
Application Note 106
Software Customization for the 6x86™ Family

�
Applicable to the Entire Line of 6x86™ Cyrix® Processors.

App Note Rev 1.7.

2 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

APPLICATION NOTE 106 Software Customization
for the 6x86 Family

1. Introduction

This document provides guidance in writing effective software for the Cyrix 6x86™ and
6x86MX™ processors. Differences between 6x86 and 6x86MX CPUs are listed in
Appendix A. The Cyrix Software Developer web site (www.cyrix.com) provides current
information and code examples on topics such as CPU Detection and Cache Line Locking.

1.1. No Instruction-Pair Optimization Needed

It is important to point out, that the Cyrix 6x86 and 6x86MX require no instruction-pair
optimization as does the Pentium® CPU. The reason is that the execution pipelines in the
6x86/6x86MX are more balanced than those in the Pentium. Both legacy 16-bit code, and
Pentium optimized 32-bit code pass through the Cyrix execution pipelines with the same
efficiency.

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 3

Remove Address Generation Interlocks

2. 6x86 Family Coding Suggestions

The suggestions in this section will help both the programmer to produce higher
performance software when using the 6x86 and the 6x86MX processors.

2.1. Remove Address Generation Interlocks

Separate Address Generation Interlocks (AGIs) by 2 cycles (2 to 4 instructions).

For example, avoid:

add cx,bx

add dx,[cx]

In this example cx in the second instruction cannot be used until the cx in the
first instruction is finished updating. This coding will produce a two clock bub-
ble which results in a four instruction penalty.

Another common example to avoid:

mov eax,[eax]

mov eax,[eax]

mov eax,[eax]

cmp eax,whatever

2.2. Don’t Move Variables Into Registers For Speed

It has been a common practice to place frequently used variables into the CPU gen-
eral purpose registers (EAX, EBX, ECX, EDX). This was done because register
access was the far quicker than cache access. This practice is not needed for 6x86
architecture CPUs. The 6x86 L1 cache access time is the same as register access
time. This also reduces “register pressure” limitations in the compiler.

4 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

Avoiding RISC-like Instruction Coding, Complex is Better

2.3. Avoiding RISC-like Instruction Coding,
Complex is Better

For the CPUs that have pairing constraints, optimization of code consists of partly
of turning CISC instructions into RISC-like instruction equivalents. The RISC
equivalents increase code size that end up taking more space in the cache.

The 6x86 and 6x86MX are designed to accelerate complex x86 instructions and do
not have pair optimization constraints. For this reason, it is recommended not to
break complex instructions into RISC equivalents for 6x86 family of CPUs.

The instruction below takes only one clock cycle to execute.

add [mem], eax

If this instruction is broken into three RISC-like instructions three clock cycles are
required:

mov ebx, [mem]

add ebx, eax

mov [mem], ebx

As another example, a loop instruction takes only one clock cycle:

loop foo

Using the following RISC-like coding takes two clock cycles:

dcc ecx

jle foo

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 5

RAW Dependencies

2.4. RAW Dependencies

Some Read-After-Write (RAW) dependencies can cause a stall.

For example avoid:

add [mem],bx
add cx,[mem]

The second add instruction stalls because the memory access [mem] must wait for the
first instruction to complete updating.

2.5. Don’t Make Calls Without a Matching RET.

Making a CALL, without a return, will result in branch miss predictions. This will
hinder speculative execution.

For example avoid:

pushoffset Main_PGM
jmp SubRoutine

Main_PGM proc
...

Main_PGM endp

SubRoutine_PGM proc
...

ret
SubRoutine endp

Instead call the subroutine.

call SubRountine_PGM

rather than:

push offset main_PGM
jmp SubRoutine

6 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

Don’t Optimize for the FPU Like a Pentium

2.6. Don’t Optimize for the FPU Like a Pentium

The 6x86 FPU is not pipelined. It can only execute one FPU instruction at a time.
This is typically an issue when hand-coding FPU instructions in assembly lan-
guage. Most compilers do not make highly optimized FPU code. Use 486 FPU opti-
mization compiler switches.

The FXCH instruction is not paired with other FPU instructions on the 6x86. The
6x86 FXCH instruction takes three clocks and two clocks on the 6x86MX.

2.7. Mix Integer and FPU Instructions

The 6x86 CPU will execute integer instructions and FPU instructions at the same
time.

