGH. To enable the correct FIFO, $\overline{\mathrm{XO}}$ is pulsed LOW when the last physical location of the previous FIFO is written to and is pulsed LOW again when the last physical location is read. Only one FIFO is enabled for read and one is enabled for write at any given time. All other devices are in standby.
FIFOs can also be expanded simultaneously in depth and width. Consequently, any depth or width FIFO can be created with word widths in increments of nine. When expanding in depth, a composite $\overline{\mathrm{FF}}$ is created by ORing the $\overline{\mathrm{FF}}$ together. Likewise, a compostie $\overline{\mathrm{EF}}$ is created by ORing $\overline{\mathrm{EF}}$ together. $\overline{\mathrm{HF}}$ and $\overline{\mathrm{RT}}$ functions are not available in depth expansion mode.

Figure 1. Depth Expansion

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C460-15PC	P15	Commercial
	CY7C460-15JC	J65	
	CY7C460-15DC	D16	
	CY7C460-15LC	L55	
	CY7C460-15PI	P15	Industrial
	CY7C460-15JI	J65	
	CY7C460-15DMB	D16	Military
	CY7C460-15LMB	L55	
25	CY7C460-25PC	P15	Commercial
	CY7C460-25JC	J65	
	CY7C460-25DC	D16	
	CY7C460-25LC	L55	
	CY7C460-25PI	P15	Industrial
	CY7C460-25JI	J65	
	CY7C460-25DMB	D16	Military
	CY7C460-25LMB	L55	
40	CY7C460-40PC	P15	Commercial
	CY7C460-40JC	J65	
	CY7C460-40DC	D16	
	CY7C460-40LC	L55	
	CY7C460-40PI	P15	Industrial
	CY7C460-40JI	J65	
	CY7C460-40DMB	D16	Military
	CY7C460-40LMB	L55	

Speed (ns)	Ordering Code	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
15	CY7C462-15PC	P15	Commercial
	CY7C462-15JC	J65	
	CY7C462-15DC	D16	
	CY7C462-15LC	L55	
	CY7C462-15PI	P15	Industrial
	CY7C462-15JI	J65	
	CY7C462-15DMB	D16	Military
	CY7C462-15LMB	L55	
25	CY7C462-25PC	P15	Commercial
	CY7C462-25JC	J65	
	CY7C462-25DC	D16	
	CY7C462-25LC	L55	
	CY7C462-25PI	P15	Industrial
	CY7C462-25JI	J65	
	CY7C462-25DMB	D16	Military
	CY7C462-25LMB	L55	
40	CY7C462-40PC	P15	Commercial
	CY7C462-40JC	J65	
	CY7C462-40DC	D16	
	CY7C462-40LC	L55	
	CY7C462-40PI	P15	Industrial
	CY7C462-40JI	J65	
	CY7C462-40DMB	D16	Military
	CY7C462-40LMB	L55	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C464-15PC	P15	Commercial
	CY7C464-15JC	J65	
	CY7C464-15DC	D16	
	CY7C464-15LC	L55	
	CY7C464-15PI	P15	Industrial
	CY7C464-15JI	J65	
	CY7C464-15DMB	D16	Military
	CY7C464-15LMB	L55	
25	CY7C464-25PC	P15	Commercial
	CY7C464-25JC	J65	
	CY7C464-25DC	D16	
	CY7C464-25LC	L55	
	CY7C464-25PI	P15	Industrial
	CY7C464-25JI	J65	
	CY7C464-25DMB	D16	Military
	CY7C464-25LMB	L55	
40	CY7C464-40PC	P15	Commercial
	CY7C464-40JC	J65	
	CY7C464-40DC	D16	
	CY7C464-40LC	L55	
	CY7C464-40PI	P15	Industrial
	CY7C464-40JI	J65	
	CY7C464-40DMB	D16	Military
	CY7C464-40LMB	L55	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{I}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
I_{OS}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{RC}	$9,10,11$
t_{A}	$9,10,11$
t_{RR}	$9,10,11$
t_{PR}	$9,10,11$
$\mathrm{t}_{\mathrm{LZR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{DVR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HZR}}$	$9,10,11$
t_{WC}	$9,10,11$
t_{PW}	$9,10,11$
$\mathrm{t}_{\mathrm{HWZ}}$	$9,10,11$
t_{WR}	$9,10,11$
t_{SD}	$9,10,11$
t_{HD}	$9,10,11$
	$9,10,11$

Document \#: 38-00141

Features

- $8 \mathrm{~K} \times 9,16 \mathrm{~K} \times 9$, and $32 \mathrm{~K} \times 9$ FIFO buffer memory
- Asynchronous read/write
- High-speed 33.3 MHz read/write independent of depth/width
- Low operating power
$-I_{\text {CC }}($ max. $)=160 \mathrm{~mA}$ (commercial)
$-I_{\text {CC }}$ (max.) $=\mathbf{1 8 0} \mathbf{m A}$ (military)
- Programmable Almost Full/Empty flag
- Empty, Almost Empty, Half Full, Almost Full, and Full status flags
- Programmable retransmit
- Expandable in width
- $5 \mathrm{~V} \pm 10 \%$ supply
- TTL compatible
- Three-state outputs
- Proprietary 0.8-micron CMOS technology

Functional Description

The CY7C47X FIFO series consists of high-speed, low-power, first-in first-out (FIFO) memories with programmable flags and retransmit mark. The CY7C470, CY7C472, and CY7C474 are $8 \mathrm{~K}, 16 \mathrm{~K}$, and 32 K words by 9 bits wide, respectively. They are offered in $600-\mathrm{mil}$ DIP, PLCC, and LCC packages. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Three status pins-Empty/Full ($\overline{\mathrm{E}} / \overline{\mathrm{F}})$, Programmable Almost Full/Empty ($\overline{\mathrm{PAFE}}$), and Half Full $(\overline{\mathrm{HF}})$-are provided to the user. These pins are decoded to determine one of six states: Empty, Almost Empty, Less than Half Full, Greater than Half Full, Almost Full, and Full.

The read and write operations may be asynchronous; each can occur at a rate of 33.3 MHz . The write operation occurs
when the write $(\overline{\mathrm{W}})$ signal goes LOW. Read occurs when read $(\overline{\mathrm{R}})$ goes LOW. The nine data outputs go into a high-impedence state when $\overline{\mathrm{R}}$ is HIGH.

The user can store the value of the read pointer for retransmit by using the MARK pin. A LOW on the retransmit ($\overline{\mathrm{RT}}$) input causes the FIFO to resend data by resetting the read pointer to the value stored in the mark pointer.

In the standalone and width expansion configurations, a LOW on the retransmit $(\overline{\mathrm{RT}})$ input causes the FIFO to resend the data. With the mark feature, retransmit can start from any word in the FIFO.

The CY7C47X series is fabricated using a proprietary 0.8 -micron N -well CMOS technology. Input ESD protection is greater than $2,001 \mathrm{~V}$ and latch-up is prevented by the use of reliable layout techniques, guard rings, and a substrate bias generator.

Selection Guide

		$\begin{aligned} & \text { 7C470-15 } \\ & \text { 7C472-15 } \\ & \text { 7C474-15 } \end{aligned}$	$\begin{aligned} & \text { 7C470-25 } \\ & \text { 7C472-25 } \\ & \text { 7C474-25 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C470-40 } \\ & \text { 7C472-40 } \\ & \text { 7C474-40 } \end{aligned}$
Frequency (MHz)		33.3	28.5	20
Maximum Access Time (ns)		15	25	40
Maximum Operating Current (mA)	Commercial	160	145	125
	Military/Industrial	180	165	145

Maximum Ratings

Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $\ldots \ldots \ldots \ldots \ldots \ldots . .55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
DC Input Voltage . -3.0 V to +7.0 V
Power Dissipation . 1.0W
Output Current, into Outputs (LOW)
20 mA

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current . > 200 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C470-15 } \\ & \text { 7C472-15 } \\ & \text { 7C474-15 } \end{aligned}$		$\begin{aligned} & \text { 7C470-25 } \\ & \text { 7C472-25 } \\ & \text { 7C474-25 } \end{aligned}$		$\begin{aligned} & \text { 7C470-40 } \\ & \text { 7C472-40 } \\ & \text { 7C474-40 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0$	mA	2.4		$2 . .4$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		Com'l	2.0	V_{cc}	2.0	V_{Cc}	2.0	V_{Cc}	V
			Mil/Ind	2.2		2.2	V_{CC}	2.2		
V_{IL}	Input LOW Voltage				0.8		0.8		0.8	V
I_{L}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	$+10$	-10	+ 10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com' ${ }^{[3]}$		160		145		125	mA
			$\mathrm{Mil}^{[4]} / \mathrm{Ind}$		180		165		145	
$\mathrm{I}_{\text {SB1 }}$	Standby Current	$\text { All Inputs }=\mathrm{V}_{\mathrm{IH}} \mathrm{Min} .$	Com'l		25		25		25	mA
			Mil/Ind		30		30		30	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	All Inputs $=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$	Com'l		20		20		20	mA
			Mil/Ind		25		25		25	
$\mathrm{I}_{\mathrm{OS}}{ }^{[5]}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-90		-90		-90	mA

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\mathrm{I}_{\mathrm{cc}}($ commercial $)=125 \mathrm{~mA}+(\overline{\mathrm{f}}-20) \cdot 2.5 \mathrm{~mA} / \mathrm{MHz}$ for $\mathrm{f} \geq 20 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
4. $\underline{I}_{\mathrm{CC}}$ (military) $=145 \mathrm{~mA}+(\bar{f}-20) \cdot 2.5 \mathrm{~mA} / \mathrm{MHz}$ for $\mathrm{f} \geq 20 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	7	pF

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $0 \longrightarrow 2$
Switching Characteristics Over the Operating Range ${ }^{[7,8]}$

Parameters	Description	$\begin{aligned} & \text { 7C470-15 } \\ & \text { 7C472-15 } \\ & \text { 7C474-15 } \end{aligned}$		$\begin{aligned} & \text { 7C470-25 } \\ & \text { 7C472-25 } \\ & \text { 7C474-25 } \end{aligned}$		$\begin{aligned} & \text { 7C470-40 } \\ & \text { 7C472-40 } \\ & \text { 7C474-40 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{CY}	Cycle Time	30		35		50		ns
t_{A}	Access Time		15		25		40	ns
t_{kV}	Recovery Time	15		10		10		ns
$\mathrm{t}_{\text {PW }}$	Pulse Width	15		25		40		ns
$\mathrm{t}_{\text {LZR }}$	Read LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{DVR}}{ }^{[9]}$	Read HIGH to Data Valid	3		3		3		ns
$\mathrm{t}_{\mathrm{HZR}}{ }^{[9]}$	Read HIGH to High Z		15		18		25	ns
$\mathrm{t}_{\mathrm{HWZ}}$	Write HIGH to Low Z	5		5		5		ns
$\mathrm{t}_{\text {S }}$	Data Set-Up Time	15		18		20		ns
t_{HD}	Data Hold Time	0		0		0		ns
$\mathrm{t}_{\text {EFD }}$	$\overline{\mathrm{E}} / \overline{\mathrm{F}}$ Delay		15		18		25	ns
$\mathrm{t}_{\text {HfD }}$	पFF Delay		30		35		50	ns
$\mathrm{t}_{\text {AFED }}$	PAFE Delay		30		35		50	ns
$\mathrm{t}_{\text {RaE }}$	Effective Read from Write HIGH	15		10		10		ns
$\mathrm{t}_{\text {WAF }}$	Effective Write from Read HIGH	15		10		10		ns

Notes:

6. Tested initially and after any design or process changes that may affect these parameters.
7. Test conditions assume signal transmission time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance, as in part (a) of AC Test Load and Waveforms, unless otherwise specified.
8. See the last page of this specification for Group A subgroup testing information.
9. $t_{\text {HZR }}$ and $t_{\text {DVR }}$ use capactiance loading as in part (b) of AC Test Loads.

Switching Waveforms

Asynchronous Read and Write

Master Reset (No Write to Programmable Flag Register)

Master Reset (Write to Programmable Flag Register) ${ }^{[10]}$

Notes:

10. Waveform labels in parentheses pertain to writing the programmable flag register from the output port $\left(Q_{0}-Q_{8}\right)$.

Switching Waveforms (continued)

$\overline{\mathbf{E}} / \overline{\mathbf{F}}$ Flag (Last Write to First Read Full Flag)

$$
\overline{\mathrm{HF}} \text { LOW }
$$

$\overline{\mathrm{E}} / \overline{\mathrm{F}}$ Flag (Last Read to First Write Empty Flag)

Half Full Flag

Switching Waveforms (continued)

$\overline{\text { PAFE Flag (Almost Full) }}$

$$
\overline{\mathrm{HF}} \quad \text { LOW }
$$

$\overline{\text { PAFE Flag (Almost Empty) }}$

Retransmit

Switching Waveforms (continued)

Mark

Empty Flag and Empty Boundary

Switching Waveforms (continued)

Full Flag and Full Boundary

Architecture

The CY7C470, CY7C472, and CYC474 FIFOs consist of an array of $8,192,16,384$, and 32,768 words of 9 bits each, respectively. The control consists of a read pointer, a write pointer, a retransmit pointer, control signals (i.e., write, read, mark, retransmit, and master reset), and flags (i.e., Empty/Full, Half Full, and Programmable Almost Full/Empty).

Resetting the FIFO

Upon power up, the FIFO must be reset with a master reset ($\overline{\mathrm{MR}}$) cycle. This causes the FIFO to enter the empty condition signified by the Empty flag ($\overline{\mathrm{E}} / \overline{\mathrm{F}}$) being LOW, and both the Programmable Almost Full/Empty flag ($\overline{\mathrm{PAFE}}$) and Half Full flag (HF) being HIGH. The read pointer, write pointer, and retransmit pointer are reset to zero. For a valid reset, read $(\overline{\mathrm{R}})$ and write $(\overline{\mathrm{W}})$ must be HIGH $t_{\text {RPW }} / t_{\text {wPw }}$ before the falling edge and $t_{\text {RMR }}$ after the rising edge of MR.

Writing Data to the FIFO

Data can be written to the FIFO when it is not FULL ${ }^{[11]}$. A falling edge of \bar{W} initiates a write cycle. Data appearing at the inputs $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right)$ tsD before and t_{HD} after the rising edge of \bar{W} will be stored sequentially in the FIFO.

Reading Data from the FIFO

Data can be read from the FIFO when it is not empty ${ }^{[12]}$. A falling edge of \bar{R} initiates a read cycle. Data outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{8}\right)$ are in a highimpedance condition when the FIFO is empty and between read operations ($\overline{\mathrm{R}}$ HIGH). The falling edge of $\overline{\mathrm{R}}$ during the last read cycle before the empty condition triggers a high-to-low transition of \bar{E} / \bar{F}, prohibiting any further read operations until $t_{\text {RFF }}$ after a valid write.

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be acknowledged by the receiver and resent if necessary. Retransmission can start from anywhere in the FIFO and be repeated without limitation.
The retransmit methodology is as follows: mark the current value of the read pointer, after an error in subsequent read operations return to that location and resume reading. This effectively resends all of the data from the mark point. When MARK is LOW, the current value of the read pointer is stored. This operation marks the beginning of the packet to be resent. When $\overline{\mathrm{RT}}$ is LOW, the read pointer is updated with the mark location. During each subsequent read cycle, data is read and the read pointer incremented.
Care must be taken when using the retransmit feature. Use the mark function such that the write pointer does not pass the mark pointer, because further write operations will overwrite data.

Programmable Almost Full/Empty Flag

The CY7C470/2/4 offer a variable offset for the Almost Empty and the Almost Full condition. The offset is loaded into the programmable flag register (PFR) during a master reset cycle. While MR is LOW, the PFR can be loaded from $\mathrm{Q}_{8}-\mathrm{Q}_{0}$ by pulsing $\overline{\mathrm{R}}$ LOW or from $D_{8}-D_{0}$ by pulsing \bar{W} LOW. The offset options are listed in Table 2. See Table 1 for a description of the six FIFO states. If the PFR is not loaded during master reset ($\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ HIGH) the default offset will be 256 words from Full and Empty.

Notes:

11. When the FIFO is less than half full, the flags make a low-to-high tran-
sition on the rising edge of \bar{W} and make the high-to-low transition on the falling edge of R. If the FIFO is more than half full, the flags make the low-to-high transition on the rising edge of \bar{R} and high-to-low transition on the falling edge of \bar{W}.
12. Full and empty states can be decoded from the Half-Full ($\overline{\mathrm{HF}}$) and Empty/Full (E/F) flags.

Table 1. Flag Truth Table ${ }^{[13]}$

$\overline{\mathbf{H F}}$	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { PAFE }}$	State	CY7C470 ($8 \mathrm{~K} \times 9$) Number of Words in FIFO	CY7C472 (16K x 9) Number of Words in FIFO	CY7C474 (32K x 9) Number of Words in FIFO
1	0	0	Empty	0	0	0
1	1	0	Almost Empty	$1 \rightarrow \mathrm{P}$	$1 \rightarrow \mathrm{P}$	$1 \rightarrow \mathrm{P}$
1	1	1	Less than Half Full	$\mathrm{P}+1 \rightarrow 4096$	$\mathbf{P}+1 \rightarrow 8192$	$\mathbf{P}+1 \rightarrow 16384$
0	1	1	Greater than Half Full	$4097 \rightarrow 8190-\mathrm{P}$	$8193 \rightarrow 16382-\mathrm{P}$	16385 $\rightarrow 32766$ - P
0	1	0	Almost Full	8191 - P $\rightarrow 8191$	16383 - P $\rightarrow 16383$	32767 - P $\rightarrow 32767$
0	0	0	Full	8192	16384	32768

Table 2. Programmable Almost Full/Empty Empty Options ${ }^{[14]}$

D3	D2	D1	D0	PAFE Active when:	P
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	256 or less locations from Empty/Full (default)	256
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	1	16 or less locations from Empty/Full	16
$\mathbf{0}$	$\mathbf{0}$	1	$\mathbf{0}$	32 or less locations from Empty/Full	32
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	64 or less locations from Empty/Full	64
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	128 or less locations from Empty/Full	128
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	256 or less locations from Empty/Full (default)	256
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	512 or less locations from Empty/Full	512
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	1	1024 or less locations from Empty/Full	1024
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	2048 or less locations from Empty/Full	2048
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	4098 or less locations from Empty/Full ${ }^{[15]}$	4098
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	8192 or less locations from Empty/Full ${ }^{[16]}$	8192

Notes:

13. See Table 2 for P values.
14. Almost flags default to 256 locations from Empty/Full.
15. Only for CY7C472 and CY7C474.
16. Only for CY7C474.

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C470-15PC	P15	Commercial
	CY7C470-15JC	J65	
	CY7C470-15DC	D16	
	CY7C470-15LC	L55	
	CY7C470-15PI	P15	Industrial
	CY7C470-15JI	J65	
	CY7C470-15DI	D16	
	CY7C470-15DMB	D16	Military
	CY7C470-15LMB	L55	
25	CY7C470-25PC	P15	Commercial
	CY7C470-25JC	J65	
	CY7C470-25DC	D16	
	CY7C470-25LC	L55	
	CY7C470-25PI	P15	Industrial
	CY7C470-25JI	J65	
	CY7C470-25DI	D16	
	CY7C470-25DMB	D16	Military
	CY7C470-25LMB	L55	
40	CY7C470-40PC	P15	Commercial
	CY7C470-40JC	J65	
	CY7C470-40DC	D16	
	CY7C470-40LC	L55	
	CY7C470-40PI	P15	Industrial
	CY7C470-40JI	J65	
	CY7C470-40DI	D16	
	CY7C470-40DMB	D16	Military
	CY7C470-40LMB	L55	

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C472-15PC	P15	Commercial
	CY7C472-15JC	J65	
	CY7C472-15DC	D16	
	CY7C472-15LC	L55	
	CY7C472-15PI	P15	Industrial
	CY7C472-15JI	J65	
	CY7C472-15DI	D16	
	CY7C472-15DMB	D16	Military
	CY7C472-15LMB	L55	
25	CY7C472-25PC	P15	Commercial
	CY7C472-25JC	J65	
	CY7C472-25DC	D16	
	CY7C472-25LC	L55	
	CY7C472-25PI	P15	Industrial
	CY7C472-25JI	J65	
	CY7C472-25DI	D16	
	CY7C472-25DMB	D16	Military
	CY7C472-25LMB	L55	
40	CY7C472-40PC	P15	Commercial
	CY7C472-40JC	J65	
	CY7C472-40DC	D16	
	CY7C472-40LC	L55	
	CY7C472-40PI	P15	Industrial
	CY7C472-40JI	J65	
	CY7C472-40DI	D16	
	CY7C472-40DMB	D16	Military
	CY7C472-40LMB	L55	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C474-15PC	P15	Commercial
	CY7C474-15JC	J65	
	CY7C474-15DC	D16	
	CY7C474-15LC	L55	
	CY7C474-15PI	P15	Industrial
	CY7C474-15JI	J65	
	CY7C474-15DI	D16	
	CY7C474-15DMB	D16	Military
	CY7C474-15LMB	L55	
25	CY7C474-25PC	P15	Commercial
	CY7C474-25JC	J65	
	CY7C474-25DC	D16	
	CY7C474-25LC	L55	
	CY7C474-25PI	P15	Industrial
	CY7C474-25JI	J65	
	CY7C474-25DI	D16	
	CY7C474-25DMB	D16	Military
	CY7C474-25LMB	L55	
40	CY7C474-40PC	P15	Commercial
	CY7C474-40JC	J65	
	CY7C474-40DC	D16	
	CY7C474-40LC	L55	
	CY7C474-40PI	P15	Industrial
	CY7C474-40JI	J65	
	CY7C474-40DI	D16	
	CY7C474-40DMB	D16	Military
	CY7C474-40LMB	L55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{CY}	$9,10,11$
t_{A}	$9,10,11$
t_{RV}	$9,10,11$
t_{fW}	$9,10,11$
$\mathrm{t}_{\mathrm{LZR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{DVR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HZR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HWZ}}$	$9,10,11$
$\mathrm{t}_{\mathbf{S D}}$	$9,10,11$
t_{HD}	$9,10,11$
$\mathrm{t}_{\mathrm{tED}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HFD}}$	$9,10,11$
$\mathrm{t}_{\mathrm{AFED}}$	$9,10,11$
$\mathrm{t}_{\mathrm{RAE}}$	$9,10,11$
$\mathrm{t}_{\mathrm{WAF}}$	$9,10,11$

Features

- $8 \mathrm{~K} \times 9$ FIFO buffer memory (4210) or 16K x 9 FIFO buffer memory (4220)
- Asynchronous read/write
- High-speed $25-\mathrm{MHz}$ read/write
- Pin-compatible with 7C42X series of monolithic FIFO
- Low operating power
$-I_{\text {CC }}$ (max.) $=\mathbf{5 4 0} \mathrm{mA}$ (commercial)
- $600-\mathrm{mil}$ DIP package
- Empty, full flags
- Small PCB footprint -0.88 sq . in.
- Expandable in depth and width

Functional Description

The CYM4210 is a first-in first-out (FIFO) memory module that is 8,192 words by 9 bits wide. The CYM4220 is 16,384 words by 9 bits wide. Each is offered in a 600 -milwide DIP package. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Full and empty flags are provided to arevent overrun and underrun. Three additonal pins are also provided to facilitate unlimited expansion in width, depth, or both. The depth expansion technique steers the control signals from one deviceto another in parallel, thus eliminating the
serial addition of propagation delays so that throughput is not reduced. Data is steered in a similar manner.
The read and write operations may be asynchronous; each can occur at a rate of 25 MHz . The write operation occurs when the write $(\overline{\mathrm{W}})$ signal is hOW. Read occurs when read ($\overline{\mathrm{R}})$ goes L -uN The 9 data outputs go to the hightimgance state when R is HIGH.
In the depthexadusion configuration the (XO) pimppovidos the expansion out infor-mation-trat is used to tell the next FIFO that it with ere activated.
\qquad

Cascadeable $8 \mathrm{~K} \times 9$ FIFO

 Cascadeable $16 \mathrm{~K} \times 9$ FIFO

4210-1

Pin Configuration

4210-2

Features

- $65,536 \times 9$ FIFO buffer memory
- Advanced SRAM-based FIFO architecture
- Asynchronous read/write
- High-speed $7.5-\mathrm{MHz}$ read/write independent of width
- Low operating power
$-\mathrm{I}_{\mathbf{C C}}($ max. $)=250 \mathrm{~mA}$
- Empty and full flags
- 28-pin, 600-mil DIP package
- Pinout-compatible with industrystandard FIFO pinout (7C428, 7C432)

Functional Description

The CYM4241 RAMFIFO ${ }^{\circledR 1}$ is a 65,536 -word by 9 -bit first-in first-out (FIFO) memory implemented using an advanced SRAM controller architecture. The device is packaged in a 28 -pin, $600-\mathrm{mil}$ DIP. The pin format is compatible with in-dustry-standard formats. FIFO memories are organized such that the data is read in the same sequential order that it was written. Full and empty flags are provided to prevent overrun and underrun.
The read and write operations may be totally asynchronous; each can occur at a rate of 7.5 MHz . The write operation occurs when the write (\bar{W}) signal is LOW. Read occurs when read $(\overline{\mathrm{R}})$ goes LOW. The nine data outputs go to the high-impedance state when $\overline{\mathrm{R}}$ is HIGH.

The CYM4241 combines high-speed static RAMs with proprietary FIFO controller circuitry, and incorporates an on-board high-speed crystal oscillator. The controller arbitrates asynchronous requests appearing at the $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ inputs of the FIFO with an internal synchronous state machine. It configures the SRAM array as a virtual dual-port memory, and maintains read and write addres counters. Flag logic and reset circuitry are incorporated in the controller.
The CYM4241 ROphout-compatible with the CYM 4810 and CYM 4220 FIFO modules. The $X M 4241$ pin arrangement is compariote with Cypress's CY7C428 and CY7C432 monolithic FIFOs.

0

[^39]PRODUCT 1 INFORMATION
STATIC RAMS 2
PROMS 3
EPLDS 4
FIFOS 5
LOGIC 6
RISC 7
MODULES 8
ECL " 9
BUS INTERFACE PRODUCTS 10
MILITARY 11
DESIGN AND 12
PROGRAMMING TOOLS
QUALITY AND 13 RELIABILITY
PACKAGES 14

LOGIC

Device Number
CY2901C
CY2909A
CY2911A
CY2910A
CY7C510
CY7C516
CY7C517
CY7C901
CY7C909
CY7C911
CY7C910
CY7C9101
CY7C9115
CY7C9116
CY7C9117

Description

CMOS 4-Bit Slice . 6-1
CMOS Microprogram Sequencers . 6-9
CMOS Microprogram Sequencers . 6-9
CMOS Microprogram Controller 6-14
16×16 Multiplier Accumulator . 6-19
16×16 Multipliers 6-31
16 x 16 Multipliers 6-31
CMOS 4-Bit Slice . 6-43
CMOS Microprogram Sequencers . 6-58
CMOS Microprogram Sequencers . 6-58
CMOS Microprogram Controller . 6-69
CMOS 16-Bit Slice . 6-80
CMOS 16-Bit Microprogrammed ALU . 6-97
CMOS 16-Bit Microprogrammed ALU . 6-97
CMOS 16-Bit Microprogrammed ALU . 6-97

CMOS Four-Bit Slice

Features

- Pin compatible and functional equivalent to AMD AM2901C
- Low power
- VCC margin
- $5 \mathrm{~V} \pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- Eight function ALU

Performs eight operations on two 4-bit operands

- Expandable Infinitely expandable in 4-bit increments
- Four status flags

Carry, overflow, negative, zero

- ESD protection

Capable of withstanding greater than 2000 V static discharge voltage

Functional Description

The CY2901 is a high-speed, expandable, 4-bit wide ALU that can be used to implement the arithmetic section of a CPU, peripheral controller, or programmable controller. The instruction set of the CY2901 is basic but yet so versatile that it can emulate the ALU of almost any digital computer.
The CY2901, as illustrated in the block diagram, consists of a 16 -word by 4-bit dual-port RAM register file, a 4-bit ALU and the required data manipulation and control logic.

The operation performed is determined by nine input control lines (I_{0} to I_{8}) that are usually inputs from an instruction register.
The CY2901 is expandable in 4-bit increments, has three-state data outputs as well as flag outputs, and can use either a full-look ahead carry or a ripple carry.
The CY2901 is a pin compatible, functional equivalent, improved performance replacement for the AM2901.
The CY2901 is fabricated using an advanced 1.2 micron CMOS process that eliminates latchup, results in ESD protection over 2000 V and achieves superior performance at a low power dissipation.

Logic Block Diagram

Pin Configuration

	Top View		
A_{3}	1	40	万ō
A_{2}	2	39	r_{3}
A_{1}	3	38	- r_{2}
A_{0}	4	37	r_{1}
15	5	36	r_{0}
18	6	35	$\square \bar{p}$
15	7	34	Jovr
Ram_{3}	8	33	$\square c_{n}+4$
RAM M_{0}	9	32	$\square^{\text {c }}$
$v_{\mathrm{cc}} \mathrm{H}$	10	31	F_{3}
$\mathrm{F}=0$ -	11	30	GND
10	12	29	c_{n}
1.0	13	28	I_{4}
12	14	27	l_{5}
${ }^{\text {cPa }}$	15	26	I_{3}
o_{3}	16	25	D_{0}
B_{0} -	17	24	D_{1}
B_{1}	18	23	D_{2}
B_{2}	19	22	D_{3}
8_{3} [20	21	a_{0}

Selection Guide See last page for ordering information.

Read Modify-Write Cycle (Min.) in ns	Operating ICC (Max.) in mA	Operating Range	Part Number
31	140	Commercial	CY2901C
32	180	Military	CY2901C

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 10 to Pin 30).	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Input Voltage	to +7.0 V
Output Current into Outputs (Low)	

Pin Definitions

Signal
Name 1/O Descriptio
$\mathrm{A}_{0}-\mathrm{A}_{3} \quad$ I These 4 address lines select one of the registers in the stack and output its contents on the (internal) A port.
$\mathrm{B}_{0}-\mathrm{B}_{3} \quad$ I \quad These 4 address lines select one of the registers in the stack and output is contents on the (internal) B port. This can also be the destination address when data is written back into the register file.
$\mathrm{I}_{0}-\mathrm{I}_{8} \quad$ I These 9 instruction lines select the ALU data sources ($\mathrm{I}_{0,1}, 2$), the operation to be performed ($I_{3,4,5}$) and what data is to be written into either the Q register or the register file ($\mathrm{I}_{6,7}, 8$).
$\mathrm{D}_{0}-\mathrm{D}_{3} \quad$ I These are 4 data input lines that may be selected by the $\mathrm{I}_{0,1,2}$ lines as inputs to the ALU.
$\mathrm{Y}_{0}-\mathrm{Y}_{3} \quad \mathrm{O}$ These are three-state data output lines that, when enabled, output either the output of the ALU or the data in the A latches, as determined by the code on the $\mathbf{I}_{6,7,8}$ lines.
$\overline{\mathrm{OE}} \quad \mathrm{I}$ Output Enable. This is an active LOW input that controls the $\mathrm{Y}_{0}-\mathrm{Y}_{3}$ outputs. When this signal is LOW the Y outputs are enabled and when it is HIGH they are in the high impedance state.
CP I Clock Input. The LOW level of the clock writes data to the 16×4 RAM. The HIGH level of the clock writes data from the RAM to the A-port and B-port latches. The operation of the Q register is similar. Data is entered into the master latch on the LOW level of the clock and transferred from master to slave when the clock is HIGH.
Q3 I/O These two lines are bidirectional and are RAM $_{3}$ controlled by the $\mathrm{I}_{6,7,8}$ inputs. Electrically they are three-state output drivers connected to the TTL compatible CMOS inputs.

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latchup Current (Outputs) > 200 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Signal

Name 1/O Description
Q3 I/O Outputs: When the destination code on lines $\mathrm{RAM}_{3} \quad \mathrm{I}_{6,7,8}$ indicates a shift left (UP) operation the (Cont.) three-state outputs are enabled and the MSB of the Q register is output on the Q_{3} pin and the MSB of the ALU output $\left(F_{3}\right)$ is output on the RAM 3 pin.
Inputs: When the destination code indicates a shift right (DOWN) the pins are the data inputs to the MSB of the Q register and the MSB of the RAM.
Qo I/O These two lines are bidirectional and function in a RAM $_{0} \quad$ manner similar to the Q_{3} and RAM_{3} lines, except that they are the LSB of the Q register and RAM.
$\mathrm{C}_{\mathrm{n}} \quad$ I The carry-in to the internal ALU.
$C_{n}+4 \quad O$ The carry-out from the internal ALU.
$\overline{\mathbf{G}}, \overline{\mathbf{P}} \quad \mathrm{O}$ The carry generate and the carry propagate outputs of the ALU, which may be used to perform a carry look-ahead operation over the 4 bits of the ALU.
OVR O Overflow. This signal is logically the exclusiveOR of the carry-in and the carry-out of the MSB of the ALU. This pin indicates that the result of the ALU operation has exceeded the capacity of the machine. It is valid only for the sign bit and assumes two's complement coding for negative numbers.
$\mathrm{F}=0 \quad \mathrm{O} \quad$ Open collector output that goes HIGH if the data on the ALU outputs ($\mathrm{F}_{0}, 1,2,3$) are all LOW. It indicates that the result of an ALU operation is zero (positive logic).
$\mathrm{F}_{3} \quad \mathrm{O}$ The most significant bit of the ALU output.

Electrical Characteristics Over Commercial and Military Operating Range ${ }^{[3]}$
V_{CC} Min. $=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ Max. $=5.5 \mathrm{~V}$

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
2. Tested initially and after any design or process changes that may affect these parameters.
3. See the last page of this specification for Group A subgroup testing information.

Output Loads used for AC Performance Characteristics

0007-3

All outputs except open drain

Open drain ($\mathbf{F}=0$)

Notes:

1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitance.
2. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for output disable tests.
3. Loads shown above are for commercial $(20 \mathrm{~mA}) \mathrm{I}_{\mathrm{OL}}$ specifications only.

	Commercial	Military
R_{1}	203Ω	252Ω
R_{2}	148Ω	174Ω

CY2901C Guaranteed Commercial Range AC Performance Characteristics

The tables below specify the guaranteed AC performance of these devices over the Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ operating temperature range with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See previous page for loading circuit information.
This data applies to parts with the following numbers:
CY2901CPC CY2901CDC CY2901CLC

Cycle Time and Clock Characteristics

CY2901-	C
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle).	31 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I = 432 or 632)	32 MHz
Minimum Clock LOW Time	15 ns
Minimum Clock HIGH Time	15 ns
Minimum Clock Period	31 ns

For faster performance see CY7C901-23 specification.

Combinational Propagation Delays. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

$$	Y	F3	$\mathrm{C}_{\mathrm{n}}+4$	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	$\mathbf{F}=\mathbf{0}$	OVR	$\begin{aligned} & \mathbf{R A M}_{0} \\ & \mathbf{R A M}_{3} \end{aligned}$	$\begin{aligned} & \mathbf{Q}_{\mathbf{0}} \\ & \mathbf{Q}_{3} \end{aligned}$
A, B Address	40	40	40	37	40	40	40	-
D	30	30	30	30	38	30	30	-
C_{n}	22	22	20	-	25	22	25	-
I_{012}	35	35	35	37	37	35	35	-
I_{345}	35	35	35	35	38	35	35	-
I_{678}	25	-	-	-	-	-	26	26
$\begin{aligned} & \text { A Bypass ALU } \\ & (\mathrm{I}=2 \mathrm{XX}) \end{aligned}$	35	-	-	-	-	-	-	-
Clock -	35	35	35	35	35	35	35	28

Set-up and Hold Times Relative to Clock (CP) Input

Input	$\left\lvert\, \begin{aligned} & \text { CP: } \\ & \left.\begin{array}{l} \text { Set-up Time } \\ \text { Before H } \end{array}\right] \end{aligned}\right.$	Hold Time After $\mathrm{H} \rightarrow \mathrm{L}$		Hold Time After L $\rightarrow \mathbf{H}$
A, B Source Address	15	$\begin{gathered} 1 \\ \text { (Note 3) } \end{gathered}$	$\begin{gathered} 30,15+\text { tpWL } \\ \text { (Note 4) } \end{gathered}$	1
B Destination Address	15	\leftarrow Do Not	t Change \rightarrow	1
D	-	-	25	0
C_{n}	-	-	20	0
I012	-	-	30	0
I345	-	-	30	0
I_{678}	10	$\leftarrow \quad$ Do Not	t Change \rightarrow	0
$\mathrm{RAM}_{0,3,} \mathrm{Q}_{0,3}$	-	-	12	0

Output Enable/Disable Times

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY2901C	$\overline{\mathrm{OE}}$	Y	23	23

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $H \rightarrow L$ transition to allow time to access the source data before the latches close. The A address may then be changed. The \mathbf{B} address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \longrightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable \mathbf{A} and \mathbf{B} addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.

Cycle Time and Clock Characteristics ${ }^{[5]}$

CY2901-	C
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle).	32 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I $=432$ or 632)	31 MHz
Minimum Clock LOW Time	15 ns
Minimum Clock HIGH Time	15 ns
Minimum Clock Period	32 ns

For faster performance see CY7C901-27 specification.

CY2901C Guaranteed Military Range AC Performance Characteristics

The tables below specify the guaranteed AC performance of these devices over the Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ operating temperature range with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See "Electrical Characteristics" of this data sheet for loading circuit information.
This data applies to parts with the following numbers:

CY2901CDMB

Combinational Propagation Delays $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}^{[5]}$

$$	Y	F3	$\mathrm{C}_{\mathrm{n}}+4$	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	$\mathbf{F}=0$	OVR	$\begin{aligned} & \mathbf{R A M}_{0} \\ & \mathbf{R A M}_{3} \end{aligned}$	$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{3} \end{aligned}$
A, B Address	48	48	48	44	48	48	48	-
D	37	37	37	34	40	37	37	-
C_{n}	25	25	21	-	28	25	28	-
I_{012}	40	40	40	44	44	40	40	-
I 345	40	40	40	40	40	40	40	-
I_{678}	29	-	-	-	-	-	29	29
$\begin{aligned} & \text { A Bypass ALU } \\ & (\mathrm{I}=2 \mathrm{XX}) \end{aligned}$	40	-	-	-	-	-	-	-
Clock -	40	40	40	40	40	40	40	33

Set-up and Hold Times Relative to Clock (CP) Input ${ }^{[5]}$

Input				
	Set-up Time Before H \rightarrow L	Hold Time After $\mathbf{H} \rightarrow \mathrm{L}$	Set-up Time Before L $\rightarrow \mathbf{H}$	Hold Time After L $\rightarrow \mathbf{H}$
A, B Source Address	15	2 (Note 3)	$\begin{gathered} 30,15+\mathrm{t}_{\mathrm{PWL}} \\ \text { (Note 4) } \end{gathered}$	2
B Destination Address	15	$\longleftarrow \quad$ Do Not	Change \rightarrow	2
D	-	-	25	0
C_{n}	-	-	20	0
I_{012}	-	-	30	0
I_{345}	-	-	30	0
I_{678}	10	$\longleftarrow \quad$ Do Not	Change \rightarrow	0
$\mathrm{RAM}_{0,3,} \mathrm{Q}_{0,3}$	-	-	12	0

Output Enable/Disable Times ${ }^{[5]}$

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY2901C	$\overline{\text { OE }}$	Y	25	25

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $\mathbf{H} \rightarrow \mathrm{L}$ transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow$ H transition, regardless of when the clock $H \rightarrow L$ transition occurs.
5. See the last page of this specification for Group A subgroup testing information.

SEMICONDUCTOR

Ordering Information

Read Modify- Write Cycle (ns)	Ordering Code	Package Type	Operating Range
31	CY2901CPC	P17	Commercial
31	CY2901CDC	D18	Commercial
32	CY2901CDMB	D18	Military

CY2901C

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IH}	$1,2,3$
I_{IL}	$1,2,3$
I_{OH}	$1,2,3$
I_{OL}	$1,2,3$
I_{OZ}	$1,2,3$
I_{SC}	$1,2,3$
I_{CC}	$1,2,3$

Cycle Time and Clock Characteristics

Parameters	Subgroups
Minimum Clock LOW Time	$7,8,9,10,11$
Minimum Clock HIGH Time	$7,8,9,10,11$

Combinational Propagation Delays

Parameters	Subgroups
From A, B Address to Y	$7,8,9,10,11$
From A, B Address to F3	$7,8,9,10,11$
From A, B Address to $\mathrm{C}_{\mathrm{n}}+4$	$7,8,9,10,11$
From A, B Address to $\overline{\mathrm{G}, \overline{\mathrm{P}}}$	$7,8,9,10,11$
From A, B Address to F $=0$	$7,8,9,10,11$
From A, B Address to OVR	$7,8,9,10,11$
From A, B Address to RAM ${ }_{0,3}$	$7,8,9,10,11$
From D to Y	$7,8,9,10,11$
From D to F3	$7,8,9,10,11$
From D to $\mathrm{C}_{\mathrm{n}}+4$	$7,8,9,10,11$
From D to $\overline{\mathrm{G}, ~} \overline{\mathrm{P}}$	$7,8,9,10,11$
From D to F $=0$	$7,8,9,10,11$
From D to OVR	$7,8,9,10,11$
From D to RAM	$7,8,9,10,11$

Combinational Propagation Delays (Continued)

Parameters	Subgroups
From C_{n} to Y	7,8,9,10,11
From C_{n} to F3	7,8,9,10,11
From C_{n} to $\mathrm{C}_{\mathrm{n}}+4$	7,8,9,10,11
From C_{n} to $\mathrm{F}=0$	7,8,9,10,11
From C_{n} to OVR	7,8,9,10,11
From C_{n} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{012} to Y	7,8,9,10,11
From I_{012} to F_{3}	7,8,9,10,11
From I_{012} to $\mathrm{C}_{\mathrm{n}}+4$	7,8,9,10,11
From I_{012} to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	7,8,9,10,11
From I_{012} to $\mathrm{F}=0$	7,8,9,10,11
From I_{012} to OVR	7,8,9,10,11
From I_{012} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{345} to Y	7,8,9,10,11
From I_{345} to F_{3}	7,8,9,10,11
From I_{345} to $\mathrm{C}_{\mathrm{n}}+4$	7,8,9,10,11
From I_{345} to $\overline{\mathbf{G}}, \overline{\mathbf{P}}$	7,8,9,10,11
From I_{345} to F $=0$	7,8,9,10,11
From I_{345} to OVR	7,8,9,10,11
From I_{345} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{678} to Y	7,8,9,10,11
From I_{678} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{678} to $\mathrm{Q}_{0,3}$	7,8,9,10,11
From A Bypass ALU to Y $(\mathrm{I}=2 \mathrm{XX})$	7,8,9,10,11
From Clock \rightarrow to Y	7,8,9,10,11
From Clock \sim to F_{3}	7,8,9,10,11
From Clock \sim to $\mathrm{C}_{\mathrm{n}+4}$	7,8,9,10,11
From Clock to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	7,8,9,10,11
From Clock \sim to $\mathbf{F}=0$	7,8,9,10,11
From Clock \rightarrow to OVR	7,8,9,10,11
From Clock \sim to RAM ${ }_{0,3}$	7,8,9,10,11
From Clock \sim to $\mathrm{Q}_{0,3}$	7,8,9,10,11

Set-up and Hold Times Relative to Clock (CP) Input

Parameters	Subgroups
A, B Source Address Set-up Time Before $H \rightarrow L$	7,8,9,10,11
A, B Source Address Hold Time After $\mathrm{H} \rightarrow \mathrm{L}$	7,8,9,10,11
A, B Source Address Set-up Time Before L $\rightarrow \mathbf{H}$	7,8,9,10,11
A, B Source Address Hold Time After L \rightarrow H	7,8,9,10,11
B Destination Address Set-up Time Before $H \rightarrow L$	7,8,9,10,11
B Destination Address Hold Time After H \rightarrow L	7,8,9,10,11
B Destination Address Set-up Time Before $\mathbf{L} \rightarrow \mathbf{H}$	7,8,9,10,11
B Destination Address Hold Time After L $\rightarrow \mathbf{H}$	7,8,9,10,11
D Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11

Parameters	Subgroups
D Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
C_{n} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
C_{n} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{012} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{012} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{345} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{345} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{678} Set-up Time Before $\mathrm{H} \rightarrow \mathrm{L}$	7,8,9,10,11
I_{678} Hold Time After H \rightarrow L	7,8,9,10,11
I_{678} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{678} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
RAM $_{0}$, RAM $_{3}, \mathrm{Q}_{0}, \mathrm{Q}_{3}$ Set-up Time Before $\mathrm{L} \rightarrow \mathbf{H}$	7,8,9,10,11
$\begin{aligned} & \mathrm{RAM}_{0}, \mathrm{RAM}_{3}, \mathrm{Q}_{0}, \mathrm{Q}_{3} \\ & \text { Hold Time After } \mathrm{L} \xrightarrow{\mathrm{H}} \end{aligned}$	7,8,9,10,11

Document \# : 38-00008-B

Features

- Fast
- CY2909A/11A has a 40 ns (min.) clock to output cycle time; commercial
- CY2909/11 has a 40 ns (min.) clock to output cycle time; military
- Low power
- $I_{C C}($ max. $)=70 \mathrm{~mA}$ commercial
$-I_{\text {CC }}($ max. $)=90 \mathrm{~mA}$ military
- V_{CC} margin
- $5 \mathrm{~V} \pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- Expandable

Infinitely expandable in 4-bit increments

- ESD protection

Capable of withstanding greater than 2000 V static discharge voltage

- Pin compatible and
functional equivalent to
AMD AM2909A/AM2911A

Description

The CY2909A and CY2911A are highspeed, four-bit wide address sequencers intended for controlling the sequence of execution of microinstructions contained in microprogram memory. They may be connected in parallel to expand the address width in 4 bit increments. Both devices are implemented in high performance CMOS for optimum speed and power.
The CY2909A can select an address from any of four sources. They are:

1) a set of four external direct inputs $\left(\mathrm{D}_{\mathrm{i}}\right) ; 2$) external data stored in an internal register (R_{i}); 3) a four word deep push/pop stack; or 4) a program counter register (which usually contains the last address plus one). The push/pop stack includes control lines so that it can efficiently execute nested subroutine linkages. Each of the four outputs $\left(\mathrm{Y}_{\mathrm{i}}\right)$ can be OR'ed with an external input for conditional skip or branch instructions. A ZERO input line forces the outputs to all zeros. The outputs are three state, controlled by the Output Enable ($\overline{\mathrm{OE}}$) input.
The CY2911A is an identical circuit to the CY2909A, except the four OR inputs are removed and the D and R inputs are tied together. The CY2911A is available in a $20-\mathrm{pin}, 300-\mathrm{mil}$ package. The CY2909 is available in a 28 -pin, 600-mil package.

Logic Block Diagram

Pin Configurations

0066-2

0066-5

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Static Discharge Voltage
2001 V
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current, into Outputs (Low) \qquad
(per MIL-STD-883 Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range[4]

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	5	pF
Cout	Output Capacitance		7	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Figure 2

	Commercial	Military
R_{1}	254Ω	258Ω
R_{2}	187Ω	216Ω

Switching Characteristics Over Operating Rangel ${ }^{[4]}$

	$\begin{aligned} & \text { 2909A } \\ & \text { 2911A } \end{aligned}$		$\begin{aligned} & \text { 2909A } \\ & \text { 2911A } \end{aligned}$		Units
	Commercial		Military		
Minimum Clock Low Time	20		20		ns
Minimum Clock High Time	20		20		ns
MAXIMUM COMBINATIONAL PROPAGATION DELAYS					
From Input To:	Y	$\mathrm{C}_{\mathrm{N}}+4$	Y	$\mathrm{C}_{\mathrm{N}}+4$	ns
D_{i}	17	22	20	25	ns
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	29	34	29	34	ns
$\mathrm{OR}_{\mathrm{i}} \mathrm{CY} 2909 \mathrm{~A}$	17	22	20	25	ns
C_{N}	-	14	-	16	ns
ZERO	29	34	30	35	ns
$\overline{\mathrm{OE}}$ Low to Output	25	-	25	-	ns
$\overline{\mathrm{O}} \overline{\mathrm{E}}$ High to High $\mathrm{Z}^{[5]}$	25	-	25	-	ns
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=$ LH	39	44	45	50	ns
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LL}$	39	44	45	50	ns
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{HL}$	44	49	53	58	ns
MINIMUM SET-UP AND HOLD TIMES (All Times Relative to Clock LOW to HIGH Transition)					
From Input	Set-up	Hold	Set-up	Hold	
$\overline{\mathrm{RE}}$	19	4	19	5	ns
$\mathrm{R}_{\mathrm{i}}{ }^{\text {[6] }}$	10	4	12	5	ns
Push/Pop	25	4	27	5	ns
FE	25	4	27	5	ns
C_{N}	18	4	18	5	ns
D_{i}	25	0	25	0	ns
OR_{i} (CY2909A)	25	0	25	0	ns
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	25	0	29	0	ns
$\overline{\text { ZERO }}$	25	0	29	0	ns

Notes:

5. Output Loading as in Figure $1 b$.
6. \mathbf{R}_{i} and \mathbf{D}_{i} are internally connected on the CY2911A. Use \mathbf{R}_{i} set-up and hold times for D_{i} inputs.

Switching Waveforms

Ordering Information

Ordering Code	Package Type	Operating Range
CY2909APC	P15	Commercial
CY2909ADC	D16	
CY2909ALC	L64	
CY2909ADMB	D16	Military
CY2909ALMB	L64	

Ordering Code	Package Type	Operating Range
CY2911APC	P5	Commercial
CY2911ADC	D6	\vdots
CY2911ALC	L61	
CY2911ADMB	D6	Military
CY2911ALMB	L61	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
Minimum Clock Low Time	7,8,9,10,11
Minimum Clock High Time	7,8,9,10,11
MAXIMUM COMBINATIONAL PROPAGATION DELAYS	
D_{i} to Y	7,8,9,10,11
D_{i} to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Y	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
OR_{i} (CY2909A) to Y	7,8,9,10,11
OR_{i} (CY2909A) to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
C_{N} to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
$\overline{\text { ZERO }}$ to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LH}$ to Y	7,8,9,10,11
$\begin{aligned} & \text { Clock High, } \mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LH} \\ & \text { to } \mathrm{C}_{\mathrm{N}+4} \end{aligned}$	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LL}$ to Y	7,8,9,10,11
$\begin{aligned} & \text { Clock High, } \mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LL} \\ & \text { to } \mathrm{C}_{\mathrm{N}+4} \end{aligned}$	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{HL}$ to Y	7,8,9,10,11
$\begin{aligned} & \text { Clock High, } \mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{HL} \\ & \text { to } \mathrm{C}_{\mathrm{N}}+4 \end{aligned}$	7,8,9,10,11

Parameters	Subgroups
MINIMUM SET-UP AND HOLD TIMES	
$\overline{\mathrm{RE}}$ Set-up Time	7,8,9,10,11
$\overline{\mathrm{RE}}$ Hold Time	7,8,9,10,11
Push/Pop Set-up Time	7,8,9,10,11
Push/Pop Hold Time	7,8,9,10,11
FE Set-up Time	7,8,9,10,11
FE Hold Time	7,8,9,10,11
C_{N} Set-up Time	7,8,9,10,11
C_{N} Hold Time	7,8,9,10,11
D_{i} Set-up Time	7,8,9,10,11
D_{i} Hold Time	7,8,9,10,11
OR_{i} (CY2909A) Set-up Time	7,8,9,10,11
$\mathrm{OR}_{\mathrm{i}}(\mathrm{CY} 2909 \mathrm{~A})$ Hold Time	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ Set-up Time	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ Hold Time	7,8,9,10,11
ZERO Set-up Time	7,8,9,10,11
$\overline{\text { ZERO }}$ Hold Time	7,8,9,10,11

CMOS Microprogram Controller

Features

- Fast
- CY2910AC has a 50 ns (min.) clock cycle; commercial
- CY2910AM has a 51 ns (min.) clock cycle; military
- Low power
$-I_{C C}($ max. $)=170 \mathrm{~mA}$
- VCC Margin 5V $\pm 10 \%$ commercial and military
- Sixteen powerful microinstructions
- Three output enable controls for three-way branch
- Twelve-bit address word
- Four sources for addresses: microprogram counter (MPC), branch address bus, 9 -word stack, internal holding register
- Internal 9 -word by 12 -bit stack The internal stack can be used for subroutine return address or data storage
- 12-bit Internal loop counter
- ESD protection

Capable of withstanding over 2000 volts static discharge voltage

- Pin compatible and functional equivalent to Am2910A

Functional Description

The CY2910A is a stand-alone microprogram controller that selects, stores, retrieves, manipulates and tests addresses that control the sequence of execution of instructions stored in an external memory. All addresses are 12-bit binary values that designate an absolute memory location.
The CY2910A, as illustrated in the block diagram, consists of a 9 -word by 12-bit LIFO (Last-In-First-Out) stack and SP (Stack Pointer), a 12-bit RC (Register/Counter), a 12-bit MPC (Microprogram Counter) and incrementer, a 12 -bit wide by 4 -input multiplexer
and the required data manipulation and control logic.
The operation performed is determined by four input instruction lines (I0-I3) that in turn select the (internal) source of the next micro-instruction to be fetched. This address is output on the Y0-Y11 pins. Two additional inputs ($\overline{\mathrm{CC}}$ and $\overline{\mathrm{CCEN}}$) are provided that are examined during certain instructions and enable the user to make the execution of the instruction either unconditional or dependent upon an external test.
The CY2910A is a pin compatible, functional equivalent, improved performance replacement for the Am2910A.
The CY2910A is fabricated using an advanced 1.2 micron CMOS process that eliminates latchup, results in ESD protection of over 2000 volts and achieves superior performance and low power dissipation.

Logic Block Diagram

0040-2

Pin Configuration

Top View

Selection Guide

Clock Cycle (Min.) in ns	Stack Depth	Operating Range	Part Number
50	9 words	Commercial	CY2910AC
51	9 words	Military	CY2910AM

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage . > 2001 V (Per MIL-STD-883 Method 3015)
Ambient Temperature with		(Per MIL-STD-883 Method 3015)
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latchup Current (Outputs) $>200 \mathrm{~mA}$

Supply Voltage to Ground Potential
(Pin 10 to Pin 30) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low) 30 mA

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[3]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Commercial and Military Operating Range ${ }^{[4]}$
V_{CC} Min. $=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ Max. $=5.5 \mathrm{~V}$

Parameter	Description	Test Condition	Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.5	V
V_{IH}	Input HIGH Voltage		2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-3.0	0.8	V
$\mathrm{IIH}^{\text {I }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$		10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\text {IN }}=\mathrm{GND}$		-10	$\mu \mathrm{A}$
$\mathrm{IOH}^{\text {H}}$	Output HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$	-1.6		mA
IOL	Output LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	8		mA
Ioz	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \\ & \text { V }_{\text {OUT }}=\mathrm{GND} / \mathrm{V}_{\mathrm{CC}} \end{aligned}$	-40	+40	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		-85	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max.		170	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	8	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		
			10	pF

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not exceed one second.
2. Tested initially and after any design or process changes that may affect these parameters.

Output Load for AC Performance Characteristics

All Outputs

3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

Switching Waveforms

Notes:

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, writing and stray capacitance.
$C_{L}=5 \mathrm{pF}$ for output disable tests.

Guaranteed AC Performance Characteristics

The tables below specify the guaranteed AC performance of the CY2910A over the commercial ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) and the military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) temperature ranges with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels.

The inputs switch between 0 V and 3 V with signal transition rates of 1 Volt per nanosecond. All outputs have maximum DC current loads.

Clock Requirements $[1,4]$

	Commercial	Military
Minimum Clock LOW	20	25
Minimum Clock HIGH	20	25
Minimum Clock Period I $=14$	50	51
Minimum Clock Period $\mathrm{I}=8,9,15$ (Note 2$)$	50	50

Combinational Propagation Delays. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}^{[4]}$

To Output	Commercial			Military		
From Input	Y	$\overline{\mathbf{P L}}, \overline{\mathrm{VECT}}, \overline{\mathrm{MAP}}$	FULL	Y	$\overline{\mathbf{P L}}, \overline{\mathrm{VECT}}, \overline{\mathrm{MAP}}$	$\overline{\text { FULL }}$
D0-D11	20	-	-	25	-	-
I0-I3	35	30	-	40	35	-
$\overline{\mathrm{CC}}$	30	-	-	36	-	-
CCEN	30	-	-	36	-	-
$\begin{aligned} & \mathrm{CP} \\ & \mathrm{I}=8,9,15 \\ & (\text { Note 2) } \end{aligned}$	40	-	31	-	-	35
$\begin{aligned} & \text { CP } \\ & \text { All Other I } \end{aligned}$	40	-	31	46	-	35
$\overline{\mathrm{OE}}$ (Note 3)	$\begin{aligned} & 25 \\ & 27 \end{aligned}$	-	-	$\begin{aligned} & 25 \\ & 30 \\ & \hline \end{aligned}$	-	-

Minimum Set-up and Hold Times Relative to clock Low to HIGH Transition. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}{ }^{[4]}$

	Commercial		Military	
Input	Set-up	Hold	Set-up	Hold
DI \rightarrow RC	16	0	16	0
DI \rightarrow MPC	30	0	30	0
I0-I3	35	0	38	0
$\overline{\text { CC }}$	24	0	35	0
$\overline{\text { CCEN }}$	24	0	35	0
CI	18	0	18	0
$\overline{\text { RLD }}$	19	0	20	0

Notes:

1. A dash indicates that a propagation delay path or set-up time does not exist.
2. These instructions are dependent upon the register/counter. Use the shorter delay times if the previous instruction either does not change the register/counter or could only decrement it. Use the longer delay if the instruction prior to the clock was 4 or 12 or if RLD was LOW.
3. The enable/disable times are measured to a 0.5 Volt change on the output voltage level with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
4. See the last page of this specification for Group A subgroup testing information.

Table of Instructions

$\mathrm{I}_{3}-\mathrm{I}_{0}$	MNEMONIC	NAME	REG/ CNTR CON- TENTS	RESULT					
				$\begin{gathered} \text { FAIL } \\ \overline{\text { CCEN }}=\mathrm{L} \text { and } \overline{\mathrm{CC}}=\mathbf{H} \\ \hline \end{gathered}$		$\begin{gathered} \text { PASS } \\ \overline{\mathrm{CCEN}}=\mathrm{H} \text { or } \overline{\mathrm{CC}}=\mathbf{L} \end{gathered}$		$\begin{aligned} & \text { REG/ } \\ & \text { CNTR } \end{aligned}$	ENABLE
				Y	STACK	Y	STACK		
0	JZ	Jump Zero	X	0	Clear	0	Clear	Hold	PL
1	CJS	Cond JSB PL	X	PC	Hold	D	Push	Hold	PL
2	JMAP	Jump Map	X	D	Hold	D	Hold	Hold	Map
3	CJP	Cond Jump PL	X	PC	Hold	D	Hold	Hold	PL
4	PUSH	Push/Cond LD CNTR	X	PC	Push	PC	Push	(Note 1)	PL
5	JSRP	Cond JSB R/PL	X	R	Push	D	Push	Hold	PL
6	CJV	Cond Jump Vector	X	PC	Hold	D	Hold	Hold	Vect
7	JRP	Cond Jump R/PL	X	R	Hold	D	Hold	Hold	PL
8	RFCT	Repeat Loop,$\text { CNTR } \neq 0$	$\neq 0$	F	Hold	F	Hold	Dec	PL
			$=0$	PC	POP	PC	Pop	Hold	PL
9	RPCT	$\begin{aligned} & \text { Repeat PL, } \\ & \text { CNTR } \neq 0 \end{aligned}$	$\neq 0$	D	Hold	D	Hold	Dec	PL
			$=0$	PC	Hold	PC	Hold	Hold	PL
10	CRTN	Cond RTN	X	PC	Hold	F	Pop	Hold	PL
11	CJPP	Cond Jump PL \& Pop	X	PC	Hold	D	Pop	Hold	PL
12	LDCT	LD Cntr \& Continue	X	PC	Hold	PC	Hold	Load	PL
13	LOOP	Test End Loop	X	F	Hold	PC	Pop	Hold	PL
14	CONT	Continue	X	PC	Hold	PC	Hold	Hold	PL
15	TWB	Three-Way Branch	$\neq 0$	F	Hold	PC	Pop	Dec	PL
			$=0$	D	Pop	PC	Pop	Hold	PL

Notes:

1. If $\overline{C C E N}=L$ and $\overline{C C}=H$, hold; else load.
$\mathrm{H}=\mathrm{HIGH}$
$\mathrm{L}=\mathrm{LOW}$
$\mathrm{X}=$ Don't Care

Ordering Information

Clock Cycle (ns)	Ordering Code	Package Type	Operating Range
50	CY2910ADC	D18	
	CY2910AJC	J67	
	CY2910ALC	L67	
	CY2910APC	P17	
51	CY2910ADMB	D18	
	CY2910ALMB	L67	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
\mathbf{V}_{OH}	$1,2,3$
\mathbf{V}_{OL}	$1,2,3$
$\mathbf{V}_{\mathbf{I H}}$	$1,2,3$
\mathbf{V}_{IL} Max.	$1,2,3$
$\mathbf{I}_{\mathbf{I H}}$	$1,2,3$
$\mathbf{I}_{\mathbf{I L}}$	$1,2,3$
\mathbf{I}_{OH}	$1,2,3$
\mathbf{I}_{OL}	$1,2,3$
\mathbf{I}_{OZ}	$1,2,3$
\mathbf{I}_{SC}	$1,2,3$
\mathbf{I}_{CC}	$1,2,3$

Clock Requirements

Parameters	Subgroups
Minimum Clock LOW	$7,8,9,10,11$

Combinational Propagation Delays

Parameters	Subgroups
From D0-D11 to Y	$7,8,9,10,11$
From I0-I3 to Y	$7,8,9,10,11$
From I0-I3 to $\overline{\text { PL, } \overline{\text { VECT, }} \overline{\text { MAP }}} 7$	$7,8,9,10,11$
From $\overline{\text { CC }}$ to Y	$7,8,9,10,11$
From $\overline{\text { CCEN to Y }}$	$7,8,9,10,11$
From CP (I = 8, 9, 15) to $\overline{\text { FULL }}$	$7,8,9,10,11$
From CP (All Other I) to Y	$7,8,9,10,11$
From CP (All Other I) to $\overline{\text { FULL }}$	$7,8,9,10,11$

Document \#:38-00010-B

Minimum Set-up and Hold Times

Parameters	Subgroups
DI \rightarrow RC Set-up Time	$7,8,9,10,11$
DI \rightarrow RC Hold Time	$7,8,9,10,11$
DI \rightarrow MPC Set-up Time	$7,8,9,10,11$
DI \rightarrow MPC Hold Time	$7,8,9,10,11$
I0-I3 Set-up Time	$7,8,9,10,11$
I0-I3 Hold Time	$7,8,9,10,11$
$\overline{\text { CC Set-up Time }}$	$7,8,9,10,11$
$\overline{\text { CC }}$ Hold Time	$7,8,9,10,11$
$\overline{\text { CCEN }}$ Set-up Time	$7,8,9,10,11$
$\overline{\text { CCEN }}$ Hold Time	$7,8,9,10,11$
CI Set-up Time	$7,8,9,10,11$
CI Hold Time	$7,8,9,10,11$
$\overline{\text { RLD Set-up Time }}$	$7,8,9,10,11$
$\overline{\text { RLD }}$ Hold Time	$7,8,9,10,11$

Features

- Fast
- CY7C510-45 has a 45 ns (max.) clock cycle (commercial)
- CY7C510-55 has a 55 ns (max.) clock cycle (military)
- Low Power
- ICC (max. at 10 MHz$)=$ 100 mA (commercial)
$-I_{\text {CC }}(\max$. at 10 MHz$)=$ 110 mA (military)
- $\mathbf{V}_{\mathbf{C C}}$ Margin
$-5 V \pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- 16×16 bit parallel multiplication with accumulation to 35-bit result
- Two's complement or unsigned magnitude operation
- ESD Protection
- Capable of withstanding greater than 2000V static discharge voltage
- Pin compatible and functionally equivalent to Am29510 and TMC2110

Functional Description

The CY7C510 is a high-speed 16×16 parallel multiplier accumulator which operates at 45 ns clocked multiply accumulate (MAC) time (22 MHz multiply accumulate rate). The operands may be specified as either two's complement or unsigned magnitude 16-bit numbers. The accumulator functions
include loading the accumulator with the current product, adding or subtracting the accumulator contents and the current product, or preloading the accumulator from the external world.
All inputs (data and instructions) and outputs are registered. These independently clocked registers are positive edge triggered D-type flip-flops. The 35-bit accumulator/output register is divided into a 3-bit extended product (XTP), a 16 -bit most significant product (MSP), and a 16-bit least significant product (LSP). The XTP and MSP have dedicated ports for threestate output; the LSP is multiplexed with the Y -input. The 35 -bit accumulator/output register may be preloaded through the bidirectional output ports.

Logic Block Diagram

Selection Guide

		7C510-45	7C510-55	7C510-65	7C510-75
Maximum Multiply- Accumulate Time (ns)	Commercial	45	55	65	75
	Military		55	65	75

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Ambient Temperature Under Bias $\ldots .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots .-0.5 \mathrm{~V}$ to +7.0 V
DC Input Voltage $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs $\ldots . .-0.5 \mathrm{~V}$ to V_{CC} Max.
Output Current, into Outputs (low) .10 mA
Static Discharge Voltage . > 2001V (per MIL-STD-883 Method 3015)

Pin Configurations

Operating Range

Range	Temperature	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	-55° to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

0057-3

Pin Configurations (Continued)
Pin Configuration for 68-Pin Grid Array

Pin Definitions

$\begin{array}{l}\text { Signal } \\ \text { Name }\end{array}$	I/O	Description
X_{15-0}	I	$\begin{array}{l}\text { X-Input Data. This 16-bit number may be } \\ \text { interpreted as two's complement or } \\ \text { unsigned magnitude. }\end{array}$
$\begin{array}{l}\text { Y } 15-0\end{array}$		
$\left(\mathrm{P}_{15-0}\right)$	I/O	$\begin{array}{l}\text { Y-Input Data/LSP Output Data. When } \\ \text { this port is used to input a Y value, the } \\ \text { 16-bit number may be interpreted as two's } \\ \text { complement or unsigned magnitude. This } \\ \text { bidirectional port is multiplexed with the } \\ \text { LSP output (P15-0), and can also be used } \\ \text { to preload the LSP register. }\end{array}$
\mathbf{P}_{34-32}	I/O	$\begin{array}{l}\text { Extended Product (XTP) Output Data. } \\ \text { This port is bidirectional. The extended } \\ \text { product emerges through this port. The }\end{array}$
XTP register may also be preloaded		
through this port.		

Signal Name	I/O	Description
$\overline{\text { OEL }}$	I	Output Enable Least. When LOW, the LSP bidirectional port is enabled for output. When HIGH, the output drivers are disabled (high impedance) and the MSP port may be used for preloading. See Preload Function Table.
PREL	I	Preload. When HIGH, the three bidirectional ports may be used to preload data into the accumulator register at the rising edge of CLKP. The three-state controls ($\overline{\mathrm{OEX}}, \overline{\mathrm{OEM}}, \overline{\mathrm{OEL}}$) must be HIGH to preload data. When LOW, the accumulated product is loaded into the accumulator/output register at the rising edge of CLKP. The output drivers must be enabled ($\overline{\text { OEX }}$, $\overline{\mathrm{OEM}}, \overline{\mathrm{OEL}}$ must be LOW) for the accumulated product to be output. Ordinarily, PREL, $\overline{\mathrm{OEX}}, \overline{\mathrm{OEM}}$, and $\overline{\mathrm{OEL}}$ are tied together. See accumulator function table.
TC	I	Two's Complement Control. When HIGH, the 7C510 is in two's complement mode, where the input and output data are interpreted as two's complement numbers. The device is in unsigned magnitude mode when TC is LOW. This control is loaded into the instruction register at the rising edge of CLKX + CLKY.
RND	I	Round Control. When HIGH, rounding is enabled and a " 1 " is added to the MSB of the LSB $\left(\mathrm{P}_{15}\right)$. When LOW, the product is unchanged. This control is loaded into the instruction register at the rising edge of CLKX + CLKY.
ACC	I	Accumulate Control. When HIGH, the accumulator/output register contents are added to or subtracted from the current product (XY) and this result is stored back into the accumulator/output register. When LOW, the product is loaded into the accumulator register, overwriting the current contents. This control is loaded into the instruction register at the rising edge of CLKX + CLKY. See accumulator function table.
SUB	I	Subtract Control. When both ACC and SUB are HIGH, the accumulator register contents are subtracted from the current product XY and this result is written back into the accumulator register. When ACC is HIGH and SUB is LOW, the accumulator register contents and current product are summed, then written back to the accumulator register. This control is loaded into the instruction register at the rising edge of CLKX + CLKY. See accumulator function table.

Functional Description

The CY7C510 is a high-speed 16×16-bit multiplier accumulator (MAC). It comprises a 16 -bit parallel multiplier followed by a 35 -bit accumulator. All inputs (data and instructions) and outputs are registered. The 7C510 is divided into four sections: the input section, the 16×16 asynchronous multiplier array, the accumulator, and the output/preload section.
The input section has two 16 -bit operand input registers for the X and Y operands, clocked by the rising edge of CLKX and CLKY, respectively. The four-bit instruction register (TC, RND, ACC, SUB) is clocked by the rising edge of the logical OR of CLKX, CLKY.
The 16×16 asynchronous multiplier array produces the 32 -bit product of the input operands. Either two's complement or unsigned magnitude operation is selected, based on control TC. If rounding is selected, (RND = 1), a " 1 " is added to the MSB of the LSP (position P_{15}). The 32-bit product is zero-filled or sign-extended as appropriate and passed as a 35-bit number to the accumulator section.
The accumulator function is controlled by ACC, SUB, and PREL. Four functions may be selected: the accumulator may be loaded with the current product; the product may be added to the accumulator contents; the accumulator contents may be subtracted from the current product; or the accumulator may be preloaded from the bidirectional ports.
The output/preload section contains the accumulator/output register and the bidirectional ports. This section is controlled by the signals PREL, $\overline{O E X}, \overline{O E M}$, and OEL. When PREL is HIGH, the output buffers are in high impedance state. When the controls $\overline{O E X}, \overline{\mathrm{OEM}}$, and $\overline{\mathrm{OEL}}$ are also high, data present at the output pins will be preloaded into the appropriate accumulator register at the rising edge of CLKP. When PREL is LOW, the signals OEX, OEM, and OEL are enable controls for their respective three-state output ports.

Preload Function Table

PREL	OEX	$\overline{\text { OEM }}$	$\overline{\text { OEL }}$	Output Register		
				XTP	MSP	LSP
0	0	0	0	Q	Q	Q
0	0	0	1	Q	Q	Z
0	0	1	0	Q	Z	Q
0	0	1	1	Q	Z	Z
0	1	0	0	Z	Q	Q
0	1	0	1	Z	Q	Z
0	1	1	0	Z	Z	Q
0	1	1	1	Z	Z	Z
1	0	0	0	Z	Z	Z
1	0	0	1	Z	Z	PL
1	0	1	0	Z	PL	Z
1	0	1	1	Z	PL	PL
1	1	0	0	PL	Z	Z
1	1	0	1	PL	Z	PL
1	1	1	0	PL	PL	Z
1	1	1	1	PL	PL	PL

$\mathrm{Z}=$ Output buffers at High impedance (disabled.)
$\mathrm{Q}=$ Output buffers at Low impedance. Contents of output register available through output ports.
PL $=$ Output disabled. Preload data supplied to the output pins will be loaded into the output register at the rising edge of CLKP.

Accumulator Function Table

PREL	ACC	SUB	P	OPERATION
L	L	X	Q	Load
L	H	L	Q	Add
L	H	H	Q	Subtract
H	X	X	PL	Preload

CY7C510

Input Formats

Fractional Two's Complement Input

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

 (Sign)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-2^{0} (Sign)	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}	2^{-8}	2^{-9}	2^{-10}	2^{-11}	2^{-12}	2^{-13}	2^{-14}	2^{-15}	

Integer Two's Complement Input

Unsigned Fractional Input

Unsigned Integer Input

$\mathrm{XIN}_{\text {IN }}$																	$Y_{\text {IN }}$																
15	14	4	13	12	11	10	9	8	7	6	5	4	3	2	1	0			14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	21	14	213	212	211	210	2^{9}	2^{8}	27	2^{6}	2^{5}	24	23	2^{2}	21	2^{0}				213	212	211	210	2^{9}	2^{8}	2^{7}	2^{6}	25	24	23	$2{ }^{2}$	21	2^{0}

CY7C510

Output Formats

Two's Complement Fractional Output
XTP
1-

343332

31	30	29	28	27	26	25	24	23	22	21
20	19	18	17	16						

$-2^{4} 2^{3} 2^{2} \quad 2^{1} 2^{0} 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-5} 2^{-6} 2^{-7} 2^{-8} 2^{-9} 2^{-10} 2^{-11} 2^{-12} 2^{-13} 2^{-14} \quad 2^{-15} 2^{-16} 2^{-17} 2^{-18} 2^{-19} 2^{-20} 2^{-21} 2^{-22} 2^{-23} 2^{-24} 2^{-25} 2^{-26} 2^{-27} 2^{-28} 2^{-29} 2^{-30}$ (Sign)

Two's Complement Integer Output

Unsigned Fractional Output

Unsigned Integer Output

CY7C510

CYPRESS
SEMICONDUCTOR
Electrical Characteristics Over Operating Rangel ${ }^{[4]}$

Parameters	Description		Test Conditions		Min.	Max.	Units
V_{OH}	Output HIGH Voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage				2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage					0.8	V
$\mathrm{IOH}^{\text {l }}$	Output HIGH Current		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$		-0.4		mA
I_{OL}	Output LOW Current		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		4.0		mA
IIX	Input Leakage Current		$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	$+10$	$\mu \mathrm{A}$
II	Input Current, Max. Input Voltage		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$			10	mA
$\mathrm{IOS}^{[1]}$	Output Short Circuit Current		$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$		-3	-30	mA
IOZL	Output OFF (Hi-Z) Current		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\overline{\mathrm{OE}}=2.0 \mathrm{~V}$			-25	$\mu \mathrm{A}$
IOZH	Output OFF (Hi-Z) Current		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\overline{\mathrm{OE}}=2.0 \mathrm{~V}$		25		$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC}}(\mathrm{Q} 1)^{[2]}$	Supply Current (Quiescent)		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \\ & \mathrm{V}_{\mathrm{IN}}=\left[\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{IL}}\right] \text { or }\left[\mathrm{V}_{\mathrm{IH}} \text { to } \mathrm{V}_{\mathrm{CC}}\right] \end{aligned}$			30	mA
$\mathrm{I}_{\mathrm{CC}}(\mathrm{Q} 2){ }^{\text {[2] }}$	Supply Current (Quiescent)		$\mathrm{V}_{\text {CC }}=$ Max	Commercial		20	A
			$0.4 \mathrm{~V} \geq \mathrm{V}_{\text {IN }} \geq \text { GND }$	Military		25	
$\mathbf{I}_{\text {CC }}(\text { Max. })^{[2]}$	Supply Current	Commercial	$\mathrm{V}_{\mathrm{CC}}=\mathbf{M a x} ., \mathrm{f}_{\text {CLK }}=10 \mathrm{MHz}$			100	mA
		Military				110	

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	8	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
2. For ICC measurements, the outputs are three-stated. Two quiescent figures are given for different input voltage ranges. To calculate $I_{C C}$ at any given clock frequency, use $30 \mathrm{~mA}+\mathrm{I}_{\mathrm{CC}}$ (A.C.), where I_{CC} $($ A.C. $)=(7 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for the Commercial temperature range. $\mathrm{I}_{\mathrm{CC}}(\mathrm{A} . \mathrm{C}$. $)=(8 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for Military temperature range.
3. Tested initially and after any design or process changes that may affect these parameters.
4. See the last page of this specification for Group A subgroup testing information.

Output Loads Used for A.C. Performance Characteristics

Normal Load (Load 1)

Equivalent to: THÉVENIN EQUIVALENT

OUTPUT $\mathrm{O} \longrightarrow \mathbf{N H}^{455 \Omega} \longrightarrow \mathbf{2}-22 \mathrm{~V}$

Three-State Delay Load (Load 2)

0057-5
istics Over Operating Range ${ }^{[3]}$
Switching Characteristics Over Operating Range ${ }^{[3]}$

Parameters	Description		7C510-45		7C510-55		7C510-65		7C510-75		Units
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{MA}	Multiply Accumulate Time			45		55		65		75	ns
t_{S}	Setup Time		20		20		25		25		ns
t_{H}	Hold Time		3		3		3		3		ns
$\mathrm{t}_{\text {PW }}$	Clock Pulse Width		25		25		30		30		ns
tpDP	Output Clock to P			30		30		35		35	ns
tPDY	Output Clock to Y			30		30		35		35	ns
${ }_{\text {t }}$	$\overline{\text { OEX, }} \overline{\text { OEM }}$ to P; $\overline{\text { OEL }}$ to Y (Disable Time)	HIGH to Z		25		25		30		30	ns
$\mathrm{t}_{\text {PLZ }}$		LOW to Z		25		25		30		30	ns
$\mathrm{t}_{\text {PZH }}$	$\overline{O E X}, \overline{O E M}$ to P; OEL to Y (Enable Time)	Z to HIGH		30		30		35		35	ns
tPZL		Z to LOW		30		30		35		35	ns
$\mathbf{t}_{\mathrm{HCL}}$	Relative Hold Time		0		0		0				ns

Test Waveforms

TEST	v_{x}	OUTPUT WAVEFORM - MEASUREMENT LEVEL
ALL tpo's	v_{cc}	$\mathrm{v}_{\mathrm{OH}} \longrightarrow \mathrm{~V}_{\mathrm{OL}}^{1.5 \mathrm{~V}}$
${ }^{\text {t }}$ HZ	0.0 V	$\mathrm{V}^{\mathrm{OH}} \longrightarrow^{+0.5 \mathrm{~V}}$
${ }^{\text {tpLI }}$	2.6 V	$\mathrm{v}_{\mathrm{OL}} \longrightarrow{ }^{0.5 \mathrm{v}}{ }^{2.6 \mathrm{~V}}$
${ }_{\text {t }}$ PH	0.0 V	$0.0 \mathrm{~V}$
$t_{\text {PZL }}$	2.6 V	$2.6 \mathrm{~V} \longrightarrow \mathrm{t}_{1.5 \mathrm{~V}} \mathrm{v}_{\mathrm{oL}}$

Setup and Hold Time

0057-8

Notes:

1. Diagram shown for HIGH data only. Output transition may be opposite sense.
2. Cross hatched area is don't care condition.

Pulse Width

0057-9
3. See the last page of this specification for Group A subgroup testing information.

CY7C510 Timing Diagram

Preload Timing Diagram

Three-State Timing Diagram

0057-12

CY7C510
SEMICONDUCTOR

Typical AC and DC Characteristics

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
45	CY7C510-45 PC CY7C510-45 LC CY7C510-45 JC CY7C510-45 DC CY7C510-45 GC	$\begin{aligned} & \text { P29 } \\ & \text { L81 } \\ & \text { J81 } \\ & \text { D30 } \\ & \text { G68 } \end{aligned}$	Commercial
55	CY7C510-55 PC CY7C510-55 LC CY7C510-55 JC CY7C510-55 DC CY7C510-55 GC	$\begin{aligned} & \hline \text { P29 } \\ & \text { L81 } \\ & \text { J81 } \\ & \text { D30 } \\ & \text { G68 } \end{aligned}$	Commercial
	CY7C510-55 LMB CY7C510-55 DMB CY7C510-55 GMB	$\begin{aligned} & \text { L81 } \\ & \text { D30 } \\ & \text { G68 } \end{aligned}$	Military
65	CY7C510-65 PC CY7C510-65 LC CY7C510-65 JC CY7C510-65 DC CY7C510-65 GC	$\begin{aligned} & \hline \text { P29 } \\ & \text { L81 } \\ & \text { J81 } \\ & \text { D30 } \\ & \text { G68 } \\ & \hline \end{aligned}$	Commercial
	CY7C510-65 LMB CY7C510-65 DMB CY7C510-65 GMB	$\begin{aligned} & \text { L81 } \\ & \text { D30 } \\ & \text { G68 } \end{aligned}$	Military
75	CY7C510-75 PC CY7C510-75 LC CY7C510-75 JC CY7C510-75 DC CY7C510-75 GC	$\begin{aligned} & \text { P29 } \\ & \text { L81 } \\ & \text { J81 } \\ & \text { D30 } \\ & \text { G68 } \end{aligned}$	Commercial
	CY7C510-75 LMB CY7C510-75 DMB CY7C510-75 GMB	$\begin{aligned} & \text { L81 } \\ & \text { D30 } \\ & \text { G68 } \end{aligned}$	Military

SEMICONDUCTOR
IFICATIONS
MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
\mathbf{V}_{OH}	$1,2,3$
\mathbf{V}_{OL}	$1,2,3$
\mathbf{V}_{IH}	$1,2,3$
$\mathbf{V}_{\mathbf{I L}}$	$1,2,3$
\mathbf{I}_{OH}	$1,2,3$
\mathbf{I}_{OL}	$1,2,3$
$\mathbf{I}_{\mathbf{I X}}$	$1,2,3$
$\mathbf{I}_{\mathbf{I}}$	$1,2,3$
\mathbf{I}_{OS}	$1,2,3$
$\mathbf{I}_{\mathrm{OZL}}$	$1,2,3$
$\mathbf{I}_{\mathrm{OZH}}$	$1,2,3$

Parameters	Subgroups
I_{CC} (Q1)	$1,2,3$
I_{CC} (Q2)	$1,2,3$
I_{CC} (Max.)	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\text {MA }}$	$7,8,9,10,11$
$\mathrm{t}_{\mathbf{S}}$	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
$\mathrm{t}_{\text {PW }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PDP }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PDY }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PHZ }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PLZ }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PZH }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PZL }}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HCL}}$	$7,8,9,10,11$

Document \# : 38-00014-B

- Low Power
- ICC (max. at 10 MHz) = 100 mA (commercial)
- ICC (max. at 10 MHz) $=$ 110 mA (military)
- $\mathbf{V}_{\mathbf{C C}}$ Margin
- 5V $\pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- 16×16 bit parallel multiplication with full precision 32-bit product output
- Two's complement, unsigned magnitude, or mixed mode multiplication
- CY7C516 pin compatible and functionally equivalent to Am29516, MPY016K, MPY016H
- CY7C517 pin compatible and functionally equivalent to Am29517

Functional Description

The CY7C516/517 are high-speed 16 x 16 parallel multipliers which operate at 38 ns clocked multiply times (26 MHz multiplication rate). The two input operands may be independently specified

as either two's complement or unsigned magnitude numbers. Controls are provided for rounding and format adjustment of the full precision 32-bit product.
On the 7C516, individually clocked input and output registers are provided to maximize throughput and to simplify bus interfacing. On the 7C517, a single clock (CLK) is provided, along with three register enables. This facilitates the use of the 7C517 in microprogrammed systems. The input and output registers are positive edge triggered D-type flip-flops. The output register may be made transparent for asynchronous output.

Selection Guide

		7C516-38 7C517-38	7C516-42 7C517-42	7C516-45 7C517-45	7C516-55 7C517-55	7C516-75 7C517-75
Maximum Multiply Time (ns) Clocked/Unclocked	Commercial	$38 / 58$		$45 / 65$	$55 / 75$	75/100
	Military		$42 / 65$		$55 / 75$	$75 / 100$

Functional Description (Continued)

Two output modes may be selected by using the output multiplexer control, MSPSEL. Holding MSPSEL LOW causes the most significant product (MSP) to be available at the dedicated output port. The LSP is simultaneously available at the bidirectional port shared with the Y-inputs.

The other mode of output involves toggling of the MSPSEL control, allowing both the MSP and LSP to be available for output through the dedicated 16-bit output port.

Pin Configurations

CYPRESS
SEMICONDUCTOR
Pin Configurations (Continued)
Pin Configuration for 68-Pin Grid Array (Top View)

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Ambient Temperature Under Bias $\ldots .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Input Voltage -0.5 V to +7.0 V
DC Voltage Applied to Outputs -0.5 V to V_{CC} Max.
Output Current, into Outputs (low) 10 mA
Static Discharge Voltage . $>1000 \mathrm{~V}$
(per MIL-STD-883 Method 3015)

Pin Definitions

Signal Name	I/O	Description
X_{15-0}	,	X-Input Data. This 16 -bit number may be interpreted as two's complement or unsigned magnitude.
$\begin{gathered} \mathrm{Y}_{15-0} \\ \left(\mathrm{P}_{15-0}\right) \end{gathered}$		Y-Input/LSP Output Data. This 16-bit number may be interpreted as two's complement or unsigned magnitude. The Y-input port may be multiplexed with the LSP output (P_{15-0}).
$\begin{aligned} & \mathbf{P}_{31-16} \\ & \left(\mathbf{P}_{15-0}\right) \end{aligned}$		Output Data. This 16-bit port may carry either the MSP (P_{31-16}) or the LSP $\left(\mathrm{P}_{15-0}\right)$.
FT		The MSP and LSP registers are made transparent (asynchronous operation) if FT is HIGH.
FA		Format Adjust Control. If FA is HIGH, a full 32-bit product is output. If FA is LOW, a leftshifted product is output, with the sign bit replicated in the LSP. FA must be HIGH for two's complement integer, unsigned magnitude, and mixed mode multiplication.
MSPSEL		Output Multiplexer Control. When MSPSEL is LOW, the MSP is available for output at the MSP output port, and the LSP is available at the Y-input/LSP output port. When MSPSEL is HIGH, the LSP is available at both ports (above) and the MSP is not available.
RND		Round Control. When RND is HIGH, a one is added to the MSB of the LSP. This position is dependent on the FA control; FA $=$ HIGH means RND adds to the 2-15 bit (\mathbf{P}_{15}), $F A=$ LOW means RND adds to the 2^{-16} bit (P_{14}).

TCX I Two's Complement Control X. X-input data are interpreted as two's complement when TCX is HIGH. TCX LOW means the data are interpreted as unsigned magnitude.

Operating Range

Range	Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Signal

Name I/O Description
TCY I Two's Complement Control Y. Y-Input data are interpeted as two's complement when TCY is HIGH. TCY LOW means the data are interpreted as unsigned magnitude.
$\overline{\mathrm{OEP}} \quad \mathrm{I} \quad \mathbf{P}_{31-16} / \mathbf{P}_{15-0}$ Output Port Three-State Control. When $\overline{\mathrm{OEP}}$ is LOW, the output port is enabled; when $\overline{\mathrm{OEP}}$ is HIGH, the drivers are in a high impedance state.
$\overline{\text { OEL }} \quad$ I \quad Y-in/P $\mathbf{1 5 - 0}^{\mathbf{0}}$ Port Three State Control. When $\overline{\text { OEL }}$ is LOW, the timeshaned port is enabled for LSP output. When OEL is HIGH, the output drivers are in a high impedance state. This is required for Y-input.

CY7C516 Only

CLKX I X-Register Clock. X-input data and TCX are latched in at the rising edge of CLKX.

CLKY I Y-Register Clock. Y-input data and TCY are latched in at the rising edge of CLKY.

CLKM I MSP Register Clock. The most significant product (MSP) is latched in at the MSP Register at the rising edge of CLKM.

CLKL I LSP Register Clock. The least significant product (LSP) is latched in at the LSP Register at the rising edge of CLKL.

CY7C517 Only

CLK I Clock. All enabled registers latch in their data at the rising edge of CLK.
$\overline{\text { ENX }}$ I X-Register Enable. When ENX is LOW, the XRegister is enabled. X-input data and TCX will be latched in at the rising edge of CLK when the register is enabled. When ENX is HIGH, the X-Register is in hold mode.
$\overline{E N Y} \quad$ I \quad X-Register Enable. $\overline{\text { ENY }}$ enables the Y-Register. (See ENX.)
$\overline{\text { ENP }}$ I Product Register Enable. $\overline{\text { ENP }}$ enables the product register. Both the MSP and LSP Sections are enabled by $\overline{\text { ENP. }}$. (See ENX.)

Input Formats (All Devices)

Fractional Two's Complement Input Format

$\mathrm{TCX}, \mathrm{TCY}=1$

Integer Two's Complement Input Format

$\mathbf{T C X}, \mathbf{T C Y}=1$

Unsigned Fractional Input Format

TCX, $\mathbf{T C Y}=0$

Unsigned Integer Input Format

$\mathbf{T C X}, \mathbf{T C Y}=0$

Output Formats (All Devices)

Fractional Two's Complement (Shifted)* Format

$\mathrm{FA}=0$

Fractional Two's Complement Output
$\mathrm{FA}=1$

Integer Two's Complement Output

$F A=1$

Unsigned Fractional Output

$F A=1$

Unsigned Integer Output

$\mathrm{FA}=1$
 *In this format an overflow occurs in the attempted multiplication of the two's complement number $1.000 \ldots(-1)$ with itself, yielding a product of 1.000 .. or -1 .

Electrical Characteristics Over Operating Rangel ${ }^{[4]}$

Parameters	Description		Test Conditions	Min.	Max.	Units
V_{OH}	Output HIGH Voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V
$\mathrm{IOH}^{\text {O }}$	Output HIGH Current		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	-0.4		mA
I_{OL}	Output LOW Current		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$	4.0		mA
$\mathrm{I}_{\text {IX }}$	Input Leakage Current		$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.	-10	10	$\mu \mathrm{A}$
$\mathrm{IOS}^{[1]}$	Output Short Circuit Current		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-3	-30	mA
IOZL	Output OFF (Hi-Z) Current		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\overline{\mathrm{OE}}=2.0 \mathrm{~V}$		-25	$\mu \mathrm{A}$
IOZH	Output OFF (Hi-Z) Current		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\overline{\mathrm{OE}}=2.0 \mathrm{~V}$	25		$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{1}\right)^{[2]}$	Supply Current (Quiescent)	Commercial (-38)	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}} \text { or } \\ & \mathrm{V}_{\mathrm{IH}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} ; \\ & \overline{\mathrm{OE}}=\mathrm{HIGH} \end{aligned}$		40	mA
		Military (-42)			45	
		All Others			30	
$\mathrm{ICC}^{\left(\mathrm{Q}_{2}\right)}{ }^{[2]}$	Supply Current (Quiescent)	Commercial	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq 0.4 \mathrm{~V} \text { or } \\ & 3.85 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{OE}}=\mathrm{HIGH} \end{aligned}$		20	mA
		Military			25	
I_{CC} (Max. $)^{[2]}$	Supply Current	Commercial	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz} ; \\ & \overline{\mathrm{OE}}=\mathrm{HIGH} \end{aligned}$		100	mA
		Military			110	

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	8	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
2. Two quiescent figures are given for different input voltage ranges. To calculate $I_{C C}$ at any given clock frequency, use $30 \mathrm{~mA}+\mathrm{I}_{\mathrm{CC}}$ (A.C.), where $\mathrm{I}_{\mathrm{CC}}(\mathrm{A} . \mathrm{C})=.(7 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for the Commercial temperature range. $\mathrm{I}_{\mathrm{CC}}(\mathrm{A} . \mathrm{C})=.(8 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for the Military temperature range.
3. Tested initally and after any design or process changes that may affect these parameters.
4. See the last page of this specification for Group A subgroup testing information.

Output Loads Used for A.C. Performance Characteristics

SEMICONDUCTOR
Switching Characteristics Over Operating Range ${ }^{[2]}$

Parameters	Description		Test Conditions	$\begin{array}{\|c\|} \hline \text { 7C516-38 } \\ \hline 7 \mathrm{C} 517-38 \\ \hline \end{array}$		$\begin{aligned} & \text { 7C516-42 } \\ & \text { 7C517-42 } \end{aligned}$		$\begin{aligned} & \text { 7C516-45 } \\ & \text { 7C517-45 } \end{aligned}$		$\begin{aligned} & \text { 7C516-55 } \\ & \text { 7C517-55 } \end{aligned}$		$\begin{array}{\|l\|} \hline 7 C 516-75 \\ \hline 7 \mathrm{C} 517-75 \\ \hline \end{array}$		Units	
			Min.	Max.											
$\mathrm{t}_{\text {MUC }}$	Unclocked Multiply Time			Load 1		58		65		65		75		100	ns
tMC	Clocked Multiply Time				38		42		45		55		75	ns	
ts	$\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}$, RND, TCX, TCY Set-up Time		7			8		20		20		25		ns	
t_{H}	$\mathrm{X}_{\mathrm{i}}, \dot{\mathrm{Y}}_{\mathrm{i}}$, RND, TCX, TCY Hold Time		3			3		3		3		3		ns	
tsE	ENX, ENY, ENP Set-up Time (7C517 Only)		10			15		20		20		25		ns	
the	ENX, ENY, ENP Hold Time (7C517 Only)		3			3		3		3		3		ns	
tPWH, tPWL	Clock Pulse Width (HIGH and LOW)		10			10		20		25		30		ns	
tPDSEL	MSPSEL to Product Out				18		21		25		25		30	ns	
tPDP	Output Clock to P				25		30		30		30		35	ns	
tPDY	Output Clock to Y				25		30		30		30		35	ns	
tPHZ	$\overline{\mathrm{OEP}}$ Disable Time	HIGH to Z	Load 2		15		17		25		25		30	ns	
tPLZ		LOW to Z			15		17		25		25		30	ns	
tPZH	$\overline{\mathrm{OEP}}$ Enable Time	Z to HIGH			23		25		30		30		35	ns	
tPZL		Z to LOW			23		25		30		30		35	ns	
tPHZ	$\overline{\text { OEL }}$ Disable Time	HIGH to Z			15		17		25		25		30	ns	
tPLZ		LOW to Z			15		17		25		25		30	ns	
tPZH	$\overline{\text { OEL Enable Time }}$	Z to HIGH			23		25		30		30		35	ns	
tPZL		Z to LOW			23		25		30		30		35	ns	
${ }^{\text {thCL }}$	Clock Low Hold Time CLKXY Relative to CLKML ${ }^{[1]}$		Load 1	0		0		0		0		0		ns	

Notes:

1. To ensure that the correct product is entered in the output registers, new data may not be entered into the input registers before the output registers have been clocked.
2. See the last page of this specification for Group A subgroup testing information.

Test Waveforms (All Devices)

TEST	V_{X}	OUTPUT WAVEFORM - MEASUREMENT LEVEL
ALL t ${ }_{\text {PD }}$'s	V_{Cc}	
${ }^{t} \mathrm{PHZ}$	0.0V	$\mathrm{V}_{\mathrm{OH}} \longrightarrow 0.0 \mathrm{~V}$
${ }^{t} \mathrm{PLZ}$	2.6 V	$\mathrm{V}_{\mathrm{OL}} \xrightarrow[0.5 \mathrm{~V}]{2.6 \mathrm{~V}}$
${ }^{\text {P }}$ PZH	0.0V	$0.0 \mathrm{~V} \longrightarrow-1.5 \mathrm{~V}$
${ }^{t}{ }_{\text {PZL }}$	2.6 V	

Setup and Hold Time (All Devices) ${ }^{[1]}$

Pulse Width (All Devices) ${ }^{\text {[2] }}$

0054-8

Notes:

1. Cross hatched area is don't care condition.
2. Diagram shown for HIGH data only. Output transition may be opposite sense.

Three-State Timing Diagram

Timing Diagram
7C516

Timing Diagram

7 C 517

\qquad

Typical DC and AC Characteristics

NORMALIZED FREQUENCY vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
38	$\begin{aligned} & \text { CY7C516-38PC } \\ & \text { CY7C517-38PC } \end{aligned}$	P29	Commercial
	$\begin{aligned} & \text { CY7C516-38LC } \\ & \text { CY7C517-38LC } \end{aligned}$	L81	
	CY7C516-38JC CY7C517-38JC	J81	
	$\begin{aligned} & \text { CY7C516-38DC } \\ & \text { CY7C517-38DC } \end{aligned}$	D30	
	CY7C516-38GC CY7C517-38GC	G68	
42	CY7C516-42LMB CY7C517-42LMB	L81	Military
	CY7C516-42DMB CY7C517-42DMB	D30	
	CY7C516-42GMB CY7C517-42GMB	G68	
45	$\begin{aligned} & \text { CY7C516-45PC } \\ & \text { CY7C517-45PC } \end{aligned}$	P29	Commercial
	CY7C516-45LC CY7C517-45LC	L81	
	CY7C516-45JC CY7C517-45JC	J81	
	CY7C516-45DC CY7C517-45DC	D30	
	$\begin{aligned} & \text { CY7C516-45GC } \\ & \text { CY7C517-45GC } \end{aligned}$	G68	

Speed (ns)	Ordering Code	Package Type	Operating Range
55	$\begin{aligned} & \text { CY7C516-55PC } \\ & \text { CY7C517-55PC } \end{aligned}$	P29	Commercial
	$\begin{aligned} & \text { CY7C516-55LC } \\ & \text { CY7C517-55LC } \end{aligned}$	L81	
	$\begin{aligned} & \text { CY7C516-55JC } \\ & \text { CY7C517-55JC } \end{aligned}$	J81	
	CY7C516-55DC CY7C517-55DC	D30	
	CY7C516-55GC CY7C517-55GC	G68	
	CY7C516-55LMB CY7C517-55LMB	L81	Military
	CY7C516-55DMB CY7C517-55DMB	D30	
	CY7C516-55GMB CY7C517-55GMB	G68	
75	$\begin{aligned} & \text { CY7C516-75PC } \\ & \text { CY7C517-75PC } \end{aligned}$	P29	Commercial
	CY7C516-75LC CY7C517-75LC	L81	
	$\begin{aligned} & \text { CY7C516-75JC } \\ & \text { CY7C517-75JC } \\ & \hline \end{aligned}$	J81	
	CY7C516-75DC CY7C517-75DC	D30	
	CY7C516-75GC CY7C517-75GC	G68	
	CY7C516-75LMB CY7C517-75LMB	L81	Military
	CY7C516-75DMB CY7C517-75DMB	D30	
	CY7C516-75GMB CY7C517-75GMB	G68	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
\mathbf{v}_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{OH}	$1,2,3$
I_{OL}	$1,2,3$
I_{IX}	$1,2,3$
I_{OS}	$1,2,3$
$\mathrm{I}_{\mathrm{OZL}}$	$1,2,3$
$\mathrm{I}_{\mathrm{OZH}}$	$1,2,3$
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{1}\right)$	$1,2,3$

Parameters	Subgroups
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{2}\right)$	$1,2,3$
$\mathrm{I}_{\mathrm{CC}}($ Max. $)$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\text {MUC }}$	7,8,9,10,11
t_{MC}	7,8,9,10,11
ts	7,8,9,10,11
t_{H}	7,8,9,10,11
$\mathrm{t}_{\text {SE }}$	7,8,9,10,11
t_{HE}	7,8,9,10,11
tpWh, $^{\text {P }}$ PWL	7,8,9,10,11
tPDSEL	7,8,9,10,11
tpDP	7,8,9,10,11
tPDY	7,8,9,10,11
tPHZ	7,8,9,10,11
${ }_{\text {t PLZ }}$	7,8,9,10,11
tPZH	7,8,9,10,11
${ }_{\text {tPZL }}$	7,8,9,10,11
$\mathrm{t}_{\text {PHZ }}$	7,8,9,10,11
tplZ	7,8,9,10,11
$\mathrm{tPZH}^{\text {P }}$	7,8,9,10,11
tpzL	7,8,9,10,11
$\mathrm{t}_{\mathrm{HCL}}$	7,8,9,10,11

Document \#: 38-00018-C

Features

- Fast

CY7C901-23 has a 23 ns Read Modify-Write Cycle; Commercial 25\% Faster than "C" Spec 2901 CY7C901-27 has a 27 ns Read Modify-Write Cycle; Military 15% Faster than "C" Spec 2901

- Low Power

70 mA (commercial)
90 mA (military)

- $V_{C C} 5 \mathrm{~V} \pm 10 \%$

Commercial and military

- Eight Function ALU
- Infinitely expandable in 4-bit increments
- Four Status Flags: Carry, overflow, negative, zero
- Capable of withstanding greater than 2000 V static discharge voltage
- Pin Compatible and Functional Equivalent to Am2901B, C

Functional Description

The CY7C901 is a high-speed, expandable, 4-bit wide ALU that can be used to implement the arithmetic section of a CPU, peripheral controller, or programmable controller. The instruction set of the CY7C901 is basic but yet so versatile that it can emulate the ALU of almost any digital computer.
The CY7C901, as illustrated in the block diagram, consists of a 16 -word by 4-bit dual-port RAM register file, a 4-bit ALU and the required data manipulation and control logic.
The operation performed is determined by nine input control lines (I_{0} to I_{8})
that are usually inputs from a microinstruction register.
The CY7C901 is expandable in 4-bit increments, has three-state data outputs as well as flag output, and can use either a full look ahead carry or a ripple carry.
The CY7C901 is a pin compatible, functional equivalent, improved performance replacement for the Am2901.
The CY7C901 is fabricated using an advanced 1.2 micron CMOS process that eliminates latchup, results in ESD protection over 2000 V and achieves superior performance with low power dissipation.

Logic Block Diagram

0030-1

Pin Configuration

Selection Guide See last page for ordering information.

Read Modify-Write Cycle (Min.) in ns	Operating ICC (Max.) in mA	Operating Range	Part Number
23	80	Commercial	CY7C901-23
27	90	Military	CY7C901-27
31	70	Commercial	CY7C901-31
32	90	Military	CY7C901-32

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $\ldots \ldots \ldots \ldots \ldots \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 10 to Pin 30) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State........................ 0.5 V to +7.0 V
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots-3.0 \mathrm{~V}$ to +7.0 V
Output Current into Outputs (Low) $\ldots \ldots \ldots \ldots . .30 \mathrm{~mA}$

Pin Definitions

Signal
Name I/O Description

$\mathrm{A}_{0}-\mathrm{A}_{3}$		These 4 address lines select one of the registers in the stack and output its contents on the (internal) A port.
$\mathrm{B}_{0}-\mathrm{B}_{3}$	I	These 4 address lines select one of the registers in the stack and output is contents on the (internal) B port. This can also be the destination address when data is written back into the register file.
$\mathrm{I}_{0}-\mathrm{I}_{8}$	I	These 9 instruction lines select the ALU data sources ($I_{0,1,2}$), the operation to be performed ($I_{3}, 4,5$) and what data is to be written into either the Q register or the register file ($\mathrm{I}_{6,7,8}$).

$\mathrm{D}_{0}-\mathrm{D}_{3} \quad \mathrm{I} \quad$ These are 4 data input lines that may be selected by the $\mathrm{I}_{0,1,2}$ lines as inputs to the ALU.
$\mathrm{Y}_{0}-\mathrm{Y}_{3} \quad \mathrm{O}$ These are three-state data output lines that, when enabled, output either the output of the ALU or the data in the A latches, as determined by the code on the $\mathrm{I}_{6,7,8}$ lines.
$\overline{\mathrm{OE}} \quad$ I Output Enable. This is an active LOW input that controls the $\mathrm{Y}_{0}-\mathrm{Y}_{3}$ outputs. When this signal is LOW the Y outputs are enabled and when it is HIGH they are in the high impedance state.
CP I Clock Input. The LOW level of the clock write data to the 16×4 RAM. The HIGH level of the clock writes data from the RAM to the A-port and B-port latches. The operation of the Q register is similar. Data is entered into the master latch on the LOW level of the clock and transferred from master to slave when the clock is HIGH.
Q3 I/O These two lines are bidirectional and are RAM $_{3}$ controlled by the $\mathrm{I}_{6,7,8}$ inputs. Electrically they are three-state output drivers connected to the TTL compatible CMOS inputs.

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latchup Current (Outputs) $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Signal

Name I/O Description
Q3 I/O Outputs: When the destination code on lines
RAM $_{3} \quad \mathrm{I}_{6,7,8}$ indicates a shift left (UP) operation the
(Cont.) three-state outputs are enabled and the MSB of the Q register is output on the Q_{3} pin and the MSB of the ALU output (F_{3}) is output on the RAM 3 pin.
Inputs: When the destination code indicates a shift right (DOWN) the pins are the data inputs to the MSB of the Q register and the MSB of the RAM.
Qo I/O These two lines are bidirectional and function in a $\mathrm{RAM}_{0} \quad$ manner similar to the Q_{3} and RAM_{3} lines, except that they are the LSB of the Q register and RAM.
$\mathrm{C}_{\mathrm{n}} \quad$ I The carry-in to the internal ALU.
$\mathrm{C}_{\mathrm{n}}+4 \quad \mathrm{O}$ The carry-out from the internal ALU.
$\overline{\mathbf{G}}, \overline{\mathbf{P}} \quad \mathrm{O}$ The carry generate and the carry propagate outputs of the ALU, which may be used to perform a carry look-ahead operation over the 4bits of the ALU.
OVR O Overflow. This signal is logically the exclusiveOR of the carry-in and the carry-out of the MSB of the ALU. This pin indicates that the result of the ALU operation has exceeded the capacity of the machine. It is valid only for the sign bit and assumes two's complement coding for negative numbers.
$F=0 \quad 0 \quad$ Open drain output that goes HIGH if the data on the ALU outputs ($\mathrm{F}_{0}, 1,2,3$) are all LOW. It indicates that the result of an ALU operation is zero (positive logic).
$\mathrm{F}_{3} \quad \mathrm{O}$ The most significant bit of the ALU output.

Functional Tables

Mnemonic	Micro Code				ALU Source Operands		
	$\mathbf{I}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{0}}$	Octal Code	\mathbf{R}	S	
	L	L	L	0	A	Q	
AB	L	L	H	1	A	B	
ZQ	L	H	L	2	O	Q	
ZB	L	H	H	3	O	B	
ZA	H	L	L	4	O	A	
DA	H	L	H	5	D	A	
DQ	H	H	L	6	D	Q	
DZ	H	H	H	7	D	O	

Mnemonic	Micro Code				ALUFunction	Symbol
	I5	I_{4}	I_{3}	Octal Code		
ADD	L	L	L	0	R Plus S	$\mathrm{R}+\mathrm{S}$
SUBR	L	L	H	1	S Minus R	$\mathrm{S}-\mathrm{R}$
SUBS	L	H	L	2	R Minus S	R-S
OR	L	H	H	3	R OR S	R \vee S
AND	H	L	L	4	R AND S	$\mathrm{R} \wedge \mathrm{S}$
NOTRS	H	L	H	5	$\overline{\mathrm{R}}$ AND S	$\overline{\mathrm{R}} \wedge \mathrm{S}$
EXOR	H	H	L	6	R EX-OR S	$R \forall S$
EXNOR	H	H	H	7	R EX-NOR S	$\bar{R} \forall \mathrm{~S}$

Figure 3. ALU Function Control

Figure 2. ALU Source Operand Control

Mnemonic	Micro Code				RAM Function		Q-Reg. Function		\mathbf{Y} Output	RAM Shifter		Q Shifter	
	I_{8}	I_{7}	I_{6}	Octal Code	Shift	Load	Shift	Load		RAM ${ }_{0}$	RAM_{3}	Q_{0}	Q3
QREG	L	L	L	0	X	None	None	$\mathrm{F} \rightarrow \mathrm{Q}$	F	X	X	X	X
NOP	L	L	H	1	X	None	X	None	F	X	X	X	X
RAMA	L	H	L	2	None	$\mathrm{F} \rightarrow \mathrm{B}$	X	None	A	X	X	X	X
RAMF	L	H	H	3	None	$\mathrm{F} \rightarrow \mathrm{B}$	X	None	F	X	X	X	X
RAMQD	H	L	L	4	DOWN	$\mathrm{F} / 2 \rightarrow \mathrm{~B}$	DOWN	$\mathrm{Q} / 2 \rightarrow \mathrm{Q}$	F	F_{0}	IN_{3}	Q_{0}	IN_{3}
RAMD	H	L	H	5	DOWN	$\mathrm{F} / 2 \rightarrow \mathrm{~B}$	X	None	F	F_{0}	IN_{3}	Q0	X
RAMQU	H	H	L	6	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	UP	$2 \mathrm{Q} \rightarrow \mathrm{Q}$	F	IN_{0}	F_{3}	IN_{0}	Q3
RAMU	H	H	H	7	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	X	None	F	IN_{0}	F_{3}	X	Q3

$\mathrm{X}=$ Don't care. Electrically, the input shift pin is a TTL input internally connected to a three-state output which is in the high-impedance state.
$\mathrm{A}=$ Register Addressed by A inputs.
$\mathbf{B}=$ Register Addressed by B inputs.
UP is toward MSB, DOWN is toward LSB.
Figure 4. ALU Destination Control

	I_{210} Octal	0	1	2	3	4	5	6	7
	$\begin{array}{r} \text { ALU } \\ \text { Source } \end{array}$								
$\begin{gathered} \text { Octal } \\ \mathbf{I}_{543} \end{gathered}$	ALU Function	A, Q	A, B	O, Q	O, B	O, A	D, A	D, Q	D, 0
0	$C_{n}=L$ R plus S $\mathrm{C}_{\mathrm{n}}=\mathrm{H}$	$\begin{gathered} \mathrm{A}+\mathrm{Q} \\ \mathrm{~A}+\mathrm{Q}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A}+\mathrm{B} \\ \mathrm{~A}+\mathrm{B}+1 \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ \mathrm{Q}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \mathrm{~B}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{D}+\mathrm{A} \\ \mathrm{D}+\mathrm{A}+1 \end{gathered}$	$\begin{gathered} \mathrm{D}+\mathrm{Q} \\ \mathrm{D}+\mathrm{Q}+1 \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \mathrm{D}+1 \\ \hline \end{gathered}$
1	$\begin{aligned} & \mathbf{C}_{\mathbf{n}}=\mathbf{L} \\ & S \text { minus } \mathbf{R} \\ & \mathbf{C}_{\mathbf{n}}=\mathbf{H} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Q}-\mathrm{A}-1 \\ \mathrm{Q}-\mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{B}-\mathrm{A}-1 \\ \mathrm{~B}-\mathrm{A} \end{gathered}$	$\bar{Q}-1$	$\mathrm{B}-1$ B	$A-1$ A	$\begin{gathered} \mathrm{A}-\mathrm{D}-1 \\ \mathrm{~A}-\mathrm{D} \end{gathered}$	$\begin{gathered} \mathrm{Q}-\mathrm{D}-1 \\ \mathrm{Q}-\mathrm{D} \end{gathered}$	$\begin{gathered} -\mathrm{D}-1 \\ -\mathrm{D} \end{gathered}$
2	$\mathbf{C}_{\mathbf{n}}=\mathbf{L}$ R minus S $\mathbf{C}_{\mathbf{n}}=\mathbf{H}$	$\begin{gathered} \mathrm{A}-\mathrm{Q}-1 \\ \mathrm{~A}-\mathrm{Q} \end{gathered}$	$\begin{gathered} A-B-1 \\ A-B \end{gathered}$	$\begin{gathered} -\mathrm{Q}-1 \\ -\mathrm{Q} \end{gathered}$	$\begin{gathered} -\mathrm{B}-1 \\ -\mathrm{B} \\ \hline \end{gathered}$	$\begin{gathered} -\mathrm{A}-1 \\ -\mathbf{A} \end{gathered}$	$\begin{gathered} \mathrm{D}-\mathrm{A}-1 \\ \mathrm{D}-\mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{D}-\mathrm{Q}-1 \\ \mathrm{D}-\mathrm{Q} \end{gathered}$	$\begin{gathered} \mathrm{D}-1 \\ \mathrm{D} \end{gathered}$
3	R OR S	$A \vee Q$	$A \vee B$	Q	B	A	D V A	D $\vee Q$	D
4	R AND S	$A \wedge Q$	$A \wedge B$	0	0	0	$\mathrm{D} \wedge \mathrm{A}$	$\mathrm{D} \wedge \mathrm{Q}$	0
5	$\overline{\mathrm{R}}$ AND S	$\overline{\mathrm{A}} \wedge \mathrm{Q}$	$\overline{\mathrm{A}} \wedge \mathrm{B}$	Q	B	A	$\overline{\mathrm{D}} \wedge \mathrm{A}$	$\overline{\mathrm{D}} \wedge \mathrm{Q}$	0
6	R EX-OR S	$A \forall Q$	$A \forall B$	Q	B	A	D $\forall \mathrm{A}$	$D \forall Q$	D
7	R EX-NOR S	$\overline{\mathrm{A} \forall \mathrm{Q}}$	$\overline{\mathrm{A} \forall \mathrm{B}}$	$\overline{\mathrm{Q}}$	$\overline{\mathrm{B}}$	$\overline{\text { A }}$	$\overline{D \forall A}$	$\overline{\mathrm{D} \forall \mathrm{Q}}$	$\overline{\mathrm{D}}$

$+=$ Plus; $-=$ Minus; $V=$ OR; $\Lambda=$ AND; $\forall=$ EX-OR
Figure 5. Source Operand and ALU Function Matrix

Description of Architecture

General Description

A block diagram of the CY7C901 is shown in Figure 1. The circuit is a 4-bit slice consisting of a register file (16×4 dual port RAM), the ALU, the Q register and the necessary control logic. It is expandable in 4-bit increments.

RAM

The RAM is addressed by two 4-bit address fields $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right.$, $\mathrm{B}_{0}-\mathrm{B}_{3}$) that cause the data to appear at the A or B (internal) ports. If the \mathbf{A} and \mathbf{B} addresses are the same, the data at the A and B ports will be identical.
New data is written into the RAM location specified by the B address when the RAM write enable (RAM EN) is active and the clock input is LOW. Each of the four RAM inputs is driven by a 3 -input multiplexer that allows the outputs of the ALU ($\mathrm{F}_{0}, 1,2,3$) to be shifted one bit position to the left, the right, or not to be shifted. The other inputs to the multiplexer are from the RAM_{3} and RAM_{0} I/O pins.
For a shift left (up) operation, the RAM_{3} output buffer is enabled and the RAM $_{0}$ multiplexer input is enabled. For a shift right (down) operation the RAM RA_{0} output buffer is enabled and the RAM ${ }_{3}$ multiplexer input is enabled.
The data to be written into the RAM is applied to the D inputs of the CY7C901 and is passed (unchanged) through the ALU to the RAM location addressed by the B word address.
The outputs of the RAM A and B ports drive separate $4-$ bit latches that are enabled (follow the RAM data) when the clock is HIGH. The outputs of the A latches go to three multiplexers whose outputs drive the two inputs to the ALU ($\mathrm{R}_{0,1,2,3}$) and ($\mathrm{S}_{0,1,2,3}$) and the ($\mathrm{Y}_{0,1,2,3}$) chip outputs.

ALU (Arithmetic Logic Unit)

The ALU can perform three arithmetic and five logical operations on two 4 -bit input words, R and S . The R inputs are driven from four 2-input multiplexers whose inputs are from either the (RAM) A-port or the external data (D) inputs. The S inputs are driven from four 3-input multiplexers whose inputs are from the A-port, the B-port, or the Q register. Both multiplexers are controlled by the
$\mathrm{I}_{0,1,2}$ inputs as shown in Figure 2. This configuration of multiplexers on the ALU R and S inputs enables the user to select eight pairs of combinations of A, B, D, Q and " 0 " (unselected) inputs as 4 -bits operands to the ALU. The logical and arithmetic operations performed by the ALU upon the data present at its R and S inputs are tabulated in Figure 3. The ALU has a carry-in $\left(\mathrm{C}_{\mathrm{n}}\right)$ input, carry-propagate $(\overline{\mathrm{P}})$ output, carry-generate $(\overline{\mathrm{G}})$ output, carry-out $\left(\mathrm{C}_{\mathrm{n}}+4\right)$ and overflow (OVR) pins to enable the user to (1) speed up arithmetic operations by implementing carry look-ahead logic and (2) determine if an arithmetic overflow has occurred.

The ALU data outputs ($\mathrm{F}_{0}, 1,2,3$) are routed to the RAM, the Q register inputs and the Y outputs under control of the $\mathrm{I}_{6,7,8}$ control signal inputs as shown in Figure 4. In addition, the MSB of the ALU is output as F3 so that the user can examine the sign bit without enabling the threestate outputs. The $\mathrm{F}=0$ output, used for zero detection, is HIGH when all bits of the F output are LOW. It is an open-drain output which may be wire OR'ed across multiple 7C901 processor slices.

Q Register

The Q register functions as an accumulator or temporary storage register. Physically it is a 4 -bit register implemented with master-slave latches. The inputs to the Q register are driven by the outputs from four 3-input multiplexers under control of the $\mathrm{I}_{6,7,8}$ inputs. The Q_{0} and $\mathrm{Q}_{3} \mathrm{I} / \mathrm{O}$ pins function in a manner similar to the RAM_{0} and RAM_{3} pins. The other inputs to the multiplexer enable the contents of the Q register to be shifted up or down, or the outputs of the ALU to be entered into the master latches. Data is entered into the master latches when the clock is LOW and transferred from master to slave (output) when the clock changes from LOW to HIGH.

ALU Source Operand and ALU Functions

The ALU source operands and ALU function matrix is summarized in Figure 5 and separated by logic operation or arithmetic operation in Figures 6 and 7, respectively. The $\mathrm{I}_{0,1,2}$ lines select eight pairs of source operands and the $I_{3,4,5}$ lines select the operation to be performed. The carry-in $\left(\mathrm{C}_{\mathrm{n}}\right)$ signal affects the arithmetic result and the internal flags; not the logical operations.

Subtraction

Recall that in two's complement integer coding -1 is equal to all ones and that in one's complement integer coding zero is equal to all ones. To convert a positive integer to its two's complement (negative) equivalent, invert (complement) the number and add 1 to it; i.e., $\mathrm{TWC}=\mathrm{ONC}+1$. In Figure 7 the symbol $-Q$ represents the two's complement of Q so that the one's complement of Q is then $-\mathrm{Q}-1$.

Octal $\mathbf{I}_{543}, \mathbf{I}_{210}$	$\mathrm{C}_{\mathrm{n}}=0$ (Low)		$\mathrm{C}_{\mathrm{n}}=1$ (High)	
	Group	Function	Group	Function
$\begin{aligned} & 00 \\ & 01 \\ & 05 \\ & 06 \\ & \hline \end{aligned}$	ADD	$\begin{aligned} & \mathrm{A}+\mathrm{Q} \\ & \mathrm{~A}+\mathrm{B} \\ & \mathrm{D}+\mathrm{A} \\ & \mathrm{D}+\mathrm{Q} \\ & \hline \end{aligned}$	ADD plus one	$\begin{aligned} & \mathrm{A}+\mathrm{Q}+1 \\ & \mathrm{~A}+\mathrm{B}+1 \\ & \mathrm{D}+\mathrm{A}+1 \\ & \mathrm{D}+\mathrm{Q}+1 \\ & \hline \end{aligned}$
$\begin{aligned} & 02 \\ & 03 \\ & 04 \\ & 07 \end{aligned}$	PASS	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \end{aligned}$	Increment	$\begin{aligned} & \mathrm{Q}+1 \\ & \mathrm{~B}+1 \\ & \mathrm{~A}+1 \\ & \mathrm{D}+1 \end{aligned}$
$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 27 \end{aligned}$	Decrement	$\begin{aligned} & \mathrm{Q}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{~A}-1 \\ & \mathrm{D}-1 \end{aligned}$	PASS	$\begin{aligned} & \hline \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \\ & \hline \end{aligned}$
$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 17 \end{aligned}$	1's Comp.	$\begin{aligned} & -\mathrm{Q}-1 \\ & -\mathrm{B}-1 \\ & -\mathrm{A}-1 \\ & -\mathrm{D}-1 \end{aligned}$	2's Comp. (Negate)	$\begin{aligned} & -\mathrm{Q} \\ & -\mathrm{B} \\ & -\mathrm{A} \\ & -\mathrm{D} \end{aligned}$
$\begin{array}{ll} 10 \\ 11 \\ 15 \\ 15 \\ 20 \\ 20 \\ 25 \\ 26 \end{array}$	Subtract (1's Comp.)	$\begin{aligned} & \mathrm{Q}-\mathrm{A}-1 \\ & \mathrm{~B}-\mathrm{A}-1 \\ & \mathrm{~A}-\mathrm{D}-1 \\ & \mathrm{Q}-\mathrm{D}-1 \\ & \mathrm{~A}-\mathrm{Q}-1 \\ & \mathrm{~A}-\mathrm{B}-1 \\ & \mathrm{D}-\mathrm{A}-1 \\ & \mathrm{D}-\mathrm{Q}-1 \end{aligned}$	Subtract (2's Comp.)	$\begin{aligned} & \mathrm{Q}-\mathrm{A} \\ & \mathrm{~B}-\mathrm{A} \\ & \mathrm{~A}-\mathrm{D} \\ & \mathrm{Q}-\mathrm{D} \\ & \mathrm{~A}-\mathrm{Q} \\ & \mathrm{~A}-\mathrm{B} \\ & \mathrm{D}-\mathrm{A} \\ & \mathrm{D}-\mathrm{Q} \end{aligned}$

Figure 7. ALU Arithmetic Mode Functions

Logic Functions for $\overline{\mathbf{G}}, \overline{\mathbf{P}}, \mathbf{C}_{\mathbf{n}}+4$, and $\mathbf{O V R}$

The four signals $G, P, C_{n}+4$, and OVR are designed to indicate carry and overflow conditions when the CY7C901 is in the add or subtract mode. The table below indicates the logic equations for these four signals for each of the eight ALU functions. The R and S inputs are the two inputs selected according to Figure 2.

Definitions ($+=$ OR)

$\mathrm{P}_{0}=\mathrm{R}_{0}+\mathrm{S}_{0}$	$\mathrm{G}_{0}=\mathrm{R}_{0} \mathrm{~S}_{0}$
$\mathrm{P}_{1}=\mathrm{R}_{1}+\mathrm{S}_{1}$	$\mathrm{G}_{1}=\mathrm{R}_{1} \mathrm{~S}_{1}$
$\mathrm{P}_{2}=\mathrm{R}_{2}+\mathrm{S}_{2}$	$\mathrm{G}_{2}=\mathrm{R}_{2} \mathrm{~S}_{2}$
$\mathrm{P}_{3}=\mathrm{R}_{3}+\mathrm{S}_{3}$	$\mathrm{G}_{3}=\mathrm{R}_{3} \mathrm{~S}_{3}$
$\mathrm{C}_{4}=\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{0}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{\mathrm{n}}$	
$\mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}$	${ }_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{\mathrm{n}}$

$$
-\mathbf{K}_{0} \mathbf{0} 0
$$

$$
\mathrm{P}_{2}=\mathrm{R}_{2}+\mathrm{s}_{2}
$$

$$
\mathrm{G}_{1}=\mathrm{R}_{1} \mathrm{~S}_{1}
$$

$$
\mathrm{O}_{2}=\mathrm{K} 2 \mathrm{~S}_{2}
$$

$$
\mathrm{C}_{4}=\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{0}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{\mathrm{n}}
$$

$$
\mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{\mathrm{n}}
$$

I543	Function	$\overline{\mathbf{P}}$	$\overline{\mathbf{G}}$	$\mathrm{C}_{\mathrm{N}}+4$	OVR
0	R + S	$\overline{\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}}$	$\overline{\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{G}_{0}}$	C_{4}	$\mathrm{C}_{3} \forall \mathrm{C}_{4}$
1	S-R	Same as $R+S$ equations, but substitute $\overline{\mathrm{R}_{\mathrm{i}}}$ for R_{i} in definitions			
2	R-S	Same as $R+S$ equations, but substitute $\overline{S_{i}}$ for S_{i} in definitions			
3	$\mathrm{R} \vee \mathrm{S}$	LOW	$\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$	$\overline{\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}}+\mathrm{C}_{\mathrm{n}}$	$\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}+\mathrm{C}_{\mathrm{n}}$
4	$\mathrm{R} \wedge \mathrm{S}$	LOW	$\mathrm{G}_{3}+\mathrm{G}_{2}+\mathrm{G}_{1}+\mathrm{G}_{0}$	$\mathrm{G}_{3}+\mathrm{G}_{2}+\mathrm{G}_{1}+\mathrm{G}_{0}+\mathrm{C}_{\mathrm{n}}$	$\mathrm{G}_{3}+\mathrm{G}_{2}+\mathrm{G}_{1}+\mathrm{G}_{0}+\mathrm{C}_{\mathrm{n}}$
5	$\overline{\mathrm{R}} \wedge \mathrm{S}$	LOW	\leftarrow Same as $\mathrm{R} \wedge \mathrm{S}$ equations, but substitute $\overline{\mathrm{R}_{\mathrm{i}}}$ for R_{i} in definitions		
6	$\mathrm{R} \forall \mathrm{S}$	$\leftarrow \quad$ Same as $\overline{\mathrm{R}} \forall \mathrm{S}$, but substitute $\overline{\mathrm{R}_{\mathrm{i}}}$ for R_{i} in definition			
7	$\overline{\mathrm{R}} \boldsymbol{\forall} \mathrm{S}$	$\mathrm{G}_{3}+\mathrm{G}_{2}+\mathrm{G}_{1}+\mathrm{G}_{0}$	$\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$	$\frac{\overline{G_{3}+P_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}}}{+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}\left(\mathrm{G}_{0}+\overline{\mathrm{C}}_{\mathrm{n}}\right)}$	See note

Notes:
$\left[\mathrm{P}_{2}+\mathrm{G}_{2} \mathrm{P}_{1}+\overline{\mathrm{G}}_{2} \overline{\mathrm{G}}_{1} \bar{P}_{0}+\overline{\mathrm{G}}_{2} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{0} \mathrm{C}_{\mathrm{n}}\right] \forall\left[\overline{\mathrm{P}}_{3}+\overline{\mathrm{G}}_{3} \overline{\mathrm{P}}_{2}+\overline{\mathrm{G}}_{3} \overline{\mathrm{G}}_{2} \mathrm{P}_{1}+\mathrm{G}_{3} \mathrm{G}_{2} \mathrm{G}_{1} \mathrm{P}_{0}+\overline{\mathrm{G}}_{3} \overline{\mathrm{G}}_{2} \overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{0} \mathrm{C}_{\mathrm{n}}\right]$
$+=\mathrm{OR}$
Figure 8

Electrical Characteristics Over Commercial and Military Operating Range ${ }^{[3]}$
V_{CC} Min. $=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ Max. $=5.5 \mathrm{~V}$

Parameters	Description	Test Conditions		Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} . \\ & \mathrm{I}_{\mathrm{OH}}=-3.4 \mathrm{~mA} \end{aligned}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \text { Commercial } \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \text { Military } \end{aligned}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \end{aligned}$		-10	10	$\mu \mathrm{A}$
$\mathrm{IOH}^{\text {O }}$	Output HIGH Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \hline \end{aligned}$		-3.4		mA
IOL	Output LOW Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	Commercial	20		mA
			Military	16		
IOZ	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		-40	+40	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISC	Output Short Circuit Current ${ }^{[1]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$			-85	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$.	Commercial -31		70	mA
			Commercial -23		80	
			Military -27, -32		90	
I_{CC}	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \geq \mathrm{V}_{\mathrm{CC}}-1.2 \mathrm{~V}, 10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IL}} \leq 0.4 \mathrm{~V} \end{aligned}$	Commercial		26.5	mA
			Military		31	

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
2. Tested initially and after any design or process changes that may affect these parameters.
3. See the last page of this specification for Group A subgroup testing information.

Output Loads used for AC Performance Characteristics

0030-4
All outputs except open drain

Open drain ($\mathbf{F}=0$)

Notes:

1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitance.
2. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for output disable tests.
3. Loads shown above are for commercial (20 mA) IOL spec only.

Cycle Time and Clock Characteristics ${ }^{[5]}$

CY7C901	$\mathbf{- 2 3}$	$\mathbf{- 2 7}$
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle).	2.3 ns	27 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I = 432 or 632)	43 MHz	37 MHz
Minimum Clock LOW Time	13 ns	15 ns
Minimum Clock HIGH Time	10 ns	12 ns
Minimum Clock Period	23 ns	27 ns

CY7C901-23 Commercial and CY7C901-27 Military AC Performance
 Characteristics

The tables below specify the guaranteed AC performance of these devices over the Commercial ($0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) and Military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) operating temperature range with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See "Electrical Characteristics" for loading circuit information.
This data applies to parts with the following numbers:
CY7C901-23PC
CY7C901-23DC
CY7C901-23LC
CY7C901-23JC CY7C901-27DMB CY7C901-27LMB

Combinational Propagation Delays. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}{ }^{[5]}$

To Output From Input	Y		F3		$\mathrm{C}_{\mathrm{n}+4}$		$\overline{\mathbf{G}}, \overline{\mathbf{P}}$		$\mathbf{F}=\mathbf{0}$		OVR		$\begin{aligned} & \mathbf{R A M}_{\mathbf{0}} \\ & \text { RAM }_{\mathbf{3}} \end{aligned}$		$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{3} \end{aligned}$	
CY7C901	23	27	23	27	23	27	23	27	23	27	23	27	23	27	23	27
A, B Address	30	33	30	33	30	33	28	33	30	33	30	33	30	33	-	-
Data	21	24	20	23	20	23	20	21	24	25	21	24	22	25	-	-
C_{n}	17	18	16	17	14	14	-	-	18	19	16	17	18	19	-	-
I_{012}	26	28	25	27	24	26	24	28	25	29	24	27	25	27	-	-
I 345	26	27	24	27	24	26	24	26	26	27	24	26	26	27	-	-
I_{678}	16	18	-	-	-	-	-	-	-	-	-	-	21	21	21	21
A Bypass ALU $(\mathrm{I}=2 \mathrm{XX})$	24	26	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clock -	24	27	23	26	23	26	23	25	24	27	24	26	24	27	19	20

Set-up and Hold Times Relative to Clock (CP) Input ${ }^{[5]}$

Output Enable/Disable Times ${ }^{[5]}$
Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY7C901-23	$\overline{\mathrm{OE}}$	Y	14	16
CY7C901-27	$\overline{\mathrm{OE}}$	Y	16	18

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $H \rightarrow L$ transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.
5. See the last page of this specification for Group A subgroup testing information.

CY7C901

Cycle Time and Clock Characteristics ${ }^{[5]}$

CY7C901-	$\mathbf{- 3 1}$	$\mathbf{- 3 2}$
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle).	31 ns	32 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I $=432$ or 632)	32 MHz	31 MHz
Minimum Clock LOW Time	16 ns	17 ns
Minimum Clock HIGH Time	15 ns	15 ns
Minimum Clock Period	31 ns	32 ns

For faster performance see CY7C901-23 specification on page 9 .

CY7C901-31 Commercial and

CY7C901-32 Military AC Performance

Characteristics

The tables below specify the guaranteed AC performance of these devices over the Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ and Military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) operating temperature range with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See "Electrical Characteristics" for loading circuit information.

