

 COMPONENT HANDBOOK

ORDERING GUIDE

THIS ORDERING GUIDE IS PRESENTED AS A PROCEDURAL GUIDE. FOR A FORMAL STATEMENT OF POLICIES REFER TO THE TERMS AND CONDITIONS OF SALE FOUND ON THE QUOTATION FORM OR ON THE CUSTOMER ACKNOWLEDGEMENT COPY OF THE SALES ORDER.

PLACING AN ORDER

When ordering a Datel-Intersil product, the complete model number, product description, and option description should be given. Orders may be placed with a Datel-Intersil field sales representative or with the factory by letter, telephone, TWX, or TELEX. MINIMUM ORDER IS $\$ 50.00$, except for cash or C.O.D. orders where minimum is $\$ 30.00$.

OUTSIDE THE U.S.A. AND CANADA: Orders should be placed with a Datel-Intersil Sales Subsidiary (in West Germany, France, the United Kingdom, and Japan) or with a Datel-Intersil overseas sales representative. Orders received directly will be treated the same as if placed through our overseas sales representative. In countries without a Datel-Intersil representative, orders should be placed by TELEX and confirmed by air mail.

FIELD SALES REPRESENTATIVES

Datel-Intersil employs field sales representatives throughout the United States, Canada, Europe, and the Far East. In addition, it has direct Sales Offices in Santa Ana, California; Sunnyvale, California; Gaithersburg, Maryland; and Dallas and Houston, Texas. Datel-Intersil also has Sales Subsidiaries in Munich, West Germany; Paris, France; London, England; and Tokyo and Osaka, Japan. These sales representatives are the only ones authorized by Datel-Intersil to solicit sales, and any information or data received by sources other than these authorized representatives or the Datel-Intersil factory cannot be considered binding.

PRICES

All prices are F.O.B., Mansfield, Massachusetts, U.S.A. in U.S. dollars. Applicable federal, state, and local taxes are extra and paid by buyer. Prices are subject to change without notice.

TERMS: Net 30 Days.

DISCOUNTS

Quantity discounts are available when placed in a single order. OEM discounts are available on an order or contract basis; consult the factory for details.

QUOTATIONS

Price and delivery quotations made by Datel-Intersil or its authorized field sales representatives are valid for 30 days unless otherwise stated.

DELIVERY

Datel-Intersil uses an IBM System 3, Model 12, for efficient processing of orders. All orders placed with Datel-Intersil are acknowledged within a few days by an acknowledge-
ment copy of our sales order form. This copy will indicate pertinent information including a formal statement of terms and conditions of sale and estimated delivery date. This date has preference over all other agreed upon dates unless otherwise specified

All products are shipped in rugged commercial containers suitable for insuring safe delivery under normal shipping conditions. Unless shipping method is specified, the best available method will be used. UPS, UPS Blue Label, Parcel Post, and Air Parcel Post are among the methods normally used. Datel-Intersil recommends insurance on Parcel Post and Air Parcel Post shipments for tracing purposes. Shipping charges are normally prepaid and billed to the customer except for Air Freight charges which are sent collect. The appropriate data sheet and/or instruction is packed with each product shipped.

ORDER CANCELLATION

All orders entered with Datel-Intersil are binding and are subject to a cancellation charge if cancelled before or after the scheduled shipping date on the acknowledgement copy of the sales order form. The normal cancellation charge is 20\% but may be higher depending on expenses already incurred and commitments made by Datel-Intersil.

WARRANTY

Datel-Intersil warrants that its products are free from defects in material and workmanship under normal use and service for a period of one year from the date of shipment for monolithic products. Datel-Intersil's obligations under this warranty are limited to replacement only. In no case shall Datel-Intersil's liability exceed the original purchase price.

RETURNS

When returning products for any reason, contact the factory first for return authorization number and shipping instructions. Items should not be returned air freight collect as they cannot be accepted. It is absolutely necessary to return products in the manner stated here otherwise considerable delay will result in processing the return.

RETURNS OUTSIDE THE U.S.A. AND CANADA: Contact the local sales representative or factory for authorization and shipping instructions first.

CERTIFICATE OF COMPLIANCE

Datel-Intersil will provide a standard Certificate of Compliance with all shipments when requested by the customer. This request must be specified on the purchase order.

ABOUT DATEL-INTERSIL

Datel-Intersil is an established international leader in all phases of data conversion technology. In order to meet the rapidly growing need for data acquisition components and systems to interface with computers in industrial, commercial, scientific and military applications, Datel-Intersil offers one of the broadest lines of products in the industry. This product line includes A/D and D/A converters, sample-holds, analog multiplexers, operational and instrumentation amplifiers, V/F and F/V converters, voltage references, temperature sensors, active filters, dataloggers and readers, data acquisition systems, computer analog I/O boards, digital panel meters, digital panel printers, digital voltage calibrators, linear and switching power supplies, and DC-DC converters.

Datel-Intersil's modern 120,000 square foot manufacturing facility in Mansfield, Massachusetts, just 40 minutes from Boston's Logan Airport, houses all Datel-Intersil operations. This new headquarters is dedicated to continuing our leadership position by supplying a steady stream of significant new products to meet the demand for high performance data acquisition devices in the 1980's.

ABOUT THIS PRODUCT HANDBOOK

You are holding two Datel-Intersil catalogs. This section is the Data Acquisition Components Handbook; simply turn this whole volume over to the opposite cover for access to the Instruments and Systems Handbook. This dual catalog reflects DatelIntersil's dual expertise: leadership in data conversion components technology and leadership in data conversion systems and instrumentation technology.

DATA ACQUISITION COMPONENTS HANDBOOK

This handbook is written for the design engineer who requires detailed technical information about products in order to select and apply a product appropriate to a particular application.

In this handbook, comprised of pages 1 C through 566C, products are categorized by function. Products in each category are organized into quick selection tables followed by detailed data sheets for our most popular products. Data Sheets not included in this catalog may be obtained by contacting DatelIntersil's nearest sales office.

Datel-Intersil also maintains an Application Engineering Department to answer any additional questions that may arise concerning the application of our products.

Our highly qualified team of Field Sales Engineers is available to service your needs throughout the United States, Canada, Western Europe, the Mid East, and Far East.

DATA ACQUISITION COMPONENTS TABLE OF CONTENTS

PAGE

A/D Converters	7C
D/A Converters	121 C
Sample-Holds	209 C
Analog Multiplexers	233 C
Data Acquisition Modules	269 C
Operational Amplifiers	307 C
Instrumentation Amplifiers	363 C
Special Functions	387 C
Analog Switches	441 C
Counters and Display Drivers	463 C

INSTRUMENTS AND SYSTEMS

Digital Panel Meters 5S
Digital Voltage Calibrator 63S
SineTrac Computer A/D-D/A Boards 67S
Panel-Mount Thermal Printers 131S
A/D-D/A Computer Data Systems 175S
Low-Power Digital Cassette Data Loggers 199S
Product Index 2C
New Products 4C
Sales Offices
Ordering Guide
Inside Systems
Cover Inside Components

Cover

Product Index

A/D CONVERTERS		SAMPLE-HOLDS	
ADC-E Series	10C, 90C	SHM-IC1	210C,212C
ADC-Econoverter	. 10C	SHM-LM2	210C,216C
ADC-EH8B	14C, 94C	SHM-HU	210C,218C
ADC-EH10B	14C, 96C	SHM-UH	210C,224C
ADC-EH12B1, B2	14C, 98C	SHM-UH3	210C,224C
ADC-EH12B3	14C,100C	SHM-1	210C
ADC-EK Series	8C, 16C	SHM-2	210C,228C
ADC-ET Series	8C, 20C	SHM-2E	210C,228C
ADC-G8B, 10B 14C	SHM-5	210C,230C
ADC-HC12B	12C, 66C	SHM-6	210C,220C
ADC-HS12B	12C, 70C		
ADC-HU3B	14C	ANALOG MULTIP	
ADC-HX12B	8C, 74C	MU-6108	234C,236C
ADC-HZ12B	12C, 74C	MU-6116	234C,242C
ADC-L Series	. 10C	MU-6208	234C,248C
ADC-M Series	10C	MU-6216	234C,254C
ADC-MA Series	10C	MV-Series	234C,260C
ADC-MC8B	8C, 26C	MX-Series	234C,264C
ADC-SH4B	14C		
ADC-TV8B	14C,106C	DATA ACQUISIT	STEMS
ADC-UH Series	14C,102C	DAS-250	270C,298C
ADC-89A 10C	DAS-952R	270C,272C
ADC-149-14B	12C,110C	HDAS-8	270C,278C
ADC-815	14C, 78C	HDAS-16	270C,278C
ADC-816	14C, 82C	MDAS-8D	270C,286C
ADC-817	14C, 86C	MDAS-16	270C,286C
ADC-825	12C, 78C	MDXP-32	270C,292C
ADC-826	12C, 82C		
ADC-827	12C, 86C	OPERATIONAL A	IERS
ADC-856	8C, 62C	AM-100	. 312C
ADC-876	14C,112C	AM-101	312C
ADC-881	12C,116C	AM-102.	312C
ADC-7104	12C, 30C	AM-103	312C
ADC-7109	8C, 46C	AM-303	310C
ADC-8068A	12C, 30C	AM-410	308C,314C
		AM-411.	308C,314C
D/A CONVERTERS		AM-414	308C,318C
DAC-DG12B	130C,196C	AM-450	312C,320C
DAC-HA Series	126C,174C	AM-452	312C,320C
DAC-HF Series	130C,180C	AM-453	308C,324C
DAC-HISeries	130C,200C	AM-460	308C,320C
DAC-HK Series	128C,184C	AM-462	312C,320C
DAC-HP Series	132C,188C	AM-464	310C,326C
DAC-HR Series	132C,204C	AM-470	310C,328C
DAC-HZ Series	122C,192C	AM-490	308C,330C
DAC-I Series	124C	AM-500	312C,350C
DAC-IC8B	122C,134C	AM-7600	308C,334C
DAC-IC10B	122C,138C	AM-7601	308C,334C
DAC-UP8B	122C,142C	AM-7611	$310 \mathrm{C}, 344 \mathrm{C}$
DAC-V Series	128 C	AM-7612	310C,344C
DAC-VR Series	. 128 C	AM-7613	310C,344C
DAC-08B	122C,146C	AM-7614	310C,344C
DAC-9	124C	AM-7615	310C,344C
DAC-19	124C	AM-8510	310C,352C
DAC-29	. 124C	AM-8520	310C,352C
DAC-49	124C	AM-8530	310C,352C
DAC-69	124C		
DAC-169	132C	INSTRUMENTATI	MPLIFIERS
DAC-681	122C,150C	AM-201	364C,382C
DAC-7520	126C,154C	AM-435	364C,366C
DAC-7521	126C,154C	AM-542	364C,378C
DAC-7523	126C,160C	AM-453	364C,378C
DAC-7533	126C,164C	AM-7605	364C,368C
DAC-7541	126C,168C	AM-7606	364C,368C

SPECIAL FUNCTIONS	
AMC-8013	388C,392C
FLT-U2	388C,404C
LA-8048	388C,396C
LA-8049	388C,396C
TT-590	388C,410C
VFQ-IC	388C,412C
VFV-10K	388C,416C
VFV-100K	388C,416C
VI-7760	,422C,549C
VR-182	388C,428C
VR-8069	388C,430C
WG-8038	442C,444C
ANALOG SWITCHES	
AS-5040 to AS-5051	442C,444C
AS-5140 to AS-5145	442C,454C
COUNTERS AND DISPLAY DRIVERS	
CD-7216	464C,466C
CD-7217	464C,481C
CD-7224	464C,493C
CD-7225	464C,493C
CD-7226	464C,501C
CD-7227	464C,481C
DD-7211	464C,513C
DD-7212	464C,513C
DD-7218	464C,523C

POWER SUPPLIES LINE OPERATED POWER SUPPLIES	
BCM-15/60.	540 C
BCM-15/100	540 C
BCM-15/200	540C
BCM-15/300	540C
BPM-5/250	538C
BPM-5/500	538C
BPM-12/60	538C
BPM-12/100	538C
BPM-12/200	538C
BPM-12/300	538C
BPM-15/60	538C
BPM-15/100	538C
BPM-15/200	538C
BPM-15/300	538C
BPM-120/25	544C
BPM-150/20	544C
BPM-180/16	544C
MPD-12/1	550C
MPD-12/1.5	550C
MPD-12/3	550C
MPD-15/1	550C
MPD-15/1.5	550C
MPD-15/3	550C
MPS-5/3	550C
MPS-5/6	550C
MPS-5/12	550C
MPS-5/18	550C
MPT-12/1-5/3	550C
MPT-12/1.5-5/6	550C
MPT-12/1.5-5/12	550C
MPT-15/1-5/3	550C
MPT-15/1.5-5/6	550C
MPT-15/1.5-5/12	550C

OV-1	548 C
OV-2	548 C
PCD-12/1	546C
PCD-12/2	546C
PCD-12/3	546 C
PCD-15/1	546 C
PCD-15/2	546C
PCD-15/3	546C
PCS-5/3	546 C
PCS-5/6	546C
PCS-5/12	546C
PCS-5/18	546C
PCT-5/3-12/1	546C
PCT-5/3-15/1	546 C
PCT-5/6-12/2	546C
PCT-5/6-15/2	546C
PCT-5/12-12/2	546C
PCT-5/12-15/2	546C
TPM-12/100-5/500	542C
TPM-15/100-5/500	542 C
TPM-12/200-5/500	542C
TPM-15/200-5/500	542C
TPM-12/150-5/1000	542C
TPM-15/150-5/1000	542C
UCM-5/250	540 C
UCM-5/500	540 C
UCM-5/1000	540 C
UCM-5/1000B	540 C
UCM-5/2000	540 C
UPA-5/500	545C
UPM-5/250	536C
UPM-5/500	536C
UPM-5/1000	536C
UPM-5/1000B	536C
UPM-5/2000	536C
UPM-6/150A	536C
UPM-9/100A	536C
UPM-12/100A	536C
UPM-15/100A	536C
USM-5/3	543C
USM-5/5	543

DC-DC CONVERTER MODULES

BPM-12/25-D5	552C
BPM-12/25-D12	552C
BPM-12/25-D28	552C
BPM-12/40-D48	556C
BPM-12/100-D5	552C
BPM-12/100-D12	552C
BPM-12/100-D28	552C
BPM-12/125-D48	556C
BPM-12/210-D5	554C
BPM-12/210-D12	554C
BPM-12/210-D28	554C
BPM-12/210-D48	556C
BPM-12/420-D5	554C
BPM-12/420-D12	554C
BPM-12/420-D28	554C
BPM-12/420-D48	556C
BPM-15/25-D5	552C
BPM-15/25-D12	552C
BPM-15/25-D28	552C
BPM-15/30-D48	556C
BPM-15/100-D5	552C
BPM-15/100-D12	552

BPM-15/100-D28	552C
BPM-15/100-D48	556C
BPM-15/150-D5	558C
BPM-15/150-D24	558C
BPM-15/150-D28	558C
BPM-15/165-D5	554C
BPM-15/165-D12	554C
BPM-15/165-D28	554C
BPM-15/165-D48	556C
BPM-15/330-D5	554C
BPM-15/330-D12	554C
BPM-15/330-D28	554C
BPM-15/330-D48	556C
BPM-18/25-D5	552C
BPM-18/25-D12	552C
BPM-18/25-D28	552C
BPM-18/100-D5	552C
BPM-18/100-D12	552C
BPM-18/100-D28	552C
BPM-18/140-D5	554C
BPM-18/140-D12	554C
BPM-18/140-D28	554C
BPM-18/280-D5	554C
BPM-18/280-D12	554C
BPM-18/280-D28	554C
UPM-5/200-D5	559C
UPM-5/200-D12	552C
UPM-5/200-D28	552C
UPM-5/200-D48	556C
UPM-5/500-D5	559C
UPM-5/500-D12	552C
UPM-5/500-D28	552C
UPM-5/600-D48	556C
UPM-5/1000-D5	559C
UPM-5/1000-D12	554C
UPM-5/1000-D28	554C
UPM-5/1000-D48	556C
UPM-5/2000-D5	559C
UPM-5/2000-D12	554C
UPM-5/2000-D28	554C
UPM-5/2000-D48	556C
UPM-12/80-D5	552C
UPM-12/80-D28	552C
UPM-12/80-D48	556C
UPM-12/250-D5	552C
UPM-12/250-D28	552C
UPM-12/250-D48	556C
UPM-12/420-D5	554C
UPM-12/420-D28	554C
UPM-12/420-D48	556C
UPM-12/840-D5	554C
UPM-12/840-D28	554C
UPM-12/840-D48	556C
UPM-15/60-D48	556C
UPM-15/200-D48	556C
UPM-15/330-D48	556C
UPM-15/660-D48	556C
UPM-24/40-D5	552C
UPM-24/40-D12	552C
UPM-24/125-D5	552C
UPM-24/125-D12	552C
UPM-24/210-D5	554C
UPM-24/210-D12	554C
UPM-24/420-D5	554C
UPM-24/420-D12	554C

UPM-28/25-D5	552C
UPM-28/25-D12	552C
UPM-28/100-D5	552C
UPM-28/100-D12	552C
UPM-28/180-D5	554C
UPM-28/180-D12	554C
UPM-28/360-D5	554C
UPM-28/360-D12	554C
VI-7660	422C,549C

INSTRUMENTS AND SYSTEMS SECTION

Digital Panel Me DM-3100L	11S-14S
DM-3100B	15S-18S
DM-3100N	19S-22S
DM-31	23S-30S
DM-31000U1	31S-34S
DM-3100X	35S-38S
DM-3100U2, U3	39S-42S
DM-LX3	43S-45S
DM-4100L, N	46S-49S
DM-4100D	50S-58S
UPA-5/500	59 S
DM-2115	60S
DM-350	615
DM-2000AR	62S

Digital Voltage Calibrator
DVC-8500 $64 \mathrm{~S}-66 \mathrm{~S}$

SineTrac A/D-D/A Computer Analog Boards	
ST-711, ST-732	71S-75S
ST-711RLY	76S-80S
ST-724	81S-87S
ST-800	88S-99S
ST-LSI	100S-111S
ST-LSI2	112S, 113S
ST-LSI-RLY	114S-121S
ST-6800	122S-130

Panel-Mount Thermal Printers
ParalleI APP-20......... 133S-146S
APP-20D 147S

Serial APP-20 148S-157S
CDPP-Q7/CAPP-20 ... 158S, 159 S
APP-48 $160 \mathrm{~S}, 163 \mathrm{~S}$
DPP-Q7 164S, 174S
A/D-D/A Computer Data Systems
DAS-256 176S-189S
PDAS-250 190S-196S
interface Panel 197S, 198 S

New Data Acquisition Components From Datel-Intersil

Ultra-fast 8 bit A/D converters Models ADC-815 and ADC-825	Ultra-fast 12 bit A/D converters Models ADC-817 and ADC-827 - 12 bits resolution - $2 \mu \mathrm{sec}$ or $3 \mu \mathrm{sec}$ conversiontimes - 5 programmable analog input ranges - Parallel or serial data output - Short cycle capability - Output coding selection For rull information see page 86 C
Ultra-fast 10 bit A/D converters Models ADC-816 and ADC-826 - 10 bits resolution - 800 nsec or $1.4 \mu \mathrm{sec}$ conversion time - 6 analog input ranges - Parallel or serial output - Selectable output coding - Fastest 10 bit A / D currently available For full information see page 82C	Microprocessor compatible 12 bit integrating A/D converter-Model ADC-7109 - 12 bit resolution - Polarity and overrange outputs - Byte-organized three-state TTL outputs - Uart handshake mode for microprocessor interfacing - 30 conversions per second - Fully protected CMOS For full information see page 46 C
Digitally programmable gain instrumentation amplifiers Models AM-542 and AM-543 - 11 binary weighted gains from 1 to 1024 - 4 bit gain code - $10^{12} \Omega$ input impedance - 0.01\% nonlinearity - Gain tempcos to $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ - Settling times to $10 \mu \mathrm{sec}$ For full information see page 378 C	CAZ instrumentation amplifiers Models AM-7605 and AM-7606 - $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ input offsetdrift - $2 \mu \mathrm{~V}$ input offset voltage - 1 to 1000 gain range - $0.5 \mu \mathrm{~V} /$ year long term drift - 1.5 nA input bias current - 100 dB common mode rejection For full information see page 368 C

Datel-Intersil's new 242 page Data Acquisition and Conversion Handbook

This handbook contains a wealth of useful information on the theory and application of data conversion circuits and systems. Written in clear concise language, this book contains 35 technical articles with 312 illustrations and 40 tables. It concludes with a handy glossary of the 200 most commonly used data acquisition terms.

Major topics covered:

- Principles of Data Acquisition and Conversion
- A/D and D/A Converters
- Data Conversion Systems
- Sample-Holds
- High Speed Op Amps
- V/F Converters

You will want to add this useful reference work to your engineering library. Just mail the coupon with your payment. Please, No Purchase Orders.

PRICE: U.S. \& Canada $\$ 4.95$
Elsewhere add $\$ 2.75$ for air shipment and handling
Massachusetts Residents add 5\% Sales Tax.

TO: Datel-Intersil, Inc.

Attn: Marketing Department
11 Cabot Boulevard, Mansfield, MA 02048

Please send \qquad copies of "Data Acquisition and Conversion Handbook." \$ \qquad enclosed.

NAME \qquad
COMPANY \qquad
DEPT/MS \qquad
STREET \qquad
CITY \qquad STATE \qquad ZIP \qquad
COUNTRY \qquad

Analog-To-Digital Converters

ADC-EK	16C
ADC-ET	20 C
ADC-MC8B	26C
ADC-7104/ADC-8068A	30 C
ADC-7109	46C
ADC-856	62C
ADC-HC	66C
ADC-HS	70C
ADC-HX, ADC-HZ	74C
ADC-815, ADC-825	78C
ADC-816, ADC-826	82C
ADC-817, ADC-827	86C
ADC-E	90C
ADC-EH8B	94 C
ADC-EH10B	96C
ADC-EH12B	98C
ADC-EH12B3	100C
ADC-UH	102C
ADC-TV8B	106C
ADC-149	110C
ADC-876	112C
ADC-881	116C

Quick Selection: General Purpose A/D Converters

	MODEL	DESCRIPTION	RESOLUTION	CONVERSION TIME, MAX.	LINEARITY ERROR, MAX.	ANALOG INPUT RANGE
	ADC-EK8B	Low Cost Integrating A / D	8 Bits	1.8 msec	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+10 \mathrm{~V}, \\ \pm 5 \mathrm{~V} \end{gathered}$
	ADC-EK10B		10 Bits	6 msec		
	ADC-EK12B		12 Bits	24 msec		
	ADC-EK12DC		31/2 Digits	12 msec		
	ADC-EK12DR					0 to +10 V
	ADC-EK12DM					
	ADC-ET8BC	Low Cost Integrating A/D with Three-State Outputs	8 Bits	1.8 msec	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+10 \mathrm{~V}, \\ \pm 5 \mathrm{~V} \end{gathered}$
	ADC-ET8BM					
	ADC-ET10BC		Bit	6 msec		
	ADC-ET10BM		10 Bits	6 msec		
	ADC-ET12BC		12 Bits	24 msec	$\pm 11 / 2$ LSB	
	ADC-ET12BR				$\pm 1 / 2$ LSB	
	ADC-ET12BM					
	ADC-MC8BC	MultifunctionA/D-D/A	8 Bits	$500 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+2.5 \mathrm{~V}, 0 \text { to }+5 \mathrm{~V} \\ 0 \text { to }+10 \mathrm{~V} \end{gathered}$
	ADC-MC8BM					
	ADC-856C	Tracking A/D Latched Outputs	10 Bits	$1 \mu \mathrm{sec} / \mathrm{LSB}^{1}$	$\pm 1 / 2$ LSB	$\begin{aligned} & 0 \text { to }+5 \mathrm{~V}, 0 \text { to }+10 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{aligned}$
	ADC-856M					
	ADC-7109C	Integrating A/D Byte-Organized Three State Outputs	13 Bits	33.3 msec	± 1 LSB	$\pm 4 \mathrm{~V}$
	ADC-7109R					
	ADC-7109M					
-	ADC-HX12BGC	Successive Approximation A/D with Input Buffer Amp	12 bits	$20 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+5 \mathrm{~V}, 0 \text { to }+10 \mathrm{~V} \\ \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{gathered}$
¢	ADC-HX12BMC					
$\underset{\sim}{\boldsymbol{m}}$	ADC-HX12BMR					
I	ADC-HX12BMM					

NOTES: 1. For tracking operation only, non-tracking Full Scale conversion time is 1.024 msec . max.
2. Coding: $\mathrm{Bin}=$ Straight Binary or Offset Binary

> BCD = Binary Coded Decimal C Bin = Complementary Binary C2C = Complementary Two's Complement Sign Mag Bin = Sign Magnitude Binary

OUTPUT CODING²	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	PACKAGE MATERIAL	OPER. TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PRICE (1-24)	SEE PAGE
Bin	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 5 \mathrm{VDC}$	24 pin DIP	Plastic	0 to +70	\$ 11.50	16C
				Ceramic	0 to +70	\$ 29.00	
					0 to +70	\$ 38.00	
BCD				Plastic	0 to +70	\$ 13.95	
				Ceramic	-25 to +85	\$ 23.00	
					-55 to +125	\$ 43.00	
Bin	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 5 \mathrm{VDC}$	24 pin DIP	Plastic	0 to +70	\$ 14.00	20C
				Ceramic	-55 to +125	\$ 42.00	
				Plastic	0 to +70	\$ 18.50	
				Ceramic	-55 to +125	\$ 52.50	
				Plastic	0 to +70	\$ 19.50	
				Ceramic	-25 to +85	\$ 41.50	
					-55 to +125	\$ 71.50	
Bin	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	+5V	16 pin DIP	Plastic	0 to +70	\$ 9.95	26C
				Ceramic	-55 to +125	\$ 22.00	
Bin	$40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 5 \mathrm{VDC}$	28 pin DIP	Ceramic	0 to +70	\$ 52.00	62C
					-55 to +125	\$ 83.00	
Sign Mag. Bin. with Overrange	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 5 \mathrm{VDC}$	40 pin DIP	Plastic	0 to +70	\$ 18.22	46C
				Cerdip	-25 to +85	\$ 29.83	
				Ceramic	-55 to +125	\$ 61.76	
$\begin{aligned} & \text { CBin } \\ & \text { C2C } \end{aligned}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC}, \\ & +5 \mathrm{~V} \end{aligned}$	32 pin Ceramic DIP	Epoxy Seal	0 to 70	\$ 87.00	74 C
				Hermetic Seal	0 to 70	\$110.00	
					-25 to +85	\$125.00	
					-55 to +125	*\$165.00	

*Available with MIL-STD-883 class B screening.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Quick Selection: General Purpose A/D Converters

	MODEL	DESCRIPTION	RESOLUTION	CONVERSION TIME, MAX.	LINEARITY ERROR, MAX.	ANALOG INPUT RANGE
$\begin{aligned} & \text { g } \\ & \text { دِ } \\ & 0 \\ & 0 \\ & \Sigma \end{aligned}$	ADC-Econoverter	Counter Type	6 Bits	$50 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+5,0 \text { to }+10 \\ \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V} \end{gathered}$
	ADC-89A8B	Counter Type	8 Bits	$200 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$
	ADC-89A8D		2 Digits	$100 \mu \mathrm{sec}$		0 to +10 V
	ADC-E8B	Fast Dual Slope	8 Bits	$312 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\pm 1 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$
	ADC-E10B		10 Bits	1.25 msec		
	ADC-E12B		12 Bits	5.0 msec		
	ADC-E8D		21/2 Digits	$500 \mu \mathrm{sec}$		$\pm 2 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$
	ADC-E12D		311/2 Digits	5.0 msec		$\pm 2 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$
	ADC-L8B2	Successive Approximation Type	8 Bits	$12 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+5 \mathrm{~V}, 0 \text { to }+10 \mathrm{~V}, \\ \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{gathered}$
	ADC-L10B2		10 Bits	$16 \mu \mathrm{sec}$		
	ADC-L12B2		12 Bits	$20 \mu \mathrm{sec}$		
	ADC-L8D2		2. Digits	$12 \mu \mathrm{sec}$		0 to $+5 \mathrm{~V}, 0$ to +10 V
	ADC-L12D2		3 Digits	$20 \mu \mathrm{sec}$		0 to +5V, 0 to +10V
	ADC-MA10B2A	Successive Approximation Parallel or Serial Output	10 Bits	$40 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+5 \mathrm{~V}, 0 \text { to }+10 \mathrm{~V} \\ \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{gathered}$
	ADC-MA10B2B			$20 \mu \mathrm{sec}$		
	ADC-MA12B2A		12 Bits	$40 \mu \mathrm{sec}$		
	ADC-MA12B2B			$20 \mu \mathrm{sec}$		
	ADC-M8B2	Fast Successive Approximation Type	8 Bits	$4.0 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+5 \mathrm{~V}, 0 \text { to }+10 \mathrm{~V} \\ \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \\ \hline \end{gathered}$
	ADC-M10B2		10 Bits	$11.5 \mu \mathrm{sec}$		
	ADC-M12B2		12 Bits	$13.0 \mu \mathrm{sec}$		
	ADC-M8D2		2 Digits	$4.0 \mu \mathrm{sec}$		0 to $+5 \mathrm{~V}, 0$ to +10 V
	ADC-M12D2		3 Digits	$13.0 \mu \mathrm{sec}$		

OUTPUT CODING	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE SIZE INCHES (MM)	OPER. TEMP. RANGE ("C)	PRICE (1-9)	SEE PAGE
Bin	100ppm/ ${ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$2 \times 2 \times 0.375$ ($51 \times 51 \times 10$)	0 to +70	\$ 46.00	*
$\begin{array}{\|l\|} \hline \mathrm{Bin} \\ \hline \mathrm{BCD} \\ \hline \end{array}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	$3 \times 2 \times 0.375(76 \times 51 \times 10)$	0 to +70	\$ 84.00 $\$ 84.00$	*
Sign Mag. Bin	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC}, \\ & +5 \mathrm{~V} \end{aligned}$	$4 \times 2 \times 0.4(102 \times 51 \times 10)$	0 to +70	\$ 94.50	90C
					\$105.00	
					\$121.00	
$\begin{aligned} & \text { Sign Mag. } \\ & \text { BCD } \end{aligned}$					\$ 94.50	
					\$121.00	
$\begin{array}{\|l\|l} \mathrm{Bin}, \\ 2 \mathrm{C} \end{array}$	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	$3 \times 2 \times 0.375(76 \times 51 \times 10)$	0 to +70	\$157.50	*
			$4 \times 2 \times 0.4(102 \times 51 \times 10)$		\$180.50	
					\$203.50	
BCD					\$157.50	
					\$203.50	
$\begin{aligned} & \mathrm{Bin}, \\ & 2 \mathrm{C} \end{aligned}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC}, \\ & +5 \mathrm{~V} \end{aligned}$	$4 \times 2 \times 0.4(102 \times 51 \times 10)$	0 to +70	\$132.00	*
					\$146.00	
					\$140.50	
					\$194.00	
$\begin{aligned} & \mathrm{Bin}, \\ & 2 \mathrm{C} \end{aligned}$	10ppm $/{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	$4 \times 2 \times 0.4(102 \times 51 \times 10)$	0 to +70	\$266.50	*
					\$343.50	
					\$405.00	
BCD					\$266.50	
					\$405.00	

*For Data Sheet Contact Nearest Datel Sales Office

Datel offers modular products in operating temperature ranges of
-25 to $+85^{\circ} \mathrm{C}$ (suffix-EX) and -55 to $+85^{\circ} \mathrm{C}$ (suffix-EXX-HS). Fo information on these high reliability modules contact nearest Datel sales office.

Quick Selection: High Performance A/D Converters

	MODEL	DESCRIPTION	RESOL	CONVERSION TIME, MAX.	LINEARITY ERROR, MAX.	ANALOG INPUT RANGE
$\begin{aligned} & \dot{Z} \\ & \dot{\Sigma} \end{aligned}$	ADC-7104-14C	Integrating A/D; Byte Organized Three State Outputs	15 Bits	81 msec	± 1 LSB	$\pm 150 \mathrm{mV}$ to $\pm 10 \mathrm{~V}$
	ADC-8068AC		Analog Sec. for Two Chip A/D			
	ADC-7104-16C		17 Bits	328 msec		
$\begin{aligned} & \underline{0} \\ & \frac{\pi}{\infty} \\ & \underset{I}{\infty} \end{aligned}$	ADC-HC12BMC ADC-HC12BMR ADC-HC12BMM	Low Power CMOS A/D	12 Bits	$300 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+5 \mathrm{~V}, 0 \text { to }+10 \mathrm{~V} \\ \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{gathered}$
	ADC-HS12BMC	Fast A/D with Sample-Hold	12 Bits	$9 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+5 \mathrm{~V}, 0 \text { to }+10 \mathrm{~V} \\ \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{gathered}$
	ADC-HS12BMR					
	ADC-HZ12BGC	Fast A/D with Input Buffer Amplifier	12 Bits	$8 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+5 \mathrm{~V}, 0 \text { to }+10 \mathrm{~V} \\ \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{gathered}$
	ADC-HZ12BMC					
	ADC-HZ12BMR					
	ADC-HZ12BMM					
	ADC-825MC	Very Fast A/D Logic Controlled Bipolar Offset	8 Bits	$1 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+5 \mathrm{~V}, 0 \text { to }+10 \mathrm{~V} \\ 0 \text { to }+20 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \\ \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{gathered}$
	ADC-825MR					
	ADC-825MM					
	ADC-826MC	Very Fast Successive Approximation A/D	10 Bits	$1.4 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }-5 \mathrm{~V}, 0 \text { to }-10 \mathrm{~V}, \\ 0 \text { to }-20 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \\ \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{gathered}$
	ADC-826MR					
	ADC-826MM					
	ADC-827MC	Very Fast A/D with Internal Buffer	12 Bits	$3 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }-5 \mathrm{~V}, 0 \text { to }-10 \mathrm{~V} \\ \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{gathered}$
	ADC-827MR					
	ADC-827MM					
$\begin{aligned} & 0 \\ & \underline{\Sigma} \end{aligned}$	ADC-881	Ultra-Linear	8 Bits	$1.5 \mu \mathrm{sec}$	± 0.04 LSB	$\pm 5 \mathrm{~V}$
	ADC-149-14B	Fast High Res.	14 Bits	$50 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	0 to -10, $-20, \pm 5, \pm 10 \mathrm{~V}$

NOTES: 1. Two chip A/D converter, requires ADC-8068AC and either ADC-7104-14C or ADC-7104-16C for complete function.
2. Output Coding: Bin = Straight Binary or Offset Binary 2C = Two's Complement
C Bin = Complementary Binary
C2C = Complementary Two's Complement
Sign Mag Bin = Sign Magnitude Binary

OUTPUT CODING ${ }^{2}$	GAIN TEMPCO	POWER REQUIREN	PACKAGE	PACKAGE TYPE	OPER. TEMP. RANGE (${ }^{\circ} \mathbf{C}$)	PRICE (1-24)	SEE PAGE
Sign Mag Bin. with Over Range	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC}, \\ & +5 \mathrm{~V} \end{aligned}$	40 pin DIP	Plastic	0 to +70	\$ 34.12	30C
			14 pin DIP	Cerdip		\$ 12.10	
			40 pin DIP	Plastic		\$ 38.32	
$\begin{array}{\|l} \mathrm{Bin}, \\ 2 \mathrm{C} \end{array}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +9 \text { to }+15 \mathrm{~V}, \\ & \pm 9 \text { to } \pm 15 \mathrm{~V} \end{aligned}$	32 pin Ceramic DIP	Hermetic Seal	0 to +70	\$129.00	66C
					-25 to +85	\$169.00	
					-55 to +125	*\$209.00	
$\begin{aligned} & \text { C Bin } \\ & \text { C2C } \end{aligned}$	20ppm $/{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC}, \\ & +5 \mathrm{~V} \end{aligned}$	32 pin Ceramic DIP	Hermetic Seal	0 to +70	\$139.00	70C
					-25 to +85	\$189.00	
					-55 to +100	*\$239.00	
$\begin{aligned} & \text { C Bin, } \\ & \text { C2C } \end{aligned}$	20ppm $/{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC}, \\ & +5 \mathrm{~V} \end{aligned}$	32 pin Ceramic DIP	Epoxy Seal	0 to +70	\$119.00	74C
				Hermetic Seal		\$130.00	
					-25 to +85	\$165.00	
					-55 to +125	*\$205.00	
$\begin{aligned} & \mathrm{Bin} \\ & 2 \mathrm{C} \end{aligned}$	20ppm $/{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC}, \\ & +5 \mathrm{~V} \end{aligned}$	24 pin Ceramic DIP	Hermetic Seal	0 to +70	\$165.00	78C
					-25 to +85	\$195.00	
					-55 to +125	*\$235.00	
$\begin{aligned} & \mathrm{Bin} \\ & 2 \mathrm{C} \end{aligned}$	$37 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC}, \\ & +5 \mathrm{~V} \end{aligned}$	32 pin Ceramic DIP	Hermetic Seal	0 to +70	\$180.00	82C
					-25 to +85	\$210.00	
					-55 to +125	* \$255.00	
$\begin{array}{\|l} \mathrm{Bin}, \\ 2 \mathrm{C} \end{array}$	25ppm $/{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC}, \\ & +5 \mathrm{~V} \end{aligned}$	32 pin Ceramic DIP	Hermetic Seal	0 to +70	\$195.00	86C
					-25 to +85	\$225.00	
					-55 to +125	* \$275.00	
Bin	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	5"x3"x.375" (127x76x9,5mm)		0 to +70	Consult Factory	116C
Bin, 2C	$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	4"x2"x.8" ($102 \times 51 \times 20 \mathrm{~mm}$)		0 to +70	(1-9) \$264.50	110C

*Available with MIL-STD-883 class B screening.

Datel offers modular products in operating temperature ranges of
-25 to $+85^{\circ} \mathrm{C}$ (suffix-EX) and -55 to $+85^{\circ} \mathrm{C}$ (suffix-EXX-HS). For
information on these high reliability modules contact nearest
Datel sales office

Quick Selection: High Speed A/D Converters

	MODEL	DESCRIPTION	RESOLUTION	CONVERSION TIME, MAX.	LINEARITY ERROR, MAX.	ANALOG INPUT RANGE
	ADC-HU3BMC	Ultra-Fast Flash Type	3 Bits	20 nsec	0.1\%	$\pm 2.1 \mathrm{~V}$
	ADC.HU3BMR					
	ADC.HU3BMM					
	ADC-815MC	Ultra-Fast, No Calibration, Logic Controlled Bip. Offs.	8 Bits	600 nsec	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+5 \mathrm{v}, 0 \text { to }+10 \mathrm{~V} \\ 0 \text { to }+20 \mathrm{~V}, \pm 2.5 \mathrm{~V} \\ \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{gathered}$
	ADC-815MR					
	ADC-815MM					
	ADC-816MC	Fastest Hybrid 10 Bit A/D Available	10 Bits	800 nsec	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }-5 \mathrm{~V}, 0 \text { to }-10 \mathrm{~V} \\ 0 \text { to }-20 \mathrm{~V}, \pm 2.5 \mathrm{~V} \\ \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{gathered}$
	ADC-816MR					
	ADC-816MM					
	ADC-817MC	Ultra-Fast with Input Buffer Amplifier	12 Bits	$2 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }-5 \mathrm{~V}, 0 \text { to }-10 \mathrm{~V} \\ \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$
	ADC-817MR					
	ADC-817MM					
$\begin{aligned} & \text { M } \\ & \mathbf{y} \\ & 0 \\ & 0 \\ & \underline{\Sigma} \end{aligned}$	ADC-SH4B	Int. Sample-Hold	4 Bits	500 nsec	$\pm 1 / 3$ LSB	0 to +1 V
	ADC-UH4B	Ultra-Fast Flash Type	4 Bits	40 nsec	$\pm 1 / 2$ LSB	0 to -2.56 V
	ADC.UH4B2					$\pm 1.28 \mathrm{~V}$
	ADC-EH8B1	Fast with Par. and Ser. Outputs	8 Bits	$4 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	0 to +10 V ,
	ADC-EH8B2			$2 \mu \mathrm{sec}$		$\pm 5 \mathrm{~V}$
	ADC-G8B	Ultra-fast	8 Bits	800 nsec	$\pm 1 / 2$ LSB	0 to $-5,-10 \mathrm{~V}, \pm 5, \pm 10 \mathrm{~V}$
	ADC-UH8B	Two-Stage Flash Type	8 Bits	100 nsec	± 1 LSB	0 to -2.56 V
	ADC.UH8B2					$\pm 1.28 \mathrm{~V}$
	ADC-TV8B1	Video Speed, 20 MHz	8 Bits	50 nsec	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+1,+2,+5 \mathrm{~V} \\ \pm 1, \pm 2, \pm 5 \mathrm{~V} \\ \hline \end{gathered}$
	ADC-TV8B2					
	ADC-EH10B1	Serial and Parallel Outputs	10 Bits	$4 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to } 10 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$
	ADC-EH10B2			$2 \mu \mathrm{sec}$		
	ADC-G10B	Ultra-fast	10 Bits	$1 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	0 to $-5,10 \mathrm{~V}, \pm 5, \pm 10 \mathrm{~V}$
	ADC-EH12B1	Fast	12 Bits	$8 \mu \mathrm{sec}$	$\pm 1 / 2$ LSB	$\begin{gathered} 0 \text { to }+10 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$
	ADC-EH12B2	Very Fast		$4 \mu \mathrm{sec}$		
	ADC-EH12B3	Ultra-Fast		$2 \mu \mathrm{sec}$		
	ADC-876	Fastest Available	16 Bits	$2 \mu \mathrm{sec}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 5 \mathrm{~V}$

NOTES: 1. Coding: Bin $=$ Straight Binary or Offset Binary

$$
2 \mathrm{C}=\text { Two's Complement }
$$

OUTPUT CODING'	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	OPER. TEMP RANGE (${ }^{\circ} \mathrm{C}$)	PRICE (SINGLES)	SEE PAGE
Bin	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 5 \mathrm{VDC}$	32 Pin Hermetically Sealed Triple Spaced Ceramic DIP	0 to +70	\$169.00	**
				-25 to +85	\$199.00	
				-55 to +125	\$249.00	
$\begin{aligned} & \mathrm{Bin}, \\ & 2 \mathrm{C} \end{aligned}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC}, \\ & +5 \mathrm{~V} \end{aligned}$	24 Pin Hermetically Sealed Triple Spaced Ceramic DIP	0 to +70	\$205.00	78C
				-25 to +85	\$235.00	
				-55 to +125	*\$275.00	
$\begin{aligned} & \mathrm{Bin}, \\ & 2 \mathrm{C} \end{aligned}$	$38 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	32 Pin Hermetically Sealed Triple Spaced Ceramic DIP	0 to +70	\$245.00	82C
				-25 to +85	\$275.00	
				-55 to +125	*\$315.00	
$\begin{aligned} & \mathrm{Bin}, \\ & 2 \mathrm{C} \end{aligned}$	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	32 Pin Hermetically Sealed Triple Spaced Ceramic DIP	0 to +70	\$295.00	86C
				-25 to +85	\$325.00	
				-55 to +125	*\$365.00	
Bin.	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$2 \times 2 \times .375 \mathrm{IN} .(51 \times 51 \times 10 \mathrm{~mm})$	0 to +70	\$110.00	**
Bin.	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	$5 \times 3 \times 1.15 \mathrm{IN} .(127 \times 76 \times 29 \mathrm{~mm})$	0 to +70	\$379.00	102C
					\$379.00	
$\begin{aligned} & \mathrm{Bin}, \\ & 2 \mathrm{C} \end{aligned}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	$2 \times 2 \times .375 \mathrm{IN}(51 \times 51 \times 10 \mathrm{~mm})$	0 to +70	\$ 99.50	94C
					\$151.00	
Bin, 2C	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$4 \times 2 \times .4 \mathrm{IN}(102 \times 51 \times 10 \mathrm{~mm})$	0 to +70	\$264.50	**
Bin.	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \\ & \hline \end{aligned}$	$5 \times 3 \times 1.15 \mathrm{IN}(127 \times 76 \times 29 \mathrm{~mm})$	0 to + 70	\$626.00	102C
					\$626.00	
Bin (ECL)	$60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC}, \\ & +5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \times 4.25 \times .875 \mathrm{IN} \\ & (191 \times 108 \times 22 \mathrm{~mm}) \\ & \hline \end{aligned}$	0 to +70	\$941.00	106C
Bin (TTL)					\$998.50	
$\begin{aligned} & \mathrm{Bin}, \\ & \mathrm{C}, \end{aligned}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	$3 \times 2 \times .375 \mathrm{IN}(76 \times 51 \times 10 \mathrm{~mm})$	0 to + 70	\$174.00	96C
					\$210.00	
Bin, 2C	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$4 \times 2 \times .8 \mathrm{IN}(102 \times 51 \times 20 \mathrm{~mm})$	0 to +70	\$308.50	**
$\begin{aligned} & \mathrm{Bin}, \\ & 2 \mathrm{C} \end{aligned}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC}, \\ & +5 \mathrm{~V} \end{aligned}$	$4 \times 2 \times .375 \mathrm{IN}(102 \times 51 \times 10 \mathrm{~mm})$	0 to +70	\$199.50	98C
					\$241.50	
					\$286.50	100C
Bin, 2C	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$5 \times 3 \times .375 \mathrm{IN}(127 \times 76 \times 10 \mathrm{~mm})$	0 to +70	Contact Fact.	112C

*Available with MIL-STD-883 class B screening.
**For data sheet contact nearest DATEL-INTERSIL sales office.

Datel offers modular products in operating temperature ranges of -25 to $+85^{\circ} \mathrm{C}$ (suffix-EX) and -55 to $+85^{\circ} \mathrm{C}$ (suffix-EXX-HS). For information on these high reliability modules contact nearest Datel sales office.

FEATURES

－Monolithic CMOS
－Binary or BCD Models
－20mW Power Consumption
－To 12 Bit Accuracy
－No Missing Codes
－Low Cost

GENERAL DESCRIPTION

The ADC－EK series are low power，inte－ grating A／D converters fabricated on a single monolithic chip using CMOS technology．The circuit employs a charge balancing integrator，current switch，comparator，clock counter， data counter，and control logic cir－ cuitry to implement conversion．The charge balancing integration tech－ nique gives high linearity and noise im－ munity along with inherent mono－ tonicity resulting in no missing codes． Output data appears in parallel form on latched outputs which are CMOS，low power TTL，or low power Schottky TTL compatible．The ADC－EK series con－ sists of 5 different models with 8,10 ， and 12 bit binary coding and $31 / 2$ digit BCD coding．
Conversion time is 1.8 to 24 millisec－ onds maximum depending on model． Nonlinearity is $\pm 1 / 2$ LBS max．while dif－ ferential nonlinearity is $\pm 1 / 4$ LSB typical．Other specifications include gain tempco of $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ．and zero drift of $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max．An external reference，integrating capacitor，and several other components are required for operation．The analog input voltage range is programmable by means of an external resistor which sets the current into the integrator at $10 \mu \mathrm{~A}$ full scale．Standard operating mode is uni－ polar but bipolar operation is accomp－ lished using an external op amp to pro－ vide an offset current from the refer－ ence．
Power requirement is $\pm 5 \mathrm{VDC}$ at 2 mA ， giving a power consumption of only 20 milliwatts．The units are packaged in 24 pin ceramic or plastic DIP＇s．

CAUTION：The ADC－EK Series are CMOS devices and should be handled carefully to prevent static charge pick－ up which might damage the devices． The devices should be kept in the ship－ ping containers until ready for installa－ tion．

SPECIFICATIONS, ADC-EK SERIES
(Typical at $25^{\circ} \mathrm{C}, \pm 5 \mathrm{~V}$ Supplies, $\mathrm{R}_{\text {BIAS }}=100 \mathrm{~K}$, unless otherwise noted)

MAXIMUM RATINGS IIN. IREF Digital Input Voltage $V_{D D}-V_{S S}$ Package Dissipation	ADC-EK8B/10B/12B	ADC-EK12DC/DR/DM
	$\begin{gathered} \pm 10 \mathrm{~mA} \\ \pm 10 \mathrm{~mA} \\ -0.3 \mathrm{~V} \text { to } \mathrm{V} D \mathrm{DD}+0.3 \mathrm{~V} \\ 18 \mathrm{~V} \\ 500 \mathrm{~mW} \end{gathered}$	
ANALOG INPUTS Type Analog Input. Full Scale Input Current . Reference Current.	$\begin{gathered} \text { Single Ended } \\ +10 \mu \mathrm{~A} \\ -20 \mu \mathrm{~A} \end{gathered}$	
DIGITAL INPUTS Logical " 1 " $V_{\text {IN }}$. Logical "0" VIN. Start Convert Pulse .	$\begin{aligned} & 3.5 \mathrm{~V} \text { min } \\ & 1.5 \mathrm{~V} \text { max } \\ & >3.5 \mathrm{~V} \text { for } 500 \text { nsec min } \end{aligned}$	
OUTPUTS Parallel Output Data	8. 10. 12 Lines	12 Lines and Overrange
Logic "1" Output Voltage Logic "0" Output Voltage. E.O.C. (Status) DATA VALID	$\begin{gathered} +4.5 \mathrm{~V} \text { min at }-10 \mu \mathrm{~A}+2.4 \mathrm{~V} \min \text { at }-360 \mu \mathrm{~A}^{2} \\ +0.4 \max \text { at }-360 \mu \mathrm{~A}^{2} \end{gathered}$ HI During Conversion. LO When Completed HI When Data Valid. LO When Data Changing	
PERFORMANCE Resolution Coding Nonlinearity Differential Nonlinearity Diff. Nonlinearity Tempco No Missing Codes. Initial Gain Error, Adj. to Zero Gain Temperature Coefficient Initial Zero Error, Adj. to Zero Zero Drift Tempco Conversion Time, max.	$\begin{aligned} & \text { 8. } 10.12 \text { Bits } \\ & \text { Straight Binary } \\ & 1 / 2 \text { LSB. max. } \\ & 1 / 4 \text { LSB. typ. } 1 / 2 \text { LSB max. } \end{aligned}$	31/2 Digits BCD 0.025\% max '0.025\% max
	$\begin{array}{r} \pm 2.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { typ } \\ \text { Over Operating } \mathrm{T} \mathrm{\epsilon} \\ +5-3{ }^{\circ} \\ \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { typ } \\ \pm 50 \mathrm{~m} \\ \pm 50 \mu \mathrm{~V} / \mathrm{C} \end{array}$	$\begin{aligned} & \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { max } \\ & \text { mperature Range } \\ & \max ^{1} \\ & 75 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { max }{ }^{1} \\ & V \max \\ & \mathrm{C} \text { max }^{1} \end{aligned}$
	1.8 msec. (8 Bits) 6 msec (10 Bits) 24 msec (12 Bits)	$2 \mathrm{msec}(31 / 2$ Digits)
Power Supply Sensitivity	$\pm 0.05 \%$ of Full Scale Gain ${ }^{3}$	
POWER REQUIREMENT Voltage, Rated Performance Voltage Range, Operating Supply Quiescent Current ADC-EK8B, EK12DC. ADC-EK10B, EK12B, EK12DR ADC-EK12DM.	$\begin{gathered} \pm 5 \mathrm{VDC} \\ \pm 3.5 \mathrm{VDC} \text { to } \pm 7 \mathrm{VDC} \\ 5.0 \mathrm{~mA} \\ 2.5 \mathrm{~mA} \text { max. } \\ 35 \mathrm{~mA} \text { max. } \end{gathered}$	
PHYSICAL-ENVIRONMENTAL Operating Temp. Range. Storage Temp. Range. Package.	$\begin{aligned} & \text { See Ordering Information } \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & 24 \text { Pin DIP } \end{aligned}$	

NOTES: 1. For the ADC-EK12DM Only. Initial Gain Error is $\pm 5 \%$. Gain Tempco is $\pm 40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. $\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max and Zero Drift Tempco is $80 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
2. ADC-EK12DM outputs can sink and source $500 \mu \mathrm{~A}$
3. Supply Sensitivity given for $V_{D D}=V_{S S}=5 \mathrm{~V} \pm 1 \mathrm{~V}$.