2.8. Mixing 16 And 32 Bit Code

There is no penalty for mixing 16 and 32 bit code so there is no penalty for one
prefix.

2.8.1 Prefix Issues

There is a one clock penalty for two to six prefix's (with the following caveats):

A one clock penalty also occurs if an instruction has a(n):

• Address size override prefix with a displacement in the address.
• Operand size override prefix and immediate operand.
• Decode length of an instruction is greater than valid length of the instruction

queue
Only the first instruction is decoded when:

• The second instruction has more than one prefix

• Length of the first instruction more than six bytes

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 7

Branch and FPU Optimization

• The first instruction is six bytes long and the second has a prefix

• The length of the first and second instruction together is greater than the
valid instruction queue length.

• The last byte of instruction one is 0F and the second has no prefix

• The first instruction has taken a predicted change of flow.

2.9. Branch and FPU Optimization

The CPU will speculatively execute up to four FPU or jump (JMP or Jcc) instruc-
tions at any one time. The fifth FPU instruction or jump will cause a stall until one
of the earlier jump or FPU instructions reaches completion.

2.9.1 No Penalty When Using Partial Registers

The 6x86 core has no problem with mixing code that uses 8, 16 or 32 parts of the
same register on successive instructions.

For example:

mov bh, [mem1]
add ebx, [mem2]

does not cause a stall condition due to using register BH then EBX.

8 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

Self-Modifying Code Should Be Avoided

2.9.2 Write Gathering For Video Memory or
Other Memory Mapped I/O

The 6x86 and 6x86MX processors have the ability to be programmed on a region
by region basis for optimization of different memory types. The Data books and
BIOS writers guides detail all the available options.

Application Note 103 6x86MX BIOS Writers Guide defines Region 7 for memory
above physical memory. Typically this is where the frame buffer resides. Write
combining is suggested to be enabled for Region 7. If Region 7 has write combin-
ing enabled, video memory in this region will be optimized.

2.10. Self-Modifying Code Should Be Avoided

Self-modifying code can have significant negative performance impact due to the
need to flush CPU state information to keep caches and internal information
coherent once the CPU has detected that code has been modified. While interesting,
most of the time, self modifying coding will be slower than other programming
techniques.

Self-modifying code is detected when a write occurs to a location that uses a 256
byte instruction line buffer (ILB). The ILB can be thought of as a prefetch buffer.
Self-modifying code detection can also be detected when data and code lie on the
same cache line and data is changed.

An indication that self modifying code is being used is when a CS: override is used
in assembly language code.

2.11. Exclusive Instructions Use Both Pipes

These exclusive instructions execute in the X pipe only and use resources in the Y
pipe. No instruction is paired. This will have a negative performance impact. The
next instructions that follow will enter the pipes once the exclusive instruction
leaves the AC1 stage.

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 9

Some Instructions Only Go Down the X Pipe

The instructions are:

AAM, ARPL, BOUND, CALL, CLI, CLTS, DIV, ENTER, HLT, IDIV, IMUL, IN,
INS, INT, INT0, INT1, INT3, INVD, INVLPG, IRET, Jump Indirect, Jump Inter-
seg, LAXR, LEAVE, LGDT, LXS, LLDT, LMSW, LSL, LTR, MOVseg/sr, MOVS,
MUL, OUT, OUTS, POPA, POPF, POP es/ss/ds, POP fs/gs, PUSHA, PUSHF, RET,
SGDT, SIDT, SLDT, SMSW, STI, CLI, STD, CLD, STR, VERR, VERW, WAIT,
WBINVD, LDS, LES, LGS, LGS, LSS, JCXZ, LOOP, CMOPXCHG, BSWAPC-
MPS, SCAS, XLAT.

Most of these instructions are typically used by operating system code.

2.12. Some Instructions Only Go Down the X Pipe

The following instructions always go down the X pipe:

Jcc, JMP, CALL, SETcc, and FPU instructions.

Other instructions are paired and sent down the Y pipe.

2.13. Unified Cache Architecture Issues

The Cyrix 6x86/6x86MX CPUs use a unified cache design. This means there is
only one primary or L1 cache for both data and code. This typically provides a
higher hit rate than the Harvard (split data and code) cache design used in the Pen-
tium. But there exists the possibility for large data operations that data will fill the
entire cache and causing code misses. This issue can be addressed by writing criti-
cal code to fit in the instruction line buffer.

