
WarpTM
User's Guide

- .

Cypress Semiconductor
3901 North First Street
San Jose, CA 95134
(408) 943-2600
April 1996

WarpTM

VHDL Development System

User's Guide

The following are trademarks or registered trademarks of Cypress Semiconductor Corporation: Warp,
Warp2, Warp3, Nova, Galaxy, Flash370, UltraLogic, Impulse3, UltraGen, pASIC380, ISR, MAX340.

The following are trademarks or registered trademarks of Viewlogic Systems:
Powerview, Workview, Workview PLUS, ViewDraw, ViewSim, ViewTrace, ViewText, Cockpit, VCS.

The following are trademarks or registered trademarks of Microsoft Corporation: Microsoft, Windows,
Windows 3.1, Windows 3.11, Windows NT, Windows 95.

The following are trademarks or registered trademarks of QuickLogic Corporation: SpDE, pASIC.

The following is a registered trademark of Intel Corporation: Pentium.

The following is a trademark of Hewlett Packard Corporation: HP-UX.

The following are trademarks of Mentor Graphics Corporation: QuickHDL, V-System.

The following is a trademark of Veribest, Inc.: Veribest.

The following is a registered trademark of AT&T: UNIX.

The following are trademarks or registered trademarks of Synopsys, Inc.: Synopsys, Design Compiler, VSS.

The following are trademarks or registered trademarks of Cadence Design Systems Inc.: Verilog, Leapfrog,
Ve ri log-XL.

The following are trademarks or registered trademarks of Sun Microsystems, Inc.: Sun SparcStation,
SunOS, Solaris.

The following is a registered trademark of Open Software Foundation: Motif.

Cypress Semiconductor Corporation may revise this publication from time to time without notice. Some
states or jurisdictions do not allow disclaimer of express or implied warranties in certain transactions;
therefore, this statement may not apply to you.

All other brand or product names are trademarks or registered trademarks of their respective companies or
organizations.

Copyright © 1996 Cypress Semiconductor Corporation. All rights reserved.

Cypress Software License Agreement

Cypress Software License Agreement

LICENSE. Cypress Semiconductor Corporation ("Cypress") hereby grants
you, as a Customer and Licensee, a single-user, non-exclusive license to use
the enclosed Cypress software program ("Program") on a single CPU at any
given point in time. Cypress authorizes you to make archival copies of the
software for the sole purpose of backing up your software and protecting
your investment from loss.

TERM AND TERMINATION. This Agreement is effective from the date
the diskettes are received until this Agreement is terminated. The
unauthorized reproduction or use of the Program and/ or documentation
will immediately terminate this Agreement without notice. Upon
termination you are to destroy both the Program and the documentation.

COPYRIGHT AND PROPRIETARY RIGHTS. The Program and
documentation are protected by both United States Copyright Law and
International Treaty provisions. This means that you must treat the
documentation and Program just like a book, with the exception of making
archival copies for the sole purpose of protecting your investment from loss.
The Program may be used by any number of people, and may be moved
from one computer to another, so long as there is No Possibility of its being
used by two people at the same time.

DISCLAIMER. THIS PROGRAM AND DOCUMENTATION ARE
LICENSED lIAS-IS," WITHOUT WARRANTY AS TO PERFORMANCE.
CYPRESS EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS OF THIS
PROGRAM FOR A PARTICULAR PURPOSE.

LIMITED WARRANTY. The diskette on which this Program is recorded is
guaranteed for 90 days from date of purchase. If a defect occurs within 90
days, contact the representative at the place of purchase to arrange for a
replacement.

RESELLING. The reselling or distribution of this product can be done by
Cypress authorized distributors only.

BENCHMARKING. This license Agreement does not convey to you the
right to publish performance benchmarking results involving any Cypress
Warp products. Permission to publish performance benchmarking results
involving any Cypress Warp products must be received in writing from
Cypress Semiconductor prior to publishing.

iii

Cypress Software License Agreement

iv

LIMITATION OF REMEDIES AND LIABILITY. IN NO EVENT SHALL
CYPRESS BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES RESULTING FROM PROGRAM USE, EVEN IF CYPRESS
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
CYPRESS'S EXCLUSIVE LIABILITY AND YOUR EXCLUSIVE REMEDY
WILL BE IN THE REPLACEMENT OF ANY DEFECTIVE DISKETTE AS
PROVIDED ABOVE. IN NO EVENT SHALL CYPRESS'S LIABILITY
HEREUNDER EXCEED THE PURCHASE PRICE OF THE SOFTWARE.

ENTIRE AGREEMENT. This Agreement constitutes the sole and complete
Agreement between Cypress and the Customer for use of the Program and
documentation. Changes to this Agreement may be made only by written
mutual consent.

GOVERNING LAW. This Agreement shall be governed by the laws of the
State of California. Should you have any question concerning this
Agreement, please contact:

Cypress Semiconductor Corporation
Attn: Legal Counsel
3901 N. First Street
San Jose, CA 95134-1599

408-943-2600

Contents

Warp User's Guide v

Contents

Chapter 1 Installation .. 1

PC Installation ... 1

SunOS/Solaris/HP Installation ... 4

Chapter 2 Overview ... 15

Chapter 3 Tutorials .. 21

Introduction ... 22

Designing a Soda Machine 27

Starting Warp ... 28

Creating A New Project ... 29

Creating the VHDL File .. 32

Verifying the VHDL Syntax .. 38

Creating a Top-Level Description .. 40

Compiling and Synthesizing a Top-Level File 43

Simulating the Behavior of the Design with Nova .. 49

Retargeting the Design to an FPGA .. 58

Back-Annotating Pin Assignment Information ... 66

Simulating the Behavior of the Design with ViewSim 67

Designing a Parking Garage Monitor .. 70

Starting Galaxy .. 72

Creating a Project .. 73

Writing the VHDL File .. 74

Compiling and Synthesizing the Design .. 88

Simulating the Behavior of the Design with Nova .. 92

Back-Annotating Pin Assignment Information ... 105

Simulating the Behavior of the Design with ViewSim 106

Designing an ALU Circuit .. 110

Starting Warp3 ... 110

Creating a Project .. 111

Creating the Schematic ... 112

Generating a Symbol from the Schematic ... 143

Writing the VHDL File .. 143

vi Warp User's Guide

Contents

Verifying the VHDL File ... 148

Generating a Symbol for the VHDL File .. 149

Creating a Top-Level Schematic ... 150

Exporting the Top-Level Schematic 158

Compiling and Synthesizing the Top-Level Schematic 159

Placing and Routing the Design .. 159

Simulating the Behavior of the Design with ViewSim 162

Back-Annotating Pin Assignments .. 167

Conclusion ... 167

Chapter 4 Galaxy ... 169

Overview ... 170

Starting Galaxy .. 171

Project Management ... 171

Targeting a Device " .. 177

Generic Options ... 184

Compiling a Design ... 187

Library Management .. 189

Integrated Editor .. 191

Simulation ... 194

Back-Annotation .. 194

Chapter 5 SpDE .. 195

Introduction ... 196

SpDE Design Flow .. 196

SpDE Graphical Interface: The SpDE Window ... 199

SpDE Design Tools ... 211

SpDE Analysis Tools ... 231

Design Considerations: Speeding Up High-Fanout Nets 242

Warp User's Guide vii

Contents

Chapter 6 Nova .. 249

Introduction 250

Starting Nova ... 250

The Nova Window ... 251

The File Menu .. 252

The Edit Menu ... 259

The Simulate Menu ... 269

The Views Menu .. 269

The Options Menu ... 273

Nova JEDEC Simulator Quick Reference Sheet 277

Creating Buses .. 279

Miscellaneous .. 279

Chapter 7 Schematic Entry ... 281

Overview ... 282

LPM Library ... 283

Exporting the Schematic .. 289/

Back-Annotation .. 291

Using the Schematic Libraries from Release 3.5 292

Schematic to Symbol ... 293

VHDL To Symbol ... 293

Symbol to VHDL .. 294

Update Library ... 295

Print Hierarchy 295

Chapter 8 Simulation ... 297

Introduction ... 298

Pre-synthesis Simulation ... 299

Post-synthesis Simulation Design Flow for PLDs and CPLDs 301

Post-synthesis Simulation Design Flow for FPGAs 305

Post-synthesis VHDL Simulation in ModelT Environment 307

Post-synthesis Verilog Simulation In VeriBest Environment 308

viii Warp User's Guide

Contents

Chapter 9 Synthesis .. 311

Synthesis Directives .. 312

Example 1-DRAM Controller ... 319

Example 2-Multiply and Accumulate Function .. 337

Area Optimization .. 341

Specific Control ... 348

Speed Optimization ... 354

Documentation Directives 363

Directive Format Summary .. 364

Chapter 10 Device Programming ... 367

Generating a JEDEC File .. 368

Generating POF Files for MAX340 CPLDs ... 371

Generating LOF Files for pASIC380 FPGAs ... 372

Device Programmers ... 372

Index .. 375

Warp User's Guide ix

Contents

x Warp User's Guide

Installation

PC Installation
To install Warp TM, insert the CD-ROM and using the File Manager in WindowsTM,
locate pc\setup.exe on the CD-ROM. Double click your left mouse button on this
file. Cypress recommends that you close all your applications (except for the
File Manager and the Program Manager) before running the Warp installation
program. Warp Release 4.0 is a major release and should not be installed on a
previous version of Warp. Cypress recommends installing Warp Release 4.0 in a
new directory. If you have deleted a version of Warp (for Warp3™ customers),
entering Windows after doing so might give you some messages about missing
device files: this is harmless. You will have to edit the c:\windows\system.ini
file manually to remove these devices from the file.

Warp is a 32-bit program and requires that Microsoft's® Win32s subsystem be
loaded for Windows 3.1 ™ or Windows 3.11 TM. This is not required for Windows
95™or Windows NTTM. The first part of the Windows installation routine will
check for the existence of Win32s and offer to install it for you.

For previous Warp3 customers, Viewlogic tools required BIGWIN in order to
run. The current Viewlogic tools shipped with Warp no longer require this. The
Warp installation program does not automatically remove this device from
your system.ini file because you may have other applications that might require
BIGWIN. To remove BIGWIN, you must edit the system.ini file in your
Windows directory manually.

D
Installation

2

The following are the approximate disk space requirements for the various Warp
products:

1. Warp2 60Mbytes

2. Warp3 110Mbytes (150 with on-line Documentation)

You may also need extra disk space for your designs.

Cypress also recommends that you run Warp on at least a 486-66 or a Pentium®,
with at least 16MB of RAM and an additional 16MB of virtual memory.

The Warp2™ product is also capable of integrating itself with the View logic
WorkView® PLUS environment if you already have this. Warp2 has been tested
with WorkView PLUS® version 5.2.

Warp On-line Documents

Warp documentation is available on-line and it can be viewed using the Adobe
Acrobat Reader, shipped with the CD-ROM. To install the Acrobat Reader,
insert the CD-ROM and using the File Manager in Windows, locate
\pc\acroread\diskl \setup.exe and double-click your left mouse button on this
file. These files can also be installed into the c:\warp\docs directory during
installation.

PLD Data'Book

The Cypress Programmable Logic Data Book is also available on-line. It can be
viewed using the Acrobat Reader, shipped with the CD-ROM. To access the
databook, insert the CD-ROM and use the File Manager in Windows to locate the
\doc\databook directory.

PC License Issues for Viewlogic Tools (Warp3 Customers)

PC Warp3 customers require a hardware key as well as a license file in order to
use the software. This key and license file are used solely for the Viewlogic tools
within the Warp3 environment. To obtain a license file for your Warp3 software,
please fill out the registration form that was included with your Warp3 software
kit, and fax it to the number shown on the form. The HOSTID is specified on the
key itself and the license file is generated based on that number. You will receive
your license file within 24 hours of Cypress receiving the registration form.

Warp User's Guide

Installation

PC - Known Installation Problems

Problem: Warp installation sometimes aborts, giving a "Divide by 0" error.

Solution: Please try installing Warp again. This problem will be fixed in the next
update and involves the calculation of free disk space. Installing a second time
changes the free disk space situation and thus avoids the error.

Problem: Warp installation does not work, or Viewlogic tools do not work
properly.

Solution: Some newer PCs with SCSI drives must run SMARTDRNE. Without
this, some 32-bit applications have trouble accessing the disk. To avoid this
problem, please make sure that you are running SMARTDRNE. The following
command in your autoexec.bat or config.sys is recommended:

c:\windows\smartdrive.exe Idouble_buffer

Running SMARTDRNE even on non-SCSI machines is also a good idea, since it
improves the performance of your computer.

Problem: Windows fails to come up after Warp installation.

Solution: Rare as this is, some configurations of Windows do this. To solve this
problem, please check your c:\windows\system.ini file for any duplicate device
drivers. If any are found, please remove the duplication, leaving only one
instance of each device driver.

Problem: Warp fails to install.

Solution: Certain power management tools and screen savers might conflict with
the installation program. Temporarily disable the screen saver during installation.
If power.exe is being run from your autoexec.bat or config.sys, please disable this.

Commonly Asked Questions About PC Installation

What is BIG WIN, and why do I no longer need it?

Windows is essentially a 16-bit environment. The previous version of Viewlogic
(5.1) used a Windows extender called BIGWIN to allow 32-bit access. All
View logic tools which formerly used BIGWIN have now been ported to use
Microsoft's recommended extender, Win32s.

Warp User's Guide 3

D
Installation

Do I need to change any settings in my config.sys?

Please check the settings for FILES and BUFFERS. Cypress recommends a setting
of 60 for FILES and 15 for BUFFERS.

Which mice are supported?

For Warp2 customers, a generic 2-button mouse will suffice. However, if you
have configured Warp2 to run with View logic or if you are a Warp3 customer,
Cypress recommends a 3-button mouse. Although a 2-button mouse will work,
many of the WorkView PLUS functions require a middle mouse button. A 2-
button mouse can be made to emulate a 3-button mouse within the Viewlogic
tools by using the F2, F3, F4 function keys for the left, middle and the right mouse
buttons, but the user must first click the left mouse button to use these function
keys. For example, to emulate the middle button, you have to single-click the left
mouse button of your 2-button mouse and then press F3.

Which files are modified by the Warp installation?

The files autoexec.bat, c:\windows\win.ini and c:\windows\system.ini are always
modified. A detailed description of the exact changes that are made to these files
is listed in the file warppc.txt (available at the end of the installation or with the
Release Notes icon within the Warp R4 program group). The changes vary
depending upon the product that you have installed.

SunOS/Solaris/HP Installation

4

The following steps show how to install Warp Release 4 on a SUN Sparc station
running SunOS™ 4.1.x/SolarisTM 2.5 or on an HP 9000 (700 series) workstation
running HP-UXTM 9.05. The following are the disk space requirements depending
on the product you have purchased:

1. Warp2 60Mbytes

2. Warp3 160Mbytes (260 with on-line Documentation)

Warp Release 4.0 is a major release and should not be installed over a previous
version of Warp. Cypress recommends installing Warp Release 4.0 in a new
directory.

The Warp2 product is also capable of integrating itself with the Viewlogic
Powerview® environment if you already have this. Warp2 has been tested with
Powerview version 5.3.2.

Warp User's Guide

Installation

Warp documentation is available on-line and can be viewed using the Adobe
Acrobat Reader, shipped with the CD-ROM. The Acrobat reader can be installed
during Warp installation or separately after completing Warp installation.

PLD Data Book

The Cypress Programmable Logic Data Book is available on-line. It can be viewed
using the Acrobat Reader, shipped with the CD-ROM. To access the data book,
mount the CD-ROM on /cdrom and view the databook located in the directory
/cdrom/doc/databook. Refer to the following steps to mount the CD-ROM.

Step 1: Mount the CD-ROM

On SunOS 4.1.x

Login as super user on a machine that has a CD-ROM drive. Run the following
commands to create and mount the / cdrom directory.

mkdir /cdrom
mount -rt hsfs /dev/srO /cdrom

On Solaris 2.5

If the Volume Manager is running, it will automatically mount the CD-ROM.
Otherwise, login as super user on a machine that has a CD-ROM drive. Run the
following commands to create and mount the / cdrom directory:

mkdir /cdrom
mount -F ufs -r /dev/dsk/cOt6dOs2 /cdrom

On HP-UX 9.05

Login as super user on a machine that has a CD-ROM drive. Run the following
commands to create and mount the !cdrom directory:

mkdir /cdrom
mount -0 ro /dev/dsk/c201d3s0 /cdrom

In the above procedure, it is assumed that the CD-ROM drive has a SCSI ID of 6
(for Solaris) and 3 (for HP-UX). Make sure that you specify the correct ID in the
above mount commands.

Warp User's Guide 5

II
Installation

6

Step 2: Local Installation

If you are installing from a CD-ROM that is on a remote machine, skip to Step 3.

On SunOS 4.1.x

cd /cdrom/sunos
./install.wr4

To install the Acrobat Reader separately, run the following commands instead of
the above commands:

cd /cdrom/sunos/acroread
./install

On Solaris 2.5

cd /cdrom/w3r40fcs/solaris
./install.wr4

To install the Acrobat Reader separately, run the following commands instead of
the above commands:

cd /cdrom/w3r40fcs/solaris/acroread
./install

On HP-UX 9.05

cd /cdrom/HP
./INSTALL.WR4

The above program will guide you through the rest of the installation process.

To install the Acrobat Reader separately, run the following commands instead of
the above commands:

cd /cdrom/HP/ACROREAD
./INSTALL

After this step is completed, please skip to Step 4.

Warp User's Guide

Installation

Step 3: Remote Installation

On SunOS 4.1.x

If you are installing from a CD-ROM that is on a remote machine, export the
/ edrom directory. Add the following line:

/cdrom -ro

to the file fete/exports on the remote machine, if the line does not already exist. If
you are modifying an existing /ete/exports, run the following command:

/usr/etc/exportfs -a

If fete/exports does not exist and you have had to create it to enter the above line,
run the following commands:

sync
reboot

If your sync command also reboots the machine, you do not need to run the
above reboot command.

Remote login to the install machine (where you want to install the software) using
the following commands:

rlogin <install machine> -1 root

If /cdrom does not exist, run the following command:

mkdir /cdrom.

Mount the remote CD-ROM on the install machine, change the directory to the
CD-ROM, and run the installation script by using the following commands:

mount -r <remote-machine-name>:/cdrom /cdrom
cd /cdrom/sunos
./install.wr4

The above program will walk you through the rest of the installation process.

To install the Acrobat Reader separately, run the following commands instead of
the above commands:

mount -r <remote-machine-name>:/cdrom /cdrom
cd /cdrom/sunos/acroread
./install

Warp User's Guide 7

D
Installation

8

On Solaris 2.5

If you are installing from a CD-ROM that is on a remote machine, export the
/cdrom directory. Add the following line:

share -F nfs -0 ro /cdrom/warp

to the file /ete/dfs/dfstab on the remote machine, if the line does not already exist. If
nf sd is not running, reboot the machine.

Run the following command to export /cdrom/warp:
shareall

Remote login to the install machine (where you want to install the software) using
the following commands:

rlogin <install machine> -1 root

If /cdrom does not exist, run the following command:

mkdir /cdrom

Mount the remote CD-ROM on the install machine, change the directory to the
CD-ROM, and run the installation script by using the following commands:

mount -r <remote-machine-name>:/cdrom/warp3r40 /cdrom
cd /cdrom/solaris
./install.wr4

The above program will walk you through the rest of the installation process.

To install the Acrobat Reader separately, run the following commands instead of
the above commands:

mount -r <remote-machine-name>:/cdrom/warp3r40 /cdrom
cd /cdrom/solaris/acroread
./install

Warp User's Guide

Installation

On HP-UX 9.05

If you are installing from a CD-ROM that is on a remote machine, export the
/cdrom directory. Add the following line:

/cdrom -ro

to the file jete/exports on the remote machine, if the line does not already exist. If
you are modifying an existing /ete/exports, run the following command:

/usr/etc/exportfs -a

If jete/exports does not exist and you have had to create it to enter the above line,
reboot the machine.

Remote login to the install machine (where you want to install the software) by
using the following commands:

rlogin <install machine> -1 root

If !cdrom does not exist, run the following command:

mkdir /cdrom

Mount the remote CD-ROM on the install machine, change the directory to the
CD-ROM, and run the installation script by using the following commands:

mount -0 ro <remote-machine-name>:/cdrom /cdrom
cd /cdrom/HP
./INSTALL.WR4

The above program will walk you through the rest of the installation process.

To install the Acrobat Reader separately, run the following commands instead of
the above commands:

mount -0 ro <remote-machine-name>:/cdrom /cdrom
cd /cdrom/HP/ACROREAD
./INSTALL

On all platforms:

Unmount the CD-ROM and come back to <CD-RaM_drive host> machine.

cd /
umount /cdrom
exit

Warp User's Guide 9

II
Installation

10

Step 4: Unmount the CD-ROM

Type in these commands:

cd /
umount /cdrom

Update User's Login Start Up File

To run Warp, you need to set some environment variables in the user's login start
up file.

For C Shell users:

If you are using C shell, add the following lines to your --/.cshrc file:

setenv CYPRESS_DIR <Warp installation directory>
set path = ($CYPRESS_DIR/bin Spath)
setenv SPDE_ROOT $CYPRESS_DIR/spde
setenv XVTPATH $SPDE_ROOT/print
setenv UIDPATH $SPDE_ROOT/%N.uid
set path = ($SPDE_ROOT Spath)

On Sun/ Solaris, also include the following line:

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${SPDE_ROOT}

On HP, also ,include the following line:

setenv SHLIB_PATH ${SPDE_ROOT}

On all platforms, copy the pASIC® control file ($CYPRESS_DIR/spde/.spderc)
into your home directory.

If you have purchased the Warp2 product and would like to configure Warp to
run with View logic tools, in addition to the above lines, add/replace the WDIR
environment variable in your --/.cshrc file:

setenv WDIR -/<pvlocal>:$CYPRESS_DIR/warpstd:<PowerView
Install-Dir>/standard

It is important that the $CYPRESS_DIR/warpstd directory appear before the
Powerview directory.

Warp User's Guide

Installation

If you have purchased the Warp3 product, add the following lines to your
-/.cshrc file:

setenv WDIR -/<pvlocal>:$CYPRESS_DIR/warpstd:$CYPRESS_DIR
/pv/standard
set path = ($CYPRESS_DIR/pv Spath)

As noted above, <pvlocal> is a local directory where user specific Powerview
files and user design files can be stored.

If you have installed the Acrobat Reader, add the following lines to your -/.cshrc
file:

setenv ACROBAT_DIR <Acrobat Reader installation
directory>
set path = ($ACROBAT_DIR/bin Spath)

Source the -/.cshrc file.

For Bourne shell users:

If you are using Bourne shell, add the following lines to $HOME/.profile file in the
same order.

CYPRESS_DIR=<Warp installation directory>
PATH=$CYPRESS_DIR/bin:$PATH
export CYPRESS_DIR PATH
SPDE_ROOT=$CYPRESS_DIR/spde
XVTPATH=$SPDE_ROOT/print
UIDPATH=$SPDE_ROOT/%N.uid
PATH=$SPDE_ROOT:$PATH

On Sun/Solaris, also include the following lines:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SPDE_ROOT
export SPDE_ROOT XVTPATH UIDPATH PATH LD_LIBRARY_PATH

On HP, also include the following lines:

SHLIB_PATH=$SPDE_ROOT
export SPDE_ROOT XVTPATH UIDPATH PATH SHLIB_PATH

On all platforms, copy the pASIC control file ($CYPRESS_DIR/spde/'spderc) into
your home directory.

Warp User's Guide 11

D
Installation

12

If you have purchased the Warp 2 product and would like to configure Warp to
run with Viewlogic tools, add/replace the WDIR environment variable in your
$HOME/.profile file:

WDIR=$HOME/<pvlocal>:$CYPRESS_DIR/warpstd:<PowerView
Install-Dir>/standard
export WDIR

It is important that the $CYPRESS_DIR/warpstd directory appear before the
Powerview directory.

If you have purchased the Warp3 product, add the following lines to your
$HOME/.profile file:

WDIR=$HOME/<pvlocal>:$CYPRESS_DIR/warpstd:$CYPRESS_DIR/
pv/standard
PATH=$CYPRESS_DIR/pv:$PATH
export WDIR PATH

As noted above, <pvlocal> is a local directory where user specific Powerview
files and user design files can be stored.

If you have installed the Acrobat Reader, add the following lines to your
$HOME/.profile file:

ACROBAT_DIR=<Acrobat Reader installation directory>
PATH=$ACROBAT_DIR/bin:$PATH
export ACROBAT_DIR PATH

Source the $HOME/.profile file.

For both C-shell and Bourne shell users:

If you are running SunOS 4.1.x, make sure that /usr/openwin/lib and /usr/motif/
lib are included in the LD _LffiRARY _PATH before running Warp.

If you are running Solaris 2.S, make sure that /usr/openwin/lib is included in the
LD _LIBRARY _PATH before running Warp.

If you have configured Warp to run with Viewlogic tools, also make sure that the
WDIR path includes a writable directory «pvlocal> above).

Warp User's Guide

Installation

License Issues for Viewlogic Tools (Warp3 Customers)

Warp3 customers on the workstation platforms also require a license file. Again,
this license file enables the Viewlogic Powerview tools. However, for the
workstation environment there are two types of license files available: node
locked and floating. For more information on these types of license files, please
refer to the Viewlogic on-line documentation. Your Warp3 registration form
should already specify the type of license that was purchased. If this is not correct,
please contact the sales office through which your software was purchased.
Workstation license files are specified via the HOSTID which is unique to each
workstation as opposed to a hardware key in the PC environment. Please make
sure you specify your HOSTID on the registration form correctly.

Run Warp

If you have purchased the Warp3 product or configured the Warp2 product to
run with View logic tools, run the following command:

powerview

If you have purchased the Warp2 product, run the following command:

galaxy

To Read the On-line Documentation

To read the on-line User's Guide, run the following command:

acroread <Warp Installation directory>/doc/usguide.pdf

To read the on-line Reference Manual, run the following command:

acroread <Warp Installation directory>/doc/refman.pdf

On-line documentation files can also be opened from the Acrobat Reader's file
selection dialog box. The files are in <Warp Installation directory>/doc>.

On-line documentation can also be found on your CD-ROM in the /docs directory.

For more information on the Acrobat Reader, read the ReadMe-Reader.txt and
Help-Reader.pdJ files in the <Acrobat Reader Installation directory>/Help
directory.

Warp User's Guide 13

Installation

D

14 Warp User's Guide

Chapter 2
Overview

Overview

16

Welcome to the Warp programmable logic design tool. Warp offers unparalleled
performance and flexibility with a user-friendly GUI. Warp leads the
programmable logic industry in device resource utilization and speed
optimization for programmable logic. Thus, designs can be tuned to have the
fastest performance with smallest area utilization. Warp IS flexibility means
flexibility of design entry methods: schematic capture, industry standard VHDL
entry, or a combination of both; moreover, Warp is independent of device
architecture, which means one design format can target all Cypress
programmable logic devices. Warp is a fully integrated EDA tool, fully IEEE
VHDL compliant, and available to run on many computer platforms.

Warp is available for all of the popular computer platforms available:

Table 2-1

Computer Operating System

Windows 3.1
PC Windows 95 (Warp2 only)

Windows NT (Warp2 only)

Sun
Solaris
SunOS

HP HP-UX

Table 2-2 lists the parts for which Warp can target designs. These parts can be
divided into three families:

1. PLDs: these are industry standard devices such as 22V10s, 16V8s, and
20v8s. They are both high performance and low cost.

2. CPLDs: the Cypress FLASH370™ high-density CPLD family and the
Cypress MAX340™ multiple-array matrix, high-density CPLD family.

3. FPGAs: the Cypress pASIC380™ high-speed CMOS FPGA family.

Table 2-2

Family Part #

PLDs P ALC16V8, 20V8, 22VI0, CY7C335

CPLDs FLASH370,MAX340

FPGAs pASIC380 family

Warp User's Guide

Overview

Streamlined Design Process

Warp's design process is intuitive and straightforward. The fully integrated Warp
comes with all the necessary tools for design entry, design synthesis, fitting, place
and route, and design verification. Warp3 integrates the Cypress VHDL
synthesis, fitting, and place and route technology with the Viewlogic Powerview
or Workview PLUS environment. The Viewlogic CockpitTM facilitates project
management and intertool communication.

Project Management

The Viewlogic Cockpit provides an easy point-and-click interface for starting the
design tools and design project management within the Warp3 design flow. Tools
run from within the Cockpit pass the current design name and project directory
from one tool to the next.

Design Entry

The ViewDraw® tool within the Warp3 environment is used to capture designs
graphically using schematics. This tool allows the user to choose elements from a
Library of Parameterized Modules (LPM) as well as create graphical symbols
from lower-level VHDL blocks. The user can thus capture designs in the manner
that he or she prefers.

Generating a VH D L Netlist

The Warp3 tool converts schematic designs into an IEEE compliant VHDL netlist
for synthesis. This VHDL netlist combines the schematic portion of the design
with the lower-level VHDL blocks while retaining the hierarchy created by the
designer.

Synthesis, Fitting, and Place and Route

GalaxyTM is the name of the Graphical User Interface (GUI) for the Warp VHDL
compiler. Warp accepts VHDL as input, checks the design for proper VHDL
syntax, and synthesizes the design into logic equations for a target device.

Warp features the UltraGen™ module generation technology. This technology
allows the user to write VHDL code using high-level datapath operators in a truly
behavioral fashion. The UltraGen technology then maps each of these high-level
operators to an architecture specific module pre-optimized for area or speed,
depending on the user's directive. Each portion of VHDL code, via a control file,
can accept a different syntheSiS goal which allows for fine tuning of critical paths
wi thin a design.

Warp User's Guide 17

Overview

18

For PLDs and CPLDs, the logic equations produced by the synthesis are
automatically passed to the fitter, which fits the logic into a particular device. The
output of the fitter is a JEDEC map which can be used to program the device
using the Cypress Impulse3™ programmer.

For FPGAs, Warp translates the design into a netlist specific to the FPGA
architecture. This netlist describes the interconnection of logic elements that can
map directly to logic cells of the FPGA device. The place and route tool takes the
FPGA netlist generated by the Warp compiler, places the logic equations within
the logic cells, and routes the necessary signals between logic cells and I/O pins.
A static timing analyzer (path analyzer) is available to evaluate worst-case delays
and allows for timing-constrained placement and routing as well.

Design Verification

Nova™ is a very convenient tool for PLD or CPLD design simulation. During the
initial design stage, Nova can be valuable in obtaining simulation results quickly.
For full timing information and verification, Cypress offers the View logic
ViewSim® simulator.

ViewSim simulates the design with full timing information. With ViewSim, one
can verify the functionality of the design and determine if the design meets the
timing requirements of the specific system. ViewSim provides an interface to
ViewTrace®, which displays waveforms and allows direct interaction with the
simulator ..

What's in This Manual?

Besides the Tutorials chapter, this User's Guide is meant more as a guide to using
Warp and less as a reference book, and would be best digested in complete
chapters.

Chapter 1 covered all of the necessary information required to get the software
installed and up and running.

Chapter 3 is the Tutorials chapter. This section demonstrates the design process
via a well-tailored design exercise, which illustrates the Warp2 and Warp3 tools
respectivel y.

Chapter 4 contains a description of the Galaxy user interface.

Chapter 5 focuses on the SpI;:>E place and route toolkit.

Chapter 6 discusses the Nova functional simulator used for simulating simple
PLD and CPLD devices.

Warp User's Guide

Overview

Chapter 7 contains valuable information regarding the use of ViewDraw for
schematic and mixed-mode designs.

Chapter 8 includes information regarding simulation interfaces within the Warp
environment as well as how to interface with third party simulators.

Chapter 9 culminates much of the information presented within this book into a
guide to synthesis using Warp. This chapter focuses on how to get the most out of
your VHDL designs.

Chapter 10 is a brief description of the device programming portion of the flow as
it contains information regarding file types and device programmers.

Warp User's Guide 19

Overview

20 Warp User's Guide

Chapter 3
Tutorials

Tutorials

3.1 Introduction

3.1.1

Warp2

Warp3

22

The Warp tutorials demonstrate a common sequence of operations in Warp2 and
Warp3. The tutorials show the user how to create, compile, synthesize, and
simulate designs.

This section presents:

• product descriptions of Warp2 and Warp3

• some conventions about typography, wording, and illustrations used in
this manual

• the objectives of the tutorial

• the contents of the tutorial

Product Descriptions

Warp2 allows users to describe electronic designs using VHDL and then to
compile and synthesize those descriptions to program Cypress devices, such as
small PLDs, MAX340 EPLDs, FLASH370 CPLDs, and pASIC380 FPGAs.

Warp2 consists of three major components:

• The Warp VHDL compiler which is IEEE 1076/1164 compliant and
translates VHDL text descriptions into JEDEC and QDIF (for pASIC380
FPGAs only) files that can be mapped onto programmable devices.

• The Nova JEDEC functional simulator which allows you to verify the
correctness of a design by simulating its behavior.

• The SpDETM toolkit which contains a set of tools for fitting designs into
pASIC380 FPGAs. This tool set includes a placer, router, logic optimizer,
and a path analyzer, among others.

Warp3 enables users to define, compile and synthesize VHDL descriptions,
schematic descriptions, or a combination of VHDL (text-based) descriptions with
schematic drawings of electronic designs into Cypress programmable logic
devices.

Finished files can be synthesized into (i.e., used to program) Cypress devices,
such as small PLDs, MAX340 EPLDs, FLASH370 CPLDs, and pASIC380 FPGAs.

Warp User's Guide

Tutorials

Warp3 integrates all of the components from the Warp2 software with the
View logic Workview PLUS and Powerview CAE environments. Included with
Warp3 are the following:

• The Warp VHDL compiler which is IEEE 1076/1164 compliant and
translates VHDL text descriptions into JEDEC and QDIF (for pASIC380
FPGAs only) files that can be mapped onto programmable devices.

• The Nova JEDEC functional simulator which allows you to verify the
correctness of a design by simulating its behavior.

• The SpDE toolkit which contains a set of tools for fitting designs into
pASIC380 FPGAs. This tool set includes a placer, router, logic optimizer,
and a path analyzer, among others.

• Viewlogic's Workview PLUS design environment (for ffiM PCs and
compatibles) and the Powerview design environment (for UNIX work
stations). Viewlogic provides the Cockpit, which is the central access
point for all tools in the Warp3 system. The Cockpit contains icons that
bring up any tool the user needs. Viewlogic's design environments
provide a large set of design tools in and of themselves. Among them are Il
ViewDraw, a hierarchical schematic and symbol editor; ViewSim, a full-
featured simulator that accurately models timing delays; ViewTrace, a
waveform viewing tool that helps you analyze simulator results; and
numerous other tools for special needs.

Warp User's Guide 23

Tutorials

3.1.2

24

Conventions

The following conventions are used throughout this manual:

Table 3-1 Notational Conventions

Whenever an item from a menu is referenced, the ref-
erence takes the form menu-name->item-name->item-
name ... The first entry in the reference is the name of

Menu items the menu; the second is the name of the menu item;
the third and succeeding entries indicate choices from
sub-menus. Example: Select File-> Open .. . tells you to
pull down the File menu and select the Open ... item
from it.

Path names
Italics are also used to designate path names and file
names.

Bold
Words are bolded for emphasis or to draw attention to
new terms.

Courier
Denotes signal names and other VHDL constructs as
well as system output.

Courier
Denotes the contents of a text file and also indicates
the text of typed commands.

File Naming Conventions

Warp runs on many different platforms: IBM pes and compatible computers, Sun
workstations, and HP workstations.

IBM pes and compatible computers specify file locations by designating a disk
drive and using a backslash (\) character to distinguish directory levels, e.g.,
c: \ level 1 \leveI2\myfile.

Sun and HP workstations specify file locations using a forward slash (I) and no
disk drive designator, e.g., llevel1llevel2lmyfile.

For consistency and brevity, this manual uses the same notation as IBM pes and
compatibles when referring to file locations. UNIX platform users are asked to
make appropriate translations.

Warp User's Guide

Tutorials

Mouse Conventions

The following terms describe common actions you might perform in using this
manual:

Table 3-2

Click
Place the mouse cursor over an object, then press and
release the appropriate mouse button.

Position the mouse cursor over an object, then press
Double-click and release the appropriate mouse button twice in

rapid succession.

Position the mouse cursor over an object or at a speci-
fied location. Press and hold the appropriate mouse

Drag button. While holding down the mouse button, move
the cursor to the new location. Finally, release the
mouse button.

When you are instructed to "select" an option, move
Select the cursor over the option, then click the appropriate

mouse button.

Other Conventions

The following visual indicators denote special situations you may encounter
while using this manual.

~-----------------
Note - This icon indicates a note: a point in the tutorial where you
must exercise special caution, or where the procedure might vary
depending upon the platform you're using, or where there's
something else you should know about that doesn't fit into the
main flow of the text.

~
Hint - This icon indicates a hint: a point in the tutorial where you
could save a little time, a few keystrokes, or much frustration if
you follow the hint that's being explained.

Warp User's Guide 25

Tutorials

3.1.3 Differences between Operating Systems

Warp operates identically on both UNIX and Windows systems except for start-up
procedure and the appearance of some objects in the display.

Naming Restrictions

In the Windows environment, file names must be eight or fewer alpha-numeric
characters plus a file extension of up to three characters (e.g., .exe, .vhd, etc.). This
is important to remember for transferring data between Windows and UNIX/
Windows 95 implementations of Warp.

~----------------
Note - Keep in mind that some UNIX systems have trouble with
spaces embedded in file names. That can be true for mM PCs and
compatible systems, too. Cypress recommends not using embed-
ded spaces in file names.

~----------------
Note - If you are working in a system with PCs (running under
Windows) and UNIX workstations connected to the same net
work, Cypress advises you to name all VHDL files with lower
case characters.

Differences in Display

Although dialog boxes and prompts may differ in appearance between the two
platforms, their functionality is identical. Screen captures in this manual are taken
from the Windows version of Warp. Differences in the UNIX version are identified
when necessary. In most cases, any adjustments needed to go from Windows to
UNIX versions of Warp displays are obvious.

For Warp3 Users Only

26

There are minor differences between the Windows and UNIX versions of Warp3 in
the appearance of the Cockpit, the dialog boxes, and the prompt boxes. Besides
these minor differences, the operation of the Warp3 software is virtually identical
among all platforms.

Warp User's Guide

Tutorials

3.2 Designing a Soda Machine

3.2.1

3.2.2

This section takes you step-by-step through a tutorial example using a low-level
VHDL behavioral description and a high-level VHDL file that instantiates the
component contained in the lower level VHDL file. When you complete this
section, you will know how to:

• write an entity declaration, architecture, component and package
declaration for a VHDL behavioral description of a simple circuit

• write an entity declaration and architecture that instantiates the simple
circuit in a VHDL description of a higher-level circuit

• run Warp to compile and synthesize the design's VHDL description

• run Nova to simulate the behavior of the design

• for Warp3 users only: simulate the design with ViewSim

Design Description

In this example, you will design a controller for a soft-drink dispensing machine. 3
The machine has two bins to dispense regular cola and diet cola. Each bin holds
three cans of soft drink. (This could be any value, but three is an easy number to
simulate.)

The circuit should dispense a beverage if the user presses a button for that
beverage and one or more cans of the beverage are available. The circuit should
not dispense a beverage if no cans of that beverage are available. A re f iII
signal should appear when both bins are empty. Finally, pressing a reset Signal
should tell the circuit that the machine has been replenished and that the bins are
full again.

Design Solution

The solution presented in this section will proceed as follows:

First, this tutorial will describe a circuit in IEEE standard VHDL that controls the
operation of one bin. It will respond appropriately to a get_drink signal (Le., by
giving a drink when one is available), keep count of the number of cans left in the
bin, and set an empty signal when its bin becomes empty and is in need of
resetting. This circuit will be named binetr. You will also add appropriate VHDL
to declare this circuit a component and define a package that contains that
component, which will allow you to use the circuit in higher-level deSigns.

Warp User's Guide 27

Tutorials

Then, you will write a top-level description of a circuit that instantiates two
binetrs and other logic as appropriate to describe the larger design described
above. The larger design will be called refill.

After that, you'll compile and synthesize the binetr and refill VHDL descriptions
into a CY7C371 JEDEC file and simulate the behavior of the resulting design
using the Nova functional simulator.

3.3 Starting Warp

For Warp2 Users

=> On Windows systems, start Warp2 by double-clicking on the Galaxy icon
from the Warp R4 program group.

=> On UNIX systems, start Warp2 by typing galaxy<CR> from within a shell
window.

In both systems, the Galaxy window should appear as shown in
Figure 3-2.

For Warp3 Users

28

=> On Windows systems, you start Warp3 by double-clicking on the Cockpit
icon from the Warp R4 program group.

=> On UNIX systems, you start Warp3 by typing powerview<CR> from
within a shell window.

Warp User's Guide

Tutorials

On both platforms, the Cockpit should be displayed immediately
after you start Warp3. The Cockpit is labeled "Workview PLUS
Cockpit" on Windows systems, "Powerview Cockpit" on UNIX
systems, and should appear as shown in Figure 3-3.

Cockpit WorldView
2.0.1

~
Free NSD

Galaxy Nova

Viewlogic ReleaseNotes
AppNotes

Figure 3-1 The Warp R4 Program Group

3.4 Creating A New Project

For Warp2 Users

SpDE

=> Under the Project menu, choose New. A new Galaxy window will appear,
prompting you for a new name. On the PC, enter
c: \w2tutor\w2tutor and on UNIX systems, enter <user home
directory path>/w2tutor/w2tutor.

You should now see a Galaxy window identical to the one that
appeared when you started Warp, except that it is named
c:\w2tutor\w2tutor.

Warp User's Guide 29

Tutorials

30

You have now created a project directory for your designs and
called it w2tutor. All files pertinent to this tutorial need to be
placed in this project directory. You have also created a project
file called w2tutor. wpr which is now located in the c: \ w2tutor
directory.

:1 Project: c:\w2tutor\w2tutor a
Eroject files Info ~earch TJ!ols Font Help

Figure 3-2 Galaxy window named c:\w2tutor\w2tutor

Warp User's Guide

Tutorials

For Warp3 Users

=> Select Project->Create from the Cockpit menu bar. When a dialog box
appears, on the PC type the pathname c: \ w2 tu tor and on UNIX
systems, type <user home directory path>/w2tutor and then
click OK

• ~ ~ ill Current T oolboK IC,press [I
't ..

"

Current Drawer I Warp Design II - exptvhcll Wup Pla.ce&Rte * ~
Project T ,pe IViewdraw II &J ~ III ~I D'W"

Current Project la!:~mm:l II
Currentlibrar, I c: \w2tutor II VSim ViewSim ViewTrace Nova

c: su ce

Figure 3-3 Warp3 cockpit

When doing the tutorial exercises (or any other time, for that matter), don't write
anything into the Warp directory. Instead, create a separate directory to practice
in, such as the c:\w2tutor directory you have just created above.

By default, the Warp3 installation procedure for IBM pes and compatible
computers installs Warp3 software into a directory named c: \ warp. On UNIX
workstations, the user needs to point the CYPRESS_OIR environment variable to
point to the location of the Warp3 software.

Warp User's Guide 31

Tutorials

3.5 Creating the VHDL File

For Warp2 Users

=> In your Galaxy window, click on New in the Edit button section on the
right.

This will bring up a VHDL text editor (Figure 3-4), in which you
can enter your VHDL code.

Figure 3-4 VHDL Editor

For Warp3 Users

32

=> From the Cockpit window, click on the Warp icon. After the Galaxy
window appears, click on New in the Edit button section.

This will bring up the VHDL editor in which you can enter your
VHDLcode.

Warp User's Guide

3.5.1

Tutorials

The binetr VHDL description will be written in three parts:

• the entity declaration declares the name, direction, and data type of each
port of the component

• the architecture describes the behavior of the component

• the package declaration provides the information to Warp to allow binetr
to be used as a component in a higher-level design

The following pages briefly discuss the contents of each of these
sections of the VHDL description. For a detailed explanation on
these VHDL constructs, please refer to the text book which was
included in your software kit entitled VHDL for Programmable
Logic.

Writing the Entity Declaration

=> Copy the following lines into your VHDL text editor:
entity binetr is port(

reset, get_drink, elk: in std_logie;
give_drink: inout std_logie;
empty: inout std_logie);

end binetr;

The entity declaration declares the name, direction, and data type of each port of
the component. The entity declaration declares that entity binctr has five
external interfaces, or ports. It has three input ports of type std_logic, named
reset, get_drink, and clk, respectively. It has two input/output (inout)
ports, also of type std_logic, named gi ve_drink and empty, respectively.

Warp User's Guide 33

Tutorials

34

The signals give_drink and empty are of mode inout and represent the
various states that the state machine can assume. The architecture definition for
the entity binctr requires that signals gi ve_drink and empty retain their
values when all other state transition conditions are untrue. This forces
gi ve_drink and empty to feed back on themselves apart from being outputs of
the state machine. Hence the signals give_drink and empty are declared with
mode inout.

I

entity binetL is POLt(
Leset, get_dLink, elk: in std_logie;
give_dLink: inout std_logie;
empty: inout std_logic);

end binetn

Figure 3-5 The VHDL editor with
the entity description

Warp User's Guide

3.5.2

Tutorials

Writing the Architecture

=> Copy the following lines into your VHDL text editor below your entity
declaration:

architecture archbinctr of binctr is
constant full: std_logic_vector(l downto 0):= Q11";
-- max of 3 drinks/bin

signal remaining: std_logic_vector(l downto 0);
begin

proc_label: process (clk,reset)
begin
if (reset = '1') then

remaining <= full;
empty <= '0';
give_drink <= '0';

elsif (clkl.event and clk = '1') then
if (remaining = QOO") then

empty <= '1';
give_drink <= '0';

elsif (get_drink = '1') then
remaining <= remaining - 1;
give_drink <= '1';

elsif (get_drink = '0') then
give_drink <= '0';

else
give_drink <= give_drink;
remaining <= remaining;
empty <= empty;

end if;
end if;

end process;
end archbinctr;

The architecture portion of a VHDL description describes the behavior of the
component and always appears after the entity description.

The first line declares an architecture named archbinctr of entity binctr.

The next two lines declare a constant and a signal, respectively.

• The constant, named full, determines how many drinks are in a full
bin.

• Signal remaining, of type std_logic_vector keeps track of how
many drinks are left in the bin.

Warp User's Guide 35

Tutorials

The beg in that follows the signal declaration marks the start of the architecture
body. All constant and signal declarations in the architecture of the VHDL code
should precede the beg in statement.

A process declaration follows, marked by the keyword process and an ensuing
begin. The process declaration ends with the end process; statement.

The last line end archbinctr; denotes the end of the architecture declaration.

You can add comment lines to your VHDL code by placing " __ " before the text on
a line that you want commented. All or part of a line can be commented out as
shown on the line that defines the constant full.

The architecture defines a process which is activated by any changes to the elk or
the reset signal. The process definition shown here is a VHDL template for
describing a synchronous circuit with an asynchronous reset.

Signal activity is handled in the following sequential order:

• The process within the architecture is triggered only if there is a change in
the logic levels of the signals elk and res e t. These signals are therefore
included in the process sensitivity list. The signal order in the sensitivity
list is arbitrary.

• If signal reset is '1', then signal remaining is set to full, signal
empty is set to '0', and signal gi ve_drink is set to '0'. (Notice that this
means reset has priority over all other signal declarations in the
architecture definition. This forces the compiler to define the reset as an
asynchronous reset for the design.

• The reset signal needs to be false to initiate the execution of the rest of
the statements in the process declaration.

• The clock definition statement indicates to the compiler that all registered
equations in the architecture definition are to be synthesized into rising
edge triggered flip-flops. The process can be changed to be falling edge
sensitive by altering the clock definition statement to look like this:
(if clk'event and elk = '0').

• If signal remaining has a value of liDO", then signal empty is set to '1'
and signal give_drink is set to '0'.

36 Warp User's Guide

3.5.3

Tutorials

• If signal remaining is not a '0' and signal get_dr ink is '1', then
signal remaining is decremented by one and signal gi ve_drink is
set to '1'.

• If signal remaining is not ''~O'' and signal get_drink is '0', then
signal g i ve_dr ink is set to '0'.

• If the if-then-elsif conditions are false, gi ve_drink,
remaining and empty retain the current value of gi ve_drink,
remaining and empty respectively.

Several lines ending the if statement, process, and architecture follow. Note that
the end statement of the architecture must be accompanied by the name of the
architecture, which must match the name shown on the first line of the
architecture.

Writing the Package Declaration

=> Copy the following lines into your VHDL text editor before the entity
declaration:

package binctr-pkg is
component binctr
port (reset, get_drink, clk: in std_logic;

give_drink: inout std_logic;
empty: inout std_logic);

end component;
end binctr-pkg;

The package declaration provides the information to the Warp compiler to allow
binetr to be used as a component in a higher-level design.

~----------------
Note - The package declaration must appear before the entity
declaration and architecture in the .vhd file.

The first line in the above package declaration names the package. The name of
the package must be distinct from the name of any component declared within
that package. Using the convention < en ti ty> _pkg works nicely.

The second line declares a component named binctr. The component name that
appears on this line must match the name of an accompanying entity.

The port statement declares the name, direction, and type of each port in the
component. You can copy the port statement from the entity declaration for this
purpose.

Warp User's Guide 37

Tutorials

3.5.4

38

An end component and end binctr.J)kg statement conclude the package
declaration. Note that the package named in the end package statement must
match that shown in the first line of the package declaration.

At this point, save the file as c:\w2tutor\binctr.vhd.

Including the Libraries

=> Insert the following three lines of VHDL code before the package
declaration and also before the entity declaration:

library i ••• ;
u •• i ••••• td_logic_1164.all;
u •• work •• td_arith.all;

These two lines advise the compiler to link to the IEEE VHDL library, and the
Cypress UltraGen module generation library. The compiler finds definitions for
the various types, modes, and VHDL constructs defined in the user's VHDL code.
In general, the library and u •• VHDL reserved words instruct the compiler to
include pre-defined libraries and user created VHDL files, in compiling the
selected VHDL code. For more information on the std_logic_1164 and
s td_ar i th packages, see Chapter 4, "VHDL," in the Reference Manual.

Verifying the VHDL Syntax

=> First, save your VHDL file by clicking on Save under the File menu.

=> Then under the VHDL menu, select Compile.

Warp runs, printing messages to keep you appraised of its
progress. The verification process should run to completion
without any error messages. A snapshot of this window is shown
in Figure 3-6.

=> Close your VHDL file by clicking on the close box, or selecting Close under
the File menu.

Warp User's Guide

Tutorials

You have just used Warp to verify that the binctr.vhd file is syntactically correct.
This step isn't strictly necessary, but it's always a good idea to compile any VHDL
description once it's completed. That way, you can spot problems in your VHDL
description when they are easiest to identify and correct. Later, should you
encounter problems with the larger circuit, you can at least be assured that you
have taken care of any errors in the lower levels of the hierarchy.

Using control file 'refill.ctl '.
Library 'ieee' =} directory 'C:\W3R4\lib\ieee\work'
Using 'C:\W3R4\lib\ieee\work\stdlogic.vif' .
Using 'lc381a\binctr.vif'.
High-level synthesis [C:\W3R4\bin\tovif.exe V4 IR x55)
Added entity 'refill ' to library 'work'
Added architecture 'archrefill ' to library 'work'

WARP done.
I

Figure 3-6 A successful Warp compilation

~----------------
Note - If you do get error messages, check to make sure that the
various parts of the binctr.vhd file read exactly as they are listed
on the preceding pages. Better yet, copy the binctr.vhd file from
the c:\warp\exampZes\wtutor directory of the Warp installation,
then try compiling the design again.

Warp User's Guide 39

Tutorials

3.7 Creating a Top-Level Description

40

Now that you have defined the behavior of the lower level of the circuitry, you
can describe the upper level by instantiating two components and connecting
them with appropriate internal signals.

=> Open your VHDL editor by clicking on New m the Edit section of the
Galaxy window. Copy the following lines into the new VHDL file.

library ieee;
use ieee.std_logic_1164.all;
use work.binctr-pkg.all;

entity REFILL is port (
GIVE_cola: INOUT std_logic;
GIVE_diet: INOUT std_logic;
REFILL_BINS: OUT std_logic;
RESET: IN std_logic;
eLK: IN std_logic;
GET_diet: IN std_logic;
GET_cola: IN std_logic);

attribute pin_numbers of refill:entity is
" GIVE_cola:2 GIVE_diet:3 REFILL_BINS:4 RESET:l0 CLK:13 n &
" GET_diet:ll GET_cola:3S n ;

end REFILL;

The first three lines advise the compiler to link to the IEEE VHDL library and the
user created binctr_pkg VHDL package. The compiler finds definitions for the
various types, modes, and VHDL constructs defined in the user's VHDL code. In
general, the library and use VHDL reserved words instruct the compiler to
include pre-defined libraries and user created VHDL files, in compiling the
selected VHDL code. For more information on the std_logic_1164 and
s td_ar i th packages, see Chapter 4, "VHDL," in the Reference Manual.

The entity declaration declares an entity named refill and defines the names,
types, and mode (direction) of its seven input and output ports.

Warp User's Guide

Tutorials

There is also a pin_numbers assignment attribute which assigns all the signals
declared within the entity port map declaration to user specified pin numbers.
Refer to Chapter 3, "Synthesis Directives," in the Reference Manual for more
information on the pin_numbers attribute.

~----------------
Note - The pin numbers assigned to the signals in this design are
specific to the CY7C371 in the PLCC package. If a different pack-
age or device is targeted, the numbers would have to be changed
appropriately. Alternatively, the pin_numbers attribute and
the pin_number assignments can be removed.

=> Copy the following lines into your VHDL editor below the entity
declaration.

architecture archREFILL of REFILL is
signal empty_l: std_logic;
signal empty_2: std_logic;

begin

bin_l: BINCTR
port map(RESET => RESET,

GET_DRINK => GET_cola,
CLK => CLK,

bin_2: BINCTR

GIVE_DRINK => GIVE_cola,
EMPTY => empty_i);

port map (RESET => RESET,
GET_DRINK => GET_diet ,
CLK => CLK,
GIVE_DRINK => GIVE_diet ,
EMPTY = > empty _2) ;

refill_bins <= '1' when «empty_l = '1') and (empty_2 = '1'»
else '0';

end archREFILL;

=> Now, save your top-level VHDL file by choosing Save As in the File menu.
Enter refill.vhd as the name, then close the file.

The architecture starts by declaring two internal signals, empty _1 and
empty_2. These are used to connect the outputs of the two binctr components
to create the functionality for refill_bins.

Warp User's Guide 41

Tutorials

42

The two instantiations ofbinctr and the creation of the refill_bins equation
complete the VHDL description of this circuit. With this implementation, you
have translated the original vending machine problem into a VHDL design that
can be synthesized into any Cypress programmable logic device. The block
diagram for refill.vhd is shown here:

- get_drink give_drink --... gi - -
reset reset empty -.. -
elk .. - clk -

'--

re
r-- logic •

BIN_2

- get_drink give_drink - gi - -... - reset empty -.. -
... --- clk .. -

Figure 3-7 Block Diagram for refill.vhd

Warp User's Guide

3.8

3.8.1

The final VHDL window for refill. vhd should look as follows:

file .Edit .search YHDL Font

library ieee;
use ieee.std logic 1164.all;
use work.binctr_pkg.all;

entity REFILL is port (
GIVE_cola: INOUT std_logic;
GIVE diet: INOUT std logic;
REFILL BINS: OUT std-logic;
RESET:-IN std_logic;-
CLK: IN std logic;
GET diet: IN std logic;
GET=cola: IN std=logic);

attribute pin_numbers of refill: entity is
" GIVE cola:2 GIVE diet:3 REFILL BINS:4 RESET:10 CLK:13" &
" GET_diet: 11 GET_cola: 35"; -

end REFILL;

architecture archREFILL of REFILL is
signal empty 1: std_logic;

Figure 3-8 Final VHDL window for refill.vhd

Compiling and Synthesizing a Top-Level File

Tutorials

The first time you ran Warp, earlier in the tutorial, it was simply to verify that the
binctr. vhd file was syntactically correct.