1. The ADC-EK series are CMOS devices and must be properly handled to prevent damage from static pick-up Proper anti-static handling procedures should be observed including storage in conductive form or shorting all pins together with aluminum foil. Do not connect in circuits under "power on" conditions. The input voltage should be applied after power is on. Do not open circuit the zero adjust, reference. or start convert pins while power is on. It should also be noted that the top and bottom of the ceramic package are connected to the positive supply.
2. Nominal values of input, reference, and offset resistors are given in the resistor table. Due to the possible $\pm 5 \%$ tolerance of the external reference and $+5 \%-3 \%$ tolerance on the converter scale factor, the actual resistor value can vary by almost $\pm 10 \% . R_{G}$ and R_{T} in the diagrams are for trimming gain and bipolar offset during calibration. It is recommended that R_{G} be 1% of $R_{I N}$ (nominal) and R_{T} be 1% of $R_{\text {OFF }}$ (nominal). They should both be $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ cermet trimming pots. The recommended procedure for selecting $R_{\text {IN }}$ and $R_{\text {OFF }}$ is to set the R_{G} and R_{T} to center of range and then choose 1% metal film resistor which gives the nearest fit at the full scale point $1111 .$. 111 for $R_{I N}$ and one that gives the nearest fit to zero scale point 1000 .. 000 for R_{T}
3. To choose any intermediate scale values for $R_{I N}$ and R_{T} or values of $R_{\text {REF }}$ for other reference voltages, use the following formulas:
$R_{\text {IN }}$ (nom.) $=\frac{\text { FSR }}{10 \text { A }} \quad$ FSR is full scale range or total input voltage span for the converter.
$R_{\text {OFF }}$ (nom.) $=\frac{V_{\text {REF }}}{5 \mu \mathrm{~A}}$
$R_{\text {REF }}$ (nom.) $=\frac{V_{\text {REF }}}{20 \mu A}$
It is recommended that large fullscale voltage ranges be chosen such

ORDERING INFORMATION

MODEL NO. OPER. TEMP PACKAGE
RANGE

BINARY
ADC-EK8B
ADC-EK10B
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Plastic
Ceramic
ADC-EK12B
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ceramic
BCD
ADC-EK12DC $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad$ Plastic
ADC-EK12DR $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ceramic
ADC-EK12DM $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Ceramic

THESE CONVERTERS ARE COVERED UNDER GSA CONTRACT

as 0 to $+10 \mathrm{~V}, 0$ to +5 V etc. in order to keep the error due to input offset voltage drift to a minimum.
4. The temperature stability of the ADCEK converters depends directly on the converter itself, RIN. RREF, ROFF, and $V_{\text {REF }}$. Since the converter is typically $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ it is recommended that a $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference be used along with $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ metal film resistors for $R_{I N}, R_{\text {REF }}$, and $R_{\text {OFF }}$ for best performance over temperature. On a statistical basis this would give about $28 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ stability for the complete converter.
5. Other passive components used with the converter may have tolerances as indicated here: R_{C} is a $\pm 10 \%$ carbon comp. resistor; C_{C} is a $\pm 20 \%$ ceramic capacitor; $\mathrm{C}_{\text {INT }}$ is a $\pm 10 \%$ glass or ceramic capacitor; $R_{\text {BIAS }}$ is a $\pm 10 \%$ carbon comp. resistor; and the two zero adjust resistors are $\pm 10 \%$ carbon composition type. It is recommended that two $0.1 \mu \mathrm{~F}$ bypass capacitors be used right at the power supply pins. $\mathrm{C}_{\text {INT }}$ should be connected as close as possible to pins 14 and 15 away from any noisy lines.
6. The start convert pulse initiates conversion on the LO to HI transition after which the conversion cycle cannot be interrupted and must run to completion.
7. Logic signals should not be routed under these devices or near the input reference, or zero adjust pins.
8. The unused data output pins on the 8 and 10 bit models should not be used for external connection points since they have internal connections to the converter.
9. All digital outputs will drive 2 low power TTL loads or 1 low power Schottky TTL load. They should not be overloaded as this will affect the performance of the converter.
10. Conversion accuracy is directly dependent on $V_{\text {REF }}$. In order to avoid degrading accuracy, $V_{\text {REF }}$ voltage regulation must be $\pm .04 \%$ for 8 bit models, $\pm .01 \%$ for 10 bit models and $\pm .0025 \%$ for 12 bit models.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 OUT (MSB-12 BITS)	13	REFERENCE
2	BIT 2 OUT	14	ANALOG INPUT
3	BIT 3 OUT (MSB-10 BITS)	15	AMPLIFIER OUT
4	BIT 4 OUT	16	ZERO ADJUST
5	BIT 5 OUT (MSB-8 BITS)	17	BIAS
6	BIT 6 OUT	18	5V POWER
7	BIT 7 OUT	19	-5V POWER
8	BIT 8 OUT	20	GROUND
9	BIT 9 OUT	21	START CONVERT
10	BIT 10 OUT	22	E OC (STATUS)
11	BIT 11 OUT	23	DATA VALID
12	BIT 12 OUT (LSB-ALL)	24	BCD OVERRANGE

NOTE:

FOR 8 AND 10 BIT MODELS DO NOT CONNECT TO UNUSED DATA OUTPUT TERMINALS SINCE THEY HAVE INTERNAL CONNECTIONS

TIMING DIAGRAMS

CLOCKED OPERATION

FREE RUNNING OPERATION

CODING TABLES

STRAIGHT BINARY

	8 BIT		10 BIT		12 BIT	
	SCALE	0 TO +10 V	CODE	0 TO +10 V	CODE	0 TO +10 V
FS-1 LSB	+9.96 V	11111111	+9.990 V	1111111111	+9.9976 V	111111111111
$1 / 2 \mathrm{FS}$	+5.00	10000000	+5.000	1000000000	+5.0000	100000000000
1LSB	+0.04	00000001	+0.010	0000000001	+0.0024	000000000001
0	0.00	00000000	0.000	0000000000	0.0000	000000000000

OFFSET BINARY

	8 BIT		10 BIT		12 BIT	
	$\pm 5 \mathrm{~V}$	CODE	$\pm 5 \mathrm{~V}$	CODE	$\pm 5 \mathrm{~V}$	CODE
SSALE	+4 LSB	+4.96 V	11111111	+4.990 V	1111111111	+4.9976 V
0	0.00	111111111111				
0	-4.96	00000000	0.000	1000000000	0.0000	100000000000
FS + 1LSB	-5.00	00000000	-4.990	0000000001	-4.9976	000000000001
FS	-5.000	0000000000	-5.0000	000000000000		

BCD

	FULL SCALE RANG			CODE
SCALE	0 TO +2V	0 TO +10 V	0 TO +20V	
FS-1 LSB	+1.999 V	+9.995 V	+19.990 V	100110011001
$1 / 2 \mathrm{FS}$	+1.000	+5.000	+10.000	1000000000000
1 LSB	+0.001	+0.005	+0.010	0000000000001
0	0.000	0.000	0.000	0000000000000

CONNECTION FOR UNIPOLAR OPERATION

Rin. $R_{\text {Ref }}$ are 1% Metal Film resistors.
$R_{\text {BIAS }}, R_{\text {c }}$ are 10% Carbon Comp resistors
C_{c} is 20% Ceramic capacitor.
Zero Adjustment resistors are 10\% Carbon Comp. All trimming pots are $100 \mathrm{ppm}:{ }^{\circ} \mathrm{C}$ Cermet type. Supply bypass capacitors are Ceramic or Tantalum
$\mathrm{C}_{\text {INT }}$ IS 10% Glass or Ceramic capacitator

CONNECTION FOR BIPOLAR OPERATION

1% Metal Film types

All trimming pots are $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Cermet type.

RESISTOR TABLES

UNIPOLAR RANGE	BIPOLAR RANGE	$R_{\text {IN }}$ (NOM.)
0 TO +2 V	$\pm 1 \mathrm{~V}$	200 K
0 TO +5 V	$\pm 2.5 \mathrm{~V}$	500 K
0 TO +10 V	$\pm 5 \mathrm{~V}$	1 MEG.
0 TO +20 V	$\pm 10 \mathrm{~V}$	2 MEG.

$V_{\text {REF }}$	$R_{\text {REF }}$ (NOM.)	$R_{\text {OFF }}$ $(N O M)$.
-1.22 V	61 K	244 K
-2.5 V	125 K	500 K
-6.4 V	320 K	1.28 MEG.

CALIBRATION PROCEDURE

1. Connect the converter as shown in the connection diagrams for either unipolar or bipolar operation. Determine the input voltage range and select the required input resistors. Apply a logic HI to the start convert input (pin 21) to give free-running operation.
2. Zero and Offset Adjustments. Apply a precision voltage reference source from the analog input resistor to ground. Adjust the reference source to zero $+1 / 2$ LSB for unipolar operation or -FS + $1 / 2$ LSB for bipolar operation. Adjust the zero or offset potentiometer so that the output code flickers between $000 \ldots 000$ and $000 \ldots . .001$
3. Gain Adjustment. Set the output of the reference source to +FS -11/2 LSB and adjust the gain trimming potentiometer so that the output code just flickers between 111 . . . 110 and 111 . . . 111
For BCD coding the output code should flicker between 100110011000 and 1001 10011001.

Supply bypass capacitors are Ceramic or Tantalum

REFERENCE CIRCUITS

1.22V BAND GAP REFERENCE USES EXISTING -5V SUPPLY

6.4V ZENER REFERENCE REQUIRES -15V SUPPLY

REDUCTION OF STAND-BY POWER

This reduces power consumption to about 200μ A during Standby

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751. (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 - Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE Monolithic A/D Converters
with Three-State Outputs
ADC-ET Series

FEATURES

- Monolithic CMOS
- Three State Outputs
- To 12 Bit Accuracy
- No Missing Codes
- Low Cost
- Microprocessor Compatible

GENERAL DESCRIPTION

The ADC-ET series devices are low cost integrating A/D converters optimized for high accuracy, linearity and noise immunity. They operate at low power consumption. with sufficient speed to handle most industrial and instrumentation requirements. Discretely controllable three state outputs allow bus organized output connections making these unit's ideal for microprocessor interfacing.
Fabricated with monolithic CMOS techniques, each device is housed in a single 24 pin dual in-line package. The converter consists of an integrating operational amplifier. comparator, current switch, internal clock. two counters, latching output buffers and control logic circuitry. Operation of the circuit requires only a few external passive components and connection to external reference and power supplies. Conversion is accomplished by an incremental charge balancing technique which assures high linearity and noise immunity, along with inherent monotonicity resulting in no missing codes. At the completion of a conversion. the binary coded result appears in parallel form on discretely controlled latched outputs which are CMOS, low power TTL, or low power Schottky TTL compatible. The controllable outputs may be switched to a high impedance or off state by holding the ENABLE high.
Conversion times are 1.8,6 and 2.4 msec . for the 8,10 and 12 bit units respectively. Other typical specifications include linearity to $1 / 4$ LSB and a gain tempco of $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The analog input voltage range is programmable by means of an external resistor which sets the current into the integrator at $10 \mu \mathrm{~A}$ full scale. Standard operating mode is unipolar but bipolar cperation can be implemented by using an external op amp to provide an offset current from the reference. Power requirement is $\pm 5 \mathrm{VDC}$ at 2 mA which, for intermittent duty applications, may be reduced to only $200 \mu \mathrm{~A}$ during standby periods without affecting data in the output latches.
CAUTION: These are CMOS devices and may be damaged by static discharge.

MAXIMUM RATINGS

ANALOG INPUTS
Type Analog Inpu
Single Ended
Input Current Range
0 to $+10 \mu \mathrm{~A}$
Reference Current $-20 \mu \mathrm{~A}$

DIGITAL INPUTS

Start Convert Pulse Width..... 500 nsec . min
ENABLE Propagation Delay. . . 500 nsec .

OUTPUTS

Output Off State Current. $0.1 \mu \mathrm{~A}$ typ, $\pm 10 \mu \mathrm{~A}$ max.
Logic "1" Output Voltage..
+4.5 V min at $-10 \mu \mathrm{~A}$
+2.4 V min at $-360 \mu \mathrm{~A}^{4}$
Logic " 0 " Output Voltage. +0.4 V max at $360 \mu \mathrm{~A}^{4}$
Data Valid Output Hi for Data Valid, Lo When Loading
Busy Output................... Hi During Conversion
PERFORMANCE
Resolution
Coding, Unipolar
. 8, 10, 12 Bits
Coding, Unipolar Straight Binary
Bipolar Offset Binary
Conversion Times
8 Bits. \qquad 1.8 msec max

10 Bits 6 msec max.
12 Bits
24 msec max.
Nonlinearity $\pm 1 / 4$ LSB typ., $\pm 1 / 2$ LSB Max. ${ }^{\prime}$
Differential Nonlinearity $\pm 1 / 4$ LSB typ., $\pm 1 / 2$ LSB max.
Diff. Nonlinearity Tempco..... $\pm 2.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
No Missing Codes. \qquad Over Operating Temp. Range
Initial Gain Error, (Adj. to Zero) $\pm 5 \%$ max.
Gain Temperature Coefficient. $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ, $\pm 75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. ${ }^{2}$
Initial Zero Error (Adj. to Zero). $\pm 50 \mathrm{mV}$ max.
Zero Drift Tempco............. $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max. ${ }^{2}$
Power Supply Sensitivity $\pm 0.05 \% / \%$ max. 3

POWER REQUIREMENT

Voltage, Rated Performance. . . ± 5 VDC
Voltage Range, Operating..... ± 3.5 VDC to ± 7 VDC
Supply Quiescent Current

PHYSICAL-ENVIRONMENTAL
Operating Temperature Range

C Suffix. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
R Suffix .	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Suffix.	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Package	
C Suffix .	24 Pin Plastic DIP
R \& M Su	24 Pin Ceramic DIP

NOTES:

1. Nonlinearity for model ADC-ET12BC only is typically $\pm 1 / 4$ LSB, $\pm 1-1 / 2$ LSB max.
2. For M suffix units only gain tempco is typically $40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. and zero drift tempco is $\pm 80 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
3. $\mathrm{V}_{\mathrm{DD}} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{Ss}} \pm 1 \mathrm{~V}$
4. M suffix logic outputs can sink and source $500 \mu \mathrm{~A}$.

TECHNICAL NOTES

1. The ADC-ET series are CMOS devices and must be properly handled to prevent damage due to static discharge. Proper anti-static precautions should be taken, including storage and transport in anti-static containers or conductive foam, and grounding of work stations, handling equipment and personnel. Do not connect in circuits under "power on" conditions. The input voltage should be applied after power is on. Do not open circuit the zero adjust, reference or start convert pins while the power is on. It should be noted that the top and bottom of the ceramic package are connected to the positive supply.
2. Nominal values of input, reference and offset resistors are given in the resistor table. Due to the possible $\pm 5 \%$ tolerance of the external reference and the $+5 \%,-3 \%$ tolerance of the converter scale factor, the actual resistor value can vary by almost $\pm 10 \%$. R_{G} and R_{T} in the diagrams are for trimming gain and bipolar offset during calibration. It is recommended that R_{G} be 1% of R_{IN} (nominal) and that R_{T} be 1% of $R_{\text {off }}$ (nominal). They should both be $100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ cermet trimming pots. The recommended procedure for selecting $R_{\text {IN }}$ and $R_{\text {off }}$ is to set R_{G} and R_{T} to the center of their ranges and choose a 1% metal film resistor which gives the closest fit at the full scale point $1111 \ldots .111$ for $\mathrm{R}_{\mathbb{N}}$ and one that gives the closest fit to the zero scale point $0000 \ldots 000$ for R_{T}.
3. To choose any intermediate scale values for $R_{\text {IN }}$ and R_{T} or values of $R_{\text {REF }}$ for other reference voltages, use the following formulas:
$R_{\text {IN }}(N O M)=.\frac{\text { FSR }}{10 \mu A}$
FSR is full scale range or total input voltage span for the converter.

$$
R_{\text {OFF }}(\text { NOM. })=\frac{V_{\text {REF }}}{5 \mu A} \quad R_{\text {REF }}(N O M .)=\frac{V_{\text {REF }}}{20 \mu \mathrm{~A}}
$$

It is recommended that large full scale voltage ranges be chosen, such as 0 to $+10 \mathrm{~V}, 0$ to +5 V etc., in order to keep the error due to input offset voltage drift to a minimum.
4. The temperature stability of the ADC-ET converters depends directly on the converter itself, $R_{\text {IN }}, R_{\text {REF }}, R_{\text {off }}$ and $V_{\text {REF }}$. Since the converter is typically $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ it is recommended that a $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference be used along with $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ metal film resistors for $\mathrm{R}_{\text {IN }}$. $\mathrm{R}_{\text {REF }}$ and $\mathrm{R}_{\text {off }}$ for best performance over temperature.
5. Passive components used with the converter may have tolerances as indicated here: C_{c} is a $\pm 20 \%$ ceramic capacitor; $\mathrm{C}_{\text {INT }}$ is a $\pm 10 \%$ glass or ceramic capacitor; $\mathrm{R}_{\mathbf{c} 1}, \mathrm{R}_{\text {BIAs }}$ and the two zero adjust resistors are $\pm 10 \%$ carbon composition type.
6. It is recommended that two $0.1 \mu \mathrm{~F}$ bypass capacitors be used at the power supply pins as shown in the connection diagram. C ${ }_{\text {INT }}$ should be connected as close as possible to pins 14 and 15 and as far as possible from any noisy lines.
7. Logic signals should not be routed under these devices or near the input, reference or zero adjust pins.
8. All digital outputs will drive two low power TTL loads or one low power Schottky TTL load. The outputs should not be overloaded as this will affect the performance of the converter.
9. It should be noted that there is a propagation delay of approximately 500 nsec . between the time ENABLE changes state and the time that the outputs change state.
10. For intermittent conversion applications the ADC-ET can be configured to use only $200 \mu \mathrm{~A}$ during standby. In this mode the op amp and internal clock are shut down but data at the output latches remains available. See application diagram.
11. Two's complement coding can be implemented by inverting the MSB signal.
12. $I_{\text {IN }}$ and $I_{\text {REF }}$, pins 14 and 13 respectively, connect to the summing junction of an operational amplifier which requires a current input. Voltage sources cannot be attached directly to them, but must be buffered by external resistors. Refer to Test Circuit Diagrams. Analog input can be any positive voltage when applied through the proper scaling resistor.
13. Conversion accuracy is directly dependent on $V_{\text {REF }}$. In order to avoid degrading accuracy, $V_{\text {REF }}$ voltage regulation must be $\pm .04 \%$ for 8 bit models, $\pm .01 \%$ for 10 bit models and $\pm .0025 \%$ for 12 bit models.

When the START CONVERT input is strobed with a positive pulse of at least 500 nsec . duration, the busy line latches high and a start up cycle of approximately $10 \mu \mathrm{sec}$. begins, during which the integrating capacitor is discharged and both counters are reset. Conversion begins at the end of an internal reset pulse.
During conversion, the sum of a continuous current, $I_{\mathbb{N}}$ and pulses of an inversely signed reference current $I_{\text {REF }}$, is integrated. I_{I} is proportional to the analog input voltage and $\mathrm{I}_{\text {ref }}$ is proportional to the reference voltage. A pulse of lef is applied as required to maintain the summing input of the integrating op amp near zero. The total number of pulses of lem required to maintain the summing input near zero is counted and the binary coded result is latched into the outputs at the end of conversion.
The end of conversion is signaled by a pulse generated by the clock counter or by the data counter when an overflow condition: occurs; this pulse disables further inputs into both counters and begins a $10 \mu \mathrm{sec}$. shutdown cycle. During the shutdown cycle, Data Valid goes low for $5 \mu \mathrm{sec}$., while the result of the latest conversion is being transferred to the outputs. Until transfer is complete, the data at the outputs is not valid. At the end of the shutdown cycle, Data Valid goes high indicating that the outputs are latched with the result of the last conversion, and the Busy Output goes low indicating the completion of the conversion cycle and the availability of the converter for the next conversion.
When the converter is employed in a free-running mode, the START CONVERT input is held high (simply connect pin 21 to pin 19), the Busy Output will go low for approximately $2.5 \mu \mathrm{sec}$. to mark the completion and initiation of consecutive conversion cycles. It should be noted that once conversion is initiated, the cycle cannot be interrupted; the START CONVERT pin is disabled when the Busy Output is high, and thus its logic state has no effect until completion of the conversion cycle. After the completion of a conversion, the output data remains valid for as long as power is applied to the circuit, or until Data Valid goes low at the end of a conversion.

RESISTOR TABLES

UNIPOLAR RANGE	BIPOLAR RANGE	$R_{\text {IN }}$ (NOM.)
0 TO +2 V	$\pm 1 \mathrm{~V}$	200 K
0 TO +5 V	$\pm 2.5 \mathrm{~V}$	500 K
0 TO +10 V	$\pm 5 \mathrm{~V}$	1 MEG
0 TO +20 V	$\pm 10 \mathrm{~V}$	2 MEG

$V_{\text {REF }}$	$R_{\text {REF }}$ $(N O M)$.	$R_{\text {OFF }}$ $(N O M)$.
-1.22 V	61 K	244 K
-2.5 V	125 K	500 K
-6.4 V	320 K	1.28 MEG.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 (MSB-12 BITS)	13	REFERENCE
2	BIT 2	14	ANALOG INPUT
3	BIT 3 (MSB-10 BITS)	14	AMPLIFIER OUT
4	BIT 4	16	ZERO ADJUST
5	BIT 5 (MSB-8 BITS)	17	BIAS
6	BIT 6	18	-5V POWER
7	BIT 7	19	+5V POWER
8	BIT 8	20	GROUND
9	BIT 9	21	START CONVERT
10	BIT 10	22	BUSY OUTPUT
11	BIT 11	23	DATA VALID
12	BIT 12 (LSB-ALL)	24	ENABLE

NOTE:
Do not connect unused data output pins on 8 and 10 bit models. they are internally connected to the converter.

CODING TABLES

STRAIGHT BINARY

	8 BIT		10 BIT		12 BIT	
SCALE	0 TO +10 V	CODE	0 TO +10 V	CODE	0 TO +10 V	CODE
FS-1 LSB	+9.96 V	1111111	+9.990 V	111111111	+9.9976 V	111111111111
$1 / 2 \mathrm{FS}$	+5.00	10000000	+5.900	1000000000	+5.0000	100000000000
1 LSB	+0.04	00000001	+0.010	0000000001	+0.0024	0000.00000001
0	0.00	00000000	0.000	0000000000	0.0000	000000000000

OFFSET BINARY

	8 BIT		10 BIT		12 BIT	
	$\pm 5 \mathrm{~V}$	CODE	$\pm 5 \mathrm{~V}$	CODE	$\pm 5 \mathrm{~V}$	CODE
SSS-1 LSB	+4.96 V	11111111	+4.990 V	111111111	+4.9976 V	11111111111
0	0.00	10000000	0.000	1000000000	0.0000	100000000000
FS + LSB	-4.96	00000001	-4.990	0000000001	-4.9976	000000000001
- FS	-5.00	00000000	-5.000	0000000000	-5.0000	000000000000

OPERATING	
TEMP. RANGE	PACKAGE
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic

THESE CONVERTERS ARE COVERED UNDER GSA CONTRACT

CONNECTION FOR UNIPOLAR OPERATION

Rin. Refer $_{\text {are }} 1 \%$ Metal Film resistors.
$R_{B I A S}, R_{C}$ are 10% Carbon Comp resistors C_{c} is 20% Ceramic capacitor.
Zero Adjustment resistors are 10\% Carbon Comp All trimming pots are $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Cermet type. Supply bypass capacitors are Ceramic or Tantalc Cint is 10% Glass or Ceramic capacitator.

CONNECTION FOR BIPOLAR OPERATION

Rin. Ref. Roff and the two 20K resistors are
1\% Metal Film types.
All other resistors are 10\% Carbon Comp. type
C_{c} is 20% Ceramic capacitor.
$\mathrm{C}_{\text {InT }}$ is 10% Glass or Ceramic capacitor
All trimming pots are $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Cermet type.
Supply bypass capacitors are
Ceramic or Tantalum

This reduces power consumption to about 200μ A during Standby

REFERENCE CIRCUITS

 1.22V BAND GAP REFERENCE USES EXISTING -5V SUPPLY

NER REFERENCE REQUIRES -15V SUPPLY

CALIBRATION PROCEDURE

1. Connect the converter as shown in the connection diagrams for either unipolar or bipolar operation. Determine the input voltage range and se lect the required input resistors. Apply a logic HI to the start convert input (pin 21) to give free running operation.
2. Zero and Offset Adjustments. Apply a precision voltage reference source from the analog input resistor to ground. Adjust the reference source to zero $+1 / 2$ LSB for unipolar operation or $-F S+{ }^{1}$ LSB for bipolar operation: Adjust the zero or offset potentiometer so that the output code flickers between $000 \ldots 000$ and $000 \ldots 001$
3. Gain Adjustment. Set the output of the reference source to +FS-1 $1 / 2$ LSB and adjust the gain trimming potentiometer so that the output code just flickers between $111 \ldots 110$ and 111 111

LOW COST MICROPROCESSOR A/D, D/A INTERFACE

Low Cost, 8 Bit Monolithic A/D and D/A Converters Models ADC-MC8BC, ADC-MC8BM

FEATURES

- Low Cost
- 8 Bit Resolution
- Internal Reference
- Single Supply Operation
- Multifunction-A/D-D/A
- Full Mil Temp. Range Available

GENERAL DESCRIPTION

The ADC-MC8B is an 8 -bit monolithic multifunction A/D-D/A converter with single +5 Volts supply operation. This device is a complete D/A converter which can be configured as an A/D converter by using the internal binary counter and two external IC's (311 comparator and a 74132 quad 2 -input Schmitt trigger NAND gate).
The ADC-MC8B consists of eight current switches, a specially designed ladder network using diffused resistors, a precision +2.5 V reference, an eight bit binary counter and a logic input select switch. This feature allows a single control signal to determine whether the switches accept the output from the binary counter (A/D MODE) or external digital inputs (D/A MODE).
The converter can be used with the internal reference to give an output voltage range of 0 to +2.5 V or connected to an external reference for a 0 to +3.0 V range. Full scale settling time is $2.0 \mu \mathrm{~S}$ MAX for the voltage output mode. Using the device as a counter-comparator A/D, a full scale conversion time of $500 \mu \mathrm{~S}$ can be achieved.
The ADC-MC8B is ideal for such applications as complete low cost D/A's, multiplying D/A's, low cost A/D's and precision ramp generators.
This converter is available in two operating temperature ranges. The ADCMC8BC $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ is packaged in a plastic 16 pin DIP and the ADC-MC8BM $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ is packaged in a ceramic DIP.

A/D CONVERTER

THEORY OF OPERATION

A negative going pulse on the START line will reset counter to all zeros and enable the clock. If the DAC's output is less than ANG IN, the counter is incremented and DAC's output increases by one LSB. These comparisons continue until DAC's output is equal to the analog signal, at which time the EOC goes low (Logic " 0 ") indicating that the digital output data is valid. Maximum clock frequency is 512 kHz . This may be varied by using different values for R and C.
Full Scale voltage may also be changed by setting R_{1} and R_{2} to desired gain function.
1\% Metal Film resistors and $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ trim pots are recommended for best performance over temperature.

CALIBRATION PROCEDURES

1. Connect converter as shown in connection diagram. Apply continuous start commands to the START input.
2. ZERO ADJUSTMENT-Ground analog input. Vary ZERO ADJ. potentiometer until LSB flickers between logic " 1 " and " 0 " with all other bits at logic " 0 ".
3. GAIN ADJUSTMENT-Apply FS-1/2 LSB to ANG IN. Vary GAIN ADJ. potentiometer until LSB flickers between logic " 1 " and " 0 " with all other bits at logic" 1 ".

THEORY OF OPERATION

Vout is directly proportional to digital input. R_{L} should be kept $\geqslant 650 \mathrm{~K}$ Ohms to assure good T.C. To remove offset voltage and calibration of converter, a buffer amplifier is necessary. The sources impedance of the inverting input should be approximately 6 K Ohms to minimize temperature drift.
1% Metal Film resistors and $100 \cdot \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ trim pots are recommended for best performance over temperature. For best settling time, a fast buffer amplifier is required (DATEL -INTERSIL'S AM-452).

CALIBRATION PROCEDURE

1. Connect converter as shown in connections diagram. Apply continuous start commands to the START input.
2. Set all bits to logic " 0 " and vary ZERO ADJ. potentiometer until Vout is equal to zero volts.
3. Set all bits to logic " 1 " and vary GAIN ADJ. potentiometer until Vout $=$ Nominal F.S.- 1 LSB

$$
\mathrm{LSB}=\frac{\mathrm{FSR}}{256}
$$

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340
Santa Ana, (714)835-2751, (L.A.) (213)933-7256•Sunnyvale, CA (408)733-2424•Gaithersburg, MD (301)840-9490

- Houston. (713)781-8886 • Dallas. TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055
- DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 - DATEL KK Tokyo 793-1031

FEATURES

－ 16 bit binary three－state latched outputs plus polarity and overrange．Also 14 bit version．
－Ideally suited for interface to UARTs， microprocessors，or other complex circuitry．
－Conversion on demand or continuously．
－Handshake byte－serial transmission synchronously or on demand．
－Guaranteed zero reading for zero volts input．
－True polarity at zero count for precise null detection．
－Single reference voltage for true ratiometric operation．
－Onboard clock and reference．
－Auto－Zero；Auto－Polarity
－Accuracy guaranteed to 1 count．
－All outputs TTL compatible．
－$\pm 10 \mathrm{~V}$ analog input range
－Status signal available for external sync，A / Z in preamp，etc．

GENERAL DESCRIPTION

The ADC－7104，combined with our model ADC－8068， forms a member of DATEL－INTERSIL＇s high perfor－ mance A / D converter family．The 16 －bit version， ADC－7104－16 performs the analog switching and digi－ tal function for a 16－bit binary A／D converter，with full three－state output，UART handshake capability，and other outputs for a wide range of output interfacing． The ADC－7104－14 is a 14 bit binary member of this se－ ries．The analog section，as with all DATEL－INTERSIL＇s integrating converters，provides fully precise Auto－ Zero，Auto－Polarity（including ± 0 null indication），sin－ gle reference operation，very high input impedance， true input integration over a constant period for max－ imum EMI rejection，fully ratiometric operation，over－ range indication，and a medium quality built－in refer－ ence．The chip pair also offers optional input buffer gain for high sensitivity applications，a built－in clock oscillator，and output signals for providing an external Auto－Zero capability in preconditioning circuitry，syn－ chronizing external multiplexers，etc．The basic sche－ matic connections are shown in Figure 1.

Figure 1：$\quad 8068 \mathrm{~A} / 7104$ 16／14 Bit A／D Converter Functional Block Diagram
ORDERING INFORMATION

MODEL＊	DESCRIPTION	PACKAGE
ADC－7104－14C	14 Bit Digital Section	40 pin Epoxy DIP
ADC－7104－16C	16 Bit Digital Section	40 pin Epoxy DIP
ADC－8068AC	Analog Input Section	14 pin CerDIP

[^0]DATEL－INTERSIL，INC．， 11 CABOT BOULEVARD．MANSFIELD．MA 02048／TEL．（617）339－9341／TWX 710－346－1953／TLX 951340

8068/7104

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1) 500 mW
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

8068
Supply Voltage ... $\pm 18 \mathrm{~V}$
Differential Input Voltage(8068) $\pm 30 \mathrm{~V}$
Input Voltage (Note 2) $\pm 15 \mathrm{~V}$
Output Short Circuit Duration,
All Outputs (Note 3) Indefinite
Operating Temperature $\ldots \ldots \ldots \ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 60 Sec .)

Note 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Short circuit may be to ground or either supply. Rating applies to $+70^{\circ} \mathrm{C}$ ambient temperature.
Note 4: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 5: Connecting any digital inputs or outputs to voltages greater than $\mathrm{V}+$ or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources not on the same power supply be applied to the ADC-7104 before its power supply is established.
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7104 ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}++=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

CHARACTERISTICS		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Clock Input	CLOCK 1	IIN	$\mathrm{Vin}=+5 \mathrm{~V}$ to 0 V	± 2	± 7	± 30	$\mu \mathrm{A}$
Comparator 1/P	COMP IN (Note 1)	lin	$\mathrm{Vin}=0 \mathrm{~V}$ to +5 V	-10	± 0.001	+10	$\mu \mathrm{A}$
Inputs with Pulldown	MODE	1 lH	$\mathrm{Vin}=+5 \mathrm{~V}$	+1	+5	+30	$\mu \mathrm{A}$
		ILL	$\mathrm{Vin}=0 \mathrm{~V}$	-10	± 0.01	+10	$\mu \mathrm{A}$
Inputs with Pullups	$\begin{aligned} & \left.\frac{\text { SEN, }}{} \begin{array}{l} \text { LB/ } \bar{H} \\ \frac{\text { LBEN }}{\overline{M B E N}}, \overline{\mathrm{CE} / L D} \end{array}\right\} \text { (Note 2) } \end{aligned}$	liH	V in $=+5 \mathrm{~V}$	-10	± 0.01	+10	$\mu \mathrm{A}$
		IIL	$\mathrm{Vin}=0 \mathrm{~V}$	-30	-5	-1	$\mu \mathrm{A}$
Input High Voltage	All Digital Inputs	V_{IH}		2.5	2.0	-	V
Input Low Voltage	All Digital Inputs	$\mathrm{V}_{\text {IL }}$,		1.5	1.0	V
Digital Outputs Three-Stated On		VOL	$\mathrm{IOL}=1.6 \mathrm{~mA}$	-	. 27	4	V
		V OH	$\mathrm{IOH}=-10 \mu \mathrm{~A}$		4.5	-	V
		VOH	$\mathrm{IOH}=-240 \mu \mathrm{~A}$	2.4	3.5	-	V
Digital Outputs Three-Stated Off	BIT n, POL, OR	ILO	$0-$ Vout \leq V +	-10	$\pm .001$	+10	$\mu \mathrm{A}$
Non-Three-State Digital Output	STTS	VOL	$\mathrm{IOL}=3.2 \mathrm{~mA}$	-	. 3	4	V
		VOH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4	. 3.3	-	V
	CLOCK 2	VOL	$\mathrm{IOL}=320 \mu \mathrm{~A}$		0.5		V
		VOH	$1 \mathrm{OH}=-320 \mu \mathrm{~A}$		4.5		V
	CLOCK 3 -14 ONLY	VOL	$\mathrm{IOL}=1.6 \mathrm{~mA}$		27	4	V
		VOH	$1 \mathrm{OH}=-320 \mu \mathrm{~A}$	2.4	3.5		V
Switch	Switch 1	RosON		-	25k		,
	Switches 2,3	- RDSON		-	4k	20k	Ω
	Switches 4,5,6,7,8,9	RDSON		-.	2k	10k	Ω
	Switch Leakage	IDOFF		-	15		pA
Clock	Clock Freq. (Note 4)			DC	200	400	kHz
Supply Currents	+5 V Supply Current All outputs high impedance	$1+$	Freq. $=200 \mathrm{kHz}$		200	600	$\mu \mathrm{A}$
	+15V Supply Current	$1++$	Freq. $=200 \mathrm{kHz}$. 3	1.0	mA
	15V Supply Current	1	Freq. $=200 \mathrm{kHz}$		25	100	$\mu \mathrm{A}$
Supply Voltage Range	Logic Supply	V+	Note 5	4.0		+11.0	V
	Positive Supply	V++		$+10.0$		+16.0	V
	Negative Supply	V		-16.0		-10.0	V

Note 1: This spec applies when not in Auto-Zero phase.
Note 2: These specs apply when these pins are inputs i.e. the mode pin is low, and the 7104 is not in handshake mode.
Note 3: These specs apply when these pins are outputs, i.e. the mode pin is high or the 7104 is in handshake mode.
Note 4: Clock circuit shown in Fig. 12 or 13.
Note 5: $\mathrm{V}+$ must not be more positive than $\mathrm{V}++$.

8068/7104

8068 ELECTRICAL CHARACTERISTICS ${ }^{(} V_{s}= \pm 15 \mathrm{~V}$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	8068A			UNITS
		MIN	TYP	MAX	
EACH OPERATIONAL AMPLIFIER					
Input Offset Voltage	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$		20	65	mV
Input Current (either input) (Note 1)	$\mathrm{VCM}=0 \mathrm{~V}$		80	150	pA
Common-Mode Rejection Ratio	$\mathrm{VCM}= \pm 10 \mathrm{~V}$	70	90		dB
Non-Linear Component of CommonMode Rejection Ratio (Note 2)	$V_{C M}= \pm 2 \mathrm{~V}$		110		
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega$	20,000			V/V
Slew Rate			6		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth			2		MHz
Output Short-Circuit Current			5	10	mA
COMPARATOR AMPLIFIER					
Small-signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$				V/V
Positive Output Voltage Swing		+12	+13		V
Negative Output Voltage Swing		-2.0	-2.6		V
VOLTAGE REFERENCE					
Output Voltage		1.60	1.75	1.90	V
Output Resistance			5		ohms
Temperature Coefficient			40		ppm $/{ }^{\circ} \mathrm{C}$
Supply Voltage Range		± 10		± 16	V
Supply Current Total			8	14	mA

Note 1: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{J}. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\theta \mathrm{j} A \mathrm{Pd}$ where $\theta \mathrm{j} \mathrm{A}$ is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.
Note 2: This is the only component that causes error in dual-slope converter.

8068/7104

SYSTEM ELECTRICAL CHARACTERISTICS: 8068/7104

$\left(\mathrm{V}_{++}=+15 \mathrm{~V}, \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}\right.$ Clock Frequency $=200 \mathrm{KHz}$

CHARACTERISTICS	CONDITIONS	8068A/7104-14			8068A/7104-16			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Zero Input Reading	$\begin{aligned} & V_{\text {in }}=0.0 \mathrm{~V} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	-0.0000	± 0.0000	$+0.0000$	-0.0000	± 0.0000	+0.0000	Hexadecimal Reading
Ratiometric Reading (1)	$\begin{aligned} & V_{\text {in }}=V_{\text {Ret }} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	1FFF	2000	2001	7FFF	8000	8001	Hexadecimal Reading
Linearity over \pm Full Scale (error of reading from best straight line)	$-4 V \div V_{\text {in }} \leq+4 \mathrm{~V}$		0.5	1		0.5	1	LSB
Differential Linearity (difference between worse case step of adjacent counts and ideal step	$-4 V-V_{i n}=+4 V$. 01			. 01		LSB
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-V_{1 n} \equiv+V_{1 n}=4 \mathrm{~V}$		0.5	1		0.5	1	LSB
Noise (P-P value not exceeded 95% of time)	$\begin{aligned} & \mathrm{V}_{\text {in }}=0 \mathrm{~V} \\ & \text { Full scale }=4.000 \mathrm{~V} \end{aligned}$		2			2		$\mu \mathrm{V}$
Leakage Current at Input (2)	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$		100	165		100	165	PA
Zero Reading Drift	$\begin{aligned} & V_{\text {in }}=O V \\ & 0^{\circ} \mathrm{C}=T_{A}=70^{\circ} \mathrm{C} \end{aligned}$		0.5	2		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature (3) Coefficient	$\begin{aligned} & V_{\text {in }}=+4 \mathrm{~V} \\ & 0 \leq \mathrm{T}_{\mathrm{A}} \leq 50^{\circ} \mathrm{C} \\ & \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \end{aligned}$		2	5		2	5	ppm $/{ }^{\circ} \mathrm{C}$

Note 1: Tested with low dielectric absorption integrating capacitor.
Note 2: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{J}. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\theta \mathrm{j} A \mathrm{Pd}$ where $\theta j \mathrm{~A}$ is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.
Note 3: The temperature range can be extended to $70^{\circ} \mathrm{C}$ and beyond if the Auto-Zero and Reference capacitors are increased to absorb the high temperature leakage of the 8068 . See note 2 above.

AC CHARACTERISTICS $(\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=+5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V})$

Figure 2: Direct Mode Output Timing

TABLE 1: Direct Mode Timing Requirements

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
tBEA	XBEN Min. Pulse Width		500		
tDAB	Data Access Time from XBEN		200		
tDHB	Data Hold Time from $\overline{\text { XBEN }}$		200		ns
tCEA	$\overline{\text { CE/LD Min. Pulse Width }}$		500		
t tDAC	Data Access Time from $\overline{\text { CE/LD }}$		200		
tDHC	Data Hold Time from $\overline{\text { CE/LD }}$		200		

TABLE 2: Handshake Timing Requirements

NAME	DESCRIPTION	MIN	TYP	MAX	UNITS
tMW	MODE Pulse (minimum)		20		ns
tSM	MODE pin set-up time		-150		
t_{ME}	MODE pin high to low $Z \overline{C E / L D}$ high delay		200		
tMB	MODE pin high to $\overline{\text { XBEN }}$ low Z (high) delay		200		
tCEL	CLOCK 1 high to $\overline{\mathrm{CE} / L D}$ low delay		700		
tCEH	CLOCK 1 high to $\overline{C E / L D}$ high delay		600		
$\mathrm{t}_{\mathrm{CBL}}$	CLOCK 1 high to XBEN Iow delay		900		
tCBH	CLOCK 1 high to $\overline{\text { XBEN }}$ high delay		700		
tcon	CLOCK 1 high to data enabled delay		1100		
tcDL	CLOCK 1 low to data disabled delay		1100		
tss	Send ENable set-up time		-350		
tCBZ	CLOCK 1 high to $\overline{\text { XBEN }}$ disabled delay		2000		
tcez	CLOCK 1 high to $\overline{C E / L D}$ disabled delay		2000		

FIGURE 3: Timing Relationships In Handshake Mode

PIN ASSIGNMENTS

TABLE 3: Pin Assignment and Function Description

PIN	SYMBOL	OPTION	DESCRIPTION
1	$\mathrm{V}(++)$		Positive Supply Voltage Nominally +15 V
2	GND		Digital Ground . 0 V , ground return
3	STTS		STaTuS output . HI during Integrate and Deintegrate until data is latched .LO when analog section is in Auto-Zero configuration.
4	POL		POLarity. Three-state output. HI for positive input.
5	OR		OverRange. Three-state output.
6	$\begin{aligned} & \hline \text { BIT } 16 \\ & \text { BIT } 14 \end{aligned}$	$\begin{array}{r} -16 \\ -14 \end{array}$	(Most significant bit)
7	$\begin{aligned} & \hline \text { BIT } 15 \\ & \text { BIT } 13 \end{aligned}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
8	BIT 14 BIT 12	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
9	$\begin{aligned} & \hline \text { BIT } 13 \\ & \text { BIT } 11 \end{aligned}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
10	$\begin{aligned} & \hline \text { BIT } 12 \\ & \text { BIT } 10 \end{aligned}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	Data Bits, Three-state outputs. See Table 4 for
11	$\begin{aligned} & \text { BIT } 11 \\ & \text { BIT } 9 \end{aligned}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
12	$\begin{aligned} & \text { BIT } 10 \\ & \text { nc } \end{aligned}$	$\begin{array}{r} 16 \\ -14 \end{array}$,
13	BIT 9 nc	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
14	BIT 8		
15	BIT 7		
16	BIT 6		
17	BIT 5		
18	BIT 4		
19	BIT 3		
20	BIT 2		
21	BIT 1		Least significant bit
22	$\overline{\text { LBEN }}$		Low B̄yte ENable. If not in handshake mode (see pin 27) when LO (with $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$, pin 30) activates low-order byte outputs, BITS 1-8 When in handshake mode (see pin 27), serves as a low-byte flag output. See Figures 8, 9 and 10.
23	$\overline{\text { MBEN }}$ HBEN	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	\bar{M} id $\bar{B} y t e \overline{E N}$ able. Activates BITS 9-16, see LBEN (pin 22) High $\bar{B} y t e$ ENable. Activates BITS 9-14, POL, OR, see $\overline{\text { LBEN (pin 22) }}$
24	HBEN CLOÇK3	-16 -14	$\overline{\text { High }} \bar{B} y t e ~ E N a b l e . ~$ Activates POL, OR, see $\overline{\mathrm{LBEN}}$ (pin 22). RC oscillator pin. Can be used as clock output.

PIN	SYMBOL	DESCRIPTION
25	CLOCK1	Clock input. External clock or oscillator.
26	CLOCK2	Clock output. Crystal or RC oscillator.
27	MODE	Input LO;Direct output mode where $\overline{C E} / \overline{L D}, \overline{H B E N}, \overline{M B E N}$, and $\overline{\text { LBEN act as }}$ inputs directly controlling byte outputs. If pulsed HI causes immediate entry into handshake mode (see Figure 9). If HI , enables $\overline{\mathrm{CE} / L D}, \overline{\mathrm{HBEN}}, \overline{M B E N}$, and $\overline{\text { LBEN }}$ as outputs. Handshake mode will be entered and data output as in Figures 7 \& 8 at conversion completion.
28	R/H	Run/Hold; Input HI-conversions continuously performed every 217 (-16) 215 (-14) clock pulses. Input LO-conversion in progress completed, converter will stop in Auto-Zero 7 counts before input integrate.
29	SEN	Send-ENable: Input controls timing of byte transmission in handshake mode. HI indicates 'send'.
30	$\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$	C̄hip-Enable/Loā. With MODE (pin 27) LO, $\overline{C E} / \overline{L D}$ serves as a master output enable; when HI , the bit outputs and POL, OR are disabled. With MODE HI, pin serves as a $\overline{\text { Loa }} \overline{\mathrm{D}}$ strobe (-ve going) used in handshake mode. See Figures 7 \& 8 .
31	$\mathrm{V}(+)$	Positive Logic Supply Voltage. Nominally +5 V .
32	AN.IN	ANalog INput. High side.
33	BUFF IN	BUFfer INput to analog chip
34	REFCAP2	REFerence CAPacitor (negative side)
35	AN.GND.	ANalog GrouND. Input Iow side and reference low side.
36	A-Z	Auto-Zero node.
37	VREF	Voltage REFerence input (positive side)
38	REFCAP1	REFerence CAPacitor (positive side)
39	COMP-IN	COMParator INput from 8068
40	$\mathrm{V}(-)$	Negative Supply Voltage. Nominally -15V.

TABLE 4: Three-State Byte Formats and ENable Pins.

8068/7104

DETAILED DESCRIPTION

Analog Section

Figure 4 shows the equivalent Circuit of the Analog Section of the 7104/8068 in the 3 different phases of operation. If the Run/Hold pin is left open or tied to V+, the system will perform conversions at a rate determined
by the clock frequency: 131,072 for $-16 ; 32,368$ for -14 clock periods per cycle (see Figure 5 conversion timing).

Figure 4A: Phase I Auto-Zero

Figure 4B: Phase II Integrate Input

Figure 4C: Phase III + Deintegrate

Figure 4D: Phase III - Deintegrate
Figure 4: Analog Section of 8068 with 7104

1. Auto-Zero Phase I Fig. 4A.

During Auto-Zero, the input of the buffer is shorted to analog ground thru switch 2 , and switch 1 closes a loop around the integrator and comparator. The purpose of the loop is to charge the Auto-Zero capacitor until the integrator output does not change with time. Also switches 4 and 9 recharge the reference capacitor to Vref.
2. Input Integrate Phase II Fig. 4B.

During input integrate the Auto-Zero loop is opened and the analog input is connected to the buffer input thru switch 3 . (The reference capacitor is still being charged to $V_{\text {ref }}$ during this time.) If the input signal is zero, the buffer, integrator and comparator will see the same voltage that existed in the previous state (Auto-Zero). Thus the integrator output will not change but will remain stationary during the entire Input Integrate cycle. If $\mathrm{V}_{\text {in }}$ is not equal to zero, an unbalanced condition exists compared to the Auto-Zero phase, and the integrator will generate a ramp whose slope is proportional to V_{in}. At the end of this phase, the sign of the ramp is latched into the polarity F/F.

Deintegrate Phase III Fig. 4 C\&D

During the Deintegrate phase, the switch drive logic uses the output of the polarity F/F in determining whether to close switches 6 and 9 or 7 and 8 . If the input signal was positive, switches 7 and 8 are closed and a voltage which is $V_{\text {ref }}$ more negative than during Auto-Zero is impressed on the buffer input. Negative inputs will cause $+V_{\text {ref }}$ to be applied to the buffer input via switches 6 and 9 . Thus, the reference capacitor generates the equivalent of a $(+)$ reference or a $(-)$ reference from the single reference voltage with negligible error. The reference voltage returns the output of the integrator to the zero-crossing point established in Phase I. The time, or number of counts, required to do this is proportional to the input voltage. Since the Deintegrate phase can be twice as long as the input integrate phase, the input voltage required to give a full scale reading $=2 \mathrm{~V}_{\text {ref }}$.

Note: Once a zero crossing is detected, the system automatically reverts to Auto-Zero phase for the leftover Deintegrate time (unless Run/Hold is manipulated, see Run/ Hold Input in detailed description, digital section).

COUNTS			
	Phase I	Phase II	Phase III
-16	32768	32768	65536
-14	8192	8192	16384

Figure 5: Conversion Timing

Table 5: Some Typical Component Values
$\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$, Clock Freq $=200 \mathrm{kHz}$

$\mathbf{8 0 6 8}$ with	$\mathbf{7 1 0 4 - 1 6}$			$\mathbf{7 1 0 4 - 1 4}$		UNITS
Full scale $\mathrm{V}_{\text {IN }}$	200	800	4000	100	4000	mV
Buffer Gain	10	1	1	10	1	
RINT $^{C_{\text {INT }}}$	100	43	200	47	180	$\mathrm{k} \Omega$
$\mathrm{C}_{\text {AZ }}$.33	.33	.33	0.1	0.1	$\mu \mathrm{~F}$
$\mathrm{C}_{\text {ref }}$	1.0	1.0	1.0	1.0	1.0	$\mu \mathrm{~F}$
$\mathrm{~V}_{\text {ref }}$	10	1.0	1.0	10	1.0	$\mu \mathrm{~F}$
Resolution	100	400	2000	50	2000	mV

8068/7104

Component Value Selection

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

Integrating Resistor

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. This current should be small compared to the output short circuit current such that thermal effects are kept to a minimum and linearity is not affected. Values of 5 to $40 \mu \mathrm{~A}$ give good results with a nominal of $20 \mu \mathrm{~A}$. The exact value may be chosen by

$$
\text { RINT }=\frac{\text { full scale voltage }^{\star}}{20 \mu \mathrm{~A}}
$$

*Note: If gain is used in the buffer amplifier then -

$$
\text { RiNT }=\frac{\text { (Buffer gain) (full scale voltage) }}{20 \mu \mathrm{~A}}
$$

Integrating Capacitor

The product of integrating resistor and capacitor is selected to give 9 volt swing for full scale inputs. This is a compromise between possibly saturating the integrator (at +14 volts) due to tolerance build-up between the resistor, capacitor and clock and the errors a lower voltage swing could induce due to offsets referred to the output of the comparator. In general, the value of $\mathrm{C}_{\text {INT }}$ is give by

$$
\mathrm{CINT}^{\prime}=\frac{\left[\begin{array}{l}
(32768 \text { for }-16 \\
(8192 \text { for }-14 \times \text { clock period })
\end{array}\right] \times(20 \mu \mathrm{~A})}{\text { Integrator output voltage swing }}
$$

A very important characteristic of the integrating capacitor is that it have low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.

