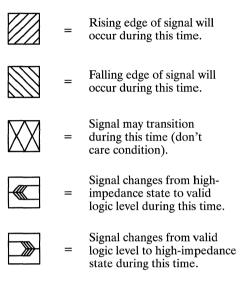


Cypress Semiconductor is a trademark of Cypress Semiconductor Corporation. Cypress Semiconductor, 3901 North First St., San Jose, CA 95134 (408) 943–2600 Telex: 821032 CYPRESS SNJ UD, TWX: 910 997 0753, FAX: (408) 943–2741 FAX-On-Demand: 1-800-213-5120 or 1-408-943-2798, Web Address: http://www.cypress.com

How To Use This Book


Overall Organization

This book has been organized by product type, beginning with Product Information. The products are next, starting with Small PLDs, CPLDs, FPGAs, and Development Systems. A section containing Quality is next, followed by a Package Diagrams section. Within each section, data sheets are arranged in order of part number.

Recommended Search Paths

To search by:	Use:
Product line	Table of Contents or flip through the book using the tabs on the right-hand pages.
Size	The Product Selector Guide in section 1.
Numeric part number	Numeric Device Index fol- lowing the Table of Con- tents. The book is also ar- ranged in order of part number.
Other manufacturer's part number	The Cross Reference Guide in section 1.
Military part number	The Military Selector Guide in section 1.

Key to Waveform Diagrams

Published November 1995

[©] Cypress Semiconductor Corporation, 1995. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor Corporation assumes no responsibility for does not authorize its products for use as critical components in life-support systems where a maifunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.

Table of Contents

Table of Contents

Page Number

General Information

Cypress Semiconductor Background	1
Ordering Information	4
Cypress Semiconductor Bulletin Board System (BBS) Announcement	5
Application Notes	6
Product Selector Guide	7
Product Line Cross Reference	0
Military Overview 1-1-	4
Military Product Selector Guide	5
Military Ordering Information	7

Small PLDs (Programmable Logic Devices)

Description
Reprogrammable CMOS PALC 16L8, 16R8, 16R6, 16R4 2-6
Flash Erasable, Reprogrammable CMOS PAL Device 2–7
Flash Erasable, Reprogrammable CMOS PAL Device 2–17
CMOS Generic 24-Pin Reprogrammable Logic Device 2-27
CMOS Generic 24-Pin Reprogrammable Logic Device 2-27
Reprogrammable Asynchronous CMOS Logic Device 2-35
Flash Erasable, Reprogrammable CMOS PAL Device 2-46
Reprogrammable CMOS PAL Device
Reprogrammable CMOS PAL Device
Universal PAL Device
Universal PAL Device
Flash Erasable, Reprogrammable CMOS PAL Device 2–59
CMOS Programmable Synchronous State Machine
Asynchronous Registered EPLD 2-69
Registered Combinatorial EPLD 2-83
Universal Synchronous EPLD 2-84

CPLDs (Complex PLDs)

Device	Description
Ultra39000	UltraLogic High-Density CPLD Family
Ultra39192	UltraLogic 192-Macrocell CPLD 3-2
Ultra39256	UltraLogic 256-Macrocell CPLD 3–3
Ultra39320	UltraLogic 320-Macrocell CPLD 3-4
Ultra39384	UltraLogic 384-Macrocell CPLD 3-5
Ultra39448	UltraLogic 448-Macrocell CPLD 3-6
Ultra39512	UltraLogic 512-Macrocell CPLD 3–7
FLASH370 CPLD Family	UltraLogic High-Density Flash CPLDs 3-8
CY7C371	UltraLogic 32-Macrocell Flash CPLD 3–15
CY7C372	UltraLogic 64-Macrocell Flash CPLD 3-24
CY7C373	UltraLogic 64-Macrocell Flash CPLD 3-33
CY7C374	UltraLogic 128-Macrocell Flash CPLD 3-43
CY7C375	UltraLogic 128-Macrocell Flash CPLD 3-54
FLASH370i ISR CPLD Family	UltraLogic High-Density Flash CPLDs 3-66
CY7C371i	UltraLogic 32-Macrocell Flash CPLD 3–73
CY7C372i	UltraLogic 64-Macrocell Flash CPLD 3-82
CY7C373i	UltraLogic 64-Macrocell Flash CPLD 3-91

Table of Contents

CPLDs (Complex PLDs) (continued)

Device	Description
CY7C374i	UltraLogic 128-Macrocell Flash CPLD 3-100
CY7C375i	UltraLogic 128-Macrocell Flash CPLD 3-110
CY7C340 EPLD Family	Multiple Array Matrix High-Density EPLDs
CY7C341B	192-Macrocell MAX EPLD
CY7C341	192-Macrocell MAX EPLD
CY7C342B	128-Macrocell MAX EPLDs
CY7C342	128-Macrocell MAX EPLDs
CY7C343	64-Macrocell MAX EPLD
CY7C343B	64-Macrocell MAX EPLD
CY7C344	32-Macrocell MAX EPLD
CY7C344B	32-Macrocell MAX EPLD
CY7C346	128-Macrocell MAX EPLDs
CY7C346B	128-Macrocell MAX EPLDs

FPGAs (Field Programmable Gate Arrays)

Device	Description
Ultra38000 Family	UltraLogic Very High Speed CMOS FPGAs 4-1
Ultra38003	UltraLogic Very High Speed 3K Gate CMOS FPGA 4-5
Ultra338003	UltraLogic Very High Speed 3K Gate 3.3V CMOS FPGA 4-6
Ultra38005	UltraLogic Very High Speed 5K Gate CMOS FPGA 4-7
Ultra338005	UltraLogic Very High Speed 5K Gate 3.3V CMOS FPGA 4-8
Ultra38007	UltraLogic Very High Speed 7K Gate CMOS FPGA 4-9
Ultra338007	UltraLogic Very High Speed 3.3V 7K Gate CMOS FPGA 4-19
Ultra38009	UltraLogic Very High Speed 9K Gate CMOS FPGA 4-20
Ultra338009	UltraLogic Very High Speed 9K Gate 3.3V CMOS FPGA 4-21
Ultra38012	UltraLogic Very High Speed 12K Gate CMOS FPGA 4-22
Ultra338012	UltraLogic Very High Speed 12K (36K) Gate 3.3V CMOS FPGA 4-23
Ultra38016	UltraLogic Very High Speed 16K Gate CMOS FPGA 4-24
Ultra338016	UltraLogic Very High Speed 16K Gate 3.3V CMOS FPGA 4-25
Ultra38020	UltraLogic Very High Speed 20K Gate CMOS FPGA 4-26
Ultra338020	UltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA 4-27
pASIC380 Family	UltraLogic Very High Speed CMOS FPGAs 4-28
CY7C381P	UltraLogic Very High Speed 1K Gate CMOS FPGA 4-35
CY7C382P	UltraLogic Very High Speed 1K Gate CMOS FPGA 4-35
CY7C3381A	UltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA 4-44
CY7C3382A	UltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA 4-44
CY7C383A	UltraLogic Very High Speed 2K Gate CMOS FPGA 4-52
CY7C384A	UltraLogic Very High Speed 2K Gate CMOS FPGA 4-52
CY7C3383A	UltraLogic 3.3V High Speed 2K Gate CMOS FPGA 4-61
CY7C3384A	UltraLogic 3.3V High Speed 2K Gate CMOS FPGA 4-61
CY7C385P	UltraLogic Very High Speed 4K Gate CMOS FPGA 4-69
CY7C386P	UltraLogic Very High Speed 4K Gate CMOS FPGA 4-69
CY7C3385A	UltraLogic 3.3V High Speed 4K Gate CMOS FPGA 4-81
CY7C3386A	UltraLogic 3.3V High Speed 4K Gate CMOS FPGA 4-81
CY7C387P	UltraLogic Very High Speed 8K Gate CMOS FPGA 4-90
CY7C388P	UltraLogic Very High Speed 8K Gate CMOS FPGA 4-90
CY7C3387P	UltraLogic Very High Speed 8K Gate CMOS FPGA 4-100
CY7C3388P	UltraLogic Very High Speed 8K Gate CMOS FPGA 4–100

Development Systems

PLD, CPLD, and FPGA Development Tools Overview	
Device	Description
CY3120/CY3125	Warp2+ VHDL Compiler for PLDs, CPLDs, and FPGAs
CY3121/CY3126	Warp2 VHDL Compiler for PLDs and CPLDs 5-6
CY3130/CY3135	Warp3 VHDL Development System for PLDs, CPLDs, and FPGAs
CY3140	ABEL/Synario Design Software Kit for FLASH370 5-15
CY3141	Warp3 PROSeries Bolt-In 5-16
CY3146	Synopsys Design Software Kit for pASIC380 5-18
CY3500	Impulse3 Device Programmer and Adapters 5-19
Third-Party Tool Support	

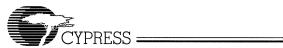
Quality

Quality, Reliability, and Process Flows	6 - 1
pASIC380 Family	6 - 16
CY7C380 Family Quick Power Calculator	6 - 29
Moisture-Sensitive Devices Handling Information	6 - 34
Thermal Management and Component Reliability	6 - 36

Packages

Tape and Reel Specifications	7 - 1
Package Diagrams	7-5

٧


Sales Representatives and Distributors

Direct Sales Offices North American Sales Representatives International Sales Representatives Distributors

Numeric Device Index

Device Number	Description Pa	ge Number
CY3120/CY3125	Warp2+ VHDL Compiler for PLDs, CPLDs, and FPGAs	
CY3121/CY3126	Warp2 VHDL Compiler for PLDs and CPLDs	
CY3130/CY3135	Warp3 VHDL Development System for PLDs, CPLDs, and FPGAs	
CY3140	ABEL/Synario Design Software Kit for FLASH370	
CY3141	Warp3 PROSeries Bolt-In	
CY3146	Synopsys Design Software Kit for pASIC380	
CY3500	Impulse3 Device Programmer and Adapters	
CY7C330	CMOS Programmable Synchronous State Machine	
CY7C331	Asynchronous Registered EPLD	
CY7C332	Registered Combinatorial EPLD	
CY7C335	Universal Synchronous EPLD	
CY7C3381A	UltraLogic 3.3V High Speed 1K Gate CMOS FPGA	
CY7C3382A	UltraLogic 3.3V High Speed 1K Gate CMOS FPGA	
CY7C3383A	UltraLogic 3.3V High Speed 2K Gate CMOS FPGA	
CY7C3384A	UltraLogic 3.3V High Speed 2K Gate CMOS FPGA	4-61
CY7C3385A	UltraLogic 3.3V High Speed 4K Gate CMOS FPGA	
CY7C3386A	UltraLogic 3.3V High Speed 4K Gate CMOS FPGA	
CY7C3387P	UltraLogic Very High Speed 8K Gate CMOS FPGA	
CY7C3388P	UltraLogic Very High Speed 8K Gate CMOS FPGA	
CY7C340 EPLD Family	Multiple Array Matrix High-Density EPLDs	
CY7C341	192-Macrocell MAX EPLD	
CY7C341B	192-Macrocell MAX EPLD	
CY7C342	128-Macrocell MAX EPLDs	
CY7C342B	128-Macrocell MAX EPLDs	
CY7C343	64-Macrocell MAX EPLD	
CY7C343B	64-Macrocell MAX EPLD	
CY7C344	32-Macrocell MAX EPLD	
CY7C344B	32-Macrocell MAX EPLD	
CY7C346	128-Macrocell MAX EPLDs	
CY7C346B	128-Macrocell MAX EPLDs	
CY7C371	UltraLogic 32-Macrocell Flash CPLD	
CY7C371i	UltraLogic 32-Macrocell Flash CPLD	
CY7C372	UltraLogic 64-Macrocell Flash CPLD	
CY7C372i	UltraLogic 64-Macrocell Flash CPLD	
CY7C373	UltraLogic 64-Macrocell Flash CPLD	
CY7C373i	UltraLogic 64-Macrocell Flash CPLD	
CY7C374	UltraLogic 128-Macrocell Flash CPLD	3-43
CY7C374	UltraLogic 128-Macrocell Flash CPLD	3-100
CY7C375	UltraLogic 128-Macrocell Flash CPLD	3-54
CY7C375i	UltraLogic 128-Macrocell Flash CPLD	3-110
CY7C381P	UltraLogic Very High Speed 1K Gate CMOS FPGA	4-35
CY7C382P	UltraLogic Very High Speed 1K Gate CMOS FPGA	4-35
CY7C383A	UltraLogic Very High Speed 2K Gate CMOS FPGA	4-52
CY7C384A	UltraLogic Very High Speed 2K Gate CMOS FPGA	4-52
CY7C385P	UltraLogic Very High Speed 4K Gate CMOS FPGA	4-69
CY7C386P	UltraLogic Very High Speed 4K Gate CMOS FPGA	4-69
CY7C387P	UltraLogic Very High Speed 8K Gate CMOS FPGA	4-90
CY7C388P	UltraLogic Very High Speed 8K Gate CMOS FPGA	4-90
FLASH370 CPLD Family	UltraLogic High-Density Flash CPLDs	
FLASH370i	ISR CPLD Family UltraLogic High-Density Flash CPLDs	
PAL22V10C	Universal PAL Device	
PAL22VP10C	Universal PAL Device	
PALC20 Series	Reprogrammable CMOS PALC 16L8, 16R8, 16R6, 16R4	
PALC22V10	Reprogrammable CMOS PAL Device	2-56
PALC22V10B	Reprogrammable CMOS PAL Device	
PALC22V10D	Flash Erasable, Reprogrammable CMOS PAL Device	
PALCE16V8	Flash Erasable, Reprogrammable CMOS PAL Device	2-7

PALCE20V8	Flash Erasable, Reprogrammable CMOS PAL Device
PALCE22V10	Flash Erasable, Reprogrammable CMOS PAL Device
pASIC380 Family	UltraLogic Very High Speed CMOS FPGAs
PLDC20G10	CMOS Generic 24-Pin Reprogrammable Logic Device
PLDC20G10B	CMOS Generic 24-Pin Reprogrammable Logic Device
PLDC20RA10	Reprogrammable Asynchronous CMOS Logic Device
Ultra338003	UltraLogic Very High Speed 3K Gate 3.3V CMOS FPGA
Ultra338005	UltraLogic Very High Speed 5K Gate 3.3V CMOS FPGA
Ultra338007	UltraLogic Very High Speed 3.3V 7K Gate CMOS FPGA
Ultra338009	UltraLogic Very High Speed 9K Gate 3.3V CMOS FPGA
Ultra338012	UltraLogic Very High Speed 12K (36K) Gate 3.3V CMOS FPGA
Ultra338016	UltraLogic Very High Speed 16K Gate 3.3V CMOS FPGA
Ultra338020	UltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA
Ultra38000 Family	UltraLogic Very High Speed CMOS FPGAs 4-1
Ultra38003	UltraLogic Very High Speed 3K Gate CMOS FPGA
Ultra38005	UltraLogic Very High Speed 5K Gate CMOS FPGA 4-7
Ultra38007	UltraLogic Very High Speed 7K Gate CMOS FPGA
Ultra38009	UltraLogic Very High Speed 9K Gate CMOS FPGA
Ultra38012	UltraLogic Very High Speed 12K Gate CMOS FPGA
Ultra38016	UltraLogic Very High Speed 16K Gate CMOS FPGA
Ultra38020	UltraLogic Very High Speed 20K Gate CMOS FPGA
Ultra39000	UltraLogic High-Density CPLD Family
Ultra39192	UltraLogic 192-Macrocell CPLD 3-2
Ultra39256	UltraLogic 256-Macrocell CPLD
Ultra39320	UltraLogic 320-Macrocell CPLD 3-4
Ultra39384	UltraLogic 384-Macrocell CPLD
Ultra39448	UltraLogic 448-Macrocell CPLD 3-6
Ultra39512	UltraLogic 512-Macrocell CPLD 3-7

·

GENERAL INFORMATION	Ē
SMALL PLDs	2
CPLDs	3
FPGAs	4
DEVELOPMENT SYSTEMS	5
QUALITY	6
PACKAGES	7

Table of Contents

Page Number

Table of Contents General Information

Scheral Information	
Cypress Semiconductor Background	-1
Ordering Information	-4
Cypress Semiconductor Bulletin Board System (BBS) Announcement	1-5
Application Notes	
Product Selector Guide	1 - 7
Product Line Cross Reference 1-	-10
Military Overview 1-	-14
Military Product Selector Guide	-15
Military Ordering Information	-17

Cypress Semiconductor Background

Cypress Semiconductor was founded in April 1983 with the stated goal of serving the high-performance semiconductor market. This market is served by producing the highest-performance integrated circuits using state-of-the-art processes and circuit design. Cypress is a complete semiconductor manufacturer, performing its own process development, circuit design, wafer fabrication, assembly, and test. The company went public in May 1986 and has been listed on the New York Stock Exchange since October 1988.

The initial semiconductor process, a CMOS process employing 1.2-micron geometries, was introduced in March 1984. This process is used in the manufacturing of Static RAMs and Logic circuits. In the third quarter of 1984, a 1.2-micron CMOS EPROM process was introduced for the production of programmable products. At the time of introduction, these processes were the most advanced production processes in the industry. Following the 1.2-micron processes, a 0.8-micron CMOS SRAM process was implemented in the first quarter of 1986, and a 0.8-micron EPROM process in the third quarter of 1987.

In keeping with the strategy of serving the high-performance markets with state-of-the-art integrated circuits, Cypress introduced two new processes in 1989. These were a bipolar submicron process, targeted for ECL circuits, and a BiCMOS process to be used for most types of TTL and ECL circuits.

The circuit design technology used by Cypress is also state of the art. This design technology, along with advanced process technology, allows Cypress to introduce the fastest, highest-performance circuits in the industry. Cypress's offers products in four divisions: the Static Memory Division, the Programmable Products Division, the Computation Products Division, and the Data Communications Division.

Static Memories Division

Cypress is a market-leading supplier of SRAMs, providing a wide range of SRAM memories for leading companies worldwide. SRAMs are used in high-performance personal computers, workstations, telecommunications systems, industrial systems, instrumentation devices, and networking products. Cypress's lower production cost structure allows the company to compete effectively in the high-volume personal computer and workstation market for SRAMs, including providing cache RAMs to support today's high-performance microprocessors, such as Pentium[™], and PowerPC[™]. This business, combined with upcoming low-voltage products for the cellular communications, portable instrument, and laptop/notebook PC markets, positions Cypress for future success in this key product area.

Multichip modules is a fast-growing market segment that consists of multiple semiconductor chips mounted in packages that can be inserted in a computer circuit board. Cache modules for personal computers are the mainstay of this product line, and Cypress has announced major design wins for these products in IBM's PS/ValuePoint $\$ line of PCs, and in Apple Computer's highest performing Power Macintosh $\$ products.

Programmable Products Division

With increasing pressure on system designers to bring products to market more quickly, programmable logic devices (PLDs) are becoming extremely popular. PLDs are logic control devices that can be easily programmed by engineers in the field, and later erased and reprogrammed. This allows the designers to make key changes to their systems very late in the development cycle to ensure competitive advantage. Used extensively in a wide range of applications, PLDs constitute a large and growing market. Cypress's UltraLogic TM product line addresses the high-density programmable logic market. UltraLogic includes the Ultra3800 TM and pASIC380 TM families of field-programmable gate arrays (FPGAs), the industry's fastest. It also includes high performance complex PLDs, the FLASH370 TM family. Both of these product families are supported by Cypress's VHDL (Very high-speed integrated circuit Hardware Description Language) based *Warp3* TM, the industry's most advanced software design tool. Cypress pioneered the use of VHDL for PLD programming, and *Warp* software is a key factor in the company's overall success in the PLD market.

Cypress is a leading provider of the industry-standard 22V10 PLD with a wide range of products. Cypress is committed to competing in all ranges of the PLD market, with small devices, including the industry standard 16V8, the MAX340 EPLD line, and the UltraLogic products. To support these products, Cypress offers one of the industry's broadest range of programming tools and software for the programming of its PLDs.

Cypress provides one of the industry's broadest ranges of CMOS EPROMs and PROMs. Cypress owns a large share of the highspeed CMOS PROM market, and with its new cost structure, is effectively penetrating the mainstream EPROM market with a popular 256 Kbit EPROM, and the introduction of the world's fastest 512K and 1 Megabit EPROMs at 25 ns.

FCT Logic products are used in bus interface and data buffering applications in almost all digital systems. With the addition of the FCT logic product line, Cypress now offers over 46 standard logic and bus interface functions. The products are offered in the second generation FCT-T format, which is pin-compatible with the older FCT devices, but adds TTL (transistor-to-transistor logic) outputs for significantly lower ground bounce and improved system noise immunity. Cypress also offers the most popular devices with on-chip 25-ohm termination resistors (FCT2-T) to further lower ground bounce with no speed loss. Included in the new product family is the CYBUS3384, a bus switch that enables bidirectional data transfer between multiple bus systems or between 5 volt and 3.3 volt devices. Cypress also offers 16-bit versions of popular FCT products. This broad product offering is produced on Cypress's high-volume, CMOS manufacturing lines.

Data Communications Division

This is an especially significant area for Cypress since it represents a more market-driven orientation for the company in a fast-growing market segment. As part of the new company strategy, Cypress has dedicated this product line to serve the highspeed data communications market with a range of products from the physical connection layer to system-level solutions. HOTLink[™], high-speed, point-to-point serial communications chips have been well received. HOTLink, along with the recently announced SONET./SDS Serial Transceiver (SST™), address the fast-growing market segments of Asynchronous Transfer Mode (ATM) and Fibre Channel communications. The company has also entered the Ethernet market with the 100BaseT-4 CY7C971 Fast Ethernet Transceiver and the CY7B8392 Coax Ethernet Transceiver. The data communications division encompasses related products including RoboClock, a programmable skew clock buffer that adjusts complex timing control signals for a broad range of systems. The division also offers a broad range of First-In, First-Out (FIFO) memories, used to communicate data between systems operating at different fre-

quencies, and Dual-Port Memories, used to distribute data to two different systems simultaneously.

Computation Products Division

This division focuses on the high-volume, high-growth market surrounding the desktop computer. It is the second of Cypress's market-oriented divisions. The division includes timing technology products offered through Cypress's IC Designs Subsidiary in Kirkland, Washington. IC Designs products are used widely in personal computers and disk drives, and the product line provides Cypress with major inroads into these markets, helping move the company towards a more market-driven orientation. IC Designs clock oscillators control the intricate timing of all aspects of a computer system, including signals for the computer's central processing unit (CPU), keyboard, disk drives, system bus, serial port, and real-time clock. They replace all of the metal can oscillators used in the system. IC Designs recently announced a new product, QuiXTAL[™], which is a programmable metal can oscillator, and replaces individual oscillators used to control timing signals in virtually every type of electronics equipment. OuiXTAL can be programmed to any frequency, providing users the ability to make last-minute frequency adjustments, speeding time to market. QuiXTAL takes frequency synthesis beyond the PC market, and addresses the broad market segments of electronic instrumentation, telecommunications equipment, and medical systems.

Also offered by this division are chipsets for personal computers. Cypress entered this market with the 1994 acquisition of Contaq Microsystems, and recently announced the hyperCache [™] Chipset for Pentium [™]-class PCs. The hyperCache Chipset is the industry's most highly integrated. In addition to integrating keyboard and mouse control, real-time clock, and local-bus IDE control, it is the only chipset which offers integrated second-level cache.

Cypress Facilities

Cypress operates wafer fabrication facilities in California's Silicon Valley (San Jose), Round Rock (Austin), Texas, and Bloomington, Minnesota. The company's fourth wafer fab, located adjacent to the Bloomington, Minnesota facility, went on-line in July 1995. There are additional Cypress Design Centers in Starkville, Mississippi, Colorado Springs, Colorado, and the United Kingdom, and a PLD software design group in Beaverton, Oregon. The facilities are designed to the most demanding technical and environmental specifications in the industry. At the Texas and Minnesota facilities, the entire wafer fabrication area is specified to be a Class 1 environment. This means that the ambient air has less than 1 particle of greater than 0.2 microns in diameter per cubic foot of air. Other environmental considerations are carefully insured: temperature is controlled to a ± 0.1 degree Fahrenheit tolerance; filtered air is completely exchanged more than 10 times each minute throughout the fab; and critical equipment is situated on isolated slabs to minimize vibration.

The company has also received ISO9000 registration, a standard model of quality assurance that is awarded to companies with exacting standards of quality management, production, and inspections.

Attention to assembly is equally critical. Cypress manufactures 100 percent of its wafers in the United States, at the front-end fabrication sites in California (San Jose), Minnesota (Blooming-ton), and Texas (Round Rock). Cypress Texas, the company's largest fab, and Cypress Minnesota's fabs, are all Class 1 facilities. To improve global competitiveness, Cypress chose to move most back-end assembly, test, and mark operations to a facility in Thailand. Be assured that Cypress's total quality commitment extends to the new site—Cypress Bangkok.

The move to Bangkok consummated an intense search by Cypress for a world-class, environmentally sophisticated facility that we could bring on line quickly. The Cypress search team scrutinized fifteen manufacturing facilities in five countries and chose a site managed by Alphatec Electronics Co., Ltd., a privately owned, entrepreneurial company promoted by the Thailand Board of Investment. Cypress Bangkok occupies almost 25,000 square feet—a significant portion of the manufacturing floor space available within the facility. The full facility at Bangkok occupies more than 85,000 square feet on a site that encompasses 25 acres—sufficient room for expansion to a number of buildings in a campus-like setting. In order to meet growing demand for its products, Cypress has broken ground on a new assembly and test facility in the Philippines, which is scheduled for completion in 1996.

Cypress San Jose maintains complete management control of all assembly, test, mark, and ship operations worldwide, thus assuring complete continuity of back-end operations and quality.

Cypress has added Tape Automated Bonding (TAB) to its package offering. TAB, a surface-mount packaging technology, provides the densest lead and package footprint available for fully tested die.

From Cypress's facility in Minnesota, a VME Bus Interface Products group has been in operation since the acquisition of VTC's fab in 1990. Cypress manufactures VIC and VAC VME devices on the 0.8 micron CMOS process.

The Cypress motto has always been "only the best—the best facilities, the best equipment, the best employees ... all striving to make the best CMOS and BiCMOS products."

Cypress Process Technology

In the last decade, there has been a tremendous need for highperformance semiconductor products manufactured with a balance of SPEED, RELIABILITY, and POWER. Cypress Semiconductor overcame the classically held perceptions that CMOS was a moderate-performance technology.

Cypress initially introduced a 1.2-micron "N" well technology with double-layer poly and a single-layer metal. The process employed lightly doped extensions of the heavily doped source and drain regions for both "N" and "P" channel transistors for significant improvement in gate delays. Further improvements in performance, through the use of substrate bias techniques, have added the benefit of eliminating the input and output latch-up characteristics associated with older CMOS technologies.

Cypress pushed process development to new limits in the areas of PROMs (Programmable Read Only Memory) and EPLDs (Erasable Programmable Logic Devices). Both PROMs and EPLDs have existed since the early 1970s in a bipolar process that employed various fuse technologies and was the only viable high-speed nonvolatile process available. Cypress PROMs and EPLDs use EPROM technology, which has been in use in MOS (Metal Oxide Silicon) since the early 1970s. EPROM technology has traditionally emphasized density while forsaking performance. Through improved technology, Cypress produced the first high-performance CMOS PROMs and EPLDs, replacing their bipolar counterparts.

To maintain our leadership position in CMOS technology, Cypress introduced a sub-micron technology in 1987. This 0.8 mi-

cron breakthrough made Cypress's CMOS one of the most advanced production processes in the world. The drive to maintain leadership in process technology has not stopped with the 0.8-micron devices. Cypress introduced a 0.65-micron process in 1991. A 0.5-micron process is currently in production.

Although not a requirement in the high-performance arena, CMOS technology substantially reduces the power consumption for any device. This improves reliability by allowing the device to operate at a lower die temperature. Now higher levels of integration are possible without trading performance for power. For instance, devices may now be delivered in plastic packages without any impact on reliability.

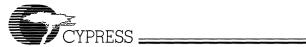
While addressing the performance issues of CMOS technology, Cypress has not ignored the quality and reliability aspects of technology development. Rather, the traditional failure mechanisms of electrostatic discharge (ESD) and latch-up have been addressed and solved through process and design technology innovation.

ESD-induced failure has been a generic problem for many highperformance MOS and bipolar products. Although in its earliest years, MOS technology experienced oxide reliability failures, this problem has largely been eliminated through improved oxide growth techniques and a better understanding of the ESD problem. The effort to adequately protect against ESD failures is perturbed by circuit delays associated with ESD protection circuits. Focusing on these constraints, Cypress has developed ESD protection circuitry specific to 1.2-, 0.8-, 0.65-, and 0.5-micron CMOS process technology. Cypress products are designed to withstand voltage and energy levels in excess of 2001 volts and 0.4 milli-joules.

Latch-up, a traditional problem with CMOS technologies, has been eliminated through the use of substrate bias generation techniques, the elimination of the "P" MOS pull-ups in the output drivers, the use of guardring structures and care in the physical layout of the products.

Cypress has also developed additional process innovations and enhancements: multilayer metal interconnections, advanced metal deposition techniques, silicides, exclusive use of plasma for etching, and 100-percent stepper technology with the world's most advanced equipment.

Cypress technologies have been carefully designed, creating products that are "only the best" in high-speed, excellent reliability, and low power.


UltraLogic, Ultra3800, FLASH370, *Warp3*, HOTLink, SST, and hyperCache are trademarks of Cypress Semiconductor Corporation. pASIC is a trademark of QuickLogic.

Pentium is a trademark of Intel Corporation.

Power PC and PS/Value Point are trademarks of International Business Machines Corporation.

Power Macintosh is a trademark of Apple.

MAX is a trademark of Altera.

In general, the ordering codes for products follow the format below; e.g., CY7C128-45DMB, PALC16R8L-35PC

PAL & P PREFIX PAL C PAL	LD DEVICE 16R8 22V10 16V8 20G10 7C330	SUFFIX -25 L M B L-35 P C -25 P C -25 W C -33 P C -33 P C	FAMILY PAL 20 LOW POWER PAL 20 PAL 24 VARIABLE PRODUCT TERMS FLASH-ERASABLE PAL20 GENERIC PLD 24 PLD SYNCHRONOUS STATE MACHINE PROCESSING B = MIL-STD-883C FOR MILITARY PRODUCT = LEVEL 2 PROCESSING FOR COMMERCIAL PRODUCT T = SURFACE-MOUNTED DEVICES TO BE TAPE AND REELED R = LEVEL 2 PROCESSING ON TAPE AND REELED DEVICES TEMPERATURE RANGE C = COMMERCIAL (0°C TO +70°C) I = INDUSTRIAL (-40°C TO +85°C) M = MILITARY (-55°C TO + 125°C) PACKAGE B = PLASTIC PIN GRID ARRAY (PPGA) D = CERAMIC DUAL IN-LINE PACKAGE (CERDIP)/BRAZED DIP E = TAPE AUTOMATED BONDING (TAB) F = FLATPACK (SOLDER-SEALED FLAT PACKAGE) G = PIN GRID ARRAY (PCA) H = WINDOWED LEADED CHIP CARRIER J = PLASTIC LEADED CHIP CARRIER (LCC) K = CERPACK (GLASS-SEALED FLAT PACKAGE) L = LEADLESS CHIP CARRIER (LCC) N = PLASTIC QUAD FLATPACK (POFP) P = PLASTIC DUAL IN-LINE (PDIP) Q = WINDOWED LEADESS CHIP CARRIER (LCC) K = CERPACK (DAD FLATPACK (POFP) P = PLASTIC QUAD FLATPACK (COFP) N = PLASTIC QUAD FLATPACK (COFP) C = WINDOWED LEADELSS CHIP CARRIER (LCC) K = CERAMIC QUAD FLATPACK (COFP) V = NUNDOWED LEADELSS CHIP CARRIER (LCC) K = CERAMIC QUAD FLATPACK (COFP) V = NUNDOWED LEADELSS CHIP CARRIER (LCC) K = CERAMIC QUAD FLATPACK (COFP) V = WINDOWED LEADELSS CHIP CARRIER (LCC) K = CERAMIC QUAD FLATPACK (COFP) V = NUNDOWED LEADELSS CHIP CARRIER (LCC) K = DICE (WAFFLE PACK) U = CERAMIC QUAD FLATPACK (COFP) V = NUNDOWED LEADELSS CHIP CARRIER (LCC) K = DICE (WAFFLE PACK) U = CERAMIC QUAD FLATPACK (COFP) V = NUNDOWED CERPACK U = CERAMIC QUAD FLATPACK (COFP) V = NUNDOWED CERPACK U = CERAMIC QUAD FLATPACK (COFP) V = NUNDOWED CERPACK U = CERAMIC CUAD FLATPACK (COFP) V = DICE (WAFFLE PACK) F = PLASTIC SIP
			SPEED (ns or MHz) L = LOW-POWER OPTION A, B, C, D, G, CF = REVISION LEVEL

Cypress FSCM #65786

Cypress Semiconductor Bulletin Board System (BBS) Announcement

Cypress Semiconductor supports a 24-hour electronic Bulletin Board System (BBS) that allows Cypress Applications to better serve our customers by allowing them to transfer files to and from the BBS.

The BBS is set up to serve in multiple ways. One of its purposes is to allow customers to receive the most recent versions of Cypress programming software. Another is to allow the customers to send PLD programming files that they are having trouble with to the BBS. Cypress Applications can then find the errors in the files, correct them, and place them back on the BBS for the customer to download. The customer may also ask questions in our open forum message area. The sysop (system operator) will forward these questions to the appropriate applications engineer for an answer. The answers then get posted back into the forum.

Communications Set-Up

The BBS uses USRobotics HST Dual Standard modems capable of 14.4-Kbaud rates without compression and rates upwards of 19.2-Kbaud with compression. It is compatible with CCITT V.32 bis, V.32, V.22 (2400-baud), Bell 212A (1200-baud), CCITT V.42, and CCITT V.42 bis. It also handles MNP levels 2, 3, 4, and 5.

To call the BBS, set your communication package parameters as follows:

Baud Rate: 1200 baud to 19.2 Kbaud. Max. is determined by your modem. Data Bits: 8 Parity: None (N) Stop Bits: 1

In the U.S. the phone number for the BBS is (408) 943–2954. In Japan the BBS number is 81-423-69-8220. In Europe the BBS number is 49-810-62-2675. These numbers are for transmitting data only.

If the line is busy, please retry at a later time. When you access the BBS, an initial screen with the following statement will appear:

Rybbs Bulletin Board

After you choose the graphics format you want to use, the system will ask for your first and last name. If you are a first-time user, you will be asked a few questions for the purposes of registration. Otherwise you will be asked for your password, and then you will be logged onto the BBS, which is completely menu driven.

Downloading Application Notes and Datasheets

A complete listing of files that may be downloaded is included on the BBS. Application notes are available for downloading in two formats, PCL and Postscript $^{\mathbb{M}}$. An "hp" in front of the file name indicates it is a PCL file and can be downloaded to Hewlett-Packard LaserJets $^{\mathbb{M}}$ and compatible printers. Files without the hp preceding them are in Postscript and can be downloaded to any Postscript printer.

If you have any problems or questions regarding the BBS, please contact Cypress Applications at (408) 943-2821 (voice).

Postscript is a trademark of Adobe Corporation. LaserJet is a trademark of Hewlett Packard Corporation.

Contact a Cypress representative to get copies of the application notes listed here.

ABEL 4.0/4.1 and the CY7C330, CY7C331, and CY7C332 Abel-HDL vs. IEEE-1076 VHDL Architectures and Technologies for FPGAs Are Your PLDs Metastable? Bus-Oriented Maskable Interrupt Controller **CMOS PAL Basics CPLD** Arithmetic CY7C331 Asynchronous Self-Timed VMEbus Requestor CY7C344 as a Second-Level Cache Controller for the 80486 CY7C380 Family Ouick Power Calculator Describing State Machines with Warp2 VHDL Design Considerations For On-Board Programming of the 7C374 and7C375 Design Tips for Advanced Max Users Designing a Multiprocessor Interrupt Distribution Unit with MAX Designing with the CY7C335 and Warp2 VHDL Compiler Designing with FPGAs DMA Control Using the CY7C342 MAX EPLD The FLASH370 Family of CPLDs and Designing with Warp2 FPGA Design Entry Using Warp3 Implementing a Reframe Controller for the CY7B933 HOTLink Receiver in a CY7C371 CPLD Implementing a 128Kx8 Dual-Port Using FLASH370 FIFO RAM Controller with Programmable Flags Getting Started Converting .ABL Files to VHDL Interfacing PROMs and RAMs to DSP Using Cypress MAX Products Mentor Simulation with Cypress PLDs PAL Design Example: A GCR Encoder/Decoder pASIC380 Power vs. Operating Frequency PCI Bus Applications on FPGAs PLD-Based Data Path for SCSI-2 State Machine Design Considerations and Methodologies T2 Framing Circuitry Top-Down Design Methodology with VHDL Using ABEL to Program the Cypress 22V10 Using CUPL with Cypress PLDs Using Hierarchical VHDL Design Using Log/IC to Program the CY7C330 Using Scan Mode on pASIC380 for In-Circuit Testing Using Synopsys/Exemplar Using the CY7C331 as a Waveform Generator VHDL Techniques for Optimal Design Fitting Describing State Machines with Warp2

Glossary - '93 Glossary - '94

PLDs

Part Number	t _{PD} (ns)	f (MHz)	I _{CC} (mA)	Pins	Packages
PALC16L8	20	28.5	70	20	D, L, P, Q, V, W
PALC16L8L	25	28.5	45	20	D, L, P, Q, V, W
PALC16R4	20	28.5	70	20	D, L, P, Q, V, W
PALC16R4L	25	28.5	45	20	D, L, P, Q, V, W
PALC16R6	20	28.5	70	20	D, L, P, Q, V, W
PALC16R6L	25	28.5	45	20	D, L, P, Q, V, W
PALC16R8	20	28.5	70	20	D, L, P, Q, V, W
PALC16R8L	25	28.5	45	20	D, L, P, Q, V, W
PALCE16V8	5	142.8	115	20	D, J, L, P
PALCE16V8	10	69	90	20	D, J, L, P
PALCE16V8L	15	45.5	55	20	D, J, L, P, QSOP
PLDC20G10	25	33.3	55	24/28	D, J, L, P, W
PLDC20G10B	15	45.5	70	24/28	D, J, L, P, W
PLD20RA10	15	45.5	75	24/28	D, H, J, L, P, W
PALCE20V8	5	142.8	115	24/28	D, J, L, P
PALCE20V8	10	58.8	90	24/28	D, J, L, P
PALCE20V8L	15	45.5	55	24/28	D, J, L, P, QSOP
PALC22V10*	20	41.7	90	24/28	D, J, L, P, Q, W
PALC22V10L*	25	33.3	55	24/28	D, J, L, P, Q, W
PALC22V10B*	15	50	90	24/28	D,H,J,L,P,Q,W
PALC22V10D	7.5	100	130	24/28	D, J, L, P
PALC22V10D	10	76.9	90	24/28	D, J, L, P
PALCE22V10	5	142.8	115	24/28	D, J, L, P
PALCE22V10	15	50	90	24	D, J, L, P
CY7C331	20	35	130	28	D, J, H, P, Q, W
CY7C335	15	50	140	28	D, J, H, P, W

* Not recommended for new designs.

CPLDs

Flash370™

Organization	Pins	Part Number	Speed (ns)	I _{CC} (mA)	Packages
32-Macrocell Flash CPLD	44	CY7C371	f _{MAX} /t _S /t _{CO} =143 MHz/5 ns/6 ns	175	A, J, Y
32-Macrocell Flash CPLD Low Power	44	CY7C371L	$f_{MAX}/t_S/t_{CO} = 83 \text{ MHz}/6.5 \text{ ns}/6.5 \text{ ns}$	90	A, J
64-Macrocell Flash CPLD	44, 84, 100	CY7C372/3	f _{MAX} /t _S /t _{CO} =100 MHz/6.5 ns/6.5 ns	250	A,G,J,Y
64-Macrocell Flash CPLD Low Power	44, 84, 100	CY7C372L/3L	f _{MAX} /t _S /t _{CO} =100 MHz/6.5 ns/6.5 ns	125	A,G,J,Y
128-Macrocell Flash CPLD	84, 100, 160	CY7C374/5	$f_{MAX}/t_S/t_{CO} = 100 \text{ MHz}/7 \text{ ns}/7 \text{ ns}$	300	A,G,J,U,Y
128-Macrocell Flash CPLD Low Power	84, 100, 160	CY7C374L/5L	$f_{MAX}/t_S/t_{CO} = 100 \text{ MHz}/7 \text{ ns}/7 \text{ ns}$	150	A,G,J,U,Y
32-Macrocell ISR Flash CPLD	44	CY7C371i	f _{MAX} /t _S /t _{CO} =143 MHz/5 ns/6 ns	175	A, J, Y
32-Macrocell ISR Flash CPLD Low Power	44	CY7C37i1L	f _{MAX} /t _S /t _{CO} =83 MHz/6.5 ns/6.5 ns	90	A,J
64-Macrocell ISR Flash CPLD	44, 84, 100	CY7C372i/3i	f _{MAX} /t _S /t _{CO} =100 MHz/6.5 ns/6.5 ns	250	A,G,J,Y
64-Macrocell ISR Flash CPLD Low Power	44,84,100	CY7C372iL/3iL	f _{MAX} /t _S /t _{CO} =100 MHz/6.5 ns/6.5 ns	125	A,G,J,Y
128-Macrocell ISR Flash CPLD	84, 100, 160	CY7C374i/5i	$f_{MAX}/t_S/t_{CO} = 100 \text{ MHz}/7 \text{ ns}/7 \text{ ns}$	300	A,G,J,U,Y
128-Macrocell ISR Flash CPLD Low Power	84, 100, 160	CY7C374iL/5iL	$f_{MAX}/t_S/t_{CO} = 100 \text{ MHz}/7 \text{ ns}/7 \text{ ns}$	150	A, G, J, U, Y

.

CPLDs (continued)

Ultra39000™

Organization	Pins	Part Number	Speed (ns)	I _{CC} (mA)	Packages
192-Macrocell Flash ISR CPLD	84,160	CY7C39192	$f_{MAX}/t_{PD}/t_S/t_{CO} = 125 \text{ MHz}/10 \text{ ns}/5 \text{ ns}/5.5 \text{ ns}$	TBD	A,J
256-Macrocell Flash ISR CPLD	160, 208	CY7C39256	$f_{MAX}/t_{PD}/t_S/t_{CO} = 125 \text{ MHz}/10 \text{ ns}/5 \text{ ns}/5.5 \text{ ns}$	TBD	A,N
320-Macrocell Flash ISR CPLD	208, 240	CY7C39320	$f_{MAX}/t_{PD}/t_S/t_{CO} = 125 \text{ MHz}/10 \text{ ns}/5 \text{ ns}/5.5 \text{ ns}$	TBD	Ν
384-Macrocell Flash ISR CPLD	240	CY7C39384	$f_{MAX}/t_{PD}/t_S/t_{CO} = 100 \text{ MHz}/12 \text{ ns}/6 \text{ ns}/6.5 \text{ ns}$	TBD	N
448-Macrocell Flash ISR CPLD	240, 304	CY7C39448	$f_{MAX}/t_{PD}/t_S/t_{CO} = 100 \text{ MHz}/12 \text{ ns}/6 \text{ ns}/6.5 \text{ ns}$	TBD	N
512-Macrocell Flash ISR CPLD	304	CY7C39512	$f_{MAX}/t_{PD}/t_S/t_{CO} = 100 \text{ MHz}/12 \text{ ns}/6 \text{ ns}/6.5 \text{ ns}$	TBD	Ν

MAX340™

Organization	Pins	Part Number	Speed (ns)	I _{CC} /I _{SB} (mA)	Packages
32 Macrocell CPLD	285	CY7C344/B	t _{PD/S/CO} = 15/10/10, 10/6/5	200/150	H, J, P, W
64 Macrocell CPLD	44	CY7C343/B	t _{PD/S/CO} = 20/12/12, 12/8/6	135/125	H, J, R
128 Macrocell CPLD	68	CY7C342/B	$t_{PD/S/CO} = 25/15/14, 12/8/6$	250/225	H, J, R
128 Macrocell CPLD	84,100	CY7C346/B	$t_{PD/S/CO} = 25/15/14, 15/10/7$	250/225	H, J, N, R
192 Macrocell CPLD	84	CY7C341/B	$t_{PD/S/CO} = 25/15/14, 15/10/7$	380/360	H, J, R

FPGAs

pASIC380™

Organization	Pins	Part Number	Speed Grade	I _{CC} /I _{SB} (mA)	Packages
CMOS 1K Gates FPGA	44, 68, 100	CY7C381A/2A	-X, -0, -1, -2	$I_{SB} = 10$	A,G,J
3.3V CMOS 1K Gates FPGA	44, 68, 100	CY7C3381A/2A	-X, -0, -1	$I_{SB} = 0.65$	A, J
CMOS 2K Gates FPGA	68, 84, 100	CY7C383A/4A	-X, -0, -1, -2	$I_{SB} = 10$	A,G,J
3.3V CMOS 2K Gates FPGA	68, 84, 100	CY7C3383A/4A	-X, -0, -1	$I_{SB} = 0.65$	A, J
CMOS 4K Gates FPGA	84, 100, 144, 160	CY7C385A/6A	-X, -0, -1, -2	$I_{SB} = 10$	A,G,J,U
3.3V CMOS 4K Gates FPGA	84, 100, 144	CY7C3385A/6A	-X, -0, -1	$I_{SB} = 0.65$	A, J
CMOS 8K Gates FPGA	144, 160, 208, 223	CY7C387A/8A	-X, -0, -1, -2	$I_{SB} = 10$	A, G, N, U
3.3V CMOS 8K Gates FPGA	144, 208	CY7C3387A/8A	-X, -0, -1	$I_{SB} = 0.65$	A,N

Ultra3800™

Organization	Pins	Part Number	Speed Grade	I _{CC} /I _{SB} (mA)	Packages
CMOS 3K Gates FPGA	84,144	CY7C3803	-X, -0, -1, -2	$I_{SB} = 10$	A, J
3.3V CMOS 3K Gates FPGA	84,144	CY7C33803	-X, -0, -1, -2	$I_{SB} = 0.65$	A, J
CMOS 5K Gates FPGA	84, 144, 208	CY7C3805	-X, -0, -1, -2	$I_{SB} = 10$	A, J, N
3.3V CMOS 5K Gates FPGA	84, 144, 208	CY7C33805	-X, -0, -1, -2	$I_{SB} = 0.65$	A, J, N
CMOS 7K Gates FPGA	144, 208, 256	CY7C3807	-X, -0, -1, -2	$I_{SB} = 10$	A, N, BGA
3.3V CMOS 7K Gates FPGA	144, 208, 256	CY7C33807	-X, -0, -1, -2	$I_{SB} = 0.65$	A,N,BGA
CMOS9K Gates FPGA	144, 208, 256	CY7C3809	-X, -0, -1, -2	$I_{SB} = 10$	A, N, BGA
3.3V CMOS9K Gates FPGA	144, 208, 256	CY7C33809	-X, -0, -1, -2	$I_{SB} = 0.65$	A, N, BGA
CMOS 12K Gates FPGA	208, 352	CY7C3812	-X, -0, -1, -2	$I_{SB} = 10$	N, BGA
3.3V CMOS 12K Gates FPGA	208, 352	CY7C33812	-X, -0, -1, -2	$I_{SB} = 0.65$	N,BGA
CMOS 16K Gates FPGA	208, 352	CY7C3816	-X, -0, -1, -2	$I_{SB} = 10$	N, BGA
3.3V CMOS 16K Gates FPGA	208, 352	CY7C33816	-X, -0, -1, -2	$I_{SB} = 0.65$	N,BGA
CMOS 20K Gates FPGA	208, 352	CY7C3820	-X, -0, -1, -2	$I_{SB} = 10$	N, BGA
3.3V CMOS 20K Gates FPGA	208, 352	CY7C33820	-X, -0, -1, -2	$I_{SB} = 0.65$	N, BGA

Design a	and	Programming	Tools
-----------------	-----	-------------	-------

Description	Туре	Part Number
<i>Warp</i> 2+ [™] for PC	VHDL Design Tool	CY3120
<i>Warp2</i> [™] for PC	VHDL Design Tool	CY3121
Warp2+ for Sun	VHDL Design Tool	CY3125
Warp2 for Sun	VHDL Design Tool	CY3126
<i>Warp3</i> [™] for PC	VHDL/CAE Design Tool	CY3130
<i>Warp3</i> for Sun	VHDL/CAE Design Tool	CY3135
Abel [™] Kit for PC	FLASH370 Design Kit	CY3140
PROseries [™] for PC	Viewlogic™ Design Kit	CY3141
Abel Kit for SUN	FLASH370 Design Kit	CY3145
Synopsys™ for Sun	pASIC380 Design Kit	CY3146
Impulse3™	Programmer	CY3500

Notes:

The above specifications are for the commercial temperature range of 0° C to 70° C. Military temperature range (-55° C to $+125^{\circ}$ C) product processed to MIL-STD-883 Revision C is also available for most products. Speed and power selections may vary from those above. Contact your local sales office for more information.

Commercial grade product is available in plastic, CERDIP, or LCC. Military grade product is available in CERDIP, LCC, or PGA. Power supplies for most product lines are $V_{CC} = 5V \pm 10\%$.

22S, 24S, 28S stands for 300 mil. 22-pin, 24-pin, 28-pin, respectively. 28.4 stands for 28-pin 400 mil, 24.4 stands for 24-pin 400 mil.

PLCC, SOJ, and SOIC packages are available on some products.

F, K, and T packages are special order only.

Please contact a Cypress representative for product availability.

MAX and MAX+PLUS are registered trademarks of Altera Corporation. Pentium is a trademark of Intel Corporation.

Package Code:

- B = Plastic Pin Grid Array
- D = CerDIP
- E = Tape Automated Bond (TAB)
- F = Flatpack
- G = Pin Grid Array (PGA)
- H = Windowed Hermetic LCC
- J = PLCCK = Cerpack
- L = Leadless Chip Carrier (LCC)
- N = Plastic Quad Flatpack
- P = Plastic

- Q = Windowed LCC Q = QSOP R = Windowed PGA
- S = SOIC
- T = Windowed Cerpack
- U = Ceramic Quad Flatpack
- V = SOJ
- W = Windowed Cerdip
- X = DICE
- Y = Ceramic LCC
- Z = TSOP

- HD = Hermetic DIP (Module) HG = Ceramic PGA (Module) PA = TSSOP PD = Plastic DIP (Module)
- PM = Plastic SIMM
- PN = Plastic Angled SIMM
- PS = Plastic SIP
- PV = SSOP
- PZ = Plastic ZIP
- SO = SOIC

Warp2+, Warp2+, Warp3, Ultra3800, Ultra39000, and Impulse3 are trademarks of Cypress Semiconductor Corporation. Abel is a trademark of Data I/O.

Proseries and ViewLogic are trademarks of ViewLogic. Synopsys is a trademark of Synopsis.

Product Line Cross Reference

CYPRESS	CYPRESS	ALTERA	CYPRESS	AMD	CYPRESS
PALC16L8-25C	PALC16L8L-25C	5064JM	7C343-35HMB	SMD PN	SMD PN
PALC16L8-30M	PALC16L8-20M	5064LC	7C343-35JC	5962-8515501RX	5962-8871309RX
PALC16L8-35C	PALC16L8-25C	5064LC-1	7C343-25JC	5962-85155012X	5962-8871309XX
PALC16L8-40M	PALC16L8-30M	5064LC-2	7C343-30JC	5962-85155 02RX	5962-88713 10RX
PALC16L8L-35C	PALC16L8L-25C	5128AGC-1	7C342B-12RC	5962-85155 022X	5962-88713 10XX
PALC16R4-25C	PALC16R4L-25C	5128AGC-2	7C342B-15RC	5962-85155 03RX	5962-8871311RX
PALC16R4-30M	PALC16R4-20M	5128AGC-3	7C342B-20RC	5962-85155 032X	5962-8871311XX
PALC16R4-35C	PALC16R4-25C	5128AJC-1	7C342B-12HC	5962-8515504RX	5962-88713 12RX
PALC16R4-40M	PALC16R4-30M	5128AJC-2	7C342B-15HC	5962-85155042X	5962-88713 12XX
PALC16R4L-35C	PALC16R4L-25C	5128AJC-3	7C342B-20HC	5962-8515505RX	5962-88713 09RX
PALC16R6-25C	PALC16R6L-25C	5128ALC-1	7C342B-12JC	5962-85155 052X	5962-8871309XX
PALC16R6-30M	PALC16R6-20M	5128ALC-2	7C342B-15JC	5962-8515506RX	5962-88713 10RX
PALC16R6-35C	PALC16R6-25C	5128ALC-3	7C342B-20JC	5962-85155062X	5962-88713 10XX
PALC16R6-40M	PALC16R6-30M	5128GC	7C342-35RC	5962-8515507RX	5962-88713 11RX
PALC16R6L-35C	PALC16R6L-25C	5128GC-1	7C342-25RC	5962-85155072X	5962-8871311XX
PALC16R8-25C	PALC16R8L-25C	5128GC-2	7C342-30RC	5962-8515508RX	5962-88713 12RX
PALC16R8-30M	PALC16R8-20M	5128GM	7C342-35RMB	5962-85155082X	5962-8871312XX
PALC16R8-35C	PALC16R8-25C	5128JC	7C342-35HC	5962-8605301LA	5962-8984101LX
PALC16R8-40M	PALC16R8-30M	5128JC-1	7C342-25HC	5962-86053013A	5962-89841 013X
PALC16R8L-35C	PALC16R8L-25C	5128JC-2	7C342-30HC	5962-8605301KA	5962-8984101KX
PALC22V10-35C	PALC22V10-25C	5128JI	7C342-35HI	5962-8605302LA	5962-8984101LX
PALC22V10-40M	PALC22V10-30M	5128JI-2	7C342-30HI	5962-86053 023A	5962-89841013X
PALC22V10L-25C	PALC22V10-25C	5128JM	7C342-35HMB	5962-86053 02KA	5962-8984101KX
PALC22V10L-35C	PALC22V10L-25C	5128LC	7C342-35JC	5962-8605304LA	5962-89841 02LX
PLDC20G10-35C	PLDC20G10-25C	5128LC-1	7C342-25JC	5962-86053 043A	5962-89841 023X
PLDC20G10-40M	PLDC20G10-30M	5128LC-2	7C342-30JC	5962-8605304KA	5962-8984102KX
		5128LI	7C342-35JI	5962-86053 053A	5962-89841 063X
ALTERA	CYPRESS	5128LI-2	7C342-30HI	5962-8605305KA	5962-8984106KX
PREFIX:EPM	PREFIX:CY	5130GC	7C346-35RC	5962-86053 05LA	5962-89841 06LX
5032DC	7C344-25WC	5130GC-1	7C346-25RC	5962-8851501RX	5962-8871309RX
5032DC-2	7C344-20WC	5130GC-2	7C346-30RC	5962-88515012X	5962-88713 09XX
5032DC-15	7C344-15WC	5130GM	7C346-35RM	5962-8851502RX	5962-88713 10RX
5032DC-17	Call Factory	5130JC	7C346-35HC	5962-88515022X	5962-88713 10XX
5032DC-20	7C344-20WC	5130JC-1	7C346-25HC	5962-8851503RX	5962-8871311RX
5032DC-25	7C344-25WC	5130JC-2	7C346-30HC	5962-88515032X	5962-8871311XX
5032DM	7C344-25WMB	5130JM	7C346-35HM	5962-8851504RX	5962-8871312RX
5032DM-25	7C344-25WMB	5130LC	7C346-35JC	5962-88515042X	5962-8871312XX
5032JC	7C344-25HC	5130LC-1	7C346-25JC	PREFIX:Am	PREFIX:CY
5032JC-2	7C344-20HC	5130LC-2	7C346-30JC	PREFIX:SN	PREFIX:CY
5032JC-15	7C344-15HC	5130LI	7C346-35JI	SUFFIX:B	SUFFIX:B
5032JC-17	Call Factory	5130LI-2	7C346-30JI	SUFFIX:D	SUFFIX:DOR W
5032JC-20	7C344-20HC	5130QC	7C346-35NC	SUFFIX:F	SUFFIX:F
5032JC-25	7C344-25HC	5130QC-1	7C346-25NC	SUFFIX:L	SUFFIX:L
5032JI-20	7C344-20HI	5130QC-2	7C346-30NC	SUFFIX:P	SUFFIX:P
5032JM	7C344-25HMB	5130QI	7C346-35NI	MACH110-12JC	7C371-83JC
5032JM-25	7C344-25HMB	5192AGC-1	7C341B-15RC	MACH110-15JC	7C371-66JC
5032LC	7C344-25JC	5192AGC-2	7C341B-20RC	MACH110-20JC	7C371-66JC
5032LC-2	7C344-20JC	5192AJC-1	7C341B-15HC	MACH110-20/BXA	7C371-66YMB
5032LC-15	7C344-15JC	5192AJC-2	7C341B-20HC	MACH130-15JC	7C373-83JC
5032LC-17	Call Factory	5192ALC-1	7C341B-15JC	MACH130-20JC	7C373-66JC
5032LC-20	7C344-20JC	5192ALC-2	7C431B-20JC	MACH130-20/BXA	7C373-66YMB
5032LC-25	7C344-25JC	5192GC	7C341-35RC	MACH210-12JC	7C372-100JC
5032PC	7C344-25PC	5192GC-1	7C341-25RC	MACH210-15JC	7C372-83JC
5032PC-2	7C344-20PC	5192GC-2	7C341-30RC	MACH210-20JC	7C372-66JC
5032PC-15	7C344-15PC	5192JC	7C341-35HC	MACH210-20/BXA	7C372-66YMB
5032PC-17	Call Factory	5192JC-1	7C341-25HC	MACH210A-10JC	7C372-125JC
5032PC-20	7C344-20PC	5192JC-2	7C341-30HC	MACH210A-12JC	7C372-100JC
5032PC-25	7C344-25PC	5192JI	7C341-35HI	MACH230-15JC	7C374-83JC
5064JC	7C343-35HC	5192LC	7C341-35JC	MACH230-20JC	7C374-66JC
5064JC-1	7C343-25HC	5192LC-1	7C341-25JC	MACH435-15JC	7C374-83JC
5064JC-2	7C343-30HC	5192LC-2	7C341-30JC	MACH435-20JC	7C374-66JC
5064JI	7C343-35HI	L		PAL16L8A-4C	PALC16L8L-35C

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on I_{SB}

Concess otherwise holed, product meets all performance specs and is within 10 mA on I_{CC} + = meets all performance specs but may not meet I_{CC} or I_{SB} * = meets all performance specs except 2V data retention—may not meet I_{CC} or I_{SB} - = functionally equivalent + = S0CIC only = 32-pin LCC crosses to the 7C198M

Product Line Cross Reference

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PREFIX:CY SUFFIX:B SUFFIX:D SUFFIX:F SUFFIX:L SUFFIX:P PALC16L8-40M PALC16L8-40M PALC16R4-40M PALC16R4-40M PALC16R4-40M PALC16R4-40M PALC16R6L-35C
PALIGUSAC PALC6L8-25C PAL22V10/B3A PALC22V10-25LMB SUFFIX:8 PAL16L8ACC PALC16L8-25C PAL22V10/B3A PALC22V10-25LMB PREFIX:1 PAL16L8ALC PALC16L8-30M PAL22V10/A/BIA PALC22V10-25DMB PREFIX:1 PAL16L8ALM PALC16L8-30M PAL22V10/A/BLA PALC22V10-25JC PREFIX:9 PAL16L8AM PALC16L8-30M PAL22V10/A/DC PALC22V10-25JC PREFIX:9 PAL16L8BM PALC16L8-30M PAL22V10/A/DC PALC22V10-35JC PREFIX:3 PAL16L8C PALC16L8-30M PAL22V10/PC PALC22V10-35JC PREFIX:3 PAL16L8LC PALC16L8-35C PAL22V10/PC PALC22V10-35PC 16LC8-5 PAL16L8LM PALC16L8-40M PALCE16V8H-5JC/4 PALCE16V8-5JC 16LC8-8 PAL16L8M PALC16L8-40M PALCE16V8H-7PC/4 PALCE16V8-7PC 16RC4-5 PAL16L8M PALC16L8-40M PALCE16V8H-7PC/4 PALCE16V8-7PC 16RC4-5	SUFFIX:B SUFFIX:C SUFFIX:F SUFFIX:F SUFFIX:P PALC16L8-40M PALC16L8-40M PALC16R4-40M PALC16R4-40M PALC16R4-40M PALC16R4-40M PALC16R6L-35C
PALIGLAALC PALCIGL8-25C PAL22V10A/JBAA PALC22V10-25DMB PREFIX:1 PAL16L8ALC PALC16L8-25C PAL22V10A/JCABA PALC22V10-25JC PREFIX:1 PAL16L8ALM PALC16L8-30M PAL22V10A/JC PALC22V10-25JC PREFIX:9 PAL16L8AM PALC16L8-30M PAL22V10A/JC PALC22V10-25PC PREFIX:9 PAL16L8BM PALC16L8-30M PAL22V10A/PC PALC22V10-35JC PREFIX:3 PAL16L8C PALC16L8-35C PAL22V10PC PALC22V10-35JC PREFIX:3 PAL16L8LC PALC16L8-35C PAL22V10PC PALC210V8-5JC 16LC8-5 PAL16L8LM PALC16L8-40M PALCE16V8H-5JC/4 PALCE16V8-5JC 16LC8-9 PAL16L8M PALC16L8-40M PALCE16V8H-7PC/4 PALCE16V8-7PC 16RC4-5 PAL16L8M PALC16L8-40M PALCE16V8H-7PC/4 PALCE16V8-7PC 16RC4-5	SUFFIX:D SUFFIX:F SUFFIX:P PALC16L8L-35C PALC16L8-40M PALC16R4L-35C PALC16R4-40M PALC16R4-40M PALC16R4-40M PALC16R6L-35C
PAL16L8ALM PALC16L8-30M PAL22V10A/DLA PALC22V10-25PC PREFIX:9 PAL16L8ALM PALC16L8-30M PAL22V10A/DC PALC22V10-25PC PREFIX:4 PAL16L8BM PALC16L8-30M PAL22V10A/DC PALC22V10-25PC PREFIX:3 PAL16L8C PALC16L8-30C PAL22V10JC PAL22V10-35JC PREFIX:3 PAL16L8C PALC16L8-35C PAL22V10PC PALC22V10-35PC I6LC8-5 PAL16L8LM PALC16L8-35C PAL2E16V8H-5JC/4 PALCE16V8-5JC I6LC8-8 PAL16L8LM PALC16L8-40M PALCE16V8H-7JC/4 PALCE16V8-7JC I6LC8-9 PAL16L8M PALC16L8-40M PALCE16V8H-7PC/4 PALCE16V8-7PC I6RC4-5	SUFFIX:F SUFFIX:L SUFFIX:P PALC16L8L-35C PALC16L8-40M PALC16L8-40M PALC16R4L-35C PALC16R4-40M PALC16R4-40M PALC16R6L-35C
PAL1618AM PALC1618-30M PAL22V10APC PAL222V10APC PAL222V10-25PC PREFIX:4 PAL1618BM PALC1618-30M PAL22V10APC PAL222V10-25PC PREFIX:3 PAL1618BM PALC1618-35C PAL22V10PC PAL222V10-35PC PREFIX:3 PAL1618LC PALC1618-35C PAL22V10PC PAL22V10-35PC 16LC8-5 PAL1618LM PALC1618-35C PAL2616V8H-5JC/4 PALCE16V8H-5JC 16LC8-8 PAL1618LM PALC1618-40M PALCE16V8H-7JC/4 PALCE16V8-7JC 16LC8-9 PAL1618M PALC1618-40M PALCE16V8H-7JC/4 PALCE16V8-7JC 16RC4-5	SUFFIX:L SUFFIX:P PALC16L8L-35C PALC16L8-40M PALC16L8-40M PALC16R4L-35C PALC16R4-40M PALC16R4-40M PALC16R6L-35C
PAL16L8BM PALC16L8-20M PAL22V10JC PALC22V10-35JC PREFIX:3 PAL16L8C PALC16L8-35C PAL22V10PC PALC22V10-35PC 16LC8-5 PAL16L8LC PALC16L8-35C PAL22V10PC PALC22V10-35PC 16LC8-5 PAL16L8LM PALC16L8-40M PALCE16V8H-5JC/4 PALCE16V8H-5JC 16LC8-9 PAL16L8M PALC16L8-40M PALCE16V8H-7PC/4 PALCE16V8-7PC 16RC4-5	PALC16L8L-35C PALC16L8-40M PALC16L8-40M PALC16R4L-35C PALC16R4-40M PALC16R4-40M PALC16R6L-35C
PAL1618DM PALC618 - 35C PAL22V100C PALC22V10 - 53C 16LC8 - 5 PAL1618C PALC1618 - 35C PAL22V10PC PALC22V10 - 57C 16LC8 - 5 PAL1618LC PALC1618 - 35C PALC216V8H - 51C/4 PALC216V8 - 51C 16LC8 - 8 PAL1618LM PALC1618 - 40M PALCE16V8H - 71C/4 PALC216V8 - 71C 16LC8 - 9 PAL1618M PALC1618 - 40M PALCE16V8H - 7PC/4 PALC216V8 - 7PC 16RC4 - 5	PALC16L8L-35C PALC16L8-40M PALC16L8-40M PALC16R4L-35C PALC16R4-40M PALC16R4-40M PALC16R6L-35C
PAL1618LC PALC1618-35C PALC2618+35C PALC2616V8H-51C/4 PALC216V8-51C 16LC8-8 PAL1618LM PALC1618-40M PALC216V8H-71C/4 PALC216V8-71C 16LC8-9 PAL1618M PALC1618-40M PALC216V8H-71C/4 PALC216V8-71C 16RC4-5	PALC16L8-40M PALC16L8-40M PALC16R4L-35C PALC16R4-40M PALC16R4-40M PALC16R6L-35C
PAL16L8LM PALC16L8-40M PALCE16V8H-7JC/4 PALCE16V8-7JC 16LC8-9 PAL16L8M PALC16L8-40M PALCE16V8H-7PC/4 PALCE16V8-7PC 16RC4-5	PALC16L8-40M PALC16R4L-35C PALC16R4-40M PALC16R4-40M PALC16R4-40M
PAL16L8M PALC16L8-40M PALCE16V8H-7PC/4 PALCE16V8-7PC 16RC4-5	PALC16R4-40M PALC16R4-40M PALC16R6L-35C
	PALC16R4-40M PALC16R6L-35C
	PALC16R6L-35C
PAL16L8QM PALC16L8-40M PALCE16V8H-10PC/4 PALCE16V8-10PC 16RC4-9	
PAL16R4A-4C PALC16R4L-35C PALCE16V8H-15JC/4 PALCE16V8-15JC 16RC6-5	DAT C16D6 4014
PAL16R4A-4M PALC16R4-40M PALCE16V8H-15PC/4 PALCE16V8-15PC 16RC6-8	PALC16R6-40M
PAL16R4ALC PALC16R4-25C PALCE16V8H-25JC/4 PALCE16V8-25JC 16RC6-9	PALC16R6-40M
PAL16R4ALM PALC16R4-30M PALCE16V8H-25PC/4 PALCE16V8-25PC 16RC8-5	PALC16R8L-35C
PAL16R4AM PALC16R4-30M PALCE16V8Q-15JC/4 PALCE16V8L-15JC 16RC8-8	PALC16R8-40M
PAL16R4BM PALC16R4-20M PALCE16V8Q-15PC/4 PALCE16V8L-15PC 16RC8-9	PALC16R8-40M
PAL16R4C PALC16R4-35C PALCE16V8Q-25JC/4 PALCE16V8L-25JC INTEL	CYPRESS
PAL16R4LC PALC16R4-35C PALCE16V8Q-25PC/4 PALCE16V8L-25PC PREFIX:85C	PREFIX:CY
PAL16R4LM PALC16R4-40M PALCE20V8H-5JC/4 PALCE20V8-5JC PREFIX:85C	PREFIX:PLD
PAL16R4M PALC16R4-40M PALCE20V8H-7JC/4 PALCE20V8-7JC PREFIX:D	SUFFIX:D
PAL16R4QC PALC16R4L-35C PALCE20V8H-7PC/4 PALCE20V8-7PC PREFIX-L	SUFFIX:L
PAL16R4QM PALC16R4-40M PALCE20V8H-10JC/4 PALCE20V8-10JC PREFIX:P	SUFFIX:P
PAL16R6A-4C PALC16R6L-35C PALCE20V8H-10PC/4 PALCE20V8-10PC SUFFIX:/B	SUFFIX:B
PAL16R6A-4M PALC16R6-40M PALCE20V8H-15JC/4 PALCE20V8-15JC 22V10-10C	PALC22V10D-7C
PAL16R6AC PALC16R6-25C PALCE20V8H-15PC/4 PALCE20V8-15PC 22V10-10C	PALC22V10D-10C
PAL16R6ALC PALC16R6-25C PALCE20V8H-25JC/4 PALCE20V8-25JC 22V10-10C	PAL22V10C-7C+
PAL16R6ALM PALC16R6-30M PALCE20V8H-25PC/4 PALCE20V8-25PC 22V10-10C	PAL22V10C-10C+
PAL16R6AM PALC16R6-30M PALCE20V8Q-15JC/4 PALCE20V8L-15JC 22V10-15C	PALC22V10B-15C
PAL16R6BM PALC16R6-20M PALCE20V8Q-15PC/4 PALCE20V8L-15PC 22V10-15C	PALC22V10D-15C
PAL16R6C PALC16R6-35C PALCE20V8Q-25JC/4 PALCE20V8L-25JC	
PAL16R6LC PALC16R6-35C PALCE20V8Q-25PC/4 PALCE20V8L-25PC LATTICE	CYPRESS
PAL16R6LM PALC16R6-40M PALCE22V10H-7JC PALCE22V10-7JC PREFIX:EE	PREFIX:CY
PAL16R6M PALC16R6-40M PALCE22V10H-10PC PALCE22V10-10PC PREFIX:GAL	
PAL16R6QC PALC16R6L-35C PALCE22V10H-10JC PALCE22V10-10JC PREFIX:ST	PREFIX:CY
PAL16R6QM PALC16R6-40M PALCE22V10H-10PC PALCE22V10-10PC SUFFIX:B	SUFFIX:B
PAL16R8A-4C PALC16R8L-35 PALCE22V10H PALCE22V10 SUFFIX:D PAL16R8A-4M PALC16R8-40M -15/B3A -15LMB SUFFIX:L	SUFFIX:D SUFFIX:L
PAL16R8A-4M PALC16R8-40M PALC16R8-40M PALCE22V10H PALCE22V10 SUFFIX:L SUFFIX:P	SUFFIX:L SUFFIX:P
PALIGRAALC PALCIGR8-25C TALCE22 VIOL TALCE	
PAL16R8ALM PALC16R8-30M PALCE22V10H-15JC PALCE22V10-15JC GAL16V8A-	
PAL16R8AM PALC16R8-30M PALC22V10H-15PC PALC22V10-15PC GAL16V8A-	
PAL16R8BM PALC16R8-20M PALCE22V10H PALCE22V10 GAL16V8A-	
PAL16R8C PALC16R8-35C -20/B3A -15LMB GAL16V8A-	
PAL 16R8L C PAL C16R8-35C PALCE22V10H PALCE22V10 GAL 16V8A-	
PALI6R8LM PALC16R8-40M -20/BLA -15DMB GAL16V8A-	
PAL 16R8M PAL C16R8-40M PALCE22V10H PALCE22V10 GAL 16V8A-	
PAL 16R80C PAL C16R8I = 35 -25/B3A -25LMB GAL 16V8A =	
PAL16R8QM PALC16R8-40M PALCE22V10H PALCE22V10 GAL16V8A-	
PAL 22V10-7IC PAL CE22V10-7IC -23/BLA -23DMB	
PALCE22V10 7PC PALCE22V10 7PC PALCE22V10H-25JC PALCE22V10-25JC	
PAL22V10-7/C PALCE22V10-7/C PALCE22V10H-25PC PALCE22V10-25PC GAL16V8B-	
PAL22V10-10PC PALCE22V10-10PC PALCE22V10H PALCE22V10 GAL16V8B-	10LJI PALCE16V8-10JI
PAL22V10-12/B3A PALCE22V10-10LMB PALCE22V10H PALCE22V10 GAL16V8B-	10LP PALCE16V8-10PC
PAL22V10-12/BLA PALCE22V10-10DMB 30/2010/101/101/2010/2010/101/2010/2010/	
PAL22V10-15DC PALC22V10B-15DC GAL16V8B-	
PAL22V10-15JC PALC22V10B-15JC ATMEL CYPRESS GAL16V8B-	
PAL22V10-15PC PALC22V10B-15PC 22V10 PALC22V10 GAL16V8B-2	
PAL22V10-20/B3A PALC22V10B-20LMB 22V10-15 PALC22V10B GAL16V8B-2	
PAL22V10-20/BLA PALC22V10B-20DMB HARRIS CYPRESS GAL16V8A	PALCE16V8
PAL22V10/B3A PALC22V10-35LMB PREFIX:AT PREFIX:CY GAL16V8B	PALCE16V8

1

Product Line Cross Reference

LATTICE	CYPRESS	MMI/AMD	CYPRESS	MMI/AMD	CYPRESS
GAL20V8A-10LJ	PALCE20V8-10JC	SUFFIX:SHRP	SUFFIX:B	PAL16R8M	PALC16R8-40M
GAL20V8A-10LP	PALCE20V8-10PC	PAL12L10C	PLDC20G10-35C	PAL18L4C	PLDC20G10-35C
GAL20V8A-15LJ	PALCE20V8-15JC	PAL12L10M	PLDC20G10-40M	PAL18L4M	PLDC20G10-40M
GAL20V8A-15LP	PALCE20V8-15PC	PAL14L8C	PLDC20G10-35C	PAL20L10AC	PLDC20G10-35C
GAL20V8A-15QJ	PALCE20V8L-15JC	PAL14L8M	PLDC20G10-40M	PAL20L10AM	PLDC20G10-30M
GAL20V8A-15QP	PALCE20V8L-15PC	PAL16L6C	PLDC20G10-35C	PAL20L10C	PLDC20G10-35C
GAL20V8A-L5LJ	PALCE20V8-25JC	PAL16L6M	PLDC20G10-40M	PAL20L10M	PLDC20G10-40M
GAL20V8A-25LP	PALCE20V8-25PC	PAL16L8A-2C	PALC16L8-35C	PAL20L2C	PLDC20G10-35C
GAL20V8A-25QJ	PALCE20V8L-25JC	PAL16L8A-2M	PALC16L8-40M	PAL20L2M	PLDC20G10-40M
GAL20V8A-25QP	PALCE20V8L-25PC	PAL16L8A-4C	PALC16L8L-35C	PAL20L8A-2C	PLDC20G10-35C
GAL20V8B-7LJ	PALCE20V8-7JC	PAL16L8A-4M	PALC16L8-40M	PAL20L8A-2M	PLDC20G10-40M
GAL20V8B-7LP	PALCE20V8-7PC	PAL16L8AC	PALC16L8-25C	PAL20L8AC	PLDC20G10-25C
GAL20V8B-10LJ GAL20V8B-10LJI	PALCE20V8-10JC PALCE20V8-10JI	PAL16L8AM PAL16L8B-2C	PALC16L8-30M PALC16L8-35C	PAL20L8AM PAL20L8C	PLDC20G10-30M PLDC20G10-35C
GAL20V8B-10LJI GAL20V8B-10LP	PALCE20V8-10JI PALCE20V8-10PC	PAL16L8B $-2C$ PAL16L8B $-2M$	PALC16L8-30M	PAL20L8C PAL20L8M	PLDC20G10-33C PLDC20G10-40M
GAL20V8B-10LPI	PALCE20V8-10PC	PAL16L8B-4C	PALC16L8L-35C	PAL20R4A-2C	PLDC20G10-40M
GAL20V8B-10L11 GAL20V8B-15LJI	PALCE20V8-1011 PALCE20V8-15JI	PAL16L8B-4M	PALC16L8-40M	PAL20R4A-2M	PLDC20G10-40M
GAL20V8B-15L9I GAL20V8B-15LPI	PALCE20V8-15PI	PAL16L8BM	PALC16L8-20M	PAL20R4AC	PLDC20G10-25C
GAL20V8B-25LJI	PALCE20V8-25JI	PAL16L8C	PALC16L8-35C	PAL20R4AM	PLDC20G10-30M
GAL20V8B-25LPI	PALCE20V8-25PI	PAL16L8D-4C	PALC16L8L-25C	PAL20R4C	PLDC20G10-35C
GAL20V8A GAL20V8A	PALCE20V8	PAL16L8D-4M	PALC16L8-30M	PAL20R4C	PLDC20G10-40M
GAL20V8B	PALCE20V8	PAL16L8M	PALC16L8-40M	PAL20R6A-2C	PLDC20G10-35C
GAL22V10B-7LJ	PALCE22V10-7JC	PAL16R4A-2C	PALC16R4-35C	PAL20R6A-2M	PLDC20G10-40M
GAL22V10B-7LP	PALCE22V10-7PC	PAL16R4A-2M	PALC16R4-40M	PAL20R6AC	PLDC20G10-25C
GAL22V10B-10LJ	PALCE22V10-10JC	PAL16R4A-4C	PALC16R4L-35C	PAL20R6AM	PLDC20G10-30M
GAL22V10B-10LP	PALCE22V10-10PC	PAL16R4A-4M	PALC16R4-40M	PAL20R6C	PLDC20G10-35C
GAL22V10B-15LD	PALCE22V10-	PAL16R4AC	PALC16R4-25C	PAL20R6M	PLDC20G10-40M
/883	15DMB	PAL16R4AM	PALC16R4-30M	PAL20R8A-2C	PLDC20G10-35C
GAL22V10B-15LJ	PALCE22V10-15JC	PAL16R4B-2C	PALC16R4-25C	PAL20R8A-2M	PLDC20G10-40M
GAL22V10B-15LJI	PALCE22V10-15JI	PAL16R4B-2M	PALC16R4-30M	PAL20R8AC	PLDC20G10-25C
GAL22V10B-15LP	PALCE22V10-15PC	PAL16R4B-4C	PALC16R4L-35C	PAL20R8AM	PLDC20G10-30M
GAL22V10B-15LPI	PALCE22V10-15PI	PAL16R4B-4M	PALC16R4-40M	PAL20R8C	PLDC20G10-35C
GAL22V10B-15LR	PALCE22V10-	PAL16R4BM	PALC16R4-20M	PAL20R8M	PLDC20G10-40M
/883	15LMB	PAL16R4C	PALC16R4-35C	PALC22V10/A	PALC22V10-35C
GAL22V10B-20LJI	PALCE22V10-15JI	PAL16R4D-4C	PALC16R4L-25C		
GAL22V10B-20LD /883	PALCE22V10- 15DMB	PAL16R4M	PALC16R4-40M	NATIONAL	CYPRESS
GAL22V10B-20LPI	PALCE22V10-15PI	PAL16R6A-2C	PALC16R6-35C	PREFIX:DM	PREFIX:CY
GAL22V10B-20LF1 GAL22V10B-20LR	PALCE22V10-1311	PAL16R6A-2M	PALC16R6-40M	PREFIX:GAL	PREFIX:None
/883	15LMB	PAL16R6A-4C	PALC16R6L-35C	PREIFX:IDM	PREFIX:CY
GAL22V10B-25LD	PALCE22V10-	PAL16R6A-4M	PALC16R6-40M	PREFIX:NM	PREFIX:CY
/883	25DMB	PAL16R6AC	PALC16R6-25C	PREFIX:NMC	PREFIX:CY
GAL22V10B-25LJ	PALCE22V10-25JC	PAL16R6AM PAL16R6B-2C	PALC16R6-30M PALC16R6-25C	SUFFIX:J SUFFIX:N	SUFFIX:D SUFFIX:P
GAL22V10B-25LJI	PALCE22V10-25JI	PAL16R6B-2C PAL16R6B-2M	PALC16R6-25C PALC16R6-30M	18L4C	PLDC20G10-35C
GAL22V10B-25LP	PALCE22V10-25PC	PAL16R6B-4C	PALC16R6L-35C	18L4M	PLDC20G10-35C PLDC20G10-40M
GAL22V10B-25LPI	PALCE22V10-25PI	PAL16R6B-4C PAL16R6B-4M	PALC16R6-40M	20L2M	PLDC20G10-40M PLDC20G10-40M
GAL22V10B-25LR	PALCE22V10-	PAL16R6BM	PALC16R6-20M	GAL22V10-15C	PALCE22V10-15C
/883	25LMB	PAL16R6C	PALC16R6-35C	GAL22V10-15C GAL22V10-20I	PALCE22V10-150
GAL22V10B-30LD	PALCE22V10-	PAL16R6D-4C	PALC16R6L-25C	GAL22V10 201 GAL22V10-20M	PALCE22V10-15M
/883	25DMB	PAL16R6M	PALC16R6-40M	GAL22V10-25C	PALCE22V10 15M
GAL22V10B-30LR /883	PALCE22V10- 25LMB	PAL16R8A-2C	PALC16R8-35C	GAL22V10-30I	PALCE22V10-250
GAL22V10C-5LJ	PALCE22V10-5JC	PAL16R8A-2M	PALC16R8-40M	GAL22V10-30M	PALCE22V10-25M
GAL22V10C-7LJ	PALCE22V10-5JC PALCE22V10-7JC	PAL16R8A-4C	PALC16R8L-35C	PAL164A2M	PALC16R4-40M
GAL22V10C-7PC	PALCE22V10-7PC	PAL16R8A-4M	PALC16R8-40M	PAL16L8A2C	PALC16L8-35C
		PAL16R8AC	PALC16R8-25C	PAL16L8A2M	PALC16L8-40M
MMI/AMD	CYPRESS	PAL16R8AM	PALC16R8-30M	PAL16L8AC	PALC16L8-25C
SUFFIX:883B	SUFFIX:B	PAL16R8B-2C	PALC16R8-25C	PAL16L8AM	PALC16L8-30M
SUFFIX:F	SUFFIX:F	PAL16R8B-2M	PALC16R8-30M	PAL16L8B2C	PALC16L8-25C
SUFFIX:J	SUFFIX:D	PAL16R8B-4C	PALC16R8L-35C	PAL16L8B2M	PALC16L8-30M
SUFFIX:L	SUFFIX:L	PAL16R8B-4M	PALC16R8-40M	PAL16L8B4C	PALC16L8L-35C
SUFFIX:N	SUFFIX:P	PAL16R8BM	PALC16R8-20M	PAL16L8B4M	PALC16L8-40M
PAL16R8D-4C	PALC1648L-25C	PAL16R8C	PALC16R8-35C	PAL16L8BM	PALC16L8-20M

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on I_{SB} + = meets all performance specs but may not meet I_{CC} or I_{SB} * = meets all performance specs except 2V data retention—may not meet I_{CC} or I_{SB} - = functionally equivalent † = SOIC only ‡ = 32-pin LCC crosses to the 7C198M 1-12

CYPRESS Product Line Cross Reference

	•			[
NATIONAL	CYPRESS DAL CI (LS 25C)	NATIONAL	CYPRESS	TI	CYPRESS
PAL16L8C	PALC16L8-35C	PAL20R8C	PLDC20G10-35C	PAL16L8AM	PALC16L8-30M
PAL16L8M PAL16R4A2C	PALC16L8-40M PALC16R4-35C	PAL20R8M	PLDC20G10-40M	PAL16R4-20M PAL16R4-25C	PALC16R4-20M PALC16R4-25C
PAL16R4A2C PAL16R4AC	PALC16R4-25C	QUICKLOGIC	CYPRESS	PAL16R4-30M	PALC16R4-25C PALC16R4-30M
PAL16R4AC PAL16R4AM	PALC16R4-25C PALC16R4-30M	PREFIX:QL	PREFIX:CY	PAL16R4-50M	PALC16R4-25C
PAL16R4B2C	PALC16R4-25C	8X12B-*CG68C	7C382A-*GC	PAL16R4A-2M	PALC16R4-40M
PAL16R4B2M	PALC16R4-30M	8X12B-*CG68I	7C382A-*GI	PAL16R4AC	PALC16R4-25C
PAL16R4B2M	PALC16R4L-35C	8X12B-*CG68M	7C382A-*GMB	PAL16R4AM	PALC16R4-30M
PAL16R4B4M	PALC16R4-40M	8X12B-*PF100C	7C382A-*AC	PAL16R6-20M	PALC16R6-20M
PAL16R4BM	PALC16R4-20M	8X12B-*PF100I	7C382A-*AI	PAL16R6-25C	PALC16R6-25C
PAL16R4C	PALC16R4-35C	8X12B-*PL44C	7C381A-*JC	PAL16R6-30M	PALC16R6-30M
PAL16R4M	PALC16R4-40M	8X12B-*PL44I	7C381A-*JI	PAL16R6A-2C	PALC16R6-25C
PAL16R6A2C	PALC16R6-35C	8X12B-*PL68C	7C382A-*JC	PAL16R6A-2M	PALC16R6-40M
PAL16R6A2M	PALC16R6-40M	8X12B-*PL68I	7C382A-*JI	PAL16R6AC	PALC16R6-25C
PAL16R6AC	PALC16R6-25C	12X16B-*CG84C	7C384A-*GC	PAL16R6AM	PALC16R6-30M
PAL16R6AM	PALC16R6-30M	12X16B-*CG84I	7C384A-*GI	PAL16R8-25C	PALC16R8-25C
PAL16R6B2C	PALC16R6-25C	12X16B-*CG84M	7C384A-*GMB	PAL16R8-30M	PALC16R8-30M
PAL16R6B2M	PALC16R6-30M	12X16B-*PF100C	7C384A-*AC	PAL16R8A-2C	PALC16R8-25C
PAL16R6B4C	PALC16R6L-35C	12X16B-*PF100I	7C384A-*AI	PAL16R8A-2M	PALC16R8-40M
PAL16R6B4M	PALC16R6-40M	12X16B-*PL68C	7C383A-*JC	PAL16R8AC	PALC16R8-25C
PAL16R6BM	PALC16R6-20M	12X16B-*PL68I	7C383A-*JI	PAL16R8AM	PALC16R8-30M
PAL16R6C	PALC16R6-35C	12X16B-*PL84C 12X16B-*PL84I	7C384A-*JC 7C384A-*JI	PAL20L8A-2C	PLDC20G10-25C
PAL16R6M	PALC16R6-40M	12X16B-*PL841 16X24B-*GC144C	7C386A-*GC	PAL20L8A-2M	PLDC20G10-30M
PAL16R8A2C	PALC16R8-35C	16X24B-*GC144C	7C386A-*GI	PAL20L8AC	PLDC20G10-25C
PAL16R8A2M	PALC16R8-40M	16X24B-*GC144I	7C386A-*GMB	PAL20L8AM	PLDC20G10-30M
PAL16R8AC	PALC16R8-25C	16X24B-*PF100C	7C385A-*AC	PAL20L10A-2C	PLDC20G10-25C
PAL16R8AM	PALC16R8-30M	16X24B-*PF100I	7C385A-*AI	PAL20L10A-2M	PLDC20G10-30M
PAL16R8B2C	PALC16R8-25C	16X24B-*PF144C	7C386A-*AC	PAL20L10AC	PLDC20G10-35C
PAL16R8B2M	PALC16R8-30M	16X24B-*PF144I	7C386A-*AI	PAL20L10AM	PLDC20G10-30M
PAL16R8B4C	PALC16R8L-35C	16X24B-*PL84C	7C385A-*JC	PAL20R4A-2C	PLDC20G10-25C
PAL16R8B4M	PALC16R8-40M	16X24B-*PL84I	7C385A-*JI	PAL20R4A-2M	PLDC20G10-30M
PAL16R8BM PAL16R8C	PALC16R8-20M PALC16R8-35C	24X32B-*GC44C	7C387A-*GC	PAL20R4AC PAL20R4AM	PLDC20G10-25C PLDC20G10-30M
PAL16R8M	PALC16R8-40M	24X32B-*GC144I	7C387A-*GI	PAL20R4AM PAL20R6A-2C	PLDC20G10-30M PLDC20G10-25C
PAL20L2C	PLDC20G10-35C	24X32B-*GC144MB	7C387A-*GMB	PAL20R6A-2M	PLDC20G10-23C PLDC20G10-30M
PAL20L2C PAL20L8AC	PLDC20G10-35C	24X32B-*GC208C	7C388A-*GC	PAL20R6AC	PLDC20G10-30M PLDC20G10-25C
PAL20L8AM	PLDC20G10-25C	24X32B-*GC208I	7C388A-*GI	PAL20R6AM	PLDC20G10-20C
PAL20L8BC	PLDC20G10-25C	24X32B-*GC208M	7C388A-*GMB	PAL20R8A-2C	PLDC20G10-25C
PAL20L8BM	PLDC20G10-30M	24X32B-*PF144C	7C387A-*AC	PAL20R8A-2M	PLDC20G10-30M
PAL20L8C	PLDC20G10-35C	24X32B-*PF144I	7C387A-*AI	PAL20R8AC	PLDC20G10-25C
PAL20L8M	PLDC20G10-40M	24X32B-*PF208C	7C388A-*AC	PAL20R8AM	PLDC20G10-30M
PAL20L10B2C	PLDC20G10-25C	24X32B-*PF208I	7C388A-*AI	PAL22V10-7C	PALCE22V10-7C
PAL20L10B2M	PLDC20G10-30M	TI	CYPRESS	PAL22V10-15C	PALC22V10B-15C
PAL20L10C	PLDC20G10-35C	PREFIX:JBP	PREFIX:CY	PAL22V10-20M	PALC22V10B-20M
PAL20L10M	PLDC20G10-40M	PREFIX:PAL	SUFFIX:P	PAL22V10AC	PALC22V10-25C
PAL20R4AC	PLDC20G10-25C	PREFIX:SM	PREFIX:CY	PAL22V10AC	PALC22V10L-25C
PAL20R4AM	PLDC20G10-30M	PREFIX:SMJ	PREFIX:CY	PAL22V10AM	PALC22V10-25MB
PAL20R4BC	PLDC20G10-25C	PREFIX:SN	PREFIX:CY	PAL22V10AM	PALC22V10-30MB
PAL20R4BM	PLDC20G10-30M	PREFIX:TBP	PREFIX:CY	PAL22V10C	PALC22V10-35C
PAL20R4C	PLDC20G10-35C	PREFIX:TIB	PREFIX:CY	PAL22V10C	PALC22V10L-35C
PAL20R4M	PLDC20G10-40M	PREFIX:TMS	PREFIX:CY	L	
PAL20R6AC	PLDC20G10-25C	SUFFIX:F	SUFFIX:F		
PAL20R6AM	PLDC20G10-30M	SUFFIX:J	SUFFIX:L		
PAL20R6BC	PLDC20G10-25C	SUFFIX:N	SUFFIX:D		
PAL20R6BM	PLDC20G10-30M	22V10AC	PALC22V10-25C		
PAL20R6C	PLDC20G10-35C	22V10AM	PALC22V10-30M		
PAL20R6M	PLDC20G10-40M	PAL16L8-20M	PALC16L8-20M		
PAL20R8AC PAL20R8AM	PLDC20G10-25C PLDC20G10-30M	PAL16L8-25C	PALC16L8-25C		
PAL20R8AM PAL20R8BC	PLDC20G10-30M PLDC20G10-25C	PAL16L8-30M	PALC16L8-30M		
PAL20R8BC PAL20R8BM	PLDC20G10-25C PLDC20G10-30M	PAL16L8A-2C	PALC16L8-35C		
	1 LDC20010-50M	PAL16L8A-2M	PALC16L8-40M		
		PAL16L8AC	PALC16L8-25C		

Military Overview

Features

Success in any endeavor requires a high level of dedication to the task. Cypress Semiconductor has demonstrated its dedication through its corporate commitment to support the military market-place. This commitment starts with product design. All products are designed using our state-of-the-art CMOS and BiCMOS processes, and they must meet the full – 55 to +125 degrees Celsius operational criteria for military use. The commitment shows in our dedication to meet and exceed the stringent quality and reliability requirements of MIL-STD-883 and MIL-PRF-38535. It shows in Cypress's participation in each of the military processing programs: MIL-STD-883 compliant, SMD (Standardized Military Drawing), and QML. Finally, our commitment shows in our leadership position in special packages for military use.

Product Design

Every Cypress product is designed to meet or exceed the full temperature and functional requirements of military product. This means that Cypress builds military product as a matter of course, rather than as an accidental benefit of favorable test yield. Designs are being carried out in our industry-leading 0.65-micron CMOS and BiCMOS processes. Cypress is able to offer a family of products that are industry leaders in density, low operating and standby current, and high speed. In addition, our technology results in products with very small manufacturable die sizes that will fit into the LCCs and flatpacks so often used in military programs.

DESC-Certified Facility

On May 8, 1986, the Cypress facility at 3901 North First Street in San Jose, California was certified by DESC for the production of JAN Class B CMOS Microcircuits. And, most recently, on February 16, 1994, Cypress received QML (Qualified Manufacturers List) transitional certification from Defense Electronic Supply Center to the requirements of MIL-PRF-38535. This certification allows Cypress to continue to produce JAN products as well as manufacture devices listed on the QML. QML certification attests to Cypress' commitment to quality and reliability through the use of statistical process control and total quality management. Our wafer fabrication facilities are Class 10 (San Jose) and Class 1 (Round Rock, TX and Bloomington, MN) manufacturing environments and our assembly facility is also a clean room.

Datasheet Documentation

Every Cypress final data sheet is a corporate document with a revision history. The document number and revision appears on each final data sheet. Cypress maintains a listing of all data sheet documentation and a copy is available to customers upon request. This gives a customer the ability to verify the current status of any data sheet and it also gives that customer the ability to obtain updated specifications as required. Every final data sheet also contains detailed Group A subgroup testing information. All of the specified parameters that are tested at Group A are listed in a table at the end of each final data sheet, with a notation as to which specific Group A test subgroups apply.

Assembly Traceability Code®

Cypress Semiconductor places an assembly traceability code on every military package that is large enough to contain the code. The ATC automatically provides traceability for that product to the individual wafer lot. This unique code provides Cypress with the ability to determine which operators and equipment were used in the manufacture of that product from start to finish.

Quality and Reliability

MIL-STD-883 and MIL-PRF-38535 spell out the toughest of quality and reliability standards for military products. Cypress products meet all of these requirements and more. Our in-house quality and reliability programs are being updated regularly with tighter and tighter objectives. Please refer to the chapter on Quality, Reliability, and Process Flows for further details.

Military Product Offerings

Cypress offers three levels of processing for military product.

First, all Cypress products are available with processing in full compliance with MIL-STD-883.

Second, selected products are available to the SMD (Standardized Military Drawing) program administered by DESC. These products are not only fully MIL-STD-883D compliant, but are also screened to the electrical requirements of the applicable military drawing.

Third, selected products are available as QML/JAN devices. These products are processed in full accordance with MIL-PRF-38535B and they are screened to the electrical requirements of the applicable slash sheet.

Product Packaging

All packages for military product are hermetic. A look at the package appendix in the back of this data book will give the reader an appreciation of the variety of packages offered. Included are cer-DIPs, windowed CerDIPs, leadless chip carriers (LCCs), windowed leadless chip carriers, cerpaks, windowed cerpaks, quad cerpaks, windowed quad cerpaks, bottom-brazed flatpacks, and pin grid arrays.

Summary

Cypress Semiconductor is committed to the support of the military marketplace. Our commitment is demonstrated by our product designs, our DESC-certified facility, our documentation and traceability, our quality and reliability programs, our support of all levels of military processing, and by our leadership in special packaging.

Assembly Traceability Code is a trademark of Cypress Semiconductor Corporation.

PLDs

	Organization	Pins	Part Number	JAN/SMD Number ^{[1]*}	Speed (ns/MHz)	I _{CC} (mA@ns/MHz)	883 Availability
PAL20	16L8, 16R8, 16R6, 16R4	20	PAL16XX	5962-92338(O)	$t_{PD} = 7,10$	180@7	Now
PALC20	16L8, 16R8, 16R6, 16R4	20	PALC16XX	5962-88678(W)	$t_{PD} = 20, 30, 40$	70@20	Now
PALC20	16L8, 16R8, 16R6, 16R4	20	PALC16XX	5962-88713(O)	$t_{PD} = 20, 30, 40$	70@20	Now
PALCE20	16V8—Macrocell	20S	PALCE16V8	5962-89839	$t_{PD/S/CO} = 10/10/7$	130@10	Now
PLD24	22V10C—Macrocell	24S	PAL22V10C	5962-91760(O)	$t_{PD/S/CO} = 10/3.6/7.5$	190@10	Now
PLD24	22V10C—Macrocell	24S	PAL22VP10C	5962-91760(O)	$t_{PD/S/CO} = 10/3.6/7.5$	190@10	Now
PLDC24	22V10-Macrocell	24S	PALC22V10	5962-87539(W)	$t_{PD/S/CO} = 25/18/15$	100@25	Now
PLD24	22V10-Macrocell	24S	PALC22V10B	5962-87539(W)	$t_{PD/S/CO} = 20/17/15$	100@20	Now
PLDC24	22V10-Macrocell	24S	PALC22V10	5962-88670(O)	$t_{PD/S/CO} = 25/18/15$	100@25	Now
PLD24	22V10-Macrocell	24S	PALC22V10B	5962-88670(O)	$t_{PD/S/CO} = 15/12/10$	120@15	Now
PLDC24	22V10-Macrocell	24S	PALC22V10B	M38510/507(W)	$t_{PD/S/CO} = 15/12/10$	120@15	Now
PLDC24	22V10-Macrocell	24S	PALC22V10B	M38510/508(O)	$t_{PD/S/CO} = 15/12/10$	120@15	Now
PLDC24	22V10D—Macrocell	24S	PALC22V10D	5962-89841(O)	t _{PD/S/CO} =10/6/7	130@10	Now
PLDC24	20G10—Generic	24S	PLDC20G10	5962-88637(O)	$t_{PD/S/CO} = 20/17/15$	80@30	Now
PLDC24	20RA10—Asynchronous	24S	PLD20RA10	5962-90555(O)	$t_{PD/SU/CO} = 20/10/20$	100@25	Now
PLDC24	20RA10—Asynchronous	24S	PLD20RA10	5962-90989(W)	t _{PD/SU/CO} =20/10/20	100@25	Now
PLDC28	7C330—State Machine	28S	CY7C330	5962-89546(W)	50, 40, 28 MHz	180@40MHz	Now
PLDC28	7C330—State Machine	28S	CY7C330	5926-90802(O)	50, 40, 28 MHz	180@40MHz	Now
PLDC28	7C331—Asynchronous	28S	CY7C331	5962-90754(W)	$t_{PD} = 25, 30, 40$	200 @ 20 MHz	Now
PLDC28	7C331—Asynchronous	28S	CY7C331	5962-89855(O)	$t_{PD} = 25, 30, 40$	200 @ 20 MHz	Now
PLDC28	7C332Combinatorial	28S	CY7C332	5962-91584(W)	$t_{PD} = 20, 25, 30$	200 @ 24 MHz	Now
PLD28	7C335—Synchronous	28S	CY7C335	5862-94510(W)	$f_{MAX5} = 66.6, 50, 83$	160 @ 66.6 MHz	Now

CPLDs

	Organization	Pins	Part Number	JAN/SMD Number ^{[1]*}	Speed (ns/MHz)	I _{CC} (mA@ns/MHz)	883 Availability
MAX28	7C344-32 Macrocell	28S	CY7C344/B	5962-90611(W)	$t_{PD} = 12, 20, 25, 35$	220@25	Now
MAX40	7C34364 Macrocell	40/44	CY7C343/B	5962-92158(W)	$t_{PD} = 15, 20, 25, 30, 35$	225@25	Now
MAX68	7C342—128 Macrocell	68	CY7C342/B	5962-89468(W)	$t_{PD} = 15, 20, 25, 30, 35$	320@30	Now
MAX84	7C341-192 Macrocell	84	CY7C341/B	5962-92062(W)	$t_{\rm PD} = 20, 25, 30, 35, 40$	480@30	Now
MAX100	7C346—128 Macrocell	84/100	CY7C346/B	5962-91344(W)	$t_{PD} = 20, 25, 30, 35$	320@35	Now
PLDC28	7C361State Machine	28S	CY7C361	1	100, 83, 66 MHz	150@100MHz	Now
37X-44	7C371—32 Macrocell	44	CY7C371	5962-94684(O)	$f_{MAX}/t_S/t_{CO} = 83MHz/10/10$	260@83	Now
37X-44	7C37264 Macrocell	44	CY7C372	5962-94688(O)	f _{MAX} /t _S /t _{CO} =83MHz/8/8	300@83	Now
37X-84	7C373—64 Macrocell	84	CY7C373	5962-94689(O)	f _{MAX} /t _S /t _{CO} =83MHz/8/8	300@83	Now
37X-84	7C374—128 Macrocell	84	CY7C374	5962-94713(O)	f _{MAX} /t _S /t _{CO} =83MHz/8/8	370@83	Now
37X-160	7C375—128 Macrocell	160	CY7C375		f _{MAX} /t _S /t _{CO} =83MHz/8/8	370@83	Now
Flash370- 160	7C376—192 Macrocell	160	CY7C376		$f_{MAX}/t_S/t_{CO}=83MHz/$ 12/12	300/TBD	4Q95
Flash370- 240	7C377—192 Macrocell	240	CY7C377		$\begin{array}{c} f_{MAX}/t_S/t_{CO} = 83 MHz \\ 12/12 \end{array}$	300/TBD	4Q95
Flash370- 160	7C378—256 Macrocell	160	CY7C378		f _{MAX} /t _S /t _{CO} =83MHz/ 12/12	300/TBD	2Q95
FLASH370- 240	7C379—256 Macrocell	240	CY7C379		$\substack{f_{MAX}/t_S/t_{CO}=83MHz/\\12/12}$	300/TBD	2Q95

FPGAs

	Organization	Pins	Part Number	JAN/SMD Number ^{[1]*}	Speed (ns/MHz)	I _{CC} (mA@ns/MHz)	883 Availability
1KFPGA	CMOS8x12	68	CY7C382A		-0, -1	20	Now
2KFPGA	CMOS12x16	84	CY7C384A		-0, -1	20	Now
4KFPGA	CMOS16x24	145	CY7C385A		-0, -1	20	Now

FPGAs (continued)

	Organization	Pins	Part Number	JAN/SMD Number ^{[1]*}	Speed (ns/MHz)	I _{CC} (mA@ns/MHz)	883 Availability
4KFPGA	CMOS16x24	160	CY7C386A	5962-95599	-0, -1	20	Now
8KFPGA	CMOS 24x32	145/ 160/ 208	CY7C387A/8A		-0, -1	20	4Q95

Notes:

The following Cypress facilites have been granted Level Q (QML) certification by DESC:

Operation	Facility	Location
Fab	Fab2	Round Rock, TX
	Fab3	Bloomington, MN
Assy/Test	Bangkok	Bangkok, Thailand
Test	San Jose	San Jose, CA

All of the above products are available with processing to MIL-STD-883D at a minimum. Many of these products are also available either to SMDs (Standardized Military Drawings) or to JAN slash sheets.

The speed and power specifications listed above cover the full military temperature range.

Modules are available with MIL-STD-883D components. These modules are assembled and screened to the proposed JEDEC military processing standard for modules.

W = Windowed Package O = Opaque Package HD = Hermetic DIP Module

100K ECL devices are available only to extended temperature range.

22S stands for 22-pin 300-mil DIP. 24S stands for 24-pin 300-mil DIP. 28S stands for 28-pin 300-mil DIP. 32S stands for 32-pin 300-mil DIP.

Notes:

 Devices listed have been approved by DESC for the SMD indicated as of the date of publication. Contact your local Cypress representative, or the Cypress SMD Hotline at 408/943-2716, for the latest update.

Cypress Semiconductor fully supports the DESC standardized Military Drawing Program for devices that are compliant to the Class B requirements of MIL-STD-883D. Listed below are the SMDs for which Cypress is an approved source of supply. Please contact your local Cypress representative for the latest SMD update.

		Packag	e ^[3]]
SMD Number	Cypress ^[2] Part Number	Description	Туре	Product Description
5962-87539 01LX	PALC22V10-25WMB	24.3 DIP	W14	24-Pin CMOS UV EPLD
5962-87539 013X	PALC22V10-25QMB	28 S LCC	Q64	24-Pin CMOS UV EPLD
5962-87539 02LX	PALC22V10-30WMB	24.3 DIP	W14	24-Pin CMOS UV EPLD
5962-87539 023X	PALC22V10-30QMB	28 S LCC	Q64	24-Pin CMOS UV EPLD
5962-87539 03LX	PALC22V10-40WMB	24.3 DIP	W14	24-Pin CMOS UV EPLD
5962-87539 04LX	PALC22V10B-20WMB	24.3 DIP	W14	24-Pin CMOS UV EPLD
5962-87539 043X	PALC22V10B-20QMB	28 S LCC	Q64	24-Pin CMOS UV EPLD
5962-88637 01LX	PLDC20G10-40DMB	24.3 DIP	D14	Generic CMOS PLD
5962-88637 02KX	PLDC20G10-30KMB	24 CP	K73	Generic CMOS PLD
5962-88637 02LX	PLDC20G10-30DMB	24.3 DIP	D14	Generic CMOS PLD
5962-88637 023X	PLDC20G10-30LMB	28 S LCC	L64	Generic CMOS PLD
5962-88670 01KX	PALC22V10-25KMB	24 CP	K73	24-Pin CMOS PLD
5962-88670 01LX	PALC22V10-25DMB	24.3 DIP	D14	24-Pin CMOS PLD
5962-88670 0112X	PALC22V10-25LMB	28 S LCC	L64	24-Pin CMOS PLD
5962-88670 013X	PALC22V10-25EMB	28 3 LCC 24 CP	K73	24-Pin CMOS PLD
5962-88670 02KX	PALC22V10-30DMB	24 CF 24.3 DIP	D14	24-Pin CMOS PLD
5962-88670 021X	PALC22V10-30LMB	24.5 DIP 28 S LCC	L64	24-Pin CMOS PLD 24-Pin CMOS PLD
5962-88670 025X	PALC22V10-30LMB	28 S LCC 24 CP	K73	24-Pin CMOS PLD
		24 CP 24.3 DIP	D14	
5962-88670 03LX 5962-88670 04KX	PALC22V10-40DMB	24.3 DIP 24 CP	K73	24-Pin CMOS PLD
	PALC22V10B-20KMB			24-Pin CMOS PLD
5962-88670 04LX	PALC22V10B-20DMB	24.3 DIP	D14 L64	24-Pin CMOS PLD
5962-88670 043X	PALC22V10B-20LMB	28 S LCC		24-Pin CMOS PLD
5962-88670 05KX	PALC22V10B-15KMB	24 CP	K73	24-Pin CMOS PLD
5962-88670 05LX	PALC22V10B-15DMB	24.3 DIP	D14	24-Pin CMOS PLD
5962-88670 053X	PALC22V10B-15LMB	28 S LCC	L64	24-Pin CMOS PLD
5962-88678 01XX	PALC16L8-40QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD
5962-88678 02XX	PALC16R8-40QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD
5962-88678 03RX	PALC16R6-40WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD
5962-88678 03XX	PALC16R6-40QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD
5962-88678 04RX	PALC16R4-40WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD
5962-88678 04XX	PALC16R4-40QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD
5962-88678 07XX	PALC16R6-30QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD
5962-88678 09RX	PALC16L8-20WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD
5962-88678 09XX	PALC16L8-20QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD
5962-88678 10RX	PALC16R8-20WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD
5962-88678 10XX	PALC16R8-20QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD
5962-88678 11RX	PALC16R6-20WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD
5962-88678 11XX	PALC16R6-20QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD
5962-88678 12RX	PALC16R4-20WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD
5962-88678 12XX	PALC16R4-20QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD
5962-88713 01RX	PALC16L8-40DMB	20.3 DIP	D6	20-Pin CMOS PLD
5962-88713 05RX	PALC16L8-30DMB	20.3 DIP	D6	20-Pin CMOS PLD
5962-88713 05XX	PALC16L8-30LMB	20 S LCC	L61	20-Pin CMOS PLD
5962-88713 06RX	PALC16R8-30DMB	20.3 DIP	D6	20-Pin CMOS PLD
5962-88713 07RX	PALC16R6-30DMB	20.3 DIP	D6	20-Pin CMOS PLD
5962-88713 07XX	PALC16R6-30LMB	20 S LCC	L61	20-Pin CMOS PLD
5962-88713 08RX	PALC16R4-30DMB	20.3 DIP	D6	20-Pin CMOS PLD
5962-88713 09RX	PALC16L8-20DMB	20.3 DIP	D6	20-Pin CMOS PLD
5962-88713 09XX	PALC16L8-20LMB	20 S LCC	L61	20-Pin CMOS PLD
5962-88713 10RX	PALC16R8-20DMB	20.3 DIP	D6	20-Pin CMOS PLD
5962-88713 10XX	PALC16R8-20LMB	20 S LCC	L61	20-Pin CMOS PLD
5962-88713 11RX	PALC16R6-20DMB	20.3 DIP	D6	20-Pin CMOS PLD
5962-88713 11XX	PALC16R6-20LMB	20 S LCC	L61	20-Pin CMOS PLD
5962-88713 12RX	PALC16R4-20DMB	20.3 DIP	D6	20-Pin CMOS PLD
5962-88713 12XX	PALC16R4-20LMB	20 S LCC	L61	20-Pin CMOS PLD

DESC SMD (Standardized Military Drawing) Approvals^[1]

DESC SMD (Standardized Military Drawing) Approvals^[1] (continued)

I TO TO MAKANA I TO TO MAKANA I TO MO ALABASA		Package ^[3]		
SMD Number	Cypress ^[2] Part Number	Description	Туре	Product Description
5962-89468 01XX	CY7C342-35RMB	68 PGA	R68	128-Macrocell UV EPLD
5962-89468 01YX	CY7C342-35HMB	68 SOJ	H81	128-Macrocell UV EPLD
5962-89468 01ZX	CY7C342-35TMB	68 QFP	T91	128-Macrocell UV EPLD
5962-89468 02XX	CY7C342-30RMB	68 PGA	R68	128-Macrocell UV EPLD
5962-89468 02YX	CY7C342-30HMB	68 SOJ	H81	128-Macrocell UV EPLD
5962-89468 02ZX	CY7C342-30TMB	68 QFP	T91	128-Macrocell UV EPLD
5962-89468 03XX	CY7C342B-25RMB	68 PGA	R68	128-Macrocell UV EPLD
5962-89468 03YX	CY7C342B-25HMB	68 SOJ	H81	128-Macrocell UV EPLD
5962-89468 03ZX	CY7C342B-25TMB	68 QFP	T91	128-Macrocell UV EPLD
5962-89468 04XX	CY7C342B-20RMB	68 PGA	R68	128-Macrocell UV EPLD
5962-89468 04YX	CY7C342B-20HMB	68 SOJ	H81	128-Macrocell UV EPLD
5962-89468 04ZX	CY7C342B-20TMB	68 QFP	T91	128-Macrocell UV EPLD
5962-89546 02XX	CY7C330-40WMB	28.3 DIP	W22	PLD State Machine
5962-89546 02YX	CY7C330-40TMB	28 CP	T74	PLD State Machine
5962-89546 023X	CY7C330-40QMB	28 S LCC	Q64	PLD State Machine
5962-89546 03XX	CY7C330-50WMB	28.3 DIP	W22	PLD State Machine
5962-89546 03YX	CY7C330-50TMB	28 CP	T74	PLD State Machine
5962-89546 033X	CY7C330-50QMB	28 S LCC	Q64	PLD State Machine
5962-89841 01KX	PALC22V10D-30KMB	24 CP	K73	CMOS EE PLD
5962-89841 01LX	PALC22V10D-30DMB	24.3 DIP	D14	CMOS EE PLD
5962-89841 013X	PALC22V10D-30LMB	28 S LCC	L64	CMOS EE PLD
5962-89841 02KX	PALC22V10D-20KMB	24 CP	K73	CMOS EE PLD
5962-89841 02LX	PALC22V10D-20DMB	24.3 DIP	D14	CMOS EE PLD
5962-89841 023X	PALC22V10D-20LMB	28 S LCC	L64	CMOS EE PLD
5962-89841 03KX	PALC22V10D-15KMB	20 0 LCC 24 CP	K73	CMOS EE PLD
5962-89841 03LX	PALC22V10D-15DMB	24 CI 24.3 DIP	D14	CMOS EE PLD
5962-89841 03LX	PALC22V10D-15LMB	24.5 DIF 28 S LCC	L64	CMOS EE PLD CMOS EE PLD
5962-89841 04KX	PALC22V10D-25KMB	24 CP	K73	CMOS EE PLD
5962-89841 04LX	PALC22V10D-25DMB	24.3 DIP	D14	CMOS EE PLD
5962-89841 043X	PALC22V10D-25LMB	28 S LCC	L64	CMOS EE PLD
5962-89841 05KX	PALC22V10D-15KMB	24 CP	K73	CMOS EE PLD
5962-89841 05LX	PALC22V10D-15DMB	24.3 DIP	D14	CMOS EE PLD
5962-89841 053X	PALC22V10D-15LMB	28 S LCC	L64	CMOS EE PLD
5962-89841 06KX	PALC22V10D-10KMB	24 CP	K73	CMOS EE PLD
5962-89841 06LX	PALC22V10D-10DMB	24.3 DIP	D14	CMOS EE PLD
5962-89841 063X	PALC22V10D-10LMB	28 S LCC	L64	CMOS EE PLD
5962-89855 01MYX	CY7C331-40KMB	28 CP	K74	Asynchronous PLD
5962-89855 01MZX	CY7C331-40YMB	28 S JCO	Y64	Asynchronous PLD
5962-89855 01M3X	CY7C331-40LMB	28 S LCC	L64	Asynchronous PLD
5962-89855 02MXX	CY7C331-30DMB	28.3 DIP	D22	Asynchronous PLD
5962-89855 02MYX	CY7C331-30KMB	28 CP	K74	Asynchronous PLD
5962-89855 02MZX	CY7C331-30YMB	28 S JCO	Y64	Asynchronous PLD
5962-89855 02MZX	CY7C331-25DMB	28.3 DIP	D22	Asynchronous PLD
5962-89855 03MXX	CY7C331-25KMB	28.5 DH 28 CP	K74	Asynchronous PLD
5962-89855 03MZX	CY7C331-25YMB	28 S JCQ	Y64	Asynchronous PLD
5962-89855 03MZX	CY7C331-25LMB	28 S LCC	L64	Asynchronous PLD
5962-90555 01KX	PLDC20RA10-35KMB	24 CP	K73	Asynchronous CMOS OTP PLD
5962-90555 01LX	PLDC20RA10-35DMB	24.3 DIP	D14	Asynchronous CMOS OTP PLD
5962-90555 02KX	PLDC20RA10-25KMB	24 CP	K73	Asynchronous CMOS OTP PLD
5962-90555 02LX	PLDC20RA10-25DMB	24.3 DIP	D14	Asynchronous CMOS OTP PLD
5962-90555 03KX	PLDC20RA10-20KMB	24 CP	K73	Asynchronous CMOS OTP PLD
5962-90555 03LX	PLDC20RA10-20DMB	24.3 DIP	D14	Asynchronous CMOS OTP PLD
5962-90555 023X	PLDC20RA10-25LMB	28 S LCC	L64	Asynchronous CMOS OTP PLD
5962-90611 02XX	CY7C344-25WMB	28.3 DIP	W22	32-Macrocell UV EPLD
5962-90611 02YX	CY7C344-25HMB	28 S JCQ	H64	32-Macrocell UV EPLD
5962-90754 01MYX	CY7C331-40TMB	28 CP	T74	Asynchronous UV PLD
5962-90754 01MTX	CY7C331-40HMB	28 S JCQ	H64	Asynchronous UV PLD
5962-90754 01M2X	CY7C331-30TMB	28 S JCQ 28 CP	T74	Asynchronous UV PLD
5962-90754 02MTX	CY7C331-30HMB	28 S JCQ	H64	Asynchronous UV PLD
5962-90754 02MZX	CY7C331-30QMB	28 S JCQ 28 S LCC	Q64	Asynchronous UV PLD
5962-90754 03MXX	CY7C331-25WMB	28.3 DIP	W22	Asynchronous UV PLD

DESC SMD (Standardized Military Drawing) Approvals^[1] (continued)

		Package ^[3]		
SMD Number	Cypress ^[2] Part Number	Description	Туре	Product Description
5962-91760 01M3X	PAL22V10G-15LMB	28 S LCC	L64	BICMOS OTP PLD
5962-91760 02M3X	PAL22V10G-12LMB	28 S LCC	L64	BICMOS OTP PLD
5962-91760 03M3X	PAL22V10G-10LMB	28 S LCC	L64	BICMOS OTP PLD
5962-91760 04M3X	PAL22VP10G-15LMB	28 S LCC	L64	BICMOS OTP PLD
5962-91760 05M3X	PAL22VP10G-12LMB	28 S LCC	L64	BICMOS OTP PLD
5962-91760 06M3X 5962-91760 09M3X	PAL22VP10G-10LMB	28 S LCC 28 S LCC	L64 L64	BICMOS OTP PLD
5962-91760 09M3X	PAL22V10G-7LMB PAL22VP10G-7LMB	28 S LCC 28 S LCC	L64	BICMOS OTP PLD BICMOS OTP PLD
5962-92062 01MXX	CY7C341-40HMB	84 S JCQ	H84	192-Macrocell UV EPLD
5962-92062 01MXX	CY7C341-40RMB	84 PGA	R84	192-Macrocell UV EPLD
5962-92062 01MTX	CY7C341-30HMB	84 S JCO	H84	192-Macrocell UV EPLD
5962-92062 02MXX	CY7C341-30RMB	84 PGA	R84	192-Macrocell UV EPLD
5962-92062 03MXX	CY7C341-35HMB	84 S JCO	H84	192-Macrocell UV EPLD
5962-92062 03MYX	CY7C341-35RMB	84 PGA	R84	192-Macrocell UV EPLD
5962-90754 03MYX	CY7C331-25TMB	28 CP	T74	Asynchronous UV PLD
5962-90754 03MZX	CY7C331-25HMB	28 S JCQ	H64	Asynchronous UV PLD
5962-90754 03M3X	CY7C331-25QMB	28 S LCC	Q64	Asynchronous UV PLD
5962-90989 01MLX	PLDC20RA10-35WMB	24.3 DIP	W14	Asynchronous CMOS UV EPLD
5962-90989 02MLX	PLDC20RA10-25WMB	24.3 DIP	W14	Asynchronous CMOS UV EPLD
5962-90989 02M3X	PLDC20RA10-25QMB	28 S LCC	Q64	Asynchronous CMOS UV EPLD
5962-90989 03MLX	PLDC20RA10-20WMB	24.3 DIP	W14	Asynchronous CMOS UV EPLD
5962-90989 03M3X	PLDC20RA10-20QMB	28 S LCC	Q64	Asynchronous CMOS UV EPLD
5962-91584 01MYX	CY7C332-25TMB	28 CP	T74	Registered Combinatorial UV EPLI
5962-91584 01MZX	CY7C332-25HMB	28 S JCQ	H64	Registered Combinatorial UV EPLI
5962-91584 02MYX	CY7C332-20TMB	28 CP	T74	Registered Combinatorial UV EPLI
5962-91584 02MZX	CY7C332-20HMB	28 S JCQ	H64	Registered Combinatorial UV EPLI
5962-91584 02M3X	CY7C332-20QMB	28 S LCC	Q64	Registered Combinatorial UV EPLI
5962-92158 02MXX	CY7C343-30HMB	44 S JCQ	H67	64-Macrocell UV EPLD
5962-92338 01MRX	PAL16L8-10DMB	20.3 DIP	D6	20-Pin BiCMOS PLD
5962-92338 01MSX	PAL16L8-10KMB	20 CP	K71	20-Pin BiCMOS PLD
5962-92338 01MXX	PAL16L8-10LMB	20 S LCC	L61	20-Pin BiCMOS PLD
5962-92338 02MRX	PAL16R8-10DMB	20.3 DIP	D6	20-Pin BiCMOS PLD
5962-92338 02MSX	PAL16R8-10KMB	20 CP	K71	20-Pin BiCMOS PLD
5962-92338 02MXX	PAL16R8-10LMB	20 S LCC	L61	20-Pin BiCMOS PLD
5962-92338 03MRX	PAL16R6-10DMB	20.3 DIP	D6	20-Pin BiCMOS PLD
5962-92338 03MSX	PAL16R6-10KMB	20 CP	K71	20-Pin BiCMOS PLD
5962-92338 03MXX	PAL16R6-10LMB	20 S LCC	L61	20-Pin BiCMOS PLD
5962-92338 04MRX	PAL16R4-10DMB	20.3 DIP	D6	20-Pin BiCMOS PLD
5962-92338 04MSX	PAL16R4-10KMB	20 CP	K71	20-Pin BiCMOS PLD
5962-92338 04MXX	PAL16R4-10LMB	20 S LCC	L61	20-Pin BiCMOS PLD
5962-92338 05MRX 5962-92338 05MSX	PAL16L8-7DMB PAL16L8-7KMB	20.3 DIP 20 CP	D6 K71	20-Pin BiCMOS PLD 20-Pin BiCMOS PLD
5962-92338 05MSX	PAL16L8-7LMB	20 CF 20 S LCC	L61	20-Pin BiCMOS PLD
5962-92338 05MAX	PAL16R8-7DMB	20.3 DIP	D6	20-Pin BiCMOS PLD
5962-92338 06MSX	PAL16R8-7KMB	20 CP	K71	20-Pin BiCMOS PLD
5962-92338 06MXX	PAL16R8-7LMB	20 S LCC	L61	20-Pin BiCMOS PLD
5962-92338 07MRX	PAL16R6-7DMB	20.3 DIP	D6	20-Pin BiCMOS PLD
5962-92338 07MSX	PAL16R6-7KMB	20 CP	K71	20-Pin BiCMOS PLD
5962-92338 07MXX	PAL16R6-7LMB	20 S LCC	L61	20-Pin BiCMOS PLD
5962-92338 08MRX	PAL16R4-7DMB	20.3 DIP	D6	20-Pin BiCMOS PLD
5962-92338 08MSX	PAL16R4-7KMB	20 CP	K71	20-Pin BiCMOS PLD
5962-92338 08MXX	PAL16R4-7LMB	20 S LCC	L61	20-Pin BiCMOS PLD
5962-93144 01MZX	CY7C346-35RMB	100 PGA	R100	128-Macrocell UV EPLD
5962-93144 01MUX	CY7C346-35HMB	84 S JCQ	H84	128-Macrocell UV EPLD
5962-93144 02MZX	CY7C346-30RMB	100 PGA	R100	128-Macrocell UV EPLD
5962-94510 01MXX	CY7C335-50WMB	28.3 DIP	W22	Synchronous UV EPLD
5962-94510 01MYX	CY7C335-50HMB	28 S JCQ	H64	Synchronous UV EPLD
5962-94510 01MZX	CY7C335-50QMB	28 S LCC	Q64	Synchronous UV EPLD
5962-94510 02MXX	CY7C335-66WMB	28.3 DIP	W22	Synchronous UV EPLD
5962-94510 02MYX	CY7C335-66HMB	28 S JCQ	H64	Synchronous UV EPLD
5962-94510 02MZX	CY7C335-66QMB	28 S LCC	Q64	Synchronous UV EPLD

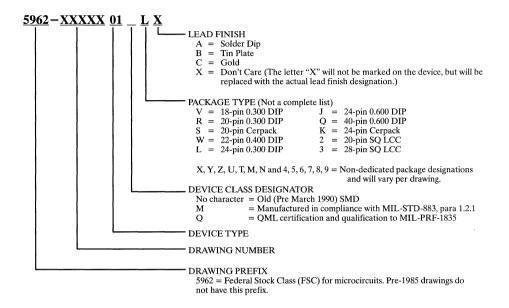
DESC SMD (Standardized Military Drawing) Approvals^[1] (continued)

		Package ^[3]		
SMD Number	Cypress ^[2] Part Number	Description	Туре	Product Description
5962-94510 03MXX	CY7C335-83WMB	28.3 DIP	W22	Synchronous UV EPLD
5962-94510 03MYX	CY7C335-83HMB	28 S JCQ	H64	Synchronous UV EPLD
5962-93144 02MUX	CY7C346-30HMB	84 S JCQ	H84	128-Macrocell UV EPLD

Notes: 1. Devices listed have been approved by DESC for the SMD indicated as of the date of publication. Contact your local Cypress representative, or the Cypress SMD Hotline at 408/943-2716, for the latest update.

2. Use the SMD part number as the ordering code.

24.3 DIP = 24-pin 0.300" DIP; 24.6 DIP = 24-pin 0.600" DIP; 28 R LCC = 28 terminal rectangular LCC, S = Square LCC, TLCC = Thin LCC 24 CP = 24-pin ceramic flatpack (Configuration 1); FP = brazed flatpack; PGA = Pin Grid Array. 3. Package:


SMD Hotline: 408/943-2716

JAN Qualifications to MIL-I-38535

		Package ^[3]			
JAN Number	Cypress ^[2] Part Number	Description	Туре	Product Description	Qualification Status
JM 38510/50701B3A	PALC22V10B-30QMB	28 S LCC	Q64	CMOS UV PLD	Qualified
JM 38510/50703B3A	PALC22V10B-20QMB	28 S LCC	Q64	CMOS UV PLD	Qualified
JM 38510/50704B3A	PALC22V10B-15QMB	28 S LCC	Q64	CMOS UV PLD	Qualified
JM 38510/50801BLA	PALC22V10B-30DMB	24.3 DIP	D14	CMOS PLD	Qualified
JM 38510/50801BKA	PALC22V10B-30KMB	24 CP	K73	CMOS PLD	Qualified
JM 38510/50801B3A	PALC22V10B-30LMB	28 S LCC	L64	CMOS PLD	Qualified
JM 38510/50802BKA	PALC22V10B-25KMB	24 CP	K73	CMOS PLD	Qualified
JM 38510/50803BKA	PALC22V10B-20KMB	24 CP	K73	CMOS PLD	Qualified
JM 38510/50803B3A	PALC22V10B-20LMB	28 S LCC	L64	CMOS PLD	Qualified
JM 38510/50804BLA	PALC22V10B-15DMB	24.3 DIP	D14	CMOS PLD	Qualified

SMD Ordering Information

Cypress Military Marking Information

Manufacturer's identification:

Cypress Logo, CYPRESS, CYP, and CY are trademarks of Cypress Semiconductor Corporation.

Manufacturer's designating symbol or CAGE CODE: Designating symbol = CETK or ETK CAGE CODE/FSCM Number = 65786

Country of origin:

USA = United States of America THA = Thailand

In general, the codes for5 products follow the format below.

PAL & PLD

PREFIX	DEVICE	SUFFIX	FAMILY
PAL C	16R8	-20 DMB	PAL 20
PAL C	22V10	-15 WMB	PAL 24 VARIABLE PRODUCT TERMS
PLD C	20G10	-20 WMB	GENERIC PLD 24
CY	7C330	-50 DMB	PLD SYNCHRONOUS STATE MACHINE
CY	10E302	-4 DMB	10K ECL PLD

e.g., PALC16R8-20DMB

Cypress FSCM #65786

GENERAL INFORMATION	
SMALL PLDs	
CPLDs	-
FPGAs	- 4
DEVELOPMENT SYSTEMS	- 5
QUALITY	- 6
PACKAGES	- 7

Table of Contents

Small PLDs (Programmable Logic Devices)

Table of Contents

Page Number

Introduction to Cypress PLDs		2 - 1
Device	Description	
PALC20 Series	Reprogrammable CMOS PALC 16L8, 16R8, 16R6, 16R4	2-6
PALCE16V8	Flash Erasable, Reprogrammable CMOS PAL Device	2 - 7
PALCE20V8	Flash Erasable, Reprogrammable CMOS PAL Device	2-17
PLDC20G10B	CMOS Generic 24-Pin Reprogrammable Logic Device	2-27
PLDC20G10	CMOS Generic 24-Pin Reprogrammable Logic Device	2-27
PLDC20RA10	Reprogrammable Asynchronous CMOS Logic Device	2-35
PALCE22V10	Flash Erasable, Reprogrammable CMOS PAL Device	2-46
PALC22V10	Reprogrammable CMOS PAL Device	
PALC22V10B	Reprogrammable CMOS PAL Device	
PAL22V10C	Universal PAL Device	2-58
PAL22VP10C	Universal PAL Device	2-58
PALC22V10D	Flash Erasable, Reprogrammable CMOS PAL Device	2-59
CY7C330	CMOS Programmable Synchronous State Machine	2-68
CY7C331	Asynchronous Registered EPLD	2-69
CY7C332	Registered Combinatorial EPLD	2-83
CY7C335	Universal Synchronous EPLD	2-84

Cypress PLD Family Features

Cypress Semiconductor's PLD family offers the user a wide range of programmable logic solutions that incorporate leading-edge circuit design techniques as well as diverse process technology capabilities. This allows Cypress PLD users to select PLDs that best suit the needs of their particular high-performance system, regardless of whether speed, power consumption, density, or device flexibility are the critical requirements imposed by the system.

Cypress offers enhanced-performance industry-standard 20- and 24-pin device architectures as well as proprietary 28-pin application-tailored architectures. The range of technologies offered includes leading-edge 0.65-micron CMOS EPROM for high speed, low power, and high density, 0.65-micron FLASH technology for high speed, low power and electrical alterability.

The reprogrammable memory cells used by Cypress serve the same purpose as the fuse used in most bipolar PLD devices. Before programming, the AND gates or product terms are connected via the reprogrammable memory cell to both the true and complement inputs. When the reprogrammable memory cell is programmed, the inputs from a gate or product term are disconnected. Programming alters the transistor threshold of each cell so that no conduction can occur, which is equivalent to disconnecting the input from the gate or product term. This is similar to "blowing" the fuses of BiC-MOS or bipolar fusible devices, which disconnects the input gate from the product term. Selective programming of each of these reprogrammable memory cells enables the specific logic function to be implemented by the user.

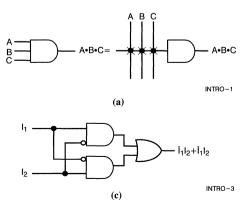
The programmability of Cypress's PLDs allows the users to customize every device in a number of ways to implement their unique logic requirements. Using PLDs in place of SSI or MSI components results in more effective utilization of board space, reduced cost and increased reliability. The flexibility afforded by these PLDs allows the designer to quickly and effectively implement a number of logic functions ranging from random logic gate replacement to complex combinatorial logic functions.

The PLD family implements the familiar "sum of products" logic by using a programmable AND array whose output terms feed a fixed OR array. The sum of these can be expressed in a Boolean transfer function and is limited only by the number of product terms available in the AND-OR array. A variety of different sizes and architectures are available. This allows for more efficient logic optimization by matching input, output, and product terms to the desired application.

PLD Notation

To reduce confusion and to have an orderly way of representing the complex logic networks, logic diagrams are provided for the various part types. In order to be useful, Cypress logic diagrams employ a common logic convention that is easy to use. Figure 1 shows the adopted convention. In part (a), an " \times " represents an unprogrammed EPROM cell or intact fuse link that is used to perform the logical AND operation upon the input terms. The convention the adopted does not imply that the input terms are connected on the common line that is indicated. A further extension of this convention is shown in part (b), which shows the implementation of a simple transfer function. The normal logic representation of the

PLD Circuit Configurations


Cypress PLDs have several different output configurations that cover a wide spectrum of applications. The available output configurations offer the user the benefits of both lower package counts and reduced costs when used. This approach allows designers to select PLDs that best fit their applications. An example of some of the configurations that are available are listed below.

Programmable I/O

Figure 2 illustrates the programmable I/O offered in the Cypress PLD family that allows product terms to directly control the outputs of the device. One product term is used to directly control the three-state output buffer, which then gates the summation of the remaining terms to the output pin. The output of this summation can be fed back into the PLD as an input to the array. This programmable I/O feature allows the PLD to drive the output pin when the three-state output is enabled or, when the three-state output is disabled, the I/O pin can be used as an input to the array.

Registered Outputs with Feedback

Figure 3 illustrates the registered outputs offered on a number of the Cypress PLDs which allow any of these circuits to function as a

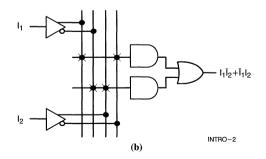


Figure 1. Logic Diagram Conventions

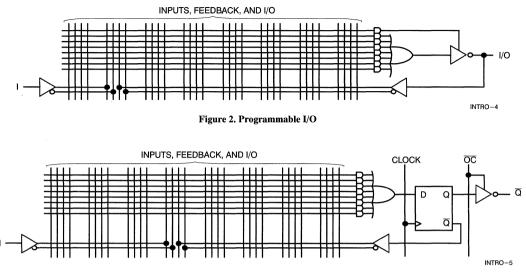


Figure 3. Registered Outputs with Feedback

state sequencer. The summation of the product terms is stored in the D-type output flip-flop on the rising edge of the system clock. The Q output of the flip-flop can then be gated to the output pin by enabling the three-state output buffer. The output of the flip-flop can also be fed back into the array as an input term. The output feedback feature allows the PLD to remember and then alter its function based upon that state. This circuit can be used to execute such functions as counting, skip, shift, and branch.

YPRESS

Programmable Macrocell

The programmable macrocell, illustrated in *Figure 4*, provides the capability of defining the architecture of each output individually. Each of the potential outputs may be specified to be "registered" or "combinatorial." Polarity of each output may also be individually selected allowing complete flexibility of output configuration. Further configurability is provided through "array" configurable "output enable" for each potential output. This feature allows the outputs to be reconfigured as inputs on an individual basis or alternately used as a bidirectional I/O controlled by the programmable array (see *Figure 5*).

Buried Register Feedback

The CY7C331 and CY7C335 PLDs provide registers that may be "buried" or "hidden" by electing feedback of the register output. These buried registers, which are useful in state machines, may be implemented without sacrificing the use of the associated device pin as an input. In previous PLDs, when the feedback path was activated, the input pin-path to the logic array was blocked. The proprietary CY7C335 reprogrammable synchronous state machine macrocell illustrates the shared input multiplexer, which provides an alternative input path for the I/O pin associated with a buried macrocell register (*Figure 6*). Each pair of macrocells are buried, up to six of the twelve output registers can be buried without the loss

Document #: 38-00165-B

of any I/O pins as inputs. The CY7C335 also contains four dedicated hidden macrocells with no external output that are used as additional state registers for creating high-performance state machines (*Figure 7*).

Asynchronous Register Control

Cypress also offers PLDs that may be used in asynchronous systems in which register clock, set, and reset are controlled by the outputs of the product term array. The clock signal is created by the processing of external inputs and/or internal feedback by the logic of the product term array, which is then routed to the register clock. The register set and reset are similarly controlled by product term outputs and can be triggered at any time independent of the register clock in response to external and/or feedback inputs processed by the logic array. The proprietary CY7C331 Asynchronous Registered PLD, for which the I/O macrocell is illustrated in *Figure 8*, is an example of such a device. The register clock, set, and reset functions of the CY7C331 are all controlled by product terms and are dependent only on input signal timing and combinatorial delay through the device logic array to enable their respective functions.

Input Register Cell

Other Cypress PLDs provide input register cells to capture short duration inputs that would not otherwise be present at the inputs long enough to allow the device to respond. The proprietary CY7C335 Reprogrammable Synchronous State Machine provides these input register cells (*Figure 9*). The clock for the input register may be provided from one of two external clock input pins selectable by a configuration bit, C4, dedicated for this purpose for each input register. This choice of input register clock allows signals to be captured and processed from two independent system sources, each controlled by its own independent clock. These input register cells are provided within I/O macrocells, as well as for dedicated input pins.

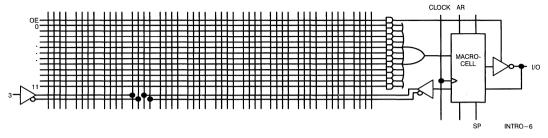


Figure 4. Programmable Macrocell

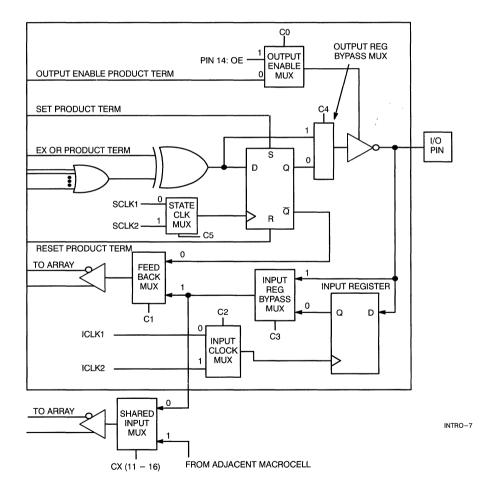
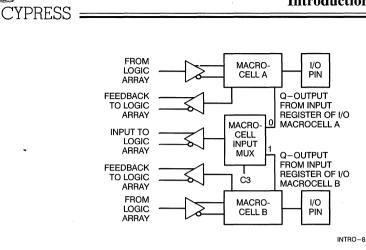
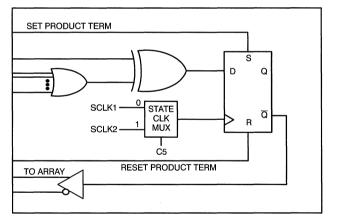
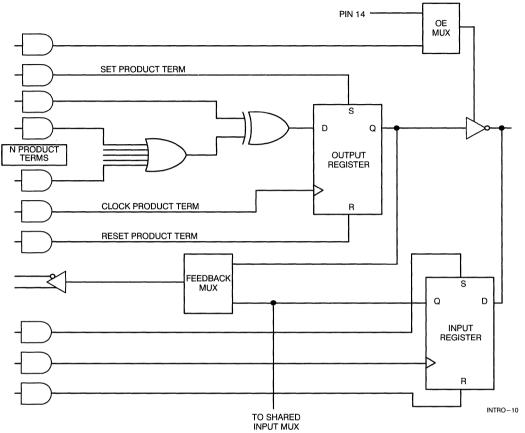


Figure 5. CY7C335 I/O Macrocell


Figure 6. CY7C335 I/O Macrocell Pair Shared Input MUX

INTRO-9

Figure 7. CY7C335 Hidden Macrocell

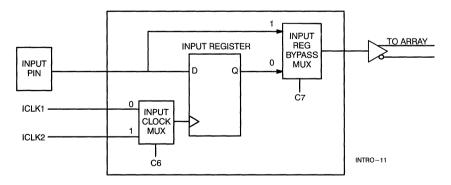


Figure 9. CY7C335 Input Macrocell

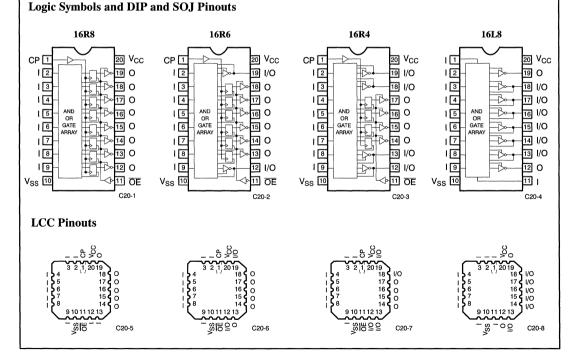
This is an abbreviated datasheet. Contact a Cypress representative for complete specifications. For new designs, please refer to the PALCE16V8.

PAL[®]C20 Series

Features

- CMOS EPROM technology for reprogrammability
- High performance at quarter power
 - $-t_{\rm PD} = 25 \text{ ns}$
 - $-t_{\rm S} = 20 \, \rm ns$
 - $-t_{\rm CO} = 15$ ns
 - $-I_{CC} = 45 \text{ mA}$
- High performance at military temperature
 - $-t_{PD} = 20 \text{ ns}$
 - $-t_{\rm S} = 20 \ {\rm ns}$
 - $-t_{\rm CO} = 15 \, \rm ns$
 - $-I_{CC} = 70 \text{ mA}$
- Commercial and military temperature range

- High reliability
 - Proven EPROM technology
 >1500V input protection from
 - electrostatic discharge
 - -100% AC and DC tested
 - 10% power supply tolerances
 - -High noise immunity
 - Security feature prevents pattern duplication
 - 100% programming and functional testing


Functional Description

Cypress PALC20 Series devices are highspeed electrically programmable and UVerasable logic devices produced in a proprietary N-well CMOS EPROM process. These devices utilize a sum-of-products (AND-OR) structure providing users with the ability to program custom logic functions serving unique requirements. PALs are offered in 20-pin plastic and ceramic DIP, plastic SOJ, and ceramic LCC packages. The ceramic package can be equipped with an erasure window; when exposed to UV light, the PAL is erased and can then be reprogrammed.

Reprogrammable CMOS

PALC 16L8, 16R8, 16R6, 16R4

Before programming, AND gates or product terms are connected via EPROM cells to both true and complement inputs. Programming an EPROM cell disconnects an input term from a product term. Selective programming of these cells allows a specific logic function to be implemented in a PALC device. PALC devices are supplied in four functional configurations designated 16R8, 16R6, 16R4, and 16L8. These 8 devices have potentially 16 inputs and 8 outputs configurable by the user. Output configurations of 8 registers, 8 combinatorial, 6 registers and 2 combinatorial as well as 4 registers and 4 combinatorial are provided by the 4 functional variations of the product family.

PAL is a registered trademark of Advanced Micro Devices.

PALCE16V8

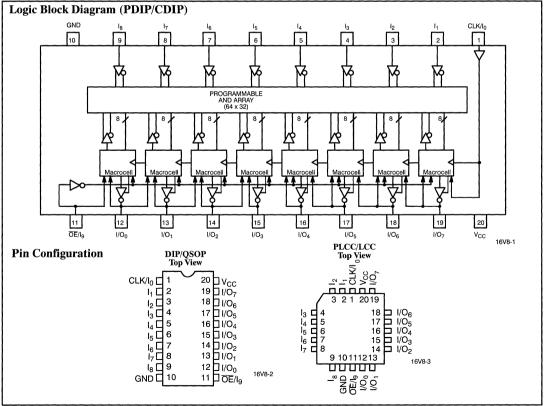
Flash Erasable,

Features

- · Active pull-up on data input pins
- Low power version (16V8L)
 - 55 mA max. commercial (10, 15, 25 ns)
 - --- 65 mA max. industrial (10, 15, 25 ns)
 - ---- 65 mA military (15 and 25 ns)
- Standard version has low power
 - 90 mA max. commercial (10, 15, 25 ns)
 - -115 mA max. commercial (7 ns)
 - 130 mA max. military/industrial (10, 15, 25 ns)
- CMOS Flash technology for electrical • erasability and reprogrammability
- PCI compliant

- User-programmable macrocell
 - Output polarity control
 - Individually selectable for registered or combinatorial operation
- Up to 16 input terms and 8 outputs
- OSOP packaging available -7.5 ns com'l version

 - 5 ns tco
 - 5 ns ts
 - 7.5 ns t_{PD} 125-MHz state machine


 - 10 ns military/industrial versions 7 ns t_{CO}
 - 10 ns ts
 - 10 ns t_{PD} 62-MHz state machine
- High reliability
- Proven Flash technology
- -100% programming and functional testing

Functional Description

Reprogrammable CMOS PAL[®] Device

The Cypress PALCE16V8 is a CMOS Flash Electrical Erasable second-generation programmable array logic device. It is implemented with the familiar sum-ofproduct (AND-OR) logic structure and the programmable macrocell.

The PALCE16V8 is executed in a 20-pin 300-mil molded DIP, a 300-mil cerdip, a 20-lead square ceramic leadless chip carrier, a 20-lead square plastic leaded chip carrier and a 20-lead, quarter-size outline. The device provides up to 16 inputs and 8 outputs. The PALCE16V8 can be electrically erased and reprogrammed. The programmable macrocell enables the device to function as a superset to the familiar 20-pin PLDs such as 16L8, 16R8, 16R6, and 16R4.

PAL is a registered trademark of Advanced Micro Devices.

Selection Guide

	t _{PD} ns		t _S ns		t _{CO} ns		I _{CC} mA	
Generic Part Number	Com'l/Ind	Mil	Com'l/Ind	Mil	Com'l/Ind	Mil	Com'l	Mil/Ind
PALCE16V8-5	5		3		4		115	
PALCE16V8-7	7.5		7		5		115	
PALCE16V8-10	10	10	10	10	7	10	90	130
PALCE16V8-15	15	15	12	12	10	10	90	130
PALCE16V8-25	25	25	15	20	12	12	90	130
PALCE16V8L-15	15	15	12	12	10	12	55	65
PALCE16V8L-25	25	25	15	20	12	20	55	65

Shaded area contains preliminary information.

Functional Description (continued)

The PALCE16V8 features 8 product terms per output and 32 input terms into the AND array. The first product term in a macrocell can be used either as an internal output enable control or as a data product term.

There are a total of 18 architecture bits in the PALCE16V8 macrocell; two are global bits that apply to all macrocells and 16 that apply locally, two bits per macrocell. The architecture bits determine whether the macrocell functions as a register or combinatorial with inverting or noninverting output. The output enable control can come from an external pin or internally from a product term. The output can also be permanently enabled, functioning as a dedicated output or permanently disabled, functioning as a dedicated output or permanently disabled from either the input/output pin associated with the macrocell, the input/output pin associated with an adjacent pin, or from the macrocell register itself.

Power-Up Reset

All registers in the PALCE16V8 power-up to a logic LOW for predictable system initialization. For each register, the associated output pin will be HIGH due to active-LOW outputs.

Configuration Table

Electronic Signature

An electronic signature word is provided in the PALCE16V8 that consists of 64 bits of programmable memory that can contain user-defined data.

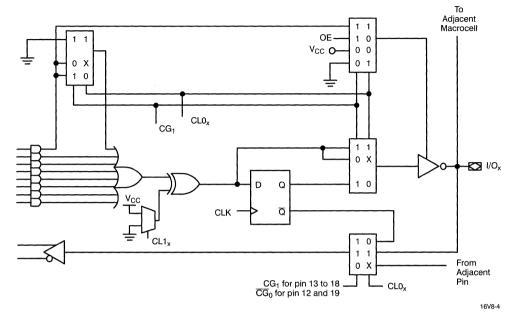
Security Bit

A security bit is provided that defeats the readback of the internal programmed pattern when the bit is programmed.

Low Power

The Cypress PALCE16V8 provides low-power operation through the use of CMOS technology, and increased testability with Flash reprogrammability.

Product Term Disable


Product Term Disable (PTD) fuses are included for each product term. The PTD fuses allow each product term to be individually disabled.

CG ₀	CG1	CL0 _x	Cell Configuration	Devices Emulated
0	1	0	Registered Output	Registered Med PALs
0	1	1	Combinatorial I/O	Registered Med PALs
1	0	0	Combinatorial Output	Small PALs
1	0	1	Input	Small PALs
1	1	1	Combinatorial I/O	16L8 only

PALCE16V8

Macrocell

2

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with
Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Supply Voltage to Ground Potential
(Pin 24 to Pin 32) $-0.5V$ to $+7.0V$
DC Voltage Applied to Outputs
in High Z State $-0.5V$ to $+7.0V$
DC Input Voltage $\dots \dots \dots$
Output Current into Outputs (LOW) 24 mA
DC Programming Voltage 12.5V

Latch-Up Current		>200 mA
------------------	--	---------

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+75^{\circ}$ C	5V ±5%
Military ^[1]	-55°C to +125°C	5V ±10%
Industrial	-40° C to $+85^{\circ}$ C	5V ±10%

Electrical Characteristics Over the Operating Range^[2]

Parameter	Description		Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -3.2 \text{ mA}$	Com'l	2.4		V
		$\mathbf{v}_{\mathrm{IN}} = \mathbf{v}_{\mathrm{IH}} \text{ or } \mathbf{v}_{\mathrm{IL}}$	$I_{OH} = -2 \text{ mA}$	Mil/Ind			
V _{OL}	Output LOW Voltage	$V_{CC} = Min.,$ $V_{IN} = V_{IH} \text{ or } V_{II}$	$I_{OL} = 24 \text{ mA}$	$I_{OL} = 24 \text{ mA}$ Com'l		0.5	V
		$\mathbf{v}_{\mathrm{IN}} = \mathbf{v}_{\mathrm{IH}} \mathrm{or} \mathbf{v}_{\mathrm{IL}}$	$I_{OL} = 12 \text{ mA}$	Mil/Ind			
$V_{\rm IH}$	Input HIGH Level	Guaranteed Input Lo	2.0	1	V		
V _{IL} ^[4]	Input LOW Level	Guaranteed Input Lo	ogical LOW Voltage fo	or All Inputs ^[3]	-0.5	0.8	V
I _{IH}	Input or I/O HIGH Leakage Current	$3.5V \le V_{IN} \le V_{CC}$			10	μA	
I _{IL} [5]	Input or I/O LOW Leakage Current	$0\mathrm{V} \leq \mathrm{V_{IN}} \leq \mathrm{V_{IN}} \left(\mathrm{M}\right)$	lax.)	i	, ,	-100	μΑ
I _{SC}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT}$	$= 0.5 V^{[6, 7]}$		-30	-150	mA
I _{CC}	Operating Power Supply	$V_{CC} = Max.,$ $V_{IL} = 0V, V_{IH} = 3V,$	5, 7 ns	Com'l		115	mA
	Current	Output Open,	10, 15, 25 ns	1		90	mA
		f = 15 MHz (counter)	15L, 25L ns	1		55	mA
		× ,	10, 15, 25 ns	Mil/Ind		130	mA
			15L, 25L ns	Mil.		65	mA
			15L, 25L ns	Ind.		65	mA

Capacitance^[7]

Parameter	Description	Test Conditions	Тур.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 2.0V @ f = 1 MHz$	5	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 2.0V @ f = 1 MHz$	5	pF

Endurance Characteristics^[7]

Parameter	Description	Test Conditions	Min.	Max.	Unit
Ν	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles
NT /					

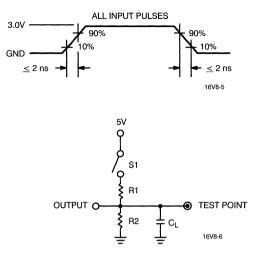
Notes:

2. See the last page of this specification for Group A subgroup testing information.

3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.

4. V_{IL} (Min.) is equal to -3.0V for pulse durations less than 20 ns.

The leakage current is due to the internal pull-up resistor on all pins.
 Not more than one output should be tested at a time. Duration of the short


From the matching output about the second at a matching method in a solution of the state of the second second test problems caused by tester ground degradation.

7. Tested initially and after any design or process changes that may affect these parameters.

^{1.} T_A is the "instant on" case temperature.

AC Test Loads and Waveforms

			Comn	nercial	Military		
Specification	S ₁	CL	R ₁	R ₂	R ₁	R ₂	Measured Output Value
t _{PD} , t _{CO}	Closed	50 pF	200Ω	390Ω	390Ω	750Ω	1.5V
t _{PZX} , t _{EA}	Z ♦ H: Open Z ♦ L: Closed						1.5V
t _{PXZ} , t _{ER}	H ♦ Z: Open L ♦ Z: Closed	5 pF					$\begin{array}{c} H \blacklozenge Z: V_{OH} - 0.5V \\ L \blacklozenge Z: V_{OL} + 0.5V \end{array}$

.

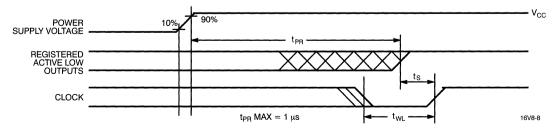
Commercial and Industrial Switching Characteristics^[2]

		16V	8-5	16V	8-7	16V8-10		16V8-15		16V8-25		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input to Output Propagation Delay ^[8, 9]	1	5	3	7.5	3	10	3	15	3	25	ns
t _{PZX}	OE to Output Enable	1	6		6		10		15		20	ns
t _{PXZ}	OE to Output Disable	1	5		6		10		15		20	ns
t _{EA}	Input to Output Enable Delay ^[7]	1	6		9		10		15		25	ns
t _{ER}	Input to Output Disable Delay ^[7, 10]	1	5		9		10		15		25	ns
t _{CO}	Clock to Output Delay ^[8, 9]	1	4	2	5	2	7	2	10	2	12	ns
ts	Input or Feedback Set-Up Time	3		5		7.5		12		15		ns
t _H	Input Hold Time	0	a sea a s	0		0		0		0		ns
tp	External Clock Period $(t_{CO} + t_S)$	7		10		14.5		22		27		ns
t _{WH}	Clock Width HIGH ^[7]	3		4		6		8		12		ns
t _{WL}	Clock Width LOW ^[7]	3		4		6		8		12		ns
f _{MAX1}	External Maximum Frequency $(1/(t_{CO} + t_S))^{[7, 11]}$	143		100		69		45.5		37		MHz
f _{MAX2}	Data Path Maximum Frequency $(1/(t_{WH} + t_{WL}))^{[7, 12]}$	166		125		83		62.5		41.6		MHz
f _{MAX3}	Internal Feedback Maximum Frequency $(1/(t_{CF} + t_S))^{[7, 13]}$	166		125		74		50		40		MHz
t _{CF}	Register Clock to Feedback Input ^[7, 14]		3		3		6		8		10	ns
t _{PR}	Power-Up Reset Time ^[7]	1		1		• 1		1		1		μs

Shaded area contains preliminary information.

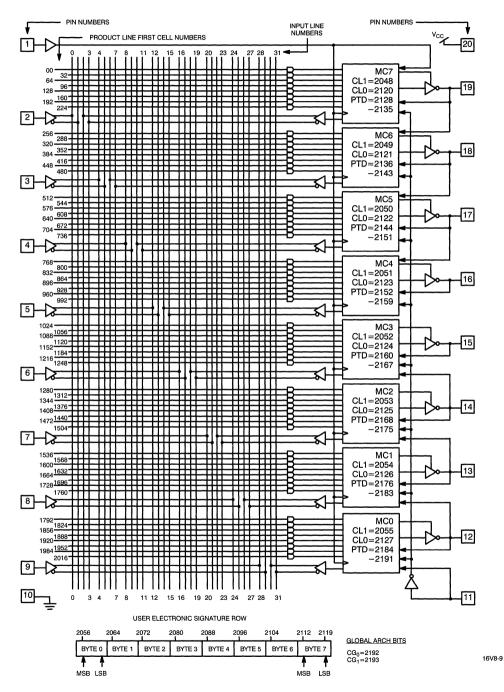
Notes:

- 8. Min. times are tested initially and after any design or process changes that may affect these parameters.
- 9. This specification is guaranteed for all device outputs changing state in a given access cycle.
- 10. This parameter is measured as the time after \overline{OE} pin or internal disable input disables or enables the output pin. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below V_{OH} min. or a previous LOW level has risen to 0.5 volts above V_{OL} max.
- This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
- 12. This specification indicates the guaranteed maximum frequency at which the device can operate in data path mode.
- This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate.
- This parameter is calculated from the clock period at f_{MAX} internal (1/f_{MAX3}) as measured (see Note 7 above) minus t_S.


Military Switching Characteristics^[2]

		16V	8-10	16V	8-15	16V8-25		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input to Output Propagation Delay ^[8, 9]	3	10	3	15	3	25	ns
t _{PZX}	OE to Output Enable		10		15		20	ns
t _{PXZ}	OE to Output Disable		10		15		20	ns
t _{EA}	Input to Output Enable Delay ^[7]		10		15		25	ns
t _{ER}	Input to Output Disable Delay ^[7, 10]		10		15		25	ns
t _{CO}	Clock to Output Delay ^[8, 9]	2	7	2	10	2	12	ns
ts	Input or Feedback Set-Up Time	10		12		15		ns
t _H	Input Hold Time	0		0		0		ns
tP	External Clock Period $(t_{CO} + t_S)$	17		22		27		ns
t _{WH}	Clock Width HIGH ^[7]	6		8		12		ns
t _{WL}	Clock Width LOW ^[7]	6		8		12		ns
f _{MAX1}	External Maximum Frequency $(1/(t_{CO} + t_S)^{[7, 11]})$	58		45.5		37		MHz
f _{MAX2}	Data Path Maximum Frequency $(1/(t_{WH} + t_{WL}))^{[7, 12]}$	83		62.5		41.6		MHz
f _{MAX3}	Internal Feedback Maximum Frequency $(1/(t_{CF} + t_S))^{[7, 13]}$	62.5		50		40		MHz
t _{CF}	Register Clock to Feedback Input ^[7, 14]		6		8		10	ns
t _{PR}	Power-Up Reset Time ^[7]	1		1		1		μs

Switching Waveform



Power-Up Reset Waveform

Functional Logic Diagram for PALCE16V8

PALCE16V8

Ordering Information

I _{CC} (mA)	t _{PD} (ns)	t _S (ns)	t _{CO} (ns)	Ordering Code	Package Name	Package Type	Operating Range
115	5	3	4	PALCE16V8-5JC	J61	20-Lead Plastic Leaded Chip Carrier	Commercial
115	7.5	5	5	PALCE16V8-7JC	J61	20-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE16V8-7PC	P5	20-Lead (300-Mil) Molded DIP	1
90	10	7.5	7	PALCE16V8-10QC	Q5	20-Lead Quarter-Size Outline	1
90	10	7.5	7	PALCE16V8-10JC	J61	20-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE16V8-10PC	P5	20-Lead (300-Mil) Molded DIP	1
130	10	7.5	7	PALCE16V8-10JI	J61	20-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE16V8-10PI	P5	20-Lead (300-Mil) Molded DIP	
130	10	10	7	PALCE16V8-10DMB	D6	20-Lead (300-Mil) CerDIP	Military
				PALCE16V8-10LMB	L61	20-Pin Square Leadless Chip Carrier	1
90	15	12	10	PALCE16V8-15JC	J61	20-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE16V8-15PC	P5	20-Lead (300-Mil) Molded DIP	1
130	15	12	10	PALCE16V8-15JI	J61	20-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE16V8-15PI	P5	20-Lead (300-Mil) Molded DIP	
130	15	.12	10	PALCE16V8-15DMB	D6	20-Lead (300-Mil) CerDIP	Military
				PALCE16V8-15LMB	L61	20-Pin Square Leadless Chip Carrier	
90	25	15	12	PALCE16V8-25JC	J61	20-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE16V8-25PC	P5	20-Lead (300-Mil) Molded DIP	1
130	25	15	12	PALCE16V8-25JI	J61	20-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE16V8-25PI	P5	20-Lead (300-Mil) Molded DIP	1
130	25	15	12	PALCE16V8-25DMB	D6	20-Lead (300-Mil) CerDIP	Military
				PALCE16V8-25LMB	L61	20-Pin Square Leadless Chip Carrier	1

Shaded area contains preliminary information.

.

PALCE16V8

Ordering Information (continued)

I _{CC} (mA)	t _{PD} (ns)	t _S (ns)	t _{CO} (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	10	7.5	7	PALCE16V8L-10JC	J61	20-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE16V8L-10PC	P5	20-Lead (300-Mil) Molded DIP	2월 22일 같은 것
65	10	10	7	PALCE16V8L-10JI	J61	20-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE16V8L-10PI	P5	20-Lead (300-Mil) Molded DIP	n de la desta de la desta. El literativo de la desta
55	15	12	10	PALCE16V8L-15JC	J61	20-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE16V8L-15PC	P5	20-Lead (300-Mil) Molded DIP	1
				PALCE16V8L-15QC	Q5	20-Lead Quarter-Size Outline	1
65	15	12	10	PALCE16V8L-15JI	J61	20-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE16V8L-15PI	P5	20-Lead (300-Mil) Molded DIP	-
				PALCE16V8L-15QI	Q5	20-Lead Quarter-Size Outline	1
65	15	12	10	PALCE16V8L-15DMB D6 20-Lead (300-Mil) CerDIP		Military	
				PALCE16V8L-15LMB	L61	20-Pin Square Leadless Chip Carrier	-
55	25	15	12	PALCE16V8L-25JC	J61	20-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE16V8L-25PC	P5	20-Lead (300-Mil) Molded DIP	-
				PALCE16V8L-25QC	Q5	20-Lead Quarter-Size Outline	
65	25	15	12	PALCE16V8L-25JI	J61	20-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE16V8L-25PI	P5	20-Lead (300-Mil) Molded DIP	-
				PALCE16V8L-25QI	Q5	20-Lead Quarter-Size Outline	1
65	25	15	12	PALCE16V8L-25DMB	D6	20-Lead (300-Mil) CerDIP	Military
				PALCE16V8L-25LMB	L61 ,	20-Pin Square Leadless Chip Carrier	1

Shaded area contains preliminary information.