This data applies to parts with the following numbers:
CY7C901-31PC CY7C901-31DC CY7C901-31LC CY7C901-31JC CY7C901-32DMB CY7C901-32LMB
Combinational Propagation Delays. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}[5]$

To Output	Y		F3		$\mathrm{C}_{\mathrm{n}+4}$		$\overline{\mathbf{G}}, \overline{\mathbf{P}}$		$\mathrm{F}=0$		OVR		$\begin{aligned} & \mathbf{R A M}_{0} \\ & \mathbf{R A M}_{3} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{3} \end{aligned}$	
From Input	-31	-32	-31	-32	-31	-32	-31	-32	-31	-32	-31	-32	-31	-32	-31	-32
A, B Address	40	48	40	48	40	48	37	44	40	48	40	48	40	48	-	-
D	30	37	30	37	30	37	30	34	38	40	30	37	30	37	-	-
C_{n}	22	25	22	25	20.	21	-	-	25	28	22	25	25	28	-	-
I_{012}	35	40	35	40	35	40	37	44	37	44	35	40	35	40	-	-
I_{345}	35	40	35	40	35	40	35	40	38	40	35	40	35	40	-	-
I_{678}	25	29	-	-	-	-	-	-	-	-	-	-	26	29	26	29
$\begin{aligned} & \text { A Bypass ALU } \\ & (\mathrm{I}=2 \mathrm{XX}) \end{aligned}$	35	40	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clock - -	35	40	35	40	35	40	35	40	35	40	35	40	35	40	28	33

Set-up and Hold Times Relative to Clock (CP) Input ${ }^{[5]}$

| Input | CP: | |
| :--- | :---: | :---: | :---: | :---: | :---: |

Output Enable/Disable Times ${ }^{[5]}$

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY7C901-31	$\overline{\mathrm{OE}}$	Y	23	23
CY7C901-32	$\overline{\mathrm{OE}}$	Y	25	25

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $H \rightarrow L$ transition to allow time to access the source data before the latches close. The \mathbf{A} address may then be changed. The \mathbf{B} address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $\mathrm{L} \rightarrow \mathrm{H}$ transition, regardless of when the clock $\mathrm{H} \rightarrow \mathrm{L}$ transition occurs.
5. See the last page of this specification for Group A subgroup testing information.

Minimum Cycle Time Calculations for 16-Bit Systems

Speed used in calculations for parts other than CY7C901 are representative for MSI parts.

Pipelined System, Add without Simultaneous Shift

	Data Loop			Control Loop
CY7C245	Clock to Output	12	CY7C245	Clock to Output
CY7C901	A, B to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	28	MUX	Select to Output
Carry Logic	$\overline{G_{0}}, \overline{P_{0}}$ to $\mathrm{C}_{\mathrm{n}}+\mathrm{Z}$	9	CY7C910	CC to Output
CY7C901	C_{n} to Worst Case	18	CY7C245	Access Time
Register	Setup	4		22
		71 ns		

Minimum Clock Period $=71$ ns

Pipelined System, Simultaneous Add and Shift Down (RIGHT)

CY7C245
CY7C901
Carry Logic
CY7C901
XOR and MUX
CY7C901

Data Loop

Clock to Output
A, B to $\bar{G}, \overline{\mathrm{P}}$
C_{n} to Worst Case $\quad 18$
Prop. Delay, Select 20
to Output
RAM_{3} Setup

	Control Loop
CY7C245	Clock to Output
MUX	Select to Output
CY7C910	CC to Output
CY7C245	Access Time

$\frac{9}{96} \mathrm{~ns}$
Minimum Clock Period $=96$ ns

Typical DC and AC Characteristics

Ordering Information

Read Modify- Write Cycle (ns)	Ordering Code	Package Type	Operating Range
23	CY7C901-23PC CY7C901-23DC CY7C901-23JC CY7C901-23LC	P17 D18 J67 L67	Commercial Commercial Commercial Commercial
27	CY7C901-27DMB	D18	Military
	CY7C901-27LMB	L67	Military
31	CY7C901-31PC	P17	Commercial
	CY7C901-31DC	D18	Commercial
	CY7C901-31JC	J67	Commercial
	CY7C901-31LC	L67	Commercial
32	CY7C901-32DMB	D18	Military
	CY7C901-32LMB	L67	Military

Pin Configuration

0030-9

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{SC}	$1,2,3$
I_{CC}	$1,2,3$
$\mathbf{I}_{\mathrm{CCl}}$	$1,2,3$

Cycle Time and Clock Characteristics

Parameters	Subgroups
Minimum Clock LOW Time	$7,8,9,10,11$
Minimum Clock HIGH Time	$7,8,9,10,11$

Combinational Propagation Delays

Parameters	Subgroups
From A, B Address to Y	$7,8,9,10,11$
From A, B Address to F_{3}	$7,8,9,10,11$
From A, B Address to $\mathrm{C}_{\mathrm{n}}+4$	$7,8,9,10,11$
From A, B Address to $\overline{\mathbf{G}, \overline{\mathbf{P}}}$	$7,8,9,10,11$
From A, B Address to $\mathrm{F}=0$	$7,8,9,10,11$
From A, B Address to OVR	$7,8,9,10,11$
From A, B Address to $\mathrm{RAM}_{0,3}$	$7,8,9,10,11$
From D to Y	$7,8,9,10,11$
From D to F_{3}	$7,8,9,10,11$
From D to $\mathrm{C}_{\mathrm{n}}+4$	$7,8,9,10,11$
From D to $\overline{\mathrm{G}, \overline{\mathrm{P}}}$	$7,8,9,10,11$
From D to $\mathrm{F}=0$	$7,8,9,10,11$
From D to OVR	$7,8,9,10,11$
From D to RAM	$7,3,9,10,11$
From C_{n} to Y	$7,8,9,10,11$
From C_{n} to F_{3}	$7,8,9,10,11$

Combinational Propagation Delays (Continued)

Parameters	Subgroups
From C_{n} to $\mathrm{C}_{\mathrm{n}+4}$	7,8,9,10,11
From C_{n} to $\mathrm{F}=0$	7,8,9,10,11
From C_{n} to OVR	7,8,9,10,11
From C_{n} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{012} to Y	7,8,9,10,11
From I_{012} to F_{3}	7,8,9,10,11
From I_{012} to $\mathrm{C}_{\mathrm{n}+4}$	7,8,9,10,11
From I_{012} to $\overline{\mathrm{G}}, \overline{\mathbf{P}}$	7,8,9,10,11
From I_{012} to $\mathrm{F}=0$	7,8,9,10,11
From I_{012} to OVR	7,8,9,10,11
From I_{012} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{345} to Y	7,8,9,10,11
From I_{345} to F_{3}	7,8,9,10,11
From I_{345} to $\mathrm{C}_{\mathrm{n}+4}$	7,8,9,10,11
From I_{345} to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	7,8,9,10,11
From I_{345} to $\mathrm{F}=0$	7,8,9,10,11
From I_{345} to OVR	7,8,9,10,11
From I_{345} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{678} to Y	7,8,9,10,11
From I_{678} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{678} to $\mathrm{Q}_{0,3}$	7,8,9,10,11
From A Bypass ALU to Y $(\mathrm{I}=2 \mathrm{XX})$	7,8,9,10,11
From Clock \sim to Y	7,8,9,10,11
From Clock \sim to F_{3}	7,8,9,10,11
From Clock - to $\mathrm{C}_{\mathrm{n}+4}$	7,8,9,10,11
From Clock \sim to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	7,8,9,10,11
From Clock \sim to $\mathrm{F}=0$	7,8,9,10,11
From Clock \sim to OVR	7,8,9,10,11
From Clock \sim to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From Clock \sim to $\mathrm{Q}_{0,3}$	7,8,9,10,11

Set-up and Hold Times Relative to Clock (CP) Input

Parameters	Subgroups
A, B Source Address Set-up Time Before $H \rightarrow L$	7,8,9,10,11
A, B Source Address Hold Time After $\mathrm{H} \rightarrow \mathrm{L}$	7,8,9,10,11
A, B Source Address Set-up Time Before L \rightarrow H	7,8,9,10,11
A, B Source Address Hold Time After L \rightarrow H	7,8,9,10,11
B Destination Address Set-up Time Before H \rightarrow L	7,8,9,10,11
B Destination Address Hold Time After $\mathrm{H} \rightarrow \mathrm{L}$	7,8,9,10,11
B Destination Address Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
B Destination Address Hold Time After L \rightarrow H	7,8,9,10,11
D Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11

Parameters	Subgroups
D Hold Time After L $\rightarrow \mathbf{H}$	7,8,9,10,11
C_{n} Set-up Time Before $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
C_{n} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{012} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{012} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{345} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{345} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{678} Set-up Time Before H \rightarrow L	7,8,9,10,11
I_{678} Hold Time After $\mathrm{H} \rightarrow \mathrm{L}$	7,8,9,10,11
I_{678} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{678} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
$\mathrm{RAM}_{0}, \mathrm{RAM}_{3}, \mathrm{Q}_{0}, \mathrm{Q}_{3}$ Set-up Time Before $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
$\mathrm{RAM}_{0}, \mathrm{RAM}_{3}, \mathrm{Q}_{0}, \mathrm{Q}_{3}$ Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11

Document \#: 38-00021-B

Features

- Fast
- CY7C909/11 has a 30 ns (min.) clock to output cycle time; commercial and military
- Low Power
- ICC (max.) $=55 \mathrm{~mA}$; commercial and military
- $V_{C C}$ margin
$-5 \mathrm{~V} \pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- Expandable

Infinitely expandable in 4-bit increments

- Capable of withstanding greater than 2000 V static discharge voltage
- Pin compatible and functional equivalent to 2909A/2911A

Description

The CY7C909 and CY7C911 are highspeed, four-bit wide address sequencers intended for controlling the sequence of execution of microinstructions contained in microprogram memory. They may be connected in parallel to expand the address width in 4 bit increments. Both devices are implemented in high performance CMOS for optimum speed and power.
The CY7C909 can select an address from any of four sources. They are:

1) a set of four external direct inputs $\left(\mathrm{D}_{\mathrm{i}}\right) ; 2$) external data stored in an internal register $\left(\mathrm{R}_{\mathrm{i}}\right)$; 3) a four word deep push/pop stack; or 4) a program counter register (which usually contains the last address plus one). The push/pop stack includes control lines so that it can efficiently execute nested subroutine linkages. Each of the four outputs $\left(\mathrm{Y}_{\mathrm{i}}\right)$ can be OR'ed with an external input for conditional skip or branch instructions. A ZERO input line forces the outputs to all zeros. The outputs are three state, controlled by the Output Enable ($\overline{\mathrm{OE}}$) input.
The CY7C911 is an identical circuit to the CY7C909, except the four OR inputs are removed and the D and R inputs are tied together. The CY7C911 is available in a 20 -pin, $300-$ mil package.

Logic Block Diagram

Pin Configurations

0042-3

0042-2

0042-5

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad
Supply Voltage to Ground Potential $\ldots . .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current, into Outputs (Low)
.30 mA

Static Discharge Voltage . > 2001 V
(per MIL-STD-883 Method 3015)
Latch-Up Current . > 200 mA

Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[3]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Rangel ${ }^{[4]}$

Parameters	Description	Test Conditions		Min.	Max.	Units
VOH	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$ (Comm.)		2.4		V
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$ (Mil.)		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage	$\mathrm{VCC}^{\text {M }}$, IOL - 16.0 mA		2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-2.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	$+10$	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-20	+20	$\mu \mathrm{A}$
Ios	Output Short ${ }^{[1]}$ Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$.	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}$	-30	-85	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		55	mA
			Military		55	
ICC_{1}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{V}_{\mathrm{IH}} \geq 3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.4 \mathrm{~V} \end{aligned}$	Commercial		35	mA
			Military		35	

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
COUT	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7		

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

 SCOPE

0042-7
Figure 2

Figure 1a
Figure 1b

	Commercial	Military
R_{1}	254Ω	258Ω
R_{2}	187Ω	216Ω

Switching Characteristics Over Operating Range ${ }^{[4,5]}$

	$\begin{aligned} & \hline 7 \mathrm{C} 909-30 \\ & \text { 7C911-30 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 909-30 \\ & \text { 7C911-30 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C909-40} \\ & \text { 7C911-40 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C909-40 } \\ & \text { 7C911-40 } \end{aligned}$		Units
	Commercial		Military		Commercial		Military		
Minimum Clock Low Time	15		15		20		20		ns
Minimum Clock High Time	15		15		20		20		ns
MAXIMUM COMBINATIONAL PROPAGATION DELAYS									
From Input To:	Y	$\mathrm{C}_{\mathrm{N}+4}$	Y	$\mathrm{C}_{\mathrm{N}+4}$	Y	$\mathrm{C}_{\mathrm{N}+4}$	Y	$\mathrm{C}_{\mathrm{N}+4}$	ns
D_{i}	17	18	18	19	17	22	20	25	ns
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	18	18	20	20	29	34	29	34	ns
$\mathrm{OR}_{\mathrm{i}}(7 \mathrm{C} 909)$	16	16	17	17	17	22	20	25	ns
C_{N}	-	13	-	15	-	14	-	16	ns
ZERO	18	18	20	20	29	34	30	35	ns
$\overline{\mathrm{OE}}$ Low to Output	16	-	18	-	25	-	25	-	ns
$\overline{\mathrm{OE}} \mathrm{HIGH}$ to HIGH Z ${ }^{[5]}$	16	-	18	-	25	-	25	-	ns
Clock HIGH, $\mathrm{S}_{1}, \mathrm{~S}_{0}=$ LH	20	20	22	22.	39	44	45	50	ns
Clock HIGH, $\mathrm{S}_{1}, \mathrm{~S}_{0}=\mathrm{LL}$	20	20	22	22	39	44	45	50	ns
Clock HIGH, $\mathrm{S}_{1}, \mathrm{~S}_{0}=\mathrm{HL}$	20	20	22	22	44	49	53	58	ns
MINIMUM SET-UP AND HOLD TIMES (All Times Relative to Clock LOW to HIGH Transition)									
From Input	Set-up	Hold	Set-up	Hold	Set-up	Hold	Set-up	Hold	
$\overline{\mathrm{RE}}$	11	0	12	0	19	0	19	0	ns
$\mathrm{R}_{\mathrm{i}}{ }^{\text {[6] }}$	10	0	11	0	10	0	12	0	ns
Push/Pop	12	0	13	0	25	0	27	0	ns
FE	12	0	13	0	25	0	27	0	ns
C_{N}	10	0	11	0	18	0	18	0	ns
D_{i}	14	0	16	0	25	0	25	0	ns
$\mathrm{OR}_{\mathrm{i}}(7 \mathrm{C} 909)$	12	0	14	0	25	0	25	0	ns
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	14	0	16	0	25	0	29	0	ns
$\overline{\text { ZERO }}$	12	0	13	0	25	0	29	0	ns

Notes:

5. Output Loading as in Figure 1 b.
6. R_{i} and D_{i} are internally connected on the CY7C911. Use R_{i} set-up and hold times when D_{i} inputs are used to load register.

Switching Waveforms

0042-8

Functional Description

The tables below define the control logic of the 7C909/911. Table 1 contains the Multiplexer Control Logic which selects the address source to appear on the outputs.

Table 1. Address Source Selection

OCTAL	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	SOURCE FOR Y OUTPUTS
0	L	L	Microprogram Counter (μ PC)
1	L	H	Address/Holding Register (AR)
2	H	L	Push-Pop stack (STK)
3	\mathbf{H}	H	Direct inputs ($\mathrm{D}_{\mathbf{i}}$)

Control of the Push/Pop Stack is contained in Table 2. FILE ENABLE ($\overline{\mathrm{FE}}$) enables stack operations, while Push/Pop (PUP) controls the stack.

Table 2. Synchronous Stack Control

$\overline{\text { FE }}$	PUP	PUSH-POP STACK CHANGE
H	X	No change
L	H	Push current PC into stack increment stack pointer pop stack, decrement stack pointer
L	L	

Table 3 illustrates the Output Control Logic of the 7C909/911. The ZERO control forces the outputs to zero. The OR inputs are OR'ed with the output of the multiplexer.

Table 3. Output Control

OR $_{\mathbf{i}}$	$\overline{\text { ZERO }}$	$\overline{\mathbf{O E}}$	$\mathbf{Y}_{\mathbf{i}}$
\mathbf{X}	X	H	High Z
\mathbf{X}	L	L	L
H	H	L	\mathbf{H}
\mathbf{L}	\mathbf{H}	\mathbf{L}	Source selected by $\mathrm{S}_{0} \mathrm{~S}_{1}$

Table 4 defines the effect of $\mathrm{S}_{0}, \mathrm{~S}_{1}, \overline{\mathrm{FE}}$ and PUP control signals on the 7C909. It illustrates the Address Source on the outputs and the contents of the Internal Registers for every combination of these signals. The Internal Register contents are illustrated before and after the Clock LOW to HIGH edge.

Table 4

CYCLE	$\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{0}}, \overline{\mathrm{FE}}, \mathbf{P U P}$	$\mu \mathbf{P C}$	REG	STK0	STK1	STK2	STK3	Yout	COMMENT	$\begin{gathered} \hline \text { PRINCIPLE } \\ \text { USE } \end{gathered}$
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	0000 -	$\begin{gathered} \mathbf{J} \\ \mathbf{J}+1 \end{gathered}$	$\begin{aligned} & \hline \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rd} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Ra} \end{aligned}$	J	Pop Stack	End Loop
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	0001 -	$\begin{gathered} \mathbf{J} \\ \mathbf{J}+1 \end{gathered}$	$\begin{aligned} & \hline \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\underset{\mathbf{J}}{\mathrm{Ra}}$	$\begin{aligned} & \hline \mathrm{Rb} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Re} \end{aligned}$	$\overline{\mathrm{J}}$	Push μ PC	Set-up Loop
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	001 X -	$\begin{gathered} \mathbf{J} \\ \mathbf{J}+1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rc} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rd} \end{aligned}$	J	Continue	Continue
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	0100	$\begin{gathered} \mathrm{J} \\ \mathrm{~K}+1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Re} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rd} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Ra} \end{aligned}$	K	Use AR for Address; Pop Stack	End Loop
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	0101 -1	$\begin{gathered} \mathbf{J} \\ \mathbf{K}+1 \end{gathered}$	$\begin{aligned} & \hline \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\underset{\substack{\mathrm{Ra} \\ \mathbf{J}}}{ }$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{Rc}} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \hline \mathrm{Rd} \\ & \mathrm{Rc} \end{aligned}$	\bar{K}	Jump to Address in AR; Push μ PC	JSR AR
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	011 X	$\begin{gathered} \mathbf{J} \\ \mathbf{K}+1 \end{gathered}$	$\begin{aligned} & \bar{K} \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rd} \end{aligned}$	K	Jump to Address in AR	JMP AR
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	1000 -	$\begin{gathered} \mathbf{J} \\ \mathbf{R a}+1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rc} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rd} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Ra} \end{aligned}$	Ra	Jump to Address in STK0; Pop Stack	RTS
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	1001	$\begin{gathered} \mathrm{J} \\ \mathrm{Ra}+1 \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$\underset{\mathrm{J}}{\mathrm{Ra}}$	$\begin{aligned} & \hline \mathrm{Rb} \\ & \mathrm{Ra} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \hline \mathrm{Rd} \\ & \mathrm{Rc} \\ & \hline \end{aligned}$	$\overline{\mathrm{Ra}}$	Jump to Address in STK0; Push μ PC	
$\begin{gathered} \mathbf{N} \\ \mathrm{N}+1 \end{gathered}$	101 X	$\begin{gathered} \mathbf{J} \\ \mathbf{R a}+1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rd} \end{aligned}$	$\overline{\mathrm{Ra}}$	Jump to Address in STK0	Stack Ref (Loop)
$\begin{gathered} \mathbf{N} \\ \mathbf{N}+1 \end{gathered}$	1100	$\begin{gathered} \mathbf{J} \\ \mathbf{D}+1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rd} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Rd} \\ & \mathrm{Ra} \\ & \hline \end{aligned}$	D	Jump to Address on D; Pop Stack	End Loop
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	1101	$\begin{gathered} \mathrm{J} \\ \mathrm{D}+1 \end{gathered}$	$\begin{aligned} & \hline \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$\underset{\mathrm{J}}{\mathrm{Ra}}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rc} \\ & \hline \end{aligned}$	D	$\begin{aligned} & \text { Jump to Address on D; } \\ & \text { Push } \mu \text { PC } \end{aligned}$	JSR D
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	111 X	$\begin{gathered} \mathbf{J} \\ \mathbf{D}+1 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Rc} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \hline \mathrm{Rd} \\ & \mathrm{Rd} \\ & \hline \end{aligned}$	$\overline{\mathrm{D}}$	Jump to Address on D	JMP D

$\mathbf{J}=$ Contents of Microprogram Counter
$\mathrm{K}=$ Contents of Address Register
$\mathbf{R}_{\mathrm{a}}, \mathrm{R}_{\mathrm{b}}, \mathbf{R}_{\mathrm{c}}, \mathbf{R}_{\mathrm{d}}=$ Contents in Stack

SEMICONDUCTOR

Functional Description (Continued)

Two examples of Subroutine Execution appear below. Figure 3 illustrates a single subroutine while Figure 4 illustrates two nested subroutines.
The instruction being executed at any given time is the one contained in the microword register ($\mu \mathrm{WR}$). The contents of the μ WR also controls the four signals $S_{0}, S_{1}, \overline{F E}$, and PUP. The starting address of the subroutine is applied to the D inputs of the 7C909 at the appropriate time.
In the columns on the left is the sequence of microinstructions to be executed. At address $\mathbf{J}+2$, the sequence control portion of the microinstruction contains the command
"Jump to sub-routine at A ". At the time T_{2}, this instruction is in the $\mu \mathrm{WR}$, and the 7C909 inputs are set-up to execute the jump and save the return address. The subroutine address A is applied to the D inputs from the $\mu \mathrm{WR}$ and appears on the Y outputs. The first instruction of the subroutine, $I(A)$, is accessed and is at the inputs of the μ WR. On the next clock transition, I(A) is loaded into the μ WR for execution, and the return address $J+3$ is pushed onto the stack. The return instruction is executed at T_{5}. Figure 4 is a similar timing chart showing one subroutine linking to a second, the latter consisting of only one microinstruction.

CONTROL MEMORY

Execute Cycle	Microprogram	
	Address	Sequencer Instruction
T_{0}	$\mathrm{~J}-1$	-
T_{1}	$\mathrm{~J}+1$	-
T_{2}	$\mathrm{~J}+2$	JSR \mathbf{A}
T_{6}	$\mathrm{~J}+3$	-
T_{7}	$\mathrm{~J}+4$	-
	-	-
	-	-
	-	-
	-	-
T_{3}	\mathbf{A}	$\mathbf{-}(\mathbf{A})$
T_{4}	$\mathrm{~A}+1$	-
T_{5}	$\mathrm{~A}+2$	RTS
	-	-
	-	-
	-	-
	-	-
	-	-
	-	-

Execute Cycle		T_{0}	T1	T2	T3	T4	T5	T6	T_{7}	T_{8}	T9
Clock Signals											
Inputs (from $\mu \mathrm{WR}$)	$\left(\begin{array}{c} \mathrm{S}_{1}, \mathrm{~S}_{0} \\ \mathrm{FE} \\ \mathrm{PUP} \\ \mathrm{D} \end{array}\right.$	$\begin{aligned} & \hline 0 \\ & \mathbf{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathbf{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	O \mathbf{H} \mathbf{X} \mathbf{X}	2 L L \mathbf{X}	0 \mathbf{H} \mathbf{X} \mathbf{X}	$\begin{aligned} & \hline 0 \\ & \mathbf{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$		
Internal Registers	$\begin{array}{\|l\|} \mu \text { PC } \\ \text { STK0 } \\ \text { STK1 } \\ \text { STK2 } \\ \text { STK3 } \end{array}$	$\mathrm{J}+1$	$\mathrm{J}+2$	$\mathrm{J}+3$	$\begin{gathered} A+1 \\ J+3 \end{gathered}$	$\begin{gathered} A+2 \\ J+3 \end{gathered}$	A+3 J+3 - -	J + 4 - - - -	J+5 \cdot - - -		
Output	Y	$\mathrm{J}+1$	$\mathbf{J}+2$	A	A+1	A +2	$\mathrm{J}+3$	J + 4	J + 5		
ROM Output	(Y)	I(J+1)	JSR A	I(A)	$\mathbf{I}(\mathbf{A}+1)$	RTS	$1(J+3)$	I(J+4)	$1(\mathrm{~J}+5)$		
Contents of $\mu \mathrm{WR}$ (Instruction being executed)	$\mu \mathrm{WR}$	I(J)	$\mathrm{I}(\mathrm{J}+1)$	JSR A	I(A)	I(A+1)	RTS	$\mathbf{I}(\mathrm{J}+3)$	$I(J+4)$		

0042-9
Figure 3. Subroutine Execution.
$\mathrm{C}_{\mathrm{n}}=\mathrm{HIGH}$
CONTROL MEMORY

Execute Cycle	Microprogram	
	Address	Sequencer Instruction
	J-1	-
T_{0}	J	\cdot
T_{1}	$\mathrm{J}+1$	-
T_{2}	$\mathrm{J}+2$	JSR A
T9	J + 3	-
	-	\bullet
	-	-
	-	-
T3	A	-
T_{4}	A+1	-
Ts	A+2	JSR B
T_{7}	A+3	-
T_{8}	A+4	RTS
	-	-
	-	-
	-	-
T_{6}	B	RTS
	-	.
	-	-

Execute C	ycle	T_{0}	T_{1}	T	T3	T_{4}	T5	T6	T7	T_{8}	T9
Clock Signals											
Inputs (from $\mu \mathrm{WR}$)	$\begin{array}{\|c} \hline \mathbf{s}_{1}, s_{0} \\ \mathrm{FE} \\ \text { PUP } \\ \mathrm{D} \end{array}$	$\begin{aligned} & \hline 0 \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & 3 \\ & \mathbf{L} \\ & \mathbf{H} \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathbf{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & 3 \\ & \text { L } \\ & \text { H } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 2 \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & 2 \\ & L \\ & L \\ & \mathbf{L} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$
Internal Registers	$\begin{array}{\|l\|} \hline \mu \text { PC } \\ \text { STK0 } \\ \text { STK } 1 \\ \text { STK2 } \\ \text { STK } 3 \end{array}$	$\mathrm{J}+1$	$\mathrm{J}+2$	$\mathbf{J}+\mathbf{3}$	A+1 $\mathrm{J}+3$ - -	A+2 $\mathrm{J}+3$ - -	A+3 $\mathrm{J}+3$ \cdot -	B+1 A +3 J +3	A+4 $\mathrm{J}+3$ - -	A+5 J +3 - -	$\mathrm{J}+4$ \cdot \cdot
Output	Y	$\mathbf{J}+1$	$\mathrm{J}+2$	A	A + 1	A+2	B	A+3	A+4	J +3	$\mathrm{J}+4$
ROM Output	(Y)	I(J+1)	JSR A	I(A)	I($\mathrm{A}+1)$	JSR B	RTS	$\mathbf{I}(\mathbf{A}+3)$	RTS	I(J + 3)	$\mathrm{I}(\mathrm{J}+4)$
Contents of $\mu \mathrm{WR}$ (Instruction being executed)	$\mu \mathrm{WR}$	l(J)	I(J+1)	JSR A	I(A)	$\mathrm{I}(\mathrm{A}+1)$	JSR B	RTS	$\mathrm{I}(\mathrm{A}+3)$	RTS	$\mathbf{I}(\mathrm{J}+3)$

Figure 4. Two Nested Subroutines. Routine B is Only One Instruction.
\qquad

R_{i} and D_{i} connected together and OR_{i} Inputs removed on CY 7 C 911
Figure 5. Microprogram Sequencer Block Diagram

Functional Description (Continued)

Architecture

The CY7C909 and CY7C911 are CMOS microprogram sequencers for use in high speed processor applications. They are cascadable in 4-bit increments. Two devices can address 256 words of microprogram, three can address up to 4 K words, and so on. The architecture of the
CY7C909/911 is illustrated in the logic diagram in Figure 5. The various blocks are described below.

Multiplexer

The Multiplexer is controlled by the S_{0} and S_{1} inputs to select the address source. It selects either the Direct Inputs $\left(\mathrm{D}_{\mathrm{i}}\right)$, the Address Register (AR), the Microprogram Counter ($\mu \mathrm{PC}$), or the stack (SP) as the source of the next microinstruction address.

Direct Inputs

The Direct Inputs $\left(D_{i}\right)$ allow addresses from an external source to be output on the Y outputs. On the CY7C911, the direct inputs are also the inputs to the Address Register.

Address Register

The Address Register (AR) consists of four D-type, edgetriggered flip-flops which are controlled by the Register $\overline{\text { Enable }}(\overline{\mathrm{RE}})$ input. When $\overline{R e g i s t e r ~ E n a b l e ~ i s ~ L O W, ~ n e w ~}$ data is entered into the register on the LOW to HIGH clock transition.

Microprogram Counter

The Microprogram Counter ($\mu \mathrm{PC}$) is composed of a 4-bit incrementer followed by a 4 -bit register. The incrementer has a Carry-in $\left(\mathrm{C}_{\mathrm{N}}\right)$ input and a Carry-out $\left(\mathrm{C}_{\mathrm{N}}+4\right)$ output to facilitate cascading. The Carry-in input controls the microprogram counter. When Carry-in is HIGH the incrementer counts sequentially. The counter register is loaded with the current Y output plus one $(\mathrm{Y}+1 \rightarrow \mu \mathrm{PC})$ on the next clock cycle. When Carry-in is LOW the incrementer does not count. The microprogram counter register is
loaded with the same Y output ($\mathrm{Y}->\mu \mathrm{PC}$) on the next clock cycle.

Stack

The Stack consists of a 4×4 memory array and a built-in Stack Pointer (SP) which always points to the last word written. The Stack is used to store return addresses when executing microsubroutines.
The Stack Pointer is an up/down counter controlled by $\overline{\text { File }}$ Enable ($\overline{\mathrm{FE}}$) and Push/Pop (PUP) inputs. The File Enable input allows stack operations only when it is LOW. The Push/Pop input controls the stack pointer position.
The PUSH operation is initiated at the beginning of a microsubroutine. Push/Pop is set HIGH while File Enable is kept LOW. The stack pointer is incremented and the memory array is written with the microinstruction address following the subroutine jump that initiated the push.
The POP operation is initiated at the end of a microsubroutine to obtain the return address. Both Push/Pop and File Enable are set LOW. The return address is already available to the multiplexer. The stack pointer is decremented on the next LOW to HIGH clock transition, effectively removing old information from the top of the stack. The stack is configured so that data will roll-over if more than four POPs are performed, thus preventing data from being lost.
The contents of the memory position pointed to by the Stack Pointer is always available to the multiplexer. Stack reference operations can thus be performed without a push or a pop. Since the stack is four words deep, up to four microsubroutines can be nested.
The $\overline{\mathrm{ZERO}}$ input resets the four Y outputs to a binary zero state. The OR inputs (7C909 only) are connected to the Y outputs such that any output can be set to a logical one.
The $\overline{\text { Output Enable }}(\overline{\mathrm{OE}})$ input controls the Y outputs. A HIGH on Output Enable sets the outputs into a high impedance state.

Definition of Terms

Name	
INPUTS	Description
$\mathrm{S}_{1}, \mathrm{~S}_{0}$	Multiplexer Control Lines, for Access Source Selection
$\overline{\mathrm{FE}}$	$\overline{\text { File Enable, Enables Stack Operation, Active LOW }}$
PUP	Push/Pop, Selects Stack Operation
$\overline{\mathrm{RE}}$	$\overline{\text { Register Enable, Enables Address Register Active LOW }}$
$\overline{\mathrm{ZERO}}$	Forces Output to Logical Zero
$\overline{\mathrm{OE}}$	$\overline{\text { Output Enable, Controls Three-State Outputs Active LOW }}$
$\overline{\mathrm{OR}} \mathrm{i}$	Logic OR Input to each Address Output Line (7C909 only)
C_{n}	Carry-In, Controls Microprogram Counter
R_{i}	Inputs to the Internal Address Register
D_{i}	Direct Inputs to the Multiplexer
CP	Clock Input

Definition of Terms (Continued)

Name	Description
OUTPUTS	
Y_{i}	Address Outputs
$\mathrm{C}_{\mathrm{N}+4}$	Carry-Out from Incrementer
INTERNAL SIGNALS	
$\mu \mathrm{PC}$	Contents of the Microprogram Counter
AR	Contents of the Address Register
$\begin{aligned} & \text { STK0- } \\ & \text { STK } 3 \end{aligned}$	Contents of the Push/Pop Stack
SP	Contents of the Stack Pointer
EXTERNAL SIGNALS	
A	Address to the Counter Memory
I(A)	Instruction in Control Memory at Address A
$\mu \mathrm{WR}$	Contents of the Microword Register at the Output of the Control Memory
T_{N}	Time Period (Cycle) n

Typical DC and AC Characteristics

NORMALIZED OUTPUT DELAY
vs. OUTPUT LOADING

NORMALIZED ICC
vs. FREQUENCY

Ordering Information

Clock Cycle (ns)	Ordering Code	Package Type	Operating Range
30	CY7C909-30PC	P15	Commercial
40	CY7C909-40PC	P15	Commercial
30	CY7C909-30JC	J64	Commercial
40	CY7C909-40JC	J64	Commercial
30	CY7C909-30DC	D16	Commercial
40	CY7C909-40DC	D16	Commercial
40	CY7C909-40LC	L64	Commercial
30	CY7C909-30DMB	D16	Military
40	CY7C909-40DMB	D16	Military
40	CY7C909-40LMB	L64	Military

Clock Cycle (ns)	Ordering Code	Package Type	Operating Range
30	CY7C911-30PC	P5	Commercial Commercial
40	CY7C911-40PC	P5	Col
30	CY7C911-30JC	J61	Commercial
40	CY7C911-40JC	J61	Commercial
30	CY7C911-30DC	D6	Commercial
40	CY7C911-40DC	D6	Commercial
40	CY7C911-40LC	L61	Commercial
30	CY7C911-30DMB	D6	Military
40	CY7C911-40DMB	D6	Military
40	CY7C911-40LMB	L61	Military

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
Minimum Clock Low Time	7,8,9,10,11
Minimum Clock High Time	7,8,9,10,11
MAXIMUM COMBINATIONAL PROPAGATION DELAYS	
D_{i} to Y	7,8,9,10,11
D_{i} to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Y	7,8,9,10,11
S_{0}, S_{1} to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
OR ${ }_{\mathrm{i}}(7 \mathrm{C} 909)$ to Y	7,8,9,10,11
OR ${ }_{\mathrm{i}}$ (7C909) to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
C_{N} to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
$\overline{\text { ZERO }}$ to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LH}$ to Y	7,8,9,10,11
$\text { Clock High, } \mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LH}$ $\text { to } \mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LL}$ to Y	7,8,9,10,11
$\begin{aligned} & \text { Clock High, } \mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LL} \\ & \text { to } \mathrm{C}_{\mathrm{N}+4} \end{aligned}$	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{HL}$ to Y	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{HL}$ $\text { to } \mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11

Parameters	Subgroups
MINIMUM SET-UP AND HOLD TIMES	
$\overline{\mathrm{RE}}$ Set-up Time	7,8,9,10,11
$\overline{\mathrm{RE}}$ Hold Time	7,8,9,10,11
Push/Pop Set-up Time	7,8,9,10,11
Push/Pop Hold Time	7,8,9,10,11
FE Set-up Time	7,8,9,10,11
FE Hold Time	7,8,9,10,11
C_{N} Set-up Time	7,8,9,10,11
C_{N} Hold Time	7,8,9,10,11
D_{i} Set-up Time	7,8,9,10,11
D_{i} Hold Time	7,8,9,10,11
OR_{i} (7C909) Set-up Time	7,8,9,10,11
$\mathrm{OR}_{\mathrm{i}}(7 \mathrm{C} 909)$ Hold Time	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ Set-up Time	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ Hold Time	7,8,9,10,11
$\overline{\text { ZERO }}$ Set-up Time	7,8,9,10,11
ZERO Hold Time	7,8,9,10,11

Document \# : 38-00015-B

Features

- Fast
- CY7C910-40 has a 40 ns (min.) clock cycle; commercial
- CY7C910-46 has a 46 ns (min.) clock cycle; military
- Low power
$-\mathrm{I}_{\mathrm{CC}}($ max. $)=70 \mathrm{~mA}$
- $V_{C C}$ margin $5 V \pm 10 \%$ commercial and military
- Sixteen powerful microinstructions
- Three output enable controls for three-way branch
- Twelve-bit address word
- Four sources for addresses: microprogram counter (MPC), stack, branch address bus, internal holding register
- 12-bit internal loop counter
- Internal 17 -word by 12 -bit stack The internal stack can be used
for subroutine return address or data storage
- ESD protection

Capable of withstanding over 2000 V static discharge voltage

- Pin compatible and functional equivalent to AM2910A

Functional Description

The CY7C910 is a stand-alone microprogram controller that selects, stores, retrieves, manipulates and tests addresses that control the sequence of execution of instructions stored in an external memory. All addresses are 12-bit binary values that designate an absolute memory location.
The CY7C910, as illustrated in the block diagram, consists of a 17 -word by 12-bit LIFO (Last-In-First-Out) stack and SP (Stack Pointer), a 12-bit RC (Register/Counter), a 12-bit MPC (Microprogram Counter) and incrementer, a 12 -bit wide by 4 -input multi-

CMOS Microprogram Controller

plexer and the required data manipulation and control logic.
The operation performed is determined by four input instruction lines ($\mathrm{I} 0-\mathrm{I} 3$) that in turn select the (internal) source of the next micro-instruction to be fetched. This address is output on the Y0-Y11 pins. Two additional inputs ($\overline{\mathrm{CC}}$ and $\overline{\mathrm{CCEN}}$) are provided that are examined during certain instructions and enable the user to make the execution of the instruction either unconditional or dependent upon an external test.
The CY7C910 is a pin compatible, functional equivalent, improved performance replacement for the AM2910A.
The CY7C910 is fabricated using an advanced 1.2 micron CMOS process that eliminates latchup, results in ESD protection of over 2000 volts and achieves superior performance and low power dissipation.

Logic Block Diagram

Pin Configurations

0041-2
Top View

Selection Guide

Clock Cycle (Min.) in ns	Stack Depth	Operating Range	Part Number
40	17 words	Commercial	CY7C910-40
46	17 words	Military	CY7C910-46
50	17 words	Commercial	CY7C910-50
51	17 words	Military	CY7C910-51
93	17 words	Commercial	CY7C910-93
99	17 words	Military	CY7C910-99

Pin Definitions

Signal Name	I/O	Description
D0-D11	I	Direct inputs to the RC (Register/ Counter) and multiplexer. D0 is LSB and D11 is MSB.
$\overline{\text { RLD }}$	I	Register load. Control input to RC that, when LOW, loads data on the D0-D11 pins into RC on the LOW to HIGH clock (CP) transition.
I0-I3	I	Instruction inputs that select one of sixteen instructions to be performed by the CY7C910.
$\overline{\text { CC }}$	I	Control input that, when LOW, signifies that a test has passed.
$\overline{\text { CCEN }}$	I	Enable for $\overline{\text { CC input. When HIGH } \overline{\text { CC }}}$ is ignored and a pass is forced. When LOW the state of $\overline{\text { CC is examined. }}$
CP	I	Clock input. All internal states are changed on the LOW to HIGH clock transitions.

Signal Name	I/O	Description
CI	I	Carry input to the LSB of the incrementer for the MPC.
$\overline{\mathrm{OE}}$	I	Control for Y0-Y11 outputs. LOW to enable; High to disable.
Y0-Y11	0	Address output to microprogram memory. Y0 is LSB and Y11 is MSB.
$\overline{\text { FULL }}$	0	When LOW indicates the stack is full.
$\overline{\mathrm{PL}}$	0	When LOW selects the pipeline register as the direct input (D0-D11) source.
$\overline{\text { MAP }}$	O	When LOW selects the Mapping PROM (or PLA) as the direct input source.
$\overline{\text { VECT }}$	O	When LOW selects the Interrupt Vector as the direct input source.

SEMICONDUCTOR

Architecture of the CY7C910

Introduction

The CY7C910 is a high performance CMOS microprogram controller that produces a sequence of 12 -bit addresses that control the execution of a microprogram. The addresses are selected from one of four sources, depending upon the (internal) instruction being executed (I0-I3), and other external inputs. The sources are (1) the (external) D0-D11 inputs, (2) the RC, (3) the stack and (4) the MPC. Twelve bit lines from each of these four sources are the inputs to a multiplexer, as shown in Figure 1, whose outputs are applied to the inputs of the Y0-Y11 three-state output drivers.

External Inputs: D0-D11

The external inputs are used as the source for destination addresses for the jump or branch type of instructions. These are shown as Ds in the two columns in the Table of Instructions. A second use of these inputs is to load the RC.

Register Counter: RC

The RC is implemented as 12 D-type, edge-triggered flipflops that are synchronously clocked on the LOW to HIGH transition of the clock, CP. The data on the D inputs is synchronously loaded into the RC when the load control input, RLD, is LOW. The output of the RC is available to the multiplexer as its R input and is output on the Y outputs during certain instructions, as shown by R in the Table of Instructions.

The RC is operated as a 12 -bit down counter and its contents decremented and tested if zero during instructions 8 , 9 and 15. This enables micro-instructions to be repeated up to 4096 times. The RC is arranged such that if it is loaded with a number, N , the sequence will be executed exactly $\mathrm{N}+1$ times.

The Stack and Stack Pointer: SP

The 17 -word by 12 -bit stack is used to provide return addresses from micro-subroutines or from loops. Intergal to it is a SP, which points to (addresses) the last word written.

This permits reference to the data on the top of the stack without having to perform a POP operation.
The SP operates as an up/down counter that is incremented when a PUSH operation (instructions 1, 4 or 5) is performed or decremented when a POP operation (instructions $8,10,11,13$ or 15) is performed. The PUSH operation writes the return address on the stack and the POP operation effectively removes it. The actual operation occurs on the LOW to HIGH clock transition following the instruction.

The stack is initialized by executing instruction zero (JUMP TO LOCATION 0 or RESET). Every time a "jump to subroutine" instruction $(1,5)$ or a loop instruction (4) is executed, the return address is PUSHed onto the stack; and every time a "return from subroutine (or loop)" instruction is executed, the return address is POPed off the stack.
When one subroutine calls another or a loop occurs within a loop (or a combination), which is called nesting, the Logical depth of the stack increases. The physical stack depth is 17 words. When this depth occurs, the FULL signal goes LOW on the next LOW to HIGH clock transition. Any further PUSH operations on a full stack will cause the data at that location to be over-written, but will not increment the SP. Similarily, performing a POP operation on a empty stack will not decrement the SP and may result in nonmeaningful data being available at the Y outputs.

The Microprocessor Counter: MPC

The MPC consists of a 12-bit incrementer followed by a 12 -bit register. The register usually holds the address of the instruction being fetched. When sequential instructions are fetched, the carry input (CI) to the incrementer is HIGH and one is added to the Y outputs of the multiplexer, which is loaded into the MPC on the next LOW to HIGH clock transition. When the CI input is LOW, the Y outputs of the multiplexer are loaded directly into the MPC, so that the same instruction is fetched and executed.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature............
Ambient Temperature with
Power Applied \qquad
Supply Voltage to Ground Potential
(Pin 10 to Pin 30) 0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V
DC Input Voltage 3.0 V to +7.0 V
Output Current into Outputs (Low) 30 mA

Static Discharge Voltage . $>2001 \mathrm{~V}$
(Per MIL-STD-883 Method 3015)

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Commercial and Military Operating Range, $\mathrm{V}_{\mathrm{CC}} \mathrm{Min} .=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \mathrm{Max} .=5.5 \mathrm{~V}[4]$

Parameter	Description		Test Condition	Min.	Max.	Units
V_{OH}	Output HIGH Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA} \\ & \hline \end{aligned}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
I_{H}	Input HIGH Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$		10	$\mu \mathrm{A}$
$\mathrm{l}_{1 \mathrm{~L}}$	Input LOW Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$		-10	$\mu \mathrm{A}$
$\mathrm{IOH}^{\text {(}}$	Output HIGH Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V} \end{aligned}$	-1.6		mA
IOL	Output LOW Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	12		mA
I_{OZ}	Output Leakage Current		$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}} / \mathrm{V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	-40	+40	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
ISC	Output Short Circuit Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \end{aligned}$		-85	mA
I_{CC}	Supply Current	Commercial	$\mathrm{V}_{\mathrm{CC}}=$ Max		70	mA
		Military			90	
ICC_{1}	Supply Current	Commercial	$\mathrm{V}_{\mathrm{IH}} \geq 3.85 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.4 \mathrm{~V}$		35	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	8	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not exceed one second.
2. Tested initially and after any design or process changes that may affect these parameters.

Output Load used for AC Performance Characteristics

All Outputs

Notes:

0041-4
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

Switching Waveforms

1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, writing and stray capacitance.
2. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for output disable tests.

Guaranteed AC Performance Characteristics

The tables below specify the guaranteed AC performance of the CY7C910 over the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ and the military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels.

The inputs switch between 0 V and 3 V with signal transition rates of 1 Volt per nanosecond. All outputs have maximum DC current loads.

Clock Requirements ${ }^{[1,3]}$

	Commercial			Military		
CY7C910-	40	50	93	46	51	99
Minimum Clock LOW	20	20	50	23	25	58
Minimum Clock HIGH	20	20	35	23	25	42
Minimum Clock Period I $=14$	40	50	93	46	51	100
Minimum Clock Period $\mathrm{I}=8,9,15$	40	50	113	46	51	114

Combinatorial Propagation Delays. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}^{[3]}$

	Commercial									Military								
From Input	Y			$\overline{\text { PL, }} \overline{\text { VECT }}, \overline{\text { MAP }}$			FULL			Y			$\overline{\mathbf{P L}}, \overline{\mathrm{VECT}}, \overline{\mathrm{MAP}}$			$\overline{\text { FULL }}$		
CY7C910-	40	50	93	40	50	93	40	50	93	46	51	99	46	51	99	46	51	99
D0-D11	17	20	20	-	-	-	-	-	-	21	25	25	-	-	-	-	-	-
I0-I3	25	35	50	20	30	51	-	-	-	30	40	54	25	35	58	-	-	-
$\overline{\mathrm{CC}}$	22	30	30	-	-	-	-	-	-	27	36	35	-	-	-	-	-	-
CCEN	22	30	30	-	-	-	-	-	-	27	36	37	-	-	-	-	-	-
CP																		
$\begin{gathered} \mathrm{I}=8,9,15 \\ (\text { Note } 2) \end{gathered}$	30	40	75	-	-	-	25	31	60	35	46	77	-	-	-	30	35	67
$\begin{aligned} & \text { CP } \\ & \text { All Other I } \end{aligned}$	30	40	55	-	-	-	25	31	60	35	46	61	-	-	-	30	35	67
$\overline{\mathrm{OE}}$	21	25	35	-	-	-	-	-	-	22	25	40	-	-	-	-	-	-
(Note 2)	21	27	30	-	-	-	-	-	-	22	30	30	-	-	-	-	-	-

Minimum Set-Up and Hold Times Relative to clock LOW to HIGH Transition. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}^{[3]}$

	Commercial						Military					
Input	Set-Up			Hold			Set-Up			Hold		
CY7C910-	40	50	93	40	50	93	46	51	99	46	51	99
DI \rightarrow RC	13	16	24	0	0	0	13	16	28	0	0	0
DI \rightarrow MPC	20	30	58	0	0	0	20	30	62	0	0	0
I0-13	25	35	75	0	0	0	27	38	81	0	0	0
$\overline{\mathrm{CC}}$	20	24	63	0	0	0	25	35	65	0	0	0
CCEN	20	24	63	0	0	0	25	35	63	0	0	0
CI	15	18	46	0	0	0	15	18	58	0	0	0
$\overline{\mathrm{RLD}}$	15	19	36	0	0	0	15	20	42	0	0	0

Notes:

1. A dash indicates that a propagation delay path or set-up time does not exist.
2. The enable/disable times are measured to a 0.5 Volt change on the output voltage level with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
3. See the last page of this specification for Group A subgroup testing information.

Table of Instructions

$\mathrm{I}_{3}-\mathrm{I}_{0}$	Mnemonic	Name	Reg/ Cntr Contents	Result					
				$\overline{\mathrm{CCEN}}=\stackrel{\text { Fail }}{\mathrm{L} \text { and } \overline{\mathrm{CC}}=\mathbf{H}}$		$\begin{gathered} \text { Pass } \\ \overline{\text { CCEN }}=\mathrm{H} \text { or CC }=\mathbf{L} \end{gathered}$		$\begin{aligned} & \mathrm{Reg} / \\ & \text { Cntr } \end{aligned}$	Enable
				Y	Stack	Y	Stack		
0	JZ	Jump Zero	X	0	Clear	0	Clear	Hold	PL
1	CJS	Cond JSB PL	X	PC	Hold	D	Push	Hold	PL
2	JMAP	Jump Map	X	D	Hold	D	Hold	Hold	Map
3	CJP	Cond Jump PL	X	PC	Hold	D	Hold	Hold	PL
4	PUSH	Push/Cond LD CNTR	X	PC	Push	PC	Push	(Note 1)	PL
5	JSRP	Cond JSB R/PL	X	R	Push	D	Push	Hold	PL
6	CJV	Cond Jump Vector	X	PC	Hold	D	Hold	Hold	Vect
7	JRP	Cond Jump R/PL	X	R	Hold	D	Hold	Hold	PL
8	RFCT	$\begin{aligned} & \text { Repeat Loop, } \\ & \text { CNTR } \neq 0 \\ & \hline \end{aligned}$	$\neq 0$	F	Hold	F	Hold	Dec	PL
			=0	PC	POP	PC	Pop	Hold	PL
9	RPCT	$\begin{aligned} & \text { Repeat PL, } \\ & \text { CNTR } \neq 0 \\ & \hline \end{aligned}$	$\neq 0$	D	Hold	D	Hold	Dec	PL
			$=0$	PC	Hold	PC	Hold	Hold	PL
10	CRTN	Cond RTN	X	PC	Hold	F	Pop	Hold	PL
11	CJPP	Cond Jump PL \& Pop	X	PC	Hold	D	Pop	Hold	PL
12	LDCT	LD Cntr \& Continue	X	PC	Hold	PC	Hold	Load	PL
13	LOOP	Test End Loop	X	F	Hold	PC	Pop	Hold	PL
14	CONT	Continue	X	PC	Hold	PC	Hold	Hold	PL
15	TWB	Three-Way Branch	$\neq 0$	F	Hold	PC	Pop	Dec	PL
			$=0$	D	Pop	PC	Pop	Hold	PL

Notes:

1. If $\overline{C C E N}=L$ and $\overline{C C}=H$, hold; else load.
$\mathrm{H}=\mathrm{HIGH}$
$\mathrm{L}=\mathrm{LOW}$
$X=$ Don't Care

CY7C910 CMOS Microprogram Controller

CY7C910 Flow Diagrams

0 Jump Zero (JZ)		2 Jump Map (JMAP)
3 Cond Jump PL (CJP)	4 Push/Cond LD CNTR (PUSH)	5 Cond JSB R/PL (JSRP)
6 Cond Jump Vector (CJV)	7 Cond Jump R/PL (JRP)	
8 Repeat Loop, CNTR $\neq 0$ (RFCT)	9 Repeat PL, CNTR $\neq 0$ (RPCT)	10 Cond Return (CRTN)
	12 LD CNTR \& Continue (LDCT)	13 Test End Loop (LOOP)
14 Continue (CONT)	15 Three-Way Branch (TWB)	

One Level Pipeline Based Architecture (Recommended)

0041-6

Typical DC and AC Characteristics

Ordering Information

Clock Cycle (ns)	Ordering Code	Package Type	Operating Range
40	CY7C910-40PC	P17	Commercial
	CY7C910-40DC	D18	
	CY7C910-40JC	J67	
	CY7C910-40LC	L67	
46	CY7C910-46DMB	D18	Military
	CY7C910-46LMB	L67	
50	CY7C910-50PC	P17	Commercial
	CY7C910-50DC	D18	
	CY7C910-50JC	J67	
	CY7C910-50LC	L67	
51	CY7C910-51DMB	D18	Military
	CY7C910-51LMB	L67	
93	CY7C910-93PC	P17	Commercial
	CY7C910-93DC	D18	
	CY7C910-93JC	J67	
	CY7C910-93LC	L67	
99	CY7C910-99DMB	D18	Military
	CY7C910-99LMB	L67	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
\mathbf{V}_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
\mathbf{V}_{IH}	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IH}	$1,2,3$
\mathbf{I}_{IL}	$1,2,3$
\mathbf{I}_{OH}	$1,2,3$
I_{OL}	$1,2,3$
\mathbf{I}_{OZ}	$1,2,3$
\mathbf{I}_{SC}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$

Clock Requirements

Parameters	Subgroups
Minimum Clock LOW	$7,8,9,10,11$

Combinational Propagation Delays

Parameters	Subgroups
From D0-D11 to Y	$7,8,9,10,11$
From I0-I3 to Y	$7,8,9,10,11$
From I0-I3 to $\overline{\text { PL, }} \overline{\text { VECT, }} \overline{\text { MAP }}$	$7,8,9,10,11$
From $\overline{\text { CC }}$ to Y	$7,8,9,10,11$
From $\overline{\text { CCEN }}$ to Y	$7,8,9,10,11$
From CP (I = 8,9,15) to $\overline{\text { FULL }}$	$7,8,9,10,11$
From CP (All Other I) to Y	$7,8,9,10,11$
From CP (All Other I) to $\overline{\text { FULL }}$	$7,8,9,10,11$

[^40]Minimum Set-up and Hold Times

Parameters	Subgroups
DI \rightarrow RC Set-up Time	$7,8,9,10,11$
DI \rightarrow RC Hold Time	$7,8,9,10,11$
DI \rightarrow MPC Set-up Time	$7,8,9,10,11$
DI \rightarrow MPC Hold Time	$7,8,9,10,11$
I0-I3 Set-up Time	$7,8,9,10,11$
I0-I3 Hold Time	$7,8,9,10,11$
$\overline{\text { CC Set-up Time }}$	$7,8,9,10,11$
$\overline{\text { CC Hold Time }}$	$7,8,9,10,11$
$\overline{\text { CCEN Set-up Time }}$	$7,8,9,10,11$
$\overline{\text { CCEN Hold Time }}$	$7,8,9,10,11$
CI Set-up Time	$7,8,9,10,11$
CI Hold Time	$7,8,9,10,11$
$\overline{\text { RLD Set-up Time }}$	$7,8,9,10,11$
$\overline{\text { RLD }}$ Hold Time	$7,8,9,10,11$

Features

- Fast
- CY7C9101-30 has a 30 ns (max.) clock cycle (commercial)
- CY7C9101-35 has a 35 ns (max.) clock cycle (military)
- Low Power
- ICC (max. at $10 \mathrm{MHz})=60 \mathrm{~mA}$ (commercial)
- ICC (max. at $10 \mathrm{MHz})=85 \mathrm{~mA}$ (military)
- \mathbf{V}_{CC} Margin
$-5 V \pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- Replaces four 2901's with carry look-ahead logic
- Eight Function ALU
- Performs three arithmetic and five logical operations on two 16-bit operands
- Expandable
- Infinitely expandable in 16-bit increments
- Four Status Flags
- Carry, overflow, negative, zero
- ESD Protection
- Capable of withstanding greater than 2001V static discharge voltage
- Pin compatible and functionally equivalent to AM29C101

Functional Description

The CY7C9101 is a high-speed, expandable, 16 -bit wide ALU slice which can be used to implement the arithmetic section of a CPU, peripheral controller, or programmable controller. The instruction set of the CY7C9101 is basic, yet so versatile that it can emulate the ALU of almost any digital computer.

The CY7C9101, as shown in the block diagram, consists of a 16 -word by 16-bit dual-port RAM register file, a 16-bit ALU, and the necessary data manipulation and control logic.
The function performed is determined by the nine-bit instruction word (I_{8} to I_{0}) which is usually input via a microinstruction register.
The CY7C9101 is expandable in 16-bit increments, has three-state data outputs as well as flag outputs, and can implement either a full look-ahead carry or a ripple carry.
The CY7C9101 is a pin compatible, functional equivalent of the Am29C101 with improved performance. The 7C9101 replaces four 2901's and includes on-chip carry look-ahead logic.
Fabricated in an advanced 1.2 micron CMOS process, the 7C9101 eliminates latchup, has ESD protection greater than 2000 V , and achieves superior performance with low power dissipation.

Logic Block Diagram

Figure 1

Pin Configuration
Top View

Selection Guide

		7C9101-30 7C9101-35	7C9101-40 7C9101-45
Minimum Clock Cycle (ns)	Commercial	30	40
	Military	35	$\mathbf{4 5}$
	Commercial	60	60
	Military	85	85

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground
Potential \qquad
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low)
.30 mA

Pin Definitions

Signal Name	I/O	Description
A_{3-0}	I	RAM Address A. This 4-bit address word selects one of the 16 registers in the register file for output on the (internal) A-port.
B_{3-0}	I	RAM Address B. This 4-bit address word selects one of the 16 registers in the register file for output on the (internal) B-port. When data is written back to the register file, this is the destination address.
I_{8-0}	I	Instruction Word. This nine-bit word is decoded to determine the ALU data sources ($\mathrm{I}_{0}, 1,2$), the ALU operation ($\mathbf{I}_{3}, 4,5$), and the data to be written to the Q -register or register file ($\mathrm{I}_{6}, 7,8$).
D ${ }_{15-0}$	I	Direct Data Input. This 16 -bit data word may be selected by the $\mathrm{I}_{0,1,2}$ lines as an input to the ALU.
Y_{15-0}	I	Data Output. These are three-state data output lines which, when enabled, output either the ALU result or the data in the A latch, as determined by the code on $I_{6,7,8}$.
$\overline{\mathrm{OE}}$	I	Output Enable. This is an active LOW input which controls the Y_{15-0} outputs. A HIGH level on this signal places the output drivers at the high impedance state.
CP	I	Clock. The LOW level of CP is used to write data to the RAM register file. A HIGH level of CP writes data from the dual port RAM to the A and B latches. The operation of the Q register is similar; data is entered into the master latch on the LOW level of CP and transferred from master to slave during $\mathrm{CP}=\mathrm{HIGH}$.
Q15,		These two lines are bidirectional and are
RAM_{15}	I/O	controlled by $\mathrm{I}_{6,7,8}$. They are three-state output drivers connected to the TTL compatible CMOS inputs.

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latchup Current (Outputs) $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

CY7C9101 Pinout for 68PGA
$\mathrm{NC}=$ No Connect

Top View

CY7C9101 Pinout for LCC/PLCC
$\mathrm{NC}=$ No Connect

Functional Tables

Table 1. ALU Source Operand Control

Mnemonic	Micro Code				ALU Source Operands		
	$\mathbf{I}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{0}}$	Octal Code	\mathbf{R}	\mathbf{S}	
	L	L	L	0	A	Q	
AB	L	L	H	1	A	B	
ZQ	L	H	L	2	O	Q	
ZB	L	H	H	3	O	B	
ZA	H	L	L	4	O	A	
DA	H	L	H	5	D	A	
DQ	H	H	L	6	D	Q	
DZ	H	H	H	7	D	O	

Table 2. ALU Function Control

Mnemonic	Micro Code				$\begin{aligned} & \text { ALU } \\ & \text { Function } \end{aligned}$	Symbol
	15	I_{4}	I_{3}	Octal Code		
ADD	L	L	L	0	R Plus S	$\mathbf{R}+\mathbf{S}$
SUBR	L	L	H	1	S Minus R	$\mathbf{S}-\mathrm{R}$
SUBS	L	H	L	2	R Minus S	$\mathrm{R}-\mathrm{S}$
OR	L	H	H	3	R OR S	R \vee S
AND	H	L	L	4	R AND S	$\mathrm{R} \wedge \mathrm{S}$
NOTRS	H	L	H	5	$\overline{\mathrm{R}}$ AND S	$\overline{\mathrm{R}} \wedge \mathrm{S}$
EXOR	H	H	L	6	R EX-OR S	$R \forall S$
EXNOR	H	H	H	7	R EX-NOR S	$\bar{R} \forall \mathrm{~S}$

Table 3. ALU Destination Control

Mnemonic	Micro Code				RAM Function		Q-Reg. Function		\mathbf{Y} Output	RAM Shifter		Q Shifter	
	I_{8}	I_{7}	I_{6}	Octal Code	Shift	Load	Shift	Load		$\mathbf{R A M}_{\mathbf{0}}$	RAM ${ }_{15}$	Q_{0}	Q15
QREG	L	L	L	0	X	None	None	$\mathrm{F} \rightarrow \mathrm{Q}$	F	X	X	X	X
NOP	L	L	H	1	X	None	X	None	F	X	X	X	X
RAMA	L	H	L	2	None	$\mathrm{F} \rightarrow \mathrm{B}$	X	None	A	X	X	X	X
RAMF	L	H	H	3	None	$\mathrm{F} \rightarrow \mathrm{B}$	X	None	F	X	X	X	X
RAMQD	H	L	L	4	DOWN	$\mathrm{F} / 2 \rightarrow \mathrm{~B}$	DOWN	$\mathrm{Q} / 2 \rightarrow \mathrm{Q}$	F	F_{0}	IN_{15}	Q_{0}	IN_{15}
RAMD	H	L	H	5	DOWN	$\mathrm{F} / 2 \rightarrow \mathrm{~B}$	X	None	F	F_{0}	IN_{15}	Q_{0}	X
RAMQU	H	H	L	6	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	UP	$2 \mathrm{Q} \rightarrow \mathrm{Q}$	F	IN_{0}	F_{15}	IN_{0}	Q15
RAMU	H	H	H	7	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	X	None	F	IN_{0}	F_{15}	X	Q_{15}

$X=$ Don't care. Electrically, the input shift pin is a TTL input internally connected to a three-state output which is in the high-impedance state.
$\mathrm{A}=$ Register Addressed by \mathbf{A} inputs.
$B=$ Register Addressed by \mathbf{B} inputs.
UP is toward MSB, DOWN is toward LSB.
Table 4. Source Operand and ALU Function Matrix

	I_{210} Octal	0	1	2	3	4	5	6	7
	ALU Source								
$\begin{gathered} \text { Octal } \\ I_{543} \\ \hline \end{gathered}$	ALU Function	A, Q	A, B	O, Q	O, B	O, A	D, A	D, Q	D, 0
0	$C_{n}=\mathbf{L}$ R plus S $\mathbf{C}_{\mathbf{n}}=\mathbf{H}$	$\begin{gathered} \mathrm{A}+\mathrm{Q} \\ \mathrm{~A}+\mathrm{Q}+1 \end{gathered}$	$\begin{gathered} \mathrm{A}+\mathrm{B} \\ \mathrm{~A}+\mathrm{B}+1 \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ \mathrm{Q}+1 \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \mathrm{~B}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{A} \\ \mathbf{A}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{D}+\mathrm{A} \\ \mathrm{D}+\mathrm{A}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{D}+\mathrm{Q} \\ \mathrm{D}+\mathrm{Q}+1 \end{gathered}$	$\begin{gathered} \text { D } \\ \mathbf{D}+1 \\ \hline \end{gathered}$
1	$\begin{aligned} & \mathbf{C}_{\mathbf{n}}=\mathbf{L} \\ & \mathrm{S} \text { minus } \mathrm{R} \\ & \mathbf{C}_{\mathbf{n}}=\mathbf{H} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Q}-\mathrm{A}-1 \\ \mathrm{Q}-\mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{B}-\mathrm{A}-1 \\ \mathrm{~B}-\mathrm{A} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Q}-1 \\ \mathrm{Q} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B}-1 \\ \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A}-1 \\ \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A}-\mathrm{D}-1 \\ \mathrm{~A}-\mathrm{D} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Q}-\mathrm{D}-1 \\ \mathrm{Q}-\mathrm{D} \\ \hline \end{gathered}$	$\begin{gathered} -\mathrm{D}-1 \\ -\mathrm{D} \\ \hline \end{gathered}$
2	$\begin{aligned} & C_{n}=L \\ & R \text { minus } S \\ & C_{n}=H \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{A}-\mathrm{Q}-1 \\ \mathrm{~A}-\mathrm{Q} \end{gathered}$	$\begin{gathered} \mathrm{A}-\mathrm{B}-1 \\ \mathrm{~A}-\mathrm{B} \end{gathered}$	$\begin{gathered} -\mathrm{Q}-1 \\ -\mathrm{Q} \\ \hline \end{gathered}$	$\begin{gathered} -\mathrm{B}-1 \\ -\mathrm{B} \\ \hline \end{gathered}$	$\begin{gathered} -\mathbf{A}-1 \\ -\mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{D}-\mathrm{A}-1 \\ \mathrm{D}-\mathrm{A} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{D}-\mathrm{Q}-1 \\ \mathrm{D}-\mathrm{Q} \end{gathered}$	$\overline{D-1}$ D
3	R OR S	$A \vee Q$	$A \vee B$	Q	B	A	D \vee A	$D \vee Q$	D
4	R AND S	$A \wedge Q$	$\mathrm{A} \wedge \mathrm{B}$	0	0	0	$\mathrm{D} \wedge \mathrm{A}$	$D \wedge Q$	0
5	$\overline{\mathrm{R}}$ AND S	$\overline{\mathrm{A}} \wedge \mathrm{Q}$	$\overline{\mathrm{A}} \wedge \mathrm{B}$	Q	B	A	$\overline{\mathrm{D}} \wedge \mathrm{A}$	$\overline{\mathrm{D}} \wedge \mathrm{Q}$	0
6	R EX-OR S	$A \forall Q$	$A \forall B$	Q	B	A	$D \forall A$	$D \forall Q$	D
7	R EX-NOR S	$\overline{\mathrm{A} \forall \mathrm{Q}}$	$\overline{\mathrm{A} \forall \mathrm{B}}$	$\overline{\mathrm{Q}}$	$\overline{\mathrm{B}}$	$\overline{\text { A }}$	$\overline{\mathrm{D} \forall \mathrm{A}}$	$\overline{\mathrm{D} \forall \mathrm{Q}}$	$\overline{\mathrm{D}}$

[^41]
Description of Architecture

General Description

The 7C9101 block diagram is shown in Figure 1. Detailed block diagrams show the operation of specific sections as described below. The device is a 16 -bit slice consisting of a register file (16 -word by 16 -bit dual port RAM), the ALU, the Q-register and the necessary control logic. It is expandable in 16-bit increments.

Register File

The dual port RAM is addressed by two 4-bit address fields (\mathbf{A}_{3-0} and \mathbf{B}_{3-0}) which cause the data to simultaneously appear at the A or B (internal) ports. Both the A and B addresses may be identical; in this case, the same data will appear at both the A and B ports.
Data to be written to RAM is applied to the D inputs of the 7C9101 and is passed (unchanged) through the ALU to the RAM location specified by the B-address word. New data is written into the RAM by specifying a B address
while RAM write enable (RAM EN) is active and the clock input is LOW. RAM EN is an internal signal decoded from the signals $I_{6, ~}, 8$. As shown below, each of the 16 RAM inputs is driven by a three-input multiplexer that allows the ALU output (F_{15-0}) to be shifted one bit position to the left, right, or not shifted. The RAM ${ }_{15}$ and $\mathrm{RAM}_{0} \mathrm{I} / \mathrm{O}$ pins are also inputs to the 16 -bit, 3 -input multiplexer.
During the left shift (upshift) operation, the RAM 15 output buffer and RAM $_{0}$ input multiplexer are enabled. For the down shift (right) operation, the RAM $_{0}$ output buffer and the RAM $_{15}$ input multiplexer are enabled.

The A and B outputs of the RAM drive separate 16-bit latches that are enabled (track the RAM data) when the clock is HIGH. The outputs of the A latch go to three multiplexers which feed the two ALU inputs (R_{15-0} and S_{15-0}) and the chip output (Y_{15-0}). The B latch outputs are directed to the multiplexer which feeds the S input to the ALU.

Figure 2. Register File

Description of Architecture (Continued)
 Q-Register

The Q-register is mainly intended for use as a separate working register for multiplication and division routines. It may also function as an accumulator or temporary storage register. Sixteen master-slave latches are used to implement the Q-register. As shown below, the Q-register inputs are driven by the outputs of the Q -shifter (sixteen 3-input mul-
tiplexers, under the control of $I_{6,7,8}$). The function of the Q-register input multiplexers is to allow the ALU output (F_{15-0}) to be either shifted left, right, or directly entered into the master latches. The Q_{15} and Q_{0} pins (I/O) function similarly to the RAM $_{15}$ and RAM $_{0}$ pins described earlier. Data is entered into the master latches when the clock is LOW and transferred to the slave (output) at the clock LOW to HIGH transition.

0079-5

Figure 3. Q-Register

Description of Architecture (Continued)

ALU (Arithmetic Logic Unit)

The ALU can perform three arithmetic and five logical operations on the two 16 -bit input operands, R and S. The R-input multiplexer selects between data from the RAM A-port and data at the external data input, D_{15-0}. The S-input multiplexer selects between data from the RAM A-port, the RAM B-port, and the Q-register. The R and S multiplexers are controlled by the $\mathrm{I}_{0,1,2}$ inputs as shown in Table 1. The R and S input multiplexers each have an "inhibit capability," offering a state where no data is passed. This is equivalent to a source operand consisting of all zeroes. The R and S ALU source multiplexers are configured to allow eight pairs of combinations of $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{Q}$, and " 0 " to be selected as ALU input operands.
The ALU functions, which are controlled by $\mathrm{I}_{3,4}, 5$, are shown in Table 2. Carry lookahead logic is resident on the

7C9101, using the ALU inputs carry in (C_{n}) and the ALU outputs carry propagate ($\overline{\mathrm{P}}$), carry generate $(\overline{\mathrm{G}})$, carry out ($\mathrm{C}_{\mathrm{n}}+16$), and overflow to implement carry lookahead arithmetic and determine if arithmetic overflow has occurred. Note that the carry in $\left(\mathrm{C}_{\mathrm{n}}\right)$ signal affects the arithmetic result and internal flags; it has no effect on the logical operations.
Control signals $\mathrm{I}_{6,7,8}$ route the ALU data output (F_{15-0}) to the RAM, the Q -register inputs, and the Y -outputs as shown in Table 3. The ALU result MSB $\left(\mathrm{F}_{15}\right)$ is output so the user may examine the sign bit without needing to enable the three-state outputs. The $\mathrm{F}=0$ output, used for zero detection, is HIGH when all bits of the F output are LOW. It is an open drain output which may be wire OR'ed across multiple 7C9101 processor slices.

Figure 4. ALU

SEMICONDUCTOR
Description of Architecture (Continued)

Table 5. ALU Logic Mode Functions

$\begin{gathered} \text { Octal } \\ \mathrm{I}_{543}, \mathrm{I}_{210} \end{gathered}$	Group	Function
$\begin{aligned} & 40 \\ & 41 \\ & 45 \\ & 46 \end{aligned}$	AND	$\begin{aligned} & A \wedge Q \\ & A \wedge B \\ & D \wedge A \\ & D \wedge Q \end{aligned}$
$\begin{aligned} & 30 \\ & 31 \\ & 35 \\ & 36 \end{aligned}$	OR	A $\vee \mathrm{Q}$ $A \vee B$ D $\vee \mathrm{A}$ D $\vee \mathrm{Q}$
$\begin{aligned} & 60 \\ & 61 \\ & 65 \\ & 66 \end{aligned}$	EX-OR	$\begin{aligned} & A \forall Q \\ & A \forall B \\ & D \forall A \\ & D \forall Q \end{aligned}$
$\begin{aligned} & 70 \\ & 71 \\ & 75 \\ & 76 \\ & \hline \end{aligned}$	EX-NOR	$\begin{aligned} & \overline{\bar{A} \forall Q} \\ & \overline{A \forall B} \\ & \overline{D \forall A} \\ & \overline{D \forall Q} \end{aligned}$
$\begin{aligned} & 72 \\ & 73 \\ & 74 \\ & 77 \end{aligned}$	INVERT	$\begin{aligned} & \overline{\mathrm{Q}} \\ & \overline{\mathrm{~B}} \\ & \overline{\mathrm{~A}} \\ & \overline{\mathrm{D}} \end{aligned}$
$\begin{aligned} & 62 \\ & 63 \\ & 64 \\ & 67 \end{aligned}$	PASS	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \end{aligned}$
$\begin{array}{r} 32 \\ 33 \\ 34 \\ 37 \end{array}$	PASS	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \end{aligned}$
$\begin{aligned} & 42 \\ & 43 \\ & 44 \\ & 47 \end{aligned}$	"ZERO"	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & 50 \\ & 51 \\ & 55 \\ & 56 \\ & \hline \end{aligned}$	MASK	$\begin{aligned} & \bar{A} \wedge Q \\ & \bar{A} \wedge B \\ & \bar{D} \wedge A \\ & \bar{D} \wedge Q \end{aligned}$

Table 6. ALU Arithmetic Mode Functions

$\begin{gathered} \text { Octal } \\ \mathbf{I}_{543}, \mathrm{I}_{210} \end{gathered}$	$\mathrm{C}_{\mathrm{n}}=0$ (Low)		$\mathrm{C}_{\mathrm{n}}=1$ (High)	
	Group	Function	Group	Function
$\begin{aligned} & 00 \\ & 01 \\ & 05 \\ & 06 \\ & \hline \end{aligned}$	ADD	$\begin{aligned} & A+Q \\ & A+B \\ & D+A \\ & D+Q \end{aligned}$	ADD plus one	$\begin{aligned} & \mathrm{A}+\mathrm{Q}+1 \\ & \mathrm{~A}+\mathrm{B}+1 \\ & \mathrm{D}+\mathrm{A}+1 \\ & \mathrm{D}+\mathrm{Q}+1 \\ & \hline \end{aligned}$
$\begin{aligned} & 02 \\ & 03 \\ & 04 \\ & 07 \end{aligned}$	PASS	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \end{aligned}$	Increment	$\begin{aligned} & \mathrm{Q}+1 \\ & \mathrm{~B}+1 \\ & \mathrm{~A}+1 \\ & \mathrm{D}+1 \end{aligned}$
$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 27 \end{aligned}$	Decrement	$\begin{aligned} & \mathrm{Q}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{~A}-1 \\ & \mathrm{D}-1 \end{aligned}$	PASS	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \end{aligned}$
$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 17 \end{aligned}$	1's Comp.	$\begin{aligned} & -\mathrm{Q}-1 \\ & -\mathrm{B}-1 \\ & -\mathrm{A}-1 \\ & -\mathrm{D}-1 \end{aligned}$	2's Comp. (Negate)	$\begin{aligned} & -\mathrm{Q} \\ & -\mathrm{B} \\ & -\mathrm{A} \\ & -\mathrm{D} \end{aligned}$
$\begin{aligned} & 10 \\ & 11 \\ & 15 \\ & 16 \\ & 20 \\ & 21 \\ & 25 \\ & 26 \end{aligned}$	Subtract (1's Comp.)	$\begin{aligned} & \mathrm{Q}-\mathrm{A}-1 \\ & \mathrm{~B}-\mathrm{A}-1 \\ & \mathrm{~A}-\mathrm{D}-1 \\ & \mathrm{Q}-\mathrm{D}-1 \\ & \mathrm{~A}-\mathrm{Q}-1 \\ & \mathrm{~A}-\mathrm{B}-1 \\ & \mathrm{D}-\mathrm{A}-1 \\ & \mathrm{D}-\mathrm{Q}-1 \end{aligned}$	Subtract (2's Comp.)	$\begin{aligned} & \mathrm{Q}-\mathrm{A} \\ & \mathrm{~B}-\mathrm{A} \\ & \mathrm{~A}-\mathrm{D} \\ & \mathrm{Q}-\mathrm{D} \\ & \mathrm{~A}-\mathrm{Q} \\ & \mathrm{~A}-\mathrm{B} \\ & \mathrm{D}-\mathrm{A} \\ & \mathrm{D}-\mathrm{Q} \end{aligned}$

Conventional Addition and Pass-Increment/ Decrement

When the carry-in is HIGH and either a conventional addition or a PASS operation is performed, one (1) is added to the result. If the DECREMENT operation is performed when the carry-in is LOW, the value of the operand is reduced by one. However, when the same operation is performed when the carry-in is HIGH, it nullifies the DECREMENT operation so that the result is equivalent to the PASS operation. In logical operations, the carry-in (C_{n}) will not affect the ALU output.

Subtraction

Recall that in two's complement integer coding -1 is equal to all ones and that in one's complement integer coding zero is equal to all ones. To convert a positive integer to its two's complement (negative) equivalent, invert (complement) the number and add 1 to it; i.e., TWC $=\mathrm{ONC}+1$. In Table 6 the symbol $-Q$ represents the two's complement of Q so that the one's complement of Q is then $-\mathrm{Q}-1$.

Electrical Characteristics Over Commercial and Military Operating Range ${ }^{[4]}$
V_{CC} Min. $=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ Max. $=5.5 \mathrm{~V}$

Parameters	Description		Test Conditions	Min.	Max.	Units
V_{OH}	Output HIGH Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \mathrm{I}_{\mathrm{OH}}=-3.4 \mathrm{~mA} \\ & \text { All Outputs except } \mathrm{F}=0 \end{aligned}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current		$\begin{aligned} & \mathrm{v}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{CC}}=\text { Max. } \end{aligned}$	- 10	10	$\mu \mathrm{A}$
I_{OH}	Output HIGH Current		$\mathrm{V}_{\mathrm{CC}}=\text { Min., } \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ All Outputs except $F=0$	-3.4		mA
IOL	Output LOW Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	16		mA
I_{OZ}	Output Leakage Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	-40	+40	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISC	Output Short Ci	t Current ${ }^{[1]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \text { All Outputs except } \mathrm{F}=0 \end{aligned}$		-85	mA
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{1}\right)^{[2]}$	Supply Current (Quiescent)	Commercial	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ or		30	mA
		Military	$\mathrm{V}_{\mathrm{IH}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{OE}}=\mathrm{HIGH}$		35	mA
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{2}\right)^{[2]}$	Supply Current (Quiescent)	Commercial	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq 0.4 \mathrm{~V} \text { or } \\ & 3.85 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{OE}}=\mathrm{HIGH} \end{aligned}$		25	
		Military			30	
$\mathrm{I}_{\mathrm{CC}}(\text { Max. })^{[2]}$	Supply Current	Commercial	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz} ; \\ & \overline{\mathrm{OE}}=\mathrm{HIGH} \end{aligned}$		60	mA
		Military			85	

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	8	pF
	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10		

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
2. Two quiescent figures are given for different input voltage ranges. To calculate $I_{C C}$ at any given frequency, use $I_{C C}\left(Q_{1}\right)+I_{C C}(A . C$.$) where$ $\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{1}\right)$ is shown above and $\mathrm{I}_{\mathrm{CC}}(\mathrm{A} . \mathrm{C})=.(3 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for the Commercial temperature range. $\mathrm{I}_{\mathrm{CC}}(\mathrm{A} . \mathrm{C})=$. $(5 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for Military temperature range.
3. Tested initially and after any design or process changes that may affect these parameters.
4. See the last page of this specification for Group A subgroup testing information.

Output Loads used for AC Performance Characteristics

All Outputs except Open Drain

Open Drain ($\mathbf{F}=\mathbf{0}$)

Notes:

1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitance.
2. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for output disable tests.

CYPRESS

Table 7. Logic Functions for CARRY and OVERFLOW Conditions

I543	Function	$\overline{\mathbf{P}}$	$\overline{\mathbf{G}}$	$\mathrm{C}_{\mathrm{n}}+16$	OVR
0	$\mathrm{R}+\mathrm{S}$	$\overline{\mathrm{P}_{0}-\mathrm{P}_{15}}$	$\overline{\bar{G}_{15}+\mathbf{P}_{15} \mathbf{G}_{14}+\mathbf{P}_{15} \mathbf{P}_{14} G_{13}+}$	C_{16}	$\mathrm{C}_{16} \forall \mathrm{C}_{15}$
1	$\mathrm{S}-\mathrm{R}$	\leftarrow	Same as $\mathrm{R}+\mathrm{S}$ equations, but substitute $\overline{\mathrm{R}_{\mathrm{i}}}$ for R_{i} in definitions		\rightarrow
2	$\mathrm{R}-\mathrm{S}$	\leftarrow	Same as $\mathrm{R}+\mathrm{S}$ equations, but substitute $\overline{\mathrm{S}_{\mathrm{i}}}$ for S_{i} in definitions		\rightarrow
3	R \vee S	HIGH	HIGH	LOW	LOW
4	$\mathrm{R} \wedge \mathrm{S}$				
5	$\overline{\mathrm{R}} \wedge \mathrm{S}$				
6	$R \forall S$				
7	$\overline{\mathrm{R}} \forall \mathrm{S}$				

Definitions: $+=\mathbf{O R}$
$\mathbf{P}_{0-15}=\mathbf{P}_{15} \mathbf{P}_{14} \mathbf{P}_{13} \mathbf{P}_{12} \mathbf{P}_{11} \mathbf{P}_{10} \mathbf{P}_{9} \mathbf{P}_{8} \mathbf{P}_{7} \mathbf{P}_{6} \mathbf{P}_{5} \mathbf{P}_{4} \mathbf{P}_{3} \mathbf{P}_{2} \mathbf{P}_{1} \mathbf{P}_{0}$
$\mathrm{P}_{0}=\mathrm{R}_{0}+\mathrm{S}_{0}$
$\mathbf{P}_{1}=\mathbf{R}_{1}+\mathbf{S}_{2}$
$\mathrm{P}_{2}=\mathrm{R}_{2}+\mathrm{S}_{2}$
$P_{3}=R_{3}+S_{3}$, etc.
$G_{0-15}=G_{15} G_{14} G_{13} G_{12} G_{11} G_{10} G_{9} G_{8} G_{7} G_{6} G_{5} G_{4} G_{3} G_{2} G_{1} G_{0}$
$\mathrm{G}_{0}=\mathrm{R}_{0} \mathrm{~S}_{0}$
$\mathrm{G}_{1}=\mathrm{R}_{1} \mathrm{~S}_{1}$
$\mathrm{G}_{2}=\mathrm{R}_{2} \mathrm{~S}_{2}$
$\mathrm{G}_{3}=\mathrm{R}_{3} \mathrm{~S}_{3}$, etc.
$\mathrm{C}_{16}=\mathrm{G}_{15}+\mathrm{P}_{15} \mathrm{G}_{14}+\mathrm{P}_{15} \mathrm{P}_{14} \mathrm{G}_{13}+\ldots+\mathrm{P}_{0-15} \mathrm{C}_{\mathrm{n}}$
$\mathrm{C}_{15}=\mathrm{G}_{14}+\mathrm{P}_{14} \mathrm{G}_{13}+\mathrm{P}_{14} \mathrm{P}_{13} \mathrm{G}_{12}+\ldots+\mathrm{P}_{0-14} \mathrm{C}_{\mathrm{n}}$

CY7C9101-30 and CY7C9101-40 Guaranteed
 Commercial Range AC Performance Characteristics

The tables below specify the guaranteed AC performance of these devices over the Commercial ($0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) and Military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) operating temperature range with $V_{C C}$ varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See also loading circuit informa-

Cycle Time and Clock Characteristics

CY7C9101-	$\mathbf{3 0}$	$\mathbf{4 0}$
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle).	30 ns	40 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, $\mathbf{I}=432$ or 632)	33 MHz	25 MHz
Minimum Clock LOW Time	20 ns	25 ns
Minimum Clock HIGH Time	10 ns	15 ns
Minimum Clock Period	30 ns	40 ns

This data applies to parts with the following numbers:
$\begin{array}{llllll}\text { CY7C9101-30PC } & \text { CY7C9101-30DC } & \text { CY7C9101-30LC } & \text { CY7C9101-30JC } & \text { CY7C9101-30GC } \\ \text { CY7C9101-40PC } & \text { CY7C9101-40DC } & \text { CY7C9101-40LC } & \text { CY7C9101-40JC } & \text { CY7C9101-40GC }\end{array}$
Combinational Propagation Delays. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

$\begin{array}{\|c} \hline \text { To Output } \\ \hline \text { From Input } \end{array}$	Y		F_{15}		$\mathrm{C}_{\mathrm{n}}+16$		$\overline{\mathbf{G}}, \overline{\mathbf{P}}$		$\mathbf{F}=\mathbf{0}$		OVR		$\begin{aligned} & \mathbf{R A M}_{0} \\ & \text { RAM }_{15} \end{aligned}$		$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{15} \end{aligned}$	
CY7C9101-	30	40	30	40	30	40	30	40	30	40	30	40	30	40	30	40
A, B Address	37	47	36	47	35	44	32	41	35	46	32	42	32	40	-	-
D	29	34	28	34	25	32	25	30	29	36	21	26	27	33	-	-
C_{n}	22	27	22	27	20	25	-	-	22	26	22	26	24	30	-	-
$\mathrm{I}_{0,1,2}$	32	40	32	40	30	38	28	36	34	42	26	32	27	35	-	-
$\mathrm{I}_{3,4,5}$	34	43	33	42	33	42	27	35	34	40	32	42	29	38	-	-
$\mathrm{I}_{6,7,8}$	19	22	-	-	-	-	-	-	-	-	-	-	22	26	22	26
$\begin{aligned} & \text { A Bypass ALU } \\ & (\mathrm{I}=2 \mathrm{XX}) \end{aligned}$	25	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clock \sim	31	40	30	39	30	38	27	34	28	37	27	34	27	35	20	23

Set-Up and Hold Times Relative to Clock (CP) Input ${ }^{[1]}$

Input			$\begin{gathered} \text { Hold Time } \\ \text { After } \mathbf{H} \rightarrow \mathbf{L} \end{gathered}$		Set-up Time Before $\mathbf{L} \rightarrow \mathbf{H}$		Hold Time After L $\rightarrow \mathbf{H}$	
CY7C9101-	30	40	30	40	30	40	30	40
A, B Source Address	10	15	3 [3]	3 [3]	30[4]	40[4]	0	0
B Destination Address	10	15	Do Not Change ${ }^{\text {[2] }}$				0	0
D	-	-	-	-	22	28	0	0
C_{n}	-	-	-	-	16	22	0	0
$\mathrm{I}_{0,1,2}$	-	-	-	-	26	35	0	0
$\mathrm{I}_{3,4,5}$	-	-	-	-	29	37	0	0
$\mathrm{I}_{6,7,8}$	10	12	\leftarrow	$$			0	0
$\mathrm{RAM}_{0}, \mathrm{RAM}_{15}, \mathrm{Q}_{0}, \mathrm{Q}_{15}$	-	-	-			14	0	0

Output Enable/Disable Times

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY7C9101-30	$\overline{\mathrm{OE}}$	Y	18	16
CY7C9101-40	$\overline{\mathrm{OE}}$	Y	22	19

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $H \rightarrow$ L transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow \mathrm{H}$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $\mathrm{L} \rightarrow \mathrm{H}$ transition, regardless of when the clock $\mathrm{H} \rightarrow \mathrm{L}$ transition occurs.

CY7C9101-35 and CY7C9101-45 Guaranteed Military Range AC Performance Characteristics

The tables below specify the guaranteed AC performance of these devices over the Military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) operating temperature range with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See also loading circuit information.

Cycle Time and Clock Characteristics ${ }^{[5]}$

CY7C9101-	$\mathbf{3 5}$	$\mathbf{4 5}$
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle).	35 ns	45 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, $\mathrm{I}=432$ or 632)	28 MHz	22 MHz
Minimum Clock LOW Time	23 ns	28 ns
Minimum Clock HIGH Time	12 ns	17 ns
Minimum Clock Period	35 ns	45 ns

This data applies to parts with the following numbers:

CY7C9101-35DMB CY7C9101-35LMB CY7C9101-35GMB
 CY7C9101-45DMB CY7C9101-45LMB CY7C9101-45GMB

Combinational Propagation Delays $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}^{[5]}$

$\begin{array}{\|c\|} \hline \text { To Output } \\ \hline \text { From Input } \end{array}$	Y		F15		$\mathrm{C}_{\mathrm{n}}+16$		$\overline{\mathbf{G}}, \overline{\mathbf{P}}$		$\mathbf{F}=\mathbf{0}$		OVR		$\begin{aligned} & \hline \mathbf{R A M}_{0} \\ & \mathbf{R A M}_{15} \end{aligned}$		$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{15} \end{aligned}$	
CY7C9101-	35	45	35	45	35	45	35	45	35	45	35	45	35	45	35	45
A, B Address	41	52	40	51	38	48	37	45	40	48	36	46	36	43	-	-
D	31	37	31	36	29	36	28	32	33	40	23	32	30	35	-	-
C_{n}	25	30	24	29	23	27	-	-	24	29	23	27	26	31	-	-
$\mathrm{I}_{0,1,2}$	36	44	35	43	33	41	31	38	38	46	29	38	30	38	-	-
$\mathbf{I}_{3,4,5}$	38	48	37	47	37	46	31	38	38	45	36	45	33	41	-	-
$\mathrm{I}_{6,7,8}$	21	24	-	-	-	-	-	-	-	-	-	-	24	28	24	28
$\begin{aligned} & \text { A Bypass ALU } \\ & (\mathrm{I}=2 \mathrm{XX}) \end{aligned}$	28	33	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clock -	35	44	34	43	34	42	30	37	34	40	28	38	30	37	21	25

Set-Up and Hold Times Relative to Clock (CP) Input ${ }^{[1,5]}$

Input			$\underset{\text { After } H}{\text { Hold Time }} \mathbf{L}$		$\underset{\text { Before L } \mathrm{L} \xrightarrow{\text { Sime }} \xrightarrow{\text { Hin }}}{ }$		$\underset{\text { After } L}{\text { Hold Time }} \rightarrow \mathbf{H}$	
CY7C9101-	35	45	35	45	35	45	35	45
A, B Source Address	12	17	3[3]	$3{ }^{[3]}$	$35[4]$	45[4]	0	0
B Destination Address	12	17	\leftarrow	Do	ge[2]		1	1
D	-	-	-	-	25	30	0	0
C_{n}	-	-	-	-	19	24	0	0
$\mathrm{I}_{0,1,2}$	-	-	-	-	30	37	0	0
$\mathrm{I}_{3,4,5}$	-	-	-	-	33	40	0	0
$\mathrm{I}_{6,7,8}$	12	16	\leftarrow	Do	ge ${ }^{[2]}$		0	0
$\mathrm{RAM}_{0}, \mathrm{RAM}_{15}, \mathrm{Q}_{0}, \mathrm{Q}_{15}$	-	-	-	-	13	15	1	1

Output Enable/Disable Times ${ }^{[5]}$

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY7C9101-35	$\overline{\mathrm{OE}}$	Y	20	17
CY7C9101-45	$\overline{\mathrm{OE}}$	Y	23	20

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $H \rightarrow$ L transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \longrightarrow \mathrm{H}$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable \mathbf{A} and \mathbf{B} addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.
5. See the last page of this specification for Group A subgroup testing information.

Applications

Minimum Cycle Time Calculations for 16-Bit Systems

Speeds used in calculations for parts other than CY7C9101 and CY7C910 are representative for available MSI parts.

0079-15
Pipelined System, Add without Simultaneous Shift

\left.| | Data Loop | | Control Loop |
| :--- | :--- | :---: | :--- | :--- | :--- |$\right]$

Minimum Clock Period $=66$ ns

0079-13
Pipelined System, Simultaneous Add and Shift Down (RIGHT)

	Data Loop		Control Loop		
CY7C245	Clock to Output	12	CY7C245	Clock to Output	12
CY7C9101	A, B to Y, $\mathrm{C}_{\mathrm{n}}+16$, OVR	37	MUX	Select to Output	12
XOR and MUX	Prop. Delay, Select	20	CY7C910	CC to Output	22
	to Output		CY7C245	Access Time	20
CY7C9101	RAM ${ }_{15}$ Setup	11			66 ns
		80 ns			

Typical DC and AC Characteristics

NORMALIZED FREQUENCY

OUTPUT SINK CURRENT

0079-14

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CY7C9101-30 PC	P29	Commercial
	CY7C9101-30 LC	L81	
	CY7C9101-30 JC	J81	
	CY7C9101-30 DC	D30	
40	CY7C9101-30 GC	G68	
	CY7C9101-40 PC	P29	
	CY7C9101-40 LC	L81	
	CY7C9101-40 JC	J81	
	CY7C9101-40 DC	D30	
35	CY7C9101-40 GC	G68	
45	CY7C9101-35 LMB	L81	Military
	CY7C9101-35 DMB	D30	
	CY7C9101-35 GMB	G68	
	CY7C9101-45 LMB	L81	
	CY7C9101-45 DMB	D30	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{SC}	$1,2,3$
$\mathrm{I}_{\mathrm{CC}}(\mathrm{Q} 1)$	$1,2,3$
$\mathrm{I}_{\mathrm{CC}}(\mathrm{Q} 2)$	$1,2,3$
$\mathrm{I}_{\mathrm{CC}}($ Max. $)$	$1,2,3$

Combinational Propagation Delays

Parameters	Subgroups
From A, B Address to Y	$7,8,9,10,11$
From A, B Address to F_{15}	$7,8,9,10,11$
From A, B Address to $\mathrm{C}_{\mathrm{n}}+16$	$7,8,9,10,11$
From A, B Address to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	$7,8,9,10,11$
From A, B Address to $\mathrm{F}=0$	$7,8,9,10,11$
From A, B Address to OVR	$7,8,9,10,11$
From A, B Address to RAM ${ }_{0,1} 15$	$7,8,9,10,11$
From D to Y	$7,8,9,10,11$
From D to F_{15}	$7,8,9,10,11$
From D to $\mathrm{C}_{\mathrm{n}}+16$	$7,8,9,10,11$
From D to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	$7,8,9,10,11$
From D to $\mathrm{F}=0$	$7,8,9,10,11$
From D to OVR	$7,8,9,10,11$
From D to RAM $\mathrm{M}_{0,1}$	$7,8,9,10,11$
From C_{n} to Y	$7,8,9,10,11$
From C_{n} to F_{15}	$7,8,9,10,11$
From C_{n} to $\mathrm{C}_{\mathrm{n}}+16$	$7,8,9,10,11$

Combinational Propagation Delays (Continued)

Parameters	Subgroups
From C_{n} to $\mathrm{F}=0$	7,8,9,10,11
From C_{n} to OVR	7,8,9,10,11
From C_{n} to $\mathrm{RAM}_{0,15}$	7,8,9,10,11
From I_{012} to Y	7,8,9,10,11
From I_{012} to F_{15}	7,8,9,10,11
From I_{012} to $\mathrm{C}_{\mathrm{n}}+16$	7,8,9,10,11
From I_{012} to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	7,8,9,10,11
From I_{012} to $\mathrm{F}=0$	7,8,9,10,11
From I_{012} to OVR	7,8,9,10,11
From I_{012} to $\mathrm{RAM}_{0,15}$	7,8,9,10,11
From I_{345} to Y	7,8,9,10,11
From I_{345} to F_{15}	7,8,9,10,11
From I_{345} to $\mathrm{C}_{\mathrm{n}}+16$	7,8,9,10,11
From I_{345} to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	7,8,9,10,11
From I_{345} to $\mathrm{F}=0$	7,8,9,10,11
From I_{345} to OVR	7,8,9,10,11
From I_{345} to $\mathrm{RAM}_{0,15}$	7,8,9,10,11
From I_{678} to Y	7,8,9,10,11
From I_{678} to $\mathrm{RAM}_{0,15}$	7,8,9,10,11
From I_{678} to $\mathrm{Q}_{0,15}$	7,8,9,10,11
From A Bypass ALU to Y $(\mathrm{I}=2 \mathrm{XX})$	7,8,9,10,11
From Clock \sim to Y	7,8,9,10,11
From Clock \sim to F_{15}	7,8,9,10,11
From Clock \sim to $\mathrm{C}_{\mathrm{n}}+16$	7,8,9,10,11
From Clock to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	7,8,9,10,11
From Clock \sim to $\mathrm{F}=0$	7,8,9,10,11
From Clock \sim to OVR	7,8,9,10,11
From Clock \sim to RAM ${ }_{0,15}$	7,8,9,10,11
From Clock - to $\mathrm{Q}_{0,15}$	7,8,9,10,11

Set-up and Hold Times Relative to Clock (CP) Input

Parameters	Subgroups
A, B Source Address Set-up Time Before $H \rightarrow L$	7,8,9,10,11
A, B Source Address Hold Time After $\mathrm{H} \rightarrow \mathrm{L}$	7,8,9,10,11
A, B Source Address Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
A, B Source Address Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
B Destination Address Set-upTime Before $H \rightarrow L$	7,8,9,10,11
B Destination Address Hold Time After H \rightarrow L	7,8,9,10,11
B Destination Address Set-upTime Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
B Destination Address Hold Time After L $\rightarrow \mathbf{H}$	7,8,9,10,11
D Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11

Parameters	Subgroups
D Hold Time After L \rightarrow H	7,8,9,10,11
C_{n} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
C_{n} Hold Time After $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
I_{012} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{012} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{345} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{345} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{678} Set-up Time Before H \rightarrow L	7,8,9,10,11
I_{678} Hold Time After $\mathrm{H} \rightarrow \mathrm{L}$	7,8,9,10,11
I_{678} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{678} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
RAM $_{0}$, RAM $_{15}, \mathrm{Q}_{0}, \mathrm{Q}_{15}$ Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
RAM $_{0}$, RAM $_{15}, \mathrm{Q}_{0}, \mathrm{Q}_{15}$ Hold Time After L \rightarrow H	7,8,9,10,11

Document \#: 38-00017-C

Features

- Fast
- 35 ns worst case propagation delay, I to Y
- Low power CMOS
- I_{CC} (max. at 10 MHz) $=$ 145 mA (commercial)
$-\mathrm{I}_{\mathrm{CC}}($ max. static $)=68 \mathrm{~mA}$ (commercial)
- \mathbf{V}_{CC} margin
- $5 \mathrm{~V} \pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- Instruction set and architecture optimized for high speed controller applications
- CY7C9117 separate I/O
- One and two operand arithmetic and logical operations
- Bit manipulation, field insertion/extraction instructions
- Eleven types of instructions
- Immediate instruction capability
- 16-bit barrel shifter capability
- 32-word x 16-bit register file
- 8-bit status register
- Four ALU status bits
- Link bit and three user definable status bits
- ESD protection
- Capable of withstanding greater than 2001 V static discharge voltage
- Pin compatible and functionally equivalent to 29116, 29116A, 29C116, 29117, 29117A, 29C117

Functional Description

The CY7C9115, CY7C9116 and CY7C9117 are high speed 16-bit microprogrammed Arithmetic and Logic Units, (ALU).

The architecture and instruction set of the devices are optimized for peripheral controller applications such as disk controllers, graphics controllers, communications controllers, and modems.

Figure 1. CY7C9115, CY7C9116 Block Diagram

0085-5
Figure 2. CY7C9117 Block Diagram

Selection Guide

		$\begin{aligned} & \text { 7C9115-35 } \\ & \text { 7C9116-35 } \\ & \text { 7C9117-35 } \end{aligned}$	$\begin{aligned} & \text { 7C9115-40, } 45 \\ & \text { 7C9116-40, } 45 \\ & \text { 7C9117-40, } 45 \end{aligned}$	$\begin{aligned} & \text { 7C9115-65 } \\ & \text { 7C9116-65 } \\ & \text { 7C9117-65 } \end{aligned}$	$\begin{aligned} & \text { 7C9115-79 } \\ & \text { 7C9116-79 } \\ & 7 \mathrm{C} 9117-79 \end{aligned}$
Worst Case I-Y Propagation Delay (ns)	Commercial	35	45	65	
	Military		40	65	79
Maximum Operating Current @ $10 \mathrm{MHz}(\mathrm{mA})$	Commercial	145	145	145	
	Military		166	166	166

SEMICONDUCTOR

Functional Description (Continued)

When used with the CY7C517 multiplier, the CY7C9115, CY7C9116 and CY7C9117 also support microprogrammed processor applications.
The CY7C9115, CY7C9116 and CY7C9117 are shown in the block diagram, consists of a 32 -word by 16 -bit singleport RAM register file, a 16 -bit arithmetic unit and logic unit, an instruction latch and decoder, a data latch, an accumulator register, a 16-bit barrel shifter, a priority encoder, a status register, a condition code generator and multiplexer, and three-state output buffers.
The instruction set of the CY7C9115, CY7C9116 and CY7C9117 can be divided into eleven instruction types: single-operand, two-operand, single-bit shifts, rotate and merge, rotate and compare, rotate by n -bits, bit oriented
instructions, prioritize, Cyclic Redundancy Check (CRC), status, and NO-OP. Instruction execution occurs in a single clock cycle except for Immediate Instructions, which require two clock cycles to execute.
The CY7C9116 and CY7C9117 are pin compatible, functional equivalent of the industry standard 29116, 29116A, $29 \mathrm{C} 116,29117,29117 \mathrm{~A}, 29 \mathrm{C} 117$ with improved performance.
Fabricated in an advanced 1.2 micron, two-level metal CMOS process, the CY7C9115, CY7C9116 and CY7C9117 eliminates latchup, has ESD protection greater than 2001 V , and achieves superior performance with low power dissipation.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature - $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground	
Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	$-0.5 \mathrm{~V} \text { to }+7.0$
DC Input Voltage	-3.0 V to +7.0
Output Current into Outputs (Low)	30 mA

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latchup Current (Outputs) $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Pin Configurations CY7C9115, CY7C9116

Pin Configurations CY7C9117

Top View

0085-6
LCC/PLCC
$\mathrm{NC}=\mathbf{N o}$ Connect
Top View

CY7C9117 Pin for 68 PGA
$\mathbf{N C}=\mathbf{N o}$ Connect

Description of Architecture

The CY7C9115, CY7C9116 and CY7C9117 are 16-bit microprogrammed arithmetic and logic units comprised of the following sections (see block diagram):

- 32 Word x 16-Bit Register File
- Data Latch
- Instruction Latch and Decoder
- Accumulator
- Logic Unit with a 16 -bit Barrel Shift Capability
- Arithmetic Unit
- Priority Encoder
- Condition Code Generator and Multiplexer
- Status Register
- Output Buffers

32-Word x 16-Bit Register File

The 32 -word $\times 16$-bit register file is a single port RAM with a 16 -bit latch at the output. The latch is transparent while CP is HIGH and latched when CP is LOW. If IEN is LOW and the current instruction specifies the RAM at its destination, data is written into the RAM while CP is LOW. Word instructions write into all 16-bits of the RAM word addressed; byte instructions write into only the lower eight bits.
Use of an external multiplexer on five of the instruction inputs makes it possible to select separate read and write addresses for the same NON-IMMEDIATE instruction. Immediate Instructions do not allow this two-address operation for the 7C9115 and 7C9116. The 7C9117 does support two-address Immediate Instructions.

Data Latch

The data latch holds the 16 -bit input to the CY7C9115, CY7C9116 and CY7C9117 from the Y (bidirectional) bus for the 7C9115 and 7C9116 and the data bus for the 7C9117. When DLE is HIGH, the latch is transparent, it is latched when DLE is LOW.

Instruction Latch and Decoder

The 16-bit instruction latch is always transparent, except when Immediate Instructions are executed. The Instruction Decoder decodes the instruction inputs into the internal signals which control the CY7C9115, CY7C9116 and CY7C9117. All instructions other than Immediate Instructions execute in a single clock cycle.
Execution of Immediate Instructions takes two clock cycles. During the first clock cycle, the Instruction Decoder identifies the instruction as an Immediate Instruction and the Instruction Latch captures the instruction at the instruction inputs. For Immediate Instructions, the data at the instruction inputs during the second clock cycle is used as one of the operands for the Immediate Instruction specified during the first clock cycle. Upon completion of the Immediate Instruction (the end of the second clock cycle), the Instruction Latch again becomes transparent.

Accumulator

The accumulator is a 16 -bit edge triggered register. If the IEN is LOW and the current instruction specifies the accumulator as its destination, the accumulator accepts Y input
data at the clock LOW to HIGH transition. Word instructions write into all 16 bits of the accumulator, byte instructions write into the lower eight bits.

16-Bit Barrel Shifter

The barrel shifter can rotate data input to it from either the register file, the accumulator, or the data latch from 0 to 15 bit positions. In word mode, the barrel shifter rotates a 16-bit word; in byte mode, it only affects the lower eight bits. The barrel shifter is used as one of the ALU inputs.

Arithmetic and Logic Unit

The CY7C9115, CY7C9116 and the CY7C9117 have an arithmetic unit and a logic unit. The arithmetic unit is capable of operating on one or two operands while the logic unit is capable of operating on one, two or three operands. The two units in parallel are able to execute the one and two operand instructions such as pass, complement, two's complement, add, subtract, AND, OR, EXOR, NAND, NOR, and EXNOR. Three operand instructions include rotate/merge and rotate/masked compare. There are three data types supported by the CY7C9115, CY7C9116 and CY7C9117; bit, byte, and 16-bit word.
All arithmetic and logic unit operations can be performed in either word or byte mode, with byte instructions performed only on the lower eight bits.
Three status output are generated by the arithmetic unit: carry (C), negative (N), and overflow (OVR). A zero flag (Z) detects a zero condition, though this flag is not generated by the arithmetic unit or the logic unit. These flags are generated in either word or byte mode, as appropriate.
The arithmetic unit uses full carry look-ahead across all 16 bits during arithmetic operations. The carry input to the arithmetic unit comes from the carry multiplexer, which can select either zero, one, or a stored carry bit (QC) from the status register. Multiprecision arithmetic uses QC as the carry input.

Priority Encoder

The priority encoder generates a binary-weighted code based on the location of the highest order ONE in its input word or byte. The operand to be prioritized may be AND-ed with a mask to eliminate certain bits from the priority encoding. This masking is performed by the logic unit.

In word mode, the output is a binary one if bit 15 is the first (unmasked) HIGH encountered, a binary two if bit 14 is the first HIGH and so on. If bit 0 is the only HIGH, the output of the priority encoder is binary 16 . If no bits are HIGH, a binary zero is output.
In byte mode, only bits 7 through 0 are examined. Bit 7 HIGH produces a binary one, bit 6 a binary two, and so on. If bit 0 is the only HIGH, a binary eight is output; if no bits are HIGH, a binary zero is output.

Condition Code Generator and Multiplexer

The twelve condition code test signals are generated in this section. The multiplexer selects one of these twelve and places it at the CT output. The multiplexer is addressed by either using the Test Instruction or by using the bidirec-

CY7C9115
CY7C9116/CY7C9117

Description of Architecture (Continued)

tional T bus as an input. The test instruction specifies the test condition to be placed at the CT output, but it does not allow an ALU operation at the same time. Using the T bus as input, the CY7C9115, CY7C9116 and CY7C9117 may simultaneously test and execute an instruction. The test instruction lines (I_{4-0}) take precedence over T_{4-1} for testing status.

Status Register

The 8 -bit status word is held by the status register. The status register is updated at the end of all instructions except NO-OP, Save Status, and Test Status, provided the status register enable ($\overline{\mathrm{SRE}}$) and instruction enable (IEN) are both LOW. The status register is inhibited from changing if either $\overline{\text { SRE }}$ or IEN are HIGH.
The lower four status bits are the ALU status: OVR (overflow), N (negative), C (carry), and Z (zero). The upper four bits are a link bit and three user-defined status bits (Flag1, Flag2, Flag3).
As stated above, when IEN and $\overline{\text { SRE }}$ are LOW, the status register is updated at the end of all instructions other than NO-OP, Save Status, and Test Status. The lower four status bits are updated under the above conditions, with the additional exception of when IEN and SRE are LOW and the Status Set/Reset instruction is performed on the upper four bits. When IEN and SRE are LOW, the upper four status bits are only changed during their corresponding Status Set/Reset instructions and during Status Load instructions in word mode. The Link-Status bit is also updated after every shift instruction.
The status register can be loaded via the internal Y bus; it can also be selected as a source for the internal Y bus. Loading the status register in word mode updates all eight bits of the status register. In byte mode, only the lower four bits are updated.
Using the status register as a source in the word mode loads all eight bits into the lower byte of the destination; the upper byte is zero-filled. In byte mode, the status register loads the lower byte of the destination; however the upper byte is unchanged. Interrupt and subroutine processing is facilitated by this store/load combination, which allows saving and restoring the status register. The lower four bits of the status register can be read directly by outputting them to the T_{4-1} outputs. These outputs are enabled when OE_{T} is HIGH.

Output Buffers

Two sets of bidirectional buses exist on the CY7C9115 and CY7C9116. The bidirectional Y bus (16 bits) is controlled by $\overline{\mathrm{OE}}_{\mathrm{Y}}$. The three state outputs are enabled when $\overline{\mathrm{OE}}_{\mathrm{Y}}$ is LOW, they are at high impedance when $\overline{\mathrm{OE}}_{\mathrm{Y}}$ is HIGH. This will allow data to be input to the data latch from the external world. The second bidirectional bus is the four-bit T bus. These three state buffers are enabled by a HIGH on OE_{T}, which will output the internal ALU status bits (OVR, $\mathrm{N}, \mathrm{C}, \mathrm{Z}$). If OE_{T} is LOW, the T outputs are at high impedance, and a test condition can be input on the T bus to determine the CT output.
The 7C9117 has separate Y bus output and Data Input buses. All other pins are functionally equivalent to the 7C9115 and 7C9116.

Pin Definitions

Signal Name I/O	Description

Y_{15-0} I/O Data Input/Output. These bidirectional lines are used to directly load the 16 -bit data latch when $\overline{\mathrm{OE}}_{Y}$ is HIGH. When $\overline{\mathrm{OE}}_{Y}$ is LOW, the arithmetic unit or the logic unit output data is output on Y_{15-0}.
$\mathrm{I}_{15-0} \quad$ I Instruction Word. This 16 -bit word selects the functions performed by the 7C9116. These lines are also used to input data when executing Immediate Instructions.
T_{4-1} I/O Status Input/Output. These bidirectional pins are used to output the lower four status bits $\left(O V_{R}\right.$, N, C, and Z) when OE_{T} is HIGH. When OE_{T} is LOW, these lines are used as inputs to generate the conditional test (CT) output.
CT O Conditional Test. One of twelve condition code signals is selected by the condition code multiplexer to be placed on the CT output. CT $=$ HIGH for a pass condition; CT $=$ LOW for a fail condition.
DLE I Data Latch Enable. The 16-bit data latch is transparent when DLE is HIGH and latched when DLE is LOW.
IEN I Instruction Enable. The following occurs with IEN LOW: Data may be written into the RAM when the clock is LOW, the Accumulator can accept data during the clock LOW to HIGH transition, and the Status Register can be updated when $\overline{\mathrm{SRE}}$ is LOW. If IEN is HIGH, CT is disabled as a function of the instruction inputs. IEN should be LOW during the first half of the first cycle of Immediate Instructions.
$\overline{\text { SRE }} \quad$ I Status Register Enable. The Status Register is updated at the end of all instructions except NOOP, Save Status, and Test Status when SRE and $\overline{\text { IEN }}$ are both LOW. The Status Register is inhibited from changing when either SRE or $\overline{\text { IEN }}$ are HIGH.
$\overline{\mathrm{OE}}_{\mathrm{Y}} \quad \mathrm{I} \quad \mathrm{Y}$ Output Enable. This controls the 16-bit Y_{15-0} I/O port. When $\overline{O E}_{Y}$ is LOW, the Y-outputs are enabled, when $\overline{\mathrm{OE}}_{\mathrm{Y}}$ is HIGH, the Y outputs are disabled (high impedance).
$\mathrm{OE}_{\mathrm{T}} \quad \mathrm{I} \quad$ T Output Enable. The four bit T outputs are enabled when $\mathrm{OE}_{\mathbf{T}}$ is HIGH : they are disabled (high impedance) when OE_{T} is LOW.
CP I Clock Pulse. The RAM output latch is transparent when CP is HIGH; the RAM output is latched when CP goes LOW. If IEN is LOW and the current instruction specifies the RAM as the destination, then data is written into the RAM while CP is LOW. If IEN is LOW, the Accumulator and Status Register will accept data at the clock LOW to HIGH transition. The instruction latch becomes transparent upon exiting an Immediate Instruction during a LOW to HIGH clock transition.
D_{15-0} I These input lines are used to directly load the data latch.
Y_{15-0} I/O These output lines are used to present the arithmetic unit or the logic unit output when $\overline{\mathrm{OE}}_{\mathrm{Y}}$ is LOW. (CY7C9117 Y 15-0 and output only)

Instruction Set

The instruction set of the CY7C9115, CY7C9116 and CY7C9117 is optimized for peripheral controller applications. It features: Bit Set, Bit Reset, Bit Test, Rotate and Merge, Rotate and Compare, and Cyclic-RedundancyCheck (CRC) generation, in addition to standard Single- or Two-Operand logical and arithmetic instructions. A single clock cycle will execute all but the Immediate Instructions which take 2 clock cycles.
The CY7C9115, CY7C9116 and CY7C9117 can operate in three different data modes: bit, byte and word (16 bits).
The LSB of the word is used for Byte Mode. Also in Byte Mode when the status register is specified as the destination, only the LSH (OVR, N, C, Z) of the register is
updated. Save Status and Test Status instructions do not change the status register. During Test Status instructions the Y-bus (or D-bus for the CY7C9117) is undefined; the result is in the CT output.

The eleven instruction types outlined below are described in detail on the following pages.

Single-Operand	Rotate and Compare Two-Operand Prioritize
Single Bit Shift	CRC
Rotate and Merge	Status
Bit-Oriented	No-Op

Table 1. Operand Source-Destination Combinations

Instruction Type	Operand Combinations (Note 1)		
$\begin{gathered} \text { Single Operand } \\ \text { SOR } \\ \text { SONR } \end{gathered}$	Source (R/S)		Destination
	RAM (Note 2)ACCDD(OE)D(SE)IO		RAM ACC Y Bus Status ACC and Status
Two Operand TOR1 TOR2 TONR	Source (R)	Source (S)	Destination
	$\begin{gathered} \text { RAM } \\ \text { RAM } \\ \text { D } \\ \text { D } \\ \text { ACC } \\ \text { D } \end{gathered}$	$\begin{gathered} \text { ACC } \\ \text { I } \\ \text { RAM } \\ \text { ACC } \\ \text { I } \\ \text { I } \\ \hline \end{gathered}$	RAM ACC Y Bus Status ACC and Status
Single Bit Shift SHFTR SHFTNR	Source (U)		Destination
	$\begin{gathered} \text { RAM } \\ \text { ACC } \\ \text { ACC } \\ \text { D } \\ \text { D } \\ \text { D } \end{gathered}$		RAM ACC Y Bus RAM ACC Y Bus
Rotate n Bits ROTR1 ROTR2 ROTNR	Source (U)		Destination
	$\begin{gathered} \hline \text { RAM } \\ \text { ACC } \\ \text { D } \end{gathered}$		RAM ACC Y Bus
Bit Oriented BOR1 BOR2 BONR	Source (R/S)		Destination
	$\begin{gathered} \hline \text { RAM } \\ \text { ACC } \\ \text { D } \end{gathered}$		RAM ACC Y Bus
Rotate and Merge ROTM ROTC	Rotated Source (U)	Mask (S)	Non-Rotated Source/ Destination (R)
	D	I	ACC
	D	RAM	ACC
	D	I	RAM
	D	ACC	RAM
	ACC RAM	$\begin{aligned} & \mathrm{I} \\ & \mathrm{I} \end{aligned}$	RAM ACC

Notes:

1. If there is no division between the R/S operand or SOURCE and DESTINATION, the two are a given pair. If a division exists, any combination is possible.
2. RAM cannot be used as source when both ACC and STATUS are designated as a DESTINATION:
3. OPERAND and MASK must be different sources.

Instruction Type	Operand Combinations (Note 1)		
Rotate and Compare CDAI CDRI CDRA CRAI	Rotated Source (U)	Mask (S)	Non-Rotated Source/ Destination (R)
	$\begin{array}{r} \mathrm{D} \\ \mathrm{D} \\ \mathrm{D} \\ \mathrm{RAM} \\ \hline \end{array}$	$\begin{gathered} \text { I } \\ \text { I } \\ \text { ACC } \\ \text { I } \\ \hline \end{gathered}$	ACC RAM RAM ACC
Prioritize (Note 3) PRT1 PRT2 PRTNR	Source (R)	Mask (S)	Destination
	$\begin{gathered} \hline \text { RAM } \\ \text { ACC } \\ \mathrm{D} \end{gathered}$	$\begin{gathered} \hline \text { RAM } \\ \text { ACC } \\ \text { I } \\ \text { O } \\ \hline \end{gathered}$	$\begin{aligned} & \text { RAM } \\ & \text { ACC } \\ & \text { Y Bus } \end{aligned}$
Cyclic Redundancy Check CRCF CRCR	Data In	Destination	Polynominal
	QLINK RAM		ACC
No Operation NOOP		-	
Set Reset StatusSETSTRSTSTSVSTRSVSTNRTEST	Bits Affected		
	OVR, N, C, Z LINK Flag1 Flag2 Flag3		
Store Status	Source		Destination
	Status		$\begin{aligned} & \hline \text { RAM } \\ & \text { ACC } \\ & \text { Y Bus } \end{aligned}$
Status Load	Source (R)	Source (S)	Destination
	$\begin{gathered} \mathrm{D} \\ \mathrm{ACC} \\ \mathrm{D} \end{gathered}$	$\begin{gathered} \mathrm{ACC} \\ \mathrm{I} \\ \mathrm{I} \\ \hline \end{gathered}$	Status Status and ACC
Test Status	Test Condition (CT)		
	$\begin{gathered} (\mathrm{N} \oplus \mathrm{OVR})+\mathrm{Z} \\ \mathrm{~N} \oplus \mathrm{OVR} \\ \mathbf{Z} \\ \text { OVR } \\ \text { Low } \\ \mathrm{C} \end{gathered}$		$\begin{gathered} \mathrm{Z}+\overline{\mathrm{C}} \\ \mathbf{N} \\ \text { LINK } \\ \text { Flag1 } \\ \text { Flag2 } \\ \text { Flag3 } \\ \hline \end{gathered}$

SEMICONDUCTOR

Instruction Set (Continued)

$\overline{\mathrm{OE}}_{\mathrm{Y}}$ is assumed LOW for all cases, allowing ALU outputs on the Y - or D -bus.
Instructions are individually distinguished by using OP-CODES and 2 assigned quadrant bits. Four quadrants, 0 to 3, have been assigned to each instruction type in order to ease groupings of instructions and addressing modes.

Single Operand Instructions

Each Single Operand Instruction contains four designators:

1. Mode (Byte or Word)
2. Opcode
3. Source
4. Address or Destination

These designators are divided into two basic categories, those which use RAM addresses and those that do not.

The instruction formats shown below are unique for each category. In both cases the desired operation, controlled by the instruction inputs, is performed on the source with the result either placed on the Y-bus or stored in the destination or both. The functions of Extending Sign Bit (D(SE)) and Binary Zero ($\mathrm{D}(\mathrm{OE})$) over 16 bits in the Word Mode are available for cases where 8 -bit to 16 -bit conversion is necessary. The functions performed using Single Operand instructions update the LSB of the Status Register (OVR, N, C, Z) but do not effect the MSB (FLAG1, FLAG2,
FLAG3, LINK). Single Operation instructions are limited when both the ACC and Status Register are the destination, the source cannot be RAM.

Single Operand Field Definitions

Single Operand Instruction Set

Notes:

1. Instruction mnemonic.
2. $\mathbf{B}=$ Byte Mode, $\mathbf{W}=$ Word Mode.
3. Quadrant subdivides instuctions into categories.
4. $\mathrm{R}=$ Source; $\mathrm{S}=$ Source; Dest $=$ Destination.
5. Status is destination,

Status $\mathrm{i} \leftarrow \mathrm{Yi} \quad \mathrm{i}=0$ to 3 (byte mode)

$$
\mathrm{i}=0 \text { to } 7(\text { word mode })
$$

Y Bus and Status

Instruction	Opcode	Description	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	Z
$\begin{aligned} & \text { SOR } \\ & \text { SONR } \end{aligned}$	COMP	$\overline{\mathrm{SCR}} \rightarrow$ Dest	$\begin{aligned} & 1=\mathrm{W} \\ & 0=\mathrm{B} \end{aligned}$	$\mathrm{Y} \rightarrow \overline{\mathrm{SRC}}$	NC	NC	NC	NC	0	U	0	U
	INC	SCR + $1 \rightarrow$ Dest		$\mathrm{Y} \rightarrow$ SRC +1	NC	NC	NC	NC	U	U	U	U
	MOVE	SCR \rightarrow Dest		$\mathrm{Y} \rightarrow$ SRC	NC	NC	NC	NC	0	U	0	U
	NEG	$\overline{\mathrm{SCR}}+1 \rightarrow$ Dest		$\mathrm{Y} \rightarrow \mathrm{SRC}+1$	NC	NC	NC	NC	U	U	U	U

SRC = Source

$$
\mathrm{NC}=\text { No Change }
$$

$\mathrm{U}=$ Update

$$
1=\text { Set }
$$

$0=$ Reset
$\mathrm{i}=0$ to 15 when not specified

Instruction Set (Continued)

Each Two Operand Instruction is constructed of 5 fields:

1. Mode (Byte or Word)
2. Opcode
3. R Source
4. S Source
5. Address or Destination

These instructions are further divided into those using RAM addresses and those that do not. The first type uses two formats which differ only by quadrant designator.

Functions are performed on the specified R and S sources and results are stored in the specified destination and/or placed on the Y-bus. Arithmetic functions update the least significant nibble of the Status Register (OVR, N, C, Z) while logical functions affect only the N and Z bits. Execution of logical functions clear the OVR and C bits of the Status Register.

Two Operand Instruction Set

Notes:

[^42]Instruction Set (Continued)
Two Operand Instruction Set

Instruction	B/W	Quad			$\mathrm{R}^{[1]}$	$\mathrm{S}^{\text {[1] }}$			ode		Dest	nation
TONR	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \end{aligned}$	11	$\begin{aligned} & \hline 0001 \\ & 0010 \\ & 0101 \end{aligned}$	$\begin{aligned} & \text { TODA } \\ & \text { TOAI } \\ & \text { TODI } \end{aligned}$	D ACC D	$\begin{aligned} & \mathrm{ACC} \\ & \mathrm{I} \\ & \mathrm{I} \end{aligned}$	0000	SUBR	S minus R	00000	NRY	Y Bus
							0001	SUBRC	S minus R with	00001	NRA	ACC
									carry	00100	NRS	Status ${ }^{[2]}$
							0010	SUBS	R minus S	00101	NRAS	ACC, Status ${ }^{[2]}$
							0011	SUBSC	R minus S with carry			
							0100	ADD	R plus S			
							0101	ADDC	R plus S with carry			
							0110	AND	$\mathrm{R} \cdot \mathrm{S}$			
							0111	NAND	$\overline{\mathrm{R} \bullet \mathrm{S}}$			
							1000	EXOR	$\mathrm{R} \oplus \mathrm{S}$			
							1001	NOR	$\overline{\mathrm{R}+\mathrm{S}}$			
							1010	OR	$\mathrm{R}+\mathrm{S}$			
							1011	EXNOR	$\overline{\mathrm{R} \oplus \mathrm{S}}$			

Notes:

1. $\mathbf{R}=$ Source

S $=$ Source
2. Status is destination,

Status $\mathrm{i} \leftarrow \mathrm{Yi}, \mathrm{i}=0$ to 3 (byte mode)

$$
\mathrm{i}=0 \text { to } 7 \text { (word mode) }
$$

3. For subtraction the carry is inverted.

Y Bus and Status Contents

Instruction	Opcode	Description	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	\mathbf{Z}
TOR1 TOR2 TONR	ADD	R plus S	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \end{aligned}$	$\mathrm{Y} \leftarrow \mathrm{R}+\mathrm{S}$	NC	NC	NC	NC	U	U	U	U
	ADDC	R plus S with carry		$\mathrm{Y} \leftarrow \mathrm{R}+\mathrm{S}+\mathrm{QC}$	NC	NC	NC	NC	U	U	U	U
	AND	$\mathrm{R} \cdot \mathrm{S}$		$\mathrm{Y} \leftarrow \mathrm{R}_{\mathrm{i}}$ AND S $_{\mathrm{i}}$	NC	NC	NC	NC	0	U	0	U
	EXOR	$\mathrm{R} \oplus \mathrm{S}$		$\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{R}_{\mathrm{i}}$ EXOR $^{\text {i }}$	NC	NC	NC	NC	0	U	0	U
	EXNOR	$\overline{R \oplus S}$		$\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{R}_{\mathbf{i}}{\text { EXNOR } \mathrm{S}_{\mathrm{i}}}$	NC	NC	NC	NC	0	0	0	U
	NAND	R•S		$\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{R}_{\mathrm{i}}$ NAND $^{\text {i }}$	NC	NC	NC	NC	0	U	0	U
	NOR	$\overline{\mathrm{R}+\mathrm{S}}$		$\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{R}_{\mathrm{i}}$ NOR S_{i}	NC	NC	NC	NC	0	U	0	U
	OR	$\mathrm{R}+\mathrm{S}$		$\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{R}_{\mathrm{i}}$ OR S_{i}	NC	NC	NC	NC	0	U	0	U
	SUBR	S minus R		$\mathrm{Y} \leftarrow \mathrm{S}+\overline{\mathrm{R}}+1$	NC	NC	NC	NC	U	U	U	U
	SUBRC	S minus R with carry		$\mathrm{Y} \leftarrow \mathrm{S}+\overline{\mathrm{R}}+\mathrm{QC}$	NC	NC	NC	NC	U	U	U	U
	SUBS	R minus S		$\mathrm{Y} \leftarrow \mathrm{R}+\overline{\mathrm{S}}+1$	NC	NC	NC	NC	U	U	U	U
	SUBSC	R minus S with carry		$\mathrm{Y} \leftarrow \mathrm{R}+\overline{\mathrm{S}}+\mathrm{QC}$	NC	NC	NC	NC	U	U	U	U

$\mathrm{U}=$ Update
NC = No Change
$0=$ Reset
$1=$ Set
$\mathrm{i}=0$ to 15 when not specified

Single Bit Shift Instructions

Single Bit Shift Instructions are constructed of four fields:

1. Mode (Byte or Word)
2. Direction (up or down) and shift linkage
3. Source
4. Destination

These instructions are further divided into those using RAM addresses and those that do not. The shift linkage indicator indicates what is to be loaded into the vacant bit.

During a shift up the LSB may be loaded with a zero, one or with the link status bit (QLINK), while the MSB is shifted into the QLINK bit. During a shift down, the MSB is loaded with a zero, one, the Status Carry bit (QC), the Exclusive-Or of the Negative-Status bit and the OverflowStatus bit (QN \oplus QOVR), or the Link-Status bit. The Status Register's N and Z bits are updated, while the OVR and C bits are reset. Shift down with $\mathrm{QN} \oplus$ QOVR can be used in Two's Complement Multiplication.

Single Bit Shift Instructions (Continued)
Single Bit Shift Field Definitions

Shift Up Function

0085-8

Shift Down Function

Single Bit Shift Instruction Set

Note:

1. $\mathrm{U}=$ Source

Dest $=$ Destination
Y Bus and Status

Instruction	Opcode	Description	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	Z
SHR SHNR	SHUPZ SHUP1 SHUPL	$\begin{aligned} & \text { Up } 0 \\ & \text { Up } 1 \\ & \text { Up QLINK } \end{aligned}$	$1=\mathrm{W}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \underset{\mathrm{SRC}_{\mathrm{i}-1,}, \mathrm{i}=1 \text { to } 15 ;}{ } \mathrm{Y}_{0} \leftarrow \text { Shift Input } \end{aligned}$	NC	NC	NC	$\mathrm{SRC}_{15 *}$	0	SRC14	0	U
			$0=B$		NC	NC	NC	$\mathrm{SRC}_{7}{ }^{*}$	0	SRC_{6}	0	U
	SHDNZ SHDN1 SHDNL SHDNC SHCNOV	Down 0 Down 1	$1=\mathrm{W}$	$\begin{aligned} & \hline \mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{SRC}_{\mathrm{i}}+1, \mathrm{i}=0 \text { tol4; } \\ & \mathrm{Y}_{15} \leftarrow \text { Shift Input } \\ & \hline \end{aligned}$	NC	NC	NC	SRC0*	0	Shift	0	U
		Down QLINK Down QC Down $\mathrm{QN} \oplus \mathrm{QOVR}$	$0=\mathrm{B}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{SRC}_{\mathrm{i}+1}, \mathrm{i}=0 \text { to } 6 ; \\ & \mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{SR} \mathrm{~S}_{\mathrm{i}-7, \mathrm{i}}=8 \text { to } 14 ; \\ & \mathrm{Y}_{7,15} \leftarrow \mathrm{Shift}^{2} \text { Input } \end{aligned}$	NC	NC	NC	SRC0*	0	Shift Input	0	U

[^43]
Instruction Set (Continued)

Bit-Oriented Instructions

Bit-Oriented Instructions are constructed from four fields:

1. Mode (Byte or Word)
2. Operation
3. Source or Destination
4. Bit position operated on ($0=$ LSB)

These instructions are further divided into those using RAM addresses and those that do not. The specified function operates on the given source and the result is stored in the specified destination and/or on the Y-bus.
Set Bit n: Forces the nth bit to ONE without affecting other bit positions.

Reset Bit n: Forces the nth bit to ZERO without affecting other bit positions.
Test Bit n : Sets the Z status bit to the state of bit n.
$\overline{\text { Load } 2^{n}}$: Loads ZERO in bit position n and sets all other bits.
Load 2n: Loads ONE in bit position n and clears all other bits.
Increment $2^{2 n}$: Adds 2^{n} to the operand.
Decrement 2^{n} : Subtracts 2^{n} from the operand.
Load, Set, Reset and Test instructions update \mathbf{N} and \mathbf{Z} status bits while forcing OVR and C bits to ZERO. Arithmetic operations affect the entire lower nibble of the Status Register (OVR, C, N, and Z).