In the following pages, you'll run Warp to produce a JEDEC file for a specific
target device (in this case, a CY7C371 - 32 macrocell CPLD).

Selecting Files for Compilation

First, you need to add the files you will compile to your project.

=> In your Galaxy window labeled w2tutor, click on the Files menu and
choose the Add all option.

Since the only files currently in this project directory are binctr.vhd
and refill. vhd, the two files needed for this tutorial, the Add all
option is a quick way to add them to the compilation list.

Warp User's Guide 43

Tutorials

44

If there are other VHDL files in the same directory, you need to
do something slightly different:

=> Click on the Files menu and choose the Add option.

The ensuing dialog box lists the VHDL files available in the
current directory on the left side, and the VHDL files selected for
compilation or synthesis on the right side (Figure 3-8).

=> Highlight the VHDL file in the left-hand list, and double-click on it or
choose and click on the " __ >" button. To deselect a file for compilation or
synthesis, highlight the VHDL file in the right-hand list and double-click
on it or choose and click on the "< __ " button. Click on binctr.vhd and
refill. vhd until they are the only files in the right-hand list, then click OK.

Choose VHDL files to add.

Directory: C:\W2TUTOR

refill.vhd

Selected:

binctr.vhd

Figure 3-9 Dialog box to add
files to your Galaxy window

Back in the main Galaxy window, both binctr.vhd and refill.vhd
should be listed.

Warp User's Guide

3.8.2

3.8.3

Tutorials

Selecting a Device

=> Click on the Device button from within the Synthesis options section.

The Device window should appear (Figure 3-9).

=> Click on the down-pointing arrow next to the Device label to activate the
pull-down menu. Scroll down the menu and select the C371 by clicking
on it.

C371 should appear as the targeted device in the lower right
hand corner of the main Galaxy window.

Selecting a Package and Speed Bin

In addition to selecting the device you wish to target, you can also choose a
package type and a speed bin from the list of available packages (Figure 3-10).

Click on the arrow next to the Package label to activate the scroll down menu.
Scroll down the menu until the your desired package is visible. Select the desired
package by clicking on it. For this exercise you should choose the default package
and speed bin CY7C371-143JC.

Warp User's Guide 45

Tutorials

3.8.4

46

Device: Settings:

01 IC3l1 I Max. Load:

Factor Cost: 0 I
Node Cost: ~I
Tech Mapping:

~ Choose FF Types

OD OT @Opt

Post-JEDEC Sim: o Keep Polarity
I<none> I o Float Pins

OODF o Float Nodes

o Factor Lonic

o Internal 3-states

o Pad Generation

1 .. -

o Bui. Generation

Figure 3-10 Available Package
and Speed Bin list

Resolving Unused Outputs

Warp gives you the option of turning all of your unused output pins that have
unused macrocells into 'l's, 'D's, or 'Z's. This is a global option and cannot be
applied on a signal-by-signal basis. This option is useful for driving all unused
pins to a certain logic level.

=> Under the Unused Outputs options of the Device window, choose Z, the
default option of leaving all unused 110 pins to be three-stated.

~----------------
Note - When using MAX340 EPLDs and FLASH370 CPLDs, it is a
recommended practice to use external pull-ups for unused 1/0
pins.

Warp User's Guide

3.8.5

3.8.6

Tutorials

Choosing Tech Mapping Options

While compiling registered equations, the fitter will use the directive from Choose
FF types to synthesize equations. Leaving the option Opt selected is the best
choice. This enables the fitter to make the choice between a D-FF and a T-FF
implementation and then choose the implementation that uses the least number
of product terms.

=> Under Tech Mapping options in the Device window, choose the Opt option.

There are a few other useful options in the Tech Mapping options and the Settings
options. Refer to Chapter 4, "Galaxy," of this User's Guide for a detailed
description of each option.

=> Click on the OK button to dismiss the Device window.

Setting the Top-Level File

=> Highlight refill. vhd by clicking on it.

=> Click on the Set Top button in the Synthesis options section to assign your
top-level VHDL file.

= Broject c:\w2tutof'\w2tutor II
Eroject files Info Search TQols Font !:lei

binctr.vhd

Figure 3-11 Galaxy window showing
refill.vhd as the top-level design

Refill. vhd should be listed as the top file in the lower left-hand
comer of your Galaxy window.

Warp User's Guide 47

Tutorials

3.8.7

48

Compiling and Synthesizing the File

=> In your Galaxy window, click on the Smart button in the Compile button
group to begin compilation.

Warp starts the compilation and synthesis of the design into a
CY7C371 and prints messages to keep you appraised of its
progress in a pop-up window. The Smart compile option
automatically recompiles only those files which have been
modified since the last compilation.

This operation generates two files of particular interest:

• The first is named refill. jed. The .jed file can be used to program a
CY7C371 device. It is also used as the input to the Nova functional
simulator.

• The second file is named refill.rpt. It contains pinout and timing
information, along with other information about the final synthesized
design. You can see the .rpt file by pulling down the Info menu from the
Galaxy window and clicking on Report. For more information on what is
contained in a report file, refer to Chapter 6, "Report File," in the Reference
Manual.

=> Close the Galaxy compilation window by clicking on the Close button
located at the top of the Galaxy compilation window.

~----------------
Note - If compilation errors occur, do the following: make sure
the text of your binctr. vhd file is entered exactly as shown earlier
in this chapter -- or better yet, copy it from the c: \ warp \ exam
ples\wtutor directory -- and then run Warp again.

If error messages appear in the pop-up window:

=> Highlight the error message by clicking on it.

=> Click on the Error button (the icon that looks like a magnifying glass)
located at the top of the Galaxy compilation window.

This opens the VHDL editor with the cursor on the line number
that contains the error. Check the code you have entered against
the text shown earlier in this chapter.

Warp User's Guide

Tutorials

3.9 Simulating the Behavior of the Design with Nova

Once the design is synthesized, you must simulate it to verify that it functions as
intended. You'll use the Nova simulator to test the behavior of the design. Nova is
a simple JEDEC functional simulator. In this tutorial, you'll perform the following
steps:

• start Nova

• open the refill.jed file

• create a new view and populate it with the signals you're interested in
(and onI y those signals). Typically you would retain and modify the
default view

• designate and edit a clock signal

• set the values of the stimulus signals in the simulation

• simulate the design

• examine results to figure out what happened

3.9.1 Starting Nova

For Warp2 Users

=> On Windows systems, start Nova by double-clicking on the Nova icon
within the Warp R4 program group.

=> On UNIX systems, start Nova by typing nova<CR> at a shell prompt.

In both systems, the Nova window should appear.

For Warp3 Users

=> On Windows systems, you start Warp3 by double-clicking on the Cockpit
icon from the Warp R4 program group.

=> On UNIX systems, launch the Cockpit by typing powerviaw<CR> from
within a shell window.

On both platforms, the Cockpit should be displayed immediately
after you start Warp3. The Cockpit is labeled "Workview PLUS
Cockpit" on Windows systems, and "Powerview Cockpit" on
UNIX systems.

=> Double-click on the Nova icon in the Cockpit.

Warp User's Guide 49

Tutorials

The Nova screen appears, followed by the Nova About box. The
About box goes away by itself in a few seconds. If you want to
make it go away faster, click anywhere in the About box.

~-----------------
Note - In this section, Warp3 users will simulate their design
with Nova for this exercise. A section simulating the same design
with ViewSim is presented later. Warp3 users are recommended
to simulate their designs with the Viewlogic ViewSim simulator.
ViewSim is a powerful simulator and has more features available
than Nova.

For Both Warp2 and Warp3 Users

50

=> Open the refill.jed file by choosing File->Open.

The available JEDEC files 'jed extension) appear on the left side
of the dialog box (Figure 3-12).

Filet!ame:

I,elill.ied

lefill.' ed a

list Files of lPpe:

.Q.ilectolies:

c:\w2Iutol

fC3- c:\
.. w2tutol
L:llc371
L:l sch
c::J sym
L:l wil
L:l wOlk

Dli~es:

1-1 F_ile_s......;(_·_.;;....ie_d)~ ___ JiilI._· 1_ c: walp system I. "

Figure 3-12 Choosing a file to open in Nova

=> Highlight refill.jed by clicking on it.

=> Click on the OK button to open refill.jed.

Warp User's Guide

3.9.2

Tutorials

The Nova window should resemble the following figure:

Figure 3-13 I nitial Nova window for refill.jed

Creating a View

A view is the collection of signals available for viewing on the Nova screen. To
make it easier to see what's going on in your simulation, you'll create your own
view, selecting only the signals you desire.

=> Choose the Edit Views item from the Views menu.

=> Click on the New View button.

=> In the ensuing dialog window, give the new view any unique name:
tutview will do nicely. Click OK to close the name dialog window.

Warp User's Guide 51,

Tutorials

52

Please enter new view name:

Itutview

Figure 3-14 Nova view naming dialog box

=> Click on the signal name in the Full View portion of the window, then on
the Add» button, for each of the following signals:

clk
reset
get_cola
get_diet
give_cola
give_diet
refill_bin

=> Click on OK.

The new view should appear on the Nova display screen, and
should look like Figure 3-15:

Figure 3-15 Nova screen for tutview

Warp User's Guide

3.9.3

3.9.4

Tutorials

Setting Simulation Length

=> From the main Nova window, pull down the Options menu and select
Simulation Length.

=> In the Simulation Length dialog box, click twice on the up arrow to increase
simulation length to 384. Click OK to close the box.

These steps increase the length of the simulation so that you can
see the results of the entire simulation.

Designating a Clock Signal

=> Position the cursor over the elk signal button on the left column of all the
signal names.

=> Click the left mouse button.

The signal trace should turn blue when the entire signal is
selected in this manner. (fhe trace will become a dashed line on
monochrome monitors.)

=> Select the Clock item from the Edit menu.

=> When the Edit/Clock dialog box appears, click on OK to accept the default
clock value of 10.

Signal elk appears as a series of equally-spaced, alternating
highs and lows as seen in the figure below.

Figure 3-16 Signal elk designated

Warp User's Guide 53

Tutorials

3.9.5

54

Setting Stimulus Signal Values

In addition to the clock signal, you need to set the values of the following input
signals for your simulation: reset, get_cola, and get_diet.

Set reset to high for one rising clock edge. To do so:

=> Position the cursor on the res e t trace, just to the left of a rising clock
edge (a rising clock edge is the vertical line as the clock changes from low
to high).

=> Click and hold the left mouse button.

=> Drag the cursor along the trace to the right of the rising clock edge, then
release the mouse button.

This portion of the reset signal should now be blue.

=> Press the "1" key on your keyboard to cause the signal to go high for the
selected period.

The portion of the reset that was blue should now be a pulse,
indicating that the signal is high during this period.

You now need to set get_cola high for four non-consecutive rising clock edges.

=> Position the cursor on the get_cola trace, just to the left of a rising clock
edge and after the reset signal has gone back to zero.

=> Click and hold the left mouse button.

=> Drag the cursor along the trace to the right of the rising clock edge, then
release the mouse button.

=> Press the "1" key on your keyboard to cause the signal to go high for the
selected period.

=> Click on the signal label buttons which appear on the left side of Nova.

This deselects the signal (the signal line turns white), allowing
you to select a new piece to edit.

=> Skip the fi~st rising clock edge after the get_cola signal has gone back to
zero. Then, position the cursor on the get_cola trace, just to the left of
the next rising clock edge (so that you have non-consecutive rising clock
edges).

Warp User's Guide

Tutorials

=> Click and hold the left mouse button.

=> Drag the cursor along the trace to the right of the rising clock edge, then
release the mouse button.

=> Press the 1/1" key on your keyboard to cause the signal to go high for the
selected period.

=> Click on the signal label button which appears on the left side of Nova.

You have created two of the four pulses needed for simulation.
You need to repeat the above five steps two more times to have a
total of four pulses for the get_cola signal.

You now need to set get_diet high for four non-consecutive rising clock edges.
These four pulses should come after the four pulses created for the get_cola
signal.

=> Position the cursor on the get_diet trace, just to the left of a non-
consecutive rising clock edge.

Remember, the rising clock edge selected above should come
after the get_cola signals' four pulses. Therefore, the first pulse
of the get_diet signal would come no sooner than the tenth
rising clock edge -- one clock edge for reset and 8 clock edges
for get_cola (you need four non-consecutive rising clock
edges).

=> Click and hold the left mouse button.

=> Drag the cursor along the trace to the right of the rising clock edge, then
release the mouse button.

=> Press the 1/1" key on your keyboard to cause the signal to go high for the
selected period.

=> Click on the signal label button which appears on the left side of Nova.

You need to create three more pulses for get_diet. Repeat the five steps above
three more times to complete the get_diet stimulus.

Warp User's Guide 55

Tutorials

56

You now want to set reset high for one rising clock edge after the last
get_diet request.

=> Position the cursor on the reset trace, just to the left of a rising clock
edge.

Remember, this reset pulse should occur after the four
get_cola pulses and the four get_diet pulses.

=> Click and hold the left mouse button.

=> Drag the cursor along the trace to the right of the rising clock edge, then
release the mouse button.

=> Press the 1/1" key on your keyboard to cause the signal to go high for the
selected period.

Finally, you need to set get_cola and get_diet high for one rising clock edge,
respectively, after the second reset.

=> Position the cursor on the get_cola trace, just to the left of a rising clock
edge.

Remember, this get_cola pulse should occur after the second
reset signal's pulse.

=> Click and hold the left mouse button.

=> Drag the cursor along the trace to the right of the rising clock edge, then
release the mouse button.

=> Press the 1/1" key on your keyboard to cause the signal to go high for the
selected period.

=> Position the cursor on the get_cola trace, just to the left of a rising clock
edge.

Remember, this get_diet pulse should occur after the
ge t_ col a pulse you just created.

=> Click and hold the left mouse button.

=> Drag the cursor along the trace to the right of the rising clock edge, then
release the mouse button.

=> Press the 1/1" key on your keyboard to cause the signal to go high for the
selected period.

Warp User's Guide

Tutorials

3.9.6

After you have set the values of the input signals, you may wish to change the
screen resolution in order to fit all activity in the waveforms on one screen.

=> To do so, select the Resolution item from the Options menu, then set the
resolution to two pixels per simulation tic.

The result, when complete, should look like Figure 3-17:

Figure 3-17 Nova window for refill.jed
with all the signals set

Running the Simulation

=> To simulate the design, select Execute from the Simulate menu.

The results should look similar to the figure below:

Figure 3-18 Results of refill.jed Nova simulation

The simulation starts with the drink machine empty. (Notice the
state of the refill_bin signal at the start of the simulation.)

Warp User's Guide 57

Tutorials

When the reset signal goes high near the start of the simulation,
the refill_bin signal is set low. The drink machine is now
ready to dispense drinks.

The drink machine dispenses three cola's in response to the first
three requests for a cola. (Note the relationship between the
pulses in the get_cola and give_cola Signals.) After the
fourth request for a cola, however, the machine does not dispense
a drink; the cola bin is empty.

Similarly, the drink machine dispenses three diet's in response to
the first three requests for a diet. After the fourth request for a
diet, the machine does not dispense one; the diet bin is empty.

With both bins empty, the refill_bin signal goes high. It stays
high until the reset signal goes high again, telling the machine
that the bins have been replenished. The next two requests, for a
cola and a diet respectively, are honored.

For more information on Nova, please refer to Chapter 6,
"Nova," in this User's Guide.

~----------------
Note - If the output of your simulation does not register cor-
rectly, make sure that your signals begin and end halfway
between rising and falling clock edges.

3.10 Retargeting the Design to an FPGA

58

Warp also includes support for the pASIC380 Family of UltraLogic™ FPGAs. This
section of the soda machine example will retarget the compilation to a 1000 usable
gate device, the CY7C381A FPGA. In addition to re-synthesizing the design using
the Galaxy interface, you will also need to place and route the design using the
SpDE toolkit. This process will take the sYnthesized description of the VHDL file
~d place the logic into the FPGA device. The SpDE toolkit also generates all of
the files necessary for simulation in ViewSim as well as many other third party
simulation environments.

When you ran Warp earlier in the tutorial, you compiled refill.vhd to produce a
JEDEC file. In the following pages, you'll run Warp to produce a QDIF file for a
specific target device (in this case, a CY7C381A-OJC 1k gate CMOS FPGA).

Warp U~er's Guide

Tutorials

3.10.1 Starting Galaxy

For Wsrp2 Users

=> On Windows systems, double-click on the Galaxy icon from the Warp R4
program group.

=> On UNIX systems, start Warp2 by typing galaxy<CR> from within a shell
window.

In both systems, the Galaxy window should appear.

For Wsrp3 Users

=> On Windows systems, you start Warp3 by double-clicking on the Cockpit
icon from the Warp R4 program group.

=> On UNIX systems, you start Warp3 by typing powerview<CR> from
within a shell window.

On both platforms, the Cockpit should be displayed immediately
after you start Warp3. The Cockpit is labeled "Workview PLUS
Cockpit" on Windows systems,"Powerview Cockpit" on UNIX
systems.

=> Double-click on the Warp icon within the Cockpit to launch Galaxy.

Make sure that refill.vhd and binctr.vhd are the two files listed in the Galaxy
window. If they are not

=> Remove other files from the list by clicking on each file name to highlight
it and then choosing Remove from the File pull-down menu.

=> To add either binctr.vhd or refill.vhd to the Galaxy window, click on the
File menu and choose the Add option.

The ensuing dialog box lists the VHDL files available in the
current directory on the left side, and the VHDL files selected for
compilation or synthesis on the right side.

=> Highlight the VHDL file in the left-hand list, and double-click on it or
choose and click on the "_>" button.

If neither refill.vhd or binctr.vhd is available, check to make sure
you are in the correct project directory. You may need to close
this Galaxy window and locate the wtutor.wpr project file you
created earlier.

Warp User's Guide 59

Tutorials

3.10.2 Selecting a Device

60

You must now select a target device and package, set synthesis options, and
choose desired output options.

=> Click on the Device button from within the Synthesis options group.

The Warp options dialog box appears.

Device

@ JEDEC Normal

o JEDEC Hex

Post-JEDEC Sim:

I<none> I
OOOF

Settings:

Max. Load: DI
Factor Cost D I
Node Cost: ~ I
Tech Mapping:

[8] Choose FF Types

00 OT @Opt

D Keep Polarity

D Float Pins

D Float Nodes

D Factor Lonic

D Internal 3-states

D Pad Generation

D But. Generation

Figure 3-19 The Device dialog box showing
the Device pull-down menu

=> Click on the down-pointing arrow next to the Device label to activate the
pull-down menu (Figure 3-19). Scroll down the menu and select the
C381A by clicking on it.

Warp User's Guide

Tutorials

3.10.3 Selecting a Package and Speed Bin

In addition to selecting the device you wish to target, you can also choose a
package type from the list of available packages.

=> Click on the arrow next to the Package label to activate the scroll down
menu. Scroll down the menu until the desired package and speed bin is
visible. Select the CY7C381A-OJC package by clicking on it.

The pin_number attributes used earlier in refill.vhd were specific to the CY7C371-
143JC CPLD. The same choice for the pin number assignments do not hold true
for the CY7C381A-OJC FPGA. We will float the pins in this compilation by
selecting the "Float Pins" option from within the Tech Mapping paremeters. An
"X" gets placed along side the "Float Pins" option indicating that this option is
selected.

3.10.4 Selecting Other Options in the Device Window

You will use the default Tech Mapping parameters for this compilation.

Notice that the choice of flip-flop type is now grayed-out. This selection is not 3
available for architectural reasons. The flip-flops within a macrocell of a FLASH370
part can be configured to D or T type. The multiplexor-based architecture of
Cypress' FPGAs incorporates the inverting functionality of the T flip-flop into the
multiplexor logic should your design call for it. Thus, a flip-flop selection is not
applicable to the pASIC380 FPGA family of devices.

3.10.5 Launching the Retargeted Compilation

=> Click on the OK button to dismiss the Device window.

=> Highlight refill.vhd by clicking on it in the main Galaxy window.

=> Click on the Set Top button to set your top-level VHDL file.

=> Click on the Smart button in the Compile button group to begin
compilation.

Warp User's Guide 61

Tutorials

62

Warp starts the compilation and synthesis of the design into a
CY7C381A and prints messages to keep you appraised of its
progress in a pop-up window.

Library lie eel =) directory IC:\W3R4\1ib\ieee\workl

Using IC:\W3R4\lib\ieee\work\stdlogie.vifl.
Using IIe381 a\binctr.vifl.
High-level synthesis (C:\W3R4\bin\tovif.exe V4 IR x55)
Synthesis and optimization (C:\W3R4\bin\topld.exe V4 IR x55)
Using IC:\W3R4\lib\le380\stdlogic\e380.vifl.
Using IIe381 a\blnctr.vifl.

WARP done.

Figure 3-20 Successful compilation of
refill.vhd to produce a QOIF file

This operation generates two files of particular interest

• The first is named refill.qdf. The .qdf file is used as an input into the SpDE
toolkit. The .qdf file is the input file for the SpDE toolkit. SpDE will then
place and route the design and can produce a .lof file, which can be used
to program a device.

• The second file is named refill. rpt. It contains information about the final
synthesized design. You can see the .rpt file by pulling down the Info
menu from the Galaxy window and clicking on Report. For more
information on what is contained in a report file, refer to Chapter 6,
"Report File," in the Reference Manual.

Warp User's Guide

Tutorials

=> Close the Galaxy compilation window by clicking on the Close button
located at the top of the Galaxy compilation window.

~-----------------
Note - If compilation errors occur, do the following: make sure
the texts of both files are entered exactly as shown earlier in this
chapter -- or better yet, copy them from the c:\warp\exam-
pIes \ wtutor directory-- and then run Warp again.

If error messages appear in the pop-up window:

=> Highlight the error message by clicking on it.

=> Click on the Error button (the 'icon that looks like a magnifying glass)
located at the top of the Galaxy compilation window.

This opens the VHDL editor with the cursor on the line number
that contains the error. Check the code you have entered against
the text shown earlier in this chapter.

3.10.6 Running the Place and Route Tool, SpDE

Now that you have generated the QDIF file for refill. vhd, you should take the
synthesized description of the VHDL file and place the logic into the FPGA
device. Once the design has been placed into the FPGA, SpDE, or the place and
route tool, users can then generate the simulation files needed for ViewSim.

For Warp2 Users

=> Select SpDE from the Tools pull-down menu in Galaxy.

For Warp3 Users

=> Select SpDE from the Tools pull-down menu in Galaxy.

=> Alternatively, double-click on the Place&Rte icon from within the Cockpit to
launch SpDE.

Warp User's Guide 63

Tutorials

For Warp2 and Warp3 Users

64

=> Click on the folder button located in the upper left portion of the SpDE
window. This is equivalent to selecting File->Import->QDIF.

An open-file window appears listing your directory structure on
the right and the .qdf files on the left.

=> Go to your project directory if you are not already there.

=> Highlight refill.qdfby clicking on it.

=> Click on the OK button to import the file.

After importing the file, the hammer button will now be selectable
(it was not available before loading the QDIF file).

=> Click on the hammer button in the SpDE window.

A window will appear containing all the tools you can run. The
window appears with all of them selected.

=> Click on the Run button to begin the place and route process.

The place and route process will take a couple of minutes to
complete. Upon completion, a window will appear stating /I All
chosen SpDE tools ran successfully."

=> Click on the OK button to close the above message window.

=> Select Full Fit from the View pull-down menu.

Warp User's Guide

Figure 3-21 SpOE output for refill.qdf

This will allow you to see a view of the whole device with your
design placed and routed (Figure 3-21). For more information on
SpDE, please see Chapter 5, "SpDE," of this User's Guide.

=> Select Save under the File menu to save your design.

=> Select Exit from the File pull-down menu.

Tutorials

This tutorial ends here for all Warp2 users. Warp2 users can now start on the next
exercise which begins at Section 3.13.

Warp User's Guide 65

Tutorials

3.10.7 Running pASIC->VSim to Generate a ViewSim Model

B 3.11

66

You now need to generate a ViewSim model from the output of the SpDE tools.

=> Double-click on the pASIC-> VSim icon in the Cockpit.

A dialog box appears, containing a command line to be executed.

=> Make the command line read refill, then click on OK.

A window appears, informing you of the progress of the
application. When the banner of this window reads "Inactive
pASIC-> VSim," the application is complete.

~-----------------
Note - Verify that your current project directory is set to
c:\w2tutor. Ignore the messages at the bottom of the window. If
the application reports 0 errors and 0 warnings, the application
ran successfully. Close the pASIC->VSim window.

You now have the files ViewSim requires to simulate the soda machine design.

Back-Annotating Pin Assignment Information

You can easily lock-in the pin assignment made by the place and route tool.

=> Double-click on the Galaxy icon in the Cockpit.

=> Highlight refill. vhd by clicking on it. If you don't have refill. vhd selected,
do a Files->Add and add refill. vhd.

=> Choose Annotate ... from the File pull-down menu.

Warp User's Guide

Tutorials

A small window appears giving the name of the file which will
be back-annotated (in this case, refill.vhd), and giving you the
option of back-annotating the pins, the nodes or both. The Pins
option should already be selected.

Back-annotate configuration

for file: refill.vhd

[g] Pins

o Nodes

Figure 3-22 Annotate dialog box

=> If Pins is not already selected, click on the button to the left of Pins.

=> If Nodes is selected, deselect it by clicking on the button to the left of Nodes.

=> Click on the OK button to back-annotate the pin information.

~-----------------
Note - The back-annotation information is stored in a control file.
Control files have a .ctl extension.

3.12 Simulating the Behavior of the Design with ViewSim

Once the design is synthesized, it's a good idea to simulate its behavior and
evaluate its timing performance to ensure that it functions as intended.

~----------------
Note - Before performing this step of the tutorial, copy the
refill.cmd file from the Warp directory (its default location is
c:\warp\examples\wtutor\refill.cmd) to your project directory.

Warp User's Guide 67

Tutorials

You begin by launching ViewSim.

68

=> Double-click on the ViewSim icon in the Cockpit.

=> A dialog box appears. Make sure the design name reads refill.

=> Click on OK.

ViewSim starts up. When the ViewSim window appears (/SIM>'):

=> Type refill at the command line.

100 digital modules processed.
Total of 172 digital modules were processed.
SIH>refill •

Figure 3-23 ViewSim window

The refill.cmd file runs, executing the following sequence of
ViewSim commands (not necessarily echoed to the screen):

Warp User's Guide

wave REFILL.wfm clk reset get_cola give_cola get_diet
give_diet refill_bins

clock clk 0 1
h reset
1 get_cola
1 get_diet
cycle
1 reset
cycle
h get_cola
cycle 4
1 get_cola
h get_diet
cycle 4
1 get_diet
h reset
cycle
1 reset

Figure 3-24 ViewTrace output window for refill.vhd

Warp User's Guide

Tutorials

69

Tutorials

113.13

This sequence of commands does the following:

• sets up the waveforms to be traced (clk, reset, get_cola,
give_cola,get_diet ,give_diet ,andrefill_bins)

• sets up the clock signal

• initializes the inputs to the simulation, sets reset high for one clock
cycle, then sets reset to low

• sets get_cola to high for four clock cycles

• sets get_cola to low, then sets get_diet to high for four clock cycles

• sets get_diet to low, then sets reset to high for one clock,cycle

~----------------
Note - Note how the fourth request to get a cola does not result
in gi ve_cola going high. (The cola bin is empty.) The
refill_bins signal does not go high, however, because both
bins are not empty. Later, the re fill signal goes high after the
third diet is delivered. A fourth request for a diet is ignored.
Finally, the ref i 11 signal goes low when re set is asserted to
indicate that the bins have been replenished.

Designing a Parking Garage Monitor

This section takes you step-by-step through another tutorial example, using
hierarchy in creating a low-level and top-level behavioral description. In this
section, you will:

• write an entity declaration, architecture, and package declaration for a
VHDL behavioral description of a simple counter circuit using the Warp
VHDL Browser

• write a top-level entity and architecture design using behavioral VHDL to
implement logic functions and to instantiate the counter circuit, using the
Warp VHDL Browser

• run Warp to synthesize the design's VHDL description

• run Nova to simulate the design's functionality

• for Warp3 Users only: run ViewSim to simulate the behavior of the
design

70 Warp User's Guide

Tutorials

When you complete this section, you will know how to:

• take advantage of Cypress' UltraGen module generation technology on
various operators

• choose between Area and Speed optimization to obtain results best suited
for your application

3.13.1 Design Description

This design keeps track of the total number of cars entering a parking lot garage,
the total number of cars that have left the garage, and the number of cars
remaining in the parking garage.

For this exercise, you will set the maximum number of parking lot spaces
available to be 32. You also need to alert the parking lot attendant if the parking
lot is empty or full. Additionally, the attendant should also be able to reset the
count of the number of cars in the garage to a zero, at his own discretion.

3.13.2 Design Solution

The solution presented in this chapter will proceed as follows:

In this tutorial section, you're going to create two VHDL files, counter. vhd and
total.vhd. The counter.vhd file shows the implementation of a counter that
increments the count by 1 on the rising edge of a clock (trigger). It also contains an
asynchronous reset signal that will reset the counter to zero. This counter is a
variable size counter with default size of a 4-bit output data.

The top-level VHDL file, total. vhd, instantiates the counter twice. The first
counter keeps track of the incoming cars, and the second counter keeps track of
the cars exiting the parking garage. The top-level file takes the output of the
second counter and subtracts it from the output of the first counter to give the
attendant the number of cars remaining in the parking lot. There are two signals,
lot_empty and lot_full, which let the attendant know if the garage is
empty or full respectively. You'll set both counters to have data width of 5 bits.
After that, you'll syntheSize the counter and total VHDL descriptions into a
CY7C371 CPLD and simulate the behavior of the resulting design using the Nova
simulator. Users will also synthesize the design into a CY7C381A FPGA. Warp3
users will simulate this design with the ViewSim simulator.

This tutorial reinforces some basic VHDL constructs and the concept of
hierarchical designs. This exercise is also intended to make the user more familiar
with the Warp tool flow.

Warp User's Guide 71

Tutorials

3.14 Starting Galaxy

For Warp2 Users

=> On Windows systems, start Warp2 by double-clicking on the Galaxy icon
from the Warp R4 program group.

=> On UNIX systems, start Warp2 by typing galaxy<CR> from within a shell
window.

In both systems, the Galaxy window should appear.

For Warp3 Users

72

=> On Windows systems, you start Warp3 by double-clicking on the Cockpit
icon from the Warp R4 program group.

=> On UNIX systems, you start Warp3 by typing powerview<CR> from
within a shell window.

On both platforms, the Cockpit should be displayed immediately
after you start Warp3. The Cockpit is labeled "Workview PLUS
Cockpit" on Windows systems, and"Powerview Cockpit" on
UNIX systems.

=> Double-click on the Warp icon within the Cockpit to launch Galaxy.

~----------------
Note - If you have not run Galaxy earlier - before launching Gal-
axy, you must first create a project.

Warp User's Guide

Tutorials

3.15 Creating a Project

Users who created a project for the earlier exercise can skip this section.

For Warp 2 Users

=> Under the Project menu, choose New. A new Galaxy window will appear,
prompting you for a new name. On the PC enter c: \w2tutor\w2tutor
and on UNIX systems, enter <user home directory path> /
w2tutor/w2tutor.

You should now see a Galaxy window identical to the one that
appeared when you started Warp, except that it is named
c: \w2tutor\wtutor.

You have now created a project directory for your designs and
called it w2tutor. All files pertinent to this tutorial need to be
placed in this project directory. You have also created a project file
called w2tutor.wpr which is now located in the c:\w2tutor
directory.

eel files Info Search TQols Fon! !:!elp

Warp User's Guide

Figure 3-25 Galaxy window
named c:\w2tutor\w2tutor

73

Tutorials

For Warp3 Users

=> Select Project->Create from the Cockpit menu bar. When a dialog box
appears, on the PC type the pathname c: \w2tutor and on UNIX
systems, type <user home directory path> Iw2tutor and then
click OK.

When doing the tutorial exercises (or any other time, for that matter), don't write
anything into the Warp directory. Instead, create a separate directory to practice
in, like the w2tutor directory you have just created above.

By default, the Warp3 installation procedure for IBM PCs and compatible
computers installs Warp3 software into a directory named c:\warp. On UNIX
workstations, the user needs to point the CYPRESS_DIR environment variable to
the location of the Warp3 software.

3.16 Writing the VHDL File

74

The VHDL Browser is a good tool for beginners to learn how to design with
VHDL. The Browser also acts as a way to find out the correct syntax for using
VHDL constructs.

There are three parts to the counters. vhd file:

• the entity declaration declares the name, direction, and data type of each
port of the component

• the architecture describes the behavior of the component

• the package declaration provides the information to Warp to allow
counter to be used as a component in a higher-level design

The following pages briefly discuss the contents of each of these sections of the
VHDL description. For a more detailed explanation of these VHDL constructs,
please refer to the textbook which was included in your software kit entitled
VHD L for Programmable Logic. You will use the VHDL Browser to create
counter. vhd.

~----------------
Note - If you would rather not type the counter. vhd file yourself,
you can copy it from the Warp directory. The default location for
the counter.vhd file is c:\warp\examples\wtutor\counter.vhd.
From this location, copy counter.vhd to your project directory.
Then, read along for the next few pages to help you understand
the purpose of each section of a VHDL source file.

Warp User's Guide

Tutorials

For Both Warp2 and Warp3 Users

=> To bring up an editor, click on the New button from the Edit button group
from within Galaxy.

This brings up the Galaxy VHDL editor.

=> Choose the Browse option from the VHDL pull-down menu.

This should bring up the VHDL Browser shown in Figure 3-26.

Function
If-then-els
Library cia
Library unit
Package b
Package d
Procedure b
Procedure d
Process

Figure 3-26 VHDL Browser

3.16.1 Writing the Entity Declaration

The entity declaration declares the name, direction, and data type of each port of
the component.

You will use the VHDL Browser for creating the various parts of counter.vhd.

=> Choose Entity declo among the various constructs listed on the left-side of
the Browser screen.

=> Double-click on it or click on Insert.

This brings up the VHDL prompter.

=> Type in counter in the field for the Entity name: and type the following
information in the Port list: field without a carriage return.

trigger, reset : in std_logic; count: inout
std_logic_vector(counter_size downto 0)

Warp User's Guide 75

Tutorials

76

This adds signals with their modes and types to the entity
declaration.

-- VHf.'U± prompter

Template for 'Entity decl.':

Entity name: I counter

Port list: t: inout std_logic_vector(counter_size downto 0)1

Figure 3-27 VHDL prompter for entity declarations

When you are done entering this information into the VHDL prompter, the VHDL
prompter should look like Figure 3-27.

=> Select OK and the information presented to the prompter will get
translated into the correct VHDL syntax in the VHDL editor.

=> Add (counter_size: integer: = '); to the generic declaration so
that the resulting entity declaration looks like the lines below, except for
the comment line:

entity counter is
setting the default size of the counter

GENERIC (counter_size: integer:=');
PORT (trigger, reset : in std_logic;

count : inout
std_logic_vector(counter_size downto 0));
END counter;

=> Place the cursor at the start of counter.vhd.

=> Choose Library clause in the VHDL Browser.

=> Double-click on it to bring up the VHDL prompter with the Name: field.

=> Type in IEEE and click OK.

=> Double-click on Use clause from the VHDL Browser.

Warp User's Guide

Tutorials

=> Fill the following information in the VHDL prompter:
ieee. std_logic_1164. all and click OK.

=> Double-click on Use clause from the VHDL Browser and type in
work. std_arith.all and click OK.

=> Select Save As from the File pull-down menu to save the contents of the
VHDL Editor. Save the file as c:\w2tutor\counter.vhd.

3.16.2 Writing the Architecture

The architecture portion of a VHDL description describes the behavior of the
component. The architecture appears after the entity declaration in the .vhd file.

The architecture portion of this design defines a counter that increments by 1, on
the rising edge of the trigger signal. You also need to define an asynchronous
reset signal, reset, to reset the counter bits to O.

Architecture body definition:

=> Choose Architecture in the scrolling menu on the left of the Browser screen.

=> Double-click on Architecture or click on the Insert button.

=> Type in archcouDter in the field for the Architecture name field and
counter in the Entity name: field.

The VHDL prompter for the architecture definition is shown
below.

Template for 'Architecture':

Architecture name: I arch counter

Entity name: I counter

Figure 3-28 VHDL Prompter
for architecture definition

=> When you are done entering this information into the VHDL prompter,
select OK.

Warp User's Guide 77

Tutorials

78

The VHDL Browser will translate your entries into the correct
VHDL syntax in the VHDL editor. The architecture portion of the
counter.vhd file should look like this:

ARCHXTECTURE archcounter OF counter XS
BEGXN
END archcounter;

=> Place the cursor after the begin statement in the VHDL Editor.

=> Highlight Process from the VHDL Browser.

=> Double-click on Process or click on the Insert button.

This will automatically place the information shown below in the
architecture declaration portion of counter. vhd.

PROCESS
Declarations

BEGXN
Statements

END PROCESS;

You need to associate a sensitivity list with the process. The process is to be made
sensitive to the signals reset and trigger.

=> Type (reset, trigger) after the word process in counter.vhd.

=> Place the cursor after the begin statement in the process statement in
the VHDL Editor.

=> Highlight if-then-else from the VHDL Browser and double-click on it.

This will bring up a VHDL prompter.

=> Enter (reset = '1') in the condition field and choose OK.

This will add the following lines to the counter.vhd file:
BEGXN

Xf reset= '1' THEN
--ELSXF <CONDXTXON>

THEN
--ELSE

END XF:

=> Place the cursor after the if - then statement in the VHDL Browser,
choose Signal assign. from the VHDL Browser, and double-click on it.

=> Within the VHDL browser, enter count in the Signal name: field and
(others = > ' 0 ') for the Value: field.

Warp User's Guide

Tutorials

This information tells the compiler that an asynchronous reset signal res e t is
associated with the counter and that the counter bits should get reset to a '0'
whenever the reset signal goes high.

Instead of count <="0000" you assigned (others => \ a ') in order to
preserve the generic nature of the counter. For more information about the usage
of this operator, please refer to Chapter 4, "VHDL," of the Reference Manual.

=> Uncomment the e 1 s i f - then statement in the VHDL Browser by
deleting the - - before elsi f and replacing <condi tion> with the
following statement: (trigger' event and trigger = ' 1 ') •

This instructs Warp to make the counter sensitive to the rising
edge of the trigger signal.

=> Place the cursor on the next line after the e 1 s i f - then clause in
counter. vhd and choose and double-click on Signal assign. from the VHDL
Browser.

=> Type count in the Signal name: field and count + 1 in the Value: field
and click OK.

When you have completed the architecture and entity declaration for counter. vhd,
you should have the following architecture declaration.

ARCHXTECTURE archcounter OF counter XS
BEGXN

PROCESS (reset, trigger)
BEGXN

END PROCESS;
END archcounter;

XI' reset='l' THEN
count <= (others => '0');

ELSXF (trigger'event and trigger='l') then
count <= count+l;

END XI';

=> Save the file by clicking on Save from the File pull-down menu.

Warp User's Guide 79

Tutorials

3.16.3 Writing the Package Declaration

80

The package declaration provides the information to the Warp compiler to allow
counter to be used as a component in a higher-level design.

=> Place the cursor at the start of counter.vhd.

=> Highlight Library clause in the VHDL Browser.

=> Double-click on Library clause to bring up the VHDL prompter with the
field name.

=> Type in IEEE and click OK.

=> Double-click on Use clause from the VHDL Browser.

=> Fill the following information in the VHDL prompter:
ieee.std_logic_1164.all

=> Double-click on Package declo from the VHDL Browser.

=> Type count_lib in the VHDL prompter.

=> Place the cursor after the package statement.

=> Double-click on Compo declo from the VHDL Browser.

=> Type counter in the Name: field and click OK in the VHDL prompter.

Warp User's Guide

Tutorials

The port statement declares the name, direction, and type of each
port in the component. You can copy the port statement from the
entity declaration for this purpose or copy the following lines:

GENERIC (counter_size: integer:=4);
PORT (trigger, reset : in std_logic;

count : inout std_logic_vector(counter_size
downto 0));

The package declaration should now look like the lines below:

LJ:BRARY IEEE;
USE ieee.std_logic_1164.all;
PACKAGE count lib IS
COMPONENT counter

setting the default size of the counter
GENERIC (counter_size: integer:=4);
PORT (trigger, reset : in std_logic;

END COMPONENT;
END count_lib;

count : inout std_logic_vector{counter_size
downto 0));

=> Save the file as c:\w2tutor\counter.vhd.

Below is the complete VHDL listing of counter.vhd.

LIBRARY J:EEE;
USE ieee.std_logic_1164.all;

PACKAGE count lib J:S
COMPONENT counter

setting the default size of the counter
GENERJ:C (counter_size: integer:=4);
PORT (trigger, reset : in std_logic;

END COMPONENT;
END count_lib;

LIBRARY IEEE;

count : inout std_logic_vector{counter_size
downto 0));

USE ieee.std_logic_1164.all;
USE work.std_arith.all;

Warp User's Guide 81

Tutorials

entity counter is
setting the default size of the counter

GEHER%C (counter_size: integer:=4);
PORT (trigger, reset : in std_logic;

count : inout std_logic_vector(counter_size
downto 0));

END counter;

ARCB%TECTURE archcounter OF counter %S
BEG%N

PROCESS (reset, trigger)
BEG%N

END PROCESS;
END archcounter;

%F reset='l' THEN
count <= (others => '0');

ELS%F (trigger'event and trigger='l') then
count <= count+l;

END %F;

3.16.4 Creating the Top-Level Description

82

You will now create a top-level VHDL file to achieve the desired functionality for
a parking garage counter. You will use the component counter discussed earlier.
You will continue using the VHDL Browser to create total.vhd.

=> To start a new VHDL file using the VHDL Browser, click on the New
button in the Edit button group.

You will start by providing the compiler with information on the library and
package needed for the std_logic and std_logic_vector types.

=> Place the cursor at the starting line of the VHDL editor.

=> Highlight Library clause in the VHDL Browser.

=> Double-click on Library clause to bring up the VHDL prompter with the
field name.

=> Type in %EEE and click OK.

=> Double-click on Use clause from the VHDL Browser.

Warp User's Guide

Tutorials

=> Fill the following information in the VHDL prompter:
ieae.std_logic_1164.all.

=> Double-click on Use clause from the VHDL Browser, typing in
work. std_ari th. all when prompted.

=> Double-click on Use clause from the VHDL Browser, typing in
work. count_lib. all when prompted.

By using the coun t_l ib package, you are allowing total. vhd access to the
counter model described in counter. vhd.

=> Place the cursor after the USE clauses.

=> Double-click on Entity declo from the VHDL browser.

=> Type total in the Entity name: field and car_enter, car_exit,
reset, lot_empty, lot_full, countl, count2, totalinthe
Port list: field and click OK.

=> Place the cursor on the line before the end statement.

=> From the VHDL browser, highlight Attr. spec. by clicking on it.

=> Click on the Insert button.

=> In the Name: field, type synthesis_off.

=> In the Symbols: field, type total.

=> In the Class: field, type signal.

=> In the Value: field, type true.

=> Click OK.

=> Modify the entity port list to include signal type and mode to match the
complete entity listing below.

Warp User's Guide 83

Tutorials

84

This is the complete listing for the entity of total. vhd.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.std_arith.all;
USE work. count_lib. all;

ENTITY total IS
GENERIC (size:integer:=5);
PORT (car_enter : in std_logic;

car_exit in std_logic;
reset in std_logic;
lot_empty out std_logic;
lot_full out std_logic;
counti: inout std_logic_vector«size-i) downto 0);
count2: inout std_logic_vector«size-i) downto 0);
total: buffer std_logic_vector «size-i) downto 0»;

attribute synthesis_off of total: signal is true;
END total;

Now you are ready to create the architecture declaration for total. vhd.

=> Place the cursor after the entity declaration.

=> Double-click on Architecture in the VHDL Browser.

=> Type in archtotal in the Architecture name: field and total in the Entity
name: field.

=> Place the cursor before the begin statement in the architecture
declaration.

=> Double-click on Signal declo in the VHDL Browser.

=> Type in full in the Name: field and std_logic_vector((size-i) in
the Type: field.

=> Place the cursor after the begin statement.

=> Double-click on Component from the VHDL Browser.

=> Type in counteri in the Label: field and counter in the Component: field
in the VHDL Browser.

=> Double-click on Component from the VHDL Browser.

Warp User's Guide

Tutorials

=> Type in counter2 in the Label: field and counter in the Component: field
in the VHDL Browser.

=> Close the VHDL Browser by clicking on the Done button.

=> Modify the <association list> in the port map declaration for the
label counterl and counter2 so that it matches the following complete
counter instantiation:

counter1: counter
GENER~C MAP(size-1)
PORT MAP(car_enter, reset, count1);

counter2: counter
GENER~C MAP(size-1)
PORT MAP(car_exit, reset, count2);

co un t e r 1 keeps track of the number of cars coming and co un t e r 2 keeps track
of cars leaving the garage.

You now want to take the outputs from the two counters, countl and count2, 3
and determine the difference between the two. Instead of building a subtractor
from gates, you'll take advantage of the UltraGen module generation feature.
Warp recognizes the operator "-" and knows that a subtractor is required. Warp
then looks at your target device along with your optimization goal of speed or
area, and replaces the "_" operator with a hand-crafted module of a subtractor
from a library pre-optimized for either area or speed and your target device.

=> Type total <= count1 - count2; after the counter instantiations.

=> Type the following lines above the counter instantiations and under the
word begin to generate the lot_empty and lot_full signal:

full <= (others => '1');
lot_empty <= '1' when (total = 0) else '0';
lot_full <= '1' when (total = full) else '0';

You could have generated the lot_full signal by comparing total with
"11111". However, defining full as full <= (others => \ l') i allows you
to make changes to the size of the design without changing the architecture of the
VHDLcode.

Warp User's Guide 85

Tutorials

86

You have now finished entering the code for total.vhd. The final version of
total. vhd is listed below. The block diagram for total. vhd is shown here:

rese t
count! [4:0] reset -

enter count - trigger -

- reset -
exit count --- trigger -

count2[4:0]

Figure 3-29 Block Diagrm for total.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.std_arith.all;
USE work. count_lib. all;

car_enter total [4: 0]
.....
.......

.car_exit

lot_full -
logic lot_empt y --

Warp User's Guide

Tutorials

ENTITY total IS
GENERIC (size:integer:=5);
PORT (car_enter : in std_Iogic;

car_exit : in std_Iogic;
reset : in std_Iogic;
lot_empty : out std_Iogic;
lot full : out std_Iogic;
count 1 inout std_Iogic_vector «size-l)

downto 0);
count2 inout std_Iogic_vector «size-l)

downto 0);
total: buffer std_Iogic_vector«size-l)

downto 0»;
attribute synthesis_off of total: signal is true;
END total;

ARCHITECTURE archtotal OF total IS
SIGNAL full: std_Iogic_vector«size-l) downto 0);

BEGIN

full <= (others => '1');
lot_empty <= '1' when (total = 0) else '0';
lot_full <= '1' when (total = full) else '0';

counterl: counter
GENERIC MAP(size-l)
PORT MAP(car_enter, reset, countl);

counter2: counter
GENERIC MAP(size-l)
PORT MAP(car_exit, reset, count2);

total <= countl - count2;

END archtotal;

Warp User's Guide 87

Tutorials

3.17 Compiling and Synthesizing the Design

3.17.1 Starting Galaxy

For Warp2 Users

=> On Windows systems, double-click on the Galaxy icon from the Warp R4
program group.

=> On UNIX systems, start Warp2 by typing galaxy<CR> from within a shell
window.

In both systems, the Galaxy window should appear.

For Warp3 Users

88

=> On Windows systems, you start Warp3 by double-clicking on the Cockpit
icon from the Warp R4 program group.

=> On UNIX systems, you start Warp3 by typing powerview<CR> from
within a shell window.

On both platforms, the Cockpit should be displayed immediately
after you start Warp3. The Cockpit is labeled "Workview PLUS
Cockpit" on Windows systems, and "Powerview Cockpit" on
UNIX systems.

=> Double-click on the Warp icon within the Cockpit to launch Galaxy.

Now that the Galaxy window has appeared, you need to add the files to compile.

=> Choose Files->Add.

The ensuing dialog box lists the VHDL files available in the
current directory on the left side, and the VHDL files selected for
compilation or synthesis on the right side.

=> Highlight the VHDL file in the left-hand list, and double-click on it or
choose and click on the " __ >" button.

=> To deselect a file for compilation or synthesis, highlight the VHDL file in
the right-hand list and double-click on the file, or click on the "< __ "
button.

=> Make sure that counter.vhd and total.vhd are the two files listed in the
Galaxy window.

Warp User's Guide

Tutorials

3.17.2 Selecting a Device

You must now select a target device and package, set synthesis options, and
choose desired output options.

=> Click on the Device button from within the Synthesis options group.

The Device window should appear.

=> Click on the down-pointing arrow next to the Device label to activate the
pull-down menu. Scroll down the menu and select the C371 by clicking
on it.

C371 should appear as the targeted device in the lower right
hand corner of the main Galaxy window.

Device:------,

@ JEDEC Normal

o JEDEC Hex

Post-JEDEC Sim:

I<none> II
OODf

Settings:

Max. Load: DI,··.·,',I.'.·.·.·.·.·.··.·.· .•. ,.:,,:~

factor Cost: D I
Node Cost: [!!] I
Tech Mapping:

~ Choose FF Types

00 OT @Opt

o Keep Polarity

o Float Pins

o Float Nodes

o Factor Lo~ic

o internal 3-states

o Pad Generation

o But. Generation

Figure 3-30 The Device window
with a C371 selected

Warp User's Guide 89

Tutorials

3.17.3 Selecting a Package and Speed Bin

In addition to selecting the device you wish to target, you can also choose a
package type and a speed bin from the list of available packages.

=> Click on the arrow next to the Package label to activate the scroll down
menu. Scroll down the menu until the desired package is visible. Select
the desired package by clicking on it.

3.17.4 Resolving Unused Outputs

Warp gives you the option of turning all of your unused output pins that have
unused macrocells into 'l's, 'D's, or 'Z's. This is a global option and cannot be
applied on a signal-by-signal basis. This option is useful for driving all unused
pins to a certain logic level.

=> Under the Unused Outputs options of the Device window, choose Z, the
default option of leaving all unused I/O pins to be three-stated.

~-----------------
Note - When using MAX340 EPLDs and FLASH370 CPLDs, it is a
recommended practice to use external pull-ups for unused I/O
pins.

3.17.5 Choosing Tech Mapping Options

90

While compiling registered equations, the fitter will use the directive from Choose
FF types to synthesize equations. Leaving the option Opt selected is the best
choice. This enables the fitter to make the choice between a D-FF and a T-FF
implementation and then choose the implementation that uses the least number
of product terms.

=> Under Tech Mapping options in the Device window, choose the Opt option.

There are a few other useful options in the Tech Mapping options and the Settings
options. Refer to Chapter 4, "Galaxy," of this User's Guide for a detailed
description of each option.

=> Click on the OK button to dismiss the Device window.

Warp User's Guide

Tutorials

3.17.6 Setting the Top-Level File

=> Highlight total. vhd by clicking on it.

=> Click on the Set Top button in the Synthesis options section to assign your
top-level VHDL file.

total. vhd should be listed as the top file in the lower left-hand
comer of your Galaxy window.

3.17.7 Compiling and Synthesizing the File

=> In your Galaxy window, click on the Smart button in the Compile button
group to begin compilation.

Warp starts the compilation and synthesis of the design into a
CY7C371 and prints messages to keep you appraised of its
progress in a pop-up window.

This operation generates two files of particular interest:

• The first is named total.jed. The .jed file can be used to program a
CY7C371 device. It is also used as the input to the Nova functional
simulator.

• The second file is named total.rpt. It contains pinout and timing
information, along with other information about the final synthesized
design. You can see the .rpt file by pulling down the Info menu from the
Galaxy window and clicking on Report. For more information on what is
contained in a report file, refer to Chapter 6, "Report File," in the Reference
Manual.

=> Close the Galaxy compilation window by clicking on the Close button
located at the top of the Galaxy compilation window.

~-----------------
Note - If compilation errors occur, do the following: make sure
the text of your binctr. vhd file is entered exactly as shown earlier
in this chapter -- or better yet, copy it from the c: \ warp \exam
ples\wtutor directory -- and then run Warp again.

Warp User's Guide 91

Tutorials

3.18

If error messages appear in the pop-up window:

=> Highlight the error message by clicking on it (Figure 3-31).

=> Click on the Error button (the icon that looks like a magnifying glass)
located at the top of the Galaxy compilation window.

Figure 3-31 Compile window with an error message

This opens the VHDL editor with the cursor on the line number
that contains the error. Check the code you have entered against
the text shown earlier in this chapter.

Simulating the Behavior of the Design with Nova

Once the design is synthesized, you should simulate and verify its behavior to
ensure that it functions as intended.

You'll use the Nova simulator to test the behavior of the design implementation.
In this tutorial, you'll perform the following steps:

• start Nova

• open the total.jed file

.• set the values of the stimulus signals in the simulation

• simulate the design

• examine results to figure out what happened

92 Warp User's Guide

Tutorials

3.18.1 Starting Nova

For Warp2 Users

=> On Windows systems, start Nova by double-clicking on the Nova icon
within the Warp R4 program group.

=> On UNIX systems, start Nova by typing nova<CR> at a shell prompt.

In both systems, the Nova window should appear.

For Warp3 Users

=> On Windows systems, you start Warp3 by double-clicking on the Cockpit
icon from the Warp R4 program group.

=> On UNIX systems, launch the Cockpit by typing powerview<CR> from
within a shell window.

On both platforms, the Cockpit should be displayed immediately
after you start Warp3. The Cockpit is labeled "Workview PLUS
Cockpit" on Windows systems, and "Powerview Cockpit" on
UNIX systems.

=> Double-click on the Nova icon within the Cockpit to start Nova.

The Nova screen appears, followed by the Nova About box. The
About box goes away by itself in a few seconds. If you want to
make it go away faster, click anywhere in the About box.

For Both Warp2 and Warp3 Users

=> Open the total.jed file by choosing File->Open.

The available JEDEC files 'jed extension) appear on the left side
of the dialog box.

=> Highlight total.jed by clicking on it.

=> Click on the OK button to open total.jed.

Warp User's Guide 93

Tutorials

3.18.2 Creating a View

94

A view is the collection of signals available for viewing on the Nova screen. To
make it easier to see what's going on in your simulation, you'll create your own
view to show only the signals you want to see.

=> Choose the Edit Views item from the Views menu.

=> Click on the New View button.

=> In the ensuing dialog box, give the new view any unique name; carview
will do nicely.

=> Click on the signal name in the Full View portion of the window, then on
the Add» button, for each of the following signals:

car_enter
car_exit
reset
lot_empty
lot_full
count 1_0
count 1_1
count 1_2
count 1_3
count 1_'
count2 °
count2 1
count2_2
count2 3
count2_'
total_O
total 1
total_2
total 3
total_'

=> Click on OK.

=> From the Edit menu, select Create Bus. Add the bits, total_4, then
total_3, total_2, total_l and total_O in descending order. Fill
in the name box with Total.

=> Again, from the Edit menu, select Create Bus. Add the bits, countl_4,
countl_3, countl_2, countl_l, and countl_0, in descending
order. Name this bus Entered.

Warp User's Guide

Tutorials

=> Follow the steps above to create a bus named Exited for count2_4,
count2_3, count_2, count2_1 and count2_0.

=> Choose the Edit Views item from the Views menu.

=> From within carview, on the right-hand side, highlight the following
signal names:
count1_0
count 1_1
count1 2
count1 3
count 1_4
count2_0
count2 1
count2_2
count2 3
count2_4
total_O
total 1
total_2
total 3
total_4

=> Then select cut and click OK.

3.18.3 Setting the Simulation Length

=> From the Options menu, select Simulation Length.