MILITARY SPECIFICATIONS Group A Subgroup Testing DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

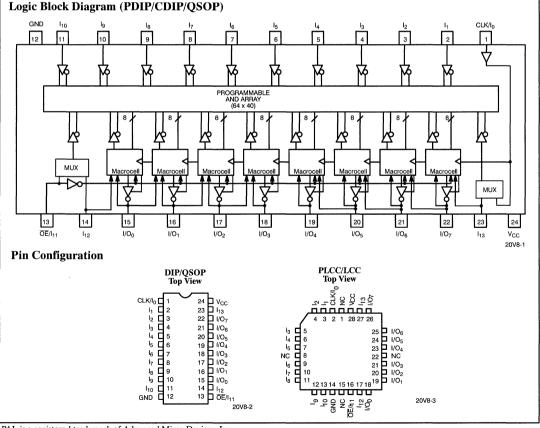
Switching Characteristics

Parameter	Subgroups
t _{PD}	9, 10, 11
t _{CO}	9, 10, 11
ts	9, 10, 11
t _H	9, 10, 11

Document #: 38-00364-C

PALCE20V8

Features


- Active pull-up on data input pins
- Low power version (20V8L)
 - 55 mA max. commercial (15, 25 ns)
 - 65 mA max, military/industrial (15, 25 ns)
- Standard version has low power
 - 90 mA max. commercial (15, 25 ns)
 - -115 mA max. commercial (10 ns)
 - 130 mA max. military/industrial (15, 25 ns)
- CMOS Flash technology for electrical erasability and reprogrammability

- User-programmable macrocell
 - Output polarity control
 - --- Individually selectable for registered or combinatorial operation
- **QSOP** package available
 - -10, 15, and 25 ns com'l version
 - -15, and 25 ns military/industrial versions
- High reliability
 - Proven Flash technology
 - -100% programming and functional testing

Functional Description

The Cypress PALCE20V8 is a CMOS Flash Erasable second-generation programmable array logic device. It is implemented with the familiar sum-of-product (AND-OR) logic structure and the programmable macrocell.

The PALCE20V8 is executed in a 24-pin 300-mil molded DIP, a 300-mil cerdip, a 28-lead square ceramic leadless chip carrier, a 28-lead square plastic leaded chip carrier, and a 24-lead quarter size outline. The device provides up to 20 inputs and 8 outputs. The PALCE20V8 can be electrically erased and reprogrammed. The programmable macrocell enables the device to function as a superset to the familiar 24-pin PLDs such as 20L8, 20R8, 20R6, 20R4.

PAL is a registered trademark of Advanced Micro Devices, Inc.

Selection Guide

	t _{PD}	ns	ts	ns	t _{CO}	ns	I _{CC}	mA
Generic Part Number	Com'l/Ind	Mil	Com'l/Ind	Mil	Com'l/Ind	Mil	Com'l	Mil/Ind
PALCE20V8-5	5		3		4		115	and and a state
PALCE20V8-7	7,5		7		5		115	
PALCE20V8-10	10	10	10	10	7	10	115	130
PALCE20V8-15	15	15	12	12	10	12	90	130
PALCE20V8-25	25	25	15	20	12	20	90	130
PALCE20V8L-15	15	15	12	12	10	12	55	65
PALCE20V8L-25	25	25	15	20	12	20	55	65
shaded area contains preliminary in								L

Eunstional Decomintion (mathematic

Functional Description (continued)

The PALCE20V8 features 8 product terms per output and 40 input terms into the AND array. The first product term in a macrocell can be used either as an internal output enable control or as a data product term.

There are a total of 18 architecture bits in the PALCE20V8 macrocell; two are global bits that apply to all macrocells and 16 that apply locally, two bits per macrocell. The architecture bits determine whether the macrocell functions as a register or combinatorial with inverting or noninverting output. The output enable control can come from an external pin or internally from a product term. The output can also be permanently enabled, functioning as a dedicated output or permanently disabled, functioning as a dedicated output or permanently disabled from either the input/output pin associated with the macrocell, the input/output pin associated with an adjacent pin, or from the macrocell register itself.

Power-Up Reset

All registers in the PALCE20V8 power-up to a logic LOW for predictable system initialization. For each register, the associated output pin will be HIGH due to active-LOW outputs.

Electronic Signature

An electronic signature word is provided in the PALCE20V8 that consists of 64 bits of programmable memory that can contain user-defined data.

Configuration Table

Security Bit

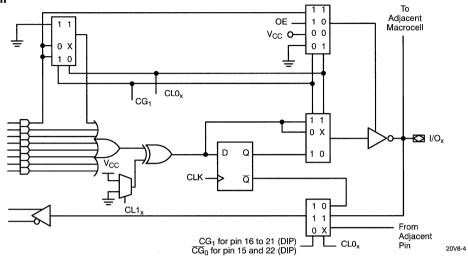
A security bit is provided that defeats the readback of the internal programmed pattern when the bit is programmed.

Low Power

The Cypress PALCE20V8 provides low-power operation through the use of CMOS technology, and increased testability with Flash reprogrammability.

Product Term Disable

Product Term Disable (PTD) fuses are included for each product term. The PTD fuses allow each product term to be individually disabled.


Input and I/O Pin Pull-Ups

The PALCE20V8 input and I/O pins have built-in active pull-ups that will float unused inputs and I/Os to an active HIGH state (logical 1). All unused inputs and three-stated I/O pins should be connected to another active input, $V_{\rm CC}$, or Ground to improve noise immunity and reduce $I_{\rm CC}$.

CG ₀	CG1	CL0 _x	Cell Configuration	Devices Emulated
0	1	0	Registered Output	Registered Med PALs
0	1	1	Combinatorial I/O	Registered Med PALs
1	0	0	Combinatorial Output	Small PALs
1	0	1	Input	Small PALs
1	1	1	Combinatorial I/O	20L8 only

Macrocell

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Supply Voltage to Ground Potential (Pin 24 to Pin 12)0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State
DC Input Voltage
Output Current into Outputs (LOW) 24 mA
DC Programming Voltage 12.5V

Operating	Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+75^{\circ}$ C	5V ±5%
Industrial	-40° C to $+85^{\circ}$ C	5V ±10%
Military ^[1]	-55°C to +125°C	5V ±10%

Note: 1. T_A is the "instant on" case temperature.

Parameter	Description		Fest Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$	$I_{OH} = -3.2 \text{ mA}$ Com'l		2.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -2 \text{ mA}$	Mil/Ind			
V _{OL}	Output LOW Voltage	$V_{CC} = Min.,$	$I_{OL} = 24 \text{ mA}$	Com'l		0.5	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 12 \text{ mA}$	Mil/Ind			
V _{IH}	Input HIGH Level	Guaranteed Input Lo	2.0		V		
V _{IL} ^[4]	Input LOW Level	Guaranteed Input Lo	-0.5	0.8	V		
IIH	Input or I/O HIGH Leakage Current	$3.5V \le V_{IN} \le V_{CC}$		10	μA		
I _{II} [5]	Input or I/O LOW Leakage Current	$0 \mathbf{V} \leq \mathbf{V}_{\mathrm{IN}} \leq \mathbf{V}_{\mathrm{IN}} \left(\mathbf{M} \right)$		-100	μA		
I _{SC}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT}$	$= 0.5 V^{[6, 7]}$	•	-30	-150	mA
I _{CC}	Operating Power Supply Current	$V_{CC} = Max.,$ $V_{II} = 0V, V_{IH} = 3V,$	5, 7, 10 ns	Com'l		115	mA
	Current	Output Open,	15, 25 ns			90	mA
		f = 15 MHz (counter)	15L, 25L ns			55	mA
			10, 15, 25 ns	Mil/Ind	•	130	mA
			15L, 25L ns	Mil/Ind		65	mA

Electrical Characteristics Over the Operating Range^[2]

Capacitance^[7]

Parameter	Description	Test Conditions	Тур.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 2.0V @ f = 1 MHz$	5	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 2.0V @ f = 1 MHz$	5	pF

Endurance Characteristics^[7]

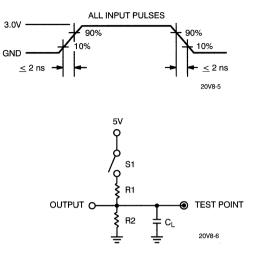
Parameter	Description	Test Conditions	Min.	Max.	Unit
N	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

Notes:

2. See the last page of this specification for Group A subgroup testing information.

3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.

4. V_{IL} (Min.) is equal to -3.0V for pulse durations less than 20 ns.


5. The leakage current is due to the internal pull-up resistor on all pins.

6. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation.

7. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

			Comn	nercial	Mili	itary	
Specification	S ₁	CL	R ₁	R ₂	R ₁	R ₂	Measured Output Value
t _{PD} , t _{CO}	Closed	50 pF	200Ω	390Ω	390Ω	750Ω	1.5V
t _{PZX} , t _{EA}	Z ♦ H: Open Z ♦ L: Closed						1.5V
t _{PXZ} , t _{ER}	H ♦ Z: Open L ♦ Z: Closed	5 pF					H ♦ Z: V _{OH} – 0.5V L ♦ Z: V _{OL} + 0.5V

2

PALCE20V8

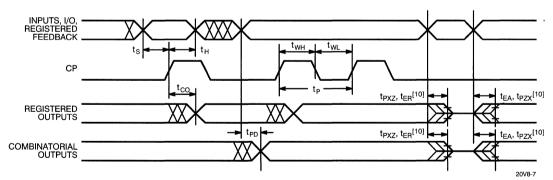
		20V8-5		20V8-7		20V8-10		20V8-15		20V8-25		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input to Output Propagation Delay ^[8]	1	5	1	7.5	1	10	1	15	1	25	ns
t _{PZX}	OE to Output Enable		5	frei f	6		10		15		20	ns
t _{PXZ}	OE to Output Disable		5		6		10		15		20	ns
t _{EA}	Input to Output Enable Delay ^[7]		6		9		10		15		25	ns
t _{ER}	Input to Output Disable Delay ^[7, 9]		6		9		10		15		25	ns
t _{CO}	Clock to Output Delay ^[8]	1	4	1	5	1	7	1	10	1	12	ns
ts	Input or Feedback Set-Up Time	3		7		10		12		15		ns
t _H	Input Hold Time			0		0		0		0		ns
t _P	External Clock Period $(t_{CO} + t_S)$	7	n in star National	12		17		22		27		ns
t _{WH}	Clock Width HIGH ^[7]	3	:	5		8		8		12		ns
t _{WL}	Clock Width LOW ^[7]	3.		5	n di Provin	8		8		12		ns
f _{MAX1}	External Maximum Frequency $(1/(t_{CO} + t_S))^{[7, 10]}$	143		83		58		45.5		37		MHz
f _{MAX2}	Data Path Maximum Frequency (1/(t _{WH} + t _{WL})) ^[7, 11]	166.6		100		62.5		62.5		41.6		MHz
f _{MAX3}	Internal Feedback Maximum Frequency $(1/(t_{CF} + t_S))^{[7, 12]}$	166.6		100		62.5		50		40		MHz
t _{CF}	Register Clock to Feedback Input ^[7, 13]		3		3		6		8		10	ns
t _{PR}	Power-Up Reset Time ^[7]	1		1		1		1		1		μs

Commercial and Industrial Switching Characteristics^[2]

Shaded area contains preliminary information.

Notes:

- Min. times are tested initially and after any design or process changes that may affect these parameters.
- 9. This parameter is measured as the time after \overline{OE} pin or internal disable input disables or enables the output pin. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below V_{OH} min. or a previous LOW level has risen to 0.5 volts above V_{OL} max.
- This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
- 11. This specification indicates the guaranteed maximum frequency at which the device can operate in data path mode.
- This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate.
- 13. This parameter is calculated from the clock period at f_{MAX} internal $(1/f_{MAX3})$ as measured (see Note 7 above) minus t_S .

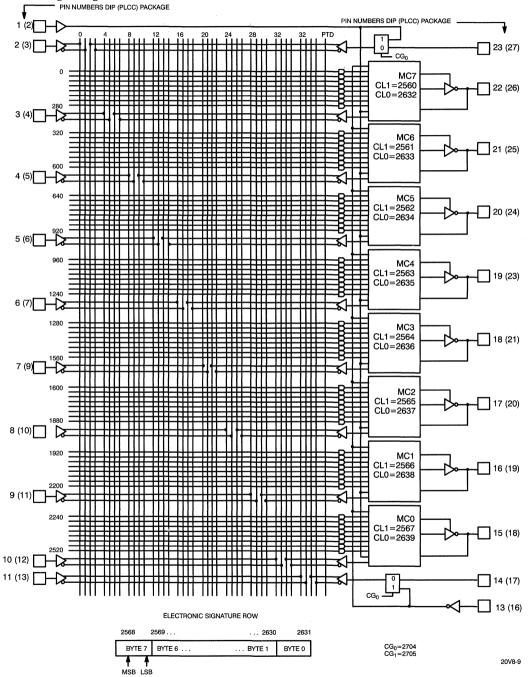


Military Switching Characteristics^[2]

		20V	8-10	20V	8-15	20V	8-25	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input to Output Propagation Delay ^[8]	1	10	1	15	1	25	ns
t _{PZX}	OE to Output Enable		10		15		20	ns
t _{PXZ}	OE to Output Disable		10		15		20	ns
t _{EA}	Input to Output Enable Delay ^[7]		10		15		25	ns
t _{ER}	Input to Output Disable Delay ^[7, 9]		10		15		25	ns
t _{CO}	Clock to Output Delay ^[8]	1	10	1	12	1	20	ns
ts	Input or Feedback Set-Up Time	10		12		20		ns
t _H	Input Hold Time	0		0		0		ns
tp	External Clock Period $(t_{CO} + t_S)$	20		24		40		ns
t _{WH}	Clock Width HIGH ^[7]	8		10		15		ns
t _{WL}	Clock Width LOW ^[7]	8		10		15		ns
f _{MAX1}	External Maximum Frequency $(1/(t_{CO} + t_S)^{[7, 10]})$	50		41.7		25		MHz
f _{MAX2}	Data Path Maximum Frequency $(1/(t_{WH} + t_{WL}))^{[7, 11]}$	62.5		50		33.3		MHz
f _{MAX3}	Internal Feedback Maximum Frequency $(1/(t_{CF} + t_S))^{[7, 12]}$	62.5	19.00	50		33.3		MHz
t _{CF}	Register Clock to Feedback Input ^[7, 13]		6		8		10	ns
t _{PR}	Power-Up Reset Time ^[7]	1		1		1		μs

Shaded area contains preliminary information.

Switching Waveform


Power-Up Reset Waveform

PALCE20V8

Functional Logic Diagram for PALCE20V8

Ordering Information for PALCE20V8

I _{CC} (mA)	t _{PD} (ns)	ts (ns)	t _{CO} (ns)	Ordering Code	Package Name	Package Type	Operating Range
115	5	3	4	PALCE20V8-5JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
115	7.5	7	5	PALCE20V8-7JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE20V8-7PC	P13	24-Lead (300-Mil) Molded DIP	
115	10	10	7	PALCE20V8-10JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE20V8-10PC	P13	24-Lead (300-Mil) Molded DIP	1
130	10	10	10	PALCE20V8-10JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE20V8-10PI	P13	24-Lead (300-Mil) Molded DIP	1
130	10	10	10	PALCE20V8-10DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALCE20V8-10LMB	L64	28-Pin Square Leadless Chip Carrier	_
90	15	12	10	PALCE20V8-15JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE20V8-15PC	P13	24-Lead (300-Mil) Molded DIP	
130	15	12	12	PALCE20V8-15JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE20V8-15PI	P13	24-Lead (300-Mil) Molded DIP	1
130	15	12	12	PALCE20V8-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALCE20V8-15LMB	L64	28-Pin Square Leadless Chip Carrier	1
90	25	15	12	PALCE20V8-25JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE20V8-25PC	P13	24-Lead (300-Mil) Molded DIP	
130	25	20	20	PALCE20V8-25JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE20V8-25PI	P13	24-Lead (300-Mil) Molded DIP	1
130	25	20	20	PALCE20V8-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALCE20V8-25LMB	L64	28-Pin Square Leadless Chip Carrier	1

Shaded area contains preliminary information.

PALCE20V8

Ordering Information for PALCE20V8L

I _{CC} (mA)	t _{PD} (ns)	t _S (ns)	t _{CO} (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	15	12	10	PALCE20V8L-15JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE20V8L-15PC	P13	24-Lead (300-Mil) Molded DIP]
				PALCE20V8L-15QC	Q13	24-Lead Quarter-Size Outline	1
65	15	12	12	PALCE20V8L-15JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE20V8L-15PI	P13	24-Lead (300-Mil) Molded DIP	1
				PALCE20V8L-15QI	Q13	24-Lead Quarter-Size Outline	1
65	15	12	12	PALCE20V8L-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALCE20V8L-15LMB	L64	28-Pin Square Leadless Chip Carrier	1
55	25	15	12	PALCE20V8L-25JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE20V8L-25PC	P13	24-Lead (300-Mil) Molded DIP]
				PALCE20V8L-25QC	Q13	24-Lead Quarter-Size Outline	
65	25	20	20	PALCE20V8L-25JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE20V8L-25PI	P13	24-Lead (300-Mil) Molded DIP	1
				PALCE20V8L-25QI	Q13	24-Lead Quarter-Size Outline	1
65	25	20	20	PALCE20V8L-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALCE20V8L-25LMB	L64	28-Pin Square Leadless Chip Carrier	

MILITARY SPECIFICATIONS Group A Subgroup Testing DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Switching Characteristics

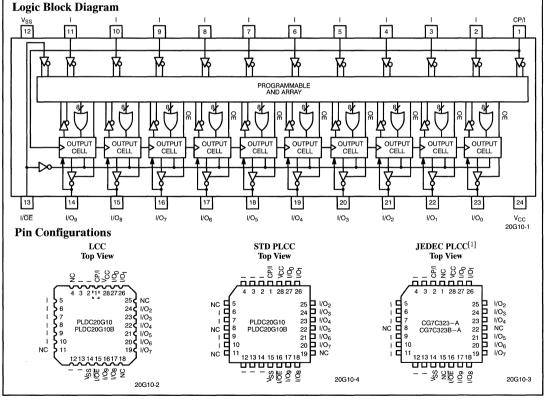
Parameter	Subgroups
t _{PD}	9, 10, 11
t _{CO}	9, 10, 11
ts	9, 10, 11
t _H	9, 10, 11

Document #: 38-00367-C

CMOS Generic 24-Pin Reprogrammable Logic Device

Features

- Fast
 - -- Commercial: $t_{PD} = 15 \text{ ns}, t_{CO} = 10 \text{ ns}, t_S = 12 \text{ ns}$
 - --- Military: $t_{PD} = 20$ ns, $t_{CO} = 15$ ns, $t_S = 15$ ns
- Low power
 - I_{CC} max.: 70 mA, commercial - I_{CC} max.: 100 mA, military
- Commercial and military temperature range
- User-programmable output cells
- Selectable for registered or combinatorial operation
 - Output polarity control
 - Output enable source selectable from pin 13 or product term


- Generic architecture to replace standard logic functions including: 20L10, 20L8, 20R8, 20R6, 20R4, 12L10, 14L8, 16L6, 18L4, 20L2, and 20V8
- Eight product terms and one OE product term per output
- CMOS EPROM technology for reprogrammability
- Highly reliable
 - Uses proven EPROM technology
 - Fully AC and DC tested
 - Security feature prevents logic pattern duplication
 - ±10% power supply voltage and higher noise immunity

Functional Description

Cypress PLD devices are high-speed electrically programmable logic devices. These devices utilize the sum-of-products (AND-OR) structure providing users the ability to program custom logic functions for unique requirements.

In an unprogrammed state the AND gates are connected via EPROM cells to both the true and complement of every input. By selectively programming the EPROM cells, AND gates may be connected to either the true or complement or disconnected from both true and complement inputs.

Cypress PLDC20G10 uses an advanced 0.8-micron CMOS technology and a proven EPROM cell as the programmable element. This technology and the inherent

Note:

 The CG7C323 is the PLDC20G10 packaged in the JEDEC-compatible 28-pin PLCC pinout. Pin function and pin order is identical for both PLCC pinouts. The difference is in the location of the "no connect" or NC pins.

Selection Guide

Generic	I _{CC} (mA)		t _{PD} (ns)		t _S (ns)	t _{CO} (ns)	
Part Number	Com/Ind	Mil	Com/Ind	Mil	Com/Ind	Mil	Com/Ind	Mil
20G10B-15	70		15		12		10	
20G10B-20	70	100	20	20	12	15	12	15
20G10B-25		100		25		18		15
20G10-25	55		25		15		15	
20G10-30		80		30		20		20
20G10-35	55		35		30		25	
20G10-40		80		40		35		25

Functional Description (continued)

advantage of being able to program and erase each cell enhances the reliability and testability of the circuit. This reduces the burden on the customer to test and to handle rejects.

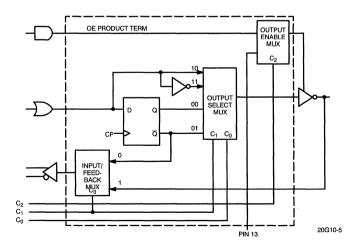
A preload function allows the registered outputs to be preset to any pattern during testing. Preload is important for testing the functionality of the Cypress PLD device.

20G10 Functional Description

The PLDC20G10 is a generic 24-pin device that can be programmed to logic functions that include but are not limited to: 20L10, 20L8, 20R8, 20R6, 20R4, 12L10, 14L8, 16L6, 18L4, 20L2, and 20V8. Thus, the PLDC20G10 provides significant design, inventory and programming flexibility over dedicated 24-pin devices. It is executed in a 24-pin 300-mil molded DIP and a 300-mil windowed cerDIP. It provides up to 22 inputs and 10 outputs. When the windowed cerDIP is exposed to UV light, the 20G10 is erased and then can be reprogrammed.

The programmable output cell provides the capability of defining the architecture of each output individually. Each of the 10 output cells may be configured with registered or combinatorial outputs, active HIGH or active LOW outputs, and product term or Pin 13 generated output enables. Three architecture bits determine the configurations as shown in the Configuration Table and in *Figures 1* through 8. A total of eight different configurations are possible,

Programmable Output Cell


with the two most common shown in *Figure 3* and *Figure 5*. The default or unprogrammed state is registered/active/LOW/Pin 11 OE. The entire programmable output cell is shown in the next section.

The architecture bit 'C1' controls the registered/combinatorial option. In either combinatorial or registered configuration, the output can serve as an I/O pin, or if the output is disabled, as an input only. Any unused inputs should be tied to ground. In either registered or combinatorial configuration, the output of the register is fed back to the array. This allows the creation of control-state machines by providing the next state. The register is clocked by the signal from Pin 1. The register is initialized on power up to Q output LOW and \overline{Q} output HIGH.

In both the combinatorial and registered configurations, the source of the output enable signal can be individually chosen with architecture bit 'C2'. The OE signal may be generated within the array, or from the external \overline{OE} (Pin 13). The Pin 13 allows direct control of the outputs, hence having faster enable/disable times.

Each output cell can be configured for output polarity. The output can be either active HIGH or active LOW. This option is controlled by architecture bit 'CO'.

Along with this increase in functional density, the Cypress PLDC20G10 provides lower-power operation through the use of CMOS technology and increased testability with a register preload feature.

Configuration Table

Figure	C ₂	C ₁	C ₀	Configuration
1	0	0	0	Product Term OE/Registered/Active LOW
2	0	0	1	Product Term OE/Registered/Active HIGH
5	0	1	0	Product Term OE/Combinatorial/Active LOW
6	0	1	1	Product Term OE/Combinatorial/Active HIGH
3	1	0	0	Pin 13 OE/Registered/Active LOW
4	1	0	1	Pin 13 OE/Registered/Active HIGH
7	1	1	0	Pin 13 OE/Combinatorial/Active LOW
8	1	1	1	Pin 13 OE/Combinatorial/Active HIGH

Registered Output Configurations

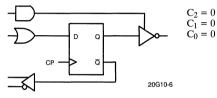


Figure 1. Product Term OE/Active LOW

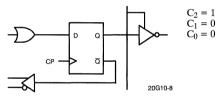


Figure 3. Pin 13 OE/Active LOW

Combinatorial Output Configurations^[2]

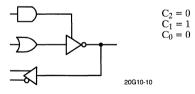


Figure 5. Product Term OE/Active LOW

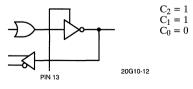


Figure 7. Pin 13 OE/Active LOW

Note: 2. Bidirectional I/O configurations are possible only when the combinatorial output option is selected

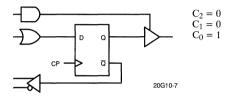


Figure 2. Product Term OE/Active HIGH

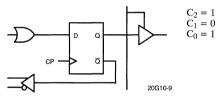


Figure 4. Pin 13 OE/Active HIGH

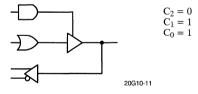


Figure 6. Product Term OE/Active HIGH

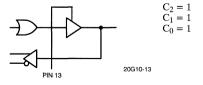


Figure 8. Pin 13 OE/Active HIGH

2

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with
Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Supply Voltage to Ground Potential $\dots -0.5V$ to $+7.0V$
DC Voltage Applied to Outputs
in High Z State $-0.5V$ to $+7.0V$
DC Input Voltage $\dots -3.0V$ to $+7.0V$
Output Current into Outputs (LOW) 16 mA
DC Programming Voltage PLDC20G10B and CG7C323B-A
PLDC20G10 and CG7C323-A 14.0V

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to +75°C	5V ±10%
Military ^[3]	-55°C to +125°C	5V ±10%
Industrial	-40° C to $+85^{\circ}$ C	5V ±10%

Electrical Characteristics Over the Operating Range (Unless Otherwise Noted) ^[4]	Electrical Characteristics	Over the Operating Range	(Unless Otherwise Noted) ^[4]
---	-----------------------------------	--------------------------	---

Parameter	Description	Test	Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$	$I_{OH} = -3.2 \text{ mA}$	Com'l/Ind	2.4		V
		$V_{IN} = V_{IH}$ or V_{IL}	$I_{OH} = -2 \text{ mA}$	Military			
V _{OL}	Output LOW Voltage	$V_{CC} = Min.,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 24 \text{ mA}$	Com'l/Ind		0.5	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 12 \text{ mA}$	Military			
VIH	Input HIGH Level	Guaranteed Input Logica	2.0		V		
VIL	Input LOW Level	Guaranteed Input Logica		0.8	V		
I _{IX}	Input Leakage Current	$V_{SS} \le V_{IN} \le V_{CC}$	-10	+10	μA		
I _{SC}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT} = 0.5$		- 90	mA		
I _{CC}	Power Supply Current	$\begin{array}{l} 0 \leq V_{IN} \leq V_{CC} \\ V_{CC} = Max., \end{array}$	Com'l/Ind-15, -		70	mA	
		I _{OUT} = 0 mÅ Unprogrammed Device	Com'l/Ind-25, -	35		55	mA
		Military-20, -25 Military-30, -40				100	mA
						80	mA
I _{OZ}	Output Leakage Current	$V_{CC} = Max., V_{SS} \le V_{OU}$	$T \leq V_{CC}$		-100	100	μΑ

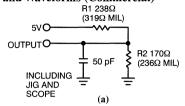
Capacitance^[7]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz}$	10	pF
C _{OUT}	Output Capacitance	$V_{IN} = 2.0V, V_{CC} = 5.0V$	10	pF

Notes:

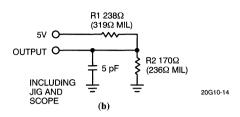
3. T_A is the "instant on" case temperature.

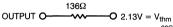
4. See the last page of this specification for Group A subgroup testing information.


5. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.

7. Tested initially and after any design or process changes that may affect these parameters.

^{6.} Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation.




Equivalent to: THÉVENIN EQUIVALENT (Commercial)

99Ω OUTPUT O--**O** 2.08V = V_{thc} ~~~~

20G10-15

Equivalent to: THÉVENIN EQUIVALENT (Military/Industrial)

20G10-16

Switching Characteristics Over Operating Range^[3, 8, 9]

			Commercial							
		B-	B-15 B-20 -25 -35				35			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input or Feedback to Non-Registered Output		15		20		25		35	ns
t _{EA}	Input to Output Enable		15		20		25		35	ns
t _{ER}	Input to Output Disable		15		20		25		35	ns
t _{PZX}	Pin 11 to Output Enable		12		15		20		25	ns
t _{PXZ}	Pin 11 to Output Disable		12		15		20		25	ns
t _{CO}	Clock to Output		10		12		15		25	ns
ts	Input or Feedback Set-Up Time	12		12		15		30		ns
t _H	Hold Time	0		0		0		0		ns
t _P [10]	Clock Period	22		24		30		55		ns
t _{WH}	Clock High Time	8		10		12		17		ns
t _{WL}	Clock Low Time	8		10		12		17		ns
f _{MAX} [11]	Maximum Frequency	45.4		41.6		33.3		18.1		MHz

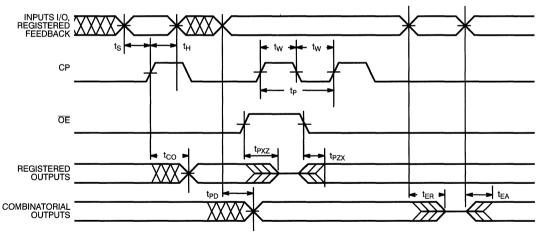
Notes:

Part (a) of AC Test Loads and Waveforms used for all parameters ex-cept t_{ER}, t_{PZX}, and t_{PXZ}. Part (b) of AC Test Loads and Waveforms used for t_{ER}, t_{PZX}, and t_{PXZ}. 8

The parameters t_{ER} and t_{PXZ} are measured as the delay from the input disable logic threshold transition to V_{OH} - 0.5V for an enabled HIGH output or V_{OL} + 0.5V for an enabled LOW input.
 t_B minimum guaranteed clock period is that guaranteed for state manual to check the delay the delay for the Theorem.

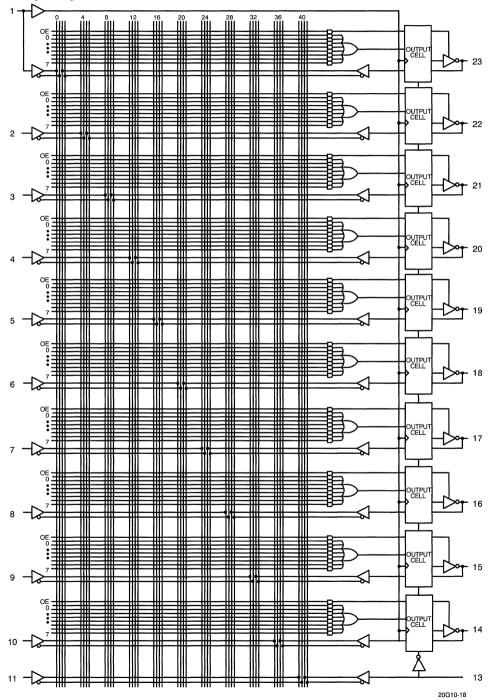
chine operation and is calculated from $t_P = t_S + t_{CO}$. The minimum

guaranteed period for registered data path operation (no feedback) can be calculated as the greater of $(t_{WH}+t_{WL})$ or $(t_S+t_H).$


 f_{MAX} , minimum guaranteed operating frequency, is that guaranteed 11. for state machine operation and is calculated from $f_{MAX} = 1/(t_S + t_S)$ t_{CO}). The minimum guaranteed t_{MAX} for registered data path operation (no feedback) can be calculated as the lower of $1/(t_W + t_W)$ or $1/(t_{S} + t_{H}).$

			Military/Industrial							
		B-	B-20 B-25 -30 -40							
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input or Feedback to Non-Registered Output		20		25		30		40	ns
t _{EA}	Input to Output Enable		20		25		30		40	ns
t _{ER}	Input to Output Disable		20		25		30		40	ns
t _{PZX}	Pin 11 to Output Enable		17		20		25		25	ns
t _{PXZ}	Pin 11 to Output Disable		17		20		25		25	ns
t _{CO}	Clock to Output		15		15		20		25	ns
ts	Input or Feedback Set-Up Time	15		18		20		35		ns
t _H	Hold Time	0		0		0		0		ns
t _P [10]	Clock Period	30		33		40		60		ns
t _{WH}	Clock High Time	12		14		16		22		ns
t _{WL}	Clock Low Time	12		14		16		22		ns
f _{MAX} [11]	Maximum Frequency	33.3		30.3		25.0		16.6		MHz

Switching Characteristics Over Operating Range^[3, 8, 9] (continued)


Switching Waveform

20G10-17

Functional Logic Diagram

Ordering Information

t _{PD} (ns)	t _S (ns)	t _{CO} (ns)	I _{CC} (mA)	Ordering Code	Package Name	Package Type	Operating Range
15	12	10	70	PLDC20G10B-15JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	Commercial/
				PLDC20G10B-15PC/PI	P13	24-Lead (300-Mil) Molded DIP	Industrial
				PLDC20G10B-15WC	W14	24-Lead (300-Mil) Windowed CerDIP	
				CG7C323B-A15JC/JI ^[1]	J64	28-Lead Plastic Leaded Chip Carrier	
20	12	12	70	PLDC20G10B-20JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	Commercial/
				PLDC20G10B-20PC/PI	P13	24-Lead (300-Mil) Molded DIP	Industrial
				PLDC20G10B-20WC	W14	24-Lead (300-Mil) Windowed CerDIP	-
				CG7C323B-A20JC/JI ^[1]	J64	28-Lead Plastic Leaded Chip Carrier	
20	15	15	100	PLDC20G10B-20DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20G10B-20LMB	L64	28-Square Leadless Chip Carrier]
				PLDC20G10B-20WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
25	15	15	55	PLDC20G10-25JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	Commercial/
				PLDC20G10-25PC/PI	P13	24-Lead (300-Mil) Molded DIP	Industrial
				PLDC20G10-25WC	W14	24-Lead (300-Mil) Windowed CerDIP	
				CG7C323-A25JC/JI ^[1]	J64	28-Lead Plastic Leaded Chip Carrier	
25	18	15	100	PLDC20G10B-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20G10B-25LMB	L64	28-Square Leadless Chip Carrier	
				PLDC20G10B-25WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
30	20 -	20	80	PLDC20G10-30DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20G10-30LMB	L64	28-Square Leadless Chip Carrier	1
				PLDC20G10-30WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
35	30	25	55	PLDC20G10-35JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	Commercial/
				PLDC20G10-35PC/PI	P13	24-Lead (300-Mil) Molded DIP	Industrial
			1	PLDC20G10-35WC	W14	24-Lead (300-Mil) Windowed CerDIP	1
				CG7C323-A35JC/JI ^[1]	J64	28-Lead Plastic Leaded Chip Carrier	
40	35	25	80	PLDC20G10-40DMB	D14	24-Lead (300-Mil) CerDIP	Military
		1		PLDC20G10-40LMB	L64	28-Square Leadless Chip Carrier]
				PLDC20G10-40WMB	W14	24-Lead (300-Mil) Windowed CerDIP	1

MILITARY SPECIFICATIONS Group A Subgroup Testing DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{PD}	9, 10, 11
t _{PZX}	9, 10, 11
t _{CO}	9, 10, 11
ts	9, 10, 11
t _H	9, 10, 11

Document #: 38-00019-G

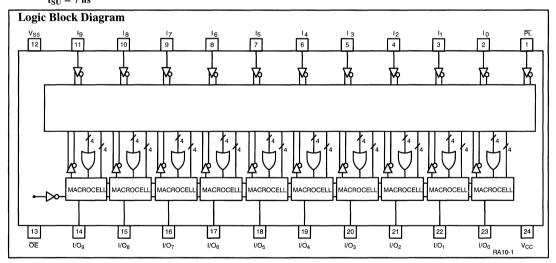
PLDC20RA10

Features

- Advanced-user programmable macrocell
- CMOS EPROM technology for reprogrammability
- Up to 20 input terms
- 10 programmable I/O macrocells
- Output macrocell programmable as combinatorial or asynchronous Dtype registered output
- Product-term control of register clock, reset and set and output enable
- Register preload and power-up reset
- Four data product terms per output macrocell
- Fast
 - Commercial t_{PD} = 15 ns
 - $t_{CO} = 15 \text{ ns}$ $t_{SU} = 7 \text{ ns}$

- Military/Industrial
 - $t_{PD} = 20 \text{ ns}$ $t_{CO} = 20 \text{ ns}$
 - $t_{SU} = 10 \text{ ns}$
- Low power
 - $I_{CC} \max$ 80 mA (Commercial) - $I_{CC} \max$ = 85 mA (Military)
- High reliability
 - Proven EPROM technology
 - ---- >2001V input protection
- 100% programming and functional testing
- Windowed DIP, windowed LCC, DIP, LCC, PLCC available

Functional Description

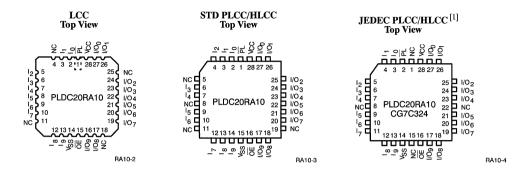

The Cypress PLDC20RA10 is a high-performance, second-generation program-

Reprogrammable Asynchronous CMOS Logic Device

mable logic device employing a flexible macrocell structure that allows any individual output to be configured independently as a combinatorial output or as a fully asynchronous D-type registered output.

The Cypress PLDC20RA10 provides lower-power operation with superior speed performance than functionally equivalent bipolar devices through the use of high-performance 0.8-micron CMOS manufacturing technology.

The PLDC20RA10 is packaged in a 24 pin 300-mil molded DIP, a 300-mil windowed cerDIP, and a 28-lead square leadless chip carrier, providing up to 20 inputs and 10 outputs. When the windowed device is exposed to UV light, the 20RA10 is erased and can then be reprogrammed.



Selection Guide

Generic Part	t _{PD} ns		t _{SU} ns		to	co ns	I _{CC} ns	
Number	Com'l	Mil/Ind	Com'l	Mil/Ind	Com'l	Mil/Ind	Com'l	Mil/Ind
20RA10-15	15		7		15		80	
20RA10-20	20	20	10	10	20	20	80	85
20RA10-25		25		15		25		85
20RA10-35		35		20		35		85

Pin Configurations

Macrocell Architecture

Figure 1 illustrates the architecture of the 20RA10 macrocell. The cell dedicates three product terms for fully asynchronous control of the register set, reset, and clock functions, as well as, one term for control of the output enable function.

The output enable product term output is ANDed with the input from pin 13 to allow either product term or hardwired external control of the output or a combination of control from both sources. If product-term-only control is selected, it is automatically chosen for all outputs since, for this case, the external output enable pin must be tied LOW. The active polarity of each output may be programmed independently for each output cell and is subsequently fixed. *Figure 2* illustrates the output enable.

When an I/O cell is configured as an output, combinatorial-only capability may be selected by forcing the set and reset product term outputs to be HIGH under all input conditions. This is achieved by programming all input term programming cells for these two product terms. *Figure 3* illustrates the available output configuration options.

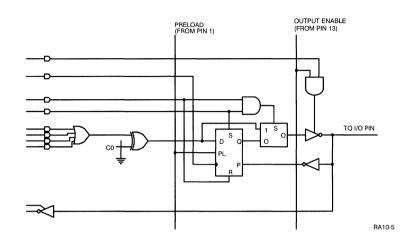
An additional four uncommitted product terms are provided in each output macrocell as resources for creation of user-defined logic functions.

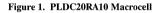
Programmable I/O

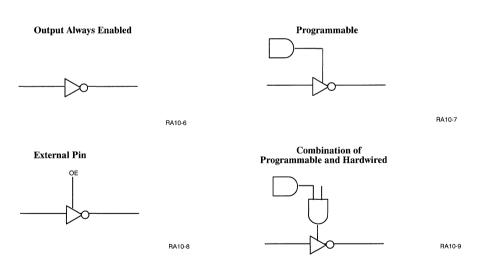
Because any of the ten I/O pins may be selected as an input, the device input configuration programmed by the user may vary from a total of nine programmable plus ten dedicated inputs (a total of nineteen inputs) and one output down to a ten-input, ten-output configuration with all ten programmable I/O cells configured as outputs. Each input pin available in a given configuration is avail-

Note:

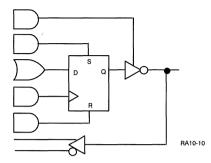
 The CG7C324 is the PLDC20RA10 packaged in the JEDEC-compatible 28-pin PLCC pinout. Pin fuction and pin order is identical for both PLCC pinouts. The principal differenced is in the location of the "no connect" (NC) pins. able as an input to the four control product terms and four uncommitted product terms of each programmable I/O macrocell that has been configured as an output.

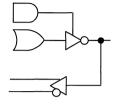

An I/O cell is programmed as an input by tying the output enable pin (pin 13) HIGH or by programming the output enable product term to provide a LOW, thereby disabling the output buffer, for all possible input combinations.


When utilizing the I/O macrocell as an output, the input path functions as a feedback path allowing the output signal to be fed back as an input to the product term array. When the output cell is configured as a registered output, this feedback path may be used to feed back the current output state to the device inputs to provide current state control of the next output state as required for state machine implementation.

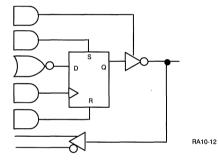

Preload and Power-Up Reset

Functional testability of programmed devices is enhanced by inclusion of register preload capability, which allows the state of each register to be set by loading each register from an external source prior to exercising the device. Testing of complex state machine designs is simplified by the ability to load an arbitrary state without cycling through long test vector sequences to reach the desired state. Recovery from illegal states can be verified by loading illegal states and observing recovery. Preload of a particular register is accomplished by impressing the desired state on the register output pin and lowering the signal level on the preload control pin (pin1) to a logic LOW level. If the specified preload set-up, hold and pulse width minimums have been observed, the desired state is loaded into the register. To insure predictable system initialization, all registers are preset to a logic LOW state upon power-up, thereby setting the active LOW outputs to a logic HIGH.

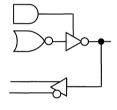



•

Registered/Active LOW



Combinatorial/Active LOW



RA10-11

Registered/Active HIGH

Combinatorial/Active HIGH

RA10-13

Figure 3. Four Possible Macrocell Configurations for the PLDC20RA10

PLDC20RA10

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Latch-Up Current	>200 mA
DC Program Voltage	13.0V

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Supply Voltage to Ground Potential
$(Pin 24 to Pin 12) \dots -0.5V to +7.0V$
DC Voltage Applied to Outputs in High Z State0.5V to +7.0V
DC Input Voltage $\dots -3.0$ V to $+ 7.0$ V
Output Current into Outputs (LOW) 16 mA
Static Discharge Voltage

Operating Range								
Range	Ambient Temperature	V _{CC}						
Commercial	0° C to $+75^{\circ}$ C	$5V \pm 10\%$						
Industrial	-40° C to $+85^{\circ}$ C	$5V \pm 10\%$						
Military ^[2]	-55°C to +125°C	$5V \pm 10\%$						

Electrical Characteristics Over the Operating Range^[3]

Parameter	Description	Test	Test Conditions					
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -3.2 \text{ mA}$					v	
	Output HIGH voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -2 \text{ mA}$	Mil/Ind	1			
V _{OL}	Output LOW Voltage	$V_{CC} = Min.,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$			0.5	v		
V _{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs ^[4]					V	
V _{IL}	Input LOW Level	Guaranteed Input Logica		0.8	V			
I _{IX}	Input Leakage Current	$V_{SS} \leq V_{IN} \leq V_{CC}, V_{CC} = Max$				+10	μΑ	
I _{OZ}	Output Leakage Current	V_{CC} = Max., $V_{SS} \le V_{OI}$	V_{CC} = Max., $V_{SS} \le V_{OUT} \le V_{CC}$				μA	
I _{SC}	Output Short Circuit Current ^[5]	$V_{CC} = Max., V_{OUT} = 0$	$V_{CC} = Max., V_{OUT} = 0.5V^{[6]}$				mA	
I _{CC1}	Standby Power Supply Current	V _{CC} = Max., V _{IN} = GND Outputs Open Com'l				75	mA	
		Mil/Ind				80	mA	
I _{CC2} Power Supply Current at		$V_{CC} = Max., Outputs Di$	Com'l		80	mA		
	Frequency ^[5]	State) Device Operating	Mil/Ind		85	mA		

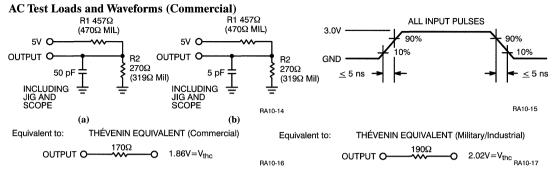
Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 2.0 V @ f = 1 MHz$	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 2.0 V @ f = 1 MHz$	10	pF

Notes: 2. Ta

 T_A is the "instant on" case temperature.

See the last page of this specification for Group A subgroup testing in-3. formation.


These are absolute values with respect to devicee ground and all over-shoots due to system or tester noise are included. 4

Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{OUT} = 0.5$ V has been chosen to avoid test problems caused by tester ground degrada-6. tion.

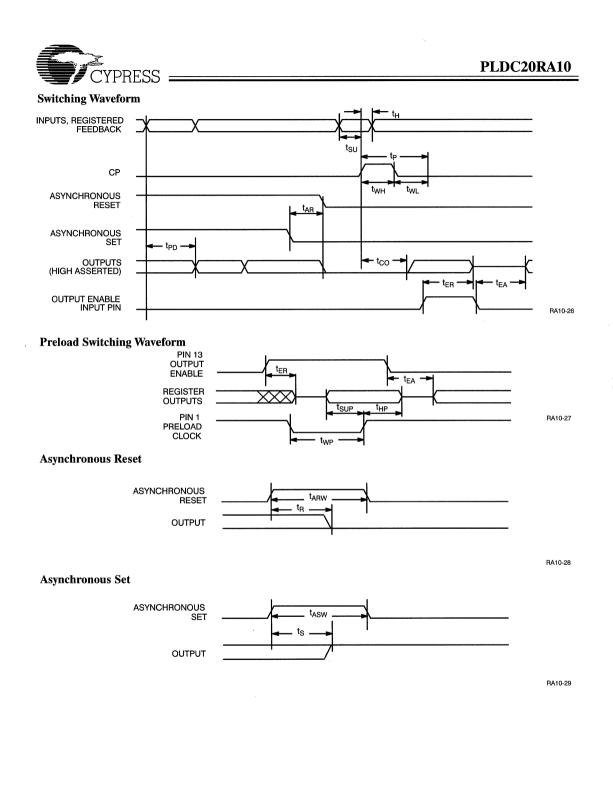
Tested initially and after any design or process changes that may affect 5. these parameters.

PLDC20RA10

Parameter	V _{th}	Output Waveform—Measurement Level	
t _{PXZ(-)}	1.5V	V _{OH} 0.5V V _X RA10-18	
t _{PXZ(+)}	2.6V	V _{OL} 0.5V V _X	
t _{PZX(+)}	V _{thc}	V _X 0.5V V _{OH}	
t _{PZX(-)}	V _{thc}	V _X 0.5V V _{OL} RA10-21	
t _{ER(-)}	1.5V	V _{OH} 0.5V V _X RA10-22	
t _{ER(+)}	2.6V	V _{OL} 0.5V V _X	
t _{EA(+)}	V_{thc}	V _X 0.5V V _{OH}	
t _{EA(-)}	V _{thc}	V _X 0.5V V _{OL} RA10-25	

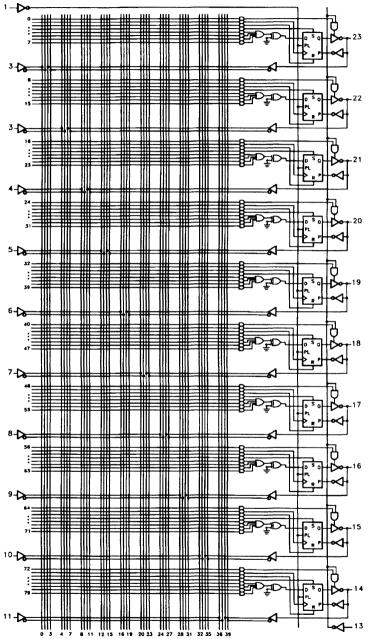
(c)

		Commercial				Military/Industrial						
		-	15	-	20	-20		-25		-35		1
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input or Feedback to Non-Registered Output		15		20		20		25		35	ns
t _{EA}	Input to Output Enable		15		20		20		30		35	ns
t _{ER}	Input to Output Disable		15		20		20		30		35	ns
t _{PZX}	Pin 13 to Output Enable		12		15		15		20		25	ns
t _{PXZ}	Pin 13 to Output Disable		12		15		15		20		25	ns
t _{CO}	Clock to Output		15		20		20		25		35	ns
t _{SU}	Input or Feedback Set-Up Time	7		10		10		15		20		ns
t _H	Hold Time	3		5		3		5		5		ns
t _P	Clock Period $(t_{SU} + t_{CO})$	22		30		30		40		55		ns
t _{WH}	Clock Width HIGH ^[5]	10		13		12		18		25		ns
t _{WL}	Clock Width LOW ^[5]	10		13		12		18		25		ns
f _{MAX}	Maximum Frequency $(1/t_P)^{[5]}$	45.5		33.3		33.3		25.0		18.1		MH
t _S	Input of Asynchronous Set to Registered Output		15		20		20		25		40	ns
t _R	Input of Asynchronous Reset to Registered Output		15		20		20		25		40	ns
t _{ARW}	Asynchronous Reset Width ^[5]	15		20		20		25		25		ns
t _{ASW}	Asynchronous Set Width ^[5]	15		20		20		25		25		ns
t _{AR}	Asynchronous Set/ Reset Recovery Time	10		12		12		15		20		ns
t _{WP}	Preload Pulse Width	15		15		15		15		15		ns
t _{SUP}	Preload Set-Up Time	15		15		15		15		15		ns
t _{HP}	Preload Hold Time	15		15		15	Γ	15		15		ns


Switching Characteristics Over the Operating Range^[3, 7, 8]

Notes:

HIGH output or V_{OL} +0.5V for an enabled LOW output. Please see part (c) of AC Test Loads and Waveforms for waveforms and measurement reference levels.


Part (a) of AC Test Loads was used for all parameters except t_{EA} , t_{ER} , t_{PZX} and t_{PXZ} , which use part (b). The parameters t_{ER} and t_{PXZ} are measured as the delay from the input disable logic threshold transition to $V_{OH} - 0.5$ V for an enabled 7.

^{8.}

Functional Logic Diagram

RA10-30

PLDC20RA10

Ordering Information

I _{CC2}	t _{PD} (ns)	t _{SU} (ns)	t _{CO} (ns)	Ordering Code	Package Name	Package Type	Operating Range
80	15	7	15	PLDC20RA10-15HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
				PLDC20RA10-15JC	J64	28-Lead Plastic Leaded Chip Carrier	
				PLDC20RA10-15PC	P13	24-Lead (300-Mil) Molded DIP	
				PLDC20RA10-15WC	W14	24-Lead (300-Mil) Windowed CerDIP	
				CG7C324-A15HC	H64	28-Pin Windowed Leaded Chip Carrier	
				CG7C324-A15JC	J64	28-Lead Plastic Leaded Chip Carrier	
80	20	10	20	PLDC20RA10-20HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
				PLDC20RA10-20JC	J64 .	28-Lead Plastic Leaded Chip Carrier	
				PLDC20RA10-20PC	P13	24-Lead (300-Mil) Molded DIP	
				PLDC20RA10-20WC	W14	24-Lead (300-Mil) Windowed CerDIP	
				CG7C324-A20HC	H64	28-Pin Windowed Leaded Chip Carrier	
				CG7C324-A20JC	J64	28-Lead Plastic Leaded Chip Carrier	
85	20	10	20	PLDC20RA10-20DI	D14	24-Lead (300-Mil) CerDIP	Industrial
				PLDC20RA10-20JI	J64	28-Lead Plastic Leaded Chip Carrier	
				PLDC20RA10-20PI	P13	24-Lead (300-Mil) Molded DIP	
				PLDC20RA10-20WI	W14	24-Lead (300-Mil) Windowed CerDIP	
				PLDC20RA10-20DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20RA10-20HMB	H64	28-Pin Windowed Leaded Chip Carrier	
				PLDC20RA10-20LMB	L64	28-Square Leadless Chip Carrier	
				PLDC20RA10-2QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
				PLDC20RA10-20WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
85	25	15	25	PLDC20RA10-25DI	D14	24-Lead (300-Mil) CerDIP	Industrial
				PLDC20RA10-25JI	J64	28-Lead Plastic Leaded Chip Carrier	
				PLDC20RA10-25PI	P13	24-Lead (300-Mil) Molded DIP	
				PLDC20RA10-25WI	W14	24-Lead (300-Mil) Windowed CerDIP	
				PLDC20RA10-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20RA10-25HMB	H64	28-Pin Windowed Leaded Chip Carrier	
				PLDC20RA10-25LMB	L64	28-Square Leadless Chip Carrier	
				PLDC20RA10-25QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
				PLDC20RA10-25WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
85	35	20	35	PLDC20RA10-35DI	D14	24-Lead (300-Mil) CerDIP	Industrial
				PLDC20RA10-3JI	J64	28-Lead Plastic Leaded Chip Carrier	
				PLDC20RA10-35PI	P13	24-Lead (300-Mil) Molded DIP	
				PLDC20RA10-35WI	W14	24-Lead (300-Mil) Windowed CerDIP	
				PLDC20RA10-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20RA10-35HMB	H64	28-Pin Windowed Leaded Chip Carrier	
				PLDC20RA10-35LMB	L64	28-Square Leadless Chip Carrier	
				PLDC20RA10-35QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
	1			PLDC20RA10-35WMB	W14	24-Lead (300-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{PD}	9, 10, 11
t _{PZX}	9, 10, 11
t _{CO}	9, 10, 11
t _{SU}	9, 10, 11
t _H	9, 10, 11

Document #: 38-00073-E

\$

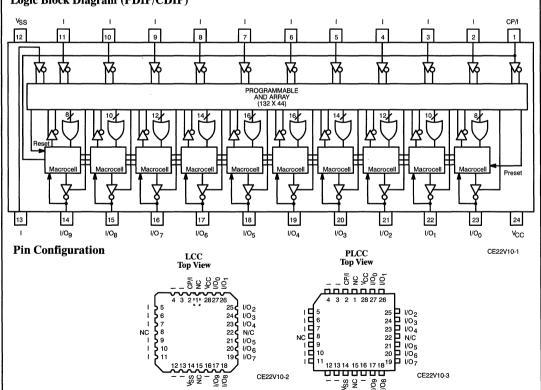
PALCE22V10

Features

- Low power
 - -90 mA max. commercial (10 ns)
 - 130 mA max. commercial (5 ns)
- CMOS Flash EPROM technology for electrical erasability and reprogrammability
- Variable product terms -2 x (8 through 16) product terms
- User-programmable macrocell
 - Output polarity control
 - --- Individually selectable for registered or combinatorial operation
- Up to 22 input terms and 10 outputs
- DIP, LCC, and PLCC available -5 ns commercial version
 - 4 ns t_{CO}

Logic Block Diagram (PDIP/CDIP)

Flash Erasable, Reprogrammable CMOS PAL® Device


3 ns ts 5 ns t_{PD}

- 181-MHz state machine
- 10 ns military and industrial versions 7 ns t_{CO} 6 ns ts
 - 10 ns tpp 110-MHz state machine
- 15-ns commercial, industrial, and military versions
- 25-ns commercial, industrial, and military versions
- High reliability
 - Proven Flash EPROM technology
 - -100% programming and functional testing

Functional Description

The Cypress PALCE22V10 is a CMOS Flash Erasable second-generation programmable array logic device. It is implemented with the familiar sum-of-products (AND-OR) logic structure and the programmable macrocell.

The PALCE22V10 is executed in a 24-pin 300-mil molded DIP, a 300-mil cerDIP, a 28-lead square ceramic leadless chip carrier, a 28-lead square plastic leaded chip carrier, and provides up to 22 inputs and 10 outputs. The PALCE22V10 can be electrically erased and reprogrammed. The programmable macrocell provides the capability of defining the architecture of each output individually. Each of the 10 potential outputs may be specified as "registered" or "combinatorial." Polarity of

PAL is a registered trademark of Advanced Micro Devices.

Selection Guide

	t _{PI}	t _{PD} ns		t _S ns) ns	I _{CC} mA	
Generic Part Number	Com'l	Mil/Ind	Com'l	Mil/Ind	Com'l	Mil/Ind	Com'l	Mil/Ind
PALCE22V10-5	5		3		4		130	
PALCE22V10-7	7.5		5		5		130	
PALCE22V10-10	10	10	6	6	7	7	90	150
PALCE22V10-15	15	15	10	10	8	8	90	120
PALCE22V10-25	25	25	15	15	15	15	90	120

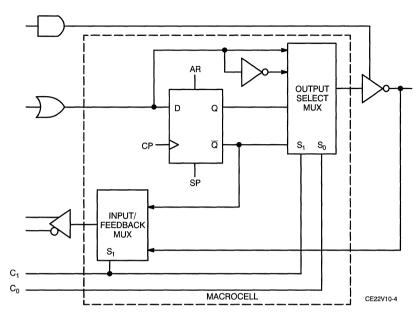
Functional Description (continued)

each output may also be individually selected, allowing complete flexibility of output configuration. Further configurability is provided through "array" configurable "output enable" for each potential output. This feature allows the 10 outputs to be reconfigured as inputs on an individual basis, or alternately used as a combination I/O controlled by the programmable array.

PALCE22V10 features a variable product term architecture. There are 5 pairs of product term sums beginning at 8 product terms per output and incrementing by 2 to 16 product terms per output. By providing this variable structure, the PALCE 22V10 is optimized to the configurations found in a majority of applications without creating devices that burden the product term structures with unusable product terms and lower performance.

Additional features of the Cypress PALCE22V10 include a synchronous preset and an asynchronous reset product term. These product terms are common to all macrocells, eliminating the need to dedicate standard product terms for initialization functions. The device automatically resets upon power-up.

The PALCE22V10, featuring programmable macrocells and variable product terms, provides a device with the flexibility to implement logic functions in the 500- to 800-gate-array complexity. Since each of the 10 output pins may be individually configured as inputs on a temporary or permanent basis, functions requiring up to 21 inputs and only a single output and down to 12 inputs and 10 outputs are possible. The 10 potential outputs are enabled using product terms. Any output pin may be permanently selected as an output or arbitrarily enabled as an output and an input through the selective use of individual product terms associated with each output. Each of these outputs is achieved through an individual programmable macrocell. These macrocells are programmable to provide a combinatorial or registered inverting or non-inverting output. In a registered mode of operation, the output of the register is fed back into the array, providing current status information to the array. This information is available for establishing the next result in applications such as control state machines. In a combinatorial configuration, the combinatorial output or, if the output is disabled, the signal present on the I/O pin is made available to the array. The flexibility provided by both programmable product term control of the outputs and variable product terms allows a significant gain in functional density through the use of programmable logic.


Along with this increase in functional density, the Cypress PALCE22V10 provides lower-power operation through the use of CMOS technology, and increased testability with Flash reprogrammability.

Configuration Table

	Registered/Combinatorial							
C ₁	C ₀	Configuration						
0	0	Registered/Active LOW						
0	1	Registered/Active HIGH						
1	0	Combinatorial/Active LOW						
1	1	Combinatorial/Active HIGH						

Macrocell

Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}$ C to $+150^{\circ}$ C
Ambient Temperature with
Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) $\dots \dots \dots$
DC Voltage Applied to Outputs
in High Z State $-0.5V$ to $+7.0V$
DC Input Voltage $\dots -0.5V$ to $+7.0V$
Output Current into Outputs (LOW) 16 mA
DC Programming Voltage 12.5V
Latch-Up Current
Note:
1 T, is the "instant on" case temperature

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+75^{\circ}$ C	5V ±5%
Industrial	-40° C to $+85^{\circ}$ C	5V ±10%
Military ^[1]	-55°C to +125°C	5V ±10%

Static Discharge Voltage (per MIL-STD-883, Method 3015)>2001V

1. T_A is the "instant on" case temperature.

Parameter	Description		Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$	$I_{OH} = -3.2 \text{ mA}$	Com'l	2.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -2 \text{ mA}$	Mil/Ind			
V _{OL}	Output LOW Voltage	$V_{CC} = Min.,$	$I_{OL} = 16 \text{ mA}$	Com'l		0.5	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 12 \text{ mA}$	Mil/Ind			
V _{IH}	Input HIGH Level	Guaranteed Input Lo	ogical HIGH Voltage	for All Inputs ^[3]	2.0		V
V _{IL} ^[4]	Input LOW Level	Guaranteed Input Lo	ogical LOW Voltage	for All Inputs ^[3]	-0.5	0.8	V
I _{IX}	Input Leakage Current	$V_{SS} \le V_{IN} \le V_{CC}, V_{CC}$		-10	10	μΑ	
I _{OZ}	Output Leakage Current	V_{CC} = Max., V_{SS} \leq		-40	40	μΑ	
I _{SC}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT}$	$= 0.5 V^{[5, 6]}$		-30	-130	mA
I _{CC1}	Standby Power Supply Current	$V_{CC} = Max.,$	10, 15, 25 ns	Com'l		90	mA
	Current	$V_{IN} = GND,$ Outputs Open in	5, 7.5 ns			130	mA
		Unprogrammed Device	15, 25 ns	Mil/Ind		120	mA
			10 ns			120	mA
I _{CC2} ^[6]	Operating Power Supply	$V_{CC} = Max., V_{IL} =$	10, 15, 25 ns	Com'l		110	mA
	Current	$0V, V_{IH} = 3V,$ Output Open, De-	5, 7.5 ns	1		140	mA
		vice Programmed as a 10-Bit Counter,	15, 25 ns	Mil/Ind		130	mA
		f = 25 MHz	10 ns	1		130	mA

Electrical Characteristics Over the Operating Range^[2]

Capacitance^[6]

Parameter	Description	Test Conditions	Min.	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 2.0V @ f = 1 MHz$		10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 2.0V @ f = 1 MHz$		10	pF

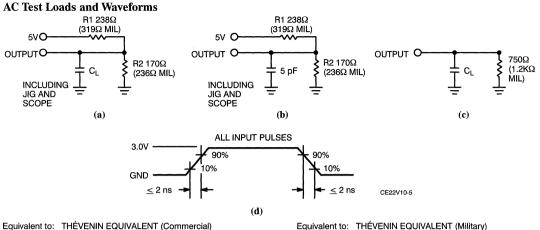
Endurance Characteristics^[6]

Parameter	Description	Test Conditions	Min.	Max.	Unit
Ν	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

Notes:

2. See the last page of this specification for Group A subgroup testing information.

These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.


4. V_{IL} (Min.) is equal to -3.0V for pulse durations less than 20 ns.

5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation.

6. Tested initially and after any design or process changes that may affect these parameters.

2

 99Ω OUTPUT O 2.08V = V_{thc}

thc CE22V10-6

Equivalent to: THÉVENIN EQUIVALENT (Military) 136Ω OUTPUT O------O 2.13V = V_{thm} CE22V10-7

Load Speed	CL	Package
5, 7.5, 10, 15, 25 ns	50 pF	PDIP, CDIP, PLCC, LCC

Parameter	VX	Output Waveform—Measurement Level
t _{ER (-)}	1.5V	V _{OH}
t _{ER (+)}	2.6V	V_{OL} $0.5V$ V_X
t _{EA (+)}	0V	V _X V _{OH}
t _{EA (-)}	V_{thc}	$V_X \xrightarrow{\bullet} V_{OL}$

(e) Test Waveforms

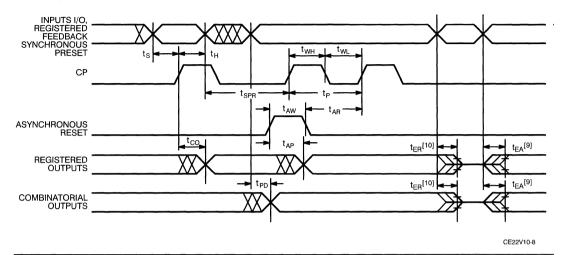
Commercial Switching Characteristics PALCE22V10^[2, 7]

		22V10-5 22V		22V1	22V10-7 22V10-10		22V10-15		22V10-25			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input to Output Propagation Delay ^[8]		5	3	7.5	3	10	3	15	3	25	ns
t _{EA}	Input to Output Enable Delay ^[9]		6		8		10		15		25	ns
t _{ER}	Input to Output Disable Delay ^[10]		6		8		10		15		25	ns
t _{CO}	Clock to Output Delay ^[8]	2	4	2	5	2	7	2	8	2	15	ns
t _{S1}	Input or Feedback Set-Up Time	3		5		6		10		15		ns
t _{S2}	Synchronous Preset Set-Up Time	4		6		7		10		15		ns
t _H	Input Hold Time	0		0		0		0		0		ns
tP	External Clock Period $(t_{CO} + t_S)$	7		10		12		20		30		ns
t _{WH}	Clock Width HIGH ^[6]	2.5		3		3		6		13		ns
t _{WL}	Clock Width LOW ^[6]	2.5		3		3		6		13		ns
f _{MAX1}	External Maximum Frequency (1/(t _{CO} + t _S)) ^[11]	143		100		76.9		55.5		33.3		MHz
f _{MAX2}	Data Path Maximum Frequency $(1/(t_{WH} + t_{WL}))^{[6, 12]}$	200		166		142		83.3		35.7		MHz
f _{MAX3}	Internal Feedback Maximum Frequency $(1/(t_{CF} + t_S))^{[6, 13]}$	181		133		111		68.9		38.5		MHz
t _{CF}	Register Clock to Feedback Input ^[6, 14]		2.5		2.5		3		4.5		13	ns
t _{AW}	Asynchronous Reset Width	8		8		10		15		25		ns
t _{AR}	Asynchronous Reset Recovery Time	4		5		6		10		25		ns
t _{AP}	Asynchronous Reset to Registered Output Delay		7.5		12		13		20		25	ns
t _{SPR}	Synchronous Preset Recovery Time	4		6		8		10		15		ns
t _{PR}	Power-Up Reset Time ^[6, 15]	1		1		1		1		1		μs

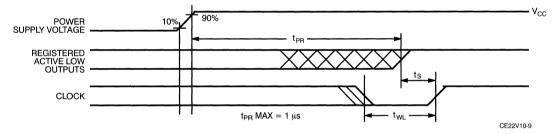
Notes:

- Part (a) of AC Test Loads and Waveforms is used for all parameters except t_{ER} and t_{EA(+)}. Part (b) of AC Test Loads and Waveforms is used for t_{ER}. Part (c) of AC Test Loads and Waveforms is used for t_{EA(+)}.
- 8. Min. times are tested initially and after any design or process changes that may affect these parameters.
- The test load of part (a) of AC Test Loads and Waveforms is used for measuring $t_{EA(-)}$. The test load of part (c) of AC Test Loads and Waveforms is used for measuring $t_{EA(+)}$ only. Please see part (c) of AC Test Loads and Waveforms for enable and disable test waveforms and measurement reference levels.
- 10. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below V_{OH} min. or a previous LOW level has risen to 0.5 volts above V_{OL} max. Please see part (e) of AC Test Loads and Waveforms for enable and disable test waveforms and measurement reference levels.
- This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
- 12. This specification indicates the guaranteed maximum frequency at which the device can operate in data path mode.
- This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate.
- 14. This parameter is calculated from the clock period at f_{MAX} internal (1/f_{MAX3}) as measured (see Note 11 above) minus t_S.
- 15. The registers in the PALCE22V10 have been designed with the capability to reset during system power-up. Following power-up, all registers will be reset to a logic LOW state. The output state will depend on the polarity of the output buffer. This feature is useful in establishing state machine initialization. To insure proper operation, the rise in V_{CC} must be monotonic and the timing constraints depicted in Power-Up Reset Waveform must be satisfied.

2 - 51

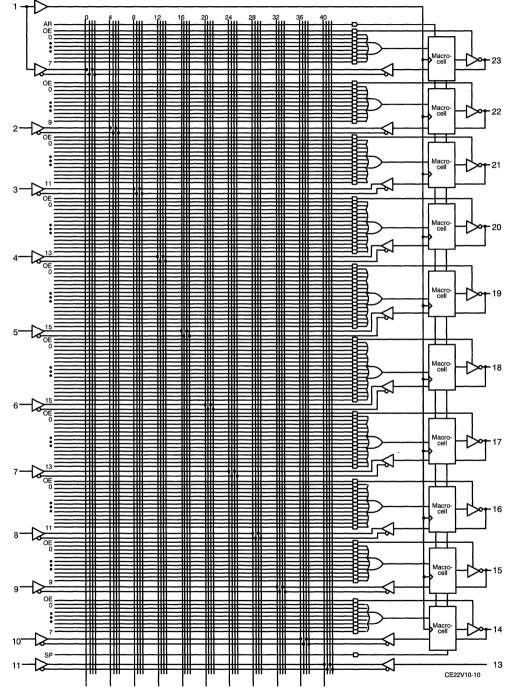

Military and Industrial Switching Characteristics PALCE22V10^[2, 7]

		22V10-10 22V10-15				22V1		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input to Output Propagation Delay ^[8]	3	10	3	15	3	25	ns
t _{EA}	Input to Output Enable Delay ^[9]		10		15		25	ns
t _{ER}	Input to Output Disable Delay ^[10]		10		15		25	ns
t _{CO}	Clock to Output Delay ^[8]	2	7	2	8	2	15	ns
t _{S1}	Input or Feedback Set-Up Time	6		10		18		ns
t _{S2}	Synchronous Preset Set-Up Time	7		10		18		ns
t _H	Input Hold Time	0		0		0		ns
t _P	External Clock Period $(t_{CO} + t_S)$	12		20		33		ns
t _{WH}	Clock Width HIGH ^[6]	3		6		14		ns
t _{WL}	Clock Width LOW ^[6]	3		6		14		ns
f _{MAX1}	External Maximum Frequency $(1/(t_{CO} + t_S))^{[11]}$	76.9		50.0		30.3		MHz
f _{MAX2}	Data Path Maximum Frequency $(1/(t_{WH} + t_{WL}))^{[6, 12]}$	142		83.3		35.7		MHz
f _{MAX3}	Internal Feedback Maximum Frequency $(1/(t_{CF} + t_S))^{[6, 13]}$	111		68.9		32.2		MHz
t _{CF}	Register Clock to Feedback Input ^[6, 14]		3		4.5		13	ns
t _{AW}	Asynchronous Reset Width	10		15		25		ns
t _{AR}	Asynchronous Reset Recovery Time	6		12		25		ns
t _{AP}	Asynchronous Reset to Registered Output Delay		12		20		25	ns
t _{SPR}	Synchronous Preset Recovery Time	8		20		25		ns
t _{PR}	Power-Up Reset Time ^[6, 15]	1		1		1		μs



PALCE22V10

Switching Waveforms



Power-Up Reset Waveform^[15]

Functional Logic Diagram for PALCE22V10

2-54

Ordering Information

I _{CC} (mA)	t _{PD} (ns)	t _S (ns)	t _{CO} (ns)	Ordering Code	Package Name	Package Type	Operating Range
130	5	3	4	PALCE22V10-5JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
130	7.5	5	5	PALCE22V10-7JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE22V10-7PC	P13	24-Lead (300-Mil) Molded DIP	
90	10	6	7	PALCE22V10-10JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE22V10-10PC	P13	24-Lead (300-Mil) Molded DIP	
150	10	6	7	PALCE22V10-10JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE22V10-10PI	P13	24-Lead (300-Mil) Molded DIP	1
150	10	6	7	PALCE22V10-10DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALCE22V10-10KMB	K73	24-Lead Rectangular Cerpack	1
				PALCE22V10-10LMB	L64	28-Square Leadless Chip Carrier	1
90	15	7.5	10	PALCE22V10-15JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE22V10-15PC	P13	24-Lead (300-Mil) Molded DIP	1
120	15	7.5	10	PALCE22V10-15JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE22V10-15PI	P13	24-Lead (300-Mil) Molded DIP	1
120	15	7.5	10	PALCE22V10-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALCE22V10-15KMB	K73	24-Lead Rectangular Cerpack	1
				PALCE22V10-15LMB	L64	28-Square Leadless Chip Carrier	1
90	25	15	15	PALCE22V10-25JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALCE22V10-25PC	P13	24-Lead (300-Mil) Molded DIP	1
120	25	15	15	PALCE22V10-25JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
				PALCE22V10-25PI	P13	24-Lead (300-Mil) Molded DIP	1
120	25	15	15	PALCE22V10-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALCE22V10-25KMB	K73	24-Lead Rectangular Cerpack	1
				PALCE22V10-25LMB	L64	28-Square Leadless Chip Carrier	1

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Document #: 38-00447-B

Switching Characteristics

Parameter	Subgroups
t _{PD}	9, 10, 11
t _{CO}	9, 10, 11
ts	9, 10, 11
t _H	9, 10, 11

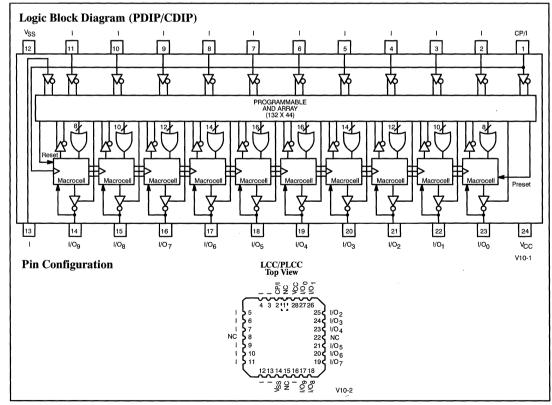
This is an abbreviated datasheet. Contact a Cypress representative for complete specifications. For new designs, please refer to the PALCE22V10.

PALC22V10

Features

- Advanced second-generation PAL architecture
- Low power
 - 55 mA max. "L"
 - 90 mA max. standard
 - 120 mA max. military
- CMOS EPROM technology for reprogrammability
- Variable product terms -2 x (8 through 16) product terms
- User-programmable macrocell
- Output polarity control
 Individually selectable for regis-
- tered or combinatorial operation 20, 25, 35 ns commercial and
- industrial

- 25, 30, 40 ns military
- Up to 22 input terms and 10 outputs
- High reliability
 - Proven EPROM technology
 - 100% programming and functional testing
- Windowed DIP, windowed LCC, DIP, LCC, and PLCC available


Functional Description

The Cypress PALC22V10 is a CMOS second-generation programmable logic array device. It is implemented with the familiar sum-of-products (AND-OR) logic structure and a new concept, the "programmable macrocell."

The PALC22V10 is available in 24-pin 300-mil molded DIPs, 300-mil windowed cerDIPs, 28-lead square ceramic leadless

Reprogrammable CMOS PAL® Device

chip carriers, 28-lead square plastic leaded chip carriers, and provides up to 22 inputs and 10 outputs. When the windowed cer-DIP is exposed to UV light, the 22V10 is erased and can then be reprogrammed. The programmable macrocell provides the capability of defining the architecture of each output individually. Each of the 10 potential outputs may be specified as registered or combinatorial. Polarity of each output may also be individually selected, allowing complete flexibility of output configuration. Further configurability is provided through array-configurable output enable for each potential output. This feature allows the 10 outputs to be reconfigured as inputs on an individual basis, or alternately used as a combination I/O controlled by the programmable array.

PAL is a registered trademark of Advanced Micro Devices. Document #: 38-00020-H

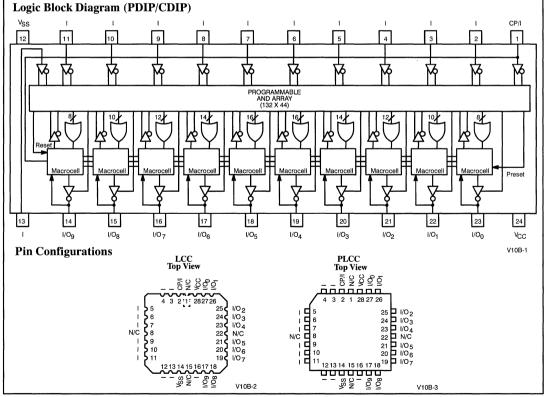
2 - 56

This is an abbreviated datasheet. Contact a Cypress representative for complete specifications. For new designs, please refer to the PALCE22V10.

PALC22V10B

Features

- Advanced second generation PAL architecture
- Low power
 90 mA max. standard
 - 100 mA max. military
- CMOS EPROM technology for reprogrammability
- Variable product terms
 - -2 x (8 through 16) product terms
- User-programmable macrocell — Output polarity control
 - - "15" commercial and industrial
 - 10 ns t_{CO}
 - 10 ns ts
 - 15 ns t_{PD} 50 MHz


- "15" and "20" military 10/15 ns t_{CO} 10/17 ns t_S 15/20 ns t_{PD} 50/31 MHz
- Up to 22 input terms and 10 outputs
- Enhanced test features
 - Phantom array
 - Top test
 - Bottom test
 - Preload
- High reliability
 - Proven EPROM technology
 - 100% programming and functional testing
- Windowed DIP, windowed LCC, DIP, LCC, PLCC available

Functional Description

Reprogrammable CMOS PAL® Device

The Cypress PALC22V10B is a CMOS second-generation programmable logic array device. It is implemented with the familiarsum-of-products(AND-OR)logic structure and a new concept, the "Programmable Macrocell."

The PALC22V10B is executed in a 24-pin 300-mil molded DIP, a 300-mil windowed cerDIP, a 28-lead square ceramic leadless chip carrier, a 28-lead square plasticleaded chip carrier, a 28-lead square plasticleaded chip carrier, and provides up to 22 inputs and 10 outputs. When the windowed cer-DIP is exposed to UV light, the 22V10B is erased and can then be reprogrammed. The programmable macrocell provides the capability of defining the architecture of each output individually. Each of the 10 potential outputs may be specified as "registered" or "combinatorial." Polarity of each output may also be individually

PAL is a registered trademark of Advanced Micro Devices Document #: 38-00195-B

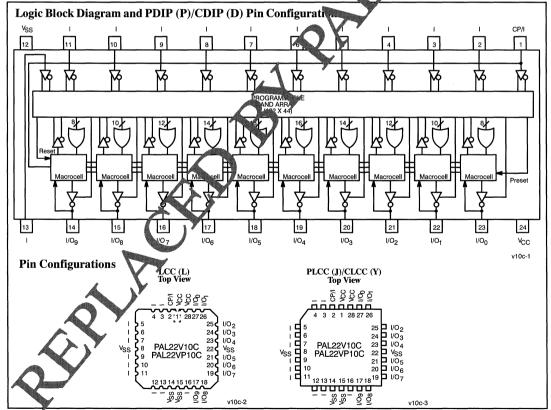
PAL22V10C PAL22VP10C

Features

- Ultra high speed supports today's and tomorrow's fastest microprocessors
 - $-t_{\rm PD} = 6 \, \rm ns$
 - $-t_{SU} = 3 \text{ ns}$
 - $-f_{MAX} = 117 \text{ MHz}$
- Reduced ground bounce and undershoot
- PLCC and LCC packages with additional V_{CC} and V_{SS} pins for lowest ground bounce
- Up to 22 inputs and 10 outputs for more logic power
- Variable product terms
 8 to 16 per output

- 10 user-programmable output macrocells
 - Output polarity control
 - Registered or combinatorial operation
 - 2 new feedback paths (PAL22VP10C)
- Synchronous PRESET, asynchronous RESET, and PRELOAD capability for flexible design and testability
- High reliability
 - Proven Ti-W fuse technology
 - -AC and DC tested at the factory
- Security Fuse

Functional Description


The Cypress PAL22V10C and PAL22VP10C are second-generation parts

Universal PAL[®] Device

grammable array logic devices. Using BiCMOS process and Ti-W fusces the PAL22V10C and PAL22VP10 uses the familiarsum-of-products (AND-Or, logic structure and a new concept, the programmable macrocell.

Both the PAL22VJ C and PAL22VP10C provide 12 dedicated input p. is and 10 I/O pins (see Logic aroc Diagram). By selecting each I/O pin as either permanent or temporary mp.t. up to 22 inputs can be achieved. Applications requiring up to 21 inputs and a single output, down to 12 inputs and a outputs can be realized. The outputs able product term available on each I/O a lows this selection.

The PAL22V10C and PAL22VP10C oture ariable product term architecture, where 8 to 16 product terms are allocated to each output.

PAL is a registered trademark of Advanced Micro Devices. Document #: 38-A-00020-E

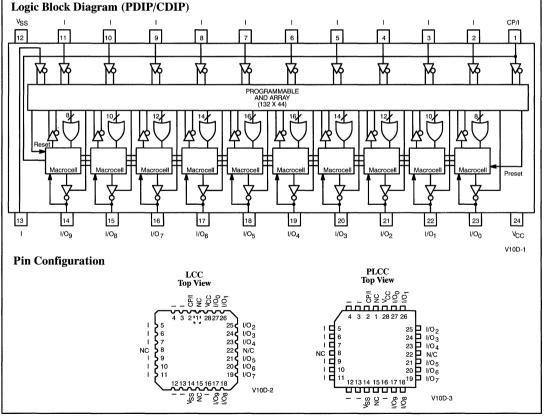
PALC22V10D

Flash Erasable, Reprogrammable CMOS PAL[®] Device

Features

- Advanced second-generation PAL architecture
- Low power -- 90 mA max. commercial (10 ns)
 - 130 mA max. commercial (7.5 ns)
- CMOS Flash EPROM technology for electrical erasability and reprogrammability
- Variable product terms
- -2 x (8 through 16) product terms
- User-programmable macrocell
 - Output polarity control
 - --- Individually selectable for registered or combinatorial operation
- Up to 22 input terms and 10 outputs

- DIP, LCC, and PLCC available
 - -7.5 ns commercial version
 - 5 ns t_{CO}
 - 5 ns t_S 7.5 ns t_{PD}
 - 133-MHz state machine
 - 10 ns military and industrial versions
 6 ns t_{CO}
 6 ns t_S
 10 ns t_{PD}
 - 110-MHz state machine
 - 15-ns commercial and military versions
 - 25-ns commercial and military versions


• High reliability

- Proven Flash EPROM technology
- 100% programming and functional testing

Functional Description

The Cypress PALC22V10D is a CMOS Flash Erasable second-generation programmable array logic device. It is implemented with the familiar sum-of-products (AND-OR) logic structure and the programmable macrocell.

The PALC22V10D is executed in a 24-pin 300-mil molded DIP, a 300-mil cerDIP, a 28-lead square ceramic leadless chip carrier, a 28-lead square plastic leaded chip carrier, and provides up to 22 inputs and 10 outputs. The 22V10D can be electrically

PAL is a registered trademark of Advanced Micro Devices.

Functional Description (continued)

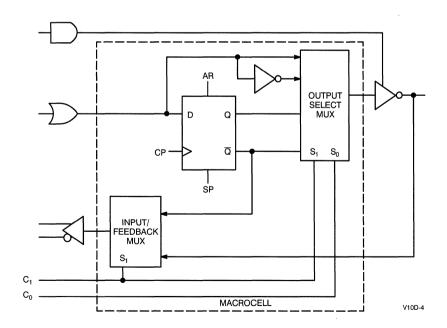
erased and reprogrammed. The programmable macrocell provides the capability of defining the architecture of each output individually. Each of the 10 potential outputs may be specified as "registered" or "combinatorial." Polarity of each output may also be individually selected, allowing complete flexibility of output configuration. Further configurability is provided through "array" configurable "output enable" for each potential output. This feature allows the 10 outputs to be reconfigured as inputs on an individual basis, or alternately used as a combination I/O controlled by the programmable array.

PALC22V10D features a variable product term architecture. There are 5 pairs of product term sums beginning at 8 product terms per output and incrementing by 2 to 16 product terms per output. By providing this variable structure, the PAL C 22V10D is optimized to the configurations found in a majority of applications without creating devices that burden the product term structures with unusable product terms and lower performance.

Additional features of the Cypress PALC22V10D include a synchronous preset and an asynchronous reset product term. These product terms are common to all macrocells, eliminating the need to dedicate standard product terms for initialization functions. The device automatically resets upon power-up.

The PALC22V10D, featuring programmable macrocells and variable product terms, provides a device with the flexibility to implement logic functions in the 500- to 800-gate-array complexity. Since each of the 10 output pins may be individually configured as inputs on a temporary or permanent basis, functions requiring up to 21 inputs and only a single output and down to 12 inputs and 10 outputs are possible. The 10 potential outputs are enabled using

PALC22V10D


product terms. Any output pin may be permanently selected as an output or arbitrarily enabled as an output and an input through the selective use of individual product terms associated with each output. Each of these outputs is achieved through an individual programmable macrocell. These macrocells are programmable to provide a combinatorial or registered inverting or non-inverting output. In a registered mode of operation, the output of the register is fed back into the array, providing current status information to the array. This information is available for establishing the next result in applications such as control state machines. In a combinatorial configuration, the combinatorial output or, if the output is disabled, the signal present on the I/O pin is made available to the array. The flexibility provided by both programmable product term control of the outputs and variable product terms allows a significant gain in functional density through the use of programmable logic.

Along with this increase in functional density, the Cypress PALC22V10D provides lower-power operation through the use of CMOS technology, and increased testability with Flash reprogrammability.

Con	figurs	ation	Table
COL	115,411	uuon	Lante

Registered/Combinatorial						
C ₁	C ₀	Configuration				
0	0	Registered/Active LOW				
0	1	Registered/Active HIGH				
1	0	Combinatorial/Active LOW				
1	1	Combinatorial/Active HIGH				

Macrocell

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with
Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Supply Voltage to Ground Potential (Pin 24 to Pin 12)
DC Voltage Applied to Outputs in High Z State
DC Input Voltage $\dots \dots \dots$
Output Current into Outputs (LOW) 16 mA
DC Programming Voltage 12.5V
Latch-Up Current

Static Discharge Voltage (per MIL-STD-883, Method 3015)>2001V

Operating Range

oltage to Ground Potential	Operatin
-0.5V to $+7.0V$	Rang
ge Applied to Outputs	
-0.5V to $+7.0V$	Commer
t Voltage $\dots \dots \dots$	Military[
Current into Outputs (LOW) 16 mA	Industria
ramming Voltage 12.5V	Industria
\sim Current $\sim \sim \sim$	

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+75^{\circ}$ C	5V ±5%
Military ^[1]	-55°C to +125°C	5V ±10%
Industrial	-40° C to $+85^{\circ}$ C	5V ±10%

Electrical Characteristics Over the Operating Range^[2]

Parameter	Description		Fest Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$	$I_{OH} = -3.2 \text{ mA}$	Com'l	2.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -2 \text{ mA}$	Mil/Ind			
V _{OL}	Output LOW Voltage	$V_{CC} = Min.,$	$I_{OL} = 16 \text{ mA}$	Com'l		0.5	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 12 \text{ mA}$	Mil/Ind			
V _{IH}	Input HIGH Level	Guaranteed Input Lo	ogical HIGH Voltage	for All Inputs ^[3]	2.0		V
V _{IL} ^[4]	Input LOW Level	Guaranteed Input Lo	ogical LOW Voltage	for All Inputs ^[3]	-0.5	0.8	V
I _{IX}	Input Leakage Current	$V_{SS} \leq V_{IN} \leq V_{CC}, V$	$V_{\rm CC} = Max.$		-10	10	μA
I _{OZ}	Output Leakage Current	V_{CC} = Max., $V_{SS} \leq$	-40	40	μA		
I _{SC}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT}$	$V_{CC} = Max., V_{OUT} = 0.5V^{[5, 6]}$				
I _{CC1}	Standby Power Supply	$V_{CC} = Max.,$	10, 15, 25 ns	Com'l		90	mA
	Current	$V_{IN} = GND,$ Outputs Open in	7.5 ns			130	mA
		Unprogrammed Device	15, 25 ns	Mil/Ind		120	mA
			10 ns	1		120	mA
I _{CC2} ^[6]	Operating Power Supply	$V_{CC} = Max., V_{IL} =$	10, 15, 25 ns	Com'l		110	mA
	Current	$0V, V_{IH} = 3V,$ Output Open, De-	7.5 ns	1		140	mA
	Input HIGH Level Input LOW Level Input Leakage Current Output Leakage Current Output Short Circuit Current Standby Power Supply Current [6] Operating Power Supply Current	vice Programmed as a 10-Bit Counter,	15, 25 ns	Mil/Ind		130	mA
		f = 25 MHz	10 ns	1		130	mA

Capacitance^[6]

Parameter	Description	Test Conditions	Min.	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 2.0V @ f = 1 MHz$		10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 2.0V @ f = 1 MHz$		10	pF

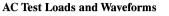
Endurance Characteristics^[6]

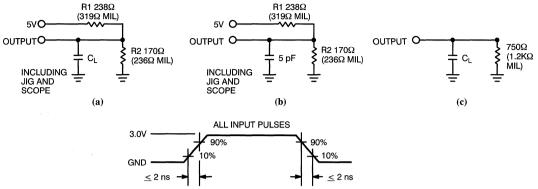
Parameter	Description	Test Conditions	Min.	Max.	Unit
Ν	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

Notes: 1. T_A is the "instant on" case temperature.

See the last page of this specification for Group A subgroup testing in-2. formation.

circuit should not be more than one second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation. 6.


These are absolute values with respect to device ground. All over-shoots due to system or tester noise are included. 3.


4. V_{IL} (Min.) is equal to -3.0V for pulse durations less than 20 ns.

Tested initially and after any design or process changes that may affect these parameters.

5. Not more than one output should be tested at a time. Duration of the short

Equivalent to: THÉVENIN EQUIVALENT (Commercial)

OUTPUT O 2.08V =
$$V_{\text{thc}}$$
 V10D-6

 Load Speed
 CL
 Package

 7.5, 10, 15, 25 ns
 50 pF
 PDIP, CDIP, PLCC, LCC
 Equivalent to: THÉVENIN EQUIVALENT (Military) 136Ω

 \sim

V10D-5

OUTPUT O

-O 2.13V = V_{thm}

Parameter	VX	Output Waveform—Measurement Level						
t _{ER (-)}	1.5V	V _{OH}						
t _{ER (+)}	2.6V	V _{OL} 0.5V V _X V _{10D-9}						
t _{EA (+)}	0V	V _X 1.5V V _{OH} V _{OH} V10D-10						
t _{EA (-)}	V _{thc}	V _X 0.5V V _{OL} V10D-11						

(e) Test Waveforms

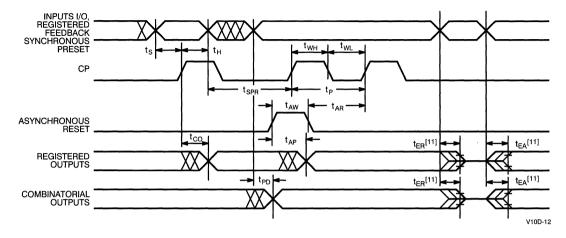
		22V1	0D-7	22V10)D-10	22V10D-15		22V10D-25		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input to Output Propagation Delay ^[8, 9]	3	7.5	3	10	3	15	3	25	ns
t _{EA}	Input to Output Enable Delay ^[10]		8		10		15		25	ns
t _{ER}	Input to Output Disable Delay ^[11]		8		10		15		25	ns
t _{CO}	Clock to Output Delay ^[8, 9]	2	5	2	7	2	8	2	15	ns
t _{S1}	Input or Feedback Set-Up Time	5		6		10		15		ns
t _{S2}	Synchronous Preset Set-Up Time	6		7		10		15		ns
t _H	Input Hold Time	0		0		0		0		ns
t _P	External Clock Period $(t_{CO} + t_S)$	10		12		20		30		ns
t _{WH}	Clock Width HIGH ^[6]	3		3		6		13		ns
t _{WL}	Clock Width LOW ^[6]	3		3		6		13		ns
f _{MAX1}	External Maximum Frequency $(1/(t_{CO} + t_S))^{[12]}$	100		76.9		55.5		33.3		MHz
f _{MAX2}	Data Path Maximum Frequency $(1/(t_{WH} + t_{WL}))^{[6, 13]}$	166		142		83.3		35.7		MHz
f _{MAX3}	Internal Feedback Maximum Frequency (1/(t _{CF} + t _S)) ^[6, 14]	133		111		68.9		38.5		MHz
t _{CF}	Register Clock to Feedback Input ^[6, 15]		2.5		3		4.5		13	ns
t _{AW}	Asynchronous Reset Width	8		10		15		25		ns
t _{AR}	AsynchronousResetRecoveryTime	5		6		10		25		ns
t _{AP}	Asynchronous Reset to Registered Output Delay		12		13		20		25	ns
t _{SPR}	Synchronous Preset Recovery Time	6		8		10		15		ns
t _{PR}	Power-Up Reset Time ^[6, 16]	1		1		1		1		μs

Commercial Switching Characteristics PALC22V10D^[2,7]

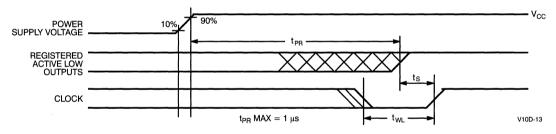
Notes:

- 7. Part (a) of AC Test Loads and Waveforms is used for all parameters except t_{ER} and $t_{EA(+)}$. Part (b) of AC Test Loads and Waveforms is used for t_{ER} . Part (c) of AC Test Loads and Waveforms is used for $t_{EA(+)}$.
- Min. times are tested initially and after any design or process changes that may affect these parameters.
- 9. This specification is guaranteed for all device outputs changing state in a given access cycle.
- 10. The test load of part (a) of AC Test Loads and Waveforms is used for measuring $t_{EA(-)}$. The test load of part (c) of AC Test Loads and Waveforms is used for measuring $t_{EA(+)}$ only. Please see part (c) of AC Test Loads and Waveforms for enable and disable test waveforms and measurement reference levels.
- 11. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below V_{OH} min. or a previous LOW level has risen to 0.5 volts above V_{OL} max. Please see part (e) of AC Test Loads and Waveforms for enable and disable test waveforms and measurement reference levels.
- This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
- 13. This specification indicates the guaranteed maximum frequency at which the device can operate in data path mode.
- This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate.
- 15. This parameter is calculated from the clock period at f_{MAX} internal (1/f_{MAX3}) as measured (see Note 11 above) minus t_S.
- 16. The registers in the PALC22V10D have been designed with the capability to reset during system power-up. Following power-up, all registers will be reset to a logic LOW state. The output state will depend on the polarity of the output buffer. This feature is useful in establishing state machine-initialization. To insure proper operation, the rise in V_{CC} must be monotonic and the timing constraints depicted in Power-Up Reset Waveform must be satisfied.

Military and Ind	lustrial Switching	Characteristics	PALC22V10D ^[2, 7]
------------------	--------------------	-----------------	------------------------------

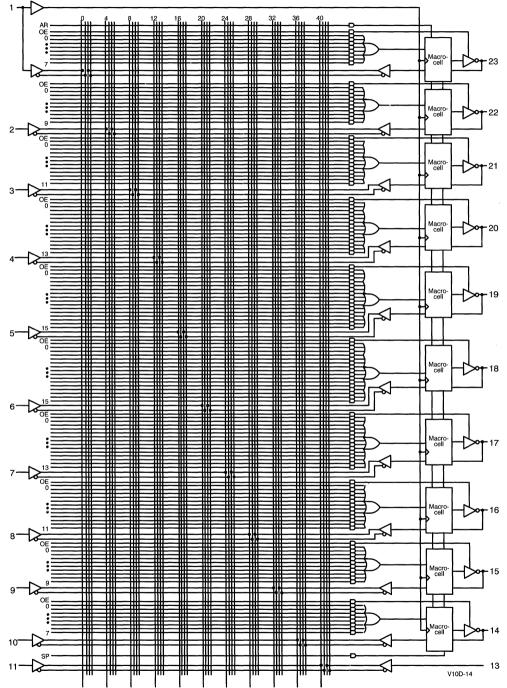

		22V1	0D-10	22V10	D-15	22V1	0D-25	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input to Output Propagation Delay ^[8, 9]	3	10	3	15	3	25	ns
t _{EA}	Input to Output Enable Delay ^[10]		10		15		25	ns
t _{ER}	Input to Output Disable Delay ^[11]		10		15		25	ns
t _{CO}	Clock to Output Delay ^[8, 9]	2	7	2	8	2	15	ns
t _{S1}	Input or Feedback Set-Up Time	6		10		18		ns
t _{S2}	Synchronous Preset Set-Up Time	7		10		18		ns
t _H	Input Hold Time	0		0		0		ns
tp	External Clock Period $(t_{CO} + t_S)$	12		20		33		ns
t _{WH}	Clock Width HIGH ^[6]	3		6		14		ns
t _{WL}	Clock Width LOW ^[6]	3	1	6		14		ns
f _{MAX1}	External Maximum Frequency $(1/(t_{CO} + t_S))^{[12]}$	76.9		50.0		30.3		MHz
f _{MAX2}	Data Path Maximum Frequency $(1/(t_{WH} + t_{WL}))^{[6, 13]}$	142		83.3		35.7		MHz
f _{MAX3}	Internal Feedback Maximum Frequency $(1/(t_{CF} + t_S))^{[6, 14]}$	111		68.9		32.2		MHz
t _{CF}	Register Clock to Feedback Input ^[6, 15]		3		4.5		13	ns
t _{AW}	Asynchronous Reset Width	10		15		25		ns
t _{AR}	Asynchronous Reset Recovery Time	6		12		25		ns
t _{AP}	Asynchronous Reset to Registered Output Delay		12		20		25	ns
t _{SPR}	Synchronous Preset Recovery Time	8		20		25		ns
t _{PR}	Power-Up Reset Time ^[6, 16]	1		1		1		μs

٩



PALC22V10D

Switching Waveform


Power-Up Reset Waveform^[16]

2 - 65

Functional Logic Diagram for PALC22V10D

Ordering Information

I _{CC} (mA)	t _{PD} (ns)	t _S (ns)	t _{CO} (ns)	Ordering Code	Package Name	Package Type	Operating Range	
130	7.5	5	5	PALC22V10D-7JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial	
				PALC22V10D-7PC	P13	24-Lead (300-Mil) Molded DIP		
90	10	6	7	PALC22V10D-10JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial	
				PALC22V10D-10PC	P13	24-Lead (300-Mil) Molded DIP	7	
150	10	6	7	PALC22V10D-10JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial	
				PALC22V10D-10PI	P13	24-Lead (300-Mil) Molded DIP		
150	10	6	7	PALC22V10D-10DMB	D14	24-Lead (300-Mil) CerDIP	Military	
				PALC22V10D-10KMB	K73	24-Lead Rectangular Cerpack		
				PALC22V10D-10LMB	L64	28-Square Leadless Chip Carrier		
90	15	7.5	10	PALC22V10D-15JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial	
				PALC22V10D-15PC	P13	24-Lead (300-Mil) Molded DIP	1	
120	15	7.5	10	PALC22V10D-15JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial	
				PALC22V10D-15PI	P13	24-Lead (300-Mil) Molded DIP		
120	15	7.5	10	PALC22V10D-15DMB	D14	24-Lead (300-Mil) CerDIP	Military	
				PALC22V10D-15KMB	K73	24-Lead Rectangular Cerpack		
				PALC22V10D-15LMB	L64	28-Square Leadless Chip Carrier		
90	25	15	15	PALC22V10D-25JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial	
				PALC22V10D-25PC	P13	24-Lead (300-Mil) Molded DIP		
120	25	15	15	PALC22V10D-25JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial	
				PALC22V10D-25PI	P13	24-Lead (300-Mil) Molded DIP	1	
120	25	15	15	PALC22V10D-25DMB	D14	24-Lead (300-Mil) CerDIP	Military	
				PALC22V10D-25KMB	K73	24-Lead Rectangular Cerpack	7	
				PALC22V10D-25LMB	L64	28-Square Leadless Chip Carrier	7	

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Switching Characteristics

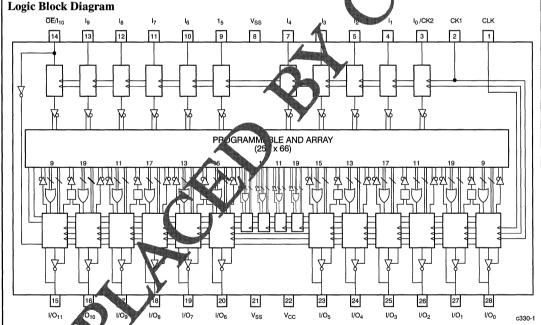
Parameter	Subgroups
t _{PD}	9, 10, 11
t _{CO}	9, 10, 11
ts	9, 10, 11
t _H	9, 10, 11

Document #: 38-00185-H

CY7C330

Features

- Twelve I/O macrocells each having:
 - registered, three-state I/O pins - input register clock select multiplexer
 - feed back multiplexer
 - output enable (OE) multiplexer
- All twelve macrocell state registers can be hidden
- User-configurable state registers-JK, RS, T, or D
- One input multiplexer per pair of I/O macrocells allows I/O pin associated with a hidden macrocell state register to be saved for use as an input
- Four dedicated hidden registers
- Eleven dedicated, registered inputs


- Three separate clocks-two inputs. one output
- Common (pin 14-controlled) or product term – controlled output en-able for each I/O pin
- 256 product terms—32 per pair of macrocells, variable distribution ٠
- Global, synchronous, product termcontrolled, state register set and reset-inputs to product term are clocked by input clock
- 66-MHz operation
 - 3-ns input set-up and 12-ns clock to output
 - 15-ns input register clock to state register clock
- Low power
 - 130 mA I_{CC}

CMOS Programmable Synchronous State Machine

- 28-pin, 300-mil DIP, LCC
- Erasable and reprogrammable
- **Functional Description**

The CY7C330 is a high-perform able, programmable, logic device (E whose architecture har be in optimized to enable the user to easily and enciently construct very him performance synchronous state machines.

The unique architecture of the CY7C330, consisting 1 he u. figurable output macroce, bid rectional I/O capability, in-put registers, and three separate clocks, en-ables the user to o usign high-performance st to machines that can communicate either with sch other or with microprocesors over directional parallel buses of user-definable widths.

Selection Gaide

		7C330-66	7C330-50	7C330-40	7C330-33	7C330-28
Maximum Cerating Frequency,	Commercial	66.6	50.0		33.3	
f _{M/H} MHz)	Military		50.0	40.0		28.5
Actor Grand Current I _{CC1} (mA)	Commercial	140	130		130	
	Military		160	150		150

Document #: 38-00064-F

CY7C331

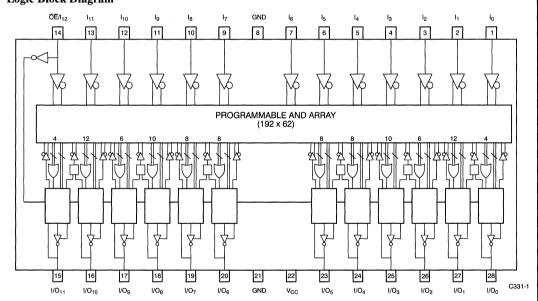
Features

- Twelve I/O macrocells each having:
- One state flip-flop with an XOR sum-of-products input
- One feedback flip-flop with input coming from the I/O pin
- Independent (product term) set, reset, and clock inputs on all registers
- Asynchronous bypass capability on all registers under product term control (r = s = 1)
- Global or local output enable on three-state I/O
- Feedback from either register to the array
- 192 product terms with variable distribution to macrocells

Logic Block Diagram

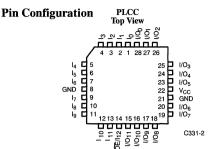
- 13 inputs, 12 feedback I/O pins, plus 6 shared I/O macrocell feedbacks for a total of 31 true and complementary inputs
- High speed: 20 ns maximum tPD
- Security bit
- Space-saving 28-pin slim-line DIP package; also available in 28-pin PLCC
- Low power
 - -90 mA typical I_{CC} quiescent
 - -180 mA I_{CC} maximum

 - Programming and operation 100% testable


Functional Description

The CY7C331 is the most versatile PLD available for asynchronous designs. Central resources include twelve full D-type flip-flops with separate set, reset, and clock capability. For increased utility, XOR gates are provided at the D-inputs and the product term allocation per flip-flop is variably distributed.

I/O Resources


Asynchronous Registered EPI

Pins 1 through 7 and 9 through 14 serve as array inputs; pin 14 may also be used as a global output enable for the I/O macrocell three-state outputs. Pins 15 through 20 and 23 through 28 are connected to I/O macrocells and may be managed as inputs or outputs depending on the configuration and the macrocell OE terms.

Selection Guide

Generic Part	I _{CC1}	(mA)	t _{PD}	(ns)	t _S (ns)	t _{CO}	(ns)
Number	Com'l	Mil	Com'l	Mil	Com'l	Mil	Com'l	Mil
CY7C331-20	130		20		12		20	
CY7C331-25	120	160	25	25	12	15	25	25
CY7C331-30		150		30		15		30
CY7C331-40		150		40		20		40

I/O Resources (continued)

It should be noted that there are two ground connections (pins 8 and 21) which, together with V_{CC} (pin 22) are located centrally on the package. The reason for this placement and dual-ground structure is to minimize the ground-loop noise when the outputs are driving simultaneously into a heavy capacitive load.

The CY7C331 has twelve I/O macrocells (see *Figure 1*). Each macrocell has two D-type flip-flops. One is fed from the array, and one from the I/O pin. For each flip-flop there are three dedicated product terms driving the R, S, and clock inputs, respectively. Each macrocell has one input to the array and for each pair of macrocells there is one shared input to the array. The macrocell input to the array may be configured to come from the 'Q' output of either flip-flop. The D-type flip-flop that is fed from the array (i.e., the state flipflop) has a logical XOR function on its input that combines a single product term with a sum(OR) of a number of product terms. The single product term is used to set the polarity of the output or to implement toggling (by including the current output in the product term).

The R and S inputs to the flip-flops override the current setting of the Q' output. The S input sets Q' true and the R input resets Q'(sets it false). If both R and S are asserted (true) at once, then the output will follow the input ('Q' = 'D') (see *Table 1*).

Table 1. RS Truth Table

R	S	Q
1	0	0
0	1	1
1	1	D

Shared Input Multiplexer

The input associated with each pair of macrocells may be configured by the shared input multiplexer to come from either macrocell; the 'Q' output of the flip-flop coming from the I/O pin is used as the input signal source (see *Figure 2*).

Product Term Distribution

The product terms are distributed to the macrocells such that 32 product terms are distributed between two adjacent macrocells.

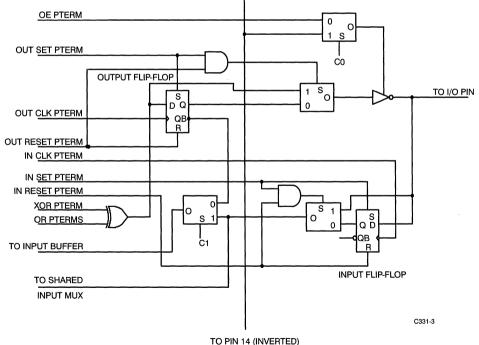


Figure 1. I/O Macrocell

Product Term Distribution (continued)

The pairing of macrocells is the same as it is for the shared inputs. Eight of the product terms are used in each macrocell for set, reset, clock, output enable, and the upper part of the XOR gate. This leaves 16 product terms per pair of macrocells to be divided between the sum-of-products inputs to the two state registers. The following table shows the I/O pin pairing for shared inputs, and the product term (PT) allocation to macrocells associated with the I/O pins (see *Table 2*).

Table 2	. Product Term Dis	tribution
orocoll	Din Number	Droduot

1	Macrocell	Pin Number	Product Terms
	0	28	4
	1	27	12
	2	26	6
	3	25	10
	4	24	8
	5	23	8
	6	20	8
	7	19	8
	8	18	10
	9	17	6
	10	16	12
	11	15	4

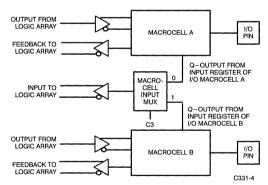


Figure 2. Shared Input Multiplexer

The CY7C331 is configured by three arrays of configuration bits (C0, C1, C2). For each macrocell, there is one C0 bit and one C1 bit. For each pair of macrocells there is one C2 bit.

There are twelve C0 bits, one for each macrocell. If C0 is programmed for a macrocell, then the three-state enable (OE) will be controlled by pin 14 (the global OE). If C0 is not programmed, then the OE product term for that macrocell will be used.

There are twelve C1 bits, one for each macrocell. The C1 bit selects inputs for the product term (PT) array from either the state register (if the bit is unprogrammed) or the input register (if the bit is programmed).

There are six C2 bits, providing one C2 bit for each pair of macrocells. The C2 bit controls the shared input multiplexer; if the C2 bit is not programmed, then the input to the product term array comes from the upper macrocell (A). If the C2 bit is programmed, then the input comes from the lower macrocell (B).

The timing diagrams for the CY7C331 cover state register, input register, and various combinational delays. Since internal clocks are the outputs of product terms, all timing is from the transition of the inputs causing the clock transition.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with Power Applied
Supply Voltage to Ground Potential (Pin 28 to Pin 8 or 21)0.5V to +7.0V
DC Input Voltage
Output Current into Outputs (LOW) 12 mA
Static Discharge Voltage
Latch-Up Current
DC Programming Voltage 13.0 V

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	$5V \pm 10\%$
Military ^[1]	-55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range ^[2]	Electrical	Characteristics	Over the	Operating Range ^[2]	
--	------------	------------------------	----------	--------------------------------	--

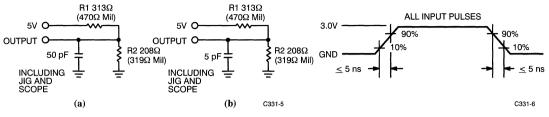
Parameter	Description	Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage		il)	2.4		v
V _{OL}	Output LOW Voltage				0.5	v
V _{IH}	Input HIGH Voltage	Guaranteed HIGH Input, all Inputs ^[3]		2.2		V
V _{IL}	Input LOW Voltage	Guaranteed LOW Input, all Inputs ^[3]			0.8	V
I _{IX}	Input Leakage Current	$V_{SS} < V_{IN} < V_{CC}$, $V_{CC} = Max$.		-10	+10	μA
I _{OZ}	Output Leakage Current	$V_{SS} < V_{OUT} < V_{CC}, V_{CC} = Max.$		-40	+40	μA
I _{SC}	Output Short Circuit Current ^[4]	$V_{CC} = Max., V_{OUT} = 0.5V^{[5]}$		-30	-90	mA
I _{CC1}	Standby Power Supply	$V_{CC} = Max., V_{IN} = GND,$	Com'l -20		130	mA
	Current	Outputs Open	Com'l -25		120	
			Mil -25		160	mA
			Mil -30, -40		150	
I _{CC2}	Power Supply Current at	$V_{CC} = Max.$, Outputs Disabled	Com'l		180	mA
	Frequency ^[4, 6]	(in High Z State) Device Operating at f _{MAX} External (f _{MAX1})	Mil	1	200	

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit	
C _{IN}	Input Capacitance	$V_{IN} = 2.0V$ at f = 1 MHz	10	pF	
C _{OUT}	Output Capacitance	$V_{OUT} = 2.0V$ at f = 1 MHz	10	pF	

Notes:

1.


T_A is the "instant on" case temperature. See the last page of this specification for Group A subgroup testing in-formation. 2.

These are absolute values with respect to device ground and all over-shoots due to system or tester noise are included. Tested initially and after any design or process changes that may affect 3.

4. these parameters. 5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation.

Because these input signals are controlled by product terms, active in-put polarity may be of either polarity. Internal active input polarity has been shown for clarity. 6.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT (Commercial) OUTPUT O 2.00V = V_{thc} C331-7 Equivalent to: THÉVENIN EQUIVALENT (Military) OUTPUT O 2.02V = V_{thm} C331-8

Parameter	VX		Output Waveform—Measurement	Level	
t _{PXZ(-)}	1.5V	V _{OH} –	0.5V	V _X	C331-9
t _{PXZ(+)}	2.6V	V _{OL}	0.5V	V _X	C331-10
t _{PZX(+)}	V _{thc}	V _X –	0.5V	Voh	C331-11
t _{PZX(-)}	V _{thc}	V _X –	0.5V	V _{OL}	C331-12
t _{ER(-)}	1.5V	V _{OH} _	0.5V	V _X	C331-13
t _{ER(+)}	2.6V	V _{OL} _	0.5	V _X	C331-14
t _{EA(+)}	V _{thc}	V _X –	0.5V	V _{OH}	C331-15
t _{EA(-)}	V _{thc}	V _X –	0.5V	V _{OL}	C331-16

(c) Test Waveforms and Measurement Levels

Switching Characteristics Over the Operating Range^[2]

		Commercial				
		-	-20		-25	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input to Output Propagation Delay ^[7]		20		25	ns
t _{ICO}	Input Register Clock to Output Delay ^[8]		35		40	ns
t _{IOH}	Output Data Stable Time from Input Clock ^[8]	5		5		ns
t _{IS}	Input or Feedback Set-Up Time to Input Register Clock ^[8]	2		2		ns
t _{IH}	Input Register Hold Time from Input Clock ^[8]	11		13		ns

Switching Characteristics Over the Operating Range^[2] (continued)

			Comn	nercial		
		-	20	-	25	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
t _{IAR}	Input to Input Register Asynchronous Reset Delay ^[8]		35		40	ns
t _{IRW}	Input Register Reset Width ^[4, 8]	35		40		ns
t _{IRR}	Input Register Reset Recovery Time ^[4, 8]	35		40		ns
t _{IAS}	Input to Input Register Asynchronous Set Delay ^[8]		35		40	ns
t _{ISW}	Input Register Set Width ^[4, 8]	35		40		ns
t _{ISR}	Input Register Set Recovery Time ^[4, 8]	35		40		ns
t _{WH}	Input and Output Clock Width HIGH ^[8, 9, 10]	12		15		ns
t _{WL}	Input and Output Clock Width LOW ^[8, 9, 10]	12		15		ns
f _{MAX1}	Maximum Frequency with Feedback in Input Registered Mode $(1/(t_{ICO} + t_{IS}))^{[11]}$	27.0		23.8		MHz
f _{MAX2}	Maximum Frequency Data Path in Input Registered Mode (Lowest of $1/t_{ICO}$, $1/(t_{WH} + t_{WL})$, or $1/(t_{IS} + t_{IH})^{[8]}$	28.5		25.0		MHz
t _{IOH} -t _{IH} 33X	Output Data Stable from Input Clock Minus Input Register Input Hold Time for 7C330 and 7C332 ^[12, 13]	0		0		ns
t _{CO}	Output Register Clock to Output Delay ^[9]		20		25	ns
t _{OH}	Output Data Stable Time from Output Clock ^[9]	3		3		ns
ts	Output Register Input Set-Up Time to Output Clock ^[9]	12		12		ns
t _H	Output Register Input Hold Time from Output Clock ^[9]	8		8		ns
t _{OAR}	Input to Output Register Asynchronous Reset Delay ^[9]		20		25	ns
t _{ORW}	Output Register Reset Width ^[9]	20		25		ns
t _{ORR}	Output Register Reset Recovery Time ^[9]	20		25		ns
t _{OAS}	Input to Output Register Asynchronous Set Delay ^[9]		20		25	ns
t _{OSW}	Output Register Set Width ^[9]	20		25		ns
t _{OSR}	Output Register Set Recovery Time ^[9]	20		25		ns
t _{EA}	Input to Output Enable Delay ^[14, 15]		25	1	25	ns
t _{ER}	Input to Output Disable Delay ^[14, 15]		25		25	ns
t _{PZX}	Pin 14 to Output Enable Delay ^[14, 15]		20		20	ns
t _{PXZ}	Pin 14 to Output Disable Delay ^[14, 15]		20		20	ns
f _{MAX3}	Maximum Frequency with Feedback in Output Registered Mode $(1/(t_{CO} + t_S))^{[16, 17]}$	31.2		27.0		MHz
f _{MAX4}	Maximum Frequency Data Path in Output Registered Mode (Lowest of $1/t_{CO}$, $1/(t_{WH} + t_{WL})$, or $1/(t_S + t_H))^{[9]}$	41.6		33.3		MHz
t _{OH} -t _{IH} 33X	Output Data Stable from Output Clock Minus Input Register Input Hold Time for 7C330 and 7C332 ^[13, 18]	0		0		ns
f _{MAX5}	Maximum Frequency Pipelined Mode ^[10, 17]	35.0		30.0		MHz

Notes: 7. Refer to *Figure 3*, configuration 1.

Refer to Figure 3, configuration 2. 8.

9. Refer to Figure 3, configuration 3.

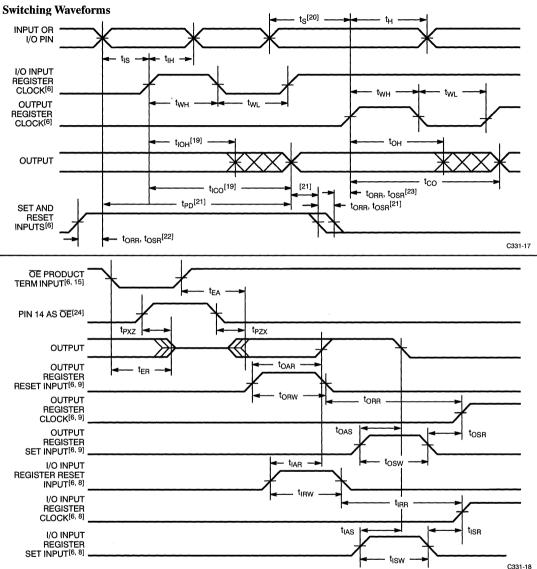
10. Refer to Figure 3, configuration 6.

11. Refer to Figure 3, configuration 7.

12. Refer to Figure 3, configuration 9.

13. This specification is intended to guarantee interface compatibility of the other members of the CY7C330 family with the CY7C331. This specification is met for the devices noted operating at the same ambi-ent temperature and at the same power supply voltage. These parame-ters are tested periodically by sampling of production product.

- 14. Part (a) of AC Test Loads and Waveforms used for all parameters except t_{PZXI}, t_{PZXI}, t_{PZX}, and t_{PXZ}, which use part (b). Part (c) shows the test waveforms and measurement levels.
- Refer to *Figure 3*, configuration 4.
 Refer to *Figure 3*, configuration 8.
- This specification is intended to guarantee that a state machine config-uration created with internal or external feedback can be operated with output register and input register clocks controlled by the same source. These parameters are tested by periodic sampling of produc-tions are the statement of the same source of the same source. tion product.
- 18. Refer to Figure 3, configuration 10.

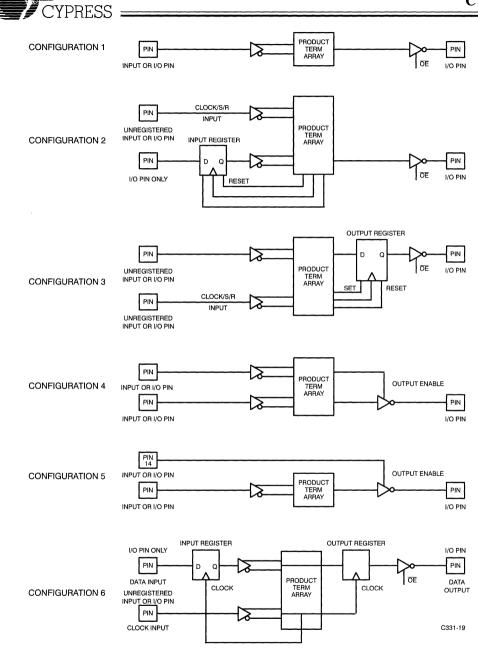
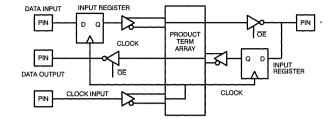


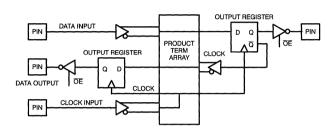
Switching Characteristics Over the Operating Range^[2] (continued)

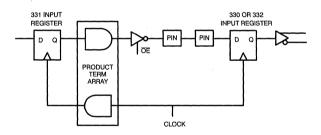
				Military				
		_	25	-	30	- 1	40	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input to Output Propagation Delay ^[7]		25		30		40	ns
t _{ICO}	Input Register Clock to Output Delay ^[4, 8]		45		50		65	ns
t _{IOH}	Output Data Stable Time from Input Clock ^[4, 8]	5		5		5		ns
t _{IS}	Input or Feedback Set-Up Time to Input Register Clock ^[8]	5		5		5		ns
t _{IH}	Input Register Hold Time from Input Clock ^[4, 8]	13		15		20		ns
t _{IAR}	Input to Input Register Asynchronous Reset Delay ^[4, 8]		45		50		65	ns
t _{IRW}	Input Register Reset Width ^[8]	45		50		65		ns
t _{IRR}	Input Register Reset Recovery Time ^[8]	45		50		65		ns
t _{IAS}	Input to Input Register Asynchronous Set Delay ^[8]		45		50		65	ns
t _{ISW}	Input Register Set Width ^[8]	45		50		65		ns
t _{ISR}	Input Register Set Recovery Time ^[8]	45	[50		65		ns
t _{WH}	Input and Output Clock Width High ^[8, 9, 10]	15		20		25		ns
t _{WL}	Input and Output Clock Width Low ^[8, 9, 10]	15		20		25		ns
f _{MAX1}	Maximum frequency with Feedback in Input Registered Mode $(1/(t_{ICO} + t_{IS}))^{[11]}$	20.0		18.1		14.2		MHz
f _{MAX2}	Maximum frequency Data Path in Input Registered Mode (Lowest of $1/t_{ICO}$, $1/(t_{WH} + t_{WL})$, or $1/(t_{IS} + t_{IH})^{[8]}$	22.2		20.0		15.3		MHz
$t_{\rm IOH} - t_{\rm IH} 33X$	Output Data Stable from Input Clock Minus Input Register Input Hold Time for 7C330 and 7C332 ^[12, 13]	0		0		0		ns
t _{CO}	Output Register Clock to Output Delay ^[9]		25		30		40	ns
t _{OH}	Output Data Stable Time from Output Clock ^[9]	3		3		3		ns
t _S	Output Register Input Set-Up Time to Output Clock ^[9]	15		15		20		ns
t _H	Output Register Input Hold Time from Output Clock ^[9]	10		10		12		ns
t _{OAR}	Input to Output Register Asynchronous Reset Delay ^[9]		25	1	30		40	ns
tORW	Output Register Reset Width ^[9]	25		30		40		ns
t _{ORR}	Output Register Reset Recovery Time ^[9]	25		30		40		ns
tOAS	Input to Output Register Asynchronous Set Delay ^[9]		25		30		40	ns
tosw	Output Register Set Width ^[9]	25		30		40		ns
t _{OSR}	Output Register Set Recovery Time ^[9]	25		30		40		ns
t _{EA}	Input to Output Enable Delay ^[14, 15]		25		30		40	ns
t _{ER}	Input to Output Disable Delay ^[14, 15]		25		30		40	ns
t _{PZX}	Pin 14 to Output Enable Delay ^[14, 15]		20		25		35	ns
t _{PXZ}	Pin 14 to Output Disable Delay ^[14, 15]		20		25		35	ns
f _{MAX3}	Maximum Frequency with Feedback in Output Registered Mode $\frac{1}{(t_{CO} + t_S)}$	25.0		22.2		16.6		MHz
f _{MAX4}	Maximum Frequency Data Path in Output Registered Mode (Lowest of $1/t_{CO}$, $1/(t_{WH} + t_{WL})$, or $1/(t_S + t_H)^{[9]}$	33.3		25.0		20.0		MHz
$t_{OH} - t_{IH} 33X$	Output Data Stable from Output Clock Minus Input Register Input Hold Time for 7C330 and 7C332 ^[13, 18]	0		0		0		ns
f _{MAX5}	Maximum Frequency Pipelined Mode ^[10, 17]	28.0		23.5		18.5		MHz

Notes:

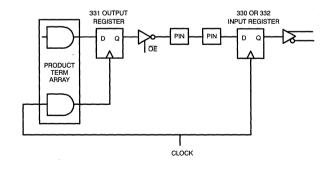
- 19. Output register is set in Transparent mode. Output register set and reset inputs are in a HIGH state.
- Dedicated input or input register set in Transparent mode. Input register set and reset inputs are in a HIGH state.
- 21. Combinatorial Mode. Reset and set inputs of the input and output registers should remain in a HIGH state at least until the output responds at t_{PD}. When returning set and reset inputs to a LOW state, one of these signals should go LOW a minimum of t_{OSR} (set input) or t_{ORR} (reset input) prior to the other. This guarantees predictable register states upon exit from Combinatorial mode.
- 22. When entering the Combinatorial mode, input and output register set and reset inputs must be stable in a HIGH state a minimum of t_{ISR} or t_{IRR} and t_{OSR} or t_{ORR} respectively prior to application of logic input signals.
- 23. When returning to the input and/or output Registered mode, register set and reset inputs must be stable in a LOW state a minimum of t_{ISR} or t_{IRR} and t_{OSR} or t_{ORR} respectively prior to the application of the register clock input.
- 24. Refer to Figure $\hat{3}$, configuration 5.

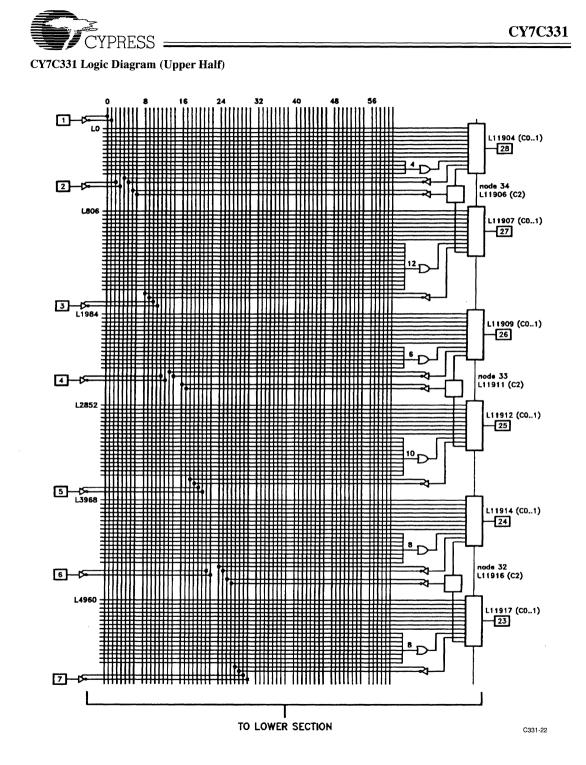

Figure 3. Timing Configurations


CONFIGURATION 7

CONFIGURATION 8

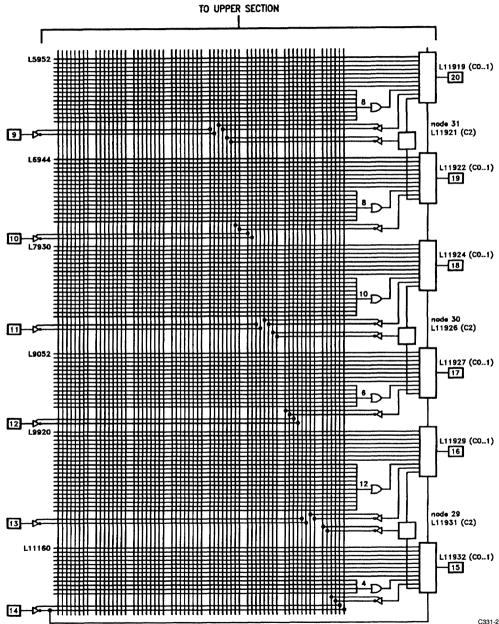


C331-20


CONFIGURATION 9

CONFIGURATION 10

C331-21


Figure 3. Timing Configurations (continued)

CY7C331

CY7C331 Logic Diagram (Lower Half)

C331-23

CY7C331

Ordering Information

I _{CC1} (mA)	t _{PD} (ns)	t _S (ns)	t _{CO} (ns)	Ordering Code	Package Name	Package Type	Operating Range
130	20	12	20	СҮ7С331-20НС	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
				CY7C331-20JC	J64	28-Lead Plastic Leaded Chip Carrier	
				CY7C331-20PC	P21	28-Lead (300-Mil) Molded DIP	
				CY7C331-20WC	W22	28-Lead (300-Mil) Windowed CerDIP	
160	25	15	25	CY7C331-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
				CY7C331-25HMB	H64	28-Pin Windowed Leaded Chip Carrier	1
				CY7C331-25LMB	L64	28-Square Leadless Chip Carrier	
				CY7C331-25QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
				CY7C331-25TMB	T74	28-Lead Windowed Cerpack	
				CY7C331-25WMB	W22	28-Lead (300-Mil) Windowed CerDIP]
120	25	12	25	CY7C331-25HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
				CY7C331-25JC	J64	28-Lead Plastic Leaded Chip Carrier	
				CY7C331-25PC	P21	28-Lead (300-Mil) Molded DIP	
				CY7C331-25WC	W22	28-Lead (300-Mil) Windowed CerDIP	
150	30	15	30	CY7C331-30DMB	D22	28-Lead (300-Mil) CerDIP	Military
				CY7C331-30HMB	H64	28-Pin Windowed Leaded Chip Carrier	
	1			CY7C331-30LMB	L64	28-Square Leadless Chip Carrier	
				CY7C331-30QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
				CY7C331-30TMB	T74	28-Lead Windowed Cerpack]
				CY7C331-30WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
150	40	20	40	CY7C331-40DMB	D22	28-Lead (300-Mil) CerDIP	Military
			[CY7C331-40HMB	H64	28-Pin Windowed Leaded Chip Carrier	
				CY7C331-40LMB	L64	28-Square Leadless Chip Carrier]
				CY7C331-40QMB	Q64	28-Pin Windowed Leadless Chip Carrier]
				CY7C331-40TMB	T74	28-Lead Windowed Cerpack]
				CY7C331-40WMB	W22	28-Lead (300-Mil) Windowed CerDIP]

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{IS}	9, 10, 11
t _{IH}	9, 10, 11
t _{WH}	9, 10, 11
t _{WL}	9, 10, 11
t _{CO}	9, 10, 11
t _{PD}	9, 10, 11
t _{IAR}	9, 10, 11
t _{IAS}	9, 10, 11
t _{PXZ}	9, 10, 11
t _{PZX}	9, 10, 11
t _{ER}	9, 10, 11
t _{EA}	9, 10, 11
ts	9, 10, 11
t _H	9, 10, 11

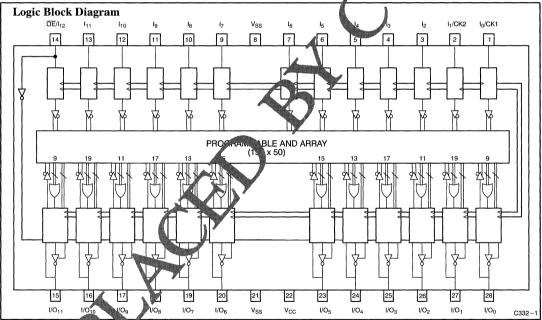
Document #: 38-00066-D

CY7C332

Registered Combinatorial EPLD

Features

- 12 I/O macrocells each having:
 - Registered, latched, or transparent array input
 - A choice of two clock sources
 - --- Global or local output enable (OE)
 - Up to 19 product terms (PTs) per output
 - Product term (PT) output polarity control
- 192 product terms with variable distribution to macrocells
 - An average of 14 PTs per macrocell sum node
- Two clock inputs with configurable polarity control


- 13 input macrocells, each having:
- Complementary input
 Register, latch, or transparent
- access
- ---- Two clock sources
- 15 ns t_{PD} max.
- Low power
- 120 mA typical I_{CC} quiescent
- 180 mA max.
- --- Power-saving "Miser Bit" feature
- Security fuse
- 28-pin slim-line package; also available in 28-pin PLCC
- UV-erasable and reprogrammable
- Programming and operation 100% testable

Functional Description

The CY7C332 is a versatile com view stal PLD with I/O registers on board. The e are 25 array inputs; each last macrocoll that may be configured as they stell latch, or simple buffer. Outpound have polarly and three-state control p odu norm. The allocation of productions to I/Q macrocells is varied so that functions of up to 19 product terms can be accommodated.

I/O Reserved

Pins 1 through 7 and 9 through 14 function as de licated array inputs. Pins 1 and 2 function as input clocks as well as normal in Pin 14 functions as a global output enable a well as a normal input.

Selection Gui

	I _{CC1} (mA)	t _{ICO} /tp	D (ns)	t _{IS} (ns)		
Gener'c Par Number	Commercial	Military	Commercial	Military	Commercial	Military	
7C332-1.	130		18/15		3		
7020	120	160	20	23/20	3	4	
~332 2-	120	150	25	25	3	4	
7C3、-30		150		30		4	

Document #: 38-00067-F

Features

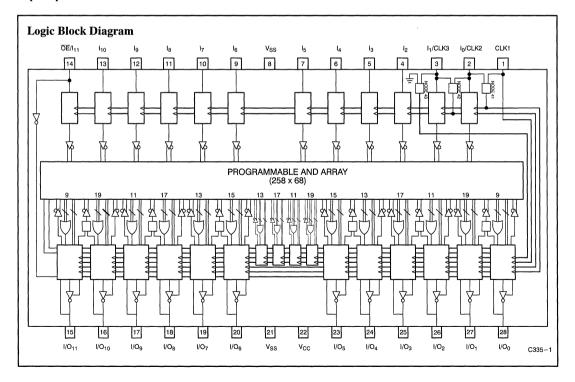
- 100-MHz output registered operation
- Twelve I/O macrocells, each having:
 - Registered, three-state I/O pins - Input and output register clock se-
 - lect multiplexer — Feed back multiplexer
 - Feed back multiplexer
- Output enable (OE) multiplexer
 Bypass on input and output registers
- All twelve macrocell state registers can be hidden
- User configurable I/O macrocells to implement JK or RS flip-flops and T or D registers
- Input multiplexer per pair of I/O macrocells allows I/O pin associated with a hidden macrocell state register to be saved for use as an input
- Four dedicated hidden registers
- Twelve dedicated registered inputs with individually programmable bypass option

- Three separate clocks—two input clocks, two output clocks
- Common (pin 14-controlled) or product term-controlled output enable for each I/O pin
- 256 product terms—32 per pair of macrocells, variable distribution
- Global, synchronous, product term controlled, state register set and reset—inputs to product term are clocked by input clock
 - 2-ns input set-up and 9-ns output register clock to output
 - 10-ns input register clock to state register clock
- 28-pin, 300-mil DIP, LCC, PLCC
- Erasable and reprogrammable

Programmable security bit

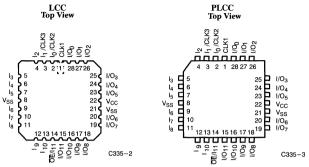
Functional Description

The CY7C335 is a high-performance, erasable, programmable logic device (EPLD) whose architecture has been optimized to enable the user to easily and efficiently construct very high performance state machines.


Universal Synchronous EPLD

The architecture of the CY7C335, consisting of the user-configurable output macrocell, bidirectional I/O capability, input registers, and three separate clocks, enables the user to design high-performance state machines that can communicate either with each other or with microprocessors over bidirectional parallel buses of userdefinable widths.

The four clocks permit independent, synchronous state machines to be synchronized to each other.


The user-configurable macrocells enable the designer to designate JK, RS-, T-, or D-type devices so that the number of product terms required to implement the logic is minimized.

The CY7C335 is available in a wide variety of packages including 28-pin, 300-mil plastic and ceramic DIPs, PLCCs, and LCCs.

Pin Configurations

Selection Guide

		CY7C335-100	CY7C335-83	CY7C335-66	CY7C335-50	CY7C335-40
Maximum Operating	Commercial	100	83.3	66.6	50	
Frequency (MHz)	Military		83.3	66.6	50	40.0
I _{CC1} (mA)	Commercial	140	140	140	140	
	Military		160	160	160	160

Architecture Configuration Bits

The architecture configuration bits are used to program the multiplexers. The function of the architecture bits is outlined in *Table 1*.

Table 1. Architecture Configuration Bits

	rchitecture figuration Bit	Number of Bits	Value	Function
C0	Output Enable	12 Bits, 1 Per	0—Virgin State	Output Enable Controlled by Product Term
	Select MUX	I/O Macrocell	1—Programmed	Output Enable Controlled by Pin 14
C1	State Register	12 Bits, 1 Per	0—Virgin State	State Register Output is Fed Back to Input Array
	Feed Back MUX	I/O Macrocell	1—Programmed	I/O Macrocell is Configured as an Input and Output of Input Path is Fed to Array
C2	I/O Macrocell Input Register Clock Select	12 Bits, 1 Per I/O Macrocell	0—Virgin State	ICLK1 Controls the Input Register I/O Macrocell Input Register Clock Input
	MUX		1—Programmed	ICLK2 Controls the Input Register I/O Macrocell Input Register Clock Input
C3	Input Register Bypass MUX— I/O Macrocell	pass MUX— I/O Macrocell		Selects Input to Feedback MUX from Input Register
1	I/O Macrocen		1—Programmed	Selects Input to Feedback MUX from I/O pin
C4	Output Register	12 Bits, 1 Per	0—Virgin State	Selects Output from the State Register
	Bypass MUX	I/O Macrocell	1—Programmed	Selects Output from the Array, Bypassing the State Register
C5	State Clock MUX	16 Bits, 1 Per I/O Macrocell and 1 Per	0-Virgin State	State Clock 1 Controls the State Register
		Hidden Macrocell	1—Programmed	State Clock 2 Controls the State Register
C6	Dedicated Input Register Clock	12 Bits, 1 Per Dedicated Input	0—Virgin State	ICLK1 Controls the Input Register I/O Macrocell Dedicated Input Register Clock Input
	Select MUX	Cell	1—Programmed	ICLK2 Controls the Input Register I/O Macrocell Dedicated Input Register Clock Input

	rchitecture figuration Bit	Number of Bits	Value	Function
C7	Input Register Bypass MUX—	12 Bits, 1 Per Dedicated Input	0—Virgin State	Selects Input to Array from Input Register
	Input Cell	Cell	1—Programmed	Selects Input to Array from Input Pin
C8	ICLK2 Select	1 Bit	0—Virgin State	Input Clock 2 Controlled by Pin 2
	MUX		1—Programmed	Input Clock 2 Controlled by Pin 3
C9	ICLK1 Select MUX	1 Bit	0—Virgin State	Input Clock 1 Controlled by Pin 2
	MUX		1—Programmed	Input Clock 1 Controlled by Pin 1
C10	SCLK2 Select MUX		0—Virgin State	State Clock 2 Grounded
	MUX		1—Programmed	State Clock 2 Controlled by Pin 3
CX (11-16)	I/O Macrocell Pair Input Select MUX	6 Bits, 1 Per I/O Macrocell	0—Virgin State	Selects Data from I/O Macrocell Input Path of Macrocell A of Macrocell Pair
	Select WUX	lect MUX Pair		Selects Data from I/O Macrocell Input Path of Macrocell B of Macrocell Pair

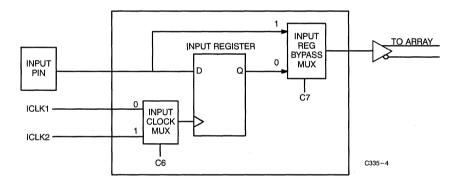


Figure 1. CY7C335 Input Macrocell

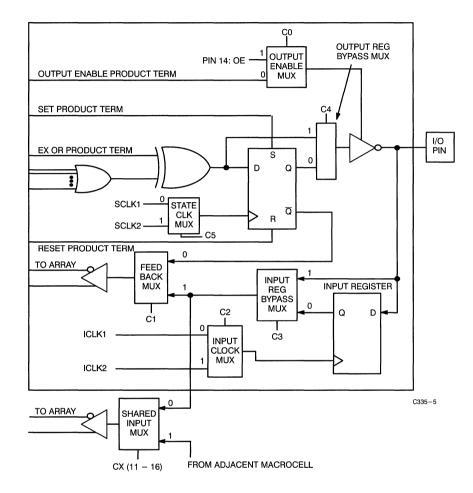
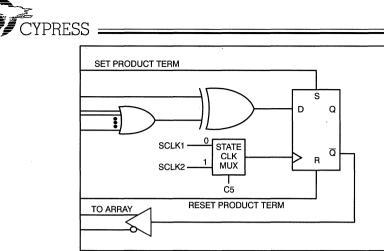
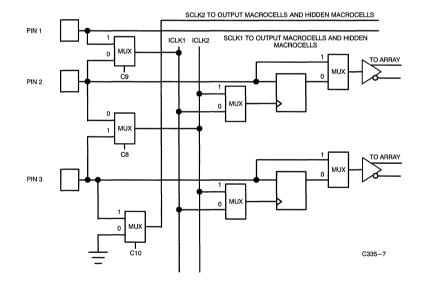




Figure 2. CY7C335 Input/Output Macrocell

C335-6

Figure 3. CY7C335 Hidden Macrocell

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Supply Voltage to Ground Potential (Pin 22 to Pins 8 and 21) $\dots -0.5V$ to $+7.0V$
DC Voltage Applied to Outputs in High Z State
DC Input Voltage
Output Current into Outputs (Low) 12 mA

Static Discharge Voltage> (per MIL-STD-883, Method 3015)	2001V
Latch-Up Current)0 mA
DC Programming Voltage	13.0V

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+75^{\circ}$ C	$5V \pm 10\%$
Industrial	-40° C to $+85^{\circ}$ C	$5V \pm 10\%$
Military ^[1]	-55° C to $+125^{\circ}$ C	$5V \pm 10\%$

Electrical Characteristics Over the Operating Range^[2]

Parameter	Description		Test Conditions	1	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{\rm CC} = Min.,$	$I_{OH} = -3.2 \text{ mA}$	Com'l	2.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -2 \text{ mA}$	Mil/Ind			
V _{OL}	Output LOW Voltage	$V_{\rm CC} = Min.,$	$I_{OL} = 12 \text{ mA}$	Com'l		0.5	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 8 \text{ mA}$	Mil/Ind			
V _{IH}	Input HIGH Level	Guaranteed Input Lo	2.2		V		
V _{IL}	Input LOW Level	Guaranteed Input Lo		0.8	V		
I _{IX}	Input Leakage Current	$V_{SS} \le V_{IN} \le V_{CC}, V$	$V_{SS} \le V_{IN} \le V_{CC}, V_{CC} = Max.$				
I _{OZ}	Output Leakage Current	$V_{CC} = Max., V_{SS} \leq V$	$V_{OUT} \leq V_{CC}$		-40	40	μA
I _{SC}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT} =$	= 0.5V ^[4, 5]		-30	-90	mA
I _{CC1}	Standby Power	$V_{CC} = Max., V_{IN} = 0$	GND	Com'l		140	mA
	Supply Current	Outputs Open		Mil/Ind		160	mA
I _{CC2}	Power Supply Current	V _{CC} = Max., Outputs Disabled (in High Z State), Device Operating at f _{MAX} External (f _{MAX5})		Com'l		180	mA
	at Frequency ^[5]			Mil/Ind		200	mA

Capacitance^[5]

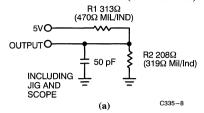
Parameter	Description	Test Conditions	Min.	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 2.0V @ f = 1 MHz$		10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 2.0V @ f = 1 MHz$		10	pF

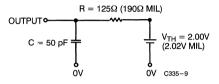
Notes:

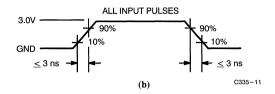
1. t_A is the "instant on" case temperature.

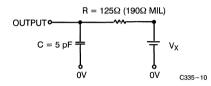
See the last page of this specification for Group A subgroup testing in-2. formation.

4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by ground degradation. 5.


These are absolute values with respect to device ground and all over-shoots due to system or tester noise are included. 3.


Tested initially and after any design or process changes that may affect these parameters.


CY7C335


AC Test Loads and Waveforms (Commercial)

(d) Three-state Delay Load (Load 2)

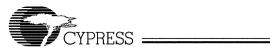
Parameter	VX	Output Waveform—Measurement Level		
$t_{PXZ}(-)$	1.5V	V _{OH}	— V _X	C335-12
$t_{PXZ}(+)$	2.6V	V _{OL} 0.5V	— V _X	C335-13
$t_{PZX}(+)$	V _{th}	V _X 0.5V	- V _{OH}	C335-14
$t_{PZX}(-)$	V _{th}	V _X 0.5V	— V _{OL}	C335-15
$t_{CER}(-)$	1.5V	V _{OH}	V _X	C335-16
$t_{CER}(+)$	2.6V	V _{OL} 0.5V	— V _X	C335-17
$t_{CEA}(+)$	V _{th}	V _X	— V _{OH}	C335-18
t _{CEA} (-)	V _{th}		— V _{OL}	C335-19

Figure 5. Test Waveforms

Commercial AC Characteristics

		7C33	5-100	7C3	35-83	7C335-66		7C335-50		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Combinato	rial Mode Parameters									
t _{PD}	Input to Output Propagation Delay		15		15		20		25	ns
t _{EA}	Input to Output Enable		15		15		20		25	ns
t _{ER}	Input to Output Disable		15		15		20		25	ns
Input Regis	stered Mode Parameters		I							
t _{WH}	Input and Output Clock Width HIGH ^[5]	4		5		6		8		ns
t _{WL}	Input and Output Clock Width LOW ^[5]	4		5		6		8		ns
t _{IS}	Input or Feedback Set-Up Time to Input Clock	2		2		2		3		ns
t _{IH}	Input Register Hold Time from Input Clock	2		2		2		3		ns
t _{ICO}	Input Register Clock to Output Delay		18		18		20		25	ns
t _{IOH}	Output Data Stable Time from Input Clock	3		3		3		3		ns
$t_{\rm IOH} - t_{\rm IH}$ 33x	Output Data Stable from Input Clock Minus Input Register Hold Time for 7C330, 7C332, and 7C335 ^[6]	0		0		0		0		ns
t _{PZX}	Pin 14 Enable to Output Enabled		12		12		15		20	ns
t _{PXZ}	Pin 14 Disable to Output Disabled		12		12		15		20	ns
f _{MAX1}	$\begin{array}{l} Maximum \ Frequency \ of \ (2) \ CY7C335s \ in \ Input \ Registered \\ Mode \ (Lowest \ of \ 1/(t_{ICO}+t_{IS}) \ \& \ 1/(t_{WL}+t_{WH}))^{[5]} \end{array}$	50		50		45.4		35.7		MHz
f _{MAX2}	$\begin{array}{l} Maximum \ Frequency \ Data \ Path \ in \ Input \ Registered \ Mode \\ (Lowest \ of \ (1/(t_{ICO}), \ 1/(t_{WH}+t_{WL}), \ 1/(t_{IS}+t_{IH}))^{\left[5\right]} \end{array}$	55.5		55.5		50		40		MHz
t _{ICEA}	Input Clock to Output Enabled		17		17		20		25	ns
t _{ICER}	Input Clock to Output Disabled		15		15		20		25	ns
Output Reg	gistered Mode Parameters				•		.	•	.	
t _{CEA}	Output Clock to Output Enabled ^[5]		17		17		20		25	ns
t _{CER}	Output Clock to Output Disabled ^[5]		15		15		20		25	ns
ts	Output Register Input Set-Up Time from Output Clock	8		9		12		15		ns
t _H	Output Register Input Hold Time from Output Clock	0		0		0		0		ns
t _{CO}	Output Register Clock to Output Delay		9		10		12		15	ns
t _{CO2}	Input Output Register Clock or Latch Enable to Combinatorial Output Delay (Through Logic Array) ^[5]		17		18		23		30	ns
t _{OH}	Output Data Stable Time from Output Clock	2		2		2		2		ns
t _{OH2}	Output Data Stable Time From Output Clock (Through Memory Array) ^[5]	3		3		3		3		ns
t _{OH2} -t _{IH}	Output Data Clock Stable Time From Output Clock Minus Input Register Hold Time ^[5]	0		0		0		0		ns
f _{MAX3}	Maximum Frequency with Internal Feedback in Output Registered Mode ^[5]	100		83.3		66.6		50		MHz
f _{MAX4}	$\begin{array}{l} Maximum \ Frequency \ of \ (2) \ CY7C335 \ sin \ Output \ Registered \\ Mode \ (Lowest \ of \ 1/(t_{CO} + t_S) \ \& \ 1/(t_{WL} + t_{WH}))^{[5]} \end{array}$	58.8		50		41.6		33.3		MHz
f _{MAX5}	Maximum Frequency Data Path in Output Registered Mode (Lowest of $1/(t_{CO})$, $1/(t_{WL} + t_{WH})$, $1/(t_S + t_H))^{[5]}$	111		100		83.3		62.5		MHz
t _{OH} - t _{IH} 33x	Output Data Stable from Output Clock Minus Input Reg- ister Hold Time for 7C330, 7C332, and 7C335 ^[6]	0		0		0		0		ns

Commercial AC Characteristics (continued)

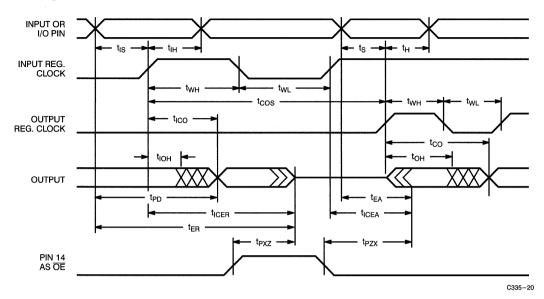

		7C33	5-100	7C33	5-83	7C33	5-66	7C33	5-50	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Pipelined N	Aode Parameters									
t _{COS}	Input Clock to Output Clock	10		12		15		20		ns
f _{MAX6}	Maximum Frequency Pipelined Mode (Lowest of $1/(t_{COS})$, $1/(t_{CO})$, $1/(t_{WL} + t_{WH})$), $1/(t_{IS} + t_{IH})^{[5]}$	100		83.3		66.6		50		MHz
f _{MAX7}	$\begin{array}{l} Maximum \ Frequency \ of \ (2) \ CY7C335s \ in \ Pipelined \ Mode \\ (Lowest \ of \ 1/(t_{CO} \ + \ t_{IS}) \ or \ 1/t_{COS}) \end{array}$	90.9		83.3		66.6		50		MHz
Power-Up 1	Reset Parameters									
tPOR	Power-Up Reset Time ^[5, 7]		1		1		1		1	μs

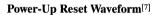
Military/Industrial AC Characteristics

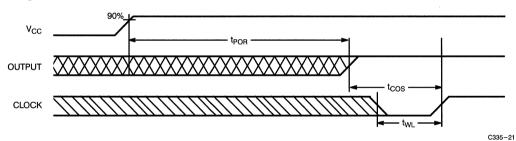
		7C33	5-83	7C33	5-66	7C33	5-50	7C335-40		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Combinatorial Mode Parameters										
t _{PD}	Input to Output Propagation Delay		20		20		25		30	ns
t _{EA}	Input to Output Enable		20		20		25		30	ns
t _{ER}	Input to Output Disable		20		20		25		30	ns
Input Regis	stered Mode Parameters									
t _{WH}	Input and Output Clock Width HIGH ^[5]	5		6		8		10		ns
t _{WL}	Input and Output Clock Width LOW ^[5]	5		6		8		10		ns
t _{IS}	Input or Feedback Set-Up Time to Input Clock	3		3		3		4		ns
t _{IH}	Input Register Hold Time from Input Clock	3		3		3		4		ns
t _{ICO}	Input Register Clock to Output Delay		23		23		25		30	ns
t _{IOH}	Output Data Stable Time from Input Clock	3		3		3		3		ns
t _{IOH} – t _{IH} 33x	Output Data Stable from Input Clock Minus Input Register Hold Time for 7C330, 7C332, and 7C335 ^[6]	0		0		0		0		ns
t _{PZX}	Pin 14 Enable to Output Enabled		15		15		20		30	ns
t _{PXZ}	Pin 14 Disable to Output Disabled		15		15		20		30	ns
f _{MAX1}	Maximum Frequency of (2) CY7C335s in Input Registered Mode (Lowest of $1/(t_{ICO} + t_{IS}) \& 1/(t_{WL} + t_{WH}))^{[5]}$	38.4		38.4		35.7		29.4		MHz
f _{MAX2}	Maximum Frequency Data Path in Input Registered Mode (Lowest of $(1/(t_{ICO}), 1/(t_{WH} + t_{WL}), 1/(t_{IS} + t_{IH}))^{[5]}$	43.4		43.4		40		33.3		MHz
t _{ICEA}	Input Clock to Output Enabled		20		20		25		30	ns
t _{ICER}	Input Clock to Output Disabled		20		20		25		30	ns
Output Reg	gistered Mode Parameters	-						•		· · · · · · · · · · · · · · · · · · ·
t _{CEA}	Output Clock to Output Enabled ^[5]		20		20		25		30	ns
t _{CER}	Output Clock to Output Disabled ^[5]		20		20		25		30	ns
ts	Output Register Input Set-Up Time to Output Clock	10		12		15		20		ns
t _H	Output Register Input Hold Time from Output Clock	0	[0		0		0		ns
t _{CO}	Output Register Clock to Output Delay		11		12		15		20	ns
t _{CO2}	Output Register Clock or Latch Enable to Combinatorial Output Delay (Through Logic Array) ^[5]		22		23		30		35	ns

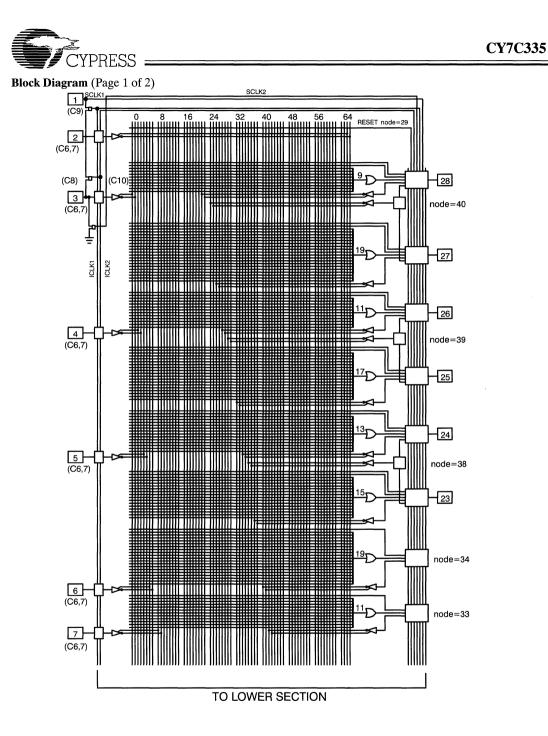
Notes:

6. This specification is intended to guarantee interface compatibility of the other members of the CY7C330 family with the CY7C335. This specification is met for the devices operating at the same ambient temperature and at the same power supply voltage. This part has been designed with the capability to reset during system power-up. Following power-up, the input and output registers will be reset to a logic LOW state. The output state will depend on how the array is programmed.