This ratiometric condition should read half scale $100 \ldots 000$ and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

Auto-Zero and Reference Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.

Note: When gain is used in the buffer amplifier the reference capacitor should be substantially larger than the auto-zero capacitor. As a rule of thumb, the reference capacitor should be approximately the gain times the value of the auto-zero capacitor. The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

Reference Voltage

The analog input required to generate a full scale output is $V_{\text {IN }}=2 V_{\text {REF }}$.
The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the 7104 at 16 bits is one part in 65536 , or
15.26 ppm . Thus, if the reference has a temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (on board reference) a temperature change of $1 / 3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error. For this reason, it is recommended that an external high quality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

Buffer Gain

At the end of the auto-zero interval, the instantaneous noise voltage on the auto-zero capacitor is stored, and subtracts from the input voltage while adding to the reference voltage during the next cycle. The result is that this noise voltage effectively is somewhat greater than the input noise voltage of the buffer itself during integration. By introducing some voltage gain into the buffer, the effect of the auto-zero noise (referred to the input) can be reduced to the level of the inherent buffer noise. This generally occurs with a buffer gain of between 3 and 10. Further increase in buffer gain merely increases the total offset to be handled by the autozero loop, and reduces the available buffer and integrator swings, without improving the noise performance of the system. The circuit recommended for doing this with the 8068/7104 is shown in Figure 6. With careful layout, the circuit shown can achieve effective input noise voltages on the order of $1-2 \mu \mathrm{~V}$, allowing full 16-bit use with full scale inputs of as low as 150 mV . Note that at this level, thermoelectric EMFs between PC boards, IC pins, etc., due to local temperature changes can be very troublesome.

Figure 6: Adding Buffer Gain to 8068

8068/7104

DETAILED DESCRIPTION
 Digital Section

The digital section includes the clock oscillator circuit, a 16 bit or 14 bit binary counter with output latches and TTLcompatible three-state output drivers, polarity, over-range and control logic and UART handshake logic, as shown in the Block Diagram Figure 7 (16 bit verison shown).
Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined under "ADC-7104 Electrical Characteristics". For minimum power consumption, all inputs should swing from GND (low) to $\mathrm{V}+$ (high). Inputs driven from TTL gates should have $3-5 \mathrm{k} \Omega$ pullup resistors added for maximum noise immunity.

Mode Input

The MODE input is used to control the output mode of the converter. When the MODE pin is connected to GND or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in three bytes for the 7104-16 or two bytes for the 7104-14, then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

STaTuS Output

During a conversion cycle, the STaTuS output goes high at the beginning of Input Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 5 for details of this timing. This signal may be used as a "data valid" flag (data never changes while STaTuS is low) to drive interrupts, or for monitoring the status of the converter.

Run/Hold Input

When the Run/Hold input is connected to $V+$ or left open (this input has a pullup resistor to ensure a high level when the pin is left open), the circuit will continuously perform conversion cycles, updating the output latches at the end of every Deintegrate (Phase III) portion of the conversion cycle (See Figure 5). (See under "Handshake Mode" for exception.) In this mode of operation, the conversion cycle will be performed in 131,072 for 7104-16, or 32768 for $7104-14$ clock periods, regardless of the resulting value.
If Run/Hold goes low, at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to Auto-Zero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If Run/ \bar{H} old stays or goes low, the converter will ensure a minimum Auto-Zero time, and then wait in Auto-Zero until the Run/Hold input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STaTuS output will go high) seven clock periods after the high level is detected at Run/Hold. See Figure 8 for details.
Using the Run/Hold input in this manner allows an easy "convert on demand" interface to be used. The converter may be held at idle in Auto-Zero with Run/ \bar{H} old low. When Run $/ \bar{H}$ old goes high the conversion is started, and when the STaTuS output goes low the new data is valid (or transferred to the UART - see Handshake Mode). Run/Hold may now go low terminating Deintegrate and ensuring a minimum AutoZero time before stopping to wait for the next conversion. Alternately, Run/Hold can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the Run/Hold input can be provided by connecting it to the CLOCK3 (-14), CLOCK2 (-16) Output. In this mode the conversion time is dependent on the input value measured.

Figure 7: Digital Section

Figure 8: Run/Hold Operation

If the Run/Hold input goes low and stays low during AutoZero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for Run/Hold to go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected.

Direct Mode

When the MODE pin is left at a low level, the data outputs ©its 1 through 8 low order byte, see Table 4 for format of middle (-16) and high order bytesJare accessible under control of the byte and chip ENable terminals as inputs. These ENable inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip ENable input is low, taking a byte $\overline{E N}$ able
input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used, as shown in Figure 2. The timing requirements for these outputs are shown in Figure 2 and Table 1.

It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the data while it is being updated, which could lead to scrambled data. Synchronizing the access of data with the conversion cycle by monitoring the STaTuS output will prevent this. Data is never updated while STaTuS is low. Also note the potential bus conflict described under "Initial Clear Circuitry".

Figure 9: Handshake With SEN Held Positive

8068/7104

Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the 7104 to digital systems, where the A/D converter becomes active in controlling the flow of data instead of passively responding to chip and byte ENable inputs. This mode is specifically designed to allow a direct interface between the 7104 and industry-standard UARTs (such as the Intersil CMOS UART's, IM6402/3) with no external logic required. When triggered into the handshake mode, the 7104 provides all the control and flag signals necessary to sequence the three (7106-16) or two (7104-14) bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central controlling processor.
Entry into the handshake mode will occur if either of two conditions are fulfilled; first, if new data is latched (i.e. a conversion is completed) while MODE pin (pin 27) is high, in which case entry occurs at the end of the latch cycle; or secondly, if the MODE pin goes from low to high, when entry will occur immediately (if new data is being latched, entry is delayed to the end of the latch cycle). While in the handshake mode, data latching is inhibited, and the MODE pin is ignored. (Note that conversion cycles will continue in the normal manner). This allows versatile initiation of handshake operation without danger of false data generation; if the MODE pin is held high, every conversion lother than those completed during handshake operations) will start a new
handshake operation, while if the MODE pin is pulsed high, handshake operations can be obtained "on demand."
When the converter enters the handshake mode, or when the MODE input is high, the chip and byte ENable terminals become TTL-compatible outputs which provide the control signals for the output cycle. The Send ENable pin (SEN) (pin 29) is used as an indication. of the ability of the external device to receive data. The condition of the line is sensed once every clock pulse, and if it is high, the next (or first) byte is enabled on the next rising CLOCK 1 (pin 25) clock edge, the corresponding byte ENable line goes low, and the Chip ENable/LoaD line (pin 30) (CE/LD) goes low for one full clock pulse only, returning high.
On the next falling CLOCK 1 clock pulse edge, if SEN remains high, or after it goes high again, the byte output lines will be put in the high impedance state (or three-stated off). One half pulse later, the byte $\overline{E N a b l e}$ pin will be cleared high, and (unless finished) the CE/LD and the next byte ENable pin will go low. This will continue until all three (2 in the case of 14 bit devices) bytes have been sent. The bytes are individually put into the low impedance state i.e.: three-stated on during most of the time that their byte ENable pin is (active) low. When receipt of the last byte has been acknowledged by a high SEN, the handshake mode will be cleared, re-enabling data latching from conversions, and recognizing the condition of the MODE pin again. The byte and chip ENable will be threestated off, if MODE is low, but held high by their (weak) pullups. These timing relationships are illustrated in Figure 9, 10, and 11, and Table 2.

Figure 10: Handshake - Typical UART Interface Timing

8068/7104

Figure 9 shows the sequence of the output cycle with SEN held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}, \overline{\mathrm{LBEN}}, \overline{\mathrm{MBEN}}$ and $\overline{\mathrm{HBEN}}$ terminals are active as outputs). The high level at the SEN input is sensed on the same high to low internal clock edge. On the next low to high internal clock edge, the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and the $\overline{\mathrm{HBEN}}$ outputs assume a low level and the high-order byte (POL and OR, and except for -16 , Bis $9-14$) outputs are enabled. The $\overline{C E} / \overline{L D}$ output remains low for one full internal clock period only, the data outputs remain active for $1-1 / 2$ internal clock periods, and the high byte ENable remains low for two clock periods. Thus the $\overline{C E} / \overline{L D}$ output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the byte ENable as an output may be used as a byte identification flag. With SEN remaining high the converter completes the output cycle using $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}, \overline{\mathrm{MBEN}}$ and $\overline{\mathrm{LBEN}}$ while the remaining byte outputs (see Table 4) are activated. The handshake mode is terminated when all bytes are sent (3 for 16, 2 for $-14,-12$).
Figure 10 shows an output sequence where the SEN input is used to delay portions of the sequence, or handshake, to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEN input to the ICL7104 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the $\overline{C E} / \overline{L D}$ terminal of the ICL7104 drives the TBRL (Transmitter Buffer Register Load) input to the UART.

The data outputs are paralleled into the eight Transmitter Buffer Register inputs.
Assuming the UART Transmitter Buffer Register is empty, the SEN input will be high when the handshake mode is entered after new data is stored. The $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and $\overline{\mathrm{HBEN}}$ terminals will go low after SEN is sensed, and the high order byte outputs become active. When $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next 7104 internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the $\overline{\text { HBEN }}$ output returns high. At the same time, the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and $\overline{\mathrm{MBEN}}(-16)$ or $\overline{\mathrm{LBEN}}$ outputs go low, and the corresponding byte outputs become active. Similarly, when the $\overline{C E} / \overline{L D}$ returns high at the end of one clock period, the enabled data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7104 internal clock high to low edge, disabling the data outputs. For the 16 bit device, the sequence is repeated for LBEN. One-half internal clock later, the handshake mode will be cleared, and the chip and byte ENable terminals return high and stay active (as long as MODE stays high). With the MODE input remaining high as in these examples, the converter will output the results of every conversion

Figure 11: Handshake Triggered By Mode

8068/7104

except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 11 shows a handshake output sequence triggered by such an edge. In addition, the SEN input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEN input, and the sequence for the first (high order) byte is similar to the sequence for the other bytes. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STaTuS output and Run/Fold input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is therefore lost.

Initial Clear Circuitry

The internal logic of the 7104 is supplied by an internal regulator between $\mathrm{V}++$ and Digital Ground. The regulator includes a low-voltage detector that will clear various registers. This is intended to ensure that on initial power-up, the control logic comes up in Auto-Zero, with the 2nd, 3rd, and 4th MSB bits cleared, and the "mode" FF cleared (i.e. in "direct" mode). This, however, will also clear these registers if the supply voltage "glitches" to a low enough value. Additionally, if the supply voltage comes up too fast, this clear pulse may be too narrow for reliable clearing. In general, this is not a problem, but if the UART internal "MODE" FF should come up set, the byte and chip ENable lines will become active outputs. In many systems this could lead to buss conflicts, especially in non-handshake systems. In any case, SEN should be high theld high for nonhandshake systems) to ensure that the MODE FF will be cleared as fast as possible (see Fig. 9 for timing). For these and other reasons, adequate supply bypass is recommended.

Oscillator

The 7104 is provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillator.

Figure 12 shows the oscillator configured for RC operation. The internal clock will be of the same frequency and phase as the voltage on the CLOCK 3 pin. The resistor and capacitor should be connected as shown. The circuit will oscillate at a frequency given by $f=.45 / R C$. An $100 \mathrm{k} \Omega$ resistor is recommended for useful ranges of frequency. For optimum 60 Hz line rejection, the capacitor value should be chosen such that $32768(-16)$ or $8192(-14)$ clock periods is close to an integral multiple of the 60 Hz period.

Figure 12: RC Oscillator
Note that CLOCK 3 has the same output drive as the bit outputs.

As a result of pin count limitations, the ICL7104-16 has only CLOCK 1 and CLOCK 2 available, and cannot be used as an RC oscillator. The internal clock will correspond to the inverse of the signal on CLOCK 2. Figure 13 shows a crystal oscillator circuit, which can be used with all 7104 versions. If an external clock is to be used, it should be applied to CLOCK 1. The internal clock will correspond to the signal applied to this pin.

Figure 13: Crystal Oscillator

POWER SUPPLY SEQUENCING

Because of the nature of the CMOS process used to fabricate the 7104, and the multiple power supplies used, there are certain conditions of these supplies under which a disabling and potentially damaging SCR action can occur. All of these conditions involve the $\mathrm{V}+$ supply (nom. +5 V) being more positive than the $V++$ supply. If there is any possibility of this occuring during start-up, shut down, under transient conditions during operation, or when inserting a PC board into a "hot" socket, etc., a diode should be placed between V - and $\mathrm{V}++$ to prevent it. A germanium or Schottky rectifier diode would be best, but in most cases a silicon rectifier diode is adequate.

ANALOG AND DIGITAL GROUNDS

Extreme care must be taken to avoid ground loops in the layout of $8068 / 7104$ circuits, especially in 16-bit and high sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line. A recommended connection sequence for the ground lines is shown in Figure 14.

Figure 14: Grounding Sequence

PACKAGE DIMENSIONS

FEATURES

- 12 bit binary (plus polarity and overrange) dual slope integrating analog-to-digital converter.
- Byte-organized TTL-compatible three-state outputs and UART handshake mode for simple parallel or serial interfacing to microprocessor systems.
- RUN/HOLD input and STATUS output can be used to monitor and control conversion timing.
- True differential input and differential reference.
- Low noise-typically $15 \mu \mathrm{~V}$ peak-to-peak.
- 1pA typical input current.
- Operates at up to 30 conversions per second.
- On-chip oscillator operates with inexpensive 3.58MHz TV crystal giving 7.5 conversions per second for 60 Hz rejection, or may be operated as an RC oscillator for other clock frequencies.
- Combines analog and digital functions on a single low power LSI CMOS chip.
- All inputs fully protected against static discharge; no special handling precautions necessary.

GENERAL DESCRIPTION

The ADC-7109 is a high performance, low power integrating A/D converter designed to easily interface to microprocessors. The output data (12 bits, polarity and overrange) may be directly accessed under control of two byte enable inputs and a chip select input for a simple parallel bus interface. A UART handshake mode is provided which allows the ADC-7109 to work with industry-standard UARTs to provide serial data transmission, ideal for remote data logging applications. The RUN/HOLD input and STATUS output allow monitoring and control of conversion timing.
The ADC-7109 provides the user the high accuracy, low noise, low drift, versatility, and economy of the dual-slope integrating A/D converter. Features like true differential input and reference, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max., input bias current of 10 pA max., and typical power consumption of 20 mW make the ADC-7109 an attractive per-channel alternative to analog multiplexing for many data acquisition applications.

ADC-7109

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage (GND to V^{+}) $+6.2 \mathrm{~V}$
Negative Supply Voltage (GND to V^{-}; $-9 \mathrm{~V}$
Analog Input Voltage (Lo or Hi) (Note 1) V^{+}to V^{-}
Reference Input Voltage (Lo or Hi) (Note 1 V^{+}to V^{-}
Digital Input Voltage $\mathrm{V}^{+}+0.3 \mathrm{~V}$(Pins 2-27) (Note 2)GND-0.3V
Power Dissipation (Note 3)Planic Parkardip Package$500 \mathrm{~mW} @ 70^{\circ} \mathrm{C}$Plastic Package
Operating Temperature
Ceramic or Cerdip Package $25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
Plastic Package $0^{\circ} \mathrm{C}=\mathrm{T}_{A}=70^{\circ} \mathrm{C}$
Storage Temperature $55^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 60 sec) $300^{\circ} \mathrm{C}$

Absolute maximum ratings define stress limitations which if exceeded may permanently damage the device. These ratings are not continuous duty ratings. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

TABLE I OPERATING CHARACTERISTICS

All parameters with $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise indicated. Test circuit as shown on page 1.

ANALOG SECTION

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Zero Input Reading		$\begin{aligned} & \mathrm{V}_{\text {IN }}=0.0 \mathrm{~V} \\ & \text { Full scale }=409.6 \mathrm{mV} \end{aligned}$	00008	$\pm 0000_{8}$	$+00008$	Octal Reading
Ratiometric Reading		$\begin{aligned} & V_{\text {IN }}=V_{\text {REF }} \\ & V_{\text {REF }}=204.8 \mathrm{mV} \end{aligned}$	37778	$\begin{aligned} & 3777_{8} \\ & 4000_{8} \end{aligned}$	40008	Octal Reading
Non-Linearity (Max deviation from best straight line fit)		$\begin{aligned} & \text { Full scale }=409.6 \mathrm{mV} \text { or } \\ & 4.096 \mathrm{~V} \end{aligned}$	-1	$\pm .2$	+1	Counts
Roll-over Error Idifference in reading for equal pos. and neg. inputs near full scale.			-1	$\pm .2$	+1	Counts
Common Mode Rejection Ratio		$\begin{aligned} & V_{\mathrm{CM}} \pm 1 \mathrm{~V} \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} / \mathrm{V}$
Noise (p-p value not exceeded 95\% of time)		$\begin{aligned} & V / \mathbb{N}=0 \mathrm{~V} \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
Leakage Current at Input		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		1	10	pA
Zero Reading Drift		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient		$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{IN}}=408.9 \mathrm{mV}=>7770_{8} \\ \text { reading } \\ \text { Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{array}$		1	5	ppm $/{ }^{\circ} \mathrm{C}$
Supply Current ${ }^{\text {V }}$ to GND	IDL	$\mathrm{V}_{\mathrm{IN}}=0$, Crystal Osc.		700	1500	$\mu \mathrm{A}$
Supply Current $\mathrm{V}+$ to V -	IDA	Pins 2-21, 25, 26, 27, 29, open		700	1500	$\mu \mathrm{A}$
Ref Out Voltage		Referred to $\mathrm{V}^{+}, 25 \mathrm{k} \Omega$ between V^{+}and REF OUT	-2.4	-2.8	-3.2	\checkmark
Ref Out Temp. Coefficient		$25 \mathrm{k} \Omega$ between $\mathrm{V}+$ and REF OUT		80		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

ADC-7109
DIGITAL SECTION

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage		V OH	$\begin{aligned} & \text { IOUT }=100 \mu \mathrm{~A} \\ & \text { Pins } 2-16,18,19,20 \end{aligned}$	3.5	4.3		V
Output Low Voltage		Vol	IOUT $=1.6 \mathrm{~mA}$		0.2	0.4	\checkmark
Output Leakage Current			Pins 3-16 high impedance		$\pm .01$	± 1	$\mu \mathrm{A}$
Control I/O Pullup Current			Pins 18, 19, 20 VOUT $=\mathrm{V}+-3 \mathrm{~V}$ MODE input at GND		5		$\mu \mathrm{A}$
Control I/O Loading			HBEN Pin 19 LBEN Pin 18			50	pF
Input High Voltage		V_{IH}	Pins 18-21, 26, 27 referred to GND	2.5			V
Input Low Voltage		$V_{\text {IL }}$	Pins 18-21, 26, 27 referred to GND			1	V
Input Pull-up Current			Pins 26, 27 Vout $=\mathrm{V} \cdot-3 \mathrm{~V}$		5		$\mu \mathrm{A}$
Input Pull-up Current			Pins 17, 24 Vout $=\mathrm{V}+-3 \mathrm{~V}$		25		$\mu \mathrm{A}$
Input Pull-down Current			Pin 21 Vout GND +3V		5		$\mu \mathrm{A}$
Oscillator Output Current	High	OOH	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		1		mA
	Low	OOL	VOUT $=2.5 \mathrm{~V}$		1.5		mA
Buffered Oscillator Output Current	High	BOOH	VOUT $=2.5 \mathrm{~V}$		2		mA
	Low	BOOL	VOUT $=2.5 \mathrm{~V}$		5		mA
MODE Input Pulse Width				50			ns

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to • $100 \mu \mathrm{~A}$
Note 2: Due to the SCR structure inherent in the process used to fabricate these devices. connecting any digital inputs or outputs to voltages greater than V or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources not on the same power supply be applied to the ADC-7109 before its power supply is established. and that in multiple supply systems the supply to the ADC-7109 be activated first
Note 3: This limit refers to that of the package and will not be obtained during normal operation.

Figure 1A. To transmit latest result. send any word to UART.

Figure 1B. Typical Connection Diagram Parallel Interface With 8748/8048 Microcomputer

ADC-7109

TABLE 2 - Pin Assignment and Function Description

PIN	SYMBOL	DESCRIPTION
1	GND	Digital Ground. OV. Ground return for all digital logic
2	STATUS	Output - High during integrate and deintegrate until data is latched. - Low when analog section is in Auto-Zero configuration.
3	POL	Polarity. Three-State Output
4	OR	Over-range. Three-State Output
5	B12	Bit 12 (Most Significant Bit)
6	B11	Bit 11
7	B10	Bit 10
8	B9	Bit 9
9	B8	Bit 8
10	B7	Bit 7
11	B6	Bit 6 Data Bits. Three-State Output
12	B5	Bit 5
13	B4	Bit 4
14	B3	Bit 3
15	B2	Bit 2
16	B1	Bit 1 Least Significant Bit
17	TEST	Input High - Normal Operation. Input Low - Forces all bit outputs high. Note: This input is used for test purposes only.
18	LBEN	Low Byte Enable - With Mode Pin 21' Iow. and $\overline{C E}$ LOAD Pin 20 low taking this pin low activates low order byte outputs B1-B8. - With Mode • Pin 21 high. this pin serves as a low byte flag output used in handshake mode. See Figures 7. 8. 9.
19	HBEN	High Byte Enable - With Mode Pin 21, low. and $\overline{\mathrm{CE} \text { LOAD }}$ Pin 20 low. taking this pin low activates high order byte outputs B9B12. POL. OR. - With Mode Pin 21 high. this pin serves as a high byte flag output used in handshake mode. See Figures 7. 8. 9.
20	$\overline{\text { CE LOAD }}$	Chip Enable Load - With Mode 'Pin 21 ' low. $\overline{C E}$ LOAD serves as a master output enable. When high. B1-B12. POL. OR outputs are disabled. - With Mode IPin 21 high. this pin serves as a load strobe used in handshake mode. See Figures 7. 8. 9.

PIN	SYMBOL	DESCRIPTION
21	MODE	Input Low - Direct output mode where $\overline{\mathrm{CE} / \mathrm{LOAD}}$ (Pin 20), $\overline{\mathrm{HBEN}}$ (Pin 19) and $\overline{\text { LBEN (Pin 18) act as inputs directly }}$ controlling byte outputs. Input Pulsed High - Causes immediate entry into handshake mode arid output of data as in Figure 9. Input High - Enables $\overline{\text { CE LOAD }}$ (Pin 20). $\overline{H B E N}$ (Pin 19) and $\overline{\text { BEN }}$ (Pir 18) as outputs, handshake mode will be entered and data output as in Figures 7 and 8 at conversion completion.
22	OSC IN	Oscillator Input
23	OSC OUT	Oscillator Output
24	OSC SEL	Oscillator Select - Input high configures OSC.IN. OSC OUT. BUF OSC OUT as RC oscillator - clock will be same phase and duty cycle as BUF OSC OUT. - Input Iow configures OSC IN. OSC OUT for crystal oscillator - clock trequency will be 1.58 of frequency at BUF OSC OUT
25	BUF OSC OUT	Buffered Oscillator Output
26	RUN HOLD	Input High - Conversions contınuously performed every 8192 clock pulses. Input Low - Conversion in progress completed. converter will stop in Auto-Zero 7 counts before integrate.
27	SEND	Input - Used in handshake mode to indicate ability of an external device to accept data.
28	V	Analog Negative Supply - Nom!rially 5V with respect to GND Pin 1 .
29	REF OUT	Reference Voltage Output - Nominally 2.8 V down from V iPin 40
30	BUFFER	Buffer Amplifier Output
31	AUTO-ZERO	Auto-Zero Node - Inside foll cf Caz
32	INTEGRATOR	Integrator Output - Outside fo:l of CINT
33	COMMON	Analog Common - System is Auto-Zeroed to COMMON
34	INPUT LO	Differential Input Low Side
35	INPUT HI	Differential Input High Side
36	REF IN	Differential Reference Input Positive
37	REF CAP	Reference Capacitor Positive
38	REF CAP	Reference Capacitor Negative
39	REF IN	Differential Reference Input Negative
40	V	Positive Supply Voltage - Nominally 5 V with respect to GND (Pin 1 .

DETAILED DESCRIPTION

Analog Section

Figure 2 shows the equivalent circuit of the Analog Section of the ADC-7109. When the RUN/ $\overline{H O L D}$ input is left open or connected to V^{+}, the circuit will perform conversions at a rate determined by the clock frequency (8192 clock periods per cycle). Each measurement cycle is divided into three phases as shown in Figure 3. They are (1) Auto-Zero (AZ), (2) Signal Integrate (INT) and (3) Deintegrate (DE).

1. Auto-Zero Phase

During auto-zero three things happen. First, input high and low are disconnected from their pins and internally shorted to analog common. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-
zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the AZ accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

2. Signal Integrate Phase

During signal integrate the auto-zero loop is opened, the internal short is removed and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between input high and input low for a fixed time of 2048 clock periods. At the end of this phase, the polarity of the integrated signal is determined.

Figure 2: Analog Section

Figure 3: Conversion Timing

3. Deintegrate Phase

The final phase is deintegrate, or reference integrate. Input low is internally connected to analog common and input high is connected across the previously charged (during auto-zero) reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to the zero crossing (established in Auto Zero) with a fixed slope. Thus the time for the output to returr. to zero (represented by the number of clock periods counted) is proportional to the input signal.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator
positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full scale with some loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.

The ADC-7109 has, however, been optimized for operation with analog common near digital ground. With power supplies of +5 V and -5 V , this allows a 4 V full scale integrator swing positive or negative maximizing the performance of the analog section.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to deintegrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for (+) or $(-)$ input voltage will give a roll-over error. However, by

ADC-7109

selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition see Component Values Selection below).

The roll-over error from these sources is minimized by having the reference common mode voltage near or at analog common.

Component Value Selection

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

The most important consideration is that the integrator output swing (for full-scale input) be as large as possible. For example, with $\pm 5 \mathrm{~V}$ supplies and COMMON connected to GND, the nominal integrator output swing at full scale is $\pm 4 \mathrm{~V}$. Since the integrator output can go to 0.3 V from either supply without significantly affecting linearity, a 4 V integrator output swing allows 0.7 V for variations in output swing due to component value and oscillator tolerances. With $\pm 5 \mathrm{~V}$ supplies and a common mode range of $\pm 1 \mathrm{~V}$ required, the component values should be selected to provide $\pm 3 \mathrm{~V}$ integrator output swing. Noise and rollover errors will be slightly worse than in the $\pm 4 \mathrm{~V}$ case. For larger common mode voltage ranges, the integrator output swing must be reduced further. This will increase both noise and rollover errors. To improve the performance, supplies of $\pm 6 \mathrm{~V}$ may be used.

1. Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 4.096 volt full scale, 200 k ! is near optimum and similarly a $20 \mathrm{k}!$ for a 409.6 mV scale. For other values of full scale voltage, Rint should be chosen by the relation RINT $=\frac{\text { full scale voltage }}{20 \mu \mathrm{~A}}$

2. Integrating Capacitor

The integrating capacitor CINT should be selected to give the maximum integrator output voltage swing without saturating the integrator (approximately 0.3 volt from either supply). For the ADC-7109 with ± 5 volt supplies and analog common connected to GND, $a \pm 3.5$ to ± 4 volt integrator output swing is nominal. For $7-1 / 2$ conversions per second (61.72 KHz clock frequency) as provided by the crystal oscillator, nominal values for $\mathrm{C}_{\mathrm{INT}}$ and $\mathrm{C}_{A Z}$ are $0.15 \mu \mathrm{~F}$ and $0.33 \mu \mathrm{~F}$, respectively. If different clock frequencies are used, these values should be changed to maintain the integrator output voltage swing. In general, the value of CINT is given by

$$
\mathrm{C}_{\text {INT }}=\frac{(2048 \times \text { clock period })(20 \mu \mathrm{~A})}{\text { integrator output voltage swing }}
$$

An additional requirement of the integrating capacitor is that it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

3. Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system; a big capacitor, giving less noise. However, it cannot be increased without limits since it, in parallel with the integrating capacitor forms an R-C time constant that determines the speed of recovery from overloads and more important the error that exists at the end of an auto-zero cycle. For 409.6 mv full scale where noise is very important and the integrating resistor small, a value of CAZ twice CINT is optimum. Similarly for 4.096 V full scale where recovery is more important than noise, a value of $\mathrm{C}_{A Z}$ equal to half of $\mathrm{C}_{\text {INT }}$ is recommended

For optimal rejection of stray pickup, the outer foil of CAZ should be connected to the R-C summing junction and the inner foil to pin 31. Similarly the outer foil of CINT should be connected to pin 32 and the inner foil to the R-C summing junction

4. Reference Capacitor

A $1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the reference low is not at analog common) and a 409.6 mV scale is used, a larger value is required to prevent roll-over error. Generally $10 \mu \mathrm{~F}$ will hold the rollover error to 0.5 count in this instance.

5. Reference Voltage

The analog input required to generate a full scale output of 4096 counts is $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\text {REF }}$. Thus for a normalized scale, a reference of 2.048 V should be usd for a 4.096 V full scale, and 204.8 mV should be used for a 0.4096 V full scale. However, in many applications where the A/D is sensing the output of a transducer, there will exist a scale factor other than unity between the absolute output voltage to be measured and a desired digital output. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 409.6 mV , the input voltage should be measured directly and a reference voltage of 0.341 V should be used. Suitable values for integrating resistor and capacitor are 34 k and $0.15 \mu \mathrm{~F}$. This avoids a divider on the input. Another advantage of this system occurs when a zero reading is desired for non-zero input. Temperature and weight measurements with an offset or tare are examples. The offset may be introduced by connecting the voltage output of the transducer between common and analog high, and the offset voltage between common and analog low, observing poiarities carefully. However, in proces-sor-based systems using the ADC-7109, it may be more efficient to perform this type of scaling or tare subtraction digitally using software.

6. Reference Sources

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ADC-7109 at 12 bits is one part in 4096, or 244 ppm . Thus if the reference has a temperature coefficient of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (onboard reference) a temperature difference of $3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error. For this reason, it is recommended that an external highquality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

The ADC-7109 provides a Reference Output (pin 29) which may be used with a resistive divider to generate a suitable reference voltage. This output will sink up to about 20 mA without significant variation in output voltage, and is provided with a pullup bias device which sources about $10 \mu \mathrm{~A}$. The output voltage is nominally 2.8 V below V^{+}, and has a temperature coefficient of $\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. When using the onboard reference, Ref Out (Pin 29) should be connected to Ref - (pin 39), and Ref+ should be connected to the wiper of a precision potentiometer between Ref Out and V^{+}. The circuit for a 204.8 mV reference is shown in the test circuit. For a 2.048 V reference, the fixed resistor should be removed, and a 25 k ! precision potentiometer between Ref Out and V^{+}should be used.

DETAILED DESCRIPTION

Digital Section

The digital section includes the clock oscillator and scaling circuit, a 12-bit binary counter with output latches and TTLcompatible three-state output drivers, polarity, over-range and control logic, and UART handshake logic, as shown in the Block Diagram Figure 4.

Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined in Table 1 "Operating Characteristics". For minimum power consumption, all inputs should swing from GND (low) to V^{*} (high). Inputs driven from TTL gates should have $3-5 \mathrm{k}$! pullup resistors added for maximum noise immunity.

MODE Input

The MODE input is used to control the output mode of the converter. When the MODE pin is connected to GND or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left openi, the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable
inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in two bytes, then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

STATUS Output

During a conversion cycle, the STATUS output goes high at the beginning of Signal Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 3 for details of this tıming. This signal may be used as a "data valid" flag (data never changes while STATUS is low) to drive interrupts, or for monitoring the status of the converter.

RUN/ $\overline{\text { HOLD }}$ Input

When the RUN/HOLD input is connected to V^{+}or left open (this input has a pullup resistor to ensure a high level when the pin is left open), the circuit will continuously perform conversion cycles, updating the output latches at the end of every Deintegrate (Phase III) portion of the conversion cycle (See Figure 3). In this mode of operation, the conversion cycle will be performed in 8192 clock periods, regardless of the resulting value.
If the RUN/HOLD input goes low (and stays there) during Integrate (Phase II) or Deintegrate (Phase III) before the zero crossing is detected, the converter will complete the conversion in progress, update the output latches, and then terminate Phase III, jumping to Auto-Zero (Phase I). If RUN/HOLD stays low, the converter will ensure a minimum Auto-Zero time, and wait in Auto-Zero until the RUN/ $\overline{H O L D}$ input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STATUS output will go high) seven clock periods after the high level is detected at RUN/ $\overline{H O L D}$. See Figure 5 for details.

Figure 4: Digital Section

Figure 5: Run/Hold Operation

Using the RUN/ $\overline{H O L D}$ input in this manner allows an easy "convert on demand" interface to be used. The converter may be held at idle in auto-zero with RUN/ $\overline{\mathrm{HOLD}}$ low. When RUN/FOLD goes high the conversion is started, and when the STATUS output goes low the new data is valid (or transferred to the UART - see Handshake Mode). RUN/FOLD may now go low terminating Deintegrate and ensuring a minimum Auto-Zero time before stopping to wait for the next conversion. If RUN/ $\overline{\text { HOLD }}$ goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to Auto-Zero. This feature can be used to "short-cycle" the converter by eliminating the time spent in Deintegrate after the zero crossing. The required activity on the RUN/ $\overline{H O L D}$ input can be provided by connecting it to the Buffered Oscillator Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A030 for a discussion of the effects this will have on AutoZero performance.
If the RUN/ $\overline{\mathrm{HOLD}}$ input goes low and stays low during AutoZero (Phase 1), the converter will simply stop at the end of Auto-Zero and wait for RUN/HOLD to go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected.

Direct Mode

When the MODE pin is left at a low level, the data outputs (bits 1 through 8 low order byte, bits 9 through 12, polarity and over-range high order byte) are accessible under control of the byte and chip enable terminals as inputs. These three inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip enable input is low, taking a byte enable input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used, as shown in the section entitled "Interfacing." The timing requirements for these outputs are shown in Figure 6 and Table 3.

Table 3 - Direct Mode Timing Requirements

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
tBEA	Byte Enable Width	200	500		ns
tDAB	Data Access Time from Byte Enable		150	300	ns
tDHB	Data Hold Time from Byte Enable		150	300	ns
tCEA	Chip Enable Width	300	500		ns
tDAC	Data Access Time from Chip Enable		200	400	ns
tDHC	Data Hold Time from Chip Enable		200	400	ns

Figure 6: Direct Mode Output Timing
It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the data while it is begin updated, which could lead to scrambled data. Synchronizing the access of data with the conversion cycle by monitoring the STATUS output will prevent this. Data is never updated while STATUS is low.

Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the ADC-7109 to digital systems, where the A / D converter becomes active in controlling the flow of data instead of passively responding to chip and byte enable inputs. This mode is specifically designed to allow a direct interface between the ADC-7109 and industry-standard UARTs (such as the Intersil CMOS UARTs, IM6402/3) with no external logic required. When triggered into the handshake mode, the ADC-7109 provides all the control and flag signals necessary to sequence the two bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central controlling processor.
Entry into the handshake mode is controlled by the MODE pin. When the MODE terminal is held high, the ADC-7109 will enter the handshake mode after new data has been stored in the output latches at the end of every conversion performed (See Figures 7 and 8). The MODE terminal may also be used to trigger entry into the handshake mode on demand. At any time during the conversion cycle, the low to high transition of a short pulse at the MODE input will cause immediate entry

Figure 7: Handshake With Send Held Positive

Figure 8: Handshake - Typical UART Interface Timing

ADC-7109

into the handshake mode. If this pulse occurs while new data is being stored, the entry into handshake mode is delayed until the data is stable. While the converter is in the handshake mode, the MODE input is ignored, and although conversions will still be performed, data updating will be inhibited (See Figure 9) until the converter completes the output cycle and clears the handshake mode.

When the converter enters the handshake mode, or when the MODE input is high, the chip and byte enable terminals become TTL-compatible outputs which provide the control signals for the output cycle (See Figures 7, 8, and 9).

In handshake mode, the SEND input is used by the converter as an indication of the ability of the receiving device (such as a UART) to accept data.

Figure 7 shows the sequence of the output cycle with SEND held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the $\overline{\mathrm{CE} / L O A D}, \overline{\mathrm{LBEN}}$ and $\overline{\mathrm{HBEN}}$ terminals are active as outputs). The high level at the SEND input is sensed on the same high to low internal clock edge. On the next low to high internal clock edge, the $\overline{\mathrm{CE} / L O A D}$ and the $\overline{\mathrm{HBEN}}$ outputs assume a low level, and the high-order byte (bits 9 through 12, POL, and OR) outputs are enabled. The $\overline{\mathrm{CE} / \mathrm{LOAD} \text { output }}$ remains low for one full internal clock period only, the data outputs remain active for $1-1 / 2$ internal clock periods, and the high byte enable remains low for two clock periods. Thus the $\overline{C E / L O A D}$ output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the
byte enable as an output may be used as a byte identification flag. With SEND remaining high the converter completes the output cycle using $\overline{C E / L O A D}$ and $\overline{\mathrm{LBEN}}$ while the low order byte outputs (bits 1 through 8) are activated. The handshake mode is terminated when both bytes are sent.
Figure 8 shows an output sequence where the SEND input is used to delay portions of the sequence, or handshake to ensure correct data transfer. This timing diagram shows thit relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEND input to the ADC-7109 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the $\overline{C E / L O A D}$ terminal of the ADC-7109 drives the TBRL (Transmitter Buffer Register Load) input to the UART The data outputs are paralleled into the eight Transmitter Buffer Register inputs.
Assuming the UART Transmitter Buffer Register is empty, the SEND input will be high when the handshake moce is entered after new data is stored. The $\overline{C E / L O A D}$ and $\overline{\mathrm{HB}} \overline{=N}$ terminals will go low after SEND is sensed, and the high order byte outputs become active. When $\overline{\mathrm{CE} / \mathrm{LOAD}}$ goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the $\overline{\text { HBEN }}$ output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ADC-7109

Figure 9: Handshake Triggered By Mode

ADC-7109

internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the HBEN output returns high. At the same time, the $\overline{C E / L O A D}$ and LBEN outputs go low, and the low order byte outputs become active. Similarly, when the $\overline{C E / L O A D}$ returns high at the end of one clock period, the low order data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ADC-7109 internal clock high to low edge, disabling the data outputs. One-half internal clock later, the handshake mode will be cleared, and the $\overline{\mathrm{CE} / \mathrm{LOAD}}, \overline{\mathrm{HBEN}}$, and $\overline{\mathrm{LBEN}}$ terminals return high and stay active las long as MODE stays high).
With the MODE input remaining high as in these examples. the converter will output the results of every conversion except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 9 shows a handshake output sequence triggered by such an edge. In addition, the SEND input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEND input, and the sequence for the first (high order byte is similar to the sequence for the second byte. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STATUS output and RUN/FOLD input functioning normally. The only difference is that new data will not be latched when in handshake mode. and is therefore lost.

Oscillator

The ADC-7109 is provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillato:. The OSCILLATOR SELECT input changes the internal configuration of the oscillator to optimize it for RC or crystal operation.

When the OSCILLATOR SELECT input is high or left open (the input is provided with a pullup resistor), the oscillator is configured for RC operation, and the internal clock will be of the same frequency and phase as the signal at the BUFFERED OSCILLATOR OUTPUT. The resistor and capacitor should be connected as in Figure 10. The circuit will oscillate at a frequency given by $\mathfrak{f}=.45 / \mathrm{RC}$. A $100 \mathrm{k} \Omega$ resistor is recommended for useful ranges of frequency. For optimum 60 Hz line rejection, the capacitor value should be chosen such that 2048 clock periods is close to an integral multiple of the 60 Hz period.

Figure 10: RC Oscillator
When the OSCILLATOR SELECT input is low a feedback device and output and input capacitors are added to the oscillator. In this configuration, as shown in Figure 11, the

Figure 11: Crystal Oscillator
oscillator will operate with most crystals in the 1 to 5 MHz range with no external components. Taking the OSCILLATOR SELECT input low also inserts a fixed $\div 58$ divider circuit between the BUFFERED OSCILLATOR OUTPUT and the internal clock. Using an inexpensive 3.58 MHz TV crystal, this division ratio provides an integration time given by:

$$
T=(2048 \text { clock periods }) \times\left(\frac{58}{3.58 \mathrm{MHz}}\right)-33.18 \mathrm{~ms}
$$

This time is very close to two 60 Hz periods or 33.33 ms . The error is less than one percent, which will give better than 40 dB 60 Hz rejection. The converter will operate reliably at conversion rates of up to 30 per second. which corresponds to a clock frequency of 245.8 kHz .
If at any time the oscillator is to be overdriven, the overdriving signal should be applied at the OSCILLATOR INPUT, and the OSCILLATOR OUTPUT should be left open. The internal clock will be of the same frequency, duty cycle, and phase as the input signal when OSCILLATOR SELECT is left open. When OSCILLATOR SELECT is at GND, the clock will be a factor of 58 below the input frequency.
When using the ADC-7109 with the IM6403 UART, it is possible to use one 3.58 MHz crystal for both devices. The BUFFERED OSCILLATOR OUTPUT of the ADC-7109 may be used to drive the OSCILLATOR INPUT of the UART, saving the need for a second crystal. However, the BUFFERED OSCILLATOR OUTPUT does not have a great deal of drive, and when driving more than one slave device, external buffering should be used.

Test Input

When the TES 1 input is taken to a level halfway between V and GND. the counter output latches are enabled. allowing the counter contents to be examed anytime.
When the TEST input is connected to GND, the counter outputs are all forced into the high state, and the internal clock is disabled. When the input returns to the $1 / 2\left(\mathrm{~V}^{\prime}\right.$-GND) voltage or to V^{\prime} and one clock is input, the counter outputs will all be clocked to the negative state. This allows easy testing of the counter and its outputs.

INTERFACING

Direct Mode

Figure 12 shows some of the combinations of chip enable and byte enable control signals which may be used when interfacing the ADC-7109 to parallel data lines. The $\overline{C E / L O A D}$ input may be tied low, allowing either byte to be controlled by its own enable as in Figure 12A. Figure 12B shows a configuration where the two byte enables are connected together. In this configuration, the $\overline{C E / L O A D}$ serves as a chip enable, and the $\overline{\text { HBEN }}$ and $\overline{\text { LBEN }}$ may be connected to GND or serve as a second chip enable. The 14 data outputs will all be enabled simultaneously. Figure 12C shows the $\overline{H B E N}$ and $\overline{\mathrm{LBEN}}$ as flag inputs, and $\overline{\mathrm{CE} / \mathrm{LOAD}}$ as a master enable, which could be the READ strobe available from most microprocessors.

Figure 12: Direct Mode Chip and Byte Enable Combinations

Figure 13 shows an approach to interfacing several. ADC-7109s to a bus, ganging the $\overline{\mathrm{HBEN}}$ and $\overline{\mathrm{LBEN}}$ signals to several converters together, and using the $\overline{C E / L O A D}$ inputs (perhaps decoded from an address) to select the desired converter.
Some practical circuits utilizing the parallel three-state output capabilities of the ADC-7109 are shown in Figures 14 through 19. Figure 14 shows a straightforward application to the Intel MCS-48, -80 and -85 systems via an 8255 PPI , where the ADC-7109 data outputs are active at all times. The I/O ports of an 8155 may be used in the same way. This interface can be used in a read-anytime mode, although a read performed while the data latches are being updated will lead to scrambled data. This will occur very rarely, in the proportion of setup-skew times to conversion time. One way to overcome this is to read the STATUS output as well, and if it is high, read the data again after a delay of more than $1 / 2$ converter clock period. If STATUS is now low. the second reading is correct. and if it is still high, the first reading is correct. Alternatively, this timing problem is completely avoided by using a read-after-update sequence. as shown in Figure 15. Here the high to low transition of the STATUS output drives an interrupt to the microprocessor causing it to
access the data. This application also shows the RUN/ $\overline{H O L D}$ input being used to initiate conversions under software control.
A similar interface to Motorola MC6800 or MOS Technology MCS650X systems is shown in Figure 16. The high to low transition of the STATUS output generates an interrupt via the Control Register B CB1 line. Note that CB2 controls the RUN $\overline{H O L D}$ pin through Control Register B, allowing software-controlled initiation of conversions in this system also.
Figure 17 shows an interface to the Intersil IM6100 CMOS microprocessor family using the IM6101 PIE to control the data transfers. Here the data is read by the microprocessor in an 8 -bit and a 6 -bit word, directly from the ADC-7109 to the microprocessor data bus. Again, the high to low transition of the STATUS output generates an interrupt leading to a software routine controlling the two read operations. As before, the RUN/HOLD input to the ADC-7109 is shown as being under software control.

The three-state output capability of the ADC-7109 allows direct interfacing to most microprocessor busses. Examples of this are shown in the Typical Connection Diagram on

Figure 13: Three-stating Several 7109's to a Small Bus

Page 3 and in Figures 18 and 19. It is necessary to carefully consider the system timing in this type of interface, to be sure that requirements for setup and hold times, and minimum pulse widths are met. Note also the drive limitations on long busses. Generally this type of interface is only favored if the
memory peripheral address density is low so that simple address decoding can be used. Interrupt handling can also require many additional components, and using an interface device will usually simplify the system in this case.

Figure 14: Full-time Parallel Interface to INTEL Microcomputer Systems

Figure 15: Full-time Parallel Interface to INTEL Microcomputers With Interrupt

ADC-7109

Figure 16: Full-time Parallel Interface to MC6800 or MCS650X Microprocessors

Figure 17: ADC-7109-IM6100 Interface Using IM6101 PE

Figure 18: Direct ADC-7109-INTEL 8080/8085 Interface

Figure 19: Direct ADC-7109 - MC6800 Bus Interface

Handshake Mode

The handshake mode allows ready interface with a wide variety of external devices. For instance. external latches may be clocked by the rising edge of $\overline{C E / L O A D}$. and the byte enables may be used as byte identification flags or as load enables.

Figure 20 shows a handshake interface to Intel microprocessors again using an 8255PPI. The handshake operation with the 8255 is controlled by inverting its Input Buffel Full "BF, flag to drive the SEND input to the ADC-7109, and using the $\overline{C E / L O A D}$ to drive the 8255 strobe. The internal control register of the PPI should be set in MODE 1 for the port used. If the 7109 is in handshake mode and the 8255 IBF flag is low. the next word will be strobed into the port. The strobe will cause IBF to go high SEND goes low), which will keep the enabled byte outputs active. The PPI will generate an interrupt which when executed will result in the data being read. When tine byte is read, the IBF will be reset low, which causes the ADC-7109 to sequence into the next byte. This figure shows the MODE input to the ADC-7109 connected to a control line on the PPI. If this output is left high, or tied high
separately, the data from every conversion (provided the data access takes less time than a conversion will be sequenced in two bytes into the system.