=> Set the simulation length to be 512 by clicking on the up arrow four times.

You have set a longer simulation length so that you can see more
results of the simulation.

3.18.4 Setting a Clock Signal

=> Position the cursor over the Signal car_enter on the left-hand list of all
the signal names.

=> Click the left mouse button.

The signal trace should turn blue when the entire signal is
selected in this manner. (The trace will become a dashed line on
monochrome monitors.)

=> Select the Clock item from the Edit menu.

Warp User's Guide 95

Tutorials

96

=> When the Edit->Clock dialog box appears, set the clock period to be IOns
and the clock high time to be Sns.

The clock waveform for the signal car_enter simulates cars
entering the parking garage.

Set reset to high for one rising clock edge. To do so:

=> Position the cursor on the reset trace, just to the left of a rising clock edge of
the car_enter signal.

=> Click and hold the left mouse button.

=> Drag the cursor along the trace to the right of the rising clock edge, then
release the mouse button.

This portion of the signal should now be blue.

=> Press the Ill" key on your keyboard to cause the signal to g~ high for the
selected period.

The new view should appear on the Nova display screen, and
should look like the following figure:

Figure 3-32 Nova screen with car enter signal set

Warp User's Guide

Tutorials

=> Select Execute in the Simulate menu.

• Notice that when you set the reset signal to high, both counters were set
to 0 and Total was set to O.

• The bus Total was created in order to read the value of Total (display
is hexadecimal by default). The other two bus signals, Entered and
Exi ted reflect the total number of cars that have entered and exited the
parking garage. The relationship between the three bus signals is
illustrated by the equation: Total = Entered - Exited. To read the value,
move the mouse pointer to the bottom of the window (the white region)
and click on the left mouse button. This brings up the measuring cursor.
Choose the measuring cursor with the left mouse button and move it
along the time scale to display the hexadecimal value of the bus signals.
For more information on handling buses in Nova, refer to Chapter 6,
"Nova," in this User's Guide.

• Notice that the signal lot_empty was initially high when Total = ''~O''

(hexadecimal).

• Notice that the signal lot_full becomes high when Total = "IF" 11
(hexadecimal). The counter is designed to wrap around once it counts to
its maximum value (IF). Therefore, the counter is triggered by
car_enter and wraps around to a ''~O'' after counting to "IF". This, in
turn, makes the signal lot_empty go high.

You will now modify the stimulus to see how the design behaves when both
car_enter and car_exi t signals are asserted at various points in the
simulation.

=> Click the left mouse button on the signal car_enter on the left-hand list
of all the signal names.

The signal trace should turn blue when the entire signal is
selected in this manner. (The trace will become a dashed line on
monochrome monitors.)

=> Press the "a" key on your keyboard to cause the signal to go low for the
selected period.

=> deselect the signal by clicking on the list of all the signal names.

=> Position the cursor on the car_enter trace after reset goes low.

=> Click and hold the left mouse button.

Warp User's Guide 97

Tutorials

98

. => Drag the cursor along the trace to the right until you reach the half-way
point of the Nova window, then release the mouse button.

=> Select the Clock item from the Edit menu.

=> When the Edit Clock dialog box appears, click on OK to accept the default
clock period of iOns and the clock high time of Sns.

=> Position the cursor on the car_exi t trace after the fourth pulse on the
car_enter trace goes low.

=> Click and hold the left mouse button.

=> Drag the cursor along the trace to the right until you reach the end of the
Nova window, then release the mouse button.

=> Select the Clock item from the Edit menu.

=> When the Edit Clock dialog box appears, click on OK to accept the default
clock period of iOns and the clock high time of Sns.

=> Select Execute in the Simulate menu.

The car_enter signal should oscillate for the first half of the
simulation while the car_exi t signal remains low. During the
second half of the simulation, car_exi t should oscillate while
car_enter remains low. This should simulate cars entering and
leaving. Total should be incremented for the first half of the
simulation, and decremented for the second half.

The final simulation screen should look similar to Figure 3-33.

Figure 3-33 Nova simulation for total,jed

Warp User's Guide

Tutorials

3.18.5 Retargeting the Design to an FPGA

Warp also includes support for the pASIC380 family of UltraLogic FPGAs. This
section of the parking garage example will retarget the compilation to a 1000
usable gate device, the CY7C381A FPGA. In addition to re-synthesizing the
design using the Galaxy interface, you will also need to place and route the
design using the SpDE toolkit. This process will take the synthesized description
of the VHDL file and place the logic into the FPGA device. The SpDE toolkit also
generates all of the files necessary for simulation in the ViewSim tool as well as
many other third party simulation environments.

In the following pages, you'll run Warp to produce a QDIF file for a specific target
device (in this case, a CY7C381A -OJC lk gate CMOS FPGA).

3.18.6 Starting Galaxy

For Warp2 Users

=> On Windows systems, double-click on the Galaxy icon from the Warp R4
program group.

=> On UNIX systems, start Warp2 by typing galaxy<CR> from within a shell
window.

In both systems, the Galaxy window should appear.

For Warp3 Users

=> On Windows systems, you start Warp3 by double-clicking on the Cockpit
icon from the Warp R4 program group.

=> On UNIX systems, you start Warp3 by typing powerview<CR> from
within a shell window.

On both platforms, the Cockpit should be displayed immediately
after you start Warp3. The Cockpit is labeled "Workview PLUS
Cockpit" on Windows systems, and "Powerview Cockpit" on
UNIX systems.

=> Double-click on the Warp icon within the Cockpit to launch Galaxy.

Warp User's Guide 99

Tutorials

Make sure that counter.vhd and total.vhd are the two files listed in the Galaxy
window. If they are not:

=> Remove other files from the list by clicking on each file name to highlight
it and then choosing Remove from the Files pull-down menu.

=> To add either counter.vhd or total.vhd to the Galaxy window, click on the
Files menu and choose the Add option.

The ensuing dialog box lists the VHDL files available in the
current directory on the left side, and the VHDL files selected for
compilation or synthesis on the right side.

=> Highlight the VHDL file in the left-hand list, and double-click on it or
choose and click on the " __ >" button.

If neither counter. vhd or total. vhd is available, check to make sure
you are in the correct project directory. You may need to close this
Galaxy window and locate the w2tutor project you created
earlier.

3.18.7 Selecting a Device

You must now select a target device and package, set synthesis options, and
choose desired output options.

=> Click on the Device button from within the Synthesis options group.

The Warp options dialog box appears.

=> Click on the down-pointing arrow next to the Device label to activate the
pull-down menu. Scroll down the menu and select the C381A by clicking
on it.

3.18.8 Selecting a Package and Speed Bin

100

In addition to selecting the device you wish to target, you can also choose a
package type and speed bin from the list of available packages.

=> Click on the arrow next to the Package label to activate the scroll down
menu. Scroll down the menu until the desired package and speed bin is
visible (for this tutorial, you may choose any package). Select the desired
package by clicking on it.

Warp User's Guide

Tutorials

3.18.9 Selecting Other Options in the Device Window

You will use the default Tech Mapping parameters for this compilation.

Notice that the choice of flip-flop type is now grayed-out. This selection is not
available for architectural reasons. The flip-flops within a macrocell of a FLASH370
part can be configured to D or T type. The multiplexor-based architecture of
Cypress' FPGAs incorporates the inverting functionality of the T flip-flop into the
multiplexor logic should your design call for it. Thus a flip-flop selection is not
applicable to the pASIC380 FPGA family of devices.

3.18.10 Launching the Retargeted Compilation

=> Click on the OK button to dismiss the Device window.

=> Highlight total. vhd by clicking on it in the main Galaxy window.

=> Click on the Set Top button to set your top-level VHDL file.

=> Click on the Smart button in the Compile button group to begin
compilation.

Warp starts the compilation and synthesis of the design into a
CY7C381A and prints messages to keep you appraised of its
progress in a pop-up window.

This operation generates two files of particular interest:

• The first is named total.qdf The .qdf file is used as an input into the SpDE
toolkit. The .qdf file is the input file for the SpDE toolkit. SpDE will then
place and route the design and can produce a .lof file, which can be used
to program a device.

• The second file is named total.rpt. It contains information about the final
synthesized design. You can see the .rpt file by pulling down the Info
menu from the Galaxy window and clicking on Report. For more
information on what is contained in a report file, refer to Chapter 6,
"Report File," in the Reference Manual.

=> Close the Galaxy compilation window by clicking on the Close button
located at the top of the Galaxy compilation window.

Warp User's Guide 101

Tutorials

~----------------
Note - If compilation errors occur, do the following: make sure
the texts of both files are entered exactly as shown earlier in this
chapter -- or better yet, copy them from the c: \ warp \ exam
ples\wtutor directory - and then run Warp again.

If error messages appear in the pop-up window:

=> Highlight the error message by clicking on it.

=> Click on the Error button (the icon that looks like a magnifying glass)
located at the top of the Galaxy compilation window.

This opens the VHDL editor with the cursor on the line number
that contains the error. Check the code you have entered against
the text shown earlier in this chapter. '

3.18.11 Running the Place and Route Tool, SpDE

Now that you have generated the QDIF file for total. vhd, you should take the
synthesized description of the VHDL file and place the logic into the FPGA
device. Once the design has been placed into the FPGA, SpDE, the place and route
tool, can then generate the simulation files needed for ViewSim.

For Warp2 Users

=> Select SpDE from the Tools pull-down menu in Galaxy.

For Warp3 Users

102

=> Select SpDE from the Tools pull-down menu in Galaxy.

=> Alternatively, double-click on the Place&Rte icon from within the Cockpit to
launch SpDE.

Warp User's Guide

Tutorials

For Warp2 and Warp3 Users

=> Click on the folder button located in the upper left portion of the SpDE
window. This is equivalent to selecting File->Import->QDIF.

An open-file window appears listing your directory structure on
the right, and the .qdf files on the left.

Figure 3-34 Choosing total.qdf in SpOE

=> Go to your project directory if you are not already there.

=> Highlight total.qdfby clicking on it.

=> Click on the OK button to import the file.

Ignore all the warnings that come up. SpDE reports all unused gates when
reading a file in. This should not affect the design's functionality.

After importing the file, the hammer button will now be selectable
(it was not available before loading the QDIF file).

=> Click on the hammer button in the SpDE window.

A window will appear containing all the tools you can run. The
window appears with all of them selected .

. => Click on the Run button to begin the place and route process.

Warp User's Guide 103

Tutorials

104

The place and route process will take a couple of minutes to
complete. Upon completion, a window will appear stating" All
chosen SpDE tools ran successfully."

=> Click on the OK button to close the above message window.

=> Select Full Fit from the View pull-down menu.

This will allow you to see a view of the whole device with your
design fitted into it (Figure 3-35). For more information on SpDE,
please see Chapter 5, "SpDE," of this User's Guide.

Figure 3-35 SpDE output ,for total,qdf

Warp User's Guide

Tutorials

=> Select Save under the File menu to save your design.

=> Select Exit from the File pull-down menu.

This tutorial ends here for all Warp2 users. The remainder of this chapter is
dedicated to users of the Warp3 tool set. For Warp2 users, please continue reading
with Chapter 4, "Galaxy," of this User's Guide.

3.18.12 Running pASIC->VSim to Generate a ViewSim Model

You now need to generate a ViewSim model from the output of the SpDE toolkit.

=> Double-click on the pASIC-> VSim icon in the Cockpit.

A dialog box appears, containing a command line to be executed.

=> Make the command line read total, then click on OK.

A window appears, informing you of the progress of the
application. When the banner of this window reads "inactive
pASIC-> VSim," the application is complete.

~-----------------
Note - Verify that your current project directory is set to
c: \ w2tutor. Ignore the messages at the bottom of the window. If
the application reports 0 errors and 0 warnings in the text, the
application ran successfully. Close the pASIC -> VSim window.

You now have the files ViewSim requires to simulate the parking garage design.

3.19 Back-Annotating Pin Assignment Information

You can easily lock-in the pin assignment made by the place and route tool.

=> Double-click on the Galaxy icon in the Cockpit.

=> Highlight total.vhd by clicking on it. If you don't have total.vhd selected,
do a Files->Add and add total.vhd.

=> Choose Annotate ... from the Files pull-down menu.

A small window appears giving the name of the file which will
be back-annotated (in our case, total. vhd), and giving us the
option of back-annotating the pins, the nodes or both. The Pins
option should already be selected.

Warp User's Guide 105

Tutorials

=> If Pins is not already selected, click on the button to the left of Pins.

=> If Nodes is selected, deselect it by clicking on the button to the left of Nodes.

=> Click on the OK button to back-annotate the pin information.

~-----------------
Note - The back-annotation information is stored in a control
file. Control files have a .ctl extension.

3.20 Simulating the Behavior of the Design with ViewSim

106

Once the design is synthesized, you should simulate its behavior and evaluate its
timing performance to ensure that it functions as intended.

~----------------
Note - Before performing this step of the tutorial, copy the
total.cmd file from the Warp directory (its default location is
c:\warp\examples\wtutor\total.cmd) to your project directory.

You begin by launching ViewSim.

=> Double-click on the ViewSim icon in the Cockpit.

=> A dialog box appears. Make sure the design name reads total.

=> Click on OK.

ViewSim starts up. When the ViewSim window appears (/S1M>'):

=> Type total at the command line.

Warp User's Guide

The total.cmd file runs, executing the following sequence of
ViewSim commands (not necessarily echoed to the screen):

restart
vector total total_[4:01
vector entered countl_[4:01
vector exited count2_[4:01
stepsize lOOns

Tutorials

wave total.wfm reset car enter car_exit total entered exited
lot_empty lot_full

h reset
cycle
1 reset car_enter car_exit
cycle

clock car_enter 1 0
cycle 33

h reset
1 car_enter
cycle

1 reset car_enter
cycle

h car_enter
cycle

1 car_enter
cycle

1 car_enter
h car_exit
cycle

1 car_enter car_exit
cycle

1 car_enter
cycle

Warp User's Guide 107

Tutorials

Figure 3-36 ViewTrace output window for total,vhd

The following observations can be made from the ViewTrace window:

• The vector command in total.cmd advises ViewSim to create a bus output
for the signals total, countl and count2. The signals countl and
count2 are renamed to entered and exi ted respectively.

• Notice, the signallot_ernpty was initially high and lot_full was
initally low when total = ''~O'' (hexadecimal). You need to zoom in to
look at this portion of the ViewTrace window. Use "F9" to zoom in and
drag the mouse over the area you want to zoom over. A red color is
spread over the portion chosen. Click on "F3" to select the area and zoom
in. Refer to the View Trace User's Guide in the Design Entry and Digital
Simulation Solutions collection within the Viewlogic on-line
documentation set to get more details on using ViewTrace.

• The signal car_enter is clocked thrity three times by using the
command cycle 33. This increments the value of the bus signal
entered 33 times.

108 Warp User's Guide

Tutorials

• Notice, the signal lot_full becomes high when total = "IF". Once
again, you need to zoom in to look at this portion of the ViewTrace
window. The counter is designed to wrap around, once it counts to its
maximum value (IF). Therefore, the counter which is triggered by
car _en ter, wraps around to a "00" after counting to "IF". This in turn
makes the signal lot_empty go high.

• The reset signal is pulled high to reset the values of total, entered
and exi ted to O.

• Notice, when the signal car_exi t goes high, the value of total is
decremented by 1. In this simulation, the signal tot a 1 changes from
"01" to ''~O'' and the signal lot_empty becomes high again for the rest
of the simulation.

• Remember: total = entered - exi ted.

• Notice that signal 10 t_empty has three glitches in this simulation.
These glitches occur when total changes values from "01" to "02", "03"
to "04", and "OF" to "10". Signal lot_empty has these glitches because
lot_empty is purely combinatorial and the inputs to this signal arrive 3
at slightly different times. Take for example the first case, "01" to "02." In
binary, this translates to "01" to "10". If the rightmost bit changes to a '0'
before the leftmost bit changes to a 'I', the value of the counter will have
''~O'' for a brief moment in time. This causes the lot_empty signal to
become active and thus glitch. These glitches are intentionally left as they
are to give the user a flavor of the real time simulation output that
ViewSim provides. Also, the duration and occurence of these glitches will
vary with different devices. Users can eliminate these glitches by making
the signal lot_empty to be a registered signal. This is left as an exercise
to the user.

This concludes the parking garage tutorial. The next exercise is completely for
Warp3 users only since it covers schematic entry and mixed-mode entry within
the View logic, Workview PLUS, and Powerview environments.

Warp User's Guide 109

Tutorials

3.21 Designing an ALU Circuit

For Warp3 Users Only

This tutorial exercise can only be done using Warp3 because it requires interaction
with the View logic software provided with Warp3.

Overview
This exercise takes you step-by-step through the design of a 4-bit ALU. The
design is done in two stages. The first stage will be the construction of the ALU's
core logic which you will do in a schematic using LPM components. The second
stage is constructing the control logic. You will create the control logic using
VHDL and then combine this VHDL with the previously captured schematic
design. When you complete this tutorial, you will know how to:

• create a schematic for the ALU circuit, instantiate and position LPM
components, label input and output ports, wire components together, and
save the schematic.

• create a symbol for the ALU circuit schematic to allow it to be instantiated
as a component in a higher level schematic design.

• write an entity declaration, architecture, and package declaration for a
VHDL description of a simple ALU controller circuit.

• create a symbol for the VHDL description to allow it to be instantiated as
a component in a schematic design.

3.22 Starting Warp3

110

=> On Windows systems, you start Warp3 by double-clicking on the Cockpit
icon from the Warp R4 program group.

=> On UNIX workstations, type powerview<CR> on the command line of a
shell tool.

The Cockpit is the access point for all Warp3 tools. To start a tool,
double-click on the tool's icon from within the Cockpit window.

Warp User's Guide

3.23

Tutorials

The Cockpit is organized into "toolboxes," which are themselves organized into
"drawers." At any time, the Cockpit will display the tools available in the current
drawer of the current toolbox. By default, the current toolbox is named Cypress,
and the current drawer is named Warp Design.

To change the current toolbox or drawer, click on the down-arrow next to the
Current Toolbox or Current Drawer label, then select a toolbox or drawer from the
available ones listed.

Creating a Project

You must set the project directory before running any Warp3 tools. Warp3 stores
all generated files and creates sub-directories in the project directory.

To create a new directory and set the project directory to it:

=> Select Create from the Project pull-down menu in the Cockpit menu bar.

=> When a dialog box appears, type a complete pathname, then click OK.

The named directory is created if it doesn't already exist and
becomes the current project directory.

To set the project directory to an existing project:

=> Select Set Current from the Project pull-down menu in the Cockpit menu
bar.

A dialog box appears,listing current projects.

=> Select one, then click OK.

You will create a new project directory which you will use for all the files created
in this tutorial.

For the sake of this tutorial, set the project directory to c: \w2tutor\alu.

On a Windows system:

=> Select Create from the Project pull-down menu.

=> Type c: \w2tutor\alu, then click OK.

On UNIX:

=> From the Cockpit, select Create from the Project pull-down menu.

=> Type <user home directory path>/w2tutor/alu, then click OK.

Warp User's Guide 111

Tutorials

3.24 Creating the Schematic

In this tutorial, you'll use ViewDraw to create a schematic called PLD. You'll also
use ViewText® to write the VHDL file for the ALU controller circuit that you'll
call cntrl.vhd.

3.24.1 Starting ViewDraw

112

=> Double-click on the View Draw icon from the Cockpit.

=> Then click OK in the ensuing dialog box.

A message appears, informing you of ViewDraw's progress in
loading the various modules (it takes a few seconds to load the
modules).

An Alert window will appear stating:

Warning-I:Library 'lprnlocal' not found in
viewdraw.ini

Cypress LPM library has been disabled.

Open ViewDraw and Click Menu Cypress=>Initialize
LPM.

Exit ViewDraw and then Re-Open it to enable the
LPM library.

This is a normal informational message when creating a new project.

Warp User's Guide

Tutorials

The View Draw File->Open dialog box appears.

=> Type pld on the Enter name: line in the dialog box.

=> Click OK.

=> A new, blank schematic sheet appears (Figure 3-37).

Figure 3-37 Blank ViewDraw schematic sheet

=> From the Cypress pull-down menu in the ViewDraw window, select
Initialize LPM.

A dialog box appears, prompting you to enter a directory path.

=> On a Windows system, enter c: \w2tutor\alu \lpmlocal if this is not
already entered.

=> On a UNIX system, enter <user home directory path>/w2tutor/
alu/lpmlocal if this is not already entered.

=> Click on the OK button to initialize the LPM library.

Warp User's Guide 113

Tutorials

A message should appear in the bottom, left corner of the
View Draw window stating:

Done with LPM Initialization!

=> Select Quit viewdraw from the Red Square pull-down menu, and click on the
OK button.

Now that you have initialized the LPM library, you need to restart View Draw and
open your PLD schematic window.

=> Double-click on the View Draw icon from the Cockpit.

=> On a Windows system, click OK in the Command Line Options dialog
box.

=> Type pld in the Enter name: field.

=> Click on the OK button to open your PLD schematic window.

3.24.2 Instantiating the LPM Components

114

In this section, you will choose various components from the LPM Library to form
the functionality of a 4-bit ALU circuit.

In the following pages, you will:

• call up the LPM components, select the right size and options, and place
them onto the schematic sheet

• position the components relative to each other, in preparation for wiring

• wire the components together

• label input and output ports

• save the finished schematic

~-----------------
Note - It is a good practice to save your schematics whenever
possible by typing "w" in your schematic sheet.

The process of calling up a component and placing it on a schematic sheet is
called "instantiating" a component. In this section of the tutorial, you'll
instantiate the LPM components required for this circuit.

Warp User's Guide

Tutorials

Components to be instantiated include: Madd_sub, Mcompare, Mand, Mor,
Mxor, Minv, Mmux, Gnd, IN and OUT.

To instantiate a component:

=> Select Add->LPM Symbol from the View Draw menu bar.

The Warp LPM Add Cell dialog box appears (Figure 3-38).

Figure 3-38 The Warp Add Cell dialog box

The Add Cell dialog box shows the 22 different LPM components
supported. Do not dismiss this dialog box until you are
completely finished instantiating all of the necessary
components. Please refer to Chapter 5, "LPM Reference," of the
Reference Manual for details on each of the LPM components.

=> Find the component you want to instantiate by clicking on a component
name with the left mouse button. This brings up the dialog box which has
all the options that can be set or changed for the LPM component chosen.

=> After you have first chosen the individual component and then chosen its
desired options, click on the Accept button.

=> Move the cursor to somewhere (anywhere) in the schematic. If you have a
3-button mouse, click the middle mouse button to place an instance of the
component in that spot. If you have a 2-button mouse, move the cursor to
anywhere in the schematic, click your left mouse button and press "F3"
to place an instance of the component. Move the cursor and click the
middle mouse button to place another instance of the component. Repeat
until you have instantiated the component as often as necessary.

Warp User's Guide 115

Tutorials

Repeat the above process to select all of the required components
and place them on the schematic sheet.

=> After selecting all of the components, click on Cancel to close the Add Cell
dialog box.

Below is a step-by-step introduction to creating the PLD schematic with LPM
components using the general procedure described above.

3.24.3 Detailed Description of Creating the PLD Schematic

116

A detailed description of the process of selecting the components for the PLD
schematic with the desired options is presented here. The discussion assumes that
the user has a 3-button mouse. If you have a 2-button mouse, while placing a
selected component:

=> Click with the left-mouse button.

=> Press /lF3."

Don't worry about precise placement; you will re-position each instance later. For
now, just get instances onto the schematic sheet.

This is the very first LPM component that you will add to the PLD schematic. This
component can be configured to act as an adder / subtractor.

=> Click on the Madd_sub component button.

Warp User's Guide

A dialog box (Figure 3-39) will appear which presents you with
several options for the adder /subtractor component. You need to
specify that you will be operating on 4-bit-wide buses, and you
need to select the carry out (cout) option.

Figure 3-39 Dialog box for the adder/subtractor component

Tutorials

=> To specify 4-bit-wide buses, you enter a 4 in the width field, LPM_Width.

=> To select the carry out, click on the cout check box so that an "x"appears in
the check box.

=> Select area optimization for this model.

All the other components selected in this exercise, except
Mcompare do not have different implementations for speed
versus area, so that the selection between speed/ area is grayed
out.

=> Click on the Accept button and move the mouse pointer into the schematic
window.

=> Place the adder-subtractor near the top as seen in the picture of the final
PLD schematic (Figure 3-50).

=> To place the component in the schematic, use either the middle mouse
button (3-button mouse) or a combination of left mouse button and "F3"

(2-button mouse).

Warp User's Guide 117

Tutorials

118

A picture of this element is shown in Figure 3-40.

LPM_HINT=AREA

ADD_SUB

DATAA[3:0]

RESULT[3:0

: 0]

Figure 3-40 Madd_sub
component

Mcompare

This component provides six outputs. This component performs equality
compares and magnitude compares.

=> Select Add->LPM Symbol from the View Draw menu bar if the LPM
component dialog box is no longer on your screen.

=> Click on the Mcompare component button.

The dialog box which appears will be different from the dialog
box that was presented to you for the Madd_sub component. You
still must specify the bus width to be four bits wide.

=> Enter a 4 in the width field, LPM_Width.

Since this component is a comparator, you can choose to include
up to six output signals: "agb" (A greater than B), "ageb" (A
greater than or equal to B), "aeb" (A equal to B), "aneb" (A not
equal to B), "alb" (A less than B), and "aleb" (A less than or equal
to B), where A and B are your two inputs to the Mcompare

, component. You will be using all of these outputs from
Mcompare.

Warp User's Guide

Tutorials

=> If they are not already selected, click on the check boxes to the left of the
labels alb, agb, aeb, aneb, ageb, and alebto select them.

=> Select speed optimization for this model (this is the default).

=> Place the comparator near the top as seen in the picture of the final PLD
schematic (Figure 3-50).

=> To place the component in the schematic, use the middle mouse button or
press the left mouse button and"F3."

A picture of this element is shown in Figure 3-41.

L P M _ H I N T = 5 PEE 0

Mand

ALB
ALE B

DATAA[3:0]
A E B

A NEB
DATAB[3:0]

A G B
AGE B

COM P A E

Figure 3-41 Mcompare
component

The next component you will add is an AND gate.

=> Select Add->LPM Symbol from the ViewDraw menu bar if the LPM
component dialog box is no longer on your screen.

=> Click on the Mand component button.

The dialog box that appears contains two fields: one to specify
the width of the signals (LPM_Width) and the other to specify the
number of signals to be ANDed together(LPM_Size).

Warp User's Guide 119

Tutorials

120

=> Enter 4 in the LPM_Width field and 2 in the LPM_Size field.

=> Click on the Accept button and move the mouse pointer into the schematic
window.

=> Place the AND gate as shown in the picture of the final PLD schematic
(Figure 3-50) by clicking the middle mouse button or the left mouse
button and "F3."

A picture of this element is shown in Figure 3-42.

Mor

Figure 3-42 Mand
component

The next component you will add is an OR gate.

=> Select Add->LPM Symbol from the View Draw menu bar if the LPM
component dialog box is no longer on your screen.

=> Click on the Mor component button.

The dialog box that appears contains two fields: one to specify
the width of the signals (LPM_Width) and the other to specify the
number of signals to be ORed together(LPM_Size).

=> Enter 4 in the LPM_Width field and 2 in the LPM_Size field.

=> Click on the Accept button and move the mouse pointer into the schematic
window.

=> Place the OR gate as shown in the picture of the final PLD schematic
(Figure 3-50) by clicking the middle mouse button or the left mouse
button and "F3."

Warp User's Guide

A picture of this element is shown in Figure 3-43.

Mxor

/ 0)---
Figure 3-43 Mor

component

The next component you will add is an XOR gate.

Tutorials

=> Select Add->LPM Symbol from the View Draw menu bar if the LPM
component dialog box is no longer on your screen.

=> Click on the Mxor component button.

The dialog box that appears contains two fields: one to specify
the width of the signals (LPM_Width) and the other to specify the
number of signals to be XORed together (LPM_Size).

=> Enter 4 in the LP M_ Width field, and 2 in the LP M_Size field.

=> Click on the Accept button and move the mouse pointer into the schematic
window.

=> Place the XOR gate as shown in the picture of the final PLD schematic
(Figure 3-50) by clicking on the middle mouse button or on the left mouse
button and "F3."

A picture of this element is shown in Figure 3-44.

Figure 3-44 Mxor
component

Warp User's Guide 121

Tutorials

122

Minv

The next component you will add is an inverter. You need two instantiations of
this component to invert the values on the two input buses, A and B.

=> Select Add->LPM Symbol from the View Draw menu bar if the LPM
component dialog box is no longer on your screen.

=> Click on the Minv component button.

The dialog box that appears contains only one input field: the
bus-width of the signal to be inverted (LPM_Width).

=> Enter 4 in LPM_ Width.

=> Click on the Accept button and move the mouse pointer into the schematic
window.

=> Press the middle mouse button or the left mouse button and "F3" to place
the component in the schematic.

=> Repeat the above 4 steps to instantiate one more 4-bit-wide inverter -- or
select the 4-bit-wide inverter using the left mouse button and press" e"
on your keyboard to copy the component.

=> Again, press the middle mouse button or the left mouse button and "F3"
to place the component in the schematic.

=> Place the INV gates as shown in the picture of the final PLD schematic
(Figure 3-50).

A picture of this element is shown in Figure 3-45.

Figure 3-45 Minv
component

Warp User's Guide

Tutorials

Mmux

The next component you will add is a Multiplexor.

=> Select Add->LPM Symbol from the View Draw menu bar if the LPM
component dialog box is no longer on your screen.

=> Click on the Mmux component.

The dialog box which appears contains two parameters: one
specifies the bus width of the muxed signals and the mux's
output signal (LPM_Width) and the other specifies the number of
selection lines needed (Number of Sel).

=> Enter 4 for the bus width parameter and 3 for the number of selection
lines.

Notice that after you enter 3 in the parameter for the number of
select lines, an 1/8" will appear in the field to the right (LPM_Size).
This field tells you how many signals can be multiplexed.
Having three select lines means that you can choose between one
of the eight inputs. In general, a mux will be a 1-of-2n mux where
n is the number of select lines. With this component, you have
created an 8-to-l mux with 3 select lines, and all the inputs to the
mux are 4-bits wide.

=> Click on the Accept button and move the mouse pointer into the schematic
window.

=> Place the MUX as shown in the picture of the final PLD schematic (Figure
3-50).

Warp User's Guide 123

Tutorials

124

A picture of this element is shown in Figure 3-46.

3
---11
-----t2
-----13

/ 4

Figure 3-46 Mmux component

Gnd

You need to instantiate an LPM ground component called Gnd. You will use this
ground component later, when you wire the components together.

=> Select Add->LPM Symbol from the ViewDraw menu bar if the LPM
component dialog box is no longer on your screen.

=> Click on the Gnd component button.

The dialog box that appears contains a parameter to specify the
bus width of the ground you wish to instantiate.

=> Enter 2 in the width field, LPM_Width.

=> Click on the Accept button and move the mouse pointer into the schematic
window.

=> Place the GND gate as shown in the picture of the final PLD schematic by
clicking on the middle mouse button or on the left mouse button and
"F3."

Warp User's Guide

In

A picture of this element is shown in Figure 3-47.

G N 0

Figure 3-47 Gnd
component

Tutorials

You now need to instantiate two 4-bit-wide input pins for the operands, A and B.

=> Select Add->LPM Symbol from the View Draw menu bar if the LPM
component dialog box is no longer on your screen.

=> Click on the IN component button.

The dialog box that appears contains only one input parameter:
the bus-width of the signal.

=> Enter 4 for this parameter.

=> Click on the Accept button and move the mouse pointer into the schematic
window.

=> Press the middle mouse button or the left mouse button and "F3" to place
the component in the schematic.

=> Repeat the above three steps to instantiate one more 4-bit-wide input pin-
or, select the 4-bit-wide input pin using the left mouse button and press
"e" on your keyboard to copy the component.

=> Again, press the middle mouse button or the left mouse button and "F3"
to place the component in the schematic.

Warp User's Guide 125

Tutorials

126

A picture of this element is shown in Figure 3-48.

)/4
Figure 3-48

In component

You also need a single-bit input to provide an input to the Madd_sub which
determines if the performed operation is an addition or a subtraction.

=> Click on the IN component button.

The dialog box that appears contains only one input parameter:
the bus-width of the signal.

=> Enter 1 for this parameter.

=> Click on the Accept button and move the mouse pointer into the schematic
window.

=> Press the middle mouse button or the left mouse button and "F3" to place
the component in the schematic.

You also need one 3-bit input to feed the 3 select lines of the 8-to-l mux.

=> Click on the IN component button.

The dialog box that appears contains only one input parameter:
the bus-width of the signal.

=> Enter 3 for this parameter.

=> Click on the Accept button and move the mouse pointer into the schematic
window.

=> Place these IN ports as shown in the picture of the final PLD schematic
(Figure 3-50) by clicking on the middle mouse button or on the left mouse
button and "F3."

Warp User's Guide

Tutorials

Out

You now need to instantiate a 4-bit-wide output pin for the schematic.

=> Select Add->LPM Symbol from the View Draw menu bar if the LPM
component dialog box is no longer on your screen.

=> Click on the OUT component button.

The dialog box that appears contains only one input parameter:
the bus-width of the signal.

=> Enter 4 for this parameter.

=> Click on the Accept button and move the mouse pointer into the schematic
window.

=> Press the middle mouse button or the left mouse button and IIF3" to place
the component in the schematic.

A picture of this element is shown in Figure 3-49.

7
/4)

Figure 3-49
Out component

You also need a single-bit output to hold the carry-out value from the Madd_sub.

=> Click on the OUT component button.

The dialog box that appears contains only one input parameter:
the bus-width of the signal.

=> Enter 1 for this parameter.

=> Click on the Accept button and move the mouse pointer into the schematic
window.

=> Place these OUT ports as shown in the picture of the final PLD schematic
(Figure 4-50) by clicking on the middle mouse button or on the left mouse
button and IIF3."

Warp User's Guide 127

Tutorials

With these components in your schematic sheet, you have all the components
necessary to build the desired 4-bit ALU.

When you are finished, the sheet should look something like Figure 3-50.

=> At this point, you can close the Add cell dialog box by clicking on Dismiss.

3.24.4 Positioning Components

128

Once the components are instantiated on the schematic sheet, you will want to
position them to enhance the readability and ease-of-wiring of the schematic.

You'll want to position the input ports on the left side of the schematic, the
various components just to the right of the input ports, and the output ports on
the right of the schematic.

=> Select the component using the left mouse button.

=> Press "m" on the keyboard, or select Move from the Edit pull-down menu.

=> Move the cursor to where you want the component to be.

=> Click on the middle mouse button (for a 3-button mouse) or click on the
left mouse button and press "F3" (for a 2-button mouse).

=> Repeat until all components are positioned as shown in Figure 3-50.

Warp User's Guide

Tutorials

~MD

+-

Figure 3-50 Positioned components for PLD schematic design

Warp User's Guide 129

Tutorials

3.24.5 Wiring Components Together

130

Once components are positioned, you must wire them together to make the
circuit.

The final circuit should look like Figure 3-51.

LPLHINT-ARE;,

AIN[3'O]

ADD_SUB I

DATH[3'O] ADD5UB[3'O]

BIN[3'O] RESULT[~ ,
DATAB[3'O] ADDSULCDUT

)
C DU T "AGB[3·0]

AD [J _ 5 U B

HAGQ3'O] FUNCTSEL[Z'O]

LPN_HINT-SPEED ~.; ALB~
~DATH[3~~~:~ " ,. A 0 H;, 6;,[3' Z] 1 l RES U L T[3 • Z

D;'T;'B[3~~J:~ "'b'l
3

~U CU"PA~~EB~ GND

~\
A;,NDB[3'O]

-
A DR B[3 • 0]

)/4
~

A X D RB [3.01

)y.

I NH,[3' 01

"

INVB[3·01

"

Figure 3-51 Final circuit of PLD design

Connecting Two Components

=> Move the cursor to the origin of the net_

0]

=> To create a net: Select Net from the Add pull-down menu in the ViewDraw
menu bar, or type "n" at the keyboard.

Warp User's Guide

Tutorials

=> To create a bus: Select Bus from the Add pull-down menu in the View Draw
menu bar, or type "b" at the keyboard.

=> Specify points along the net/bus by clicking the middle mouse button
(/lF3" if you have a two button mouse).

=> Click the left mouse button once to back up one segment on the net or bus,
twice to back up two segments, etc.

=> To connect the net/bus to a component pin, move the cursor to a point on
the pin and click the middle mouse button ("F3" on a 2-button mouse).

=> To connect the net/bus to another net or bus, move the cursor to a point on
the net or bus and click the middle mouse button ("F3" on a 2-button
mouse).

=> To leave the net/bus dangling, form the net/bus and click the middle and
then the right mouse buttons ("F3" and then the right mouse button on a
2-button mouse).

~----------------
Note - Make sure to connect all input pins on components to
something. View Draw does not allow unconnected inputs.

• If you want to delete a net or a bus, select the net or the bus and type "d"
to delete it.

• If you want to undo anything that you did to your schematic, type in "u."

~-------------------
Note - It is a good practice to save your schematics whenever
possible by typing "w" in your schematic sheet.

For the benefit of users who have not used View Draw before, Section 3.24.7
below, entitled "Detailed Description of Instantiating, Labeling, and Wiring," will
walk you through individual steps involved in creating the final PLD schematic.

Warp User's Guide 131

Tutorials

3.24.6 Labeling Nets and Buses

Once components are positioned on the schematic, you need to label everything.

Labeling the Component Ports

=> Select the net/bus, using the left mouse button.

=> Select Label from the Add pull down menu the View Draw menu bar.

=> Click on the label line of the dialog box.

=> Delete the contents of the label line, if any.

=> Type the new label, e.g., elk. Case doesn't matter; all characters will be
upper-case on the schematic.

=> For buses, you also need to specify the bus width along with its label, e.g.,
data[7:0].

=> Click OK.

=> Move the cursor to where you want the label to appear (i.e., next to the
port it's associated with).

=> Click the middle mouse button to place the label.

=> Repeat until all buses and nets are labeled as in Figure 3-51.

~
Hint - Here's a shortcut method for adding several labels to
input and output ports of a component at once:

• Select a port.

• Select Label from the Add menu.

• Type the names of the ports to be labeled as one comma-separated list.
DO NOT insert spaces after the commas. The string should look like:
labell,labe12,labe13, ••• , •••• , •••

• Click on the OK button. The first label in the list appears.

• Position the label, then click the middle mouse button.

• Click the left mouse button to select the next item to be labeled.

• Press the "I" key on your keyboard to activate the next label.

• Repeat the last three steps for each port to be labeled.

132 Warp User's Guide

Tutorials

For the benefit of people who have not used ViewDraw before, the section below,
"Detailed Description of Instantiating, Labeling, and Wiring," will walk you
through individual steps involved in creating the final schematic.

~----------------
Note - It is a good practice to save your schematics whenever
possible by typing "w" in your schematic sheet.

3.24.7 Detailed Description of Instantiating, Labeling, and Wiring

=> Using a bus connection, connect the output of the adder-subtractor to
input 0 of the 8-to-l mux. Click on a blank area of the schematic with your
left mouse button to deselect everything, and then click on the piece of
the bus you just drew. Since all nets and buses must have labels, you must
now give a label to the bus you just drew. Press "1" on the keyboard, or
choose Label from the Add pull-down menu, and type in addsub [3 : 0] .
This names the bus laddsub[3:0]."

=> Since you're using 4-bit buses, you'll need to use two bus connections in IJ
order to have all six of the comparator outputs available for selection by
the mux. Beginning at input 1 of the mux, draw a bus in an L shape (see
the zoomed-in view of the schematic in Figure 3-52) and terminate it at an
end point by pressing the middle mouse button and then the right mouse
button, or by pressing "F3" and then the right mouse button. Repeat this
free-floating connection beginning at input 2 of the mux and ending, in an
L shape, near the comparators' outputs. Click on a blank area of the
schematic to deselect everything already selected. You again need to label
the two buses you just drew. Clicking on a piece of the bus connected to
mux input 1, press "1" on the keyboard, or choose Label from the Add
pull-down menu, and type in magb [3 : 0] . Again, click on a blank area of
the schematic to deselect everything already selected. Clicking on a piece
of the bus connected to mux input 2, press "1" on the keyboard, or choose
Label from the Add pull-down menu, and type in maga [3 : 0] .

Warp User's Guide 133

Tutorials

134

ALB
AL E B

DATAA[3'2JB

AN E B
DATAB[3'O]

A G B
AGE B f}N D

ADDSUB[3,O]

14

U x

Figure 3-52 Connecting the mux to the comparator

=> You now need to connect the single-bit nets which comprise the
comparators' outputs to the two buses you just drew. Connect the ALB
output of the comparator to the magb [3 : 0] bus. This is done in the same
way as connecting two pins together. Position the mouse pointer so that it
is over the ALB output pin of the comparator, and press lin" on the
keyboard. Move the mouse pointer over the magb [3 : 0] bus and press
the middle mouse button, or "F3" on the keyboard, to make the
connection. Click on a blank area of the schematic to deselect anything
already selected. Then, click on the net you just drew and press "l" on the
keyboard, or choose Label from the Add pull-down menu. Type magbO. By
naming the net magbO, you have assigned this net to be bit 0 of the 4-bit
wide magb bus. You must repeat these steps for the ALEB, AGB, and
AGEB outputs of the comparator.

=> Position the mouse pointer over the ALEB output pin of the comparator,
and press lin" on the keyboard. Move the mouse pointer so that it is over
the magb [3 : 0] bus and press the middle mouse button, or IIF3" on the
keyboard, to make the connection. Click on a blank area of the schematic
to deselect anything already selected. Then, click on the net you just drew
and press Ill" on the keyboard, or choose Label from the Add pull-down
menu. Type magbl.

Warp User's Guide

Tutorials

=> Position the mouse pointer over the AGB output pin of the comparator,
and press "n" on the keyboard. Move your mouse pointer so that it is
over the magb [3 : 0] bus and press the middle mouse button, or "F3" ~n
the keyboard, to make the connection. Click on a blank area of the
schematic to deselect anything already selected. Then, click on the net
you just drew and press "I" on the keyboard, or choose Label from the
Add pull-down menu. Type magb2.

=> Position the mouse pointer over the AGEB output pin of the comparator,
and press "n" on the keyboard. Move your mouse pointer so that it is
over the magb [3 : 0] bus and press the middle mouse button, or "F3" on
the keyboard, to make the connection. Click on a blank area of the
schematic to deselect anything already selected. Then, click on the net
you just drew and press "I" on the keyboard, or choose Label from the
Add pull-down menu. Type magb3.

=> Having made the connections to the bus magb [3 : 0] , you now need to
turn our attention to maga [3 : 0] . Connect the AEB output of the
comparator to the maga [3: 0] bus. Position the mouse pointer so that it
is over the AEB output pin of the comparator, and press "n" on the
keyboard. Move the mouse pointer over the maga [3 : 0] bus and press
the middle mouse button, or "F3" on the keyboard, to make the
connection. Click on a blank area of the schematic to deselect anything
already selected. Then, click on the net you just drew and press "I" on the
keyboard, or choose Label from the Add pull-down menu. Type magaO. By
naming the net magaO, you have assigned this net to be bit 0 of the 4-bit
wide maga bus. You must repeat these steps for the ANEB output of the
comparator.

=> Position the mouse pointer over the ANEB output pin of the comparator,
and press "n" on the keyboard. Move your mouse pointer so that it is
over the maga [3 : 0] bus and press the middle mouse button, or "F3" on
the keyboard, to make the connection. Click on a blank area of the
schematic to deselect anything already selected. Then, click on the net
you just drew and press "1" on the keyboard, or choose Label from the
Add pull-down menu. Type maga1.

=> You have connected the two remaining outputs of the comparator, but the
maga [3 : 0] bus still has two unused bits. You will connect these last two
bits to ground. The ground component should be placed close to the
mag-a [3 : 0] bus, since that is where you will use it. You make the
connection between the ground component and the mag-a [3 : 0] bus by
positioning the mouse pointer over the pin of the ground component.

Warp User's Guide 135

Tutorials

-

-

136

Then, press lib" on the keyboard. Move the mouse pointer so that it is
over the maga [3 : 0] bus and press the middle mouse button, or "F3" on
the keyboard, to make the connection. Click on a blank area of the
schematic to deselect anything already selected. Then, click on the bus
you just drew and press "l" on the keyboard, or choose Label from the
Add pull-down menu. Type maga [3 : 2] . This assigns the two most
significant bits of the maga bus to ground.

MAG8[3,O]

MAGA[3,O]

>P-

A L 8 MAG 80
Is - 3 AL E 8

DATAA[3'O] M A b I:t 1 1 --
A E 8 MAG A 0 MAGA[3,2]

2
AN E 8 MAG A 1 -3

DATA8[3,O] MAG 82 14 -
1\ G B -4

AGE 8
M 1\ b I:t j N D -5

l.UMt'AH~
-6
-~x

Figure 3-53 Connection the comparators to the mux

=> You will now make the five remaining connections to the 8-to-l mux
(Figure 3-54). Using a bus connection, connect the output of the AND gate
to input 3 of the 8-to-l mux. Click on a blank area of the schematic to
deselect everything, and then click on a piece of the bus you just drew.
Press "l" on the keyboard, or choose Label from the Add pull-down
menu, and type in AandB [3 : 0] . Connect the output of the OR gate, XOR
gate, and the two inverters in the same way. The output of the OR gate
should be connected to input 4 of the 8-to-l mux; the output of the XOR
gate should be connected to input 5 of the 8-to-l mux; the output of the
first inverter gate, the inverse of A, should be connected to input 6 of the
8-to-l mux; finally, the output of the second inverter gate, the inverse of
B, should be connected to input 7 of the 8-to-l mux.

Warp User's Guide

/4

14

j~

-V

/ "

I

AANDB[3'O]

IIDRB[3'O]

IIXDRB[3'O]

INVI\[3'O]

INVB[3'O]

Figure 3-54 Connecting the mux to
AND, OR, XOR, and inverters

Tutorials

I L _T5 - 3 ---1
~
3

/ " r-4

~~
~UX

=> The next components you will connect are the 4-bit-wide input pins for the
operands, A and B. Position the mouse pointer over the input pin which
will be used for operand A, and then press lib" on the keyboard. Make the
bus long enough so that you will be able to connect the input of the
inverter gate to this bus. Click the middle mouse button and then the
right mouse button, or, if you're using a 2-button mouse, press "F3" and
then the right mouse button, to make the free-floating connection. Now
position the mouse pointer over the input pin which will be used for
operand B, and press lib" on the keyboard. Make the bus long enough so
that you will be able to connect the input of the inverter gate to this bus
also. Click the middle mouse button and then the right mouse button, or,
if you're using a 2-button mouse, press "F3" and then the right mouse
button, to make the free-floating connection.

Warp User's Guide 137

Tutorials

138

=> The convention used in this tutorial is to assign the A input to the upper
input, and the B input to the lower of the two inputs to the components
instantiated. Position the mouse pointer over the A, upper, input of the
adder-subtractor. Press lib" on the keyboard and move the mouse pointer
such that it is on top of the bus you just drew for the A operand input.
Click the middle mouse button, or press "1'3," to make the connection
between the upper input of the adder-subtractor and the A-input bus.
Now you must connect the lower input of the adder-subtractor to the B
input bus. Position the mouse pointer over B, the lower input of the
adder-subtractor. Press lib" on the keyboard and move the mouse pointer
so that it is on top of the bus you just drew for the B operand input. Click
the middle mouse button, or press "1'3," to make the connection between
the lower input of the adder-subtractor and the B-input bus.

=> Repeat these steps for each of the remaining components: comparator,
AND gate, OR gate, and XOR gate. The inverters have only one input
each. Therefore, one of the inverters should have its input connected to
the operand A bus, and the other should have its input connected to the
operand B bus. Look at Figure 3-55 for a zoomed-in view of what the A
and B input buses should look like after making the connections. If you
made the A and B input buses too long, so that now they have pieces
beyond the inputs to the inverters, click on the overhanging piece. Press
lid" on the keyboard, or choose Delete from the Edit pull-down menu, to
delete these unused pieces. Repeat this step for the other bus if necessary.

Warp User's Guide

AIN[3'O]
~

BIN[3'O]
I~

Warp User's Guide

OATAA[3'O]

RESULT[3,O]

OATAB[3'O]

--------COUT
ADD_SUB

LPM_HINT-SPEEO

ALB
ALEB

OATAA[3'O]
A E B

ANEB
OATAB[3'O]

AGB
AGE B

COMPARE

114)
~

) 1 4

)B

I ~
J'.

I ~

Figure 3-55 Connecting
the A and B input buses

Tutorials

--
A 0 [

MAGBO

MAGBl

MAGBe

MAG B j

139

Tutorials

140

=> You'll connect the 3-bit input port to the select lines of the mux with a bus
and label the bus now. Position the mouse pointer over the input pin
component, and press lib" on the keyboard. Move your mouse pointer so
that it is over the select lines of the 8-to-l mux, and press the middle
mouse button, or "F3" on the keyboard, to make the connection. Click on
a blank area of the schematic to deselect anything already selected. Then,
click on the bus you just drew and press "l" on the keyboard, or choose
Label from the Add pull-down menu. Type functse1 [2 : 0] .

=> You now have to connect the 4-bit output pin to the output of the 8-to-l
mux. Position the mouse pointer over the output pin, and press lib" on
the keyboard. Move the mouse pointer so that it is over the output bus of
the 8-to-l mux. Press the middle mouse button, or "F3" on the keyboard,
to make the connection. Click on a blank area of the schematic to deselect
anything already selected. Then, click on the bus you just drew and press
"l" on the keyboard, or choose Label from the Add pull-down menu. Type
result [3: 0].

FUNCTSEL[2 0]

5 = 3

RESULT[3: 0]

/ 4

Figure 3-56 Connecting the mux
to input and output ports

Warp User's Guide

Tutorials

=> You need to connect the I-bit input port to the ADD_SUB select pin in the
Madd_sub component. Position the mouse pointer over the input pin,
and press "n" on the keyboard. Move the mouse pointer so that it is over
the add/ subtract input signal of the adder-subtractor. Press the middle
mouse button, or "F3" on the keyboard, to make the connection. Click on
a blank area of the schematic to deselect anything already selected. Then,
click on the net you just drew and press "I" on the keyboard, or choose
Label from the Add pull-down menu. Type add_sub_sel.

=> You need to connect the cou t output from the Madd_sub component to a
I-bit output port. Position the mouse pointer over the output pin
component and press "n" on the keyboard. Move your mouse pointer so
that it is over the c ou t signal of the Madd_sub component, and press the
middle mouse button, or "F3" on the keyboard, to make the connection.
Click on a blank area of the schematic to deselect anything already
selected. Then, click on the net you just drew and press "I" on the
keyboard, or choose Label from the Add pull-down menu. Type
addsub_cou~.

o J~

Figure 3-57 Connecting the Add-sub component

Now verify that your schematic matches up with Figure 3-51.

Warp User's Guide 141

Tutorials

3.24.8 Saving the Schematic

142

Once all the components are positioned, labeled, and connected, save the
schematic.

=> Select Write from the File pull-down menu in the ViewDraw menu bar, or
type "W" at the keyboard.

ViewDraw saves the schematic and warns you about
unconnected pins, unlabeled ports, and other potential problems.

Actually, it's a good idea to save or write the file frequently while drawing a
schematic. You can do this by typing a "W" in the schematic window. Just ignore
ViewDraw's warning messages until you think you're finished. Then, an error
message could be telling you that you aren't finished yet.

~
Hint - If View Draw gives you an error message when you write a
file, you probably forgot to connect or label something. It will
also flag a warning if your input/output port sizes do not match
the widths of the net/bus connected to them. All internal buses
must also be labeled.

If ViewDraw produces any error messages at this stage, go back and make sure
that:

• All component pins are connected to something.

• All input and output ports are labeled.

• All nets are wired so that the schematic looks exactly like Figure 3-51.

If no error messages appear, you're finished with the schematic.

Warp User's Guide

Tutorials

3.25 Generating a Symbol from the Schematic

3.26

Once the final changes to the PLD schematic are complete, the next step is to
create a symbol that can be instantiated onto a higher-level schematic.

=> To create the symbol, select Schematic to Symbol under the Cypress menu.

A 'Schematic to Symbol' pop-up window appears with the inputs
listed on the left and the outputs on the right.

=> Click on Accept.

=> When the message in the left-hand corner of the ViewDraw window reads
"symbol:PLD.l is created successfully," the application is complete.

If errors were reported, go back and carefully edit the schematic.
Make sure that the schematic matches exactly as shown in
Figure 3-51.

Writing the VHDL File

View Text is Workview PLUS's (and Powerview's) ASCII text editor.

You'll use View Text to create the VHDL description for cntrl.vhd. You'll convert
this description into a symbol, which you'll then instantiate onto a top-level
circuit.

=> To start ViewText, select Edit text file ... from the Red Square menu in the
View Draw window.

~-----------------
Note - If you are using ViewDraw on an IBM PC or compatible
computer: the View Text text editor is not available from the Red
Square in the Cockpit. It's only available from the Red Square
menu in View Draw or ViewSim or other tools contained in the
Cockpit. Make sure you pull down the Red Square menu from the
View Draw window.

The View Text dialog box appears.

=> Type cntrl . vhd on the line labeled File Name, then click OK.

The ViewText window appears. Now you can start entering the
text of the cntrl. vhd file.

Warp User's Guide 143

Tutorials

3.26.1

144

You will now build a controller for the PLD circuit that you created earlier in this
tutorial. You will write a simple ALU controller in VHDL.

The cntrl VHDL description will be written in three parts:

• the entity declaration declares the name, direction, and data type of each
port of the component

• the architecture describes the behavior of the component

• the package declaration provides the information to the Warp compiler to
allow cntrl to be used as a component in a schematic

The following pages discusses the contents of each of these sections of the VHDL
description.

~-----------------
Note - If you would rather not type in the cntrl. vhd file, you can
copy it from the Warp directory. The default location for the
cntrl.vhd file is c:\warp\examples\wtutor\alu\cntrl.vhd. From
here, copy cntrl.vhd to your project directory. Copy this file to
directory c: \ w2tutor\alu. Then, read along for the next few
pages to help you understand the purpose of each section of a
VHDL source file.

Writing the Entity Declaration

The entity declaration declares the name, direction, and data type of each port of
the component.

=> Copy the following lines into your ViewText text editor:
entity cntrl is port (

instr: in
functionsel: out
addsubsel : ou t

end cntrl;

std_logic_vector(3 downto 0);
std_logic_vector(2 downto 0);
std_logic);

All signals declared in the entity are of type std_logic.

The signal instr is 4-bits wide and is used to determine the logic function to be
performed by the ALU.

The signal func t ionsel is 3-bits wide and is used to drive the select lines of the
8-to-1 mux described in the schematic earlier.

The signal addsubsel is I-bit wide and determines if the Madd_sub component
instantiated in the schematic earlier, performs an addition or a subtraction.

Warp User's Guide

Tutorials

3.26.2 Writing the Architecture

The architecture portion of a VHDL description describes the behavior of the
component. The architecture appears after the entity declaration in the .vhd file.

=> Copy the following lines into your VHDL text editor below your entity
declaration:

architecture archcntrl of cntrl is

begin

control: process (instr)
begin

case instr is
when x"O" =>

functionsel <= b"OOO";
-- select the output of the adder/subtractor

addsubsel <= '1'; -- A + B
when x"l" =>

functionsel <= b"OOO";
-- select the output of the adder/subtractor

addsubsel <= '0'; -- A - B
when x"2" =>

functionsel
-- select magb[3:0] = [A>=B

addsubsel
when x"3" =>

functionsel
-- select maga[3:0] = [0 0

addsubsel
when x"4" =>

functionsel
-- select the output of A and

addsubsel
when x"S" =>

functionsel
-- select the output of A or B

addsubsel
when x"6" =>

functionsel
-- select the output of Axor

addsubsel
when x"7" =>

functionsel

Warp User's Guide

<=

<=

<=

<=

<=
B

<=

<=

<=

<=
B

<=

<=

h"OOl";
A>B A<=B

I _ I • ,

b"010";
A/=B A=B]

• - I • ,

b"Oll";

I _ I • ,

b"100" ;

· -' . ,

b"101";

· - .. ,
b"110";

A<B]

145

Tutorials

-- select the output of the inverse of A
addsubsel <= I_I;

when XIISII =>
functionsel <= b l lll";

-- select the output of the inverse of B
addsubsel <= I_I;

when others =>
-- to cover all the other possibilities

functionsel <= " ___ ";
addsubsel <= I_I;

end case;
end process control;

end archcntrl;

In the architecture definition above, the first line declares an architecture named
arehentrl of entity entrl. You use a CASE-WHEN statement to define the
logic for the signals funetionsel and addsel, based on the values assumed
by instr.