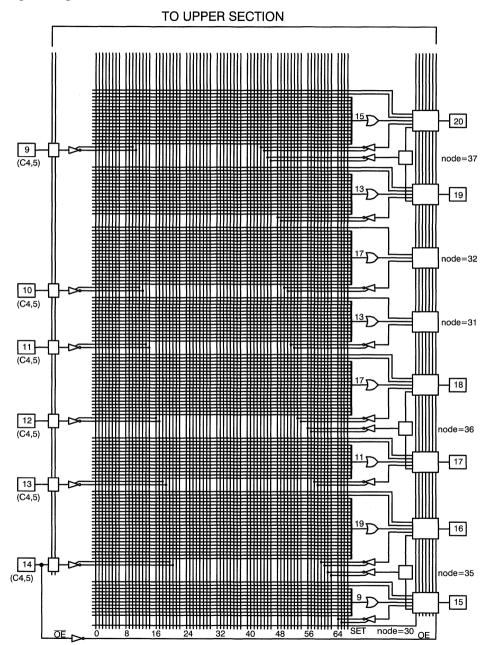

Military/Industrial AC Characteristics (continued)


		7C33	5-83	7C33	5-66	7C33	5-50	7C335-40		
Parameter	Description		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{OH}	Output Data Stable Time from Output Clock	2		2		2		2		ns
t _{OH2}	Output Data Stable Time From Output Clock (Through Memory Array) ^[5]			3		3		3		ns
t _{OH2} -t _{IH}	Output Data Clock Stable Time From Output Clock Minus Input Register Hold Time ^[5]	0		0		0		0		ns
f _{MAX3}	Maximum Frequency with Internal Feedback in Output Registered Mode ^[5]	83.3		66.6		50		40		MHz
f _{MAX4}	$\begin{array}{l} Maximum \ Frequency of (2) \ CY7C335s in \ Output \ Registered \ Mode \ (Lower of 1/(t_{CO} + t_S) \& 1/(t_{WL} + t_{WH}))^{[5]} \end{array}$	47.6		41.6		33.3		25		MHz
f _{MAX5}	Maximum Frequency Data Path in Output Registered Mode (Lowest of $1/(t_{CO})$, $1/(t_{WL} + t_{WH})$, $1/(t_S + t_H))^{[5]}$	90.9		83.3		62.5		50		MHz
$t_{OH} - t_{IH}$ 33x	Output Data Stable from Output Clock Minus Input Register Hold Time for 7C330, 7C332, and 7C335 ^[6]	0		0		0		0		ns
Pipelined N	Mode Parameters									
t _{COS}	Input Clock to Output Clock	12		15		20		25		ns
f _{MAX6}	$\begin{array}{l} Maximum \ Frequency \ Pipelined \ Mode \\ (Lowest of 1/(t_{COS}), 1/(t_{IS}), or 1/(t_{CO})), 1/(t_{IS} + t_{IH})^{[5]} \end{array}$	83.3		66.6		50		40		MHz
f _{MAX7}	Maximum Frequency of (2) CY7C335s in Pipelined Mode (Lowest of $1/(t_{CO} + t_{IS})$ or $1/t_{COS}$)	71.4		66.6		50		40		MHz
Power-Up l	Reset Parameters									
t _{POR}	Power-Up Reset Time ^[5, 7]		1		1		1		1	μs




CY7C335

Switching Waveform



C335-22

Block Diagram (Page 2 of 2)

C335-23

Ordering Information

f _{MAX} (MHz)	I _{CC1} (mA)	Ordering Code	Package Name	Package Type	Operating Range
100	140	СҮ7С335-100НС	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
		CY7C335-100JC	J64	28-Lead Plastic Leaded Chip Carrier]
		CY7C335-100PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C335-100WC	W22	28-Lead (300-Mil) Windowed CerDIP	
83.3	160	CY7C335-83DI	D22	28-Lead (300-Mil) CerDIP	Industrial
		CY7C335-83HI	H64	28-Pin Windowed Leaded Chip Carrier]
		CY7C335-83PI	P21	28-Lead (300-Mil) Molded DIP	1
		CY7C335-83WI	W22	28-Lead (300-Mil) Windowed CerDIP	
		CY7C335-83DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C335-83HMB	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-83LMB	L64	28-Square Leadless Chip Carrier	1
		CY7C335-83QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C335-83WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
83.3	140	СҮ7С335-83НС	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
		CY7C335-83JC	J64	28-Lead Plastic Leaded Chip Carrier	1
		CY7C335-83PC	P21	28-Lead (300-Mil) Molded DIP	1
		CY7C335-83WC	W22	28-Lead (300-Mil) Windowed CerDIP	1
66.6	160	CY7C335-66DI	D22	28-Lead (300-Mil) CerDIP	Industrial
		СҮ7С335-66НІ	H64	28-Pin Windowed Leaded Chip Carrier	1
		CY7C335-66PI	P21	28-Lead (300-Mil) Molded DIP	1
		CY7C335-66WI	W22	28-Lead (300-Mil) Windowed CerDIP	1
		CY7C335-66DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C335-66HMB	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-66LMB	L64	28-Square Leadless Chip Carrier	
		CY7C335-66QMB	Q64	28-Pin Windowed Leadless Chip Carrier	1
		CY7C335-66WMB	W22	28-Lead (300-Mil) Windowed CerDIP	1
66.6	140	СҮ7С335-66НС	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
		CY7C335-66JC	J64	28-Lead Plastic Leaded Chip Carrier	1
		CY7C335-66PC	P21	28-Lead (300-Mil) Molded DIP	1
		CY7C335-66WC	W22	28-Lead (300-Mil) Windowed CerDIP	1
50	140	СҮ7С335-50НС	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
		CY7C335-50JC	J64	28-Lead Plastic Leaded Chip Carrier	1
		CY7C335-50PC	P21	28-Lead (300-Mil) Molded DIP	1
		CY7C335-50WC	W22	28-Lead (300-Mil) Windowed CerDIP	1

Ordering Information (continued)

f _{MAX} (MHz)	I _{CC1} (mA)	Ordering Code	Package Name	Package Type	Operating Range
50	160	CY7C335-50DI	D22	28-Lead (300-Mil) CerDIP	Industrial
		CY7C335-50HI	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-50PI	P21	28-Lead (300-Mil) Molded DIP	
		CY7C335-50WI	W22	28-Lead (300-Mil) Windowed CerDIP	
		CY7C335-50DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C335-50HMB	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-50LMB	L64	28-Square Leadless Chip Carrier	
		CY7C335-50QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C335-50WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
40	160	CY7C335-40DI	D22	28-Lead (300-Mil) CerDIP	Industrial
		CY7C335-40HI	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-40PI	P21	28-Lead (300-Mil) Molded DIP	
		CY7C335-40WI	W22	28-Lead (300-Mil) Windowed CerDIP	
		CY7C335-40DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C335-40HMB	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-40LMB	L64	28-Square Leadless Chip Carrier	
		CY7C335-40QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C335-40WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{PD}	9, 10, 11
t _{ICO}	9, 10, 11
t _{IS}	9, 10, 11
t _{CO}	9, 10, 11
ts	9, 10, 11
t _H	9, 10, 11
t _{COS}	9, 10, 11

Document #: 38-00186-C

GENERAL INFORMATION	
SMALL PLDs	
CPLDs	
FPGAs	
DEVELOPMENT SYSTEMS	
QUALITY	
PACKAGES	

Table of Contents

CPLDs (Complex PLDs)

Page Number

Device	Description
Ultra39000	UltraLogic High-Density CPLD Family
Ultra39192	UltraLogic 192-Macrocell CPLD 3-2
Ultra39256	UltraLogic 256-Macrocell CPLD 3-3
Ultra39320	UltraLogic 320-Macrocell CPLD 3-4
Ultra39384	UltraLogic 384-Macrocell CPLD 3-5
Ultra39448	UltraLogic 448-Macrocell CPLD 3-6
Ultra39512	UltraLogic 512-Macrocell CPLD 3–7
FLASH370 CPLD Family	UltraLogic High-Density Flash CPLDs 3-8
CY7C371	UltraLogic 32-Macrocell Flash CPLD 3-15
CY7C372	UltraLogic 64-Macrocell Flash CPLD 3-24
CY7C373	UltraLogic 64-Macrocell Flash CPLD 3-33
CY7C374	UltraLogic 128-Macrocell Flash CPLD 3-43
CY7C375	UltraLogic 128-Macrocell Flash CPLD 3-54
FLASH370i ISR CPLD Family	UltraLogic High-Density Flash CPLDs
CY7C371i	UltraLogic 32-Macrocell Flash CPLD 3-73
CY7C372i	UltraLogic 64-Macrocell Flash CPLD 3-82
CY7C373i	UltraLogic 64-Macrocell Flash CPLD 3-91
CY7C374i	UltraLogic 128-Macrocell Flash CPLD 3-100
CY7C375i	UltraLogic 128-Macrocell Flash CPLD 3-110
CY7C340 EPLD Family	Multiple Array Matrix High-Density EPLDs 3-122
CY7C341B	192-Macrocell MAX EPLD
CY7C341	192-Macrocell MAX EPLD
CY7C342B	128-Macrocell MAX EPLDs 3–141
CY7C342	128-Macrocell MAX EPLDs 3–158
CY7C343	64-Macrocell MAX EPLD
CY7C343B	64-Macrocell MAX EPLD 3–159
CY7C344	32-Macrocell MAX EPLD 3–175
CY7C344B	32-Macrocell MAX EPLD 3–175
CY7C346	128-Macrocell MAX EPLDs
CY7C346B	128-Macrocell MAX EPLDs

Features

- High density
 - -192-512 macrocells
 - 64-224 I/O pins
 - Multiple input/clock pins
- High performance
 - -125-100 MHz performance
 - -10-12 ns tpp
 - -5-6 ns ts
 - -5.5-6.5 ns tco
- In-System Reprogrammable (ISR[™])
- Fast CMOS technology
- **Fully PCI compliant**
- Full JTAG compatibility
- 3.3V or 5V operation
- **Programmable speed/power options**
- Simple timing model
- No hidden delays .
- Packages .

 - PLCC, TQFP, and PQFP
- Programmable security bit
- Warp3[™] CAE development system

 - ViewLogic[™] graphical user interface
 - --- Schematic capture (ViewDraw[™])
 - Available on Sun, HP, and Windows[™] platforms
- Warp2[™]/Warp2+[™] VHDL Compiler – VHDL input
 - Functional simulator
 - Available on Sun, HP, and Windows platforms

Ultra39000 Selection Guide

Functional Description

The Ultra39000[™] family of high-density, high-performance Complex Programmable Logic Devices (CPLDs) provide an in-system reprogrammable solution complete with full Joint Test Action Group (JTAG IEEE1149.1) compatability. Each member of the Ultra39000 Family of fast, reconfigurable CPLDs has been designed to bring the high performance and the ease of use of 22V10s to ultra high-density PLDs. And since they are designed and fabricated with Cypress's state-of-the-art electrically-alterable Flash technology, users can program the devices in-circuit, which simplifies both the development and manufacturing processes. This, in turn, speeds time to market and reduces product inventory costs. The entire family will operate at 3.3V or 5V and is fully compliant with the PCI Local Bus Specification. It will operate with speeds of up to 125 MHz.

All of the macrocells in each of the Ultra39000 Family members are distributed among a number of distinct logic blocks. For example the Ultra39192 has 12 logic blocks, while the Ultra39512 has 32. Each logic block contains 16 macrocells along with a product term array and a fast. intelligent product term matrix. Each logic block in the Ultra39000 architecture is connected through a Programmable Interconnect that produces extremely fast and predictable paths through the device

All members of the Ultra39000 Family feature an abundant number of I/O resources with 64 to 224 I/O pins as well as four dedicated inputs/clocks and provide both fast synchronous and asynchronous clocking

UltraLogic[™] High-Density **CPLD** Family

capabilities. Each member is also both upwardly and downwardly pin-compatible with the other family members, providing a built-in upgrade path.

Additionally, the Ultra39000 Family features a programmable speed/power option that allows users to optimize designs for either ultra-fast performance or ultra-low power. The family also provides slew rate control for each of the outputs that reduces switching noise. And finally, the Ultra39000 Family features a very simple timing model that results in parameters that are not dependent on the device resources utilized or the type of application being implemented.

Development support for the entire family of Cypress Programmable Logic Devices including Ultra39000 is provided through all of Cypress's state-of-the-art VHDLbased tools as well as a vast array of third party solutions. Warp3 is a sophisticated design tool based on ViewLogic's CAE design environment, which integrates Cvpress's IEEE1164-compliant VHDL synthesis engine, full schematic capture capability (ViewDraw[™]), a VHDL waveform simulator, VHDL debugger, and a fullfunction timing simulator. This integrated tool features mixed-mode entry allowing designs to be entered textually, schematically, or in a combination of both. It is supported on PCs running Windows, and on Sun and Hewlett Packard workstations. In addition, both Warp2 and Warp2+ are lowcost VHDL compilers offering VHDL synthesis capability and a functional simulator. See the separate software and third party data sheets for further information.

Device	Macrocells	Pin Count	Max. I/O Pins	f _{MAX} (MHz)	t _{PD} (ns)	ts (ns)	t _{CO} (ns)
39192	192	84/160	64/128	125	10	5	5.5
39256	256	160/208	128/160	125	10	5	5.5
39320	320	208/240	160/192	125	10	5	5.5
39384	384	240	192	100	12	6	6.5
39448	448	240/304	192/224	100	12	6	6.5
39512	512	304	224	100	12	6	6.5

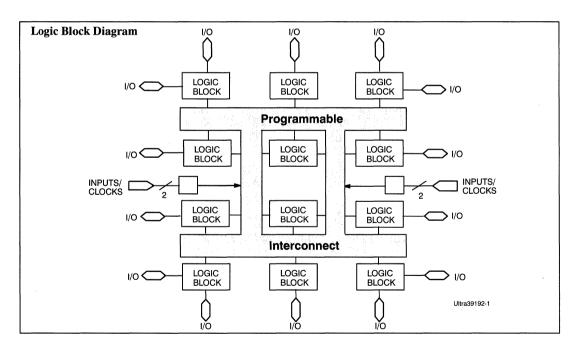
Warp2, Warp2+, Warp3, ISR, Ultra39000, and UltraLogic are trademarks of Cypress Semiconductor Corporation. ViewLogic and ViewDraw are trademarks of ViewLogic Corporation. Windows is a trademark of Microsoft Corporation.

Features

- 192 macrocells in 12 logic blocks
- In-System Reprogrammable (ISR™)
- Fully PCI compliant
- Full JTAG compatability
- 3.3V or 5V operation
- Programmable speed/power options
- 64 and 128 I/O pins
- 4 dedicated inputs/clocks
- No hidden delays
- High speed
- $-f_{MAX} = 125 \text{ MHz}$
- $-t_{PD} = 10 \text{ ns}$
- $-t_{\rm S} = 5 \, \rm ns$
- $-t_{CO} = 5.5$ ns
- Available in 84-pin PLCC and 160-pin TQFP packages
- Pin compatible with the Ultra39256

Functional Description

The Ultra39192 is a high-density, highperformance Complex Programmable Logic Device (CPLD) providing in-system reprogrammability (ISR) and full Joint Test Action Group (JTAG IEEE1149.1) compatibility. It is part of the Ultra39000 TM family of fast, reconfigurable CPLDs, which has been designed to bring the high performance and the ease of use of 22V10s to ultra high-density PLDs. The entire family is also fully compliant with the PCI Local Bus Specification and will operate at either 3.3V or 5V.


UltraLogic[™]

The 192 macrocells in the Ultra39192 are divided between 12 logic blocks. Each logic block contains 16 macrocells along with a product term array and a fast, intelligent product term matrix. Each logic block in the Ultra39000 architecture is connected through a Programmable Interconnect that produces extremely fast and predictable paths through the device.

192-Macrocell CPLD

All members of the Ultra39000 family feature an abundant number of I/O resources. The Ultra39192 contains either 64 or 128 I/O pins, as well as four dedicated inputs/ clocks, and provides both fast synchronous and asynchronous clocking capabilities.

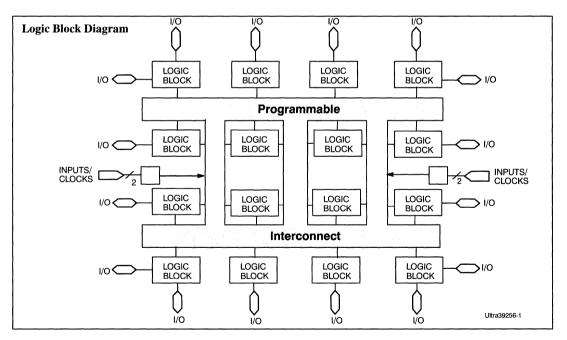
Additionally, the Ultra39192 features a programmable speed/power option that allows users to optimize designs for either ultra-fast performance or ultra-low power. The family also provides slew rate control for each of the outputs, which reduces switching noise. And finally, the Ultra39192 features a very simple timing model that results in parameters that are not dependent on the device resources utilized or the type of application being implemented.

UltraLogic, ISR, and Ultra39000 are trademarks of Cypress Semiconductor Corporation. Document #: 38–00473

UltraLogic[™] 256-Macrocell CPLD

Features

- 256 macrocells in 16 logic blocks
- In-System Reprogrammable (ISR[™])
- Fully PCI compliant
- Full JTAG compatibility
- 3.3V or 5V operation
- Programmable speed/power options
- 128 or 160 I/O pins
- 4 dedicated inputs/clocks
- No hidden delays
- High speed
 - $-f_{MAX} = 125 \text{ MHz}$
 - $-t_{PD} = 10 \text{ ns}$
 - $-t_S = 5 \text{ ns}$
 - $-t_{\rm CO} = 5.5$ ns
- Available in 160-pin TQFP and 208-pin PQFP packages
- Pin compatible with the Ultra39192 and the Ultra39320


Functional Description

The Ultra39256 is a high-density, highperformance Complex Programmable Logic Device (CPLD) providing in-system reprogrammability (ISR) and full Joint Test Action Group (JTAG IEEE1149.1) compatibility. It is part of the Ultra39000 TM Family of fast, reconfigurable CPLDs, which has been designed to bring high performance and the ease of use of 22V10s to ultra high-density PLDs. The entire family is also fully compliant with the PCI Local Bus Specification and will operate at either 3.3V or 5V.

The 256 macrocells in the Ultra39256 are divided between 16 logic blocks. Each logic block contains 16 macrocells along with a product term array and a fast, intelligent product term matrix. Each logic block in the Ultra39000 architecture is connected through a Programmable Interconnect that produces extremely fast and predictable paths through the device.

All members of the Ultra39000 family feature an abundant number of I/O resources. The Ultra39256 contains either 128 or 160 I/O pins, as well as four dedicated inputs/ clocks, and provides both fast synchronous and asynchronous clocking capabilities.

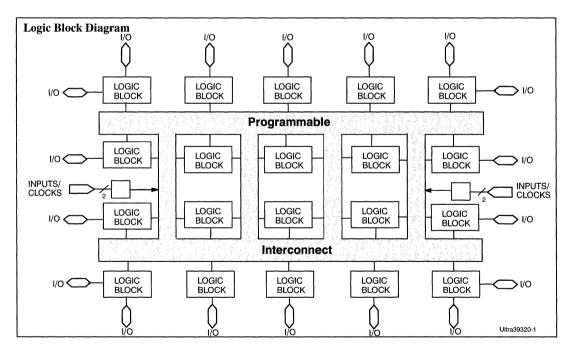
Additionally, the Ultra39256 features a programmable speed/power option that allows users to optimize designs for either ultra-fast performance or ultra-low power. The family also provides slew rate control for each of the outputs which reduces switching noise. And finally, the Ultra39256 features a very simple timing model that results in parameters that are not dependent on the device resources utilized or the type of application being implemented.

UltraLogic, ISR, and Ultra 39000 are trademarks of Cypress Semiconductor Corporation

UltraLogic[™] 320-Macrocell CPLD

Features

- 320 macrocells in 20 logic blocks
- In-System Reprogrammable (ISR[™])
- Fully PCI compliant
- Full JTAG compatibility
- 3.3V or 5V operation
- Programmable speed/power options
- 160 or 192 I/O pins
- 4 dedicated inputs/clocks
- No hidden delays
- High speed
 - $-f_{MAX} = 125 \text{ MHz}$
 - $-t_{PD} = 10 \text{ ns}$
 - $-t_{\rm S} = 5 \, \rm ns$
 - $-t_{CO} = 5.5 \text{ ns}$
- Available in 208-pin and 240-pin POFP package
- Pin compatible with the Ultra39256


Functional Description

The Ultra39320 is a high-density, highperformance Complex Programmable Logic Device (CPLD) providing in-system reprogrammability (ISR) and full Joint Test Action Group (JTAG IEEE1149.1) compatibility. It is part of the Ultra39000 [™] family of fast, reconfigurable CPLDs, which have been designed to bring the high performance and the ease of use of 22V10s to ultra high-density PLDs. The entire family is also fully compliant with the PCI Local Bus Specification and will operate at either 3.3V or 5V.

The 320 macrocells in the Ultra39320 are divided between 20 logic blocks. Each logic block contains 16 macrocells along with a product term array and a fast, intelligent product term matrix. Each logic block in the Ultra39000 architecture is connected through a Programmable Interconnect that produces extremely fast and predictable paths through the device.

All members of the Ultra39000 family feature an abundant number of I/O resources. The Ultra39320 contains 160 or 192 I/O pins as well as four dedicated inputs/clocks and provides both fast synchronous and asynchronous clocking capabilities.

Additionally, the Ultra39320 features a programmable speed/power option that allows users to optimize designs for either ultra-fast performance or ultra-low power. The family also provides slew rate control for each of the outputs, which reduces switching noise. And finally, the Ultra39320 features a very simple timing model that results in parameters that are not dependent on the device resources utilized or the type of application being implemented.

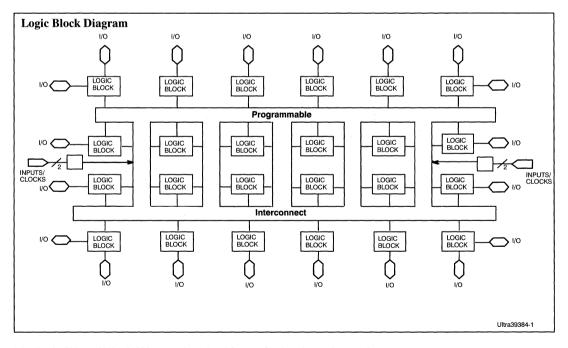
UltraLogic, ISR, and Ultra39000 are trademarks of Cypress Semiconductor Corporation

Features

- 384 macrocells in 24 logic blocks
- In-System Reprogrammable (ISR[™])
- Fully PCI compliant
- Full JTAG compatibility
- 3.3V or 5V operation
- Programmable speed/power options
- 192 I/O pins
- 4 dedicated inputs/clocks
- No hidden delays
- High speed
 - $-f_{MAX} = 100 \text{ MHz}$
 - $-t_{PD} = 12 \text{ ns}$
 - $-t_{\rm S} = 6 \, \rm ns$
 - $--t_{\rm CO} = 6.5$ ns
- Available in 240-pin PQFP package
- Pin compatible with the Ultra39448

Functional Description

The U!tra39384 is a high-density, highperformance Complex Programmable Logic Device (CPLD) providing in-system reprogrammability (ISR) and full Joint Test Action Group (JTAG IEEE1149.1) compatibility. It is part of the Ultra39000[™] family of fast, reconfigurable CPLDs, which have been designed to bring the high performance and the ease of use of 22V10s to ultra high-density PLDs. The entire family is also fully compliant with the PCI Local Bus Specification and will operate at either 3.3V or 5V.


UltraLogic[™]

The 384 macrocells in the Ultra39384 are divided between 24 logic blocks. Each logic block contains 16 macrocells along with a product term array and a fast, intelligent product term matrix. Each logic block in the Ultra39000 architecture is connected through a Programmable Interconnect that produces extremely fast and predictable paths through the device.

384-Macrocell CPLD

All members of the Ultra39000 family feature an abundant number of I/O resources. The Ultra39384 contains 192 I/O pins as well as four dedicated inputs/clocks and provides both fast synchronous and asynchronous clocking capabilities.

Additionally, the Ultra39384 features a programmable speed/power option that allows users to optimize designs for either ultra-fast performance or ultra-low power. The family also provides slew rate control for each of the outputs, which reduces switching noise. And finally, the Ultra39384 features a very simple timing model that results in parameters that are not dependent on the device resources utilized or the type of application being implemented.

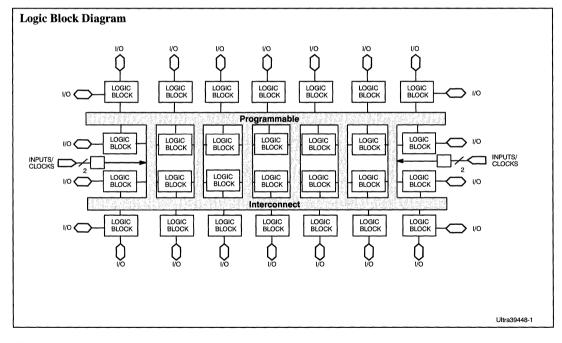
UltraLogic, ISR, and Ultra39000 are trademarks of Cypress Semiconductor Corporation

ADVANCED INFORMATION

UltraLogic[™] 448-Macrocell CPLD

Features

- 448 macrocells in 28 logic blocks
- In-System Reprogrammable (ISR[™])
- Fully PCI compliant
- Full JTAG compatibility
- 3.3V or 5V operation
- Programmable speed/power options
- 192 or 224 I/O pins
- 4 dedicated inputs/clocks
- No hidden delays
- High speed
 - $-f_{MAX} = 100 \text{ MHz}$
 - $-t_{PD} = 12 \text{ ns}$
 - $-t_{\rm S} = 6 \, \rm ns$
 - $-t_{\rm CO} = 6.5$ ns
- Available in 240-pin and 304-pin PQFP packages
- Pin compatible with the Ultra39384 and Ultra39512


Functional Description

The Ultra39448 is a high-density, highperformance Complex Programmable Logic Device (CPLD) providing in-system reprogrammability (ISR) and full Joint Test Action Group (JTAG IEEE1149.1) compatibility. It is part of the Ultra39000[™] family of fast, reconfigurable CPLDs, which have been designed to bring the high performance and the case of use of 22V10s to ultra high-density PLDs. The entire family is also fully compliant with the PCI Local Bus Specification and will operate at either 3.3V or 5V.

The 448 macrocells in the Ultra39448 are divided between 28 logic blocks. Each logic block contains 16 macrocells along with a product term array and a fast, intelligent product term matrix. Each logic block in the Ultra39000 architecture is connected through a Programmable Interconnect that produces extremely fast and predictable paths through the device.

All members of the Ultra39000 family feature an abundant number of I/O resources. The Ultra39448 contains either 192 or 224 I/O pins as well as four dedicated inputs/ clocks and provides both fast synchronous and asynchronous clocking capabilities.

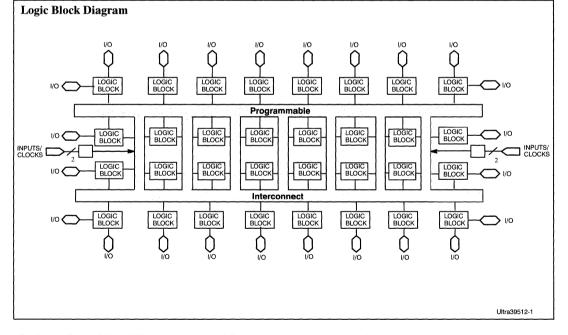
Additionally, the Ultra39448 features a programmable speed/power option that allows users to optimize designs for either ultra-fast performance or ultra-low power. The family also provides slew rate control for each of the outputs, which reduces switching noise. And finally, the Ultra39448 features a very simple timing model that results in parameters that are not dependent on the device resources utilized or the type of application being implemented.

UltraLogic, ISR, and Ultra39000 are trademarks of Cypress Semiconductor Corporation

UltraLogic[™] 512-Macrocell CPLD

Features

- 512 macrocells in 32 logic blocks
- In-System Reprogrammable (ISR[™])
- Fully PCI compliant
- Full JTAG compatibility
- 3.3V or 5V operation
- Programmable speed/power options
- 224 I/O pins
- 4 dedicated inputs/clocks
- No hidden delays
- High speed
 - $-f_{MAX} = 100 \text{ MHz}$
 - $-t_{PD} = 12 \text{ ns}$
 - $-t_{\rm S} = 6 \, \rm ns$
 - $-t_{\rm CO} = 6.5$ ns
- Available in 304-pin PQFP package
- Pin compatible with the Ultra39448


Functional Description

The Ultra39512 is a high-density, highperformance Complex Programmable Logic Device (CPLD) providing in-system reprogrammability (ISR) and full Joint Test Action Group (JTAG IEEE1149.1) compatibility. It is part of the Ultra39000 [™] family of fast, reconfigurable CPLDs, which have been designed to bring the high performance and the case of use of 22V10s to ultra high-density PLDs. The entire family is also fully compliant with the PCI Local Bus Specification and will operate at either 3.3V or 5V.

The 512 macrocells in the Ultra39512 are divided between 32 logic blocks. Each logic block contains 16 macrocells along with a product term array and a fast, intelligent product term matrix. Each logic block in the Ultra39000 architecture is connected through a Programmable Interconnect that produces extremely fast and predictable paths through the device.

All members of the Ultra39000 family feature an abundant number of I/O resources. The Ultra39512 contains 224 I/O pins as well as four dedicated inputs/clocks and provides both fast synchronous and asynchronous clocking capabilities. essing and decoding capabilities.

Additionally, the Ultra39512 features a programmable speed/power option that allows users to optimize designs for either ultra-fast performance or ultra-low power. The family also provides slew rate control for each of the outputs, which reduces switching noise. And finally, the Ultra39512 features a very simple timing model that results in parameters that are not dependent on the device resources utilized or the type of application being implemented.

UltraLogic, ISR, and Ultra39000 are trademarks of Cypress Semiconductor Corporation.

FLASH370 **CPLD** Family

Features

- Flash erasable CMOS CPLDs
- High density
 - 32-128 macrocells
 - -32-128 I/O pins
 - Multiple clock pins
- High speed
 - $-t_{PD} = 8.5 12 \text{ ns}$
 - $-t_{s} = 5 7 \text{ ns}$
 - $-t_{CO} = 6 7$ ns
- Fast Programmable Interconnect Matrix (PIM)
 - Uniform predictable delay, independent of routing
- Intelligent product term allocator
- -0-16 product terms to any macrocell
- Provides product term steering on an individual basis
- Provides product term sharing among local macrocells
- Prevents stealing of neighboring product terms
- Simple timing model
 - -No fanout delays
 - -No expander delays
 - No dedicated vs. I/O pin delays
 - No additional delay through PIM
 - No penalty for using full 16 product terms
 - No delay for steering or sharing product terms
- Flexible clocking
 - -2-4 clock pins per device
 - Clock polarity control
- Security bit and user ID supported
- Packages
 - -44-160 pins
 - -PLCC, CLCC, PGA, and TQFP packages

- Warp2 [™]/Warp2+ [™]
 - Low-cost, text-based design tool, PLD compiler
 - IEEE 1164-compliant VHDL
 - Available on PC and Sun platforms
- Warp3[™] CAE development system

 - ViewLogic graphical user interface
 - Schematic capture (ViewDraw[™])
 - VHDL simulation (ViewSim[™])
 - Available on PC, HP, and Sun platforms

General Description

The FLASH370[™] family of CMOS CPLDs provides a range of high-density programmable logic solutions with unparalleled performance. Each member of the family is designed with Cypress's state-of-the-art 0.65-micron Flash technology. All of the devices are electrically erasable and reprogrammable, simplifying product inventory and reducing costs.

The FLASH370 family is designed to bring the flexibility, ease of use and performance of the 22V10 to high-density CPLDs. The architecture is based on a number of logic blocks that are connected by a Programmable Interconnect Matrix (PIM). Each logic block features its own product term array, product term allocator array, and 16 macrocells. The PIM distributes signals from one logic block to another as well as all inputs from pins.

The family features a wide variety of densities and pin counts to choose from. At each density there are two packaging options to choose from-one that is I/O intensive and another that is register intensive. For example, the CY7C374 and CY7C375 both feature 128 macrocells. On the CY7C374 half of the macrocells are buried and the device is available in 84-pin packages. On

the CY7C375 all of the macrocells are fed to I/O pins and the device is available in 160-pin packages. Figure 1 shows a block diagram of the CY7C374/5.

Functional Description

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) consists of a completely global routing matrix for signals from I/O pins and feedbacks from the logic blocks. The PIM is an extremely robust interconnect that avoids fitting and density limitations. Routing is automatically accomplished by software and the propagation delay through the PIM is transparent to the user. Signals from any pin or any logic block can be routed to any or all logic blocks.

The inputs to the PIM consist of all I/O and dedicated input pins and all macrocell feedbacks from within the logic blocks. The number of PIM inputs increases with pincount and the number of logic blocks. The outputs from the PIM are signals routed to the appropriate logic block(s). Each logic block receives 36 inputs from the PIM and their complements, allowing for 32-bit operations to be implemented in a single pass through the device. The wide number of inputs to the logic block also improves the routing capacity of the FLASH370 family.

An important feature of the PIM involves timing. The propagation delay through the PIM is accounted for in the timing specifications for each device. There is no additional delay for traveling through the PIM. In fact, all inputs travel through the PIM. Likewise, there are no route-dependent timing parameters on the FLASH370 devices. The worst-case PIM delays are incorporated in all appropriate FLASH370 specifications.

Device	Pins	Macrocells	Dedicated Inputs	I/O Pins	Flip-Flops	Speed (t _{PD})	Speed (f _{MAX})
371	44	32	6	32	44	8.5	143
372	44	64	6	32	76	10	125
373	84	64	6	64	76	10	125
374	84	128	6	64	140	12	100
375	160	128	6	128	140	12	100

FLASH370 Selection Guide

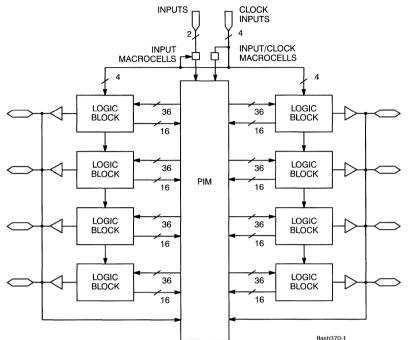


Figure 1. CY7C374/5 Block Diagram

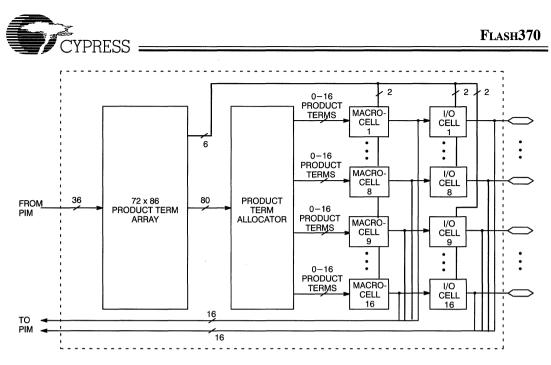
Functional Description (continued)

Routing signals through the PIM is completely invisible to the user. All routing is accomplished 100% by software—no hand routing is necessary. *Warp* and third-party development packages automatically route designs for the FLASH370 family in a matter of minutes. Finally, the rich routing resources of the FLASH370 family accommodate last minute logic changes while maintaining fixed pin assignments.

Logic Block

The logic block is the basic building block of the FLASH370 architecture. It consists of a product term array, an intelligent productterm allocator, 16 macrocells, and a number of I/O cells. The number of I/O cells varies depending on the device used.

There are two types of logic blocks in the FLASH370 family. The first type features an equal number (16) of I/O cells and macrocells and is shown in *Figure 2*. This architecture is best for I/O-intensive applications. The second type of logic block features a buried macrocell along with each I/O macrocell. In other words, in each logic block, there are eight macrocells that are connected to I/O cells and eight macrocells that are internally fed back to the PIM only. This organization is designed for register-intensive applications and is displayed in *Figure 3*. Note that at each FLASH370 density (except the smallest), an I/O intensive and a register-intensive device is available.


Product Term Array

Each logic block features a 72 x 86 programmable product term array. This array is fed with 36 inputs from the PIM, which originate from macrocell feedbacks and device pins. Active LOW and active HIGH versions of each of these inputs are generated to create the full 72-input field. The 86 product terms in the array can be created from any of the 72 inputs.

Of the 86 product terms, 80 are for general-purpose use for the 16 macrocells in the logic block. Four of the remaining six product terms in the logic block are output enable (OE) product terms. Each of the OE product terms controls up to eight of the 16 macrocells and is selectable on an individual macrocell basis. In other words, each I/O cell can select between one of two OE product terms to control the output buffer. The first two of these four OE product terms are available to the upper half of the I/O macrocells in a logic block. The other two OE product terms are available to the lower half of the I/O macrocells in a logic block. The final two product terms in each logic block are dedicated asynchronous set and asynchronous reset product terms.

Product Term Allocator

Through the product term allocator, software automatically distributes product terms among the 16 macrocells in the logic block as needed. A total of 80 product terms are available from the local product term array. The product term allocator provides two important capabilities without affecting performance: product term steering and product term sharing.

flash370-2

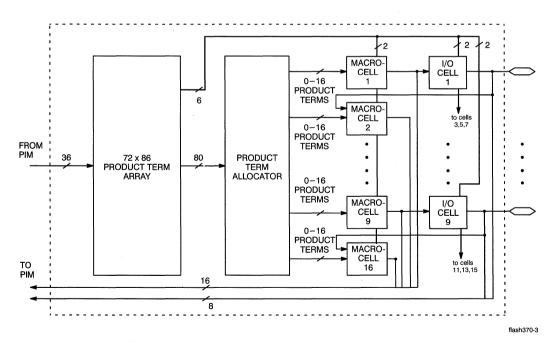


Figure 3. Logic Block for CY7C372 and CY7C374 (Register Intensive)

3 - 10

Product Term Steering

Product term steering is the process of assigning product terms to macrocells as needed. For example, if one macrocell requires ten product terms while another needs just three, the product term allocator will "steer" ten product terms to one macrocell and three to the other. On FLASH370 devices, product terms are steered on an individual basis. Any number between 0 and 16 product terms can be steered to any macrocell. Note that 0 product terms is useful in cases where a particular macrocell is unused or used as an input register.

Product Term Sharing

Product term sharing is the process of using the same product term among multiple macrocells. For example, if more than one output has one or more product terms in its equation that are common to other outputs, those product terms are only programmed once. The FLASH370 product term allocator allows sharing across groups of four output macrocells in a variable fashion. The software automatically takes advantage of this capability—the user does not have to intervene. Note that greater usable density can offen be achieved if the user "floats" the pin assignment. This allows the compiler to group macrocells that have common product terms adjacently.

Note that neither product term sharing nor product term steering have any effect on the speed of the product. All worst-case steering and sharing configurations have been incorporated in the timing specifications for the FLASH370 devices.

FLASH370 Macrocell

I/O Macrocell

Note:

Within each logic block there are 8 or 16 I/O macrocells depending on the device used. *Figure 4* illustrates the architecture of the I/O macrocell. The macrocell features a register that can be configured as combinatorial, a D flip-flop, a T flip-flop, or a level-triggered latch.

The register can be asynchronously set or asynchronously reset at the logic block level with the separate set and reset product terms. Each of these product terms features programmable polarity. This allows the registers to be set or reset based on an AND expression or an OR expression.

Clocking of the register is very flexible. Depending on the device, either two or four global synchronous clocks are available to clock the register. Furthermore, each clock features programmable polarity so that registers can be triggered on falling as well as rising edges (see the Dedicated/Clock Inputs section). Clock polarity is chosen at the logic block level.

At the output of the macrocell, a polarity control mux is available to select active LOW or active HIGH signals. This has the added advantage of allowing significant logic reduction to occur in many applications.

The FLASH370 macrocell features a feedback path to the PIM separate from the I/O pin input path. This means that if the macrocell is buried (fed back internally only), the associated I/O pin can still be used as an input.

Buried Macrocell

Some of the devices in the FLASH370 family feature additional macrocells that do not feed individual I/O pins. *Figure 5* displays the architecture of the I/O and buried macrocells for these devices. The I/O macrocell is identical to the one on devices without buried macrocells.

The buried macrocell is very similar to the I/O macrocell. Again, it includes a register that can be configured as combinatorial, a D flip-flop, a T flip-flop, or a latch. The clock for this register has the same options as described for the I/O macrocell. The primary difference between the I/O macrocell and the buried macrocell is that the buried macrocell does not have the ability to output data directly on I/O pin.

One additional difference on the buried macrocell is the addition of input register capability. The buried macrocell can be configured to act as an input register (D-type or latch) whose input comes from the I/O pin associated with the neighboring macrocell. The output of all buried macrocells is sent directly to the PIM regardless of its configuration.

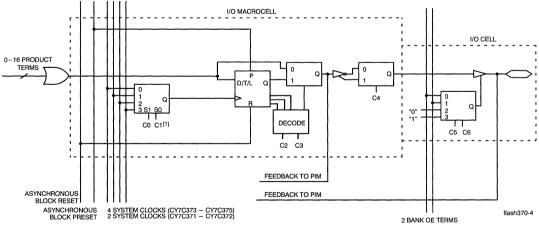
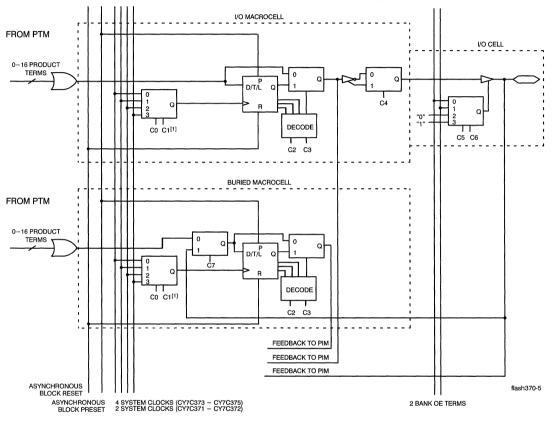
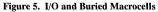
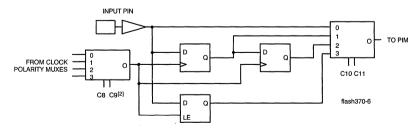


Figure 4. I/O Macrocell

1. C1 is not used on the CY7C371 and CY7C372 since the mux size is 2:1


FLASH370 I/O Cell


The I/O cell on the FLASH370 devices is illustrated along with the I/O macrocell in *Figures 4* and 5. The user can program the I/O cell to change the way the three-state output buffer is enabled and/or disabled. Each output can be set permanently on (output only),


permanently off (input only), or dynamically controlled by one of two OE product terms.

Dedicated/Clock Inputs

Six pins on each member of the FLASH370 family are designated as input-only. There are two types of dedicated inputs on FLASH370 devices: input pins and input/clock pins. *Figure 6* illustrates the ar-

Figure 6. Input Pins

2. C9 is not used on the CY7C371 and CY7C372 since the mux size is 2:1

Note:

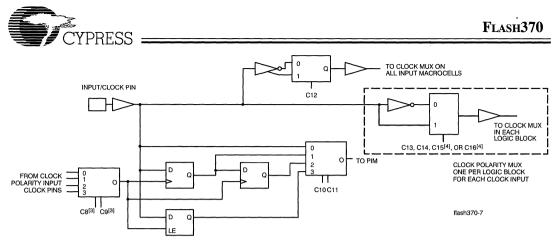
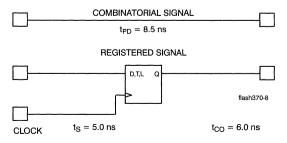


Figure 7. Input/Clock Pins

Notes:

3. C8 and C9 are not included on the CY7C371 and CY7C372 since each input/clock pin has the other input/clock pin as its clock.


4. C15 and C16 are not used on the CY7C371 and CY7C372 since there are two clocks.

chitecture for input pins. Four input options are available for the user: combinatorial, registered, double-registered, or latched. If a registered or latched option is selected, any one of the input clocks can be selected for control.

Figure 7 illustrates the architecture of input/clock pins. There are either two or four input/clock pins available, depending on the device selected. (The CY7C371 and CY7C372 have two input/clock pins while the other devices have four input/clock pins.) Like the input pins, input/clock pins can be combinatorial, registered, double registered, or latched. In addition, these pins feed the clocking structures throughout the device. The clock path at the input is user-configurable in polarity. The polarity of the clock signal can also be controlled by the user. Note that this polarity is separately controlled for input registers and output registers.

Timing Model

One of the most important features of the FLASH370 family is the simplicity of its timing. All delays are worst case and system performance is unaffected by the features used or not used on the parts. *Figure 8* illustrates the true timing model for the 8.5-ns devices. For combinatorial paths, any input to any output incurs an 8.5-ns worst-case delay regardless of the amount of logic used. For synchronous systems, the input set-up time to the output macrocells for any input is 5.0 ns and the clock to output time is also 6.0 ns.

Again, these measurements are for any output and clock, regardless of the logic used.

Stated another way, the FLASH370 features:

- no fanout delays
- no expander delays
- · no dedicated vs. I/O pin delays
- no additional delay through PIM
- no penalty for using 0-16 product terms
- no added delay for steering product terms
- no added delay for sharing product terms
- no routing delays
- no output bypass delays

The simple timing model of the FLASH370 family eliminates unexpected performance penalties.

Development Software Support

Warp2/Warp2+

Warp2/Warp2 + are state-of-the-art VHDL compilers for designing with Cypress PLDs and PROMs. Warp2/Warp2 + utilize a proper subset of IEEE 1164 VHDL as the Hardware Description Language (HDL) for design entry. VHDL provides a number of significant benefits for the design entry. VHDL provides a number of significant benefits for the design engineer. Warp2/Warp2 + accepts VHDL input, synthesizes and optimizes the entered design, and outputs a JEDEC map for the desired device. For simulation, Warp2/Warp2 + provides the graphical waveform simulator called Nova.

VHDL (VHSIC Hardware Description Language) is an open, powerful, non-proprietary language that is a standard for behavioral design entry and simulation. It is already mandated for use by the Department of Defense and supported by every major vendor of CAE tools. VHDL allows designers to learn a single language that is useful for all facets of the design process. See separate data sheet for further information.

Warp3

3 - 13

Warp3 is a sophisticated design tool that is based on the latest version of ViewLogic's CAE design environment. Warp3 features

schematic capture (ViewDraw[™]), VHDL waveform simulation (ViewSim[™]), a VHDL debugger, and VHDL synthesis, all integrated in a graphical design environment. *Warp3* is available on PCs using Windows 3.1 or subsequent versions, and on HP and Sun workstations. See separate data sheet for further information.

Third-Party Software

Cypress maintains a very strong commitment to third-party design software vendors. All major third-party software vendors (including ABEL[™], LOG/iC[™], CUPL[™], and Minc) will provide support for the FLASH370 family of devices. To expedite this support, Cypress supplies vendors with all pertinent architectural information as well as design fitters for our products.

Document #: 38-00215-C

Programming

The *Impulse3* [™] device programmer from Cypress will program all Cypress PLDs, CPLDs, and PROMs. This unit is a programmer that connects to any IBM-compatible PC via the printer port.

Third-Party Programmers

As with development software, Cypress strongly supports thirdparty programmers. All major third-party programmers (including Data I/O, Logical Devices, Minato, SMS, and Stag) will support the FLASH370 family.

Warp2, Warp2+, Warp3, FLASH370, UltraLogic and Impulse3 are trademarks of Cypress Semiconductor Corporation. ViewSim and ViewDraw are trademarks of ViewLogic. ABEL is a trademark of Data I/O Corporation. LOG/iC is a trademark of Isdata Corporation. CUPL is a trademark of Logical Devices, Inc.

Features

- 32 macrocells in two logic blocks
- 32 I/O pins
- 6 dedicated inputs including 2 clock pins
- No hidden delays .
- High speed
 - $-f_{MAX} = 143 \text{ MHz}$
 - $-t_{PD} = 8.5 \text{ ns}$
 - $-t_s = 5 ns$
 - $-t_{\rm CO} = 6$ ns
- **Electrically alterable FLASH** technology
- Available in 44-pin PLCC, CLCC, and **TQFP** packages
- Pin compatible with the CY7C372

Logic Block Diagram

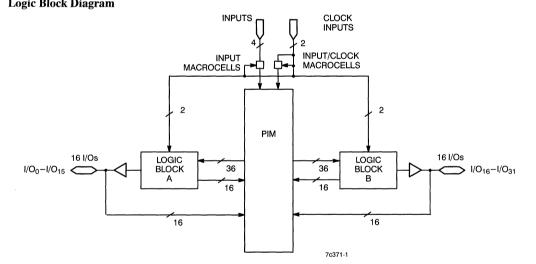
Functional Description

ltraLogic

ТΜ

The CY7C371 is a Flash erasable Complex Programmable Logic Device (CPLD) and is part of the FLASH370 family of high-density, high-speed CPLDs. Like all members of the FLASH370 family, the CY7C371 is designed to bring the ease of use and high performance of the 22V10 to high-density CPLDs

The 32 macrocells in the CY7C371 are divided between two logic blocks. Each logic block includes 16 macrocells, a 72 x 86 product term array, and an intelligent product term allocator.

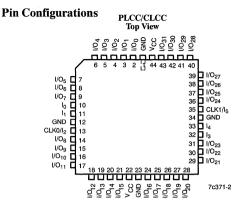

The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource-the Programmable Interconnect Matrix

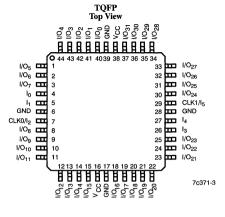
(PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.

32-Macrocell Flash

Like all members of the FLASH370 family, the CY7C371 is rich in I/O resources. Each macrocell in the device features an associated I/O pin, resulting in 32 I/O pins on the CY7C371. In addition, there are four dedicated inputs and two input/clock pins.

Finally, the CY7C371 features a very simple timing model. Unlike other high-density CPLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C371 remain the same




Selection Guide

		7C371-143	7C371-110	7C371-83	7C371L-83	7C371-66	7C371L-66
Maximum Propagation Delay, tPD (ns)		8.5	10	12	12	15	15
Minimum Set-Up, t _S (ns)		5	6	10	10	12	12
Maximum Clock to Output, t _{CO} (ns)		6	6.5	10	10	12	12
Maximum Supply Current, I _{CC} (mA)	Commercial	220	175	175	90	175	90
	Military/Ind.			220	110	220	110

Shaded area contains preliminary information.

Logic Block

The number of logic blocks distinguishes the members of the FLASH370 family. The CY7C371 includes two logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370 logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72x86. This large array in each logic block allows for very complex functions to be implemented in a single pass through the device.

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product terms to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be as signed to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370 CPLDs. Note that

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Note:

1. TA is the "instant on" case temperature.

product term allocation is handled by software and is invisible to the user.

I/O Macrocell

Each of the macrocells on the CY7C371 has a separate associated I/O pin. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed. It also has polarity control, and two global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the two logic blocks on the CY7C371 to the inputs and to each other. All inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Design Tools

Development software for the CY7C371 is available from Cypress's *Warp2*, *Warp2*+, and *Warp3* software packages. All of these products are based on the IEEE-standard VHDL language. Cypress also actively supports third-party design tools such as $ABEL^{\infty}$, CUPL^{∞}, MINC, and LOG/iC^{∞} . Please contact your local Cypress representative for further information.

Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ± 5%
Military ^[1]	-55°C to +125°C	$5V \pm 10\%$
Industrial	-40°C to +85°C	$5V \pm 10\%$

3

Electrical Characteristics Over the Operating Range^[2]

Parameter	Description		Test Conditions	5	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} =			2.4		V
		Min.	$I_{OH} = -2.0 \text{ mA} (\text{Mil})$				V
V _{OL}	Output LOW Voltage	V _{CC} = Min.	$I_{OL} = 16 \text{ mA} (\text{Com'l/In})$	d)		0.5	V
		win.	$I_{OL} = 12 \text{ mA} (\text{Mil})$				V
V _{IH}	Input HIGH Voltage	Guarante	Guaranteed Input Logical HIGH Voltage for all inputs ^[3]				V
V _{IL}	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all inputs ^[3]				0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$				+10	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled				+50	μΑ
I _{OS}	Output Short Circuit Current ^[4, 5]	$V_{\rm CC} = M$	$V_{CC} = Max., V_{OUT} = 0.5V$				mA
I _{CC}	Power Supply Current	$V_{CC} = M$	$I_{ax., I_{OUT}} = 0 \text{ mA},$ z, $V_{IN} = GND, V_{CC}^{[6]}$	Com'l		175	mA
		$I = I \text{ mHz}, V_{IN} = GND, V_{CC} V_{CC} V_{CC}$		Com'l "L" -66, -83		90	
		1		Com'l-143, Mil/Ind		220	
				Ind "L" –66, –83		110	

Shaded area contains preliminary information.

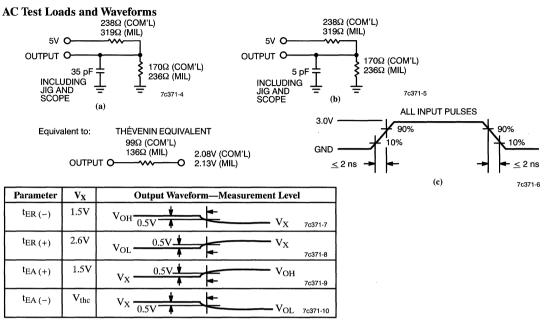
Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 5.0V$ at f=1 MHz	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 5.0V$ at f = 1 MHz	12	pF

Endurance Characteristics^[5]

Parameter	Description	Test Conditions	Min.	Max.	Unit
Ν	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

Notes:


See the last page of this specification for Group A subgroup testing in-2. formation.

These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
 Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V_{OUT} = 0.5V has been chosen to avoid test problems caused by tester ground degradation.

Tested initially and after any design or process changes that may affect 5. these parameters.

6. Measured with 16-bit counter programmed into each logic block.

(d) Test Waveforms

Switching Characteristics Over the Operating Range^[7]

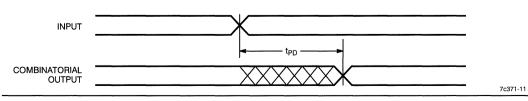
			-143	7C371	1-110	7C371-83 7C371L-83		7C371-66 7C371L-66		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Combinato	rial Mode Parameters									
t _{PD}	Input to Combinatorial Output		8.5		10		12		15	ns
t _{PDL}	Input to Output Through Transparent Input or Output Latch		11.5		13		18		22	ns
tPDLL	Input to Output Through Transparent Input and Output Latches		13.5		15		20		24	ns
t _{EA}	Input to Output Enable		13		14		19		24	ns
t _{ER}	Input to Output Disable		13		14		19		24	ns
Input Regi	stered/Latched Mode Parameters									
t _{WL}	Clock or Latch Enable Input LOW Time ^[5]	2.5		3		4		5		ns
t _{WH}	Clock or Latch Enable Input HIGH Time ^[5]	2.5		3		4		5		ns
t _{IS}	Input Register or Latch Set-Up Time	2		2		3		4		ns
t _{IH}	Input Register or Latch Hold Time	2		2		3		4		ns
t _{ICO}	Input Register Clock or Latch Enable to Combina- torial Output		12		14		19		24	ns
t _{ICOL}	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		14		16		21		26	ns

Shaded area contains preliminary information.

Note:

7. All AC parameters are measured with 16 outputs switching.

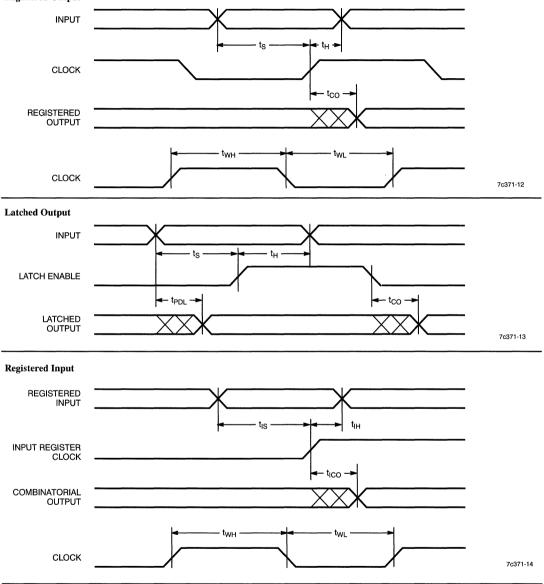
 This specification is intended to guarantee interface compatibility of the other members of the CY7C370 family with the CY7C371. This specification is met for the devices operating at the same ambient temperature and at the same power supply voltage.

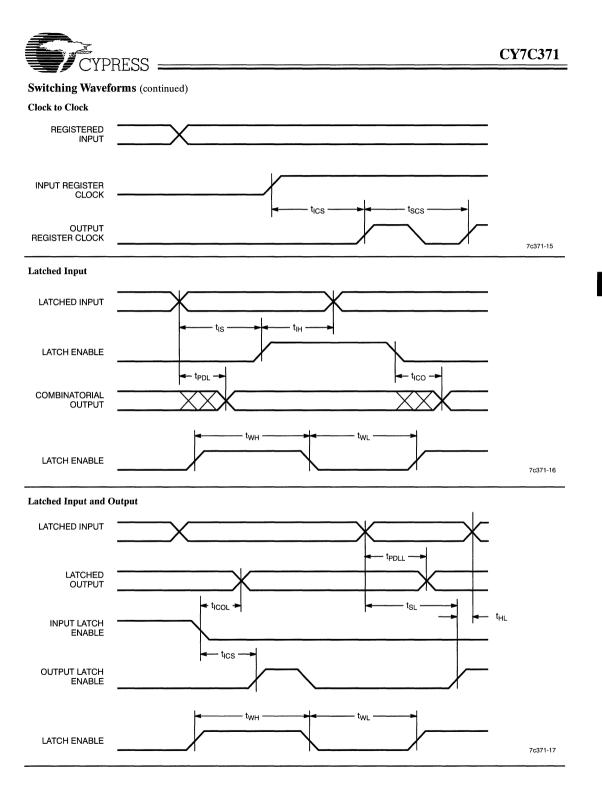

		7C371	-143	7C371-110			'1-83 1L-83		1-66 L-66	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Output Re	gistered/Latched Mode Parameters									
t _{CO}	Clock or Latch Enable to Output		6		6.5		10		12	ns
ts	Set-Up Time from Input to Clock or Latch Enable	5		6		10		12		ns
t _H	Register or Latch Data Hold Time	0		0		0		0		ns
t _{CO2}	Output Clock or Latch Enable to Output Delay (Through Memory Array)		12		14		19		24	ns
t _{SCS}	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	7		9		12		15		ns
t _{SCS2}	Output Clock Through Array to Output Clock (2-Pass Delay) ^[5]	13		16.5		21		27		ns
t _{SL}	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	9		10		12		15		ns
t _{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		0		ns
f _{MAX1}	Maximum Frequency with Internal Feedback (Least of $1/t_{SCS}$, $1/(t_S + t_H)$, or $1/t_{CO}$) ^[5]	143		111		83.3		66.6		MHz
f _{MAX2}	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1/(t_{WL} + t_{WH})$, $1/(t_S + t_H)$, or $1/t_{CO})^{[5]}$	166.7		153.8		100		83.3		MHz
f _{MAX3}	Maximum Frequency with external feedback (Lesser of $1/(t_{CO} + t_S)$ and $1/(t_{WL} + t_{WH}))^{[5]}$	91		80		50		41.6		MHz
t _{OH} -t _{IH} 37x	Output Data Stable from Output clock Minus Input Register Hold Time for 7C37x ^[5, 8]	0		0		0		0		ns
Pipelined 1	Mode Parameters									
t _{ICS}	Input Register Clock to Output Register Clock	7		9		12		15		ns
f _{MAX4}	Maximum Frequency in Pipelined Mode (Least of $1/(t_{CO} + t_{IS}), 1/t_{ICS}, 1/(t_{WL} + t_{WH}), 1/(t_{IS} + t_{IH}), $ or $1/t_{SCS})$	125		111		76.9		62.5		MHz
Reset/Pres	et Parameters									
t _{RW}	Asynchronous Reset Width ^[5]	8		10		15		20		ns
t _{RR}	Asynchronous Reset Recovery Time ^[5]	10		12		17		22		ns
t _{RO}	Asynchronous Reset to Output		14		16		21		26	ns
t _{PW}	Asynchronous Preset Width ^[5]	8		10		15		20		ns
t _{PR}	Asynchronous Preset Recovery Time ^[5]	10		12		17		22		ns
t _{PO}	Asynchronous Preset to Output		14		16		21		26	ns
tPOR	Power-On Reset ^[5]		1		1		1		1	μs

Switching Characteristics Over the Operating Range^[7] (continued)

Shaded area contains preliminary information.

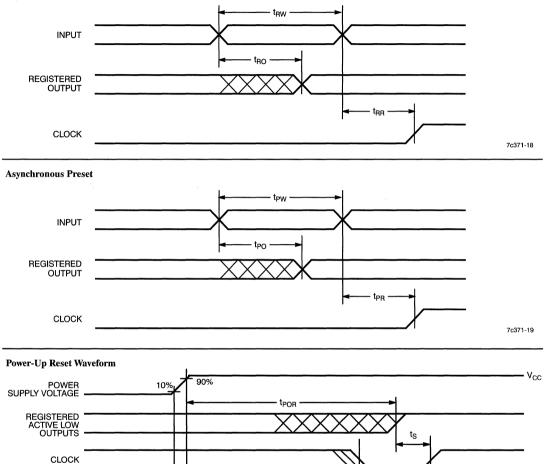
Switching Waveforms


Combinatorial Output

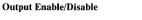


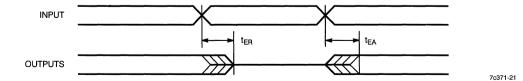
CY7C371

Switching Waveforms (continued)


3

CY7C371


Switching Waveforms (continued)


Asynchronous Reset

7c371-20

t_{WL}

 t_{POR} MAX = 1 μ s

3-22

Ordering Information

Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
143	CY7C371-143AC	A44	44-Lead Thin Plastic Quad Flat Pack	Commercial
	CY7C371-143JC	J67	44-Lead Plastic Leaded Chip Carrier	
110	CY7C371-110AC	A44	44-Lead Thin Plastic Quad Flat Pack	Commercial
	CY7C371-110JC	J67	44-Lead Plastic Leaded Chip Carrier	
83	CY7C371-83AC	A44	44-Lead Thin Plastic Quad Flat Pack	Commercial
	CY7C371L-83AC	A44	44-Lead Thin Plastic Quad Flat Pack	
	CY7C371-83JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371L-83JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371-83AI	A44	44-Lead Thin Plastic Quad Flat Pack	Industrial
	CY7C371L-83AI	A44	44-Lead Thin Plastic Quad Flat Pack	
	CY7C371-83JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371L-83JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371-83YMB	Y67	44-Lead Ceramic Leaded Chip Carrier	Military
66	CY7C371-66AC	A44	44-Lead Thin Plastic Quad Flat Pack	Commercial
	CY7C371L-66AC	A44	44-Lead Thin Plastic Quad Flat Pack	
	CY7C371-66JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371L-66JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371-66AI	A44	44-Lead Thin Plastic Quad Flat Pack	Industrial
	CY7C371L-66AI	A44	44-Lead Thin Plastic Quad Flat Pack	
	CY7C371-66JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371L-66JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371-66YMB	¥67	44-Lead Ceramic Leaded Chip Carrier	Military

Shaded areas contain preliminary information.

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

Document #: 38-00212-E

ABEL is a trademark of Data I/O Corporation. LOG/iC is a trademark of Isdata Corporation. CUPL is a trademark of Logical Devices Incorporated.

Switching Characteristics

Parameter	Subgroups
t _{PD}	9, 10, 11
t _{CO}	9, 10, 11
t _{ICO}	9, 10, 11
t _S	9, 10, 11
t _H	9, 10, 11
t _{IS}	9, 10, 11
t _{IH}	9, 10, 11
t _{ICS}	9, 10, 11

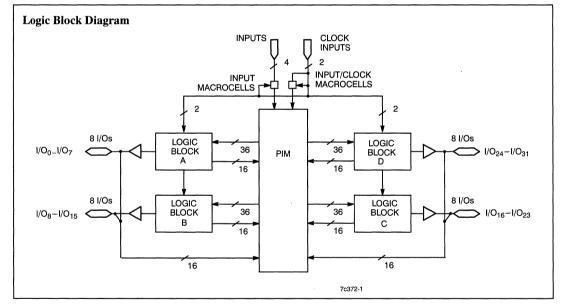
3

Features

- 64 macrocells in four logic blocks
- 32 I/O pins
- 6 dedicated inputs including 2 clock pins
- No hidden delays
- High speed
 - $-f_{MAX} = 125 \text{ MHz}$
 - $-t_{PD} = 10 \text{ ns}$
 - $-t_{\rm S} = 5.5 \, \rm ns$
 - $-t_{\rm CO} = 6.5$ ns
- Electrically alterable Flash technology
- Available in 44-pin PLCC and CLCC packages
- Pin compatible with the CY7C371

Functional Description

The CY7C372 is a Flash erasable Complex Programmable Logic Device (CPLD) and is part of the FLASH370 [™] family of highdensity, high-speed CPLDs. Like all members of the FLASH370 family, the CY7C372 is designed to bring the ease of use and high performance of the 22V10 to highdensity CPLDs.

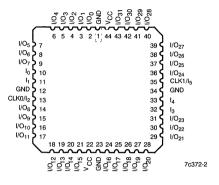

The 64 macrocells in the CY7C372 are divided between four logic blocks. Each logic block includes 16 macrocells, a 72 x 86 product term array, and an intelligent product term allocator.

The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource—the Programmable Interconnect Matrix (PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.

UltraLogic™ 64-Macrocell Flash CPLD

Like all members of the FLASH370 family, the CY7C372 is rich in I/O resources. Every two macrocells in the device feature an associated I/O pin, resulting in 32 I/O pins on the CY7C372. In addition, there are four dedicated inputs and two input/clock pins.

Finally, the CY7C372 features a very simple timing model. Unlike other high-density CPLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used. or the type of application, the timing parameters on the CY7C372 remain the same.


Selection Guide

		7C372-125	7C372-100	7C372-83	7C372-66	7C372L-66
Maximum Propagation Delay, t _{PD} (ns)		10	12	15	20	20
Minimum Set-up, t _S (ns)		5.5	6.0	8	10	10
Maximum Clock to Output	Maximum Clock to Output, t _{CO} (ns)		6.5	8	10	10
Maximum Supply Current, I _{CC} (mA)	Commercial	280	250	250	250	125
	Military/Industrial			300	300	

Shaded area contains preliminary information.

Pin Configuration

Functional Description (continued)

Logic Block

The number of logic blocks distinguishes the members of the FLASH370 family. The CY7C372 includes four logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370 logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72 x 86. This large array in each logic block allows for very complex functions to be implemented in a single pass through the device.

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product terms to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with Power Applied
Supply Voltage to Ground Potential $\dots -0.5V$ to $+7.0V$
DC Voltage Applied to Outputs in High Z State $\dots -0.5V$ to $+7.0V$
DC Input Voltage
DC Program Voltage 12.5V
Output Current into Outputs 16 mA
Static Discharge Voltage

term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370 PLDs. Note that product term allocation is handled by software and is invisible to the user.

I/O Macrocell

Half of the macrocells on the CY7C372 have separate I/O pins associated with them. In other words, each I/O pin is shared by two macrocells. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed. It also has polarity control, and two global clocks to trigger the register. The I/O macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.

Buried Macrocell

The buried macrocell is very similar to the I/O macrocell. Again, it includes a register that can be configured as combinatorial, as a D flip-flop, a T flip-flop, or a latch. The clock for this register has the same options as described for the I/O macrocell. One difference on the buried macrocell is the addition of input register capability. The user can program the buried macrocell to act as an input register (D-type or latch) whose input comes from the I/O pin associated with the neighboring macrocell. The output of all buried macrocells is sent directly to the PIM regardless of its configuration.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the four logic blocks on the CY7C372 to the inputs and to each other. All inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Development Tools

Development software for the CY7C372 is available from Cypress's *Warp2*^m and *Warp3*^m software packages. Both of these products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABEL^m, CUPL^m, and LOG/iC^m. Please contact your local Cypress representative for further information.

Latch-Up Current	 >200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ± 5%
Industrial	-40°C to +85°C	5V ± 10%
Military ^[1]	-55° C to $+125^{\circ}$ C	$5V \pm 10\%$

Note:

1. TA is the "instant on" case temperature.

Parameter	Description		Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.$	$I_{OH} = -3.2 \text{ mA} (Co$	om'l/Ind)	2.4		V
			$I_{OH} = -2.0 \text{ mA} (M)$	il)			V
VOL	Output LOW Voltage	$V_{\rm CC} = Min.$	$I_{OL} = 16 \text{ mA} (\text{Com})$	l/Ind)		0.5	V
			$I_{OL} = 12 \text{ mA} \text{ (Mil)}$				V
V _{IH}	Input HIGH Voltage	Guaranteed Inpu	2.0	7.0	V		
VIL	Input LOW Voltage	Guaranteed Inpu	-0.5	0.8	V		
I _{IX}	Input Load Current	$GND \leq V_I \leq V_C$	-10	+10	μA		
I _{OZ}	Output Leakage Current	$GND \le V_0 \le V$	-50	+50	μΑ		
I _{OS}	Output Short Circuit Current ^[4, 5]	$V_{\rm CC}$ = Max., $V_{\rm C}$	$V_{CC} = Max., V_{OUT} = 0.5V$				
I _{CC}	Power Supply Current [6]	$V_{CC} = Max., I_{OI}$ f = 1 mHz, V_{IN}	UT = 0 mA,	Com'l		250	mA
		$t = 1 \text{ mHz}, V_{IN} = GND, V_{CC}$		Com'1 "L" -66		125	mA
				Com'l -125		280	mA
				Mil /Industrial		300	mA

Shaded area contains preliminary information.

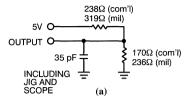
Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 5.0V$ at f=1 MHz	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 5.0V$ at f = 1 MHz	12	pF

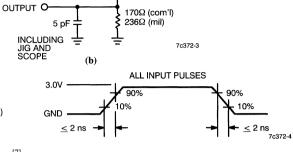
Endurance Characteristics^[5]

Parameter	Description	Test Conditions	Min.	Max.	Unit
Ν	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

Parameter	VX	Output Waveform—Measurement Level						
t _{ER (-)}	1.5V	V _{OH}						
t _{ER (+)}	2.6V	V_{OL} $0.5V$ V_X						
t _{EA (+)}	1.5V	V _X V _{OH}						
t _{EA (-)}	V _{thc}	$V_X \xrightarrow{\bullet} V_{OL}$						


(a) Test Waveforms

Notes:


- See the last page of this specification for Group A subgroup testing information.
- 3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
- 4. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation.
- 5. Tested initially and after any design or process changes that may affect these parameters.
- 6. Meaured with 16-bit counter programmed into each logic block.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT 99Ω (com'l) 136Ω (mil) 2.08V (com'l) OUTPUT O-----O 2.13V (mil)

 238Ω (com'l) 319Ω (mil)

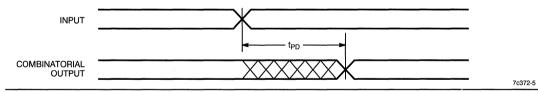
....

5V O-

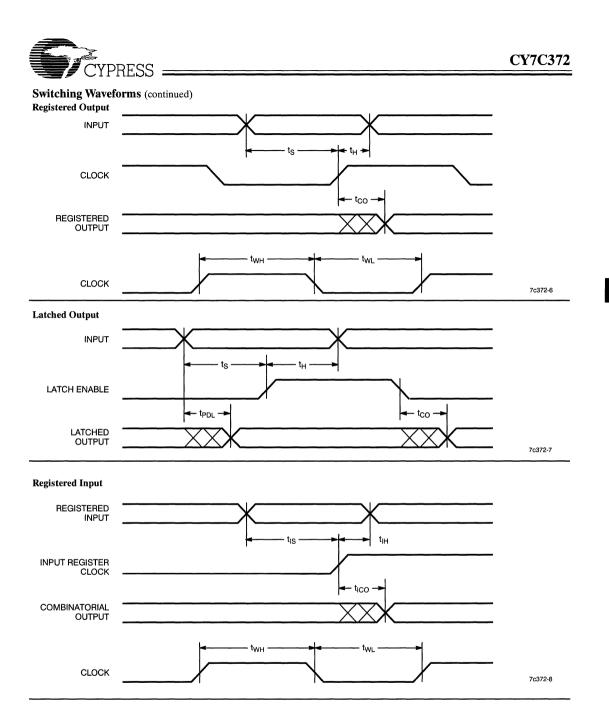
Switching Characteristics Over the Operating Range^[7]

								7C37	2-66	
		7C372	2-125	7C372	2-100	7C37	2-83	7C372	2L-66	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Combinato	rial Mode Parameters									
t _{PD}	Input to Combinatorial Output		10		12		15		20	ns
t _{PDL}	Input to Output Through Transparent Input or Output Latch	-	13		15		18		22	ns
t _{PDLL}	Input to Output Through Transparent Input and Output Latches		15		16		19		24	ns
t _{EA}	Input to Output Enable		14		16		19		24	ns
t _{ER}	Input to Output Disable		14		16		19		24	ns
Input Regi	stered/Latched Mode Parameters									
t _{WL}	Clock or Latch Enable Input LOW Time ^[5]	3		3		4		5		ns
t _{WH}	Clock or Latch Enable Input HIGH Time ^[5]	3		3		4		5		ns
t _{IS}	Input Register or Latch Set-Up Time	2		2		3		4		ns
t _{IH}	Input Register or Latch Hold Time	2		2		3		4		ns
t _{ICO}	Input Register Clock or Latch Enable to Combinatorial Output		14		16		19		24	ns
t _{ICOL}	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		16		18		21		26	ns
Output Re	gistered/Latched Mode Parameters									
t _{CO}	Clock or Latch Enable to Output		6.5		6.5		8		10	ns
ts	Set-Up Time from Input to Clock or Latch Enable	5.5		6		8		10		ns
t _H	Register or Latch Data Hold Time	0		0		0		0		ns
t _{CO2}	Output Clock or Latch Enable to Output Delay (Through Memory Array)		14		16		19		24	ns
t _{SCS}	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	8		10		12		15		ns
t _{SL}	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	10		12		15		20		ns
t _{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		0		ns

Shaded area contains preliminary information.

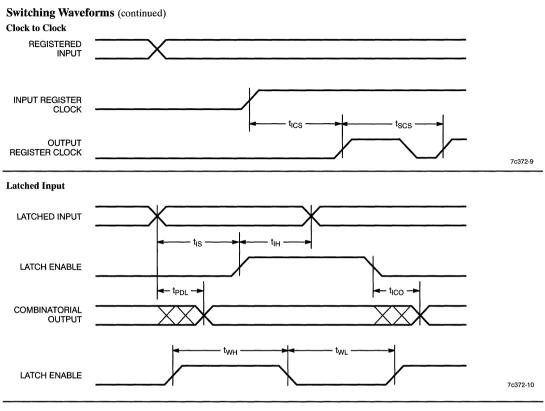

Switching Characteristics Over the Operating Range^[7] (continued)

		7C372	-125	7C372	2-100	7C372-83		7C372-66 7C372L-66			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
f _{MAX1}	Maximum Frequency with Internal Feedback in Output Registered Mode (Least of $1/t_{SCS}$, $1/(t_S + t_H)$, or $1/t_{CO}$) ^[5]	125		100		83		66		MHz	
f _{MAX2}	Maximum Frequency Data Path in Output Regis- tered/Latched Mode (Lesser of $1/(t_{WL} + t_{WH})$, $1/(t_S + t_H)$, or $1/t_{CO})^{[5]}$	153.8		153.8		125		100		MHz	
f _{MAX3}	Maximum Frequency with External Feedback (Lesser of $1/(t_{CO} + t_S)$ and $1/(t_{WL} + t_{WH})^{[5]}$	83.3		80		62.5		50		MHz	
t _{OH} -t _{IH} 37x	Output Data Stable from Output clock Minus Input Register Hold Time for 7C37x ^[5, 8]	0		0		0		0		ns	
Pipelined I	Mode Parameters										
t _{ICS}	Input Register Clock to Output Register Clock	8		10		12		15		ns	
f _{MAX4}	Maximum Frequency in Pipelined Mode (Least of $1/(t_{CO} + t_{IS}), 1/t_{ICS}, 1/(t_{WL} + t_{WH}), 1/(t_{IS} + t_{IH}), or 1/t_{SCS})^{[5]}$	125		100		83.3		66.6		MHz	
Reset/Pres	et Parameters										
t _{RW}	Asynchronous Reset Width ^[5]	10		12		15		20		ns	
t _{RR}	Asynchronous Reset Recovery Time ^[5]	12		14		17		22		ns	
t _{RO}	Asynchronous Reset to Output		16		18		21		26	ns	
t _{PW}	Asynchronous Preset Width ^[5]	10		12		15		20		ns	
t _{PR}	Asynchronous Preset Recovery Time ^[5]	12		14		17		22		ns	
t _{PO}	Asynchronous Preset to Output		16		18		21		26	ns	
tPOR	Power-On Reset ^[5]		1		1		1		1	μs	

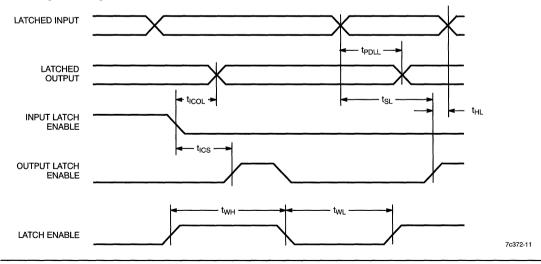

Shaded area contains preliminary information.

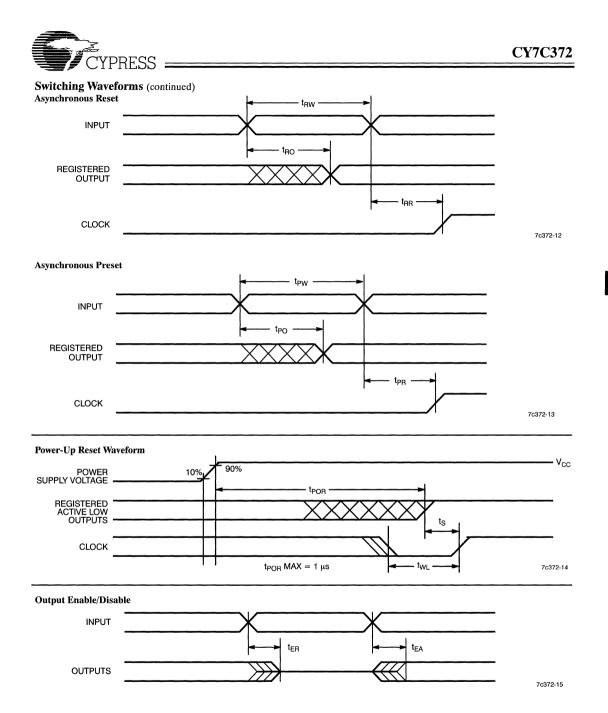
Switching Waveforms

Combinatorial Output



Note:
 All AC parameters are measured with 16 outputs switching.
 This specification is intended to guarantee interface compatibility of the other members of the CY7C370 family with the CY7C372. This specification is met for the devices operating at the same ambient temperature and at the same power supply voltage.





CY7C372

Latched Input and Output

3

Ordering Information

Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
125	CY7C372-125JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
100	CY7C372-100JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
83	CY7C372-83JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C372-83JI	J67	44-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C372-83YMB	¥67	44-Lead Ceramic Leaded Chip Carrier	Military
66	CY7C372-66JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C372-66YMB	¥67	44-Lead Ceramic Leaded Chip Carrier	Military
	CY7C372-66JI	J67	44-Lead Ceramic Leaded Chip Carrier	Industrial
	CY7C372L-66JC	J67	44-Lead Ceramic Leaded Chip Carrier	Commercial

Shaded areas contain preliminary information.

MILITARY SPECIFICATIONS **Group A Subgroup Testing** DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{PD}	9, 10, 11
t _{CO}	9, 10, 11
t _{ICO}	9, 10, 11
t _S	9, 10, 11
t _H	9, 10, 11
t _{IS}	9, 10, 11
t _{IH}	9, 10, 11
t _{ICS}	9, 10, 11

Document #: 38-00213-C

Warp2, Warp2+, Warp3, UltraLogic, and FLASH370 are trademarks of Cypress Semiconductor Corporation. ABEL is a trademark of Data I/O Corporation. LOG/iC is a trademark of Isdata Corporation. CUPL is a trademark of Logical Devices Incorporated.

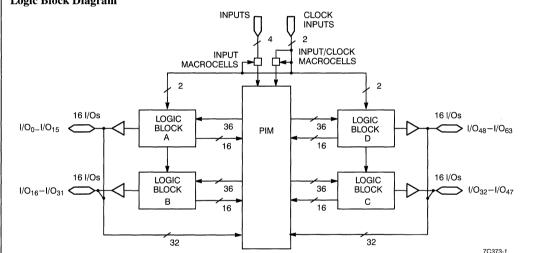
Features

- 64 macrocells in four logic blocks
- 64 I/O pins
- 6 dedicated inputs including 4 clock pins
- No hidden delays
- High speed
 - $-f_{MAX} = 125 \text{ MHz}$
 - $-t_{PD} = 10 \text{ ns}$
 - $-t_{\rm S} = 5.5$ ns
 - $-t_{\rm CO} = 6.5 \, \rm ns$
- **Electrically alterable Flash** technology
- Available in 84-pin PLCC and 100-pin TOFP packages
- Pin compatible with the CY7C374

Logic Block Diagram

Functional Description

The CY7C373 is a Flash erasable Complex Programmable Logic Device (CPLD) and is part of the FLASH370[™] family of high-density, high-speed CPLDs. Like all members of the FLASH370 family, the CY7C373 is designed to bring the ease of use and high performance of the 22V10 to highdensity CPLDs.


The 64 macrocells in the CY7C373 are divided between four logic blocks. Each logic block includes 16 macrocells, a 72 x 86 product term array, and an intelligent product term allocator.

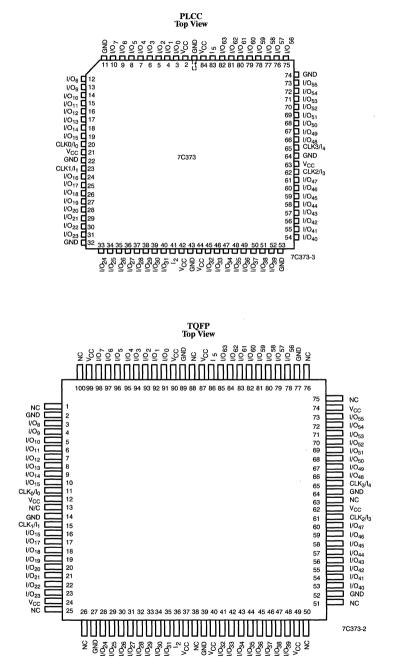
The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource-the Programmable Interconnect Matrix (PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.

UltraLogic[™] 64-Macrocell Flash CPLD

Like all members of the FLASH370 family. the CY7C373 is rich in I/O resources. Every macrocell in the device features an associated I/O pin, resulting in 64 I/O pins on the CY7C373. In addition, there are two dedicated inputs and four input/clock pins.

Finally, the CY7C373 features a very simple timing model. Unlike other high-density CPLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C373 remain the same

Selection Guide


		7C373-125	7C373-100	7C373-83	7C373-66	7C373L-66
Maximum Propagation Delay (ns)		10	12	15	20	20
Minimum Set-up, t _S (ns)	Minimum Set-up, t _S (ns)		6	8	10	10
Maximum Clock to Output	num Clock to Output, t _{CO} (ns)		6.5	8	10	10
Maximum Supply	Commercial	280	250	250	250	125
Current, I _{CC} (mA)	Industrial			300	300	

Shaded area contains preliminary information

CY7C373

Pin Configurations

Functional Description (continued)

Logic Block

The number of logic blocks distinguishes the members of the FLASH370 family. The CY7C373 includes four logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370 logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72 x 86. This large array in each logic block allows for very complex functions to be implemented in single passes through the device.

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product term resources to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370 CPLDs. Note that the product term allocator is handled by software and is invisible to the user.

I/O Macrocell

Each of the macrocells on the CY7C373 has a separate I/O pin associated with it. In other words, each I/O pin is shared by two macrocells. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed, polarity control over the input sum-term, and two global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input. The Programmable Interconnect Matrix (PIM) connects the four logic blocks on the CY7C373 to the inputs and to each other. All inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

CY7C373

Development Tools

Development software for the CY7C373 is available from Cypress's $Warp2^{\mbox{\tiny W}}$, $Warp2+^{\mbox{\tiny W}}$, and $Warp3^{\mbox{\tiny W}}$ software packages. Both of these products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABEL^{$\mbox{\tiny W}$}, CUPL^{$\mbox{\tiny W}$}, and LOG/iC^{$\mbox{\tiny N}$}. Please contact your local Cypress representative for further information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 5%
Industrial	-40°C to +85°C	5V ± 10%

Parameter	Description		Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.$	$I_{OH} = -3.2 \text{ mA} (\text{Com'l/Ir})$	2.4		V	
V _{OL}	Output LOW Voltage	$V_{CC} = Min.$	$I_{OL} = 16 \text{ mA} (\text{Com'l/Ind})$		0.5	V	
V _{IH}	Input HIGH Voltage	Guaranteed Inpu	2.0	7.0	V		
VIL	Input LOW Voltage	Guaranteed Inpu	-0.5	0.8	V		
I _{IX}	Input Load Current	$GND \leq V_I \leq V_C$	-10	+10	μΑ		
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V$	-50	+50	μΑ		
I _{OS}	Output Short Circuit Current ^[2, 3]	$V_{\rm CC}$ = Max., $V_{\rm C}$	$p_{\rm UT} = 0.5 { m V}$	-30	-90	mA	
I _{CC}	Power Supply Current ^[4]	$V_{CC} = Max., I_{OI}$ f = 1 mHz, V_{IN}	UT = 0 mA,	Com'l		250	mA
		$I = 1 \text{ mHz}, V_{IN}$	= 1 mHz, V_{IN} = GND, V_{CC}			125	mA
				Com'l -125		280	mA
				Industrial		300	mA

Electrical Characteristics Over the Operating Range

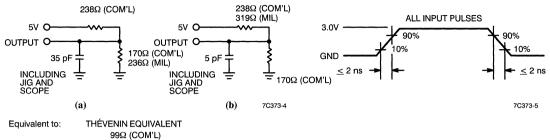
Shaded area contains preliminary information

Capacitance^[3]

Parameter	Description Test Condition		Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 5.0V$ at f=1 MHz	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 5.0V$ at f = 1 MHz	12	pF

Endurance Characteristics^[3]

Parameter	Description	Test Conditions	Min.	Max.	Unit
Ν	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles


Parameter	VX	Output Waveform—Measurement Level						
t _{ER (-)}	1.5V	V _{OH} V _X						
t _{ER (+)}	2.6V	V_{OL} V_X						
t _{EA (+)}	1.5V	$V_X \xrightarrow{0.5V} V_{OH}$						
t _{EA (-)}	V _{thc}	$V_X \xrightarrow{\bullet} V_{OL}$						

(a) Test Waveforms

- Notes:
 These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
 Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V_{OUT} = 0.5V has been chosen to avoid test problems caused by tester ground degradation.
- Tested initially and after any design or process changes that may affect 3. these parameters.
- 4. Measured with 16-bit counter programmed into each logic block.

AC Test Loads and Waveforms

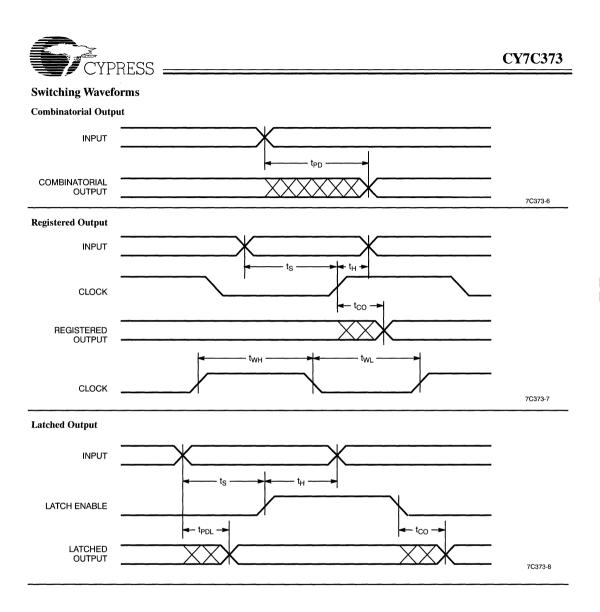
2.08V (COM'L)

OUTPUT O-----O

Switching Characteristics Over the Operating Range^[5]

		7C373-125 7C373-100		-100	7C373-83		7C373-66 7C373L-66			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Combinato	rial Mode Parameters									
t _{PD}	Input to Combinatorial Output		10		12		15		20	ns
t _{PDL}	Input to Output Through Transparent Input or Output Latch		13		15		18		22	ns
t _{PDLL}	Input to Output Through Transparent Input and Output Latches		15		16		19		24	ns
t _{EA}	Input to Output Enable		14		16		19		24	ns
t _{ER}	Input to Output Disable		. 14		16		19		24	ns
Input Regi	stered/Latched Mode Parameters									
t _{WL}	Clock or Latch Enable Input LOW Time ^[3]	3		3		4		5		ns
t _{WH}	Clock or Latch Enable Input HIGH Time ^[3]	3		3		4		5		ns
t _{IS}	Input Register or Latch Set-Up Time	2		2		3		4		ns
t _{IH}	Input Register or Latch Hold Time	2		2		3		4		ns
t _{ICO}	Input Register Clock or Latch Enable to Combinatorial Output		14		16		19		24	ns
t _{ICOL}	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		16		18		21		26	ns
Output Re	gistered/Latched Mode Parameters									
t _{CO}	Clock or Latch Enable to Output		6.5		6.5		8		10	ns
ts	Set-Up Time from Input to Clock or Latch Enable	5.5		6		8		10		ns
t _H	Register or Latch Data Hold Time	0		0		0		0		ns
t _{CO2}	Output Clock or Latch Enable to Output Delay (Through Memory Array)		14		16		19		24	ns
t _{SCS}	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	8		10		12		15		ns
t _{SL}	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	10		12		15		20		ns
t _{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		0		ns
f _{MAX1}	Maximum Frequency with Internal Feedback (Least of $1/t_{SCS}$, $1/(t_S + t_H)$, or $1/t_{CO})^{[3]}$	125	1	100		83		66		MHz
f _{MAX2}	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of 1/(t _{WL} + t _{WH}), 1/(t _S + t _H), or 1/t _{CO}) ^[3] ontains preliminary information	153.8		153.8		125		100		MHz

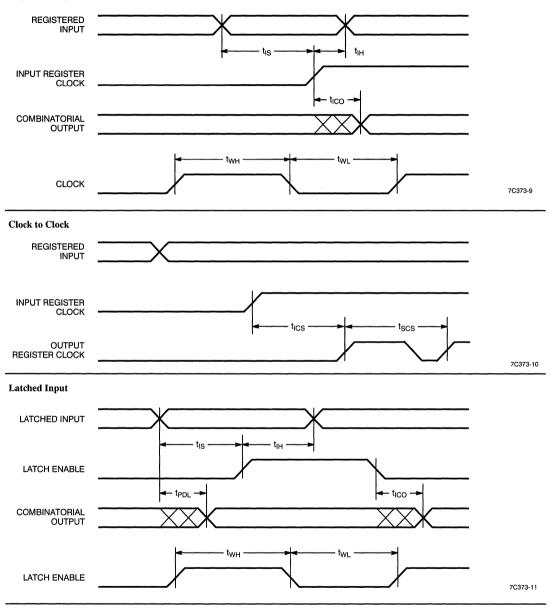
Shaded area contains preliminary information


Switching Characteristics Over the Operating Range^[5] (continued)

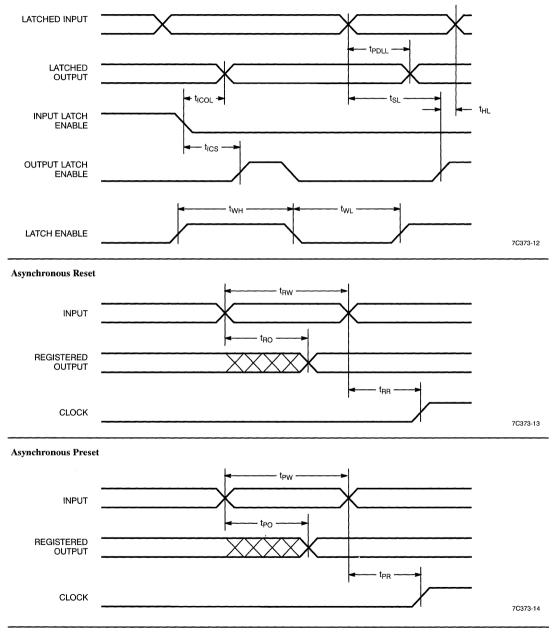
		7C373-125		7C373-100		7C373-83		7C373-66 7C373L-66			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
f _{MAX3}	Maximum Frequency of (2) CY7C373s with External Feedback (Lesser of $1/(t_{CO} + t_S)$ and $1/(t_{WL} + t_{WH})^{[3]}$	83.3		80		62.5		50		MHz	
t _{OH} -t _{IH} 37x	Output Data Stable from Output clock Minus Input Register Hold Time for 7C37x ^[3, 6]			0		0		0		ns	
Pipelined N	Mode Parameters										
t _{ICS}	Input Register Clock to Output Register Clock	8		10		12		15		ns	
f _{MAX4}	Maximum Frequency in Pipelined Mode (Least of $1/(t_{CO} + t_{IS}), 1/t_{ICS}, 1/(t_{WL} + t_{WH}), 1/(t_{IS} + t_{IH}), or 1/t_{SCS})^{[3]}$	125		83.3		66.6		50.0		MHz	
Reset/Pres	et Parameters		في تدعدي تنقصي								
t _{RW}	Asynchronous Reset Width ^[3]	10	in de la	12		15		20		ns	
t _{RR}	Asynchronous Reset Recovery Time ^[3]	12		14		17		22		ns	
t _{RO}	Asynchronous Reset to Output		16		18		21		26	ns	
t _{PW}	Asynchronous Preset Width ^[3]	10		12		15		20		ns	
t _{PR}	Asynchronous Preset Recovery Time ^[3]	12		14		17		22		ns	
t _{PO}	Asynchronous Preset to Output	19971	16		18		21		26	ns	
tPOR	Power-On Reset ^[3]		1		1		1		1	μs	

All AC parameters are measured with 16 outputs switching.
 All AC parameters are measured with 16 outputs switching.
 This specification is intended to guarantee interface compatibility of the other members of the CY7C370 family with the CY7C373. This specification is met for the devices operating at the same ambient temperature and at the same power supply voltage.

3-38



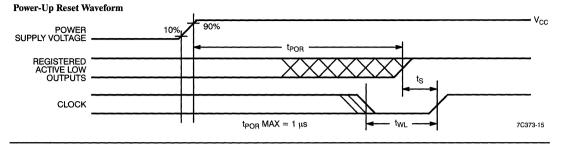
CY7C373

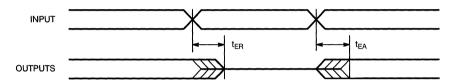

Switching Waveforms (continued)

Registered Input

Switching Waveforms (continued)

Latched Input and Output




CY7C373

7C373-16

Switching Waveforms (continued)

Output Enable/Disable

Ordering Information

Speed (MHz)	Ordering Code	Package Type	Package Type	Operating Range
125	CY7C373-125AC	A100	100-Pin Thin Quad Flatpack	Commercial
	CY7C373-125JC	J83	84-Lead Plastic Leaded Chip Carrier	
100	CY7C373-100AC	A100	100-Pin Thin Quad Flatpack	Commercial
	CY7C373-100JC	J83	84-Lead Plastic Leaded Chip Carrier	
83	CY7C373-83AC	A100	100-Pin Thin Quad Flatpack	Commercial
	CY7C373-83JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C373-83AI	A100	100-Pin Thin Quad Flatpack	Industrial
	CY7C373-83JI	J83	84-Lead Plastic Leaded Chip Carrier	
66	CY7C373-66AC	A100	100-Pin Thin Quad Flatpack	Commercial
	CY7C373-66JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C373-66AI	A100	100-Pin Thin Quad Flatpack	Industrial
	CY7C373-66JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C373L-66JC	J83	84-Lead Plastic Leaded Chip Carrier	Commercial

Shaded area contains preliminary information

Document #: 38-00216-C

UltraLogic, FLASH370, *Warp2*, *Warp2*+, and *Warp3* are trademarks of Cypress Semiconductor Corporation. ABEL is a trademark of Data I/O Corporation. LOG/iC is a trademark of Isdata Corporation.

CUPL is a trademark of Logical Devices Incorporated.

Features

- 128 macrocells in eight logic blocks
- 64 I/O pins
- 6 dedicated inputs including 4 clock pins
- No hidden delays
- High speed
 - $-f_{MAX} = 100 \text{ MHz}$
 - $-t_{PD} = 12 \text{ ns}$
 - $-t_{\rm S} = 7 \, \rm ns$
 - $-t_{\rm CO} = 7$ ns
- Electrically Alterable Flash technology
- Available in 84-pin PLCC, 84-pin CLCC, 100-pin TQFP, and 84-pin PGA packages
- Pin compatible with the CY7C373

Functional Description

The CY7C374 is a Flash erasable Complex Programmable Logic Device (CPLD) and is part of the FLASH370[™] family of highdensity, high-speed CPLDs. Like all members of the FLASH370 family, the CY7C374

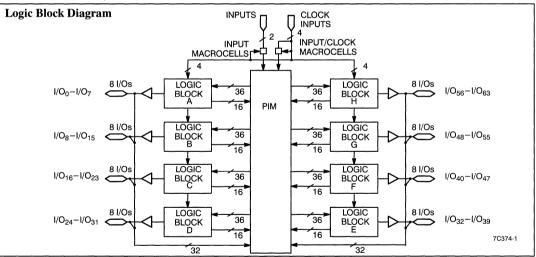
UltraLogic[™] 128-Macrocell Flash CPLD

is designed to bring the ease of use and high performance of the 22V10 to highdensity CPLDs.

The 128 macrocells in the CY7C374 are divided between eight logic blocks. Each logic block includes 16 macrocells, a 72 x 86 product term array, and an intelligent product term allocator.

The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource—the Programmable Interconnect Matrix (PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.

Like all members of the FLASH370 family, the CY7C374 is rich in I/O resources. Every two macrocells in the device feature an associated I/O pin, resulting in 64 I/O pins on the CY7C374. In addition, there are two dedicated inputs and four input/clock pins.

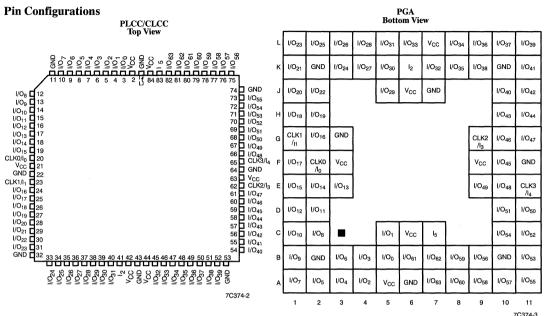

Finally, the CY7C374 features a very simple timing model. Unlike other high-density CPLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C374 remain the same.

Logic Block

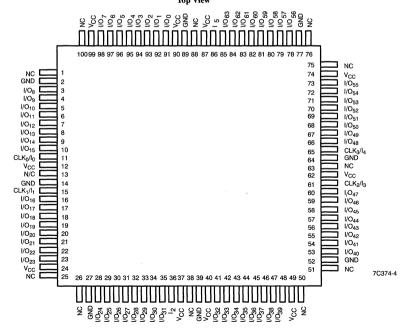
The number of logic blocks distinguishes the members of the FLASH370 family. The CY7C374 includes eight logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370 logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72 x 86. This large array in each logic block allows for very complex functions to be implemented in single passes through the device.



Selection Guide


		7C374-100	7C374-83	7C374-66	7C374L-66
Maximum Propagation Delay t _{PD} (ns)		12	15	20	20
Minimum Set-Up, t _S (ns)		6	8	10	10
Maximum Clock to Output, tco (ncs)		7	8	10	10
Maximum Supply Current, I _{CC} (mA)	Commercial	300	300	300	150
	Military/Industrial		370	370	

Shaded area contains preliminary information.

TQFP Top View

Functional Description (continued)

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product terms to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370 CPLDs. Note that product term allocation is handled by software and is invisible to the user.

I/O Macrocell

Half of the macrocells on the CY7C374 have I/O pins associated with them. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The I/O macrocell includes a register that can be optionally bypassed, polarity control over the input sum-term, and two global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.

Buried Macrocell

The buried macrocell is very similar to the I/O macrocell. Again, it includes a register that can be configured as combinatorial, as a D flip-flop, a T flip-flop, or a latch. The clock for this register has the same options as described for the I/O macrocell. One difference on the buried macrocell is the addition of input register capability. The user can program the buried macrocell to act as an input register (D-type or latch) whose input comes from the I/O pin associated with the neighboring macrocell. The output of all buried macrocell is sent directly to the PIM regardless of its configuration.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the eight logic blocks on the CY7C374 to the inputs and to each other. All

inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Development Tools

Development software for the CY7C374 is available from Cypress's $Warp2^{\sim}$, $Warp2^{+\sim}$, and $Warp3^{\sim}$ software packages. Both of these products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABEL^{\sim}, CUPL^{\sim}, and LOG/iC^{\sim}. Please contact your local Cypress representative for further information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with
Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Supply Voltage to Ground Potential $\dots -0.5V$ to $+7.0V$
DC Voltage Applied to Outputs
in High Z State $-0.5V$ to $+7.0V$
DC Input Voltage $\dots \dots \dots$
DC Program Voltage 12.5V
Output Current into Outputs 16 mA
Static Discharge Voltage
(per MIL-STD-883, Method 3015)
Latch-Up Current

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ± 5%
Industrial	-40° C to $+85^{\circ}$ C	5V ± 5%
Military ^[1]	-55°C to +125°C	$5V \pm 10\%$

Note:

1. T_A is the "instant on" case temperature.

Parameter	Description		Test Conditions		Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.$	$V_{CC} = Min.$ $I_{OH} = -3.2 \text{ mA (Com'l/Ind)}$ $I_{OH} = -2.0 \text{ mA (Mil)}$					
V _{OL}	Output LOW Voltage	$V_{\rm CC} = Min.$	$I_{OL} = 16 \text{ mA} (\text{Com'l/Ind})$)		0.5	V	
			$I_{OL} = 12 \text{ mA} (\text{Mil})$				V	
V _{IH}	Input HIGH Voltage	Guaranteed Input	Guaranteed Input Logical HIGH voltage for all inputs ^[3]					
V _{IL}	Input LOW Voltage	Guaranteed Input 1	-0.5	0.8	v			
I _{IX}	Input Load Current	$\text{GND} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}}$	$GND \le V_I \le V_{CC}$					
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CO}$, Output Disabled	1	-50	+50	μΑ	
I _{OS}	Output Short Circuit Current ^[4, 5]	$V_{CC} = Max., V_{OUT}$	$\Gamma = 0.5 V$		-30	-90	mA	
I _{CC}	Power Supply Current ^[6]	$V_{CC} = Max., I_{OUT}$ f = 1 MHz, $V_{IN} =$	= 0 mA,	Com'l		300	mA	
		$I = I$ MHZ, $V_{IN} =$	GND, V _{CC}	Com'l "L" –66		150	mA	
				Mil./Ind.		370	mA	

Shaded area contains preliminary information.

Capacitance^[5]

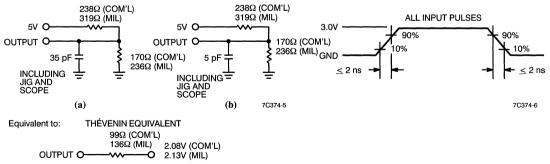
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 5.0V$ at f=1 MHz	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 5.0V$ at $f = 1$ MHz	12	pF

Endurance Characteristics^[5]

Parameter	Description	Test Conditions	Min.	Max.	Unit
N	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

5.

Tested initially and after any design or process changes that may affect


Notes:

3.

 See the last page of this specification for Group A subgroup testing information.

- formation. these parameters. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included. 6. Measured with 16-bit counter programmed into each logic block.
- Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V_{OUT} = 0.5V has been chosen to avoid test problems caused by tester ground degradation.

AC Test Loads and Waveforms

Parameter	VX	Output Waveform—Measurement Level
t _{ER (-)}	1.5V	V _{OH} V _{X 7C374-7}
t _{ER (+)}	2.6V	V _{OL} 0.5V V _X
t _{EA (+)}	1.5V	V _X 0.5V V _{OH}
t _{EA} (-)	V _{thc}	V _X 0.5V V _{OL 7C374-10}

(a) Test Waveforms

Switching Characteristics Over the Operating Range^[7]

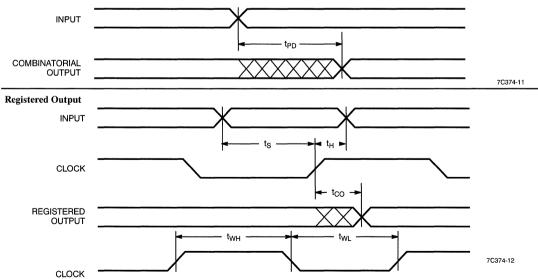
		7C374	-100	7C374-83		7C37 7C374		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Combinato	orial Mode Parameters							
t _{PD}	Input to Combinatorial Output		12		15		20	ns
t _{PDL}	Input to Output Through Transparent Input or Output Latch		15		18		22	ns
t _{PDLL}	Input to Output Through Transparent Input and Output Latches		16		19		24	ns
t _{EA}	Input to Output Enable		16		19		24	ns
t _{ER}	Input to Output Disable		16		19		24	ns
Input Regi	stered/Latched Mode Parameters					.		
t _{WL}	Clock or Latch Enable Input LOW Time ^[5]	3		4		5		ns
t _{WH}	Clock or Latch Enable Input HIGH Time ^[5]	3		4		5		ns
t _{IS}	Input Register or Latch Set-Up Time	2		3		4		ns
t _{IH}	Input Register or Latch Hold Time	2		3		4		ns
t _{ICO}	Input Register Clock or Latch Enable to Combinatorial Output		16		19		24	ns
t _{ICOL}	Input Register Clock or Latch Enable to Output Through Trans- parent Output Latch		18		21		26	ns
Output Re	gistered/Latched Mode Parameters					.	•	
t _{CO}	Clock or Latch Enable to Output		7		8		10	ns
ts	Set-Up Time from Input to Clock or Latch Enable	6		8.		10		ns
t _H	Register or Latch Data Hold Time	0		0		0		ns
t _{CO2}	Output Clock or Latch Enable to Output Delay (Through Memory Array)		16		19		24	ns
t _{SCS}	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	10		12		15		ns
t _{SL}	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	12		15		20		ns
t _{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		ns
f _{MAX1}	Maximum Frequency with Internal Feedback (Least of $1/t_{SCS}$, $1/(t_S + t_H)$, or $1/t_{CO}$) ^[5]	100		83		66		MH
f _{MAX2}	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of 1/(twL + twH), 1/(ts + tH), or 1/tco)	143		125		100		MH

Shaded area contains preliminary information.

Switching Characteristics Over the Operating Range^[7] (continued)

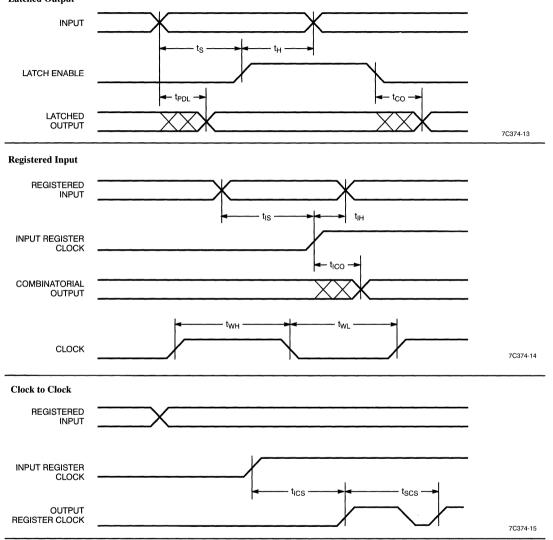
		7C374	4-100	7C374-83		7C374-66 7C374L-66			
Parameter	Description	Min.	Max.	Min. Max.		Min.	Max.	Unit	
f _{MAX3}	Maximum Frequency with External Feedback (Lesser of $1/(t_{CO} + t_S)$ and $1/(t_{WL} + t_{WH})$)	76.9		67.5		50		MHz	
t _{OH} -t _{IH} 37x	Output Data Stable from Output clock Minus Input Register Hold Time for 7C37x ^[5, 8]	0		0		0		ns	
Pipelined N	Aode Parameters								
t _{ICS}	Input Register Clock to Output Register Clock	10		12		15		ns	
f _{MAX4}	Maximum Frequency in Pipelined Mode (Least of $1/(t_{CO} + t_{IS})$, $1/t_{ICS}$, $1/(t_{WL} + t_{WH})$, $1/(t_{IS} + t_{IH})$, or $1/t_{SCS}$)	100		83.3		66.6		MHz	
Reset/Pres	et Parameters								
t _{RW}	Asynchronous Reset Width ^[5]	12		15		20		ns	
t _{RR}	Asynchronous Reset Recovery Time ^[5]	14		17		22		ns	
t _{RO}	Asynchronous Reset to Output		18		21		26	ns	
t _{PW}	Asynchronous Preset Width ^[5]	12		15		20		ns	
t _{PR}	Asynchronous Preset Recovery Time ^[5]	14		17		22		ns	
t _{PO}	Asynchronous Preset to Output		18	1	21		26	ns	
tPOR	Power-On Reset ^[5]		1		1		1	μs	

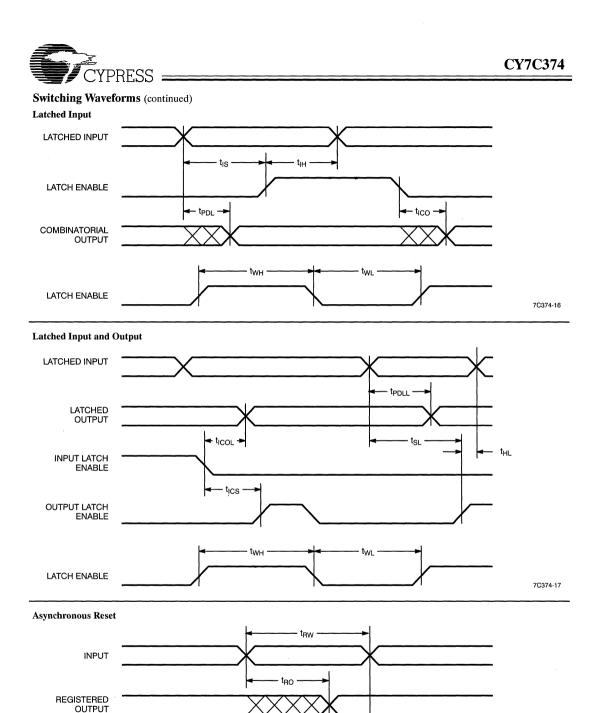
Shaded area contains preliminary information.


Note:

7. All AC parameters are measured with 16 outputs switching.

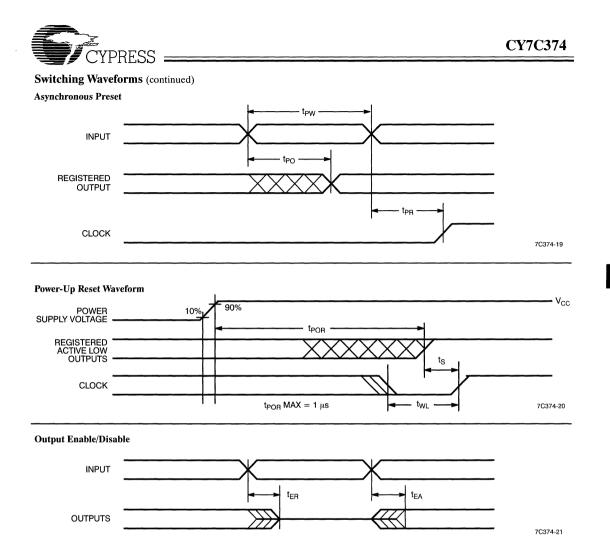
 This specification is intended to guarantee interface compatibility of the other members of the CY7C370 family with the CY7C374. This specification is met for the devices operating at the same ambient temperature and at the same power supply voltage.


Switching Waveforms


Combinatorial Output

Switching Waveforms (continued)

Latched Output



3 - 50

CLOCK

- t_{RR} -

7C374-18

Ordering Information

Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range		
100	CY7C374-100AC	CY7C374-100AC A100 100-Pin Thin Quad Flat Pack				
	CY7C374-100GC	G84	G84 84-Pin Grid Array (Cavity Up)			
	CY7C374-100JC	J83	84-Lead Plastic Leaded Chip Carrier			
83	CY7C374-83AC	A100	100-Pin Thin Quad Flat Pack	Commercial		
	CY7C374-83GC G84 84-Pin Grid Array (Cavity Up)					
	CY7C374-83JC	J83	84-Lead Plastic Leaded Chip Carrier			
	CY7C374-83AI	A100	100-Pin Thin Quad Flat Pack	Industrial		
	CY7C374-83JI	J83	84-Lead Plastic Leaded Chip Carrier			
	CY7C374-83GMB	G84	84-Pin Grid Array (Cavity Up)	Military		
	СҮ7С374-83ҮМВ	Y84	84-Pin Ceramic Leaded Chip Carrier			
66	CY7C374-66AC	A100	100-Pin Thin Quad Flat Pack	Commercial		
	CY7C374-66GC	G84	84-Pin Grid Array (Cavity Up)			
	СҮ7С374-66ЈС	J83	84-Lead Plastic Leaded Chip Carrier			
	CY7C374-66AI	A100	100-Pin Thin Quad Flat Pack	Industrial		
	CY7C374-66JI	J83	84-Lead Plastic Leaded Chip Carrier			
	CY7C374-66GMB	G84	84-Pin Grid Array (Cavity Up)	Military		
	CY7C374-66YMB	Y84	84-Pin Ceramic Leaded Chip Carrier			
	CY7C374L-66AC	A100	100-Pin Thin Quad Flat Pack	Commercial		
	CY7C374L-66JC	J83	84-Lead Plastic Leaded Chip Carrier			

MILITARY SPECIFICATIONS Group A Subgroup Testing **DC Characteristics**

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{PD}	9, 10, 11
t _{PDL}	9, 10, 11
tPDLL	9, 10, 11
t _{CO}	9, 10, 11
t _{ICO}	9, 10, 11
t _{ICOL}	9, 10, 11
ts	9, 10, 11
t _{SL}	9, 10, 11
t _H	9, 10, 11
t _{HL}	9, 10, 11
t _{IS}	9, 10, 11
t _{IH}	9, 10, 11
t _{ICS}	9, 10, 11
t _{EA}	9, 10, 11
t _{ER}	9, 10, 11

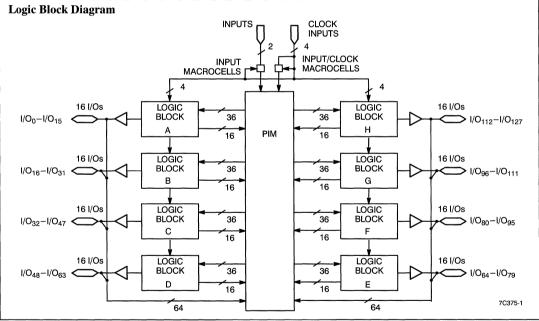
Document #: 38-00214-D

UltraLogic, FLASH370, Warp2, Warp2+, and Warp3 are trademarks of Cypress Semiconductor Corporation. ABEL is a trademark of Data I/O Corporation. CUPL is a trademark of Logical Devices Incorporated. LOG/iC is a trademark of Isdata Corporation.

Features

- 128 macrocells in eight logic blocks
- 128 I/O pins
- 6 dedicated inputs including 4 clock nins
- No hidden delays •
- High speed
 - $-f_{MAX} = 100 \text{ MHz}$
 - $-t_{PD} = 12 \text{ ns}$
 - $-t_{\rm S} = 6 \, \rm ns$
 - $-t_{CO} = 7 \text{ ns}$
- **Electrically alterable FLASH** technology
- Available in 160-pin TQFP, CQFP, and PGA packages

Functional Description


The CY7C375 is a Flash erasable Complex Programmable Logic Device (CPLD) and is part of the FLASH370[™] family of high-density, high-speed CPLDs. Like all members of the FLASH370 family, the CY7C375 is designed to bring the ease of use and high performance of the 22V10 to highdensity PLDs.

The 128 macrocells in the CY7C375 are divided between eight logic blocks. Each logic block includes 16 macrocells, a 72 x 86 product term array, and an intelligent product term allocator.

The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource-the Programmable Interconnect Matrix (PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.

Like all members of the FLASH370 family, the CY7C375 is rich in I/O resources. Every macrocell in the device features an associated I/O pin, resulting in 128 I/O pins on the CY7C375. In addition, there are two dedicated inputs and four input/ clock pins.

Finally, the CY7C375 features a very simple timing model. Unlike other high-density CPLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C375 remain the same

Selection Guide

		7C375-100	7C375-83	7C375-66	7C375L-66
Maximum Propagation Delay, t _{PD} (ns)		12	15	20	20
Minimum Set-Up, t _S (ns)		6	8	10	10
Maximum Clock to Output, t _{CO (ns)}		7	8	10	10
Maximum Supply	Commercial	330	300	300	150
Current, I _{CC} (mA)	Military/Industrial		370	370	

Shaded area contains preliminary information.

CY7C375

Pin Configurations

TOFP/COFP Top View I/0116 I/0115 I/0114 I/0113 I/0113 GND ò GND E 120 Vcc ٦ 1 I/O₁₆ 119 J 1/0111 2 I/O₁₇ 118 J 1/O110 3 I/O₁₈ 117 I/O₁₀₉ 4 I/O₁₉ 5 116 J 1/O108 I/O₂₀ 115 J 1/O₁₀₇ 6 I/O₂₁ 114 J I/O106 7 1/O22 C 113 ٦ I/O₁₀₅ 8 I/O₁₀₄ I/O23 C 112 -9 GND C 10 111 I/O₂₄ J 1/O₁₀₃ 110 11 J 1/O102 I/O₂₅ 109 12 I/O₂₆ 108 I/O₁₀₁ 13 I/O27 C 107 I/O100 14 I/O₂₈ 106 J I/O₉₉ 15 1/O₉₈ 1/O₉₇ 1/O₉₆ I/O₂₉ 105 16 104 i/O₃₀ 17 1/O₃₁ 103 18 CLK3/14 CLK0/I0 19 102 V_{CC} **C** 20 101 GND GND C 100 21 CLK₁/l₁ 99 CLK₂/l₃ 22 I/O₃₂ 98 I/O₉₅ 23 i/O₃₃ ⊑ 97 I/O₉₄ 24 □ I/O₉₃ 1/O34 C 96 25 I/O₃₅ 95 J 1/O₉₂ 26 I/O₃₆ ┏ 94 J 1/Og1 27 I/O₃₇ 28 93 □ I/O₉₀ 1/038 92 J 1/O₈₉ 29 1/O39 E 91 I/O₈₈ 30 GND C 90 GND 31 I/O₈₇ I/O₄₀ 89 ٦ 32 I/O₄₁ 33 88 I/O₈₆ I/O₄₂ ⊏ J 1/O₈₅ 87 34 I/O₄₃ 🗖 35 86 I/O₈₄ I/O₄₄ 85 □ I/O₈₃ 36 I/O₄₅ 84 J 1/O82 37 I/O₄₆ 83 I/O₈₁ 38 I/O₄₇ 39 82 I 1/080 V_{CC} **C** 40 81 $\begin{array}{c} \mathbf{1} \\ \mathbf{2} \\ \mathbf{$

7C375-2

CY7C375

Pin Configurations (continued)

PGA Bottom View

R	I/O ₁₀₉	I/O ₁₁₂	I/O ₁₁₅	I/O ₁₁₈	I/O ₁₂₁	I/O ₁₂₃	I/O ₁₂₆	I/O ₁₂₇	I/O ₀	I/O ₃	I/O ₅	I/O7	I/O ₁₀	I/O ₁₁	I/O ₁₄
Ρ	I/O ₁₀₆	I/O ₁₁₀	I/O ₁₁₃	I/O ₁₁₆	I/O ₁₁₉	I/O ₁₂₂	I/O ₁₂₅	GND	I/O ₁	I/O ₄	I/O ₆	I/O ₉	I/O ₁₃	I/O ₁₅	I/O ₁₆
N	I/O ₁₀₅	I/O ₁₀₈	I/O ₁₁₁	I/O ₁₁₄	I/O ₁₁₇	I/O ₁₂₀	I/O ₁₂₄	l5	I/O ₂	GND	I/O ₈	I/O ₁₂	GND	I/O ₁₇	I/O ₁₉
м	I/O ₁₀₂	I/O ₁₀₄	I/O ₁₀₇	V _{CC}			V _{CC}	GND	V _{CC}			GND	I/O ₁₈	I/O ₂₀	I/O ₂₂
L	I/O ₁₀₀	I/O ₁₀₁	I/O ₁₀₃								•		I/O ₂₁	I/O ₂₃	I/O ₂₅
к	I/O ₉₈	I/O ₉₉	GND										I/O ₂₄	I/O ₂₆	I/O ₂₇
J	I/O ₉₆	I/O ₉₇	CLK3 /I ₄	V _{CC}								Vcc	I/O ₂₈	I/O ₂₉	I/O ₃₀
н	I/O ₉₅	GND	CLK2 /l ₃	GND								GND	CLK0 /l ₀	GND	I/O ₃₁
G	1/0 ₉₄	I/O ₉₃	I/O ₉₂	V _{CC}								V _{CC}	CLK1 /I1	I/O ₃₃	1/0 ₃₂
F	I/O ₉₁	1/O ₉₀	1/0 ₈₈		•								GND	I/O ₃₅	I/O ₃₄
Е	I/O ₈₉	I/O ₈₇	I/O ₈₅										I/O ₃₉	I/O ₃₇	1/O ₃₆
D	I/O ₈₆	I/O ₈₄	I/O ₈₂	GND			Vcc	GND	Vcc			Vcc	I/O ₄₃	I/O ₄₀	I/O ₃₈
с	1/O ₈₃	1/O ₈₁	GND	1/O ₇₆	I/O ₇₂	GND	I/O ₆₆	l2	1/O ₆₀	I/O ₅₆	I/O ₅₃	I/O ₅₀	I/O ₄₇	I/O ₄₄	I/O ₄₁
в	I/O ₈₀	I/O ₇₉	I/O ₇₇	I/O ₇₃	I/O ₇₀	I/O ₆₈	I/O ₆₅	GND	I/O ₆₁	I/O ₅₈	1/O ₅₅	I/O ₅₂	I/O ₄₉	I/O ₄₆	I/O ₄₂
A	I/O ₇₈	I/O ₇₅	I/O ₇₄	I/O ₇₁	I/O ₆₉	I/O ₆₇	I/O ₆₄	I/O ₆₃	1/0 ₆₂	I/O ₅₉	1/O ₅₇	I/O ₅₄	I/O ₅₁	I/O ₄₈	I/O ₄₅
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

7C375-3

Functional Description (continued)

Logic Block

The number of logic blocks distinguishes the members of the FLASH370 family. The CY7C375 includes eight logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370 logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72 x 86. This large array in each logic block allows for very complex functions to be implemented in single passes through the device.

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product terms to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370 PLDs. Note that product term allocation is handled by software and is invisible to the user.

I/O Macrocell

Each of the macrocells on the CY7C375 has a separate I/O pin associated with it. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed, polarity control over the input sum-term, and four global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the eight logic blocks on the CY7C375 to the inputs and to each other. All

inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Development Tools

Development software for the CY7C375 is available from Cypress's $Warp2^{\sim}$, $Warp2+^{\sim}$, and $Warp3^{\sim}$ software packages. Both of these products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABEL^{\sim}, CUPL^{\sim}, and LOG/iC^{\sim}. Please contact your local Cypress representative for further information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Supply Voltage to Ground Potential $\dots -0.5V$ to $+7.0V$
DC Voltage Applied to Outputs in High Z State
DC Input Voltage $\dots \dots \dots$
DC Program Voltage 12.5V
Output Current into Outputs 16 mA
Static Discharge Voltage
Latch-Up Current

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ± 5%
Industrial	-40° C to $+85^{\circ}$ C	$5V \pm 10\%$
Military ^[1]	-55°C to +125°C	$5V \pm 10\%$

Note:

1. TA is the "instant on" case temperature.

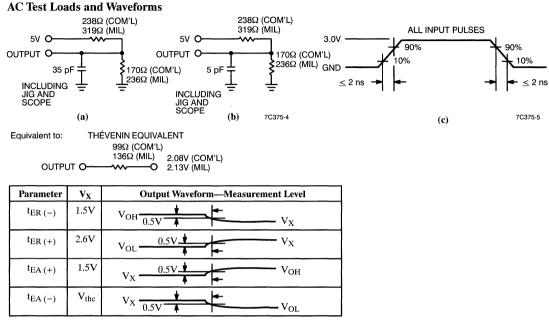
Electrical Characteristics Over the Operating Range^[2]

Parameter	Description		Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{\rm CC}$ = Min.	$I_{OH} = -3.2 \text{ mA} (\text{Com'l/I})$	2.4		V	
			$I_{OH} = -2.0 \text{ mA} \text{ (Mil)}$				V
V _{OL}	Output LOW Voltage	$V_{\rm CC} = Min.$	$I_{OL} = 16 \text{ mA (Com'l/Ind)}$			0.5	V
			$I_{OL} = 12 \text{ mA} \text{ (Mil)}$				V
V _{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH voltage for all inputs ^[3]			2.0	7.0	V
V _{IL}	Input LOW Voltage	Guaranteed Input Logical LOW voltage for all inputs ^[3]			-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	$GND \le V_I \le V_{CC}$			+10	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_0 \le V_C$	_C , Output Disabled		-50	+50	μΑ
I _{OS}	Output Short Circuit Current ^[4, 5]	$V_{CC} = Max., V_{OU}$	T = 0.5V		-30	-90	mA
I _{CC}	Power Supply Current ^[6]	$V_{CC} = Max., I_{OUT}$ f = 1 mHz, $V_{IN} =$	r = 0 mA,	Com'l		300	mA
		$I = I \text{ mHz}, V_{IN} =$	$r_{\rm I}$ mHz, $v_{\rm IN}$ = GND, $v_{\rm CC}$			150	mA
				Mil/Ind		370	mA

Shaded area contains preliminary information.

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 5.0V$ at f=1 MHz	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 5.0V$ at f = 1 MHz	12	pF


Endurance Characteristics^[5]

Parameter	Description	Test Conditions	Min.	Max.	Unit
Ν	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

Notes: 2. Se

- See the last page of this specification for Group A subgroup testing information.
- These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
 Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V_{OUT} = 0.5V has been chosen to avoid test problems caused by tester ground degradation.
- Tested initially and after any design or process changes that may affect 5. these parameters.
- 6. Measured with 16-bit counter programmed into each logic block.

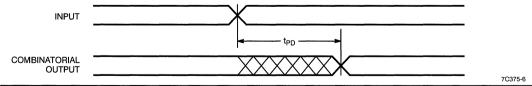
(d) Test Waveforms

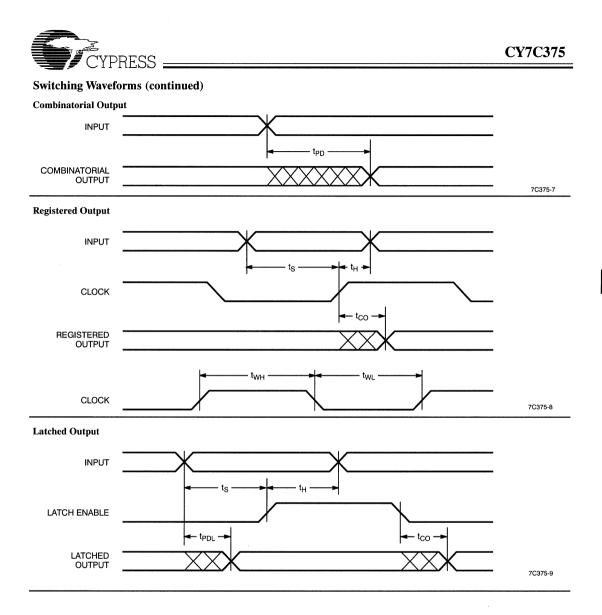
Switching Characteristics Over the Operating Range^[7]

		70374	5-100	7C37	5-83		5-66 5L-66		
Parameter	Description	Min. Max.		Min. Max.		Min. Max.		Unit	
Combinato	rial Mode Parameters	I	L						
t _{PD}	Input to Combinatorial Output		12		15		20	ns	
t _{PDL}	Input to Output Through Transparent Input or Output Latch		15		18		22	ns	
t _{PDLL}	Input to Output Through Transparent Input and Output Latches		16		19		24	ns	
t _{EA}	Input to Output Enable		16		19		24	ns	
t _{ER}	Input to Output Disable		16		19		24	ns	
Input Regi	stered/Latched Mode Parameters								
t _{WL}	Clock or Latch Enable Input LOW Time ^[5]	3		4		5		ns	
t _{WH}	Clock or Latch Enable Input HIGH Time ^[5]	3		4		5		ns	
t _{IS}	Input Register or Latch Set-Up Time	2		3		4		ns	
t _{IH}	Input Register or Latch Hold Time	2		3		4		ns	
t _{ICO}	Input Register Clock or Latch Enable to Combinatorial Output		16		19		24	ns	
t _{ICOL}	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		18		21		26	ns	
Output Re	gistered/Latched Mode Parameters								
t _{CO}	Clock or Latch Enable to Output		7		8		10	ns	
ts	Set-Up Time from Input to Clock or Latch Enable	6		8		10		ns	
t _H	Register or Latch Data Hold Time	0		0		0		ns	

Shaded area contains preliminary information.

Switching Characteristics Over the Operating Range^[7] (continued)

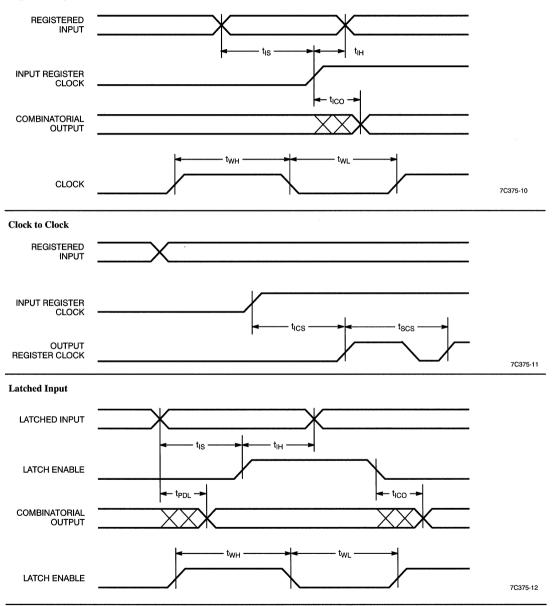

		7C37	5-100	7C37	5-83	7C375-66 7C375L-66			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
t _{CO2}	Output Clock or Latch Enable to Output Delay (Through Memory Array)		16		19		24	ns	
t _{SCS}	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	10		12		15		ns	
t _{SL}	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	12		15		20		ns	
t _{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		ns	
f _{MAX1}	Maximum Frequency with Internal Feedback (Least of $1/t_{SCS}$, $1/(t_S + t_H)$, or $1/t_{CO}$) ^[5]	100		83		66		MHz	
f _{MAX2}	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1/(t_{WL} + t_{WH}), 1/(t_S + t_H), \text{ or } 1/t_{CO})$	143		125		100		MHz	
f _{MAX3}	Maximum Frequency with External Feedback (Lesser of $1/(t_{CO} + t_S)$ and $1/(t_{WL} + t_{WH})$)	76.9		62.5		50		MHz	
t _{OH} -t _{IH} 37x	Output Data Stable from Output clock Minus Input Register Hold Time for $7C37x^{[5, 8]}$	0		0		0		ns	
Pipelined N	Mode Parameters								
t _{ICS}	Input Register Clock to Output Register Clock	10		12		15		ns	
f _{MAX4}	Maximum Frequency in Pipelined Mode (Least of $1/(t_{CO} + t_{IS})$, $1/t_{ICS}$, $1/(t_{WL} + t_{WH})$, $1/(t_{IS} + t_{IH})$, or $1/t_{SCS}$)	100		83.3		66.6		MHz	
Reset/Pres	et Parameters								
t _{RW}	Asynchronous Reset Width ^[5]	12		15	Ι	20		ns	
t _{RR}	Asynchronous Reset Recovery Time ^[5]	14		17		22		ns	
t _{RO}	Asynchronous Reset to Output		18		21		26	ns	
t _{PW}	Asynchronous Preset Width ^[5]	12		15		20		ns	
t _{PR}	Asynchronous Preset Recovery Time ^[5]	14		17		22		ns	
t _{PO}	Asynchronous Preset to Output		18		21		26	ns	
t _{POR}	Power-On Reset		1		1		1	μs	


Note:

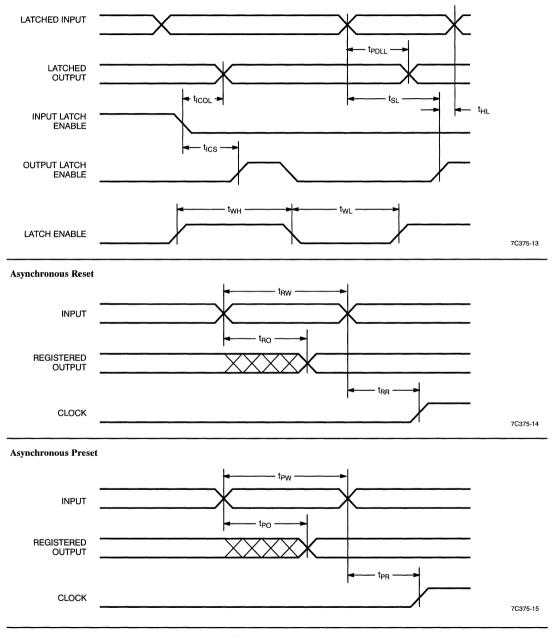
Note:
 All AC parameters are measured with 16 outputs switching.
 This specification is intended to guarantee interface compatibility of the other members of the CY7C370 family with the CY7C375. This specification is met for the devices operating at the same ambient tem-perature and at the same power supply voltage.

Switching Waveforms

Combinatorial Output


3

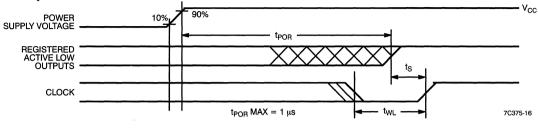
CY7C375


Switching Waveforms (continued)

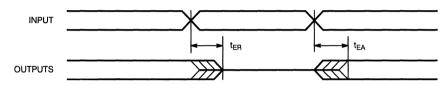
Registered Input

Switching Waveforms (continued)

Latched Input and Output



CY7C375


7C375-17

Switching Waveforms (continued)

Output Enable/Disable

Ordering Information

Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
100	CY7C375-100AC	A160	160-Lead Thin Quad Flatpack	Commercial
83	CY7C375-83AC	A160	160-Lead Thin Quad Flatpack	Commercial
	CY7C375-83AI	A160	160-Lead Thin Quad Flatpack	Industrial
	CY7C375-83GMB	G160	160-Pin Grid Array	Military
	CY7C375-83UMB	U162	160-Pin Ceramic Quad Flatpack ^[9]]
66	CY7C375-66AC	A160	160-Lead Thin Quad Flatpack	Commercial
	CY7C375-66AI	A160	160-Lead Thin Quad Flatpack	Industrial
	CY7C375-66GMB	G160	160-Pin Grid Array	Military
	CY7C375-66UMB	U162	160-Pin Ceramic Quad Flatpack ^[9]	
66	CY7C375L-66AC	A160	160-Lead Thin Quad Flatpack	Commercial

Notes: 9. Av

Available as custom trim and form version. Contact local Cypress office for package information.

MILITARY SPECIFICATIONS **Group A Subgroup Testing DC** Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{PD}	9, 10, 11
t _{CO}	9, 10, 11
t _{ICO}	9, 10, 11
ts	9, 10, 11
t _H	9, 10, 11
t _{IS}	9, 10, 11
t _{IH}	9, 10, 11
t _{ICS}	9, 10, 11

Document #: 38-00217-D

UltraLogic, FLASH370, *Warp2*, *Warp2+*, and *Warp3* are trademarks of Cypress Semiconductor Corporation. ABEL is a trademark of Data I/O Corporation. LOG/iC is a trademark of Isdata Corporation. CUPL is a trademark of Logical Devices Incorporated.

FLASH370i[™] **ISR**[™] ADVANCED INFORMATION CPLD Family

UltraLogic[™] High-Density Flash CPLDs

Features

- Flash In-System Reprogrammable (ISR™) CMOS CPLDs
 - JTAG interface
- High density
 - 32-128 macrocells

 - Multiple clock pins
- Fully PCI compliant
- High speed
 - $-t_{PD} = 8.5 12 \text{ ns}$
 - $-t_{\rm S} = 5-7$ ns
 - $-t_{CO} = 6 7$ ns
- Fast Programmable Interconnect Matrix (PIM)
 - --- Uniform predictable delay, independent of routing
- Intelligent product term allocator
 - 0-16 product terms to any macrocell
 - Provides product term steering on an individual basis
 - Provides product term sharing among local macrocells
 - Prevents stealing of neighboring product terms
- Simple timing model
 - -No fanout delays
 - No expander delays
 - --- No dedicated vs. I/O pin delays
 - --- No additional delay through PIM
 - No penalty for using full 16 product terms
 - No delay for steering or sharing product terms
- Flexible clocking
 - --- 2-4 clock pins per device --- Clock polarity control
- Security bit and user ID supported
- Packages
 - -44-160 pins
 - PLCC, CLCC, PGA, CQFP, and TQFP packages

- Warp2[™]/Warp2+[™]
 - Low-cost, text-based design tool, PLD compiler
 - IEEE 1164-compliant VHDL
 - Available on PC, Sun, and HP platforms
- Warp3[™] CAE development system — VHDL input
 - ViewLogic graphical user interface
 - Schematic capture (ViewDraw[™])
 - VHDL simulation (ViewSim[™])
 - Available on PC, Sun, and HP platforms

General Description

The FLASH370i [™] family of CMOS CPLDs provides a range of high-density programmable logic solutions with unparalleled performance. Each member of the family is designed with Cypress's state-of-the-art 0.65-micron Flash technology.

All of the UltraLogic FLASH370i devices are electrically erasable and In-System Reprogrammable (ISR), which simplifies both design and manufacturing flows, thereby reducing costs. The Cypress ISR function is implemented through a 4-pin serial interface. Data is shifted in and out through the SDI and SDO pins, respectively, using the programming voltage pin (V_{PP}). These pins are dual function providing a pin-compatible upgrade to earlier versions of the FLASH370 devices. Additionally, because of the superior routability of the FLASH370i devices, ISR often allows users to change existing logic designs while simultaneously fixing pinout assignments. Additionally, the entire family is fully compliant with the PCI Local Bus specification, meeting all the electrical and timing requirements.

The FLASH370i family is designed to bring the flexibility, ease of use and performance of the 22V10 to high-density CPLDs. The architecture is based on a number of logic blocks that are connected by a Programmable Interconnect Matrix (PIM). Each logic block features its own product term array, product term allocator array, and 16 macrocells. The PIM distributes signals from one logic block to another as well as all inputs from pins.

The family features a wide variety of densities and pin counts to choose from. At each density there are two packaging options to choose from—one that is I/O intensive and another that is register intensive. For example, the CY7C374i and CY7C375i both feature 128 macrocells. On the CY7C375i half of the macrocells are buried and the device is available in 84-pin packages. On the CY7C375i all of the macrocells are fed to I/O pins and the device is available in 160-pin packages. *Figure 1* shows a block diagram of the CY7C374i/Si.

Functional Description

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) consists of a completely global routing matrix for signals from I/O pins and feedbacks from the logic blocks. The PIM is an extremely robust interconnect that avoids fitting and density limitations. Routing is automatically accomplished by software and the propagation delay through the PIM is transparent to the user. Signals from any pin or any logic block can be routed to any or all logic blocks.

The inputs to the PIM consist of all I/O and dedicated input pins and all macrocell feedbacks from within the logic blocks. The number of PIM inputs increases with pincount and the number of logic blocks. The outputs from the PIM are signals routed to the appropriate logic block(s). Each logic block receives 36 inputs from the PIM and their complements, allowing for 32-bit operations to be implemented in a single pass through the device. The wide number of inputs to the logic block also improves the routing capacity of the FLASH370i family.

FLASH370i Selection Guide

Device	Pins	Macrocells	Dedicated Inputs	I/O Pins	Flip-Flops	Speed (t _{PD})	Speed (f _{MAX})
371i	44	32	6	32	44	8.5	143
372i	44	64	6	32	76	10	125
373i	84/100	64	6	64	76	10	125
374i	84/100	128	6	64	140	12	100
375i	160	128	6	128	140	12	100

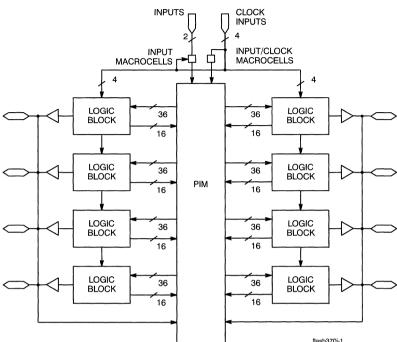


Figure 1. CY7C374i/5i Block Diagram

Functional Description (continued)

An important feature of the PIM involves timing. The propagation delay through the PIM is accounted for in the timing specifications for each device. There is no additional delay for traveling through the PIM. In fact, all inputs travel through the PIM. Likewise, there are no route-dependent timing parameters on the FLASH370i devices. The worst-case PIM delays are incorporated in all appropriate FLASH370i specifications.

Routing signals through the PIM is completely invisible to the user. All routing is accomplished 100% by software—no hand routing is necessary. *Warp2* and third-party development packages automatically route designs for the FLASH370i family in a matter of minutes. Finally, the rich routing resources of the FLASH370i family accommodate last minute logic changes while maintaining fixed pin assignments.

Logic Block

The logic block is the basic building block of the FLASH370i architecture. It consists of a product term array, an intelligent productterm allocator, 16 macrocells, and a number of I/O cells. The number of I/O cells varies depending on the device used.

There are two types of logic blocks in the FLASH370i family. The first type features an equal number (16) of I/O cells and macrocells and is shown in *Figure 2*. This architecture is best for I/O-intensive applications. The second type of logic block features a buried macrocell along with each I/O macrocell. In other words, in each logic block, there are eight macrocells that are connected to I/O cells and eight macrocells that are internally fed back to the PIM only.

This organization is designed for register-intensive applications and is displayed in *Figure 3*. Note that at each FLASH370i density (except the smallest), an I/O intensive and a register-intensive device is available.

Product Term Array

Each logic block features a 72 x 86 programmable product term array. This array is fed with 36 inputs from the PIM, which originate from macrocell feedbacks and device pins. Active LOW and active HIGH versions of each of these inputs are generated to create the full 72-input field. The 86 product terms in the array can be created from any of the 72 inputs.

Of the 86 product terms, 80 are for general-purpose use for the 16 macrocells in the logic block. Four of the remaining six product terms in the logic block are output enable (OE) product terms. Each of the OE product terms controls up to eight of the 16 macrocells and is selectable on an individual macrocell basis. In other words, each I/O cell can select between one of two OE product terms to control the output buffer. The first two of these four OE product terms are available to the upper half of the I/O macrocells in a logic block. The other two OE product terms are available to the lower half of the I/O macrocells in a logic block. The final two product terms in each logic block are dedicated asynchronous set and asynchronous reset product terms.

Product Term Allocator

Through the product term allocator, software automatically distributes product terms among the 16 macrocells in the logic block as needed. A total of 80 product terms are available from the local product term array. The product term allocator provides two im-

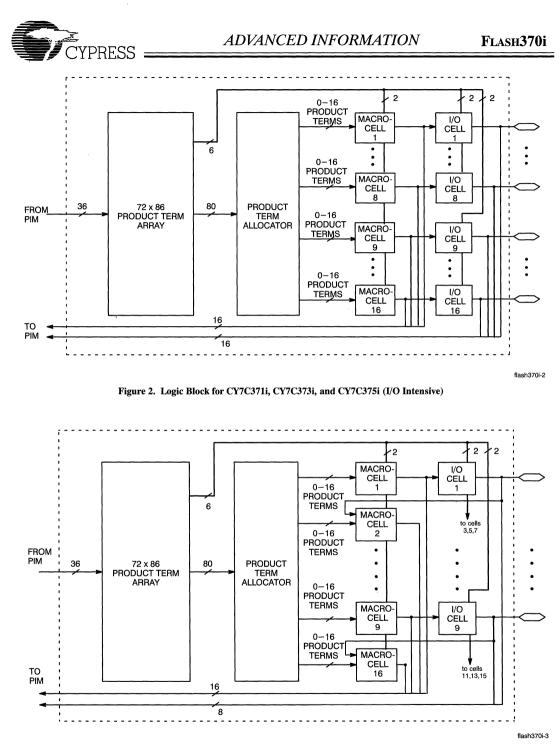


Figure 3. Logic Block for CY7C372i and CY7C374i (Register Intensive)

3-68

portant capabilities without affecting performance: product term steering and product term sharing.

Product Term Steering

Product term steering is the process of assigning product terms to macrocells as needed. For example, if one macrocell requires ten product terms while another needs just three, the product term allocator will "steer" ten product terms to one macrocell and three to the other. On FLASH370i devices, product terms are steered on an individual basis. Any number between 0 and 16 product terms is useful in cases where a particular macrocell is unused or used as an input reeister.

Product Term Sharing

Product term sharing is the process of using the same product term among multiple macrocells. For example, if more than one output has one or more product terms in its equation that are common to other outputs, those product terms are only programmed once. The FLASH370i product term allocator allows sharing across groups of four output macrocells in a variable fashion. The software automatically takes advantage of this capability—the user does not have to intervene. Note that greater usable density can often be achieved if the user "floats" the pin assignment. This allows the compiler to group macrocells that have common product terms adjacently.

Note that neither product term sharing nor product term steering have any effect on the speed of the product. All worst-case steering and sharing configurations have been incorporated in the timing specifications for the FLASH370i devices.

FLASH370i Macrocell

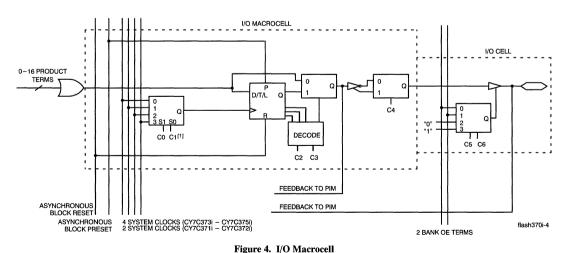
I/O Macrocell

Note:

Within each logic block there are 8 or 16 I/O macrocells depending on the device used. *Figure 4* illustrates the architecture of the I/O macrocell. The macrocell features a register that can be configured as combinatorial, a D flip-flop, a T flip-flop, or a level-triggered latch. The register can be asynchronously set or asynchronously reset at the logic block level with the separate set and reset product terms. Each of these product terms features programmable polarity. This allows the registers to be set or reset based on an AND expression or an OR expression.

Clocking of the register is very flexible. Depending on the device, either two or four global synchronous clocks are available to clock the register. Furthermore, each clock features programmable polarity so that registers can be triggered on falling as well as rising edges (see the Dedicated/Clock Inputs section). Clock polarity is chosen at the logic block level.

At the output of the macrocell, a polarity control mux is available to select active LOW or active HIGH signals. This has the added advantage of allowing significant logic reduction to occur in many applications.


The FLASH370i macrocell features a feedback path to the PIM separate from the I/O pin input path. This means that if the macrocell is buried (fed back internally only), the associated I/O pin can still be used as an input.

Buried Macrocell

Some of the devices in the FLASH370i family feature additional macrocells that do not feed individual I/O pins. *Figure 5* displays the architecture of the I/O and buried macrocells for these devices. The I/O macrocell is identical to the one on devices without buried macrocells.

The buried macrocell is very similar to the I/O macrocell. Again, it includes a register that can be configured as combinatorial, a D flip-flop, a T flip-flop, or a latch. The clock for this register has the same options as described for the I/O macrocell. The primary difference between the I/O macrocell and the buried macrocell is that the buried macrocell does not have the ability to output data directly on a I/O pin.

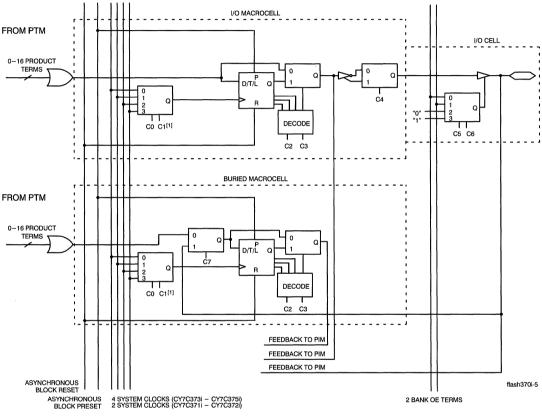
One additional difference on the buried macrocell is the addition of input register capability. The buried macrocell can be configured to act as an input register (D-type or latch) whose input comes from the I/O pin associated with the neighboring macrocell. The

1. C1 is not used on the CY7C371i and CY7C372i since the mux size is 2:1.

FLASH370i

3

output of all buried macrocells is sent directly to the PIM regardless of its configuration.


Flash370i I/O Cell

The I/O cell on the FLASH370i devices is illustrated along with the I/O macrocell in *Figures 4* and 5. The user can program the I/O cell to change the way the three-state output buffer is enabled and/or disabled. Each output can be set permanently on (output only),

permanently off (input only), or dynamically controlled by one of two OE product terms.

Dedicated/Clock Inputs

Six pins on each member of the FLASH370i family are designated as input-only. There are two types of dedicated inputs on FLASH370i devices: input pins and input/clock pins. *Figure 6* illustrates the ar-

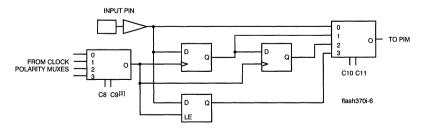
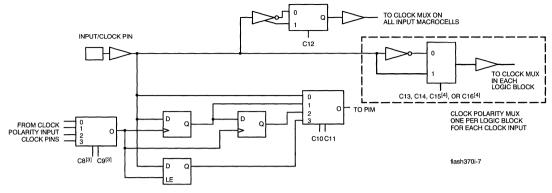



Figure 6. Input Pins Note: 2. C9 is not used on the CY7C371i and CY7C372i since the mux size is 2:1.

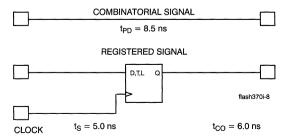
3 - 70

ADVANCED INFORMATION

Notes:

Figure 7. Input/Clock Pins

3. C8 and C9 are not included on the CY7C371i and CY7C372i since each input/clock pin has the other input/clock pin as its clock.


4. C15 and C16 are not used on the CY7C371i and CY7C372i since there are two clocks.

chitecture for input pins. Four input options are available for the user: combinatorial, registered, double-registered, or latched. If a registered or latched option is selected, any one of the input clocks can be selected for control.

Figure 7 illustrates the architecture of input/clock pins. There are either two or four input/clock pins available, depending on the device selected. (The CY7C371i and CY7C372i have two input/clock pins while the other devices have four input/clock pins.) Like the input pins, input/clock pins can be combinatorial, registered, double registered, or latched. In addition, these pins feed the clocking structures throughout the device. The clock path at the input is user-configurable in polarity. The polarity of the clock signal can also be controlled by the user. Note that this polarity is separately controlled for input registers and output registers.

Timing Model

One of the most important features of the FLASH370i family is the simplicity of its timing. All delays are worst case and system performance is unaffected by the features used or not used on the parts. *Figure 8* illustrates the true timing model for the 8.5-ns devices. For combinatorial paths, any input to any output incurs an 8.5-ns worst-case delay regardless of the amount of logic used. For synchronous systems, the input set-up time to the output macrocells for any input is 5.0 ns and the clock to output time is also 6.0 ns.

Again, these measurements are for any output and clock, regardless of the logic used.

Stated another way, the FLASH370i features:

- no fanout delays
- · no expander delays
- · no dedicated vs. I/O pin delays
- · no additional delay through PIM
- no penalty for using 0-16 product terms
- no added delay for steering product terms
- no added delay for sharing product terms
- no routing delays
- no output bypass delays

The simple timing model of the FLASH370i family eliminates unexpected performance penalties.

Development Software Support

Warp2/Warp2+

Warp2/Warp2+ are state-of-the-art VHDL compilers for designing with Cypress PLDs and PROMs. Warp2/Warp2+ utilize a proper subset of IEEE 1164 VHDL as the Hardware Description Language (HDL) for design entry. VHDL provides a number of significant benefits for the design entry. VHDL provides a number of significant benefits for the design engineer. Warp2/Warp2+ accepts VHDL input, synthesizes and optimizes the entered design, and outputs a JEDEC map for the desired device. For simulation, Warp2/Warp2+ provides the graphical waveform simulator called Nova.

VHDL (VHSIC Hardware Description Language) is an open, powerful, non-proprietary language that is a standard for behavioral design entry and simulation. It is already mandated for use by the Department of Defense and supported by every major vendor of CAE tools. VHDL allows designers to learn a single language that is useful for all facets of the design process. See separate data sheet for further information.

Warp3

Warp3 is a sophisticated design tool that is based on the latest version of ViewLogic's CAE design environment. *Warp3* features schematic capture (ViewDraw[™]), VHDL waveform simulation (ViewSim[™]), a VHDL debugger, and VHDL synthesis, all integrated in a graphical design environment. *Warp3* is available on PCs using Windows 3.1 or subsequent versions and on Sun and Hewlett Packard workstations. See separate data sheet for further information.

Third-Party Software

Cypress maintains a very strong commitment to third-party design software vendors. All major third-party software vendors (including ABEL^m, LOG/iC^m, CUPL^m, and Minc) will provide support

Document #: 38-00493

for the FLASH370i family of devices. To expedite this support, Cypress supplies vendors with all pertinent architectural information as well as design fitters for our products.

Programming

The *Impulse3*[™] device programmer from Cypress will program all Cypress PLDs, CPLDs, and PROMs. This unit is a programmer that connects to any IBM-compatible PC via the printer port.

Third-Party Programmers

As with development software, Cypress strongly supports thirdpartyprogrammers. All major third-partyprogrammers (including Data I/O, Logical Devices, Minato, SMS, and Stag) will support the FLASH370i family.

ISR, UltraLogic, Warp2, Warp2+, Warp3, FLASH370i, and Impulse3 are trademarks of Cypress Semiconductor Corporation. ViewSim and ViewDraw are trademarks of ViewLogic. ABEL is a trademark of Data I/O Corporation. LOG/iC is a trademark of Isdata Corporation.

CUPL is a trademark of Logical Devices, Inc.

ADVANCED INFORMATION

CY7C371i

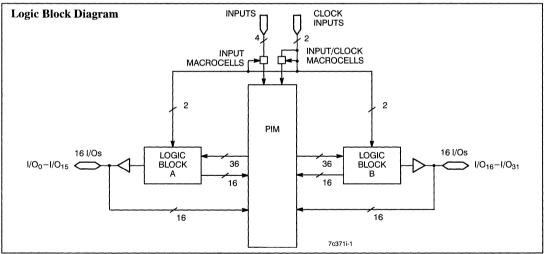
UltraLogic[™] 32-Macrocell Flash CPLD

Features

- 32 macrocells in two logic blocks
- 32 I/O pins
- 6 dedicated inputs including 2 clock pins
- In-System Reprogrammable (ISR™) Flash technology
 — JTAG interface
- -JIAG Internace
- No hidden delays
- High speed
 - $-f_{MAX} = 143 \text{ MHz}$
 - $-t_{PD} = 8.5 \text{ ns}$
 - $-t_{\rm S} = 5 \, \rm ns$
 - $-t_{\rm CO} = 6$ ns
- Fully PCI compliant
- Available in 44-pin PLC, and TQFP packages
- Pin compatible with the CY7C372i

Functional Description

The CY7C371i is an In-System ReprogrammableComplexProgrammableLogic Device (CPLD) and is part of the FLASH370i [™] family of high-density, highspeed CPLDs. Like all members of the FLASH370i family, the CY7C371i is designed to bring the ease of use and high performance of the 22V10, as well as PCI Local Bus Specification support, to highdensity CPLDs.

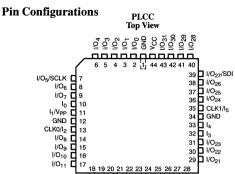

Like all of the UltraLogic FLASH370i devices, the CY7C371i is electrically erasable and In-System Reprogrammable (ISR), which simplifies both design and manufacturing flows, thereby reducing costs. the Cypress ISR function is implemented through a 4-pin serial interface. Data is shifted in and out through the SDI and SDO pins, respectively, using the programming voltage pin (VPP). These pins are dual function providing a pin-compatible upgrade to earlier versions of the FLASH370[™] devices. Additionally, because of the superior routability of the FLASH370i devices, ISR often allows users to change existing logic designs while simultaneously fixing pinout assignments.

The 32 macrocells in the CY7C371i are divided between two logic blocks. Each logic block includes 16 macrocells, a 72 x 86 product term array, and an intelligent product term allocator.

The logic blocks in the FLASH370i architecture are connected with an extremely fast and predictable routing resource—the Programmable Interconnect Matrix (PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.

Like all members of the FLASH370i family, the CY7C371i is rich in I/O resources. Each macrocell in the device features an associated I/O pin, resulting in 32 I/O pins on the CY7C371i. In addition, there are four dedicated inputs and two input/clock pins.

Finally, the CY7C371i features a very simple timing model. Unlike other high-density CPLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C371i remain the same.



Selection Guide

		7C371i-143	7C371i-110	7C371i-83	7C371iL-83	7C371i-66	7C371iL-66
Maximum Propagation Delay, t _{PD} (ns)		8.5	10	12	12	15	15
Minimum Set-Up, t _S (ns)		5	6	8	8	10	10
Maximum Clock to Output, t _{CO} (ns)		6	6.5	8	8	10	10
Maximum Supply Current, I _{CC} (mA)	Commercial	220	175	175	90	175	90
	Industrial			220	110	220	110

ADVANCED INFORMATION

1/0¹³/

15

16

17

Logic Block

The number of logic blocks distinguishes the members of the FLASH370i family. The CY7C371i includes two logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

0,015 0,015 0,016 0,017

0 I/O₂₁

7c371i-2

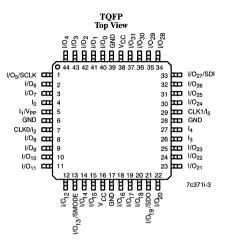
29

1/020

10¹⁸/

مر⁶¹0/۱

Product Term Array


The product term array in the FLASH370i logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72x86. This large array in each logic block allows for very complex functions to be implemented in a single pass through the device.

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product terms to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370i CPLDs. Note that

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

product term allocation is handled by software and is invisible to the user.

I/O Macrocell

Each of the macrocells on the CY7C371i has a separate associated I/O pin. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed. It also has polarity control, and two global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the two logic blocks on the CY7C371i to the inputs and to each other. All inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Design Tools

Development software for the CY7C371i is available from Cypress's $Warp2^{m}$, $Warp2+^{m}$, and $Warp3^{m}$ software packages. All of these products are based on the IEEE-standard VHDL language. Cypress also actively supports third-party design tools such as ABEL[™], CUPL[™], MINC, and LOG/iC[™]. Please contact your local Cypress representative for further information.

Output Current into Outputs (LOW)	. 16 mA
Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ± 5%
Industrial	-40° C to $+85^{\circ}$ C	$5V \pm 10\%$

Electrical Characteristics Over the Operating Range^[1]

Parameter	Description		Test Conditions	8	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min.	$I_{OH} = -3.2 \text{ mA} \text{ (Com'l)}$	2.4		V	
V _{OL}	Output LOW Voltage	V _{CC} = Min.				0.5	V
V _{IH}	Input HIGH Voltage	Guarante	ed Input Logical HIGH V	oltage for all inputs ^[2]	2.0	7.0	V
V _{IL}	Input LOW Voltage	Guarante	Guaranteed Input Logical LOW Voltage for all inputs ^[2]				V
I _{IX}	Input Load Current	$GND \leq 1$	$GND \le V_I \le V_{CC}$				μΑ
I _{OZ}	Output Leakage Current	$GND \leq V$	$GND \le V_O \le V_{CC}$, Output Disabled				μA
I _{OS}	Output Short Circuit Current ^[3, 4]	$V_{\rm CC} = M$	$V_{CC} = Max., V_{OUT} = 0.5V$			-160	mA
I _{CC}	Power Supply Current	$ \begin{array}{c} V_{CC} = Max., I_{OUT} = 0 \text{ mA}, \\ f = 1 \text{ mHz}, V_{IN} = \text{GND}, V_{CC} \\ \hline \\ \hline \\ Com'l & L' \\ -66, -83 \end{array} $			175	mA	
					90		
				Com'l-143, Ind		220	1
				Ind "L" -66, -83		110	1

Capacitance^[5]

Parameter Description		Test Conditions	Max.	Unit		
C _{IN}	Input Capacitance	$V_{IN} = 5.0V$ at f=1 MHz	10	pF		
C _{OUT}	Output Capacitance	$V_{OUT} = 5.0V$ at f = 1 MHz	12	pF		

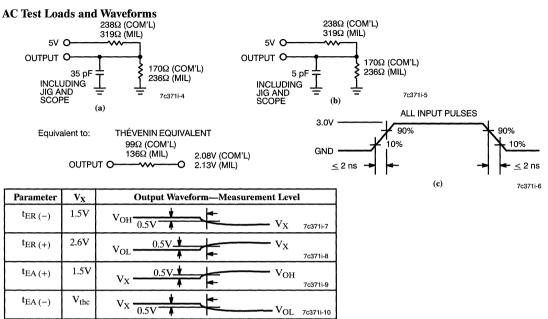
Endurance Characteristics^[5]

Parameter	Description	Test Conditions	Min.	Max.	Unit
N	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

Notes:

1. See the last page of this specification for Group A subgroup testing information.

2. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.


 Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V_{OUT} = 0.5V has been chosen to avoid test problems caused by tester ground degradation. 4. Tested initially and after any design or process changes that may affect these parameters.