If this output is made to go from low to high, the output sequence can be obtained on demand. and the interrupt may be used to leset the MODE bit. Note that the RUN//HOLD input to the ADC-7109 may also be driven by a bit of the 8255 so that conversions may be obtained on command under software control. Note that one port of the 8255 is not used, and can service another peripheral device. The same arrangement can also be used with the 8155 .
Figure 21 shows a similar arrangement with the MC6800 or MCS650X microprocessors, except that both MODE and RUN/ $\overline{H O L D}$ are tied high to save port outputs.
The handshake mode is particularly convenient for directly interfacing to industry standard UARTs (such as the Intersil IM6402/6403 or Western Digital TR1602) providing a minimum component count means of serially transmitting converted data. A typical UART connection is shown on page 3. In this circuit, any word received by the UART causes

Figure 20: Handshake Interface - ADC-7109 to INTEL MCS-48, -80, 85

Figure 21：Handshake Interface－ADC－7109 to MC6800，MCS650X
the UART DR（Data Ready）output to go high．This drives the MODE input to the ADC－7109 high，triggering the ADC－7109 into handshake mode．The high order byte is output to the UART first，and when the UART has transferred the data to the Transmitter Register．TBRE＇SEND＇goes high and the second byte is output．When TBRE（SEND）goes high again， $\overline{L B E N}$ will go high，driving the UART DRR（Data Ready Reset） which will signal the end of the transfer of data from the ADC－7109 to the UART．

Figure 22 shows an extension of the one converter－one UART scheme of the Typical Connection to several ICL7109s with one UART．In this circuit．the word received by the UART ：avallable at the RBR outputs when DR is high，
is used to select which converter will handshake with the UART．With no external components，this scheme will allow up to eight ADC－7109s to interface with one UART．Using a few more components to decode the received word will allow up to 256 converters to be accessed on one serial line．
The applications of the ADC－7109 are not limited to those shown here．The purpose of these examples is to provide a starting point for users to develop useful systems，and to show some of the variety of interfaces and uses of the ADC－7109．Many of the ideas suggested here may be used in combination：in particular the uses of the STATUS， RUN／$\overline{H O L D}$ ，and MODE signals may be mixed

Figure 22：Multiplexing Converters with Mode Input 11 CABOT BOULEVARD．MANSFIELD．MA 02048／TEL．（617）339－9341／TWX 710－346－1953／TLX 951340 Santa Ana，（714）835－2751，（L．A．）（213）933－7256 • Sunnyvale．CA（408）733－2424 • Gaithersburg．MD（301）840－9490 －Houston，（713）781－8886 • Dallas．TX（214）241－0651 OVERSEAS：DATEL（UK）LTD－TEL：ANDOVER（0264）51055 －DATEL SYSTEMS SARL 602－57－11•DATELEK SYSTEMS GmbH（089）77－60－95－DATEL KK Tokyo 793－1031

FEATURES

- Continuous Tracking Operation
- 10^{6} Conversions/sec
- 10 Bit Resolution
- Monotonic Over Temperature
- Controllable Outputs
- TTL/CMOS Compatible

GENERAL DESCRIPTION
The ADC-856 is a 10 bit tracking A/D converter, capable of supplying continuously updated conversion data on full scale sinusoidal signals up to 300 Hz without the need for a sample and hold. This converter is linear to $\pm 1 / 2$ LSB min. and is monotonic over its operating temperature range. A number of innovative features give this device the flexibility for a wide range of applications.
The circuit is implemented in bipolar, monolithic form. The chip contains a fast window comparator, tracking logic, an up/down counter, a D/A converter, a precision voltage reference with amplifier, data transfer gates, and a data latch/shift register. The external parts required for operation have been held to a few passive components, and allow external programming of the analog input voltage range. Gain temperature coefficient of the circuit is $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, exclusive of reterence.
The ADC-856 is optimized for operation in a continuous tracking mode. In this conversion technique each conversion of an analog signal is based on the last converted value of that signal. For signals that do not vary faster than the converter can track, or 1 LSB/ $\mu \mathrm{sec}$, continuous tracking will provide a valid, updated conversion result every microsecond.
Logic control inputs contribute to this device's usefulness in many different applications. The data transfer gates allow selection of the rate at which the output latch/shift register is updated. The rate may vary from once every microsecond to updating only upon receipt of a command from an external controller. External control also allows selection of output data form, which may be parallel or serial (by supplying an optional clock input). The outputs may be disabled completely in either mode by holding the output enable input low.
The ADC-856 operates on ± 5 VDC power at 50 mA with a power supply rejection of $0.1 \% / \mathrm{V}$. The device is packaged in a 28 ceramic DIP and is available in two operating temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	POWER GROUND	15	CLOCK
2	-5VDC	16	DATA CLOCK
3	COMPENSATION	17	OUTPUT ENABLE
4	REF. AMP. GND.	18	BIT 10 OUT (LSB)
5	REF. AMP. IN	19	BIT 9 OUT
6	REF. OUT	20	BIT 8 OUT
7	REF. GND.	21	BIT 7 OUT
8	D/A GND.	22	BIT 6 OUT
9	I_{RH}	23	BIT 5 OUT
10	lat	24	BIT 4 OUT
11	COMPARATOR IN	25	BIT 3 OUT
12	COMPARATOR GND	26	BIT 2 OUT
13	+5VDC	27	BIT 1 OUT* (MSB)
14	N.C.	28	TRANSFE: DATA

*Serial data output when in serial data mode

MAXIMUM RATINGS Supply Voltage Logic Input Voltage	$\begin{aligned} & \pm 7 \text { Volts } \\ & 0 \mathrm{~V} \text { to }+\mathrm{V}_{\mathrm{cc}} \end{aligned}$
PERFORMANCE	
Resolution.	10 Bits
Linearity Error	$\pm 1 / 2$ LSB max.
Differential Linearity Error...........	$\pm 1 / 2$ LSB
No Missing Codes	Over Oper. Temp. Range
Conversion Time, 1 LSB change	$1 \mu \mathrm{sec}$.
Conversion Time, Full Scale Change .	$1.024 \mathrm{msec}^{1}$
Tracking Speed.....................	$1 \mathrm{LSB} / \mu \mathrm{sec}$ max.
Tracking Bandwidth, Full Scale	$300 \mathrm{~Hz}^{2}$
Gain Tempco	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}^{4}$
Zero Tempco .	$7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FSR^{6}
Power Supply Rejection	0.1\%/V
INPUTS	
Analog Input Range ${ }^{7}$, Unipolar Bipolar.	$\begin{aligned} & 0 \text { to }+5 \mathrm{~V}, 0 \text { to }+10 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{aligned}$
Reference Current	$1 \mathrm{~mA} \pm 0.2 \mathrm{~mA}$
Input Logic Level, HI ("1").	+2.0V min @ $50 \mu \mathrm{~A}^{3}$
Input Logic Level, LO ("0")	+0.8V max. @ $1 \mu \mathrm{~A}^{3}$
Clock Pulse Width	100 nsec . min.
Clock Rate .	1 MHz max.
Data Transfer Input	Hold HI for 50 nsec . min. to load output latches
Output Enable Input	When LO, disables data clock and turns outputs off (HI)
Data Clock Input	When driven by clock at $\leq 1 \mathrm{MHz}$ with min. pulse width of 100 nsec ., provides serial data ouput at Pin 27.
OUTPUTS	
Reference Voltage	$2.48 \mathrm{~V} \pm 1.5 \%$
Reference Tempco.	$40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Reference Load Current, max.	4 mA
D/A Output Current, Full Scale	$4 \mathrm{~mA}^{5}$
Data Output	Parallel or Serial
Output Logic Level, HI ("1")	+2.4V min. @ - $40 \mu \mathrm{~A}$
Output Logic Level, LO ("0")	+0.4V max. @ 1.6 mA
Coding, Unipolar	Straight Binary
Coding, Bipolar.....................	Offset Binary
POWER REQUIREMENT	
Supply Voltage Range	$\pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$
Supply Current	50 mA
Power Consumption	500 mW
Operating Temperature Range	
ADC-856C.	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ADC-856M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Package	28 Pin Ceramic DIP

NOTES:

1. Conversion time is directly dependent on the magnitude of input signal change.
2. Tracking bandwidth is inversely proportional to input signal amplitude, e.g. at half scale bandwidth is 600 Hz .
3. $V_{\mathrm{S}}= \pm 5.5 \mathrm{~V}$
4. Exclusive of Reference.
5. The Full Scale D/A Output Current is 4 Times $I_{\text {Ref }}$.
6. FSR is Full Scale Range, the difference between maximum and minimum inputs.
7. Analog input range is programmed by an external resistor.
8. The transfer of conversion data to the outputs is controlled by the transfer gates. When TRANSFER DATA is held high the outputs update with each conversion. To update the outputs upon command, TRANSFER DATA is taken high for a maximum of 50 nsec., no sooner than 150 nsec . after the active (negative going) edge of the main clock. TRANSFER DATA must go low before the next main clock edge. When TRANSFER DATA is low, the data is held in the output register.
9. Conversion data appears at the outputs in parallel form. Data may be obtained in serial form by clocking DATA CLOCK at up to 1 MHz , with a minimum pulse width of 100 nsec and TRANSFER DATA low. Serial output data (MSB first) is then available at pin 27.
10. When OUTPUT ENABLE is taken low DATA CLOCK is disabled and all output transistors are turned off (all bit outputs go high).
11. The converter tracks the input signal level at a speed of $1 \mathrm{LSB} / \mu \mathrm{sec}$; thus the conversion time for any input signal change is given by
$\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{1 \mathrm{LSB}}=$ conversion time in $\mu \mathrm{sec}$
12. Full Scale D/A output current is four times the reference current; for optimum performance the reference current should be 1 mA . An external reference can be used which can range from .8 mA to 1.2 mA .
13. The tracking bandwidth is inversely proportional to the amplitude of the input signal, e.g., at half scale the bandwidth is 600 Hz .
14. The window comparator and tracking logic determine whether the up/down counter will count up/count down or retain the same value on the negative going edge of the clock pulse.
15. Since the gain tempco of the converter is typically $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, it is recommended that $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ metal film resistors be used for R_{3}, R_{4} and R_{5} for best performance over temperature. The internal reference will typically add $40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to the gain tempco. For improved performance a high quality external reference should be used.
16. R_{1} and R_{2} compensate for the input bias currents of the reference amplifier and comparator whose inputs are at virtual ground. Thus $R_{1}=R_{3}$ and $R_{2}=$ the parallel combination of R_{4}, R_{5} and R_{6}. The parallel combination of R_{4}, R_{5} and R_{6} should be as close to 625Ω as possible as this determines the D/A settling tirr e and therefore conversion time. Refer to the resistor tables for a list of typical values for these resistors.

ORDERING INFORMATION

MODEL	OPER. TEMP. RANGE
ADC-856C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ADC-856M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

The ADC-856 converters employ a tracking conversion technique. Tracking converters are most effectively used in single channel operations on a continuous signal. In this technique each conversion is based on the previous conversion value. A fast window comparator determines whether an up/down counter increments by 1 LSB, decrements by 1 LSB or remains at its last value. The digital word in the counter controls a D/A converter with a precision reference; the analog output goes to the comparator and is compared with the analog input signal.

For signals with a rate of change less than the converter's maximum rate of change (tracking speed), each comparison represents a valid conversion and the converter is therefore tracking the signal. Tracking is not possible when the input signal varies at a rate greater than the converter's maximum or is discontinuous, as in multiplexed applications. In these cases the converter will change at its maximum rate ($1 \mathrm{LSB} / \mu \mathrm{sec}$) until it attains the new signal level. While this acquisition is in progress, each converter step is available to the output as data, even though it does not yet represent the input signal level. The time required to acquire a new signal level is directly proportional to its difference from the previous level; for a full scale change this period is over 1 msec . Allowance should be made for the acquisition time when a rapid signal change is introduced.

TIMING DIAGRAM

** DATA
HI

10

* IF TRANSFER dATA IS HELD HI, THEN THE COUNTER OUTPUTS APPEAR directly at the bit outputs. ** DRIVEN FOR SERIAL DATA OUTPUT ONLY

CODING TABLES

UNIPOLAR OPERATION STRAIGHT BINARY

SCALE	CODE
+ FS -1 LSB	1111111111
$+3 / 4 \mathrm{FS}$	1100000000
$+1 / 2 \mathrm{FS}$	1000000000
$+1 / 4 \mathrm{FS}$	0100000000
+1 LSB	0000000001
0	0000000000

BIPOLAR OPERATION OFFSET BINARY

SCALE	
+ FS -1 LSB	1111111111
$+1 / 2$ FS	1100000000
+1 LSB	1000000001
0	1000000000
-1 LSB	0111111111
$-1 / 2$ FS	0100000000
- FS + LSB	0000000001
- FS	0000000000

BIT OUTPUT DIAGRAM

IF OUTPUT ENABLE IS LO
ALL OUTPUTS TRANSISTORS ARE
TURNED OFF AND ALL BIT
OUTPUTS ARE H.

OUTPUT LOGIC CONTROL

DATA CLOCK (PIN 16)
HI: Clocked at up to 1 MHz for serial data output at Pin 27, MSB first

LO: Output data in parallel format at pins 18-27

OUTPUT ENABLE (PIN 17)

HI: Min. 50 nsec pulse transfers parallel data from the up/ down counter to the data latch/shift register. May data transfer

LO: Data in latches held, new Data in latches held, new
data from counter not transferred to data latches

CALIBRATION PROCEDURE

1. Connect the converter as shown in the connection diagram. Note that Pin 6 is connected to R_{3} and R_{4} only when the internal reference is used (dotted line on diagram)
2. Select R_{1} through R_{6} from values given in the resistor table or calculate from the equations that accompany it.
3. Drive the MAIN CLOCK input (Pin 15) with a compatible clock signal at up to 1 MHz and apply a logic HI to TRANSFER DATA (Pin 28).

UNIPOLAR OPERATION

Zero and Gain Adjustments

1. Apply an analog input voltage of zero $+1 / 2 L S B$
2. Adjust the zero adjustment so that the output code flickers between $000 \ldots 000$ and $000 \ldots 001$
3. Apply an analog input voltage of +F .S. $-1 \frac{1}{2}$ LSB
4. Adjust the gain adjustment $\left(\mathrm{R}_{3}\right)$ so that the output code flickers between $111 \ldots 110$ and 111... 111

BIPOLAR OPERATION

Offset and Gain Adjustments

1. Apply an analog input voltage of $-F . S .+1 / 2 L S B$.
2. Adjust the offset adjustment $\left(R_{4}\right)$ so that the output code flickers between 000...000 and 000... 001 .
3. Apply an analog input voltage of + F.S. $-11 / 2$ LSB.
4. Adjust the gain adjustment $\left(\mathrm{R}_{3}\right)$ so that the output code flickers between 111... 110 and 111... 111 .

CALIBRATION RESISTOR VALUES

R_{4} adjusts the offset for bipolar operations; in unipolar operations R_{4} is replaced with a zero adjustment circuit shown in applications. In either mode R_{3} adjusts the gain. If the predicted values of these resistors do not supply the transition points expected, their values should be recalculated. Each may be trimmed with a $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ trimming pot used in series with the resistor. The trim pots should be constrained to approximately 1% of the nominal value calculated.
The values of R_{1} through R_{6} are calculated from the following:
$* R_{1}=R_{3} \quad * R_{2}=$ the parallel combination of R_{4}, R_{5} and R_{6}.
$R_{3}=\frac{V_{\text {REF }}}{1.0 \mathrm{~mA}} \quad R_{4}=\frac{-V_{\text {REI }} R_{5}}{V_{\text {IN }} \min }$
$R_{s}=\frac{\mathrm{FSR}^{* *}}{\operatorname{logt~}_{\text {max }} \text { (mat }}$
${ }^{*} R_{6}$ is chosen so that the parallel combination of R_{4}, R_{5} and R_{6} is approximately 625Ω, this determines the D/A time constant and hence conversion time.
*The nearest preferred value may be used for these resistors.
${ }^{* *}$ F.S.R. is Full Scale Range, the difference between maximum input voltage and minimum input voltage.

CONNECTION \& CALIBRATION DIAGRAM

RESISTOR TABLES

ANALOG INPUT							
RANGE	V $_{\text {REF }}{ }^{2}$	$R_{1}{ }^{1}$	$R_{2}{ }^{\prime}$	R_{3}	R_{+}	R_{s}	$R_{6}{ }^{\prime}$
0 to +2.5 V	2.5 V	2.5 K	625Ω	2.5 K	∞	625Ω	∞
0 to +5.0 V	2.5 V	2.5 K	625Ω	2.5 K	∞	1.25 K	1.25 K
$\pm 2.5 \mathrm{~V}$	2.5 V	2.5 K	625Ω	2.5 K	1.25 K	1.25 K	∞
0 to +10 V	2.5 V	2.5 K	625Ω	2.5 K	∞	2.5 K	835Ω
$\pm 5 \mathrm{~V}$	2.5 V	2.5 K	625Ω	2.5 K	1.25 K	2.5 K	2.5 K
$\pm 10 \mathrm{~V}$	2.5 V	2.5 K	625Ω	2.5 K	1.25 K	5 K	1.67 K

NOTES: 1. The nearest preferred value may be used for R_{1}, R_{2} and R_{6} 2. For external reference set $R_{1}=V_{\text {Rt: }}$ (Kohms)

UNIPOLAR ZERO

EXTERNAL REFERENCE

FOR UNIPOLAR OPERATION WHERE R 4
APPROACHES ∞ AND A ZERO ADJUSTMENT
IS REQUIRED, THIS CIRCUIT MAY BE USED
TO REPLACE R ${ }_{4}$ 11 CABOT BOULEVARD. MANSFIELD. MA 02048 / TEL (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana. (714)835-2751. (L. A.) (213)933-7256 • Sunnyvale. CA (408)733-2424 • Gaithersburg. MD (301)840-9490 - Houston. (713)781-8886 - Dallas. TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 - DATEL SYSTEMS SARL 602-57-11 - DATELEK SYSTEMS GMDH (089)77-60-95 • DATEL KK TOkyo 793-1031 12Bit，Low Power A／D Converter Model ADC－HC12B

FEATURES

－Single Supply Operation
－Automatic Standby Mode Control
－Low Power Consumption
－Six Input Ranges
－MIL Temp Range Available

GENERAL DESCRIPTION

The ADC－HC is a complete， 12 bit，low pow－ er analog to digital converter utilizing CMOS technology．This hybrid IC incorporates ac－ tive laser trimming of highly stable thin－film resistors to provide module performance （ADC－CM）with IC price，size and reliability．
The device is ideal for portable and remote applications such as seismology，oceanog－ graphy，meteorology，pollution monitoring and battery operation system．Other key ap－ plications include military and aerospace， requiring wide operating temperature range and high reliability．
The ADC－HC converter has the capability of operating from either a single +9 V DC to +15 V DC power source（interrupt power mode）or from a $\pm 9 \mathrm{VDC}$ to $\pm 15 \mathrm{VDC}$ power source（continuous power mode）at a maxi－ mum conversion rate of 3.3 kHz ．

A key feature of this unit when operating in the interrupt power mode is the extremely low quiescent power consumption（less than $10 \mu \mathrm{~A} @ 12 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ）．
Upon receipt of a convert command，the analog circuitry of the converter is ener－ gized and stabilizes in $50 \mu \mathrm{sec}$ ．A complete conversion is performed at which time the EOC goes low，turning off the analog cir－ cuitry，and returns to its quiescent state．The digital data remains valid until it is updated by the next conversion．
Power consumption is a function of conver－ sion rate．For $100,1 \mathrm{~K}$ and 2 K conversions per second，the average power drain is ap－ proximately $3.5,26$ and 50 milliwatts respec－ tively．
Six input voltage ranges are provided by external pin connection： 0 to $+5 \mathrm{~V}, 0$ to +10 V ， 0 to $+20 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，and $\pm 10 \mathrm{~V}$ ．Nonlin－ earity is specified at $\pm 1 / 2$ LSB max．with a gain tempco of $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．Output coding is straight binary，offset binary or 2＇s com－ plement．Serial data is also brought out．

The converters are cased in 32 pin DIP pack－ ages．Models are available for three differ－ ent operating temperature ranges： 0 to +70 ， -25 to +85 and -55 to +125 degrees centi－ grade．High reliability versions of each tem－ perature range are also available under Datel－Intersil＇s＂S＂program and MIL－STD－ 883 level B screening．

CAUTION：The ADC－HC Series are CMOS devices and should be handled carefully to prevent static charge pickup which might damage the devices．The devices should be kept in the shipping containers until ready for installation

SPECIFICATIONS, ADC-HC12B
(Typical at $25^{\circ} \mathrm{C}, \pm 12 \mathrm{~V}$. unless otherwise noted)

MAXIMUM RATINGS		
Positive Supply (VDD)	+18 V	
Negative Supply (Vss)	-18 V	
Analog Inputs	\pm to VDD	

INPUTS

Analog Input Ranges, unipolar Analog Input Ranges, bipolar Input Impedance	0 to $+5 \mathrm{~V}, 0$ to $+10 \mathrm{~V}, 0$ to +20 V
	$\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$
	$5 \mathrm{~K}(0$ to $+5 \mathrm{~V}, \pm 2.5 \mathrm{~V}$)
	$10 \mathrm{~K}(0$ to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$)
	$20 \mathrm{~K}(0$ to $+20 \mathrm{~V}, \pm 10 \mathrm{~V}$)
Start Convert, Interrupt Mode	Positive Pulse with duration of $50 \mu \mathrm{~S} \mathrm{~min}$.
Start Convert,	
Continuous Mode.	Positive Pulse with duration of
	$5 \mu \mathrm{~S} \mathrm{~min}$.
VIL (Logic "0").	0.05 VDD max.
Vir (Logic "1")	0.95 VDD min.
Input Current.	30 pA
Input Capacitance	15 pF

OUTPUTS

Parallel Output Data	12 parallel lines of data, held
	until next conversion command
Vol (Logic "0")	OV, - 2.0 mA
Vor (Logic "1")	Vod, +4.0mA
All Digital Outputs	CMOS Compatible
Coding, unipolar	Straight Binary
Coding, bipolar	Offset Binary, 2's Complement
Serial Output	NRZ successive decision pulses out MSB first, Straight Binary or Offset Binary
Clock Output	Train of positive going (VDD)
E.O.C. (Status)	Conversion Status Signal, Logic 1 "during reset and conversion. Logic " 0 " when conversion complete (data valid)

PERFORMANCE

Resolution Nonlinearity Differential Nonlinearity Gain Error Offset or Zero Error Gain Tempco Offset Tempco Zero Tempco Diff. Nonlinearity Tempco No Missing Codes Conversion Time Throughput Time Power Supply Rejection	```12 Bits \(\pm 1 / 2\) LSB max. \(\pm 1 / 2\) LSB max. Adjust to zero Adjust to zero \(\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max. \(\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) of FSR max. \(\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) of FSR \(\pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) of FSR Guaranteed over operating temperature range \(300 \mu \mathrm{~S}\) max. \(305 \mu \mathrm{~S}\) max. continuous power mode \(350 \mu \mathrm{~S}\) max. interrupt power mode .003\%/\% Supply```
POWER REQUIREMENT	
Continuous Power Mode Vod . Vss.	$\begin{aligned} & +9.0 \mathrm{~V} \text { to }+15.0 \mathrm{~V} \\ & -9.0 \mathrm{~V} \text { to }-15.0 \mathrm{~V} \end{aligned}$
Interrupt Power Mode VDD . .	+9 V to +15.0 V
Power Consumption, Continuous Mode Quiescent Mode	112 mW $120 \mu \mathrm{~W}$ max., $12 \mu \mathrm{~W}$ typ.

PHYSICAL-ENVIRONMENTAL

Operating Temperature Range .	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}(\mathrm{BGC}, \mathrm{BMC}) \\ - & 25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}(\mathrm{BMR}) \\ - & 55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\mathrm{BMM}) \end{aligned}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Type	Ceramic
Pins	0.010×0.018 inch Kovar
Weight	0.5 oz ((14 g.)

1. The ADC-HC contains CMOS components and must be properly handled to prevent damage from static pick-up. Proper anti-static handling procedures should be observed including storage in conductive foam or shorting all pins together with aluminum foil. Do not connect in circuit under "power on" conditions. Digital signals should be applied after the converters power has been turned on.
2. It is recommended for single supply (+12 V nominal) or dual supply ($\pm 12 \mathrm{~V}$ nominal) operation, the power input pins should be bypassed to ground with a $.1 \mu \mathrm{~F}$ ceramic capacitor. It is not critical that the supplies be balanced.
3. Analog and digital grounds should be kept separate whenever possible to prevent digital signals from flowing in the analog ground circuit and inducing spurious analog signal noise. Analog Common (Pin 23) and Digital Ground (Pin 22) are not connected internally and must be tied together externally.
4. The ADC-HC can operate from either a single or dual supply. When using dual supplies, tie POWER MODE (Pin 17) to Vod (Pin 18). In this continuous power mode, an A/D conversion will take place when a $5 \mu \mathrm{sec}$. or greater positive going pulse is applied to START CONVERT (Pin 21). For single supply operation (interrupt power mode), tie Power Mode (Pin 17) to E.O.C. (Pin 16). When EOC goes low the converter is switched to standby mode (power is disconnected to analog circuitry) and digital output data becomes valid and remains valid until next start pulse is applied. Upon receipt of a $50 \mu \mathrm{sec} . \min ., 500$ usec. max. pulse on START CONVERT (Pin 21), the converter will stabilize, make a complete conversion and return to standby mode.
5. Digital output codes are listed in coding tables. Parallel data is valid when EOC is in low state. This data can be transferred into latches during logic " 1 " to logic " 0 " transition of EOC line. Serial data out (Pin 14) is in NRZ (non-return to zero) format. This data is guaranteed valid in a 50 nsec . to 300 nsec . time frame after positive edge of clock. All digital inputs and outputs are CMOS compatible. See application notes for CMOS-TTL interface.
6. REF OUT ($\operatorname{Pin} 20$) is a $6.3 \mathrm{~V} \pm 5 \%$ internal reference pin connection.
7. For zero or offset and gain adjustment refer to connections and calibration notes. The trim pots should be located as close as possible to the converter to avoid noise pickup. Zero point is always adjusted first followed by gain the adjustment with analog input at the most positive end of analog range. The range of the OFFSET (ZERO)ADJ. is $\pm 15 \mathrm{mV}$. The range of GAIN ADJ. is $.1 \%$ of full scale range can also be increased by decreasing the value of the series resistor (3.9 M Ω nominal). Potentiometer values are 10 K and should be $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ceramic type (such as Datel TP series).

ORDERING INFORMATION
 \section*{MODEL} TEMP. RANGE

SEAL

ADC-HC12BMC	0 to $+70^{\circ} \mathrm{C}$	Hermetic
ADC-HC12BMR	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Hermetic
ADC-HC12BMM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Hermetic
Trimming Potentiometers: TPK 10K (10K ohms)
For high reliability versions of the ADC-HC series, including units screened to MIL-STD-883 Level B, contact factory.

THE CONVERTERS ARE COVERED BY GSA CONTRACT

TTL-CMOS INTERFACE

CMOS and TTL logic are not compatible due to different threshold levels. They can, however, be interfaced by simple techniques.

The START CONVERT (Pin 21) can be driven directly from an open collector, high voltage TTL gate. Resistor Rx is used to source current and bring the TTL output up to the CMOS threshold level. Typical values of Rx are 3.3 K to 10 K ohms.

CMOS to TTL interface requires sufficient sink current in the low state. The CD4049 (inverting) and CD4050 (noninverting) buffers, powered from +5 V logic supply can accept input voltage swings of +5 to +15 V from the CMOS system. Each buffer gate can drive at least one input from any TTL family.

LOW POWER MICRO-PROCESSOR INTERFACE
 11 CABOT BOULEVARD, MANSFIELD. MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 - Houston. (713)781-8886• Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

FEATURES

- 12 Bit Resolution
- Internal Sample Hold
- $6 \mu \mathrm{sec}$. Acquisition Time
- $9 \mu \mathrm{sec}$. Conversion Time
- Programmable Input Ranges
- Parallel \& Serial Outputs

GENERAL DESCRIPTION
The ADC-HS12B is a high performance 12 bit hybrid A/D converter with a selfcontained sample-hold. It is specifically designed for systems applications where the sample-hold is an integral part of the conversion process. The internal sample-hold has a $6 \mu \mathrm{sec}$. acquisition time for a full 10 V input change; the A / D converter has a fast $9 \mu \mathrm{sec}$. conversion time. Five input voltage ranges are programmable by external pin connection: 0 to $+5 \mathrm{~V}, 0$ to +10 V , $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$. Input impedance to the sample-hold is 100 megohms. Output coding is complementary binary for unipolar operation and complementary offset binary for bipolar operation, with both parallel and serial outputs brought out.
This converter incorporates proven thin film hybrid technology used in high volume production. Quad current switches are combined with a nichrome thin film resistor network to implement the internal 12 bit DAC. To achieve $9 \mu \mathrm{sec}$. conversion time, the thin film resistors are fabricated on glass, giving lower stray capacitance. Other internal circuits include a precision zener reference, fast comparator, successive approximation register, clock, and sample hold. The thin film resistor network is functionally laser trimmed for optimum converter linearity.
Other features include a gain tempco of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum and differential nonlinearity tempco of $\pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; there are no missing codes over the operating temperature range. The package is a miniature 32 pin triple spaced DIP and different models are offered for each of the operating temperature ranges: 0 to $70 \mathrm{C},-25$ to +85 C , and -55 to +100 C . Power supply requirement is $\pm 15 \mathrm{VDC}$ and +5 VDC . High reliability versions are also available under Datel-Intersil's " S " program and MIL-STD-883 level B screening.

[^1]INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 OUT (LSB)	17	CH
2	BIT 11 OUT	18	REF. OUT
3	BIT 10 OUT	19	CLOCK OUT
4	BIT 9 OUT	20	E O.C. (STATUS)
5	BIT 8 OUT	21	START CONVERT
6	BIT 7 OUT	22	COMPAR. INPUT
7	BIT 6 OUT	23	BIPOLAR OFFSET
8	BIT 5 OUT	24	10V RANGE
9	BIT 4 OUT	25	20V RANGE
10	BIT 3 OUT	26	ANALOG COM
11	BIT 2 OUT	27	GAIN ADJ.
12	BIT 1 OUT (MSB)	28	+15V POWER
13	SERIAL DATA OUT	29	S/H OUTPUT
14	SHORT CYCLE	30	ANALOG IN
15	DIGITAL COM.	31	-15V POWER
16	+5V POWER	32	SAMPLE CONTROL

NOTES: 1. For sample-hold input

2. All digital outputs can drive 2 TTL loads
3. For 1000 pF external hold capacitor
4. It is recommended that the -15 V power input pins both be bypassed to ground with a $.01 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $1 \mu \mathrm{~F}$ electrolytic capacitor and the +5 V power input pin be bypassed to ground with a $1 \mu \mathrm{~F}$ electrolytic capacitor as shown in the connection diagrams. In addition, pin 27 should be bypassed to ground with a $0.01 \mu \mathrm{~F}$ ceramic capacitor. These precautions will assure noise free operation of the converter
5. Digital Common (pin 15) and Analog Common (pin 26) are not connected together internally, and therefore must be connected as directly as possible externally. It is recommended that a ground plane be run underneath the case between the two commons. Analog ground and $\pm 15 \mathrm{~V}$ power ground should be run to pin 26 whereas digital ground and +5 V ground should be run to pin 15.
6. External adjustment of zero or offset and gain are provided for by trimming potentiometers connected as shown in the connection diagrams. The potentiometer values can be between 10 K and 100 K ohms and should be $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ cermet types (such as Datel Systems TP series). The adjustment range is $\pm 0.5 \%$ of FSR for zero or offset and $\pm 0.3 \%$ for gain. The trimming pots should be located as close as possible to the converter to avoid noise pickup. Calibration of the ADC-HS12B is performed with the sample-hold connected and operating dynamically. This results in adjusting out the sample-hold errors along with the A/D converter. For slow throughput applications it is recommended that a $0.01 \mu \mathrm{~F}$ hold capacitor be used for best accuracy. With this value the acquisition time becomes $25 \mu \mathrm{sec}$ and the external timing must be adjusted accordingly.
7. The recommended timing shown in the Timing Diagram allows 6 microseconds for the sample-hold acquisition and then 1 microsecond after the sample-hold goes into the hold mode to allow for output settling before the A / D begins its conversion cycle.
8. Short cycled operation results in shorter conversion times where the conversion can be truncated to less than 12 bits. This is done by connecting pin 14 to the output bit following the last bit desired. For example for an 8 bit conversion, pin 14 is connected to bit 9 output. Maximum conversion times are given for shortcycled conversions in the Table.
9. Note that output coding is complementary coding. For unipolar operation it is complementary binary and for bipolar operation it is complementary offset binary. In cases where bipolar coding of offset binary is required this can be achieved by inverting the analog input to the converter (using an op amp connected for gain of -1.0000). The converter is then calibrated so that -FS analog input gives an output code of 000000000000 , and +FS-1LSB gives 111111111111.
10. These converters dissipate approximately 2 watts of power. The case to ambient thermal resistance is approximately $25^{\circ} \mathrm{C}$ per watt. For ambient temperatures above $50^{\circ} \mathrm{C}$, care should be taken not to restrict air circulation in the vicinity of the converter.
11. These converters can be operated with an external clock. To accomplish this, a negative pulse train is applied to START CONVERT (Pin 21). The rate of the external clock must be lower than the rate of the internal clock. The pulse width of the external clock should be between 100 nsec . and 300 nsec . Each N bit converison cycle requires a pulse train of $N+1$ clock pulses for completion, e.g., an 8 bit conversion requires 9 clock pulses for completion. A continuous pulse train may be used for consecutive conversions, resulting in an N bit conversion every $\mathrm{N}+1$ pulses, or the E.O.C. output may be used to gate a continuous pulse train for single conversions

ORDERING INFORMATION
 MODEL
 ADC-HS12BMC ADC-HS12BMR ADC-HS12BMM
 TEMP.RANGE SEAL

Mating Socket: DILS-2 (2 required per converter)
Trimming Potentiometers: TP50K
For high reliability versions of the ADC-HS12B including units screened to MIL-STD-883 level B, contact factory. THESE CONVERTERS ARE COVERED BY GSA CONTRACT

UNIPOLAR OPERATION, O TO +10V

BIPOLAR OPERATION, $\pm 5 \mathrm{~V}$

CODING TABLES

UNIPOLAR OPERATION

INPUT RANGE		COMP.		
O TO +10V	0 TO +5V	MSB		LSB
+9.9976 V	+4.9988 V	0000	0000	0000
+8.7500	+4.3750	0001	1111	1111
+7.5000	+3.7500	0011	1111	1111
+5.0000	+2.5000	0111	1111	1111
+2.5000	+1.2500	1011	1111	1111
+1.2500	+0.6250	1101	1111	1111
+0.0024	+0.0012	1111	1111	1110
0.0000	0.0000	1111	1111	1111

BIPOLAR OPERATION

INPUT VOLTAGE RANGE				COMP.		
$\pm \mathbf{1 0 V}$	$\pm 5 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}$	MSB			
+9.9951 V	+4.9976 V	+2.4988 V	0000	0000	0000	
+7.5000	+3.7500	+1.8750	0001	1111	1111	
+5.0000	+2.5000	+1.2500	0011	1111	1111	
0.0000	0.0000	0.0000	0111	1111	1111	
-5.0000	-2.5000	-1.2500	1011	1111	1111	
-7.5000	-3.7500	-1.8750	1101	1111	1111	
-9.9951	-4.9976	-2.4988	1111	1111	1110	
-10.0000	-5.0000	-2.5000	1111	1111	1111	

SHORT CYCLE OPERATION

CALIBRATION PROCEDURE

1. Connect the ADC-HS12B as shown in one of the connection diagrams The sample-hold and A/D converter should be timed as shown in the timing diagram. The trigger pulse should be applied at a rate of 70 kHz or less and should be 100 nsec . minimum width.

2. Zero and Offset Adjustments

Apply a precision voltage reference source between the selected analog input and ground. Adjust the output of the reference source to the value shown in the Calibration Table for the unipolar zero adjustment (zero $+1 / 2$ LSB) or the bipolar offset adjustment ($-\mathrm{FS}+1 / 2 \mathrm{LSB}$). Adjust the trimming potentiometer so that the output code flickers equally betwen 11111111 1111 and 111111111110.
3. Full Scale Adjustment

Change the output of the precision voltage reference source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment ($+\mathrm{FS}-1 \frac{1}{2}$ LSB). Adjust the gain trimming potentiometer so that the output code flickers equally between 000000000001 and 000000000000.

CALIBRATION TABLE

UNIPOLAR RANGE	ADJUST.	INPUT VOLTAGE
0 TO +5 V	ZERO	+0.6 mV
	GAIN	+4.9982 V
0 TO +10 V	ZERO	+1.2 mV
	GAIN	+9.9963 V
BIPOLAR RANGE		
$\pm 2.5 \mathrm{~V}$		OFFSET
	GAIN	-2.4994 V
$\pm 5 \mathrm{~V}$	OFFSET	-4.9988 V
	GAIN	+4.9963 V
	OFFSET	-9.9976 V
	GAAIN	+9.9927 V

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

12-Bit Microelectronic Analog-to-Digital Converters ADC-HX, ADC-HZ Series

FEATURES

- 12 Bits Resolution
- 8 or 20μ Sec. Conversions
- 5 Input Ranges
- Internal Hi Z Buffer
- Short Cycle Operation

GENERAL DESCRIPTION

The ADC-HX12B and ADC-HZ12B are selfcontained, high performance, 12 bit A/D converters manufactured with thin-film hybrid technology. They use the successive approximation conversion technique to achieve a 12 bit conversion in 20 and 8 microseconds respectively. Five input voltage ranges are programmable by external pin connection: 0 to $+5 \mathrm{~V}, 0$ to +10 V , $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$. An internal buffer amplifier is also provided for applications where 100 megohm input impedance is required.
These converters utilize a fast 12 bit DAC consisting of tightly matched monolithic quad current switches, a stable nichrome thin-film resistor network, and a precision zener reference source. The circuit also contains a fast monolithic comparator, a mono.lithic 12 bit successive approximation register, a clock, and a monolithic buffer amplifier. The thin-film resistor network is functionally trimmed by a laser to precisely set the 8-4-2-1 current weighting in the quad current switches. The close tracking of the thin-film resistor and quad current switches result in a differential nonlinearity tempco of only $\pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Gain tempco is $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum.

Both models have identical operation except for conversion speed. They can be shortcycled to give faster conversion in lower resolution applications. Use of the internal buffer amplifier increases conversion time by $3 \mu \mathrm{sec}$., the settling time of the amplifier. Output coding is complementary binary, complementary offset binary, or complementary 2's complement. Serial data is also brought out. The package is a 32 pin ceramic case. Eight different models are offered covering the operating temperature ranges of 0 to $70^{\circ} \mathrm{C},-25$ to $+85^{\circ} \mathrm{C}$, and -55 to $+100^{\circ} \mathrm{C}$.
uo!ม!s!nbov eqea

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 OUT (LSB)	17	CLOCK RATE
2	BIT 11 OUT	18	REF. OUT
3	BIT 10 OUT	19	CLOCK OUT
4	BIT 9 OUT	20	E.O.C. (STATUS)
5	BIT 8 OUT	21	START CONVERT
6	BIT 7 OUT	22	COMPAR. INPUT
7	BIT 6 OUT	23	BIPOLAR OFFSET
8	BIT 5 OUT	24	10V INPUT
9	BIT 4 OUT	25	20V INPUT
10	BIT 3 OUT	26	ANALOG COM.
11	BIT 2 OUT	27	GAIN ADJUST
12	BIT 1 OUT (MSB)	28	+15V POWER
13	BIT 1 OUT (MSB)	29	BUFFER OUTPUT
14	SHORT CYCLE	30	BUFFER INPUT
15	DIGITAL COM.	31	-15V POWER
16	+5V POWER	32	SERIAL OUTPUT

SPECIFICATIONS, ADC-HX 12B, ADC-HZ12B
(Typical at $25^{\circ} \mathrm{C}, \pm \mathbf{1 5 V}$ and +5 V supplies unless otherwise noted)

7. These converters can be operated with an external clock. To accomplish this, a negative pulse train is applied to START CONVERT (Pin 21). The rate of the external clock must be lower than the rate of the internal clock as adjusted (see clock rate adjustment diagram) for the converter resolution selected. The pulse width of the external clock should be between 100 nsec . and 300 nsec. Each N bit conversion cycle requires a puise train of $N+1$ clock pulses for completion, e.g., an 8 bit conversion requires 9 clock pulses for completion. A continuous pulse train may be used for consecutive conversions, resulting in an N bit conversion every $\mathrm{N}+1$ pulses, or the E.O.C. output may be used to gate a continuous pulse train for single conversions.

```
        TIMING DIAGRAM
        OPERATING PERIODS
    ADC-HX12B ADC-HZ12B
    T1 20 \musec.
    T
    8.0 \musec.
```

TIMING DIAGRAM FOR ADC-HX12B, ADC-HZ12B OUTPUT: 010101010101

UNIPOLAR OPERATION, 0 TO +10V

BIPOLAR OPERATION, $-5 V$ TO $+5 V$

CODING TABLES

UNIPOLAR OPERATION

INPUT RANGE		COMP.		
$\mathbf{0}$ TO $+\mathbf{1 0 V}$	$\mathbf{0}$ TO +5V	MSB		LSB
+9.9976 V	+4.9988 V	0000	0000	0000
+8.7500	+4.3750	0001	1111	1111
+7.5000	+3.7500	0011	1111	1111
+5.0000	+2.5000	0111	1111	1111
+2.5000	+1.2500	1011	1111	1111
+1.2500	+0.6250	1101	1111	1111
+0.0024	+0.0012	1111	1111	1110
0.0000	0.0000	1111	1111	1111

BIPOLAR OPERATION

INPUT VOLTAGE RANGE			COMP. OFFSET BINARY			COMP. TWO'S COMPLEMENT		
$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}$	MSB		LSB	MSB		LSB
+9.9951V	$+4.9976 \mathrm{~V}$	+2.4988V	0000	0000	0000	1000	0000	0000
+7.5000	+3.7500	+1.8750	0001	1111	1111	1001	1111	1111
+5.0000	+2.5000	+1.2500	0011	11.11	1111	1011	1111	1111
0.0000	0.0000	0.0000	0111	1111	1111	1111	1111	1111
-5.0000	-2.5000	-1.2500	1011	1111	1111	0011	1111	1111
-7.5000	-3.7500	-1.8750	1101	1111	1111	0101	1111	1111
-9.9951	-4.9976	-2.4988	1111	1111	1110	0111	1111	1110
-10.0000	-5.0000	-2.5000	1111	1111	1111	0111	1111	1111

CONNECTIONS AND CALIBRATION

INPUT CONNECTIONS

INPUT VOLT.	WITHOUT BUFFER			WITH BUFFER			
	INPUT	CONNECT THESE		INPUT	CONNECT THESE		
0 TO +5 V	24	$22 \& 25$	$23 \& 26$	30	$22 \& 25$	$23 \& 26$	$29 \& 24$
0 TO +10 V	24	-	$23 \& 26$	30	-	$23 \& 26$	$29 \& 24$
$\pm 2.5 \mathrm{~V}$	24	$22 \& 25$	$23 \& 22$	30	$22 \& 25$	$23 \& 22$	$29 \& 24$
$\pm 5 \mathrm{~V}$	24	-	$23 \& 22$	30	-	$23 \& 22$	$29 \& 24$
$\pm 10 \mathrm{~V}$	25	-	$23 \& 22$	30	-	$23 \& 22$	$29 \& 25$

SHORT CYCLE OPERATION

CONNEGTIONS

8, 10, \& 12 BIT CONVERSION

RES. (BITS)	PIN 14 TO
1	PIN 11
2	PIN 10
3	PIN 9
4	PIN 8
5	PIN 7
6	PIN 6

RES. (BITS)	PIN 14 TO
7	PIN 5
8	PIN 4
9	PIN 3
10	PIN 2
11	PIN 1
12	PIN 16

RESOLUTION	12 BITS	10 BITS	$\mathbf{8}$ BITS
ADC-HX12B CONV. TIME	$20 \mu \mathrm{sec}$.	$15 \mu \mathrm{sec}$.	$10 \mu \mathrm{sec}$.
ADC-HZ12B CONV. TIME	$8 \mu \mathrm{sec}$.	$6 \mu \mathrm{sec}$.	$4 \mu \mathrm{sec}$.
CONNECT THESE	$17 \& 15$	$17 \& 16$	$17 \& 28$
PINS TOGETHER	$14 \& 16$	$14 \& 2$	$14 \& 4$

PIN 14 CONNECTION

CLOCK RATE VS. VOLTAGE

PIN 17 VOLTAGE	CLOCK RATE	
	ADC-HX12B	ADC-HZ12B
OV	600 kHz	1.5 MHz
+5 V	720 kHz	1.8 MHz
+15 V	880 kHz	2.2 MHz

CALIBRATION PROCEDURE

1. Connect converter as shown in the Standard Connection diagrams. Use the Input Connection Table for the desired input voltage range and input impedance. Apply Start Convert pulses of 100 nsec. minimum duration to pin 21. The spacing of the pulses should be no less than the maximum conversion time.
2. Zero and Offset Adjustments

Apply a precision voltage reference source between the selected analog input and ground. Adjust the output of the reference source to the value shown in the Calibration Table for the unipolar zero adjustment (zero $+1 / 2 L S B$) or the bipolar offset adjustment ($-\mathrm{FS}+1 / 2 \mathrm{LSB}$). Adjust the trimming potentiometer so that the output code flickers equally between 111111111111 and 11111111 1110.
3. Full Scale Adjustment

Change the output of the precision voltage reference source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment (+FS-1 $1 / 2$ LSB). Adjust the gain trimming potentiometer so that the output code flickers equally between 000000000001 and 000000000000.

CLOCK RATE ADJUSTMENT

CLOCK RATE:
600 kHz to 720 kHz (ADC-HX12B)
1.5 TO 1.8 MHz (ADC-HZ12B)
2 B (

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

FEATURES

- 8 Bits Resolution
- 600 nsec . or $1 \mu \mathrm{sec}$. Conversion Time
- 6 Input Ranges
- Parallel or Serial Outputs
- Logic-Controlled Bipolar Offset
- No Calibration Required

GENERAL DESCRIPTION

Datel-Intersil's ADC-815 and ADC-825 are very high speed 8 bit successive approximation A/D converters in miniature hybrid form. Both models have identical specifications except for conversion time. The ADC-825 has a maximum conversion time of $1 \mu \mathrm{sec}$., while the ultra-fast ADC-815 accomplishes an 8 bit conversion in only 600 nsec., maximum.
These converters feature six analog input voltage ranges: 0 to $+5 \mathrm{~V}, 0$ to +10 V , 0 to $+20 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. Selection of input ranges is accomplished by simple external pin connection. Unipolar or bipolar operating mode is selected by a digital control applied to the bipolar offset input. Operation of these devices is further simplified by complete functional laser trimming, resulting in a factory-trimmed converter that requires no external adjustments.
Each converter is a functionally complete unit requiring a minimum of passive external components for operation, and is packaged in a miniature, hermetically sealed 24-pin ceramic DIP.
Output data is available in parallel or serial form by external pin connection. Parallel output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation. Output coding in the parallel mode is accomplished by connection to either the MSB output or the MSB output. Serial output data is coded as straight binary for unipolar operation or offset binary for bipolar operation.
Additional specifications shared by both models include maximum nonlinearity of $\pm 1 / 2$ LSB, differential nonlinearity of $\pm 1 / 2$ LSB maximum, gain tempco of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum, power supply rejection of $\pm 0.02 \% / \%$ supply maximum, and long term stability of $\pm 0.05 \% /$ year. Both models require
$\pm 15 \mathrm{~V}$ and 5 V supplies, and are available in different versions for operating temperature ranges of 0 to $+70^{\circ} \mathrm{C},-25$ to $+85^{\circ} \mathrm{C}$, or -55 to $+125^{\circ} \mathrm{C}$.
uo!⿰!s!nbov ełea

PIN	FUNCTION	PIN	FUNCTION
1	SERIAL DATA OUTPUT	13	CLOCK OUTPUT
2	EOC	14	POWER GROUND
3	+15V POWER IN	15	$+5 V$ POWER IN
4	$-15 V$ POWER IN	16	BIT 1 OUT (MSB)
5	ANALOG GROUND	17	BIT 1 OUT (MSB)
6	ANALOG GROUND	18	BIT 2 OUT
7	ANALOG GROUND	19	BIT 3 OUT
8	BIPOLAR OFFSET	20	BIT 4 OUT
9	ANALOG INPUT, 5V RANGE	21	BIT 5 OUT
10	ANALOG INPUT, 1OV RANGE	22	BIT 6 OUT
11	ANALOG INPUT, 2OV RANGE	23	BIT 7 OUT
12	START CONVERSION	24	BIT 8 OUT (LSB)

MECHANICAL DIMENSIONS
INCHES (MM)
INPUT/OUTPUT CONNECTIONS

1. The high operating speed of these converters requires that good high frequency board layout techniques be used. Leads from data outputs should be kept as short as possible, output leads longer than 1 inch $(2.5 \mathrm{~cm})$ require the use of an output register. Use of a ground plane is particularly important with high speed data converters as it reduces high frequency noise and aids in decoupling analog signals from digital signals. Ground loop problems are avoided by connecting all grounds on the board to the ground plane. The basic configuration of the ground plane directly below the ADC-815 or ADC-825 is shown in the ground plane layout diagram. This layout should be modified after selection of analog input range to include unused analog inputs.
2. Analog input leads should be as short and direct as possible. The use of shielded cable as an analog input lead will ensure isolation of analog signals from environmental interference. Unused analog inputs should be grounded.
3. For applications of the ADC-815 or ADC-825 that require an input buffer amplifier, an amplifier should be selected with particular attention to its high speed performance and low output impedance.
4. Analog and digital supplies are internally bypassed to ground with $.01 \mu \mathrm{~F}$ capacitors; however, it is recommended that the +15 V , -15 V and +5 V supplies be additionally bypassed externally with $1 \mu \mathrm{~F}$ electrolytic capacitors as shown in the connection diagrams.
5. For bipolar operation the bipolar offset input (pin 8) is held at logic $\mathrm{HI}(+2.0 \mathrm{~V}$ to +5 V); for unipolar operation pin 8 is held at logic LO (0 V to +0.8 V).
6. In the bipolar mode, two's complement output coding is available by using the MSB output (pin 16); offset binary coding is obtained by using the MSB output (pin 17). Unipolar operation requires use of the MSB output (pin 17) to achieve straight binary output coding.
7. Serial output data is available at pin 1 in standard NRZ format with the MSB appearing first. Coding is straight binary for unipolar operation or offset binary for bipolar operation. Synchronization of serial output data is achieved by use of the clock output (pin 13). Each data bit is valid when the clock output is HIGH and appears in succession from the MSB at the second clock LOW to HIGH transition to the LSB at the ninth clock LOW to HIGH transition.
8. Applications of these converters that require the use of a sample-hold may be satisfied by Datel-Intersil's model SHM-HU, an ultra-fast hybrid unit featuring 25 nsec acquisition time and $\mathrm{a} \pm 2.5 \mathrm{~V}$ input range.
9. These converters have a maximum power dissipation of 1.25 W . The case-to-ambient thermal resistance for this package is approximately $33^{\circ} \mathrm{C}$ per watt. For operation in ambient temperatures exceeding $83^{\circ} \mathrm{C}$, airflow of at least 400 linear feet per minute is recommended.
10. At 15.9 MHz for the ADC-815, 9.52 MHz for the ADC-825.
11. The conversion time temperature coefficient for these converters is $0.15 \% /{ }^{\circ} \mathrm{C}$. This tempco is positive from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and from $0^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$ Maximum conversion time is specified at $25^{\circ} \mathrm{C}$. Max. Conversion Time for " M M" version is 700 nsec . at $25^{\circ} \mathrm{C}$.
12. Doubles outside this temperature range.
13. FSR is Full Scale Range.

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
24 pin Ceramic DIP
0.010×0.018 inch Kovar
$0.2 \mathrm{oz} .(6 \mathrm{~g})$

NOTES: 1. Unused analog inputs must be grounded.

TIMING DIAGRAM FOR ADC-815, ADC-825 OUTPUT: 10100001

CODING TABLES

UNIPOLAR OPERATION

UNIPOLAR SCALE	OUTPUT CODING* STRAIGHT BINARY	ANALOG INPUT		
		0 to +5V	0 to +10V	0 to +20 V
F.S. - 1 LSB	11111111	+4.980V	+9.961V	+19.922V
$3 / 4$ F.S.	11000000	+3.750V	+7.500V	$+15.000 \mathrm{~V}$
$1 / 2$ F.S.	10000000	+2.500V	+5.000V	+10.000V
1/4F.S.	01000000	+1.250V	+2.500V	$+5.000 \mathrm{~V}$
1 LSB	00000001	+0.020V	+0.039V	+0.078V
0	00000000	0.000 V	0.000 V	0.000 V

*FOR PARALLEL OR SERIAL OUTPUT DATA

BIPOLAR OPERATION

BIPOLAR SCALE	OUTPUT CODING		INPUT VOLTAGE RANGE		
	OFFSET BINARY	TWO'S COMPLEMENT ${ }^{2}$	$\pm 2.5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 10 \mathrm{~V}$
+F.S. - 1 LSB	11111111	01111111	+2.480V	+4.961V	+9.922V
$+1 / 2$ F.S.	11000000	01000000	+1.250V	+2.500V	$+5.000 \mathrm{~V}$
+1 LSB	10000001	00000001	+0.020V	+0.039V	+0.078V
0	10000000	00000000	0.000 V	0.000 V	0.000V
$-1 / 2$ F.S.	01000000	11000000	-1.250V	-2.500V	$-5.000 \mathrm{~V}$
-F.S. +1 LSB	00000001	10000001	-2.480V	-4.961V	+9.922V
-F.S.	00000000	10000000	$-2.500 \mathrm{~V}$	-5.000V	+10.000V

NOTES: 1. FOR PARALLEL OR SERIAL OUTPUT DATA
2. FOR PARALLEL OUTPUT DATA ONLY

ORDERING INFORMATION

	OPERATING	
MODEL	TEMP. RANGE	SEAL
ADC-815MC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Hermetic
ADC-815MR	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Hermetic
ADC-815MM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic
ADC-825MC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Hermetic
ADC-825MR	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Hermetic
ADC-825MM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic

Mating Socket: DILS-3 (24-pin socket)
Trimming Potentiometers: TP-100

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

BASIC GROUND PLANE LAYOUT

THIS BASIC GROUND PLANE LAYOUT SHOULD BE MODIFIED BEFORE IMPLEMENTATION TO INCLUDE UNUSED ANALOG INPUTS.

FEATURES

- 10 Bits Resolution
- 800 nsec or $1.4 \mu \mathrm{sec}$ Conversion Time
- 6 Input Ranges
- Unipolar and Bipolar Operation
- Programmable Output Coding

GENERAL DESCRIPTION

Datel-Intersil's ADC-816 and ADC-826 are very high speed 10 bit successive approximation A/D converters, realized as miniature thin-film hybrids. Both models have identical specifications except for conversion time. The ADC-826 has a maximum conversion time of $1.4 \mu \mathrm{sec}$. The ultra-fast ADC-816 offers a maximum conversion time of only 800 nsec, making this the fastest 10 bit A/D converter of any hybrid, monolithic, or modular unit currently available. Please note that these conversion times are specified as maximum at full rated operating temperature!
These converters feature six analog input voltage ranges: 0 to $-5 \mathrm{~V}, 0$ to $-10 \mathrm{~V}, 0$ to $-20 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. Selection of input range is accomplished by simple external pin connection.
Output data is available in parallel or serial form by external connection. Data is coded as straight binary for unipolar operation and as either offset binary or Two's complement for bipolar operation. Two's complement is available in the parallel output mode only and is selected by pin connection.
Specifications shared by both models include maximum nonlinearity of $\pm 1 / 2$ LSB and differential nonlinearity of $\pm 1 / 2$ LSB maximum.
These converters are functionally complete units requiring a minimum of passive external components for operation. Each unit is composed ota high speed comparator, an ultra-fast settling D/A converter, a precision voltage reference, successive approximation register, clock generator and control logic circuits. The combination of unique design and the latest hybrid fabrication technology allows this level of performance to be achieved in a miniature hermetically sealed 32 pin ceramic DIP package.
Both models require $\pm 15 \mathrm{VDC}$ and +5 V supplies, and are available in versions for the 0 to $70^{\circ} \mathrm{C},-25$ to $+85^{\circ} \mathrm{C}$ or -55 to $+125^{\circ} \mathrm{C}$ operating temperature ranges. For information on versions certified to MIL-STD-883 Class B, contact the factory.