Bit Oriented Instruction Set

Instruction	B/W	Quadrant	n			Opcode	RAM Address		
BOR1	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	11	0 to 15	110 111 111	SETNR RSTNR TSTNR	Set RAM, bit n Reset RAM, bit n Test RAM, bit n		$\begin{array}{ll} \text { R00 } & \text { R } \\ \cdots & \\ \text { R31 } & \text { R } \end{array}$	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quadrant	n			Opcode	RAM Address		
BOR2	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \end{aligned}$	10	0 to 15	$\begin{array}{\|l} 1100 \\ 1101 \\ 1110 \\ 1111 \end{array}$	LD2NR LDC2NR A2NR S2NR	$\begin{aligned} & 2^{\mathrm{n}} \\ & 2^{\mathrm{n}} \end{aligned} \rightarrow \text { RAM }$ RAM plus $2^{n} \rightarrow$ RAM RAM minus $2^{2 n} \rightarrow$ RAM		$\begin{array}{ll} \text { R00 } & \mathbf{R} \\ \text { R31 } \end{array}$	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quadrant	n			Opcode			Opcode
BONR	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	11	0 to 15	1100			$\begin{aligned} & 0000 \\ & 0000 \\ & 0001 \\ & 0010 \\ & 0010 \\ & 0011 \\ & 0011 \\ & 1000 \\ & 1000 \\ & 1001 \\ & 1010 \\ & 1010 \\ & 1011 \\ & 1011 \end{aligned}$	 TSTNA T RSTNA R SETNA S A2NA A S2NA A LD2NA 2 LDC2NA 2 TSTND T RSTND R SETND S A2NDY D S2NDY D LS2NY 2 LDC2NY 2	Test ACC, bit n Reset ACC, bit n Set ACC, bit n ACC plus $2^{2 n} \rightarrow$ ACC ACC minus $2 \mathrm{n} \rightarrow$ ACC $2^{\mathrm{n}} \rightarrow \mathrm{ACC}$ $\overline{2^{n}} \rightarrow \mathrm{ACC}$ Test D, bit n Reset D , bit n Set D, bit n D plus $2^{\mathrm{n}} \rightarrow$ Y Bus D minus $2^{n} \rightarrow$ Y Bus $2^{\mathrm{n}} \rightarrow$ Y Bus $\overline{2^{n}} \rightarrow$ Y Bus

SEMICONDUCTOR

CY7C9115
 CY7C9116/CY7C9117

Instruction Set (Continued)

Rotate By n Bits Instructions

The Rotate by n Bits Instructions contain four indicators: byte or word mode, source, destination and the number of places the source is to be rotated. They are further subdivided into two types. The first type uses RAM as a source and/or a destination and the second type does not use RAM as a source or destination. The first type has two different formats and the only difference is in the quadrant. The second type has only one format as shown in the table. Under the control of instruction inputs, the n indicator
specifies the number of bit positions the source is to be rotated up (0 to 15), and the result is either stored in the specified destination or placed on the Y bus or both. An example of this instruction is given in Figure 5. In the Word mode, all 16 -bits are rotated up; while in the Byte mode, only the lower 8 -bits ($0-7$) are rotated up. In the Word Mode, a rotate up by n bits is equivalent to a rotate down by ($16-\mathrm{n}$) bits. Similarly, in the Byte mode a rotate up by n bits is equivalent to a rotate down by ($8-n$) bits. The N and Z bits of the Status Register are affected and OVR and C bits are forced to ZERO.

Rotate By n Bits Field Definitions

	1514		131298		54
ROTR1	B/W	Quadrant	n	SRC-Dest	RAM Address
ROTR2	B/W	Quadrant	n	SRC-Dest	RAM Address
ROTNR	B/W	Quadrant	n	1100	SRC-Dest

Rotate by n Example

EXAMPLE: $\mathrm{n}=4$, Word Mode				
Source	0001	0011	0111	1111
Destination	0011	0111	1111	0001
EXAMPLE: $\mathrm{n}=4$, Byte Mode				
Source	0001	0011	0111	1111
Destination	0001	0011	1111	0111

Rotate By n Bits Instruction Set

Instruction	B/W	Quadrant	n			$\mathrm{U}^{[1]}$	Dest ${ }^{[1]}$	RAM Address			
ROTR1	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathrm{W} \end{aligned}$	00	0 to 15	$\begin{aligned} & 1100 \\ & 1110 \\ & 1111 \end{aligned}$	RTRA RTRY RTRR	$\begin{aligned} & \text { RAM } \\ & \text { RAM } \\ & \text { RAM } \end{aligned}$	$\begin{aligned} & \text { ACC } \\ & \text { Y Bus } \\ & \text { RAM } \end{aligned}$	$\begin{gathered} 00000 \\ \ldots \\ 11111 \end{gathered}$	$\begin{gathered} \mathrm{R} 00 \\ \mathrm{R} 31 \end{gathered}$	$\begin{aligned} & \text { RAM } \\ & \cdots \\ & \text { RAM } \end{aligned}$	
Instruction	B/W	Quadrant	n			$\mathrm{U}^{[1]}$	Dest ${ }^{[1]}$	RAM Address			
ROTR2	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	01	0 to 15	$\begin{aligned} & 0000 \\ & 0001 \end{aligned}$	RTAR RTDR	$\begin{aligned} & \mathrm{ACC} \\ & \mathrm{D} \end{aligned}$	RAM RAM	$\begin{aligned} & 00000 \\ & \ldots \\ & 11111 \end{aligned}$	$\begin{gathered} \text { R00 } \\ \text { R31 } \end{gathered}$	RAM RAM	$\begin{aligned} & 00 \\ & \\ & \hline \text { eg } 31 \end{aligned}$
Instruction	B/W	Quadrant	n							$\mathrm{U}^{[1]}$	Dest ${ }^{[1]}$
ROTNR	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \end{aligned}$	11	0 to 15	1100				$\begin{aligned} & 11000 \\ & 11001 \\ & 11100 \\ & 11101 \end{aligned}$	RTDY RTDA RTAY RTAA	D D ACC ACC	Y Bus ACC Y Bus ACC

Note:

1. $\mathrm{U}=$ Source

Dest $=$ Destination
Y Bus and Status

Instruction	Opcode	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	Z
ROTR1		$1=\mathrm{W}$	$\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{SRC}_{(\mathrm{i}-\mathrm{n}) \bmod 16}$	NC	NC	NC	NC	0	$\mathrm{SRC}_{15-\mathrm{n}}$	0	U
ROTR2 ROTNR		$0=\mathrm{B}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{SRC}_{\mathrm{i}}+8=\mathrm{SRC}_{(\mathrm{i}-\mathrm{n}) \bmod 8} \\ & \text { for } \mathrm{i}=0 \text { to } 7 \end{aligned}$	NC	NC	NC	NC	0	SRC6-n	0	U

SRC $=$ Source

$\mathbf{U}=$ No Change
$0=$ Reset
$1=\mathrm{Set}$
$\mathrm{i}=0$ to 15 when not specified

Instruction Set (Continued)

Rotate and Merge Instructions

Each Rotate and Merge instruction consists of five fields:

1. Mode (Byte or Word)
2. Rotated Source (U)
3. Non-Rotated Source (R)
4. Mask Location (S)
5. Number of bits Rotated (n)

The shift register rotates source U up n places. ANDing with the mask causes any bit ito be passed from the rotated source that corresponds to a set bit in mask position i. The R input is not shifted, but is masked by the compliment of mask S, so that a ZERO in mask bit i will pass bit i of R. The ORed result is stored in register R. Rotate and Merge operations update the N and Z status bits, while clearing the OVR and C bits.

Rotate and Merge Field Definitions

EXAMPLE: $\mathrm{n}=4$, Word Mode

U	0011	0001	0101	0110
Rotated U	0001	0101	0110	0011
R	1010	1010	1010	1010
Mask (S)	0000	1111	0000	1111
Destination	1010	0101	1010	0011

Rotate and Merge Instruction Set

Instruction	B/W	Quadrant	n			$\mathrm{U}^{[1]}$	R/Dest ${ }^{[1]}$	S[1]		RAM	ddress
ROTM	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	01	0 to 15	0111	MDAI	D	ACC	I			
				1000	MDAR	D	ACC	RAM	00000	R00	RAM Reg 00
				1001	MDRI	D	RAM				
				1010	MDRA	D	RAM	ACC	11111	R31	RAM ${ }^{\text {R }}$ - 31
				1100	MARI	ACC	RAM	I			

Note:

1. $\mathrm{U}=$ Rotated Source

R/Dest $=$ Non-Rotated Source/Destination
$\mathrm{S}=$ Mask
Y Bus and Status

Instruction	Opcode	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	\mathbf{Z}
ROTM		$1=\mathrm{W}$	$\mathrm{Y}_{\mathrm{i}} \leftarrow(\text { Non Rot } \mathrm{Op})_{\mathrm{i}^{*}}(\overline{\mathrm{mask}})_{\mathrm{i}}+$ (Rot Op) ${ }_{(\mathrm{i}-\mathrm{n}) \bmod 16^{*}(\text { mask })_{\mathrm{i}}}$	NC	NC	NC	NC	0	U	0	U
		$0=\mathrm{B}$	$\mathrm{Y}_{\mathrm{i}} \leftarrow(\text { Non Rot Op })_{\mathrm{i}^{*}}(\overline{\mathrm{mask}})_{\mathrm{i}}+$ (Rot Op) $)_{(i-n) \bmod 8^{*}(\text { mask })_{i}}$	NC	NC	NC	NC	0	U	0	U

$\mathrm{U}=$ Update
NC $=$ No Change
$0=$ Reset
$1=$ Set

Instruction Set (Continued)

Rotate and Compare Instructions

The five fields of the Rotate and Compare instructions are:

1. Mode (Byte or Word)
2. Rotated Source (U)
3. Non-Rotated Source (R)
4. Mask (S)
5. Number of bits Rotated (n)

Input U is rotated n bits, ANDed with the inversion of S and compared with the input R ANDed with the inversion of S. Thus, a zero in the mask S will allow that bit of both inputs to be compared. The Z bit of the Status Register is set if the comparison passes, and reset if it does not. OVR and C bits are reset in the Status Register.

Rotate and Compare Function

Rotate and Compare Field Definitions

EXAMPLE: $\mathrm{n}=4$, Word Mode

U	0011	0001	0101	0110
Rotated U	0001	0101	0110	0011
R	0001	0101	1111	0000
Mask (S)	0001	0101	1111	1111

Z (Status) $=1$
Rotate and Compare Instruction Set

Instruction	B/W	Quad	n			$\mathrm{U}^{[1]}$	$\mathbf{R}^{[1]}$	S [1]		AM	dress
ROTC	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	01	0 to 15	0010	CDAI	D	ACC	I	00000	R00	RAM Reg 00
				0011	CDRI	D	RAM	I			
				0100	CDRA	D	RAM	ACC	11111	R31	RAM Reg 31
				0101	CRAI	RAM	ACC	I			RAM Reg 31

Note:

1. $\mathrm{U}=$ Rotated Source

R = Non-Rotated Source
S = Mask
Y Bus and Status

Instruction	Opcode	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	Z
ROTC		$1=\mathrm{W}$	$\mathrm{Y}_{\mathrm{i}} \leftarrow(\text { Non Rot Op })_{\mathrm{i}^{*}}(\overline{\text { mask }})_{\mathrm{i}} \oplus$ $(\text { Rot } O p)_{(i-n)} \bmod 16^{*}(\text { mask })_{i}$	NC	NC	NC	NC	0	U	0	U
		$0=B$	$\mathrm{Y}_{\mathrm{i}} \leftarrow\left(\right.$ Non Rot Op) $\mathrm{i}^{*}(\overline{\text { mask }})_{\mathrm{i}} \oplus$ $(\text { Rot Op) })_{(i-n) ~ m o d ~}^{8 *}(\text { mask })_{i}$	NC	NC	NC	NC	0	U	0	U

[^44]Instruction Set (Continued)

Prioritize Instruction

The four fields of the Prioritize instruction are:

1. Mode (Byte or Word)
2. Mask Source (S)
3. Operand Source (R)
4. Destination

The inverted mask, S is ANDed with R. A "one" in S prohibits that bit from participating in the priority encoding. From the 16 -bit input, the priority encoder outputs a 5 -bit binary weighted code indicating the bit-position of the highest priority active bit. If there are no active bits, the output is zero. See Figure for operation in both word and byte mode. Using Prioritize updates the N and Z bits of the Status Register, and forces C and OVR to zero. This instruction is limited in that the operand and the mask must be different sources.

Prioritize Function

Prioritize Instruction Field Definitions

1514		$98 \quad 54$		
B/W	Quad	Destination	Source (R)	RAM Address/ Mask (S)
B/W	Quad	Mask (S)	Destination	RAM Address/ Source (R)
B/W	Quad	Mask (S)	Source (R)	RAM Address/ Destination
B/W	Quad	Mask (S)	Source (R)	Destination

0

Word Mode		Byte Mode	
Highest Priority Bit Active	Encoder Output	Highest Priority Bit Active	Encoder Output
None	0	None	0
15	1	7	1
14	2	6	2
$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$
1	15	1	7
0	16	0	8

*Bits 8 through 15 not available.
Prioritize Instruction

Instruction	B/W	Quad	Destination			Source (R)			RAM Address/Mask (S)		
PRT1	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	10	$\begin{aligned} & 1000 \\ & 1010 \\ & 1011 \end{aligned}$	PRIA PR1Y PR1R	$\begin{aligned} & \text { ACC } \\ & \text { Y Bus } \\ & \text { RAM } \end{aligned}$	$\begin{aligned} & 0111 \\ & 1001 \end{aligned}$	RPT1A PR1D	$\begin{aligned} & \mathrm{ACC} \\ & \mathrm{D} \end{aligned}$	$\begin{gathered} 00000 \\ \cdots 1111 \end{gathered}$	$\begin{array}{r} \mathrm{R} 00 \\ \text { R31 } \\ \hline \end{array}$	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad	Mask (S)			Destination			RAM Address/Source (R)		
PRT2	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	10	$\begin{aligned} & 1000 \\ & 1010 \\ & 1011 \end{aligned}$	PRA PRZ PRI	$\begin{aligned} & \mathrm{ACC} \\ & \mathrm{O} \\ & \mathrm{I} \\ & \hline \end{aligned}$	$\begin{aligned} & 0000 \\ & 0010 \end{aligned}$	$\begin{aligned} & \text { PR2A } \\ & \text { PR2Y } \end{aligned}$	$\begin{aligned} & \text { ACC } \\ & \text { Y Bus } \end{aligned}$	$\begin{gathered} 00000 \\ \dot{1} 1111 \end{gathered}$	$\begin{array}{r} \mathrm{R} 00 \\ \text { R31 } \\ \hline \end{array}$	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad	Mask (S)			Source (R)			RAM Address/Destination		
PRT3	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \end{aligned}$	10	$\begin{aligned} & 1000 \\ & 1010 \\ & 1011 \end{aligned}$	PRA PRZ PRI	$\begin{aligned} & \mathrm{ACC} \\ & \mathrm{O} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & 0011 \\ & 0100 \\ & 0110 \end{aligned}$	$\begin{aligned} & \text { PR3R } \\ & \text { PR3A } \\ & \text { PR3D } \end{aligned}$	RAM ACC D	$\begin{gathered} 00000 \\ 11111 \end{gathered}$	$\begin{gathered} \text { R00 } \\ \text { R31 } \end{gathered}$	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad	Mask (S)			Source (R)			Destination		
PRTNR	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \end{aligned}$	11	$\begin{aligned} & 1000 \\ & 1010 \\ & 1011 \end{aligned}$	PRA PRZ PRI	$\begin{aligned} & \mathrm{ACC} \\ & \mathrm{O} \\ & \mathrm{I} \\ & \hline \end{aligned}$	$\begin{aligned} & 0100 \\ & 0110 \end{aligned}$	PRTA PRTD	$\begin{aligned} & \text { ACC } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 00000 \\ & 00001 \end{aligned}$	$\begin{aligned} & \text { NRY } \\ & \text { NRA } \end{aligned}$	$\begin{aligned} & \text { Y Bus } \\ & \text { ACC } \end{aligned}$

Instruction Set (Continued)

> Y Bus and Status-Prioritize Instruction

Instruction	Opcode	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	Z
PRT1 PRT2		$1=\mathrm{W}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \operatorname{CODE}\left(\mathrm{SCR}_{\mathrm{n}} * \overline{\text { mask }_{\mathrm{n}}}\right) ; \\ & \mathrm{Y}_{\mathrm{m}} \leftarrow 0 ; \mathrm{i}=0 \text { to } 4 \text { and } \mathrm{n}=0 \text { to } 15 \\ & \mathrm{~m}=5 \text { to } 15 \end{aligned}$	NC	NC	NC	NC	0	U	0	U
PRT3 PRTNR		$0=\mathrm{B}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \operatorname{CODE}\left(\mathrm{SCR}_{\mathrm{n}} \stackrel{\text { mask }_{\mathrm{n}}}{)} ;\right. \\ & \mathrm{Y}_{\mathrm{m}} \leftarrow 0 ; \mathrm{i}=0 \text { to } 3 \text { and } \mathrm{n}=0 \text { to } 7 \\ & \mathrm{~m}=4 \text { to } 15 \end{aligned}$	NC	NC	NC	NC	0	U	0	U

${ }^{*}$ QLINK is loaded with the shifted out bit from the checksum register.
SRC = Source
$0=$ Reset
$\mathrm{U}=$ Update
$1=$ Set
$\mathrm{NC}=$ No Change $\quad \mathbf{i}=0$ to 15 when not specified

CRC Instruction

The single designator for this instruction is the address of the RAM location that is used as the check sum register. Two CRC instructions, CRC Forward and CRC Reverse, are available. These instructions give the procedure for determining the check bits in a CRC calculation. Since the CRC standards do not specify which data bit is transmitted first, the MSB or the LSB, both Forward and Reverse op-
tions are available to the user. The process for generating the check bits for the CRC Forward and Reverse operations are illustrated in the figures below. The ACC is used as a polynomial mask while the RAM contains the partial sum and eventually the final check sum. The serial input comes from the QLINK bit of the Status Register. Status Register bits OVR and C are forced to zero while LINK, N and Z bits are updated.

CRCF	Cyclic-Redundancy-Check Definitions				
	1514		98		
	1	Quadrant	0110	0011	RAM Address
CRCR	1	Quadrant	0110	1001	RAM Address

CRC Forward Function

[^45]Instruction Set (Continued)

CRC Reverse Function

*This bit must be transmitted first.
Cyclic Redundancy Check Instruction Set

Instruction	\mathbf{B} / \mathbf{W}	Quad			RAM Address	
CRCF	1	10	0110	0011	00000	R00
Instruction	B/W	Quad		11111	RAM Reg 00	
					R31	
CRCR	10	0110	1001	RAM Reg 31		
	1					RAM Address

Y Bus and Status

Instruction	Opcode	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	Z
CRCF		$1=\mathrm{W}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow\left[\left(\mathrm{QLINK} \oplus \mathrm{RAM}_{15}\right) * \mathrm{ACC}_{\mathrm{i}}\right] \\ & \oplus \mathrm{RAM}_{\mathrm{i}}-1 \text { for } \mathrm{i}=15 \text { to } 1 \\ & \mathrm{Y}_{0} \leftarrow\left[\left(\mathrm{QLINK} \oplus \mathrm{RAM}_{15}\right) * \mathrm{ACC}_{0}\right] \oplus 0 \\ & \hline \end{aligned}$	NC	NC	NC	$\mathrm{RAM}_{15}{ }^{*}$	0	U	0	U
CRCR		$1=\mathrm{W}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow\left[\left(\mathrm{QLINK} \oplus \mathrm{RAM}_{0}\right) * \mathrm{ACC}_{\mathrm{i}}\right] \\ & \oplus \mathrm{RAM}_{\mathrm{i}}+1 \text { for } \mathrm{i}=14 \text { to } 0 \\ & \mathrm{Y}_{15} \leftarrow\left[\left(\mathrm{QLINK} \oplus \mathrm{RAM}_{0}\right) * \mathrm{ACC}_{15}\right] \oplus 0 \end{aligned}$	NC	NC	NC	$\mathrm{RAM}_{0}{ }^{*}$	0	U	0	U

[^46]CYPRESS

Instruction Set (Continued)

Status Instructions

7	6	5	4	3	2	1	0
Flag3	Flag2	Flag1	Link	OVR	N	C	Z

Set Status: Specifies which bits in the Status Register are to be set.
Reset Status: Specifies which bits in the Status Register are to be cleared.
Store Status: Indicates byte or word and the destination into which the processor status is saved. The register is always stored in the low byte of the destination. The high byte is unchanged for RAM storage and is loaded with zeroes for ACC storage.
Load Status: Imbedded in the Single- and Two-Operand Instructions.
Test Status: Instructions specify which of the 12 possible test conditions are to be placed on the conditional test output. In addition to the 8 status bits, four logical functions may be selected: $N \oplus$ OVR, $(N \oplus$ OVR $)+Z, Z+\bar{C}$, and LOW. These functions are useful in testing two's complement and unsigned number arithmetic operations.

The status register may also be tested via the T bus as shown below. The instruction lines I_{1} thru I_{4} have bus priority for testing the status register on the CT output.

$\mathbf{T}_{\mathbf{4}}$	$\mathbf{T}_{\mathbf{3}}$	$\mathbf{T}_{\mathbf{2}}$	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{C T}$
$\mathbf{I}_{\mathbf{4}}$	$\mathbf{I}_{\mathbf{3}}$	$\mathbf{I}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{1}}$	
0	0	0	0	$(\mathrm{~N} \oplus$ OVR $)+\mathrm{Z}$
0	0	0	1	$\mathrm{~N} \oplus$ OVR
0	0	1	0	Z
0	0	1	1	OVR
0	1	0	0	LOW
0	1	0	1	C
0	1	1	0	$\mathrm{Z}+\overline{\mathrm{C}}$
0	1	1	1	N
1	0	0	0	LINK
1	0	0	1	Flag1
1	0	1	0	Flag2
1	0	1	1	Flag3

Status

	1514		1312	98	54
SETST	0	Quad	1011	1010	Opcode
RSTST	0	Quad	1010	1010	Opcode
SVSTR	B/W	Quad	0111	1010	RAM Address/ Dest
SVSTNR	B/W	Quad	0111	1010	Destination

Status Instruction Set

Instruction	B/W	Quad			Opcode		
SETST	0	11	1011	1010	00011 00101 00110 01001 01010	$\begin{aligned} & \hline \text { SONCZ } \\ & \text { SL } \\ & \text { SF1 } \\ & \text { SF2 } \\ & \text { SF3 } \\ & \hline \end{aligned}$	Set OVR, N, C, Z Set LINK Set Flag1 Set Flag2 Set Flag3
Instruction	B/W	Quad			Opcode		
RSTST	0	11	1010	1010	00011 00101 00110 01001 01010	$\begin{aligned} & \text { RONCZ } \\ & \text { RL } \\ & \text { RF1 } \\ & \text { RF2 } \\ & \text { RF3 } \\ & \hline \end{aligned}$	Reset OVR, N, C, Z Reset LINK Reset Flag 1 Reset Flag2 Reset Flag3
Instruction	B/W	Quad			RAM Address/Destination		
SVSTR	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \end{aligned}$	10	0111	1010	$\begin{aligned} & 00000 \\ & 11111 \end{aligned}$	$\begin{gathered} \mathrm{R} 00 \\ \mathrm{R} 31 \end{gathered}$	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad			Destination		
SVSTNR	$\begin{aligned} & 0=B \\ & 1=W \end{aligned}$	11	0111	1010	$\begin{array}{r} 00000 \\ 00001 \\ \hline \end{array}$	NRY NRA	$\begin{aligned} & \text { Y Bus } \\ & \text { ACC } \end{aligned}$
Instruction	B/W	Quad					
Test	0	11	1001	1010	00000 00010 00100 00110 0100 01010 01100 01110 10000 10010 10100 10110	$\begin{aligned} & \hline \text { TNOZ } \\ & \text { TNO } \\ & \text { TZ } \\ & \text { TOVR } \\ & \text { TLOW } \\ & \text { TC } \\ & \text { TZC } \\ & \text { TN } \\ & \text { TL } \\ & \text { TF1 } \\ & \text { TF2 } \\ & \text { TF3 } \\ & \hline \end{aligned}$	Test ($\mathrm{N} \oplus$ OVR) +Z Test $\mathrm{N} \oplus$ OVR Test Z Test OVR Test LOW Test C Test $\mathrm{Z}+\overline{\mathrm{C}}$ Test N Test LINK Test Flag 1 Test Flag2 Test Flag 3

Note: IEN * test status instruction has priority over T_{1-4} instruction.

Instruction Set (Continued)
Y Bus and Status

Instruction	Opcode	Description	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	Z
RSTST	RONCZ	Reset OVR, N, C, Z	$0=\mathrm{B}$	$\mathrm{Y}_{\mathrm{i}} \leftarrow 0$ for $\mathrm{i}=0$ to 15	NC	NC	NC	NC	0	0	0	0
	RL	Reset LINK			NC	NC	NC	0	NC	NC	NC	NC
	RF1	Reset Flag1			NC	NC	0	NC	NC	NC	NC	NC
	RF2	Reset Flag2			NC	0	NC	NC	NC	NC	NC	NC
	RF3	Reset Flag3			0	NC						
SETST	SONCZ	Set OVR, N, C, Z	$0=B$	$\mathrm{Y}_{\mathrm{i}} \leftarrow 1$ for $\mathrm{i}=0$ to 15	NC	NC	NC	NC	1	1	1	1
	SL	Set LINK			NC	NC	NC	1	NC	NC	NC	NC
	SF1	Set Flag1			NC	NC	1	NC	NC	NC	NC	NC
	SF2	Set Flag2			NC	1	NC	NC	NC	NC	NC	NC
	SF3	Set Flag3			1	NC						
$\begin{aligned} & \text { SVSTR } \\ & \text { SVSTNR } \\ & \hline \end{aligned}$		Save Status*	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathrm{W} \end{aligned}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \text { Status for } \mathrm{i} \leftarrow 0 \text { to } 7 ; \\ & \mathrm{Y}_{\mathrm{i}} \leftarrow 0 \text { for } \mathrm{i}=8 \text { to } 15 \\ & \hline \end{aligned}$	NC							
Test	TNOZ	Test ($\mathrm{N} \oplus \mathrm{OVR}$) +Z	$0=B$	**	NC							
	TNO	Test ($\mathrm{N} \oplus \mathrm{OVR}$)			NC							
	TZ	Test Z			NC							
	TOVR	Test OVR			NC							
	TLOW	Test LOW			NC							
	TC	Test C			NC							
	TZC	Test $\mathrm{Z}+\overline{\mathbf{C}}$			NC							
	TN	Test N			NC							
	TL	Test LINK			NC							
	TF1	Test Flag1			NC							
	TF2	Test Flag2			NC							
	TF3	Test Flag 3			NC							

U = Update
$\mathrm{NC}=$ No Change
$0=$ Reset
${ }^{*}$ In byte mode only the lower byte from the Y bus is loaded into the
RAM or ACC and in word mode all 16-bits from the Y bus are loaded into the RAM or ACC.
$1=$ Set
$i=0$ to 15 when not specified
${ }^{* *} \mathrm{Y}$-Bus is Undefined.

No-Op Instruction

The No-Op Instruction does not affect any internal registers; the Status Register, RAM register and AC register are left unchanged. The 16-bit opcode is fixed.

No Operation Field Definition

No-Op Instruction

Instruction	B/W	Quad			
No-Op	0	11	1000	1010	0000

Y Bus and Status

Instruction	Opcode	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	Z
No-Op		$0=$ B	$*$	NC							
*Y-Bus is undefined.											
SRC $=$ Source											
U $=$ Update											
NC $=$ No Change											

Electrical Characteristics Over Commercial and Military Operating Range $\mathrm{V}_{\mathrm{CC}} \mathrm{Min} .=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \mathrm{Max} .=5.5 \mathrm{~V}$

Parameters	Description		Test Conditions	Min.	Max.	Units	
V_{OH}	Output HIGH Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA} \end{aligned}$	2.4		V	
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{IOL}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.4	V	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V	
$\mathrm{I}_{\text {IX }}$	Input Leakage Current		$\begin{aligned} & \mathrm{v}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{CC}}=\text { Max. } \end{aligned}$	-10	+ 10	$\mu \mathrm{A}$	
IOZ	Output Leakage Current		$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{v}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		$+10$	$\mu \mathrm{A}$	
			-10		$\mu \mathrm{A}$		
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$		-85	mA
$\mathrm{I}_{\mathrm{CC}(\mathrm{Q} 1)^{[2]}}$	Supply Current (Quiescent)	Commercial	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ or		126	mA	
		Military	$\mathrm{V}_{\mathrm{IH}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{OE}}_{\mathrm{Y}}=\mathrm{HIGH}$		145		
ICC(Q2)	Supply Current (Static)	Commercial	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		68	mA	
		Military	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OPER}}=0 \mu \mathrm{~A} \end{aligned}$		78	mA	
$\mathrm{I}_{\mathrm{CC}}(\text { Max. })^{[2]}$	Supply Current	Commercial	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max.} . \mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz} \\ & \overline{\mathrm{OE}}_{\mathrm{Y}}=\mathrm{HIGH} \end{aligned}$		145	mA	
		Military			166		

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
2. To calculate $I_{C C}$ at any given frequency, use $I_{C C}\left(Q_{1}\right)+I_{C C}(A . C$.$) where I_{C C}\left(Q_{1}\right)$ is shown above and $I_{C C}(A . C)=.1.9 \mathrm{~mA} / \mathrm{MHz} \times C$ lock Frequency for the Commercial temperature range. $\mathbf{I}_{\mathrm{CC}}(\mathbf{A . C})=.2.1 \mathrm{~mA} / \mathrm{MHz} \times$ Clock Frequency for Military temperature range.
3. Tested on a sample basis.

Output Loads Used for AC Performance Characteristics

All Outputs

0085-16

0085-15

0085-17

Notes:

1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitance.
2. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for output disable tests.

Commercial Switching Characteristics
Guaranteed Commercial Range A.C. Performance Characteristics
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)

Combinational Propagation Delays (ns)

To Output From Input	Y_{0-15}			T1-4			CT		
$\begin{aligned} & \text { CY7C9116 } \\ & \text { CY7C9117 } \end{aligned}$	35	45	65	35	45	65	35	45	65
$\begin{aligned} & \mathrm{I}_{0-4} \\ & (\mathrm{ADDR}) \end{aligned}$	35	45	65	35	52	73			
$\begin{aligned} & \mathbf{I}_{0-15} \\ & \text { (DATA) } \end{aligned}$	35	45	65	35	52	73			
$\begin{aligned} & \mathrm{I}_{0-15} \\ & \text { (INST) } \\ & \hline \end{aligned}$	35	45	65	35	52	73	20	29	30
DLE*	20	32	55	30	32	55			
T_{1-4}							15	25	27
CP	30	32	60	30	32	66	25	25	37
Y_{0-15}	20	32	53	30	32	53			
$\overline{\text { IEN }}$							15	25	25

*DLE is guaranteed by other tests.
Enable/Disable Times (ns) ($\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Disable Only)

From Input	To Output	Enable						Disable					
		TPZH			TPZL			$\mathrm{T}_{\text {PHZ }}$			T PLZ		
		35	45	65	35	45	65	35	45	65	35	45	65
$\overline{\mathrm{OE}}_{Y}$	$\mathrm{Y}_{0}-\mathrm{Y}_{15}$	18	20	22	18	20	22	18	20	22	18	20	22
OE_{T}	$\mathrm{T}_{1}-\mathrm{T}_{4}$	15	20	22	15	20	22	15	20	22	15	20	22

Clock and Pulse Requirements (ns)

Input	Minimum Low Time			Minimum High Time		
	$\mathbf{3 5}$	$\mathbf{4 5}$	$\mathbf{6 5}$	$\mathbf{3 5}$	$\mathbf{4 5}$	$\mathbf{6 5}$
CP	15	15	20	15	15	15
DLE				15	15	15
IEN	15	15	20			

Set-up and Hold Times (ns)

[5]	Input	With Respect To	High to Low Transition						Low to High Transition						Comments
			Set-up			Hold			Set-up			Hold			
CY7	C9116 and CY7C9		35	45	65	35	45	65	35	45	65	35	45	65	
1	$\begin{aligned} & \mathbf{I}_{0-4} \\ & \text { (RAM Addr) } \end{aligned}$	CP	12	13	13	0	0	0							Single Addr (Source)
2	$\begin{aligned} & \mathbf{I}_{0-4} \\ & \text { (RAM Addr) } \end{aligned}$	$\begin{aligned} & \text { CP \& } \\ & \overline{\text { IEN }} \end{aligned}$	5	5	5		Do Not Ch		ange \rightarrow			0	2	0	Two Addr (Destination)
3	$\begin{aligned} & \mathbf{I}_{0-15} \\ & \text { (Data) } \end{aligned}$	CP							40	43	60	0	0	0	
4	$\begin{aligned} & \mathbf{I}_{0-4} \\ & \text { (RAM Addr) }{ }^{\text {[2] }} \\ & \hline \end{aligned}$	$\overline{\text { IEN }}$	15[1]	18[1]	24[1]	4[1]	$5{ }^{\text {[1] }}$	10[1]							Two Addr (Immediate)
5	$\begin{aligned} & \mathbf{I}_{0-15} \\ & \text { (Instr) }^{[3]} \end{aligned}$	CP	15[1]	18[1]	24[1]	4[1]	5[1]	10[1]	40	43	60	0	0	0	
6	IEN ${ }^{[2]}$	CP										8	8	8	Two Addr (Immediate)
7	IEN HIGH	CP	5	5	5							0	1	2	Disable
8	IEN LOW	CP							10	10	10	0	1	1	Enable
9	IEN LOW	CP	5	5	5	1	1	0							Note 1
10	SRE	CP							12	12	12	0	2	0	
11	Y [4]	CP							32	32	42	0	0	0	
12	$\mathrm{Y}[4]$	DLE	6	6	6	5	5	5							
13	DLE	CP							20	25	43	0	0	0	

Notes:

1. Timing for immediate instruction for first cycle.
2. CY7C9117 only.
3. CY7C9115 and CY7C9116 only.
4. $Y=D$ for CY7C9117.
5. t_{SX} and t_{HK} referenced on the waveforms are looked u on this table by $\mathrm{x}=$ line number on the left. Ex: $\mathrm{t}_{\mathrm{SI}}=13 \mathrm{~ns}$ for -53 ns devices.

Military Switching Characteristics

Guaranteed Military Range A.C. Performance Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $\left.5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)$
Combinational Propagation Delays (ns)

To Output From Input	Y_{0-15}			T1-4			CT		
CY7C9116 CY7C9117	40	65	79	40	65	79	40	65	79
I 0 -4 (ADDR)	40	65	79	40	65	79			
$\begin{aligned} & \mathrm{I}_{0-15} \\ & \text { (DATA) } \end{aligned}$	40	65	79	40	65	79			
$\begin{aligned} & \mathrm{I}_{0-15} \\ & \text { (INST) } \end{aligned}$	40	65	79	40	65	79	22	26	29
DLE*	20	52	62	30	52	62			
T_{1-4}							15	26	29
CP	30	57	67	35	65	75	33	33	39
Y_{0-15}	20	52	60	30	52	60			
$\overline{\text { IEN }}$							20	26	29

*DLE is guaranteed by other tests.

Military Switching Characteristics (Continued)
Enable/Disable Times (ns) ($\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Disable Only)

From Input	To Output	Enable						Disable					
		TPZH			TPZL			$\mathrm{T}_{\text {PHZ }}$			T PLZ		
		40	65	79	40	65	79	40	65	79	40	65	79
$\overline{\mathrm{OE}}_{Y}$	$\mathrm{Y}_{0}-\mathrm{Y}_{15}$	18	22	25	18	22	25	18	18	25	18	18	25
$\mathrm{OE}_{\text {T }}$	$\mathrm{T}_{1}-\mathrm{T}_{4}$	18	18	20	18	18	20	15	15	20	15	15	20

Clock and Pulse Requirements (ns)

Input	Minimum Low Time			Minimum High Time		
	$\mathbf{4 0}$	$\mathbf{6 5}$	$\mathbf{7 9}$	$\mathbf{4 0}$	$\mathbf{6 5}$	$\mathbf{7 9}$
CP	15	20	25	15	15	15
DLE				15	15	15
$\overline{\text { IEN }}$	15	15	15			

Set-up and Hold Times (ns)

[5]	Input	With Respect To	High to Low Transition						Low to High Transition						Comments
			Set-up			Hold			Set-up			Hold			
CY7	C9116 and CY7C9		40	65	79	40	65	79	40	65	79	40	65	79	
1	\mathbf{I}_{0-4} (RAM Addr)	CP	12	12	12	0	1	1							Single Addr (Source)
2	I_{0-4} (RAM Addr)	$\frac{\mathrm{CP} \&}{\overline{\mathrm{IEN}}}$	5	7	7		D	Not	hange	\rightarrow		0	0	0	Two Addr (Destination)
3	$\begin{aligned} & \mathrm{I}_{0-15} \\ & \text { (Data) } \end{aligned}$	CP							43	56	65	0	0	0	
4	$\begin{aligned} & \mathrm{I}_{0-4} \\ & \text { (RAM Addr) }{ }^{[2]} \end{aligned}$	IEN	15[1]	25	27[1]	5[1]	12	$12^{[1]}$							Two Addr (Immediate)
5	I_{0-15} (Instr) ${ }^{\text {[3] }}$	CP	15[1]	25	27[1]	$5[1]$	12	$12^{[1]}$	45	56	65	0	2	2	
6	$\overline{\mathrm{IEN}}$ [2]	CP										8	8	8	Two Addr (Immediate)
7	IEN HIGH	CP	5	5	5							0	2	2	Disable
8	IEN LOW	CP							10	10	12	0	3	3	Enable
9	İEN LOW	CP	7	7	7	0	3	3							Note 1
10	$\overline{\text { SRE }}$	CP							10	10	12	0	1	1	
11	$\mathrm{Y}^{[4]}$	CP							39	45	53	0	0	0	
12	Y ${ }^{[4]}$	DLE	7	7	7	3	3	3							
13	DLE	CP							20	46	54	0	0	0	

Notes:

1. Timing for immediate instruction for first cycle.
2. CY7C9117 only.
3. CY7C9115 and CY7C9116 only.
4. $\mathrm{Y}=\mathrm{D}$ for CY 7 C 9117.
5. t_{SX} and t_{HX} referenced on the waveforms are looked up on this table by $x=$ line number on the left. Ex: tsI $=24 \mathrm{~ns}$ for -79 ns devices.

Switching Waveforms

Single Address Access Timing

If $t_{h 11}$ is satisfied, $t_{h 10}$ need not be satisfied
Double Address Access Timing

One-Address Immediate Instruction Cycle Timing

Two-Address Immediate Instruction Timing (7C9117 Only)

Typical DC and AC Characteristics

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ICC

Set-up and Hold Times (Cross Ref. Table)

[1]	High to Low Transition		Low to High Transition	
	Set-up	Hold	Set-up	Hold
1	$\mathrm{t}_{\mathrm{S} 1}$	$\mathrm{t}_{\mathrm{h} 1}$		
2	$\mathrm{t}_{\mathrm{S} 2}$			$\mathrm{t}_{\mathrm{h} 2}$
3			$\mathrm{t}_{\mathrm{S} 3}$	$\mathrm{t}_{\mathrm{h} 3}$
4	$\mathrm{t}_{\mathrm{S} 5}$	$\mathrm{t}_{\mathrm{h} 5}$		
5	$\mathrm{t}_{\mathrm{S} 4}$	$\mathrm{t}_{\mathrm{h} 4}$	$\mathrm{t}_{\mathrm{S} 13}$	$\mathrm{t}_{\mathrm{h} 13}$
6				$\mathrm{t}_{\mathrm{h} 6}$
7	$\mathrm{t}_{\mathrm{S} 7}$			$\mathrm{t}_{\mathrm{h} 7}$
8			$\mathrm{t}_{\mathrm{S} 8}$	$\mathrm{t}_{\mathrm{h} 8}$
9	$\mathrm{t}_{\mathrm{S} 14}$	$\mathrm{t}_{\mathrm{h} 14}$		
10			$\mathrm{t}_{\mathrm{S} 9}$	$\mathrm{t}_{\mathrm{h} 9}$
11			$\mathrm{t}_{\mathrm{S} 10}$	$\mathrm{t}_{\mathrm{h} 10}$
12	$\mathrm{t}_{\mathrm{S} 11}$	$\mathrm{t}_{\mathrm{h} 11}$		
13			$\mathrm{t}_{\mathrm{S} 12}$	$\mathrm{t}_{\mathrm{h} 12}$

Note:

1. Refer to Set-up and Hold times shown on pages 22 \& 23.

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY7C9115-35JC	J69	Commercial
45	CY7C9115-45JC	J69	
65	CY7C9115-65JC	J69	

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY7C9116-35LC	L69	Commercial
	CY7C9116-35JC	J81	
	CY7C9116-35DC	D28	
45	CY7C9116-45LC	L69	
	CY7C9116-45JC	J81	
	CY7C9116-45DC	D28	
65	CY7C9116-65LC	L69	
	CY7C9116-65JC	J81	
	CY7C9116-65DC	D28	
40	CY7C9116-40LMB	L69	Military
	CY7C9116-40DMB	D28	
65	CY7C9116-65LMB	L69	
	CY7C9116-65DMB	D28	
79	CY7C9116-79LMB	L69	
	CY7C9116-79DMB	D28	

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY7C9117-35GC	G68	Commercial
	CY7C9117-35JC	J81	
	CY7C9117-35LC	L81	
45	CY7C9117-45GC	G68	
	CY7C9117-45JC	J81	
	CY7C9117-45LC	L81	
65	CY7C9117-65GC	G68	
	CY7C9117-65JC	J81	
	CY7C9117-65LC	L81	
40	CY7C9117-40GMB	G68	Military
	CY7C9117-40LMB	L81	
65	CY7C9117-65GMB	G68	
	CY7C9117-65LMB	L81	
79	CY7C9117-79GMB	G68	
	CY7C9117-79LMB	L81	

Military Specifications

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{SC}	$1,2,3$
$\mathrm{I}_{\mathrm{CC}}(\mathrm{Q} 1)$	$1,2,3$
$\mathrm{I}_{\mathrm{CC}}(\mathrm{Max})$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
I_{0-4} (Addr)	$7,8,9,10,11$
I_{0-15} (Data)	$7,8,9,10,11$
$\mathrm{I}_{0-15 \text { (Instr) }}$	$7,8,9,10,11$
DLE	$7,8,9,10,11$
t_{1-4}	$7,8,9,10,11$
CP	$7,8,9,10,11$
Y_{0-15}	$7,8,9,10,11$
$\overline{\mathrm{IEN}}$	$7,8,9,10,11$
$\overline{\mathrm{OE}}_{\mathrm{Y}}$	$7,8,9,10,11$
$\mathrm{OE}_{\mathbf{T}}$	$7,8,9,10,11$
CP	$7,8,9,10,11$

Document \# : 38-00057-C
PRODUCT 1 INFORMATION
STATIC RAMS 2
PROMS 3
EPLDS 4
FIFOS 5
LOGIC 6
RISC 7
MODULES 8
ECL 9
BUS INTERFACE PRODUCTS 10
MILITARY 11
DESIGN AND 12
PROGRAMMING TOOLS
QUALITY AND 13 RELIABILITY
PACKAGES14

Section Contents

RISC

Introduction to RISC 7-1
Device Number DescriptionCY7C601A32-Bit RISC Processor7-6
CY7C602A Floating-Point Unit 7-14
CY7C604A Cache Controller and Memory Management Unit 7-20
CY7C605A Cache Controller and Memory Management Unit 7-29
CY7C611A 32-Bit RISC Controller 7-39

Introduction to RISC

Introduction

This section provides an overview of the basic concepts and advantages of RISC computer architectures in general and a brief summary of the specific features of Cypress's CY7C600 family of SPARC ${ }^{\circledR}$ RISC microprocessors.

Scalable Processor Architecture

The Cypress CY7C600 family is an implementation of the SPARC architecture. SPARC, an acronym for Scalable Processor ARChitecture, is the only open, multi-vendor RISC architecture, and it has quickly become an industry standard. The term "scalable" refers to the the fact that SPARC's inherent simplicity allows it to be manufactured in a variety of semiconductor technologies. This characteristic not only enables the CY7C600 SPARC family to scale down in size as process technologies mature, but lends itself to a wide range of system designs. Already, applications for the CY7C600 range from massively parallel multiprocessing supercomputers to desktop and laptop workstations and personal computers, as well as embedded control.

What is RISC?

RISC, an acronym for Reduced Instruction Set Computer, is a computer architecture emphasizing simplicity and efficiency. RISC designs begin with a necessary and sufficient instruction set. Typically, a few simple operations account for almost all computations. RISC machines are about two to five times faster than machines with traditional complex instruction set architectures. Also, RISC's simpler designs are easier to implement, resulting in shorter design cycles.
RISC architectures are a response to the evolution from assembly language to high-level languages. Assembly language programs occasionally employ elaborate machine instructions, whereas high-level language compilers rarely do. For example, most C compilers use only about 30% of the available instructions on CISC machines. Studies show that approximately 80% of a typical program's computations require only about 20% of a processor's instruction set

RISC is to hardware what the UNIX ${ }^{\circledR}$ operating system is to software. The UNIX system proves that operating systems can be both simple and useful. Hardware studies lead to the same conclusion. As advances in semiconductor technology reduce the cost of processing and memory, complex instruction sets become a performance liability. The designers of RISC machines strive for hardware simplicity, with close cooperation between machine architecture
and compiler design. At each step, computer architects must ask: to what extent does a feature improve or degrade performance and is it worth the cost of implementation? Each additional feature, no matter how useful it is in an isolated instance, makes all others perform more slowly by its mere presence.

The goal of RISC architecture is to maximize the effective speed of a design by performing infrequent functions in software, including hardware-only features that yield a net performance gain. Performance gains are measured by conducting detailed studies of large high-level language programs. RISC improves performance by providing the building blocks from which high-level functions can be synthesized without the overhead of general but complex instructions.

RISC Architecture

The following characteristics are typical of RISC architectures, including the CY7C600 design:

- Single-cycle execution. Most instructions are executed in a single machine cycle.
- Non-destructive three-address architecture. Holding source and destination operands in registers after an operation is completed allows compilers to better utilize the processor's pipeline by more efficiently scheduling instructions to reuse operands.
- Hardwired control with no microcode. Micrexemale adde a la wel of complexity and raises the number of cyeles per instruction.
- Load/store, register-to-register design. All computational instructions involve registers. Memory accesses are made with only load and store instructions.
- Simple fixed-format instructions with few addressing modes. All instructions are one word long (typically 32 bits) and have few addressing modes.
- Pipelining. The instruction set design allows for the processing of several instructions at the same time.
- High-performance memory. RISC machines have a large number of general-purpose registers (the 7C601A has 136) and large cache memories.
- Migration of functions to software. Only those features that measurably improve performance are implemented in hardware. Programs contain sequences of simple instructions for executing complex functions rather than the complex instructions themselves.
- Simple, efficient instruction pipeline visible to compilers. For example, branches take effect after execution of the following instruction, permitting a fetch of the next instruction during execution of the current instruction.

SPARC is a registered trademark of SPARC International, Inc. Sun-4 $4^{\text {TM }}$, and NFS ${ }^{\text {™ }}$ are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT\&T Bell Laboratories. VAX is a registered trademark of Digital Equipment Corporation.

The real keys to enhanced performance are single-cycle execution and keeping the cycle time as short as possible. Many characteristics of RISC architectures, such as load/store and register-to-register design, facilitate single-cycle execution. Simple fixed-format instructions, on the other hand, permit shorter cycles by reducing decoding time.
Note that some of these features, particularly pipelining and highperformance memories, have been used in super-computer designs for many years. The difference is that in RISC architectures these ideas are integrated into a processor with a simple instruction set and no microcode.

Moving functionality from run time to compile time also enhances performance. Functions calculated at compile time do not require further calculating each time the program runs. Furthermore, optimizing compilers can rearrange pipelined instruction sequences and arrange register-to-register operations to reuse computational results.
A new set of simplified design criteria has emerged:

- Instructions should be simple unless there is a good reason for complexity. To be worthwhile, a new instruction that increases cycle time by 10% must reduce the total number of cycles executed by at least 10%.
- Microcode isn't any faster than sequences of hardwired instructions. Moving software into microcode does not make it better, it just makes it more difficult.
- Fixed-format instructions and pipelined execution are more important than program size. As memory gets cheaper and faster, the space/time tradeoff resolves in favor of time. Reducing space no longer decreases time.
- Compiler technology should use simple instructions to generate more complex instructions. Instead of substituting a complicated microcoded instruction for several simple instructions, which compilers did in the 1970s, optimizing compilers can form sequences of simple, fast instructions out of complex highlevel code. Operands can be kept in registers to increase speed even further.

RISC's Speed Advantage

Using any given benchmark, the performance (P) of a particular computer is inversely proportional to the product of the benchmark's instruction count (I), the average number of clock cycles per instruction (C), and the inverse of the clock speed (S). Assuming that a RISC machine runs at the same clock speed as a corresponding traditional machine, S is identical. The number of clock cycles per instruction (C), is around 1.3 to 1.7 for RISC machines, and between 4 and 10 for traditional machines. This makes the instruction execution rate of RISC machines about 3 to 6 times faster than traditional machines. But because traditional machines have more powerful instructions, RISC machines must execute more instructions for the same program, typically about 10% to 30% more. Since RISC machines execute 10% to 30% more instructions 3 to 6 times faster, they are about 2 to 5 times faster than traditional machines for executing typical large programs.

$$
P=\frac{1}{I \times C \times \frac{1}{S}}
$$

Compiled programs on RISC machines are somewhat larger than compiled programs on traditional machines because several simple instructions replace one complex instruction resulting in decreased code density. All SPARC instructions are 32 bits wide, whereas some instructions on traditional machines are narrower.

But the number of instructions actually executed may not be as great as the increased program size would indicate. A windowed register file, for example, simplifies call/return sequences so that context switches become less expensive.

CY7C600 Architecture

The CY7C600 family of 32-bit SPARC microprocessors has been partitioned to offer a complete solution for high-performance computer and embedded applications.
The SPARC CPU is comprised of the CY7C601A integer unit (IU), the CY7C602A floating-point unit (FPU), the CY7C604A/ CY7C605A cache controller and memory management units (CMU and CMU-MP), and the CY7C157A cache storage unit (CSU). The CY7C601A communicates with the CY7C602A and the CY7C604A via a 32-bit address bus and a 32-bit instruction/data bus. The CY7C604A also interfaces to Mbus, the SPARC-standard 64-bit multiplexed address/data bus that provides a high bandwidth path to main memory.
The CY7C604A/CY7C605A provide uni- and multiprocessing memory management and cache control functions that, when combined with the CY7C157A SRAMs, provide up to 256 K of zero-wait-state cache memory.

The CY7C611A is a derivative of the CY7C601A, but has been optimized for embedded control applications.

The CY7C601A and CY7C602A operate concurrently. The FPU performs all floating-point calculations with its own set of registers and ALU logic.

Instruction Categories

The CY7C600 architecture has 62 basic integer instructions. CY7C600 instructions fall into seven basic categories:

- Load and store instructions (the only way to access memory). These instructions use two registers or a register and a constant to calculate the memory address involved. Half-word accesses must be aligned on 2-byte boundaries, word accesses on 4-byte boundaries, and double-word accesses on 8-byte boundaries. These alignment restrictions greatly speed up memory access.
- Arithmetic/logical/shift instructions. These instructions compute a result that is a function of two source operands and then place the result in a register. They perform arithmetic, logical, or shift operations.
- Floating-point and coprocessor instructions. These include floating-point calculations, operations on floating-point registers, and instructions involving the optional coprocessor. Floa-ting-point operations execute concurrently with IU instructions and with other floating-point operations when necessary. This concurrency is transparent to the programmer.
- Control transfer instructions. These include jumps, calls, traps, and branches. Control transfers are usually delayed until after execution of the next instruction so that the pipeline is not emptied every time a control transfer occurs. Thus compilers can be optimized for delayed branching.
- Read/write control register instructions. These include instructions to read and write the contents of various control registers. Generally the source or destination is implied by the instructions.
- Artificial intelligence instructions. These include the tagged arithmetic instructions Tagged Add and Tagged Subtract. Tagged instructions are useful for implementing artificial intelligence languages such as LISP, because tags can automatically indicate to software interpreters the data type of arithmetic operands.
- Multiprocessing instructions. These include two instructions for implementing semaphores in memory: Atomic Load/Store Unsigned Byte, which loads a byte from memory and then sets the location to all 1s, and SWAP, which exchanges the contents of a register and memory location. Both of these instructions are "atomic" or ininterruptible.

Register Windows

A unique feature contributing to the high performance of the CY7C600 design is its register windows. Because of overlapping registers between adjoining windows, results left in registers by a calling routine automatically become available operands for the called routine, reducing the need for load and store instructions to memory.
According to the architectural specification, there may be anywhere between 2 and 32 register windows, each window having 24 working registers, plus 8 global registers. The CY7C601A has 8 register windows with 24 registers each plus 8 global registers, for a total of 136 registers. This windowed register model simplifies compiler design, speeds procedure calls, and efficiently supports AI programming languages such as Prolog, LISP, and Smalltalk. In addition, they can be alternately configured for fast context switching.

Traps and Interrupts

The CY7C600 design supports a full set of traps and interrupts. They are handled by a table that supports 128 hardware and 128 software traps. Even though floating-point instructions can execute concurrently with integer instructions, floating-point traps are precise because the FPU supplies (from the table) the address of the instructions that failed.

Protection

Some CY7C600 instructions are privileged and can only be executed while the processor is in supervisor mode. This instruction execution protection ensures that user programs cannot accidentally alter the state of the machine with respect to its peripherals.
The CY7C600 design also provides memory protection, which is essential for smooth multitasking operation. Memory protection makes it impossible for user programs to corrupt the system, other user programs, or themselves.

Open Architecture

Advantages of Open Architecture

The CY7C600 design is the first open RISC architecture, and one of the few open CPU architectures. Standard products are more beneficial than proprietary ones because standards allow users to acquire that most cost-effective hardware and software in a competitive multivendor marketplace. Integrated circuits come from several competing semiconductor vendors, while software is supplied by systems vendors. This advantage is lost when users are limited by a processor with proprietary hardware and software.
RISC architectures, and the CY7C600 design in particular, are easy to implement because they are relatively simple. Since they have short design cycles, RISC machines can absorb new technologies almost immediately, unlike more complicated computer architectures.

CY7C600 Machines and Other RISC Machines

The CY7C600 design has more similarities to Berkeley's RISC-II architecture than to any other RISC architecture. Like the RISCII architecture, it uses register windows in order to reduce the number of load/store instructions. The CY7C600 architecture allows 32 register windows, but the initial implementation has 8 windows. The tagged instructions are derived from SOAR, the "Smalltalk On A RISC" processor developed at Berkeley after implementing RISC-II.

CY7C600 systems are designed for optimal floating-point performance and support single-, double-, and extended-precision operands and operations, as specified by the ANIS/IEEE 754 floa-ting-point standard. High floating-point performance results from concurrency of the IU and FPU. The integer unit loads and stores floating-point operands, while the floating-point unit performs calculations. If an error (such as a floating-point exception) occurs, the floating-point unit specifies precisely where the trap took place; execution is expediently resumed at the discretion of the integer unit. Furthermore, the floating-point unit has an internal instruction queue; it can operate while the integer unit is processing unrelated functions.
CY7C600 systems deliver very high levels of performance. The flexibility of the architecture makes future systems capable of delivering performance many times greater than the performance of the initial implementation. Moreover, the openness of the architecture makes it possible to absorb technological advances almost as soon as they occur.

CY7C600 Product Family

CY7C601A Integer Unit

The IU is the basic processing engine that executes all of the instruction set except for floating-point operations. The CY7C601A IU contains a large 136×32 triple-port register file, which is divided into 8 windows. Each window contains 24 working registers and has access to the same 8 global registers. Acurrent window pointer (CWP) filed in the processor state register keeps track of which window is currently active. The CWP is decremented when the processor calls a subroutine and is incremented when the processor returns.

The registers in each window are divided into ins, outs, and locals. Each window shares its ins and outs with adjacent windows. The outs of the previous window are the ins of the current window, and the outs of the current window are the ins of the next window. The globals are equally available to all windows and the locals are unique to each window. The windows are joined together in a circular stack where the outs of the last window are the ins of the first window.
The IU supports a multitasking operating system by providing user and supervisor modes. Some instructions are privileged and can only be executed while the processor is in supervisor mode. Changing from user to supervisor mode requires taking a hardware interrupt or executing a trap instruction.

The IU supports both asynchronous traps (interrupts) and synchronous traps (error conditions and trap instructions). Traps transfer control to an offset within a table. The base address of the table is specified by a trap base register and the offset is a function
of the trap type. Traps are taken before the current instruction causes any changes visible to the programmer and can therefore be considered to occur between instructions.

CY7C602A Floating-Point Unit

The CY7C602A FPU provides high-performance, IEEE STD-754-1985-compatible single- and double-precision floatingpoint calculations for 7C600 systems and is designed to operate concurrently with the CY7C601A. All address and control signals for memory accesses by the CY7C602A are supplied by the CY7C601A. Floating-point instructions are addressed by the CY7C601A, and are simultaneously latched from the data bus by both the CY7C601A and CY7C602A. Floating-point instructions are concurrently decoded by the CY7C601A and the CY7C602A, but do not begin execution in the CY7C602A until after the instruction is enabled by a signal from the CY7C601A. Pending and currently executing FP instructions are placed in an on-chip queue while the IU continues to execute non-floating-point instructions.

The CY7C602A has a 32×32-bit data register file for floatingpoint operations. The contents of these registers are transferred to and from external memory under control of the CY7C601A using floating-point load/store instructions. Addresses and control signals for data accesses during a floating-point load or store are supplied by the CY7C601A, while the CY7C602A supplies or receives data. Although the CY7C602A operates concurrently with the CY7C601A, a program containing floating-point computations generates results as if the instructions were being executed sequentially.

CY7C604A Cache Controller and Memory Management Unit

The CY7C604A Cache Controller and Memory Management Unit(CMU) provides hardware support for a demand-paged virtual memory environment for the CY7C601A processor. The CY7C604A conforms to the standard SPARC architecture definition for memory management. Page size is fixed at 4 kilobytes. The CMU translates 32-bit virtual addresses from the processor into 36 -bit physical addresses and provides both write-through and buffered copy-back cache policies. The on-chip context register allows support of up to 4096 contexts.

High-speed address look-up is provided by an on-chip translation lookaside buffer (TLB). Each entry contains the virtual to physical mapping of a 4 kbyte page. If a virtual address match is detected in one of the TLB entries, the physical address translation contained in that entry will be delivered to the outputs of the CMU. If the virtual address from the processor has no corresponding entry in the CMU, the CMU will automatically perform address translation for the virtual address using on-chip hardware to access a main memory resident three-level page table. Each "matched" TLB entry is checked for protection violation automatically and violations are reported to the Integer Unit as memory exceptions.

The CMU also provides storage for 2048 cache address tags for a 64 -kbyte cache with a 32 -byte line size. The tag entries can be directly written or read by the processor. In normal operation, eleven low-order bits (15-5) of the virtual address from the processor are used to select one of the tag entries in the CY7C604A and its 16-bit
contents are compared on chip with the 16 high-order processor address bits to determine if the cache contains the required data or instruction. This cache hit/miss comparison is then qualified by various built-in protection checks. Pipelined accesses are supported via on-chip registers that capture both address and data from the processor.
The CY7C604A also contains the logic required in a system to implement the byte and half-word write capabilities provided in the SPARC instruction set. Cache tag update is also simplified by an automatic page update on miss feature, which eliminates the need for processor accesses during tag update.

CY7C605A Cache Controller and Memory Management Unit for Multiprocessor Systems

The CY7C605A Cache Controller and Memory Management Unit is an extension of the CY7C604A for use in multiprocessor systems. The CY7C605A provides the same SPARC reference MMU as the CY7C604A, but adds an enhanced cache controller that incorporates bus snooping and cache coherency protocol required to maintain a multiprocessor cache. The CY7C605A provides a dual-cache tag memory, which allows the CY7C605A to perform bus snooping while it simultaneously supports cache accesses by the CY7C601A. The CY7C605A cache coherency protocol is based on the IEEE Futurebus, which has been recognized as a superior protocol for maintaining cache consistency without degrading processor performance.

The CY7C605A supports direct data intervention, which is the capability of a CY7C605A-based cache to directly supply modified data to another requesting cache without requiring main memory intervention: In addition to direct data intervention, the CY7C605A also supports memory reflection. Memory reflection allows a memory system to automatically update itself during a direct data intervention operation. This feature allows a multiprocessing system to update both a requesting cache and main memory in a single bus operation. The CY7C605A is pin-compatible with the CY7C604A. This feature allows a system to be upgraded from uniprocessor to multiprocessor by modifying the operating system and replacing the CY7C604A with the CY7C605A.

CY7C157A Cache Storage Unit

The CY7C157A $16 \mathrm{~K} \times 16 \mathrm{CSU}$ is designed to interface easily to and provide maximum performance for the CY7C600 processor. The RAM has registered address inputs and latched data inputs and outputs as well as a self-timed write pulse that greatly simplifies the design of cache memories for the CY7C601A Integer Unit. The device has a single clock that controls loading of the address register, data input latches, data output latches, pipeline control latch, and chip enable register. The chip enable is clocked into a register and pipelined through a control register to condition the output enable. This pipelined design allows a cache that works as an extension of the internal instruction pipeline of the CY7C601A integer unit, thereby maximizing performance. The write enable is edge-activated and self-timed, thereby eliminating the need for the user to generate accurate write pulses in external logic. A separate asynchronous output enable is provided to disable outputs during a write or to allow other devices access to the bus.

Figure 1. Full System Block Diagram

[^47]
CY7C601A

32-Bit RISC Processor

Features

- Reduced Instruction Set Computer (RISC) Architecture
- Simple format instructions
- Most instructions execute in a single cycle
- Very high performance
$-25-, 33-$, and $40-\mathrm{MHz}$ clock speeds yield 18, 24, and 29 MIPS sustained throughput respectively
- Very fast interrupt response
- Four-stage pipeline
- Large windowed register file
- 136 general-purpose 32-bit registers
- Registers can be used as eight windows of 24 registers each for low procedure overhead
- Registers can also be used as register banks for fast context switching
- Multiprocessing support
- Large virtual address space
- 32-bit virtual address bus
- 8-bit address space identifier bus
- Hardware pipeline interlocks
- Multitasking support
- User/supervisor modes
- Privileged instructions
- Artificial intelligence support
- High-performance coprocessor interface for user-defined coprocessor

Selection Guide

	7C601A-40	7C601A-33	7C601A-25
Maximum Operating Current (mA)	650	600	600

SPARC is a registered trademark of SPARC International, Inc.

Overview (continued)

The CY7C601A SPARC processor provides the following features:
Simple instruction format. All instructions are 32 -bits wide and aligned on 32 -bit boundaries in memory. The three basic instruction formats feature uniform placement of opcode and address fields.
Register intensive architecture. Most instructions operate on either two registers or one register and a constant, and place the result in a third register. Only load and store instructions access off-chip memory.
Large windowed register file. The processor has 136 on-chip 32 -bit registers configured as eight overlapping sets of 24 registers each and eight global registers. This scheme allows compilers to cache local values across subroutine calls and provides a register based parameter passing mechanism.
Delayed control transfer. The processor always fetches the next instruction after a control transfer, and either executes it or annuls it depending on the state of a bit in the control transfer instruction. This feature allows compilers to rearrange code to place a useful instruction after a delayed control transfer and thereby take better advantage of the processor pipeline.
Concurrent floating-point. Floating-point instructions can execute concurrently with each other and with non-floating-point instructions.
Fast interrupt response. Interrupt inputs are sampled on every clock cycle and can be acknowledged in one to three cycles. The first instruction of an interrupt service routine can be executed within 6 to 8 cycles of receiving the interrupt request.

The 7C600 Family

The SPARC processor family consists of a CY7C601A integer unit to perform all non-floating-point operations and a CY7C602A floating-point unit (FPU) to perform floating-point arithmetic concurrent with the CY7C601A. Support is also provided for a second generic coprocessor interface. The CY7C601A communicates with external memory via a 32 -bit address bus and a 32-bit data/instruction bus. In typical data processing applications, the CY7C601A and CY7C602A are combined with a highperformance CY7C604A memory management unit and cache controller and a cache memory implemented with CY7C157A 16 -Kbyte x 16 cache RAMS. In many dedicated controller applications the CY7C601A can function by itself with only high-speed local memory.

Coprocessor Interface

The CY7C601A is the basic processing engine that executes all of the instruction set except for floating-point operations. The CY7C601A and CY7C602A operate concurrently. The CY7C602A recognizes floating-point instructions and places them in a queue while the CY7C601A continues to execute non-floating-point instructions. If the CY7C602A encounters an instruction that will not fit in its queue, the CY7C602A holds the CY7C601A until the instruction can be stored. The CY7C602A contains its own set of registers on which it operates. The contents of these registers are transferred to and from external memory under control of the CY7C601A via floating-point load/store instructions. Processor interlock hardware hides floating-point concurrency from the compiler or assembly language programmer. A program containing floating-point computations generates the same results as if instructions were executed sequentially.

Registers

The CY7C601A contains a large 136×32 triple-port register file which is divided into 8 windows, each with 24 working registers and each having access to the same 8 global registers. A current window pointer (CWP) field in the processor state register keeps track of which window is currently active. The CWP is decremented when the processor calls a subroutine and is incremented when the processor returns. The registers in each window are divided into ins, outs, and locals. The eight global registers are shared by all windows and appear as registers 0-7 in each window. Registers $8-15$ serve as outs, registers $16-23$ as locals, and 24-31 serve as ins. Each window shares its ins and outs with adjacent windows. The outs of the previous window are the ins of the current window, and the outs of the current window are the ins of the next window. The globals are equally available to all windows and the locals are unique to each window. The windows are joined together in a circular stack where the outs of window 7 are the ins of window 0 .

Multitasking Support

The CY7C601A supports a multitasking operating system by providing user and supervisor modes. Some instructions are privileged and can only be executed while the processor is in supervisor mode. Changing from user to supervisor mode requires taking a hardware interrupt or executing a trap instruction.

Interrupts and Traps

The CY7C601A supports both asynchronous traps (interrupts) and synchronous traps (error conditions and trap instructions). Traps transfer control to an offset within a table. The base address of the table is specified by a trap base register and the offset is a function of the trap type. Traps are taken before the current instruction causes any changes visible to the programmer and can therefore be considered to occur between instructions.

Instruction Set Summary

Instructions fall into five basic categories as follows:

1. Load and store instructions. Load and store are the only instructions which access external memory. They use two CY7C601A registers or one CY7C601A register and a signed immediate value to generate the memory address. The instruction destination field specifies either an CY7C601A register, a CY7C602A register, or a coprocessor register as the destination for a load or source for a store. Integer load and store instructions support 8 -, 16-, 32 -, and 64 -bit transfers while floating-point and coprocessor instructions support 32- and 64-bit accesses.
2. Arithmetic/logical/shift. These instructions compute a result that is a function of two source operands and write the result into a destination register or discard it. They perform arithmetic, tagged arithmetic, logical, and shift operations. An instruction SETHI, useful in creating 32 -bit constants in two instructions, writes a 22 -bit constant into the high order bits of a register and zeroes the remaining bits. The contents of any register can be shifted left or right any number of bits in one clock cycle as specified by a register or the instruction itself. The tagged instructions are useful in artificial intelligence applications.
3. Control transfer. Control transfer instructions include jumps, calls, traps and branches. Control transfer is usually delayed so that the instruction immediately following the control transfer (called the delay instruction) is executed before control is transferred to the target location. The delay instruction is always

Instruction Set Summary (continued)

fetched, however, a bit in the control transfer instruction can cause the delay instruction to be nullified if the branch is not taken. This flexibility increases the likelihood that a useful instruction can be placed after the control transfer thereby filling an otherwise unused hole in the processors pipeline. Branch and call instructions use program counter relative displacements. A jump and link instruction uses a register indirect displacement computing its target address as either the sum of two registers or the sum of a register and a 13-bit signed immediate value. The branch instruction provides a displacement plus or minus 8 megabytes, and the call instructions 30-bit displacement allows transfer to almost any address.
4. Read/write control registers. The processor provides special instructions to read and write the contents of the various control registers within the machine. These registers include the multiply step register, processor state register, window invalid mask register, and trap base register.
5. Floating-point/coprocessor instructions. These instructions include all floating-point conversion and arithmetic operations as well as future coprocessor instructions. These instructions involve operations only on the contents of the register file internal to the CY7C602A or coprocessor.
The instruction set of the processor is summarized in Table 1.

Registers

The following sections provide an overview of the CY7C601A registers. The CY7C601A has two types of registers; working registers (r registers), and control registers. The r registers provide storage for processes, and the control registers keep track of and control the state of the CY7C601A.
r Registers. The r registers (Figure 1) consist of eight 32-bit global registers, and 8 windows, each having twenty-four 32 -bit registers. Each two adjacent windows are overlapped in eight registers.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Previous Window} \& \multirow[b]{3}{*}{Current Window} \& \multicolumn{2}{|r|}{\multirow[b]{5}{*}{Next Window}}

\hline $$
\begin{array}{r}
\text { r } 31 \\
1 \\
\text { r24 } \\
\hline
\end{array}
$$ \& INS \& \& \&

\hline $$
\begin{array}{|c|}
\hline \text { r } 23 \\
\vdots \\
\text { r } 16
\end{array}
$$ \& LOCALS \& \& \&

\hline \multirow[t]{6}{*}{} \& OUTS \& , $24, ~ \% 1 N S$ \& \&

\hline \& \& $$
18,40 \% A 48
$$ \& \&

\hline \& \& $$
\text { , } 8,8015
$$ \& r31
r
r

r \& INS

\hline \& \& \& r23

1
16 \& LOCALS

\hline \& \& \& $\begin{array}{r}\text { r } 15 \\ 18 \\ \mathrm{r} \\ \hline\end{array}$ \& OUTS

\hline \& \& WR, GLOBALS , , \& \& 601A-3

\hline
\end{tabular}

Figure 1. Register Windows

This results in a total of 136 32-bit general purpose registers on the chip.
CY7C601A Control Registers. The CY7C601A control registers contain various addresses and pointers used by the system to control its internal state. They include the program counters (PC and nPC), the processor state register (PSR), the window invalid mask register (WIM), the trap base register (TBR), and the Y register. The following paragraphs briefly describe each:
Processor Status Register (PSR). The processor status register contains fields that describe and control the state of the CY7C601A (see Figure 2).
IU Implementation and IU Version Numbers (IMPL field, $P S R<31: 28>$; VER field, $P S R<27: 24>$). These are read-only fields in the PSR. The version number and the implementation number are each set to "0001".
Integer Condition Codes ($P S R<23: 20>$). The integer condition codes consist of four flags: negative, zero, overflow, and carry. These flags are set by the conditions occurring during integer logic and arithmetic operations.
Enable Coprocessor (EC bit, PSR<13>). This bit is used to enable the coprocessor. If a coprocessor operation (CPop) is encountered and the EC bit is cleared (i.e., coprocessor disabled), a coprocessor disabled trap is generated.
Enable Floating Point Unit (EF bit, PSR $<12>$). This bit is used to enable the floating point unit. If a floating point operation (FPop) is encountered and the EF bit is cleared (i.e., FPU disabled), a floating point disabled trap is generated.
Processor Interrupt Level (PIL field, PSR $<11: 8>$). This four bit field sets the CY7C601A interrupt level. The CY7C601A will only acknowledge interrupts greater than the level indicated by the PIL field. Bit 11 is the MSB; bit 8 is the LSB.
Supenisor Mode (S bit, $P S R<7>$). $S=1$ indicates that the CY7C601A is in supervisor mode. Supervisor mode can only be entered by a software or hardware trap.

Figure 2. Processor State Register

Table 1. Instruction Set Summary

Inputs		Operation		Cycles
	$\begin{aligned} & \text { LDSB(LDSBA*) } \\ & \text { LDSH(LDSHA**) } \\ & \text { LDUB(LDUBA*) } \\ & \text { LDUH(LDUHA*) } \\ & \text { LD(LDA*) } \\ & \text { LDD(LDDA*) } \end{aligned}$	Load Signed Byte Load Signed Halfword Load Unsigned Byte Load Unsigned Halfword Load Word Load Doubleword	(from Alternate Space)	$\begin{aligned} & \hline 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$
	$\begin{aligned} & \hline \text { LDF } \\ & \text { LDDF } \\ & \text { LDFSR } \end{aligned}$	Load Floating Point Load Double Floating Point Load Floating Point State Register		$\begin{aligned} & 2 \\ & 3 \\ & 2 \end{aligned}$
	$\begin{aligned} & \hline \text { LDC } \\ & \text { LDDC } \\ & \text { LDCSR } \end{aligned}$	Load Coprocessor Load Double Coprocessor Load Coprocessor State Register		$\begin{aligned} & 2 \\ & 3 \\ & 2 \end{aligned}$
	$\begin{aligned} & \hline \text { STB(STBA*) } \\ & \text { STH(STHA*) } \\ & \text { ST(STA*) } \\ & \text { STD(STDA*) } \end{aligned}$	Store Byte Store Halfword Store Word Store Doubleword	(into Alternate Space) (into Alternate Space) (into Alternate Space) (into Alternate Space)	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 4 \end{aligned}$
	STF STDF STFSR STDFQ*	Store Floating Point Store Double Floating Point Store Floating Point State Register Store Double Floating Point Queue		$\begin{aligned} & \hline 3 \\ & 4 \\ & 3 \\ & 4 \end{aligned}$
	$\begin{aligned} & \hline \text { STC } \\ & \text { STDC } \\ & \text { STCSR } \\ & \text { STDCO* } \end{aligned}$	Store Coprocessor Store Double Coprocessor Store Coprocessor State Register Store Double Coprocessor Queue		$\begin{aligned} & \hline 3 \\ & 4 \\ & 3 \\ & 4 \end{aligned}$
	$\begin{aligned} & \hline \text { LDSTUB(LDSTUBA*) } \\ & \text { SWAP(SWAPA*) } \end{aligned}$	Atomic Load/Store Unsigned Byte Swap r Register with Memory	(in Alternate Space) (in Alternate Space)	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
	$\begin{aligned} & \text { ADD(ADDcc) } \\ & \text { ADDX(ADDXcc) } \end{aligned}$	Add Add with Carry	(modify icc) (modify icc)	1
	TADDcc(TADDccTV)	Tagged Add and modify icc	(and Trap on overflow)	1
	SUB(SUBcc) SUBX(SUBXcc)	Subtract Subtract with Carry	(modify icc) (modify icc)	1
	TSUBcc(TSUBecTV)	Tagged Subtract and modify icc	(and Trap on overflow)	1
	MULScc	Multiply Step and modify icc		1
	AND(ANDcc) ANDN(ANDNcc) OR(ORcc) ORN(ORNcc) XOR(XORcc) XNOR(XNORcc)	And And Not Inclusive Or Inclusive Or Not Exclusive Or Exclusive Nor	(and modify icc)	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
	$\begin{aligned} & \hline \text { SLL } \\ & \text { SRL } \\ & \text { SRA } \end{aligned}$	Shift Left Logical Shift Right Logical Shift Right Arithmetic		$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$
	SETHI	Set High 22 Bits of r Register		1
	SAVE RESTORE	Save Caller's window Restore Caller's window		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	Bicc FBicc CBccc	Branch on Integer Condition Codes Branch on Floating Point Condition Branch on Coprocessor Condition	Codes odes	$\begin{aligned} & 1^{* *} \\ & 1^{* *} \\ & 1^{* *} \end{aligned}$
	CALL	Call		1**
	JMPL	Jump and Link		$2^{* *}$
	RETT	Return from Trap		2**
	Ticc	Trap on Integer Condition Codes		1 (4 if Taken)

Table 1. Instruction Set Summary (continued)

Inputs		Operation	Cycles
	RDY	Read Y Register	1
	RDPSR	Read Processor State Register	1
	RDWIM	Read Window Invalid Mask	1
	RDTBR	Read Trap Base Register	1
	WRY	Write Y Register	1
	WRPSR**	Write Processor State Register	1
	WRWIM*	Write Window Invalid Mask	1
	WRTBR*	Write Trap Base Register	1
	UNIMP	Unimplemented Instruction	1
	IFLUSH	Instruction Cache Flush	1
	$\begin{aligned} & \text { FPop } \\ & \text { CPop } \end{aligned}$	Floating Point Unit Operations Coprocessor Operations	1 to Launch 1 to Launch

* Privileged instruction.

Processor Status Register (continued)

Previous Supervisor Mode (PS bit, PSR $<6>$). This bit indicates the state of the supervisor bit before the most recent trap.

Trap Enable (ET bit, PSR $<5>$). This bit enables or disables the CY7C601A traps. This bit is automatically set to 0 (traps disabled) upon entering a trap. When ET $=0$, all asynchronous traps are ignored. If a synchronous trap occurs when ET $=0$, the CY7C601A enters error mode.
Current Window Pointer (CWP field, PSR $<4: 0>$). The r registers are addressed by the current window pointer (CWP), a field of the processor status register (PSR), which points to the 24 active local registers. It is incremented by a RESTORE instruction and decremented by a SAVE instruction. Note that the globals are always accessible regardless of the CWP. In the overlapping configuration each window shares its ins and outs with adjacent windows. The outs from a previous window (CWP +1) are the ins of the current window, and the outs from the current window are the ins for the next window(CWP -1). In both the windowed and register bank configurations globals are equally available and the locals are unique to each window.
Program Counters (PC and nPC). The program counter (PC) holds the address of the instruction being executed, and the next program counter (nPC) holds the address of the next instruction to be executed.

Trap Base Register (TBR). The trap base register contains the base address of the trap table and a field that provides a pointer into the trap table.

Figure 3. Trap Base Register

Window Invalid Mask Register (WIM). The window invalid mask register determines which windows are valid and which window accesses cause window_overflow and window_underflow traps.
** Assuming delay slot is filled with useful instruction.

Figure 4. Window Invalid Mask

Y register. The Y register is used to hold the partial product during execution of the multiply-step instruction (MULSCC).

Pin Description

The integer unit's external signals fall into three categories: (1) memory subsystem interface signals, (2) floating-point unit/ coprocessor interface signals, and (3) miscellaneous I/O signals. These are described in the following sections. Paragraphs after the tables describe each signal. Signals that are active LOW are marked with an overcomer; all others are active HIGH. For example, $\overline{W E}$ is active LOW, while RD is active HIGH.

Memory Subsystem Interface Signals

A[31:0]. These 32 bits are the addresses of instructions or data and they are sent out "unlatched" by the integer unit. Assertion of the MAO signal during a cache miss will force the integer unit to put the previous (missed) address on the address bus. A[31:0] pins are three-stated if the AOE or TOE signal is deasserted.
ASI[7:0]. These 8 bits are the address space identifier for an instruction or data access to the memory. ASI[7:0] are sent out "unlatched" by the integer unit. The value on these pins during any given cycle is the address space identifier corresponding to the memory address on the $\mathrm{A}[31: 0$] pins at that cycle. Assertion of the MAO signal during a cache miss will force the integer unit to put the previous address space identifier on the ASI[7:0] pins. $\operatorname{ASI}[7: 0]$ pins are three-stated if the $\overline{\mathrm{AOE}}$ or TOE signal is deas-
serted. Normally, the encoding of the ASI bits is as shown in Table 2. The remaining codes are software generated.

Table 2. ASI Bit Assignment

Address Space Identifier (ASI)	Address Space
00001000	User Instruction
00001010	User Data
00001001	Supervisor Instruction
00001011	Supervisor Data

$\mathrm{D}[31: 0] . \mathrm{D}[31: 0]$ is the bidirectional data bus to and from the integer unit. The data bus is driven by the integer unit during the execution of integer store instructions and the store cycle of atomic load/store instructions. Similarly, the data bus is driven by the floating-point unit only during the execution of floating-point store instructions. The store data is sent out unlatched and must be latched externally before it is used. Once latched, store data is valid during the second data cycle of a store single access, the second and third data cycle of a store double access, and the third data cycle of an atomic load store access. The alignment for load and store instructions is done inside the processor. A double word is aligned on an 8 -byte boundary, a word is aligned on a 4-byte boundary, and a half word is aligned on a 2-byte boundary. D(31) corresponds to the most significant bit of the least significant byte of the 32 -bit word. If a double word, word, or half word load or store instruction generates an improperly aligned address, a memory address not aligned trap will occur. Instructions and operands are always expected to be fetched from a 32 -bit wide memory.
SIZE[1:0]. These two bits specify the data size associated with a data or instruction fetch. Size bits are sent out "unlatched" by the integer unit. The value on these pins at any given cycle is the data size corresponding to the memory address on the A[31:0] pins at that cycle. SIZE[1:0] remains valid on the bus during all data cycles of loads, stores, load_doubles, store_doubles and atomic load stores. Since all instructions are 32 -bits long, SIZE[1:0] is set to " 10 " during all instruction fetch cycles. Encoding of the SIZE[1:0] bits is shown in Table 3.

Table 3. Size Bit Assignment

Size 1	Size 0	Data Transfer Type
0	0	Byte
0	1	Halfword
1	0	Word
1	1	Word (Load/Store Double)

$\overline{\text { MHOLDA }}$ and $\overline{\text { MHOLDB. }}$. The processor pipeline will be frozen while MHOLDA or MHOLDB is asserted and the CY7C601A outputs will revert to and maintain the value they had at the rising edge of the clock in the cycle before MHOLDA or MHOLDB was asserted. MHOLDA/B is used to freeze the clock to both the integer and floating point units during a cache miss (for systems with cache) or when a slow memory is accessed. This signal must be presented to the processor chip at the beginning of each processor clock cycle and be stable during the high time of the processor clock. Either MHOLDA or MHOLDB can be used for stopping the processor during a cache miss or memory exception. $\overline{\text { MHOLDB }}$ has the same definition as MHOLDA. The processor hardware uses the logical "OR" of all hold signals (i.e., MHOL$\overline{\mathrm{DA}}, \overline{\mathrm{MHOLDB}}$ and BHOLD) to generate a final hold signal for
freezing the processor pipeline. All HOLD signals are latched (transparent latch) in the CY7C601A before they are used.
$\overline{\text { BHOLD }}$. $\overline{\mathrm{BHOLD}}$ is asserted by the I/O controller when an external bus master requests the data bus. Assertion of this signal will freeze the processor pipeline. External logic should guarantee that after deassertion of BHOLD, the data at all inputs to the chip is the same as what it was before $\overline{\mathrm{BHOLD}}$ was asserted. This signal must be presented to the processor chip at the beginning of each processor clock cycle and be stable during the high time of the processor clock since the CY7C601A processes the BHOLD input through a transparent latch before it is used. $\overline{\text { BHOLD }}$ should be used only for bus access requests by an external device since the $\overline{M D S}$ and MEXC signals are not recognized while this input is active. $\overline{\text { BHOLD }}$ should not be deasserted while LOCK is asserted.
MDS. Assertion of this signal will enable the clock input to the on-chip instruction register (during an instruction fetch) or to the load result register (during a data fetch). In a system with cache, $\overline{\text { MDS }}$ is used to signal the processor when the missed data (cache miss) is ready on the bus. In a system with slow memories, MDS is used to signal the processor when the read data is available on the bus. MDS must be asserted only while the processor is frozen by either the MHOLDA or MHOLDB input signals. The CY7C601A samples the MDS signal via an on-chip transparent latch before it is used. The MDS signal is also used for strobing memory exceptions. In other words, $\overline{M D S}$ should be asserted whenever MEXC is asserted (see MEXC definition).
$\overline{\text { MEXC. This signal is asserted by the memory (or cache) control- }}$ ler to initiate an instruction (or data) exception trap. MIEXC is latched in the processor at the rising edge of CLK and is used in the following cycle. If MEXC is asserted during an instruction fetch cycle an instruction access exception is generated, and if $\overline{\text { MEXC }}$ is asserted during a data fetch cycle, a data access exception trap is generated. The MEXC signal is used during $\overline{\text { MHOLD }}$) in conjunction with the $\overline{\mathrm{MDS}}$ signal to indicate to the CY7C601A that the memory system was unable to supply valid instruction or data. If MDS is applied without MEXC, the CY7C601A accepts the contents of the data bus as valid information but when MDS is applied with MEXC an exception trap is generated and the contents of the data bus is ignored by the CY7C601A (i.e., MHOLD and MDS must be low when MEXC is asserted). MEXC must be deasserted in the same clock cycle in which MHOLD is released.
$\overline{\mathrm{AOE}}$. Deassertion of this signal will three-state all output drivers associated with $\mathrm{A}[31: 0]$ and $\mathrm{ASI}[7: 0]$ outputs. $\overline{\mathrm{AOE}}$ is connected directly to the output drivers of the address and ASI signals and must be asserted during normal operations. This signal should be deasserted only when the bus is granted to another bus master (i.e., when either BHOLD, MHOLDA or MHOLDB is asserted).
$\overline{\mathrm{DOE}}$. Deassertion of this signal will three-state all output drivers of the data $\mathrm{D}[31: 0]$ bus. $\overline{\mathrm{DOE}}$ is connected directly to the data bus output drivers and must be asserted during normal operations. This signal should be deasserted only when the bus is granted to another bus master (i.e., when either BHOLD, MHOLDA or MHOLDB is asserted).
$\overline{\mathbf{C O E}}$. Deassertion of this signal will three-state all output drivers associated with SIZE[1:0], RD, WE, WRT, LOCK, LDSTO and DXFER outputs. COE is connected directly to the output drivers and must be asserted during normal operations. This signal should be deasserted only when the bus is granted to another bus master (i.e., when either BHOLD, $\overline{\text { MHOLDA, }}$ or MHOLDB is asserted).

RD. This signal specifies whether the current memory access is a read or write operation. It is sent out "unlatched" by the integer unit and must be latched externally before it is used. RD is set to " 0 " only during address cycles of store instructions including the store cycles of atomic load store instructions. This signal when used in conjunction with SIZE[1:0], ASI[7:0], and LDSTO, can be used to check access rights of bus transactions. In addition, the RD signal may be used to turn off the output drivers of data RAMs during a store operation. For atomic load store instructions the RD signal is "1" during the first address cycle (read cycle) and " 0 " during the second and third address cycles (write cycle).
$\overline{\text { WE}}$. This signal is asserted by the integer unit during the second address cycle of store single instructions, the second and third address cycles of store double instructions, and the third address cycle of atomic load/store instructions. The WE signal is sent out "unlatched" and must be latched externally before it is used. The WE signal may be externally qualified by HOLD signals (i.e., MHOLDA and MHOLDB $)$ to avoid writing into the memory during memory exceptions.
WRT. This signal is asserted (set to " 1 ") by the processor during the first address cycle of single or double integer store instructions, the first address cycle of single or double floating-point store instructions, and the second address cycle of atomic load/ store instructions. WRT is sent out "unlatched" and must be latched externally before it is used.
LDSTO. This signal is asserted by the integer unit during the data cycles of atomic load store operations. LDSTO is sent out "unlatched" by the integer unit and must be latched externally before it is used.
LOCK. This signal is set to " 1 " when the processor needs the bus for multiple cycle transactions such as atomic load/store, double loads and double stores. LOCK signal is sent "unlatched" and should be latched externally before it is used. The bus may not be granted to another bus master as long as LOCK signal is asserted (i.e., $\overline{\mathrm{BHOLD}}$ should not be asserted in the following processor clock cycle when LOCK = 1).
DXFER. This signal is asserted by the processor at the beginning of all bus data transfer cycles. DXFER is "unlatched" and DXFER = 1 indicates a data cycle.
INULL. Assertion of INULL indicates that the current memory access (whose address is held in an external latch) is to be nullified by the processor. INULL is intended to be used to disable cache misses (in systems with cache) and to disable memory exception generation for the current memory access (i.e., MDS and MEXC should not be asserted for a memory access when INULL = 1). INULL is a latched output and is active during the same cycle as the address, which it nullifies (the address is not on the bus, but is latched externally). INULL is asserted under the following conditions: During the second cycle of a store instruction, or whenever the CY7C601A address is invalid due to an external or internal exception. If a floating-point unit or coprocessor unit is present in the system, INULL should be ORed with the FNULL and CNULL signals from these units.
$\overline{\text { IFT. The state of this pin determines the behavior of the }}$ IFLUSH instruction. If $\overline{\mathrm{IFT}}=1$, then IFLUSH executes like a NOP with no side effects. If $\overline{\overline{I F T}}=0$, then IFLUSH causes an unimplemented instruction trap.

Floating-Point/Coprocessor Interface Signals

$\overline{\mathbf{F P}}$. This signal indicates whether or not a floating-point unit exists in the system. The $\overline{\mathrm{FP}}$ signal is normally pulled up to VDD by a resistor. It is grounded when the FPU chip is present. The integer unit generates a floating-point disable trap if $\overline{\mathrm{FP}}=1$ dur-
ing the execution of a floating-point instruction, FBfcc instruction or floating-point load, and store instructions.
$\overline{\mathbf{C P}}$. This signal indicates whether or not a coprocessor exists in the system. The $\overline{\mathrm{CP}}$ signal is normally pulled up to VDD by a resistor. It is grounded when the coprocessor chip is present. The integer unit generates a coprocessor disable trap if $\overline{\mathrm{CP}}=1$ during the execution of a coprocessor instruction, CBccc instruction or coprocessor load and store instructions.
FCC[1:0]. These bits are taken as the current condition code bits of the FPU. They are considered valid if $\mathrm{FCCV}=1$. During the execution of the FBfcc instruction, the processor uses these bits to determine whether the branch should be taken or not. FCC[1:0] are latched by the processor before they are used.
$\mathbf{C C C}[1: 0]$. These bits are taken as the current condition code bits of the coprocessor. They are considered valid if $\mathrm{CCCV}=1$. During the execution of the CBccc instruction, the processor uses these bits to determine whether the branch should be taken or not. $\operatorname{CCC}[1: 0]$ are latched by the processor before they are used.
FCCV. This signal should be asserted only when the FCC[1:0] bits are valid. The floating-point unit deasserts FCCV if pending floating-point compare instructions exist in the floating-point queue. FCCV is reasserted when the compare instruction is completed and the floating-point condition codes FCC[1:0] are valid. The integer unit will enter a wait state if FCCV is deasserted (i.e., FCCV = " 0 "). The FCCV signal is latched (transparent latch) in the CY7C601A before it is used.
CCCV. This signal should be asserted only when the CCC[1:0] bits are valid. The coprocessor deasserts CCCV if pending coprocessor compare instructions exist in the coprocessor queue. CCCV is reasserted when the compare instruction is completed and the coprocessor condition codes CCC[1:0] are valid. The integer unit will enter a wait state if CCCV is deasserted (i.e., CCCV $=$ " 0 "). The CCCV signal is latched (transparent latch) in the CY7C601A before it is used.
FHOLD. This signal is asserted by the floating-point unit if a situation arises in which the FPU cannot continue execution. The floating-point unit checks all dependencies in the decode stage of the instruction and asserts FHOLD (if necessary) in the next cycle. This signal is used by the integer unit to freeze the instruction pipeline in the same cycle. The FPU must eventually deassert $\overline{\mathrm{FHOLD}}$ in order to unfreeze the integer unit's pipeline. The FHOLD signal is latched (transparent latch) in the CY7C601A before it is used.
CHOLD. This signal is asserted by the coprocessor if a situation arises in which the coprocessor cannot continue execution. The coprocessor checks all dependencies in the decode stage of the instruction and asserts CHOLD (if necessary) in the next cycle. This signal is used by the integer unit to freeze the instruction pipeline in the same cycle. The coprocessor must eventually deassert CHOLD in order to unfreeze the integer unit's pipeline. The CHOLD signal is latched (transparent latch) in the CY7C601A before it is used.
$\overline{\text { FEXC. }}$. Assertion of this signal indicates that a floating-point exception has occurred. $\overline{\text { FEXC must remain asserted until the inte- }}$ ger unit takes the trap and acknowledges the FPU via FXACK signal. Floating-point exceptions are taken only during the execution of floating-point instructions, FBfcc instruction and floating-point load, and store instructions. FEXC is latched in the integer unit before it is used. The FPU should deassert FHOLD if it detects an exception while FHOLD is asserted. In this case $\overline{\text { FEXC }}$ should be asserted a cycle before $\overline{\text { FHOLD }}$ is deasserted.
$\overline{\text { CEXC. }}$. Assertion of this signal indicates that a coprocessor exception has occurred. This signal must remain asserted until the integer unit takes the trap and acknowledges the coprocessor via CXACK signal. Coprocessor exceptions are taken only during the execution of coprocessor instructions, CBcce instruction and coprocessor load and store instructions. CEXC is latched in the integer unit before it is used. The coprocessor should deassert CHOLD if it detects an exception while CHOLD is asserted. In this case CEXC should be asserted a cycle before CHOLD is deasserted.
INST. This signal is asserted by the integer unit whenever a new instruction is being fetched. It is used by the FPU or coprocessor to latch the instruction on the $\mathrm{D}[31: 0]$ bus into the FPU or coprocessor instruction buffer. The FPU (or coprocessor) needs two instruction buffers (D1 and D2) to save the last two fetched instructions. When INST is asserted a new instruction enters into the D1 buffer and the old instruction in D1 enters into the D2 buffer.
FLUSH. This signal is asserted by the integer unit and is used by the FPU or coprocessor to flush the instructions in its instruction registers. This may happen when a trap is taken by the integer unit. Instructions that have entered into the floating-point (or coprocessor) queue may continue their execution if FLUSH is raised as a result of a trap or exception other than floating-point (or coprocessor) exceptions.
FINS1. This signal is asserted by the integer unit during the decode stage of an FPU instruction if the instruction is in the D1 buffer of the FPU chip. The FPU uses this signal to latch the instruction in D1 buffer into its execute stage instruction register.
FINS2. This signal is asserted by the integer unit during the decode stage of an FPU instruction if the instruction is in the D2 buffer of the FPU chip. The FPU uses this signal to latch the instruction in D2 buffer into its execute stage instruction register.
CINS1. This signal is asserted by the integer unit during the decode stage of a coprocessor instruction if the instruction is in the D1 buffer of the coprocessor chip. The coprocessor uses this signal to latch the instruction in D1 buffer into its execute stage instruction register.
CINS2. This signal is asserted by the integer unit during the decode stage of a coprocessor instruction if the instruction is in the D2 buffer of the coprocessor chip. The coprocessor uses this signal to latch the instruction in D2 buffer into its execute stage instruction register.
FXACK. This signal is asserted by the integer unit in order to acknowledge to the FPU that the current FEXC trap is taken. The FPU must deassert FEXC after it receives an asserted level of FXACK signal so that the next floating-point instruction does not cause a "repeated" floating-point exception trap.

CXACK. This signal is asserted by the integer unit in order to acknowledge to the coprocessor that the current $\overline{\text { CEXC }}$ trap is taken. The coprocessor must deassert CEXC after it receives an asserted level of CXACK signal so that the next coprocessor instruction does not cause a "repeated" coprocessor exception trap.

Miscellaneous I/O Signals

IRL[3:0]. The data on these pins defines the external interrupt level. IRL[3:0] $=0000$ indicates that no external interrupts are pending. The integer unit uses two on-chip synchronizing latches to sample these signals on the rising edge of CLK. A given interrupt level must remain valid for at least two consecutive cycles to be recognized by the integer unit. $\operatorname{IRL}[3: 0]=1111$ signifies an non-maskable interrupt. All other interrupt levels are maskable by the PIL field of the processor state register (PSR). External interrupts should be latched and prioritized by the external logic before they are passed to the integer unit. The external interrupt latches should keep the interrupts pending until they are taken (and acknowledged) by the integer unit. External interrupts can be acknowledged by software or by the Interrupt Acknowledge (INTACK) output.
INTACK. This signal is asserted by the integer unit when an external interrupt is taken.
RESET. Assertion of this pin will reset the integer unit. The $\overline{\text { RE- }}$ SET signal must be asserted for a minimum of eight processor clock cycles. After a reset, the integer unit will start fetching from address 0 . The RESET signal is latched by the integer unit before it is used.
$\overline{\text { ERROR. This signal is asserted by the integer unit when a trap }}$ is encountered while traps are disabled via the ET bit in the PSR. In this situation the integer unit saves the PC and nPC registers, sets the tt value in the TBR, enters into an error state, asserts the ERROR signal and then halts. The only way to restart the processor trapped in the error state, is to trigger a reset by asserting the RESET signal.
$\overline{\mathrm{TOE}}$. This signal is used to force all output drivers of the processor chip into a high-impedance state. It is used to isolate the chip from the rest of the system for debugging purposes.
FPSYN. This pin is a mode pin which is used to allow execution of additional instructions in future designs. It should be normally kept deasserted (FPSYN $=0$) to disable the execution of these instructions.
CLK. CLK is a 50% duty-cycle clock used for clocking the CY7C601A's pipeline registers. It is HIGH during the first half of the processor cycle, and LOW during the second half. The rising edge of CLK defines the beginning of each pipeline stage in the CY7C601A chip.

SEMICONDUCTOR

Features

- Direct interface to CY7C601 integer unit
- Direct interface to CY7C157 Cache Storage Unit (CSU)
- Full compliance with ANSI/IEEE-754 standard for binary floating-point arithmetic
- Supports single and double precision floating-point operations
- 6.15 MFLOPs peak doubleprecision performance at 40 MHz
- SPARC-compatible interface allows concurrent execution of integer and floating-point instructions
- Hardware interlocks synchronize integer unit and floating-point unit operations
- 64-bit multiplier and divide/square root unit
- 64-bit ALU
- 16 64-bit registers or 32 32-bit registers in a three-port floating-point register file with an independent load/ store port.
- 144-pin PGA package
- Available in speeds of $\mathbf{2 5}, \mathbf{3 3}$, and 40 $\mathbf{M H z}$

Floating-Point Unit

Description

The CY7C602A is a high-speed SPARC $®$ compatible floating-point unit for use with the CY7C601A integer unit. The CY7C602A floating-point unit allows floa-ting-point instructions to execute concurrently with CY7C601A integer unit instructions. The CY7C602A interfaces directly to the CY7C601A integer unit without glue logic. The CY7C602A provides a peak 6.15 MFLOPS of double-precision performance at 40 MHz .

Logic Block Diagram

Selection Guide

			7C602A-40	7C602A-33
Maximum Supply Current (mA)	Commercial	450	400	350

SPARC is a registered trademark of SPARC International, Inc.

C602-3
Figure 1. CY7C601A - CY7C602A Hardware Interface

Functional Description

The CY7C602A floating-point unit is a high-performance, singlechip implementation of the SPARC reference floating-point unit. The CY7C602A FPU directly interfaces with the CY7C601A integer unit, providing concurrent floating-point and integer instruction execution. The Cypress 7C600 chipset, comprised of the CY7C601A integer unit, CY7C602A floating-point unit, CY7C604A cache controller and memory management unit, and two CY7C157A CSUs, constitutes a high-performance CPU requiring no interface logic. The Cypress 7 C 600 chip-set is available in speeds up to 40 MHz , providing a sustained 29 MIPS of integer unit performance and over 6 MFLOPS of double-precision floa-ting-point performance.
The CY7C602A supports single and double precision floatingpoint operation. Double precision floating-point is efficiently executed in the CY7C602A using a 64-bit internal datapath. The floating-point datapath circuitry contains a 64-bit multiplier, a 64-bit ALU, and a 64-bit divide/square-root unit. The CY7C602A provides thirty-two 32 -bit floating-point registers, which can be concatenated for use as 64 -bit registers. The CY7C602A complies with the ANSI/IEEE-754 floating-point standard.
The CY7C602A supports the execution of SPARC floating-point instructions. These instructions are separated into two groups: floating-point load/store and floating-point operate instructions (FPops). Floating-point load/store instructions are used to transfer data to and from the data registers (f registers). FP load/store instructions also allow the CY7C601A integer unit to read and write the floating-point status register (FSR) and to read the front entry of the floating-point queue. Floating-point operate instructions (FPops) include basic numeric operations (add, subtract, multiply, and divide), conversions between data types, register to register moves, and floating-point number comparison. FPops operate only on data in the floating-point registers. Floating-point branch instructions are executed by the IU on the basis of FP condition codes, and are not executed by the FPU.

The SPARC floating-point/integer unit interface provides concurrent execution of integer and floating-point instructions. The CY7C601A integer unit fetches all instructions for both itself and the CY7C602A FPU, providing all addressing and control signals. The CY7C602A floating-point unit latches all integer and floa-ting-point instructions in parallel with the CY7C601A. When the CY7C601A decodes a floating-point instruction, it signals the CY7C602A with the FINS1 or FINS2 signal. This starts the execution of the floating-point instruction by the CY7C602A.

CY7C602A Registers

The CY7C602A has three types of user-accessible registers: the f registers, the FP queue, and the floating-point status register (FSR). The f registers are the CY7C602A data registers. The FSR is the CY7C602A status and operating mode register. The FP queue contains the CY7C602A instructions that have started execution and are awaiting completion. The following section describes these registers in detail.

f Registers

The CY7C602A provides 32 registers for floating-point operations, referred to as f registers. These registers are 32 bits in length, which can be concatenated to support 64-bit double words.
Integer and single precision data requires a single 32 -bit f register. Double precision data requires 64 bits of storage and occupies an even-odd pair of adjacent f registers. Extended precision data requires 128 bits of storage and occupies a group of four consecutive f registers, always starting with register $\mathrm{f} 0, \mathrm{f} 4, \mathrm{f} 8, \mathrm{f} 12, \mathrm{f} 20, \mathrm{f} 24$, or $f 28$.
The CY7C602A forces register addressing to match the data type specified by the floating-point instruction. This ensures data alignment in the f register file for double and extended precision data. Figure 2 illustrates how the CY7C602A uses the five register address bits in a floating-point instruction for the different types
of data. Single data word transfers (integer, single-precision floa-ting-point) can be stored in any register. Consequently, all five bits of the register address specified in the floating-point instruction are valid. Double-precision data must reside in an even-odd pair of adjacent registers. By ignoring the LSB of the register address for a FPop requiring a register pair, the CY7C602A ensures data alignment. In a similar manner, the two LSBs of the register address are ignored in a SPARC FPU that supports extended precision data.

Figure 2. f Register Addressing

FP Queue

The CY7C602A maintains a floating-point queue of instructions that have started execution, but have yet to complete execution. The FP queue is used to accommodate the multiple clock nature of floating-point instructions. It also allows the CY7C602A to optimize execution through the use of data forwarding. Data forwarding allows FPop results to be used by a subsequent FPop before the results have been stored in its destination register. This saves one clock of execution time for each instruction that uses this feature.
The other purpose of the FP queue is to support the handling of FP exceptions. When the CY7C602A encounters an exception case, it enters pending exception mode and waits for the next FP instruction to be executed. When the CY7C601A decodes a FP instruction following the exception, it asserts the FINS1 or FINS2 signal. The CY7C602A then enters exception mode and asserts FEXC to signal a floating-point exception. When the CY7C602A enters the exception mode, floating-point execution halts until the FP queue is emptied. This allows the CY7C601A to store the floa-ting-point instructions under execution when the exception case occurred. Emptying the FP queue frees the CY7C602A for use by the trap handler without losing the pre-exception state of the CY7C602A. After the trap handler finishes execution, the CY7C601A again fetches the FPop instructions previously stored in the FP queue, thus bringing the CY7C602A back to its previous state.
The FP queue contains the 32-bit address and 32-bit FPop instruction of up to three instructions under execution. Only FPop instructions are queued. The top entry of the FP queue is accessible by executing the store double floating-point queue (STDFQ) instruction. A load FP queue instruction does not exist, as the FP queue must be re-initialized by launching the queued instructions.

Floating-Point Status Register (FSR)

The following paragraphs describe the bit fields of the Floatingpoint status register(FSR). Figure 3 illustrates the bit assignments
for the FSR. Refer to Table 1 (following page) for bit assignments for the FSR fields.
RD FSR(31:30). Rounding Direction: These two bits define the rounding direction used by the CY7C602A during an FP arithmetic operation.
RP FSR(29:28). Rounding Precision: These two bits define the rounding precision to which extended results are rounded. This is in accordance with the ANSI/IEEE STD-745-1985.
TEM FSR(27:23). Trap Enable Mask: These five bits enable traps caused by FPops. These bits are ANDed ($1=$ enable, $0=$ disable) with the bits of the CEXC (current exception field) to determine which traps will force a floating-point exception to the CY7C601A. All trap enable fields correspond to the similarly named bit in the CEXC field (see below). The TEM field only affects which bits in the CEXC field will cause the FEXC signal to be asserted. ALL trap types, regardless of the state of the TEM field, are reported in the AEXC and CEXC fields.
NS FSR(22). Non-Standard Floating Point: This bit enables non-standard floating-point operations in the CY7C602A.
version $\operatorname{FSR}(19: 17)$. The version number is used to identify the SPARC floating-point processor type. This field is set to 011 (3H) for the CY7C602A, and is read-only.
FTT $F S R$ (16:14). Floating-point Trap Type: This field identifies the floating-point trap type of the current FP exception. This field can be read only.
QNE FSR (13). Queue Not Empty: This bit signals whether the FP queue is empty. ($0=$ empty, $1=$ not empty)
FCC FSR(11:10). Floating-point Condition Codes: These two bits report the FP condition codes (see Table 1 below).
AEXC $\operatorname{FSR}(9: 5)$. Accumulated EXCeptions: This field reports the accumulated FP exceptions. All exception cases, masked or unmasked, are ORed with the contents of the AEXC and accumulated as status. All accumulated fields have the same definition as the corresponding field for CEXC (see below). This field can be read and written, and must be cleared by software (see Table 1).
CEXC FSR(4:0). Current EXCeptions: This field reports the current FP exceptions. This field is automatically cleared upon the execution of the next floating-point instruction. CEXC status is not lost upon assertion of a floating-point exception, since instructions following a valid exception are not executed by the CY7C602A. The following defines the five CEXC bits:
$n v c=1 \quad$ indicates invalid operation exception. This is defined as an operation using an improper operand value. An example of this is $0 / 0, \infty$, or $-\infty$.
of $c=1$ indicates overflow exception. The rounded result would be larger in magnitude than the largest normalized number in the specified format.
$u f c=1 \quad$ indicates underflow exception. The rounded result is inexact, and would be smaller in magnitude than the smallest normalized number in the indicated format.
$d z c=1$ indicates division-by-zero, $\mathrm{X} / 0$, where X is subnormal or normalized. Note that $0 / 0$ does not set the dzc bit.
$n x c=1 \quad$ indicates inexact exception. The rounded result differs from the infinitely precise correct result.
R FSR21, 20, and 12. Reserved - always set to 0.

Figure 3. Floating-Point Status Register
Table 1. Floating-Point Status Register Summary

Field	Values	FSR bits	Description	Loadable by LDFSR
RD	```0-Round to nearest (tie-even) 1-Round to 0 2-Round to +\infty 3-Round to - }```	31:30	Rounding Direction	yes
RP	0 - Extended precision 1 - Single precision 2 - Double precision 3 - Reserved	29:28	Extended Rounding Precision	yes
TEM	0 - Disable trap 1 - Enable trap NVM OFM UFM DZM NXM	$\begin{gathered} 27: 23 \\ 27 \\ 26 \\ 25 \\ 24 \\ 23 \end{gathered}$	Trap Enable Mask invalid operation trap mask overflow trap mask underflow trap mask divide by zero trap mask inexact trap mask	yes
NS	0 - Disable 1 - Enable	22	Non-standard Floating-point	yes
version	0-7	19:17	FPU version number	no
FTT	0 - None 1 - IEEE Exception 2 - Unfinished FPop 3 - Unimplemented FPop 4 - Sequence Error 5-7 Reserved	16:14	Floating-point trap type	no
QNE	0 - queue empty	13	Queue Not Empty	no
FCC	$\begin{array}{\|l\|} \hline 0-= \\ 1-< \\ 2-> \\ 3-\text { Unordered } \end{array}$	11:10	Floating-point Condition Codes	yes
AEXC	NVA OFA UFA DXA NXA	$\begin{gathered} 9: 5 \\ 9 \\ 8 \\ 7 \\ 6 \\ 6 \\ 5 \end{gathered}$	Accrued Exception Bits accrued invalid exception accrued overflow exception accrued underflow exception accrued divide by zero exception accrued inexact exception	yes
CEXC	NVC OFC UFC DZC NXC	$\begin{gathered} \hline 4: 0 \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \\ \hline \end{gathered}$	Current Exception Bits current invalid exception current overflow exception current underflow exception current divide by zero exception current inexact exception	yes
\mathbf{r}	Always set to 0	21, 20, 12	reserved bits	no

CY7C602A Pin Definitions

Integer Unit Interface Signals:

$\overline{\mathbf{F P}}$ active-low output. Floating-point Present: This signal indicates to the CY7C601A that a FPU is present in the system. In the absence of a FPU, this signal is pulled up to VCC by a resistor. This is a static signal; it always asserts a low output. The CY7C601A generates a floating-point disable trap if FP is not asserted during the execution of a floating-point instruction.
FCC(1:0) output. Floating-point Condition Codes: The FCC(1:0) bits indicate the current condition code of the FPU, and are valid only if FCCV is asserted. FBfcc instructions use the value of these bits during the execute cycle if they are valid. If the FCC bits are not valid, then FCCV is released, which halts the CY7C601A until the FCC bits become valid.

FCC1	FCC0	Condition
0	0	equal
0	1	Op1 $<\mathrm{Op} 2$
1	0	Op1 $>$ Op2
1	1	Unordered

Table 2. FCC(1:0) Condition Codes
FCCV output. Floating-point Condition Codes Valid: The CY7C602A asserts the FCCV signal when the FCC represent a valid condition. The FCCV signal is deasserted when a pending floating-point compare instruction exists in the floating-point queue. FCCV is reasserted when the compare instruction is completed and FCC bits are valid.
$\overline{\text { FHOLD }}$ output. Floating-point HOLD: The FHOLD signal is asserted by the CY7C602A if it cannot continue execution due to a resource or operand dependency. The CY7C602A checks for all dependencies in the decode stage, and if necessary, asserts $\overline{F H O L D}$ in the next cycle. The FHOLD signal is used by the CY7C601A to freeze its pipeline in the same cycle. The CY7C602A must eventually deassert $\overline{\text { FHOLD }}$ to release the CY7C601A pipeline.
$\overline{\text { FEXC }}$ output. Floating-point EXCeption: The $\overline{\text { FEXC }}$ is asserted if a floating-point exception has occurred. It remains asserted until the CY7C601A acknowledges that it has taken a trap by asserting FXACK. Floating-point exceptions are taken only during the execution of a floating-point instruction. The CY7C602A releases $\overline{\text { FEXC }}$ when it receives FXACK.

FXACK input. Floating-point eXception ACKnowledge: The FXACK signal is asserted by the CY7C601A to acknowledge to the CY7C602A that the current FP trap is taken.
INST input. INSTruction fetch: The INST signal is asserted by the CY7C601A whenever a new instruction is being fetched. It is used by the CY7C602A to latch the instruction on the $\mathrm{D}(31: 0)$ bus into the FPU instruction buffer. The CY7C602A has two instruction buffers (D1 and D2) to save the last two fetched instructions. When INST is asserted, the new instruction enters the D1 buffer and the old instruction in D1 enters the D2 buffer.
FINS1 input. Floating-point INStruction in buffer 1: The FINS1 signal is asserted by the CY7C601A during the decode stage of a FPU instruction if the instruction is stored in the D1 buffer of the CY7C602A. The CY7C602A uses this signal to launch the instruction in the D1 buffer into its execute stage instruction register.

FINS2 input. Floating-point INStruction in buffer 2: The FINS2 signal is asserted by the CY7C601A during the decode stage of a FPU instruction if the instruction is stored in the D2 buffer of the CY7C602A. The CY7C602A uses this signal to launch the instruction in the D2 buffer into its execute stage instruction register.
FLUSH input. Floating-point instruction fLUSH: The FLUSH signal is asserted by the CY7C601A to signal to the CY7C602A to flush the instructions in its instruction registers. This may happen when a trap is taken by the CY7C601A. The CY7C601A will restart the flushed instructions after returning from the trap. FLUSH has no effect on instructions in the floating-point queue. In addition to freezing the FPU pipeline, the CY7C602A uses FLUSH to shut off D bus drivers during store. To ensure correct operation of the CY7C602A, FLUSH must not change state more than once during a clock cycle.

Coprocessor Interface Signals:

$\overline{\text { CHOLD }}$ input. Coprocessor HOLD: The $\overline{\mathrm{CHOLD}}$ signal is asserted by the coprocessor if it cannot continue execution. The coprocessor must check all dependencies in the decode stage of the instruction and assert the $\overline{\mathrm{CHOLD}}$ signal, if necessary, in the next cycle. The coprocessor must eventually deassert this signal to unfreeze the CY7C601A and CY7C602A pipelines. The CHOLD signal is latched with a transparent latch in the CY7C602A before it is used.
CCCV input. Coprocessor Condition Codes Valid: The coprocessor asserts the CCCV signal when the $\mathrm{CCC}(1: 0)$ represent a valid condition. The CCCV signal is deasserted when a pending floating-point compare instruction exists in the coprocessor queue. CCCV is reasserted when the compare instruction is completed and CCC bits are valid. The CY7C602A will enter a wait state if CCCV is deasserted. The CCCV signal is latched with a transparent latch in the CY7C602A before it is used.

System/Memory Interface Signals:

A(31:0) input. Address bus (31:0): The address bus for the CY7C602A is an input-only bus. The CY7C601A supplies all addresses for instruction and data fetches for the CY7C602A. The CY7C602A captures addresses of floating-point instructions from the $\mathrm{A}(31: 0)$ bus into the DDA register. When INST is asserted by the CY7C601A, the contents of the DDA is transferred to the DA1 register.
$\mathrm{D}(31: 0)$ input/output. Data bus (31:0): The $\mathrm{D}(31: 0)$ bus is driven by the FPU only during the execution of floating-point store instructions. The store data is sent out unlatched and must be latched externally before it is used. Once latched, store data is valid during the second data cycle of a store single access and on the second and third data cycle of a store double access. The data alignment for load and store instructions is done inside the FPU. A double word is aligned on an eight-byte boundary. A single word is aligned on a four-byte boundary.
$\overline{\text { DOE }}$ input. Data Output Enable: The DOE signal is connected directly to the data output drivers and must be asserted during normal operation. deassertion of this signal tri-states all output drivers on the data bus. This signal should be deasserted only when the bus is granted to another bus master, i.e, when either $\overline{B H O L D}$, MHOLDA, or MHOLDB is asserted.
MHOLDA, MHOLDB input. Memory HOLD: Asserting $\overline{M H O L D A}$ or MHOLDB freezes the CY7C602A pipeline. Either MHOLDA or MHOLDB is used to freeze the FPU (and the

IU) pipelines during a cache miss (for systems with cache) or when slow memory is accessed.
$\overline{\text { BHOLD }}$ input. Bus HOLD: This signal is asserted by the system's I/O controller when an external bus master requests the data bus. Assertion of this signal will freeze the FPU pipeline. External logic should guarantee that after deassertion of BHOLD, the state of all inputs to the chip is the same as before BHOLD was asserted.
$\overline{\text { MDS }}$ input. Memory Data Strobe: The $\overline{\text { MDS }}$ signal is used to load data into the FPU when the internal FPU pipeline is frozen by assertion of MHOLDA, $\overline{\text { MHOLDB }}$, or BHOLD.
FNULL output. Fpu NULLify cycle: This signal signals to the memory system when the CY7C602A is holding the instruction pipeline of the system. This hold would occur when FHOLD or

FCCV is asserted. This signal is used by the memory system in the same fashion as the integer unit's INULL signal. The system needs this signal because the IU's INULL does not take into account holds requested by the FPU.
RESET input. RESET: Asserting the RESET signal resets the pipeline and sets the writable fields of the floating-point status register (FSR) to zero. The RESET signal must remain asserted for a minimum of eight cycles. After a reset, the IU will start fetching from address 0 .
CLK input. CLOCK: The CLK signal is used for clocking the FPU's pipeline registers. It is high during the first half of the processor cycle and low during the second half. The rising edge of CLK defines the beginning of each pipeline stage in the FPU.

Document 7: 38-R-10004-A

CY7C604A

Cache Controller and Memory Management Unit

Features

- Fully conforms to the SPARC ${ }^{\circledR}$ Reference Memory Management Unit (MMU) Architecture
- Support for virtual memory
- Supports context switching
- 4096 contexts for TLB entries
- 4096 contexts for cache tag
- On-chip Translation Lookaside

Buffer (TLB)

- 64 fully associative entries
- Multi-level TLB flush
- TLB probe support
- Lockable entries
- Random TLB replacement
- Supports multi-level address mapping (4-Kbyte, 256-Kbyte, 16-Mbyte, and 4-Gbyte).
- Page-level memory access protection
- Read/Write/Execute
- User/supervisor modes
- Hardware table walk
- Large address space support
- 32-bit virtual address
- 36-bit physical address
- 2048 cache tag entries
- 32-byte cache line size
- Address and data latches for virtual bus
- Lockable cache
- Write-through and copy-back cache polices
- 32-byte read line buffer
- 32-byte copy-back write line buffer
- 32-byte write-through buffer
- Conforms to SPARC Reference Mbus Level 1 specification
- Aliasing detection
- Byte write generation
- 0.8-micron CMOS technology
- 2.2 watts typical power dissipation at 33 MHz

Description

The CY7C604A consists of a cache controller with on-chip cache tag and a memory management unit. It is a highspeed CMOS implementation of the SPARC reference memory management architecture, combined with a cache tag and cache memory controller. The CY7C604A directly connects to the CY7C601A integer unit microprocessor and CY7C157A cache storage unit without any external circuitry.
When combined with two CY7C157A $16-\mathrm{Kbyte}$ by 16 cache storage units, the CY7C604A forms a complete, no waitstate, 64 -Kbyte, direct-mapped virtual cache. The cache size can be scaled up to 256 -Kbyte and the number of TLB entries increased to 256 with the use of additional CY7C604As and CY7C157As.

Logic Block Diagram

Pin Configuration

Selection Guide

		7C604A-40	7C604A-33	7C604A-25
Maximum Supply Current (mA)	Commercial	650	600	600

[^48]

Figure 1. Virtual 64-Kbyte Cache
tual address bits (VA(4:2)) select the 32-bit word of the cache line, as illustrated in Figure 1. The CY7C604A provides access control for the cache by checking the context and virtual address against the cache tags. If the virtual address, access level, and context match the cache tag for the cache line addressed, a cache hit occurs and the access is enabled. If the virtual address or context do not match the cache tag for the cache line, a cache miss oscurs and the cache controller accesses main memory for the required data.
The CY7C604A provides cache locking, which prevents the data stored in the cache from being replaced. The entire cache is locked by setting the cache lock bit (CL) in the System Control Register (SCR).
The cache controller supports two modes of caching: write-through with no write allocate and copy-back with write allocate. Write-through mode is a simpler style of cache management that causes write accesses to the cache to be written through to main memory upon each write access. The advantage of this method is that the cache always remains coherent with main memory. Its disadvantage is that each write to the cache is echoed to main memory, which increases traffic on the system bus. Another disadvantage to write-through is that the processor is delayed by the time required to arbitrate the system bus and write the data to main memory. However, in the case of the CY7C604A, this disadvantage is largely offset by the inclusion of write buffers. The write buffers can store up to four double-word accesses, allowing the CY7C601A to continue execution while data is written to main memory.
Copy-back cache mode causes write accesses to be written to the cache only. This causes the cache line to become modified. Modified cache lines are automatically written back to main memory only when the cache line is no longer needed. Copy-back mode provides substantial system performance improvements over write-through due to decreased traffic on the system bus.

A 32-byte write buffer and a 32-byte read buffer are provided in the CY7C604A to fully buffer the transfer of a cache line. This feature allows the CY7C604A to simultaneously read a cache line from main memory as it is flushing a modified cache line from the cache. This feature is also used in write-through cache mode for write accesses to main memory. The write buffer avoids stalling the CY7C601A on writes to main memory by storing the write

MMU to map a virtual address to a physical address. These mapping entries, referred to as page table entries or PTEs, allow one of four levels of address mapping. A PTE can be defined as the address mapping for a single 4 -Kbyte page, a 256 -Kbyte region, a 16 -Mbyte region, or a 4-Gbyte region. The TLB entries are
lockable, allowing important TLB entries to be excluded from rea $16-\mathrm{Mbyte}$ region, or a 4-Gbyte region. The TLB entries are
lockable, allowing important TLB entries to be excluded from replacement. The use of multiple CY7C604As in a system allows the number of TLB entries to increase from 64 up to a maximum of 256 .
The MMU performs its address translation task by comparing a virtual address supplied by the CY7C601A (integer unit) to the ad-
dress tags in the TLB entries. If the virtual address and the value virtual address supplied by the CY7C601A (integer unit) to the ad-
dress tags in the TLB entries. If the virtual address and the value of the context register match a TLB entry, a TLB "hit" occurs. When this occurs, the physical address stored in the TLB is used to translate the virtual address to a physical address. The access
type (read/write of data or instruction) and privilege level (user/ to translate the virtual address to a physical address. The access
type (read/write of data or instruction) and privilege level (user/ supervisor) are checked during translation. If a TLB hit occurs
but access level protection is violated, the MMU signals an excepsupervisor) are checked during translation. If a TLB hit occurs
but access level protection is violated, the MMU signals an exception and the operation ends.
If the virtual address or context does not match any valid TLB entry, a TLB "miss" occurs. This causes a table walk to be performed by the MMU. The table walk is a search performed by the MMU through the address translation tables stored in main memory. The MMU searches through several levels of tables for memory. The MMU searches through several levels of tables for
the PTE corresponding to the virtual address. Upon finding the PTE, the MMU translates the address and selects a TLB entry for replacement, where it then stores the PTE.
The 64-Kbyte virtual cache is organized into 2048 lines of 32 bytes each. The term "virtual cache" refers to the direct addressing of the cache by the integer unit (CY7C601A) with the virtual address bus. Virtual address bits (VA(15:5)) select the cache line, and virping entries, referred to as page table entries or PTES, allow one

The MMU portion of the CY7C604A provides translation from a 32 -bit virtual address range (4 gigabytes) to a 36 -bit physical address (64 gigabytes), as provided in the SPARC reference MMU specification. Virtual address translation is further extended with the use of a context register, which is used to identify up to 4096 contexts or tasks. The cache tag entries and TLB entries contain context numbers to identify tasks or processes. This minimizes unnecessary cache tag and TLB entry replacement during task switching.
The MMU features a 64 -entry translation lookaside buffer (TLB). The TLB acts as a cache for address mapping entries used by the
data until the physical bus becomes available. The write buffer writes the data to memory as a background task.
The CY7C604A supports the SPARC Mbus standard bus interface. The Mbus is a peer level, high-speed, 64-bit, multiplexed address and data bus which supports a full peer level protocol (i.e., multiple bus masters). The Mbus transfers data in either burst or non-burst mode, depending upon size. Data transactions larger than eight bytes (one doubleword) are transferred in burst mode, which consists of an address phase followed by four data phases (32 bytes total). Non-burst transactions consist of an address phase followed by one data phase, and are used for data transactions less than eight bytes. Bus mastership is granted and controlled by an external bus arbiter. The bus arbiter sets bus priorities, and grants access to a bus master.

Memory Management Unit

The MMU provides virtual to physical address translation with the use of an on-chip translation lookaside buffer (TLB). The translation lookaside buffer is in reality a full Address Translation Cache (ATC) for address translation entries stored from tables in main memory. These entries, referred to as page table entries or PTEs, contain the mapping information used by the MMU to translate the virtual addresses. Addresses presented to the MMU for translation are compared against the set of PTEs stored in the TLB. All entries in the TLB are simultaneously accessed through the use of advanced content addressable memory (CAM) technology. If a match for the virtual address and context is found in a valid TLB entry and the access protection is not violated, a TLB hit occurs and the address is translated. A virtual address and context that matches a valid TLB entry but violates the memory access protections will cause the CY7C604A to generate a memory exception to the CY7C601A. If the TLB entries do not match the address and context, or the TLB entry is invalid, then a TLB miss occurs. The MMU responds to the TLB miss by initiating a table walk to find the correct PTE stored in main memory for the virtual address.
The MMU uses a tree-structured table walk algorithm to find page table entries not found in the TLB. The table walk is a search through a series of tables in main memory for the PTE corresponding to a virtual address. The table walk uses a series of four tables. These tables are: the context table, the level 1 table, the level 2 table, and the level 3 table. The table walk uses the context pointer register as a base register and the context number as an offset to point to an entry in the context table. At any address, the MMU finds either a PTE, which terminates its search, or a page table pointer (PTP). A PTP is a pointer used in conjunction with a field in the virtual address to select an entry in the next level of tables. The table walk continues searching through levels of tables as long as PTPs are found pointing to the next table. The table walk terminates when a PTE is found, or an exception is generated if a PTE is not found after accessing the level 3 table. An exception is also generated if the table walk finds an invalid or reserved entry in the page tables.
Upon finding the PTE, the CY7C604A stores it in an available TLB entry and translates the corresponding virtual address. The table walk processing is implemented in the CY7C604A hardware. It is self-initiated, and is transparent to the user.

Cache Controller

The cache controller provides cache memory access control for a 64 -Kbyte direct mapped virtual cache. The cache controller is designed to use two CY7C157A cache storage units for the cache memory. These cache RAMs are 16 -Kbyte x 16 SRAMs with on-chip address and data latches and timing control. The

CY7C601A cache can be expanded to a maximum of 256 Kbytes by adding additional groups of one CY7C604A and two CY7C157As. Using multiple CY7C604As to expand the cache is referred to as a multichip configuration for the CY7C604A, and is described in the CY7C604A Multichip Configuration section in the SPARC RISC User's Manual.

The cache is organized as 2048 cache lines of 32 bytes each. The CY7C604A has 2048 cache tag entries on-chip, one tag entry for each cache line. Addressing for the virtual cache is provided directly from the virtual address bus. The virtual address field (VA(15:5)) selects one of the 2048 lines of the cache. This address field also selects one of the corresponding cache tag entries in the CY7C604A. A cache hit occurs when the upper sixteen bits of the virtual address and the context register match with the virtual address and context stored in the selected cache tag entry. The lowest five bits of the virtual address bus (VA(4:0)) select one of the 32 bytes in the cache line. Cache data replacement is always performed by replacing cache lines.
The cache is designed to provide data with every read access asserted on the virtual bus, regardless of the cache controller. The CY7C604A controls cache read access by holding the CY7C601A if a cache hit is not detected by the cache controller. The cache controller then reads the new cache line from main memory, and supplies the correct data to the CY7C601A. After the correct data is latched into the CY7C601A by strobing the MDS signal, the CY7C601A is released and execution proceeds normally.
Writes to the cache are controlled by the CY7C604A, which decodes the lowest two bits of the virtual address, the SIZE(1:0) signal, and checks for a cache hit to enable the correct cache byte write enable signals. If a cache write hit occurs, the CY7C604A decodes the correct CBWE signals for the write access, and outputs these to the CY7C157 cache RAM write enables. If the cache mode is set to write-through (see Cache Modes), the write data is also written to main memory. If a write cache miss occurs for write-through cache mode, the data is written to main memory and the cache is not updated. If the write cache miss occurs during copy-back cache mode (see Cache Modes), the cache line is fetched from main memory. If the cache line stored in the cache when the write cache miss occurred has been modified, the old cache line is written to main memory before the cache line is replaced by the new data. After the cache line has been replaced, the write access is enabled by the CY7C604A.

Cache Tag

The CY7C604A features 2048 direct-mapped cache tag entries. The on-chip cache tag and the TLB are accessed simultaneously. Each entry in the cache consists of 16 bits of virtual address (VA(31:16)), a 12-bit context number (CXN(11:0)), one valid bit (V) and one modified bit (M). The valid bit (V) is set or cleared to indicate the validity of the cache tag entry. The modified bit (M) of a cache tag entry is set during copy-back mode after a write access to the cache line. This indicates that the cache line has been modified. The modified bit has no meaning for write-through cache mode. The cache line select field (VA(15:5)) is used to select a cache line entry and its corresponding cache tag entry. The address field (VA(31:16)) and context register are compared against the virtual address and the context fields of the selected cache tag entry. If a match occurs, then a cache hit is generated. If a match is not found, then a cache miss is generated. To complete an access successfully, both the cache tag and the TLB must be hit with appropriate access level permission. Upon pow-er-on reset $(\overline{\mathrm{POR}}$), all cache tag entries are invalidated (all V bits are cleared).

A supervisor bit $(\$)$ is included in the cache tag entry. For cache tag entries which are accessible by the supervisor only (access level field 6 or 7), the S bit is set. During a cache tag look up, if the access is supervisor mode and the the S bit is set, the context number comparison is ignored and the context match is forced. This operation is similar to a TLB look up with access level field set to either 6 or 7.

Cache Modes

The virtual cache can be programmed for either write-through with no write allocate or copy-back with write allocate. The two cache modes differ in how they treat cache write accesses. Write-through cache mode causes write hits to the cache to be written to both cache and main memory. Write-through write cache misses will only update main memory and invalidate the cache tag, but will not modify the cache.
A write access in copy-back mode will modify the cache only. The writing of the modified cache line to main memory is deferred until the cache line is no longer required. Copy-back cache mode has the advantage of reducing traffic on the system bus. Bus traffic is reduced since all updates to memory are deferred and are performed subsequently only as absolutely required. In addition, all such data transfers are made utilizing the more efficient burst mode.

CY7C604A Registers

All values in all control registers are read/write (with the exception of the implementation and version fields of the SCR). Control registers are accessible by use of the alternate space load or store instructions with ASI $=4$.

Programmer's Note: To ensure software compatibility with future versions of the CY7C604A, reserved fields in a register should be written as zeros and masked out when read.

System Control Register (SCR)

The system control register, as shown in Figure 2, defines the operation modes for the cache controller and MMU. The following describes the functions of the bit fields in the SCR.
CE. Cache-enable bit (SCR(8)) indicates whether the virtual cache is enabled or not. This bit is set to 1 to enable the cache controller.
CL. Cache-lock bit (SCR(9)) indicates whether the entire cache is locked or not. This bit is set to 1 to lock the cache.
CM. Cache-mode bit (SCR(10)) indicates whether the cache is operating under write-through no write allocate policy or
copy-back write allocate policy. This bit is set to 1 to enable copy-back cache mode. Setting this bit to 0 will enable write-through cache mode.
C. Cacheable bit (SCR(13)) indicates whether the access is cacheable or not when the MMU is disabled. This bit is set to 1 if accesses on the physical bus (with the MMU disabled) are to be considered cacheable.
BM. Boot-mode bit (SCR(14)) indicates the system is in boot mode. This bit is set to 1 to indicate boot mode and is automatically set upon power-on reset.
MCA(1:0). Multichip address field (SCR(23:22)) provides the address field in multichip configuration. For more information, refer to the CY7C604A Multichip Configuration section in the SPARC RISC User's Manual.
MCM(1:0). Multichip mask field (SCR(21:20)) provides a masking facility to mask certain multichip address (MCA) bits in order to provide a facility to build systems with a different number of CY7C604As (from 1 to 4).
MV. Multichip configuration valid bit (SCR(19)) indicates that the MCA and MCM fields are valid.
NF. No-fault bit (SCR(1)) prevents supervisor data accesses from signaling data faults to the CY7C601A. When the NF bit is set, exception-generating logic (in both the TLB and the table walk) does not indicate supervisor data faults to the CY7C601A (via MEXC), but status and address information is recorded in the SFSR and SFAR registers as in normal data access operations. When the NF bit is not set, the CY7C604A reports the supervisor data exceptions.
ME. MMU-enable bit (SCR(0)) indicates whether the MMU is enabled or not. This bit is set to 1 to enable the MMU.
The implementation number ($\operatorname{SCR}(31: 28)$) and the version number (SCR(27:24)) fields are hardwired; they are read only fields and writes to those fields are ignored.