On the 6x86MX there is another way to address this issue by locking-down critical
code in the cache. See “Cache Line Locking to Aid Real Time Software” on page
21 for more information on Cache Line Locking on the 6x86MX.

The unified cache is effectively dual ported. It is possible to access two data items
in the same clock if there is no bank conflict.

Two simultaneous misaligned word accesses will result in an extra clock delay in
the AC2 stage.

10 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

Code Branch Alignment

A three clock penalty results from a write followed by a read to the same memory
location.

2.14. Code Branch Alignment

Align branch targets to eight byte boundaries. The CPU will fetch 16 bytes on 8
byte boundaries.

2.15. Data Alignment

Don't span a data item across eight-byte boundaries.

2.16. Branch Miss Predictions Should Be Avoided

Extra clock-cycle delays occur when a CPU’s branch prediction predicts incor-
rectly. These delays typically result from branch repairs that require using addi-
tional resources. With register renaming, branch repair has a penalty of one clock.

Code should be designed to flow top to bottom with fewer loops. The trade off is
code size.

Loops are initially predicted taken.

2.17. SMM

Cyrix SMM implementation is different than other vendors in terms of what is
saved and restored automatically on entrance and exit of SMI interrupt. The Cyrix
design minimized the overhead for entry and exit of the handler. This minimal CPU
state save and restore resulted in fast entry and exit of the SMI handler. This imple-
mentation permits not only faster power management decisions but also allows for
virtualization of peripherals (i.e., MediaGX).

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 11

SMM

The Cyrix SMM implementation is fully software configurable. This permits for
using TSRs, or device drivers to act as SMM handlers.

For a detailed discussion refer to Application Note 107 6x86MX SMM Design
Guide.

12 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

CPUID and Returned Feature Bits

3. 6x86 Unique Features

3.1. CPUID and Returned Feature Bits

The 6x86 and 6x86L implement the CPUID Instruction, however for compatibility
with previous CPUs the CPUID instruction is not enabled by BIOS. See Cyrix ID
Application Note 112 on the Cyrix Developers web page for detailed information.
The home web page is www.cyrix.com.

The CPUID instruction execution, with EAX=1, loads the feature bits into the EDX
register. For the early 6x86 devices, the only feature bit that is enabled is bit 0 for
the FPU.

The 6x86L supports an FPU, Debug Extensions (also known as I/O breakpoints)
and the Compare Exchange 8 Byte instruction. The 6x86L can be identified by
DIR0 values 2h. The 6x86L also adds support for the instruction MOV to and from
CR4.

3.2. Cache Organization

The 6x86 contains a dual ported 16K unified cache with 512 lines and 32 bytes per
line.

3.3. TLB Organization

The TLB on the 6x86 is a 128-entry direct-mapped TLB, backed up by an 8-entry
fully associative victim TLB. Both TLBs are dual ported. This allows both integer
pipes to access TLB entries simultaneously. The value of 136 should be used in
algorithms that make decisions about flushing individual entries with the INVLPG
instruction or all the entries with a MOV to CR3 instruction.

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 13

CPUID Bits

4. 6x86MX Unique Features

4.1. CPUID Bits

The 6x86MX is initialized with CPUID enabled. CPUID will return the following information for the 6x86MX
CPU:

FEATURE DATA

9HQGHU�,'�6WULQJ ´&\UL[,QVWHDGµ

&38,'�/HYHOV�6XSSRUWHG �

)DPLO\� �

0RGHO �

6WHSSLQJ 7%'