SPECIFICATIONS ADC-816, ADC-826
(Typical at $+25^{\circ} \mathrm{C}, \pm 15$ VDC and +5 VDC supplies, unless otherwise noted)

1. Use of good high frequency circuit board layout techniques is required for rated performance. The power common (pin 1) and comparator common (pin 7) are not connected internally, and therefore must be connected externally as directly as possible, through a low resistance, low inductance path. The signal common (pin 6) is connected to power common (pin 1) internally and so may be used as a signal sense line to reference the signal input. The extensive use of a ground plane for all common connections is highly recommended. Also, it is recommended that the analog and digital supplies, although they are internally bypassed with 0.033 $\mu \mathrm{F}$ capacitors, be additionally bypassed externally at the supply pins with 1μ F electrolytic capacitors.
2. The digital outputs are not buffered from their internal application and so are sensitive to unusual loading or long lines. Terminate these outputs with normal TTL inputs not more than 3 inches from the data output pin. Analog inputs must be non-reactive such that leads should be short and purely resistive. The reactive component of any analog input source, as seen at the analog input pin, should be less than 0.3% of the analog input resistance at that pin, for frequencies below 20 MHz .
3. Conversion time is measured from the rising edge of a 50 nsec start input pulse to the falling edge of the $\overline{E O C}$ output. The conversion time is factory set at $+25^{\circ} \mathrm{C}$ for the ADC-816 MC/ MR at $750 \mathrm{nsec}, 875 \mathrm{nsec}$ for the ADC816 MM , and $1.25 \mu \mathrm{sec}$ for the ADC-826MC/ MR/MM. The worst case conversion time at the maximum rated operating temperature is given as a maximum specification.
4. To use the internal reference the reference supply pin (pin 3) must be connected to the -15 V supply. If the reference supply pin (pin 3) is disconnected or grounded, the internal reterence will be disabled at a power saving of approximately 200 mW .
5. Serial output data is available in NRZ format successive decision pulses, MSB first, in straight binary or offset binary coding. Synchronization of the serial output data is achieved through the use of the clock output (pin 30). This same clock output also controls the output register such that at the rising edge of the output clock the previous data bit may be clocked out, however, there will be no clock edge to clock out the LSB. A Serial DATA Recovery circuit is diagrammed on the applications page that will correct this.
6. These converters have a case to ambient thermal resistance of $22^{\circ} \mathrm{C}$ per watt. At temperatures above $+70^{\circ} \mathrm{C}$ an air flow of at least 400 linear feet per minute is recommended. To operate at elevated temperatures it is recommended that the converter be mounted directly to the circuit board (without the use of a mounting socket) and that good thermal contact be established between the case bottom and the circuit board ground plane by use of a silicone thermal joint compound such as Wakefield Type 120 or equivalent.
7. Applications of these converters that require the use of a sample-hold may be satisfied by Datel-Intersil's model SHM-HU, an ultra-fast hybrid unit featuring 25 nsec acquisition time and $\mathrm{a} \pm 2.5 \mathrm{~V}$ input range.

ES:	6. Max. conversion time is specified at full rated operating temp.	10. FSR is Full Scale Range.
2. Resistance tolerance is $-30 \%,+50 \%, \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.	7. The ADC-816MM has a maximum conversion time of	11. Includes internal reference Tempco
3 All coding is inverted analog.	975	Given as a maximum for 5V FSR,
4. Two's Complement Binary available for parallel outjut only.	8. Tested over full rated operating temperature range.	these values improve by 10% for 10 V FSR , and by 20% for 20 V FSR
5. Clock frequency for ADC-816MM is 10.5 MHz .	9. Includes Zero Error.	

Printed in U．S．A．Copyright（C） 1980 Datel－Intersil，Inc．All rights reserved

FEATURES

- 12 Bit Resolution
- $2 \mu \mathrm{sec}$ or $3 \mu \mathrm{sec}$ Conversion Times
- Unipolar \& Bipolar Operation
- Short Cycle Operating Capability
- 5 Programmable Input Ranges
- Parallel or Serial Data Output

GENERAL DESCRIPTION

The ADC-817 and ADC-827 are high-speed successive approximation A/D converters in miniature hybrid form. Both Models have identical specifications except for conversion times. The ADC-827 has a maximum conversion time of $3 \mu \mathrm{sec}$ while the ultrafast ADC-817 accomplishes a 12 bit conversion in only $2.0 \mu \mathrm{sec}$., maximum.
These converters feature five analog input voltage ranges: 0 to $-5 \mathrm{~V}, 0$ to $-10 \mathrm{~V}, \pm 2.5 \mathrm{~V}$. $\pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$. Selection of input range is accomplished by simple external pin connection. Both devices provide a userselectable, fast settling precision input buffer with an input impedance of $100 \mathrm{M} \Omega$. allowing them to be driven directly from a high impedance source. The input buffer may be bypassed for maximum speed applications with low impedance sources such as a sample and hold.
Output data is available in parallel or serial form by external connection. Data is coded as straight binary for unipolar operation and as either offset binary or two's complement for bipolar operation. Two's complement coding is available in the parallel output mode only, and is selected by pin connection.
Specifications shared by both models include maximum nonlinearity of $\pm 1 / 2$ LSB, differential nonlinearity of $\pm 1 / 2$ LSB maximum, gain tempco of $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum. and a power supply rejection of $\pm 0.01 \% / \%$ supply maximum.
These converters are functionally complete units requiring a minimum of passive external components for operation. Each unit is composed of a fast settling precision input buffer, a high speed comparator, an ultrafast settling D/A converter, a precision voltage reference, successive approximation register, clock generator and control logic circuits. The combination of unique design and the latest hybrid fabrication technology allows this level of performance to be achieved in a miniature, hermetically sealed 32 pin ceramic DIP package.
Both models require $\pm 15 \mathrm{VDC}$ and +5 V supplies, and are available in versions for the 0 to $+70^{\circ} \mathrm{C},-25$ to $+85^{\circ} \mathrm{C}$ or -25 to $+25^{\circ} \mathrm{C}$ operating temperature ranges. For information on versions certified to MIL-STD-883 Class B, contact the factory.

SPECIFICATIONS, ADC-817, ADC-827 Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ supplies, unless otherwise noted.	
MAXIMUM RATINGS Positive Supply Negative Supply Logic Supply Digital Inputs Analog Inputs Buffer Amplifier Input	ADC-817 ADC-827
	$\begin{aligned} & +18 \mathrm{~V} \\ & -18 \mathrm{~V} \\ & +7 \mathrm{~V} \\ & +5.5 \mathrm{~V} \\ & \pm 20 \mathrm{~V} \\ & +15 \mathrm{~V} \end{aligned}$
 Buffer Amplifier Gain Buffer Amplifier Input Voltage Buffer Amplifier Input Impedance Buffer Amplifier Settling Time ${ }^{1}$	```0 to -5V, 0 to -10V \pm2.5V, }\pm5\textrm{V},\pm10\textrm{V 1 K\Omega 2K\Omega 4K\Omega +2V min. to +5.5V max. Positive Pulse with duration of 50 nsec min. Logic " 1" resets converter Logic "0" initiates conversion Loading: 2 TTL loads +1 \pm10.0\textrm{V} 100 M\Omega 300 nsec```
OUTPUTS Parallel Output Data Serial Output Data Coding, Unipolar ${ }^{2}$ Bipolar ${ }^{3}$ End of Conversion (EOC) Clock Output	13 parallel lines (12 binary bits plus $\overline{\mathrm{MSB}}$) valid from negative going edge of EOC pulse to positive going edge of START CONVERSION pulse. $V_{\text {OUT }}$ " 0 " $\leq+0.4 \mathrm{~V}$ $V_{\text {OUT }}$ " 1 " $\geq+2.4 \mathrm{~V}$ Loading: 4 TTL loads NRZ format, successive decision pulse output at internal clock rate generated during conversion. MSB appears first. Loading: 4 TTL loads Straight Binary Offset Binary, Two's Complement ${ }^{3}$ Conversion Status Signal $V_{\text {OUT " " } 0 \text { " }} \leq+0.4 \mathrm{~V}$ for conversion complete $V_{\text {OUt }}$ " 1 " $\geq+2.4 \mathrm{~V}$ for conversion in progress Negative going pulses from +5 V to 0 V . gated on during conversion Loading: 6 TTL loads
PERFORMANCE Resolution Nonlinearity Differential Nonlinearity Diff. Nonlinearity Tempco Gain Tempco Zero Tempco, Unipolar Offset Tempco, Bipolar Power Supply Rejection Conversion Time Over Full Temp.	$\begin{aligned} & 12 \text { binary bits }{ }^{4} \\ & \pm 1 / 2 \text { LSB max. } \\ & \pm 1 / 2 \mathrm{LSB} \text { max. } \\ & \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { max. } \\ & \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { max. } \\ & \pm 150 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { max. } \\ & \pm 15 \mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C} \text { max. }{ }^{5} \\ & \pm 0.01 \% / \% \text { Supply, max. } \\ & \hline \end{aligned}$
	$2.0 \mu \mathrm{sec}$ max. $3.0 \mu \mathrm{sec}$ max.
POWER REQUIREMENT Supply Voltage Power Dissipation	$\begin{aligned} & +15 \mathrm{~V} \pm 0.5 \mathrm{~V} @ 50 \mathrm{~mA} \text { max. } \\ & -15 \mathrm{~V} \pm 0.5 \mathrm{~V} @ 25 \mathrm{~mA} \text { max. } \\ & +5 \mathrm{~V} \pm 0.25 \mathrm{~V} @ 150 \mathrm{~mA} \text { max. } \\ & 1.9 \mathrm{~W} \text { max. } \end{aligned}$
PHYSICAL-ENVIRONMENTAL Operating Temp. Range, BMC BMR BMM Storage Temp. Range Package Type Pins Weight	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -65^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ 32 pin hermetically sealed ceramic DIP 0.010×0.018 inch Kovar $0.42 \text { oz. }(12 \mathrm{~g})$

[^2]
TECHNICAL NOTES

1. The high operating speed of these converters requires that good high frequency board layout techniques be used. Leads from data outputs should be kept as short as possible, output leads longer than 1 inch $(2.5 \mathrm{~cm})$ require the use of an output register. Ground loop problems are avoided by connecting all grounds on the board to the ground plane.
2. Analog input leads should be as short and direct as possible. The use of shielded cable as an analog input lead will ensure isolation of analog signals from environmental interference.
3. When the input buffer amplifier is used, a delay equal to its settling time must be allowed between input level change, such as multiplexer channel change, and the negative going edge of the START CONVERSION pulse. If the buffer is not required its input (pin 30) should be tied to analog ground (pin 26). This will prevent the unused amplifier from introducing noise into the converter. For applications in which the internal buffer is not used, the converter must be driven from a source with an extremely low input impedance.
4. Both analog and digital supplies should be bypassed to ground with $1 \mu \mathrm{~F}$ electrolytic capacitors in parallel with $0.1 \mu \mathrm{~F}$ ceramic capacitors as shown in the connections diagrams. Bypass capacitors should be located directly adjacent to, or on, each supply pin. The -10 V reference output (pin 18) should be bypassed to ground with a $2.2 \mu \mathrm{~F}$ electrolytic capacitor mounted as previously indicated.
5. In the bipolar mode, two's complement output coding is available by using the $\overline{M S B}$ output (pin 13); offset binary coding is obtained by using the MSB output (pin 12) Unipolar operation requires use of the MSB output (pin 12) to achieve straight binary output coding
6. Serial output data is available at pin 32 in standard NRZ format with the MSB appearing first. Coding is straight binary for unipolar operation or offset binary for bipolar operation. Synchronization of serial output data is achieved by use of the clock output (pin 19). Each data bit is valid when the clock output is HIGH and appears in succession from the MSB at the second clock LOW to HIGH transition to the LSB at the thirteenth clock LOW to HIGH transition
7. Applications of these converters that require the use of a sample-hold may be satisfied by Datel-Intersil's model SHM-6, a high-speed hybrid unit featuring $1.0 \mu \mathrm{sec}$ acquisition time, 0.01% accuracy, programmable gains from ± 1 to ± 10 and $\mathrm{a} \pm 10 \mathrm{~V}$ output range.
8. These converters have a maximum power dissipation of 2.4 W . The case-to-ambient thermal resistance for this package is approximately $28^{\circ} \mathrm{C}$ per watt. For operation in ambient temperatures exceeding $70^{\circ} \mathrm{C}$, care must be taken to ensure free air circulation in the vicinity of the converter.
9. Clock rate control (pin 17) is left unconnected for operation at rated conversion speed. Connect to +5 V to decrease conversion time by $50-75 \mathrm{nsec}$, or to ground to increase conversion time by 50-75 nsec.

CONNECTIONS AND CALIBRATION
 11 CABOT BOULEVARD，MANSFIELD．MA 02048／TEL．（617）339－9341／TWX 710－346－1953／TLX 951340
Santa Ana．（714）835－2751．（L．A．）（213）933－7256 • Sunnyvale．CA（408）733－2424 • Gaithersburg，MD（301）840－9490 －Houston，（713）781－8886 • Dallas．TX（214）241－0651 OVERSEAS：DATEL（UK）LTD－TEL．ANDOVER（O264）51055 －DATEL SYSTEMS SARL 602－57－11 • DATELEK SYSTEMS GmbH（089）77－60－95 • DATEL KK Tokyo 793－1031

Analog－to－Digital Converters ADC－E Series

FEATURES

－Differential or Single Ended Inputs
－Binary or BCD Coding
－Resolutions to 12 Bits or $31 / 2$ Digits
－ 6 Input Ranges Available
－ 100 Megohms Input Impedance
－ 80 dB Common Mode Rejection

GENERAL DESCRIPTION

The ADC－E series devices are low cost， high accuracy analog－to－digital converters featuring differential inputs，high linearity and excellent noise immunity．These converters utilize a modified dual－slope conversion technique ideally suited for converting analog voltage levels such as transducer outputs at moderate speed． Models are available in 8,10 and 12 binary bit resolutions with sign magnitude binary output coding，or in $21 / 2$ or $31 / 2$ BCD digit resolution with sign－magnitude BCD output coding．
These converters employ a differential input amplifier，resulting in high input impedance and excellent common mode input characteristics for the measurement of floating differential signals．The dual－ slope integrator yields high accuracy and linearity，integrating out spikes and noise that may degrade the accuracy of mea－ surement．Performance is further enhanced through the use of a precision，temperature compensated reference source．Each converter also contains a clock generator， counter／output register and the necessary control logic circuitry to interface with DTL／TTL logic levels．

Data output format is either sign－magnitude binary or sign－magnitude BCD output code． Conversion data appears at the outputs in parallel form and is valid from the time that the end of conversion output goes low until the next start conversion command is received．
Analog input ranges available in this series are， $\pm 1 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$ for the binary version，and $\pm 2 \mathrm{~V}, \pm 10 \mathrm{~V}$ and $\pm 20 \mathrm{~V}$ for the $B C D$ version．
These converters are compact，fully encapsulated modules suitable for P．C． board mounting．Each is a functionally complete unit，requiring only external D．C． power for operation over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ．Extended operating temperature range versions are also available．

Fast，Dual－Slope Analog－To－Digital Converters

ADC-E TIMING DIAGRAM

INTERNAL/EXTERNAL TRIGGERING

NOTE: USE PIN 16 FOR

INTERNAL/EXTERNAL TRIGGERING
All ADC-E mudels include an internal clock for self triggering of the unit at approximately its maximum allowed rate, depending on the
output register word length. The internal trigger circuit output when externally connected to the start corversion input, generates a main reset pulse which initiates a conversion, gates the clocked pulse train and sets up the sign polarity. The rate of the internal trigger can be
reduced if desired, with an external capacitor connected across pins reduced, if desired, with an external capacitor connected across pins
$23-24$, identified "Internal trigger rate adiust". When connected as 2directed, the external capacitor is in parallel with a $0.1 \mu \mathrm{~F}$ internal timing capacitor. Addition of a $0.1 \mu \mathrm{~F}$ external capacitor halves the rate of the internal trigger.
The rate of the internal trigger can be increased by connecting a
resistor of greater than $22 \mathrm{k} \Omega$ from pin 23 to +15 VDC .
When an external start conversion pulse is provided for system and the internal clock should be disabled by connecting a shorting

ORDERING INFORMATION

MODEL
ADC-E8B ${ }^{\star}$
ADC-E10B*
ADC-E12Bネ
ADC-E8D*
ADC-E12D*

DESCRIPTION

*FULL SCALE ANALOG INPUT RANGE AND TYPE	
	\mathbf{B} MODELS
SUFFIX	$\mathbf{3}= \pm 1 \mathrm{~V}$ Differential Inputs
Single Ended Inputs	
	$\mathbf{4}= \pm 10 \mathrm{~V}$ Single Ended Inputs
D MODELS	$\mathbf{2}= \pm 2 \mathrm{~V}$ Differential Inputs
SUFFIX	$\mathbf{3}= \pm 10 \mathrm{~V}$ Single Ended Inputs
	$\mathbf{4}= \pm 20 \mathrm{~V}$ Single Ended Inputs

$\begin{array}{ll}\text { DILS-2 } & \text { Mating Socket, } 2 \text { Req'd Per Module } \\ \text { TP100 } & \text { Trimming Potentiometer, 100 } 2\end{array}$
For extended temperature range operation, the following suffix is added to the model number. Consult factory for price and delivery. - EX $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

SCALE	ANALOG INPUT			SIGN MAGNITUDE BINARY OUTPUT CODE	
	$\begin{aligned} & \pm 1 \mathrm{~V} \\ & \text { RANGE } \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \text { RANGE } \end{aligned}$	$\begin{gathered} \pm 10 \mathrm{~V} \\ \text { RANGE } \end{gathered}$	$\begin{aligned} & \text { SIGN } \\ & \text { BIT } \end{aligned}$	MSB LSB
+F.S.-1 LSB	+9.9951V	$+4.9976 \mathrm{~V}$	+9.9952V	1	11111111111
+1/2F.S.	$+0.5000 \mathrm{~V}$	$+2.5000 \mathrm{~V}$	$+5.000 \mathrm{~V}$	1	10000000000
+1 LSB	$+0.49 \mathrm{mV}$	$+2.44 \mathrm{mV}$	$+4.880 \mathrm{~V}$	1	00000000001
+0	0.0000 V	0.0000 V	0.0000 V	1	00000000000
-0	0.0000 V	0.0000 V	0.0000 V	0	00000000000
-1 LSB	$-0.49 \mathrm{mV}$	$-2.44 \mathrm{mV}$	-4.88mV	0	00000000001
-1/3F.S.	$-0.5000 \mathrm{~V}$	$-2.5000 \mathrm{~V}$	$-5.0000 \mathrm{~V}$	0	10000000000
- F.S. +1 LSB	-9.9951V	-4.9976V	$-9.9952 \mathrm{~V}$	0	11111111111

ADC-E8D

SCALE	ANALOG INPUT		2 $1 / 2$ DIGIT SIGN MAGNITUDE BDC OUTPUT CODE	
	$\begin{gathered} \pm 20 \mathrm{~V} \\ \text { RANGE } \end{gathered}$	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \text { RANGE } \end{aligned}$	$\begin{gathered} \pm 2 \mathrm{~V} \\ \text { RANGE } \end{gathered}$	SIGN
+F.S.-1LSD	+19.9	+9.95V	+1.99V	11110011001
+1/2F.S.	+10.0V	$+5.00 \mathrm{~V}$	+1.00V	1100000000
+1 LSD	+0.1V	$+0.05 \mathrm{~V}$	+0.01V	1000000001
+0	+0.0V	$+0.00 \mathrm{~V}$	$+0.00 \mathrm{~V}$	1000000000
-0	-0.0V	$-0.00 \mathrm{~V}$	-0.00V	0000000000
-1 LSD	$-0.1 \mathrm{~V}$	$-0.05 \mathrm{~V}$	-0.01V	0000000001
$-1 / 2 F \cdot S$.	-10.0V	$-5.00 \mathrm{~V}$	$-1.00 \mathrm{~V}$	0100000000
- F.S. +1 LSD	-19.9V	$-9.95 \mathrm{~V}$	-1.99V	0110011001

SCALE	ANALOG INPUT			SIGN MAGNITUDE BINARY OUTPUT CODE		
	$\begin{gathered} \pm 1 \mathrm{~V} \\ \text { RANGE } \end{gathered}$	$\begin{gathered} +5 \mathrm{~V} \\ \text { RANGE } \end{gathered}$	$\begin{gathered} \pm 10 \mathrm{~V} \\ \text { RANGE } \end{gathered}$	$\begin{aligned} & \text { SIGN } \\ & \text { BIT } \end{aligned}$	MSB	LSB
+F.S.-1 LSB	+0.9980V	$+4.9902 \mathrm{~V}$	$+9.9805 \mathrm{~V}$	1	1111	11
+1/2F.S.	$+0.5000 \mathrm{~V}$	$+2.5000 \mathrm{~V}$	$+5.0000 \mathrm{~V}$	1	10000	000
+1 LSB	$+2.0 \mathrm{mV}$	$+9.7 \mathrm{mV}$	$+19.5 \mathrm{mV}$	1	0000	
+0	0.0000	0.0000	0.0000	1	0000	000
-0	0.0000	0.0000	0.0000	0	0000	000
-1 LSB	$-2.0 \mathrm{mV}$	$-9.7 \mathrm{mV}$	-19.5mV	0	0000	001
$-1 / 2$ F.S	$-0.5000 \mathrm{~V}$	$-2.5000 \mathrm{~V}$	$-2.5000 \mathrm{~V}$	0	1000	000
-F.S. +1 LSB	-0.9980V	$-4.9902 \mathrm{~V}$	-9.9805V	0	1111	11

ADC-E8B

SCALE	ANALOG INPUT			SIGN MAGNITUDE BINARY OUTPUT CODE	
	$\pm 1 v$ RANGE	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \text { RANGE } \end{aligned}$	$\begin{gathered} \pm 10 \mathrm{~V} \\ \text { RANGE } \end{gathered}$	$\begin{array}{\|l} \hline \text { SIGN } \\ \text { BIT } \\ \hline \end{array}$	MSB LSB
+F.S. -1 LSB	+0.9922V	+4.9609V	+9.9219V	1	1111111
+1/2F.S.	$+0.5000 \mathrm{~V}$	$+2.5000 \mathrm{~V}$	$+5.0000 \mathrm{~V}$	1	1000000
+1 LSB	$+7.8 \mathrm{mV}$	$+39.1 \mathrm{mV}$	$+78.1 \mathrm{mV}$	1	0000001
+0	0.0000 V	0.0000 V	0.0000 V	1	0000000
\cdots	0.0000 V	0.0000 V	0.0000 V	0	0000000
-1 LSB	$-7.8 \mathrm{mV}$	$-39.1 \mathrm{mV}$	$-78.1 \mathrm{mV}$	0	0000001
$-1 / 2$ F.S	$-0.5000 \mathrm{~V}$	$-2.5000 \mathrm{~V}$	$-5.0000 \mathrm{~V}$	0	1000000
-F.S. +1 LSB	-0.9922V	$-4.9609 \mathrm{~V}$	-9.9219V	0	1111111

CALIBRATION PROCEDURE
ADJUSTMENT CONNECTIONS

CALIBRATION PROCEDURE

1. Connect the converter as shown in the adjustment connection diagram
2. Allow 15 minutes after applying power for temperature stabilization.
3. Set pulse generator to supply a positive puise of 150 nsec duration at a repetition fate of $1 / 2$ of maximum conversion rate.
4. Set the precision DC voltage source to + F.S. 1 LSB value shown in the coding table for the ADC-E model and range under adjustment.
5. The lamp array displays the conversion result when the EOC indicator lamp is out. Adjust the Full Scale Adjustment potentiometer so that the output code for +F.S. -1 LSB shown in the applicable coding table is observed. 11 CABOT BOULEVARD, MANSFIELD. MA 02048 / TEL (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490

- Houston, (713)781-8886 - Dallas. TX (214)241-0651 OVERSEAS: DATEL (UK)LTD-TEL: ANDOVER (0264)51055 - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031.

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

- 8 Bit Resolution
- 4.0 \& $2.0 \mu \mathrm{sec}$. Conversion Time
- Unipolar or Bipolar Operation
- Parallel \& Serial Outputs
- Low Cost

GENERAL DESCRIPTION
The model ADC-EH8B is a fast, 8 bit successive approximation type analog to digital converter in a compact $2 \times 2 \times .375$ inch module. These converters are low cost devices with application in pulse code modulation systems and instrumentation and control systems requiring fast data conversion rates up to 500,000 per second. There are two models to choose from based on corversion speed: ADC-EH8B1 with a conversion time of $4.0 \mu \mathrm{sec}$. $(250 \mathrm{kHz}$ rate), and ADC-EH8B2 with a conversion time of $2.0 \mu \mathrm{sec}$. (500 kHz rate).
The high speed in a small size is made possible by the use of an MSI integrated circuit which provides all the necessary successive approximation logic, along with other new integrated circuit components. The analog input range is either unipolar 0 to +10 V or bipolar -5 V to +5 V , determined by external pin connection. For unipolar operation no external adjustments are necessary; for bipolar operation only a bipolar offset adjustment must be made externally. Parallel output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation. A serial output gives successive decision pulses in NRZ format with straight or offset binary coding. Other outputs are clock output for synchronization with serial data, and $\overline{\mathrm{MSB}}$ putput for two's complement coding.
Other specifications include full scale temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max., long term stability of $.05 \% /$ year, and linearity of $\pm 1 / 2$ LSB. Power requirement is $\pm 15 \mathrm{VDC}$ and +5 VDC .
 HIGH SPEED ad converter ADC-EHBER2

+5VDC +15VDC-15VDC PWR GROUND (17) (18) (20)

PARALLEL DATA OUT

MECHANICAL DIMENSIONS INCHES (MM)

NOTES

1. Open dots designate omitted pins.
2. 0.100 inch $=2.5 \mathrm{~mm}, 0.150$ inch $=3.8 \mathrm{~mm}$.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	E.O.C. (STATUS)
2	SERIAL DATA OUTPUT
3	START CONVERT
4	$\overline{\text { BIT } 1 \text { OUT (MSB) }}$
5	BIT 1 OUT (MSB)
6	BIT 2 OUT
7	BIT 3 OUT
8	BIT 4 OUT
9	BIT 5 OUT
10	BIT 6 OUT
11	BIT 7 OUT
12	BIT 8 OUT (LSB)
13	CLOCK OUT
17	+5V POWER IN
18	+15V POWER IN
19	-15V POWER IN
20	POWER GROUND
21	BIPOLAR OFFSET
31	ANALOG GROUND
32	ANALOG INPUT

 -iner

SPECIFICATIONS，ADC－EH8B
（Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V} \&+5 \mathrm{~V}$ Supplies，unless otherwise indicated）

INPUTS

Analog Input Range
Input Impedance
Input Overvoltage
Start Conversion．
0 V to +10 V FS or $\pm 5 \mathrm{~V}$ FS
4.45 K ohms ± 50 ohms
$\pm 20 \mathrm{~V}$（no damage）
2 V min．to 5.5 V max．positive pulse with du－
ration of 100 nsec．min．Rise and fall times $<50 \mathrm{~ns}$ ．
Logic＂1＂resets converter
Logic＂ 0 ＂initiates conversion
Loading： 1 TTL load
OUTPUTS
Parallel Output Data．．

8 parallel lines of data held until next con－ version command．
V out（＂ 0 ＂）$\leqslant+0.4 \mathrm{~V}$
V out（＂ 1 ＂）$\geqslant+2.4 \mathrm{~V}$
Each output capable of driving up to 4 TTL
loads．
Straight Binary，positive true
Offset Binary，positive true．
Two＇s Complement，positive true．
NRZ successive decision pulse output gener－ ated during conversion，with MSB first．
Straight binary or offset binary coding．
Loading： 4 TTL loads
Conversion Status Signal．
V out（＂ $\mathrm{O}^{\prime \prime}$ ）$\leqslant 0.4 \mathrm{~V}$ indicates conversion time completed．
V out $(" 1 ") \geqslant+2.4 \mathrm{~V}$ during reset
and conversion periods．
Loading： 4 TTL loads．
Internal clock pulse train of negative going pulses from +5 V to OV gated on during conversion time．
Loading： 6 TTL loads
PERFORMANCE
Resolution．．．．．．．．．．
Differential Nonlinearity
Differential Nonlinearity ．．．．．．．．．
Temp．Coeff．of Gain
Temp．Coeff．of Zero，Unipolar
Temp．Coeff．of Offset，Bipolar
Long Term Stability
Power Supply Rejection ．．．．．．．．．
Conversion Time

8 Bits（1 part in 256）
$\pm \mathbf{1 / 2}$ LSB max．
$\pm 1 / 2$ LSB max．
$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max．
$\pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max．
$\pm 35 \mathrm{ppm}$ of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ max．
$\pm .05 \% / y$ ear
$\pm .02 \%$ of $\mathrm{FS} / \%$ supply，max．
$4.0 \mu \mathrm{sec}$. max．，ADC－EH8B1
2.0μ sec．max．，ADC－EH8B2
$\pm 15 \mathrm{VDC} \pm 0.5 \mathrm{~V}$＠ 25 mA max． $+5 V D C \pm 0.25 \mathrm{~V}$＠ 125 mA max．

PHYSICAL－ENVIRONMENTAL
Operating Temp．Range．．．．．．．．．．．． $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temp．Range ．．．．．．．．．．．．．．．$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity ．．．．．．．．．．．．．．．．．．．Up to 100% non－condensing
Case Size ．
Case Material
Pins．

Black diallyl phthalate per MIL－M－14
Weight
．020＂round，gold plated， $.250^{\prime \prime} \mathrm{lg} . \min$. 2 oz．max．（57g．）

TIMING DIAGRAM FOR ADC－EH8B Output： 10101010

OUTPUT CODING
UNIPOLAR（0 TO＋10V）

SCALE	INPUT VOLTAGE	STRAIGHT BINARY
+ FS -1 LSB	+9.96 V	11111111
$+7 / 8 \mathrm{FS}$	+8.75 V	11100000
$+3 / 4 \mathrm{FS}$	+7.50 V	11000000
$+1 / 2 \mathrm{FS}$	+5.00 V	10000000
$+1 / 4 \mathrm{FS}$	+2.50 V	01000000
+1 LSB	+0.04 V	00000001
0	0.00 V	00000000

BIPOLAR（－5V TO +5 V ）

SCALE	INPUT VOLTAGE	OFFSET BIN	2＇S COMPLEMENT
+ FS－ 1 LSB	+4.96 V	11111111	01111111
$+3 / 4 \mathrm{FS}$	+3.75 V	11100000	01100000
$+1 / 2 \mathrm{FS}$	+2.50 V	11000000	01000000
0	0.00 V	10000000	00000000
$-1 / 2 \mathrm{FS}$	-2.50 V	01000000	11000000
$-3 / 4 \mathrm{FS}$	-3.75 V	00100000	1000000
$-\mathrm{FS}+1 \mathrm{LSB}$	-4.96 V	00000001	10000001
-FS	-5.00 V	00000000	10000000

ADC－EH8B CALIBRATION

1．UNIPOLAR－No adjustments are necessary and 100 s 2 trimming pot is not used．Full scale and zero are internally set to better than $1 / 2$ LSB．Pin 21 is left open．
2．BIPOLAR－Connect pin 18 （＋15VDC）to pin 21 through a 100s trimming potentiometer as shown．Connect a precision voltage source to pin 32 and set the input voltage to $+1 / 2$ LSB or +0.020 V ．Adjust the trimming potentiometer so that the output code flickers equally between 10000000 and 10000001.

ORDERING INFORMATION

MATING SOCKETS：
DILS－2（2／MODULE）
TP 100 TRIMMING POT．

For extended temperature range operation，the following suffixes are added to the model number．Consult factory for pricing．
$-E X \quad-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation

- EXX－HS $\quad-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation with hermetically sealed semiconductor components．
NOTE：ADC－EH8B1 \＆ 2 replace former models ADC－EH1 \＆ 2 and are improved models of these units respectively．The only difference from the previous models is the 3 additional output pins for serial output， clock output，and $\overline{M S B}$ output，and a change in input impedance from 5 K ohms to 4.45 K ohms．If the newly used pins（nos． 2,4 ，and 13 ）cause a problem in an existing application，they should be clipped off． Converters Model ADC-EH10B

FEATURES

- $2.0 \mu \mathrm{sec}$. Conversion - ADC-EH10B2
- $4.0 \mu \mathrm{sec}$. Conversion - ADC-EH10B1
- 10 Bit Resolution
- Compact 3" x 2" x .375" Module
$- \pm 30$ ppm $/{ }^{\circ}$ C max. Tempco
GENERAL DESCRIPTION
Model ADC-EH10B is a very fast 10 bit successive approximation type A / D converter in a compact low profile package. Low pricing makes this converter an ideal choice for many applications including fast scanning data acquisition systems, PCM systems, and fast pulse analysis. This converter is available in two versions based on conversion speed: ADC-EH10B1 with 4.0 $\mu \mathrm{sec}$. (250 kHz rate) and ADC-EH10B2 with $2.0 \mu \mathrm{sec}$. (500 kHz rate).
High speed and moderate power consumption (1.7 watts) in a compact size ($3^{\prime \prime} \times 2^{\prime \prime} \times .375^{\prime \prime}$) are made possible by use of an MSI integrated circuit successive approximation programmer/register used with 10 fast switching current sources driving a low impedance R-2R ladder network. A fast precision comparator and precision voltage reference circuit are also used.
Operating features include unipolar (0 to +10 V) or bipolar ($\pm 5 \mathrm{~V}$) operation by external pin connection. The converter has a maximum full scale temperature coefficient of $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and is monotonic over the full operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. External offset and gain adjustments are provided for precise calibration of zero and full scale. Parallel output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation. A serial output gives successive decision pulses in NRZ format with straight binary or offset binary coding. Other outputs include clock output for synchronizing serial data, MSB output for two's complement coding, and end of conversion (status) signal. All outputs are DTL/ TTL compatible. Power requirement is $\pm 15 \mathrm{VDC}$ and +5 VDC . The ADCEH10B is also available in extended temperature range versions.

MATING SOCKETS:
DILS-2 (2/MODULE)
TRIMMING POTENTIOMETERS:
TP20, TP200, TP20K
TIMING DIAGRAM FOR ADC-EH10B Output: 1010101010

OUTPUT CODING

UNIPOLAR (OV TO +10 V)

SCALE	INPUT VOLTAGE	STRAIGHT BINARY
$+\mathrm{FS}-1$ LSB	+9.9902 V	1111111111
$+7 / 8 \mathrm{FS}$	+8.7500 V	1110000000
$+3 / 4 \mathrm{FS}$	+7.5000 V	1100000000
$+1 / 2 \mathrm{FS}$	+5.0000 V	1000000000
$+1 / 4 \mathrm{FS}$	+2.5000 V	0100000000
+1 LSB	+0.0098 V	0000000001
0	0.0000 V	0000000000

BIPOLAR $(-5 \mathrm{~V}$ TO +5 V)

SCALE	INPUT VOLTAGE	OFFSET BINARY	TWO'S COMPLEMENT*
+ FS -1 LSB	+4.9902 V	1111111111	0111111111
$+3 / 4 \mathrm{FS}$	+3.7500 V	1110000000	0110000000
$+1 / 2 \mathrm{FS}$	+2.5000 V	1100000000	0100000000
0	0.0000 V	1000000000	0000000000
$-1 / 2 \mathrm{FS}$	-2.5000 V	0100000000	1100000000
$-3 / 4 \mathrm{FS}$	-3.7500 V	0010000000	1010000000
- FS + 1 LSB	-4.9902 V	0000000001	1000000001
- FS	-5.0000 V	0000000000	1000000000

* Using MSB output for Bit 1

GAIN \& OFFSET ADJUSTMENTS

UNIPOLAR OPERATION
. Apply START CONVERT pulses to pin 3 (see specifications and timing diagram).
Apply a precision reference voltage source to ANALOG IN (pin 32) and ANALOG GROUND (pin 31). Adjust the output of the voltage reference to Zero $+1 / 2$ LSB (+4.9 mV). Adjust the zero trimming potentiometer so that the output code flickers equally between 0000000000 and 0000000001
3. Adjust the output of the voltage reference to
+FS $-11 / 2$ LSB + FS - $11 / 2$ LSB (+9.9854 V). Adjust the GAIN flickers equallytiometer so that the output code 1111111111.

BIPOLAR OPERATION

. Apply START CONVERT pulses to pin 3 (see specifications and timing diagram).
Apply a precision reference voltage source to ANALOG IN (pin 32) and ANALOG GROUND (pin 31). Adjust the output of the voltage reference to -FS $+1 / 2$ LSB (-4.9951V). Adjust the offset trimming potentiometer so that the output code flickers equally between 0000000000 and 0000000001
Adjust the output of the voltage reference to + FS -1 $1 / 2$ LSB $(+4.9854 \mathrm{~V})$. Adjust the GAIN frimming potentiometer so that the output code flickers equall
1111111111

12 Bit, 4.0 and 8.0μ Sec. Analog-to-Digital Converters Model ADC-EH12B1, B2

FEATURES

- $4.0 \mu \mathrm{sec}$. Conversion-ADC-EH12B2
- $8.0 \mu \mathrm{sec}$. Conversion-ADC-EH12B1
- 12 Bit Resolution
- 30PPM $/{ }^{\circ} \mathrm{C}$ Tempco
- Low Profile-0.4" High

GENERAL DESCRIPTION

Model ADC-EH12B is a 4 microsecond, 12 bit successive approximation type A/D converter in a low profile $4 \times 2 \times 0.4$ inch module. This high performance converter is priced at about half that of other competing models; in addition, it consumes only 2.0 watts of power, much less than competing devices. It is ideal for application in PCM systems, data acquisition systems, and other instrumentation and control systems requiring very fast data conversion rates up to 250,000 per second. The ADC-EH12B is also available in an even lower cost $8.0 \mu \mathrm{sec}$. version.
The ADC-EH12B design utilizes an MSI integrated circuit successive approximation programmer/register, 12 fast switching current sources, a low impedance R-2R resistor network, a precision voltage reference circuit, and a fast precision comparator to achieve its very fast conversion rate.
Operating features include unipolar (0 to +10 V) or bipolar ($\pm 5 \mathrm{~V}$) operation by external pin connection. Full scale temperature coefficient is $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum and the converter is monotonic over its full operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. External offset and gain adjustments are provided for precise calibration of zero and full scale. Parallel output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation. A serial output gives successive decision pulses in NRZ format with straight binary or offset binary coding. Other outputs include clock output for synchronization with serial data, $\overline{\mathrm{MSB}}$ output for use in two's complement coding, and end of conversion (status) signal. All outputs are DTL/TTL compatible.

Power requirement is $\pm 15 \mathrm{VDC}$ and +5 VDC. Extended temperature range versions are also available.

SPECIFICATIONS, ADC-EH12B
 (Typical at $25^{\circ} \mathrm{C}, \pm \mathbf{1 5 V}$ \& +5 V Supplies, unless otherwise indicated)

INPUTS

Analog Input Range
Input Impedance
Input Overvoltage
Start Conversion.
0 V to +10 V FS or $\pm 5 \mathrm{~V}$ FS
2.3K ohms $\pm 0.1 \%$
$\pm 20 \mathrm{~V}$, no damage
2 V min. to 5.5 V max. positive pulse
with duration of $100 \mathrm{nsec} . \mathrm{min}$. Rise and fall times $<500 \mathrm{nsec}$.
Logic " 1 " resets converter
Logic " 0 " initiates conversion
Loading: 1 TTL load

OUTPUTS

Parallel Output Data	12 parallel lines of data held until next conversion command. V out (" 0 ") $\leqslant+0.4 \mathrm{~V}$ V out ($" 1$ ' $) \geqslant+2.4 \mathrm{~V}$ Each output capable of driving up to 4 TTL loads.
Coding, Unipolar operation Bipolar operation	Straight Binary, positive true Offset Binary, positive true Two's complement, positive true
Serial Output Data	NRZ successive decision pulse output generated during conversion with MSB first. Straight binary or offset binary, positive true coding. Loading: 4 TTL loads
End of Conversion (EOC)	Conversion Status Signal. V out (" 0 ") $\leqslant+0.4 \mathrm{~V}$ indicates con- version completed. V out $($ " 1 ") $\geqslant+2.4 \mathrm{~V}$ during reset and conversion. Loading: 4 TTL loads
Clock Output	Internal clock pulse train of negative going pulses from +5 V to 0 V gated on during conversion time. Loading: 6 TTL loads

PERFORMANCE

Resolution
.

12 Bits (1 part in 4096)
$\pm 1 / 2$ LSB max.
$\pm 1 / 2$ LSB max.
$\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
$\pm 150 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max.
$\pm 15 \mathrm{ppm}$ of F.S. $/^{\circ} \mathrm{C}$ max.
.01\% FS/\% supply, max.
$8.0 \mu \mathrm{sec}$. max., ADC-EH12B1
$4.0 \mu \mathrm{sec}$. max., ADC-EH12B2
-
$5 \mathrm{VDC} \pm 0.25 \mathrm{VDC} @ 150 \mathrm{~mA}$ max

POWER REQUIREMENT \cdots| $\pm 15 \mathrm{VDC} \pm 0.5 \mathrm{VDC} @ 40 \mathrm{~mA}$ max. |
| :--- |
| $+5 \mathrm{VDC} \pm 0.25 \mathrm{VDC} @ 150 \mathrm{~mA}$ max. |

PHYSICAL-ENVIRONMENTAL

Operating Temp. Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temp. Range .	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity	Up to 100\% non-condensing
Case Size	$4 \times 2 \times 0.4$ inches $(101,6 \times 50,8 \times 10,2 \mathrm{~mm})$
Case Material	Black Diallyl Phthalate per MIL-M-14
Pins	.020' round, gold plated, .200' long min.
Weight	4 oz. max. (114 g.)

ORDERING
INFORMATION
ADC-EH12B
CONVERSION TIME
$1=8.0 \mu \mathrm{sec}$.
$2=4.0 \mu \mathrm{sec}$.

MATING SOCKETS:
DILS-2 (2/MODULE)
TRIMMING POTENTIOMETERS:
TP20, TP200, TP20K

TIMING DIAGRAM FOR ADC-EH12B Output: 101010101010

OUTPUT CODING			
UNIPOLAR (OV TO +10V)			
SCALE	INPUT VOLTAGE	STRAIGHT BINARY	
+FS - 1 LSB	+9.9976V	111111111111	
+7/8 FS	+8.7500V	111000000000	
+3/4 FS	+7.5000V	110000000000	
+1/2 FS	$+5.0000 \mathrm{~V}$	100000000000	
+1/4	+2.5000V	010000000000	
+1 LSB	$+0.0024 \mathrm{~V}$	000000000001	
0	0.0000 V	000000000000	
BIPOLAR (-5 V TO +5V)			
SCALE	INPUT VOLTAGE	OFFSET BINARY	TWO'S COMPLEMENT*
+FS - 1 LSB	$+4.9976 \mathrm{~V}$	111111111111	011111111111
+3/4 FS	+3.7500V	111000000000	011000000000
+1/2 FS	+2.5000V	110000000000	010000000000
0	0.0000 V	100000000000	000000000000
-1/2 FS	-2.5000V	010000000000	110000000000
-3/4 FS	-3.7500V	001000000000	101000000000
-FS + 1 LSB	-4.9976V	000000000001	100000000001
-FS	-5.0000V	000000000000	100000000000

- Using MSB output for Bit 1

GAIN \& OFFSET ADJUSTMENTS

UNIPOLAR OPERATION
. Apply START CONVERT pulses to pin 24 (see specifications and timing diagram).
Apply a precision reference voltage source to
ANALOG IN (pin 32) and ANALOG GROUND (pin 31). Adjust the output of the voltage refer ence to Zero $+1 / 2$ LSB $(+1.2 \mathrm{mV}$). Adjust the code flickers equally between 000000000000 and 000000000001.
3. Adjust the output of the voltage reference to + FS $-11 / 2$ LSB $(+9.9963 \mathrm{~V}$). Adjust the GAIN trimming potentiometer so that the output code lickers equally between 111111111110 and 111111111111.

BIPOLAR OPERATION
Apply START CONVERT pulses to pin 24 (see specifications and timing diagram).
2. Apply a precision reference voltage source to ANALOG IN (pin 32) and ANALOG GROUND (pin 31). Adjust the output of the voltage referoffset trimming potentiometer so that the outpu code flickers equally between 000000000000 and 000000000001.
3. Adjust the output of the voltage reference to + FS $-11 / 2$ LSB $(+4.9854 \mathrm{~V})$. Adjust the GAIN trimming potentiometer so that the output code 111111111111 . 1

For extended temperature range operation, the following suffixes are added to the model number. Consult factory for pricing.
EXX HS $\quad-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation
-EXX-HS $\quad-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation with hermetically sealed semiconductor components
THE ADC-EH12B CONVERTERS ARE COVERED BY GSA CONTRACT.