5. Measured with 16-bit counter programmed into each logic block.

ADVANCED INFORMATION

CY7C371i

(d) Test Waveforms

Switching Characteristics Over the Operating Range^[6]

		7C371	i-143			7C371 7C371		7C371i-66 7C371iL-66		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Combinato	rial Mode Parameters									
t _{PD}	Input to Combinatorial Output		8.5		10		12		15	ns
tpDL	Input to Output Through Transparent Input or Output Latch		11.5		13		18		22	ns
t _{PDLL}	Input to Output Through Transparent Input and Output Latches		13.5		15		20		24	ns
t _{EA}	Input to Output Enable		13		14		19	-	24	ns
t _{ER}	Input to Output Disable		13		14		19		24	ns
Input Regi	stered/Latched Mode Parameters									
t _{WL}	Clock or Latch Enable Input LOW Time ^[5]	2.5		3		4		5		ns
t _{WH}	Clock or Latch Enable Input HIGH Time ^[5]	2.5		3		4		5		ns
t _{IS}	Input Register or Latch Set-Up Time	2		2		3		4		ns
t _{IH}	Input Register or Latch Hold Time	2		2		3		4		ns
t _{ICO}	Input Register Clock or Latch Enable to Combina- torial Output		12		14		19		24	ns
t _{ICOL}	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		14		16		21		26	ns

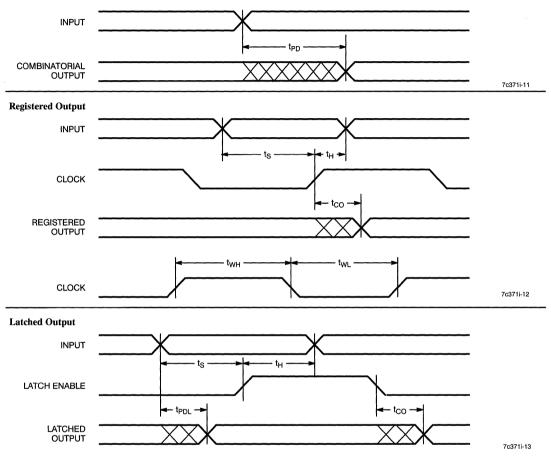
Note:

6. All AC parameters are measured with 16 outputs switching.

CY7C371i

7C371i-83 7C371i-66 7C371i-143 7C371i-110 7C371iL-83 7C371iL-66 Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Unit **Output Registered/Latched Mode Parameters** Clock or Latch Enable to Output 6 6.5 8 10 ns tco Set-Up Time from Input to Clock or Latch 10 ts 5 6 8 ns Enable Register or Latch Data Hold Time 0 0 0 0 t_H ns Output Clock or Latch Enable to Output 12 14 19 24 ns t_{CO2} Delay (Through Memory Array) Output Clock or Latch Enable to Output 7 9 12 15 tSCS ns Clock or Latch Enable (Through Memory Array) Set-Up Time from Input Through Transpar-9 10 12 15 tSL ns ent Latch to Output Register Clock or Latch Enable Hold Time for Input Through Transparent t_{HL} 0 0 0 0 ns Latch from Output Register Clock or Latch Enable Maximum Frequency with Internal Feed-143 111 83.3 66.6 MHz f_{MAX1} back (Least of $1/t_{SCS}$, $1/(t_S + t_H)$, or $1/t_{CO}$)^[5] Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of 1/(t_{WL} 166.7 153.8 100 83.3 MHz f_{MAX2} + t_{WH}), 1/(t_S + t_H), or 1/ t_{CO})^[5] Maximum Frequency with external feedback 91 80 50 41.6 MHz f_{MAX3} (Lesser of $1/(t_{CO} + t_S)$ and $1/(t_{WL} + t_{WH})^{[5]}$ Output Data Stable from Output clock Mi-nus Input Register Hold Time for 7C37x^[5, 7] 0 0 0 0 ns toH-tIH 37x **Pipelined Mode Parameters** Input Register Clock to Output Register 7 9 12 15 t_{ICS} ns Clock Maximum Frequency in Pipelined Mode 125 111 76.9 62.5 MHz f_{MAX4} (Least of $1/(t_{CO} + t_{IS})$, $1/t_{ICS}$, $1/(t_{WL} + t_{WH})$, $1/(t_{IS} + t_{IH})$, or $1/t_{SCS}$) **Reset/Preset Parameters** Asynchronous Reset Width^[5] t_{RW} 8 10 15 20 ns Asynchronous Reset Recovery Time^[5] 12 22 10 17 t_{RR} ns Asynchronous Reset to Output 14 16 21 26 ns t_{RO} Asynchronous Preset Width^[5] 8 10 15 20 tpw ns Asynchronous Preset Recovery Time^[5] 10 12 17 22 ns t_{PR} Asynchronous Preset to Output 14 16 21 26 tPO ns Power-On Reset^[5] 1 μs 1 1 1 tPOR

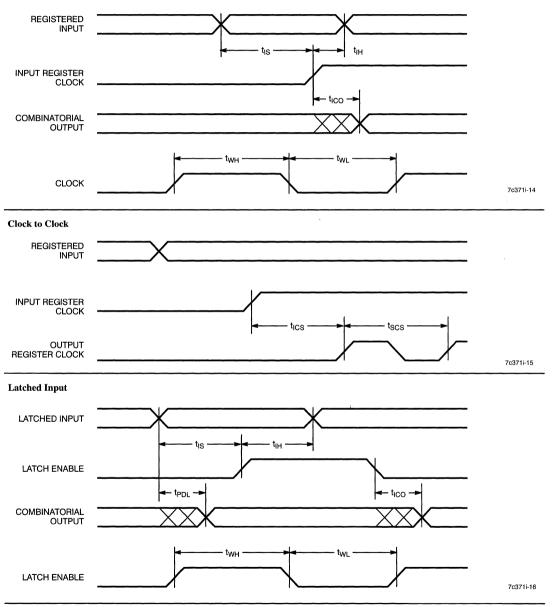
Switching Characteristics Over the Operating Range^[6] (continued)


Note:

7. This specification is intended to guarantee interface compatibility of the other members of the CY7C370i family with the CY7C371i. This specification is met for the devices operating at the same ambient temperature and at the same power supply voltage.

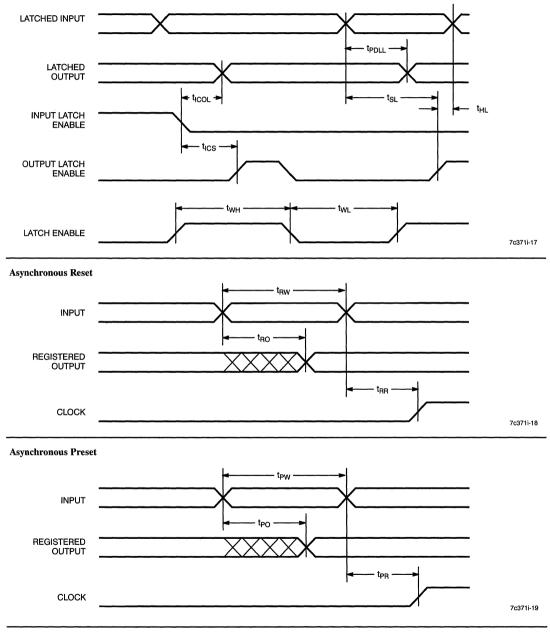
Switching Waveforms

Combinatorial Output

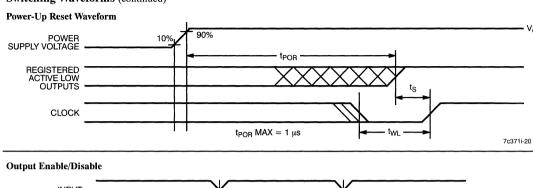


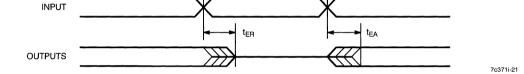
CY7C371i

Switching Waveforms (continued)


Registered Input

Switching Waveforms (continued)


Latched Input and Output



 v_{cc}

Switching Waveforms (continued)

Ordering Information

Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
143	CY7C371i-143AC	A44	44-Lead Thin Plastic Quad Flat Pack	Commercial
	CY7C371i-143JC	J67	44-Lead Plastic Leaded Chip Carrier	
110	CY7C371i-110AC	A44	44-Lead Thin Plastic Quad Flat Pack	Commercial
	CY7C371i-110JC	J67	44-Lead Plastic Leaded Chip Carrier	
83	CY7C371i-83AC	A44	44-Lead Thin Plastic Quad Flat Pack	Commercial
	CY7C371i-83JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371i-83AI	A44	44-Lead Thin Plastic Quad Flat Pack	Industrial
	CY7C371i-83JI	J67	44-Lead Plastic Leaded Chip Carrier	
83	CY7C371iL-83AC	A44	44-Lead Thin Plastic Quad Flat Pack Commer	
	CY7C371iL-83JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371iL-83AI	A44	44-Lead Thin Plastic Quad Flat Pack Industria	
	CY7C371iL-83JI	J67	44-Lead Plastic Leaded Chip Carrier	
66	CY7C371i-66AC	A44	44-Lead Thin Plastic Quad Flat Pack	Commercial
	CY7C371i-66JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371i-66AI	A44	44-Lead Thin Plastic Quad Flat Pack	Industrial
	CY7C371i-66JI	J67	44-Lead Plastic Leaded Chip Carrier]
66	CY7C371iL-66AC	A44	44-Lead Thin Plastic Quad Flat Pack Comm	
	CY7C371iL-66JC	J67	44-Lead Plastic Leaded Chip Carrier]
	CY7C371iL-66AI	A44	44-Lead Thin Plastic Quad Flat Pack Industrial	
	CY7C371iL-66JI	J67	44-Lead Plastic Leaded Chip Carrier	1

Document #: 38-00497

Warp2+, Warp2+, Warp3, FLASH370, FLASH370i, ISR, and UltraLogic are trademarks of Cypress Semiconductor Corporation ABEL is a trademark of Data I/O Corporation. LOG/iC is a trademark of Isdata Corporation.

CUPL is a trademark of Logical Devices Incorporated.

ADVANCED INFORMATION CY7C372i

Features

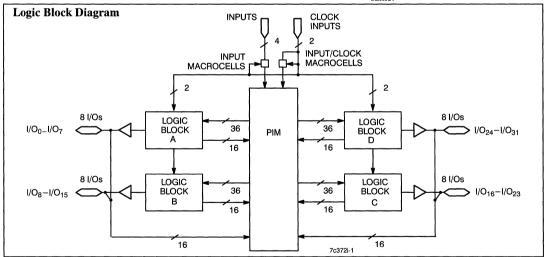
- 64 macrocells in four logic blocks
- 32 I/O pins
- 6 dedicated inputs including 2 clock pins
- In-System Reprogrammable (ISR™) Flash technology
- JTAG interface
- No hidden delays
- High speed
 - $-f_{MAX} = 125 \text{ MHz}$
 - $-t_{PD} = 10 \text{ ns}$
 - $-t_{\rm S} = 5.5 \, \rm ns$
 - $-t_{CO} = 6.5 \text{ ns}$
- Fully PCI compliant
- Available in 44-pin PLCC and CLCC packages
- Pin compatible with the CY7C371i

Functional Description

The CY7C372i is an In-System ReprogrammableComplexProgrammableLogic Device (CPLD) and is part of the

UltraLogic[™] 64-Macrocell Flash CPLD

FLASH370i[™] family of high-density, highspeed CPLDs. Like all members of the FLASH370i family, the CY7C372i is designed to bring the ease of use and high performance of the 22V10, as well as PCI Local Bus Specification support, to highdensity CPLDs.

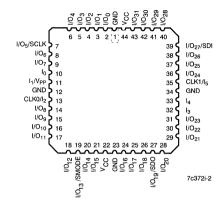

Like all of the UltraLogic FLASH370i devices, the CY7C372i is electrically erasable and In-System Reprogrammable (ISR), which simplifies both design and manufacturing flows, thereby reducing costs. The Cypress ISR function is implemented through a 4-pin serial interface. Data is shifted in and out through the SDI and SDO pins, respectively, using the programming voltage pin (VPP). These pins are dual function, providing a pin-compatible upgrade to earlier versions of FLASH370™ devices. Additionally, because of the superior routability of the FLASH370i devices. ISR often allows users to change existing logic designs while simultaneously fixing pinout assignments.

The 64 macrocells in the CY7C372i are divided between four logic blocks. Each logic block includes 16 macrocells, a 72 x 86 product term array, and an intelligent product term allocator.

The logic blocks in the FLASH370i architecture are connected with an extremely fast and predictable routing resource—the Programmable Interconnect Matrix (PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.

Like all members of the FLASH370i family, the CY7C372i is rich in I/O resources. Every two macrocells in the device feature an associated I/O pin, resulting in 32 I/O pins on the CY7C372i. In addition, there are four dedicated inputs and two input/clock pins.

Finally, the CY7C372i features a very simple timing model. Unlike other high-density CPLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used. or the type of application, the timing parameters on the CY7C372i remain the same.



Selection Guide

		7C372i-125	7C372i-100	7C372i-83	7C372i-66	7C372iL-66
Maximum Propagation Delay, t _{PD} (ns)		10	12	15	20	20
Minimum Set-up, t _S (ns)		5.5	6.0	8	10	10
Maximum Clock to Output, t _{CO} (ns)		6.5	6.5	8	10	10
Maximum Supply Current, I _{CC} (mA)	Commercial	280	250	250	250	125
Current, ICC (IIIA)	Military/Industrial			300	300	

Pin Configuration

Functional Description (continued)

Logic Block

The number of logic blocks distinguishes the members of the FLASH370i family. The CY7C372i includes four logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370i logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72 x 86. This large array in each logic block allows for very complex functions to be implemented in a single pass through the device.

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product terms to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Supply Voltage to Ground Potential $\dots -0.5V$ to $+7.0V$
DC Voltage Applied to Outputs in High Z State
DC Input Voltage $\dots \dots \dots$
DC Program Voltage 12.5V
Output Current into Outputs 16 mA
Static Discharge Voltage

term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370 PLDs. Note that product term allocation is handled by software and is invisible to the user.

I/O Macrocell

Half of the macrocells on the CY7C372i have separate I/O pins associated with them. In other words, each I/O pin is shared by two macrocells. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed. It also has polarity control, and two global clocks to trigger the register. The I/O macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.

Buried Macrocell

The buried macrocell is very similar to the I/O macrocell. Again, it includes a register that can be configured as combinatorial, as a D flip-flop, a T flip-flop, or a latch. The clock for this register has the same options as described for the I/O macrocell. One difference on the buried macrocell is the addition of input register capability. The user can program the buried macrocell to act as an input register (D-type or latch) whose input comes from the I/O pin associated with the neighboring macrocell. The output of all buried macrocells is sent directly to the PIM regardless of its configuration.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the four logic blocks on the CY7C372i to the inputs and to each other. All inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Development Tools

Development software for the CY7C372i is available from Cypress's $Warp2^{\infty}$, $Warp2+^{\infty}$, and $Warp3^{\infty}$ software packages. Both of these products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABEL^{∞}, CUPL^{∞}, and LOG/iC^{∞}. Please contact your local Cypress representative for further information.

Latch-Up Current		>200 mA
------------------	--	---------

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ± 5%
Industrial	-40° C to $+85^{\circ}$ C	$5V \pm 10\%$
Military ^[1]	-55°C to +125°C	$5V \pm 10\%$

Note:

1. TA is the "instant on" case temperature.

Parameter	Description		Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{\rm CC} = Min.$	$I_{OH} = -3.2 \text{ mA} (Co$	m'l/Ind)	2.4		V
			$I_{OH} = -2.0 \text{ mA}$ (Mi	1)			V
V _{OL}	Output LOW Voltage	$V_{\rm CC} = Min.$	$I_{OL} = 16 \text{ mA} \text{ (Com'}$	l/Ind)		0.5	v
			$I_{OL} = 12 \text{ mA} \text{ (Mil)}$				v
V _{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs ^[3]			2.0	7.0	V
V _{IL}	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs ^[3]				0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$				+10	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled				+50	μΑ
I _{OS}	Output Short Circuit Current ^[4, 5]	$V_{CC} = Max., V_{OUT} = 0.5V$				- 160	mA
I _{CC}	Power Supply Current ^[6]	$V_{CC} = Max.,$ f = 1 mHz, V	$V_{CC} = Max., I_{OUT} = 0 mA,$ f = 1 mHz, $V_{IN} = GND, V_{CC}$			250	mA
				Com'l "L" –66		125	mA
				Com'l -125		280	mA
				Mil/Industrial		300	mA

Electrical Characteristics Over the Operating Range^[2]

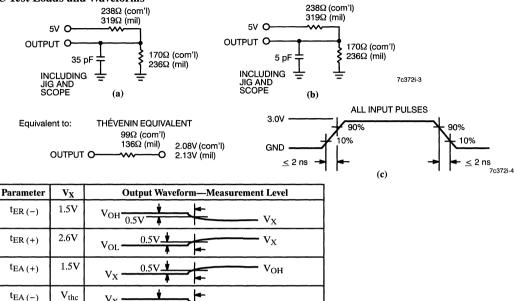
Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 5.0V$ at f=1 MHz	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 5.0V$ at f = 1 MHz	12	pF

Endurance Characteristics^[5]

Parameter	Description	Test Conditions	Min.	Max.	Unit
Ν	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

Notes: 2. Se


- 2. See the last page of this specification for Group A subgroup testing information.
- 3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
- 4. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V_{OUT} = 0.5V has been chosen to avoid test problems caused by tester ground degradation.

5. Tested initially and after any design or process changes that may affect these parameters.

6. Meaured with 16-bit counter programmed into each logic block.

AC Test Loads and Waveforms 238Ω (com'l) 319Ω (mil)

(d) Test Waveforms

Switching Characteristics Over the Operating Range^[7]

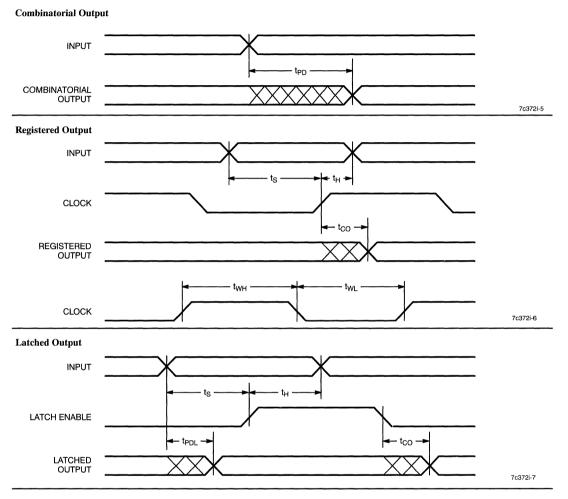
V_X 0.5V

		7C372	i-125	7C372	i-100	7C37	2i-83		2i-66 iL-66	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Combinato	rial Mode Parameters									
t _{PD}	Input to Combinatorial Output		10		12		15		20	ns
t _{PDL}	Input to Output Through Transparent Input or Output Latch		13		15		18		22	ns
t _{PDLL}	Input to Output Through Transparent Input and Output Latches		15		16		19		24	ns
t _{EA}	Input to Output Enable		14		16		19		24	ns
t _{ER}	Input to Output Disable		14		16		19		24	ns
Input Regi	stered/Latched Mode Parameters									
t _{WL}	Clock or Latch Enable Input LOW Time ^[5]	3		3		4		5		ns
t _{WH}	Clock or Latch Enable Input HIGH Time ^[5]	3		3		4		5		ns
t _{IS}	Input Register or Latch Set-Up Time	2		2		3		4		ns
t _{IH}	Input Register or Latch Hold Time	2		2		3		4		ns
t _{ICO}	Input Register Clock or Latch Enable to Combinatorial Output		14		16		19		24	ns
t _{ICOL}	Input Register Clock or Latch Enable to Out- put Through Transparent Output Latch		16		18		21		26	ns

VOL

 $t_{EA(-)}$

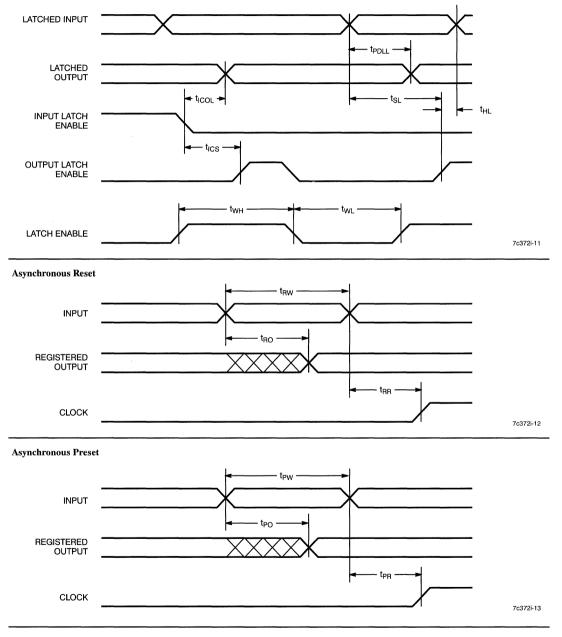
Note: 7. All AC parameters are measured with 16 outputs switching.


Switching Characteristics	• Over the Operating Range ^[7] (continued)
---------------------------	---

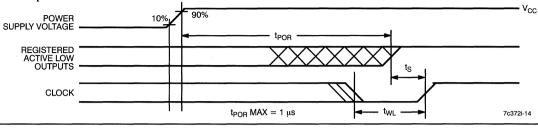
	neter Description		7C372i-125 7C372i-1		i – 100	-100 7C372		7C372i-66 7C372iL-66		
Parameter			Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Output Re	gistered/Latched Mode Parameters									
t _{CO}	Clock or Latch Enable to Output		6.0		6.5		8		10	ns
ts	Set-Up Time from Input to Clock or Latch En- able	5.5		6		8		10		ns
t _H	Register or Latch Data Hold Time	0		0		0		0		ns
t _{CO2}	Output Clock or Latch Enable to Output Delay (Through Memory Array)		14		16		19		24	ns
t _{SCS}	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	8		10		12		15		ns
t _{SL}	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch En- able	10		12		15		20		ns
t _{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		0		ns
f _{MAX1}	Maximum Frequency with Internal Feedback in Output Registered Mode (Least of $1/t_{SCS}$, $1/(t_S + t_H)$, or $1/t_{CO}$) ^[5]	125		100		83		66		MHz
f _{MAX2}	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1/(t_{WL} + t_{WH}), 1/(t_S + t_H), \text{ or } 1/t_{CO})^{[5]}$	153.8		153.8		125		100		MHz
f _{MAX3}	Maximum Frequency with External Feedback (Lesser of $1/(t_{CO} + t_S)$ and $1/(t_{WL} + t_{WH}))^{[5]}$	83.3		80		62.5		50		MHz
t _{OH} -t _{IH} 37x	Output Data Stable from Output clock Minus Input Register Hold Time for 7C37x ^[5, 8]	0		0		0		0		ns
Pipelined I	Mode Parameters									
t _{ICS}	Input Register Clock to Output Register Clock	8		10		12		15		ns
f _{MAX4}	$\begin{array}{l} Maximum \ Frequency \ in \ Pipelined \ Mode \\ (Least of \ 1/(t_{CO} + t_{IS}), \ 1/t_{ICS}, \ 1/(t_{WL} + t_{WH}), \\ 1/(t_{IS} + t_{IH}), \ or \ 1/t_{SCS})^{[5]} \end{array}$	125		100		83.3		66.6		MHz
Reset/Pres	et Parameters									
t _{RW}	Asynchronous Reset Width ^[5]	10		12		15		20		ns
t _{RR}	Asynchronous Reset Recovery Time ^[5]	12		14		17		22		ns
t _{RO}	Asynchronous Reset to Output		16		18		21		26	ns
t _{PW}	Asynchronous Preset Width ^[5]	10		12		15		20		ns
t _{PR} .	Asynchronous Preset Recovery Time ^[5]	12		14		17		22		ns
t _{PO}	Asynchronous Preset to Output		16		18		21		26	ns
tPOR	Power-On Reset ^[5]		1		1		1		1	μs

Note:
 8. This specification is intended to guarantee interface compatibility of the other members of the CY7C370 family with the CY7C372i. This specification is met for the devices operating at the same ambient temperature and at the same power supply voltage.

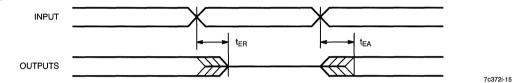
Switching Waveforms



Registered Input



Latched Input and Output



Output Enable/Disable

Ordering Information

Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
125	CY7C372i-125JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
100	CY7C372i-100JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
83	CY7C372i-83JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C372i-83JI	J67	44-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C372i-83YMB	¥67	44-Lead Ceramic Leaded Chip Carrier	Military
66	CY7C372i-66JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C372i-66YMB	¥67	44-Lead Ceramic Leaded Chip Carrier	Military
	CY7C372i-66JI	J67	44-Lead Ceramic Leaded Chip Carrier	Industrial
66	CY7C372iL-66JC	J67	44-Lead Ceramic Leaded Chip Carrier	Commercial

MILITARY SPECIFICATIONS **Group A Subgroup Testing DC** Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Document #: 38-00498

Switching Characteristics

-	
Parameter	Subgroups
t _{PD}	9, 10, 11
t _{CO}	9, 10, 11
t _{ICO}	9, 10, 11
ts	9, 10, 11
t _H	9, 10, 11
t _{IS}	9, 10, 11
t _{IH}	9, 10, 11
t _{ICS}	9, 10, 11

ISR, UltraLogic FLASH370, FLASH370i, Warp2, Warp2+, and Warp3 are trademarks of Cypress Semiconductor Corporation. ABEL is a trademark of Data I/O Corporation. LOG/iC is a trademark of Isdata Corporation. CUPL is a trademark of Logical Devices Incorporated.

ADVANCED INFORMATION CY7C373i

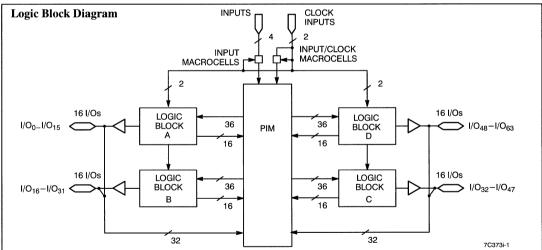
UltraLogic[™] 64-Macrocell Flash CPLD

Features

- 64 macrocells in four logic blocks
- 64 I/O pins
- 6 dedicated inputs including 4 clock pins
- In-System Reprogrammable (ISR™) Flash technology
- JTAG interface
- No hidden delays
- High speed
 - $-f_{MAX} = 125 \text{ MHz}$
 - $-t_{PD} = 10 \text{ ns}$
 - $-t_{\rm S} = 5.5$ ns
 - $-t_{CO} = 6.5$ ns
- Fully PCI compliant
- Available in 84-pin PLCC and 100-pin TQFP packages
- Pin compatible with the CY7C374i

Functional Description

The CY7C373i is an In-System ReprogrammableComplexProgrammableLogic Device (CPLD) and is part of the FLASH370i [™] family of high-density, highspeed CPLDs. Like all members of the FLASH370i family, the CY7C373i is designed to bring the ease of use and high performance of the 22V10, as well as PCI Local Bus Specification support, to highdensity CPLDs.

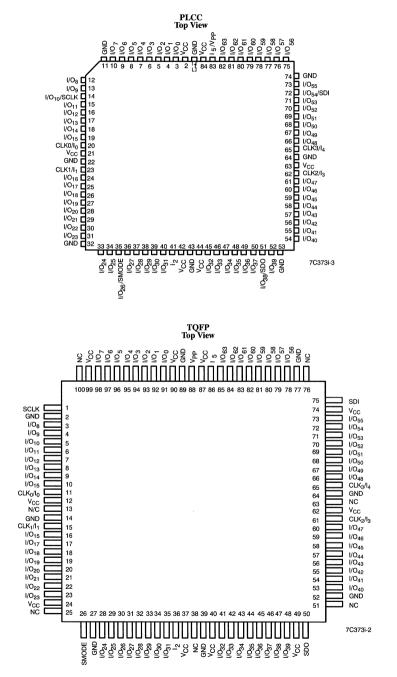

Like all of the UltraLogic FLASH370i devices, the CY7C373i is electrically erasable and In-System Reprogrammable (ISR). which simplifies both design and manufacturing flows, thereby reducing costs. The Cypress ISR function is implemented through a 4-pin serial interface. Data is shifted in and out through the SDI and SDO pins, respectively, using the programming voltage pin (V_{PP}) . These pins are dual function, providing a pin-compatible upgrade to earlier versions of FLASH370™ devices. Additionally, because of the superior routability of the FLASH370i devices, ISR often allows users to change existing logic designs while simultaneously fixing pinout assignments.

The 64 macrocells in the CY7C373i are divided between four logic blocks. Each logic block includes 16 macrocells, a 72 x 86 product term array, and an intelligent product term allocator.

The logic blocks in the FLASH370i architecture are connected with an extremely fast and predictable routing resource—the Programmable Interconnect Matrix (PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.

Like all members of the FLASH370i family, the CY7C373i is rich in I/O resources. Every macrocell in the device features an associated I/O pin, resulting in 64 I/O pins on the CY7C373i. In addition, there are two dedicated inputs and four input/clock pins.

Finally, the CY7C373i features a very simple timing model. Unlike other high-density CPLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C373i remain the same.



Selection Guide

		7C373i-125	7C373i-100	7C373i-83	7C373i-66	7C373iL-66
Maximum Propagation Del	ay (ns)	10	12	15	20	20
Minimum Set-up, t _S (ns)		5.5	6.0	8	10	10
Maximum Clock to Output	, t _{CO} (ns)	6.5	6.5	8	10	10
Maximum Supply Current, I _{CC} (mA)	Commercial	280	250	250	250	125
Current, ICC (IIIA)	Industrial			300	300	

Pin Configurations

Functional Description (continued)

Logic Block

The number of logic blocks distinguishes the members of the FLASH370i family. The CY7C373i includes four logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370i logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72 x 86. This large array in each logic block allows for very complex functions to be implemented in single passes through the device.

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product term resources to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370i CPLDs. Note that the product term allocator is handled by software and is invisible to the user.

I/O Macrocell

Each of the macrocells on the CY7C373i has a separate I/O pin associated with it. In other words, each I/O pin is shared by two macrocells. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed, polarity control over the input sum-term, and two global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.

Electrical Characteristics Over the Operating Range

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the four logic blocks on the CY7C373i to the inputs and to each other. All inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Development Tools

Development software for the CY7C373i is available from Cypress's $Warp2 \cong$, $Warp2 + \cong$, and $Warp3 \cong$ software packages. Both of these products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABEL \cong , CUPL \cong , and LOG/iC \cong . Please contact your local Cypress representative for further information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
Ambient Temperature with Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Supply Voltage to Ground Potential $\dots -0.5V$ to $+7.0V$
DC Voltage Applied to Outputs in High Z State
DC Input Voltage $\dots \dots \dots$
DC Program Voltage 12.5V
Output Current into Outputs 16 mA
Static Discharge Voltage
Latch-Up Current

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 5%
Industrial	-40° C to $+85^{\circ}$ C	5V ± 10%

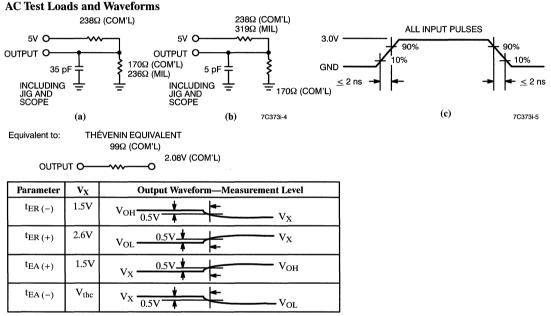
Parameter	Description		Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.$	$I_{OH} = -3.2 \text{ mA} \text{ (Com}$	'l/Ind)	2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min.$	$I_{OL} = 16 \text{ mA (Com'l/I}$	nd)		0.5	V
V _{IH}	Input HIGH Voltage	Guaranteed I	Guaranteed Input Logical HIGH Voltage for all Inputs ^[1]		2.0	7.0	V
VIL	Input LOW Voltage	Guaranteed I	Guaranteed Input Logical LOW Voltage for all Inputs ^[1]		-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq$	V _{CC}		-10	+10	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_0 \leq$	≤ V _{CC} , Output Disabled		-50	+50	μΑ
I _{OS}	Output Short Circuit Current ^[2, 3]	$V_{\rm CC}$ = Max.,	$V_{OUT} = 0.5V$		-30	-160	mA
I _{CC}	Power Supply Current ^[4]	$V_{CC} = Max.,$	$I_{OUT} = 0 \text{ mA},$ IN = GND, V _{CC}	Com'l		250	mA
		f = 1 mHz, V	$_{\rm IN}$ = GND, $V_{\rm CC}$	Com'l "L", -66		125	mA
				Com'l -125		280	mA
				Industrial		300	mA

Notes:

1. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included. 3. Tested initially and after any design or process changes that may affect these parameters.

2. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation.

4. Measured with 16-bit counter programmed into each logic block.



Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 5.0V$ at f=1 MHz	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 5.0V$ at f = 1 MHz	12	pF

Endurance Characteristics^[3]

Parameter	Description	Test Conditions	Min.	Max.	Unit
N	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

(d) Test Waveforms

Switching Characteristics Over the Operating Range^[5]

		7C373	i-125	7C373	i-100	7C37	3i-83		3i-66 iL-66	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Combinato	orial Mode Parameters									
t _{PD}	Input to Combinatorial Output		10		12		15		20	ns
t _{PDL}	Input to Output Through Transparent Input or Output Latch		13		15		18		22	ns
tpDLL	Input to Output Through Transparent Input and Output Latches		15		16		19		24	ns
t _{EA}	Input to Output Enable		14		16		19		24	ns
t _{ER}	Input to Output Disable		14		16		19		24	ns

Note:

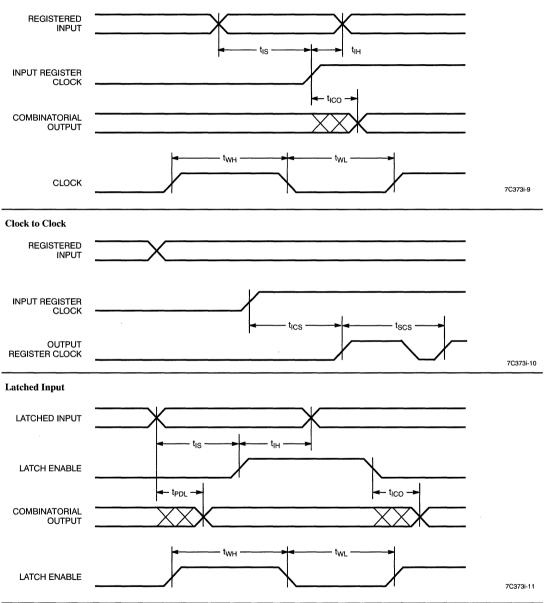
5. All AC parameters are measured with 16 outputs switching.

Switching Characteristics Over the Operating Range^[5] (continued)

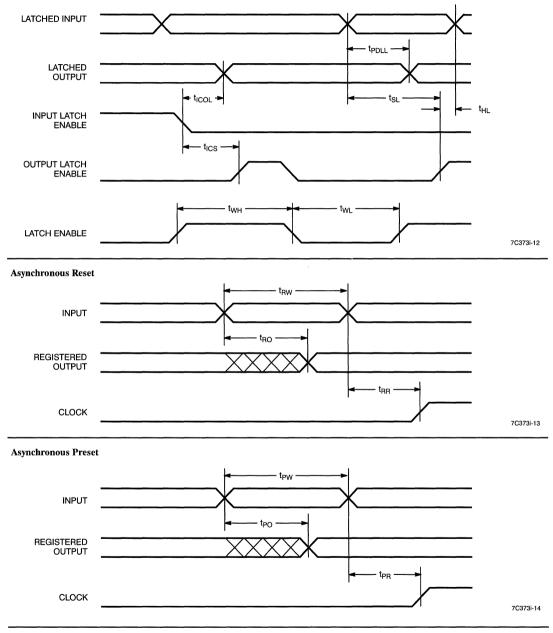
		7C373i-125 7C		7C373	7C373i-100		3i-83	7C373i-66 7C373iL-66		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Uni
Input Regi	stered/Latched Mode Parameters									
t _{WL}	Clock or Latch Enable Input LOW Time ^[3]	3		3		4		5		ns
t _{WH}	Clock or Latch Enable Input HIGH Time ^[3]	3		3		4		5		ns
t _{IS}	Input Register or Latch Set-Up Time	2		2		3		4		ns
t _{IH}	Input Register or Latch Hold Time	2		2		3		4		ns
t _{ICO}	Input Register Clock or Latch Enable to Combinatorial Output		14		16		19		24	ns
t _{ICOL}	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		16		18		21		26	ns
Output Re	gistered/Latched Mode Parameters									-
t _{CO}	Clock or Latch Enable to Output		6.5		6.5	Γ	8		10	ns
ts	Set-Up Time from Input to Clock or Latch Enable	5.5		6		8		10		ns
t _H	Register or Latch Data Hold Time	0		0		0		0		ns
t _{CO2}	Output Clock or Latch Enable to Output Delay (Through Memory Array)		14		16		19	1	24	ns
t _{SCS}	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	8		10		12		15		ns
t _{SL}	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	10		12		15		20		ns
t _{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		0		ns
f _{MAX1}	Maximum Frequency with Internal Feedback (Least of $1/t_{SCS}$, $1/(t_S + t_H)$, or $1/t_{CO})^{[3]}$	125		100		83		66		MH
f _{MAX2}	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1/(t_{WL} + t_{WH})$, $1/(t_S + t_H)$, or $1/t_{CO})^{[3]}$	153.8		153.8		125		100		MH
f _{MAX3}	Maximum Frequency of (2) CY7C373is with External Feedback (Lesser of $1/(t_{CO} + t_S)$ and $1/(t_{WL} + t_{WH})^{[3]}$	83.3		80		62.5		50		MH
t _{OH} -t _{IH} 37x	Output Data Stable from Output clock Minus Input Register Hold Time for 7C37x ^[3, 6]	0		0		0		0		ns
Pipelined I	Mode Parameters									
t _{ICS}	Input Register Clock to Output Register Clock	8	Γ	10		12		15		ns
f _{MAX4}	$\begin{array}{l} Maximum \ Frequency in Pipelined \ Mode (Least of 1/(t_{CO} + t_{IS}), 1/t_{ICS}, 1/(t_{WL} + t_{WH}), 1/(t_{IS} + t_{IH}), or 1/t_{SCS}]^{[3]} \end{array}$	125		83.3		66.6		50.0		MH
Reset/Pres	et Parameters									
t _{RW}	Asynchronous Reset Width ^[3]	10		12		15		20		ns
t _{RR}	Asynchronous Reset Recovery Time ^[3]	12		14		17	1	22	1	ns
t _{RO}	Asynchronous Reset to Output		16	1	18	1	21	1	26	ns
t _{PW}	Asynchronous Preset Width ^[3]	10	1	12	1	15	1	20		ns
t _{PR}	Asynchronous Preset Recovery Time ^[3]	12		14		17		22		ns
tpo	Asynchronous Preset to Output		16	<u> </u>	18		21		26	ns
tPOR	Power-On Reset ^[3]		1		1	<u> </u>	1		1	μ
TUK	1 0 m 0 1 1 0 0 0 1	L	<u> </u>	L		L	-	L	1 *	

Note:
6. This specification is intended to guarantee interface compatibility of the other members of the CY7C370i family with the CY7C373i. This

specification is met for the devices operating at the same ambient temperature and at the same power supply voltage.

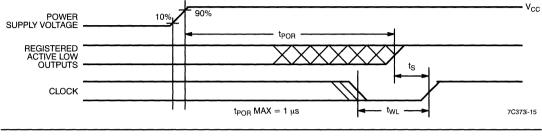


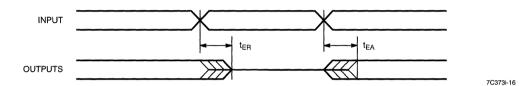
Switching Waveforms



Registered Input

Latched Input and Output




ADVANCED INFORMATION

Switching Waveforms (continued)

Power-Up Reset Waveform

Output Enable/Disable

Ordering Information

Speed (MHz)	Ordering Code	Package Type	Package Type	Operating Range
125	CY7C373i-125AC	A100	100-Pin Thin Quad Flatpack	Commercial
	CY7C373i-125JC	J83	84-Lead Plastic Leaded Chip Carrier	
100	CY7C373i-100AC	A100	100-Pin Thin Quad Flatpack	Commercial
	CY7C373i-100JC	J83	84-Lead Plastic Leaded Chip Carrier	
83	CY7C373i-83AC	A100	100-Pin Thin Quad Flatpack	Commercial
	CY7C373i-83JC	J83	84-Lead Plastic Leaded Chip Carrier	
}	CY7C373i-83AI	A100	100-Pin Thin Quad Flatpack	Industrial
	CY7C373i-83JI	J83	84-Lead Plastic Leaded Chip Carrier	
66	CY7C373i-66AC	A100	100-Pin Thin Quad Flatpack	Commercial
	CY7C373i-66JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C373i-66AI	A100	100-Pin Thin Quad Flatpack	Industrial
	CY7C373i-66JI	J83	84-Lead Plastic Leaded Chip Carrier	
66	CY7C373iL-66JC	J83	84-Lead Plastic Leaded Chip Carrier	Commercial

Document #: 38-00495

FLASH370, FLASH370i, ISR, UltraLogic, Warp2+, and Warp3 are trademarks of Cypress Semiconductor Corporation. ABEL is a trademark of Data I/O Corporation. LOG/iC is a trademark of Isdata Corporation.

CUPL is a trademark of Logical Devices Incorporated.

ADVANCED INFORMATION

CY7C374i

UltraLogic[™] 128-Macrocell Flash CPLD

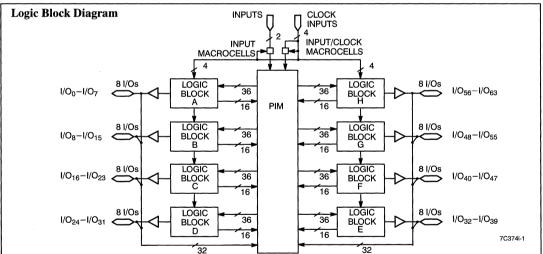
Features

- 128 macrocells in eight logic blocks
- 64 I/O pins
- 6 dedicated inputs including 4 clock pins
- In-System Reprogrammable (ISR™) Flash technology
- JTAG interface
- No hidden delays
- High speed
 - $-f_{MAX} = 100 \text{ MHz}$
 - $-t_{PD} = 12 \text{ ns}$
 - $-t_s = 6 \text{ ns}$
 - $-t_{CO} = 7 \text{ ns}$
- Fully PCI compliant
- Available in 84-pin PLCC, 84-pin CLCC, and 100-pin TQFP packages
- Pin compatible with the CY7C373

Functional Description

The CY7C374i is an In-System Reprogrammable Complex Programmable Logic Device (CPLD) and is part of the FLASH370i[™] family of high-density, highspeed CPLDs. Like all members of the FLASH370i family, the CY7C374i is designed to bring the ease of use as well as PCI Local Bus Specification support and high performance of the 22V10 to highdensity CPLDs.

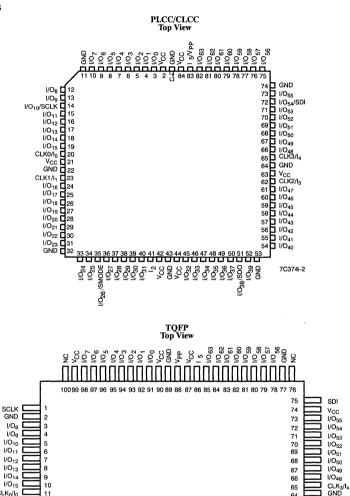
Like all of the UltraLogic FLASH370i devices, the CY7C374i is electrically erasable and In-System Reprogrammable (ISR), which simplifies both design and manufacturing flows thereby reducing costs. The Cypress ISR function is implemented through a 4-pin serial interface. Data is shifted in and out through the SDI and SDO pins, respectively using the programming voltage pin (Vpp). These pins are dual function providing a pin-compatible upgrade to earlier versions of the FLASH370[™] devices. Additionally, because of the superior routability of the FLASH370i devices, ISR often allows users to change existing logic designs while simultaneously fixing pinout assignments.


The 128 macrocells in the CY7C374i are divided between eight logic blocks. Each

logic block includes 16 macrocells, a 72 x 86 product term array, and an intelligent product term allocator.

The logic blocks in the FLASH370i architecture are connected with an extremely fast and predictable routing resource—the Programmable Interconnect Matrix (PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.

Like all members of the FLASH370i family, the CY7C374i is rich in I/O resources. Every two macrocells in the device feature an associated I/O pin, resulting in 64 I/O pins on the CY7C374i. In addition, there are two dedicated inputs and four input/clock pins.


Finally, the CY7C374i features a very simple timing model. Unlike other high-density CPLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C374i remain the same.

Selection Guide

		7C374i-100	7C374i-83	7C374i-66	7C374iL-66
Maximum Propagation Delay t _{PD} (ns)		12	15	20	20
Minimum Set-Up, t _S (ns)		6	8	10	10
Maximum Clock to Output, tco (ncs)		7	8	10	10
Maximum Supply	Commercial	300	300	300	150
Current, I _{CC} (mA)	Military/Industrial		370	370	

Pin Configurations

64

63 62

61

60

59

58

57 56

55 54

53

52

51

NC

Vcc

I/O₄₇ I/O₄₆

I/O45

1/044 1/044

I/O₄₂

1/041

1/O₄₀ GND

NC

7C374i-3

CLK₂/I₃

CLK0/I0

Vcc

N/C

GND

I/O₁₆

I/O17

I/O₁₈

I/O₁₉

I/O₂₀ I/O₂₁

I/O₂₂

I/O₂₃

V_{CC} NC

CLK1/1

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25

SMODE [

3 - 101

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Gan Carlor Carlo

3

Functional Description (continued)

Logic Block

The number of logic blocks distinguishes the members of the FLASH370i family. The CY7C374i includes eight logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370i logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72 x 86. This large array in each logic block allows for very complex functions to be implemented in single passes through the device.

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product terms to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370i CPLDs. Note that product term allocation is handled by software and is invisible to the user.

I/O Macrocell

Half of the macrocells on the CY7C374i have I/O pins associated with them. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The I/O macrocell includes a register that can be optionally bypassed, polarity control over the input sum-term, and two global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.

Buried Macrocell

The buried macrocell is very similar to the I/O macrocell. Again, it includes a register that can be configured as combinatorial, as a D flip-flop, a T flip-flop, or a latch. The clock for this register has the same options as described for the I/O macrocell. One difference on the buried macrocell is the addition of input register capability. The user can program the buried macrocell to act as an input register (D-type or latch) whose input comes from the I/O pin

associated with the neighboring macrocell. The output of all buried macrocells is sent directly to the PIM regardless of its configuration.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the eight logic blocks on the CY7C374i to the inputs and to each other. All inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Development Tools

Development software for the CY7C374i is available from Cypress's $Warp2^{\bowtie}$, $Warp2+^{\bowtie}$, and $Warp3^{\bowtie}$ software packages. Both of these products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABEL^{\bowtie}, CUPL^{\bowtie}, and LOG/iC^{∞}. Please contact your local Cypress representative for further information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Ambient Temperature with Power Applied
Supply Voltage to Ground Potential $\dots -0.5V$ to $+7.0V$
DC Valtage Applied to Outputs
DC Voltage Applied to Outputs
in High Z State $-0.5V$ to $+7.0V$
DC Input Voltage $\dots -0.5V$ to $+7.0V$
DC Program Voltage 12.5V
Output Current into Outputs 16 mA
Static Discharge Voltage
(per MIL-STD-883, Method 3015)
Latch-Up Current

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 5%
Industrial	-40° C to $+85^{\circ}$ C	5V ± 5%
Military ^[1]	-55°C to +125°C	$5V \pm 10\%$

Note:

1. T_A is the "instant on" case temperature.

Parameter	Description		Test Conditions					
V _{OH}	Output HIGH Voltage	$V_{\rm CC} = Min.$	$I_{OH} = -3.2 \text{ mA} (\text{Com'l/I})$	2.4		V		
			$I_{OH} = -2.0 \text{ mA} (Mil)$				V	
V _{OL}	Output LOW Voltage	$V_{\rm CC} = Min.$	$I_{OL} = 16 \text{ mA} (\text{Com'l/Ind})$)		0.5	V	
			$I_{OL} = 12 \text{ mA} (\text{Mil})$				V	
V _{IH}	Input HIGH Voltage	Guaranteed Input	2.0	7.0	V			
V _{IL}	Input LOW Voltage	Guaranteed Input	-0.5	0.8	V			
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-10	+10	μΑ			
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CO}$, Output Disabled		-50	+50	μΑ	
I _{OS}	Output Short Circuit Current ^[4, 5]	$V_{\rm CC}$ = Max., $V_{\rm OU}$	$\Gamma = 0.5 V$		-30	-160	mA	
I _{CC}	Power Supply Current	$V_{CC} = Max., I_{OUT}$ f = 1 mHz, $V_{IN} =$	r = 0 mA,	Com'l		300	mA	
6				Com'l "L" –66		150	mA	
		Mil./Ind.				370	mA	

Electrical Characteristics Over the Operating Range^[2]

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 5.0V$ at f=1 MHz	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 5.0V$ at f = 1 MHz	12	pF

Endurance Characteristics^[5]

Parameter	Description	Test Conditions	Min.	Max.	Unit
Ν	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

Notes:

2. See the last page of this specification for Group A subgroup testing information.

- 3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
- 4. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation.
- 5. Tested initially and after any design or process changes that may affect these parameters.

6. Measured with 16-bit counter programmed into each logic block.

AC Test Loads and Waveforms

238Ω (COM'L) 319Ω (MIL) 238Ω (COM'L) 319Ω (MIL) ALL INPUT PULSES 5V O-5V O-3.0V - \sim ** 90% 90% 170Ω (COM'L) OUTPUT O OUTPUT O-236Ω (MIL) GND 10% 0% 170Ω (COM'L) 236Ω (MIL) 35 pF 5 pF INCLUDING JIG AND SCOPE <u><</u> 2 ns < 2 ns-INCLUDING JIG AND SCOPE (c) (a) (b) 7C374i-4 7C374i-5 Equivalent to: THÉVENIN EQUIVALENT 99Ω (COM'L) 2.08V (COM'L) 2.13V (MIL) 136Ω (MIL) OUTPUT O -Ò ~~~~ Parameter Output Waveform-Measurement Level VX 1.5V $t_{ER(-)}$ V_{OH} 0.5V V_X . 2.6V 0.5V $t_{ER(+)}$ VX V_{OL}-1.5V 0.5V $t_{EA(+)}$ VOH v_x · $t_{EA(-)}$ V_{thc} $v_X \cdot$ 0.5V VOL

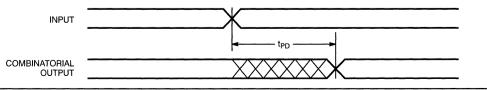
(d) Test Waveforms

Switching Characteristics Over the Operating Range^[7]

		7C374i-100		7C37	4i-83		4i-66 iL-66	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Combinato	rial Mode Parameters							
t _{PD}	Input to Combinatorial Output		12		15		20	ns
t _{PDL}	Input to Output Through Transparent Input or Output Latch		15		18		22	ns
tpDLL	Input to Output Through Transparent Input and Output Latches		16		19		24	ns
t _{EA}	Input to Output Enable		16		19		24	ns
t _{ER}	Input to Output Disable		16		19		24	ns
Input Regis	tered/Latched Mode Parameters							
t _{WL}	Clock or Latch Enable Input LOW Time ^[5]	3		4		5		ns
t _{WH}	Clock or Latch Enable Input HIGH Time ^[5]	3		4		5		ns
t _{IS}	Input Register or Latch Set-Up Time	2		3		4		ns
t _{IH}	Input Register or Latch Hold Time	2		3		4		ns
t _{ICO}	Input Register Clock or Latch Enable to Combinatorial Output		16		19		24	ns
t _{ICOL}	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		18		21		26	ns

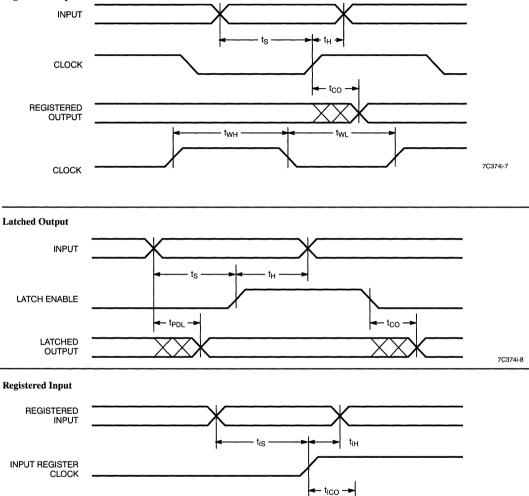
Switching Characteristics Over the Operating Range^[7] (continued)

		7C374	7C374i-100		4i-83		4i – 66 iL – 66		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
Output Reg	istered/Latched Mode Parameters					.			
t _{CO}	Clock or Latch Enable to Output		7		8		10	ns	
ts	Set-Up Time from Input to Clock or Latch Enable	6		8		10		ns	
t _H	Register or Latch Data Hold Time	0		0		0		ns	
t _{CO2}	Output Clock or Latch Enable to Output Delay (Through Memory Array)	9	16		19		24	ns	
t _{SCS}	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	10		12		15		ns	
t _{SL}	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	12		15		20		ns	
t _{HL}	Hold Time for Input Through Transparent Latch from Out- put Register Clock or Latch Enable	0		0		0		ns	
f _{MAX1}	Maximum Frequency with Internal Feedback (Least of $1/t_{SCS}$, $1/(t_S + t_H)$, or $1/t_{CO})^{[5]}$	100		83		66		MH	
f _{MAX2}	Maximum Frequency Data Path in Output Registered/ Latched Mode (Lesser of $1/(t_{WL} + t_{WH})$, $1/(t_S + t_H)$, or $1/t_{CO}$)	143		125		100		MH	
f _{MAX3}	Maximum Frequency with External Feedback (Lesser of $1/(t_{CO} + t_S)$ and $1/(t_{WL} + t_{WH})$)	76.9		67.5		50		MH	
t _{OH} -t _{IH} 37x	Output Data Stable from Output Clock Minus Input Register Hold Time for 7C37x ^[5, 8]	0		0		0		ns	
Pipelined M	Iode Parameters					.	•		
t _{ICS}	Input Register Clock to Output Register Clock	10		12		15		ns	
f _{MAX4}	Maximum Frequency in Pipelined Mode (Least of $1/(t_{CO} + t_{IS}), 1/t_{ICS}, 1/(t_{WL} + t_{WH}), 1/(t_{IS} + t_{IH}), \text{ or } 1/t_{SCS})$	100		83.3		66.6		MH	
Reset/Prese	t Parameters								
t _{RW}	Asynchronous Reset Width ^[5]	12		15		20		ns	
t _{RR}	Asynchronous Reset Recovery Time ^[5]	14		17		22		ns	
t _{RO}	Asynchronous Reset to Output		18		21		26	ns	
t _{PW}	Asynchronous Preset Width ^[5]	12		15		20		ns	
t _{PR}	Asynchronous Preset Recovery Time ^[5]	14		17		22		ns	
t _{PO}	Asynchronous Preset to Output		18		21		26	ns	
tPOR	Power-On Reset ^[5]		1		1		1	μs	

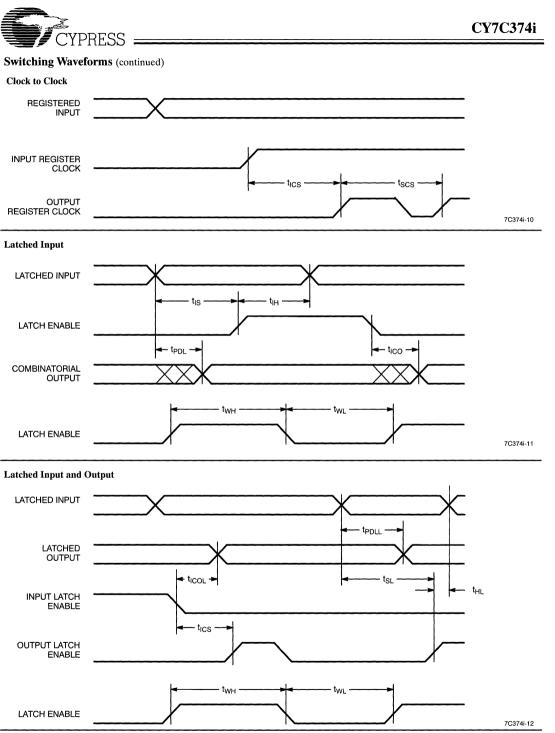

Note: 7. All AC parameters are measured with 16 outputs switching.

This specification is intended to guarantee interface compatibility of the other members of the CY7C370i family with the CY7C374i. This specification is met for the devices operating at the same ambient temperature and at the same power supply voltage. 8.

7C374i-6

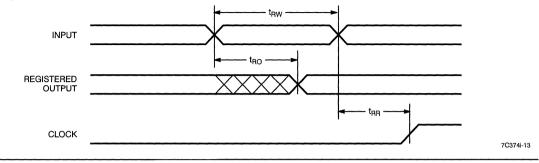

Switching Waveforms

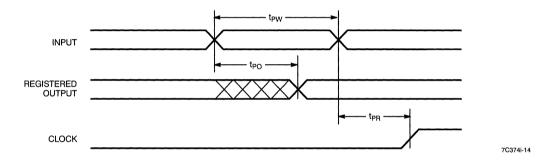
Combinatorial Output



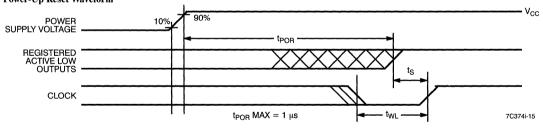
COMBINATORIAL OUTPUT

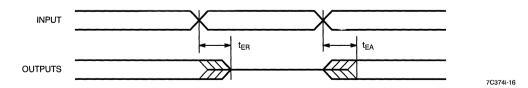
CLOCK




CY7C374i

Switching Waveforms (continued)


Asynchronous Reset



Output Enable/Disable

Ordering Information

Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
100	CY7C374i-100AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C374i-100JC	J83	84-Lead Plastic Leaded Chip Carrier	
83	CY7C374i-83AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C374i-83JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C374i-83AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C374i-83JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C374i-83YMB	Y84	84-Pin Ceramic Leaded Chip Carrier	Military
66	CY7C374i-66AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C374i-66JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C374i-66AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C374i-66JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C374i-66YMB	Y84	84-Pin Ceramic Leaded Chip Carrier	Military
66	CY7C374iL-66AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C374iL-66JC	J83	84-Lead Plastic Leaded Chip Carrier	

MILITARY SPECIFICATIONS **Group A Subgroup Testing** DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{PD}	9, 10, 11
t _{PDL}	9, 10, 11
t _{PDLL}	9, 10, 11
t _{CO}	9, 10, 11
t _{ICO}	9, 10, 11
t _{ICOL}	9, 10, 11
ts	9, 10, 11
t _{SL}	9, 10, 11
t _H	9, 10, 11
t _{HL}	9, 10, 11
t _{IS}	9, 10, 11
t _{IH}	9, 10, 11
t _{ICS}	9, 10, 11
t _{EA}	9, 10, 11
t _{ER}	9, 10, 11

Document #: 38-00214-D

ISR, UltraLogic, FLASH370, FLASH370i, *Warp2*, *Warp2*+, and *Warp3* are trademarks of Cypress Semiconductor Corporation. ABEL is a trademark of Data I/O Corporation. CUPL is a trademark of Logical Devices Incorporated. LOG/iC is a trademark of Isdata Corporation.

ADVANCED INFORMATION

Features

- 128 macrocells in eight logic blocks
- 128 I/O pins
- 6 dedicated inputs including 4 clock pins
- In-System Reprogrammable (ISR™) Flash technology
 - -JTAG interface
- No hidden delays
- High speed
 - $-f_{MAX} = 100 \text{ MHz}$
 - $-t_{PD} = 12 \text{ ns}$
 - $-t_{\rm S} = 6 \, \rm ns$
 - $-t_{CO} = 7 \text{ ns}$
- Fully PCI compliant
- Available in 160-pin TQFP, CQFP, and PGA packages

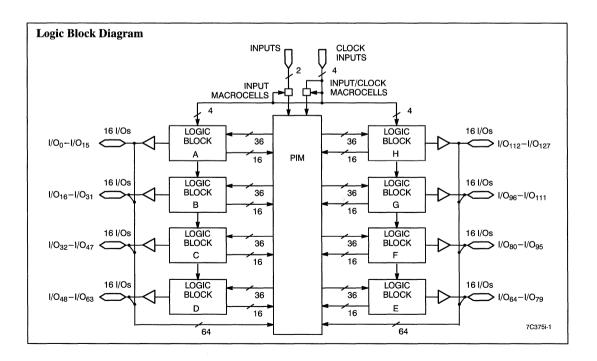
Functional Description

The CY7C375i is an In-System ReprogrammableComplexProgrammableLogic Device (CPLD) and is part of the FLASH370i[™] family of high-density, high-

UltraLogic[™] 128-Macrocell Flash CPLD

speed CPLDs. Like all members of the FLASH370i family, the CY7C375i is designed to bring the ease of use and high performance of the 22V10 to high-density PLDs.

Like all of the UltraLogic FLASH370i devices, the CY7C375i is electrically erasable and In-System Reprogrammable (ISR), which simplifies both design and manufacturing flows thereby reducing costs. The Cypress ISR function is implemented through a 4-pin serial interface. Data is shifted in and out through the SDI and SDO pins, respectively using the programming voltage pin (Vpp). These pins are dual function providing a pin-compatible upgrade to earlier versions of the FLASH370[™] devices. Additionally, because of the superior routability of the FLASH370i devices. ISR often allows users to change existing logic designs while simultaneously fixing pinout assibnments.

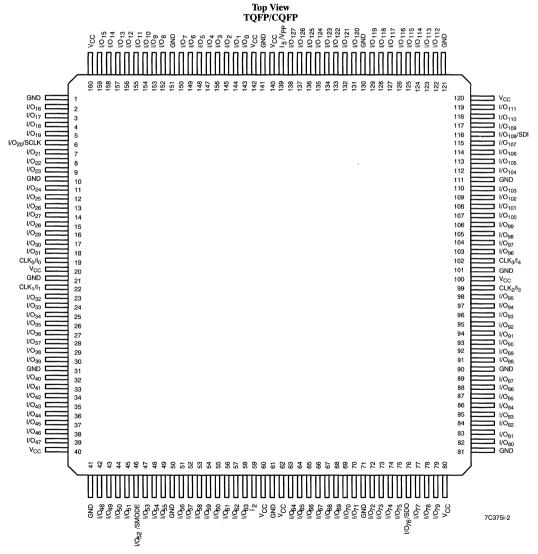

The 128 macrocells in the CY7C375i are divided between eight logic blocks. Each logic block includes 16 macrocells, a 72 x

86 product term array, and an intelligent product term allocator.

The logic blocks in the FLASH370i architecture are connected with an extremely fast and predictable routing resource—the Programmable Interconnect Matrix (PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.

Like all members of the FLASH370i family, the CY7C375i is rich in I/O resources. Every macrocell in the device features an associated I/O pin, resulting in 128 I/O pins on the CY7C375i. In addition, there are two dedicated inputs and four input/ clock pins.

Finally, the CY7C375i features a very simple timing model. Unlike other high-density CPLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C375i remain the same.



Selection Guide

		7C375i-100	7C375i-83	7C375i-66	7C375iL-66
Maximum Propagation Delay, t _{PD} (n	5)	12	15	20	20
Minimum Set-Up, t _S (ns)		6	8	10	10
Maximum Clock to Output, t _{CO (ns)}		7	8	10	10
Maximum Supply	Commercial	330	300	300	150
Current, I _{CC} (mA)	Military/Industrial		370	370	

Pin Configurations

Pin Configurations (continued)

PGA Bottom View

R	I/O ₁₀₉	I/O ₁₁₂	I/O ₁₁₅	I/O ₁₁₈	I/O ₁₂₁	I/O ₁₂₃	I/O ₁₂₆	I/O ₁₂₇	I/O ₀	I/O ₃	1/0 ₅	1/0 ₇	I/O ₁₀	I/O ₁₁	1/0 ₁₄
Ρ	I/O ₁₀₆	I/O ₁₁₀	I/O ₁₁₃	I/O ₁₁₆	I/O ₁₁₉	I/O ₁₂₂	I/O ₁₂₅	GND	I/O ₁	I/O ₄	I/O ₆	I/O ₉	I/O ₁₃	I/O ₁₅	I/O ₁₆
N	I/O ₁₀₅	I/O ₁₀₈ /SDI	I/O ₁₁₁	I/O ₁₁₄	I/O ₁₁₇	I/O ₁₂₀	I/O ₁₂₄	I5/ Vpp	I/O ₂	GND	I/O ₈	I/O ₁₂	GND	I/O ₁₇	I/O ₁₉
м	I/O ₁₀₂	I/O ₁₀₄	I/O ₁₀₇	V _{CC}			V _{CC}	GND	V _{CC}			GND	I/O ₁₈	1/0 ₂₀ / SCLK	1/O ₂₂
L	I/O ₁₀₀	I/O ₁₀₁	I/O ₁₀₃										I/O ₂₁	I/O ₂₃	I/O ₂₅
к	I/O ₉₈	I/O ₉₉	GND										I/O ₂₄	I/O ₂₆	1/O ₂₇
J	1/O ₉₆	I/O ₉₇	CLK3 /I ₄	v _{cc}								V _{CC}	I/O ₂₈	I/O ₂₉	I/O ₃₀
н	I/O ₉₅	GND	CLK2 /l ₃	GND								GND	CLK0 /l ₀	GND	I/O ₃₁
G	I/O ₉₄	I/O ₉₃	I/O ₉₂	V _{CC}								v _{cc}	CLK1 /l ₁	I/O ₃₃	I/O ₃₂
F	I/O ₉₁	I/O ₉₀	I/O ₈₈		•						•		GND	I/O ₃₅	I/O ₃₄
Е	I/O ₈₉	I/O ₈₇	I/O ₈₅									1	I/O ₃₉	I/O ₃₇	I/O ₃₆
D	I/O ₈₆	I/O ₈₄	I/O ₈₂	GND			V _{CC}	GND	Vcc]		Vcc	I/O ₄₃	I/O ₄₀	I/O ₃₈
С	1/O ₈₃	I/O ₈₁	GND	/O ₇₆ / SDO	I/O ₇₂	GND	I/O ₆₆	l ₂	1/O ₆₀	I/O ₅₆	I/O ₅₃	I/O ₅₀	I/O ₄₇	I/O ₄₄	I/O ₄₁
в	1/0 ₈₀	I/O ₇₉	1/O ₇₇	I/O ₇₃	1/O ₇₀	1/O ₆₈	1/O ₆₅	GND	1/O ₆₁	1/O ₅₈	1/O ₅₅	I/O ₅₂ / SMODE	I/O ₄₉	1/O ₄₆	I/O ₄₂
A	I/O ₇₈	I/O ₇₅	I/O ₇₄	I/O ₇₁	1/0 ₆₉	1/0 ₆₇	1/O ₆₄	1/O ₆₃	1/O ₆₂	I/O ₅₉	1/0 ₅₇	1/O ₅₄	I/O ₅₁	1/O ₄₈	1/O ₄₅
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

7C375i-3

Functional Description (continued)

Logic Block

The number of logic blocks distinguishes the members of the FLASH370i family. The CY7C375i includes eight logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370i logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72 x 86. This large array in each logic block allows for very complex functions to be implemented in single passes through the device.

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product terms to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370i PLDs. Note that product term allocation is handled by software and is invisible to the user.

I/O Macrocell

Each of the macrocells on the CY7C375i has a separate I/O pin associated with it. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed, polarity control over the input sum-term, and four global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the eight logic blocks on the CY7C375i to the inputs and to each other. All

inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Development Tools

Development software for the CY7C375i is available from Cypress's $Warp2^{m}$, $Warp2+^{m}$, and $Warp3^{m}$ software packages. Both of these products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABEL^m, CUPL^m, and LOG/iC^m. Please contact your local Cypress representative for further information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
Ambient Temperature with Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Supply Voltage to Ground Potential $\dots -0.5V$ to $+7.0V$
DC Voltage Applied to Outputs in High Z State
DC Input Voltage
DC Program Voltage 12.5V
Output Current into Outputs 16 mA
Static Discharge Voltage
Latch-Up Current

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	$5V \pm 5\%$
Industrial	-40°C to +85°C	5V ± 10%
Military ^[1]	-55° C to $+125^{\circ}$ C	$5V \pm 10\%$

Note:

1. T_A is the "instant on" case temperature.

ADVANCED INFORMATION

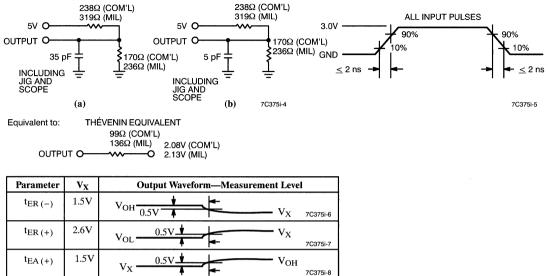
Parameter	Description		Min.	Max.	Unit		
V _{OH}	Output HIGH Voltage	$V_{\rm CC}$ = Min.	$V_{\rm CC}$ = Min. $I_{\rm OH}$ = -3.2 mA (Com'l/Ind)				V
			$I_{OH} = -2.0 \text{ mA} \text{ (Mil)}$				V
V _{OL}	Output LOW Voltage	$V_{CC} = Min.$ $I_{OL} = 16 \text{ mA (Com'l/Ind)}$				0.5	V
		$I_{OL} = 12 \text{ mA} (\text{Mil})$					V
V _{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH voltage for all inputs ^[3]			2.0	7.0	V
V _{IL}	Input LOW Voltage	Guaranteed Input Logical LOW voltage for all inputs ^[3]				0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$			-10	+10	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_0 \le V_{CO}$	$GND \le V_O \le V_{CC}$, Output Disabled			+50	μA
I _{OS}	Output Short Circuit Current ^[4, 5]	$V_{CC} = Max., V_{OUT} = 0.5V$				-160	mA
I _{CC}	Power Supply Current ^[6]	$f = 1 \text{ mHz}, V_{IN} = GND, V_{CC}$		Com'l		300	mA
				Com'l "L" –66		150	mA
				Mil/Ind		370	mA

Electrical Characteristics Over the Operating Range^[2]

Capacitance^[5]

Parameter	Description Test Conditions		Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 5.0V$ at f=1 MHz	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 5.0V$ at f = 1 MHz	12	pF

Endurance Characteristics^[5]


Parameter	Description	Test Conditions	Min.	Max.	Unit
N	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

Notes:

- 2. See the last page of this specification for Group A subgroup testing information.
- 3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
- 4. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation.
- 5. Tested initially and after any design or process changes that may affect these parameters.
- 6. Measured with 16-bit counter programmed into each logic block.

AC Test Loads and Waveforms

VOL 7C375i-9

(a) Test Waveforms

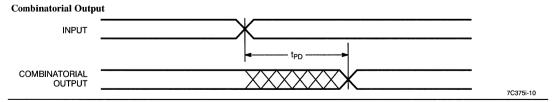
Switching Characteristics Over the Operating Range^[7]

 $V_X - 0.5V$

V_{thc}

 $t_{EA(-)}$

		7C375i-100		7C375i-100 7C375i-8		5i-83	7C375	5iL-66	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
Combinator	ial Mode Parameters			•		•	-		
t _{PD}	Input to Combinatorial Output		12		15		20	ns	
t _{PDL}	Input to Output Through Transparent Input or Output Latch		15		18		22	ns	
t _{PDLL}	Input to Output Through Transparent Input and Output Latches		16		19		24	ns	
t _{EA}	Input to Output Enable		16		19		24	ns	
t _{ER}	Input to Output Disable		16		19		24	ns	
Input Regist	tered/Latched Mode Parameters								
t _{WL}	Clock or Latch Enable Input LOW Time ^[5]	3		4		5		ns	
t _{WH}	Clock or Latch Enable Input HIGH Time ^[5]	3		4		5		ns	
t _{IS}	Input Register or Latch Set-Up Time	2		3		4		ns	
t _{IH}	Input Register or Latch Hold Time	2		3		4		ns	
t _{ICO}	Input Register Clock or Latch Enable to Combinatorial Output		16		19		24	ns	
t _{ICOL}	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		18		21		26	ns	
Output Regi	stered/Latched Mode Parameters	· · · · ·	•	•	·····		•	·	
t _{CO}	Clock or Latch Enable to Output		7		8		10	ns	
ts	Set-Up Time from Input to Clock or Latch Enable	6		8	Ι	10		ns	

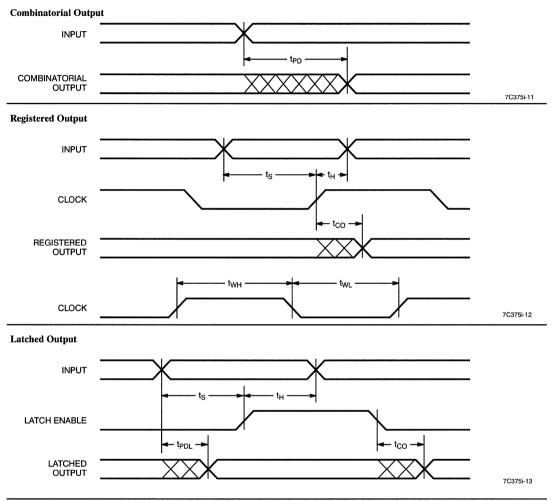

ADVANCED INFORMATION

Switching	Characteristics	Over the Or	perating Range ^[7]	(continued)	
-----------	-----------------	-------------	-------------------------------	-------------	--

			7C375i-100		7C375i-83		7C375iL-66	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _H	Register or Latch Data Hold Time	0		0		0		ns
t _{CO2}	Output Clock or Latch Enable to Output Delay (Through Memory Array)		16		19		24	ns
t _{SCS}	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	10		12		15		ns
t _{SL}	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	12		15		20		ns
t _{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		ns
f _{MAX1}	Maximum Frequency with Internal Feedback (Least of $1/t_{SCS}$, $1/(t_S + t_H)$, or $1/t_{CO}$) ^[5]	100		83		66		MHz
f _{MAX2}	Maximum Frequency Data Path in Output Registered/ Latched Mode (Lesser of $1/(t_{WL} + t_{WH}), 1/(t_S + t_H),$ or $1/t_{CO}$)	143		125		100		MHz
f _{MAX3}	Maximum Frequency with External Feedback (Lesser of $1/(t_{CO} + t_S)$ and $1/(t_{WL} + t_{WH})$)	76.9		62.5		50		MHz
t _{OH} -t _{IH} 37x	Output Data Stable from Output Clock Minus Input Register Hold Time for 7C37x ^[5, 8]	0		0		0		ns
Pipelined M	ode Parameters							
t _{ICS}	Input Register Clock to Output Register Clock	10		12		15		ns
f _{MAX4}	Maximum Frequency in Pipelined Mode (Least of $1/(t_{CO} + t_{IS})$, $1/t_{ICS}$, $1/(t_{WL} + t_{WH})$, $1/(t_{IS} + t_{IH})$, or $1/t_{SCS}$)	100		83.3		66.6		MHz
Reset/Preset	Parameters							
t _{RW}	Asynchronous Reset Width ^[5]	12		15		20		ns
t _{RR}	Asynchronous Reset Recovery Time ^[5]	14		17		22		ns
t _{RO}	Asynchronous Reset to Output		18		21		26	ns
t _{PW}	Asynchronous Preset Width ^[5]	12		15		20		ns
t _{PR}	Asynchronous Preset Recovery Time ^[5]	14		17		22		ns
t _{PO}	Asynchronous Preset to Output		18		21	1	26	ns
tPOR	Power-On Reset	1	1		1		1	μs

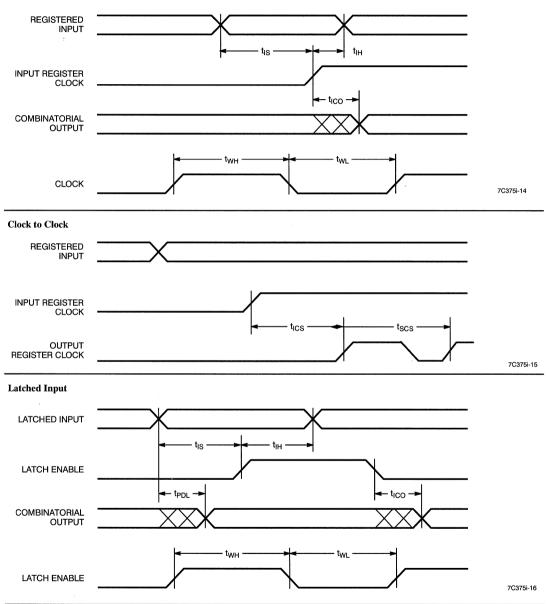
Note:
 7. This specification is intended to guarantee interface compatibility of the other members of the CY7C370i family with the CY7C375i. This specification is met for the devices operating at the same ambient tem-perature and at the same power supply voltage.

Switching Waveforms

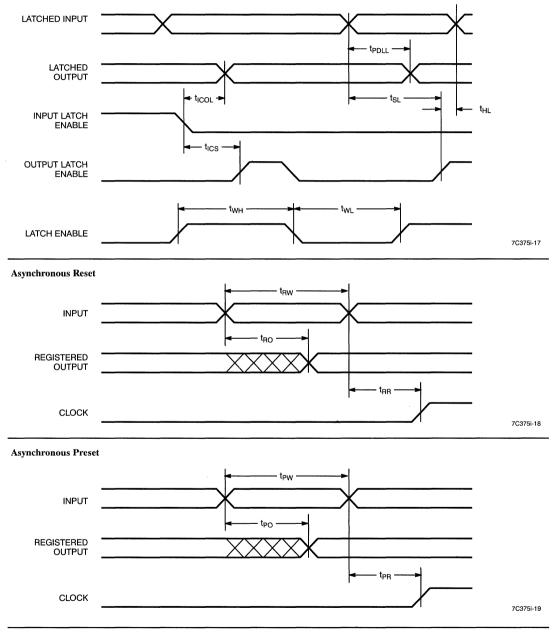


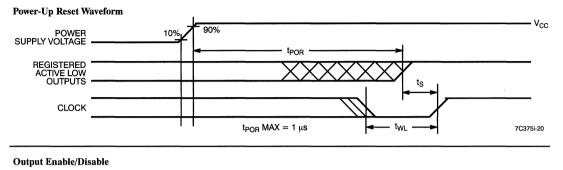
8. All AC parameters are measured with 16 outputs switching.

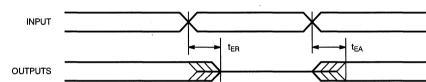
3


Switching Waveforms (continued)

Switching Waveforms (continued)


Registered Input


Switching Waveforms (continued)


Latched Input and Output

Switching Waveforms (continued)

7C375i-21

Ordering Information

Speed (MHz)	Ordering Code	Package Name	N Package Type	Operating Range
100	CY7C375i-100AC	A160	160-Lead Thin Quad Flatpack	Commercial
83	CY7C375i-83AC	A160	160-Lead Thin Quad Flatpack	Commercial
	CY7C375i-83AI	A160	160-Lead Thin Quad Flatpack	Industrial
	CY7C375i-83GMB	G160	160-Pin Grid Array	Military
	CY7C375i-83UMB	U162	160-Pin Ceramic Quad Flatpack ^[9]	
66	CY7C375i-66AC	A160	160-Lead Thin Quad Flatpack	Commercial
	CY7C375i-66AI	A160	160-Lead Thin Quad Flatpack	Industrial
	CY7C375i-66GMB	G160	160-Pin Grid Array	Military
	CY7C375i-66UMB	U162	160-Pin Ceramic Quad Flatpack ^[9]	
66	CY7C375iL-66AC	A160	160-Lead Thin Quad Flatpack	Commercial

Notes: 9. Av

 Available as custom trim and form version. Contact local Cypress office for package information.

MILITARY SPECIFICATIONS **Group A Subgroup Testing** DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{PD}	9, 10, 11
t _{CO}	9, 10, 11
t _{ICO}	9, 10, 11
tS	9, 10, 11
t _H	9, 10, 11
t _{IS}	9, 10, 11
t _{IH}	9, 10, 11
t _{ICS}	9, 10, 11

Document #: 38-00217-D

ISR, UltraLogic FLASH370, FLASH370i, *Warp2*, *Warp2*+, and *Warp3* are trademarks of Cypress Semiconductor Corporation. ABEL is a trademark of Data I/O Corporation. LOG/iC is a trademark of Isdata Corporation.

CUPL is a trademark of Logical Devices Incorporated.

CY7C340 EPLD Family

Features

- Erasable, user-configurable CMOS EPLDs capable of implementing highdensity custom logic functions
- 0.8-micron double-metal CMOS EPROM technology (CY7C34X)
- Advanced 0.65-micron CMOS technology to increase performance (CY7C34XB)
- Multiple Array MatriX architecture optimized for speed, density, and straightforward design implementation
 - Programmable Interconnect Array (PIA) simplifies routing
 - Flexible macrocells increase utilization
 - Programmable clock control
 - Expander product terms implement complex logic functions
- Warp2[™]/Warp2+[™]
 - Low-cost VHDL compiler for CPLDs, FPGAs, and PLDs
 - IEEE 1164-compliant VHDL
 - Available on PC and Sun platforms
- Warp3™

Max Family Members

- ---- ViewLogic graphical user interface
- --- Schematic capture (ViewDraw[™])

--- VHDL simulation (ViewSim[™]) -- Available on PC and Sun platforms General Description

The Cypress Multiple Array Matrix (MAX®) family of EPLDs provides a user-configurable, high-density solution to general-purpose logic integration requirements. With the combination of innovative architecture and state-of-the-art process, the MAX EPLDs offer LSI density without sacrificing speed.

The MAX architecture makes it ideal for replacing large amounts of TTL SSI and MSI logic. For example, a 74161 counter utilizes only 3% of the 128 macrocells available in the CY7C342B. Similarly, a 74151 8-to-1 multiplexer consumes less than 1% of the over 1,000 product terms in the CY7C342B. This allows the designer to replace 50 or more TTL packages with just one MAX EPLD. The family comes in a range of densities, shown below. By standardizing on a few MAX building blocks, the designer can replace hundreds of different 7400 series part numbers currently used in most digital systems.

The family is based on an architecture of flexible macrocells grouped together into Logic Array Blocks (LABs). Within the LAB is a group of additional product terms

Multiple Array Matrix High-Density EPLDs

called expander product terms. These expanders are used and shared by the macrocells, allowing complex functions of up to 35 product terms to be easily implemented in a single macrocell. A Programmable Interconnect Array (PIA) globally routes all signals within devices containing more than one LAB. This architecture is fabricated on the Cypress 0.8-micron, doublelaver-metal CMOS EPROM process, yielding devices with significantly higher integration, density and system clock speed than the largest of previous generation EPLDs. The CY7C34XB devices are 0.65-micron shrinks of the original 0.8-micron family. The CY7C34XBs offer faster speed bins for each device in the Cypress MAX family.

The density and performance of the CY7C340 family is accessed using Cypress's Warp2, Warp2 + and Warp3 design software. Warp2 and Warp2 + provide state-of-the-art VHDL synthesis for MAX, Flash370TM, and pASIC380TM at a very low cost. Warp3 is a sophisticated CAE tool that includes schematic capture (ViewDraw) and timing simulation (ViewSim) in addition to VHDL synthesis. Consult the Warp2, Warp2 +, and Warp3 datasheets for more information about the development tools.

Feature	CY7C344(B)	CY7C343(B)	CY7C342B	CY7C346(B)	CY7C341B
Macrocells	32	64	128	128	192
MAX Flip-Flops	32	64	128	128	192
MAX Latches ^[1]	64	128	256	256	384
MAX Inputs ^[2]	23	35	59	84	71
MAX Outputs	16	28	52	64	64
Packages	28H,J,W,P	44H,J	68H,J,R	84H,J 100R,N	84H,J,R

Key: P—Plastic DIP; H—Windowed Ceramic Leaded Chip Carrier; J—Plastic J-Lead Chip Carrier; R—Windowed Pin Grid Array; W—Windowed Ceramic DIP; N—Plastic Quad Flat Pack

Notes:

1. When all expander product terms are used to implement latches. 2. With one output.

PAL is a registered trademark of Advanced Micro Devices.

MAX is a registered trademark of Altera Corporation.

Warp2, Warp2+, Warp3, and FLASH370 are trademarks of Cypress Semiconductor Corporation.

ViewDraw and ViewSim are trademarks of ViewLogic Corp.

pASIC is a trademark of of QuickLogic Corporation.

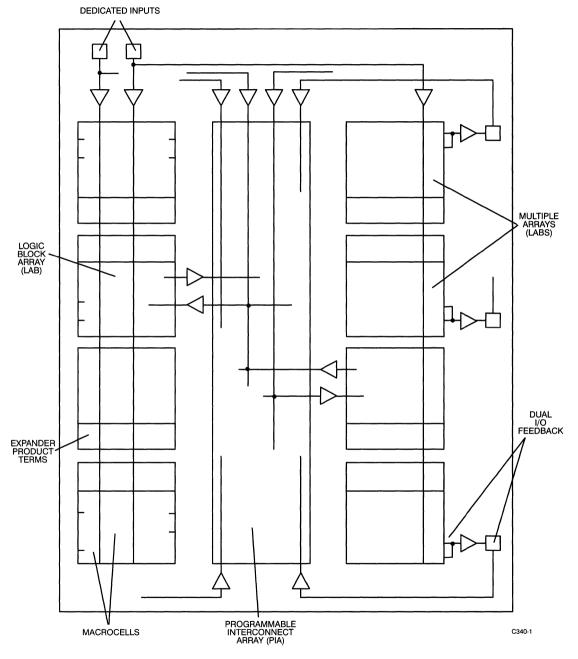


Figure 1. Key MAX Features

CY7C340 EPLD Family

Functional Description

The Logic Array Block

The logic array block, shown in *Figure 2*, is the heart of the MAX architecture. It consists of a macrocell array, expander product term array, and an I/O block. The number of macrocells, expanders, and I/O vary, depending upon the device used. Global feed-back of all signals is provided within a LAB, giving each functional block complete access to the LAB resources. The LAB itself is fed by the programmable interconnect array and dedicated input bus. The feedbacks of the macrocells and I/O pins feed the PIA, providing access to then through other LABs in the device. The members of the CY7C340 family of EPLDs that have a single LAB use a global bus, so a PIA is not needed (see *Figure 3*).

The MAX Macrocell

Traditionally, PLDs have been divided into either PLA (programmable AND, programmable OR), or PAL® (programmable AND, fixed OR) architectures. PLDs of the latter type provide faster input-to-output delays, but can be inefficient due to fixed allocation of product terms. Statistical analysis of PLD logic designs has shown that 70% of all logic functions (per macrocell) require three product terms or less.

The macrocell structure of MAX has been optimized to handle variable product term requirements. As shown in *Figure 4*, each macrocell consists of a product term array and a configurable register. In the macrocell, combinatorial logic is implemented with three product terms ORed together, which then feeds an XOR gate. The second input to the XOR gate is also controlled by a product term, providing the ability to control active HIGH or active LOW logic and to implement T- and JK-type flip-flops.

If more product terms are required to implement a given function, they may be added to the macrocell from the expander product term array. These additional product terms may be added to any macrocell, allowing the designer to build gate-intensive logic, such as address decoders, adders, comparators, and complex state machines, without using extra macrocells.

The register within the macrocell may be programmed for either D, T, JK, or RS operation. It may alternately be configured as a flow-through latch for minimum input-to-output delays, or by-passed entirely for purely combinatorial logic. In addition, each register supports both asynchronous preset and clear, allowing asynchronous loading of counters of shift registers, as found in many standard TTL functions. These registers may be clocked with a synchronous system clock, or clocked independently from the logic array.

Expander Product Terms

The expander product terms, as shown in *Figure 5*, are fed by the dedicated input bus, the programmable interconnect array, the macrocell feedback, the expanders themselves, and the I/O pin feedbacks. The outputs of the expanders then go to each and every product term in the macrocell array. This allows expanders to be "shared" by the product terms in the logic array block. One expander may feed all macrocells in the LAB, or even multiple product terms in the same macrocell. Since these expanders feed the secondary product terms (preset, clear, clock, and output enable) of each macrocell, complex logic functions may be implemented without utilizing another macrocell. Likewise, expanders may feed and be shared by other expanders, to implement complex multilevel logic and input latches.

I/O Block

Separate from the macrocell array is the I/O control block of the LAB. *Figure 6* shows the I/O block diagram. The three-state buffer is controlled by a macrocell product term and the drives the I/O pad. The input of this buffer comes from a macrocell within the

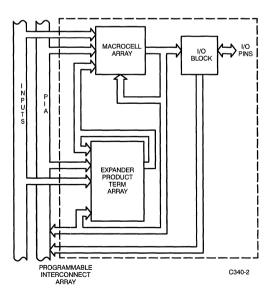


Figure 2. Typical LAB Block Diagram

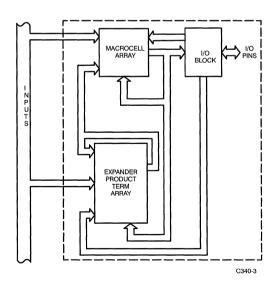
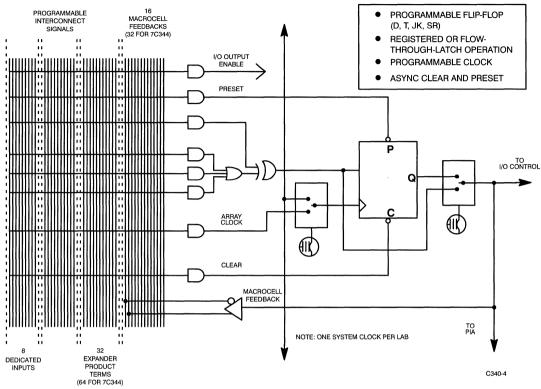
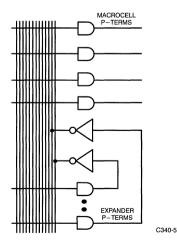




Figure 3. 7C344 LAB Block Diagram

Figure 5. Expander Product Terms

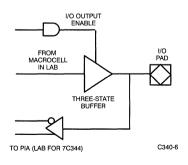


Figure 6. I/O Block Diagram

Functional Description (continued)

associated LAB. The feedback path from the I/O pin may feed other blocks within the LAB, as well as the PIA. By decoupling the I/O pins from the flip-flops, all the registers in the LAB are "buried," allowing the I/O pins to be used as dedicated outputs, bidirectional outputs, or as additional dedicated inputs. Therefore, applications requiring many buried flip-flops, such as counters, shift registers, and state machines, no longer consume both the macrocell register and the associated I/O pin, as in earlier devices.

The Programmable Interconnect Array

PLD density and speed has traditionally been limited by signal routing; i.e., getting signals from one macrocell to another. For smaller devices, a single array is used and all signals are available to all macrocells. But as the devices increase in density, the number of signals being routed becomes very large, increasing the amount of silicon used for interconnections. Also, because the signal must be global, the added loading on the internal connection path reduces the overall speed performance of the device. The MAX architecture solves these problems. It is based on the concept of small, flexible logic array blocks that, in the larger devices, are interconnected by a PIA.

The PIA solves interconnect limitations by routing only the signals needed by each LAB. The architecture is designed so that every signal on the chip is within the PIA. The PIA is then programmed to give each LAB access to the signals that it requires. Consequently, each LAB receives only the signals needed. This effectively solves any routing problems that may arise in a design without degrading the performance of the device. Unlike masked or programmable gate arrays, which induce variable delays dependent on routing, the PIA has a fixed delay from point to point. This eliminates undesired skews among logic signals, which may cause glitches in internal or external logic.

Development Software Support

Warp2/Warp2+

Warp2/Warp2+ is a state-of-the-art VHDL compiler for designing with Cypress PLDs and CPLDs. *Warp2/Warp2*+ utilizes a proper subset of IEEE 1164 VHDL as its Hardware Description Language (HDL) for design entry. VHDL provides a number of significant benefits for the design entry process. *Warp2/Warp2+* accepts VHDL input, synthesizes and optimizes the entered design, and outputs a JEDEC map for the desired device. For functional simulation, *Warp2/Warp2+* provides a graphical waveform simulator (NOVA).

VHDL (VHSIC Hardware Description Language) is an open, powerful, non-proprietary language that is a standard for behavioral design entry and simulation. It is already mandated for use by the Department of Defense, and supported by every major vendor of CAE tools. VHDL allows designers to learn a single language that is useful for all facets of the design process.

Warp3

Warp3 is a sophisticated design tool that is based on the latest version of ViewLogic's CAE design environment. *Warp3* features schematic capture (ViewDraw^M), VHDL waveform simulation (ViewSim^M), a VHDL debugger, and VHDL synthesis, all integrated in a graphical design environment. *Warp3* is available on PCs using Windows 3.1 or subsequent versions, and on Sun and HP workstations.

For further information on Warp software, see the *Warp2*/*Warp2*+ and *Warp3* datasheets contained in this data book.

Third-Party Software

Cypress maintains a very strong commitment to third-party design software vendors. All major third-party software vendors provide support for the MAX family of devices. To expedite this support, Cypress supplies vendors with all pertinent architectural information as well as design fitters for our products.

Programming

The *Impulse3* [™] device programmers from Cypress will program all Cypress PLDs, CPLDs, FPGAs, and PROMs. The unit is a standalone programmer that connects to any IBM-compatible PC via the printer port.

Third-Party Programmers

As with development software, Cypress strongly supports thirdparty programmers. All major third-party programmers support the MAX family.

Cross Reference

3

cross Reference	
ALTERA	CYPRESS
PREFIXEPM	PREFIX: CY
PREFIX: EP	PREFIX: PALC
22V10-10C	PALC22V10D-7C
22V10-10C	PALC22V10D-10C
	DAL COLUMN TOC
22V10-10C	PAL22V10C-7C+
22V10-10C	PAL22V10C-10C+
22V10-15C	PALC22V10B-15C
22V10-15C	PALC22V10D-15C
5032DC	7C344-25WC
5032DC-2	7C344-20WC
5032DC-15	7C344-15WC
5032DC-17	Call Factory
5032DC-20	7C344–20WC 7C344–25WC
5032DC-25	7C344-25WC
5032DM	7C344-25WMB
5032DM-25	7C344-25WMB
5032JC	7C344-25HC
5032JC-2	7C344-20HC
5032JC-15	7C344-15HC
5032JC-17	
3032JC-1/	Call Factory
5032JC-20	7C344-20HC 7C344-25HC
5032JC-25	7C344-25HC
5032JM	7C344-25HMB
5032JM-25	7C344-25HMB
5032LC	7C344-25JC
5032LC-2	7C344-20JC
5032LC-15	7C344-15JC
5032LC-17	Call Factory
5032LC-20	7C344-20JC 7C344-25JC
5032LC-25	7C344-25IC
	7C344-25PC
5032PC	
5032PC-2	7C344-20PC
5032PC-15	7C344-15PC
5032PC-17	Call Factory
5032PC-20	
	7C344-20PC
5032PC-25	7C344-25PC
5064JC	7C343-35HC
5064JC-1	7C343-25HC
5064JC-2	7C343-30HC
5064JI	7C343-35HI
5064JM	7C343-35HMB
5064LC	7C343-35IC
	7C343-35JC 7C343-25JC
5064LC-1	/0343-25JC
5064LC-2	7C343-30JC
5128AGC-12	7C342B-12RC
5128AGC-15	7C342B-15RC
5128AGC-20	7C342B-20RC
5128AJC-12	7C342B-12HC
5128AJC-15	7C342B-12HC 7C342B-15HC
5128AJC-20	7C342B-20HC
5128ALC-12	7C342B-12JC
5128ALC-15	7C342B-15JC
5128ALC-20	7C342B-20JC
5128GC	7C342-35RC
5128GC-1	7C342-25RC
5128GC-2	7C342-30RC
5128GM	7C342-35RMB
5128JC	7C342-35HC
5128JC-1	7C342-25HC
5128JC-2	7C342-30HC
5128JI	7C342-35HI
5128JI-2	7C342-30HI
5128JM	7C342-35HMB
5128LC	7C342-35JC

ALTERA	CYPRESS
5128LC-1	7C342-25JC
5128LC-2	7C342-30JC
5128LI	7C342-35JI
5128LI-2	7C342-30HI
5130GC	7C346-35RC
5130GC-1	7C346-25RC
5130GC-2	7C346-30RC
5130GM	7C346-35RM
5130JC	7C346-35HC
5130JC-1	7C346-25HC
5130JC-2	7C346-30HC
5130JM	7C346-35HM
5130LC	7C346-35JC
5130LC-1	7C346-25JC
5130LC-2	7C346-30JC
5130LI	7C346-35JI
5130LI-2	7C346-30JI
5130QC	7C346-35NC
5130QC-1	7C346-25NC
5130QC-2	7C346-30NC
5130QI	7C346-35NI
5192AGC-15	7C341B-15RC
5192AGC-20	7C341B-20RC
5192AJC-15	7C341B-15HC
5192AJC-20	7C341B-20HC
5192ALC-1	7C341B-15JC
5192ALC-2	7C341B-20JC
5192GC	7C341-35RC
5192GC-1	7C341-25RC
5192GC-2	7C341-30RC
5192JM	7C341-35HM
5192JC	7C341-35HC
5192JC-1	7C341-25HC
5192JC-2	7C341-30HC
5192GM	7C341-35RM
5192JI	7C341-35HI
5192LC	7C341-35JC
5192LC-1	7C341-25JC
5192LC-2	7C341-30JC

Document #: 38-00087-D

CY7C341B

192-Macrocell MAX® EPLD

Features

- 192 macrocells in 12 LABs
- 8 dedicated inputs, 64 bidirectional I/O pin
- Advanced 0.65-micron CMOS technology to increase performance
- Programmable interconnect array
- 384 expander product terms
- Available in 84-pin HLCC, PLCC, and PGA packages

Functional Description

The CY7C341B is an Erasable Programmable Logic Device (EPLD) in which CMOS EPROM cells are used to configure logic functions within the device. The MAX architecture is 100% user configurable allowing the devices to accommodate a variety of independent logic functions.

The 192 macrocells in the CY7C341B is divided into 12 Logic Array Blocks (LABs), 16 per LAB. There are 384 expander product terms, 32 per LAB, to be used and shared by the macrocells within each LAB. Each LAB is interconnected with a programmable interconnect array, allowing all signals to be routed throughout the chip.

The speed and density of the CY7C341B allows them to be used in a wide range of applications, from replacement of large amounts of 7400 series TTL logic, to complex controllers and multifunction chips. With greater than 37 times the functionality of 20-pin PLDs, the CY7C341B allows the replacement of over 75 TTL devices. By replacing large amounts of logic, the CY7C341B reduces board space, part count, and increases system reliability.

Each LAB contains 16 macrocells. In LABs A, F, G, and L, 8 macrocells are connected to I/O pins and 8 are buried, while for LABs B, C, D, E, H, I, J, and K, 4 macrocells are connected to I/O pins and 12 are buried. Moreover, in addition to the I/O and buried macrocells, there are 32 single product term logic expanders in each LAB. Their use greatly enhances the capability of the macrocells without increasing the number of product terms in each macrocell.

Logic Array Blocks

There are 12 logic array blocks in the CY7C341B. Each LAB consists of a macrocell array containing 16 macrocells, an expander product term array containing 32 expanders, and an I/O block. The LAB is fed by the programmable interconnect array and the dedicated input bus. All macrocell feedbacks go to the macrocell array, the expander array, and the programmable interconnect array. Expandersfeed themselves and the macrocell array. All I/O feedbacks go to the programmable interconnect array so that they may be accessed by macrocells in other LABs as well as the macrocells in the LAB in which they are situated.

Externally, the CY7C341B provide 8 dedicated inputs, one of which may be used as a system clock. There are 64 I/O pins that may be individually configured for input, output, or bidirectional data flow.

Programmable Interconnect Array

The Programmable Interconnect Array (PIA) solves interconnect limitations by routing only the signals needed by each logic array block. The inputs to the PIA are the outputs of every macrocell within the device and the I/O pin feedback of every pin on the device.

Unlike masked or programmable gate arrays, which induce variable delay dependent on routing, the PIA has a fixed delay. This eliminates undesired skews among logic signals, which may cause glitches in internal or external logic. The fixed delay, regardless of programmable interconnect array configuration, simplifies design by assuring that internal signal skews or races are avoided. The result is ease of design implementation, often in a single pass, without the multiple internal logic placement and routing iterations required for a programmable gate array to achieve design timing objectives.

Timing Delays

Timing delays within the CY7C341B may be easily determined using $Warp2^{\mathbb{M}}/Warp2^+$, or $Warp3^{\mathbb{M}}$ software or by the model shown in Figure 1. The CY7C341B has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information, the Warp3 software provides a timing simulator.

Design Recommendations

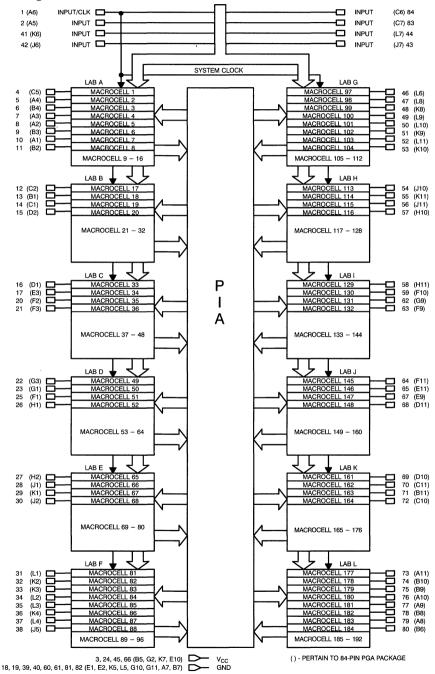
For proper operation, input and output pins must be constrained to the range GND \leq (V_{IN}or V_{OUT}) \leq V_{CC}. Unused inputs must always be tied to an appropriate logic level (either V_{CC} or GND). Each set of V_{CC} and GND pins must be connected together directly at the device. Power supply decoupling capacitors of at least 0.2 µF must be connected between V_{CC} and GND. For the most effective decoupling, each V_{CC} pin should be separately decoupled to GND, directly at the device. Decoupling capacitors should have good frequency response, such as monolithic ceramic types.

Design Security

The CY7C341B contains a programmable design security feature that controls the access to the data programmed into the device. If this programmable feature is used, a proprietary design implemented in the device cannot be copied or retrieved. This enables a high level of design control to be obtained since programmed data within EPROM cells is invisible. The bit that controls this function, along with all other program data, may be reset simply by erasing the device.

Selection Guide

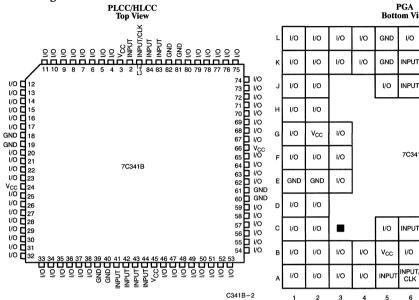
		7C341B-15	7C341B-20	7C341B-25	7C341B-30	7C341B-35
Maximum Acces	ss Time (ns)	15	20	25	30	35
Maximum	Commercial	380	380	380	380	380
Operating Current (mA)	Industrial	480	480	480	480	480
	Military		480	480	480	480
Maximum	Commercial	360	360	360	360	360
Standby Current (mA)	Industrial	435	435	435	435	435
Current (mA)	Military	and the second of the	435	435	435	435


Shaded areas contain preliminary information.

MAX is a registered trademark of Altera Corporation. Warp, Warp2+, and Warp3 are trademarks of Cypress Semiconductor Corporation.

C341B-1

CYPRESS :


Logic Block Diagram

3

Pin Configurations

	PGA Bottom View										
L	I/O	I/O	I/O	I/O	GND	I/O	INPUT	I/O	I/O	I/O	I/O
к	I/O	I/O	I/O	I/O	GND	INPUT	V _{CC}	I/O	I/O	I/O	i/O
J	I/O	I/O			I/O	INPUT		I/O	I/O		
н	I/O	I/O								I/O	I/O
G	I/O	V _{CC}	I/O		I/C					GND	GND
F	I/O	I/O	I/O	7C341B					I/O	I/O	I/O
E	GND	GND	I/O				I/O	Vcc	I/O		
D	I/O	I/O								1/0	I/O
с	I/O	I/O			I/O	INPUT	INPUT			I/O	I/O
в	I/O	I/O	I/O	I/O	v _{cc}	I/O	GND	I/O	I/O	I/O	I/O
A	I/O	I/O	I/O	I/O	INPUT	INPUT/ CLK	GND	I/O	I/O	1/0	I/O
	1	2	3	4	5	6	7	8	9.	10 C34	11 1B3

Design Security (continued)

The CY7C341B is fully functionally tested and guaranteed through complete testing of each programmable EPROM bit and all internal logic elements thus ensuring 100% programming yield.

The erasable nature of these devices allows test programs to be used and erased during early stages of the production flow. The devices also contain on-board logic test circuitry to allow verification of function and AC specification once encapsulated in nonwindowed packages.

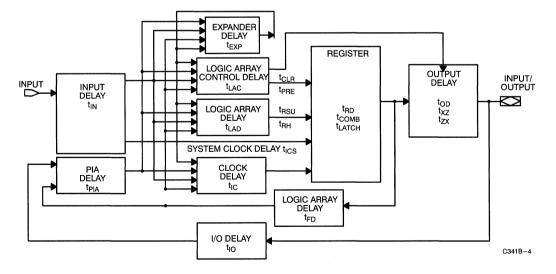


Figure 1. CY7C341B Internal Timing Model

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with Power Applied
Maximum Junction Temperature (Under Bias) 150°C
Supply Voltage to Ground Potential $\dots -2.0V$ to $+7.0V$
Maximum Power Dissipation
DC V _{CC} or GND Current 500 mA
DC Output Current, per Pin25 mA to +25 mA

DC Input Voltage^[1] - 3.0V to +7.0V DC Program Voltage 13.0V Static Discharge Voltage > 1100V (per MIL-STD-883, method 3015) > 1100V

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ± 5%
Industrial	-40°C to +85°C	$5V \pm 10\%$
Military	-55° C to $+125^{\circ}$ C (Case)	$5V \pm 10\%$

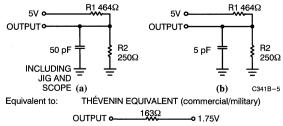
Electrical Characteristics Over the Operating Range^[2]

Parameter	Description	Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$		2.4		v
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8 mA$			0.45	v
V _{IH}	Input HIGH Level			2.2	V _{CC} +0.3	V
V _{IL}	Input LOW Level			-0.3	0.8	v
I _{IX}	Input Current	$GND \leq V_{IN} \leq V_{CC}$		-10	+10	μA
I _{OZ}	Output Leakage Current	$V_0 = V_{CC} \text{ or } GND$		-40	+40	μA
I _{OS}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT} = GND^{[3, 4]}$		-30	-90	mA
I _{CC1}	Power Supply	$V_{I} = V_{CC}$ or GND	Com'l		360	mA
	Current (Standby)	(No Load)	Mil/Ind		435	mA
I _{CC2}	Power Supply	$V_{I} = V_{CC} \text{ or GND (No Load)}$ f = 1.0 MHz ^[3, 5]	Com'l		380	mA
	Current ^[5]	$f = 1.0 \text{ MHz}^{[5, 5]}$	Mil/Ind		480	mA
t _R (Recommended)	Input Rise Time				100	ns
t _F (Recommended)	Input Fall Time				100	ns

Capacitance^[6]

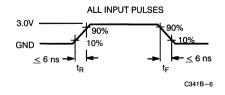
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{\rm CC} = 5.0 V$	20	pF

Notes:


1. Minimum DC input is -0.3V. During transitions, the inputs may undershoot to -2.0V for periods less than 20 ns.

2. Typical values are for $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

3. Guaranteed but not 100% tested.


4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation.

AC Test Loads and Waveforms

 This parameter is measured with device programmed as a 16-bit counter in each LAB and is tested periodically by sampling production material.

Part (a) in AC Test Load and Waveforms is used for all parameters except t_{ER} and t_{XZ}, which is used for part (b) in AC Test Load and Waveforms. All external timing parameters are measured referenced to external pins of the device.

				B-15	7C341	B-20	7C34	lB-25	7C341	B-30	7C341	B-35	
Parameter	Description		Min.	Max	Min.	Max	Min.	Max	Min.	Max	Min.	Max	Uni
t _{PD1}	Dedicated Input to	Com'l		15	الم المراجعة. الأراجع المراجع الم	20		25		30		35	ns
	Combinatorial Output Delay ^[7]	Mil				20		25		30		35	1
t _{PD2}	I/O Input to Combinatorial	Com'l		25		33		40		45		55	ns
	Output Delay ^[8]	Mil				33		40		45		55	1
t _{PD3}	Dedicated Input to	Com'l		23		30		37		44		55	ns
	Combinatorial Output Delay with Expander Delay ^[9]	Mil			- CARTO	30		37		44		55	1
t _{PD4}	I/O Input to Combinatoria	Com'l		33		43		52		59		75	ns
	l Output Delay with Expander Delay ^[3, 10]	Mil				43		52		59	1	75	
t _{EA}	Input to Output Enable Delay ^[3, 7]	Com'l	nuins por se V V 11 - V 15	15		20		25		30		35	ns
	Enable Delay ^[3, 7]	Mil				20		25		30		35	1
t _{ER}	Input to Output Disable Delay ^[6]	Com'l		15		20		25		30		35	n
	Delay ^[0]	Mil				20		25		30		35	1
t _{CO1}	Synchronous Clock Input to	Com'l		7		8		14		16		20	n
	Output Delay	Mil	Article Contractor	8.45	ľ.	8		14		16		20	1
t _{CO2}	Synchronous Clock to Local	Com'l		17		20		30		35		42	n
	Feedback to Combinatorial Output ^[3, 11]	Mil				20		30		35		42	1
t _{S1}	Dedicated Input or Feedback Set-up Time	Com'l	10		13		15		20		25		n
	to Synchronous Clock Output ^[6,12]	Mil			13		15		20		25		1
t _{S2}	I/O Input Set-up Time to	Com'l	20		24		30		39		45		n
	Synchronous Clock Input ^[8]	Mil			24		30		39		45		1
t _H	Input Hold Time from	Com'l	0		0		0		0		0		n
	Synchronous Clock Input ^[6]	Mil			0		0		0		0		1
t _{WH}	Synchronous Clock Input	Com'l	5		7	ri nii uke n	8		10		12.5		n
	High Time	Mil			7	n ilinedel	8		10		12.5		1
t _{WL}	Synchronous Clock Input	Com'l	5	Hilly Info	7		8		10		12.5		n
	Low Time	Mil			7		8		10		12.5		
t _{RW}	Asynchronous Clear	Com'l	16		22		25		30		35		n
	Width ^[3, 6]	Mil			22		25		30		35		1
t _{RR}	Asynchronous Clear Recovery ^[3, 7]	Com'l	16		22		25		30		35	1	n
	Recovery ^[3, 7]			Kalina.	22		25		30		35		1
t _{RO}	Asynchronous Clear to Registered Output Delay ^[5]	Com'l		15		20		25		30		35	n
	Registered Output Delay ^[5]					20		25		30		35	
t _{PW}	Asynchronous Preset Width ^[3, 6]	Com'l	15		20		25		30		35		n
	WILLING AND A	Mil	41. W.L. (4. 1)		20		25		30		35		1

External Synchronous Switching Characteristics Over the Operating Range^[6]

Shaded areas contain preliminary information.

			7C341	B-15	7C341	B-20	7C341	B-25	7C341	B-30	7C341B325		
Parameter	Description		Min.	Max	Min.	Max	Min.	Max	Min.	Max	Min.	Max	Unit
t _{PR}	Asynchronous Preset Recovery Time ^[3, 6]	Com'l	15		20		25		30		35		ns
	Recovery Time ^(3, 3)	Mil					25		30		35		
t _{PO}	Asynchronous Preset to Registered Output Delay ^[6]	Com'l		15		20		25		30		35	ns
		Mil	· .			20		25		30		35	
t _{CF}	Synchronous Clock to Local Feedback Input ^[3, 13]	Com'l		3		3		3		3		5	ns
	Feedback Input ^[5, 15]	Mil			1	3		3		3		5	
tp	P External Synchronous Clock Period (1/f _{MAX3}) ^[3]	Com'l	12		14		16		20		25		ns
		Mil		1.1	14		16		20		25		
f _{MAX1} External Feedback Maxi-		Com'l	58.8		50		34.5		27.7		22.2		MHz
	mum Frequency $(1/(t_{CO1} + t_{S1}))^{[3, 14]}$	Mil			50		34.5		27.7		22.2		1
f _{MAX2}	Internal Local Feedback Maximum Frequency,	Com'l	76.9		62.5	•	55.5		43		33		MHz
	lesser of $(1/(t_{S1} + t_{CF}))$ or $(1/t_{CO1})^{[3, 15]}$	Mil			62.5		55.5		43		33		
f _{MAX3}	Data Path Maximum Frequency, least of	Com'l	100		71.4		62.5		50		40.0		MHz
	$1/(t_{WL} + t_{WH}), 1/(t_{S1} + t_{H}),$ or $(1/t_{CO1})^{[3, 16]}$	Mil			71.4		62.5		50		40.0		
f _{MAX4}	Maximum Register Toggle Frequency	Com'l	100		71.4	1.11	62.5		50		40.0		MHz
	$(1/(t_{WL} + t_{WH}))^{[3, 17]}$	Mil			71.4	-	62.5		50		40.0		1
t _{OH}	Output Data Stable Time	Com'l	3		3		3		3		3		ns
	from Synchronous Clock Input ^[3, 18]				3		3	1	3		3		

External Synchronous Switching Characteristics Over the Operating Range^[6](continued)

Shaded areas contain preliminary information.

Notes:

7. This specification is a measure of the delay from input signal applied to a dedicated input to combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function. When this note is applied to any parameter specification it indicates that the signal (data, asynchronous clock, asynchronous clear, and/or asynchronous preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.

If an input signal is applied to an I/O pin an additional delay equal to t_{PIA} should be added to the comparable delay for a dedicated input. If expanders are used, add the maximum expander delay t_{EXP} to the overall delay for the comparable delay without expanders.

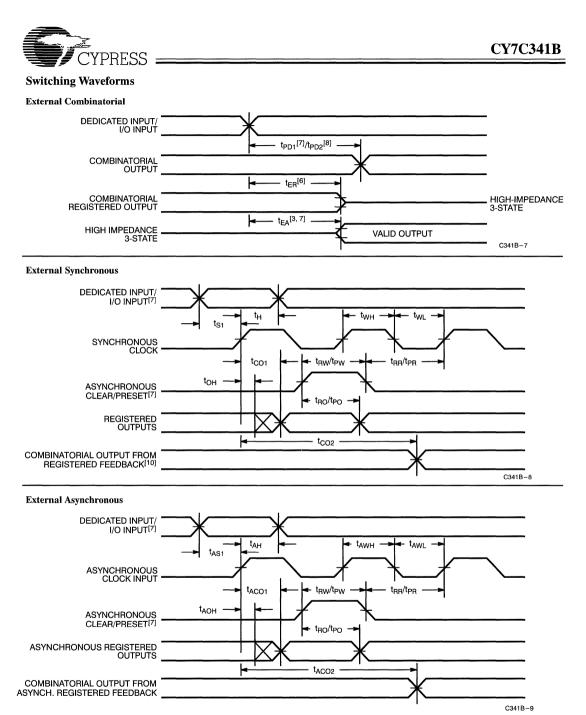
- This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
- 9. This specification is a measure of the delay from an input signal applied to a dedicated input to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic functions and includes the worst-case expander logic delay for one pass through the expander logic.
- 10. This specification is a measure of the delay from an input signal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
- 11. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all

feedback is within the same LAB. This parameter is tested periodically by sampling production material.

- b) sumpting proceedings of the second state o
- 13. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array input. This delay plus the register set-up time, ts₁, is the minimum internal period for an internal synchronous state machine configuration. This delay is for feedback within the same LAB. This parameter is tested periodically by sampling production material.
- 14. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can operate. It is assumed that all data inputs and feedback signals are applied to dedicated inputs. All feedback is assumed to be local originating within the same LAB.
- 15. This specification indicates the guaranteed maximum frequency at which a state machine, with internal-only feedback, can operate. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than 1/t_{CO1}.

			7C341	B-15	7C341	B-20	7C341	B-25	7C341	1B-30	7C341B-35		
Parameter	Description		Min.	Max	Min.	Max	Min.	Max	Min.	Max	Min.	Max	Uni
t _{ACO1}	Dedicated Asynchronous	Com'l		15		20		25		30		35	ns
	Clock Input to Output Delay ^[6]	Mil				20		25		30		35	1
t _{ACO2}	Asynchronous Clock Input	Com'l		25		32		40		46		55	ns
	to Local Feedback to Combinatorial Output ^[19]	Mil			THE REPORT	32		40		46		55	1
t _{AS1}	Dedicated Input or Feedback Set-up Time to Asynchro-	Com'l	5		5		5		6		8		ns
	nous Clock Input ^[6]	Mil			5		5		6		8		1
t _{AS2}	I/O Input Set-Up Time to	Com'l	14		18		20		27		30		ns
	Asynchronous Clock Input ^[6]	Mil			18		20		27		30		
t _{AH}	Input Hold Time from	Com'l	5		6		6		8		10		ns
	Asynchronous Clock Input ^[6]	Mil			6		6		8		10		1
t _{AWH}	WH Asynchronous Clock Input	Com'l	× 9 …		10		11		14		16		ns
	HIGH Time ^[6]	Mil			10		11		14		16		
t _{AWL} Asynchronous Clock Input LOW Time ^[6, 20]	Com'l	7		8		9		11		14		ns	
	LOW Time ^[0, 20]	Mil	x 15.7%	S.	8		9		11		14		
t _{ACF}	CF Asynchronous Clock to	Com'l		11		13		15		18		22	ns
	Local Feedback Input ^[21]	Mil				13		15		18		22	
t _{AP}	External Asynchronous	Com'l	16		18		20		25		30		ns
	Clock Period (1/f _{MAX4})	Mil			18		20		25		30		
f _{MAXA1}	External Feedback Maximum Frequency in	Com'l	50		40		33.3		27		23		MH
	Asynchronous Mode $1/(t_{ACO1} + t_{AS1})^{[22]}$	Mil			40	Y SAN	33.3		27		23		
f _{MAXA2}	Maximum Internal	Com'l	62.5		55.5		50		40		33.3		MH
	Asynchronous Frequency ^[23]	Mil	2		55.5		50		40		33.3		
f _{MAXA3}	Data Path Maximum	Com'l	62.5		50		40		33.3		28.5		MH
	Frequency in Asynchronous Mode ^[24]	Mil			50		40		33.3		28.5		
f _{MAXA4}	Maximum Asynchronous	Com'l	62.5		55.5		50		40		33.3		MH
Register Toggle Frequency $1/(t_{AWH} + t_{AWL})^{[25]}$	Mil			55.5	ns sannin	50		40		33.3		1	
t _{AOH}	Output Data Stable Time	Com'l	15		15		15		15		15		ns
from Clocl	from Asynchronous Clock Input ^[26]	Mil		الىلىلىلى بىرى مەتر	15	a statistica	15		15		15	1	1

External Asynchronous Switching Characteristics Over the Operating Range^[6] (continued)


Shaded areas contain preliminary information.

Notes:

- 16. This frequency indicates the maximum frequency at which the device may operate in data path mode (dedicated input pin to output pin). This assumes data input signals are applied to dedicated input pins and no expander logic is used. If any of the data inputs are I/O pins, t_{S2} is the appropriate t_S for calculation.
- 17. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycle by a clock signal applied to the dedicated clock input pin.
- This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.
- 19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input. The clock signal is applied to the

dedicated clock input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production material.

- 20. This parameter is measured with a positive-edge-triggered clock at the register. For negative-edge triggering, the t_{AWH} and t_{AWL} parameters must be swapped. If a given input is used to clock multiple registers with both positive and negative polarity, t_{AWH} should be used for both t_{AWH} and t_{AWL} .
- 21. This specification is a measure of the delay associated with the internal register feedback path for an asynchronous clock to LAB logic array input. This delay plus the asynchronous register set-up time, t_{ASI}, is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay is for feedback within the same LAB, and assumes there is no expander logic in the clock path and the clock input signal is applied to a dedicated input pin. This parameter is tested periodically by sampling production material.

3

			7C341	B-15	7C341	B-20	7C341	B -25	7C341	B-30	7C341	B-35	
Parameter	Description		Min.	Max	Min.	Max	Min.	Max	Min.	Max	Min.	Max	Uni
t _{IN}	Dedicated Input Pad and	Com'l	2.47.253	3		4		5		7		9	ns
	Buffer Delay	Mil				4		5		7		9	1
t _{IO}	I/O Input Pad and	Com'l		3	1.02	4		6		6	<u> </u>	9	ns
	Buffer Delay	Mil				4		6		6		9	1
t _{EXP} Expander Array Delay	Com'l	10.400	8		10		12		14		20	ns	
		Mil				10		12		14		20	1
t _{LAD}	D Logic Array Data Delay	Com'l		8	지 않는 것	10		12		14		16	ns
		Mil				10		12		14		16	1
t _{LAC}	Logic Array Control	Com'l		5		7		10		12		13	ns
	Delay	Mil				7		10		12		13	1
t _{OD}	Output Buffer and	Com'l		3		3		5		5		6	ns
	Pad Delay	Mil	Negati (3		5		5		6	1
t _{ZX} Output Buffer Enable Delay ^[27]	Output Buffer Enable	Com'l	an ann an stàitean an stàit	5		5		10		11		13	ns
	Delay ^[27]	Mil	aling ng tana Tang ng tang ta		and the second sec	5		10		11		13	1
t _{XZ} Output Buffer Dis	Output Buffer Disable	Com'l		5		5		10		11		13	ns
	Delay	Mil			tagit.	5		10		11		13	1
t _{RSU}	Register Set-Up Time	Com'l	4		5		6		8		10		ns
	Relative to Clock Signal at Register	Mil			5		6		8		10		1
t _{RH}	Register Hold Time	Com'l	4		5	in de la c	6		8		10		ns
	Relative to Clock Signal at Register	Mil			5		6		8		10		
t _{LATCH}	Flow-Through	Com'l	en de la composition El composition El composition	1		2		3		4		4	ns
	Latch Delay	Mil				2		3		4		4	1
t _{RD}	Register Delay	Com'l		1		1		1		2		2	ns
		Mil				1		1		2		2	1
t _{COMB}	Transparent Mode	Com'l		1		2		3		4		4	ns
	Delay ^[28]	Mil		a ga shi	ing og f	2		3		4		4	1
t _{CH} Clock High Time	Clock High Time	Com'l	4		6		8		10		12.5		ns
		Mil			6		8		10		12.5		1
t _{CL}	Clock Low Time	Com'l	4		6		8		10		12.5		ns
		Mil			6		8	1	10	1	12.5		1

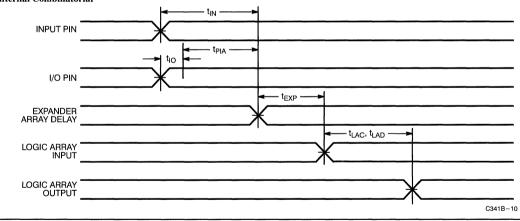
Internal Switching Characteristics Over the Operating Range^[2]

Shaded areas contain preliminary information.

Notes:

- 22. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that all data inputs, clock inputs, and feedback signals are applied to dedicated inputs, and that no expander logic is employed in the clock signal path or data path.
- 23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate. This parameter is determined by the lesser of $(1/t_{ACF} + t_{AS1}))$ or $(1/(t_{AWH} + t_{AWL}))$. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1/t_{ACO1}$.
- 24. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined by the least of $1/(t_{AWH} + t_{AWL})$, $1/(t_{AS1} + t_{AH})$ or $1/t_{ACO1}$. It assumes data and clock input signals are applied to dedicated input pins and no expander loigc is used.
- 25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode by a clock signal applied to an external dedicated input pin.

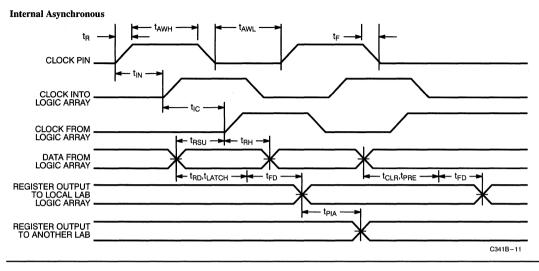
- 26. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input applied to an external dedicated input pin.
- 27. Sample tested only for an output change of 500 mV.
- This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial operation.


		7C341	B-15	7C341	B-20	7C341	B-25	7C341	B-30	7C341B-35			
Parameter	Description		Min.	Max	Min.	Max	Min.	Max	Min.	Max	Min.	Max	Unit
t _{IC}	Asynchronous Clock	Com'l		6		8		14		16		18	ns
Logic Delay	Logic Delay	Mil		· ·	1	8		14		16		18	1
t _{ICS}	CS Synchronous Clock Delay	Com'l		0.5	1	0.5		2		2		3	ns
		Mil		1	1	0.5		2		2		3	1
t _{FD}	Feedback Delay	Com'l		1		1		1		1		2	ns
		Mil				1.		1		1		2	1
t _{PRE} Asynchronous Register	Com'l		3		3		5		6		7	ns	
	Preset Time	Mil		1	1.	3		5		6		7	1
t _{CLR}	Asynchronous Register	Com'l		3		3		5		6		7	ns
	Clear Time	Mil	1	l.		3		5		6		7	1
t _{PCW}	Asynchronous Preset and	Com'l	3	1	4		5		6		7		ns
	Clear Pulse Width	Mil			4		5		6		7		1
t _{PCR}	Asynchronous Preset and	Com'l	3	1	4		5		6		7		ns
	Clear Recovery Time	Mil		1	4		5		6		7		1
t _{PIA}	Programmable Intercon-	Com'l	1	10		12	l	14		16		20	ns
n	nect Array Delay	Mil		1			<u> </u>			16		20	1

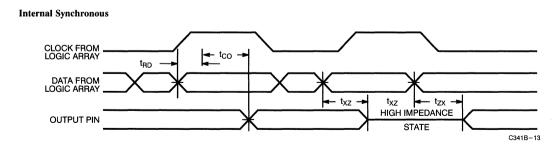
Internal Switching Characteristics Over the Operating Range^[2]

Shaded areas contain preliminary information.

Switching Waveforms






CY7C341B

Switching Waveforms (continued)

Internal Synchronous

. .

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C341B-15HC/HI	H84	84-Lead Windowed Leaded Chip Carrier	Commercial/Industrial
· · ·	CY7C341B-15JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C341B-15RC/RI	R84	84-Lead Windowed Pin Grid Array	
20	CY7C341B-20HC/HI	H84	84-Lead Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C341B-20JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	
19	CY7C341B-20RC/RI	R84	84-Lead Windowed Pin Grid Array	
	CY7C341B-20HMB	H84	84-Lead Windowed Leaded Chip Carrier	Military
	CY7C341B-20RMB	R84	84-Lead Windowed Pin Grid Array	
25	CY7C341B-25HC/HI	H84	84-Lead Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C341B-25JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C341B-25RC/RI	R 84	84-Lead Windowed Pin Grid Array	
	CY7C341B-25HMB	H84	84-Lead Windowed Leaded Chip Carrier	Military
1	CY7C341B-25RMB	R84	84-Lead Windowed Pin Grid Array	
30	CY7C341B-30HC/HI	H84	84-Lead Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C341B-30JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C341B-30RC/RI	R84	84-Lead Windowed Pin Grid Array	
	CY7C341B-30HMB	H84	84-Lead Windowed Leaded Chip Carrier	Military
	CY7C341B-30RMB	R84	84-Lead Windowed Pin Grid Array	
35	CY7C341B-35HC/HI	H84	84-Lead Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C341B-35JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C341B-35RC/RI	R84	84-Lead Windowed Pin Grid Array	
	CY7C341B-35HMB	H84	84-Lead Windowed Leaded Chip Carrier	Military
	CY7C341B-35RMB	R84	84-Lead Windowed Pin Grid Array	

Shaded areas contain preliminary information.

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{PD1}	7, 8, 9, 10, 11
t _{PD2}	7, 8, 9, 10, 11
t _{PD3}	7, 8, 9, 10, 11
t _{CO1}	7, 8, 9, 10, 11
t _{S1}	7, 8, 9, 10, 11
t _H	7, 8, 9, 10, 11
t _{ACO1}	7, 8, 9, 10, 11
t _{ACO2}	7, 8, 9, 10, 11
t _{AS1}	7, 8, 9, 10, 11
t _{AH}	7, 8, 9, 10, 11

Document #: 38-00137-G

3

This is an abbreviated data sheet. Contact a Cypress Representative for complete specifications. For new designs please refer to the CY7C341B.

CY7C341

Features

- 192 macrocells in 12 LABs
- 8 dedicated inputs, 64 bidirectional I/O pins
- 0.8-micron double-metal CMOS EPROM technology
- Programmable interconnect array
- 384 expander product terms
- Available in 84-pin HLCC, PLCC, and PGA packages

Functional Description

The CY7C341 is an Erasable Programmable Logic Device (EPLD) in which CMOS EPROM cells are used to configure logic functions within the device. The MAX architecture is 100% user configurable allowing the devices to accommodate a variety of independent logic functions.

The 192 macrocells in the CY7C341 are divided into 12 Logic Array Blocks (LABs), 16 per LAB. There are 384 expander product terms, 32 per LAB, to be used and shared by the macrocells within each LAB. Each LAB is interconnected with a programmable interconnect array, allowing all signals to be routed throughout the chip.

The speed and density of the CY7C341 allows them to be used in a wide range of applications, from replacement of large amounts of 7400 series TTL logic, to complex controllers and multifunction chips. With greater than 37 times the functionality of 20-pin PLDs, the CY7C341 allows the replacement of over 75 TTL devices. By replacing large amounts of logic, the CY7C341 reduces board space, part count, and increases system reliability.

Each LAB contains 16 macrocells. In LABs A, F, G, and L, 8 macrocells are connected to I/O pins and 8 are buried, while for LABs B, C, D, E, H, I, J, and K, 4 macrocells are connected to I/O pins and 12 are buried. Moreover, in addition to the I/O and buried macrocells, there are 32 single product term logic expanders in each LAB. Their use greatly enhances the capability of the macrocells without increasing the number of product terms in each macrocell.

Logic Array Blocks

There are 12 logic array blocks in the CY7C341. Each LAB consists of a macrocell array containing 16 macrocells, an expander product term array containing 32 expanders, and an I/O block. The LAB is fed by the programmable interconnect array and the dedicated input bus. All macrocell feedbacks go to the macrocell array, the expander array, and the programmable interconnect array, and the programmable interconnect array. Expandersfeed themselves and the macrocell array. All I/O feedbacks go to the programmable interconnect array so that they may be accessed by macrocells in other LABs as well as the macrocells in the LAB in which they are situated.

Externally, the CY7C341 provides 8 dedicated inputs, one of which may be used as a system clock. There are 64 I/O pins that may be individually configured for input, output, or bidirectional data flow.

Programmable Interconnect Array

The Programmable Interconnect Array (PIA) solves interconnect limitations by routing only the signals needed by each logic array block. The inputs to the PIA are the outputs of every macrocell within the device and the I/O pin feedback of every pin on the device.

Unlike masked or programmable gate arrays, which induce variable delay dependent on routing, the PIA has a fixed delay. This eliminates undesired skews among logic signals, which may cause glitches in internal or external logic. The fixed delay, regardless of programmable interconnect array configuration, simplifies design by assuring that internal signal skews or races are

192-Macrocell MAX® EPLD avoided. The result is ease of design implementation, often in a single pass, without the multiple internal logic placement and routing iterations required for a programmable gate array to achieve design timing objectives.

Timing Delays

Timing delays within the CY7C341 may be easily determined using $Warp2^{\mathbb{M}}$, $Warp2+^{\mathbb{M}}$, or $Warp3^{\mathbb{M}}$ software. The CY7C341 has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information, the *Warp3* software provides a timing simulator.

Design Recommendations

For proper operation, input and output pins must be constrained to the range GND \leq (V_{IN} or V_{OUT}) \leq V_{CC}. Unused inputs must always be tied to an appropriate logic level (either V_{CC} or GND). Each set of V_{CC} and GND pins must be connected together directly at the device. Power supply decoupling capacitors of at least 0.2 µF must be connected between V_{CC} and GND. For the most effective decoupling, each V_{CC} pin should be separately decoupled to GND, directly at the device. Decoupling capacitors should have good frequency response, such as monolithic ceramic types.

Design Security

The CY7C341 contains a programmable design security feature that controls the access to the data programmed into the device. If this programmable feature is used, a proprietary design implemented in the device cannot be copied or retrieved. This enables a high level of design control to be obtained since programmed data within EPROM cells is invisible. The bit that controls this function, along with all other program data, may be reset simply by erasing the device.

Selection Guide

		7C341-25	7C341-30	7C341-35
Maximum Access Time (ns)		25	30	35
Maximum Operating Current (mA)	Commercial	380	380	380
	Industrial	480	480	480
	Military	480	480	480
Maximum Standby	Commercial	360	360	360
Current (mA)	Industrial	435	435	435
	Military	435	435	435

MAX is a registered trademark of Altera Corporation.

Warp2, Warp2+, and Warp3 are trademarks of Cypress Semiconductor Corporation.

Document #: 38-00499

CY7C342B

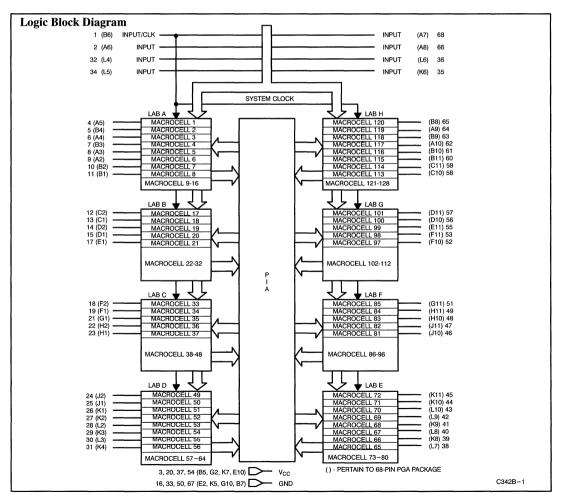
128-Macrocell MAX® EPLDs

Features

- 128 macrocells in 8 LABs
- 8 dedicated inputs, 52 bidirectional I/O pins
- Programmable interconnect array
- Advanced 0.65-micron CMOS technology to increase performance
 Available in 68 nin HLCC, DLCC, and
- Available in 68-pin HLCC, PLCC, and PGA

Functional Description

The CY7C342B is an Erasable Program-


mable Logic Device (EPLD) in which CMOS EPROM cells are used to configure logic functions within the device. The MAX architecture is 100% user configurable, allowing the devices to accommodate a variety of independent logic functions.

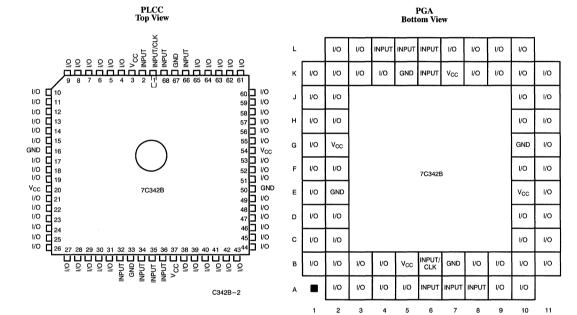
The 128 macrocells in the CY7C342B are divided into 8 Logic Array Blocks (LABs), 16 per LAB. There are 256 expander product terms, 32 per LAB, to be used and shared by the macrocells within each LAB.

Each LAB is interconnected with a programmable interconnect array,

allowing all signals to be routed throughout the chip.

The speed and density of the CY7C342B allows it to be used in a wide range of applications, from replacement of large amounts of 7400-series TTL logic, to complex controllers and multifunction chips. With greater than 25 times the functionality of 20-pin PLDs, the CY7C342B allows the replacement of over 50 TTL devices. By replacing large amounts of logic, the CY7C342B reduces board space, part count, and increases system reliability.

MAX is a registered trademark of Altera Corporation. Warp2, Warp2+, and Warp3 are trademarks of Cypress Semiconductor.


CY7C342B

C342B-3

Selection Guide

		7C342B-12	7C342B-15	7C342B-20	7C342B-25	7C342B-30	7C342B-35
Maximum Access Time (ns)		12	15	20	25	30	35
Maximum Operating Current (mA)	Commercial	250	250	250	250	250	250
	Military		320	320	320	320	320
	Industrial		320	320	320	320	320
Maximum Static Current (mA)	Commercial	225	225	225	225	225	225
	Military		275	275	275	275	275
	Industrial		275	275	275	275	275

Pin Configurations

3-142

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with Power Applied
Maximum Junction Temperature (under bias) 150°C
Supply Voltage to Ground Potential3.0V to +7.0V
Maximum Power Dissipation
DC V _{CC} or GND Current 500 mA
DC Output Current per Pin25 mA to +25 mA

DC Input Voltage ^[1] $\dots \dots \dots$	
DC Program Voltage	
Static Discharge Voltage	

Operating Range

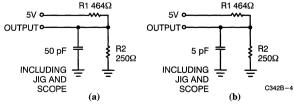
Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ± 5%
Industrial	-40° C to $+85^{\circ}$ C	$5V \pm 10\%$
Military	-55° C to $+125^{\circ}$ C (Case)	$5V \pm 10\%$

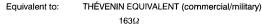
Electrical Characteristics Over the Operating Range^[2]

Parameter	Description	Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$			0.45	V
VIH	Input HIGH Voltage			2.2	V _{CC} +0.3	V
V _{IL}	Input LOW Voltage			-0.3	0.8	V
I _{IX}	Input Current	$GND \leq V_{IN} \leq V_{CC}$		-10	+10	μΑ
I _{OZ}	Output Leakage Current	$V_{O} = V_{CC} \text{ or } GND$		-40	+40	μΑ
I _{OS}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT} = 0.5V^{[3, 4]}$		-30	-90	mA
I _{CC1}	Power Supply Current (Static)	$V_{I} = GND (No Load)$	Com'l		225	mA
			Mil/Ind		275	
I _{CC2}	Power Supply Current ^[5]	$V_{I} = V_{CC} \text{ or GND (No Load)}$ f = 1.0 MHz ^[4]	Com'l		250	mA
		$f = 1.0 \text{ MHz}^{[4]}$	Mil/Ind		320	
t _R	Recommended Input Rise Time				100	ns
t _F	Recommended Input Fall Time				100	ns

Capacitance^[6]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 2V, f = 1.0 \text{ MHz}$	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 2V$, f = 1.0 MHz	10	pF

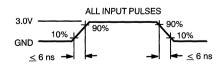

Notes:


Minimum DC input is -0.3V. During transitions, the inputs may undershoot to -3.0V for periods less than 20 ns. 1.

2.

Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 5$ V. Not more than one output should be tested at a time. Duration of the 3. short circuit should not be more than one second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation.

AC Test Loads and Waveforms^[5]



OUTPUT ------• 1.75V

Guaranteed but not 100% tested. 4.

5. This parameter is measured with device programmed as a 16-bit counter in each LAB.

Part (a) in AC Test Load and Waveforms is used for all parameters exб. cept t_{ER} and t_{XZ} , which is used for part (b) in AC Test Load and Wave-forms. All external timing parameters are measured referenced to external pins of the device.

Logic Array Blocks

There are 8 logic array blocks in theCY7C342B. Each LAB consists of a macrocell array containing 16 macrocells, an expander product term array containing 32 expanders, and an I/O block. The LAB is fed by the programmable interconnect array and the dedicated input bus. All macrocell feedbacks go to the macrocell array, the expander array, and the programmable interconnect array. Expanders feed themselves and the macrocell array. All I/O feedbacks go to the programmable interconnect array so that they may be accessed by macrocells in other LABs as well as the macrocells in the LAB in which they are situated.

Externally, the CY7C342B provides eight dedicated inputs, one of which may be used as a system clock. There are 52 I/O pins that may be individually configured for input, output, or bidirectional data flow.

Programmable Interconnect Array

The Programmable Interconnect Array (PIA) solves interconnect limitations by routing only the signals needed by each logic array block. The inputs to the PIA are the outputs of every macrocell within the device and the I/O pin feedback of every pin on the device.

Unlike masked or programmable gate arrays, which induce variable delay dependent on routing, the PIA has a fixed delay. This eliminates undesired skews among logic signals that may cause glitches in internal or external logic. The fixed delay, regardless of programmable interconnect array configuration, simplifies design by assuring that internal signal skews or races are avoided. The result is case of design implementation, often in a signal pass, without the multiple internal logic placement and routing iterations required for a programmable gate array to achieve design timing objectives.

Timing Delays

Timing delays within the CY7C342B may be easily determined using $Warp2^{\sim}/Warp2 + \approx$ or $Warp3^{\sim}$ software by the model shown in *Figure 1*. The CY7C342B has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information the *Warp3* software provides a timing simulator.

Design Recommendations

Operation of the devices described herein with conditions above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this datasheet is not implied. Exposure to absolute maximum ratings conditions for extended periods of time may affect device reliability. The CY7C342B contains circuitry to protect device pins from high static voltages or electric fields, but normal precautions should be taken to avoid application of any voltage higher than the maximum rated voltages.

For proper operation, input and output pins must be constrained to the range GND \leq (V_{IN} or V_{OUT}) \leq V_{CC}. Unused inputs must always be tied to an appropriate logic level (either V_{CC} or GND). Each set of V_{CC} and GND pins must be connected together directly at the device. Power supply decoupling capacitors of at least 0.2 µF must be connected between V_{CC} and GND. For the most effective decoupling, each V_{CC} pin should be separately decoupled to

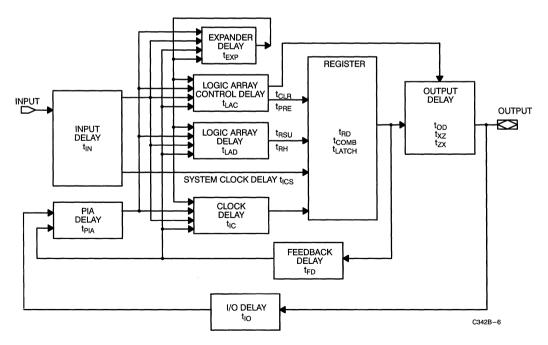
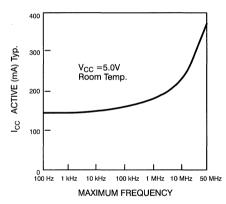
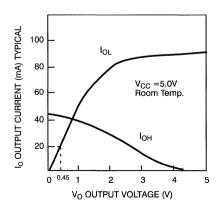


Figure 1. CY7C342B Internal Timing Model

GND directly at the device. Decoupling capacitors should have good frequency response, such as monolithic ceramic types have.


Design Security

The CY7C342B contains a programmable design security feature that controls the access to the data programmed into the device. If this programmable feature is used, a proprietary design implemented in the device cannot be copied or retrieved. This enables a high level of design control to be obtained since programmed data within EPROM cells is invisible. The bit that controls this function, along with all other program data, may be reset simply by erasing the entire device.


The CY7C342B is fully functionally tested and guaranteed through complete testing of each programmable EPROM bit and all internal logic elements thus ensuring 100% programming yield.

The erasable nature of these devices allows test programs to be used and erased during early stages of the production flow. The devices also contain on-board logic test circuitry to allow verification of function and AC specification once encapsulated in non-windowed packages.

Typical I_{CC} vs. f_{MAX}

Output Drive Current

Timing Considerations

Unless otherwise stated, propagation delays do not include expanders. When using expanders, add the maximum expander delay $t_{\rm EXP}$ to the overall delay. Similarly, there is an additional $t_{\rm PIA}$ delay for an input from an I/O pin when compared to a signal from straight input pin.

When calculating synchronous frequencies, use t_{S1} if all inputs are on dedicated input pins. The parameter t_{S2} should be used if data is applied at an I/O pin. If t_{S2} is greater than t_{CO1} , $1/t_{S2}$ becomes the limiting frequency in the data path mode unless $1/(t_{WH} + t_{WL})$ is less than $1/t_{S2}$.

When expander logic is used in the data path, add the appropriate maximum expander delay, t_{EXP} to t_{S1} . Determine which of $1/(t_{WH} + t_{WL})$, $1/t_{CO1}$, or $1/(t_{EXP} + t_{S1})$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the synchronous configuration.

When calculating external asynchronous frequencies, use t_{AS1} if all inputs are on the dedicated input pins. If any data is applied to an I/O pin, t_{AS2} must be used as the required set-up time. If $(t_{AS2} + t_{AH})$ is greater than t_{ACO1} , $1/(t_{AS2} + t_{AH})$ becomes the limiting frequency in the data path mode unless $1/(t_{AWH} + t_{AWL})$ is less than $1/(t_{AS2} + t_{AH})$.

When expander logic is used in the data path, add the appropriate maximum expander delay, t_{EXP} to t_{AS1} . Determine which of $1/(t_{AWH} + t_{AWL})$, $1/t_{ACO1}$, or $1/(t_{EXP} + t_{AS1})$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the asynchronous configuration.

The parameter t_{OH} indicates the system compatibility of this device when driving other synchronous logic with positive input hold times, which is controlled by the same synchronous clock. If t_{OH} is greater than the minimum required input hold time of the subsequent synchronous logic, then the devices are guaranteed to function properly with a common synchronous clock under worst-case environmental and supply voltage conditions.

The parameter t_{AOH} indicates the system compatibility of this device when driving subsequent registered logic with a positive hold time and using the same asynchronous clock as the CY7C342B.

In general, if t_{AOH} is greater than the minimum required input hold time of the subsequent logic (synchronous or asynchronous) then the devices are guaranteed to function properly under worstcase environmental and supply voltage conditions, provided the clock signal source is the same. This also applies if expander logic is used in the clock signal path of the driving device, but not for the driven device. This is due to the expander logic in the second device's clock signal path adding an additional delay (t_{EXP}) causing the output data from the preceding device to change prior to the arrival of the clock signal at the following device's register.

		7C342	2B-12	7C342	B-15	7C342	2B-20	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD1}	Dedicated Input to Combinatorial Output Delay ^[7]	12 15		1	20	ns		
t _{PD2}	I/O Input to Combinatorial Output Delay ^[8]		20		25		32	ns
t _{PD3}	Dedicated Input to Combinatorial Output Delay with Expander Delay ^[9]		18		23		30	ns
t _{PD4}	I/O Input to Combinatorial Output Delay with Expander Delay ^[4, 10]		26		33		42	ns
t _{EA}	Input to Output Enable Delay ^[4, 7]		12		15		20	ns
t _{ER}	Input to Output Disable Delay ^[4, 7]		12		15		20	ns
t _{CO1}	Synchronous Clock Input to Output Delay		6		7		8	ns
t _{CO2}	Synchronous Clock to Local Feedback to Combinatorial Output ^[4, 11]				20	ns		
t _{S1}	Dedicated Input or Feedback Set-Up Time to Synchronous Clock Input ^[7, 12]	8		10		13		ns
t _{S2}	I/O Input Set-Up Time to Synchronous Clock Input ^[7]	16	1	20		24		ns
t _H	Input Hold Time from Synchronous Clock Input ^[7]	0		0		0		ns
t _{WH}	Synchronous Clock Input HIGH Time	4.5		5		7		ns
t _{WL}	Synchronous Clock Input LOW Time	4.5		5		7		ns
t _{RW}	Asynchronous Clear Width ^[4, 7]	12		15		20		ns
t _{RR}	Asynchronous Clear Recovery Time ^[4, 7]	12		15		20		ns
t _{RO}	Asynchronous Clear to Registered Output Delay ^[7]		12		15		20	ns
t _{PW}	Asynchronous Preset Width ^[4, 7]	12		15		20		ns
t _{PR}	Asynchronous Preset Recovery Time ^[4, 7]	12		15		20		ns
t _{PO} .	Asynchronous Preset to Registered Output Delay ^[7]		12		15		20	ns
t _{CF}	Synchronous Clock to Local Feedback Input ^[4, 13]		3		3		3	ns
tp	External Synchronous Clock Period (1/(f _{MAX3})) ^[4]	9		12		15		ns
f _{MAX1}	External Feedback Maximum Frequency $(1/(t_{CO1} + t_{S1}))^{[4, 14]}$	71.4		58.8		47.6		MHz
f _{MAX2}	Internal Local Feedback Maximum Frequency, lesser of $(1/(t_{S1} + t_{CF}))$ or $(1/t_{CO1})^{[4, 15]}$	90.9		76.9		62.5		MHz
f _{MAX3}	Data Path Maximum Frequency, lesser of $(1/(t_{WL} + t_{WH}))$, $(1/(t_{S1} + t_H))$ or $(1/t_{CO1})^{[4, 16]}$	111.1		100		71.4		MHz
f _{MAX4}	Maximum Register Toggle Frequency (1/(t _{WL} +t _{WH})) ^[4, 17]	111.1		100		71.4		MH
t _{OH}	Output Data Stable Time from Synchronous Clock Input ^[4, 18]	3		3		3		ns
t _{PD1}	Dedicated Input to Combinatorial Output Delay ^[7]		25		30		35	ns
t _{PD2}	I/O Input to Combinatorial Output Delay ^[8]		39		46		55	ns
t _{PD3}	Dedicated Input to Combinatorial Output Delay with Expander Delay ^[9]		37		44		55	ns
t _{PD4}	I/O Input to Combinatorial Output Delay with Expander Delay ^[4, 10]	1	51		60	1	75	ns
t _{EA}	Input to Output Enable Delay ^[4, 7]	1	25	1	30		35	ns
t _{ER}	Input to Output Disable Delay ^[4, 7]		25		30		35	ns
t _{CO1}	Synchronous Clock Input to Output Delay	1	14	1	16	1	20	ns

Commercial and Industrial External Synchronous Switching Characteristics^[6] Over Operating Range

Commercial and Industrial External Synchronous Switching Characteristics (continued)
--

		7C342	2B-25	7C342	B-30	7C342	2B-35	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{CO2}	Synchronous Clock to Local Feedback to Combinatorial Output ^[4, 11]		30		35		42	ns
t _{S1}	Dedicated Input or Feedback Set-Up Time to Synchronous Clock Input ^[7, 12]	15		20		25		ns
t _{S2}	I/O Input Set-Up Time to Synchronous Clock Input ^[7]	29		36		45		ns
t _H	Input Hold Time from Synchronous Clock Input ^[7]	0		0		0		ns
t _{WH}	Synchronous Clock Input HIGH Time	8		10		12.5		ns
t _{WL}	Synchronous Clock Input LOW Time	8		10		12.5		ns
t _{RW}	Asynchronous Clear Width ^[4, 7]	25		30		35		ns
t _{RR}	Asynchronous Clear Recovery Time ^[4, 7]	25		30		35		ns
t _{RO}	Asynchronous Clear to Registered Output Delay ^[7]		25		30		35	ns
t _{PW}	Asynchronous Preset Width ^[4, 7]	25		30		35		ns
t _{PR}	Asynchronous Preset Recovery Time ^[4, 7]	25		30		35		ns
t _{PO}	Asynchronous Preset to Registered Output Delay ^[7]		25		30		35	ns
t _{CF}	Synchronous Clock to Local Feedback Input ^[4, 13]		3		3		6	ns
tp	External Synchronous Clock Period (1/(f _{MAX3})) ^[4]	16		20		25		ns
f _{MAX1}	External Feedback Maximum Frequency $(1/(t_{CO1} + t_{S1}))^{[4, 14]}$	34.5		27.7		22.2		MHz
f _{MAX2}	Internal Local Feedback Maximum Frequency, lesser of $(1/(t_{S1} + t_{CF}))$ or $(1/t_{CO1})^{[4, 15]}$	55.5		43.4		32.2		MHz
f _{MAX3}	Data Path Maximum Frequency, lesser of $(1/(t_{WL} + t_{WH}))$, $(1/(t_{S1} + t_H))$ or $(1/t_{CO1})^{[4, 16]}$	62.5		50		40		MHz
f _{MAX4}	Maximum Register Toggle Frequency (1/(t _{WL} +t _{WH})) ^[4, 17]	62.5		50		40		MHz
t _{OH}	Output Data Stable Time from Synchronous Clock Input ^[4, 18]	3		3		3		ns

Notes:

Votes: 7. This specification is a measure of the delay from input signal applied to a dedicated input (68-pin PLCC input pin 1, 2, 32, 34, 35, 66, or 68) to combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function.

When this note is applied to any parameter specification it indicates that the signal (data, asynchronous clock, asynchronous clear, and/or asynchronous preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.

If an input signal is applied to an I/O pin an additional delay equal to t_{PIA} should be added to the comparable delay for a dedicated input. If expanders are used, add the maximum expander delay t_{EXP} to the overall delay for the comparable delay without expanders.

- This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
- 9. This specification is a measure of the delay from an input signal applied to a dedicated input (68-pin PLCC input pin 1, 2, 32, 34, 35, 36, 66, or 68) to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic.
- 10. This specification is a measure of the delay from an input signal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
- 11. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all feedback is within the same LAB. This parameter is tested periodically by sampling production material.

- 12. If data is applied to an I/O input for capture by a macrocell register, the I/O pin input set-up time minimums should be observed. These parameters are t_{S2} for synchronous operation and t_{AS2} for asynchronous operation.
- 13. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array input. This delay plus the register set-up time, ts₁, is the minimum internal period for an internal synchronous state machine configuration. This delay is for feedback within the same LAB. This parameter is tested periodically by sampling production material.
- 14. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can operate. It is assumed that all data inputs and feedback signals are applied to dedicated inputs. All feedback is assumed to be local originating within the same LAB.
- 15. This specification indicates the guaranteed maximum frequency at which a state machine with internal-only feedback can operate. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than 1/t_{CO1}.
- 16. This frequency indicates the maximum frequency at which the device may operate in data path mode (dedicated input pin to output pin). This assumes data input signals are applied to dedicated input pins and no expander logic is used. If any of the data inputs are I/O pins, t_{S2} is the appropriate ts for calculation.
- 17. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycled by a clock signal applied to the dedicated clock input pin.
- This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.

		7C342	B-12	7C342	B-15	7C342	2B-20	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{ACO1}	Asynchronous Clock Input to Output Delay ^[7]		12		15		20	ns
t _{ACO2}	Asynchronous Clock Input to Local Feedback to Combinatorial Output ^[19]		20		25		32	ns
t _{AS1}	Dedicated Input or Feedback Set-Up Time to Asynchronous Clock Input ^[7]	4		5		5		ns
t _{AS2}	I/O Input Set-Up Time to Asynchronous Clock Input ^[7]	12		14.5		17		ns
t _{AH}	Input Hold Time from Asynchronous Clock Input ^[7]	4		5		6		ns
t _{AWH}	Asynchronous Clock Input HIGH Time ^[7]	8		9		10		ns
t _{AWL}	Asynchronous Clock Input LOW Time ^[7, 20]	6		7		8		ns
t _{ACF}	Asynchronous Clock to Local Feedback Input ^[4, 21]		9		11		13	ns
t _{AP}	External Asynchronous Clock Period (1/(f _{MAXA4})) ^[4]	14		16		18		ns
f _{MAXA1}	External Feedback Maximum Frequency in Asynchronous Mode $(1/(t_{ACO1} + t_{AS1}))^{[4, 22]}$	62.5		50		40		MHz
f _{MAXA2}	Maximum Internal Asynchronous Frequency ^[4, 23]	71.4		62.5		55.5		MHz
f _{MAXA3}	Data Path Maximum Frequency in Asynchronous Mode ^[4, 24]	83.3		66.6		50		MHz
f _{MAXA4}	Maximum Asynchronous Register Toggle Frequency $1/(t_{AWH} + t_{AWL})^{[4, 25]}$	71.4		62.5		55.5		MHz
t _{AOH}	Output Data Stable Time from Asynchronous Clock Input ^[4, 26]	12		12		12		ns

Commercial and Industrial External Asynchronous Switching Characteristics^[6] Over Operating Range

Notes:

- 19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input. The clock signal is applied to the dedicated clock input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production material.
- 20. This parameter is measured with a positive-edge triggered clock at the register. For negative edge triggering, the t_{AWH} and t_{AWL} parameters must be swapped. If a given input is used to clock multiple registers with both positive and negative polarity, t_{AWH} should be used for both t_{AWH} and t_{AWL} .
- 21. This specification is a measure of the delay associated with the internal register feedback path for an asynchronous clock to LAB logic array input. This delay plus the asynchronous register set-up time, t_{ASI} , is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay is for feedback within the same LAB, assumes no expander logic in the clock path, and assumes that the clock input signal is applied to a dedicated input pin. This parameter is tested periodically by sampling production material.
- 22. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that all data inputs, clock in-

puts, and feedback signals are applied to dedicated inputs and that no expander logic is employed in the clock signal path or data path.

23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate. This parameter is determined by the lesser of $(1/(t_{ACF} + t_{AS1}))$ or $(1/(t_{AWH} + t_{AWL}))$. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1/t_{ACO1}$.

This specification assumes no expander logic is utilized, all data inputs and clock inputs are applied to dedicated inputs, and all state feedback is within a single LAB. This parameter is tested periodically by sampling production material.

- 24. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined by the lesser of $1/(t_{AWH} + t_{AWL})$, $1/(t_{AS1} + t_{AH})$ or $1/t_{AC01}$. It assumes data and clock input signals are applied to dedicated input pins and no expander logic is used.
- 25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode by a clock signal applied to an external dedicated input pin.
- 26. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input applied to an external dedicated input pin.