Implementation number field: 0001
 Version number field: 0001

On power-on reset, all writeable control bits except the BM bit are cleared. This sets the CY7C604A into the following state: cache disabled $(\mathrm{CE}=0)$, cache unlocked $(\mathrm{CL}=0)$, write-through mode ($\mathrm{CM}=0$), non-cacheable ($\mathrm{C}=0$), boot-mode enabled (BM $=1$), multichip disabled ($\mathrm{MV}=0$), no fault disabled ($\mathrm{NF}=0$), and MMU disabled $(\mathrm{ME}=0)$.

Figure 2. System Control Register (SCR)

Context Table Pointer Register (CTPR)

The context table pointer points to the context table in physical memory. The table is indexed by the contents of the context register. The context table pointer appears on bits 35 through 14 of the Mbus (MAD(35:14)) during the first fetch of TLB miss processing. Once the root pointer is cached in the PTPC (page table pointer cache), no fetching of the root pointer is required until the context is changed (see Figure 3).

CTP	RSV
31	109

> CTP $=$ Context Table Pointer
> RSV $=$ Reserved

Figure 3. Context Table Pointer Register

Context Register (CXR)

The context register defines a virtual address space associated with the current process. The CXR is a twelve bit register that supports 4096 contexts. This register is used to define the current context for the CY7C604A. Nearly all CY7C604A operations are dependent upon matching the value of this register to a cache tag entry or TLB entry.

RSV			CXN
31	1211		

> CXN $=$ Context Number
> RSV $=$ Reserved

Figure 4. Context Register

Reset Register ($\mathbf{R R}$)

The RR register contains information regarding whether watch dog reset (WDR), software internal reset (SIR), or software external reset (SER) occurred. This is a read/write register, and setting the software internal reset bit (SIR) or the software external reset (SER) causes the corresponding reset. Upon power-on reset, the WDR, SIR, and SER bits in the RR will be cleared. Reading the RR will also clear these bits.

RSV	WDR	SIR	SER
31	RSV $=$ Reserved	3	1
WDR $=$ Watchdog Reset	0		
SIR $=$ Software Internal Reset			
SER $=$ Software External Reset			

Figure 5. Reset Register

Root Pointer Register (RPR)

The RPR is the context-level table page table pointer (PTP) and is cached in the page table pointer cache.

Figure 6. Root Pointer Register
On power-on reset, the V bit is cleared. When the current context is changed by writing to the context pointer register (CXR), the V bit of the RPR is cleared. The V bit is also cleared when the CTPR register is written.

Instruction access PTP (IPTP)

The IPTP is the instruction access level 2 table page table pointer (PTP) and is part of the page table pointer cache. Upon power-on reset, the V bit is cleared.

Figure 7. Instruction Access PTP Register

Data access PTP (DPTP)

The DPTP is the data access level 2 table page table pointer(PTP) and is a register in the page table pointer cache. Upon power-on reset, the V bit is cleared.

Figure 8. Data Access PTP Register

Index Tag Register (ITR)

The ITR contains the tag (index1 and index2) fields of the IPTP and DPTP entries.

ITAG		RSV		DTAG	RSV		
31		18	17	16	15		2

RSV $=$ Reserved
ITAG $=$ Instruction Access PTP Tag
DTAG $=$ Data Access PTP Tag
Figure 9. Index Tag Register

TLB Replacement Control Register (TRCR)

The TRCR contains the replacement counter (RC) and initial replacement counter (IRC) fields as shown in Figure 10. These fields are used in order to support random replacement and to support locking capabilities of the TLB. On power-on reset, both the RC and IRC fields are initialized to zero.

RSV	RC	RSV	IRC			
31	14	13	8	7	6	5

RSV = Reserved
RC = Replacement Counter
IRC $=$ Initial Replacement Counter
Figure 10. TLB Replacement Control Register

Synchronous Fault Status Register (SFSR)

The synchronous fault status register, illustrated in Figure 11, contains fault-associated information for synchronous faults. Synchronous faults are faults that occur during an integer unit access of memory. Synchronous faults include almost all possible faults for the CY7C604A. This type of fault is synchronous to the operations of the CY7C601A. For the CY7C604A, this fault type covers all cases except those caused by delayed writes of data stored in the write buffers. These faults are asynchronous to the operation of the CY7C601A, and are named asynchronous faults.
An example of a synchronous fault is a privilege violation fault caused by attempting an unauthorized memory access. Upon encountering a synchronous fault, the CY7C604A asserts the $\overline{\text { MEXC }}$ signal, along with MHOLD and MDS. Synchronous faults are the only exception type that assert the MEXC signal.
The CBT bit indicates that a translation error occurred during a table walk for the flush of a modified cache line of a copy-back mode cache miss. The SFAR will contain the address of the missed cache access, not the modified cache line address causing the translation error. When this type of error occurs, the cache tag remains valid, and the cache line remains modified.
The uncorrectable error (UE), timeout error (TO), and bus error bits (BE) report error status as encoded in the MERR, MRTY, and MRDY signals. (Refer to the section on Mbus for further information.) The level bits (L) describe the level in a table walk process at which the fault occurred (if applicable).

RSV	CBT	UC	TO	BE	L	AT	FT	FAV	OW	
31	14	13	12	11	109	87	5	4	2	1

Figure 11. Synchronous Fault Status Register
The access type bits (AT(2:0)) describes the access type that caused the fault. This field specifies user/supervisor access and whether the access is load or store of data or instruction. The fault type bits (FT) describe the fault type. The fault address valid bit is set when the address in the synchronous fault address regis-
ter (SFAR) is a valid fault address. The over-write bit (OW) is set in the case of a double fault where the fault status stored in the SFSR does not correspond with the fault first trapped on by the CY7C601A.

Synchronous Fault Address Register (SFAR)

The synchronous fault address register contains the faulted virtual address.

SFA = Synchronous Fault Address
Figure 12. Synchronous Falut Address Registers

Asynchronous Fault Status Register (AFSR)

Asynchronous faults are those faults caused by a delayed memory access initiated by the CY7C604A. This type of error can only be caused by a delayed write to main memory initiated by the write buffer. Asynchronous faults cause the CMER signal to be asserted, which can be used as an interrupt to the CY7C601A.
The UC, TO, and BE bits are identical to those in the SFSR. They are set by the information encoded into the MERR, $\overline{\text { MRTY, and MRDY signals of the Mbus. The asynchronous fault }}$ address bits provide the upper four bits of the physical address not captured in the asynchronous fault address register (AFAR), which is a thirty-two bit register.

Figure 13. Asynchronous Falut Status Register
The asynchronous fault occurred bit (AFO) is set when an asynchronous fault is encountered. Once the asynchronous fault occurred (AFO) bit is set, no further asynchronous faults are recorded until the AFO bit is cleared, which is accomplished by reading the asynchronous fault address register (see Figure 13). On power-on reset, the UC, TO, BE, and AFO bits in the AFSR will be cleared. Reading the AFSR will also clear these bits.

Asynchronous Fault Address Register (AFAR)

The AFAR contains bits $31-0$ of the physical address for a asynchronous faults (bus errors). Asynchronous faults can occur during delayed write accesses or during background cache line flush operations in copy-back mode (see Figure 14). The address in the AFAR is concatenated with the four AFA bits in the AFSR to define the entire 36-bit physical address.

AFA $=$ Asynchronous Fault Address
Figure 14. Asynchronous Fault Address Register

CY7C604A

Figure 15. CY7C604A Pin Configuration

Pin Definitions

The functional pinout is shown in Figure 15. Note that all three-state output signals are driven to their inactive state before they are released to three-state.

		Virtual Bus Signals
Signal Name	I/O	Description

| | Virtual Bus Signals (continued) |
| :--- | :--- | :--- | | Signal
 Name | I/O |
| :--- | :--- |

	Mbus Signals (continued)	
Signal Name	I/O	Description
	MAD(45) (MBL) Mbus Boot Mode/Local indicator. MBL is high during the address phase of boot mode transactions. The in-	
struction fetch and data accesses to the Mbus while the MMU is disabled in boot mode are considered BOOT MODE transac- tions. The data transactions on the Mbus		
required for Load/Store Alternate instruc- tions with ASI $=1$ are considered LOCAL transactions.		

MAD(63:46) Reserved during address phase (Driven high).
During the data phase of the transaction the $\operatorname{MAD}(63: 0)$ lines contain the 64 bits of data being transferred.
$\overline{\text { MAS }} \quad 0 \quad$ Mbus Address Strobe (active LOW). Asserted by the bus master during the first cycle of every bus transaction to indicate the address phase of that transaction. This is a three-state output.

* Not supported by the CY7C604A.

MAD(43) (MC) Mbus Cacheable (active HIGH). Indicates the current Mbus transaction is cacheable.

	Virtual Bus Signals (continued)	
Signal Name	I/O	Description

Signal Name	I/O	Description
CMER	O	CMU Error (active LOW). This signal is asserted if any bus error has occurred during writes to main memory. A system can use this signal to cause an interrupt. This signal has the same timing specifications as the Mbus control signals and remains asserted until the AFAR is read. This signal is a three-state signal.
	I/O	Mbus Address and Data (three-stated bus). Muring the address phase of a transaction (63:0)
	MAD(35:0) contains the physical address PA(35:0). The remaining signals MAD(63:36) during the address phase of the transaction contains the transaction asso-	

MAD(39:36)	Transaction Type	
0 H	Mbus write	
1 H	Mbus read	
2-F H	Reserved	MRDY
MAD(42:40)	Transaction Size	
0	Byte (8 bits)	
1	Halfword (16 bits)	
2	Word (32 bits)	
3	Dobleword (64bits)	
4	16 Bytes*	
5	32 Bytes	
6	64 Bytes**	
7	128 Bytes*	

Document \#: 38-R-10005-A

Miscellaneous Signals				
Signal Name	I/O	Description		
CLK	I System Clock. This is the same clock used by the 7C601A integer unit.			
$\overline{\text { CSEL }}$	I Chip Select (active LOW). In multi-CMU systems, CSEL on each CY7C604A is connected to different address lines (any one from $\mathrm{A}(31: 16)$) to initialize the multichip configuration. In single-CMU systems, CSEL should be connected to ground in order to permanently enable the CY7C604A. In multi-CMU systems, CSEL should be connected to ground or VCC through a resistor during Power-On Reset. This is required in order to enable only one boot mode CMU.			
CSTA	O	Cache Status. This pin provides the status of cache. In write-through, the CSTA indicates whether the write transaction on the Mbus has cache hit or not. For read transaction on the Mbus in either write-through or copy-back mode, the CSTA indicates whether it is replacing a valid cache line entry or not. This signal has the same timing specifications as the Mbus signals such as MC and has meaning only in the address phase of Mbus transactions. This signal is continually driven HIGH or LOW.		
		CACHE MODE	CSTA	CONDITION
		Writethrough	1	read and valid cache line replacement
			0	read and invalid cache line replacement
			1	write and cache hit
			0	write and cache miss
		Copyback	1	read and valid cache line replacement
			0	read and invalid cache line replacement
			undef.	write

I Test Output Enable (active LOW). This signal is used (when high) to three-state all output drivers of the CY7C604A. TOE SHOULD BE TIED LOW DURING NORMAL OPERATION. It is used to isolate the CY7C604A from the rest of the system for debugging purposes.

CY7C605A

Cache Controller and Memory Management Unit

Features

- Multiprocessing support
- Pin-compatible with CY7C604A
- Cache coherency protocol modeled after IEEE Futurebus
- Separate virtual and physical cache tag memories
- Each cache tag memory holds 2048 cache entries
- Allows concurrent bus snooping without stalling processor
- Large address space support
- 32-bit virtual address
- 36-bit physical address
- 32-byte cache line size
- Byte write generation
- Write-through and copy-back cache policies
- 32-byte read line buffer
- 32-byte copy-back write line buffer
- 32-byte write-through buffer
- Fully conforms to SPARC Reference Mbus Level-2 specification
- Fully conforms to the SPARC reference Memory Management Unit (MMU) architecture
- On-chip Translation Lookaside Buffer (TLB)
- 64 fully associative entries
- Multilevel TLB flush
- TLB probe support
- Lockable entries
- Random TLB replacement
- Supports multilevel address mapping (4-Kbyte, 256-Kbyte, 16-Mbyte, and 4-Gbyte)
- Supports context switching
- 4096 contexts for TLB entries
- 4096 contexts for cache tag
- Page-level memory access protection
- Read/write/execute
- User/supervisor modes
- Hardware table walk
- 0.8-micron CMOS technology

Description

The CY7C605A is a combined cache controller and memory management unit optimized for multiprocessing systems. It is a high-speed CMOS implementation of the SPARC $®$ reference memory management architecture, combined with a cache memory controller and on-chip virtual and physical cache tag memories. The CY7C605A supports the SPARC reference Mbus level-2 protocol for multiprocessing systems.
The CY7C605A is a functional superset of the CY7C604A, and is pin-compatible to the CY7C604A. The CY7C605A directly connects to the CY7C601A integer unit microprocessor and CY7C157A cache storage unit without any external circuitry. When combined with two CY7C157A 16 -Kbyte $\times 16$ cache storage units, the CY7C605A forms a complete, no wait-state, 64 -Kbyte direct-mapped virtual cache system.

Logic Block Diagram

(

TLB CONTROL

C602-1

Pin Configuration

Selection Guide

	$7 \mathrm{C} 605 \mathrm{~A}-40$	7C605A-33	7C605A-25
Maximum Supply Current (mA)	650	600	600

SPARC is a registered trademark of SPARC International, Inc.

Functional Description

The CY7C605A represents the evolution of the Cypress CY7C600 family into the realm of multiprocessing. The CY7C605A is a combined memory management unit (MMU) and cache controller with on-chip cache tag memory. A superset of the CY7C604A, the CY7C605A is designed to support the requirements of multiprocessing systems. The CY7C605A provides two separate cache tag memories as compared to the single cache tag memory used on the CY7C604A. The second cache tag memory allows concurrent bus snooping without stalling the CY7C601A. This allows the CY7C605A to maintain cache coherency with other cache systems without degrading CPU performance. The CY7C605A supports the Mbus cache coherency protocol, which is modeled after the acclaimed IEEE Futurebus. The CY7C605A is pin-compatible with the CY7C604A. This allows a CY7C604A-based CPU to be used in a multiprocessor system by substituting the CY7C605A.

The CY7C605A is designed as part of a system solution for high-performance multiprocessor computing using the Cypress SPARC chip set. This chip set consists of the CY7C601A integer unit, the CY7C602A floating-point unit, the CY7C605A CMU, and two CY7C157A cache RAMs. The Cypress SPARC chip set comprises a five chip, high-performance CPU requiring no additional glue logic. As part of this chip set, the CY7C605A provides support for large addressing spaces with virtual to physical address translation, and provides control for a $64-\mathrm{Kbyte}$ virtual cache. As part of a multiprocessor system, the CY7C605A automatically maintains cache coherency with other multiprocessor CPUs sharing a common memory system.
The MMU portion of the CY7C605A provides translation from a 32-bit virtual address range (4 gigabytes) to a 36 -bit physical address (64 gigabytes), as provided in the SPARC reference MMU specification. Virtual address translation is further extended with the use of a context register, which is used to identify up to 4096 contexts or tasks. The cache tag entries and TLB entries contain context numbers to identify tasks or processes. This minimizes unnecessary cache tag and TLB entry replacement during task switching.
The MMU features a 64-entry translation lookaside buffer(TLB). The TLB acts as a cache for address mapping entries used by the MMU to map a virtual address to a physical address. These mapping entries, referred to as page table entries or PTEs, allow one of four levels of address mapping. A PTE can be defined as the address mapping for a single 4 -Kbyte page, a 256 -Kbyte region, a 16 -Mbyte region, or a 4 -Gbyte region. The TLB entries are lockable, allowing important TLB entries to be excluded from replacement.
The MMU performs its address translation task by comparing a virtual address supplied by the CY7C601A (integer unit) to the address tags in the TLB entries. If the virtual address and the value of the context register match a valid TLB entry, a TLB "hit" occurs. When this occurs, the physical address stored in the TLB is used to translate the virtual address to a physical address. The access type (read/write of data or instruction) and privilege level (user/supervisor) are checked during translation. If a TLB hit occurs but access level protection is violated, the MMU signals an exception and the operation ends.
If the virtual address or context does not match any valid TLB entry, a TLB "miss" occurs. This causes a table walk to be performed by the MMU. The table walk is a search performed by the MMU through the address translation tables stored in main memory. The MMU searches through several levels of tables for the PTE corresponding to the virtual address. Upon finding the

PTE, the MMU translates the address and selects a TLB entry for replacement, where it then stores the PTE.
The 64-Kbyte virtual cache is organized into 2048 lines of 32 bytes each. The term "virtual cache" refers to the direct addressing of the cache by the integer unit (CY7C601A) with the virtual address bus. Virtual address bits (VA(15:5)) select the cache line, and virtual address bits (VA(4:2)) select the 32-bit word of the cache line, as illustrated in Figure 1. The cache line selected by (VA(15:5)) is associated with a cache tag entry for that cache line. The CY7C605A provides access control for the cache by checking the context and virtual address against the cache tag for the selected cache line. If the virtual address, access level, and context match the validated cache tag for the cache line addressed, a cache hit occurs and the access is enabled. If the virtual address or context do not match the cache tag, or if the cache tag entry has been invalidated, a cache miss occurs and the cache controller accesses main memory for the required data.

Figure 1. Virtual 64-Kbyte Cache
The cache controller supports two modes of caching: write-through with no write allocate and copy-back with write allocate. The difference between the two caching modes is in how they handle write accesses to the cache. Write-through mode causes write accesses to the cache to be written through to both cache and main memory upon each write access. Copy-back cache mode causes write accesses to be written to the cache only, which causes the caches lines to become modified with respect to main memory. Modified cache lines are automatically written back to main memory only when the cache line is no longer needed.

Write-through has the disadvantage that each write to the cache increases traffic on the system bus. This disadvantage becomes of increasing importance as multiple processors contend for memory bus bandwidth. Write-through also has the disadvantage that the processor is delayed by the time required to arbitrate the system bus and write the data to main memory. However, in the case of the CY7C605A, this disadvantage is largely offset by the inclusion of write buffers. The write buffers can store up to four double-word accesses, allowing the CY7C601A to continue execution while data is written to main memory.

Copy-back caching has long been recognized as providing higher system performance than write-through. Blocks of write accesses (typically occurring in context switching or data intensive opera-
tions) cause a write-through cache system to stall the processor even with the inclusion of write buffers. This is a problem inherent with write-through that is avoided by copy-back caching mode. However, copy-back caching in multiprocessing systems introduces the issue of data consistency. Since copy-back holds modified data until the processor no longer requires the data, main memory becomes inconsistent with the contents of the cache.
Cache coherency protocols have been established to deal with the data consistency problem, but many cache designs have avoided copy-back caching due to the complexity of implementing the protocol. The CY7C605A solves the problems of supporting cache consistency protocols and provides the multiprocessor designer with the performance of a true copy-back cache system The CY7C605A supports a cache coherency protocol modeled after the IEEE Futurebus, which has been acclaimed in the industry as a superior cache protocol. To support this protocol, the CY7C605A utilizes a dual cache tag memory to allow concurrent bus snooping. This enables the CY7C605A to monitor all bus activity without stalling the processor. The CY7C605A uses the bus activity information to maintain cache coherency, which it does automatically as a concurrent task without interfering with the cache operations for the processor. Therefore, the CY7C605A provides a multiprocessing system that allows a maximum performance copy-back cache without the problems of supporting a cache coherency protocol.
A 32-byte write buffer and a 32-byte read buffer are provided in the CY7C605A to fully buffer the transfer of a cache line. This feature is used in copy-back cache mode to allow the CY7C605A to simultaneously read a cache line from main memory as it is flushing a modified cache line from the cache. This feature is also used in write-through cache mode for write accesses to main memory. The write buffer avoids stalling the CY7C601A on writes to main memory by storing the write data until the physical bus becomes available. The write buffer then writes the data to memory as a background task.

The CY7C605A supports the SPARC Mbus standard bus interface. The Mbus is a peer level, high-speed, 64-bit, multiplexed address and data bus that supports a full peer level protocol (i.e., multiple bus masters). The Mbus transfers data in transaction sizes from 1 to 128 bytes. These data transfers are performed in either burst or non-burst mode, depending upon size. Data transactions larger than eight bytes (one doubleword) are transferred in burst mode, which consists of an address phase followed by multiple data phases. Non-burst transactions consist of an address phase followed by one data phase, and are used for data transactions less than eight bytes. Bus mastership is granted and controlled by an external bus arbiter. The bus arbiter sets bus priorities, and grants access to a bus master.
Mbus is divided into two levels of implementation: level 1 and level 2. Level 1, implemented on the CY7C604A, is the uniprocessor version of Mbus. Level 1 is a subset of level 2 , which is the multiprocessor version of Mbus. The CY7C605A supports level 2 Mbus. Level 2 Mbus includes the IEEE Futurebus cache coherency protocol, which has been recognized in the industry as a superior method of supporting multiprocessing systems.

The level 2 Mbus supports direct data intervention, which allows a cache system with the up-to-date version of a cache line to directly supply the data to another cache system without having to first up-
date main memory. Direct data intervention provides a significant performance improvement over systems which do not support this feature. In addition, the CY7C605A provides support for memory systems with reflective memory controllers. A memory system with reflective memory control can recognize a cache to cache data transaction and automatically update itself without delaying the system. Secondary cache controllers are also supported by the CY7C605A, which provide a performance advantage over systems directly using main memory.

Memory Management Unit

The MMU provides virtual to physical address translation with the use of an on-chip translation lookaside buffer (TLB). The translation lookaside buffer is in reality a full address translation cache (ATC) for address translation entries stored from tables in main memory. These entries, referred to as page table entries or PTEs, contain the mapping information used by the MMU to translate the virtual addresses. Addresses presented to the MMU for translation are compared against the set of PTEs stored in the TLB. All entries in the TLB are simultaneously accessed through the use of advanced content addressable memory (CAM) technology. If a match for the virtual address and context is found in a valid TLB entry and the access protection is not violated, a TLB hit occurs and the address is translated. A virtual address and context that matches a valid TLB entry but violates the memory access protections will cause the CY7C605A to generate a memory exception to the CY7C601A. If the TLB entries do not match the address and context, or the TLB entry is invalid, then a TLB miss occurs. The MMU responds to the TLB miss by initiating a table walk to find the correct PTE stored in main memory for the virtual address.
The MMU uses a tree-structured table walk algorithm to find page table entries not found in the TLB. The table walk is a search through a series of tables in main memory for the PTE corresponding to a virtual address. The table walk uses a series of four tables. These tables are: the context table, the level 1 table, the level 2 table, and the level 3 table. The table walk uses the context pointer register as a base register and the context number as a offset to point to an entry in the context table. At any address, the MMU finds either a PTE, which terminates its search, or a page table pointer (PTP). A PTP is a pointer used in conjunction with a field in the virtual address to select an entry in the next level of tables. The table walk continues searching through levels of tables as long as PTPs are found pointing to the next table. The table walk terminates when a PTE is found, or an exception is generated if a PTE is not found after accessing the level 3 table. An exception is also generated if the table walk finds an invalid or reserved entry in the page tables.
Upon finding the PTE, the CY7C605A stores it in an available TLB entry and translates the corresponding virtual address. The table- walk processing is implemented in the CY7C605A hardware. It is self-initiated, and is transparent to the user.

Cache Controller

The cache controller provides cache memory access control for a 64 Kbyte direct-mapped virtual cache. The cache controller performs this task by comparing memory accesses against the address and status entries in a cache tag memory. The CY7C605A provides two separate cache tag memories for access comparison. Cache memory accesses from the processor are compared against the processor virtual cache tag (PVTAG) memory. Bus snooping operations are compared against the Mbus physical cache tag (MPTAG) memory. The use of two cache tag memories allows
the cache controller to service processor cache accesses concurrently with bus snooping cache tag accesses. This feature of the CY7C605A provides significant performance improvements over cache systems sharing a single cache tag memory between the processor cache access and the bus snooping operations. Single cache tag systems typically must stall the processor when a bus snooping operation is required, causing serious performance degradation.

The cache controller is designed to use two CY7C157A cache storage units for the cache memory. These cache RAMs are 16-Kbyte $\times 16$ SRAMs with on-chip address and data latches and timing control. Two CY7C157As and one CY7C605A comprise an entire $64-$ Kbyte cache system with physical bus interface and read and write buffers.
The cache is organized as 2048 cache lines of 32 bytes each. The CY7C605A has 2048 cache tag entries in both the PVTAG and MPTAG, one entry in each cache tag memory per cache line. Addressing for the virtual cache is provided directly from the virtual address bus. The virtual address field (VA(15:5)) selects one of the 2048 lines of the cache. This address field also selects the cache tag entry in the PVTAG dedicated to the selected cache line. A cache hit occurs when the upper sixteen bits of the virtual address and the context register match with the virtual address and context stored in the selected cache tag entry in PVTAG. The lowest five bits of the virtual address bus (VA(4:0)) select one of the 32 bytes in the cache line. Cache data replacement is always performed by replacing cache lines.
The cache is designed to provide data with every read access asserted on the virtual bus, regardless of the cache controller. The CY7C605A controls cache read access by halting the CY7C601 if a cache hit is not detected by the cache controller. The cache controller then reads the new cache line from main memory, and supplies the correct data to the CY7C601A. After the correct data is latched into the CY7C601A by strobing the MDS signal, the CY7C601A is released and execution proceeds normally.
Writes to the cache are controlled by the CY7C605A, which decodes the lowest two bits of the virtual address, the SIZE(1:0) signal, and checks for a cache hit to enable the correct cache byte write enable signals. If a cache write hit occurs, the CY7C605A decodes the correct CBWE signals for the write access, and outputs these to the CY7C157 cache RAM write enables. If the cache mode is set to write-through (see Cache Modes), the write data is also written to main memory. If a write cache miss occurs for write-through cache mode, the data is written to main memory and the cache is not updated. If the write cache miss occurs during copy-back cache mode (see Cache Modes), the cache line is fetched from main memory. If the cache line stored in the cache when the write cache miss occurred has been modified, the old cache line is written to main memory before the cache line is replaced by the new data. After the cache line has been replaced, the write access is enabled by the CY7C605A.

Cache Tag

The CY7C605A features two separate cache tag arrays: the processor virtual cache tag memory (PVTAG) and the Mbus physical cache tag memory (MPTAG). Cache controllers using only one cache tag array must delay the processor when bus snooping requires access to the cache tags. The inclusion of two independent cache tag memories allows the CY7C605A to support processor accesses to cache while simultaneously performing bus snooping on the Mbus.

Cache Modes

The cache can be programmed for either write-through with no write allocate or copy-back with write allocate. The two cache modes differ in how they treat cache write accesses. Write-through cache mode causes write hits to the cache to be written to both cache and main memory. Write-through write cache misses will only update main memory and will not modify the cache.
A write access in copy-back mode will modify the cache only. The writing of the modified cache line to main memory is deferred until the cache line is no longer required. Copy-back cache mode has the advantage of reducing traffic on the system bus. Bus traffic is reduced since all updates to memory are deferred and are subsequently performed only as absolutely required. In addition, all such data transfers are made utilizing the more efficient burst mode. The following describes the two cache modes in detail.

Write-through mode with no Write Allocate

For write-through cache mode, write access cache hits cause both the cache and main memory to be updated simultaneously. A write access cache miss causes only main memory to be updated (no write allocate). Write-through caching mode normally requires a processor to delay during a write miss while the data is written to main memory. The CY7C605A provides write buffers to prevent this delay in most cases. The write buffers store the write access and write the data to main memory as a background task.
During read access cache hits, the cached data is read out and supplied to the CY7C601A. In the case of a read access cache miss, a cache line is fetched from main memory to load into the cache and the required data is supplied to the CY7C601A.

Copy-back mode with Write Allocate

When the cache is configured for copy-back mode, only the cache is updated on write access cache hits (i.e., main memory is not updated). The modified bit of the cache tag for the cache line is set on a copy-back write access (write hit or after a write miss is corrected). During write access cache misses, if the selected cache line is clean (not modified), a cache line is fetched from main memory to load into the cache and only the cache is updated. If the selected cache line is modified, the selected cache line is flushed out to update main memory. The CY7C605A simultaneously fetches the new cache line from main memory and stores it into the read buffer as it flushes the modified cache line from the cache and stores it into its write buffer. After the modified cache line has been flushed, the CY7C605A writes the modified cache line out of its write buffer into main memory while the new cache line is stored into the cache memory from the read buffer.
During read access cache hits, the cached data is read out and supplied to the CY7C601A. During read access cache misses, if the selected cache line is clean (not modified), a cache line is fetched from main memory to load into the cache. If the selected
cache line is modified, the selected cache line is flushed out to the CY7C605A write buffer, and a new cache line is fetched from main memory and stored into the read buffer. The new cache line is then stored in the cache from the read buffer, while the modified cache line stored in the write buffer is written out to main memory.

Multiprocessing Support

The CY7C605A is specifically designed to support multiprocessing systems. The CY7C605A accomplishes this by providing features necessary to maintain cache coherency with a second-level memory system (typically main memory or a secondary cache) and other caching systems on the shared bus.
The CY7C605A supports two modes of caching: write-through and copy-back. Write-through caching mode modifies main memory with each write access to the cache. This avoids the issue of lack of coherency between the individual cache systems and main memory, but greatly increases memory bus traffic. The effect of this increased bus traffic is a degrading of the performance of a multiprocessor system as the processing nodes compete for memory bus bandwidth. This problem is greatly reduced when copy-back caching mode is used.
Copy-back mode holds all changes to a cache line until the line is flushed from the cache. This minimizes bus traffic to only those transactions necessary to maintain the cache. However, by allowing the cache line to be modified without updating main memory, a problem arises when other processing nodes require an up-todate copy of that memory location. The problem of modified cache lines is solved by the enforcement of a cache coherency protocol.

The CY7C605A implements a cache coherency protocol specified by the SPARC reference standard Mbus level-2 interface. This protocol is modeled after that used by the IEEE Futurebus. In this protocol, each cache line is described by one of five states: Invalid (I), Exclusive Clean (EC), Exclusive Modified (EM), Shared Clean (SC), and Shared Modified (SM). The following describes these five cache states:
Invalid (I): Cache line is not valid.
Exclusive Clean ($E C$): Only this cache module has a valid copy of this cache line, other than the next level of memory (main memory or secondary cache). No other cache module on the same level of memory has a valid copy of this cache line.
Exclusive Modified (EM): Only this cache module has a valid copy of this cache line. This cache module is the OWNER of the cache line, and has the responsibility to update the next level of memory (main memory or secondary cache) and also to supply data if any other cache references this memory location.
Shared Clean (SC): The same cache line may exist in more than one cache module. The next level of memory may or may not contain a valid copy of this cache line, depending upon whether this cache line has been modified in any other cache.

Shared Modified (SM): The same cache line may exist in more than one cache module, but this cache module is the OWNER of the cache line. The next level of memory does not have a valid copy of this cache line, and this cache module has the responsibility to update the next level of memory and to supply any other cache that may reference this same memory location.
These five states are described by three state bits (valid (V), shared (SH), and modified(M)) in each MPTAG cache tag entry. The PVTAG cache tag entries corresponding to the same cache lines have two state bits, valid (V) and shared (SH).
Under write-through cache mode, only the valid and invalid states apply to either the MPTAG or PVTAG cache tag entries. The shared and modified bits in the MPTAG are ignored by the CY7C605A when in write-through mode.

CY7C605A Registers

All values in all control registers are read/write (with the exception of the implementation and version fields of the SCR). Control registers are accessible by use of the alternate space load or store instructions with $\mathrm{ASI}=4$.

System Control Register (SCR)

The system control register, as shown in Figure 2, defines the operation modes for the cache controller and MMU. The following describes the functions of the bit fields in the SCR.
IMPL, VER - The implementation number (SCR(31:28)) and the version number (SCR(27:24)) fields are hardwired; they are read only fields and writes to those fields are ignored.

Implementation number field: 0001
Version number field: 1111
MID(3:0)-Module Identification number (SCR(18:15)) identifies the processor module during transactions on the Mbus. This fourbit module identification number is embedded in the Mbus address phase of all Mbus transactions initiated by the CY7C605A.
BM-Boot-mode bit (SCR(14)) indicates the system is in boot mode. This bit is set to 1 to indicate boot mode. This bit is automatically set upon power-on reset.
$\mathbf{C}-$ Cacheable bit (SCR(13)) indicates whether the access is cacheable or not when the MMU is disabled. This bit is set to 1 if accesses on the physical bus (with the MMU disabled) are to be considered cacheable.
MR-Memory Reflection (SCR(11)) indicates whether the main memory system on the Mbus supports memory reflection. MR affects the status of the MTAG cache tag bits.
CM-Cache-mode bit ($\operatorname{SCR}(10)$) indicates whether the cache is operating under write-through no write allocate policy or copy-back write allocate policy. This bit is set to 1 to enable copy-back cache mode. Setting this bit to 0 will enable write-through cache mode.

	IMPL	VER	RSV		MID(3:0)	BM	C	RSV	MR	CM	RSV	CE		RSV		NF	ME
31					8	14	13	12	11	10	9	8	7		2	1	0
	IMPL = Specific Implementation of the MMU MR = Memory Reflection																
	VER $=$ Version of Specific Implementation (typically mask revision) \quad CM $=$ Cache Mode																
	MID (3:0) = Module Identifier (3:0)						$C E=$ Cache Enable										
	BM = Boot Mode						NF $=$ No Fault										
	C = Cacheable (when MMU disabled)						ME = MMU Enable										

Figure 2. System Control Register (SCR)

CE-Cache-enable bit (SCR(8)) indicates whether the virtual cache is enabled or not. This bit is set to 1 to enable the cache controller.
NF-No-fault bit (SCR(1)) prevents supervisor data accesses from signaling data faults to the CY7C601A. When the NF bit is set, exception-generating logic (in both the TLB and the table walk) does not indicate supervisor data faults to the CY7C601A (via MEXC), but status and address information is recorded in the SFSR and SFAR registers as in normal data access operations. When the NF bit is not set, the CY7C605A reports the supervisor data exceptions.
ME-MMU-enable bit (SCR(0)) indicates whether the MMU is enabled or not. This bit is set to 1 to enable the MMU.
On power-on reset, all writeable control bits except the BM bit are cleared. This sets the CY7C605A into the following state: cache disabled $(\mathrm{CE}=0)$, write-through mode $(\mathrm{CM}=0)$, non-cacheable $(\mathrm{C}=0)$, boot-mode enabled ($\mathrm{BM}=1$), no fault disabled ($\mathrm{NF}=0$), and MMU disabled $(\mathrm{ME}=0)$.

Context Table Pointer Register (CTPR)

The context table pointer points to the context table in physical memory. The table is indexed by the contents of the context register. The context table pointer appears on bits 35 through 14 of the Mbus (MAD(35:14)) during the first fetch of TLB miss processing. Once the root pointer is cached in the PTPC (page table pointer cache), no fetching of the root pointer is required until the context is changed (see Figure 3).

Figure 3. Context Table Pointer Register

Context Register (CXR)

The context register defines a virtual address space associated with the current process. The CXR is a twelve-bit register that supports 4096 contexts. This register is used to define the current context for the CY7C605A. Nearly all CY7C605A operations are dependent upon matching the value of this register to a cache tag entry or TLB entry.

	RSV
31	CXN
CXN	$=$ Context Number
RSV	$=$ Reserved

Figure 4. Context Register

Reset Register (RR)

The RR register contains information regarding whether watch dog reset (WDR) or Software Internal Reset (SIR) occurred. This is a read/write register, and setting the software internal reset bit (SIR) or the software external reset (SER) causes the corresponding reset. Upon power-on reset, the WDR, SIR, and SER bits in the RR will be cleared. Reading the RR will also clear these bits.

Figure 5. Reset Register

Root Pointer Register (RPR)

The RPR is the context level table page table pointer (PTP) and is cached in the page table pointer cache.

Figure 6. Root Pointer Register

On power-on reset, the V bit is cleared. When the current context is changed by writing to the context pointer register (CXR), the V bit of the RPR is cleared. The V bit is also cleared when the CTPR register is written.

Instruction access PTP (IPTP)

The IPTP is the instruction access level 2 table page table pointer (PTP) and is part of the page table pointer cache. Upon power-on reset, the V bit is cleared.

Figure 7. Instruction Access PTP Register

Data access PTP (DPTP)

The DPTP is the data access level 2 table page table pointer (PTP) and is a register in the page table pointer cache. Upon power-on reset, the V bit is cleared.

Figure 8. Data Access PTP Register

Index Tag Register (ITR)

The ITR contains the tag (index1 and index2) fields of the IPTP and DPTP entries.

Figure 9. Index Tag Register

TLB Replacement Control Register (TRCR)

The TRCR contains the replacement counter (RC) and Initial Replacement Counter (IRC) fields as shown in Figure 10. These fields are used in order to support random replacement and to support locking capabilities of the TLB. On power-on reset, both the RC and IRC fields are initialized to zero.

Figure 10. TLB Replacement Control Register

Synchronous Fault Status Register (SFSR)

The synchronous fault status register, illustrated in Figure 11, contains fault-associated information for synchronous faults. Synchronous faults are faults that occur during an integer unit access of memory. Synchronous faults include almost all possible faults for the CY7C605A. This type of fault is synchronous to the operations of the CY7C601A. For the CY7C605A, this fault type covers all cases except those caused by delayed writes of data stored in the write buffers. These faults are asynchronous to the operation of the CY7C601A, and are named asynchronous faults.
An example of a synchronous fault is a privilege violation fault caused by attempting an unauthorized memory access. Upon encountering a synchronous fault, the CY7C605A asserts the $\overline{\text { MEXC }}$ signal, along with MHOLD and MDS. Synchronous faults are the only exception type that assert the MEXC signal.
The uncorrectable error (UE), timeout error (TO), and bus error bits (BE) report error status as encoded in the MERR, MRTY, and MRDY signals. (Refer to the section on Mbus for further information.) The level bits (L) describe the level in a table walk process at which the fault occurred (if applicable).

Figure 11. Synchronous Fault Status Register
The access type bits (AT(2:0)) describes the access type that caused the fault. This field specifies user/supervisor access and whether the access is load or store of data or instruction. The fault address valid bit is set when the address in the synchronous fault
address register (SFAR) is a valid fault address. The over-write bit (OW) is set in the case of a double fault where the fault status stored in the SFSR does not correspond with the fault first trapped on by the CY7C601A.

Synchronous Fault Address Register (SFAR)

The synchronous fault address register contains the faulted virtual address.

Figure 12. Synchronous Fault Address Register

Asynchronous Fault Status Register (AFSR)

Asynchronous faults are those faults caused by a delayed memory access initiated by the CY7C605A. This type of error can only be caused by a delayed write to main memory initiated by the write buffer. Asynchronous faults cause the CMER signal to be asserted, which can be used as an interrupt to the CY7C601A.
The UC, TO, and BE bits are identical to those in the SFSR. They are set by the information encoded into the MERR, MRTY, and MRDY signals of the Mbus. The asynchronous fault address bits provide the upper four bits of the physical address not captured in the asynchronous fault address register (AFAR), which is a thirty-two bit register.

Figure 13. Asynchronous Fault Status Register

The Asynchronous Fault Occurred bit (AFO) is set when an asynchronous fault is encountered. Once the Asynchronous Fault Occurred (AFO) bit is set, no further asynchronous faults are recorded until the AFO bit is cleared, which is accomplished by reading the asynchronous fault address register (see Figure 13). On power-on reset, the UC, TO, BE, and AFO bits in the AFSR will be cleared. Reading the AFSR will also clear these bits.

Asynchronous Fault Address Register (AFAR)

The AFAR contains bits $31-0$ of the physical address for asynchronous faults (bus errors). Asynchronous faults can occur during delayed write accesses or during background cache line flush operations in copy-back mode (see Figure 14). The address in the AFAR is concatenated with the four AFA bits in the AFSR to define the entire 36 -bit physical address.

AFA $=$ Asynchronous Fault Address
Figure 14. Asynchronous Fault Address Register

Figure 15. CY7C605A Pin Configuration

Pin Definitions

The functional pinout is shown in Figure 15. Note that all three-state output signals are driven to their inactive state before they are released to three-state.

		Virtual Bus Signals
Signal Name	I/O	Description

Virtual Bus Signals (continued)		
Signal Name	I/O	Description
ASI(5:0)	I	Address Space Identifiers. The ASI bits are used to: 1. Identify various types of accesses (user/ supervisor, instruction/data) 2. Access CY7C605A registers 3. Initiate MMU flush/probe operation 4. Identify cache flush operations 5. Recognize diagnostic operations 6. Recognize pass physical address space
D(31:0)	I/O	Virtual Data bus. Three-state input/output signals. $D(31: 0)$ are input signals during CY7C601A normal write accesses, modified cache-line reads from the cache RAM, CY7C605A register writes, or CY7C605A diagnostic accesses. They are output signals during cache line loads into cache RAM, CY7C605A register reads, or CY7C605A diagnostic accesses.
$\overline{\text { ERROR }}$	I	Error (active LOW) signal from the CY7C601. When this signal is asserted, it indicates the CY7C601A has halted due to entering the error state. The CY7C605A reads this signal and initiates a watch dog reset.
FNULL	I	Floating point unit NULLification cycle (active HIGH). When FNULL is active, the current access will be ignored.
INULL	I	Integer unit NULLification cycle (active HIGH). When INULL is active, the current access will be ignored.
$\overline{\mathrm{IOE}}$	I/O	Integer unit Output Enable (active LOW). Three-state input/output. This signal is connected to the $\overline{\mathrm{AOE}}$ and $\overline{\mathrm{DOE}}$ inputs of the CY7C601A. When asserted, the IOE will place the address $(\mathrm{A}(31: 0)$), address space identifiers (ASI(7:0)), and data ($\mathrm{D}(31: 0)$) drivers of the CY7C601A in a three-state condition.
$\overline{\text { IRST }}$	O	Integer unit Reset (active LOW) is asserted to reset integer unit. This signal is continually driven HIGH or LOW.
LDSTO	I	Load Store Atomic operation indicator (active HIGH). Asserted by the CY7C601A during atomic load store cycles and is sampled by the CY7C605A on the rising edge of the clock.

Virtual Bus Signals

| Signal
 Name | I/O | Description |
| :--- | :---: | :--- | | $\overline{\text { MDS }}$ | O | Memory Data Strobe (active LOW) is as-
 serted for one clock to strobe data into the
 CY7C601 during a cache miss. MHOLD
 must be LOW when MDS is asserted. It is
 driven off of the falling edge of the clock.
 This is a three-state output. |
| :--- | :---: | :--- |

$\overline{\text { MEXC }}$	O	Memory Exception (active LOW) is asserted for one clock whenever a privilege or protection violation is detected. MHOLD and $\overline{\text { MDS }}$ must be LOW when MEXC is asserted. This is a three-state output.
$\overline{\text { MHOLD }}$	O	Memory Hold (active LOW) is asserted by the CY7C605A whenever it requires additional time to complete the current access, such as during cache miss. It is driven off of the falling edge of the clock.
RD	I	Read cycle indicator (active HIGH). Asserted by the CY7C601A during read cycles and is sampled by the CY7C605A on the rising edge of the clock. This signal is also used to generate cache output enable ($\overline{\mathrm{CROE}}$).
SIZE(1:0)	I	SIZE of access indicator. Specifies the data width of the CY7C601A access and is sampled by the CY7C605A at the rising edge of the clock.
$\overline{\text { SNULL }}$	I	System NULLification cycle (active HIGH). When SNULL is active, the current access will be ignored.
$\overline{W E}$	I	Write Enable to indicate write cycle (active LOW). Asserted by the CY7C601A during write cycles and is sampled by the CY7C605A on the rising edge of the clock. This signal is also used to generate cache byte write enables (CBWE(3:0)).
$\overline{\text { VINT }}$	I/O	Virtual INTervention. Three-state input/output (active LOW). Used by the CY7C605A when in multichip mode to interrupt activity on the virtual bus for snooping.

Mbus Signals

Signal Name	I/O	Description

Mbus Signals (continued)			
Signal Name	1/O		Description
		MAD(39;36)	Transaction Type
		0 H	Mbus write
		1 H	Mbus read
		2 H	Coherent invalidate
		3 H	Coherent read
		4 H	Coherent write and invalidate
		5 H	Coherent read and invalidate
		6 - F H	Reserved

$\operatorname{MAD}(42 ; 40) \quad$ Transaction Size Byte (8 bits) Halfword (16 bits)

Word (32 bits)
Doubleword (64bits)
16 Bytes*
32 Bytes
64 Bytes*
128 Bytes*

* Not supported by the CY7C605A.

MAD(43) (MC) Mbus Cacheable (active HIGH). Indicates the current Mbus transaction is cacheable.

MAD(45) (MBL) Mbus Boot Mode/Local indicator. MBL is HIGH during the address phase of boot mode transactions. The instruction fetch and data accesses to the Mbus while the MMU is disabled in boot mode are considered BOOT MODE transactions. The data transactions on the Mbus required for load/store alternate instructions with ASI $=1$ are considered LOCAL transactions.

MAD(63:46) Reserved during address phase (driven HIGH).

During the data phase of the transaction the MAD (63:0) lines contain the 64 bits of data being transferred.
$\overline{\text { MAS }} \quad$ I/O Mbus Address Strobe (active IOW). Asserted by the bus master during the first cycle of every bus transaction to indicate the address phase of that transaction. This signal is bidirectional on the CY7C605A.

I/O Mbus Bus Busy (active LOW) asserted by the current Mbus master during an entire transaction and, if required, during both the read and write transactions of indivisible accesses. The potential bus master devices sample MBB in order to obtain bus mastership as soon as the current master releases the bus. This is a three-state output.

	Mbus Signals (continued)	
Signal Name	I/O	Description
$\overline{\text { MBG }}$	I	Mbus Bus Grant (active LOW). Asserted by external arbiter when the Mbus is granted to a master. This signal is continually driven.
$\overline{\text { MBR }}$	O	Mbus Bus Request (active LOW). Asserted by potential Mbus master devices to acquire bus mastership. This signal is continually driven.

$\overline{\text { MERR }}$ I Mbus Error (active LOW). Asserted or deasserted by an Mbus slave during every data phase of a transaction. This signal is to be three-stated when released.
$\overline{\mathrm{MIH}}$
I/O Memory INhibit (active LOW). Asserted by the CY7C605A for Mbus transactions where the cache owns the data that has been requested on the Mbus. This signal is monitored during bus snooping by the CY7C605A.
$\overline{\text { MRDY }} \quad$ I/O Mbus Ready (active LOW). Asserted or deasserted by an Mbus slave during every data phase of a transaction. This signal is asserted by the CY7C605A during direct data intervention operations This signal is to be three-stated when released.

I Mbus Retry (active LOW). Asserted or deasserted by an Mbus slave during every data phase of a transaction. This signal is to be three-stated when released.

MERR	MRDX	$\overline{\text { MRTX }}$	
H	Action		
H	H	H	Nothing Relinquish
and Retry			

I/O Memory SHared (active LOW). Asserted by the CY7C605A after detecting a data request on the Mbus for which the CY7C605A has a copy. This signal is monitored by the CY7C605A during bus snooping.
I Power-On Reset (active LOW). The $\overline{\text { POR }}$ initializes all on-chip logic to a known state, invalidates all the TLB entries, and all cache tag entries. It must be asserted for a minimum of 8 clocks. It also causes the CY7C605A to assert IRST to reset the CY7C601A.

Cache RAM Signals

Signal Name	I/O	Description
$\begin{aligned} & \hline \overline{\text { CBWE }} \\ & (3: 0) \end{aligned}$	0	Cache Byte Write Enables (active LOW). During normal write operations, certain byte enable signals are asserted depending upon the size and $\mathbf{A}(1: 0)$ inputs. During a cache line load all four byte enable signals are asserted. These signals can also be driven by using a store alternate instruction with ASI $=$ FH. This feature is supported for diagnostic purposes. This output is continually driven (not three-stated). CBWE0 controls the most significant byte (MSB) and CBWE3 controls the least significant byte (LSB).
$\overline{\text { CROE }}$	0	Cache RAM Output Enable (active LOW). Asserted during normal read operations with ASI $=8,9, \mathrm{~A}, \mathrm{~B}$ and during modified cache line read operations. This signal is also asserted during cache data read operations with ASI $=\mathrm{F}$ for diagnostic purposes. This signal is continually driven.

Miscellaneous Signals		
Signal Name	1/O	Description
CLK	I	System Clock. This is the same clock used by the 7C601 integer unit.
$\overline{\text { CSEL }}$	I	Chip Select (active LOW). In multi-CMU systems, CSEL on each CY7C604A is connected to different address lines (any one from $\mathrm{A}(31: 16)$) to initialize the Multichip Configuration. In single-CMU systems, CSEL should be connected to ground in order to permanently enable the CY7C604A. In multi-CMU systems, CSEL should be connected to ground or V_{Cc} through a resistor during power-on reset. This is required in order to enalbe only one boot mode CMU.
$\overline{\text { TOE }}$	I	Test Output Enable (active LOW). This signal is used (when high) to three-state all output drivers of the CY7C605A. TOE SHOULD BE TIED LOW DURING NORMAL OPERATION. It is used to isolate the CY7C605A from the rest of the system for debugging purposes.

Document \#: 38-R-10006-A

32-Bit RISC Controller

Features

- SPARC ${ }^{\circledR}$ processor optimized for embedded control applications
- Reduced Instruction Set Computer (RISC) architecture
- Simple format instructions
- Most instructions execute in a single cycle
- Very high performance
- 40-ns instruction cycle with 4-stage pipeline
-18 sustained MIPS at 25 MHz
- 240 -ns worst-case interrupt response
- 136 32-bit registers
- Eight overlapping windows of 24 registers each
- Dividing registers into seperate register banks allows fast context switching
-8 global registers
- Hardware pipeline interlocks
- 16 prioritized interrupts levels
- Large address space
- 24-bit address space
- 3-bit address space indentifier
- Multitasking support
- User/supervisor modes
- Privileged instructions
- Artificial intelligence support
- Multiprocessing support
- High-performance floating-point processor interface
- Concurrent execution of float-ing-point instructions
- 0.8-micron 2-layer metal CMOS technology
- 160-pin quad flat package
- Power
-3 watts maximum

Logic Block Diagram

Selection Guide

CY7C611A-25			
Maximum Operating Current (mA)	Commercial	600	

SPARC is a registered trademark of SPARC International, Inc.

Overview

The CY7C611A controller is a high-speed CMOS implementation of the SPARC 32-bit RISC architecture processor optimized for embedded control applications. RISC architecture makes possible the creation of a processor which can execute instructions at a rate of one instruction per processor clock. The CY7C611A supports a tightly-coupled floating-point coprocessor capable of executing at a rate of $4-5$ MFLOPS. The CY7C611A SPARC controller provides the following features:
Simple instruction format. All instructions are 32 bits wide and aligned on 32-bit boundaries in memory. Three basic instruction formats feature uniform placement of opcode and address fields.
Register intensive architecture. Most instructions operate on either two registers or one register and a constant, and place the result in a third register. Only load and store instructions access off-chip memory.
Large windowed register file. The processor has 136 on-chip 32-bit general purpose registers. Eight of these are global registers. The remaining 128 registers can be configured as four separate non-overlapping register banks or as eight overlapping sets of 24 registers each. The first configuration allows for extremely fast context switch times and the second provides for very low overhead procedure calls. The actual configuration and use of the registers is determined by the user's application.
Delayed control transfer. The processor always fetches the next instruction after a control transfer, and either executes it or annuls it depending on the state of a bit in the control transfer instruction. This feature allows compilers to rearrange code to place a useful instruction after a delayed control transfer and thereby take better advantage of the processor pipeline.
Concurrent floating point. Floating-point instructions can execute concurrently with each other and with non-floating-point instructions.

Fast interrupt response. Interrupt inputs are sampled on every clock cycle and can be acknowledged in one to three cycles. The first instruction of an interrupt service routine can be executed within six to eight cycles of receiving the interrupt request.

The 7C600 Family

The SPARC processor family consists of the CY7C601A and CY7C611A integer units and the CY7C602A floating-point unit. The CY7C601A and CY7C611A integer units are a high-speed implementation of the SPARC architecture, and are binary compatible with all SPARC processors. The CY7C602A is a high-performance floating-point unit that allows floating-point instructions to execute concurrently with the CY7C601A or the CY7C611A.
The CY7C611A is designed for embedded control and application specific systems. The CY7C611A communicates with external memory via a 24 -bit address bus and a 32 -bit data/instruction bus. In many dedicated controller applications, the CY7C611A can function by itself with high-speed local memory. The CY7C611A retains the signals supplied on the CY7C601A for discrete implementations of cache systems. The CY7C157A cache storage unit can be used with the CY7C611A to provide a zero wait-state memory system with no glue logic. The CY7C289 registered PROM provides a zero wait-state PROM memory for most accesses and requires no glue logic for interfacing to the CY7C611A.

Floating-Point Coprocessor Interface

The CY7C611A is the basic processing engine which executes all of the instruction set except for floating-point operations. The CY7C602A and CY7C611A operate concurrently. The CY7C602A recognizes floating-point instructions and places them in a queue while the CY7C611A continues to execute non-floating point instructions. If the CY7C602A encounters an instruction which will not fit in its queue, the CY7C602A holds the CY7C611A until the instruction can be stored. The CY7C602A contains its own set of registers on which it operates. The contents of these registers are transferred to and from external memory under control of the CY7C611A via floating-point load/store instructions. Processor interlock hardware hides floating-point concurrency from the compiler or assembly language programmer. A program containing floating-point computations generates the same results as if instructions were executed sequentially.

Multitasking Support

The CY7C611A supports a multitasking operating system by providing user and supervisor modes. Some instructions are privileged and can only be executed while the processor is in supervisor mode. Changing from user to supervisor mode requires taking a hardware interrupt or executing a trap instruction.

Interrupts and Traps

The CY7C611A supports both asynchronous traps (interrupts) and synchronous traps (error conditions and trap instructions). The occurrence of a trap causes the CY7C611A to fetch the beginning address of the trap routine from a trap table. The base address of the trap table is specified by a trap base register and the offset is a function of the trap type. After fetching the trap routine address, program control jumps to the trap routine. Traps are taken before the current instruction is executed and can therefore be considered to occur between instructions.

Registers

The following sections provide an overview of the CY7C611A registers. The CY7C611A has two types of registers; working registers (r registers), and control registers. The r registers provide storage for processes, and the control registers keep track of and control the state of the CY7C611A.
Special \mathbf{r} Registers. The utilization of four r registers is partially fixed by the instruction set. Global register $\mathrm{r}[0]$ is dummy register; it returns the value " 0 " when it is used as a source register, and it is not modified when used as a destination register. This feature makes the most common value easily available and eliminates the need for a clear register instruction. Another r register fixed by the instruction set is r[15]. Upon executing a CALL instruction, the address of the CALL instruction is written into r[15]. Upon entering a trap routine, registers $\mathrm{r}[17]$ and $\mathrm{r}[18]$ contain the PC and nPC .
r Register Addressing. r registers r8 through r31 are addressed internally using the register number and current window pointer (CWP) field of the processor status register (PSR; see next section). The CWP is essentially an index field for r register addressing, and acts as a pointer to a group of 24 registers. Figure 1 illustrates r register addressing using the CWP. Incrementing or decrementing the CWP changes the register offset by 16 , thereby causing the

Figure 1. CWP register addressing

Registers (continued)

register addressing to overlap by eight registers. This allows r24 through r31 of the current window to act as r 8 through r 15 of the previous window. Registers r0 through r7 do not use the CWP to address them, therefore they are global in nature.

The window invalid mask register (WIM) is used to disallow selected CWP values. Each bit of the least significant byte of the WIM register corresponds to a register window or CWP value. Incrementing or decrementing the CWP to a window invalidated by the WIM register causes the CY7C611A to cause a window underflow or window overflow trap. This is used in a register window environment to set the boundaries for software. The WIM register can also be used to set boundaries for register banks in a bank switching environment.

CY7C611A Control Registers. The CY7C611A's control registers contain various addresses and pointers used by the system to control its internal state. They include the program counters (PC and nPC), the processor state register (PSR), the window invalid mask register (WIM), the trap base register (TBR), and the Y register. The following paragraphs briefly describe each:

Processor Status Register (PSR). The processor status register contains fields that describe and control the state of the CY7C611A. Figure 2 illustrates the bit assignments for the PSR.
IU Implementation and IU Version Numbers. These are read-only fields in the PSR. The version number is set to "0001" and the implementation number is set to binary " 0011 ".

Integer Condition Codes. The integer condition codes consist of four flags: negative, zero, overflow, and carry. These flags are set by the conditions occurring during integer logic and arithmetic operations.
Enable Floating-Point Unit (EF bit). This bit is used to enable the floating-point unit. If a floating-point operation (FPop) is encountered and the EF bit is cleared (i.e., FPU disabled), a floating-point disabled trap is generated.

Processor Interrupt Level (PIL). This four bit field sets the CY7C611A interrupt level. The CY7C611A will only acknowledge interrupts greater than the level indicated by the PIL field. Bit 11 is the MSB; bit 8 is the LSB.

Supervisor Mode (S). $\quad S=1$ indicates that the CY7C611A is in supervisor mode. Supervisor mode can only be entered by a software or hardware trap.
Previous Supervisor Mode (PS). This bit indicates the state of the supervisor bit before the most recent trap.
Trap Enable (ET). This bit enables or disables the CY7C611A traps. This bit is automatically set to 0 (traps disabled) upon entering a trap. When $\mathrm{ET}=0$, all asynchronous traps are ignored. If a synchronous trap occurs when $\mathrm{ET}=0$, the CY7C611A enters error mode.

Current Window Pointer (CWP). The r registers are addressed by the Current Window Pointer (CWP), a field of the Processor Status Register (PSR) that points to the 24 active local registers. It is
incremented by a RESTORE instruction and decremented by a SAVE instruction. Note that the globals are always accessible regardless of the CWP. In the overlapping configuration each window shares its ins and outs with adjacent windows. The outs from a previous window (CWP +1) are the ins of the current window, and the outs from the current window are the ins for the next window (CWP -1). In both the windowed and register bank configurations globals are equally available and the locals are unique to each window.

Figure 2. Processor State Register

Program Counters (PC and nPC). The program counter (PC) holds the address of the instruction being executed, and the next program counter (nPC) holds the address of the next instruction to be executed.

Trap Base Register (TBR). The trap base register contains the base address of the trap table and a field that provides a pointer into the trap table.

Reserved	Trap Base Address	Trap Type (t)	Reservec
9	11	8	4
$31 \quad 23$	22	1	30

Figure 3. Trap Base Register

Window Invalid Mask Register (WIM). The window invalid mask register determines which windows are valid and which window accesses cause window_overflow and window_underflow traps.

Figure 4. Window Invalid Mask

Y register. The Y register is used to hold the partial product during execution of the multiply-step instruction (MULSCC).

Pin Description

The integer unit's external signals fall into three categories:

1. memory subsystem interface signals,
2. floating-point unit interface signals, and
3. miscellaneous I/O signals.

These are described in the following sections. Paragraphs after the tables describe each signal. Signals that are active LOW are marked with an overbar; all others are active HIGH. For example, $\overline{\mathrm{WE}}$ is active LOW, while RD is active HIGH.

Memory Subsystem Interface Signals

The memory interface signals consist of 27 bit of address (24 bits of address and a three-bit address space identifier), 32 bits of bidirectional data lines, and two bits to identify the size (byte, halfword, word, or double word) of data bus transactions.

A[23:0]-These 24 bits are the addresses of instructions or data and they are sent out "unlatched" by the CY7C611A. Assertion of the MAO signal during a cache miss will force the integer unit to put the previous (missed) address on the address bus. $\mathrm{A}[23: 0$] pins are three-stated if the TOE signal is deasserted.
ASI[2:0]-These three bits are the address space identifier for an instruction or data access to the memory. ASI[2:0] are sent out "unlatched" by the integer unit. The value on these pins during any given cycle is the address space identifier corresponding to the memory address on the $\mathrm{A}[23: 0]$ pins at that cycle. Assertion of the MAO signal during a cache miss will force the integer unit to put the previous address space identifier on the ASI[2:0] pins. ASI[2:0] pins are tri-stated if the TOE signal is deasserted. Normally, the encoding of the ASI bits is as shown in Table 1. The remaining codes are software generated.

Table 1. ASI Bit Assignment

Address Space Identifier (ASI)	Address Space
000	User Instruction
010	User Data
001	Supervisor Instruction
011	Supervisor Data

$\mathrm{D}[31: 0]-\mathrm{D}[31: 0]$ is the bidirectional data bus to and from the integer unit. The data bus is driven by the integer unit during the execution of integer store instructions and the store cycle of atomic load/store instructions. Similarly, the data bus is driven by the floating-point unit only during the execution of floating-point store instructions. The store data is sent out unlatched and must be latched externally before it is used. Once latched, store data is valid during the second data cycle of a store single access, the second and third data cycle of a store double access, and the third data cycle of an atomic load store access. The alignment for load and store instructions is done inside the processor. A double word is aligned on an eight-byte boundary, a word is aligned on a four-byte boundary, and a half word is aligned on a two-byte boundary. $\mathrm{D}(31)$ corresponds to the most significant bit of the least significant byte of the 32 -bit word. If a double-word, word, or half-

Memory Subsystem Interface Signals (continued)

word load or store instruction generates an improperly aligned address, a memory address not aligned trap will occur. Instructions and operands are always expected to be fetched from a 32 -bit wide memory.
SIZE[1:0]. These two bits specify the data size associated with a data or instruction fetch. Size bits are sent out "unlatched" by the CY7C611A. The value on these pins at any given cycle is the data size corresponding to the memory address on the A[23:0] pins in that cycle. SIZE[1:0] remains valid on the bus during all data cycles of loads, stores, load_doubles, store_doubles and atomic load stores. Since all instructions are 32 -bits long, SIZE[1:0] is set to " 10 " during all instruction fetch cycles. Encoding of the SIZE[1:0] bits is shown in Table 2.

Table 2. Size Bit Assignment

SIZE1	SIZE0	Data Transfer Type
0	0	Byte
0	1	Halfword
1	0	Word
1	1	Word (Load/Store Double)

$\overline{\text { MHOLDA }}$ or MHOLDB. The processor pipeline will be frozen while MHOLDA is asserted and the CY7C611A outputs will revert to and maintain the value they had at the rising edge of the clock in the cycle before MHOLDA was asserted. MHOLDA is used to freeze the clock to both the integer and floating-point units during a cache miss (for systems with cache) or when a slow memory is accessed. This signal must be presented to the processor chip at the beginning of each processor clock cycle and be stable during the high time of the processor clock. Either $\overline{M H O L D A}$ or MHOLDB can be used for stopping the processor during a cache miss or memory exception. MHOLDB has the same definition as MHOLDA. The processor hardware uses the logical "OR" of all hold signals (i.e., MHOLDA, MHOLDB, and $\overline{\text { BHOLD }}$) to generate a final hold signal for freezing the processor pipeline. All HOLD signals are latched (transparent latch) in the CY7C611A before they are used.
$\overline{\text { BHOLD }} \overline{\text { BHOLD }}$ is asserted by the I/O controller when an external bus master requests the data bus. Assertion of this signal will freeze the processor pipeline. External logic should guarantee that after deassertion of BHOLD, the data at all inputs to the chip is the same as what it was before BHOLD was asserted. This signal must be presented to the processor chip at the beginning of each processor clock cycle and be stable during the high time of the processor clock since the CY7C611A processes the BHOLD input through a transparent latch before it is used. BHOLD should be used only for bus access requests by an external device since the $\overline{M D S}$ and MEXC signals are not recognized while this input is active. $\overline{\text { BHOLD }}$ should not be deasserted while LOCK is asserted.
$\overline{\text { MDS }}$. Assertion of this signal will enable the clock input to the on-chip instruction register (during an instruction fetch) or to the load result register (during a data fetch). In a system with cache, $\overline{\text { MDS }}$ is used to signal the processor when the missed data (cache miss) is ready on the bus. In a system with slow memories, $\overline{\text { MDS }}$ is used to signal the processor when the read data is available on
the bus. $\overline{\text { MDS }}$ must be asserted only while the processor is frozen by either the MHOLDA or MHOLDB input signals. The CY7C611A samples the MDS signal via an on-chip transparent latch before it is used. The MDS signal is also used for strobing memory exceptions. In other words, $\overline{\text { MDS }}$ should be asserted whenever MEXC is asserted (see MEXC definition).
$\overline{\text { MEXC. }}$ This signal is asserted by the memory (or cache) controller to initiate an instruction (or data) exception trap. MEXC is latched in the processor at the rising edge of CLK and is used in the following cycle. If MEXC is asserted during an instruction fetch cycle, an instruction access exception is generated, and if MEXC is asserted during a data fetch cycle, a data access exception trap is generated. The MEXC signal is used during (MHOLD) in conjunction with the MDS signal to indicate to the CY7C611A that the memory system was unable to supply valid instruction or data. If MDS is applied without MEXC, the CY7C611A accepts the contents of the data bus as valid information, but when $\overline{\text { MDS }}$ is applied with $\overline{\text { MEXC }}$ an exception trap is generated and the contents of the data bus is ignored by the CY7C611A. (In other words, MHOLD and MDS must be low when MEXC is asserted.) MEXC must be deasserted in the same clock cycle in which $\overline{M H O L D}$ is released.

RD. This signal specifies whether the current memory access is a read or write operation. It is sent out "unlatched" by the integer unit and must be latched externally before it is used. RD is set to " 0 " only during address cycles of store instructions including the store cycles of atomic load store instructions. This signal, when used in conjunction with SIZE[1:0] and LDSTO, can be used to check access rights of bus transactions. In addition, the RD signal may be used to turn off the output drivers of data RAMs during a store operation. For atomic load store instructions the RD signal is " 1 " during the first address cycle (read cycle), and " 0 " during the second and third address cycles (write cycle).
$\overline{\mathbf{W E}}$. This signal is asserted by the integer unit during the second address cycle of store single instructions, the second and third address cycles of store double instructions, and the the third data cycle of atomic load/store instructions. The $\overline{\mathrm{WE}}$ signal is sent out "unlatched" and must be latched externally before it is used. The WE signal may be externally qualified by HOLD signals (i.e., $\overline{\text { MHOLDA }}$ and MHOLDB) to avoid writing into the memory during memory exceptions.
WRT. This signal is asserted (set to " 1 ") by the processor during the first address cycle of single or double integer store instructions, the first data cycle of single or double floating-point store instructions, and the second data cycle of atomic load/store instructions. WRT is sent out "unlatched" and must be latched externally before it is used.
LDSTO. This signal is asserted by the integer unit during the data cycles of atomic load store operations. LDSTO is sent out "unlatched" by the integer unit and must be latched externally before it is used.
LOCK. This signal is set to " 1 " when the processor needs the bus for multiple cycle transactions such as atomic load/store, double loads and double stores. The LOCK signal is sent "unlatched" and should be latched externally before it is used. The bus may not be granted to another bus master as long as the LOCK signal is asserted (i.e., BHOLD should not be asserted in the following processor clock cycle when $\operatorname{LOCK}=1$).
INULL. Assertion of INULL indicates that the current memory

Memory Subsystem Interface Signals (continued)

access (whose address is held in an external latch) is to be nullifiedby the processor. INULL is intended to be used to disable cachemisses (in systems with cache) and to disable memory exception generation for the current memory access (i.e., MDS and MEXC should not be asserted for a memory access when INULL=1). INULL is a latched output and is active during the same cycle as the address which it nullifies. INULL is asserted under the following conditions: During the second cycle of a store instruction, or whenever the CY7C611A address is invalid due to an external or internal exception. If a floating-point unit or coprocessor unit is present in the system INULL should be ORed with the FNULL and CNULL signals from these units.

Floating-Point Interface Signals

The floating-point/coprocessor unit interface is a dedicated group of connections between the CY7C611A and the CY7C602A. Note that no external circuits are required between the CY7C611A and the CY7C602A; all traces should connect directly. The interface consists of the following signals:
$\overline{\mathbf{F P}}$. This signal indicates whether or not a floating-point unit exists in the system. The $\overline{\mathrm{FP}}$ signal is normally pulled up to VDD by a resistor. It is grounded when the CY7C602A chip is present. The integer unit generates a floating-point disable trap if $\overline{\mathrm{FP}}=1$ during the execution of a floating-point instruction, FBfcc instruction or floating-point load and store instructions.

FCC[1:0]. These bits are taken as the current condition code bits of the CY7C602A. They are considered valid if $\mathrm{FCCV}=1$. During the execution of the FBfcc instruction, the processor uses these bits to determine whether the branch should be taken or not. FCC[1:0] are latched by the processor before they are used.
FCCV. This signal should be asserted only when the FCC[1:0] bits are valid. The floating-point unit deasserts FCCV if pending floating-point compare instructions exist in the floating-point queue. FCCV is reasserted when the compare instruction is completed and the floating-point condition codes FCC[1:0] are valid. The integer unit will enter a wait state if FCCV is deasserted (i.e., FCCV = " 0 "). The FCCV signal is latched (transparent latch) in the CY7C611A before it is used.
FHOLD. This signal is asserted by the floating-point unit if a situation arises in which the CY7C602A cannot continue execution. The floating-point unit checks all dependencies in the Decode stage of the instruction and asserts FHOLD (if necessary) in the next cycle. This signal is used by the integer unit to freeze the instruction pipeline in the same cycle. The CY7C602A must eventually deassert $\overline{\text { FHOLD }}$ in order to unfreeze the integer unit's pipeline. The FHOLD signal is latched (transparent latch) in the CY7C611A before it is used.
FEXC. Assertion of this signal indicates that a floating-point exception has occurred. FEXC must remain asserted until the integer unit takes the trap and acknowledges the CY7C602A via FXACK signal. Floating-point exceptions are taken only during the execution of floating-point instructions, FBfcc instruction and floating-point load and store instructions. FEXC is latched in the integer unit before it is used. The CY7C602A should deassert $\overline{\mathrm{FHOLD}}$ if it detects an exception while $\overline{\mathrm{FHOLD}}$ is asserted. In this case $\overline{\text { FEXC }}$ should be asserted a cycle before $\overline{\text { FHOLD }}$ is deasserted.

INST. This signal is asserted by the integer unit whenever a new instruction is being fetched. It is used by the CY7C602A to latch the instruction on the $\mathrm{D}[31: 0]$ bus into the CY7C602A instruction buffer. The CY7C602A needs two instruction buffers (D1 and D2) to save the last two fetched instructions. When INST is asserted a new instruction enters into the D1 buffer and the old instruction in D1 enters into the D2 buffer.
FLUSH. This signal is asserted by the integer unit and is used by the CY7C602A to flush the instructions in its instruction registers. This may happen when a trap is taken by the integer unit. Instructions that have entered into the floating-point queue may continue their execution if FLUSH is raised as a result of a trap or exception other than floating-point exceptions.
FINS1. This signal is asserted by the integer init during the decode stage of a CY7C602A instruction if the instruction is in the D1 buffer of the CY7C602A chip. The CY7C602A uses this signal to latch the instruction in D1 buffer into its execute stage instruction register.
FINS2-This signal is asserted by the integer unit during the decode stage of a CY7C602A instruction if the instruction is in the D2 buffer of the CY7C602A chip. The CY7C602A uses this signal to latch the instruction in D2 buffer into its execute stage instruction register.
FXACK-This signal is asserted by the integer unit in order to acknowledge to the CY7C602A that the current FEXC trap is taken. The CY7C602A must deassert FEXC after it receives an asserted level of FXACK signal so that the next floating-point instruction does not cause a "repeated" floating-point exception trap.

Miscellaneous I/O Signals

These signals are used by the CY7C611A to control external events or to receive input from external events. This interface consists of the following signals:
IRL[3:0]. The data on these pins defines the external interrupt level. IRL[3:0] $=0000$ indicates that no external interrupts are pending. The integer unit uses two on-chip synchronizing latches to sample these signals on the rising edge of CLK. A given interrupt level must remain valid for at least two consecutive cycles to be recognized by the integer unit. IRL[3:0] = 1111 signifies an non-maskable interrupt. All other interrupt levels are maskable by the PIL field of the Processor State Register (PSR). External interrupts should be latched and prioritized by the external logic before they are passed to the integer unit. The external interrupt latches should keep the interrupts pending until they are taken (and acknowledged) by the integer unit. External interrupts can be acknowledged by software or by the Interrupt Acknowledge (INTACK) output.
INTACK-This signal is asserted by the integer unit when an external interrupt is taken.
RESET-Assertion of this pin will reset the integer unit. The RESET signal must be asserted for a minimum of eight processor clock cycles. After a reset, the integer unit will start fetching from address 0 . The RESET signal is latched by the integer unit before it is used.
$\overline{\text { ERROR }}$-This signal is asserted by the integer unit when a trap is encountered while traps are disabled via the ET bit in the PSR.

Miscellaneous I/O Signals (continued)

In this situation the integer unit saves the PC and nPC registers, sets the tt value in the TBR, enters into an error state, asserts the ERROR signal and then halts. The only way to restart the processor trapped in the error state, is to trigger a reset by asserting the RESET signal.
$\overline{\text { TOE }}$-This signal is used to force all output drivers of the processor chip into a high-impedance state. It is used to isolate the chip from the rest of the system for debugging purposes. This pin should be tied LOW for normal operation.
FPSYN - This pin is a mode pin which is used to allow execution of additional instructions in future designs. It should be normally kept deasserted ($\mathrm{FPSYN}=0$) to disable the execution of these instructions.

Document \#: 38-R-10003-A

CLK-CLK is a 50% duty-cycle clock used for clocking the CY7C611A's pipeline registers. It is HIGH during the first half of the processor cycle, and LOW during the second half. The rising edge of CLK defines the beginning of each pipeline stage in the CY7C611A chip.
PRODUCTINFORMATION
STATIC RAMS 2
PROMS 3
EPLDS 4
FIFOS 5
LOGIC 6
RISC 7
MODULES 8
ECL 9
BUS INTERFACE PRODUCTS 10
MILITARY 11DEsign and12
PROGRAMMING TOOLSQUALITY AND13RELIABILITY
PACKAGES 14 Section Contents

Modules

Page Number

Custom Module Capabilities 8-1
Device Number Description
CYM1240
$256 \mathrm{~K} \times 4$ Static RAM Module 8-5
$128 \mathrm{~K} \times 8$ Static RAM Module 8-10
$128 \mathrm{~K} \times 8$ Static RAM Module 8-15
$128 \mathrm{~K} \times 8$ Static RAM Module 8-20
$256 \mathrm{~K} \times 8$ Static RAM Module 8-25
512K x 8 Static RAM Module 8-30
$512 \mathrm{~K} \times 8$ Static RAM Module 8-35
$512 \mathrm{~K} \times 8$ Static RAM Module 8-41
$512 \mathrm{~K} \times 8$ Static RAM Module 8-46
512 K x 8 Static RAM Module 8-51
$1024 \mathrm{~K} \times 8$ Static RAM Module 8-58
2048K x 8 Static RAM Module 8-58
256K x 9 Buffered Static RAM Module with Separate I/O 8-64
1024K x 9 Buffered Static RAM Module with Separate I/O 8-69
$16 \mathrm{~K} \times 16$ Static RAM Module 8-74
$16 \mathrm{~K} \times 16$ Static RAM Module 8-81
$64 \mathrm{~K} \times 16$ Static RAM Module 8-87
$64 \mathrm{~K} \times 16$ Static RAM Module 8-92
$64 \mathrm{~K} \times 16$ Static RAM Module 8-98
$64 \mathrm{~K} \times 16$ Static RAM Module 8-103
256K x 16 Static RAM Module 8-108
$32 \mathrm{~K} \times 24$ Static RAM Module 8-113
$16 \mathrm{~K} \times 32$ Static RAM Module 8-118
$16 \mathrm{~K} \times 32$ Static RAM Module with Separate I/O 8-125
$32 \mathrm{~K} \times 32$ Static RAM Module 8-132
$64 \mathrm{~K} \times 32$ Static RAM Module 8-138
$64 \mathrm{~K} \times 32$ Static RAM Module 8-143
$64 \mathrm{~K} \times 32$ Static RAM Module 8-148
$128 \mathrm{~K} \times 32$ Static RAM Module 8-153
256K X 32 Static RAM Module 8-154
$256 \mathrm{~K} \times 32$ Static RAM Module 8-159
16 K x 68 Static RAM Module 8-164
16 K x 68 Static RAM Module 8-170
Cascadeable 8K x 9 FIFO 8-177
Cascadeable 16 K x 9 FIFO 8-177
$64 \mathrm{~K} \times 9$ FIFO 8-186
$64 \mathrm{~K} \times 4$ Static RAM Module 8-192
32K x 8 Static RAM Module 8-197

Custom Module Capabilities

Introduction

Cypress's Multichip Products group is a leading supplier of custom memory and/or logic modules. This turnkey capability provides designers with a fast, low-risk solution for when they require the ultimate in system performance and density. Detailed information on standard modules can be found in the Static RAM, FIFO, and Module sections of this book.

Packaging Guidelines

High-density memory modules are now available in a wide variety of package styles that satisfy a variety of needs for high-performance system design. Since board space is a primary concern, the choice of a package style is important in meeting layout constraints as well as thermal and mechanical design objectives.
Multichip Products currently supports several commonly used module technologies including plastic components on FR4 or polyimide substrate, and ceramic components mounted on ceramic substrates. Advanced technologies suitable for the demands of higher integration components are also available.
The plastic technology employs plastic encapsulated, surfacemount components and an epoxy laminate (FR4 or polyimide) substrate. The plastic components can be SOJ, SOIC, VSOP, TSOP, QFP, or other surface-mount packages. Die can also be mounted directly to the substrate and wire bonded to the substrate.
The ceramic technology employs hermetic, ceramic-packaged devices mounted on a ceramic substrate. The components are typically leadless chip carriers, but may include other package types. The ceramic substrate has a custom interconnect for the particular components it carries. The ceramic substrate and components offer improved thermal characteristics over the plastic modules. This makes these modules suitable for extended temperature range operation, such as in military applications.

Common Packaging Options

This section describes several common module packaging options available from Cypress. A summary table (Table 1) compares relative board areas of each option based on a module with eight 28 -pin components.

SIP

The single in-line pin package, or SIP, is a vertically mounted module with a single row of pins along one edge for through-hole mounting. The SIP configuration is typically constructed with plas-tic-encapsulated components mounted on an FR4 or polyimide substrate, although ceramic SIPs are also used. The pins are on a $100-\mathrm{mil}$ pitch. The vertical orientation and the mounting of com-
ponents on both sides of the module can increase the component density by a factor of four or more.

Flat SIP

The flat single in-line pin package, or FSIP, is virtually identical to the SIP except that the substrate is mounted in the horizontal rather than the vertical direction. When mounted to a circuit board, the flat SIP lies close and parallel to the board. Flat SIP modules save board area since they, like other modules, employ fine lead pitch surface-mount components on a high-density substrate. The flat SIP density approximates double-sided surface-mounted boards with the advantage of a very low profile and improved mechanical stability over the vertical SIP.

ZIP

The zigzag in-line pin package, or ZIP, is vertically mounted and is usually built with plastic encapsulated components on an FR4 or polyimide substrate. The ZIP module has pins along both sides of the substrate and the pins on alternate sides are staggered by 50 mils. Adjacent pins on the same side of the substrate are separated by 100 mils. The dual row of staggered pins allows a higher connection density than that of the SIP while maintaining $100-\mathrm{mil}$ minimum spacing between any adjacent pins. The ZIP is especially useful in large pin count devices where the host board is designed with through-hole design rules.

SIMM

The single in-line memory module, or SIMM, is similar to the ZIP except that there are no pins for through-hole mounting. Instead, the bottom edge of the module is equipped with edge connector contacts that are plated to the substrate. The SIMM is designed to plug into motherboard sockets. The contacts are on both sides of the substrate, and contacts directly opposite each other are connected together. SIMM edge connector contacts are on a $50-\mathrm{mil}$ or $100-\mathrm{mil}$ pitch. SIMMs allow greater system functionality and flexibility by allowing easy use of multiple densities and speed grades.
Some module devices are available in both ZIP and SIMM packages with the same form factor. The pin out is designed so that the pinout and footprint of the SIMM socket matches the footprint of the ZIP module allowing ZIPs or SIMMs to be used interchangeably with only one board layout. The SIMM may be used in prototyping to test different speed versions of a system and then replaced with a companion ZIP for production, or SIMMs may be used in production for flexibility in memory size or memory speed.

VDIP

The VDIP, or vertical dual in-line pin package, is a vertically mounted module with two rows of pins on 100 -mil centers. Row to row spacing is 100 mils, with pins of the two rows aligned directly across from one another. The dual row of pins allows a higher connection density than that of the SIP while maintaining $100-\mathrm{mil}$ minimum spacing between any adjacent pins. VDIP may be either plastic or ceramic. The VDIP is useful in large pin count devices where the host board is designed with through-hole design rules.

DIP

The DIP, or dual in-line pin module, is a low-profile package with excellent mechanical ruggedness. The ceramic DIP is ideally suited for military applications. Plastic DIPs are often used when a low vertical profile is required. In some cases, the DIP device is intended to have an identical footprint and similar form factor to standard integrated circuit components and can provide larger memory capacity in the same footprint.

PGA

The PGA, or pin grid array, has an array of pins that are perpendicular to the package plane. These pins are arranged in a matrix on
a 100-mil grid. Most of the matrix is filled with pins except for a central square that is normally devoid of pins.

QUIP

The QUIP, or quad in-line pin package, is very similar to the DIP package except that there is a dual row of pins along the package edge. In-row and row-to-row pin spacing is 100 mils with pins in adjacent rows aligned directly across form one another. The QUIP is a low-profile package with excellent mechanical ruggedness, with the added advantage of higher pin density for the same package length.

QFP

The QFP, or quad flat pack, is a surface-mounted module. Gull wing pins extend out from the square package on all four sides and are formed to be coplanar with the package bottom. Lead pitches are typically 50 mils or smaller.

Package Summary

Table 1 summarizes the various characteristics of the packages discussed above.

Table 1. Package Types

Package Type	Typical Pin Count		Typical Height ${ }^{[1]}$		$\mathbf{M i l}{ }^{[2]}$	Advantages	Disadvantages	Board Space (sq. in.) ${ }^{[3]}$	
	Min.	Max.	Min.	Max.				FR4	Cer
SIP	24	50	0.5	0.9	N	Vertical orientation. FR4 or ceramic technology.	Limited pin count.	1.2	0.9
FSIP	24	50	0.2	0.4	N	Very low profile. Mechanical stability. FR4 or ceramic technology.	Lower density due to horizontal orientation.	2.7	2.4
ZIP	24	100	0.5	0.9	N	Vertical orientation. JEDECstandard pinouts. Pinout compatible with SIMM.		1.2	N/A
SIMM	24	100	0.5	0.9	N	Vertical orientation. Socket mounting. Pinout compatible with ZIP.		1.2	N/A
VDIP	36	104	0.5	0.95	Y	Vertical orientation.		1.2	0.9
DIP	24	60	0.17	0.37	Y	Low profile. Excellent mechanical ruggedness.	Horizontal orientation.	2.9	2.9
QUIP	48	200			Y	Low profile. Excellent mechanical ruggedness. Increased number of pins.	Horizontal orientation.	2.9	2.9
QFP	68	144			Y	Surface mount. Low profile. Excellent mechanical ruggedness. Large number of pins in small area.	Surface-mount technology required. Horizontal orientation. Components on one side only.	3.1	3.1
PGA	68	144			Y	Large number of pins in thru-hole technology. Low profile. Excellent mechanical ruggedness.	Multilayer boards. Horizontal orientation. Components on one side only.	2.9	2.9

Notes:

1. Minimum and maximum height are given in inches.
2. The Mil entry contains a $\mathrm{Y}(\mathrm{es})$ or $\mathrm{N}(\mathrm{o})$ indicating if the package type is suitable for military applications.
3. Board space roughly quantifies the main board area, in square inches, taken up by the module when the module contains eight, 28 -pin components.

Introduction to Modules for the New User

The use of modules is growing rapidly since it is a vehicle for obtaining high integration and high performance with minimal impact on cost. Almost every personal computer now has main memory as plug in SIMM packages constructed from surfacemount DRAM components. High-performance RISC and CISC CPU subsystems are available as modules where the supplier has optimized the component I/O design and the substrate layout for maximum performance amongst the tightly coupled components.
Size is one obvious advantage of modules; their small size allows a function fit into a very small space. Consider the economics of having a large memory array together with the system CPU on a single card in contrast to the cost of multiple memory cards connected via a backplane bus and the resulting performance loss. In many cases, the module approach is a considerable savings in materials and manufacturing cost by reducing the total number of system cards.
Applying the tight design rules of modules has its limitations. A module has line widths and spacings that support close packing of VSOP and die components, and these spacing/width design rules are at the limit of what can be handled by capable volume production substrate producers. The use of fully tested modules gives the density gain of tight design rules at economically attractive system manufacturing yields. Therefore in the manufacturing process, the module exhibits the characteristics of a monolithic device: high integration, ease of application, and high system manufacturing yield. The module brings high-density surface-mount technology to the through-hole manufacturing environment.
Performance is another significant gain obtainable from module application. Unfortunately this is the most difficult gain to quantify. Consider a memory subsystem collected tightly around a CPU versus the same memory capacity spread over one or more boards. It seems intuitively plausible that the larger subsystem will be slower: the distance to travel is longer, and the memory address and data bus lines have larger capacitance due to their longer length and the larger number of stubs on the lines. This is indeed the case. Many of the custom modules include buffers for reduced loading, registers for data pipelining, and simple or specialized decoders to ease system bus interfacing. Taken as a component, these modules typically exhibit higher capacitance than a monolithic component and incur about 5 ns additional delay for on board decoders or buffers. However, the module is from four to sixteen times as dense as through-hole monolithic devices and consequently achieve a net performance advantage.

Custom Module Development Flow

Multichip's focus is on providing turnkey memory modules. Figure 1 illustrates the tasks performed during the development of the module.
Module development commences with the generation of a detailed Objective Specification. The module is designed to this specification, and once in production it will be guaranteed to perform as indicated in the Objective Specification.
Components are selected while the specification is being generated. In many cases, the spec is designed such that multiple sources of components can be utilized. Once the spec is complete and the components are selected, a schematic for the module is generated. The netlist from the schematic is used to drive the circuit simulator.

Modules undergo complete characterization and qualification before being released to production. Characterization includes the following: AC and DC characterization over voltage and temperature, and complete custom specification review. Release to production requires a verified test program with test hardware and correlation samples, complete assembly drawings and approved parts list, production and test travelers, a formal design review, and customer approval. In production, custom (and standard) modules are built using fully tested components, and are rigorously tested before they are shipped. As an example of the rigorous production testing, memory modules are tested for all DC parametrics, all AC parametrics, and functionality. Functional testing includes a select set of memory pattern sensitivity tests. This complete testing allows the module to be treated by the user as a true component with a set of specifications that are guaranteed by the manufacturer. This saves time and effort during system manufacture and provides a degree of reliability not obtainable from operations focused on only assembly.

Future Technologies

The ultimate in multichip technology is multiple die on a substrate that offers highly efficient interconnect and the densest multichip assembly technology. The technology is available now for multichip configurations with silicon chips on ceramic, epoxy laminate, and silicon substrates.

Custom Module Development Flow (continued)

During simulation, several types of analyses are performed. A function simulation is used to ensure that the module's logic is designed properly. Timing simulation is run to verify that the module will function when subjected to the worst-case timing delays of the components. Finally, thermal analysis may be performed to determine the thermal characteristics of the module.
The layout of the module is also netlist driven. An autorouter may be used, depending on the complexity and density of the module. Design rule checks are run to ensure that the layout does not violate any electrical or mechanical design rules. Finally, the layout output is used to generate the module substrate.
The layout output is also used to drive the pick and place equipment. This ensures consistency between design and manufacturing. While the module prototypes are being assembled, the test program is generated and the test fixture is constructed. Test program generation is largely automated, using as inputs the simulation outputs and pre-defined test program subroutines for common configurations.
Once prototypes have been generated, the standard release procedure is initiated. This procedure includes steps such as bench testing, module characterization and qualification, and fine tuning of the test program. Following customer approval of the module, it is released to production.

Quoting Information

In order to prepare a quotation or proposal, we need as much as possible of the following information:

- Circuit schematic
- Functional description
- Mechanical dimensions required
- Speed and power requirements
- Prototype and production deadlines
- Production quantity estimates
- An engineering contact to answer questions

Once the above information is received, a budgetary quotation will typically be provided within one to two weeks.

Figure 1. Custom Module Flow

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMS
- Access time of $\mathbf{2 5} \mathbf{n s}$
- Low active power
- 2.6W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of 0.3 in.
- Small PCB footprint
-0.62 sq. in.

Functional Description

The CYM1240 is a very high performance 1-megabit static RAM module organized as 256 K words by 4 bits. The module is constructed using four $256 \mathrm{~K} \times 1$ static RAMs in leadless chip carriers mounted onto a ceramic substrate with pins. It is socketcomptaible with monolithic $256 \mathrm{~K} \times 4$ SRAMs.
Writing to the memory module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input/output pins ($/ / \mathrm{O}_{0}$ through
$\mathrm{I} / \mathrm{O}_{3}$) of the device is written into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) LOW while $\overline{\mathrm{WE}}$ remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropriate data input/output pins.
The data input/output pins remain in a high-impedance state when $\overline{\mathrm{CS}}$ is HIGH or $\overline{W E}$ is LOW.

Logic Block Diagram

Pin Configuration

Selection Guide

		1240-25	1240-30	1240-35	1240-45
Maximum Access Time (ns)		25	30	35	45
Maximum Operating Current (mA)	Commercial	480	480	480	480
	Military	480	480	480	480
Maximum Standby Current (mA)	Commercial	160	160	160	160
	Military	60	160	160	160

[^49]SEMICONDUCTOR

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V

Output Current into Outputs (LOW) 20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	1240		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	V
V_{ll}	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-60	+60	$\mu \mathrm{A}$
I_{CC}	V ${ }_{\text {cc }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\text {out }}=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\leq} \mathrm{V}_{\mathrm{IL}} \end{aligned}$		480	mA
$\mathrm{I}_{\text {ISB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max.; } \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \\ & \hline \end{aligned}$		160	mA
$\mathrm{I}_{\text {ISB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}_{\mathrm{c}} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		80	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	30	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	25	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\mathrm{Min.} .)}=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns 2. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

(b) $1240-3$
GND
1240-4

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	1240-25		1240-30		1240-35		1240-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	25		30		35		45		ns
t_{AA}	Address to Data Valid		25		30		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid		25		30		35		45	ns
tizCs	$\overline{\text { CS }}$ LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4]}$		15		15		25		25	ns
t_{PU}	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		0		ns
tpD	$\overline{\text { CS }}$ HIGH to Power-Down		25		30		35		45	ns
WRITE CYCLE ${ }^{[5]}$										
t_{wc}	Write Cycle Time	25		30		35		45		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\text { CS }}$ LOW to Write End	20		25		30		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		35		ns
t_{HA}	Address Hold from Write End	5		5		5		5		ns
t_{SA}	Address Set-Up to Write Start	0		2		2		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		20		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		15		20		25		ns
t_{HD}	Data Hold from Write End	2		2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	3		3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[4]}$	0	15	0	15	0	20	0	25	ns

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. $t_{\text {HZCS }}$ and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write,
and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
7. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
8. If $\overline{\mathrm{CS}}$ goes HIGH siumultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[6,7]}$

Switching Waveforms (continued)

Read Cycle No. $2^{[6,8]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[5]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[5,9]}$

1240-8

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Document \#: 38-M-00029-B

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CYM1240HD-25C	HD07	Commercial
	*MR240\% F - SM	\%100\%	Mutay
30	CYM1240HD-30C	HD07	Commercial
	*M1240\% 30 MB	m100/.	Miltay
35	CYM1240HD-35C	HD07	Commercial
	CYM1240HD-35MB	HD07	Military
45	CYM1240HD-45C	HD07	Commercial
	CYM1240HD-45MB	HD07	Military

Shaded area contains preliminary information.

$128 \mathrm{~K} \times 8$ Static RAM Module

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 20 ns
- 32-pin, 0.6-inch-wide DIP package
- Low active power
- 1.2W (max.)
- Hermetic or plastic SMD technology
- TTL-compatible inputs and outputs
- JEDEC-compatible pinout
- Commercial and military temperature ranges

Functional Description

The CYM1420 is a very high performance 1-megabit static RAM module organized as 128 K words by 8 bits. The module is constructed using four $32 \mathrm{~K} \times 8$ static RAMs mounted onto a substrate. A decoder is used to interpret the higher-order addresses A_{15} and A_{16} and to select one of the four RAMs.
Writing to the memory module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$)
is written into the memory locationspecified on the address pins ($\mathrm{A}_{0}-\mathrm{A}_{16}$).
Reading the device is accomplished by taking chip select $(\overline{\mathrm{CS}})$ and output enable (OE) LOW while WE remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the eight input/output pins.
The input/output pins remain in a highimpedance state unless the module is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.

Logic Block Diagram

Pin Configuration

Selection Guide

		1420-20	1420-25	1420-30	1420-35	1420-45	1420-55
Maximum Access Time (ns)		20	25	30	35	45	55
Maximum Operating Current (mA)	Commercial	210	210	210	210	210	210
	Military			210	210	210	210
Maximum Standby Current (mA)	Commercial	140	140	140	140	140	140
	Military			140	140	140	140

[^50]

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Commercial)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Military)
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	1420		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	V
I_{IX}	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{CS} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		210	$\mathrm{m} \wedge$
$\mathrm{I}_{\text {ISB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } V_{\mathrm{Cc}} ; \overline{\mathrm{CS}}>\mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty } \mathrm{Cycle}=100 \% \\ & \hline \end{aligned}$		140)	$\mathrm{m} \wedge$
$\mathrm{I}_{\text {ISB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{Cc} ;} \overline{\mathrm{CS}}>\mathrm{V}_{\mathrm{cc}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		80	mA

Shaded area contains preliminary information
Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	35	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	40	pF

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed valucs given.
3. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

(b) $\quad: 420-3$

1420-4

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT O-~~~ $\overbrace{}^{167 \Omega}$ 1.73V

Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameters	Description	1420-20		1420-25		1420-30		Units
		Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE

t_{RC}	Read Cycle Time	20.		25		30		ns
t_{AA}	Address to Data Valid		20		25		30	ns
toha	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {Acs }}$	$\overline{\overline{C S}}$ LOW to Data Valid		20		25		30	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10.		10		15	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {Hzoe }}$	OE HIGH to High Z		10		10		20	ns
tizcs	$\overline{\text { CS }}$ LOW to Low ${ }^{[5]}$	${ }^{3}$		3		5		ns
thzcs	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[5,6]}$		20		20		20	ns

WRITE CYCLE ${ }^{[7]}$

t_{wc}	Write Cycle Time	20		25		30		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	15		20		25		ns
$t_{\text {aw }}$	Address Set-Up to Write End	15.		20		25		ns
t_{HA}	Address Hold from Write End	2		2		5		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	5		5		5		ns
tpwe	$\overline{\text { WE Pulse Width }}$	15 :		20		25		ns
ts	Data Set-Up to Write End	10		12		18		ns
$\mathrm{LHD}^{\text {did }}$	Data Hold from Write End	2		2		3		ns
t Lzwe	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[5]}$	0.		0		5		ns
thzwe	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[5,6]}$	0.	8.	0	10	0	15	ns

Parameters	Description	1420-35		1420-45		1420-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		5		5		ns
$t_{\text {ACs }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		18		25		30	ns
t Lzoe	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	0		0		0		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE HIGH to High Z }}$		20		20		25	ns
tizcs	$\overline{\text { CS }}$ LOW to Low ${ }^{[5]}$	3		5		5		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[5,6]}$		20		20		25	ns
WRITE CYCLE ${ }^{[7]}$								
t_{wc}	Write Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	30		40		45		ns
t_{AW}	Address Set-Up to Write End	30		40		45		ns
t_{HA}	Address Hold from Write End	5		5		5		ns
$\mathrm{t}_{\text {S }}$	Address Set-Up to Write Start	5		5		5		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	25		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	18		20		25		ns
t_{HD}	Data Hold from Write End	3		5		5		ns
$\mathrm{t}_{\text {LZWE }}$		5		5		5		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[5,6]}$	0	15	0	15	0	25	ns

Shaded area contains preliminary information

Switching Waveforms ${ }^{[10]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) $)^{[7,11]}$

Notes:

4. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than tzzes for any given device. These parameters are guaranteed and not 100% tested.
6. t_{HZCS} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write,
and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be reference to the rising edge of the signal that terminates the write.
8. WE is HIGH for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
10. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
11. Data I. O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
12. If $\overline{\mathrm{CS}}$ goes HIGH siumultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[7,11,12]}$

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	L	H	Data Out	Read
L	X	L	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CMM420PD-200	PD0S	Commercial
	CYM1420HD 20 C	HDO4	
25	CYM1420PD-25C	PD05	Commercial
	CYM1420HD-25C	HD04	
30	CYM1420PD-30C	PD05	Commercial
	CYM1420HD-30C	HD04	
	CMM142011-30M	M104	Military
35	CYM1420PD-35C	PD05	Commercial
	CYM1420HD-35C	HD04	
	\% M1420H1 30M3	11104	Military
45	CYM1420PD-45C	PD05	Commercial
	CYM1420HD-45C	HD04	
	CYM1420HD-45MB	HD04	Military
55	CYM1420PD-55C	PD05	Commercial
	CYM1420HD-55C	HD04	
	CYM1420HD-55MB	HD04	Military

[^51]Document \#: 38-M-00001-C

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $35 \mathbf{n s}$
- Low active power
- 1.1W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of 0.65 in.
- Small PCB footprint -0.8 sq. in.

Functional Description

The CYM1422 is a high-performance 1-megabit static RAM module organized as 128 K words by 8 bits. The module is constructed using four $32 \mathrm{~K} x 8$ static RAMs in SOICs mounted onto a single-sided multilayer epoxy laminate board with pins. A decoder is used to interpret the higher-order addresses (A_{15} and A_{16}) and to select one of the four RAMs.
Writing to the memory module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input/output pins ($/ / \mathrm{O}_{0}$ through
$\mathrm{I} / \mathrm{O}_{7}$) is written into the memory location specified on the address pins (A_{0} through A_{16}).
Reading the device is accomplished by taking chip select $(\overline{\mathrm{CS}})$ and output enable (OE) LOW while WE remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the eight data input/output pins.
The input/output pins remain in a highimpedance state unless the module is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.

Logic Block Diagram

Pin Configuration
$\underset{\text { Component Side }}{\text { SIP }}$

Selection Guide

	$\mathbf{1 4 2 2 - 3 5}$	$\mathbf{1 4 2 2 - 4 5}$	$\mathbf{1 4 2 2 - 5 5}$
Maximum Access Time (ns)	35	45	55
Maximum Operating Current (mA)	200	200	200
Maximum Standby Current (mA)	140	140	140

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-10^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V

DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
Output Current into Outputs (LOW) 20 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	1422		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{Cc}}$	-15	+15	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-15	+ 15	$\mu \mathrm{A}$
I_{CC}	V_{Cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\leq} \mathrm{V}_{\mathrm{IL}} \end{aligned}$		200	mA
$\mathrm{I}_{\text {ISB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{Cc}} ; \overline{\mathrm{CS}}>\mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		140	mA
$\mathrm{I}_{\text {ISB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		80	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	40	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	35	pF

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
2. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to: THEVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	1422-35		1422-45		1422-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		20		25		30	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High Z		20		20		20	ns
$\mathrm{t}_{\text {LzCs }}$	$\overline{\mathrm{CS}}$ LOW to Low ${ }^{[4]}$	3		3		3		ns
$\mathrm{t}_{\text {HzCs }}$	$\overline{\text { CS }}$ HIGH to High $\mathrm{Z}^{[4,5]}$		20		20		20	ns
t_{PU}	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CS}}$ HIGH to Power-Down		35		45		55	ns

WRITE CYCLE ${ }^{[6]}$								
t_{wc}	Write Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	30		40		45		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	30		40		45		ns
t_{HA}	Address Hold from Write End	5		5		5		ns
t_{SA}	Address Set-Up to Write Start	5		5		5		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	25		35		35		ns
${ }^{\text {f }}$ S	Data Set-Up to Write End	20		20		20		ns
t_{HD}	Data Hold from Write End	3		5		5		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[4]}$	3		3		3		ns
$\mathrm{t}_{\mathrm{HZWE}}$	$\overline{\text { WE }}$ LOW to High $\mathbf{Z}^{[4,5]}$	0	20	0	25	0	25	ns

Notes:
3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, $\mathfrak{t}_{\mathrm{HZCS}}$ is less than $t_{1 \text { IZcs }}$ for any given device. These parameters are guaranteed and not 100% tested.
5. t_{HZCS} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write,
and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
7. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
9. Data I/O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
10. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
11. If $\overline{\mathrm{CS}}$ goes HIGH siumultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms ${ }^{[9]}$

Read Cycle No. $1^{[7,8]}$

Switching Waveforms (continued)
Read Cycle No. $2^{[7,10]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[6]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[6 ; 11]}$

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	L	H	Data Out	Read
L	X	L	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CYM1422PS-35C	PS03	Commercial
45	CYM1422PS-45C	PS03	Commercial
55	CYM1422PS-55C	PS03	Commercial

$128 \mathrm{~K} \times 8$ Static RAM Module

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{4 5} \mathbf{~ n s}$
- 32-pin, 0.6-inch-wide DIP package
- JEDEC-compatible pinout
- Low active power
- 1.2W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Commercial temperature range
- Small PCB footprint
-1.1 sq. in.

Functional Description

The CYM1423 is a high-performance 1-megabit static RAM module organized as 128 K words by 8 bits. This module is constructed using four $64 \mathrm{~K} \times 4$ static RAMs in SOJ packages mounted onto an epoxy laminate board with pins. A decoder is used to interpret the higher-order address and select two of the four RAMs. Writing to the module is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) of the device is written into the
memory location specified on the address pins (A_{0} through A_{16}). Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable ($\overline{\mathrm{OE}}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{16}) will appear on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through I/O O_{7}.
The input/output pins remain in a highimpedance state unless the module is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.

Logic Block Diagram

Pin Configuration

Selection Guide

	1423PD-45	1423PD-55	1423PD-70
Maximum Access Time (ns)	45	55	70
Maximum Operating Current (mA)	210	210	210
Maximum Standby Current (mA)	80	80	80

Maximum Ratings

(Above which the useful life may be impaired)
Storage Temperature \qquad
Ambient Temperature with
C to $+150^{\circ} \mathrm{C}$

Power Applied
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots \ldots . . .-0.3 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.3 V to +7.0 V
DC Input Voltage
-0.3 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	CYM1423PD		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{CC}	V
VIL	Input LOW Voltage		-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+ 10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+ 10	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\leq} \mathrm{V}_{\mathrm{IL}} \end{aligned}$		210	mA
ISB1	Automatic $\overline{\mathrm{CS}}$ PowerDown Current	$\begin{array}{\|l} \mathrm{V}_{\mathrm{CC}}=\text { Max., } \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ \text { Min. Duty Cycle }=100 \% \\ \hline \end{array}$		80	mA
ISB2	Automatic $\overline{\mathrm{CS}}$ PowerDown Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \end{aligned}$		80	mA

Capacitance ${ }^{[1]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	35	pF
COUT Ontput Capacitance	Oun	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	25	pF

Note:

1. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

(b)

$1423-4$

Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	1423PD-45		1423PD-55		1423PD-70		Units
		Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE

t_{RC}	Read Cycle Time	45		55		70		ns
t_{AA}	Address to Data Valid		45		55		70	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		45		55		70	ns
$\mathrm{t}_{\mathrm{DOE}}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		20		30		35	ns
$\mathrm{t}_{\mathrm{LZOE}}$	$\overline{\mathrm{OE}}$ LOW to LOW Z	5		5		5		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\mathrm{OE}}$ HIGH to High Z		20		25		30	ns
$\mathrm{t}_{\mathrm{LZCS}}$	$\overline{\mathrm{CS}}$ LOW to Low Z	5		5		5		ns
$\mathrm{t}_{\text {HZCS }}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[3]}$		20		25		30	ns

WRITE CYCLE

${ }_{\text {t }}$ WC	Write Cycle Time	45		55		70		ns
tscs	$\overline{\mathrm{CS}}$ LOW to Write End	40		45		60		ns
t_{AW}	Address Set-Up to Write End	40		45		60		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
${ }_{\text {tSA }}$	Address Set-Up from Write Start	0		0		0		ns
${ }_{\text {tPWE }}$	WE Pulse Width	35		35		40		ns
${ }_{\text {t }}$ D	Data Set-Up to Write End	35		35		40		ns
${ }^{\text {thD }}$	Data Hold from Write End	2		2		5		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low Z	5		5		5		ns
thZWE	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[3]}$	0	15	0	25	0	30	ns

Notes:

2. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
3. t_{HzCS} and $\mathfrak{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
4. The internal write time of the memory is defined by the overlap of $\overline{C S}$ LOW and WELOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input
set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
5. $\overline{W E}$ is HIGH for read cycle.
6. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
7. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
8. Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[5,6]}$

Switching Waveforms (continued)
Read Cycle No. $2^{[5,7]}$

Write Cycle No. 1 (WE Controlled) ${ }^{[4,8]}$

Write Cycle No. 2 ($\overline{\text { CS }}$ Controlled) ${ }^{[4, ~ 8,9]}$

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
45	CYM1423PD-45C	PD01	Commercial
55	CYM1423PD-55C	PD01	Commercial
70	CYM1423PD-70C	PD01	Commercial

[^52]
Features

- High-density 2-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- Low active power - 5.3W (max.)
- SMD technology
- Separate Data I/O
- 60-pin ZIP package
- TTL-compatible inputs and outputs
- Low profile
- Max. height of 0.5 in .
- Small PCB footprint
-1.14 sq. in.

Functional Description

The CYM1441 is a very high performance 2-megabit static RAM module organized as 256 K words by 8 bits. The module is constructed using eight $256 \mathrm{~K} \times 1$ static RAMs in SOJ packages mounted onto an epoxy laminate substrate with pins. Two chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{L}}\right.$ and $\left.\overline{\mathrm{CS}}_{\mathrm{U}}\right)$ are used to independently enable the upper and lower 4 bits of the data word.

Writing to the memory module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input pins (DI_{0} through DI_{7}) is written into the memory location specified on the address pins (A_{0} through A_{17}).

Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) LOW while output enable ($\overline{\mathrm{OE}}$) and write enable $\overline{\mathrm{WE}}$ remain inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropriate data output pins (DO_{0} through DO_{7}).
The data output pins remain in a highimpedance state unless the module is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.
Two pins (PD_{0} and PD_{1}) are used to identify module memory density in applications wehre alternate versions of the JE-DEC-standard modules can be interchanged.

1441-1

Pin Configuration

Selection Guide

	$\mathbf{1 4 4 1 - 2 5}$	$\mathbf{1 4 4 1 - 3 5}$	$\mathbf{1 4 4 1 - 4 5}$
Maximum Access Time (ns)	25	35	45
Maximum Operating Current (mA)	960	960	960
Maximum Standby Current (mA)	320	320	320

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature $. \ldots . \ldots \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential - 0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State .
-0.5 V to +7.0 V
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.

Operating Range

Range	Ambient Temperature	\mathbf{V}_{CC}
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	1441		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$	-80	+80	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-50	+ 50	$\mu \mathrm{A}$
I_{CC}	V Cc Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{CS}_{\leq} \end{aligned}$		960	mA
$\mathrm{I}_{\text {ISB1 }}$	Automatic $\overline{\text { CS }}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{Cc}} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		320	mA
$\mathrm{I}_{\text {ISB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		160	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	60	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF

Notes:

1. $V_{\mathrm{IL}(\mathrm{MIN})}=-3.0 \mathrm{~V}$ for pulse widths less than $20 \mathrm{~ns} . \quad$ 2. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to: THEVENIN EQUIVALENT

SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	1441-25		1441-35		1441-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		25		35		45	ns
toha	Data Hold from Address Change	3		3	-	3	.	ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		35		45	ns
t Lzcs	$\overline{\mathrm{CS}}$ LOW to Low Z	3		3		3		ns
thzcs	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4]}$		15		25		30	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CS }}$ LOW to Power-Up	0		0		0		ns
$t_{\text {PD }}$	$\overline{\text { CS }}$ HIGH to Power-Down		25		35		45	ns
WRITE CYCLE ${ }^{[5]}$								
t_{wc}	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\mathrm{scs}}$	$\overline{\mathrm{CS}}$ LOW to Write End	20		30		35		ns
$t_{\text {AW }}$	Address Set-Up to Write End	20		30		35		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		30		ns
tsd	Data Set-Up to Write End	15		20		20		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH }}$ to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HZWE}}$	$\overline{\text { WE }}$ LOW to High $\mathbf{Z}^{[4]}$	0	15	0	20	0	25	ns

Notes:
3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. t_{HzCS} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write,
and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
7. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
8. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
9. If $\overline{\mathrm{CS}}$ goes HIGH siumultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[6,7]}$

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[5]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[5,9]}$

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write
L	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CYM1441PZ-25C	PZ04	Commercial
35	CYM1441PZ-35C	PZ04	Commercial
45	CYM1441PZ-45C	PZ04	Commercial

Document \#: 38-M-00003-B

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{3 5} \mathbf{n s}$
- Low active power
- 3.4W (max.)
- Double-sided SMD technology
- TTL-compatible inputs and outputs
- Low profile version (PF)
- Max. height of $\mathbf{3 4 5}$ in.
- Small footprint SIP version (PS)
- PCB layout area of $\mathbf{1 . 2} \mathbf{~ s q . ~ i n . ~}$

Functional Description

The CYM1460 is a high-performance 4 -megabit static RAM module organized as 512 K words by 8 bits. This module is constructed from sixteen $32 \mathrm{~K} \times 8$ SRAMs in plastic surface mount packages on an epoxy laminate board with pins. Two choices of pins are available for vertical (PS) or horizontal (PF) through-hole mounting. On-board decoding selects one of the sixteen SRAMs from the highorder address lines, keeping the remaining fifteen devices in standby mode for minimum power consumption.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of

512K x 8 Static RAM Module

the memory. When $\overline{\mathrm{MS}}$ and $\overline{\mathrm{WE}}$ inputs are both LOW, data on the eight data input/output pins is written into the memory location specified on the address pins. Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{M S}$ and $\overline{\mathrm{OE}}$, active LOW, while WE remains inactive or HIGH. Under these conditions, the content of the location addressed by the information on the address pins is present on the eight data input/output pins.
The input/output pins remain in a highimpedance state unless the module is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.

Selection Guide

	$\mathbf{1 4 6 0 P S}-35$ $\mathbf{1 4 6 0 P F}-\mathbf{3 5}$	$\mathbf{1 4 6 0 P S}-45$ $\mathbf{1 4 6 0 P F}-45$	$\mathbf{1 4 6 0 P S}-55$ $\mathbf{1 4 6 0 P F}-55$	$\mathbf{1 4 6 0 P S}-70$ $\mathbf{1 4 6 0 P F} \mathbf{7 0}$
Maximum Access Time (ns)	35	45	55	70
Maximum Operating Current (mA)	625	625	625	625
Maximum Standby Current (mA)	560	560	560	560

Maximum Ratings

(Above which the useful life may be impaired)

Storage Tempe	$5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	CYM1460		Units
			Min.	Max.	
VOH	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
VOL	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {H }}$	Input HIGH Voltage		2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	$+20$	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled	-20	$+20$	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max.}, \mathrm{MS} \leq \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		625	mA
ISB1	Automatic $\overline{\mathrm{MS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{MS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		560	mA
ISB2	Automatic $\overline{\mathrm{MS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{MS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \\ & \hline \end{aligned}$		320	mA

Capacitance ${ }^{[1]}$

Parameters	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	120	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	180	pF

Notes:

1. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

(b)

1460-5

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $\mathbf{O} \underbrace{167 \Omega}-\mathbf{1 . 7 3 V}$

Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	1460PS-35 1460PF-35		1460PS-45 1460PF-45		1460PS-55 1460PF-55		1460PS-70 1460PF-70		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
$\mathrm{t}_{\mathrm{R} C}$	Read Cycle Time	35		45		55		70		ns
t_{AA}	Address to Data Valid		35		45		55		70	ns
$\mathrm{tOHA}^{\text {chen }}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {AMS }}$	$\overline{\text { MS }}$ LOW to Data Valid		35		45		55		70	ns
tDOE	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		20		25		30	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	0		0		0		0		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[3]}$		15		25		25		30	ns
tLZMS	$\overline{\text { MS }}$ LOW to Low $\mathrm{Z}^{[4]}$	5		5		5		5		ns
thZMS	$\overline{\text { MS }} \mathrm{HIGH}$ to High $\mathrm{Z}^{[3,4]}$		15		20		25		35	ns
WRITE CYCLE ${ }^{[5]}$										
twC	Write Cycle Time	35		45		55		70		ns
tSMS	$\overline{\text { MS }}$ LOW to Write End	30		40		50		60		ns
${ }_{\text {taw }}$	Address Set-Up to Write End	30		40		50		60		ns
tha	Address Hold from Write End	5		5		5		5		ns
${ }_{\text {t }}$ A	Address Set-Up to Write Start	5		5		5		5		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	25		30		40		55		ns
${ }_{\text {S }}$ D	Data Set-Up to Write End	15		20		25		30		ns
${ }^{\text {thD }}$	Data Hold from Write End	5		5		5		5		ns
thzwe	WE LOW to High $\mathrm{Z}^{[3]}$		15		20		25		25	ns
tLZWE	WE HIGH to Low Z	3		3		3		3		ns

Notes:
2. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
3. $t_{\text {HZOE }}, t_{\text {HZMS }}$ and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZMS}}$ is less than ${ }^{t_{\text {LZMS }}}$ for any given device. These parameters are guaranteed and not 100% tested.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{MS}}$ LOW and \bar{W} LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
7. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{MS}}=\mathrm{V}_{\mathrm{IL}}$.
8. Address valid prior to or coincident with $\overline{\mathrm{MS}}$ transition LOW.
9. Data I/O is HIGH impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
10. If $\overline{\mathrm{MS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[6,7]}$

Switching Waveforms (continued)

Read Cycle No. $2^{[6,8]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[5,9]}$

Write Cycle No. 2 ($\overline{\mathbf{M S}}$ Controlled) ${ }^{[5,9,10]}$

1460-10

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
35	CYM1460PS-35C	PS05	Commercial
	CYM1460PF-35C	PF03	
45	CYM1460PS-45C	PS05	Commercial
	CYM1460PF-45C	PF03	
55	CYM1460PS-55C	PS05	Commercial
	CYM1460PF-55C	PF03	
70	CYM1460PS-70C	PS05	Commercial
	CYM1460PF-70C	PF03	

CYM1461

512K x 8 Static RAM Module

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{7 0} \mathbf{n s}$
- Low active power
-825 mW (max.)
- Double-sided SMD technology
- TTL-compatible inputs and outputs
- Low profile version (PF)
- Max. height of $\mathbf{. 3 1 5} \mathrm{in}$.
- Small footprint SIP version (PS)
- PCB layout area of $\mathbf{1 . 5} \mathbf{~ s q}$. in.
- 2 V data retention (L version)

Functional Description

The CYM1461 is a high-performance 4-megabit static RAM module organized as 512 K words by 8 bits. This module is constructed from sixteen $32 \mathrm{~K} \times 8$ SRAMs in plastic surface mount packages on an epoxy laminate board with pins. Two choices of pins are available for vertical (PS) or horizontal (PF) through-hole mounting. On-board decoding selects one of the sixteen SRAMs from the highorder address lines keeping the remaining fifteen devices in standby mode for minimum power consumption.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of
the memory. When $\overline{\mathrm{MS}}$ and $\overline{\mathrm{WE}}$ inputs are both LOW, data on the eight data input/output pins is written into the memory location specified on the address pins. Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{M S}$ and $\overline{\mathrm{OE}}$ active LOW, while $\overline{\mathrm{WE}}$ remains inactive or HIGH. Under these conditions, the content of the location addressed by the information on the address pins is present on the eight data input/output pins.
The input/output pins remain in a highimpedance state unless the module is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.

Logic Block Diagram

Pin Configuration

Selection Guide

	1461PS-70 1461PF-70	1461PS-85 1461PF-85	1461PS-100 1461PF-100
Maximum Access Time (ns)	70	85	100
Maximum Operating Current (mA)	150	150	150
Maximum Standby Current (mA)	50	50	50

Maximum Ratings

(Above which the useful life may be impaired)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Supply Voltage to Ground Potential -0.3 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.3 V to +7.0 V
DC Input Voltage
-0.3 V to +7.0 V
Output Current into Outputs (Low)
20 mA

Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	CYM1461		Units
			Min.	Max.	
VOH	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.3	0.8	V
$\mathrm{IIX}_{\text {I }}$	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	$\mu \mathrm{A}$
LOZ	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled	-20	$+20$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CC }}$	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max.}, \overline{\mathrm{MS}} \leq \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		150	mA
ISB1	Automatic $\overline{\mathrm{MS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{MS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		50	mA
ISB2	Automatic $\overline{\mathrm{MS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{MS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \end{aligned}$		32	mA

Capacitance ${ }^{[1]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	100	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	100	pF

Notes:

1. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	$\begin{aligned} & \text { 1461PS-70 } \\ & \text { 1461PF-70 } \end{aligned}$		$\begin{aligned} & \text { 1461PS-85 } \\ & \text { 1461PF-85 } \end{aligned}$		$\begin{aligned} & \text { 1461PS-100 } \\ & \text { 1461PF-100 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	70		85		100		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		70		85		100	ns
toha	Data Hold from Address Change	20		20		20		ns
$\mathrm{t}_{\text {AMS }}$	$\overline{\mathrm{MS}}$ LOW to Data Valid		70		85		100	ns
tome	$\stackrel{\rightharpoonup}{\mathrm{OE}}$ LOW to Data Valid		40		50		55	ns
${ }_{\text {t }}$ LZOE	$\overline{\mathrm{OE}}$ LOW to Low Z	5		5		5		ns
${ }^{\text {thzoE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[3]}$		35		35		40	ns
${ }_{\text {t }}$ LZMS	$\overline{\text { MS }}$ LOW to Low ${ }^{[4]}$	5		5		5		ns
${ }^{\text {thZMS }}$	$\overline{\text { MS }}$ HIGH to High $\mathrm{Z}^{[3,4]}$		35		35		40	ns
WRITE CYCLE ${ }^{[5]}$								
twC	Write Cycle Time	70		85		100		ns
tSMS	$\overline{\mathrm{MS}}$ LOW to Write End	70		80		85		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	70		80		85		ns
${ }^{\text {tha }}$	Address Hold from Write End	5		5		5		ns
${ }^{\text {t }}$ S	Address Set-Up to Write Start	5		5		5		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	60		65		65		ns
${ }_{\text {t }}$ D	Data Set-Up to Write End	35		40		45		ns
t_{HD}	Data Hold from Write End	5		5		5		ns
thzwe	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[3]}$		30		35		40	ns
tLZWE	$\overline{\text { WE }}$ HIGH to Low Z	5		5		5		ns

Notes:

2. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
3. $t_{\text {HZOE }}, t_{\mathrm{HZMS}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
4. At any given temperature and voltage condition, $\mathbf{t}_{\mathrm{HZMS}}$ is less than ${ }^{t}$ LZMS for any given device. These parameters are guaranteed and not 100% tested.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{MS}}$ LOW and WELOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
7. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{MS}}=\mathrm{V}_{\mathrm{IL}}$.
8. Address valid prior to or coincident with $\overline{\mathrm{MS}}$ transition LOW.
9. Data I/O is HIGH impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

Data Retention Characteristics (L Version Only)

Parameter	Description	Test Conditions	CYM1461		Units
			Min.	Max.	
VDR	V_{CC} for Retention Data	$\begin{aligned} & V_{C C}=2.0 \mathrm{~V} \\ & \overline{C S} \geq V_{C C}-0.2 \mathrm{~V} \\ & V_{I N} \geq V_{C C}-0.2 \mathrm{~V} \\ & \text { or } V_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current			300	$\mu \mathrm{A}$
${ }^{\text {t }}{ }^{\text {DR }}{ }^{[12]}$	Chip Deselect to Data Retention Time		0		ns
$t^{\text {R }}{ }^{12]}$	Operation Recovery Time		${ }^{t} \mathrm{RC}^{[12]}$		ns

Notes:

10. $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time.
11. Guaranteed, not tested.
12. If $\overline{\mathrm{MS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Data Retention Waveform

Switching Waveforms

Read Cycle No. $1^{[7,8]}$

\qquad
Read Cycle No. $2^{[8,9,10]}$

Switching Waveforms (continued)

Write Cycle No. $1^{[8,9]}$

Write Cycle No. 2 ($\overline{\mathbf{M S}}$ Controlled) ${ }^{[11]}$

Truth Table

$\overline{\mathrm{MS}}$	$\overline{\mathbf{W E}}$	$\overline{\mathrm{OE}}$	Input/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Document \#: 38-M-00005-A

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
70	CYM1461PS-70C	PS01	Commercial
	CYM1461LPS-70C		
	CYM1461PF-70C	PF01	
	CYM1461LPF-70C		
85	CYM1461PS-85C	PS01	Commercial
	CYM1461LPS-85C		
	CYM1461PF-85C	PF01	
	CYM1461LPF-85C		
100	CYM1461PS-100C	PS01	Commercial
	CYM1461LPS-100C		
	CYM1461PF-100C	PF01	
	CYM1461LPF-100C		

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 35 ns
- Low active power
- 1.65W (max.)
- JEDEC-compatible pinout
- 32-pin, 0.6-inch-wide DIP package
- TTL-compatible inputs and outputs
- Low profile
- Max. height of $\mathbf{3 4}$ inches
- Small PCB footprint -0.98 sq . in.

Functional Description

The CYM1464 is a high-performance 4-megabit static RAM module organized as 512 K words by 8 bits. This module is constructed using four $256 \mathrm{~K} \times 4$ static RAMs in SOJ packages mounted on an epoxy laminate substrate with pins. A decoder is used to interpret the higher-order address (A_{18}) and to select one of the four RAMs.
Writing to the module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through I/ O_{7}) of the device is written into the memory
location specified on the address pins (A_{0} through A_{18}). Reading the device is accomplished by taking chip select and output enable ($\overline{\mathrm{OE}}$) LOW, while write enable (WE) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{18}) will appear on the eight appropriate data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$).
The input/output pins remain in a highimpedance state unless the module is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}})$ is HIGH.

Logic Block Diagram

Selection Guide

	$\mathbf{1 4 6 4 - 3 5}$	$\mathbf{1 4 6 4 - 4 5}$	$\mathbf{1 4 6 4 - 5 5}$	$\mathbf{1 4 6 4 - 7 0}$
Maximum Access Time (ns)	35	45	55	70
Maximum Operating Current (mA)	300	300	300	300
Maximum Standby Current (mA)	240	240	240	240

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature................$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
. $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots \ldots \ldots,-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	1464		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.3	0.8	V
I_{L}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+10	$\mu \mathrm{A}$
I_{Cc}	$V_{\text {cc }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\text {out }}=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\leq} \mathrm{V}_{\mathrm{IL}} \end{aligned}$		300	mA
$\mathrm{I}_{\text {S } 1}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\text { Max., } \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle } \\ & \hline \end{aligned}$		240	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic © CS Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		10	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	40	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	30	pF

Notes:

1. $\quad \mathrm{V}_{\mathrm{IL}(\text { Min. })}=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns .
2. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to:
THÉVENIN EQUIVALENT
OUTPUT a

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	1464-35		1464-45		1464-55		1464-70		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE

t_{RC}	Read Cycle Time	35		45		55		70		ns
t_{AA}	Address to Data Valid		35		45		55		70	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	5		5		5		5		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		35		45		55		70	ns
$\mathrm{t}_{\mathrm{DOE}}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		20		25		30		35	ns
$\mathrm{t}_{\mathrm{LZOE}}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		0		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\mathrm{OE}}$ HIGH to High Z	0	15	0	15	0	15	0	15	ns
$\mathrm{t}_{\mathrm{LZCS}}$	$\overline{\mathrm{CS}}$ LOW to Low Z	10		10		10		10		ns
$\mathrm{t}_{\mathrm{HZCs}}$	$\overline{\mathrm{CS}}$ HIGH to High Z ${ }^{[4]}$	0	20	0	20	0	20	0	20	ns
t_{PU}	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		0		ns
t_{PD}	$\overline{\mathrm{CS}}$ HIGH to Power-Down		35		45		55		70	ns

WRITE CYCLE

t_{WC}	Write Cycle Time	35		45		55		70		ns
$\mathrm{t}_{\mathrm{SCS}}$	$\overline{\text { CS LOW to Write End }}$	30		40		50		60		ns
t_{AW}	Address Set-Up to Write End	30		40		50		60		ns
t_{HA}	Address Hold from Write End	3		3		3		3		ns
t_{SA}	Address Set-Up from Write Start	6		5		5		5		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\mathrm{WE}}$ Pulse Width	25		35		40		50		ns
t_{SD}	Data Set-Up to Write End	20		25		35		45		ns
t_{HD}	Data Hold from Write End	2		3		3		3		ns
$\mathrm{t}_{\mathrm{LZWE}}$	$\overline{\text { WE HIGH to Low Z }}$	0		0		0		0		ns
$\mathrm{t}_{\mathrm{HZWE}}$	$\overline{\text { WE LOW to High } Z^{[4]}}$		15		15		20		25	ns

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. t_{HZCS} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
5. WE is HIGH for read cycle.
6. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
7. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and \bar{W} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remians in a high-impedance state.

Switching Waveforms

Switching Waveforms

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[8]}$

Write Cycle No. $2(\overline{\mathbf{C S}} \text { Controlled) })^{[8,9]}$

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read Word
L	L	X	Data In	Write Word
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CYM1464PD-35C	PD02	Commercial
45	CYM1464PD-45C	PD02	Commercial
55	CYM1464PD-55C	PD02	Commercial
70	CYM1464PD-70C	PD02	Commercial

Document \#: 38-M-00030-A

512K x 8 SRAM Module

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 85 ns
- Low active power
-605 mW (max.)
- JEDEC-compatible pinout
- 32-pin, 0.6-inch-wide DIP package
- TTL-compatible inputs and outputs
- Low profile
- Max. height of .23 inches
- Small PCB footprint -0.98 sq. in.

Functional Description

The CYM1465 is a high-performance 4-megabit static RAM module organized as 512 K words by 8 bits. This module is constructed using four $128 \mathrm{~K} \times 8$ RAMs mounted on a substrate with pins. A decoder is used to interpret the higher-order addresses (A_{17} and A_{18}) and to select one of the four RAMs. Two packaging options are offered: VSOP packages on FR4 substrate for commercial temperature range operation, and SOIC packages on ceramic substrate for industrial temperature range operation.
Writing to the module is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable
($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) of the device is written into the memory location specified on the address pins (A_{0} through A_{18}). Reading the device is accomplished by taking chip select and output enable($\overline{\mathrm{OE}})$ LOW while write enable remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{18}) will appear on the eight appropriate data input/output pins $(\mathrm{I} / \mathrm{O})_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$).
The input/output pins remain in a highimpedance state unless the module is selected, outputs are enabled, and write enable is HIGH.

Logic Block Diagram

Pin Configuration

1465-2

Selection Guide

	1465PD-85	1465PD-100	1465PD-120	1465PD-150
Maximum Access Time (ns)	85	100	120	150
Maximum Operating Current (mA)	110	110	110	110
Maximum Standby Current (mA)	12	12	12	12

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad
Supply Voltage to Ground Potential $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V
DC Input Voltage . -0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	\mathbf{V}_{cc}
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions		1465PD		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{IL}	Input LOW Voltage			-0.3	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{Cc}}$		-10	+ 10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{CC}}$, Output Dis	bled	-20	$+20$	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {cc }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\leq} \mathrm{V}_{\mathrm{IL}} \end{aligned}$			110	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$			12	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DR}}=3.0 \mathrm{~V}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{H}, \leq 2} \leq 0.2 \mathrm{~V} \end{aligned}$	Standard Version		8	mA
			L Version		420	$\mu \mathrm{A}$

Capacitance ${ }^{[1]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	45	pF
$\mathrm{V}_{\mathrm{OUT}}$	Output Capacitance		4.0 V	pF

Notes:

1. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

(b)
Equivalent to: THÉVENIN EQUIVALENT

Over the Operating Range ${ }^{[2]}$

Parameters	Description	1465PD-85		1465PD-100		1465PD-120		1465PD-150		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	85		100		120		150		ns
t_{AA}	Address to Data Valid		85		100		120		150	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	10		10		10		10		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		85		100		120		150	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\text { OE LOW to Data Valid }}$		45		50		60		75	ns
tizoe	$\overline{\mathrm{OE}}$ LOW to Low Z	5		5		5		5		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE HIGH }}$ to High $\mathrm{Z}^{[3]}$		30		35		45		55	ns
t ${ }_{\text {LzCs }}$	$\overline{\overline{C S}}$ LOW to Low Z	10		10		10		10		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[3]}$		30		35		45		60	ns

WRITE CYCLE

$\mathrm{t}_{\text {wC }}$	Write Cycle Time	85		100		120		150		ns
$\mathrm{t}_{\mathrm{SCs}}$	$\overline{\mathrm{CS}}$ LOW to Write End	75		90		100		115		ns
t_{AW}	Address Set-Up to Write End	75		90		100		110		ns
t_{HA}	Address Hold from Write End	10		10		10		15		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up from Write Start	5		5		5		5		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	65		75		85		95		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	35		40		45		50		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low } Z}$	5		5		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW to High } Z^{[3]}}$		30		35		40		45	ns

Data Retention Characteristics (L Version Only)

Parameters	Description	Test Conditions	1465		Units
			Min.	Max.	
V_{DR}	V_{CC} for Retention Data	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$	2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DR}}=3.0 \mathrm{~V}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{cC}}-2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-2.0 \overline{\mathrm{~V}} \mathrm{or} \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		50	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[4]}$	Chip Deselect to Data Retention Time		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[4]}$	Operation Recovery Time		5		ms

Notes:
2. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $100-\mathrm{pF}$ load capacitance.
3. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
4. Guaranteed, not tested.
5. $\overline{W E}$ is HIGH for the read cycle.
6. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
7. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remians in a high-impedance state.