)HDWXUH�)ODJ�9DOXH �[����$���

FEATURE FLAGS SET

FEATURE FLAG SET FEATURE

)38�3UHVHQW �[��0;�FRQWDLQV�DQ�HQKDQFHG�)38�

,�2�%UHDNSRLQWV����� ,�2�F\FOHV�FDQ�EH�WUDSSHG��FRQWUROODEOH�E\�&5��'(�

7LPH�6WDPS�&RXQWHU�6XSSRUWHG 5'76&�LQVWUXFWLRQ�LV�VXSSRUWHG��FRQWUROODEOH�E\�

&5��76'�

5'065�DQG�:5065�,QVWUXFWLRQV�3UHVHQW 0RGHO�6SHFLILF�5HJLVWHUV�DUH�VXSSRUWHG���

&03;&*+�%�,QVWUXFWLRQ�6XSSRUWHG &RPSDUH�H[FKDQJH�HLJKW�E\WH�LQVWUXFWLRQ�VXSSRUWHG�

37(�*OREDO�%LW�6XSSRUW 37(�7/%�ZLOO�QRW�EH�IOXVKHG�ZKHQ�&5��LV�ZULWWHQ�

&029�DQG�)&029�,QVWUXFWLRQV�6XSSRUWHG &RQGLWLRQDO�PRYH�LQVWUXFWLRQV�VXSSRUWHG�

00;��,QVWUXFWLRQV�6XSSRUWHG 0XOWL�0HGLD�,QVWUXFWLRQ�([WHQVLRQV�VXSSRUWHG�

14 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

MMX™ Instructions and Optimizations

4.2. MMX™ Instructions and Optimizations

All instructions execute in one clock except: Packed Multiply, Packed Multiply-
and-Add, and Dword Mov from an MMX™ register to a x86 core register. A new
MMX™ instruction can be issued during each clock.

4.2.1 Fast FPU/MMX™ Switching

Certain processors, such as the Pentium with MMX, take as many as 50 or 60
machine cycles to switch between FPU and MMX™ instruction execution. The
6x86MX does not have this limitation. It executes the EMMS instruction in one
clock.

4.2.2 Extended MMX™ Instructions

Cyrix has added instructions to its implementation of the Intel MMX™ Architec-
ture in order to facilitate writing of multimedia applications. All of the added
instructions follow the SIMD (single instruction, multiple data) format. Many of
the instructions add flexibility to the MMX™ architecture by allowing both source
operands of an instruction to be preserved, while the result goes to a separate regis-
ter that is derived from the input registers.

4.2.3 Detecting Extended MMX™ Instructions

1) Check for Family 6 Model 0 - Extended MMX™ supported

2) Future CPU’s can be checked by the Extended Feature Flag

 CPUID Extended Flag[24] - Extended MMX supported

See the Cyrix Developer web site for the current extended CPUID description.

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 15

MMX™ Instructions and Optimizations

Cyrix Extended Instructions To MMX™ Instruction Set

MMX™ INSTRUCTIONS OPCODE OPERATION AND CLOCK COUNT
PADDSIW Packed Add Signed Word with Saturation
Using Implied Destination
MMX Register plus MMX Register to Implied Register
Memory plus MMX Register to Implied Register

0F51 [11 mm1 mm2]
0F51 [mod mm r/m]

Sum signed packed word from MMX register/
memory ---> signed packed word in MMX register,
saturate, and write result ---> implied register 1

1

PAVEB Packed Average Byte
MMX Register 2 with MMX Register 1
Memory with MMX Register

0F50 [11 mm1 mm2]
0F50 [mod mm r/m]

Average packed byte from the MMX register/memory
with packed byte in the MMX register. Result is
placed in the MMX register.

1
1

PDISTIB Packed Distance and Accumulate
with Implied Register
Memory, MMX Register to Implied Register 0F54 [mod mm r/m]

Find absolute value of difference between packed
byte in memory and packed byte in the MMX register.
Using unsigned saturation, accumulate with value in
implied destination register.

2

PMACHRIW Packed Multiply and Accumulate
with Rounding
Memory to MMX Register 0F5E[mod mm r/m]

Multiply the packed word in the MMX register by the
packed word in memory. Sum the 32-bit results
pairwise. Accumulate the result with the packed
signed word in the implied destination register.

2

PMAGW Packed Magnitude
MMX Register 2 to MMX Register 1
Memory to MMX Register

0F52 [11 mm1 mm2]
0F52 [mod mm r/m]

Set the destination equal ---> the packed word with
the largest magnitude, between the packed word in
the MMX register/memory and the MMX register.

2
2

PMULHRIW Packed Multiply High with Rounding,
Implied Destination
MMX Register 2 to MMX Register1
Memory to MMX Register

0F5D [11 mm1 mm2]
0F5D [mod mm r/m]

Packed multiply high with rounding and store bits 30
- 15 in implied register.