The IEEE 1164 VHDL standard allows you to assign '-' (don't care) values as
genuine output assignments. Warp will use these don't care conditions in doing
logic optimization.

The result of every value assumed by ins tr results in a particular assignment to
the select lines of the mux and the add_sub select line for the Madd_sub
component.

3.26.3 Writing the Package Declaration

146

The package declaration provides the information to the Warp compiler to allow
en trl to be used as a component in a schematic. The package declaration must
appear before the entity declaration or architecture in the .vhd file.

=> Copy the lines below into your VHDL text editor above the entity and
architecture declarations.

package cntrlpkg is
component cntrl

instr:
functionsel:
addsubsel:

end component;
end cntrlpkg;

port
in
out
out

std_logic_vector(3 downto 0);
std_logic_vector(2 downto 0);
std_logic);

Warp User's Guide

Tutorials

The first line declares the name of the package. The name of the package must be
distinct from the name of any component declared within that package. Using the
convention <enti ty>pkg works nicely.

The second line declares a component named cntrl. The component name that
appears on this line must match the name of an accompanying entity.

The port statement declares the name, direction, and type of each port in the
component. You can copy the port statement from the entity declaration for this
purpose.

An end component and end cntrlpkg statement conclude the package
declaration. Note that the package named in the end package statement must
match that shown in the first line of the package declaration.

3.26.4 Including Libraries

=> Insert the following two lines of VHDL code before the package
declaration and before the entity declaration:

library ieee;
use ieee.std_logic_1164.all;

These two lines advise the compiler to link to the IEEE VHDL library. The
compiler finds definitions for the various types, modes, and VHDL constructs
defined in the user's VHDL code. In general, the library and use VHDL
reserved words instruct the compiler to include pre-defined libraries and user
created VHDL files, when compiling the selected VHDL code. For more
information on the std_logic_1164 and std_ari th packages, see Chapter 4,
"VHDL," in the Reference Manual.

=> Save the file as c:\w2tutor\alu\cntrl.vhd and close the ViewText
window.

=> Minimize the View Draw window also.

Warp User's Guide 147

Tutorials

3.27 Verifying the VHDL File

At this point in the tutorial, you'll use Warp to verify that the cntrl. vhd file is
syntactically correct. This step is strictly necessary for this tutorial since we are
going to create a schematic symbol from this VHDL file. The Warp3 system
requires the user to compile any VHDL file before creating a schematic symbol
from it. It's always a good idea, anyway, to compile any VHDL description once
you've completed it. That way, you can spot problems in your VHDL description
when they are easiest to identify and correct. Later, should you encounter
problems with the larger circuit, you can at least be assured that you have taken
care of any bugs at the lower levels of the hierarchy.

3.27.1 Starting Galaxy

D 3.27.2

148

Galaxy is the user interface for the Warp VHDL synthesis compiler.

=> To start Galaxy, double-click on the Warp icon in the Cockpit.

The Galaxy window appears.

Compiling the VHDL File

=> Select Add from the Files pull-down menu in the Galaxy window.

This dialog box lists the VHDL files available in the current
directory on the left side, and the VHDL files selected for
compilation/ synthesis on the right side.

=> To select the cntrl.vhd file for compilation, select cntrl.vhd from the list of
files on the left-hand side, then click on the "-->" button. Click on OK to
close this dialog box.

=> In the main Galaxy window, click on the Selected button in the Compile
button group. Ensure that cntrl. vhd is not selected as the Top Design in the
left-hand bottom corner of the Galaxy window ..

Warp runs, printing messages to keep you appraised of its
progress. The compilation process should run to completion,
without any error messages.

=> If the compilation is successful, close the Galaxy window by clicking on
the close box and then clicking OK.

Warp User's Guide

Tutorials

~-----------------
Note - If you do get error messages, check to make sure that the
various parts of the cntrl.vhd file read exactly as they are listed
on the preceding pages. Better yet, copy the cntrl. vhd file from
the c:\warp\examples\wtutor\alu directory, then run Warp again.

3.28 Generating a Symbol for the VHDL File

Once the control VHDL description is written and compiled without errors, the
next step is to create a control symbol that can be instantiated onto a schematic.

=> To create the symbol, first restore your ViewDraw window or open a new
one if it is not already running by double-clicking on the ViewDraw icon
in the Cockpit.

=> In View Draw, choose VHDL To Symbol from the Cypress pull-down menu

=> Type cntrl in the VHDL Source Filename field

=> Then click OK in the ensuing dialog box.

This runs the "vhdI2sym" application. When the left-hand comer
in the ViewDraw window reads "symbol created" the application
is complete.

If no errors were reported, go on to the next step of the tutorial.

If errors were reported, go back and carefully edit the cntrl. vhd file. Make sure
that its three parts--the package declaration, entity declaration, and architecture-
read exactly as shown in the earlier sections. Also make sure that the VHDL file
compiled successfully.

Warp User's Guide 149

Tutorials

3.29 Creating a Top-Level Schematic

3.29.1

150

In this section of the tutorial, you'll use the symbols created for en t r 1 and p 1 d
in the preceding sections in a top-level schematic.

If View Draw is already running, skip the first step.

=> Double-click on the ViewDraw icon from within the Cockpit.

=> Select File->Open from your View Draw menu bar.

The View Draw File->Open dialog box appears.

=> Type top_alu on the Enter name: line in the dialog box, then click OK.

A new blank schematic sheet appears.

=> Now bring your PLD schematic window, if it is still open, to the
foreground once again, and select Dismiss Window from the Red Square
menu to close the PLD schematic window.

You should now have a single View Draw schematic window
open. This window should be blank and it should be called
top_alu.

Instantiating a Component

The process of calling up a component from a library and placing it on a
schematic sheet is called "instantiating" a component. Components to be
instantiated include: entrl (underlying VHDL code for ALU controller), pld
(ALU schematic built using LPM elements), three IN ports, and two OUT ports.

=> Press "i," or choose Comp from the Add pull-down menu in ViewDraw,
and click on the button displaying the project directory,
e: \w2tutor\alu.

The upper half of this dialog box should then include pld and
entrl components.

=> Click on the pld component, and move the mouse pointer into the
schematic window. Click on the middle mouse button to place the
component in the schematic. Repeat the same steps to place the control
unit's symbol in the schematic.

=> Click on Cancel when both symbols have been instantiated in your
schematic window.

Warp User's Guide

Tutorials

=> Now Select LPM Symbol from the Add pull-down menu in the View Draw
menu bar and create three 4-bit IN ports, a I-bit OUT port and a 4-bit
OUT port.

You now have three input ports: ins tr, A, and B, and two
output ports: answer and COll t, to be defined in the top-level
schematic.

When you are finished, the sheet should resemble Figure 3-58.

1M 9T R[3 oD 1 fUMCTJDM9£UhDl
ADD 9U B9El

ULSUL9El

HH~:il mmdm
fU He T9El[1, D 1

Figure 3-58 top_alu schematic with components positioned

=> At this point, you can close this dialog box by clicking Cancel.

For those users who are new to ViewDraw, a step-by-step description of
component instantiation, labeling, and wiring will be given in Section 3.29.5
below entitled, "Detailed Description of Instantiating, Labeling, and Wiring."

3.29.2 Positioning Components

Once the components are instantiated on the schematic sheet, you should position
them to enhance the readability and ease-of-wiring of the schematic.

IH9T!UCTIDM[~'DJ

IN 9T H[3, D J fU NC TI Un! ~~ i; Uj-=~~~~~~~~_.::..:U-.:..:i !~e I~d:..:..~ ~:.Jll--==:--->

Figure 3-59 top_alu schematic design

Warp User's Guide 151

Tutorials

You'll want to position the cntlr and pld symbols in the center of the schematic,
the input ports on the left side of the schematic and the output ports on the right.
This format will allow you to see the logic flow within the circuit.

=> Select a component using the left mouse button.

=> Press "m" on the keyboard, or select Move from the Edit pull-down menu.

=> Move the cursor to where you want the component to be.

=> Click on the middle mouse button (for a 3-button mouse) or click on the
left mouse button and press "F3" (for a 2-button mouse).

=> Repeat until all components are positioned properly.

3.29.3 Wiring Components Together

152

Once components are positioned and labeled, you must wire them together to
make the circuit.

The final circuit should look like Figure 3-59.

Connecting Two Components

=> Move the cursor to the origin of the net.

=> To create a net: Select Net from the Add pull-down menu in the ViewDraw
menu bar, or type lin" at the keyboard.

=> To create a bus: Select Bus from the Add pull-down menu in the View Draw
menu bar, or type lib" at the keyboard.

=> Specify points along the net/bus by clicking the middle mouse button
("F3" if you have a two button mouse).

=> Click the left mouse button once to back up one segment on the net, twice
to back up two segments, etc.

=> To connect the net/bus to a component pin, move the cursor to a point on
the pin and click the middle mouse button ("F3" on a 2-button mouse).

Warp User's Guide

Tutorials

=> To connect the net/bus to another net or bus, move the cursor to a point
on the net or bus and click the middle mouse button ("F3" on a 2-button
mouse).

=> To leave the net/bus dangling, form the net/bus and click the middle and
then the right mouse buttons ("F3" and then the right mouse button on a
2-button mouse).

~-----------------
Note - Make sure to connect all input pins on components to
something. ViewDraw does not allow unconnected inputs.

• If you want to delete a net or a bus, select the net or the bus and type lid"
to delete it.

• If you want to undo anything that you did to your schematic, press "U."

~----------------
Note - It is a good practice to save your schematics whenever
possible by typing "W" in your schematic sheet.

For the benefit of users who have not used View Draw before, the section below
entitled, "Detailed Description of Instantiating, Labeling, and Wiring," will walk
you through individual steps involved in creating the final top_a 1 u schematic.

3.29.4 Labeling Nets and Buses

Once components are positioned on the schematic, you need to label the nets. The
top_al u schematic should look like Figure 3-59.

Labeling the Component Ports

=> Select the net/bus, using the left mouse button.

=> Select Label from the Add pull down menu the View Draw menu bar, or
type "l" on the keyboard.

=> Click on the label line of the dialog box.

=> Delete the contents of the label line, if any.

=> Type the new label, e.g., elk. Case doesn't matter; all characters will be
upper-case on the schematic.

Warp User's Guide 153

Tutorials

154

=> For buses, you also need to specify the bus width along with its label, e.g.,
data[7:0].

=> Click OK.

=> Move the cursor to where you want the label to appear (i.e., next to the
port its associated with).

=> Click the middle mouse button to place the label.

=> Repeat until all buses and nets are labeled as in Figure 3-59.

~
Hint - Here's a shortcut method for adding several labels to
input and output ports of a component at once:

• Select a port.

• Select Label from the Add menu.

• Type the names of the ports to be labeled as one comma-separated list.
DO NOT insert spaces after the commas. The string should look like:
labell,labe12,labe13, ... , , ...

• Click on the OK button. The first label in the list appears.

• Position the label, then click the middle mouse button.

• Click the left mouse button to select the next item to be labeled.

• Press the "l" key on your keyboard to activate the next label.

• Repeat the last three steps for each port to be labeled.

For the benefit of people who have not used ViewDraw before, the section below
will walk you through individual steps involved in creating the final schematic.

~----------------
Note - It is a good practice to save your schematics whenever
possible by typing "W" in your schematic sheet.

Warp User's Guide

Tutorials

3.29.5 Detailed Description of Instantiating, Labeling, and Wiring

=> Press "i" or choose Comp from the Add pull-down menu in ViewDraw,
and click on the button displaying the project directory, c:\w2tutor\alu.
The upper half of this dialog box should then include pld and cntrl
components. Click on the pld component, and move the mouse pointer
into the schematic window. Click on the middle mouse button to place
the component in the schematic. Repeat the same steps to place the
control unit's symbol in the schematic.

=> You'll begin by instantiating the 4-bit output. Select LPM Symbol from the
Add pull-down menu in the ViewDraw menu bar. Click on the OUT
component button. The dialog box that appears contains one parameter,
the bus width of the output. Enter 4 in the width field. Click on the OK
button and move the mouse pointer into the schematic window. Press the
middle mouse button to place the component in the schematic. Place this
output pin component near the resul t [3: 0] output of the pld symbol.
Position the mouse pointer over the output pin component you just
created, and press "b" on the keyboard. Move the mouse pointer so that it
is over the result [3: 0] output pin of the pld symbol, and press the
middle mouse button to make the connection. Click on a blank area of the
schematic to deselect anything already selected. Then, click on the bus
you just drew and press "I" on the keyboard, or choose Label from the
Add pull-down menu. Type answer [3 : 0] .

=> Now, you must create a single-bit output pin for COll t. Select LPM Symbol
from the Add pull-down menu in the ViewDraw menu bar. Click on the
OUT component button. The dialog box that appears contains one
parameter, the bus width of the output. Enter 1 in the width field. Click
on the OK button and move the mouse pointer into the schematic
window. Press the middle mouse button to place the component in the
schematic. Place this output pin component near the COUT output of the
pld component. Position the mouse pointer over the output pin
component you just created, and press "n" on the keyboard. Move the
mouse pointer such that it is over the ADDSUB_COUT output pin of pld,
and press the middle mouse button to make the connection. Click on a
blank area of the schematic to deselect anything already selected. Then
click on the bus you just drew and press "1" on the keyboard, or choose
Label from the Add pull-down menu. Type cou t.

Warp User's Guide 155

Tutorials

156

=> You now have to add three 4-bit-wide input pins into the top-level
schematic. Select LPM Symbol from the Add pull-down menu in the
View Draw menu bar. Click on the IN component button. The dialog box
that appears contains one parameter, the bus width of the input. Enter 4
in the width field. Click on the OK button and move the mouse pointer
into the schematic window. Press the middle mouse button to place the
component in the schematic. Place the input pin component near the
instr [3 : 0] input of the en t r 1 unit. Position the mouse pointer over
the input pin component you just created, and press "b" on the keyboard.
Move the mouse pointer such that it is over the instr [3 : 0] input of the
en t r 1 unit, and press the middle mouse button to make the connection.
Click on a blank area of the schematic to deselect anything already
selected. Then, click on the bus you just drew and press "1" on the
keyboard, or choose Label from the Add pull-down menu. Type
instruetion[3:0].

=> You can copy the existing 4-bit input pin to create the two 4-bit input pins
you need for the operands, A and B. Click on the output pin component
you just instantiated. A white box should appear surrounding the
component telling you that you have selected the component. Press "e"
on the keyboard, or choose Copy from the Edit pull-down menu, to make
another instance of this 4-bit-wide input pin. Move the new instance over
to the pI d symbol so that you can easily connect the input pin to the
AIN [3 : 0] input. Press the middle mouse button to place the output pin
component. Click on a blank area of the schematic to deselect anything
that had been selected. Position the mouse pointer over the input pin, and
press "b" on the keyboard. Move mouse pointer such that it is over the
AIN [3 : 0] input of the pI d. Press the middle mouse button to make the
connection. Click on a blank area of the schematic to deselect anything
already selected. Then click on the bus you just drew and press "1" on the
keyboard, or choose Label from the Add pull-down menu. Type A [3 : 0] .

=> You repeat these steps to create the B input pin. Move your mouse pointer
such that it is over the BIN [3: 0] input of pld. Press the middle mouse
button to make the connection. Click on a blank area of the schematic to
deselect anything already selected. Then, click on the bus you just drew
and press "1" on the keyboard, or choose Label from the Add pull-down
menu. Type B [3: 0].

Warp User's Guide

Tutorials

=> You have now added all of the input and output pins needed in the top
level. All that remains is to make the internal connections between the
en trl units' outputs, and the pld's inputs. You'll begin with the 3-bit
bus used to select a signal in the 8-to-l mux contained within the pld
schematic. Position the mouse pointer over the functionsel [2: 0]
output pin of the control unit, and press "b" on the keyboard. Move the
mouse pointer such that it is over the function [2: 0] input of pld.
Press the middle mouse button to make the connection. Click on a blank
area of the schematic to deselect anything already selected. Then click on
the bus you just drew and press "1" on the keyboard, or choose Label
from the Add pull-down menu. Type function_sel [2: 0].

=> The final connection you need to make in the top-level schematic is to the
pld component, the signal which tells the adder-subtractor whether to
perform A + B or A-B. Position the mouse pointer over the addsubsel
output pin of the control unit, and press "n" on the keyboard. Move
mouse pointer such that it is over the add_sub_sel input of the pld
component. Press the middle mouse button, to make the connection.
Click on a blank area of the schematic to deselect anything already
selected. Then, click on the net you just drew and press "1" on the
keyboard, or choose Label from the Add pull-down menu. Type
addsub_sel.

=> When this step is completed, the top_al u schematic should look like
Figure 3-59.

3.29.6 Saving the Schematic

Once all the components are positioned, labeled, and connected, save the
top_alu schematic.

=> Select Write from the File pull-down menu in the ViewDraw menu bar.

View Draw saves the schematic and warns you about
unconnected pins, unlabeled ports, and other potential problems.

Actually, it's a good idea to write the file frequently while drawing a schematic.
Just ignore ViewDraw's warning messages until you think you're finished. Then,
an error message could be telling you that you aren't finished yet.

Warp User's Guide 157

Tutorials

Hint - If View Draw gives you an error message when you write a
file, you probably forgot to connect or label something.

If ViewDraw produces any error messages at this stage, go back and make sure
that:

• all component pins are connected to something

• all input and output ports are labeled

• all nets are wired so that the schematic looks exactly like Figure 3-59

If no error messages appear, you're finished with the top_alu schematic.

3.30 Exporting the Top-Level Schematic

158

You need to convert this top-level, mixed mode hierarchical design into an IEEE
compliant VHDL file. This file is the input to the Warp compiler.

=> After saving the file, within View Draw choose Export to VHDL from the
Cypress pull-down menu of the top_al u schematic window.

=> Choose type to be std_Iogic.

This menu option takes the top_al u schematic and generates
VHDL code which you can synthesize using Warp.

A window appears, informing you of the progress of the
application. When the banner on this window reads "0 errors and
o warnings," the application is complete.

=> Close the application window. After the export process is complete, close
all open Warp3 windows, except for the Cockpit, NSD and STDIO
windows.

Warp User's Guide

Tutorials

3.31 Compiling and Synthesizing the Top-Level Schematic

=> Following the steps illustrated in Sections 3.18.5 to 3.18.9, run Warp to
produce a QDIF file for a specific target device (in this case, a CY7C382A).

=> Choose the default options in Galaxy to compile top_alu.vhd.

This operation generates two files of particular interest (among
others):

• The first is named top_alu.qdf. The .qdf file is used as an input into the
SpDE toolkit. The .qdf file is the input file for the SpDE toolkit. SpDE will
then place and route the design and can produce a .I of file, which can be
used to program a device.

• The second file is named top_alu.rpt. It contains information about the
final synthesized design. You can see the .rpt file by pulling down the Info
menu from the Galaxy window and clicking on Report. For more
information on what is contained in a report file, refer to Chapter 6,
"Report File," in the Reference Manual.

=> Once you have compiled and synthesized this design into a pASIC380
FPGA device, you can quit the Galaxy window. (Choose Quit from the
Project menu.)

~-----------------
Note - If compilation errors occur, do the following: make sure
the text of your file is entered exactly as shown earlier in this sec
tion -- or better yet, copy it from the c: \ warp \examples \ wtu
tor\alu directory -- and then run Warp again.

3.32 Placing and Routing the Design

If you targeted a pASIC380 device when synthesizing your design via Warp, you
must process the resulting .qdf file with the SpDE toolkit in order to place and
route the design into the chosen device.

To launch SpDE, double-click on the Place&Rte icon in the Cockpit.

=> Click on OK in the ensuing dialog box.

The SpDE window appears.

Warp User's Guide 159

Tutorials

160

=> Click on the folder button located in the upper left portion of the SpDE
window. This is equivalent to selecting File->Import->QDIF.

An open-file window appears listing your directory structure on
the right and the .qdf files on the left.

=> Go to your project directory if you are not already there.

=> Highlight top_alu.qdfby clicking on it.

=> Click on the OK button to import the file.

After importing the file, the hammer button will now be selectable
(it was not available before loading the QDIF file).

=> Click on the hammer button in the SpDE window.

A window will appear containing all the tools you can run. The
window appears with all of them selected.

=> Click on the Run button to begin the place and route process.

The place and route process will take a couple of minutes to
complete. Upon completion, a window will appear stating" All
chosen SpDE tools ran successfully."

=> Click on the OK button to close the above message window.

Warp User's Guide

Tutorials

00 00 00 00 00 00 00

Figure 3-60 SpDE output for top_alu.qdf

=> Select File->Save from the SpDE menu bar, save your changes, and then
File-> Exit to exit.

Refer to Chapter 5, "SpDE," in this User's Guide for more detailed information
about the SpDE toolkit.

Warp User's Guide 161

Tutorials

3.33 Simulating the Behavior of the Design with ViewSim

Once the design is synthesized, you should simulate its behavior and evaluate its
timing performance to ensure that it functions as intended.

You'll use the ViewSim simulator to test the behavior and timing requirements of
the design implementation. In this tutorial, you'll perform the following steps:

• create a ViewSim model

• start ViewSim

• set the values of the stimulus signals in the simulation

• simulate the design

• examine the results to figure out what happened

3.33.1 Running pASIC->VSim

162

=> To generate a ViewSim model from the output of the SpDE tools, double
click on the pASIC-> VSim icon in the Cockpit.

=> A dialog box appears, containing a command line to be executed. Make
the command line read top_alu, then click on OK.

A window appears, informing you of the progress of the
application. When the banner of this window reads inactive
"pASIC-> V5im," the application is complete.

~----------------
Note - Verify that your current project directory is set to
c: \ w2tutor \alu. Ignore the messages at the bottom of the window.
If the application reports 0 errors and 0 warnings in the sixth text
line from the bottom, the application ran successfully.

=> Close the pASIC->VSim window.

Warp User's Guide

Tutorials

3.33.2 Running ViewSim

Once the design is synthesized, it's a good idea to simulate its behavior and
evaluate its timing performance to ensure that it functions as intended.

~-----------------
Note - Before performing this step of the tutorial, copy the
total.cmd file from the Warp directory (its default location is
c:\warp\examples\wtutor\alu\top_alu.cmd) to your project direc
tory.

=> To simulate the behavior of the design, double-click on the ViewSim icon in
the Cockpit.

A dialog box appears.

=> Make sure the design name reads top_alu, then click on OK.

View5im starts up.

=> When the View5im window appears ('51M>'), type top_alu at the
command line.

The top_alu.cmd file runs, executing the following sequence of
View5im commands (not necessarily echoed to the screen):

restart
stepsize 25ns
vector instr instruction[3:0]
vector answer answer[3:0]
vector a a[3:0]
vector b b[3:0]
wave top_alu.wfm instr a b answer cout

assign a 9\h
assign b 5\h
assign instr O\h

cycle 5

assign instr l\h

cycle 5

assign instr 2\h

Warp User's Guide 163

Tutorials

cycle 5

assign instr 3\h

cycle 5

assign instr 4\h

cycle 5

assign instr 5\h

cycle 5

assign instr 6\h

cycle 5

assign instr 7\h

cycle 5

assign instr 8\h

cycle 5

The commands beginning with "a" are vector assignments: I'm assigning a value
to a predefined vector. The backslash h, "\h," tells ViewSim that the value is in
hexadecimal format. The cycle 5 statements advance the simulation time by 5
simulation cycles. Please see the ViewSim Reference Manual in the Design Entry
and Digital Simulation Solutions collection within the Viewlogic on-line
documentation set for more details on these commands.

• The sequence of instructions is add, subtract, magnitude compare,
equality compare, and, or, xor, inverse of A, and inverse of B.

• The simulation begins by assigning 9\h to signal A, 5\h to signal B, and
O\h to instr. Since instruction 0 is addition, you should see E\h on the
answer bus with a Cout of o. After the cycle 5 statement, you see that
the answer bus does contain the value E\h.

164 Warp User's Guide

Tutorials

• Before the next simulation cycle, the instruction is changed to subtraction
by assigning 1 \h to the instr signal. The design should perform 9\h -
5\h = 3 \h. You then cycle the simulator and see that the answer bus
now contains the value 3 \h. The result is 3 \h because of the way the
LPM subtractor is defined. Our implementation uses a default borrow-in
of 'I' for subtraction operations, and a carry-in of '0' for addition
operations.

• The instruction bus, signal instr, is now changed to 2 \h. This should
allow you to view the magnitude comparison outputs of the comparator:
greater than or equal, greater than, less than or equal, and less than. Since
A > S, the most significant bit and the second most significant bit of this
bus should be a logic high. Thus, you should see C\h on the answer bus.
After the cycle 5 statement, you see the bus change to C\h.

•

•

The next command changes the instruction to 3 \h, allowing us to view
the equality comparison outputs of the comparator: equal and not equal.
A is still greater than s, which means that only the not equal to bit will be
a logic high. This is the second least significant bit on the bus. Therefore,
you should see 2 \h. After the cycle 5 command is executed, you see Ii
the answer bus change to 2\h.

You now change the instruction to 4 \h which should produce A AND B

on the answer bus. 9\h is 1/1001" in binary and 5\h is "0101" in binary.
ANDing these together should yield "0001", or 1 \h. This matches the
value seen on the answer bus after the cycle 5 statement is executed.

• The instruction moves to A OR B by assigning 5 \h to instr. After
selecting A OR s, the answer bus should contain the value 1/1101" in
binary which is D\h. The answer bus in the ViewTrace window does
contain the value D\h.

• The next instruction executed is A XOR S. This should result in a value of
1/1100" in binary which is C\h. After the cycle 5 statement is processed,
you see the answer bus change to C\h.

• The final two instructions, 7\h and 8\h, are the inverse of A and the
inverse of S, respectively. Inverting A should result in "0110" in binary
which is 6 \h. As predicted, the answer bus contains 6 \h after the cycle
5 statement is executed. Finally, inverted S should yield "1010" in binary
which is A \h. The last value you see on the answer bus is A \h. Thus,
your 4-bit ALU is functioning correctly.

Warp User's Guide 165

Tutorials

166

• You can also run commands directly from the ViewSim command line.
Test the comparator by assigning B to be equal to A. In the bottom part of
the ViewSim window type, assign b 9 \h to assign 9 \h to signal B.

Now type assign instr 2 \h to assign 2 \h to instr. This is the
instruction which shows the magnitude comparison outputs of our ALU.
Now type cycle 5 to advance the simulation and show the results.
Since A is now equal to B, the most significant bit and the second least
significant bit should be a logic high. This corresponds to a value of A \h.
As predicted, the answer displays the value A \h.

• For your final simulation statement, change the instruction to show the
equality comparison outputs of the comparator. Type assign instr
3 \h in the bottom part of the ViewSim window. Then, type cycle 5. The
answer bus should change to 1 \h because A is equal to B.

Figure 3-61 ViewTrace output for top_alu design

Warp User's Guide

Tutorials

3.34 Back-Annotating Pin Assignments

You can easily lock in the pin assignment made by the place and route tool.

=> Double-click on the Galaxy icon in the Cockpit.

=> Highlight top_alu.vhd by clicking on it. If you don't have top_alu.vhd
selected, do a Files->Add and add top_alu.vhd.

=> Highlight top_alu.vhd by clicking on it.

=> Choose Annotate ... from the Files pull-down menu.

A small window appears giving the name of the file which will
be back-annotated (in this case, top_alu.vhd), and giving you the
option of back-annotating the pins, the nodes or both. The Pins
option should already be selected.

=> If Pins is not already selected, click on the button to the left of Pins.

=> If Nodes is selected, deselect it by clicking on the button to the left of Nodes.

=> Click on the OK button to back-annotate the pin information.

~----------------
Note - The back-annotation information is stored in a control
file. Control files have a .ell extension.

3.35 Conclusion

Warp is a very powerful VHDL synthesis tool which supports a broad range of
PLD, CPLD, and FPGA devices. The Warp development system is based entirely
on IEEE 1076/1164 compliant VHDL and supports a wide range of user options.
The tutorials presented here simply scratched the surface of the power contained
within the Warp software. Please continue reading chapters 4, 5, and 6, for more
detailed information on the Galaxy, SpDE, and Nova tools respectively. Chapters
7 and 8 contain information on designing with ViewDraw and using many
popular simulation tools including ViewSim. Chapter 9 is a must read for users
interested in optimizing their designs for either area or speed. This chapter covers
the design tuning cycle and how to take advantage of the many user controls
contained in the Galaxy menus. Finally, Chapter 10 discusses programming files
and their uses.

Warp User's Guide 167

Tutorials

168

The Reference Manual is also a resource containing information on such things as
command line options, synthesis directives, LPM schematic modules, and report
files. Chapter 4 of the Reference Manual, combined with the VHDL for
Programmable Logic textbook, is a complete guide to designing programmable
logic using VHDL. Finally the appendices in the Reference Manual contain a list
of error messages, a glossary, and the BNF of the VHDL language.

Be sure to visit the Cypress Semiconductor home page on the World Wide Web at
http://www.cypress.com.This Web site contains the latest information on all of
Cypress' products as well as software updates, frequently asked questions, and a
solutions database for your support needs.

Warp User's Guide

Chapter 4
Galaxy

Galaxy

4.1 Overview

170

Galaxy is the Graphical User Interface (GUI) for the synthesis and fitting engine
within Warp.

Warp is Cypress Semiconductor Corporation's name for its VHDL compilation
and synthesis software. Warp accepts VHDL source files as input. The primary
output of a Warp run is a .jed or a .qdf file. The .jed file can be used as input to a
PLD programmer. The .qdf file can be used as input to SpDE for automatic
placement and routing of Cypress' FPGA devices.

Galaxy provides a GUI to perform the following tasks:

• Select VHDL source files for compilation or synthesis with built-in error
tracking.

• Produce post-fitting simulation models with timing for PLD and CPLD
devices.

• Back-annotate post place and route (or fitting) pin and node placements
into the control file.

• Manage VHDL libraries that can be shared by multiple users or designs.

• Choose various synthesis options, such as type of flip-flops to use, degree
of optimization, etc.

• Provide a VHDL editor with syntax templates.

• Provide a report file browser.

• Access to third party tools (such as Exemplar) that can produce Cypress
PLA format files.

These are only some of the highlights of Galaxy. This chapter describes how to
use Galaxy to run Warp and perform the above tasks. It assumes familiarity with
common user interface operations, such as the use of scroll bars, menus, buttons,
and opening and closing windows. Galaxy supports the Microsoft Windows
windowing environment on the PC and the Motif® interface for UNIX platforms
running the X-windowing system.

Warp User's Guide

Galaxy

4.2 Starting Galaxy

4.3

4.3.1

For Warp3 Users

To start Galaxy on a UNIX workstation, the user must first invoke the Viewlogic
Power view environment. This is done by typing powerview on the command
line of a shell window. Once within the Powerview environment, select the
Cypress tool box (if not already selected) and then double-click on the icon
marked Warp.

To start Galaxy on a PC running Windows, first start the Cockpit using the
Cockpit icon in the Warp R4 program group. Once the Cockpit is up, select the
Cypress tool box (if not already selected) and then double-click on the icon
marked Warp.

For Warp2 Users

To start Galaxy on a UNIX workstation, simply type galaxy on the command
line of a shell window in the directory where the project resides.

To start Galaxy while running Windows on a PC, double-click on the Galaxy icon
in the Warp R4 program group.

Project Management

What Is a Project?

Before Galaxy can process a design, a Warp project must be created. A Warp
project consists of information regarding the environment, options used to
compile the design, the order of compilation of individual design files, and so on.
The project helps Galaxy maintain a set of project files and options that are used
to synthesize or compile a design targeting a PLD or FPGA. The project can also
be simply a reusable library. The concept of a library is explained in later sections
of this manual.

The Warp project information is stored in a file with an extension. wpr. This file
contains all conceivable information regarding the project including fonts and last
locations for individual windows, compiler options, device/ synthesis options,
the target simulator, etc.

Warp User's Guide 171

Galaxy

4.3.2

172

A typical project in Galaxy consists of a set of VHDL files with one file serving as
the top level design file and an optional control file. The VHDL files could have
been produced by other tools (such as View Draw) or manually typed.

~----------------
Note - Galaxy cannot be used unless the user first creates a
project.

Galaxy is also capable of maintaining and editing multiple projects
simultaneously. In Galaxy, each project is assigned its own window.

Warp Project vs. Viewlogic Project

A Warp project is significantly different from a Viewlogic project. A Viewlogic
project helps organize a set of schematics and symbols from multiple directories
and combines them to make a design. Viewlogic projects are also used to record
information about designs but are generally oblivious of VHDL compilation or
synthesis concerns. Invoking Galaxy from the View logic Cockpit allows Galaxy to
track designs being maintained in the Viewlogic environment. The Export VHDL
utility within ViewDraw links a Galaxy project with a View logic project.

The data link between Galaxy and Viewlogic is comprised of:

• a top level design file (created using the Export VHDL utility within
ViewDraw); and

• any lower level VHDL design modules for a mixed mode design.

Once the above information is entered into Galaxy, it needs to be updated only if
the design hierarchy changes.

Warp User's Guide

4.3.3

Galaxy

Creating a Project

Galaxy automatically creates a project when first invoked. On a PC running
Windows, Galaxy also remembers the last project in use and automatically
invokes this project as the current project.

The following are three ways to create a project in Galaxy:

• When Galaxy is invoked, if there is no current project (on the PC) or if
there are no project files in the current working directory (on UNIX
platforms), Galaxy displays a dialog box that helps create a project. This
dialog box prompts the user for the name of the project and the directory
in which to create the project.

Creating a new Galaxy project.

Name:

Figure 4-1 The dialog box which appears
when there is no project in the current directory

or when using Galaxy for the first time

• If a project already exists, another method of creating a project is using
the menu item Project-> New to create a new project.

Warp User's Guide 173

Galaxy

174

.,S.ave
£rint
Print setup ...
~uit

Figure 4-2 The Project->New menu item

• Copying a project file (file with the .wpr extension) to another name with
a .wpr extension also creates a new project.

Warp3 users must create a Warp project in the same directory as the current
View logic project.

Warp User's Guide

4.3.4

Galaxy

A new Warp project will have no files or options associated with it. The following
is an example of an empty project:

Figure 4-3 Galaxy window of a project that
has just been created

Including Design Files in a Project

There are two types of files that can be added to a Warp project: VHDL files or a
PLA file.

To add a VHDL file, use the menu item Files->Add ... , which will create a dialog
box allowing the selection of one or more VHDL files. Selecting OK on this dialog
box adds the selected VHDL files into the project in the order in which they are
selected. These new files are added below the current file in the project window if
a file is currently selected.

It is important that the files listed in the project window be in the correct order.
The higher the level of hierarchy for a given design file, the lower it must be listed
in the files for a given project. This implies that the top level design file must be
the last file.

Once the files are listed in the project, the user can also use other menu items
under the Edit menu to delete, cut, copy, move up, or move down files.

Warp User's Guide 175

Galaxy

4.3.5

176

Galaxy also supports a PLA project if the .pIa file is imported from a third party
tool, such as Exemplar, which is capable of producing Cypress-format PLA files.
PLA projects are restricted to a single file project. In addition, once a PLA file is
added to a project, VHDL files cannot be added to the project, and vice-versa.

Setting a Design File as Top Level

Once all the necessary VHDL files are added into the project in the correct order,
the user must set the top level VHDL file. This is not necessary if the project is
intended simply to compile files into a library instead of targeting a device.

If there is no top level file, all VHDL files in the current project are assumed for
compilation only. Only the top level VHDL file is actually synthesized, and only
one top level file is allowed in a project.

To identify a given file as the top level file, do the following:

• Make sure that the file is listed in the project window. If not, use the
FiIes->Add ... menu item to add it to the project.

• Select the top-level file by single-clicking on the file name in the project
window with the left mouse button. This should highlight the top-level
file.

• Single-click with the left mouse button on the Set top button found in the
lower portion of the project window.

Warp User's Guide

Galaxy

Once the top level file is set, the bottom of the project window will reflect the
name of the top level file.

Figure 4-4 Galaxy window with refill.vhd set
as the top level design

4.4 Targeting a Device

4.4.1

A target device and its related options can be selected using the Device button in
the project window.

Selecting a Device and Device Package

For designs intended to target a device, a target device must be selected before the
design can be synthesized.

Warp User's Guide 177

Galaxy

178

Clicking on the Device button displays the Device dialog box. This box allows the
user to select the device. As the user selects a given device, the dialog box
automatically enables or disables appropriate options.

Device:-------,

IC381A

Package:
I CY7C381 A-OJC

Output:

o ..IEOEC Norma!

o JEDEC Hex

Post-JEDEC Sim:

I<none>

@aDF

II

II

Settings:

Max. Load: ~13 I·.:.' .•. ·.·.','.','.',:.:.·. ~~~

r:;IlII
Factor Cost: ~ •

Node Cost: IT!] [I
Tech Mapping:

o Choose Ff Types

00 OT @ Opt

o Keep Polarity

o Float Pins

o Float Nodes

[g] Factor Lo~ic

o !ntemal 3-states

[g] Pad Generation

[gJ But. Generation

Figure 4-5 Device dialog box

In the upper left comer of the Device dialog box are the Device and Package
prompts, whose menus can be invoked using the left mouse button. First, select
the device from the list of devices available in the Device menu. This changes the
list of available Packages for that device and causes Warp to select a package by
default. The user may also specify a package by selecting from the package
selection menu.

Warp User's Guide

4.4.2

4.4.2.1

Galaxy

Selecting Technology Mapping/Synthesis Options

The Device dialog box contains technology mapping options that are available for
the device selected. At any given time, a set of options will be enabled or disabled
depending on the device selected.

The following sections describes the various technology mapping or synthesis
options and their related synthesis directive or command-line options, both of
which are described in Chapters 2 and 3, "Command Line language" and
"Synthesis Directives" of the Warp Reference Manual.

Choose FF Types

This option sets the global default for flip-flop selection and optimization. When
enabled, this option has three possible sub-options: D, T or Opt.

• The D option will force all flip-flops in the design to D-Type.

• The T option will force all flip-flops in the design to T -Type.

• The Opt options will allow the fitter to choose the best implementation
based on area savings. This option is highly recommended.

Turning off the Choose FF Types completely will force the fitter to use the flip-flops
that were specified in the design via VHDL attributes or the control file.

The synthesis directive ff_type, if found in the control file or the source VHDL
design, will override this option for the signal or signals that have that attribute
specified.

Related Directive: ff_type
Command-Line-Option: -fo or - fd or - ft
Priority: Attributes have higher priority

4.4.2.2 Keep Polarity

When enabled, this option forces the fitter to use the polarity selected by the user
in the VHDL or control file. Without this option selected, the fitter automatically
selects the best polarity for all outputs.

Warp User's Guide 179

Galaxy

The synthesis directive polari ty, if found in the control file or the source
VHDL design, will override this option for the signal or signals that have that
attribute specified.

Related Directive: polarity
Command-Line-Option: -fp or -fk
Priority: Attributes have higher priority

4.4.2.3 Float Pins

When enabled, this option causes any fixed pinout specified in the source VHDL
file or the control file to be ignored so that the fitter or place and route tool can
find new solutions.

Related Directive: pin_numbers
Command-Line-Option: - f f
Priority: Galaxy option overrides any attributes

4.4.2.4 Float Nodes

This option is similar to Float Pins except this applies to internal nodes of the
device. For CPLDs, this option affects any pre-placement information for buried/
internal nodes for the design, and for FPGA devices, this option affects any
fixed_ff attributes applied to the outputs of flip-flops.

Related Directive: Dode_Dum or f ixed_f f
Command-Line-Option: - fn
Priority: Galaxy option overrides any attributes

4.4.2.5 Factor Logic

180

This is a very important option for pASIC FPGA devices. This option enables the
multi-level logic factoring algorithms within Warp and can cause the design size
to be reduced quite dramatically. This option is recommended for all FPGA
designs and if needed can be disabled using the no_factor directive on an
individual signal after having evaluated the consequences.

Warp User's Guide

Galaxy

For FPGAs, this option also has a related setting found in the Settings section of
the Device dialog box. This setting indicates how aggressive Warp should be when
factoring equations. The lower the number, the smaller the potential factor. In low
settings, Warp looks for any potential reduction of the design size as a criteria for
creating a factor, whereas with higher settings, Warp waits for more significant
savings in area before a factor is created. The lowest setting of "1" is
recommended for most designs.

Related Directive: no_factor
Command-Line-Option: - f 1
Priority: Attributes have higher priority

4.4.2.6 Pad Generation

By default, Warp allocates the input/clock pads of FPGA devices to signals which
it determines need the pads the most. All other signals will be assigned to I/O
pins which have a normal drive strength. Disabling this option causes the Warp
synthesis engine to skip automatic pad generation even if the user has specified
the pad_gen attributes in his VHDL or control files. This option applies to FPGA
devices only.

Related Directive: pad_gen and max_load
Command-Line-Option: - yp

Priority: Galaxy option overrides any attributes

4.4.2.7 Buffer Generation

This option is similar to Pad Generation, except that Buffer Generation applies to
Warp's automatic buffer generation algorithm. Disabling this option forces Warp
to skip the buffer generation phase. This option applies to FPGAs only.

A related setting that affects the way buffers are generated is the max_load
setting. This setting specifies the default maximum allowable loading before a
buffer is generated by Warp. Individual signals can have a different max_load
setting via a VHDL attribute or control file. This setting is found in the upper
right comer of the Device dialog box.

Related Directive: buffer_gen and max_load
Command-Line-Option: -yb
Priority: Attributes have higher priority

Warp User's Guide 181

Galaxy

4.4.3

182

Controlling Synthesis Parameters

Max. Load

This setting controls the buffer and pad generation algorithm for FPGAs. This
value sets the default maximum fanout allowed on any signal in the design.

Related Directive: buffer_gen, pad_gen and max_load
Command-Line-Option: -ym#
Priority: Attributes have higher priority

Factor Cost

This parameter only affects the FPGA synthesis and it controls the aggressiveness
of the logic factoring algorithms. Typically the default value of 1/1" produces the
smallest and the fastest designs. In rare cases, though, increasing this parameter
results in fewer factors and may result in faster designs.

Related Directive: no_factor
Command-Line-Option: - f 1 #
Priority: Attributes have higher priority

Node Cost

This parameter controls the aggressiveness of the Virtual Substitution algOrithm.
In general, the default of 1/10" is recommended. Setting this parameter to I/O" will
allow Warp to synthesize the design in a way that is compatible with the previous
releases. Setting the parameter to its highest value of 1/11" will cause Warp to
expend maximum effort in trying to collapse combinatorial equations. Setting this
parameter to lower numbers will allow Warp to create nodes while being less
aggressive in collapsing equations. For FPGAs, lowering the settings might
produce significantly better results. Please refer to the Command Line Language
chapter of the Reference Manual (-v option) and also the Synthesis Directives
chapter of the Reference Manual (synthesis_off directive).

Related Directive: synthesis_off
Command-Line-Option: -vI
Priority: Attributes have higher priority

Warp User's Guide

4.4.4

Galaxy

Setting Output Options

On the left side of the Device dialog box is the output section.

Output Format

For PLDs and CPLDs, Warp allows two types of JEDEC files. JEDEC Normal is
the standard format which uses one byte to set each fuse. JEDEC Hex packs 8
fuses into one byte using hexadecimal notation. The selection of the JEDEC
format depends on whether or not the programmer supports the JEDEC Hex
format.

For FPGA devices, the only output available from Warp is the QDIF netlist which
can be used as input to the place and route program called SpDE. SpDE in turn
can produce a LOF file which can be used to program FPGA devices. See the
Device Programming chapter for more information.

Related Directive: None
Command-Line-Option: - fh
Priority: N I A

Simulation Output

For PLDs and CPLDs, Warp can also produce a simulation model that allows the
user to simulate the design with timing information. A list of simulators is
available in the Post-JEDEC Sim: menu.

For pASIC Devices, the target simulator must be selected from within SpDE. See
Chapter 5, "SpDE," for more information on how to use SpDE.

Related Directive: None
Command-Line-Option: None
Priority: N I A

Unused Outputs

This option instructs the fitter to program unused 110 pins so that they either
drive a logic level "0" or "1" or are simply three-stated.

Related Directive: None
Command-Line-Option: -ful or -fuh or -fuz
Priority: N I A

Warp User's Guide 183

Galaxy

4.5 Generic Options

4.5.1

Various device independent compiler options can be selected using the Generic
button in the project window.

Optimization:

o None

o Normal

@ Exhaustive

D Retain XOR's

Goal:

o Area

@Speed

Run Options:

D Quiet

~ Errors Max.

~ Warnings

D Detailed Report

Figure 4-6 Generic Options dialog box

Optimization Level

4.5.1.1 Effort

184

This option sets the effort that Warp spends optimizing the design. For most
designs, Exhaustive optimization (- 02) is recommended. Exhaustive
optimization is a super set of Normal optimization and performs additional tasks
such as state machine optimization and don't-care optimization. Exhaustive
optimization is required for other technology mapping functionality such as logic
factoring and multiplexor optimization.

Related Directive: opt_level
Command-Line-Option: -00 or -01 or -02
Priority: Attributes have higher priority

Warp User's Guide

Galaxy

4.5.1.2 Retain XORs

4.5.2

4.5.3

4.5.3.1

This option is provided for compatibility with previous releases and might be
useful in special conditions. This option causes Warp to retain XOR operators
found in the design instead of collapsing them into their fanout. The fitter or place
and route programs would therefore handle these XORs and map them
appropriately to the target device.

Related Directive: None
Command-Line-Option: -xor2
Priority: N / A

Synthesis Goals

With this option, the user can set the default goal for synthesis of datapath
operators found within the design.

Related Directive: goal
Command-Line-Option: -ygs or -yga
Priority: Attributes have higher priority

ErrorlWarning Message Options

Quiet

In verbose mode, the Warp synthesis engine displays the equation, signal, or
component being processed as it is being processed. If this option is enabled,
Warp suppresses many of the messages that might otherwise be displayed during
compilation and synthesis. On the PC (Windows 3.1 or Windows 95) platforms,
enabling quiet synthesis will help conserve system resources and also allows the
synthesis task to be completed much faster. Quiet mode is the default operating
mode for Warp.

Related Directive: None
Command-Line-Option: -q

Priority: N / A

Warp User's Guide 185

Galaxy

4.5.3.2 Max. Errors

This setting forces the Warp compiler to abort once the error limit has been
reached. This can be especially useful for large VHDL files.

Related Directive: None
Command-Line-Option: - a#
Priority: N / A

4.5.3.3 Max. Warnings

This setting forces the Warp compiler to abort once the warning limit has been
reached.

Related Directive: None
Command-Line-Option: -wi
Priority: N / A

4.5.3.4 Detailed Report

186

This setting, when enabled, forces the Warp compiler to produce a very verbose
report file. For large designs, this option produces very large report files.

Related Directive: None
Command-Line-Option: -yv#
Priority: N / A

Warp User's Guide

Galaxy

4.6 Compiling a Design

A design may be compiled in two ways:

• Select the desired files in the list box and then click on the Selected button.

• Click on the Smart button. Galaxy will recompile those files that have
been modified since the last compilation. If any compilation options have
been changed, however, Galaxy will have to recompile all the files.

Warp User's Guide

Figure 4-7 The Galaxy window showing
the buttons for compilation

187

Galaxy

4.6.1

188

In either case, Galaxy opens up a Compile window or clears out the Compile
window which is already open. This window displays the messages from the
Warp VHDL compiler and also shows the time that the compilation started, along
with the current time.

Using control file I refill. ctl I .
Library lieeel =) directory IC:\W3R4\lib\ieee\workl

Using IC:\W3R4\lib\ieee\work\stdlogic.vifl.
Using Ilc381a\binctr.vW.
High-level synthesis [C:\W3R4\bin\tovif.exe V4 IR x55)
Added entity I refill I to library Iworkl

Added architecture larchrefiW to library Iworkl

WARP done.
I

Figure 4-8 A Compile window showing a
successful compilation

To abort the compilation, click on the Stop button on the toolbar. The Close button
also aborts the compilation.

The user may change the size and location of the Compile window as well as the
font used to display messages. Galaxy remembers these choices and stores them
in the project file.

Report Files

When Warp has finished running, the user may save the messages to a file by
selecting Save as under the File menu.

The user may alsQ view the report files Warp generates. The. vhd file of the report
file to be seen must be selected from the Project window and then Report file
selected from the Info menu.

Warp User's Guide

4.6.2

4.7

4.7.1

Galaxy

Error Tracking

If the design has errors, they will appear in the message area of the Compile
window. Clicking on an error or using the two leftmost buttons of the Compile
window's toolbar will highlight one of the errors.

Library 'work' =} directory 'lc381 a'
Using control file 'refill.ctl'.
Library 'ieee' =} directory 'C:\W3R4\lib\ieee\work'
Using 'C:\W3R4\lib\ieee\work\stdlogic.vif'.
USill.'IC381 a\binctr.vif'.
aU! mIiN'ld' •• ii!JiM'b'=iljll.IMIIi"Mif4Hlml@.I.'4@taSI'ljj
Error occurred within 'ENTITY' at line 5. column 14 in refill.vhd.
refill.vhd (line 24. col 14): (E8) Syntax error: Can't use 'binctr' (a COMPONENT
refill.vhd (line 40. col 16): (E54) Name 'archrefill' at end of ENTITY does not me

WARP done.

Figure 4-9 A Compile window showing an
error from compilation

A press of the Return key or a click on the magnifying glass button of the toolbar
brings up an edit box containing the file where the error is and places the cursor
near the error.

Library Management

What Is a Library?

A VHDL library is a repository of compiled design units which may be used
within other VHDL files. These consist of packages, entities, and architectures.

Warp implements this concept by storing the compiled files, along with an index
file, inside a separate directory. The directory name will be referred to as the
"physical" name of the library. Warp provides a facility for assigning a "logical"
name to a given library; this is the name specified in a USE clause in the designs.

Warp User's Guide 189

Galaxy

4.7.2

4.7.3

4.7.4

4.7.5

4.7.6

190

The Library Window

To open Galaxy's library manager, select Libraries under the Files menu. A
window will appear with three lists: Libraries, Designs, and Units.

The leftmost list, Libraries, lists the library directories within the project's
directory. The user may select one library from this list.

The middle list, Designs, lists the design files within the library that is selected in
the Libraries list. The user may select one of these designs.

The rightmost list, Units, shows the VHDL design units (packages, entities, and
architectures) within the design file selected in the middle list.

To edit one of the design files, double-click on it. To locate a particular design unit
in the file, double-click on the unit name.

Creating a Library

To create a library, select Create library under the File menu. A name prompt
appears so that Galaxy can create the library as a sub-directory of the project's
directory.

Deleting a Library

Select the library in the leftmost list and then choose Delete library under the File
menu.

Removing a Design from a Library

To remove a particular design from a library, select the file in the middle list, and
then choose Remove design under the file menu. The design will be removed from
the library, but the original file will not be deleted.

Compiling DeSign Files to a Library

If the library does not already exist, then follow the instructions in "Creating a
Library" above.

In the Project window, select the desired file to compile and then click on the File
bu~on in the Compiler Options area. An options box will open.

If the Top Design box is checked, click on it so that it is off. Then find the desired
target library in the list and select it.

Warp User's Guide

4.7.7

4.7.8

Galaxy

Using Design Units from a Library

Suppose that a design file has been compiled into the library logic and that the file
contains a package called gat e s _p kg. To use this in another design, type the
following:

LIBRARY logic;
USE logic.gates-pkg.all;

Assigning a Logical Name to a Library

Typically, when Warp compiles a design, any libraries that are referenced in the
design are searched for in the current directory first, and then the system
directory ($CYPRESS_DIR \lib). But if you have defined your own libraries as
described in the above sections, and if these libraries do not exist in the current
directory, it will be necessary for you to associate that directory with a logical
name. To view all the current associations and to add/modify/delete these
associations, use the Files->Assign Library ... menu item in the Library Window.

Consider the following example, where main design is in directory A and you
have a library named 'logic' defined and compiled in directory B. If library 'logic'
has been compiled successfully, there should be a directory A \ logic where the
compiled design files will be placed by Warp.

While editing the project for your main design, using the 'Add' button in the
Library Assignment dialog box, enter the name (logic) and the path (.. \B\logic).
Also note that Library assignment allows the name to be anything you wish. In
other words, even though the original library was created and compiled as the
library logic, Warp allows this library to be assigned to any VHDL legal name.

4.8 Integrated Editor

4.8.1

Galaxy contains a simple text editor which can handle large files,locate errors,
and help the user write VHDL.

Editing an Existing VHDL File

To edit an existing file, select it in the list of the Project window and then click on
the Selected button in the Edit area. If more than one file is selected, Galaxy opens
an edit box for each.

A file can also be edited by double-clicking on it.

Warp User's Guide 191

Galaxy

4.8.2

4.8.3

Editing a New File

To create a new file, click on the New button in the Edit area. After it is saved, a
file may be added to a project with the Add option under the Edit menu.

General Editing

The Galaxy edit box provides the following features:

4.8.3.1 File

New clears out current contents of edit box.

Open opens a file.

Save saves the current file.

Save as saves into a new file.

Print prints the contents of the edit box.

Print setup sets up the printer.

Exit dismisses the edit box.

4.8.3.2 Edit

Cut cuts the current selection and saves it in on the clipboard.

Copy copies the current selection to the clipboard.

Paste pastes from the clipboard to the current edit point.

4.8.3.3 Search

192

Find brings up a dialog box for a search.

Find next finds the same string again.

Replace brings up a dialog to do search-and-replace.

Replace current.

Replace the last-found text.

Warp User's Guide

Galaxy

4.8.3.4 Font and Style

4.8.4

The font or style of the edit box may be changed globally. Galaxy remembers the
choices and stores them in the project file.

VHDL Browser

Selecting Browse under the VHDL menu brings up the VHDL browser window.

Function d
If-then-else
Library clau
Library unit
Package b
Package d
Procedure
Procedure
Process

Figure 4-10 The VHDL Browser

The area to the right in the window contains a syntax tree for the VHDL language.

The list box to the left contains an alphabetical list of the VHDL constructs for
which Galaxy has templates.

A template can be brought up in three ways:

• Double-click on the item in the list box.

• Select the item in the list and click on Insert.

• Click on an item in the syntax tree.

Some items in the syntax tree do not have templates. A box will turn yellow if it
has a template associated with it.

More of the syntax tree is visible by enlarging the window. To scroll through the
syntax trees, press and drag the left mouse button on an empty part of the tree's
area.

Warp User's Guide 193

Galaxy

4.9 Simulation

The user interface for selecting a simulator for post place and route simulation
depends on the device. For FPGAs, this selection must be made in SpDE. For all
other devices, use the Device dialog box to select a simulator of your choice.
Please refer to the Simulation Chapter for more detail.

4.10 Back-Annotation

194

After a successful place and route, Galaxy allows automatic back-annotation of
placement information such as pin numbers (Pins) and macro cell locations
(Nodes). Back-annotation is possible for the top level design file. Use the
FiZes->Annotate ... menu item to invoke back-annotation. The back-annotation
dialog box allows you to back-annotate pin and/or nodes. Upon clicking on OK,
Galaxy will either create or modify the control 'ctl extension) file and place the
necessary synthesis directives.