Ultra－Fast， 12 Bit
 Analog－to－Digital Converter Model ADC－EH12B3

FEATURES

－ $2.0 \mu \mathrm{sec}$ ．Coriversion Time
－ 12 Bit Resolution
－Low Power Consumption－2．25W
－Low Profile Case－0．4＂High
－Economy Price

GENERAL DESCRIPTION

Model ADC－EH12B3 is a new，ultra fast， 12 bit successive approximation A／D converter with a 2.0 microsecond maximum conversion time．This con－ verter utilizes 12 very fast switched current sources with a low impedance R－2R ladder network，a fast precision comparator，a precision zener refer－ ence source，and an MSI integrated cir－ cuit successive approximation register to achieve its state of the art perfor－ mance．It is encapsulated in a low pro－ file $2 \times 4 \times 0.4$ inch module and con－ sumes only 2.25 watts of power．The ADC－EH12B3 opens up a broad range of fast data conversion applications where conversion rates up to 500,000 per second are required．

Input voltage ranges are 0 to +10 V unipolar or $\pm 5 \mathrm{~V}$ bipolar by external pin connection；input impedance is 1.15 K ohms．The parallel output is in straight binary，offset binary，or two＇s complement coding．Serial output data is also brought out in the form of an NRZ format MSB first pulse train． Full scale temperature coefficient is $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum and zero tem－ perature coefficient is $\pm 150 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum．Due to its low differential linearity temperature coefficient there are no missing codes over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operating temperature range． Provision is made for precise alignment in a given application．

Other DTL／TTL compatible outputs include clock，$\overline{\mathrm{MSB}}$ output（for two＇s complement coding），and end of con－ version（status）output．Power supply requirement is $\pm 15 \mathrm{VDC}$ and +5 VDC ．

MECHANICAL DIMENSIONS INCHES（MM）

NOTES：
OPEN DOTS DESIGNATE OMITTED PINS
20.100 INCH $=25 \mathrm{~mm}$
2 0.100 INCH $=2.5 \mathrm{~mm}$

INPUT／OUTPUT CONNECTIONS

PIN	FUNCTION
1	E．O．C．ISTATUS）
2	CLOCK OUT
3	BIT I OUT（MSB）
4	SERIAL DATA OUT
5	BIT 1 OUT（MSB）
6	BIT 2 OUT
7	BIT 3 OUT
8	BIT 4 OUT
9	BIT 5 OUT
10	BIT 6 OUT
11	BIT 7 OUT
12	BIT 8 OUT
13	BIT 9 OUT
14	BIT 10 OUT
15	BIT 11 OUT
16	BIT 12 OUT（LSB）
17	＋5V POWER IN
18	＋15V POWER IN
19	$-15 V$ POWER IN
20	POWER GROUND
21	UNIPOLAR ZERO
22	BIPOLAR OF FSET
23	GAIN ADJUST
24	START CONVERT IN
31	ANALOG GROUND
32	ANALOG IN

SPECIFICATIONS, ADC-EH12B3
(Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V} \&+5 \mathrm{~V}$ Supplies, unless otherwise indicated)

INPUTS

Analog Input Range . Input Impedance Input Overvoltage Start Conversion.	0 V to +10 V FS or $\pm 5 \mathrm{~V}$ FS 1.15K ohms $\pm 0.1 \%$ $\pm 20 \mathrm{~V}$, no damage 2 V min. to 5.5 V max. positive pulse with duration of $100 \mathrm{nsec} . \mathrm{min}$. Rise and fall times $<500 \mathrm{nsec}$. Logic " 1 " resets converter Logic " 0 " ' initiates conversion Loading: 3 TTL loads
OUTPUTS	
Parallel Output Data	12 parallel lines of data held until next conversion command. V out (" 0 ") $\leqslant+0.4 \mathrm{~V}$ V out $(" 1 ") \geqslant+2.4 V$ Each output capable of driving up to 4 TTL loads.
Coding, Unipolar operation Bipolar operation	Straight Binary, positive true Offset Binary, positive true Two's complement, positive true
Serial Output Data	NRZ successive decision pulse output generated during conversion with MSB first. Straight binary or offset binary. positive true coding. Loading: 4 TTL loads
End of Conversion (EOC)	Conversion Status Signal. V out (" 0 ") $\leqslant+0.4 \mathrm{~V}$ indicates con- version completed. \vee out $(" 1 ") \geqslant+2.4 \vee$ during reset and conversion. Loading: 4 TTL loads
Clock Output	Internal clock pulse train of negative going pulses from +5 V to 0 V gated on during conversion time. Loading: 6 TTL loads

PERFORMANCE

TIMING DIAGRAM FOR ADC-EH12B Output 101010101010

OUTPUT CODING

UNIPOLAR (OV TO +10V)

SCALE	INPUT VOLTAGE	STRAIGHT BINARY
+ FS -1 LSB	+9.9976 V	111111111111
$+7 / 8 \mathrm{FS}$	+8.7500 V	111000000000
$+3 / 4 \mathrm{FS}$	+7.5000 V	110000000000
$+1 / 2 \mathrm{FS}$	+5.0000 V	100000000000
$+1 / 4$	+2.5000 V	010000000000
+1 LSB	+0.0024 V	000000000001
0	0.0000 V	000000000000

BIPOLAR (-5 V TO +5 V)

SCALE	INPUT VOLTAGE	OFFSET BINARY	TWO'S COMPLEMENT
+ FS -1 LSB	+4.9976 V	111111111111	011111111111
$+3 / 4 \mathrm{FS}$	+3.7500 V	111100000000	01100000000
$+1 / 2 \mathrm{FS}$	+2.5000 V	110000000000	010000000000
0	0.0000 V	100000000000	000000000000
$-1 / 2 \mathrm{FS}$	-2.5000 V	01000000000	11000000000
$-3 / 4 \mathrm{FS}$	-3.7500 V	001000000000	101000000000
$-\mathrm{FS}+1$ LSB	-4.9976 V	00000000001	100000000001
-FS	-5.000 V	000000000000	100000000000

- Using MSB output for Bit 1

ORDERING INFORMATION

MATING SOCKETS:
DILS-2 (2/MODULE)
TRIMMING POTENTIOMETERS:
TP20, TP200, TP20K

For extended temperature range operation, the following suffixes are

> added to the model number. Consult factory for pricing. $\begin{array}{ll}- \text { EX } & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { operation } \\ \text {-EXX-HS } & -55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { operation with hermetically sealed } \\ & \text { semiconductor components }\end{array}$

THE ADC-EH12B3 CONVERTER IS COVERED UNDER GSA CONTRACT. Low Cost， 4 and 8 Bit Flash A／D Converters ADC－UH Series

FEATURES

－ 4 bits at 25 MHz

－ 8 bits at 8.33 MHz
－Unipolar and Bipolar Models $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Tempco
－Rugged modular construction
－Low Cost
GENERAL DESCRIPTION
The ADC－UH series is made up of two ultra high speed analog to digital converters：an eight binary bit model operating at con－ version rates up to 8.33 MHz and a four bit version operating at rates up to 25 MHz ．
Converters in this series employ the ultra－fast parallel，or flash，conversion technique and are of modular construction． These high－speed designs have been tested and proven in many different applications．Close attention to circuit and layout detail has resulted in highly reliable converters having relatively low power consumption．
The ADC－UH4B uses a single stage parallel conversion technique to achieve a conversion in forty nanoseconds．This model is composed of a bank of 15 ultra－fast comparators，a 15 line to 4 bit decoder，a 4 bit storage register，and control logic circuitry．
The ADC－UH8B employs a two－stage parallel conversion technique to accom－ plish an 8 bit conversion every 120 nanoseconds．The two stage modification of the parallel conversion technique is employed to keep the number of com－ parators to 30 instead of 255 which would be required with the single stage technique． In addition to 30 ultra－fast comparators，the eight bit model contains two 15 line to 4 bit decoders，two 4 bit storage registers，a high speed 4 bit D／A converter，and control logic circuitry．
Output coding for both models is straight binary for unipolar operation and offset binary for bipolar operation．Converters for bipolar analog inputs are designated by the suffix＂ 2 ＂after the model number．All control inputs，outputs，and data outputs are compatible with standard TTL logic levels．
Each model is fully encapsulated in a $3^{\prime \prime} \times 5^{\prime \prime}$ $\times 1.15^{\prime \prime}$ black anodized aluminum module suitable for direct mounting to pc boards． Input power requirements are $\pm 15 \mathrm{VDC}$ and ± 5 VDC．Operating temperature range is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ．

INTERNALLY CONNECTED．
input／OUTPUT CONNECTIONS

PIN	FUNCTION
1	BIT 4 （LSB，ADC－UH4B）
2	BIT 3
3	BIT 2
4	BIT 1 （MSB）
5	START CONVERT
6	E．O．C．（STATUS）
7	15 VDC GROUND
8	-15 VDC
9	+15 VDC
10	$5 V D C ~ G R O U N D ~$
11	$-5 V D C$
12	$+5 V D C$
13	BIT 5
14	BIT 6
15	BIT 7
16	BIT 8（LSB，ADC－UH8B）
17	ANALOG INPUT
18	ANALOG GROUND

NOTE：PINS 7，10 AND 18 ARE
INTERNALLY CONNECTED．

MECHANICAL DIMENSIONS INCHES（MM）

	ADC-UH4B	ADC-UH8B
ADC-UH8B mAXIMUM RATINGS Analog Supply Voltage \qquad Logic Supply Voltage . \qquad Analog Input Voltage	$\begin{aligned} & \pm 18 \mathrm{VDC} \\ & \pm 5.25 \mathrm{VDC} \\ & \pm 5 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \pm 18 \mathrm{VDC} \\ & \pm 5.25 \mathrm{VDC} \\ & \pm 5 \mathrm{VDC} \end{aligned}$
INPUTS Analog Input Range, Unipolar \qquad Analog Input Range, Blpolar ${ }^{1}$ \qquad Input Impedance ${ }^{2}$ Input Capacitance Input Current Start Conversion	$\begin{aligned} & 0 \mathrm{~V} \text { to }-2.56 \mathrm{~V} \\ & \pm 1.28 \mathrm{~V} \\ & 100 \mathrm{~K} \\ & 250 \mathrm{pF} \\ & +150 \mu \mathrm{~A} \\ & 2 \mathrm{~V} \text { min. to } 5 \mathrm{~V} \text { max. } \\ & 40 \mathrm{nsec} \text { min. width. } \\ & \text { Edge Initiates Conve } \\ & \text { Loading: } 1 \mathrm{HTTL} \text { Lo } \end{aligned}$	```OV to -2.56V \pm1.28V 100K 20 pF \pm30 \muA sitive Pulse, sitive Going sion.```
OUTPUTS Output Data . \qquad Output Logic Levels \qquad Output Coding, Unipolar \qquad Output Coding, Bipolar' \qquad End of Conversion \qquad	4 Parallel Lines Vout ("0 Vout ("1 Loading: Straight Binary Offset Binary 2 V min. to 5 V max. 45 nsec Width. Neg Indicates Conversio Loading: 1 HTTL Lo	8 Parallel Lines $\leqslant+0.4 \mathrm{~V}$ $\geqslant+2.4 \mathrm{~V}$ TL Loads Straight Binary Offset Binary sitive Pulse ve Going Edge Complete.
PERFORMANCE Resolution \qquad Differential Linearity Error, max. \qquad Missing Codes Gain Tempco Long Term Stability Conversion Time \qquad Conversion Rate, max.	4 Bits (1 part in 16) $\pm 1 / 4$ LSB None over oper. temp. range $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\pm 0.25 \% /$ Year 40 nsec . 25 MHz	$\begin{aligned} & 8 \text { Bits (1 part in } 256) \\ & \pm 1 \text { LSB } \\ & \text { None at } 25^{\circ} \mathrm{C} \\ & \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \pm 0.25 \% / \mathrm{Year} \\ & 120 \mathrm{nsec} . \\ & 8.33 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENT Analog Supply Voltage Positive Analog Current Negative Analog Current Logic Supply Voltage Positive Logic Current Negative Logic Current	$\begin{aligned} & \pm 15 \mathrm{VDC} \pm 0.2 \mathrm{VDC} \\ & 80 \mathrm{~mA} \\ & 9 \mathrm{~mA} \\ & \pm 5 \mathrm{VDC} \pm 0.1 \mathrm{VDC} \\ & 650 \mathrm{~mA} \\ & 150 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \pm 0.2 \mathrm{VDC} \\ & 80 \mathrm{~mA} \\ & 9 \mathrm{~mA} \\ & \pm 5 \mathrm{VDC} \pm 0.1 \mathrm{VDC} \\ & 1300 \mathrm{~mA} \\ & 250 \mathrm{~mA} \end{aligned}$
PHYSICAL-ENVIRONMENTAL Operating Temp. Range Storage Temp. Range Relative Humidity Package Type \qquad Package Size \qquad Pins Weight	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Up to 100\% Non-Co Black Anodized Alum $3 \times 5 \times 1.150$ inche $(76,2 \times 127,0 \times 29,2$ $0.020^{\prime \prime}$ Dia. $\times 0.250^{\prime \prime}$ 15 oz. (425g)	densing num Module m) ong, Gold Plated

NOTES:

1. For bipolar operation order suffix " 2 " model.
2. 10 Kmin .

TECHNICAL NOTES

1. Model ADC-UH8B has a throughput delay of 140 nsec. due to the two stage conversion technique used. However, a new conversion can be started every 120 nsec . for a conversion rate of 8.33 MHz .
2. The eight bit conversion result of the ADC-UH8B is made up of two 4 bit partial results that appear 95 nsec . apart. Since each 4 bit result is present at the outputs for 110 nsec ., the 15 nsec . overlap between the two partial results is the period in which the complete 8 bit conversion result is available at the outputs. This overlap period occurs immediately prior to the falling edge of the end of conversion output pulse. While the 8 bit word is available at the outputs, it may be loaded into an external register for transfer. Transfer may be accomplished by using a zero hold-time register such as an SN74H106 or a fast quad Dtype flip-flop such as the SN74S175. One configuration of the ADC-UH8B is shown in the diagram titled "Two State Data Transfer Register". This register allows access to the full 8 bit word for 150 nsec . after the negative going edge of the end of conversion pulse and acts as a deskewing register.
3. For applications of the ADC-UH8B requiring a sample-hold, Datel-Intersil's SHM-UH3 is recommended. The SHM-UH3 is an ultra-fast sample-hold designed specifically for use with the ADC-UH8B. The ADC-UH4B generally does not require a sample-hold due to its high speed.
4. The ADC-UH series has inverted analog input. Therefore, for the bipolar $\pm 1.280 \mathrm{~V}$ analog input range, a -1.280 V input results in an output code of 11111111. Conversely, an analog input of +1.280 V is coded as 00000000 . Coding for bipolar models is offset binary.
5. The ADC-UH is completely calibrated at the factory and does not require any customer adjustment. Due to the high speed and sophisticated design of these units, calibration is a complex procedure involving specialized equipment. No attempt at adjustment should be made without contacting the factory for assistance.
6. The ADC-UH series modules are supplied with two threaded mounting holes on the bottom of the case to allow securing the module to a circuit board. Screws used for mounting should be tightened to between 4 and 8 inch pounds.
7. During operation, airflow over the case must be unrestricted to provide proper cooling. For operations in ambient temperatures above $50^{\circ} \mathrm{C}$ airflow of at least 100 linear feet per minute is recommended.

ORDERING INFORMATION

MODEL

DESCRIPTION

ADC-UH4B 4 Bits, 25 MHz , Unipolar ADC-UH4B2 4 Bits, 25 MHz , Bipolar ADC-UH8B 8 Bits, 8.33 MHz , Unipolar ADC-UH8B2 8 Bits, 8.33 MHz , Bipolar
For extended temperature range operation the following suffixes should be added to the model number. Consult factory for price and delivery.
-EXX-HS $\quad-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation with all hermetically sealed semiconductors
THESE CONVERTERS ARE COVERED BY GSA CONTRACT.

The ADC-UH4B employs the well-known parallel, or flash, high speed conversion technique. With this technique an analog input is digitized to a resolution of N bits by a bank of $2^{\mathrm{N}}-1$ comparators operating in parallel. These comparators are biased 1 LSB apart by a precision resistor network connected to a voltage reference. With an analog input applied, all comparators biased below the level of the input signal turn on (output "1") while those biased above the input level turn off (output " 0 "). Since the comparators operate simultaneously, the quantization takes place in the switching time of a single comparator. For a four bit converter, which requires a bank of 15 comparators, the results of this quantization appear in the form of a 15 line code which increments sequentially from all zeros to all ones. This result is fed to a special 15 line to 4 bit decoder, whose output is a 4 bit binary code.
To achieve high speed 8 bit conversions, the above technique is used in a two stage operation. The first quantization stage determines the four most significant
bits. This four bit word is then stored in an output register that also controls a 4 bit digital-to-analog converter. The output of the D/A coverter is the analog value of the four most significant bits, which is then subtracted from the analog input. The resulting voltage difference is fed to a second comparator bank where the four least significant bits are determined and stored in a second output register. The contents of the two output registers is the 8 bit binary word representing the analog input signal level.
A useful result of this two stage method is that once the four most significant bits have been determined and stored in the output register, the first stage comparator bank is free to perform the next conversion. The second conversion will begin while the remaining four bits of the original conversion are being determined in the second stage (refer to the timing diagram for the dynamics of interleaved two-stage conversion). This mode of operation makes possible an 8.33 MHz word rate.

CODING TABLES

ADC－UH8B CODING TABLE

CONVERTER SCALE	ANALOG INPUT VOLTAGE	STRAIGHT BINARY OUTPUT CODE
- F．S．＋1LSB	-2.550 V	11111111
$-3 / 4 \mathrm{~F} . \mathrm{S}$.	-1.920 V	11000000
$-1 / 2$ F．S．	-1.280 V	10000000
$-1 / 4$ F．S．	-0.640 V	01000000
1 LSB	-0.010 V	00000001
0	0.00 V	00000000

ADC－UH4B2 CODING TABLE

CONVERTER SCALE	ANALOG INPUT VOLTAGE	OFFSET BINARY OUTPUT CODE
- F．S．＋1 LSB	-1.120 V	1111
$-1 / 2$ F．S．	-0.640 V	1100
-1 LSB	-0.160 V	1001
0	0.000 V	1000
＋1／2F．S．	+0.640 V	0100
＋F．S．	+1.280 V	0000

ADC－UH8B2 CODING TABLE

CONVERTER SCALE	ANALOG INPUT VOLTAGE	OFFSET BINARY OUTPUT CODE
- F．S．＋1 LSB	-1.270 V	11111111
$-1 / 2$ F．S．	-0.640 V	11000000
-1 LSB	-0.010 V	10000001
0	0.000 V	10000000
＋1／2 F．S．	+0.640 V	01000000
＋F．S．	+1.280 V	00000000

ADC－UH4B CODING TABLE

CONVERTER SCALE	ANALOG INPUT VOLTAGE	STRAIGHT BINARY OUTPUT CODE
$-\mathrm{F} . \mathrm{S} .1 .1 \mathrm{LSB}$	-2.400 V	1111
$-3 / 4 \mathrm{~F} . \mathrm{S}$.	-1.920 V	1100
$-1 / 2 \mathrm{~F}$.	-1.280 V	1000
$-1 / 4 \mathrm{~F} . \mathrm{S}$.	-0.640 V	0100
-1 LSB	-0.010 V	0001
0	0.000 V	0000

FEATURES

－ 8 Bit Resolution
－ 20 MHz Encoding Rate
－Internal Sample Hold
－ECL or TTL Interfacing
－Hybrid Building Block Design

GENERAL DESCRIPTION

The ADC－TV8B is an 8 bit video analog to digital converter employing a unique new design concept．The circuit reali－ zation is based on a hybrid building block principle using four specially developed circuits：a 3－bit parallel de－ coded A／D，a 15 line（ 4 bit）D／A，an ultra－fast sample－hold，and an ultra－ fast inverting op amp．These devices， manufactured with thin－film hybrid technology，are combined with other digital and analog IC＇s，in addition to passive components to construct the ADC－TV8B．This building block prin－ ciple results in single circuit board construction in a compact，anodized aluminum module only $7.5 \times 4.25 \times$ 0.875 inches（ $191 \times 108 \times 22 \mathrm{~mm}$ ）．

Digital and power connections are made through a 37 －pin subminiature ＂D＂connector and the analog input is a 3 mm terminated coax connector． Ultra－fast 10,000 series ECL logic is used throughout the design，but there is a choice of two external logic inter－ faces：ECL or TTL．There is a further choice in analog input termination im－ pedances of 50,75 ，or 93 ohms and analog input ranges of 0 to $+1 \mathrm{~V}, 0$ to $+2 \mathrm{~V}, 0$ to $+5 \mathrm{~V}, \pm 1 \mathrm{~V}, \pm 2 \mathrm{~V}$ ，or $\pm 5 \mathrm{~V}$ ． These choices are made by selecting the appropriate converter model num－ ber．
The time between conversions is 50 nsec．maximum，giving a conversion rate of 20 MHz ．The conversion delay， or time from the start convert pulse to the time data is valid，is 65 nsec．for the ECL version and 75 nsec ．for the TTL version．Linearity error is $\pm 1 / 2$ LSB maximum，and there are no miss－ ing codes over the operating tempera－ ture range．Temperature coefficient is $\pm 60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of full scale range．
Power requirement is $\pm 15 \mathrm{VDC}$ and ± 5 VDC at 16 watts consumption． Operating temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ．

MAXIMUM RATINGS Analog Supply Voltage, pins 5\&23, $10 \& 28$. Logic Supply Voltage, pins 6824, 9827 ECL Logic Inputs, pins 2\&21 TTL Logic Input, pin 3. Analog Input Voltage	$\begin{aligned} & \pm 18 \mathrm{~V} \\ & \pm 5.5 \mathrm{~V} \\ & 0 \mathrm{~V},-5 \mathrm{~V} \\ & +5.5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$
INPUTS ${ }^{1}$ Analog Input Range ${ }^{2}$, unipolar Analog Input Range ${ }^{2}$, blpolar Input Impedance ${ }^{2}$ Start Conversion, ECLi....... Start Conversion, TTL.	$\begin{aligned} & 0 \text { to }+1 \mathrm{~V}, 0 \text { to }+2 \mathrm{~V}, 0 \text { to }+5 \mathrm{~V} \\ & \pm 1 \mathrm{~V}, \pm 2 \mathrm{~V}, \pm 5 \mathrm{~V} \end{aligned}$ 50,75 , or 93 ohms. Complementary ECL 10,000 input pulses, 15 nsec. min. Conversion initiated on leading edge. Negative going pulse to pin 2. Positive going pulse, 15 nsec . $\mathrm{min}+0.8 \mathrm{~V}$ max. to +2.0 V min . levels. 50 ohms input impedance. Conversion initiated on leading edge.
OUTPUTS ${ }^{1}$ Parallel Output Data, ECL Loading Skow ${ }^{3}$ Parallel Output Data, TTL Loading Skow ${ }^{3}$ Coding, unipolar ${ }^{4}$ Coding, bipolar ${ }^{4}$ End of Conversion, ECL Loading End of Conversion, TTL Loading	8 pins of parallel lines, complementary ECL 10,000. Valid after E.O.C. pulse. 20 ECL loads < 2 nsec . 8 parallel lines of data, valid after E.O.C. pulse. Vout ("0") $\leq+0.4$ Vout (" \mid ") $\geq+2.4 \mathrm{~V}$ 10 TTL loads < 5 nsec. Straight binary Offset binary Complementary ECL 10,000. 20 nsec. pulse after which data is valid. 20 ECL loads 20 nsec. positive pulse after which data is valid. 10 TTL loads.
PERFORMANCE Resolution Linearity Error Conversion Delay, ECL Conversion Delay, TTL Time Between Conversions Max. Conversion Rate Sample Hold Bandwidth Sample Hold Acquisition Time Aperture Uncertainty Temperature Coefficient Missing Codes. Signal to Noise Ratlo, DC to 5 MHz Long Term Stability	8 bits (1 part in 256) $\pm 1 / 2$ LSB max. 65 nsec . 75 nsec. 50 nsec. min. 20 MHz 10 MHz 25 nsec. <30 psec. $\pm 60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FSR^{5} None over oper. temp. range. 50 dB $\pm 0.15 \%$ per year
POWER REQUIREMENTS	$\pm 15 \mathrm{VDC} \pm 0.75 \mathrm{~V}$ at 200 mA $+5 \mathrm{VDC} \pm 0.25 \mathrm{~V}$ at $0.5 \mathrm{~A}^{6}$ $-5 \mathrm{VDC} \pm 0.25 \mathrm{~V}$ at 1.5 A

PHYSICAL-ENVIRONMENTAL

Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range . $\quad-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity Up to 100% non-condensing
Slze . $7.5 \times 4.25 \times 0.875$ inches $191 \times 108 \times 21,9 \mathrm{~mm}$.
Type Case.
Woight Black Anodized Aluminum. 16 02. (454 g .)

NOTES:

1. ECL or TTL interface is determined by model number.
2. Input ranges and impedances are determined by model number
3. Skew is defined as the maximum difference between times that any two bits change.
4. Determined by number.
5. Full scale range, or the difference between high ahd low ends of the input range.
6. For TTL model this current is 0.7 A .
7. Use of pin 21 for complementary drive is optional.

TECHNICAL NOTES

1. Note that there are two basic models of the ADC-TV8B: one for ECL interfacing (ADC-TV8B1) and one for TTL interfacing (ADC-TV8B2). The former is designed for complementary series 10,000 ECL interfacing and can be conveniently used with ECL differential line drivers and receivers. The latter model uses standard TTL interface levels.
2. The ADC-TV8B1 dissipates 16 watts while the ADCTV8B2, which draws slightly higher +5 V supply current, dissipates 17 watts. It is recommended in general that one side of the package (see Mechanical Dimensions) be mounted against a metal heat sink such as chassis. Internal components are heat sinked to this side of the package and there are tapped \#4-40 mounting holes for this purpose.
3. The analog input coax connector is a standard 3mm RF connector (mating part, Sealectro Corp. part no. 51-$024-0000$). The mating part to the subminiature " D " connector is Cinch type DC37S.
4. Each power supply connection has two pins connected in parallel. It is recommended that both of these pins be used in all cases. There is no requirement to bypass the power supply leads in most cases since this is done internally.
5. The ADC-TV8B does not require any external adjustments. All adjustments have been made at the factory and after an initial 5 minute warm-up period, the unit will perform to specification.
6. The ECL model can be operated with a single start convert pulse applied to pin 2. The complementary input may be used in addition to improve noise immunity. If the start convert pulse, for either ECL or TTL versions remains HI longer than 35 nsec., the samplehold will remain in the hold mode for the duration of the start convert pulse.

ORDERING INFORMATION

PRICING

Model	Logic Interface
ADC-TV8B1	ECL
ADC-TV8B2	TTL

The following mating connectors are supplied with
ADC-TV8B: TRW Cinch DC37S
Sealectro 51-024-0000
For extended temperature range operation the following suffixes are added to the model number. Consult factory for price and delivery.

$$
\begin{array}{ll}
\text {-EX } & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { operation } \\
\text {-EXX-HS } & -55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { operation with hermetically } \\
& \text { sealed semiconductor components. }
\end{array}
$$

THE ADC-TV8B IS COVERED BY GSA CONTRACT

TIMING DIAGRAM

description of operation

The ADC-TV8B A/D converter employs a two step parallel conversion technique illustrated by the block diagram and timing diagram. Each of the 4 bit parallel A/D converters shown is made up of two 3 bit hybrid expandable A/D's.

The analog input comes from a terminated RF connector to an ultra-fast inverting op amp which scales the input to the desired level for the sample-hold and A/D converter. A conversion is initiated by an input start convert pulse which begins a timing sequence determined by 4 ECL digital delay circuits. The first delay causes the samplehold to go from the tracking mode to the hold mode for about 35 nanoseconds. The output of the sample-hold is buffered and goes to the first 4 bit A/D where the 4 most significant bits are converted and decoded into binary
form. This A/D simultaneously drives a 4 bit D/A by means of a 15 line output.
The D/A output is subtracted from the buffered samplehold output and the analog remainder goes to the second 4 bit A/D which converts the 4 least significant bits into decoded binary form. The last delay circuit puts out a 20 nsec. pulse indicating that data is ready at the output of the 8 bit register.
The delay for a conversion is 65 nanoseconds for ECL outputs and 75 nanoseconds for TTL outputs. This is the time measured from the leading edge of the start convert pulse to the trailing edge of E.O.C. (or status) pulse. The time between successive conversions, however, is only 50 nanoseconds max. giving a conversion rate of 20 MHz .

ECL SERIES 10,000 INTERFACING

NOTE: START CONVERT CONNECTION TO PIN 21
IS OPTIONAL FOR IMPROVED NOISE IMMUNITY.

TTL INTERFACING

CODING TABLES

UNIPOLAR MODELS

INPUT VOLTAGE RANGE				
Scale	0 to +1V	0 to +2V	0 to +5V	Output Code
+ FS -1LSB	+0.996V	+1.992V	+4.998V	11111111
$+3 / 4 \mathrm{FS}$	+ 0.750	+1.500	+ 3.750	11000000
+ $1 / 2 \mathrm{FS}$	$+0.500$	+ 1.000	+2.500	10000000
$+1 / 4 \mathrm{FS}$	$+0.250$	$+0.500$	+1.250	01000000
+1LSB	+0.004	+ 0.008	+0.020	00000001
ZERO	0.000	0.000	0.000	00000000

BIPOLAR MODELS

INPUT VOLTAGERANGE					
Scale	$\pm \mathbf{1 V}$	$\pm 2 V$	$\pm 5 V$	Output Code	
+ FS -1 LSB	+0.992 V	+1.984	+4.961 V	11111111	
$+1 / 2$ FS	+0.500	+1.000	+2.500	11000000	
ZERO	0.000	0.000	0.000	10000000	
$-1 / 2$ FS	-0.500	-1.000	-2.500	01000000	
-FS +1 LSB	-0.992	-1.984	-4.961	00000001	
- FS	-1.000	-2.000	-5.000	00000000	

DIGITIZING VIDEO SIGNALS

The most widely used digital standard found in digital video circuits involves an encoding rate based on 8 bits/sample at a sample rate of 3 X or 4 X the subcarrier. The ADC-TV can meet or exceed these conversion rates.

STANDARD	COLOR SUBCARRIER FREQUENCY (MHZ)	$3 X$ (MHZ)	$4 X$ $(M H Z)$
NTSC	3.58	10.74	14.32
PAL	4.43	13.29	17.72

For a NTSC or PAL signal, the subcarrier can extend from -33 to +133 IRE units, reference blanking level. Keep in mind that 1 IRE $=7.14 \mathrm{mV}$. To calculate the least significant bit (LSB) size, the following formula applies:

1 LSB $=\frac{166}{256}=.648$ IRE units on 4.63 mV . where 166 IRE is the full scale range* and 256 is the number of steps in an 8 bit A/D.
Differential linearity is the maximum deviation of an actual bit size from its theoretical value for any bit over the full range of the converter. If the differential linearity is 1 LSB or greater, missing codes will appear on the A/D output. The ADC-TV is guaranteed not to miss codes over the entire operating temperature range.
*The ADC-TV can be supplied to this input range.

THERMAL MANAGEMENT

Circuit performance and long-term circuit reliability are affected by the junction temperature of the internal IC's. Normally, both are improved by keeping these junctions at a low temperature.
The ADC-TV has been designed to operate at case temperatures of 0 to $70^{\circ} \mathrm{C}$. It is recommended that the converter not be operated outside this range.
The average junction temperature is dependent on the amount of power dissipation and the net thermal resistance between the heat source and a reference point. In this case, we have already determined that the case temperature is the reference point.
Controlled air flow over the case or a heat sink are effective means of reducing the ADC-TV's temperature. An air flow of 500 linear feet per minute is recommended especially when operating the unit with cooling air temperatures up to $50^{\circ} \mathrm{C}$. A heat sink should be mounted on the side noted in the mechanical dimensions.
Care must be taken when mounting the device on a heat sink. To assure efficient heat transfer from case to heat sink when mounting the ADC-TV, the following special precautions should be observed:

1. Mounting torque should be between 4 and 8 inch-pounds.
2. The mounting holes should be kept small and free of burrs and ridges.
3. The mounting surface should be flat.
4. Thermal Joint Compound (Wakefield Engineering Type 120 or equivalent) should be used.
5. A lock washer or torque washer, made of material having sufficient creep strength should be used to prevent degradation of heat sink efficiency during life.

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

14 Bit, 50 Microsecond Analog-to-Digital Converter Model ADC-149

FEATURES

- 14 Bit Resolution
- 50μ sec. Conversion Time
- Low Price
- Unipolar or Bipolar Inputs
- 15ppm/ ${ }^{\circ} \mathrm{C}$ Gain Temp. Coeff.

GENERAL DESCRIPTION

The ADC-149 is a 14 bit successive approximation type analog to digital converter for OEM use. It was specifically designed to give high resolution and accuracy at moderate cost for incorporation into precision instruments for process control systems and test and measurement systems.
This converter accepts either unipolar or bipolar input voltages of 0 to $-10 \mathrm{~V}, 0$ to -20 V $\pm 5 \mathrm{~V}$, or $\pm 10 \mathrm{~V}$ full scale by external pin connection and performs a 14 bit conversion in $50 \mu \mathrm{sec}$. Several output codes are available including straight binary for unipolar inputs and either offset binary or two's complement for bipolar inputs. Two's complement is obtained by using the MSB output pin. Reverse coding sense is used with the most negative analog input corresponding to full scale digital output. A serial data output is also provided and has a nonreturn-to-zero (NRZ) format. Logic outputs ate DTL/TTL compatible and will drive 6 standard TTL loads.

The ADC-149 can resolve 1 part in 16,384 giving an operating dynamic range of 84.3 dB . On the $\mathbf{1 0}$ volt full scale range it can detect an input change of less than 1 millivolt. Accuracy is adjustable to $\pm .005 \%$ of full scale $\pm 1 / 2$ LSB. The temperature coefficient is held to a low $\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over the 0° to $70^{\circ} \mathrm{C}$ operating temperature range.
This converter is encapsulated in a compact 2×4×0.8 inch module with DIP compatible pin spacing for PC board mounting. It can be stored from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Power supplies required are standard $\pm 15 \mathrm{VDC}$ and +5 VDC . (Available from Datel's line of modular power supplies.)

The high resolution and accuracy of the ADC-149 make it particularly valuable in applications such as moderate speed data reduction, and computer arithmetic processing of analog inputs. Digitizing inputs from sensors and transducers allows data transmission or storage with drastically reduced degradation of accuracy compared to analog methods. This is also vital for automatic process and alarm limit computer control, and digital linearization of logarithmic or special function analog inputs.

MECHANICAL DIMENSIONS

 INCHES (MM)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	BIT 1 (MSB)
2	BIT 2
3	BIT 3
4	BIT 4
5	BIT 5
6	BIT 6
7	BIT 7
8	BIT 8
9	BIT 9
10	BIT 10
11	BIT 11
12	BIT 12
13	BIT 13
14	BIT 14 (LSB)
15	BIT 14 (MSE)
16	NOT USED
17.	+5V POWER
18	+15V POWER
19	-15V POWER
20	POWER GROUND
21	START CONVERT
22	CLOCK OUTPUT
23	SERIAL OUTPUT
24	END OF CONVERT (STATUS)
25	NOT USED
26	NOT USED
27	REFERENCE OUTPUT
28	REFERENCE INPUT
29	OFFSET INPUT
30	ANALOG GROUND
31	ANALOG IN (0 to $+10, \pm 5 \mathrm{~V})$
32	ANALOG IN ($\pm 10 \mathrm{~V}$)

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

SPECIFICATIONS (Typical @ $+25^{\circ} \mathrm{C}$ unless noted)

INPUTS

Analog Input Range . . . (single-ended input referenced to ground)	$\begin{aligned} & \pm 5 \mathrm{~V} \text { FS, } \pm 10 \mathrm{~V} \text { FS } \\ & 0 \text { to }-10 \mathrm{~V} \text { FS, } 0 \text { to }-20 \mathrm{~V} \text { FS } \end{aligned}$
Input Overvoltage	$\pm 15 \mathrm{VDC}$ without damage to unit.
Input Impedance	5 K Ohms $(\pm 5 \mathrm{~V}$ and 0 to -10 V FS range) 10 K Ohms $(\pm 10 \mathrm{~V}$ and 0 to -20 V FS range)
Start of Conversion	+2.5 V min. to +5.5 V max. positive pulse with 150 nsec . min. duration. Loading: 1 mA Logic " 1 " resets converter Logic " 0 " initiates conversion

OUTPUTS

rallel Out	14 parallel lines of data held until the next conversion command. Vout (Logic " 0 ") $\leqslant+0.4 \mathrm{~V}$ Vout (Logic " 1 ") $\geqslant+2.4 \mathrm{~V}$ Each output capable of driving up to 6 TTL loads.
Coding	Straight Binary (Unipolar Input) Offset Binary (Bipolar Input) Two's Complement (Bipolar Input) Pin 15 provides MSB output for this coding. (Reverse coding sense used).
Serial Outpu	NRZ successive decision pulse output generated during conversion with MSB first. LO = " 1 ", $\mathrm{HI}=$ = $0 "$ Straight binary or offset binary coding
End of Conversion	Conversion Status Signal Vout (Logic " 0 ") $\leqslant+0.4 \mathrm{~V}$ conver- sion complete Vout (Logic " 1 ") $\geqslant+2.4 \mathrm{~V}$ during reset and conversion period.
Clock	Internal clock output, positive going 3 microsecond pulse. Loading up to 6 TTL loads.

PERFORMANCE

Resolution Linearity Error	14 Bits (one part in 16,384) $\pm 1 / 2$ LSB max.
Temperature Coefficient of Gain	$\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Temperature Coefficient of Zero Unipolar . . Bipolar . . .	$\begin{aligned} & \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
Conversion Time	$50 \mu \mathrm{sec}$. max.
Throughput Rate	20kHz
Power Requirements	$\pm 15 \mathrm{VDC} \pm 0.5 \mathrm{VDC}$ @ 80mA max. $+5 \mathrm{VDC}+0.25 \mathrm{VDC}$ @ 200 mA max

PHYSICAL-ENVIRONMENTAL

Operating. Temperature Range \qquad	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity . .	Up to 100\% non-condensing
Size	$2^{\prime \prime} \mathrm{W} \times 4^{\prime \prime} \mathrm{L} \times 0.8{ }^{\prime \prime} \mathrm{H}$
Pins	.020' round, gold plated, 0.250" long min.
Case Material	Black Diallyl Phthalate per MIL-M-14
Weight	
Mating Sockets	DILS-2, 2 required @ \$6/pair

ORDERING INFORMATION

Model ADC-149-14B
Mating Socket DILS 2

TIMING FOR ADC-149-14B

TRIMMING OF 3 MOST SIGNIFICANT BITS (INTERNAL)

The three trimming potentiometers on the side of the module are for periodic adjustment of the three most significant buts. Normally no adjustment of these trima is necestary since they are calibrated at the factory at
$\mathbf{2 8 ^ { \circ }}$ C. Should readiustment be required for optimum accuracy at a different temperature or to compensate periodically for long term drift, the following procedure should be carefully followed:

1. Adjust external offset and gein as above.
2. Readjust external gain trim and then bits 3, 2, and 1 in accordance with the table below. Adjuit so thet the output flickers equally between the two codes shown.
3. Readjust external zero or offset end gain
4. Repest steps 2 and 3 as necersary.

Input Voltage		Output Code	Adjustment
Unipolar (0 to -10V)	Bipoler (55 V)		
$-0.625 \mathrm{~V}-1 / 2 \mathrm{LSB}$	$+4.375 \mathrm{~V}-1 / 2 \mathrm{LSB}$	$00010 \ldots 01$	Gain Trim
$(-0.62531 \mathrm{~V})$	$(+4.37469 \mathrm{~V})$	$00010 \ldots 00$	
$-1.25 \mathrm{~V}-1 / 2 \mathrm{LSB}$	$+3.75 \mathrm{~V}-1 / 2 \mathrm{LSB}$	$00100 \ldots 01$	Trim \#3
$(-1.25031 \mathrm{~V})$	$(+3.74969 \mathrm{~V})$	$00100 \ldots 00$	(Bit 3)
$-2.5 \mathrm{~V}-1 / 2 \mathrm{LSB}$	$+2.50 \mathrm{~V}-1 / 2 \mathrm{LSB}$	$01000 \ldots 01$	Trim \#2
$(-2.50031 \mathrm{~V})$	$1+2.49969 \mathrm{~V})$	$01000 \ldots 00$	(Bit 2)
$-5.0 \mathrm{~V}-1 / 2 \mathrm{LSB}$	$0 \mathrm{~V}-1 / 2 \mathrm{LSB}$	$10000 \ldots 01$	Trim \#1
$(-5.00031 \mathrm{~V})$	$(-0.00031 \mathrm{~V})$	$10000 \ldots 00$	(Bit 1)

FEATURES

- 16 Bit Resolution
- $2 \mu \mathrm{sec}$ Conversion Time
- $\pm 1 / 2$ LSB Linearity
- $\pm 5 \mathrm{~V}$ Analog Input Range
- 500 kHz Throughput
- Compact $5^{\prime \prime} \times 3^{\prime \prime} \times \mathbf{0 . 3 7 5 " ~ M o d u l e}$

GENERAL DESCRIPTION

The ADC-876 is a 16 bit A/D converter with a maximum conversion time of $2 \mu \mathrm{sec}$. This ultra-fast high resolution converter utilizes the SABRE conversion technique, developed by Datel-Insersil (Successive Approximation By Residual Expansion). Although the potential for a unique combination of high speed and high resolution is inherent in this technique, realization of its potential requires real design leadership. As a result, this compact modular A/D has a number of key functions implemented as ultra-high performance thin-film hybrid components. It is these hybrid components that allow the ADC-876 to achieve levels of performance that would be impractical with discrete components.
This converter accepts analog inputs over a $\pm 5 \mathrm{~V}$ range and completes a full 16 bit conversion in $2 \mu \mathrm{sec}$ maximum, including all set-up, settling and delay times, thus providing a true throughput rate of 500 kHz . The conversion result is coded as complementary two's complement and is latched into the TTL compatible outputs until the next start conversion command.
The ADC-876 features $\pm 1 / 2$ LSB maximum nonlinearity, $\pm 1 / 2$ LSB maximum differential nonlinearity, offset drift of only ± 1 LSB over the rated operating temperature range and a reference output tempco of $\pm 5 \mathrm{ppm} /$ ${ }^{\circ} \mathrm{C}$. The 16 bit resolution and $\pm 5 \mathrm{~V}$ input range yield a LSB size of $152.5 \mu \mathrm{~V}$.
The converter is housed in a compact $5^{\prime \prime} \times$ $3^{\prime \prime} \times 0.375^{\prime \prime}$ black enameled steel module. A 34 pin AMP connector mounted at one end supplies all interconnect points without extending case size. Each module is functionally complete, requiring only ± 15 VDC and +5 V supplies for operation, and has an operating temperature range of 0 to $+70^{\circ} \mathrm{C}$. For information on extended temperature range and high reliability versions, contact the factory.

PRELIMINARY SPECIFICATIONS, ADC-876
(Typical at $25^{\circ} \mathrm{C}+15$ VDC, 5 VDC supplies, unless otherwise noted.)

INPUTS Analog Input Range Input Impedance Analog A Analog Input Source Step Load Recovery Required Common Mode Range Common Mode Rejection Ratio Start Conversion \qquad Enable Inputs ${ }^{2}$	$\begin{aligned} & . \pm 5 \mathrm{~V} \\ & .1 .25 \mathrm{~K} \Omega \pm 20 \% \\ & . \pm 0.4 \mathrm{~mA} \\ & . . \leq 30 \text { nsec to } 0.1 \% \\ & \leq 200 \mathrm{nsec} \text { to } 0.005 \%, \text { Fo } \pm 0.4 \mathrm{~mA} \text { Step Load } \\ & . \pm 10 \mathrm{mV} \\ & .40 \mathrm{~dB}, \text { Fo } \leq 10 \mathrm{MHz} \\ & .+2.0 \mathrm{~V} \text { min. to }+5.5 \mathrm{~V} \text { max. positive pulse. } \\ & 25 \mathrm{nsec} \text { minimum duration if } \mathrm{EOC} \text { is low when pulse is applied. } \\ & 125 \mathrm{nsec} \text { minimum duration if } \mathrm{EOC} \text { is high when pulse is applied. } \\ & \text { Loading: } 2 \text { LSTTL loads } \\ & . \text { Two inputs, one for bits } 1 \text { through } 8 \text { and one for bits } 9 \text { through } 16 \\ & \text { control the state of the three state data output registers to allow for } \\ & 8 \text { bit or } 16 \text { bit data bussing. Data is available within } 17 \text { nsec of a } \\ & \text { low state input to the enable controls. } \\ & \text { Loading: } 1 / 4 \mathrm{LSTTL} \text { load for each input. } \end{aligned}$
OUTPUTS Parallel Output Data \qquad Coding \qquad EOC Output \qquad Reference Output, Voltage ${ }^{3}$, Impedance , Noise ${ }^{4}$.16 parallel lines of data. Loading: 20 LSTTL loads in enabled state, and $\pm 50 \mu \mathrm{~A}$ max. in disabled state. . Complementary 2's complement . . Conversion Status Signal. Normally low, the $\overline{\mathrm{EOC}}$ rises 50 nsec max. after the rising edge of the start input and stays high during conversion. The $\overline{E O C}$ falls 15 nsec max. after the new data has been strobed into the data output storage registers, Typ. 3 nsec before data is available at outputs. Loading: 9 LSTTL loads. $\begin{aligned} & . .+10.000 \mathrm{~V}, \pm 0.010 \mathrm{~V} \\ & . \leq 2.0 \Omega, \text { Fo } \leq 1 \mathrm{MHz} \\ & \cdot \leq 20 \mu \mathrm{~V} \text { RMS } \end{aligned}$
PERFORMANCE Conversion Time Resolution Nonlinearity Tempco Differential Nonlinearity Tempco Relative Accuracy , Tempco Offset Error, Initial Tempco, max. Stability PSRR, max. Gain Error, Initial Tempco, max. , Stability ,PSRR, max. Reference Output Tempco	```. \(.2 \mu \mathrm{sec}\) . 16 Bits ..\(\pm 1 / 2\) LSB ..\(\pm 1\) LSB over Full Rated Operating Temperature Range. ..\(\pm 1 / 2\) LSB ..\(\pm 1\) LSB over Full Rated Operating Temperature Range. ..\(\pm 1 / 2\) LSB ..\(\pm 1\) LSB over Full Rated Operating Temperature Range. . Adjustable to \(\leq 1 / 2\) LSB over a range of 50 LSB. ..\(\pm 1\) LSB over Full Rated Operating Temperature. ..\(\pm 10 \mathrm{ppm} / 1000 \mathrm{hrs}\). ..\(\pm 5 \mathrm{LSB} / \mathrm{V}\). . Adjustable to \(1 / 2\) LSB over a range of 50 LSB. \(. . \pm 1 \mathrm{LSB},-25^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \(\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}\) to \(+85^{\circ}\) .. \(\pm 25 \mathrm{ppm} / 1000 \mathrm{hrs}\) ..\(\pm 10 \mathrm{LSB} / \mathrm{V}\) \(. . \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C},-25^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \(\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)```
PHYSICAL ENVIRONMENTAL Operating Temperature Range ADC-876 ADC-876-EX ADC-876-EXX-HS Storage Temperature Range Package Type ${ }^{6}$ Weight Connector	$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.${ }^{-25^{\circ}} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. . $-25>\mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Hermetic Sealed Semiconductors .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. . Black enameled 25 gauge CR steel. $5 \times 3 \times 0.375$ in. $(127 \times 76 \times 10 \mathrm{~mm})$. . 6.5 oz (184G). . . 34 Pin AMP \# 1-86063-3 at one end of case (mating connector supplied) supplies all interconnect points without extending case size.
POWER REQUIREMENTS Supply Voltage ${ }^{5}$ Power Dissipation, max	$\begin{aligned} & .+15 \mathrm{~V} \pm 0.5 \mathrm{~V} @ 187 \mathrm{~mA} \max . \\ &-15 \mathrm{~V} \pm 0.5 \mathrm{~V} @ 187 \mathrm{~mA} \max . \\ &+5 \mathrm{~V} \pm 0.5 \mathrm{~V} @ 472 \mathrm{~mA} \text { max. } \\ &-5 \mathrm{~V} \pm 0.5 \mathrm{~V} @ 19 \mathrm{~mA} \text { max. } \\ & \text {. } 8.4 \text { Watts } \end{aligned}$

SPECIFICATIONS NOTES:

1. At 14.7 MHz during first 1000 nsec of the conversion cycle.
2. For two state operation, tie both enable inputs to digital common.
3. For $0 \mathrm{~mA} \leq$ Tref $\leq 5 \mathrm{~mA}$.
4. $B W=10 \mathrm{MHz}$
5. The internal reference heater draws 14 mA from the $\pm 15 \mathrm{~V}$ at $+25^{\circ} \mathrm{C}$ decreasing at $2.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ and dropping to zero. above $+70^{\circ} \mathrm{C}$. At turn-on, an inrush of 130 mA to the heater decays to 15 mA in less than 10 seconds.
6. Four 4-40 threaded holes are available on the bottom of the case. It is recommended that the user secure the case to a .032 glass epoxy board or equivalent to help reduce the case temperature resulting from internal power dissipation. Good thermal contact between the case bottom and the circuit board may be established by the use of a silicone thermal joint compound such as Wakefield Type 120 or equivalent.

Fig. 1

Fig. 3

Fig. 4
500 nsec/DIV

Fig. 2

HIGH SPEED OPERATIONS DISPLAY

This sequence of photos shows the conversion sequence of the ADC-876 SABRE technique. Figure 1 shows the converter operating over it's full scale range at full conversion speed ($2 \mu \mathrm{sec} /$ conversion, max.). Figure 2 shows this expanded to allow viewing bits 13-16, notice that the 4 least significant bits begin to appear. Figure 3 is expanded further to allow viewing the 4 least significant bits. Please note for all these photos the major carry is centered on the centeral vertical grid line.

$\stackrel{G}{\leqslant}$ CONVERSION, MAXIMUM THROUGHPUT RATE

Fig. 4 shows the start conversion input trace at the top with the EOC shown just below. The bottom trace shows the 4 least significant bits of the ADC-876 at full conversion speed.

FEATURES

- 8 Bit Resolution
- Statistically Linearized Conversion
- $121 / 2$ Bit Linearity
- $\pm 15 \mathrm{~V}$ Input Range
- $1.5 \mu \mathrm{sec}$ Conversion Time
- Out of Range Indication

GENERAL DESCRIPTION

The ADC-881 is an 8 bit analog to digital converter with an internal sample-hold. This converter employs a stochastic distributional technique to enhance the statistical (average) linearity by a factor of 11.2 , thus achieving a linearity error of only .0087\%. Systematic nonlinearities are scattered in a pseudorandom fashion over the range of the converter, thus appearing as noise rather than nonlinearities. This result is particularly desirable in applications that use the digital output of an A/D converter to compile a histogram. The fundamental properties of any non-distributive A/D converter cause class widths within the histogram to vary from the ideal, thereby artificially increasing or decreasing the frequency within discrete class widths.

This ultra-linear A/D has a wide range of applications in spectrum analysis, nuclear research, vibration analysis, geological research, sonar digitizing, medical imaging systems, industrial testing and other signal analysis applications.

The ADC-881 has an analog input range of $\pm 5 \mathrm{~V}$ and will accomplish an eight bit sample and conversion in $1.5 \mu \mathrm{sec}$ maximum. Output data is coded as offset binary with an over range output to indicate analog values out of the converter's range.

Additional specifications include a gain tempco of $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum, offset tempco of $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum, zero crossing tempco of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum and long term stability of $\pm 0.02 \% /$ year.

Each converter is a functionally complete unit requiring only $\pm 15 \mathrm{Vdc}$ and +5 V power supplies for operation. The device is packaged in a compact $5^{\prime \prime} \times 3^{\prime \prime} \times 0.375^{\prime \prime}$ black enameled steel module. For information on extended temperature range versions contact the factory.

PRELIMINARY SPECIFICATIONS, ADC-881
(Typical at $+25^{\circ} \mathrm{C}, \quad 15$ VDC and +5 VDC supplies, unless otherwise noted)

Fig. 1 The output of a non-linearized 8 bit A/D converter is shown above. The display shows the 4 least significant bits at the major carry transition, demonstrating differential nonlinearity. This is a property of all nonlinearized A/D converters. (The unit used for this example is a typical non-linearized A/D with $\pm 1 / 2$ LSB of integral linearity and $\pm 1 / 2$ LSB of differential nonlinearity).

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	OVER $\overline{\text { RANGE }}$	18	NC
2	BIT 4	19	NC
3	START SELECT	20	NC
4	BIT 3	21	Digital Common
5	START in	22	Digital Common
6	BIT 2	23	$+5 V D C$
7	EOC	24	$+5 V D C$
8	BIT 1 (MSB)	25	$+15 V D C$
9	EOC	26	$+15 V D C$
10	BIT 8 (MSB)	27	Power Common
11	NC	28	Power Common
12	BIT 7	29	$-15 V D C$
13	NC	30	$-15 V D C$
14	BIT 6	31	Signal Common
15	NC	32	Signal Common
16	BIT 5	33	Analog Input
17	NC	34	Signal Common

ORDERING INFORMATION

MODEL

OPERATING

ADC-881
0 to $+70^{\circ} \mathrm{C}$

For information on extended temperature range and high reliability versions of this product, contact factory.

THIS PRODUCT IS COVERED BY GSA CONTRACT.

Fig. 2 The output of a linearized 8 bit A/D shown for the 4 least significant bits at the major carry. Notice the improvement in differential nonlinearity. This photo shows the effect of averaging multiple conversions performed with the linearizing technique employed in the ADC-881.

The ADC-881 employs a statistically linearized conversion technique that yields unique advantages in many applications. This technique uses a fundamental property of all A/D converters, differential nonlinearity, in a pseudo-random distributional technique to yield a converter with an "ideal" transfer function. This technique scatters the effects of systematic nonlinearities over the full range of the A/D in pseudo-random (a random sequency of finite length) fashion. The average transfer function, taken over the full range of the pseudo-random sequence, has extremely good integral linearity and minimal differential non-linearity. The trade-off appears here as "noisy" codes, this is the result of distributing systemic non-linearities over a wide range. Noise may be suppressed by repeated sampling of the data since the average value of true random noise is zero. The RMS noise value of the data is reduced by the second root of the number of samples less one that have been averaged.
Since this converter's extreme linearity is realized in an average transfer function, it follows that averaging a larger number of conversions will improve linearity. This is true, with maximal linearity resulting as an average of all values within the pseudo-random sequence (127 random values). Since the ADC-881 has conversion times of $1.3 \mu \mathrm{sec}$ typical and $1.5 \mu \mathrm{sec}$ maximum, this averaging procedure will require between 165 and $191 \mu \mathrm{sec}$ (127 conversions x conversion time). In applications where repeated sampling is employed to reduce noise, this converter yields optimal linearity when the number of samples averaged is an integral multiple of 127 (this is inherent in the stochastic distributional technique used).
The largest group of applications for this class of converters is in areas in which recurring systematic nonlinearities have an adverse effect on the distribution of acquired data values. This is particularly of interest in situations where data is required to compile a histogram (a frequency distribution of sample data into discrete categories). The effects of converter nonlinearities cause some categories to be artificially "widened" while others are "narrowed", thus increasing and decreasing, respectively, the frequence of occurrence of data values within these categories. This effect causes a non-linearized converter to yield a "converter distorted" histogram. Until now many users had to resort to extensive computational processing of digitized data simply to minimize the effects of "converter distortion". The architecture of the ADC-881 obviates the need for this, allowing statistically valid processing of analog data in real-time. Thus we see that the ADC-881 is ideally suited for applications in spectrum analysis, particle event monitors, fast signal processing, vibration analysis, sonar digitizing, and a whole spectrum of imaging applications, from medical imaging to industrial non-destructive testing.

Fig. 3
OFFSET AND GAIN CALIBRATION PROCEDURE

1. Connect A / D to external test circuitry shown in "Calibration Connection" diagram with no power applied.
2. Apply power to the A / D converter and test circuitry and allow them to reach operating temperature.
3. Observe A/D output as a crossplot on the oscilloscope. Calibrate the axis gain for one cm per step and adjust crossplot dither amplitude for 10 cm . Calibrate Y axis for an easily read cross plot.
4. Apply a precision voltage reference set to -5 V to the analog input (pin 33). Observe cross plot as shown in figure 3. The last step should be centered on the vertical grid line one cm to the left of center. Adjust offset potentiometer as necessary to achieve this positioning.
5. Set the precision voltage reference to +5 V . Observe the cross plot as shown in figure 4. The last step should be centered on the vertical grid line two cm to the right of center. Adjust gain potentiometer as necessary to achieve this position.
6. Repeat steps 4 and 5 until no further adjustment is required. Repetition is necessary, as the offset and gain adjustments interact. The following technique will minimize the number of adjustments. After the initial adjustment outlined in steps 4 and 5 , repeat step 4 . At this point repeat step 5 but over adjust the gain potentiometer so that the error displayed maintains its initial magnitude but occurs in a direction opposite from its original one, i.e., if the crossplot is 1.5 cm to the left of its desired position, adjust the gain potentiometer so that the crossplot is 1.5 cm to the right of its desired position. Repeat steps 4 and 5 , the crossplot should now show perfect position.