2
2

PMULHRW Packed Multiply High with Rounding
MMX Register 2 to MMX Register1
Memory to MMX Register

0F59 [11 mm1 mm2]
0F59 [mod mm r/m]

Multiply the signed packed word in the MMX
register/memory with the signed packed word in the
MMX register. Round with 1/2 bit 15, and store bits
30 - 15 of result in the MMX register.

2
2

PMVGEZB Packed Conditional Move If Greater Than or
Equal to Zero
Memory to MMX Register 0F5C [mod mm r/m]

Conditionally move packed byte from memory --->
packed byte in the MMX register if packed byte in
implied MMX register is greater than or equal --->
zero.

1

PMVLZB Packed Conditional Move If Less Than Zero
Memory to MMX Register 0F5B [mod mm r/m]

Conditionally move packed byte from memory --->
packed byte in the MMX register if packed byte in
implied MMX register is less than zero.

1

PMVNZB Packed Conditional Move If Not Zero
Memory to MMX Register 0F5A [mod mm r/m]

Conditionally move packed byte from memory --->
packed byte in the MMX register if packed byte in
implied MMX register is not zero.

1

PMVZB Packed Conditional Move If Zero
Memory to MMX Register 0F58 [mod mm r/m]

Conditionally move packed byte from memory --->
packed byte in the MMX register if packed byte in
implied the MMX register is zero.

1

PSUBSIW Packed Subtracted with Saturation
 Using Implied Destination
MMX Register 2 to MMX Register1
Memory to MMX Register

0F55 [11 mm1 mm2]
0F55 [mod mm r/m]

Subtract signed packed word in the MMX register/
memory from signed packed word in the MMX
register, saturate, and write result ---> implied
register.

1
1

16 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

MMX™ Instructions and Optimizations

4.2.4 Implied Registers

Implied registers provide a third register for Cyrix Extended MMX instructions.
The implied register is used as a destination register for results, so that the source
register’s contents are not overwritten.

For example, the IDCT (Inverse Discrete Cosine Transform) algorithm, used in
MPEG video decode, has several places where two vector inputs are used in two
separate calculations. In one calculation, the two vectors may be added, and in the
second one of the vectors are subtracted from the other. In order to accomplish this
algorithm using the basic MMX instructions, one of the vectors must be copied in
order to preserve its original value before the first computation. This is because the
MMX instructions all destroy the contents of one of the source registers by using
the same register as the destination.

Several of the Cyrix-added MMX instructions get around this problem by having an
implied destination register, which is derived from the first source register. This
way, the contents of both source vectors is preserved without having to make a copy
of either one. A few of the instructions use an implied register as another source, so
that the first register in the instruction is still the destination.

The implied register is calculated from the first source, according to the following
table:

As implied from the table, the source and destination registers are in pairs, where
the pairs are determined by changing the least significant bit of the binary represen-
tation of the register number.

IMPLIED REGISTER PAIRS

FIRST SOURCE

 REGISTER

IMPLIED

REGISTER

�������PP� �������PP�

�������PP� �������PP�

�������PP� �������PP�

�������PP� �������PP�

�������PP� �������PP�

�������PP� �������PP�

�������PP� �������PP�

�������PP� �������PP�

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 17

MMX™ Instructions and Optimizations

4.2.5 Implied Instruction Examples

The PADDSIW instruction performs the same function as the basic MMX
PADDSW instruction, except that it preserves the contents of both input vectors. If
one of the vectors of interest is in register mm1 and the other is in register mm2, the
instruction would look like this:

PADDSIW mm1, mm2 ;result in mm0

and the result would end up in register mm0. The instruction could also
be written as:

PADDSIW mm2, mm1 ;result in mm3

and the result would end up in register mm3. In this particular instruction, the sec-
ond input can also be a memory operand, but the implied register stays the same, so

PADDSIW mm1, [si] ;result in mm0

puts its result in register mm0.

Caution is required for programming with these instructions in order for them to
have the desired effect. For example,

PADDSIW mm1, mm0 ;result in mm0

will put its result in register mm0, thus losing the original input value. The instruc-
tion written this way is exactly equivalent to

PADDSW mm0, mm1

A few of the instructions that use an implied register still use the first register in the
instruction as the destination. These instructions are the packed conditional move
commands PMVZB, PMVZNB, PMVLZB, and PMVGEZB. Note that the mne-
monics for these instructions do not have the “I” for “implied destination” in them,
so there should be no ambiguity about where the result goes. In the case of the
packed conditional move instructions, the packed values from the source are moved
as packed values to the destination register, depending upon the packed values in
the implied register. They are three-input instructions.