Commercial and Industrial External Asynchronous Switching Characteristics^[6] Over Operating Range (continued)

		7C342	2B-25	7C342	2B-30	7C342	2B-35	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{ACO1}	Asynchronous Clock Input to Output Delay ^[7]		25		30		35	ns
t _{ACO2}	Asynchronous Clock Input to Local Feedback to Combinatorial Output ^[19]		39		46		55	ns
t _{AS1}	Dedicated Input or Feedback Set-Up Time to Asynchronous Clock Input ^[7]	5		6		8		ns
t _{AS2}	I/O Input Set-Up Time to Asynchronous Clock Input ^[7]	19		22		28		ns
t _{AH}	Input Hold Time from Asynchronous Clock Input ^[7]	6		8		10		ns
t _{AWH}	Asynchronous Clock Input HIGH Time ^[7]	11		14		16		ns
t _{AWL}	Asynchronous Clock Input LOW Time ^[7, 20]	9		11		14		ns
t _{ACF}	Asynchronous Clock to Local Feedback Input ^[4, 21]		15		18		22	ns
t _{AP}	External Asynchronous Clock Period (1/(f _{MAXA4})) ^[4]	20		25		30		ns
f _{MAXA1}	External Feedback Maximum Frequency in Asynchronous Mode $(1/(t_{ACO1} + t_{AS1}))^{[4, 22]}$	33.3		27.7		23.2		MHz
f _{MAXA2}	Maximum Internal Asynchronous Frequency ^[4, 23]	50		40		33.3		MHz
f _{MAXA3}	Data Path Maximum Frequency in Asynchronous Mode ^[4, 24]	40		33.3		28.5		MHz
f _{MAXA4}	Maximum Asynchronous Register Toggle Frequency $1/(t_{AWH} + t_{AWL})^{[4, 25]}$	50		40		33.3		MHz
t _{AOH}	Output Data Stable Time from Asynchronous Clock Input ^[4, 26]	15		15		15		ns

Commercial and Industrial Typical Internal Switching Characteristics Over Operating Range

		7C342	2B-12	Max. Min. Max. Min. Max. 2.5 3 4 4 6 8 10 6 8 10 6 8 10 6 8 10 5 5 7 3 3 3 3 3 5 5 5 5 5 5 4 5 5 5 1 1 2 2 0.5 1 1 1 1 1 2 4 6	2B-20			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{IN}	Dedicated Input Pad and Buffer Delay		2.5		3		4	ns
t _{IO}	I/O Input Pad and Buffer Delay		2.5		3		4	ns
t _{EXP}	Expander Array Delay		6		8		10	ns
t _{LAD}	Logic Array Data Delay		6		8		10	ns
t _{LAC}	Logic Array Control Delay		5		5		7	ns
t _{OD}	Output Buffer and Pad Delay		3		3		3	ns
t _{ZX}	Output Buffer Enable Delay ^[27]		5		5		5	ns
t _{XZ}	Output Buffer Disable Delay		5		5		5	ns
t _{RSU}	Register Set-Up Time Relative to Clock Signal at Register	2		4		5		ns
t _{RH}	Register Hold Time Relative to Clock Signal at Register	4		4		5		ns
t _{LATCH}	Flow Through Latch Delay		1		1		2	ns
t _{RD}	Register Delay		0.5		1		1	ns
t _{COMB}	Transparent Mode Delay ^[28]		1		1		2	ns
t _{CH}	Clock HIGH Time	3		4		6		ns
t _{CL}	Clock LOW Time	3		4		6		ns
t _{IC}	Asynchronous Clock Logic Delay		5		6		8	ns
t _{ICS}	Synchronous Clock Delay		0.5		0.5		0.5	ns
t _{FD}	Feedback Delay		1		1		1	ns
tPRE	Asynchronous Register Preset Time		3		3		3	ns
t _{CLR}	Asynchronous Register Clear Time		3		3		3	ns
t _{PCW}	Asynchronous Preset andClear Pulse Width	2		3		4		ns
t _{PCR}	Asynchronous Preset and Clear Recovery Time	2		3		4		ns
t _{PIA}	Programmable Interconnect Array Delay Time		8		10		12	ns

Commercial and Industrial Typical Internal Switching Characteristics Over Operating Range (continued)

		7C342	2B-25	7C342	2B-30	7C342	2B-35	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{IN}	Dedicated Input Pad and Buffer Delay		5		7		9	ns
t _{IO}	I/O Input Pad and Buffer Delay		6		6		9	ns
t _{EXP}	Expander Array Delay		12		14		20	ns
t _{LAD}	Logic Array Data Delay		12		14		16	ns
tLAC	Logic Array Control Delay		10		12		13	ns
t _{OD}	Output Buffer and Pad Delay		5		5		6	ns
t _{ZX}	Output Buffer Enable Delay ^[27]		10		11		13	ns
t _{XZ}	Output Buffer Disable Delay		10		11		13	ns
t _{RSU}	Register Set-Up Time Relative to Clock Signal at Register	6		8		10		ns
t _{RH}	Register Hold Time Relative to Clock Signal at Register	6		8		10		ns
t _{LATCH}	Flow Through Latch Delay		3		4		4	ns
t _{RD}	Register Delay		1		2		2	ns
t _{COMB}	Transparent Mode Delay ^[28]		3		4		4	ns
t _{CH}	Clock HIGH Time	8		10		12.5		ns
t _{CL}	Clock LOW Time	8		10		12.5		ns
t _{IC}	Asynchronous Clock Logic Delay		14		16		18	ns
t _{ICS}	Synchronous Clock Delay		2		2		3	ns
t _{FD}	Feedback Delay		1		1		2	ns
t _{PRE}	Asynchronous Register Preset Time		5		6		7	ns
t _{CLR}	Asynchronous Register Clear Time		5		6		7	ns
t _{PCW}	Asynchronous Preset and Clear Pulse Width	5		6		7		ns
t _{PCR}	Asynchronous Preset and Clear Recovery Time	5		6		7		ns
t _{PIA}	Programmable Interconnect Array Delay Time		14		16		20	ns

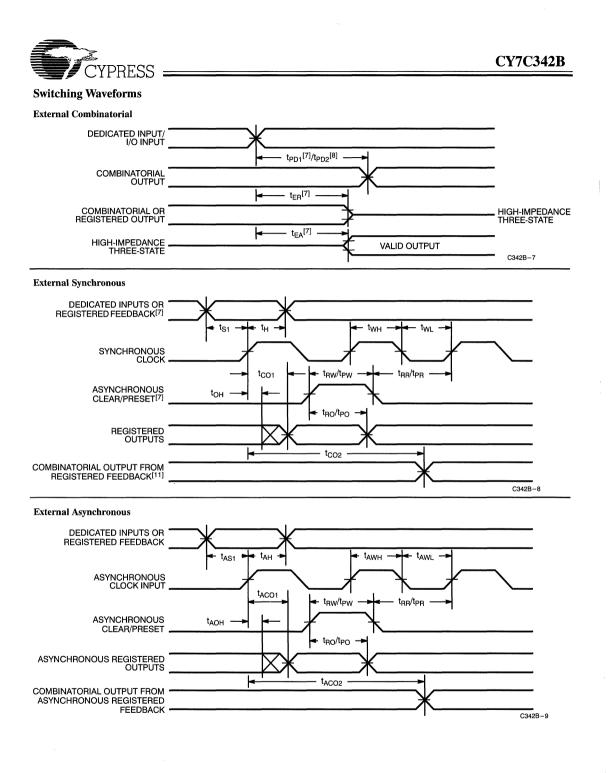
Notes:
27. Sample tested only for an output change of 500 mV.
28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial operation.

		7C342	B-15	7C342	B-20	7C342	B-25	7C342	2B-30	7C342	2B-35	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD1}	Dedicated Input to Combina- torial Output Delay ^[7]		15		20		25		30		35	ns
t _{PD2}	I/O Input to Combinatorial Output Delay ^[8]		25		32		39		46		55	ns
t _{PD3}	Dedicated Input to Combina- torial Output Delay with Ex- pander Delay ^[9]		23		30		37		44		55	ns
t _{PD4}	I/O Input to Combinatorial Output Delay with Expander Delay ^[4, 10]		33		42		51		60		75	ns
t _{EA}	Input to Output Enable Delay ^[4, 7]		15		20		25		30		35	ns
t _{ER}	Input to Output Disable Delay ^[4, 7]		15		20		25		30		35	ns
t _{CO1}	Synchronous Clock Input to Output Delay		7		8		14		16		20	ns
t _{CO2}	Synchronous Clock to Local Feedback to Combinatorial Output ^[4, 11]		17		20		30		35		42	ns
t _{S1}	Dedicated Input or Feedback Set-Up Time to Synchronous Clock Input ^[7, 12]	10		13		15		20		25		ns
t _{S2}	I/O Input Set-Up Time to Synchronous Clock Input ^[7]	20		24		29		36		45		ns
t _H	Input Hold Time from Synchronous Clock Input ^[7]	0		0		0		0		0		ns
t _{WH}	Synchronous Clock Input HIGH Time	5		7		8		10		12.5		ns
t _{WL}	Synchronous Clock Input LOW Time	5		7		8		10		12.5		ns
t _{RW}	Asynchronous Clear Width ^[4, 7]	15		20		25		30		35		ns
t _{RR}	Asynchronous Clear Recovery Time ^[4, 7]	15		20		25		30		35		ns
t _{RO}	Asynchronous Clear to Regis- tered Output Delay ^[7]		15		20		25		30		35	ns
t _{PW}	Asynchronous Preset Width ^[4, 7]	15		20		25		30		35		ns
t _{PR}	Asynchronous Preset Recovery Time ^[4, 7]	15		20		25		30		35		ns
t _{PO}	Asynchronous Preset to Regis- tered Output Delay ^[7]		15		20		25		30		35	ns
t _{CF}	Synchronous Clock to Local Feedback Input ^[4, 13]		3		3		3		3		6	ns
t _P	External Synchronous Clock Period (1/(f _{MAX3})) ^[4]	12		14		16		20		25		ns

Military External Synchronous Switching Characteristics^[6] Over Operating Range

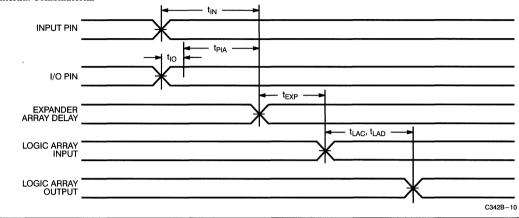
		7C342	2B-15	7C342	2B-20	7C342	2B-25	7C342	2B-30	7C342	2B-35	
Parameter	Description	Min.	Max.	Unit								
f _{MAX1}	External Feedback Maximum Frequency $(1/(t_{CO1} + t_{S1}))^{[4, 14]}$	58.8		47.6		34.5		27.7		22.2		MHz
f _{MAX2}	Internal Local Feedback Maximum Frequency, lesser of $(1/(t_{S1} + t_{CF}))$ or $(1/t_{CO1})^{[4, 15]}$	76.9		62.5		55.5		43.4		32.2		MHz
f _{MAX3}	Data Path Maximum Frequency, lesser of $(1/(t_{WL} + t_{WH}))$, $(1/(t_{S1} + t_H))$ or $(1/t_{CO1})^{[4, 16]}$	100		71.4		62.5		50		40		MHz
f _{MAX4}	Maximum Register Toggle Frequency $(1/(t_{WL} + t_{WH}))^{[4, 17]}$	100		71.4		62.5		50		40		MHz
t _{OH}	Output Data Stable Time from Synchronous Clock Input ^[4, 18]	3		3		3		3		3		ns

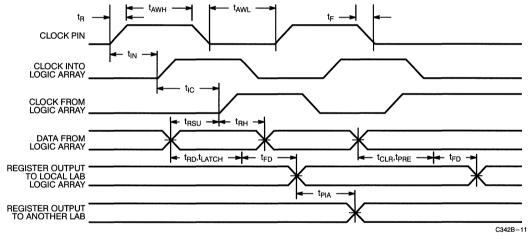
Military External Synchronous Switching Characteristics^[6] Over Operating Range (continued)


Military External Asynchronous Switching Characteristics^[6] Over Operating Range

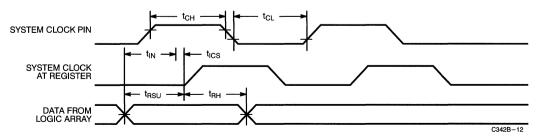
				7C342B-25		7C342B-30		7C342B-35				
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{ACO1}	Asynchronous Clock Input to Output Delay ^[7]		15		20		25		30		35	ns
t _{ACO2}	Asynchronous Clock Input to Local Feedback to Combinatorial Output ^[19]		25		32		39		46		55	ns
t _{AS1}	Dedicated Input or Feedback Set-Up Time to Asynchronous Clock Input ^[7]	5		5		5		6		8		ns
t _{AS2}	I/O Input Set-Up Time to Asynchronous Clock Input ^[7]	14.5		17		19		22		28		ns
t _{AH}	Input Hold Time from Asynchronous Clock Input ^[7]	5		6		6		8		10		ns
t _{AWH}	Asynchronous Clock Input HIGH Time ^[7]	9		10		11		14		16		ns
t _{AWL}	Asynchronous Clock Input LOW Time ^[7, 20]	7		8		9		11		14		ns
t _{ACF}	Asynchronous Clock to Local Feedback Input ^[4, 21]		11		13		15		18		22	ns
t _{AP}	External Asynchronous Clock Period (1/(f _{MAXA4})) ^[4]	16		18		20		25		30		ns
f _{MAXA1}	External Feedback Maximum Frequency in Asynchronous Mode $(1/(t_{ACO1} + t_{AS1}))^{[4, 22]}$	50.0		40		33.3		27.7		23.2		MHz
f _{MAXA2}	Maximum Internal Asynchronous Frequency ^[4, 23]	62.5		55.5		50		40		33.3		MHz
f _{MAXA3}	Data Path Maximum Frequency in Asynchronous Mode ^[4, 24]	66.6		50		40		33.3		28.5		MHz
f _{MAXA4}	Maximum Asynchronous Register Toggle Frequency 1/(t _{AWH} + t _{AWL}) ^[4, 25]	62.5		55.5		50		40		33.3		MHz
t _{AOH}	Output Data Stable Time from Asynchronous Clock Input ^[4, 26]	12		12		15		15		15		ns

		7C342B-15		7C342B-20		7C342B-25		7C342B-30		7C342B-35		
Parameter	Description	Min.	Max.	Unit								
t _{IN}	Dedicated Input Pad and Buffer Delay		3		4		5		7		9	ns
t _{IO}	I/O Input Pad and Buffer Delay		3	-	4		6		6		9	ns
t _{EXP}	Expander Array Delay		8		10		12		14		20	ns
t _{LAD}	Logic Array Data Delay		8		10		12		14		16	ns
t _{LAC}	Logic Array Control Delay		5		7		10		12		13	ns
t _{OD}	Output Buffer and Pad Delay		3		3		5		5		6	ns
t _{ZX}	Output Buffer Enable Delay ^[27]		5		5		10		11		13	ns
t _{XZ}	Output Buffer Disable Delay		5		5		10		11		13	ns
t _{RSU}	Register Set-Up Time Relative to Clock Signal at Register	4		5		6		8		10		ns
t _{RH}	Register Hold Time Relative to Clock Signal at Register	4		5		6		8		10		ns
t _{LATCH}	Flow Through Latch Delay		1		2		3		4		4	ns
t _{RD}	Register Delay		1		1		1		2		2	ns
t _{COMB}	Transparent Mode Delay ^[28]		1		2		3		4		4	ns
t _{CH}	Clock HIGH Time	4		6		8		10		12.5		ns
t _{CL}	Clock LOW Time	4		6		8		10		12.5		ns
t _{IC}	Asynchronous Clock Logic Delay		6		8		14		16		18	ns
t _{ICS}	Synchronous Clock Delay		0.5		0.5		2		2		3	ns
t _{FD}	Feedback Delay		1		1		1		1		2	ns
t _{PRE}	Asynchronous Register Preset Time		3		3		5		6		7	ns
t _{CLR}	Asynchronous Register Clear Time		3		3		5		6		7	ns
t _{PCW}	Asynchronous Preset and Clear Pulse Width	3		4		5		6		7		ns
t _{PCR}	Asynchronous Preset and Clear Recovery Time	3		4		5		6		7		ns
t _{PIA}	Programmable Interconnect Array Delay Time		10		12		14		16		20	ns

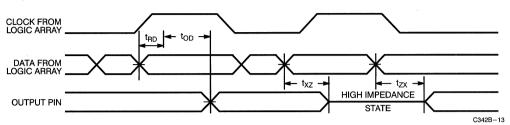

Military Typical Internal Switching Characteristics Over Operating Range


Switching Waveforms (continued)

CY7C342B


Internal Combinatorial

Internal Asynchronous


Internal Synchronous

3

CY7C342B

Internal Synchronous

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range	
12	CY7C342B-12HC	H81	68-Pin Windowed Leaded Chip Carrier	Commercial	
	CY7C342B-12JC	J81	68-Lead Plastic Leaded Chip Carrier		
	CY7C342B-12RC	R68	68-Pin Windowed Ceramic Pin Grid Array		
15	CY7C342B-15HC/HI	H81	68-Pin Windowed Leaded Chip Carrier	Commercial/	
	CY7C342B-15JC/JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C342B-15RC/RI	R68	68-Pin Windowed Ceramic Pin Grid Array		
	CY7C342B-15HMB	H81	68-Pin Windowed Leaded Chip Carrier	Military	
	CY7C342B-15RMB	R68	68-Pin Windowed Ceramic Pin Grid Array		
20	CY7C342B-20HC/HI	H81	68-Pin Windowed Leaded Chip Carrier	Commercial/	
	CY7C342B-20JC/JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C342B-20RC/RI	-20RC/RI R68 68-Pin Windowed Ceramic Pin Grid Array			
	CY7C342B-20HMB	H81	68-Pin Windowed Leaded Chip Carrier	Military	
	CY7C342B-20RMB	R68	68-Pin Windowed Ceramic Pin Grid Array		
25	CY7C342B-25HC/HI H81 68-Pin Windowed Leaded Chip Carrier		Commercial/ Industrial		
	CY7C342B-25JC/JI				
	CY7C342B-25RC	R68	68-Pin Windowed Ceramic Pin Grid Array		
	CY7C342B-25HMB	H81	68-Pin Windowed Leaded Chip Carrier	Military	
	CY7C342B-25RMB	R68	68-Pin Windowed Ceramic Pin Grid Array		
30	CY7C342B-30HC/HI	H81	68-Pin Windowed Leaded Chip Carrier	Commercial/	
	CY7C342B-30JC/JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C342B-30RC/RI	R68	68-Pin Windowed Ceramic Pin Grid Array		
	CY7C342B-30HMB	H81	68-Pin Windowed Leaded Chip Carrier	Military	
	CY7C342B-30RMB	R68	68-Pin Windowed Ceramic Pin Grid Array		
35	CY7C342B-35HC/HI	H81	68-Pin Windowed Leaded Chip Carrier	Commercial/	
	CY7C342B-35JC/JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C342B-35RC/RI	R68	68-Pin Windowed Ceramic Pin Grid Array		
	CY7C342B-35HMB	H81	68-Pin Windowed Leaded Chip Carrier	Military	
	CY7C342B-35RMB	R68	68-Pin Windowed Ceramic Pin Grid Array		

3

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{PD1}	7, 8, 9, 10, 11
t _{PD2}	7, 8, 9, 10, 11
t _{PD3}	7, 8, 9, 10, 11
t _{CO1}	7, 8, 9, 10, 11
t _{S1}	7, 8, 9, 10, 11
t _{S2}	7, 8, 9, 10, 11
t _H	7, 8, 9, 10, 11
t _{WH}	7, 8, 9, 10, 11
t _{WL}	7, 8, 9, 10, 11
t _{RO}	7, 8, 9, 10, 11
t _{PO}	7, 8, 9, 10, 11
t _{ACO1}	7, 8, 9, 10, 11
t _{AS1}	7, 8, 9, 10, 11
t _{AH}	7, 8, 9, 10, 11
t _{AWH}	7, 8, 9, 10, 11
t _{AWL}	7, 8, 9, 10, 11

Document #: 38-00119-G

Features

- 128 macrocells in 8 LABs
- 8 dedicated inputs, 52 bidirectional I/O pins
- Programmable interconnect array
- 0.8-micron double-metal CMOS EPROM technology
- Available in 68-pin HLCC, PLCC, and PGA packages

Functional Description

The CY7C342 is an Erasable Programmable Logic Device (EPLD) in which CMOS EPROM cells are used to configure logic functions within the device. The MAX architecture is 100% user configurable, allowing the devices to accommodate a variety of independent logic functions.

The 128 macrocells in the CY7C342 are divided into 8 Logic Array Blocks (LABs), 16 per LAB. There are 256 expander product terms, 32 per LAB, to be used and shared by the macrocells within each LAB.

Each LAB is interconnected with a programmable interconnect array, allowing all signals to be routed throughout the chip.

The speed and density of the CY7C342 allows it to be used in a wide range of applications, from replacement of large amounts of 7400-series TTL logic, to complex controllers and multifunction chips. With greater than 25 times the functionality of 20-pin PLDs, the CY7C342 allows the replacement of over 50 TTL devices. By replacing large amounts of logic, the CY7C342 reduces board space, part count, and increases system reliability.

Logic Array Blocks

There are 8 logic array blocks in the CY7C342. Each LAB consists of a macrocell array containing 16 macrocells, an expander product term array containing 32 expanders, and an I/O block. The LAB is fed by the programmable interconnect array and the dedicated in-

128-Macrocell MAX® EPLDs

put bus. All macrocell feedbacks go to the macrocell array, the expander array, and the programmable interconnect array. Expanders feed themselves and the macrocell array. All I/O feedbacks go to the programmable interconnect array so that they may be accessed by macrocells in other LABs as well as the macrocells in the LAB in which they are situated.

Externally, the CY7C342 provides eight dedicated inputs, one of which may be used as a system clock. There are 52 I/O pins that may be individually configured for input, output, or bidirectional data flow.

Programmable Interconnect Array

The Programmable Interconnect Array (PIA) solves interconnect limitations by routing only the signals needed by each logic array block. The inputs to the PIA are the outputs of every macrocell within the device and the I/O pin feedback of every pin on the device.

Unlike masked or programmable gate arrays, which induce variable delay dependent on routing, the PIA has a fixed delay. This eliminates undesired skews among logic signals that may cause glitches in internal or external logic. The fixed delay, regardless of programmable interconnect array configuration, simplifies design by assuring that internal signal skews or races are avoided. The result is ease of design implementation, often in a signal pass, without the multiple internal logic placement and routing iterations required for a programmable gate array to achieve design timing objectives.

Timing Delays

Timing delays within the CY7C342 may be easily determined using $Warp2^{m}$, $Warp2+^{m}$, or $Warp3^{m}$ software. The CY7C342 has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information the Warp3 software provides a timing simulator.

Selection Guide

		7C342-25	7C342-30	7C342-35
Maximum Access Time (ns)		25	30	35
Maximum Operating	Commercial	250	250	250
Current (mA)	Military	al 250 250 250 320 320 320 320 320 320 320 320		
	Industrial	320	320	320 320 225
Maximum Static	Commercial	225	225	225
Current (mA)	Military	275	275	275
	Industrial	275	275	275

MAX is a registered trademark of Altera Corporation.

Warp2, Warp2+, and Warp3 are trademarks of Cypress Semiconductor.

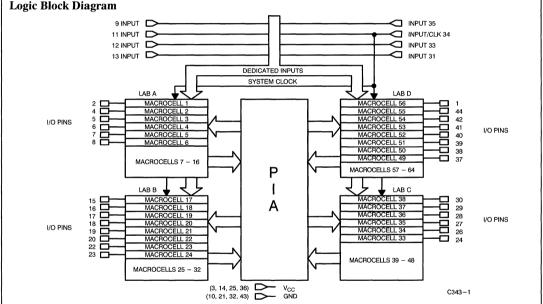
Document #: 38-00500

CY7C343 CY7C343B

64-Macrocell MAX® EPI

Features

- 64 MAX macrocells in 4 LABs
- 8 dedicated inputs, 24 bidirectional I/O pins
- Programmable interconnect array
- **0.8-micron double-metal CMOS** EPROM technology (CY7C343)
- Advanced 0.65-micron CMOS technology to increase performance (CY7C343B)
- Available in 44-pin HLCC, PLCC
- Lowest power MAX device


Logic Block Diagram

Functional Description

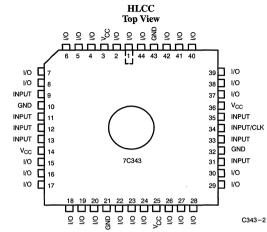
The CY7C343/CY7C343B is a high-performance, high-density erasable programmable logic device, available in 44-pin PLCC and HLCC packages.

The CY7C343/CY7C343B contains 64 highly flexible macrocells and 128 expander product terms. These resources are divided into four Logic Array Blocks (LABs) connected through the Programmable Interconnect Array (PIA). There are 8 input pins, one that doubles as a clock pin when needed. The CY7C343/CY7C343B also has 28 I/O pins, each connected to a macrocell (6 for LABs A and C, and 8 for LABs B and D). The remaining 36 macrocells are used for embedded logic.

The CY7C343/CY7C343B is excellent for a wide range of both synchronous and asynchronous applications.

Selection Guide

		7C343-12 7C343B-12	7C343-15 7C343B-15	7C343-20 7C343B-20	7C343-25 7C343B-25	7C343-30 7C343B-30	7C343-35 7C343B-35
Maximum Access Time (ns)		12	15	20	25	30	35
Maximum Operating	Commercial	135	135	135	135	135	135
Current (mA)	Military		225	225	225	225	225
	Industrial	225	225	225	225	225	225
Maximum Standby	Commercial	125	125	125	125	125	125
Current (mA)	Military		200	200	200	200	200
	Industrial	200	200	200	200	200	200


Shaded area contains preliminary information.

Warp2, Warp2+, and Warp3 are trademarks of Cypress Semiconductor Corporation.

MAX® is a registered trademark of Altera Corporation.

Pin Configuration

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Maximum Junction Temperature (Under Bias) 150°C
Supply Voltage to Ground Potential $\dots -2.0V$ to $+7.0V$
Maximum Power Dissipation
DC V _{CC} or GND Current 500 mA
DC Output Current, per Pin25 mA to +25 mA

DC Input Voltage ^[1]	-3.0V to $+7.0V$
DC Program Voltage	13.0V
Static Discharge Voltage	>1100V
(per MIL-STD-883, method 3015)	

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ±5%
Industrial	-40° C to $+85^{\circ}$ C	5V ±10%
Military	-55°C to +125°C (Case)	5V ±10%

Electrical Characteristics Over the Operating Range^[2]

Parameter	Description	Test Conditio	ons	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8 mA$			0.45	V
V _{IH}	Input HIGH Level				V _{CC} +0.3	V
V _{IL}	Input LOW Level				0.8	v
I _{IX}	Input Current	$GND \leq V_{IN} \leq V_{CC}$			+10	μA
I _{OZ}	Output Leakage Current	$V_{O} = V_{CC} \text{ or } GND$			+40	μA
I _{OS}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT} = 0.5V^{[3, 4]}$			- 90	mA
I _{CC1}	Power Supply Current	$V_I = V_{CC}$ or GND	Commercial		125	mA
	(Standby)	(No Lood)	Military/Industrial		200	mA
I _{CC2}	Power Supply Current ^[5]	$V_{I} = V_{CC} \text{ or GND} (\text{No Load})$ f = 1.0 MHz ^[4, 5]	Commercial		135	mA
		$f = 1.0 \text{ MHz}^{[4, 5]}$	Military/Industrial		225	mA
t _R	Recommended Input Rise Time				100	ns
t _F	Recommended Input Fall Time				100	ns

Notes:

Minimum DC input is -0.3V. During transitions, the inputs may undershoot to -2.0V for periods less than 20 ns. Typical values are for T_A = 25°C and V_{CC} = 5V. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. V_{OUT} = 0.5V has 1.

2.

3.

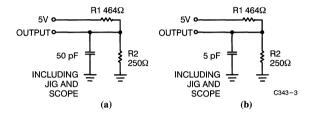
been chosen to avoid test problems caused by tester ground degradation.

Guaranteed but not 100% tested. 4.

Measured with device programmed as a 16-bit counter in each LAB. This parameter is tested periodically by sampling production material. 5.

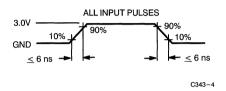
Capacitance^[6]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 2V, f = 1.0 \text{ MHz}$	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 2.0V, f = 1.0 MHz$	10	pF


ternal pins of the device.

Notes:

Equivalent to:


6. Part (a) in AC Test Load and Waveforms is used for all parameters except t_{ER} and t_{XZ} , which is used for part (b) in AC Test Load and Wave-

AC Test Loads and Waveforms^[6]

THÉVENIN EQUIVALENT (commercial/military)

-0 1.75V

forms. All external timing parameters are measured referenced to ex-

Programmable Interconnect Array

OUTPUT •

The Programmable Interconnect Array (PIA) solves interconnect limitations by routing only the signals needed by each logic array block. The inputs to the PIA are the outputs of every macrocell within the device and the I/O pin feedback of every pin on the device.

163Ω

Unlike masked or programmable gate arrays, which induce variable delay dependent on routing, the PIA has a fixed delay. This eliminates undesired skews among logic signals, which may cause glitches in internal or external logic. The fixed delay, regardless of programmable interconnect array configuration, simplifies design by ensuring that internal signal skews or races are avoided. The result is simpler design implementation, often in a single pass, without the multiple internal logic placement and routing iterations required for a programmable gate array to achieve design timing objectives.

Timing Delays

Timing delays within the CY7C343/CY7C343B may be easily determined using $Warp2/Warp2+ \$ or $Warp3 \$ software or by the model shown in *Figure 1*. The CY7C343/CY7C343B has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information, the *Warp3* software provides a timing simulator.

Design Recommendations

Operation of the devices described herein with conditions above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure to absolute maximum ratings conditions for extended periods of time may affect device reliability.The CY7C343/CY7C343B contains circuitry to protect device pins from high static voltages or electric fields; however, normal precautions should be taken to avoid applying any voltage higher than maximum rated voltages.

For proper operation, input and output pins must be constrained to the range GND \leq (V_{IN} or V_{OUT}) \leq V_{CC}. Unused inputs must always be tied to an appropriate logic level (either V_{CC} or GND). Each set of V_{CC} and GND pins must be connected together directly at the device. Power supply decoupling capacitors of at least 0.2 μ F must be connected between V_{CC} and GND. For the most effective decoupling, each V_{CC} pin should be separately decoupled to GND, directly at the device. Decoupling capacitors should have good frequency response, such as monolithic ceramic types.

Timing Considerations

Unless otherwise stated, propagation delays do not include expanders. When using expanders, add the maximum expander delay $t_{\rm EXP}$ to the overall delay. Similarly, there is an additional $t_{\rm PIA}$ delay for an input from an I/O pin when compared to a signal from a straight input pin.

When calculating synchronous frequencies, use t_{S1} if all inputs are on the input pins. t_{S2} should be used if data is applied at an I/O pin. If t_{S2} is greater than t_{CO1} , $1/t_{S2}$ becomes the limiting frequency in the data path mode unless $1/(t_{WH} + t_{WL})$ is less than $1/t_{S2}$.

When expander logic is used in the data path, add the appropriate maximum expander delay, t_{EXP} to t_{S1} . Determine which of $1/(t_{WH} + t_{WL})$, $1/t_{CO1}$, or $1/(t_{EXP} + t_{S1})$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the synchronous configuration.

When calculating external asynchronous frequencies, use t_{ASI} if all inputs are on dedicated input pins. If any data is applied to an I/O pin, t_{AS2} must be used as the required set-up time. If $(t_{AS2} + t_{AH})$

is greater than t_{ACOI} , $1/(t_{AS2} + t_{AH})$ becomes the limiting frequency in the data path mode unless $1/(t_{AWH} + t_{AH})$ is less than $1/(t_{AS2} + t_{AH})$.

When expander logic is used in the data path, add the appropriate maximum expander delay, $t_{\rm EXP}$ to $t_{\rm AS1}$. Determine which of $1/(t_{\rm AWH} + t_{\rm AWL})$, $1/t_{\rm ACO1}$, or $1/(t_{\rm EXP} + t_{\rm AS1})$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the asynchronous configuration.

The parameter t_{OH} indicates the system compatibility of this device when driving other synchronous logic with positive input hold times, which is controlled by the same synchronous clock. If t_{OH} is greater than the minimum required input hold time of the subsequent synchronous logic, then the devices are guaranteed to function properly with a common synchronous clock under worst-case environmental and supply voltage conditions.

The parameter t_{AOH} indicates the system compatibility of this device when driving subsequent registered logic with a positive hold time and using the same clock as the CY7C343/CY7C343B.

In general, if t_{AOH} is greater than the minimum required input hold time of the subsequent logic (synchronous or asynchronous), then the devices are guaranteed to function properly under worstcase environmental and supply voltage conditions, provided the clock signal source is the same. This also applies if expander logic is used in the clock signal path of the driving device, but not for the driven device. This is due to the expander logic in the second device's clock signal path adding an additional delay (t_{EXP}), causing the output data from the preceding device to change prior to the arrival of the clock signal at the following device's register.

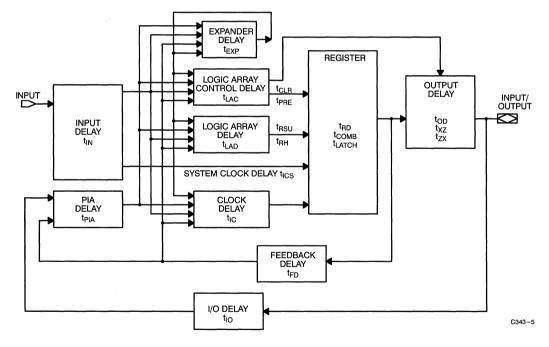


Figure 1. CY7C343/CY7C343B Internal Timing Model

External Synchronous Switching Characteristics^[6] Over Operating Range

				43-12 3B-12		3-15 3B-15		43-20 3B-20	
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD1}	Dedicated Input to Combinatorial	Com'l /Ind		12		15		20	ns
	Output Delay ^[7]	Mil				15		20	1
t _{PD2}	I/O Input to Combinatorial Output	Com'l /Ind		20		25		32	ns
	Delay ^[8]	Mil				25		32	1
t _{PD3}	Dedicated Input to Combinatorial	Com'l /Ind		18		23		30	ns
	Output Delay with Expander Delay ^[9]	Mil	1			23		30	1
t _{PD4}	I/O Input to Combinatorial Output Delay with Expander Delay ^[4, 10]	Com'l /Ind		26		33		42	ns
	Delay with Expander Delay ^[4, 10]	Mil				33		42	1
t _{EA}	Input to Output Enable Delay ^[4, 7]	Com'l /Ind		12		15		20	ns
		Mil				15		20	1
t _{ER}	Input to Output Disable Delay ^[4, 7]	Com'l /Ind		12		15		20	ns
		Mil				15		20	1
t _{CO1}	Synchronous Clock Input to Output	Com'l /Ind		6		7		12	ns
	Delay	Mil				7		12	1
t _{CO2}	Synchronous Clock to Local Feedback	Com'l /Ind		14		17		25	ns
	to Combinatorial Output ^[4, 11]	Mil				17		25	1
t _{S1}	Dedicated Input or Feedback Set-Up Time to Synchronous Clock Input ^[7]	Com'l /Ind	8		10		12		ns
	Time to Synchronous Clock Input ^[7]	Mil			10		12		1
t _{S2}	I/O Input Set-Up Time to Synchronous Clock Input ^[7, 12]	Com'l /Ind	16	1	20		24		ns
		Mil			20		24		1
t _H	Input Hold Time from Synchronous Clock Input ^[7]	Com'l /Ind	0	1	0		0		ns
		Mil			0		0		1
t _{WH}	Synchronous Clock Input HIGH Time	Com'l /Ind	4.5		5		6		ns
		Mil			5		6		1
t _{WL}	Synchronous Clock Input LOW Time	Com'l /Ind	4.5		5		6		ns
		Mil			5		6		1
t _{RW}	Asynchronous Clear Width ^[4, 7]	Com'l /Ind	12		15		20		ns
		Mil			15		20		1
t _{RR}	Asynchronous Clear Recovery Time ^[4, 7]	Com'l /Ind	12		15		20		ns
		Mil			15		20]
t _{RO}	Asynchronous Clear to Registered	Com'l /Ind		12		15		20	ns
	Output Delay ^[7]	Mil				15		20	
t _{PR}	Asynchronous Preset Recovery Time ^[4, 7]	Com'l /Ind	12		15		20		ns
		Mil			15		20		
t _{PO}	Asynchronous Preset to Registered	Com'l /Ind		12		15		20	ns
	Output Delay ^[7]	Mil				15		20	
t _{CF}	Synchronous Clock to Local Feedback	Com'l /Ind		3		3		3	ns
	Input ^[4, 13]	Mil	1			3		3	
t _P	External Synchronous Clock Period	Com'l /Ind	9		10		12		ns
	$(1/f_{MAX3})^{[4]}$	Mil			10		12		
f _{MAX1}	External Maximum Frequency $(1/(t_{CO1} + t_{S1}))^{[4, 14]}$	Com'l /Ind	71.4		58.8		41.6		MHz
	$(1/(t_{CO1} + t_{S1}))^{[4, 14]}$	Mil			58.8		41.6		1

				3-12 8B-12				13-20 3B-20	
Parameter	Description		Min.	Max.	Min.	7C343-15 7C343B-15 Min. Max. 76.9		Max.	Unit
$ \begin{array}{c} f_{MAX2} & \mbox{Internal Local Feedback Maximum} \\ Frequency, lesser of (1/(t_{S1} + t_{CF})) \\ (1/t_{CO1})^{[4, 15]} \end{array} $	Internal Local Feedback Maximum	Com'l /Ind	90.9		76.9		66.6		MHz
	Frequency, lesser of $(1/(t_{S1} + t_{CF}))$ or $(1/t_{CO1})^{[4, 15]}$	Mil			76.9		66.6		
f _{MAX3}	Data Path Maximum Frequency, least of $1/(t_{WL} + t_{WH})$, $1/(t_{S1} + t_{H})$, or $(1/t_{CO1})^{[4, 10]}$	Com'l /Ind	1111.1		100		83.3		MHz
		Mil			100		83.3		1.
f _{MAX4}	Maximum Register Toggle Frequency $(1/(t_{WL} + t_{WH}))^{[4, 17]}$	Com'l /Ind	111.1		100		83.3		MHz
	$(1/(t_{WL} + t_{WH}))^{[4, 17]}$	Mil			100		83.3		1
t _{OH}	Output Data Stable Time from Synchronous Clock Input ^[4, 18]	Com'l /Ind	3		3		3		ns
		Mil			3		3		1
t _{PW}	Asynchronous Preset Width ^[4, 7]	Com'l /Ind	12		15	realizada (m. 1957) 1979 - Alfred Maria	20		ns
		Mil			15		20		1

External Synchronous Switching Characteristics^[6] Over Operating Range (continued)

Shaded area contains preliminary information.

Notes:

7. This specification is a measure of the delay from input signal applied to a dedicated input (44-pin PLCC input pin 9, 11, 12, 13, 31, 33, 34, or 35) to combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function.

When this note is applied to any parameter specification it indicates that the signal (data, asynchronous clock, asynchronous clear, and/or asynchronous preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.

If an input signal is applied to an I/O pin, an additional delay equal to t_{PLA} should be added to the comparable delay for a dedicated input. If expanders are used, add the maximum expander delay t_{EXP} to the overall delay for the comparable delay without expanders.

- This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
- 9. This specification is a measure of the delay from an input signal applied to a dedicated input (44-pin PLCC input pin 9, 11, 12, 13, 31, 33, 34, or 35) to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
- 10. This specification is a measure of the delay from an input signal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
- 11. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all feedback is within the same LAB. This parameter is tested periodically by sampling production material.

- 12. If data is applied to an I/O input for capture by a macrocell register, the I/O pin set-up time minimums should be observed. These parameters are t_{S2} for synchronous operation and t_{AS2} for asynchronous operation.
- 13. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array input. This delay plus the register set-up time, t_{S1}, is the minimum internal period for an internal synchronous state machine configuration. This delay is for feedback within the same LAB. This parameter is tested periodically by sampling production material.
- 14. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can operate. It is assumed that all data inputs and feedback signals are applied to dedicated inputs.
- 15. This specification indicates the guaranteed maximum frequency at which a state machine, with internal-only feedback, can operate. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than 1/t_{CO1}. All feedback is assumed to be local, originating within the same LAB.
- 16. This frequency indicates the maximum frequency at which the device may operate in data path mode. This delay assumes data input signals are applied to dedicated inputs and no expander logic is used.
- 17. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycled.
- 18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.

				3-25 3B-25	7C34 7C343	3-30 3B-30		3-35 3B-35		
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Unit	
t _{PD1}	Dedicated Input to Combinatorial	Com'l /Ind		25		30		35	ns	
	Output Delay ^[7]	Mil		25		30		35		
t _{PD2}	I/O Input to Combinatorial Output	Com'l /Ind		39		44		53	ns	
	Delay ^[8]	Mil		39		44		53		
t _{PD3}	Dedicated Input to Combinatorial	Com'l /Ind		37		44		55	ns	
	Output Delay with Expander Delay ^[9]	Mil		37		44		55		
t _{PD4}	I/O Input to Combinatorial Output	Com'l/ Ind		51		58		73	ns	
	Delay with Expander Delay ^[4, 10]	Mil		51		58		73		
t _{EA}	Input to Output Enable Delay ^[4, 7]	Com'l /Ind		25		30		35	ns	
		Mil		25		30		35		
t _{ER}	Input to Output Disable Delay ^[4, 7]	Com'l/ Ind		25		30		35	ns	
		Mil		25		30		35		
t _{CO1}	Synchronous Clock Input to Output	Com'l/ Ind		14		16		20	ns	
	Delay	Mil		14		16		20		
t _{CO2}	Synchronous Clock to Local Feedback	Com'l/ Ind		30		35		42	ns	
	to Combinatorial Output ^[4, 11]	Mil		30		35		42		
t _{S1}	Dedicated Input or Feedback Set-Up	Com'l/ Ind	15		20		25		ns	
	Time to Synchronous Clock Input ^[7]	Mil	15		20		25			
t _{S2}	I/O Input Set-Up Time to Synchronous Clock Input ^[7, 12]	Com'l/ Ind	30		35		42		ns	
	Clock Input ^[7, 12]	Mil	30		35		42			
t _H	Input Hold Time from Synchronous	Com'l/ Ind	0		0		0		ns	
	Clock Input ^[7]	Mil	0		0		0			
t _{WH}	Synchronous Clock Input HIGH Time	Com'l/ Ind	8		10		12.5		ns	
		Mil	8		10		12.5			
t _{WL}	Synchronous Clock Input LOW Time	Com'l/ Ind	8		10		12.5		ns	
		Mil	8		10		12.5			
t _{RW}	Asynchronous Clear Width ^[4, 7]	Com'l /Ind	25		30		35		ns	
		Mil	25		30		35			
t _{RR}	Asynchronous Clear Recovery Time ^[4, 7]	Com'l/ Ind	25		30		35		ns	
		Mil	25		30		35			
t _{RO}	Asynchronous Clear to Registered	Com'l/ Ind		25		30		35	ns	
	Output Delay ^[7]	Mil		25		30		35		
t _{PR}	Asynchronous Preset Recovery Time ^[4, 7]	Com'l/ Ind	25		30		35		ns	
		Mil	25		30		35			
t _{PO}	Asynchronous Preset to Registered	Com'l/ Ind		25		30		35	ns	
	Output Delay ^[7]	Mil		25		30		35	1	
t _{CF}	Synchronous Clock to Local Feedback	Com'l/ Ind		3		3		5	ns	
	Input ^[4, 13]	Mil		3		3		5		
tp	External Synchronous Clock Period	Com'l/ Ind	16		20		25		ns	
	$(1/f_{MAX3})^{[4]}$	Mil	16		20		25			
f _{MAX1}	External Maximum	Com'l/ Ind	34		27		22.2		MHz	
	Frequency $(1/(t_{CO1} + t_{S1}))^{[4, 14]}$	Mil	34		27		22.2			

External Synchronous Switching Characteristics^[6] Over Operating Range (continued)

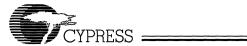
External Synchronous Switching Characteristics ^[6]	Over Operating Range (continued)
---	----------------------------------

			7C343-25 7C343B-25		7C343-30 7C343B-30		7C343-35 7C343B-35		
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Unit
f _{MAX2}	Internal Local Feedback Maximum	Com'l /Ind	55		43		33		MHz
	Frequency, lesser of $(1/(t_{S1} + t_{CF}))$ or $(1/t_{CO1})^{[4, 15]}$	Mil	55		43		33		1
f _{MAX3}	3 Data Path Maximum Frequency, least of	Com'l /Ind	62.5		50		40		MHz
	$\frac{1}{(t_{WL} + t_{WH})}, \frac{1}{(t_{S1} + t_{H})}, \text{ or } (1/t_{CO1})^{[4, 16]}$	Mil	62.5		50		40		1
f _{MAX4}	Maximum Register Toggle Frequency $(1/(t_{WL} + t_{WH}))^{[4, 17]}$	Com'l/Ind	62.5		50		40		MHz
	$(1/(t_{WL} + t_{WH}))^{14, 17}$	Mil	62.5		50		40		1
t _{OH}	Output Data Stable Time from	Com'l/ Ind	3		3		3		ns
Syncl	Synchronous Clock Input ^[4, 18]	Mil	3		3		3		1
t _{PW}	Asynchronous Preset Width ^[4, 7]	Com'l/ Ind	25		30		35		ns
		Mil	25		30		35		1

External Asynchronous Switching Characteristics Over Operating Range^[6]

				7C343-12 7C343B-12		13–15 3B–15	7C343-20 7C343B-20		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Min. Max.		
t _{ACO1}	Asynchronous Clock Input to Output	Com'l/ Ind		12	andra an Agus tá thái	15		20	ns
	Délay ^[7]	Mil				15		20	1
t _{ACO2}	Asynchronous Clock Input to Local Feedback to Combinatorial	Com'l/ Ind		20		25		32	ns
	Output ^[19]	Mil				25		32	1
t _{AS1}	Dedicated Input or Feedback Set-Up	Com'l/ Ind	3		3.5		4		ns
	Time to Asynchronous Clock Input ^[7]	Mil	k a ha ha h		3.5		4		1
t _{AS2}	I/O Input Set-Up Time to	Com'l/ Ind	12		13.5		15		ns
	Asynchronous Clock Input ^[7]	Mil			13.5		15		1
t _{AH}	Input Hold Time from Asynchronous	Com'l/ Ind	4		4.5		5		ns
	Clock Input ^[7]	Mil			4.5		5		1
t _{AWH}	Asynchronous Clock Input HIGH	Com'l /Ind	8		8.5	19 L.M.	9		ns
	Time ^[7]	Mil	145 <u>1</u> 16, 11 ·		8.5		9		7
t _{AWL}	Asynchronous Clock Input LOW	Com'l/ Ind	6		6.5		7		ns
	Time ^[7, 20]	Mil			6.5		7		1
t _{ACF}	Asynchronous Clock to Local Feedback Input ^[4, 21]	Com'l /Ind		9		11		13	ns
		Mil				11		13	1
t _{AP}	External Asynchronous Clock Period	Com'l/ Ind	14	Aligneti	15		16		ns
	$(1/f_{MAXA4})^{[4]}$	Mil			15		16		1
f _{MAXA1}	External Maximum Frequency in	Com'l/ Ind	66.6		54.0		41.6		MHz
	Asynchronous Mode $1/(t_{ACO1} + t_{AS1})^{[4, 22]}$	Mil			54.0		41.6		
f _{MAXA2}	Maximum Internal Asynchronous	Com'l/ Ind	71.4		66.6		58.8		MHz
	Frequency ^[4, 23]	Mil	No. Soland		66.6		58.8		-
f _{MAXA3}	Data Path Maximum Frequency in	Com'l/ Ind	71.4		66.6		50		MHz
	Data Path Maximum Frequency in Asynchronous Mode ^[4, 24]	Mil			66.6		50	1	1
f _{MAXA4}	Maximum Asynchronous Register	Com'l/ Ind	71.4		66.6		62.5		MHz
	Toggle Frequency $1/(t_{AWH} + t_{AWL})^{[4, 25]}$	Mil		le sets	66.6		62.5		1

				3–25 3B–25		3-30 3B-30		3-35 3B-35		
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Unit	
t _{AOH}	Output Data Stable Time from	Com'l/ Ind	12		12		15		ns	
	Asynchronous Clock Input ^[4, 26]	Mil			12		15		1	
t _{ACO1}	Asynchronous Clock Input to Output	Com'l/ Ind		25		30		35	ns	
	Delay ^[7]	Mil		25		30		35	1	
t _{ACO2}	Asynchronous Clock Input to Local	Com'l/ Ind		40	1	46		55	ns	
	Feedback to Combinatorial Output ^[19]	Mil		40		46		55		
t _{AS1}	Dedicated Input or Feedback Set-Up	Com'l/ Ind	5		6		8		ns	
	Time to Asynchronous Clock Input ^[7]	Mil	5		6		8		1	
t _{AS2}	I/O Input Set-Up Time to	Com'l/ Ind	20		25		30		ns	
	Asynchronous Clock Input ^[7]	Mil	20		25		30		1	
t _{AH}	Input Hold Time from Asynchronous	Com'l/ Ind	6		8		10		ns	
	Clock Input ^[7]	Mil	6		8		10		1	
t _{AWH}	Asynchronous Clock Input HIGH	Com'l/ Ind	11		14		16		ns	
	Time ^[7]	Mil	11		14		16			
t _{AWL}	Asynchronous Clock Input LOW	Com'l/ Ind	9		11		14		ns	
	Time ^[7, 20]	Mil	9		11		14			
t _{ACF}	Asynchronous Clock to Local Feedback Input ^[4, 21]	Com'l/ Ind		15		18		22	ns	
		Mil		15		18		22	1	
t _{AP}	External Asynchronous Clock Period	Com'l/ Ind	20		25		30		ns	
	$(1/f_{MAXA4})^{[4]}$	Mil	20		25		30		1	
f _{MAXA1}	External Maximum Frequency in	Com'l/ Ind	33		27		23		MHz	
	Asynchronous Mode $1/(t_{ACO1} + t_{AS1})^{[4, 22]}$	Mil	33		27		23		7	
f _{MAXA2}	Maximum Internal Asynchronous	Com'l/ Ind	50		40		33		MHz	
	Frequency ^[4, 23]	Mil	50	İ	40		33		1	
f _{MAXA3}	Data Path Maximum Frequency in Asynchronous Mode ^[4, 24]	Com'l/ Ind	40	t	33		28		MHz	
1	Asynchronous Mode ^[4, 24]	Mil	40	İ	33		28		7	
f _{MAXA4}	Maximum Asynchronous Register Toggle	Com'l/ Ind	50	1	40	1	33		MHz	
	Frequency $1/(t_{AWH} + t_{AWL})^{[4, 25]}$	Mil	50	t	40		33		1	
t _{AOH}	Output Data Stable Time from	Com'l / Ind	15	t	15		15		ns	
	Asynchronous Clock Input ^[4, 26]	Mil	15	t	15		15		1	


External Asynchronous Switching Characteristics Over Operating Range^[6] (continued)

Notes:

- 19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input. The clock signal is applied to a dedicated input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production material.
- 20. This parameter is measured with a positive-edge triggered clock at the register. For negative edge triggering, the t_{AWH} and t_{AWL} parameters must be swapped. If a given input is used to clock multiple registers with both positive and negative polarity, t_{AWH} should be used for both t_{AWH} and t_{AWL} .

22. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that all data inputs, clock inputs, and feedback signals are applied to dedicated inputs, and that no expander logic is employed in the clock signal path or data path.

^{21.} This specification is a measure of the delay associated with the internal register feedback path for an asynchronous clock to LAB logic array input. This delay plus the asynchronous register set-up time, t_{AS1}, is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay is for feedback within the same LAB, assumes no expander logic in the clock path, and assumes that the clock input signal is applied to a dedicated input pin. This parameter is tested periodically by sampling production material.

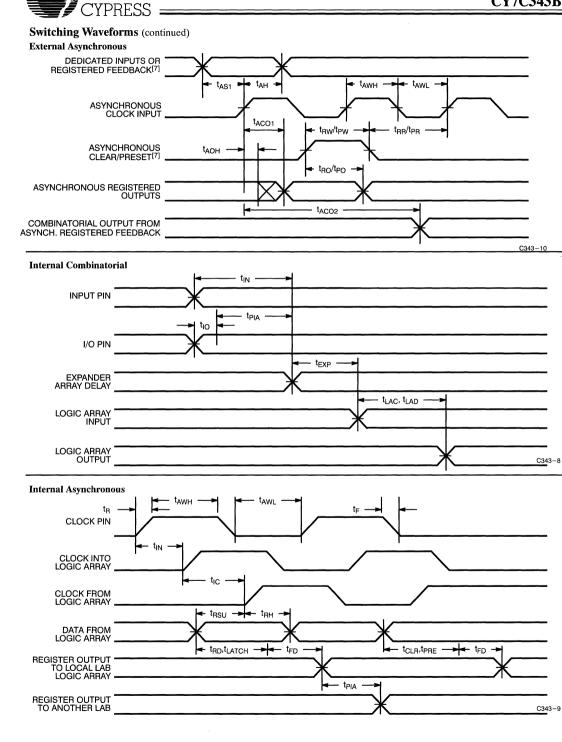
Internal Switching Characteristics Over Operating Range^[6]

				(3-12 3B-12		13–15 3B–15	7C343-20 7C343B-20		[
Parameter	Description		Min.	Max.	Min,	Max.	Min.	Max.	Unit	
t _{IN}	Dedicated Input Pad and Buffer Delay	Com'l / Ind		2.5		3		4	ns	
		Mil		for et a		3		4	1	
t _{IO}	I/O Input Pad and Buffer Delay	Com'l/ Ind		2.5		3		4	ns	
		Mil				3		4	1	
t _{EXP}	Expander Array Delay	Com'l/ Ind		6		8		10	ns	
		Mil				8		10	1	
t _{LAD}	Logic Array Data Delay	Com'l/ Ind		6		8	1	10	ns	
		Mil				8		10	1	
t _{LAC}	Logic Array Control Delay	Com'l/ Ind		5		6		8	ns	
110		Mil				6		8	1	
t _{OD}	Output Buffer and Pad Delay	Com'l/ Ind		3		3		4	ns	
		Mil	a de la composición de la composición de la composición de la composición de la composición de la composición d		Sec. 1	3	1	4	1	
t _{ZX}	Output Buffer Enable Delay ^[27]	Com'l/ Ind		5		6		8	ns	
2.1		Mil				6		8	1	
t _{XZ}	Output Buffer Disable Delay	Com'l/ Ind		5		6		8	ns	
		Mil				6		8		
t _{RSU}	Register Set-Up Time Relative to Clock	Com'l/ Ind	2	en de la composition br>La composition de la c	3	n inte	4		ns	
Roo	Signal at Register	Mil			3		4	+	1	
t _{RH}	Register Hold Time Relative to Clock	Com'l/ Ind	3		3.5		4		ns	
i di i	Signal at Register	Mil			3.5		4	+	1	
tLATCH	Flow-Through Latch Delay	Com'l /Ind		1			1	2	ns	
LAICH		Mil	nan baa Tablichte			1		2	-	
t _{RD}	Register Delay	Com'l/ Ind		1		1 1		$\frac{1}{1}$	ns	
-RD		Mil	na ann an Air.				1	1	1	
t _{COMB}	Transparent Mode Delay ^[28]	Com'l/ Ind		1		1	1	2	ns	
COMD		Mil				1 1	+	2		
t _{CH}	Clock HIGH Time	Com'l/ Ind	3		4	a an <u>an</u> an an Al fil agus an an	6		ns	
-Ch		Mil			4		6		1	
t _{CL}	Clock LOW Time	Com'l/ Ind	3		4		6		ns	
-CL		Mil		i den an trait de Chief, fregi es	4		6		1	
t _{IC}	Asynchronous Clock Logic Delay	Com'l/ Ind		5		7	1	12	ns	
10		Mil			ngeloont Televisedensel	7		12		
t _{ICS}	Synchronous Clock Delay	Com'l/ Ind	ملي من الكليمي موطق (1000	0.5	ande teger por	0.5	+	2	ns	
105		Mil				0.5	1	2	1	
t _{FD}	Feedback Delay	Com'l/ Ind		$\frac{1}{1}$		1	1	$\frac{1}{1}$	ns	
10		Mil				1 1		1	1	
t _{PRE}	Asynchronous Register Preset Time	Com'l/ Ind		3		3	+	4	ns	
		Mil				3		4	1	
t _{CLR}	Asynchronous Register Clear Time	Com'l/ Ind		3		3	1	4	ns	
CLIN	,	Mil	en de la Frankriger			3	+	4	1	
t _{PCW}	Asynchronous Preset and Clear Pulse	Com'l /Ind	2	1	3		4	1	ns	
1 0 11	Width	Mil			3		4	1	- 115	
t _{PCR}	Asynchronous Preset and Clear	Com'l/ Ind	2	<mark>an sa sins</mark> Na Nasari	3	antes de la composition Antes de la composition de la composition de la composition de la composition de la composition de la compositio	4	+	ns	
ICA	Recovery Time	Mil			3		4	+		
t _{PIA}	Programmable Interconnect Array	Com'l/ Ind		8		10	+	12		
-1.1W	Delay Time	Mil				10	+	12	┨ ‴	



Internal Switching Characteristics Over Operating Range^[6] (continued)

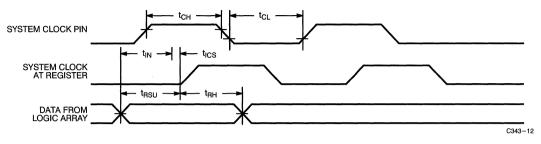
				13-25 3B-25		3-30 3B-30		13-35 3B-35	
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{IN}	Dedicated Input Pad and Buffer Delay	Com'l /Ind		5		7		9	ns
		Mil		5		7		9	1
t _{IO}	I/O Input Pad and Buffer Delay	Com'l/ Ind		5		5		7	ns
		Mil	1	5		5		7	1
t _{EXP}	Expander Array Delay	Com'l/ Ind		12		14	1	20	ns
		Mil		12		14		20	1
t _{LAD}	Logic Array Data Delay	Com'l/ Ind		12		14	1	16	ns
		Mil		12	<u> </u>	14	<u> </u>	16	1
t _{LAC}	Logic Array Control Delay	Com'l/ Ind	1	10	1	12		13	ns
		Mil		10		12	1	13	1
top	Output Buffer and Pad Delay	Com'l/Ind		5		5		6	ns
		Mil		5		5		6	
t _{ZX}	Output Buffer Enable Delay ^[27]	Com'l /Ind		10	1	11	1	13	ns
LA	1	Mil		10		11		13	
t _{XZ}	Output Buffer Disable Delay	Com'l /Ind		10	1	11	<u> </u>	13	ns
AL		Mil		10		11	<u> </u>	13	-
t _{RSU}	Register Set-Up Time Relative to Clock	Com'l/ Ind	6		8		10		ns
-130	Signal at Register	Mil	6		8		10		
t _{RH}	Register Hold Time Relative to Clock	Com'l/ Ind	6		8		12		ns
KI	Signal at Register	Mil	6		8		12	<u> </u>	
t _{LATCH}	Flow-Through Latch Delay	Com'l /Ind		3		4		4	ns
LAICH	r low-rinough Laten Delay	Mil		3		4		4	113
t _{RD}	Register Delay	Com'l /Ind		1		2	<u> </u>	2	ns
'RD	Register Delay	Mil	<u> </u>	$\frac{1}{1}$	<u> </u>	2	<u> </u>	2	
t _{COMB}	Transparent Mode Delay ^[28]	Com'l/ Ind		3		4	{	4	ns
COMB	Transparent Mode Delay.	Mil		3		4		4	115
t _{CH}	Clock HIGH Time	Com'l /Ind	8	<u> </u>	10		12.5		ns
чсп		Mil	8		10	<u> </u>	12.5		
t _{CL}	Clock LOW Time	Com'l /Ind	8		10	<u> </u>	12.5		ns
·CL	Clock LOW Time	Mil	8		10		12.5		11.3
t _{IC}	Asynchronous Clock Logic Delay	Com'l /Ind	0	14	10	16	12.5	18	ns
чC	Asynchronous Clock Logic Delay	Mil		14		16		18	11.5
t _{ICS}	Synchronous Clock Delay	Com'l /Ind	<u> </u>	2		2		3	ns
ucs	Synemonous Clock Delay	Mil		2		2	<u>├</u> ────	3	113
t _{FD}	Feedback Delay	Com'l /Ind		1		1		2	ns
чFD		Mil		1		1 1 1		2	
toon	Asynchronous Register Preset Time	Com'l /Ind		5		$\frac{1}{6}$		7	ne
tPRE	Asynchronous Register Freset Time	Mil		5	 	6		7	ns
t	Agunahranaua Basistar Claar Time	Com'l /Ind		5		6		7	
t _{CLR}	Asynchronous Register Clear Time	Mil		5		6	ļ	$\frac{1}{7}$	ns
+	Agringhronous Dreast and Olars D. 1	(6	0	7	<u> _'</u>	
t _{PCW}	Asynchronous Preset and Clear Pulse Width	Com'l /Ind	5	ļ	6		7		ns
		Mil	5	 	6	ļ		ļ	<u> </u>
t _{PCR}	Asynchronous Preset and Clear Recovery Time	Com'l/ Ind	5	ļ	6	ļ	7	ļ	ns
		Mil	5		6	16	7	L	
t _{PIA}	Programmable Interconnect Array Delay Time	Com'l/ Ind		14		16		20	ns
	Denay Time	Mil		14		16		20	



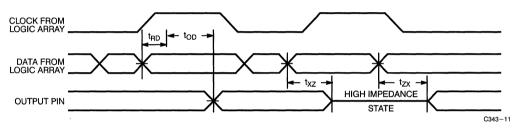
Switching Waveforms

Notes:

- 23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate. This parameter is determined by the lesser of $(1/t_{ACF} + t_{AS1}))$ or $(1/(t_{AWH} + t_{AWL}))$. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1/t_{ACO1}$.
- as this frequency is less than I'_{ACOI} . 4. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined by the least of $1/(t_{AWH} + t_{AWI})$, $1/(t_{ASI} + t_{AH})$ or $1/t_{ACOI}$. It assumes data and clock input signals are applied to dedicated input pins and no expander logic is used.
- 25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode by a clock signal applied to an external dedicated input pin.
- 26. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input.
- 27. Sample tested only for an output change of 500 mV.
- 28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial operation.



CY7C343 CY7C343B



Switching Waveforms (continued)

Internal Synchronous

Output Mode

3

•

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C343B-12HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
}	CY7C343B-12JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	м.
15	CY7C343B-15HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C343B-15JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C343B-15HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
20	CY7C343-20JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	Commercial/Industrial
	CY7C343B-20HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	
	CY7C343B-20JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C343B-20HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
25	CY7C343-25HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C343-25JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C343B-25HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	
	CY7C343B-25JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	
	СҮ7С343-25НМВ	H67	44-Pin Windowed Leaded Chip Carrier	Military
	CY7C343B-25HMB	H67	44-Pin Windowed Leaded Chip Carrier	
30	CY7C343-30HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C343-30JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C343B-30HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	
	CY7C343B-30JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C343-30HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
	CY7C343B-30HMB	H67	44-Pin Windowed Leaded Chip Carrier	
35	CY7C343-35HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C343-35JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C343B-35HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	
	CY7C343B-35JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C343-35HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
	CY7C343B-35HMB	H67	44-Pin Windowed Leaded Chip Carrier	

CY7C343 CY7C343B

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V_{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

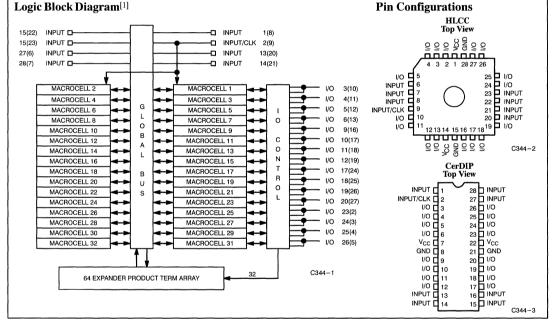
Switching Characteristics

Parameters	Subgroups
t _{PD1}	7, 8, 9, 10, 11
t _{PD2}	7, 8, 9, 10, 11
t _{PD3}	7, 8, 9, 10, 11
t _{CO1}	7, 8, 9, 10, 11
t _S	7, 8, 9, 10, 11
t _H	7, 8, 9, 10, 11
t _{ACO1}	7, 8, 9, 10, 11
t _{ACO2}	7, 8, 9, 10, 11
t _{AS}	7, 8, 9, 10, 11
t _{AH}	7, 8, 9, 10, 11

Document #: 38-00128-G

CY7C344 CY7C344B

Features


- High-performance, high-density replacement for TTL, 74HC, and custom logic
- 32 macrocells, 64 expander product terms in one LAB
- 8 dedicated inputs, 16 I/O pins
- 0.8-micron double-metal CMOS EPROM technology (CY7C344)
- Advanced 0.65-micron CMOS technology to increase performance (CY7C344B)
- 28-pin 300-mil DIP, cerDIP or 28-pin HLCC, PLCC package

Functional Description

Available in a 28-pin 300-mil DIP or windowed J-leaded ceramic chip carrier (HLCC), the CY7C344/CY7C344B represents the densest EPLD of this size. Eight dedicated inputs and 16 bidirectional I/O pins communicate to one logic arrayblock. In the CY7C344 LAB there are 32 macrocells and 64 expander product terms. When an I/O macrocell is used as an input, two expanders are used to create an input path. Even if all of the I/O pins are driven by macrocell registers, there are still 16 "buried" registers available. All inputs, macrocells, and I/O pins are interconnected within the LAB.

32-Macrocell MAX[®] EPI

The speed and density of the CY7C344/CY7C344B makes it a natural for all types of applications. With just this one device, the designer can implement complex state machines, registered logic, and combinatorial "glue" logic, without using multiple chips. This architectural flexibility allows the CY7C344/CY7C344B to replace multichip TTL solutions, whether they are synchronous, asynchronous, combinatorial, or all three.

Selection Guide

		7C344B-10	7C344B-12	7C344-15 7C344B-15	7C344-20 7C344B-20	7C344-25 7C344B-25
Maximum Access Time	(ns)	10	12	15	20	25
Maximum	Commercial	200	200	200	200	200
Operating Current (mA)	Military		220		220	220
	Industrial		220	220	220	220
Maximum Standby	Commercial	150	150	150	150	150
Current (mA)	Military	-	170		170	170
L	Industrial		170	170	170	170

Shaded area contains preliminary information Note:

1. Numbers in () refer to J-leaded packages.

Maximum Ratings

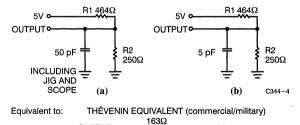
(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature withPower Applied $0^{\circ}C$ to $+70^{\circ}C$
Maximum Junction Temperature (Under Bias) 150°C
Supply Voltage to Ground Potential $\dots -2.0V$ to $+7.0V$
Maximum Power Dissipation 1500 mW
DC V _{CC} or GND Current 500 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)>2001V

DC Output Current, per Pin -25 mA to +25 mA DC Input Voltage^[2] -3.0V to +7.0V DC Program Voltage +13.0V

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ±5%
Industrial	-40° C to $+85^{\circ}$ C	5V ±10%
Military	-55°C to +125°C (Case)	5V ±10%


Electrical Characteristics Over the Operating Range^[3]

Parameter	Description	Test Condition	ns	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8 mA$			0.45	V
V _{IH}	Input HIGH Level			2.2	V _{CC} +0.3	V
V _{IL}	Input LOW Level			-0.3	0.8	V
I _{IX}	Input Current	$GND \leq V_{IN} \leq V_{CC}$		-10	+10	μΑ
I _{OZ}	Output Leakage Current	$V_0 = V_{CC} \text{ or } GND$			+40	μA
I _{OS}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT} = 0.5V^{[4, 5]}$]	-30	-90	mA
I _{CC1}	Power Supply	$V_{I} = V_{CC} \text{ or GND} (\text{No Load})$	Commercial		150	mA
	Current (Standby)		Military/Industrial		170	mA
I _{CC2}	Power Supply Current	$V_{I} = V_{CC} \text{ or GND (No Load)}$ f = 1.0 MHz ^[4, 6]	Commercial		200	mA
		$f = 1.0 \text{ MHz}^{[4, 6]}$ Military/Industrial			220	mA
t _R	Recommended Input Rise Time		,		100	ns
t _F	Recommended Input Fall Time				100	ns

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 2V, f = 1.0 \text{ MHz}$	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 2.0V, f = 1.0 MHz$	10	pF

AC Test Loads and Waveforms^[7]

ALL INPUT PULSES 3.0V GND 6 ns t_R t_F t

- Notes:
- 2. Minimum DC input is -0.3V. During transitions, the inputs may undershoot to -2.0V for periods less than 20 ns.

• 1.75V

- 3. Typical values are for $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.
- 4. Guaranteed by design but not 100% tested.

OUTPUT •

- 5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation.
- Measured with device programmed as a 16-bit counter.
 Part (a) in AC Test Load and Waveforms is used for all pa

Part (a) in AC Test Load and Waveforms is used for all parameters except t_{ER} and t_{XZ} , which is used for part (b) in AC Test Load and Waveforms. All external timing parameters are measured referenced to external pins of the device.

C344-6

Timing Delays

Timing delays within the CY7C344/CY7C344B may be easily determined using $Warp2^{m}/Warp2^{+}$, or $Warp3^{m}$ software or by the model shown in *Figure 1*. The CY7C344/CY7C344B has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information, the *Warp3* software provides a timing simulator.

Design Recommendations

Operation of the devices described herein with conditions above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this datasheet is not implied. Exposure to absolute maximum ratings conditions for extended periods of time may affect device reliability. The CY7C344/CY7C344B contains circuitry to protect device pins from high-static voltages or electric fields; however, normal precautions should be taken to avoid applying any voltage higher than maximum rated voltages.

For proper operation, input and output pins must be constrained to the range GND \leq (V_{IN} or V_{OUT}) \leq V_{CC}. Unused inputs must always be tied to an appropriate logic level (either V_{CC} or GND). Each set of V_{CC} and GND pins must be connected together directly at the device. Power supply decoupling capacitors of at least 0.2 µF must be connected between V_{CC} and GND. For the most effective decoupling, each V_{CC} pin should be separately decoupled.

Timing Considerations

Unless otherwise stated, propagation delays do not include expanders. When using expanders, add the maximum expander delay $t_{\rm EXP}$ to the overall delay.

When calculating synchronous frequencies, use t_{S1} if all inputs are on the input pins. t_{S2} should be used if data is applied at an I/O pin. If t_{S2} is greater than t_{CO1} , $1/t_{S2}$ becomes the limiting frequency in the data-path mode unless $1/(t_{WH} + t_{WL})$ is less than $1/t_{S2}$. When expander logic is used in the data path, add the appropriate maximum expander delay, t_{EXP} to t_{S1} . Determine which of $1/(t_{WH} + t_{WL})$, $1/t_{CO1}$, or $1/(t_{EXP} + t_{S1})$ is the lowest frequency. The lowest of these frequencies is the maximum data-path frequency for the synchronous configuration.

When calculating external asynchronous frequencies, use t_{AS1} if all inputs are on dedicated input pins. If any data is applied to an I/O pin, t_{AS2} must be used as the required set-up time. If $(t_{AS2} + t_{AH})$ is greater than t_{ACO1} , $1/(t_{AS2} + t_{AH})$ becomes the limiting frequency in the data-path mode unless $1/(t_{AWH} + t_{AWL})$ is less than $1/(t_{AS2} + t_{AH})$.

When expander logic is used in the data path, add the appropriate maximum expander delay, t_{EXP} to t_{AS1} . Determine which of $1/(t_{AWH} + t_{AWL})$, $1/(t_{AC01}$, or $1/(t_{EXP} + t_{AS1})$ is the lowest frequency. The lowest of these frequencies is the maximum data-path frequency for the asynchronous configuration.

The parameter t_{OH} indicates the system compatibility of this device when driving other synchronous logic with positive input hold times, which is controlled by the same synchronous clock. If t_{OH} is greater than the minimum required input hold time of the subsequent synchronous logic, then the devices are guaranteed to function properly with a common synchronous clock under worst-case environmental and supply voltage conditions.

The parameter t_{AOH} indicates the system compatibility of this device when driving subsequent registered logic with a positive hold time and using the same clock as the CY7C344/CY7C344B.

In general, if t_{AOH} is greater than the minimum required input hold time of the subsequent logic (synchronous or asynchronous), then the devices are guaranteed to function properly under worstcase environmental and supply voltage conditions, provided the clock signal source is the same. This also applies if expander logic is used in the clock signal path of the driving device, but not for the driven device. This is due to the expander logic in the second device's clock signal path adding an additional delay (t_{EXP}), causing the output data from the preceding device to change prior to the arrival of the clock signal at the following device's register.

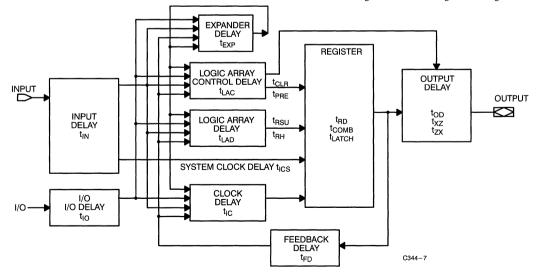


Figure 1. CY7C344/CY7C344B Timing Model

External Synchronous Switching Characteristics^[7] Over Operating Range

			7C34	4B-10	7C34	4B-12		44–15 4B–15	
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD1}	Dedicated Input to Combinatorial Output Delay ^[8]	Com'l /Ind		10		12		15	ns
		Mil				12		15	1
t _{PD2}	I/O Input to Combinatorial Output Delay ^[9]	Com'l/Ind		10		12	1	15	ns
		Mil				12	1	15	1
t _{PD3}	Dedicated Input to Combinatorial Output Delay with Expander Delay ^[10]	Com'l /Ind		16		18		30	ns
	with Expander Delay ^[10]	Mil				18		30	1
t _{PD4}	I/O Input to Combinatorial Output Delay with	Com'l/Ind		16		18	1	30	ns
	Expander Delay ^[4, 11]	Mil				18		30	1
t _{EA}	Input to Output Enable Delay ^[4]	Com'l/Ind		10		12		20	ns
		Mil				12		20	1
t _{ER}	Input to Output Disable Delay ^[4]	Com'l /Ind	and a	10		12		20	ns
		Mil	4.0			12		20	1
t _{CO1}	Synchronous Clock Input to Output Delay	Com'l /Ind	para ta di	5	at a g	6		10	ns
		Mil			1.214.3	6		10	1
t _{CO2}	Synchronous Clock to Local Feedback to Combina- torial Output ^[4, 12]	Com'l /Ind		10	le de	12		20	ns
	torial Output ^[4, 12]	Mil				12		20	1
ts	Dedicated Input or Feedback Set-Up Time to	Com'l/Ind	6		8	fter staff.	10		ns
	Synchronous Clock Input	Mil			8		10		1
t _H	Input Hold Time from Synchronous Clock Input ^[7]	Com'l /Ind	0	•	0		0		ns
		Mil			0		0		1
t _{WH}	Synchronous Clock Input HIGH Time ^[4]	Com'l/Ind	4		4.5		6		ns
		Mil			4.5		6		1
t _{WL}	Synchronous Clock Input LOW Time ^[4]	Com'l /Ind	4		4.5		6		ns
		Mil			4.5		6		1
t _{RW}	Asynchronous Clear Width ^[4]	Com'l /Ind	10		12	1	20		ns
		Mil			12		20		1
t _{RR}	Asynchronous Clear Recovery Time ^[4]	Com'l /Ind	10		12		20		ns
		Mil	- Andrea		12		20		1
t _{RO}	Asynchronous Clear to Registered Output Delay ^[4]	Com'l /Ind		10		12		15	ns
		Mil	4.5			12		15	1
t _{PW}	Asynchronous Preset Width ^[4]	Com'l /Ind	10		12		20		ns
		Mil	en en en en en en en en en en en en en e		12		20		1
t _{PR}	Asynchronous Preset Recovery Time ^[4]	Com'l /Ind	10		12	100 A. A.	20		ns
		Mil			12		20	1	1
t _{PO}	Asynchronous Preset to Registered Output	Com'l /Ind		10		12		15	ns
10	Délay ^[4]	Mil			1 2 1 2	12		15	1
t _{CF}	Synchronous Clock to Local Feedback Input ^[4, 13]	Com'l /Ind	+	3		3		4	ns
۰CF	Synemonous Clock to Local recuback input.	Mil				3	+	4	- "
tp	External Synchronous Clock Period (1/f _{MAX3}) ^[4]	Com'l/Ind	8		9		13	+	ns
۰r	External Synemonous Clock Lenou (1/1MAX3)	Mil			9	<u> </u>	13	+	- "
fMAX1	External Maximum Frequency $(1/(t_{CO1} + t_S))^{[4, 14]}$	Com'l/Ind	90.9		71.4	<u> </u>	50.0	 	MH
f_{MAX1}	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	Mil			71.4	-	50.0	+	+

			7C344B-10		7C344B-12		7C344-15 7C344B-15		
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Unit
f _{MAX2}	Maximum Frequency with Internal Only Feedback $(1/(t_{CF} + t_S))^{[4, 15]}$	Com'l/Ind	111.1		90.9		71.4		MHz
	$(1/(t_{CF} + t_S))^{[4, 15]}$	Mil			90.9		71.4		
f _{MAX3}	Data Path Maximum Frequency, least of $1/(t_{WL} + t_{WH})$, $1/(t_S + t_H)$, or $(1/t_{CO1})^{[4, 16]}$	Com'l/Ind	125.0		111.1		83.3		MHz
	t_{WH}), 1/(t_{S} + t_{H}), or (1/ t_{CO1}) ^[4, 10]	Mil			111.1		83.3		
f _{MAX4}	Maximum Register Toggle Frequency 1/(t _{WL} +	Com'l/Ind	125.0		111.1	1	83.3		MHz
	t _{WH}) ^[4, 17]	Mil		1	111.1	1	83.3		
t _{OH}	Output Data Stable Time from Synchronous Clock	Com'l/ Ind	3		3		3		ns
	Input ^[4, 18]	Mil			3	1	3		

External Synchronous Switching Characteristics^[7] Over Operating Range (continued)

Shaded area contains preliminary information.

Notes:

- This parameter is the delay from an input signal applied to a dedicated input pin to a combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function.
- This parameter is the delay associated with an input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
- 10. This parameter is the delay associated with an input signal applied to a dedicated input pin to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
- 11. This parameter is the delay associated with an input signal applied to an I/O macrocell pin to any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
- 12. This specification is a measure of the delay from synchronous register clock input to internal feedback of the register output signal to a combinatorial output for which the registered output signal is used as an input. This parameter assumes no expanders are used in the logic of the combinatorial output and the register is synchronously clocked. This parameter is tested periodically by sampling production material.

- 13. This specification is a measure of the delay associated with the internal register feedback path. This delay plus the register set-up time, ts, is the minimum internal period for an internal state machine configuration. This parameter is tested periodically by sampling production material.
- 14. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external only feedback can operate.
- 15. This specification indicates the guaranteed maximum frequency at which a state machine with internal-onlyfeedback can operate. If register output states must also control external points, this frequency can still be observed as long as it is less than 1/t_{CO1}. This specification assumes no expander logic is used. This parameter is tested periodically by sampling production material.
- 16. This frequency indicates the maximum frequency at which the device may operate in data-path mode (dedicated input pin to output pin). This assumes that no expander logic is used.
- 17. This specification indicates the guaranteed maximum frequency in synchronous mode, at which an individual output or buried register can be cycled by a clock signal applied to either a dedicated input pin or an I/O pin.
- This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.

				14-20 4B-20		14–25 4B–25	
Parameter	Description		Min.	Max.	Min.	Max.	Uni
t _{PD1}	Dedicated Input to Combinatorial Output Delay ^[8]	Com'l /Ind		20		25	ns
		Mil		20		25	1
t _{PD2}	I/O Input to Combinatorial Output Delay ^[9]	Com'l/Ind		20		25	ns
		Mil		20		25	
t _{PD3}	Dedicated Input to Combinatorial Output Delay with Ex-	Com'l /Ind		30		40	ns
	pander Delay ^[10]	Mil		30		40	1
t _{PD4}	I/O Input to Combinatorial Output Delay with Expander	Com'l/Ind		30		40	ns
	Delay ^[4, 11]	Mil		30		40	1
t _{EA}	Input to Output Enable Delay ^[4]	Com'l/Ind		20		25	ns
		Mil		20		25	1
t _{ER}	Input to Output Disable Delay ^[4]	Com'l /Ind		20		25	ns
		Mil		20		25	1
t _{CO1}	Synchronous Clock Input to Output Delay	Com'l /Ind		12		15	ns
		Mil		12		15	1
t _{CO2}	Synchronous Clock to Local Feedback to Combinatorial	Com'l /Ind		22		29	ns
	Output ^[4, 12]	Mil		22		29	1
ts	Dedicated Input or Feedback Set-Up Time to Synchro-	Com'l/Ind	12		15		ns
	nous Clock Input	Mil	12		15		1
t _H	Input Hold Time from Synchronous Clock Input ^[7]	Com'l /Ind	0		0		ns
		Mil	0		0		1
t _{WH}	Synchronous Clock Input HIGH Time ^[4]	Com'l/Ind	7		8		ns
		Mil	7		8		1
t _{WL}	Synchronous Clock Input LOW Time ^[4]	Com'l /Ind	7		8		ns
		Mil	7		8		1
t _{RW}	Asynchronous Clear Width ^[4]	Com'l /Ind	20		25		ns
		Mil	20		25		1
t _{RR}	Asynchronous Clear Recovery Time ^[4]	Com'l /Ind	20		25		ns
		Mil	20		25		1
t _{RO}	Asynchronous Clear to Registered Output Delay ^[4]	Com'l/Ind	1	20		25	ns
		Mil		20	1	25	1
t _{PW}	Asynchronous Preset Width ^[4]	Com'l /Ind	20		25		ns
		Mil	20		25	1	1
t _{PR}	Asynchronous Preset Recovery Time ^[4]	Com'l /Ind	20	1	25	1	ns
-		Mil	20	1	25	1	1
t _{PO}	Asynchronous Preset to Registered Output	Com'l /Ind	1	20		25	ns
-	Delay ^[4]	Mil	1	20	1	25	1
t _{CF}	Synchronous Clock to Local Feedback Input ^[4, 13]	Com'l /Ind		4		7	ns
		Mil		4	1	7	1
tp	External Synchronous Clock Period (1/f _{MAX3}) ^[4]	Com'l/Ind	14	1	16	<u> </u>	ns
-	,				1	1	

External Synchronous Switching Characteristics^[7] Over Operating Range (continued)

				4-20 4B-20	7C344-25 7C344B-25			
Parameter	Description			Max.	Min.	Max.	Unit	
f _{MAX1}	External Maximum Frequency $(1/(t_{CO1} + t_S))^{[4, 14]}$	Com'l/Ind	41.6		33.3		MHz	
		Mil	41.6		33.3		1	
f _{MAX2}	Maximum Frequency with Internal Only Feedback $(1/(t_{CF} + t_{S}))^{[4, 15]}$	Com'l/Ind	62.5		45.4		MHz	
	$(1/(t_{\rm CF} + t_{\rm S}))^{[4, 15]}$	Mil	62.5		45.4		1	
f _{MAX3}	Data Path Maximum Frequency, least of $1/(t_{WL} + t_{WH})$, $1/(t_S + t_H)$, or $(1/t_{CO1})^{[4, 16]}$	Com'l/Ind	71.4		62.5		MHz	
	$1/(t_{\rm S} + t_{\rm H})$, or $(1/t_{\rm CO1})^{14, 10}$	Mil	71.4		62.5		1	
f _{MAX4}	Maximum Register Toggle Frequency $1/(t_{WL} + t_{WH})^{[4, 17]}$	Com'l/Ind	71.4		62.5		MHz	
		Mil	71.4		62.5		1	
t _{OH}	Output Data Stable Time from Synchronous Clock Input ^[4, 18]	Com'l/ Ind	3		3		ns	
	Synchronous Clock Input ^[4, 18]	Mil	3		3		1	

External Synchronous Switching Characteristics^[7] Over Operating Range (continued)

External Asynchronous Switching Characteristics Over Operating Range^[7]

			7C344	B-10	7C34	4B-12	7C344-15 7C344B-15		
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{ACO1}	Asynchronous Clock Input to Output Delay	Com'l/ Ind		10		12		15	ns
		Mil		, and a start		12		15	
t _{ACO2}	Asynchronous Clock Input to Local Feedback to Combinatorial Output ^[19]	Com'l/Ind		15	111	18		30	ns
	Combinatorial Output ^[19]	Mil	1.1			18		30	
t _{AS}	Dedicated Input or Feedback Set-Up Time to	Com'l/Ind	4		4		7		ns
	Asynchronous Clock Input	Mil		· · · · · · · ·	4		7		
t _{AH}	Input Hold Time from Asynchronous Clock Input	Com'l/Ind	3		4		7		ns
		Mil			4		7		1
t _{AWH}	Asynchronous Clock Input HIGH Time ^[4, 20]	Com'l/Ind	4		5		6		ns
		Mil	C		5		6		1
t _{AWL}	Asynchronous Clock Input LOW Time ^[4]	Com'l/Ind	5		6		7		ns
		Mil	tin natal		6		7		
t _{ACF}	Asynchronous Clock to Local Feedback Input ^[4,21]	Com'l /Ind	1	7		9		18	ns
		Mil	· ·	la de la composición de la com	1.1	. 9		18	
t _{AP}	External Asynchronous Clock Period (1/f _{MAX4}) ^[4]	Com'l/Ind	12	e kat	12.5		13		ns
		Mil		1	12.5		13		
f _{MAXA1}	External Maximum Frequency in Asynchronous Mode $1/(t_{ACO1} + t_{AS})^{[4, 22]}$	Com'l/Ind	71.4	a di se	62.5		45.4		MHz
	Mode $1/(t_{ACO1} + t_{AS})^{(4, 22)}$	Mil			62.5		45.4		
f _{MAXA2}	Maximum Internal Asynchronous Frequency $1/(t_{ACF} + t_{AS})$ or $1/(t_{AWH} + t_{AWL})^{[4, 23]}$	Com'l/Ind	90.9	fran fr	76.9		40		MHz
	$1/(t_{ACF} + t_{AS})$ or $1/(t_{AWH} + t_{AWL})^{[4, 23]}$	Mil			76.9		40		
f _{MAXA3}	Data Path Maximum Frequency in Asynchronous	Com'l/Ind	100.0		83.3	1	66.6		MHz
	Mode ^[4, 24]	Mil	A. Saut		83.3		66.6		
f _{MAXA4}	Maximum Asynchronous Register Toggle Frequency $1/(t_{AWH} + t_{AWL})^{[4, 25]}$	Com'l /Ind	111.1		90.9	·	76.9		MHz
	quency $1/(t_{AWH} + t_{AWL})^{[4, 23]}$	Mil			90.9		76.9		
t _{AOH}	Output Data Stable Time from Asynchronous	Com'l/Ind	12		12		15		ns
	Clock Input ^[4, 26]	Mil	att i sh			4.50	15		1

				4-20 4B-20		4–25 4B25	
Parameter	Description	Min.	Max.	Min. Max		Unit	
t _{ACO1}	Asynchronous Clock Input to Output Delay	Com'l/ Ind		20		25	ns
		Mil		20		25	1
t _{ACO2}	Asynchronous Clock Input to Local Feedback to Combi-	Com'l/Ind		30		37	ns
	natorial Output ^[19]	Mil		30		37	
t _{AS}	Dedicated Input or Feedback Set-Up Time to Asynchro-	Com'l/Ind	9		12		ns
	nous Clock Input	Mil	9		12		
t _{AH}	Input Hold Time from Asynchronous Clock Input	Com'l/Ind	9		12		ns
		Mil	9		12		
t _{AWH}	Asynchronous Clock Input HIGH Time ^[4, 20]	Com'l/Ind	7		9		ns
		Mil	7		9		
t _{AWL}	Asynchronous Clock Input LOW Time ^[4]	Com'l/Ind	9		11		ns
		Mil	9		11		
t _{ACF}	Asynchronous Clock to Local Feedback Input ^[4, 21]	Com'l /Ind		18		21	ns
		Mil		18		21	
t _{AP}	External Asynchronous Clock Period (1/f _{MAX4}) ^[4]	Com'l/Ind	16		20		ns
		Mil	16		20		
f _{MAXA1}	External Maximum Frequency in Asynchronous Mode	Com'l/Ind	34.4		27		MHz
	$1/(t_{ACO1} + t_{AS})^{[4, 22]}$	Mil	34.4		27		
f _{MAXA2}	Maximum Internal Asynchronous Frequency $1/(t_{ACF} + t_{AS})$ or $1/(t_{AWH} + t_{AWL})^{[4, 23]}$	Com'l/Ind	37		30.3		MHz
	t_{AS} or $1/(t_{AWH} + t_{AWL})^{[4, 23]}$	Mil	37		30.3		
f _{MAXA3}	DataPathMaximumFrequencyinAsynchronousMode ^[4, 24]	Com'l/Ind	50		40		MHz
	1	Mil	50		40		
f _{MAXA4}	Maximum Asynchronous Register Toggle Frequency $1/(t_{AWH} + t_{AWL})^{[4, 25]}$	Com'l /Ind	62.5		50		MHz
	$1/(t_{AWH} + t_{AWL})^{[7, 20]}$	Mil	62.5		50		
t _{AOH}	Output Data Stable Time from Asynchronous Clock In-	Com'l/Ind	15		15		ns
	put ^[4, 26]	Mil	15		15		

External Asynchronous Switching Characteristics Over Operating Range^[7] (continued)

Notes:

- 19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the registered output signal to a combinatorial output for which the registered output signal is used as an input. Assumes no expanders are used in logic of combinatorial output or the asynchronous clock input. This parameter is tested periodically by sampling production material.
- 20. This parameter is measured with a positive-edge-triggered clock at the register. For negative edge triggering, the t_{AWH} and t_{AWL} parameters must be swapped. If a given input is used to clock multiple registers with both positive and negative polarity, t_{AWH} should be used for both t_{AWH} and t_{AWL} .
- 21. This specification is a measure of the delay associated with the internal register feedback path for an asynchronously clocked register. This delay plus the asynchronous register set-up time, t_{AS} , is the minimum internal period for an asynchronously clocked state machine configuration. This delay assumes no expander logic in the asynchronous clock path. This parameter is tested periodically by sampling production material.
- 22. This parameter indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that no expander logic is employed in the clock signal path or data path.

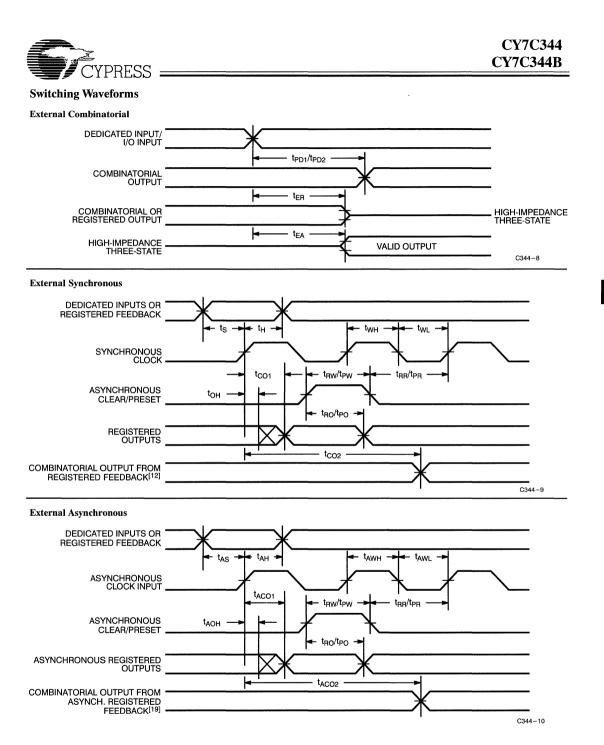
- 23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1/t_{ACO1}$. This specification assumes no expander logic is utilized. This parameter is tested periodically by sampling production material.
- 24. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode. This frequency is least of $1/(t_{AWH} + t_{AWL})$, $1/(t_{AS} + t_{AHL})$, or $1/t_{ACO1}$. It also indicates the maximum frequency at which the device may operate in the asynchronously clocked data-path mode. Assumes no expander logic is used.
- 25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode by a clock signal applied to an external dedicated input or an I/O pin.
- 26. This parameter indicates the minimum time that the previous register output data is maintained on the output pin after an asynchronous register clock input to an external dedicated input or 1/O pin.

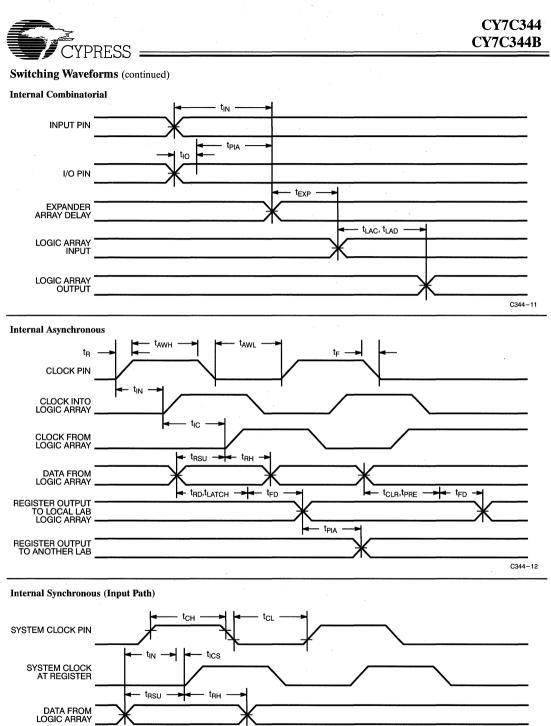
Typical Internal Switching Characteristics Over Operating Range^[7]

			7C34	4B-10	7C34	4B-12		14–15 4B–15	
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Uni
t _{IN}	Dedicated Input Pad and Buffer Delay	Com'l/Ind		2	· ·	2.5	1	4	ns
		Mil				2.5		4	1
t _{IO}	I/O Input Pad and Buffer Delay	Com'l/Ind		2		2.5		4	ns
		Mil				2.5		4	1
t _{EXP}	Expander Array Delay	Com'l/Ind		6	1	6		8	ns
		Mil	1.1			6		8	1
t _{LAD}	Logic Array Data Delay	Com'l/Ind	1.	5		6		7	ns
		Mil		· .		6		7	1
t _{LAC}	Logic Array Control Delay	Com'l/Ind		. 5		5		5	ns
		Mil				5	1	5	1
t _{OD}	Output Buffer and Pad Delay	Com'l/Ind		3		3		4	ns
		Mil	1		T ·	3		4	1
t _{ZX}	Output Buffer Enable Delay ^[27]	Com'l /Ind		5		5		7	ns
			1		·	5		7	1
t _{XZ}	Output Buffer Disable Delay	Com'l/Ind	1.1.1.1	. 5		5		7	ns
						5		7	1
t _{RSU}	Register Set-Up Time Relative to Clock Signal at	Com'l/Ind	2	is nu i	2		5		ns
	Register	Mil	in an		2		5		1
t _{RH}	Register Hold Time Relative to Clock Signal at	Com'l/Ind	4	1.1	5	4.	7		ns
	Register	Mil			5		7	1	1
tLATCH	Flow-Through Latch Delay	Com'l/Ind	1	0.5		0.5	1	1	ns
		Mil		1.1.1.1	1.	0.5		1	1
t _{RD}	Register Delay	Com'l/Ind		0.5		0.5	-	1	ns
100		Mil				0.5		1	1
t _{COMB}	Transparent Mode Delay ^[28]	Com'l/Ind		0.5		0.5		1	ns
001110		Mil	-			0.5		1	1
t _{CH}	Clock HIGH Time	Com'l/Ind	3		4		6	1	ns
		Mil		1	4		6		1
t _{CL}	Clock LOW Time	Com'l/Ind	3		4		6		ns
CL		Mil			4		6		1
t _{IC}	Asynchronous Clock Logic Delay	Com'l/Ind		5		6		7	ns
	; 	Mil	1.1			6	1	7	-
t _{ICS}	Synchronous Clock Delay	Com'l/Ind	1	0.5	<u> </u>	0.5		1	ns
100		Mil				0.5		1	1
t _{FD}	Feedback Delay	Com'l/Ind		1		1		1	ns
10		Mil	10.7					1	1 ~
t _{PRE}	Asynchronous Register Preset Time	Com'l/Ind		2	1	3		5	ns
TAL		Mil				3	1	5	1 ¯
t _{CLR}	Asynchronous Register Clear Time	Com'l/Ind		2	1	3		5	ns
CLIN		Mil				3		5	1
t _{PCW}	Asynchronous Preset and Clear Pulse Width	Com'l/Ind	2		3	-	5	<u> </u>	ns
-1 C W		Mil		rang si seri. Pang si	3		5		+ m
t _{PCR}	Asynchronous Preset and Clear Recovery Time	Com'l/Ind	2		3	n an an Anna an Anna An Anna an Anna	5		ns
YCK	A synometrious resol and creat feedberry fille	Mil	-		3		5		- "

Shaded area contains preliminary information.

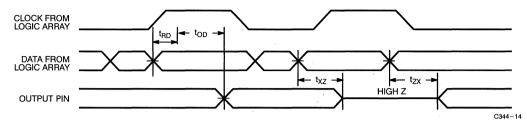
Note: 27. Sample tested only for an output change of 500 mV.


28. This specification guarantees the maximum combinatorial delay asso-ciated with the macrocell register bypass when the macrocell is confi-gured for combinatorial operation.



Typical Internal Switching Characteristics Over Operating Range^[7] (continued)

				14–20 4B–20		4–25 4B–25	
Parameter	Description		Min.	Max.	Min.	Max.	Unit
t _{IN}	Dedicated Input Pad and Buffer Delay	Com'l/Ind		5		7	ns
		Mil		5		7	1
t _{IO}	I/O Input Pad and Buffer Delay	Com'l/Ind		5		7	ns
		Mil		5		7]
t _{EXP}	Expander Array Delay	Com'l/Ind		10		15	ns
		Mil		10		15	
t _{LAD}	Logic Array Data Delay	Com'l/Ind		9		10	ns
		Mil		9		10	
t _{LAC}	Logic Array Control Delay	Com'l/Ind		7		7	ns
		Mil		7		7	
t _{OD}	Output Buffer and Pad Delay	Com'l/Ind		5		5	ns
		Mil		5		5	
t _{ZX}	Output Buffer Enable Delay ^[27]	Com'l /Ind		8		11	ns
		Mil		8		11	
t _{XZ}	Output Buffer Disable Delay	Com'l/Ind	_	8		11	ns
		Mil		8		11	
t _{RSU}	Register Set-Up Time Relative to Clock Signal at Register	Com'l/Ind	5		8		ns
		Mil	5		8		-
t _{RH}	Register Hold Time Relative to Clock Signal at Register	Com'l/Ind	9		12		ns
		Mil	9		12		
t _{LATCH}	Flow-Through Latch Delay	Com'l/Ind		1		3	ns
		Mil		1		3	
t _{RD}	Register Delay	Com'l/Ind		1		1	ns
		Mil		1		1	
t _{COMB}	Transparent Mode Delay ^[28]	Com'l/Ind		1		3	ns
		Mil		1		3	
t _{CH}	Clock HIGH Time	Com'l/Ind	7		8		ns
		Mil	7		8		
t _{CL}	Clock LOW Time	Com'l/Ind	7		8		ns
		Mil	7		8		
t _{IC}	Asynchronous Clock Logic Delay	Com'l/Ind		8		10	ns
		Mil		8		10	
t _{ICS}	Synchronous Clock Delay	Com'l/Ind		2		3	ns
		Mil		2		3	
t _{FD}	Feedback Delay	Com'l/Ind		1		1	ns
		Mil		1		1	1
t _{PRE}	Asynchronous Register Preset Time	Com'l/Ind		6		9	ns
		Mil		6		9	
t _{CLR}	Asynchronous Register Clear Time	Com'l/Ind	_	6		9	ns
		Mil		6		9	
t _{PCW}	Asynchronous Preset and Clear Pulse Width	Com'l/Ind	5		7		ns
		Mil	5		7		
t _{PCR}	Asynchronous Preset and Clear Recovery Time	Com'l/Ind	5		7		ns
		Mil	5		7	1	1



C344-13

Switching Waveforms (continued)

Internal Synchronous (Output Path)

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C344B-10HC	H64	28-Lead Windowed Leaded Chip Carrier	Commercial
	CY7C344B-10JC	J64	28-Lead Plastic Leaded Chip Carrier	
$(2^{n+1})^{n+1}$	CY7C344B-10PC	P21	28-Lead (300-Mil) Molded DIP	
2	CY7C344B-10WC	W22	28-Lead Windowed CerDIP	an standar ba
12	CY7C344B-12HC/HI	H64	28-Lead Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C344B-12JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C344B-12PC/PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C344B-12WC/WI	W22	28-Lead Windowed CerDIP	
	CY7C344B-12HMB	H64	28-Lead Windowed Leaded Chip Carrier	Military
· · ·	CY7C344B-12WMB	W22	28-Lead Windowed CerDIP	
15	CY7C344-15HC/HI	H64	28-Lead Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C344-15JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C344-15PC/PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C344-15WC/WI	W22	28-Lead Windowed CerDIP	
	CY7C344B-15HC/HI	H64	28-Lead Windowed Leaded Chip Carrier	
	CY7C344B-15JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C344B-15PC/PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C344B-15WC/WI	W22	28-Lead Windowed CerDIP	
	CY7C344B-15HMB	H64	28-Lead Windowed Leaded Chip Carrier	Military
	CY7C344B-15WMB	W22	28-Lead Windowed CerDIP	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CY7C344-20HC/HI	H64	28-Lead Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C344-20JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C344-20PC/PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C344-20WC/WI	W22	28-Lead Windowed CerDIP	
	CY7C344B-20HC/HI	H64	28-Lead Windowed Leaded Chip Carrier	1
	CY7C344B-20JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C344B-20PC/PI	P21	28-Lead (300-Mil) Molded DIP	1
	CY7C344B-20WC/WI	W22	28-Lead Windowed CerDIP	
	CY7C344-20HMB	H64	28-Lead Windowed Leaded Chip Carrier	Military
	CY7C344-20WMB	W22	28-Lead Windowed CerDIP	
	CY7C344B-20HMB	H64	28-Lead Windowed Leaded Chip Carrier	
	CY7C344B-20WMB	W22	28-Lead Windowed CerDIP	
25	CY7C344-25HC/HI	H64	28-Lead Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C344-25JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	1
	CY7C344-25PC/PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C344-25WC/WI	W22	28-Lead Windowed CerDIP	1
	CY7C344B-25HC/HI	H64	28-Lead Windowed Leaded Chip Carrier	
	CY7C344B-25JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C344B-25PC/PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C344B-25WC/WI	W22	28-Lead Windowed CerDIP	
	CY7C344-25HMB	H64	28-Lead Windowed Leaded Chip Carrier	Military
	CY7C344-25WMB	W22	28-Lead Windowed CerDIP	
	CY7C344B-25HMB	H64	28-Lead Windowed Leaded Chip Carrier	
	CY7C344B-25WMB	W22	28-Lead Windowed CerDIP	

Shaded area contains preliminary information.

MILITARY SPECIFICATIONS **Group A Subgroup Testing** DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{PD1}	7, 8, 9, 10, 11
t _{PD2}	7, 8, 9, 10, 11
t _{PD3}	7, 8, 9, 10, 11
t _{CO1}	7, 8, 9, 10, 11
t _S	7, 8, 9, 10, 11
t _H	7, 8, 9, 10, 11
t _{ACO1}	7, 8, 9, 10, 11
t _{ACO1}	7, 8, 9, 10, 11
t _{AS}	7, 8, 9, 10, 11
t _{AH}	7, 8, 9, 10, 11

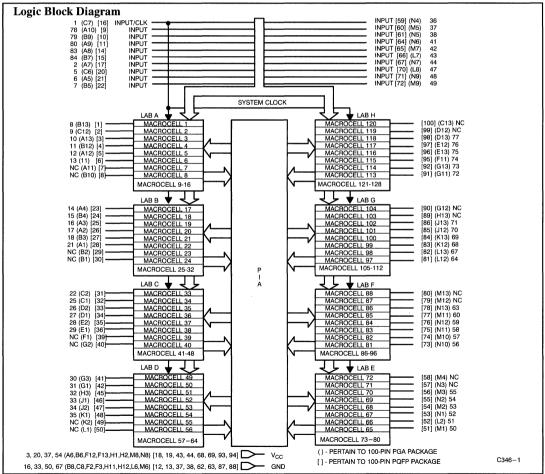
MAX is a registered trademark of Altera Corporation. Warp2, Warp2+, and Warp3 are trademarks of Cypress Semiconductor Corporation.

Document #: 38-00127-G

CY7C346 CY7C346B

128-Macrocell MAX® EPLDs

Features

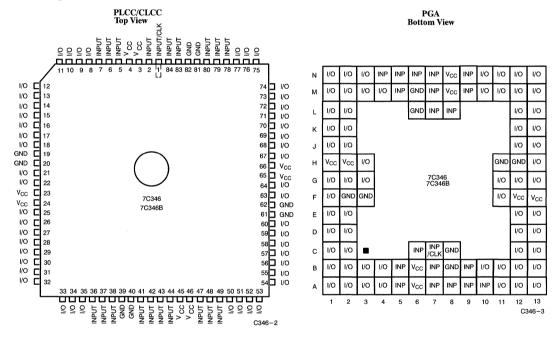

- 128 macrocells in 8 LABs
- 20 dedicated inputs, up to 64 bidirectional I/O pins
- Programmable interconnect array
- 0.8-micron double-metal CMOS EPROM technology (CY7C346)
- Advanced 0.65-micron CMOS technology to increase performance (CY7C346B)
- Available in 84-pin CLCC, PLCC, and 100-pin PGA, PQFP

Functional Description

The CY7C346/CY7C346B is an Erasable Programmable Logic Device (EPLD) in which CMOS EPROM cells are used to configure logic functions within the device. The MAX architecture is 100% user configurable, allowing the devices to accommodate a variety of independent logic functions.

The 128 macrocells in the CY7C346/ CY7C346B are divided into 8 Logic Array Blocks (LABs), 16 per LAB. There are 256 expander product terms, 32 per LAB, to be used and shared by the macrocells within each LAB. Each LAB is interconnected through the programmable interconnect array, allowing all signals to be routed throughout the chip.

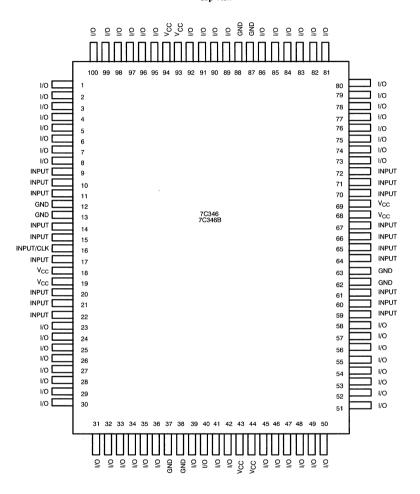
The speed and density of the CY7C346/CY7C346B allow it to be used in a wide range of applications, from replacement of large amounts of 7400-series TTL logic, to complex controllers and multifunction chips. With greater than 25 times the functionality of 20-pin PLDs, the CY7C346/CY7C346B allows the replacement of over 50 TTL devices. By replacing large amounts of logic, the CY7C346/CY7C346B reduces board space, part count, and increases system reliability.


CY7C346 CY7C346B

Selection Guide

		7C346B15	7C346B-20	7C346-25 7C346B-25	7C346-30 7C346B-30	7C346-35 7C346B-35
Maximum Access Time (n	s)	15	20	25	30	35
Maximum Operating Commercial	250	250	250	250	250	
Current (mA)	Military		320	325	320	320
	Industrial	320	320 •	320	320	320
Maximum Standby	Commercial	225	225	225	225	225
Current (mA)	Military		275	275	275	275
	Industrial	275	275	275	275	275

Shaded area contains preliminary information.


Pin Configurations

Pin Configurations (continued)

PQFP Top View

3

C346-4

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with Power Applied $\dots -55^{\circ}C$ to $+125^{\circ}C$
Maximum Junction Temperature (under bias)
Supply Voltage to Ground Potential $\dots -2.0V$ to $+7.0V$
Maximum Power Dissipation
DC V _{CC} or GND Current
DC Output Current per Pin25 mA to +25 mA

DC Input Voltage ^[1]	-3.0V to $+7.0V$
DC Program Voltage	13.0V
Static Discharge Voltage	> 1100V
(per MIL-STD-883, Method 3015)	

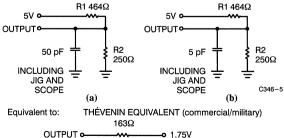
Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ± 5%
Industrial	-40° C to $+85^{\circ}$ C	$5V \pm 10\%$
Military	-55°C to +125°C (Case)	$5V \pm 10\%$

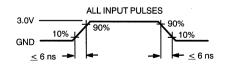
Electrical Characteristics Over the Operating Range^[2]

Parameter	Description	Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$			0.45	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} +0.3	V
V _{IL}	Input LOW Voltage			-0.3	0.8	V
I _{IX}	Input Current	$GND \le V_{IN} \le V_{CC}$	-10	+10	μΑ	
I _{OZ}	Output Leakage Current	$V_{O} = V_{CC} \text{ or } GND$		-40	+40	μΑ
I _{OS}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT} = 0.5V^{[3, 4]}$		-30	-90	mA
I _{CC1}	Power Supply Current (Standby)	$V_{I} = GND$ (No Load)	Com'l		225	mA
			Mil/Ind		275	
I _{CC2}	Power Supply Current ^[5]	$V_I = V_{CC}$ or GND (No Load) f = 1.0 MHz ^[4]	Com'l		250	mA
		$f = 1.0 \text{ MHz}^{[4]}$	Mil/Ind		320	
t _R	Recommended Input Rise Time				100	ns
t _F	Recommended Input Fall Time				100	ns

Capacitance^[6]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 2V, f = 1.0 \text{ MHz}$	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 2V$, f = 1.0 MHz	20	pF

Notes:


2. Typical values are for $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{OUT} = 0.5V$ has been chosen to avoid test problems caused by tester ground degradation.

AC Test Loads and Waveforms^[6]

- 4. Guaranteed by design but not 100% tested.
- 5. This parameter is measured with device programmed as a 16-bit counter in each LAB.
- 6. Part (a) in AC Test Load and Waveforms is used for all parameters except t_{ER} and t_{XZ} , which is used for part (b) in AC Test Load and Waveforms. All external timing parameters are measured referenced to external pins of the device.

C346-6

^{1.} Minimum DC input is -0.3V. During transitions, the inputs may undershoot to -3.0V for periods less than 20 ns.

Logic Array Blocks

There are 8 logic array blocks in the CY7C346/CY7C346B. Each LAB consists of a macrocell array containing 16 macrocells, an expander product term array containing 32 expanders, and an I/O block. The LAB is fed by the programmable interconnect array and the dedicated input bus. All macrocell feedbacks go to the macrocell array, the expander array, and the programmable interconnect array. Expanders feed themselves and the macrocell array so that they may be accessed by macrocells in other LAB as well as the macrocells in the LAB in which they are situated.

Externally, the CY7C346/CY7C346B provides 20 dedicated inputs, one of which may be used as a system clock. There are 64 I/O pins that may be individually configured for input, output, or bidirectional data flow.

Programmable Interconnect Array

The Programmable Interconnect Array (PIA) solves interconnect limitations by routing only the signals needed by each logic array block. The inputs to the PIA are the outputs of every macrocell within the device and the I/O pin feedback of every pin on the device.

Timing Delays

Timing delays within the CY7C346/CY7C346B may be easily determined using $Warp2^{\infty}/Warp2^{+m}$, $Warp3^{m}$ software or by the model shown in or *Figure 1*. The CY7C346 /CY7C346B has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information, Warp3 software provides a timing simulator.

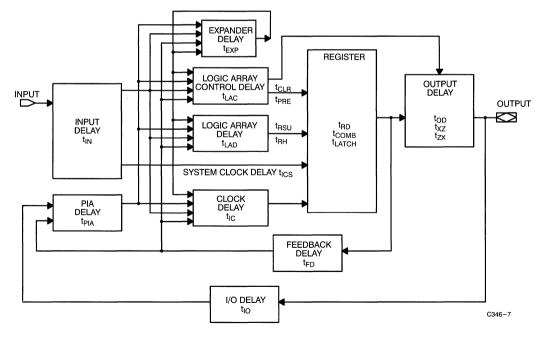
Design Recommendations

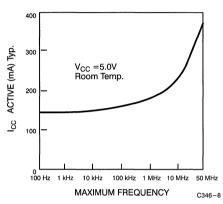
Operation of the devices described herein with conditions above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this datasheet is not implied. Exposure to absolute maximum ratings conditions for extended periods of time may affect device reliability. The CY7C346/CY7C346B contains circuitry to protect device pins from high static voltages or electric fields, but normal precautions should be taken to avoid application of any voltage higher than the maximum rated voltages.

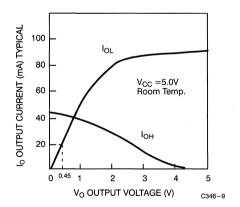
For proper operation, input and output pins must be constrained to the range GND \leq (V_{IN} or V_{OUT}) \leq V_{CC}. Unused inputs must always be tied to an appropriate logic level (either V_{CC} or GND). Each set of V_{CC} and GND pins must be connected together directly at the device. Power supply decoupling capacitors of at least 0.2 μ F must be connected between V_{CC} and GND. For the most effective decoupling, each V_{CC} pin should be separately decoupled to GND directly at the device. Decoupling capacitors should have good frequency response, such as monolithic ceramic types have.

Design Security

The CY7C346/CY7C346B contains a programmable design security feature that controls the access to the data programmed into the device. If this programmable feature is used, a proprietary design implemented in the device cannot be copied or retrieved. This enables a high level of design control to be obtained since programmed data within EPROM cells is invisible. The bit that controls this function, along with all other program data, may be reset simply by erasing the entire device.




Figure 1. CY7C346/CY7C346B Internal Timing Model


The CY7C346/CY7C346B is fully functionally tested and guaranteed through complete testing of each programmable EPROM bit and all internal logic elements thus ensuring 100% programming yield.

The erasable nature of these devices allows test programs to be used and erased during early stages of the production flow. The devices also contain on-board logic test circuitry to allow verification of function and AC specification once encapsulated in non-windowed packages.

Typical I_{CC} vs. f_{MAX}

Output Drive Current

Timing Considerations

Unless otherwise stated, propagation delays do not include expanders. When using expanders, add the maximum expander delay $t_{\rm EXP}$ to the overall delay. Similarly, there is an additional $t_{\rm PIA}$ delay for an input from an I/O pin when compared to a signal from straight input pin.

When calculating synchronous frequencies, use t_{S1} if all inputs are on dedicated input pins. The parameter t_{S2} should be used if data is applied at an I/O pin. If t_{S2} is greater than t_{CO1} , $1/t_{S2}$ becomes the limiting frequency in the data path mode unless $1/(t_{WH} + t_{WL})$ is less than $1/t_{S2}$.

When expander logic is used in the data path, add the appropriate maximum expander delay, t_{EXP} to t_{S1} . Determine which of $1/(t_{WH} + t_{WL})$, $1/t_{CO1}$, or $1/(t_{EXP} + t_{S1})$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the synchronous configuration.

When calculating external asynchronous frequencies, use t_{AS1} if all inputs are on the dedicated input pins. If any data is applied to an I/O pin, t_{AS2} must be used as the required set-up time. If $(t_{AS2} + t_{AH})$ is greater than t_{ACO1} , $1/(t_{AS2} + t_{AH})$ becomes the limiting frequency in the data path mode unless $1/(t_{AWH} + t_{AWL})$ is less than $1/(t_{AS2} + t_{AH})$.

When expander logic is used in the data path, add the appropriate maximum expander delay, t_{EXP} to t_{AS1} . Determine which of $1/(t_{AWH} + t_{AWL})$, $1/t_{ACO1}$, or $1/(t_{EXP} + t_{AS1})$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the asynchronous configuration.

The parameter t_{OH} indicates the system compatibility of this device when driving other synchronous logic with positive input hold times, which is controlled by the same synchronous clock. If t_{OH} is greater than the minimum required input hold time of the subsequent synchronous logic, then the devices are guaranteed to function properly with a common synchronous clock under worst-case environmental and supply voltage conditions.

The parameter t_{AOH} indicates the system compatibility of this device when driving subsequent registered logic with a positive hold time and using the same asynchronous clock as the CY7C346/CY7C346B.

In general, if t_{AOH} is greater than the minimum required input hold time of the subsequent logic (synchronous or asynchronous) then the devices are guaranteed to function properly under worstcase environmental and supply voltage conditions, provided the clock signal source is the same. This also applies if expander logic is used in the clock signal path of the driving device, but not for the driven device. This is due to the expander logic in the second device's clock signal path adding an additional delay (t_{EXP}) causing the output data from the preceding device to change prior to the arrival of the clock signal at the following device's register.

Commercial and Industrial External Synchronous Switching Characteristics^[6] Over Operating Range

		7C346	B-15	7C346	5B-20	7C34 7C34	6-25 6B-25		6-30 6B-30		6-35 B-35	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD1}	Dedicated Input to Combinatorial Output Delay ^[7]		15		20		25		30		35	ns
t _{PD2}	I/O Input to Combinatorial Output Delay ^[8]		25		32		40		45		55	ns
t _{PD3}	Dedicated Input to Combinatorial Output Delay with Expander Delay ^[9]		23		30		37		44		55	ns
t _{PD4}	I/O Input to Combinatorial Output Delay with Expander Delay ^[4, 10]		33		42		52		59		75	ns
t _{EA}	Input to Output Enable Delay ^[4, 7]		15		20		25		30		35	ns
t _{ER}	Input to Output Disable Delay ^[4, 7]		15		20		25		30		35	ns
t _{CO1}	Synchronous Clock Input to Output Delay		7		8		14		16		20	ns
t _{CO2}	Synchronous Clock to Local Feedback to Combinatorial Output ^[4, 11]		17		20		30		35		42	ns
t _{S1}	Dedicated Input or Feedback Set-Up Time to Synchronous Clock Input ^[7, 12]	10		13		15		20		25		ns
t _{S2}	I/O Input Set-Up Time to Synchronous Clock Input ^[7]	20		24		30		36		45		ns
t _H	Input Hold Time from Synchronous Clock Input ^[7]	0		0		0		0		0		ns
t _{WH}	Synchronous Clock Input HIGH Time	5		7		8		10		12.5		ns
t _{WL}	Synchronous Clock Input LOW Time	5		7		8		10		12.5		ns
t _{RW}	Asynchronous Clear Width ^[4, 7]	16	ľ	22		25		30		35		ns
t _{RR}	Asynchronous Clear Recovery Time ^[4,7]	16		22		25		30		35		ns
t _{RO}	Asynchronous Clear to Registered Output Delay ^[7]		15		20		25		30		35	ns
t _{PW}	Asynchronous Preset Width ^[4, 7]	15		20	1	25		30		35		ns
t _{PR}	Asynchronous Preset Recovery Time ^[4, 7]	15		20		25		30		35		ns
t _{PO}	Asynchronous Preset to Registered Output Delay ^[7]		15		20		25		30		35	ns
t _{CF}	Synchronous Clock to Local Feedback Input ^[4, 13]		3		3		3		3		6	ns
tp	External Synchronous Clock Period (1/(f _{MAX3})) ^[4]	12		15		16		20		25		ns
f _{MAX1}	External Feedback Maximum Frequency $(1/(t_{CO1} + t_{S1}))^{[4, 14]}$	58.8		47.6		34.5		27.7		22.2		MHz
f _{MAX2}	Internal Local Feedback Maximum Frequency, lesser of $(1/(t_{S1} + t_{CF}))$ or $(1/t_{CO1})^{[4, 15]}$	76.9		62.5		55.5		43.4		32.2		MHz

Shaded area contains preliminary information.

Commercial and Industrial External Synchronous Switching Characteristics^[6] Over Operating Range (continued)

	-	7C346B-15		7C346			7C346-25 7C346B-25		7C346-30 7C346B-30		7C346-35 7C346B-35	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
f _{MAX3}	Data Path Maximum Frequency, lesser of $(1/(t_{WL} + t_{WH}))$, $(1/(t_{S1} + t_H))$ or $(1/t_{CO1})^{[4, 16]}$	100		71.4		62.5		50		40		MHz
f _{MAX4}	Maximum Register Toggle Frequency $(1/(t_{WL} + t_{WH}))^{[4, 17]}$	100		71.4		62.5		50		40		MHz
t _{OH}	Output Data Stable Time from Synchronous Clock Input ^[4, 18]	3		3		3		3		3		ns

Shaded area contains preliminary information.

Notes:

7. This specification is a measure of the delay from input signal applied to a dedicated input (68-pin PLCC input pin 1, 2, 32, 34, 35, 66, or 68) to combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function.

When this note is applied to any parameter specification it indicates that the signal (data, asynchronous clock, asynchronous clear, and/or asynchronous preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.

If an input signal is applied to an I/O pin an additional delay equal to t_{PIA} should be added to the comparable delay for a dedicated input. If expanders are used, add the maximum expander delay t_{EXP} to the overall delay for the comparable delay without expanders.

- This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
- 9. This specification is a measure of the delay from an input signal applied to a dedicated input (68-pin PLCC input pin 1, 2, 32, 34, 35, 36, 66, or 68) to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic.
- 10. This specification is a measure of the delay from an input signal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
- 11. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all feedback is within the same LAB. This parameter is tested periodically by sampling production material.

- 12. If data is applied to an I/O input for capture by a macrocell register, the I/O pin input set-up time minimums should be observed. These parameters are t_{S2} for synchronous operation and t_{AS2} for asynchronous operation.
- 13. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array input. This delay plus the register set-up time, ts₁, is the minimum internal period for an internal synchronous state machine configuration. This delay is for feedback within the same LAB. This parameter is tested periodically by sampling production material.
- 14. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can operate. It is assumed that all data inputs and external feedback signals are applied to dedicated inputs.
- 15. This specification indicates the guaranteed maximum frequency at which a state machine with internal-only feedback can operate. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than 1/t_{CO1}. All feedback is assumed to be local originating within the same LAB.
- 16. This frequency indicates the maximum frequency at which the device may operate in data path mode (dedicated input pin to output pin). This assumes data input signals are applied to dedicated input pins and no expander logic is used. If any of the data inputs are I/O pins, t_{S2} is the appropriate t₅ for calculation.
- 17. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycled by a clock signal applied to the dedicated clock input pin.
- 18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.

Commercial and Industrial External Asynchronous Switching Characteristics^[6] Over Operating Range

		7C340	6 B -15	7C346	6B-20	7C346-25 7C346B-25		7C346-30 7C346B-30		7C346-35 7C346B-35		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{ACO1}	Asynchronous Clock Input to Output Delay ^[7]		15		20		25		30		35	ns
t _{ACO2}	Asynchronous Clock Input to Local Feedback to Combinatorial Output ^[19]		25		32		39		46		55	ns
t _{AS1}	Dedicated Input or Feedback Set-Up Time to Asynchronous Clock Input ^[7]	5		5		5		6		8		ns
t _{AS2}	I/O Input Set-Up Time to Asynchronous Clock Input ^[7]	14.5		17		19		22		28		ns
t _{AH}	Input Hold Time from Asynchronous Clock Input ^[7]	5		6		6		8		10		ns
t _{AWH}	Asynchronous Clock Input HIGH Time ^[7]	9		10		11		14		16		ns
t _{AWL}	Asynchronous Clock Input LOW Time ^[7, 20]	7		8		9		11		14		ns
t _{ACF}	Asynchronous Clock to Local Feedback Input ^[4, 21]		11		13		15		18		22	ns
t _{AP}	External Asynchronous Clock Period (1/(f _{MAXA4})) ^[4]	16		18		20		25		30		ns
f _{MAXA1}	External Feedback Maximum Frequency in Asynchronous Mode $(1/(t_{ACO1} + t_{AS1}))^{[4, 22]}$	50		40		33.3		27.7		23.2		MHz
f _{MAXA2}	Maximum Internal Asynchronous Frequency ^[4, 23]	62.5		55.5		50		40		33.3		MHz
f _{MAXA3}	Data Path Maximum Frequency in Asynchronous Mode ^[4, 24]	66.6		50		40		33.3		28.5		MHz
f _{MAXA4}	Maximum Asynchronous Register Toggle Frequency $1/(t_{AWH} + t_{AWL})^{[4, 25]}$	62.5		55.5		50		40		33.3		MHz
t _{AOH}	Output Data Stable Time from Asynchronous Clock Input ^[4, 26]	12		12	j.	15		15		15		ns

Shaded area contains preliminary information.

Notes:

- 19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input. The clock signal is applied to the dedicated clock input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production material.
- 20. This parameter is measured with a positive-edge triggered clock at the register. For negative edge triggering, the t_{AWH} and t_{AWL} parameters must be swapped. If a given input is used to clock multiple registers with both positive and negative polarity, t_{AWH} should be used for both t_{AWH} and t_{AWL}.
- 21. This specification is a measure of the delay associated with the internal register feedback path for an asynchronous clock to LAB logic array input. This delay plus the asynchronous register set-up time, t_{AS1}, is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay is for feedback within the same LAB, assumes no expander logic in the clock path, and assumes that the clock input signal is applied to a dedicated input pin. This parameter is tested periodically by sampling production material.
- 22. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that all data inputs, clock inputs, and feedback signals are applied to dedicated inputs and that no expander logic is employed in the clock signal path or data path.

23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate. This parameter is determined by the lesser of $(1/(t_{ACF} + t_{AS1}))$ or $(1/(t_{AWH} + t_{AWL}))$. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1/t_{ACO1}$.

This specification assumes no expander logic is utilized, all data inputs and clock inputs are applied to dedicated inputs, and all state feedback is within a single LAB. This parameter is tested periodically by sampling production material.

- 24. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined by the lesser of 1/(t_{AWH} + t_{AWL}), 1/(t_{ASI} + t_{AH}) or 1/t_{ACO1}. It assumes data and clock input signals are applied to dedicated input pins and no expander logic is used.
- 25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode by a clock signal applied to an external dedicated input pin.
- 26. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input applied to an external dedicated input pin.

		7C346	B-15	7C346	5B-20	7C346-25 7C346B-25			6-30 6B-30	7C346-35 7C346B-35		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{IN}	Dedicated Input Pad and Buffer Delay		3		4		5		7		9	ns
t _{IO}	I/O Input Pad and Buffer Delay		3		4		6		6		9	ns
t _{EXP}	Expander Array Delay		8		10		12		14		20	ns
t _{LAD}	Logic Array Data Delay	P Istaniiji Advis	8		10		12		14		16	ns
t _{LAC}	Logic Array Control Delay		5		7		10		12		13	ns
t _{OD}	Output Buffer and Pad Delay	l soft	3		3		5		5		6	ns
t _{ZX}	Output Buffer Enable Delay ^[27]		5		5		10		11		13	ns
t _{XZ}	Output Buffer Disable Delay		5	KOR ESP	5		10		11		13	ns
t _{RSU}	Register Set-Up Time Relative to Clock Signal at Register	4		5		6		8		10		ns
t _{RH}	Register Hold Time Relative to Clock Signal at Register	4		5		6		8		10		ns
t _{LATCH}	Flow Through Latch Delay	nto et	1	945.40	2		3		4		4	ns
t _{RD}	Register Delay		1 .		1		1		2		2	ns
t _{COMB}	Transparent Mode Delay ^[28]		1.00 1 .000		2		3		4		4	ns
t _{CH}	Clock HIGH Time	4	2.0.6694	6		8		10		12.5		ns
t _{CL}	Clock LOW Time	4		6		8		10		12.5		ns
t _{IC}	Asynchronous Clock Logic Delay		6		8		14		16		18	ns
t _{ICS}	Synchronous Clock Delay		0.5		0.5		1		1		1	ns
t _{FD}	Feedback Delay		1		1		1		1		2	ns
t _{PRE}	Asynchronous Register Preset Time		3		3		5		6		7	ns
t _{CLR}	Asynchronous Register Clear Time		3		3		5		6		7	ns
t _{PCW}	Asynchronous Preset and Clear Pulse Width	3		4		5		6		7		ns
t _{PCR}	Asynchronous Preset and Clear Recovery Time	3		4		5		6		7		ns
t _{PIA}	Programmable Interconnect Array Delay Time		10		12		14		16		20	ns

Shaded area contains preliminary information.

Notes:
27. Sample tested only for an output change of 500 mV.
28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial operation.

			5B-20	7C346	6B-25		6-30 6B-30	7C346-35 7C346B-35		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD1}	Dedicated Input to Combinatorial Out- put Delay ^[7]		20		25		30		35	ns
t _{PD2}	I/O Input to Combinatorial Output Delay ^[8]		32		39		45		55	ns
t _{PD3}	Dedicated Input to Combinatorial Out- put Delay with Expander Delay ^[9]		30		37		44		55	ns
t _{PD4}	I/O Input to Combinatorial Output Delay with Expander Delay ^[4, 10]		42		51		59		75	ns
t _{EA}	Input to Output Enable Delay ^[4, 7]		20		25		30		35	ns
t _{ER}	Input to Output Disable Delay ^[4, 7]		20	:	25		30		35	ns
t _{CO1}	Synchronous Clock Input to Output Delay		8		14		16		20	ns
t _{CO2}	Synchronous Clock to Local Feedback to Combinatorial Output ^[4, 11]		20		30		35		42	ns
t _{S1}	Dedicated Input or Feedback Set-Up Time to Synchronous Clock Input ^[7, 12]	13		15		20		25		ns
t _{S2}	I/O Input Set-Up Time to Synchronous Clock Input ^[7]	24		29		36		45		ns
t _H	Input Hold Time from Synchronous Clock Input ^[7]	0		0		0		0		ns
t _{WH}	Synchronous Clock Input HIGH Time	7		8		10		12.5		ns
t _{WL}	Synchronous Clock Input LOW Time	7		8		10		12.5		ns
t _{RW}	Asynchronous Clear Width ^[4,7]	20	1.11	25		30		35		ns
t _{RR}	Asynchronous Clear Recovery Time ^[4,7]	20		25	. *	30		35		ns
t _{RO}	Asynchronous Clear to Registered Out- put Delay ^[7]		20		25		30		35	ns
t _{PW}	Asynchronous Preset Width ^[4, 7]	20		25		30		35		ns
t _{PR}	Asynchronous Preset Recovery Time ^[4, 7]	20		25		30		35		ns
t _{PO}	Asynchronous Preset to Registered Output Delay ^[7]		20		25		30		35	ns
t _{CF}	Synchronous Clock to Local Feedback Input ^[4, 13]	an a Diana a Angaina	3	n Alexandra Alexandra	3		3		6	ns
t _P	External Synchronous Clock Period (1/(f _{MAX3})) ^[4]	14		16		20		25		ns
f _{MAX1}	External Feedback Maximum Frequency (1/(t _{CO1} + t _{S1})) ^[4, 14]	47.6		34.5		27.7		22.2		MHz

Military External Synchronous Switching Characteristics^[6] Over Operating Range

Shaded area contains advanced information.

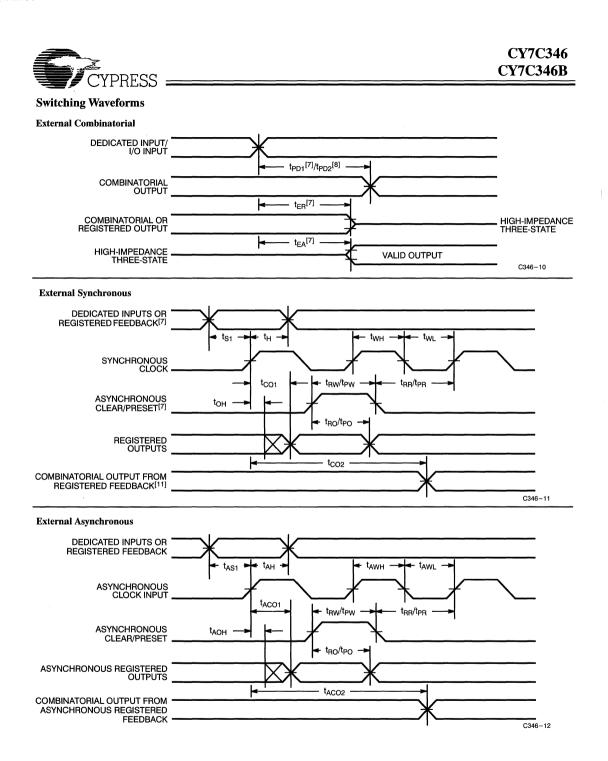
		7C34	7C346B-20		7C346B-25		7C346-30 7C346B-30		7C346-35 7C346B-35	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
f _{MAX2}	Internal Local Feedback Maximum Frequency, lesser of $(1/(t_{S1} + t_{CF}))$ or $(1/t_{CO1})^{[4, 15]}$	62.5		55.5		43.4		32.2		MHz
f _{MAX3}	Data Path Maximum Frequency, lesser of $(1/(t_{WL} + t_{WH}))$, $(1/(t_{S1} + t_H))$ or $(1/t_{CO1})^{[4, 16]}$	71.4		62.5		50		40		MHz
f _{MAX4}	Maximum Register Toggle Frequency $(1/(t_{WL} + t_{WH}))^{[4, 17]}$	71.4		62.5		50		40		MHz
t _{OH}	Output Data Stable Time from Synchronous Clock Input ^[4, 18]	3		3		3		3		ns

Military External Synchronous Switching Characteristics^[6] Over Operating Range (continued)

Shaded area contains preliminary information.

Military External Asynchronous Switching Characteristics^[6] Over Operating Range

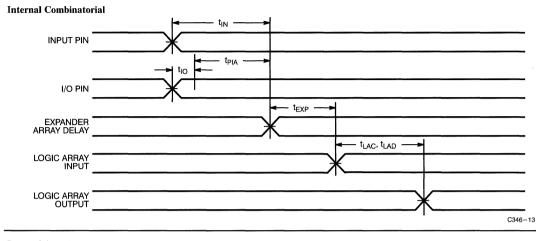
					7C346-30 7C346B-30		6-35 6B-35			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{ACO1}	Asynchronous Clock Input to Output Delay ^[7]		20		25		30		35	ns
t _{ACO2}	Asynchronous Clock Input to Local Feedback to Combinatorial Output ^[19]		32		39		46		55	ns
t _{AS1}	Dedicated Input or Feedback Set-Up Time to Asynchronous Clock Input ^[7]	6		5		6		8		ns
t _{AS2}	I/O Input Set-Up Time to Asynchronous Clock Input ^[7]	17		19		22		28		ns
t _{AH}	Input Hold Time from Asynchronous Clock Input ^[7]	6		6		8		10		ns
t _{AWH}	Asynchronous Clock Input HIGH Time ^[7]	10	inity of a second second second s second second br>second second	11		14		16		ns
t _{AWL}	Asynchronous Clock Input LOW Time ^[7, 20]	8		9		11		14		ns
t _{ACF}	Asynchronous Clock to Local Feedback Input ^[4, 21]		13		15		18		22	ns
t _{AP}	External Asynchronous Clock Period (1/(f _{MAXA4})) ^[4]	- 18		20		25		30		ns
f _{MAXA1}	External Feedback Maximum Frequency in Asynchronous Mode $(1/(t_{ACO1} + t_{AS1}))^{[4, 22]}$	40		33.3		27.7		23.2		MHz
f _{MAXA2}	Maximum Internal Asynchronous Frequency ^[4, 23]	55.5		50		40		33.3		MHz
f _{MAXA3}	Data Path Maximum Frequency in Asynchronous Mode ^[4, 24]	50		40		33.3		28.5		MHz
f _{MAXA4}	Maximum Asynchronous Register Toggle Frequency $1/(t_{AWH} + t_{AWL})^{[4, 25]}$	55.5		50		40		33.3		MHz
t _{AOH}	Output Data Stable Time from Asynchronous Clock Input ^[4, 26]	12		15		15		15		ns

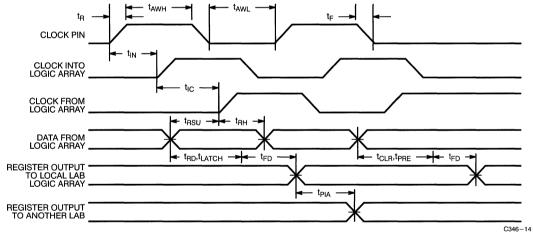

Shaded area contains preliminary information.

		7C340	5B-20	7C346	B-25		6-30 6B-30	7C346-35 7C346B-35		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{IN}	Dedicated Input Pad and Buffer Delay		4		5		7		9	ns
t _{IO}	I/O Input Pad and Buffer Delay		4		6		6		9	ns
t _{EXP}	Expander Array Delay		10		12		14		20	ns
t _{LAD}	Logic Array Data Delay		10		12		14		16	ns
t _{LAC}	Logic Array Control Delay		7		10		12		13	ns
t _{OD}	Output Buffer and Pad Delay		3		5 ,		5		6	ns
t _{ZX}	Output Buffer Enable Delay ^[27]	1	5		10		11		13	ns
t _{XZ}	Output Buffer Disable Delay		5		10		11		13	ns
t _{RSU}	Register Set-Up Time Relative to Clock Signal at Register	5		6		8		10		ns
t _{RH}	Register Hold Time Relative to Clock Signal at Register	5		6		8		10		ns
t _{LATCH}	Flow Through Latch Delay		2		3		4		4	ns
t _{RD}	Register Delay		1		1		2		2	ns
t _{COMB}	Transparent Mode Delay ^[28]	1	2		3		4		4	ns
t _{CH}	Clock HIGH Time	6	1	8	· .	10		12.5		ns
t _{CL}	Clock LOW Time	6		8		10		12.5		ns
t _{IC}	Asynchronous Clock Logic Delay		8		14		16		18	ns
t _{ICS}	Synchronous Clock Delay		0.5		2		2		3	ns
t _{FD}	Feedback Delay		1		1		1		2	ns
t _{PRE}	Asynchronous Register Preset Time		3	1	5		6		7	ns
t _{CLR}	Asynchronous Register Clear Time		3	1. S. S.	5		6		7	ns
t _{PCW}	Asynchronous Preset and Clear Pulse Width	4		5		6		7		ns
t _{PCR}	Asynchronous Preset and Clear Recovery Time	4		5		6		7		ns
t _{PIA}	Programmable Interconnect Array Delay Time		12		14		16		20	ns

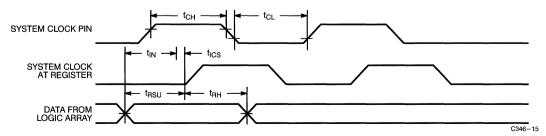
Military Typical Internal Switching Characteristics Over Operating Range

Shaded area contains preliminary information.

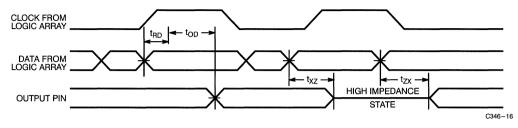



.

CY7C346 CY7C346B


Switching Waveforms (continued)

Internal Asynchronous


Internal Synchronous

Switching Waveforms (continued)

Internal Synchronous

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C346B-15HC/HI	H84	84-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C346B-15JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C346B-15NC/NI	N100	100-Lead Plastic Quad Flatpack	
	CY7C346B-15RC/RI	R100	100-Pin Windowed Ceramic Pin Grid Array	
20	CY7C346B-20HC/HI	H84	84-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C346B-20JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C346B-20NC/NI	N100	100-Lead Plastic Quad Flatpack	
	CY7C346B-20RC/RI	R100	100-Pin Windowed Ceramic Pin Grid Array	
	CY7C346B-20HMB	H84	84-Pin Windowed Leaded Chip Carrier	Military
	CY7C346B-20RMB	R100	100-Pin Windowed Ceramic Pin Grid Array	
25	CY7C346-25HC/HI	H84	84-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C346-25JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C346-25NC/NI	N100	100-Lead Plastic Quad Flatpack	1
	CY7C346-25RC/RI	R100	100-Pin Windowed Ceramic Pin Grid Array	
	CY7C346B-25HC/HI	H84	84-Pin Windowed Leaded Chip Carrier	
	CY7C346B-25JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	1
	CY7C346B-25NC/NI	N100	100-Lead Plastic Quad Flatpack	1
	CY7C346B-25RC/RI	R100	100-Pin Windowed Ceramic Pin Grid Array	
	CY7C346B-25HMB	H84	84-Pin Windowed Leaded Chip Carrier	Military
	CY7C346B-25RMB	R100	100-Pin Windowed Ceramic Pin Grid Array	
30	CY7C346-30HC/HI	H84	84-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C346-30JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C346-30NC/NI	N100	100-Lead Plastic Quad Flatpack	
	CY7C346-30RC/RI	R100	100-Pin Windowed Ceramic Pin Grid Array	
	CY7C346B-30HC/HI	H84	84-Pin Windowed Leaded Chip Carrier	
	CY7C346B-30JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	1
	CY7C346B-30NC/NI	N100	100-Lead Plastic Quad Flatpack	1
	CY7C346B-30RC/RI	R100	100-Pin Windowed Ceramic Pin Grid Array	
	CY7C346-30HMB	H84	84-Pin Windowed Leaded Chip Carrier	Military
	CY7C346-30RMB	R100	100-Pin Windowed Ceramic Pin Grid Array	
	CY7C346B-30HMB	H84	84-Pin Windowed Leaded Chip Carrier	
	CY7C346B-30RMB	R100	100-Pin Windowed Ceramic Pin Grid Array	
35	CY7C346-35HC/HI	H84	84-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C346-35JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C346-35NC/NI	N100	100-Lead Plastic Quad Flatpack	1
	CY7C346-35RC/RI	R100	100-Pin Windowed Ceramic Pin Grid Array	
	CY7C346B-35HC/HI	H84	84-Pin Windowed Leaded Chip Carrier	
	CY7C346B-35JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	-
	CY7C346B-35NC/NI	N100	100-Lead Plastic Quad Flatpack	1
	CY7C346B-35RC/RI	R100	100-Pin Windowed Ceramic Pin Grid Array	1
	CY7C346-35HMB	H84	84-Pin Windowed Leaded Chip Carrier	Military
	CY7C346-35RMB	R100	100-Pin Windowed Ceramic Pin Grid Array	
	CY7C346B-35HMB	H84	84-Pin Windowed Leaded Chip Carrier	4
	CY7C346B-35RMB	R100	100-Pin Windowed Ceramic Pin Grid Array	4
	C1/C340D=33KMB	mation	100-Fill windowed Cerainic Fill Grid Array	L

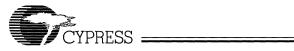
Shaded area contains preliminary information.

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

Switching Characteristics


Parameter	Subgroups
t _{PD1}	7, 8, 9, 10, 11
t _{PD2}	7, 8, 9, 10, 11
t _{PD3}	7, 8, 9, 10, 11
t _{CO1}	7, 8, 9, 10, 11
t _{S1}	7, 8, 9, 10, 11
t _{S2}	7, 8, 9, 10, 11
t _H	7, 8, 9, 10, 11
t _{WH}	7, 8, 9, 10, 11
t _{WL}	7, 8, 9, 10, 11
t _{RO}	7, 8, 9, 10, 11
t _{PO}	7, 8, 9, 10, 11
t _{ACO1}	7, 8, 9, 10, 11
t _{ACO2}	7, 8, 9, 10, 11
t _{AS1}	7, 8, 9, 10, 11
t _{AH}	7, 8, 9, 10, 11
t _{AWH}	7, 8, 9, 10, 11
t _{AWL}	7, 8, 9, 10, 11

MAX is a registered trademark of Altera Corporation. Warp2, Warp2+, and Warp3 are trademarks of Cypress Semiconductor Corporation

Document #: 38-00244-C

GENERAL INFORMATION	
SMALL PLDs	
CPLDs	
FPGAs	
DEVELOPMENT SYSTEMS	
QUALITY	
PACKAGES	

Table of Contents

FPGAs (Field Programmable Gate Arrays)

Page Number

Ultra38000 FamilyUltraLogic Very High Speed CMOS FPGAs4-1Ultra38003UltraLogic Very High Speed 3K Gate CMOS FPGA4-5Ultra38005UltraLogic Very High Speed 3K Gate 3.3V CMOS FPGA4-7Ultra38005UltraLogic Very High Speed 5K Gate CMOS FPGA4-7Ultra38007UltraLogic Very High Speed 5K Gate CMOS FPGA4-9Ultra38007UltraLogic Very High Speed 3.3V 7K Gate CMOS FPGA4-9Ultra38009UltraLogic Very High Speed 9K Gate CMOS FPGA4-20Ultra38012UltraLogic Very High Speed 9K Gate CMOS FPGA4-21Ultra38012UltraLogic Very High Speed 9K Gate CMOS FPGA4-22Ultra38016UltraLogic Very High Speed 12K Gate CMOS FPGA4-22Ultra38016UltraLogic Very High Speed 12K Gate CMOS FPGA4-24Ultra38016UltraLogic Very High Speed 16K Gate CMOS FPGA4-24Ultra38016UltraLogic Very High Speed 16K Gate CMOS FPGA4-25Ultra38016UltraLogic Very High Speed 16K Gate CMOS FPGA4-26Ultra38010UltraLogic Very High Speed 20K Gate CMOS FPGA4-26Ultra38010UltraLogic Very High Speed 10K Gate CMOS FPGA4-25Ultra38010UltraLogic Very High Speed 10K Gate CMOS FPGA4-27V17C381PUltraLogic Very High Speed 11K Gate CMOS FPGA4-28CY7C381PUltraLogic Very High Speed 11K Gate CMOS FPGA4-35CY7C382PUltraLogic Very High Speed 11K Gate CMOS FPGA4-42CY7C383AUltraLogic Very High Speed 11K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 11K	Device	Description
Ultra338003UltraLogic Very High Speed 3K Gate 3.3V CMOS FPGA4-6Ultra38005UltraLogic Very High Speed 5K Gate CMOS FPGA4-7Ultra38005UltraLogic Very High Speed 5K Gate 3.3V CMOS FPGA4-8Ultra38007UltraLogic Very High Speed 7K Gate CMOS FPGA4-9Ultra38007UltraLogic Very High Speed 3.3V 7K Gate CMOS FPGA4-9Ultra38007UltraLogic Very High Speed 9K Gate CMOS FPGA4-19Ultra38009UltraLogic Very High Speed 9K Gate 3.3V CMOS FPGA4-20Ultra38012UltraLogic Very High Speed 9K Gate 3.3V CMOS FPGA4-21Ultra38012UltraLogic Very High Speed 12K Gate CMOS FPGA4-22Ultra38016UltraLogic Very High Speed 12K Gate CMOS FPGA4-23Ultra38016UltraLogic Very High Speed 16K Gate 3.3V CMOS FPGA4-24Ultra38020UltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA4-26Ultra38020UltraLogic Very High Speed 10K Gate 3.3V CMOS FPGA4-27pASIC380 FamilyUltraLogic Very High Speed 10K Gate 3.3V CMOS FPGA4-28CY7C381PUltraLogic Very High Speed 11K Gate CMOS FPGA4-28CY7C381AUltraLogic Very High Speed 11K Gate CMOS FPGA4-35CY7C381AUltraLogic Very High Speed 11K Gate CMOS FPGA4-44CY7C383AUltraLogic 3.3V Very High Speed 11K Gate CMOS FPGA4-52CY7C384AUltraLogic 3.3V Very High Speed 11K Gate CMOS FPGA4-52CY7C383AUltraLogic 3.3V Very High Speed 11K Gate CMOS FPGA4-52CY7C383AUltraLogic 3.3V Very High Speed 11K Gate CMOS FPGA4-52 <td>Ultra38000 Family</td> <td>UltraLogic Very High Speed CMOS FPGAs 4-1</td>	Ultra38000 Family	UltraLogic Very High Speed CMOS FPGAs 4-1
UltralogicUltralogicVery High Speed 5K Gate CMOS FPGA4–7Ultra338005Ultralogic Very High Speed 5K Gate 3.3V CMOS FPGA4–8Ultra38807Ultralogic Very High Speed 7K Gate CMOS FPGA4–9Ultra38807Ultralogic Very High Speed 7K Gate CMOS FPGA4–19Ultra38009Ultralogic Very High Speed 9K Gate CMOS FPGA4–20Ultra38012Ultralogic Very High Speed 9K Gate CMOS FPGA4–21Ultra38016Ultralogic Very High Speed 12K Gate CMOS FPGA4–22Ultra38016Ultralogic Very High Speed 12K Gate CMOS FPGA4–23Ultra38016Ultralogic Very High Speed 12K Gate CMOS FPGA4–23Ultra38016Ultralogic Very High Speed 16K Gate 3.3V CMOS FPGA4–24Ultra38016Ultralogic Very High Speed 16K Gate CMOS FPGA4–24Ultra38010Ultralogic Very High Speed 20K Gate CMOS FPGA4–25Ultra38020Ultralogic Very High Speed 20K Gate CMOS FPGA4–26Ultra38020Ultralogic Very High Speed 11K Gate CMOS FPGA4–35CY7C381PUltralogic Very High Speed 11K Gate CMOS FPGA4–35CY7C381AUltralogic Very High Speed 11K Gate CMOS FPGA4–35CY7C381AUltralogic Very High Speed 11K Gate CMOS FPGA4–52CY7C381AUltralogic Very High Speed 11K Gate CMOS FPGA4–52CY7C384AUltralogic Very High Speed 11K Gate CMOS FPGA4–35CY7C385AUltralogic Very High Speed 11K Gate CMOS FPGA4–52CY7C385AUltralogic Very High Speed 12K Gate CMOS FPGA4–52CY7C385AUltralogic 3.3V Very H	Ultra38003	UltraLogic Very High Speed 3K Gate CMOS FPGA 4-5
UltralogicUltralogicVery High Speed 5K Gate CMOS FPGA4–7Ultra338005Ultralogic Very High Speed 5K Gate 3.3V CMOS FPGA4–8Ultra38807Ultralogic Very High Speed 7K Gate CMOS FPGA4–9Ultra38807Ultralogic Very High Speed 7K Gate CMOS FPGA4–19Ultra38009Ultralogic Very High Speed 9K Gate CMOS FPGA4–20Ultra38012Ultralogic Very High Speed 9K Gate CMOS FPGA4–21Ultra38016Ultralogic Very High Speed 12K Gate CMOS FPGA4–22Ultra38016Ultralogic Very High Speed 12K Gate CMOS FPGA4–23Ultra38016Ultralogic Very High Speed 12K Gate CMOS FPGA4–23Ultra38016Ultralogic Very High Speed 16K Gate 3.3V CMOS FPGA4–24Ultra38016Ultralogic Very High Speed 16K Gate CMOS FPGA4–24Ultra38010Ultralogic Very High Speed 20K Gate CMOS FPGA4–25Ultra38020Ultralogic Very High Speed 20K Gate CMOS FPGA4–26Ultra38020Ultralogic Very High Speed 11K Gate CMOS FPGA4–35CY7C381PUltralogic Very High Speed 11K Gate CMOS FPGA4–35CY7C381AUltralogic Very High Speed 11K Gate CMOS FPGA4–35CY7C381AUltralogic Very High Speed 11K Gate CMOS FPGA4–52CY7C381AUltralogic Very High Speed 11K Gate CMOS FPGA4–52CY7C384AUltralogic Very High Speed 11K Gate CMOS FPGA4–35CY7C385AUltralogic Very High Speed 11K Gate CMOS FPGA4–52CY7C385AUltralogic Very High Speed 12K Gate CMOS FPGA4–52CY7C385AUltralogic 3.3V Very H	Ultra338003	UltraLogic Very High Speed 3K Gate 3.3V CMOS FPGA 4-6
Ultra38007UltraLogic Very High Speed 7K Gate CMOS FPGA4-9Ultra338007UltraLogic Very High Speed 9K Gate CMOS FPGA4-19Ultra38009UltraLogic Very High Speed 9K Gate CMOS FPGA4-20Ultra38009UltraLogic Very High Speed 9K Gate CMOS FPGA4-21Ultra38012UltraLogic Very High Speed 9K Gate CMOS FPGA4-21Ultra38012UltraLogic Very High Speed 12K Gate CMOS FPGA4-23Ultra38016UltraLogic Very High Speed 12K (36K) Gate 3.3V CMOS FPGA4-24Ultra38016UltraLogic Very High Speed 16K Gate CMOS FPGA4-25Ultra38010UltraLogic Very High Speed 16K Gate 3.3V CMOS FPGA4-25Ultra38010UltraLogic Very High Speed 20K Gate CMOS FPGA4-26Ultra38010UltraLogic Very High Speed 20K Gate CMOS FPGA4-27pASIC380 FamilyUltraLogic Very High Speed 1K Gate CMOS FPGA4-28CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C381AUltraLogic Very High Speed 1K Gate CMOS FPGA4-44CY7C382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-52CY7C383AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-52CY7C383AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C383AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-52CY7C383AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C383AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-52CY7C385AUltraLogic 3.3V	Ultra38005	
Ultra338007UltraLogic Very High Speed 3.3V 7K Gate CMOS FPGA4–19Ultra38009UltraLogic Very High Speed 9K Gate CMOS FPGA4–20Ultra338009UltraLogic Very High Speed 9K Gate 3.3V CMOS FPGA4–21Ultra38012UltraLogic Very High Speed 12K Gate CMOS FPGA4–22Ultra38016UltraLogic Very High Speed 12K (36K) Gate 3.3V CMOS FPGA4–23Ultra38016UltraLogic Very High Speed 16K Gate CMOS FPGA4–24Ultra38016UltraLogic Very High Speed 16K Gate CMOS FPGA4–25Ultra38010UltraLogic Very High Speed 20K Gate CMOS FPGA4–26Ultra38020UltraLogic Very High Speed 20K Gate CMOS FPGA4–27pASIC380 FamilyUltraLogic Very High Speed 1K Gate CMOS FPGA4–28CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4–35CY7C381AUltraLogic Very High Speed 1K Gate CMOS FPGA4–44CY7C382AUltraLogic Very High Speed 1K Gate CMOS FPGA4–44CY7C382AUltraLogic Very High Speed 1K Gate CMOS FPGA4–44CY7C382AUltraLogic Very High Speed 1K Gate CMOS FPGA4–44CY7C383AUltraLogic Very High Speed 2K Gate CMOS FPGA4–52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4–52CY7C385AUltraLogic Very High Speed 2K Gate CMOS FPGA4–52CY7C385AUltraLogic Very High Speed 2K Gate CMOS FPGA4–54CY7C385AUltraLogic Very High Speed 2K Gate CMOS FPGA4–56CY7C385AUltraLogic Very High Speed 2K Gate CMOS FPGA4–66CY7C385AUltraLogic Very High Speed	Ultra338005	UltraLogic Very High Speed 5K Gate 3.3V CMOS FPGA 4-8
Ultra1009UltraLogic Very High Speed 9K Gate CMOS FPGA4-20Ultra338009UltraLogic Very High Speed 9K Gate 3.3V CMOS FPGA4-21Ultra38012UltraLogic Very High Speed 12K (36K) Gate 3.3V CMOS FPGA4-22Ultra38016UltraLogic Very High Speed 12K (36K) Gate 3.3V CMOS FPGA4-23Ultra38016UltraLogic Very High Speed 16K Gate CMOS FPGA4-24Ultra38016UltraLogic Very High Speed 16K Gate 3.3V CMOS FPGA4-25Ultra38020UltraLogic Very High Speed 20K Gate CMOS FPGA4-26Ultra38020UltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA4-27pASIC380 FamilyUltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA4-28CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C382PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C381AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic Very High Speed 1K Gate CMOS FPGA4-52CY7C383AUltraLogic Very High Speed 1K Gate CMOS FPGA4-52CY7C383AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 2K Gate CMOS FPGA4-61CY7C386AUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386AUltraLogic Very High Speed 4K Gate CMOS FPGA4-64CY7C386A <td< td=""><td>Ultra38007</td><td>UltraLogic Very High Speed 7K Gate CMOS FPGA 4-9</td></td<>	Ultra38007	UltraLogic Very High Speed 7K Gate CMOS FPGA 4-9
Ultra338009UltraLogic Very High Speed 9K Gate 3.3V CMOS FPGA4-21Ultra38012UltraLogic Very High Speed 12K Gate CMOS FPGA4-22Ultra38012UltraLogic Very High Speed 12K (36K) Gate 3.3V CMOS FPGA4-23Ultra38016UltraLogic Very High Speed 16K Gate CMOS FPGA4-24Ultra38016UltraLogic Very High Speed 16K Gate CMOS FPGA4-25Ultra38020UltraLogic Very High Speed 20K Gate CMOS FPGA4-26Ultra38020UltraLogic Very High Speed 20K Gate CMOS FPGA4-27pASIC380 FamilyUltraLogic Very High Speed 20K Gate CMOS FPGA4-27pASIC380 FamilyUltraLogic Very High Speed 1K Gate CMOS FPGA4-28CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C382PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-64CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-64CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-64CY7C386AUltraLogic 3.3V Hig	Ultra338007	UltraLogic Very High Speed 3.3V 7K Gate CMOS FPGA 4-19
Ultra38012UltraLogic Very High Speed 12K Gate CMOS FPGA4-22Ultra338012UltraLogic Very High Speed 12K (36K) Gate 3.3V CMOS FPGA4-23Ultra38016UltraLogic Very High Speed 16K Gate CMOS FPGA4-24Ultra338016UltraLogic Very High Speed 16K Gate 3.3V CMOS FPGA4-25Ultra38020UltraLogic Very High Speed 20K Gate CMOS FPGA4-26Ultra38020UltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA4-27pASIC380 FamilyUltraLogic Very High Speed 20K Gate CMOS FPGA4-28CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C382PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C381AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic Very High Speed 1K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 1K Gate CMOS FPGA4-52CY7C384AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C385PUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C386PUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386AUltraLogic 0.3V High Speed 4K Gate CMOS FPGA4-69CY7C386AUltraLogic Very High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic 3.3V H	Ultra38009	UltraLogic Very High Speed 9K Gate CMOS FPGA 4-20
Ultra338012UltraLogic Very High Speed 12K (36K) Gate 3.3V CMOS FPGA4-23Ultra38016UltraLogic Very High Speed 16K Gate CMOS FPGA4-24Ultra38016UltraLogic Very High Speed 16K Gate 3.3V CMOS FPGA4-25Ultra38020UltraLogic Very High Speed 20K Gate CMOS FPGA4-26Ultra38020UltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA4-27pASIC380 FamilyUltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA4-28CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C382PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C381AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic Very High Speed 1K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C385AUltraLogic Very High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic Very High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic 3.3V High	Ultra338009	UltraLogic Very High Speed 9K Gate 3.3V CMOS FPGA 4-21
Ultra38016UltraLogic Very High Speed 16K Gate CMOS FPGA4-24Ultra338016UltraLogic Very High Speed 16K Gate 3.3V CMOS FPGA4-25Ultra38020UltraLogic Very High Speed 20K Gate CMOS FPGA4-26Ultra38020UltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA4-27pASIC380 FamilyUltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA4-28CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C382PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C381AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic Very High Speed 1K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 1K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic Very High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic Very High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic 3.3V High Speed 4K Gate	Ultra38012	
Ultra338016UltraLogic Very High Speed 16K Gate 3.3V CMOS FPGA4-25Ultra38020UltraLogic Very High Speed 20K Gate CMOS FPGA4-26Ultra338020UltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA4-27pASIC380 FamilyUltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA4-28CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C382PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C381AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic Very High Speed 1K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C3385AUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C3385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C3385AUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C3385AUltraLogic Very High Speed 4K Gate CMOS FPGA4-61CY7C3385AUltraLogic 3.3V High Speed 4K	Ultra338012	UltraLogic Very High Speed 12K (36K) Gate 3.3V CMOS FPGA 4-23
Ultra38020UltraLogic Very High Speed 20K Gate CMOS FPGA4-26Ultra338020UltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA4-27pASIC380 FamilyUltraLogic Very High Speed CMOS FPGAs4-28CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C382PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C3381AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C3382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	Ultra38016	UltraLogic Very High Speed 16K Gate CMOS FPGA 4-24
Ultra338020UltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA4-27pASIC380 FamilyUltraLogic Very High Speed CMOS FPGAs4-28CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C382PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C3381AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C3382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C3384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C3384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 4K Gate CMOS FPGA4-61CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81<	Ultra338016	UltraLogic Very High Speed 16K Gate 3.3V CMOS FPGA 4-25
pASIC380 FamilyUltraLogic Very High Speed CMOS FPGAs4-28CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C382PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C3381AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C3382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C383AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	Ultra38020	UltraLogic Very High Speed 20K Gate CMOS FPGA 4-26
CY7C381PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C382PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C381AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic Very High Speed 1K Gate CMOS FPGA4-44CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	Ultra338020	UltraLogic Very High Speed 20K Gate 3.3V CMOS FPGA 4-27
CY7C382PUltraLogic Very High Speed 1K Gate CMOS FPGA4-35CY7C3381AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C3382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C383AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	pASIC380 Family	
CY7C3381AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C3382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C383AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	CY7C381P	UltraLogic Very High Speed 1K Gate CMOS FPGA 4-35
CY7C3382AUltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA4-44CY7C383AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C3383AUltraLogic Very High Speed 2K Gate CMOS FPGA4-61CY7C3384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C3384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C3384AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C3385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C3386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	CY7C382P	UltraLogic Very High Speed 1K Gate CMOS FPGA 4-35
CY7C383AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C3383AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C3384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	CY7C3381A	
CY7C384AUltraLogic Very High Speed 2K Gate CMOS FPGA4-52CY7C3383AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C3384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C3385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C3385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C3386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	CY7C3382A	UltraLogic 3.3V Very High Speed 1K Gate CMOS FPGA 4-44
CY7C3383AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C3384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C3385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-69CY7C3385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C3386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	CY7C383A	
CY7C3384AUltraLogic 3.3V High Speed 2K Gate CMOS FPGA4-61CY7C385PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C3385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C3386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	CY7C384A	
CY7C385PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C3385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C3386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	CY7C3383A	
CY7C386PUltraLogic Very High Speed 4K Gate CMOS FPGA4-69CY7C3385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C3386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	CY7C3384A	
CY7C3385AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81CY7C3386AUltraLogic 3.3V High Speed 4K Gate CMOS FPGA4-81	CY7C385P	UltraLogic Very High Speed 4K Gate CMOS FPGA 4-69
CY7C3386A UltraLogic 3.3V High Speed 4K Gate CMOS FPGA	CY7C386P	
	CY7C3385A	UltraLogic 3.3V High Speed 4K Gate CMOS FPGA 4-81
CY7C387P UltraLogic Very High Speed 8K Gate CMOS FPGA	CY7C3386A	
	CY7C387P	UltraLogic Very High Speed 8K Gate CMOS FPGA 4-90
CY7C388P UltraLogic Very High Speed 8K Gate CMOS FPGA		
CY7C3387P UltraLogic Very High Speed 8K Gate CMOS FPGA 4–100		
CY7C3388P UltraLogic Very High Speed 8K Gate CMOS FPGA	CY7C3388P	UltraLogic Very High Speed 8K Gate CMOS FPGA

PRELIMINARY

Ultra38000™ Family

UltraLogic[™] Very High Speed CMOS FPGAs

Features

- Very high speed
 - Loadable counter frequencies greater than 185 MHz
 - Data Path frequencies at greater than 200 MHz
 - Chip-to-chip operating frequencies up to 135 MHz
 - Input + logic cell + output delays under 5.5 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - Density from 9,000 to 60,000 total available gates
- Fully PCI compliant inputs & outputs — Full 33 MHz system performance
- Low power, high output drive

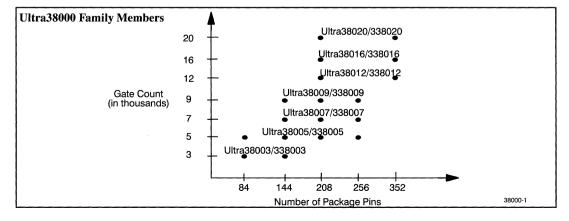
 - 16-bit counter operating at 100 MHz consumes 50 mA
 - Minimum I_{OL} and I_{OH} of 24 mA
- Flexible logic cell architecture
- --- Wide fan-in (up to 16 input gates) --- Multiple outputs in each cell
- Very low cell propagation delay
- Very low cell propagation delay (1.4 ns typical)
- Fragments into five fine-grained functions for the worlds most efficient synthesis

Robust routing resources

- Fully automatic place and route of designs using up to 100 percent of logic resources
- No hand routing required

- Dedicated clock input pins with fanout-independent low-skew clock nets
 - Fast clocks driven from dedicated inputs
 - Global clocks driven from dedicated inputs, any I/O pins or internal logic
 - --- Clock skew < 0.5 ns
- Input registers
 - Set-up time <2 ns
- Input hysteresis provides high noise immunity
- Full JTAG testability
 IEEE standard 1149.1.6
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology
 - -High-speed metal-to-metal link
 - --- Non-volatile antifuse technology
- Powerful design tools—Warp3™
 - Designs entered in IEEE1164
 VHDL, schematics, or mixed
 - Fast, fully automatic place and route
 - Waveform simulation with back annotated net delays
 - PC and workstation platforms

Functional Description


The Ultra38000[™] Family of very-highspeed CMOS user-programmable ASIC devices is based on Cypress's ViaLink FPGA technology to combine high speed, high density, and low power in a single architecture.