Warp User's Guide

Chapter 5
SpDE

SpDE

5.1.1

5.1.2

5.1.3

Introduction

This chapter describes the following topics in Warp's SpDE tool kit:

• SpDE Design Flow

• SpDE Graphical Interface: the SpDE Window

• SpDE Design Tools

• SpDE Analysis Tools

• Design Considerations: Speeding Up High-Fanout Nets

Warp's SpDE tool kit provides a complete suite of FPGA place and route tools,
allowing the user to complete the FPGA design process, to perform timing
analysis on completed FPGA designs, to generate simulation models for timing
simulation, and to generate programming files for device programming.

Design Placement and Routing

The final step in the FPGA design flow is to map logic fragments generated by the
Warp compiler into logic cells of the target FPGA device. This process is called
place and route. SpDE provides automatic placement and routing, requiring
virtually no user intervention.

Design Viewing and Path Analysis

After automatic placement and routing, SpDE's Physical Viewer displays the
graphed results. Along with the Path Analyzer, the user performs static timing
analysis on critical paths and highlights them in the Physical Viewer.

Design Simulation and Programming

After design completion and analysis, the user can choose to generate simulation
models for timing simulation in many environments for device programming.

5.2 SpDE Design Flow

196

The following is a typical SpDE design flow. For details on the description of each
tool, please refer to Section 5.4, "SpDE Design Tools."

Warp User's Guide

5.2.1

5.2.2

5.2.3

SpOE

Starting SpDE

To start SpDE, double-click on the Place&Rte icon in the Workview PLUS Cockpit
(on IBM PCs and compatibles) or the Powerview Cockpit (on UNIX
workstations).

Importing Files

Warp designs targeted for pASIC designs are first compiled and synthesized by
the Warp compiler into logic fragments and then saved as QDIF files. These files
have to be imported into SpDE before placement and routing can take place.

To import a QDIF or EDIF file, use:

File ->Import QDIF / EDIF

During import, the Design Verifier is automatically invoked, and it checks for
design errors, architectural violations, and potential problems.

Running the Tools

Once a QDIF file has been imported, the user starts the SpDE design tools by
using the following:

Tools-> Run / Tools ...

A summary of the available tools and their respective tasks are listed below.

Table 5-1 Summary of SpOE tools

SpDETool Function

Logic Optimizer Logic Optimization

Placer and Router Automatic Placement & Routing

Delay Modeler Timing Analysis

Back-Annotation Simulation Model Generation

Automatic Test Vector Generator Test Vector Generation

Sequencer Programming File Generation

Warp User's Guide 197

SpDE

m 5.2.4

5.2.5

198

Design Viewing and Path Analysis

After automatic placement and routing, the user can use the Physical Viewer and
the Path Analyzer to view the physical placement and routing of the design logic
and to examine the timing for critical paths. The Path Analyzer can be invoked as
follows:

Tools->Path Analyzer

The user can also examine resource utilization and the report file by using:

Info-> Cell Utilization .. ./ Report File ...

Save and Exporting

After automatic placement and routing, the final design implementation can be
saved as a .chp file. This can be done by selecting the following:

File->Savel Save As ...

A device programming file can be exported in LOF format by selecting the
following:

File -> Export LO F ...

Warp User's Guide

5.3

5.3.1

SpOE

File Formats

Here are the various file formats that SpDE uses as input or generates as output.

Table 5-2 SpOE file formats

File Type Format(s) Description

Warp and some third-party tools (e.g., Exem-

Input QDIF 'qdf) plar's Galileo) generate QDIF files, while oth-
EDIF 'ed*) ers (e.g., Synopsys'® Design Compiler™)

generate an EDIF file as input to SpDE.

Output CIDP 'chp)
Post-place and route designs are saved in this
format.

Different types of simulation timing models
Simulation varies are generated depending on the target simu-

lator. Refer to Chapter 8, "Simulation."

Pro gram-
LOF PDf)

For use with the Cypress Impulse3 or 3rd
ming party device programmers.

SpDE Graphical Interface: The SpDE Window

The File Menu

The File menu includes commands related to creating, opening, and saving
completed designs; importing synthesized designs for placement and routing;
exporting programming files; printing the physical view of the layout; and exiting
SpDE.

New clears any current design and initializes SpDE to operate on a new design.

Open brings up a dialog box for selecting an existing CHIP 'chp) file. The
specified CHIP file will then be loaded, replacing the current design.

Save saves the currently completed design as a CHIP file.

Save As brings up a dialog box, allowing the user to save the current completed
design as a CHIP file with a user-specified name. This menu item gives the user
the capability of saving backup or reference copies of a design.

Import loads files generated by Warp Galaxy or other synthesis tools in QDIF or
EDIF format for placement and routing.

Warp User's Guide 199

SpOE

5.3.2

200

Export LOF creates a Link Object Format (LOF) file with the specified name. This
file contains all the data required to program and test pASIC devices. The file may
be compressed at the user's option. This file can be used to program the pASIC on
a device programmer.

Print Setup (PC version only) invokes the printer setup dialog box for setting the
default printer driver.

Print (PC version only) prints the current physical view using the parameters set
in Print Setup.

Exit terminates SpDE and prompts the user to save the design if it has been
modified since the last save. For PC users, double-clicking the Control-Menu box
(in the upper left comer of the SpDE window) is a shortcut for Exit.

Below the Exit menu item, the last five accessed files are listed (numbered 1-5).
This provides a shortcut for the Open and Import commands. Clicking on a CHIP
file from this list opens the file; clicking on another file type from this list imports
the file.

The View Menu

The View menu (Figure 5-1) includes commands for manipulating the physical
view of the design, highlighting specific nets, and specifying physical view
options.

Zoom In magnifies the physical view of the current design. The user can simply
click on a specific spot as the center of the view and zoom in by a scale factor of
1.25, or click and drag the mouse pointer to define a viewing rectangle. The view
adjusts to fit the specified rectangle as closely as possible. The shortcut key for
Zoom In is Ctrl-Z.

Zoom Out de-magnifies the view. The shortcut key for Zoom Out is Ctrl-X.

Full Fit modifies the scale factor to fit a view of the entire pASIC layout on the
screen. The shortcut key for Full Fit is Ctrl-F.

Normal Fit sets the scale factor to its initial value and centers the view on the
selected position. The shortcut key for Normal Fit is Ctrl-N.

Preferences sets physical view options. These are discussed in greater detail in the
next section, "Preferences."

Warp User's Guide

SpDE

Highlight Net allows the user to select nets to be highlighted in the physical view.
This menu item is discussed in greater detail in the section on "Highlight Net" on
Page 203.

Redraw redraws the physical view.

Figure 5-1 View menu

Preferences

Selecting Preferences from the View menu brings up the Preferences dialog box
(Figure 5-2).

The Texting group of check boxes includes items relating to text labels in the
physical view. Table 5-3 lists the check boxes and examples of the items they
control. Text items can be turned off to increase redraw speed or to simplify the
physical view.

Warp User's Guide 201

SpDE

202

Table 5-3 Examples of check box items

Item I Example

Logic Cell Locations A1, A2, B1, C1, H12

I/O Cell Numbers 3,12,24,42

Flip-Flop Net Names specified in schematic

I/O Cell Net Names specified in schematic

Logic Cell Net Names specified in schematic

The Flip-Flop Net Names option only includes the net names of logic cell flip-flop
outputs. The Logic Cell Net Names option includes the net names of all logic cell
inputs and outputs.

The Drawing Style group of radio buttons controls the use of color in classifying
interconnect. In BIack/White mode, all wires are shown in black. In Color mode,
short wires are shown in blue and black, express wires are shown in green, I/O
wires are shown in red, and clock traces are shown in mauve.

Warp User's Guide

SpDE

Figure 5-2 Preferences dialog box

The Detail group includes the Draw Cell Interiors check box. Deselecting this check
box replaces the detailed logic cells with simple boxes, thereby increasing redraw
speed.

Clicking OK accepts all preference settings for tools that are subsequently
executed. Clicking the Save button does the same and also records the preference
settings. These settings are then used the next time SpDE is invoked.

Highlight Net

Selecting Highlight Net brings up the Highlight Net dialog box (Figure 5-3) and
redraws the Physical View in light gray, which allows the highlighted nets to
stand out. The net list box on the left of the dialog box contains the names of nets
not currently highlighted, while the net list box on the right contains the names of
nets that are currently highlighted.

Warp User's Guide 203

SpDE

204

To highlight nets, select one or more nets from the box on the left, or specify a net
name in the Wildcard Selection field on the left side of the dialog box, and click on
the right arrow button.

To remove nets from the highlight list, select one or more nets from the box on the
right, or specify a net name in the Wildcard Selection field on the right side of the
dialog box, and click on the left arrow button.

When using the Wildcard Selection fields, the wildcard characters "*" and "?" are
accepted. The "*" character matches zero or more occurrences of any character.
The "?" character matches a single occurrence of a character.

Double-clicking on a net name in either list moves it to the other list.

All nets can be removed from the highlight list by clicking on the ALL button.

Once in highlight net mode, the highlight status may be toggled by clicking
directly on the desired nets in the physical view.

To exit highlight net mode, click Cancel. The Physical View will be redrawn in
normal mode.

Figure 5-3 Highlight Net dialog box

Warp User's Guide

SpOE

5.3.3 The Tools Menu

The Tools menu is used to configure and run the optimizing, placing, routing,
sequencing, delay modeling, back-annotation, and path analysis tools.

The Tools menu (Figure 5-4) contains three items: Run Tools, Path Analyzer, and
Options.

Figure 5-4 Tools menu

Run Tools opens the Select Tools to Run window (Figure 5-5). This window is used
to select which tools are to be run on the design. Two types of logic optimization
can be run. This selection is made in the SpDE Tools Options window (Figure 5-6).
Disabled tools are grayed out. Tools that have already been run are unchecked.
Detailed descriptions of the Logic Optimizer, Placer, Router, Delay Modeling,
Back-Annotation, and ATVG tools can be found in Section 5.4, "SpDE Design
Tools." The Sequencer tool is only used to create data needed to program devices
and has a short description in that section.

Warp User's Guide 205

SpOE

206

Figure 5-5 Select Tools To Run dialog box

The Path Analyzer can be used to determine operating frequency, setup and hold
times, and clock skew. This menu item is discussed in greater detail in Section
5.5.2, Path Analyzer."

Options allows the user to select General or Simulator options. General options are
the options for all tools. Simulator options affect only the Back-Annotation tool.
The General Tools Options and Simulator Options windows are shown in Figures 5-
6 and 5-7.

Warp User's Guide

SpDE

Figure 5-6 General Tools Options window

Figure 5-7 Simulator Options window

Warp User's Guide 207

SpDE

5.3.4

208

The SpDE Tools Options window is used to configure each of the SpDE tools. A
detailed description of each tool's options can be found in the following sections
of this chapter.

The Simulator Options window is used to select the simulator output that is
desired. The Back-Annotation tool uses this information to produce the proper
timing netlist. When the Back-Annotation tool is run, the file(s) appropriate to the
selected simulation option are created. See Section 5.4.5, "Delay Modeler and
Back-Annotation," for details.

The Info Menu

The Info menu (Figure 5-8) includes items that provide statistics and other
information about a design.

Cell Utilization reports the number of cells of different types used in the design
(Figure 5-9) as well as the number of logic, input-only, clock-only, and
bidirectional cells. Also included is a count of "partially-free" cells; these are logic
cells with a free AND fragment. These cells can accept any macro that can be
implemented in a single AND fragment. This information is provided to allow
fine-tuning of high-utilization designs.

Figure 5-8 Info menu

Warp User's Guide

Figure 5-9 Typical Cell
Utilization dialog box

Figure 5-10 Typical ATVG
coverage dialog box

Warp User's Guide

SpDE

209

SpDE

210

ATVG Coverage reports on the design's test coverage (Figure 5-10). These statistics
may be used as guidelines to improve the design in order to increase test
coverage. Of particular interest is the Fault Grading statistic, which indicates the
quality of test coverage produced by ATVG.

Tool Versions is provided for diagnostic purposes. Tool Versions lists the tools that
have been run on the current design, including the version number of each tool
listed (Figure 5-11).

Report File displays the Cypress report file produced by the Warp compiler,
including a SpDE tools appendix.

design Pre-2.1
logic optimizer 5.1
placer 5.1

5.1
5.1
5.1
5.1
5.1
5.1

Figure 5-11 Typical Tools Versions
dialog box

Warp User's Guide

5.3.5 The Help Menu

The Help menu (Figure 5-12) includes commands for on-line help on SpDE.

SpDE invokes SpDE's on-line help.

SpDE

Using Help provides introductory information on using the Help facility itself.

About SpDE provides information on the SpDE Toolkit, including the revision
number of each tool and the configuration.

Figure 5-12 Help menu

5.4 SpDE Design Tools

This section describes the SpDE design tools:

The Design Verifier analyzes the file for design errors, architectural violations,
and potential problems.

The Logic Optimizer partitions designs into logic cells using sophisticated
technology mapping algorithms.

The Placer takes the design from the Logic Optimizer and places the logic cells in
optimal locations on the chip.

The Router connects I/O and logic cells, using the pASIC interconnect resources.

The Delay Modeler calculates delays for the Path Analyzer and writes the delays

Warp User's Guide 211

Sp.DE

5.4.1

5.4.2

212

and delay scale to a file in the ViewSim simulator.

The Back-Annotation tool writes pin numbers and fixed flip-flop numbers to a file
that CypBack uses to back-annotate schematics.

The Automatic Test Vector Generator generates test vectors that can be used to
test pASIC devices after they have been programmed.

The Sequencer is the tool that generates the programming file used to program
the pASIC devices.

Design Verifier

When a design is imported from Warp into SpDE as a .qdf file, the Design Verifier
analyzes the file for design errors, architectural violations, and potential
problems. If any exist, a window will pop up displaying the appropriate
messages. The messages are categorized as follows, according to their severity:

Notes simply provide information which might be of interest to the user, such as
the removal of unused gates. No user action is required.

Warnings provide information on potential design problems, such as excessive
fanout, which could impact performance and might require user intervention.

Errors provide information on design problems, such as floating inputs, that
prevent a part from being programmed, even though the tools can still be run.

Fatal Errors provide information on extreme errors, such as excessive resource
usage, which prevent the tools from being run.

Logic Optimizer

The Logic Optimizer is the first tool to be run after a design netlist has been
loaded into SpDE. Logic optimization is the first step in automatic placement and
routing (APR). The Logic Optimizer uses sophisticated technology mapping
algorithms to partition the design into logic cells.

Warp User's Guide

SpDE

Three levels of optimization are available in the Logic Optimizer: Level 0 - Packer,
Level 1- Technology Mapper, and Level 2 Area/Speed Optimizer. The
optimization levels can be selected from the SpDE Tools Options window (Figure
5-13), which appears after Options/General is selected from the Tools menu.

Figure 5-13 SpDE Tools Options window:
Optimizer options

Level 0 Optimization: The Packer

The Level 0 Packer simply "packs" logic symbols (hard macros) from the
imported QDIF file into logic cells, leaving all net connections intact. As many as
four macro symbols may be packed into a single logic cell. No logic optimizations
are done. The Level 2 Optimizer is the preferred logic optimizer in almost every
case, but Level 0 optimization is provided for versatility and compatibility with
old designs.

Level 1 Optimization: The Technology Mapper

The Levell Technology Mapper provides automatic logic cell optimization. The
Technology Mapper introduces and removes inversion bubbles in order to
improve capacity and performance. In more general terms, the Logic Optimizer
merges gates when possible in order to achieve more efficient implementations.
Because the Technology Mapper uses a more sophisticated algorithm than the
Packer, the Mapper sometimes takes longer to run. For example, the Packer never
takes more than a few seconds to run, but the Technology Mapper can take from a
few seconds to several minutes, depending on the complexity of the design.

Warp User's Guide 213

SpOE

5.4.3

214

Level 2 Optimization: Area I Speed Optimization

The Level 2 Area/Speed Optimizer performs automatic logic cell optimization
like the Technology Mapper. The selection of Area versus Speed is passed directly
from Warp and is simply used here in SpDE to reflect which option was selected.
Changing this option in SpDE has no effect on the results of your design.

~-----------------
Note - Internal nets may be deleted as a result of Levelland
Level 2 optimization.

Logic Optimization Modes

For Levell and Level 2 optimization, the user may choose Preliminary, Quality, or
Overnight mode from the SpDE Tools Options window. (Level 0 optimization is a
simple, predictable algorithm that does not require different modes.)

Preliminary Levell optimization takes half the time of the Quality mode.

Quality Levell optimization is recommended for high quality results.

Overnight (or Exhaustive) mode produces slightly better results than Quality
mode on some designs, but with a significantly longer run time.

Placer

Placement is the second step in automatic placement and routing. The Placer
places the logic fragments generated by the Logic Optimizer in optimal locations
of the FPGA device to minimize routing delays. The Placer also allows users to fix
the placement of 110 cells and registers. Fixing 110 cell placement can ease circuit
board design, while fixing register placement offers precise control over internal
routing delays.

Via the Path Analyzer, the Placer offers timing-driven placement. The user can
enter timing constraints for specific nets in the Path Analyzer, and the
information is then passed to the Placer to ensure that critical timing goals are
considered with a higher priority during placement. When run from the Path
Analyzer, the Placer determines optimal locations by looking at the nets'
connecting logic cells and by looking at timing constraints added by the designer.
(See "Timing-Driven Placement" on Page 216.)

Warp User's Guide

SpOE

Placer Options

Figure 5-14 shows the dialog box by which the user selects Placer options. Two
kinds of options are available: the user can select the seed value for the Placer, the
placement mode, or both.

Figure 5-14 Placer options

Placer Seed - The placement seed initializes the placement process and sets a
starting point for the decisions made during automatic placement. The seed for
the Placer is an integer between 1 and 32767. The user chooses either a custom
seed or the default seed value (42). Changing the seed value sets a different
starting point for the placer, which can produce a slightly different (and possibly
improved) placement.

Placement Mode - Three placement modes are available: Preliminary, Quality, and
Overnight. These three modes have the following characteristics:

• Preliminary placement is faster than quality placement, but usually by
only a few minutes. Results are not as predictable and usually not as
good as Quality placement. Cypress recommends at least Quality
placement of designs before programming chips.

• Quality placement is the default placement mode. As its name implies, it
produces high-quality placements.

• Overnight placement exists primarily for the curious. Results of Overnight
mode placement are usually about 4% better than Quality placement, but
at a significant cost in run time (about ten times). Thus, a design that
places in six minutes in Quality mode will take about an hour in
Overnight placement mode.

Warp User's Guide 215

SpDE

216

Timing-Driven Placement

The Placer works closely with the Path Analyzer (Figure 5-15) to provide timing
driven placement, an advanced technique issued to produce optimal results.
User-specified constraints are fed from the Path Analyzer to the Placer. Paths not
meeting the specified constraints are automatically boosted in priority until the
constraint is met. Timing-driven placement allows the user to obtain peak
performance without resorting to fixed placements.

Constraints can be entered for these paths directly in the Path Analyzer. Once the
Path Analyzer has been run, paths not meeting the desired goal can be easily
identified.

Figure 5-15 Using timing constants in the Path Analyzer

~
Hint - It is important to set the constraints realistically-set each
constraint at or just slightly below the required value. One of the
keys to timing-driven placement is the concept of "good
enough." Once a critical path has met its constraint, the Placer
boosts the priority elsewhere in order to optimize all critical
paths.

Warp User's Guide

SpDE

For each path with a constraint, the Placer estimates the delay throughout the 5
placement process. If a constraint is met, the Placer continues to optimize the nets
in the path normally. If a constraint is not met, the Placer boosts the priority of the
nets in the paths; the boost in priority is proportional to the difference between
the constraint and the estimated value. In other words, paths near their
constraints are boosted less than paths far from their constraints.

~
Hint - Constraints should be added only where required. The
dynamic delay estimation mentioned above adds work to the
placement process. Each constraint specified slows the placement
process. The design may have to be restructured in order to
achieve the desired performance.

Constraints are stored with the design database. Once the constraints have been
specified, all subsequent Placer runs operate in timing-driven mode. This can be
verified during placement from the SpDE Status window-under normal
placement the heading is Placer, while under timing-driven placement the
heading is Timing-Driven Placer.

~----------------
Note - Constraints are not saved to a separate file, so that each
time a QDIF file is imported into SpDE, all constraints are
cleared.

Fixed Placement

Although the Placer automatically determines placement for logic cells and I/O
pads, it also supports fixed assignments of both I/O and flip-flops when required.
The Placer does not modify fixed assignments by the designer.

Fixing the Placement of 1/0 Pads

Design constraints sometimes require some or all 1/ a cell locations to be fixed.
For example, an existing printed circuit board (PCB) might dictate a precise
pinout. Alternatively, a high-speed PCB might require fixing a small number of
critical pins in order to limit skew. The SpDE Placer can handle these cases.

To fix I/O pad (i.e., pin) placements, use the pin_numbers attribute in VHDL.
(See the Warp Reference Manual for syntax information about this attribute.)

Warp User's Guide 217

SpDE

Fixing the Placement of Flip-Flops

Design constraints rarely require logic cell locations to be fixed. To allow
designers a greater degree of flexibility, however, the Placer allows some or all of
a pASIC's flip-flop macros to be fixed. One scenario that would dictate fixed flip
flops would be if all the bits of an 8-bit register need to appear on the output pins
with absolute minimum skew. The Placer, not realizing this design constraint,
might sacrifice the skew on the outputs in order to produce a circuit that was
faster overall. By manually fixing the flip-flops on logic cell locations adjacent to
the output pins, the designer can meet the design constraint.

To fix flip-flop (Le., internal) placements, use the f ixed_f f attribute in VHDL.
(See the Warp Reference Manual for syntax information about this attribute.)

~----------------
Note - In order for placement to proceed correctly, the
fixed_ff attribute must be applied to each element of a bus
and not to the bus as a whole.

Two flip-flop macros cannot be assigned to the same location. The naming
convention for pASIC logic cells assigns a character to each column and a decimal
number to each row. SpDE verifies the uniqueness of location assignments for
fixed placement with the Design Verifier.

Locking Down a Previous Pin Assignment

Sometimes an I/O placement must be "locked down." This means that for all
subsequent place and route runs, the I/O pins do not change their locations.

To back-annotate I/O pin locations, the following steps need to be followed:

• Run the Back-Annotation Tool in SpDE (which creates and writes out
placement information to .atr file).

• Select Annotate ... from the Galaxy File menu to annotate to your control
file, or select Back Annotation ... from the Cypress menu in View Draw to
annotate pins to your schematic.

218 Warp User's Guide

SpDE

5.4.4 Router

The Router employs highly optimized algorithms to connect I/O and logic cells
using the pASIC interconnect resources. The Router's optimization capabilities
minimize routing delays and routing resources required. This finely tuned
arrangement produces excellent performance with high utilization.

Seed Value

Figure 5-16 shows the area of the SpDE Tools Options window that allows the user
to set the seed value for the Router. The seed value may be an integer between 0
and 32767, inclusive. If the router seed is changed, the resulting route may be
slightly different. This option is rarely needed but is provided for versatility.

Figure 5-16 Router options

Interconnect Resources

The Router uses four different types of routing resources for fast and efficient
connection between logic cells and I/O pads. These resources are clock networks,
express wires, quad wires, and segmented wires.

Clock Networks: Two clock networks exist on each pASIC FPGA. Both of these
dedicated resources are capable of connecting to the clock, set, or reset of any flip
flop in the FPGA. Each clock network must be driven by one of the clock cells
(CKP ADs) located at specific pins depending on the package used.

Segmented Wires: Segmented wires are the most abundant routing resource.
These wires traverse the distance of one logic cell. High-drive pads cannot drive
segmented wires, so the Router restricts nets on High-Drive pads to be routed on
quad or express wires.

Warp User's Guide 219

SpDE

5.4.5

220

Quad Wires: Quad wires span four times the distance on the chip that segmented
wires do (four logic cells). Quad wires may be used in routing any net in the
design, including nets driven by High-Drive pads and parallel logic (see "Special
Routing Cases," below).

~ Note - Quad wires are not available in all devices.

Express Wires: Express wires span the entire length or height of the FPGA device.
They are used for high-fanout nets or for nets that need to travel across the device.

Special Routing Cases

High-Drive Pads: High-Drive Pads (HDP ADs) must drive either quad wires or
express wires. On devices that do not have quad wires, high-drive pads must
drive express wires.

Parallel Logic: The pASIC architecture allows quad or express wires to be driven
from higher-drive sources, such as HDP ADs or parallel logic. Parallel logic is a
logic configuration in which two identical gates (with the same inputs) have their
output nets attached for higher drive capability. There is a restriction on the type
of gates that can be tied in parallel. For more information refer to Section 5.6,
"Design Considerations: Speeding Up High-Fanout Nets" and its discussion on
double-buffering.

~
Hint - SpDE warns the user if he uses more than the recom
mended limit of high-drive nets (nets driven by high-drive pads
or parallel logic). The router may have difficulty completing suc
cessfully in these cases.

Delay Modeler and Back-Annotation

The Delay Modeler performs precise post-layout delay calculations using state-of
the-art circuit analysis techniques. Processing the complete results of place and
route, the Delay Modeler analyzes the results of packing, placement, and routing
to determine intrinsic delays and routing delays for the entire design. The Back
Annotation tool writes these precisely calculated delays directly into the timing
simulation output for accurate simulation results.

Warp User's Guide

SpDE

Delay Modeler

The Delay Modeler performs a comprehensive timing analysis, accounting for
load, slew rate, signal propagation, and intrinsic delay. The tool uses a precise
model of the pASIC device and calculates the effects of fanout, packing,
placement, and routing.

The Delay Modeler can perform best-case, nominal, or worst-case analysis. The
results of the worst-case analysis account for process variation, temperature, and
voltage.

The Delay Modeler may be run in Preliminary or Guaranteed mode (Figure 5-17). In
Preliminary mode, the Delay Modeler uses statistical estimates for the impedance
of ViaLinks in the device. In Guaranteed mode, the more accurate ViaLink
impedances calculated by the Sequencer are used.

Figure 5-17 Delay Modeler options

Hint - For a machine without a math co-processor, the run time
of the Delay Modeler may be prohibitive during design debug
ging. In that case, the Preliminary setting should be used. Once
the design is stable, the Guaranteed setting can be used to ensure
proper timing performance.

The Operating Range radio button group controls the voltage and temperature
ranges that the Delay Modeler uses. The default setting is Commercial. The Custom
setting allows a user-specified temperature and voltage. See "Custom
Temperature and Voltage," below.

Warp User's Guide 221

SpDE

222

The Corner radio button group selects the corner of the selected operating range.
The default is Nominal (25 degrees Celsius and 5 Volts, regardless of the operating
range selected). Best selects the lowest temperature and highest voltage in the
selected operating range; Worst selects the highest temperature and lowest
voltage in the operating range. Simulation should always be performed at the
Worst corner.

The Speed Grade radio button group selects the pASIC speed grade to be analyzed.

The Out-Pad Load radio button group selects the capacitive loading on the output
pins. The default is 30 pF. The Custom setting allows a user-specified load in the
range of 0 pF to 150 pF for all output pins.

~-----------------
Note - The Delay Modeler has been tuned for peak accuracy
within the recommended fanout ranges. High-fanout nets that
produce fanout warnings are calculated to the highest accuracy
possible, but these results are not guaranteed.

Custom Temperature and Voltage

To change the temperature and voltage setting for the Custom operating range,
the user must edit the spde.ini file located in $CYPRESS_DIR\spde\data. For the
Sun platform, this file should be named .spderc and should be in the home
directory. The following lines should be changed:

Warp User's Guide

SpDE

Table 5-4 Edits to spde.ini and .spderc files

pc: spde. ini SUN: .spderc

[delay modeler] ...
... delay modeler.customvccbest=5.0

CustomVCCBest=5.0
delay modeler.customvccnomi-
nal=5.0

CustomVCCNominal=5.0
delay modeler.customvc-
cworst=5.0

CustomVCCWorst=5.0
delay modeler.custom-
tempbest=25.0

CustomTempBest=25.0
delay modeler.customtempnomi-
nal=25.0

CustomTempNominal=25.0
delay modeler.customtemp-
worst=25.0

CustomTempWorst=25.0 ...

The measurement units for CustomVCC variables are Volts. The measurement
units for CustomTemp variables are Celsius degrees. The voltage range should
not vary more than + / - 10% from nominal (SV). The Best, Nominal, and Worst
extensions of these variables represent best, nominal, and worst process factors
for the devices. SpDE selects which variable to use based on the Corner setting
from the SpDE Tools Options window.

Warp User's Guide 223

SpDE

224

Simulation Back-Annotation

The Back-Annotation tool produces files to send timing and placement
information back to the design entry and simulation tools. A variety of simulation
tools are supported for back-annotated simulation. (The simulator with Warp3 is
ViewSim.) The simulator in SpDE can be specified by selecting the Options
Simulator items from the Tools menu (see Figure 5-18).

Figure 5-18 Simulator options for
Back-Annotation

If the default simulator is changed by making a selection from the Simulator
Options window, a click on the Save button will write this information into the
spde.ini file ,spderc for Sun workstations). The table lists the files the Back
Annotation tool creates for each of several simulator settings.

~----------------
Note - After changing the simulator, the user must still run the
Back-Annotation tool to create the simulation netlist.

Warp User's Guide

SpDE

The Verilog® simulator also requires a primitive file, which describes the 5
functionality of the primitive components specified in the design.v file. This
primitive file is design-independent, and is shipped with SpDE. The filename for
this primitive file is $CYPRESS_DIR\spde\data\qIprim.v, where$CYPRESS_DIR
is the directory in which the Warp software is installed.

Table 5-5 Files created during back-annotation

Simulator Setting Files Created Function

Verilog
design. v verilog netlist
design.sdf delay back-annotation file

design.vI intermediate file for spde2vl
ViewSim design.dtb delay back-annotation file

design.var variable values for .dtb file

LMCEDIF
design.edo LMC EDIF netlist device character-
design.kf istics files

Intergraph EDIF design.edo Intergraph EDIF netlist device char-

5.4.6

design.kf acteristics files

When back-annotating to ViewSim, the spde2vl program must be run after back
annotation to create the Viewlogic .vsm file needed for simulation.

The icon that executes the spde2v I program from the Cockpit is labeled
pASIC-> Vsim.

The Back-Annotation tool also supports the back-annotation of pin placement
information back to the source design. For information on this process, see
Section 5.4.3, IIPlacer."

Automatic Test Vector Generator

The Automatic Test Vector Generator (ATVG) automatically generates vectors
that can be used on devices after they have been programmed.

The ATVG tool makes use of an internal scan path in pASIC devices that allows
values to be applied to and read from each flip-flop on the device. Once the
ATVG tool has been run in SpDE, fault coverage can be ascertained by selecting
ATVG Coverage from the Info menu.

Warp User's Guide 225

SpDE

226

Figure 5-19 Sample ATVG
Coverage window

Testing Overview

A major problem encountered in testing FPGAs is the inability to access directly
the vast majority of circuit nodes from the chip periphery. Internal faults,
therefore, must be made observable at the output pins by creating a set of input
stimuli that will exercise the appropriate path and cause faults to appear as
invalid output level changes.

Stuck-At Faults

Stuck-at-O (SAO) and stuck-at-l (SAl) fault analysis is an effective means of
evaluating test sequences for their ability to detect potential faults in circuits.
SpDE's ATVG tool uses an advanced testing technique capable of detecting these
faults.

A SAO fault results from a condition that holds a given signal at a logical 0
regardless of the signal being asserted on that line. Similarly, a SAl fault is a line
that is held at logical 1 regardless of the asserted signal. To illustrate this concept,
consider the simple case of the 3-input AND gate shown in Figure 5-20. The truth
table for this function is given in Table 5-6.

Figure 5-20 Stuck-at-Fault
example

Warp User's Guide

SpDE

There are eight potential faults in this circuit, representing each node (A, B, C, D) 5
stuck-at-O and stuck-at-I. If A or B or C were stuck at logical low , D would also
assume logical low , indicating an incorrect state for the last state (vector 8) of the
truth table and hence a fault. Similarly, stuck-at-1 states for either A or B or C
would show up as invalid outputs in vectors 4, 6, or 7 of the truth table,
respectively.

Table 5-6 Truth table for 3-input AND gate

A B C D Vector Tests

0 0 0 0 1 D for SAl

0 0 1 0 2 D for SAl

0 1 0 0 3 DforSA1

0 1 1 0 4 A, D for SAl

1 0 0 0 5 D for SAl

1 0 1 0 6 B, D for SAl

1 1 0 0 7 C, D for SAl

1 1 1 1 8 A, B, C, D for SAO

By applying appropriate inputs to the circuit, the SAO and SAl faults may be
detected at node D. Table 5-71ists these inputs and their expected responses. Sets
of input conditions and resultant output states are commonly referred to as test
vectors.

The table indicates the fault(s) detected for each test vector.

Table 5-7 Detected fau Its

A B C D Vector Tests

0 1 1 0 1 A, D for SAl

1 0 1 0 2 B, D for SAl

l' 1 0 0 3 C, D for SAl

1 1 1 1 4 A, B, C, D for SAO

Warp User's Guide 227

SpDE

228

As this example demonstrates, a total of four test vectors are required to find all
the potential faults in this simple AND gate example. Actually, SAO and SAl
faults for node D are indistinguishable from faults in the input signals A, B, and
C. From a functionality point of view, this is not important since sufficient
information is generated to confirm correct or incorrect operation of the circuit.

Fault Grading

Fault grading is a quantitative measure of the testability of a circuit and is defined
by the following expression:

FG = SAO faults detected + SAl faults detected

total number of detectable faults

In this example, the total number of detectable faults is six (the total number of
detectable faults is simply two times the number of inputs). Note that faults at the
output D are not counted because they are "covered" by faults at the inputs. The
actual number of potential faults detected by these test vectors is also six,
resulting in 100% fault coverage. Furthermore, these test vectors comprise an
optimum set required to test the sample circuit, even though the truth table for it
has the eight vectors shown in the table.

Design Considerations

The pASIC's testability features allow the designer to achieve a high degree of
fault coverage. Testability can be further increased by designing with a few
simple rules in mind.

• Avoid combinatorial loops. The ATVG tool cannot test combinational
loops such as those shown in Figure 5-21. Logic driven by or driving
these loops may be untestable.

• Using the output of a gate or flip-flop to clock, clear, or preset another
flip-flop reduces testability.

The ATVG tool tries to use all of the flip-flops in the FPGA device for
testing purposes. Clocking, setting, or clearing a flip-flop by intemallogic
renders the flip-flop useless to ATVG, reducing testability. Examples of
logic structures that reduce testability in this way are shown in Figure 5-
21.

Warp User's Guide

SpOE

Although gated clocks reduce testability, a buffer or inverter in the path
between an input pad and the clock of the flip-flop does NOT reduce
testability. A flip-flop clock, clear, or set driven by a bi-directional pin
(BiP AD) also reduces fault coverage.

MUX10F2

DO Y 01 1------' ___ ---7

EN
S AN02

Figure 5-21 Examples of combinatorial loops (feedback)

• Certain input-only pins (HDP ADs) should not be used to drive logic that
controls an asynchronous set or reset of a flip-flop, as doing so either
disables ATVG or reduces coverage.

A subset of the input-only pins (HDP ADs) should not be
used to drive asynchronous sets or resets (of flip-flops)
directly or through a logic path. If so, A TVG will be
disabled or fault coverage will be reduced.

Warp User's Guide 229

SpDE

230

The table shows the pin numbers for different packages.

Table 5-8 Set/reset restrictions

Package Input-pins (HDP ADs) with restrictions driv-
ing sets or resets.

Disables ATVG Lowers Coverage

44pinPLCC 11 10

68pinPLCC 17 16

68pinCPGA A7 B7

84pinPLCC 22 21,66

84pinCPGA C6 B7

100 pin TQFP 12 11,65

144 pin TQFP 18 17,93

144pinCPGA C8 B8,P7

Because of the test mode requirements of pASIC devices, certain input-only (also
known as high-drive) pins cannot be used in a multiple HDP AD configuration
without disabling ATVG, unless they are used only to drive flip-flop clock inputs.
The table lists the high-drive pins that cannot be used in HD2P ADs or HD3P ADs
without disabling ATVG.

Warp User's Guide

5.4.7

SpDE

Table 5-9 HDPAD restrictions

Package Pins not to include in HD2P ADs or
HD3PADs, unless used as clock only (disables
ATVG)

44pinPLCC 10,36

68 pin PLCC 16,54

68pinCPGA B7,K7

84pinPLCC 21,66

84 pinCPGA B7,K7

100 pin TQFP 11,65

144 pin TQFP 17,93

144 pin CPGA B8,P7

Sequencer

The Sequencer is the tool that generates the programming file used to program
the pASIC devices. This file is generated internally and must be written out using
the Export LOF

selection in the File menu. The sequencer tool must be run before the LOF file can
be written out.

5.5 SpDE Analysis Tools

After automatic placement and routing, SpDE allows the user to view logic cells
and examine the timing of critical paths. Two tools are available for these
purposes:

• Physical Viewer

• Path Analyzer

The following section discusses how to highlight critical nets for physical viewing
using the Physical Viewer, as well as the calculation of critical timing parameters
such as clock skew, operation frequency, setup time, and hold time using the Path
Analyzer.

Warp User's Guide 231

SpDE

m 5.5.1

232

Highlight Net

Highlight Net mode helps the user analyze a design by highlighting and un
highlighting nets. Highlight Net mode cannot be used until a design has been
placed and routed.

To open the Highlight Nets window (Figure 5-22), select the Highlight Net ... item
from the View menu in SpDE.

Figure 5-22 Highlight Nets window

To highlight nets, select one or more nets from the box on the left, or specify a net
name in the Wildcard Selection field on the left side of the dialog box, and click on
the right arrow button.

To remove nets from the highlight list, select one or more nets from the box on the
right, or specify a net name in the Wildcard Selection field on the right side of the
dialog box, and click on the left arrow button.

When using the Wildcard Selection fields, the wildcard characters 1/*" and I/?" are
accepted. The 1/*" character matches zero or more occurrences of any character.
The I/?" character matches a single occurrence of a character.

Double-clicking on a net name in either list moves it to the other list.

All nets can be removed from the highlight list by clicking on the ALL button.

Once in highlight net mode, the highlight status may be toggled by clicking
directly on the desired nets in the physical view.

Warp User's Guide

5.5.2

SpDE

To exit highlight net mode, click Cancel. The Physical View will be redrawn in the
normal mode.

Double-clicking on a net in the Highlighted box un-highlights the net in the
physical view. Clicking on a highlighted wire in the physical view un-highlights
the net.

Pan to Net Driver

The Highlight Nets window contains a check box named Pan to Net Driver. When
this box is checked, SpDE automatically pans to the driver of the net that is
selected. This is true whether the net is selected by clicking on a wire in the
physical view or by selecting a net from the available list.

Path Analyzer

The Path Analyzer is a powerful static timing analyzer that can be used to
determine operating frequency, setup and hold times, and clock skew. The Path
Analyzer performs static timing analysis of the circuit delays from the Delay
Modeler. The Path Analyzer offers automatic analysis of all signals or of a user
specified subset of signals in the completed design. Working closely with the
Physical Viewer, the Path Analyzer instantly identifies critical paths for
optimization. Once the critical path has been identified, the user can use the
Timing-Driven Placer to optimize the placement in order to achieve specified
operating constraints.

Warp User's Guide 233

SpDE

234

To run the Path Analyzer, select Path Analyzer from the Tools menu. Results are
displayed in a four-column spreadsheet format (Figure 5-23).

Figure 5-23 Path Analyzer window

The Path # column is displayed in a push-button format, for reasons to be
explained shortly. The Delay column indicates the delay in nanoseconds. For post
layout analysis, these delays are determined by the Delay Modeler. The Delay
Path column displays the starting and ending nets of each path.

If the starting point is a pad, the net attached to the off-chip terminal on the pad
will be used; if the starting point is a flip-flop, the net attached to the output of the
flip-flop will be used. Likewise, if the ending point is a pad, the net attached to the
off-chip terminal on the pad will be used; if the ending point is a flip-flop, the net
attached to the output of the flip-flop will be used.

Expanding Paths

To expand a path into its component trails, position the cursor over the desired
button in the Path # column and double-click. The Path # button changes from -1-
to +1+ (assuming path number 1/1") to indicate that the path has been expanded.
The component trails are indented and listed in blue to differentiate them from
the other Delay Path rows. Each trail lists a delay value in nanoseconds, along with
an R or F token to denote a rising- or falling-edge delay.

Warp User's Guide

SpOE

Path Analyzer Options

All Path Analyzer options are set from the Path Analyzer Options dialog box
(Figure 5-24), which appears when the user clicks the Options button in the Path
Analyzer window.

BIN_'_REMAININ
BIN_'_REMAININ
BIN_'_REMAININ
BIN_'_REMAININ
BIN_2_REMAININ
BIN_2_REMAININ
BIN_2_REMAININ
BIN_2_REMAININ
CLK
CLK_IN
EMPlY_'
EMPlY _1-0Z_
EMPlY_2
EMPlY _2-0Z_

Figure 5-24 Path Analyzer Options dialog box

The Run button at the top of the window re-runs the Path Analyzer with the
newly specified options. The Cancel button returns to the Path Analyzer and
discards any newly specified option selections.

Warp User's Guide 235

SpDE

236

The Path Delay group of radio buttons selects maximum or minimum path delays.
Each trail along a given path includes a rising-edge delay and a falling-edge
delay. If Find Max is selected, the Path Analyzer sums the larger of these edge
delays at each trail; if Find Min is selected, the Path Analyzer sums the smaller of
these edge delays. This selection does not change the operating conditions. (In
other words, it does not change worst-case commercial to best-case commercial.)
Find Max lists signals in order of longest delay to shortest. Find Min lists signals in
order of smallest delay to longest.

The Display group determines the number of paths calculated and listed in the
path analyzer spreadsheet. The # Paths entry limits the number of paths to the
specified value. The Delay entry is interpreted with regard to the Path Delay
setting-if Find Max is selected, paths are listed if their delay is greater than or
equal to the specified value; if Find Min is selected, paths are listed if their delay is
less than or equal to the specified value.

The remaining lower sections of the dialog box are used to select the Start Set and
Stop Set that specify the desired paths. The Start Set list box specifies the starting
nets for path analysis, while the Stop Set list box specifies the ending nets for path
analysis. Providing specific Start Set and Stop Set information limits the amount of
data in the spreadsheet report, making interpreting the results of the Path
Analyzer easier.

The Start Types and Stop Types check boxes provide the easiest method for
selecting the Start Set and Stop Set list box entries. By default, all of these check
boxes are selected. The Pads check box selects all nets attached to the external
terminals of all pads; this check box selects I/O pads, high-drive pads, and clock
pads. The Flip-Flops check box selects all nets attached to the output terminals of
all flip-flops. The Clock Pads check box selects all nets attached to the external
terminals of any pad functioning as a clock (not only the internally buffered
clocking networks).

Selecting one of these check boxes adds all of the appropriate nets to the desired
set. Deselecting one of these check boxes removes all of the appropriate nets from
the desired set. For example, if none of the Start Types check boxes are selected,
then selecting the Pads check box adds all pad nets to the Start Set list box.
Selecting the Clock Pads check box results in no change, as all pad nets are already
selected. Deselecting the Clock Pads check box, however, removes the clock pad
nets from the Start Set list box, leaving only non-clock pad nets.

Warp User's Guide

SpOE

Nets can be selected manually using the Available list box in the center of the m
dialog box. Select a net or nets in this list box, then click on one of the arrow
buttons below the Available list box. Clicking on the left-arrow button adds the
selected nets to the Start Set list box, while clicking on the right-arrow button adds
the selected nets to the Stop Set list box.

Likewise, the Start Set and Stop Set list boxes can be "pruned" by selecting a net or
nets and clicking on the arrow button below the list box involved.

Groups of nets can be selected using the combo buttons below each list box. In
Figure 5-24, for example, the bus IB[O:3] can be selected by clicking in the combo
button just below the Available list box and typing IB* or IB[?] and pressing the
Tab key. Once the desired nets are selected, they can be acted upon using the
arrow buttons, as described previously.

~----------------
Note - When entering text to select nets from the Start Set, Avail-
able, or Stop Set lists, wildcards can be used. An asterisk (1/*")
represents one or more characters; a question mark ("?") repre-
sents a single character (e.g., addr* would select addr[O],
addr[l], addr[2], etc.).

Warp User's Guide 237

SpDE

238

Graphing

The Path Analyzer provides essential information about the performance of the
design. Occasionally, it is useful to view this information in graphical form. The
Path Analyzer's Graph menu can be used to create two types of graphs: Path vs.
Delay and Delay Histogram graphs, shown in Figure 5-25.

Qptlons

15
Path vs. Delay

10

10 15 20 25 30 35 40 45

Figure 5-25 Path vs. Delay graph

The Path vs. Delay graph shows the path delays on the Y-axis and the path
numbers on the X-axis. Double-clicking on points in this graph has the same
highlighting effect as double-clicking on paths in the Path Analyzer.

The Delay Histogram graph uses a range of path delays as ''buckets'' on the X- axis.
The number of paths falling into a delay range ''bucket'' is shown as a Y - value for
each range.

Both graphs feature an options menu that provides the capability to copy ,the
graph to the clipboard (as a bitmap) or to print the graph to the current printer.
Each graph can also be customized with the Graph/Options menu command from
the main Path Analyzer window.

Warp User's Guide

SpDE

Key Calculations

Using the Path Analyzer, key information can be determined with simple
arithmetic.

~
Hint - The results of these calculations will always be conserva
tive, for reasons provided below. The calculations do, however,
provide a quick and convenient means of determining worst-case
design performance.

Clock Skew

Click the Path Analyzer's Option button to bring up the Path Analyzer Options
dialog box.

• Set the Path Delay radio button to Find Max.

• In the Start Types check box group, activate only the Clock Pad check box.
The clock pad must be used as a clock not an input.

• In the End Types check box group, activate only the Flip-Flops check box.

• Click the Run button to execute the Path Analyzer.

• Make a note of the first path listed and the last path listed. (Note that the
Paths setting must be high enough to list all specified paths; in this case,
it's the number of flip-flops used in the design.) The Clock Skew is given
by:

SKEW = first-patn - last-patb

The clock skew calculation is always conservative, as the calculation ignores the
fact that clock skew is meaningful only between flip-flops on a common path.

Warp User's Guide 239

SpDE

Operating Frequency

Click the Path Analyzer's Option button to bring up the Path Analyzer Options
dialog box.

• Set the Path Delay radio button to Find Max.

• In the Start Types check box group, activate only the Flip-Flops check box.

• In the End Types check box group, activate only the Flip-Flops check box.

• Click the Run button to execute the Path Analyzer.

• Note the delay of the critical path listed. The operating frequency is given
by:

Fmax = l/(critical-path + clock SKEW)

The designer must determine the critical path in his design. This will come from a
knowledge of the circuit function and its implementation. The designer may have
to use some analysis to determine which paths are the frequency determining
paths. Many designs contain false paths; therefore, the maximum delay path
listed in the path analyzer may not be (and usually is not) the frequency
determining path. False paths may include the following:

• Data paths with multiplexing and with various data sources and
destinations where the longest path through the logic is never used.

• Long paths purposely given to signals which arrive long before they are
required. Such paths are encountered in counters where high order stages
reach their state long before the low order stage finally triggers a toggle in
the counter.

Clock skew must be chosen for the critical path or paths identified. The largest
skew identified is not necessarily the one to be used in the equation above. The
number used must be the skew relevant to the critical delay path.

Setup Time

Click the Path Analyzer's Option b,utton to bring up the Path Analyzer Options
dialog box.

• Set the Path Delay radio button to Find Max.

• In the Start Types check box group, activate only the Pads check box.

• In the End Types check box group, activate only the Flip-Flops check box.

• Click the Run button to execute the Path Analyzer.

240 Warp User's Guide

SpDE

• Make a note of the first path listed; call it pads_toJfs.

• Click the Path Analyzer's Option button to bring up the Path Analyzer
Options dialog box.

• Set the Path Delay radio button to Find Min.

• In the Start Types check box group, activate only the Clock Pad check box.

• In the End Types check box group, activate only the Flip-Flops check box.

• Click the Run button to execute the Path Analyzer.

• Note the delay of the first path listed; call it clock_toJfs. The setup time is
given by:

tsetup = pads_to_ffs - clock_to_ffs

The setup time calculation is always conservative, because the two calculations
often apply to different flip-flops.

Hold Time

Click the Path Analyzer's Option button to bring up the Path Analyzer Options
dialog box.

• Set the Path Delay radio button to Find Min.

• In the Start Types check box group, activate only the Pads check box.

• In the End Types check box group, activate only the Flip-Flops check box.

• Click the Run button to execute the Path Analyzer.

• Make a note of the first path listed; call it pads_toJfs.

• Click the Path Analyzer's Option button to bring up the Path Analyzer
Options dialog box.

• Set the Path Delay radio button to Find Max.

• In the Start Types check box group, activate only the Clock Pad check box.

• In the End Types check box group, activate only the Flip-Flops check box.

• Click the Run button to execute the Path Analyzer.

• Note the delay of the first path listed;, call it clock_toJfs. The hold time is
given by:

t ho1d = clock_to_ffs - pads_to_ffs

This calculation will typically yield a negative number. The Hold Time
calculation is always pessimistic, as the calculation ignores the fact that the two
measurements are likely along different paths.

Warp User's Guide 241

SpDE

5.6.1

242

Design Considerations: Speeding Up High-Fanout Nets

This section describes several techniques for speeding up the performance of
designs created by the Warp system's SpDE tools. For more information, refer to
Chapter 9, "Synthesis."

For high-fanout, timing-critical nets, designers should consider improving design
performance using buffering techniques. In some cases, solutions such as
paralleling or pipelining can be used.

Five techniques that can be used to improve circuit performance are described on
the following pages:

• double buffering

• split buffering

• selecti ve buffering

• paralleling

• pipelining

Double Buffering

The pASIC architecture allows two sources to drive a net in specific cases. This is
called double buffering. Using two gates to drive a high-fanout net speeds up the
performance of the net dramatically.

Figure 5-26 is an example of double buffering in a schematic.

Warp User's Guide

INOr-------------.-~_
IN1r-------~~~

IN2 >----~...._t_+_--'":~ KULTI-BUFIl'E:R
=TRUE

INV

INV

Figure 5-26 Double buffering example

SpDE

OUT 0

OUT1

OUT 2

OUT 3

OUT4

OUTS

OUT'

OUT 7

Double buffering is legal as long as the two gates driving the high-fanout net are
identical gates, with the same nets on the inputs and output. Each gate must fit
into an AND-fragment (P Afrag_a library element). Double buffering is an
excellent performance solution, and offers the best skew and delay characteristics
of all buffering solutions for fanouts of 8 to 16. An example of double buffering in
a VHDL source file is the following:

Resolution function for wired-or. Used to create
-- legal VBDL for double-buffering techniques
-- employed for pasic.

use work.resolutionpkg.all;
use work.GATESPKG.all;
use work.cypress.all;
use work.rtlpkg.all;

Warp User's Guide 243

SpDE

244

entity DOUBLEBUF is
port (INO: IN bit;

IN1: IN bit;
IN2: IN bit;

OUT7: I NOUT bit;
OUT6: INOUT bit;
OUTS: INOUT bit;
OUT4: INOUT bit;
OUT3: I NOUT bit;
OUT2: I NOUT bit;
OUT1: I NOUT bit;
OUTO: INOUT bit);

end DOUBLEBOF;

architecture archDOUBLEBUF of DOUBLEBUF is
-- net to be resolved
signal multiple_driver: multi_buffer bit;

begin
multiple_driver <= INO AND INl AND IN2;
multiple_driver <= INO AND INl AND IN2;
OUTO <= NOT multiple_driver;
OUTl <= NOT multiple_driver;
OUT2 <= NOT multiple_driver;
OUT3 <= NOT multiple_driver;
OUT4 <= NOT multiple_driver;
OUTS <= NOT multiple_driver;
OUT6 <= NOT multiple_driver;
OUT7 <= NOT multiple_driver;

end archDOUBLEBUF;

driver #1
driver #2

~----------------
Note - Double buffering on an 8x12 (1000 usable gates) or 12x16
(2000 usable gates) device requires the use of express wires.
These devices have limited express wire resources, so only a few
double buffers should be used. Refer to the Section 5.4.4,
"Router," for more information.

Warp User's Guide

SpOE

5.6.2 Split Buffering

Split buffering breaks a wide-fanout net into two or more nets.

Figure 5-27 is an example of split buffering. Without the buffers, the DFF drives a
fanout of 8. As configured in the illustration, the DFF drives a fanout of 2, and
each buffer drives a fanout of 4.

...
DI.ITO

DI.IT1

DI.ITl:

IN ...
..-.

DI.I HI

DFF

t:u: D II

01.1 YoI.

IN ...

DI.ITri

OI.lTS
F

DI.IT7
-'

Figure 5-27 Circuit demonstrating split buffering

~----------------
Note - Adding buffers introduces a logic cell delay to the net.
This added delay must be balanced against the gain in reducing
the fanout. Simple split buffering (as demonstrated in Figure 5-
27) is generally employed only with fanouts of 16 or greater.

Warp User's Guide 245

SpDE

m 5.6.3

246

Selective Buffering

Selective buffering is the selective use of buffers in situations where a high-fanout
net has a small number of critical destinations and a large number of less-critical
ones.

Figure 5-28 is an example of selective buffering. The DFF drives a fanout of 8, but
only one of the destinations is in the critical path of the circuit. Inserting a single
buffer between the DFF output and the 7 non-critical destinations restructures the
circuit, so that the DFF drives a fanout of two without adding any logic cell delay
in the critical path.

IN ...

[lUT[I

...
[lUTi

[lUTZ

[lUT~

OF'F'

c u: F [I II

[lUfoI.

IN ...

[lUU

[I U TIi
F

[lI.IT 7

Figure 5-28 Circuit demonstrating selective buffering

Warp User's Guide

5.6.4

~
Hint - Buffers should be introduced with care and skill. Selective
buffering offers tremendous improvement in circumstances
where the circuit has a few dearly identifiable critical paths.

Paralleling

SpDE

Paralleling is a design technique that duplicates the logic driving a high-fanout
load to reduce the effective fanout. Duplicating the logic avoids the delay
introduced by adding buffers to the circuit.

Successful buffering must balance reduced fanout against the additional delay
that use of buffers causes. Paralleling is an alternative that does not introduce this
added delay.

aUTO

aUT:l

NY

au Till!

NY

IN 0
OUT]

IN:l
NY

IU no]

OUT .II

NY

OUTS

dUTS

dun
NY

Figure 5-29 Circuit demonstrating paralleling

Warp User's Guide 247

SpDE

5.6.5

248

Figure 5-29 is an example of paralleling. The AND gate has been duplicated, with
each of its inputs tied to the corresponding input on the "twin" gate. Each AND
gate drives a fanout of 8, effectively halving the fanout, without introducing the
added delay associated with buffering. By duplicating the AND gate, however,
the fanout on each of the input nets has been increased.

Paralleling is similar to double buffering, except that the outputs are not tied
together. Paralleling should be used instead of double buffering when:

• skew is not critical

• too many express wires have already been used for high-drive inputs or
double buffers (see the section on the Router)

• the logic to be replicated does not fit into an AND fragment of the larger
cell (no larger than a P Afrag_a library element)

Pipelining

Pipelining is the technique of inserting registers in long combinatorial paths,
effectively increasing the system clock rate.

Inserting registers in long combinatorial paths shortens the length of the critical
path and allows operations to be overlapped, increasing the system clock rate.
The pASIC architecture promotes pipelining, as each logic cell contains a D flip
flop. As a result, a design can be pipelined with little or no increase in the number
of logic cells used.

For more information on achieving high performance or high utilization in
designs, see Chapter 9, "Synthesis."

Warp User's Guide

Chapter 6
Nova

Nova

6.1 Introduction

Nova is Cypress Semiconductor Corporation's name for its JEDEC-based
functional simulator.