These instructions are beneficial for numerous algorithms, for example:

Implied destination instructions: PADDSIW, PSUBSIW, PMULHRIW

18 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

MMX™ Instructions and Optimizations

These are used for preserving the first src operand. Using them properly can over-
come the short comings of two operand MMX instructions.

Fixed-point mode higher accuracy multiply with rounding: PMULHRW,
PMACHRIW, and PMULHRIW provide higher accuracy multiplication. The
result is a 1.15 instead of Intel 2.14 format. This is important in digital filters,
video/audio/speech coding where improved accuracy is needed.

4.2.6 Examples of Extended MMX Instructions
Applications

Average Instruction: PAVEB

PAVEB averages two MMX registers in byte partitions. This is useful in algorithms
such as motion compensation.

Magnitude Instruction: PMAGW

This is useful in signal scaling by finding the largest magnitude among a number of
samples.

Distance instruction: PDISIB

PDISIB calculates with an implied dst = SUM (a-b). The instruction works on byte
a partition. This is appropriate for motion estimation which is part of many video
compression algorithms.

Conditional Move Instructions:
PMVGEZB, PMVLZB, PMVNZB, PMVZB

This group of instructions uses byte partition. These instructions can be used for
image manipulation, such as the chroma keying algorithm.

4.2.7 Enabling Extended MMX Instructions

The Extended MMX instructions are disabled by default. These instructions are
enabled by setting Bit 0 of CCR7 (index 0xeb) to 1. To do this will require ring 0
access which for some operating systems will mean a ring 0 device driver.

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 19

SMM Enhancements

4.3. SMM Enhancements

SMM has been enhanced to support reentrancy or nesting of SMI’s. This will facil-
itate servicing an SMM interrupt within an SMM context. Code and Data are
cached on the 6x86MX to enhance performance.

See Application Note 107 6x86MX SMM Design Guide for details.

4.4. Cache Organization

The 6x86MX contains a dual ported 64K write-back unified cache. The cache is
organized as a 4-way set associative cache with 2048 lines and 32 bytes per line.

4.5. TLB Organization

The 6x86MX TLB is organized into two levels. The first level is 16 entry direct.
The second level is 384 entry 6 way. The value 400 should be used in algorithms
that make decisions about flushing individual entries with the INVLPG instruction
or all the entries with a MOV to CR3 instruction.

4.6. Performance Monitors

See the 6x86MX Data book for a detailed listing and discussion of performance
monitors.

Note that the 6x86MX contains performance monitors that are not provided by
from other CPU manufactures. When applicable the 6x86MX performance moni-
tors overlap with the Intel® Pentium® P55C CPU. It is recommended that if perfor-
mance monitors are used that the usage be conditioned by the CPU vendor and
CPU Family and Model.

Due to the architectural differences between the Cyrix 6x86MX and the Intel P55C
the counters may have different meanings with relation to TLB architecture, Cache
architecture, and pipe naming.

20 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

Performance Monitors

The following Event Counter Types are different between the 6x86MX and Intel
P55C:

EVENT COUNTER TYPE DIFFERENCES

NUMBER(HEX) 6X86MX DESCRIPTION

�� ([WHUQDO�,QTXLUHV

�� ([WHUQDO�,QTXLUHV�WKDW�KLW

�' /��7/%�&RGH�0LVVHV

�� 5HVHUYHG

�� 5HVHUYHG

�� ,QVWUXFWLRQV�([HFXWHG�LQ�WKH�<�SLSH

�� 5HVHUYHG

�� 5HVHUYHG

�$ 5HVHUYHG

�& 5HVHUYHG

�(5HVHUYHG

�� 5HVHUYHG

�� 00;�,QVWUXFWLRQ�'DWD�5HDGV

�� 5HVHUYHG

�� 5HVHUYHG

�� 5HVHUYHG

�� /��7/%�0LVVHV��&RGH�RU�'DWD�

�� /��7/%�'DWD�0LVV

�� /��7/%�&RGH�0LVV

�� /��7/%�0LVV��&RGH�RU�'DWD�

�� 7/%�)OXVKHV

�� 7/%�3DJH�,QYDOLGDWHV

�� 7/%�3DJH�,QYDOLGDWHV�WKDW�KLW

�� ,QVWUXFWLRQV�'HFRGHG

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 21

Cache Line Locking to Aid Real Time Software

4.7. Determining Clock Multiplier

The clock multiplier of the 6x86MX can determined by reading the bottom 4 bits of
DIR0. The register index for DIR0 is FEh.