Data Retention Waveform

1465-5

Switching Waveforms

Read Cycle No. $2^{[5,7]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[8]}$

Switching Waveforms (continued) ${ }^{8,9]}$
Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled)

Truth Table

Inputs				
$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read Word
L	L	X	Data In	Write Word
L	H	H	High Z	Deselect

Document \#: 38-M-00036

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
85	CYM1465PD-85C	PD03	Commercial
	CYM1465LPD-85C		
	CYM1465PD-85I	PD08	Industrial
	CYM146SLPD-85I		
100	CYM1465PD-100C	PD03	Commercial
	CYM1465LPD-100C		
	CYM1465PD-100I	PD08	Industrial
	CYM1465LPD-100I		
120	CYM1465PD-120C	PD03	Commercial
	CYM1465LPD-120C		
	CYM1465PD-120I	PD08	Industrial
	CYM1465LPD-120I		
150	CYM1465PD-150C	PD03	Commercial
	CYM1465LPD-150C		
	CYM1465PD-150I	PD08	Industrial
	CYM1465LPD-150I		

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 35 ns
- Low active power
- 1.9W (max.)
- JEDEC-compatible pinout
- 32-pin, 0.6-inch-wide DIP package
- TTL-compatible inputs and outputs

Functional Description

The CYM1466 is a high-performance 4-megabit static RAM module organized as 512 K words by 8 bits. This module is constructed using four $128 \mathrm{~K} \times 8$ RAMs in ceramic leadless chip carrier packages mounted on a ceramic substrate. A decoder is used to interpret the higher-order addresses (A_{17} and A_{18}) and to select one of the four RAMs.
Writing to the module is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through I/ O_{7}) of the device is written into the memory
location specified on the address pins (A_{0} through A_{18}). Reading the device is accomplished by taking chip select and output enable $(\overline{\mathrm{OE}})$ LOW while write enable remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{18}) will appear on the eight appropriate data input/output pins (I/O) $)_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$).
The input/output pins remain in a highimpedance state unless the module is selected, outputs are enabled, and write enable is HIGH.

Selection Guide

		$1466-35$	$1466-45$	$\mathbf{1 4 6 6 - 5 5}$	$\mathbf{1 4 6 6 - 7 0}$	$\mathbf{1 4 6 6 - 8 5}$	$\mathbf{1 4 6 6 - 1 0 0}$	$\mathbf{1 4 6 6 - 1 2 0}$
Maximum Access Time (ns)		35	45	55	70	85	100	120
Maximum Operating Current (mA)	Com’l	350	350	184	184	184	84	84
	Mil	350	350	184	184	184	84	84
Maximum Standby Current (mA)	Com'l	240	240	70	70	70	12	12
	Mil	204	240	70	70	70	12	12

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.3 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
.0 V to V_{cc}
DC Input Voltage -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions		$\begin{aligned} & 1466-35 \\ & 1466-45 \end{aligned}$		$\begin{aligned} & 1466-55 \\ & 1466-70 \\ & 1466-85 \end{aligned}$		$\begin{aligned} & 1466-100 \\ & 1466-120 \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$.	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4				V
			$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$					2.4		
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$.	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4			V
			$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$						0.4	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & +0.3 \\ & \hline \end{aligned}$	2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \\ & \hline \end{aligned}$	2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & +0.3 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{\mathbf{I X}}$	Input Load Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $0 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\text { Max. } \\ & 0 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$		-20	$+20$	-20	+20	-20	$+20$	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}^{2}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \\ & \mathrm{CS} \\ & \hline \end{aligned}$			350		184		84	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \end{aligned}$			240		70		12	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}-0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}} \leq 0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \end{aligned}$			40		8		8	mA

Capacitance ${ }^{[1]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	45	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	45	pF

Notes:

1. Tested on a sample basis.

AC Test Loads and Waveforms

SCOPE

(b)

1466-4

Load Capacitor and Resistor Values

	$\mathbf{1 4 6 6 - 3 5}$ $\mathbf{1 4 6 6 - 4 5}$	$\mathbf{1 4 6 6 - 5 5}$ $\mathbf{1 4 6 6 - 7 0}$ $\mathbf{1 4 6 6 - 8 5}$	$\mathbf{1 4 6 6 - 1 0 0}$ $\mathbf{1 4 6 6 - 1 2 0}$	Units
C1	30	30	100	pF
R1	0.481	0.481	1.84	$\mathrm{k} \Omega$
R2	0.255	0.255	1.00	$\mathrm{k} \Omega$

Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	1466-35		1466-45		1466-55		1466-70		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	35		45		55		70		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		35		45		55		70	ns
toha	Data Hold from Address Change	5		5		5		5		ns
$\mathrm{t}_{\text {ACs }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		35		45		55		70	ns
$\mathrm{t}_{\text {DOE }}$	OE LOW to Data Valid		15		20		30		35	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	0		0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[3]}$		15		20		25		30	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low Z	5		5		5		5		ns
$\mathrm{t}_{\text {HZCS }}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[3]}$		15		20		25		30	ns

WRITE CYCLE

t_{wc}	Write Cycle Time	35		45		55		70		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	25		30		45		50		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	25		30		45		50		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up from Write Start	5		5		5		5		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		35		45		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	16		20		25		30		ns
t_{HD}	Data Hold from Write End	3		3		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low Z }}$	0		0		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[3]}$	0	15	0	15	0	15	0	15	ns

Over the Operating Range ${ }^{[2]}$ (continued)

Parameters	Description	$1466-85$		$1466-100$		1466-120		
		Min.	Max.	Min.	Max.	Min.	Max.	Units

READ CYCLE

t_{RC}	Read Cycle Time	85		100		120		ns
t_{AA}	Address to Data Valid		85		100		120	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		85		100		120	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		40		50		60	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		5		5		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[3]}$		35		35		45	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low Z	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[3]}$		35		35		45	ns

t_{wc}	Write Cycle Time	85		100		120	ns
$\mathrm{t}_{\text {scs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	55		90		100	ns
t_{AW}	Address Set-Up to Write End	55		90		100	ns
t_{HA}	Address Hold from Write End	0		0		0	ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up from Write Start	5		5		5	ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	55		75		85	ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	35		40		45	ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	0		0		0	ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	5		5		5	ns
$\mathrm{t}_{\mathrm{Hzwe}}$	$\overline{\text { WE LOW }}$ to High $\mathbf{Z}^{[3]}$	0	35	0	40	0	ns

Data Retention Characteristics (L Version Only)

Parameters	Description	Test Conditions	$\begin{aligned} & 1466-35 \\ & 1466-45 \end{aligned}$		$\begin{gathered} 1466-55 \\ 1466-70 \\ 1466-85 \\ 1466-100 \\ 1466-120 \end{gathered}$		Units
			Min.	Max.	Min.	Max.	
V_{DR}	$\mathrm{V}_{\text {CC }}$ for Retention Data	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	2.0		2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\mathrm{V}_{\mathrm{DR}}=3.0 \mathrm{~V}$		1500		50	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[4]}$	Chip Deselect to Data Retention Time		0		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[4]}$	Operation Recovery Time		t_{RC}		t_{RC}		ns

Notes:

2. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and load capacitance.
3. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
4. Guaranteed, not tested.
5. $\overline{\mathrm{WE}}$ is HIGH for the read cycle.
6. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
7. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remians in a high-impedance state.

Data Retention Waveform

Switching Waveforms

Read Cycle No. $1^{[5,6]}$

1466-6

Read Cycle No. $2^{[5,7]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[8]}$

Switching Waveforms (continued) ${ }^{8,9]}$
Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled)

Truth Table

Inputs				
$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read Word
L	L	X	Data In	Write Word
L	H	H	High Z	Deselect

Ordering Information

$\underset{\substack{\text { Speed } \\ \text { (ns) }}}{ }$	Ordering Code	Package Type	Operating Range
35	CYM1466HD-35C	HD04	Commercial
	CYM 1466LHD-35C	HD04	
	CYM1466HD-35MB	HD04	Military
	CYM1466LHD-35MB	HD04	
45	CYM1466HD-45C	HD04	Commercial
	CYM1466LHD-45C	HD04	
	CYM1466HD-45MB	HD04	Military
	CYM1466LHD-45MB	HD04	
55	CYM1466HD-55C	HD12	Commercial
	CYM1466LHD-55C	HD12	
	CYM1466HD-55MB	HD12	Military
	CYM1466LHD-55MB	HD12	
70	CYM1466HD-70C	HD12	Commercial
	CYM1466LHD-70C	HD12	
	CYM1466HD-70MB	HD12	Military
	CYM1466LHD-70MB	HD12	
85	CYM 1466HD-85C	HD12	Commercial
	CYM1466LHD-85C	HD12	
	CYM1466HD-85MB	HD12	Military
	CYM1466LHD-85MB	HD12	
100	CYM1466HD-100C	HD12	Commercial
	CYM1466LHD-100C	HD12	
	CYM $1466 \mathrm{HD}-100 \mathrm{MB}$	HD12	Military
	CYM1466LHD-100MB	HD12	
120	CYM $1466 \mathrm{HD}-120 \mathrm{C}$	HD12	Commercial
	CYM1466LHD-120C	HD12	
	CYM $1466 \mathrm{HD}-120 \mathrm{MB}$	HD12	Military
	CYM1466LHD-120MB	HD12	

[^53]CYM1471
PRELIMINARY
CYM1481

Features

- High-density 8-/16-megabit SRAM modules
- High-speed CMOS SRAMs
- Access time of 85 ns
- Low active power
-605 mW (max.), 2M x 8
- Double-sided SMD technology
- TTL-compatible inputs and outputs
- Very low profile version (PF)
- Max. height of 0.205 in.
- Small footprint SIP version (PS)
- PCB layout area of $\mathbf{0 . 7 2} \mathbf{~ s q}$. in.
- 2 V data retention (L version)
- Compatible with CYM1460/CYM1461

Functional Description

The CYM1471 and CYM1481 are highperformance 8 -megabit and 16-megabit static RAM modules organized as 1024 K words (1471) or 2048 K words (1481) by 8 bits. These modules are constructed from eight (1471) or sixteen (1481) $128 \mathrm{~K} \times 8$ SRAMs in plastic surface-mount packages on an epoxy laminate board with pins. Two choices of pins are available for vertical (PS) or horizontal (PF) through-hole mounting. On-board decoding selects one of the SRAMs from the high-order address lines, keeping the remaining devices in standby mode for minimum power consumption.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of

1024K x 8 SRAM Module 2048K x 8 SRAM Module

Logic Block Diagram

Selection Guide

	CYM1471			CYM1481		
Maximum Access Time (ns)	85	100	120	85	100	120
Maximum Operating Current (mA)	95	95	95	110	110	110
Maximum Standby Current (mA)	16	16	16	32	32	32

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the useful life may be impaired)
Storage Temperature \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.3 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. \qquad -0.3 V to +7.0 V
DC Input Voltage \qquad -0.3 V to +7.0 V
Output Current into Outputs (LOW)).
Output Current into Outputs (LOW) .20 mA

Electrical Characteristics Over the Operating Range

Capacitance ${ }^{[t]}$

Parameter	Description	Test Conditions	CYM1471 Max.	CYM1481 Max.	Units
$\mathrm{C}_{\text {INA }}$	Input Capacitance $\left(\mathrm{A}_{0-16}, \overline{\mathrm{OE}}, \overline{\mathrm{WE}}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	75	125	pF
$\mathrm{C}_{\text {INB }}$	Input Capacitance $\left(\mathrm{A}_{17-20}, \overline{\mathrm{MS}}\right)$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	25	25	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance		95	165	pF

Notes:

1. Tested on a sample basis.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	$\begin{aligned} & 1471-85 \\ & 1481-85 \end{aligned}$		$\begin{aligned} & 1471-100 \\ & 1481-100 \end{aligned}$		$\begin{aligned} & 1471-120 \\ & 1481-120 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	85		100		120		ns
t_{AA}	Address to Data Valid		85		100		120	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	10		10		10		ns
$\mathrm{t}_{\text {AMS }}$	MS LOW to Data Valid		85		100		120	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		45		50		60	ns
$\mathrm{t}_{\text {LZoE }}$	$\overline{O E}$ LOW to Low Z	5		5		5		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE HIGH }}$ to High $\mathrm{Z}^{[3]}$		30		35		45	ns
$\mathrm{t}_{\text {LZMS }}$	$\overline{\text { MS }}$ LOW to Low $\mathrm{Z}^{[4]}$	10		10		10		ns
$\mathrm{t}_{\text {HZMS }}$	$\overline{\text { MS }}$ HIGH to High $\mathbf{Z}^{[3,4]}$		30		35		45	ns
WRITE CYCLE ${ }^{[5]}$								
$\mathrm{t}_{\text {wc }}$	Write Cycle Time	85		100		120		ns
$\mathrm{t}_{\text {SMS }}$	$\overline{\text { MS LOW }}$ to Write End	75		90		100		ns
t_{AW}	Address Set-Up to Write End	75		90		100		ns
t_{HA}	Address Hold from Write End	7		7		7		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	5		5		5		ns
$\mathrm{t}_{\text {PWE }}$	WE Pulse Width	65		75		85		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	35		40		45		ns
$t_{\text {HD }}$	Data Hold from Write End	5		5		5		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[3]}$		30		35		40	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	5		5		5		ns

Data Characteristics (L Version only)

Parameter	Description	Test Conditions	1471		1481		Units
			Min.	Max.	Min.	Max.	
V_{DR}	$\mathrm{V}_{\text {CC }}$ for Retention Data	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \\ & \mathrm{CS} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0		2.0		V
$\mathrm{I}_{\mathrm{CCDR}}$	Data Retention Current			125		250	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[6]}$	Chip Deselect to Data Retention Time		0		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[7]}$	Operation Recovery Time		5		5		ns

Notes:

2. Test conditions assume signal transition times of 10μ s or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , output loading of 1 TTL load, and $100-\mathrm{pF}$ load capacitance.
3. $t_{\text {HZOE }}, t_{\text {HZMS }}$, and $t_{\text {HZWE }}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part 9 b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZMS}}$ is less than $\mathrm{t}_{\text {LZMS }}$ for any given device. These parameters are guaranteed and not 100% tested.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{MS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. Guaranteed, not tested.
7. $\quad \mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time.

Data Retention Waveform

1471-5

Switching Waveforms

Read Cycle No. $1^{[8,9]}$

Read Cycle No. $2^{[9,10]}$

Notes:
8. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{MS}}=\mathrm{V}_{\mathrm{IL}}$.
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
9. Address valid prior to or coincident with $\overline{\mathrm{MS}}$ transition LOW.

Switching Waveforms (continued)
Write Cycle No. $1^{[5,11]}$

Write Cycle No. 2 ${ }^{[5,11,12]}$

1471-9

Truth Table

$\overline{\mathbf{M S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Notes:

11. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
12. If $\overline{\mathrm{MS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

CYM1471 Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
85	CYM1471PF-85C	PF03	Commercial
	CYM1471LPF-85C		
	CYM1471PS-85C	PS05	
	CYM1471LPS-85C		
100	CYM1471PF-100C	PF03	Commercial
	CYM1471LPF-100C		
	CYM1471PS-100C	PS05	
	CYM1471LPS-100C		
120	CYM1471PF-120C		Commercial
	CYM1471LPF-120C		
	CYM1471PS-120C	PS05	
	CYM1471LPS-120C		

CYM1481 Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
85	CYM1481PF-85C	PF04	Commercial
	CYM1481LPF-85C		
	CYM1481PS-85C	PS06	
	CYM1481LPS-85C		
100	CYM1481PF-100C	PF04	Commercial
	CYM1481LPF-100C		
	CYM1481PS-100C	PS06	
	CYM1481LPS-100C		
120	CYM1481PF-120C	PF04	Commercial
	CYM1481LPF-120C		
	CYM1481PS-120C	PS06	
	CYM1481LPS-120C		

Features

- High-density 2-megabit SRAM module with parity
- High-speed CMOS SRAMs
- Access time of $\mathbf{3 0} \mathbf{n s}$
- Buffered address and control inputs
- Low active power
- 6.2W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of $\mathbf{. 5 2}$ in.
- Small PCB footprint
-1.6 sq . in.

Functional Description

The CYM1540 is a very high performance 2-megabit static RAM module organized as 256 K words by 9 bits. This module is constructed using nine $256 \mathrm{~K} \times 1$ static RAMs in SOJ packages mounted on an epoxy laminate board with pins. Input buffers are provided on the address and control lines to reduce input capacitance and loading.
Writing to the module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable (WE) inputs are both LOW. Data on the data input pins $\left(\mathrm{DI}_{0}\right.$ through $\left.\mathrm{DI}_{8}\right)$ of
the device is written into the memory location specified on the address pins (A_{0} through A_{17}). Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{17}) will appear on the appropriate data output pins (DO_{0} through DO_{8}). The data output pins remain in a highimpedance state when chip select $(\overline{\mathrm{CS}})$ is HIGH or when write enable ($\overline{\mathrm{WE}}$) is LOW.

Logic Block Diagram

1540-1

Pin Configuration

Selection Guide

	1540PF-30 1540PS-30	1540PF-35 1540PS-35	1540PF-45 1540PS-45
Maximum Access Time (ns)	30	35	45
Maximum Operating Current (mA)	1125	1125	1125
Maximum Standby Current (mA)	350	350	350

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Range	$\begin{array}{c}\text { Ambient } \\ \text { Temperature }\end{array}$	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the useful life may be impaired)
Storage Temperature
$-45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	CYM1540PS		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
VIHA	Input HIGH Voltage $\mathrm{A}_{0}-\mathrm{A}_{17}, \overline{\mathrm{CS}}, \overline{\mathrm{WE}}$		2.0	6.0	V
VIHD	Input HIGH Voltage $\mathrm{DI}_{0}-\mathrm{DI}_{8}$		2.2	6.0	V
VILA	Input LOW Voltage $\mathrm{A}_{0}-\mathrm{A}_{17}, \mathrm{CS}, \mathrm{WE}$			0.8	V
$V_{\text {lLD }}$	Input LOW Voltage $\mathrm{DI}_{0}-\mathrm{DI}_{8}$		-0.5	0.8	V
$V_{\text {IK }}$	Input Clamp Level $\mathrm{A}_{0}-\mathrm{A}_{17}$, CS, WE	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-1.2	V
$\mathrm{I}_{\text {IL }}$	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{VCC}$	-10	$+10$	$\mu \mathrm{A}$
IOZ	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+10	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{VCC}_{\leq}=\mathrm{Max} ., \text { I OUT }=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\leq \mathrm{V}} \end{aligned}$		1125	mA
ISB1	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \\ & \hline \end{aligned}$		350	mA
ISB2	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} ., \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \\ & \hline \end{aligned}$		230	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	15	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during power-up, otherwise $I_{\text {SB }}$ will exceed values given.
2. Tested on a sample basis.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	$\begin{aligned} & \text { 1540PF-30 } \\ & \text { 1540PS-30 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 1540PF-35 } \\ & \text { 1540PS-35 } \end{aligned}$		$\begin{aligned} & \text { 1540PF-45 } \\ & \text { 1540PS-45 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	30		35		45		ns
${ }^{\text {taA }}$	Address to Data Valid		30		35		45	ns
toha	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		30		35		45	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low Z	5		5		5		ns
${ }^{\text {H }}$ HCS	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4]}$	3	20	3	20	3	25	ns
tPu	$\overline{\mathrm{CS}}$ LOW to Power-Up	3		3		3		ns
tPD	$\overline{\text { CS }}$ HIGH to Power-Down		30		35		45	ns
WRITE CYCLE ${ }^{[5]}$								
twC	Write Cycle Time	30		35		45		ns
$\mathrm{tsCS}^{\text {S }}$	$\overline{\text { CS LOW to Write End }}$	20		25		35		ns
${ }^{\text {taw }}$	Address Set-Up to Write End	20		25		35		ns
t_{HA}	Address Hold from Write End	4		4		5		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up from Write Start	5		5		5		ns
${ }^{\text {t }}$ PWE	WE Pulse Width	20		25		35		ns
${ }_{\text {t }}$	Data Set-Up to Write End	20		25		35		ns
${ }^{\text {thD }}$	Data Hold from Write End	5		5		5		ns
${ }_{\text {t }}$ LZWE	WE HIGH to Low Z	3		3		3		ns
$t_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[4]}$	3	20	3	25	3	30	ns

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. t_{HZCS} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WELOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
7. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
8. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[6,7]}$

Switching Waveforms (continued)

Read Cycle No. $2^{[6,8]}$

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[5]}$

Write Cycle No. 2 (项 Controlled) ${ }^{[5,9]}$

Truth Table

$\overline{\text { CS }}$	$\overline{\text { WE }}$	Data In	Data Out	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	X	Data Out0-8	Read
L	L	Data In0-8	High Z	Write

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
30	CYM1540PF-30C	PF02	Commercial
	CYM1540PS-30C	PS04	
35	CYM1540PF-35C	PF02	Commercial
	CYM1540PS-35C	PS04	
45	CYM1540PF-45C	PF02	Commercial
	CYM1540PS-45C	PS04	

Features

- High-density 8-megabit SRAM module plus parity
- High-speed CMOS SRAMs
- Access time of 30 ns
- Buffered address and control inputs
- Low active power
- 6.2W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of 0.53 in .
- Small PCB footprint
-1.5 sq . in.

Functional Description

The CYM 1560 is a very high performance 8 -megabit static RAM module organized as $1,024 \mathrm{~K}$ words by 9 bits. This module is constructed using nine $1,024 \mathrm{~K} \times 1$ static RAMs in SOJ packages mounted on an epoxy laminate board with pins. Input buffers are provided on the address and control lines to reduce input capacitance and loading.
Writing to the module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable (WE) inputs are both LOW. Data on the data input pins (DI_{0} through DI_{8}) of the device is written into the memory location
specified on the address pins (A_{0} through A_{19}). Reading the device is accomplished by taking chip select LOW while write enable remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropriate data output pins.
The data output pins remain in a high-impedance state when chip select is HIGH or when write enable is LOW.

Logic Block Diagram

1560-1

Pin Configuration

1560-2

Selection Guide

	CYM1560-30	CYM1560-35	CYM1560-45
Maximum Access Time (ns)	30	35	45
Maximum Operating Current (mA)	1125	1125	1125
Maximum Standby Current (mA)	350	350	350

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Ambient Temperature with
Power Applied \qquad $\ldots \ldots \ldots \ldots . .-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. \qquad

$$
-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

DC Input Voltage

Maximum Ratings

(Above which the useful life may be impaired)
Storage Temperature $-45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	1560		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	6.0	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.3	0.8	V
V_{IK}	Input Clamp Level $\mathrm{A}_{0}-\mathrm{A}_{17}, \overline{\mathrm{CS}}, \overline{\mathrm{WE}}$	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-1.2	V
I_{l}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	- 10	$+10$	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	$+10$	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		1125	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		350	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} \overline{\mathrm{MS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		230	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	15	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	20	pF

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during power-up, otherwise $I_{S B}$ will exceed values given.
2. Tested on a sample basis.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	1560-30		1560-35		1560-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	30		35		45		ns
t_{AA}	Address to Data Valid		30		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		30		35		45	ns
tizcs	$\overline{\mathrm{CS}}$ LOW to Low Z	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4]}$	2	20	2	20	2	20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CS }}$ LOW to Power-Up	3		3		3		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to Power-Down		30		35		45	ns
WRITE CYCLE ${ }^{[5]}$								
t_{wc}	Write Cycle Time	30		35		45		ns
$t_{\text {scs }}$	$\overline{\text { CS }}$ LOW to Write End	20		25		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		35		ns
t_{HA}	Address Hold from Write End	5		5		5		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	5		5		5		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		35		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	5		5		5		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }} \mathrm{HIGH}$ to Low Z	2		2		2		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[4]}$	2	20	2	20	2	20	ns

Notes:
3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and $30-\mathrm{pF}$ load capacitance.
4. $t_{\text {HZCS }}$ and $t_{\text {HZWE }}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and $\bar{W} E$ LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH . The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
7. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms

Read Cycle No. $1^{[6,7]}$

Switching Waveforms (continued)
Read Cycle No. $2^{[6,8]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[5]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) $)^{[5,9]}$

Notes:

8. Address Valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\text { CS }}$	$\overline{\mathbf{W E}}$	Data In	Data Out	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	X	Data Out $_{0-8}$	Read
L	L	Data In		
$0-8$	High Z	Write		

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CYM1560PS-30C	PS07	Commercial
35	CYM1560PS-35C	PS07	Commercial
45	CYM1560PS-45C	PS07	Commercial

Document \#: 38-M-00043

CYM1610

Features

－High－density 256K－bit SRAM module
－High－speed CMOS SRAMs
－Access time of 12 ns
－Low active power
－3W（max．）
－Hermetic SMD technology
－TTL－compatible inputs and outputs
－Low profile
－Max．height of .215 in．
－Small PCB footprint
-1.2 sq．in．
－JEDEC－defined pinout
－Independent byte select
－ 2 V data retention（ L version）

Functional Description

The CYM1610 is a high－performance 256－kbit static RAM module organized as 16 K words by 16 bits．This module is constructed from four $16 \mathrm{~K} \times 4$ SRAMs in leadless chip carriers mounted on a ceramic substrate with pins．
Selecting the device is achieved by a chip select input pin as well as two byte select pins（ $\overline{\mathrm{UB}}, \overline{\mathrm{LB}}$ ）for independently selecting upper or lower byte for read or write operations．
Writing to the memory module is accom－ plished when the chip select $(\overline{\mathrm{CS}})$ ，byte select（ $\overline{\mathrm{UB}}, \overline{\mathrm{LB}}$ ）and write enable（ $\overline{\mathrm{WE}}$ ） inputs are LOW．Data on the input／output pins of the selected byte $\left(\mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}\right.$ ，

$16 \mathrm{~K} \times 16$ Static RAM Module

$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$ ）is written into the memory location specified on the address pins（ A_{0} through A_{13} ）．
Reading the device is accomplished by taking chip select（ $\overline{\mathrm{CS}}$ ），byte select（ $\overline{\mathrm{UB}}$ ， $\overline{\mathrm{LB}}$ ）and output enable（ $\overline{\mathrm{OE}}$ ）LOW，while $\overline{W E}$ remains inactive or HIGH．Under these conditions，the contents of the memory location specified on the address pins will appear on the appropriate data input／output pins．
The input／output pins remain in a high－ impedance state when chip select $\overline{\mathrm{CS}})$ ， byte select（ $\overline{\mathrm{UB}}, \overline{\mathrm{LB}}$ ）or output enable $\overline{\mathrm{OE}})$ is HIGH，or write enable（ $\overline{\mathrm{WE}}$ ）is LOW．

Logic Block Diagram

Pin Configuration

$\begin{gathered} \text { DIP } \\ \text { Top View } \end{gathered}$		
Vcc 1	40	V cc
CS ${ }^{2}$	39	صWE
$1 / \mathrm{O}_{15} \mathrm{C}^{3}$	${ }^{38}$	二 $\overline{\text { UB }}$
$1 / O_{14} \mathrm{~S}^{4}$	37	］$\overline{\text { B }}$
$1 / 0_{13} \mathrm{Cl}^{5}$	${ }^{36}$	NC
$1 / 0_{12} \mathrm{~B}^{6}$	35	A_{13}
$1 / 0_{11} \mathrm{~B}^{7}$	34	曰 A_{12}
$1 / 0_{10} \square^{8}$	${ }^{33}$	ص A_{11}
$1 / \mathrm{O}_{9} \mathrm{C}^{9}$	32	民 A_{10}
$1 / \mathrm{O}_{8}{ }^{10}$	31	$\mathrm{P}^{A_{9}}$
GND ${ }^{11}$	30	GND
$1 / 0_{7} \mathrm{~S}^{12}$	29	A_{8}
$1 / O_{6}{ }^{13}$	28	C_{7}
$1 / 0_{5}{ }^{14}$	27	A_{6}
$1 / O_{4} \square^{15}$	26	A_{5}
$1 / 0_{3} \square^{16}$	25	A_{4}
$1 / 0_{2} \mathrm{~S}^{17}$	24	A_{3}
$1 / 0_{1}{ }^{18}$	23	A_{2}
$1 / \mathrm{O}_{0}{ }^{19}$	22	ص A_{1}
OE \square^{20}	21	A_{0}

Selection Guide

		16101m12	161011015	1610HD－20	1610HD－25	1610HD－35	1610HD－45	1610HD－50
Maximum Access Time（ns）		\％	，	20	25	35	45	50
Maximum Operating Current(mA)	Com＇l	580	Stin	330	330	330	330	330
	Mil		S\％	500	360	330	330	330
Maximum Standby Current （mA）	Com＇l	20．	SO．	60	60	60	60	60
	Mil		251．	5s\％．	60	60	60	60

Maximum Ratings

(Above which the useful life may be impaired)

Storage	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potent	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State .	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V
Output Current into Outputs (Low)	20 m

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions			$\begin{aligned} & \text { 1610HD-20C } \\ & \text { 1610HD-25 } \\ & 1610 \mathrm{HD}-35 \\ & 1610 \mathrm{HD}-45 \\ & \text { 1610HD-50 } \end{aligned}$		Units
			Mins.	Mà\%	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	\% 4 .		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		14.		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		$\stackrel{4}{2}$	V\%.	2.2	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		\%	\#\#,	-0.5	0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$	H,	, $\begin{aligned} & \text { \% } \\ & \text {, }\end{aligned}$	-15	+ 15	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		+13.	-15	+15	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$	\%	\$30.		-350	mA
$\mathrm{I}_{\mathrm{CC} \times 16}$	V_{cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I} \text { out }=0 \mathrm{~mA} \\ & \mathrm{CS}, \mathrm{UB}, \& \overline{\mathrm{LB}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	\%	Sn		330	mA
$\mathrm{I}_{\mathrm{CCx} 8}$	V_{cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I} \text { Iout }=0 \mathrm{~mA} \\ & \mathrm{CS}=\mathrm{V}_{\mathrm{IL}}, \mathrm{UB} \text { or } \mathrm{LB}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$		5		200	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CS}}_{>} \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		S0\%		60	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$				60	mA

Shaded area contains preliminary information.

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	35	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	25	pF

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the CE input is required to keep the device deselected during $V_{\text {CC }}$ power-up, otherwise $I_{S B}$ will exceed values given.
3. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to：THEVENIN EQUIVALENT
OUTPUT O－O $\underbrace{167 \Omega} \longrightarrow 13 \mathrm{~V}$
Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameters	Description	1010MD 12		1610HDM15		1610HD－20		Units
		Min\％	Mav．	Min：	Max／	Min．	Max．	
READ CYCLE								
t_{RC}	Read Cycle Time	12		1 ．		20		ns
${ }^{\text {taA }}$	Address to Data Valid		就		将		20	ns
tora	Data Hold from Address Change	\％		\％		5		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		乡		1s		20	ns
${ }^{\text {t }}$ DOE	$\overline{\mathrm{OE}}$ LOW to Data Valid		\＃1		1／		10	ns
${ }_{\text {t }}$ LZOE	$\overline{\text { OE }}$ LOW to Low Z	3		\％		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE HIGH to High } \mathrm{Z}}$		8		§		8	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[6]}$	3		3．		5		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		8．		\％		8	ns
${ }_{\text {t }}$	$\overline{\mathrm{CS}}$ LOW to Power－Up	\＃		\％		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to Power－Down		12		1．		20	ns
WRITE CYCLE ${ }^{[7]}$								
twC	Write Cycle Time	12，		1s		20		ns
${ }_{\text {tSCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	If		12．		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set－Up to Write End	\＃1		12		15		ns
${ }^{\text {H }} \mathrm{H}$	Address Hold from Write End	\％		2		2		ns
${ }_{\text {tSA }}$	Address Set－Up to Write Start	介		\％		2		ns
tPWE	$\overline{\text { WE Pulse Width }}$	12．		12		15		ns
${ }_{\text {t }}$ D	Data Set－Up to Write End	I\％		10		10		ns
t_{HD}	Data Hold from Write End	2		2		2		ns
$t_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[6]}$	S		श		5		ns
$t_{\text {thZWE }}$	WE LOW to High $\mathrm{Z}^{[5,6]}$	\％．	\％	0．	\％	0	7	ns

Shaded area contains preliminary information．

Notes：

4．Test conditions assume signal transition times of 5 ns or less，timing reference levels of 1.5 V ，input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance．
5．$t_{\text {HZcs }}$ and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part（b）of AC Test Loads．Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage．
6．At any given temperature and voltage condition，$t_{\text {HzCs }}$ is less than $t_{\text {Lzcs }}$ for any given device．These parameters are guaranteed and not 100% tested．
7．The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WELOW．Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH．The data input set－up and hold timing should be referenced to the rising edge of the signal that terminates the write．
8．$\overline{\mathrm{WE}}$ is HIGH for read cycle．
9．Device is continuously selected，$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{LL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ ．
10．Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low．
11．Data I / O will be high impedance if $\overline{O E}=V_{I H}$ ．
12．If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$ ，the output remains in a high－impedance state．

Switching Characteristics Over the Operating Range (continued) ${ }^{[4]}$

Parameters	Description	1610HD-25		1610HD-35		1610HD-45		1610HD-50		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE

$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle Time	25		35		45		50		ns
${ }^{\text {taA }}$	Address to Data Valid		25		35		45		50	ns
toha	Data Hold from Address Change	5		5		5		5		ns
taCs	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		35		45		50	ns
tDOE	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		20		25		30	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	5		5		5		5		ns
${ }^{\text {t }} \mathrm{HZOE}$	$\overline{\mathrm{OE}}$ HIGH to High Z		15		15		15		20	ns
${ }^{\text {t }}$ LZCS	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[6]}$	5		5		5		5		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		10		15		15		20	ns
tPU	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		0		ns
${ }_{\text {t }}{ }_{\text {PD }}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to Power-Down		25		35		40		50	ns

WRITE CYCLE ${ }^{[7]}$										
twC	Write Cycle Time	25		35		45		50		ns
${ }_{\text {tSCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	22		25		35		45		ns
${ }_{\text {taw }}$	Address Set-Up to Write End	22		25		30		40		ns
${ }^{\text {tha }}$	Address Hold from Write End	3		3		3		3		ns
tSA	Address Set-Up to Write Start	4		4		4		4		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	18		25		30		30		ns
${ }^{\text {t }}$ S	Data Set-Up to Write End	13		15		15		20		ns
${ }^{\text {thD }}$	Data Hold from Write End	3		5		5		5		ns
$t_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$	3		5		5		5		ns
thZWE	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[5,6]}$	0	7	0	12	0	12	0	15	ns

Data Retention Characteristics (L Version Only)

Parameter	Description	Test Conditions	CYM1610		Units
			Min.	Max.	
VR	V_{CC} for Retention Data	$\begin{aligned} & V_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{CS}^{2} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current			4	mA
${ }^{\text {t }}{ }^{\text {chR }}{ }^{[14]}$	Chip Deselect to Data Retention Time		0		ns
${ }^{t^{[14]}}$	Operation Recovery Time		${ }^{\mathrm{R}^{\text {[}} \text { [13] }}$		ns
$\mathrm{I}_{\mathrm{LI}}{ }^{[14]}$	Input Leakage Current			8	$\mu \mathrm{A}$

Notes:
13. $\mathbf{t}_{\mathrm{RC}}=$ Read Cycle Time.
14. Guaranteed, not tested.

Data Retention Waveform

Switching Waveforms ${ }^{[10]}$

Read Cycle No. $1^{[7,8]}$

Switching Waveforms (continued)
Read Cycle No. $2^{[8,10]}$

Write Cycle No. $1\left(\overline{\mathbf{W E}}\right.$ Controlled ${ }^{[7,11]}$

Write Cycle No. $2(\overline{\mathrm{CS}} \text { Controlled })^{[7,11,12]}$

CYM1610

Truth Table

$\overline{\text { CS }}$	$\overline{\text { UB }}$	$\overline{\text { LB }}$	$\overline{\mathbf{O E}}$	$\overline{\mathrm{WE}}$	Input/Outputs	Mode
H	X	X	X	X	High Z	Deselect/Power-Down
L	H	H	X	X	High Z	Deselect/Power-Down
L	L	L	L	H	Data Out ${ }_{0-15}$	Read Word
L	H	L	L	H	Data Out ${ }_{0-7}$	Read Lower Byte
L	L	H	L	H	Data Out_{8-15}	Read Upper Byte
L	L	L	X	L	Data In_{0-15}	Write Word
L	H	L	X	L	Data $\mathbf{I n}_{0-7}$	Write Lower Byte
L	L	H	X	L	Data In_{8-15}	Write Upper Byte
L	L	L	H	H	High Z	Deselect
L	H	L	H	H	High Z	Deselect
L	L	H	H	H	High Z	Deselect

Document \#: 38-M-00006-A

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
12	-4M13011) 22%	HMOU	Commerchal
15		H101.	Comaereyl
	W. M16am M SME	H101	Miliary
20	CYM1610HD-20C	HD01	Commercial
	CYM1610LHD-20C	HD01	
	\%M6110 20 MF	M10	Muiay
25	CYM1610HD-25C	HD01	Commercial
	CYM1610LHD-25C	HD01	
	CYM1610HD-25MB	HD01	Military
	CYM1610LHD-25MB	HD01	
35	CYM1610HD-35C	HD01	Commercial
	CYM1610LHD-35C	HD01	
	CYM1610HD-35MB	HD01	Military
	CYM1610LHD-35MB	HD01	
45	CYM1610HD-45C	HD01	Commercial
	CYM1610LHD-45C	HD01	
	CYM1610HD-45MB	HD01	Military
	CYM1610LHD-45MB	HD01	
50	CYM1610HD-50C	HD01	Commercial
	CYM1610LHD-50C	HD01	
	CYM1610HD-50MB	HD01	Military
	CYM1610LHD-50MB	HD01	

Shaded area contains preliminary information.

CYM1611

Features

- High-density 256-kilobit SRAM module
- High-speed
- Access time of $\mathbf{1 2} \mathbf{n s}$
- 16-bit-wide organization
- Low active power
-1.8 W (max.) at 25 ns
- TTL-compatible inputs and outputs
- Low profile
- Max. height of 0.5 in .
- Small PCB footprint
-0.4 sq . in. (ceramic version)
-0.6 sq. in. (plastic version)
- 2 V data retention (L version)

Functional Description

The CYM1611 is a very high performance 256-kikbit static RAM module organized as 16 K words by 16 bits. The module is constructed using four 16K x 4 static RAMs mounted on a vertical substrate with pins. The vertical DIP format minimizes board space while still keeping a maximum height of 0.5 in .
Writing to the memory module is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the sixteen input/output pins (D_{0} through D_{15}) is written into the memory
location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking chip select $\overline{\mathrm{CS}}$ and output enable ($\overline{\mathrm{OE}}$) LOW while write enable (WE) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the sixteen data input/output pins.
The input/output pins remain in a highimpedance state unless the module is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}})$ is HIGH.

Logic Block Diagram

Pin Configuration

Selection Guide

	$\mathbf{1 6 1 1 - 1 2}$	$\mathbf{1 6 1 1 - 1 5}$	$1611-20$	$\mathbf{1 6 1 1 - 2 5}$	$\mathbf{1 6 1 1 - 3 0}$	$\mathbf{1 6 1 1 - 3 5}$	$\mathbf{1 6 1 1 - 4 5}$
Maximum Access Time (ns)	12	15	20	25	30	35	45
Maximum Operating Current (mA)	550	550	330	330	330	330	330
Maximum Standby Current (mA)	250	250	80	80	80	80	80

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . \qquad -0.5 V to +7.0 V
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
Output Current into Outputs (LOW) 20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	$\begin{aligned} & 1611-12 \\ & 1611-15 \end{aligned}$		$\begin{aligned} & 1611-20 \\ & 1611-25 \\ & 1611-30 \\ & 1611-35 \\ & 1611-45 \end{aligned}$		Units
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=-8.0 \mathrm{~mA}$		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{CC}	2.2	V_{Cc}	V
V_{IL}	Input LOW Voltage		-0.5	0.8	-0.5	0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	-20	+20	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND}^{\leq} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-20	+20	-20	$+20$	$\mu \mathrm{A}$
I_{os}	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-350		-350	mA
I_{CC}	V_{CC} Operating Supply	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\leq \mathrm{V}_{\mathrm{IL}}} \end{aligned}$		550		330	mA
$\mathrm{I}_{\text {SB } 1}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{Cc}}, \overline{\mathrm{CS}}>\mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		250		80	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\text { CS }}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{Cc}} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{Cc}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$				80	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	40	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested on a sample basis.

AC Test Loads and Waveforms

SCOPE
(a)
(b) 1611-3

$1611-4$

Equivalent to: THEVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	1611-12		1611-15		1611-20		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	12		15		20		ns
t_{AA}	Address to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	2		2		2		ns
$\mathrm{t}_{\text {Acs }}$	$\overline{\text { CS }}$ LOW to Data Valid		12		15		20	ns
$t_{\text {doe }}$	OE LOW to Data Valid		10		10		10	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	2		2		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[4]}$		8		8		8	ns
tizcs	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[5]}$	3		3		5		ns
$t_{\text {HzCs }}$	$\overline{\text { CS }}$ HIGH to High $\mathrm{Z}^{[4,5]}$		8		8		8	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CS }}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CS }}$ HIGH to Power-Down		12		15		20	ns
WRITE CYCLE ${ }^{[6]}$								
$t_{w c}$	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	10		12		15		ns
$\mathrm{t}_{\text {Aw }}$	Address Set-Up to Write End	10		12		15		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PwE }}$	$\overline{\text { WE }}$ Pulse Width	10		12		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		10		ns
t_{HD}	Data Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[4]}$	3		3		3		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\text { WE LOW to High Z }}$	0	7	0	7	0	7	ns

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. $t_{\text {HZOE }}, t_{\text {HZCS }}$, and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
5. At any given temperature and voltage condition, $t_{\text {HZCS }}$ is less than ${ }^{t_{\text {LZCS }}}$ for any given device. These parameters are guaranteed and not 100% tested.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write, and either signal can terminate a write by going HIGH . The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range ${ }^{[3]}$ (continued)

Parameters	Description	1611-25		1611-30		1611-35		1611-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	25		30		35		45		ns
t_{AA}	Address to Data Valid		25		30		35		45	ns
toha	Data Hold from Address Change	3		3		3		5		ns
$\mathrm{t}_{\text {Acs }}$	$\overline{\text { CS }}$ LOW to Data Valid		25		30		35		45	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		20		25		30	ns
$\mathrm{t}_{\text {LZoE }}$	$\overline{\text { OE L L }}$ LOW to Low Z	0		0		0		0		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[4]}$		10		15		20		20	ns
t LzCs	$\overline{\bar{C}} \overline{\text { S }}$ LOW to Low ${ }^{[5]}$	5		10		10		10		ns
$\mathrm{t}_{\mathrm{HzCs}}$	$\overline{\overline{C S}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[4,5]}$		10		15		15		20	ns
t_{pu}	$\overline{\text { CS }}$ LOW to Power-Up	0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CS }}$ HIGH to Power-Down		20		30		35		45	ns
WRITE CYCLE ${ }^{[6]}$										
$\mathrm{t}_{\text {wc }}$	Write Cycle Time	20		25		25		35		ns
tscs	$\overline{\overline{C S}}$ LOW to Write End	20		25		30		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		40		ns
t_{HA}	Address Hold from Write End	2		2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		2		2		ns
$t_{\text {PWE }}$	WE Pulse Width	20		25		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	13		20		20		25		ns
t_{HD}	Data Hold from Write End	2		2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\overline{W E}}$ HIGH to Low $\mathrm{Z}^{[4]}$	0	7	0	12	0	12	0	15	ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE L L }}$ L to High Z	3		5		5		5		ns

Data Retention Characteristics (L Version Only)

Parameters	Description	Test Conditions	1611		Units
			Min.	Max.	
V_{DR}	$\mathrm{V}_{\text {CC }}$ for Retention of Data	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \\ & \mathrm{CS} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current			4	mA
$\mathrm{t}_{\mathrm{CDR}}$	Chip Deselect to Data Retention Time		0		ns
t_{R}	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{[7]}$		ns
I_{LI}	Input Leakage Current			5	$\mu \mathrm{A}$

Notes:

7. $t_{\mathrm{RC}}=$ read cycle time.
8. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
10. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
11. Data I/O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
12. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Data Retention Waveform

Switching Waveforms

Read Cycle No. $1^{[8,9]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[6,11]}$

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\text { CS }}$ Controlled) ${ }^{[6,11,12]}$

1611-9

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}$	Inputs/ Outputs	Mode
\mathbf{H}	\mathbf{X}	\mathbf{X}	High Z	Deselect/ Power-Down
L	L	H	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CYM1611HV-12C	HV01	Commercial
	CYM1611PV-12C	PV03	
15	CYM1611HV-15C	HV01	Commercial
	CYM1611PV-15C	PV03	
20	CYM1611HV-20C	HV01	Commercial
	CYM1611LHV-20C	HV01	
	CYM1611PV-20C	PV03	
	CYM1611LPV-20C	PV03	
25	CYM1611HV-25C	HV01	Commercial
	CYM1611LHV-25C	HV01	
	CYM1611PV-25C	PV03	
	CYM1611LPV-25C	PV03	
30	CYM1611HV-30C	HV01	Commercial
	CYM1611LHV-30C	HV01	
	CYM1611PV-30C	PV03	
	CYM1611LPV-30C	PV03	
35	CYM1611HV-35C	HV01	Commercial
	CYM1611LHV-35C	HV01	
	CYM1611PV-35C	PV03	
	CYM1611LPV-35C	PV03	
45	CYM1611HV-45C	HV01	Commercial
	CYM1611LHV-45C	HV01	
	CYM1611PV-45C	PV03	
	CYM1611LPV-45C	PV03	

CYM1620

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 20 ns
- 40-pin, 0.6-inch-wide DIP package
- Low active power
- 1.9W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- JEDEC-compatible pinout
- Commercial and military temperature ranges

Functional Description

The CYM1620 is a very high performance 1-megabit static RAM module organized as 64 K words by 16 bits. The module is constructed using four $32 \mathrm{~K} \times 8$ static RAMs mounted onto a substrate. A decoder is used to interpret the higher-order address A_{15} and select one of the two pairs of RAMs.
Writing to the memory module is accomplished when the chip select ($\overline{\mathrm{CS}})$, byte select $(\overline{\mathrm{UB}}, \overline{\mathrm{LB}})$ and write enable ($(\overline{\mathrm{WE}})$ inputs are both LOW. Data on the input/output pins of the selected byte ($\mathrm{I} / \mathrm{O}_{8}$ through $\mathrm{I} / \mathrm{O}_{15}, \mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into
the memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking chip select $(\overline{\mathrm{CS}})$, byte select $(\overline{\mathrm{UB}}, \overline{\mathrm{LB}})$ and output enable (WE) LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropriate data input/output pins.
The input/output pins remain in a highimpedance state when chip select ($\overline{\mathrm{CS}}$), byte select ($\overline{\mathrm{UB}}, \overline{\mathrm{LB}}$) or output enable $(\overline{\mathrm{OE}})$ is HIGH , or write enable ($\overline{\mathrm{WE})}$ is LOW.

Logic Block Diagram

Pin Configuration
Top View

Selection Guide

		1620.20	1620-25	1620-30	1620-35	1620-45	1620-55
Maximum Access Time (ns)		20	25	30	35	45	55
Maximum Operating Current (mA)	Commercial	340	340	340	340	340	340
	Military			340	340	340	340
Maximum Standby Current (mA)	Commercial	140	140	140	140	140	140
	Military			140	140	140	140

[^54]
Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature $\ldots \ldots \ldots .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied (Commercial) $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
(Military) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State 0.5 V to +7.0 V
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
Output Current into Outputs (LOW)
20 mA

Operating Range

Range	Ambient Temperature	V $_{\text {cc }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	1620		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{cc}}$, Output Disabled	-10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\mathrm{Cc}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-300	mA
$\mathrm{I}_{\mathrm{CC} \times 16}$	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{CS}, \mathrm{UB}, \text { and } \overline{\mathrm{LB}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$		340	mA
$\mathrm{I}_{\mathrm{CCx} 8}$	V_{cc} Operating Supply Current	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}_{\mathrm{C}, \mathrm{I}} \mathrm{I}_{\text {out }}=0 \mathrm{~mA}$, $\overline{\mathrm{CS}} \leq \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{UB}}$ or $\overline{\mathrm{LB}}=\mathrm{V}_{\mathrm{IL}}$		200	mA
$\mathrm{I}_{\text {ISB1 }}$	Automatic $\overline{\overline{C S}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{cc}} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty } \mathrm{Cycle}=100 \% \\ & \hline \end{aligned}$		140	mA
$\mathrm{I}_{\text {SBB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{\left[{ }^{[2]}\right.}$	$\begin{aligned} & \mathrm{Max} .^{\mathrm{V}_{\mathrm{C}} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V},} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		80	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	35	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	40	pF

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{\text {SB }}$ will exceed values given.
3. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

$$
\text { (b) } \quad 1620-3
$$

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameters	Description	1620-20		1620-25		1620-30		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	20.		25		30		ns
t_{AA}	Address to Data Valid		20		25		30	ns
$\mathrm{t}^{\text {OHA }}$	Data Hold from Address Change	3.		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid		20		25		30	ns
$t_{\text {doe }}$	$\overline{O E}$ LOW to Data Valid		10.		10		15	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High Z		10.		10		20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low $\mathrm{Z}^{[5]}$	3		3		5		ns
thzCs	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		20.		20		20	ns
WRITE CYCLE ${ }^{[7]}$								
t_{wc}	Write Cycle Time	20		25		30		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\overline{C S}}$ LOW to Write End	15		20		25		ns
t_{AW}	Address Set-Up to Write End	15		20		25		ns
t_{HA}	Address Hold from Write End	2		2		5		ns
$\mathrm{t}_{5 \mathrm{~A}}$	Address Set-Up to Write Start	5		5		5		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	15.		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		12		18		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	2		2		3		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low ${ }^{[5]}$	0		0		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[5,6]}$	0	8	0	10	0	15	ns

Parameters	Description	1620-35		1620-45		1620-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		5		5		ns
$\mathrm{t}_{\text {ACS }}$	CS LOW to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{O E}$ LOW to Data Valid		18		25		30	ns
$\mathrm{t}_{\text {LZOE }}$	OE LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High Z		20		20		25	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS LOW }}$ to Low ${ }^{[5]}$	3		5		5		ns
$\mathrm{t}_{\text {HzCS }}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		20		20		25	ns
WRITE CYCLE ${ }^{[7]}$								
$t_{\text {wc }}$	Write Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	30		40		45		ns
t_{AW}	Address Set-Up to Write End	30		40		45		ns
t_{HA}	Address Hold from Write End	5		5		5		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	5		5		5		ns
$\mathrm{t}_{\text {PWE }}$	WE Pulse Width	25		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	18		20		25		ns
t_{HD}	Data Hold from Write End	3		5		5		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low ${ }^{(5]}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HZWE}}$	WE LOW to High $\mathrm{Z}^{[5,6]}$	0	15	0	15	0	25	ns

[^55]
Switching Waveforms ${ }^{[10]}$

Read Cycle No. $2^{[8,10]}$

Write Cycle No. $1\left(\overline{\mathbf{W E}}\right.$ Controlled) ${ }^{[7,11]}$

Notes:

4. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LZCS }}$ for any given device. These parameters are guaranteed and not 100% tested.
6. t_{HZCS} and $\mathrm{t}_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write,
and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be reference to the rising edge of the signal that terminates the write.
8. $\overline{W E}$ is HIGH for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{LL}}$.
10. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
11. Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
12. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGII, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[7,8,12]}$

1620-8

Truth Table

$\overline{\mathrm{CS}}$	$\overline{\text { UB }}$	$\overline{\mathbf{L B}}$	$\overline{\mathrm{OE}}$	$\overline{\text { WE }}$	Inputs/ Outputs	Mode
H	X	X	X	X	High Z	Deselect/ Power-Down
L	H	H	X	X	High Z	Deselect/ Power-Down
L	L	L	L	H	Data Out ${ }_{0-15}$	Read
L	H	L	L	H	Data In_{0-7}	Read Lower Byte
L	L	H	L	H	Data Out ${ }_{\text {8-1 }}$	Read Upper Byte
L	L	L	X	L	Data In_{0-15}	Write
L	H	L	X	L	Data In_{0-7}	Write Lower Byte
L	L	H	X	L	Data In_{8-15}	Write Upper Byte
L	L	L	H	H	High Z	Deselect
L	H	L	H	H	High Z	Deselect
L	L	H	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CMM 620 PD 20 e	POO 4	Commercial
	(\%M1620111-20\%	H11003	
25	CYM1620PD-25C	PD04	Commercial
	CYM1620HD-25C	HD03	
30	CYM1620PD-30C	PD04	Commercial
	CYM1620HD-30C	HD03	
	C M 1620H1-30M	HDO3	Military
35	CYM1620PD-35C	PD04	Commercial
	CYM1620HD-35C	HD03	
	CM162011-35M13	11003	Miliaty
45	CYM1620PD-45C	PD04	Commercial
	CYM1620HD-45C	HD03	
	CYM1620HD-45MB	HD03	Military
55	CYM1620PD-55C	PD04	Commercial
	CYM1620HD-55C	HD03	
	CYM1620HD-55MB	HD03	Military

[^56]
$64 \mathrm{~K} \times 16$ Static RAM Module

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{2 0} \mathbf{n s}$
- Customer configurable
$-\mathrm{x4}, \mathrm{x8}, \mathrm{x} 16$
- Low active power
- 6.8W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of 270 in .
- Small PCB footprint
-2 sq . in.
- 2 V data retention (L version)

Functional Description

The CYM1621 is a high-performance 1-megabit static RAM module organized as 64 K words by 16 bits. This module is constructed from sixteen 64 K x 1 SRAMs in leadless chip carriers mounted on a ceramic substrate with pins. Four separate $\overline{\mathrm{CS}}$ pins are used to control each 4-bit nibble of the 16 -bit word. This feature permits the user to configure this module as either $256 \mathrm{~K} \mathrm{x} 4,128 \mathrm{~K} \times 8$ or $64 \mathrm{~K} \times 16$ organization through external decoding and appropriate pairing of the outputs. Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}_{\mathrm{xx}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the data lines $\left(\mathrm{D}_{\mathrm{x}}\right)$ is written into the
memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking the chip select ($\overline{\mathrm{CS}}_{\mathrm{xx}}$) LOW, while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data lines (D_{x}).
The data output is in the high-impedance state when chip enable ($\overline{\mathrm{CS}}_{\mathrm{xx}}$) is HIGH or write enable ($\overline{\mathrm{WE}}$) is LOW.
Power is consumed in each 4-bit nibble only when the appropriate $\overline{\mathrm{CS}}$ is enabled, thus reducing power in the x 4 or x 8 mode.

Logic Block Diagram

Selection Guide

		$\mathbf{1 6 2 1 H D}-20$	$\mathbf{1 6 2 1 H D}-\mathbf{2 5}$	$\mathbf{1 6 2 1 H D}-\mathbf{3 0}$	$\mathbf{1 6 2 1 H D}-35$	$\mathbf{1 6 2 1 H D}-45$
Maximum Access Time (ns)	20	25	30	35	45	
Maximum Operating Current (mA)	Commercial	1250	1250	1250	1250	1250
	Military		1250	1250	1250	1250
Maximum Standby Current (mA)	Commercial	320	320	320	320	320
	Military		320	320	320	320

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	C
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V
Cur	

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[4]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	CYM1621HD		Units
			Min.	Max.	
VOH	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$V_{\text {IH }}$	Input HIGH Voltage		2.2	$\mathrm{V}_{\text {CC }}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	V
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{VO} \leq \mathrm{Vcc}$, Output Disabled	-20	+20	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=$ GND		-350	mA
$\mathrm{I}_{\mathrm{CCx} 16}$	$V_{C C}$ Operating Supply Current by 16 mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \text { IOUT }=0 \mathrm{~mA} \\ & \mathrm{CS}_{\mathrm{xx}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		1250	mA
$\mathrm{I}_{\mathrm{CCx} 8}$	$V_{C C}$ Operating Supply Current by 8 mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \text { IOUT }=0 \mathrm{~mA} \\ & \mathrm{CS}_{\mathrm{Xx}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		850	mA
$\mathrm{I}_{\mathrm{CCx} 4}$	$V_{C C}$ Operating Supply Current by 4 mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \text { IOUT }=0 \mathrm{~mA} \\ & \mathrm{CS}_{\mathrm{xx}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		650	mA
ISB1	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	Max. $V_{\mathrm{CC}}, \overline{\mathrm{CS}}_{\mathrm{xx}} \geq \mathrm{V}_{\mathrm{IH}}$ Min. Duty Cycle $=100 \%$		320	mA
ISB2	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CS}}_{\mathrm{xx}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq 0.3 \mathrm{~V} \end{aligned}$		320	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	130	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to $V_{C C}$ on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
3. Tested initially and after any design or process changes that may affect these parameters.
4. T_{A} is the "instant on" case temperature.

Switching Characteristics Over the Operating Range ${ }^{[5]}$

	Description	1621HD-20		1621HD-25		1621HD-30		1621HD-35		1621HD-45		Unit
S		Min.	Max.									

READ CYCLE

$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle Time	20		25		30		35		45		ns
t_{AA}	Address to Data Valid		20		25		30		35		45	ns
toha	Output Hold from Address Change	5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		20		25		30		35		45	ns
${ }^{\text {t }}$ LZCS	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[7]}$	5		5		5		5		5		ns
${ }^{\text {thZCS }}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		10		20		25		30		30	ns
tpu	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		0		0		ns
${ }_{\text {tPD }}$	$\overline{\overline{C S}} \mathrm{HIGH}$ to Power-Down		20		25		30		35		35	ns

WRITE CYCLE ${ }^{[8]}$

twc	Write Cycle Time	20		25		30		35		45		ns
${ }_{\text {tsCS }}$	$\overline{\text { CS }}$ LOW to Write End	15		22		25		30		40		ns
${ }^{\text {t }}$ AW	Address Set-Up to Write End	15		22		25		30		40		ns
${ }^{\text {tha }}$	Address Hold from Write End	0		0		0		0		0		ns
${ }_{\text {t }}{ }^{\text {d }}$	Address Set-Up to Write Start	2		2		3		5		5		ns
${ }^{\text {tPWE }}$	$\overline{\text { WE Pulse Width }}$	16		20		20		25		30		ns
$\mathrm{tSD}^{\text {d }}$	Data Set-Up to Write End	10		15		20		20		25		ns
t_{HD}	Data Hold from Write End	2		3		5		5		5		ns
${ }_{\text {L L ZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	5		5		5		5		5		ns
${ }^{\text {t }}$ HZWE	$\overline{\text { WE LOW }}$ to High $\mathbf{Z}^{[6,7]}$	0	20	0	20	0	25	0	25	0	25	ns

Notes:
5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 - pF load capacitance.
6. $t_{\text {HZCS }}$ and $t_{\text {HZWE }}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of ACTest Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, $t_{\text {HZCS }}$ is less than $\mathfrak{i}_{\text {LZCS }}$ for any given device.
8. The internal write time of the memory is defined by the overlap of $\stackrel{\mathrm{CS}}{ }$ LOW and $\overline{W E}$ LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
11. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Data Retention Characteristics (L Version Only)

Parameter	Description	Test Conditions	CYM1621		Units
			Min.	Max.	
VR	V_{CC} for Retention of Data	$\begin{aligned} & V_{\mathrm{CC}}=2.0 \mathrm{~V}, \\ & \mathrm{CS} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0		V
$\mathrm{I}_{\mathrm{CCDR}}$	Data Retention Current			16	mA
${ }^{\mathrm{t}} \mathrm{CDR}$	Chip Deselect to Data Retention Time		0		ns
t_{R}	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{[12]}$		ns
$\mathrm{I}_{\text {LI }}$	Input Leakage Current			10	$\mu \mathrm{A}$

Notes:
12. $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time.

Data Retention Waveform

Switching Waveforms ${ }^{[10]}$
Read Cycle No. $1^{[9,10]}$

Switching Waveforms (continued)

Read Cycle No. $2^{[9,10]}$

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[8]}$

Write Cycle No. $2(\overline{\mathbf{C S}} \text { Controlled })^{[8,11]}$

$1621-11$

CYM1621
SEMICONDUCTOR

Truth Table

$\overline{\mathbf{C S}}_{\mathbf{x x}}$	$\overline{\mathbf{W E}}$	Input/Outputs	Mode
H	\mathbf{X}	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
20	CYM1621HD-20C	HD02	Commercial
	CYM1621LHD-20C	HD02	
25	CYM1621HD-25C	HD02	Commercial
	CYM1621LHD-25C	HD02	
	CYM1621HD-25MB	HD02	Military
	CYM1621LHD-25MB	HD02	
30	CYM1621HD-30C	HD02	Commercial
	CYM1621LHD-30C	HD02	
	CYM1621HD-30MB	HD02	Military
	CYM1621LHD-30MB	HD02	
35	CYM1621HD-35C	HD02	Commercial
	CYM1621LHD-35C	HD02	
	CYM1621HD-35MB	HD02	Military
	CYM1621LHD-35MB	HD02	
45	CYM1621HD-45C	HD02	Commercial
	CYM1621LHD-45C	HD02	
	CYM1621HD-45MB	HD02	Military
	CYM1621LHD-45MB	HD02	

Document \#: 38-M-00009-A

CYM1622

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- Low active power
- 2.2W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Pinout compatible with CYM1611 and CYM1624
- Low profile
- Max. height of .50 in
- Small PCB footprint
-0.5 sq. in. (ceramic)
-0.68 sq. in. (FR4)

Functional Description

The CYM1622 is a very high performance 1-megabit static RAM module organized as 64 K words by 16 bits. The module is constructed using four 64K x 4 static RAMs mounted onto a vertical substrate with pins. The pinout of this module is compatible with two other Cypress modules (CYM1611 and CYM1624) to maximize system flexibility.
Writing to the memory module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable (WE) inputs are both LOW. Data on the sixteen input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{15}$) of the device is written into
the memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable ($\overline{\mathrm{OE}) ~ L O W ~ w h i l e ~ w r i t e ~ e n a b l e ~(\overline{W E}) ~ r e-~}$ mains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropriate data input/output pins.
The input/output pins remain in a highimpedance state unless the module is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.

Logic Block Diagram

Pin Configuration

Selection Guide

	$\mathbf{1 6 2 2 - 2 5}$	$\mathbf{1 6 2 2 - 3 0}$	$\mathbf{1 6 2 2 - 3 5}$	$\mathbf{1 6 2 2 - 4 5}$
Maximum Access Time (ns)	25	30	35	45
Maximum Operating Current (mA)	400	400	400	400
Maximum Standby Current (mA)	140	140	140	140

Maximum Ratings (Above which the useful life may be impaired.)	
Storage Temperature	$65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied	$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Input Voltage	-0.5 V to +7.0 V
Output Current into Outputs (LOW)	20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	CYM1622		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	V
I_{I}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+10	$\mu \mathrm{A}$
I_{CC}	Vcc Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\text {out }}=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\leq} \mathrm{V}_{\mathrm{IL}} \end{aligned}$		400	mA
$\mathrm{I}_{\text {ISB1 }}$	Automatic $\overline{\text { CS }}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max.; } \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		140	$\mathrm{m} \wedge$
$\mathrm{I}_{\text {ISB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} . ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		80	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	35	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$\mathbf{1 5}$	pF

Notes:

1. $\quad \mathrm{V}_{\mathrm{IL}(\mathrm{MIN})}=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns .
2. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	1622-25		1622-30		1622-35		1622-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	25		30		35		45		ns
t_{AA}	Address to Data Valid	25		30		35		45		ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid	25		30		35		45		ns
$\mathrm{t}_{\text {doe }}$	$\overline{\overline{O E}}$ LOW to Data Valid		15		20		25		30	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		0		ns
$\mathbf{t}_{\text {HzoE }}$	$\overline{\mathrm{OE}}$ HIGH to High Z		15		20		20		20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\mathrm{Hzcs}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4]}$		15		20		20		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CS LOW }}$ to Power-Up	0	25	0	30	0	35	0	45	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\overline{C S}}$ HIGH to Power-Down		25		30		35		45	ns

WRITE CYCLE ${ }^{[5]}$

$\mathbf{t w c}_{\text {w }}$	Write Cycle Time	25		30		35		45		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	20		25		30		40		ns
$t_{\text {AW }}$	Address Set-Up to Write End	20		25		30		40		ns
t_{HA}	Address Hold from Write End	3		3		3		3		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		2		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		20		25		ns
$\mathbf{t}_{\text {HD }}$	Data Hold from Write End	2		2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low } \mathrm{Z}}$	0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW }}$ to High $\mathrm{Z}^{[4]}$	0	15	0	15	0	15	0	20	ns

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. t_{HZCS} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write,
and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be reference to the rising edge of the signal that terminates the write.
6. $\overline{W E}$ is HIGH for read cycle.
7. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
8. Address valid prior to or coincident with $\overline{\mathrm{Cs}}$ transition LOW.
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[6,7]}$

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[5]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[5,9]}$

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	L	H	Data Out	Read
L	X	L	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CYM1622HV-25C	HV03	Commercial
	CYM1622PV-25C	PV04	
30	CYM1622HV-30C	HV03	Commercial
	CYM1622PV-30C	PV04	
35	CYM1622HV-35C	HV03	Commercial
	CYM1622PV-35C	PV04	
45	CYM1622HV-45C	HV03	Commercial
	CYM1622PV-45C	PV04	

Document \#: 38-M-00001-B

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{2 5} \mathbf{n s}$
- Low active power
- 2.75W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Pin layout compatible with CYM1611 and CYM1622
- Low profile
— Max. height of .54 in.
- Small PCB footprint
- 0.7 sq. in.

Functional Description

The CYM1624 is a very high performance 1-megabit static RAM module organized as 64 K words by 16 bits. This module is constructed using four $64 \mathrm{~K} \times 4$ static RAMs in SOJ packages mounted on an epoxy laminate board with pins. The pinout of this module is compatible with two other Cypress modules (CYM1611 and CYM1622) to maximize system flexibility.
Writing to the module is accomplished when the chip select $(\overline{\mathrm{CE}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the sixteen input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{15}$) of the device is written
into the memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}})$ LOW, while write enable ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{15}) will appear on the appropriate data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{15}$).
The data input/output pins remain in a high-impedance state when chip select $(\overline{\mathrm{CS}})$ is HIGH or when write enable ($\overline{\mathrm{WE}}$) is LOW.

Logic Block Diagram

Pin Configuration Plastic VDIP

Selection Guide

	1624PV-25	1624PV-35	1624PV-45
Maximum Access Time (ns)	25	35	45
Maximum Operating Current (mA)	500	500	500
Maximum Standby Current (mA)	160	160	160

Maximum Ratings

(Above which the useful life may be impaired)
Storage Temperature $-45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	CYM1624PV		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
V_{H}	Input HIGH Voltage		2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	$\mu \mathrm{A}$
IOZ	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-20	+10	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{CS} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		500	mA
ISB1	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{array}{\|l} \hline \mathrm{VCC}=\text { Max., } \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ \text { Min. Duty Cycle }=100 \% \\ \hline \end{array}$		160	mA
ISB2	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		80	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	35	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF

Notes:

1. $\quad \mathrm{V}_{\mathrm{IL}(\mathrm{MIN})}=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns .
2. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

GND

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	1624PV-25		1624PV-35		1624PV-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
${ }^{\text {taA }}$	Address to Data Valid		25		35		45	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		ns
${ }^{\text {t }}$ ACS	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low Z	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4]}$		15		25		30	ns
t_{P}	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CS}}$ HIGH to Power-Down		25		35		45	ns
WRITE CYCLE								
${ }_{\text {twC }}$	Write Cycle Time	25		35		45		ns
${ }_{\text {tSCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	20		30		35		ns
${ }^{\text {taw }}$	Address Set-Up to Write End	20		30		35		ns
${ }_{\text {tha }}$	Address Hold from Write End	3		5		5		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up from Write Start	2		3		5		ns
${ }^{\text {t PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		35		ns
${ }_{\text {t }}$ D	Data Set-Up to Write End	15		20		20		ns
thD	Data Hold from Write End	3		5		5		ns
${ }_{\text {L }}$ LZWE	WE HIGH to Low Z	3		3		2		ns
${ }^{\text {thZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[4]}$	0	15	0	15	0	15	ns

Notes:
3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. $\mathbf{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured +500 mV from steady state voltage.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WELOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
7. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
8. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[6,7]}$

Switching Waveforms (continued)
Read Cycle No. $2^{[6,8]}$

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[5]}$

1624.7

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[5,9]}$

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathrm{WE}}$	Input/Outputs	Mode
H	X	High Z	Deselect Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
25	CYM1624PV-25C	PV01	Commercial
35	CYM1624PV-35C	PV01	Commercial
45	CYM1624PV-45C	PV01	Commercial

[^57]
Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{2 5} \mathbf{n s}$
- Customer configurable
$-\mathrm{x4}$, x8, x16
- Low active power - 10W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of $\mathbf{. 3 0 0} \mathrm{in}$.
- Small PCB footprint - 2.2 sq. in.

Functional Description

The CYM1641 is a high-performance 4-megabit static RAM module organized as 256 K words by 16 bits. This module is constructed from sixteen $256 \mathrm{~K} \times 1$ SRAMs in leadless chip carriers mounted on a ceramic substrate with pins. Four separate $\overline{\mathrm{CS}}$ pins are used to control each 4-bit nibble of the 16 -bit word. This feature permits the user to configure this module as either $1 \mathrm{M} \times 4,512 \mathrm{~K} \times 8$ or $256 \mathrm{~K} \times 16$ organization through external decoding and appropriate pairing of the outputs.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}_{\mathrm{Xx}}$) and write enable $\left(\overline{W E}_{\mathrm{U}, \mathrm{L}}\right)$ inputs are both LOW. Data on
the data lines $\left(\mathrm{D}_{\mathrm{x}}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking the chip select ($\overline{\mathrm{CS}}_{\mathrm{xx}}$) LOW, while write enable ($\overline{W E}_{U, L}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data lines $\left(\mathrm{D}_{\mathrm{X}}\right)$.
The data output is in the high-impedance state when chip enable ($\overline{\mathrm{CS}}_{\mathrm{Xx}}$) is HIGH or write enable ($\overline{\mathrm{WE}}_{\mathrm{U}, \mathrm{L}}$) is LOW.
Power is consumed in each 4-bit nibble only when the appropriate $\overline{\mathrm{CS}}$ is enabled, thus reducing power in the x 4 or x 8 mode.

Logic Block Diagram

Pin Configuration

Selection Guide

		$\mathbf{1 6 4 1 - 2 5}$	$\mathbf{1 6 4 1 - 3 0}$	$\mathbf{1 6 4 1 - 3 5}$	$\mathbf{1 6 4 1 - 4 5}$	$\mathbf{1 6 4 1 - 5 5}$
Maximum Access Time (ns)	25	30	35	45	55	
Maximum Operating Current (mA)	Commercial	1800	1800	1800	1800	1800
	Military			1800	1800	1800
	Commercial	560	560	560	560	560
	Military			560	560	560

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State .
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V
Output Current into Outputs (LOW) \qquad 20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions			CYM1641		Units
					Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$			2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$.	$\mathrm{I}_{\text {OL }}=12.0 \mathrm{~mA}$	Com'l		0.4	V
			$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Mil		0.4	
V_{IH}	Input HIGH Voltage				2.0	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$			-80	+80	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{Cc}}$, Output Disabled			- 10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC} \times 16}$	$V_{\text {cc }}$ Operating Supply Current by 16 Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}_{\mathrm{I} .,}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{CS}_{\mathrm{XX}}<\mathrm{V}_{\mathrm{IL}} \end{aligned}$				1800	mA
$\mathrm{I}_{\mathrm{CCx} 8}$	V_{CC} Operating Supply Current by 8 Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}_{\mathrm{Ia} .,} \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{CS}_{\mathrm{Xx}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$				950	mA
$\mathrm{I}_{\mathrm{CCx} 4}$	V_{CC} Operating Supply Current by 4 Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}_{\mathrm{I} .,} \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{CS} \mathrm{XX} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$				720	mA
$\mathrm{I}_{\text {SB } 1}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CS}}_{\mathrm{XX}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$				560	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Mas. } V_{\mathrm{CC}}, \overline{\mathrm{CS}}_{\mathrm{XX}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$				320	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {INA }}$	Input Capacitance $\left(\mathrm{A}_{0}-\mathrm{A}_{17}, \overline{\mathrm{CS}}, \overline{\mathrm{WE}}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	150	pF
$\mathrm{C}_{\text {INB }}$	Input Capacitance $\left(\mathrm{D}_{0}-\mathrm{D}_{15}\right)$		30	pF
$\mathrm{C}_{\mathrm{CUT}}=5.0 \mathrm{~V}$			30	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. A pull-up resistor to V_{CC} on the CS input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

1641-4

Equivalent to:
THÉVENIN EQUIVALENT
OUTPUT 0 Military 0 1.73V

Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameters	Description	1641-25		1641-30		1641-35		1641-45		1641-55		Units
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	25		30		35		45		55		ns
$t_{\text {AA }}$	Address to Data Valid		25		30		35		45		55	ns
toha	Output Hold from Address Change	3		3		3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		30		35		45		55	ns
$\mathrm{t}_{\text {LzCs }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[5]}$	3		3		3		3		3		ns
$\mathrm{t}_{\text {HzCs }}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		15		20		20		25		25	ns
t_{PU}	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to Power Down		25		30		35		45		55	ns
WRITE CYCLE ${ }^{[7]}$												
t_{wc}	Write Cycle Time	25		30		35		45		55		ns
$\mathrm{t}_{\mathrm{scs}}$	$\overline{\text { CS }}$ LOW to Write End	20		25		30		40		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		40		40		ns
$t_{\text {HA }}$	Address Hold from Write End	2		2		2		2		2		ns
$\mathrm{t}_{\text {S }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		25		30		30		ns
$\mathrm{t}_{\text {sD }}$	Data Set-Up to Write End	15		17		17		20		25		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[5]}$	3		3		3		3		3		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[5,6]}$	0	20	0	20	0	25	0	25	0	25	ns

Notes:

4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LZCS }}$ for any given device.
6. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[7]}$

Write Cycle No. $2(\overline{\mathbf{C S}} \text { Controlled })^{[7,10]}$

Notes:

8. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
10. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}_{\mathbf{x x}}$	$\overline{\mathbf{W E}}_{\boldsymbol{n}}$	Input/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CYM1641HD-25C	HD05	Commercial
30	CYM1641HD-30C	HD05	Commercial
35	CYM1641HD-35C	HD05	Commercial
	CYM1641HD-35MB	HD05	Military
45	CYM1641HD-45C	HD05	Commercial
	CYM1641HD-45MB	HD05	Military
55	CYM1641HD-55C	HD05	Commercial
	CYM1641HD-55MB	HD05	Military

Document \#: 38-M-00013-B

Features

- High-density 768-kilobit SRAM module
- High-speed CMOS SRAMs
- Access time of 15 ns
- 56-pin, 0.5-inch-high ZIP package
- Low active power $-1.8 W$ (max. for $\left.t_{A A}=25 \mathrm{~ns}\right)$
- SMD technology
- TTL-compatible inputs and outputs
- Commercial temperature range
- Small PCB footprint
-0.66 sq. in.

Functional Description

The CYM1720 is a high-performance 768 -kilobit static RAM module organized as 32 K words by 24 bits. This module is constructed using three $32 \mathrm{~K} \times 8$ static RAMs in SOJ packages mounted onto an epoxy laminate board with pins.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/ output pins ($\mathrm{I} / \mathrm{O}_{0}$ thorugh $\mathrm{I} / \mathrm{O}_{23}$) of the device is written into the memory location specified on the address pins (A_{0} through A_{14}).

Reading the device is accomplished by taking the chip select $(\overline{\mathrm{CS}})$ and output enable (OE) LOW while write enable ($\overline{\mathrm{WE}) \text { re- }}$ mains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the input/output pins.
The input/output pins remain in a highimpedance state unless the module is selected, outputs are enabled, and write enable is HIGH.

Logic Block Diagram

1720-1

Pin Configuration

Selection Guide

	1720.15	1720-20	1720-25	1720-30	1720-35
Maximum Access Time (ns)	15	20	25	30	35
Maximum Operating Current (mA)	450	450	330	330	330
Maximum Standby Current (mA)	120	120	60	60	60

[^58]
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
-0.5 V to +7.0 V

DC Voltage Applied to Outputs
in High ZState .
-0.5 V to +7.0 V
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	CYM1720-15,20		CYM1720-25,30,35		Units
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	24		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		04		0.4	V
V_{IH}	Input HIGH Voltage		22	Vco	2.2	V_{cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		O.5	08	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$	\% 20	+20	-20	+20	$\mu \mathrm{A}$
I_{oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{o}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	"10.	± 10	- 10	$+10$	$\mu \mathrm{A}$
I_{CC}	$\mathbf{V}_{\text {cc }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{CS}_{\leq} \mathrm{V}_{\mathrm{lL}} \end{aligned}$		450./s.		330	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\overline{\mathrm{CS}}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}}>\mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		120		60	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		90/s		60	mA

Shaded area contains preliminary information

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	35	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	25	pF

Notes:

1. A pull-up resistor to $V_{C C}$ on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise $\mathrm{I}_{\text {SB }}$ will exceed values given.

AC Test Loads and Waveforms

2. Tested on a sample basis.

Equivalent to: THÉVENIN EQUIVALENT 1720-3

OUTPUT $\longrightarrow 1.73 \mathrm{~V}$

CYM1720

\square

Switching Characteristics Over the Operating Range ${ }^{[3]}$

READ CYCLE

t_{RC}	Read Cycle Time	15		20		25		30		35		ns
t_{AA}	Address to Data Valid		15		20		25		30		35	ns
toha	Output Hold from Address Change	4		${ }^{4}$		5		5		5		ns
$\mathrm{t}_{\text {ACs }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		15		20		25		30		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		8		10		12		15		20	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	0		0\%		3		3		3		ns
$t_{\text {Hzoe }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High Z		6.		8.		10		15		20	ns
$\mathrm{t}_{\text {LzCs }}$	$\overline{\mathrm{CS}}$ LOW to Low ${ }^{[4]}$	0		\%		5		5		5		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4,5]}$		10		15		10		15		15	ns
t_{Pu}	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0\%		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to Power Down		15		20		25		25		30	ns

WRITE CYCLE ${ }^{[6]}$

t_{wc}	Write Cycle Time	15		20.		25		30		35		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	12		15		20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		22		25		30		ns
t_{HA}	Address Hold from Write End	1		2		2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	1		2		2		2		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	12		15		20		23		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7.		\%		13		15		20		ns
t_{HD}	Data Hold from Write End	1		2		2		2		2		ns
$\mathrm{t}_{\text {Lzwe }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[4]}$	3		3		3		3		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[4,5]}$	0	${ }_{8}$	0	8.	0	10	0	10	0	15	ns

Shaded area contains preliminary information

Notes:

3. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, $\mathbf{t}_{\text {HZCS }}$ is less than $t_{\text {LzCS }}$ for any given device.
5. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCS}}$, and $\mathrm{t}_{\text {LZCE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and $\bar{W} E$ LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[7,8]}$

Read Cycle No. $2^{[7,9]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[6,10]}$

Notes:

7. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
9. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
10. Data I/O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
11. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. $2(\overline{\mathbf{C S}} \text { Controlled })^{[6,10,11]}$

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Outputs	Mode
H	\mathbf{X}	\mathbf{X}	High Z	Deselect/Power-Down
L	H	L	Data Out	Read Word
L	L	X	Data In	Write Word
L	H	H	High Z	Deselect

Document \#: 38-M-00021-A

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CYM1720PZ-15C	PZ05	Commercial
20	CYM1720PZ-20C	PZ05	Commercial
25	CYM1720PZ-25C	PZ05	Commercial
30	CYM1720PZ-30C	PZ05	Commercial
35	CYM1720PZ-35C	PZ05	Commercial

16 K x 32 Static RAM Module

Features

- High-density 512-kbit SRAM module
- High-speed CMOS SRAMs
- Access time of 12 ns
- Low active power - 4W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of .50 in .
- Small PCB footprint
- $\mathbf{1 . 0}$ sq. in.
- JEDEC-compatible pinout
- 2 V data retention (L version)
- SIMM version socket-compatible with CYM1831 and CYM1841

Functional Description

The CYM1821 is a high-performance 512 -Kbit static RAM module organized as 16 K words by 32 bits. This module is constructed from eight 16k x 4 SRAM SOJ packages mounted on an epoxy laminate board with pins. Four chip selects ($\overline{\mathrm{CS}}_{1}$, $\overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$, and $\overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins ($\mathrm{I} / \mathrm{O}_{\mathbf{x}}$) is written into the memory location specified on the address pins (A_{0} through A_{13}).

Selection Guide

	1821-12	1821-15	1821-20	1821-25	1821-35	1821-45
Maximum Access Time (ns)	12	15	20	25	35	45
Maximum Operating Current (mA)	980	960	720	720	720	720
Maximum Standby Current (mA)	450	450	160	160	160	160

[^59]
Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with $10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Applied -0.5 V to +7.0 V
Supply Voltage to Ground Potential
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V
DC Input Voltage -0.5 V to +7.0 V
Output Current into Outputs (LOW) \qquad

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	$\begin{gathered} 1821-12^{[1]} \\ 1821-15 \end{gathered}$		$\begin{aligned} & 1821-20 \\ & 1821-25 \\ & 1821-35 \\ & 1821-45 \end{aligned}$		Units
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{Cc}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$	-20	+20	-20	+20	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-20	$+20$	-20	+20	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[2]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-350		-350	mA
I_{CC}	V_{cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}_{\mathrm{C}}, \mathrm{I}_{\text {out }}=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\mathrm{N}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		960		720	mA
$\mathrm{I}_{\text {ISBI }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[3]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}_{\mathrm{N}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \\ & \hline \end{aligned}$		450		160	mA
$\mathrm{I}_{\text {ISB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[3]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}_{\mathrm{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		160		160	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {INA }}$	Input Capacitance (ADDR, OE, WE)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	70	pF
$\mathrm{C}_{\text {INB }}$	Input Capacitance (CS_{N})		35	pF
Cout	Output Capacitance		20	pF

Notes:

1. The information listed for the -12 product is preliminary.
2. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
3. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
4. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	181\%		1821-15		1821-20		Units
		Mi\#\#	May*	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	12		15		20		ns
t_{AA}	Address to Data Valid	\#\#	1\%		15		20	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	\%	\#.	2		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		\%		15		20	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		\#,		10		10	ns
$\mathrm{t}_{\text {LZOE }}$	OE LOW to Low Z	\#		2		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High Z		8		8		8	ns
$\mathrm{t}_{\text {LzCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[6]}$	3		3		5		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		\%		8		8	ns
$t_{\text {PU }}$	$\overline{\mathrm{CS}}$ LOW to Power-Up	O		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\overline{C S}} \mathrm{HIGH}$ to Power-Down		\%2		15		20	ns
WRITE CYCLE ${ }^{[8]}$								
t_{wc}	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\overline{C S}}$ LOW to Write End	\%		12		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		12		15		ns
t_{HA}	Address Hold from Write End	\%		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	介		0		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	\%		12		15		ns
$\mathrm{t}_{\text {sD }}$	Data Set-Up to Write End	10		10		10		ns
t_{HD}	Data Hold from Write End	\%		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[6]}$	\%	<<	3		3		ns
$\mathrm{t}_{\text {HZwE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$	\%	納	0	7	0	7	ns

Shaded area contains preliminary information

Notes:

5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than ${ }^{\text {tLzes }}$ for any given device. These parameters are guaranteed and not 100% tested.
7. t_{HZCS} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write, and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be reference to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	1821-25		1821-35		1821-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\overline{O E}}$ LOW to Data Valid		15		25		30	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE }}$ HIGH to High Z		15		20		20	ns
$\mathrm{t}_{\text {Lzcs }}$	$\overline{\text { CS }}$ LOW to Low $\mathrm{Z}^{[6]}$	5		10		10		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\text { CS }}$ HIGH to High ${ }^{[6,7]}$		10		15		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CS }}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CS}}$ HIGH to Power-Down		25		35		45	ns

WRITE CYCLE ${ }^{[8]}$

t_{WC}	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\mathrm{scs}}$	$\overline{\text { CS }}$ LOW to Write End	20		25		35		ns
t_{AW}	Address Set-Up to Write End	20		25		35		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
t_{SA}	Address Set-Up to Write Start	2		2		2		ns
$\mathrm{t}_{\mathrm{PWE}}$	$\overline{\mathrm{WE}}$ Pulse Width	20		25		30		ns
t_{sD}	Data Set-Up to Write End	13		15		20		ns
t_{HD}	Data Hold from Write End	2		2		2		ns
$\mathrm{t}_{\mathrm{LZWE}}$	$\overline{\mathrm{WE}}$ HIGH to Low $\mathbf{Z}^{[6]}$	3		5		5		ns
$\mathrm{t}_{\mathrm{HZWE}}$	$\overline{\mathrm{WE}}$ LOW to High $\mathbf{Z}^{[6,7]}$	0	7	0	10	0	15	ns

Data Retention Characteristics (L Version Only)

Parameters	Description	Test Conditions			Units
			Min.	Max.	
$\mathrm{V}_{\text {DR }}$	$\mathrm{V}_{\text {CC }}$ for Retention Data	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \\ & \mathrm{CS} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \text { or } \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \end{aligned}$	2		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current			8	mA
$\mathrm{t}_{\mathrm{CDR}}{ }^{[9]}$	Chip Deselect to Data Retention Time		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[9]}$	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{[10]}$		ns
$\mathrm{ILI}^{[9]}$	Input Leakage Current			10	$\mu \mathrm{A}$

Notes:

9. Guaranteed, not tested.
10. $\mathbf{t}_{\mathrm{RC}}=$ Read Cycle Time.

Data Retention Waveform

Switching Waveforms ${ }^{[14]}$
Read Cycle No. ${ }^{[11,12]}$

Read Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[11,13]}$

Notes:
11. WE is HIGH for read cycle.
12. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
13. Address valid prior to or concident with $\overline{\mathrm{CS}}$ transition LOW.
14. $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$, and $\overline{\mathrm{CS}}_{4}$ are represented by $\overline{\mathrm{CS}}$ in the Switching Characterisics and Switching Waveforms sections.

Switching Waveforms

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[8]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) $)^{[8,15]}$

Notes:

15. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}_{\mathrm{N}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	\mathbf{X}	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

$\begin{gathered} \text { Speed } \\ (\mathrm{ns}) \end{gathered}$	Ordering Code	Package Type	Operating Range
12	CYM1821PM-12C	PM01	Commercial
	CYM1821PZ-12C	PZ01	
15	CYM1821PM-15C	PM01	Commercial
	CYM1821PC-15C	PZ01	
20	CYM1821PM-20C	PM01	Commercial
	CYM1821LPM-20C	PM01	
	CYM1821PZ-20C	PZ01	
	CYM1821LPZ-20C	PZ01	
25	CYM1821PM-25C	PM01	Commercial
	CYM1821LPM-25C	PM01	
	CYM1821PZ-25C	PZ01	
	CYM1821LPZ-25C	PZ01	
35	CYM 1821PM-35C	PM01	Commercial
	CYM1821LPM-35C	PM01	
	CYM1821PZ-35C	PZ01	
	CYM1821LPZ-35C	PZ01	
45	CYM1821PM-45C	PM01	Commercial
	CYM1821LPM-45C	PM01	
	CYM1821PZ-45C	PZ01	
	CYM1821LPZ-45C	PZ01	

Document \#: 38-M-00015-B

Features

- High-density 512K-bit SRAM module
- High-speed CMOS SRAMs
- Access time of 12 ns
- Low active power
- 5.3W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of .52 in.
- Small PCB footprint
-1.0 sq. in.
- 2V data retention (L version)

Functional Description

The CYM1822 is a high-performance 512-kbit static RAM module organized as 16 K words by 32 bits. This module is constructed from eight $16 \mathrm{~K} \times 4$ separate I/O SRAMs in leadless chip carriers mounted on a ceramic substrate with pins. Two chip selects ($\overline{\mathrm{CS}}_{\mathrm{U}}$ and $\overline{\mathrm{CS}}_{\mathrm{L}}$) are used to independently enable the upper and lower 16-bit data words.
Writing to the device is accomplished when the chip selects ($\overline{\mathrm{CS}}_{\mathrm{U}}$ and/or $\overline{\mathrm{CS}}_{\mathrm{L}}$) and write enable ($\overline{\mathrm{WE}})$ inputs are both LOW. Data on the input pins $\left(\mathrm{DI}_{\mathrm{x}}\right)$ is

Logic Block Diagram

1822-1

Pin Configuration vDIP

Selection Guide

		$1822 \mathrm{HV} \cdot 12$	182211 V 15	$1822 \mathrm{HV}-20$	1822HV-25	1822HV-30	1822HV-35	1822HV-45
Maximum Access Time (ns)		12	15	20	25	30	35	45
Maximum Operating Current (mA)	Commercial	960	960	720	720	720	720	720
	Military		960	960	720	720	720	720
Maximum Standby Current(mA)	Commercial	450	450	160	160	160	160	160
	Military		450	450	160	160	160	160

Shaded area contains preliminary information.

Maximum Ratings

(Above which the useful life may be impaired)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V

DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V
Output Current into Outputs (Low)
20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	$\begin{aligned} & 1822 \mathrm{HV} 12 . \\ & 1822 \mathrm{HV} 15 \\ & 1822 \mathrm{HV}-20 \mathrm{M} \end{aligned}$		$\begin{gathered} \text { 1822HV-20C } \\ \text { 1822HV-25 } \\ 1822 \mathrm{HV}-35 \\ 1822 \mathrm{HV}-45 \\ 1822 \mathrm{HV}-50 \end{gathered}$		Units
			Min.	May.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		04		0.4	V
V_{H}	Input HIGH Voltage		22	Vec.	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		0.5	08.	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	20	$+20$.	-20	$+20$	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	20	$\stackrel{1}{4}$	-20	+20	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-350\%		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} .,^{\mathrm{CS}_{\mathrm{L}},}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{CS}_{\mathrm{U}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		960		720	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	Max. $\mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}_{\mathrm{U}}, \overline{\mathrm{CS}}_{\mathrm{L}} \geq \mathrm{V}_{\mathrm{IH}}$ Min. Duty Cycle $=100 \%$		450		160	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}_{\mathrm{U}}, \overline{\mathrm{CS}}_{\mathrm{L}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	«\s	\&/.		160	mA

Shaded area contains preliminary information.
Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	80	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF
$\mathrm{C}_{\mathrm{INDATA}}$	Input Capacitance		15	pF

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the CE input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
3. Tested on a sample basis.

Ac Test Loads and Waveforms

JIG AND SCOPE
(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT

$8-126$

CYPRESS
CYM1822
Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameters	Description	1822HV-12.		1822HV-15		1822HV-20		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle Time	12.		15.		20		ns
${ }^{\text {ta }}$	Address to Data Valid		12.		15		20	ns
toha	Data Hold from Address Change	2		2		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid		12.		15		20	ns
t ${ }^{\text {doE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		10		15	ns
${ }^{\text {t }}$ LZOE	$\overline{\mathrm{OE}}$ LOW to Low Z	2		2		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High Z		8		8		8	ns
${ }^{\text {t }}$ LZCS	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[6]}$	3.		3.		5		ns
${ }^{\text {t }} \mathrm{HZCS}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		8		8		8	ns
tpu	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		ns
tPD	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to Power-Down		12		15		20	ns

WRITE CYCLE ${ }^{[7]}$

twC	Write Cycle Time	12		15		20		ns
tsCS	$\overline{\mathrm{CS}}$ LOW to Write End	10.		12		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10.		12.		15		ns
tha	Address Hold from Write End	2		2		2		ns
tsA	Address Set-Up to Write Start	0 .		0		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	10		12		15		ns
${ }_{\text {t }}{ }^{\text {d }}$	Data Set-Up to Write End	10		10		13		ns
${ }^{\text {thD }}$	Data Hold from Write End	2		2		0		ns
${ }^{\text {t L ZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[6]}$	3		3		3		ns
${ }^{\text {t }}$ HZWE	WE LOW to High $\mathrm{Z}^{[5,6]}$	0.	7	0	7	0	7	ns

Shaded area contains preliminary information.
Notes:
4. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. $t_{\text {HZCS }}$ and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
6. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LZCS }}$ for any given device. These parameters are guaranteed and not 100% tested.
7. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range (continued) ${ }^{[4]}$

Parameters	Description	1822HV-25		1822HV-30		1822HV-35		1822HV-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
$\mathrm{t}_{\mathrm{R} C}$	Read Cycle Time	25	-	30		35		45		ns
${ }_{\text {ta }}$	Address to Data Valid		25		30		35		45	ns
toHA	Data Hold from Address Change	5		5		5		5		ns
${ }^{\text {taCS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		30		35		45	ns
tome	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		20		25		30	ns
${ }_{\text {L }}$ LOEE	$\overline{\mathrm{OE}}$ LOW to Low Z	3		5		5		5		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High Z		15		20		20		20	ns
${ }_{\text {L L }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[6]}$	5		10		10		10		ns
${ }^{\text {thzCS }}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		10		15		15		20	ns
tPU	$\overline{\text { CS }}$ LOW to Power-Up	0		0		0		0		ns
tpD	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to Power-Down		25		30		35		45	ns

WRITE CYCLE ${ }^{[7]}$

twC	Write Cycle Time	25		30		35		45		ns
tsCS	$\overline{\mathrm{CS}}$ LOW to Write End	20		25		30		40		ns
${ }_{\text {taw }}$	Address Set-Up to Write End	20		25		30		40		ns
${ }_{\text {tha }}$	Address Hold from Write End	2		2		2		2		ns
tsA	Address Set-Up to Write Start	2		2		2		2		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		25		30		ns
${ }^{\text {tSD }}$	Data Set-Up to Write End	13		20		20		25		ns
thD	Data Hold from Write End	3		3		3		3		ns
tzWWE	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[6]}$	3		5		5		5		ns
thzWE $^{\text {l }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[5,6]}$	0	7	0	12	0	12	0	15	ns

Data Retention Characteristics (L Version Only)

Parameter	Description	Test Conditions	CYM1822		Units
			Min.	Max.	
V ${ }_{\text {DR }}$	V_{CC} for Retention Data	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \\ & \mathrm{CS}_{2} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0		V
ICCDR	Data Retention Current			8	mA
${ }^{t} \mathrm{CDR}^{[8]}$	Chip Deselect to Data Retention Time		0		ns
$\mathrm{t}^{\text {R }}{ }^{[8]}$	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{[9]}$		ns
$\mathrm{ILI}^{[8]}$	Input Leakage Current			10	$\mu \mathrm{A}$

Notes:

8. Guaranteed, not tested.
9. $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time.
10. Both $\overline{\mathrm{CS}}_{\mathrm{L}}$ and $\overline{\mathrm{CS}}_{\mathrm{U}}$ are represented by $\overline{\mathrm{CS}}$ in the Switching Characteristics and Waveforms.
11. $\overline{\text { WE }}$ is HIGH for read cycle.
12. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
13. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
14. If $\widetilde{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Data Retention Waveform

Switching Waveforms ${ }^{[10]}$
Read Cycle No. $1^{[11,12]}$

\qquad
Read Cycle No. $2{ }^{[11,13]}$

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[7]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[7,14]}$

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
12.	CYM 1822 HV 12 C	HV02	Commercial
15.	CMM1822HV. 15 C	HV02	Commercial
	CYM $1822 \mathrm{HV} / 15 \mathrm{MB}$	HV02	Military
20	CYM1822HV-20C	HV02	Commercial
	CYM1822LHV-20C	HV02	
	CYM 822 HV 20 MB	HV02	Military
25	CYM1822HV-25C	HV02	Commercial
	CYM1822LHV-25C	HV02	
	CYM1822HV-25MB	HV02	Military
	CYM1822LHV-25MB	HV02	
30	CYM1822HV-30C	HV02	Commercial
	CYM1822LHV-30C	HV02	
	CYM1822HV-30MB	HV02	Military
	CYM1822LHV-30MB	HV02	
35	CYM1822HV-35C	HV02	Commercial
	CYM1822LHV-35C	HV02	
	CYM1822HV-35MB	HV02	Military
	CYM1822LHV-35MB	HV02	
45	CYM1822HV-45C	HV02	Commercial
	CYM1822LHV-45C	HV02	
	CYM1822HV-45MB	HV02	Military
	CYM1822LHV-45MB	HV02	

Shaded area contains preliminary information.
Document \#: 38-M-00016-A

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- 66-pin, 1.1-inch-square PGA package
- Low active power $-3.3 W$ (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Commercial and military temperature ranges

Functional Description

The CYM1828 is a very high performance 1-megabit static RAM module organized as 32 K words by 32 bits. The module is constructed using four $32 \mathrm{~K} \times 8$ static RAMs mounted onto a multilayer ceramic substrate. Four chip selects $\left(\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}\right.$, $\overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable $\left(\overline{W E}_{\mathrm{N}}\right)$ inputs are both LOW.

Data on the input/output pins ($\mathrm{I} / \mathrm{O}_{\mathbf{N}}$) is written into the memory location specified on the address pins (A_{0} through A_{14}).
Reading the device is accomplished by taking chip selects LOW while write enable remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins.
The data input/output pins remain in a high-impedance state when write enable is LOW or the appropriate chip selects are HIGH.

Logic Block Diagram

Pin Configuration
Top View

$12 \quad 23$	$34 \quad 45$
$\mathrm{O}_{108} \mathrm{O}_{8} \mathrm{WE}_{2} \mathrm{O}_{1 / 15}$	$\mathrm{nc} \mathrm{O} \mathrm{v}_{\mathrm{cc}} \mathrm{O} \mathrm{vos}_{31} \mathrm{O}$
	$10_{25} \mathrm{O} \mathrm{Cs}_{4} \mathrm{O} \quad 11080$
$\mathrm{O}_{\mathrm{A}_{13}} \mathrm{O}_{11011} \mathrm{O}_{1 / 12}$	$\mathrm{A}_{6} \mathrm{O} \quad 1 \mathrm{w}_{27} \mathrm{O} \mathrm{O}_{10} 1_{28} \mathrm{O}$
$O_{A_{14}} O_{A_{10}} O \overline{o c}$	$A_{1} \bigcirc a_{3} \bigcirc a_{0} \bigcirc$
Onc $\mathrm{O}_{\text {ail }} \mathrm{O}$ nc	nc $\mathrm{O} \mathrm{a}_{4} \bigcirc \bigcirc a_{1} \mathrm{O}$
$\bigcirc \mathrm{Oc} \mathrm{O}_{\mathrm{a}_{12}} \mathrm{O} \overline{\mathrm{we}} \mathrm{w}_{1}$	$A_{s} \bigcirc a_{5} \bigcirc a_{2} \bigcirc$
Onc O $\mathrm{v}_{\text {co }} \mathrm{O} \mathrm{O}_{10}$	$A_{8} \bigcirc \bigcirc \overline{W E}_{5} \mathrm{O} \quad 112_{23} \mathrm{O}$
	$100_{16} \mathrm{O} \mathrm{Cs}_{3} \mathrm{O} \quad 1102 \mathrm{O}$
	$10,18 \mathrm{O} 1019 \mathrm{O}_{19} \mathrm{O} \quad 1020 \mathrm{O}$
$11 \quad 22 \quad 33$	${ }^{44} 55$

Selection Guide

		$\mathbf{1 8 2 8 - 2 5}$	$\mathbf{1 8 2 8 - 3 0}$	$\mathbf{1 8 2 8 - 3 5}$	$\mathbf{1 8 2 8 - 4 5}$	$\mathbf{1 8 2 8 - 5 5}$	$\mathbf{1 8 2 8 - 7 0}$
Maximum Access Time (ns)		25	30	35	45	55	70
Maximum Operating Current (mA)	Commercial	600	600	600	600	600	600
	Military			600	600	600	600
Maximum Standby Current (mA)	Commercial	200	200	200	200	200	200
	Military			200	200	200	200

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions		1828		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	$\begin{gathered} \mathrm{V}_{\mathrm{cc}} \\ +0.3 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.3	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		-20	+20	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{Cc}}$, Output Disab		-20	+20	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC} \times 32}$	V_{CC} Operating Supply Current by 32 Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\mathrm{N}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$	L Version		600	mA
$\mathrm{I}_{\mathrm{CC} \times 16}$	V_{CC} Operating Supply Current by 16 Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}_{\mathrm{C}}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\mathrm{N}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$	L Version		360	mA
$\mathrm{I}_{\mathrm{CCx} 8}$	$\mathrm{V}_{\text {cc }}$ Operating Supply Current by 8 Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}_{\mathrm{L}}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\mathrm{N}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$	L Version		240	mA
$\mathrm{I}_{\text {SB1 }}$	$\underset{\text { Currentic }}{ }{ }^{11]} \overline{\text { CS }}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}>\mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$			200	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. }^{V_{\mathrm{CC}} ; \overline{\mathrm{CS}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V},} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$			100	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	50	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	20	pF

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}_{\mathrm{N}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.

AC Test Loads and Waveforms

(a)
2. Tested on a sample basis.

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	1828-25		1828-30		1828-35		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	25		30		35		ns
t_{AA}	Address to Data Valid		25		30		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid		25		30		35	ns
$\mathrm{t}_{\text {DoE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		17		20	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High Z		15		15		25	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low ${ }^{[4]}$	3		3		3		ns
$\mathrm{t}_{\text {HZCS }}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[4,5]}$		15		15		25	ns

WRITE CYCLE ${ }^{[6]}$

t_{WC}	Write Cycle Time	25		30		35		ns
$\mathrm{t}_{\text {SCs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	20		25		30		ns
t_{AW}	Address Set-Up to Write End	20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\mathrm{PWE}}$	$\overline{\mathrm{WE}}$ Pulse Width	20		25		25		ns
t_{SD}	Data Set-Up to Write End	15		20		17		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\mathrm{LZWE}}$	$\overline{\mathrm{WE}}$ HIGH to Low $\mathrm{Z}^{[4]}$	0		0		0		ns
$\mathrm{t}_{\mathrm{HZWE}}$	$\overline{\mathrm{WE}}$ LOW to High $Z^{[4,5]}$	0	15	0	20	0	30	ns

Parameters	Description	1828-45		1828-55		1828-70		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	45		55		70		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		45		55		70	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACs }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		45		55		70	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		25		30		35	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE HIGH to High } \mathrm{Z}}$		25		30		30	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[4]}$	3		3		3		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4,5]}$		25		30		30	ns
WRITE CYCLE ${ }^{(6]}$								
t_{wc}	Write Cycle Time	45		55		70		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	40		45		55		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	40		45		55		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	30		35		45		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	25		30		40		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[4]}$	0		0		0		ns
$\mathrm{t}_{\mathrm{HZWE}}$	$\overline{\text { WE LOW }}$ to High $\mathbf{Z}^{[4,5]}$	0	30	0	30	0	30	ns

Data Retention Characteristics (L Version Only)

Parameters	Description	Test Conditions	1828		Units
			Min.	Max.	
V_{DR}	V_{CC} for Retention Data	$\overline{\overline{C S}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	2.0		V
$\mathrm{I}_{\text {CCDR3 }}$	Data Retention Current	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{Cc}}-0.2 \mathrm{~V}$,		320	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[7]}$	Chip Deselect to Data Retention Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \text { or } \mathrm{V} \mathrm{IN}<0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DR}}=3.0 \mathrm{~V} \end{aligned}$	0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[7]}$	Operation Recovery Time		t_{RC}		ns

Data Retention Waveform

Switching Waveforms

Read Cycle No. $2^{[8,10]}$

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than ${ }^{\text {t LzCS }}$ for any given device. These parameters are guaranteed and not 100% tested.
5. $t_{\text {HZCS }}$ and $t_{H Z W E}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}_{\mathrm{N}}$ LOW and $\overline{W E}_{N}$ LOW. Both signals must be LOW to initiate a write, and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
7. Guaranteed, not tested.
8. $\overline{\mathrm{WE}}_{\mathrm{N}}$ is HIGH for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
10. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\text { CS }}$ Controlled) ${ }^{[6,11,12]}$

Notes:
11. Data I/O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
12. If $\stackrel{\mathrm{CS}}{\mathrm{N}}$ goes HIGH siumultaneously with $\overline{\mathrm{WE}}_{\mathrm{N}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}_{\mathbf{N}}$	$\overline{\mathbf{O E}}^{2}$	$\overline{\mathbf{W E}}_{\mathbf{N}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	L	H	Data Out	Read
L	X	L	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

$\begin{gathered} \text { Speed } \\ (\mathrm{ns}) \end{gathered}$	Ordering Code	Package Type	Operating Range
25	CYM1828HG-25C	HG01	Commercial
30	CYM1828HG-30C	HG01	Commercial
35	CYM1828HG-35C	HG01	Commercial
	CYM1828LHG-35C	HG01	
	CYM1828HG-35MB	HG01	Military
	CYM1828LHG-35MB	HG01	
45	CYM1828HG-45C	HG01	Commercial
	CYM1828LHG-45C	HG01	
	CYM1828HG-45MB	HG01	Military
	CYM1828LHG-45MB	HG01	
55	CYM1828HG-55C	HG01	Commercial
	CYM1828LHG-55C	HG01	
	CYM1828HG-55MB	HG01	Military
	CYM1828LHG-55MB	HG01	
70	CYM1828HG-70C	HG01	Commercial
	CYM1828LHG-70C	HG01	
	CYM1828HG-70MB	HG01	Military
	CYM1828LHG-70MB	HG01	

[^60]
Features

- High-density 2-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{2 5} \mathbf{n s}$
- Independent byte and word controls
- Low active power
-4.8W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Low profile
— Max. height of $\mathbf{2 7 0} \mathrm{in}$.
- Small PCB footprint
$\mathbf{- 1 . 8} \mathbf{~ s q . ~ i n . ~}$

Functional Description

The CYM1830 is a high-performance 2-megabit static RAM module organized as 64 K words by 32 bits. This module is constructed from eight $64 \mathrm{~K} \times 4$ SRAMs in LCC packages mounted on a ceramic substrate with pins. Four chip selects ($\overline{\mathrm{CS}}_{0}$ $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}$ and $\overline{\mathrm{CS}}_{3}$) are used to independently enable the four bytes. Two write enables ($\overline{\mathrm{WE}}_{0}$ and $\overline{\mathrm{WE}}_{1}$) are used to independently write to either upper or lower 16 -bit word of RAM. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects and write enables.
Writing to each byte is accomplished when the appropriate chip select $\left(\overline{\mathrm{CS}}_{\mathrm{x}}\right)$ and write

$64 \mathrm{~K} \times 32$ Static RAM Module

enable ($\overline{\mathrm{WE}}_{\mathrm{x}}$) inputs are both LOW. Data on the input/output pins $\left(\overline{\mathrm{I} / \mathrm{O}_{\mathrm{x}}}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking the chip selects $\left(\mathrm{CS}_{x}\right)$ LOW, while write enables $\left(\overline{W E}_{\mathrm{x}}\right.$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data input/output pins ($\overline{I / O}_{\mathrm{X}}$).
The Data input/output pins stay in the high-impedance state when write enables (WE_{x}) are LOW, or the appropriate chip selects are HIGH.

Logic Block Diagram

1830-1

Pin Configuration

1830-2

Selection Guide

		$\mathbf{1 8 3 0 H D}-25$	$\mathbf{1 8 3 0 H D}-\mathbf{3 0}$	$\mathbf{1 8 3 0 H D}-\mathbf{3 5}$	$\mathbf{1 8 3 0 H D}-\mathbf{4 5}$	$\mathbf{1 8 3 0 H D}-55$
Maximum Access Time (ns)		25	30	35	45	55
Maximum Operating Current (mA)	Commercial	880	880	880	880	880
	Military			880	880	880
Maximum Standby Current (mA)	Commercial	320	320	320	320	320
	Military			320	320	320

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with

Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V
Output Current into Outputs (Low)	20 m

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[4]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	CYM1830HD		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} ., \mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-350	mA
I_{CC}	VCC Operating Supply Current by 16 Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}_{\mathrm{x}}, \mathrm{I}_{\mathrm{OuT}}=0 \mathrm{~mA} \\ & \mathrm{CS}_{\mathrm{X}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		880	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}}_{\mathrm{x}} \geq \mathrm{V}_{\mathrm{IH}}$ Min. Duty Cycle $=100 \%$		320	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}}_{\mathrm{X}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cc}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		160	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\mathrm{INA}}$	Input Capacitance, Address Pins	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	90	pF
$\mathrm{C}_{\mathrm{INB}}$	Input Capacitance, I/O Pins	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		30
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance		pF	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
3. Tested initially and after any design or process changes that may affect these parameters.
4. T_{A} is the "instant on" case temperature.

AC Test Loads and Waveforms

SEMICONDUCTOR

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	1830HD-25		1830HD-30		1830HD-35		1830HD-45		1830HD-55		Unit
		Min.	Max.									

READ CYCLE

t_{RC}	Read Cycle Time	25		30		35		45		55		ns
t_{AA}	Address to Data Valid		25		30		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		30		35		45		55	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		15		15		20		20		20	ns
t_{PU}	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		0		0		ns
t_{PD}	$\overline{\mathrm{CS}}$ HIGH to Power-Down		25		30		35		45		55	ns

WRITE CYCLE ${ }^{[8]}$

$\mathrm{t}_{\text {WC }}$	Write Cycle Time	25		30		35		45		55		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	20		25		30		40		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		40		40		ns
t_{HA}	Address Hold from Write End	2		2		2		2		2		ns
tsA	Address Set-Up to Write Start	2		2		2		2		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		25		30		40		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		20		25		25		ns
t_{HD}	Data Hold from Write End	2		2		2		2		2		ns
t ${ }_{\text {LZWE }}$	WE HIGH to Low $\mathrm{Z}^{[7]}$	1		3		3		3		3		ns
thZWE	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$	0	15	0	20	0	20	0	20	0	20	ns

Notes:
5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. t_{HZCS} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCs}}$ is less than tuzes for any given device.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WELOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
12. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms ${ }^{[10]}$

Read Cycle No. $1^{[9,10]}$

Switching Waveforms (continued)
Read Cycle No. $2^{[9,10]}$

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[8]}$

Write Cycle No. 2 ($\overline{\text { CS }}$ Controlled) ${ }^{[8,12]}$

Truth Table

$\overline{\mathbf{C S}}_{\mathbf{x}}$	$\overline{\mathbf{W E}}_{\mathbf{X}}$	Input/Outputs	Mode
H	\mathbf{X}	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
25	CYM1830HD-25C	HD06	Commercial
30	CYM1830HD-30C	HD06	Commercial
35	CYM1830HD-35C	HD06	Commercial
	CYM1830HD-35MB	HD06	Military
45	CYM1830HD-45C	HD06	Commercial
	CYM1830HD-45MB	HD06	Military
55	CYM1830HD-55C	HD06	Commercial
	CYM1830HD-55MB	HD06	Military

Document \#: 38-M-00017-A

Features

- High-density 2-Mbit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{2 0} \mathbf{n s}$
- Low active power
- 4W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of .50 in.
- Small PCB footprint
-1.2 sq. in.
- JEDEC-compatible pinout

Functional Description

The CYM1831 is a high-performance 2-Mbit static RAM module organized as 64 K words by 32 bits. This module is constructed from eight $64 \mathrm{~K} \times 4 \mathrm{SRAMs}$ in SOJ packages mounted on an epoxy laminate board with pins. Four chip selects $\left(\overline{\mathrm{CS}}_{1}\right.$, $\overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$ and $\overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.

Writing to each byte is accomplished when the appropriate chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins $\left(\mathrm{I} / \mathrm{O}_{\mathrm{X}}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{15}).

Reading the device is accomplished by taking the chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ LOW and output enable ($\overline{\mathrm{OE}}$) LOW while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data input/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{x}}$).
The data input/output pins stay in the high-impedance state when write enable ($\overline{\mathrm{WE}}$) is LOW or the appropriate chip selects are HIGH.

Two pins (PD0 and PD1) are used to identify module memory density in applications where alternate versions of the JEDEC-standard modules can be interchanged.

Logic Block Diagram

Pin Configuration

Top View

ర心NNN ППППППППППИППППИ.	

Selection Guide

	$\mathbf{1 8 3 1 - 2 0}$	$\mathbf{1 8 3 1 - 2 5}$	$\mathbf{1 8 3 1 - 3 0}$	$\mathbf{1 8 3 1 - 3 5}$	$\mathbf{1 8 3 1 - 4 5}$
Maximum Access Time (ns)	20	25	30	35	45
Maximum Operating Current (mA)	960	720	720	720	720
Maximum Standby Current (mA)	160	160	160	160	160

SEMICONDUCTOR \qquad

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Output Current into Outpus (LOW)
20 mA
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. \qquad -0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC Input Voltage . -0.5 V to +7.0 V
Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	1831-20		1831-25, 35,45		Units
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{Cc}	2.2	V_{cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$	-20	+20	-20	+20	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{cc}}$, Output Disabled	-20	$+20$	-20	+20	$\mu \mathrm{A}$
I_{CC}	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}_{\mathrm{CS}}, \mathrm{I}_{\mathrm{OuT}}=0 \mathrm{~mA} \\ & \mathrm{CS}_{\mathrm{N}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		960		720	mA
$\mathrm{I}_{\text {SB1 }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CS}} \\ & \text { Power-Down Current }{ }^{[1]} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \overline{\mathrm{CS}}_{\mathrm{N}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		320		320	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \overline{\mathrm{CS}}_{\mathrm{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		160		160	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\mathrm{INA}}$	Input Capacitance $\left(\mathrm{A}_{0}-\mathrm{A}_{16}, \overline{\mathrm{CS}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	80	pF
$\mathrm{C}_{\mathrm{INB}}$	Input Capacitance $\left(\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{31}\right)$		15	pF
$\mathrm{C}_{\mathrm{CC}}=5.0 \mathrm{~V}$				

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up; otherwise $I_{S B}$ will exceed values given.
2. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to:
THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	1831-20		1831-25		1831-30		1831-35		1831-45		Units
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	20		25		30		35		45		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		20		25		30		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	3		3		3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS LOW to Data Valid }}$		20		25		30		35		45	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		15		20		20		30	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		0		0		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE LOW to High Z }}$		10		15		15		20		20	ns
tezcs	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[4]}$	0		3		3		3		3		ns
$\mathrm{t}_{\text {HzCs }}$	$\overline{\text { CS }}$ HIGH to High ${ }^{[4,5]}$		8		13		15		20		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CS }} \mathrm{HIGH}$ to Power-Down		20		25		30		35		45	ns

WRITE CYCLE ${ }^{[6]}$

t_{WC}	Write Cycle Time	20		25		30		35		45		ns
$\mathrm{t}_{\mathrm{sCs}}$	$\overline{\mathrm{CS}}$ LOW to Write End	15		20		25		30		40		ns
t_{AW}	Address Set-Up to Write End	15		20		25		30		40		ns
t_{HA}	Address Hold from Write End	2		2		2		2		2		ns
t_{SA}	Address Set-Up to Write Start	2		2		2		2		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\mathrm{WE}}$ Pulse Width	15		20		25		25		30		ns
t_{SD}	Data Set-Up to Write End	12		15		15		20		20		ns
t_{HD}	Data Hold from Write End	2		2		2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\mathrm{WE}}$ HIGH to Low $\mathrm{Z}^{[4]}$	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZWE}}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[4,5]}$	0	10	0	13	0	15	0	20	0	20	ns

Notes:

3. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage conditon, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LZCS }}$ for any given device. These parameters are guaranteed and not 100% tested.
5. $t_{\text {HZCS }}$ and $t_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms ${ }^{[7]}$

Read Cycle No. $1^{[8,9]}$

Read Cycle No. $2^{[9,10]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[6]}$

Notes: $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$, and $\overline{\mathrm{CS}}_{4}$ are represeneted by $\overline{\mathrm{CS}}$ in the Switching Characteristics and Waveform sections.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Address valid prior to coincident with $\overline{\mathrm{CS}}$ transition LOW.

Switching Waveforms ${ }^{[7]}$ (continued)
Write Cycle No. $2(\overline{\mathbf{C S}} \text { Controlled })^{[6,11]}$

Truth Table

$\widetilde{\mathbf{C S}}_{\mathbf{N}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
20	CYM1831PM-20C	PM01	Commercial
	CYM1831PZ-20C	PZ01	
25	CYM1831PM-25C	PM01	Commercial
	CYM1831PZ-25C	PZ01	
30	CYM1831PM-30C	PM01	Commercial
	CYM1831PZ-30C	PZ01	
33	CYM1831PM-35C	PM01	Commercial
	CYM1831PZ-35C	PZ01	
45	CYM1831PM-45C	PM01	Commercial
	CYM1831PZ-45C	PZ01	

[^61]
$64 \mathrm{~K} \times 32$ Static RAM Module

Features

- High-density 2M-bit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- Low active power
- 5.4W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of .50 in.
- Small PCB footprint
-1.0 sq . in.

Functional Description

The CYM1832 is a high-performance 2-Mbit static RAM module organized as 64 K words by 32 bits. This module is constructed from eight $64 \mathrm{~K} \times 4$ SRAMs in SOJ packages mounted on an epoxy laminate board with pins. Four chip selects $\left(\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}\right.$, and $\overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins

Logic Block Diagram

Pin Configuration

Selection Guide

	$1832 \mathrm{PZ}-25$	1832 PZ-35	1832PZ-45	1832PZ-55
Maximum Access Time (ns)	25	35	45	55
Maximum Operating Current (mA)	980	980	980	980
Maximum Standby Current (mA)	240	240	240	240

Maximum Ratings

(Above which the useful life may be impaired)
Storage Temperature \qquad
Ambient Temperature with
Power Applied
$-45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V

DC Voltage Applied to Outputs
in High Z State.

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

DC Input Voltage -0.5 V to +7.0 V
Output Current into Outputs (Low)
20 mA

Operating Range

Range	Ambient Temperature	\mathbf{V}_{CC}
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range.

Parameters	Description	Test Conditions	CYM1832PZ		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	-20	$+20$	$\mu \wedge$
IOZ	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-100	$+100$	$\mu \wedge$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \\ & \mathrm{CS}_{\mathrm{N}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		980	$\mathrm{m} \wedge$
ISB1	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. VCC; } \overline{\mathrm{CS}} \mathrm{~N} \geq \mathrm{VIH}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \\ & \hline \end{aligned}$		240	mA
ISB2	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}_{\mathrm{N}} \geq \mathrm{VCC}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \\ & \hline \end{aligned}$		120	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C INA	Input Capacitance $\left(\mathrm{A}_{\mathbf{x}}, \overline{\mathrm{WE}}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	60	pF
$\mathrm{C}_{\text {INB }}$	Input Capacitance $(\overline{\mathrm{CS}})$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	25	pF
COUT	Output Capacitance		15	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\mathrm{MIN})}=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns .
2. A pull-up resistor to V_{cc} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
3. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

(b)

1832-4

Equivalent to: THEVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameters	Description	1832PZ-25C		1832PZ-35		1832PZ-45		1832PZ-55		Units
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	

READ CYCLE

\mathbf{t}_{RC}	Read Cycle Time	25		35		45		55		ns
\mathbf{t}_{AA}	Address to Data Valid		25		35		45		55	ns
$\mathrm{t}_{\mathbf{O H A}}$	Data Hold from Address Change	3		3		3		3		ns
$\mathbf{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		35		45		55	ns
$\mathbf{t}_{\mathrm{LZCS}}$	$\overline{\mathrm{CS}}$ LOW to Low Z ${ }^{[6]}$	2		3		3		3		ns
$\mathbf{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High Z ${ }^{[5,6]}$	0	15	0	25	0	30	0	30	ns
$\mathbf{t}_{\text {PU }}$	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		0		ns
$\mathbf{t}_{\text {PD }}$	$\overline{\mathrm{CS}}$ HIGH to Power-Down		25		35		45		55	ns

WRITE CYCLE ${ }^{[7]}$

$\mathbf{t}_{\text {WC }}$	Write Cycle Time	25		35		45		55		ns
$\mathbf{t}_{\text {SCS }}$	$\overline{\text { CS LOW to Write End }}$	20		30		40		45		ns
$\mathbf{t}_{\text {AW }}$	Address Set-Up to Write End	20		30		35		45		ns
$\mathbf{t}_{\text {HA }}$	Address Hold from Write End	2		2		5		5		ns
$\mathbf{t}_{\text {SA }}$	$\overline{\text { Address Set-Up to Write Start }}$	2		3		5		5		ns
$\mathbf{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		30		35		45		ns
$\mathbf{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		25		35		ns
$\mathbf{t}_{\text {HD }}$	Data Hold from Write End	3		5		5		5		ns
$\mathbf{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $Z^{[6]}$	3		3		3		3		ns
$\mathbf{t}_{\text {HZWE }}$	$\overline{\text { WE LOW to High } Z^{[5,6]}}$	0	15	0	15	0	20	0	30	ns

Notes:

4. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HzWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
6. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{Hzcs}}$ is less than $t_{\text {tzes }}$ for any given device. These parameters are guaranteed and not 100% tested.
7. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WELOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input
set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
8. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
10. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
11. $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$ and $\overline{\mathrm{CS}}_{4}$ are represented by $\overline{\mathrm{CS}}$ in the Switching Characteristics and Waveforms.
12. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms ${ }^{[11]}$

Read Cycle No. $1^{[8,9]}$

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[7]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[7,12]}$

Truth Table

$\overline{\mathbf{C S}}_{\mathbf{N}}$	$\overline{\mathrm{WE}}$	Input/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
25	CYM1832PZ-25C	PZ02	Commercial
35	CYM1832PZ-35C	PZ02	Commercial
45	CYM1832PZ-45C	PZ02	Commercial
55	CYM1832PZ-55C	PZ02	Commercial

[^62]
Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{3 0} \mathbf{n s}$
- 66-pin, 1.1-inch-square PGA package
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Commercial and military temperature ranges

Functional Description

The CYM1838 is a very high performance 4-megabit static RAM module organized as 128 K words by 32 bits. The module is constructed using four $128 \mathrm{~K} \times 8$ static RAMs mounted onto a ceramic substrate. Four chip selects ($\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}, \overline{\mathrm{CS}}_{3}, \overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects ($\overline{\mathrm{CS}}_{\mathrm{N}}$) and write enable $\left(\overline{W E}_{N}\right)$ inputs are both LOW.

Data on the input/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{x}}$) is written into the memory location specified on the address pins (A_{0} through A_{16}).
Reading the device is accomplished by taking chip selects LOW while write enable remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins.
The data input/output pins remain in a high- impedance state when write enable is LOW or the appropriate chip selects are HIGH.

Logic Block Diagram

1838-1

Package Diagram

1838-2

Features

- High-density 8-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of $\mathbf{2 5} \mathbf{~ n s}$
- Independent byte and word controls
- Low active power
- 6.2W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of . 290 in. (HD)
- Small PCB footprint
-1.8 sq. in.

Functional Description

The CYM1840 is a high-performance 8-megabit static RAM module organized as 256 K words by 32 bits. This module is constructed from eight $256 \mathrm{~K} x 4$ SRAMs in LCC packages mounted on a ceramic substrate with pins. Four chip selects ($\overline{\mathrm{CS}}_{0}$, $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}$, and $\overline{\mathrm{CS}_{3}}$) are used to independently enable the four bytes. Two write enables ($\overline{\mathrm{WE}}_{0}$ and $\overline{\mathrm{WE}}_{1}$) are used to independently write to either the upper or lower 16 -bit word of RAM. Reading or writing can be executed on individual bytes or on any combination of multiple bytes through the proper use of selects and write enables.
Writing to each byte is accomplished when the appropriate chip select $\left(\overline{\mathrm{CS}}_{\mathrm{X}}\right)$ and write
enable ($\overline{\mathrm{WE}}_{\mathrm{x}}$) inputs are both LOW. Data on the input/output pins $\left(\overline{I / O}_{x}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking the chip selects ($\overline{\mathrm{CS}}_{\mathrm{x}}$) LOW, while write enables $\left(\overline{W E}_{\mathbf{X}}\right)$ remain HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data input/output pins ($\overline{\mathrm{I}}^{\mathrm{O}} \mathrm{X}$).
The Data input/output pins stay in the high-impedance state when write enables ($\overline{W E}_{\mathrm{X}}$) are LOW or the appropriate chip selects are HIGH.

Logic Block Diagram

Pin Configuration

Selection Guide

		$\mathbf{1 8 4 0 - 2 5}$	$\mathbf{1 8 4 0 - 3 0}$	$\mathbf{1 8 4 0 - 3 5}$	$\mathbf{1 8 4 0 - 4 5}$	$\mathbf{1 8 4 0 - 5 5}$
Maximum Access Time (ns)	25	30	35	45	55	
Maximum Operating Current (mA)	Commercial	1120	1120	1120	1120	1120
	Military			1120	1120	1120
	Commercial	320	320	320	320	320
	Military			320	320	320

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	
Ambient Temperature with	
Power Applied (HD)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied (PD)	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 28 to Pin 14)	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Voltage Applied to Outputs in High Z State	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
DC Program Voltage	14.0 V

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$
UV Exposure . 7258 Wsec/cm ${ }^{2}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	CYM1840		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{Cc}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	V
I_{L}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$	-20	+20	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{o}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled	-50	$+50$	$\mu \mathrm{A}$
I_{Cc}	$V_{\text {cc }}$ Operating Supply Current by 16 Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{CS}_{\mathrm{X}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		1120	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{Cc}}, \overline{\mathrm{CS}}_{\mathrm{X}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		320	mA
$\mathrm{I}_{\text {SB1 }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CS}} \\ & \text { Power-Down Current }{ }^{[2]} \end{aligned}$	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CS}}_{\mathrm{X}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		160	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
CINA	Input Capacitance, Address Pins	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \end{aligned}$	100	pF
$\mathrm{C}_{\text {In }}$	Input Capacitance, I/O Pins		30	pF
Cout	Output Capacitance		30	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
3. Tested initially and after any design or process changes that may affect these parameters.

\longrightarrow

AC Test Loads and Waveforms

(b)

1840-4

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameters	Description	1840-25		1840-30		1840-35		1840-45		1840-55		Units
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	25		30		35		45		55		ns
$t_{\text {AA }}$	Address to Data Valid		25		30		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	5		5		5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		30		35		45		55	ns
t ${ }_{\text {LzCS }}$	$\overline{\mathrm{CS}}$ LOW to Low ${ }^{[5]}$	5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\text { CS }}$ HIGH to High ${ }^{\text {[}}$ [5] ${ }^{\text {a }}$		20		20		25		25		25	ns
t_{PU}	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\overline{C S}} \mathrm{HIGH}$ to Power-Down		25		30		35		45		55	ns
WRITE CYCLE ${ }^{[7]}$												
t_{WC}	Write Cycle Time	25		30		35		45		55		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\text { CS }}$ LOW to Write End	20		25		30		40		50		ns
$t_{\text {AW }}$	Address Set-Up to Write End	20		25		30		40		50		ns
t_{HA}	Address Hold from Write End	2		2		6		6		6		ns
$\mathrm{t}_{\text {S }}$	Address Set-Up to Write Start	2		2		6		6		6		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		25		30		40		ns
t_{SD}	Data Set-Up to Write End	15		15		25		30		35		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	2		2		6		6		6		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[5]}$	0		0		0		0		0		ns
$\mathrm{t}_{\mathrm{HzWE}}$	WE LOW to High $\mathbf{Z}^{[5,6]}$	0	15	0	15	0	25	0	25	0	25	ns

Notes:
3. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LzCS }}$ for any given device.
5. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from sleady state voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms ${ }^{[8]}$

Read Cycle No. $1^{[8,9]}$

Read Cycle No. $2^{[8,9]}$

1840-6
Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[7]}$

Notes:

8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[7,10]}$

Truth Table

$\overline{\mathbf{C S}}_{\mathbf{x}}$	$\overline{\mathbf{W E}}_{\mathbf{X}}$	Inputs/Outputs	Mode
H	\mathbf{X}	High \mathbf{Z}	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CYM1840PD-25C	PD06	Commercial
	CYM1840HD-25C	HD11	
30	CYM1840PD-30C	PD06	Commercial
	CYM1840HD-30C	HD11	
	CYM1840PD-35C	PD06	Commercial
	CYM1840HD-35C	HD11	
	CYM1840HD-35MB	HD11	Military
45	CYM1840PD-45C	PD06	Commercial
	CYM1840HD-45C	HD11	
	CYM1840HD-45MB	HD11	Military
	CYM1840PD-55C	PD06	Commercial
	CYM1840HD-55C	HD11	
	CYM1840HD-55MB	HD11	Military

[^63]
CYM1841

Features

- High-density 8-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- Low active power
- 5.3W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of . 58 in.
- Small PCB footprint
-1.3 sq. in.
- JEDEC-compatible pinout
- Available in SIMM or ZIP format

Functional Description

The CYM1841 is a high-performance 8-megabit static RAM module organized as 256 K words by 32 bits. This module is constructed from eight $256 \mathrm{~K} \times 4$ SRAMs in SOJ packages mounted on an epoxy laminate board with pins. Four chip selects ($\overline{\mathrm{CS}_{1}}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}, \overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip select $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins $\left(\mathrm{I} / \mathrm{O}_{\mathrm{X}}\right)$ is written
into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking the chip select $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{x}}$).
The data input/output pins stay at the high-impedance state when write enable is LOW or the appropriate chip selects are HIGH.
Two pins $\left(\mathrm{PD}_{0}\right.$ and $\left.\mathrm{PD}_{1}\right)$ are used to identify module memory density in applications where alternate versions of the JEDECstandard modules can be interchanged.

Logic Block Diagram

Pin Configuration

Selection Guide

	$\mathbf{1 8 4 1 - 2 5}$	$\mathbf{1 8 4 1 - 3 0}$	$\mathbf{1 8 4 1 - 3 5}$	$\mathbf{1 8 4 1 - 4 5}$	$\mathbf{1 8 4 1 - 5 5}$
Maximum Access Time (ns)	25	30	35	45	55
Maximum Operating Current (mA)	960	960	960	960	960
Maximum Standby Current (mA)	480	480	480	480	480

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	\mathbf{V}_{CC}
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	CYM1841		Units
			Min.	Max.	
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	-16	+16	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{cc}}$, Output Disabled	-10	$+10$	$\mu \mathrm{A}$
I_{CC}	V_{Cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{CS}_{\mathrm{N}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		960	mA
$\mathrm{I}_{\text {SB } 1}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}}_{\mathrm{N}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		480	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} \overline{\mathrm{CS}}_{\mathrm{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \text { or } \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \end{aligned}$		16	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$		70
$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	pF			
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	20	pF	

Notes:

1. Apull-up resistor to \mathbf{V}_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
2. Tested on a sample basis.

AC Test Loads and Waveforms

1841-3

Equivalent to: THEV́ENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	1841-25		1841-30		1841-35		1841-45		1841-55		Units
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	25		30		35		45		55		ns
t_{AA}	Address to Data Valid		25		30		35		45		55	ns
toha	Output Hold from Address Change	5		5		5		5		5		ns
$\mathrm{t}_{\text {Acs }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		30		35		45		55	ns
$t_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		20		25		30		35	ns
$\mathrm{t}_{\text {Lzoe }}$	$\overline{\text { OE }}$ LOW to Low Z	0		0		0		0		0		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE }}$ HIGH to High Z		15		15		15		15		15	ns
tizcs	$\overline{\text { CS }}$ LOW to Low $\mathrm{Z}^{[4]}$	10		10		10		10		10		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4,5]}$		20		20		20		20		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CS }}$ HIGH to Power Down		25		30		35		45		55	ns

WRITE CYCLE ${ }^{[6]}$

$t_{\text {wc }}$	Write Cycle Time	25		30		35		45		55		ns
$\mathrm{t}_{\text {scs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	20		25		30		40		50		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		40		50		ns
t_{HA}	Address Hold from Write End	0		0		2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		2		2		2		ns
$\mathrm{t}_{\text {PWE }}$	WE Pulse Width	20		25		30		35		45		ns
$\mathrm{t}_{\text {sD }}$	Data Set-Up to Write End	15		15		20		25		35		ns
t_{HD}	Data Hold from Write End	2		2		2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low ${ }^{(4]}$	0		0		0		0		0		ns
$t_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathbf{Z}^{[4,5]}$	0	15	0	15	0	15	0	15	0	15	ns

Data Retention Characteristics (L Version Only)

Parameters	Description	Test Conditions	1841		Units
			Min.	Max.	
V_{DR}	V_{CC} for Retention Data	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current			800	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[7]}$	Chip Deselect to Data Retention Time		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[7]}$	Operation Recovery Time		5		ns

Notes:
3. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, t_{HZCS} is less than $t_{\text {Lzcs }}$ for any given device. These parameters are guaranteed and not 100% tested.
5. t_{HZCS} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
7. Guaranteed, not tested.