All Ultra38000 Family devices are based on an array of highly flexible logic cells which have been optimized for efficient implementation of high-speed arithmetic, counter, datapath, state machine, random and glue logic functions. The logic cell was also designed to be fragmented into five fine-grained functions for the most efficient synthesis available. Logic cells are configured and interconnected by rows and columns of routing metal and ViaLink metal-to-metal programmable-via interconnect elements.

ViaLink technology provides a nonvolatile, permanently programmed customer logic function capable of operating at counter speeds of over 175 MHz. Internal logic cell nominal delays are under 2 ns and total input to output combinatorial delays are under 6 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors, while consuming a fraction of the power and board area of PAL, GAL, and discrete logic solutions.

Ultra38000 Family devices range in density from 3000 gates in an 84-pin package, to 20,000 gates in a 352-pin package. See *Table 1*. Devices share a common architecture to allow easy migration of designs from one density to another.

Designs are captured for the Ultra38000 using Cypress Warp3 software or one of several third-party tools. See the Development Systems section for more information. Warp3 is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The Ultra38000 family features ample on-chip routing channels for fast, fully automatic place and route of 100% gate utilization designs.

Device	Logic Cells	I/O Cells	Usable Gates	Packages
Ultra38003 Ultra338003	192	120	3К	84 PLCC, 144 TQFP
Ultra38005 Ultra338005	320	156	5K	84 PLCC, 144 TQFP, 208 PQFP, 256 PBGA
Ultra38007 Ultra338007	480	192	7K	144 TQFP, 208 PQFP, 256 PBGA
Ultra38009 Ultra338009	672	228	9K	144 TQFP, 208 PQFP, 256 PBGA
Ultra38012 Ultra338012	896	264	12 K	208 PQFP, 352 PBGA
Ultra38016 Ultra338016	1152	300	16K	208 PQFP, 352 PBGA
Ultra38020 Ultra338020	1440	336	20K	208 PQFP, 352 PBGA

Table 1. Key Features of Ultra38000 Devices

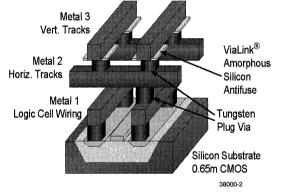
Organization

The Ultra38000 Family of very-high-speed FPGAs contains devices covering a wide spectrum of I/O and density requirements. The seven members range from 3,000 gates in an 84-pin package to 20,000 gates in an 352-pin package and are shown in *Table 1*.

Device part numbers are derived from the usable gate count. Each of the internal logic cells has the logic capacity of more than 30 "gate array gates." A typical application will use 12 to 15 gates from each logic cell.

ViaLink Programming Element

Programmable devices implement custom logic functions by interconnecting user-configurable logic cells through a variety of semiconductor switching elements. The maximum speed of operation is determined by the effective impedance of the switch in both programmed, ON, and unprogrammed, OFF, states.


In Ultra38000 devices the switch is called a ViaLink element. The ViaLink element is an antifuse formed in a via between the two layers of metal of a standard CMOS gate array process. The direct metal-to-metal link created as a result of programming achieves a connection with resistance values below 50Ω . This is less than five percent of the resistance of an EPROM or SRAM switch and 10 percent of that of a dielectric antifuse. The capacitance of any programmed ViaLink site is also lower than these alternative approaches. The resulting low RC time constant provides speeds two to three times faster than older generation technologies.

In a custom metal masked ASIC, such as a gate array, the top and bottom layers of metal make direct contact through the via. In an Ultra38000 FPGA, the two layers of metal are initially separated by an insulating silicon layer with resistance in excess of 1 gigaohm.

A programming voltage pulse applied across the via forms a bidirectional conductive link connecting the top and bottom metal layers.

Cypress Ultra38000 devices are fabricated on a conventional high-volume CMOS gate array process. The base technology is a 0.65 micron, n-well CMOS technology with a single polysilicon layer and three layers of metal interconnect as shown in *Figure 1*. The only deviation from the standard process flow occurs when the ViaLink module is inserted between the metal deposition steps.

The size of a ViaLink via is identical to that of a standard metal interconnect via. Therefore the programmable elements can be packed very densely. The structure of *Figure 1* shows an array of

Figure 1. Three Layer Metal ViaLink Structure

ViaLink elements. The density is limited only by the minimum dimensions of the metal-line to metal-line pitch.

The Ultra38000 device architecture consists of an array of user-configurable logic building blocks, called logic cells, set in a grid of metal wiring channels similar to those of a gate array. Through ViaLink elements located at the wire intersections, the output of any cell may be programmed to connect to the input of any other cell.

This regular and orthogonal interconnect makes the Ultra38000 architecture similar in structure and performance to a metal masked gate array. It also makes system operating speed far less sensitive to partitioning and placement decisions, as minor revisions to a logic design result only in small changes in performance.

Adequate wiring resources permit 100% automatic placement and routing of designs using up to 100% of the logic cells. This has been demonstrated on designs that include a high percentage of fixed pin placements.

Ultra38000 Logic Cell

The Ultra38000 internal logic cell, shown in *Figure 2*, is a general purpose building block that can implement most TTL and gate array macro library functions. It has been optimized to maintain the inherent speed advantage of the ViaLink technology while ensuring maximum logic flexibility.

The complete Ultra38000 logic cell consists of two 6-input AND gates, four 2-input AND gates, six 2-to-1 multiplexers and one D flip-flip with asynchronous preset and clear controls. Each cell represents approximately 13 usable gate-equivalents of logic capacity. The total fan-in of the cell is 29 (including register control lines) and allows a wide range of functions with up to 16 simultaneous inputs. The high logic capacity and fan-in of the Ultra38000 logic cell accommodate many user functions with a single level of logic delay while other architectures require two or more levels of delay. Examples of combinatorial functions that can be implemented with a single logic cell: one 16-input AND gate, two 6-input AND gates plus two 4-input AND gates, two 6-input AND gates plus two 2:1 or one 4:1 multiplexers, one 5-input XOR gate, one 3-input XOR and one 2-input XOR, and numerous sum-of-products functions with up to 16 inputs or 16 product terms.

The multiplexer output feeds the D-type flip-flop which can also be configured to provide J-K, S-R, or T-type functions as well as count with carry-in. Two independent SET and RESET inputs can be used to asynchronously control the output condition. The combination of wide gating capability and a built-in sequential function makes the Ultra38000 logic cell particularly well suited to the design of high-speed state machines, shift registers, encoders, adecoders, arbitration and arithmetic logic, as well as a wide variety of counters.

Figure 3 shows some of the possible configurations of the logic cell. Since all connections within the cell are hard-wired, the various functions are available in parallel. Thus very wide, complex functions are implemented with the same cell speed (about 2 ns) as the much smaller "fragment" functions. Related and unrelated functions can be packed into the same logic cell, increasing effective density and gate utilization.

This level of flexibility is especially important for designs synthesized from HDLs such as VHDL or Verilog. Typically, synthesis tools prefer "gate array-like" fine-grained architectures; however, fine-grained FPGA architectures generally yield very poor performance due to the long delays resulting from building functions with multiple levels of gates and slow interconnect elements. The Ultra38000 family gives logic synthesis tools the needed degrees of freedom for the high logic utilization benefits of a fine-grained architecture without sacrificing the high performance benefits of a large-grained, high fan-in architecture.

Figure 2. Logic Cell

38000-3

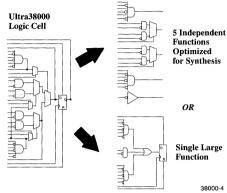
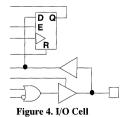


Figure 3. Logic Cell Fragmentation

The function of a logic cell is determined by the logic levels applied to the inputs of the AND gates. ViaLink sites located on signal wires tied to the gate inputs perform the dual role of configuring the logic function of a cell and establishing connections between cells.


A detailed understanding of the logic cell is therefore not necessary to design successfully with Ultra38000 devices. CAE tools will automatically translate a conventional logic schematic into a device and provide excellent performance and utilization.

I/O Cell

The Ultra38000 family features enhanced I/O cells with fast set-up time input registers featuring individually controlled synchronous clock enables. Each I/O pin has an individually controlled output enable signal as well. See *Figure 4*. All of the outputs are slew-controlled to minimize ground bounce, yet feature full PCI 2.1 output drive compliance. The family has a wide range of I/O counts available up to 336 for the largest device. Members of the family are available in multiple package types, including PLCC, TQFP, PQFP, and BGA. Different devices offered in the same packages are pin-compatible with each other, making it easy for designers who need more features to migrate to a higher density device.

Three types of input and output structures are provided on Ultra38000 devices to configure buffering functions at the external pads. They are the Bidirectional Input/Output (I/O) cell, the Dedicated Input (I) cell, and the Clock Input cell (I/CLK).

The bidirectional I/O cell consists of a 2-input OR gate connected to a pin buffer driver. The buffer output is controlled by a three-state enable line to allow the pad to also act as an input. The output may be configured as active HIGH, active LOW, or as an open drain inverting buffer.

38000-5

The output buffers (I_{OI}/I_{OH} of 24 mA) are designed to ensure quiet switching characteristics while maintaining high speed. Measured results show up to 48 outputs switching simultaneously into a 10 pF load with less than ± 1 volt of output switching noise.

Routing Wires

Five types of signal wires are employed on the 3K, 5K, 7K, and 9K: segmented, dual, express, clock, and quad wires. A sixth wire type is added to the 12K, 16K, and 20K- the hexwire. Segmented wires are predominantly used for local connections and have a ViaLink element referred to as a cross link, at every intersection. They may also be connected to the segmented wires of cells above and below through ViaLink elements, called pass links. Express wires are similar to segmented wires except that they are not divided by pass links. Quad wires are similar to segmented wires in that they are employed for local interconnect, but instead of having pass links above and below each cell, they have pass links every fourth logic cell. The hex wire has pass links every six logic cells. This hierarchical routing structure is designed for optimal performance and density.

Dedicated Clock wires are lightly loaded with only three links per cell to distribute high-speed clock edges to the flip-flop CLK, SET, and RESET pins. Express wires may also be used to deliver clock signals into the multiplexer region of the cell for combinatorial gating.

Horizontal wiring channels provide connections via cross links to other columns of logic cells and to the periphery of the chip. Appropriate programming of ViaLink elements allows electrical connection to be made from any logic cell output to the input of any other logic or I/O cell. Ample wires are provided in the channels to permit automatic place and route of designs using up to 100% of the logic cells. Designs can be completed automatically even with a high percentage of fixed user placement of internal cells and pin locations.

The automatic place and route software allocates signals to the appropriate wire to ensure the optimum speed/density combination.

Reliability

The Ultra38000 Family is based on a 0.65-micron, high-volume CMOS fabrication process with the ViaLink programmable-via antifuse technology inserted between the metal deposition steps. Devices from this base CMOS process have been qualified to meet the requirements of MIL-STD-883D, Revision B.

The ViaLink element exists in one of the two states: a highly resistive unprogrammed, OFF, state and the low impedance, conductive, ON, state. It is connected between the output of one logic cell and inputs of other logic cell directly or through other links. No DC current flows through either a programmed or an unprogrammed link during operation as a logic device. An unprogrammed link sees a worst case voltage equal to V_{CC} biased across its terminals. A programmed link carries AC current caused charging and discharging of device and interconnect hv capacitances during switching.

Studies of test structures and complete Ultra38000 devices have shown that an unprogrammed link under V_{CC} bias remains in the unprogrammed state over time. Similar tests on programmed links under current bias exhibit the same stability. These tests indicate that the long term reliability of the combined CMOS and ViaLink structure is similar to that of the base gate array process. See the Antifuse Reliability report for more information.

UltraLogic, Warp, Warp3, and Ultra38000 are trademarks of Cypress Semiconductor Corp. PAL is a trademark of Advanced Micro Devices. GAL is a trademark of Lattice Semiconductor Corp. ViaLink is a trademark of QuickLogic Corp.

ADVANCED INFORMATION

Ultra38003

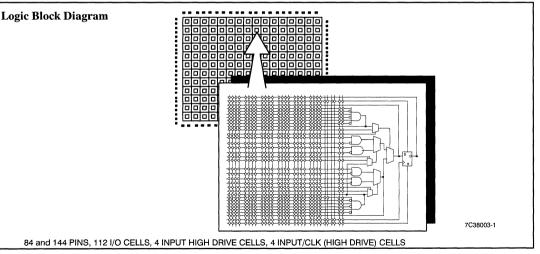
Features

- Very high speed
 - Loadable counter frequencies greater than 185 MHz
 - Chip-to-chip operating frequencies up to 135 MHz
 - Input + logic cell + output delays under 5.5 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 16 x 12 array of 192 logic cells provides 9,000 total available gates
 - 3,000 typically usable "gate array" gates
- Available in 84-pin PLCC and 144-pin TQFP
- Fully PCI compliant inputs & outputs
- Low power, high output drive
 - Standby current typically 2 mA
 - 16-bit counter operating at 100 MHz consumes 50 mA
 - Minimum I_{OL} and I_{OH} of 24 mA
- Flexible logic cell architecture
 - --- Wide fan-in (up to 14 input gates)
 - Multiple outputs in each cell
 - Very low cell propagation delay (1.4 ns typical)

- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - No hand routing required
- 112 bidirectional input/output pins
- 4 dedicated input/high-drive pins
- 4 fanout-independent low-skew clock nets
 - 2 fast clocks driven from dedicated inputs
 - 2 global clocks driven from any pin or internal logic
- Input registers
 - Set-up time <2 ns
- Two primary clock/dedicated input pins with fanout-independent, lowskew nets
 - -Clock skew <0.5 ns
- Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology
 - -High-speed metal-to-metal link
 - Non-volatile antifuse technology

3K Gate CMOS FPGA • Powerful design tools—*Warp3* ™

UltraLogic[™] Very High Speed


- Designs entered in VHDL, schematics, or mixed
- Fast, fully automatic place and route
- Waveform simulation with back annotated net delays
- PC and workstation platforms
- · Extensive third party tools support
 - --- See Development Systems section

Functional Description

The Ultra38003 is a very high speed, CMOS, user-programmable ASIC device. The 192 logic cell field-programmable gate array (FPGA) offers 3,000 typically usable "gate array" gates. This is equivalent to 9,000 EPLD or LCA gates. The Ultra38003 is available in 84-pin PLCC and 144-pin TQFP packages.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 200 MHz with input delays under 2 ns and output delays under 3 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

For detailed information about the Ultra38000[™] architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation.

Warp3, Ultra38000, and UltraLogic are trademarks of Cypress Semiconductor Corporation.

ADVANCED INFORMATION

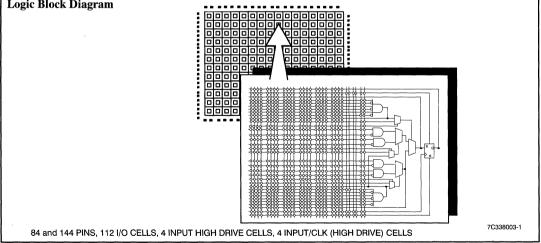
Ultra338003

Features

- Full 3.3V operation
- Very high speed
 - Loadable counter frequencies greater than 100 MHz
 - Chip-to-chip operating frequencies up to 85 MHz
 - Input + logic cell + output delays under 7 ns
- **Unparalleled FPGA performance for** counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 16 x 12 array of 192 logic cells provides 9,000 total available gates
 - 3,000 typically usable "gate array" gates
- Available in 84-pin PLCC and 144-pin TOFP
- Fully PCI compliant inputs & outputs
- Low power, high output drive
 - Standby current typically 100 μA - 16-bit counter operating at 100 MHz consumes 25 mA
- Flexible logic cell architecture
 - Wide fan-in (up to 14 input gates)
 - Multiple outputs in each cell
 - Very low cell propagation delay
 - (1.4 ns typical)

Logic Block Diagram

- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - No hand routing required
- 112 bidirectional input/output pins
- 8 dedicated input/high-drive pins
- 4 fanout-independent low-skew clock nets
- 2 fast clocks driven from dedicated inputs
- -2 global clocks driven from any pin or internal logic
- Input registers
 - Set-up time <2 ns</p>
- Two primary clock/dedicated input pins with fanout-independent, lowskew nets
 - Clock skew < 0.5 ns</p>
- Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology
 - -High-speed metal-to-metal link
 - ---- Non-volatile antifuse technology


- UltraLogic[™] Very High Speed 3K Gate 3.3V CMOS FPGA
 - Powerful design tools—Warp3™
 - Designs entered in VHDL. schematics, or mixed
 - Fast, fully automatic place and route
 - Waveform simulation with back annotated net delays
 - PC and workstation platforms
 - Extensive third party tools support
 - See Development Systems section

Functional Description

The Ultra338003 is a very high speed, 3.3V, CMOS, user-programmable ASIC device. The 192 logic cell field-programmable gate array (FPGA) offers 3,000 typically usable "gate array" gates. This is equivalent to 9,000 EPLD or LCA gates. The Ultra338003 is available in 84-pin PLCC and 144-pin TQFP packages.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 100 MHz with input delays under 4 ns and output delays under 5.5 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

For detailed information about the Ultra38000 ™ architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of OuickLogic Corporation.

Warp3, Ultra38000, and UltraLogic are trademarks of Cypress Semiconductor Corporation.

ADVANCED INFORMATION

Ultra38005

Features

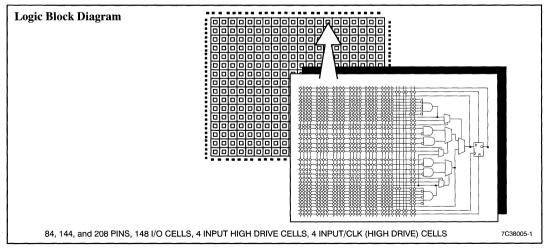
- Very high speed
 - Loadable counter frequencies greater than 185 MHz
 - Chip-to-chip operating frequencies up to 135 MHz
 - Input + logic cell + output delays under 5.5 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 20 x 16 array of 320 logic cells provides 15,000 total available gates
 - 5,000 typically usable "gate array" gates
- Available in 84-pin PLCC, 144-pin TQFP, and 208-pin PQFP
- Fully PCI compliant inputs & outputs
- Low power, high output drive
- - 16-bit counter operating at 100 MHz consumes 50 mA
- --- Minimum I_{OL} and I_{OH} of 24 mA
- Flexible logic cell architecture
 - --- Wide fan-in (up to 14 input gates)
 - Multiple outputs in each cell
 - Very low cell propagation delay (1.4 ns typical)

- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - --- No hand routing required
- 148 bidirectional input/output pins
- 8 dedicated input/high-drive pins
- 4 fanout-independent low-skew clock nets
 - 2 fast clocks driven from dedicated inputs
 - 2 global clocks driven from any pin or internal logic
- Input registers
 - Set-up time <2 ns
- Two primary clock/dedicated input pins with fanout-independent, lowskew nets
 - -Clock skew <0.5 ns
- Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology
- High-speed metal-to-metal link
 Non-volatile antifuse technology
- Powerful design tools—*Warp3*[™]
- Designs entered in VHDL, schematics, or mixed

--- Fast, fully automatic place and route

5K Gate CMOS FPGA

- Waveform simulation with back annotated net delays
- PC and workstation platforms
- Extensive third party tools support
 - ---- See Development Systems section


Functional Description

UltraLogic[™] Very High Speed

The Ultra38005 is a very high speed, CMOS, user-programmable ASIC device. The 320 logic cell field-programmable gate array (FPGA) offers 5,000 typically usable "gate array" gates. This is equivalent to 15,000 EPLD or LCA gates. The Ultra38005 is available in 84-pin PLCC, 144-pin TQFP, and 208-pin PQFP packages.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 200 MHz with input delays under 2 ns and output delays under 3 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

For detailed information about the Ultra38000[™] architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation.

Warp3, UltraLogic, and Ultra38000 are trademarks of Cypress Semiconductor Corporation.

Document #: 38-00481

4

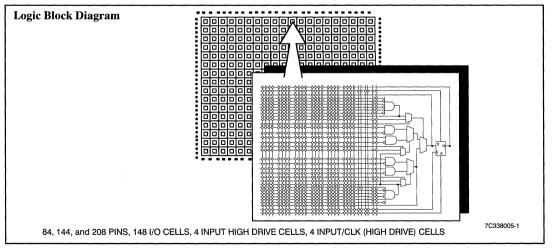
ADVANCED INFORMATION Ultra338005

UltraLogic[™] Very High Speed 5K Gate 3.3V CMOS FPGA

Features

- Full 3.3V operation
- Very high speed
- Loadable counter frequencies greater than 100 MHz
- Chip-to-chip operating frequencies up to 85 MHz
- Input + logic cell + output delays under 7 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 20 x 16 array of 320 logic cells provides 15,000 total available gates
 - 5,000 typically usable "gate array" gates
- Available in 84-pin PLCC, 144-pin TQFP, and 208-pin PQFP
- Fully PCI compliant inputs & outputs
- Low power, high output drive
 - Standby current typically 100 μA
 16-bit counter operating at 100 MHz consumes 25 mA
- Flexible logic cell architecture
 - --- Wide fan-in (up to 14 input gates)
 - Multiple outputs in each cell
 - Very low cell propagation delay (1.4 ns typical)

- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - -No hand routing required
- 148 bidirectional input/output pins
- 4 dedicated input/high-drive pins
- 4 fanout-independent low-skew clock nets
 - 2 fast clocks driven from dedicated inputs
 - 2 global clocks driven from any pin or internal logic
- Input registers
- Set-up time <2 ns
- Two primary clock/dedicated input pins with fanout-independent, lowskew nets
 - -Clock skew <0.5 ns
- Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology
 - High-speed metal-to-metal link
- Non-volatile antifuse technology
- Powerful design tools—*Warp3*™
 - Designs entered in VHDL, schematics, or mixed


- Fast, fully automatic place and route
- Waveform simulation with back annotated net delays
- PC and workstation platforms
- Extensive third party tools support — See Development Systems section

Functional Description

The Ultra338005 is a very high speed, 3.3V, CMOS, user-programmable ASIC device. The 320 logic cell field-programmable gate array (FPGA) offers 5,000 typically usable "gate array" gates. This is equivalent to 15,000 EPLD or LCA gates. The Ultra338005 is available in 84-pin PLCC, 144-pin TQFP, and 208-pin PQFP.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 100 MHz with input delays under 4 ns and output delays under 5.5 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

For detailed information about the Ultra38000[™] architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation.

Warp3, Ultra38000, and UltraLogic are trademarks of Cypress Semiconductor Corporation.

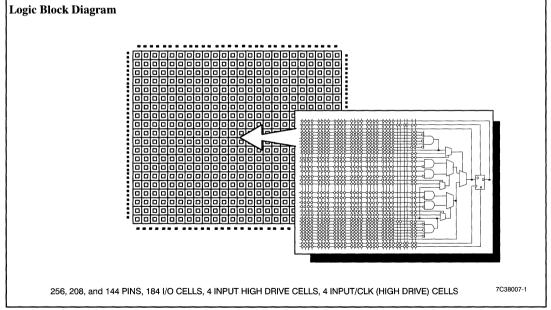
PRELIMINARY

Ultra38007

Features

- Very high speed
 - Loadable counter frequencies greater than 185 MHz
 - Chip-to-chip operating frequencies up to 135 MHz
 - Input + logic cell + output delays under 5.5 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - --- 24 x 20 array of 480 logic cells provides 21,000 total available gates
 - 7,000 typically usable "gate array" gates
- Available in 144-pin TQFP, 208-pin PQFP, and 256-pin BGA
- Fully PCI compliant inputs & outputs
- Low power, high output drive
- Standby current typically 2 mA
 16-bit counter operating at 100 MHz consumes 50 mA

- Minimum $I_{\rm OL}$ and $I_{\rm OH}$ of 24 mA
- Flexible logic cell architecture
 - --- Wide fan-in (up to 16 input gates) --- Multiple outputs in each cell
 - Very low cell propagation delay (1.4 ns typical)
- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - No hand routing required
- 184 bidirectional input/output pins
- 4 dedicated input/high-drive pins
- 4 clock dedicated input pins with fanout-independent low-skew clock nets
- 2 fast clocks driven from dedicated inputs
- 2 global clocks driven from dedicated inputs, any I/O pins or internal logic
- Clock skew < 0.5 ns


Input registers

UltraLogic[™] Very High Speed

- Set-up time <2 ns
- Input hysteresis provides high noise immunity

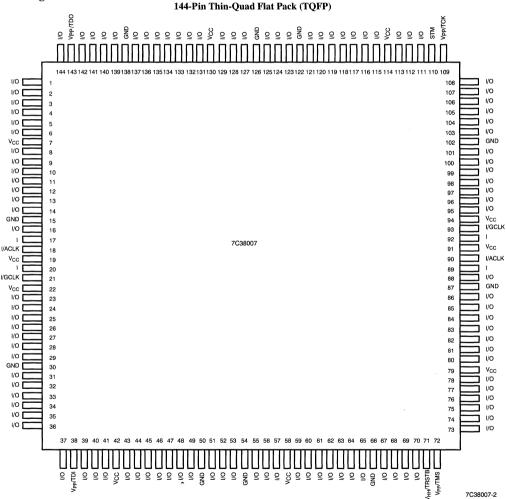
7K Gate CMOS FPGA

- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology
 - High-speed metal-to-metal link
 Non-volatile antifuse technology
- Powerful design tools—*Warp3* [™]
 - Designs entered in IEEE1164 VHDL, schematics, or mixed
 - Fast, fully automatic place and route
 - Waveform simulation with back annotated net delays
 - PC and workstation platforms

UltraLogic, *Warp3*, and Ultra38000 are trademarks of Cypress Semiconductor Corporation ViaLink and pASIC are trademarks of QuickLogic Corporation.

Functional Description

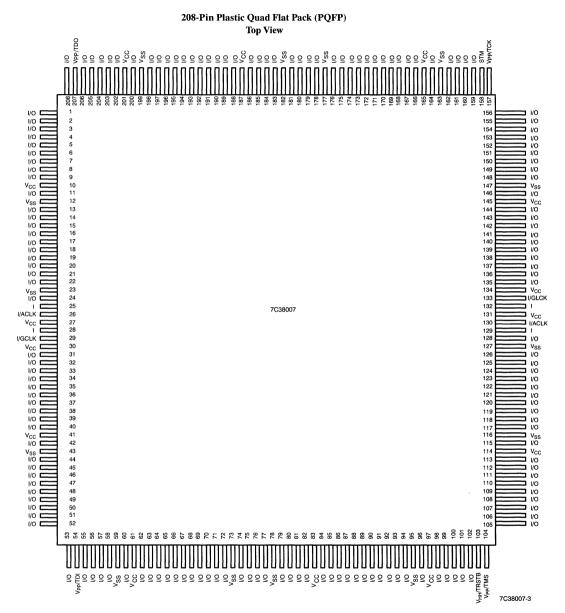
The Ultra38007 is a very high speed, CMOS, user-programmable ASIC device. The 480 logic cell field-programmable gate array (FPGA) offers 7,000 typically usable "gate array" gates. This is equivalent to 21,000 EPLD or LCA gates. The Ultra38007 is available in a 144-pin TQFP, 208-pin PQFP, and 256-pin BGA.


Low-impedance, metal-to-metal ViaLink[™] interconnect technology provides non-volatile custom logic capable of operating at speeds above 185 MHz with input delays under 2 ns and output delays under 3 ns. This permits high-density programmable de-

Pin Configurations

vices to be used with today's fastest CISC and RISC microprocessors.

Designs are entered into the Ultra38007 using Cypress $Warp3 \cong$ software or one of several third-party tools. Warp3 is a sophisticated CAE package that features schematic entry, waveformbased timing simulation, and VHDL design synthesis. The Ultra38007 features ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.


For detailed information about the Ultra38000[™] architecture, see the Ultra38000 Family datasheet.

PRELIMINARY

Pin Configurations (continued)

Pin Descriptions

Pins	Description
V _{PP} /TDI	A high voltage supply pin during programming. If JTAG is used, Test Data In. It should be held HIGH when it is not in JTAG mode.
V _{HH} /TRSTB	A high voltage pin during programming. Active low reset for JTAG. It must be held HIGH during normal operation.
V _{PP} /TMS	A high voltage supply pin during programming. Test mode select for JTAG. It should be held HIGH or LOW during normal operation.
V _{PP} /TCK	A high voltage supply pin during programming Test clock for JTAG. It should be held HIGH or LOW during normal operation.
STM	Must be grounded during normal operation.
V _{PP} /TDO	High voltage supply pin during programming. Test data out for JTAG. It should be held HIGH or LOW during normal operation.
I/ACLK	Can be configured as either an input or as the highest performance clock for the array.
I/GCLK	Can be configured as either an input, high-performance global clock (array input registers) or an output enable.
1 .	Input
I/O	Can be configured as an input and/or output.
V _{CC}	All power supply pins must be connected.
V _{SS}	All ground pins must be connected.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Latch-Up Current ±200 mA

Storage Temperature

Storage Temperature
Ceramic -65° C to $+150^{\circ}$ C
Plastic
$-40 \ C \ 10 \ +125 \ C$
Lead Temperature 300°C
Supply Voltage $-0.5V$ to $+7.0V$
Supply totage
Input Voltage $\dots \dots
ESD Pad Protection ±2000 V
DC Input Voltage

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ± 5%
Industrial	-40°C to +85°C	$5V \pm 10\%$
Military	-55°C to +125°C	$5V \pm 10\%$

Delay Factor (K)

Sneed	Comm	ercial	Industrial			
Speed Grade	Min.	Max.	Min.	Max. 2.75		
-X	0.46	2.55	0.4			
-0	0.46	1.85	0.4	2.00		
	0.46	1,50	0.4	1.60		
-2	0.46	1.25	0.4	1.35		

Shaded area contains advanced information.

Ultra38007

Electrical Characteristics Over the Operating Range

Parameter	neter Description Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = +4.0 \text{ mA}$	3.7		V
		$I_{OH} = 24.0 \text{ mA}$	2.4		V
		$I_{OH} = -10.0 \mu A$	V _{CC} - 0.1		V
V _{OL}	Output LOW Voltage	$I_{OL} = 24.0 \text{ mA}$		0.4	V
	$I_{OL} = 10.0 \mu A$		0.1	V	
V _{IH}	Input HIGH Voltage		2.0		v
V _{IL}	Input LOW Voltage			0.8	v
II	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	- 10	+10	μΑ
I _{OZ}	Three-State Output Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	- 10	+10	μΑ
I _{OS}	Output Short Circuit Current ^[1]	$V_{OUT} = V_{SS}$	-10	- 90	mA
		$V_{OUT} = V_{CC}$	40	160	mA
I _{CC1}	Standby Supply Current	V_{IN} , $V_{I/O} = V_{CC}$ or V_{SS}		10	mA

Capacitance^[2]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$ $V_{CC} = 5.0 \text{V}$	10	pF
C _{OUT}	Output Capacitance	v CC - 2.0 v	10	pF

Switching Characteristics (V_{CC}=5V, Ta=25°C, K = 1.00)

Parameter		Propagation Delays ^[3] with Fanout of					
	Description	1	2	3	4	8	Unit
LOGIC CELLS	5						
t _{PD}	Combinatorial Delay ^[4]	1.4	1.8	2.2	2.6	4.4	ns
t _{SU}	Set-Up Time ^[4]	2.1	2.1	2.1	2.1	2.1	ns
t _H	Hold Time	0.0	0.0	0.0	0.0	0.0	ns
t _{CLK}	Clock to Q Delay	0.8	1.2	1.5	2.2	3.9	ns
t _{CWHI}	Clock HIGH Time	2.0	2.0	2.0	2.0	2.0	ns
t _{CWLO}	Clock LOW Time	2.0	2.0	2.0	2.0	2.0	ns
t _{SET}	Set Delay	1.4	1.8	2.2	2.6	4.4	ns
t _{RESET}	Reset Delay	1.2	1.5	1.8	2.2	3.7	ns
t _{SW}	Set Width	1.9	1.9	1.9	1.9	1.9	ns
t _{RW}	Reset Width	1.8	1.8	1.8	1.8	1.8	ns

Notes:

2. Capacitance is sample tested.

^{1.} One output at a time. Duration should not exceed 30 seconds.

^{2.} Capacitation is sample to see . 3. Worst-case propagation delay times over process variation at $V_{CC} = 5.0$ V and $T_A = 25^{\circ}$ C. Multiply by the appropriate delay factor, K, for speed grade to get worst-case parameters over full V_{CC} and temperature range as specified in the operating range. All inputs are TTL with 3-ns linear transition time between 0 and 3 volts.

These limits are derived from worst-case values for a representative selection of the slowest paths through the Ultra38000 logic cell including net delays. Guaranteed delay values for specific paths should be determined from simulation results.

Parameter		Propagation Delays ^[3] with Fanout of						
	Description	1	2	3	4	8	10	Unit
INPUT CELLS	······································							
t _{IN}	Input Delay (HIGH Drive)	2.5	2.6	2.6	2.7	3.5	4.1	ns
t _{INI}	Input, Inverting Delay (HIGH Drive)	2.6	2.7	2.8	2.9	3.7	4.2	ns
t _{IO}	Input Delay (Bidirectional Pad)	1.1	1.5	1.8	2.4	3.8	4.6	ns
t _{ACK} ^[5]	Global Clock Buffer Delay ^[6]	2.2	2.3	2.3	2.4	2.5	2.6	ns
t _{CKHI}	Clock Buffer Min. HIGH ^[6]	2.0	2.0	2.0	2.0	2.0	2.0	ns
^t CKLO	Clock Buffer Min. LOW ^[6]	2.0	2.0	2.0	2.0	2.0	2.0	ns
t _{GCKP}	Global Clock Pin Delay	1.2	1.2	1.2	1.2	1.2	1.2	ns
t _{GCKB}	Global Clock Buffer Delay	1.5	1.6	1.6	1.7	1.8	1.9	ns
t _{ISU}	Input register set-up time	1.0	1.0	1.0	1.0	1.0	1.0	ns
t _{IH}	Input register hold time	0.0	0.0	0.0	0.0	0.0	0.0	ns
t _{ICLK}	Input register clock to Q	0.8	1.2	1.5	2.1	3.5	4.3	ns
tIRESET	Input register reset delay	0.7	1.1	1.4	2.0	3.4	4.2	ns
t _{IESU}	Input register clock enable set-up time	4.1	4.1	4.1	4.1	4.1	4.1	ns
t _{IEH}	Input resiger clock enable hold time	0.0	0.0	0.0	0.0	0.0	0.0	ns

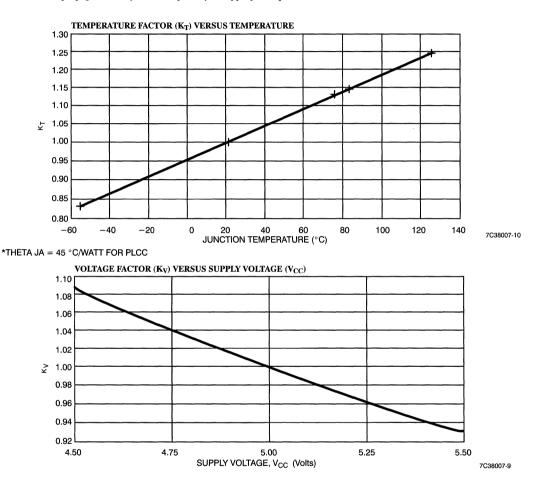
Switching Characteristics ($V_{CC}=5V$, $T_{a}=25^{\circ}C$, K = 1.00) (continued)

		Propagation Delays ^[3] with Output Load Capacitance (pF) of					
Parameter	Description	30	50	75	100	150	Unit
OUTPUT CEL	LS						
toutlh	Output Delay LOW to HIGH	2.7	3.3	3.8	4.3	5.4	ns
touthl	Output Delay HIGH to LOW	2.8	3.6	4.5	5.3	6.9	ns
t _{PZH}	Output Delay Three-State to HIGH	2.1	2.6	3.1	3.7	4.8	ns
t _{PZL}	Output Delay Three-State to LOW	2.6	3.3	4.1	9.9	6.5	ns
tPHZ	Output Delay HIGH to Three-State ^[7]	2.9					ns
t _{PLZ}	Output Delay LOW to Three-State ^[7]	3.3					ns

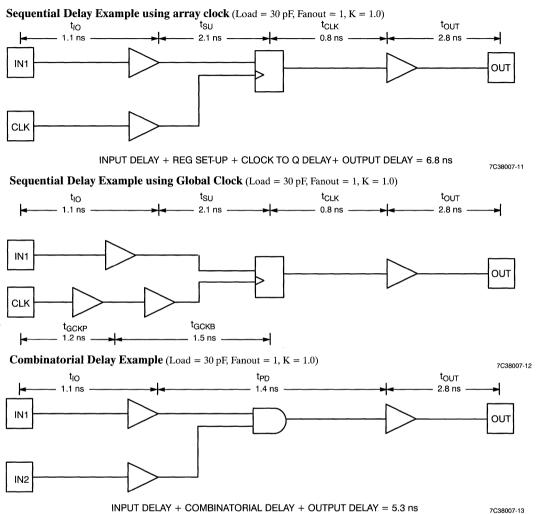
Notes:
t_{ACK} include pin delay.
Clock buffer fanout refers to the maximum number of flip-flops per half column. The number of half columns used does not affect clock

7. The following loads are used for t_{PXZ} :buffer delay.

PRELIMINARY


Switching Waveforms **Combinatorial Delay** INPUT t_{PD} -OUTPUT 7C38007-4 Set-Up and Hold Times D tsu t_H tCWHI - t_{CWLO} CLOCK t_{CLK} Q 7C38007-5 Set and Reset Delays SET t_{SW} tSET Q RESET - t_{RW} -- t_{RESET} Q 7C38007-6 **Output Delay** touthl **t**OUTLH OUTPUT 7C38007-7 Three-State Delay output Buffer Enable t_{PZH} ← t_{PLZ} ► – t_{PHZ} ► t_{PZL} THREE-STATE THREE-STATE THREE-STATE OUTPUT 7C38007-8

4



Typical AC Characteristics

Propagation delays depend on routing, fanout, load capacitance, supply voltage, junction temperature, and process variation. The AC Characteristics are a design guide to provide initial timing estimates at nominal conditions. Worst-case estimates are obtained when nominal propagation delays are multiplied by the appropriate Delay Factor, K, as specified by the speed grade in the Delay Factor table. The effects of voltage and temperature variation are illustrated in the graphs below. The *Warp3* Delay Modeler extracts specific timing parameters for precise simulation results following place and route.

4 - 17

Ultra38007

Ordering Information

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
2	CY38007P144-2AC	A144	144-Pin Thin Plastic Quad Flat Pack	Commercial
	CY38007P144-2AI	A144	144-Pin Thin Plastic Quad Flat Pack	Industrial
	CY38007P256-2BGC	BG256	256-Pad Ball Grid Array	Commercial
	CY38007P208-2NC	N208	208-Pin Plastic Quad Flat Pack	Commercial
	CY38007P208-2NI	N208	208-Pin Plastic Quad Flat Pack	Industrial
1	CY38007P144-1AC	A144	144-Pin Thin Plastic Quad Flat Pack	Commercial
	CY38007P144-1AI	A144	144-Pin Thin Plastic Quad Flat Pack	Industrial
	CY38007P256-1BGC	BG256	256-Pad Ball Grid Array	Commercial
	CY38007P208-1NC	N208	208-Pin Plastic Quad Flat Pack	Commercial
	CY38007P208-1NI	N208	208-Pin Plastic Quad Flat Pack	Industrial
0	CY38007P144-0AC	A144	144-Pin Thin Plastic Quad Flat Pack	Commercial
	CY38007P144-0AI	A144	144-Pin Thin Plastic Quad Flat Pack	Industrial
	CY38007P256-0BGC	BG256	256-Pad Ball Grid Array	Commercial
	CY38007P208-0NC	N208	208-Pin Plastic Quad Flat Pack	Commercial
	CY38007P208-0NI	N208	208-Pin Plastic Quad Flat Pack	Industrial
X	CY38007P144-XAC	A144	144-Pin Thin Plastic Quad Flat Pack	Commercial
	CY38007P144-XAI	A144	144-Pin Thin Plastic Quad Flat Pack	Commercial
	CY38007P256-XBGC	BG256	256-Pad Ball Grid Array	Industrial
	CY38007P208-XNC	N208	208-Pin Plastic Quad Flat Pack	Commercial
	CY38007P208-XNI	N208	208-Pin Plastic Quad Flat Pack	Industrial

Shaded area contains advanced information.

Military Specifications Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

ADVANCED INFORMATION Ultra338007

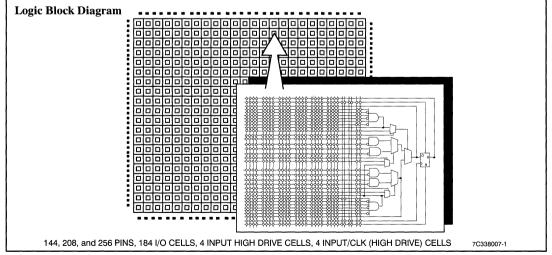
JltraLogic[™] Very High Speed 3.3V 7K Gate CMOS FPGA

Features

- True 3.3V operation
- Very high speed
 - Loadable counter frequencies greater than 100 MHz
 - Chip-to-chip operating frequencies up to 85 MHz
 - Input + logic cell + output delays under 7 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - -24 x 20 array of 480 logic cells provides 21,000 total available gates
 - 7,000 typically usable "gate array" gates
- Available in 144-pin TQFP, 208-pin PQFP, and 256-pin BGA
- Fully PCI compliant inputs & outputs
- Low power, high output drive
- Standby current typically 100 μA
 16-bit counter operating at 100 MHz consumes 25 mA
- Flexible logic cell architecture

 - Multiple outputs in each cell
 - Very low cell propagation delay
 - (1.4 ns typical)

- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - --- No hand routing required
- 184 bidirectional input/output pins
- 4 dedicated input/high-drive pins
- 4 fanout-independent, low skew clock nets
 - 2 fast clocks driven from dedicated inputs
 - 2 global clocks driven from any pin or internal logic
 - Clock skew <0.5 ns
- Input registers
- Set-up time <2 ns
- Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink ™ programming technology
 - -High-speed metal-to-metal link
 - Non-volatile antifuse technology
- Powerful design tools—Warp3[™]
 - Designs entered in VHDL, schematics, or mixed


- Fast, fully automatic place and route
- Waveform simulation with back annotated net delays
- PC and workstation platforms
- Extensive third party tools support — See Development Systems section

Functional Description

The Ultra338007 is a very high speed, 3.3V, CMOS, user-programmable ASIC device. The 480 logic cell field-programmable gate array (FPGA) offers 7,000 typically usable "gate array" gates. This is equivalent to 21,000 EPLD or LCA gates. The Ultra338007 is available in a 144-pin TQFP, 208-pin PQFP, and 256-pin BGA.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 100 MHz with input delays under 4 ns and output delays under 5.5 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

For detailed information about the Ultra 38000^{TM} architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation. Warp3, Ultra38000, and UltraLogic are trademarks of Cypress Semiconductor Corporation.

Document #: 38-00485

ADVANCED INFORMATION

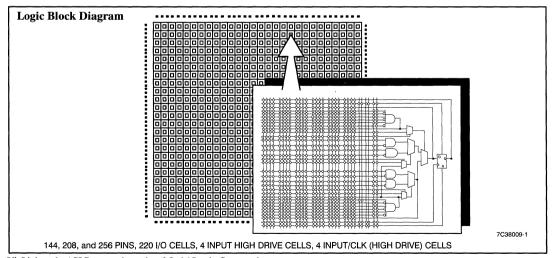
Ultra38009

Features

- Very high speed
 - Loadable counter frequencies greater than 185 MHz
 - Chip-to-chip operating frequencies up to 135 MHz
 - Input + logic cell + output delays under 5.5 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 28 x 24 array of 672 logic cells provides 27,000 total available gates
 - 9,000 typically usable "gate array" gates
- Available in 144-pin TQFP, 208-pin PQFP and 256-pin BGA
- Fully PCI compliant inputs & outputs
- Low power, high output drive
 - Standby current typically 2 mA
 16-bit counter operating at 100 MHz consumes 50 mA
 - Minimum IOL and IOH of 24 mA
- Flexible logic cell architecture
 - -Wide fan-in (up to 14 input gates)
 - Multiple outputs in each cell
 - Very low cell propagation delay (1.4 ns typical)

- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - No hand routing required
- 220 bidirectional input/output pins
- 8 dedicated input/high-drive pins
- 4 fanout-independent low-skew clock nets
 - 2 fast clocks driven from dedicated inputs
 - 2 global clocks driven from any pin or internal logic
 - Clock skew < 0.5 ns</p>
- Input registers
 - Set-up time <2 ns</p>
- Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology
 - High-speed metal-to-metal link
 - -Non-volatile antifuse technology
- Powerful design tools—Warp3[™]
 - --- Designs entered in VHDL, schematics, or mixed

- 9K Gate CMOS FPGA - Fast, fully automatic place and route
 - Waveform simulation with back annotated net delays
 - PC and workstation platforms
 - Extensive third party tools support
 - See Development Systems section


Functional Description

UltraLogic[™] Very High Speed

The Ultra38009 is a very high speed, CMOS, user-programmable ASIC device. The 672 logic cell field-programmable gate array (FPGA) offers 9,000 typically usable "gate array" gates. This is equivalent to 27,000 EPLD or LCA gates. The Ultra38009 is available in 144-pin TQFP, 208-pin PQFP, and 256-pin BGA packages.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 200 MHz with input delays under 2 ns and output delays under 3 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

For detailed information about the Ultra38000[™] architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation.

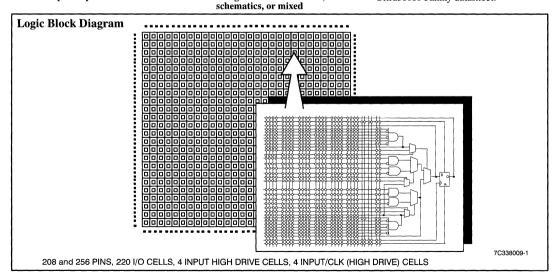
Warp3, Ultra38000, and UltraLogic are trademarks of Cypress Semiconductor Corporation.

ADVANCED INFORMATION Ultra338009

UltraLogic [™] Very High Speed 9K Gate 3.3V CMOS FPGA

Features

- Full 3.3V operation
- Very high speed
 - Loadable counter frequencies greater than 100 MHz
 - Chip-to-chip operating frequencies up to 85 MHz
 - Input + logic cell + output delays under 7 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - -28 x 24 array of 672 logic cells provides 27,000 total available gates
 - 9,000 typically usable "gate array" gates
- Available in 208-pin PQFP and 256-pin BGA
- Fully PCI compliant inputs & outputs
- Low power, high output drive
- Standby current typically 100 μA
 16-bit counter operating at 100 MHz consumes 25 mA
- Flexible logic cell architecture
 - --- Wide fan-in (up to 14 input gates)
 - Multiple outputs in each cell


- Very low cell propagation delay (1.4 ns typical)
- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - --- No hand routing required
- 220 bidirectional input/output pins
- 4 dedicated input/high-drive pins
- 4 fanout-independent, low-skew clock nets
 - 2 fast clocks driven from input pins
 2 global clocks driven from any pin or internal logic
 - --- Clock skew <0.5 ns
- Input registers
 - --- Set-up time <2 ns
- Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology
- -High-speed metal-to-metal link
- --- Non-volatile antifuse technology
- Powerful design tools—Warp3[™]
 Designs entered in VHDL,

- Fast, fully automatic place and route
- Waveform simulation with back annotated net delays
- PC and workstation platforms
- Extensive third party tools support — See Development Systems section
- Functional Description

The Ultra338009 is a very high speed, CMOS, user-programmable ASIC device. The 672 logic cell field-programmable gate array (FPGA) offers 9,000 typically usable "gate array" gates. This is equivalent to 27,000 EPLD or LCA gates. The Ultra338009 is available in 144-pin TQFP, 208-pin PQFP, and 256-pin BGA packages.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 100 MHz with input delays under 4 ns and output delays under 5.5 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

For detailed information about the Ultra38000[™] architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation. Warp3, Ultra38000, and UltraLogic are trademarks of Cypress Semiconductor Corporation.

ADVANCED INFORMATION

Ultra38012

Features

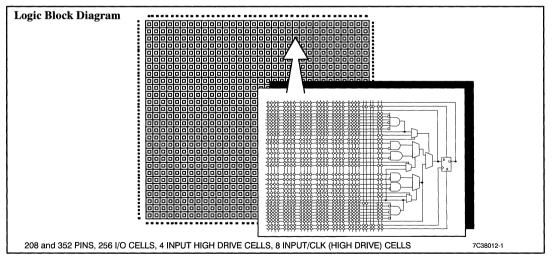
- Very high speed
 - --- Loadable counter frequencies greater than 185 MHz
 - Chip-to-chip operating frequencies up to 135 MHz
 - Input + logic cell + output delays under 5.5 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 32 x 28 array of 896 logic cells provides 36,000 total available gates
 - 12,000 typically usable "gate array" gates
- Available in 208-pin PQFP, and 352-pin BGA
- Fully PCI compliant inputs & outputs
- Low power, high output drive
- MHz consumes 50 mA
 Minimum I_{OL} and I_{OH} of 24 mA
- Flexible logic cell architecture
 - Wide fan-in (up to 14 input gates)
 - --- Multiple outputs in each cell
 - Very low cell propagation delay (1.4 ns typical)

- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - No hand routing required
- 256 bidirectional input/output pins
- 8 dedicated input/high-drive pins
- 8 fanout-independent low-skew clock nets
 - 4 fast clocks driven from dedicated inputs
 - 4 global clocks driven from any pin or internal logic
 - -Clock skew <0.5 ns
- Input registers
 - Set-up time <2 ns
- Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology

 - Non-volatile antifuse technology
- Powerful design tools—*Warp3*™
- Designs entered in VHDL, schematics, or mixed

12K Gate CMOS FPGA -Fast, fully automatic place and

UltraLogic[™] Very High Speed


- route — Waveform simulation with back an-
- notated net delays
- PC and workstation platforms
- Extensive third party tools support — See Development Systems section

Functional Description

The Ultra38012 is a very high speed, CMOS, user-programmable ASIC device. The 896 logic cell field-programmable gate array (FPGA) offers 12,000 typically usable "gate array" gates. This is equivalent to 36,000 EPLD or LCA gates. The Ultra38012 is available in 208-pin PQFP and 352-pin BGA packages.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 200 MHz with input delays under 2 ns and output delays under 3 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

For detailed information about the Ultra38000[™] architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation.

Warp3, Ultra38000, and UltraLogic are trademarks of Cypress Semiconductor Corporation.

ADVANCED INFORMATION Ultra338012

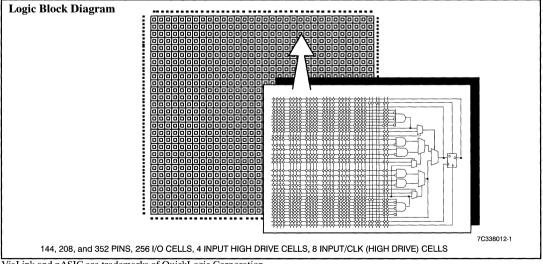
UltraLogic[™] Very High Speed 12K (36K) Gate 3.3V CMOS FPGA

Features

- Full 3.3V operation
- Very high speed
 - Loadable counter frequencies greater than 100 MHz
 - Chip-to-chip operating frequencies up to 85 MHz
 - Input + logic cell + output delays under 7 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 32 x 28 array of 896 logic cells provides 36,000 total available gates
 - 12,000 typically usable "gate array" gates
- Available in 208-pin PQFP and 352-pin BGA
- Fully PCI compliant inputs & outputs
- Low power, high output drive
 - Standby current typically 100 uA
 16-bit counter operating at 100 MHz consumes 25 mA
- Flexible logic cell architecture

 - Multiple outputs in each cell
 - ---- Very low cell propagation delay (1.4 ns typical)
 -

- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - -No hand routing required
- 256 bidirectional input/output pins
- 8 dedicated input/high-drive pins
- 8 fanout-independent, low-skew clock sets
 - 4 fast clocks driven from dedicated input pins
 - 4 global clocks driven from any pin or internal logic
 - Clock skew < 0.5 ns
- Input registers
- Set-up time <2 ns
- Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink [™] programming technology
 - High-speed metal-to-metal link
 Non-volatile antifuse technology
- Powerful design tools—Warp3[™]
- Designs entered in VHDL, schematics, or mixed


- Fast, fully automatic place and route
- Waveform simulation with back annotated net delays
- PC and workstation platforms
- Extensive third party tools support — See Development Systems section

Functional Description

The Ultra338012 is a very high speed, 3.3V, CMOS, user-programmable ASIC device. The 896 logic cell field-programmable gate array (FPGA) offers 12,000 typically usable "gate array" gates. This is equivalent to 36,000 EPLD or LCA gates. The Ultra338012 is available in a 208-pin PQFP and 352-pin BGA packages.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 100 MHz with input delays under 4 ns and output delays under 5.5 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

For detailed information about the Ultra38000[™] architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation. Warp3, Ultra38000, and UltraLogic are trademarks of Cypress Semiconductor Corporation.

ADVANCED INFORMATION

Ultra38016

Features

- Very high speed
 - --- Loadable counter frequencies greater than 185 MHz
 - Chip-to-chip operating frequencies up to 135 MHz
 - Input + logic cell + output delays under 5.5 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density

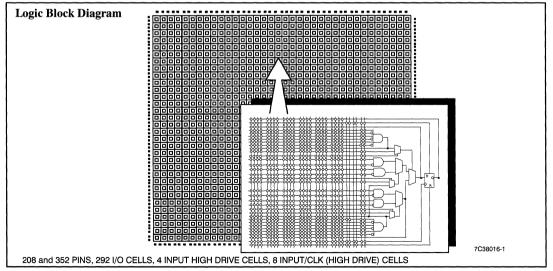
 - 16,000 typically usable "gate array" gates
- Available in 208-pin PQFP and 352-pin BGA
- Fully PCI compliant inputs & outputs
- Low power, high output drive
 - Standby current typically 2 mA
 16-bit counter operating at 100 MHz consumes 50 mA
 - --- Minimum IOL and IOH of 24 mA
- Flexible logic cell architecture
- --- Wide fan-in (up to 14 input gates)
- Multiple outputs in each cell

- Very low cell propagation delay (1.4 ns typical)
- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - No hand routing required
- 292 bidirectional input/output pins
- 8 dedicated input/high-drive pins
- 8 fanout-independent low-skew clock nets
 - 4 fast clocks driven from dedicated inputs
 - 4 global clocks driven from any pin or internal logic
 - Clock skew < 0.5 ns</p>
- Input registers
 Set-up time <2 ns
- Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology
- High-speed metal-to-metal link
- --- Non-volatile antifuse technology
- Powerful design tools—*Warp3*[™]
 Designs entered in VHDL, schematics, or mixed

— Fast, fully automatic place and route

16K Gate CMOS FPGA

- Waveform simulation with back annotated net delays
- -PC and workstation platforms
- Extensive third party tools support — See Development Systems section


Functional Description

UltraLogic[™] Very High Speed

The Ultra38016 is a very high speed, CMOS, user-programmable ASIC device. The 1152 logic cell field-programmable gate array (FPGA) offers 16,000 typically usable "gate array" gates. This is equivalent to 48,000 EPLD or LCA gates. The Ultra38016 is available in a 208-pin PQFP and 352-pin BGA.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 200 MHz with input delays under 2 ns and output delays under 3 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

For detailed information about the Ultra38000[™] architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation.

Warp3, Ultra38000, and UltraLogic are trademarks of Cypress Semiconductor Corporation.

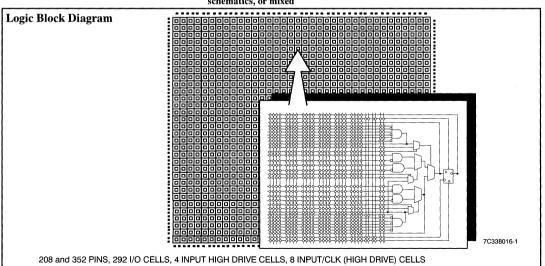
ADVANCED INFORMATION Ultra338016

UltraLogic[™] Very High Speed 16K Gate 3.3V CMOS FPGA

Features

- Full 3.3V operation
- Very high speed
 - Loadable counter frequencies greater than 100 MHz
 - Chip-to-chip operating frequencies up to 85 MHz
 - Input + logic cell + output delays under 7 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 36 x 32 array of 1152 logic cells provides 48,000 total available gates
 - 16,000 typically usable "gate array" gates
- Available in 208-pin PQFP and 352-pin BGA
- Fully PCI compliant inputs & outputs
- Low power, high output drive
- Standby current typically 100 μA
- 16-bit counter operating at 100 MHz consumes 25 mA
- Flexible logic cell architecture
- Wide fan-in (up to 14 input gates)
- Multiple outputs in each cell

- Very low cell propagation delay (1.4 ns typical)
- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - -No hand routing required
- 292 bidirectional input/output pins
- 8 dedicated input/high-drive pins
- 8 fanout-independent low-skew clock nets
 - 4 fast clocks driven from dedicated inputs
 - 4 global clocks driven from any pin or internal logic
 - Clock skew <0.5 ns
- Input registers
- Set-up time <2 ns
 Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology
- Non-volatile antifuse technology
- Powerful design tools—Warp3[™]
- Designs entered in VHDL, schematics, or mixed


- --- Fast, fully automatic place and route
- Waveform simulation with back annotated net delays
- PC and workstation platforms
- Extensive third party tools support — See Development Systems section

Functional Description

The Ultra338016 is a very high speed, 3.3V, CMOS, user-programmable ASIC device. The 1152 logic cell field-programmable gate array (FPGA) offers 16,000 typically usable "gate array" gates. This is equivalent to 48,000 EPLD or LCA gates. The Ultra338016 is available in 208-pin PQFP and 352-pin BGA packages.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 100 MHz with input delays under 4 ns and output delays under 5.5 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

For detailed information about the Ultra38000[™] architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation. Warp3, Ultra38000, and UltraLogic are trademarks of Cypress Semiconductor Corporation.

ADVANCED INFORMATION

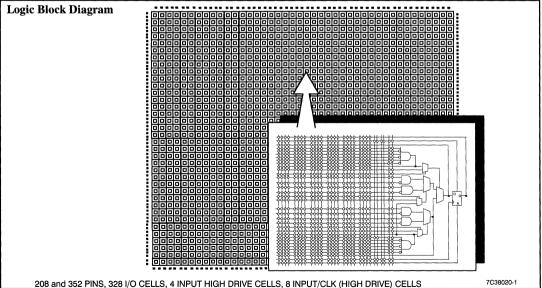
Ultra38020

UltraLogic[™] Very High Speed 20K Gate CMOS FPGA

Features

- · Very high speed
 - Loadable counter frequencies greater than 185 MHz
 - Chip-to-chip operating frequencies up to 135 MHz
 - Input + logic cell + output delays under 5.5 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 40 x 36 array of 1440 logic cells provides 60,000 total available gates
 - 20,000 typically usable "gate array" gates
- Available in 208-pin PQFP and 352-pin BGA
- Fully PCI compliant inputs & outputs
- Low power, high output drive
 - Standby current typically 2 mA
 16-bit counter operating at 100 MHz consumes 50 mA
 - Minimum IOL and IOH of 24 mA
- Flexible logic cell architecture
- -Wide fan-in (up to 14 input gates)
- Multiple outputs in each cell

- Very low cell propagation delay (1.4 ns typical)
- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - No hand routing required
- 328 bidirectional input/output pins
- 8 dedicated input/high-drive pins
- 8 fanout-independent low-skew clock nets
 - 4 fast clocks driven from dedicated inputs
 - 4 global clocks driven from any pin or internal logic
 - Clock skew <0.5 ns</p>
- Input registers
- Set-up time <2 ns
- Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology
 - High-speed metal-to-metal link - Non-volatile antifuse technology
- Powerful design tools—Warp3™
 Designs entered in VHDL, schematics, or mixed


- Fast, fully automatic place and route
- Waveform simulation with back annotated net delays
- PC and workstation platforms
- Exclusive third party tools support — See Development Systems section

Functional Description

The Ultra38020 is a very high speed, CMOS, user-programmable ASIC device. The 1440 logic cell field-programmable gate array (FPGA) offers 20,000 typically usable "gate array" gates. This is equivalent to 60,000 EPLD or LCA gates. The Ultra38020 is available in 208-pin PQFP and 352-pin BGA packages.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 200 MHz with input delays under 2 ns and output delays under 3 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

For detailed information about the Ultra 38000^{TM} architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation. Warp3, Ultra38000, and UltraLogic are trademarks of Cypress Semiconductor Corporation.

ADVANCED INFORMATION UI

Ultra338020

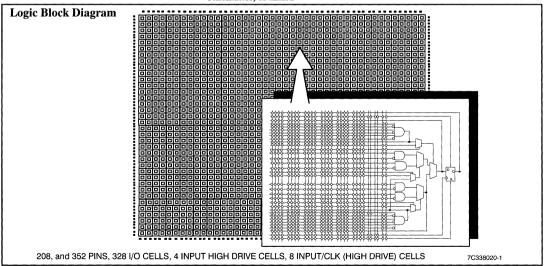
Features

- Full 3.3V operation
- Very high speed
 - Loadable counter frequencies greater than 100 MHz
 - Chip-8-chip operating frequencies up to 85 MHz
 - Input + logic cell + output delays under 7 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 40 x 36 array of 1440 logic cells provides 60,000 total available gates
 - --- 20,000 typically usable "gate array" gates
- Available in 208-pin PQFP and 352-pin BGA
- Fully PCI compliant inputs & outputs
- Low power, high output drive
- 16-bit counter operating at 100 MHz consumes 25 mA
- Flexible logic cell architecture
 - Wide fan-in (up to 14 input gates)
 Multiple outputs in each cell

- Very low cell propagation delay (1.4 ns typical)
- Robust routing resources

 Fully automatic place and route of designs using up to 100 percent of logic resources
 - No hand routing required
- 328 bidirectional input/output pins
- 8 dedicated input/high-drive pins
- 8 fanout-independent low-skew clock nets
 - 4 fast clocks driven from dedicated inputs
 - 4 global clocks driven from any pin or internal logic
 - Clock skew < 0.5 ns</p>
- Input registers
- Set-up time <2 ns
 Input hysteresis provides high noise immunity
- Full JTAG testability
- 0.65µ triple layer metal CMOS process with ViaLink[™] programming technology
- -High-speed metal-to-metal link
- Non-volatile antifuse technology
- Powerful design tools—Warp3[™]
 - Designs entered in VHDL, schematics, or mixed

- Fast, fully automatic place and route
 - Waveform simulation with back annotated net delays
- PC and workstation platforms
- Extensive third party tools support — See Development Systems section


Functional Description

UltraLogic[™] Very High Speed 20K Gate 3.3V CMOS FPGA

> The Ultra338020 is a very high speed, 3.3V, CMOS, user-programmable ASIC device. The 1440 logic cell field-programmable gate array (FPGA) offers 20,000 typically usable "gate array" gates. This is equivalent to 60,000 EPLD or LCA gates. The Ultra338020 is available in 208-pin PQFP and 352-pin BGA packages.

> Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 100 MHz with input delays under 4 ns and output delays under 5.5 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

> For detailed information about the Ultra38000[™] architecture, see the Ultra38000 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation.

Warp3, Ultra38000, and UltraLogic are trademarks of Cypress Semiconductor Corporation.

pASIC380 Family

UltraLogic[™] Very High Speed CMOS FPGAs

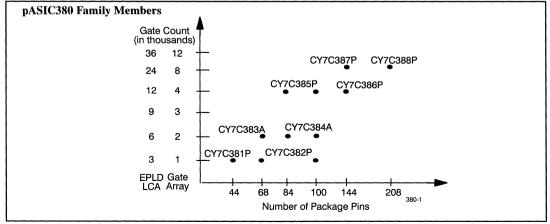
Features

- Very high speed
 - Loadable counter frequencies greater than 150 MHz
 - Chip-to-chip operating frequencies up to 110 MHz
 - Input + logic cell + output delays under 6 ns
- High usable density
 - Up to 8,000 "gate array" gates, equivalent to 24,000 EPLD or LCA gates
- Low power, high output drive
 - Standby current typically 2 mA
 16-bit counter operating at 100
 - MHz consumes 50 mA — Minimum I_{OL} and I_{OH} of 20mA
 - (1K, 4K, and 8K)
- 5 V and 3.3 V devices at all densities
- Flexible FPGA logic cell
 - Wide fan-in (up to 14 input gates)
 - Multiple outputs from each cell
 - Very low cell propagation delay (1.7 ns typical)
- Powerful Warp3[™] design tools
 - Designs entered in VHDL, schematics, or both
 - Fast, fully automatic place and route
 - Waveform simulation with back annotated net delays
 - PC and workstation platforms
- Extensive third-party tool support
 - ---- See Development Systems section

- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
- Input hysteresis provides high noise immunity
- Thorough testability
 - Built-in scan path permits 100 percent factory testing of logic and I/O cells
- 0.65µ CMOS process with ViaLink[™] programming technology
 - -High-speed metal-to-metal link
 - --- Non-volatile antifuse technology

Functional Description

The pASIC380 [™] Family of very high speed CMOS, user-programmable, ASIC devices is based on the first FPGA technology to combine high speed, high density, and low power in a single architecture.


All pASIC380 Family devices are based on an array of highly flexible logic cells that have been optimized for efficient implementation of high-speed arithmetic, counter, data path, state machine, and glue logic functions. Logic cells are configured and interconnected by rows and columns of metal routing lines and ViaLink metal-to-metal programmablevia interconnect elements.

The ViaLink technology provides a nonvolatile, permanently programmed custom logic function capable of operating at speeds of over 100 MHz. Internal logic cell delays are under 2 ns and total input to output combinatorial logic delays are under 8 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors, while consuming a fraction of the power and board area of PALs^m, GALs^m, and discrete logic elements.

pASIC380 Family devices range in density from 1000 "gate array" gates (3,000 EPLD/LCA gates) in 44- and 68-pin packages to 8,000 gates (24,000 EPLD/ LCA gates) in 144- and 208-pin packages.

Designs are captured for the pASIC380 Family devices on PC or workstation platforms using Cypress's *Warp3* or thirdparty, general-purpose design-entry and simulation CAE packages, together with Cypress *Warp2*+^m device-specific place and route tools. Sufficient on-chip routing channels are provided to allow fully automatic place and route of designs using up to 100 percent of the available logic cells.

All the necessary hardware, software, documentation and accessories required to complete a design, from entering a schematic to programming a device are included in *Warp3* and *Impulse3*TM, available from Cypress. *Warp3* includes a schematic capture system together with VHDL synthesis and a waveform-based timing simulator. All applications run under Microsoft Windows TM to insure a highly productive and easy-to-use design environment. Sun workstation UNIX and HP platforms are also available.

4 - 28

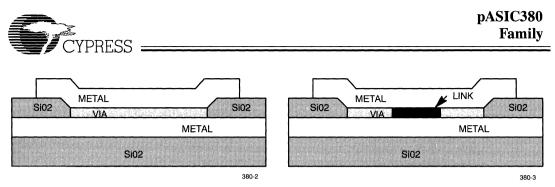


Figure 1. Unprogrammed ViaLink Element

Figure 2. Programmed ViaLink Element

ViaLink Programming Element

Programmable devices implement customer-defined logic functions by interconnecting user-configurable logic cells through a variety of semiconductor switching elements. The maximum speed of operation is determined by the effective impedance of the switch in both programmed, ON, and unprogrammed, OFF, states.

In pASIC380 devices, the switch is called a ViaLink element. The ViaLink element is an antifuse formed in a via between the two layers of metal of a standard CMOS process. The direct metal-to-metal link created as a result of programming achieves a connection with resistance values as a low as 50 ohms. This is less than 5 percent of the resistance of an EPROM or SRAM switch and 10 percent of that of a dielectric antifuse. The capacitance of an unprogrammed ViaLink site is also lower than these alternative approaches. The resulting low RC time constant provides speeds two to three times faster than older generation technologies.

Figure 1 shows an unprogrammed ViaLink site. In a custom metal masked ASIC, such as a gate array, the top and bottom layers of metal make direct contact through the via. In a ViaLink programmable ASIC device, the two layers of metal are initially separated by an insulating semiconductor layer with resistance in excess of 1 gigaohm.

A programming pulse applied across the via forms a bidirectional conductive link connecting the top and bottom metal layers, as shown in *Figure 2*. The tight distribution of link resistance is shown in *Figure 3*.

Standard CMOS Process

pASIC380 devices are the first FPGA devices to be fabricated on a conventional high-volume CMOS process. The base technology is

a 0.65-micron, n-well CMOS technology with a single polysilicon layer and two layers of metal interconnect. The only deviation from the standard process flow occurs when the ViaLink module is inserted between the metal deposition steps.

As the size of a ViaLink is identical to that of a standard metal interconnect via, programmable elements can be packed very densely. The microphotograph in *Figure 4* shows an array of ViaLink elements. The density is limited only by the minimum dimensions of the metal-line to metal-line pitch.

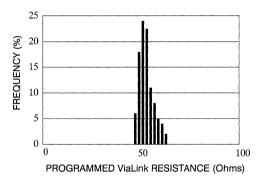


Figure 3. Distribution of Programmed Link Resistance

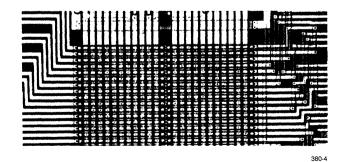


Figure 4. An Array of ViaLink Elements

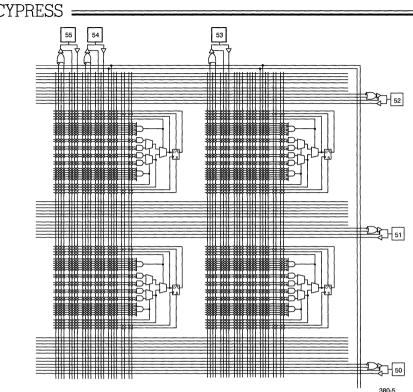
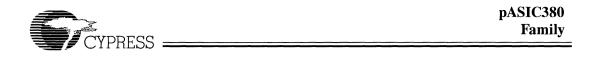


Figure 5. A Matrix of Logic Cells and Wiring Channels

The pASIC380 device architecture consists of an array of user-configurable logic building blocks, called logic cells set in a grid of metal wiring channels. *Figure 5* shows a section of a pASIC380 device containing internal logic cells, input/outputcells, and dual-layer vertical and horizontal metal routing channels. The output of any cell may be programmed to connect to the input of any other cell through ViaLink elements located at all the wire intersections.

The regularity and orthogonality of this interconnect, together with the capability to achieve 100 percent routability of logic cells, makes the pASIC380 architecture similiar in structure and performance to a metal-masked gate array. It also makes system operating speed far less sensitive to partitioning and placement decisions. Minor revisions to a logic design result in only small changes in performance. (See *Figure 6.*)

Adequate wiring resources permit 100% automatic placement and routing of designs using up to 100% of the logic cells. This has been demonstrated on designs that require fixed pin placements.


Organization

The pASIC380 Family of very high speed FPGAs contains devices covering a wide spectrum of I/O and density requirements.

The key features of all pASIC380 devices are listed in *Table NO TAG*. See the individual product datasheets for more specific information on each device.

Individual part numbers indicate unique logic cell and I/O cell combinations. For example, the CY7C383A contains 192 logic cells and 56 I/O cells in a 68-pin package. The CY7C384A also contains 192logic cells, but it has 68 I/O cells and is packaged in 84- and 100-pin packages. Note that at each pASIC380 I/O count there is a density upgrade available in the same package. In other words, the CY7C383A features 2,000 gates in the same pinout as the 1,000-gate CY7C382P. The same applies to the CY7C385P and CY7C3884A.

Gate counts for pASIC380 devices are based on the number of usable or "gate array" gates. Each of the internal logic cells has a total logic capacity of up to 30 EPLD or LCA gates. As a typical application will use 10 to 12 of these gates.

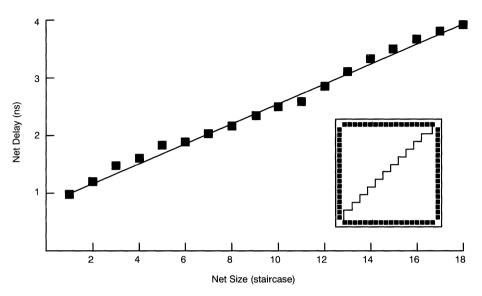


Figure 6. Net Delay vs. Net Size (4 ns "corner to corner")

Device	Logic Cells	I/O Cells	Dedicated Inputs	Usable Gates	EPLD/LCA Gates	Packages
7C381P 7C3381A	96	32	8	1000	3000	44-Pin PLCC
7C382P 7C3382A	96	56	8	1000	3000	68-Pin PLCC 69-Pin CPGA 100-Pin TQFP
7C383A 7C3383A	192	56	8	2000	6000	68-Pin PLCC
7C384A 7C3384A	192	68/80	8	2000	6000	84-Pin PLCC 85-Pin CPGA 100-Pin TQFP
7C385P 7C3385A	384	68/80	8	4000	12000	84-Pin PLCC 100-Pin TQFP
7C386P 7C3386A	384	114	8	4000	12000	144-Pin TQFP 145-Pin CPGA 160-Pin CQFP
7C387P 7C3387P	768	116	8	8000	24000	144-Pin TQFP
7C388P 7C3388P	768	172	8	8000	24000	208-Pin CQFP 208-Pin PQFP 223-Pin CPGA

Table 1. Key Features of pASIC380 Devices

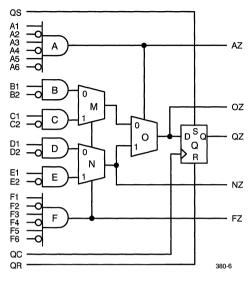


Figure 7. pASIC380 Internal Logic Cell

pASIC380 Internal Logic Cell

The pASIC380 internal logic cell, shown in Figure 7, is a general-purpose building block that can implement most TTL and gate array macro library functions. It has been optimized to maintain the inherent speed advantage of the ViaLink technology while ensuring maximum logic flexibility.

The logic cell consists of two 6-input AND gates, four 2-input AND gates, three 2-to-1 multiplexers and a D flip-flop. Each cell represents approximately 30 gate-equivalents of logic capability. The pASIC380 logic cell is unique among FPGA architectures in that it offers up to 14-input-wide gating functions. It can implement all possible Boolean transfer functions of up to three variables as well as many functions of up to 14 variables.

Glitch-free switching of the multiplexer is insured because the internal capacitance of the circuit maintains enough charge to hold the output in a steady state during input transitions. The multiplexer output feeds the D-type flip-flop, which can also be configured to provide JK-, SR-, or T-type functions as well as count with carry-in by using additional logic cell resources. Two independent SET and RESET inputs can be used to asynchronously control the output condition. The combination of wide gating capability and a built-in register makes the pASIC380 logic cell particularly well suited to the design of high-speed state machines, shiftregisters, encoders, decoders, arbitration and arithmetic logic, as well as a wide variety of counters.

Each pASIC380 logic cell features five separate outputs. The existence of multiple outputs makes it easier to pack independent functions into a single logic cell. For example, if one function requires a single register, both 6-input AND gates (A and F) are available for other uses. Logic packing is accomplished automatically with Warp3 software.

The function of a logic cell is determined by the logic levels applied to the inputs of the AND gates. ViaLink sites located on signal wires tied to the gate inputs perform the dual role of configuring the logic function of a cell and establishing connections between cells

A detailed understanding of the logic cell is not necessary to successfully design with pASIC380 devices. CAE tools will automatically translate a conventional logic schematic and/or VHDL source code into a device and provide excellent performance and utilization.

Three types of input and output structures are provided on pASIC380 devices to configure buffering functions at the external pads. They are called the Bidirectional Input/Output (I/O) cell, the Dedicated Input (I) cell, and the Clock/Dedicated Input (CLK/I) cell.

The bidirectional I/O cell, shown in Figure 8, consists of a 2-input OR gate connected to a pin buffer driver. The buffer output is controlled by a three-state enable line to allow the pad to also act as an input. The output may be configured as active HIGH, active LOW, or as an open drain inverting buffer.

The output buffers are designed to ensure quiet switching characteristics while maintaining high speed. Measured results show up to 48 outputs switching simultaneously into a 10 pF load with less than ± 1 Volt of output switching noise.

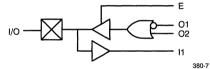


Figure 8. Bidirectional I/O Cell

The Dedicated Input cell, shown in Figure 9, conveys true and complement signals from the input pads into the array of logic cells. As these pads have nearly twice the current drive capability of the I/O pads, they are useful for distributing high fanout signals across the device.

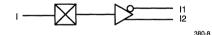
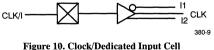



Figure 9. Dedicated Input High-Drive Cell

The Clock/Dedicated Input cell (Figure 10) drives a low-skew, fanout-independent clock tree that can connect to the clock, set, or reset inputs of the logic cell flip-flops.

pASIC380 Interconnect Structure

Multiple logic cells are joined together to form a complex logic function by interconnection through the routing channels. To describe the organization of these routing channels, a hypothetical 14-pin device consisting of two logic cells is shown in Figure 11. This

device contains the same architectural features as the members of the pASIC380 family.

Active logic functions are performed by the internal logic cells, the I/O cells (pins 2, 3, 7, 9, 10, and 14) and the I cells (pins 4, 6, 11, and 13). These cells are connected with vertical and horizontal wiring channels.

Four types of signal wires are employed: segmented wires, quad wires, express wires, and clock wires. Segmented wires are predominantly used for local connections and have ViaLink elements known as a Cross Link (denoted by the open box symbol), at every crossover point. They may also be connected to the segmented wires of cells above and below through ViaLink elements, called Pass Links (denoted by the X symbol). Express lines are similar to segmented wires except that they are not divided by Pass Links. Quad Lines are a compromise between express and segmented lines. Quad wires are used for local interconnect, but have pass links at every forth logic cell.

Dedicated clock wires are lightly loaded with only three links per cell to distribute high-speed clock edges to the flip-flop CLK, SET, and RESET inputs. Express wires may also be used to deliver clock signals into the multiplexer region of the cell for combinatorial gating. The automatic place and route software allocates signals to the appropriate wires to insure the optimum speed/density combination.

Vertical V_{CC} and GND wires are located close to the logic cell gate inputs to allow any input that is not driven by the output of another cell to be automatically tied to either V_{CC} or GND. All of the vertical wires (segmented, express, quad, clock, and power) considered as a group are called vertical channels. These channels span the full height of the device and run to the left of each column of logic cells.

Horizontal wiring channels, called rows, provide connections, via cross links, to other columns of logic cells and to the periphery of the chip. Appropriate programming of ViaLink elements allows electrical connection to be made from any logic cell output to the input of any other logic or I/O cell.

Ample wires are provided in the channels to permit automatic place and route of designs using up to 100 percent of the device logic cells. Designs can be completed automatically even with a high percentage of fixed user placement of internal cells and pin locations.

This information is presented to provide the user with insight into how a logic function is implemented in pASIC380 devices. However, it is not necessary to develop a detailed understanding of the architecture in order to achieve efficient designs. All routine tasks are fully automatic. No manual wire routing is necessary, nor is it permitted by the software. Fully automatic placement of logic functions is also offered. But if it is necessary to achieve a specific pin configuration or register alignment, for example, manual placement is supported.

Power Consumption

Typical standby power supply current consumption, I_{CC1} , of a pASIC380 device is 2 mA. The worst-case limit for standby current (I_{CC1}) over the full operating range of the pASIC380 devices is 10 mA. Formulas for calculating I_{CC} under AC conditions (I_{CC2}) are provided in the "pASIC380 Family Quick Power Calculation" application note.

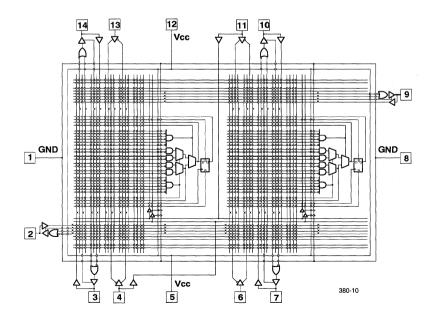


Figure 11. pASIC380 Device Features

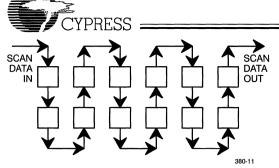


Figure 12. Internal Serial Scan Path

Programming and Testing

pASIC380 devices may be programmed and functionally tested on the Cypress *Impulse3* Programmer and a variety of third party programmers. See the third party tools section.

All pASIC380 devices have a built-in serial scan path linking the logic cell register functions (*Figure 12*). This is provided to improve factory test coverage and to permit testing by the user with automatically generated test vectors following programming.

Document #: 38-00210-B

Reliability

The pASIC380 Family is based on a 0.65-micron high-volume CMOS fabrication process with the ViaLink programmable-via antifuse technology inserted between the metal deposition steps. The base CMOS process has been qualified to meet the requirements of MIL-STD-883B, Revision C.

The ViaLink element exists in one of two states: a highly resistive unprogrammed state, OFF, and the low-impedance, conductive state, ON. It is connected between the output of one logic cell and the inputs of other logic cells directly or through other links. No DC current flows through either a programmed or an unprogrammed link during operation as a logic device. An unprogrammed link sees a worst-case voltage equal to V_{CC} biased across its terminals. A programmed link carries AC current caused by charging and discharging of device and interconnect capacitances during switching.

Studies of test structures and complete pASIC380 devices have shown that an unprogrammed link under V_{CC} bias remains in the unprogrammed state over time. Similar tests on programmed links under current bias exhibit the same stability. The long-term reliability of the combined CMOS and ViaLink structure is similar to that of the base gate array process. For further details, see the pASIC380 Family Reliability Report, contained in the reliability section of the Programmable Logic Data Book.

pASIC380, *Warp3*, *Warp2+*, *Impulse3*, and UltraLogic are trademarks of Cypress Semiconductor Corporation. PAL is a trademark of Advanced Micro Devices. GAL is a trademark of Lattice Semiconductor Corporation.

pASIC and ViaLink are trademarks of QuickLogic Corporation.

Microsoft Windows is a trademark of Microsoft Corporation.

CY7C381P CY7C382P

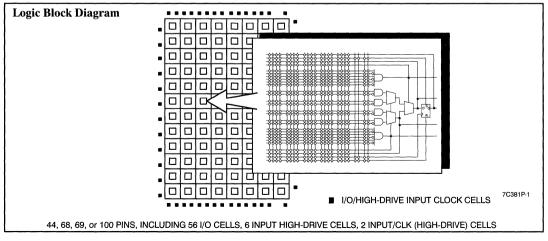
Features

- Very high speed
 - Loadable counter frequencies greater than 150 MHz
 - Chip-to-chip operating frequencies up to 110 MHz
 - Input + logic cell + output delays under 6 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
- Fully PCI compliant inputs and outputs for commercial and industrial temperature ranges
- Low power, high output drive
 - Standby current typically 2 mA
 16-bit counter operating at 150 MHz consumes 50 mA
 - Minimum I_{OL} and I_{OH} of 20 mA
- Flexible logic cell architecture
 - --- Wide fan-in (up to 14 input gates)
 - Multiple outputs in each cell
 - Very low cell propagation delay (1.7 ns typical)
- Powerful design tools—Warp3[™]
 Designs entered in VHDL, schematics, or both

- Fast, fully automatic place and route
- Waveform simulation with back annotated net delays
- PC and workstation platforms
- Extensive 3rd party tool support
 - See Development Systems section
- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - -No hand routing required
- 32 (CY7C381P) to 56 (CY7C382P) bidirectional input/output pins
- 6 dedicated input/high-drive pins
- 2 clock/dedicated input pins with fanout-independent, low-skew nets
 - Clock skew <0.5 ns
- Input hysteresis provides high noise immunity
- Thorough testability
 - Built-in scan path permits 100 percent factory testing of logic and I/O cells
- 0.65µ CMOS process with ViaLink[™] programming technology
- -High-speed metal-to-metal link
- Non-volatile antifuse technology
- 68-pin PLCC is compatible with EPLD 1800 and LCA 2064 industrystandard pinouts
- 100-pin TQFP is pinout compatible with 2K (C47C384A) and 4K (CY7C385P) devices
- 68-pin PLCC is pinout compatible with 2K (CY7C383A) devices

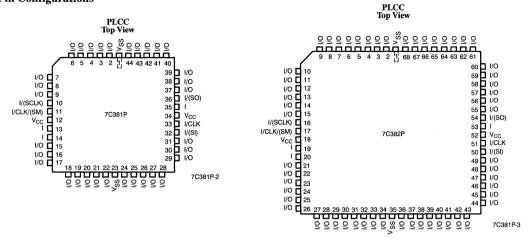
Functional Description

UltraLogic[™] Very High Speed

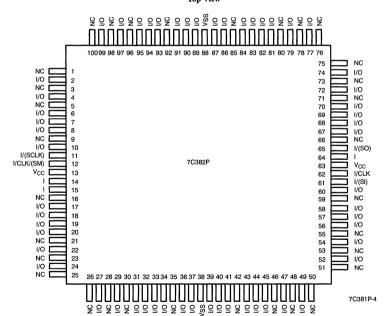

The CY7C381P and CY7C382P are very high speed CMOS user-programmable ASIC ($pASIC^{\infty}$) devices. The 96 logic cell field-programmable gate array (FPGA) offers 1,000 typically usable "gate array" gates. This is equivalent to 3,000 EPLD or LCA gates. The CY7C381P is available in a 44-pin PLCC package. The CY7C382P is available in a 68-pin PLCC, 69-pin CPGA and a 100-pin TQFP packages.

1K Gate CMOS FPGA

The low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 150 MHz with input delays under 1.5 ns and output delays under 3 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.


Designs are entered into the CY7C381P and CY7C382P using Cypress Warp3 software or one of several third-party tools. See the Development Systems section of the Programming Logic Databook for more tools information Warp3 is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The CY7C381P and CY7C382P feature ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.

For detailed information about the pASIC380 architecture, see the pASIC380 Family datasheet.



Pin Configurations

TQFP Top View

4

CPGA Bottom View

11	10	9	8	7	6	5	4	3	2	1	
	I/O	I/O	I/O	I/ _{CLK/} (SM)	I	I/O	I/O	I/O	1/O		А
I/O	I/O	I/O	I/O	I/ (SCLK)	V _{CC}	1	1/0	I/O	I/O	I/O	в
1/0	I/O				I/O	I/O	с				
1/0	I/O				I/O	I/O	D				
I/O	I/O				i/O	I/O	E				
I/O	V _{SS}					V _{SS}	i/O	F			
I/O	I/O							ļ	1/0	I/O	G
1/0	I/O							I/O	I/O	н	
1/0	1/0					I/O	I/O	J			
1/0	I/O	I/O	I/O	I/(SO)	V _{CC}	I/(SI)	I/O	I/O	I/O	I/O	к
	I/O	I/O	I/O	I/O	I	I/CLK	I/O	1/0	I/O		L

7C381P-5

4-37

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

DC Input Current	$\pm 20 \text{ mA}$
Latch-Up Current	±200 mA

Storage Temperature

Ceramic $-65^{\circ}C$ to $+150^{\circ}C$ Plastic $-40^{\circ}C$ to $+125^{\circ}C$
Lead Temperature $\ldots \ldots 300^{\circ}\mathrm{C}$
Supply Voltage 0.5V to +7.0V
Input Voltage $\hdots \dots \dots \dots \dots \hdots - 0.5V$ to V_{CC} +0.5V
ESD Pad Protection ±2000 V
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots -0.5V$ to $7.0V$

Delay Factor (K)

Speed	Mili	tary	Indu	strial	Commercial		
Speed Grade	Min.	Max.	Min.	Max.	Min.	Max.	
-X	0.39	3.00	0.4	2.75	0.46	2.55	
-0	0.39	1.82	0.4	1.67	0.46	1.55	
-1	0.39	1.56	0.4	1.43	0.46	1.33	
-2			0.4	1.35	0.46	1.25	

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -4.0 \text{ mA}$	3.7		V
		$I_{OH} = -20 \text{ mA}$	2.4		V
		$I_{OH} = -10.0 \ \mu A$	V _{CC} - 0.1	ν 0.4 ν 0.1 ν 0.8 ν +10 μα	V
V _{OL}	Output LOW Voltage	$I_{OL} = 20 \text{ mA}$		0.4	V
		$I_{OL} = 10.0 \mu A$	$\begin{array}{c c} 2.4 \\ \hline V_{CC} - 0.1 \\ \hline \\ 2.0 \\ \hline \\ -10 \\ -10 \\ \hline \end{array}$	0.1	V
V _{IH}	Input HIGH Voltage		2.0		V
VIL	Input LOW Voltage			0.8	V
II	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	-10	+10	μΑ
I _{OZ}	Output Leakage Current—Three-State	$V_{IN} = V_{CC} \text{ or } V_{SS}$	-10	+10	μΑ
I _{OS}	Output Short Circuit Current ^[1]	$V_{OUT} = V_{SS}$	-10	- 80	mA
		$V_{OUT} = V_{CC}$	30	140	mA
I _{CC1}	Standby Supply Current	V_{IN} , $V_{I/O} = V_{CC}$ or V_{SS}		10	mA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance ^[2]	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz},$ $V_{CC} = 5.0V$	10	pF
C _{OUT}	Output Capacitance	V _{CC} = 5.0 V	10	pF

Notes: 1. Only one output at a time. Duration should not exceed 30 seconds. 2. $C_I = 20 \text{ pF max. on I/(SI)}.$

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	5V ± 5%
Industrial	-40°C to +85°C	$5V \pm 10\%$
Military	−55°C to +125°C	$5V \pm 10\%$

- <u>-</u>		Propagation Delays ^[3] with Fanout of						
Parameter	Description	1	2	3	4	8	Unit	
LOGIC CELL	S			4				
t _{PD}	Combinatorial Delay ^[4]	1.7	2.1	2.6	3.0	4.8	ns	
t _{SU}	Set-Up Time ^[4]	2.1	2.1	2.1	2.1	2.1	ns	
t _H	Hold Time	0.0	0.0	0.0	0.0	0.0	ns	
t _{CLK}	Clock to Q Delay	1.0	1.5	1.9	2.3	4.2	ns	
t _{CWHI}	Clock HIGH Time	2.0	2.0	2.0	2.0	2.0	ns	
tCWLO	Clock LOW Time	2.0	2.0	2.0	2.0	2.0	ns	
t _{SET}	Set Delay	1.7	2.1	2.6	3.0	4.8	ns	
t _{RESET}	Reset Delay	1.5	1.8	2.2	2.5	3.9	ns	
t _{SW}	Set Width	1.9	1.9	1.9	1.9	1.9	ns	
t _{RW}	Reset Width	1.8	1.8	1.8	1.8	1.8	ns	

Switching Characteristics (At V_{CC}=5 V, T_A=25°C, K=1.00)

		Propagation Delays ^[3]						
Parameter	Description	1	2	3	4	6	8	Unit
INPUT CELL	S							
t _{IN}	Input Delay (HIGH Drive)	2.1	2.2	2.3	2.4	2.6	2.9	ns
t _{INI}	Input, Inverting Delay (HIGH Drive)	2.1	2.2	2.3	2.5	2.8	3.1	ns
t _{IO}	Input Delay (Bidirectional Pad)	1.4	1.8	2.2	2.6	3.4	4.2	ns
t _{GCK}	Clock Buffer Delay ^[5]	2.7	2.7	2.8	2.9	3.0		ns
t _{GCKHI}	Clock Buffer Min. HIGH ^[5]	2.0	2.0	2.0	2.0	2.0		ns
t _{GCKLO}	Clock Buffer Min. LOW ^[5]	2.0	2.0	2.0	2.0	2.0		ns

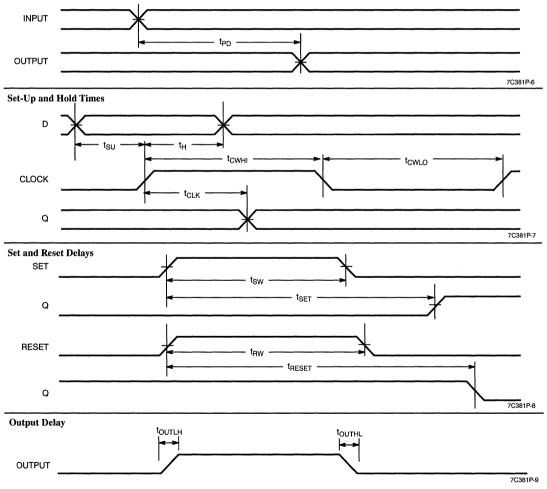
		Propagation Delays ^[3] with Output Load Capacitance (pF) of					
Parameter	Description	30	50	75	100	150	Unit
OUTPUT CEL	LS						
^t outlh	Output Delay LOW to HIGH	2.7	3.4	4.2	5.0	6.7	ns
t OUTHL	Output Delay HIGH to LOW	2.8	3.7	4.7	5.6	7.6	ns
t _{PZH}	Output Delay Three-State to HIGH	4.0	4.9	6.1	7.3	9.7	ns
t _{PZL}	Output Delay Three-State to LOW	3.6	4.2	5.0	5.8	7.3	ns
t _{PHZ}	Output Delay HIGH to Three-State ^[6]	2.9					ns
t _{PLZ}	Output Delay LOW to Three-State ^[6]	3.3					ns

Notes:

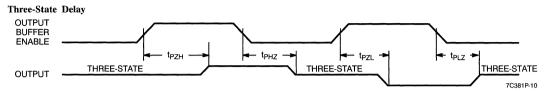
- 3. Worst-case propagation delay times over process variation at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. Multiply by the appropriate delay factor, K, for speed grade to get worst-case parameters over full V_{CC} and temperature range as specified in the operating range. All inputs are TTL with 3-ns linear transition time between 0 and 3 volts.
- These limits are derived from worst-case values for a representative selection of the slowest paths through the pASIC380 logic cell including net delays. Guaranteed delay values for specific paths should be determined from simulation results.

 Clock buffer fanout refers to the maximum number of flip-flops per half column. The number of half columns used does not affect clock buffer delay.

6. The following loads are used for t_{PXZ} :

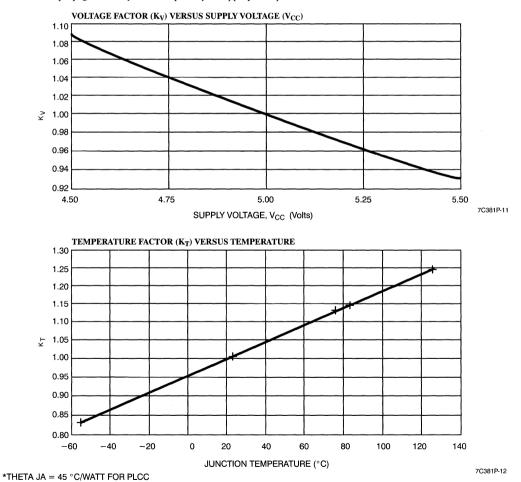


High Drive Buffer


		# High Drives Wired	Propagation Delays ^[3] with Fanout of					
Parameter	Description	Together	12	24	48	72	96	Unit
t _{IN}	High Drive Input Delay	1	4.0	4.9				ns
		2		3.5	5.0			ns
		3			4.0	4.8	5.6	ns
		4				4.1	4.8	ns
t _{INI}	High Drive Input, Inverting Delay	1	4.2	5.1				ns
		2		3.7	5.2			ns
		3			4.2	5.0	5.8	ns
		4				4.3	5.0	ns

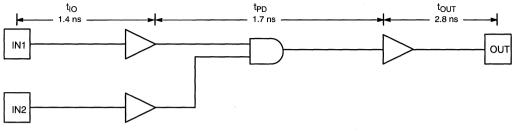
Switching Waveforms

Combinatorial Delay

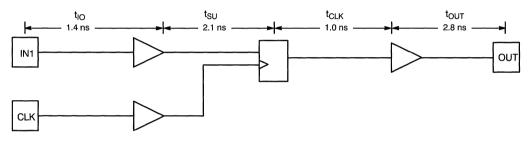


Switching Waveforms (continued)

Typical AC Characteristics


Propagation delays depend on routing, fan-out, load capacitance, supply voltage, junction temperature, and process variation. The AC Characteristics are a design guide to provide initial timing estimates at nominal conditions. Worst-case estimates are obtained when nominal propagation delays are multiplied by the appropriate Delay Factor, K, as specified by the speed grade in the Delay Factor table. The effects of voltage and temperature variation are illustrated in the graphs below. The *Warp3* Delay Modeler extracts specific timing parameters for precise simulation results following place and route.

4



Combinatorial Delay Example (Load = 30 pF, K=1, Fanout=1)

INPUT DELAY + COMBINATORIAL DELAY + OUTPUT DELAY = 5.9 ns

Sequential Delay Example (Load = 30 pF, K=1, Fanout=1)

INPUT DELAY + REG SET-UP + CLOCK TO Q DELAY + OUTPUT DELAY = 7.3 ns

Ordering Information

Speed Grade	Ordering Code	Package Name	Package Type Operatin Range	
2	CY7C381P-2JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C381P-2JI	J67	44-Lead Plastic Leaded Chip Carrier	Industrial
1	CY7C381P-1JC	J67	44-Lead Plastic Leaded Chip Carrier Commerc	
	CY7C381P-1JI	J67	44-Lead Plastic Leaded Chip Carrier Industria	
0	CY7C381P-0JC	J67	44-Lead Plastic Leaded Chip Carrier Commerce	
	CY7C381P-0JI	J67	44-Lead Plastic Leaded Chip Carrier	Industrial
Х	CY7C381P-XJC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C381P-XJI	J67	44-Lead Plastic Leaded Chip Carrier	Industrial

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
2	CY7C382P-2AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C382P-2JC	J81	68-Lead Plastic Leaded Chip Carrier	1
	CY7C382P-2AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C382P-2JI	J81	68-Lead Plastic Leaded Chip Carrier	1
1	CY7C382P-1AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C382P-1JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C382P-1AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C382P-1JI	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C382P-1GMB	G69	69-Pin Grid Array (Cavity Down)	Military
0	CY7C382P-0AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C382P-0JC	J81	68-Lead Plastic Leaded Chip Carrier	1
	CY7C382P-0AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C382P-0JI	J81	68-Lead Plastic Leaded Chip Carrier	1
	CY7C382P-0GMB	G69	69-Pin Grid Array (Cavity Down)	Military
Х	CY7C382P-XAC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C382P-XJC J81		68-Lead Plastic Leaded Chip Carrier]
	CY7C382P-XAI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C382P-XJI	J81	68-Lead Plastic Leaded Chip Carrier	1
	CY7C382P-XGMB	G69	69-Pin Grid Array (Cavity Down)	Military

Shaded area contains preliminary information.

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3
II	1, 2, 3

Switching Characteristics

Parameter	Subgroups
Delay Factor (K)	7, 8, 9, 10, 11

ViaLink and pASIC are trademarks of QuickLogic Corporation. Warp3 and UltraLogic are trademarks of Cypress Semiconductor Corporation. Document #: 38-00253-B

4 - 43

CY7C3381A CY7C3382A

Features

- Very high speed
 - Loadable counter frequencies greater than 80 MHz
 - Chip-to-chip operating frequencies up to 60 MHz
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- Low power
 - Standby current typically 250 μA
 - 16-bit counter operating at 80 MHz consumes 20 mA
- High usable density
 - 8 x 12 array of 96 logic cells provides 3,000 total available gates
- Fully PCI compliant inputs and outputs for commercial and industrial temperature range
- Flexible logic cell architecture
 - --- Wide fan-in (up to 14 input gates)
 - ---- Multiple outputs in each cell
 - Very low cell propagation delay (1.7ns typical)
- Powerful design tools—Warp3™
 - Designs entered in VHDL, schematics, or both
 - Fast, fully automatic place and route
 - Waveform simulation with backannotated net delays

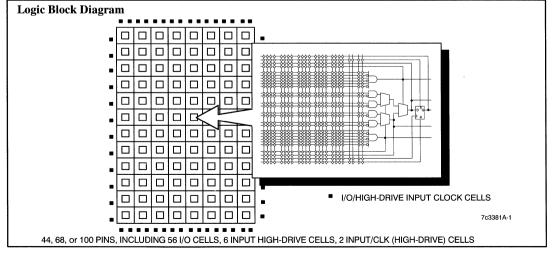
- PC and workstation platforms

- Extensive 3rd party tool support — See Development Systems section
- 5V Tolerant Inputs (see I_{IH} spec)
- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - No hand routing required
- 32 (CY7C3381A) to 56 (CY7C3382A) bidirectional input/output pins
- 6 dedicated input/high-drive pins
- 2 clock/dedicated input pins with fanout-independent, low-skew nets
 — Clock skew < 0.5 ns
- Input hysteresis provides high noise immunity
- Thorough testability at 3.3V
 - Built-in scan path permits 100 percent factory testing of logic and I/O cells
- 0.65µ CMOS process with ViaLink[™] programming technology
 - -High-speed metal-to-metal link
 - Non-volatile antifuse technology
- 68-pin PLCC is pinout compatible with 2K (CY7C3384A) devices
- 100-pin TQFP is pinout compatible with 3.3V 2K (CY7C3384A) and 4K (CY7C3385A) devices
- Pinout compatible with 5V CY7C381P/2P devices

Functional Description

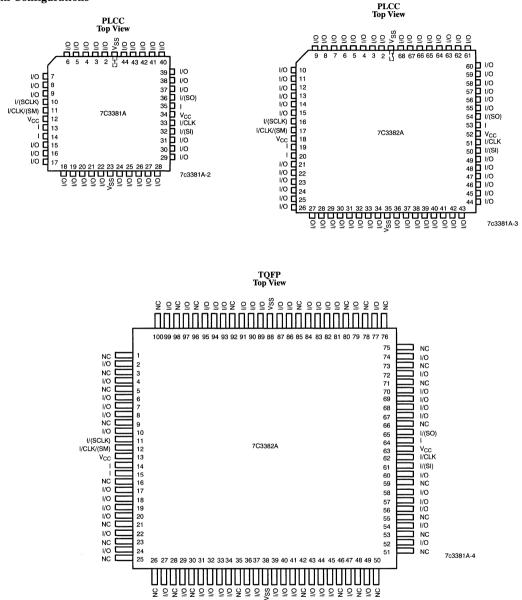
1K Gate CMOS FPGA

UltraLogic[™] 3.3V High Speed


The CY7C3381A and CY7C3382A are 3.3V very high speed CMOS user-programmable ASIC (pASIC[™]) devices. The 96logiccell field-programmable gate array (FPGA) offers 1,000 typically usable "gate array" gates. This is equivalent to 3,000 EPLD or LCA gates. The CY7C3381A is available in a 44-pin PLCC package. The CY7C3382A is available in a 68-pin PLCC and a 100-pin TQFP package.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 100 MHz. This permits highdensity programmable devices to be used with today's fastest CISC and RISC microprocessors.

Designs are entered into the CY7C3381A and CY7C3382A using Cypress *Warp3* software or one of several third-party tools. See the Development Systems section of the *Programmable Logic Databook* for more tools information.


Warp3 is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The CY7C3381A and CY7C3382A feature ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.

For detailed information about the pASIC3380 architecture, see the pASIC380 Family datasheet.

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Tem	perature
-------------	----------

Ceramic
Lead Temperature 300°C
Supply Voltage
Input Voltage $\dots \dots
ESD Pad Protection ±2000 V
DC Input Voltage

Delay Factor (K)

Speed	Commercial		Indu	strial
Grade	Min.	Max.	Min.	Max.
-X	0.46	3.52	0.40	3.77
-0	0.46	2.61	0.40	2.81
-1	0.46	2.23	0.40	2.39

Electrical Characteristics Over the Operating Range

DC Input Current	±20 mA
Latch-Un Current	+200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	$3.3V \pm 0.3V$
Industrial	-40° C to $+85^{\circ}$ C	$3.3V \pm 0.3V$

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -2.4 \text{ mA}$	2.4		V
		$I_{OH} = -10.0 \ \mu A$	V _{CC} - 0.1		V
V _{OL}	Output LOW Voltage	$I_{OL} = 4.0 \text{ mA}$		0.4	V
		$I_{OL} = 10.0 \ \mu A$		0.1	V
V _{IH}	Input HIGH Voltage		2.0		V
V _{IL}	Input LOW Voltage			0.8	V
I _{IH}	Input HIGH Current Sink (For 5V Inputs)	$5V > V_{IN} > V_{CC}$		12[1]	mA
II	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	-10	+10	μΑ
I _{OZ}	Output Leakage Current Three-State	$V_{IN} = V_{CC} \text{ or } V_{SS}$	-10	+10	μΑ
I _{OS}	Output Short Circuit Current ^[2]	$V_{OUT} = V_{SS}$	-5	-50	mA
		$V_{OUT} = V_{CC}$	5	100	mA
I _{CC1}	Standby Supply Current	$V_{IN}, V_{I/O} = V_{CC} \text{ or } V_{SS}$		650	μΑ

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance ^[3]	$T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{CC} = 3.3V$	10	pF
C _{OUT}	Output Capacitance	VCC - 5.5 V	10	pF

Note: 1. User must limit input current to 12 mA.

3. $C_I = 20 \text{ pF max. on } I/(SI).$

2. Only one output at a time. Duration should not exceed 30 seconds.

Switching Characteristics (V_{CC}=3.3 V, T_A=25 °C, K=1.00)

		Propagation Delays ^[4] with Fanout of					
Parameter	Description	1	2	3	4	8	Unit
LOGIC CELLS							
t _{PD}	Combinatorial Delay ^[5]	1.7	2.1	2.7	3.3	4.8	ns
t _{SU}	Set-Up Time ^[5]	2.1	2.1	2.1	2.1	2.1	ns
t _H	Hold Time	0.0	0.0	0.0	0.0	0.0	ns
t _{CLK}	Clock to Q Delay	1.0	1.5	1.9	2.3	4.2	ns
t _{CWHI}	Clock HIGH Time	2.0	2.0	2.0	2.0	2.0	ns
tCWLO	Clock LOW Time	2.0	2.0	2.0	2.0	2.0	ns
t _{SET}	Set Delay	1.7	2.2	2.7	3.0	4.8	ns
t _{RESET}	Reset Delay	1.5	1.8	2.2	2.5	3.9	ns
t _{SW}	Set Width	1.9	1.9	1.9	1.9	1.9	ns
t _{RW}	Reset Width	1.8	1.8	1.8	1.8	1.8	ns

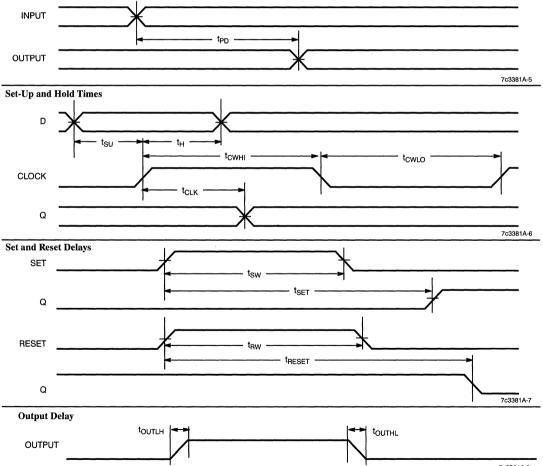
		Propagation Delays						
Parameter	Description	1	2	3	4	6	8	Unit
INPUT CELI	LS	k,	· · · · · · · · · · · · · · · · · · ·					
t _{IN}	Input Delay (HIGH Drive)	2.1	2.2	2.3	2.4	2.6	2.9	ns
t _{INI}	Input, Inverting Delay (HIGH Drive)	2.1	2.2	2.3	2.5	2.8	3.1	ns
t _{IO}	Input Delay (Bidirectional Pad)	1.4	1.8	2.2	2.6	3.4	4.2	ns
t _{GCK}	Clock Buffer Delay ^[6]	2.7	2.7	2.8	2.9	3.0		ns
t _{GCKHI}	Clock Buffer Min. HIGH ^[6]	2.0	2.0	2.0	2.0	2.0		ns
t _{GCKLO}	Clock Buffer Min. LOW ^[6]	2.0	2.0	2.0	2.0	2.0		ns

		Propagation Delays ^[4] with Output Load Capacitance (pF) of					
Parameter	Description	30	50	75	100	150	Unit
OUTPUT CE	LLS						
tOUTLH	Output Delay LOW to HIGH	2.7	3.4	4.2	5.0	6.7	ns
tOUTHL	Output Delay HIGH to LOW	2.8	3.7	4.7	5.6	7.6	ns
t _{PZH}	Output Delay Three-State to HIGH	4.0	4.9	6.1	7.3	9.7	ns
t _{PZL}	Output Delay Three-State to LOW	3.6	4.2	5.0	5.8	7.3	ns
t _{PHZ}	Output Delay HIGH to Three-State ^[7]	2.9					ns
t _{PLZ}	Output Delay LOW to Three-State ^[7]	3.3		1			ns

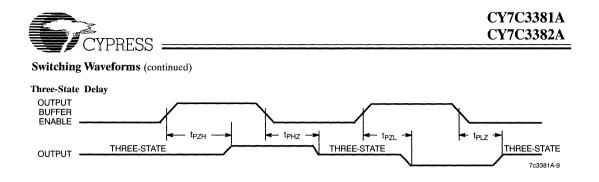
- Notes: 4. Worst-case propagation delay times over process variation at $V_{CC} = 3.3V$ and $T_A = 25^{\circ}$ C. Multiply by the appropriate delay factor, K, for speed grade to get worst-case parameters over full V_{CC} and temperature range as specified in the operating range. All inputs are TTL with 3-ns linear transition time between 0 and 3 volts.
- These limits are derived from worst-case values for a representative selection of the slowest paths through the pASIC380 logic cell includ-ing net delays. Guaranteed delay values for specific paths should be determined from simulation results.

Clock buffer fanout refers to the maximum number of flip-flops per half column. The number of half columns used does not affect clock 6. buffer delay. 7.

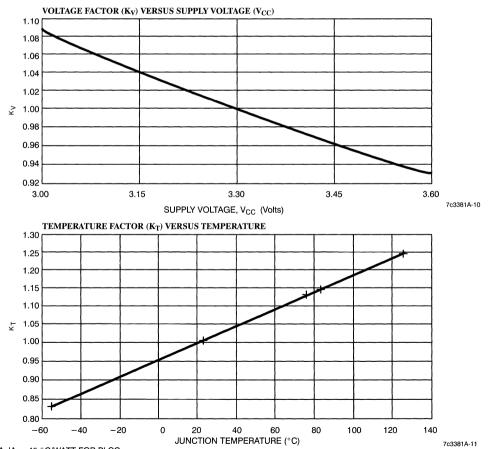
The following loads are used for t_{PXZ}:



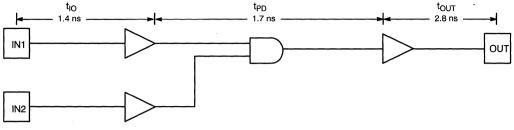
High Drive Buffer


		# High Drives Wired	Pro	Propagation Delays ^[4] with Fanout of			it of	
Parameter	Description	Together	12	24	48	72	96	Unit
t _{IN}	High Drive Input Delay	1	4.0	4.9				ns
		2		3.5	5.0			ns
		3			4.0	4.8	5.6	ns
		4				4.1	4.8	ns
t _{INI}	High Drive Input, Inverting Delay	1	4.2	5.1				ns
		2		3.7	5.2			ns
		3			4.2	5.0	5.8	ns
		4				4.3	5.0	ns

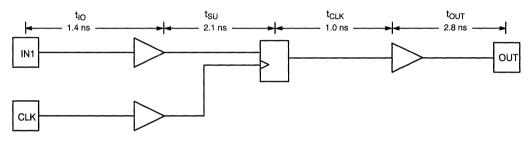
Switching Waveforms



7c3381A-8


Typical AC Characteristics

Propagation delays depend on routing, fan-out, load capacitance, supply voltage, junction temperature, and process variation. The AC Characteristics are a design guide to provide initial timing estimates at nominal conditions. Worst-case estimates are obtained when nominal propagation delays are multiplied by the appropriate Delay Factor, K, as specified by the speed grade in the Delay Factor table. The effects of voltage and temperature variation are illustrated in the graphs below. The *Warp3* Delay Modeler extracts specific timing parameters for precise simulation results following place and route.



Combinatorial Delay Example (Load = 30 pF, K=1, Fanout=1)

INPUT DELAY + COMBINATORIAL DELAY + OUTPUT DELAY = 5.9 ns

Sequential Delay Example (Load = 30 pF, K=1, Fanout=1)

INPUT DELAY + REG SET-UP + CLOCK TO Q DELAY + OUTPUT DELAY = 7.3 ns

Ordering Information

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
1	CY7C3381A-1JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C3381A-1JI	J67	44-Lead Plastic Leaded Chip Carrier	Industrial
0	CY7C3381A-0JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C3381A-0JI	J67	44-Lead Plastic Leaded Chip Carrier	Industrial
X	CY7C3381A-XJC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C3381A-XJI	J67	44-Lead Plastic Leaded Chip Carrier	Industrial

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
1	CY7C3382A-1AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C3382A-1JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C3382A-1AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C3382A-1JI	J81	68-Lead Plastic Leaded Chip Carrier	
0	CY7C3382A-0AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C3382A-0JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C3382A-0AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C3382A-0JI	J81	68-Lead Plastic Leaded Chip Carrier	
Х	CY7C3382A-XAC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C3382A-XJC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C3382A-XAI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C3382A-XJI	J81	68-Lead Plastic Leaded Chip Carrier	

Warp3 and UltraLogic are trademarks of Cypress Semiconductor Corporation. ViaLink and pASIC are trademarks of QuickLogic Corporation. Document #: 38-00252-B 4

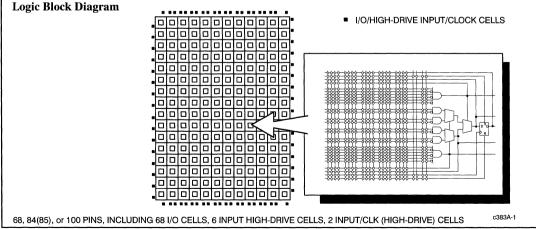
CY7C383A CY7C384A

Features

- Very high speed
 - Loadable counter frequencies greater than 150 MHz
 - Chip-to-chip operating frequencies up to 110 MHz
 - Input + logic cell + output delays under 6 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 12 x 16 array of 192 logic cells provides 6,000 total available gates
 - 2,000 typically usable "gate array" gates in 68- and 84-pin PLCC, 85-pin CPGA, and 100-pin TQFP packages
- Low power, high output drive
 - Standby current typically 2 mA
 - 16-bit counter operating at 150 MHz consumes 50 mA
 - Minimum I_{OL} of 12 mA and I_{OH} of 8 mA
- Flexible logic cell architecture
 - --- Wide fan-in (up to 14 input gates)
 - Multiple outputs in each cell
 - --- Very low cell propagation delay
- (1.7 ns typical)
- Powerful design tools—Warp3™
 - Designs entered in VHDL, schematics, or both
 - Fast, fully automatic place and route

- Waveform simulation with back annotated net delays
- PC and workstation platforms
- Extensive 3rd party tool support — See Development Systems section
- Robust routing resources
- Fully automatic place and route of designs using up to 100 percent of logic resources
- -No hand routing required
- 56 (CY7C383A) to 80 (CY7C384A) bidirectional input/output pins
- 6 dedicated input/high-drive pins
- 2 clock/dedicated input pins with fanout-independent, low-skew nets
 — Clock skew < 0.5 ns
- Input hysteresis provides high noise immunity
- Thorough testability
- Built-in scan path permits 100 percent factory testing of logic and I/O cells
- 0.65µ CMOS process with ViaLink[™] programming technology
 - High-speed metal-to-metal link
 - Non-volatile antifuse technology
- 68-pin PLCC is pinout compatible with 1K (CY7C382P) devices
- 84-pin PLCC is pinout compatible with the 4K (CY7C385P) devices
- 100-pin TQFP is pinout compatible with the 1K (CY7C382P) and the 4K (CY7C385P) devices

UltraLogic™ Very High Speed 2K Gate CMOS FPGA

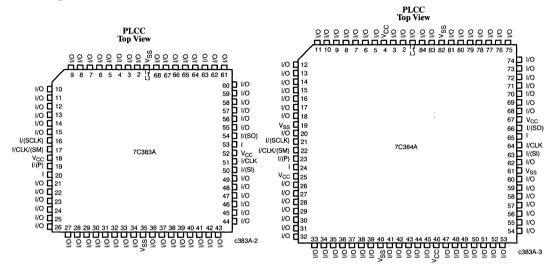

Functional Description

The CY7C383A and CY7C384A are very high speed CMOS user-programmable ASIC (pASIC[™]) devices. The 192 logic cell field-programmable gate array (FPGA) offers 2,000 typically usable "gate array" gates. This is equivalent to 6,000 EPLD or LCA gates. The CY7C383A is available in a 68-pin PLCC package. The CY7C384A is available in 84-pin PLCC, 85-pin CPGA and 100-pin TQFP packages.

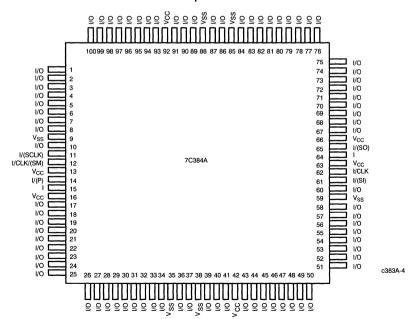
Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 150 MHz with input delays under 1.5 ns and output delays under 3 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

Designs are entered into the CY7C383A and CY7C384A using Cypress *Warp3* software or one of several third-party tools. See the Development Systems section of the *Programmable Logic Data Book* for more tools information. *Warp3* is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The CY7C383A and CY7C384A feature ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.

For detailed information about the pASIC380 architecture, see the pASIC380 Family datasheet.



ViaLink and pASIC are trademarks of QuickLogic Corporation. UltraLogic and *Warp3* are trademarks of Cypress Semiconductor Corporation.



CY7C383A CY7C384A

Pin Configurations

CPGA	
Bottom View	

1/0	I/O	I/O	1/0	I/O	I/O	I/O	I/O	I/O	I/O	I/O	A
1/0	I/O	I/O	I/O	I/ _(SCLK)	I/(P)	I	I/O	I/O	I/O	I/O	в
1/0	I/O		i	V _{SS}	I/ _{CLK/} (SM)	v _{cc}			I/O	I/O	с
I/O	1/0								I/O	1/0	D
1/0	1/0	V _{CC}						V _{SS}	I/O	I/O	E
I/O	I/O	I/O						I/O	I/O	1/0	F
I/O	I/O	V _{SS}						v _{cc}	I/O	1/O	G
I/O	I/O		•						I/O	I/O	н
1/0	I/O			v _{cc}	I/CLK	V _{SS}			I/O	1/0	J
I/O	I/O	I/O	I/O	I/(SO)	1	I/(SI)	I/O	I/O	I/O	I/O	к
I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	L
11	10	9	8	7	6	5	4	3	2	1	c383A-5

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

DC Input Current	$\pm 20 \text{ mA}$
Latch-Up Current	±200 mA

Storage Temperature -65°C to +150°C Ceramic -40°C to +125°C
Lead Temperature 300°C
Supply Voltage $\dots \dots
Input Voltage $\dots \dots
ESD Pad Protection ±2000 V
DC Input Voltage

0	per	ating	Range	

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 5%
Industrial	-40°C to +85°C	$5V \pm 10\%$
Military	-55°C to +125°C	$5V \pm 10\%$

Delay Factor (K)

Speed	Mili	itary	Indu	strial	Commercial		
Grade	Min.	Max.	Min.	Max.	Min.	Max.	
-X	0.39	3.00	0.4	2.75	0.46	2.55	
-0	0.39	1.82	0.4	1.67	0.46	1.55	
-1	0.39	1.56	0.4	1.43	0.46	1.33	
-2			0.4	1.35	0.46	1.25	

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -4.0 \text{ mA}$	3.7		V
		$I_{OH} = -8.0 \text{ mA}$	2.4		V
		$I_{OH} = -10.0 \mu A$	$V_{\rm CC} - 0.1$		V
V _{OL}	Output LOW Voltage	$I_{OL} = 12 \text{ mA Commercial}$ $I_{OL} = 8.0 \text{ mA Military/Industrial}$		0.4	V
		$I_{OL} = 10.0 \mu A$		0.1	V
V _{IH}	Input HIGH Voltage		2.0		V
V _{IL}	Input LOW Voltage			0.8	V
II	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	-10	+10	μA
I _{OZ}	Output Leakage Current—Three-State	$V_{IN} = V_{CC} \text{ or } V_{SS}$	-10	+10	μA
I _{OS}	Output Short Circuit Current ^[1]	$V_{OUT} = V_{SS}$	-10	-80	mA
		$V_{OUT} = V_{CC}$	30	140	mA
I _{CC1}	Standby Supply Current	V_{IN} , $V_{I/O} = V_{CC}$ or V_{SS}		10	mA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance ^[2]	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$ $V_{CC} = 5.0 \text{V}$	10	pF
C _{OUT}	Output Capacitance	VCC - 5.0 V	10	pF

Notes:
 Only one output at a time. Duration should not exceed 30 seconds.
 C_{IN} = 40 pF max. on I/(SI) and I/(P).

Switching Characteristics (At V_{CC}=5V, T_A=25°C K=1.00)

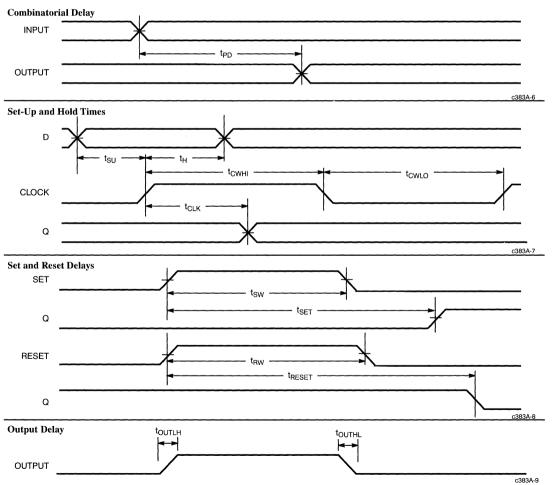
			Propagation Delays ^[3] with Fanout of					
Parameter	Description	1	2	3	4	8	Unit	
LOGIC CELLS								
t _{PD}	Combinatorial Delay ^[4]	1.7	2.2	2.6	3.2	5.2	ns	
t _{SU}	Set-Up Time ^[4]	2.1	2.1	2.1	2.1	2.1	ns	
t _H	Hold Time	0.0	0.0	0.0	0.0	0.0	ns	
t _{CLK}	Clock to Q Delay	1.0	1.5	1.9	2.5	4.6	ns	
^t CWHI	Clock HIGH Time	2.0	2.0	2.0	2.0	2.0	ns	
^t CWLO	Clock LOW Time	2.0	2.0	2.0	2.0	2.0	ns	
tSET	Set Delay	1.7	2.1	2.6	3.2	5.2	ns	
tRESET	Reset Delay	1.5	1.9	2.2	2.7	4.3	ns	
t _{SW}	Set Width	1.9	1.9	1.9	1.9	1.9	ns	
t _{RW}	Reset Width	1.8	1.8	1.8	1.8	1.8	ns	
			Propagation Delays ^[3]					

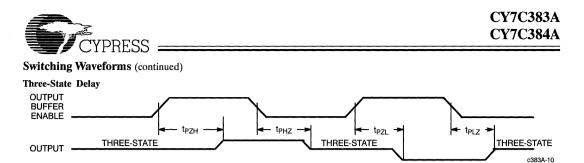
Parameter	Description	1	2	3	4	6	8	Unit
INPUT CELLS	S							
t _{IN}	Input Delay (HIGH Drive)	2.4	2.5	2.6	2.7	3.0	3.3	ns
t _{INI}	Input, Inverting Delay (HIGH Drive)	2.5	2.6	2.7	2.8	3.1	3.4	ns
t _{IO}	Input Delay (Bidirectional Pad)	1.4	1.9	2.2	2.8	3.7	4.6	ns
t _{GCK}	Clock Buffer Delay ^[5]	2.7	2.8	2.8	2.9	2.9	3.0	ns
t _{GCKHI}	Clock Buffer Min. HIGH ^[5]	2.0	2.0	2.0	2.0	2.0	2.0	ns
t _{GCKLO}	Clock Buffer Min. LOW ^[5]	2.0	2.0	2.0	2.0	2.0	2.0	ns

		Propagation Delays ^[3] with Output Load Capacitance (pF) of					
Parameter	Description	30	50	75	100	150	Unit
OUTPUT CEL	LS						
toutlh	Output Delay LOW to HIGH	2.7	3.4	4.2	5.0	6.7	ns
tOUTHL	Output Delay HIGH to LOW	2.8	3.7	4.7	5.6	7.6	ns
t _{PZH}	Output Delay Three-State to HIGH	4.0	4.9	6.1	7.3	9.7	ns
t _{PZL}	Output Delay Three-State to LOW	3.6	4.2	5.0	5.8	7.3	ns
t _{PHZ}	Output Delay HIGH to Three-State ^[6]	2.9					ns
t _{PLZ}	Output Delay LOW to Three-State ^[6]	3.3					ns

Notes:

- Worst-case propagation delay times over process variation at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. Multiply by the appropriate delay factor, K, for speed grade to get worst-case parameters over full V_{CC} and temperature range as specified in the operating range. All inputs are TTL with 3-ns linear transition time between 0 and 3 volts. 3.
- These limits are derived from worst-case values for a representative selection of the slowest paths through the pASIC380 logic cell includ-ing net delays. Guaranteed delay values for specific paths should be determined from simulation results.
- Clock buffer fanout refers to the maximum number of flip-flops per half column. The number of half columns used does not affect clock 5. buffer delay.
- 6. The following loads are used for t_{PXZ} :

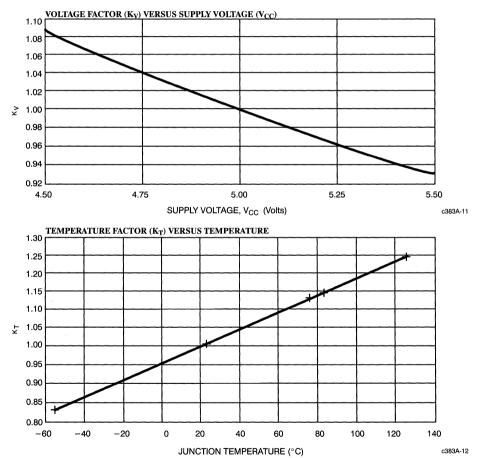




High Drive Buffer

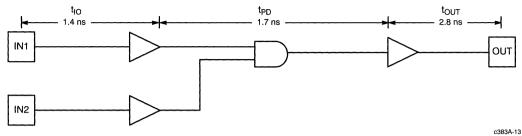
		# High Drives Wired	Propagation Delays ^[3] with Fanout of					
Parameter	Description	Together	12	24	48	72	96	Unit
t _{IN}	High Drive Input Delay	1	4.5	5.4				ns
		2		3.9	5.6			ns
		3			4.5	5.3	6.3	ns
		4				4.6	5.3	ns
t _{INI}	High Drive Input, Inverting Delay	1	4.7	5.6				ns
		2		4.0	5.8			ns
		3			4.6	5.5	6.4	ns
		4				4.8	5.5	ns

Switching Waveforms

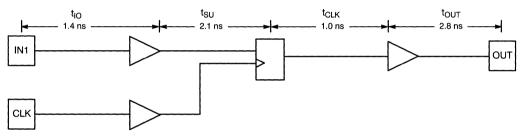


Typical AC Characteristics

Propagation delays depend on routing, fan-out, load capacitance, supply voltage, junction temperature, and process variation. The AC Characteristics are a design guide to provide initial timing estimates at nominal conditions. Worst-case estimates are obtained when nominal propagation delays are multiplied by the appropri-


ate Delay Factor, K, as specified by the speed grade in the Delay Factor table. The effects of voltage and temperature variation are illustrated in the graphs below. The *Warp3* Delay Modeler extracts specific timing parameters for precise simulation results following place and route.

*THETA JA = 45 °C/WATT FOR PLCC



Combinatorial Delay Example (Load = 30 pF, K=1, Fanout=1)

INPUT DELAY + COMBINATORIAL DELAY + OUTPUT DELAY = 5.9 ns

Sequential Delay Example (Load = 30 pF, K=1, Fanout=1)

c383A-14

INPUT DELAY + REG SET-UP + CLOCK TO Q DELAY + OUTPUT DELAY = 7.3 ns

Ordering Information

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range	
2	CY7C383A-2JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C383A-2JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial	
1	CY7C383A-1JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C383A-1JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial	
0	CY7C383A-0JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial	
	СҮ7С383А-0Л	J81	68-Lead Plastic Leaded Chip Carrier	Industrial	
X	CY7C383A-XJC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C383A-XJI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial	
Speed Grade	Ordering Code	Package Name	Package Type	Operating Range	
2	CY7C384A-2AC	A100	100-Pin Thin Quad Flat Pack	Commercial	
	CY7C384A-2JC	J83	84-Lead Plastic Leaded Chip Carrier		
	CY7C384A-2AI	A100	100-Pin Thin Quad Flat Pack	Industrial	
	CY7C384A-2JI	J83	84-Lead Plastic Leaded Chip Carrier		
1	CY7C384A-1AC	A100 100-Pin Thin Quad Flat Pack		Commercial	
	CY7C384A-1JC	J83	84-Lead Plastic Leaded Chip Carrier		
	CY7C384A-1AI	A100	100-Pin Thin Quad Flat Pack	Industrial	
	CY7C384A-1JI	J83	84-Lead Plastic Leaded Chip Carrier		
	CY7C384A-1GMB	G85	85-Pin Grid Array (Cavity Up)	Military	
0	CY7C384A-0AC	A100	100-Pin Thin Quad Flat Pack	Commercial	
	CY7C384A-0JC	J83	84-Lead Plastic Leaded Chip Carrier		
	CY7C384A-0AI	A100	100-Pin Thin Quad Flat Pack	Industrial	
	CY7C384A-0JI	J83	84-Lead Plastic Leaded Chip Carrier		
	CY7C384A-0GMB	G85	85-Pin Grid Array (Cavity Up)	Military	
X	CY7C384A-XAC	A100	100-Pin Thin Quad Flat Pack	Commercial	
	CY7C384A-XJC	J83	84-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C384A-XAI	A100	100-Pin Thin Quad Flat Pack	Commercial	
	CY7C384A-XJI	J83	84-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C384A-XGMB	G85	85-Pin Grid Array (Cavity Up)	Military	

Shaded area contains preliminary information.

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

Document #: 38-00361-B

CY7C3383A CY7C3384A

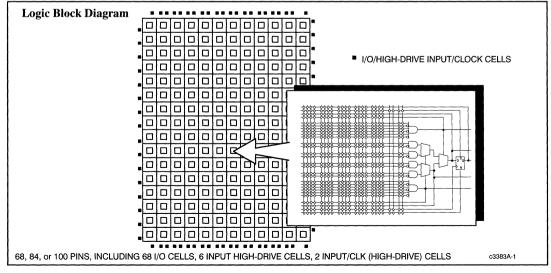
Features

- · Very high speed
 - --- Loadable counter frequencies greater than 80 MHz
 - Chip-to-chip operating frequencies up to 60 MHz
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 12 x 16 array of 192 logic cells provides 6,000 total available gates
 - 2,000 typically usable "gate array" gates in 68- and 84-pin PLCC, and 100-pin TQFP packages
- Low power, high output drive
 - Standby current typically 250 µA
 - --- 16-bit counter operating at 80 MHz consumes 20 mA
- Flexible logic cell architecture
 - --- Wide fan-in (up to 14 input gates)
 - Multiple outputs in each cell
 - Very low cell propagation delay (1.7 ns typical)
- Powerful design tools—Warp3[™]
 - --- Designs entered in VHDL, schematics, or both
 - Fast, fully automatic place and route
 - Waveform simulation with back annotated net delays
 - PC and workstation platforms
- Extensive 3rd party tool support

- ---- See Development Systems section
- 5V tolerant Inputs (see I_{IH} spec)
- Robust routing resources
 - Fully-automatic place and route of designs using up to 100 percent of logic resources
 No hand routing required
- 56 (CY7C3383A) to 80 (CY7C3384A) bidirectional input/ output pins
- 6 dedicated input/high-drive pins
- 2 clock/dedicated input pins with fanout-independent, low-skew nets
 — Clock skew <0.5 ns
- Input hysteresis provides high noise immunity
- Thorough testability at 3.3V
 Built-in scan path permits 100 percent factory testing of logic and I/O cells
- 0.65µ CMOS process with ViaLink[™] programming technology
 - -High-speed metal-to-metal link
 - Non-volatile antifuse technology
- 68-pin PLCC is pinout compatible with 1K (CY7C3382A) devices
- 84-pin PLCC is pinout compatible with 4K (CY7C3385A) devices
- 100-pin TQFP is pinout compatible with 1K (CY7C3382A) and 4K (CY7C3385A) devices
- Pinout compatible with 5V, 2K (CY7C383A/4A) devices

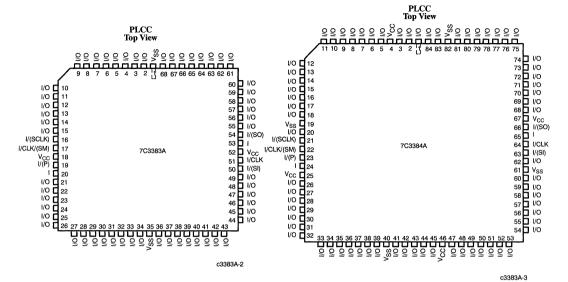
Functional Description

UltraLogic[™] 3.3V High Speed

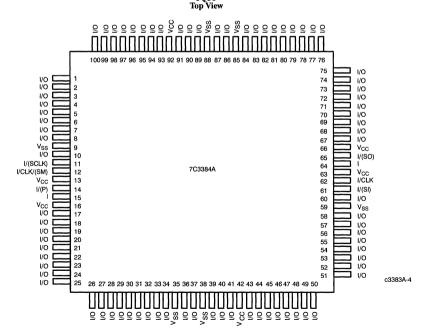

The CY7C3383A and CY7C3384A are 3.3V high speed CMOS user-programmable ASIC (pASIC[™]) devices. The 192 logic cell field-programmable gate array (FPGA) offers 2,000 typically usable "gate array" gates. This is equivalent to 6,000 EPLD or LCA gates. The CY7C3383A is available in a 68-pin PLCC packages. The CY7C3384A is available in an 84-pin PLCC and 100-pin TQFP packages.

2K Gate CMOS FPGA

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 100 MHz. This permits highdensity programmable devices to be used with today's fastest CISC and RISC microprocessors.


Designs are entered into the CY7C3383A and CY7C3384A using Cypress *Warp3* software or one of several third-party tools. See the Development Systems section of the *Programmable Logic Data Book* for more tools information. *Warp3* is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The CY7C3383A and CY7C3384A feature ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.

For detailed information about the pASIC380 architecture, see the pASIC380 Family datasheet.



Pin Configurations

TQFP Top View

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

DC Input Current	$\pm 20 \text{ mA}$
Latch-Up Current	±200 mA

Operating Range

Storage Temperature -65°C to +150°C Ceramic -40°C to +125°C
Lead Temperature 300°C
Supply Voltage
Input Voltage $\dots \dots
ESD Pad Protection ±2000 V
DC Input Voltage

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	$3.3 \pm 0.3 V$
Industrial	-40°C to +85°C	$3.3 \pm 0.3 V$

Delay Factor (K)

Speed	Comn	Commercial		strial
Speed Grade	Min.	Max.	Min.	Max.
-X	0.46	3.52	0.40	3.77
-0	0.46	2.61	0.40	2.81
-1	0.46	2.23	0.40	2.39

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -2.4 \text{ mA}$	2.4		V
		$I_{OH} = -10.0 \mu A$	V _{CC} - 0.1		V
V _{OL}	Output LOW Voltage	$I_{OL} = 4 \text{ mA}$		0.4	V
		$I_{OL} = 10.0 \ \mu A$		0.1	V
V _{IH}	Input HIGH Voltage		2.0		V
V _{IL}	Input LOW Voltage			0.8	V
I _{IH}	Input HIGH Current Sink (for 5V Inputs)	$5V > V_{IN} > V_{CC}$		12[1]	mA
II	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	-10	+10	μΑ
I _{OZ}	Output Leakage Current—Three-State	$V_{IN} = V_{CC} \text{ or } V_{SS}$	-10	+10	μΑ
I _{OS}	Output Short Circuit Current ^[2]	$V_{OUT} = V_{SS}$	-5	-50	mA
		$V_{OUT} = V_{CC}$	15	100	mA
I _{CC1}	Standby Supply Current	$V_{IN}, V_{I/O} = V_{CC} \text{ or } V_{SS}$		650	μA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance ^[3]	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$ $V_{CC} = 3.3 \text{V}$	10	pF
C _{OUT}	Output Capacitance	VCC - 5.5 V	10	pF

Note:

1. User must limit input current to 12 mA.

2. Only one output at a time. Duration should not exceed 30 seconds.

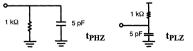
3. $C_{IN} = 40 \text{ pF}$ max. on I/(SI) and I/(P). Capacitance is sample tested.

Δ

Switching Characteristics (V_{CC}=3.3 V, T_A=25°C, K=1.00)

]	Propagatio with Fa	n Delays ^{[4} nout of]		
Parameter	Description	1	2	3	6	4	8	Unit
LOGIC CELLS	5							
t _{PD}	Combinatorial Delay ^[5]	1.7	2.2	2.	6	3.2	5.2	ns
t _{SU}	Set-Up Time ^[5]	2.1	2.1	2.	1	2.1	2.1	ns
t _H	Hold Time	0.0	0.0	0.	0	0.0	0.0	ns
t _{CLK}	Clock to Q Delay	1.0	1.5	1.	9	2.5	4.6	ns
t _{CWHI}	Clock HIGH Time	2.0	2.0	2.	0	2.0	2.0	ns
t _{CWLO}	Clock LOW Time	2.0	2.0	2.	0	2.0	2.0	ns
t _{SET}	Set Delay	1.7	2.1	2.	6	3.2	5.2	ns
tRESET	Reset Delay	1.5	1.9	2.	2	2.7	4.3	ns
t _{SW}	Set Width	1.9	1.9	1.	9	1.9	1.9	ns
t _{RW}	Reset Width	1.8	1.8	1.	8	1.8	1.8	ns
	T			Propagatio	n Delays ^{[4}	.]		1
Parameter	Description	1	2	3	4	6	8	Unit
INPUT CELLS	8							
t _{IN}	Input Delay (HIGH Drive)	2.4	2.5	2.6	2.7	3.0	3.3	ns

t _{IN}	Input Delay (HIGH Drive)	2.4	2.5	2.6	2.7	3.0	3.3	ns
t _{INI}	Input, Inverting Delay (HIGH Drive)	2.5	2.6	2.7	2.8	3.1	3.4	ns
t _{IO}	Input Delay (Bidirectional Pad)	1.4	1.9	2.2	2.8	3.7	4.6	ns
t _{GCK}	Clock Buffer Delay ^[6]	2.7	2.8	2.8	2.9	2.9	3.0	ns
t _{GCKHI}	Clock Buffer Min. HIGH ^[6]	2.0	2.0	2.0	2.0	2.0	2.0	ns
t _{GCKLO}	Clock Buffer Min. LOW ^[6]	2.0	2.0	2.0	2.0	2.0	2.0	ns

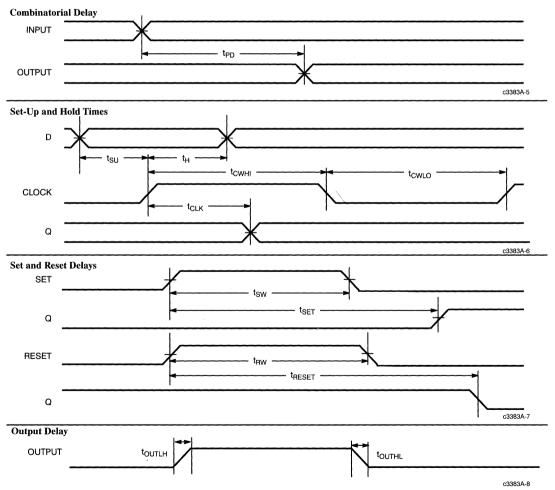

				Propagation Delays ^[4] utput Load Capacitance (pF) of					
Parameter	Description	30	50	75	100	150	Unit		
OUTPUT CEL	LS								
toutlh	Output Delay LOW to HIGH	2.7	3.4	4.2	5.0	6.7	ns		
tOUTHL	Output Delay HIGH to LOW	2.8	3.7	4.7	5.6	7.6	ns		
t _{PZH}	Output Delay Three-State to HIGH	4.0	4.9	6.1	7.3	9.7	ns		
t _{PZL}	Output Delay Three-State to LOW	3.6	4.2	5.0	5.8	7.3	ns		
t _{PHZ}	Output Delay HIGH to Three-State ^[7]	2.9				1	ns		
t _{PLZ}	Output Delay LOW to Three-State ^[7]	3.3					ns		

Notes:

- Notes: 4. Worst-case propagation delay times over process variation at $V_{CC} = 3.3$ V and $T_A = 25$ °C. Multiply by the appropriate delay factor, K, for speed grade to get worst-case parameters over full V_{CC} and temperature range as specified in the operating range. All inputs are TTL with 3-ns linear transition time between 0 and 3 volts.
- 5. These limits are derived from worst-case values for a representative selection of the slowest paths through the pASIC380 logic cell including net delays. Guaranteed delay values for specific paths should be determined from simulation results.

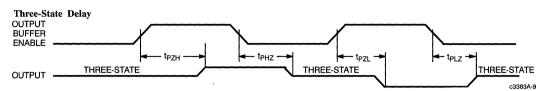
Clock buffer fanout refers to the maximum number of flip-flops per half column. The number of half columns used does not affect clock 6. buffer delay.

7. The following loads are used for t_{PXZ}:

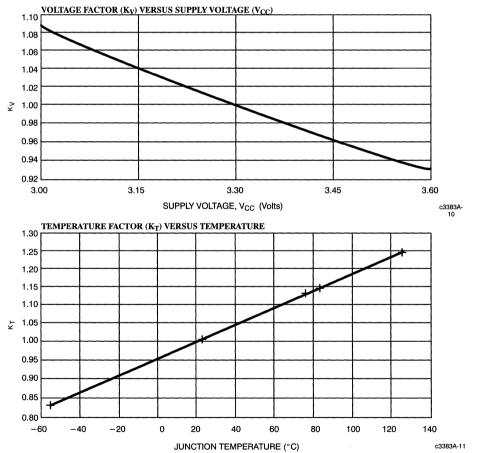


High Drive Buffer

	# High Drives Propagation Delays ^[4] with Fanout of Wired							
Parameter	Description	Together	12	24	48	72	96	Unit
t _{IN}	High Drive Input Delay	1	4.5	5.4				ns
		2		3.9	5.6			ns
		3			4.5	5.3	6.3	ns
		4				4.6	5.3	ns
t _{INI}	High Drive Input, Inverting Delay	1	4.7	5.6				ns
		2		4.0	5.8			ns
		3			4.6	5.5	6.4	ns
		4				4.8	5.5	ns

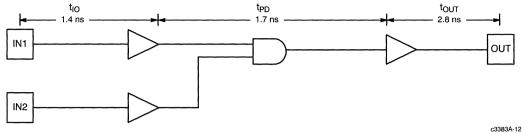

Switching Waveforms

4

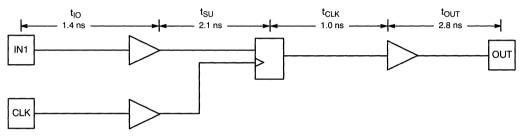

Switching Waveforms (continued)

Typical AC Characteristics

Propagation delays depend on routing, fan-out, load capacitance, supply voltage, junction temperature, and process variation. The AC Characteristics are a design guide to provide initial timing estimates at nominal conditions. Worst-case estimates are obtained when nominal propagation delays are multiplied by the appropri-


ate Delay Factor, K, as specified by the speed grade in the Delay Factor table. The effects of voltage and temperature variation are illustrated in the graphs below. The *Warp3* Delay Modeler extracts specific timing parameters for precise simulation results following place and route.

*THETA JA = 45 °C/WATT FOR PLCC


Combinatorial Delay Example (Load = 30 pF, K=1, Fanout=1)

CYPRESS =

INPUT DELAY + COMBINATORIAL DELAY + OUTPUT DELAY = 5.9 ns

Sequential Delay Example (Load = 30 pF, K=1, Fanout=1)

c3383A-13

INPUT DELAY + REG SET-UP + CLOCK TO Q DELAY + OUTPUT DELAY = 7.3 ns

Ordering Information

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
1	CY7C3383A-1JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C3383A-1JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
0	CY7C3383A-0JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C3383A-0JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
X	CY7C3383A-XJC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C3383A-XJI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
1	CY7C3384A-1AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C3384A-1JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C3384A-1AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C3384A-1JI	J83	84-Lead Plastic Leaded Chip Carrier	
0	CY7C3384A-0AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C3384A-0JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C3384A-0AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C3384A-0JI	J83	84-Lead Plastic Leaded Chip Carrier	
Х	CY7C3384A-XAC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C3384A-XJC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C3384A-XAI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C3384A-XJI	J83	84-Lead Plastic Leaded Chip Carrier	

Warp3 and UltraLogic are trademarks of Cypress Semiconductor Corporation. ViaLink and pASIC are trademarks of QuickLogic Corporation.

Document #: 38-00434-A

CY7C385P CY7C386P

Features

- Very high speed
 - Loadable counter frequencies greater than 150 MHz
 - Chip-to-chip operating frequencies up to 110 MHz
 - Input + logic cell + output delays under 6 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - -16 x 24 array of 384 logic cells provides 12,000 total available gates
 - 4,000 typically usable "gate array" gates in 84-pin PLCC, 145-pin CPGA, 100-pin and 144-pin TQFP, and 160-pin CQFP packages
- Fully PCI compliant inputs and outputs
- Low power, high output drive
 - Standby current typically 2 mA ---- 16-bit counter operating at 150
 - MHz consumes 50 mA Minimum IOL and IOH
 - of 20 mA
- Flexible logic cell architecture
 - Wide fan-in (up to 14 input gates)
 - Multiple outputs in each cell
 - Very low cell propagation delay (1.7 ns typical)
- Powerful design tools—Warp3[™] - Designs entered in VHDL, schematics, or both

- PC and workstation platforms • Extensive 3rd party tools support See Development Systems section
 - Robust routing resources

route

Fully automatic place and route of designs using up to 100 percent of logic resources

Fast, fully automatic place and

Waveform simulation with back an-

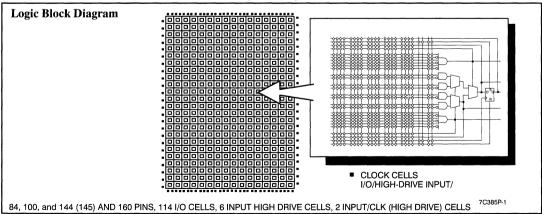
No hand routing required

notated net delays

- 80 (7C385P) to 114 (7C386P) • bidirectional input/output pins
- 6 dedicated input/high-drive pins ٠
- 2 clock/dedicated input pins with fanout-independent, low-skew nets - Clock skew < 0.5 ns
- Input hysteresis provides high noise immunity
- Thorough testability
 - Built in scanpath permits 100 percent factory testing of logic and I/O cells
- 0.65µ CMOS process with ViaLink[™] programming technology
 - -High-speed metal-to-metal link
 - Non-volatile antifuse technology
- 100-pin TQFP is pinout compatible with the 1K (CY7C382P) FPGAs and 2K (CY7C384A) devices
- 84-pin PLCC is pinout compatable with the 2K (CY7C384A) devices
- 144-pin TQFP is pinout compatable with the 8K (CY7C388P) devices

Functional Description

4K Gate CMOS FPGA

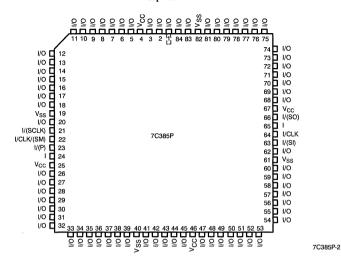

UltraLogic[™] Very High Speed

The CY7C385P and CY7C386P are very high speed CMOS user-programmable ASIC (pASIC[™]) devices. The 384 logic cell field-programmable gate array (FPGA) offers 4,000 typically usable "gate array" gates. This is equivalent to 12,000 EPLD or LCA gates. The CY7C385P is available in a 84-pin PLCC and the 100-pin TQFP packages. The CY7C386P is available in 144-pin TQFP, 145-pin and CPGA and 160-pin CQFP packages.

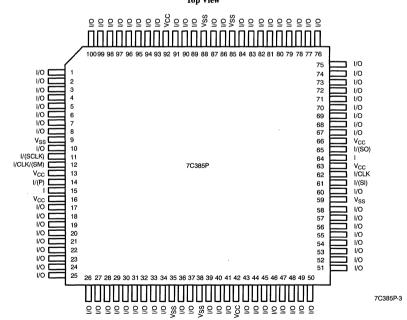
Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 150 MHz with input delays under 1.5 ns and output delays under 3 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

Designs are entered into the CY7C385P and CY7C386P using Cypress Warp3 software or one of several third-party tools. See the Development Systems section of the Programmable Logic Databook for more tools information. Warp3 is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The CY7C385P and CY7C386P feature ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.

For detailed information about the pASIC380 architecture, see the pASIC380 Family datasheet.

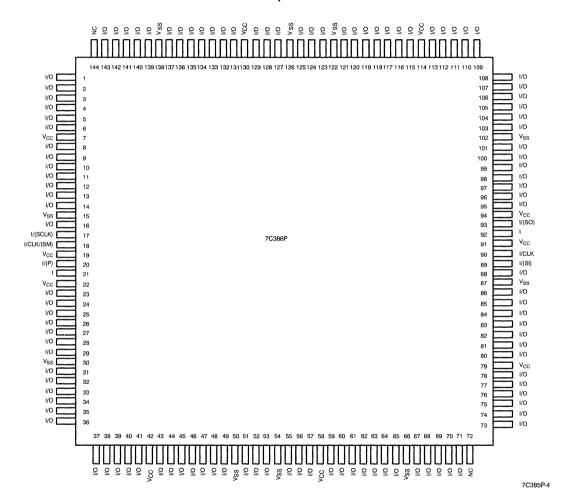


ViaLink and pASIC are trademarks of QuickLogic Corporation. Ultralogic and Warp3 are trademarks of Cypress Semiconductor Corporation.



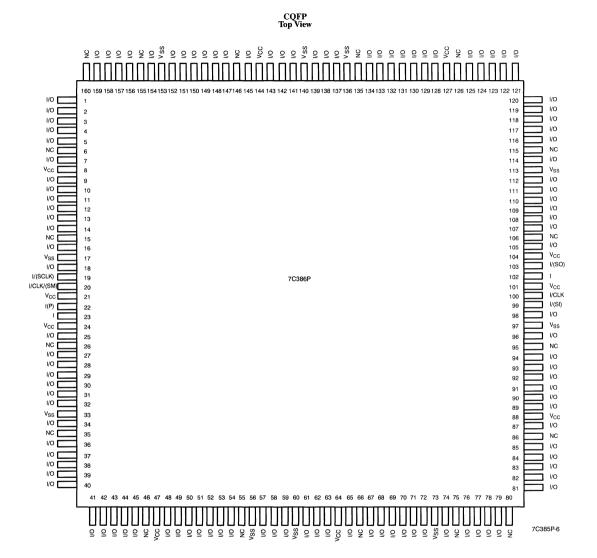
Pin Configurations

PLCC/CLCC Top View



TQFP Top View

TQFP Top View



CPGA Bottom View

R	Р	N	м	L	к	J	н	G	F	E	D	С	В	Α	_
I/O	1/0	1/0	1/0	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	1
I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	1/0	NC	I/O	2
1/0	I/O	V _{SS}	I/O	V _{CC}	I/O	V _{SS}	I/O	V _{CC}	I/O	V _{SS}	I/O	v _{cc}	I/O	I/O	3
1/0	I/O	I/O		•										I/O	4
I/O	I/O	V _{CC}												I/O	5
1/0	I/O	I/O												I/O	6
L.	I/(SO)	V _{SS}											I/O	1/0	7
1/0	I/(SI)	I/CLK	5	7C386P									I/ _(SCLK)	I/O	8
I/O	1/0	V _{CC}										v _{ss}	1	I/(P)	9
I/O	I/O	I/O										1/0	I/O	I/O	10
1/0	1/0	V _{SS}										v _{cc}	I/O	I/O	11
I/O	I/O	I/O										I/O	I/O	I/O	12
I/O	1/0	V _{CC}	I/O	V _{SS}	1/0	V _{CC}	1/0	V _{SS}	I/O	V _{CC}	1/0	V _{SS}	I/O	I/O	13
I/O	NC	I/O	I/O	I/O	I/O	1/0	1/0	I/O	1/0	I/O	1/0	1/0	1/0	1/0	14
I/O	I/O	I/O	I/O	I/O	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	I/O	1/0	15

7C385P-5

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

DC Input Current	$\pm 20 \text{ mA}$
Latch-Up Current	±200 mA

Storage Temperature

Ceramic -65° C to $+150^{\circ}$ C Plastic -40° C to $+125^{\circ}$ C
Lead Temperature 300°C
Supply Voltage $\dots \dots
Input Voltage $\dots -0.5V$ to V _{CC} +0.5V
ESD Pad Protection ±2000 V
DC Input Voltage0.5V to 7.0V

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	$0^{\circ}C$ to $+70^{\circ}C$	5V ± 5%
Industrial	-40° C to $+85^{\circ}$ C	$5V \pm 10\%$
Military	-55°C to +125°C	$5V \pm 10\%$

Delay Factor (K)

Speed	Mili	Military		Military Industrial				Commercial		
Grade	Min.	Max.	Min.	Max.	Min.	Max.				
-X	0.39	3.00	0.4	2.75	0.46	2.55				
-0	0.39	1.82	0.4	1.67	0.46	1.55				
-1	0.39	1.56	0.4	1.43	0.46	1.33				
-2			0.4	1.35	0.46	1.25				

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -4.0 \text{ mA}$	3.7		V
		$I_{OH} = -20 \text{ mA}$	2.4		V
		$I_{OH} = -10.0 \mu A$	V _{CC} - 0.1		V
V _{OL}	Output LOW Voltage	$I_{OL} = 20 \text{ mA}$		0.4	V
		$I_{OL} = 10.0 \mu A$		0.1	V
V _{IH}	Input HIGH Voltage		2.0		V
V _{IL}	Input LOW Voltage			0.8	V
II	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	- 10	+10	μA
I _{OZ}	Three-State Output Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	- 10	+10	μΑ
I _{OS}	Output Short Circuit Current ^[1]	$V_{OUT} = V_{SS}$	-10	- 80	mA
		$V_{OUT} = V_{CC}$	30	140	mA
I _{CC1}	Standby Supply Current	V_{IN} , $V_{I/O} = V_{CC}$ or V_{SS}		10	mA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance ^[2]	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$ $V_{CC} = 5.0 \text{ V}$	10	pF
C _{OUT}	Output Capacitance	VCC - 5.0V	10	pF

Notes: 1. Only one output at a time. Duration should not exceed 30 seconds. 2. $C_I = 45 \text{ pF} \text{ max. on } I/(SI) \text{ and } I/(P)$.