4.8. Cache Line Locking to Aid Real Time Software

The 6x86MX adds the unique ability to lock down lines in the primary or L1 cache
of the CPU. This is valuable for Real Time applications. By locking down code or
data in the L1 cache it guarantees that the information is kept in the L1 cache until
software unlocks the area and the L1 cache LRU replaces the data. The only nega-
tive impact is the loss of the cache lines for normal cache operation.

Items locked down stay coherent only with that CPU, but are not guaranteed coher-
ent with main memory.

DIR0[3:0] C LOCK MULTIPLIER

� �[

� �

� ���[

� �[

� ���[

� �[

� ���[

� �[

22 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

Cache Line Locking Operations

4.9. Cache Line Locking Operations

The Cache Line locking feature is controlled by using MSR3, MSR4, and MSR5. When a line is unlocked, the
line is marked invalid to avoid write backs to non-existent memory.

31 24 23 22 20 19 18 16 15 12 11 8 7 6 5 4 3 2 0

S
M
I

V MESI MRU SET CTL MSR5

31 2 1 0

ADDRESS MRS4

31 0

DATA MSR3

CACHE TEST REGISTER BIT DEFINITIONS

REGISTER
NAME

FIELD
NAME

RANGE DESCRIPTION

065� 60, �� 60,�$GGUHVV�%LW���6HOHFWV�VHSDUDWH�FDFKHDEOH�60,�FRGH�GDWD�VSDFH

9��0(6, ������� 9DOLG��0(6,�%LWV

,I� �������0RGLILHG

,I� �������6KDUHG

,I� �������([FOXVLYH�

,I� �������,QYDOLG

,I� �������/RFNHG�9DOLG

,I� �������/RFNHG�,QYDOLG

(OVH� �8QGHILQHG

058 ������ 8VHG�WR�GHWHUPLQH�WKH�/HDVW�5HFHQWO\�8VHG��/58��OLQH�

6(7 ����� &DFKH�6HW��6HOHFWV�RQH�RI�IRXU�FDFKH�VHWV�WR�SHUIRUP�RSHUDWLRQ�RQ��

&7/ ����� &RQWURO�ILHOG

,I� �����IOXVK�FDFKH�ZLWKRXW�LQYDOLGDWH

,I� �����ZULWH�FDFKH

,I� �����UHDG�FDFKH

,I� �����QR�FDFKH�RU�WHVW�UHJLVWHU�PRGLILFDWLRQ

065� $''5(66 ������ 3K\VLFDO�$GGUHVV

065� '7 ������ 'DWD�ZULWWHQ�RU�UHDG�GXULQJ�D�FDFKH�WHVW�

*Note: All 32 bytes should contain valid data before a line is marked as valid.

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 23

Cache Modification Actions Effects on Locked Lines

Lock information is kept in the MESI bits.

4.10. Cache Modification Actions Effects
on Locked Lines

MSR5 CACHE CONTROL OPERATIONS:

ACTION ECX EDX EAX OPERATION

5HDG�

:ULWH

��K ������ &DFKH�'DWD 'DWD�WR�IURP�065�

:ULWH ��K $GGUHVV�8SSHU�

���%LWV

$GGUHVV�/RZHU����%LWV 'DWD�DW�(';�($;�

!065��

5HDG ��K $GGUHVV�8SSHU�

���%LWV

$GGUHVV�/RZHU����%LW 065���!�(';�($;�

:ULWH ��K ������ 'DWD)XQFWLRQB065���($;�

5HDG ��K ������ 'DWD 5HDG�065���!�($;

CACHE MODIFICATION ACTION EFFECTS ON LOCKED LINES

ACTION EFFECT ON LOCK BITS

3RZHU�RQ�5HVHW &OHDUHG

5HVHW &OHDUHG

:DUP�5HVHW 8QDIIHFWHG

)OXVK 8QDIIHFWHG

:%,19' 8QDIIHFWHG

,19' 8QDIIHFWHG

24 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

Cache Line Locking Guide Lines

4.11. Cache Line Locking Guide Lines

Cache line locking is more effective when the following suggestions are followed:

1) Don't lock all ways or sets of the cache. Inspect the cache before lock-
ing. Avoid locking set 3 so it will be available for normal cache operation.