Data Retention Waveform

Switching Waveforms ${ }^{[8]}$

Read Cycle No. $1^{[9,10]}$

Read Cycle No. $2^{[9,11]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[6]}$

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[6,12]}$

Notes:

8. $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$, and $\overline{\mathrm{CS}}_{4}$ are represented by $\overline{\mathrm{CS}}$ in the Switching Characteristics and Switching Waveforms sections.
9. \bar{W} is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
12. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}_{\mathbf{N}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CYM1841PM-25C	PM02	Commercial
	CYM1841PZ-25C	PZ03	
30	CYM1841PM-30C	PM02	Commercial
	CYM1841LPM-30C	PM02	
	CYM1841PZ-30C	PZ03	
	CYM1841LPZ-30C	PZ03	
35	CYM1841PM-35C	PM02	Commercial
	CYM1841LPM-35C	PM02	
	CYM1841PZ-35C	PZ03	
	CYM1841LPZ-35C	PZ03	
45	CYM1841PM-45C	PM02	Commercial
	CYM1841LPM-45C	PM02	
	CYM1841PZ-45C	PZ03	
	CYM1841LPZ-45C	PZ03	
55	CYM1841PM-55C	PM02	Commercial
	CYM1841LPM-55C	PM02	
	CYM1841PZ-55C	PZ03	
	CYM1841LPZ-55C	PZ03	

Document \#: 38-M-00031-A

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- Low active power
- 10.4W (max.)
- SMD technology
- Registered address inputs
- Four completely independent memory banks
- Small PCB footprint
- 1.9 sq. in.

Functional Description

The CYM1910 is a very high performance 1-megabit static RAM module organized as 16 K words by 68 bits. This module is constructed using seventeen $16 \mathrm{~K} \times 4$ static RAMs in SOJ packages mounted onto an epoxy laminate board with pins. The memory is organized as three banks of $16 \mathrm{~K} \times 16$ and one of $16 \mathrm{~K} \times$ 20, each of which has its own chip select, write enable, and output enable signals. Writing to the module is accomplished when the appropriate chip select ($\overline{\mathrm{CS}}_{\mathrm{x}}$) and write enable ($\overline{W E}_{x}$) inputs are both LOW. Data on the appropriate input/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{nn}}$) of the device is written
into the memory location specified by the content of the address register. The address register is loaded on the rising edge of the clock signal (CLK).
Reading the device is accomplished by taking chip select $\left(\overline{\mathrm{CS}}_{\mathrm{x}}\right)$ and output enable $\left(\overline{\mathrm{OE}}_{\mathrm{x}}\right)$ low while $\overline{\mathrm{WE}}_{\mathrm{x}}$ remains inactive or HIGH. Under these conditions, the contents of the memory location specified by the contents of the address register will appear on the appropriate data input/output pins $\left(\mathrm{I} / \mathrm{O}_{\mathrm{nn}}\right)$.
The data input/output pins remain in a high-impedance state when chip select ($\overline{\mathrm{CS}}_{\mathrm{x}}$) or output enable ($\overline{\mathrm{OE}}_{\mathrm{x}}$) is HIGH, or when write enable $\left(\overline{W E}_{x}\right)$ is LOW.

Logic Block Diagram

1910-1

Pin Configuration

Selection Guide

	$1910 \mathrm{PV}-25$	1910PV-35	1910PV-45
Maximum Access Time (ns)	25	35	45
Maximum Operating Current (mA)	1900	1900	1900
Maximum Standby Current (mA)	650	650	650

Maximum Ratings
(Above which the useful life may be impaired)

Storage Temperature	$5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State .	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	CYM1910PV		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	V
$\mathrm{I}_{\text {LXA }}$	Input Load Current $\overline{\mathrm{OE}}$, $\overline{W E}, \overline{\mathrm{CS}}$	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{Cc}}$	-15	+15	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LXB }}$	Input Load Current $\mathrm{A}_{0}-\mathrm{A}_{13}$, CLK	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-1.2	$+.040$	mA
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-15	$+15$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CC }}$	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\mathrm{IL}}$		1900	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\overline{C S}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		650	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {INA }}$	Input Capacitance $\left(\mathrm{A}_{0}-\mathrm{A}_{13}, \mathrm{CLK}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	20	pF
$\mathrm{C}_{\text {INB }}$	Input Capacitance $(\overline{\mathrm{OE}}, \overline{\mathrm{WE}}, \overline{\mathrm{CS}})$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	35	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance		15	pF

Votes:

$V_{\text {ILMIN }}=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
3. Tested on a sample basis.

IC Test Loads and Waveforms

SCOPE
(a)

JIG AND
SCOPE

Switching Characteristics Over the Operating Range ${ }^{[4]}$

	Description	1910PV-25		1910PV-35		1910PV-45		Units
Parameters		Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE

t_{RC}	Read Cycle Time CLK Cycle Time	25		35		45		ns
$t_{\text {CA }}$	CLK to Data Valid Access Time		25		35		45	ns
$t_{\text {SAC }}$	Address Set-Up to CLK Rising Edge	3		4		4		ns
$\mathrm{t}_{\mathrm{HAC}}$	Address Hold from CLK Rising Edge	2		2		2		ns
$\mathrm{t}_{\mathrm{OHC}}$	Data Hold from CLK Rising Edge	5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		20		30		40	ns
${ }^{1}$ DOE	$\overline{O E}$ LOW to Data Valid		15		20		25	ns
$\mathrm{t}_{\text {LZOE }}$	OE LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\text {HzOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[5]}$	0	10	0	15	0	20	ns
$\mathrm{t}_{\text {LZCs }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[6]}$	3		3		3		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		10		15		20	ns

WRITE CYCLE

twc	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {sAC }}$	Address Set-Up to CLK Rising Edge	3		4		4		ns
thaC	Address Hold from CLK Rising Edge	2		2		2		ns
$\mathrm{t}_{\text {SCs }}$	$\overline{\mathrm{CS}}$ LOW to Write End	20		25		35		ns
$\mathrm{t}_{\text {cw }}$	CLK Rising Edge Set-Up to Write End	25		30		40		ns
t_{HC}	CLK Rising Edge Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {sc }}$	CLK Rising Edge Set-Up to Write Start	10		10		10		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	15		20		25		ns
${ }_{\text {ISD }}$	Data Set-Up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	3		3		3		ns
$\mathrm{t}_{\text {Hzwe }}$	WE LOW to High Z		10		15		20	ns

Notes:

4. Test Conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\text {HZOE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
6. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than ${ }^{\text {tzes }}$ for any given device. These parameters are guaranteed and not 100% tested.
7. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WELOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
8. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
10. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
11. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. $1^{[8,9]}$

Read Cycle No. $2^{[8,10]}$

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[7]}$

Write Cycle No. $2\left(\overline{\mathrm{CS}}\right.$ Controlled ${ }^{[7,11]}$

=
Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read Word
L	L	X	Data In	Write Word
L	H	H	High Z	Deselect

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
25	CYM1910PV-25C	PV02	Commercial
35	CYM1910PV-35C	PV02	Commercial
45	CYM1910PV-45C	PV02	Commercial

[^64]
Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- Low active power
- 10.4W (max.)
- SMD technology
- Latched address inputs
- Four completely independent memory banks
- Small PCB footprint
-1.9 sq . in.

Functional Description

The CYM1911 is a very high
performance 1-megabit static RAM
module organized as 16 K words by 68 bits. This module is constructed using seventeen 16 K x 4 static RAMs in SOJ packages mounted onto an epoxy laminate board with pins. The memory is organized as three banks of $16 \mathrm{~K} \times 16$ and one of $16 \mathrm{~K} \times 20$, each of which has its own chip select, write enable, and output enable signals.
Writing to the module is accomplished when the appropriate chip select ($\overline{\mathrm{CS}}_{\mathrm{x}}$) and write enable ($\overline{\mathrm{WE}}_{\mathrm{X}}$) inputs are both LOW. If Latch Enable (ALE) is HIGH, data on the appropriate input/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{nn}}$) of the device is written into the memory location specified on the address pins (A_{0} through A_{13}). If ALE is LOW, data is written into the address specified
by the contents of the address latch. The value in this latch is updated on the falling edge of ALE.
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}_{\mathrm{X}}$) and output enable ($\overline{\mathrm{OE}}_{\mathrm{X}}$) LOW while $\overline{W E}_{\mathrm{X}}$ remains inactive or HIGH. If Latch Enable (ALE) is HIGH, the contents of the memory location specified on the address pins (A_{0} through A_{13}) will appear on the appropriate data input/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{nn}}$). If ALE is LOW, the contents of the memory location specified by the value in the address latch will appear on $\mathrm{I} / \mathrm{O}_{\mathrm{nn}}$. The data input/output pins remain in a high-impedance state when chip select (CS_{x}) or output enable $\left(\overline{\mathrm{OE}}_{\mathrm{X}}\right)$ is HIGH , or when write enable ($\overline{\mathrm{WE}}_{\mathrm{X}}$) is LOW.

Logic Block Diagram

Pin Configuration
Plastic VDIP

Selection Guide

	1911PV-25	1911PV-35	1911PV-45
Maximum Access Time (ns)	25	35	45
Maximum Operating Current (mA)	1900	1900	1900
Maximum Standby Current (mA)	650	650	650

Maximum Ratings

(Above which the useful life may be impaired)
Storage Temperature
$-45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied

$$
-10^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
Output Current into Outputs (Low)
20 mA

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	CYM1911PV		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	V
$\mathrm{I}_{\mathrm{IXA}}$	$\begin{aligned} & \text { Input Load Current } \overline{\mathrm{OE}}, \\ & \overline{\mathrm{WE}}, \overline{\mathrm{CS}} \end{aligned}$	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	-15	+15	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{IXB}}$	Input Load Current $\mathrm{A}_{0}-\mathrm{A}_{13}$, ALE	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	-1.2	+. 040	mA
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-15	+15	$\mu \mathrm{A}$
I_{CC}	V_{Cc} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\mathrm{IL}}$		1900	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \\ & \hline \end{aligned}$		650	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\mathrm{INA}}$	Input Capacitance $\left(\mathrm{A}_{0}-\mathrm{A}_{13}, \mathrm{ALE}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	20	pF
$\mathrm{C}_{\mathrm{INB}}$	Input Capacitance $(\overline{\mathrm{OE}}, \overline{\mathrm{WE}}, \overline{\mathrm{CS}})$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	35	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance		15	pF

Notes:

1. $\mathrm{V}_{\text {ILMIN }}=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns .
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
3. Tested on a sample basis.

AC Test Loads and Waveforms

(b) 1911.3

1911 -4

Switching Characteristics Over the Operating Range ${ }^{[4]}$

| Parameters | Description | 1911PV-25 | | 1911PV-35 | | 1911PV-45 | | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Min. | Max. | Min. | Max. | Min. | Max. | |

READ CYCLE

t_{RC}	Read Cycle Time ALE Cycle Time	25		35		45		ns
$t_{\text {AA }}$	Address to Data Valid		25		35		45	ns
toha	Data Hold from Address Change	3		3		3		ns
$t_{\text {LA }}$	ALE to Data Valid Access Time	25		35		45		ns
$\mathrm{t}_{\text {SAL }}$	Address Set-Up to ALE Falling Edge	3		4		4		ns
$t_{\text {hal }}$	Address Hold from ALE Falling Edge	2		2		2		ns
tohL	Data Hold from ALE Falling Edge	3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		20		30		40	ns
$t_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		20		25	ns
tlzoe	$\overline{\mathrm{OE}}$ LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\text {hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[5]}$	0	10	0	15	0	20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[6]}$	3		3		3		ns
$\mathrm{t}_{\text {HzCs }}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[5,6]}$		10		15		20	ns

WRITE CYCLE

$t_{\text {wc }}$	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {SAL }}$	Address Set-Up to ALE Falling Edge	3		4		4		ns
$\mathrm{thal}^{\text {Hel }}$	Address Hold from ALE Falling Edge	2		2		2		ns
tscs	$\overline{\mathrm{CS}}$ LOW to Write End	20		25		35		ns
${ }_{\text {t }}^{\text {LW }}$	ALE Falling Edge Set-Up to Write End	25		30		40		ns
t_{HL}	ALE Falling Edge Hold From Write End	0		0		0		ns
$\mathrm{t}_{\text {SL }}$	ALE Falling Edge Set-Up to Write Start	10		10		10		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	15		20		25		ns
$t_{\text {sD }}$	Data Set-Up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High Z		10		10		20	ns

Notes:

4. Test Conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. t_{HZCS} and $\mathrm{t}_{\mathrm{HZOE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
6. At any given temperature and voltage condition, $t_{\text {HZCS }}$ is less than $t_{\text {LZCS }}$ for any given device. These parameters are guaranteed and not 100% tested.
7. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and \bar{W} LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
8. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$
10. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
11. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. 1a (Buffered Address Mode) ${ }^{[8,9]}$

Read Cycle No. 1b (Latched Address Mode) ${ }^{[8,9]}$

1911-6
Read Cycle No. $2^{[8,10]}$

Switching Waveforms (continued)

Write Cycle No. 1a ($\overline{\mathbf{W E}}$ Controlled, Buffered Address Mode) ${ }^{[7]}$

Write Cycle No. 1b ($\overline{\mathbf{W E}}$ Controlled, Latched Address Mode) ${ }^{[7]}$

Write Cycle No. 2b ($\overline{\mathbf{C S}}$ Controlled, Latched Address Mode) ${ }^{[7,11]}$

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read Word
L	L	X	Data In	Write Word
L	H	H	High Z	Deselect

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
25	CYM1911PV-25C	PV02	Commercial
35	CYM1911PV-35C	PV02	Commercial
45	CYM1911PV-45C	PV02	Commercial

Document \#: 38-M-00024-A

Features

- 8K x 9 FIFO buffer memory (4210) or $16 \mathrm{~K} \times 9$ FIFO buffer memory (4220)
- Asynchronous read/write
- High-speed 25-MHz read/write
- Pin-compatible with 7C42X series of monolithic FIFOs
- Low operating power
$-I_{C C}($ max. $)=540 \mathrm{~mA}$ (commercial)
- 600-mil DIP package
- Empty, full flags
- Small PCB footprint -0.88 sq. in.
- Expandable in depth and width

Functional Description

The CYM4210 is a first-in first-out (FIFO) memory module that is 8,192 words by 9 bits wide. The CYM 4220 is 16,384 words by 9 bits wide. Each is offered in a $600-\mathrm{mil}-$ wide DIP package. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Full and empty flags are provided to prevent overrun and underrun. Three additional pins are also provided to facilitate unlimited expansion in width, depth, or both. The depth expansion technique steers the control signals from one deviceto another in parallel, thus eliminating the
serial addition of propagation delays so that throughput is not reduced. Data is steered in a similar manner.
The read and write operations may be asynchronous; each can occur at a rate of 25 MHz . The write operation occurs when the write $(\overline{\mathrm{W}})$ signal is LOW. Read occurs when read (R) goes LOW. The 9 data outputs go to the high-impedance state when R is HIGH.

In the depth expansion configuration the ($\overline{\mathrm{XO}}$) pin provides the expansion out information that is used to tell the next FIFO that it will be activated.

Logic Block Diagram

4210-1

Pin Configuration

4210-2

Selection Guide

		$\begin{aligned} & 4210-30 \\ & 4220-30 \end{aligned}$	$\begin{aligned} & \mathbf{4 2 1 0 - 4 0} \\ & \mathbf{4 2 2 0 - 4 0} \end{aligned}$	$\begin{aligned} & \mathbf{4 2 1 0 - 5 0} \\ & \mathbf{4 2 2 0 - 5 0} \\ & \hline \end{aligned}$	$\begin{aligned} & 4210-65 \\ & \mathbf{4 2 2 0 - 6 5} \end{aligned}$
Frequency (MHz)		25	20	15.4	12.5
Access Time (ns)		30	40	50	65
Maximum Operating Current (mA)	Commercial	540	540	540	540
	Military		640	640	640

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 28 to Pin 14)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.

DC Input Voltage -0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions		$\begin{aligned} & \hline \mathbf{4 2 1 0} \\ & \mathbf{4 2 2 0} \\ & \hline \end{aligned}$		Units
				Min.	Max.	
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\mathrm{IH}}{ }^{[2]}$	Input HIGH Voltage		Com'l	2.0	V_{Cc}	V
			Mil/Ind	2.2	V_{Cc}	V
V_{IL}	Input LOW Level			-0.5	0.8	V
I_{L}	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$, $\mathrm{f}_{\text {MAX }}$, Outputs Open	Com'l		540	mA
			Mil/Ind		640	mA
$\mathrm{I}_{\text {SB1 }}$	Standby Current	$\begin{aligned} & \text { All Inputs }=\mathrm{V}_{\mathrm{IH}} \text { Min., } \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{f}_{\mathrm{MAX}}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		100	mA
			Mil/Ind		120	mA
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	All Inputs, $\mathrm{V}_{\mathrm{CC}}-0.2 \leq \mathrm{V}_{\mathrm{IN}} \leq 0.2$, $\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0, \mathrm{f}=0$	Com'l		80	mA
			$\mathrm{Mil} / \mathrm{Ind}$		100	mA

Capacitance

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	30	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$.	30	pF

Notes:
$\begin{array}{ll}\text { 1. } \mathrm{T}_{\mathrm{A}} \text { is the "instant on" case temperature. } & \text { 2. } \overline{\mathrm{XI}} \text { must use CMOS levels with } \mathrm{V}_{\mathrm{IH}} \geq 3.5 \mathrm{~V} \text { (CYM4220 only). }\end{array}$

AC Test Loads and Waveforms

(a)

Equivalent to:
THÉVENIN EQUIVALENT

CYPRESS
SEMMCONDUCTOR

Switching Characteristics Over the Operating Range ${ }^{[3,4,5]}$

Parameters	Description	Spec.-30		Spec. 40		Spec. 50		Spec. 65		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	40		50		65		80		ns
t_{A}	Access Time		30		40		50		65	ns
t_{RR}	Read Recovery Time	10		10		15		15		ns
t_{PR}	Read Pulse Width	30		40		50		65		ns
$\mathrm{t}_{\text {LZR }}$	Read LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\mathrm{DVR}}$	Read HIGH to Data Valid	3		3		3		3		ns
$\mathrm{t}_{\text {HZR }}$	Read HIGH to High Z		20		25		30		30	ns
t_{wc}	Write Cycle Time	40		50		65		80		ns
$\mathrm{t}_{\text {PW }}$	Write Pulse Width	30		40		50		65		ns
$\mathrm{t}_{\mathrm{HWZ}}$	Write HIGH to Low Z	10		10		15		15		ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	10		10		15		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	18		20		30		30		ns
t_{HD}	Data Hold Time	0		0		5		10		ns
$\mathrm{t}_{\text {MRSC }}$	$\overline{\mathrm{MR}}$ Cycle Time	40		50		65		80		ns
$\mathrm{t}_{\text {PMR }}$	$\overline{\text { MR Pulse Width }}$	30		40		50		65		ns
$\mathrm{t}_{\text {RMR }}$	$\overline{\text { MR }}$ Recovery Time	10		10		15		15		ns
$\mathrm{t}_{\text {RPW }}$	Read HIGH to $\overline{\mathrm{MR}} \mathrm{HIGH}$	30		40		50		65		ns
${ }^{\text {twpw }}$	Write HIGH to $\overline{\text { MR }} \mathrm{HIGH}$	30		40		50		65		ns
$\mathrm{t}_{\text {EfL }}$	$\overline{\text { MR }}$ to $\overline{\mathrm{EF}}$ LOW		40		50		65		80	ns
$\mathrm{t}_{\text {FFH }}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{FF}}$ HIGH		40		50		65		80	ns
$\mathrm{t}_{\text {ReF }}$	Read LOW to EF LOW		30		40		50		60	ns
$\mathrm{t}_{\text {RFF }}$	Read HIGH to $\overline{\text { FF }}$ HIGH		30		40		50		60	ns
$\mathrm{t}_{\text {WEF }}$	Write HIGH to EF HIGH		30		40		50		60	ns
$\mathrm{t}_{\text {WFF }}$	Write LOW to $\overline{\mathrm{FF}}$ LOW		30		40		50		60	ns
$\mathrm{t}_{\text {RAE }}$	Effective Read from Write HIGH		30		40		50		60	ns
$\mathrm{t}_{\text {RPE }}$	Effective Read Pulse Width After $\overline{\mathrm{EF}} \mathrm{HIGH}$	30		40		50		65		ns
$\mathrm{t}_{\text {WaF }}$	Effective Write from Read HIGH		30		40		50		60	ns
${ }^{\text {t }}$ WPF	Effective Write Pulse Width After $\overline{\mathrm{FF}} \mathrm{HIGH}$	30		40		50		65		ns
	Expansion Out LOW Delay from Clock		30		40		50		60	ns
$\mathrm{t}_{\text {XOH }}$	Expansion Out HIGH Delay from Clock		30		40		50		60	ns

Notes:

3. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance, as in part (a) of AC Test Load and Waveform, unless otherwise specified.
4. t_{HZR} transition is measured at +500 mV from V_{OL} and -500 mV from $\mathrm{V}_{\mathrm{OH}}{ }^{t_{\mathrm{DVR}}}$ transition is measured at the 1.5 V level. $\mathrm{t}_{\mathrm{HWZ}}$ and $t_{\text {LZR }}$ transition is measured at $\pm 100 \mathrm{mV}$ from the steady state.
5. $t_{\text {HZR }}$ and $t_{\text {DVR }}$ use capacitance loading as in part (b) of AC Test Load and Waveform

Switching Waveforms

Aynchronous Read and Write Timing Diagram

Last Write to First Read Full Flag Timing Diagram

Last Read to First Write Empty Flag Timing Diagram

Switching Waveforms (continued)

Master Reset Timing Diagram

Empty Flag and Read Bubble-Through Mode Timing Diagram

Full Flag and Write Bubble-Through Mode Timing Diagram

Switching Waveforms (continued)

Expansion Timing Diagram

Notes:

6. $t_{\text {MRSC }}=t_{P M R}+t_{\text {RMR }}$.
7. $\overline{\mathrm{W}}$ and $\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}$ for at least $\mathrm{t}_{\mathrm{WPW}}$ or $\mathbf{t}_{\mathrm{RPR}}$ before the rising edge of MR.
8. Expansion Out of Device $1\left(\overline{\mathrm{XO}}_{1}\right)$ is connected to Expansion In of Device $2\left(\overline{\mathrm{XI}}_{2}\right)$.

Architecture

The CYM4210 FIFO module is an array of 8,192 words of 9 bits each and is implemented using four $2 \mathrm{~K} \times 9$ monolithic FIFOs. The CYM4220 is an array of 16,384 words of 9 bits each and is implemented using four $4 \mathrm{~K} \times 9$ monolithic FIFOs. Each version has full and empty flags, but since the FIFOs are internally cascaded using the depth mode, the half full and retransmit features are not available.
Pinout of the CYM4210 and CYM4220 are compatible with industry standard 28 -pin DIP. The functionality is compatible with monolithic FIFO devices and with other FIFO modules.

Resetting the FIFO

Upon power-up, the FIFO must be reset with a master reset ($\overline{\mathrm{MR}})$ cycle. This causes the FIFO to enter the empty condition signified by the empty flag $(\overline{\mathrm{EF}})$ being LOW and full flag $(\overline{\mathrm{FF}})$ resetting to HIGH. Read $(\overline{\mathrm{R}})$ and write $(\overline{\mathrm{W}})$ must be $\mathrm{HIGH} \mathrm{t}_{\mathrm{RPw}} / \mathrm{t}_{\text {wPw }}$ before and $t_{R M R}$ after the rising edge of $\overline{M R}$ for a valid reset cycle.

Writing Data to the FIFO

The availability of an empty location is indicated by the HIGH state of the full flag ($\overline{\mathrm{FF}}$). A falling edge of write $(\overline{\mathrm{W}})$ initiates a write cycle. Data appearing at the inputs $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right)$ tsd before and t_{HD} after the rising edge of $\overline{\mathrm{W}}$ will be stored sequentially in the FIFO.
The empty flag ($\overline{\mathrm{EF}}$) LOW to HIGH transition occurs twef $^{\text {after }}$ the first LOW to HIGH transition on the write clock of an empty FIFO. The full flag $(\overline{\mathrm{FF}})$ goes LOW on the falling edge of $\overline{\mathrm{W}}$ during the cycle in which the last available location in the FIFO is written, prohibiting overflow. $\overline{\mathrm{FF}}$ goes HIGH $\mathrm{t}_{\mathrm{RFF}}$ after the completion of a valid read of a full FIFO.

Reading Data from the FIFO

The falling edge of read $(\overline{\mathrm{R}})$ initiates a read cycle if the empty flag $(\overline{\mathrm{EF}})$ is not LOW. Data outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{8}\right)$ are in a high-impedance condition between read operations ($\overline{\mathrm{R}}$ HIGH), when the FIFO is empty, or when the FIFO is in the depth expansion mode but is not the active device.
The falling edge of $\overline{\mathrm{R}}$ during the last read cycle before the empty condition triggers a HIGH to LOW transition of $\overline{\mathrm{EF}}$, prohibiting any further read operations until $\mathrm{t}_{\text {WEF }}$ after a valid write.

Single Device Mode

Single device mode is entered by connecting $\overline{\mathrm{FL}}$ to ground and connecting $\overline{\mathrm{XO}}$ to $\overline{\mathrm{XI}}$ (see Figure 1).

Width Expansion Mode

FIFOs can be expanded in width to provide word widths greater than 9 bits in increments of 9 bits. Devices are connected similar to the single device mode but with control line inputs in common to all devices. Flag outputs from any device can be monitored (see Figure 2).

Depth Expansion Mode

Depth expansion mode (see Figure 3) is entered when, during a $\overline{\mathrm{MR}}$ cycle,expansion out ($\overline{\mathrm{XO}}$) of one device is connected to expansion in (XI) of the next device, with $\overline{\mathrm{XO}}$ of the last device connected to $\overline{X I}$ of the first device. In the depth expansion mode the first load $(\overline{\mathrm{FL}})$ input, when grounded, indicates that this part is the first to

Figure 1. Single Device Mode

Figure 2. Width Expansion Mode
be loaded. All other devices must have this pin HIGH. To enable the correct FIFO, $\overline{\mathrm{XO}}$ is pulsed LOW when the last physical location of the previous FIFO is written to and is pulsed LOW again when the last physical location is read. Only one FIFO is enabled for read and one is enabled for write at any given time. All other devices are in standby.
FIFOs can also be expanded simultaneously in depth and width. Consequently, any depth or width FIFO can be created of word widths in increments of 9 bits. When expanding in depth, a composite $\overline{\mathrm{FF}}$ and $\overline{\mathrm{EF}}$ must be created by ORing the $\overline{\mathrm{FFs}}$ together and the $\overline{\mathrm{EFs}}$ together.

Figure 3. Depth Expansion Mode

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CYM4210HD-30C	HD10	Commercial
40	CYM4210HD-40C	HD10	Commercial
	CYM4210HD-40MB	HD10	Military
50	CYM4210HD-50C	HD10	Commercial
	CYM4210HD-50MB	HD10	Military
65	CYM4210HD-65C	HD10	Commercial
	CYM4210HD-65MB	HD10	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CYM4220HD-30C	HD10	Commercial
40	CYM4220HD-40C	HD10	Commercial
	CYM4220HD-40MB	HD10	Military
50	CYM4220HD-50C	HD10	Commercial
	CYM4220HD-50MB	HD10	Military
65	CYM4220HD-65C	HD10	Commercial
	CYM4220HD-65MB	HD10	Military

Document \#: 38-M-00033A

Features

- $65,536 \times 9$ FIFO buffer memory
- Advanced SRAM-based FIFO architecture
- Asynchronous read/write
- High-speed 7.5-MHz read/write independent of width
- Low operating power $-I_{C C}($ max. $)=250 \mathrm{~mA}$
- Empty and full flags
- 28-pin, 600 -mil DIP package
- Pinout-compatible with industrystandard FIFO pinout (7C428, 7C432)

Functional Description

The CYM4241 RAMFIFO ${ }^{\circledR 1}$ is a 65,536 -word by 9 -bit first-in first-out (FIFO) memory implemented using an advanced SRAM controller architecture. The device is packaged in a 28 -pin, $600-\mathrm{mil}$ DIP. The pin format is compatible with in-dustry-standard formats. FIFO memories are organized such that the data is read in the same sequential order that it was written. Full and empty flags are provided to prevent overrun and underrun.
The read and write operations may be totally asynchronous; each can occur at a rate of 7.5 MHz . The write operation occurs when the write $(\overline{\mathrm{W}})$ signal is LOW. Read occurs when read $(\overline{\mathrm{R}})$ goes LOW. The nine data outputs go to the high-impedance state when $\overline{\mathrm{R}}$ is HIGH.

The CYM4241 combines high-speed static RAMs with proprietary FIFO controller circuitry, and incorporates an on-board high-speed crystal oscillator. The controller arbitrates asynchronous requests appearing at the $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ inputs of the FIFO with an internal synchronous state machine. It configures the SRAM array as a virtual dual-port memory, and maintains read and write address counters. Flag logic and reset circuitry are incorporated in the controller.
The CYM4241 is pinout-compatible with the CYM4210 and CYM4220 FIFO modules. The CYM4241 pin arrangement is compatible with Cypress's CY7C428 and CY7C432 monolithic FIFOs.

Logic Block Diagram

RAMFIFO is a trademark of Cypress Semiconductor, Inc.

Selection Guide

	$\mathbf{4 2 4 1 - 8 5}$	4241-100
Frequency (MHz)	7.5	6.5
Access Time (ns)	85	100

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature ${ }^{[1]}$ $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.3 V to +7.0 V

DC Input Voltage -0.3 V to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$

DC Voltage Applied to Outputs
in High Z State
-0.3 V to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	4241		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-6.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=6.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V
I_{IX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+ 10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$		250	mA
$\mathrm{I}_{\mathrm{OS}}{ }^{[2]}$	Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	25	80	mA
		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-75	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	7	pF

Notes:

1. Unpowered.
2. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

4241-3

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range

Parameters	Description	4241-85		4241-100		Units
		Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	130		150		ns
t_{A}	Access Time		85		100	ns
$\mathrm{t}_{\text {RR }}$	Read Recovery Time	45		50		ns
t_{PR}	Read Pulse Width	85		100		ns
$\mathrm{t}_{\text {LZR }}{ }^{[4]}$	Read LOW to Low Z	3		3		ns
$\mathrm{t}_{\mathrm{DVR}}$	Read HIGH to Data Valid	3		3		ns
$\mathrm{t}_{\mathrm{HZR}}{ }^{[4]}$	Read HIGH to High Z		20		20	ns
$t_{\text {wc }}$	Write Cycle Time	130		150		ns
$\mathrm{t}_{\text {pw }}$	Write Pulse Width	85		100		ns
$\mathrm{t}_{\mathrm{HWZ}}{ }^{[4]}$	Write HIGH to Low Z	10		10		ns
$\mathrm{t}_{\mathbf{W R}}$	Write Recovery Time	45		50		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	20		20		ns
t_{HD}	Data Hold Time	5		5		ns
$\mathrm{t}_{\text {MRSC }}$	$\overline{\mathrm{MR}}$ Cycle Time	130		150		ns
$\mathrm{t}_{\text {PMR }}$	$\overline{M R}$ Pulse Width	85		100		ns
$\mathrm{t}_{\mathrm{RMR}}$	$\overline{\mathrm{MR}}$ Recovery Time	45		50		ns
$\mathrm{t}_{\text {RPW }}$	Read HIGH to $\overline{\mathrm{MR}} \mathrm{HIGH}$	85		100		ns
$\mathrm{t}_{\text {WPW }}$	Write HIGH to MR HIGH	85		100		ns
$\mathrm{t}_{\text {EFL }}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{EF}}$ LOW		85		100	ns
$\mathrm{t}_{\text {fer }}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{FF}} \mathrm{HIGH}$		85		100	ns
$\mathrm{t}_{\text {REF }}$	Read LOW to $\overline{\mathrm{EF}}$ LOW		85		100	ns
$\mathrm{t}_{\text {RFF }}$	Read HIGH to $\overline{\mathrm{FF}}$ HIGH		85		100	ns
$\mathrm{t}_{\text {WEF }}$	Write HIGH to EF HIGH		85		100	ns
$\mathrm{t}_{\text {WFF }}$	Write LOW to $\overline{\mathrm{FF}}$ LOW		85		100	ns
$\mathrm{t}_{\text {RaE }}$	Effective Read from Write HIGH		80		95	ns
$\mathrm{t}_{\text {RPE }}$	Effective Read Pulse Width After EF HIGH	85		100		ns
$\mathrm{t}_{\text {WaF }}$	Effective Write from Read HIGH		80		95	ns
$\mathrm{t}_{\text {WPF }}$	Effective Write Pulse Width After FF HIGH	85		100		ns

Notes:

4. Guaranteed by design. Not tested in production.

Switching Waveforms

Aynchronous Read and Write Timing Diagram

Last Write to First Read Full Flag Timing Diagram

Last Read to First Write Empty Flag Timing Diagram

Switching Waveforms (continued)

Master Reset Timing Diagram

Empty Flag and Read Bubble-Through Mode Timing Diagram

Full Flag and Write Bubble-Through Mode Timing Diagram

Architecture

The CYM4241 RAMFIFO ${ }^{\text {® }}$ module is an array of 65,536 words of 9 bits each. It combines high-speed static RAMs with proprietary FIFO controller circuitry and a high-speed crystal oscillator. The controller includes read and write logic, read and write counters, flag/reset logic, state machine, and other support circuitry. It configures the 64 K word by 9 -bit SRAM array as a virtual dual-port memory.

Resetting the FIFO

Upon power-up, the FIFO must be reset with a master reset ($\overline{\mathrm{MR}}$) cycle. This causes the FIFO to enter the empty condition signified by the empty flag $(\overline{\mathrm{EF}})$ being LOW and full flag $(\overline{\mathrm{FF}})$ resetting to HIGH. Read (R) and write (W) must be HIGH $\mathrm{t}_{\text {RPw }} / \mathrm{t}_{\text {wPw }}$ before and $t_{R M R}$ after the rising edge of $\overline{M R}$ for a valid reset cycle.

Writing Data to the FIFO

The availability of an empty location is indicated by the HIGH state of the full flag (FF). A falling edge of write (W) initiates a write cycle. Data appearing at the inputs $\left(\mathrm{D}_{0}\right.$ through $\left.\mathrm{D}_{8}\right)$ t $_{\text {sD }}$ before and t_{HD} after the rising edge of W will be stored sequentially in the FIFO.
The empty flag ($\overline{\mathrm{EF}}$) LOW-to-HIGH transition occurs twef after the first LOW-to-HIGH transition on the write clock of an empty

FIFO. The full flag $(\overline{\mathrm{FF}})$ goes LOW on the falling edge of $\overline{\mathrm{W}}$ during the cycle in which the last available location in the FIFO is written, prohibiting overflow. $\overline{\mathrm{FF}}$ goes HIGH $\mathrm{t}_{\text {RFF }}$ after the completion of a valid read of a full FIFO.

Reading Data from the FIFO

The falling edge of read $(\overline{\mathrm{R}})$ initiates a read cycle if the empty flag $(\overline{\mathrm{EF}})$ is not LOW. Data outputs $\left(\mathrm{Q}_{0}\right.$ through $\left.\underline{\mathrm{Q}}_{8}\right)$ are in a high-impedance condition between read operations (R HIGH) or when the FIFO is empty. The falling edge of \bar{R} during the last read cycle before the empty condition triggers a HIGH-to-LOW transition of $\overline{\mathrm{EF}}$, prohibiting any further read operations until $\mathrm{t}_{\text {WEF }}$ after a valid write.

Expansion Mode

FIFOs can be expanded in width to provide word widths greater than 9 bits in increments of 9 bits. During width expansion mode all control line inputs are common to all devices, and flag outputs from any device can be monitored.
The CYM4241 cannot be expanded in depth.

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
85	CYM4241PD-85C	PD07	Commercial
100	CYM4241PD-100C	PD07	Commercial

64K x 4 SRAM Module

Features

- Very high speed 256K SRAM module - Access time of 10 nsec.
- 300-mil-wide hermetic DIP package
- Low active power
- 1.8W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- On-chip decode for speed and density
- JEDEC pinout-compatible with 7C194 monolithic SRAMs
- Small PCB footprint -0.36 sq. in.

Functional Description

The CY7M194 is an extremely high performance 256 -kilobit static RAM module organized as 65,536 words by 4 bits. This module is constructed using four $16 \mathrm{~K} \times 4$ static RAMs in LCC packages mounted on a 300 -mil-wide ceramic substrate. Extremely high speed and density are achieved by using BiCMOS SRAMs containing internal address decoding logic.
Writing to the module is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) of
the device is written into the memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}) \mathrm{LOW}$, while write enable ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{15}) will appear on the four output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$). The data output pins remain in a high-impedance state unless the module is selected and write enable ($\overline{\mathrm{WE}}$) is HIGH.

Logic Block Diagram

Pin Configuration

M194-2

Selection Guide

		$7 \mathrm{M194} 10$	7 M 194.12	7M194-15	7M194-20
Maximum Access Time (ns)		10.	12.	15	20
Maximum Operating Current (mA)	Commercial	325	32.5	325	20
	Military		375	375	375
Maximum Standby Current (mA)	Commercial	200	20.	200	
	Military		250	250	250

[^65]
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
DC Input Voltage . -0.5 V to +7.0 V
Output Current into Outputs (LOW) 20 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions		7M194		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level			2.9		V
V_{lL}	Input LOW Level ${ }^{[1]}$				0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-20	+20	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-20	+20	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operation Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{IL}}$	Com'l		325	mA
			Mil		375	
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\text { Max., } \overline{\mathrm{CE}} \geq \mathrm{V}_{1 \mathrm{H}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$	Com'l		2010	m 11

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	35	pF
CoUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	25	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\mathrm{Min} .)}=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns .
2. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

(b)

M194-4

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	7M194-10		7M194-12.		7M194-15		7M194-20		Units
		Min.	Mar.	Min.	Mas.	Min.	Max.	Min.	Max.	
Read Cycle										
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	10		12		15		20		ns
t_{AA}	Address to Data Valid		10		12		15		20	ns
toha	Data Hold from Address Change	2		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		10		12		15		20	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low Z	2		3		3		3		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[4]}$		6		8		8		8	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to Power-Down		10		12		15		20	ns
Write Cycle										
t_{wc}	Write Cycle Time	10		12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\overline{C E}}$ LOW to Write End	8		10		10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	8		10		10		15		ns
t_{HA}	Address Hold from Write End	1.		1		1		1		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up from Write Start	0		0		0		0		ns
tpwe	$\overline{\text { WE Pulse Width }}$	8		10		10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	8.		9		9		10		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	11		1		1		1		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	3		3		3		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[4]}$	0	5	0	7	0	7	0	10	ns

Shaded area contains preliminary information.

Notes:
3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. t_{HZCS} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. $\overline{\mathrm{WE}}$ is HIGH for read cycle.

Switching Waveforms

Read Cycle No. $1^{15,6]}$

Switching Waveforms
Read Cycle No. $2^{[7,8]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[5]}$

Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[5,9]}$

Notes:

7. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
8. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
9. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read Word
L	L	Data In	Write Word

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
10	CY7M194 10DC	HD08	Commercial
12	C7M104 12 DC	H108	Commercial
	CY7M194. 12 MMB	HD08	Military
15	CY7M194-15DC	HD08	Commercial
	CY7M194-15DMB	HD08	Military
20	CY7M194-20DMB	HD08	Military

[^66]Document \#: 38-M-00038-A

Features

- Very high speed 256k SRAM module - Access time of $\mathbf{1 0} \mathbf{n s e c}$.
- 300-mil-wide hermetic DIP package
- Low active power
- 2.1W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- On-chip decode for speed and density
- JEDEC pinout-compatible with 7C199 monolithic SRAMs
- Small PCB footprint
-0.42 sq . in.

Functional Description

The CY7M199 is an extremely high performance 256 -kilobit static RAM module organized as 32,768 words by 8 bits. This module is constructed using four 16k $\times 4$ static RAMs in LCC packages mounted on a 300 -mil-wide ceramic substrate. Extremely high speed and density are achieved by using biCMOS SRAMs containing internal address decoding logic.
Writing to the module is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}})$ inputs are both LOW. Data on the eight input pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) of the device is written into the memory loc-

32K x 8 SRAM Module

Logic Block Diagram

Pin Configuration

M199-2

Selection Guide

		$7 \mathrm{M199}$-10	$7 \mathrm{M199}$ 12.	7M199-15	7M199-20
Maximum Access Time (ns)		10	12	15	20
Maximum Operating Current (mA)	Commercial	375	375	375	
	Military		425	425	425
Maximum Standby Current (mA)	Commercial	200	200	200	
	Military		250	250	250

Shaded area contains preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs

DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$.

Operating Range

Range	Ambient Temperature	\mathbf{V}_{CC}
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Output Current into Outputs (LOW) 20 mA
Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions		7M199		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~m}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4	V
V_{IH}	Input HIGH Voltage			2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.5	0.8	V
I_{LX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-20	+20	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output		-20	+20	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {cc }}$ Operation Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{CE}_{\leq} \mathrm{V}_{\mathrm{IL}} \end{aligned}$	Com'l		375	mA
			Mil		425	
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$	Com'l		200	mA
			Mil		250	

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	35	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	25	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\text { min. })}=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns .
2. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

(b)

Switching Characteristics Over the Operating Range ${ }^{[3]}$

	Description	7M199-10		7M199-12		7M199-15		7M199-20		Units
Parameters		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	

Read Cycle										
t_{RC}	Read Cycle Time	10.		12.		15		20		ns
t_{AA}	Address to Data Valid		10		12		15		20	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	2		3		3		3		ns
$\mathrm{t}_{\text {Acs }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		10		12.		15		20	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		8.		10		8		10	ns
$\mathrm{t}_{\text {LZoE }}$	$\overline{\text { OE LOW to Low Z }}$	2		2		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE HIGH to High Z }}$		8 8.		8		8		9	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\text { CE LOW to Low } \mathrm{Z}}$	2		3		3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[4]}$		6.		8		8		8	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\overline{C E}}$ LOW to Power-Up	0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		10	.	12.		15		20	ns

Write Cycle										
t_{wc}	Write Cycle Time	10		12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE LOW to Write End }}$	8		10		12		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	8		10		12		15		ns
t_{HA}	Address Hold from Write End	§		1		1		1		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up from Write Start	0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	WE Pulse Width	$\stackrel{8}{8}$		10		12		15		ns
t_{SD}	Data Set-Up to Write End	8		10		10		10		ns
t_{HD}	Data Hold from Write End	\#,		1.		1		1		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH }}$ to Low Z	3		5		5		5		ns
$\mathrm{t}_{\text {Hzwe }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[4]}$	0	5	0	7	0	7	0	10	ns

Shaded area contains preliminary information.

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
5. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{I}}$.
6. $\mathrm{t}_{\mathrm{HzCs}}$ and $\mathrm{t}_{\mathrm{Hzwe}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.

Switching Waveforms

Read Cycle No. $1^{[5,6]}$

Switching Waveforms

Read Cycle No. $\mathbf{2}^{[5,7]}$

Read Cycle No. $2^{[8]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) $)^{[8,9]}$

Notes:

7. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-
up and hold timing should be referenced to the rising edge of the the signal that terminates the write.
9. If $\overline{C E}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Rower-Down
L	H	L	Data Out	Read Word
L	L	X	Data In	Write Word
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
10	CY7M199 10018	11100	Commercial
12	CY7M199-12DC.	HD09	Commercial
	CYM 199 [120MB	H1009	Military
15	CY7M199-15DC	HD09	Commercial
	CY7M199-15DMB	HD09	Military
20	CY7M199-20DMB	HD09	Military

Shaded area contains preliminary information.
Document \#: 38-M-00039-A
PRODUCT INFORMATION
STATIC RAMS 2
PROMS 3
EPLDS 4
FIFOS 5
LOGIC 6
RISC 7
MODULES 8BUS INTERFACE PRODUCTS10
MILITARY 11
DESIGN AND12PROGRAMMING TOOLS
QUALITY AND 13 RELIABILITY
PACKAGES14

Device Number
CY10E301
CY100E301
CY10E302
CY100E302
CY100E302
CY10E383
CY101E383
CY10E422
CY100E422
CY10E470
CY100E470
CY10E474
CY100E474
CY10E484
CY100E484
CY101E484
CY10E494
CY100E494
CY101E494

Description

Combinatorial ECL 16P4 Programmable Logic Device ... 9-1
Combinatorial ECL 16P4 Programmable Logic Device ... 9-1
Combinatorial ECL 16P4 Programmable Logic Device . 9-6
Combinatorial ECL 16P4 Programmable Logic Device . 9-6
Combinatorial ECL 16P4 Programmable Logic Device . 9-6
ECL/TTL Translator and High-Speed Bus Driver . 9-11
ECL/TTL Translator and High-Speed Bus Driver . 9-11
256×4 ECL Static RAM 9-16
256×4 ECL Static RAM . 9-16
4096×1 ECL Static RAM $9-23$
4096×1 ECL Static RAM . 9- 23
1024×4 ECL Static RAM . 9- 28
1024 x 4 ECL Static RAM . 9- 28
4096×4 ECL Static RAM . 9- 35
4096×4 ECL Static RAM $9-35$
4096×4 ECL Static RAM . 9-35
16,384 x 4 ECL Static RAM . 9-37
16,384 x 4 ECL Static RAM . 9-37
16,384 x 4 ECL Static RAM . 9-37

Features

- Standard 16P8 pinout and architecture
- 16 inputs, 8 outputs
- User-programmable output polarity
- Ultra high speed/standard power
$-\mathrm{t}_{\mathrm{PD}}=4 \mathrm{~ns}$ (max.)
$-I_{E E}=240 \mathrm{~mA}$ (max.)
- Low-power version
$-\mathrm{t}_{\mathrm{PD}}=6 \mathrm{~ns}$ (max.)
$-I_{E E}=170 \mathrm{~mA}($ max. $)$
- Both 10 KH - and 100 K -compatible I/O versions available
- Enhanced test features
- Additional test input terms
- Additional test product terms
- Security fuse

Functional Description

Cypress Semiconductor's PLD family offers the user the highest level of performance in ECL programmable logic devices. These PLDs are developed using an advanced STAR ${ }^{\text {©iin }}$ bipolar process incorporating proven Ti-W fuses.
The CY10E301 is 10 KH -compatible and the CY100E301 is 100 K -compatible. These PLDs implement the familiar sum-of-products logic functions by selectively programming cell elements to configure the AND gates by disconnecting either the true or the complement input term. If all inputs are disconnected from an AND gate, then a logical true will exist at the output of this AND gate. An output polarity fuse is also provided to allow an active LOW
to occur if this fuse is blown. A security feature provides the user protection for the implementation of proprietary logic. When invoked by blowing the security fuse, the contents of the array cannot be accessed in the verify mode.
The CY10E301 and CY100E301 can be programmed using Cypress's QuickPro II or other industry-standard programming equipment. Programming support information can be obtained from local Cypress Semiconductor sales offices.

Logic Block Diagram

Pin Configuration

Selection Guide

	10E301-4	10E301-5	10E301L-6 100E301L-6
Maximum Input to Output Propagation Delay Time (ns)	4	5	6
$\mathrm{I}_{\mathrm{EE}}(\mathrm{mA})$	Commercial	-240	
	Military		-240

STAR is a trademark of Aspen Semiconductor.

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage V_{EE} to $\mathrm{V}_{\mathrm{CC}} \ldots \ldots \ldots \ldots \ldots . . .7 .0 \mathrm{~V}$ to +0.5 V
Input Voltage V_{EE} to +0.5 V
Operating Range Referenced to V_{CC} at Ground

Range	\mathbf{I} / \mathbf{O}	Temperature	$\mathbf{V}_{\text {cc }}$
Commercial (Standard,)	10 KH	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Ambient	$-5.2 \mathrm{~V}+5 \%$
Commercial (Standard, L)	100 K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient	-4.2 V to -0.3 V
Military	10 KH	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Case	$-5.2 \mathrm{~V}+5 \%$

Output Current . 50 mA
Electrical Characteristics Over the Operating Range ${ }^{[1]}$

Parameters	Description	Test Conditions	Temperature ${ }^{[2]}$	10E301		100E301		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 10 \mathrm{KH}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \mathrm{Min} . \text { or } \mathrm{V}_{\text {IL }} \mathrm{Max} . \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C}$	-1140	-920			mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1020	-840			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-980	-810			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-920	-735			mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-900	-700			mV
		$\begin{aligned} & 100 \mathrm{~K}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Min. or } \mathrm{V}_{\mathrm{IL}} \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1025	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{KH}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Min. or } \mathrm{V}_{\mathrm{IL}} \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1950	-1650			mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1950	-1630			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1950	-1630			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1950	-1600			mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1950	-1590			mV
		$\begin{aligned} & 100 \mathrm{~K}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { Min. or } \mathrm{V}_{\text {IL }} \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1810	-1620	mV
V_{IH}	Input HIGH Voltage	10 KH	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1270	-920			mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1170	-840			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1130	-810			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1070	-735			mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1050	-700			mV
		100K	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1165	-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	10 KH	$\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C}$	-1950	-1520			mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1950	-1480			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1950	-1480			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1950	-1450			mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1950	-1440			mV
		100 K	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1810	-1475	mV
I_{H}	Input HIGH Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max.			220		220	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ Min. (Except I/O Pins)		0.5		0.5		$\mu \mathrm{A}$
I_{EE}	Supply Current (All inputs and outputs open)	Commercial L (Low Power)			-170		-170	mA
		Commercial (Standard Power)			-240		-240	mA
		Military			-240.			mA

Notes:

1. See AC Test Loads and Waveforms for test conditions.
2. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute. Military grade is specified as case temperature.

Capacitance ${ }^{[3]}$

Parameters	Description	Min.	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance		4	8	pF
C OUT	Output Capacitance		6	10	pF

AC Test Load and Waveform ${ }^{[4,5,6,7,8,9]}$

E301-3

E301-4

Notes:

3. Tested initially and after any design or process changes that may affect these parameters.
4. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}$ Min., $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}$ Max. on 10 KH version.
5. $\mathrm{V}_{\mathrm{IL}}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}$ on 100 K version
6. $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}<5 \mathrm{pF}$ (includes fixture and stray capacitance).
7. All coaxial cables should be 50Ω with equal lengths. The delay of the coaxial cables should be "nulled" out of the measurement.
8. $t_{r}=t_{f}=0.7 \mathrm{~ns}$
9. All timing measurements are made from the 50% point of all waveforms.

Switching Characteristics Over the Operating Range ${ }^{[1]}$

	Description	$\begin{aligned} & \text { 10E301-4 } \\ & 100 \mathrm{E} 301-4 \end{aligned}$		10E301-5		$\begin{aligned} & 10 \mathrm{E} 301 \mathrm{~L}-6 \\ & 100 \mathrm{E} 301 \mathrm{~L} 6 \end{aligned}$		Units
Parameters		Min.	Max.	Min.	Max.	Min.	Max.	
t_{PD}	Input to Output Propagation Delay		4.0	.	5.0		6.0	ns
t_{r}	Output Rise Time	0.35	1.5	0.35	1.5	0.35	1.5	ns
t_{f}	Output Fall Time	0.35	1.5	0.35	1.5	0.35	1.5	ns

Switching Waveforms

CYPRESS
SEMICONDUCTOR
Functional Logic Diagram (DIP Pinout)

Ordering Information

1/0	$\begin{aligned} & \mathbf{t}_{\mathbf{P D}} \\ & (\mathbf{n s}) \end{aligned}$	$\underset{(\mathbf{I} \mathbf{E E})}{(\mathbf{I} A}$	Ordering Code	Package Type	Operating Range
10 KH	4	240	CY10E301-4DC	D14	Commercial
			CY10E301-4YC	Y64	
	5	240	CY10E301-5DMB	D14	Military
			CY10E301-5YMB	Y64	
	6	170	CY10E301L-6PC	P13A	Commercial
			CY10E301L-6JC	J64	
100K	4	240	CY100E301-4DC	D14	Commercial
			CY100E301-4YC	Y64	
	6	170	CY100E301L-6PC	P13A	Commercial
			CY100E301L-6JC	J64	

Document \#: 38-A-00011-B

Combinatorial ECL 16P4 Programmable Logic Device

Features

- Standard 16P4 pinout and architecture
- 16 inputs, 4 outputs
- User-programmable output polarity
- Ultra high speed/standard power
$-t_{\text {PD }}=3$ ns (max.)
$-\mathrm{I}_{\mathrm{EE}}=\mathbf{2 2 0 \mathrm { mA }}$ (max.)
- Low-power version
$-\mathrm{t}_{\mathrm{PD}}=4 \mathrm{~ns}$ (max.)
$-I_{E E}=170 \mathrm{~mA}$ (max.)
- Both 10 KH - and 100 K -compatible I/O versions available
- Enhanced test features
- Additional test input terms
- Additional test product terms
- Security fuse

Functional Description

Cypress Semiconductor's PLD family offers the user the highest level of performance in ECL programmable logic devices. These PLDs are developed using an advanced process incorporating proven Ti-W fuses.
The CY10E302 is 10 KH compatible and the CY100E302 is 100 K compatible. These PLDs implement the familiar sum-ofproducts logic functions by selectively programming cell elements to configure the AND gates by disconnecting either the true or complement input term. If all inputs are disconnected from an AND gate, then a logical true will exist at the output of this AND gate. An cutput polarity fuse is also provided to allow an active LOW to
occur if this fuse is blown. A security feature provides the user protection for the implementation of proprietary logic. When invoked by blowing the security fuse, the contents of the array cannot be accessed in the verify mode.
The CY10E302 and CY100E302 can be programmed using Cypress's QuickPro II or other industry-standard programming equipment. Programming support information can be obtained from local Cypress Semiconductor sales offices.

Logic Block Diagram

PDIP/CerDIP
Top View

Pin Configuration

Selection Guide

	10E302-3	10E302-4	100E302-4	10E302L-4 100E302L-4	
Maximum Input to Output Propagation Delay Time (ns)	3	4	4	4	
$\mathrm{I}_{\mathrm{EE}}(\mathrm{mA})$	Commercial	-220	-220	-220	-170
	Military		-220		

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage $\mathrm{V}_{\text {EE }}$ to V_{CC}	-7.0 V to +0.5 V
Input Voltage	V_{EE} to +0.5 V
Output Current	$-50 \mathrm{~mA}$

Operating RangeReferenced to $V_{C C}$ at Ground

Range	\mathbf{I} / \mathbf{O}	Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial (Standard, L)	10 KH	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Ambient	$-5.2 \mathrm{~V}+5 \%$
Commercial (Standard, L)	100 K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient	-4.2 V to -0.3 V
Military	100 KH	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Case	$-5.2 \mathrm{~V}+5 \%$

Electrical Characteristics Over the Operating Range ${ }^{[1]}$

Parameters	Description	Test Conditions	Temperature ${ }^{[2]}$	10E302		100E302		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 10 \mathrm{KH}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Min. or } \mathrm{V}_{\mathrm{IL}} \mathrm{Max} . \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C}$	-1140	-920			mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1020	-840			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-980	-810			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-920	-735			mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-900	-700			mV
		$\begin{aligned} & 100 \mathrm{~K}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { Min. or } \mathrm{V}_{\text {IL }} \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1025	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{KH}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Min. or } \mathrm{V}_{\mathrm{IL}} \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1950	-1650			mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1950	-1630			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1950	-1630			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1950	-1600			mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1930	-1590			mV
		$\begin{aligned} & 100 \mathrm{~K}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { Min. or } \mathrm{V}_{\text {IL }} \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1810	-1620	mV
V_{IH}	Input HIGH Voltage	10KH	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1270	-920			mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1170	-840			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1130	-810			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1070	-735			mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1050	-700			mV
		100K	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1165	-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	10 KH	$\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C}$	-1950	-1520			mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1950	-1480			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1950	-1480			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1950	-1450			mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1950	-1440			mV
		100K	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1810	-1475	mV
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ Max.			220		220	$\mu \mathrm{A}$
I_{LL}	Input LOW Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ Min.		0.5		0.5		$\mu \mathrm{A}$
I_{EE}	$\begin{aligned} & \text { Supply Current (All } \\ & \text { inputs and outputs open) } \end{aligned}$	Commercial L (Low Power)			-170		-170	mA
		Commercial (Standard Power)			-220		-220	mA
		Military			-220			mA

Notes:

1. See AC Test Loads and Waveforms for test conditions.
2. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute. Military grade is specified as case temperature.

Capacitance ${ }^{[3]}$

Parameters	Description	Min.	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance		4	8	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		6	10	pF

AC Test Load and Waveform ${ }^{[4,5,6,7,8,9]}$

Notes:

3. Tested initially and after any design or process changes that may affect these parameters.
4. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}$ Min., $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}$ Max. on 10 KH version.
5. All coaxial cables should be 50Ω with equal lengths. The delay of the coaxial cables should be "nulled" out of the measurement.
6. $\mathrm{V}_{\mathrm{IL}}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}$ on 100 K version
7. $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}<5 \mathrm{pF}$ (includes fixture and stray capacitance).
8. $t_{r}=t_{\mathrm{f}}=0.7 \mathrm{~ns}$
9. All timing measurements are made from the 50% point of all waveforms.

Switching Characteristics Over the Operating Range ${ }^{[1]}$

	Description	$\begin{gathered} 10 \mathrm{E} 302-3 \\ 100 \mathrm{E} 302-3 \end{gathered}$		$\begin{gathered} 10 \mathrm{E} 302-4 \\ 100 \mathrm{E} 302-4 \end{gathered}$		$\begin{aligned} & \text { 10E302L-4 } \\ & 100 \mathrm{E} 302 \mathrm{~L}-4 \end{aligned}$		Units
Parameters		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{tPD}^{\text {d }}$	Input to Output Propagation Delay		3.0		4.0		4.0	ns
t_{r}	Output Rise Time	0.35	1.5	0.35	1.5	0.35	1.5	ns
t_{f}	Output Fall Time	0.35	1.5	0.35	1.5	0.35	1.5	ns

Switching Waveforms

CY100E302

Functional Logic Diagram (DIP Pinout)

Ordering Information

I/O	$\begin{aligned} & \mathbf{t}_{\mathbf{p p}} \\ & (\mathbf{n s}) \end{aligned}$	$\underset{(\mathbf{m A})}{\mathrm{I}_{\mathrm{EE}}}$	Ordering Code	Package Type	Operating Range
10 KH	3	220	CY10E302-3DC	D14	Commercial
			CY10E302-3YC	Y64	
	4	220	CY10E302-4DC	D14	Commercial
			CY10E302-4YC	Y64	
	4	220	CY10E302-4DMB	D14	Military
			CY10E302-4YMB	Y64	
	4	170	CY10E302L-4PC	P13A	Commercial
			CY10E302L-4JC	J64	
100K	3	220	CY100E302-3DC	D14	Commercial
			CY100E302-3YC	Y64	
	4	220	CY100E302-4DC	D14	Commercial
			CY100E302-4YC	Y64	
	4	170	CY100E302L-4PC	P13A	Commercial
			CY100E302L-4JC	J64	

[^67]
Features

- BiCMOS for optimum speed/power
- High speed
-3 ns tpD TTL-to-ECL
-4 ns tpD ECL-to-TTL
- Full-duplex ECL/TTL data transmission
- Internal $2 \mathrm{k} \Omega$ ECL pull-down resistors
- Surface-mount PLCC package
- $\mathrm{V}_{\text {B }}$ ECL reference voltage output
- Single- or dual-supply operation
- Capable of greater than 2001V ESD

Functional Description

The CY10/101E383 is a new-generation TTL-to-ECL and ECL-to-TTL logic level translator designed for high-performance systems. The device contains ten independant TTL-to-ECL and ten independant ECL-to-TTL translators for high-speed full-duplex data transmission, mixed logic, and bus applications. The CY10/101E383 is especially suited to drive ECL backplanes between TTL boards. The CY 10/101E383 is implemented with differential ECL I/O to provide balanced low noise operation over controlled impedance buses between TTL and/or ECL subsystems. In addition, the device has internal $2 \mathrm{k} \Omega$ pull-down resistors tied to V_{EE} to decrease the number of external components. For system testing purposes or for
driving light loads, the $2 \mathrm{k} \Omega$ is used as the only termination thereby eliminating up to 20 external resistors. The part meets standard $10 \mathrm{~K} / 10 \mathrm{KH}$ and 100 K logic levels with the internal pull-down while driving 50Ω to -2 V .
The device is designed with ample ground pins to reduce bounce, and has separate ECL and TTL power/ground pins to reduce noise coupling between logic families. The parts can operate in single- or du-al-supply configurations while maintaining absolute $10 \mathrm{~K} / 10 \mathrm{KH}$ and 100 K level swings. The translators are offered in standard $10 \mathrm{~K} / 10 \mathrm{KH}(10 \mathrm{E})$ and 100 K (101 E) ECL-compatible versions with -5.2 V power supply. The TTLI/O is fully TTL compatible. The CY10/101E383 is packaged in 84-pin surface-mountable PLCCs.

Selection Guide

	$\mathbf{1 0 E 3 8 3 - 3}$ $\mathbf{1 0 1 E 3 8 3 - 3}$
Maximum Propagation Delay Time (ns) (TTL to ECL)	3
Maximum Propagation Delay Time (ns) (ECL to TTL)	4
Maximum Operating Current (mA) Sum of I EE and I CC	270

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested. All supply and ground pins must be connected.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TTL Supply Voltage to Ground Potential $\ldots-0.5 \mathrm{~V}$ to +7.0 V
TTL DC Input Voltage -3.0 V to +7.0 V
ECL Supply Voltage V_{EE} to $\mathrm{ECL} \mathrm{V}_{\mathrm{CC}}$ -7.0 V to +0.5 V
ECL Input Voltage . . V_{EE} to +0.5 V
ECL Output Current . -50 mA
Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)

Latch-Up Current .
$>200 \mathrm{~mA}$

Operating Range

Range	\mathbf{I} / \mathbf{O}	Version	Ambient Temperature	\mathbf{V}_{CC}
Commercial	10 K	10 E	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$-5.2 \mathrm{~V} \pm 5 \%$
Commercial	100 K	101 E	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-4.2 V to -5.46 V

ECL Electrical Characteristics Over the Operating Range ${ }^{[i]}$

Parameters	Description	Test Conditions	Temperature ${ }^{[2]}$	10E383-3		101E383-3		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 10 \mathrm{E}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { Min. or } \mathrm{V}_{\text {IL }} \\ & \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000	-840			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960	-810			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900	-735			mV
		$\begin{aligned} & 101 E R_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} \text { or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1025	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{E}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Min. or } \mathrm{V}_{\mathrm{IL}} \\ & \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870	-1665			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850	-1650			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830	-1625			mV
		$\begin{aligned} & 101 \mathrm{E} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { Min. or } \mathrm{V}_{\text {IL }} \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1810	-1620	mV
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	10 E	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1170	-840			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1130	-810			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1070	-720			mV
		101E	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1165	-880	mV
V_{IL}	Input LOW Voltage	10 E	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1950	-1480			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1950	-1475			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1950	-1450			mV
		101E	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1810	-1475	mV
$\mathrm{V}_{\text {BB }}$	Reference Voltage	$10 \mathrm{E}^{[3]}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	-1.38	-1:19			V
		$101 \mathrm{E}^{[3]}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1.39	-1.24	
V_{cm}	Common Mode Voltage	$\pm \mathrm{V}_{\mathrm{cm}}$ with respect to V_{BB}			1.0		1.0	V
$\mathbf{V}_{\text {diff }}$	Input Voltage Differential	Required for Full Output Swing		150		150		mV
I_{H}	Input HIGH Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max.			220		220	$\mu \mathrm{A}$
I_{IL}	Input LOW Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ Min. (Except I/O Pins)		0.5		0.5		$\mu \mathrm{A}$
$\mathrm{R}_{\text {PD }}$	Pull-Down Resistor	Connected to All ECL Outputs	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	1.6	2.4			$\mathrm{k} \Omega$
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			1.6	2.4	
I_{EE}	Supply Current (All inputs and outputs open)	Commercial (Standard Power)			-180		-180	mA

TTL Electrical Characteristics Over the Operating Range ${ }^{[1]}$

Parameters	Description	Test Conditions	$\begin{gathered} \text { 10E383-3 } \\ \text { 101E383-3 } \end{gathered}$		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}$		0.5	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage ${ }^{[4]}$		2.0		V
V_{IL}	Input LOW Voltage ${ }^{[4]}$			0.8	V
V_{CD}	Input Clamp Diode Voltage	$\mathrm{I}_{\mathrm{IN}}=-10 \mathrm{~mA}$	-1.5		V
$\mathrm{I}_{\text {OS }}$	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[5]}$	-100	-40	mA
I_{L}	Input Load Current ${ }^{[6]}$	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-1600	+20	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {cc }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f} \text { max. } \end{aligned}$		90	mA

Capacitance

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

TTL AC Test Load and Waveform ${ }^{[7]}$

Equivalent to: THÉvENIN EQUIVALENT

ECL AC Test Load and Waveform ${ }^{[8,9,10,11,12,13]}$

Notes:

1. See AC Test Load and Waveform for test conditions.
2. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute.
3. Max. $I_{B B}=-1 \mathrm{~mA}$.
4. These are absolute values with respect to device ground.
5. Not more than one output should be tested at a time. Dui_tion of the short should not be more than one second.
6. I / O pin leakage is the worse case of $I_{[X}$ (where $X=H$ or L).
7. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$.

E383-4

4. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}$ Min., $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}$ Max. on 10 KH version.
5. $\mathrm{V}_{\mathrm{IL}}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}$ on 101 E version
6. $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}<5 \mathrm{pF}$ (includes fixture and stray capacitance).
7. All coaxial cables should be 50Ω with equal lengths. The delay of the coaxial cables should be "nulled" out of the measurement.
8. $t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=0.7 \mathrm{~ns}$
9. All timing measurements are made from the 50% point of all waveforms.

ECL-to-TTL Switching Characteristics Over the Operating Range

Parameters	Description	Test Conditions	$\begin{gathered} \hline 10 \mathrm{E} 383-3 \\ \text { 101E383-3 } \end{gathered}$		Units
			Min.	Max.	
$\mathrm{t}_{\mathrm{pLH}}$	Propagation Delay Time	D_{n} to Q_{n}		4	ns
$\mathrm{t}_{\text {pHL }}$	Propagation Delay Time	D_{n} to Q_{n}		4	ns
t_{r}	Output Rise Time	10\% to 90%	TBD	TBD	ns
t_{f}	Output Fall Time	10\% to 90%	TBD	TBD	ns

TTL-to-ECL Switching Characteristics Over the Operating Range

Parameters	Description	Test Conditions	$\begin{array}{r} \hline 10 \mathrm{E} 383 \\ \text { 101E383 } \end{array}$		Units
			Min.	Max.	
$\mathrm{t}_{\mathrm{pLH}}$	Propagation Delay Time	D_{n} to Q_{n}, \bar{Q}_{n}		3	ns
$\mathrm{t}_{\text {pHL }}$	Propagation Delay Time	D_{n} to $\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$		3	ns
t_{r}	Output Rise Time	20\% to 80%	0.5	1.7	ns
t_{f}	Output Fall Time	20\% to 80%	0.5	1.7	ns

Switching Waveforms

ECL-to-TTL Timing

TTL-to-ECL Timing

TTL-to-ECL Truth Table

Inputs	Outputs	
TTL D $_{\mathbf{n}}$	${\text { ECL } \mathbf{Q}_{\mathbf{n}}}^{\text {ECL }_{\mathbf{Q}}^{\mathbf{n}}}$	
L	L	H
H	H	L

CY101E383 Nominal Voltages Applied

Supply Pin	Single-Supply System	Dual-Supply System
TTL V CC	+5.0 V	+5.0 V
TTL GND	0.0 V	0.0 V
ECL V_{CC}	+5.0 V	0.0 V
ECL V_{EE}	0.0 V	-4.5 V

CY10/101E383 Nominal Voltages Applied

Supply Pin	Single-Supply System	Dual-Supply System
TTL V CC	+5.0 V	+5.0 V
TTL GND	0.0 V	0.0 V
ECL V CC	+5.0 V	0.0 V
ECL $\mathrm{V}_{\text {EE }}$	0.0 V	-5.2 V

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
3	CY10E383-3JC	J	Commerical
	CY101E383-3JC	J	

Document \#: 38-A-00023

SEMICONDUCTOR

Features

- 256 x 4-bit organization
- Ultra high speed/standard power
$-\mathrm{t}_{\mathrm{AA}}=3 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{EE}}=220 \mathrm{~mA}$
- Low-power version
$-\mathrm{t}_{\mathrm{AA}}=5 \mathrm{~ns}$

$$
-\mathrm{I}_{\mathrm{EE}}=150 \mathrm{~mA}
$$

- Both $10 \mathrm{KH} / 10 \mathrm{~K}$ - and 100 K -compatible I/O versions
- $10 \mathrm{~K} / 10 \mathrm{KH}$ military version
- On-chip voltage compensation for improved noise margin
- Open emitter output for ease of memory expansion
- Industry-standard pinout

Functional Description

The Cypress CY10E422 and CY100E422 are 256×4 ECL RAMs designed for scratch pad, control, and buffer storage applications. Both parts are fully decoded random access memories organized as 1024 words by 4 bits. The CY10E422 is $10 \mathrm{KH} / 10 \mathrm{~K}$ compatible and is available in a military version.. The CY100E422 is 100 K compatible.

The four independent active LOW block select (\bar{B}) inputs control memory selection and allow for memory expansion and reconfiguration. The read and write operations are controlled by the state of the active LOW write enable $(\overline{\mathrm{W}})$ input. With $\overline{\mathrm{W}}$ and $\overline{\mathrm{B}}_{\mathrm{X}}$ LOW, the corresponding data at D_{x} is written into the addressed location. To read, $\overline{\mathrm{W}}$ is held HIGH, while $\overline{\mathrm{B}}$ is held LOW. Open emitter outputs allow for wi-red-OR connection to expand or reconfigure the memory.

Logic Block Diagram

$D_{1} \bar{B}_{1} Q_{1} D_{2} \bar{B}_{2} Q_{2} D_{3} \bar{B}_{3} Q_{3} D_{4} \bar{B}_{4} Q_{4}$

Pin Configurations (continued on next page)

E422-3

E422-2

Selection Guide

		$\begin{gathered} 10 \mathrm{E} 422.4, \\ 100 \mathrm{E} 422-3.5 \end{gathered}$	$\begin{gathered} 10 \mathrm{E} 422-5 \\ 100 \mathrm{E} 422-5 \end{gathered}$	$\begin{aligned} & 10 \mathrm{E} 422-7 \\ & 100 \mathrm{E} 422-7 \end{aligned}$
Maximum Acces		3	5	7
$\mathrm{I}_{\text {EE }} \mathrm{Max} .(\mathrm{mA})$	Commercial	220	220	
	L (Low Power)		150	150
	Military (10K/10KH only)		150	150

[^68]Pin Configurations (continued)

Operating Range Referenced to V_{Cc}

Range	$\mathbf{I} / \mathbf{0}$	Ambient Temperature	$\mathbf{V}_{\text {EE }}$
Commercial (Standard, L)	$10 \mathrm{KH} / 10 \mathrm{~K}$	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	$-5.2 \mathrm{~V} \pm 5 \%$
Commercial (Standard, L)	100 K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-4.5 \mathrm{~V} \pm$ 0.3 V
Military (L)	$10 \mathrm{KH} / 10 \mathrm{~K}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Case	$-5.2 \mathrm{~V} \pm 5 \%$

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage V_{EE} to V_{CC}
-7.0 V to +0.5 V
Input Voltage
V_{EE} to +0.5 V
Output Current \qquad

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	Temperature ${ }^{[1]}$	Min.	Max.	Units
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	$\begin{aligned} & 10 \mathrm{E}^{[2]} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1140	-900	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900	-735	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-880	-700	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} . \text { or } \mathrm{V}_{\mathrm{IL}} \mathrm{Min} . \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1025	-880	mV
V_{OL}	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} . \text { or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1920	-1670	mV
			$\mathrm{T}_{\mathrm{A}}=+0^{\circ} \mathrm{C}$	-1870	-1665	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850	-1650	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830	-1625	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1830	-1610	mV
		$\begin{aligned} & 100 \mathrm{~K}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} \text { or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1620	mV

Electrical Characteristics Over the Operating Range (continued)

Parameters	Description	Test Conditions	Temperature ${ }^{[2]}$	Min.	Max.	Units
V_{IH}	Input HIGH Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1260	-900	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1170	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1130	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1070	-720	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1030	-700	mV
		$100 \mathrm{~K} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1165	-880	mV
$\mathrm{V}_{\text {IL }}$,	Input LOW Voltage	$10 \mathrm{E}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1950	-1540	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1950	-1480	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1950	-1475	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1950	-1450	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1950	-1450	mV
		$100 \mathrm{~K} \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1475	mV
I_{H}	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max}$			220	$\mu \mathrm{A}$
I_{l}	Input LOW Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ Min.	$\overline{\mathrm{B}}$ inputs ${ }^{(3)}$	0.5	170	$\mu \mathrm{A}$
			All other inputs	-50		
I_{EE}	Supply Current (All inputs and outputs open)	Commercial/Military L (Low Power)		-150		mA
		Commercial Standard		-220		mA

Capacitance ${ }^{[4]}$

Parameters	Description	Typ.	Max. ${ }^{[5]}$	Units
C_{IN}	Input Pin Capacitance	4	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Pin Capacitance	5	6	pF

AC Test Loads and Waveforms ${ }^{[6,7, ~, ~, ~ 9, ~ 10, ~ 11] ~}$

Notes:

1. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute. Military grade is specified as case temperature.
2. 10 E specifications support both 10 K and 10 KH compatibility.
3. $\stackrel{\rightharpoonup}{\mathbf{B}}$ inputs have pull-down resistors, all other inputs do not have pulldowns. The value of the resistors is nomimally $50 \mathrm{k} \Omega$, so the $\overline{\mathrm{B}}$ inputs are active when left floating.
4. Tested initially and after any design or process changes that may affect these parameters.
5. For all packages except cerDIP (D40), which has maximums of $\mathrm{C}_{\mathrm{IN}}=8 \mathrm{pF}, \mathrm{C}_{\text {OUT }}=9 \mathrm{pF}$.

6. $V_{I L}=V_{I L}$ Min., $V_{I H}=V_{I H}$ Max. on $10 E$ version.
7. $\mathrm{V}_{\mathrm{IL}}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}$ on 100 K version.
8. $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}<5 \mathrm{pF}$ (3-ns grade) or $<30 \mathrm{pF}$ (5-, 7-ns grade). Includes fixture and stray capacitance.
9. All coaxial cables should be 50Ω with equal lengths. The delay of the coaxial cables should be "nulled" out of the measurement.
10. $t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=0.7 \mathrm{~ns}$.
11. All timing measurements are made from the 50% point of all waveforms.

Switching Characteristics Over the Commercial Operating Range

Parameters	Description	$\begin{aligned} & 10 \mathrm{CH2L-3} \\ & 100 \mathrm{~F} 22-3 \end{aligned}$		$\begin{aligned} & 10 \mathrm{E} 422-5 \\ & 100 \mathrm{E} 422-5 \end{aligned}$		$\begin{gathered} 10 \mathrm{E} 422-7 \\ 100 \mathrm{E} 422-7 \end{gathered}$		Units
		Min.	Max:	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {ABS }}$	Block Select to Output Delay		25	0.5	3.0	0.5	4.0	ns
$\mathrm{t}_{\text {RBS }}$	Block Select Recovery		23	0.5	3.0	0.5	4.0	ns
t_{AA}	Address Access Time		30	1.2	5.0	1.2	7.0	ns
t_{w}	Write Pulse Width	30		3.5		5.0		ns
$\mathrm{t}_{\text {wsd }}$	Data Set-Up to Write	0		0.5		1.0		ns
$\mathrm{t}_{\text {WHD }}$	Data Hold to Write	10		1.0		1.0		ns
$\mathrm{t}_{\text {WSA }}$	Address Set-Up/Write	10		0.5		1.0		ns
$t_{\text {WHA }}$	Address Hold/Write	10		1.0		1.0		ns
$\mathrm{t}_{\text {wSBS }}$	Block Select Set-Up/Write	0		0.5		1.0		ns
$\mathrm{t}_{\text {whbs }}$	Block Select Hold/Write	10		1.0		1.0		ns
t_{ws}	Write Disable		25	0.3	3.5	0.3	4.0	ns
$t_{\text {WR }}$	Write Recovery		3.5	0.5	3.5	0.5	8.0	ns
t_{r}	Output Rise Time	0.35.	15	0.35	2.5	1.0	2.5	ns
t_{f}	Output Fall Time	0.35.	15	0.35	2.5	1.0	2.5	ns

Shaded area contains preliminary information.
Switching Characteristics Over the Military Operating Range

Parameters	Description	10E422.5		10E422-7		Units
		Min.	Mas.	Min.	Max.	
$\mathrm{t}_{\text {ABS }}$	Block Select to Output Delay	$0{ }_{0}$	40	0.5	4.0	ns
$\mathrm{t}_{\text {RBS }}$	Block Select Recovery	0.5	40	0.5	4.0	ns
$t_{\text {AA }}$	Address Access Time	, 2	50	1.2	7.0	ns
t_{w}	Write Pulse Width	50		5.0		ns
$t_{\text {wSD }}$	Data Set-Up to Write	\#		1.0		ns
$t_{\text {whD }}$	Data Hold to Write	10		1.0		ns
$\mathrm{t}_{\text {WSA }}$	Address Set-Up/Write	In		1.0		ns
$t_{\text {WHA }}$	Address Hold/Write	10		1.0		ns
$t_{\text {wSBS }}$	Block Select Set-Up/Write	9		1.0		ns
$\mathrm{t}_{\text {whbs }}$	Block Select Hold/Write	10		1.0		ns
$\mathrm{t}_{\text {ws }}$	Write Disable	03	40	0.3	4.0	ns
$\mathrm{t}_{\text {WR }}$	Write Recovery	0.5	50,	0.5	8.0	ns
t_{7}	Output Rise Time	1.10.	2.S.	1.0	2.5	ns
t_{f}	Output Fall Time	10	25	1.0	2.5	ns

[^69]
Switching Waveforms

Read Mode

ADDRESS

Write Mode

Typical DC and AC Characteristics (10E422/10EA22L/100E422/100E422L)

Truth Table

Inputs			Output	
$\overline{\mathbf{B}}_{\mathbf{x}}$	$\overline{\mathbf{W}}$	$\mathbf{D}_{\mathbf{x}}$	$\mathbf{Q x}_{\mathbf{x}}$	
H	X	X	L	Disabled
L	L	H	L	Write H
L	L	L	L	Write L
L	H	X	Out	Read

Ordering Information

I/O	$\underset{(\mathbf{I E E})}{\mathbf{I}_{\mathrm{EE}}}$	$\begin{gathered} \mathbf{t}_{\mathrm{tA}} \\ (\mathbf{n s}) \end{gathered}$	Ordering Code	Package Type	Operating Range
$10 \mathrm{E}^{[12]}$	220	3.	CY10E422-314.	163	Commercial
			CYIOE $422-3 \mathrm{YC}$	Y64	
			CY10E 422 -3KC	K63	
		5	CY10E422-5LC	L63	
			CY10E422-5DC	D40	
			CY10E422-5YC	Y64	
			CY10E422-5KC	K63	
	150	$\sqrt{5}$	CYOE4221-51C.	163	Commercial
			CY10E4221-5DC	D40	
			CYIOE4221 51 Cl	J64	
			CY 10 E 4221 - 5 KC	K63	
			CY10E4221-5DMB	D40	Military
			CY 10E4221-5KMB	K63	
			CY10E422 - 5 YMB	Y64	
			CY10E422L-7LC	L63	Commercial
			CY10E422L-7DC	D40	
			CY10E422L-7JC	J64	
			CY10E422L-7KC	K63	
			CY10E422L-7DMB	D40	Military
			CY10E422L-7KMB	K63	
			CY10E422L-7YMB	Y64	
100K	220	$\overline{\#}$	CY100E422319	163	Commercial
			CY100E $422-3 \mathrm{YC}$	Y 64	
			CY100E 422.3 KC	K63	
			CY100E422-5LC	L63	
			CY100E422-5DC	D40	
			CY100E422-5YC	Y64	
			CY100E422-5KC	K63	
	150	今7	C Y 100 E 4221.51 C	163	Commercial
			CY100E4221 5DC	D40	
			CY100E4221-51\%	J64	
			CY100E4221-5KC	K63	
			CY100E422L-7LC	L63	
			CY100E422L-7DC	D40	
			CY100E422L-7JC	J64	
			CY100E422L-7KC	K63	

Notes:

12. 10 E specifications support both 10 K and 10 KH compatibility.

Document \#: 38-A-00002-B

4096×1 ECL Static RAM

Features

- 4096×1-bit organization
- High speed/low power
$-\mathrm{t}_{\mathrm{A}}=5 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{EE}}=200 \mathrm{~mA}$
- Both 10 K - and 100 K -compatible versions
- On-chip voltage compensation for improved noise margin
- Open emitter output for ease of memory expansion
- Industry-standard pinout

Functional Description

The Cypress CY10E470 and CY100E470 are ECL RAMs designed for scratch pad, control, and buffer storage applications. Both parts are fully decoded random access memories organized as 4096 words by 1 bit. The CY10E470 is 10 K -compatible. The CY100E470 is 100 K -compatible.

The active LOW chip select ($\overline{\mathbf{S}}$) input controls memory selection and allows for memory expansion. The read and write operations are controlled by the state of the active LOW write enable (\bar{W}) input. With \bar{W} and \bar{S} LOW, the data at D is written into the addressed location. To read, \bar{W} is held HIGH, while $\overline{\mathrm{S}}$ is held LOW. Open emitter outputs allow for wired-OR connection in order to expand the memory.

Logic Block Diagram

Pin Configuration

C470-12

Selection Guide

	$10 \mathrm{E} 470-5$ $100 \mathrm{E} 470-5$	$10 \mathrm{E} 470-7$ $100 \mathrm{E} 470-7$
Maximum Access Time (ns)	5	7
I_{EE} Max. (mA)	200	200

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage V_{EE} to $\mathrm{V}_{\mathrm{CC}} \ldots \ldots \ldots \ldots \ldots . .-7.0 \mathrm{~V}$ to +0.5 V

Operating Range referenced to V_{Cc}

Range	Version	Ambient Temperature	V $_{\text {EE }}$
Commercial	10 E	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$-5.2 \mathrm{~V} \pm 5 \%$
Commercial	100 E	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-4.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	Temperature ${ }^{[1]}$	Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 10 \mathrm{ER}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} . \text { or } \mathrm{V}_{\mathrm{IL}} \mathrm{Min} . \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900	-720	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1025	-880	mV
V_{oL}	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} . \text { or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870	-1665	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850	-1650	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830	-1625	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\text {EE }}-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }} \text { Max. or } \mathrm{V}_{\text {IL }} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1620	mV
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1145	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1105	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1045	-720	mV
		$100 \mathrm{~K} \mathrm{~V} \mathrm{EEE}=-4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1165	-880	mV
V_{IL}	Input LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870	-1490	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850	-1475	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830	-1450	mV
		$100 \mathrm{~K} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1475	mV
I_{IH}	Input HIGH Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max.			220	$\mu \mathrm{A}$
I_{IL}	Input LOW Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \mathrm{Min}$.	$\overline{\mathrm{S}}$ inputs	0.5	170	$\mu \mathrm{A}$
			All other inputs	-50		$\mu \mathrm{A}$
$\mathrm{I}_{\text {EE }}$	Supply Current (All inputs and outputs open)	Commercial		-200		mA

Capacitance ${ }^{[2]}$

Parameters	Description	Min.	Typ.	Max.	Units
C_{IN}	Input Pin Capacitance		4		pF
$\mathrm{C}_{\text {OUT }}$	Output Pin Capacitance		6		pF

Notes:

1. Commerical grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute.
2. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms ${ }^{[3,4,5,6,7,8]}$

Switching Characteristics Over the Operating Range

Parameters	Description	$\begin{aligned} & 10 \mathrm{E} 470-5 \\ & 100 \mathrm{E} 470-5 \end{aligned}$		$\begin{gathered} 10 \mathrm{E} 470-7 \\ 100 \mathrm{E} 470-7 \end{gathered}$		Units
		Min.	Max.	Min.	Max.	
t_{AC}	Input to Output Delay		3.0		3.5	ns
t_{RC}	Chip Select Recovery		3.0		3.5	ns
t_{AA}	Address Access Time		5.0		7.0	ns
$\mathrm{t}_{\text {ww }}$	Write Pulse Width	5.0		7.0		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write	0		0		ns
$\mathrm{t}_{\text {HD }}$	Data Hold to Write	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up/Write	0		1.0		ns
t_{HA}	Address Hold/Write	0		1.0		ns
$\mathrm{t}_{\text {Sc }}$	Chip Select Set-Up/Write	0		0		ns
t_{HC}	Chip Select Hold/Write	0		0		ns
$t_{\text {ws }}$	Write Disable		3.0		3.5	ns
t_{WR}	Write Recovery		5.0		8.0	ns
t_{r}	Output Rise Time	1.0	2.5	1.0	2.5	ns
t_{f}	Output Fall Time	1.0	2.5	1.0	2.5	ns

Notes:
3. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}$ Min., $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}$ Max. on 10E version.
4. $\mathrm{V}_{\mathrm{IL}}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}$ on 100 K version.
5. $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}<30 \mathrm{pF}$ (includes fixture and stray capacitance).
6. All coaxial cables should be 50Ω with equal lengths. The delay of the coaxial cables should be "nulled" out of the measurement.
7. $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=0.7 \mathrm{~ns}$.
8. All timing measurements are made from the 50% point of all waveforms.

Switching Waveforms

Read Mode

ADDRESS

Write Mode

C470-16

Truth Table

Inputs			Output	
$\overline{\mathbf{s}}$	$\overline{\mathbf{W}}$	\mathbf{D}	\mathbf{Q}	
H	X	X	L	Disabled
L	L	H	L	Write "H"
L	L	L	L	Write "L"
L	H	X	Dout	Read

H = High Voltage Level
$\mathrm{L}=$ Low Voltage Level
$\mathrm{X}=$ Don't Care

Ordering Information

$1 / O$	\mathbf{I}_{EE} (mA)	$\mathbf{t}_{\mathbf{A A}}$ (ns)	Ordering Code	Package Type	Operating Range
10 K	200	5.0	CY10E470-5DC	D 4	Commercial
		7.0	CY10E470-7DC	D 4	
100 K	200	5.0	CY100E470-5DC	D 4	Commercial
		7.0	CY100E470-7DC	D 4	

Document 7: 38-A-00003-B

Features

- 1024 x 4-bit organization
- Ultra high speed/standard power
$-\mathbf{t}_{\mathrm{AA}}=3.5 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{EE}}=275 \mathrm{~mA}$
- Low-power version
$-\mathrm{t}_{\mathrm{A}}=5 \mathrm{~ns}$
$-I_{E E}=190 \mathrm{~mA}$
- Both $10 \mathrm{KH} / 10 \mathrm{~K}$ - and 100 K -compatible I/O versions
- $10 \mathrm{~K} / 10 \mathrm{KH}$ military version
- Capable of withstanding $>2001 \mathrm{~V}$ ESD
- On-chip voltage compensation for improved noise margin
- Open emitter output for ease of memory expansion
- Industry-standard pinout

Functional Description
The Cypress CY10E474 and CY100E474 are 1 kx 4 ECL RAMs designed for scratch pad, control, and buffer storage applications. These RAMs are developed by Aspen Semiconductor Corporation, a subsidiary of Cypress Semiconductor. Both parts are fully decoded random access memories organized as 1024 words by 4 bits. The

CY10E 474 is $10 \mathrm{KH} / 10 \mathrm{~K}$ compatible and is available in a military version.. The CY100E 474 is 100 K comptaible.
The active LOW chip select (S) input controls memory selection and allows for memory expansion. The read and write operations are controlled by the state of the active LOW write enable (W) input. With \bar{W} and \bar{S} LOW, the data at $D_{(1-4)}$ is written into the addressed location. To read, $\overline{\mathrm{W}}$ is held HIGH while $\overline{\mathrm{S}}$ is held LOW. Open emitter outputs allow for wired-OR connection to expand the memory.

Selection Guide

		$\begin{gathered} 10 \mathrm{E} 474-4 \\ 100 \mathrm{E} 474-3.5 \end{gathered}$	$\begin{gathered} 10 \mathrm{E} 474-5 \\ 100 \mathrm{E} 474-5 \end{gathered}$	$\begin{aligned} & \text { 10E474-7 } \\ & \text { 100E474-7 } \end{aligned}$
Maximum Acce		3.5/4	5	7
$\mathrm{I}_{\text {EE }}$ Max. (mA)	Commercial	275	275	
	L		190	190
	Military ($10 \mathrm{~K} / 10 \mathrm{KH}$ only)		190	190

Pin Configurations (continued)

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage $V_{\text {EE }}$ to $V_{C C} \ldots \ldots \ldots \ldots \ldots-7.0 \mathrm{~V}$ to +0.5 V
Input Voltage V_{EE} to +0.5 V
Output Current \qquad $-50 \mathrm{~mA}$

Operating Range Referenced to V_{cc}

Range	I/O	Ambient Temperature	$\mathrm{V}_{\text {EE }}$
Commercial (Standard, L)	10KH/10K	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	$-5.2 \mathrm{~V} \pm 5 \%$
Commercial (Standard, L)	100K	$0^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	$-4.5 \mathrm{~V} \pm$
Military (L)	10KH/10K	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \text { Case } \\ \hline \end{array}$	$-5.2 \mathrm{~V} \pm 5 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	Temperature ${ }^{[1]}$	Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 10 \mathrm{E}^{[2]} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1140	-900	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900	-735	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-880	-700	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1025	-880	mV
V_{OL}	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} \text { or } \mathrm{V}_{\mathrm{IL}} \mathrm{Min} . \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1920	-1670	mV
			$\mathrm{T}_{\mathrm{A}}=+0^{\circ} \mathrm{C}$	-1870	-1665	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850	-1650	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830	-1625	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1830	-1610	mV
		$\begin{aligned} & 100 \mathrm{~K} R_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1620	mV

Electrical Characteristics Over the Operating Range (continued)

Parameters	Description	Test Conditions	Temperature ${ }^{[1]}$	Min.	Max.	Units
V_{IH}	Input HIGH Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1260	-900	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1170	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1130	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1070	-720	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1030	-700	mV
		$100 \mathrm{~K} \mathrm{~V}_{\text {EE }}=-4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1165	-880	mV
V_{IL}	Input LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1950	-1540	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1950	-1480	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1950	-1475	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1950	-1450	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1950	-1450	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1475	mV
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ Max.			220	$\mu \mathrm{A}$
I_{IL}	Input LOW Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \mathrm{Min} .$	$\overline{\text { S }}$ inputs	0.5	170	$\mu \mathrm{A}$
			All other inputs	-50		
\mathbf{I}_{EE}	Supply Current (All inputs and outputs open)	Commercial/Military Standard L (Low Power)		-190		mA
		Commercial Standard		-275		mA

Capacitance ${ }^{[3]}$

Parameters	Description	Typ.	Max. ${ }^{[4]}$	Units
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	4	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Pin Capacitance	5	6	pF

AC Test Loads and Waveforms ${ }^{[5,6,7,8,9,10]}$

Notes:

1. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute. Military grade is specified as case temperature.
2. 10 E specifications support both 10 K and 10 KH compatibility.
3. Tested initially and after any design or process changes that may affect these parameters.
4. For all packages except cerDIP (D40), which has maximums of $C_{\text {IN }}=8 \mathrm{pF}$, Cout $=9 \mathrm{pF}$.
5. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}$ Min., $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}$ Max. on 10 E version.

E474-8
6. $\mathrm{V}_{\mathrm{IL}}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}$ on 100 K version.
7. $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}<5 \mathrm{pF}$ (3.5/4-ns grade) or $<30 \mathrm{pF}$ (5 -, 7 -ns grade). Includes fixture and stray capacitance.
8. All coaxial cables should be 50Ω with equal lengths. The delay of the coaxial cables should be "nulled" out of the measurement.
9. $t_{r}=t_{f}=0.7 \mathrm{~ns}$.
10. All timing measurements are made from the 50% point of all waveforms.

Switching Characteristics Over the Commercial Operating Range

Parameters	Description	100E474-3.5		10E474-4		$\begin{gathered} 10 \mathrm{E} 474-5 \\ 100 \mathrm{E} 474-5 \end{gathered}$		$\begin{array}{r} 10 \mathrm{E} 474-7 \\ 100 \mathrm{E} 474-7 \end{array}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {AC }}$	Input to Output Delay		2.5		2.5	0.5	3.0	0.5	5.0	ns
t_{RC}	Chip Select Recovery		2.5		2.5	0.5	3.0	0.5	5.0	ns
$\mathrm{t}_{\text {AA }}$	Address Access Time		3.5		4.0	1.2	5.0	1.2	7.0	ns
$t_{\text {ww }}$	Write Pulse Width	5.0		5.0		5.0		5.0		ns
$\mathrm{t}_{\text {sb }}$	Data Set-Up to Write	0		0		0		0		ns
t_{HD}	Data Hold to Write	0		0		0		1.0		ns
t_{SA}	Address Set-Up/Write	0		0		0		1.0		ns
t_{HA}	Address Hold/Write	0		0		0		1.0		ns
$\mathrm{t}_{\text {sc }}$	Chip Select Set-Up/Write	0		0		0		0		ns
t_{HC}	Chip Select Hold/Write	0		0		0		1.0		ns
t_{ws}	Write Disable	0.3	2.5	0.3	2.5	0.3	3.0	0.3	6.5	ns
t_{WR}	Write Recovery	0.5	3.5	0.5	3.5	0.5	5.0	0.5	7.0	ns
t_{r}	Output Rise Time	0.35	1.5	0.35	1.5	0.35	2.5	1.0	2.5	ns
t_{f}	Output Fall Time	0.35	1.5	0.35	1.5	0.35	2.5	1.0	2.5	ns

Switching Characteristics Over the Military Operating Range

Parameters	Description	10E474-5		10E474-7		Units
		Min.	Max.	Min.	Max.	
t_{AC}	Input to Output Delay	0.5	4.0	0.5	5.0	ns
$\mathrm{t}_{\text {RC }}$	Chip Select Recovery	0.5	4.0	0.5	5.0	ns
$\mathrm{t}_{\text {AA }}$	Address Access Time	1.2	5.0	1.2	7.0	ns
$t_{\text {ww }}$	Write Pulse Width	5.0		5.0		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write	0		0		ns
t_{HD}	Data Hold to Write	1.0		1.0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up/Write	1.0		1.0		ns
t_{HA}	Address Hold/Write	1.0		1.0		ns
$\mathrm{t}_{\text {sc }}$	Chip Select Set-Up/Write	0		0		ns
t_{HC}	Chip Select Hold/Write	1.0		1.0		ns
$\mathrm{t}_{\text {ws }}$	Write Disable	0.3	4.0	0.3	6.5	ns
t_{WR}	Write Recovery	0.5	5.0	0.5	7.0	ns
t_{r}	Output Rise Time	1.0	2.5	1.0	2.5	ns
t_{f}	Output Fall Time	1.0	2.5	1.0	2.5	ns

Switching Waveforms

Read Mode

Write Mode

Typical DC and AC Characteristics (10E474/10E474L/100E474/100E474L)

Truth Table

Inputs			Output	
$\overline{\mathbf{S}}$	$\overline{\mathbf{W}}$	$\overline{\mathbf{D}}$	\mathbf{Q}	
H	X	X	L	Disabled
L	L	H	L	Write H
L	L	L	L	Write L
L	H	X	D $_{\text {OuT }}$	Read

Ordering Information

I/O	$\underset{(\mathbf{m e})}{\mathbf{I}_{\mathrm{EE}}}$	$\begin{gathered} \mathbf{t}_{\mathrm{AS}} \\ (\mathrm{~ns}) \end{gathered}$	Ordering Code	Package Type	Operating Range
100K	275	3.5	CY100E474-3.5LC	L63	Commercial
			CY100E474-3.5YC	Y64	
			CY100E474-3.5KC	K63	
		5	CY100E474-5LC	L63	
			CY100E474-5DC	D40	
			CY100E474-5YC	Y64	
			CY100E474-5KC	K63	
	190	5	CY100E474L-5LC	L63	Commercial
			CY100E474L-5DC	D40	
			CY100E474L-5JC	J64	
			CY100E474L-5KC	K63	
		7	CY100E474L-7LC	L63	
			CY100E474L-7DC	D40	
			CY100E474L-7JC	J64	
			CY100E474L-7KC	K63	
$10 \mathrm{E}^{[11]}$	275	4	CY10E474-4LC	L63	Commercial
			CY10E474-4YC	Y64	
			CY10E474-4KC	K63	
		5	CY10E474-5LC	L63	
			CY10E474-5DC	D40	
			CY10E474-5YC	Y64	
			CY10E474-5KC	K63	
	190	5	CY10E474L-5LC	L63	Commercial
			CY10E474L-5DC	D40	
			CY10E474L-5JC	J64	
			CY10E474L-5KC	K63	
			CY10E474L-5DMB	D40	Military
			CY10E474L-5KMB	K63	
			CY10E474L-5YMB	Y64	
		7	CY10E474L-7LC	L63	Commercial
			CY10E474L-7DC	D40	
			CY10E474L-7JC	J64	
			CY10E474L-7KC	K63	
			CY10E474L-7DMB	D40	Military
			CY10E474L-7KMB	K63	
			CY10E474L-7YMB	Y64	

Notes:
11. 10 E specifications support both 10 K and 10 KH compatibility.

Document \#: 38-A-00004-C

4096 x 4 ECL Static RAM

Features

- 4096×4-bit organization
- Ultra high speed/standard power
$-\mathrm{t}_{\mathrm{AA}}=7 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{EE}}=\mathrm{TBD} \mathrm{mA}$
- Low-power version
$-\mathrm{t}_{\mathrm{AA}}=7,10 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{EE}}=200 \mathrm{~mA}$
- Both $10 \mathrm{KH} / 10 \mathrm{~K}$ - and 100 K -compatible I/O versions
- On-chip voltage compensation for improved noise margin
- Open emitter output for ease of memory expansion
- Industry-standard pinout

Functional Description

The Cypress CY101E484, CY10E484, and CY100E484 are $4 \mathrm{~K} \times 4$ ECL RAMs designed for scratch pad, control, and buffer storage applications. These parts are fully decoded random access memories organized as 4096 words by 4 bits. The CY10E484 is $10 \mathrm{KH} / 10 \mathrm{~K}$ compatible. The CY100E484 is 100 K compatible, and the CY101E484 is 100 K compatible with a -5.2 V supply.

Static RAM The active LOW chip select (S) input con-
trols memory selection and allows for memory expansion. The read and write operations are controlled by the state of the active LOW write enable ($\overline{\mathrm{W}}$) input. With \bar{W} and \bar{S} LOW, the data at $D_{(1-4)}$ is written into the addressed location. To read, \bar{W} is held HIGH while $\overline{\mathrm{S}}$ is held LOW. Open emitter outputs allow for wired-OR connection to expand the memory. The devices are packaged in 28 -pin cerDIPs, PLCCs, and rectangular cerpacks in the high-performance center power-ground version pin configurations.

Selection Guide

		$\begin{aligned} & \text { 101E484-7 } \\ & \text { 10E484-7 } \\ & 100 \mathrm{E} 484-7 \end{aligned}$	$\begin{aligned} & 101 \mathrm{E} 484-10 \\ & 10 \mathrm{E} 484-10 \\ & 100 \mathrm{E} 484-10 \end{aligned}$
Maximum Access Time (ns)		7	10
$\mathrm{I}_{\text {EE }}$ Max. (mA)	Commercial	TBD	
	L	200	200

Truth Table

Inputs			Output	
$\overline{\mathbf{S}}$	$\overline{\mathbf{W}}$	D	Q	
H	X	X	L	Disabled
L	L	H	L	Write H
L	L	L	L	Write L
L	H	X	Dour	Read

Document \#: 38-A-00005-A

Features

- $\mathbf{1 6 , 3 8 4} \times 4$ bits organization
- Ultra high speed/standard power
$-\mathrm{t}_{\mathrm{AA}}=7 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{EE}}=\mathbf{1 8 0} \mathrm{mA}$
- Low-power version
$-\mathrm{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{EE}}=135 \mathrm{~mA}$
- Both $10 \mathrm{KH} / 10 \mathrm{~K}$ - and 100 K -compatible $1 / O$ versions as well as 100 K with 10 K supplies
- On-chip voltage compensation for improved noise margin
- Open emitter output for ease of memory expansion
- Industry-standard pinout

Functional Description

The Cypress CY10E494, CY100E494, and CY101E494 are 16K x 4 ECL RAMs designed for scratch pad, control, and buffer storage applications. Both parts are fully decoded random access memories organized as 16,384 words by 4 bits. The CY10E494 is $10 \mathrm{KH} / 10 \mathrm{~K}$ compatible, the CY100E494 is 100 K compatible, and the

CY101E494 has 100 K -compatible levels with a -5.2 V supply voltage.
The active LOW chip select ($\overline{\mathrm{S}}$) input controls memory selection and allows for memory expansion. The read and write operations are controlled by the state of the active LOW write enable (\bar{W}) input. With \bar{W} and \bar{S} LOW, the data at $D_{(1-4)}$ is written into the addressed location. To read, \bar{W} is held HIGH while \bar{S} is held LOW. Open emitter outputs allow for wired-OR connection to expand the memory.

Selection Guide

		$\begin{gathered} 10 \mathrm{E} 494-7 \\ 101 \mathrm{E} 494-7 \end{gathered}$	$\begin{gathered} \text { 10E494-8 } \\ 101 \mathrm{E} 494-8 \end{gathered}$	$\begin{gathered} \text { 10E494-10 } \\ 101 \mathrm{E} 494-10 \end{gathered}$	$\begin{gathered} 10 \mathrm{E} 494-12 \\ 100 \mathrm{E} 494-12 \end{gathered}$
Maximum Access Time (ns)		7	8	10	12
Maximum, $\mathrm{I}_{\text {EE }}$ (mA)	Commercial	180	180	180	
	L				135

Pin Configurations (continued)

Operating Range Referenced to $V_{c c}$

Range	Version	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}$
Commercial (Standard, L)	10 E	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$-5.2 \mathrm{~V} \pm 5 \%$
Commercial (L)	100 E	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-4.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Commercial (Standard)	101 E	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$-5.2 \mathrm{~V} \pm 5 \%$

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)

Storage Temperature

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Ambient Temperature with
Power Applied $\ldots \ldots \ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{V}_{\text {EE }}$ to +0.5 V
Output Current. $-50 \mathrm{~mA}$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	Temperature ${ }^{[1]}$	Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} 10 \mathrm{E}^{[2]} \mathrm{R}_{\mathrm{L}} & =50 \Omega \text { to }-2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EE}} & =-5.2 \mathrm{~V} \text { 㰯 } \end{aligned}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \text { Min. } .$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900	-735	mV
		$\begin{aligned} & 100 \mathrm{E} \cdot \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, 101 \mathrm{IE}^{(3 /} \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \mathrm{Min} . \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1025	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} . \text { or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870	-1665	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850	-1650	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830	-1625	mV
		$\begin{aligned} & 100 \mathrm{E} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-\mathrm{V}^{-4.5 \mathrm{~V}, 101 \mathrm{E}^{[3]}} \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \mathrm{Min} . \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1620	mV
V_{IH}	Input HIGH Voltage	$10 \mathrm{E}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1170	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1130	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1070	-720	mV
		$\begin{aligned} & 100 \mathrm{E} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \\ & 101 \mathrm{E}^{[3]} \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1165	-880	mV

Electrical Characteristics Over the Operating Range (continued)

Parameters	Description	Test Conditions	Temperature ${ }^{[1]}$	Min.	Max.	Units
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	$\stackrel{10 E}{ }_{\mathrm{V}_{\mathrm{EE}}}=-5.2 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1950	-1480	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1950	-1475	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1950	-1450	mV
		$\begin{aligned} & 100 \mathrm{E} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \\ & 101 \mathrm{E}^{[3]} \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1475	mV
I_{IH}	Input HIGH Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max.			220	$\mu \mathrm{A}$
I_{IL}	Input LOW Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ Min.	$\overline{\mathrm{S}}$	0.5	170	$\mu \mathrm{A}$
			All others	-50		
I_{EE}	Supply Current (All inputs and outputs open)	Commercial L (Low Power)			-135	mA
		Commercial Standard			-180	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Typ.	Max. ${ }^{[5]}$	Units
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	3	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Pin Capacitance	5	7	pF

AC Test Loads and Waveforms ${ }^{[6,7,8,9,10,11]}$

Switching Characteristics Over the Operating Range

Parameters	Description	$\begin{gathered} 10 \mathrm{E} 494-7 \\ 101 \mathrm{E} 494-7 \end{gathered}$		$\begin{gathered} 10 \mathrm{E} 494-8 \\ 101 \mathrm{E} 494-8 \end{gathered}$		$\begin{aligned} & \text { 10E494-10 } \\ & 101 \mathrm{E} 494-10 \end{aligned}$		$\begin{aligned} & 10 \mathrm{E} 494-12 \\ & 100 \mathrm{E} 494-12 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{AC}	Input to Output Delay		5.0		5.0		5.0		5.0	ns
$\mathrm{t}_{\text {RC }}$	Chip Select Recovery		5.0		5.0		5.0		5.0	ns
t_{AA}	Address Access Time		7.0		8.0		10.0		12.0	ns
$\mathrm{t}_{\text {ww }}$	Write Pulse Width	5.0		6.0		6.0		8.0		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write	1.0		1.0		2.0		2.0		ns
t_{HD}	Data Hold to Write	1.0		1.0		2.0		2.0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up/Write	1.0	,	1.0		2.0		2.0		ns

Notes:

1. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute.
2. 10 E specifications support both 10 K and 10 KH compatibility.
3. 101 E specifications support 100 K compatibility with $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.
4. Tested initially and after any design or process changes that may affect these parameters.
5. For all packages except CerDIP (D42), which has maximums of $\mathrm{C}_{1 \mathrm{~N}}$ $=8 \mathrm{pF}, \mathrm{C}_{\text {OUT }}=9 \mathrm{pF}$.
6. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}$ Min., $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}$ Max. on 10 E version.
7. $\mathrm{V}_{\mathrm{IL}}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}$ on 100 K version.
8. $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}<5 \mathrm{pF}$ (7-, 8-ns grade) or $<30 \mathrm{pF}$ (10-, 12-ns grade). Includes fixture and stray capacitance.
9. All coaxial cables should be 50Ω with equallengths. The delay of the coaxial cables should be "nulled" out of the measurement.
10. $t_{r}=t_{i}=0.7 \mathrm{~ns}$.
11. All timing measurements are amde from the 50% point of all waveforms.

Switching Characteristics Over the Operating Range (continued)

Parameters	Description	$\begin{gathered} \text { 10E494-7 } \\ \text { 101E494-7 } \end{gathered}$		$\begin{gathered} 10 \mathrm{E} 494-8 \\ 101 \mathrm{E} 494-8 \end{gathered}$		$\begin{aligned} & \text { 10E494-10 } \\ & 101 \mathrm{E} 94-10 \end{aligned}$		$\begin{aligned} & 10 \mathrm{E} 494-12 \\ & 100 \mathrm{E} 494-12 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{HA}	Address Hold/Write	1.0		1.0		2.0		2.0		ns
$\mathrm{t}_{\text {sc }}$	Chip Select Set-Up/Write	1.0		1.0		2.0		2.0		ns
t_{HC}	Chip Select Hold/Write	1.0		1.0		2.0		2.0		ns
$\mathrm{t}_{\text {ws }}$	Write Disable		5.0		5.0		5.0		5.0	ns
t_{WR}	Write Recovery		8.0		8.0		12.0		14.0	ns
t_{t}	Output Rise Time	0.35	1.5	0.35	1.5	0.35	1.5	0.75	2.5	ns
t_{f}	Output Fall Time	0.35	1.5	0.35	1.5	0.35	1.5	0.75	2.5	ns

Switching Waveforms

Read Mode

Write Mode

Truth Table

Inputs			Output	Mode
$\overline{\mathbf{S}}$	$\widetilde{\mathbf{W}}$	$\overline{\mathbf{D}}$	Q	
H	X	X	L	Disabled
L	L	H	L	Write H
L	L	L	L	Write L
L	H	X	Dout	Read

Ordering Information

Version	$\begin{gathered} \mathbf{I}_{\mathrm{EE}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{t}_{\mathrm{AN}} \\ (\mathrm{~ns}) \end{gathered}$	Ordering Code	Package Type	Operating Range
10 E	180	7	CY10E494-7VC	V21	Commercial
			CY10E494-7KC	K74	
			CY10E494-7DC	D42	
		8	CY10E494-8VC	V21	
			CY10E494-8KC	K74	
			CY10E494-8DC	D42	
		10	CY10E494-10VC	V21	
			CY10E494-10KC	K74	
			CY10E494-10DC	D42	
	135	12	CY10E494L-12KC	K74	
			CY10E494L-12VC	V21	
			CY10E494L-12DC	D42	
100 E	135	12	CY100E494L-12KC	K74	Commercial
			CY100E494L-12VC	V21	
			CY100E494L-12DC	D42	
101 E	180	7	CY101E494-7VC	V21	Commercial
			CY101E494-7KC	K74	
			CY101E494-7DC	D42	
		8	CY101E494-8VC	V21	
			CY101E494-8KC	K74	
			CY101E494-8DC	D42	
		10	CY101E494-10VC	V21	
			CY101E494-10KC	K74	
			CY101E494-10DC	D42	

Document \#: 38-A-00009-B
$\begin{array}{ll}\text { PRODUCT } \\ \text { INFORMATION } & 1\end{array}$ STATIC RAMS2
PROMS 3
EPLDS 4
FIFOS 5
LOGIC 6
RISC 7
MODULES 8
ECL 9
BUS INTERFACE PRODUCTS 10
MILITARY 11
DESIGN AND 12
PROGRAMMING TOOLSQUALITY AND13PACKAGES14

Device Number	Description	
VIC068	VMEbus Interface Controller	10-1
VAC068	VMEbus Address Controller	10-15

Features

- Complete VMEbus interface controller and arbiter
- 58 internal registers provide configuration control and status of VME and local operations
- Drives arbitration, interrupt, address modifier utility, strobe, address lines A07through A01 and data lines $D 07$ through D00 directly, and provides signals for control logic to drive remaining address and data lines
- Direct connection to 68xxx family and mappable to non-68xxx processors
- Complete master/slave capability
- Supports read, write, write posting, and block transfers
- Accommodates VMEbus timing requirements with internal digital delay line (7.8-ns granularity)
- Programmable metastability delay
- Programmable delays for DSACK to DTACK
- Provides timers for local bus and VMEbus transactions.
- Interleaved block transfers over VMEbus
- Acts as DMA master on local bus
- Programmable burst count, transfer length, and interleaved period interval
- Also supports local module-based DMA.
- Arbitration support
- Supports single-level, priority and round robin arbitration
- Supports fair request option as requester.
- Interrupt support
- Complete support for the VME interrupts: interrupter and interrupt handler
- Seven local interrupt lines
- 8-level interrupt priority encode
- Total of 29 interrupts mapped through the VIC068.
- Miscellaneous features
- Refresh option for local DRAM
- Four broadcast location monitors
- Four module-specific Iocation monitors
- Eight interprocessor communications registers
- TAS/CAS/CAS2 instruction support for 68020
- Available in 144-pin plastic or ceramic PGA package

Functional Description

The VME interface controller (VIC068) is a single chip designed to minimize the cost and board area requirements and to maximize performance of the VMEbus interface of a VMEbus master/slave module. This can be implemented on either a 8-bit, 16-bit, or 32-bit system. The VIC068 was designed using high-performance standard cells on an advanced 1 micron CMOS process. The VIC068 performs all VMEbus system controller functions plus many others, which simplify the development of a VMEbus interface. The VIC068 utilizes output buffers based on patented and mili-tary-approved advanced CMOS logic (ACL) family. These CMOS high-drive buffers provide direct connection to the address and data lines. In addition to these signals, the VIC068 connects directly to the arbitration, interrupt, address modifier, utility and strobe lines. Signals are provided which control data direction and latch functions needed for a 32-bit implementation.

The VIC068 was developed through the efforts of consortium of board vendors, under the auspices of the VMEbus International Trade Association (VITA). The VIC068 thus offers an implementation that provides inputs from a wide array of users, which maximizes the number of applications. This also provides compatibility between boards designed by different manufacturers.

Pin Configuration

A	B	C	D	E	F	G	H	J	K	L	M	N	P	R
vss11	IPL2*	LАСКо'	LIRO2•	LIRQS ${ }^{\text {* }}$	ASIZ ${ }^{\circ}$	ASIZO*	SLSELI•	WORD ${ }^{\circ}$	FCIACK.	402	A04	vcc 2	vss2	IRQ4.
LD6	BLT*	IPL1*	vect	LIROI*	LIRO4*	LRO6*	ICFSEL•	MNE*	A01	A03	A05	A07	IRO3*	IRQ7 ${ }^{\circ}$
LD2	LO5	DEDLK	IPLO*	LAEN	LIRO3*	LIRQ7*	vSSCORE	SLSELO*	vSS1	A06	IRO1*	IRO2*	IRO6*	ACFAIL*
L01	L03	LD7	LOCATOR PIN	Bottom View								IRO5*	vccs	'ACKOUT*
LA7	LDO	LD4										SYSFAIL*	SySRESET.	DTACK
LA3	LA5	La6										${ }^{\text {IACKIN*}}$	IACK*	AMO
LA2	LA4	vss10										vss3	AS ${ }^{\text {- }}$	AM1
Lat	LAO	vcc7										vss 4	AM2	AM3
cs*	DSACK1•	DS ${ }^{\text {P }}$										vcc4	LWORD*	AM4
PAS*	Lberr ${ }^{\text {- }}$	RESET*										BERR'	WRITE*	AM5
DSACKO*	RW*	FC1										BR2*	DS ${ }^{*}$	DSO*
HALT*	RMC•	LBR*										B8sr*	BR1.	BRO*
FC2	sizo	SCON	CLOCK64M	LADI	vsss	vCCCORE	vsss	vcc5	D00	BGIOUT*	Bgaln*	BGoln	BR3 ${ }^{\circ}$	vsss
SIZ1	IRESEt*	LADO	LEDI	DDiR*	Lwoenin-	deno	D06	D03	D01	vss7	bgoout ${ }^{\text {- }}$	BG3IN-	BGil ${ }^{*}$	BCLR.
LBG*	Aben*	vcce	LEDO	UWDENIN•	SWDEN*	ISOBE.	007	D05	D04	002	BG3OUT ${ }^{-}$	bgrout	SYSCLK	vss6

VIC068 on 68030 Board

Pin Descriptions

VMEbus Signals

SYSRESET. The system reset signal is both an input and an outputcollector output. A LOW level on this signal resets the internal logic of the VIC068 and asserts the signals RESET and HALT; those signals remain asserted for a minimum of 200 ms . If the VIC068 is configured as a VMEbus system controller, a low-level input on signal IRESET asserts SYSRESET as an output for a minimum of 200 ms .
$\overline{\text { ACFAIL. This signal is an input only. It indicates that the power }}$ has failed. The VIC068 may be programmed to generate a local interrupt when ACFAIL is detected.
SYSFAIL. The system fail signal indicates that the VIC068 is not in full working order. This signal is both an input and an open collector output. The output is asserted under two conditions. First, if self-testing is not complete after startup, the SYSFAIL signal is asserted-ostensibly to be deasserted by the onboard CPU after completion of diagnostics. Second, if a module has identified itself as faulty, the SYSFAIL signal is asserted as a warning when HALT is detected LOW for 4 ms . The VIC068 may be programmed to generate a local interrupt when SYSFAIL is asserted. SYSFAIL assertion may be inhibited by a control bit in the interprocessor communications registers.
SYSCLK. The system clock outputs at 16 MHz . It is driven as an output only while the VIC068 is the VMEbus system controller, and is three-stated otherwise.
$\overline{\mathbf{B R} 3}-\overline{\mathbf{B R O}}$. The bus request signals for arbitration. These signals are both inputs and open collector outputs. These signals may be asserted by the VIC068 as a requester. They are used as inputs during arbitration. Only one of these signals is asserted by VIC068 at one time.
$\overline{\text { BG3IN }}$ - $\overline{\text { BGOIN }}$. The four bus grant in signals in the daisychained arbitration scheme. These signals are inputs only and have internal active pullups so they may be left unconnected.
$\overline{\text { BG3OUT }}-\overline{\text { BG0OUT}}$. The bus grant out signals in the daisychained arbitration scheme. These signals are output only.
BBSY. The bus busy signal is both an input and an open collector output.
$\overline{\text { BCLR. }}$. The bus clear signal is both an input and an output.
$\overline{\mathrm{DO7}}-\overline{\mathrm{DOD}}$. The low-order byte of the VME data bus. The VIC068 implements a transparently latching bidirectional transceiver on these lines to allow write posting.
$\overline{\mathrm{A} 07}-\overline{\mathrm{A} 01}$. The VMEbus address lines A7-A1. A transparent latching bidirectional I/O buffer is used on the VIC068 for these lines to allow write posting.
$\overline{\mathrm{AS}}$. The VMEbus address strobe is both an input and an output. It is asserted by VIC 068 when VIC 068 has mastership of the VME bus to initiate a transaction. For slave accesses, VIC068 uses $\overline{\mathrm{AS}}$ input to qualify the $\overline{\text { SLSELO}}, \overline{\text { SLSEL1 }}$, or ICFSEL select signals to indicate to the module the presence of a valid slave address.
$\overline{\mathbf{D S} 1}-\overline{\mathbf{D S O}}$. The bus data strobes are both inputs and outputs. They are asserted by the VIC068 when it is bus master to initiate data transfers and used by the VIC068 to indicate to the module logic the presence of a request to transfer data while the VIC068 is acting as a slave.
DTACK. The bus data acknowledge signal is both an input and an open collector or rescinding output. It is asserted by the slave in a transaction to indicate to the current master the termination of the current data transfer.
$\overline{\text { BERR }}$. The bus error signal is both an input and an open collector output. It is asserted by the slave as an alternative to data acknowledge (DTACK) to indicate an error in the current data transfer. The VIC068 may also assert this signal while it is the system controller if a slave does not DTACK within the time programmed into the transfer timeout register (\$A3) for VMEbus timeout. VIC068 will issue $\overline{\text { BERR }}$ for self-access operation.
WRITE. The bus write signal is both an input and an output. It is asserted by the current master with the same timing as VMEbus address lines to indicate the direction of data transfers.
LWORD. This signal is both an input and an output. It is driven by the current bus master to indicate the size of data transaction.
AM5-AM0. The address modifiers are both inputs and outputs. These are driven by VIC068 as current bus master. VIC068 uses these to qualify slave accesses during slave select cycles. (It is presumed that the VIC068 will not be presented with more than one valid slave access.)
IACK. The bus interrupt acknowledge signal. This signal is both an input and an output. It is asserted by VIC068 as a current VMEbus master if the transaction is an interrupt acknowledge cycle.
IACKIN. The interrupt acknowledge in signal in the daisychained interrupt acknowledge priority scheme. This signal is an input only with an internal active pull-up. (Note that this pull-up resistor is to take care of floating input types. It cannot provide any significant current.) A low-level input to this signal may occur as a result of an interrupt acknowledge transaction on VMEbus. The VIC068 may either consume it, (if it has an interrupt request pending at that level) to become a slave supplying a status ID, or pass it on by way of the interrupt acknowledge out (IACKOUT).
IACKOUT. The interrupt acknowledge out signal in the daisychained Interrupt Acknowledge scheme. This signal is an output only. The VIC 068 asserts this output if IACKIN, $\overline{\text { IACK }}$, and either data strobe is asserted, if 40 ns has elapsed since assertion of a data strobe, and if the VIC068 has no interrupt requests pending on the acknowledged level.
$\overline{\text { IRQ7 }}-\overline{\text { IRQ1. The VMEbus interrupt request signals are both in- }}$ puts and open collector outputs. Any combination of these signals may be asserted by the VIC068 to interrupt other modules on VMEbus. Any combination of these lines may also be monitored by the VIC068 to generate interrupts to the processor at the programmed level.

CPU Interface

LD7-LD0. The low-order byte of data lines to the local bus. These signals are both inputs and three-state outputs. VIC068 register accesses are performed by the onboard CPU using these lines and the $\overline{\mathrm{CS}}$ input. They typically are connected to the processor data lines D7-D0 through an isolation buffer.
LA7-LA0. These signals are both inputs and three-state outputs. They are input address lines for VME master operations, register selection and interrupt priority level recognition. When the VIC068 is acting as a slave VMEbus transaction, these lines become outputs. These lines also become outputs in support of VME master block transfers with local DMA.
The VIC068 decodes the interrupt priority level(IPI (2-9) from its inputs LA3-LA1. During an interrupt acknowledge cycle, $\overline{\text { FCIACK }}$ assertion indicates the interrupt acknowledge cycle.
$\overline{\mathbf{C S}}$. The chip select input signal is an input only, and should be driven to the low level to access VIC068 internal registers.

Pin Descriptions (continued)

$\overline{\text { PAS. The physical address strobe signal is both an input and a }}$ three-state output. The VIC 068 drives this signal as an output while it is acting as a slave to a VMEbus transaction and for local DMA and refresh mode.
$\overline{\mathbf{D S}}$. The data strobe signal from the processor is both an input and a three-state output. The VIC068 drives this signal as an output while it is acting as a slave to a VMEbus transaction and for local DMA.
$\overline{\text { DSACK1 }}$ - $\overline{\text { DSACK0 }}$. The data acknowledge signals are both in. puts and rescinding outputs. The VIC068 asserts one or both signals in response to register accesses. When the VIC068 initiates a transaction as the bus master on the VMEbus, the cycle on the local bus side is terminated by assertion of the appropriate acknowledge signals ($\overline{\mathrm{DSACK0}}$ through DSACK1 or $\overline{\text { LBERR }}$).
LBERR. The bus error signal to the local bus signal is both an input and a rescinding output. When the VIC068 initiates a transaction as bus master on VMEbus, the cycle is terminated by the assertion of LBERR when a VMEbus error is detected. If this signal is asserted on the local side while the VIC068 is acting as a slave to a VMEbus transaction, a bus error on VMEbus is generated. (Note: A retry is initiated by 680 x 0 processors if HALT and LBERR are received asserted.)
RESET. This is an output signal. A LOW level on IRESET causes RESET to be asserted for a minimum period of 200 ms . A LOW level on SYSRESET causes RESET to be asserted to the module logic for the duration of the low on SYSRESET. If bit 6 of interprocessor communication register (\$7F) is set. RESET and HALT will be asserted until this bit gets cleared.
HALT. The halt signal is an input and an open collector output. A LOW level on IRESET or SYSRESET causes RESET and HALT to be asserted for a minimum period of 200 ms . Assertion of $\overline{\mathrm{HALT}}$ for greater than 4 ms by anything other than the VIC068 causes the VIC068 to assert SYSFAIL. (Note: A retry is initiated by 680×0 processors if HALT and $\overline{\text { LBERR }}$ are received asserted.)
$\mathbf{R} / \overline{\mathbf{W}}$. The read/write signal is both an input and a three-state output. This signal is driven as an output when the VIC068 is acting as a slave to a VMEbus transaction with the same timing as the local address lines, and when the VIC068 is acting as a DMA controller on the local bus. As an output, $\mathrm{R} / \overline{\mathrm{W}}$ has the same timing as a local address line; it is set up before $\overline{\mathrm{PAS}}$ and $\overline{\mathrm{DS}}$ assertion and remains stable until the VIC068 negates $\overline{\mathrm{DS}}$.
FC2-FC1. The function code signals are both inputs and threestate outputs. As inputs, they encode the VMEbus address modifier outputs. These signals are driven as outputs when the VIC068 owns the local bus to identify refresh cycles, local DMA cycles, slave, and slave block transfer cycles. (See Table 1.)
$\overline{\mathbf{R M C}}$. The read modify write signal is an input only. The VIC068 uses this signal to ensure the indivisibility of transactions on VMEbus by inhibiting bus release, (optionally) stretching $\overline{\mathrm{AS}}$, and (optionally) requesting the VMEbus. This signal and bits 5 through 7 of register \$AF control various modes.
SIZ1 - SIZO. The size signals are both inputs and three-state outputs. When acting as a slave to a VMEbus transaction, the VIC068 drives these signals as outputs to indicate the size of the transfer requested. (See Table 2.)
$\overline{\text { LBR }}$. The local bus request signal to the processor is an output only. When managing shared resources, as a VMEbus controller, the VIC068 asserts this signal to allow slave access to the local bus. $\overline{\text { LBR }}$ remains asserted for the duration of the slave transaction to eliminate the need for a local bus grant acknowledge signal.
$\overline{\text { LBG }}$. The local bus grant signal is an input only. In response to a low level on this signal while local bus request ($\overline{\mathrm{LBR}})$ is asserted, the VIC068 assumes control of the local bus and begins slave transfers or local DMA for block transfers. Once asserted this signal should remain asserted throughout the time $\overline{\mathrm{LBR}}$ is asserted.
MWB. The module wants bus signal is an input only. The VIC068 requests the VMEbus in response to a LOW level on this input. This signal is required for all VMEbus transactions initiated from the VIC068 module.
FCIACK. This signal indicates that the current access is an interrupt acknowledge cycle. This signal is an input only. For host CPUs which do not follow the 68 xxx family interrupt acknowledge protocol, this signal can be used as a chip select for requesting a read of a status/ID byte.
$\overline{\text { SLSELO}}$. This signal is one of three slave select lines. This input causes the VIC068 to initiate dual-port arbitration with the modules' local bus arbiter when asserted. This input is generated by external A16, A24, or A32 VMEbus map decoder. The VIC068 qualifies this select signal with $\overline{\mathrm{AS}}$ and appropriate AM codes programmed in slave select 0 control register 0 .
SLSEL1. This signal is one of three slave select lines. This input causes the VIC068 to initiate dual-port arbitration with the modules local bus arbiter when asserted. This input is generated by external A16, A24, or A32 VMEbus map decoder. VIC068 qualifies this select signal with $\overline{\mathrm{AS}}$ and appropriate AM codes programmed in slave select 1 control register 0 .
ICFSEL. This signal is one of three slave select lines. This input requests access to one of the VICs interprocessor communications facilities via VMEbus: the registers, global switches or module switches. This input is generated by an external A16 VMEbus map decoder.
$\overline{\text { ASIZ0. This input, when asserted in conjunction with MWB or }} \overline{\text { MIT }}$ $\overline{\text { BLT }}$, indicates that the VIC068 should use the address modifier code for 16-bit addressing. This input serves as a data acknowledge signal, (analogous to DTACK), when the VIC068 is performing local DMA without VME transfers.

Table 1. Function Code Signal Functions

Output		Function
FC2	FC1	
0	0	Slave
0	1	Local DMA
1	0	Standard Slave Access
1	1	DRAM Refresh

10

Table 2. Size Signal Functions

SIZ1	SIZ0	Function
0	0	Lword
0	1	Byte
1	0	Word
1	1	3-byte

 BLT, indicates that the VIC068 should use the address modifier code for 32 -bit addressing. If neither $\overline{\mathrm{ASIZO}}$ nor $\overline{\mathrm{ASIZ1}}$ is asserted, then the address modifiers for standard addressing, A24, will be used. This signal serves as a data error signal, analogous to BERR, when the VIC068 is performing local DMA without VME transfers.
WORD. When this input is asserted, the VMEbus is treated as a 16 -bit data path. Otherwise, it is considered a 32 -bit data path. If WORD is strapped to ground at power up and stays that way, it configures the VIC068 in D16 mode on the VMEbus.
$\overline{\text { BLT. This is an input and an open collector output. As an output, }}$ this signal acknowledges that a VME block transfer with local bus DMA is in progress. BLT in conjunction with LAEN \& FC($2: 1)$ controls the loading, enabling, and incrementing of an external latch for LA8 + of the local address. If $\overline{\mathrm{BLT}}$ is asserted by external circuitry while MWB remains high and bit 7 of register \$D7 is set, the VIC068 initiates and performs non-VME related local DMA cycles using the local bus portion of the block transfer with local DMA protocol.
DEDLK. This signal indicates deadlock, a slave access request concurrent with local CPU request for VMEbus. It should be used by the module logic to remove the local CPU's request for VMEbus. This signal will be activated for "self access" of the VIC068 module along with LBERR.
$\overline{\text { IPL2 }}-\overline{\mathbf{I P L 1}}$. These pins function as interrupt request level outputs 2 and 1. They are output only. These lines drive the processor Interrupt Priority Lines IPL (2-1).
$\overline{\text { IPL }} \mathbf{0}$. This pin is both an output and an input. As output it functions as interrupt request level output 0 . During assertion of IRE$\overline{\mathrm{SET}}$ this pin may be driven as an input to provide a global reset to the VIC.
$\overline{\text { LIRQ7 - }} \overline{\text { LIRQ1. The local interrupt request signals are inputs }}$ only (except $\overline{\mathrm{LIRQ}}$). They receive interrupt requests from the module which are merged by the VIC068 with other interrupt request sources to produce the three encoded interrupt priority lines (IPL2-IPL0). All LIRQx inputs have internal pull-up resistors so they may be left unterminated. LIRQ2 functions as a timer output when VIC's programmable clock tick timer is enabled.
LIACKO. This signal is a local interrupt acknowledge output. The assertion of this signal by the VIC068 allows a local interrupting device to place the device's interrupt vector on the data bus in response to a CPU interrupt acknowledge cycle; it can also be used to affect autovectoring.
IRESET. The internal reset signal. This input has hysteresis and allows an RC time constant to be connected to an external switch to produce an operator reset. The VIC068 is reset by the assertion of the IRESET. A LOW level on IRESET causes the signals RESET and HALT to be asserted for a minimum period of 200 ms . If $\overline{\text { SCON }}$ is LOW, then SYSRESET is also driven LOW on VMEbus by the assertion of IRESET.
$\overline{\text { SCON }}$. This pin should be tied low to cause the VIC068 to perform the VMEbus system controller functions.
CLK64M. A $64-\mathrm{MHz}$ square wave is used to clock internal arbitration and time delay functions and to generate SYSCLK. A 60/40 worst-case duty cycle must be provided. Higher clock speed could result in set-up/hold time violations of VMEbus signals.