The Nova user interface provides an easy way to:

• specify JEDEC files to simulate

• read or write stimulus files

• convert files from .jed to ViewSim format

• edit input waveform traces

• simulate the behavior of a design

• alternate between various views (i.e., collections of signals) and specify
signals to be included in each view

• specify the length and resolution of a simulation

• specify segments, where initial conditions can be reapplied and edited in
order to compare results of differing initial conditions side-by-side

• other useful capabilities

This manual describes how to use Nova to simulate designs. It assumes
familiarity with common user interface operations for the computer, such as the
use of scroll bars, menu buttons, and opening and closing windows.

Advanced users may refer to Section 6.9, "Nova JEDEC Simulator Quick
Reference Sheet," for a brief overview of the major functionality.

6.2 Starting Nova

250

On Sun workstations, typing nova on the command line brings up the Nova
window. On PCs and compatibles, double-clicking on the Nova icon in the
Cypress group window brings up the Nova window.

By default, Nova comes up ready to run on a color screen.

To start Nova on a monochrome Sun workstation, type nova -m on the
command line.

Warp User's Guide

6.3

Nova

To set Nova to come up in monochrome mode when running Windows on an
IBM PC or compatible computer, do the following:

• Select the Nova icon from the Warp R4 group window.

• Select Properties from the File menu.

• Edit the Command Line entry to include the -m option.

• Click OK.

The Nova Window

The Nova window (Figure 6-1) consists of a menu bar with several items across
the top; a column of buttons along the left side, listing pin and node numbers and
signal names; an area for displaying traces; and scroll bars across the bottom and
right sides.

Menu Bar

The menu items are File, Edit, Simulate, Views, and Options. Under each of these
items are menus for selecting related actions. The menus are ordered so that the
most common operation is at the top. The contents of each menu are described in
greater detail later in this chapter.

Only two menu items, Open and Exit, are enabled in the File menu when Nova
first opens. When the user opens a .jed file, the other menu items will be enabled.

Node Numbers, Signal Names

The left-hand side of the Nova window consists of a column of bu ttons,
displaying pin and node numbers and their associated signal names. A node is an
area of a circuit containing one or more points whose locations the user may wish
to trace. (For information about different values within a node, refer to
Section 6.5.4, "Nodes.")

To change the width of the buttons where signal names are displayed, use the
Signal Name Size item in the Options menu.

Warp User's Guide 251

Nova

Trace Area
The trace area displays the values of the nodes/ signals listed in the left-hand
column.

Figure 6-1 Main Nova Window

The window displays up to two measuring cursors, which allows the user to see
precisely the value(s) of several signals at a single time. To display the first cursor,
click at the bottom of the trace window. To display a second cursor, click at the
bottom of the trace window while pressing the Shift key.

To change the position of either cursor, click and hold on the cursor at the bottom
of the trace window, then drag the cursor to its new position. The cursor's
horizontal position in simulation tics is displayed next to each cursor.

Note that a simulation tic does not represent any set amount of real-time delay.
Instead, a simulation tic is simply a unit of simulation time.

6.4 The File Men u

252

The File Menu contains items related to opening JEDEC files for simulation,
reading and writing stimulus files, and saving output files in various formats.

The File menu (Figure 6-2) in the Nova dialog box contains the following items:

• Open ...

• Write Sim·(*.sim)

• Write Trace (*.psd)

• Read Stimulus File

Warp User's Guide

6.4.1

Nova

• Write JEDEC Vectors

• Write JEDEC File (*.jed)

• Disassemble to ViewSim Format (*.vhd)

• Exit

• About ...

The operations of each of these menu items are discussed in greater detail on the
next few pages.

Write JEDEC Vectors
Write JEDEC File (*.jed)
Disassemble to ViewSim format (*.vhd)

E~it

8bout...

Figure 6-2 Nova File Menu

Opening Files

The Open ... item in the File menu selects which .jed file to open and tells Nova
what device is targeted in simulation.

Selecting Open ... brings up the Open Files dialog box (Figure 6-3). The File Name
line specifies the names of files to view or to open in the Files window. By default,
this line reads I/*.jed."

Warp User's Guide 253

Nova

254

To open a file, the user can select a file from the list shown in the Files window, or
type the name of the file on the File name line. Selecting a .jed file and clicking on
Open closes the dialog box and, displays traces. (If a stimulus file of the form
filename.sim orfilename.stm exists, it is also read automatically.) Clicking on Cancel
closes the dialog box without opening a file.

The Select Device dialog box (Figure 6-4) comes up when the user clicks on Open in
the Open Files dialog box, and the file to be opened is a .jed file not created by
Warp. The Select Device dialog box maps a JEDEC file to a device.

Selecting a device with the wrong number of fuses brings up a message box
stating: "Wrong device type for this JEDEC - QF doesn't match." This indicates
that the number of fuses in the selected device does not match the number in the
JEDEC file.

~-----------------
Note - If Nova says that it cannot find file devices.dat,-check to
make sure that the CYPRESS_DIR environment variable is set
correctly. Nova uses this file to find the proper pin names and
numbers for each target device and package.

list Files of lJ'pe:

II r".:'

c:\w2tutor

IC.7c:\
I!t w2tutor
L:J Ic371
L:J sch
LJ S}lm

LJ wir
LJ work

Driyes:

IIiiii c: warp system II

Figure 6-3 Open Files Dialog Box

Warp User's Guide

6.4.2

C16L8
C16R4
C16R6
C16R8
C20V8
C16V8
C20G10
C20RA10
C22V10
C22VP10
C33l
C335
C346

Figure 6-4 Select Device
Dialog Box

Reading and Writing Stimulus Files

Nova

Write Sim and Write Trace save simulation data. Read Stimulus File reads data
stored by a previous Write Sim operation.

Write Sim saves the current simulation data to filename.sim, where filename is the
prefix of the file the user is simulating. If a .sim file already exists with this
filename, the new simulation data overwrites the old. The .sim file (see Figure 6-5)
can be re-read with the Read Stimulus File option.

Write Trace saves the trace information to filename. psd, where filename is the prefix
of the file being simulated. The .psd file (see Figure 6-6) provides a column
oriented, human-readable record of trace values during the simulation. Bus
values are not written to the file.

Warp User's Guide 255

Nova

256

Read Stimulus File reads simulation data from a .sim file. Because reading in the
simulation file may change some of the settings the user has set for the current
simulation, a message box is displayed, asking if the stimulus file should be read
in. A Yes reply reads in the .sim file. A No reply returns the user to the main Nova
window. The filename.sim file is automatic all y read when the filename.jed file is
opened.

1
e1 oelepi n1
F83EOF83EOF83EOF83EOF83EOF83EOF83EOF83EOF83EOF83EOF83EOF83EOF83E
00
000 0 000 0 000 0 0 000
000 0 0 0 0 0 0 0 0 0 0 000
000 0 0 0 0 0 0 0 0 0 0 000
9999
2
pin2
00
00
000 0 0 0 0 000 0 0 0 000
000 0 000 0 0 0 0 0 0 000
000 0 000 0 0 0 0 0 0 000
9999
3
nieke1_pin3
00FF8000
00
000 0 000 0 0 0 0 0 000 0
000 0 000 0 000 0 0 000
000 0 0 0 0 0 0 0 0 0 0 000
9999

Figure 6-5 Portion of .sim File

Warp User's Guide

6.4.3

6.4.4

000 0 L L L
1 OOOLLL
200 0 L L L
3 000 L L L
4 1 000 L L L
5 000 0 L L L
60000 L L L
70000 L L L
80100LLL
90100LLL

10 1 1 0 0 L L L
11 1 1 0 0 L L L
12 1 1 0 0 L L L
13 1 1 0 0 L L L
14 1 1 0 0 L L L
15 0 1 0 0 L L L
16 0 1 0 0 L L L
17 0 0 1 0 L L L
18 0 0 1 0 L L L
19 0 0 1 0 L L L
20 1 0 1 0 L L L
21 1 0 1 0 L L L
22 1 0 1 0 L L L
23 1 0 1 0 L L L
24 1 0 1 0 L L L
25 0 0 1 0 L L L

Figure 6-6 Portion
of .psd File

Writing JEDEC Vectors

Nova

Write lEVEC Vectors appends vector information to the JEDEC file. The vectors
can be used to test parts after they are programmed. If the JEDEC file already
contains vector information, the new vector information overwrites the old.

Converting Between File Formats

The File menu includes items that allow the user to convert vector information
into different file formats, depending on what he wants to do with it.

Figure 6-7 shows the various file types that can be input to or output from Warp,
Nova, or a device programmer.

Write lEVEC File (*.jed) writes out a JEDEC file from the data available to the
simulator. The dialog box options include instructions in the JEDEC file to blow
the security fuse when the device is programmed, or to write the JEDEC file using
a compressed "K-field" hexadecimal representation.

Warp User's Guide 257

Nova

258

Disassemble to ViewSim format (*. vhd) writes out a Viewlogic VHDL file which is
used to simulate the design in ViewSim. The file is created in the vhd.
subdirectory

WARP

DEVICE

PROGRAMMER

NOVA

Figure 6-7 Possible Data Paths and File Formats

Warp User's Guide

6.4.5 About and Exit

The File menu's About item displays some basic information about the Nova
simulator. The Exit item exits the simulator.

Nova

Besides displaying version information about the Nova simulator, the About
dialog box also includes a Help button. Clicking on Help brings up help about
Nova.

6.5 The Edit Menu

Use the items in the Edit Menu to modify trace information displayed on the
screen. With the Edit menu, the user can set the selected range of a trace; create
and delete view nodes; create, delete and edit buses; and change the bus radix.

Items in the Edit Menu (Figure 6-8) include the following:

• High, Low sets the selected trace or portion of a trace to lor 0,
respectively.

• Clock sets up repetitive pulses.

• Pulse sets up a single pulse.

• Node Defaults specifies the default source for the displayed value of a
node.

• Create View Node creates a new trace and selects the point within a node at
which the displayed value is measured.

• Delete View Node deletes traces from the simulation.

• Create Bus groups traces for display as a single entity called a bus, used
when thinking of groups of signals as a single value is more convenient.
Bus values are only displayed when a measuring cursor is present.

• Delete Bus un-defines a previously defined bus.

• Edit Bus adds or removes signals from a bus.

• Bus Radix specifies radix used to display a bus value.

Warp User's Guide 259

Nova

6.5.1

260

These items are described in greater detail on the following pages.

Node Defaults
Create ~iew Node
Delete View Node
Create flus
Delete Bys

BUli Radix

Figure 6-8 Nova Edit Menu

Setting Signals High or Low

With the Nova user interface, the user can easily set the value of all or a selected
portion of an input signal to high or low.

To set an entire input signal to high or low:

• Click on the button containing the name of the signal in the Nova
window to select it. On color monitors, the button changes color, and the
trace turns blue when selected. On monochrome monitors, the button
goes to inverse video, and the trace changes to a dotted line when
selected.

• Select High or Low from the Edit menu as desired, or type "1" or "D."

To set a portion of an input signal high or low (see Figure 6-9):

• De-select the signal.

• Click and hold the mouse button on the trace at the left edge of the
selected area.

• Drag the mouse to the right edge of the selected area.

• Then select High or Low from the Edit menu, as appropriate, or type "1" or
"D. "

Warp User's Guide

6.5.2

Nova

Both the left and middle buttons of a 3-button mouse perform the same action
when clicked to position an edge.

Figure 6-9 Setting a Portion of a Signal High or Low

Top: press and hold the mouse button at the left edge of the selected area. Middle:
drag to the right edge of the selected area, and release the mouse button. Bottom:
select High or Low from the Edit menu, or type "1" or "0" from the keyboard.

Setting Up Clock Signals (Repetitive Pulses)

The Clock item under the Edit menu allows the user to set up repetitive pulses on a
selected signal or portion thereof.

To set up a repetitive pulse or clock signal, select a signal or a portion of a signal,
then select the Clock item under the File menu. This brings up the Clock dialog box
(Figure 6-10), which allows the user to fill in various repetitive pulse parameters.

• Clock Period specifies the period of repetition for the pulse in simulator
tics.

• Clock Delay specifies the number of simulator tics to wait (beginning with
the left edge of the selected area) before starting the repetition. The
default is 0 tics.

• Clock High Time specifies the amount of time that the selected signal
should be set to 1 during each repetition. The default is 5.

• Start High and Start Low specify whether each repetition starts with the
signal set to 0 or 1.

• OK sets up the repetitive pulse.

• Cancel closes the Clock dialog box without affecting the trace.

Warp User's Guide 261

Nova

6.5.3

Clock Delay: ,1.-° ____ ----'

Clock High Time: '1.-'_0 ____ ---'

@ Start High

o Start Low

Figure 6-10 Clock Dialog Box

Setting Up Non-Repetitive Pulses

The Pulse item under the Edit menu allows the user to set up single pulses on a
selected signal or portion thereof.

To set up a single pulse on a signal, select a signal or a portion of a signal, then
select the Pulse item under the File menu. This brings up the Pulse dialog box
(Figure 6-11), which allows the user to fill in various pulse parameters.

• Pulse Duration specifies the length of the pulse, in simulator tics.

• Pulse Delay specifies the number of simulator tics to wait (starting from
the start of the simulation) before applying the pulse. The default is O.

• Start High and Start Low specify whether the pulse sets the signal to 0 or l.

• OK sets up the pulse.

• Cancel closes the Pulse dialog box without affecting the trace.

262 Warp User's Guide

6.5.4

Nova

Pulse Duration:
1
10

Pulse Delay:
1
0

@ Start High

o Start Low

Figure 6-11 Pulse Dialog Box

Nodes

A node is an area of a circuit containing one or more points at which the user may
wish to trace a signal. Nova allows the user to specify the exact point or points
within a node at which to trace signal values, to set the default value of a node,
and to force one or more positions in a node to known values.

To Nova, a node is:

• any input to an array

• any output from an array

• any pin on the device

• any other electrical position that needs to be modeled but does not meet
the first three criteria

For each node, the user can:

• create a view node, i.e., specify one or more positions within a node from
which to trace values

• specify the means by which a node is assigned its value

• force any position in a node to a known value (this is often useful for
multi-segment simulations)

Each of these capabilities is discussed in greater detail on the following pages.

Warp User's Guide 263

Ii

Nova

6.5.5 Selecting Node Points to View

Many nodes contain several points at which the user can trace simulation values.
Create View Node allows the user to select which of those points to view.

A view node allows the user to see what is happening at various points inside a
node. Selecting Create View Node brings up the Create View Node dialog box
(Figure 6-12), which allows the user to select points to view within a selected
node. To bring up this dialog box, the user must select a node with the current
view set to FULL. (See Section 6.7, "The Views Menu," for information about
changing views.)

The Create View Node dialog box displays the node name with the view node
name to be created directly below it. Nova creates the view node name by taking
the node number, followed by a '-' and an extension to represent the selected
signal to be displayed.

The view node points that can be displayed depend upon the selected node.
Examples of view node points that can be displayed include:

• Data from Array - This is the data at the output of an OR-X OR combination
of gates. Extension is "ardat."

• Out value before OE - This is the data on the output pin if the output enable
is asserted. This includes the output buffer inversion, if there is one.
Extension is lib _oe."

• OE Value - This is the state of the output enable. If high, OE is asserted so
the output is driven. Extension is "oe."

• Node Output - This is the data on the pin. This is the default view for
output nodes. Extension is "OUt."

264 Warp User's Guide

6.5.6

Node:

1123-ardat

1;1.1;;;1

1'!'I&~li"1

rSignalto be displayed is:------------,

@ Data from array

o Register value

o Node output

Figure 6-12 Create View Node Dialog Box

Nova

• Feedback at input - This is the data at the D input of the input register, if
there is one. If there is no input register, feedback at input and feedback
to array are identical. Extension is "fbkin."

• Feedback to array - This is the data that is being fed to the array. It differs
from feedback at input because it may be the other side of a register.
Extension is "fbk_ar."

Selecting OK closes the Create View Node dialog box and creates a view node,
displayed at the end of the node list. Selecting Cancel closes the Create View Node
dialog box without creating the view node.

To delete a view node, select the view node to delete, then select Delete View Node
from the Edit menu.

Setting Input Node Values

Node Defaults allows the user to specify the default source for the displayed value
of anode.

Selecting Node Defaults brings up the Node Defaults dialog box (Figure 6-13).

Use the Change Default Input window of the Node Defaults dialog box to specify the
source for the value of an input node. The current setting is shown highlighted
within this window.

Warp User's Guide 265

Nova

266

There are four possible settings for each input. They are:

• High (1): tie the signal to Vee

• Low (0): tie the signal to V ss (ground)

• Use Simulation Record: use the value(s) in the simulation record ,sim file)

• Other Node Record: tie the signal to another node. Enter the node number
on the line to the right of the Other Node Record button

Node: I;Il~!11111';;;:1

1111 •• lll!1
'-Change Default Input:-----------,

o High (1)

o Low (0)

@ Use Simulation Record

o Other Node Record L-lo __J

,-Jam Load:----------------,

o Force Node High (1)

@ Force Node Low (0)

o Output Reg High (1)

@ Output Reg Low (0)

o lnpul Reg High fI}

@ Input Reg Low (01

o 2nd Input Reg High Pl

@ 2nd Input Reg Low (01

Figure 6-13 Node Defaults Dialog Box

Warp User's Guide

6.5.7

6.5.8

Forcing Output Node Values

Node Defaults also allows the user to force the value of an output node at a
specified point.

Selecting Node Defaults brings up the Node Defaults dialog box (Figure 6-13).

Nova

The Jam Load window of the Node Defaults dialog box can be used to force an
output node to a specified value. Values of these nodes rarely need to be modified
for normal simulations; however, for multi-segment simulation (for long counters
and other long-period design) or if there are problems in Simulating the start-up
condition of a circuit, the values may need to be changed. The current setting is
shown highlighted.

Depending on the type of node, it may be possible to select from Force Node
High(l), Force Node Low(O), Output Reg High(l), Output Reg Low (0), Input Reg High
(1), Input Reg Low (0), 2nd Input Reg High (1), and 2nd Input Reg Low(O).

Working with Buses

At times, grouping several traces in a simulation and viewing them as a single
trace may be more convenient. This is possible with the Create Bus, Delete Bus, and
Edit Bus options in the Edit menu.

Selecting Create Bus brings up the Bus dialog box. This dialog box combines nodes
into a user-named bus. The View list in the dialog box contains the names of all
nodes in the current view. The Bus list holds the names of each node in the bus. A
bus may be made up of any number of nodes.

Selecting OK closes the Bus dialog box and creates a bus with the specified bus
name. Buses are placed at the top of the trace area. Selecting Cancel closes the Bus
dialog box without changing the trace area. It is not possible to input values to a
bus.

To add a node to the bus: select the node from the View list and select the Add»
button. Double-clicking on the node name also adds the selected node to the bus.
The new node is added below the selected nodes of the bus.

~ Note - Nodes can be added only to a bus in the current view.

Warp User's Guide 267

Nova

268

Clicking on the Add-by-Name button brings up a dialog box that asks the user to
specify the name(s) of signals to add to the bus. The use of wild card characters is
permitted. A I/?" matches a single character; a 1/*" matches any string of
characters. The construct name[m:n] denotes a range of signals, numbered from m
through n, beginning with the characters name. For example, I/input[O:3]" matches
signals inputO, inputl, input2, and input3.

To remove a node from the bus: Select the node to be removed and select the Cut
button. Double-clicking on the node name in the Bus list also removes the node
from the bus.

To change a node's position in the bus: Select the node, then click Cut. Select
another node, then click Paste. The node that was previously cut will be inserted
below the newly selected node.

To name the bus: Click on the line below the words Bus Name and enter the name
for the bus. If no name is provided, the bus is named generic bus.

To delete a bus: Select a bus trace by clicking on the bus name button or the bus
trace. After the bus is selected, selecting the Delete Bus item from the Edit menu
brings up a dialog box which can remove the bus from the trace area.

Edit Bus brings up the same Bus dialog box used for creating the bus. The bus
name line is filled in, and the nodes in the bus are displayed in the Bus list. Buses
can be added, removed, or have their names changed from this dialog box.

After all changes have been completed, selecting OK closes the bus dialog box and
applies the modifications to the selected bus. Selecting Cancel closes the dialog
box without updating the bus.

Bus Radix brings up a submenu that allows the user to choose how bus
information is displayed. The three choices are binary, octal and hexadecimal.
Hexadecimal is the default.

Warp User's Guide

Nova

6.6 The Simulate Menu

The Simulate Menu has only one menu item: Execute.

Selecting Execute from the Simulate Menu (Figure 6-14) simulates the design's
operation. The Nova screen is redrawn, and the resulting waveforms are
displayed.

Figure 6-14 Simulate Menu

6.7 The Views Menu

Items in the Views menu allow the user to select the views (i.e., groupings of
traces) in the trace area.

The Views menu (Figure 6-15) contains five items:

• Edit Views allows the user to create and edit views.

• Select View allows the user to select a view to display.

• Delete View allows the user to remove one or more views from the list.

• Zoom In (2X) multiplies the displayed timescale resolution factor by two.

• Zoom Out (1/2X) divides the displayed timescale resolution factor by two.

Each of these items is discussed in greater detail in the following pages.

Warp User's Guide 269

Nova

6.7.1

270

Figure 6-15 Views Menu

Editing Views

Edit Views allows the user to create new views and to add, remove, or exchange
traces in existing views.

Three views are automatically created with each .jed file: full, pins-only, and pins
& registers. The full view (default) lists all nodes in the design. This view cannot
be edited. The pins-only view contains only nodes that are attached to pins. The
pins & registers view contains all nodes attached to registers or pins.

Selecting Edit Views displays the Edit Views dialog box (Figure 6-16), used to edit
the current view. The view list on the left displays the FULL view, which contains
the default traces for all nodes. Use this list, along with appropriate buttons, to
add or remove traces from the view list on the right.

To create a new view: Click on New View. A name prompt will appear, which is
placed at the top of the right-hand view list.

To move between views: Click on Next View or Previous View.

Warp User's Guide

Nova

To add a trace to a view: Select one or more traces from the left (Full) view
window, then click Add». If a trace is also selected in the right window, the new
traces are inserted after the selection; otherwise, the new traces are added to the
end of the view.

To remove traces from a view: Select the traces in the right window, then click on
Cut.

View: FULL

0120
0123
0121
0125

13 elk
0122 empty_1
0124 empty_2

35 get_cola
11 get_diet
2 give_cola
3 give_diet

0117jed_nodel17
0118jed_node118
0119jed_nodel19
0149jed_node149
0150jed_node150
0159·ed node159

View: PINS and REGS

0120 bin_1_remainin!
0123 bin_1_remainin!
0121 bin 2 remainin!
0125 bin=2=remainin!

13 elk
01 22 empty_1
0124 empty_2

35 get_cola
11 get_diet
2 give_cola
3 give_diet

0117jed_node117
0118jed_nodel18

4 refill_bins
10 reset

Figure 6-16 Edit Views Dialog Box

To exchange (i.e., re-order) traces within a view: Select one or more traces from
the right view window, then click Cut. Then, select another trace from the right
view window and click Paste. The previously cut trace(s) are inserted after the
selected trace.

Warp User's Guide 271

Nova

272

Add-by-Name brings up a dialog box that asks the user to specify the name(s) of
traces to add. The use of wild card characters is permitted. A I/?" matches a single
character; a 1/*" matches any string of characters. The construct name[m:n] denotes
a range of Signals, numbered from m through n, beginning with the characters
name. For example,l/input[O:3]" matches signals inpu to, inpu tl, inpu t2, and
inpu t 3. The user can also use multiple expressions separated by spaces.

Deselect All unselects all selected traces in either window.

Selecting OK closes the Edit Views dialog box and updates the trace area to reflect
changes made to the view. Selecting Cancel closes the Edit Views dialog box
without making any changes to the view.

Selecting and Deleting Views

Select View allows the user to change the active view. Delete View allows the user
to remove a view from the list of available views.

Select View brings up the Select View dialog box (Figure 6-17). The View line gives
the name of the current view. To change the current view, select the desired view
from the list, then click OK or type a carriage return. Clicking Cancel closes the
Select View dialog box without affecting the active view.

Delete View also brings up the Select View dialog box. Select the view to delete
from the scrollable list. The FULL view may not be removed and is not included
in this list. Clicking OK or typing a carriage return applies the change to the list of
views. If the current active view is removed, the active view changes to FULL.
Delete View has no undo, so the user should be certain the view being deleted is
correct before clicking on OK or typing a carriage return. Cancel closes the Select
View dialog box without deleting the selected view.

Warp User's Guide

6.7.3

View: PINS and REGS

FULL
PINS ONLY
PINS and REGS

Figure 6-17 Select View
Dialog Box

Zoom In, Zoom Out

Nova

Zoom In doubles the time scale resolution of the trace window, i.e., by doubling
the number of pixels in the X-axis used to display one tic of simulation time. The
result is to /I zoom in" on the view of displayed traces.

Zoom Out does the reverse of Zoom In.

The resolution setting must be 1 or greater. The default is 5. Attempting to set the
time scale resolution lower than 1 has no effect.

6.8 The Options Menu

The Options Menu contains items that allow the user to specify the simulation
length, create or delete simulation segments, and specify the viewing resolution
of the trace area.

Warp User's Guide 273

Nova

6.8.1

274

The Options Menu (Figure 6-18) contains five items:

• Simulation Length allows the user to set the length of the simulation.

• Create Segment allows the user to create a segment, or "new-start-point,"
within the simulation.

• Delete Segment allows the user to delete a previously created segment
from the simulation.

• Resolution allows the user to stretch and compress displayed traces.

• Signal Name Size allows the user to specify the width in characters of
Nova's signal name buttons.

Each of these items is described in greater detail in the following pages.

Figure 6-18 Options Menu

Simulation Length

Simulation Length allows the user to set the length of the simulation.

Selecting Simulation Length brings up the Simulation Length dialog box (Figure 6-
19).

The minimum and default simulation length is 256 tics. The maximum simulation
length is 9984. Clicking on the up arrow adds 64 tics to the simulation length, to a
maximum of 9984. Clicking on the down arrow subtracts 64 tics from the
simulation length, to a minimum of 256 tics.

Warp User's Guide

6.8.2

Nova

The user can also set the simulation length by typing a number on the line next to
the up and down arrows. The number will be rounded downward to the nearest
multiple of 64.

Clicking OK closes the Simulation Length dialog box and sets the simulation length
to be used on the next simulator run. Clicking Cancel closes the Simulation Length
dialog box without affecting the simulation length.

Figure 6-19 Simulation
Length Dialog Box

~-----------------
Note - Any repetitive input signals such as clocks should be
respecified whenever the simulation length is increased.

Creating and Deleting Segments

Create Segment allows the user to create a segment, or "new start point," within
the simulation. Delete Segment deletes a previously created start boundary.

A segment is a point in the simulation at which various nodes are reset to their
"jam load" values (set through the Node Defaults dialog box).

To create a simulation segment, position the leftmost measuring cursor at desired
beginning of the segment, then select Create Segment from the Options menu to
bring up the Create Segment dialog box (Figure 6-20). The dialog box indicates the
starting and ending boundaries of the segment. Selecting Yes closes the dialog box
and creates the new simulation segment. Selecting No closes the dialog box
without creating ~he segment. Up to 15 segments may be created.

Warp User's Guide 275

Nova

6.8.3

276

To delete a segment, position the leftmost measuring cursor within the segment to
be deleted, then select Delete Segment to bring up the Delete Segment dialog box
(Figure 6-21). The dialog box indicates the segment boundaries for the segment to
be deleted. Selecting Yes closes the dialog box and deletes the segment. Selecting
No closes the dialog box without removing the segment.

o CREATE SEGt.AENT from ~7 to 256

Figure 6-20 Create Segment Dialog Box

o DELETE SEGt.AENT from 66 to 255

Figure 6-21 Delete Segment Dialog Box

Resolution

Resolution allows the user to stretch and compress displayed traces.

Selecting Resolution from the Options menu brings up the Resolution dialog box
(Figure 6-22). This dialog box allows the user to set the number of screen pixels on
the X-axis to be used per simulation tic. Varying this number effectively stretches
or compresses the traces displayed on the screen.

Warp User's Guide

Nova

The pixels-per-tic setting may be any number between 1 and 100. The default is 5.
The larger the number, the more "stretched" the traces appear; the smaller the
number, the more compressed the traces appear.

6.8.4

Selecting OK closes the Resolution dialog box and updates the trace display.
Selecting Cancel closes the Resolution dialog box without updating the trace
display.

Ira

Figure 6-22 Resolution Dialog Box

Signal Name Size

Signal Name Size allows the user to specify the width in characters of Nova's
signal name buttons.

6.9 Nova JEDEC Simulator Quick Reference Sheet

6.9.1 Simulating a Circuit

• Start Nova.

Select Nova Functional Simulator from the Galaxy tools
menu or double-click on the Nova icon in the Windows
program.

• Load the JEDEC file which was produced from Warp.

Select Open from the File menu.

Warp User's Guide 277

Nova

fa 6.9.2

278

• Edit Input Stimulus.

To edit a signal, select the signal with the left mouse
button. Go to the Edit menu to set the signal high or low,
or to configure the signal as a clock. To edit portions of
the signal, select the portion with the mouse, then type
"0" or "1" to set that portion of the signal high or low.
There is also a "pulse" feature which allows the user to
set up single pulses.

• Run Simulation.

Select Exec;ute from the Simulate menu.

Arranging Signals

Using the Views menu in Nova, the user can choose what signals he wants to see
and in what order they are displayed. The default views are FULL, PINS ONLY,
and PINS and REGS.

To create a new view, choose Edit Views under the Views menu and select New
View.

When creating a new view, wild cards are recognized. To enter all available
signals, select Add by Name and type an asterisk ("*"). Optionally, enter the
names of the signals to see individually (or by using a combination of signal
names and wildcards).

When done, click on OK. This view can now be edited. To add new signals to the
view, double-click on the signal on the left-hand side. To delete a signal, double
click on the signal in the view (on the right-hand side). Alternately, the user can
cut and paste signals in the view. Signals are always pasted under the currently
selected signal.

The order of the Signals can be changed by using cut and paste or by using Add by
Name.

Warp User's Guide

Nova

6.10 Creating Buses

• Select Create Bus from the Edit Menu.

• Choose an appropriate bus name under the Bus Name field of the pop-up
menu.

• Add signal names to the bus by double clicking on the signal names on
the left-hand side, selecting the signals, and clicking on Add, or by using
Add by Name. Wildcards are allowed when using Add by Name.

• Click on OK.

If the signals are not in the current View, they cannot be added to a bus.

These signals must be deleted from the view if the user does not want to see them
individually. Don't do this if it's an input bus because buses are only useful for
output. Data cannot be input as a bus, only as individual bits of a bus.

To see the bus value, a measuring cursor is necessary. A measuring cursor is
brought up by clicking the left mouse button in the white area near the bottom of
the Nova window. During a single Nova session, the measuring cursor cannot be
deleted once it has been activated. A second measuring cursor can be activated by
holding the shift key down while clicking the left mouse button in the white area
near the bottom of the Nova window.

6.11 Miscellaneous

To save input stimulus, view information, and buses for the next simulation,
select Write Sim from the File menu.

Nova is purely a functional simulator. There is no timing information in Nova.
There is only the concept of simulation tics. A given device may be modeled as
several smaller blocks. For instance, a FLASH370 device can be divided into
smaller parts:

• input cells

• PIM

• PTM

• macro cell

• I/O cell

Warp User's Guide 279

Nova

As a result, the user may see a propagation between his input and his output. If
the user experiences strange results, he should increase clock period or separate
simultaneously changing input signals. Some rules of thumb (if there are
problems) are to make pulses> 20 tics wide and provide> 10 tics of setup time.

Color of traces:

Blue means the waveform can be edited.

White means an input or an output that is three-stated.

Red means an output that is being driven.

Pin numbers or node numbers are displayed to the left of the signal name. Zoom
control is available under the Views menu.

The simulation length may be changed by choosing Simulation Length under the
Options menu.

Printing Nova Output (PC):

• Place the mouse cursor in the window to be captured.

• Hit Alt and Print Screen simultaneously.

This will place the window in a buffer.

• Go into a text editor (MS Word/ Microsoft Write) and Paste from the
buffer.

• Print from the text editor.

280 Warp User's Guide

Chapter 7
Schematic Entry

Schematic Entry

7.1 Overview

282

The Warp tools use VHDL as the primary design entry mechanism. Warp3,
however, also supports schematic entry as a design entry mechanism via
ViewDraw. Warp3 also supports mixed-mode design entry where portions of the
design are entered in VHDL and portions are entered in ViewDraw, graphically.

When using ViewDraw, Warp3 provides a very powerful and sophisticated user
interface that allows users to capture designs efficiently. With Warp3, the user
can:

• use VHDL descriptions, schematics, or both to describe any design

• compile and synthesize the resulting design description

• fit the resulting logic circuits into a particular PLD or CPLD, or place and
route the design into an FPGA (the resulting files may be used for
programming the device)

• verify the design with a timing simulator

There are several other tasks that can be performed, but this overview describes
how to use View Draw for design entry. Figure 7-1 shows this process flow.

Warp User's Guide

7.2

7.2.1

8C::=>~
Schematics

~tjrf
VHDL Compiler

rf ~
A

Viewsim

U
Simulation Device Programmer

Figure 7-1 Warp3 design flow

LPM Library

What Is LPM?

Schematic Entry

LPM is an acronym for Library of Parameterized Modules. This is a specification
maintained by the Electronics Industries Association (EIA). The LPM
specification contains a small set of highly parametrizable library elements. This
specification is based on the EDIF (Electronic Design Interchange Format) version
2.0.0 standard and also specifies how data containing these parameterized
modules can be interchanged between third party CAE systems.

Warp User's Guide 283

Schematic Entry

7.2.2

284

Cypress has chosen the LPM standard for its schematic library because of its
flexibility and interoperability. Warp3 provides a graphical user interface to allow
design entry with these LPM elements. With this graphical interface, the user can
create, modify and manage LPM elements. To obtain a detailed description of the
library and its functionality, the user should refer to Chapter 5, "LPM," of the
Warp Reference Manual.

The rest of this chapter assumes that the user is familiar with View Draw and the
Powerview or Workview PLUS environment.

How to Use LPM

Since LPM is a set of parameterized elements where the number and width of the
pins can be varied, and the View Draw schematic capture system does not allow
the pins for a given symbol block to vary, Warp automatically and dynamically
creates and maintains custom symbols that are pre-programmed for a specific
use.

For example, there is a common interface for an LPM_COUNTER. With this
interface, the user can select or deselect many options such as enable, carry-in, or
load. Instead of creating a symbol that has all possible pins for a given symbol,
Warp automatically creates a custom symbol that has only those features required
by the user. This is done because some of the LPM elements have a rather large
number of optional features, and without a mechanism to create dynamic
symbols, design entry with such symbols would be cumbersome.

When the user requests an LPM symbol configured in a certain way, Warp creates
this element and stores it in a special library called lpmlocal. The lpmlocallibrary
consists of a set of symbols and data files that manage all the symbols in a user's
private library. The names assigned to these dynamically created symbols are
meaningful only to the software and do not imply anything about the symbol
itself. The lpmlocallibrary should never be edited by users manually. Warp
automatically creates and manages this information.

Warp User's Guide

Schematic Entry

View Draw uses the viewdraw.ini file to locate libraries. ViewDraw searches the
current project directory as well as the directories listed in the WDIR environment
variable for this initialization file. This file contains, among other things, a set of
library names and the directories where these libraries can be found. A sample
viewdraw.ini file is shipped with Warp and can be found in the warpstd
subdirectory where Warp is installed. A portion of this file is shown here:

Format: DXR [DirType(s)] DirPath (LibName)

DirType: p or pw - primary / writable
w - writable (read/write)
r - read-only
m or r.m - read-only megafile

DirPath: directory specification

LibName: library name aka library alias or VHDL library
name (optional) 32 characters or less.
Must begin with a letters

DIR [p] •
DIR [r] c:\warp\lib\sheet (sheet)
DIR [r] c:\warp\lib\io (io)
DIR [r] c:\warp\lib\mcparts (mcparts)
DIR [r] c:\warp\lib\prim (primitive)

Lines starting with the " I" character are comments. The first directory below the
comments is the current project directory, and the rest of the directories are
libraries. To this list of libraries, another library must be added that represents the
Ipmlocallibrary. This library must be writable by the user because Warp creates
symbols dynamically on behalf of the user. An example of such a library would
be:

DIR [w] c:\mydir\~roj\lpmlocal (lpmlocal)

where c:\mydir\myproj\lpmlocal is a directory where Warp stores the symbols it
creates. Without a valid location for the Ipmlocallibrary, the Warp LPM
functionality will be disabled. If th~s directory is being shared by other users in a
network environment, this directory must be writable by everyone using this
library. The viewdraw.ini file should be copied to the current project directory,
and then this change should be made to the file.

Warp User's Guide 285

Schematic Entry

7.2.3

7.2.4

286

Creating the Ipmlocal Library

When View Draw is invoked for the first time in a new View logic project, the LPM
functionality is disabled and step-by-step instructions are printed on how to
enable the LPM functionality and the creation of the lpmlocallibrary.

Creating an LPM Element

To create an LPM element once View Draw has been opened for editing a
schematic, use the menu item Add->LPM Symbol.

Figure 7-2 Add LPM Symbol

Warp User's Guide

Schematic Entry

When this menu item is selected, View Draw prompts the user for the type of
module to be instantiated. This dialog box is titled Add Cell and is shown in the
following figure:

Figure 7-3 Add Cell dialog box

The user selects the desired module by single clicking the left mouse button. This
action results in another dialog box that prompts the user to enter all the options
that are applicable for the module selected. For example, if the Mcounter module
was selected, the following dialog box would pop up:

Figure 7-4 Mcounter dialog box

Warp User's Guide 287

Schematic Entry

7.2.5

7.2.6

288

After selecting the appropriate items in this dialog box, a single mouse click on
the Accept button removes this dialog box. At this point, the custom symbol that
Warp has dynamically created is attached to the cursor and is ready to be placed
in the schematic.

Modifying an LPM Element

If the user wishes to modify an LPM symbol already placed in the schematic, he
should first select the LPM symbol to be modified and then choose the
Change->LPM Symbol menu item. Only one LPM symbol may be selected at a
time. When this menu item is selected, Warp displays the appropriate dialog box
for the given LPM symbol, identical to the dialog box that was used during the
initial creation of the LPM symbol.

Creating/Modifying a Non-LPM Element

A non-LPM element is essentially a user or library symbol which does not
constitute a parameterized symbol. Instances of these elements are created using
the regular ViewDraw methods. The Add->Comp menu item is used to create an
instance of a non-LPM symbol, and the Change->Comp menu item should be used
to change an existing instance. These menu items should not be used to edit or
create instances of LPM symbols. Other than this restriction, an LPM symbol is
similar to any other symbol within View Draw.

Warp User's Guide

Schematic Entry

7.3 Exporting the Schematic

Once the schematic has been completed, the design can be converted into VHDL
and compiled into a PLD, CPLD, or FPGA device. This can be accomplished by
using the menu item Cypress->Export VHDL:

Figure 7-5 Export VHDL menu selection

Warp User's Guide 289

Schematic Entry

290

When this option is selected, the following dialog box pops up:

Figure 7-6 Export VHDL dialog box

In this dialog box, Design Name is simply the name of the schematic being
netlisted and Output Directory is the directory in which the netlist should be
created. Leaving the Output Directory blank will create the netlist in the current
project directory.

At this time, the user can also choose the type of netlist to be produced by the
netlister. Currently, two types are supported: bi t and std_logic. In VHDL,
each signal has a type associated with it. This option simply allows a choice
between these two different types. The bit type is supported only fpr
compatibility with the previous release. The std_logic type is recommended
for all new designs.

Clicking the left mouse button on the button marked Accept will cause the
following actions:

• Check and Save the current schematic if it is not already saved.

• Invoke the batch program hil076 to perform the actual netlisting.

• Netlist any synthesis directives found in the design.

The output file name has the same name as the top level design with a .vhd
extension. This file also contains a hierarchical netlist for all the lower level
blocks. Once this file is created, the design is ready to be synthesized using the
Warp compiler.

Warp User's Guide

Schematic Entry

7.4 Back-Annotation

Once a design has been successfully placed into a device, Warp allows the user to
fix the pinout for that design.

To back-annotate pin-numbers into the design schematic, the user must select the
menu item Cypress->Back-Annotation

Figure 7-7 Back-Annotation menu selection

A simple dialog box appears showing the design name to be back-annotated.
Clicking on OK does the following:

• Invokes a batch program that queries the pinout results and creates a list
of pin names and their associated pin-numbers.

• Edits the current schematic (and all its associated sheets) to place the #
attribute, so that future VHDL netlisting will force the pins to be placed in
the same location.

Warp User's Guide 291

Schematic Entry

The buses are back-annotated in a special way. Buses require that multiple pin
numbers must be back-annotated. This is accomplished by creating an attribute
with a "," (comma) separated list of pin-numbers.

~-----------------
Note - Back-annotation will have no effect if the design has not
been successfully fit or placed and routed into a device.

7.5 Using the Schematic Libraries from Release 3.5

292

The release 3.5 library and the release 4.0 library elements are not compatible with
each other. To use the release 3.5 library mechanism, the user must do the
following:

On the PC
In the Warp R4 Program Group, invoke the program item named Library. This
program will modify the viewdraw.ini file located in the c:\warp\warpstd
directory as well as reconfigure the library directory in preparation for synthesis
using the appropriate library. This will allow the user to create a new project
directory via the Cockpit configured for either the release 3.5 or 4.0 library.

On UNIX Systems

The user must first login as the user who installed Warp on the system, to ensure
that he has the proper permissions to modify the installation directory and then
execute the program cypver. This assumes that $CYPRESS_DIR/bin is in the
user's path and that the environment variable $CYPRESS_DIR is pointing to the
Warp installation directory. The cypver command modifies the Warp
installation allowing the user to switch between the 3.5 and 4.0 libraries.

The above programs do not automatically modify all projects and any
viewdraw.ini files that might exist in those directories. Following the template
provided in $CYPRESS_DIR/warp/warpstd/viewdraw.ini, the user must modify
his own viewdraw.ini files.

Warp User's Guide

Schematic Entry

7.6 Schematic to Symbol

In Warp3, the user can use the Schematic to Symbol found in the Cypress menu to
generate a symbol for a schematic circuit. The resulting symbol can then be
instantiated in other, higher-level schematics.

When Schematic to Symbol is run, a dialog box allows the inputs and the outputs of
the symbol to be reordered. Once the ordering of the pins is satisfied, clicking on
Accept will create the symbol.

Figure 7-8 Schematic To Symbol dialog box

~----------------
Note - A new symbol cannot be generated if the symbol is
already loaded into View Draw. To work around this problem,
simply close all other ViewDraw windows or re-renter View-
Draw and only load the schematic for which the symbol is
needed.

7.7 VHDL To Symbol

The VHDL To Symbol utility can be invoked in ViewDraw under the Cypress
menu bar. This utility differs from the View logic VHDL2sym tool, which can be
found in the Circuit Design drawer. The Cypress version of the VHDL To Symbol
translator requires that the VHDL file be first compiled using Galaxy as a non top
level file.

Warp User's Guide 293

Schematic Entry

When this utility is invoked, a list of VHDL components for which symbols can be
generated is displayed so that the user can select exactly which symbols need to
be generated. If errors have been detected for symbols, the dialog box for VHDL
To Symbol allows viewing these errors. The order of the pins for each of the
symbols is determined by the order in which they were listed in the VHDL file.
Please note that these VHDL components must be defined within a package.

This utility is useful for designing in a bottom-up fashion, in which the user starts
at the lowest level (being VHDL) and works up to a top-level graphical schematic.

~----------------
Note - A new symbol cannot be generated if the symbol is
already loaded into ViewDraw. To work around this problem,
simply close all other ViewDraw windows or re-renter View-
Draw and only load the schematic for which the symbol is
needed.

To run VHDL To Symbol, invoke the VHDL To Symbol and enter the name of the
VHDL file (without the .vhd) extension.

7.8 Symbol to VHDL

294

Symbol to VHDL takes as input the name of a symbol, and translates a ViewDraw
symbol into a VHDL file. The VHDL file has the same name as the symbol, except
with a . vhd extension. This implies that the symbol name should be a VHDL legal
name. The VHDL entity name is the same as the symbol name.

Figure 7-9 Symbol to VHDL dialog box

Warp User's Guide

Schematic Entry

7.9 Update Library

Since the Ipmlocallibrary contains symbols that are sequentially named as the
user requests new LPM symbols, it is highly likely that two different users using
different Ipmlocallibraries can have a like-named LPM symbol whose feature set
may be completely different. Furthermore, a symbol with a given feature set may
exist in one library and not in the other. Sharing or transporting of user
schematics would therefore be impossible. To solve this problem, Warp provides
a synchronization utility. Whenever a schematic is imported from another user,
selecting the Cypress-> Update LPM Symbols will ensure the integrity of the current
schematic and its hierarchy by resolving any conflicts and regenerating all of the
LPM symbols.

Figure 7-10 Cypress Update LPM Symbols

7.10 Print Hierarchy

This menu item prints the hierarchy for a schematic. This is helpful in being able
to view a schematic's organization when the schematic contains many lower level
schematics or modules. Please note that this utility cannot analyze the hierarchy
of VHDL modules.

Warp User's Guide 295

Schematic Entry

296 Warp User's Guide

Chapter 8
Simulation

Simulation

8.1 Introduction

298

Warp supports pre-synthesis VHDL simulation and post-synthesis VHDL and
Verilog simulation. For post-synthesis simulation, Warp adheres to the following
methodology: it generates all the VHDL and Verilog files required to simulate the
design, and provides an easy way to integrate these HDL (Hardware Description
Languages) files into the target simulation environment. In order to simulate the
design, the user should be familiar with the desired simulation environment.

The VHDL and Verilog simulators supported are listed in Tables 8-1 and 8-2,
respectivel y.

Table 8-1 Supported VHDL simulators

Simulator Vendor Pre-fPost-synthesis

ViewSim Viewlogie Post-synthesis

SpeedWave ™ Viewlogie Pre-fPost-synthesis

V -System ny QuickHDLTM Model Technology f
Pre-fPost-synthesis

Mentor Graphics

VSSTM Synopsys Pre-fPost-synthesis

Leapfrog ™ Cadence Pre-fPost-synthesis

IEEEl164 VHDL N/A Pre- f Post-synthesis

Table 8-2 Supported Veri log simulators

Simulator Vendor Pre-fPost-synthesis

VeriBest Intergraph Post-synthesis

VCS ™ f Chronologie View lo gic Post-synthesis

Verilog-XL ™ Cadence Post-synthesis

IEEE1364 Verilog NfA Post-synthesis

Unless otherwise specified, pre- and post-synthesis simulation support is
available for all deviees.

Warp User's Guide

Simulation

8.2 Pre-synthesis Simulation

V-System

Scripts for compiling the Cypress pre-synthesis libraries into the user's work
directory are available in $CYPRESS_DIR/warp/lib/prim/presynth/scripts
(c:\warp\lib\prim\presynth\scripts). On UNIX platforms, to build the complete
library for STD _LOGIC types, run the following command:

$CYPRESS_DXR/lib/prim/presynth/scripts/vsys_std

This command will compile all the necessary files in a work directory at the
current location.

Thestd_logic_1164, std_logic_arith, std_logic_unsigned,
numeric_bi t, and numeric_std packages are already part of the compiled
ieee library and accelerated for V-System/Workstation V4.4g (V-System/VHDL
Windows V4.3g).

On PCs, for the Windows version of V-System, invoke the V-System, pull down
the File->Directory and select the directory in which the library is to be compiled.
Then in the Transcript window, the following is entered (note the ~/do"
command):

do c:\warp\lib\prim\presynth\scripts\vsys_std

Similarly, to run pre-synthesis simulation using BIT types, use the following
commands:

(V-System/UNIX Workstation)

$CYPRESS_DXR/lib/prim/presynth/scripts/vsys_bit

(V-System/VHDL Windows)

do c:\warp\lib\prim\presynth\scripts\vsys_bit

If the user already has command files written for ViewSim or SpeedWave ,cmd),
they can be easily converted to V-System ,do) files. In order to make this
conversion seamless, the user must not use the shorthand commands for
ViewSim (i.e., a for assign, c for cycle, 1 for low, h for high, etc.). If the longhand
conventions are used, they will map directly to the .do file syntax.

Warp User's Guide 299

Simulation

300

SpeedWave

Scripts for compiling the Cypress pre-synthesis libraries into the user's work
directory are available in $CYPRESS_DIR/lib/prim/presynth/scripts. To build the
complete library for STD_LCX;IC types, run the following command:

$CYPRESS_D~R/lib/prim/presynth/scripts/spwv_std

This command will compile all the necessary files in a work directory at the
current location.

To run pre-synthesis simulation using BIT types, run the following command:

$CYPRESS_D~R/lib/prim/presynth/scripts/spwv_bit

These commands will build the necessary directory for pre-synthesis simulation
of the user's design. If the user already has command files for ViewSim, they can
be used with SpeedWave with minor changes. All port signals must be prefixed
with a / in the SpeedWave command file. This change is not backward
compatible with ViewSim.

Before running the above scripts, make sure that the environment variable
V ANTAGE_ VSS is set correctly, to point to SpeedWave root directory.

Other Simulators

For the rest of the simulators specified in Table 8-1, compile the packages in
$CYPRESS_DIR/lib/prim/presynth/std or $CYPRESS_DIR/lib/prim/presynth/bit (on
PCs, c:\warp\lib\prim\presynth\std or c:\warp\lib\prim\presynth\bit) and the
VHDL design file into your work library and simulate using the target simulator
commands. The proper order of compiling these files can be obtained by looking
at one of the scripts in $CYPRESS_DIR/lib/prim/presynth/scripts
(c:\warp\lib\prim\presynth\scripts). The process for other simulators is similar to
that mentioned above.

Warp User's Guide

Simulation

8.3 Post-synthesis Simulation Design Flow for PLDs and CPLDs

The design flow for the post-synthesis simulation support for Cypress PLD and
CPLD devices is shown in Figure 8-1.

Select design and
simulator in Galaxy

Compile and synthesize

verilog files in vlg directory
vhdl files in vhd directory

Compile and simulate
in target simulation

environment

Figure 8-1 Simulation design flow for PLDs and CPLDs

8.3.1 Select a Design

8.3.2

Refer to Chapter 4, "Galaxy," for details on how to select a design and a device.

Select a Simulator

The supported simulators are listed in the Devices dialog box of the Galaxy
window, under the Post-JEDEC Sim section. Select the target device and package
from the Device and Package menus, respectively, and the simulator from the Post
JEDEC Sim menu.

Warp User's Guide 301

Simulation

8.3.3

8.3.4

Compile a Design

After selecting the design, target device, and simulator, compile the design from
the Galaxy window. Warp creates a set of VHDL or Verilog files which are
required for simulation in the vhd or vlg sub-directories, respectively. The vhd and
vlg sub-directories are created automatically if they do not already exist. The
filenames for the post-synthesis simulation models will have the same base name
as the top-level design file.

VHDL Simulation

V-System

A script for compiling the Cypress post-synthesis primitive libraries into the
user's primitive directory is available in $CYPRESS_DIR/lib/prim/presynth/scripts/
vsysprim (on PCs, c:\warp\lib\prim\presynth\scripts\vsysprim). On UNIX
platforms, to build the complete primitives library run the following command:

$CYPRESS_DiR/lib/prim/presynth/seripts/vsysprim

This command will compile all the necessary files in a primitive directory at the
current location.

On PCs, for the Windows version of V-System, pull down the File->Directory and
select the directory in which the library is to be compiled. Then in the Transcript
window the following is entered (note the "do" command), write the following
command:

do e:\warp\lib\prim\presynth\seripts\vsysprim

Once the primitive library has been built, the target design can be compiled
(vcom) and simulated (vsim) with commands such as the following:

• veom vhd\<file name>.vhd

• vsim <entity name>

302 Warp User's Guide

8.3.5

Simulation

SpeedWave .
A script for compiling the Cypress post-synthesis primitive libraries into the
user's primitive directory is available in $CYPRESS_DIR/lib/prim/presynth/scripts/
spwvprim. To build the complete primitives library run the following command:

$CYPRESS_DZR/lib/prim/presynth/scripts/spwvprim

Once the primitive library has been built, the target design can be compiled into a
selected work area using the following command:

analyze -dbg 2 -libfile vsslib.ini -src vhd/<file name>.vhd

The simulation process at that point is the same as for ViewSim simulation.

Other Simulators

For the rest of the simulators specified, compile the packages in $CYPRESS_DIR/
lib/prim/vhdl (on PCs, c:\warp\lib\prim\vhdl) and the VHDL design file into your
primitive library and simulate using the target simulator commands. The proper
order of compiling these files can be obtained by looking at one of the scripts in
$CYPRESS_DIR/lib/prim/presynth/scripts/*prim (on PCs,
c:\warp\lib\prim\presynth\scripts\ *prim). The process for these other simulators
is similar to that mentioned below for Verilog Simulation.

Verilog Simulation

In order to simulate the design, the user should be familiar with the target
simulation environment. When a Verilog simulator is selected, Warp creates a
template file which assists the user in submitting the correct set of Verilog files, in
the proper order, to the target Verilog compiler. The template file, whose name
and format vary with the target simulator, is created in the vlg directory. The
steps needed to compile the design in different simulator environments are
described below.

VeriBest

The template file that Warp creates is called design_name.sup. Its format is
conformed to the support file format within VeriBest (refer to the VeriBest
simulator manual for details). Load the support file into the VeriBest environment
(File->Open_Setup_File) and select the analyze command to compile. The design is
now ready for simulation in the VeriBest environment.

Warp User's Guide 303

Simulation

304

ves
The template file that Warp creates is called design_namefls. This file contains the
list of files and their respective order to be compiled with the Verilog compiler.
Specify this file name in the ves command line, as shown below.

Verilog-XL

The template file that Warp creates is called design_namefls. This file contains the
list of files and their respective order to be compiled with the Verilog compiler.
Once the files are compiled, they are ready for simulation in the Verilog-XL
environment.

~-----------------
Note - Make sure that the vlg directory is in the search path of
the target simulator.

Warp User's Guide

Simulation

8.4 Post-synthesis Simulation Design Flow for FPGAs

8.4.1

8.4.2

8.4.3

The design flow for the post-synthesis simulation support is shown in Figure 8-2.

Select design and device in Galaxy

Compile and synthesize

Select simulator, in SpDE

Compile and simulate
in target simulation

environment

Figure 8-2 Simulation design flow for FPGAs

Select a Design

Refer to Chapter 4, "Galaxy," for details on how to select a design and device.

Compile a Design

After selecting the design and target device, compile the design from the Galaxy
window.

Select a Simulator

A variety of simulators are supported for post-synthesis simulation. The
supported simulators are listed in the Tools->Options->Simulator dialog box
within the SpDE place and route tool. Select the target simulator from this menu.
See Chapter 5, "SpDE" for more information on the SpDE place and route tool.

Warp User's Guide 305

Simulation

8.4.4

8.4.5

8.4.6

8.4.7

306

Run SpDE

After selecting the simulator, run SpDE with the back-annotation tool selected.

ViewSim Simulation

Warp3 integrates directly into the View logic Powerview and Workview PLUS
environments, and FPGA post-synthesis simulation is fully supported with the
ViewSim simulator. After running SpDE, the spde2vl executable must be run.
lIDs program is run by double-clicking on the pASIC-> VSim icon in the Cockpit.
lIDs utility will generate the necessary files for ViewSim simulation.

VHDL Simulation

For VHDL Simulation, simply select the appropriate simulator from the SpDE
Tools->Options->Simulator menu and run the back-annotation tool from within
SpDE. This will create a . vhd file and a .sd! file compliant with the VITAL
specification. These files in conjunction with the VHDL primitive models
provided allow the user to simulate a design with any VITAL compliant VHDL
simulator.

Verilog Sim ulation

When a Verilog simulator is selected, Warp creates a verilog design file (design.vq)
and a delay back-annotation file (design.sd!) where design is the top-level design
name. The device specific primitives used in the design are available in
$CYPRESS_DIR/spde/data/qlprim.v (on pes, c:\warp\spde\data\q\prim.v). To
simulate the design, compile design. vq and the above mentioned primitive file in
the target simulator environment.