2) Do not allocate an address twice in a cache block. The results will be
catastrophic.

Check for an address already being locked.

See “Cache Line Locking Operations” on page 22 for additional information.

4.12. Cache Line Locking Example Code

As time permits, Cache Line Locking examples will be placed on the Cyrix
Software Developer web page.

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 25

Cache Line Locking Example Code

Appendix A.
Summary of Differences Between 6x86 and 6x86MX CPUs

FEATURE 6X86 6X86MX

&DFKH� ��.�6L]H

��ZD\

����OLQHV

���E\WHV�SHU�OLQH

��.�6L]H

��ZD\

�����OLQHV

���E\WHV�SHU�OLQH

7/% ����� ������

%7% ��� ���

/RFNDEOH�&DFKH QR \HV

7LPH�6WDPS�&RXQWHU QR \HV

3HUIRUPDQFH�&RXQWHUV QR \HV

*OREDO�37(QR \HV

&38,'�HQDEOHG QR \HV

00; QR \HV

([WHQGHG�00; QR \HV

1HVWDEOH�60,�VXSSRUW QR� \HV

&029 QR \HV

60,�FRGH�GDWD�FDFKHDEOH QR \HV

3UHIHWFK�4XHXH�'HSWK ���E\WHV ���E\WHV

26 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

Cache Line Locking Example Code

Appendix B.
Web Page for Software Vendor Support

For more information, help, or to contact Software Vendor Support:

http://www.cyrix.com/developers/software/isv.htm

Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7 27

Cache Line Locking Example Code

Appendix C.
6x86™ and 6x86MX™ Technical Documents.

• 6x86 Data Book

• 6x86 BIOS Writer's Guide

• 6x86 SMM Programmer's guide

• 6x86MX Data Book

• 6x86MX BIOS Writer's Guide

• 6x86MX SMM Programmer's Guide

• SMM Programmer's Guide.

• Application Note 101 Board Design and Bus Differences

• Application Note 102 Signal and Bus Description

• Application Note 103 BIOS Writer's Guide

• Application Note 104 Fan Voltage Regulator and Chipset Guide

• Application Note 105 Thermal Considerations

• Application Note 106 CPU Optimization

• Application Note 107 SMM Design Guide

• Application Note 108 Cyrix MMX Extension

• Application Note 112 Cyrix CPU Detection Guide

28 Application Note 106 -Software Customization for the 6x86 Family, Rev 1.7

Cache Line Locking Example Code

©1998 Copyright Cyrix Corporation. All rights reserved.

Printed in the United States of America

Trademark Acknowledgments:

Cyrix is a registered trademark of Cyrix Corporation.

MediaGX, Cx486DX, Cx486DX2, Cx486DX4, 5x86, 6x86 and 6x86MX are trademarks of Cyrix Corporation.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Order Number: 94xxx-xx

Cyrix Corporation

2703 North Central Expressway

Richardson, Texas 75080

United States of America

Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specifications described herein without notice. Before design-
in or order placement, customers are advised to verify that the information is current on which orders or design activities are based. Cyrix
warrants its products to conform to current specifications in accordance with Cyrix’ standard warranty. Testing is performed to the extent nec-
essary as determined by Cyrix to support this warranty. Unless explicitly specified by customer order requirements, and agreed to in writing
by Cyrix, not all device characteristics are necessarily tested. Cyrix assumes no liability, unless specifically agreed to in writing, for custom-
ers’ product design or infringement of patents or copyrights of third parties arising from use of Cyrix devices. No license, either express or
implied, to Cyrix patents, copyrights, or other intellectual property rights pertaining to any machine or combination of Cyrix devices is
hereby granted. Cyrix products are not intended for use in any medical, life saving, or life sustaining system. Information in this document is
subject to change without notice.

May 22, 1998 10:19 am
C:\!!!devices\appnotes\106ap.fm5

Rev 1.7 Added Prefetch Queue to Differences Table Appendix A, Page 25
Rev 1.6 Changed TRx to MSRx