Switching Characteristics (At V_{CC}=5V, T_A=25°C, K=1)

			Propagation Delays ^[3] with Fanout of							
Parameter	Description	1	2	3	4	8	Unit			
LOGIC CELLS	8									
t _{PD}	Combinatorial Delay ^[4]	1.7	2.2	2.6	3.2	5.3	ns			
t _{SU}	Set-Up Time ^[4]	2.1	2.1	2.1	2.1	2.1	ns			
t _H	Hold Time	0.0	0.0	0.0	0.0	0.0	ns			
t _{CLK}	Clock to Q Delay	1.0	1.5	1.9	2.6	4.7	ns			
t _{CWHI}	Clock HIGH Time	2.0	2.0	2.0	2.0	2.0	ns			
tCWLO	Clock LOW Time	2.0	2.0	2.0	2.0	2.0	ns			
t _{SET}	Set Delay	1.7	2.2	2.6	3.2	5.3	ns			
tRESET	Reset Delay	1.5	1.9	2.2	2.7	4.4	ns			
t _{SW}	Set Width	1.9	1.9	1.9	1.9	1.9	ns			
t _{RW}	Reset Width	1.8	1.8	1.8	1.8	1.8	ns			

		Propagation Delays ^[3]							
Parameter	Description	1	2	3	4	8	12	Unit	
INPUT CELL	S								
t _{IN}	Input Delay (HIGH Drive)	2.8	2.9	3.0	3.1	4.0	5.3	ns	
t _{INI}	Input, Inverting Delay (HIGH Drive)	3.0	3.1	3.2	3.3	4.1	5.7	ns	
t _{IO}	Input Delay (Bidirectional Pad)	1.4	1.9	2.2	2.9	4.7	6.5	ns	
t _{GCK}	Clock Buffer Delay ^[5]	2.7	2.8	2.9	3.0	3.1	3.3	ns	
t _{GCKHI}	Clock Buffer Min. HIGH ^[5]	2.0	2.0	2.0	2.0	2.0	2.0	ns	
t _{GCKLO}	Clock Buffer Min. LOW ^[5]	2.0	2.0	2.0	2.0	2.0	2.0	ns	

		Propagation Delays ^[3] with Output Load Capacitance (pF) of					
Parameter	Description	30	50	75	100	150	Unit
OUTPUT CELI	LS						
toutlh	Output Delay LOW to HIGH	2.7	3.4	4.2	5.0	6.7	ns
tOUTHL	Output Delay HIGH to LOW	2.8	3.7	4.7	5.6	7.6	ns
t _{PZH}	Output Delay Three-State to HIGH	4.0	4.9	6.1	7.3	9.7	ns
t _{PZL}	Output Delay Three-State to LOW	3.6	4.2	5.0	5.8	7.3	ns
t _{PHZ}	Output Delay HIGH to Three-State ^[6]	2.9					ns
t _{PLZ}	Output Delay LOW to Three-State ^[6]	3.3					ns

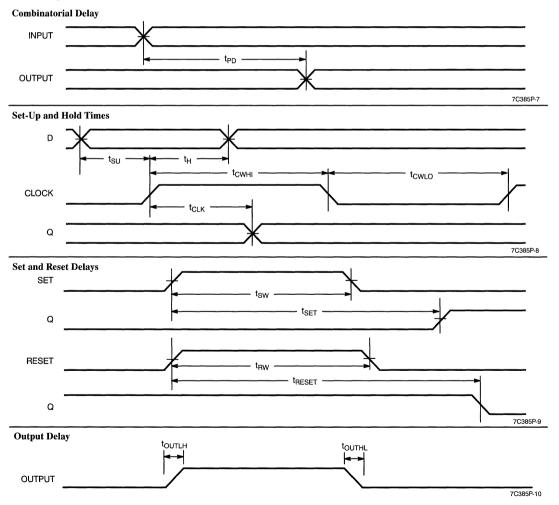
Notes:

Worst-case propagation delay times over process variation at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. Multiply by the appropriate delay factor, K, for speed grade to get worst-case parameters over full V_{CC} and temperature range as specified in the operating range. All inputs are TTL with 3-ns linear transition time between 0 and 3 volts. 3.

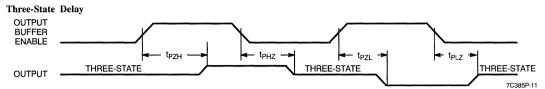
These limits are derived from worst-case values for a representative selection of the slowest paths through the pASIC380 logic cell includ-ing net delays. Guaranteed delay values for specific paths should be determined from simulation results. 4.

Clock buffer fanout refers to the maximum number of flip-flops per half column. The number of half columns used does not affect clock 5. buffer delay.

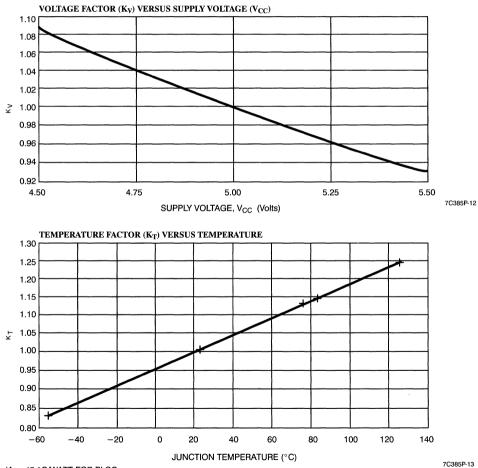
6. The following loads are used for t_{PXZ} :



High Drive Buffer


		# High Drives Wired	Propagation Delays ^[3] with Fanout of					
Parameter	Description	Together	12	24	48	72	96	Unit
t _{IN}	High Drive Input Delay	1	5.3	6.7				ns
		2		4.5	6.6			ns
		3			5.3	6.2	7.2	ns
		4				5.4	6.2	ns
t _{INI}	High Drive Input, Inverting Delay	1	5.7	7.2				ns
		2		4.6	6.8			ns
		3			5.5	6.4	7.4	ns
		4				5.6	6.4	ns

Switching Waveforms

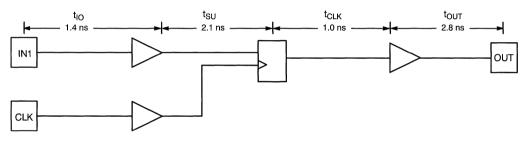


Switching Waveforms (continued)

Typical AC Characteristics

Propagation delays depend on routing, fanout, load capacitance, supply voltage, junction temperature, and process variation. The AC Characteristics are a design guide to provide initial timing estimates at nominal conditions. Worst-case estimates are obtained when nominal propagation delays are multiplied by the appropriate Delay Factor, K, as specified by the speed grade in the Delay Factor table. The effects of voltage and temperature variation are illustrated in the graphs below. The *Warp3* Delay Modeler extracts specific timing parameters for precise simulation results following place and route.

*THETA JA = 45 °C/WATT FOR PLCC



Combinatorial Delay Example (Load = 30 pF, K=1, Fanout=1)

INPUT DELAY + COMBINATORIAL DELAY + OUTPUT DELAY = 5.9 ns

Sequential Delay Example (Load = 30 pF, K=1, Fanout=1)

INPUT DELAY + REG SET-UP + CLOCK TO Q DELAY + OUTPUT DELAY = 7.3 ns

Industrial

Military

Ordering Information

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
2	CY7C385P-2AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C385P-2JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C385P-2AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C385P-2JI	J83	84-Lead Plastic Leaded Chip Carrier	1
1	CY7C385P-1AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C385P-1JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C385P-1AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C385P-1JI	J83	84-Lead Plastic Leaded Chip Carrier	
0	CY7C385P-0AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C385P-0JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C385P-0AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C385P-0JI	J83	84-Lead Plastic Leaded Chip Carrier	-
X	CY7C385P-XAC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C385P-XJC	J83	84-Lead Plastic Leaded Chip Carrier	7
	CY7C385P-XAI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C385P-XJI	J83	84-Lead Plastic Leaded Chip Carrier	
Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
2	CY7C386P-2AC	A144	144-Pin Thin Quad Flat Pack	Commercial
	CY7C386P-2AI	A144	144-Pin Thin Quad Flat Pack	Industrial
1	CY7C386P-1AC	A144	144-Pin Thin Quad Flat Pack	Commercial
	CY7C386P-1AI	A144	144-Pin Thin Quad Flat Pack	Industrial
	CY7C386P-1GMB G14			
	CY7C386P-1GMB	G145	145-Pin Grid Array (Cavity Up)	Military
	CY7C386P-1GMB CY7C386P-1UMB ^[7]	G145 U160	145-Pin Grid Array (Cavity Up) 160-Lead Ceramic Quad Flatpack (Cavity Up)	Military
0				Military Commercial
0	CY7C386P-1UMB ^[7]	U160	160-Lead Ceramic Quad Flatpack (Cavity Up)	
0	CY7C386P-1UMB ^[7] CY7C386P-0AC	U160 A144	160-Lead Ceramic Quad Flatpack (Cavity Up) 144-Pin Thin Quad Flat Pack	Commercial
0	CY7C386P-1UMB ^[7] CY7C386P-0AC CY7C386P-0AI	U160 A144 A144	160-Lead Ceramic Quad Flatpack (Cavity Up) 144-Pin Thin Quad Flat Pack 144-Pin Thin Quad Flat Pack	Commercial Industrial
0 X	CY7C386P-1UMB ^[7] CY7C386P-0AC CY7C386P-0AI CY7C386P-0GMB	U160 A144 A144 G145	160-Lead Ceramic Quad Flatpack (Cavity Up) 144-Pin Thin Quad Flat Pack 144-Pin Thin Quad Flat Pack 145-Pin Grid Array (Cavity Up)	Commercial Industrial

CY7C386P-XUMB^[7] Shaded area contains preliminary information.

CY7C386P-XAI

CY7C386P-XGMB

Note: 7. S

Shipped in molded carrier ring. Contact local sales office for informa-tion on trim and form.

A144

G145

U160

144-Pin Thin Quad Flat Pack

145-Pin Grid Array (Cavity Up)

160-Lead Ceramic Quad Flatpack (Cavity Up)

Military Specifications Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3
II	1, 2, 3

Switching Characteristics

Parameters	Subgroups
Delay Factor (K)	7, 8, 9, 10, 11

Document #: 38-00209-D

CY7C3385A CY7C3386A

Features

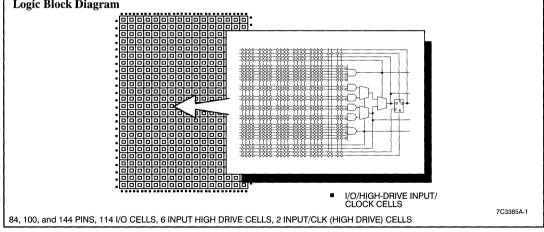
- Very high speed
 - Loadable counter frequencies greater than 80 MHz
 - **Chip-to-chip operating frequencies** up to 60 MHz
- **Unparalleled FPGA performance for** counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 16 x 24 array of 384 logic cells provides 12,000 total available gates
 - 4,000 typically usable "gate array" gates in 84-pin PLCC, 100-pin and 144-pin TQFP
- Low power, high output drive
 - Standby current typically 250 μA
 - 16-bit counter operating at 80 MHz consumes 20 mÅ
- Flexible logic cell architecture
- Multiple outputs in each cell
- Very low cell propagation delay (1.7ns typical)
- Powerful design tools—Warp3™
 - **Designs entered in IEEE 1164** VHDL, schematics, or both
 - Fast, fully automatic place and route
 - Waveform simulation with back annotated net delays

Logic Block Diagram

- PC and workstation platforms
- Extensive 3rd party tool support
- 5V tolerant Inputs (see IIH spec)
- **Robust routing resources**
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - No hand routing required
- 80 (7C3385A) to 114(7C3386A) bidirectional input/output pins
- 6 dedicated input/high-drive pins
- 2 clock/dedicated input pins with fanout-independent, low-skew nets
- Input hysteresis provides high noise immunity
- Thorough testability at 3.3V
- Built-in scan path permits 100 percent factory testing of logic and I/O cells
- 0.65µ CMOS process with ViaLink[™] programming technology
 - High-speed metal-to-metal link
 - Non-volatile antifuse technology
- 84-pin PLCC is pinout compatible with 2K (CY7C3384A) devices
- 100-pin TQFP is pinout compatible with 3.3V 1K (CY7C3382A) and 2K (CY7C3384A) devices
- Pinout compatible with 5V 4K (CY7C385P/6P) devices

Functional Description

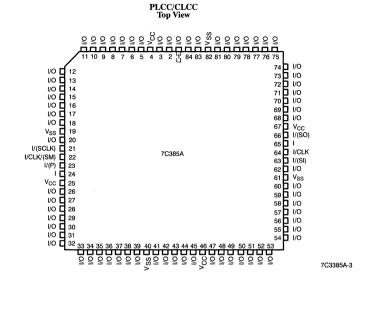
UltraLogic[™] 3.3V High Speed

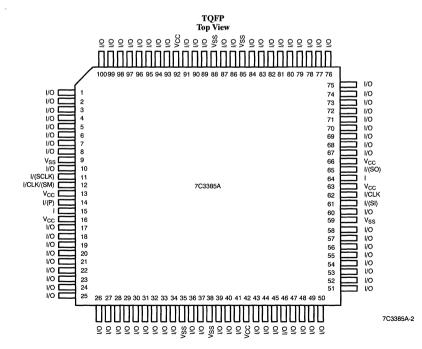

The CY7C3385A and CY7C3386A are very high speed CMOS user-programmable ASIC (pASIC[™]) devices. The 384 logic cell field-programmable gate array (FPGA) offers 4,000 typically usable "gate array" gates. This is equivalent to 12,000 EPLD or LCA gates. The CY7C3385A is available in a 84-pin PLCC and the 100-pin TQFP packages. The CY7C3386A is available in 144-pin TQFP package.

4K Gate CMOS FPGA

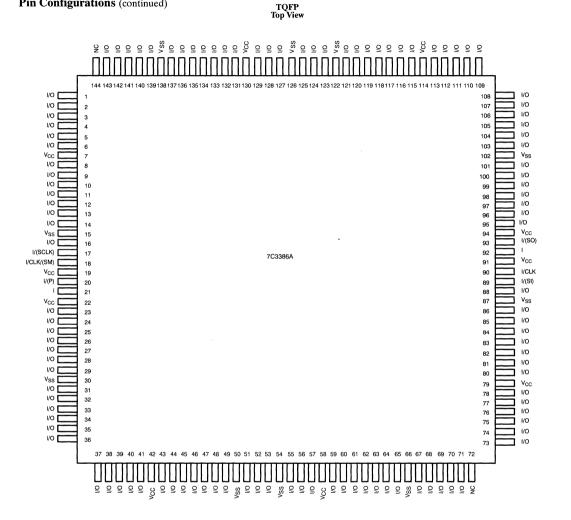
Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 80 MHz. This permits highdensity programmable devices to be used with today's fastest CISC and RISC microprocessors.

Designs are entered into the CY7C3385A and CY7C3386A using Cypress Warp3 software or one of several third-party tools. See the tools section of the Programmable Logic Databook for more tools information. Warp3 is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The CY7C3385A and CY7C3386A feature ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.


For detailed information about the pASIC380 architecture, see the pASIC380 Family datasheet.



ViaLink and pASIC are trademarks of QuickLogic Corporation.


UltraLogic and Warp3 are trademarks of Cypress Semiconductor Corporation.

7C3385A-4

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

DC Input Current	$\pm 20 \text{ mA}$
Latch-Up Current	±200 mA

Storage Temperature
Ceramic -65° C to $+150^{\circ}$ C
Plastic -40° C to $+125^{\circ}$ C
Lead Temperature 300°C
Supply Voltage $\hdots 0.5V$ to 7.0V
Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots -0.5V$ to V_{CC} +0.7V
ESD Pad Protection ±2000 V
DC Input Voltage

On	erating	g Range
$\mathbf{v}_{\mathbf{p}}$	CA CLUBARS	L'ALLEND

Range	Ambient Temperature	V _{CC}
Commercial	0° C to $+70^{\circ}$ C	$3V \pm 0.3V$
Industrial	-40° C to $+85^{\circ}$ C	$3V \pm 0.3V$

Delay Factor (K)

Speed	Comm	ercial	Indu	strial
Speed Grade	Min.	Max.	Min.	Max.
-X	0.46	3.52	0.40	3.77
-0	0.46	2.61	0.40	2.81
-1	0.46	2.23	0.40	2.39

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = 2.4 \text{ mA}$	2.4		V
		$I_{OH} = -10.0 \mu A$	V _{CC} - 0.1		V
V _{OL}	Output LOW Voltage	$I_{OL} = 4 \text{ mA}$		0.4	V
		$I_{OL} = 10.0 \mu A$		0.1	V
V _{IH}	Input HIGH Voltage		2.0		V
V _{IL}	Input LOW Voltage			0.8	V
IIH	Input HIGH Current Sink (for 5V Inputs)	$5V > V_{IN} > V_{CC}$		12[1]	mA
II	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	- 10	+10	μΑ
I _{OZ}	Three-State Output Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	- 10	+10	μΑ
I _{OS}	Output Short Circuit Current ^[2]	$V_{OUT} = V_{SS}$	-5	- 50	mA
		$V_{OUT} = V_{CC}$	15	100	mA
I _{CC1}	Standby Supply Current	V_{IN} , $V_{I/O} = V_{CC}$ or V_{SS}		650	μA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance ^[3]	$T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{CC} = 3.3 \text{ V}$	10	pF
C _{OUT}	Output Capacitance	V CC - 5.5 V	10	pF

Note:

1 User must limit input current to 12 mA.

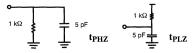
2. Only one ouput at a time. Duration should not exceed 30 seconds.

3. C_{I} = 45 pF max. on I/(SI) and I/(P). Capacitance is sample tested.

Switching Characteristics (V_{CC} =3.3V, T_A =25°C, K=1.00)

		Propagation Delays ^[4] with Fanout of						
Parameter	Description	1	2	3	4	8	Unit	
LOGIC CELLS								
t _{PD}	Combinatorial Delay ^[5]	1.7	2.2	2.6	3.2	5.3	ns	
t _{SU}	Set-Up Time ^[5]	2.1	2.1	2.1	2.1	2.1	ns	
t _H	Hold Time	0.0	0.0	0.0	0.0	0.0	ns	
t _{CLK}	Clock to Q Delay	1.0	1.5	1.9	2.6	4.7	ns	
t _{CWHI}	Clock HIGH Time	2.0	2.0	2.0	2.0	2.0	ns	
t _{CWLO}	Clock LOW Time	2.0	2.0	2.0	2.0	2.0	ns	
t _{SET}	Set Delay	1.7	2.2	2.6	3.2	5.3	ns	
t _{RESET}	Reset Delay	1.5	1.9	2.2	2.7	4.4	ns	
t _{SW}	Set Width	1.9	1.9	1.9	1.9	1.9	ns	
t _{RW}	Reset Width	1.8	1.8	1.8	1.8	1.8	ns	

		Propagation Delays ^[4]						
Parameter	Description	1	2	3	4	8	12	Unit
INPUT CELI	LS							
t _{IN}	Input Delay (HIGH Drive)	2.8	2.9	3.0	3.1	4.0	5.3	ns
t _{INI}	Input, Inverting Delay (HIGH Drive)	3.0	3.1	3.2	3.3	4.1	5.7	ns
t _{IO}	Input Delay (Bidirectional Pad)	1.4	1.9	2.2	2.9	4.7	6.5	ns
t _{GCK}	Clock Buffer Delay ^[6]	2.7	2.8	2.9	3.0	3.1	3.3	ns
t _{GCKHI}	Clock Buffer Min. HIGH ^[6]	2.0	2.0	2.0	2.0	2.0	2.0	ns
t _{GCKLO}	Clock Buffer Min. LOW ^[6]	2.0	2.0	2.0	2.0	2.0	2.0	ns

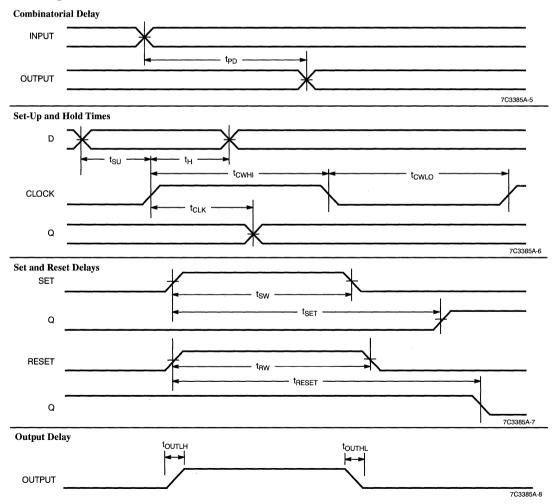

		Propagation Delays ^[4] with Output Load Capacitance (pF) of					
Parameter	Description	30	50	75	100	150	Unit
OUTPUT CELI	LS						
toutlh	Output Delay LOW to HIGH	2.7	3.4	4.2	5.0	6.7	ns
t _{OUTHL}	Output Delay HIGH to LOW	2.8	3.7	4.7	5.6	7.6	ns
t _{PZH}	Output Delay Three-State to HIGH	4.0	4.9	6.1	7.3	9.7	ns
t _{PZL}	Output Delay Three-State to LOW	3.6	4.2	5.0	5.8	7.3	ns
t _{PHZ}	Output Delay HIGH to Three-State ^[7]	2.9					ns
t _{PLZ}	Output Delay LOW to Three-State ^[7]	3.3					ns

Notes:

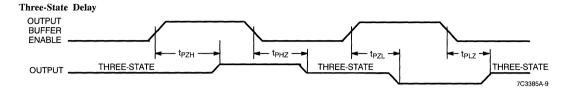
- Worst-case propagation delay times over process variation at $V_{CC} = 3.3$ V and $T_A = 25^{\circ}$ C. Multiply by the appropriate delay factor, K, for speed grade to get worst-case parameters over full V_{CC} and temperature range as specified in the operating range. All inputs are TTL with 3-ns linear transition time between 0 and 3 volts. 4.
- 5. These limits are derived from worst-case values for a representative selection of the slowest paths through the pASIC380 logic cell includ-ing net delays. Guaranteed delay values for specific paths should be determined from simulation results.

Clock buffer fanout refers to the maximum number of flip-flops per half column. The number of half columns used does not affect clock 6. buffer delay.

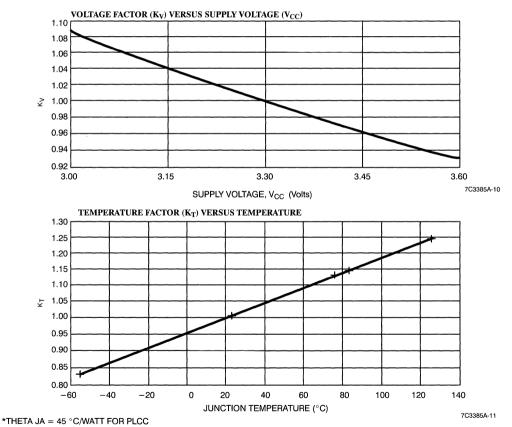
7. The following loads are used for t_{PXZ} :

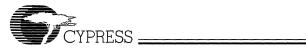


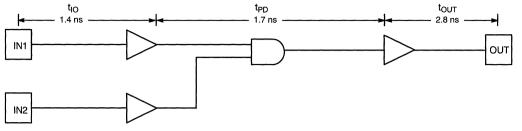
High Drive Buffer K=1.00


		# High Drives Wired	Propagation Delays ^[4] with Fanout of					
Parameter	Description	Together	12	24	48	72	96	Unit
t _{IN}	High Drive Input Delay	1	5.3	6.7				ns
		2		4.5	6.6			ns
		3			5.3	6.2	7.2	ns
		4				5.4	6.2	ns
t _{INI}	High Drive Input, Inverting Delay	1	5.7	7.2				ns
		2		4.6	6.8			ns
		3			5.5	6.4	7.4	ns
		4				5.6	6.4	ns

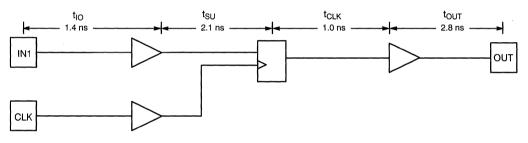
Switching Waveforms




Switching Waveforms (continued)


Typical AC Characteristics

Propagation delays depend on routing, fanout, load capacitance, supply voltage, junction temperature, and process variation. The AC Characteristics are a design guide to provide initial timing estimates at nominal conditions. Worst-case estimates are obtained when nominal propagation delays are multiplied by the appropriate Delay Factor, K, as specified by the speed grade in the Delay Factor table. The effects of voltage and temperature variation are illustrated in the graphs below. The *Warp3* Delay Modeler extracts specific timing parameters for precise simulation results following place and route.



Combinatorial Delay Example (Load = 30 pF, K=1, Fanout=1)

INPUT DELAY + COMBINATORIAL DELAY + OUTPUT DELAY = 5.9 ns

Sequential Delay Example (Load = 30 pF, K=1, Fanout=1)

INPUT DELAY + REG SET-UP + CLOCK TO Q DELAY + OUTPUT DELAY = 7.3 ns

Industrial

Ordering Information

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
1	CY7C3385A-1AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C3385A-1JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C3385A-1AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C3385A-1JI	J83	84-Lead Plastic Leaded Chip Carrier	
0	CY7C3385A-0AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C3385A-0JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C3385A-0AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C3385A-0JI	J83	84-Lead Plastic Leaded Chip Carrier	
Х	CY7C3385A-XAC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C3385A-XJC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C3385A-XAI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C3385A-XJI	J83	84-Lead Plastic Leaded Chip Carrier	
Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
1	CY7C3386A-1AC	A144	144-Pin Thin Quad Flat Pack	Commercial
	CY7C3386A-1AI	A144	144-Pin Thin Quad Flat Pack	Industrial
0	CY7C3386A-0AC	A144	144-Pin Thin Quad Flat Pack	Commercial
	CY7C3386A-0AI	A144	144-Pin Thin Quad Flat Pack	Industrial
X	CY7C3386A-XAC	A144	144-Pin Thin Quad Flat Pack	Commercial

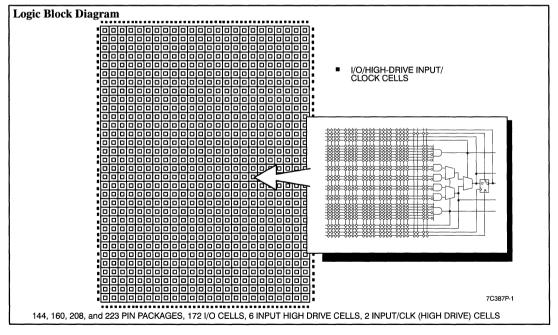
144-Pin Thin Quad Flat Pack

Document #: 38-00435-A

CY7C3386A-XAI

A144

CY7C387P CY7C388P


Features

- Very high speed
 - Loadable counter frequencies greater than 150 MHz
 - Chip-to-chip operating frequencies up to 110 MHz
 - Input + logic cell + output delays under 6 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 24 x 32 array of 768 logic cells provides 24,000 total available gates
 - 8,000 typically usable "gate array" gates in 144-pin TQFP, 208-pin PQFP and CQFP, and 223-pin CPGA packages
- Fully PCI compliant inputs & outputs for commercial and industrial temperature ranges

- Low power, high output drive — Standby current typically 2 mA
 - 16-bit counter operating at 100 MHz consumes 50 mA
 - Minimum I_{OL} and I_{OH} of 20 mA (PCI compliant)
- Flexible logic cell architecture
 - --- Wide fan-in (up to 14 input gates)
 - Multiple outputs in each cell
 Very low cell propagation delay (1.7 ns typical)
- Powerful design tools—*Warp3* ™
 - Designs entered in IEEE 1164 VHDL, schematics, or mixed mode
 - Fast, fully automatic place and route
 - Waveform simulation with back annotated net delays
 - PC and workstation platforms
- Extensive third-party tool support
 See Development Systems section

UltraLogic™ Very High Speed 8K Gate CMOS FPGA

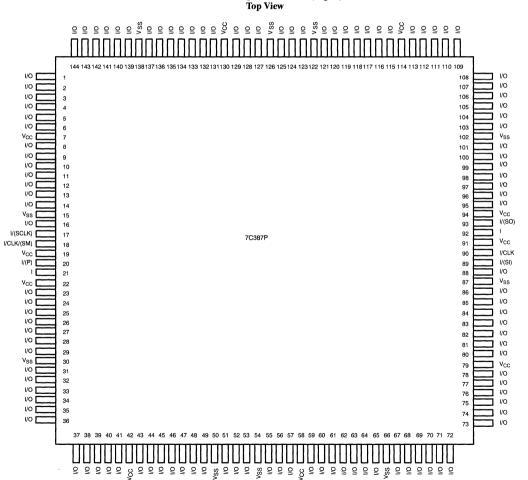
- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - -No hand routing required
- 116 (7C387P) to 172 (7C388P) bidirectional input/output pins
- 6 dedicated input/high-drive pins
- 2 clock/dedicated input pins with fanout-independent, low-skew nets
 — Clock skew <0.5 ns
- Input hysteresis provides high noise immunity
- Thorough testability
 - Built-in scan path permits 100 percent factory testing of logic and I/O cells
- 0.65µ CMOS process with ViaLink[™] programming technology
 - High-speed metal-to-metal link
 - --- Non-volatile antifuse technology
- 144-pin TQFP is compatible with the 4K (CY7C386P) FPGAs

ViaLink and pASIC are trademarks of QuickLogic Corporation.

UltraLogic and Warp3 are trademarks of Cypress Semiconductor Corporation.

Functional Description

The CY7C387P and CY7C388P are very high speed, CMOS, userprogrammable ASIC (pASIC^{**}) devices. The 768 logic cell fieldprogrammable gate array (FPGA) offers 8,000 typically usable "gate array" gates. This is equivalent to 24,000 EPLD or LCA gates. The CY7C387P is available in 208-pin CQFP and 144-pin TQFP. The CY7C388P is available in 208-pin PQFP and a 223-pin CPGA.


Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 150 MHz with input delays under 1.5 ns and output delays

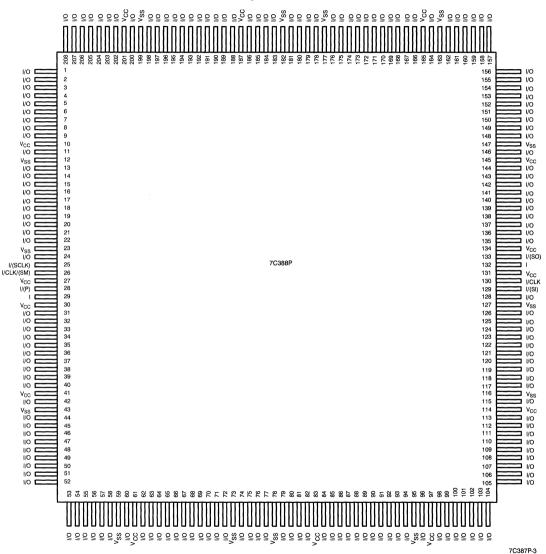
Pin Configurations

under 3 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

Designs are captured for the CY7C387P and CY7C388P using Cypress *Warp3* software or one of several third-party tools. See the Development Systems section of the *Programmable Logic Databook* for more tools information. *Warp3* is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The CY7C387P and CY7C388P feature ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.

For detailed information about the pASIC380 architecture, see the pASIC380 Family datasheet.

144-Pin Thin Quad Flat Pack (TQFP)


7C387P-2

Pin Configurations (continued)

208-Pin Plastic Quad Flat Pack (PQFP) and 208-Pin Ceramic Quad Flat Pack (CQFP)

Pin Configurations (continued)

								Don	Jun vi									
NC	NC	I/O	I/O	I/O	I/O	1/0	I/O	1/0	I/O	1/0	I/O	I/O	I/O	I/O	I/O	NC	NC	v
NC	NC	I/O	I/O	I/O	I/O	I/O	I/O	1/0	1/0	I/O	I/O	I/O	I/O	I/O	I/O	NC	NC	U
1/0	I/O	I/O	I/O	I/O	I/O	I/O	I/O	1/0	I/O	1/0	I/O	I/O	I/O	I/O	I/O	NC	NC	т
I/O	I/O	I/O	I/O	I/O	I/O	v _{cc}	V _{SS}	v _{cc}	V _{SS}	V _{CC}	$V_{\rm SS}$	I/O	I/O	I/O	I/O	I/O	I/O	R
1/0	I/O	I/O	I/O										I/O	I/O	I/O	I/O	Ρ	
1/0	I/O	I/O	I/O											1/0	I/O	1/0	1/0	N
1/0	I/O	I/O	V _{SS}											V _{CC}	I/O	1/0	I/O	м
1/0	I/O	I/O	v _{cc}										V _{SS}	I/O	1/0	I/O	L	
I/CLK	I/(SI)	I/O								v _{cc}	l/(P)	I	1/0	к				
I/O	I/(SO)	١	v _{cc}					7C3	882					V _{SS}	1/0	I/ SCLK	I/CLK/ (SM)	J
I/O	I/O	I/O	V _{SS}											Vcc	I/O	I/O	I/O	н
1/0	I/O	I/O	V _{CC}											V _{SS}	I/O	I/O	I/O	G
I/O	I/O	I/O	I/O											I/O	I/O	I/O	I/O	F
1/0	I/O	I/O	I/O											I/O	I/O	I/O	I/O	Е
I/O	I/O	I/O	I/O	I/O	I/O	V _{SS}	v _{cc}	v_{ss}	V _{CC}	V _{SS}	V _{CC}	I/O	I/O	I/O	I/O	I/O	I/O	D
NC	NC	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	с
NC	NC	I/O	I/O	I/O	I/O	I/O	I/O	I/O	I/O	1/0	I/O	I/O	I/O	I/O	I/O	NC	NC	в
NC	NC	I/O	I/O	I/O	1/0	I/O	I/O	I/O	1/0	I/O	I/O	I/O	1/0	I/O	I/O	NC	NC	A
18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	•

223-Pin CPGA Bottom View

7C387P-4

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

DC Input Current	. ±20mA
Latch-Up Current	±200 mA

Storage Temperature

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0° C to $+70^{\circ}$ C	5V ± 5%
Industrial	-40°C to +85°C	$5V \pm 10\%$
Military	-55°C to +125°C	$5V \pm 10\%$

Delay Factor (K)

Sneed	Comr	nercial	Indu	strial	Military		
Speed Grade	Min.	Max.	Min.	Max.	Min.	Max.	
-X	0.46	2.55	0.4	2.75	0,39	3.00	
-0	0.46	1.55	0.4	1.67	0.39	1.82	
-1	0.46	1.33	0.4	1.43	0.39	1.56	
-2	0.46	1.25	0.4	1.35			

Shaded area contains preliminary information.

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -10 \text{ mA}$	3.7		V
		$I_{OH} = -20 \text{ mA}$	2.4		V
		$I_{OH} = -10.0 \mu A$	V _{CC} - 0.1		v
V _{OL}	Output LOW Voltage	$I_{OL} = 20 \text{ mA}$		0.4	V
		$I_{OL} = 10.0 \mu A$		0.1	V
V _{IH}	Input HIGH Voltage		2.0		V
V _{IL}	Input LOW Voltage			0.8	V
II	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	- 10	+10	μΑ
I _{OZ}	Three-State Output Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	- 10	+10	μΑ
I _{OS}	Output Short Circuit Current ^[1]	$V_{OUT} = V_{SS}$	-10	- 90	mA
		$V_{OUT} = V_{CC}$	40	160	mA
I _{CC1}	Standby Supply Current	V_{IN} , $V_{I/O} = V_{CC}$ or V_{SS}		10	mA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$ $V_{CC} = 5.0 \text{ V}$	10	pF
C _{OUT}	Output Capacitance	VCC - 5.0V	10	pF

Note: 1. Only one output at a time. Duration should not exceed 30 seconds.

Switching Characteristics ($V_{CC}=5V, T_A=25^{\circ}C, K=1.00$)

			Propagation Delays ^[2] with Fanout of							
Parameter	Description	1	2	3	4	8	Unit			
LOGIC CELL	s						-			
t _{PD}	Combinatorial Delay ^[3]	1.7	2.2	2.7	3.3	5.5	ns			
t _{SU}	Set-Up Time ^[3]	2.1	2.1	2.1	2.1	2.1	ns			
t _H	Hold Time	0.0	0.0	0.0	0.0	0.0	ns			
t _{CLK}	Clock to Q Delay	1.0	1.5	1.9	2.7	4.9	ns			
t _{CWHI}	Clock HIGH Time	2.0	2.0	2.0	2.0	2.0	ns			
t _{CWLO}	Clock LOW Time	2.0	2.0	2.0	2.0	2.0	ns			
t _{SET}	Set Delay	1.7	2.2	2.7	3.3	5.5	ns			
tRESET	Reset Delay	1.5	1.9	2.3	2.8	4.6	ns			
t _{SW}	Set Width	1.9	1.9	1.9	1.9	1.9	ns			
t _{RW}	Reset Width	1.8	1.8	1.8	1.8	1.8	ns			

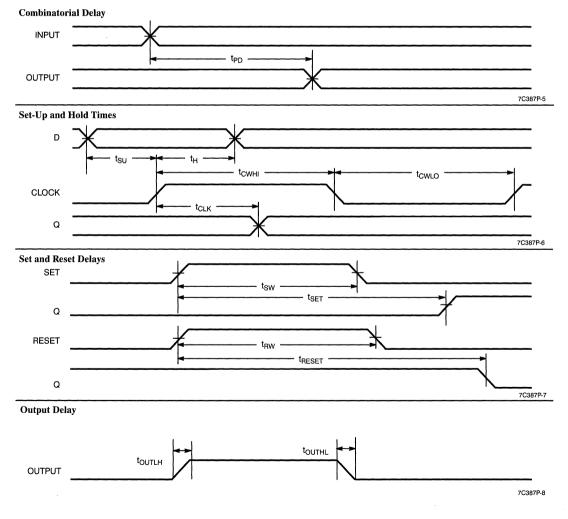
			Propagation Delays ^[2] with Fanout of							
Parameter Description		1	2	3	4	8	12	16	Unit	
INPUT CELLS										
t _{IN}	Input Delay (HIGH Drive)	3.1	3.2	3.3	3.4	4.4	5.8	6.5	ns	
t _{INI}	Input, Inverting Delay (HIGH Drive)	3.3	3.4	3.5	3.6	4.6	6.0	6.7	ns	
t _{IO}	Input Delay (Bidirectional Pad)	1.4	1.9	2.3	3.0	4.8	6.7	8.5	ns	
t _{GCK}	Clock Buffer Delay ^[4]	2.7	2.8	2.9	3.0	3.1	3.3	3.4	ns	
t _{GCKHI}	Clock Buffer Min. HIGH ^[4]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	ns	
t _{GCKLO}	Clock Buffer Min. LOW ^[4]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	ns	

		Propagation Delays ^[2] with Output Load Capacitance (pF) of							
Parameter	Description	30	50	75	100	150	Unit		
OUTPUT CEL	LS								
^t outlh	Output Delay LOW to HIGH	2.7	3.3	3.8	4.3	5.4	ns		
^t OUTHL	Output Delay HIGH to LOW	2.8	3.6	4.5	5.3	6.9	ns		
t _{PZH}	Output Delay Three-State to HIGH	2.1	2.6	3.1	3.7	4.8	ns		
t _{PZL}	Output Delay Three-State to LOW	2.6	3.3	4.1	4.9	6.5	ns		
t _{PHZ}	Output Delay HIGH to Three-State ^[5]	2.9					ns		
t _{PLZ}	Output Delay LOW to Three-State ^[5]	3.3					ns		

Notes:

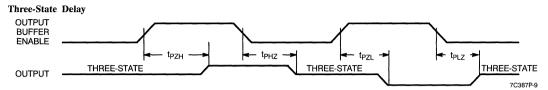
- 2. Worst-case propagation delay times over process variation at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. Multiply by the appropriate delay factor, K, for speed grade to get worst-case parameters over full V_{CC} and temperature range as specified in the operating range. All inputs are TTL with 3-ns linear transition time between 0 and 3 volts.
- 3. These limits are derived from worst-case values for a representative selection of the slowest paths through the pASIC380 logic cell including net delays. Guaranteed delay values for specific paths should be determined from simulation results.
- Clock buffer fanout refers to the maximum number of flip-flops per half column. The number of half columns used does not affect clock buffer delay.

5. The following loads are used for t_{PXZ}:

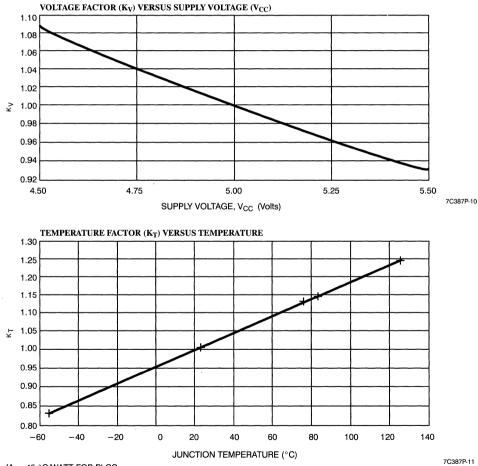


High Drive Buffer

		# High Drives Wired	Propagation Delays ^[2] with Fanout of					
Parameter	Description	Together	12	24	48	72	96	Unit
t _{IN}	High Drive Input Delay	1	5.8	7.2				ns
		2		5.0	7.1			ns
		3			5.8	6.7	7.7	ns
		4				5.9	6.8	ns
t _{INI}	High Drive Input, Inverting Delay	1	6.0	7.4				ns
		2		5.2	7.3			ns
		3			6.0	6.9	7.9	ns
		4				6.1	7.0	ns

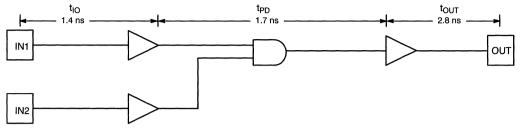

Switching Waveforms

4-96

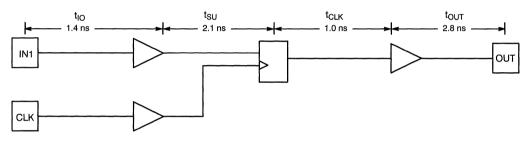


Switching Waveforms (continued)

Typical AC Characteristics


Propagation delays depend on routing, fanout, load capacitance, supply voltage, junction temperature, and process variation. The AC Characteristics are a design guide to provide initial timing estimates at nominal conditions. Worst-case estimates are obtained when nominal propagation delays are multiplied by the appropriate Delay Factor, K, as specified by the speed grade in the Delay Factor table. The effects of voltage and temperature variation are illustrated in the graphs below. The *Warp3* Delay Modeler extracts specific timing parameters for precise simulation results following place and route.

*THETA JA = 45 °C/WATT FOR PLCC



Combinatorial Delay Example (Load = 30 pF, Fanout = 1, K = 1.0)

INPUT DELAY + COMBINATORIAL DELAY + OUTPUT DELAY = 5.9 ns

Sequential Delay Example (Load = 30 pF, Fanout = 1, K = 1.0)

INPUT DELAY + REG SET-UP + CLOCK TO Q DELAY + OUTPUT DELAY = 7.3 ns

Ordering Information

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
2	CY7C387P-2AC	A144	144-Pin Thin Quad Flat Pack	Commercial
	CY7C387P-2AI	A144	144-Pin Thin Quad Flat Pack	Industrial
1	CY7C387P-1AC	A144	144-Pin Thin Quad Flat Pack	Commercial
	CY7C387P-1AI	A144	144-Pin Thin Quad Flat Pack	Industrial
0	CY7C387P-0AC	A144	144-Pin Thin Quad Flat Pack	Commercial
	CY7C387P-0AI	A144	144-Pin Thin Quad Flat Pack	Industrial
X	CY7C387P-XAC	A144	144-Pin Thin Quad Flat Pack	Commercial
	CY7C387P-XAI	A144	144-Pin Thin Quad Flat Pack	Industrial

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
2	CY7C388P-2NC	N208	208-Pin Plastic Quad Flat Pack	Commercial
	CY7C388P-2NI	N208	208-Pin Plastic Quad Flat Pack	Industrial
1	CY7C388P-1NC	N208	208-Pin Plastic Quad Flat Pack	Commercial
	CY7C388P-1NI	N208	208-Pin Plastic Quad Flat Pack	Industrial
	CY7C388P-1GMB	G223	223-Pin Ceramic Pin Grid Array	Military
	CY7C388P-1UMB	U208	208-Pin Ceramic Quad Flat Pack	Military
0	CY7C388P-0NC	N208	208-Pin Plastic Quad Flat Pack	Commercial
	CY7C388P-0NI	N208	208-Pin Plastic Quad Flat Pack	Industrial
	CY7C388P-0GMB	G223	223-Pin Ceramic Pin Grid Array	Military
	CY7C388P-0UMB	U208	208-Pin Ceramic Quad Flat Pack	Military
Х	CY7C388P-XNC	N208	208-Pin Plastic Quad Flat Pack	Commercial
	CY7C388P-XNI	N208	208-Pin Plastic Quad Flat Pack	Industrial
	CY7C388P-XGMB	G223	223-Pin Ceramic Pin Grid Array	Military
	CY7C388P-XUMB	U208	208-Pin Ceramic Quad Flat Pack	Military

Shaded area contains preliminary information.

Military Specifications Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

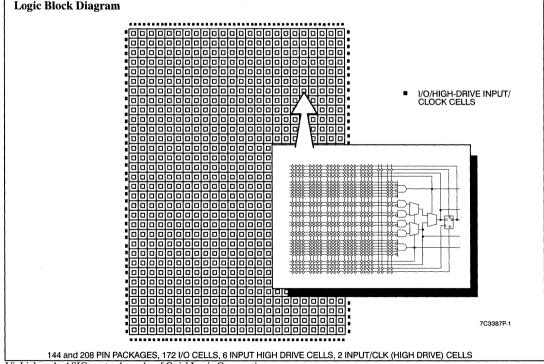
Document #: 38-00373-B

PRELIMINARY

UltraLogic[™] Very High Speed 8K Gate CMOS FPGA

Features

- Very high speed
 - Loadable counter frequencies greater than 80 MHz
 - Chip-to-chip operating frequencies up to 60 MHz
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 24 x 32 array of 768 logic cells provides 24,000 total available gates
- 8,000 typically usable "gate array" gates in 144-pin TQFP and 208-pin PQFP
- Fully 3.3V PCI compliant inputs and outputs for commercial and industrial temperature range
- Minimum I_{OL} of 16 mA and I_{OH} of 8 mA
- Low power, high output drive


 Standby current typically 250 μA

- 16-bit counter operating at 80 MHz consumes 25 mA
- Flexible logic cell architecture
- Wide fan-in (up to 14 input gates)
- Multiple outputs in each cell
- Powerful design tools—*Warp3* [™] — Designs entered in VHDL, sche-
- matics, or mixed mode — Fast, fully automatic place and route
- Waveform simulation with back annotated net delays
- PC and workstation platforms
- Extensive third-party tool support
 See Development Systems section
- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - No hand routing required
- 5V tolerant Inputs (see IIH spec)

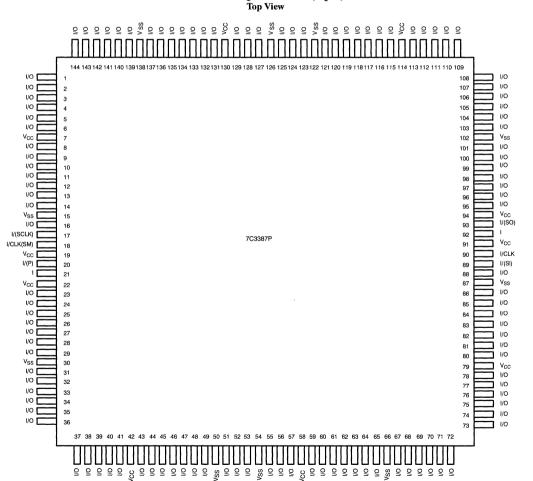
• 116 (7C3387P) to 172 (7C3388P) bidirectional input/output pins

CY7C3387P CY7C3388P

- 6 dedicated input/high-drive pins
- 2 clock/dedicated input pins with fanout-independent, low-skew nets
 — Clock skew <0.5 ns
- Input hysteresis provides high noise immunity
- Thorough testability at 3.3V — Built-in scan path permits 100 percent factory testing of logic and I/O cells
- 0.65µ CMOS process with ViaLink[™] programming technology
 - -High-speed metal-to-metal link
 - -Non-volatile antifuse technology
- 144-pin TQFP pinout compatible with the 4K (CY7C3386A) devices
- Pinout compatable with the 5V (CY7C387P/8P) devices

ViaLink and pASIC are trademarks of QuickLogic Corporation. Warp3 and UltraLogic are trademarks of Cypress Semiconductor Corporation.

Functional Description


The CY7C3387P and CY7C3388P are very high speed, CMOS, user-programmable ASIC (pASIC[™]) devices. The 768 logic cell field-programmable gate array (FPGA) offers 8,000 typically usable "gate array" gates. This is equivalent to 24,000 EPLD or LCA gates. The CY7C3387P is available in a 144-pin TQFP. The CY7C3388P is available in 208-pin PQFP.

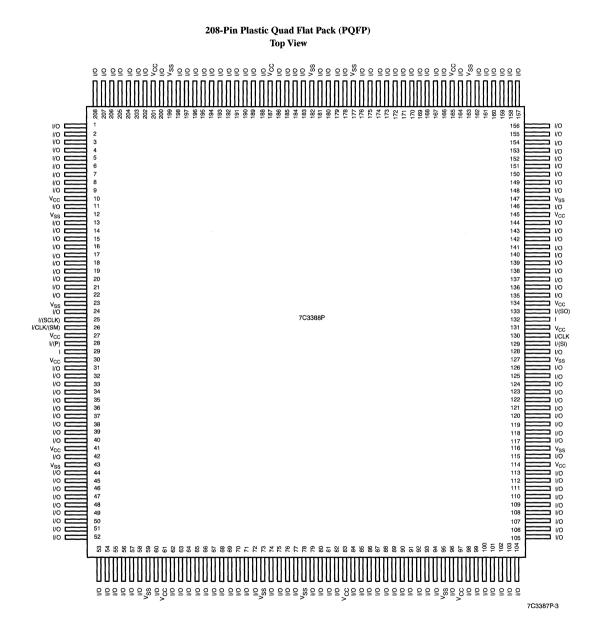
Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 80 MHz. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

Pin Configurations

Designs are entered into the CY7C3387P and CY7C3388P using Cypress Warp3 software or one of several third-party tools. See the Development Systems section of the *Programmable Logic Databook* for more information. Warp3 is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The CY7C3387P and CY7C3388P feature ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.

For detailed information about the pASIC380 architecture, see the pASIC380 Family datasheet.

144-Pin Thin Ouad Flat Pack (TOFP)


7C3387P-2

PRELIMINARY

CY7C3387P CY7C3388P

Pin Configurations (continued)

Operating Range

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

DC Input Current	$\pm 20 \text{ mA}$
Latch-Up Current	±200 mA

Range	Ambient Temperature	V _{CC}
Commercial	$0^{\circ}C$ to $+70^{\circ}C$	$3.3V \pm 0.3V$
Industrial	$-40^{\circ}\text{C} + 85^{\circ}\text{C}$	$3.3V \pm 0.3V$

Delay Factor (K)

Speed	Comm	ercial	Industrial		
Speed Grade	Min.	Max.	Min.	Max.	
-X	0.46	3.52	0.4	3.77	
-0	0.46	2.61	0.4	2.81	
-1	0.46	2.23	0.4	2.39	

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -8 \text{ mA}$	2.4		V
		$I_{OH} = -10.0 \mu A$	V _{CC} - 0.1		V
V _{OL}	Output LOW Voltage	$I_{OL} = 16 \text{ mA}$		0.4	V
		$I_{OL} = 10.0 \mu\text{A}$		0.1	v
V _{IH}	Input HIGH Voltage		2.0		V
V _{IL}	Input LOW Voltage			0.8	V
IIH	Input HIGH Current Sink (for 5V Inputs)	5V>V _{IN} >V _{CC}		12[1]	mA
II	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	- 10	+10	μΑ
I _{OZ}	Three-State Output Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	- 10	+10	μΑ
I _{OS}	Output Short Circuit Current ^[2]	$V_{OUT} = V_{SS}$	-5	- 50	mA
		$V_{OUT} = V_{CC}$	15	100	mA
I _{CC1}	Standby Supply Current	V_{IN} , $V_{I/O} = V_{CC}$ or V_{SS}		650	μΑ

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz, $V_{CC} = 3.3V$	10	pF
C _{OUT}	Output Capacitance	V CC - 3.3 V	10	pF

Notes:

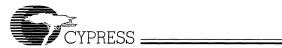
1. User must limit current to 12 mA.

2. Only one output at a time. Duration should not exceed 30 seconds.

Switching Characteristics (VCC=3.3V, T_A=25°C, K=1)

		Propagation Delays ^[3] with Fanout of						
Parameter	Description	1	2	3	4	8	Unit	
LOGIC CELLS								
t _{PD}	Combinatorial Delay ^[4]	1.7	2.2	2.7	3.3	5.5	ns	
t _{SU}	Set-Up Time ^[4]	2.1	2.1	2.1	2.1	2.1	ns	
t _H	Hold Time	0.0	0.0	0.0	0.0	0.0	ns	
t _{CLK}	Clock to Q Delay	1.0	1.5	1.9	2.7	4.9	ns	
t _{CWHI}	Clock HIGH Time	2.0	2.0	2.0	2.0	2.0	ns	
t _{CWLO}	Clock LOW Time	2.0	2.0	2.0	2.0	2.0	ns	
t _{SET}	Set Delay	1.7	2.2	2.7	3.3	5.5	ns	
t _{RESET}	Reset Delay	1.5	1.9	2.3	2.8	4.6	ns	
t _{SW}	Set Width	1.9	1.9	1.9	1.9	1.9	ns	
t _{RW}	Reset Width	1.8	1.8	1.8	1.8	1.8	ns	

		Propagation Delays ^[3] with Fanout of							
Parameter	Description	1	2	3	4	8	12	16	Unit
INPUT CELLS									
t _{IN}	Input Delay (HIGH Drive)	3.1	3.2	3.3	3.4	4.4	3.8	6.5	ns
t _{INI}	Input, Inverting Delay (HIGH Drive)	3.3	3.4	3.5	3.6	4.6	6.0	6.7	ns
t _{IO}	Input Delay (Bidirectional Pad)	1.4	1.9	2.3	3.0	4.8	6.7	8.5	ns
t _{GCK}	Clock Buffer Delay ^[5]	2.7	2.8	2.9	3.0	3.1	3.3	3.4	ns
t _{GCKHI}	Clock Buffer Min. HIGH ^[5]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	ns
t _{GCKLO}	Clock Buffer Min. LOW ^[5]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	ns

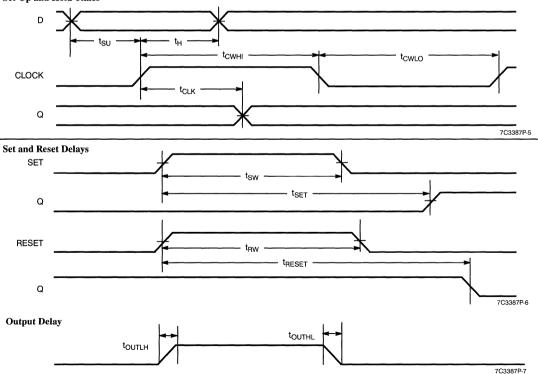

		Propagation Delays ^[3] with Output Load Capacitance (pF) of					
Parameter	Description	30	50	75	100	150	Unit
OUTPUT CELI	LS						
toutlh	Output Delay LOW to HIGH	2.7	3.3	3.8	4.3	5.4	ns
t _{OUTHL}	Output Delay HIGH to LOW	2.8	3.7	4.5	5.3	6.9	ns
t _{PZH}	Output Delay Three-State to HIGH	2.1	2.6	3.1	3.7	4.8	ns
t _{PZL}	Output Delay Three-State to LOW	2.6	3.3	4.1	4.9	6.5	ns
t _{PHZ}	Output Delay HIGH to Three-State ^[6]	2.9					ns
t _{PLZ}	Output Delay LOW to Three-State ^[6]	3.3		1			ns

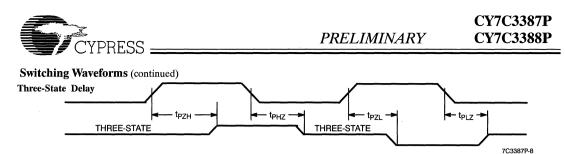
Notes:

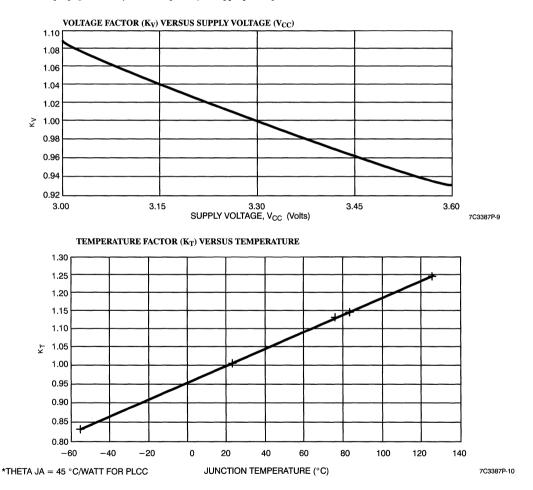
Notes: 3. Worst-case propagation delay times over process variation at $V_{CC} = 3.3$ V and $T_A = 25^{\circ}$ C. Multiply by the appropriate delay factor, K, for speed grade to get worst-case parameters over full V_{CC} and temperature range as specified in the operating range. All inputs are TTL with 3-ns linear transition time between 0 and 3 volts.

- 4. These limits are derived from worst-case values for a representative selection of the slowest paths through the pASIC380 logic cell including net delays. Guaranteed delay values for specific paths should be determined from simulation results.
- Clock buffer fanout refers to the maximum number of flip-flops per half column. The number of half columns used does not affect clock buffer delay.
- 6. The following loads are used for t_{PXZ} :

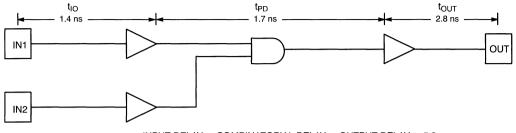
High Drive Buffer


		# High Drives Wired	Propagation Delays ^[3] with Fanout of					
Parameter	Description	Together	12	24	48	72	96	Unit
t _{IN}	High Drive Input Delay	1	5.8	7.3				ns
		2		5.0	7.1			ns
		3			5.8	6.7	7.7	ns
		4				5.4	6.8	ns
t _{INI}	High Drive Input, Inverting Delay	1	6.0	7.4				ns
		2		5.2	7.3			ns
		3			6.0	6.9	7.9	ns
		4				6.1	7.0	ns

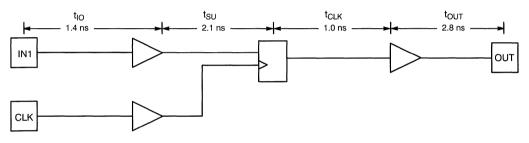

Switching Waveforms


Set-Up and Hold Times

Typical AC Characteristics


Propagation delays depend on routing, fanout, load capacitance, supply voltage, junction temperature, and process variation. The AC Characteristics are a design guide to provide initial timing estimates at nominal conditions. Worst-case estimates are obtained when nominal propagation delays are multiplied by the appropriate Delay Factor, K, as specified by the speed grade in the Delay Factor table. The effects of voltage and temperature variation are illustrated in the graphs below. The *Warp3* Delay Modeler extracts specific timing parameters for precise simulation results following place and route.

PRELIMINARY


Combinatorial Delay Example (Load = 30 pF, Fanout =1, K=1.0)

INPUT DELAY + COMBINATORIAL DELAY + OUTPUT DELAY = 5.9 ns

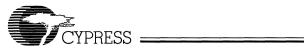
7C3387P-11

Sequential Delay Example (Load = 30 pF, Fanout =1, K=1.0)

INPUT DELAY + REG SET-UP + CLOCK TO Q DELAY + OUTPUT DELAY = 7.3 ns

7C3387P-12

Ordering Information


Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
1	CY7C3387P-1AC	A144	144-Pin Thin Quad Flat Pack	Commercial
	CY7C3387P-1AI	A144	144-Pin Thin Quad Flat Pack	Industrial
0	CY7C3387P-0AC	A144	144-Pin Thin Quad Flat Pack	Commercial
	CY7C3387P-0AI	A144	144-Pin Thin Quad Flat Pack	Industrial
X	CY7C3387P-XAC	A144	144-Pin Thin Quad Flat Pack	Commercial
	CY7C3387P-XAI	A144	144-Pin Thin Quad Flat Pack	Industrial

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
1	CY7C3388P-1NC	N208	208-Pin Plastic Quad Flat Pack	Commercial
	CY7C3388P-1NI	N208	208-Pin Plastic Quad Flat Pack	Industrial
0	CY7C3388P-0NC	N208	208-Pin Plastic Quad Flat Pack	Commercial
	CY7C3388P-0NI	N208	208-Pin Plastic Quad Flat Pack	Industrial
Х	CY7C3388P-XNC	N208	208-Pin Plastic Quad Flat Pack	Commercial
	CY7C3388P-XNI	N208	208-Pin Plastic Quad Flat Pack	Industrial

Document #: 38-00436

GENERAL INFORMATION	1
SMALL PLDs	2
CPLDs	3
FPGAs	4
DEVELOPMENT SYSTEMS	5
QUALITY	6
PACKAGES	7

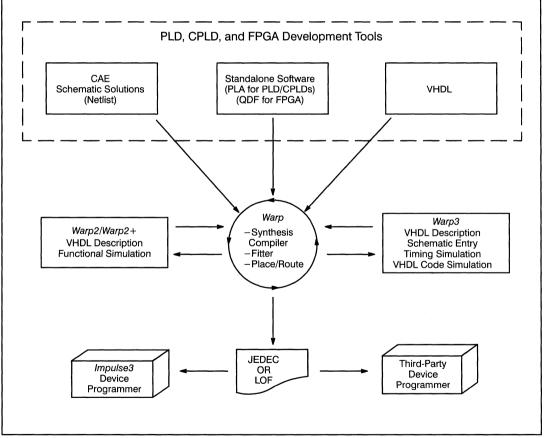
Table of Contents

Table of Contents

Page Number

Development Systems

Device	Description
CY3120/CY3125	Warp2+ VHDL Compiler for PLDs, CPLDs, and FPGAs
CY3121/CY3126	Warp2 VHDL Compiler for PLDs and CPLDs 5-6
CY3130/CY3135	Warp3 VHDL Development System for PLDs, CPLDs, and FPGAs
CY3140	ABEL/Synario Design Software Kit for FLASH370 5-15
CY3141	Warp3 PROSeries Bolt-In 5-16
CY3146	Synopsys Design Software Kit for pASIC380 5-18
CY3500	Impulse3 Device Programmer and Adapters
Third-Party Tool Support	t


PLD, CPLD, and FPGA Development Tools Overview

A large number of development tools are available for use when designing with Cypress Semiconductor's PLDs, CPLDs, and FPGAs. Many of these tools are available from Cypress, while additional design flow options are available from numerous thirdparty tool vendors. (For a complete listing of third-party tool vendors, see the Third-Party Tools datasheet.)

Development software is available that provides design entry, synthesis, optimization, fitting, place and route, and simulation. As shown below, this software produces a programming file for use with a device programmer. $Warp2^{m}$ and $Warp2^{+m}$ provides

VHDL design description and functional simulation. $Warp3^{\mbox{\ with marphi}}$ includes Warp2+ functionality plus schematic entry, VHDL source code simulation, and timing simulation. In addition, many third-party tools are available and provide various levels of support.

Device programmers use the programming file created by the development tool to program the PLD, CPLD, or FPGA. The *Impulse3* $^{\infty}$ can program any Cypress device and can be upgraded to program other manufacturers' devices. Many third-party programmers are available that can be used to program a wide array of devices including those from Cypress.

Warp2, Warp2+, Warp3, and Impulse3 are trademarks of Cypress Semiconductor Corporation.

Document #: 38-00370-A

CY3120 CY3125

Features

- VHDL (IEEE 1076 and 1164) high-level language compiler

 - VHDL facilitates the use of industry-standard simulation and synthesis tools for board and system-level design
 - VHDL supports functions and libraries facilitating modular design methodology
- Warp2+™ provides synthesis for a powerful subset of IEEE standard 1076 and 1164 VHDL including:
 - enumerated types
 - --- operator overloading
 - --- for ... generate statements
 - integers
- State-of-the-art optimizations and reduction algorithms — Optimization for flip-flop type (D type/T type)
 - Automatic selection of optimal flip-flop type
 - (D type/T type)
 - Automatic pin assignment
 - Automatic state assignment (grey code, one-hot, binary)
- Several design entry methods support high and low-level design descriptons:
 - --- Behavioral VHDL (IF...THEN...ELSE; CASE...)
 - Boolean
 - Structural VHDL (RTL)
- Designs can include multiple VHDL entry methods in a single design
- Supports all Cypress PLDs and CPLDs, including MAX340 $^{\rm TM}$ and FLASH370 $^{\rm TM}$
- Supports all Cypress (pASIC380[™]) FPGAs
- Functional simulation provided with Cypress NOVA simulator:
 - -Graphical waveform simulator
 - Entry and modification of on-screen waveforms
 - -Ability to probe internal nodes
 - Display of inputs, outputs, and High Z signals in different colors
 - -Automatic clock and pulse creation
 - --- Waveform to JEDEC test vector conversion utility
 - JEDEC to symbolic disassembly
- PC, Sun, and HP platforms
- Windows 3.1
- Motif on Sun workstations IEEE 1076, and is fully 1164 compliant

Functional Description

Warp2+ is a state-of-the-art VHDL compiler for designing with Cypress PLDs. Warp2+ utilizes a subset of IEEE 1164 VHDL as its Hardware Description Language (HDL) for design entry. VHDL provides a number of significant benefits for the design engineer. Warp2+ accepts VHDL input, synthesizes and opti-

Warp2+[™] VHDL Compiler for PLDs, CPLDs, and FPGAs

mizes the entered design, and outputs a JEDEC map for the desired PLD or CPLD, or outputs a LOF file for the desired FPGA. (see *Figure 1*). For simulation, *Warp2+* provides the graphical waveform simulator called NOVA.

VHDL Compiler

VHDL (VHSIC Hardware Description Language) is a powerful, non-proprietary language that is a standard for behavioral design entry and simulation. It is mandated for use by the Department of Defense and is supported by every major vendor of CAE tools. VHDL allows designers to learn a single language that is useful for all facets of the design process.

VHDL offers designers the ability to describe designs at many different levels. At the highest level, designs can be entered as a description of their behavior. This behavioral description is not tied to any specific target device. As a result, simulation can be done very early in the design to verify correct functionality, which significantly speeds the design process.

Warp2+'s VHDL syntax also includes support for intermediate level entry modes such as state table and boolean entry. At the lowest level, designs can be described using gate-level RTL (Register Transfer Language) descriptions. *Warp2+* gives the designer the flexibility to intermix all of these entry modes.

In addition, VHDL allows you to design hierarchically, building up entities in terms of other entities. This allows you to work either "top-down" (designing the highest levels of the system and its interfaces first, then progressing to greater and greater detail) or

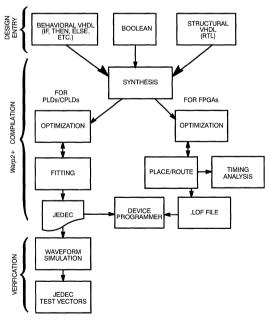


Figure 1. Warp2+ Design Flow

"bottom-up" (designing elementary building blocks of the system, then combining these to build larger and larger parts) with equal ease.

Because VHDL is an IEEE standard, multiple vendors offer tools for design entry, simulation at both high and low levels, and synthesis of designs to different silicon targets. The use of device independent behavioral design entry gives users the freedom to retarget designs to different devices. The wide availability of VHDL tools provides complete vendor independence as well. Designers can begin their project using *Warp2*+ for Cypress PLDs and FPGAs and convert to high volume gate arrays using the same VHDL behavioral description with industry-standard synthesis tools.

While design portability and device independence are significant benefits, VHDL has other advantages. The VHDL language allows users to define their own functions. User-defined functions allow users to extend the capabilities of the language and build reusable libraries of tested routines. As a result the user can produce complex designs faster than with ordinary "flat" languages. VHDL also provides control over the timing of events or processes. VHDL has constructs that identify processes as either sequential, concurrent, or a combination of both. This is essential when describing the interaction of complex state machines.

Cypress chose to offer tools that use the VHDL language because of the language's universal acceptance, the ability to do both device and vendor independent design, simulation capabilities at both the chip and system level that improve design efficiency, the wide availability of industry-standard tools with VHDL support for both simulation and synthesis, and the inherent power of the languages' syntax.

VHDL is a rich programming language. Its flexibility reflects the nature of modern digital systems and allows designers to create accurate models of digital designs. Because of its depth and completeness, it is easier to describe a complex hardware system accurately in VHDL than in any other hardware description language. In addition, models created in VHDL can readily be transported to other CAE Environments. *Warp2+* supports a rich subset of VHDL including loops, for ... generate statements, full hierarchical designs with packages, as well as synthesis for enumerated types and integers.

Designing with Warp2+

Design Entry

Warp2+ descriptions specify

- 1. The behavior or structure of a design, and
- The mapping of signals in a design to the pins of a PLD/ CPLD/FPGA (optional)

The part of a *Warp2*+ description that specifies the behavior or structure of the design is called an entity/architecture pair. Entity/ architecture pairs, as their name implies, can be divided into two parts: an entity declaration, which declares the design's interface signals (i.e., tells the world what external signals the design has, and what their directions and types are), and a design architecture, which describes the design's behavior or structure.

Design Entity

If the entity/architecture pair is kept in a separate file, that file is usually referred to as the design entity file. The entity portion of a design entity file is a declaration of what a design presents to the outside world (the interface). For each external signal, the entity declaration specifies a signal name, a direction and a data type. In addition, the entity declaration specifies a name by which the entity can be referenced in a design architecture. In this section are code segments from four sample design entity files. The top portion of each example features the entity declaration.

Behavioral Description

The architecture portion of a design entity file specifies the function of the design. As shown in *Figure 1*, multiple design-entry methods are supported in *Warp2+*. A behavioral description in VHDL often includes well known constructs such as If...Then...Else, and Case statements. Here is a code segment from a simple state machine design (soda vending machine) that uses behavioral VHDL to implement the design:

```
ENTITY drink IS
```

PORT (nickel,dime,quarter,clock:in bit; returnDime,returnNickel,giveDrink:outbit); END drink;

ARCHITECTURE fsm OF drink IS

TYPE drinkState IS (zero,five,ten,fifteen, twenty,twentyfive,owedime); SIGNAL drinkstatus:drinkState;

BEGIN

```
PROCESS BEGIN
```

```
WAIT UNTIL clock = '1';
```

```
giveDrink <= '0';
returnDime <= '0';
returnNickel <= '0';</pre>
```

```
CASE drinkStatus IS
```

```
WHEN zero =>
  IF (nickel = (1') THEN
    drinkStatus <= drinkStatus'SUCC
    (drinkStatus);
       -- goto Five
  ELSIF (dime = '1') THEN
    drinkStatus <= Ten;
  ELSIF (quarter = '1') THEN
    drinkStatus <= TwentyFive;
  ENDIF;
WHEN Five =>
  IF (nickel = '1') THEN
    drinkStatus <= Ten;
  ELSIF (dime = '1') THEN
    drinkStatus <= Fifteen;
  ELSIF (quarter = '1') THEN
    giveDrink <= '1';
    drinkStatus <= drinkStatus'PRED
    (drinkStatus);
      -- goto Zero
  ENDIF:
WHEN oweDime =>
  returnDime <= '1';
  drinkStatus <= zero;
when others =>
```

```
-- This ELSE makes sure that the state -- machine resets itself if
```


-- it somehow gets into an undefined state. drinkStatus <= zero; END CASE; END PROCESS;

END FSM;

VHDL is a strongly typed language. It comes with several predefined operators, such as + and /= (add, not-equal-to). VHDL offers the capability of defining multiple meanings for operators (such as +), which results in simplification of the code written. For example, the following code segment shows that "count = count +1" can be written such that count is a bit vector, and 1 is an integer.

```
ENTITY sequence IS
port (clk: in bit;
s : inout bit);
end sequence;
```

ARCHITECTURE fsm OF sequence IS

SIGNAL count: INTEGER RANGE 0 TO 7;

BEGIN

```
PROCESS BEGIN
```

```
WAIT UNTIL clk = '1';
```

CASE count IS

```
WHEN 0 | 1 | 2 | 3 =>
    s <= '1';
    count <= count + 1;
WHEN 4 =>
    s <= '0';
    count <= count + 1;
WHEN 5 =>
    s <= '1';
    count <= '0';
WHEN others =>
    s <= '0';
    count <= '0';
END CASE;</pre>
```

```
END PROCESS;
```

END FSM;

In this example, the + operator is overloaded to accept both integer and bit arguments. *Warp2* + supports overloading of operators.

Functions

A major advantage of VHDL is the ability to implement functions. The support of functions allows designs to be reused by simply specifying a function and passing the appropriate parameters. Warp2+ features some built-in functions such as ttf (truth-table function). The ttf function is particularly useful for state machine or look-up table designs. The following code describes a sevensegment display decoder implemented with the ttf function:

```
ENTITY seg7 IS
PORT(
    inputs: IN BIT_VECTOR (0 to 3)
    outputs: OUT BIT_VECTOR (0 to 6)
);
```

```
END SEG7;
```

ARCHITECTURE mixed OF seg7 IS

CONSTANT truthTable:

x01_tab	le	(0 to 11, 0 t	to 10)	:=	(
input	&	output				
<i>"</i> 0000 <i>"</i>	&	<i>"</i> 0111111 <i>"</i> ,				
<i>"</i> 0001 <i>"</i>	&	<i>"</i> 0000110 <i>"</i> ,				
"0010"	&	<i>"</i> 1011011 <i>"</i> ,				
"0011"	&	<i>"</i> 1001111 <i>"</i> ,				
<i>"</i> 0100 <i>"</i>	&	<i>"</i> 1100110 <i>"</i> ,				
″0101″	&	<i>"</i> 1101101 <i>"</i> ,				
"0110"	&	<i>"</i> 1111101 <i>"</i> ,				
"0111"	&	<i>"</i> 0000111 <i>"</i> ,				
<i>"</i> 1000 <i>"</i>	&	<i>"</i> 1111111 <i>"</i> ,				
<i>"</i> 1001 <i>"</i>	&	"1101111",				
"101x"	&	<i>"</i> 1111100 <i>"</i> ,	crea	tes	Е	pattern
"111x"	&	"1111100"				-
);						

BEGIN

outputs <= ttf(truthTable,inputs);</pre>

END mixed;

Boolean Equations

A third design-entry method available to Warp2 + users is Boolean equations. Figure 2 displays a schematic of a simple one-bit half adder. The following code describes how this one-bit half adder can be implemented in Warp2 + with Boolean equations:

```
--entity declaration
ENTITY half_adder IS
PORT (x, y : IN BIT;
sum, carry : OUT BIT);
END half_adder;
--architecture body
ARCHITECTURE behave OF half_adder IS
BEGIN
sum <= x XOR y;
carry <= x AND y;
END behave;
```

Structural VHDL (RTL)

While all of the design methodologies described thus far are highlevel entry methods, structural VHDL provides a method for designing at a very low level. In structural descriptions (also called RTL), the designer simply lists the components that make up the design and specifies how the components are wired together. *Figure 3* displays the schematic of a simple 3-bit shift register and the following code shows how this design can be described in *Warp2*+ using structural VHDL:

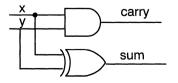


Figure 2. One-Bit Half Adder

5-4


```
ENTITY shifter3 IS port (
    clk : IN BIT;
    x : IN BIT;
    q0 : OUT BIT;
    q1 : OUT BIT;
    q2 : OUT BIT);
  END shifter3;
ARCHITECTURE struct OF shifter3 IS
  SIGNAL q0_temp, q1_temp, q2_temp : BIT;
  BEGIN
    d1 : DFF PORT MAP(x,clk,q0_temp);
    d2 : DFF PORT MAP(q0_temp,clk,q1_temp);
    d3 : DFF PORT MAP(g1_temp,clk,g2_temp);
    q0 <= q0_temp;
    q1 <= q1_temp;
    q2 \ll q2\_temp;
  END struct;
```

All of the design-entry methods described can be mixed as desired. The ability to combine both high- and low-level entry methods in a single file is unique to VHDL. The flexibility and power of VHDL allows users of Warp2 + to describe designs using whatever method is appropriate for their particular design.

Compilation

Once the VHDL description of the design is complete, it is compiled using Warp2+. Although implementation is with a single command, compilation is actually a multistep process as shown in Figure 1). The first part of the compilation process is the same for all devices. The input VHDL description is synthesized to a logical representation of the design. Warp 2⁺ synthesis is unique in that the input language (VHDL) supports device-independent design descriptions. Competing programmable logic compilers require very specific and device-dependent information in the design description.

The second step of compilation is an interactive process of optimizing the design and fitting the logic into the targeted device. Logical optimization in Warp2+ is accomplished using Espresso algorithms. The optimized design is automatically fed to the Warp2+fitter if the user is targeting a PLD or CPLD. This fitter supports the automatic or manual placement of pin assignments as well as automatic selection of D or T flip-flops. After the optimization and fitting step is complete, Warp2+ creates a JEDEC file for the specified PLD or CPLD.

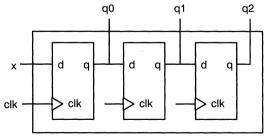


Figure 3. Three-Bit Shift Register Circuit Design

Document #: 38-00218-C

Warp2+ and FLASH370 are a trademarks of Cypress Semiconductor Corporation.

MÂX is a trademark of Altera Corporation.

pASIC is a trademark of Quicklogic Corporation.

PC-AT is a trademark of IBM Corporation.

If the target device is an FPGA, Warp2 + outputs a QDIF netlist file after optimization that is read into the Warp2 + place and route software, SpDE. SpDE determines the placement of logic in the FPGA and routing of the interconnect that maximizes the speed of operation and minimizes the area utilization of the design. After the place and route is complete, the design timing can be checked by the SpDE's path analyzer, and a LOF file is output for programming.

Simulation

Warp2+ includes Cypress's NOVA Simulator. NOVA features a graphical waveform simulator that can be used to simulate PLD/ CPLD designs generated in Warp2+. The NOVA simulator provides functional simulation for PLDs/CPLDs and features interactive waveform editing and viewing. The simulator also provides the ability to probe internal nodes, automatically generate clocks and pulses, and generate JEDEC test vectors from simulator waveforms. FPGA static timing analysis is available with that tool flow. (Higher level simulation support is available with Warp3 [CY3130].)

Programming

The result of *Warp2+* compilation is a JEDEC or LOF file that implements the input design in the targeted device. Using this file, Cypress devices can be programmed on Cypress's Impulse3 programmer or on any qualified third-party programmer.

System Requirements

For PCs

IBM PC-AT or equivalent (486 or higher recommended)

PC-DOS version 3.3 or higher

8 Mbytes of RAM (16 Mbytes recommended)

EGA, VGA, or Hercules monochrome display

70-Mbyte hard disk space

1.2-Mbyte 51/4-inch or 1.44-Mbyte floppy disk drive or CD-ROM

Two- or three-button mouse

Windows Version 3.1

For Sun Workstations

SPARC CPU Sun OS 4.1.1 or later 16 Mbytes of RAM 1.44-Mbyte 3¹/₂-inch disk drive

Ordering Information

CY3120 Warp2+ for Windows PLD Compiler includes: 3½-inch, 1.4-Mbyte floppy disks Warp2+ User's Guide Warp2+ Synthesis Reference Registration Card

CY3125 Warp2+ for Sun PLD Compiler includes: 3½-inch, 1.4-Mbyte floppy disks Warp2+ User's Guide Warp2+ Synthesis Reference Registration Card

PRELIMINARY

CY3121 CY3126

Features

- VHDL (IEEE1076 and 1164) high-level language compiler
 VHDL facilitates device independent design

 - WHDL facilitates the use of industry-standard simulation and synthesis tools for board and system-level design
- Warp2[™] provides synthesis for a powerful subset of IEEE standard 1076 and 1164 VHDL including:
 - enumerated types
 - operator overloading
 - -for ... generate statements
 - ---- integers
- State-of-the-art optimization and reduction algorithms
 - Optimization for flip-flop type (D type/T type)
 - -Automatic selection of optimal flip-flop type
 - (D type/T type)
 - Automatic pin assignment
 - -Automatic state assignment (grey code, one-hot, binary)
- Several design entry methods support high and low-level design descriptions:
 - -Behavioral VHDL (IF ... THEN ... ELSE; CASE ...)
 - -Boolean
 - Structural VHDL (RTL)
- Designs can include multipleVHDL entry methods in a single design
- Supports all Cypress PLDs and CPLDs, including MAX340 $^{\rm TM}$ and FLASH370 $^{\rm TM}$
- Functional simulation provided with Cypress NOVA simulator:
 - Graphical waveform simulator
 - Entry and modification of on-screen waveforms
 - -Ability to probe internal nodes
 - Display of input and output signals in different colors
 - -Automatic clock and pulse creation
 - --- Waveform to JEDEC test vector conversion utility
- PC, Sun, and HP platforms
- Windows[™] 3.1 or above
- Motif[®] on Sun workstations

Functional Description

Warp2 is a state-of-the-art VHDL compiler for designing with Cypress PLDs and CPLDs. *Warp2* is fully IEEE1076 and 1164 VHDL compliant. VHDL provides a number of significant benefits for the design engineer. *Warp2* accepts VHDL input, synthesizes and optimizes the entered design, and outputs a JEDEC map for the desired device (see Figure 1). For simulation, *Warp2* provides a graphical waveform simulator called NOVA.

Warp2[™] VHDL Compiler for PLDs and CPLDs

VHDL Compiler

VHDL (Very High Speed Integrated Circuit Hardware Description Language) is a powerful, non-proprietary language that is a standard for behavioral design entry and simulation. It is mandated for use by the Department of Defense and is supported by every major vendor of CAE tools. VHDL allows designers to learn a single language that is useful for all facets of the design process.

VHDL offers designers the ability to describe designs at many different levels. At the highest level, designs can be entered as a description of their behavior. This behavioral description is not tied to any specific target device. As a result, simulation can be done very early in the design to verify correct functionality, which significantly speeds the design process.

Warp2's VHDL syntax also includes support for intermediate level entry modes such as state table and boolean entry. At the lowest level, designs can be described using gate-level RTL (Register TransferLanguage) descriptions. *Warp2* gives the designer the flexibility to intermix all of these entry modes.

In addition, VHDL allows users to design hierarchically, building up entities in terms of other entities. This allows you to work either "top-down" (designing the highest levels of the system and its interfaces first, then progressing to greater and greater detail) or "bottom-up" (designing elementary building blocks of the system, then combining these to build larger and larger parts) with equal ease.

Because VHDL is an IEEE standard, multiple vendors offer tools for design entry, simulation at both high and low levels, and synthe-

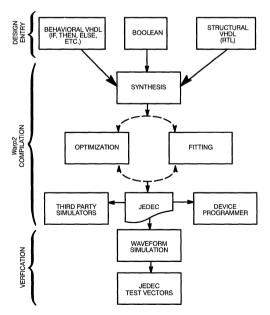


Figure 1. Warp2 Design Flow

sis of designs to different silicon targets. The use of device independent behavioral design entry gives users the freedom to retarget designs to different devices. The wide availability of VHDL tools provides complete vendor independence as well. Designers can begin their project using *Warp2* for Cypress PLDs and convert to high volume gate arrays using the same VHDL behavioral description with industry-standard synthesis tools.

While design portability and device independence are significant benefits, VHDL has other advantages. The VHDL language allows users to define their own functions. User-defined functions allow users to extend the capabilities of the language and build reusable libraries of tested routines. As a result the user can produce complex designs faster than with ordinary "flat" languages. VHDL also provides control over the timing of events or processes. VHDL has constructs that identify processes as either sequential, concurrent, or a combination of both. This is essential when describing the interaction of complex state machines.

Cypress chose to offer tools that use the VHDL language because of the languages' universal acceptance, the ability to do both device and vendor independent design, simulation capabilities at both the chip and system level that improve design efficiency, the wide availability of industry-standard tools with VHDL support for both simulation and synthesis, and the inherent power of the language's syntax.

VHDL is a rich programming language. Its flexibility reflects the nature of modern digital systems and allows designers to create accurate models of digital designs. Because of its depth and completeness, it is easier to describe a complex hardware system accurately in VHDL than in any other hardware description language. In addition, models created in VHDL can readily be transported to other CAE systems. *Warp2* supports a rich subset of VHDL including loops, for...generate statements, full hierarchical designs with packages, as well as synthesis for enumerated types and integers.

Designing with Warp2

Design Entry

Warp2 descriptions specify

- 1. The behavior or structure of a design, and
- The mapping of signals in a design to the pins of a PLD or CPLD (optional)

The part of a *Warp2* description that specifies the behavior or structure of the design is called an entity/architecture pair. Entity/architecture pairs, as their name implies, are divided into two parts: an entity declaration, which declares the design's interface signals (i.e., tells the world what external signals the design has, and what their directions and types are), and a design architecture, which describes the design's behavior or structure.

Design Entity

The entity is a declaration of what a design presents to the outside world (the interface). For each external signal, the entity declaration specifies a signal name, a direction and a data type. In addition, the entity declaration specifies a name by which the entity can be referenced in a design architecture. In this section are code segments from four sample design entity files. The top portion of each example features the entity declaration.

Behavioral Description

The architecture portion of a design entity file specifies the function of the design. As shown in *Figure 1*, multiple design-entry methods are supported in *Warp2*. A behavioral description in VHDL often includes well known constructs such as If...Then...Else, and Case statements. Here is a code segment from a simple state machine design (soda vending machine) that uses behavioral VHDL to implement the design:

ENTITY drink IS

PORT (nickel,dime,quarter,clock:in bit; returnDime,returnNickel,giveDrink:outbit);

END drink;

ARCHITECTURE fsm OF drink IS

```
TYPE drinkState IS (zero,five,ten,fifteen,
twenty,twentyfive,owedime);
SIGNAL drinkstatus:drinkState;
```

BEGIN

PROCESS BEGIN

WAIT UNTIL clock = '1';

```
giveDrink <= '0';
returnDime <= '0';
returnNickel <= '0';</pre>
```

CASE drinkStatus IS

```
WHEN zero =>
  IF (nickel = (1') THEN
    drinkStatus <= drinkStatus'SUCC
    (drinkStatus);
      -- goto Five
  ELSIF (dime = '1') THEN
    drinkStatus <= Ten;
  ELSIF (quarter = '1') THEN
    drinkStatus <= TwentyFive;
  ENDIE
WHEN Five =>
  IF (nickel = '1') THEN
    drinkStatus <= Ten;
  ELSIF (dime = (1') THEN
    drinkStatus <= Fifteen;
  ELSIF (quarter = '1') THEN
    giveDrink <= '1';
    drinkStatus <= drinkStatus'PRED
    (drinkStatus);
      -- goto Zero
  ENDIF:
WHEN oweDime =>
  returnDime <= '1';
  drinkStatus <= zero;
when others =>
-- This ELSE makes sure that the state
-- machine resets itself if
-- it somehow gets into an undefined state.
  drinkStatus <= zero;
END CASE;
```

END PROCESS;

END FSM;

VHDL is a strongly typed language. It comes with several predefined operators, such as + and /= (add, not-equal-to). VHDL of-

"1011011".

"1001111",

"1100110",

"1101101",

"1111101".

"0000111",

"11111111".

fers the capability of defining multiple meanings for operators (such as +), which results in simplification of the code written. For example, the following code segment shows that "count = count +1" can be written such that count is a bit vector, and 1 is an integer.

```
ENTITY sequence IS
  port (clk: in bit;
    s : inout bit);
end sequence;
```

ARCHITECTURE fsm OF sequence IS

SIGNAL count: INTEGER RANGE 0 TO 7:

BEGIN

PROCESS BEGIN

```
WAIT UNTIL clk = '1';
```

CASE count IS

```
WHEN 0 | 1 | 2 | 3 =>
  s <= '1';
  count <= count + 1;
WHEN 4 =>
  s <= '0';
  count <= count + 1;
WHEN 5 =>
  s <= '1';
  count <= '0';
WHEN others =>
  s <= '0';
  count <= '0';
END CASE:
```

END PROCESS;

END FSM;

In this example, the + operator is overloaded to accept both integer and bit arguments. Warp2 supports overloading of operators. Functions

A major advantage of VHDL is the ability to implement functions. The support of functions allows designs to be reused by simply specifying a function and passing the appropriate parameters. Warp2 features some built-in functions such as ttf (truth-table function). The ttf function is particularly useful for state machine or look-up table designs. The following code describes a sevensegment display decoder implemented with the ttf function:

```
ENTITY seg7 IS
  PORT (
    inputs: IN BIT_VECTOR (0 to 3)
    outputs: OUT BIT_VECTOR (0 to 6)
  );
END SEG7;
ARCHITECTURE mixed OF seg7 IS
CONSTANT truthTable:
  x01 table (0 to 11, 0 to 10) := (
```

nor_cab.	TC (0 00	xx,	0	20	TO)	•
 input	&	С	utpu	ιt			
"0000″	&	″01	1111	1″	,		
"0001"	&	″00	0011	0″	,		

"1001"	&	<i>"</i> 1101111 <i>"</i> ,		
"101x"	&	<i>"</i> 1111100 <i>"</i> ,	creates	E pattern
″111x″	&	"1111100"		
);				

&

δ.

&

8

δ.

&

&

```
BEGIN
```

outputs <= ttf(truthTable,inputs);</pre>

END mixed;

"0010"

"0011"

"0100"

"0101"

"0110"

"0111"

"1000"

Boolean Equations

A third design-entry method available to Warp2 users is Boolean equations. Figure 2 displays a schematic of a simple one-bit half adder. The following code describes how this one-bit half adder can be implemented in Warp2 with Boolean equations:

```
--entity declaration
ENTITY half_adder IS
  PORT (x, y : IN BIT;
    sum, carry : OUT BIT);
END half_adder;
--architecture body
ARCHITECTURE behave OF half_adder IS
BEGIN
  sum <= x XOR y;
  carry <= x AND y;
END behave;
```

Structural VHDL (RTL)

While all of the design methodologies described thus far are highlevel entry methods, structural VHDL provides a method for designing at a very low level. In structural descriptions (also called RTL), the designer simply lists the components that make up the design and specifies how the components are wired together. Figure 3 displays the schematic of a simple 3-bit shift register and the following code shows how this design can be described in Warp2 using structural VHDL:

```
ENTITY shifter3 IS port (
    clk : IN BIT;
    x : IN BIT;
    q0 : OUT BIT;
    q1 : OUT BIT;
    q2 : OUT BIT);
  END shifter3;
```

ARCHITECTURE struct OF shifter3 IS SIGNAL q0 temp, g1 temp, g2 temp : BIT;

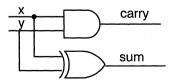


Figure 2. One-Bit Half Adder


```
BEGIN
```

```
d1 : DFF PORT MAP(x,clk,q0_temp);
d2 : DFF PORT MAP(q0_temp,clk,q1_temp);
d3 : DFF PORT MAP(q1_temp,clk,q2_temp);
q0 <= q0_temp;
q1 <= q1_temp;
q2 <= q2_temp;
END struct;
```

All of the design-entry methods described can be mixed as desired. The ability to combine both high- and low-level entry methods in a single file is unique to VHDL. The flexibility and power of VHDL allows users of *Warp2* to describe designs using whatever method is appropriate for their particular design.

Compilation

Synthesis and optimization is a one button process. The first step is synthesizing the input VHDL into a logical representation of the design. *Warp2* synthesis is unique in that the input language (VHDL) supports device-independent design descriptions. Competing programmable logic compilers require very specific and device-dependent information in the design input file.

The second step of compilation is an iterative process of optimizing the design and fitting the logic into the targeted PLD. Logical optimization in *Warp2* is accomplished with Espresso algorithms. The optimized design is fed to the *Warp2* fitter, which applies the design to the specified target PLD. The *Warp2* fitter supports manual or automatic pin assignments as well as automatic selection of D or T flip-flops. After the optimization and fitting step is complete, *Warp2* automatically creates a JEDEC file for the specified PLD or CPLD.

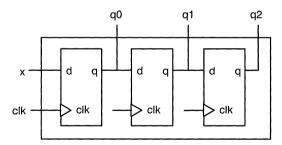


Figure 3. Three-Bit Shift Register Circuit Design

Document #: 38-00433

Simulation

Warp2 is delivered with Cypress's NOVA Simulator. NOVA features a graphical waveform simulator that can be used to simulate designs generated in *Warp2*. The NOVA simulator provides functional simulation and features interactive waveform editing and viewing. The simulator also provides the ability to probe internal nodes, automatically generate clocks and pulses, and to generate JEDEC test vectors from simulator waveforms.

Programming

The result of *Warp2* compilation is a JEDEC file that implements the input design in the targeted PLD. Using the JEDEC file, Cypress PLDs and CPLDs can be programmed on Cypress's Impulse3 programmer or on any qualified third-party programmer.

System Requirements

For PCs

IBM PC-AT or equivalent (486 or higher recommended)

PC-DOS version 3.3 or higher

16 Mbytes of RAM

35-Mbyte hard disk space

1.44-Mbyte floppy disk drive

Two- or three-button mouse

Windows Version 3.1

For Sun Workstations

SPARC CPU Sun OS 4.1.1 or later 16 Mbytes of RAM 1.44-Mbyte 3¹/₂-inch disk drive

Ordering Information

CY3121 Warp2 for Windows PLD Compiler includes: 3½-inch, 1.4-Mbyte floppy disks Warp2 User's Guide Warp2 Synthesis Reference Registration Card

CY3126 Warp2 for Sun PLD Compiler includes: 3½-inch, 1.4-Mbyte floppy disks Warp2 User's Guide Warp2 Synthesis Reference Registration Card

Warp2, MAX340, and FLASH370 are trademarks of Cypress Semiconductor Corporation. PC/AT is a trademark of International Business Machines Corporation. Windows is a trademark of Microsoft Corporation.

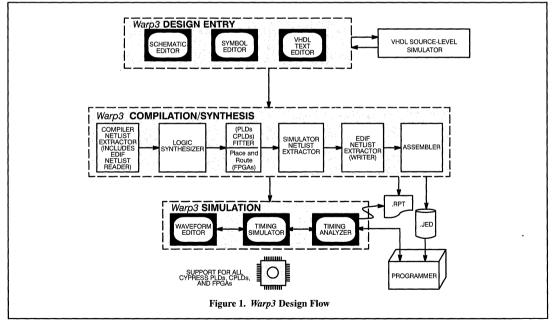
Open Look is a registered trademark of Sun Microsystems, Inc.

Motif is a registered trademark of Open Software Foundation, Inc.

Warp3 PRELIMINARY (CY3130/CY3135)

Warp3[™] VHDL Development System for PLDs, CPLDs, and FPGAs

Features


- Sophisticated PLD/FPGA design and verification system based on VHDL
- Warp3[™] is based on Viewlogic's Powerview[™] (Sun and HP) and Workview Plus[™] (PC) design environments
 - Advanced graphical user interface for Windows and Sun/ HP Workstations
 - --- Schematic capture (Viewdraw)
 - Interactive timing simulator (Viewsim)
 - Waveform stimulus and viewing (Viewtrace)
 - Textual design entry using VHDL
 - Mixed-mode design entry support
- The core of *Warp3* is an IEEE1076 and 1164 standard VHDL compiler
 - VHDL is an open, powerful design language
 - VHDL (IEEE standard 1076 and 1164) facilitates design portability across devices and/or CAD platforms
 - WHDL facilitates the use of industry-standard simulation and synthesis tools for board and system-level design
 - WHDL facilitates hierarchical design with support for functions and libraries

- Support for ALL Cypress PLDs, CPLDs, FPGAs, and PROMs, including:
 - Industry-standard 20- and 24-pin devices like the 22V10
 - Cypress 7C33X family of 28-pin PLDs
 - MAX340™ (MAX5000 Series) CPLDs
 - -FLASH370[™] CPLDs
 - pASIC380[™] FPGAs

Introduction

As the capacity and complexity of programmable logic increased dramatically over the last couple of years, users began to demand software tools that would allow them to manage this growing complexity. They also began to demand design-entry standards that would allow them to spend more time designing with PLDs rather than learning a vendor's proprietary software package. Thus, Hardware Description Languages (HDLs) in general, and VHDL (Very high speed integrated-circuit Hardware Description Language) in particular, have emerged as the standard methodology for integrated-circuit and system design.

While the design community debated whether VHDL could become the standard for PLDs, Cypress took an industry leading position by introducing the first native VHDL compiler for programmable logic—our *Warp*^{\sim} software tools.

FLASH370, Warp, Warp2, Warp2+, Warp3, and Impulse3 are trademarks of Cypress Semiconductor Corporation. Powerview and Workview are registered trademarks of Viewlogic Systems, Inc.

ChipLab is a trademark of Data I/O Corporation.

pASIC is a trademark of QuickLogic Corporation.

MAX is a trademark of Altera Corporation

Functional Description

Warp3 is an integration of Cypress's advanced VHDL synthesis and fitting technology with Viewlogic's sophisticated CAE design environment. On the PC platform, *Warp3* includes Cypress's VHDL compiler and Viewlogic's Workview Plus software for Microsoft Windows. On the Sun and HP platforms, *Warp3* includes Cypress's VHDL compiler and Viewlogic's Powerview software.

Design Flow

Figure 1 displays a block diagram of the typical design flow in Warp3. Designs can be entered in VHDL text, schematic capture or via an imported EDIF netlist. In fact, Warp3 supports mixing these approaches on individual designs. Designs are then functionally verified using the Warp3 functional simulator. The third step is to compile the design and target a PLD, CPLD or FPGA. After synthesis, the waveform timing simulator is used to verify design timing as programmed in the chosen device. If the simulation results are satisfactory, the JEDEC or netlist file is used to program the targeted device. A detailed description of each step follows.

Specifically, the Warp3 Design Flow includes the following:

Viewlogic GUI (Cockpit) IEEE1076 and 1164 VHDL Synthesis Schematic Capture (Viewdraw) Hierarchy Navigator Mixed-mode Design Entry Waveform Editor (Viewtrace) VHDL Timing Simulator (Viewsim) Device fitters for all Cypress PLD/CPLDs/PROMs Automatic Place&Route for all Cypress FPGAs

The Cockpit

The Viewlogic graphical user interface (GUI) is built around a file/tool manager called "the cockpit". The cockpit is used to select the project and current tool set in use. The cockpit allows users to select from a variety of design environments called toolboxes. For UNIX workstations the GUI is under the PowerView cockpit and for PC/Windows the GUI is under the WorkView Plus cockpit (see *Figure 2*).

Design Entry

Text Editor

Text entry is done with industry standard VHDL. *Warp3* can synthesize a rich set of the VHDL language in conformance with IEEE standard 1076 and 1164. This includes support for Behavioral, Boolean, State Table and Structural VHDL entry.

Text entry is ideal for describing complex logic functions such as state machines or truth tables. With VHDL, the behavior of a state machine can be described in concise, easily-readable code. In addition, the hierarchical nature of VHDL allows very complex functions to be described in a modular, top-down or bottom-up fashion. For more information on VHDL see the *Warp2*^m (CY3121) or the *Warp2*+^m (CY3120) datasheet.

Schematic Capture

Warp3 users can also enter designs graphically with a sophisticated schematic capture system(Viewdraw). With schematic entry, designers can quickly describe a variety of common logic functions from simple logic gates to complex arithmetic functions.

Warp3 also supports the use of the LPM (Library of Parameterized Modules) Standard. With LPM, users can import schematic and text designs from any CAE tool that supports the LPM standard via an EDIF netlist. Designs based on this standard library will then be portable across many CAE and synthesis (see *Figure 3*) platforms.

Within *Warp3*, users have access to an extensive symbol library of standard components and macro functions. These include:

- adders/multipliers
- counters
- gates (AND, OR, XOR, INV, & BUF)
- io (singles, buses, three-states, clk-pads, hd-pad, gnd, & vcc)
- macrocells
- memory (assorted flip-flops and latches)
- mux (decoders and multiplexers)
- · registers, shift registers and universal registers

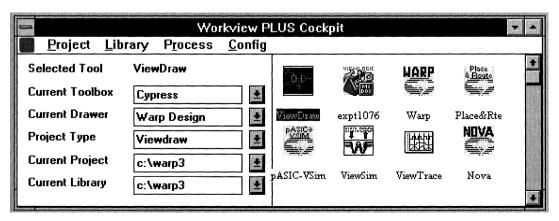


Figure 2. WorkView PLUS Cockpit for PC Workstations

PRELIMINARY

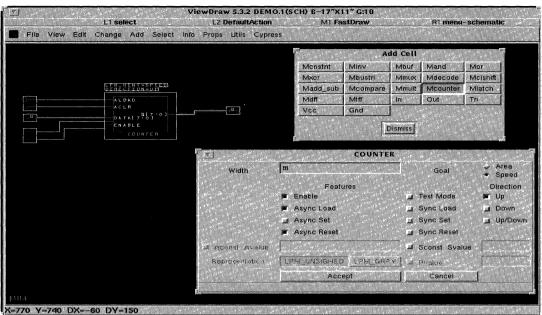


Figure 3. Using the LPM Symbol Library in Viewdraw

In addition, the designer may create custom functions that can be used in any Warp3 design.

Symbol Editor

The *Warp3* schematic capture tools also provide methods to create symbols for schematics and VHDL blocks. Using the Viewgen utility, symbols are automatically generated from lower-level schematic data. Using the VHDL2SYM utility, symbols are automatically generated from VHDL text files. Symbols are useful for creating a design hierarchy to easily describe complex designs.

EDIF Input

Warp3 includes an EDIF netlist converter that provides a convenient way for designers to import designs from other CAE schematic capture and simulation tools. The EDIF-in tool supports EDIF version 2 0 0.

Mixed-mode Entry

Perhaps the most powerful design entry methodology in *Warp3* is the combination of the above methods. In most designs, some portions of the circuit are most easily described in schematic form while others are best described in text. Typically, standard logic components such as counters, adders and registers are best implemented by retrieving components from the *Warp3* schematic symbol library. Meanwhile, text entry is usually preferred for describing sections of the circuit design that implement control logic. In particular, state machines are often much easier to describe with behavioral VHDL than with schematic components. Combining these methods in a single design simplifies the input process and shortens the design cycle time.

As mentioned above, *Warp3* can automatically generate symbols for text and schematic designs. This capability facilitates hierarchical design entry by allowing users to represent complex functions

with a symbol. The top level of the design may be represented by the connection of a small number of symbols representing the main functional blocks. To move to lower levels in the design the user can push into selected symbols. If the underlying design is described in VHDL, a text window will be launched with the design file. If the underlying design is a schematic, a Viewdraw window will be opened with the schematic design. There is no limit to the number of levels of hierarchy used or the number of symbols in a particular design.

Design Verification

Functional Simulation

Verifying functionality early in the design process can greatly reduce the number of design iterations necessary to complete a particular design. Using Speedwave the functionality of the design can be verified with textual stimulus from the keyboard or from a file. Viewtrace can be used in conjunction with Speedwave to simulate the design functionality graphically. The simulation process is described in detail below.

VHDL Source-level Simulation

A unique and powerful feature of *Warp3* is the source-level VHDL simulator. The VHDL debugger works in concert with the *Warp3* simulator and waveform editor. The simulator allows users to graphically step through VHDL code and monitor the results textually or in waveforms. After each single step the simulator highlights the VHDL text representing the current state of the simulation. Simultaneously waveform and text windows can display the inputs and outputs of the design.

Note that a design does not have to be entered in VHDL text to use the VHDL simulator. Since *Warp3* converts all facets of a design (schematic, EDIF-in etc.) to VHDL before compilation, this

VHDL representation can be single stepped to verify design functionality.

Hierarchy Navigator

Another powerful debugging tool within *Warp3* is the hierarchy navigator (Viewnav). The navigator allows users to select a net or node at one level of the design and automatically trace that net through all levels of the hierarchy. This is very useful for tracing signal paths when looking for design errors.

Compilation

VHDL Synthesis

- For synthesis *Warp3* supports a rich subset of VHDL including
 - Enumerated types
 - Integers
 - For . . . generate loops
 - Operator overloading

Once design entry is complete and functionality has been verified, the entire design is converted to VHDL using the "Export 1164" utility on schematic modules. At this point in the design there is a VHDL description of the entire design. This VHDL description is fed to the Cypress VHDL compiler for logic optimization, fitting, and translation to a device programming file. Although compilation is a multistep process, it appears as a single step to the user (as shown in *Figure 1*).

The first step in compilation is synthesizing the input VHDL into a logical representation of the design in terms of components found in the target device (AND gates, OR gates, flip-flops etc.). *Warp3* synthesis is unique in that the input language (VHDL) supports device-independent design descriptions. Competing programmable logic compilers require very specific and device-dependent information in the design file.

Device Fitting

- State-of-the-art optimization and reduction algorithms — Optimization for flip-flop type (D type/T type)
 - Automatic pin assignment
 - User-specified state assignment (Gray code, binary, onehot)

For PLDs and CPLDs, the second phase of the compilation is an iterative process of optimizing the design and fitting the logic into the targeted device (see *Figure 4*). Logical optimization in *Warp3* is accomplished with Espresso algorithms. Once optimized, the design is fed to the device-specific fitter which applies the design to the selected device (see *Figure 5*). *Warp3* fitters support manual or automatic pin assignments as well as automatic selection of D-type

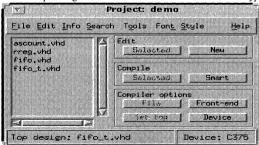


Figure 4. Compile/Synthesize Dialog Box

or T-type flip-flops. After optimization and fitting are complete, *Warp3* will create a JEDEC file (PLDs and CPLDs) used to program the device.

Automatic Place&Route

Completely automatic place and route

-Includes timing back annotation into Viewsim

For Cypress FPGAs, the second phase of the compilation process is called place&route. The place&route tools in Warp3 take the logical design description from synthesis and apply it to the cells of the targeted FPGA. Once placed, the programmable interconnect channels are routed to connect logic blocks as required by the design. With Cypress FPGAs and Warp3, the place&route process is 100% automatic. No tedious manual intervention or hand tweaking is necessary. Once place&route is finished, Warp3 generates a netlist that is used to program the FPGA or a device programmer.

Automatic Error Tracking

Of course, the compilation process may not always go as planned. VHDL syntax errors should be identified and corrected in the presynthesis functional simulation stage. During the compilation phase, Warp3 will detect errors that occur in the fitting/ place&route process. Warp3 features automatic error location that allows problems to be diagnosed and corrected in seconds. Errors from compilation are displayed immediately in a pop-up window. If the user highlights a particular error, Warp3 will automatically open the source code file and highlight the offending line in the entered design. If the device fitting or place&route process includes errors, a pop-up window will again describe them. In addition, a detailed report file is generated indicating the resources required to fit the input design and any problems that occurred in the process.

Simulation

The last step in the design process before programming is verifying the timing of your design. For this, Warp3 includes the Viewsim VHDL timing simulator. During compilation, delays that result from fitting the input design are "written" into an internal file for use by the Warp3 simulator. This information represents worstcase path delays for the design as fit in the selected device. Delays are based on the type of device and speed grade selected.

One of the ways to simulate is with the command-line interface to Viewsim. From the command line, the designer can specify the state of inputs (high, low, X, etc.) and watch how outputs behave over a specified time frame. In this way users can easily step

Device:		Tech Mapping:
C375		☐ Choose FF Types ↓ B ↓ T ◆ Opt
Package:	Settings:	⊥ Keep Polarity
CY7C375-100AC	dan Loadr 🛛 🕎	Li Float Pins
Output:	Santon Costs	"I Factor Logic
A JEDEC Normal		⊥ Internal Tri-states
JEDEC Hex		I Fad Severation I Laffer Severation
Post-JEDEC Sim:		Unused Outpute:
ViewSim 🔻		
	Dkay Cancel	\$1 \$0 ♦ 2

Figure 5. Device Fitting/Routing Dialog Box

through test cases and view the output results. Stimulus can be entered from the command line or from a file.

In addition to Viewsim, *Warp3* will output VHDL and Verilog timing models for numerous other simulators.

- VHDL
 - Mentor (Model Technology and Quicksim)
 - -Cadence (Leapfrog)
 - Synopsys (VSS)
 - Viewlogic (Vantage)
- Verilog
 - --- Cadence
 - ---- Intergraph

Waveform Editor

A graphical method of simulation uses the Viewlogic waveform editor, Viewtrace, in conjunction with Viewsim. With Viewtrace users can input stimulus from a file or graphically via digital waveforms. Outputs are viewed as digital waveforms that reflect the timing delays of the device as programmed. Viewtrace is interactive, allowing modifications of the stimulus and re-simulation of the results without re-running synthesis tools.

If user inputs violate device specifications the *Warp3* simulator will detect the violation and warn the user. For example, if an input changes immediately before a CLK rise (violating the device set-up time) *Warp3* will issue a warning and highlight the offending signal. The same occurs for all other timing violations.

Programming

After the design is compiled and verified, the targeted device is ready for programming. The program file generated in *Warp3* (a JEDEC file or LOF file) is used as input to a device programmer. Cypress offers an inexpensive programmer, the Impulse3[™] based on Data I/O's ChipLab[™], that programs all Cypress PLDs and FPGAs. Alternatively, customers can use any one of several qualified third party programmers from corporations like Data I/O, SMS and Logical Devices.

System Requirements

PC Platform

80486-based IBM PC Microsoft Windows V3.1 16 Mbytes of RAM 110 Mbytes Disk Space 1.44-Mbyte 3.5-inch floppy disk drive

Sun Platform

SPARC CPU Sun OS 4.1.1 or later

Document #: 38-00242-D

Motif GUI 16 Mbytes of RAM 120 Mbytes of Disk Space Cartridge Tape

HP Platform

HP700 Series CPU OS 9.05 Motif GUI 16 Mbytes of RAM 130 Mbytes of Disk Space Cartridge Tape

Ordering Information

CY3130 Warp3 PLD Development System on the PC includes: 3 1/2-inch 1.44-Mbyte floppy disks Warp3 Viewlogic hardware key Warp3 User's Guide Warp3 Reference Manual Registration Card

CY3131^[1] Warp3 PLD Development System on the PC (for cur-

rent Viewlogic Users of Workview Plus) includes:

3 1/2-inch 1.44-Mbyte floppy disks Warp3 User's Guide Warp3 Reference Manual Registration Card

CY3135 *Warp3* PLD Development System on a UNIX/SUN Workstation includes:

Three Cartridge Tapes

- 1) Viewlogic Software
- 2) Warp3 Software
- 3) Viewlogic On-line Documentation
- Warp3 User's Guide
- Warp3 Reference Manual
- Registration Card

CY3136^[2] Warp3 PLD Development System on a UNIX/SUN Workstation (for current Viewlogic Users of Powerview) includes:

One Cartridge Tapes of Warp3 Software Warp3 User's Guide

Warp3 Reference Manual

Registration Card

Notes:

- 1. This is a "Bolt-in" Solution and requires the customer to be a current User of Viewlogic's Workview Plus S/W
- 2. This is a "Bolt-in" Solution and requires the customer to be a current User of Viewlogic's Powerview S/W.

PRELIMINARY

CY3140

/Synario[™] Design Software ΤM ABEI Kit for FLAsh370[™]

Features

- Device independent design entry formats: - ABEL-HDL for ABEL-4, ABEL-5, and ABEL-6 --- Schematic entry, VHDL, and ABEL-HDL for Synario™
- Full integration supporting all ABEL[™] and Synario[™] design features
- Supports the full family of FLASH370[™] devices
- Graphical device simulator included (CYPSIM)
- Automatic installation into existing ABEL and Synario environment
- Available on PC and Sun workstation design platforms

Introduction

The seamless integration of Data I/O's ABEL or Synario software design environment and the Cypress FLASH370 ABEL fitter offers a powerful solution for fitting ABEL and Synario designs into the Cypress CPLD device family.

Functional Description

The design process in the ABEL environment begins with entering ABEL-HDL (and optional test vectors) using any text editor. The process in Synario is guided by the Project Navigator, and begins with design entry in either schematic, VHDL, or ABEL-HDL. The design can then be functionally simulated at the source-level. It then goes through logic optimization and minimization. The output file then goes into the FLASH370 fitter. Test vectors specified in the ABEL-HDL files are also automatically processed for use in post-fitting device simulation.

The FLASH370 fitter generates a JEDEC file for device programming and post-fitting simulation in CYPSIM. The test vectors will also be read in for functional verification.

The post-fitting simulator, CYPSIM, operates under the Windows environment. It takes JEDEC files as input and can read in and write out stimulus files (e.g. test vectors from ABEL-HDL) for functional verification of the design. Users can edit input waveforms graphically and specify simulation length and resolution interactively. Signals can also be grouped, manipulated, and viewed in various formats.

System Requirements

PC Platform

80486-based IBM PC

Microsoft Windows V3.1

16 Mbytes of RAM

40 Mbytes of disk space

1.44-Mbyte 3.5-inch floppy disk drive

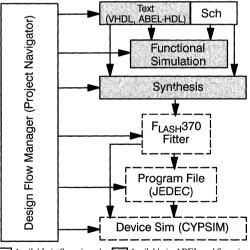
Sun Platform

SPARC CPU Sun OS 4.1 or later Motif GUI 16 Mbytes of RAM 50 Mbytes of disk space

Ordering Information

CY3140 ABEL/Synario Development System for FLASH370 includes:

ABEL Fitter Software on 31/2-inch 1.44-Mbyte floppy disks for PCs


ABEL Fitter Software on 3¹/₂-inch 1.44-Mbyte floppy disks for Sun

ABEL Fitter User's Guide

Warp2[™] Software on 3½-inch 1.44-Mbyte floppy disks Warp2 User's Guide

Warp2 Synthesis Reference

Registration Card

Available in Synario only Available in ABEL and Synario Cypress FLASH370 ABEL Fitter Kit

Figure 1. ABEL/Synario Design Flow

Document #: 38-00431-A

ABEL and Synario are trademarks of Data I/O Corporation FLASH370 and Warp2 are trademarks of Cypress Semiconductor Corporation

PRELIMINARY

CY3141

Warp3[™] PROSeries[™] Bolt-In

Features

- Seamless integration into Viewlogic's PROSeries design environment to provide state-of-the-art PLD/CPLD/FPGA design, synthesis, and simulation. Highlights include:
 - Hierarchical schematic design entry or mixed-mode entry with VHDL
 - IEEE1164 VHDL synthesis provides design retargetablity
 - Full timing simulation and waveform analysis
 - Full Cypress programmable logic device support
- Viewlogic's PROSeries design environment provides:
 - Advanced graphical user interface for Windows™
 - Schematic capture (PROcapture)
 - Symbol generator (PROgen)
 - Interactive timing simulator (PROsim)
 - Waveform analyzer (PROwave)
- The core of *Warp3*[™] bolt-in is an IEEE1164 and 1076 standard VHDL compiler:
 - --- VHDL is a powerful IEEE standard design language
- Support for ALL Cypress UltraLogic[™] devices:
 - --- small PLDs (e.g. 22V10)
 - --- MAX340 CPLD family
 - FLASH370[™] family
 - --- pASIC38x FPGA family

Functional Description

The *Warp3* PROSeries Bolt-In is an integration of Cypress's advanced VHDL synthesis and fitting technology into the customer's existing Viewlogic PROSeries CAE design environment.

Design Flow

Figure 1 is a block diagram of the typical design flow of the *Warp3* PROSeries design environment.

The Warp3 PROSeries design flow begins with design entry which . can be done using schematic symbols, text (VHDL), or a combination of both schematic and text. Schematics are entered using the schematic capture tool (PROcapture), and lower-level schematics can be generated into symbols (PROgen) to be used in higher levels, providing a hierarchical design structure. Designs can also be entered in VHDL, and if desired, a symbol can be created for this VHDL block and placed in the schematic. This is especially powerful since some designs (i.e., state machines) are much easier to implement in VHDL than in schematic.

After design entry, all schematic designs are converted to IEEE1164 VHDL (EXPTVHDL in PROcapture). The next step is to compile and synthesize the exported VHDL design (Galaxy). Designs can be targeted to PLDs, CPLDs, and FPGAs. For PLDs, and CPLDs, a JEDEC file is generated for device programming, and timing models are generated for timing simulation. For FPGAs a QDIF file is produced for place and route.

For FPGAs, the next step would be to place and route (SpDE). The place and route result is saved, and a LOF file is generated for device programming. Timing models are also generated for simulation purposes.

Post-synthesis simulation for all PLDs, CPLDs, and FPGAs is done using the timing simulator (PROsim). Waveform analysis of the simulation results can also be done (PROwave).

(see Figure 1)

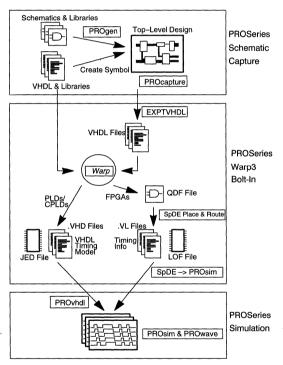


Figure 1. Warp3 PROSeries Design Environment

System Requirements

For PCs IBM PC-AT or equivalent (486 or higher recommended) PC-DOS version 3.3 or higher 16 Mbytes of RAM EGA or VGA display 35-Mbyte hard disk space 1.44-Mbyte floppy disk drive Two- or three-button mouse Microsoft Windows Version 3.1 **Ordering Information**

CY3141 Warp3 PROSeries Bolt-In: 3¹/₂-inch, 1.4-Mbyte floppy disks Warp3 PROSeries Users Guide Warp Synthesis Reference Registration Card

Document #: 38-00478

pASIC is a trademark of QuickLogic. Warp3, UltraLogic, and FLASH370 are trademarks of Cypress Semiconductor Corporation. Windows is a trademark of Microsoft Corporation. PROSeries is a trademark of ViewLogic Corporation.

PRELIMINARY

Synopsys[™] Design Software Kit for pASIC380[™]

Features

- High-level design methodology: VHDL and Verilog input formats
- Supports all Synopsys design features
- Seamless integration using EDIF 2 0 0 format as interface
- Supports the full family of pASIC380 devices
- Available on Sun workstation design platforms

Introduction

Users of the Synopsys Design Compiler can now access Cypress's pASIC380 family of FPGA devices through the seamless integration of the Synopsys Design Software Kit. The kit includes an extensive design macro library for Synopsys and the Warp[™] SpDE place & route tool.

Functional Description

Design entry in the Synopsys design environment begins with the input of VHDL, Verilog, or a variety of other netlist formats. The design can then be functionally simulated using the VHDL System Simulator (VSS). It then goes through a synthesis and technology mapping process (utilizing the pASIC380 design macro library elements). All Synopsys design methodologies like constraint-driven optimization, finite-state machine extraction, and automatic/ manual pad placements are fully supported. The synthesis output (in EDIF 2 0 0 format) then goes into Warp SpDE for place & route.

The SpDE place and route tool accepts the EDIF file as input. SpDE generates a LOF file for device programming and timing models (e.g., Verilog, LMC EDIF) for post-synthesis device simulation in many third-party simulators including VSS.

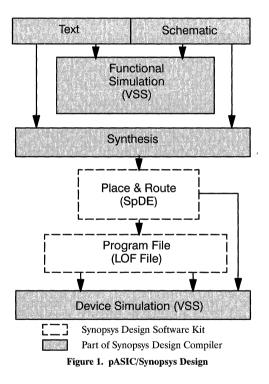
System Requirements

Sun Platform SPARC CPU Sun OS 4.1 or later Motif GUI 16 Mbytes RAM 50 Mbytes of disk space Floppy drive (for Synopsys libraries)

Document #: 38-00432-A

pASIC is a trademark of QuickLogic. Warp, Warp2, and Warp2+are trademarks of Cypress Semiconductor Corporation. Synopsys is a trademark of Synopsys Corporation.

Ordering Information


CY3146 Synopsys pASIC380 FPGA Design Software (Sun-based) includes:

- 3¹/₂-inch disk Sun version pASIC FPGA Synopsys Library (1 disk)
- User's Guide

Registration Card, and

- CY3125 Warp2+ for Sun Package which includes:
 - Warp Synthesis Reference

Warp2[™] User's Guide Warp2+ Software for SUN (1 cartridge)

CY3500

Impulse3[™] Device Programmer and Adapters

Features

- OEM version of Data I/O ChipLab™
- Programs all Cypress PROMs, EPROMs, PLDs, CPLDs, and FPGAs
- Modular for easy device-specific support
- · Easy to use Windows-based, PC interface
- New device support available with software changes on floppy disk and Cypress bulletin board
- DIP adapter included with base unit
- Mouse-driven user interface
- On-line documentation and device support list
- One-year warranty
- Dimensions of CY3500 are 25 x 25 x 7.6 cm or 9.75 x 9.75 x 3 in. and the weight is 1.02 kg or 2.25 lbs.

Functional Description

Impulse3[™] is Cypress's OEM version of the Data I/O ChipLab. It provides programming support for all of Cypress's programmable devices. The programmer uses a PC interface to provide an easily accessible programming environment. The PC's parallel port is used to communicate with the programmer, and device-specific adapters and drivers to ensure that you get the specific device support you need for your programming application.

CY3500 uses industry standard JEDEC, HEX (for PROMs), and LOF (for pASIC380) data format for programming and can be upgraded by Data I/O to support products from other vendors.

System Requirements

The CY3500 works with your IBM compatible PC computer. The minimum system requirements are:

- One free parallel port
- Minimum 2-MB extended memory
- Intel 386, 486, or Pentium processor
- DOS version 3.3 or higher
- 5 MB of free hard disk space for the programmer drivers and programs
- High Density floppy disk drive (3.5-inch)
- Microsoft compatible mouse

Device Support

Impulse3 is sold modularly and supports all Cypress Programmable products. The base unit (CY3500) supports DIP devices up to 44 pins. For other device/package combinations, an adapter is required. In addition, devices over 44 pins require a high pin-count adapter (CY3501A).

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Input Voltage
Programmer Voltage $24V (AC \text{ or } DC) \pm 10\%$
Programmer Current $AC = 1.67 \text{ Å}, DC = 1.25 \text{ Å}$
Operating Temperature 0°C to 40°C
Storage Temperature40°C to 55°C
Relative Humidity (Operating) 20% to 80%
Relative Humidity (Storage) 10% to 90%
Operating Altitude to 5,000 Meters
Storage Altitude to 15,000 Meters

Impulse3 and FLASH370 are trademarks of Cypress Semiconductor Corporation. ChipLab is a trademark of Data I/O. pASIC is a trademark of Quicklogic Corporation.

Ordering Information

Part Number	nber Description			
CY3500	Impulse3 base unit and DIP adapter for all DIP packaged devices.			
CY3501A	Adapter for high pin count devices including pASIC380 and FLASH370 families			
CY3509	28-pin PLCC for MAX340			
CY3511	44-pin PLCC PPI for the MAX340			
CY3512	44-pin PLCC PPI for the FLASH370			
CY3513	44-pin PLCC PPI for pASIC380			
CY3514	68-pin PLCC PPI for MAX340			
CY3515A	68-pin PLCC PPI for pASIC380			
CY3516	84-pin PLCC PPI for MAX340			
CY3517	84-pin PLCC PPI for FLASH370			
CY3518	84-pin PLCC PPI for pASIC380			
CY3519	160-pin TQFP PPI for FLASH370			
CY3521	144-pin TQFP PPI for CY7C386A			
CY3522	100-pin TQFP PPI for FLASH370			
CY3523	100-pin TQFP PPI for pASIC380			
CY3524	100-pin PGA PPI for MAX340			
CY3525	145-pin PGA PPI for pASIC380			
CY3526	85-pin PGA PPI for MAX340			
CY3527	85-pin PGA PPI for FLASH370			
CY3528	85-pin PGA PPI for pASIC380			
CY3529	69-pin PGA PPI for MAX340			
CY3530	69-pin PGA PPI for pASIC380			
CY3535	100-pin TQFP PPI for MAX340			
CY3536	84-pin PLCC for MAX340			
CY3537	160-pin CPGA PPI for FLASH370			
CY3538	160-pin CQFP for pASIC380			
CY3541	160-pin CQFP PPI for FLASH370			
CY3542	160-pin MCR PPI for FLASH370			
CY3543	160-pin MCR PPI for pASIC380			
CY3546	44-pin TQFP PPI for FLASH370			
CY3547	208-pin PQFP PPI for pASIC380			
CY3548	144-pin TQFP PPI for CY7C387A			
CY3004A	28-pin LCC adapter for PAL22V10			
CY3005	20-pin LCC adapter for PAL20, PALC20 families			
CY3006A	28-pin PLCC adapter for PAL22V10			
CY3007	20-pin PLCC adapter for PAL20, PALC20 families			
CY3008	28-pin LCC adapter for 265, 269, 330, 331, 332, 335			
CY3009	28-pin PLCC adapter for 265, 269, 330, 331, 332, 335			
CY3010	28-pin LCC adapter for 20G10, 20RA10			
CY3011	28-pin PLCC adapter for 20G10, 20RA10			
CY3014	24-pin SOIC adapter for CY7C251			
CY3017	32-pin PLCC adapter for CY7C251			
CY3019	24-pin CerPack adapter for 245, 261, 263, 291			
CY3020	28-pin CerPack adapter for 251, 330, 331, 332, 271, 265			

Part Number	Description			
CY3021	20-pin CerPack adapter for PAL20, PALC20, families			
CY3024	-pin LCC adapter for 256, 266, 271, 274, 277, 279, 286			
CY3027	32-pin LCC adapter for CY7C287			
CY3043	32-pin PLCC adapter for CY7C201			
CY3044	32-pin PLCC adapter for 256, 271, 266, 274, 277, 279, 286			
CY3045	32-pin PLCC adapter for CY7C287			

Document #: 38-00374-A

Third-Party Tool Support

Support for Cypress programmable logic devices is available in many software products from third-party vendors. Some companies include support for the entire design process in products that they sell. Others provide software for a portion of the design process (i.e., schematic capture, synthesis, or simulation) and interface with Cypress's *Warp*^{**} software tools to complete the design flow. This section will describe the design flow using these third-party software products and Will describe the interface between these products and Cypress's *Warp* software.

In describing the design flow through these tools, it is useful to break the process into its major functional blocks. *Figure 1* shows these blocks. A similar figure is included for each of the third-party products, and the portions of this flow that are covered by that product are highlighted. Where applicable, the portion of the flow covered by Cypress's *Warp* software is also highlighted.

At the top of each figure are the "Text" and "Sch" blocks. These represent hardware description language (HDL) entry and schematic capture, respectively. Some tools offer design simulation at the design entry stage. This is known as "pre-synthesis" simulation, and is represented by "Simulation" block.

After design entry and simulation are complete, the design description is synthesized. The "Synthesis" block represents the translation of the design description into logic equations, and the optimization of these equations to a device architecture. If targeting a small PLD or CPLD, the next step is device fitting, represented by the "Fitting" block. Here, the logic equations are mapped into the resources of the device. If targeting an FPGA, the next step is automatic place and route, the "APR" block on the figure. Place and route consists of mapping the logic equations into the FPGA logic cells, determining the placement of these logic cells in the device, and the connections between logic cells via routing channels. The result of both "Fitting" and "APR" is a file used to program the device.

The last block in the flow diagram is "Device Sim." This corresponds to simulation of the design according to its implementation in the device. Some simulators will take the timing parameters (i.e., propagation delay) of the device into account, and will provide simulation results consistent with this timing. Others will verify that the programming file is functionally consistent with the design description, but will not contain device timing information.

Finally, along the left of the diagram is the Design Flow Manager. The Design Flow Manager keeps track of the design process for the user. This module typically informs the designer which steps of the design flow have been completed and which have not. This flow manager can also be used to launch vendor tools such as *Warp* synthesis and SpDE place and route.

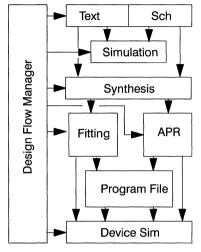


Figure 1

Contents			
Company Product			
Acugen	AAQL/ATGEN		
Aldec	Active-CAD		
Cadence	Concept, Composer		
Cadence	PIC Designer		
Data I/O	ABEL4/ABEL5/ABEL6		
Data I/O	Synario		
Exemplar Logic	Galileo		
Flynn Systems	FS-ATG		
Intergraph	Veribest		
Isdata	LOG/iC		
IST	ASYL+		
Logical Devices	CUPL		
Mentor	Design Architect		
Mentor	PLD Synthesis II		
MicroSim	PLSyn		
MINC	PLDesigner-XL		
Orcad	PLD386+		
Orcad	Capture for Windows		
Synopsys	Design Compiler		
Synplicity	Synplify		
ViewLogic	PROSeries		
ViewLogic	Workview+, PowerView		

Acugen

Product

AAQL/ATGEN

Device Support

Small PLDs, MAX340[™], FLASH370[™], pASIC380[™]

Input Format

JEDEC file or EDIF

Required Cypress Product

Warp2[™], Warp2+[™], or Warp3[™] for small PLDs, MAX340, and FLASH370

Warp2+ or Warp3 for pASIC380

Design Flow Description

Acugen's ATGEN software can automatically generate test vectors to be used with device programmers or with automatic test equipment (ATE) for Cypress PLDs, CPLDs, and FPGAs. For small PLDs and CPLDs, the JEDEC file output by *Warp* is read into the ATGEN software, where test vectors are generated for the design. ATGEN can output a JEDEC file with test vectors to be used on a device programmer, or a test program to be used on a tester. For FPGAs, the flow is the same, but the EDIF file (.edo) output by *Warp*'s place and route software, SpDE, is first translated to JEDEC format by Acugen's AAQL software.

Aldec

Product

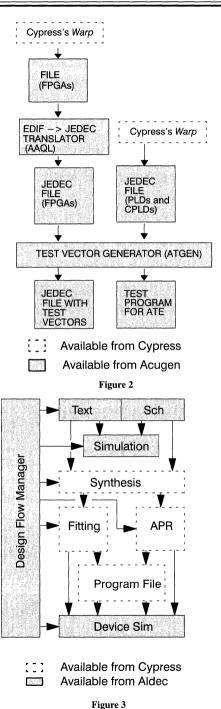
Active-CAD

Device Support

Small PLDs, MAX340, FLASH370, pASIC380

Input Format

Schematic Entry and VHPL


Required Cypress Product

Warp2, *Warp2*+, or *Warp3* for small PLDs, MAX340, and FLASH370

Warp2+ or Warp3 for pASIC380

Design Flow Description

Active-CAD integrates with the *Warp* tools through the Active Design Manager. Designs entered as schematics or VHDL can be functionally simulated and then fed into *Warp* for synthesis and fitting (for small PLDs, MAX340, and FLASH370) or place and route (for pASIC380). The resulting output files can then be used for device-level simulation and device programming.

Cadence Design Systems

Product

Cadence Concept or Cadence Composer

Device Support

Small PLDs, MAX340, FLASH370, pASIC380

Input Format

Schematic Entry and VHDL

Required Cypress Product

*Warp*2[™], *Warp*2⁺, or *Warp*3[™] for small PLDs, MAX340, and FLASH370

Warp2+ or Warp3 for pASIC380

Design Flow Description

Both schematic and textual designs (VHDL) are supported using the Cadence Concept or Composer schematic capture tools. The *Warp* software interfaces to these tools and provides the synthesis, fitting and/or automatic place and route steps of the design flow. Timing information and simulation models are then produced by *Warp* and fed back into the Cadence environment for device-level simulation. Programming files are also produced for device programming.

Cadence Design Systems

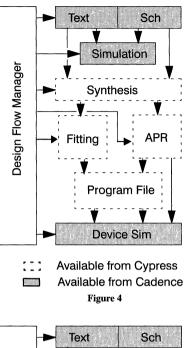
Product

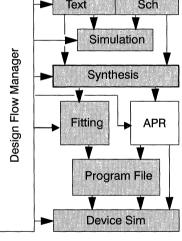
PIC Designer

Device Support

Small PLDs, MAX340, FLASH370

Input Format


Schematic Entry, VHDL, and Verilog


Required Cypress Product

None

Design Flow Description

Both schematic and textual (VHDL) design entry are supported in PIC Designer. Source-code simulation is used to catch design errors before the design is synthesized and fit to a Cypress PLD or CPLD. PIC Designer then synthesizes the design description, optimizes it, and fits it to the target device. A JEDEC file is output for device programming and timing simulation using PIC Designer's simulator.

Available from Cadence Figure 5

PRELIMINARY

Data I/O

Product

ABEL4, ABEL5, and ABEL6

Device Support

Small PLDs, MAX340, FLASH370, pASIC380

Input Format

ABEL-HDL

Required Product

None for Small PLDs or MAX340 Cypress ABEL Fitter Kit for FLASH370 (CY3140) Data I/O pASIC Fitter Kit for pASIC380

Design Flow Description

Designs entered in ABEL-HDL can first be functionally simulated using PLASIM and then go through logic optimization and minimization. The output files from ABEL will then go through fitting or place and route. The resulting output files can then be used for device-level simulation and device programming.

Data I/O

Product

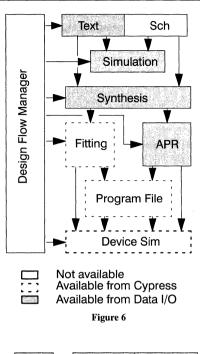
Synario

Device Support

Small PLDs, MAX340, FLASH370, pASIC380

Input Format

Schematic Entry, VHDL, and ABEL-HDL


Required Product

None for Small PLDs or MAX340 Cypress ABEL Fitter Kit for FLASH370 (CY3140)

Data I/O pASIC Fitter Kit for pASIC380

Design Flow Description

The user is guided through the design process by the Project Navigator. Designs can be entered in schematic entry, VHDL, or ABEL HDL. Designs entered can be functionally simulated and then optimized by Synario. The designs will then go through fitting or place and route. The resulting output files can be used for devicelevel simulation and device programming.

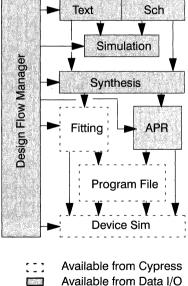


Figure 7

Exemplar Logic

Product

Galileo

Device Support

Small PLDs, MAX340, FLASH370, pASIC380

Input Format

VHDL, Verilog, OpenABEL, Berkeley PLA, EIL, EDIF, ADL, XNF

Required Product

Warp2, *Warp2*+, or *Warp3* for small PLDs, MAX340, and FLASH370

Warp2+ or Warp3 for pASIC380

Design Flow Description

Exemplar Logic's Galileo synthesis software accepts any of the above file formats and synthesizes the logic to any of the Cypress programmable logic devices. Galileo outputs a PLA file that can be read into any of the *Warp* tools, where device fitting and JEDEC (programming file) output occurs for any of the small PLDs, MAX340 CPLDs, or FLASH370 CPLDs. If the target architecture is the pASIC380 FPGA family, Galileo outputs a QDIF file that is read into the *Warp* place and route software. After place and route, a programming file is output. Galileo also provides timing simulation or the design once fitting or place and route have been performed.

Flynn Systems

Product

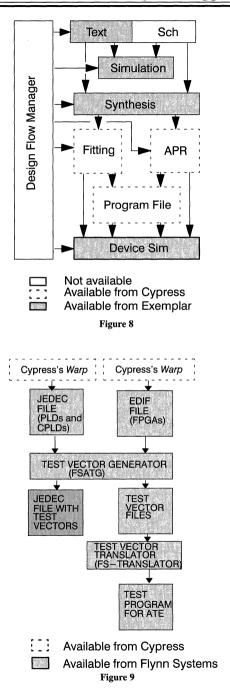
FS-ATG

Device Support

Small PLDs, MAX340, FLASH370, pASIC380

Input Format

JEDEC file or EDIF


Required Cypress Product

Warp2, Warp2+, or Warp3 for small PLDs, MAX340, and FLASH370

Warp2+ or Warp3 for pASIC380

Design Flow Description

Using FS-ATG from Flynn Systems, users can automatically generate test vectors to be used on device programmers or in-circuit testers. For small PLDs and CPLDs, the JEDEC file output by *Warp* is read into the FS-ATG software, where test vectors are generated automatically. The user can enter constraints for this generator as desired. FS-ATG then outputs the JEDEC File with test vectors, to be used on a device programmer. It also outputs test vector files that can be translated for use with an in-circuit tester. This translator will take the test vectors and convert them to an automatic test equipment program. The path for FPGAs is the same, but the input to FS-ATG is an EDIF (.edo) file output by *Warp*'s place and route software, SpDE.

Intergraph

Product

Veribest Design System

Device Support

pASIC380

Input Format

Schematic Entry, Verilog

Required Product

Cypress FPGA Design Kit from Intergraph

Design Flow Description

Design flow begins with setting up a design project with the Design Manager. Design entry can either be schematic (with the ACEPlus Design Capture tool) or Verilog. The design is then compiled into an internal database format using the Compile ACEPlus tool. A Verilog simulation netlist can then be generated for pre-layout simulation. The design is then compiled and synthesized, and an EDIF 2 0 0 output file is generated. This file then goes into the *Warp* SpDE place and route tool. A LOF file is then generated for device programming and timing models for device simulation.

Isdata

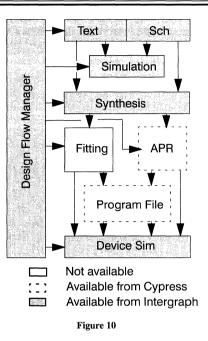
Product

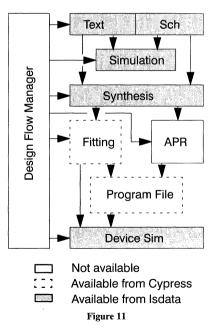
LOG/iC

Device Support

Small PLDs, MAX340, FLASH370

Input Format


LOG/iC-HDL


Required Cypress Product

Warp2, Warp2+, or Warp3

Design Flow Description

Design entry in LOG/iC is done using schematic capture or Isdata's proprietary LOG/iC hardware description language. After design description and debugging of the source code, the design is synthesized and fit to a Cypress PLD or CPLD via the *Warp2*, *Warp2*+, or *Warp3* software. After synthesis and fitting, the software outputs a programming file. Simulation is also available to complete the design flow.

PRELIMINARY

IST

Product

ASYL+

Device Support

Small PLDs, MAX340, FLASH370, pASIC380

Input Format

VHDL, Verilog, Palasm, OpenABEL, and netlists

Required Cypress Product

Warp2, Warp2+, or Warp3 for small PLDs, MAX340, and FLASH370

Warp2+ or Warp3 for pASIC380

Design Flow Description

Designs are entered in HDL or netlist format. After optimization and synthesis, a VHDL file is generated for PLDs/CPLDs, which can be read into *Warp* for fitting. An EDIF or QDIF file can also be generated for pASIC, which would then go into the *Warp* SpDE tool for place and route. Simulation capability is also available from Cypress as well as many other third party tool vendors.

Product

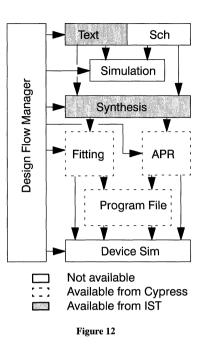
CUPL

Device Support

Small PLDs, MAX340, FLASH370, pASIC380

Input Format

CUPL-HDL


Required Cypress Product

None for small PLDs, MAX340, and FLASH370

Warp2+ or Warp3 for pASIC380

Design Flow Description

Design entry is done using Logical Devices' proprietary CUPL hardware description language. Source-code simulation is used to catch design errors before the design is synthesized and fit to a Cypress device. If the user is targeting a pASIC380 FPGA, a QDIF file is output by CUPL and read into Cypress's *Warp2*+ or *Warp3* tool. The design is then placed and routed in the FPGA and a programming file is output.

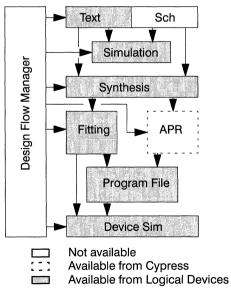


Figure 13

Mentor Graphics

Product

Design Architect

Device Support

Small PLDs, MAX340, FLASH370, pASIC380

Input Format

Schematic Entry and VHDL

Required Cypress Product

Warp2, *Warp2*+, or *Warp3* for small PLDs, MAX340, and FLASH370

Warp2+ or Warp3 for pASIC380

Design Flow Description

Both schematic and textual designs (VHDL) are supported using the Mentor Design Architect schematic capture tool. The *Warp* software interfaces to this tool and provides the synthesis, fitting and/or automatic place and route steps of the design flow. Timing information and simulation models are then produced by *Warp* and fed back into the Mentor environment for device-level simulation. Programming files are also produced for device programming.

Mentor Graphics

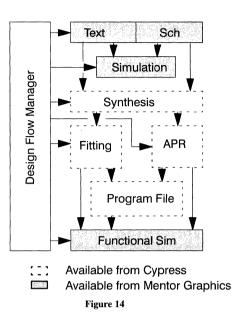
Product

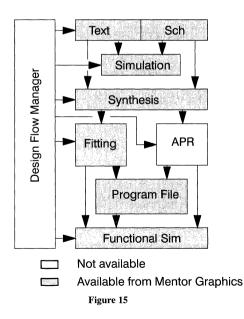
PLDSynthesis II

Device Support

Small PLDs, MAX340, FLASH370

Input Format


Schematic Entry and VHDL


Required Cypress Product

None

Design Flow Description

Both schematic and textual (VHDL) design entry are supported in PLDSynthesis II. Source-code simulation is used to catch design errors before the design is synthesized and fit to a Cypress PLD or CPLD. PLDSynthesis II then synthesizes the design description, optimizes it, and fits it to the target device. A JEDEC file is output for device programming and timing simulation using PLDSynthesis II's simulator.

MicroSim

Product

PLSyn

Device Support

Small PLDs, MAX340, and FLASH370

Input Format

Schematic entry and VHDL

Required Cypress Product

None

Design Flow Description

Both schematic and textual (VHDL) design entry are supported in PLSyn. Source-code simulation is used to catch design errors before the design is synthesized and fit to a Cypress PLD or CPLD. PLSyn then synthesizes the design description, optimizes it, and fits it to the target device. A JEDEC file is output for device programming and timing simulation using PLSyn's simulator.

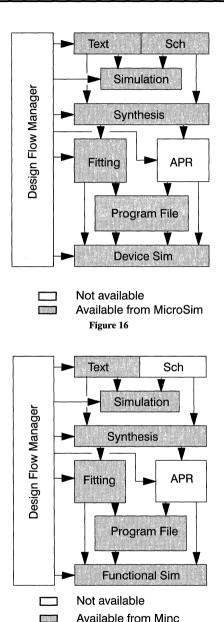


Figure 17

Minc

Product

PLDesigner-XL

Device Support

Small PLDs, MAX340, and FLASH370

Input Format

Minc "Design Synthesis Language" (DSL)

Required Cypress Product

None

Design Flow Description

Design entry is done in PLDesigner-XL using Minc's proprietary hardware description language, DSL. Designs written in DSL are device-independent, but can be made device specific using a physical information file. After entering the design, the user enters constraints for logic synthesis, which includes support for partitioning the design to several PLDs or CPLDs. PLDesigner-XL generates several solutions based on these constraints, and generates a JEDEC programming file for each device targeted. After fitting, the user can functionally simulate the design using Minc's simulator.

Orcad

Product

PLD386+

Device Support

Small PLDs, MAX340, FLASH370

Input Format

Orcad-HDL

Required Cypress Product None

Design Flow Description

PLD386+ interfaces to the other tools in Orcad's design software suite to provide complete design entry, synthesis, and simulation. Designs are entered using Orcad's proprietary design language, or by Orcad's schematic capture software. After design description and debugging of the source code, the design is synthesized and fit to a PLD or CPLD from within the PLD386+ software. PLD386+ outputs the programming file, which is also used for device timing simulation to complete the design flow.

Orcad

Product

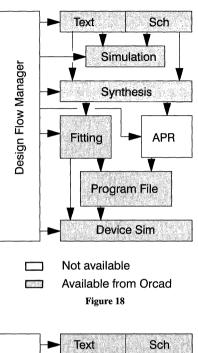
Capture for Windows

Device Support

Small PLDs, MAX340, FLASH370, pASIC380

Input Format

Schematic Entry


Required Cypress Product

Warp2, *Warp2*+, or *Warp3* for small PLDs, MAX340, and FLASH370

Warp2+ or Warp3 for pASIC380

Design Flow Description

Both schematic and textual designs (VHDL) are supported using the Orcad Capture for Windows schematic capture tool. The *Warp* software interfaces to this tool and provides the synthesis, fitting and/or automatic place and route steps of the design flow. Timing information and simulation models are then produced by *Warp* and fed back into the Orcad environment for device-level simulation. Programming files are also produced for device programming.

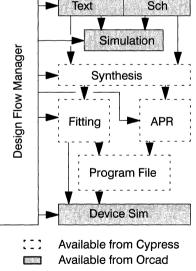


Figure 19

Synopsys

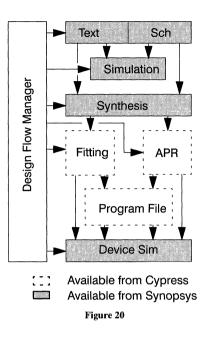
Product

Design Compiler

Device Support

FLASH370, pASIC380

Input Format


VHDL and Verilog

Required Product

Synopsys Design Software Kit for FLASH370 Synopsys Design Software Kit for pASIC380 (CY3146)

Design Flow Description

Designs are entered in either HDL, or netlist format. It can then be functionally simulated using the VHDL System Simulator (VSS). The next step in the process is logic optimization and technology mapping. The output then goes into the *Warp* SpDE place and route tool, or *Warp* fitter, and programming and simulation files are generated for device programming and device-level simulation with VSS.

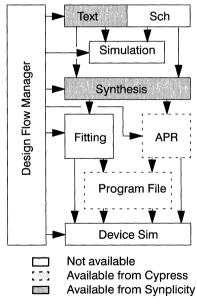


Figure 21

Synplicity

Product

Synplify

Device Support

pASIC380

Input Format

VHDL and Verilog

Required Cypress Product

Warp2+ or Warp3 for pASIC380

Design Flow Description

Designs are entered in VHDL or Verilog for synthesis with the Synplicity software. The output of synthesis is then fed into the *Warp* place and route software for pASIC380 designs. The place and route software generates the device programming file as well as the simulation model with timing information. Simulation capability is available from Cypress as well as many other third party tool vendors.

ViewLogic

Product

PROSeries™

Device Support

Small PLDs, MAX340, FLASH370, pASIC380

Input Format

Schematic Entry and VHDL

Required Product

Warp3 PROSeries Bolt-In (CY3141)

Design Flow Description

Schematics and/or VHDL files can be used for design entry. The PROSeries design will then be exported into a VHDL file, which would go into the *Warp3* PROSeries Bolt-In for optimization and synthesis. For PLDs and CPLDs, the design will then go through fitting, resulting in a JEDEC file for device programming and timing models for device-level simulation. For pASIC380 devices, a QDF file will be generated, which will go into the SpDE place and route tool within the PROSeries Bolt-In. A LOF file will be generated for device programming, while timing models will be generated for device-level simulation.

ViewLogic

Product

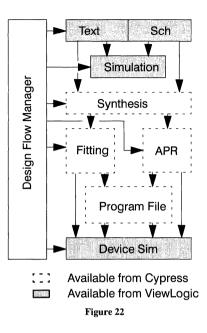
Workview Plus, Powerview

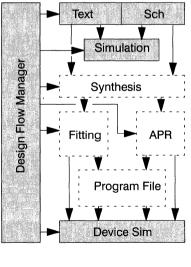
Device Support

Smal PLDs, MAX340, FLASH370, pASIC380

Input Format

Schematic entry and VHDL


Required Cypress Product


Warp3 Workview Plus Bolt-In (CY3131)

Warp3 Powerview Bolt-In (CY3136)

Design Flow Description

Schematics and/or VHDL files can be used for design entry. The design will then be exported into a VHDL file, which would go into the *Warp3* Bolt-In for optimization and synthesis. For PLDs and CPLDs, the design will then go through fitting, resulting in a JE-DEC file for device programming and timing models for device-level simulation. For pASIC380 devices, a QDF file will be generated, which will go into the SpDE place and route tool within the *Warp3* Bolt-In. A LOF file will be generated for device-level simulation.

Available from Cypress Available from ViewLogic

Figure 23

PRELIMINARY

Company Addresses

ACUGEN Software Inc. 427-3 Amherst Street Suite 391 Nashua, NH 03063 (603) 881-8821 Aldec 3525 Old Conejo Road Suite 111 Newbury Park, CA 91320 (805) 499-6867 Cadence Design Systems, Inc. 555 River Oaks Parkway San Jose, CA 95134 (408) 943-1234 Data I/O 10525 Willows Rd. N.E. P.O. Box 97046 Redmond, WA 98073 (206) 881 - 6444Exemplar Logic 815 Atlantic Avenue Suite 105 Alameda, CA 94501-2274 (510) 337 - 3700Flynn Systems Corporation Exit 4 Office Building 7 1/2 Harris Road Nashua, NH 03062 (603) 891-1111 Intergraph Corporation 1 Madison Industrial Park Huntsville, AL 35894 (205) 730–2000 ISDATA GmbH Haid-und-Neu-Strasse 7 D-7500 Karlsruhe 1 Germany (0721) 69 30 92 ISDATA, Inc.

P.O. Box 19278 Oakland, CA 94619 (510) 531-8553 IST 5201 Great America Parkway, Suite 320 Santa Clara, CA 95054 (408) 982-2557

Logical Devices Inc. 692 S. Military Trail Deerfield Beach, FL 33442 (305) 428–6868

MINC Inc. 6755 Earl Rd. Colorado Springs, CO 80918 (719) 590-1155

Mentor Graphics 8005 SW Boeckman Road Wilsonville, OR 97070-7777 (503) 685-8000

MicroSim Corporation 20 Fairbanks Irvine, CA 92718 (714) 770–3022 OrCAD

3175 NW Aloclek Dr. Hillsboro, OR 97124 (503) 690–9881 Synopsys 700 E. Middlefield Rd. Mountain View, CA 94043–4033 (415) 962–5000 Synplicity 465 Fairchild Drive Suite 115 Mountain View, CA 94043 ViewLogic Systems, Inc.

293 Boston Post Road West Marlborough, MA 01752

Warp, Warp2+, and FLASH370 are trademarks of Cypress Semiconductor Corporation. MAX is a trademark of Altera Corporation. pASIC is a trademark of Quicklogic Corporation. PROSeries is a trademark of ViewLogic Corporation.

Document #: 38-00371-A

5-34

GENERAL INFORMATION	
SMALL PLDs	
CPLDs	
FPGAs	
DEVELOPMENT SYSTEMS	
QUALITY	
PACKAGES	

Table of Contents

Table of Contents

Page Number

Quality

Quality, Reliability, and Process Flows	6-1
pASIC380 Family	6-16
CY7C380 Family Quick Power Calculator	6-29
Moisture-Sensitive Devices Handling Information	6-34
Thermal Management and Component Reliability	6-36

Quality, Reliability, and Process Flows

Corporate Views on Quality and Reliability

Cypress believes in product excellence. Excellence can only be defined by how the users perceive both our product quality and reliability. If you, the user, are not satisfied with every device that is shipped, then product excellence has not been achieved.

Product excellence does not occur by following the industry norms. It begins by being better than one's competitors, with better designs, processes, controls and materials. Therefore, product quality and reliability are built into every Cypress product from the start.

Some of the techniques used to insure product excellence are the following:

- Product Reliability is built into every product design, starting from the initial design conception.
- Product Quality is built into every step of the manufacturing process through stringent inspections of incoming materials and conformance checks after critical process steps.
- Stringent inspections and reliability conformance checks are done on finished product to insure the finished product quality requirements are met.
- Field data test results are encouraged and tracked so that accelerated testing can be correlated to actual use experiences.

Product Assurance Documents

Cypress Semiconductor uses MIL-STD-883 and MIL-I-38535 as baseline documents to determine our Test Methods, Procedures and General Specifications for Semiconductors.

Customers using our commercial and industrial grade product receive the benefit of a military patterned process flow at no additional charge.

Product Testing Categories

Five different testing categories are offered by Cypress:

- 1. Commercial operating range product: 0° C to $+70^{\circ}$ C.
- 2. Industrial operating range product: -40° C to $+85^{\circ}$ C.
- 3. Military Grade product processed to MIL-STD-883; Military operating range: 55°C to +125°C.

 QML (Qualified Manufacturers Line), JAN (Joint Army Navy), and SMD (Standardized Military Drawing) approved product: Military operating range: - 55°C to +125°C, electrically tested per the applicable Military Drawing.

Categories 1, 2, and 3 are available on all products offered by Cypress Semiconductor. Category 4 is offered on a more limited basis, dependent upon the specific part type in question.

Commercial Product Assurance Categories

Commercial grade devices are offered with two different classes of product assurance. Every device shipped, as a minimum, meets the processing and screening requirements of level 1.

- Level 1: For commercial or industrial systems where the demand for quality and reliability is high, but where field service and device replacement can be reasonably accomplished.
- Level 2: For enhanced reliability applications and commercial or industrial systems where maintenance is difficult and/or expensive and reliability is paramount.

Devices are upgraded from Level 1 to Level 2 by additional testing and a burn-in of 12 hours at 150°C.

Tables 1 and 2 list the 100% screening and quality conformance testing performed by Cypress Semiconductor in order to meet requirements of these programs.

Military Product Assurance Categories

Cypress's Military Grade components and SMD products are processed per MIL-STD-883 using methods 5004 and 5005 to define our screening and quality conformance procedures. The processing performed by Cypress results in a product that meets the class B screening requirements as called out by these methods. Every device shipped, as a minimum, meets these requirements.

QML, JAN, SMD, and Military Grade devices supplied by Cypress are processed for applications where maintenance is difficult or expensive and reliability is paramount. *Tables 3* through 7 list the screening and quality conformance testing that is performed in order to meet the processing requirements required by MIL-STD-883 and MIL-I-38535.

Table 1. Cypress Commercial and Industrial Product Screening Flows—Components					
		Product Temperature Ranges			
		Commerci	al 0°C to +70°C;	Industrial –40°C	to +85°C
		Lev	el 1	Level 2	
Screen	MIL-STD-883 Method	Plastic	Hermetic	Plastic	Hermetic
Visual/Mechanical					
 Internal Visual 	2010	0.4% AQL	100%	0.4% AQL	100%
 Hermeticity – Fine Leak – Gross Leak 	1014, Cond A or B (sample) 1014, Cond C	Does Not Apply Does Not Apply	$\begin{array}{l} \text{LTPD} = 5\\ 100\% \end{array}$	Does Not Apply Does Not Apply	$\begin{array}{l} \text{LTPD} = 5\\ 100\% \end{array}$
Burn-in					
 Pre-Burn-in Electrical 	Per Device Specification	Does Not Apply	Does Not Apply	100%	100%
• Burn-in	Per Cypress Specification	Does Not Apply	Does Not Apply	$100\%^{[1]}$	$100\%^{[1]}$
 Post-Burn-in Electrical 	Per Device Specification	Does Not Apply	Does Not Apply	100%	100%
• Percent Defective Allowable (PDA)		Does Not Apply	Does Not Apply	5% (max) ^[2]	5% (max) ^[2]
Final Electrical	Per Device Specification				
 Static (DC), Functional, and Switching (AC) Tests 	1. At 25°C and Power Supplies Extremes	Not Performed	Not Performed	100%[1]	100%[1]
	2. At Hot Temperature and Power Supply Extremes	100%	100%	100%	100%
Cypress Quality Lot Acceptance					
 External Visual 	2009	Note 3	Note 3	Note 3	Note 3
• Final Electrical Conformance	Cypress Method 17-00064	Note 3	Note 3	Note 3	Note 3

Table 1. Cypress Commercial and Industrial Product Screening Flows-Components

Table 2. Cypress Commercial and Industrial Product Screening Flows-Modules

		Product Temperature Ranges		
		Commercial 0°C to +70°C;	Industrial -40° C to $+85^{\circ}$ C	
Screen	MIL-STD-883 Method	Level 1	Level 2	
Burn-in				
 Pre-Burn-in Electrical 	Per Device Specification	Does Not Apply	100%	
• Burn-in	1015	Does Not Apply	100%	
Post-Burn-in Electrical	Per Device Specification	Does Not Apply	100%	
• Percent Defective Allowable (PDA)		Does Not Apply	15%	
Final Electrical	Per Device Specification			
• Static (DC), Functional, and Switching (AC) Tests	1. At 25°C and Power Supply Extremes	Not Performed	100%	
	2. At Hot Temperature and Power Supply Extremes	100%	100%	
Cypress Quality Lot Acceptance				
 External Visual 	2009	Per Cypress Module Specification	Per Cypress Module Specification	
• Final Electrical Conformance	Cypress Method 17-00064	Note 3	Note 3	

Notes:

1. Burn-in is performed as a standard for 12 hours at 150°C.

 Electrical Test is performed after burn-in. Results of this are used to determine PDA percentage. 3. Lot acceptance testing is performed on everylot. AOQL (the Average Outgoing Quality Level) for 1994 was <100 PPM.

	Screening Per	Product Temperature Ranges -55°C to +125°C		
Screen	Method 5004 of		Military Grade Module	
Visual/Mechanical				
Internal Visual	Method 2010, Cond B	100%	N/A	
Temperature Cycling	Method 1010, Cond C, (10 cycles)	100%	Optional	
• Constant Acceleration	Method 2001, Cond E (Min.), Y1 Orientation Only	100%	N/A	
• Hermeticity: — Fine Leak — Gross Leak	Method 1014, Cond A or B Method 1014, Cond C	100% 100%	N/A N/A	
Burn-in				
 Pre-Burn-in Electrical Parameters 	Per Applicable Device Specification	100%	100%	
• Burn-in Test	Test Method 1015, Cond D, 100 160 Hrs at 125°C Min. or 80 Hrs at 150°C		100% (48 Hours at 125°C)	
• Post-Burn-in Electrical Parameters	Per Applicable Device Specification	100%	100%	
• Percent Defective Allowable (PDA)	Maximum PDA, for All Lots	5% 10%		
Final Electrical Tests				
• Static Tests	Method 5005 Subgroups 1, 2, and 3	100% Test to Applicable Device Specification	100% Test to Applicable Specification	
• Functional Tests	Method 5005 Subgroups 7, 8A, and 8B	100% Test to Applicable Device Specification	100% Test to Applicable Specification	
• Switching	itching Method 5005 100% Test to Subgroups 9, 10, and 11 Applicable Device Specification		100% Test to Applicable Specification	
Quality Conformance Tests				
• Group A ^[5]		Sample	Sample	
• Group B	Method 5005, see	Sample	Sample	
• Group C ^[6]	Tables 4 – 7 for details	Sample	Sample	
• Group D ^[6]		Sample	Sample	
External Visual	Method 2009	100%	100%	

Table 3. Cypress QML/JAN/SMD/Military Grade Product Screening Flows for Class B

Notes:
QML product is allowed a reduction in screening requirements with DESC approval per MIL-I-38535.

Group A subgroups tested for QML/SMD/Military Grade products are 1, 2, 3, 7, 8A, 8B, 9, 10, 11, or per JAN Slash Sheet. 5.

Group C and D end-point electrical tests for QML/SMD/Military Grade products are performed to Group A subgroups 1, 2, 3, 7, 8A, 8B, 9, 10, 11, or per JAN Slash Sheet.

Sub-		Sample Size/	Accept No.
group	Description	Components	Modules ^[7]
1	Static Tests at 25°C	116/0	116/0
2	Static Tests at Maximum Rated Operating Temperature	116/0	116/0
3	Static Tests at Minimum Rated Operating Temperature	116/0	116/0
4	Dynamic Tests at 25°C	116/0	116/0
5	Dynamic Tests at Maximum Rated Operating Temperature	116/0	116/0
6	Dynamic Tests at Minimum Rated Operating Temperature	116/0	116/0
7	Functional Tests at 25°C	116/0	116/0
8A	Functional Tests at Maximum Temperature	116/0	116/0
8B	Functional Tests at Minimum Temperature	116/0	116/0
9	Switching Tests at 25°C	116/0	116/0
10	Switching Tests at Maximum Temperature	116/0	116/0
11	Switching Tests at Minimum Temperature	116/0	116/0

Table 4. Group A Test Descriptions

Cypress uses an LTPD sampling plan that was developed by the Military to assure product quality. Testing is performed to the subgroups found to be appropriate for the particular device type. All Military Grade component products have a Group A sample test performed on each inspection lot per MIL-I-38535/MIL-STD-883 and the applicable device specification.