Digital-To-Analog Converters

DAC-IC8B	134C
DAC-IC10B	138C
DAC-UP8B	142C
DAC-08B	146C
DAC-681	150C
DAC-7520, DAC-7521	154C
DAC-7523	160C
DAC-7533	164C
DAC-7541	168C
DAC-HA	174C
DAC-HF	180C
DAC-HK	184C
DAC-HP	188C
DAC-HZ	192C
DAC-DG12B	196C
DAC-HI	200C
DAC-HR	204C

Quick Selection: General Purpose D/A Converters

U I E 0 2 0 Σ	MODEL	DESCRIPTION	RESOLUTION	LINEARITY	OUTPUT	SETTLING TIME, MAX ${ }^{1}$	INPUT CODING ${ }^{2}$
	DAC-IC8BC	Low Cost 8 bit Monolithic D/A	8 Bits	$\pm 1 / 2$ LSB	Current	300 nsec	Bin
	DAC-IC8BM						
	DAC-08BC	Fast 8 bit Monolithic D/A	8 Bits	$\pm 1 / 2$ LSB	Current	150 nsec	Bin
	DAC-08BM						
	DAC-UP8BC	8 Bit Monolithic with Input Register	8 Bits	$\pm 1 / 2$ LSB	Voltage	$2 \mu \mathrm{sec}$	Bin
	DAC-UP8BM						
	DAC-IC10BC	Low Cost Fast 10 Bit Monolithic D/A	10 Bits	± 1 LSB	Current	250 nsec	Bin
	DAC-IC10B						
	DAC-IC10BM			$\pm 1 / 2$ LSB			
	DAC-681C	12 Bit Monolithic	12 Bits	$\pm 1 / 2$ LSB	Current	400 nsec	Bin
	DAC-681M			$\pm 1 / 4$ LSB			
足	DAC-HZ12BGC	Low cost with 5 Pin selected Output Voltage Ranges	12 Bits	$\pm 1 / 2$ LSB	Voltage	$3 \mu \mathrm{sec}$	C Bin
	DAC-HZ12BMC						
	DAC-HZ12BMR						
	DAC-HZ12BMM						
	DAC-HZ12DGC	Low cost with 3 Pin selected Output Voltage Ranges	3 Digits	$\pm 1 / 4$ LSB	Voltage	$3 \mu \mathrm{sec}$	BCD
	DAC-HZ12DMC						
	DAC-HZ12DMR						

NOTES:

1. For full scale output change to rated accuracy.
2. CODING: Bin $=$ Straight binary or offset binary.
$B C D=$ Binary coded decimal.
CBIW = Complementary binary .

OUTPUT RANGES	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	TYPE	OPERATING TEMP (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { PRICE } \\ & (1-24) \end{aligned}$	$\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$
0 to -2mA	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	+5V, -15V	16 pin DIP	Cerdip	0 to +70	\$ 3.50	134C
					-55 to +125	\$ 9.50	
0 to -2mA	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{VDC}$	16 pin DIP	Plastic	0 to +70	\$ 4.50	146C
				Ceramic	-55 to +125	\$ 10.50	
$\pm 5 \mathrm{~V}, 0$ to 10 V	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{VDC}$	$\begin{aligned} & 22 \text { pin } \\ & \text { DIP } \end{aligned}$	Plastic	0 to +70	\$ 13.00	142C
				Cerdip	-55 to +125	\$ 26.50	
0 to -4 mA	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{VDC}$	16 pin DIP	Ceramic		\$ 9.95	138C
					0 to +70	\$ 16.95	
					-55 to +125	\$ 32.50	
$\begin{aligned} & 0 \text { to }-5 \mathrm{~mA}, \\ & \pm 2.5 \mathrm{~mA} \\ & \hline \end{aligned}$	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +5 \text { to }+15 \mathrm{~V}, \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 24 \text { pin } \\ & \text { DIP } \end{aligned}$	Ceramic	0 to +70	\$ 24.50	150C
					-55 to +125	\$152.00	
$\begin{aligned} & 0 \text { to }+5 \mathrm{~V} \\ & 0 \text { to }+10 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \\ & \hline \end{aligned}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{VDC}$	24 pin Ceramic DIP	Epoxy Seal	0 to +70	\$ 42.00	192C
				Hermetic Seal	0 to +70	\$ 59.00	
					-25 to +85	\$ 79.00	
					-55 to +125	\$125.00 *	
$\begin{aligned} & 0 \text { to }+2.5 \mathrm{~V} \\ & 0 \text { to }+5 \mathrm{~V} \\ & 0 \text { to }+10 \mathrm{~V} \end{aligned}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{VDC}$	24 pin Ceramic DIP	Epoxy Seal	0 to +70	\$ 42.00	192C
					0 to +70	\$ 59.00	
				Hermetic	-25 to +85	\$ 79.00	
				Seal	-55 to +125	\$125.00 *	

*Available with MIL-STD-833 class B screening.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Quick Selection: General Purpose D/A Converters

	MODEL	DESCRIPTION	RESOLUTION	LINEARITY	OUTPUT	SETTLING TIME	INPUT CODING ${ }^{1}$
	DAC-98BI ${ }^{2}$	Low Cost	8 Bits	1/2 LSB	Current	500nsec	Bin
	DAC-98D ${ }^{2}$		2 Digits				BCD
	DAC-98BIR	Low Cost with Int. Ref.	8 Bits				Bin
	DAC-98DIR		2 Digits				BCD
	DAC-198B	Voltage Output	8 Bits	1/2 LSB	Voltage	$20 \mu \mathrm{sec}$	Bin, 2C
	DAC-198D		2 Digits				BCD
	DAC-198BI	Current	8 Bits		Current	300 nsec	Bin
	DAC-198DI	Output	2 Digits				BCD
	DAC-298B	$5 \mu \mathrm{sec}$ Voltage Output	8 Bits	1/2 LSB	Voltage	$5 \mu \mathrm{sec}$	Bin, 2C
	DAC-298D		2 Digits				BCD
	DAC-4910B	Voltage or Current Output	10 Bits	1/2 LSB	Voltage	$5 \mu \mathrm{sec}$	Bin, 2C
	DAC-4910BI		10 Bits		Current	300 nsec	Bin
	DAC-4912D		3 Digits		Voltage	$5 \mu \mathrm{sec}$	BCD
	DAC-4912DI		3 Digits		Current	300 nsec	
	DAC-6912B	Voltage or Current Output	12 Bits	1/2 LSB	Voltage	$20 \mu \mathrm{sec}$	Bin, 2C
	DAC-6912BI				Current	300 nsec	Bin
	DAC-18B	Fast Settling	8 Bits	1/2 LSB	Current	150 nsec	Bin
	DAC-110B		10 Bits				
	DAC-112B		12 Bits				
	DAC-18D		2 Digits				BCD
	DAC-I12D		3 Digits				

NOTES: 1. Coding: Bin = Straight Binary or Offset Binary
$B C D=$ Binary Coded Decimal
2C = Two's Complement
2. These models derive their reference from the +15 V supply.

OUTPUT RANGES	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	OPERATING TEMP. (${ }^{\circ} \mathrm{C}$)	PRICE (SINGLES)	SEE PAGE
0 to +2.6 mA	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	+15V	$\begin{aligned} & 2 \times 1 \times 0.375 \mathrm{IN} \\ & (51 \times 25 \times 10 \mathrm{~mm}) \end{aligned}$	0 to +70	\$ 30.00	*
0 to +1.6 mA					\$ 30.00	
0 to +2.6 mA					\$ 32.00	
0 to +1.6 mA					\$ 32.00	
0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$\begin{aligned} & 2 \times 2 \times 0.375 \mathrm{IN} \\ & (51 \times 51 \times 10 \mathrm{~mm}) \end{aligned}$	0 to +70	\$ 46.00	*
0 to +10V					\$ 46.00	
0 to +2.5 mA					\$ 46.00	
0 to +1.54 mA					\$ 46.00	
0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$\begin{aligned} & 2 \times 2 \times 0.375 \mathrm{IN} \\ & (51 \times 51 \times 10 \mathrm{~mm}) \end{aligned}$	0 to +70	\$ 52.50	*
0 to +10 V					\$ 52.50	
0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$\begin{aligned} & 2 \times 2 \times 0.375 \mathrm{IN} \\ & (51 \times 51 \times 10 \mathrm{~mm}) \end{aligned}$	0 to +70	\$ 66.00	*
0 to +2.5 mA					\$ 66.00	
0 to +10 V					\$ 66.00	
0 to +1.54 mA					\$ 66.00	
0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$\begin{aligned} & 2 \times 2 \times 0.375 \mathrm{IN} \\ & (51 \times 51 \times 10 \mathrm{~mm}) \\ & \hline \end{aligned}$	0 to +70	\$ 77.50	*
0 to +2.5 mA					\$ 77.50	
0 to $+2 \mathrm{~mA}, \pm 1 \mathrm{~mA}$	$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$\begin{aligned} & 2 \times 1 \times 0.375 \mathrm{IN} \\ & (51 \times 25 \times 10 \mathrm{~mm}) \end{aligned}$	0 to +70	\$ 82.50	*
					\$ 92.50	
					\$105.00	
0 to +1.25 mA					\$ 82.00	
					\$105.00	

*For Data Sheet contact nearest Datel Sales Office.

[^3]
Quick Selection: Multiplying D/A Converters

	MODEL	DESCRIPTION	RESOLU	LINEARITY	OUTPUT	SETTLING, TIME, MAX ${ }^{1}$
$\begin{aligned} & \mathcal{U} \\ & \underline{I} \\ & \underline{1} \\ & 0 \\ & \mathbf{Z} \\ & \Sigma \end{aligned}$	DAC-7523C	4 Quadrant Multiplying D/A	8 Bits	$\pm 1 / 2$ LSB	Current	150 nsec
	DAC-7523R					
	DAC-7523M					
	DAC-7533C	4 Quadrant Multiplying D/A	10 Bits	$\pm 1 / 2$ LSB	Current	600 nsec
	DAC-7533R					
	DAC-7533M					
	DAC-7520C	4 Quadrant Multiplying D/A	10 Bits	$\pm 1 / 2$ LSB	Current	500 nsec
	DAC-7520R DAC-7520M					
	DAC-7521C	4 Quadrant Multiplying D/A	12 Bits	± 2 LSB	Current	500 nsec
	DAC-7521R					
	DAC-7521M					
	DAC-7541C	Low cost 4 Quadrant Multiplying D/A	12 Bits	$\pm 1 / 2$ LSB	Current	$1.0 \mu \mathrm{sec}$
	DAC-7541R					
	DAC-7541M					
	DAC-HA10BC	Precision 4 Quadrant Multiplying D/A	10 Bits	$\pm 1 / 2$ LSB	Current	$1.3 \mu \mathrm{sec}$
	DAC-HA10BR					
	DAC-HA10BM					
	DAC-HA12BC	Precision 4 Quadrant Multiplying D/A	12 Bits	$\pm 1 / 2$ LSB	Current	$5.0 \mu \mathrm{sec}$
	DAC-HA12BR					
	DAC-HA12BM					
	DAC-HA12DC	Precision Multiplying D/A	3 Digits	$\pm 1 / 2$ LSB	Current	$5.0 \mu \mathrm{sec}$
	DAC-HA12DR					
	DAC-HA12DM					
	DAC-HA14BC	High Resolution 4 Quadrant Multiplying D/A	14 Bits	± 1 LSB	Current	$7.0 \mu \mathrm{sec}$
	DAC-HA14BR					
	DAC-HA14BM					

NOTES: 1. Given for a fullscale output transition
2. Coding: Bin = Straight Binary or Offset Binary
3. For +15 V supply option, add suffix -1 to model number.

INPUT CODING ${ }^{2}$	REFERE INPUT RANGE	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	OPERATING TEMP (${ }^{\circ} \mathrm{C}$)	PRICE (1-24)	PAGE
Bin	$\pm 10 \mathrm{~V}$	10ppm/ ${ }^{\circ} \mathrm{C}$	+15VDC	Plastic	0 to +70	\$ 3.82	
				Cerdip	-25 to +85	\$ 5.72	
					-55 to +125	\$ 12.62	
Bin	$\pm 10 \mathrm{~V}$	10ppm/ ${ }^{\circ} \mathrm{C}$	+15VDC	Plastic	0 to +70	\$ 13.57	164C
				Cerdip	-25 to +85	\$ 18.07	
					-55 to +125	\$ 45.07	
Bin	$\pm 10 \mathrm{~V}$	10ppm/ ${ }^{\circ} \mathrm{C}$	+15VDC	Plastic	0 to +70	\$ 18.22	154C
				Cerdip	-25 to +85	\$ 29.83	
					-55 to +125	\$ 61.76	
Bin	$\pm 10 \mathrm{~V}$	10ppm/ ${ }^{\circ} \mathrm{C}$	+15VDC	Plastic	0 to +70	\$ 18.87	154C
				Cerdip	-25 to +85	\$ 26.32	
					-55 to +125	\$ 76.83	
Bin	$\pm 10 \mathrm{~V}$	10ppm $/{ }^{\circ} \mathrm{C}$	+15VDC	Plastic	0 to +70	\$ 27.12	168C
				Cerdip	-25 to +85	\$ 36.08	
					-55 to +125	\$103.58	
Bin	$\pm 12 \mathrm{~V}$	20ppm $/{ }^{\circ} \mathrm{C}$	$+5 \mathrm{~V}$ or $+15 V^{3}$	Ceramic	0 to +70	\$ 30.00	174C
					-25 to +85	\$ 36.00	
					-55 to +125	* \$ 69.00	
Bin	$\pm 12 \mathrm{~V}$	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$+5 \mathrm{~V}$ or$\begin{aligned} & +15 V^{3} \\ & \hline \end{aligned}$	Ceramic	0 to +70	\$ 49.00	174C
					-25 to +85	\$ 69.00	
					-55 to +125	* \$ 95.00	
BCD	$\pm 12 \mathrm{~V}$	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +5 \mathrm{~V} \\ & \text { or } \\ & +15 \mathrm{~V}^{3} \\ & \hline \end{aligned}$	Ceramic	0 to +70	\$ 49.00	174C
					-25 to +85	\$ 69.00	
					-55 to +125	* \$ 95.00	
Bin	$\pm 12 \mathrm{~V}$	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$+5 \mathrm{~V}$ or $+15 V^{3}$	Ceramic	0 to +70	\$ 65.00	174C
					-25 to +85	\$ 95.00	
					-55 to +125	* \$125.00	

*Available with MIL-STD-883 class B screening.

Quick Selection: High Performance D/A Converters

MODEL		DESCRIPTION	RESOLUTION	LINEARITY	OUTPUT	SETTLING TIME	INPUT CODING ${ }^{1}$
	DAC-HK12BGC	Fast Settling Time with Input Register	12 Bits	1/2 LSB	Voltage	$3 \mu \mathrm{sec}$	Bin
	DAC-HK12BMC						
	DAC-HK12BMR						
	DAC-HK12BMM						
	DAC-HK12DGC		3 Digits	1/4 LSB			BCD
	DAC-HK12DMC						
	DAC-HK12DMR						
	DAC-HK12DMM						
	DAC-HK12BGC-2		12 Bits	$1 / 2$ LSB			2 C
	DAC-HK12BMC-2						
	DAC-HK12BMR-2						
	DAC-HK12BMM-2						
	DAC-V8B	Fast Voltage Output	8 Bits	1/2 LSB	Voltage	$2 \mu \mathrm{sec}$	Bin
	DAC-V10B		10 Bits				
	DAC-V12B		12 Bits				
	DAC-V8D		2 Digits				BCD
	DAC-V12D		3 Digits				
	DAC-VR8B	Fast Voltage Output With Input Register	8 Bits	$1 / 2$ LSB	Voltage	$2 \mu \mathrm{sec}$	Bin
	DAC-VR10B		10 Bits				
	DAC-VR12B		12 Bits				
	DAC-VR8D		2 Digits				BCD
	DAC-VR12D		3 Digits				

NOTES: 1. Coding: Bin = Straight Binary or Offset Binary
BCD = Binary Coded Decimal
2C = Two's Complement

OUTPUT RANGES	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	SEAL	OPERATING TEMP (${ }^{\circ} \mathrm{C}$)	PRICE (SINGLES)	SEE PAGE
$\begin{gathered} 0 \text { to }+5 \mathrm{~V}, \\ 0 \text { to }+10 \mathrm{~V}, \\ \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \\ \pm 10 \mathrm{~V} \\ \hline \end{gathered}$	20ppm $/{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	24 Pin Ceramic DIP	Epoxy	0 to +70	\$ 59.00	184C
					0 to +70	\$ 75.00	
				Hermetic	-25 to +85	\$ 89.00	
					* -55 to +125	\$145.00	
$\begin{aligned} & 0 \text { to }+2.5 \mathrm{~V}, \\ & 0 \text { to }+5 \mathrm{~V}, \\ & 0 \text { to }+10 \mathrm{~V} \end{aligned}$				Epoxy	0 to +70	\$ 59.00	
					0 to +70	\$ 75.00	
				Hermetic	-25 to +85	\$ 89.00	
					* -55 to +125	\$145.00	
$\begin{aligned} & 0 \text { to }+5 \mathrm{~V}, \\ & 0 \text { to }+10 \mathrm{~V}, \\ & \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \\ & \pm 10 \mathrm{~V} \end{aligned}$				Epoxy	0 to +70	\$ 59.00	
					0 to +70	\$ 75.00	
				Hermetic	-25 to +85	\$ 89.00	
					* -55 to +125	\$145.00	
$\begin{aligned} & 0 \text { to }+5 \mathrm{~V}, \\ & 0 \text { to }+10 \mathrm{~V}, \\ & \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \\ & \hline \end{aligned}$	20ppm/ ${ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$		$\begin{aligned} & 2 \times 2 \times 0.375 \mathrm{IN} \\ & (51 \times 51 \times 10 \mathrm{~mm}) \end{aligned}$	0 to +70	\$ 92.50	**
						\$115.50	
						\$138.50	
$\begin{aligned} & 0 \text { to }+5 \mathrm{~V}, \\ & 0 \text { to }+10 \mathrm{~V} \end{aligned}$						\$ 92.50	
						\$138.50	
$\begin{aligned} & 0 \text { to }+5 \mathrm{~V}, \\ & 0 \text { to }+10 \mathrm{~V}, \\ & \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{aligned}$	20ppm $/{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$		$\begin{aligned} & 2 \times 2 \times 0.375 \mathrm{IN} \\ & 51 \times 51 \times 10 \mathrm{~mm}) \end{aligned}$	0 to +70	\$105.00	* *
						\$128.00	
						\$151.00	
$\begin{aligned} & 0 \text { to }+5 \mathrm{~V}, \\ & 0 \text { to }+10 \mathrm{~V} \end{aligned}$						\$105.00	
						\$151.00	

**For Data Sheet contact nearest Datel sales office.

* Available with MIL-STD-883 class B screening.

Datel offers modular products in operating temperature ranges of
-25 to $+85^{\circ} \mathrm{C}$ (suffix-EX) and -55 to $+85^{\circ} \mathrm{C}$ (suffix-EXX-HS). For
information on these high reliability modules contact nearest
Datel sales office.

Quick Selection: High Speed D/A Converters

	MODEL	DESCRIPTION	RESOLUTION	LINEARITY	OUTPUT	SETTLING TIME, MAX ${ }^{1}$	INPUT CODING ${ }^{2}$
¢	DAC-HF8BMC	Ultra-Fast 8 bit D/A	8 Bits	$\pm 1 / 2$ LSB	Current	25 nsec	Bin
	DAC-HF8BMR						
	DAC-HF8BMM						
	DAC-HF10BMC	Ultra-Fast 10 bitD / A	10 Bits	$\pm 1 / 2 \mathrm{LSB}$	Current	25 nsec	Bin
	DAC-HF10BMR						
	DAC-HF10BMM						
	DAC-HF12BMC	Ultra-Fast 12 bit D/A	12 Bits	$\pm 1 / 2$ LSB	Current	50 nsec	Bin
	DAC-HF12BMR						
	DAC-HF12BMM						
$\begin{array}{\|l\|} \hline \underline{1} \\ \vdots \\ 0 \\ 0 \\ \Sigma \\ \hline \end{array}$	DAC-HI8B	Ultra-Fast D/A	8 Bits	$\pm 1 / 2$ LSB	Current		Bin
	DAC-HI10B		10 Bits			25 nsec	
	DAC-HI12B		12 Bits			50 nsec	
	DAC-DG12B1	Fast Deglitched D/A	12 Bits	$\pm 1 / 2$ LSB	Voltage	600 nsec	$\begin{aligned} & \mathrm{Bin}, \\ & 2 \mathrm{C} \end{aligned}$
	DAC-DG12B2						

NOTES:

1. For full scale output change to rated accuracy.
2. CODING: Bin = Straight binary or offset binary. $2 \mathrm{C}=$ Two's complement.

OUTPUT RANGES	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	OPERATING TEMP (${ }^{\circ} \mathrm{C}$)	PRICE SINGLES	$\begin{gathered} \text { SEE } \\ \text { PAGE } \end{gathered}$
$\begin{gathered} 0 \text { to }+10 \mathrm{~mA}, \\ \pm 5 \mathrm{~mA} \\ \hline \end{gathered}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	± 15 VDC	24 pin Ceramic DIP Hermetic Seal	0 to +70	\$ 99.00	180C
				-25 to +85	\$119.00	
				55 to +125	*\$189.00	
$\begin{gathered} 0 \text { to }+10 \mathrm{~mA}, \\ \pm 5 \mathrm{~mA} \\ \hline \end{gathered}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	± 15 VDC	24 pin Ceramic DIP Hermetic Seal	0 to +70	\$109.00	180C
				-25 to +85	\$129.00	
				55 to +125	*\$209.00	
$\begin{gathered} 0 \text { to }+10 \mathrm{~mA}, \\ \pm 5 \mathrm{~mA} \\ \hline \end{gathered}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	± 15 VDC	24 pin Ceramic DIP Hermetic Seal	0 to +70	\$129.00	180C
				-25 to +85	\$149.00	
				55 to +125	*\$219.00	
$\begin{gathered} \pm 2.5 \mathrm{~mA} \\ +5 \mathrm{~mA} \end{gathered}$		± 15 VDC	$\begin{array}{r} 2 \times 2 \times 0.375 \mathrm{IN} \\ (51 \times 51 \times 10 \mathrm{~mm}) \\ \hline \end{array}$	0 to +70	\$115.00	200C
	$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$				\$138.50	
	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$				\$151.00	
$\begin{gathered} -10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \\ \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{gathered}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} \pm 15 \mathrm{VDC} \\ +5 \mathrm{~V} \\ \hline \end{gathered}$	$4 \times 2 \times 0.4 \mathrm{IN}$$(102 \times 51 \times 10 \mathrm{~mm})$	0 to +70	\$290.00	196C
					\$290.00	

*Available with MIL-STD-883 Class B screening.

Quick Selection:
 High Resolution D/A Converters

	MODEL	DESCRIPTION	RESOLUTION	LINEARITY	OUTPUT	SETTLING TIME
	DAC-HA14BC	Multiplying CMOS	14 Bits	1 LSB	Current	$7 \mu \mathrm{sec}$
	DAC-HA14BR					
	DAC.HA14BM					
	DAC-HP16BGC	Internal Reference and Output OP-Amp.	16 Bits	4 LSB	Voltage	$15 \mu \mathrm{sec}$
	DAC-HP16BMC					
	DAC-HP16BMR					
	DAC-HP16BMM					
	DAC-HP16DGC		4 Digits	1/2 LSB		
	DAC-HP16DMC					
	DAC-HP16DMR					
	DAC-HP16DMM					
	DAC-169-16B	Low Cost	16 Bits	4 LSB	Voltage ${ }^{3}$	$30 \mu \mathrm{sec}$
	DAC-169-16D		4 Digits	½ LSB		
	DAC.HR13B	Ultra-Low Drift	13 Bits	1/2 LSB	Current	$1 \mu \mathrm{sec}$
	DAC-HR14B		14 Bits			
	DAC-HR15B		15 Bits			
	DAC.HR16B		16 Bits	1 LSB		

NOTES:

1. Coding: \quad Bin $=$ Straight binary or offset binary
$B C D=$ Binary Coded Decimal
CBin = Complementary binary
CBCD = Complementary BCD
2. For +15 V supply option add suffix " -1 " to model number
3. Can also be connected for current output. Current output is 0 to +2 mA or $\pm 1 \mathrm{~mA}$ for binary version and 0 to -1.25 mA for $B C D$ version.

$\begin{aligned} & \text { INPUT } \\ & \text { CODING } \end{aligned}$	OUTPUT RANGES	GAIN TEMPCO	POWER REQUIRE- MENT	PACKAGE	OPERATING TEMP $\left({ }^{\circ} \mathrm{C}\right)$	PRICE (SINGLES)	SEE PAGE
Bin	$\pm 1 \mathrm{~mA}$	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$+5 \mathrm{~V}$ or $+15 \mathrm{~V}^{2}$	$20 \mathrm{Pin}$ Ceramic DIP	0 to + 70	\$ 65.00	174C
					-25 to +85	\$ 95.00	
					-55 to +125	\$125.00	
CBin	$\begin{aligned} & 0 \text { to }+10 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	24 Pin Ceramic DIP	0 to +70	\$ 65.00	188C
		$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$			0 to +70	\$ 82.00	
					-25 to +85	\$ 92.00	
					-55 to +125	\$145.00	
CBCD	0 to +10 V	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$			0 to +70	\$ 65.00	
		$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$			0 to +70	\$ 89.00	
					-25 to +85	\$ 92.00	
					-55 to +125	\$145.00	
Bin	$\begin{aligned} & 0 \text { to }+10 \mathrm{~V} \\ & 0 \text { to }-10 \mathrm{~V}, \\ & \pm 5 \mathrm{~V} \end{aligned}$	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$\begin{aligned} & 2 \times 2 \times 0.375 \mathrm{in} \\ & (51 \times 51 \times 10 \mathrm{~mm}) \end{aligned}$	0 to +70	\$126.00	*
BCD	$\begin{aligned} & 0 \text { to }+10 \mathrm{~V} \\ & 0 \text { to }-10 \mathrm{~V} \end{aligned}$					\$126.00	
CBin	$\begin{aligned} & 0 \text { to }-2 \mathrm{~mA} \\ & \pm 1 \mathrm{~mA} \end{aligned}$	$1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{~V}$	$\begin{gathered} 4 \times 2 \times 0.375 \mathrm{in} \\ (102 \times 51 \times 10 \mathrm{~mm}) \end{gathered}$	0 to +70	\$290.00	204C
						\$306.00	
						\$321.00	
						\$347.50	

*For data sheet contact nearest Datel Sales Office.
These products are covered by GSA contract.

[^4]
FEATURES

- Low Cost
- 8 Bit Resolution
- Fast Settling-300 nsec.
- 1 or 2 Quadrant Multiplication
- $\pm 1 / 2$ LSB Linearity
- DTL/TTL Compatible Inputs

GENERAL DESCRIPTION

The DAC-IC8BC and DAC-IC8BM are 8 bit monolithic DAC's with fast setting current outputs. The units are housed in a 16 pin ceramic DIP and require only an external reference and output amplifier for fast voltage output operation. A full scale output change settles in only 300 nanoseconds for current output operation and 600 nanoseconds for voltage output operation using a fast monolithic output amplifier (Datel-Intersil's AM-452). Digital input coding is straight binary for unipolar operation and offset binary for bipolar operation and is compatible with standard DTL/TTL logic.
The DAC-IC8B converters consist of 8 fast-switching current sources, a diffused R-2R resistor ladder network, a bias circuit, and a reference control amplifier. The diffused resistor ladder gives excellent temperature tracking resulting in a gain temperature coefficient of $-20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The monolithic fabrication results in excellent linearity and tempco, fast output settling, and low cost. Linearity is $\pm 1 / 2$ LSB.
An external reference current of 2 mA nominal programs the scale factor for the DAC; this is done by means of an external voltage reference source (such as Zener diode) and a resistor. This reference current can also be varied, resulting in one or two quadrant multiplying operation. The output voltage can be unipolar or bipolar depending on whether an external offsetting current (derived from the reference) is used. Output voltage compliance of the DAC is -0.6 V to +0.5 V ; this can be made as large as -5 V to +0.5 V by external pin connection for cases where direct voltage output from a load resistor is desired.

Power supply requirement is +5 VDC and -5 V to -15 VDC . Model DAC-IC8BC has an operating temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ while DAC-IC8BM operates over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The two models are pin compatible with industry standard devices 1408L-8 and 1508L-8 respectively.
MECHANICAL DIMENSIONS
INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	RANGE CONTROL
2	GROUND
3	VEE
4	OUTPUT
5	BIT 1 IN (MSB)
6	BIT 2 IN
7	BIT 3 IN
8	BIT 4 IN
9	BIT 5 IN
10	BIT 6 IN
11	BIT 7 IN
12	BIT 8 IN (LSB)
13	VCC
14	+ REFERENCE
15	- REFERENCE
16	COMPENSATION

8. For fastest voltage output settling times in either unipolar or bipolar modes, two circuits using Datel Systems AM-452 monolithic operational amplifiers are recommended. These circuits, with the compensation shown, result in output settling times of typically 600 nsec. for a 10 volt change to 1 LSB. This is the worst case settling time which occurs when all bits are turned on. For current output and R_{L} less than 500 ohms, this time is 300 nsec.; when all bits are turned off the time is shorter, typically 100 nsec. The two circuits shown also illustrate a simple method of deriving both reference current and offset current from a precision 6.4 volt Zener reference diode.
9. Both one and two quadrant multiplication are also possible with the DAC-IC8B as shown in the two diagrams. $V_{I N}$ is shown operating into pin 14; this results in an input impedance of 2.5 K . Alternatively, VIN can be applied to pin 15 for a high impedance input as explained previously. The range of $\mathrm{V}_{\text {IN }}$ is then 0 to -10 V . For two quadrant multiplication $V_{I N}$ is unipolar and the digital input is bipolar with offset binary coding. VOUT then varies over the bipolar range of ± 5 volts. In multiplication applications, it is recommended that full scale IREF be set to 4.0 mA ; the output is then monotonic as the reference current varies over 0.5 mA to 4.0 mA .

TWO WAYS TO CONNECT REFERENCE

NOTE: $-\mathrm{V}_{\text {REF }}$ must be 3 volts above V_{EE}

HIGH COMPLIANCE OUTPUT

OUTPUT CONNECTIONS

SETTLING TIME VS. R $_{\text {L }}$

R_{L}	$S . T$.
0	300 nsec.
500	300 nsec.
1 K	400 nsec.
2.5 K	$1.2 \mu \mathrm{sec}$.

APPLICATION DIAGRAMS

CALIBRATION AND CODING TABLES

1. Select the desired output range by means of the feedback resistor of the external operational amplifier and the externally programmed reference current.
2. Zero and Offset Adjustments

For unipolar operation, set all digital inputs to " 0 " (0 V to +0.8 V) and adjust the output amplifier ZERO ADJUSTMENT for zero output voltage. For bipolar operation, set all digital inputs to " 0 " (0 to +0.8 V) and adjust the OFFSET ADJUSTMENT for the negative full scale voltage shown in the Coding Table.
3. Gain Adjustment

For either unipolar or bipolar operation, set all digital inputs to " 1 " $(+2.0$ to +5.5 V) and adjust the GAIN ADJUSTMENT for the positive full scale voltage shown in the Coding Table.

UNIPOLAR OPERATION-STRAIGHT BINARY CODING

INPUT CODEMSB LSB		UNIPOLAR OUTPUT RANGES			
		0 TO +5V	O TO +10V	0 TO -2MA	0 TO -4MA
1111	1111	+4.980	+9.961V	-1.992MA	-3.984MA
1110	0000	+4.375	+8.750	-1.750	-3.500
1100	0000	+3.750	+7.500	-1.500	-3.000
1000	0000	+2.500	+5.000	-1.000	-2.000
0100	0000	+1.250	+2.500	-0.500	-1.000
0000	0001	+0.020	+0.039	-0.008	-0.016
0000	0000	0.000	0.000	0.000	0.000

BIPOLAR OPERATION-OFFSET BINARY CODING

INPUT CODE	BIPOLAR OUTPUT RANGES			
MSB LSB	$\pm 5 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{MA}$	$\pm 2 \mathrm{MA}$
11111111	+4.961V	+9.922V	-0.992MA	$-1.984 \mathrm{MA}$
11100000	+3.750	+7.500	-0.750	-1.500
11000000	+2.500	+5.000	-0.500	-1.000
10000000	0.000	0.000	0.000	0.000
01000000	-2.500	-5.000	+0.500	+1.000
00000001	-4.961	-9.922	+0.992	+1.984
00000000	-5.000	-10.000	+1.000	+2.000

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Low Cost， 10 Bit Monolithic Digital－to－Analog Converter DAC－IC10B Series

FEATURES

－ 10 Bit Resolution
－Straight Binary Coding
－Current Output
－ 250 nsec．Settling Time
－TTL／CMOS Compatible
－Low Cost

GENERAL DESCRIPTION

The DAC－IC10B is a low cost， 10 bit monolithic DAC with fast output cur－ rent settling time．It is packaged in a 16 pin ceramic DIP and requires only an external reference and operational amplifier for voltage output operation． A full scale change in output current settles in 250 nanoseconds，and with a fast I．C．op amp（such as Datel－Intersil＇s AM－452）a 10 V output change can set－ tle within 1 microsecond．Digital input coding is straight binary for unipolar operation，and offset binary for bipolar operation；the logic inputs are compati－ ble with TTL or CMOS．
This converter is manufactured with monolithic bipolar technology．The cir－ cuit incorporates 10 fast switching cur－ rent sources which drive a diffused resistor R－2R network．The ladder net－ work is laser trimmed by cutting alumi－ num links．The circuit also contains a reference control amplifier and a bias circuit．An external reference current of 2 mA is required at the + Reference input terminal；this is accomplished by an external voltage reference and a metal film resistor．
Other characteristics of the DAC－IC10B include linearity to $\pm 1 / 2$ LSB and guaran－ teed monotonic performance．The gain temperature coefficient of this unit is typically $-20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．Output voltage compliance is -2.5 V to +0.2 V ，permit－ ting direct driving of a 625 ohm resistor for a voltage output．The reference input current can be varied from 0.5 mA to 2.5 mA to give monotonic operation as a one or two quadrant multiplier．
Power supply requirement is +5 VDC and－15VDC．The DAC－IC10B is avail－ able in three models covering two temperature ranges， $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．

DATEL－INTERSIL，INC．， 11 CABOT BOULEVARD，MANSFIELD，MA 02048／TEL．（617）339－9341／TWX 710－346－1953／TLX 951340

SPECIFICATIONS, DAC-IC10B (Typical at $25^{\circ} \mathrm{C}, \mathrm{Vcc}=+5 \mathrm{~V}, \mathrm{Vee}=-15 \mathrm{~V}$, Iref $=2.0 \mathrm{~mA}$) MAXIMUM RATINGS

Vcc	7.0 Volts
$V_{\text {EE }}$	+18.0 Volts
Digital Input Voltage	+15 Volts
Output Voltage, Pin 3.	+0.5, -5.0 Volts
Ref. Current.	2.5 mA
Diff. Ref. Voltag	0.7V

INPUTS

Resolution	10 Bits
Coding, Unipolar Output	. Straight Binary
Coding, Bipolar Output.	. Offset Binary
Input Level, Logic "1"	+2.0 to +15V @ +40 $\mu \mathrm{A}$
Input Level, Logic "0".	. 0 to +0.8V @ -0.4 mA
Nom. Ref. Current, Pin 16.	2.0 mA
Reference Current Range	0.5 mA to 2.5 mA
Ref. Bias Current, Pin 15.	- $5 \mu \mathrm{~A}$ max.

OUTPUTS
Output Current............... $4.0 \mathrm{~mA} \pm 0.2 \mathrm{~mA}$
Output Current Range....... to 5.0 mA
Output Current, All Bits " 0 ". $2.0 \mu \mathrm{~A}$ max.
Output Voltage Compliance $\ldots-2.5$ to +0.2 V
Output Capacitance......... 25 pF

PERFORMANCE

Linearity Error, B, BM......... $\pm 1 / 2$ LSB, max.
BC. ± 1 LSB, max

Diff. Linearity Error $\pm 1 / 2$ LSB
Monotonicity, B, BM. Full Temp. Range ${ }^{2}$
BC At $25^{\circ} \mathrm{C}$
Gain Tempco................... . $-20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$,

$$
60 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { max. }{ }^{3}
$$

Ref. Current, Slew Rate $20 \mathrm{~mA} / \mu \mathrm{sec}$
Ref. Current Settling. $2.0 \mu \mathrm{sec} .^{4}$
Output Current Settling 250 nsec. ${ }^{5}$
Update Rate 4 MHz
Power Supply Sensitivity $02 \% / \%$ max

POWER REQUIREMENT

PHYSICAL-ENVIRONMENTAL
Operating Temp. Range
DAC-IC10B, BC $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC-IC10BM $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temp. Range $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Package........................ . 16 Pin Ceramic DIP
NOTES:

1. $4.0 \mu \mathrm{~A}$ max. for DAC-IC10BC only.
2. All converters in this series typically retain rated monotonicity for values of input reference current from 0.5 mA to 2.5 mA .
3. $70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. for DAC-IC10BM only.
4. Zéro to 4 mA output change to rated accuracy.
5. Full scale change to $1 / 2$ LSB.

ORDERING INFORMATION	
MODEL	OPER. TEMP
RANGE	
DAC-IC10BC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC-IC10B	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC-IC10BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

THESE CONVERTERS ARE COVERED BY GSA CONTRACT.

TECHNICAL NOTES

1. The General Connection Diagram shows the basic connections for the converter. The scale factor is set by a reference current injected into pin 16. Pins 15 and 16 are the input terminals to the reference control amplifier. When connected as shown, pin 15 is grounded through R_{15} and pin 16 is at virtual ground. Therefore, the reference current is determined by the external voltage reference and R_{16} : $I_{\text {REF }}=V_{\text {REF }} / R_{16}$. R_{16} should be a stable metal film resistor. R_{15} is used only to compensate for the input bias current into pin 15 ($1 \mu \mathrm{~A}$ typical). \mathbf{R}_{15}, if used, should be equal to R_{16} and may be a carbon composition type. An $\mathrm{I}_{\text {REF }}$ of 2.0 mA is recommended for most applications.
2. There is a second method of connecting the reference shown in Two Ways to Connect Reference. A negative reference can be applied to pin 15. In this case only the bias current must be supplied from the reference since pin 15 is a high impedance input. Pin 16 is at the negative voltage and $I_{\text {REF }}$ still flows into pin 16. Again, R_{15} is used only to compensate for bias current. There is an important requirement for this connection: the negative reference voltage must always be 3 volts above V_{EE}.
3. lout is inversely proportional to the reference input current (IREF) times the digital word. Scaling of the applied reference can be represented as follows:

$$
\text { IOUT }=-2\left(\frac{V_{R E F}}{R_{R E F}}\right)\left(\frac{A_{n}}{2^{n}}\right)
$$

where $\mathrm{n}=10$ (10 bit DAC)

$$
A_{n}=\text { digital code }
$$

Note: 1) The largest digital code for a 10 bit DAC is 1023.
2) The reference current is scaled by a factor of 2 within the DAC.
Example:

$$
\begin{aligned}
\operatorname{lout}(\mathrm{FS}) & =-2\left(\frac{2.5 \mathrm{~V}}{1.25 \mathrm{~K}}\right)\left(\frac{1023}{1024}\right) \\
& =-3.996 \mathrm{~mA}(\text { nominal }) \\
\text { Iout }(\mathrm{ZERO}) & =-2\left(\frac{2.5 \mathrm{~V}}{1.25 \mathrm{~K}}\right)\left(\frac{0}{1024}\right) \\
& =0 \mathrm{~mA}(\text { nominal })
\end{aligned}
$$

4. The reference amplifier is internally compensated. The minimum reference current supplied from a current source is 0.5 mA for stabilitv.
5. The voltage on pin 3 is restricted to a range of -2.5 V to +0.2 V . This compliance voltage is guaranteed at $25^{\circ} \mathrm{C}$ and nearly constant over temperature.
6. Full scale output current of 3.996 mA is guaranteed for input reference currents to pin 16 between 1.9 and 2.1 mA .
7. It is recommended that pin $14(\mathrm{Vcc})$ and pin 1 (Vee) always be bypassed to ground with at least $0.1 \mu \mathrm{~F}$ capacitors located close to the pins.
8. The accuracy of the converter is specified for a reference current of 2.0 mA ; the accuracy, however, is essentially constant for reference currents from 1.5 mA to 2.5 mA . Typically, this device is monotonic for all values of reference current above 0.5 mA .
9. For fastest voltage output settling times in either unipolar or bipolar modes, two circuits using DatelIntersil AM-452 monolithic operational amplifiers are recommended. These circuits, with the compensation shown, result in output settling times of typically 550 nsec . for a 10 volt change to 1 LSB. This is the worst case settling time which occurs when all bits are turned on. For current output and Rlless than 500 ohms, this time is 250 nsec.; when all bits are turned off the time is shorter, typically 100 nsec. The two circuits shown also illustrate a simple method of deriving both reference current and offset current from a precision 6.4 volt Zener reference diode.
10. Both one and two quadrant multiplication are also possible with the converter as shown in the two diagrams. VIN is shown operating into pin 16; this results in an input impedance of 2.5 K . Alternatively, Vin can be applied to pin 15 for a high impedance input as explained previously. The range of Vin is then 0 to -10 V . For two quadrant multiplication VIN is unipolar and the digital input is bipolar with offset binary coding. Vout then varies over the bipolar range of ± 5 volts. In multiplication applications, it is recommended that full scale Iref be set to 2.0 mA ; the output is then monotonic as the reference current varies over 0.5 mA to 2.0 mA .

TWO WAYS TO CONNECT REFERENCE

CONNECTION FOR BIPOLAR VOLTAGE OUT

GENERAL CONNECTION DIAGRAM

CONNECTION FOR DIRECT VOLTAGE OUTPUT

DIGITAL 4 TO 20 MA OR
1 TO 5 VOLT CONVERTER

CALIBRATION AND CODING TABLE

1. Select the desired output range by means of the feedback resistor of the external operational amplifier and the externally programmed reference current.
2. Zero and Offset Adjustments/ For unipolar operation, set all digital inputs to " 0 " (0 V to +0.8 V) and adjust the output amplifier ZERO ADJUSTMENT for zero output voltage. For bipolar operation, set all digital inputs to " 0 " (0 to +0.8 V) and adjust the OFFSET ADJUSTMENT for the negative full scale voltage shown in the Coding Table.
3. Gain Adjustment/For either unipolar or bipolar operation, set all digital inputs to " 1 " (+2.0 to +5.5 V) and adjust the GAIN ADJUSTMENT for the positive full scale voltage shown in the Coding Table.

INPUT CODE	UNIPOLAR OPERATION - STRAIGHT BINARY				INPUT CODE MSB LSB	BIPOLAR OPERATION - OFFSET BINARY CODING			
MSB LSB	0 TO +5V	0 TO +10V	O TO -2MA	0 TO -4MA		$\pm 5 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{MA}$	$\pm 2 \mathrm{MA}$
1111111111	$+4.995 \mathrm{~V}$	+9.990	-1.998 MA	-3.996	1111111111	+4.990V	+ 9.980V	-0.998MA	-1.996MA
1110000000	+4.375	+8.750	-1.750	-3.500	1110000000	+3.750	+ 7.500	-0.750	-1.500
1100000000	+3.750	$+7.500$	-1.500	-3.000	1100000000	+2.500	+ 5.000	-0.500	-1.000
1000000000	+2.500	+5.000	-1.000	-2.000	1000000000	0.000	0.000	0.000	0.000
0100000000	+1.250	+2.500	-0.500	-0.100	0100000000	-2.500	- 5.000	+0.500	+1.000
0000000001	+0.005	+0.010	-0.002	-0.004	0000000001	-4.990	- 9.980	+0.998	+1.996
0000000000	0.000	0.000	0.000	0.000	0000000000	-5.000	-10.000	+'1.000	+2.000

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved
 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg. MD (301)840-9490 - Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

－Input Register
－Internal Reference
－Voltage Output
－Low Cost
－8－Bit Resolution

GENERAL DESCRIPTION

The DAC－UP8BC and DAC－UP8BM are 8 －bit monolithic DAC＇s with internal regis－ ters．Contained in the 22 pin DIP is a 8 －bit DAC，stable reference，a high－speed out－ put amplifier and an 8 －bit input latch． These microprocessor compatible conver－ ters are ideal for low cost applications．
The output voltage range is 0 to +10 V for unipolar mode and $\pm 5 \mathrm{~V}$ for bipolar．Typi－ cal settling time is $2 \mu \mathrm{sec}$ for a full scale change．Either the internal reference or an external reference can be used to bias the current switching network．The converter can function as a multiplying DAC by vary－ ing the reference input voltage．The refer－ ence and output amplifier are short circuit protected．
The input register is controlled by an enable line（LOAD）．When low，the regis－ ters are transparent and any change on the digital input pins will be reflected on the analog output．A high state level will latch this digital information，and the data is retained until this enable line goes low． The data and latch enable input lines have low input load currents．
The DAC design consists of 8 fast－switch－ ing current sources，a diffused R－2R resis－ tor ladder network and a control amplifier． The diffused resistor network gives excel－ lent temperature tracking resulting in a gain temperature coefficient of $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ． This bipolar monolithic fabrication results in excellent linearity and temperature coefficient．
With an accuracy of $.19 \%$ the device is monotonic（no missing codes）over the en－ tire operating temperature range．Power supply requirements are $\pm 12 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ ． The operating temperature range of the DAC－UP8BC is 0 to $+70^{\circ} \mathrm{C}$ while the DAC－ UP8BM operates from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．

y8d

MAXIMUM RATINGS	
Positive Supply, pin 19......	+18 V
Negative Supply, pin $17 \ldots \ldots$	-18 V
Digital Input Voltage, pins $2-10$.	+18 V
Reference Input, pin $14 \ldots \ldots$	+12 V
Summing Junction, pin $20 \ldots$	+12 V

INPUTS	
Resolution	8 bits
Coding, unipolar output.	Straight Binary
Coding, bipolar output.	Offset Binary
Input Logic Level, bit ON ("1"). .	+2.0V to +5.5V@10 10 A
Input Logic Level, bit OFF ("0]).	OV to +0.8V@-50 L A
Load Input	$\begin{aligned} & \text { HI ("1") }=\text { Hold Data } \\ & \text { LO ("0") }=\text { Transfer Data } \end{aligned}$
Load Pulse Width ${ }^{\text {' }}$	200 nsec min.
Reference Input Voltage	$+5 \mathrm{~V} \pm 10 \%$
Reference Input Resistance.	5K
Reference Input Slew Rate.	$25 \mathrm{~V} / \mu \mathrm{sec}$.

OUTPUT

Output Voltage Range, unipolar	0 to +10 V
Output Voltage Range, bipolar.	$\pm 5 \mathrm{~V}$
Output Current.............	5 mA
Output Resistance.........	5 ohms
Reference Output Voltage....	$+5 \mathrm{~V} \pm 10 \%$
Reference Output Current....	5 mA

PERFORMANCE

Linearity Error. $\quad \pm 1 / 2$ LSB max.
Differential Linearity Error $\pm 1 / 2$ LSB
Monotonicity 8 Bits over oper. temp.
Gain Error Adjustable to zero
Zero Error Adjustable to zero
Gain Tempco.................. . $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Zero Tempco, Unipolar. $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS .
Offset Tempco, Bipolar. $\quad 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS.
Reference Tempco........... $60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Settling Time to $1 / 2$ LSB $^{2} \ldots . . . \quad 2 \mu \mathrm{sec}$
Power Supply Rejection. $\pm 1 \mathrm{mV} / \mathrm{V}$

POWER REQUIREMENT Rated Power Supply Voltage Power Supply Voltage Range Supply Current, quiescent	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 12 \text { to } \pm 18 \mathrm{VDC} \\ & +7 \mathrm{~mA},-10 \mathrm{~mA} \end{aligned}$
PHYSICAL-ENVIRONMENTAL Operating Temperature Range	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}(\mathrm{BC}) \\ 55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { (BM) } \end{gathered}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Type	22 pin plastic (BC)
	22 pin ceramic (BM)

NOTES:

1. See Timing Diagram
2. For 10 V change
3. It is recommended that the $\pm 15 \mathrm{~V}$ power input pins both be bypassedto ground with $0.1 \mu \mathrm{f}$ ceramic capacitors. This precaution will assure noise free operation of the converter.
4. Both the Output (pin 18) and Reference Output (pin 13) are short circuit protected. Output short circuit current is typically 40 mA for the Output and 15 mA for the Reference Output.
5. The "LOAD" control pin is a level triggered input which causes the register to hold data with a logic " 1 " input state and transfer data to the DAC with a logic " 0 " input.
6. A Setup Time of 200 nsec . minimum must be allowed for the input data before the LOAD input goes from LO to HI. In addition, a 50 nsec. minimum Hold Time must be allowed for the input data after the LOAD input goes from LO to HI. The minimum pulse width for the LOAD input is 200 nsec . The maximum update rate is determined by the output settling time. See Timing Diagram.
7. The output settling time may be decreased somewhat by decreasing the value of the 50 pF feedback capacitor from the amplifier Output (pin 18) to the Summing Junction (pin 20). The minimum capacitance value is 10 pF .
8. The gain temperature coefficient of the DAC-UP8B without the internal reference is $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. By using the internal reference, which has a tempco of $60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, a total tempco of 80 ppm typical results for the converter. If greater temperature stability is required, a more stable external reference should be used.
9. The data inputs (Bits 1 through 8) are high impedance inputs which give minimal logic loading. For an input LO, the current that must be sinked is only $50 \mu \mathrm{~A}$ maximum, or about $1 / 32$ of a standard TTL load. This minimizes the loading of the DACUP8B on a data bus.

ORDERING INFORMATION

MODEL

OPERATING CASE

DAC.UP8BC
0 to $70^{\circ} \mathrm{C}$ Plastic
DAC.UP8BM $\quad-55$ to $125^{\circ} \mathrm{C}$ Ceramic
Trimming Potentiometers: TP10K

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

CALIBRATION PROCEDURE

1. Select the desired output range and connect as shown in OUTPUT RANGE SELECTION table.
2. Apply a logic " 0 " to $\overline{\text { LOAD (pin 10). }}$
3. Zero and Offset Adjustments

For unipolar operation, set all digital inputs to " 0 " and adjust ZERO ADJ for zero output voltage. For bipolar operation, set all digital inputs to " 0 " and adjust ZERO ADJ for negative full scale voltage. of -5.000 V .
4. Gain Adjustment

For either unipolar or bipolar operation, set all digital inputs to " 1 " and adjust FULL SCALE ADJ for the positive full scale voltage of +9.961 V (unipolar) or +4.961 V (bipolar).

CODING table

	INPUT CODE							OUTPUT RANGES	
	MS				LS			0 to +10V	$\pm 5 \mathrm{~V}$
1	1	1	1	,	1	1	1	+9.961V	+4.961V
1	1	1	0	0	0	0	0	+8.750	+ 3.750
1	1	0	0	0	0	0	0	+ 7.500	+2.500
1	0	0	0	0	0	0	0	+ 5.000	0.000
0	1	0	0	0	0	0	0	+ 2.500	-2.500
0	0	0	0	0	0	0	1	+ 0.039	-4.961
0	0	0	0	0	0	0	0	0.000	- 5.000

OUTPUT RANGE SELECTION

MODE	RANGE	CONNECTION
Unipolar Bipolar	0 to +10 V $\pm 5 \mathrm{~V}$	Pin 15 open Pin 15 to 20

APPLICATIONS

INTERFACING TO 8 BIT DATA BUS

This illustrates the connection for loading parallel data into the input register. The register circuit is a static latch and is controlled by the LOAD, active low. When the data is stable on the data inputs (bits 1-8), it can be transferred on the positive edge of the LOAD pulse. The voltage levels on the data bus should be stable for at least 200 nsec before LOAD goes HI. The minimum pulse width of the LOAD command is 200 nsec .