Buffer Control Signals

The signals in this group are outputs only with $8-\mathrm{mA}$ IOL. They provide the control signals for the address buffers and data buffers/
latches to VMEbus and control the swap requirements of 68 xxx processors. Their function may vary depending on the states of certain control bits in the VIC. If WORD is strapped to ground at reset time and stays that way, it puts VIC068 in D16 mode. Refer to the following block diagram for a sample hook-up of the buffer control signals.
$\overline{\text { ABEN. This signal is an output only, and functions as enable ad- }}$ dress out. It is asserted by the VIC068 when bus mastership is obtained to cause latching address transceivers with $\overline{\mathrm{OE}}$ pins (e.g., the 543) to drive the VMEbus address lines. LAEN is connected to OEBA of the latching address transceivers to enable the VMEbus address onto the local bus for slave transactions and for DMAbased block transfers.
LADO. This output signal is the latch address out control signal. It should be connected to the LEAB pin of address latches driving onto the VMEbus from the local bus. When deasserted, the latches are in the fall-through mode. When it is asserted (high), the latch contents are held constant. If a block transfer is suspended in order to release the bus after burst, LADO is asserted until the VIC068 regains the bus and resumes and completes the block level transfer (BLT). This ensures that the block transfer high order address bits maintained in the external latches will not be lost.
LADI. This output signal is the latch address in control signal. It should be connected to the LEBA pin of address latches driving from the VMEbus to the local bus. When LOW (deasserted), the latches are in the fall-through mode. When it is asserted (HIGH), the latch contents are held constant.
LEDO. This output signal is the latch enable data out control signal. It should be connected to the $\overline{\mathrm{LE}}$ pins of data latches whose outputs connect to the VMEbus and whose inputs drive the local bus. When deasserted, the latches are in the fall-through mode. When it is asserted (HIGH), the latch contents are held constant.
LEDI. This output signal is the latch enable data in control signal. It should be connected to the $\overline{\mathrm{LE}}$ pins of data latches whose inputs connect to the VMEbus and whose outputs drive the local bus. When deasserted, the latches are in the fall-through mode. When it is asserted (high), the latch contents are held constant.
DDIR. The Data Direction signal is an output only. This signal controls the direction of data flow for swapping and isolation buffer transceivers.
$\overline{\mathrm{DENO}}$. The data enable out signal should be used to drive the $\overline{\mathrm{OE}}$ pins of 543 type latching data transceivers (e.g., 543) to enable the buffers to drive onto the VMEbus.
SWDEN. This pin serves as swap data enable control function. It enables the swapping buffers for swapping data between $\mathrm{LD}(31-16)$ and $\mathrm{LD}(15-0)$.
LWDENIN. With latching buffers, $\overline{\text { LWDENIN }}$ enables data input from VMEbus D16 - D31 onto the local bus LD16-LD31.
UWDENIN. With latching buffers, UWDENIN* enables data input from VMEbus D16-D31 to local bus LD16-LD31.
$\overline{\text { ISOBE. The isolation buffer enable signal is asserted for accesses }}$ of the VIC068 and VMEbus by the CPU. If using dual-port memory, the module logic must provide for the enabling of the isolation buffer for a local memory access by its onboard CPU.
LAEN. This is asserted (HIGH) to indicate VIC068 is driving local bus address lines. This pin should be used to enable OEBA to enable VMEbus addresses onto local bus address lines.

VIC068 Register Values After Various Reset Operations

Theory of Operation

The VIC068 is an interface between two buses. It provides an economical and convenient means to interface between a local CPU bus and the VMEbus. The local bus interface of the VIC068 is meant to emulate Motorola's family of 32 -bit CISC processor interfaces. Other processors can easily be adapted to interface to the VIC068 using the appropriate logic. All of the following items are discussed in further detail in later sections of this data sheet.

Resetting the VIC068

The VIC068 can be reset by any of three distinct reset conditions:
The Internal Reset. This reset is the most common means of reseting the VIC068. It resets most register values and all mechanisms within the device.
The System Reset . This reset provides a means of resetting the VIC068 through the VMEbus backplane. The VIC068 may also signal a SYSRESET by writing a configuration register.
The Global Reset. This provides the most complete reset of the VIC068. This reset resets all of the VIC068's configuration registers. This reset should be used with caution since SYSCLK is not driven while a global reset is in progress.
All three reset options are implemented in a different manner and have different effects on the VIC068 configuration registers.

The VIC068 VMEbus System Controller

The VIC068 is capable of operating as the VMEbus system controller. It provides VMEbus arbitration functions, including:

- Priority, round-robin, and single-level arbitration schemes
- Driving IACK Daisy-Chain
- Driving BGiOUT Daisy-Chain (All four levels)
- Driving SYSCLK output
- VMEbus arbitration timeout timer

The System controller functions are enabled by the $\overline{\text { SCON }}$ pin of the VIC068. When strapped LOW, the VIC068 functions as the VMEbus system controller.

VIC068 VMEbus Master Cycles

The VIC068 is capable of becoming the VMEbus master in response to a request from local resources. In this situation, the local resource requests that a VMEbus transfer is desired. The VIC068 makes a request for the VMEbus. When the VMEbus is granted to the VIC068, it then performs the transfer and acknowledges the local resource and the cycle is complete. The VIC068 is capable of all four VMEbus request levels. The following release modes are supported:

- Release on request (ROR)
- Release when done (RWD)
- Release on clear (ROC)
- Release under $\overline{\mathrm{RMC}}$ control
- Bus capture and hold (BCAP)

The VIC068 supports A32, A24, and A16, as well as user-defined address spaces.

Master Write-Posting

The VIC068 is capable of performing master write-posting (bus decoupling). In this situation, the VIC068 acknowledges the local resource immediately after the request to the VIC068 is made, thus freeing the local bus. The VIC068 latches the local data to be writ-
ten and performs the VMEbus transfer without the local resource having to wait for VMEbus arbitration.

Indivisible Cycles

Read-modify-write cycles and indivisible multiple-address cycles (IMACs) are easily performed using the VIC068. Significant control is allowed to:

- Requesting the VMEbus on the assertion of $\overline{\mathrm{RMC}}$ independent of MWB (this prevents any slave access from interrupting local indivisable cycles)
- Stretching the VMEbus $\overline{\mathrm{AS}}$
- Making the above behaviors dependent on the local SIZi signals

The Deadlock Condition

If a master operation is attempted when a slave operation to the same module is in progress, a deadlock condition has occurred. The VIC068 will signal a deadlock condition by asserting the DEDLK signal. This should be used by the local resource requesting the VMEbus to try the transfer after the slave access has completed.

The Self-Access Condition

If the VIC068, while it is VMEbus master, has a slave select signaled, a self access is said to have occurred. The VIC 068 will issue a $\overline{\mathrm{BERR}}$, which in turn will cause a $\overline{\text { LBERR }}$ to be asserted.

VIC068 VMEbus Slave Cycles

The VIC068 is capable of operating as a VMEbus slave controller. The VIC068 contains a highly programmable environment to allow for a wide variety of slave configurations. The VIC068 allows for:

- D32 or D16 configuration
- A32, A24, A16, or user-defined address spaces
- Programmable block transfer support including:
- DMA-type block transfer ($\overline{\mathrm{PAS}}$ and $\overline{\mathrm{DSACKi}}$ held asserted)
- non-DMA-type block transfer (toggle $\overline{\text { PAS }}$ and $\overline{\text { DSACKi }})$
- No support for block transfer
- Programmable $\overline{\text { DSACKi-to- } \overline{\text { DTACK }} \text { delay }}$
- Programmable $\overline{\mathrm{PAS}}$ and $\overline{\mathrm{DS}}$ timing
- Restricted slave accesses (supervisory accesses only)

When a slave access is required, the VIC068 will request the local bus. When local bus mastership is obtained, the VIC068 will read or write the data to/from the local resource and assert the DTACK signal to complete the transfer.

Slave Write-Posting

The VIC068 is capable of performing a slave write-post operation (bus decoupling). When enabled, the VIC068 latches the data to be written and acknowledge the VMEbus (asserts DTACK) immediately thereafter. This prevents the VMEbus from having to wait for local bus access.

The Address Modifier (AM) Codes

The VIC068 encodes and decodes the VMEbus address modifier codes. For VMEbus master accesses, the VIC068 encodes the appropriate AM codes through the VIC 068 FCi and ASIZi signals, as well as the block transfer status. For slave accesses, the VIC068
decodes the AM codes and checks the slave select control registers to see if the slave request is to be supported with regard to address spaces, supervisory accesses, and block tranfers. The VIC068 also supports user-defined AM codes; that is, the VIC068 can be made to assert and respond to user-defined AM codes.

VIC068 VMEbus Block Transfers

The VIC068 is capable of both performing (master) and receiving (slave) block transfers. The master VIC068 performs a block transfer in one of two modes:

- The MOVEM-type Block Transfer
- The Master Block Transfer with Local DMA

In addition to these VMEbus block transfers, the VIC068 is also capable of performing block transfers from one local resource to another in a DMA-like fashion. This is referred to as a Modulebased DMA transfer.
Recall that the VMEbus specification restricts block transfers from crossing 256 -byte boundarys without toggling the address strobe, in addition to restricting the maximum length of the transfer to 256 bytes. The VIC068 allows for easy implementation of block transfers that exceed the 256 -byte restriction by releasing the VMEbus at the appropriate time and rearbitrating for the bus at a programmed time later (this in-between time is referred to as the "interleave period"), while at the same time holding both the local and VMEbus addresses with internal latches. All of this is performed without processor/software intervention until the transfer is complete. The VIC068 will also toggle the VMEbus $\overline{\mathrm{AS}}$ at 256 -byte boundaries in accordance with the VMEbus specification.
The VIC068 contains two seperate address counters for the VME and the local address buses. In addition, a seperate address is coun-ter-provided for slave block transfers. The VIC068 address counters are 8-bit up-counters that provide for transfers up to 256 bytes. For transters that exceed the 256-byte limit, the VTC VAC068 or external counters and latches are required.
The VIC068 allows slave accesses to occur during the interleave period. Master accesses are also allowed during interleave with programming and external logic. This is referred to as the "dual path" option.
The VAC068 may be used in conjunction with the VIC068 to provide much of the external logic required for extended block transfer modes, such as the 256 -byte boundary crossing and dual path. the VAC068 extends the 8-bit counters in the VIC068 to support full 32-bit incrementing addresses on both the local bus and VMEbus. The VAC068 also contains the latches required for extended address block transfers as well as those required for supporting the dual path feature. The VAC068 is not required to support block transfers, it simply enhances them.

The MOVEM Master Block Transfer

This mode of block transfer provides the simplest implementation of VMEbus block transfers. For this mode, the local resource simply configures the VIC068 for a MOVEM block transfer and proceeds with the consecutive-address cycles (such as a 680×0 MOVEM instruction, hence the name "MOVEM"). The local resource continues as the local bus master in this mode.

The Master Block Transfers with Local DMA

In this mode, the VIC068 becomes the local bus master and reads or writes the local data in a DMA-like fashion. This provides a much faster interface than the MOVEM block transfer, but with a bit less control and fault tolerence.

The VIC068 Slave Block Transfer

The process of receiving a block transfer is referred to as a slave block transfer. The VIC068 is capable of decoding the address modifier codes to determine that a slave block transfer is desired. In this mode, the VIC068 captures the VMEbus address, and latches them into internal counters. For subsequent cycles, the VIC068 simply increments this counter for each transfer. The local protocol for slave block transfers can be configured in a full handshake mode by toggling both PAS and $\overline{\mathrm{DS}}$ and expecting $\overline{\mathrm{DSACKi}}$ to toggle, or in an accelerated mode in which only DS toggles and $\overline{\text { PAS }}$ is asserted throughout the cycle.

Module-based DMA Transfers

The VIC068 is capable of acting as a DMA controller between two local resources. This mode is similar to that of master block transfers with local DMA, with the exception of the VMEbus as the second source or destination.

VIC068 Interrupt Generation and Handling Facilities

The VIC068 is capable of generating and handling a seven-level prioritized interrupt scheme similar to that used by the Motorola CISC processors. These interrupts include the seven VMEbus interrupts, seven local interrupts, five VIC068 error/status interrupts, and eight interprocessor communication interrupts.
The VIC068 can be configured to act as handler for any of the seven VMEbus interrupts. The VIC068 can generate the seven VMEbus interrupts as well as supplying a user-defined status/ID vector. The local priority level (IPL) for VMEbus interrupts is programmable. When configured as the system controller, the VIC068 will drive the IACK daisy-chain.
The local interrupts can be configured with the following:

- User-defined local interrupt priority level (IPL)
- Option for VIC068 to provide the status/ID vector
- Edge or level sensitivity
- Polarity (rising/falling edge, active HIGH/LOW)

The VIC068 is also capable of generating local interrupts on certain error or status conditions. These include:

- $\overline{\text { ACFAIL }}$ asserted
- SYSFAIL asserted
- Failed master write-post ($\overline{\mathrm{BERR}}$ asserted)
- Local DMA completion for block transfers
- Arbitration timeout
- VMEbus interrupter interrupt

The VIC068 can also interrupt on the setting of a module or global switch in the interprocessor communication facilities.

The Interprocessor Communication Facilities

The VIC068 includes interprocessor registers and switches that can be written and read through VMEbus accesses. These are the only such registers that are directly accessible from the VMEbus. Included in the interprocessor communication facilities are:

- Four general purpose 8 -bit registers
- Four module switches
- Four global switches
- VIC068 version/revision register (read-only)
- VIC068 Reset/Halt condition (read-only)
- VIC068 interprocessor communication register semaphores

When set through a VMEbus access, these switches can interrupt a local resource. The VIC068 includes module switches that are
intended for a single module, and global switches which are intended to be used as a broadcast.

LBR*

LBG*

LAEN

Figure 1. VIC Arbitration of Local Bus

Buffer Control Signal for Shared Memory Implementation

Sample Registers

Local Bus Timing Register

Register Function:
This field sets the minimum PAS* asserted time for all local bus cycles controlled by VIC. These include retresh, slave access, and DMA. PAS* minimum $=(\mathrm{n}+2) 64 \mathrm{MHz}$ clock periods where N is the binary value written to this field. Clock latency can add up to 1 additional 64 MHz period to the width.

This bit selects the DS* high time. A 0 (zero) selects 1 64 MHz period, a 1 (one) selects 2.64 MHz periods. Clock latency can add up to 1 additional 64 MHz period.

This field programs the PAS* high width. PAS* high $=(N+1) 64$ MHz clock periods where N is the binary value written to this field. Clock latency can add up to 1 additional 64 MHz period to the width.
This register provides for control of local bus timing by providing programmable control of PAS* and DS* when these signals are driven from VIC. This register is unaffected by reset of the VIC. This feature could be used to preserve DRAM data during module resets.
Arbiter/Requester Configuration Register

Address	7						Bits												
B	3											0	1	1	$0 / X$	0	0	0	0
:---	:---	:---	:---	:---	:---	:---	:---												

(Global/Internal Reset State)

Fairness Timer:

These bits program the fair request timeout period and control fairness mode according to the following table:

Bit 3	Bit 2	Bit 1	Bit 0	Period/Mode
0	0	0	0	O/Fairness disabled
1	1	1	1	Timeout disabied
All other patterns				

This bit enables DRAM refresh.
VME Bus Request Level:
These bits program the VMEbus request level used by VIC and determine which $B R n$ * pin will be used to request the VMEbus:

Bit 6	Bit 5	
0	0	
0	1	Request level BRO*
0	0	Request level BR1*
1	1	Request leval BR2*
1	1	

Priority/Round Robin:

This bit selects between priority and round robin arbitration. Setting this bit selects priority arbitration. This bit is relevant only when SCON* pin is asserted (strapped low).

Register Function:

The register configures the VIC VMEbus arbiter. On VIC reset, bits $0-3$ and 7 are cleared while bits 5 and 6 are set.

Sample Registers (continued)

Slave Select 0/Control Register 0

One of three slave block transfer modes is selected according to the following table:

Bit 1	Bit 0	Mode
0	0	no support for slave block transfer request
0	1	emulate non-block on local bus
1	0	accelerated block transfer
1	1	undefined

These bits specify the address size for above access as follows:

Bit 3	Bit 2	Address Size
0	0	A32
0	1	A24
1	0	A16
1	1	Use Address Modifier source register

When set, this bit enables D32 slave data size on SLSELO*.

When set, this bit restricts SLSELO* access to supervisory only. (checks AM2 bit)
These bits control and enable VIC's clock tick timer according to the following table (Note that LIRQ2* becomes timer output but retains its interrupt characteristics):

Bit 7	Bit 6	Timer Mode
0	0	Timer disabled
0	1	50 Hz output on LIRQ2*
1	0	1000 Hz output on LIRQ2*
1	1	100 Hz output on LIRQ2*

Register Function:

The register provides slave configuration control for slave access in response to SLSELO*. The register also provides for enable and control of the VIC clock/timer. Bits (5-0) are unaffected by VIC or system reset.

SEMICONDUCTOR

Sample Registers (continued)

Slave Select 0/Control Register 1

This field established the initial DSACKi* to DTACK* delay for slave access from SLSELO*. Delay can be programmed to the following multiples of the 64 MHz clock period in ascending binary order: $0,2,2.5,3,3.5 \ldots 9.5$. Clock latency may add up to one half of a 64 MHz period to this delay.

This field establishes the DSACKi* to DTACK* delay for the second and subsequent slave block transfer cycles from the SLSELO*. Delay can be programmed to the following multiples of the 64 MHz clock period in ascending binary order: $0,2,2.5,3,3.5 \ldots 9.5$. Clock latency may add up to one half of a 64 MHz period to this delay.

Register Function:

This register provides for programming of slave access delay across the VMEbus/local bus interface for both single cycle slave access and slave block transfers. These programmed delays apply only to SLSELO* access. This register is unaffected by VIC or system reset. This register is the default register for block transfer operations with local bus DMA.

Release Control Register

Address

(Internal Reset State)

Burst Length of DMA:

This field programs the burst length for block transfers. Burst length is the number of VMEbus cycles.

This field defines the release protocol used by VIC in releasing the VMEbus once it has been captured. The foilowing table defines the available modes:

Bit 7	Bit 6	Release Mode
0	0	ROR - release on request
0	1	RWD - release when done
1	0	ROC - release on BCLR*
1	1	BCAP - bus capture and hold

Register Function:

The register provides for programming VIC's VMEbus release behavior and the burst length for block transfers involving the VMEbus. This register is reset when VIC is reset.

Ordering Information

Ordering Code	Package Type	Operating Range
VIC068-BC	B144	Commercial
VIC068-GC	G144	

[^70]
Features

- Completes master/slave VME interface in conjunction with the VIC068
- Complete VME and I/O DMA capabiltiy for a 32-bit CPU
- Complete local and VMEbus memory map decoding
- Separate segments on local side available for DRAM, subsystem bus (VSB), shared resorces, VME, local I/O, and EPROM
- Separate segments for the VME address bus for slave select 0 , slave select 1 , interprocessor communication facilities select
- 64-Kbyte resolution for both local and VME memory maps
- Supports block transfers over 256 byte boundaries
- Address counters for both VMEbus $\mathrm{A}(31-8)$ and local LA(31-8)
- Supports dual-path mode
- Supports implementation of VSB interface with DMA capability
- Dual UART channels on board
- Double-buffered on transmit, quint-buffered on receive
- Baud rate programmable in multiples of 2, from 300 to 9600 baud
- Miscellaneous features
- 144-pin grid array or 144-pin quad flatpack package
- Plastic or MIL-STD-883C screened ceramic packages available
- Supports unaligned transfers
- Programmable DSACKi for local I/O
- Programmable timer and interrupt controller
- Programmable I/O (PIO)

Functional Description

The VME address controller (VAC068) is a programmable memory map address controller. In conjuction with the VIC068 (VMEbus interface controller), the VAC068 maximizes the VMEbus interface performance of a master/slave module.

The VAC068 contains programmable registers to allow the user to easily define memory maps for both the local and VME address buses. The VAC068 also contains the address counters and handshaking signals to allow easy implementation of block-level transfers over 256 -byte boundaries. Additional features include dual internal UART channels, redirection control on the local bus to VSB (VME subsystem bus) or shared resource area, data swapping for unaligned transfers, programmable DSACKi, programmable timer and interrupt controller, and various interrupts.
TheVAC068 connects directly to the local bus and the VIC068. VMEbus address lines A8 through A31 are driven directly, and VMEbus data lines D8 through D15 are driven by an external buffer. The VAC068 output drivers are based on advanced CMOS logic, which features patented high-drive outputs and TTL-compatible inputs. The VAC068 was designed using high-performance standard cells on an advanced one-micron CMOS process.
The VAC068 is available in a 144 -pin pin grid array (with 122 active signals, 22 power and ground pins) in both plastic or ceramic packages.
Sample Board Design

Pin Configuration

A	B	C	D	E	F	G	H	J	K	L	M	N	P	R
123	$\begin{gathered} \text { plo13 } \\ \text { pose_2 } \end{gathered}$	DOAP	P1011	LAOI	BLT	REFGT	cfasel	SLSEL.	108	1011	1013	1014	asizo	fCt
1×0	A22	SWOEN ${ }^{-}$	vas*	${ }^{\text {Aben }}$	PIOM 10RD	vsesel*	SLSELO	1010	100	1012	WORD	flack	FCO	PAS ${ }^{\text {- }}$
${ }^{1} 17$	A19	N21	Lado	рммаск	vss	VICLBR	vce	v8s	vss	1015	Asci*	cpucus	LaEn	DSACK1*
${ }^{1} 16$	A18	vss	$\underset{\text { LOCATOR }}{\text { LIN }}$									FCR	RW*	1019
${ }^{14}$	A15	vcc										vec	DSacko	-121
A^{12}	A13	vss										vss	LD16	1017
A10	A11	vcc										1023	1018	L020
${ }^{408}$	A00	vss										1024	L022	Loes
*23	220	vec										vss	L027	Lo3s
A27	126	vss										vcc	L-29	L028
± 20	A28	PIOO										orancs	LD31	ω^{\sim}
${ }^{\text {A31 }}$	PIOMI RXDA	Pros IOWR'										vss	EPROMCS	MwB ${ }^{\text {a }}$
A30	$\begin{aligned} & \text { PIO3 } \\ & \text { RXDB } \end{aligned}$	P107	$\begin{gathered} \text { P1O8/ } \\ \text { IOSELA. } \end{gathered}$	vss	423	vss	vcc	vac	vss	Lal3	Lag	Lals	CACHINH-	FPUCS*
$\begin{aligned} & \text { Plov } \\ & \text { TXDD } \end{aligned}$	$\begin{aligned} & \text { PIOG/ } \\ & \text { IOSEL3. } \end{aligned}$	P1010	VICSEL-	434	423	1424	402	10sE2. ${ }^{-1}$	Lal7	La15	Lal4	412	Las	Reset
vcc	$\begin{aligned} & \text { Piow } \\ & \text { fosel. } \end{aligned}$	430	P1012/ SHRCS:	428	427	423	Las		Lu10	402	Lats	416	Lalo	10SELO

VIC068/VAC068 on 68030 Board

Pin Descriptions

VMEbus Signals

A31-A08. The VME address lines A31-A8 are both input and three-statable output signals.
$\overline{\text { AS. This signal is the VME Address Strobe and is an input only. }}$
ID15-ID8. The isolated data lines ID15-ID8 are both input and three-state output signals used to drive the VMEbus in conjunction with a transparent latching bidirectional I/O buffer.

CPU - Interface Signals (Local Side)

LD31 - LD16. The CPU data lines LD31-LD16 are both input and three-statable output signals. These lines are the data input path to the VAC068 for register writing and reading of on-board control registers.
LA31-LA08. These pins are the CPU address lines used for access to the VAC068. These signals are both inputs and three-statable outputs. They are also used as the input address for the VME master operations. During a slave access, these are the local address lines to communicate to the local device.
$\overline{\text { PAS. }}$. The $\overline{\text { PAS }}$ line is the local address strobe and is an input to the VAC068. This signal tells the VAC068 that the address on the bus is a valid address.
$R / \overline{\mathbf{W}}$. The $R / \overline{\mathbf{W}}$ pin is the local read/write-type access pin. This pin is an input only to the VAC068.
$\overline{\text { DSACK0 }}$ - $\overline{\text { DSACK1 }}$. These are data transfer acknowledge signals. They are three-statable cutputs.
RESET. The reset signal is used to reset the VAC068 in two ways. If the RESET and the WORD are used together, a total global internal reset will occur. If $\overline{\mathrm{RESET}}$ is held LOW for more than 1,028 clock cycles, a global internal reset will occur.
$\overline{\text { DRAMCS. }}$. The $\overline{\text { DRAMCS }}$ is an output-only pin and will be active when the local address maps into this area.
$\overline{\text { EPROMCS. }}$. The EPROMCS is an output-only pin and is active upon a global reset in a fixed area in the memory map, or under redirection on the local bus.
$\overline{\text { VICSEL. The }} \overline{\text { VICSEL }}$ is an output-only pin and is active when the fixed address of the VIC068 (FFFC XXXX) is presented on the LA31-LA08 pins.
$\overline{\text { ASIZ0 }}-\overline{\text { ASIZ1 }}$. The $\overline{\text { ASIZ0 }}-\overline{\text { ASIZ1 }}$ are input and three-statable output pins used to profile the address size of an access. These pins will be active upon the programming of the register and an address comparison in a particular region.
$\overline{\text { WORD. The }} \overline{\text { WORD }}$ pin is an input and three-statable output. This pin will be active under programmable control of the appropriate register and a comparison valid access. Indicates a word access in this region of the memory map.
$\overline{\mathbf{M W B}}$. The $\overline{\mathrm{MWB}}$ pin is output only and is active under programmable control when the local address is in the valid region. This signal indicates to the VIC068 that a VMEbus address appears on the local address bus.
$\overline{\text { FCIACK. The FCIACK }}$ pin will be active when an interrupt acknowledge cycle is in progress. This pin is an output only signal.
FC2-FC0. The FC2-FC0 pins are input-only and are used by the VAC068 to determine the access type (i.e., IACK, REFRESH, Local DMA etc.)
 be active when local DMA activity is mapped into a particular region.
CACHINH. The $\overline{\text { CACHINH }}$ signal is output only. It is under programmable control and will inhibit the cache in a region access after a comparison of local address and the memory map.
$\overline{\text { FPUCS }}$. The FPUCS pin is output only and will be active when a level floating-point coproccessor access is in progress.
REFGT. The $\overline{\text { REFGT }}$ pin is output only. This pin signals a refresh grant, based on FC2-FC0 and the local address.
VICLBR. The VICLBR pin is input only and used to signal the VAC068 when the VIC068 is trying to acquire the local bus.
$\overline{\text { BLT. }}$. The $\overline{\mathrm{BLT}}$ is an input-only pin and used to determine when a block-level transfer is in progress. It also is used to increment local address counters internal to the VAC068.
VSBSEL. The VSBSEL p in is output only and used to direct an access to a daughter board or VSB access.
CPUCLK. The CPUCLK is an input-only pin, TTL-level compatible, and is typically driven from clock.
$\overline{\text { SLSELO}}$. The $\overline{\text { SLSELO }}$ is an output-only pin and is active under programmable control of a comparison region. The comparison is of the VME address bus and a programmed region in the VAC068. This pin indicates a need for a slave operation to occur from the \mathbb{V} MEbus.
$\overline{\text { SLSEL1. The }} \overline{\text { SLSEL1 }}$ is an output-only pin and is active under programmable control of a comparison region. The comparison is of the VME address bus and a programmed region in the VAC068. This pin indicates a need for a slave operation to occur from the VMEbus.
ICFSEL. The ICFSEL pin is output only and active under programming control of a comparison region. The comparison is of the VME address bus and a programmed region in the VAC068. This pin is indicative of an interprocessor communications facility on the VMEbus.
$\overline{\text { IOSELO }}$. The $\overline{\mathrm{IOSELO}}$ is an output-only pin and active when the local bus address has accessed a fixed memory location for this particular I/O device.
$\overline{\text { IOSEL1}}$. The $\overline{\text { IOSEL1 }}$ is an output-only pin and active when the local bus address has accessed a fixed memory location for this particular I/O device.

Data Flow Control Signals

SWDEN. The SWDEN is an input-only pin used in conjunction DDIR to do a swap of data to or from the isolated data bus pins ILD0-ILD8 to the local data bus.
$\overline{\text { DDIR. The }} \overline{\text { DDIR }}$ is an input-only data direction signal generated by VIC068.
LADO. The LADO signal is an input-only signal to latch address out (local address latch control).
LADI. The LADI signal is an input only signal to latch address in (VME bus address latch control). It is also used to increment VMEbus address counters returned to the VAC068.

LAEN. The LAEN signal is input only to indicate that the VIC068 has acquired the local bus. It allows the VAC068 to drive the local address bus (LA31-LA08).
$\overline{\mathrm{ABEN}}$. The $\overline{\mathrm{ABEN}}$ signal is input only to indicate that the VIC068 has acquired the VME bus. It allows the VAC068 to drive the VME address bus (A31-A03).

Parallel I/O and Multiplexed Pins

PIOO - TXDA. The PIO0-TXDA pin is an input or three-statable output multipurpose pin. It can be programmed to serve as a gen-eral-purpose I/O pin bit(0) or as the UART channel-A transmit pin.
P101-RXDA. The PIO1-RXDA pin is an input or three-statable output pin. It can be programmed to serve as a general-purpose I/O pin bit(1) or as the UART channel-A receiver pin.
PIO2 - TXDAB. The PIO2-TXDB pin is an input or three-statable output multipurpose pin. It can be programmed to serve as a general-purpose I/O pin bit(2) or as the UART channel-B transmit pin.
PIO3-RXB. The PIO3-RXB is an input or three-statable output pin. This pin can be programmed to serve as a general-purpose I/O pin bit(3) or as the UART channel-B receiver pin.
$\mathrm{PIO4}-\overline{\mathrm{IORD}}$. The PIO4- $\overline{\mathrm{IORD}}$ is an input or three-statable output pin. This pin can be programmed to serve as a general-purpose I/O pin bit(4) or as the read enable for the local I/O accesses.
PIO5- $\overline{\mathrm{IOWR}}$. The PIO5-IOWR pin is an input or three-statable output pin. This pin can be programmed to serve as a general-purpose I/O pin bit(5) or as the write enable for the local I/O accesses.
PIO6- $\overline{\mathbf{1 O S E L} 3}$. The PIO6-IOSEL3 is an input or three-statable output pin. This pin can be programmed to serve as a general-purpose I/O pin bit(6) or as the IOSEL3 enable pin for fixed map I/O select.
PIO7. The PIO7 is an input or three-statable output pin. This pin used as a general-purpose I/O pin bit(7) or as programmed interrupt indicator for multiple interrupt signals.
PIO8 - $\overline{\mathbf{I O S E L A}}$. The PIO8- $\overline{\mathrm{IOSELA}}$ pin is an input or a threestatable output pin. This pin can be programmed to serve as a gen-eral-purpose I/O pin bit(8) or as the IOSELA enable pin for fixed map I/O select.
PIO9 - $\overline{\text { IOSEL5 }}$. The PIO9- $\overline{\text { IOSEL5 }}$ pin is an input or a threestatable output pin. This pin can be programmed to serve as a gen-eral-purpose I/O pin bit(9) or as the IOSEL5 enable pin for fixed map I/O select.
PIO10. The PIO10 pin is an input or three-statable output pin. This pin used as a general-purpose I/O pin bit(10) or as programmed interrupt indicator for multiple interrupt signals.
PIO11. The PIO11 pin is an input or a three-statable output pin. This pin used as a general-purpose I / O pin $\operatorname{bit}(11)$ or as programmed interrupt indicator for multiple interrupt signals.
P1O12 - $\overline{\text { SHRCS. }}$. The PIO12-SHRCS $p i n$ is an input or a threestatable output pin. This pin can be programmed to serve as a gen-eral-purpose I/O pin bit(12) or as the output for a shared-resource region under program control.
PIO13- $\overline{\text { IOSEL2 }}$. The PIO13- $\overline{\text { IOSEL2 }}$ pin is an input or a threestatable output pin. This pin can be programmed to serve as a gen-eral-purpose I/O pin bit(13) or as the IOSEL2 enable pin for fixed map I/O select.

Application Overview

The VAC068 is a complementary chip to the VIC068 VMEbus interface controller. The VAC068 implements the VMEbus address transceivers, both VME and local address decoding, and DMA
and block level transfer support circuitry for use with the VIC068.
The VAC068 even allows slow LSI peripheral chips to be added to a system using a $25-\mathrm{MHz}$ or faster CPU, with no additional support logic.
The VAC068 connects directly to the local bus. The only additional logic required with the VIC068 and VAC068 for a complete VME interface is the VME data transceivers, a swap buffer and isolation buffers for the lower data bus. The VAC068 includes one of the two data swap buffers required for unaligned transfers.
On the local bus, only memory, memory control, and I/O devices need to be added. The VAC068 decodes the VIC068's function codes to simplify local DRAM control circuitry and decodes the CPU's function codes to supply both FCPUCS and $\overline{\text { FCIACK }}$ signal for the VIC068. The VAC068 may assert its DRAMCS output, instead of MWB, when the VME SLSELO address is detected on the local address bus. It also asserts DRAMCS on a LAEN (approximately when the VIC068 receives a local bus grant) in response to the assertion of SLSELO. By means of a programmable control register, $\overline{\text { SLSEL1 }}$ may be paired with any other of the VAC068's local address decode outputs so that if SLSEL1 VME address is detected on the local address bus, the access may be redirected from the VME bus to the appropriate local device. The VAC068 provides local address decoding for EPROM, a subsystem bus, an alternate shared resource, VIC068 and other local I/O devices.
The VAC068 includes both the local and VME address counters required to support VMEbus block transfers and allows 256-byte boundary crossing. With the support of the VAC068, the VIC068 DMA can also be used for local DMA transfer, from memory to local I/O or across the subsystem bus; i.e., the VIC068-VAC068 architecture allows design of VSB and I/O LSIs that utilize the DMA capability.
The VAC068 also includes dual UART channels, a programmable timer and interrupt controller, a DSACK timer, and a IORD/ IOWR generator which, in addition to the local map decoding, greatly simplifies the addition of peripheral controller circuitry to a module based on the VIC068.

VME Map Decoding

The VME map decoder will compare the VME address bus with the contents of the SLSEL0, SLSEL1, and ICFSEL base address register as masked by the respective mask registers. Each of these decoder outputs are programmable for a range of addresses established by the mask register and the programmable base address register. Note that the boundary must be an integer multiple of the range (e.g., a 64 -Kbyte range must be aligned on 64 Kbyte boundaries). SLSEL0 is logically tied to DRAMCS in that it is assumed that a local bus grant (LAEN) for an assertion of SLSELO results in an access of the local DRAM. Hence DRAMCS may be asserted in that case. Similarly, SLSEL1 is tied to SHRCS, EPROMCS, DRAMCS, or VSBSEL according to the programmable control in the decode control register bits 28-29 (FFFD 14XX).
If both slave select inputs of the VIC068 are in use and each is enabled for a different address space, then it is possible for both SLSEL0 and SLSEL1 to be asserted simultaneously. If both SLSEL0 and SLSEL1 point to the same device or if they are decoded at non-overlapping address ranges in the same address space, then there is no problem. Otherwise, the one corresponding to the larger address space must be considered valid. The VAC068 enables the SLSELO for slave transfers or for redirected local ac-
cesses independent of $\overline{\text { SLSEL1 }}$; it only enables the $\overline{\text { SLSEL1 }}$ device if SLSEL 0 is deasserted. Thus, VAC068 requires SLSEL0 to be mapped to the larger of the two address spaces when two different address spaces are in use.

Local Memory Map Decoding

The VAC068 segments the local CPU's address space into a number of fixed and variable sized segments with a resolution of 64 Kbytes. Separate segments are available for DRAM, subsystem bus (VSB), alternative shared resource (SHARCS), VME, local I/O, and EPROM. In addition to programmable segments, which may be assigned to VME, fixed size and attribute segments are mapped to VME A16 and VME A24 spaces. For simplicity (consistent with standard practices) DRAM is hard programmed to start at 0 . The next three segments are fully programmable and may be disabled or assigned to VME, VSB, or an alternate shared resource. Segment attribute registers specify the state of the WORD, $\overline{\text { ASIZ1 }}$, and $\overline{\text { ASIZO }}$ outputs when each segment is selected. Two 16 -Mbyte spaces for accesses to both 16 -bit and 32 -bit devices in the VME A24 space may be overlayed on the top of these spaces. EPROM is mapped in the bottom 15 Mbytes of the top 16 -Mbyte space. Local and VME I/O devices occupy the uppermost megabyte. 128 Kbytes is mapped for each of up to six I/O devices. VIC068 and VAC068 each occupy 64 Kbytes. The top two 64-Kbyte spaces are dedicated to the VMEbus short address space. The map decode process is overridden at power-up to force read accesses to EPROM independent of its mapping until the EPROM address appears on the local address bus.
Additional comparators monitor the local bus for the $\overline{\text { SLSELi }}$ addresses. If this function is enabled, the VAC068 asserts the appropriate device select output instead of $\overline{M W B}$ when it recognizes a valid slave address on the local address bus. This allows the local CPU to access data in its shared RAM at the same address as other CPUs. Additionally, the slave address may be discovered by using the VIC068's ability to assert $\overline{\text { LBERR }}$ when it sees a qualified slave select when it is a bus master.

Function Code Decoder

The VAC068 decodes the CPU function codes, FC(2:0), provides VCIACK (for connection to the VIC068) with a floating point coprocessor chip select output, $\overline{\text { FPUCS }}$, and inhibits the address decoding process during CPU space cycles. Both VCIACK and FPUCS are inhibited when the VIC068 owns the local bus (LAEN asserted). FCIACK is further qualified with the local address strobe PAS. The FPUCS can be asserted as soon as CPUCLK goes LOW or can be delayed until PAS asserts. FPUCS asserts a coprocessor ID of 1 when LA(19-13) equals XX10001 and FC(2-0) $=111 . \overline{\text { FCIACK }}$ asserts on $\mathrm{FC}(2-0)=111$ and LA $(17-15)=111$.

VIC068-VAC068 DMA Support

The VAC068 provides the upper address counters and control logic for both the VMEbus A(31-8) and the local bus LA(31-8) to extend the address range to 32 bits and allow crossing of 256 -byte boundaries on either bus. Its also provides a dual path for addresses for the local bus to the VMEbus so that VMEbus accesses may be permitted during periods of CPU activity and interleaved between block transfer DMA bursts without interference with or loss of the DMA address.
VIC068-VAC068 DMA always has local memory as the source or sink of data. The data is transferred to either the VME interface or a local I/O port in a fly-by mode. The VME clock transfer DMA operation is a dual-address operation in which the source and sink
are required to be on opposite sides of the VME interface. Data is transferred to/from some address in the local memory from/to some address accessed via the VME bus. Memory-to-memory transfers on the local side where both the source and sink address are local memory are not supported.
Local DMA similarly transfers data to/from the specified local memory address across an interface boundary. The architecture allows a second address to be specified on the other side of this interface. Thus it allows the implementation of a VSB and/or daughter board interface with DMA capability. The architecture also allows fixed address I/O operation as would be appropriate with a SCSI or ETHERNET implementation.
The VAC068 provides a "dual path" for address. This allows CPU to perform master VME accesses when it has access to the local bus between VIC068-VAC068 DMA bursts (CPU interleave).

Serial I/O

The VAC068 contains a dual full duplex UART. Each channel is double buffered on transmit and quint buffered on receive. The UARTs always transmit two stop bits and require a single stop bit on receive. Parity of either polarity may be enabled. Break change and parity framing and receive overrun error conditions are detected. VAC068 general-purpose I/O signals may be used for modem controls. A serial I/O interrupt controller allows interruptdriven operation of the serial ports. A programmable baud rate generator is provided. Each UART's baud rate may be selected in multiples of two from 300 to 9600 baud as well as at non-standard frequencies.

Programmable $\overline{\text { DSACKi Timing }}$

The VAC068 generates DSACKs with programmable timing for each of its device select outputs (except VSB, VIC068, and VAC068).

DSACK Sizing before DSACK EPROM Register is in Control

Eight-bit or 16-bit EPROM DSACKs can be enabled at power-up. For an EPROM data path of 16 bits, force ILDL 8 to a zero at pow-er-up. If an 8-bit data path is needed, force $\operatorname{ILD}(9)$ to zero at pow-er-up. The default DSACK assertion for EPROM (prior to the register being written) is for a 32-bit data path.

DRAM Dsack Control

The VAC068 is based on 68020/68030 microprocessor protocol. It asserts DSACKs on CPU accesses of DRAM with a programmable wait state timing for use with the 68020 or three-states its DSACK drivers on DRAM access to allow wither external logic to control their timing or for synchronous termination of DRAM accesses with the 68030 .
On VME slave and VIC068 DMA cycles, the VAC068 asserts DSACKs with minimum delay, following the assertion of local address strobe PAS. This allows the high-resolution DSACKi to DTACK delay timer of the VIC068 to meter the delay until data is valid.

Interrupt Support

Group Interrupt Controller

The VAC068 generates four interrupt requests that are designed to connect to local interrupt request pins on the VIC068. The in-
terrupting functions are serial I/O, timer, mailbox, and PIO interrupt. The control registers structure multiplexes the various interrupt requests on up to three VAC pins, which may also be used as general-purpose I/O pins.

PIO Interrupt

The PIO interrupt allows any of PIO4, PIO7, PIO8, and PIO9 to generate an interrupt request that may be mapped onto any of PIO7, PIO10, or PIO11, and is intended for a specific use of combining various non-maskable interrupt requests (abort switch, parity error, and VSB write post) in use on typical single-board computers. The PIO interrupts are active-low, erupt-sensitive inputs. PI09 is filtered through a debouncing circuit to make it suitable for use as an ABORT SWITCH interrupt input.
Abort switch debouncing of PIO9 is done by means of a counter. A change of state on this input is not recognized until it has been stable for 255 clock cycles of this counter. The clock is clocked at a rate of 9600 baud signal from the UART baud rate generator timing chain. This provides a debounce circuit delay of 26.7 ms . This debounce delay is enabled by a control bit (30) in the PIO function register (FFFD 1BXX).

Interrupt Status Register

An interrupt status register allows the CPU to determine which of several possible events caused the interrupt. Except for SIOIRQ, the serviced interrupt request is withdrawn when the CPU clears its mapping bits in the interrupt control register (FFFD 16XX). A separate interrupt status register is implemented for each of the serial I/O channels (A-FFFD 25XX B-FFFD 26XX). These are cleared by resetting the receiver and/or transmitter via the control register or clearing the interrupt-causing condition.

Mailbox Interrupt

If it is enabled, via interrupt control register (FFFD 16XX) bits 22-23, the mailbox interrupt is generated by a write to the top 256 bytes of local DRAM. The mailbox interrupt is activated by a slave access using SLSELO or when the local CPU's access to the $\overline{\text { SLSEL0 }}$ address is redirected to local DRAM.

Serial I/O Interrupts

Any of several interrupting conditions in the serial I/O ports may cause an interrupt. These include transmit ready, transmit shift register empty, receiver FIFO full, received character ready, break change received, and error conditions, and can be masked in the serial interrupt mask register (A-FFFD 23XX) and monitored in the serial interrupt status register (A-FFFD 25XX B-FFFD 26XX).

Miscellaneous Features

Isolated Local Data Bus for I/O

The VAC068 pinout includes $\operatorname{ID}(15-8)$, the isolated data bus. On the module, an FCT245 is connected between LD(15-8) and $\operatorname{ID}(15-8)$ and an FCT543 is connected between $\operatorname{ID}(15-8)$ and $\mathrm{D}(15-8)$. The VAC068 provides the data swap connection between $\mathrm{D}(15-8)$ and LDP(31-24). Analysis has shown that connecting peripheral controller chips directly to the 68030's data bus is extremely difficult at higher CPU clock frequencies. Accordingly, systems using the VIC068-VAC068 should be designed to connect low-speed peripheral devices to ID (15-8). The VAC068 will enable this data path on accesses of such I/O devices as well when

SWDEN is asserted by the VIC068 and provide data latching and output enable control to ease interface timing.

$\overline{\text { IORD }}$ and $\overline{\text { IOWR }}$

The VAC068 generates $\overline{\text { IORD }}$ and $\overline{\text { IOWR }}$ as alternate I/O pins. These outputs are synchronous to the CPUCLK with a 0-2 clock delay from assertion IOSELi to the assertion of $\overline{\mathrm{IOWR}}$ and $\overline{\mathrm{IORD}}$ as well as the usual delay to $\overline{\mathrm{DSACKi}}$ assertion. The $\overline{\text { IOSELi out- }}$ puts may be combinatorial with a minimum delay or synchronous with a clock period delay to ensure address set-up time. The IOSELi's also have a programmable minimum high time since most peripheral controller chips cannot handle back to back accesses. These features significantly reduce the amount of support logic otherwise required to interface LSI peripherals to the 68020/68030.

I/O Recovery Timer

The VAC068 provides a programmable recovery time between I/O device accesses (IOSELi HIGH).

General-Purpose I/O

Fourteen pins may be individually programmed to serve alternate functions. The functions available are either general-purpose I/O or an alternate such as $\overline{\mathrm{IORD}}, \overline{\mathrm{IOWR}}, \overline{\mathrm{IOSEL}} \mathrm{Z}-\overline{\mathrm{IOSELS}}$, interrupt, or asynchronous serial I/O.

Programmable Timer

A 16-bit programmable timer with a 6 -bit prescaler is provided. Interaction with the timer is by means of a timer control register and a timer data register. The control register contains a 6 -bit prescaler value, an enable/load bit and a once/continuous bit. When the timer control register is read, $\mathrm{LD}(15-8)$ will be driven with the instantaneous state of the prescaler counter. Whenever the timer overflows, or while it is disabled, the timer is loaded with the contents of the timer data register. When the timer data register is read, the data bus is driven with the instantaneous state of the timer (e.g., the 16-bit counter).

Cache Inhibit Output

The VAC068 provides a cache inhibit signal for connection to the corresponding input of the local CPU. CACHINH is asserted on any I/O device access, on any redirected access of DRAM, any access to the top 256 bytes of DRAM if the mailbox interrupt is enabled. CACHIN is deasserted in the remainder of the DRAM and in EPROM and may be programmed either HIGH or LOW in the remainder of the memory map.

Resetting the VAC068

The $\overline{\text { RESET }}$ pin is the reset input to the VAC068 part. There are two methods available for generating a complete internal global reset:

1. Assert $\overline{\text { RESET. After a MINIMUM of five clock cycles assert }}$ $\overline{\text { WORD }}$ and hold both LOW for a minimum of 10 clock cycles. Release both pins and the VAC068 will be internally reset and ready for register loading.
2. Assert the $\overline{\text { RESET }}$ pin and hold for 1,028 CPUCLK cycles and then release. Note that the RESET INSTRUCTION is defined as any reset of less than 1,028 clock cycles. (Only the interrupt register is cleared in this case-the rest of the programmed memory map will remain intact).

Results After Global Reset

Upon a global reset the VAC068 is in a forced EPROM state. The EPROM $\overline{C S}$ will be forced on every access no matter what the address is on the bus (until there is a write to EPROM address space). If reset is not done by either of these two methods there is no guarantee of the contents of the registers. The GLOBAL reset will reset all registers to a zero value.

VAC068 Memory Map Model

Address 00000000
Region 0 Local Drum
Programmable Boundary 1
Region 1 Map to VME or VSB/daughter board or SHRCS Programmable Boundary 2 Region 2 Map to VME or VSB/daughter board or SHRCS Programmable Boundary 3 Region 3 Map to VME or VSB/daughter board or SHRCS Address FF00 0000 Region 4 EPROM Address FFF0 0000 Region 5 LOCAL I/O Address FFFE 0000 Region 6 VMEbus A16 D16 Address FFFF 0000 Region 7 VMEbus A16 D16 Address FFFF FFFF

VAC068 Register Address Map

Local Address	Register List	Register Size
FFFD 00XX	SLSEL1 Address Mask Register	16 bits
FFFD 01XX	SLSEL1 Base Address Register	16 bits
FFFD 02XX	SLSEL0 Address Mask Register	16 bits
FFFD 03XX	SLSELD Base Address Register	16 bits
FFFD 04XX	ICFSEL Address Register	16 bits
FFFD 05XX	DRAM Upper Limit Register	16 bits
FFFD 06XX	Boundary 2 Address Register	16 bits
FFFD 07XX	Boundary 3 Address Register	16 bits
FFFD 08XX	A24 ADD Space Base Address Register	8 bits
FFFD 09XX	Region 1 Attribute Register	8 bits
FFFD 0AXX	Region 2 Attribute Register	8 bits
FFFD 0BXX	Region 3 Attribute Register	8 bits
FFFD 0CXX	IOSELA DSACK Control Register	16 bits
FFFD 0DXX	IOSEL5 DSACK Control Register	16 bits
FFFD 0EXX	SHRCS DSACK Control Register	16 bits
FFFD 0FXX	EPROM DSACK Control Register	16 bits
FFFD 10XX	IOSEL 0 DSACK Control Register	16 bits
FFFD 11XX	IOSEL1 DSACK Control Register	16 bits
FFFD 12XX	IOSEL2 DSACK Control Register	16 bits
FFFD 13XX	IOSEL3 DSACK Control Register	16 bits
FFFD 14XX	Decode Control Register	16 bits
FFFD 15XX	Interrupt Status Register	8 bits
FFFD 16XX	Interrupt Control Register	16 bits
FFFD 17XX	Device Location Register	8 bits
FFFD 18XX	PIO Data Out Register	16 bits
FFFD 19XX	PIO Pin Register	12 bits
FFFD 1AXX	PIO Direction Register	16 bits
FFFD 1BXX	PIO Function Register	16 bits
FFFD 1CXX	Baud Rate Divisor Register	8 bits
FFFD 1DXX	Channel A Mode Register	16 bits
FFFD 1EXX	Channel A Transmit Data Register	8 bits
FFFD 1FXX	Channel B Mode Register	16 bits
FFFD 20XX	Channel A Receiver FIFO	11 bits
FFFD 21XX	Channel B Receiver FIFO	11 bits
FFFD 22XX	Channel B Transmit Data Register	8 bits
FFFD 23XX	Channel A Interrupt Mask Register	8 bits
FFFD 24XX	Channel B Interrupt Mask Register	8 bits
FFFD 25XX	Channel A Interrupt Status Register	8 bits
FFFD 26XX	Channel B Interrupt Status Register	8 bits
FFFD 27XX	Timer Data Register	16 bits
FFFD 28XX	Timer Control Register	8 bits
FFFD 29XX	VAC068 ID Register	16 bits

Ordering Information

Ordering Code	Package Type	Operating Range
VAC068-BC	B144	Commercial
VAC068-GC	G144	

Document \#: 38-00169
PRODUCT 1
INFORMATION
STATIC RAMS 2
PROMS 3
EPLDS 4
FIFOS 5
LOGIC 6
RISC 7
MODULES 8
ECL 9
BUS INTERFACE PRODUCTS 1011
DESIGN AND12PROGRAMMING TOOLS
QUALITY AND 13 RELIABILITY
PACKAGES

Section Contents

Military Information

Military Overview 11-1
Military Product Selector Guide 11-2
Military Ordering Information 11-7

Military Overview

Features

Success in any endeavor requires a high level of dedication to the task. Cypress Semiconductor has demonstrated its dedication through its corporate commitment to support the military marketplace. This commitment starts with product design. All products are designed using our state-of-the-art CMOS, BiCMOS, and bipolar processes, and they must meet the full -55 to +125 degrees Celsius operational criteria for military use. The commitment continues with the 1986 DESC certification of our automated U.S. facility in San Jose, California. The commitment shows in our dedication to meet and exceed the stringent quality and reliability requirements of MIL-STD-883 and MIL-M-38510. It shows in Cypress's participation in each of the military processing programs: MIL-STD-883C compliant, SMD (Standardized Military Drawing), and JAN. Finally, our commitment shows in our leadership position in special packages for military use.

Product Design

Every Cypress product is designed to meet or exceed the full temperature and functional requirements of military product. This means that Cypress builds military product as a matter of course, rather than as an accidental benefit of favorable test yield. Designs are being carried out in our industry-leading 0.8 -micron CMOS, BiCMOS, and Bipolar processes. Cypress is able to offer a family of products that are industry leaders in density, low operating and standby current, and high speed. In addition, our technology results in products with very small manufacturable die sizes that will fit into the LCCs and flatpacks so often used in military programs.

DESC-Certified Facility

On May 8, 1986, the Cypress facility at 3901 North First Street in San Jose, California was certified by DESC for the production of JAN Class B CMOS Microcircuits. This certification not only allows Cypress to qualify product for JAN use, but also assures our customers that our San Jose Facility has the necessary documentation and procedures to manufacture product to the most stringent of quality and reliability requirements. Our wafer fabrication facilities are Class 10 (San Jose) and Class 1 (Round Rock, TX) manufacturing environments and our assembly facility is also a clean room. In addition, our highly automated assembly facility is located entirely in the U.S.A. and is capable of handling virtually any hermetic package configuration.

Data Sheet Documentation

Every Cypress final data sheet is a corporate document with a revision history. The document number and revision appears on each final data sheet. Cypress maintains a listing of all data sheet documentation and a copy is available to customers upon request. This gives a customer the ability to verify the current status of any data sheet and it also gives that customer the ability to obtain updated specifications as required.
Every final data sheet also contains detailed Group A subgroup testing information. All of the specified parameters that are tested
at Group A are listed in a table at the end of each final data sheet, with a notation as to which specific Group A test subgroups apply.

Assembly Traceability Code ${ }^{\text {(®) }}$

Cypress Semiconductor places an assembly traceability code on every military package that is large enough to contain the code. The ATC automatically provides traceability for that product to the individual wafer lot. This unique code provides Cypress with the ability to determine which operators and equipment were used in the manufacture of that product from start to finish.

Quality and Reliability

MIL-STD-883 and MIL-M-38510 spell out the toughest of quality and reliability standards for military products. Cypress products meet all of these requirements and more. Our in-house quality and reliability programs are being updated regularly with tighter and tighter objectives. Please refer to the chapter on Quality, Reliability, and Process Flows for further details.

Military Product Offerings

Cypress offers three levels of processing for military product.
First, all Cypress products are available with processing in full compliance with MIL-STD-883, Revision C.
Second, selected products are available to the SMD (Standardized Military Drawing) program administered by DESC. These products are not only fully MIL-STD-883C compliant, but are also screened to the electrical requirements of the applicable military drawing.
Third, selected products are available as JAN devices. These products are processed in full accordance with MIL-M-38510 and they are screened to the electrical requirements of the applicable JAN slash sheet.

Product Packaging

All packages for military product are hermetic. A look at the package appendix in the back of this data book will give the reader an appreciation of the variety of packages offered. Included are cerDIPs, windowed CerDIPs, leadless chip carriers (LCCs), leadless chip carriers with windows for reprogrammable products, cerpak, windowed cerpak, quad cerpak, windowed quad cerpak, bottombrazed flatpacks, and pin grid arrays. As indicated above, all of these packages are assembled in the U.S. in our highly automated San Jose plant.

Summary

Cypress Semiconductor is committed to the support of the military marketplace. Our commitment is demonstrated by our product designs, our DESC-certified facility, our documentation and traceability, our quality and reliability programs, our support of all levels of military processing, and by our leadership in special packaging.

Static RAMs

Size	Organization	Pins (DIP)	Part Number	JAN/SMD Number	Speed(ns)	$\underset{\text { (mA@ns) }}{\mathbf{I}_{\mathbf{C C}} / \mathbf{I}_{\mathbf{S B}} / \mathbf{I}_{\mathbf{C C D R}}}$	883 Availability
64	16x4-Inverting	16	CY7C189		$\mathrm{t}_{\mathrm{AA}}=25$	70 @ 25	Now
64	16x4--Non-Inverting	16	CY7C190	5962-89694	$\mathrm{t}_{\mathrm{AA}}=25$	70 @ 25	Now
64	16x4-Inverting	16	CY27S03/A		$\mathrm{t}_{\mathrm{AA}}=25,35$	$100 @ 35$	Now
64	16x4-Non-Inverting	16	CY27S07/A		$\mathrm{t}_{\mathrm{AA}}=25,35$	100@25	Now
64	16×4 - Inverting/Low Power	16	CY27LS03		$\mathrm{t}_{\mathrm{AA}}=65$	38 @ 65	Now
1K	$256 \times 4-10 \mathrm{~K} / 10 \mathrm{KHECL}$	24	CY10E422L		$\mathrm{t}_{\mathrm{AA}}=5,7$	150@5/7	Now
1K	256x4	22	CY7C122	5962-88594	$\mathrm{t}_{\mathrm{AA}}=25,35$	90@25	Now
1K	256×4	24S	CY7C123	5962-90696	$\mathrm{t}_{\mathrm{AA}}=10,12,15$	150@15	Now
1K	256x4	22	CY9122/91L22	5962-88594	$\mathrm{t}_{\mathrm{AA}}=35,45$	90@45	Now
1K	256×4	22	CY93422A/93L422A		$\mathrm{t}_{\mathrm{AA}}=45,55,60,75$	90@ 55	Now
4K	4Kx1-CS Power-Down	18	CY7C147	M38510/289	$\mathrm{t}_{\mathrm{AA}}=35,45$	110/10@35	Now
4K	4Kx1-CS Power-Down	18	CY2147	M38510/289	$\mathrm{t}_{\text {AA }}=45,55$	140/25@45	Now
4K	4Kx1-CS Power-Down	18	CY7C147	5962-88587	$\mathrm{t}_{\mathrm{AA}}=35,45$	110/10@35	Now
4K	4Kx 1-CS Power-Down	18	CY2147	5962-88587	$\mathrm{t}_{\mathrm{AA}}=45,55$	140/25@45	Now
4K	$1 \mathrm{Kx} 4-10 \mathrm{~K} / 10 \mathrm{KHECL}$	24	CY10E474L	5962-91518	$\mathrm{t}_{\mathrm{AA}}=5,7$	190@5/7	Now
4K	1Kx4-CS Power-Down	18	CY7C148	M38510/289	$\mathrm{t}_{\mathrm{AA}}=35,45$	110/10@35	Now
4K	1Kx4-CS Power-Down	18	CY2148	M38510/289	$\mathrm{t}_{\mathrm{AA}}=45,55$	140/25@45	Now
4K	1Kx 4	18	CY7C149		$\mathrm{t}_{\mathrm{AA}}=35,45$	110@35	Now
4K	1Kx4	18	CY2149		$\mathrm{t}_{\mathrm{AA}}=45,55$	140@45	Now
4K	$1 \mathrm{Kx4}$-Separate I/O	24S	CY7C150	5962-88588	$\mathrm{t}_{\mathrm{AA}}=12,15,25,35$	100@15	Now
8 K	$1 \mathrm{~K} \times 8$-Dual Port	48	CY7C130/31	5962-86875	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/40@45	Now
8K	$1 \mathrm{~K} \times 8$-Dual Port Slave	48	CY7C140/41	5962-86875	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/40@45	Now
16 K	2Kx8-CS Power-Down	24S	CY7C128A	5962-89690	$\mathrm{t}_{\mathrm{AA}}=20,25$	125@20	Now
16K	2Kx8-CS Power-Down	24	CY6116A/7A	5962-89690	$\mathrm{t}_{\mathrm{AA}}=20,25$	125@20	Now
16 K	2Kx8-CS Power-Down	24S	CY7C128		$\mathrm{t}_{\mathrm{AA}}=45,55$	100/20@55	Now
16 K	2Kx8-CS Power-Down	24S	CY7C128A	84036	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	125/40@25	Now
16K	2Kx8-CS Power-Down	24	CY6116/7		$\mathrm{t}_{\mathrm{AA}}=45,55$	130/20@45	Now
16K	16Kx1-CS Power-Down	20	CY7C167	84132	$\mathrm{t}_{\mathrm{AA}}=35,45$	50/20@45	Now
16K	16Kx1-CS Power-Down	20	CY7C167A	84132	$\mathrm{t}_{\mathrm{AA}}=20,25,35$	70/20@ 25	Now
16K	4Kx4-CS Power-Down	20	CY7C168	5962-86705	$\mathrm{t}_{\mathrm{AA}}=35,45$	70/20@ 45	Now
16 K	4Kx4-CS Power-Down	20	CY7C168A	5962-86705	$\mathrm{t}_{\mathrm{AA}}=20,25,35$	100/20@25	Now
16K	4Kx 4	20	CY7C169		$\mathrm{t}_{\mathrm{AA}}=40$	70 @ 40	Now
16K	4Kx4	20	CY7C169A		$\mathrm{t}_{\mathrm{AA}}=20,25,35$	100/20@35	Now
16K	4Kx4-Output Enable	22S	CY7C170		$\mathrm{t}_{\mathrm{AA}}=45$	120@45	Now
16 K	4 Kx 4 -Output Enable	22S	CY7C170A		$\mathrm{t}_{\mathrm{AA}}=20,25,35$	120@ 25	Now
16K	4Kx4-Separate I/O,T-write	24S	CY7C171		$\mathrm{t}_{\mathrm{AA}}=45$	70 @ 45	Now
16 K	4Kx4-Separate I/O	24S	CY7C172		$\mathrm{t}_{\mathrm{AA}}=45$	70 @ 45	Now
16K	4Kx4-Separate I/O	24S	CY7C171A/2A		$\mathrm{t}_{\mathrm{AA}}=20,25,35$	100/20@25	Now
16 K	2Kx8-Dual Port	48	CY7C132/36	5962-90620	$t_{\text {AA }}=35,45,55$	170/65@35	Now
16 K	2 Kx 8 - Dual Port Slave	48	CY7C142/46	5962-90620	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/40@45	Now
64K	8 Kx 8 -CS Power-Down	28 S	CY7C185A	5962-38294	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45,55$	125@20	Now
64K	8Kx 8-CS Power-Down	28S	CY7C185A	5962-89691	$\mathrm{t}_{\mathrm{AA}}=20,25$	125@20	Now
64 K	8 Kx 8 -CS Power-Down	28S	CY7C185A	5962-85525	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	100/20/1@ 45	Now
64 K	8 Kx 8 -CS Power-Down	28 S	CY7B185		$\mathrm{t}_{\mathrm{AA}}=12,15$	145/50@15	Now
64 K	8Kx8-CS Power-Down	28	CY7C186A	5962-38294	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45,55$	125@20	Now
64 K	8Kx 8-CS Power-Down	28	CY7C186A	5962-89691	$\mathrm{t}_{\mathrm{AA}}=20,25$	125@20	Now
64 K	8Kx8-CS Power-Down	28	CY7C186A	5962-85525	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	100/20/1@45	Now
64 K	8Kx 8 -CS Power-Down	28	CY7B186		$\mathrm{t}_{\mathrm{AA}}=12,15$	145/50@15	Now
64 K	16Kx4-CS Power-Down	22S	CY7C164A	5962-89692	$\mathrm{t}_{\mathrm{AA}}=20,25$	90 @ 20	Now
64K	16 Kx 4 -CS Power-Down	22S	CY7C164A	5962-86859	$\mathrm{t}_{\text {AA }}=35,45$	70/20/1@ 35	Now
64K	16Kx4-CS Power-Down	22S	CY7B164		$\mathrm{t}_{\text {AA }}=12,15$	135/50@15	Now
64 K	16 Kx 4 - CS Power-Down	24S	CY7C166A	5962-89892	$\mathrm{t}_{\mathrm{AA}}=20,25$	90@ 20	Now
64 K	16 Kx 4 -Output Enable	24S	CY7C166A	5962-86859	$\mathrm{t}_{\mathrm{AA}}=35,45$	70/20/1@ 35	Now
64 K	16 Kx 4 -Output Enable	24 S	CY7B166		$\mathrm{t}_{\mathrm{AA}}=12,15$	135/50@15	Now
64K	16 Kx 4 -Separate I/O, T-write	28S	CY7C161A	5962-90594	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	70/20/1@ 35	Now
64 K	16 Kx 4 -Separate I/O	28 S	CY7C162A	5962-89712	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	70/20/1@35	Now
64 K	16 Kx 4 -Separate I/O	28S	CY7B161/2		$\mathrm{t}_{\mathrm{AA}}=12,15$	135/50@15	Now
64 K	64Kx 1 -CS Power-Down	22S	CY7C187A	5962-86015	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	70/20/1@ 35	Now
256 K	$16 \mathrm{Kx16}$-Cache RAM	44	CY7C157		$\mathrm{t}_{\mathrm{AA}}=24,33$	300@24	Now
256 K	32Kx 8 -CS Power-Down	28	CY7C198	5962-88662	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	160/35@35	Now
256 K	32Kx 8-CS Power-Down	28S	CY7C199	5962-88662	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	160/35@35	Now
256 K	64Kx4-CS Power-Down	24S	CY7C194	5962-88681	$\mathrm{t}_{\mathrm{AA}}=35,45$	130/35@35	Now

Static RAMs (continued)

Size	Organization	$\begin{aligned} & \text { Pins } \\ & \text { (DIP) } \end{aligned}$	Part Number	JAN/SMD Number	Speed (ns)	$\underset{(\mathrm{mA@ns})}{\mathbf{I}_{\mathbf{C C}} / \mathbf{I}_{\mathrm{SB}} / \mathrm{I}_{\mathbf{C C D R}}}$	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
256 K	64Kx4-CS PD + OE/CE2	28 S	CY7C196		$\mathrm{t}_{\mathrm{AA}}=35,45$	130/35@35	Now
256 K	$64 \mathrm{Kx4} 4$-Separate I/O	28 S	CY7C192	5962-89935	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	130/35@35	Now
256K	256Kx 1-CS Power-Down	24S	CY7C197	5962-88725	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	110/35@35	Now
256K	32K x 8-CS Power-Down	28	CY7B198		$\mathrm{t}_{\mathrm{AA}}=15,20$	170/60@ 15	3Q91
256 K	32Kx 8 -CS Power-Down	28S	CY7B199		$\mathrm{t}_{\mathrm{AA}}=15,20$	170/60@ 15	3Q91
256 K	64Kx4-Separate I/O,T-write	28S	CY7B191		$\mathrm{t}_{\mathrm{AA}}=15,20$	145/60@15	4Q91
256 K	64Kx4-Separate I/O,'T-write	28S	CY7B191	5962-90664	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	130/35@35	Now
256K	64Kx4-Separate I/O	28 S	CY7B192		$\mathrm{t}_{\mathrm{AA}}=15,20$	145/60@15	4Q91
256K	64Kx4-CS Power-Down	24S	CY7B194		$\mathrm{t}_{\mathrm{AA}}=15,20$	145/60@ 15	4Q91
256K	64K×4-CSPD,OE	28S	CY7B195		$\mathrm{t}_{\mathrm{AA}}=15,20$	145/60@15	4Q91
256K	64Kx4-CS PD, OE, 2CE	28S	CY7B196		$\mathrm{t}_{\mathrm{AA}}=15,20$	145/60@ 15	3Q91
256K	256Kx 1-Common I/O,OE	24S	CY7B193		$\mathrm{t}_{\mathrm{AA}}=15,20$	120/60@ 15	4Q91
256K	256Kx 1-CS Power-Down	24S	CY7B197		$\mathrm{t}_{\mathrm{AA}}=15,20$	120/60@15	4Q91
1M	128Kx 8-CS Power-Down	32	CY7C108		$\mathrm{t}_{\text {AA }}=35,45$	170/60@35	3Q91
1M	128 Kx 8 -CS Power-Down	32	CY7C109		$\mathrm{t}_{\mathrm{AA}}=35,45$	170/60@ 35	3 Q 91
1M	256Kx 4-CS Power-Down/IE	28	CY7C106		$\mathrm{t}_{\mathrm{AA}}=35,45$	140/35@35	4Q91
1M	${ }_{\text {T-Write }}^{256 K \times 4-S e p a r a t e ~ I / O, ~}$	32	CY7C101		$\mathrm{t}_{\mathrm{AA}}=35,45$	140/35@35	4Q91
1M	256Kx4-Separate I/O	32	CY7C102		$\mathrm{t}_{\mathrm{AA}}=35,45$	140/35@35	4Q91
1M	1Mx1-CS Power-Down	28	CY7C107		$\mathrm{t}_{\mathrm{AA}}=35,45$	140/35@35	4Q91

PROMs

Size	Organization	Pins	Part Number	$\begin{aligned} & \text { JAN/SMD } \\ & \text { Number }{ }^{[1]^{*}} \end{aligned}$	Speed(ns)	$\mathbf{I}_{\mathrm{CC}} / \mathbf{I}_{\mathrm{SB}}$ (mA(tonn)	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
4K	512×8-Registered	24S	CY7C225	5962-88518(O)	$\mathrm{t}_{\text {SA/CO }}=30 / 15,35 / 20,40 / 25$	120(a) $30 / 15$	Now
8K	1Kx8-Registered	24 S	CY7C235	5962-88636(O)	$\mathrm{t}_{\text {SA/CO }}=30 / 15,40 / 20$	120@30/15	Now
8K	1 Kx 8	24S	CY7C281	5962-87651(O)	$t_{\text {AA }}=45$	120@45	Now
8K	1 Kx 8	24	CY7C282	5962-87651(O)	$t_{\text {AA }}=45$	120@45	Now
16 K	2 Kx 8 -Registered	24S	CY7C245	$5962-87529(\mathrm{~W})$	$\mathrm{t}_{\text {SA/CO }}=35 / 15,45 / 25$	120@35/15	Now
16K	2Kx 8 -Registered	24S	CY7C245A	5962-89815(W)	$\mathrm{t}_{\text {SA/CO }}=18 / 12,25 / 12,35 / 15$	120@25/15	Now
16K	2Kx8-Registered	24S	CY7C245A	5962-88735(O)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=25 / 12,35 / 15$	120@25/15	Now
16K	2Kx 8	24 S	CY7C291	5962-87650(W)	$t_{A A}=35,50$	120@35	Now
16K	2 Kx 8	24S	CY7C291A	5962-88734(O)	$\mathrm{t}_{\mathrm{AA}}=25,30,35,50$	120@30	Now
16K	2Kx8-CS Power-Down	24S	CY7C293A	5962-88680(W)	$t_{A A}=25,30,35,50$	120/30@ 35	Now
16K	2Kx 8	24	CY7C292		$t_{A A}=50$	120@50	Now
16K	2Kx 8	24	CY7C292A	5962-88734(O)	$t_{\text {AA }}=25,30,35,50$	120@30	Now
64K	8Kx 8-CS Power-Down	24S	CY7C261	5962-87515(W)	$t_{\text {AA }}=35,45,55$	120/40@35	Now
64K	8Kx8-CS Power-Down	24 S	CY7C261	5962-90803(O)	$t_{\text {AA }}=35,45,55$	120@35	Now
64K	$8 \mathrm{~K} \times 8$	24S	CY7C263	5962-87515(W)	$t_{A A}=35,45,55$	120@35	Now
64K	8 Kx 8	24	CY7C264	5962-87515(W)	$t_{\text {AA }}=35,45,55$	120@35	Now
64 K	$8 \mathrm{~K} \times 8$-Registered	28 S	CY7C265		$\mathrm{t}_{\text {SA/CO }}=50 / 25,60 / 25$	120@50/25	Now
64K	8Kx 8-EPROM Pinout	28	CY7C266		$\mathrm{t}_{\text {AA }}=55$	90	Now
64K	8Kx 8-Registered/Diagnostic	28S	CY7C269		$\mathrm{t}_{\text {SA/CO }}=50 / 25,60 / 25$	100@60/25	Now
64K	8 Kx 8 - Registered/Diagnostic	32	CY7C268		$\mathrm{t}_{\text {SA/CO }}=50 / 25,60 / 25$	100@60/25	Now
128K	$16 \mathrm{~K} \times 8$-CS Power-Down	28S	CY7C251	5962-89537(W)	$\mathrm{t}_{\mathrm{AA}}=55,65$	120/35@55	Now
128 K	16 Kx 8	28	CY7C254	5962-89538(W)	$t_{\text {AA }}=55,65$	120@55	Now
256K	32Kx 8-CS Power-Down	28S	CY7C271	5962-89817(W)	$\mathrm{t}_{\mathrm{AA}}=45,55$	130/40@ 55	Now
256 K	$32 \mathrm{~K} \times 8$-EPROM Pinout	28	CY7C274		$\mathrm{t}_{\mathrm{AA}}=45,55$	130/40@55	Now
256 K	$32 \mathrm{~K} \times 8$-Registered	28S	CY7C277		$\mathrm{t}_{\text {SA } / \text { CO }}=40 / 20,50 / 25$	130/40@55	Now
256 K	$32 \mathrm{~K} \times 8$-Latched	28S	CY7C279		$\mathrm{t}_{\mathrm{AA}}=45,55$	130/40@ 55	Now
512K	64Kx 8 -Fast Column Access	28S	CY7C285		$\mathrm{t}_{\mathrm{AA}} / \mathrm{FCA}=75 / 25,85 / 35$	200@ 75	Now
512K	64Kx 8-EPROM Pinout	28	CY7C286		$\mathrm{t}_{\mathrm{AA}}=70$	150@70	Now
512 K	$64 \mathrm{~K} \times 8$-Registered	28S	CY7C287		${ }^{\text {SA/CO }}=65 / 20$	150@65	Now
512K	64Kx8-FCA/Reg or Latched	32S	CY7C289		$\mathrm{t}_{\mathrm{AA}} / \mathrm{FCA}=75 / 25,85 / 35$	200@ 75	Now

PLDs

	Organization	Pins	Part Number	JAN/SMD Number ${ }^{[1] *}$	Speed (ns/MHz)	$\begin{gathered} \mathbf{I C C}_{(\mathrm{mA} @ \mathrm{~ns} / \mathrm{MHz})} \end{gathered}$	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
PALC20	16L8,16R8, 16R6,16R4	20	PALC16XX	5962-88678(W)	$\mathrm{t}_{\mathrm{PD}}=20,30,40$	70 @ 20	Now
PALC20	16L8,16R8,16R6,16R4	20	PALC16XX	5962-88713(O)	$\mathrm{t}_{\mathrm{PD}}=20,30,40$	70 @ 20	Now
PLD20	18G8-Generic	20	PLDC18G8	5962-91568(O)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=15 / 15 / 20$	110	Now
PLD24	22V10C-Macrocell	24S	PAL22V10C		$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=12 / 4.5 / 9.5$	190@12	2Q91
PLDC24	22V10-Macrocell	24S	PALC22V10	5962-87539(W)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=20 / 17 / 15$	100@ 25	Now
PLDC24	22V10-Macrocell	24S	PALC22V10	5962-88670(O)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=20 / 17 / 15$	100@ 25	Now
PLDC24	22V10-Macrocell	24S	PALC22V10	M38510/507(W)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=20 / 17 / 15$	120@ 25	2Q91
PLDC24	20G10-Generic	24S	PLDC20G10	5962-88637(O)	$\mathrm{t}_{\text {PD/S/CO }}=20 / 17 / 15$	80 @ 30	Now
PLDC24	20RA10-Asynchronous	24 S	PLD20RA10	5962-90555(O)	$\mathrm{t}_{\mathrm{PD} / \mathrm{SU} / \mathrm{CO}}=20 / 10 / 20$	100@25	Now
ECL	16P8-10KHECL	24S	CY10E301	5962-90573(O)	$\mathrm{t}_{\mathrm{PD}}=5$	-240@ 5	Now
ECL	16P4-10KH ECL	24S	CY10E302		$\mathrm{t}_{\mathrm{PD}}=4$	-220@4	Now
PLDC28	7C330-State Machine	28 S	CY7C330	5962-89546(W)	$50,40,28 \mathrm{MHz}$	$180 @ 40 \mathrm{MHz}$	Now
PLDC28	7C331-Asynchronous	28S	CY7C331	5962-90754(W)	$\mathrm{t}_{\mathrm{PD}}=20 / 25 / 40$	$200 @ 20 \mathrm{MHz}$	Now
PLDC28	7C331-Asynchronous	28 S	CY7C331	5962-89855(O)	$\mathrm{t}_{\mathrm{PD}}=20 / 25 / 40$	$200 @ 20 \mathrm{MHz}$	Now
PLDC28	7C332-Combinatorial	28S	CY7C332		$\mathrm{t}_{\mathrm{PD}}=20 / 25 / 30$	$200 @ 24 \mathrm{MHz}$	Now
PLD28	7B336-Input Reg/2PTs	28 S	CY7B336		$\mathrm{f}_{\text {MAXD }}=131 \mathrm{MHz}$	180	2Q91
PLD28	7B337-Input Reg/4PTs	28S	CY7B337		$\mathrm{f}_{\text {MAXD }}=125 \mathrm{MHz}$	180	2Q91
PLD28	7B338-Output Latched/2PTs	28S	CY7B338		$t_{\text {PD }}=8$	180	2Q91
PLD28	7B339-Output Latched/4PTs	28S	CY7B339		$\mathrm{t}_{\mathrm{PD}}=7$	180	2Q91
MAX28	7C344-32 Macrocell	28S	CY7C344	5962-90611(W)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=25 / 15 / 15$	220/170	Now
MAX40	7C343-64 Macrocell	40/44	CY7C343		$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=35 / 25 / 20$	160/120	Now
MAX68	7C342-128 Macrocell	68	CY7C342	5962-89468(W)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=35 / 25 / 20$	320/240	Now
MAX84	7C341-192 Macrocell	84	CY7C341		$\mathrm{t}_{\mathrm{PD}}=35$	320/240	3Q91
PLDC28	7C361-State Machine	28S	CY7C361		$100,83,50 \mathrm{MHz}$	$150 @ 100 \mathrm{MHz}$	Now

FIFOs

Organization	Pins	Part Number	JAN/SMD Number	Speed	$\underset{(\mathrm{mA} @ \mathrm{~ns} / \mathbf{M H z})}{\mathbf{I}_{\mathbf{C C}} / \mathbf{I}_{\mathbf{S B}}}$	883 Availability
64×4 - Cascadeable	16	CY3341		$1.2,2 \mathrm{MHz}$	60@ 2.0 MHz	Now
64×4-Cascadeable	16	CY7C401		$10,15,25 \mathrm{MHz}$	90@ 15 MHz	Now
64×4-Cascadeable/OE	16	CY7C403	5962-89523	$10,15,25 \mathrm{MHz}$	90@ 25 MHz	Now
64×5 - Cascadeable	18	CY7C402		$10,15,25 \mathrm{MHz}$	90@15 MHz	Now
64×5-Cascadeable/OE	18	CY7C404	5962-86846	$10,15,25 \mathrm{MHz}$	90@ 25 MHz	Now
64×8-Cascadeable/OE	28S	CY7C408A	5962-89664	$15,25 \mathrm{MHz}$	120 @ 25 MHz	Now
64×9-Cascadeable	28S	CY7C409A	5962-89661	$15,25 \mathrm{MHz}$	120 @ 25 MHz	Now
512×9-Cascadeable	28	CY7C420	5962-89863	$\mathrm{t}_{\mathrm{A}}=25,30,40,65 \mathrm{~ns}$	140/30@30	Now
512×9-Cascadeable	28S	CY7C421	5962-89863	$\mathrm{t}_{\mathrm{A}}=25,30,40,65 \mathrm{~ns}$	140/30@30	Now
1Kx9-Cascadeable	28	CY7C424		$\mathrm{t}_{\mathrm{A}}=25,30,40,65 \mathrm{~ns}$	140/30@30	Now
1K×9-Cascadeable	28S	CY7C425		$\mathrm{t}_{\mathrm{A}}=25,30,40,65 \mathrm{~ns}$	140/30@30	Now
$2 \mathrm{~K} \times 9$ - Cascadeable	28	CY7C428	5962-88669	$\mathrm{t}_{\mathrm{A}}=25,30,40,65 \mathrm{~ns}$	140/30@30	Now
2Kx9-Cascadeable	28S	CY7C429	5962-88669	$\mathrm{t}_{\mathrm{A}}=25,30,40,65 \mathrm{~ns}$	140/30@30	Now
$2 \mathrm{~K} \times 9$-Bidirectional	28S	CY7C439		$\mathrm{t}_{\mathrm{A}}=40,65 \mathrm{~ns}$	165/45@40	Now
4Kx9-Cascadeable	28	CY7C432	5962-90715	$\mathrm{t}_{\mathrm{A}}=30,40,65 \mathrm{~ns}$	160/30@30	Now
4Kx9-Cascadeable	28S	CY7C433	5962-90715	$\mathrm{t}_{\mathrm{A}}=30,40,65 \mathrm{~ns}$	160/30@30	Now
512×9-Clocked	28S	CY7C441		$\mathrm{t}_{\mathrm{C}}=14,20,30 \mathrm{~ns}$	200@14	2Q91
2Kx9-Clocked	28S	CY7C443		$\mathrm{t}_{\mathrm{C}}=14,20,30 \mathrm{~ns}$	200@14	2Q91
512×9-Clocked/Cascadeable	32	CY7C451		$\mathrm{t}_{\mathrm{C}}=14,20,30 \mathrm{~ns}$	200@14	2Q91
2Kx9-Clocked/Cascadeable	32	CY7C453		$\mathrm{t}_{\mathrm{C}}=14,20,30 \mathrm{~ns}$	$200 @ 14$	2Q91
$8 \mathrm{~K} \times 9$ - Half Full Flag	28	CY7C460		$\mathrm{t}_{\mathrm{A}}=15,25,40 \mathrm{~ns}$	180@25	3Q91
$8 \mathrm{~K} \times 9$ - Prog. Flags	28	CY7C470		$\mathrm{t}_{\mathrm{A}}=15,25,40 \mathrm{~ns}$	180@25	3Q91
$16 \mathrm{Kx} 9-$ Half Full Flag	28	CY7C462		$\mathrm{t}_{\mathrm{A}}=15,25,40 \mathrm{~ns}$	180@25	3Q91
16Kx9-Prog. Flags	28	CY7C472		$\mathrm{t}_{\mathrm{A}}=15,25,40 \mathrm{~ns}$	180@ 25	3Q91
32Kx9-Half Full Flag	28	CY7C464		$\mathrm{t}_{\mathrm{A}}=15,25,40 \mathrm{~ns}$	180@ 25	3Q91
32Kx9-Prog. Flags	28	CY7C474		$\mathrm{t}_{\mathrm{A}}=15,25,40 \mathrm{~ns}$	180@25	3Q91

Military Product Selector Guide

Logic

Organization	Pins	Part Number	JAN/SMD Number	Speed (ns)	$\underset{(\mathbf{m A} @ n \mathrm{n})}{\mathbf{I}_{\mathbf{C C}}}$	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
2901-4-Bit Slice	40	CY7C901	5962-88535	$\mathrm{t}_{\text {CLK }}=27,32$	90@ 27	Now
2901-4-Bit Slice	40	CY2901C	5962-88535	C	180@32	Now
4×2901-16-BitSlice	64	CY7C9101	5962-89517	$t_{\text {CLK }}=35,45$	85 @ 35	Now
2909-Sequencer	28	CY7C909		$\mathbf{t}_{\text {CLK }}=30,40$	55 @ 30	Now
2911-Sequencer	20	CY7C911	5962-90609	$\mathrm{t}_{\mathrm{CLK}}=30,40$	$55 @ 30$	Now
2909-Sequencer	28	CY2909A		A	90@40	Now
2911 -Sequencer	20	CY2911A	5962-90609	A	90@40	Now
2910 - Controller (17-Word Stack)	40	CY7C910	5962-87708	$\mathrm{t}_{\text {CLK }}=46,51,99$	$90 @ 46$	Now
2910-Controller (9-Word Stack)	40	CY2910A	5962-87708	A	170@ 51	Now
16-Bit Microprogrammed ALU	52	CY7C9116	5962-88612	40,65,79	166@10MHz	Now
16-Bit Microprogrammed ALU	68	CY7C9117		40,65,79	166@10MHz	Now
16×16 Multiplier	64	CY7C516	5962-86873	$\mathrm{t}_{\mathrm{MC}}=42,55,75$	$110 @ 10 \mathrm{MHz}$	Now
16×16 Multiplier	64	CY7C517	5962-87686	$\mathrm{t}_{\mathrm{MC}}=42,55,75$	$110 @ 10 \mathrm{MHz}$	Now
16×16 Multiplier/Accumulator	64	CY7C510	5962-88733	$\mathrm{t}_{\mathrm{MC}}=55,65,75$	$110 @ 10 \mathrm{MHz}$	Now

RISC

	Description	Pins	Part Number	Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathrm{CC}} \\ (\mathrm{~mA} @ \mathrm{MHz}) \end{gathered}$	883 Availability
IU	SPARC 32-Bit Integer Unit	207	CY7C601A	$\mathrm{t}_{\mathrm{CYC}}=20 \mathrm{MHz}$	TBD	2Q91
FPU	Floating-Point Unit	143	CY7C602A	$\mathrm{t}_{\mathrm{CYC}}=20 \mathrm{MHz}$	TBD	3Q91
CMU	Cache-Controlled Memory Management Unit	243	CY7C604A	$\mathrm{t}_{\mathrm{CYC}}=20 \mathrm{MHz}$	TBD	3Q91
CRAM	SPARCCache RAM	52	CY7C157A	$\mathrm{t}_{\text {AA }}=33$	T3D	3091

Modules

Size	Organization	Pins	Part Number	Packages	Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathrm{mA} @ \mathbf{n s}) \end{gathered}$	883 Availability
SRAMs							
256K	64Kx 4 SRAM (JEDEC)	24	CYM1220	HD08	$\mathrm{t}_{\mathrm{AA}}=15,20$	375@12	2Q91
256K	32Kx 8 SRAM (JEDEC)	28	CYM1400	HD09	$\mathrm{t}_{\mathrm{AA}}=15,20$	425@12	2Q91
256K	$16 \mathrm{~K} \times 16$ SRAM (JEDEC)	40	CYM1610	HD01	$\begin{aligned} & \mathrm{t}_{\mathrm{AA}}=15,20,25,35, \\ & 45,50 \end{aligned}$	$\begin{aligned} & 550 @ 15 ; \\ & 330 @ 25 \end{aligned}$	Now
1M	256Kx 4 SRAM (JEDEC)	28	CYM1240	HD07	$t_{\text {AA }}=25,35,45$	480@ 25	Now
1M	128Kx 8 SRAM (JEDEC)	32	CYM1420	HD04	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	210@35	Now
1M	$64 \mathrm{~K} \times 16$ SRAM (JEDEC)	40	CYM1620	HD03	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	340@45	Now
1M	64 Kx 16 SRAM	40	CYM1621	HD02	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45$	1250@25	Now
1M	32Kx 32 SRAM	66	CYM1828	HG01	$\mathrm{t}_{\mathrm{AA}}=35,45,55,70$	400@35	Now
2M	$64 \mathrm{~K} \times 32$ SRAM	60	CYM1830	HD06	$\mathrm{t}_{\text {AA }}=35,45,55$	880@35	Now
4M	512 Kx 8 SRAM	32	CYM1466	HD12	$\begin{gathered} \mathrm{t}_{\mathrm{AA}}=35,45,55,70 \\ 85,100,120 \end{gathered}$	350@35	Now
4M	$256 \mathrm{~K} \times 16$ SRAM	48	CYM1641	HD05	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	1800@ 35	Now
8M	$256 \mathrm{~K} \times 32$ SRAM	60	CYM1840	HD11	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	1120@35	Now
FIFOs							
	8Kx9 Cascadeable FIFO	28	CYM4210	HD10	$\mathrm{t}_{\mathrm{A}}=40,50,65$	640@40	Now
	$16 \mathrm{~K} \times 9$ Cascadeable FIFO	28	CYM4220	HD10	$\mathrm{t}_{\mathrm{A}}=40,50,65$	640@40	Now

Notes:

The Cypress facility at 3901 North First Street in San Jose, CA is DESC-certified for JAN class B production.
Nll of the above products are available with processing to MIL-STD-883C at a minimum. Many of these products are also available either to SMDs (Standardized Military Drawings) or to JAN slash sheets.
The speed and power specifications listed above cover the full military temperature range.
Modules are available with MIL-STD-883C components. These modules are assembled and screened to the proposed JEDEC military processing standard for modules.
$W=$ Windowed Package
$\mathrm{O}=$ Opaque Package
HD $=$ Hermetic DIP Module
HV $=$ Hermetic Vertical DIP
100 K ECL devices are available only to extended temperature range.
22S stands for 22-pin 300-mil DIP.
24 S stands for 24 -pin 300 -mil DIP.
28 S stands for 28 -pin 300 -mil DIP.

Cypress Semiconductor fully supports the DESC standardized Military Drawing Program for devices that are compliant to the Class B requirements of MIL-STD-883.

Listed below are the SMDs for which Cypress is an approved source of supply. Please contact your local Cypress representative for the latest SMD update.

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
84036	09JX		CY6116A-45DMB	24.6 DIP	D12	2K x 8 SRAM
84036	09KX	CY7C128A-45KMB	24 CP	K73	2K x 8 SRAM	
84036	09LX	CY7C128A-45DMB	24.3 DIP	D14	2K x 8 SRAM	
84036	09XX	CY6117A-45LMB	32 R LCC	L55	2K x 8 SRAM	
84036	$09 Y \mathrm{X}$	CY7C128A-45LMB	24 R LCC	L53	2K x 8 SRAM	
84036	093X	CY6116A-45LMB	28 S LCC	L64	2Kx 8 SRAM	
84036	11JX	CY6116A-55DMB	24.6 DIP	D12	2K x 8 SRAM	
84036	11KX	CY7C128A-55KMB	24 CP	K73	2K x 8 SRAM	
84036	11LX	CY7C128A-55DMB	24.3 DIP	D14	2K x 8 SRAM	
84036	11XX	CY6117A-55LMB	32 R LCC	L55	2K x 8 SRAM	
84036	11YX	CY7C128A-55LMB	24 R LCC	D14	2K x 8 SRAM	
84036	113X	CY6116A-55LMB	28 S LCC	L64	2K x 8 SRAM	
84036	14JX	CY6116A-35DMB	24.6 DIP	D12	2K x 8 SRAM	
84036	14KX	CY7C128A-35KMB	24 CP	K73	2K x 8 SRAM	
84036	14LX	CY7C128A-35DMB	24.3 DIP	D14	2K x 8 SRAM	
84036	14XX	CY6117A-35LMB	32 R LCC	L55	2K x 8 SRAM	
84036	14YX	CY7C128A-35LMB	24 R LCC	L53	$2 \mathrm{~K} \times 8$ SRAM	
84036	143X	CY6116A-35LMB	28 S LCC	L64	2K x 8 SRAM	
84132	02RX	CY7C167-45DMB	20.3 DIP	D6	$16 \mathrm{~K} \times 1$ SRAM	
84132	02SX	CY7C167-45KMB	20 CP	K71	16K x 1 SRAM	
84132	02YX	CY7C167-45LMB	20 R LCC	L51	16K x 1 SRAM	
84132	05RX	CY7C167-35DMB	20.3 DIP	D6	$16 \mathrm{~K} \times 1$ SRAM	
84132	05SX	CY7C167-35KMB	20 CP	K71	$16 \mathrm{~K} \times 1$ SRAM	
84132	05YX	CY7C167-35LMB	20 R LCC	L51	$16 \mathrm{~K} \times 1$ SRAM	
5962-38294	09MTX	CY7C185A-55KMB	28 CP	K74	8K x 8 SRAM	
5962-38294	23MUX	CY7C185A-55LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-38294	09MXX	CY7C186A-55DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-38294	09MYX	CY7C186A-55LMB	32 R LCC	L55	8K x 8 SRAM	
5962-38294	09MZX	CY7C185A-55DMB	28.3 DIP	D22	8K x 8 SRAM	
5962-38294	11MTX	CY7C185A-45KMB	28 CP	K74	8K x 8 SRAM	
5962-38294	25MUX	CY7C185A-45LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-38294	11MXX	CY7C186A-45DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-38294	11MYX	CY7C186A-45LMB	32 R LCC	L55	8K x 8 SRAM	
5962-38294	11MZX	CY7C185A-45DMB	28.3 DIP	D22	8K x 8 SRAM	
5962-38294	13MTX	CY7C185A-35KMB	28 CP	K74	8K x 8 SRAM	
5962-38294	27MUX	CY7C185A-35LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-38294	13MXX	CY7C186A-35DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-38294	13MYX	CY7C186A-35LMB	32 R LCC	L55	8K x 8 SRAM	
5962-38294	13MZX	CY7C185A-35DMB	28.3 DIP	D22	$8 \mathrm{~K} \times 8$ SRAM	
5962-38294	15MTX	CY7C185A-25KMB	28 CP	K74	8K x 8 SRAM	
5962-38294	29MUX	CY7C185A-25LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-38294	15MXX	CY7C186A-25DMB	28.6 DIP	D16	$8 \mathrm{~K} \times 8$ SRAM	
5962-38294	15MYX	CY7C186A-25LMB	32 R LCC	L55	8K x 8 SRAM	
5962-38294	15MZX	CY7C185A-25DMB	28.3 DIP	D22	8K x 8 SRAM	
5962-38294	17MTX	CY7C185A-20KMB	28 CP	K74	8K x 8 SRAM	
5962-38294	30MUX	CY7C185A-20LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-38294	17MXX	CY7C186A-20DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-38294	17MYX	CY7C186A-20LMB	32 R LCC	L55	8K x 8 SRAM	
5962-38294	17MZX	CY7C185A-20DMB	28.3 DIP	D22	8K x 8 SRAM	
5962-85525	05TX	CY7C185A-55KMB	28 CP	K74	8K x 8 SRAM	
5962-85525	05UX	CY7C185A-55LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-85525	05XX	CY7C186A-55DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-85525	05ZX	CY7C185A-55DMB	28.3 DIP	D22	8K x 8 SRAM	
5962-85525	06TX	CY7C185A-45KMB	28 CP	K74	$8 \mathrm{~K} \times 8$ SRAM	
5962-85525	06UX	CY7C185A-45LMB	28 R TLCC	L54	$8 \mathrm{~K} \times 8$ SRAM	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-85525	06XX		CY7C186A-45DMB	28.6 DIP	D16	8K x 8 SRAM
5962-85525	06ZX	CY7C185A-45DMB	28.3 DIP	D22	8K x 8 SRAM	
5962-85525	07TX	CY7C185A-35KMB	28 CP	K74	8K x 8 SRAM	
5962-85525	07UX	CY7C185A-35LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-85525	07XX	CY7C186A-35DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-85525	07ZX	CY7C185A-35DMB	28.3 DIP	D22	8 Kx 8 SRAM	
5962-86015	01YX	CY7C187A-35DMB	22.3 DIP	D10	64K x 1 SRAM	
5962-86015	01ZX	CY7C187A-35LMB	22 R LCC	L52	64K x 1 SRAM	
5962-86015	02YX	CY7C187AL-35DMB	22.3 DIP	D10	64K x 1 SRAM	
5962-86015	02ZX	CY7C187AL-35LMB	22 R LCC	L52	64K x 1 SRAM	
5962-86015	03YX	CY7C187A-45DMB	22.3 DIP	D10	64K x 1 SRAM	
5962-86015	03ZX	CY7C187A-45LMB	22 R LCC	L52	$64 \mathrm{~K} \times 1$ SRAM	
5962-86015	04YX	CY7C187AL-45DMB	22.3 DIP	D10	64K x 1 SRAM	
5962-86015	04ZX	CY7C187AL-45LMB	22 R LCC	L52	64K x 1 SRAM	
5962-86705	12RX	CY7C168-35DMB	20.3 DIP	D6	4K x 4 SRAM	
5962-86705	12XX	CY7C168-35LMB	20 R LCC	L51	4 Kx 4 SRAM	
5962-86846	01VX	CY7C404-10DMB	18.3 DIP	D4	64×5 FIFO	
5962-86846	012X	CY7C404-10LMB	20 S LCC	L61	64×5 FIFO	
5962-86846	01XX	CY7C404-10KMB	18 CP	K70	64×5 FIFO	
5962-86846	02VX	CY7C404-15DMB	18.3 DIP	D4	64×5 FIFO	
5962-86846	022X	CY7C404-15LMB	20 S LCC	L61	64×5 FIFO	
5962-86846	02XX	CY7C404-15KMB	18 CP	K70	64×5 FIFO	
5962-86846	03VX	CY7C404-25DMB	18.3 DIP	D4	64×5 FIFO	
5962-86846	032X	CY7C404-25LMB	20 S LCC	L61	64×5 FIFO	
5962-86846	03XX	CY7C404-25KMB	18 CP	K70	64×5 FIFO	
5962-86859	15KX	CY7C166AL-45KMB	24 CP	K73	16K x 4 SRAM W/OE	
5962-86859	15LX	CY7C166AL-45DMB	24.3 DIP	D14	16K $\times 4$ SRAM W/OE	
5962-86859	15UX	CY7C166AL-45LMB	28 R LCC	L54	16K x 4 SRAM W/OE	
5962-86859	15XX	CY7C166AL-45LMB	28 R TLCC	L54	16K x 4 SRAM W/OE	
5962-86859	16KX	CY7C166A-45KMB	24 CP	K73	16K $\times 4$ SRAM W/OE	
5962-86859	16LX	CY7C166A-45DMB	24.3 DIP	D14	16K x 4 SRAM W/OE	
5962-86859	16UX	CY7C166A-45LMB	28 R LCC	L54	16K x 4 SRAM W/OE	
5962-86859	16XX	CY7C166A-45LMB	28 R TLCC	L54	16K $\times 4$ SRAM W/OE	
5962-86859	17 KX	CY7C166AL-35KMB	24 CP	K73	16K x 4 SRAM W/OE	
5962-86859	17LX	CY7C166AL-35DMB	24.3 DIP	D14	16K x 4 SRAM W/OE	
5962-86859	17UX	CY7C166AL-35LMB	28 R LCC	L54	16K x 4 SRAM W/OE	
5962-86859	17XX	CY7C166AL-35LMB	28 R TLCC	L54	16K $\times 4$ SRAM W/OE	
5962-86859	18KX	CY7C166A-35KMB	24 CP	K73	16K x 4 SRAM W/OE	
5962-86859	18LX	CY7C166A-35DMB	24.3 DIP	D14	16K x 4 SRAM W/OE	
5962-86859	18UX	CY7C166A-35LMB	28 R LCC	L54	16K x 4 SRAM W/OE	
5962-86859	18XX	CY7C166A-35LMB	28 R TLCC	L54	16K x 4 SRAM W/OE	
5962-86859	21KX	CY7C164AL-45KMB	24 CP	K73	16K x 4 SRAM	
5962-86859	21YX	CY7C164AL-45DMB	22.3 DIP	D10	16K $\times 4$ SRAM	
5962-86859	21ZX	CY7C164AL-45LMB	22 R LCC	L52	16K x 4 SRAM	
5962-86859	22KX	CY7C164A-45KMB	24 CP	K73	16K x 4 SRAM	
5962-86859	$22 Y \mathrm{X}$	CY7C164A-45DMB	22.3 DIP	D10	16K $\times 4$ SRAM	
5962-86859	22ZX	CY7C164A-45LMB	22 R LCC	L52	16K x 4 SRAM	
5962-86859	23KX	CY7C164AL-35KMB	24 CP	K73	16K x 4 SRAM	
5962-86859	23YX	CY7C164AL-35DMB	22.3 DIP	D10	16K x 4 SRAM	
5962-86859	23ZX	CY7C164AL-35LMB	22 R LCC	L52	16K x 4 SRAM	
5962-86859	24KX	CY7C164A-35KMB	24 CP	K73	16K x 4 SRAM	
5962-86859	24YX	CY7C164A-35DMB	22.3 DIP	D10	16K $\times 4$ SRAM	
5962-86859	24ZX	CY7C164A-35LMB	22 R LCC	L52	$16 \mathrm{~K} \times 4$ SRAM	
5962-86873	01XX	CY7C516-42DMB	64 DIP	D30	16×16 Multiplier	
5962-86873	01YX	CY7C516-42LMB	68 S LCC	L81	16×16 Multiplier	
5962-86873	01ZX	CY7C516-42GMB	68 PGA	G68	16×16 Multiplier	
5962-86873	01UX	CY7C516-42FMB	64 Q FP	F90	16×16 Multiplier	
5962-86873	02XX	CY7C516-55DMB	64 DIP	D30	16×16 Multiplier	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[11}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-86873	02YX		CY7C516-55LMB	68 S LCC	L81	16×16 Multiplier
5962-86873	02ZX	CY7C516-55GMB	68 PGA	G68	16×16 Multiplier	
5962-86873	02UX	CY7C516-55FMB	64 Q FP	F90	16×16 Multiplier	
5962-86873	03XX	CY7C516-75DMB	64 DIP	D30	16×16 Multiplier	
5962-86873	03YX	CY7C516-75LMB	68 S LCC	L81	16×16 Multiplier	
5962-86873	03ZX	CY7C516-75GMB	68 PGA	G68	16×16 Multiplier	
5962-86873	03UX	CY7C516-75FMB	64 Q FP	F90	16×16 Multiplier	
5962-86875	03XX	CY7C130-55DMB	48.6 DIP	D26	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	03YX	CY7C130-55LMB	48 LCC	L68	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	03ZX	CY7C131-55LMB	52 LCC	L69	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	04XX	CY7C130-45DMB	48.6 DIP	D26	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	04YX	CY7C130-45LMB	48 LCC	L68	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	04ZX	CY7C131-45LMB	52 LCC	169	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	11XX	CY7C140-55DMB	48.6 DIP	D26	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	11YX	CY7C140-55LMB	48 LCC	L68	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	11ZX	CY7C141-55LMB	52 LCC	L69	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	12XX	CY7C140-45DMB	48.6 DIP	D26	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	12YX	CY7C140-45LMB	48 LCC	L68	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	12ZX	CY7C141-45LMB	52 LCC	L69	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	17XX	CY7C130-35DMB	48.6 DIP	D26	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	17YX	CY7C130-35LMB	48 LCC	L68	1K x 8 Dual-Port SRAM	
5962-86875	17ZX	CY7C131-35LMB	52 LCC	L69	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	18XX	CY7C140-35DMB	48.6 DIP	D26	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	18YX	CY7C140-35LMB	48 LCC	168	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	18ZX	CY7C141-35LMB	52 LCC	169	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-87515	05KX	CY7C261-45TMB	24 CP	773	$8 \mathrm{~K} \times 8$ UV IEPR()M	
5962-87515	05LX	CY7C261-45WMB	24.3 DIP	W14	8 Kx 8 UV EPROM	
5962-87515	053X	CY7C261-45QMB	28 S LCC	Q64	8K x 8 UV EPROM	
5962-87515	06KX	CY7C261-55TMB	24 CP	T73	8 Kx 8 UV EPROM	
5962-87515	06LX	CY7C261-55WMB	24.3 DIP	W14	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	063X	CY7C261-55QMB	28 S LCC	Q64	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87529	01KX	CY7C245-45TMB	24 CP	T73	$2 \mathrm{~K} \times 8$ Registered UV PROM	
5962-87529	01LX	CY7C245-45WMB	24.3 DIP	W14	2K x 8 Registered UV PROM	
5962-87529	013X	CY7C245-45QMB	28 S LCC	Q64	2K x 8 Registered UV PROM	
5962-87529	02KX	CY7C245-35TMB	24 CP	T73	2K x 8 Registered UV PROM	
5962-87529	02LX	CY7C245-35WMB	24.3 DIP	W14	$2 \mathrm{~K} \times 8$ Registered UV PROM	
5962-87529	023X	CY7C245-35QMB	28 S LCC	Q64	$2 \mathrm{~K} \times 8$ Registered UV PROM	
5962-87539	01KX	PALC22V10-25TMB	24 CP	T73	24-Pin CMOS UV E PLD	
5962-87539	01LX	PALC22V10-25WMB	24.3 DIP	W14	24-Pin CMOS UV E PLD	
5962-87539	013X	PALC22V10-25QMB	28 S LCC	Q64	24-Pin CMOS UV E PLD	
5962-87539	02KX	PALC22V10-30TMB	24 CP	T73	24-Pin CMOS UV E PLD	
5962-87539	02LX	PALC22V10-30WMB	24.3 DIP	W14	24-Pin CMOS UV E PLD	
5962-87539	023X	PALC22V10-300MB	28 S LCC	Q64	24-Pin CMOS UV E PLD	
5962-87539	03KX	PALC22V10-40TMB	24 CP	T73	24-Pin CMOS UV E PLD	
5962-87539	03LX	PALC22V10-40WMB	24.3 DIP	W14	24-Pin CMOS UV E PLD	
5962-87539	033X	PALC22V10-40QMB	28 S LCC	Q64	24-Pin CMOS UV E PLD	
5962-87539	04KX	PALC22V10B-20TMB	24 CP	T73	24-PIN CMOS UV E PLD	
5962-87539	04LX	PALC22V10B-20WMB	24.3 DIP	W14	24-PIN CMOS UV E PLD	
5962-87539	043X	PALC22V10B-20QMB	28 S LCC	Q64	24-PIN CMOS UV E PLD	
5962-87650	01KX	CY7C291-50TMB	24 CP	T73	2K x 8 UV EPROM	
5962-87650	01LX	CY7C291-50WMB	24.3 DIP	W14	2K x 8 UVEPROM	
5962-87650	013X	CY7C291-500MB	28 S LCC	Q64	2K x 8 UVEPROM	
5962-87650	03KX	CY7C291-35TMB	24 CP	T73	2K x 8 UV EPROM	
5962-87650	03LX	CY7C291-35WMB	24.3 DIP	W14	2K x 8 UV EPROM	
5962-87650	033X	CY7C291-35QMB	28 S LCC	Q64	2K x 8 UVEPROM	
5962-87651	01JX	CY7C282-45DMB	24.6 DIP	D12	$1 \mathrm{~K} \times 8$ PROM	
5962-87651	01KX	CY7C281-45KMB	24 CP	K73	$1 \mathrm{~K} \times 8$ PROM	
5962-87651	01LX	CY7C281-45DMB	24.3 DIP	D14	$1 \mathrm{~K} \times 8$ PROM	
5962-87651	013X	CY7C281-45LMB	28 S LCC	164	$1 \mathrm{~K} \times 8$ PROM	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{11}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		ProductDescription	
		Description	Type			
5962-87686	01XX		CY7C517-42DMB	64 DIP	D30	16×16 Multiplier
5962-87686	01YX	CY7C517-42LMB	68 S LCC	L81	16×16 Multiplier	
5962-87686	01ZX	CY7C517-42GMB	68 PGA	G68	16×16 Multiplier	
5962-87686	01UX	CY7C517-42FMB	64 Q FP	F90	16×16 Multiplier	
5962-87686	02XX	CY7C517-55DMB	64 DIP	D30	16×16 Multiplier	
5962-87686	02YX	CY7C517-55LMB	68 S LCC	L81	16×16 Multiplier	
5962-87686	02ZX	CY7C517-55GMB	68 PGA	G68	16×16 Multiplier	
5962-87686	02UX	CY7C517-55FMB	64 Q FP	F90	16×16 Multiplier	
5962-87686	03XX	CY7C517-75DMB	64 DIP	D30	16×16 Multiplier	
5962-87686	03YX	CY7C517-75LMB	68 S LCC	L81	16×16 Multiplier	
5962-87686	03ZX	CY7C517-75GMB	68 PGA	G68	16×16 Multiplier	
5962-87686	03UX	CY7C517-75FMB	64 Q FP	F90	16×16 Multiplier	
5962-87708	01QX	CY2910ADMB	40.6 DIP	D18	Microprogram Controller	
5962-87708	01UX	CY2910ALMB	44 LCC	L67	Microprogram Controller	
5962-87708	04QX	CY7C910-51DMB	40.6 DIP	D18	Microprogram Controller	
5962-87708	04UX	CY7C910-51LMB	44 LCC	L67	Microprogram Controller	
5962-87708	05QX	CY7C910-46DMB	40.6 DIP	D18	Microprogram Controller	
5962-87708	05UX	CY7C910-46LMB	44 LCC	L67	Microprogram Controller	
5962-88518	01LX	CY7C225-30DMB	24.3 DIP	D14	512×8 Registered PROM	
5962-88518	013X	CY7C225-30LMB	28 S LCC	L64	512×8 Registered PROM	
5962-88518	02LX	CY7C225-35DMB	24.3 DIP	D14	512×8 Registered PROM	
5962-88518	023X	CY7C225-35LMB	28 S LCC	L64	512×8 Registered PROM	
5962-88518	03LX	CY7C225-40DMB	24.3 DIP	D14	512×8 Registered PROM	
5962-88518	033X	CY7C225-40LMB	28 S LCC	L64	512×8 Registered PROM	
5962-88535	010X	CY7C901-32DMB	40.6 DIP	D18	4-Bit Slice	
5962-88535	01XX	CY7C901-32LMB	44 LCC	L67.	4-Bit Slice	
5962-88535	01YX	CY7C901-32FMB	42 FP	F76*	4-Bit Slice	
5962-88535	02QX	CY7C901-27DMB	40.6 DIP	D18	4-Bit Slice	
5962-88535	02XX	CY7C901-27LMB	44 LCC	L67	4-Bit Slice	
5962-88535	02YX	CY7C901-27FMB	42 FP	F76	4-Bit Slice	
5962-88587	01VX	CY7C147-45DMB	18.3 DIP	D4	4K $\times 1$ SRAM	
5962-88587	01XX	CY7C147-45KMB	18 CP	K70	4K x 1 SRAM	
5962-88587	01YX	CY7C147-45LMB	18 R LCC	L50	4K x 1 SRAM	
5962-88587	02VX	CY7C147-35DMB	18.3 DIP	D4	4K x 1 SRAM	
5962-88587	02XX	CY7C147-35KMB	18 CP	K70	4Kx 1 SRAM	
5962-88587	02YX	CY7C147-35LMB	18 R LCC	L50	4K x 1 SRAM	
5962-88588	01KX	CY7C150-35KMB	24 CP	K73	1K x 4 SRAM with Reset	
5962-88588	01LX	CY7C150-35DMB	24.3 DIP	D14	1K x 4 SRAM with Reset	
5962-88588	01XX	CY7C150-35LMB	28 R LCC	L54	1Kx 4 SRAM with Reset	
5962-88588	02KX	CY7C150-25KMB	24 CP	K73	1K x 4 SRAM with Reset	
5962-88588	02LX	CY7C150-25DMB	24.3 DIP	D14	1K $\times 4$ SRAM with Reset	
5962-88588	02XX	CY7C150-25LMB	28 R LCC	L54	1K x 4 SRAM with Reset	
5962-88588	03KX	CY7C150-15KMB	24 CP	K73	1K $\times 4$ SRAM with Reset	
5962-88588	03LX	CY7C150-15DMB	24.3 DIP	D14	1K x 4 SRAM with Reset	
5962-88588	03XX	CY7C150-15LMB	28 R LCC	L54	1K $\times 4$ SRAM with Reset	
5962-88594	02WX	CY7C122-35DMB	22.4 DIP	D8	256×4 SRAM	
5962-88594	02KX	CY7C122-35KMB	24 CP	K73	256×4 SRAM	
5962-88594	03WX	CY7C122-25DMB	22.4 DIP	D8	256×4 SRAM	
5962-88594	03KX	CY7C122-25KMB	24 CP	K73	256×4 SRAM	
5962-88612	01XX	CY7C9116-99DMB	52.8 DIP	D28	16-Bit Microprogrammed ALU	
5962-88612	01YX	CY7C9116-99FMB	64 FP	F90	16-Bit Microprogrammed ALU	
5962-88612	01UX	CY7C9116-99LMB	52 S LCC	L69	16-Bit Microprogrammed ALU	
5962-88612	02XX	CY7C9116-75DMB	52.8 DIP	D28	16-Bit Microprogrammed ALU	
5962-88612	02YX	CY7C9116-75FMB	64 FP	F90	16-Bit Microprogrammed ALU	
5962-88612	02UX	CY7C9116-75LMB	52 S LCC	L69	16-Bit Microprogrammed ALU	
5962-88612	03XX	CY7C9116-65DMB	52.8 DIP	D28	16-Bit Microprogrammed ALU	
5962-88612	03YX	CY7C9116-65FMB	64 FP	F90	16-Bit Microprogrammed ALU	
5962-88612	03UX	CY7C9116-65LMB	52 S LCC	L69	16-Bit Microprogrammed ALU	
5962-88612	04XX	CY7C9116-40DMB	52.8 DIP	D28	16-Bit Microprogrammed ALU	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-88612	04 YX		CY7C9116-40FMB	64 FP	F90	16-Bit Microprogrammed ALU
5962-88612	04UX	CY7C9116-40LMB	52 S LCC	L69	16-Bit Microprogrammed ALU	
5962-88636	01KX	CY7C235-40KMB	24 CP	K73	$1 \mathrm{~K} \times 8$ Registered PROM	
5962-886.36	01LX	CY7C235-40DMB	24.3 DIP	D14	1K x 8 Registered PROM	
5962-88636	013X	CY7C235-40LMB	28 S LCC	L64	1K x 8 Registered PROM	
5962-88636	02KX	CY7C235-30KMB	24 CP	K73	$1 \mathrm{~K} \times 8$ Registered PROM	
5962-88636	02LX	CY7C235-30DMB	24.3 DIP	D14	1K x 8 Registered PROM	
5962-88636	023X	CY7C235-30LMB	28 S LCC	164	$1 \mathrm{~K} \times 8$ Registered PROM	
5962-88637	01KX	PLDC20G10-40KMB	24 CP	K73	Generic CMOS PLD	
5962-88637	01LX	PLDC20G10-40DMB	24.3 DIP	D14	Generic CMOS PLD	
5962-88637	013X	PLDC20G10-40LMB	28 S LCC	L64	Generic CMOS PLD	
5962-88637	02KX	PLDC20G10-30KMB	24 CP	K73	Generic CMOS PLD	
5962-88637	02LX	PLDC20G10-30DMB	24.3 DIP	D14	Generic CMOS PLD	
5962-88637	023X	PLDC20G10-30LMB	28 S LCC	L64	Generic CMOS PLD	
5962-88662	03UX	CY7C199-55LMB	28 R LCC	L54	32K x 8 SRAM	
5962-88662	03XX	CY7C198-55DMB	28.6 DIP	D16	32K x 8 SRAM	
5962-88662	03YX	CY7C198-55LMB	32 R LCC	L55	$32 \mathrm{~K} \times 8$ SRAM	
5962-88662	04UX	CY7C199-45LMB	28 R LCC	L54	$32 \mathrm{~K} \times 8$ SRAM	
5962-88662	04XX	CY7C198-45DMB	28.6 DIP	D16	$32 \mathrm{~K} \times 8$ SRAM	
5962-88662	04YX	CY7C198-45LMB	32 R LCC	L.55	32K x 8 SRAM	
5962-88669	02UX	CY7C429-65KMB	28 CP	K74	2K x 9 FIFO	
5962-88669	02XX	CY7C428-65DMB	28.6 DIP	D16	2K x 9 FIFO	
5962-88669	02YX	CY7C429-65DMB	28.3 DIP	D22	$2 \mathrm{~K} \times 9 \mathrm{FIFO}$	
5962-88669	02ZX	CY7C429-65LMB	32 R LCC	L55	2K x 9 FIF	
5962-88669	04UX	CY7C429-40KMB	28 CP	K74	2K x 9 FIHO	
5962-88669	04XX	CY7C428-40DMB	28.6 DIP	D16	$2 \mathrm{~K} \times 9 \mathrm{IIFO}$	
5962-88669	04YX	CY7C429-40DMB	28.3 DIP	D22	2K x 9 FIFO	
5962-88669	04ZX	CY7C429-40LMB	32 R LCC	L55	2Kx9 FIFO	
5962-88669	05UX	CY7C429-30KMB	28 CP	K74	2K x 9 FIFO	
5962-88669	05XX	CY7C428-30DMB	28.6 DIP	D16	2K x 9 FIFO	
5962-88669	05YX	CY7C429-30DMB	28.3 DIP	D22	2Kx9 FIFO	
5962-88669	05ZX	CY7C429-30LMB	32 R LCC	L55	2K x 9 FIFO	
5962-88670	01KX	PALC22V10-25KMB	24 CP	K73	24-Pin CMOS PLD	
5962-88670	01LX	PALC22V10-25DMB	24.3 DIP	D14	24-Pin CMOS PLD	
5962-88670	013X	PALC22V10-25LMB	28 S LCC	L64	24-Pin CMOS PLD	
5962-88670	02KX	PALC22V10-30KMB	24 CP	K73	24-Pin CMOS PLD	
5962-88670	02LX	PALC22V10-30DMB	24.3 DIP	D14	24-Pin CMOS PLD	
5962-88670	023X	PALC22V10-30LMB	28 S LCC	L64	24-Pin CMOS PLD	
5962-88670	03KX	PALC22V10-40KMB	24 CP	K73	24-Pin CMOS PLD	
5962-88670	03LX	PALC22V10-40DMB	24.3 DIP	D14	24-Pin CMOS PLD	
5962-88670	033X	PALC22V10-40LMB	28 S LCC	L64	24-Pin CMOS PLD	
5962-88678	01RX	PALC16L8-40WMB	20.3 DIP	W6	20-Pin CMOS UV E PLD	
5962-88678	\cdots	PALC16L8-40QMB	20 S LCC	Q61	20-Pin CMOS UV E PLD	
5962-88678	02RX	PALC16R8-40WMB	20.3 DIP	W6	20-Pin CMOS UV E PLD	
5962-88678	02XX	PALC16R8-40QMB	20 S LCC	Q61	20-Pin CMOS UV E PLD	
5962-88678	03RX	PALC16R6-40WMB	20.3 DIP	W6	20-Pin CMOS UV E PLD	
5962-88678	03XX	PALC16R6-40QMB	20 S LCC	Q61	20-Pin CMOS UV E PLD	
5962-88678	04RX	PALC16R4-40WMB	20.3 DIP	W6	20-Pin CMOS UV E PLD	
5962-88678	04XX	PALC16R4-40QMB	20 S LCC	Q61	20-Pin CMOS UV E PLD	
5962-88678	05RX	PALC16L8-30WMB	20.3 DIP	W6	20-Pin CMOS UV E PLD	
5962-88678	05XX	PALC16L8-30QMB	20 S LCC	Q61	20-Pin CMOS UV E PLD	
5962-88678	06RX	PALC16R8-30WMB	20.3 DIP	W6	20-Pin CMOS UV E PLD	
5962-88678	06XX	PALC16R8-30QMB	20 S LCC	Q61	20-Pin CMOS UV E PLD	
5962-88678	07RX	PALC16R6-30WMB	20.3 DIP	W6	20-Pin CMOS UV E PLD	
5962-88678	07XX	PALC16R6-30QMB	20 S LCC	Q61	20-Pin CMOS UV E PLD	
5962-88678	08RX	PALC16R4-30WMB	20.3 DIP	W6	20-Pin CMOS UV E PLD	
5962-88678	08XX	PALC16R4-30QMB	20 S LCC	Q61	20-Pin CMOS UV E PLD	
5962-88678	09RX	PALC16L8-20WMB	20.3 DIP	W6	20-Pin CMOS UV E PLD	
5962-88678	09XX	PALC16L8-20QMB	20 S LCC	Q61	20-Pin CMOS UV E PLD	
5962-88678	10RX	PALC16R8-20WMB	20.3 DIP	W6	20-Pin CMOS UV E PLD	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{13}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-88678	10XX		PALC16R8-20QMB	20 S LCC	Q61	20-Pin CMOS UV E PLD
5962-88678	11RX	PALC16R6-20WMB	20.3 DIP	W6	20-Pin CMOS UV E PLD	
5962-88678	11XX	PALC16R6-20QMB	20 S LCC	Q61	20-Pin CMOS UV E PLD	
5962-88678	12RX	PALC16R4-20WMB	20.3 DIP	W6	20-Pin CMOS UV E PLD	
5962-88678	12XX	PALC16R4-20QMB	20 S LCC	Q61	20-Pin CMOS UV E PLD	
5962-88681	01LX	CY7C194-35DMB	24.3 DIP	D14	64K x 4 SRAM	
5962-88681	01XX	CY7C194-35LMB	28 R LCC	L54	64K x 4 SRAM	
5962-88681	02LX	CY7C194-45DMB	24.3 DIP	D14	64K x 4 SRAM	
5962-88681	02XX	CY7C194-45LMB	28 R LCC	L54	64K x 4 SRAM	
5962-88713	01RX	PALC16L8-40DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	01SX	PALC16L8-40KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	01XX	PALC16L8-40LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	02RX	PALC16R8-40DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	02SX	PALC16R8-40KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	02XX	PALC16R8-40LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	03RX	PALC16R6-40DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	03SX	PALC16R6-40KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	03XX	PALC16R6-40LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	04RX	PALC16R4-40DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	04SX	PALC16R4-40KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	04XX	PALC16R4-40LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	05RX	PALC16L8-30DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	05SX	PALC16L8-30KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	05XX	PALC16L8-30LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	06RX	PALC16R8-30DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	06SX	PALC16R8-30KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	06XX	PALC16R8-30LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	07RX	PALC16R6-30DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	07SX	PALC16R6-30KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	07XX	PALC16R6-30LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	08RX	PALC16R4-30DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	08SX	PALC16R4-30KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	08XX	PALC16R4-30LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	09RX	PALC16L8-20DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	09SX	PALC16L8-20KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	09XX	PALC16L8-20LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	10RX	PALC16R8--20DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	10SX	PALC16R8-20KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	10XX	PALC16R8-20LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	11RX	PALC16R6-20DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	11SX	PALC16R6-20KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	11XX	PALC16R6-20LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	12RX	PALC16R4-20DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	12SX	PALC16R4-20KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	12XX	PALC16R4-20LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88725	01LX	CY7C197-35DMB	24.3 DIP	D14	$256 \mathrm{~K} \times 1$ SRAM	
5962-88725	01XX	CY7C197-35LMB	28 R LCC	L54	$256 \mathrm{~K} \times 1$ SRAM	
5962-88725	02LX	CY7C197-45DMB	24.3 DIP	D14	256K x 1 SRAM	
5962-88725	02XX	CY7C197-45LMB	28 R LCC	L54	$256 \mathrm{~K} \times 1$ SRAM	
5962-88733	01XX	CY7C510-55DMB	64 DIP	D30	$16 \times 16 \mathrm{MAC}$	
5962-88733	01YX	CY7C510-55LMB	68 S LCC	L81	$16 \times 16 \mathrm{MAC}$	
5962-88733	01ZX	CY7C510-55GMB	68 PGA	G68	$16 \times 16 \mathrm{MAC}$	
5962-88733	02XX	CY7C510-65DMB	64 DIP	D30	$16 \times 16 \mathrm{MAC}$	
5962-88733	02YX	CY7C510-65LMB	68 S LCC	L81	$16 \times 16 \mathrm{MAC}$	
5962-88733	02ZX	CY7C510-65GMB	68 PGA	G68	$16 \times 16 \mathrm{MAC}$	
5962-88733	03XX	CY7C510-75DMB	64 DIP	D30	$16 \times 16 \mathrm{MAC}$	
5962-88733	03YX	CY7C510-75LMB	68 S LCC	L81	$16 \times 16 \mathrm{MAC}$	
5962-88733	03ZX	CY7C510-75GMB	68 PGA	G68	$16 \times 16 \mathrm{MAC}$	
5962-88734	02JX	CY7C292A-45DMB	24.6 DIP	D12	$2 \mathrm{~K} \times 8$ EPROM	
5962-88734	02KX	CY7C291A-45KMB	24 CP	K73	$2 \mathrm{~K} \times 8$ EPROM	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[11}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-88734	02LX		CY7C291A-45DMB	24.3 DIP	D14	2Kx 8 EPROM
5962-88734	023X	CY7C291A-45LMB	28 S LCC	L64	2 Kx 8 EPROM	
5962-88734	03JX	CY7C292A-35DMB	24.6 DIP	D12	$2 \mathrm{~K} \times 8$ EPROM	
5962-88734	03KX	CY7C291A-35KMB	24 CP	K73	2K x 8 EPROM	
5962-88734	03LX	CY7C291A-35DMB	24.3 DIP	D14	2K x 8 EPROM	
5962-88734	033X	CY7C291A-35LMB	28 S LCC	L64	$2 \mathrm{~K} \times 8$ EPROM	
5962-88734	04JX	CY7C292A-25DMB	24.6 DIP	D12	2K x 8 EPROM	
5962-88734	04KX	CY7C291A-25KMB	24 CP	K73	2K x 8 EPROM	
5962-88734	04LX	CY7C291A-25DMB	24.3 DIP	D14	$2 \mathrm{~K} \times 8$ EPROM	
5962-88734	043X	CY7C291A-25LMB	28 S LCC	L64	2K x 8 EPROM	
5962-88735	01KX	CY7C245-45KMB	24 CP	K73	2K x 8 Registered PROM	
5962-88735	01LX	CY7C245-45DMB	24.3 DIP	D14	2K x 8 Registered PROM	
5962-88735	013X	CY7C245-45LMB	28 S LCC	L64	2K x 8 Registered PROM	
5962-88735	02KX	CY7C245-35KMB	24 CP	K73	2K x 8 Registered PROM	
5962-88735	02LX	CY7C245-35DMB	24.3 DIP	D14	2K x 8 Registered PROM	
5962-88735	023X	CY7C245-35LMB	28 S LCC	L64	2K x 8 Registered PROM	
5962-88735	03KX	CY7C245A-35KMB	24 CP	K73	2K x 8 Registered PROM	
5962-88735	03LX	CY7C245A-35DMB	24.3 DIP	D14	2K x 8 Registered PROM	
5962-88735	033X	CY7C245A-35LMB	28 S LCC	L64	2K x 8 Registered PROM	
5962-88735	04KX	CY7C245A-25KMB	24 CP	K73	2K x 8 Registered PROM	
5962-88735	04LX	CY7C245A-25DMB	24.3 DIP	D14	2K x 8 Registered PROM	
5962-88735	043X	CY7C245A-25LMB	28 S LCC	L64	$2 \mathrm{~K} \times 8$ Registered PROM	
5962-89517	01XX	CY7C9101-45DMB	64 DIP	D30	16-Bit Slice	
5962-89517	01YX	CY7C9101-45LMB	68 S LCC	L81	16-Bit Slice	
5962-89517	01ZX	CY7C9101-45GMB	68 PGA	G68	16-Bit Slice	
5962-89517	01UX	CY7C9101-45FMB	64 Q FP	F90	16-Bit Slice	
5962-89517	02XX	CY7C9101-35DMB	64 DIP	D30	16-Bit Slice	
5962-89517	02YX	CY7C9101-35LMB	68 S LCC	L81	16-Bit Slice	
5962-89517	02ZX	CY7C9101-35GMB	68 PGA	G68	16-Bit Slice	
5962-89517	02UX	CY7C9101-35FMB	64 Q FP	F90	16-Bit Slice	
5962-89523	01EX	CY7C403-10DMB	16.3 DIP	D2	64×4 FIFO	
5962-89523	012X	CY7C403-10LMB	20 S LCC	L61	64×4 FIFO	
5962-89523	02EX	CY7C403-15DMB	16.3-DIP	D2	64×4 FIFO	
5962-89523	022X	CY7C403-15LMB	20 S LCC	L61	64×4 FIFO	
5962-89537	01UX	CY7C251-65QMB	32 R LCC	Q55	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89537	01YX	CY7C251-65WMB	28.3 DIP	W22	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89537	01ZX	CY7C251-65TMB	28 CP	T74	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89537	02UX	CY7C251-55QMB	32 R LCC	Q55	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89537	02YX	CY7C251-55WMB	28.3 DIP	W22	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89537	02ZX	CY7C251-55TMB	28 CP	T74	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89538	01UX	CY7C254-65QMB	32 R LCC	Q55	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89538	01XX	CY7C254-65WMB	28.6 DIP	W16	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89538	01ZX	CY7C254-65TMB	28 CP	T74	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89538	02UX	CY7C254-55QMB	32 R LCC	Q55	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89538	02XX	CY7C254-55WMB	28.6 DIP	W16	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89538	02ZX	CY7C254-55TMB	28 CP	T74	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89546	01XX	CY7C330-28WMB	28.3 DIP	W22	PLD State Machine	
5962-89546	01YX	CY7C330-28TMB	28 CP	T74	PLD State Machine	
5962-89546	013X	CY7C330-28QMB	28 S LCC	Q64	PLD State Machine	
5962-89546	02XX	CY7C330-40WMB	28.3 DIP	W22	PLD State Machine	
5962-89546	02YX	CY7C330-40TMB	28 CP	T74	PLD State Machine	
5962-89546	023X	CY7C330-40QMB	28 S LCC	Q64	PLD State Machine	
5962-89546	03XX	CY7C330-50WMB	28.3 DIP	W22	PLD State Machine	
5962-89546	03YX	CY7C330-50TMB	28 CP	T74	PLD State Machine	
5962-89546	033X	CY7C330-50QMB	28 S LCC	Q64	PLD State Machine	
5962-89661	01XX	CY7C409A-15DMB	28.3 DIP	D22	64×9 FIFO	
5962-89661	01YX	CY7C409A-15KMB	28 CP	K74	64×9 FIFO	
5962-89661	013X	CY7C409A-15LMB	28 S LCC	L64	64×9 FIFO	
5962-89661	02XX	CY7C409A-25DMB	28.3 DIP	D22	64×9 FIFO	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description		
		Description	Type				
5962-89661	02YX		CY7C409A-25KMB	28 CP	K74	64×9 FIFO	
5962-89661	023X	CY7C409A-25LMB	28 S LCC	L64	64×9 FIFO		
5962-89664	01XX	CY7C408A-15DMB	28.3 DIP	D22	64×8 FIFO		
5962-89664	01YX	CY7C408A-15KMB	28 CP	K74	64×8 FIFO		
5962-89664	013X	CY7C408A-15LMB	28 S LCC	L64	64×8 FIFO		
5962-89664	02XX	CY7C408A-25DMB	28.3 DIP	D22	64×8 FIFO		
5962-89664	02YX	CY7C408A-25KMB	28 CP	K74	64×8 FIFO		
5962-89664	023X	CY7C408A-25LMB	28 S LCC	L64	64×8 FIFO		
5962-89690	01JX	CY6116A-25DMB	24.6 DIP	D12	2K x 8 SRAM		
5962-89690	01KX	CY7C128A-25KMB	24 CP	K73	2K x 8 SRAM		
5962-89690	01LX	CY7C128A-25DMB	24.3 DIP	D14	2K x 8 SRAM		
5962-89690	01XX	CY6117A-25LMB	32 R LCC	L55	2K x 8 SRAM		
5962-89690	01YX	CY7C128A-25LMB	24 R LCC	L53	2K x 8 SRAM		
5962-89690	013X	CY6116A-25LMB	28 S LCC	L64	2K x 8 SRAM		
5962-89690	02JX	CY6116A-20DMB	24.6 DIP	D12	2K x 8 SRAM		
5962-89690	02KX	CY7C128A-20KMB	24 CP	K73	2K x 8 SRAM		
5962-89690	02LX	CY7C128A-20DMB	24.3 DIP	D14	2K x 8 SRAM		
5962-89690	02XX	CY6117A-20LMB	32 R LCC	L55	2K x 8 SRAM		
5962-89690	02YX	CY7C128A-20LMB	24 R LCC	L53	2K x 8 SRAM		
5962-89690	023X	CY6116A-20LMB	28 S LCC	L64	2K x 8 SRAM		
5962-89691	02TX	CY7C185A-25KMB	28 CP	K74	$8 \mathrm{~K} \times 8 \mathrm{SRAM}$		
5962-89691	02UX	CY7C185A-25LMB	28 R TLCC	L54	8K x 8 SRAM		
5962-89691	02XX	CY7C186A-25DMB	28.6 DIP	D16	8K x 8 SRAM		
5962-89691	02ZX	CY7C185A-25DMB	28.3 DIP	D22	8K x 8 SRAM		
5962-89691	04TX	CY7C185A-20KMB	28 CP	K74	8 K x 8 SRAM		
5962-89691	04UX	CY7C185A-20LMB	28 R TLCC	L54	$8 \mathrm{~K} \times 8$ SRAM		
5962-89691	04XX	CY7C186A-20DMB	28.6 DIP	D16	8K x 8 SRAM		
5962-89691	04ZX	CY7C185A-20DMB	28.3 DIP	D22	8K x 8 SRAM		
5962-89692	02KX	CY7C164A-25KMB	24 CP	K73	16K x 4 SRAM		
5962-89692	02YX	CY7C164A-25DMB	22.3 DIP	D10	16K x 4 SRAM		
5962-89692	02ZX	CY7C164A-25LMB	22 R LCC	L52	16K x 4 SRAM		
5962-89692	04KX	CY7C164A-20KMB	24 CP	K73	16K x 4 SRAM		
5962-89692	04YX	CY7C164A-20DMB	22.3 DIP	D10	16K x 4 SRAM		
5962-89692	04ZX	CY7C164A-20LMB	22 R LCC	L52	$16 \mathrm{~K} \times 4$ SRAM		
5962-89694	01EX	CY7C190-25DMB	16.3 DIP	D2	16×4 SRAM		
5962-89694	01FX	CY7C190-25KMB	16 CP	K69	16×4 SRAM		
5962-89694	01XX	CY7C190-25LMB	20 S LCC	L61	16×4 SRAM		
5962-89855	01MXX	CY7C331-40DMB	28.3 DIP	D22	Asynchronous PLD		
5962-89855	01MYX	CY7C331-40KMB	28 CP	K74	Asynchronous PLD		
5962-89855	01MZX	CY7C331-40YMB	28 S JCQ	Y64	Asynchronous PLD		
5962-89855	01M3X	CY7C331-40LMB	28 S LCC	L64	Asynchronous PLD		
5962-89855	02MXX	CY7C331-30DMB	28.3 DIP	D22	Asynchronous PLD		
5962-89855	02MYX	CY7C331-30KMB	28 CP	K74	Asynchronous PLD		
5962-89855	02MZX	CY7C331-30YMB	28 S JCQ	Y64	Asynchronous PLD		
5962-89855	02M3X	CY7C331-30LMB	28 S LCC	L64	Asynchronous PLD		
5962-89855	03MXX	CY7C331-25DMB	28.3 DIP	D22	Asynchronous PLD		
5962-89855	03MYX	CY7C331-25KMB	28 CP	K74	Asynchronous PLD		
5962-89855	03MZX	CY7C331-25YMB	28 S JCQ	Y64	Asynchronous PLD		
5962-89855	03M3X	CY7C331-25LMB	28 S LCC	L64	Asynchronous PLD		
5962-89863	02UX	CY7C421-65KMB	28 CP	K74	512×9 FIFO		
5962-89863	02XX	CY7C420-65DMB	28.6 DIP	D16	512×9 FIFO		
5962-89863	02YX	CY7C421-65DMB	28.3 DIP	D22	512×9 FIFO		
5962-89863	02ZX	CY7C421-65LMB	32 R LCC	L55	512×9 FIFO		
5962-89863	03UX	CY7C421-50KMB	28 CP	K74	512×9 FIFO		
5962-89863	03XX	CY7C420-50DMB	28.6 DIP	D16	512×9 FIFO		
5962-89863	03YX	CY7C421-50DMB	28.3 DIP	D22	512×9 FIFO		
5962-89863	03ZX	CY7C421-50LMB	32 R LCC	L55	512×9 FIFO		
5962-89863	04UX	CY7C421-40KMB	28 CP	K74	512×9 FIFO		
5962-89863	04XX	CY7C420-40DMB	28.6 DIP	D16	512×9 FIFO		

Military Ordering Information
DESC SMD (Standardized Military Drawing) Approvalsil (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-89863	04YX		CY7C421-40DMB	28.3 DIP	D22	512×9 FIFO
5962-89863	04ZX	CY7C421-40LMB	32 R LCC	L55	512×9 FIFO	
5962-89863	05UX	CY7C421-30KMB	28 CP	K74	512×9 FIFO	
5962-89863	05XX	CY7C420-30DMB	28.6 DIP	D16	512×9 FIFO	
5962-89863	05YX	CY7C421-30DMB	28.3 DIP	D22	512×9 FIFO	
5962-89863	05ZX	CY7C421-30LMB	32 R LCC	L55	512×9 FIFO	
5962-89863	06UX	CY7C421-25KMB	28 CP	K74	512×9 FIFO	
5962-89863	06XX	CY7C420-25DMB	28.6 DIP	D16	512×9 FIFO	
5962-89863	06YX	CY7C421-25DMB	28.3 DIP	D22	512×9 FIFO	
5962-89863	06ZX	CY7C421-25LMB	32 R LCC	L55	512×9 FIFO	
5962-89892	02KX	CY7C166A-25KMB	24 CP	K73	16K x 4 SRAM w/OE	
5962-89892	02LX	CY7C166A-25DMB	24.3 DIP	D14	16K x 4 SRAM w/OE	
5962-89892	02XX	CY7C166A-25LMB	28 R LCC	L54	16K x 4 SRAM w/OE	
5962-89892	02YX	CY7C166A-25LMB	28 R TLCC	L54	16K x 4 SRAM w/OE	
5962-89892	04KX	CY7C166A-20KMB	24 CP	K73	16K x 4 SRAM w/OE	
5962-89892	04LX	CY7C166A-20DMB	24.3 DIP	D14	16K x 4 SRAM w/OE	
5962-89892	04XX	CY7C166A-20LMB	28 R LCC	L54	16K x 4 SRAM w/OE	
5962-89892	04YX	CY7C166A-20LMB	28 R TLCC	L54	16K x 4 SRAM w/OE	
5962-90754	01MXX	CY7C331-40WMB	28.3 DIP	W22	Asynchronous UV PLD	
5962-90754	01MYX	CY7C331-40TMB	28 CP	T74	Asynchronous UV PLD	
5962-90754	01MZX	CY7C331-40HMB	28 S JCQ	H64	Asynchronous UV PLD	
5962-90754	01M3X	CY7C331-400MB	28 S LCC	Q64	Asynchronous UV PLD	
5962-90754	02MXX	CY7C331-30WMB	28.3 DIP	W22	Asynchronous UV PLD	
5962-90754	02MYX	CY7C331-30TMB	28 CP	T74	Asynchronous UV PlD	
5962-90754	02MZX	CY7C331-30HMB	28 S JCQ	H64	Asynchronous UV PID)	
5962-90754	02M3X	CY7C331-300MB	28 S LCC	Q64	Asynchronous (IV PII)	
5962-90754	03MXX	CY7C331-25WMB	28.3 DIP	W22	Asynchronous (IV PI.I)	
5962-90754	03MYX	CY7C331-25TMB	28 CP	T74	Asynchronous IIV P1.I)	
5962-90754	03MZX	CY7C331-25HMB	28 S JCQ	H64	Asynchronous (IV P'II)	
5962-90754	03M3X	CY7C331-25QMB	28 S LCC	Q64	Asynchronous (VV Pl.I)	

Notes:

1. Devices listed have been approved by DESC for the SMD indicated as of the date of publication. Contact your local Cypress representative, or the Cypress SMD Hotline at 408/943-2716, for the latest update.
2. Use the SMD part number as the ordering code.
3. Package: \quad 24.3 DIP $=24$-pin $0.300^{\prime \prime} \mathrm{DIP}$; 24.6 DIP $=24$-pin $0.600^{\prime \prime}$ DIP

28 R LCC $=28$ terminal rectangular LCC;
S = Square LCC; TLCC = Thin LCC
$24 \mathrm{CP}=24$-pin ceramic flatpack (Configuration 1);
FP = brazed flatpack
PGA $=$ Pin Grid Array

JAN M38510 Qualifications

JAN Number	Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	Qualification Status
		Description	Type		
JM 38510/28901BVA	CY7C147-35DMB	18.3 DIP	D4	4K x 1 SRAM	Qualified
JM 38510/28901BYA	CY7C147-35KMB	18 CP	K70	4K $\times 1$ SRAM	Qualified
JM 38510/28903BVA	CY2147-55DMB	18.3 DIP	D4	$4 \mathrm{~K} \times 1$ SRAM	Qualified
JM 38510/28903BYA	CY2147-55KMB	18 CP	K70	4K x 1 SRAM	Qualified
JM 38510/28902BVA	CY7C148-35DMB	18.3 DIP	D4	1Kx4 SRAM	Qualified
JM 38510/28902BYA	CY7C148-35KMB	18 CP	K70	1Kx 4 SRAM	Qualified
JM 38510/28904BVA	CY2148-55DMB	18.3 DIP	D4	1K x 4 SRAM	Qualified
JM 38510/28904BYA	CY2148-55KMB	18 CP	K70	$1 \mathrm{~K} \times 4$ SRAM	Qualified

SMD Ordering Information

Cypress Military Marking Information

Manufacturer's identification:
Cypress Logo, CYPRESS, CYP, and CY are trademarks of Cypress Semiconductor Corporation.
Manufacturer's designating symbol or CAGE CODE:
Designating symbol $=$ CETK or ETK
CAGE CODE/FSCM Number $=65786$
PRODUCT INFORMATION
STATIC RAMS
PROMS 3
EPLDS 4
FIFOS 5
LOGIC 6
RISC 7
MODULES 8
ECL 9
BUS INTERFACE PRODUCTS 10
MILITARY 11
DESIGN ANDPROGRAMMING TOOLS
QUALITY AND RELIABILITY
PACKAGES 14

Design and Programming Tools

Page Number

CY3101
 CY3200
 CY3210
 CY3300

Device Number

Description

PLD ToolKit . 12-1
PLDS-MAX + PLUS Design System .. . 12-3
PLS-EDIF Bidirectional Netlist Interface . 12-8
QuickPro II 12-15

CY3101

Features

- Logic assembler, Reverse assembler
- Concise easy-to-use syntax
- JEDEC read/write capability
- Integrated waveform logic simulator
- Mouse-driven simulation editor
- Mouse, keyboard, command line interface
- CGA, EGA, VGA, Hercules support
- Supports all Cypress PLDs

Description

The Cypress PLD ToolKit is a sophisticated programmable logic design tool that supports the Cypress family of programmable logic products. The ToolKit includes the ability to assemble a logic source file, interactively perform logic simulation on the result, and write a standard JEDEC output file for programming the PLD. In addition, JEDEC files may be read, simulated, and reverse assembled, creating source files that may be modified and reassembled.
The PLD ToolKit runs on any standard IBM $\mathrm{PC}^{\circledR}, \mathrm{AT}^{\circledR}, 386$ or compatible personal computer with a CGA, EGA, VGA, or Hercules display. The ToolKit features mouse, keyboard, or command line interface, and supports Logitech ${ }^{(1 \times 3)}$ and Micro
soft ${ }^{\oplus}$ mouse compatibility. Command line control is provided for assembly from a source file to JEDEC file or disassembly of a JEDEC file to a source file.
The language contains syntax that allows the management of programmable logic device macrocells in all possible configurations, as well as default conditions that provide concise source files. In addition, there are language constructs called connectives that provide expressions for connecting any product term to a macrocell.
The ToolKit simulator features waveform entry, multiple views and multi-segment simulation. The simulator provides the capability to specify initial design conditions, and "view nodes" may be created and used to probe internal nodes in the device.