Warp User's Guide

Simulation

8.5 Post-synthesis VHDL Simulation in ModelT Environment

The following are the steps required for post-synthesis /layout simulation of
pASIC targeted designs with Model T's V-System:

• A qlprims library needs to be created with the mtiprim.vhd file which is
supplied by Cypress. Follow these steps:

Create a qlmodel directory.

Copy the file mtiprim.vhd (from $CYPRESS_DIR/spde/data) to the qlmodel
directory.

While in the qlmodel directory, create a new library called qlprims with the
V-System's vlib.

vlib qlprims

Map the qlprims library to it's source:

vmap qlprims <path>/qlmodel/qlprims

Compile the mtiprim. vhd file to the qlprims library:

vcam -work qlprims mtiprims.vhd

• Load design «design.qdf» into SpDE and select Model Tech V-System
from the Tools -> Options -> Simulator menu. SpDE will create
<design>.vhq and <design>.sdf files when the tools are run.

~-----------------
Note - As SpDE creates the .vhq file, it may inform you that vec-
tors in your entity will be broken out into individual signals
unless you have a . vhh file. Please ignore these messages as this
feature is not yet supported by Warp.

• Compile <design>.vhq:
vcom <design>.vhq

• Simulate:
vsim -t ps -sdftyp/-sdfmin/-sdfmax <design>.sdf
<design>

Warp User's Guide 307

Simulation

~----------------
Note - '-t ps' must be used because timing numbers in the SDF
file are in picoseconds. Because of this you must be careful about
the default cycle time which is 100 time units (in this case lOOps).
Either reset the default time units/ cycle or explicitly indicate a
time for your 'run' statements in the .do file to prevent surprises.

8.6 Post-synthesis Verilog Simulation In VeriBest Environment

308

Following are the steps involved in the post-synthesis simulation of a CPLD
targeted design in the Intergraph VeriBest environment.

• Select Intergraph from Devices dialog box of Galaxy and compile the
design.

• Create a test bench model to give test vectors to the design. Following is a
test bench model:

module <design>_tbench () ;
II test bench name is <design>_tbench

reg inl, •••• ;
wire out 1 , •••• ,

initial
begin

II specify test vectors
end

II instantiate the design
<design> instl (inl, ••••• , outl, •••••) ;

II In the above, <design> is the Verilog model name
of the design. It is created by Warp and is in
the file <design>.vlg in vlg sub-directory

endmodule

• Load and compile the Verilog files generated by Warp into the Veribest™
environment and simulate the design.
% veribld

File->Open_Setup_File <design>.sup
Analyze
Simulate
II in the above, File, Analyze, Simulate are the

menu buttons in veribld

Warp User's Guide

Simulation

Following are the steps involved in the post-synthesis simulation of a pASIC
targeted design in the Intergraph VeriBest environment:

• Load design «design>.qdf) into SpDE and select Verilog from the
Tools->Options->Simulator dialog box of SpDE

• Run SpDE tools from Tools->Run Tools dialog box making sure that the
back-annotation option is selected.

• Create a test bench model to give test vectors to the design. The following
is a test bench model:

module <design>_tbench () ;
II test bench name is <design>_tbench

reg inl, •••• ;
wire outl, •••• ,

initial
begin

II specify test vectors
end

II instantiate the design
<design> instl (inl, ••••. , outl, •••••) ;

II In the above, <design> is the Verilog model name
of the design. It is created by SpDE and is in
the file <design>.vq

II Include <design>.sdf file generated by SpDE
initial
begin
$sdf_annotate("<design>.sdf",<design>_tbench.instl} ;
end

endmodule

Warp User's Guide 309

Simulation

• Load and compile the Verilog files generated by SpDE into the Veribest
environment and simulate the design.
% veribld

Add->$CYPRESS_DIR/spde/data/qlprim.v
Add-><design>.vq
Add-><design_tbench>
Analyze
Simulate

II in the above, Add, Analyze, Simulate are the
menu buttons in veribld

~-----------------
Note - Refer to the Verilog language reference manual and Simu-
lator guide for details of test bench model and simulator usage.

310 Warp User's Guide

Synthesis

Synthesis

~9.1

9.1.1

312

Synthesis Directives

This chapter introduces synthesis directives-what they are, what they are used
for, how to use them, and when to use them. This chapter is organized into five
sections. The first section is an introduction. It explains directives and discusses a
strategy for using them effectively. It also includes two design examples to
illustrate how to apply them. The second section describes those directives that
can be used to optimize a design for the fewest device resources. The third section
describes those directives that can be used to optimize a design for timing goals,
including operating frequency, clock to output delay, setup time, and
combinatorial propagation delays. The fourth section describes directives used
for controlling the type and location of specific resources used in a device. The
final section describes directives used for documentation, including part selection
and pin number assignment.

Understanding Synthesis Directives

Synthesis directives may be used to influence the implementation of a design.
They are used in an iterative fashion to refine, improve, or constrain the results of
synthesis. For example, the goal directive is used by the synthesizer to select
either area-efficient or speed-efficient design implementations. Synthesis
directives may be applied to components that have been either instantiated in a
schematic or inferred by the synthesizer from VHDL code. The buffer_gen
directive causes buffers to be inserted for high-fanout signals. Synthesis_off
creates a factoring point for logic equations and is used for area or speed
optimization (or both). The pin_numbers directive specifies the pin numbers to
be used for signals. These and other directives are discussed in the pages to
follow, but the following section discusses a strategy for designing with synthesis
directives.

Warp User's Guide

Synthesis

9.1.2 Design Flow and Strategy for Using Directives

Directives are a powerful mechanism to influence the synthesis process, but they
should be used judiciously. Careless or excessive use of directives can, in fact,
subvert the very design goals that are sought. This section describes a strategy for
using directives and choosing the appropriate one(s) to achieve the user's goals.

Until the user becomes familiar with the effects of using the different directives,
Cypress does not recommend applying any of them in the first iteration of a
design. After synthesis and fitting-or place and route, in the case of an FPGA
design-the design may fit in the desired device and meet timing goals. In this
case, the design is complete-no directives are necessary. If, however, after the
initial iteration of synthesis and fitting, the design does not fit or meet timing
goals, the design may need tuning. Tuning, illustrated in Figure 9-1, is the process
of (1) identifying and applying an appropriate directive that may help to reduce
resource utilization or realize timing targets, (2) resynthesizing and fitting the
design, and (3) verifying that the design meets area and speed goals. In some
cases, this tuning process may have to be repeated in order to compare multiple
implementations of the design.

Warp User's Guide 313

Synthesis

START

~

8P and/or

Schematics

I
i-t
~

Synthesis

I
~t.-/ -

Fitter
or

Place & Route
Tool

~
RESULTS

Area: 91 cells
tS: 5.8ns

tSCS: 22.2ns
tCO: 26ns

~
FINISH

314

~
VHDL

entity ();

architecture
begin
end;

I

Use Directives

goal = area
maxload =8

state_encoding
...

Figure 9-1 Tuning

tuning
cycle

Warp User's Guide

Synthesis

9.1.3 Available Directives

Table 9-1 can be used to select an appropriate directive for tuning a design. Those
directives listed first are most likely to have the greatest impact on a design
implementation and should be selected first when tuning. The other directives are
used in special cases or for documentation purposes. Device selection and pin
number assignment are included in the documentation category, a1 though they
are also functional directives that can have a significant impact on area and speed.
Later in this chapter, each of the directives listed in the table is explained in
greater detail, with the focus on understanding scenarios when using a particular
directive is appropriate. The syntax and effect of all directives is explained in
"Synthesis Directives," Chapter 3, of the Warp Reference Manual.

For each of the directives listed in Table 9-1, the "Applicable Devices" column
indicates whether the directive is useful for CPLDs, FPGAs, or both. The "Used
for ... " column indicates whether the directive can be used for area optimization,
speed optimization, specific control, or documentation.

The next section describes how to apply directives.

Warp User's Guide 315

Synthesis

Table 9-1 Available Synthesis Directives

Applicable
Used for ...

Directive Devices

CPLDs FPGAs area speed control doc.

goal x x x x

state_encoding x x x x

buffer_gen x x x

max_load x x

pad_gen x x x

synthesis_off x x x x x

do nt_touch x x x x

no_latch x x x x

lab_force x x

pin_avoid x x

polarity x x

sum_split x x

node_num x x

fixed_ff x x

fCtype x x

no_factor x x x

opt_level x x x x x

part_name x x x x x

order_code x x x x x

pin_numbers x x x x x

316 Warp User's Guide

9.1.4

9.1.5

Synthesis

Scope and Inheritance

Each of the synthesis directives has a scope: some are intended for signals, others
for components. Some of the directives also have an inheritance. A directive
intended for a signal can be placed on an architecture or entity so that all signals
defined in that architecture or entity inherit that directive. This is called
hierarchical inheritance. Not all directives have an inheritance, however. Non
hierarchical directives are meant for the exact object that they are attached to and
will be ignored if not applied to the appropriate object.

Hierarchical directives have the following order of precedence (from least to
greatest):

• entity

• architecture

• component declarations

• component instantiations

• signals

Thus, a hierarchical directive placed on an architecture is overridden by a
directive placed on a signal within that architecture. In other words, a hierarchical
directive intended for a signal, if placed on an architecture, serves as a default for
all signals within that architecture. Likewise, a hierarchical directive placed on a
component instantiation overrides a directive placed on an architecture. This
allows for an occurrence of a component to have a different value than the default
directive for all components.

Applying Directives

Some directives are available via the command line or Galaxy switches. Warp also
provides three other methods for applying synthesis directives: with VHDL
attributes, with schematic attributes, or with a top-level control file. Values of
directives passed through the GUI or the command line act as default values.
Directives applied using VHDL attributes, schematic attributes, or the control file
override default values. The only exceptions are the part_name and
order_code directives. The GUI or command line, discussed below, will
override all part_name and order_code attributes.

Warp User's Guide 317

Synthesis

318

Using the GUI or command line. Certain directives may be controlled from the
GUI or command line. An example of this is the goal attribute which can be
selected to provide area or speed optimization. If speed is selected, then it
becomes the default value. If a component has a VHDL or schematic goal
attribute applied to it, however, and the value of the attribute is area, then the
speed value is overridden with the area value for that component.

Using VHDL attributes. VHDL permits the use of user-defined attributes to
adorn objects with information. Warp has thus created a user-defined (as opposed
to pre-defined) attribute for each directive. This permits a directive to be applied
to an object with the use of an attribute. The general syntax of an attribute used to
place a directive on a signal is the form:

attribute directive_name of object:class is value;

Such attributes are placed in the appropriate declarative region of the VHDL
code, typically in either the entity declarative region or the architecture body
declarative region. The object is the actual name or identifier of the entity,
architecture, component instantiation label, or signal. Class is used to identify the
class of the object (i.e., entity, architecture, or component instantiation label, or
Signal).

Examples of applying directives using attributes are given below. Next is a
discussion of the application of directives with schematic attributes and a top
level control file.

Using schematic attributes. Directives may be applied to objects in schematics
(with Warp3) using attributes by selecting the appropriate object and choosing
Attribute from the Add menu. After selecting Add->Attribute, a dialog box appears
in which the user may enter the directive in the form:

direct ive_name =value

The goal directive for area or speed optimization is not applied as an attribute. It
is chosen through the Add->LPM Symbol dialog box. The directive chosen here
overrides the command line or GUI switch.

Warp User's Guide

Synthesis

Using a control file. A top level control file may also be used to specify synthesis 9
directives. In the case of conflict, directives placed in a control file override
directives specified with VHDL or schematic attributes. The format of the control
file is defined in Chapter 3, "Synthesis Directives," of the Warp Reference Manual.
Each directive may be applied in the control file using a syntax similar to that of
attributes:

attribute directive_name [of] object[:class] is value[;]

The words in square brackets [] are optional and are simply ignored. Specifying
the class is also optional.

The next section illustrates how to apply directives in a design by using the
tuning strategy shown above. The two examples shown below demonstrate the
merits of both CPLDs and FPGAs. These design examples were compiled using a
pre-release version of the Warp software. Your results may vary slightly from
those presented here, but the general concepts will remain true.

9.2 Example 1-0RAM Controller

The code of the following listing is used to describe a fictitious DRAM controller.
Understanding the details of the code is not necessary for comprehending the
subsequent design optimization strategy. This example will first optimize this
design for a pASIC380 FPGA and then retarget it to a FLASH370 CPLD.

library ieee;
use ieee.std_logic_1164.all;
entity example is port(

clk, rst, ads, burst:in std_logic;
address: in std_logic_vector(3i downto 0);
cas, ras, ack, ref: buffer std_logic;
row_col_address:out std_logic_vector(ii downto 0»;

end example;

use work.std_arith.all;
architecture controller of example is

type states is (idle, 'asdet, rasa, casa, wi, w2, w3,
nocas, refad, wri, wr2);

Warp User's Guide 319

Synthesis

320

signal state, next_state: states;
signal match, ref_req:std_logic;
signal count: std_logic_vector(23 downto 0);
signal captured_address: std_logic_vector(31 downto 0);
signal captured_burst:std_logic;
signal col_ad:std_logic_vector(ll downto 0);
signal burst_cnt:std_logic_vector(l downto 0);

constant re_ad:std_logic_vector(ll downto 0) := (others
=> '0');

alias row_ad: std_logic_vector(ll downto 0) is
captured_address(23 downto 12);
begin

-- latch in address, and value of burst
adreg: process (clk, rst)

begin
if rst = '1' then

captured_address <= (others => '0');
captured_burst <= '0';

elsif clk'event and clk= '1' then
if ads = '1' then

captured_address <= address;
captured_burst <= burst;

end if;
end if;

end process;

check address contents to see if memory access
match <= '1' when captured_address(31 downto 24) =

"00000000" else '0';

Warp User's Guide

Synthesis

-- DRAM address multiplexer
mux: process (state, col_ad, row_ad)

begin
case state is

when refad I wrl I wr2 =>
row col_address <= re_ad;

when rasa I cas a I wl I w2 I w3 =>
row_col_address <= col_ad;

when asdet =>
row_col_address <= row_ad ;

when others =>
row_col_address <= (others => '-');

end case;
end process;

column address, Intel order
col_ad(ll downto 2) <= captured_address(ll downto 2);
col_ad(l) <= captured_address(l) xor burst_cnt(l);
col_ad(O) <= captured_address(O) xor burst_cnt(O);

Burst counter:
bcount: process (clk, rst)

begin
if rst = '1' then

burst_cnt <= "00";
elsif clk'event and clk = '1' then

if state = idle then
burst_cnt <= "00";

elsif state = w3 then
burst_cnt <= burst_cnt + 1;

end if;
end if;

end process;

Warp User's Guide 321

Synthesis

322

-- DRAM refress request counter
counter: process (clk, rst)

begin
if rst = '1' then

count <= (others => '0');
elsif clk'event and clk = '1' then

if ref = '1' then
count <= (others => '0');

else
count <= count + 1;

end if;
end if;

end process;
ref_req <= '1' when count = "101010101010101010101000"

else '0';

-- DRAM state machine
control: process (state, ref_req, match)

begin
case state is

when idle =>
cas <= '1'; ras <= '1';
ack <= '1'; ref <= '0';

if ref_req = '1' then
next_state <= ref ad;

elsif ads = '1' then
next_state <= asdet;

end if;

when asdet =>
cas <= '1'; ras <= '1';
ack <= '1'; ref <= '0';

if match = '1' then
next_state <= rasa;

else
next_state <= idle;

end if;

when rasa =>
c'as <= '1'; ras <= '0';
ack <= '1'; ref <= '0';

next_state <= casa;

Warp User's Guide

when casa =>
cas <= '0'; ras <= '0';
ack <= '1'; ref <= '0';

next state <= wi;

when wi =>
cas <= '0'; ras <= '0';
ack <= '1'; ref <= '0';

next_state <= w2;

when w2 =>
cas <= '0'; ras <= '0';
ack <= '1'; ref <= '0';

next_state <= w3;

when w3 =>
cas <= '0'; ras <= '0';
ack <= '0'; ref <= '0';

Synthesis

if (captured_burst = '1' and burst_cnt 1= ~11")
then

next_state <= nocas;
else

next_state <= idle;
end if;

when nocas =>
cas <= '1'; ras <= '0';
ack <= '1'; ref <= '0';

next_state <= casa;

when refad =>
cas <= '1'; ras <= '0';
ack <= '1'; ref <= '1';

next_state <= wrl;

when wrl =>

Warp User's Guide

cas <= '1'; ras <= '0';
ack <= '1'; ref <= '0';

next_state <= wr2;

323

Synthesis

9.2.1

9.2.1.1

324

when wr2 =>
cas <= '1'; ras <= '0';
ack <= '1'; ref <= '0';

next_state <= idle;
end case;

end process;

clock state machine
clocked: process (clk, rst)

begin
if rst = '1' then

state <= idle;
elsif clk'event and clk = '1' then

state <= next_state;
end if;

end process;

end controller;

FPGA Optimization

First Pass -- Default Options

On the first pass through synthesis and the place and route tools, this example
uses the default Galaxy options-buffer generation on, pad generation on, and
speed optimization for inferred arithmetic components. In the synthesis report
file, several operators are inferred:

ex3.vhd (line 49, col 68): Note: Substituting module
'warp_cmp_1s1c_ss' for '='.

ex3.vhd (line 80, col 32): Note: Substituting module
'warp_add_1s1c_ss' for '+'.

ex3.vhd (line 94, col 24): Note: Substituting module
'warp_add_1s1c_ss' for '+'.

ex3.vhd (line 98, col 61): Note: Substituting module
'warp_cmp_1s1c_ss' for '='.

ex3.vhd (line 152, col 52): Note: Substituting module
'warp_cmp_1s1c_ss' for '/='.

The two 1/+" operators are used in counters. The 1/=" and" /=" operators are used
for arithmetic comparisons. The following buffers and pads are inserted:

Warp User's Guide

Synthesis

Begin PAD Generation.

Created CLKPAD for signal 'clk'
Above signal drives 63 Clocks, 0 Set/Resets. Total

Created CLKPAD for signal 'rst'
Above signal drives 0 Clocks, 63 Set/Resets. Total

Created HD1PAD for signal 'ads'
Above signal drives 0 Clocks, 0 Set/Resets, 34 other

inputs. Total = 34

Begin Buffer Generation.

[max_ load = 7, fanout = 18J Created 2 buffers [DuplicateJ
for 'MODULE _ 5_ sO _gl _ uO _c_ l'

[max_ load = 7, fanout = 11J Created 1 buffers [DuplicateJ
for 'MODULE _ 5_ sO _gl _ uO _c_ 2'

[max_ load = 13, fanout 25J Created 1 buffers [DuplicateJ
for 'ref OUT' -

[max_ load = 13, fanout 18J Created 2 buffers [Normal
for 'stateSBV_2'

r.-,
63~
63

Clock pads were automatically selected for the clock and reset signals because
they fanout to all 63 of the flip-flops used. A high-drive pad, HDIPAD, was
selected for signal ads because it has a large internal load. Buffers were created as
well, per the defaults. The modules that were inferred have their own buffering
requirements, and the remainder of the signals in the design are buffered if their
loads are greater than 13, which is the default value of the max_load directive.

The design is imported into SpDE for place and route. In the
Tools->Options->General dialog box of SpDE, select the level 2 area optimization
(L2 area) for technology mapping. Then run all the tools, record the logic cell
utilization information from the In!o->Utilization information box, and gather the
requisite timing information to calculate setup time (ts), clock to output time (teo)
and maximum clock period (tscs) for internal operation (see Chapter 5, "SpDE,"
to calculate setup times, clock to output delays, and operating frequency). Next,
choose level 2 speed (L2 speed) optimization and gather the same information.
The results are summarized in Table 9-2. For each category (area, tSt tses, and
teo), the best result is indicated by shading in the appropriate cell of the tableThe
limiting factor for operating frequency is also listed. In this case, even though the
design can be internally clocked for a clock period of tscs, the teo value is such
that clocking at this interval would result in the outputs never being valid.

Warp User's Guide 325

Synthesis

326

Table 9-2 First pass FPGA results

L2 Area L2 Speed

Area (logic cells) 108 116

ts (ns) 14.4 14.9

tscs (ns) 22.0 20.6

teo (ns) 39.4 32.1

limiting factor teo teo

If the area and speed of this implementation are acceptable, then the job is done
the design does not need tuning. If, however, the user wishes to tune this design
to improve either the area, speed, or both, then he must begin the tuning cycle.
For the sake of continuing this example, assume that the user has not met his
goals and first optimize this design for speed, then area. For speed improvement,
the user wishes to decrease the setup time and clock to output delay. Assume that
the user wants to run the design with a 40 ns clock period (25 MHz), with a 10 ns
setup time and 30 ns clock to output delay. If the results were only a couple of
nanoseconds from the desired goals, then the path analyzer in the place and route
tool should be used to enter timing constraints. The place and route tool could
then replace and reroute in an attempt to meet those constraints. For moderate
improvement, returning to synthesis with directives is appropriate. If the user
wanted to be significantly more aggressive with the clock to output delay, he
would want to consider registering the outputs. The outputs are currently
designed to be combinational outputs decoded from the current state of the state
machine. Adding a pipeline for registering outputs is discussed in the chapter
covering state machines in the VHDL text accompanying this documentation set.
For this tutorial, the discussion will focus on using directives along with place
and route constraints to meet the timing goals.

Warp User's Guide

Synthesis

9.2.1.2 Second Pass-Speed Optimization (First Tuning Cycle)

This begins the first tuning cycle. Look at Table 9-1 to determine which directives
are applicable. The tscs goal has been achieved but not the ts or teo goal. The
second pass will use two directives to influence the synthesis process and
improve timing: (1) The pad generation directive is used to force ads to two high
drive pads (HD2P AD). This is done to improve setup times. In FLASH370 CPLDs,
delays are not dependent upon internal loading of signals. With the pASIC380
FPGAs, delays are dependent upon fanout. A high drive pad increases the drive
for the ads signal and reduce propagation delay. (2) The state_encoding
directive is used to select one-hot encoding for the state machine. This is done to
potentially improve the operating frequency and perhaps save logic cells. With
sequential encoding, the 11 states of the state machine will require 4 state bits.
With one-hot, 11 state bits will be required; however, with one-hot encoding, the
next-state logic is simpler, so fewer overall logic cells (and fewer levels of logic
cells) may be required. None of the other directives, including buffer_gen, will
be used in this pass, to avoid introducing too many directives at the same time.
Using too many directives at once limits the user's ability to determine which of
them is helping or potentially hurting. Both attributes are placed directly in the
code. The pad_gen attribute is placed in the entity declaration region, directly
before the end statement. The state_encoding attribute is placed
immediately after the type declaration. The attributes are:

attribute pad_gen of ads:signal is pad_hd2;
attribute state_encoding of states:type is one_hot_one;

After synthesis, the report file indicates that one_hot_one encoding is used:

State variable 'state' is represented by a Bit_vector
(0 to 10).

State encoding (one-hot one-state) for 'state' is:
idle:= "10000000000";
asdet := "01000000000";
rasa:= "00100000000";
casa:= "00010000000";
w1.- "00001000000";
w2:= "00000100000";
w3:= "00000010000";
nocas .- "00000001000";
refad .- "00000000100";
wr1.- "00000000010";
wr2:= "00000000001";

Warp User's Guide 327

Synthesis

328

The report file also shows that ads is indeed using HD2PAD resources:

Begin PAD Generation.

Created CLKPAD for signal 'clk'
Above signal drives 70 Clocks, 0 Set/Resets. Total 70

Created CLKPAD for signal 'rst'
Above signal drives 0 Clocks, 70 Set/Resets. Total 70

Created HD2PAD for signal 'ads'
Above signal drives 0 Clocks, 0 Set/Resets, 35 other

inputs. Total = 35
topld: ex4.vhd: Note: (N1347) When using multiple high

drive pads, manual pin assignment is suggested

Begin Buffer Generation.

[max_ load = 7, fanout = 18] Created 2 buffers [Duplicate]
for 'MODULE_4_s0_g1_uO_c_l'

[max_ load = 7, fanout = 11] Created 1 buffers [Duplicate]
for 'MODULE_4_s0_g1_uO_c_ 2'

[max_ load = 13, fanout 15] Created 2 buffers [Normal
for 'stateSBV_ l'

[max_ load = 13, fanout 28] Created 2 buffers [Normal
for 'ref OUT' -

The results of the second pass as compared to the first pass are shown in
Table 9-3, with the best results for each category highlighted.

Table 9-3 Second pass FPGA results

First Pass Second Pass

L2 Area L2 Speed L2 Area L2 Speed

Area (logic cells) 108 116 103 104

ts (ns) 14.4 14.9 7.0 7.5

tscs (ns) 22.0 20.6 19.8 18.5

teo (ns) 39.4 32.1 29.8 26.2

limiting factor teo teo teo teo

Warp User's Guide

Synthesis

These results illustrate that using directives judiciously can significantly improve 9
the design. The setup time improvement came from using two high drive pads (of
course, using two pads will increase the load external to the device and should be
considered for the overall system design). The area savings and tscs and teo
improvements came from using one_hot_one encoding.

9.2.1.3 Third Pass-Speed Optimization (Second Tuning Cycle)

The design has now exceeded the stated goals; however, continue to optimize the
design to see if additional directives bring any further advantages. Using the path
analyzer in SpDE to examine the delays shows that the worst case clock to output
path comes from decoding the state bits through the multiplexer to the output of
row_address. Highlighting these paths shows that these signals must route long
distances to several loads. In an attempt to minimize this delay, use the
max_load to buffer aggressively these signals. Since these signals are created by
the synthesis process, use the control file to add directives. VHDL attributes
cannot be used to apply these directives because these signals are not currently in
the VHDL source code. The attributes may be added if the source code is
modified. VHDL will not allow the user to apply an attribute to an object that
does not exist. In the control file, apply the directives to the names of the synthesis
created signals from the report file and in the path analyzer. The signals are
clearly generated from the state vector. To ensure that all state bits will be
buffered as appropriate, use the "*,, wildcard to find all matches:

attribute max_load of statesbv* is 5;
attribute max_load of ref is 10;

Warp User's Guide 329

Synthesis

330

The report file indicates proper buffering according to the control file:

Begin Buffer Generation.

[max_load = 7, fanout = 18] Created 2 buffers [Duplicate]
for 'MODULE_5_s0_g1_uO_c_1'

[max_load = 7, fanout = 11] Created 1 buffers [Duplicate]
for 'MODULE_5_s0_g1_uO_c_2'

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_O_BO'.

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_O_B1'.

[max_load = 5, fanout = 6] Created 2 buffers [Normal
for 'stateSBV_O'

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_1_BO'.

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_1_B1'.

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_1_B2'.

[max_load = 5, fanout = 15] Created 3 buffers [Normal
for 'stateSBV_1'

[max_load = 10, fanout
for 'ref_OUT'

28] Created 3 buffers [Normal

The results after place and route are only marginally better. The user is
approaching the best implementation possible. To improve upon this
implementation, the user could try adjusting the max_load to be slightly less
aggressive. Being too aggressive may cause too many buffers to be inserted. The
user may also iterate with the timing driven place and route tools by entering
constraints via the path analyzer. See Chapter 5, "SpDE," to learn how to do this.

The summarized results of the speed optimization passes are shown in Table 9-4,
highlighting the implementation that gave the best result in a given category.
Because the limiting factor is,teo, the results of L2 Area in the third pass work
best. Next, optimize the design for area where the results may be surprising

Warp User's Guide

9.2.1.4

Synthesis

Table 9-4 Third pass FPGA results

First Pass Second Pass Third Pass

L2 L2 L2 L2 L2 L2
Area Speed Area Speed Area Speed

Area (logic cells) 108 116 103 104 103 104

ts (ns) 14.4 14.9 7.0 7.5 7.2 7.1

tscs (ns) 22.0 20.6 19.8 18.5 18.0 18.4

teo (ns) 39.4 32.1 29.8 26.2 26.0 26.6

limiting factor teo teo teo teo teo teo

Fourth Pass-Area Optimization

Up to this point, this example has assumed that the target device is a CY7C384A,
a 2K gate device. Because only slightly more than half the resources of this device
(from 104 to 116 of the 192 available logic cells) are being used, it may be
worthwhile to optimize the design for area to see if it will fit in the CY7C382A, a
1K gate device with 96 logic cells. For this optimization, leave the pad_gan and
ona_hot attribute from the first tuning cycle, but remove the buffer generation
of the subsequent cycle. In addition, change the synthesis goal in the Galaxy
menu from speed to area, and resynthesize the design. The results are excellent
(see Table 9-5)

Warp User's Guide 331

Synthesis

9.2.2

9.2.2.1

332

Table 9-5 Fourth pass FPGA results

First Pass Second Pass Third Pass Fourth Pass

L2 L2 L2 L2 L2 L2 L2 L2
Area Speed Area Speed Area Speed Area Speed

Area
(logic 108 116 103 104 103 104 91 92
cells)

ts (ns) 14.4 14.9 7.0 7.5 7.2 7.1 5.8 5.5

tscs (ns) 22.0 20.6 19.8 18.5 18.0 18.4 22.2 22.2

teo (ns) 39.4 32.1 29.8 26.2 26.0 26.6 26.0 26.8

limiting
teo teo teo teo teo teo teo teo factor

The design fits in the 1K gate device and achieves the original timing goals. In
fact, they are superior in some respects to the ones that were achieved with the 2K
gate device. This is not surprising because the 1K gate device is smaller. Thus,
signals route smaller distances. At this point the user is finished-he has fit the
design into the smallest FPGA while meeting the timing goals.

Next, the example will fit this design into a FLASH370 CPLD.

CPLD Optimization

First Pass

On this first pass, use the default synthesis and fitting options which yield the
results summarized in Table 9-6. The "L2 Area" and "L2 Speed" columns have
been removed because a fitter for CPLDs is used instead of the SpDE place and
route tool.

Warp User's Guide

Synthesis

Table 9-6 First pass CPLD results

First Pass (default)

Macrocells 79

Product terms 225

ts (ns) 6.0

tscs (ns) 10.0

teo (ns) 16.0

limiting factor teo

This design requires a 128 macrocell member of the FLASH370 family of CPLDs.
Not surprisingly, it has excellent speed. This is because the design is essentially a
state machine, counters, and a little bit of combinational logic. This
implementation has far superior performance over the FPGA, but it also requires
a larger device. In the FPGA, however, if an additional pipeline were added to
improve clock to output delays (the limiting factor in this design), then system
speeds could approach 50 MHz. The additional pipeline would require a 2K
device, resulting in different performance numbers.

A tuning cycle will not likely improve upon the speed and area of this CPLD
implementation for two reasons: (1) The area versions of the counters will require
just as many macrocells and product terms as the speed versions. This is because
this counter is implemented very efficiently using T -type flip-flops. (2) Using the
state_encoding attribute with the one_hot_one value will neither increase
performance (it is already at its maximum-one pass through the logic array) nor
reduce the number of required macrocells. In fact, a one-hot implementation
will require more macrocells. It may reduce the number of product terms, but the
current implementation uses only 35% of the available product terms. Gray
encoding will require the same nUmber of macrocells, but could possibly require
fewer product terms. So, even though the current implementation is satisfactory,
resynthesize and fit the design using the "gray" value for the sta te_encoding
directive.

Warp User's Guide 333

Synthesis

9.2.2.2 Second Pass -- State Machine Gray Encoding

334

This pass implements the state_encoding directive with a VHDL attribute
placed in the architecture body declarative region where the state type is
declared:

attribute state_encoding of states:type is gray;

Warp reports the following fitter error:

Error: Signal stateSBV_3 uses too many input
signals, (logic+OE+AR+AP) .

This error indicates that one of the state bits requires more than the 36 inputs. The
FLASH370 allows only 36 inputs into a given logic block (no other CPLD has
more). Examine the report file to find the equation that verifies the veracity of this
error message and to see what can be done to correct it. The equation is as follows:

IstateSBV_3.D =
/stateSBV_O.Q * IstateSBV_3.Q * IstateSBV_2.Q *
Icount_2.Q * Icount_l.Q * Icount_O.Q * count_5.Q *
Icount_4.Q * count_3.Q * Icount_B.Q * count_7.Q *
Icount_6.Q * count_ll.Q * Icount_10.Q * count_9.Q *
Icount_14.Q * count_13.Q * Icount_12.Q *
count_17.Q * Icount_16.Q * count_15.Q *
Icount_20.Q * count_19.Q * Icount_18.Q *
count_23.Q * /count_22.Q * count_21.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_31.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_30.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_29.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_28.Q

+ IstateSBV_O.Q * stateSBv_3.Q * IstateSBV_2.Q *
captured_address_27.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_26.Q

+ IstateSBV_O.Q * IstateSBV_3.Q * IstateSBV_2.Q *
lads

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_25.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_24.Q

+ IstateSBV_O.Q * stateSBV_l.Q * IstateSBV_2.Q
+ IstateSBV_l.Q * stateSBV_2.Q
+ stateSBV_O.Q * stateSBV_2.Q

Warp User's Guide

9.2.2.3

Synthesis

Here, notice that the equation for this state-bit requires all inputs of the counter. B
This is due to the state transition out of the idle state when ref_req is asserted. In •
addition, notice that capt ured_addres s is required. This is due to the state
transitions out of the asdet state when match is asserted. In the sequential
encoding, the third bit of the state vector does not require all of these inputs: the
capture_address inputs are used with a different state bit. To avoid this problem,
this equation must be factored. A natural point to break this equation is with the
captured_address signals or counter signals. The user can create a factoring point
by applying the synthesis_off directive to either the match signal or the
reLreq signal (or both). The next pass will show how to create one with the match
signal. Creating this break-point will require a second pass through the logic
array. This will result in additional delay and require additional resources.
Obviously, the implementation will be inferior to the one achieved in the first
pass. Nonetheless, this example will show how to work around this problem for
instructional purposes. After all, it would be nice to know how to get around a
problem like this one, if the user encountered' it in the first pass.

It is interesting to note that the state encoding affected the number of terms in an
equation.

Third Pass -- Synthesis_off

The synthesis_off directive is applied with a VHDL attribute, placed in the
architecture declarative region where the match signal is declared:

attribute synthesis_off of match:signal is true;

The design fits. The report file indicates that gray encoding is used:

State variable 'state' is represented by a Bit_vector
(0 to 3) .

State encoding (gray) for 'state' is:
cas a := "0010";
idle:= "0000";
asdet := "0001";
rasa:= "0011";
cas a := "0010";
w1.- "0110";
w2 : = " 0111" ;
w3 : = " 0101" ;
nocas .- "0100";
refad .- "1100";
wr1 .
wr2 :=

"1101";
"1111";

Warp User's Guide 335

Synthesis

336

The equations also show that match was used as a factoring point:

IstateSBV_3.D =
IstateSBV_O.Q * IstateSBV_3.Q * IstateSBV_2.Q *
Icount_2.Q * Icount_l.Q * Icount_O.Q * count_5.Q *
Icount_4.Q * count_3.Q * Icount_B.Q * count_7.Q *
Icount_6.Q * count_ll.Q * Icount_10.Q * count_9.Q *
Icount_14.Q * count_13.Q * Icount_12.Q *
count_17.Q * Icount_16.Q * count_15.Q *
Icount_20.Q * count_19.Q * Icount_1B.Q *
count_23.Q * Icount_22.Q * count_21.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
Imatch.CMB

+ IstateSBV_O.Q * IstateSBV_3.Q * IstateSBV_2.Q *
lads

+ IstateSBV_O.Q * stateSBV_l.Q * IstateSBV_2.Q
+ IstateSBV_l.Q * stateSBV_2.Q
+ stateSBV_O.Q * stateSBV_2.Q

match
Icaptured_address_31.Q * Icaptured_address_30.Q *
Icaptured_address_29.Q * Icaptured_address_27.Q *
Icaptured_address_26.Q * Icaptured_address_25.Q *
Icaptured_address_24.Q * Icaptured_address_2B.Q

The area and speed results are summarized in Table 9-7. This implementation
requires fewer product terms, but has slower performance than the first
implementation.

Table 9-7 Third pass CPLD results

First Pass Second Pass Third Pass
(Defaults) (Gray Encode) (Synthesis_off)

Macrocells 79 Fit Error 80

Product terms 225 Fit Error 202

ts (ns) 6.0 Fit Error 6.0

tscs (ns) 10.0 Fit Error 19.0

teo (ns) 16.0 Fit Error 16.0

limiting factor teo Fit Error tscs

Warp User's Guide

Synthesis

Either of the successful CPLD implementations provide superior speed over the
FPGA implementation, but they also require a larger density device. The next
example selects a design that favors FPGAs for speed and area.

9.3 Example 2-Multiply and Accumulate Function

9.3.1

The code of the following listing is a multiply and accumulate design. Once again,
this design will be optimized first for a pASIC380 FPGA, then for a FLASH370
CPLD.

library ieee;
use ieee.std_logic_1164.all;

entity math is port (
clk, rst, mac:std_logic;
a, b:in std_logic_vector(7 downto 0);
q: buffer std_logic_vector(lS downto 0»;

end math;

use work.std_arith.all;
architecture math of math is
begin
p1: process (rst, clk)

begin
if rst = '1' then

q <= (others => '0');
elsif clk'event and clk='l' then

q <= (a * b) + q;
end if;

end process;
end math;

FPGA Optimization

Warp User's Guide 337

Synthesis

9.3.1.1

338

First Pass -- Default Options

In the first pass through the design, use the default Galaxy options-buffer
generation on, pad generation on, and speed optimization for inferred arithmetic
components. In the report file, the two arithmetic operators are inferred:

g.vhd (line 18, col 16): Note: Substituting module
'warp_mul_2s_ss' for '*'.

g.vhd (line 18, col 21): Note: Substituting module
'warp_add_2s_ss' for '+'.

The signals elk and r s t were placed on clock pads. Some of the inputs were
also selected for high drive pads because of high internal fanout. The default
value for the rnax_l oad directive is 13, so the following buffers were inserted:

Begin PAD Generation.

Created CLKPAD for signal 'clk'
Above signal drives 16 Clocks, a Set/Resets. Total 16

Created CLKPAD for signal 'rst'
Above signal drives a Clocks, 16 Set/Resets. Total 16

Created HDIPAD for signal 'b_l'
Above signal drives a Clocks, a Set/Resets, 16 other
inputs. Total = 16

Created HDIPAD for signal 'a_I'
Above signal drives a Clocks, a Set/Resets, 16 other
inputs. Total = 16

Created HDIPAD for signal 'a_2'
Above signal drives a Clocks, a Set/Resets, 16 other
inputs. Total = 16

Created HDIPAD for signal 'a_3'
Above signal drives a Clocks, a Set/Resets, 16 other
inputs. Total = 16

Warp User's Guide

Synthesis

--
Begin Buffer Generation.
--
[max load = 13, fanout 15] Created 2 buffers [Normal

for 'a _0_ IN'
[max_ load = 13, fanout 15] Created 2 buffers [Normal

for 'b _0_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'a _4_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'a _S_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'a _6_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'a _7_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'b _2_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'b _3_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'b _4_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'b_5_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'b_6_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'b _7_ IN'

The area and speed results are listed in Table 9-8. This time, setup times are the
limiting factor. That is, the design cannot be clocked at tscs because that would
violate setup times.

Table 9-8 First pass FPGA results

L2Area L2 Speed

Area 163 186

is (ns) 68.8 73.9

iscs (ns) 22.8 24.9

teo (ns) 11.3 IDA

limiting factor is ts

Warp User's Guide 339

Synthesis

9.3.1.2

9.3.2

9.3.2.1

340

If the user wanted to pursue a faster design, then he could experiment with the
max_load directive as well as the 5pDE timing driven place and route to
minimize the delays of particular paths. Going through this process may yield a
small improvement over the current speed numbers.

Second Pass-Area Optimization

Because the default options use speed optimization, rerun the design with area
optimization on. After synthesis and place and route, the results are exactly the
same as in the first pass. This is because the adder and multiplier modules for the
widths used in this design have the same implementation for both speed and area
optimized versions.

Next, this design will be implemented in a FLASH370 CPLD.

CPLD Optimization

First Pass -- Default Options

Once again, the first pass will use the default Galaxy options. This means speed
optimization. With these options, the design will not fit (fable 9-9) because it
requires too many macrocells. It also requires nearly all of the available product
terms. So, pursue area optimization.

Table 9-9 First pass CPLD results

First Pass (Defaults)

Macrocells 132

Product terms 620

ts (ns) N/A

tscs (ns) N/A

teo (ns) N/A

limiting factor did not fit

Warp User's Guide

Synthesis

9.3.2.2 Second Pass -- Area Optimization

The results of area optimization are summarized in Table 9-10:

Table 9-10 Second pass CPLD results

First Pass (Defaults) Second Pass (Area)

Macrocells 132 120

Product terms 620 605

ts (ns) N/A 87.0

tscs (ns) N/A 66.0

teo (ns) N/A 7.0

limiting factor did not fit ts

The setup time for this combination of operations-multiply and accumulate-is
the limiting factor for the maximum frequency of this design.

For this application, the FPGA performed better and required fewer resources.
This is not surprising. FPGAs often do well in datapath and register-intensive
applications.

Now each of the directives listed in Table 9-10 will be covered topically by the
categories listed in the columns-area optimization, speed optimization, specific
control, documentation/ selection.

9.4 Area Optimization

9.4.1

This section describes the directives and techniques required to successfully
implement a logic design with the minimum device resources (minimum area)
being utilized. The techniques are often different for FPGA and CPLD
architectures. The focus of this section is to provide recommended techniques for
area optimization based on device architecture.

CPLD and FPGA Considerations

This section discusses area optimization methods relating to all Cypress
programmable devices. The goal, synthesis_off, and no_factor
directives are discussed.

Warp User's Guide 341

Synthesis

9.4.1.1 The GOAL Directive

342

attribute goal of architecture_name architecture is area;

or command line option: -yga

The goal value of area indicates that all modules inferred from VHDL operators
will be optimized for area. The Warp synthesizer will select an implementation
that is optimized to use the minimum device resources. A 16-bit adder example
with the goal directive placed on an architecture is shown below. This code will
generate a ripple carry adder with a 2-bit group as the basic unit. This adder
would be implemented as carry-look-ahead if the goal was set to speed. A
comparison of the results after compilation for each goal and target device type is
shown in Table 9-11.

Table 9-11 Results of GOAL directives

FPGA CPLD

Area Opt. Speed Opt. Area Opt. Speed Opt.

24 logic cells 45 logic cells 23 macrocells 35 macro cells

8 passes 4 passes 8 passes 3 passes

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
entity add16_a is porte

a, b:in std_logic_vector (15 downto 0);
sum:out std_logic_vector (15 downto 0»;

end add16_a;

architecture archadd16_a of add16_a is
ATTRIBUTE goal OF archadd16_a : ARCHITECTURE IS area;
begin

sum <= a + b;
end;

Warp User's Guide

Synthesis

9.4.1.2 The SYNTHESIS_OFF Directive

ATTRIBUTE synthesis_off OF signal_Dame : signal IS true;

When the synthesis_off directive is set to true, a signal is made into a
factoring point for logic equations. This directive keeps the signal from being
substituted out during the optimization process. The node number is used to
reference a macrocell within a CPLD.

Synthesis_off is useful for the following reasons:

• It gives the user control over which equations or sub-expressions need to
be factored into a node.

• It provides better results for designs where a signal with a large
functionality is being used by many other signals. If left alone, the fitter
would collapse all the internal signals (which is desirable in many cases)
and may drive the design's resource requirements beyond the available
limits.

• It helps in cutting down on compile time for designs which have a lot of
lisignal redirection" (signals getting inverted or reassigned to other
signals). This directive provides the logic optimizer a better control over
the optimization process, by reducing the number of signals it needs to
deal with.

By using the synthesis_off directive, the user can assign the commonly used
signal to a node and bring down the resource utilization.

A side effect of using the synthesis_off directive is that the design will now
take an extra pass through the array to achieve the same functionality. The extra
pass may be required anyway, if more than 16 PTs are required.

This directive is recommended only on combinatorial signals. Registered signals
are assigned to a node by natural factoring, and the synthesis_off directive
on these signals is redundant.

This directive can be associated with signals declared both in VHDL and
schematics. The BUF component can also be used in schematics and VHDL to
achieve the same results as the synthesis_off directive. Please refer to the
Warp Synthesis manual for more details.

Warp User's Guide 343

Synthesis

9.4.1.3

9.4.2

344

This directive allows the designer to force multiple passes through logic cells for
optimal density. The following example uses the synthesis_off directive and
uses 30 Macrocells in a CY7C371. This same design requires 43 Macrocells in a
CY7C371 without using the synthesis_off directive:

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity cpldadd is port(
a: in std_logic_vector(7 downto 0);
b: in std_logic_vector(7 downto 0);
c: in std_logic_vector(7 downto 0);
sum: out std_logic_vector(7 downto 0»;

end cpldadd;

architecture areacpldadd of cpldadd is
signal intsum: std_logic_vector(7 downto 0);
attribute synthesis_off of intsum:signal is true;

begin

intsum <= a + b;
sum <= intsum + c;

end areacpldadd;

The NO_FACTOR Directive

ATTRIBUTE no_factor OF signal_Dame : signal IS false;

The no_factor directive when set to true prevents logic factoring within the
Warp synthesis engine. This means that factors which can be shared among
multiple outputs are not generated. For area optimization, the no_factor
directive should always be set to false. This allows the synthesizer to create
common logic that can be shared, thus reducing the resources required.

FPGA Considerations

This section discusses area optimization methods using the Cypress pASIC380
FPGA architecture. The state_encoding and buffer_gen directives are
discussed.

Warp User's Guide

9.4.2.1

Synthesis

The STATE_ENCODING Directive

The state_encoding directive specifies the internal encoding scheme for
values of an enumerated type. For most state machine designs larger than 4 states,
the values recommended for area optimization in FPGAs are either
one_hot_one or one_hot_zero. The choice of which type to use depends on
the design being implemented. A detailed description of each encoding value is
provided below. Further information on state encoding schemes may be found in
the VHDL textbook accompanying this document set.

ATTRXBUTE state_encoding OF type_name : type XS
one_hot_zero;

When the state_encoding value is set to one_hot_zero, the encoding of
the first value in the type definition is set to o. Each succeeding value in the type
definition has its own bit position (flip-flop) in the encoding sequence. Thus, a
one_hot_zero encoding of an enumerated type with N possible values
requires N-l bits (flip-flops). The following VHDL code will generate a
one_hot_zero state machine design:

This state machine implements a simple traffic light.
The N - S light is usually green, and remains green
for a minimum of five clocks after being red. Xf a
car is travelling E-W, the E-W light turns green for
only one clock.

PACKAGE DesgnPkg XS
TYPE state XS (green_red, yellow_red, red_green,

red-yellow) ;
ATTRXBUTE state_encoding OF state: type XS one_hot_zero;
END DesgnPkg;

library ieee;
use ieee.std_logic_1164.all;
use work.desgnpkg.all;

ENTXTY traffic_light XS
PORT (clk, car: XN.STD_LOGXC;--E-W travelling car

lights: BUFFER state);
END traffic_light;

ARCHXTECTORE moorel OF traffic_light xs
The lights (outputs) are encoded in the following
states. For example, the state green_red indicates
the N-S light is green and the E-W light is red.
nscount is used to verify five consecutive N-S greens

Warp User's Guide 345

Synthesis

346

SZGNAL nscount: ZNTEGER RANGE 0 TO 5;
BEGZN

PROCESS
BEGZN

WAZT ONTZL elk = 111;
CASE lights ZS

WHEN green_red =>
ZF nscount < 5 THEN

lights <= green_red;
nscount <= nscount + 1;

ELSZF car = 111 THEN
lights <= yellow_red;
nscount <= 0;

ELSE
lights <= green_red;

END ZF;
WHEN yellow_red => lights <= red_green;
WHEN red_green =>

lights <= red-yellow;
WHEN red-yellow => lights <= green_red;
WHEN others => lights <= green_red;

END CASE;
END PROCESS;

END moore1;

The resulting state bit assignments indicated in the report file file-name.rpt for the
one_hot_zero design is shown below:

State variable
(0 to 3) .

State encoding
green_red
yellow_red
red_green
red_yellow

'lights' is represented by a Bit_vector

(one-hot zero-state) for 'lights' is:
:="000";
:="100";
:="010";
:="001";

ATTRZBUTE state_encoding OF type_name : type ZS one_hot_one;

One_hot_one state encoding is similar to one_hot_zero, except that zero
encoding is not used. Every state value has a bit position that is set to "1" when
the state variable is active. Thus, a one_hot_one encoding of a state machine
with N possible values requires N bits (flip-flops).

If the package statement used for the one_hot_zero street light example above
is changed to use one_hot_one, then the package declaration would appear as
shown:

Warp User's Guide

Synthesis

PACKAGE DesgnPkg XS
TYPE state XS (green_red, yellow_red, red_green,

red-yellow) ;
ATTRXBUTE state_encoding OF state: type XS

one_hot_zero;
END DesgnPkg;

The resulting state bit assignments indicated in the report file vhdlJile.rpt for the
one_hot one is shown below:

9.4.2.2

State variable 'lights' is represented by a Bit_vector
(0 to 3) .

State encoding
green_red
yellow_red
red_green
red_yellow

(one-hot one-state) for 'lights' is:
:="1000";
:="0100";
:="0010";
:="0001";

Notice that the one_hot_one design uses an extra flip-flop for the first state
assignment compared to the one_hot_zero implementation.

This traffic light example takes six logic cells when implemented in a CY7C381A
using one_hot_zero and seven logic cells when using one_hot_one. This
ratio may not always be the same, depending on other specifics on how the
design is implemented. A one_hot_zero implementation is useful in situations
where only a reset is available to the registers in a PLD. If an asynchronous signal
is required for initialization of the registers in a 22vlO, then a reset is the only
option. In this case, use a one_hot_zero state machine for initialization to state
zero. The one_hot_zero may be less optimum if the Idle state (all Os) is
required to decode an output signal or multiple transitions to different states. In
this case, all the state bits would have to be decoded to verify that the machine is
in Idle.

In general, one - hot designs are faster than binary encoded because state
transition decodings are simple. For FPGA architectures, a flip-flop is a less vital
resource than product term inputs because of the finer grain logic implementation
with a flip-flop in every cell. For these reasons it makes sense to use the one-hot
technique for FPGA state machines. This is not necessarily true for CPLD state
machine designs.

Warp User's Guide 347

Synthesis

9.4.2.3

9.4.3

9.4.3.1

The BUFFER_GEN Directive

signal ZS buf_none;

orconunandlineoption:-yb

The buf fer _gen directive controls the buffering strategy for signals that have a
high fanout (exceeding max_load). If a signal has a high fanout, then signal
propagation delays increase significantly. The buffer_gen value is by default
bUf_auto. The buf_none value is preferred for least resources being used.
Buffer generation should only be used where speed is of concern. Refer to Section
9.6.2, "Speed Optimization for FPGAs" for further details on buffer_Slen.

CPLD Considerations

This section discusses area optimization methods using all Cypress PLD and
CPLD architectures. The ff_type directive applies to area optimization in
CPLDs.

The FF _ TYPE Directive

signal IS ff_opt;

or conunand line option: - f 0

The ff_type value of ff_opt tells Warp to synthesize the signaCname to the
optimum flip-flop type for the logic implemented. A flip-flop is chosen based on
the fewest resources required to implement the logic function. For instance, a D
type flip-flop may be chosen for register data storage functions, while aT-type
(toggle) flip-flop may be chosen for counters. This option is recommended for all
designs unless the designer has specific requirements to force the use of a
different flip-flop.

9.5 Specific Control

This section describes specific control features of the Warp synthesis tool.

348 Warp User's Guide

9.5.1

9.5.2

Synthesis

The FF _ TYPE Directive (CPLD Only)

ATTRIBUTE ff_type OF signal_name : signal IS ff_d;

or command line option: - f d

The ff_type value of ff_d tells Warp to synthesize the signaCname using a D
type flip-flop. This will force the synthesizer to use a D-type flip-flop to generate
signaCname. This directive will typically only be used if the Warp synthesis tool is
not using the D-type flip-flop where the designer intends.

or command line option: - f t

The ff_type value of ff_t tells Warp to synthesize the signal_name using a
T-type flip-flop. This will force the synthesizer to use a toggle flip-flop to generate
signal_name. This directive will typically only be used if the Warp synthesis
tool is not using a toggle flip-flop, which the designer intends for functional
reasons.

The FIXED_FF Directive (FPGA Only)

ATTRIBUTE fixed_ff of signal_name : signal is
register_location

or command line option: - f n [n=register location]

The fixed_ff directive locks a flip-flop to a specific cell location in the device.
This directive overrides the default placement that the SpDE placer assigns
automatically. The f ixed_f f directive is applied to the Q output signal of a flip
flop. If the fixed_ff directive is aSSigned to any other signal besides the Q
output of a flip-flop, the directive is ignored. An example follows:

library ieee;
use ieee.std_logic_1164.all;

ENTITY ff_type_test IS
PORT (clk, ff_D: IN STD_LOGIC; -- Flip-flop clock, D-input

ff_Q: OUT STD_LOGIC); -- Flip-flop Q output
ATTRIBUTE fixed_ff OF ff_Q:signal IS "Al";

END ff_type_test;

Warp User's Guide 349

Synthesis

9.5.3

350

BEGIN
PROCESS
BEGIN

WAIT UNTIL clk = Ill;
ff_Q <= ff_D; -- Generate output

END PROCESS;
END arch_ff_type_test;

The above code segment will ensure the signal f f_Q is generated from the flip
flop located in cell" AI" of a pASIC device. This allows the designer to manually
place flip-flops to override the SpDE floor planner. This directive is used to place
flip-flops in close proximity in order to reduce routing lengths for critical path
signals. Flip-flops may be grouped together to provide maximum operating
speed. Refer to Section 9.6.2, "Speed Optimization for FPGAs," for further details
on optimizing a design for speed using the f ixed_f f directive.

The NODE_NUM Directive (PLD & CPLD Only)

ATTRIBUTE Dode_Dum OF signal_name : signal IS iDteger ;

or command line option: -fn [n=node location]

The Dode_Dum directive locks a Signal to a specific location in the target device.
This directive overrides the default placement that the Warp tool would assign
automatically. This directive applies to any combinatorial or sequential node
within the design.

Example:

library ieee;
use ieee.std_Iogic_1164.all;

ENTITY Dode_Dum_test IS
PORT (elk, ff_D: IN STD_LOGIC; -- Flip-flop clock, D-iDput

ff_Q: OUT STD_LOGIC); -- Flip-flop Q output
ATTRIBUTE Dode_num OF ff_Q:SIGNAL IS 398;

END Dode_Dum_test;

ARCHITECTURE arch_node_Dum test OF node_Dum_test IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL clk = Ill;
ff_Q <= ff_D; Generate output

END PROCESS;

Warp User's Guide

9.5.4

Synthesis

The above code segment will ensure the signal f f_Q is generated from the
macro cell driving node 398 in a CY7C374 device. Node 398 refers to buried
macro cell A in logic block #1 in a CY7C374. The specific node numbers available
for each FLASH370 series device may be found in the Reference Manual .
accompanying this document set. This directive allows the designer to manually
place logic to override the Warp floor planner.

The LAB_FORCE Directive (CPLD Only)

ATTR1:BUTE lab_force OF signal_nlilJDe : signal 1:S "string";

The lab_force directive aids in grouping signals together as a requirement to
the fitter. The string contains the name of the logic block. This directive will
force signa l_name to the string internal logic block without regard for 1/0
pin assignments. In most designs, the automatic assignment by the fitter is
acceptable. In some cases, the user may want to constrain the fitter to obtain better
partitioning than can be performed automatically. This directive should only be
used if the user is intimately familiar with the target CPLD architecture. This
directive can cause routing difficulties if logic is placed in an area that can block
routing paths.

Example:

ATTRIBUTE lab_force OF ff_Q:S1:GNAL 1:8 "B2";

This will force the signal ff_Q to the lower half of logic block B in a FLASH370
device. In the following example:

ATTR1:BUTE lab_force OF ff_Q:signal 1:8 "Bl";

The signal f f_Q is forced to the upper half of logic block B.