Table 5. Group B Quality Tests

Sub-		Quantity/A or L'I	
group	Description	Components	Modules ^[7]
2	Resistance to Solvents, Method 2015	3/0	3/0
3	Solderability, Method 2003 ^[8]	22/0	10
5	Bond Strength, Method 2011 ^[9]	15/0	NA

Notes:

7. Military Grade Modules are processed to proposed JEDEC standard flows for MIL-STD-883 compliant modules.

8. Sample size is based upon leads taken from a minimum of 3 devices.

9. Sample size is based upon leads taken from a minimum of 4 devices.

Group B testing is performed for each inspection lot. An inspection lot is defined as a group of material of the same device type, package type and lead finish built within a six week seal period and submitted to Group B testing at the same time.

Table 6.	Group	С	Quality Tests
----------	-------	---	---------------

Sub-		LTPD		
group	Description	Components	Modules ^[7]	
1	Steady State Life Test, End-Point Electricals, Method 1005, Cond D	45/0	15/0	

Group C tests for all Military Grade products are performed on one device type from one inspection lot representing each technology. Sample tests are performed per MIL-I-38535/MIL-STD-883 from each four calendar quarters production of devices, which is based upon the die fabrication date code.

End-point electrical tests and parameters are performed per the applicable device specification.

Table 7. Group D Quality Tests (Package Related)

Sub-		Quantity/Accept # or LTPD			
group	Description	Components	Modules ^[7]		
1	Physical Dimensions, Method 2016	15/0	15/0		
2	Lead Integrity, Seal: Fine and Gross Leak, Method 2004 and 1014	45/0 ^[8]	15/0		
3	Thermal Shock, Temp Cycling, Moisture Resistance, Seal: Fine and Gross Leak, Visual Examination, End- Point, Electricals, Methods 1011, 1010, 1004 and 1014	15/0	15/0		
4	Mechanical Shock, Vibration - Variable Frequency, Constant Acceleration, Seal: Fine and Gross Leak, Visual Examination, End-Point Electricals, Methods 2002, 2007, 2001 and 1014	15/0	15/0		

 Table 7. Group D Quality Tests (Package Related)

(continued)

Sub-		Quantity/Accept # or LTPD		
group	Description	Components	Modules ^[10]	
5	Salt Atmosphere, Seal: Fine & Gross Leak, Visual Examination, Methods 1009 & 1014	15/0	15/0	
6	Internal Water-Vapor Content; 5000 ppm maximum @ 100°C. Method 1018	3(0) or 5(1)	N/A	
7	Adhesion of Lead Finish, ^[11] Method 2025	15/0	15/0	
8	Lid Torque, Method 2024 ^[12]	5(0)	N/A	

Notes:

10. Does not apply to leadless chip carriers.

11. Based on the number of leads.

12. Applies only to packages with glass seals.

Group D tests for all Military Grade products are performed per MIL-I-38535/MIL-STD-883 on each package type from each six months of production, based on the lot inspection identification (or date) codes.

End-point electrical tests and parameters are performed per the applicable device specification.

Product Screening Summary

Commercial and Industrial Product

- · Screened to either Level 1 or Level 2 product assurance flows
- Hermetic and molded packages available
- Incoming mechanical and electrical performance guaranteed:
- 0.02% AQL Electrical Sample test performed on every lot prior to shipment
- 0.01% AQL External Visual Sample inspection
- Electrically tested to Cypress data sheet

Ordering Information

Product Assurance Grade: Level 1

- Order Standard Cypress part number
- Parts marked the same as ordered part number Ex: CY7C122-15PC, PALC22V10-25PI

Product Assurance Grade: Level 2

- Burn-in performed on all devices to Cypress detailed circuit specification
- Add 'B' Suffix to Cypress standard part number when ordering to designate burn-in option
- Parts marked the same as ordered part number Ex: CY7C122-15PCB, PALC22V10-25PIB

Military Grade Product

- SMD and Military Grade components are manufactured in compliance with paragraph 1.2.1 of MIL-STD-883. Compliant products are identified by an 'MB' suffix on the part number (CY7C122-25DMB) and the letter "C"
- QML/JAN devices are manufactured in accordance with MIL-I-38535. Compliant products are identified with the letter "Q."
- Military grade devices electrically tested to:
 - Cypress data sheet specifications

OR

SMD devices electrically tested to military drawing specifications

OR

- JAN devices electrically tested to slash sheet specifications
- All devices supplied in hermetic packages
- Quality conformance inspection: Method 5005, Groups A, B, C, and D performed as part of the standard process flow
- Burn-in performed on all devices
 - Cypress detailed circuit specification for non-Jan devices
 OR

UK .

- Slash sheet requirements for JAN products
 Static functional and switching tests performed at 25°C as well as temperature and power supply extremes on 100% of
- well as temperature and power supply extremes on 100% of the product in every lot
- JAN product manufactured in a DESC certified facility

Ordering Information

JAN/QML Product:

- · Order per military document
- Marked per military document Ex: JM38510/28901BVA

SMD Product:

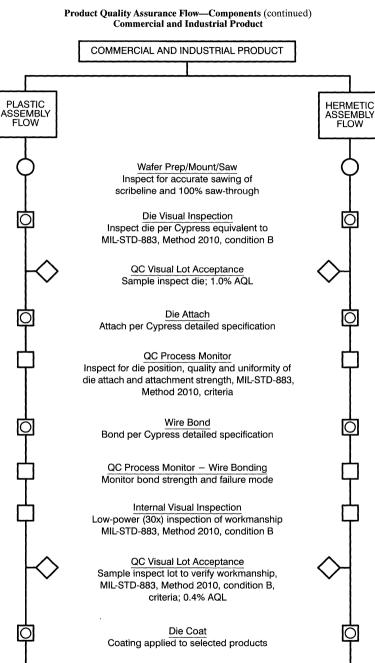
- · Order per military document
- Marked per military document Ex: 5962-8867001LA

Military Grade Product:

- Order per Cypress standard military part number
- Marked the same as ordered part number Ex: CY7C122-25DMB

Military Modules

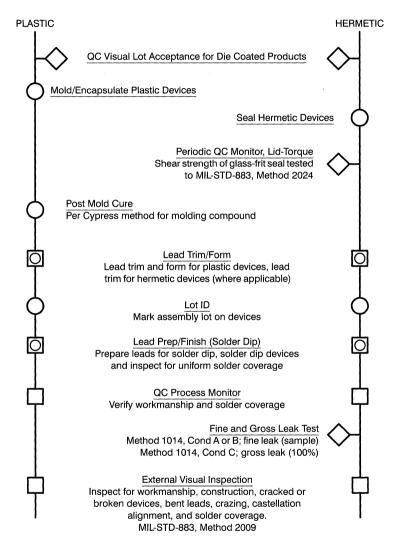
- Military Temperature Grade Modules are designated with an 'M' suffix only. These modules are screened to standard combined flows and tested at both military temperature extremes.
- MIL-STD-883 Equivalent Modules are processed to proposed JEDEC standard flows for MIL-STD-883 compliant modules. All MIL-STD-883 equivalent modules are assembled with fully compliant MIL-STD-883 components.



Product Quality Assurance Flow—Components

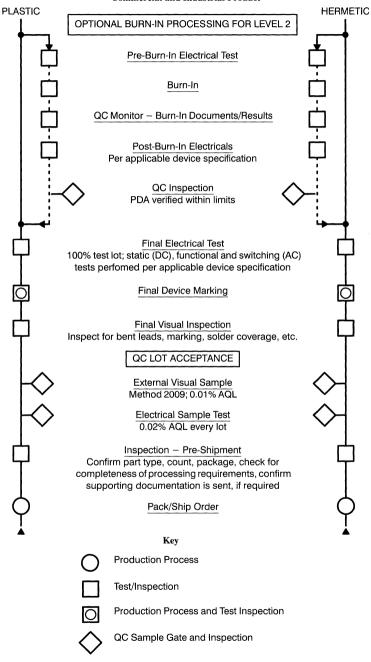
QC INCOMING MATERIALS INSPECTION All incoming materials are inspected to documented procedures covering the handing, inspection, stronge, and release of raw materials used in the manufacture of Cypress products. Materials inspected are: waters, masks, leadframes, ceramic packages and/or piece parts, molding compounds, gases, chemicals, etc. FAB DIFFUSION/ION IMPLANTATION Sheet resistance, implant dose, species and CV characteristics are measured for all critical implants on every product run. Test wafers may be used to collecting application. FAB OXIDATION Sheet resistance, implant dose, species and CV characteristics are measured for all critical implants on every product run. Test wafers may be used to collecting application. FAB OXIDATION Sample wafers and sample sites are inspected on each run from various positions of the fumace load to inspect for oxide thickness. Automated equipment is used to monitor implantation. FAB PHOTOLITHOGRAPHY Appearance of resist is checked by the operator after the spin operation. Also, after the film is developed, both dimensions and appearance are checked by wafer on every product run. FAB METALIZATION Film thickness is monitored on every run. Step coverage cross-sections are performed on a sample of wafers and locations within each given wafer on each run. Pinholes are monitored on a sample of wafers and locations within each given wafer on each run. Pinholes are monitored on a sample of wafers and locations within each given wafer on each run. Pinholes are reviewed with the process control manager. FAB OC VISUAL OF WAFERS Veriety functi	Area	PROCESS	Process Details
IMPLANTATION For all critical implants on every product run. Test wafers may be used to collect this data instead of actual production wafers. If this is done, they are processed with the standard product prior to collecting specific data. This insures accurate correlation between the actual product and the wafers used to monitor implantation. FAB OXIDATION Sample wafers and sample sites are inspected on each run from various positions of the furnace load to inspect for oxide thickness. Automated equipment is used to monitor pinhole counts for various oxidations in the process. In addition, an appearance inspection is performed by the operator to further monitor the oxidation process. FAB PHOTOLITHOGRAPHY Appearance of resist is checked by the operator after the spin operation. Also, after the lim is developed, both dimensions and appearance are checked by the operator on a sample of wafers and locations upon each wafer. Final CDs and alignment are also sample inspected on several wafers in a lot to inspect on a sample of wafers and locations upon each wafer. Final CDs and alignment are also sample inspected on several wafers in a lot to inspect for soratches, particles, bubbles, etc. Film thickness is verified on a sample of wafers and locations within each given wafer on each run. Pinholes are monitored on a sample of wafers and locations within each given wafer on each run. Pinholes are monitored on a sample basis weekly. FAB QC VISUAL OF Weekly review of all data trends; running averages, minimums, maximums, etc. are reviewed with the process control manager. FAB QC MONITOR OF Verify functionality, electrical characteristics, stress test devices. FAB QC CHECK PRO	QC		handling, inspection, storage, and release of raw materials used in the manufacture of Cypress products. Materials inspected are: wafers, masks, leadframes, ceramic packages and/or piece parts, molding compounds, gases,
 FAB PHOTOLITHOGRAPHY FAB PHOTOLITHOGRAPHY FAB PHOTOLITHOGRAPHY FAB PHOTOLITHOGRAPHY Appearance of resist is checked by the operator after the spin operation. Also, atter the film is developed, both dimensions and appearance are checked by the operator as ample of wafers and locations and appearance are checked by the operator on a sample of wafers and locations and appearance are checked by the operator atter the spin operation. Also, atter the film is developed, both dimensions and appearance are checked by the operator on a sample of wafers and locations and appearance are checked by the operator on a sample of wafers and locations and appearance are checked by the operator on a very product run. FAB METALIZATION FIIm thickness is monitored on every run. Step coverage cross-sections are performed on a periodic basis to insure coverage. FAB PASSIVATION FAB PASSIVATION FAB OC VISUAL OF FAB CC VISUAL OF FAB E-TEST FAB E-TEST FAB CC MONITOR OF Electrical test is performed for final process electrical characteristics on every wafer. FAB QC MONITOR OF ETEST DATA FAB QC CHECK PROBING ADD F Verify functionality, electrical characteristics, stress test devices. TEST WAFER PROBE/SORT Verify functionality, electrical characteristics, stress test devices. TO ASSEMBLY AND TEST 	FAB		for all critical implants on every product run. Test wafers may be used to collect this data instead of actual production wafers. If this is done, they are processed with the standard product prior to collecting specific data. This insures accurate correlation between the actual product and the wafers used to monitor
/ETCHING after the film is developed, both dimensions and appearance are checked by the operator on a sample of wafers and locations upon each wafer. Final CDs and alignment are also sample inspected on several wafers and sites on each wafer on every product run. FAB METALIZATION Film thickness is monitored on every run. Step coverage cross-sections are performed on a periodic basis to insure coverage. FAB PASSIVATION Film thickness, particles, bubbles, etc. Film thickness is verified on a sample of wafers and locations within each given wafer on each run. Pinholes are monitored on a sample basis weekly. FAB QC VISUAL OF An outgoing visual inspection is performed on 100% of the wafers in a lot to inspect for scratches, particles, bubbles, etc. Film thickness is verified on a sample of wafers and locations within each given wafer on each run. Pinholes are monitored on a sample basis weekly. FAB QC VISUAL OF Verify Electrical test is performed for final process electrical characteristics on every wafer. FAB QC MONITOR OF Electrical test is performed for final process control manager. FEST WAFER PROBE/SORT Verify functionality, electrical characteristics, stress test devices. TEST QC CHECK PROBING AND ELECTRICAL TEST RESULTS Pass/fail lot based on yield and correct probe placement. TEST TO ASSEMBLY AND TEST	FAB		positions of the furnace load to inspect for oxide thickness. Automated equipment is used to monitor pinhole counts for various oxidations in the process. In addition, an appearance inspection is performed by the opeartor to
 FAB PASSIVATION FAB PASSIVATION FAB QC VISUAL OF WAFERS FAB E-TEST FAB QC MONITOR OF E-TEST DATA TEST WAFER PROBE/SORT TEST WAFER PROBE/SORT TEST QC CHECK PROBING AND ELECTRICAL TEST RESULTS TEST QC CHECK PROBING AND ELECTRICAL TEST RESULTS TO ASSEMBLY AND TEST 	FAB		after the film is developed, both dimensions and appearance are checked by the operator on a sample of wafers and locations upon each wafer. Final CDs and alignment are also sample inspected on several wafers and sites on each
 FAB OC VISUAL OF WAFERS FAB E-TEST FAB OC MONITOR OF E-TEST DATA /ul>	FAB		
WAFERS FAB E-TEST FAB E-TEST FAB QC MONITOR OF E-TEST DATA Weekly review of all data trends; running averages, minimums, maximums, etc. are reviewed with the process control manager. TEST WAFER PROBE/SORT TEST QC CHECK PROBING AND ELECTRICAL TEST RESULTS TO ASSEMBLY AND TEST	FAB	PASSIVATION	inspect for scratches, particles, bubbles, etc. Film thickness is verified on a sample of wafers and locations within each given wafer on each run. Pinholes
 FAB QC MONITOR OF E-TEST DATA TEST WAFER PROBE/SORT TEST QC CHECK PROBING AND ELECTRICAL TEST RESULTS Wafer. Weekly review of all data trends; running averages, minimums, maximums, etc. are reviewed with the process control manager. Verify functionality, electrical characteristics, stress test devices. Pass/fail lot based on yield and correct probe placement. TO ASSEMBLY AND TEST 	FAB		
E-TEST DATA TEST WAFER PROBE/SORT TEST QC CHECK PROBING AND ELECTRICAL TEST RESULTS TO ASSEMBLY AND TEST etc. are reviewed with the process control manager. Verify functionality, electrical characteristics, stress test devices. Pass/fail lot based on yield and correct probe placement. TO ASSEMBLY AND TEST	FAB	E-TEST	
TEST QC CHECK PROBING AND ELECTRICAL TEST RESULTS TO ASSEMBLY AND TEST	FAB		
AND ELECTRICAL TEST RESULTS TO ASSEMBLY AND TEST	TEST		Verify functionality, electrical characteristics, stress test devices.
	TEST	AND ELECTRICAL TEST RESULTS	
		AND TES	

Quality, Reliability, and Process Flows

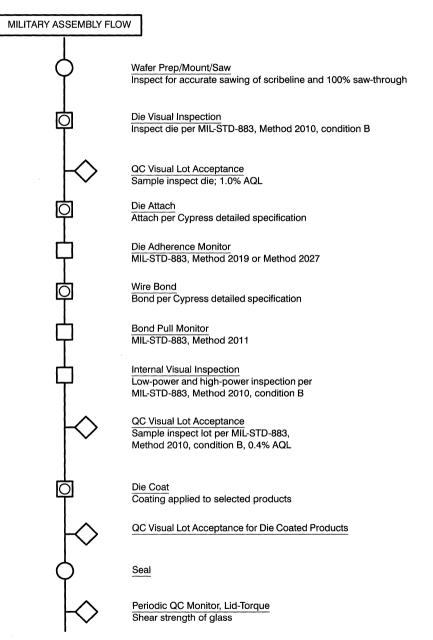


(continued)

6


Product Quality Assurance Flow—Components (continued) Commercial and Industrial Product

(continued)



Product Quality Assurance Flow—Components Military Components

(continued)

Quality, Reliability, and Process Flows

Product Quality Assurance Flow—Components (continued) Military Components

Temperature Cycle Method 1010, Cond C, 10 cycles

Constant Acceleration Method 2001, Cond E, Y1 Orientation

Lead Trim Lead trim when applicable

Lot ID Mark assembly lot on devices

Lead Finish Solder dip or matte tin plate applicable devices and inspect

QC Process Monitor Verify workmanship and lead finish coverage

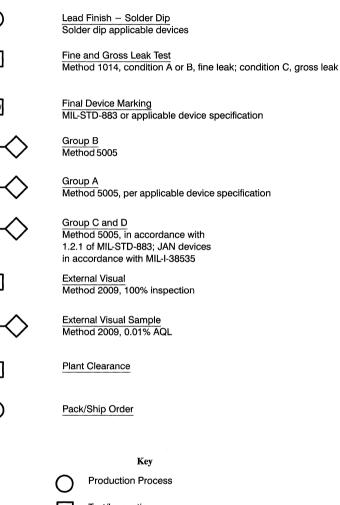
External Visual Inspection Method 2009

Pre-Burn-In Electrical Test Method 5004, per applicable device specification

Burn-In Method 1015, condition D

Post-Burn-In Electricals Method 5004, per applicable device specification

PDA Calculation Method 5004, 5%


Final Electrical Test Method 5004; Static, functional and switching tests per applicable device specification

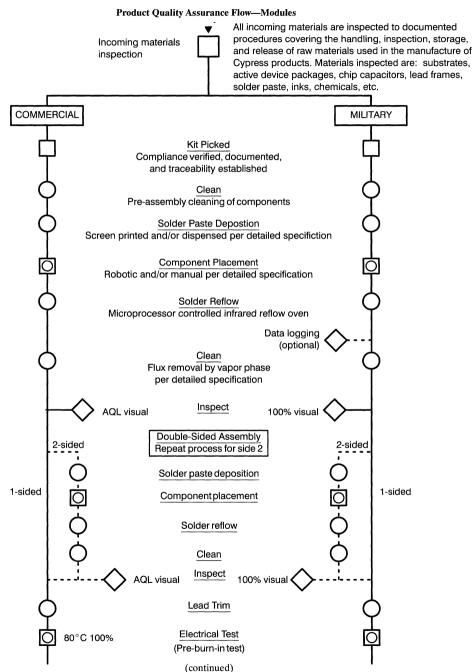
(continued)

en ap ly lo matt <u>Moninansh</u> al Ins <u>ilectr</u> , cor <u>Elect</u>

Product Quality Assurance Flow—Components (continued) **Military Components**

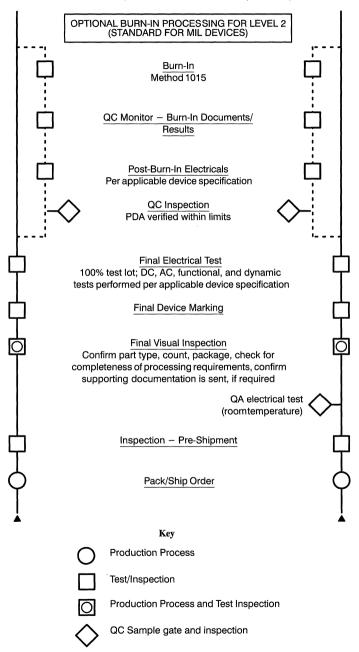
Test/Inspection

Production Process and Test Inspection



QC Sample Gate and Inspection

6 - 12



Quality, Reliability, and Process Flows

Product Quality Assurance Flow-Modules (continued)

Reliability Monitor Program

The Reliability Monitor Program is a documented Cypress procedure that is described in Cypress specification #25-00008, which is available to Cypress customers upon request. This specification describes a procedure that provides for periodic reliability monitors to insure that all Cypress products comply with established goals for reliability improvement and to minimize reliability risks

Stress	Devices Tested	# per Quarter
HTOL	Tech. – Fab.	6
	All High Volume	2
HAST	Tech. – Fab.	6
	All High Volume	2
PCT	Plastic Packages	4
TC	Tech. – Fab.	6
	Plastic Packages	3
	Ceramic Packages	5
	All High Volume	2
DRET	FAMOS – San Jose and Texas	2
HTSSL	All Technologies	4
TEV	All Technologies	4
	Total	46

Quarterly Reliability Monitor Test Matrix

Reliability Monitor Test Conditions

Test	Abbrev.	Temp. (°C)	R.H. (%)	Bias	Sample Size	LTPD	Read Points (hrs.)
High-Temperature Operating Life	HTOL	+150	N/A	5.75V Dynamic	116	2	48, 168, 500, 1000
High-Temperature Steady- State Life	HTSSL	+150	N/A	5.75V Static	116	2	48, 168, 500, 1000
Data Retention for Plastic Packages	DRET	+165	N/A	N/A	76	3	168, 1000
Data Retention for Ceramic Packages	DRET2	+250	N/A	N/A	76	3	168, 1000
Pressure Cooker	PCT	+121	100	N/A	76	3	96, 168
Highly Accelerated Stress Test	HAST	+140	85	5.5V Static	76	3	128
Temperature Cycling 1	TC	-40 to +125°C	N/A	N/A	76	3	500, 1000 Cycles
Temperature Cycling 2	TC2	-65 to +150°C	N/A	N/A	45	5	300, 1000 Cycles
Temperature Extreme Verification	TEV	Commercial Hot & Cold 0 to +70°C	N/A	N/A	116	2	N/A

for Cypress customers. The Reliability Monitor Program monitors our most advanced technologies and packages. Every technology produced at a given fabrication site (Tech. – Fab.) and all assembly houses are monitored at least quarterly. If failures occur, detailed failure analyses are performed and corrective actions are implemented. A summary of the Reliability Monitor Program test and sampling plan is shown below.

Introduction

The Cypress pASIC380 family of very high speed FPGAs is built by integrating the ViaLink[™] metal-to-metal antifuse programming element into a standard highvolume CMOS gate array process.

Reliability testing of pASIC[™] devices is part of a continuous process to insure longterm reliability of the product. It consists of industry-established accelerated life tests for basic CMOS devices plus additional stress tests. The addition of two high-voltage life tests stresses the unprogrammed and programmed ViaLink elements bevond conventional CMOS reliability testing.

Results to date, from the evaluation of over 7000 pASIC380 devices from multiple wafer lots, indicate that the addition of the ViaLink element to a well-established CMOS process has no measurable effect on the reliability of the resulting product. There have been no failures related to the ViaLink element in 210 million equivalent device hours of high-temperature operating life. The observed failure rate is 14 FITs, and the failure rate at a 60% confidence level is 19 FITs.

Process Description

The pASIC380 devices are fabricated using a standard, high-volume 0.65-micron CMOS process with twin-well, single-poly, and double-layer metal interconnect. This technology has been qualified to meet MIL-STD-883D.

The ViaLink element is located in an intermetal oxide via between the first and second layers of metal. It is created by depositing a very high resistance silicon film in a standard size metal one to metal two via. The silicon deposition is done at low temperature and causes no change to the properties of the CMOS transistors. When deposited at low temperatures, silicon forms an amorphous structure that can be electrically switched from a high-resistance state ($\cong 5 \ G\Omega$) to a low-resistance state ($\approx 50\Omega$) for an off-to-on ratio of 10^8 . Cypress takes advantage of this property to create the ViaLink metal-to-metal antifuse programming element (see Figure 1).

The programming voltage of the ViaLink element varies with amorphous silicon thickness. For a desired programming voltage between 10-12 volts, the thickness of the amorphous silicon film is approximately 1000Å. This is ideal for good process control and minimizes the capacitive coupling effect of an unprogrammed element located between the two layers of metal.

Amorphous silicon is deposited with standard semiconductor manufacturing equipment and processing techniques. In addition to antifuse elements, it is used in the high-volume fabrication of image sensors, decode, and drive circuits for flat panel displays, and high-efficiency solar cells

Failure Mechanisms in the pASIC380 Device

A variety of failure mechanisms exists in CMOS integrated circuits. Since the overall failure rate is composed of various fail-

Reliability Report

ure mechanisms, each having different temperature dependence and thus varying time-temperature relationships, it is important to understand the characteristics of each contributing failure mechanism. Table 1 lists nine key failure mechanisms that have been characterized for standard CMOS devices, plus the two mechanisms for the programmed and unprogrammed ViaLink elements.

Various accelerated life tests are used to detect the possible contribution of each mechanism to the overall failure rate of the device. Failure rate data taken at elevated temperature can be translated to a lower temperature through the Arrhenius equation. This equation, in the form of an acceleration factor, Af, can be written as

$$A_f = \exp[-E_a/k(1/T_s - 1/T_o)]$$
 Eq. 1

where Ts is the stress temperature, To is the operating temperature of the device, Ea is the activation energy for that mechanism, and k is the Boltzmann constant.

In Table 1.

- t_{50} = the mean time to failure,
- electric field, Ε =
- Ea = activation energy,
- Boltzmann constant k = $(8.62 \times 10^{-5} \text{ eV}/^{\circ}\text{K}).$
- W ---metal width,
- t = metal thickness.
- J = current density,
- transconductance,
- $g_m = V_T =$ threshold voltage.
- Т absolute temperature,
- RH =relative humidity,
- D = diffusion constant.
- A, m, and p are constants.

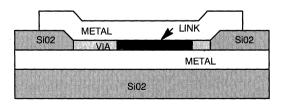
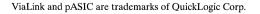



Figure 1. Cross Section of a ViaLink Antifuse

Failure Mechanism	t ₅₀ Dependence	Activation Energy (E _a)	Detection Tests		
Insulator breakdown (leakage, opens)			High-voltage operating life test (HTOL)		
Parameter shifts due to con- tamination (such as Na)	exp(E _a /kT) (Arrhenius)	1.0 eV	High-temperature bias		
Silicon defects (leakage, etc.)	Arrhenius	0.5 eV	High-voltage and guard- banded tests		
Metal line opens from electro- migration	$\frac{Wt}{J^2} \exp(E_a/kT)$	Approx. 0.7 eV for Al+Cu alloys	HTOL		
Masking and assembly defects	exp(E _a /kT) (Arrhenius)	0.5 eV	High-temperature storage and HTOL		
Shorts channel charge trapping $(V_T \text{ and } g_m \text{ shifts})$	$g_m \approx \exp(-AE)$	Approx0.06 eV	Low-temperature, high-voltage operating life test		
Stress-induced open metal (op- erative only on non-clad metal systems)	$W^m t^p \exp (E_a/kT)$ (m and p range from 1.3 to 4.7)	0.6 to 1.4 eV	Temperature cycling		
Open metal from electrolytic corrosion	$(\% RH)^{-4.5} \exp(E_a/kT)$	0.3 to 0.6	High-temperature/ high-humidity/bias test		
Wire bond failure from excessive gold-aluminum interdiffusion	$\frac{1/(Dt)^{1/2} \text{ where}}{D = D_0 \exp(E_a/kT)}$	0.7 eV	HTOL		
Parameter shifts due to con- tamination (such as Na)	Arrhenius	1.0 eV	High temp. bias		
Plastic Chemistry of the pack- age	Arrhenius	1.0 eV	High temp./high humidity/bias test		
Polarization in the thin film layers	Arrhenius	1.0 eV	High temp./high humidity/bias test		
Microcrack in oxides and thin films	Arrhenius	1.3 eV	HTOL/Temp. Cycling		
Unprogrammed ViaLink	exp(-BE)	0 eV	High V _{CC} static life test		
Programmed ViaLink	exp(-PJ)	0 eV	Low-temperature operating life test		

Table 1. Failure Mechanisms That May Be Operative in pASIC380 Devices

Accelerated Life Tests on pASIC380

The purpose of a life test is to predict the reliability and failure rate of a device. However, a device operating under normal operating conditions would require years of testing to determine its longterm reliability. Methods of accelerating failures developed in the industry allow accurate prediction of a device life time and failure rate in a much shorter time duration. Accelerated stress tests are run at high temperature, high voltages, or a combination of both. *Table 2* contains the results of the tests performed on a programmed pASIC380, where approximately 4% ViaLink elements were programmed and approximately 96% were left unprogrammed. These numbers are typical for a fully utilized device.

All tests were performed with a proprietary reliability pattern that stresses the programmed and unprogrammed ViaLinks. A failure is defined as any change in the DC characteristic beyond the datasheet limits and any measurable change in the AC performance.

The overall reliability of the pASIC380 devices as indicated by the results of the tests shown in *Table 2* is 19 FITs with a 60% confidence.

Details of each of the tests of *Table 2* are given in the following sections. The failure mechanisms specific to the ViaLink antifuse element are described in detail.

Standard CMOS Tests and Results

HTOL is the life test that operates the device at a high V_{CC} and high temperature. This test is used to determine the long-term reliability and failure rate of the device in the customer environment. The specific condition of this test is defined by the MIL–STD–883D Quality Conformance Test. The devices are operated at 5.5V and 125°C for 1000 hours. The acceleration due to temperature can be calculated by using *Equation 1*, assuming an average activation energy of 0.7 eV and an operating temperature of 55°C. The observed failure rate in FITs is

Failure Rate = (failures)
$$\times \frac{(10^9 \text{ device-hrs})}{(\text{total equivalent device-hrs})}$$
 Eq. 2

The generally reported failure rate is a 60% confidence level of the observed FITs. The failure rate at this confidence level is calculated using Poisson statistics since the distribution is valid for a low failure occurrence in a large sample.

The acceleration factor from Equation 1, for 55 °C and $E_a = 0.7 \text{ eV}$ is 78. Therefore, from the results shown in Table 3, the pASIC380 has been operating for more than 210 million equivalent device hours with three failures. One was due to a gate oxide failure and the other was an I_{CC} failure due to an improper test limit at final test. the test limit was corrected before any units were shipped to

customers. The failure in the 7C382 was due to particle at via etch. The particles have been significantly reduced as part of an ongoing quality and yield improvement. The observed failure rate is 14 FITs and the failure rate at a 60% confidence levels is 19 FITs.

There were no failures during the first 500 hrs of life test. The pASIC380 does not have an early life failure problem.

Test	Process Qual. Acceptance Requirements	Test Results
HTOL, 1,000 hrs, 125°C, V _{CC} = 5.5V, MIL–STD–883C, Method 1005	\leq 100 FITs @ 55°C, E _a = 0.7 eV, 60% confidence	3 failures, 14 observed FITs, 19 FITs at a 60% confidence, 2778 units from 41 lots
High-temperature storage, 1,000 hrs., 150°C, unbiased	LTPD=5%	0% failures, 210 units from 6 lots
THB, 1,000 hrs., alternately biased, 85% R.H., 85°C, JEDEC STD 22–B, Method A101 or HAST 50 hrs 85% RH, 100°C, JEDEC STD 22–A110	LTPD=5%	0.51% failures, 791 units from 26 lots
Temperature cycle, 1,000 cycles, -65°C to 150°C, MIL-STD-883D, Method 1010	LTPD=5%	0.12% failures, 854 units from 26 lots
Thermal shock, 100 cycles, -65°C to 150°C, 883C, Method 1011	$\leq 1\%$ cumulative failures per test	0% failures, 854 units from 3 lots
Pressure Pot, 168 hrs., 121°C, 2.0 atm., no bias	LTPD=5%	0% failures, 518 units from 26 lots
High V _{CC} static life, 1,000 hrs., 25° C, V _{CC} = 7.0V, static	<20 FITs due to unprogrammed ViaLink element, $A_f = 130$	0 observed FITs, 675 units from 12 lots
Low Temperature operating life, 1,000 hrs., -55° C, V _{CC} = 6.0V, 8-15 MHz	<20 FITs due to programmed ViaLink element, $A_f = 380$	0 observed FITs, 1605 units from 21 lots, 3 failures not related to ViaLink element

Table 2. Results of Accelerated Life Tests on the pASIC380

Table 3. Results of High-Temperature Operating Life Test $(V_{CR} = 5.5V_{CR}) = 125^{\circ}C_{C} f = 1.0447$

($v_{\rm CC} = 5.5 v_{\rm c}$	1 temp. = 123	$5^{\circ}C, T = T MI$	1Z)	
					Fa

			1	Failures @ Hours			
Package	Fab Lot	Device	Quantity	168	500	1,000	
68PLCC	18362	7C382	100	0	0	0	
68PLCC	19194	7C382	100	0	0	0	
68PLCC	19618	7C382	100	0	0	0	
68PLCC	20454	7C382	100	0	0	0	
68PLCC	20470	7C382	76	0	0	0	
68PLCC	20534	7C382	82	0	0	0	
68PLCC	21786	7C382	76	0	0	0	
68PLCC	33669	7C382	70	0	0	0	
68PLCC	34515	7C382	100	0	0	0	
68PLCC	35421	7C382	100	0	0	0	
68PLCC	34267	7C382A	100	0	0	0	
68PLCC	36129	7C382A	100	0	0	0	
68PLCC	40673	7C382A	51	0	0	0	
68PLCC	1346945	7C382A	100	0	0	0	
68PLCC	1351104	7C382A	100	0	0	0	
68PLCC	1409354	7C382A	100	0	0	1	
84PLCC	20762	7C384	100	0	0	0	
84PLCC	22164	7C384	100	0	0	1	

				Failures @ Hours			
Package	Fab Lot	Device	Quantity	168	500	1,000	
84PLCC	23001	7C384	100	0	0	1	
84PLCC	23093	7C384	36	0	0	0	
84PLCC	22988	7C384	32	0	0	0	
84PLCC	23091	7C384	38	0	0	0	
84PLCC	35284	7C384	100	0	0	0	
84PLCC	36935	7C384	100	0	0	0	
84PLCC	36936	7C384	98	0	0	0	
84PLCC	37448	7C384	65	0	0	0	
84PLCC	37449	7C384	74	0	0	0	
84PLCC	39068	7C384	54	0	0	0	
84PLCC	40670	7C384	50	0	0	0	
84PLCC	40672	7C384	50	0	0	0	
84PLCC	1415570	7C384A	67	0	0	0	
84PLCC	1418672	7C384A	73	0	0	0	
84PLCC	1328491	7C385A	2	0	0	0	
84PLCC	1337713	7C385A	22	0	0	0	
84PLCC	1337739	7C385A	19	0	0	0	
84PLCC	1407324	7C385A	20	0	0	0	
84PLCC	1407325	7C385A	38	0	0	0	
84PLCC	1413492	7C385A	6	0	0	0	
84PLCC	5-6	7C385A	24	0	0	0	
84PLCC	15-18	7C385A	46	0	0	0	
84PLCC	various	7C385A	9	0	0	0	
TO	TAL		2778	0	0	3	

Table 3. Results of High-Temperature Operating Life Test (continued) (V_{CC} = 5.5V, Temp. = 125° C, f = 1 MHz)

High-Temperature Storage

High-temperature storage test is a 150°C, 1,000-hour, unbiased bake. This test accelerates failures due to mobile charge, thermal instabilities, and bond ball intermetallic formation. The results in

Table 4 demonstrate the stability of the programmed and unprogrammed ViaLink element and the long-term shelf life of pASIC380.

Table 4. Results of High-Temperature Storage Test(No Bias, Temp. = 150°C)

				Failures @ Hours			
Package	Fab Lot	Device	Quantity	168	500	1,000	
68PLCC	18362	7C382	35	0	0	0	
68PLCC	19194	7C382	35	0	0	0	
68PLCC	19390	7C382	35	0	0	0	
68PLCC	34515	7C382	35	0	0	0	
68PLCC	35421	7C382	35	0	0	0	
68PLCC	35422	7C382	35	0	0	0	
	TOTAL		210	0	0	0	

6

Temperature, Humidity, and Bias (85/85)

The temperature, humidity, and bias test is performed under severe environmental conditions. The device is exposed to a temperature of 85° C and a relative humidity of 85% for 1,000 hours, while the pins are alternately biased between 0 and 5.5 volts (JEDEC STD 22–B). An alternate temperature, humidity and bias test is HAST, a Highly Accelerated Stress Test. This test is similiar to the 85° C/85% relative humidity. The vapor pressure at this test condition is 33.5 psia. The pins are bias alternatively at 5.5 volts for 50 hours (JEDEC STD 22–A110). Some parts were stressed more at a more stringent condition, 140°C for 128 hours.

These two tests are effective at detecting corrosion problems, while also stressing the package and bonding wires. *Table 5* shows that the pASIC380 had three failures from the total 482 units in 85/85 and one failure in HAST. The first failure was an I_{CC} failure caused by a power supply surge. The second failure was a short due to a particle under metal 2. The third failure was and I_{CC} failure due to the same improper test limit which caused a failure in HTOL. The limit was corrected before units were shipped to customers. The one HAST failure in the 7C384 was due to a metal short. The ongoing quality and yield improvement effort has reduced the defect level.

Table 5. Results of Temperature, Humidity, and Bias Test
$(85\% \text{ R.H.}, \text{Temp.} = 85^{\circ}\text{C}, \text{ pins alternately biased at 5.5V})$

				Failures @ Hours			
Package	Fab Lot	Device	Quantity	168	500	1,000	
68PLCC	19194	7C382	100	0	0	0	
68PLCC	19168	7C382	100	0	0	0	
68PLCC	19454	7C382	100	0	. 0	0	
68PLCC	34515	7C382	35	1	0	0	
68PLCC	35421	7C382	35	1	0	0	
68PLCC	35422	7C382	35	0	0	0	
84PLCC	20762	7C384	29	0	0	0	
84PLCC	23000	7C384	24	1	0	0	
84PLCC	23001	7C384	24	0	0	0	
	TOTAL		482	3	0	0	

(HAST, Temp. =130°C, 85% R.H., pins alternately biased at 5.5V)

				Failures @ Hours		
Package	Fab Lot	Device	Quantity	50@ 130°C	128@ 140°C	
100TQFP	36936	7C384	15	0	-	
100TQFP	37447	7C384	13	0	-	
100TQFP	37448	7C384	17	-	-	
68PLCC	1409354	7C382A	25	-	0	
68PLCC	1409353	7C382A	20	-	0	
84PLCC	1402176	7C385A	30	-	0	
84PLCC	1402177	7C385A	15	-	0	
84PLCC	1410389	7C385A	15	-	0	
84PLCC	1408334	7C385A	16	-	0	
84PLCC	1450263	7C385A	14	-	0	
84PLCC	1417657	7C385A	22	-	0	
144TQFP	10885	7C385A	2	-	0	
144TQFP	1412454	7C385A	14	0	-	
144TQFP	1413492	7C385A	15	1	-	
144TQFP	49403007	7C385A	16	0	-	
144TQFP	1411431	7C385A	15	0	-	
144TQFP	1417657	7C385A	45	0	-	
	TOTAL		309	1	0	

Temperature Cycle Tests

Thermal Shock Tests

The thermal shock test cycles the packaged part through the same temperatures as the temperature cycle test except that the cycling is done from liquid to liquid. The temperature change is nearly instantaneous in this case. The rapid temperature change can result in higher stresses in the package and lead frame. The results in Table 7 show that the pASIC380 devices had no failures.

The temperature cycle test stresses the packaged part from $-65^{\circ}C$ to 150°C for 1,000 cycles. The air-to-air cycling follows the MIL-STD-883D Quality Conformance Test. This test checks for any problems due to thermal expansion stresses. The plastic package, lead frame, silicon die, and die materials expand and

contract at different rates. This mismatch can lead to cracking, peeling, or delamination of the high-stress layers. The results in Table 6 show that the pASIC380 devices had one failure due to a lifted bond.

Table	6.	Results	of	Temperature Cycle Test

				Failures @ Cycles			
Package	Fab Lot	Device	Quantity	250	500	1,000	
68PLCC	18362	7C382	35	0	0	0	
68PLCC	19194	7C382	35	0	0	0	
68PLCC	19618	7C382	35	0	0	0	
68PLCC	34515	7C382	35	0	0	0	
68PLCC	35421	7C382	35	0	0	0	
68PLCC	35422	7C382	35	0	0	0	
68PLCC	39017	7C382A	38	0	0	0	
84PLCC	20762	7C384	29	0	0	0	
84PLCC	22999	7C384	24	0	0	0	
84PLCC	23000	7C384	24	0	0	0	
84PLCC	39068	7C384	85	0	0	1	
84PLCC	38980	7C384	37	0	0	0	
84PLCC	38979	7C384	65	0	0	0	
100TQFP	36934	7C382A	30	0	0	0	
100TQFP	36128	7C382A	30	0	0	0	
100TQFP	36129	7C382A	30	0	0	0	
100TQFP	37447	7C384	30	0	0	0	
100TQFP	37448	7C384	30	0	0	0	
100TQFP	36936	7C384	30	0	0	0	
84PLCC	1409378	7C384A	30	0	-	0	
84PLCC	1417657	7C384A	31	0	-	0	
84PLCC	1416600	7C385A	16	0	-	0	
144TQFP	1342851	7C386A	25	0	-	0	
144TQFP	1405263	7C386A	15	0	-	0	
144TQFP	1351123	7C386A	15	0	-	0	
144TQFP	1417657	7C386A	30	0	-	0	
- <u>19</u> 00	TOTAL		854	0	0	1	

(Air-to-air 65°C to 150°C)

6-21

Table 7. Results of Thermal Shock Test (Liquid to Liquid, -65°C to 150°C, 68-Lead PLCC)

		Failures @ Cycle
Fab Lot	Quantity	100
18362	35	0
19194	35	0
19618	35	0

Pressure Pot Tests

The pressure pot test is performed at 121°C at 2.0 atmospheres of saturated steam with devices in an unbiased state. This test forces moisture into the plastic package and tests for corrosion in the bonding pads and wires that are not protected by passivation. Cor-

rosion can also occur in passivated areas where there are micro cracks or poor step coverage. pASIC380 devices had no failures, as shown in *Table 8*.

				Failures @ Hours		
Package	Fab Lot	Device	Quantity	48	96	168
68PLCC	18362	7C382	35	0	0	0
68PLCC	19194	7C382	35	0	0	0
68PLCC	19390	7C382	35	0	0	0
68PLCC	34515	7C382	35	0	0	0
68PLCC	35421	7C382	35	0	0	0
68PLCC	35422	7C382	35	0	0	0
84PLCC	20762	7C384	28	0	0	0
84PLCC	22999	7C384	25	0	0	0
84PLCC	23000	7C384	24	-	-	0
100TQFP	36936	7C384	15	-	-	0
100TQFP	37447	7C384	15	-	-	0
100TQFP	37448	7C384	15	-	-	0
68PLCC	1346945	7C382A	15	-		0
68PLCC	1350096	7C382A	15	-	-	0
68PLCC	1350104	7C382A	15	-		0
84PLCC	1417657	7C385A	30	-		0
84PLCC	1416600	7C385A	15	-	-	0
84PLCC	1409360	7C385A	36	-	-	0
84PLCC	1410389	7C385A	15	-		0
84PLCC	1350093	7C385A	15	-	-	0
84PLCC	1403209	7C385A	15	-	-	0
84PLCC	1402177	7C385A	15	-	-	0
144TQFP	1342851	7C385A	15	-	-	0
144TQFP	1405263	7C385A	15	-	-	0
144TQFP	1351123	7C385A	15	-	-	0
144TQFP	1417657	7C385A	30	-	-	0
	TOTAL		518	0	0	0

Table 8. Results of Pressure Pot Test (Pressure = 2.0 atm., Temp. = 121°C, no bias)

ViaLink Element Reliability Tests and Results

The ViaLink antifuse is a one-time programmable device. In the unprogrammed state it has a resistance of greater than one gigaohm and capacitance of less than one femtofarad.

The application of a programming voltage above a critical level across the antifuse structure, causes the device to undergo a switching transition through a negative resistance region into a low-resistance state. The magnitude of the current allowed to flow in the low-resistance state, the programming current, is predetermined by design. A link of tungsten, titanium, and silicon alloy is formed between metal one and metal two during the programming process.

The link has a metallic-like resistivity of the order of 500 microohms-cm and is responsible for the low 50-ohm resistance that is a unique characteristic of the ViaLink antifuse.

The link forms a permanent, bidirectional connection between two metal lines. The size of the link, and hence the resistance, depends on the magnitude of the programming current. *Figure 2* shows the

Eq. 3

relationship between programming current and programmed link resistance. *Figure 3* shows the distribution of link resistance for a fixed programming current.

Unprogrammed ViaLink Element Reliability

Reliability studies on an antifuse that can exist in two stable resistance states, must focus on the ability of an unprogrammed and a programmed device under stress to remain in the desired state. In the context of standard IC testing, the antifuse should be stressed under conditions similar to those for a dielectric (in the unprogrammed state) and for a conductor (in the programmed state).

For ViaLink elements in the unprogrammed state, the tests must determine their ability to withstand applied voltages over the range of operating conditions without changing resistance or becoming programmed. Amorphous materials might be expected to show gradual changes in resistance as a result of relaxation or annealing. Reliability studies have been designed to explore these effects.

When a ViaLink element is stressed at high electric fields, its resistance can decrease from the initial $1 \, \Omega\Omega$ value. The reliability testing program examined the time for the resistance to reach 50 MΩ at different stress fields. *Figures 4* and 5 illustrate that because of time constraints (\approx 500 years), it is impossible to detect this effect at normal operating fields in systems. The pASIC380 device is designed to operate with resistance of the unprogrammed ViaLink element from 50 M Ω to greater than 1 G Ω at 20°C, and remain within the guaranteed speed and standby I_{CC} specifications.

Figure 4 shows the time required for a ViaLink element to reach 50 M Ω under various applied electric fields at different temperatures. The time required for the change is not accelerated by temperature over the studied range of electric fields. The activation energy, E_a , for this process is zero.

Figure 5 shows the time required for a ViaLink element to reach 50 M Ω undervarious electric field stresses. A range of amorphous silicon thicknesses have been included in this chart. The data can be modeled using the equation

 $t_{50M\Omega} = t_0 \exp(-BE)$

where the time to 50 MΩ decreases exponentially with increasing applied electric field. The constant t_0 is $3x10^{15}$ seconds and the field acceleration factor, B, is 20 cm/MV. The model is valid for electric fields, E, below 1.5 MV/cm. Above this field, the amorphous silicon antifuse programs. The electric field for 5.0 volt V_{CC} operation with a typical amorphous silicon thickness is 0.61 MV/cm, which extrapolates $t_{50M\Omega}$ to $1.5x10^{10}$ seconds, or 500 years. The time to 50 MΩ for the worst-case amorphous silicon thickness and operating at worst-case V_{CC} is in excess of 30 years.

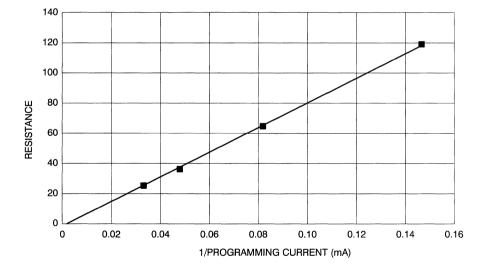


Figure 2. Resistance Versus 1/Programming Current $(R = 0.810/I_P)$

6

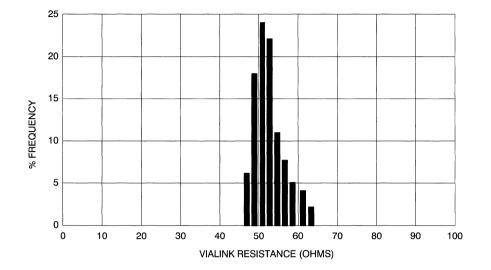


Figure 3. Distribution of ViaLink Resistance at $I_P = 15 \text{ mA}$ (Average = 52.3 Ohms, Satudard Deviation = 3.69)

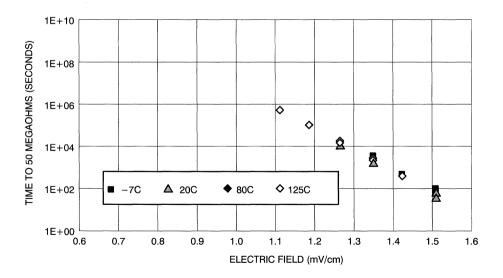


Figure 4. Temperature Dependence of Time to 50 Megaohms (Lot 617, Wafer 8)

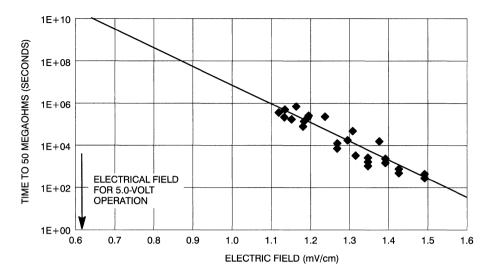


Figure 5. Electric Field Acceleration of Unprogrammed ViaLink Element

The high field effect is both predicable and reproducible, and reversible. This effect is inherent in the amorphous silicon in the ViaLink element. The pASIC380 device has been designed to operate where the effect is minimized and has no impact on the reliability of the pASIC380 device. The pASIC380 device lifetime extrpolations are based on the average unprogrammed ViaLink element since the effect on the increaased ICC of the pASIC380 is the sum of the leakages through the unprogrammed ViaLink elements. The time dependent resistance of the ViaLink elements does not degrade the functionality or AC performance of the pASIC380.

Accelerated Stress Tests for Unprogrammed ViaLink Elements

The high field effect is created in the packaged pASIC380 device through a high V_{CC} static life test. This test stresses the unprogrammed ViaLink element with a $V_{CC} = 7.0$ volts for 1000 hours.

Over 600 pASIC380 devices from four lots have been tested. This condition stresses over 20.000 unprogrammed ViaLink elements in each pASIC380. The failure criteria for the pASIC380 device for this test is the same as that of the previous tests, with emphasis placed on the standby ICC, which increases as the resistance of the unprogrammed ViaLink element decreases. The acceleration factor for this stress is calculated by using Equation 3 to find the ratio of the t_{50M} for E = 0.61 MV/cm at 5 volts and E = 0.85 MV/cm at 7 volts. This test has an acceleration factor = 130 for the unprogrammed ViaLink element. The test results in Table 9 show that no device has failed this stress in more than 220 million equivalent device hours. Four lots have 6000 hours of test which is equivalent to over 80 years of operation. The reliability stresses of the unprogrammed ViaLink for the 0.65 micron process was done on test structures where the ViaLink could be stressed independently from the CMOS.

Package	Fab Lot	Device	Qty	Total Hrs	Failures	Equiv. Dev. Hrs
68PLCC	16558	7C382	14	3650	0 ·	6.6E+06
68PLCC	18362	7C382	38	1907	0	9.4E+06
68PLCC	19194	7C382	110	1756	0	2.5E+06
68PLCC	19618	7C382	101	1464	0	1.9E+07
68PLCC	20454	7C382	100	2800	0	3.6E+07
68PLCC	34515	7C382	37	1000	0	4.8E+06
68PLCC	35421	7C382	36	1000	0	4.7E+06
68PLCC	35422	7C382	33	1000	0	4.3E+06

6 - 25

Table 9. Results of High V_{CC} Static Life Test ($V_{CC} = 7.0V$ Static, Temp. = 25°C)

Package	Fab Lot	Device	Qty	Total Hrs	Failures	Equiv. Dev. Hrs
68PLCC	33403	7C382A	100	1000	0	1.3E+07
68PLCC	34515	7C382A	36	6000	0	2.8E+07
68PLCC	35421	7C382A	34	6000	0	2.7E+07
68PLCC	35422	7C382A	36	6000	0	2.8E+07
	TOTAL		675		0	2.2E+08

Table 9. Results of High V_{CC} Static Life Test (continued) (V_{CC} = 7.0V Static, Temp. = 25° C)

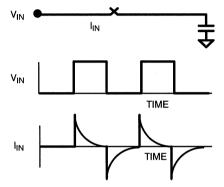


Figure 6. Switching of Programmed ViaLink Antifuse

Programmed ViaLink Element Reliability

The reliability tests on the programmed ViaLink element must demonstrate the stability of the link resistance in the programmed state. While an increase in resistance of the programmed device may not be catastrophic, a higher resistance can affect the device operating speed. Because the programmed ViaLink element has become part of the on-chip interconnect, reliability tests should be similar to those that are normally used to validate the integrity of metal interconnects.

In operation, the programmed ViaLink elements are subjected to capacitive switching current of the interconnect network. They do not experience any DC current or voltage (see *Figure 6*). Each switching pulse forces a capacitive charging current to flow through programmed ViaLink elements into the network on the rising edge, and an opposite, or discharging current, to flow on the falling edge. Each cycle is analogous to a read pulse for a memory device. A 10% change in resistance was set as the read disturb criteria for the ViaLink element. The typical impedance of a network is about 500 Ω with the programmed ViaLink resistance will increase the network impedance by approximately 5 Ω or 1%. This increase in resistance will increase an etwork delay in the pASIC380 device by about the same proportion.

Programmed ViaLink elements were stressed under severe capacitive currents. AC stresses rather than DC stresses were used to accelerate the failures for closer correlation with actual operation. The mean number of read cycles to disturb, N₅₀, for 25°C and 250°C were found to be identical. The absence of temperature dependence indicates an $E_a \approx 0$. Figure 7 shows the acceleration of the read disturb at high AC current densities

through the programmed ViaLink element. Thus, the number of cycles to disturb can be modeled as

$$N_{50} = N_0 exp(-PJ)$$
 Eq. 4

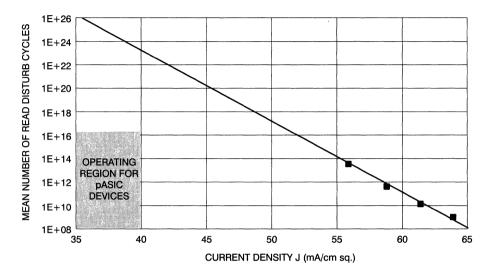
where $N_0 = 7x10_{41}$ cycles is a constant, $P = 1.2 \text{ cm}^2/\text{mA}$ is the current density acceleration factor, and J is the peak AC current density through the link.

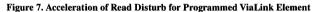
The pASIC380 is designed to operate at worst-case AC current density of $35x10^6$ A/cm². The N₅₀ for this condition is $4x10^{23}$ cycles. The failure rate can be calculated using the cumulative density F(t),

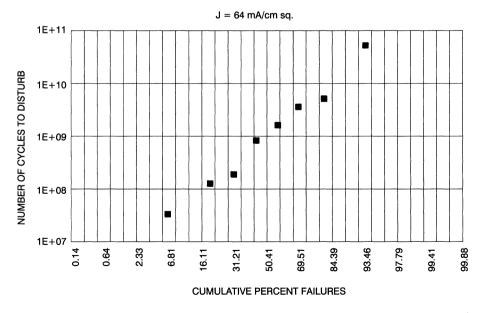
$$F(t) = \phi \ln [N/N_{50}/\sigma]$$
 Eq. 5

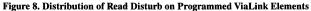
The failure distribution can be determined by plotting the data on a log normal probability scale versus the log of the number of cycles to failure (see *Figure 8*). The shape parameter, σ , is $\ln(N_{50}/N_{16}) = 2.5$. The shape parameter is relatively large because it includes the measurement tolerances of the current density.

High AC current density occurs at low frequencies where there is sufficient time for the network to be fully charged or discharged. At frequencies above 50 MHz, AC current through a ViaLink element decreases due to incomplete charging and discharging cycle. The worst-case pattern in a programmed pASIC380 has less than 150 ViaLink elements operating at 35×10^6 A/cm². Most of the programmed ViaLink elements operate at much lower current densities. Using *Equation* 5, the cumulative failure rate for the ViaLink element operating at 35×10^6 A/cm² for 1.6×10^{16} read cycles (equivalent to continuous operation at 50 MHz for 10 years) is less than 0.1 parts per million. The failure rate of the programmed ViaLink element contributes less than 0.01 FIT to the overall failure rate of the pASIC380 device.


Accelerate Stress Tests for Programmed ViaLink Elements


The low temperature operating life test stresses the pASIC380 devices with V_{CC} =6.0 volts at 15MHz for 1000 hours at -55°C. The lack of an ambient temperature dependence on read disturb allow Cypress to stress at any temperature without changing the deprogramming cycle dependence. Cold temperature operation was chosen because it accelerates the stress by increasing the drive current of the CMOS devices. This test stresses the programmed ViaLink elements at 40x10⁶ A/cm² for 5.4x10¹³ cycles. The acceleration factor, calculated from *Equation 4*, is 380. This test is equivalent to 2.0x10¹⁶ switching cycles, or continous operation under worst case condition at 50 MHz for 12 years at the worst case density of 35x10⁶ A/cm². Over 1000 pASIC380 devices from 13 lots have been stressed. The failure criteria is the same as previously described, with emphasis placed on careful monitoring of AC performance. Test results in *Table 9* show that there have been no fail-


The Low Temperature Operating Life test stresses the programmed ViaLinks at $40x10^6$ A/cm². The acceleration factor for



this test is 380. The results in *Table 9* show no failure on programmed ViaLink elements in over 110 million equivalent device hours. There were three failures unrelated to the ViaLink element. The first was a metal one to metal two short. The other two devices shorted when a power supply surged during the test.

6

				Failures @ Cycles		
Package	Fab Lot	Device	Quantity	250	500	1,000
68PLCC	34267	7C382A	100	0	0	0
68PLCC	36128	7C382A	100	0	0	0
68PLCC	36129	7C382A	150	0	0	0
68PLCC	36934	7C382A	70	0	0	0
84PLCC	20762	7C384	100	0.	0	0
84PLCC	22999	7C384	100	0	0	0
68PLCC	23001	7C384	100	1	0	0
84PLCC	36935	7C384	100	0	0	0
84PLCC	36936	7C384	100	2	0	0
84PLCC	38713	7C384	50	0	0	0
84PLCC	1323368	7C385A	4	0	0	0
84PLCC	1337713	7C385A	10	0	0	0
84PLCC	1337739	7C385A	20	0	0	0
84PLCC	1409353	7C385A	150	0	0	0
84PLCC	1409354	7C382A	150	0	0	0
84PLCC	1409390	7C382A	200	0	0	0
84PLCC	1409360	7C385A	40	0	0	0
84PLCC	1410389	7C385A	33	0	0	0
84PLCC	404333	7C385A	66	0	0	0
84PLCC	404788	7C385A	1	0	0	0
	TOTAL	•	1604	3	0	0

Table 10. Results of Low Temperature Operating Life Test $(V_{CC} = 6.0V, Dynamic, f = 15 MHz, Temp = -55^{\circ}C)$

Conclusion on Life Tests

The testing reported here establishes the reliability of pASIC380. No failures have been observed in 210 million equivalent device hours14 FITs and the failure rate with a 60% confidence is 19 FITs with no early life failures. The acceleration factors that can lead to the degradation of the programmed and unprogrammed ViaLink elements were studied. The pASIC380 devices are designed to operate at voltages and currents where the failure rate of the ViaLink element does not measurably increase the failure rate of the pASIC380 device above that of normal CMOS products.

Document #: 38-00375-A

References

1. Jim Nulty, et al, A High Reliability Metallization Systm for a Double Metal 1.5 µm CMOS Process, Proc. Fifth IEEE VMIS, 1988, pp. 453-459.

2. Dipankar Pramanik, et al, *A High Reliability Triple Metal process for High-Performance Application-Specific Circuits*, Proc. Eighth IEEE VMIS, 1991, pp. 27–33.

3. F. Yonezawa, Fundamental Physics of Amorphous Semiconductors, Proc. of the Kyoto Summer Inst., 1981.

4. K. Gordon and R. Wong, Conducting Filament of the Programmed Metal Electrode Amorphous Silicon Antifuse, IEDM 1993, pp. 27–30.

CY7C380 Family Quick Power Calculator

This brief is intended to provide a rapid method of calculating the approximate power consumed by a CY7C380 family device. Because the intent is a first-estimate calculation, some details are neglected. The quiescent power of about 20 mW is not included. There is no estimate of the power for the number of columns and number of loads per column of the clock distribution tree. Wiring capacitance is neglected. High drive cell power is taken to be the same as a normal input cell. I/O cell power is averaged over input and output. The power calculation does not include the power of an output driving an external load. This approach was taken to simplify the calculation. The average toggle rate and per cent of the device used are assumed to be rough estimates, thus there is no need to strive for great accuracy. For detailed considerations refer to the application note "Power Characteristics of Cypress Products."

The equations used to create the curves are:

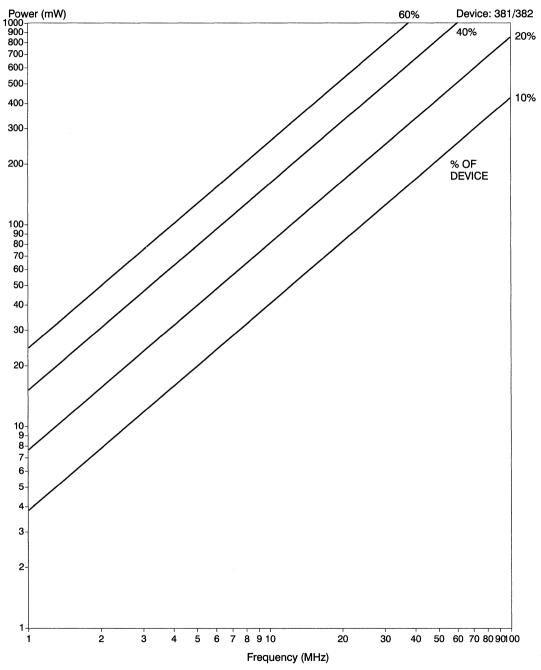
P(I/O) = (number of I/Os)*Fav*(0.3)

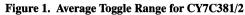
 $P(cells) = (\% used) * F_{AV} * (0.38) \text{ for } 7C381/C382$ (Figure 1)

 $P(cells) = (\% used) * F_{AV} * (0.77) \text{ for } 7C383/C384$ (*Figure 2*)

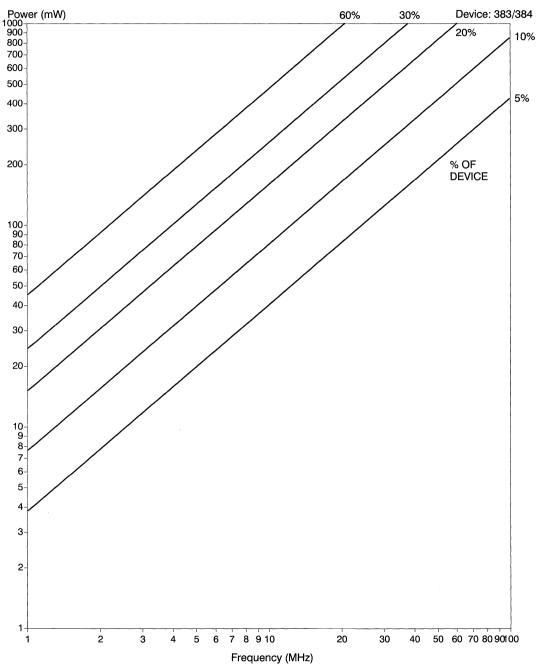
 $P(cells) = (\% used) * F_{AV} * (1.54) \text{ for } 7C385/C386$ (*Figure 3*)

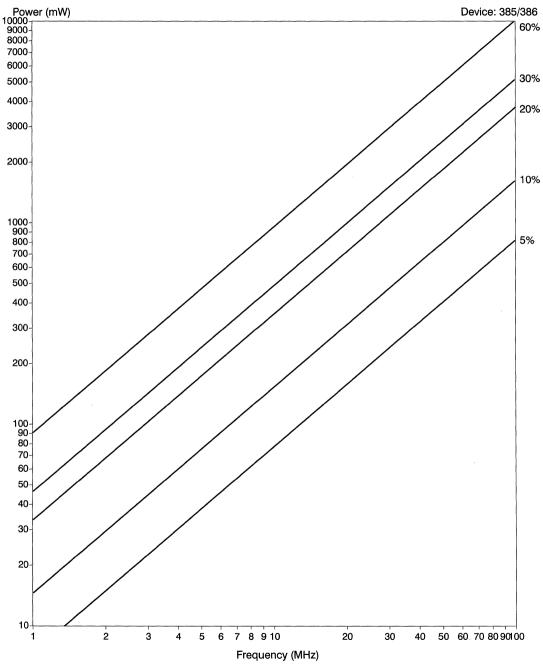
Where F_{AV} is the average toggle rate frequency


Quick Power Calculation Process


- 1. Estimate the toggle rate (frequency in MHz) for each of the major blocks of the design.
- 2. Select a 7C380 family device.
- 3. Estimate the percent of the device that will be utilized to implement each block.
- 4. For each block, use the power vs. toggle rate curves for the selected device and read the power for the estimated toggle rate and percent utilization. Enter the power in the work sheet.
- 5. Sum the individual powers for an estimate of the total power.

Toggle Rate (MHz)	Percent of Device	Number of I/Os	Factor	Power (mW)
	X		0.3	
	X		0.3	
		X	X	
		X	X	
		X	X	
		X	X	
X	X	X	X	


Work Sheet



6

6-32

Example

A CY7C382 FPGA is to be used with the following estimates:

- 32 I/Os are connected to a 40-MHz bus (half are assumed to be changing at this rate on the average).
- The remaining I/Os have a low duty cycle.

- 10% of the device is going to be toggling at the 40-MHz rate.
- 60% of the device is estimated to be toggling at 10 MHz.

The work sheet is filled in as shown below. The toggle rate of the I/Os is taken to be 20 because half are assumed to change in any clock (on the average). The next two entries are taken from the graph for the 7C382 and entered into the Power column. Total power is summed at the bottom.

Toggle Rate (MHz)	Percent of Device	Number of I/Os	Factor	Power (mW)
20	X	32	0.3	192
	X		0.3	
40	10	X	X	150
10	60	X	X	220
,	1	X	X	
		Х	X	
Х	X	X	X	562

Document #: PLD0009-0194

Moisture-Sensitive Devices Handling Information

Cypress Dry Bag Policy

In order to insure against moisture damage, Cypress carries out dry bake and dry packing on all devices that are moisture sensitive in surface mount applications. These devices are shipped in sealed Moisture Barrier Bags (MBBs) with caution labels similar to Figure I. Cypress recommends that all PLCCs with pin counts of 44 and higher, all Plastic Quad Flat Packs (PQFPs), and Thin Quad Flat Packs (TQFPs) be used dry in surfacemount applications. Note: A package is considered dry if it has been baked for 24 continuous hours at 125 \pm 5°C and has been stored at or below 20% Relative Humidity (RH) prior to the reflow-soldering process.

Moisture-Sensitivity

The extremely high temperatures and steep temperature gradients that are present during the reflow-soldering processes used in attaching surface mount devices to circuit boards could damage to moisture-sensitive devices if they have absorbed excessive moisture. The moisture trapped in such a device vaporizes during the reflow-soldering processes and may generate significant hydrostatic pressure within the package. In the worst case, this pressure may cause an internal or external crack in the overmold that allows flux and other contaminants to reach the die area. The final result is a cracked device that will suffer an early failure.

Cypress Dry-Packing Process

The Cypress dry-packing process starts with baking the moisture sensitive devices at $125 \pm 5^{\circ}$ C for 24 continuous hours in bakeable carrier trays (for TSOP, TQFP, PQFP devices) or aluminum tubes (for SOIC, SOJ, and PLCC devices). Baked devices are then vacuum sealed and dry packed in MBBs within the 24 hour factory-floor-life limit under controlled environment.

In each of the vacuum sealed MBBs, appropriate amount of desiccant packs are enclosed to keep the enclosed devices at less than 20% RH for up to 12 months from the date of seal as stated on the caution label on the bag. A reversible humidity indicator card (HIC) that has indicator grades, is also enclosed to monitor the internal humidity level. On the outside of each sealed bag a caution label similar to the one shown is attached to inform and alert the customers of the seal date information and the need for special handling precautions.

Dry-Packed Part Handling Procedures

Package Inspection

Upon receiving the package, check the seal date and make sure that the package has no holes, tears, or openings that may endanger the enclosed devices to humidity. Cypress recommends that the bag stay sealed until the enclosed devices are ready for use.

Storage Condition

In line with the warning stated on the caution label, the sealed MBBs should be stored unopened in a relatively dry environment or one of no more than 90% relative humidity and 40° C.

Expiration Date: First Seal Date Plus 12 Months

The expiration date of a sealed MBB is 12 months from the original seal date if it has been stored in an environment of less than 40° C and 90% humidity. If the expiration date has been exceeded, or if upon opening a bag within its stated expiration period, the HIC display a humidity level of over 30%, the enclosed devices "may still be used with the addition of a bake of 192 hours at 40°C with less than 5% humidity, or a bake of 24 hours at 125°C with less than 5% humidity," After the baking, any of the following options may apply:

- Use the parts within 48 hours
- Reseal the devices in a MBB within 12 hours after baking with fresh desiccant packs and HIC
- Store the devices in a controlled cabinet with less than 20% RH.

Opening a Sealed Bag

When parts are ready to be used, open the MBB by cutting across the top within one inch of the seal area. Use the dry parts following the guide line under the factory-floor-life section to ensure they are maintained below critical moisture levels. Opened bags must be resealed immediately (the factory-floor-life is cumulative and has a maximum of 24 hours) and the information on the date the bag is opened and resealed must be filled out on the caution label. If the opened bag is not resealed immediately, and provided that the factory-floor-life has not been exceeded, or in the case of splitting the devices of a bag, and new desiccant ,the same packing and sealing procedure must also be applied.

Factory Floor Life

Cypress recommends the maximum cumulative time that devices can be exposed to the open air without requiring re-bake and resulting in moisture-related damages to be 24 hours with environment condition not worse than 40° C and 85% RH. (This includes processing time after bake but prior to seal at Cypress and any time the bag is re-opened after seal.) If the floor life is exceeded, it is recommended that the devices be dry baked as if the storage period has expired.

If at any time, the recommended storage and factory floor conditions, or handling guidelines might be violated, please consult Cypress for more information.

DO NOT OPEN EXCEPT UNDER CONTROLLED CONDITIONS EXPIRATION DATE: FIRST SEAL DATE PLUS 12 MONTHS 1. THIS BAG MAY BE STORED FOR UP TO 12 MONTHS AT 40°C AND 90% HUMIDITY. 2. THE CONTENTS OF THIS BAG MAY BE STORED INDEFINITELY AT 20% HUMIDITY. 3. IF UPON OPENING, THE MOISTURE INDICATOR CARD SHOWS HUMIDITY ABOVE 20%, CONTENTS HAVE EXPIRED. 4. IF CONTENTS ARE EXPIRED THEY MAY STILL BE USED WITH THE ADDITION OF A BAKE OF 192 HOURS AT 40°C 5% HUMIDITY, OR A BAKE OF 24 HOURS AT 125°C 5% HUMIDITY.		CAUTION THIS BAG CONTAINS MOISTURE SENSITIVE DEVICES
 THIS BAG MAY BE STORED FOR UP TO 12 MONTHS AT 40°C AND 90% HUMIDITY. THE CONTENTS OF THIS BAG MAY BE STORED INDEFINITELY AT 20% HUMIDITY. IF UPON OPENING, THE MOISTURE INDICATOR CARD SHOWS HUMIDITY ABOVE 20%, CONTENTS HAVE EXPIRED. IF CONTENTS ARE EXPIRED THEY MAY STILL BE USED WITH THE ADDITION OF A BAKE 		
	%,	 THIS BAG MAY BE STORED FOR UP TO 12 MONTHS AT 40°C AND 90% HUMIDITY. THE CONTENTS OF THIS BAG MAY BE STORED INDEFINITELY AT 20% HUMIDITY. IF UPON OPENING, THE MOISTURE INDICATOR CARD SHOWS HUMIDITY ABOVE 20
CAUTION, THE PACKING MATERIAL WILL MELT AT 125°C AND MAY OUTGAS AT 40°C, METAL TUBES OR TRAYS BE USED FOR BAKING.		OF 192 HOURS AT 40°C 5% HUMIDITY, OR A BAKE OF 24 HOURS AT 125°C 5% HUMIDITY CAUTION, THE PACKING MATERIAL WILL MELT AT 125°C AND MAY OUTGAS AT 40°C,
5. THE CONTENTS OF THIS BAG MUST BE MOUNTED ON A BOARD WITHIN 48 HOURS OF OPENING THIS BAG.	OF	
OUT OF OVEN: BAG OPENED: BAG OPENED: SEALED: BAG OPENED: SEALED:		BAG OPENED:

Figure 1. Caution Label

Document #: 38-00501

Thermal Management and Component Reliability

One of the key variables determining the long-term reliability of an integrated circuit is the junction temperature of the device during operation. Long-term reliability of the semiconductor chip degrades proportionally with increasing temperatures following an exponential function described by the Arrhenius equation of the kinetics of chemical reactions. The slope of the logarithmic plots is given by the activation energy of the failure mechanisms causing thermally activated wear out of the device (see *Figure 1*).

Typical activation energies for commonly observed failure mechanisms in CMOS devices are shown in *Table 1*.

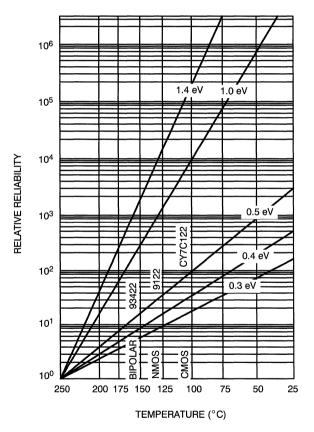


Figure 1. Arrhenius plot, which assumes a failure rate proportional to EXP $(-E_A/kT)$ where E_A is the activation energy for the particular failure mechanism

Table 1.	Failure Mechanisms and	
Activation	Energies in CMOS Devices	

Failure Mode	Approximate Activation Energy (Eq)
Oxide Defects	0.3 eV
Silicon Defects	0.3 eV
Electromigration	0.6 eV
Contact Metallurgy	0.9 eV
Surface Charge	0.5-1.0 eV
Slow Trapping	1.0 eV
Plastic Chemistry	1.0 eV
Polarization	1.0 eV
Microcracks	1.3 eV
Contamination	1.4 eV

To reduce thermally activated reliability failures, Cypress Semiconductor has optimized both their low-power-generating CMOS device fabrication process and their high-heat-dissipation packaging capabilities. *Table 2* demonstrates this optimized thermal performance by comparing bipolar, NMOS, and Cypress high-speed 1K SRAM CMOS devices in their respective plastic packaging environments under standard operating conditions.

Table 2. Thermal Performance of Fast 1K SRAMs in Plastic Packages

Technology	Bipolar	NMOS	Cypress CMOS
Device Number	93422	9122	7C122
Speed (ns)	30	25	25
I _{CC} (mA)	150	110	60
V _{CC} (V)	5.0	5.0	5.0
P _{MAX} (mW)	750	550	300
Package RTH (JA) (°C/W)	120	120	70
Junction Temperature (°C) at Datasheet $P_{MAX}^{[1]}$	160	136	91

During its normal operation, the Cypress 7C122 device experiences a 91°C junction temperature, whereas competitive devices in their respective packaging environments see a 45° C and 69° C higher junction temperature. In terms of relative reliability life expectancy, assuming a 1.0-eV activation energy failure mechanism, this translates into an improvement in excess of two orders of magnitude (100x) over the bipolar 93422 device, and more than one order of magnitude (30x) over the NMOS 9122 device.

Thermal Performance Data of Cypress Component Packages

The thermal performance of a semiconductor device in its package is determined by many factors, including package design and construction, packaging materials, chip size, chip thickness, chip attachment process and materials, package size, etc.

Thermal Resistance (θ_{JA}, θ_{JC})

Thermal resistance is a measure of the ability of a package to transfer the heat generated by the device inside it to the ambient.

For a packaged semiconductor device, heat generated near the junction of the powered chip causes the junction temperature to rise above the ambient temperature. The total thermal resistance is defined as

$$\theta_{JA} = \frac{T_J - T_A}{P}$$

and θ_{JA} physically represents the temperature differential between the die junction and the surrounding ambient at a power dissipation of 1 watt.

The junction temperature is given by the equation

$$T_{J} = T_{A} + P[\theta_{JA}] = T_{A} + P[\theta_{JC} + \theta_{CA}]$$

where

$$\theta_{JC} = \frac{T_J - T_C}{P}$$
 and $\theta_{CA} = \frac{T_C - T_A}{P}$

- T_A = Ambient temperature at which the device is operated; Most common standard temperature of operation is room temperature to 70°C.
- T_J = Junction temperature of the IC chip.
- T_{C} = Temperature of the case (package).
- P = Power at which the device operates.
- θ_{JC} = Junction-to-case thermal resistance. This is mainly a function of the thermal properties of the materials constituting the package.
- θ_{JA} = Junction-to-ambient thermal resistance. The junction-toambient environment is a still-air environment.
- $\theta_{CA} = \text{Case-to-ambient thermal resistance. This is mainly dependent on the surface area available for convection and radiation and the ambient conditions among other factors. This can be controlled at the user end by using heat sinks providing greater surface area and better conduction path or by air or liquid cooling.$

Thermal Resistance: Finite Element Model

 θ_{JC} and θ_{JA} values given in the following figures and listed in the following tables have been obtained by simulation using the Finite element software ANSYS^[2]. SDRC-IDEAS Pre and Post processor software^[3] was used to create the finite element model of the packages and the ANSYS input data required for analysis.

SEMI Standard (Semiconductor Equipment and Materials International) method SEMI G30-88^[4] states "heat sink" mounting technique to be the "reference" method for $\theta_{\rm JC}$ estimation of ceramic packages. Accordingly, $\theta_{\rm JC}$ of packages has been obtained by applying the boundary conditions that correspond to the heat sink mounted on the packages in the simulation.

For θ_{JA} evaluation, SEMI standard specification SEMI G38-87 suggests using a package-mounting arrangement that approximates the application environment. So, in evaluating the θ_{JA} , package on-board configuration is assumed.

Notes:

- 3. SDRC-IDEAS Pre and Post Processor User Guide
- 4. SEMI International Standards, Vol. 4, Packaging Handbook, 1989.

^{1.} $T_{ambient} = 70^{\circ}C$

^{2.} ANSYS Finite Element Software User Guides

Thermal Management

Model Description

- One guarter of the package is mounted on a FR-4 PC board.
- Leads have been modeled as a continuous metallic plane, and equivalent thermal properties have been used to account for the plastic (or the glass in the case of ceramic packages) that fills the space between the leads.
- 1W power dissipation over the entire chip is assumed.
- 70°C ambient condition is considered.

Comparison of Simulation Data with Measured Data

In the case of ceramic packages, it is not unusual to see significant differences in θ_{JC} values when a heat sink is used in the place of fluid bath.^[5] However, SEMI G30-88 test method recommends the heat sink configuration for θ_{10} evaluation.

 θ_{JA} values from simulation compare within 12 percent of the measured values. θ_{JA} values obtained from simulation seem to be conservative with an accuracy of about +12 percent.

Measured values given in Table 3 used the Temperature Sensitive Parameter method described in MIL STD 883C, method 1012.1. The junction-to-ambient measurement was made in a still-air environment where the device was inserted into a low-cost standard-device socket and mounted on a standard 0.062" G10 PC board.

Table 3. 24-Lead Ceramic and Plastic DIPs

	Cavity/PAD	(∂ _{JA} (°C/W)	
Package	Size (mils)	Measured	Simulation	% Diff.
24LCDIP ^[6]	170 x 270	64	67	5
24LPDIP ^[7]	160 x 210	72	82	12

Thermal Resistance of Packages with Forced Convection Air Flow

One of the methods adopted to cool the packages on PC boards at the system level is to used forced air (fans) specified in linear feet per minute or LFM. This helps reduce the device operating temperature by lowering the case to ambient thermal resistance. Available surface area of the package and the orientation of the package with respect to the air flow affect the reduction of thermal resistance that can be achieved. A general rule of thumb is:

- · For plastic packages:
 - 200 LFM air flow can reduce θ_{IA} by 20 to 25%
 - 500 LFM air flow can reduce θ_{IA} by 30 to 40%
- For ceramic packages:
 - 200 LFM air flow can reduce θ_{JA} by 25 to 30%
 - 500 LFM air flow can reduce θ_{IA} by 35 to 45%

If θ_{JA} for a package in still air (no air flow) is known, approximate values of thermal resistance at 200 LFM and 500 LFM can be estimated. For estimation, the factors given in Table 4 can be used as a guideline.

Notes: 5. "Thermal resistance measurements and finite calculations for ceramic "Yunga N. Sweat at al. SEMI-Therm. 1990. hermetic packages." James N. Sweet et. al., SEMI-Therm, 1990.

Table 4. Factors for Estimating Thermal Resistance

Package Type	Air Flow Rate (LFM)	Multiplication Factor
Plastic	200	0.77
Plastic	500	0.66
Ceramic	200	0.72
Ceramic	500	0.60

Example:

 θ_{IA} for a plastic package in still air is given to be 80°C/W. Using the multiplication factor from Table 4:

- θ_{IA} at 200 LFM is (80 x 0.77) = 61.6°C/W
- θ_{IA} at 500 LFM is (80 x 0.66) = 52.8°C/W

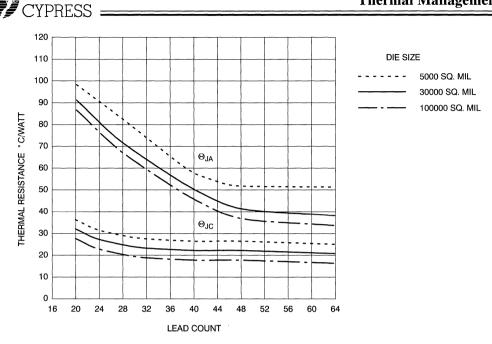
 θ_{IA} for a ceramic package in still air is given to be 70°C/W. Using Table 4:

- θ_{IA} at 200 LFM is (70 x 0.72) = 50.4°C/W
- θ_{JA} at 500 LFM is (70x0.60) = 42.0°C/W

Presentation of Data

The following figures and tables present the data taken using the aforementioned procedures. The thermal resistance values of Cypress standard packages are graphically illustrated in Figures 2 through 6. Each envelope represents a spread of typical Cypress integrated circuit chip sizes (upper boundary=5000 mils², lower boundary = $100,000 \text{ mils}^2$) in their thermally optimized packaging environments. These graphs should be used in conjunction with Table 10, which lists the die sizes of Cypress devices.

Tables 5 through 9 give the thermal resistance values for other package types not included in the graphs. The letter in the header (D, P, J, etc.) of these tables refer to the package designators as detailed in the Package Diagrams section of this catalog. The numeric values given in the table (e.g., 20.3) refer to the lead count (20) and package width in inches (.3). If no decimal appears, the reader must refer to the package diagrams.


Packaging Materials


Cypress plastic packages incorporate

- High thermal conductivity copper lead frame
- Molding compound with high thermal conductivity
- Gold bond wires

Cypress cerDIP packages incorporate

- High conductivity alumina substrates
- Silver-filled glass as die attach material
- Allov 42-lead frame
- Aluminum bond wires
- Silver-filled conductive epoxy as die attach material
- 6. 24LCDIP = 24-lead cerDIP
- 7. 24LPDIP = 24-lead plastic DIP

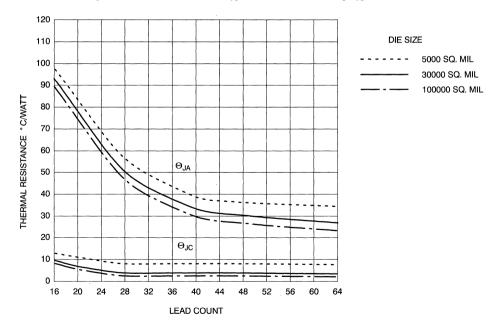
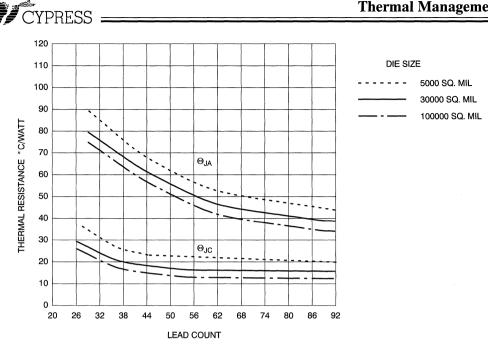



Figure 3. Thermal Resistance of Cypress Ceramic DIPs (Package type "D" and "W")

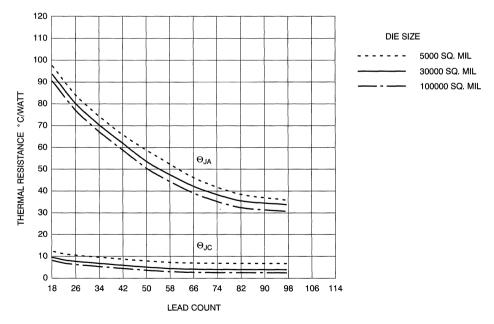
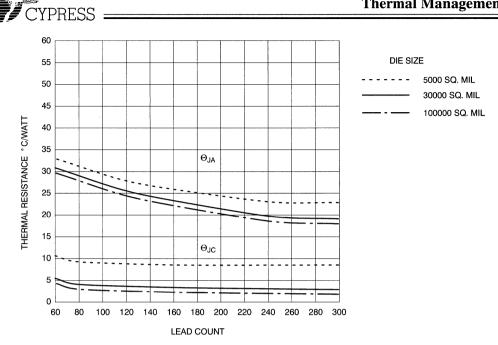



Figure 5. Thermal Resistance of Cypress LCCs (Package type "L" and "Q")

6 - 40

Table 5. Plastic Surface Mount SOIC, SOJ ^[8]	OJ ^[8,9]	S	SOIC.	Mount	Surface	Plastic	Table 5.
---	----------------------------	---	-------	-------	---------	---------	----------

Package Type "S" and "V"	Paddle Size (mil)	LF Material	Die Size (mil)	Die Area (sq. mil)	θ _{JC} (°C/W)	θ _{JA} (°C/W still air)
16	140 x 170	Copper	98 x 84	8,232	19.0	120
18	140 x 170	Copper	98 x 84	8,232	18.0	116
20	180 x 250	Copper	145 x 213	30,885	17.0	105
24	180 x 250	Copper	145 x 213	30,885	15.4	88
24	170 x 500	Copper	141 x 459	64,719	14.9	85
28	170 x 500	Copper	145 x 213	30,885	16.7	84
28	170 x 500	Copper	141 x 459	64,719	14.4	80

Table 6. Plastic Quad Flatpacks

Package Type "N"	LF Material	Paddle Size (mil)	Die Size (mil)	θ _{JC} (°C/W)	θ _{JA} (°C/W still air)
100	Copper	310 x 310	235 x 235	17	51
144	Copper	310 x 310	235 x 235	18	41
160	Copper	310 x 310	230 x 230	18	40
184	Copper	460 x 460	322 x 311	15	38.5
208	Copper	400 x 400	290 x 320	16	39

Notes: 8. Th

The data in Table 6 was simulated for SOIC packaging.

SOICs and SOJs have very similar thermal resistance characteristics. The thermal resistance values given above apply to SOJ packages also. 9.

Package Type "H" and "Y"	Cavity Size (mil)	LF Material	Die Size (mil)	Die Area (sq. mil)	θ _{JC} (°C/W)	θ _{JA} (°C/W still air)
28	250 x 250	Alloy 42	123 x 162	19,926	9.2	96
28	250 x 250	Alloy 42	150 x 180	27,000	8.9	93
32	316 x 317	Alloy 42	198 x 240	47,520	7.5	72
44	400 x 400	Alloy 42	310 x 250	77,500	5.9	55
52	400 x 400	Alloy 42	250 x 310	77,500	5.9	55
68	400 x 400	Alloy 42	310 x 250	77,500	5.4	33
84	450 x 450	Alloy 42	310 x 250	77,500	5.4	29

Table 7. Ceramic Quad Flatpacks

Table 8. Cerpacks

Package Type "K" and "T"	Cavity Size (mil)	Leadframe Material	Die Size (mil)	Die Area (sq. mil)	θ _{JC} (°C/W)	θ _{JA} (°C/W still air)
16	140 x 200	Alloy 42	100 x 118	11,800	10	107
18	140 x 200	Alloy 42	100 x 118	11,800	10	104
20	180 x 265	Alloy 42	128 x 170	21,760	9	102
24	170 x 270	Alloy 42	128 x 170	21,760	10	102
28	210 x 210	Alloy 42	150 x 180	27,000	9	98
32	210 x 550	Alloy 42	141 x 459	64,719	7	81

Table 9. Miscellaneous Packaging

Package Type	Cavity Size (mil)	Leadframe Material	Die Size (mil)	Die Area (sq. mil)	θ _{JC} (°C/W)	θ _{JA} (°C/W still air)
24 VDIP ^[10]	500 x 275	Alloy 42	145 x 213	30,885	6	57
68 CPGA ^[11]	350 x 350	Kovar Pins	323 x 273	88,179	3	28

Notes: 10. VDIP = "PV" package.

11. CPGA = "G" package.

Table 10. Die Sizes of Cypress Devices

Part Number	Size (mil ²)
SRAMs	
CY2147	10132
CY2148	9983
CY2149	9983
CY27LS03	4130
CY27S03A	4130
CY27S07A	4130
CY6116	20007
CY6116A	20007
CY6117	20007
CY6117A	20007
CY74S189	4130

Part Number	Size (mil ²)
CY7B134	76152
CY7B1342	76152
CY7B135	76152
CY7B138	76152
CY7B139	76152
CY7B144	76152
CY7B145	76152
CY7B160	27244
CY7B161	27244
CY7B162	27244
CY7B164	27244
CY7B166	27244

Part Number	Size (mil ²)
CY7B173	102200
CY7B174	102200
CY7B180	54600
CY7B181	54600
CY7B185	27244
CY7B186	27244
CY7B191	73152
CY7B192	73152
CY7B194	73152
CY7C122	6300
CY7C123	6300
CY7C128	20007
CY7C128A	17400
CY7C130	36636
CY7C131	36636
CY7C132	36636
CY7C136	36636
CY7C140	36636
CY7C141	36636
CY7C142	36636
CY7C146	36636
CY7C147	10132
CY7C148	9983
CY7C149	9983
CY7C150	6634
CY7C157	86460
CY7C161A	30885
CY7C162A	30885
CY7C164A	30885
CY7C166A	30885
CY7C167	21228
CY7C167A	21228
CY7C168	21228
CY7C168A	21228
CY7C169	21228
CY7C169A	21228
CY7C170	21228
CY7C170A	21228
CY7C171	21228

Table 10.	Die Sizes	of Cypress Devices	(continued)
-----------	-----------	--------------------	-------------

Part Number	Size (mil ²)
CY7C171A	21228
CY7C172	21228
CY7C172A	21228
CY7C183	65636
CY7C184	65636
CY7C185	30885
CY7C186	30885
CY7C187	30885
CY7C189	4130
CY7C190	4130
CY7C191	68150
CY7C192	68150
CY7C194	68150
CY7C196	68150
CY7C197	68150
CY7C198 ·	68150
CY7C199	68150
CY7C191 (RAM2.5)	51590
CY7C192 (RAM2.5)	51590
CY7C194 (RAM2.5)	51590
CY7C196 (RAM2.5)	51590
CY7C197 (RAM2.5)	51590
CY7C198 (RAM2.5)	51590
CY7C199 (RAM2.5)	51590
CY7C9122	6300
CY93422A	6300
PROMs	
CY7C225	11815
CY7C235	13900
CY7C245	19321
CY7C245A	9394
CY7C251	49536
CY7C254	49536
CY7C261	28290
CY7C263	28290
CY7C264	28290
CY7C265	28290
CY7C266	28290
CY7C268	29400

Table 10. Die Sizes of Cypress Devices (con	tinued)
---	---------

Part Number	Size (mil ²)
CY7C269	29400
CY7C271	38750
CY7C274	38750
CY7C277	38750
CY7C279	38750
CY7C281	13900
CY7C282	13900
CY7C285	43875
CY7C286	43875
CY7C287	43875
CY7C289	43875
CY7C291	19182
CY7C291A	9394
CY7C292	19321
CY7C292A	9394
CY7C293A	9394
PLDs	
CY7C330	20088
CY7C331	16536
CY7C332	19116
CY7C335	23111
CY7C341	136320
CY7C342	83475
CY7C342B	49104
CY7C343	43953
CY7C344	21977
CY7C361	25872
PAL16L8	13552
PAL16R4	13552
PAL16R6	13552
PAL16R8	13552
PAL22V10C	18834
PAL22VP10C	18834
PALC16L8	9700
PALC16R4	9700
PALC16R6	9700

Part Number	Size (mil ²)		
PALC16R8	9700		
PALC22V10	19926		
PALC22V10B	13284		
PALC22V10D	12954		
PLD20G10C	18834		
PLDC18G8	7744		
PLDC20G10	19926		
PLDC20G10B	13284		
PLDC20RA10	13284		
FIFOs			
CY3341	8064		
CY7C401	8064		
CY7C402	8064		
CY7C403	8064		
CY7C404	8064		
CY7C408A	16268		
CY7C409A	16268		
CY7C420	41019		
CY7C421	41019		
CY7C424	41019		
CY7C425	41019		
CY7C428	41019		
CY7C429	41019		
CY7C432	50040		
CY7C433	50040		
CY7C439	47160		
CY7C441	44756		
CY7C443	44756		
CY7C451	44756		
CY7C453	44756		
CY7C460	89445		
CY7C462	89445		
CY7C464	89445		
CY7C470	89445		
CY7C472	89445		
CY7C474	89445		

Part Number	Size (mil ²)		
Logic			
CY2909A	7968		
CY2910A	21750		
CY2911A	7968		
CY7C2901	11800		
CY7C510	30704		
CY7C516	29000		
CY7C517	29000		
CY7C901	11800		
CY7C909	7968		
CY7C910	21750		
CY7C9101	36108		
CY7C911	7968		

Table 10. Die Sizes of Cypress Devices (continued)

Part Number	Size (mil ²)		
ECL			
CY100E301L	14875		
CY100E302L	14875		
CY100E422	6960		
CY100E474	10830		
CY100E494	29575		
CY10E301L	14875		
CY10E302L	14875		
CY10E422	6960		
CY10E474	10830		
CY10E494	29575		
Bus Interface			
CY7C964	21460		
VAC068	101060		
VIC068A	103620		
VIC64	103620		

Document #: 38-00190

1
2
3
4
5
6
7

Table of Contents

Table of Contents

.

Page Number

Packages

Tape and Reel Specifications	7-1	l
Package Diagrams	7-5	5

Tape and Reel Specifications

Description

Surface-mounted devices are packaged in embossed tape and wound onto reels for shipment in compliance with Electronics Industries Association Standard EIA-481 Rev. A.

Specifications

Cover Tape

- The cover tape may not extend past the edge of the carrier tapes
- The cover tape shall not cover any part of any sprocket hole.
- The seal of the cover tape to the carrier tape is uniform, with the seal extending over 100% of the length of each pocket, on each side.
- The force to peel back the cover tape from the carrier tape shall be: 20 gms minimal, 70 gms nominal, 100 gms maximal, at a pull-back speed of 300 ± 10 mm/min.

Loading the Reel

Empty pockets are not permitted between the first and last filled pockets on the tape.

The surface-mount devices are placed in the carrier tape with the leads down, as shown in *Figure 1*.

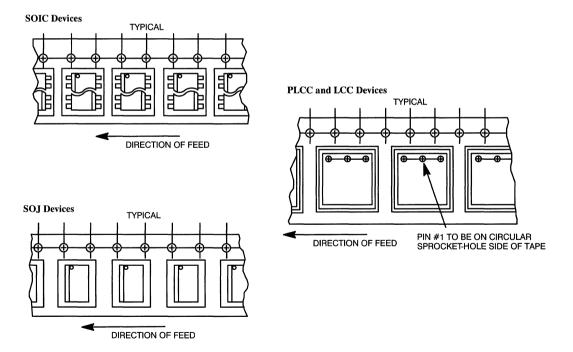


Figure 1. Part Orientation in Carrier Tape

Leaders and Trailers

The carrier tape and the cover tape may not be spliced. Both tapes must be one single uninterrupted piece from end to end.

Both ends of the tape must have empty pockets meeting the following minimum requirements:

- Trailer end (inside hub of reel) is 300 mm minimum
- Leader end (outside of reel) is 500 mm min., 560 mm max.
- · Unfilled leader and trailer pockets are sealed
- Leaders and trailers are taped to tape and hub respectively using masking tape

Packaging

- Full reels contain a standard number of units (refer to Table 1)
- Reels may contain up to 3 inspection lots.
- Each reel is packed in an anti-static bag and then in its own individual box.
- Labels are placed on each reel as shown in *Figure 2*. The information on the label consists of a minimum of the following information, which complies with EIA 556, "Shipping and Receiving Transaction Bar Code Label Standard":
 - Barcoded Information: Customer PO number Quantity Date code
 - Human Readable Only: Package count (number of reels per order) Description
 "Cypress-San Jose"
 Cypress p/n
 Cypress CS number (if applicable)
 Customer p/n
- Each box will contain an identical label plus an ESD warning label.

Ordering Information

CY7Cxxx-yyzzz

xxx = part type

yy = speed

zzz = package, temperature, and options

SCT = soic, commercial temperature range

SIT = soic, inductrial temperature range

SCR = soic, commercial temperature plus burn-in

SIR = soic, industrial temperature plus burn-in

VCT = soj, commercial temperature range

VIT = soj, industrial temperature range

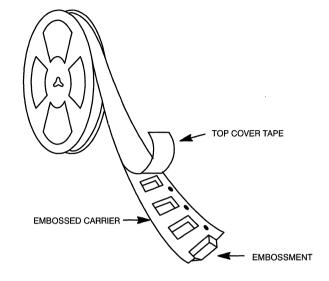
VCR = soj, commercial temperature plus burn-in

VIR = soj, industrial temperature plus burn-in

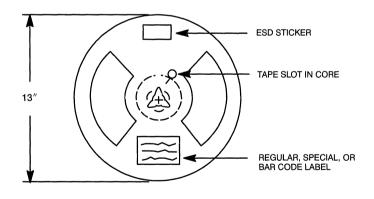
- JCT = plcc, commercial temperature range
- JIT = plcc, industrial temperature range
- JCR = plcc, commercial temperature range plus burn-in

JIR = plcc, industrial temperature range plus burn-in

Notes:


- 1. The T or R suffix will not be marked on the device. Units will be marked the same as parts in a tube.
- 2. Order releases must be in full-reel multiples as listed in Table 1.

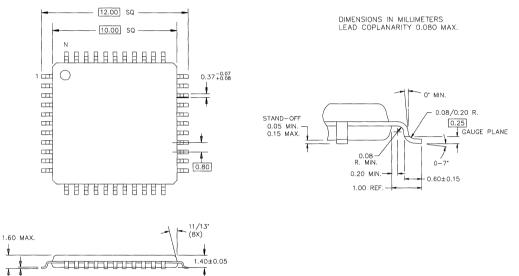
Package Type	Terminals	Carrier Width (mm)	Part Pitch (mm)	Parts Per Full Reel	Minimum Partial Quantity
PLCC	20	16	12	1,000	250
	28	24	16	750	188
	32R	24	16	750	188
	44	32	24	500	125
	52	32	24	500	125
	68	44	32	250	63
	84	44	32	250	263
SOIC	20	24	12	1,000	250
	24	24	12	1,000	250
	28	24	12	1,000	250
SOJ	20	24	3	1,000	250
	24	24	3	1,000	250
	28	24	3	1,000	250
	32L (300 mil)	24	16	1,000	250
	32 (400 mil)	32	3	1,000	250
TSOP	28L	24	16	1,000	250
	32	32	3	1,750	438
SSOP	20 (150 mil)	16	8	2,000	500
	24 (150 mil)	16	8	2,000	500
	48 (300 mil)	32	16	1,000	250
	56 (300 mil)	32	16	1,000	250
TSSOP	48	24	12	2,000	500
	56	24	12	2,000	500


Table 1. Parts Per Reel and Tape Specifications

Tape and Reel Shipping Medium

Label Placement

Document #: 38-00111-B

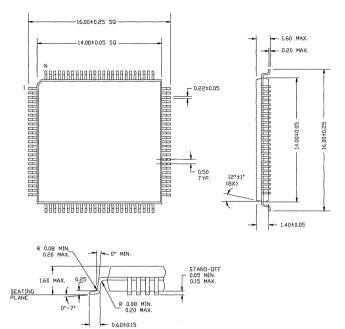


0.20 MAX.

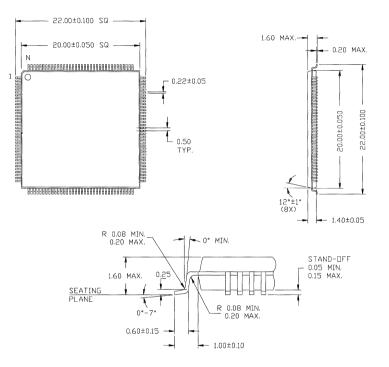
Package Diagrams

Thin Quad Flat Packs

44-Pin Plastic Thin Quad Flat Pack (TQFP) A44

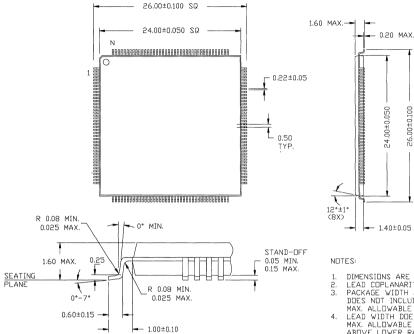


Thin Quad Flat Packs (continued)


100-Pin Plastic Thin Quad Flat Pack (TQFP) A100

Thin Quad Flat Packs (continued)

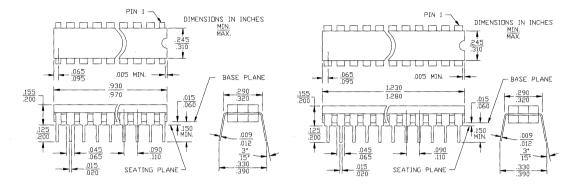
144-Pin Plastic Thin Quad Flat Pack (TQFP) A144



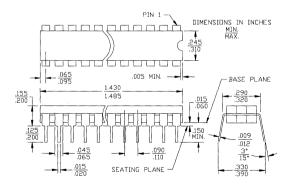
7

Thin Quad Flat Packs (continued)

160-Pin Plastic Thin Quad Flat Pack (TQFP) A160

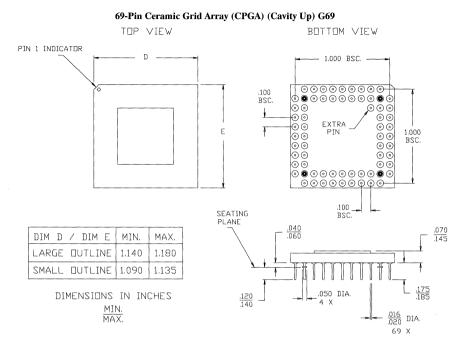


- DIMENSIONS ARE IN MILLIMETERS. LEAD COPLANARITY 0.100 MAX. PACKAGE WIDTH AND LENGTH (24.00±0.05) DOES NOT INCLUDE MOLD PROTRUSION. MAX. ALLOWABLE PROTRUSION IS 0.25 MM. LEAD WIDTH DOES NOT INCLUDE DAMBAR PROTRUSION. MAX. ALLOWABLE DAMBAR PROTRUSION ABOVE LOWER RADIUS IS 0.08 MM.

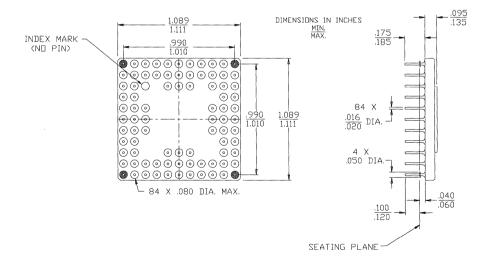


Ceramic Dual-In-Line Packages

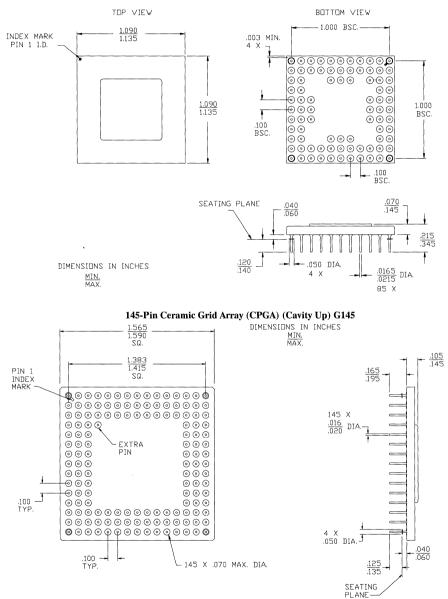
20-Pin (300-Mil) CerDIP D6 MIL-STD-1835 D-8 Config. A **24-Pin (300-Mil) CerDIP D14** MIL-STD-1835 D-9 Config. A

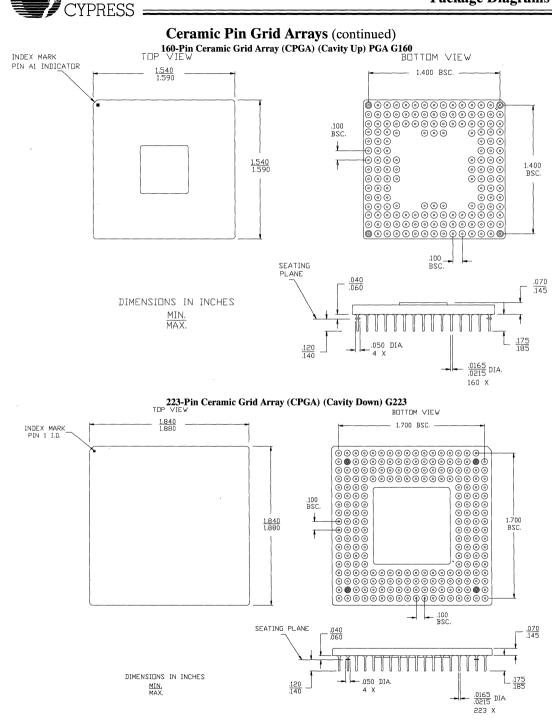


28-Pin (300-Mil) CerDIP D22 MIL-STD-1835 D-15 Config. A



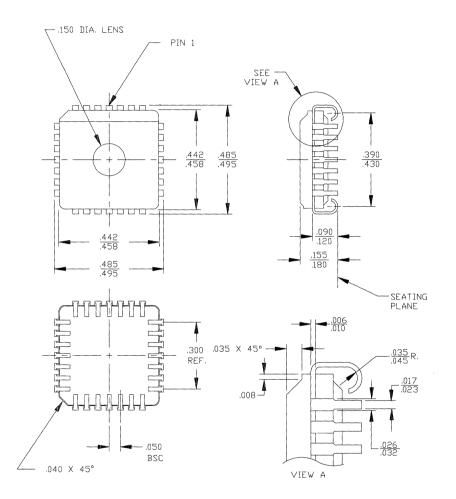
Ceramic Pin Grid Arrays



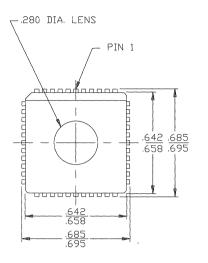

7

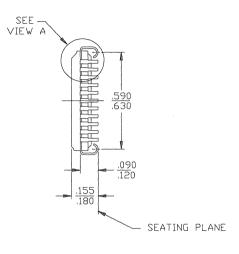
Ceramic Pin Grid Arrays (continued)

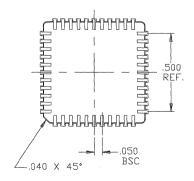
85-Pin Ceramic Grid (CPGA) (Cavity Up) Array G85

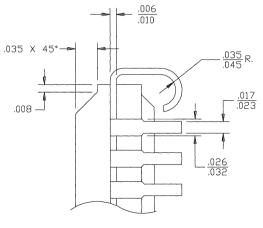


Ceramic Windowed J-Leaded Chip Carriers

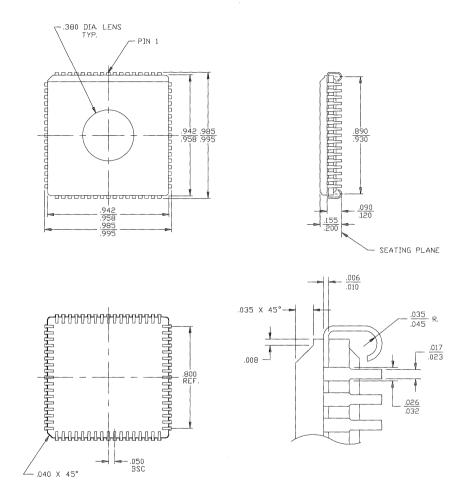

28-Pin Windowed Leaded Chip Carrier (CLCC) H64



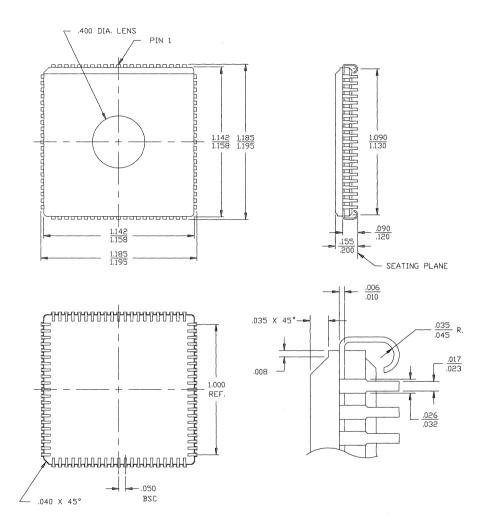



Ceramic Windowed J-Leaded Chip Carriers (continued)

44-Pin Windowed Leaded Chip Carrier (CLCC) H67


VIEW A

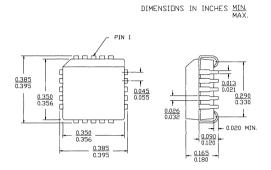
7

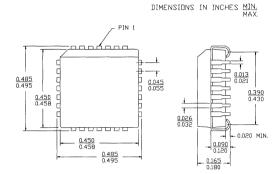

68-Pin Windowed Leaded Chip Carrier (CLCC) H81

7-15

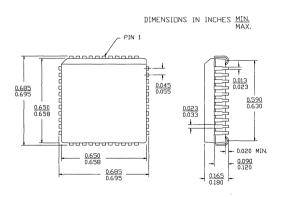
Ceramic Windowed J-Leaded Chip Carriers (continued)

84-Pin Windowed Leaded Chip Carrier (CLCC) H84

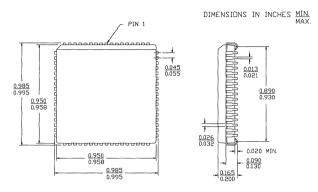

7

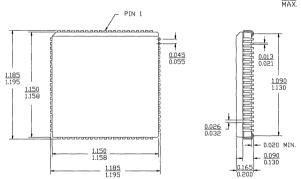


20-Pin Plastic Leaded Chip Carrier (PLCC) J61


CYPRESS

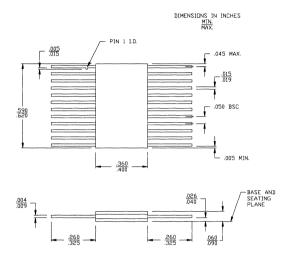
28-Pin Plastic Leaded Chip Carrier (PLCC) J64


44-Pin Plastic Leaded Chip Carrier (PLCC) J67



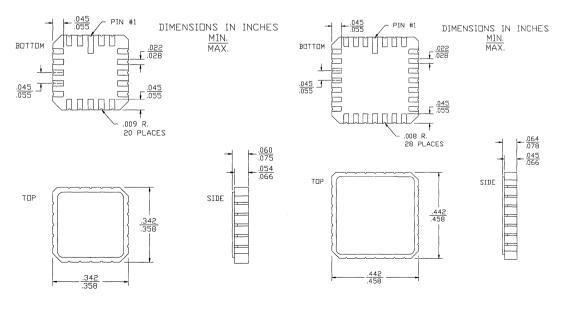
Plastic Leaded Chip Carriers (continued)

68-Pin Plastic Leaded Chip Carrier (PLCC) J81



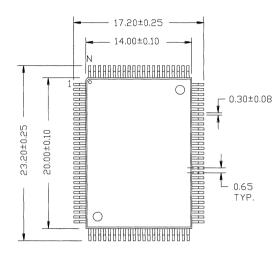
DIMENSIONS IN INCHES MIN. MAX.

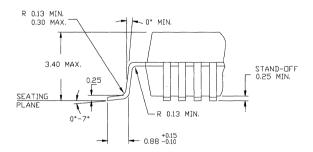
Cerpacks

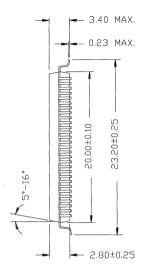

24-Pin Rectangular Cerpack K73 MIL-STD-1835 F-6 Config. A

Ceramic Leadless Chip Carriers

20-Pin Square Leadless Chip Carrier (LCC) L61 MIL-STD-1835 C-2A

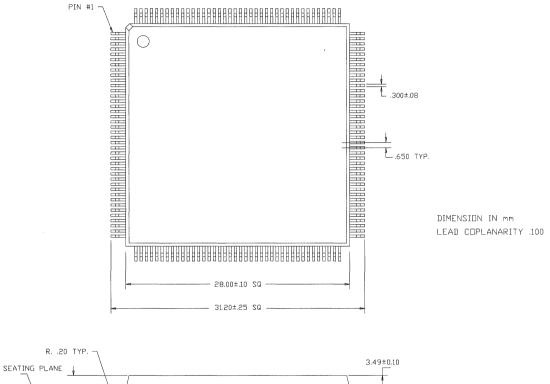

28-Pin Square Leadless Chip Carrier (LCC) L64 MIL-STD-1835 C-4

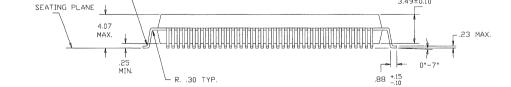




Plastic Quad Flat Packs

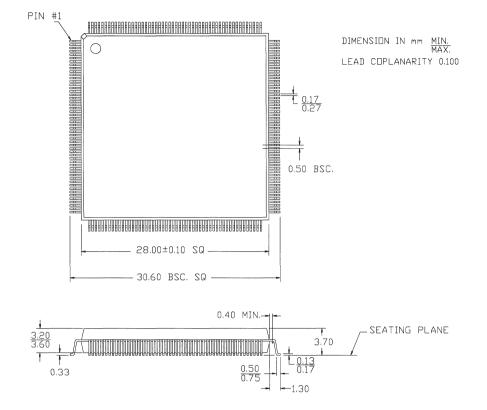
100-Pin Plastic Quad Flat Pack (PQFP) N100


NOTES:

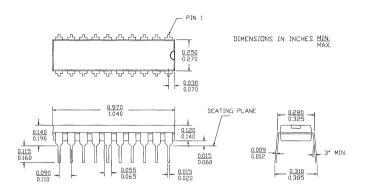

- 1. 2.
- 3.
- DIMENSIONS ARE IN MILLIMETERS. LEAD COPLANARITY 0.100 MAX. PACKAGE WIDTH (14.00±0.10) AND LENGTH (20.00±0.10) DOES NOT INCLUDE MOLD PROTRUSION. MAX. ALLOWABLE PROTRUSION IS 0.25 MM. LEAD WIDTH DOES NOT INCLUDE DAMBAR PROTRUSION. MAX. ALLOWABLE DAMBAR PROTRUSION ABOVE LOWER RADIUS IS 0.08 MM. 4.

Plastic Quad Flat Packs (continued)

160-Pin Plastic Quad Flat Pack (PQFP) N160

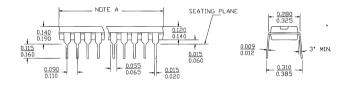


Plastic Quad Flat Packs (continued)

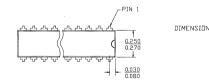

208-Pin Plastic Quad Flat Pack N208

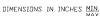
Plastic Dual-In-Line Packages

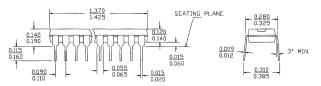
20-Pin (300-Mil) Molded DIP P5



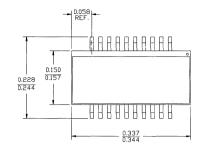
24-Pin (300-Mil) Molded DIP P13/P13A

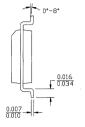

DIMENSIONS IN INCHES MIN.

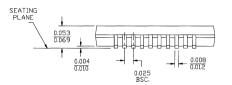



	P 13	P 13A
NOTE A	<u>1.170</u> 1.200	<u>1.230</u> 1.260
NOTE B	0.030 0.050	0.060 0.080

28-Pin (300-Mil) Molded DIP P21

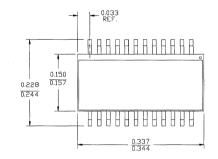


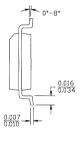


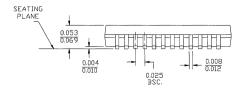


Quarter Size Outline Packages

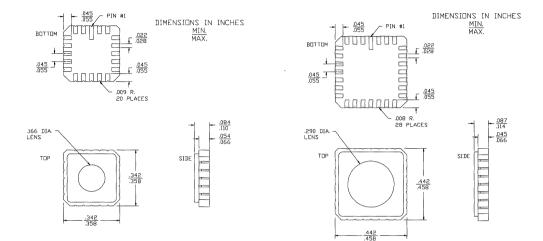
20-Pin Quarter Size Outline Package (QSOP) Q5



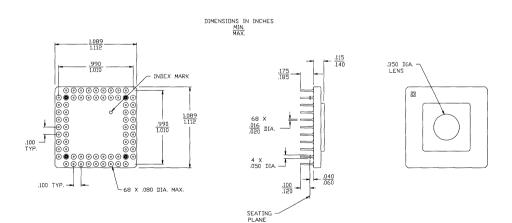




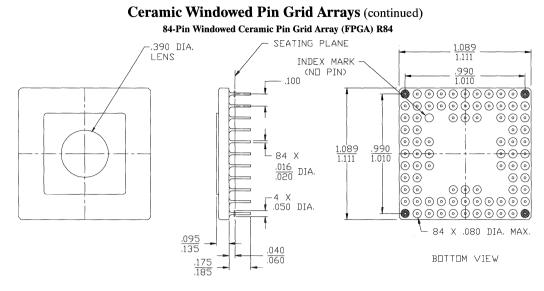
DIMENSIONS IN INCHES MIN. MAX. LEAD COPLANARITY 0.004 MAX.


DIMENSIONS IN INCHES MIN. MAX. LEAD COPLANARITY 0.004 MAX.

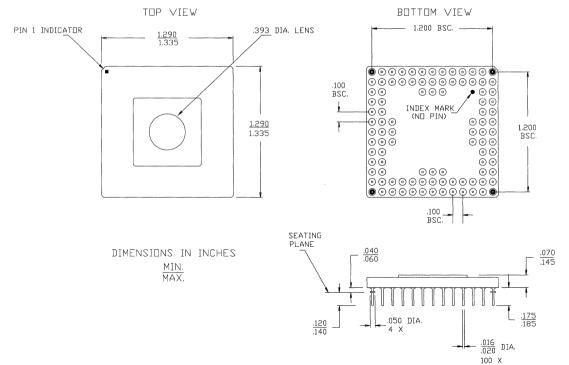
Ceramic Windowed Leadless Chip Carriers


20-Pin Windowed Square Leadless Chip Carrier (LCC) Q61 MIL-STD-1835 C-2A

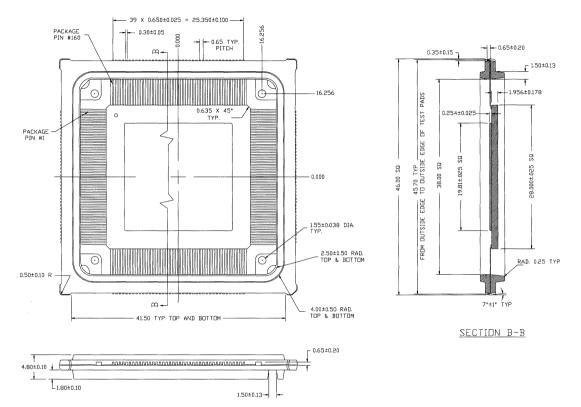
28-Pin Windowed Leadless Chip Carrier (LCC) Q64 MIL–STD–1835 C–4


Ceramic Windowed Pin Grid Arrays

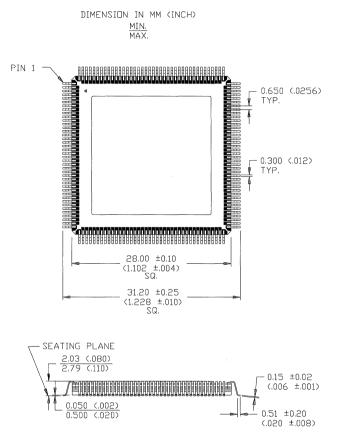
68-Pin Windowed Ceramic Pin Grid Array Ceramic R68

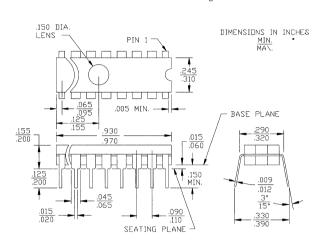


7

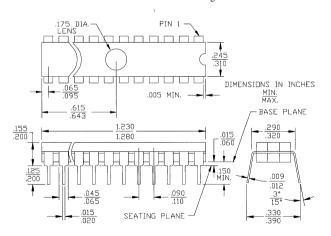


100-Pin Windowed Ceramic Pin Grid Array (CPGA) R100




Ceramic Quad Flat Packs (continued)

160-Pin Ceramic Quad Flat Pack (CQFP) (Cavity Up) U162

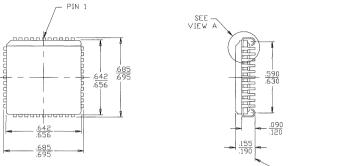


Ceramic Windowed Dual-In-Line Packages

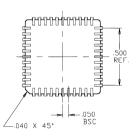
20-Pin (300-Mil) Windowed CerDIP W6 MIL-STD-1835 D-8 Config. A

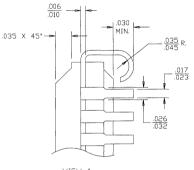
24-Pin (300-Mil) Windowed CerDIP W14 MIL-STD-1835 D-9 Config. A

Ceramic Windowed Dual-In-Line Packages (continued)

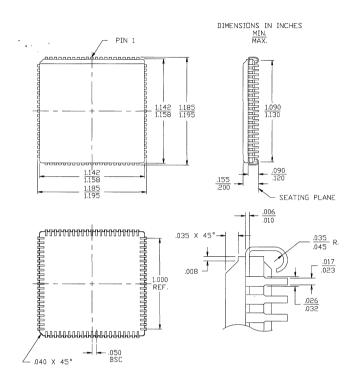


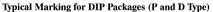
28-Pin (300-Mil) Windowed CerDIP W22 MIL–STD–1835 D–15 Config. A

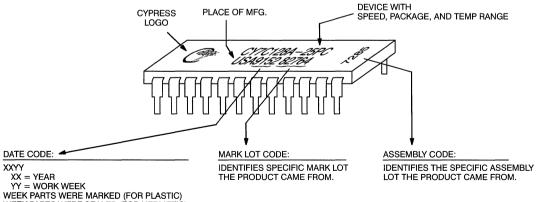



Ceramic J-Leaded Chip Carriers

44-Pin Ceramic Leaded Chip Carrier (CLCC) Y67




VIEW A



Ceramic J-Leaded Chip Carriers (continued)

84-Pin Ceramic Leaded Chip Carrier (CLCC) Y84

WEEK PARTS WERE SEALED (FOR HERMETIC)

Domestic Direct Sales Offices

Corporate Headquarters

Cypress Semiconductor 3901 N. First Street San Jose, CA 95134 (408) 943–2600 Telex: 821032 CYPRESS SNJ UD TWX: 910 997 0753 FAX: (408) 943–2741

IC Designs Division 12020–113th Ave. N.E. Kirkland, WA 98034 (206) 821–9202 FAX: (206) 820–8959

Alabama

Cypress Semiconductor 555 Sparkman Drive, Ste. 1218 Huntsville, AL 35816 (205) 721-9500 FAX: (205) 721-0230

California

Northwest Sales Office Cypress Semiconductor 100 Century Center Court Suite 340 San Jose, CA 95112 (408) 437–2600 FAX: (408) 437–2699

Cypress Semiconductor 23586 Calabasas Rd., Ste. 201 Calabasas, CA 91302 (818) 222–3800 FAX: (818) 222–3810

Cypress Semiconductor 2 Venture Plaza, Suite 460 Irvine, CA 92718 (714) 753–5800 FAX: (714) 753–5808

Cypress Semiconductor 12526 High Bluff Dr., Ste. 300 San Diego, CA 92130 (619) 755–1976 FAX: (619) 755–1969

Canada

Cypress Semiconductor 701 Evans Avenue Suite 312 Toronto, Ontario M9C 1A3 (416) 620-7276 FAX: (416) 620-7279

Colorado

Cypress Semiconductor 4704 Harlan St., Suite 360 Denver, CO 80212 (303) 433–4889 FAX: (303) 433–0398

Florida

Cypress Semiconductor 13535 Feather Sound Drive Suite 130 Clearwater, FL 34622 (813) 968-1504

Cypress Semiconductor 255 South Orange Avenue Suite 1255 Orlando, FL 32801 (407) 422–0734 FAX: (407) 422–1976

Cypress Semiconductor 1000 W. McNab Road Pompano Beach, FL 33069 (954) 943–9295 FAX: (954) 943–4057

Georgia

Cypress Semiconductor 1080 Holcomb Bridge Rd. Building 200, Ste. 365 Roswell, GA 30076 (770) 998–0491 FAX (770) 998–2172

Illinois

Cypress Semiconductor 1530 E. Dundee Rd., Ste. 190 Palatine, IL 60067 (708) 934-3144 FAX: (708) 934-7364

Maryland

Cypress Semiconductor 8850 Stanford Blvd., Suite 1600 Columbia, MD 21045 (410) 312–2911 FAX: (410) 290–1808

Minnesota

Cypress Semiconductor 14525 Hwy. 7, Ste. 360 Minnetonka, MN 55345 (612) 935–7747 FAX: (612) 935–6982

New Hampshire

Cypress Semiconductor 61 Spit Brook Road, Ste. 550 Nashua, NH 03060 (603) 891–2655 FAX: (603) 891–2676

New Jersey

Cypress Semiconductor 100 Metro Park South 3rd Floor Laurence Harbor, NJ 08878 (908) 583-9008 FAX (908) 583-8810

New York

Cypress Semiconductor 22 IBM Road Suite 103B Poughkeepsie, NY 1260 (914) 463-3218 FAX: (914) 463-3220

North Carolina

Cypress Semiconductor 7500 Six Forks Rd., Suite G Raleigh, NC 27615 (919) 870–0880 FAX: (919) 870–0881

Oregon

Cypress Semiconductor 8196 S.W. Hall Blvd. Suite 100 Beaverton, OR 97005 (503) 626–6622 FAX: (503) 626–6688

Pennsylvania

Cypress Semiconductor Two Neshaminy Interplex, Ste. 206 Trevose, PA 19053 (215) 639–6663 FAX: (215) 639–9024

Texas

Cypress Semiconductor 101 W. Renner Rd, Suite 155 Richardson, TX 75082–2002 (214) 437–0496 FAX: (214) 644–4839

Cypress Semiconductor 8834 Capital of Texas Highway North Suite 220 Austin, TX 78759 (512) 418-4205 FAX: (512) 418-4201

Cypress Semiconductor 20405 SH 249, Ste. 215 Houston, TX 77070 (713) 370–0221 FAX: (713) 370–0222

Domestic Sales Representatives

Alabama

Giesting & Associates 4835 University Square Suite 15 Huntsville, AL 35816 (205) 830-4554 FAX: (205) 830-4699

Arizona

Thom Luke Sales, Inc. 9700 North 91st St., Suite A-200 Scottsdale, AZ 85258 (602) 451-5400 FAX: (602) 451-0172

California

TAARCOM 451 N. Shoreline Blvd. Mountain View, CA 94043 (415) 960–1550 FAX: (415) 960–1999

TAARCOM 735 Sunrise Ave., Suite 200–4 Roseville, CA 95661 (916) 782–1776 FAX: (916) 782–1786

Technology Solutions Company 5525 Oakdale Ave., Suite 275 Woodland Hills, CA 91364 (818) 704–1693 FAX: (818) 704–6165

Technology Solutions Company 10 Hughes, Suite A201 Irvine, CA 92718 (714) 707–4565 FAX: (714) 707–4510

Canada

bbd Electronics, Inc. 6685–1 Millcreek Dr. Mississauga, Ontario L5N 5M5 (905) 821–7800 FAX: (905) 821–4541

bbd Electronics, Inc. 298 Lakeshore Rd., Ste. 203 Pointe Claire, Quebec H9S 4L3 (514) 697–0801 FAX: (514) 697–0277

bbd Electronics, Inc. — Ottawa (613) 564-0014 FAX: (416) 821-4092

bbd Electronics, Inc. — Winnipeg (204) 942-2977 FAX: (416) 821-4092

Western Canada

Microwe Electronics Corporation Site #7, Box 40 R.R.1 Dewinton, Alberta, Canada TOL 0X0 (403) 254-4180 FAX: (403) 256-0942

Colorado

Lange Sales 1500 W. Canal Court, Bldg. A Suite 100 Littleton, CO 80120 (303) 795–3600 FAX: (303) 795–0373

Georgia

Giesting & Associates 2434 Highway 120 Suite 108 Duluth, GA 30155 (770) 476-0025 FAX: (770) 476-2405

Idaho

Sierra Technical Sales 10378 Fairview Suite 246 Boise, ID 83704 (208) 378-8981 FAX: (208) 378-0228

Illinois

Micro Sales Inc. 901 W. Hawthorn Drive Itasca, IL 60143 (708) 285–1000 FAX: (708) 285–1008

Indiana

Technology Mktg. Corp. 1526 East Greyhound Pass Carmel, IN 46032 (317) 844–8462 FAX: (317) 573–5472

Technology Mktg. Corp. 4630–10 W. Jefferson Blvd. Ft. Wayne, IN 46804 (219) 432–5553 FAX: (219) 432–5555

Technology Marketing Corp. 1214 Appletree Lane Kokomo, IN 46902 (317) 459–5152 FAX: (317) 457–3822

Iowa

Midwest Technical Sales 463 Northland Ave., N.E. Suite 101 Cedar Rapids, IA 52402 (319) 377–1688 FAX: (319) 377–2029

Kansas

Midwest Technical Sales 13 Woodland Dr. Augusta, KS 67010 (316) 775–2565 FAX: (316) 775–3577

Midwest Technical Sales 10,000 College Blvd. Suite 240 Overland Park, KS 66210 (913) 338–2400 FAX: (913) 338–0404

Kentucky

Technology Marketing Corp. 100 Trade Street, Suite 1A Lexington, KY 40510–1007 (606) 253–1808 FAX: (606) 253–1662

Maryland

Tri-Mark, Inc. 1410 Crain Highway, N.W. Suite 4B Glen Burnie, MD 21061 (410) 761-6000 FAX: (410) 761-6006

Massachusetts

The Nashoba Group 321 Billerica Rd. Chelmsford, MA 01824 (508) 256–9900 FAX: (508) 256–1142

Michigan

Techrep 2200 North Canton Center Rd. Suite 110 Canton, MI 48187 (313) 981–1950 FAX: (313) 981–2006

Minnesota

Matrix Marketing, Inc. 5001 West 80th Street, Suite 375 Bloomington, MN 55437 (612) 835-6977 FAX: (612) 835-6822

Missouri

Midwest Technical Sales 4203 Earth City Expwy., #149 Earth City, MO 63045 (314) 298-8787 FAX: (314) 298-9843

Nevada

TAARCOM 735 Sunrise Ave. Suite 200–4 Roseville, CA 95661 (916) 782–1776 FAX: (916) 782–1786

Domestic Sales Representatives (continued)

New Jersey

GroupTec 111 Howard Blvd. Suite 212 Mt. Arlington, NJ 07856 (201) 398-1200 FAX: (201) 398-3344

New Mexico

Thom Luke Sales (719) 661-8795 FAX: (602) 451-0172

New York

Reagan/Compar 815 Montrose Turnpike Owego, NY 13827 (716) 271–2230 FAX: (716) 381–2840

Reagan/Compar 44 Riverferry Way Rochester, NY 14608 (716) 454–3350 FAX: (716) 454–4230

Reagan/Compar 532 Benton Street Rochester, NY 14620 (716) 473–6070 FAX: (716) 473–6075

Reagan/Compar

3301 Country Club Road Ste. 2211 P.O. Box 135 Endwell, NY 13760 (607) 754–2171 FAX: (607) 754–4270

North Carolina

Quantum Marketing 6604 Six Forks Rd., Ste. 102 Raleigh, NC 27615 (919) 846–5728 FAX: (919) 847–8271

Quantum Marketing 4801 E. Independent Blvd. Ste. 1000 Charlotte, NC 28212 (704) 536-8558 FAX: (704) 536-8768

Ohio

KW Electronic Sales, Inc. 8514 North Main Street Dayton, OH 45415 (513) 890–2150 FAX: (513) 890–5408

KW Electronic Sales, Inc. 3645 Warrensville Center Rd. #244 Shaker Heights, OH 44122 (216) 491–9177 FAX: (216) 491–9102

Oregon

Northwest Marketing Associates 4905 SW Griffith Drive Suite 106 Beaverton, OR 97005 (503) 644–4840 FAX: (503) 644–9519

Pennsylvania

KW Electronic Sales, Inc. 4068 Mt. Royal Blvd., Ste. 110 Allison Park, PA 15101 (412) 492–0777 FAX: (412) 492–0780

Omega Electronic Sales, Inc. Four Neshaminy Interplex, Ste. 101 Trevose, PA 19053 (215) 244–4000 FAX: 244–4104

Puerto Rico

Electronic Technical Sales P.O. Box 10758 Caparra Heights Station San Juan, P.R. 00922 (809) 781-1313 FAX: (809) 781-2020

Tenessee

Giesting & Associates 475 Arrowhead Springs Lane Versailles, KY 40383 (606) 873-2330

Utah

Sierra Technical Sales 1192 E. Draper Parkway Suite 103 Draper, UT 84020 (801) 571-8195 FAX: (801) 571-8194

Washington

Northwest Marketing Associates 12835 Bellevue-Redmond, Ste. 330N Bellevue, WA 98005 (206) 455-5846 FAX: (206) 451-1130

Wisconsin

Micro Sales Inc. 210 Regency Court Suite 100 Brookfield, WI 53045 (414) 786-1403 FAX: (414) 786-1813

International Direct Sales Offices

Cypress Semiconductor International—Europe

Avenue Ernest Solvay, 7 B-1310 La Hulpe, Belgium Tel: (32) 2-652-0270 Telex: 64677 CYPINT B FAX: (32) 2-652-1504

France

Cypress Semiconductor France Minipare Båt. no 8 Avenue des Andes, 6 Z.A. de Courtaboeuf 91952 Les Ulis Cedex, France Tel: (33) 1–69–29–88–90 FAX: (33) 1–69–07–55–71

Germany

Cypress Semiconductor GmbH Munchner Str. 15A W-8011, Zorneding, Germany Tel: (49) 81–06–2855 FAX: (49) 81–06–20087

Cypress Semiconductor GmbH Büro Nord Matthias-Claudius-Str. 17 W – 2359 Henstedt-Ulzburg, Germany Tel: (49) 4193-77217 FAX: (49) 4193-78259

International Sales Representatives

Australia

Braemac Pty. Ltd. 1/59–61 Burrows Road Alexandria, Sydney 2015, Australia Tel: (61) 2–550–6600 FAX: (61) 2–550–6377

Braemac Pty. Ltd. 6/417 Ferntree Gully Rd. Mt. Waverly, Victoria 3149, Australia Tel: (61) 3-540-0100 FAX: (61) 3-540-0122

Braemac Pty. Ltd. 300 Gilles Street Adelaide, SA 5000, Australia Tel: (61) 8–232–5550 FAX: (61) 8–232–5551

Braemac Pty Ltd. 345 Harborne Street Herdsman W.A. 6017, Australia Tel: (61) 9–443–5122 FAX: (61) 9–443–5262

Austria

Eurodis Electronics GmbH Lamenzanstrasse 10 A-1232 Wien Austria Tel: (43) 1-610-62-128 FAX: (43) 1-610-62-151

Belgium

N.V. Memec Benelux Sint-Lambertusstraat 135 1200 Brussels, Belgium Tel: (32) 2-772-8008 FAX: (32) 2-460-1200

Italy

Cypress Semiconductor Interporto di Torino Prima Strada n. 5/B 10043 Orbassano, Italy Tel: (39) 11–397–57–98 or (39) 11–397–57–57 FAX: (39) 11–397–58–10

Cypress Semiconductor Via Gallarana 4 20052 Monza, Milano Tel: (39) 39–202–7099 FAX: (39) 202–7101

Japan

Cypress Semiconductor Japan K.K. Shinjuku-Marune Bldg. 1-23-1 Shinjuku Shinjuku-ku, Tokyo, Japan 160 Tel: (81) 3-5269-0781 FAX: (81) 3-5269-0788

Singapore

Cypress Semiconductor Singapore 583 Orchard Road, #11–03 Forum Singapore 0923 Tel: (65) 735–0338 FAX: (65) 735–0228

Belgium (continued)

Sonetech Limburgstirumlaan 243, B-2 B-1810 Wemmel, Belgium Tel: (32) 2-460-0707 FAX: (32) 2-460-1200

Denmark

Tech-Partner A/S Tomsagervej 18 DK-8250 Aabyhoj (Aarhus) Denmark Tel: (45) 86-25-00-55 FAX: (45) 86-25-28-55

Team Tech Bygstubben 3 DK-2950 Vedbaek Denmark Tel: (45) 45-66-25-00 FAX: (45) 45-66-02-44

Finland

ScandComp Finland OY Asemakuja 2 A SF-02 770 Espoo Finland Tel: (358) 0 61352695 FAX: (358) 0 61352620

France

Arrow Electronics 73/79, Rue des Solets Silic 585 94653 Rungis Cedex Tel: (33) 1 49 78 49 00 FAX: (33) 1 49 78 05 99

Sweden

Cypress Semiconductor Scandinavia AB Taby Centrum, Ingang S S-18311 Taby, Sweden Tel: (46) 8 638 0100 FAX: (46) 8 792 1560

United Kingdom

Cypress Semiconductor U.K., Ltd. Gate House Fretherne Road Welwyn Garden City Herts., U.K. AL8 6NS Tel: (44) 707-33-88-88 FAX: (44) 707-33-88-11

Cypress Semiconductor Manchester 27 Saville Rd. Cheadle Gatley, Cheshire, U.K. Tel: (44) 614–28–22–08 FAX: (44) 614–28–0746

France (continued)

Arrow Electronics Les Jardins d'Entreprises Betiment B3 213, Rue Gerland 69007 Lyon Tel: (33) 78 72 79 42 FAX: (33) 78 72 80 24

Arrow Electronics Centreda Avenue Didier Daurat 31700 Blagnac Tel: (33) 61 15 75 18 FAX: (33) 61 30 01 93

Arrow Electronics Immeuble St. Christophe Rue de la Frebardiere Zi Sud Est 35135 Chantepie Tel: (33) 99 41 70 44 FAX: (33) 99 50 11 28

Newtek Rue de L'Esterel, 8, Silie 583 F-94663 Rungis Cedex, France Tel: (33) 1-46-87-22-00 FAX: (33) 1-46-87-80-49

Newtek Rue de l'Europe, 4 Zac Font-Ratel F-38640 Claix, France Tel: (33) 76-98-56-01 FAX: (33) 76-98-16-04

Scaib, SA 6 Rue Ambroise Croizat 91127 Palaiseau Cedex, France Tel: (33) 1-69-19-89-00 FAX: (33) 1-69-19-89-20

International Sales Representatives (continued)

Germany

AktiveRep Electronic GmbH Kennedy Strasse 5 D-75438 Knittlingen, Germany Tel: (49) 70-43-94 00 12 FAX: (40) 70-43-334 92

CED Ditronic GmbH Feldkirchner Str. 12A D-85551 Kirchheim, Germany Tel: (49) 89-903 8551 FAX: (49) 89-903 0944

CED Ditronic GmbH Julius-Hoelder Str. 42 D-70597 Stuttgart, Germany Tel: (49) 711-72001-0 FAX: (49) 711-7289780

CED Ditronic GmbH Laatzener-Str. 19 D-30539 Hannover, Germany Tel: (49) 511-8764-0 FAX: (49) 511-8764-160

Metronik GmbH Leonhardsweg 2, Postfach 1328 D-82008 Unterhaching, Germany Tel: (49) 89-61108-0 FAX: (49) 89-6116468

Metronik GmbH Liessauer Pfad 17 D-13503 Berlin, Germany Tel: (49) 30-4361219 FAX: (49) 30-4315956

Metronik GmbH Zum Lonnenhohl 38 D-44319 Dortmund, Germany Tel: (49) 231-217041 FAX: (49) 231-210799

Metronik GmbH Osmiastrasse 9 D-69221 Dossenhem, Germany Tel: (49) 6203-4701 FAX: (49) 6203-45543

Metronik GmbH Schoenauer Str. 113 D-04207 Leipzig, Germany Tel: (49) 341-4891413 FAX: (49) 341-4891424

Metronik GmbH Pilotystrasse 27/29 D-90408 Nürnberg, Germany Tel: (49) 911-363536 FAX: (49) 911-353986

Germany (continued)

Metronik GmbH Carl Zeiss-Strasse 37 D-25451 Quickborn, Germany Tel: (49) 41-06-77 30 50 FAX: (49) 41-06-77 30 52

Metronik GmbH Löewenstrasse 37 D-70597 Stuttgart, Germany Tel: (49) 711-764033 FAX: (49) 711-7655181

Metronik GmbH Bahnstrasse 9 D-65205 Wiesbaden, Germany Tel: (49) 611-70 20 83 FAX: (49) 611-70 28 86

SASCO-HED GmbH Hermann-Oberth-Strasse 16 D-85640 Putzbrunn, Germany Tel: (49) 89-4611-211 FAX: (49) 89-4611-271

SASCO-HED GmbH Huttenstrasse 31 D-10552 Berlin, Germany Tel: (49) 30-349-92 40 FAX: (49) 30-349-52 36

SASCO-HED GmbH Beratgerstr. 36 D-44149 Dortmund, Germany Tel: (49) 231-17 97 91 FAX: (49) 231-17 29 91

SASCO-HED GmbH Hainer Weg 48 D-60599 Frankfurt, Germany Tel: (49) 69-61 03 91 FAX: (49) 69-61 88 24

SASCO-HED GmbH Europaallee 3 D-22850 Norderstedt, Germany Tel: (49) 4052-3 20 13 FAX: (49) 4052-3 23 78

SASCO-HED GmbH Stafflenbergstrasse 21 D-70184 Stuttgart, Germany Tel: (49) 711-21 07 10 FAX: (49) 711-23 39 63

SASCO-HED GmbH Am Gansacker 26 D-79224 Umkirch bei Freiburg Germany Tel: (49) 7665-70 18 FAX: (49) 7665-87 78

Greece

Peter Caritato & Associates S.A. 31 Ilia Iliou Athens 11743, Greece Tel: (30) 1–9020–115 FAX: (30) 1–9017–024

Hong Kong

Tekcomp Electronics, Ltd. Rm. 913–914 Bank Centre 636, Nathan Road, Mongkok Kowloon, Hong Kong Tel: (852) 2–710–8121 Telex: 38513 TEKHL FAX: (852) 2–710–9220

India

Spectra Innovations Inc. Manipal Centre, Unit No. S-822 47, Dickenson Rd. Bangalore-560,042 Karnataka, India Tel: 812-566-630 Telex: 845-2696 or 8055 (Attn: ICTP-705) FAX: 812-261-468

Israel

Talviton Electronics P.O. Box 21104, 9 Biltmore Street Tel Aviv 61 210, Israel Tel: (972) 3-544-2430 Telex: 33400 VITKO FAX: (972) 3-544-2085

Italy

Silverstar Ltd. SPA Viale Fulvio Testi, 280 20126 Milano, Italy Tel: (39) 2 661251 Telex: 33 2189 SIL 7I FAX: (39) 2 66101359

CED Italy Via Milano 22/24 20083 Bonirola di Gaggiano (MI) Italy Tel: (39) 2 908091 FAX: (39) 2 9081424

ECC Electronica S.P.A. Via C. Goldoni 29 20090 Trezzano Sul Naviglo (Milano) Italy Tel: (39) 2 48401547 FAX: (39) 2 48401599

International Sales Representatives (continued)

Japan

Tomen Electronics Corp. 2-1-1 Uchisaiwai-cho, Chiyoda-ku Tokyo, 100 Japan Tel: (81) 3-3506-3673 Telex: 23548 TMELCA FAX: (81) 3-3506-3497

Fuji Electronics Co., Ltd. Ochanomizu Center Bldg. 3-2-12 Hongo, Bunkyo-ku Tokyo, 113 Japan Tel: (81) 3-3814-1416 Telex: J28603 FUJITRON FAX: (81) 3-3814-1414

Ryoyo Electro Corporation Konwa Bldg., 1–12–22 Tsukiji, Chuo–ku, Tokyo 104 Japan Tel: (81) 3–3546–5088 FAX: (81) 3–3546–5044

Korea

Logicom Inc. 5th Floor, Haesung Bldg. 2–46 Yangjae–Dong Seocho–ku Seoul, Korea 137–131 Tel: (82) 2–575–3211 FAX: (82) 2–576–7040

superCHIP Inc. 4–18 Hannam–Dong Yongsan–ku Seoul, Korea 140–210 Tel: (82) 2–796–6356/8 FAX: (82) 2–796–6355

Netherlands

Memec Benelux B.V. Insulindelaan 134 5613 BT Eindhoven The Netherlands Tel: (31) 40-65-9399 FAX: (31) 40 65-9393

Sonetec Nederland B.V. Gulberg 33 NL-5674 TE Nuenen The Netherlands Tel: (31) 40-2-635-635Telex: 59418 INTRA NL FAX: (31) 40-2-832-300

Norway

ScandComp Norway A/S Nils Hansen vei 3 N-0667 Oslo Norway Tel: (47) 22-50-06-50 FAX: (47) 22-50-27-77

Portugal

ATD Electronica S.A. Quinta Grande Lote 20 Alfragide 2700 Amadora (Lisboa) Portugal Tel: (351) 1-4714182 FAX: (351) 1-4715886

Singapore

Electec PTE Ltd. Block 50, Kallang Bahru #04-21, Singapore 1233 Tel: (65) 294-8389 FAX: (65) 294-7623

South Africa

Electronic Bldg. Elements P.O. Box 912–1222 Silverton 0127 178 Erasmus St., Meyers Park Pretoria 0184, South Africa Tel: (27) 12 803–8294 FAX: (27) 12 803–7680

Spain

ATD Electronica S.A. Albasanz, 75 28037 Madrid, Spain Tel: (34) 1-304-1534 FAX: (34) 1-327-2778

ATD Electronica S.A. Conchita Suprevia 9 08028 Barcelona, Spain Tel: (34) 3-4907344 FAX: (34) 3-4901723

SELCO Ctra. de La Coruna, Km 18.200 28230 Las Rozas (Madrid), Spain Tel: (34) 1-637-1333 FAX: (34) 1-637-5114

Sweden

ScandComp Sweden AB Box 8303 Domnarvsgatan 33 S-163 08 Spanga Sweden Tel: (46) 8-761-73-00 FAX: (46) 8-760-46-69

Switzerland

Basix für Elektronik A. G. Hardturmstrasse 181 CH-8010 Zurich, Switzerland Tel: (41) 1-276-11-11 Telex: 822762 BAEZ CH FAX: (41) 1-276-14-48

Taiwan R.O.C.

Prospect Technology Corp. 5F, No. 348, Section 7 Cheng-Teh Rd. Taipei, Taiwan Tel: (886) 2-820-5353 Telex: 14391 PROSTECH FAX: (886) 2-820-5731

Prospect Warehouse: #5, Lane 55 Long-Chang Road Taipei, Taiwan

Turkey

Inter Electronik Sanayi ve Ticaret A.S. Kadlkoy Hasircibasi Caddesi no. 55 81310 Istanbul Turkey Tel: (0216) 349–94–00 Telex: 29245 Inmd tr FAX: (0216) 349–94–30 FAX: (0216) 349–94–34

United Kingdom

2001 Electronic Components Ltd. Stevenage Business Park Pin Green Stevenage, Herts SG1 4SU U. K.

Ambar Components Ltd. 17 Thame Park Road Thame, Oxfordshire England, OX9 3XD Tel: (44) 844–26–11–44 Telex: 837427 FAX: (44) 844–26–17–89

Arrow Electronics (UK) Ltd. St. Martins Business Centre Cambridge Road Bedford MK42 OLF, U.K. Tel: (44) 234 270272 FAX: (44) 234 214674

Pronto Electronic System Ltd. City Gate House Eastern Avenue, 399–425 Gants Hill, Ilford, Essex, U. K. IG2 6LR Tel: (44) 81–554–62–22 Telex: 8954213 PRONTO G FAX: (44) 81–518–32–22

Spectrum 2 Grange Mews Station Road Launton Bicester Oxon, U.K. OX6 0DX Tel: (44) 1-869-325-174 FAX: (44) 1-869-325-175

Distributors

Alliance Electronics: Scottsdale, AZ 85254 1-800-608-9494 FAX: (602) 443-3898

Shelton, CT 06484 (203) 926-0087 FAX: (203) 926-1850

Minneapolis, MN 55036 (612) 471–0076 FAX: (612) 471–7861

Huntington, NY 11743 (516) 673–1930 FAX: (516) 673–1934

Dayton, OH 45459 (513) 433-7700 FAX: (513) 433-3147

Anthem Electronics, Inc.:

Huntsville, AL 35805 (205) 890-0302

Tempe, AZ 85281 (602) 966-6600

Chatsworth, CA 91311 (818) 775-1333

Irvine, CA 92718 (714) 768-4444

Rocklin, CA 95677 (916) 624-9744

San Jose, CA 95131 (408) 453-1200

San Diego, CA 92121 (619) 453-9005

Englewood, CO 80112 (303) 790-4500

Waterbury, CT 06705 (203) 575-1575

Altamonte Springs, FL 32701 (407) 831-0007

Fort Lauderdale, FL 33309 (305) 484-0990

Duluth, GA 30136 (404) 931-3900

Schaumburg, IL 60173 (708) 884-0200

Wilmington, MA 01887 (508) 657-5170

Columbia, MD 21046 (301) 995-6640

Eden Prairie, MN 55344 (612) 944-5454

Pine Brook, NJ 07058 (201) 227-7960

Commack, NY 11725 (516) 864-6600

Raleigh, NC 27604 (919) 871-6200

Beaverton, OR 97005 (503) 643-1114

Horsham, PA 19044 (215) 443-5150

Austin, TX 78728 (512) 388-0049

Richardson, TX 75081 (214) 238-7100

Salt Lake City, UT 84119 (801) 973-8555

Bothel, WA 98011 (206) 483-1700 Arrow Electronics: Alabama Huntsville, AL 35816 (205) 837-6955

Arizona Tempe, AZ 85282 (602) 431-0030

California Calabasas, CA 91302 (818) 880-9686

Irvine, CA 92718 (714) 587-0404

San Diego, CA 92123 (619) 565-4800

San Jose, CA 95131 (408) 441-9700

San Jose, CA 95134

Canada

Mississauga, Ontario L5T 1MA (416) 670-7769

Dorval, Quebec H9P 2T5 (514) 421-7411

Neapean, Ontario K2E 7W5 (613) 226-6903

Quebec City, Quebec G2E 5RN (418) 871-7500

Burnaby, British Columbia V5A 4T8 (604) 421-2333

Colorado Englewood, CO 80112 (303) 799-0258

Connecticut Wallingford, CT 06492 (203) 265-7741

Florida Deerfield Beach, FL 33441 (305) 429-8200

Lake Mary, FL 32746 (407) 333-9300

Georgia Deluth, GA 30071 (404) 497-1300

Illinois Itasca, IL 60143 (708) 250-0500

Indiana Indianapolis, IN 46268 (317) 299–2071

Kansas Lenexa, KS 66214 (913) 541-9542

Maryland Columbia, MD 21046 (410) 596-7800

Gathersburg, MD (301) 596-7800

Distributors (continued)

Arrow Electronics: (cont.)

Massachusetts Wilmington, MA 01887 (617) 658–0900

Michigan Livonia, MI 48152 (313) 462-2290

Minnesota Eden Prairie, MS 55344 (612) 941-5280

Missouri St. Louis, MO 63146 (314) 567–6888

New Jersey Marlton, NJ 08053 (609) 596-8000

Pinebrook, NJ 07058 (201) 227-7880

New York Rochester, NY 14623 (716) 427-0300

Hauppauge, NY 11788 (516) 231-1000

North Carolina Raleigh, NC 27604 (919) 876-3132

Ohio Centerville, OH 45458 (513) 435-5563

Solon, OH 44139 (216) 248-3990

Oklahoma

Tulsa, OK 74146 (918) 252-7537

Oregon

Beaverton, OR 97006-7312 (503) 629-8090

Pennsylvania

Pittsburgh, PA 15238 (412) 963-6807

Texas

Austin, TX 78758 (512) 835-4180

Carrollton, TX 75006 (214) 380-6464

Houston, TX 77099 (713) 530-4700

Washington

Bellevue, WA 98007 (206) 643–9992

Wisconsin

Brookfield, WI 53045 (414) 792-0150

Axis Components:

Corporate Headquarters SanDiego, CA 92121 (619) 677–7950 (800) 556–0225

Irvine, CA 92714 (714) 442-8325

Westlake Village, CA 91362 (818) 706-0166

Sunnyvale, CA 94086 (408) 522-9599

Westminster, CO 80234 (303) 469-8186

Bell Microproducts:

Irvine, CA 92718 (714) 470–2900

San Jose, CA 94131 (408) 451-9400

Altamonte Springs, FL 32714 (407) 682-1199

Deerfield Beach, FL 33441 (305) 429-1001

Billerica, MA 01882 (508) 667-2400

Columbia, MD 21045 (410) 720-5100

Edina, MN 55435 (612) 933-3236

Clifton, NJ 07013 (201) 777-4100

Smithtown, NY 11787 (516) 543-2000

Ambler, PA 19002 (215) 540-4148

Austin, TX 78759 (512) 258-0725

Richardson, TX 75081 (214) 783-4191

Chantilly, VA 22021 (703) 803-1020

Redmond, WA 98052 (206) 861-7510

Distributors (continued)

Marshall Industries: Alabama Huntsville, AL 35801 (205) 881-9235

Arizona Phoenix, AZ 85044 (602) 496-0290

California Marshall Industries, Corp. Headquarters

El Monte, CA 91731–3004 (818) 307–6000

Irvine, CA 92718 (714) 458-5301

Calabasas, CA 91302 (818) 878-7000

Rancho Cordova, CA 95670 (916) 635-9700

San Diego, CA 92123 (619) 627-4140

Milpitas, CA 95035 (408) 942-4600

Canada

Mississauga, Ontario L4V 1X5 (416) 458-8046

Pointe Claire, Quebec H9R 5P9 (514) 694-8142

Colorado

Colorado Springs, CO 80915 (719) 573-0904

Thornton, CO 80241 (303) 451-8383

Connecticut

Wallingford, CT 06492-0200 (203) 265-3822

Florida

Ft. Lauderdale, FL 33309 (305) 977-4880

Florida (continued) Altamonte Springs, FL 32701 (407) 767-8585

St. Petersburg, FL 33716 (813) 573-1399

Georgia Norcross, GA 30093 (404) 923-5750

Illinois Schaumbrug, IL 60173 (708) 490-0155

Indiana Carmel, IN 46032 (317) 431-6554

Kansas Lenexa, KS 66214 (913) 492-3121

Maryland Columbia, MD 21046 (410) 880-3030

Massachusetts Wilmington, MA 01887 (508) 658-0810

Michigan Livonia, MI 48150 (313) 525-5850

Minnesota Plymouth, MN 55447 (612) 559-2211

Missouri Bridgeton, MO 63044 (314) 291-4650

New Jersey Fairfield, NJ 07006 (201) 882-0320

Mt. Laurel, NJ 08054 (609) 234-9100

New York Endicott, NY 13760 (607) 785-2345

Rochester, NY 14624 (716) 235-7620

Ronkonkoma, NY 11779 (516) 737–9300

North Carolina Raleigh, NC 27604 (919) 878–9882

Ohio Solon, OH 44139 (216) 248-1788

Dayton, OH 45414 (513) 898-4480

Oregon Beaverton, OR 97005 (503) 644-5050

Pennsylvania Mt. Laurel, NJ 08054 (609) 234-9100

Texas Austin, TX 78754 (512) 837–1991

Richardson, TX 75081 (214) 705–0600

Houston, TX 77043 (713) 467-1666

Utah Salt Lake City, UT 84119 (801) 973-2288

Washington Bothell, WA 98011 (206) 486-5747

Wisconsin Waukesha, WI 53186 (414) 797-8400

Distributors (continued)

Semad:

Calgary Calgary, Alberta T2E 7H7 (403) 252–5664 FAX: (800) 565–9779

Montreal

Pointe Claire, Quebec H9R 427 (514) 694–0860 1–800–361–6558 FAX: (514) 694–0965

Ottawa

Ottawa, Ontario K1B 1A7 (613) 526-4866 FAX: (613) 523-4372

Toronto

Markham, Ontario L3R 4Z4 (905) 475–3922 FAX: (905) 475–4158

Vancouver

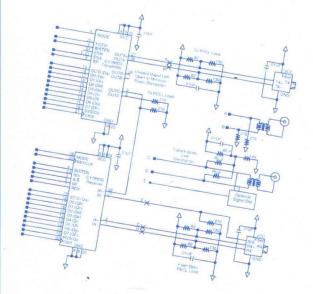
Burnaby, British Columbia V5G 1H1 (604) 451–3444 1–800–663–8956 FAX: (604) 451–3445

Zeus Electronics:

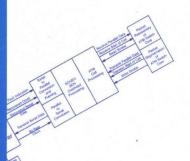
Yorba Linda, CA 92686 (714) 921–9000

San Jose, CA 95131 (408) 629-4789

Lake Mary, FL 32746 (407) 333-3055


Itasca, IL 60143 (708) 595-9730

Wilmington, MA 01887 (508) 658-4776


Port Chester, NY 10573 (914) 937-7400

Carrollton, TX 75006 (214) 380-4330

MATRIX

Cypress Semiconductor 3901 North First Street San Jose, CA 95134 Tel: (408) 943-2600 Fax: (408) 943-2741 Fax-On-Demand: 1(800) 213-5120 http://www.cypress.com 68030