PLD ToolKit Command Menus

Command Menu
Assemble
Disassemble
Write JEDEC
Read JEDEC

Simulate
Options
Information

Clear
Information
Release Number
Release Date
Free Memory
Screen Size
Number of Colors

Options

Simulation Colors
Menu Colors
JEDEC Brief/Annotate

G Fuse (JEDEC Security): ON/OFF

Working Directory Path () Sets Path to Working Directory

Simulation Colors

Background
Allows the selection of colors for the Simulator Display

Input Trace
Output Trace
Name of Pin or Node
Pin or Node Background
Trace Selected
Selected Trace Background

Memory

512 kbytes of total memory is required to operate the PLD ToolKit.

Devices Supported

PALC16R8, PALC16R6, PALC16R4, PALC16L8, PALC22V10, PLDC20G10, PLDC18G8, CY7C330, CY7C331, CY7C332, CY7C361, CY10E301, CY100E301, CY10E302, CY100E302

Ordering Information

CY3101 Cypress PLD ToolKit Level 1 contains:
Two 5 1/4." Floppy Disks
One $31 / 2^{\prime \prime}$ Floppy Disk
One Manual
One Registration Card

Document \#: 38-00145

Features

- Unified development system for Multiple Array MatriX (MAX ${ }^{\circledR}$) EPLDs
- Hierarchical design entry methods for both graphical and textual designs
- Multiple-level schematics and hardware language descriptions
- Library of $\mathbf{7 4 0 0}$ Series TTL and bus macrofunctions optimized for MAX architecture
- Advanced Hardware Description Language (AHDL) supporting state machines, Boolean equations, truth tables, arithmetic, and relational operations
- Delay prediction for graphic and text designs
- Logic synthesis and minimization for quick and efficient processing
- Compiler that compiles a 100% utilized CY7C342 in only 10 minutes
- Automatic error location for AHDL text files and schematics
- Interactive Simulator with probe assignments for internal nodes
- Runs on IBM PC/AT® ${ }^{\circledR}$, PS/ $/ \overbrace{}^{\circledR}$ or compatible machines
- Waveform Editor for entering and editing waveforms and viewing simulation results

Description

The PLDS-MAX + PLUS (Programmable Logic Development System) is a unified CAE system for designing logic with Cypress's CY7C340 family of EPLDs (Figure 1). PLDS-MAX + PLUS includes design entry, design processing, timing simulation, and device programming support. PLDS-MAX + PLUS runs on IBM PS/2, PC-AT, or compatible machines, and provides tools to quickly and efficiently create and verify complex logic designs.
The MAX + PLUS software compiles designs for MAX EPLDs in minutes. Designs may be entered with a variety of design entry mechanisms. MAX + PLUS supports hierarchical entry of both Graphic Design Files (GDFs) with the MAX + PLUS Graphic Editor, and Text Design Files (TDFs) with the Advanced Hardware Description Language (AHDL). The Graphic Editor offers advanced features such as multiple hierarchy
levels, symbol editing, and a library of 7400 series devices as well as basic SSI gates. AHDL designs may be mixed into any level of the hierarchy or used on a standalone basis. AHDL is tailored especially for EPLD designs and includes support for complex Boolean and arithmetic functions, relational comparisons, multiple hierarchy levels, state machines with automatic state variable assignment, truth tables, and function calls.
In addition to multiple design entry mechanisms, MAX + PLUS includes a sophisticated compiler that uses advanced logic synthesis and minimization techniques in conjunction with heuristic fitting rules to efficiently place designs within MAX EPLDs. A programming file created by the compiler is then used by MAX + PLUS to program MAX devices with the QP2MAX programming hardware.
Simulations may be performed with a powerful, event-driven timing simulator. The MAX + PLUS Simulator interactively displays timing results in the MAX + PIAS Waveform Editor. Hardeopy table and waveform output is also available. With the Waveform Editor, input vector waveforms may be entered, modified, grouped,

and ungrouped. In addition, the Waveform Editor compares simulation runs and highlights the differences.
The integrated structure of MAX + PLUS provides features such as automatic error location and delay prediction. If a design contains an error in either a schematic or a text file, MAX + PLUS flags the error and takes the user to the actual location of the error in the original schematic or text file. In addition, propagation delays of critical paths may be determined in both the Graphic and Text Editors with the delay predictor. After the source and destination nodes are tagged, the shortest and longest timing delays are calculated.

MAX + PLUS provides a seamless design framework using a consistent graphical user interface throughout. This framework simplifies all stages of the design cycle: design entry, processing, verification, and programming. In addition, MAX + PLUS offers online help to aid the user.

Design Entry

MAX + PLUS offers both graphic and text design entry methods. GDFs are entered with the MAX + PLUS Graphic Editor; Boolean equations, state machines, and truth tables may be entered with the MAX + PLUS Test Editor using AHDL. The ability to freely mix graphics and text files at all levels of the design hierarchy and to use either a top-down or bottom-up design method makes design entry simple and versatile.

Graphic Editor

The Graphic Editor provides a mouse-driven, multi-windowed environment in which commands are entered with pop-up menus or simple keystrokes. The Hierarchy Display window, shown at the top, lists all schematics used in a design. The designer navigates the hierarchy by placing the cursor on the name of the design to be edited and clicking the left mouse button. The Total View window (next to the Hierarchy window) shows the entire design. By clicking on an area in this window, the user is moved to that area of the schematic. The Error Report window lists all warnings and errors inthe compiled design; selecting an error with the cursor highlights the problem node and symbol. A design is edited in the main area, which may be enlarged by closing the auxiliary windows.
When entering a design, the user may choose from a library of over 2007400 series and special-purpose macrofunctions that are all optimized for MAX architecture. In addition, the designer my create custom functions that can be used in any MAX + PLUS design.
To take advantage of the hierarchy features, the user first saves the entered design so the Graphic Editor can automatically create a symbol representing the design. This symbol may be used in a higher-level schematic or in another design. It may also be modified with the Symbol Editor.
Tag-and-drag editing is used to move individual symbols or entire areas. Lines stay connected with orthogonal rubberbanding. A design may be printed on an Epson FX-compatible printer, or plotted on an HP- or Houston Instruments-compatible plotter.

Symbol Editor

The MAX + PLUS Symbol Editor enables the designer to create or modify a custom symbol representing a GDF or TDF It is also rossible to modify input and output pin placement of an automatially generated symbol.
"he created symbol represents a lower-level design, described by GDF or TDF The lower-level design represented by the symbol lay be displayed with a single command that invokes either the

Graphic Editor for schematics or the Text Editor for AHDL designs.

AHDL

The Advanced Hardware Description Language (AHDL) is a high-level, modular language used to create logic designs for MAX EPLDs. It is completely integrated into MAX + PLUS, so AHDL files may be created, edited, compiled, simulated, and programmed from within MAX + PLUS.
AHDL provides support for state machine, truth tables, and Boolean equations, as well as srithmetic and relational operations. AHDL is hierarchical, which allows frequently used functions such as TTL and bus macrofunctions to be incorporated in a design. AHDL supports complex arithmetic and relational opeartions, such as addition, subtraction, equality, and magnitude comparisons, with the logic functions automatically generated. Standard Boolean functions, including AND, OR, NAND, NOR, XOR, and SNOR are also included. Groups are fully supported so operations may be performed on groups as well as on single variables. AHDL also allows the designer to specify the location of nodes within MAX EPLDs. Together, these features enable complex designs to be implemented in a concise, high-level description.

Text Editor

The MAX + PLUS Text Editor enables the user to view and edit text files within the MAX + PLUS environment. Any ASCII text file, including Vector Files, Table Files, Report Files, and AIIIII. Text Design Files (TDFs) may be viewed and edited wihtout having to exit to DOS.
The Text Editor parallels the Graphic Editor's menu structure. It has a Hierarchy Display and a Total View window for moving through the hierarchy levels and around the design. It includes automatic error location and hierarchy traversal. If an error is found in a TDF during compilation, the Text Editor is automatically invoked and the line of AHDL code where the error occurred is highlighted. In addition, a design may use both text and graphic files. As the designer t4raverses the hierarchy, the Text Editor is invoked for text files, and the Graphic Editor is invoked for schematics.

Symbol Libraries

The library provided with MAX + PLUS contains the most commonly used 7400 series devices such as counters, decoders, encoders, shift registers, flip-flops, latches, and multipliers, as well as special bus macrofunctions, all of which increase design productivity. Because of the flexible architecture of MAX EPLDs (that includes asynchronous preset and clear), true TTL device emulation is achieved. Cypress also provides special-purpose bus macrofunctions for designs that use buses. All macrofunctions have been optimized to maximize speed and utilization. Refer to the MAX + PLUS TTL MacroFunctions manual for more information on TTL macrofunctions.

Design Processing

The MAX + PLUS Compiler processes MAX designs. The Compiler offers options that speed the processing and analysis of a design. The user can set the degree of detail of the Report File and the maximum number of errors generated. In addition, the user may select whether or not to extract a netlist file for simulation.
The Compiler compiles a design in increments. If a design has been previously processed, only the portion of the design that has been changed is re-extracted, which decreases the compilation

If flip-flop set-up or hold times have been violated, the Simulator warns the user. In addition, the minimum pulse width and period of oscillation may be defined. If a pulse is shorter than the minimum pulse width specified, or if a node oscillates for longer than the specified time, the Simulator issues a warning.

Waveform Editor

The MAX + PLUS Waveform Editor provides a mouse-driven environment in which timing waveforms may be viewed and edited. It functions as a logic analyzer, enabling the user to observe simulation results. Simulated waveforms may be viewed and manipulated at multiple zoom levels. Nodes may be added, deleted, and combined into buses, which may contain up to 32 signals represented in binary, octal, decimal, or hexadecimal format. Logical opeartors may also be performed on pairs of waveforms, so that waveforms may be inverted, ORed, ANDed, or XORed together.
The Waveform Editor includes sophisticated editing features to define and modify input vectors. Input waveforms are created with the mouse and familiar text editing commands. Waveforms may be copied, patterns may be repeated, and blocks may be moved and copied. For example, all or part of a waveform may be contracted to simulate the increase in clock frequency.
The Waveform Editor also compares and highlights the difference between two different simulations. A user may simulate a design, observe and edit the results, and then resimulate the design, and the Waveform Editor will show the results superimposed upon each other to highlight the differences.

MAX + PLUS Timing Analyzer (MTA)

The MAX + PLUS Timing Analyzer (MTA) provides user-configurable reports that assist the designer in analyzing critical delay paths, set-up and hold timing, and overall system performance of any MAX EPLD design. Critical paths identified by these reports may be desplayed and highlighted.
Timing delays between multiple source and destination nodes may be calculated, thus creating a connection matrix giving the shortest and longest delay paths between all source and destination nodes specified. Or, the designer may specify that the detailed paths and delays between specific sources and destinations be shown.
The set-up/hold option provides set-up and hold requirements at the device pins for all pins that feed the D, CLK, or ENABLE inputs of flip-flops and latches. Critical source nodes may be specified individually, or set-up and hold at all pins may be calculated. This information is then displayed in a table, one set of set-up and hold times per flip-flop/latch.
The MTA also allows the user to print a complete list of all accessible nodes in a design,; i.e., all nodes that may be displayed during simulation or delay prediction.
All MTA options may be listed in an MTA command file. With this file, the user may specify all information needed to configure the output.

SNF2GDF Converter

SNF2GDF converts the SNF into logic schematics represented with basic gates and flip-flop elements. It uses the SNF's delay and connection information and creates a series of schematics fully annotated with propagation delay and set-up and hold information at each logic gate. Certain speed paths of a design may be specified for conversion, so the user may graphically analyze only the paths considered critical.

If State Machine or Boolean Equation design entry is used, SNF2GDF shows how the high-level description has been synthesized and placed into the MAX architecture.

Device Programming

PLDS-MAX contains the basic hardware and software for programming the MAX EPLD family. Adpaters are included for programming the CY7C344 (DIP and PLCC) and CY7C342 (PLCC) devices. Additional adapters supporting other MAX devices may be purchased separately. MAX+PLUS programming software drives the QP2-MAX programming hardware. The designer can use MAX + PLUS to program and verify MAX EPLDs. If the security bit of the device is not set to ON, the designer may also read the contents of a MAX device and use this information to program additional devices.

System Requirements

Minimum System Configuration

IBM PS/2 model 50 or higher, PC/AT or compatible computer.

PC-DOS version 3.1 or higher.
640 kbytes RAM.
EGA, VGA or Hercules monochrome display.
20-MB hard disk drive.
1.2-MB $5^{1 / 4}$ " or $1.44-\mathrm{MB} 3^{1 / 2}{ }^{\prime \prime}$ floppy disk drive.

3-button serial port mouse.

Recommended System Configuration

IBM PS/ 2 model 70 or higher, or Compaq $38620-\mathrm{Mhz}$ computer.

PC-DOS version 3.3.
640 kbytes of RAM plus 1 MB of expanded memory with LIM 3.2-compatible EMS driver.

VGA graphics display.
20-MB hard disk drive.
$1.2-\mathrm{MB} 5^{1 / 4 "}$ or $1.44-\mathrm{MB} 3^{1 / 2} /{ }^{\prime \prime}$ floppy disk drive.
3-button serial port mouse.

Ordering Information

CY3200 PLDS-MAX + PLUS System including:
CY3201 MAX + PLUS software, manuals and key.

CY3202 QP2-MAX PLD programmer with CY3342 \& CY3344 adapters.

Device Adapters

CY3342 Adapter for CY7C342 in PLCC packages.
CY3344 Adapter for CY7C344 in DIP and PLCC packages.

CY3342R Adapter for CY7C342 in PGA packages.
CY33435 Adapter for CY7C343 in DIP and PLCC packages.

Document \#: 38-00132-A

Features

- Bidirectional netlist interface between MAX + PLUS ${ }^{\circledR}$ and other major CAE software packages
- Supports the industry-standard Electronic Design Interchange Format (EDIF) version 200.
- MAX EPLD designs entered on workstation CAE tools can be downloaded to MAX+PLUS for compilation; compile designs can then be returned to the workstation for device- or sys-tem-level simulation.
- EDIF netlist reader imports EDIF netlists into MAX + PLUS. Library Mapping Files (LMFs) convert CAE library functions to MAX + PLUS library functions.
- LMFs allow conversion of common Dazix, Mentor Graphics, Valid Logic, and Viewlogic functions to MAX + PLUS functions.
- EDIF netlist writer produces postsynthesis logic and delay information used during device- or board-level simulation with popular CAE tools.
- Runs on IBM PS/2 ${ }^{\circledR}$, PC-AT ${ }^{\circledR}$, or compatible machines.

Description

The PLS-EDIF tool kit is a bidirectional EDIF netlist interface between worksta-tion-based CAE software packages and the PLDS-MAX + PLUS Design System (Figure 1).
PLS-EDIF allows the designer to enter and verify logic designs for MAX EPLDs using third-party CAE tools. The EDIF 200 netlist exchange format is the two-way bridge between MAX + PLUS and thirdparty schematic capture and simulation tools. PLS-EDIF runs on an IBM PS/2, PC-AT, or compatible machines.
Any CAE software package that produces EDIF 200 netlists can interface to MAX + PLUS with PLS-EDIF. EDIF netlists are imported into MAX + PLUS using the EDIF Design File-to-Compiler Netlist File (EDF2CNF) Converter. Library Mapping Files (LMFs) are used with EDF2CNF to map third-party CAE library functions to the MAX + PLUS library functions. LMFs are provided for Dazix, Mentor Graphics, Valid Logic, and Viewlogic software, but designers may create LMFs to map any CAE software library.
After a design is imported into MAX+PLUS, it is compiled with the sophisticated MAX + PLUS Compiler, which
uses advanced logic synthesis and minimization techniques together with heuristic fitting rules to optimize the design for MAX EPLD architecture. A Programmer Object File created by the MAX + PLUS Compiler is then used together with standard Cypress or third-party programming hardware to program MAX devices.
EDIF netlists can be exported from MAX + PLUS using the Simulator Netlist File-to-EDIF Design File (SNF2EDF) Converter. This converter generates an EDIF output file from a compiled MAX + PLUS design. The EDIF file contains the post-synthesis information used by CAE simulators to perform device- or board-level simulation.
PLS-EDIF provides an open environment that allows popular CAE tools to be used to create and simulate MAX EPLD designs. The designer may use a preferred workstation schematic capture package to enter logic designs, and then quickly convert and compile them with EDF2CNF and MAX + PLUS. Likewise, designs compiled in MAX + PLUS and converted with SNF2EDF may be transferred to a workstation for simulation. The PLSEDIF netlist reader and writer together allow MAX EPLD designs to be entered and simulated on any workstation platform.

Figure 1. PLS-EDIF Workstation Interface

SEMICONDUCTOR

EDF2CNF Converter

The EDF2CNF Converter generates one or more MAX + PLUS Compiler Netlist Files (CNFs) from an EDIF file. For each CNF, a Hierarchy Interconnect File (HIF) and a Graphic Design File (GDF) are also generated (see Figure 2). The CNF contains the connectivity data for a design file, while the HIF defines the hierarchical connections between design files. The GDF is a symbol that represents the actual design data in the CNF. This symbol may be entered in the MAX + PLUS Graphic Editor and integrated into a logic schematic.
EDF2CNF can convert any EDIF 200 netlist with the following parameters:

EDIF level 0
keyword level 0
view type NETLIST
cell type GENERIC
Library Mapping Files (LMFs) are used with EDF2CNF to convert workstation CAE functions into equivalent MAX + PLUS functions. This direct substitution is beneficial because MAX + PLUS functions are optimized for both logic utilization and performance in MAX EPLD designs.

Figure 2. EDF2CNF Block Diagram

Workstation Information

EDF2CNF has been specifically tested for use with the Dazix, Mentor Graphics, Valid Logic, and Viewlogic CAE software packages. In addition, LMFs for these products are provided with the PLS-EDIF tool kit.

Dazix

To design logic and create an EDIF file with Dazix software, the following applications are required:

ACE (Dazix graphics editor)
DANCE and DRINK (Dazix compiler)
ENW verison 1.0 (Dazix EDIF netlist writer)
Table 1 lists the Dazix basic functions that are mapped to MAX + PLUS functions.

Table 1. Dazix Library Mapping File

Dazix Function	MAX+PLUS Function	
R\#AND	AND\#	$(\#=2,3,4,5,6,7,8,9)$
R\#ANDD	BNOR\#	$(\#=2,3,4,5,6,7,8,9)$
R\#NAND	NAND\#	$(\#=2,3,4,6,7,8,9,13)$
R\#NANDD	BOR\#	$(\#=2,3,4,5,7,8,9,13)$
R\#NOR	NOR\#	$(\#=2,3,4,5)$
R\#NORD	BAND\#	$(\#=2,3)$
R\#OR	OR\#	$(\#=2,3,4,5)$
R\#ORD	BNAND\#	$(\#=2,3,4,5)$
R1BUF	MCELL	
R1INV	NOT	
R1INVD	EXP	
R1OCBUF	SCLK	
R1OTBUF	TRIBUF	
R1TINV	TRINOT	
R2XNOR	XNOR	
R2XOR	XOR	
R3UAOI	1A2NOR2	
R4AOI	2A2NOR2	
R4OAI	2OR2NA2	
R8AOI	4A2NOR4	
R13TNAND	TNAND13	
R13TNANDD	TBOR13	
RDFLOP	DFF2	
RDLATCH	RDLATCH	
RJKFLOP	JKFF2	

Mentor Graphics

To design logic and create an EDIF file using Mentor Graphics software, the following applications are required:

NETED (Mentor Graphics graphics editor)
EXPAND (Mentor Graphics compiler)
EDIFNET version 7.0 (Mentor Graphics EDIF netlist writer)
Table 2 lists the Mentor Graphics basic functions that are mapped to MAX + PLUS functions.

Table 2. Mentor Graphics Libary Mapping File

Mentor graphics Function	MAX+PLUS Function	
AND\#	AND\# $\quad(\#=2,3,4,5,6)$	
BUF	SCLK	
DELAY	MCELL	
DFF	DFF2	
INV	NOT	
JKFF	JKFF2	
LATCH	MLATCH	
NAND\#	NAND\#	$(\#=2,3,4,5,6,9)$
NOR\#	NOR\#	$(\#=2,3,4,6,8,16)$
OR\#	OR2\#	$(\#=2,3,4,6,8)$
XNOR2	XNOR	
XOR2	XOR	

Valid Logic

To design logic and create an EDIF file using Valid Logic software, the following applications are required:

ValidGED (Valid Logic graphics editor)
ValidCompiler
GEDIFNET (Valid Logic EDIF netlist writer)
Table 3 lists the Valid Logic basic functions that are mapped to MAX + PLUS functions.

Table 3. Mentor Graphics Libary Mapping File

Valid Logic Function	MAX+PLUS Function
INV	EXP
LS00	NAND2
LS02	NOR2
LS04	NOT
LS08	AND2
LS10	NAND3
LS11	AND3
LS20	NAND4
LS21	AND4
LS27	NOR3
LS28	NOR2
LS30	NAND8
LS32	OR2
LS37	NAND2
LS40	NAND4
LS74	DFF2
LS86	XOR
LS126	TRI
LS280	DFF2
LS386	XOR

Viewlogic

To design logic and create an EDIF file using Viewlogic software, the following applications are required:

Workview (Viewlogic graphics editor)
EDIFNET2 version 3.02 (Viewlogic EDIF netlist writer)
Table 4 lists the Viewlogic basic functions that are mapped to MAX + PLUS functions.

Table 4. Viewlogic Libary Mapping File

Dazix Function	MAX+PLUS Function	
AND\#	AND\#	$(\#=2,3,4,8)$
ANDNOR22	2A2NOR2	
BUF	SOFT	
DAND\#	DAND\#	$(\#=2,3,4,8)$
DELAY	MCELL	
DOR\#	DOR\#	$(\#=2,3,4,8)$
DXOR\#	DXOR\#	$(\#=2,3,4,8)$
JKFFRE	JKFFRE	
MUX41	MUX41	
NAND\#	NAND\#	$(\#=2,3,4,8)$
NOR\#	NOR\#	$(\#=2,3,4,8)$
NOT	NOT	
OR\#	OR\#	$(\#=2,3,4,8)$
TRIAND\#	TAND\#	$(\#=2,3,4,8)$
TRIBUF	TRIBUF	
TRINAND\#	TNAND\#	$(\#=2,3,4,8)$
TRINOR\#	TNOR\#	$(\#=2,3,4,8)$
TRINOT	TRINOT	
TRIOR\#	TOR\#	$(\#=2,3,4,8)$
UBDEC38	DEC38	
UDFDL	UDFDL	
UJKFF	UJKFF	
XNOR2	XNOR	
XNOR\#	XNOR\#	$(\#=3,4,8)$
XOR2	XOR	
XOR\#	XOR\#	$(\#=3,4,8)$

LMF Support for TTL Macrofunctions

In addition to the basic gates, LMFs map various Dazix, Mentor Graphics, Valid Logic, and Viewlogic TTL macrofunctions to their MAX + PLUS equivalents, as shown in Table 5.

Table 5. TTL Function Mappings in LMFs

MAX+ PLUS	Dazix	Mentor Graphics	Valid Logic	Viewlogic
7442	LS42	74LS42	LS42	74LS42
DFF2	LS74	74LS74A	LS74	74LS74A
7483	LS83	74LS83A	LS83	74LS83A
7485	LS85	74LS85	LS85	74LS85
7491	LS91	74LS91	LS91	74LS91
7493	LS93	74LS93	LS93	74LS93
74138	LS138	74LS138	LS138	74LS138
74139	LS139			
74139M		74LS139A	LS139	74LS139
74151	LS151	74LS151	LS151	74LS151
74153		74LS153		74LS153
74153M	LS153		LS153	
74157	LS157	74LS157		74LS157
74157M				LS157
74160	LS160	74LS160A	LS160	74LS160A
74161	LS161	74LS161A	LS161	74LS161A
74162	LS162	74LS162A	LS162	74LS162A
74163	LS163	74LS163A	LS163	74LS163A
74164	LS164	74LS164	LS164	74LS164
74165	LS165	74LS165	LS165	74LS165
74174	LS174	74LS174		74LS174
74174M			LS174	
74181	LS181	74LS181	LS181	74LS181
74190	LS190	74LS190	LS190	74LS190
74191	LS191	74LS191	LS191	74LS191
74194	LS194	74LS194A	LS194A	74LS194A
74273	LS273	74LS273		74LS273
74174M			LS273	
74279MD	LS279			
74279 M		74LS279	LS279	74LS279
74280	LS280	74LS280	LS280	74LS280
74373	LS373	74LS373		74LS373
74373M			LS373	
74374	LS374	74LS374		74LS374
74374M			LS374	
74393M	LS393	74LS393	LS393	74LS393

Custom Library Mapping Files

Designers can map their commonly used workstation functions to MAX + PLUS equivalents by modifying an LMF or creating a new one. If no equivalent function currently exists in MAX + PLUS, the user can create the function with the MAX + PLUS Graphic Editor or Text Editor before mapping the function in an LMF. Figure 3 shows an example of this process.

SNF2EDF Converter

The SNF2EDF Converter creates an industry-standard level 0 EDIF file from a MAX + PLUS Simulator Netlist File (SNF). The SNF, which is optionally generated during compilation of a MAX EPLD design, contains all post-synthesis functional and delay in-
formation for the completed design. This design-specific information is also contained in the EDIF output file after conversion so that it may be integrated into a workstation environment for simulation. An optional command file enables the user to customize the output EDIF file for various workstation environments by renaming certain constructs or by changing the EDIF level or keyword level (see Figure 4).
The EDIF output file may have one of two formats. The first format expresses all delays with special EDIF property constructs. The second expresses combinatorial delays with portdelay constructs and registered delays as pathdelay constructs-a format that is especially useful for behavioral simulators. Both formats are shown in Figure 5.

Step 1: Select a workstation function for mapping

Step 2: Design an equivalent circuit with the MAX + PLUS Graphic Editor
CYPRESS_A05

Step 2: Map the workstation function to the MAX + PLUS function in an LMF
LIBRARY new_lib
\%User Library Mapping File\%
BEGIN
FUNCTION MAX_AO5 (A_IN, B_IN, C_IN)
RETURNS (Z_OUT)
FUNCTION "AO5" ("A", "B", "C")
RETURNS ("Z")
END

Figure 3. Creating a Library Mapping File

Figure 4. SNF2EDF Block Diagram

Format 1: Delays expressed with property constructs

```
(instance xor2_5
    (viewRef viewl
        (cellRef XOR2
    (property TPD(integer 20)(unit TIME)))
```

Format 2: Delays expressed with portdelay and pathdelay constructs

```
(instance xor2_5
    (viewRef viewl
        (cellRef XOR2
    (portInstance &1
        (portDelay
                            (derivation CALCULATED
            (delay(e 20 - 10)))))
```

Figure 5. EDIF File Formats

System Requirements

- IBM PC-AT or compatible computers; IBM PS/2 modesl 50 , 60,70 , or 80
- MS-DOS version 3.1 or later version
- 640 Kbytes of RAM
- 1 Mbyte of expanded memory compatible with version 3.2 or a later version of the Lotus/Intel/Microsoft Expanded Memory Specification
- EGA, VGA, or Hercules Monochrome display
- 20-Mbyte hard disk drive
- 1.2 -Mbyte $5^{1 / 4}$ " or 1.44 -Mbyte $3^{1 / 2}$ " floppy disk drive
- MAX + PLUS version 2.01 or a later version
- Workstation-PC network hardware and software with the ability to transfer ASCII files

Package Contents

- Floppy diskettes containing all PLS-EDIF programs and files for both PC-AT and PS/2 platforms
- EDF2CNF Converter
- SNF2EDF Converter
- Library Mapping Files for Dazix, Mentor Graphics, Valid Logic, and Viewlogic
- MAX + PLUS macrofunctions for Dazix, Mentor Graphics, Valid Logic, and Viewlogic libraries
- Example files
- Documentation

Document \#: 38-00144

Features

- Combined PROM, PLD, and EPROM Programmer
- Programs all Cypress CMOS \& ECL PLDs and PROMs
- Easy-to-use, menu-driven software
- New device and feature updates via floppy disk and adapters
- Plugs into standard IBM PC ${ }^{\circledR \lll l}$ parallel port-no need to use up a bus slot
- Compatible with IBM PC/AT ${ }^{(\pi)}, \mathrm{PS} / 2^{(1)}$, and compatible computers
- Programs 20-, 24-, 28-, 32-, 40-, 44-, and 68-pin Cypress PLDs and PROMs via device adapters
- Modular design with adapter bus for future device support and future feature enhancements
- Comprehensive self-test and automatic calibration software
- Supports Vmargin verification for a higher degree of device reliability

Description

QuickPro II is Cypress's second-generation QuickPro PLD and PROM device programmer. It incorporates new architectural features that enable it to handle all current and future devices through a 96-pin universal bus connector. The QuickPro II hardware can be installed on any IBM PC/AT- or PS/2-compatible computer by simply plugging into a standard parallel port. The software communicates with the QuickPro II electronics via this parallel port and utilizes intelligent programming algorithms to minimize device programming time.
The QuickPro II architecture and feature set were dictated by the needs of Cypress's new-generation PLDs and PROMs. Many of these devices offer very high performance and complexity with large numbers of pins. To meet these needs, the QuickPro II utilizes flexible pin electronics, a universal adapter bus and a carefully engineered system design that minimizes electrical noise. Pin electronics are located as close as possible to the device being programmed. In addition to the $V_{\text {PP }}$ and $V_{C C}$ voltage sources needed to program parts, the QuickPro II incorporates a Vmargin voltage source for measuring the relative programming margins to which a device has been programmed and a Vref voltage source for doing self-testing and calibration.
For PLDs, QuickPro II uses the JEDEC standard data format, so present and future design tools such as PLD ToolKit ${ }^{(\pi)}$, ABEL ${ }^{(\pi)}$, CUPL ${ }^{\circledR 凶 1}$, and PALASM ${ }^{\circledR 10}$ can be used. QuickPro II reads Intellec $86{ }^{(1)}$, Motorola S, TEK and space format files. It also reads and writes PROM PC DOS binary files for use with assemblers and compilers. QuickPro II is a low-cost, full-feature programming/ verification system with a flexible and extendible architecture. The user interface software is menu-driven with complete on-screen explanations.

Technical Information

Size

The QuickPro II base unit is approximately $101 / 2^{\prime \prime} \times 81 / 2^{\prime \prime} \times 1^{\prime \prime}$. Individual device family adapters vary in size from $5^{\prime \prime} \times 3^{\prime \prime}$ to $6^{\prime \prime}$
$x 6^{\prime \prime}$. The parallel port cable and AC power adapter cable are both approximately 6^{\prime} in length.

Power

AC Power Adapter: $\quad 17$ VAC @ 500 mA

Device Adapters

Device adapters are external modules with various pin and socket configurations. Each adapter plugs into the QuickPro II bus connector and maps the pins of particular devices and packages to the pin electronics resources available at the connector. Each adapter has at least one LED that indicates when power is being applied to the socket. In addition to these device adapters, package adapters are also used to accommodate the various package options available for PLDs and PROMs.

Memory

640 K of total memory is necessary to operate the QuickPro II software.

Devices Supported

QuickPro II hardware and software supports the programming and verification of all Cypress and Aspen PLDs and PROMs.

Ordering Information

CY3300 QuickPro II system including:

CY3301 QuickPro II base unit

CY3302 QuickPro II parallel port cable
CY3303 QuickPro II AC power adapter
CY3304 QuickPro II software (disk \& manual)
CY3202 QP2-MAX version of QuickPro II for PLDS-MAX + PLUS design tool that consists of the CY3300 system and the CY3342 and CY3344 adapters.
International versions (220V) of the CY3300 and the CY3202 are also available.

Device Adapters

CY3320
Adapter for all Cypress 20-, 24-, 28-, and 32-pin devices excluding the MAX parts. Contains $20-$, 24, and 28 - pin DIP sockets (package adapters required for 32 -pin devices).

CY3342 Adapter for the CY'7C342-PLCC
CY3342R Adapter for the CY7C342-PGA
CY3344 Adapter for the CY7C344-PLCC \& DIP
CY33435 Adapter for the CY7C343-PLCC \& DIP

SEMICONDUCTOR

Package Adapters

Package adapters are used with the CY3320 generic device programming adapter on the QuickPro II in order to accommodate Cypress's wide variety of device packaging options. The package adapters used with devices having 28 native pins on the QuickPro II are the same as those used on the original QuickPro ${ }^{(\omega)}$. The number of native pins that a device has refers to the number of actual signal, power and ground pins used-excluding any N/C (No

Connects) in a particular package. All devices are programmed in the CY3320 adapter's DIP socket having the same number of pins as the native pins on the device. Therefore, a 22 V 10 is programmed in the 24-pin DIP socket, regardless of whether it is in a DIP package or a PLCC package, even though the PLCC package has 28 pins (4 are N / Cs). A package adapter between the 28-pin PLCC and the 24-pin DIP sockets is used to accomplish this. The following list summarizes the package adapters used with the CY3320 adapter on the QuickPro II.

Devices with 20 native pins
CY3360A 20-pin LCC - Package codes L61 and Q61 - All devices
CY3360B 20-pin PLCC - Package code J61 - All devices
CY3360C 20-pin SOJ - Package code V5 - All devices
CY3360D 20-pin Cerpack - Package code K71
Devices with 24 native pins
CY3361A 28-pin LCC (22V10, CG7C323, CG7C324)
CY3361B 28-pin LCC (7C225, 7C235, 7C245, 7C261/3/4, 7C281/2, 7C291/2, 7C245, 7C291A/2A/3A)
CY3361C 28-pin LCC (20G10, 20RA10)
CY3361E 28-pin PLCC and HLCC (22V10, CG7C323, CG7C324)
CY3361F 28-pin PLCC and HLCC (20G10, 20RA10)
CY3361G 24-pin Cerpack - Package codes K73, T73 - All devices
CY3361H 24-pin SOIC - Package code S13 - All devices
Devices with 28 native pins
CY3008 28-pin LCC - Package codes L64 and Q64 - All devices
CY3009 28-pin PLCC and HLCC - Package codes J64 and H64 - All devices
CY3022 28-pin SOJ - Package code V21 - All devices
CY3020 28-pin Cerpack - Package codes K74, T74 - All devices
CY3017 32-pin rectangular LCC (7C251/4)
CY3012 32-pin rectangular LCC (7C266, 7C271/4, 7C279)
CY3024 32-pin rectangular LCC (7C277)
CY3026 32-pin DIP (7C289)
CY3027 32-pin rectangular LCC (7C285, 7C287)
CY3028 32-pin rectangular LCC (7C286)
CY3029 32-pin rectangular LCC (7C289)

[^71]PRODUCT INFORMATION
STATIC RAMS 2
PROMS 르를ำ 3
EPLDS 4
FIFOS 5
LOGIC 6
RISC 7
MODULES 8
ECL 9
BUS INTERFACE PRODUCTS 10
MILITARY 11
DESIGN AND
PROGRAMMING TOOLS

PRODUCT INFORMATION
STATIC RAMS 2
PROMS 3
EPLDS 4
FIFOS 5
LOGIC 6
RISC 7
MODULES 8
ECL 9
BUS INTERFACE PRODUCTS 10
MILITARY 11
DESIGN AND 12 PROGRAMMING TOOLSQUALITY AND13RELIABILITY
PACKAGES14

SEMICONDUCTOR

Section Contents

Quality and Reliability Page Number
Quality, Reliability, and Process Flows 13-1
Tape and Reel Specifications 13-16

Quality, Reliability, and Process Flows

Corporate Views on Quality and Reliability

Cypress believes in product excellence. Excellence can only be defined by how the users perceive both our product quality and reliability. If you, the user, are not satisfied with every device that is shipped, then product excellence has not been achieved.
Product excellence does not occur by following the industry norms. It begins by being better than one's competitors, with better designs, processes, controls and materials. Therefore, product quality and reliability are built into every Cypress product from the start.
Some of the techniques used to insure product excellence are the following:

- Product Reliability starts at the initial design inception. It is built into every product design from the very start.
- Product Quality is built into every step of the manufacturing process through stringent inspections of incoming materials and conformance checks after critical process steps.
- Stringent inspections and reliability conformance checks are done on finished product to insure the finished product quality requirements are met.
- Field data test results are encouraged and tracked so that accelerated testing can be correlated to actual use experiences.

Product Assurance Documents

Cypress Semiconductor uses MIL-STD-883C and MIL-$\mathrm{M}-38510 \mathrm{H}$ as baseline documents to determine our Test Methods, Procedures and General Specifications for semiconductors.
Customers using our Commercial and Industrial grade product receive the benefit of a military patterned process flow at no additional charge.

Product Testing Categories

Five different testing categories are offered by Cypress:

1. Commercial operating range product: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
2. Industrial operating range product: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
3. Military Grade product processed to MIL-STD-883C; Military operating range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
4. SMD (Standardized Military Drawing) approved product: Military operating range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, electrically tested per the applicable Military Drawing.
5. JAN qualified product; Military operating range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, electrically tested per MII-M-38510 slash sheet requirements.
Category 1, 2, and 3 are available on all products offered by Cy press Semiconductor. Category 4 and 5 areoffered on a more limited basis, dependent upon the specific part type in question.

Commercial Product Assurance Categories

Commercial grade devices are offered with two different classes of product assurance. Every device shipped, as a minimum, meets the processing and screening requirements of level 1.
Level 1: For commercial or industrial systems where the demand for quality and reliability is high, but where field service and device replacement can be reasonably accomplished.
Level 2: For enhanced reliability applications and commercial or industrial systems where maintenance is difficult and/or expensive and reliability is paramount.
Devices are upgraded from Level 1 to Level 2 by additional testing and a burn-in to MIL-STD-883, Method 1015.

Tables 1 and 2 list the 100% screening and quality conformance testing performed by Cypress Semiconductor in order to meet requirements of these programs.

Military Product Assurance Categories

Cypress' Military Grade components and SMD products are processed per MIL-STD-883C using methods 5004 and 5005 to define our screening and quality conformance procedures. The processing performed by Cypress results in a product that meets the class B screening requirements as called out by these methods. Every device shipped, as a minimum, meets these requirements.
JAN, SMD and Military Grade devices supplied by Cypress are processed for applications where maintenance is difficult or expensive and reliability is paramount. Tables 3 through Table 7 list the screening and quality conformance testing that is performed in order to meet the processing requirements required by MIL-STD-883C and MIL-M-38510.

Quality, Reliability, and Process Flows

Table 1. Cypress Commercial and Industrial Product Screening Flows-Components

Screen	MIL-STD-883 Method	Product Temperature Ranges			
		Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
		Level 1		Level 2	
		Plastic	Hermetic	Plastic	Hermetic
Visual/Mechanical - Internal Visual - Hermeticity - Fine Leak - Gross Leak	2010 1014, Cond A or B (sample) 1014, Cond C	$0.4 \% \mathrm{AQL}$ Does Not Apply Does Not Apply	$\begin{gathered} 100 \% \\ \text { LTPD }=5 \\ 100 \% \end{gathered}$	$0.4 \% \mathrm{AQL}$ Does Not Apply Does Not Apply	$\begin{gathered} 100 \% \\ \text { LTPD }=5 \\ 100 \% \end{gathered}$
Burn-in - Pre-Burn-in Electrical - Burn-in - Post-Burn-in Electrical - Percent Defective Allowable (PDA)	Per Device Specification Per Cypress Specification Per Device Specification	Does Not Apply Does Not Apply Does Not Apply Does Not Apply	Does Not Apply Does Not Apply Does Not Apply Does Not Apply	$\begin{gathered} 100 \% \\ 100 \%{ }^{[1]} \\ 100 \% \\ 5 \%(\max)^{[2]} \end{gathered}$	$\begin{gathered} 100 \% \\ 100 \%{ }^{[1]} \\ 100 \% \\ 5 \%(\max)^{[2]} \end{gathered}$
Final Electrical - Static (DC), Functional, and Switching (AC) Tests	Per Device Specification 1. At $25^{\circ} \mathrm{C}$ and Power Supplies Extremes 2. At Hot Temperature and Power Supply Extremes	Not Performed 100%	Not Performed 100%	$\begin{gathered} 100 \%{ }^{[1]} \\ 100 \% \end{gathered}$	$\begin{gathered} 100 \%{ }^{[1]} \\ 100 \% \end{gathered}$
Cypress Quality Lot Acceptance - External Visual - Final Electrical Conformance	2009 Cypress Method 17-00064	$\begin{aligned} & {[3]} \\ & {[3]} \end{aligned}$			

Table 2. Cypress Commercial and Industrial Product Screening Flows-Modules

Screen	MIL-STD-883 Method	Product Temperature Ranges	
		Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial $-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$	
		Level 1	Level 2
Burn-in - Pre-Burn-in Electrical - Burn-in - Post-Burn-in Electrical - Percent Defective Allowable (PDA)	Per Device Specification 1015 Per Device Specification	Does Not Apply Does Not Apply Does Not Apply Does Not Apply	$\begin{gathered} 100 \% \\ 100 \% \\ 100 \% \\ 15 \% \end{gathered}$
Final Electrical - Static (DC), Functional, and Switching (AC) Tests	Per Device Specification 1. At $25^{\circ} \mathrm{C}$ and Power Supply Extremes 2. At Hot Temperature and Power Supply Extremes	Not Performed 100%	$\begin{aligned} & 100 \% \\ & 100 \% \end{aligned}$
Cypress Quality Lot Acceptance - External Visual - Final Electrical Conformance	2009 Cypress Method 17-00064	Per Cypress Module Specification [3]	Per Cypress Module Specification [3]

Notes:

1. Burn-in is performed as a standard for 12 hours at $150^{\circ} \mathrm{C}$.
2. Electrical Test is performed after burn-in. Results of this are used to determine PDA percentage.
3. Lot acceptance testing is performed on every lot to guarantee 200 PPM average outgoing quality.

Table 3. Cypress JAN/SMD/Military Grade Product Screening Flows for Class B

Screen	Screening Per Method 5004 of MILSTD-883	Product Temperature Ranges $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
		JAN	SMD/Military Grade Product	Military Grade Module
Visual/Mechanical - Internal Visual - Temperature Cycling - Constant Acceleration - Hermeticity: - Fine Leak - Gross Leak	Method 2010, Cond B Method 1010, Cond C, (10 cycles) Method 2001, Cond E (Min), Y1 Orientation Only Method 1014, Cond A or B Method 1014, Cond C	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & \\ & 100 \% \\ & 100 \% \end{aligned}$	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & \\ & 100 \% \\ & 100 \% \end{aligned}$	N/A Optional N/A N/A N/A
Burn-in - Pre-Burn-in Electrical Parameters - Burn-in Test - Post-Burn-in Electrical Parameters - Percent Defective Allowable (PDA)	Per Applicable Device Specification Method 1015, Cond D, 160 Hrs at $125^{\circ} \mathrm{C}$ Min or 80 Hrs at $150^{\circ} \mathrm{C}$ Per Applicable Device Specification Maximum PDA, for All Lots	$\begin{gathered} 100 \% \\ 100 \% \\ 100 \% \\ 5 \% \end{gathered}$	$\begin{gathered} 100 \% \\ 100 \% \\ 100 \% \\ 5 \% \end{gathered}$	100% 100% $\left(48\right.$ Hours at $125^{\circ} \mathrm{C}$) 100% 10%
Final Electrical Tests - Static Tests - Functional Tests - Switching	Method 5005 Subgroups 1, 2 and 3 Method 5005 Subgroups 7, 8A and 8B Method 5005 Subgroups 9, 10 and 11	100% Test to Slash Sheet 100% Test to Slash Sheet 100% Test to Slash Sheet	100% Test to Applicable Device Specification 100% Test to Applicable Device Specification 100% Test to Applicable Device Specification	100% Test to Applicable Specification 100% Test to Applicable Specification 100% Test to Applicable Specification
Quality Conformance Tests - Group $\mathrm{A}^{[4]}$ - Group B - Group $\mathrm{C}^{[5]}$ - Group $\mathrm{D}^{[5]}$	Method 5005, See Table 4-7 for details	Sample Sample Sample Sample	Sample Sample Sample Sample	Sample Sample Sample Sample
External Visual	Method 2009	100\%	100\%	100\%

Notes:
4. Group A subgroups tested for SMD/Military Grade products are 1, $2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$, or per JAN Slash Sheet.
5. Group C and D end-point electrical tests for SMD/Military Grade products are performed to Group A subgroups 1, 2, 3, 7, 8A, 8B, 9 , 10,11 , or per JAN Slash Sheet.

Table 4. Group A Test Descriptions

Sub- group	Description		Sample Size/Accept No.	
		Components	Modules ${ }^{[6]}$	
1	Static Tests at $25^{\circ} \mathrm{C}$	$116 / 0$	$77 / 1$	
2	Static Tests at Maximum Rated Operating Temperature	$116 / 0$	$55 / 1$	
3	Static Tests at Minimum Rated Operating Temperature	$116 / 0$	$55 / 1$	
4	Dynamic Tests at $25^{\circ} \mathrm{C}$	$116 / 0$	$77 / 1$	
5	Dynamic Tests at Maximum Rated	$116 / 0$	$55 / 1$	
6	Operating Temperature	Dynamic Tests at Minimum Rated Operating Temperature	$116 / 0$	
7	Functional Tests at $25^{\circ} \mathrm{C}$	$116 / 0$	$77 / 1$	
8 A	Functional Tests at Maximum Temperature	$116 / 0$	$55 / 1$	
8 B	Functional Tests at Minimum Temperature	$116 / 0$	$55 / 1$	
9	Switching Tests at 25 ${ }^{\circ} \mathrm{C}$	$116 / 0$	$77 / 1$	
10	Switching Tests at Maximum Temperature	$116 / 0$	$55 / 1$	
11	Switching Tests at Minimum Temperature	$116 / 0$	$55 / 1$	

Cypress uses an LTPD sampling plan that was developed by the Military to assure product quality. Testing is performed to the subgroups found to be appropriate for the particular device type. All Military Grade component products have a Group A sample test performed on each inspection lot per MIL-STD-883 and the applicable device specification..

Table 5. Group B Quality Tests

Sub- group	Description	Quantity/Accept \# or LTPD 2 Components Mesistance to Solvents, Method 2015	$4 / 0$
	Solderability, Method 2003	10	$10 / 0$
5	Bond Strength, Method 2011	15	NA

Notes:

6. Military Grade Modules are processed to proposed JEDEC standard flows for MIL-STD-883 compliant modules.

Group B testing is performed for each inspection lot. An inspection lot is defined as a group of material of the same device type, package type and lead finish built within a six week seal period and submitted to Group B testing at the same time.

Table 6. Group C Quality Tests

Sub- group	Description		LTPD	
		Components	Modules ${ }^{[6]}$	
1	Steady State Life Test, End Point Electricals, Method 1005	5	$15 / 2$	

Group C tests for JAN product are performed on one device type from one inspection for lot representing each technology. Sample tests are performed per MIL-M-38510 from each three month production of devices, which is based upon the die fabrication date code.
Group C tests for SMD and Military Grade products are performed on one device type from one inspection lot representing each technology. Sample tests are performed per MIL-STD-883 from each four calendar quarters production of devices, which is based upon the die fabrication date code.
End-point electrical tests and parameters are performed per the applicable device specification.

Table 7. Group D Quality Tests (Package Related)

Sub- group	Description	Quantity/Accept \# or LTPD	
		Components	Modules ${ }^{[6]}$
1	Physical Dimensions, Method 2016	15	$15 / 2$
2	Lead Integrity, Seal: Fine \& Gross Leak, Method 2004 \& 1014	15	$15 / 2$
3	Thermal Shock, Temp Cycling, Moisture Resistance, Seal: Fine \& Gross Leak, Visual Examination, End- Point, Electricals, Meth- ods 1011, 1010, 1004 \& 1014 4 Mechanical Shock, Vibration - Variable Frequency, Constant Acceleration, Seal: Fine \& Gross Leak, Visual Examination, End-Point Electricals, Methods 2002, 2007, 2e01 \& 1014	15	$15 / 2$

Table 7. Group D Quality Tests (Package Related) (continued)

Sub- group	Description	Quantity/Accept \# or LTPD	
	Components	Modules ${ }^{[7]}$	
5	Salt Atmosphere, Seal: Fine \& Gross Leak, Visual Examination, Methods 1009 \& 1014	$15(0)$	$15 / 2$
6	Internal Water-Vapor Content; 5000 ppm maximum @ 100 Method 1018	$3(0)$ or 5(1)	N/A
7	Adhesion of Lead Finish,,$^{[8]}$ Method 2025	$15(0)$	$15 / 2$
8	Lid Torque, Method 2024 $4^{[9]}$	$5(0)$	N/A

Notes:

7. Does not apply to leadless chip carriers.
8. Based on the number of leads.
9. Applies only to packages with glass seals.

Group D tests for JAN product are performed per MIL-M-38510 on each package type from each six months of production, based on the lot inspection identification (or date) codes.
Group D tests for SMD and Military Grade products are performed per MIL-STD-883 on each package type from each 52 weeks of production, based on the lot inspection identification (or date) codes.
End-point electrical tests and parameters are performed per the applicable device specification.

Product Screening Summary

Commercial and Industrial Product

- Screened to either Level 1 or Level 2 product assurance flows
- Hermetic and Molded packages available
- Incoming Mechanical and Electrical performance guaranteed:
- 0.02% AQL Electrical Sample test performed on every lot prior to shipment
- 0.65\% AQL External Visual Sample inspection
- Electrically tested to Cypress data sheet

Ordering Information

Product Assurance Grade: Level 1

- Order Standard Cypress part number
- Parts marked the same as ordered part number

Ex: CY7C122-15PC, PALC22V10-25PI

Product Assurance Grade: Level 2

- Burn-in performed on all devices to Cypress detailed circuit specification
- Add "B" Suffix to Cypress standard part number when ordering to designate Burn-in option
- Parts marked the same as ordered part number

Ex: CY7C122-15PCB, PALC22V10-25PIB

Military Grade Product

- SMD and Military Grade components are manufactured in compliance with paragraph 1.2.1 of MIL-STD-883. Compliant products are identified by an 'MB' suffix on the part number (CY7C122-25DMB) and the letter "C"
- JAN devices are manufactured in accordance with MIL M-38510
- Military grade devices electrically tested to:
- Cypress data sheet specifications

OR

- SMD devices electrically tested to military drawing specifications

OR

- JAN devices electrically tested to slash sheet specifications
- All devices supplied in Hermetic packages
- Quality conformance inspection: Method 5005 , Groups A, B, C, and D performed as part of the standard process flow
- Burn-in performed on all devices
- Cypress detailed circuit specification for non-Jan devices OR
- Slash sheet requirements for JAN products
- Static functional and switching tests performed at $25^{\circ} \mathrm{C}$ as well as temperature and power supply extremes on 100% of the product in every lot
- JAN product manufactured in a DESC certified facility

Ordering Information

JAN Product:

- Order per military document
- Marked per military document

Ex: JM38510/28901BVA

SMD Product:

- Order per military document
- Marked per military document Ex: 5962-8867001LA

Military Grade Product:

- Order per Cypress standard military part number
- Marked the same as ordered part number

Ex: CY7C122-25DMB

Military Modules

- Military Temperature Grade Modules are designated with an ' M ' suffix only. These modules are screened to standard combined flows and tested at both military temperature extremes.
- MIL-STD-883 Equivalent Modules are processed to proposed JEDEC standard flows for MIL-STD-883 compliant modules. All MIL-STD-883 equivalent modules are assembled with fully-compliant MIL-STD-883 components.

Product Quality Assurance Flow-Components		
Area	PROCESS	Process Details
QC	INCOMING MATERIALS INSPECTION	All incoming materials are inspected to documented procedures covering the handling, inspection, storage, and release of raw materials used in the manufacture of Cypress products. Materials inspected are: wafers, masks, leadframes, ceramic packages and/or piece parts, molding compounds, gases, chemicals, etc.
FAB	DIFFUSION/ION IMPLANTATION	Sheet resistance, implant dose, species and CV characteristics are measured for all critical implants on every product run. Test wafers may be used to collect this data instead of actual production wafers. If this is done, they are processed with the standard product prior to collecting specific data. This assures accurate correlation between the actual product and the wafers used to monitor implantation.
FAB	OXIDATION	Sample wafers and sample sites are inspected on each run from various positions of the furnace load to inspect for oxide thickness. Automated equipment is used to monitor pinhole counts for various oxidations in the process. In addition, an appearance inspection is performed by the opeartor to further monitor the oxidation process.
FAB	PHOTOLITHOGRAPHY /ETCHING	Appearance of resist is checked by the operator after the spin operation. Also, after the film is developed, both dimensions and appearance are checked by the operator on a sample of wafers and locations upon each wafer. Final CDs and alignment are also sample inspected on several wafers and sites on each wafer on every product run.
FAB	METALIZATION	Film thickness is monitored on every run. Step coverage cross-sections are performed on a periodic basis to insure coverage.
FAB	PASSIVATION	An outgoing visual inspection is performed on 100% of the wafers in a lot to inspect for scratches, particles, bubbles, etc. Film thickness is verified on a sample of wafers and locations within each given wafer on each run. Pinholes are monitored on a sample basis weekly.
FAB	QC VISUAL OF WAFERS	
FAB	E-TEST	Electrical test is performed for final process electrical characteristics on every wafer.
FAB	QC MONITOR OF E-TEST DATA	Weekly review of all data trends; running averages, minimums, maximums, etc. are reviewed with the process control manager.
TEST	WAFER PROBE/SORT	Verify functionality, electrical characteristics, stress test devices.
TEST	QC CHECK PROBING AND ELECTRICAL TEST RESULTS	Pass/fail lot based on yield and correct probe placement.
	TO ASSEMBLYAND TEST	

Product Quality Assurance Flow-Components (continued)
Commercial and Industrial Product

(continued)

Quality, Reliability, and Process Flows

Product Quality Assurance Flow-Components (continued)
Commercial and Industrial Product

Product Quality Assurance Flow-Components (continued)
 Commercial and Industrial Product

Production Process

Test/Inspection
Production Process and Test Inspection
QC Sample Gate and Inspection

Quality, Reliability, and Process Flows

Product Quality Assurance Flow-Components Military Components

MILITARY ASSEMBLY FLOW

(continued)

Quality, Reliability, and Process Flows

Product Quality Assurance Flow-Components (continued) Military Components

Temperature Cycle
Method 1010, Cond C, 10 cycles
Constant Acceleration
Method 2001, Cond E, Y1 Orientation

Lead Trim
Lead trim when applicable

Lot ID
Mark assembly lot on devices

Lead Finish
Solder dip or matte tin plate applicable devices and inspect

QC Process Monitor
Verify workmanship and lead finish coverage

External Visual Inspection
Method 2009

Pre-Burn-In Electrical Test
Method 5004, per applicable device specification

Burn-In
Method 1015, condition D

Post-Burn-In Electricals
Method 5004, per applicable device specification

PDA Calculation
Method 5004, 5\%

Final Electrical Test
Method 5004; Static, functional and switching tests per applicable device specification
(continued)

Product Quality Assurance Flow-Components (continued)
 Military Components

Quality, Reliability, and Process Flows

Product Quality Assurance Flow-Modules

13
(continued)

Quality, Reliability, and Process Flows

Reliability Monitor Program

The Reliability Monitor Program is a documented Cypress procedure that is described in Cypress specification \#25-00008, which is available to Cypress customers upon request. This specification describes a procedure that provides for periodic reliability monitors to insure that all Cypress products comply with established
goals for reliability improvement and to minimize reliability risks for Cypress customers. The Reliability Monitor Program is designed to monitor key products within each generic process family. This procedure requires that detailed failure analysis be performed on all test rejects and the corrective actions be taken as indicated by the analysis. A summary of the Reliability Monitor Program test and sampling plan is shown below.

Reliability Monitor Program Sampling Plan

Test Description	Duration	Sample Size	Frequen- cy 100
Early Failure Rate (EFR) $150^{\circ} \mathrm{C}$ HTOL $125^{\circ} \mathrm{C}$ HTOL	12 Hours 80 Hours	$\begin{aligned} & 195 / 116^{[11]} \\ & 195 / 116^{[10]} \end{aligned}$	Weekly Bi-Weekly
Latent Failure Rate (LFR) $150^{\circ} \mathrm{C}$ HTOL $125^{\circ} \mathrm{C}$ HTOL	2000 Hours 3000 Hours	$\begin{aligned} & 195 / 116^{[10]} \\ & 195 / 116^{[10]} \end{aligned}$	Monthly Monthly
High Temperature Steady State Life (HTSSL) $150^{\circ} \mathrm{C}$ HTOL $150^{\circ} \mathrm{C}$ HTOL (1 lot/quarter extended)	168 Hours 1000 Hours	$\begin{aligned} & 116 \\ & 116 \end{aligned}$	Weekly Quarterly
Plastic Package Data Retention (DRET) PROM/PLD $165^{\circ} \mathrm{C}$ Bake	1000 Hours	45	Weekly
Hermetic Package Data Retention (DRET) PROM/PLD $250^{\circ} \mathrm{C}$ Bake	1000 Hours	45	Bi-Weekly
Pressure Cooker (PCT) $121^{\circ} \mathrm{C} / 100 \%$ R. H .	288 Hours	45	Weekly
High-Acceleration Saturation (HAST) Biased $121^{\circ} \mathrm{C} / 85 \%$ R. H .	200 Hours	45	Monthly
$\begin{aligned} & \text { Temperature Cycle (T/C) } \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}(1 \text { lot/quarter extended }) \\ & \hline \end{aligned}$	100 Cycles 1000 Cycles	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	Weekly Quarterly

Notes:
10. Maximum period between samples is listed. More frequent sampling may occur.
11. 116 units for PROM/PLD.

Tape and Reel Specifications

Description

Surface-mounted devices are packaged in embossed tape and wound onto reels for shipment in compliance with Electronics Industries Association Standard EIA-481 Rev. A.

Specifications

Cover Tape

- The cover tape may not extend past the edge of the carrier tapes
- The cover tape shall not cover any part of any sprocket hole.
- The seal of the cover tape to the carrier tape is uniform, with the seal extending over 100% of the length of each pocket, on each side.
- The force to peel back the cover tape from the carrier tape shall be: 20 gms minimal, 70 gms nominal, 100 gms maximal, at a pullback speed of $300 \pm 10 \mathrm{~mm} / \mathrm{min}$.

Loading the Reel

Empty pockets between the first and last filled pockets on the tape are permitted within the following requirements:

- No two consecutive pockets may be left empty
- No more than a total of ten (10) empty pockets may be on a reel The surface-mount devices are placed in the carrier tape with the leads down, as shown in Figure 1.

SOIC Devices

PLCC and LCC Devices

Figure 1. Part Orientation in Carrier Tape

Leaders and Trailers

The carrier tape and the cover tape may not be spliced. Both tapes must be one single uninterrupted piece from end to end.

Both ends of the tape must have empty pockets meeting the following minimum requirements:

- Trailer end (inside hub of reel) is 300 mm minimum
- Leader end (outside of reel) is 500 mm min ., 560 mm max.
- Unfilled leader and trailer pockets are sealed
- Leaders and trailers are taped to tape and hub respectively using masking tape

Packaging

- Full reels contain a standard number of units (refer to Table l)
- Reels may contain up to 3 inspection lots.
- Each reel is packed in an anti-static bag and then in its own individual box.
- Labels are placed on each reel as shown in Figure 2. The information on the label consists of a minimum of the following information, which complies with EIA 556, "Shipping and Receiving Transaction Bar Code Label Standard":
- Barcoded Information:

Customer PO number
Quantity
Date code

- Human Readable Only:

Package count (number of reels per order)
Description
"Cypress-San Jose"

Cypress p/n
Cypress CS number (if applicable)
Customer p/n

- Each box will contain an identical label plus an ESD warning label.

Ordering Information

CY7Cxxx-yyzzz
$\mathbf{x x x}=$ part type
yy $=$ speed
$z z z=$ package, temperature, and options
SCT $=$ soic, commercial temperature range
SIT $=$ soic, inductrial temperature range
SCR $=$ soic, commercial temperature plus burn-in
SIR = soic, industrial temperature plus burn-in
$\mathrm{VCT}=$ soj, commercial temperature range
VIT $=$ soj, industrial temperature range
VCR $=$ soj, commercial temperature plus burn-in
VIR $=$ soj, industrial temperature plus burn-in
$\mathrm{JCT}=$ plcc, commercial temperature range
$\mathrm{JIT}=$ plcc, industrial temperature range
$\mathrm{JCR}=$ plcc, commercial temperature range plus burn-in
JIR = plcc, industrial temperature range plus burn-in
Notes:

1. The T or R suffix will not be marked on the device. Units will be marked the same as parts in a tube.
2. Order releases must be in full-reel multiples as listed in Table 1 .

Table 1. Parts Per Reel and Tape Specifications

Package Type	Terminals	Carrier Width (mm)	Pocket Pitch	Parts Per Meter	Parts Per Full Reel
PLCC	18	24	3	83.3	750
	20	16	3	83.3	750
	28(S)	24	4	62.5	500
	44	32	6	41.6	400
	52	32	6	41.6	400
	68	44	8	31.2	350
	84	44	8	31.2	350
SOIC	20	24	3	83.3	1,000
	24	24	3	83.3	1,000
	28	24	3	83.3	1,000
SOJ	20	24	3	83.3	1,000
	24	24	3	83.3	1,000
	28	24	3	83.3	1,000
PQFP	84	32	8	31.2	500
	100	44	9	27.7	400
	132	44	9	27.7	350
	164	56	11	22.7	200
	196	56	11	22.7	200

Tape and Reel Shipping Medium

Label Placement

Figure 2. Shipping Medium and Label Placement

Thermal Management and Component Reliability . 14-1
Package Diagrams ... $14-8$

Thermal Management and Component Reliability

One of the key variables determining the long-term reliability of an integrated circuit is the junction temperature of the device during operation. Long-term reliability of the semiconductor chip degrades proportionally with increasing temperatures following an exponential function described by the Arrhenius equation of the kinetics of chemical reactions. The slope of the logarithmic plots
is given by the activation energy of the failure mechanisms causing thermally activated wear out of the device (see Figure 1.).
Typical activation energies for commonly observed failure mechanisms in CMOS devices are shown in Table 1.

Figure 1. Arrhenius plot, whicit assumes a failure rate proportional to $\operatorname{EXP}\left(-\mathrm{E}_{\mathrm{A}} / \mathrm{KT}\right)$ where E_{A} is the activation energy for the particular failure mechanism

Table 1. Failure Mechanisms and Activation Energies in CMOS Devices

Failure Mode	Approximate Activation Energy (Eq)
Oxide Defects	0.3 eV
Silicon Defects	0.3 eV
Electromigration	0.6 eV
Contact Metallurgy	0.9 eV
Surface Charge	$0.5-1.0 \mathrm{eV}$
Slow Trapping	1.0 eV
Plastic Chemistry	1.0 eV
Polarization	1.0 eV
Microcracks	1.3 eV
Contamination	1.4 eV

To reduce thermally activated reliability failures, Cypress Semiconductor has optimized both their low-power generating CMOS device fabrication process and their high heat dissipation packaging capabilities. Table 2 demonstrates this optimized thermal performance by comparing bipolar, NMOS, and Cypress high-speed 1K SRAM CMOS devices in their respective plastic packaging environments under standard operating conditions

Table 2. Thermal Performance of Fast 1K SRAMs in Plastic Packages

Technology	Bipolar	NMOS	Cypress CMOS
Device Number	93422	9122	7 C 122
Speed (ns)	30	25	25
$\mathrm{I}_{\mathrm{CC}}(\mathrm{mA})$	150	110	60
$\mathrm{~V}_{\mathrm{CC}}(\mathrm{V})$	5.0	5.0	5.0
$\mathrm{P}_{\mathrm{MAX}}(\mathrm{mW})$	750	550	300
Package RTH (JA) $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	120	120	70
Junction Temperature at Data Sheet $\left.\mathrm{P}_{\text {MAX }}{ }^{\circ} \mathrm{C}\right)$	160	136	91

Notes:

1. $\mathrm{T}_{\text {ambient }}=70^{\circ} \mathrm{C}$

During its normal operation, the Cypress 7C122 device experiences a $91^{\circ} \mathrm{C}$ junction temperature, whereas competitive devices in their respective packaging environments see a $45^{\circ} \mathrm{C}$ and $69^{\circ} \mathrm{C}$ higher junction temperature. In terms of relative reliability life expectancy, assuming a 1.0 eV activation energy failure mechanism, this translates into an improvement in excess of two orders of magnitude (100 x) over the bipolar 93422 device and more than one order of magnitude (30x) over the NMOS 9122 device.

Thermal Performance Data of Cypress Component Packages

The thermal performance of a semiconductor device in its package is determined by many factors, including package design and construction, packaging materials, chip size, chip thickness, chip attachment process and materials, package size, etc.

Thermal Resistance ($\theta_{\mathrm{JA}}, \theta_{\mathrm{JC}}$)
Thermal resistance is a measure of the ability of a package to transfer the heat generated by the device inside it to the ambient.

For a packaged semiconductor device, heat generated near the junction of the powered chip causes the junction temperature to rise above the ambient temperature. The total thermal resistance is defined as

$$
\theta_{\mathrm{JA}}=\frac{\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}}{\mathrm{P}}
$$

and θ_{JA} physically represents the temperature differential between the die junction and the surrounding ambient at a power dissipation of 1 watt.

The junction temperature is given by the equation

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}\left[\theta_{\mathrm{JA}}\right]=\mathrm{T}_{\mathrm{A}}+\mathrm{P}\left[\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}\right]
$$

where

$$
\theta_{\mathrm{JC}}=\frac{\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{P}} \quad \text { and } \quad \theta_{\mathrm{CA}}=\frac{\mathrm{T}_{\mathrm{C}}-\mathrm{T}_{\mathrm{A}}}{\mathrm{P}}
$$

$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature at which the device is operated; Most common standard temperature of operation equals $70^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}}=$ Junction temperature of the IC chip
$\mathrm{T}_{\mathrm{C}}=$ Temperature of the case (package)
$\mathrm{P}=$ Power at which the device operates
$\theta_{\mathrm{JC}}=$ Junction-to-case thermal resistance. This is mainly a function of the thermal properties of the materials constituting the package.
$\theta_{\mathrm{JA}}=$ Junction-to-ambient thermal resistance
$\theta_{\mathrm{CA}}=$ Case-to-ambient thermal resistance. This is mainly dependent on the surface area available for convection and radiation and the ambient conditions among other factors. This can be controlled at the user end by using heat sinks providing greater surface area and better conduction path or by air or liquid cooling.

The junction-to-ambient environment is a still-air environment where the device is inserted into a low-cost standard device socket and mounted on a standard $.062^{\prime \prime}$ G10 PC board. For junction-tocase measurements, the same assembly is immersed into a constant temperature liquid reservoir approaching infinite heat sinking for the heat dissipated from the package surface.

The thermal resistance values of Cypress standard packages are graphically illustrated in Figures 2 through 5. Each envelope represents a spread of typical Cypress integrated circuit chip sizes (upper boundary $=5000$ Mils 2, lower boundary $=30,000$ Mils 2) in their thermally optimized packaging environment.

Figure 2. Thermal Resistance of Cypress Plastic DIP Packages

Figure 3. Thermal Resistance of Cypress Cerdip Packages

These thermal characteristics were measured using the TSP (Temperature Sensitive Parameter) test method described in MIL STD 883C, Method 1012.1. A thermal silicon test chip, containing a 25Ω diffused resistor to heat the chip and a calibrated TSP diode to measure the junction temperature, is used for all characterizations.

Figure 4. Thermal Resistance of Cypress Hermetic Chip Carriers (HLCC)

Figure 5. Thermal Resistance of Cypress SOICs

Table 3. 24-Lead Ceramic and Plastic DIPs

	Cavity/PAD	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathbf{W}^{[2,3]}\right.$			$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathbf{W}\right)$		
Package	Size (mils)	Measured	Simulation	\% Diff.	Measured	Simulation	\% Diff.
$24 \mathrm{LCDIP}^{[4]}$	170×270	14	7	100	64	67	5
$24 \mathrm{LPDIP}^{[5]}$	160×210	22	28	21	72	82	12

Notes:

2. θ_{JC} measurements were taken in a fluid bath.
3. θ_{JC} evaluation by simulation used a Heat-sink configuration.
4. 245 LCDIP $=24$ lead CerDIP
5. 245 LPDIP $=24$ lead Plastic DIP

Thermal Resistance: Finite Element Model

θ_{JC} and θ_{JA} values given in the following tables have been obtained by simulation using the Finite element software ANSYS ${ }^{[6]}$. SDRCIDEAS Pre and Post processor software was used to create the finite element model of the packages and the ANSYS input data required for analysis.
SEMI Standard (Semiconductor Equipment and Materials International) method SEMI G30-88 states "heat sink" mounting technique to be the "reference" method for θ_{JC} estimation of ceramic packages. Accordingly, θ_{JC} of packages has been obtained by applying the boundary conditions that correspond to the heat sink mounted on the packages in the simulation.
For θ_{JA} evaluation, SEMI standard specification SEMI G38-87 suggests using a package-mounting arrangement that approximates the application environment. So, in evaluating the θ_{JA}, package on-board configuration is assumed.

Model Description

- One quarter of the package mounted on a FR-4 PC board.
- Leads have been modeled as a continuous metallic plane, and equivalent thermal properties have been used to account for the plastic (or the glass in the case of ceramic packages) that fills the space between the leads.
- 1 W power dissipation over the entire chip is assumed.
- $70^{\circ} \mathrm{C}$ ambient condition is considered.

Comparison of Simulation Data with Measured Data

In the case of ceramic packages, it is not unusual to see significant differences in θ_{JC} values when a heat sink is used in the place of fluid bath. ${ }^{[7]}$ However, SEMI G30-88 test method recommends the heat sink configuration for θ_{JC} evaluation.
θ_{JA} values from simulation compare within 12 percent of the measured values. $\theta_{\text {JA }}$ values obtained from simulation seem to be conservative with an accuracy of about +12 percent.
6. ANSYS Finite Element Software User Guides SDRC-IDEAS Pre and Post Processor User Guide SEMI International Standards, Vol. 4, Packaging Handbook, 1989.
7. "Thermal resistance measurements and finite calculations for ceramic hermetic packages." James N. Sweet et.al., SEMITherm, 1990.

Thermal Resistance of Packages with Forced Convection Air Flow

One of the methods adopted to cool the packages on PC boards at the system level is to used forced air (fans) specified in linear feet per minute or LFM. This helps reduce the device operating temperature by lowering the case to ambient thermal resistance. Available surface area of the package and the orientation of the package with respect to the air flow affect the reduction of thermal resistance that can be achieved. A general rule of thumb is:

- For plastic packages:
- 200 LFM air flow can reduce $\theta_{\text {JA }}$ by 20 to 25%
- 500 LFM air flow can reduce $\theta_{\text {JA }}$ by 30 to 40%
- For ceramic packages:
- 200 LFM air flow can reduce $\theta_{\text {JA }}$ by 25 to 30%
- 500 LFM air flow can reduce $\theta_{\text {JA }}$ by 35 to 45%

If θ_{JA} for a package in still air (no air flow) is known, approximate values of thermal resistance at 200 LFM and 500 LFM can be estimated. For estimation, the factors given in Table 4 can be used as a guideline.

Table 4. Factors for Estimating Thermal Resistance

Package Type	Air Flow Rate (LFM)	Multiplication Factor
Plastic	200	0.77
Plastic	500	0.66
Ceramic	200	0.72
Ceramic	500	0.60

Example:
θ_{JA} for a plastic package in still air is given to be $80^{\circ} \mathrm{C} / \mathrm{W}$. Using the multiplication factor from Table 4;

- θ_{JA} at 200 LFM is $(80 \times 0.77)=61.6^{\circ} \mathrm{C} / \mathrm{W}$
- θ_{JA} at 500 LFM is $(80 \times 0.66)=52.8^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA} for a ceramic package in still air is given to be $70^{\circ} \mathrm{C} / \mathrm{W}$. Using Table 4;
- θ_{JA} at 200 LFM is $(70 \times 0.72)=50.4^{\circ} \mathrm{C} / \mathrm{W}$
- θ_{JA} at 500 LFM is $(70 \times 0.60)=42.0^{\circ} \mathrm{C} / \mathrm{W}$

Presentation of Data

The following tables present the data taken using the aforementioned procedures.
The letter in the header (D, P, J, etc.) refer to the package designators as detailed in the Package Diagrams section of this catalog.
The numeric values given in the table (e.g., 20.3) refer to the lead count (20) and package width in inches (.3). If no decimal appears, then the reader must refer to the package diagrams.

Table 5. Plastic DIP Packages

Package Type "P"	Pad Size (mil)	LF Material	Die Size $(\mathbf{m i l})$	Die Area $(\mathbf{s q . ~ m i l)}$	$\theta_{\text {JC }}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	$\theta_{\text {JA }}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right.$ still air)
16.3	110×140	Copper	59×70	4,130	56	130
20.3	150×190	Copper	145×120	17,400	36	97
22.3	160×210	Copper	54×113	6,102	41	92
24.3	160×210	Copper	145×120	17,400	28	82
24.3	160×500	Copper	145×213	30,885	26	78
28.3	160×286	Copper	145×213	30,885	26	74
28.3	160×500	Copper	145×213	30,885	24	$70)$
22.4	140×170	Copper	54×113	6,102	42	90
24.6	180×210	Copper	145×120	17,400	24	60
24.6	220×240	Copper	145×213	30,885	23	58
40.6	180×180	Copper	100×118	11,800	31	57
48.6	250×250	Copper	172×213	36,636	20	42

Table 6. Plastic Surface Mount SOIC, SOJ ${ }^{[8,9]}$

Package Type "S" and " V "	Pad Size (mil)	LF Material	Die Size (mil)	Die Area (sq. mil)	$\theta_{\text {JC }}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	$\theta_{\mathbf{J A}}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right.$ still air)
16	140×170	Copper	98×84	8,232	19.0	120
18	140×170	Copper	98×84	8,232	18.0	116
20	180×250	Copper	145×213	30,885	17.0	105
24	180×250	Copper	145×213	30,885	15.4	88
24	170×500	Copper	141×459	64,719	14.9	85
28	170×500	Copper	145×213	30,885	16.7	84
28	170×500	Copper	141×459	64,719	14.4	80

Notes:

8. The data in Table 6 was simulated for SOIC packaging.
9. SOICs and SOJs have very similar thermal resistance characteristics. The thermal resistance values given above apply to SOJ packages also.

Table 7. Plastic Leaded Chip Carrier

Package Type " J "	Pad Size (mil)	LF Material	Die Size $(\mathbf{m i l})$	Die Area $(\mathbf{s q}$. mil)	$\theta_{\mathbf{J C}}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	$\theta_{\text {JA }}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W ~ s t i l l ~ a i r) ~}\right.$
28	200×256	Copper	145×213	30,885	28	80
32	200×356	Copper	145×213	30,885	26	76
44	360×430	Copper	292×350	102,200	16	60
52	310×310	Copper	269×244	65,636	20	52
68	360×360	Copper	324×318	103,032	15	40
84	425×425	Copper	335×384	128,640	14	35

Table 8. Plastic Quad Flatpacks

Package Type "M"	LF Material	Pad Size (mil)	Die Size $(\mathbf{m i l})$	$\theta_{\mathbf{J C}}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	$\theta_{\mathbf{J A}}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right.$ still air)
100	Alloy 42	310×310	235×235	20	78
144	Alloy 42	310×310	235×235	22	69
160	Alloy 42	310×310	230×230	22	68
208	Alloy 42	400×400	290×320	20	60

Table 9. Ceramic DIP Packages

Package Type "D" and "W"	Cavity Size (mil)	LF Material	Die Size (mil)	Die Area (sq. mil)	$\theta_{\text {JC }}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	$\theta_{\text {JA }}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right.$ still air)
16.3	160×120	Alloy 42	60×70	4200	12	96
18.3	260×140	Alloy 42	162×123	19,926	10	86
20.3	170×290	Alloy 42	145×213	30,885	7	83
24.3	180×210	Alloy 42	145×120	17,400	8	69
24.3	270×170	Alloy 42	145×213	30,885	7	67
22.4	180×210	Alloy 42	145×120	17,400	6	63
28.4	260×260	Alloy 42	150×180	27,000	6	53
28.6	260×260	Alloy 42	145×213	30,885	5	39
28.6	290×560	Alloy 42	145×213	30,885	4	39
40.6	260×270	Alloy 42	145×213	30,885	5	35
48.6	260×340	Alloy 42	145×213	30,885	5	30

Table 10. Ceramic Quad Flatpacks

Package Type " H " and " Y "	Cavity Size (mil)	LF Material	Die Size (mil)	Die Area (sq. mil)	$\begin{gathered} \theta_{\mathbf{J C}} \\ \left({ }^{\circ} \mathbf{C} / \mathbf{W}\right) \end{gathered}$	$\begin{gathered} \theta_{\mathrm{JA}} \\ \left({ }^{\circ} \mathrm{C} / \mathbf{W} \text { still air }\right) \end{gathered}$
28 "H"	250×250	Alloy 42	123×162	19,926	9.2	96
28 "Y"	250×250	Alloy 42	150×180	27,000	8.9	93
44	400×400	Alloy 42	310×250	77,500	5.9	55
68	400×400	Alloy 42	310×250	77,500	5.4	33
84	450×450	Alloy 42	310×250	77,500	5.4	29

Table 11. Hermetic Leadless Chip Carriers

Package Type "	Cavity Size (mil)	LF Material	Die Size (mil)	Die Area (sq. mil)	$\begin{gathered} \theta_{\mathbf{J C}} \\ \left({ }^{\circ} \mathbf{C} / \mathbf{W}\right) \end{gathered}$	$\begin{gathered} \theta_{\mathbf{M}} \\ \left({ }^{\circ} \mathbf{C} / \mathbf{W} \text { still air }\right) \end{gathered}$
$28 S^{[10]}$	250×250	Alloy 42	123×162	19,926	11	87
28 S	250×250	Alloy 42	150×180	27,000	20	84
$28 \mathrm{R}^{[11]}$	185×185	Alloy 42	145×120	17,400	9	88
44R	430×430	Alloy 42	292×350	102,200	6	64
52S	330×330	Alloy 42	244×269	65,636	4	47
68 S	300×300	Alloy 42	244×269	65,636	4	38

Notes:
10. 28 S refers to a 28 -pin square leadless chip carrier.
11. 28 R refers to a 28 -pin rectangular leadless chip carrier.

Table 12. Miscellaneous Packaging

Package Type	Cavity Size (mil)	Leadframe Material	Die Size (mil)	Die Area $($ sq. mil $)$	$\theta_{\mathbf{J C}}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	$\theta_{\text {dA }}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right.$ still air $)$
24 VDIP $^{[12]}$	500×275	Alloy 42	145×213	30,885	6	57
28 Cerpak $^{[13]}$	210×210	Alloy 42	150×180	27,000	9	98
68 CPGA $^{[14]}$	350×350	Kovar Pins	323×273	88,179	3	28

Notes:

12. VDIP $=$ "PV" package.
13. Cerpack $=$ " K " package .
14. $\mathrm{CPGA}=$ " G " package.

Packaging Materials

Cypress plastic packages incorporate:

- High thermal conductivity copper lead frame
- Molding compound with high thermal conductivity
- Silver-filled conductive epoxy as die attach material
- Gold bond wires

Cypress cerDIP packages incorporate:

- High conductivity alumina substrates
- Silver-filled glass as die attach material
- Alloy 42 lead frame
- Aluminum bond wires

Package Diagrams

Cypress offers a variety of packages in both square and tapered leads. Detailed examples of both types of leads are shown below.

Tapered Leads

Packages that offer both of these lead types are annotated below each of the package drawings.

16-Lead (300-Mil) CerDIP D2

20-Lead (300-Mil) CerDIP D6

[^72]18-Lead (300-Mil) CerDIP D4

22-Lead (400-Mil) CerDIP D8

22-Lead (300-Mil) CerDIP D10

24-Lead (600-Mil) CerDIP D12

*This package is offered in both square and tapered lead types. See the beginning of this section for details.

28-Lead (600-Mil) CerDIP D16

${ }^{*}$ This package is offered in both square and tapered lead types. See the beginning of this section for details.

40-Lead (600-Mil) CerDIP D18

*This package is offered in both square and tapered lead types. See the beginning of this section for details.

32-Lead (600-Mil) CerDIP D20

28-Lead (300-Mil) CerDIP D22

48-Lead (600-Mil) Sidebraze DIP D26

52-Lead (900-Mil) Bottombraze DIP D28

64-Lead (900-Mil) Bottombraze DIP D30

32-Lead (300-Mil) CerDIP D32

24-Lead (400-Mil) CerDIP D40

32-Lead (400-Mil) CerDIP D44

16-Lead Rectangular Flatpack F69

20-Lead Rectangular Flatpack F71

18-Lead Rectangular Flatpack F70

24-Lead Rectangular Flatpack F73
(MIL-M-38510 F-6 CONFIG 2)

42-Lead Rectangular Flatpack F76

48-Lead Quad Flatpack $F 78$

14

CYPRESS
SEMICONDUCTOR

64-Lead Quad Flatpack F90

68-Pin Grid Array Package G68

207-Pin Grid Array G207

28-Pin Windowed Leaded Chip Carrier H64

44-Pin Windowed Leaded Chip Carrier H67

68-Pin Windowed Leaded Chip Carrier H81

20-Lead Plastic Leaded Chip Carrier J61

32-Lead Plastic Leaded Chip Carrier J65

28-Lead Plastic Leaded Chip Carrier J64

44-Lead Plastic Leaded Chip Carrier J67

52-Lead Plastic Leaded Chip Carrier J69
dimensions in inches
$\frac{M I N .}{M A X .}$

68-Lead Plastic Leaded Chip Carrier J81
dimensions in inches
$\frac{\text { MIN. }}{\text { MAX }}$

84-Lead Plastic Leaded Chip Carrier J83

20-Lead Rectangular Cerpack K71

24-Lead Rectangular Cerpack K73

(MIL-M-38510 F-6 CONFIG 1)

28-Lead Rectangular Cerpack K74

(MIL-M-38510 F-11 CONFIG i)

32-Lead Leadless Chip Carrier L45

18-Pin Rectangular Leadless Chip Carrier L50
(MIL-M-38510 C-10A)

22-Pin Rectangular Leadless Chip Carrier L52

20-Pin Rectangular Leadless Chip Carrier L51
(MIL-M-38510 C-13)

24-Pin Rectangular Leadless Chip Carrier L53

28-Pin Rectangular Leadless Chip Carrier L54

20-Pin Square Leadless Chip Carrier L61

32-Pin Rectangular Leadless Chip Carrier L55

24-Pin Square Leadless Chip Carrier L63

TOP

28-Pin Square Leadless Chip Carrier L64

44-Pin Square Leadless Chip Carrier L67

48-Pin Square Leadless Chip Carrier L68

68-Pin Square Leadless Chip Carrier L81

DIMENSIONS IN INCHES
$\frac{\mathrm{MIN} .}{\mathrm{MAX}}$

160-Lead Plastic Quad Flatpack Package N160

208-Lead Plastic Quad Flatpack Package N208

18-Lead (300-Mil) Molded DIP P3

22-Lead (400-Mil) Molded DIP P7

22-Lead (300-Mil) Molded DIP P9

24-Lead (300-Mil) Molded DIP P13/P13A

24-Lead (600-Mil) Molded DIP P11

40-Lead (600-Mil) Molded DIP P17

32-Lead (600-Mil) Molded DIP P19

28-Lead (300-Mil) Molded DIP P21

48-Lead (600-Mil) Molded DIP P25

64-Lead (900-Mil) Molded DIP P29

32-Pin Windowed Rectangular Leadless Chip Carrier Q55

20-Pin Windowed Square Leadless Chip Carrier Q61

28-Pin Windowed Leadless Chip Carrier Q64

68-Pin Windowed PGA Ceramic R68

84-Lead Windowed Cerquad R84

14

16-Lead Molded SOIC S1

18-Lead Molded SOIC S3

20-Lead Molded SOIC S5

DIMENSIONS IN INCHES
MIN.
LEAD COPLANIARITY 0.004 MAX.

24-Lead Molded SOIC S13

14

28-Lead Molded SOIC S21

32-Lead (400-Mil) Molded SOIC S33

DIMENSIONS IN INCHES $\frac{\text { MIN. }}{\text { MAX }}$

detall A
EXTERNAL LEAD OESIGN

NOTE: EITHER OPTION MAY BE SHIPPED

28-Lead Windowed Cerpack T74

20-Lead Molded SOJ V5

24-Lead Molded SOJ V13

28-Lead Molded SOJ V21

32-Lead (400-Mil) Molded SOJ V33
dimensions in inches $\frac{\text { Min. }}{\text { MAX. }}$

detall A
EXTERNAL LEAD DESIGN

OPTION 1

OPTION 2

NOTE: EITHER OPTION MAY BE SHIPPED

20-Lead ($\mathbf{3 0 0}-\mathrm{Mil}$) Windowed CerDIP W6

*This package is offered in both square and tapered lead types.
See the beginning of this section for details.

24-Lead (600-Mil) Windowed CerDIP W12

*This package is offered in both square and tapered lead types.
See the beginning of this section for details.
\qquad

*This package is offered in both square and tapered lead types. See the beginning of this section for details.

28-Lead (600-Mil) Windowed CerDIP W16

*This package is offered in both square and tapered lead types. See the beginning of this section for details.

32-Lead (600-Mil) Windowed CerDIP W20

*This package is offered in both square and tapered lead types. See the beginning of this section for details.

*This package is offered in both square and tapered lead types.
See the beginning of this section for details.

32-Lead (300-Mil) Windowed CerDIP W32

*This package is offered in both square and tapered lead types.
See the beginning of this section for details.

Package Diagrams

CYPRESS
SEMICONDUCTOR

28-Pin Ceramic Leaded Chip Carrier Y64

Typical Marking for DIP Packages (P and D Type)

Package Diagrams for Modules

40-Pin DIP Module HD01

40-Pin Ceramic DIP Module HD02

40-Pin DIP Module HD03

32-Pin DIP Module HD04

48-Pin Ceramic DIP Module HD05

60-Pin Ceramic DIP Module HD06

28-Pin DIP Module HD07

24-Pin DIP Module HD08

28-Pin DIP Module HD09

28-Pin Ceramic DIP Module HD10

66-Pin PGA Module HG01

PIN 1

0.100 TYP

36-Pin Vertical DIP Module HV01

88-Pin Vertical DIP Module HV02

40-Pin VDIP Module HV03

32-Pin DIP Module PD01

32-Pin DIP Module PD02

40-Pin DIP Module PD04

32-Pin DIP Module PD05

SEMCONDUCTOR

60-Pin DIP Module PD06

28-Pin Plastic DIP Module PD07

36-Pin Flat SIP Module PF01

44-Pin Flat SIP Module PF02

36-Pin Flat SIP Module PF03
Top View

64-Pin Plastic SIMM Module PM01

64-Pin Plastic SIMM Module PM02

30-Pin Plastic SIP PS03

44-Pin Plastic SIP Module PS04

36-Pin SIP Module PS05

36-Pin Plastic Vertical DIP Module PV03

Package Diagrams

64-Pin Plastic ZIP Module PZ01
Bottom View

60-Pin Plastic ZIP Module PZ02

64-Pin Plastic ZIP Module PZ03

60-Pin ZIP Module PZ04
Bottom View

56-Pin ZIP Module PZ05

36-Pin SIP Module PS01

)irect Sales Offices

California

Cypress Semiconductor
Corporate Headquarters
3901 N. First Street
San Jose, CA 95134
(408) 943-2600

Telex: 821032 CYPRESS SNJ UD
TWX: 9109970753
FAX: (408) 943-2741
Cypress Semiconductor
23586 Calabasas Rd., Ste. 201
Calabasas, CA 91302
(818) 884-7800

FAX: (818) 348-6307
Cypress Semiconductor
2151 Michelson Dr., Ste. 240
Irvine, CA 92715
(714) 476-8211

FAX: (714) 476-8317
Cypress Semiconductor
12526 High Bluff Dr., Ste. 300
San Diego, CA 92130
(619) 755-1976

FAX: (619) 755-1969

Jolorado

Cypress Semiconductor
4851 Independence St., Ste. 189
Wheat Ridge, CO 80033
(303) 424-9000

FAX: (303) 424-0627
'lorida
Cypress Semiconductor
10014 N. Dale Mabry Hwy. 101
Tampa, FL 33618
(813) 968-1504

FAX: (813) 968-8474
Cypress Semiconductor
255 South Orange Avenue
Suite 1255
Orlando, FL 32801
(407) 422-0734

FAX: (407) 422-1976

llinois

Cypress Semiconductor
1530 E. Dundee Rd., Ste. 190
Palatine, IL 60067
(708) 934-3144

FAX: (708) 934-7364
Karyland
Cypress Semiconductor
5457 Twin Knolls Rd., Ste. 103
Columbia, MD 21045
(301) 740-2087

FAX: (301) 997-2571

Minnesota

Cypress Semiconductor
14525 Hwy. 7, Ste. 360
Minnetonka, MN 55345
(612) 935-7747

FAX: (612) 935-6982

New Hampshire

Cypress Semiconductor
61 Spit Brook Road, Ste. 110
Nashua, NH 03060
(603) 891-2655

FAX: (603) 891-2676
New York
Cypress Semiconductor
244 Hooker Ave., Ste. B
Poughkeepsie, NY 12603
(914) 485-6375

FAX: (914) 485-7103
Cypress Semiconductor
Hauppauge Exec. Center
300 Vanderbilt Motor Pkwy., \#100
Hauppauge, NY 11788
(516) 231-0238

FAX: (516) 544-4359

North Carolina

Cypress Semiconductor
7500 Six Forks Rd., Suite G
Raleigh, NC 27615
(919) 870-0880

FAX: (919) 870-0881

Oregon

Cypress Semiconductor
12225 SW 2nd Street, Ste. 200
Beaverton, OR 97005
(503) 626-6622

FAX: (503) 626-6688

Pennsylvania

Cypress Semiconductor
Two Neshaminy Interplex, Ste. 206
Trevose, PA 19053
(215) 639-6663

FAX: (215) 639-9024

Texas

Cypress Semiconductor
333 West Campbell Rd., Ste. 240
Richardson, TX 75080
(214) 437-0496

FAX: (214) 644-4839
Cypress Semiconductor
Great Hills Plaza
9600 Great Hills Trail, Ste. 150W
Austin, TX 78759
(512) 338-0204

FAX: (512) 338-0865

Cypress Semiconductor
20405 SH 249, Ste. 216
Houston, TX 77070
(713) 370-0221

FAX: (713) 370-0222
Cypress Semiconductor International-Europe
Avenue Ernest Solvay, 7
B-1310 La Hulpe, Belgium
Tel: (32) 2-652-0270
Telex: 64677 CYPINT B
FAX: (32) 2-652-1504

France

Cypress Semiconductor France
Miniparc Bât. no 8
Avenue des Andes, 6
Z.A. de Courtaboeuf

91952 Les Ulis Cedex, France
Tel: (33) 1-69-07-55-46
FAX: (33) 1-69-07-55-71

Italy

Cypress Semiconductor
Via Quintino 28
10121 Torino, Italy
Tel: (39) 11-515-421 or 11-517-421
FAX: (39) 11-518-612

Japan

Cypress Semiconductor Japan K.K.
Fuchu-Minami Bldg., 2F
10-3, 1-Chome, Fuchu-machi,
Fuchu-shi, Tokyo, Japan 183
Tel: (81) 423-69-82-11
FAX: (81) 423-69-82-10

Sweden

Cypress Semiconductor Scandinavia AB
Kanalvagen 17
18330 Taby, Sweden
Tel: (46) 87582055
Telex: 15-560-TFCS
FAX: (46) 87921560

United Kingdom

Cypress Semiconductor U.K., Ltd.
3, Blackhorse Lane, Hitchin,
Hertfordshire, U.K., SG4 9EE
Tel: (44) 462-42-05-66
FAX: (44) 462-42-19-69

North American Sales Representatives

Alabama

Group 2000 Sales Inc.
109 C Jefferson St.
Hunstville, AL 35801
(205) 536-2000

FAX: (205) 533-5525

Arizona

Thom Luke Sales, Inc.
2940 North 67th Pl., Ste. H
Scottsdale, AZ 85251
(602) 941-1901

FAX: (602) 941-4127

California

Taarcom
451 N. Shoreline Blvd.
Mountain View, CA 94043
(415) 960-1550

FAX: (415) 960-1999

Canada

bbd Electronics, Inc.
6685-1 Millcreek Dr.
Mississauga, Ontario L5N 5M5
(416) 821-7800

FAX: (416) 821-4541
bbd Electronics, Inc.
411 Roosevelt Ave., Ste. 201
Ottawa, Ontario K2A 3X9
(613) 729-0023

FAX: (613) 729-4256
bbd Electronics, Inc.
298 Lakeshore Rd., Ste. 203
Pointe Claire, Quebec H95 4L 3
(514) 697-0801

FAX: (514) 697-0277
Mirika
84 Woodland Dr.
Delta, British Columbia V4C 3C1
(604) 943-5020

FAX: (604) 943-8184

Connecticut

HLM
3 Pembroke Rd.
Danbury, CT 06813
(203) 791-1878

FAX: (203) 791-1876

Florida

CM Marketing
445 Douglas Ave., \#1455-E
Altamonte Springs, FL 32714
(407) 682-7709

FAX: (407) 682-7995
CM Marketing
1435-D Gulf to Bay Blvd.
Clearwater, FL 34615
(813) 443-6390

FAX: (813) 443-6312

Florida (continued)
CM Marketing
2020 West McNab, Suite 126
Ft. Lauderdale, FL 33309
(305) 973-9375

FAX: (305) 973-9386
Illinois
Micro Sales Inc.
901 Hawthorn Drive
Itasca, IL 60143
(708) 285-1000

Telex: 5106000756
FAX: (708) 285-1008

Indiana

Technology Mktg. Corp.
599 Industrial Dr.
Carmel, IN 46032
(317) $844-8462$

FAX: (317) 573-5472
Technology Mktg. Corp.
4630-10 W. Jefferson Blvd.
Ft. Wayne, IN 46804
(219) 432-5553

FAX: (219) 432-5555

Iowa

Midwest Technical Sales
1930 St. Andrews N.E.
Cedar Rapids, IA 52402
(319) 393-5115

FAX: (319) 393-4947

Kansas

Midwest Technical Sales
21901 La Vista
Goddard, KS 67052
(316) 794-8565

Midwest Technical Sales
15301 W. 87 Parkway, Ste. 200
Lenexa, KS 66219
(913) 888-5100

FAX: (913) 888-1103

Kentucky

Technology Marketing Corp.
4012 DuPont Circle, Ste. 414
Louisville, KY 40207
(502) 893-1377

FAX: (502) 896-6679

Michigan

Techrep
2550 Packard Road
Ypsilanti, MI 48197
(313) 572-1950

FAX: (313) 572-0263

Missouri

Midwest Technical Sales
514 Earth City Expwy., \#239
Earth City, MO 63045
(314) 298-8787

FAX: (314) 298-9843

New Jersey

HLM
333 Littleton Rd.
Parsippany, NJ 07054
(201) 263-1535

FAX: (201) 263-0914

New Mexico

Techni-Source, Inc.
1101 Cardenas NE \#103
Albuquerque, NM 87110
(505) 268-4232

FAX: (505) 268-0451

New York

HLM
P.O Box 328

Northport, NY 11768
(516) 757-1606

FAX: (516) 757-1636
Reagan/Compar
25 C Brook Hill Lane
Rochester, NY 14625
(716) 271-2230

FAX: (716) 381-2840
Reagan/Compar
214 Dorchester Ave., \#3C
Syracuse, NY 13203
(315) 432-8232

FAX: (315) 432-8238
Reagan/Compar
3301 Country Club Road
Ste. 2211
P.O. Box 135

Endwell, NY 13760
(607) 754-2171

FAX: (607) 754-4270

Ohio

KW Electronic Sales, Inc.
8514 North Main Street
Dayton, OH 45415
(513) 890-2150

TWX: 5106012994
FAX: (513) 890-5408
KW Electronic Sales, Inc.
3645 Warrensville Center Rd. \#244
Shaker Heights, OH 44122
(216) 491-9177

TWX: 62926868
FAX: (216) 491-9102

Sales Representatives and Distributors

North American Sales Representatives (continued)
?ennsylvania
L. D. Lowery

2801 West Chester Pike
Broomall, PA 19008
(215) 356-5300

FAX: (215) 356-8710
KW Electronic Sales, Inc.
A-118 McKnight Circle
Pittsburgh, PA 15237
(412) 366-9396

FAX: (412) 366-9483

Puerto Rico
Electronic Technical Sales P.O. Box 10758

Caparra Heights Station
San Juan, P.R. 00922
(809) 798-1300

FAX: (809) 798-3661

Utah

Sierra Technical Sales
4700 South 900 East, 30-150
Salt Lake City, UT 84117
(801) 566-9719

FAX: (801) 565-1150

Washington

Electronic Sources
1603 116th Ave. NE, Ste. 115
Bellevue, WA 98004
(206) 451-3500

FAX: (206) 451-1038

Wisconsin

Micro Sales Inc.
16800 W. Greenfield Ave.
Suite 116
Brookfield, WI 53005
(414) 786-1403

FAX: (414) 786-1813

International Sales Representatives

Australia

Braemac Pty. Ltd.
1045-1047 Victoria Rd.,
West Ryde, N.S.W. 2114, Australia
Tel: (61) 2-858-5966
FAX: (61) 2-858-5085
Braemac Pty. Ltd.
10-12 Prospect Street, Box Hill
Melbourne, Victoria, 3128, Australia
Tel: (61) 3-899-1272
FAX: (61) 3-899-1276

Austria

Hitronik Vertriebsge GmbH
St. Veitgasse 51
A-1130 Wien, Austria
Tel: (43) 222-828-41-99
Telex: 133404 HIT A
FAX: (43) 222-828-55-72

Belgium

Lemaire/Rodelco
Limburg Stirum 243
1810 Wemmel, Belgium
Tel: (32) 2-460-0560
FAX: (32) 2-460-0271

Denmark

Nordisk Elektronik A/S
Transformervej 17
DK-2730 Herlev, Denmark
Tel: (45) 42-84-20-00
Telex: 35200 NORDEL DK
FAX: (45) 44-92-15-52

Finland

Oy Fintronic AB
Heikkilantie 2A
00210 Helsinki, Finland
Tel: (358) 0-692-6022
Telex: 124224 FTRON SF
FAX: (358) 0-682-1251

France

Newtek
Rue de LEsterel, 8, Silic 583
F-94663 Rungis Cedex, France
Tel: (33) 1-46-87-22-00
Telex: 263046 F
FAX: (33) 1-46-87-80-49
Newtek
Rue de l'Europe, 4
Zac Font-Ratel
38640 Claix, France
Tel: (33) 16-76-98-56-01
FAX: (33) 16-76-98-16-04

France (continued)
Lex Electronics S.A.
Rue des Solets, 73/79
Silic 585
94663 Rungis Cedex, France
Tel: (33) 1-49-78-49-00
Telex: 260967
FAX: (33) 1-49-78-05-99
Lex Electronics S.A.
Avenue Barthelemy, 2-12
Thimmonier
69300 Caluire, France
Tel: (33) 72-27-15-27
Telex: 306101
FAX: (33) 72-27-14-27
Lex Electronics S.A.
Rue Pierre Cazeneuve, 60
31200 Toulouse, France
Tel: (33) 61-57-96-95
Lex Electronics S.A.
Immeuble Saint Christophe
Rue de la Frebardiere
B.P. 42-Z.I. Sud Est

35135 Chantepie, France
Tel: (33) 99-41-70-44
Telex: 741321
FAX: (33) 99-50-11-28
Scaib, SA
80 Rue d'Arcueil Silic 137
94523 Rungis, Cedex, France
Tel: (33) 1-46-87-23-13
FAX: (33) 1-45-60-55-49

Germany

API Electronik GmbH
Lorenz-Brarenstr 32
K-8062 Markt, Indersdorf
West Germany
Tel: (49) 81367092
Telex: 5270505
FAX: (49) 81367398
Astek GmbH
Gottlieb-Daimler Str. 7
W-2358 Kaltenkirchen
West Germany
Tel: (49) 41 91-80 07-0
Telex: 2180120 ASK D
FAX: (49) 41 91-80 07-33
Metronik GmbH
Leonhardsweg 2, Postfach 1328
W-8025 Unterhaching,
Munich, West Germany
Tel: (49) 89611080
Telex: 17897434 METRO D
FAX: (49) 896116468

Germany (continued)
Metronik GmbH
Laufamholzstrasse 118
W-8500 Nürnberg,
West Germany
Tel: (49) 911590061
Telex: 626205
FAX: (49) 911542936
Metronik GbmH
Löewenstrasse 37
W-7000 Stuttgart 70
West Germany
Tel: (49) 711764033
Telex: 7-255-228
FAX: (49) 7117651181
Metronik GmbH
Siemensstrasse 4-6
W-6805 Heddesheim bei Manheim
West Germany
Tel: (49) 62034701
Telex: 465035
FAX: (49) 620345543
Metronik GmbH
Semerteichstrasse 92
W-4600 Dortmund 30
West Germany
Tel: (49) 231423037
Telex: 8227082
FAX: (49) 231418232
Metronik GmbH
Buckhorner Moor 81
W-2000 Norderstedt, Hamburg
West Germany
Tel: (49) 40-522 8019
Telex: 2162488
FAX: (49) 40-522 8093
Metronik Halle
Thalmannplatz 16/0904
O-4020 Halle
East Germany

Hong Kong

Tekcomp Electronics, Ltd.
514 Bank Centre
636, Nathan Road
Kowloon, Hong Kong
Tel: (852) 3-880-629
Telex: 38513 TEKHL
FAX: (852) 7-805-871

Israel

Talviton Electronics
P.O. Box 21104, 9 Biltmore Street

Tel Aviv 61 210, Israel
Tel: (972) 3-544-2430
Telex: 33400 VITKO
FAX: (972) 3-544-2085

Iternational Sales Representatives (continued)

$11 y$

ramer Italia s.p.a.
'ia C. Colombo, 134
-00147 Roma, Italy
èl: (39) 6-517-981
elex: 611517 Cramer I
'AX: (39) 6-514-0722
lott. Ing. Guiseppe De Mico s.p.a.
'. Le Vittorio Veneto, 8
-20060 Cassina d'Pechi
filano, Italy
el: (39) 2-9534-3600
elex: 330869 DEMICO I
AX: (39) 2-9522-227
pan
omen Electronics Corp.
-1-1 Uchisaiwai-Cho, Chiyoda-Ku
okyo, 100 Japan
el: (81) 3-3506-3673
èlex: 23548 TMELCA
AX: (81) 3-3506-3497
TC Components Systems Co. Ltd. -8-1, Tsuchihashi, Kiyamae-Ku, Kawasaki-Shi, anagawa, 213 Japan
el: (81) 4-4852-5121
elex: 3842272 CTCEC J
'AX: (81) 4-4877-4268
uji Electronics Co., Ltd.)chanomizu Center Bldg
-2-12 Hongo, Bunkyo-Ku
okyo, 113 Japan
el: (81) 3-3814-1411
elex: J28603 FUJITRON
AX: (81) 3-3814-1414
I.D.A. Co. Ltd.
uctus Iidabashi Bldg.
-8-3 Iidabashi Chiyoda-Ku
okyo, 102 Japan
el: (81) 3-3264-1321
èlex: J29503 ISI JAPAN
iAX: (81) 3-3264-3419

Japan (continued)
Fujitsu Devices, Inc.
Osaki West Bldg.
8-8, Osaki 2-Chome, Shinagawa-ku
Tokyo 141, Japan
Tel: (81) 3-3490-3321
FAX: (81) 3-3490-7274

Korea

Hanaro Corporation
Daeyoung Bldg., 2nd Floor
643-8, Yeoksam-Dong,
Kangnam-ku
Seoul, Korea
Tel: (82) 2-558-1144
FAX: (82) 2-558-0157

Netherlands

Semicon B.V.
Gulberg 33, NL-5674
Te Nuenen
The Netherlands
Tel: (31) 4-083-7075
Telex: 59418 INTRA NL
FAX: (31) 4-083-8635

Norway

Nordisk Elektronikk A/S
Smedsvingen 4, P.O. Box 123
N-1364 Hvalstad, Norway
Tel: (47) 2-84-62-10
Telex: 77546 NENAS N
FAX: (47) 2-84-65-45

Singapore

Desner Electronics
42 Mactaggart Rd.
\#04-01 Mactaggart Bldg.
Singapore 1336
Tel: (65) 2-25-15-66
FAX: (65) 2-84-94-66

Spain

Comelta s.a.
Emilio Munoz, 41 Nave 1-1-2
E-Madrid 17, Spain
Tel: (34) 1-754-3001
Telex: 42007 CETA-E
FAX: (34) 1-754-2151

Spain (continued)
Comelta s.a
Pedro IV, 8-4-5 Planta
08005 Barcelona, Spain
Tel: (34) 3-007-7712

Sweden

TH:s Elektronik AB
P.O. Box 3027

Arrendevägen 36
S163 03 SPANGA, Sweden
Tel: (46) 8-362-970
Telex: 11145 tenik s
FAX: (46) 8-761-3065

Switzerland

Basix für Elektronik A. G.
Hardturmstrasse 181
CH-8010 Zurich, Switzerland
Tel: (41) 1-276-1111
Telex: 822762 BAEZ CH
FAX: (41) 1-276-1234

Taiwan R.O.C.

Prospect Technology Corp.
5, Lane 55, Long-Chiang Road
Taipei, Taiwan
Tel: (886) 2-721-9533
Telex: 14391 PROSTECH
FAX: (886) 2-773-3756

United Kingdom

Pronto Electronic System Ltd.
City Gate House
Eastern Avenue, 399-425
Gants Hill, Ilford,
Essex, U. K. IG2 6LR
Tel: (44) 8-1554-6222
Telex: 8954213 PRONTO G
FAX: (44) 8-1518-3222
Ambar Components Ltd.
17 Thame Park Road
Thame, Oxfordshire
England, OX9 3XD
Tel: (44) 8-4426-1144
Telex: 837427
FAX: (44) 8-4426-1789

Sales Representatives and Distributors

Distributors

Arrow Electronics:

Alabama

Huntsville, AL 35816
(205) 837-6955

Arizona

Phoenix, AZ 85040
(602) 437-0750

California
Chatsworth, CA 91311
(818) 701-7500

San Diego, CA 92123
(619) 565-4800

Sunnyvale, CA 94089
(408) 745-6600

Tustin, CA 92680
(714) 838-5422

Canada

Mississauga, Ontario L5T 1H3
(416) 672-7769

Dorval, Quebec H9P 2 T5
(514) 421-7411

Neapean, Ontario K2E 7W5 (613) 226-6903

Quebec City, Quebec G2E 5RN (418) 871-7500

Colorado

Englewood, CO 80112
(303) 373-5616

Connecticut

Wallingford, CT 06492
(203) 265-7741

Florida

Deerfield Beach, FL 33441
(305) 429-8200

Lake Mary, FL 32746
(407) 333-9300

Georgia

Deluth, GA 30071
(404) 497-1300

Illinois
Itasca, IL 60143
(708) 250-0500

Indiana
Indianapolis, IN 42641
(317) 299-2071

Kansas

Lenexa, KS 66214
(913) 541-9542

Maryland

Columbia, MD 20877
(301) 995-6002

Gathersburg, MD
(301) 670-1600

Massachusetts
Wilmington, MA 01887
(617) 658-0900

Michigan

Livonia, MI 48152
(313) 462-2290

Wyoming, MI 48152
(616) 243-0912

Minnesota

Eden Prairie, MS 55344
(612) 829-5588

New Mexico
Albuquerque, NM 87106
(505) 243-4566

New Jersey

Parsippany, NJ 07054
(201) 538-0900

New York
Rochester, NY 14623
(716) 427-0300

Hauppauge, NY 11788
(516) 231-1000

New Jersey

Marlton, NJ 08053
(609) 596-8000

North Carolina
Raleigh, NC 27604
(919) 876-3132

Ohio
Solon, OH 44139
(216) 248-3990

Solon, OH 44139
(216) 248-3990

Oklahoma
Tulsa, OK 74146
(918) 252-7537

Oregon

Beaverton, OR 97006
(503) 645-6456

Texas

Austin, TX 78758 (512) 835-4180

Carrollton, TX 75006
(214) 380-6464

Houston, TX 77099
(713) 530-4700

Washington
Kent, WA 98032
(206) 575-4420

Wisconsin
Brookfield, WI 53005
(414) 792-0150

Florida

Ft. Lauderdale, FL 33309 (305) 977-4880

Distributors (continued)

Semad:

Toronto

Markham, Ontario L3R 4Z4
(416) 475-3922

FAX: (416) 475-4158
Montreal
Pointe Claire, Quebec H9R 427
(514) 694-0860

1-800-363-6610
FAX: (514) 694-0965

Ottawa

Ottawa, Ontario K2C 0R3
(613) 727-8325

FAX: (613) 727-9489

Vancouver

Burnaby, British Columbia V3N 4S9 (604) 420-9889

1-800-663-8956
FAX: (604) 420-0124

Calgary

Calgary, Alberta T2H 2S8
(403) 252-5664

FAX: (604) 420-0124

Falcon Electronics:

Hauppauge, LI, NY 11788
(516) 724-0980

Franklin, MA 01701
(508) 520-0323

Milford, CT 06460
(203) 878-5272

Baltimore, MD 21233
(301) 247-5800

Winter Park, FL 32792
(407) 671-3739

Anthem Electronics, Inc.:
Tempe, AZ 85281
(602) 966-6600

Chatsworth, CA 91311
(818) 775-1333

East Irvine, CA 92718
(714) 768-4444

Rocklin, CA 95834
(916) 624-9744

San Jose, CA 95131
(408) 453-1200

San Diego, CA 92121
(619) 453-9005

Englewood, CO 80112
(303) 790-4500

Waterbury, CT 06450
(203) 575-1575

Clearwater, FL 34623
(813) 796-2900

Atlanta, GA 30093
(800) 359-3522

Schaumburg, IL 60007
(708) 884-0200

Wilmington, MA 01887
(508) 657-5170

Columbia, MD 21045
(301) 995-6640

Eden Prairie, MN 55344
(612) 944-5454

Pine Brook, NJ 07006
(201) 227-7960

Commack, NY 11787
(516) 864-6600

Worthington, OH 43085
(614) 888-8707

Beaverton, OR 97005
(503) 643-1114

Horsham, PA 19044
(215) 443-5150

Richardson, TX 75081
(214) 238-7100

Salt Lake City, UT 84119
(801) 973-8555

Bothel, WA 98052
(206) 483-1700

Zeus Components, Inc.:
Agoura Hills, CA 91301
(818) 889-3838

Yorba Linda, CA 92686
(714) 921-9000

San Jose, CA 95131
(408) 629-4789

Oviedo, FL 32765
(305) 365-3000

Lexington, MA 02173
(617) 246-8200

Columbia, MD 21045
(301) 997-1118

Port Chester, NY 10573
(914) 937-7400

Ronkonkoma, NY 11779
(516) 737-4500

Dayton, OH 45439
(513) 293-6162

Richardson, TX 75081
(214) 783-7010

CYPRESS SEMICONDUCTOR

3901
N ORTH
F \| R S T
STREET

S.A N J O S E C A 9 5 1 1 3 4

408.

[^0]: (c) Cypress Semiconductor Corporation, 1991. The information contained hereln Is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibllity for the use of any circuitry other than clrcultry embodled In a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in ilfe-support systems where a malfunctlon or fallure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in ilfe-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress tothe user. The inclusion of Cypress Se
 Semiconductor against all damages.

[^1]: Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on I_{SB};
 $+=$ meets all performance specs but may not meet I_{CC} or I_{SB};
 $*$ = meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB};

 - = functionally equivalent.
 $\dagger=$ SOIC only
 $\ddagger=32$-pin LCC crosses to the 7 C 198 M

[^2]: $+=$ meets all performance specs but may not meet I_{CC} or I_{SB};
 $*=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB};

 - = functionally equivalent.
 $\dagger=$ SOIC only
 $\ddagger=32$-pin LCC crosses to the 7 C 198 M

[^3]: $+=$ meets all performance specs but may not meet I_{CC} or I_{SB};
 $*=$ meets all performance specs except $2 V$ data retention-may not meet I_{CC} or I_{SB};

 - = functionally equivalent.
 $\dagger=$ SOIC only
 $\ddagger=32$-pin LCC crosses to the 7 C 198 M

[^4]: Document \#: 38-00055-D

[^5]: Notes:
 10. Device is continuously selected. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
 11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
 12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

[^6]: Document \#: 38-00140-A

[^7]: Document \#: 38-00025-B

[^8]: Document \#: 38-00094-B

[^9]: Notes:
 22. $\mathrm{I} / \mathrm{O}_{0 \mathrm{R}}=\mathrm{I} / \mathrm{O}_{0 \mathrm{~L}}=$ LOW (request semaphore); $\overline{\mathrm{CE}}_{\mathrm{R}}=\overline{\mathrm{CE}}_{\mathrm{L}}=\mathrm{HIGH}$ 23. Semaphores are reset (available to both ports) at cycle start.

[^10]: Note:
 25. If t_{PS} is violated, the busy signal will be asserted on one side or the other, but there is no guarantee on which side BUSY will be asserted.

[^11]: B144-13

[^12]: Document \#: 38-00151

[^13]: Shaded area contains preliminary information.

[^14]: Shaded area contains preliminary information.

[^15]: Document \#: 38-00153

[^16]: Document \#: 38-A-00016-B

[^17]: Document \#: 38-00039-B

[^18]: Notes:
 10. Device is continuously selected. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
 11. $\overline{\text { WE }}$ is HIGH for read cycle.
 12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.

[^19]: Notes:
 11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
 12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
 13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.

[^20]: Document \#: 38-00157

[^21]: Notes:
 11. Device is continuously selected. $\overline{\mathrm{CE}}_{1}\left(\overline{\mathrm{OE}}\right.$: 7 B 195 and $7 \mathrm{~B} 196, \overline{\mathrm{CE}}_{2}$: 7B196 only) $=V_{\text {IL }}$.
 12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
 13. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ transition low.

[^22]: Document \#: 38-00158

[^23]: Shaded area contains preliminary information.

[^24]: Document \#: 38-00078-G

[^25]: 422A-6

[^26]: Shaded area contains preliminary information.

[^27]: Shaded area contains preliminary information

[^28]: Shaded area contains preliminary information.

[^29]: Shaded area contains preliminary information.

[^30]: Shaded area contains preliminary information

[^31]: Shaded area contains preliminary information.

[^32]: Document \#: 38-00103-C

[^33]: *7C291 only

[^34]: PAL® is a registered trademark of Monolithic Memories Inc.

[^35]: Document \#: 38-00020-E

[^36]: PAL is a registered trademark of Monolithic Memories Inc.

[^37]: Note: 1. Figures in () are for J-leaded packages.

[^38]: Notes:
 16. Expansion Out of device $1\left(\overline{\mathrm{XO}}_{1}\right)$ is connected to Expansion In of device $2\left(\overline{\mathrm{XI}}_{2}\right)$.

[^39]: RAMFIFO is a trademark of Cypress Semiconductor, Inc.

[^40]: Document \#: 38-00016-B

[^41]: $+=$ Plus; $-=$ Minus; $V=$ OR; $\wedge=$ AND; $\forall=$ EX-OR

[^42]: 1. $\mathrm{R}=$ Source
 2. For subtraction the carry is interpreted as borrow.

 S $=$ Source
 Dest $=$ Destination

[^43]: *Shifted output is loaded into the QLINK.
 SRC = Source
 $0=$ Reset
 $\mathrm{U}=$ Update
 $1=$ Set
 $\mathrm{NC}=$ No Change $\quad \mathrm{i}=0$ to 15 when not specified

[^44]: U = Update
 $\mathrm{NC}=$ No Change
 $0=$ Reset
 $1=$ Set
 $\mathrm{i}=0$ to 15 when not specified

[^45]: *This bit must be transmitted first.

[^46]: *QLINK is loaded with the shifted out bit from the checksum register.
 $\mathrm{U}=$ Update
 $\mathrm{NC}=$ No Change
 $0=$ Reset
 $1=$ Set
 $i=0$ to 15 when not specified

[^47]: Copyright 1989 by Cypress Semiconductor Corporation and Sun Microsystems, Inc.

[^48]: SPARC is a registered trademark of SPARC International, Inc.

[^49]: Shaded area contains preliminary information.

[^50]: Shaded area contains preliminary information

[^51]: Shaded area contains preliminary information.

[^52]: Document \#: 38-M-00026

[^53]: Document \#: 38-M-00044

[^54]: Shaded area contains preliminary information.

[^55]: Shaded area contains preliminary information

[^56]: Shaded area contains preliminary information.

[^57]: Document \#: 38-M-00028

[^58]: Shaded area contains preliminary information.

[^59]: Shaded area contains preliminary information

[^60]: Document \#: 38-M-00042

[^61]: Document \#: 38-M-00018-B

[^62]: Document \#: 38-M-00019-A

[^63]: Document \#: 38-M-00040

[^64]: Document \#: 38-M-00023-A

[^65]: Shaded area contains preliminary information.

[^66]: Shaded area contains preliminary information.

[^67]: Document \#: 38-A-00023-B

[^68]: Shaded area contains preliminary information.

[^69]: Shaded area contains preliminary information.

[^70]: Document \#: 38-00167

[^71]: Document \#: 38-00129-A
 QuickPro, QuickPro II, and PLD ToolKit are trademarks of Cypress Semiconductor Corporation.
 IBM PC, PC/AT, and PS/2 are registered trademarks of International Business Machines Corporation.
 ABEL is a registered trademark of Data I/O Corporation.
 CUPL is a registered trademark of Assisted Technology.
 PALASM is a registered trademark of Monolithic Memories Inc.
 Intellec 86 is a trademark of Intel Corporation.

[^72]: *This package is offered in both square and tapered lead types. See the beginning of this section for details.