Warp User's Guide 351

Synthesis

9.5.5

352

The SUM_SPLIT Directive (CPLD Only)

ATTR~BUTE sum_split OF signal_name : signal ~s value;

The sum_spli t value can be balanced or cascaded. The default value is
balanced. Use the balanced value if reliable balanced timing is desired at the
expense of area. The following figure describes the balanced sum split concept:

ATTR~BUTE sum_split OF sum_signal:sig.nal ~s balanced;

Figure 9-2 The balanced sum split concept

The cascaded method uses only two macrocells to implement an equation.
There is no control over which product term is assigned to which macrocell. The
signals that are not split into macrocell #1 will arrive at macrocell #2 sooner,
thereby making the timing for the outputs different based on different arrival
times. If these output signals are registered, then of course the timing generated at
the outputs are the same.

ATTR~BUTE sum_split OF sum_signal:signal ~s cascaded;

Warp User's Guide

9.5.6

18

16

2

Split
to 16

Figure 9-3 The cascaded sum split

Synthesis

OR
Result~-"'·~

Which sum_split method to use depends on the area constraints and how the
design is implemented. Use the balanced method first and then the cascaded, if
the design did not fit using balanced.

The POLARITY Directive (CPLD Only)

ATTRIBUTE polarity OF signal_name : signal IS value;

The polari ty directive is used to select polarity for signals in a design. There are
two options for polarity, pl_keep and pl_opt. The pl_keep option will
instruct the Warp compiler to keep the polarity of a signal as currently specified in
the design. The pl_keep option is useful to instruct the compiler about the
desirable output sense of a signal at power up. When a circuit is initialized, it may
be desirable to provide an output as a 1/1" or I/O" and maintain this condition
without the compiler changing the sense for optimization reasons. In another
case, it may be desirable to keep signal senses in order to debug designs in the
simulator without being concerned about compiler-induced internal inversions.
In most cases, however, the pl_opt is the best choice. This option allows the
compiler to change the sense of internal Signals to provide the best optimization
for a design.

Warp User's Guide 353

Synthesis

9.6 Speed Optimization

9.6.1

9.6.1.1

354

This section describes the synthesis directives and techniques that may be used in
optimizing a design for performance. In most cases, the techniques for speed
optimization are device dependent. The discussion will cover first those
directives applicable to both FPGAs and CPLDs, then those for FPGAs only.

Speed Optimization for both FPGAs and CPLDs

The GOAL Directive

ATTRIBUTE goal OF architecture_name: architecture IS speed;

The goal value of speed indicates that all arithmetic modules inferred from
VHDL operators will be optimized for speed. The Warp synthesizer will select an
implementation that is optimized to achieve the best performance. This is a good
first step to take when optimizing a design for performance. To demonstrate the
goal directive, observe the performance delta in the following 8-bit adder
example implemented in a FLASH370 CPLD:

library ieee;
use ieee.std_10gic_1164.a11;
use work.std_arith.a11;

entity add8_a is port(
a, b: in std_10gic_vector (7 downto 0);
sum: out std_10gic_vector (7 downto 0»;

end add8_a;

architecture archadd8 a of add8 a is
attribute goal of archadd8_a: architecture is speed;
begin

sum <= a + b;
end;

Results with goal set to area was 57.0 ns (17.5 Mhz) worst case delay.

Results with goal set to speed was 27.0 ns (37 Mhz) worst case delay.

Warp User's Guide

Synthesis

9.6.1.2 The DONT _TOUCH Directive

9.6.2

9.6.2.1

ATTRIBUTE dont_touch OF label_name: label IS true;
ATTRIBUTE dont_touch OF entity_name: entity IS true;

In some rare cases, a block of a design may need to be hand-optimized. The user
may instruct Warp to leave the individually optimized block alone by applying
the dont_touch directive to the entity or the component to prevent any
optimization on the block. Under most circumstances, this directive is not needed
since Warp's optimization usually improves performance and resource efficiency.

architecture arch~accumulator of accumulator is

attribute dont_touch of blockl: label is true;

begin
blockl: add' (a, b, sum);

OR

entity my_adderS is port (
a,b: in std_logic_vector(O to 7);

) ;
attribute dont_touch of my_adderS: entity is true;

end entity my_adderS;

Speed Optimization for FPGAs

The BUFFER_GEN and the MAX_LOAD Directives

ATTRIBUTE buffer_gen OF signal_name: signal IS value;
ATTRIBUTE max_load OF signal_name: signal IS integer;

Buffering a signal with high fanout effectively reduces the load seen by a signal,
and is used to reduce the propagation delay of that signal. Warp is capable of
implementing several methods of buffering. By default, Warp attempts automatic
buffering (buf_auto, explained below). If a different buffering technique is
desired for a particular signal, or register duplication is required, then the
buffer_gen directive may be applied to that signal. To specify a limit on the
number of loads a signal should have, the max_load directive may be used in
conjunction with the buffer_gen directive. When Warp encounters a signal
with a fanout count larger than the specified max_load value, it buffers the
signal. Warp has a default maximum load setting of 13.

Warp User's Guide 355

Synthesis

356

Buffer generation options are:

buf_none: When the buf_gen directive is set to this value, Warp will not buffer
this signal. It prevents resources from being used unnecessarily as buffers. This
value should be used for signals which are not timing critical.

buf_auto : This is the default setting Warp uses for buffer generation. With this
setting, Warp first attempts buf_duplicate, then attempts buf_normal. The
buf_register will not be attempted.

buf_normal : A buffer tree is created between the signal source and its loads
until every node has a fanout of less than the maximum load count as specified by
the max_load directive. This technique is best used for signals that have very high
fanout (greater than 24) and need to meet a maximum propagation delay.

buf_duplicate: The logic gate that produced the source signal is duplicated
multiple times. This "paralleling" of signal sources does not create additional
levels of logic but does increase the load at the source inputs. For fanout loads of
less than 24, duplicate buffering will usually yield better performance than
normal buffering. The source logic must fit into a pASIC primitive P AfragA,
P AfragF, logico or the like. This method increases the load at the source inputs.

buf_register: Similar to duplicate buffering, registers are duplicated in
parallel. This method does not create additional logic levels and works best for
synchronous designs. For registered Signals, this method usually yields better
performance than normal buffering. This method increases the load at the register
input.

Example:

library ieee;
use ieee.std_logic_1164.all;

entity ld_reg is porte
d: in std_logic_vector (31 downto 0);
address: in std_logic_vector (3 downto 0);
q: inout std_logic_vector (31 downto 0);
clk: in std_logic); ,

end ld_reg;

architecture arch_ld_reg of ld_reg is
signal reg_en: std_logic;
attribute buffer_gen of reg_en: signal is buf_normal;
attribute max_load of reg_en: signal is 8;

Warp User's Guide

begin
main: process(clk)

begin
if (clk'event and clk = '1') then

if (reg_en = '1') then
q <= d;

else
q <= q;

end if;
end if;

end process;

reg_en <= '1' when (address = "1001") else '0';

Synthesis

Without buffering of any kind (automatic buffer generation disabled), the
reg_en signal has a fanout of 32. When importing into SpDE, the tool will warn
that the reg_en signal has a high fanout. SpDE's path analyzer reveals that the
worst case delay for a CY7C384A-2JC is 33.5 ns (-30 Mhz). To improve the
performance, the VHDL file may be recompiled with buffer generation enabled in
the device window of Galaxy (default), and max_load directive placed on the
reg_en signal. With the max_load set to 8, the worst case delay is brought
down to 18.2 ns (-55 Mhz). As a guideline, max_load should generally be set in
the range of 5 to 13. Above 13 loads, the delay of a signal is mostly due to the
number of loads and their associative routing. Between 5 and 13 loads, the tPD of
the added buffer with its associating routing may begin to balance out the fanout
delay. Below 5 loads, the buffering delay begins to outweigh the savings from
load reduction. For example, when max_load is set to 4, the worst case delay is
19.1 ns (52 Mhz), worse than when max_load is 8. It should be remembered that
delays in an FPGA are design-dependent and place-and-route dependent. This
means that for the same max_load setting, different designs and place-and
route iterations will have different performances, hence the recommended range
of 5 to 13 loads.

If the reg_en signal is a register~d signal, as in the code below, then the
buf_register setting should be used with the buffer_gen directive. In
register buffering (maX_load = 8), the register source is repeated. In this case,
the register is automatically repeated four times to bring the worst case delay
down to 15.6 ns (~64 Mhz).

Warp User's Guide 357

Synthesis

9.6.2.2

358

architecture arch_ld_reg of ld_reg is
signal reg_en: std_logic;
attribute buffer_gen of reg_en: signal is buf_register;
attribute max_load of reg_en: signal is 8;

begin
main: process(clk)

begin
if (clklevent and clk = Ill) then

if (address = "1001") then
reg_en <= Ill;

else
reg_en <= 10 1;

end if;

if (reg_en = Ill) then
q <= d;

else
q <= q;

end if;
end if;

end process;

The PAD_GEN Directive

attribute pad_gen or sigual_name: signal ZS value;

The pASIC380 family has three different types of pins. Bidirectional pins may be
configured as bidirectionals, inputs only, and three statable outputs. There are
also dedicated inputs and clock input pins. The dedicated inputs are high drive
inputs for use with signals with high internal fanout. Clock inputs utilize an
internal clock distribution tree to achieve low skew. (Clock inputs can also double
as high drive inputs.) The type of input can be specified by using the pad_gen
directive.

entity counter is port (
clock: in std_logic;

) ;
attribute pad_gen of clock: signal is pad_clock;

end entity counter;

Warp User's Guide

9.6.2.3

Synthesis

Automatic: Warp defaults to this setting. This setting attempts to find the type of
pad that best suits the implementation of the signal (bidirectional I/O, clock, or
highdrive). This setting is activated when the automatic pad generation is enabled
in the device window of Galaxy, and thepad_gen directive is set to pad_auto
or no directive for pad_gen exists.

Bidirectional I/O: The majority of input signals and all output signals use a
bidirectional I/O pin. These pins can be configured as always active outputs,
three-state outputs, inputs, and bidirectionals. To indicate to Warp that a signal
should utilize an I/O pin, the above directive may be used with the value set to
pad_none or pad_io.

Dedicated High-Drive Input: When an input signal drives many internal logic
gates (on the order of 8 or more loads), a dedicated high drive input can be used
to reduce propagation delays. The high drive inputs have double the drive
capability of a regular I/O input driver. Because they are intended for multiple
loads in mind, high drive inputs require the use of express wires for routing.
Express wires are routing resources that traverse the entire length of the device.
For very large fanout counts, multiple high drive input drivers may have their
outputs tied together. This requires that the input signal at the pins is the same.
To have Warp utilize the dedicated inputs, use the above directive with the value
set to: pad_hdl, pad_hd2, pad_hd3, or pad_hd4.

Clock Input: To maintain a chip-wide skew of less than one nanosecond, the
clock distribution tree limits clock input signals to being wired to the reset, preset
and clock inputs of each logic cell's register. To utilize the clock inputs, use the
above directive with the value set to pad_clock.

The FIXED_FF directive

ATTRIBUTE fixed_ff OF signal_name: signal IS
register_location;

Hand placement of logic cells within the device is generally not recommended,
since an unrestricted place and route tool will be able to move logic cells near
each other when necessary during placement to reduce delays and routing
utilization. For cases where the user needs strict control over logic cell placement,
however, hand placement of logic cells is possible using the directive f ixed_f f
on the registered signal. The signal being fixed must be a signal on the Q output
of a flip-flop or logic cell. The two most common situations which potentially
benefit from assigning logic cell placement are discussed below.

Warp User's Guide 359

Synthesis

360

Logic cell placement in a column arrangement is useful when used in conjunction
with high drive inputs (dedicated inputs which can drive larger loads than the
standard I/O). High drive inputs require the use of vertical routing lines that
span the entire height of the device for small devices (express wires) or four logic
cells for larger devices (quad wires). Because of this, arranging logic cells in a
single column will require the use of only one express wire or a minimum
number of quad wires, thus saving resources as well as decreasing the
propagation delay. Fifo and shift register applications often will have this type of
situation; however, it is recommended that this be the last step in optimizing a
design for performance.

Logic cell placement can also aid in minimizing register to pin delays. The Warp
development system usually attempts to place the source logic cell near the
output pin. To insure that critical output pin signals have minimal clock to valid
times, however, the f ixed_f f directive may be used to lock the logic cell near
the output pin.

An example, counter4. vhd, is shown below (a 4-bit counter with enable). It is
desired that the registers for the vector data be placed in a column. Since VHDL
does not allow directives to be placed on individual signals of a vector, Warp's
control file is used.

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity counter4 is porte
data: inout std_logic_vector (3 downto 0);
clk,rst: in std_logic);

end counter4;

architecture arch_counter4 of counter4 is
begin
process (clk,rst)

begin
if (rst=11 1) then

data <= (others => 10 1);
elsif (clklevent and clk=11') then

data <= data + 1;
end if;

end process;

end arch_counter4;

Warp User's Guide

Synthesis

After compilation, it is noted that the data signal vector has been broken down
into individual signals with labels da ta_ 0, da ta_l, etc. A control file is made
by creating a new file called counter4.ctl. This file contains the code:

attribute fixed - ff of data - 0: signal is "Bl";
attribute fixed - ff of data - 1: signal is "B2" ;
attribute fixed_ ff of data - 2: signal is "B3" ;
attribute fixed_ ff of data - 3: signal is "B'" ;

Warp User's Guide 361

Synthesis

This results in the layout shown below:

B

'.1_.1

Figure 9-4 Layout with fixed_ff directive

362 Warp User's Guide

Synthesis

9.6.2.4 The STATE_ENCODING Directive

9.7

9.7.1

9.7.2

ATTRIBUTE state_encoding OF type_name: type IS value;

Next-state equations for state machines with sequential encoding can be complex
and product-term intensive. This is particularly undesirable in FPGAs because
several cascaded logic cells may be required to complete the equations. A
different state encoding scheme can reduce the complexity of the state encoding
equations, thus reducing logic cell utilization and ultimately reducing state
decode propagation delays. Two state encoding schemes which accomplish this
are one-hot-one and one-hot-zero state encoding.

See Section 9.4.2.1, "The STATE_ENCODING Directive," for more information.

Documentation Directives

The PART_NAME Directive

A user may want to specify a particular device so that the original design
documents specify which device it was designed for. This directive will override
any target device command line switch or a Galaxy dialog box setting.

entity counter is port
a,b: in std_logic;

) ;

attribute part_name of counter: entity is "c371";
end entity counter;

The ORDER_CODE Directive

ATTRIBUTE order_code OF entity_name: entity IS "order_code";

A particular package and speed bin of a device can be specified to the Warp
synthesis tool by using the directive order_code within the design to ensure
timing information reflects the speed grade of the desired part. The order codes
can be found in the Ordering Code column of the ordering information table for
each device in the Cypress Semiconductor Programmable Logic Data Book. Timing
delays for CPLDs are calculated according to the speed bin specified by this
directive, or if no directive is specified in the VHDL code, the compiler will use
the directive specified in the device window of Galaxy.

Warp User's Guide 363

Synthesis

9.7.3

entity counter is port
a,b: in std_logic;

) ;
attribute order_code of counter: entity is "CY7C371-
66JC";
end entity counter;

The PIN_NUMBERS Directive

ATTRZBUTE pin_numbers OF entity_name: entity ZS "strinv';

Once a design has been completed and the board is defined, it may be desirable to
maintain the pin out configuration when modifications to the programmable
logic design are made. Locking signals to a particular pin can be accomplished by
using the pin_numbers directive in the design.

entity counter is port
a,b: in std_logic;

) ;
attribute pin_numbers of counter: entity is "a:6 b:7 ";

end entity counter;

It is recommended that whenever possible, particularly the first time a design is
fitted to a device, the pins of a device should not be locked. When the pins are not
locked, the fitting tools can choose the optimal fitting arrangement within the
device for performance as well as minimal resource utilization. In some rare
occasions, certain pin arrangements can render a fitting impossible.

Once a design has been fitted to a device (and the tool has already chosen a
working pin configuration), the pin assignments can be back-annotated to the
design schematic. The pin_numbers directive can also be used to set the pins of
the design.

9.8 Directive Format Summary

364

A summary of the VHDL attribute formats, possible values, and command line
switches are provided in Table 9-12.

Warp User's Guide

Synthesis

Table 9-12 Directive formats

Directive VHDLFormat Values (D=Default)
Cmd
line

goal attribute goal of arch_name: speed (D), area, or ygs
architecture is value; combinatorial yga

ygc

state_encoding attribute state_encoding of sequential (D),
type_name: type is value; one_hoCzero, --

one_hot_one, or gray

buffer_gen attribute buffer_gen of buCauto (D),
signaCname : signal is value; buCnone, buCnormal,

yb
buCduplicate, or
buCregister

max_load attribute max_load of 13 (D) or positive inte-
signaCname : signal is integer; ger

ym

pad_gen attribute pad_gen of pad_auto (D),
signaCname : signal is value; pad_none, pad_clock,

pad_hd1, pad_hd2, yp

pad_hd3, pad_hd4, or
pad_io

synthesis_off attribute synthesis_off of false (D) or true --signaCname : signal is value;

dont_touch attribute dont_touch of false (D) or true
labeCname : label is value; --attribute dont_touch of
entity_name: entity is value;

no_latch attribute no_latch of false (D) or true
yl

signaCname : signal is value;

lab_force attribute lab_force of Example: "A1" --signaCname : signal is location;

pin_avoid attribute pin_avoid of Example: "1 2 3" --entity_name: entity is location;

Warp User's Guide 365

Synthesis

Directive VHDLFormat Values (D==Default)
Cmd
line

polarity attribute polarity of pLdefault (D), pLkeep, fk
signaCname : signal is value; orpLopt fp

sum_split attribute sum_split of balanced (D) or cas- --signaCname : signal is value; caded

node_num attribute node_num of nd_auto (D) or positive
fn

signaCname : signal is value; integer

fixed_ff attribute fixed_ff of Example: II A2"
fn

signaCname : signal is location;

ff_type attribute ff_type of fLdefault (D), ff_d, ff_t, fd
signaCname : signal is value; or fLopt ft

fo

no_factor attribute no_factor of false (D) or true
f1

signaCname : signal is value;

opt_level attribute opt_level of 2 (D), 1, or 0
0

signaCname : signal is integer;

part_Dame attribute part_name of Example: "c371"
d

entity_name: entity is string;

order_code attribute order_code of Example: "PALC22VI0-
entity_name: entity is string; 25HC"

p

piD_Dumbers attribute pin_numbers of Example: "sigl:l " &
ff

entity_name: entity is string; "sig2:2"

366 Warp User's Guide

Chapter 10
Device Programming

Device Programming

10.1

368

Once a design has been compiled, synthesized, and simulated, it is ready to be
implemented in silicon. This implementation consists of two steps: the generation
of a programming file and the programming of the device. In this section, both
steps will be discussed for all devices in the Cypress programmable logic family.

The programming file type that the designer generates depends upon the device
type to be programmed. Three programming file types exist for Cypress devices,
JEDEC 'jed), POF 'po!), and LOF pof>. The table below summarizes the file type
needed for each of the Cypress device types as well as the steps required to
generate these files. These steps are described in detail in this section.

Table 10-1 Programming file types

Device Type
Programming File

How to Generate File
Type

Run Galaxy
Small PLDs, FLASH370

JEDEC
Go to Device menu

CPLDs Output: JEDEC Normal
Compile Design

Run Galaxy
Go to Device menu

MAX340 CPLDs POF Output: JEDEC Normal
Compile Design
Run jed2pof.exe from DOS

Run Galaxy
Go to Device menu
Output: QDIF

pASIC380 FPGAs LOF
Compile Design
RunSpDE
ImportQDIF
Run place and route
Export LDF

Generating a JEDEC File

For programming a small PLD or a FLASH370 CPLD, a JEDEC file is required. In
the Warp design environment, this file is created as the last step of compiling a
design. JEDEC file generation is enabled in Galaxy by clicking on the Device
button in the main project window, and then selecting JEDEC Normal as the

Warp User's Guide

Device Programming

Output option. This programming file will have the same base name as the top
level design file with a .jed extension.

Two output file formats are possible when a small PLD or CPLD is selected,
JEDEC Normal and JEDEC Hex. Both files contain the same information but
slightly differ in format. Whereas the JEDEC Normal represents fuse addresses
and data in binary (0 and 1), the JEDEC Hex represents them in hexadecimal
(0 through F). Most device programmers require the JEDEC Normal format, and
the programmer software will generate errors if the JEDEC Hex file format is
used.

Some portions of a JEDEC file are included below to provide an example of the
information that it contains:

Cypress c371 Jedec Fuse File: test.jed

This file was created on 12/11/95 at 10:20:55
by C37XFXT.EXE 06/MAR/95 [v3.17B] 3.5 XR x96

ABc371*
QP44*
QF13274*
FO*
GO*
NOTE DEVXCE c371*

Number of Pins*
Number of Fuses*
Note: Default fuse setting 0*
Note: Security bit Unprogr~ed*

NOTE PACKAGE CY7C371-143JC*
NOTE PXNS aeqb:2 b_3:10 b_2:11
NOTE PXNS a_0:42 a_1:43 *
NOTE NODES *
NOTE NODES *
LOOOOOO
000000000010000000000011100000000000000000100000000000000011
100000000000
* Note: LAB 1 BANK OE 0*

L000072
000000010000000011111000000000000000100000000000001000100000
010000000000
* Note: LAB 1 BANK OE 1*
(etc.)

Warp User's Guide 369

Device Programming

370

CC3B5* Note: Fuse Checksum*

QV4l5l* Note: NUmber of Test Vectors*
VOOOl NLllBFZZ010NC10Zl0ZZZNNZZZLllZlllNOZLLLHHZLN*
V0002 NLllBLZZ010NC10Zl0ZZZNNZZZLllZlllNOZLLLHHZLN*
V0003 NLllBLZZOOONC10Zl0ZZZNNZZZLllZlllNOZLLLBRZLN*
(etc.)

V4l5l NLllFF10Z00NCZZZZZZZZNNZZZLZZZ001N1ZLLHLHZBN*
"'CI'FAO Note: File Checksum*

At the top of the file is information about the design compilation, including the
software revision number, date of compilation, and filename. Further down in the
file is the design and device information. The QP field (QP44) tells the user that
this file is for a 44-pin device. The QF field denotes the total number of fuses that
can be programmed: 13,274 for a CY7C371. A few lines below this are several
NOTE fields detailing the device, package, and signal names for the design
signals. The device programmer does not use these fields, but simulators use
them for package-specific pin numbers and signal names during simulation.
Because the programming algorithm does not use this pin information, but rather
only uses the fuse numbers for addressing internal locations within the device,
the user can program any package of a given device type with the same JEDEC
for that device. For example, the designer could use a TQFP package to compile
and simulate a design, and then use the resulting JEDEC file to program a PLCC
package of the same device. In short, the package information in the file is
relevant not for programming but for simulation.

Mter the NOTE fields, the fuse address and data begins. Each L field in the
JEDEC file corresponds to a region of the device. The data following the L field
corresponds to the values to be programmed in those locations (1 = programmed,
0= unprogrammed).

Near the end of the file are two checksums, a fuse checksum and a file checksum.
First, the fuse checksum represents the sum of all of the fuse values in the JEDEC
file. Device programmers often use this sum to verify that the pattern
programmed into the device (number of fuses programmed) matches the number
in the JEDEC file. By reading the fuse values from a programmed device, the
programmer determines the number of fuses that were programmed. In the
sample JEDEC file above, the fuse checksum is C3B5. The checksum value is
always preceded by a C.

Warp User's Guide

Device Programming

The file checksum, which is the last line in the file, represents a total value for all
characters in the JEDEC file, including both fuse values and notes, comments, and
signal names. Using this checksum value, the designer can tell if the
programming file has been corrupted or modified. If the file has been changed,
the file checksum computed by the device programmer will not match the
checksum in the file, and an error will be reported. In the sample JEDEC file, the
file checksum is FFAO, preceded by I\C.

Between the fuse checksum and the file checksum are test vectors for the design.
Device programmers use these vectors to test the functionality of the
programmed device. Using these vectors in sequence, the programmer applies
inputs to the device and checks the outputs for the expected values. The QV field,
found immediately after the fuse checksum, represents the number of test vectors.
This sample design has 4,151 test vectors. Many third-party software companies
offer products that automatically generate test vectors for a design using a JEDEC
file as the input.

10.2 Generating POF Files for MAX340 CPLDs

The steps required to program the MAX340 CPLDs are identical to those
discussed above for FLASH370 CPLDs with one additional step required to
produce the programming file. After the design is compiled and produces a
JEDEC Normal file, that file must be converted to a POF 'pof) file. POF files are
binary programming files which are not based on the JEDEC standard.
Programming algOrithms developed for the MAX340 CPLDs use this format
instead of the JEDEC format.

To perform the conversion from JEDEC to POF, the executable jed2pofexe must be
run from DOS. This program takes the device type and JEDEC filename as input
and produces a file with the same base name and a .pof extension. The part can
then be programmed on a device programmer. If you are using the Warp
software on a PC, this utility can be found in the c:\warp\bin\jed2poJ directory.
If you are using a workstation, you can obtain this program from the Cypress
Bulletin Board System (BBS) at (408) 943-2954.

Warp User's Guide 371

Device Programming

10.3 Generating LOF Files for pASIC380 FPGAs

Cypress pASIC380 FPGAs require a different programming file format, the LOF
~loj) format. After performing place and route on a design using SpDE, the
designer can generate a LOF file by going to the File menu in SpDE and selecting
Export LOF. The fuse information is then stored in the LOF file (design.lof). If
running SpDE on a PC platform, the user then has the option of zipping the LOF
file after it has been generated. Doing so significantly reduces the size of the file
(which can be several megabytes) and produces the format required by the Data
I/O Unisite programmer. The Cypress Impulse3 programmer uses the unzipped
version of the LOF file instead of the zipped version. If the file has been zipped,
the user would unzip it using pkunzip.exe, a popular shareware utility available
on the Cypress BBS.

At the top of any LOF file are several fields containing information about the
device type, programming file, and the software revision of the SpDE software
used to generate the file. Some portions of the LOF file header are included below:

Design name: test
Part name: p16x24b*
QP144*
(etc.)

QRS.06*
(etc.)

In the example above, the QP field represents the number of pins on the device -
144 in this case. The QR field gives the revision number of the SpDE place and
route software used to generate the LOF file.

10.4 Device Programmers

372

Cypress sells a programmer called the Impulse3 that supports PROMs, small
PLDs, CPLDs, and FPGAs. Different part and package combinations require
various programming adapters that fit onto the base unit of the programmer. By
using the correct programming adapter and generating the programming file as
discussed earlier in this section, all of the Cypress devices can be programmed
using Impulse3. Software updates for Impulse3 are free and are available on the
Cypress World Wide Web home page.

Warp User's Guide

Device Programming

Other third-party vendors such as Data I/O, BP Microsystems, SMS, System
General, and Logical Devices offer varying degrees of programming support for
Cypress devices. The Data I/O Unisite has the most complete support for Cypress
devices of these third-party programmers. The designer should directly contact
the manufacturer of these third-party programmers for device support questions.
The design flow for programming each type of device is summarized in the
following graph.

GALAXY

"Device" button
Output: JEDEC Normal

"Device" button
Output: QDF

Small PLDs
FLASH370

MAX340 pASIC380

JEDEC
(.jed)

JEDEC
(.jed)

jed2pof.exe
(from DOS)

POF
'pof)

QDIF
(.qdf)

SpDE
Place and
Route

File->Export LOF

LOF
(.Iof)

DEVICE PROGRAMMER

Figure 10-1 Design flow for device programming

Warp User's Guide 373

Device Programming

374 Warp User's Guide

Index
A
Adobe Acrobat Reader

PC Installation '" '" 2
Programmable Logic Data Book 2, 5
SunOS/Solaris/HP installation 4-5

About command
Nova Help menu 259
SpDE Help menu 211

Acrobat Reader '" '" , 2
ALU circuit design tutorial

architecture , '" 145-146
back-annotation pin assignments 167
compiling and synthesizing top-level

schematic .. 159
entity declaration 144
exporting top-level schematic 158
generally .. 110
generating a symbol- from the '" .. .

schematic .. 143
instantiating components, described

...................................... 133-141, 155-157
instantiating LPM components

...................................... 114-116,150-151
labeling nets and buses '"

...................................... 132-141, 153-157
libraries .. 147
package declaration 146-147
placing and routing 159-161
PLD schematic described 116-128
positioning of components .. '"

...................................... 128-129, 151-15i
project, creation of.. '" 111
schematic, creation of top-leveL

... 112, 150
schematic, saving of.. .. : 142, 157-158

starting Warp3 '" '" 11 0
VHDL file, generating a symbol for 149
VHDL file, verifying of 148-149
VHDL file, writing of 143-144
ViewDraw 112-114
ViewSim 162, 163-166
wiring components together '"

...................................... 130-131, 152-153
wiring components together, '"

described 133-141, 155-157
Architecture

ALU circuit design, use in 145-146
parking garage monitor design, use

in .. 74, 77-79
soda machine design, use in 33,35-37

Area optimization
CPLD and FPGA considerations

. .. 341-344
CPLD considerations 348
FPGA considerations 344-348

Areal speed optimization in SpDE Logic
Optimizer ... 214

Arranging signals in Nova 278
Attributes used for applying synthesis

directives 317-318
A TVG Coverage command in SpDE Info

menu ... 210
See also Automatic Test Vector
Generation (ATVG)

Automatic pad generation 359
Automatic Test Vector Generator (ATVG)

defined ... 212, 225
design considerations 228-231
fault grading , 228
stuck-at faults 226-228
testing overview '" 226

D

Index

Available list box in SpDE Path Analyzer
... 237

B
Back-annotating pin assignment

information
ALU circuit design, use in 167
parking garage monitor design, use

in .. 105-106
soda machine design, use in 66-67

Back-Annotation
ALU circuit design tutorial.. 167
Galaxy .. 194
parking garage monitor design

tutorial .. 105
schematic entry 291-292
soda machine design tutorial 66-67
SpDE ... 208, 212
SpDE simulation 220, 224-225

Bidirectional I/O pin in pASIC380 358-359
BIGWIN Windows extender 3
Bold convention .. 24
Browser tool ... 74, 193
Buffer_gen directive in FPGA

area optimization , , 348
speed optimization 355-358

Buffer generation in Galaxy 181
Buses in Nova Edit menu 259,267-268
Buses, labeling of 132-133, 153-157
Bus Radix command in Nova Edit menu

... 259,268

c
Calculations in SpDE Path Analyzer 239
Cell Utilization command in SpDE Info

menu ... 208-209
Checksums in JEDEC files 370-371
Choose FF types option in Galaxy 179
Circuit, simulation of, in Nova 277-278
Click mouse convention 25
Clock input pins in pASIC380 358-359
Clock networks in SpDE Router 219
Clock signal in Nova

376

parking garage monitor design, use
in .. 95-98

setting up 259,261-262
soda machine design, use in 53

Clock Skew in SpDE Path Analyzer 239
Cockpit, Viewlogic, in Warp3 17, 23
Command line switches, summary ... ,

... 364-366
Compilation

launching retargeted parking garage
monitor design 101-102

launching retargeted soda machine
design .. 61-63

selecting files for soda machine
design .. 43-44

synthesizing files for parking garage
monitor design 91-92

synthesizing files for soda machine
design .. 48

top-level schematic 159
Compiler for Warp VHDL

component in Warp2 22
component in Warp3 23
Galaxy .. 17
libraries, linking to 38

Compiling a design in Galaxy 187-189
Command line, synthesis controlled

from ... 317-318
Component ports, labeling of 132,153-154
Components

positioning of 128-129, 151-152
wiring together 130-131, 152-153

Computer platforms available in Warp 16
Control file used in applying synthesis

directives 317, 319
Conventions

file naming , 24
generally .. 24-25
mouse ... 25

Corner radio button group in SpDE
Delay Modeler 222

Courier convention ... 24
CPLD

JEDEC file generation , 368-371
target design in Warp 16

Warp User's Guide

Create Bus command in Nova Edit menu
... 259, 267,279

Create Segment command in Nova
Options menu 274, 275-276

Create View Node command in Nova
Edit menu 259, 264

CY7C381A FPGA, retargeting designs to
...................... ~ 58,99

D
Dedicated high-drive input pins in

pASIC380 358-359
Delay Histogram graph in SpDE Path

Analyzer ... 238
Delay Modeler in SpDE design

tools 211, 220-223
Delete Bus command in Nova Edit

menu ... 259, 268
Delete Segment command in Nova

Options menu 274, 275-276
Delete View in Nova Views menu

... 269, 272-273
Delete View Node in Nova Edit menu

... 259,265
Description, creation of top-level

parking garage monitor design 82-87
soda machine design 40-43

Design process ... 17
Design Verifier in SpDE design tools

... 211,212
Detailed report error message in Galaxy

... 186
Device programming

file types ... 368
JEDEC file, generation of 368-371
LOF files, generation of 372
POF files, generation of 371
programmers 372-373

Device selection. See also Targeting a
device in Galaxy

parking garage monitor design 89, 100
soda machine design45, 60

Directive format summary 364-366
Directives - See Synthesis directives

Warp User's Guide

Index

Display differences between operating
systems ... 26

Display radio buttons in SpDE Path
Analyzer ... 236

Documentation directives used in
synthesis 363-364

DonCtouch directive in FPGA and
CPLD speed optimization•.... 355

Double buffering in SpDE high-fanout
nets .. 242-244

Double-click mouse convention 25
Drag mouse convention 25
DRAM controller

area optimization 331-332
CPLD optimization, first pass 332-333
default options in FPGA

optimization 324-326
example of 319-324
speed optimization in FPGA (first

tuning cycle) 327-329
speed optimization in FPGA (second

tuning cycle) 329-331
state machine gray encoding in

CPLD optimization 334-335
synthesis_off directive in CPLD

optimization 335-337

E
Edit Bus command in Nova Edit menu

. .. 259,268
Edit Views command in Nova View

menu 269,270-272
Editing files in Galaxy 191-193
Effort generic option in Galaxy 184
Entity declaration

ALU circuit design, use in 144
parking garage monitor design, use

in .. 74-77
soda machine design, use in 33-34

Error message compiler options in
Galaxy ... 185-186

Error tracking in design compilation
in Galaxy .. 189

Exit command

377

II

Index

Nova File menu '" , , .. 259
SpDE File menu 200

Expanding paths in SpDE Path Analyzer
... 234

Export LOF command in SpDE File
menu ... 200

Exporting of schematic 289-290
Express wires , , , , .. 220

F
Factor cost synthesis parameter , .. 182
Factor logic in Galaxy 180
Fault grading in SpDE ATVG 228
FCtype directive in CPLD synthesis .,. '"

... 348,349
File. See VHDL file
File editing in Galaxy 191-193
File formats in Nova File menu 257-258
File menu in Nova 252-259
File menu in SpDE 199-200
File naming conventions ,. '" 24
File, top-level

compiling and synthesizing 43-48
setting of .. 47, 91

Fitting of logic equations 18
Fixed_ff directive in FPGA

speed optimization 359-362
synthesis , 349-350

Fixed placement in SpDE Placer 217
Flip-Flops, fixing placement in SpDE

Placer ... 218
Float nodes option in Galaxy , , .. 180
Float pins option in Galaxy , , .. 180
FPGA. See also Galaxy

CY7C381A ... 58, 99
pASIC380 family 58, 99 .
target design in Warp 16

Full Fit command in SpDE View menu
... 200

G
Galaxy. See also Device selection;

Package selection; SpDE tools;

378

Speed bin selection; Starting
Galaxy

back-annotation 194
compiling a design 187-188
generally .. 17
generic options 184-186
integrated editor 191-193
library management 189-191
overview ... '" .. , '" '" .,. '" .. 170
project management 171-177
simulation .. 194
targeting a device 177-183

Generic options in Galaxy 184-186
Gnd LPM component.. 124-125
Goal directive in CPLD and FPGA

area optimization , 342
speed optimization 354

Graphical User Interface. See GUI
Graphing in SpDE Path Analyzer 238
Guaranteed mode in SpDE Delay

Modeler , '" 221
GUI

in Galaxy .. 17
synthesis controlled from 317-318

H
Help Menu in SpDE. 211
Hierarchy, printing of, in schematic

entry .. 295
High drive inputs .. 360
High-Drive Pads (HDPADs) in SpDE

Router ... 220
High-fanout nets, accelerating of 242
Highlight net command in SpDE View

menu 201, 203-204
Highlight Net mode in SpDE analysis

tools ... 232-233
Hint convention .. 25
Hold time in SpDE Path Analyzer 241

Import command in SpDE File menu 199
Impulse3 programmer 372

Warp User's Guide

In LPM component 125-126
Info menu in SpDE 208-210
Inheritance, hierarchical 317
Input node values in Nova Edit menu

... 265-266
Installation onto PC 1-4
Installation onto SunOS/Solaris/HP 4-12
Instantiating, described 133-141, 155-151
Instantiating LPM components

...................................... 114-116, 150-151
Integrated editor in Galaxy 191-193
Interconnect resources in SpDE Router

... 219-220
I/O pads, fixing placement, in SpDE

Placer ... 217

J
JEDEC (.jed) file 170, 368-371
JEDEC vectors, writing in Nova File

menu ... 257

K
Keep polarity option in Galaxy 179-180

L
Lab30rce directive in CPLD synthesis 351
Labeling

component ports 132, 153-154
described 133-141, 155-157
nets and buses 132-141, 153-157

Libraries included in the creation of
VHDLfile

ALU circuit design 147
soda machine design '" 38

Library management in Galaxy
assigning a name 191
compiling design files 190
Create library command 190
Delete library command 190
library, defined 189
Library window in Galaxy 190
Remove design command 190

Warp User's Guide

Index

using design units 191
Library of Parameterized Modules

(LPM). See LPM
Licensing for Viewlogic Tools in Warp3

... 2,13
LOF (.lof) file 62, 368, 372
Logic cell placement 359-360
Logic optimization modes 214
Logic Optimizer in SpDE design tools

... 211, 212-214
LPM Components

Gnd ... 124-125
In .. 125-126
instantiating 114-116, 150-151
Madd_sub .. 116-118
Mand .. 119-120
Mcompare 118-119
Minv ... 122
Mmux ... 123-124
Mor ... 120-121
Mxor ... 121
Out .. 127-128

LPM
defined ... 297
element, creation of.. 286-288
element, modification of 288
element, non-LPM 288
lpmlocallibrary, creation of 286
release 3.5, use of schematic libraries

... 292
use of .. 284-285

lpmlocallibrary command 284-286, 295

M
Madd_sub LPM component.. 116-118
Mand LPM component 119-120
MAX340 CPLD, POF file generation 371
Max. Errors message in Galaxy 186
Max_load directive in FPGA speed

optimization 355-357
Max. Load synthesis parameter 182
Max. warnings error message in

Galaxy ... 186
Mcompare LPM component.. 118-119

379

Index

Menu item convention 24 Nova JEDEC functional simulator
Mice support in Warp4 clock signal, designation of.. 53, 95-98
Minv LPM component 122 color of traces .. 280
Mmux LPM component 123-124 component in Warp2 22
ModelT environment, post-synthesis component in Warp3 23

VHDL simulation 307-308 creating buses ... 279
Mor LPM component 120-121, design behavior simulation
Mouse conventions ... 25 .. 49-58, 92-105
Multiply and accumulate function, design simulation, used in 18

example of Edit menu .. 259-268
area optimization in CPLD 341 File menu ... 252-259
area optimization in FPGA 340 generally .. 250
default options in CPLD optimization Options menu 273-277

... 340 printing output 280
default options in FPGA optimization quick reference sheet 277-278

... 338-340 Simulate menu .. 269
Mxor LPM component 121 simulation length 53, 95, 280

simulation, running of.. 57-58
simulation tics 279-280

I
N
Naming restrictions .. 26
Netlist, generation of VHDL 17
Nets, labeling of.. 132-141, 153-157
New command in SpDE File menu 199
New project, creation of

starting 49-51, 93, 250-251
stimulus signal values, setting of 54-57
view, creation of 51-52
Views menu 269-273
window .. 251-252
Write Sim command in File menu 279

ALU circuit .. 111
parking garage monitor 73-74
soda machine 29-31 o

No_factor directive in CPLD and FPGA On-line documentation, reading of 13
area optimization 344 One_hot_zero and one_hot_one

Node cost synthesis parameter 182 compared ... 347
Node Defaults command in Nova Edit Open command

menu 259,265-267 Nova File menu 253-255
Node_num directive in PLD and CPLD SpDE File menu 199

synthesis 350-351 Operating frequency in SpDE Path
Node numbers in Nova window 251 Analyzer ... 240
Node points to view, selection of, in Operating Range radio button group in

Nova Edit menu 259, 264-265 SpDE Delay Modeler 221
Nodes in Nova Edit menu 259, 263 Operating systems, differences between 26
Non-repetitive pulses, setting up, in Optimization level generic options in

Nova Edit menu 259, 262-263 Galaxy ... 184-186
Normal Fit c;ommand in SpDE View Options command in SpDE Tools

menu ... 200 menu ... 206
Note convention .. 25 Options menu in Nova 273-277
Note fields in generating JEDEC file 370

380 Warp User's Guide

Index

Ordeccode documentation directive solution of design 71
... 363-364 VHDL file, creation of 74-75

Out LPM component. 127-128 Part_name documentation directive 363
Out-Pad Load radio button group in pASIC380 FPGA family

SpDE Delay Modeler 222 LOF file generation 372
Output format option in Galaxy 183 retargeting of design 58, 99
Output node values, forcing, in Nova pASIC-VSim, running of

Edit menu '" 267 ALU circuit design, use in 162
Output options in Galaxy 183 parking garage monitor, use in l05
Overview of features 16-18 soda machine design, use in '" 66

Path Analyzer in SpDE

p
capabilities of 206, 233-234
clock skew ... 239

Package declaration
ALU circuit design, use in 146-147
parking garage monitor design, use

in '" '" 74, 80-82
soda machine design, use in 33,37-38

Package selection
parking garage design 90, 100
soda machine design 45-46,61
top-level file .. 45-46

Packer in SpDE Logic Optimizer 213
Pad_gen directive in FPGA speed

optimization 358-359
Pad generation in Galaxy 181
Pan to Net Driver in SpDE analysis tools

... 233

design flow '" 198
expanding paths 234
generally , '" 196
graphing .. 238
hold time ... 241
key calculations '" 239
operating frequency 240
options ... 235-237
setup time .. 240-241

Path analyzer (static timing analyzer),
generally ... 18

Path Delay radio buttons in SpDE Path
Analyzer ... 236

Path names convention 24
Path vs. Delay graph in SpDE Path

Parallel logic in SpDE Router 220
Paralleling in SpDE high-fanout nets

... 247-248

Analyzer ... 238
Physical Viewer in SpDE 196, 198
Pin assignment, back-annotating

Parking garage monitor design tutorial
architecture 74,77-79

ALU circuit design, use in 167
locking down previous pin

back-annotating pin assignment 105
compiling and synthesizing 88-92
description of design 71
designing of, generally 70-71
entity declaration 74-77
Galaxy, starting of 72
new project, creation of 73-74
package declaration 74, 80-82
simulating the behavior with Nova

... 92-99

assignment ... 218
parking garage monitor design, use

in .. 105-106
soda machine design, use in 66-67

Pin_numbers documentation directive 364
Pipelining in SpDE high-fanout nets 248
Place and route tool

ALU circuit design, used in 159-161
capabilities of .. 18
SpDE 63-65, 102-105, 196

Simulating the behavior with
ViewSim 106-109

Placement modes in SpDE Placer 215
Placer in SpDE design tools 211,214-218
Placer seed in SpDE Placer 215

Warp User's Guide 381

Index

PLD schematic, creation of. See also
LPM components

components, positioning of
...................................... 128-129, 151-152

generally .. 116
PLD, target design in Warp 16
POF (.pof) file ... 368, 371
Polarity directive in CPLD synthesis 353
Post-synthesis simulation design flow

for FPGAs 305-306
Post-synthesis simulation design flow

for PLDs and CPLDs
design compilation 302
design selection 301
generally .. 301
simulator selection 301
Verilog simulation 303-304
VHDL simulation 302-303

Powerview in Warp3 23
Preferences command SpDE View menu

... 200, 201-203
Preliminary mode in SpDE Delay

Modeler .. 221
Pre-synthesis simulation 299-300
Print command in SpDE File menu 200
Print Hierarchy utility 295
Print Setup command in SpDE File menu

... 200
Printing output in Nova 280
Product descriptions for Warp 22-23
Programmable Logic Data Book

viewing of, on a PC 2
viewing of, on SunOS/Solaris/HP 5

Programmable logic design tool.. 16
Programming. See Device programming
Project, creation of new

ALU circuit .. 111
parking garage monitor 73-74
soda machine 29-31

Project management in Galaxy
creation of .. 173-175
definition of project 171-172
design files included 175-176
setting design file as top level 176-177
Warp vs. Viewlogic project 172

382

Q

.qdf file .. 62, 170
QDIF, importing into SpDE. 197
Quad wires in SpDE Router 220
Quiet error message in Galaxy 185

R
Read Stimulus File command in Nova

File menu .. 256
Redraw command in SpDE View menu 201
Repetitive pulses, setting up, in Nova

Edit menu 259,261-262
Report file command in SpDE Info menu

... 210
Report files in design compilation in

Galaxy ... 188
Resolution command in Nova Options

menu 274,276-277
Retain XORs compiler option in

Galaxy ... 185
Retargeting of design

launching of compilation in parking
garage monitor design 101-102

launching of compilation in soda
machine design 61-63

to an FPGA in parking garage
monitor design 99

to an FPGA in soda machine design 58
Router in SpDE design tools 211,219-220
.rpt file .. 62
Run tools command in SpDE Tools menu

... 205
Running Warp ... 13

s
Save As command in SpDE File menu 199
Save command in SpDE File menu 199
Schematic attributes used in applying

synthesis directives 317-319
Schematic, creation of, in ALU circuit

design. See also LPM components;
PLD schematic, creation of

Warp User's Guide

compiling and synthesizing of 159
components, positioning of

...................................... 128-129, 151-152
components, wiring together

...................................... 130-131, 152-153
exporting of top-level 158
generally .. 112
instantiating, described

...................................... 133-141, 155-157
instantiating LPM components

...................................... 114-116, 150-151
labeling nets and buses 132-141
saving of 142, 157-158
symbol generation 143
top-level, creation of 150
ViewDraw 112-114
wiring components together

....................... 130-131, 133-141, 152-153
Schematic entry

back-annotation 291-292
exporting of 289-290
libraries, using from release 3.5 292
library update ... 295
LPM library 283-288
overview .. 282
printing hierarchy 295
Schematic to Symbol command 293
Symbol to VHDL utility 294
VHDL to Symbol utility 293-294

Schematic to Symbol command 293
Scope of synthesis directives 317
Seed value in SpDE Router 219
Segmented wires in SpDE Router 219
Select mouse convention 25
Select View command in Nova Views

menu 269, 272-273
Selective buffering in SpDE high-fanout

nets .. 246-247
Sequencer in SpDE design tools 212, 231
Setup time in SpDE Path Analyzer 240-241
Signal Name Size command in Nova

Options menu 274, 277
Signal names in Nova window 251
Signals

arranging of ... 278

Warp User's Guide

Index

setting high or low in Nova Edit
menu 259,260-261

Simulate menu in Nova 269
Simulating design behavior. See Nova

JEDEC functional simulator;
ViewSim simulator

Simulation
generally .. 298
ModelT environment 307-308
post-synthesis design flow for

FPGAs ... 305-306
post-synthesis design flow for PLDs

and CPLDs 301-304
pre-synthesis 299-300
VeriBest environment 308-310
Verilog simulators supported 298
VHDL simulators supported 298

Simulation in Galaxy 194
Simulation length in Nova

command in Options menu
... 274-275, 280

parking garage monitor design, use
in .. 95

soda machine deSign, use in 53
Simulation output option in Galaxy 183
Simulation, running of, using Nova

... 57-58
Simulation tics in Nova 279-280
Simulator Option window in SpDE

Tools menu .. 208
Simulators, others 300, 303
SMARTDRIVE program 3

Soda machine design tutorial
architecture 33, 35-37
back-annotating pin assignment 66-67
description of controller 27
designing of .. 27
entity declaration 33-34
libraries .. 38
new project, creation of 29-31
package declaration 33, 37-38
retargeting to an FPGA 58
simulating the behavior with Nova

... 49-58
simulating the behavior with

ViewSim ... 67-70

383

Index

solution of .. 27-28
starting Warp .. 28
top-level description 40-43
top-level file, compiling and

synthesizing 43-48
VHDL file, creation of 32-33
VHDL syntax, verifying of 38-39

SpDE analysis tools
Highlight Net 232-233
Path Analyzer 233-234

SpDE design considerations 242-248
SpDE design tools

Automatic Test Vector Generator
... 212, 225-231

Back-Annotation 212, 220, 224-225
Delay Modeler 211-212, 220-223
Design Verifier 211, 212
Logic Optimizer 211,212-214
Placer. 211, 214-218
Router 211, 219-220
Sequencer .. 212, 231

SpDE place and route tool
running of, in ALU circuit design

... 159-161
running of, in parking garage monitor

design .. 102-105
running of, in soda machine design

... 63-65
ViewSim model, generation of

....................................... 66, 105, 162-166
SpDE tool kit. See also SpDE analysis

tools; SpDE design tools; SpDE
Window

component in Warp2 22
component in Warp3 23
exporting files ... 198
file formats .. 199
importing files .. 197
running tools ... 197
saving files ... 198
starting SpDE .. 197
viewing and path analysis 198

SpDEWindow
File menu ... 199-200
Help menu ... 211
Info menu .. 208-210

384

Tools menu 205-208
View menu 200-204

Speed bin selection
. parking garage monitor 90, 100

soda machine design 45-46, 61
Speed Grade radio button group in SpDE

Delay Modeler 222
Speed optimization 354-363
SpeedWave pre-synthesis simulation

... 300,303
Split buffering in SpDE high-fanout nets

... 245
Start Set radio buttons in SpDE Path

Analyzer ... 236
Starting Galaxy

ALU circuit design, use in 148
parking garage monitor design, use

in .. 72, 88, 99-100
PC running Windows 171
soda machine design, use in 59
UNIX workstation 171

Starting Nova ... 250-251
Starting Warp .. 28-29
State_encoding directive in FPGA

area optimization 345-347
speed optimization 363

Static timing analyzer (path analyzer) 18
Stimulus files in Nova File menu 255-257
Stimulus signal values, setting of, using

Nova .. 54-57
Stop Set radio buttons in SpDE Path

Analyzer ... 236
Stuck-at faults in SpDE A TVG 226-228
Sum_split directive in CPLD synthesis

... 352-353
Symbol generation

for VHDL file .. 149
from a schematic 143

Symbol to VHDL utility 294
Syntax, verification of VHDL 38-39
Synthesis directives. See also DRAM

controller
application of 317-319
area optimization 341-348
available directives 315-316
control features 348-353

Warp User's Guide

design flow and strategy 313-314
directive format summary 364-366
documentation 363-364
generally .. 312
inheritance ... 317
multiply and accumulate function,

example of 337-341
scope ... 317
speed optimization 354-363
uses of .. 312

Synthesis of design ... 17
Synthesis_off directive in CPLD and

FPGA area optimization 343-344
Synthesis goals compiler option in

Galaxy ... 185
Synthesis parameters, controlling of, in

Galaxy ... 182

T
Targeting a device in Galaxy. See also

Technology mapping/ synthesis
selection in Galaxy

controlling synthesis parameters 182
device and package selection 177-178
generic options 184-186
output options, setting of 183

Tech mapping options
creation of top-level file, used in 47
parking garage monitor design, used

in .. 90, 101
soda machine design, used in47, 61

Technology Mapper SpDE Logic
Optimizer ... 213

Technology mapping/ synthesis selection
in Galaxy

buffer generation 181
choose FF types 179
factor logic 180-Un
float nodes ... 180
float pins .. 180
keep polarity 179-180
pad generation .. 181

Temperature setting in SpDE design
tools ... 222-223

Warp User's Guide

Index

Test vectors, defined 227
Timing-driven placement in SpDE Placer..

... 216-217
Tool Versions command in SpDE Info

menu ... 210
Tools menu in SpDE 205-208
Top-level description

parking garage monitor design, use
in .. 82-87

soda machine design, use in 40-43
Top-level file

compilation, selecting files for 43-44
compiling and synthesizing 48, 91-92
device selection ... 45
setting of .. 47, 91
tech mapping options 47
unused outputs, resolution of 46

Top-level schematic
compiling and synthesizing of 159
creation of .. 150
exporting of ... 158
saving of .. 157-158

Trace area in Nova window 252
Traces, color of, in Nova 280
Tuning, defined 313-314

u
UltraGen module generation technology 17
Unused output option in Galaxy 183
Unused outputs, resolution of

parking garage monitor 90
soda machine design 46

Update library utility 295

v
Values, directive format, summary 364-366
VCS command line 304
VeriBest simulator 303, 308-310
Verilog simulators

FPGAs .. 306
PLDs and CPLDs 303-304
supported in Warp 298
VeriBest environment.. 303, 308-310

385

Index

VerilogXL environment , , .304
VHDL attributes 317-318, 364-366
VHDL Browser in Galaxy 74, 193
VHDL file. See also Architecture;

Entity declaration; Package
declaration

Browser tool 74, 193,
compilation of, in ALU circuit

design .. 148-149
creation of 32-33, 74-75
libraries .. 38, 147
symbol generation for 149
verification of, in ALU circuit

design .. 148
writing for ALU circuit design 143-144

VHDL netlist, generation of 17
VHDL post-synthesis simulation 307-308
VHDL simulators 298, 306
VHDL syntax, verification of 38-39
VHDL to Symbol utility 293-294
View, creation of, with Nova

parking garage monitor design 94-95
soda machine design 51-52

View menu in SpDE 200-204
View Draw tool

ALU circuit design, use in 112-114
design entry ... 17
LPM library, use in 285
Warp3 application, used in 23

Viewlogic. See also View Draw
Cockpit ... 17, 23
Powerview in Warp3 23
ViewSim simulator 18, 23
ViewTrace .. 18, 23
Workview PLUS in Warp3 23

Viewlogic project vs. Warp project 172
Viewlogic Tools, PC licensing for Warp3

... 2, 13
Views menu in Nova 269-273
ViewSim model, generation of

ALU circuit design, use in 162-166
parking garage monitor design, use

in .. 105
soda machine design, use in 66

ViewSim simulator
FPGA post-synthesis, use in 306

386

Nova applications, use in 18
parking garage monitor design, use

in .. 106-109
soda machine design, use in 67-70
Warp3 applications, use in 23

ViewText editor ... 143
ViewTrace

described ... 18
observations from window 108-109
Warp3 application, use in 23

Voltage setting in SpDE design tools
... 222-223

V-System pre-synthesis simulation
... 299, 302

w
Warp project vs. Viewlogic project 172
Warp, starting of, in soda machine

design .. 28-29
Warp2, product descriptions 22
Warp3

product description 22-23
starting, in ALU circuit design 110-111

Wildcard selection in SpDE View menu
... 204, 232

Wires in SpDE routing resource 219-220
Wiring components together

...................................... 130-131, 152-153
Wiring, described 133-141, 155-157
Workview PLUS in Warp3 23
Write JEDEC vectors command in Nova

File menu .. 257
Write Sim Command in Nova 255, 279
Write Trace command in Nova File

menu ... 255

z
Zoom In command

Nova Views menu 269, 273
SpDE View menu 200

Zoom Out command
Nova Views menu 269, 273
SpDE View menu 200

Warp User's Guide

Cypress Semiconductor
3901 North First Street
San Jose, CA 95134
Tel. : (408) 943-2600
FAX: 408-943-2741
FAX-Back: (800) 213-5120
Internet: http://www.cypress.com

© 1996 Cypress Semiconductor