FEATURES

- 85 nsec Settling Time
- -10 to +18 Volt Compliance
- ± 4.5 to ± 18 Volt Supply
- 8 Bit Resolution
- 1 or 2 Quadrant Multiplication
- Low Cost

GENERAL DESCRIPTION

The DAC-08BC and DAC-08BM provide very high speed performance coupled with low cost and application flexibility. These units have guaranteed full 8 -bit monotonicity with nonlinearity of 0.19% over the full operating temperature range. High speed current steering switches achieve 85 nanosecond settling time with a very low glitch for full scale changes. A large output voltage compliance range (-10 to +18 Volts) allows direct current to voltage conversion with just an output resistor, omitting the need for an op amp in many cases.
The DAC-08 consists of 8 fast-switching current sources, a diffused R-2R resistor ladder, a bias circuit, and a reference control amplifier. The diffused resistor ladder gives excellent temperature tracking resulting in a gain temperature coefficient of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The monolithic fabrication results in excellent linearity and tempco, fast output settling and low cost. Linearity is $\pm 1 / 2$ LSB.
An external reference current of 2 mA nominal programs the scale factor of the DAC. This reference current can also be varied, resulting in one or two quadrant multiplying operation. The output voltage can be unipolar or bipolar dependent upon the connection of the two complementary output sink currents.
DAC-08 applications include fast A/D converters, waveform generators, audio encoder and attentuators, CRT display drivers, and high speed modems.
Power supply requirements are $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. Operating temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the DAC-08BC and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DAC-08BM. These models have equivalent specs and pinouts to industry standard DAC-08's.

MAXIMUM RATINGS

Vcc Supply to Vee Supply	36V
Digital Input Voltage.	-Vee to -Vee plus 36V
Vlc	-VEe to +Vcc
Reference Input Voltage	-VEe to +Vcc
Reference Input Current	5.0 mA

INPUTS

Resolution	8 Bits
Coding, Unipolar Output	Straight Binary
Coding, Bipolar Output	Offset Binary
Input Logic Level, Bit ON ("1").	+2.0V min. @ +10.0 $\mu \mathrm{A}$
Input Logic Level, Bit OFF ("0").	+0.8V max. @ - $10.0 \mu \mathrm{~A}^{1}$
Nominal Reference Current	2.0 mA
Reference Bias Current.	$-1.0 \mu \mathrm{~A}$
Reference Input Slew Rate.	$8 \mathrm{~mA} / \mu \mathrm{sec}$

OUTPUTS

Output Current, IREf $=2.0 \mathrm{~mA}$.
$1.99 \mathrm{~mA} \pm .05 \mathrm{~mA}^{2}$
Output Current Range, Vee $=-5 \mathrm{~V}$
0 to 2.1 mA
Output Current Range, VEE $=-7$ to -18V 0 to 4.2 mA
Output Current, all bits OFF $\pm 0.2 \mu \mathrm{~A}$ typ. $\pm 2.0 \mu \mathrm{~A}$ max
Full Scale Symmetry $\pm 1.0 \mu \mathrm{~A}$ typ. $\pm 8.0 \mu \mathrm{~A}$ max
Output Voltage Compliance -10 to +18 V

PERFORMANCE

POWER REQUIREMENTS

Vcc	+4.5 V to +18 V
Power Supply Current, IREF $=2.0 \mathrm{~mA}$	
$\mathrm{V}=$	+3.8, -7.8 mA

PHYSICAL-ENVIRONMENTAL
Operating Temp Range

DAC-08BC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
DAC-08BM .	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temp Range.	$-65^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$
Package	16 Pin Dip

NOTES

1. For TTL, DTL Interface, VLC $=0 \mathrm{~V}$. For other digital interfaces see TECHNICAL NOTE 3
2. IOUT $($ Pin 4$)+$ IOUT $($ Pin 2$)=$ Output Current .

ORDERING INFORMATION		
	OPERATING	
MODEL	TEMP. RANGE	PACKAGE
DAC-08BC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Plastic
DAC-08BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic

THESE D/A CONVERTERS ARE COVERED BY GSA CONTRACT.

1. The DAC-08 series is a multiplying D/A converter in which the output current is a product of the digital word and the input reference current. Excellent performance is obtained for I REF from 4.0 mA to $4.0 \mu \mathrm{~A}$. Monotonic operation is maintained from 4.0 mA to $100 \mu \mathrm{~A}$. The full scale output current is a linear function of the reference current and is given by:

$$
I_{F S}=\frac{255}{256} \times I_{\text {REF }} \quad\left(I_{R E F}\right. \text { is current at Pin 14) }
$$

2. Reference Amplifier Set-up. If a regulated power supply is used as the reference, a resistor divider should be used with the junction by-passed to gnd with a $0.1 \mu \mathrm{f}$ capacitor. TTL logic supplies are not recommended to be used as the refference. AC and DC reference applications will require the reference amplifier to be compensated using a capacitor (CC) from pin 16 to VEE. For fixed reference application (DC). a $0.01 \mu \mathrm{~F}$ capacitor is recommended. For AC reference applications, the value of C_{C} depends on the impedance present at pin 14. For R REF values of $1.0,2.5$ and $5.0 \mathrm{~K} \Omega$, minimum values of C_{c} are 15,37 and 75 pf respectively. Larger values of R_{14} require proportionately increased values of Cc for proper phase margin. See Graph on Reference Input Frequency Response. Low RREF values enable small Cc achieving highest throughput on Vref. If pin 14 is driven by a high impedance such as a transistor current source, the amplifier must be heavily compensated which will decrease overall bandwidth and slew rate. For $R_{R E F}=1.0 \mathrm{~K} \Omega$ and $C_{C}=15 \mathrm{pf}$, the reference amplifier slews at $4.0 \mathrm{~mA} / \mu \mathrm{sec}$. enabling a transition from $I_{\text {REF }}=0$ to $I_{\text {REF }}=2.0 \mathrm{~mA}$ in 500 nsec .
3. Interfacing Various Logic Families. The DAC-08 design incorporates a unique logic input circuit which enables direct interface to all popular logic families and provides maximum noise immunity. A large input swing capability allows adjustable logic threshold voltage and $200 \mu \mathrm{~A}$ max source current on pin 1. Minimum input logic swing and minimum logic threshold voltage is given by $\mathrm{V}_{\mathrm{EE}}+\left(I_{\mathrm{REF}} \times 1.0 \mathrm{k} \Omega\right)+2.5 \mathrm{~V}$. Logic threshold is adjusted by appropriate voltage at VLC Interfacing Various Logic Families Diagram shows appropriate connections. Fastest settling times are obtained when $V_{\text {LC }}$ sees a low impedance. Use $.01 \mu \mathrm{~F}$ by-pass capacitors whenever possible.
4. Analog Output Currents. Both true and complemented output sink currents are provided, $1 \mathrm{O}+\overline{\mathrm{IO}}=\mathrm{IFS}$. Both outputs can be used simultaneously. If one of the outputs is not required, it must be connected to ground or a point capable of sourcing IFS. Do not leave unused output pin (lo or ГO) open. The compliance voltage is the voltage swing on output pin without affecting DAC accuracy. Positive compliance is 36 V above $V_{E E}$ and is independent of $V+$. Negative compliance is $V_{E E}+(\operatorname{IREF} \times 1 \mathrm{k} \Omega)+2.5 \mathrm{~V}$.
5. Settling Time. The DAC-08 is capable of extremely fast settling times, typically 85 nsec . at I IREF $=2.0 \mathrm{~mA}$. Judicious circuit design and careful board layout must be employed to obtain full performance. The output capacitance of the DAC including the package is approximately 15 pf; therefore the output RC time constant dominates at $R_{L}>500 \Omega$.
Settling time remains essentially constant for IREF values down to 1.0 mA , with gradual increases for lower I REF values. The switching transients (glitches) are very low and may be further reduced by small capacitive loads at the output. Settling time will be increased slightly.
6. Power Supplies. The DAC-08 operates over a wide range of power supply voltages from a total supply of 9 V to 36 V . When operating at supplies of $\pm 5 \mathrm{~V}$ or less, I IREF $\leq 1 \mathrm{~mA}$ is recommended. Low reference current operation decreases power consumption and increases negative compliance, reference amplifier negative common mode range, negative logic input range, and negative logic threshold range. For example,
operation at -4.5 V with IREF $=2 \mathrm{~mA}$ is not recommended because negative output compliance would be reduced to near zero. Operation from lower supplies is possible, however at least 8 V total must be applied to insure turn-on of the internal bias network. It is recommended that V_{CC} and V_{EE} always be bypassed to ground with at least $0.1 \mu \mathrm{f}$ capacitors.

Symmetrical supplies are not required, as the DAC-08 is quite insensitive to variations in supply voltage. Battery operation is feasible, as no ground connection is required; however, an artificial ground may be useful to insure logic swings, etc. remain between acceptable limits.

Power consumption may be calculated as follows: $\mathrm{P}_{\mathrm{d}}=(\mathrm{I}+)(\mathrm{V}+)+(\mathrm{I}-)(\mathrm{V}-)+\left(2 \mathrm{I}_{\mathrm{REF}}\right)(\mathrm{V}-)$. A useful feature of the DAC-08 design is that supply current is constant and independent of input logic states; this is useful in cryptographic applications and further serves to reduce the size of the power supply bypass capacitors.
7. Temperature Performance. For most applications, $a+10.0$ Volt reference is recommended for optimum full scale temperature coefficient performance. Full scale trimming may by accomplished by adjusting $\mathrm{I}_{\text {REF }}$ (changing value of RREF). RREF and RL should be selected for similar temperature coefficient to minimize accuracy error. Settling time of the DAC decreases approximately 10% at $-55^{\circ} \mathrm{C}$ and increases 15% at $125^{\circ} \mathrm{C}$.

APPLICATION DIAGRAMS

BASIC POSITIVE REFERENCE OPERATION

BASIC NEGATIVE REFERENCE OPERATION

ACCOMMODATING BIPOLAR REFERENCES

$V_{\text {ref }}$ MUST be above peak positive swing of $\mathrm{V}_{\text {in }}$
REFERENCE INPUT FREQUENCY RESPONSE

CURVE 1: $\mathrm{C}_{\mathrm{C}}=15 \mathrm{PF}, \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}_{\mathrm{D} . \mathrm{D}}$ CENTERED AT +1.0 V . CURVE 3: $\mathrm{C}_{\mathrm{C}}=0 \mathrm{OPF}, \mathrm{V}_{\text {IN }}=100 \mathrm{mV} V_{D}$ CENTERED AT OV AND APPLIED THRU 500 CONNECTED TO PIN $14+2.0 \mathrm{~V}$ APPLIED TO R_{14}.

INTERFACING VARIOUS LOGIC FAMILIES

LOGIC INPUT CURRENT VS. INPUT VOLTAGE

BASIC UNIPOLAR NEGATIVE OPERATION

SEE Coding table

VOLTAGE OUTPUT OPERATION

BASIC BIPOLAR OUTPUT OPERATION

RECOMMENDED FULL SCALE ADJUSTMENT CIRCUIT

CALIBRATION AND CODING TABLES

CALIBRATION PROCEDURE

1. Select the desired output range by means of the feedback resistor of the external operational amplifier and the externally programmed reference current.
2. Zero and Offset Adjustments

For unipolar operation, set al! digital inputs to " 0 " and adjust the output amplifier ZERO ADJUSTMENT for zero output

UNIPOLAR OPERATION -STRAIGHT BINARY CODING
For 5k load resistors at pins 2 and 4

INPUT CODE	E 0	\bar{E}_{0}	10	To
11111111	-9.961	0.000	1.992	0.000
11100000	-8.750	-1.211	1.750	0.242
11000000	-7.500	-2.461	1.500	0.492
10000000	-5.000	-4.961	1.000	0.992
01000000	-2.500	-7.461	0.500	1.492
00000001	-0.039	-9.922	0.008	1.984
00000000	0.000	-9.961	0.000	1.992

voltage. For bipolar operation, set all digital inputs to " 0 " and adjust the OFFSET ADJUSTMENT for the negative full scale voltage shown in the Coding Table.
3. Gain Adjustment

For either unipolar or bipolar operation, set all digital inputs to " 1 " and adjust the GAIN ADJUSTMENT for the positive full scale voltage shown in the DAC-08B Coding Table.

BIPOLAR OPERATION-OFFSET BINARY CODING
For 10k load resistors from pins 2 and 4 to +10 V .

INPUT CODE	EO	\bar{E}_{0}
11111111	-9.922	+10.000
11100000	- 7.500	+ 7.578
11000000	- 5.000	+ 5.078
10000000	0.000	+ 0.078
01000000	+ 5.000	- 4.922
00000001	+ 9.922	- 9.844
00000000	+10.000	-9.922

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 \bullet Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 Model DAC-681

FEATURES

- 12 Bit Resolution
- 300 nsec. Settling Time
- $\pm 10 / \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max. Tempco
- 5 Output Ranges
- $\pm 1 / 4$ LSB Linearity
- 562 Pin Compatibility

GENERAL DESCRIPTION

The DAC-681 is a new high performance monolithic 12 bit D/A converter fabricated with advanced bipolar technology. The circuit uses a precision, laser-trimmed thin film R-2R ladder network driven by equal-value switched current sources to achieve $1 / 4 \mathrm{LSB}$ typical linearity, 300 nsec. settling time and $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. gain tempco
The DAC-681 operates from TTL or CMOS input logic and provides a 0 to 5 mA or $\pm 2.5 \mathrm{~mA}$ output current. The converter contains tracking feedback and bipolar offsetting resistors to provide five output voltage ranges when used with an external operational amplifier: 0 to $+5 \mathrm{~V}, 0$ to $+10 \mathrm{~V}, \pm 2.5, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$. Since these resistors closely track the R-2R ladder with temperature, gain stability of better than $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ is achieved Differential linearity error is $1 / 4$ LSB typical and $1 / 2$ LSB maximum, with output monotonicity guaranteed over the operating temperature range.

Output settling time for a full scale change to $1 / 2$ LSB is 300 nsec . typical and 400 nsec. maximum

The DAC-681 features pin compatibility with 562 type DAC's while offering superior performance to these earlier devices. The package is a 24 pin hermetically sealed ceramic DIP; power requirement is +5 V to +15 V and -15 VDC . There are two basic models: DAC-681C operates over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ while DAC-681M operates over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

DAC-681C DAC-681M

*Specifications same as first column

NOTES:

1. + Supply must be $+5 \mathrm{~V} \pm 5 \%$ for DAC- 681 C and $+5 \mathrm{~V} \pm 10 \%$ for DAC-681M For operation with CMOS logic see Technical Note 1.
2. Adjustable to zero using external potentiometers. Specified error is for 24.9 ohm trim resistors and external op amp using internal feedback resistor.
3. Using external op amp and internal feedback and offset resistor. Zero Tempco and Bipolar Offset Tempco are in ppm $/{ }^{\circ} \mathrm{C}$ of FSR (Full Scale Range)
4. For full scale change: all bits ON-to-OFF, or all bits OFF-to-ON
5. See Technical Note 1.

TECHNICAL NOTES

1. For TTL input logic, pin 2 should be connected to pin 12 and the + supply must be +5 VDC ($\pm 5 \%$ for DAC- 681 C and $\pm 10 \%$ for DAC-681M) For CMOS input logic, connect pin 2 to pin 1 and use any + supply voltage from +4.75 V to +12 VDC. CMOS threshold levels are then + Vs $\times 0.7$ for bit ON and $+\mathrm{Vs} \times 0.3$ for bit OFF. Logic input current is the same as that specified for TTL.
2. Gain and bipolar offset errors are adjustable to zero by means of two 50 ohm trimming pots. The adjustment range is $\pm 0.3 \%$ of FSR for gain and $\pm 0.6 \%$ of FSR for bipolar offset. The uni polar zero error is adjustable to zero by means of the offset adjustment of the external output amplifier.
3. The output voltage compliance range of $\pm 1 \mathrm{~V}$ should not be exceeded or else accuracy will be affected. If a resistor load is driver instead of an op amp summing junction then the maximum resistor value is 200 ohms for unipolar operation and 400 ohms for bipolar operation.
4. Output settling time is specified for current output and is measured with a small current sampling resistor to ground (100 ohms). Voltage output settling time depends on the output operational amplifer used. Datel's AM-500 is recommended for about 500 nsec. settling and AM-452-2 is recommended for about 1.5 $\mu \mathrm{sec}$. settling. Both should be used with a 3-20 pF variable compensating capacitor across the feedback resistor which should be adjusted for optimum settling time.
5. For best high speed performance, both power supplies should be bypassed with 1μ F electrolytics in parallel with $0.01 \mu \mathrm{~F}$ ceramic capacitors as close as possible to the \pm supply pins
6. The gain and bipolar offset temperature coefficients are specified with the internal feedback and offset resistors used in conjunction with an external operational amplifier. This is because these resistors track the R-2R ladder with temperature and therefore the tempco's do not depend on absolute resistor tempco. The tempco of the external +10 V reference must also be included in the total converter tempco, however
7 Because of the DAC-681 circuit which incorporates equally weighted current sources driving an R-2R ladder network, the turn ON and turn OFF times are virtually symmetrical, resulting in low output glitches compared with other DAC's. The major carry glitch typically has an amplitude of 14% of FSR. The time duration to 90% complete is typically 35 nsec

8 The DAC-681 wideband output noise with all bits ON is typically $100 \mu \mathrm{~V}$ P-P over 0.1 Hz to 5 MHz .

ORDERING INFORMATION

Model
Temp. Range
DAC-681C
0 to $70^{\circ} \mathrm{C}$
DAC-681M $\quad-55$ to $+125^{\circ} \mathrm{C}$
Trimming Potentiometer: TP 50
THESE CONVERTERS ARE COVERED BY GSA CONTRACT.

UNIPOLAR OPERATION-See Output Range Selection Table

BIPOLAR OPERATION-See Output Range Selection Table

OUTPUT VOLTAGE RANGE SELECTION (See Connection Diagrams Above)

OUTPUT voltage RANGE	CONNECT THESE PINS TOGETHER				R , BIAS COMP. RESISTOR
0 to +5 V	A \& 10	$9 \& 11$			510
0 to +10 V	A \& 10				680
$\pm 2.5 \mathrm{~V}$	A \& 10	9 \& 11	8 \& 9	7 \& B	430
$\pm 5 \mathrm{~V}$	A \& 10	8 \& 9	$7 \& B$		560
$\pm 10 \mathrm{~V}$	A \& 11	8 \& 9	$7 \& B$		680

*Carbon composition resistor value used from amplifier + input terminal to ground to compensate for offset due to bias current.

CODING TABLE-See Calibration Procedure

	OUTPUT VOLTAGE RANGE				
	$\mathbf{0}$ TO +5V	$\mathbf{0}$ TO +10V	$\mathbf{+ 2 . 5 V}$	$\mathbf{+ 5 V}$	$\pm \mathbf{1 0 V}$
111111111111	+4.9988 V	+9.9976 V	+2.4988 V	+4.9976 V	+9.9951 V
110000000000	+3.7500	+7.5000	+1.2500	+2.5000	+5.0000
100000000000	+2.5000	+5.0000	0.0000	0.0000	0.0000
010000000000	+1.2500	+2.5000	-1.2500	-2.5000	-5.0000
000000000001	+0.0012	+0.0024	-2.4988	-4.9976	-9.9951
000000000000	0.0000	0.0000	-2.5000	-5.0000	-10.0000

CALIBRATION PROCEDURE

UNIPOLAR OPERATION

1. Set all digital inputs LO. Adjust the output amplifier offset for 0 volts output.
2. Set all digital inputs HI. Adjust Gain trimming pot for an output of + FS-1LSB.

FS-1LSB $=+9.9976 \mathrm{~V}$ for 0 to +10 V range .
$=+4.9988 \mathrm{~V}$ for 0 to +5 V range.

BIPOLAR OPERATION

1. Set all digital inputs LO. Adjust Bipolar Offset trimming pot for one of the following output voltages:

$$
\begin{aligned}
& -2.5 \mathrm{~V} \text { for } \pm 2.5 \mathrm{~V} \text { range } \\
& -5.0 \mathrm{~V} \text { for } \pm 5 \mathrm{~V} \text { range } \\
& -10.0 \mathrm{~V} \text { for } \pm 10 \mathrm{~V} \text { range }
\end{aligned}
$$

2. Set bit 1 (MSB) input HI and all other digital inputs LO Adjust Gain trimming pot for 0 volts output.

CIRCUIT FOR FAST VOLTAGE OUTPUT ($\approx 1.5 \mu$ SEC. SETTLING)

CIRCUIT FOR FAST VOLTAGE OUTPUT ($\approx 0.5 \mu \mathrm{SEC}$. SETTLING)

10 \& 12 Bit Monolithic Multiplying D/A Converters DAC-7520, DAC-7521 Series

FEATURES

- DAC-7520: 10 Bit Resolution; 10 Bit Linearity
- DAC-7521: 12 Bit Resolution; 10 Bit Linearity
- Low Power Dissipation: 20 mW (Max)
- Low Nonlinearity Tempco: 2 PPM of FSR/ ${ }^{\circ}$ C (Max)
- Current Settling Time: $\mathbf{5 0 0} \mathbf{n S}$ to $\mathbf{0 . 0 5 \%}$ of FSR
- Supply Voltage Range: +5 V to +15 V
- DTL/TTL/CMOS Compatible
- Full Input Static Protection

GENERAL DESCRIPTION

The DAC-7520 and DAC-7521 are monolithic, high accuracy, low cost 10-bit and 12-bit resolution, multiplying digital-toanalog converters. DATEL-INTERSIL's thin-film on CMOS process enables 10-bit accuracy with DTL/TTL/CMOS compatible operation. Digital inputs are fully protected against static discharge by compensating diodes to ground and positive supply.
Typical applications for the DAC-7520 and DAC-7521 include: digital/analog interfacing, multiplication and division; programmable power supplies; CRT character generation; digitally controlled gain circuits, integrators and attenuators, etc.

DAC-7520, DAC-7521

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

VDD (to GND)
$+17 \mathrm{~V}$
VREF (to GND) . .. $\pm 25 \mathrm{~V}$
Digital Input Voltage Range VDD to GND
Output Voltage Compliance
Power Dissipation (package)
up to $+75^{\circ} \mathrm{C} \ldots \ldots \ldots$.
-100 mV to VDD

CAUTION: 1) The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times
2) Do not apply voltages higher than $V_{D D}$ or less than GND potential on any terminal except $V_{\text {REF }}$.

SPECIFICATIONS (VDD $=+15 \mathrm{~V}, \mathrm{VREF}=+10 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER	DAC-7520	DAC-7521	UNITS	LIMIT	TEST CONDITIONS	FIG.
$\begin{aligned} & \text { DC ACCURACY (Note 1) } \\ & \text { Resolution } \end{aligned}$	10	12	Bits			
Nonlinearity	0.05 (10-Bit)		\% of FSR	Max	$\begin{aligned} & \text { M: over }-55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & -10 \mathrm{~V} \leq \text { VREF } \leq+10 \mathrm{~V} \end{aligned}$	1
Nonlinearity Tempco	2		PPM of FSR/ $/{ }^{\circ} \mathrm{C}$	Max	$-10 \mathrm{~V} \leq \mathrm{VREF} \leq+10 \mathrm{~V}$	
Gain Error (Note 2)	0.3		\% of FSR	Typ		
Gain Error Tempco (Note 2)	10		PPM of FSR $/{ }^{\circ} \mathrm{C}$	Max		
Output Leakage Current (either output)	200		nA	Max	Over the specified temperature range	
Power Supply Rejection	± 0.005		\% of FSR/\%	Typ		2
$\begin{aligned} & \hline \text { AC ACCURACY } \\ & \text { Output Current Settling } \\ & \text { Time } \end{aligned}$	500		nS	Typ	To 0.05\% of FSR (All digital inputs low to high and high to low)	6
Feedthrough Error	10		$m \vee p p$	Max	VREF $=20 \mathrm{Vpp}, 100 \mathrm{KHz}$ All digital inputs low.	5
REFERENCE INPUT Input Resistance Note 3	5K		, 2	Min	All digital inputs high. IOUT1 at ground.	
	10K			Typ		
	20K			Max		
ANALOG OUTPUT Voltage Compliance (both outputs)	See absolute max. ratings					
Output Capacitance	IOUT1 IOUT2	$\begin{array}{r} 120 \\ 37 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Typ } \\ & \text { Typ } \\ & \hline \end{aligned}$	All digital inputs high	4
	IOUT1 IOUT2		pF pF	$\begin{aligned} & \text { Typ } \\ & \text { Typ } \\ & \hline \end{aligned}$	All digital inputs low	4
Output Noise (both outputs)	Equivalent Johnson	to $10 \mathrm{~K} \Omega$ noise		Typ		3
DIGITAL INPUTS Low State Threshold	0.8		V	Max	Over the specified temp range	
High State Threshoid	2.4		V	Min		
Input Current (low to high state)	1		$\mu \mathrm{A}$	Typ		
Input Coding	Binary/Off	set Binary			See Tables 1 \& 2 on pages 4 and 5	
POWER REQUIREMENTS Power Supply Voltage Range	+5 to +15		V			
IDD	5		$n \mathrm{~A}$	Typ	All digital inputs at GND	
	2		mA	Max	All digital inputs high or low	
Total Power Dissipation (Including the ladder)	20		mW	Typ		

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
Specifications subject to change without notice.
2. Using internal feedback resistor, Rfeedback.

DAC-7520, DAC-7521

TEST CIRCUITS

NOTE: The following test circuits apply for the DAC-7520. Similar circuits can be used for the DAC-7521.

Figure 1. Nonlinearity

Figure 3. Noise

Figure 5. Feedthrough Error

Figure 2. Power Supply Rejection

Figure 4. Output Capacitance

Figure 6. Output Current Settling Time

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire $V_{\text {ref }}$ range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of (2^{-n}) (VREF). A bipolar converter of n bits has a resolution of $\left[2^{-(n-1)}\right]$ [$V_{\text {REF }}$]. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from lout 1 and lout2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on lout1 terminal with all digital inputs LOW or on louta terminal when all inputs are HIGH.

DAC-7520, DAC-7521

GENERAL CIRCUIT INFORMATION

The DAC-7520 and DAC-7521 are monolithic, multiplying D/ A converters. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters also enable low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

A simplified equivalent circuit of the DAC is shown in Figure 7. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential or virtual ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

(Switches shown for Digital Inputs "High")
Figure 7. 7520 (7521) Functional Diagram

Converter errors are further eliminated by using separate metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 8). This configuration results in DTL/TTL/ CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the $2 R$ ladder resistors, resulting in accurate leg currents.

Figure 8. CMOS Switch

APPLICATIONS

UNIPOLAR BINARY OPERATION

The circuit configuration for operating the 7520 and 7521 in unipolar mode is shown in Figure 9. With positive and negative VREF values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1.

Figure 9. Unipolar Binary Operation (2-Quadrant Multiplication)

Zero Offset Adjustment

1. Connect all 7520 or 7521 digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $0 \mathrm{~V} \pm 1 \mathrm{mV}$ at VOUT.
Gain Adjustment
3. Connect all 7520 or 7521 digital inputs to VDD.
4. Monitor VOUT for $a-\operatorname{VREF}\left(1-2^{-n}\right)$ reading. ($n=10$ for 7520 and $n=12$ for 7521.)
5. To decrease VOUT, connect a series resistor, 10 to 500 ohms), between the reference voltage and the VREF terminal.
6. To decrease VOUT, connect a series resistor, 10 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 1
CODE TABLE - UNIPOLAR BINARY OPERATION

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-V_{\text {REF }}\left(1-2^{-n}\right)$
1000000001	$-V_{\text {REF }}\left(1 / 2+2^{-n}\right)$
1000000000	$-V_{\text {REF }} / 2$
0111111111	$-V_{\text {REF }}\left(1 / 2-2^{-n}\right)$
0000000001	$-V_{\text {REF }}\left(2^{-n}\right)$
0000000000	0

NOTE: 1. LSB $=2^{-n}$ VREF
2. $\mathrm{n}=10(12)$ for 7520 (7521)

DAC-7520, DAC-7521

(APPLICATIONS, Cont'd.)

BIPOLAR (OFFSET BINARY) OPERATION

The circuit configuration for operating the DAC-7520 or DAC-7521 in the bipolar mode is given in Figure 10. Using offset binary digital input codes and positive and negative reference voltage values 4-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.

Figure 10. Bipolar Operation (4-Quadant Multiplication)
A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to IOUT1 bus. A "Logic 0" input forces the bit current to IOUT2 bus. For any code the IOUT1 and IOUT2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of IOUT2 current and the transconductance amplifier at IOUT1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB="Logic 1", All other bits="Logic 0), is corrected by
using an external resistor, (10 Megohm), from VREF to IOUT2.
Offset Adjustment

1. Adjust VREF to approximately +10 V .
2. Connect all digital inputs to "Logic 1"
3. Adjust IOUT2 amplifier offset zero adjust trimpot for $0 \mathrm{~V} \pm 1 \mathrm{mV}$ at IOUT2 amplifier output.
4. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".
5. Adjust IOUT1 amplifier offset zero adjust trimpot for $O V \pm 1 \mathrm{mV}$ at VOUT.

Gain Adjustment

1. Connect all DAC-7520 or DAC-7521 digital inputs to VDD.
2. Monitor VOUT for $a-V R E F\left(1-2^{-(n-1)}\right.$ volts reading. ($n=10$ for DAC-7520 and $n=12$ for DAC-7521).
3. To increase VOUT, connect a series resistor, (0 to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, (0 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 2
CODE TABLE - BIPOLAR (OFFSET BINARY) OPERATION

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-V_{\text {REF }}\left(1-2^{-(n-1)}\right)$
1000000001	$-V_{\text {REF }}\left(2^{-(n-1)}\right)$
1000000000	0
0111111111	$V_{\text {REF }}\left(2^{-(n-1)}\right)$
0000000001	$V_{\text {REF }}\left(1-2^{-(n-1)}\right)$
0000000000	$V_{\text {REF }}$

POWER PAC DESIGN USING DAC-7520

Figure 11. The Basic Power DAC

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 11. Datel's AM-8510 power amplifier (1 Amp continuous output with up to +25 V) is driven by the 7520 .
A summing amplifier between the 7520 and the 8510 is used to separate the gain block containing the 7520 onchip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise 7520 can be directly connected to the 8510 , by using a 25 volts reference for the DAC.

An important note on the 7520/101A interface concerns the connection of pin 1 of the DAC and pin 2 of the 101A. Since this point is the summing junction of an amplifier with an AC gain of 50,000 or better, stray capacitance should be minimized; otherwise instabilities and poor noise performance will result. Notice that the output of the 101 A is fed into an inverting amplifier with a gain of -3 , which can be easily changed to a non-inverting configuration.

DAC-7520, DAC-7521

(APPLICATIONS, Cont'd.)

ANALOG/DIGITAL DIVISION

With the 7520 connected in its normal multiplying configuration as shown in figure 15, the transfer function is

This is division of an analog variable ($V_{I N}$) by a digital word. With all bits off, the amplifier saturates to its bound, since division by zero isn't defined. With the LSB (Bit-10) ON, the gain is 1023. With all bits ON, the gain is $1(\pm 1 \mathrm{LSB})$.

Figure 12. Analog/Digital Divider

PACKAGE DIMENSIONS

8 Bit Monolithic Multiplying D／A Converters Model DAC－7523

FEATURES
－ 8 bit linearity
－Low gain and linearity Tempcos
－Full temperature range operation
－Full input static protection
－DTL／TTL／CMOS compatible
－＋5 to +15 volts supply range
－Fast settling time： 100 nS
－Four quadrant multiplication

GENERAL DESCRIPTION

The DAC－7523 is a monolithic，low cost，high performance， 10 bit accurate，multiplying digital－to－analog converter （DAC），in a 16－pin DIP．
Datel－Intersil＇s thin－film resistors on CMOS circuitry provide 8 －bit resolution and linearity，with DTL／TTL／CMOS compati－ ble operation．
The DAC－7523＇s accurate four quadrant multiplication，full military temperature range operation，full input protection from damage due to static discharge by clamps to $\mathrm{V}+$ and GND and very low power dissipation make it a very versatile converter．
Low noise audio gain control，motor speed control，digitally controlled gain and attenuators are a few of the wide number of applications of the 7523 ．

DAC-7523

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

VREF (to GND) ... 25 V
Digital Input Voltage Range -0.3 to VDD
Output Voltage Compliance
-0.3 to VDD
Power Dissipation (package)
Plastic
up to $+70^{\circ} \mathrm{C}$
670 mW
derates above $+70^{\circ} \mathrm{C}$ by
$8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Ceramic
up to 75° C .. 450 mW
derates above $75^{\circ} \mathrm{C}$ by $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperatures
CVersions $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
R Versions $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Versions $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds) $\ldots . . .+300^{\circ} \mathrm{C}$

CAUTION: 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages higher than VDD and lower than GND to any terminal except VREF.

SPECIFICATIONS (VDD $=+15 \mathrm{~V}$, VREF $=+10 \mathrm{~V}$ unless otherwise specified)

PARAMETER		$\begin{array}{r} \text { TA } \\ +25^{\circ} \mathrm{C} \end{array}$	TA MIN-MAX	UNITS	LIMIT	TEST CONDITIONS
DC ACCURACY (Note 1)		8	8	Bits	Min	
Nonlinearity (Note 2)		± 0.2	± 0.2	\% of FSR	Max	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{VREF} \leq+10 \mathrm{~V} \\ & \text { Vout } 1=\text { Vout } 2=0 \mathrm{~V} \end{aligned}$
Monotonicity		Guar	teed			
Gain Error (Note 2)		± 1.5	± 1.8	\% of FSR	Max	Digital inputs high.
Nonlinearity Tempco (Note 2 and 3)			2	PPM of FSR $/{ }^{\circ} \mathrm{C}$	Max	-10V VREF +10 V
Gain Error Tempco (Note 2 and 3)			0	PPM of FSR $/{ }^{\circ} \mathrm{C}$	Max	
Output Leakage Current (either output)		± 50	± 200	nA	Max	VOUT1 $=$ Vout2 $=0$
AC ACCURACY (Note 3) Power Supply Rejection (Note 2)		0.02	0.03	\% of FSR/\%	Max	$V_{D D}=14.0$ to 15.0 V
Output Current Settling Time		150	200	nS	Max	To 0.2% of FSR, RL $=100 \Omega$
Feedthrough Error		$\pm 1 / 2$	± 1	LSB	Max	VREF $=20 \mathrm{~V} p, 200 \mathrm{KHz}$ sine wave. All digital inputs low.
REFERENCE INPUT Input Resistance (Pin 15)		5K		,	Min	All digital inputs high. lout1 at ground.
		20K			Max	
Temperature Coefficient (Note 3)		-500		ppm/ ${ }^{\circ} \mathrm{C}$	Max	
ANALOG OUTPUT (Note 3) Voltage Compliance (Note 4)		-100 mV to VDD				Both outputs. See maximum ratings.
Output Capacitance	Cout1		100	pF	Max	All digital inputs high (VINH)
	Cout2		30	pF	Max	
	Cout1		30	pF	Max	All digital inputs low (VINL)
	Cout2		00	pF	Max	
DIGITAL INPUTS						Guarantees DTL/TTL and CMOS 0.5 max, 14.5 min) levels
Low State Threshold (VINL)			. 8	V	Max	
High State Threshold (VINH)			. 4	V	Min	
Input Current (per input)			1	$\mu \mathrm{A}$	Max	V IN $=0 \mathrm{~V}$ or +15 V
Input Coding		Binary/O	fset Binary			See Tables 1 \& 2
Input Capacitance (Note 3)			4	pF	Max	
POWER REQUIREMENTS Power Supply Voltage Range			+16	V		Accuracy is tested and guaranteed at $V_{D D}=+15 \mathrm{~V}$, only.
IDD			00	$\mu \mathrm{A}$	Max	All digital inputs low or high.

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, RfEEdBACK.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

Specifications subject to change without notice.

DAC-7523

APPLICATIONS
 UNIPOLAR OPERATION

Figure 1. Unipolar Binary Operation (2-Quadrant Multiplication)

DIGITAL INPUT
MSB LSB

11111111	$-V_{\text {REF }}$	$\left(\frac{255}{256}\right)$
10000001	$-V_{\text {REF }}$	$\left(\frac{129}{256}\right)$
10000000	$-V_{\text {REF }}$	$\left(\frac{128}{256}\right)=-\frac{V_{\text {REF }}}{2}$
01111111	$-V_{\text {REF }}$	$\left(\frac{127}{256}\right)$
00000001	$-V_{\text {REF }}$	$\left(\frac{1}{256}\right)$
00000000	$-V_{\text {REF }}$	$\left(\frac{0}{256}\right)=0$

Note: 1 LSB $=\left(2^{-8}\right)\left(V_{\text {REF }}\right)=\left(\frac{1}{256}\right)\left(V_{\text {REF }}\right)$
Table 1. Unipolar Binary Code Table

NOTES:

1. R3/R4 MATCH 0.1% OR BETTER
2. R1, R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED

R5-R7 USED TO ADJUST VOUT $=$ OV AT INPUT CODE 10000000.
4. CR1 \& CR2 PROTECT AD7523 AGAINST NEGATIVE TRANSIENTS.

Figure 2. Bipolar (4-Quadrant) Operation

DIGITAL INPUT ANALOG OUTPUT
MSB LSB

11111111	$-V_{\text {REF }}$	$\left(\frac{127}{128}\right)$
10000001	$-V_{\text {REF }}$	$\left(\frac{1}{128}\right)$
10000000	0	$\left(\frac{1}{128}\right)$
01111111	$+V_{\text {REF }}$	$\left(\begin{array}{l}\text { REF }\end{array}\right.$
00000001	$\left(\frac{127}{128}\right)$	
00000000	$+V_{\text {REF }}$	$\left(\frac{128}{128}\right)$

Note: $1 \mathrm{LSB}=\left(2^{-7}\right)\left(\mathrm{V}_{\text {REF }}\right)=\left(\frac{1}{128}\right)\left(\mathrm{V}_{\text {REF }}\right)$
Table 2. Bipolar (Offset Binary) Code Table

POWER DAC DESIGN USING 7523

Figure 3. The Basic Power DAC

A typical power DAC designed for 10 bit accuracy and 8 bit resolution is shown in Figure 3. Datel's AM-8510 power amplifier (1 Amp continuous output with up to +25 V) is driven by the 7523 .

A summing amplifier between the 7523 and the 8510 is used to separate the gain block containing the 7520 on-chip resistors
from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise 7523 can be directly connected to the 8510 , by using a 25 volts reference for the DAC.

DAC-7523

APPLICATIONS (continued)
 DIVIDER (DIGITALLY CONTROLLED GAIN)

MODIFIED SCALE FACTOR AND OFFSET

$$
\begin{aligned}
& \text { V OUT }=-V_{\text {IN }} / D \\
& \text { WHERE: } \\
& \text { D }=\frac{\text { BIT1 }}{2^{1}}+\frac{\text { BIT2 }}{2^{2}}+\cdots \frac{\text { BIT8 }}{2^{8}} \\
& \left(\mathbf{D}-\frac{255}{256}\right)
\end{aligned}
$$

$V_{\text {OUT }}=V_{\text {REF }}\left[\left(\frac{\mathbf{R}_{2}}{R_{1}+R_{2}}\right)-\left(\frac{\mathbf{R}_{1} D}{R_{1}+R_{2}}\right)\right]$ WHERE: $\quad \mathbf{D}=\frac{\text { BIT } 1}{21}+\frac{\text { BIT } 2}{2^{2}}+\ldots \frac{\text { BIT } 8}{2^{8}}$

$$
\left(0 \leq \mathrm{D} \leq \frac{\mathbf{2 5 5}}{\mathbf{2 5 6}}\right)
$$

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $\left(2^{-n}\right)\left(V_{\text {REF }}\right)$. A bipolar converter of n bits has a resolution of $\left[2^{-(n-1)}\right]\left[V_{R E F}\right]$. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within 1/2 LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from VREF to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from lout1 and lout2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on lout1 terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

PACKAGE DIMENSIONS

DAC-7523R, M
16 PIN CERDIP

DAC-7523C 16 PIN PLASTIC DIP

[^5]
FEATURES

－Lowest cost 10－bit DAC
－True 10 bit linearity
－Low gain and linearity Tempcos
－Full temperature range operation
－Full input static protection
－DTL／TTL／CMOS direct interface
－+5 to +15 volts supply range
－Low power dissipation
－Fast settling time
－Four quadrant multiplication
－Direct AD7520 equivalent

Low Cost， 10 Bit Monolithic Multiplying D／A Converters Model DAC－7533

GENERAL DESCRIPTION

The DAC－7533 is a low cost；monolithic 10－bit，four－ quadrant multiplying digital－to－analog converter（DAC）．
Datel＇s thin－film resistors on CMOS circuitry provide TRUE 10 bit accuracy，full temperature range operation，+5 V to +15 V power range，full input protection from damage due to static discharge by clamps to $\mathrm{V}+$ and ground and very low power dissipation． Pin and function equivalent to Industry Standard AD7520，the DAC－7533 is recommended as a lower cost alternative for old or new 10－bit DAC designs．
Application of DAC－7533 includes programmable gain ampli－ fiers，digitally controlled attenuators，function generators and control systems．
FUNCTIONAL DIAGRAM

ORDERING INFORMATION

Model	Oper．Temp． Range	Package
DAC－7533C	0 to $+70^{\circ} \mathrm{C}$ DAC－7533R -25 to $+85^{\circ} \mathrm{C}$ DAC－7533M	Epoxy Cerdip -55 to $+125^{\circ} \mathrm{C}$
Cerdip		

DAC-7533

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

VDD (to GND)	-0.3V, +17V
VREF (to GND) $\pm 25 \mathrm{~V}$
Digital Input Voltage Range	-0.3 V to V VD
Output Voltage Compliance	-0.3 to VDD
Power Dissipation (package)	
Ceramic	
up to $+75^{\circ} \mathrm{C}$	450 mW
derates above $+75^{\circ} \mathrm{C}$ by	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Plastic
up to $70^{\circ} \mathrm{C}$... 670 mW
derates above $70^{\circ} \mathrm{C}$ by $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperatures
CVersions $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
R Versions $25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Versions . $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature..............$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds) $\ldots . . .+300^{\circ} \mathrm{C}$

CAUTION: 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages lower than ground or higher than $V_{D D}$ to any pin except $V_{\text {REF }}$ and $R_{F B}$.

SPECIFICATIONS $\left(V D D=+15 \mathrm{~V}\right.$, VREF $=+10 \mathrm{~V}$, VOUT $1=\mathrm{V}_{\text {OUT } 2}=0$ unless otherwise specified)

PARAMETER	$\begin{array}{r} \text { TA } \\ +25^{\circ} \mathrm{C} \end{array}$	TA MIN-MAX	UNITS	LIMIT	TEST CONDITIONS
DC ACCURACY (Note 1) Resolution	10	10	Bits	Min	
Nonlinearity (Note 2)	± 0.05	± 0.05	\% of FSR	Max	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{VREF} \leq+10 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT1 } 1}=\mathrm{V}_{\text {OUT } 2}=0 \mathrm{~V} \end{aligned}$
Gain Error (Note 2 and 5)	± 1.4	± 1.5	\% of FS	Max	Digital Inputs = VINH
Output Leakage Current (either output)	± 50	± 200	nA	Max	$\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}$
AC ACCURACY Power Supply Rejection (Note 2 and 3)	0.005	0.008	\% of FSR/\%	Max	$V_{D D}=14.0$ to 17.0 V
Output Current Settling Time	600 (Note 6)		nS	Max	To 0.05% of FSR, $\mathrm{R}_{\mathrm{L}}=100 \Omega$
Feedthrough Error (Note 3)	± 0.05	± 0.1	\% FSR	Max	VREF $= \pm 10 \mathrm{~V}, 100 \mathrm{KHz}$ sine wave. Digital inputs low.
REFERENCE INPUT Input Resistance (Pin 15)	5 K		Ω	Min	All digital inputs high.
	20K			Max	
Temperature Coefficient	-300		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Typ	
ANALOG OUTPUT Voltage Compliance (Note 4)	-100 mV to V_{DD}				Both outputs. See maximum ratings.
Output Capacitance (Note 3)		0	pF	Max	All digital inputs high (VINH)
		5	pF	Max	
		5	pF	Max	All digital inputs low (VINL)
		0	pF	Max	
DIGITAL INPUTS Low State Threshold (VINL)		8	V	Max	
High State Threshold (VINH)		4	V	Min	
Input Current (lin)		1	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ and V_{DD}
Input Coding	Binary/O	set Binary			See Tables 1 \& 2
Input Capacitance (Note 3)			pF	Max	
POWER REQUIREMENTS VDD	+15	10\%	+15 $\pm 10 \%$		Rated Accuracy
Power Supply Voltage Range	+5	+16	V		
IDD			mA	Max	Digital Inputs $=\mathrm{V}_{\text {INI }}$ to $\mathrm{V}_{\text {INH }}$
IDD		$\mu \mathrm{A}$	$150 \mu \mathrm{~A}$	Max	Digital Inputs $=0 \mathrm{~V}$ or V_{DD}

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback res̀istor, RFEEDBACK.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.
5. Full scale (FS) $=-\left(V_{\text {REF }}\right) \bullet(1023 / 1024)$
6. Sample tested to ensure specification compliance.

Specifications subject to change without notice.
\qquad
\qquad

DAC-7533

GENERAL CIRCUIT INFORMATION

The DAC-7533 is a 10 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.
A simplified equivalent circuit of the DAC is shown in Figure 1. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

(Switches shown for Digital Inputs "High")
Figure 1
APPLICATIONS UNIPOLAR OPERATION (2-QUADRANT MULTIPLICATION)

NOTES:

1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED. 2. SCHOTTKY DIODE CR1 (HP5082-2811 OR EQUIV) PROTECTS OUT1 TERMINAL AGAINST NEGATIVE TRANSIENTS.
Figure 3. Unipolar Binary Operation (2-Quadrant Multiplication)

DIGITAL INPUT MSB	NOMINAL ANALOG OUTPUT LSB	VOUT as shown in Figure 3)

NOTES:

1. Nominal Full Scale for the circuit of Figure 3 is given by
$F S=-\operatorname{VREF}\left(\frac{1023}{1024}\right)$
2. Nominal LSB magnitude for the circuit of Figure 3 is given by

LSB $=$ VREF $\left(\frac{1}{1024}\right)$
Table 1. Unipolar Binary Code

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 2). This configuration results in DTL/TTL/CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the $2 R$ ladder resistors resulting in accurate leg currents.

Figure 2

BIPOLAR OPERATION

(4-QUADRANT MULTIPLICATION)

Figure 4. Bipolar Operation (4-Quadrant Multiplication)

DIGITAL INPUT MSB LSB	NOMINAL ANALOG OUTPUT (Vout as shown in Figure 4)	
1111111111	- $\mathrm{V}_{\text {ReF }}$	($\frac{511}{512}$)
1000000001	- ${ }_{\text {ref }}$	($\frac{1}{512}$)
1000000000	0	
0111111111	+Vref	$\left(\frac{1}{512}\right)$
0000000001	+Vref	($\frac{511}{512}$)
0000000000	+VREF	$\left(\frac{512}{512}\right)$

NOTES:

1. Nominal Full Scale Range for the circuit of Figure 4 is given by

$$
\mathrm{FSR}=\mathrm{V}_{\mathrm{REF}}\left(\frac{1023}{512}\right)
$$

2. Nominal LSB magnitude for the circuit of Figure 4 is given by

$$
\mathrm{LSB}=\mathrm{V}_{\mathrm{REF}}\left(\frac{1}{512}\right)
$$

Table 2. Bipolar (Offset Binary) Code Table

DAC-7533

POWER DAC DESIGN USING DAC-7533

Figure 5. The Basic Power DAC

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 5. Datel Intersil's AM-8510 power amplifier (1 Amp continuous output with up to +25 V) is driven by the DAC-7533.
A summing amplifer between the 7533 and the 8510 is used to separate the gain block containing the 7533 on-chip resistors from the power amplifier gain stage whose gain is set only by the

10-BIT AND SIGN MULTIPLYING DAC

external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise 7533 can be directly connected to the 8510 , by using a 25 volts reference for the DAC. Notice that the output of the 101A is fed into an inverting amplifier with a gain of -3 , which can be easily changed to a non-inverting configuration.

PROGRAMMABLE FUNCTION GENERATUK

PACKAGE DIMENSIONS

16 PIN CERDIP

16 PIN PLASTIC DIP

[^6][^7]
FEATURES

- 12 bit linearity (0.01\%)
- Pretrimmed gain
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTL/CMOS compatible
- +5 to +15 volts supply range
- Low power dissipation (20 mW)
- Current settling time: $\mathbf{1} \mu \mathrm{s}$ to $\mathbf{0 . 0 1 \%}$ of FSR
- Four quadrant multiplication

GENERAL DESCRIPTION

Datel-Intersil's DAC-7541 is a monolithic, low cost, high performance, 12-bit accurate, multiplying digital-to-analog converter.
Datel-Intersil's wafer level laser-trimmed thin-film resistors on CMOS circuitry provide true 12-bit linearity with DTL/TTL/ CMOS compatible operation.
Special tabbed-resistor geometries (improving time stability), full input protection from damage due to static discharge by diode clamps to $\mathrm{V}+$ and ground, large IOUT1 and IOUT2 bus lines (improving superposition errors) are some of the features offered by Datel-Intersil's DAC-7541.
Pin compatible with DAC-7521, this new DAC provides accurate four quadrant multiplication over the full military temperature range.

DAC-7541

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

VDD (to GND)	+17V
VREF (to GND)	$\pm 25 \mathrm{~V}$
Digital Input Voltage Range	VDD to GND
Output Voltage Compliance	-100 mV to VDD
Power Dissipation (package)	
up to $+75^{\circ} \mathrm{C}$	450mW
derates above $+75^{\circ} \mathrm{C}$ by	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Operating Temperatures
CVersions $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
RVersions $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Versions $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CAUTION 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages higher than VDD or less than GND potential on any terminal except VREF.

SPECIFICATIONS (VDD $=+15 \mathrm{~V}$, VREF $=+10 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER	$\begin{gathered} \text { TA } \\ +25^{\circ} \mathrm{C} \end{gathered}$	TA MIN-MAX	UNITS	LIMIT	TEST CONDITIONS	FIG.
$\begin{aligned} & \text { DC ACCURACY (Note 1) } \\ & \text { Resolution } \end{aligned}$	12	12	Bits	Min		
Nonlinearity (Note 2)	± 0.010	± 0.012	\% of FSR	Max	$\begin{aligned} & -10 \mathrm{~V} \leq \text { VREF } \leq+10 \mathrm{~V} \\ & \text { VOUT1 }=\text { VOUT2 }=0 \mathrm{~V} \end{aligned}$	1
Gain Error (Note 2)	$\ddagger 0.3$	± 0.4	\% of FSR	Max	$-10 \mathrm{~V} \leq \mathrm{VREF} \leq+10 \mathrm{~V}$	
Output Leakage Current (either output)	± 50	± 200	nA	Max	$\mathrm{V}_{\text {OUT1 }}=$ V $_{\text {OUT2 }}=0$	
AC ACCURACY Note 3 Power Supply Rejection Note 2	± 0.01	± 0.02	\% of FSR \%	Max	$V_{D D}=14.5$ to 15.5 V	2
Output Current Settling Time	1		$\mu \mathrm{S}$	Max	To 0.01\% of FSR	6
Feedthrough Error	1		mV pp	Max	$\mathrm{VREF}=20 \mathrm{~V} p \mathrm{p}, 10 \mathrm{KHz}$. All digital inputs low.	5
REFERENCE INPUT Input Resistance	5K		,	Min	All digital inputs high. lout1 at ground.	
	10K			Typ		
	20K			Max		
ANALOG OUTPUT Voltage Compliance (Note 4)	-100 mV to V_{DD}				Both outputs. See maximum ratings.	
Output Capacitance (Note 3)	$\begin{array}{r} 200 \\ 60 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	Max Max	All digital inputs high (VINH)	4
	$\begin{array}{r} 60 \\ 200 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	Max Max	All digital inputs low (.VINL)	4
Output Noise (both outputs)	Equivalent to $10 \mathrm{~K} \Omega$? Johnson noise			Typ		3
DIGITAL INPUTS	0.8		V	Max		
High State Threshold (VINH)	2.4		V	Min		
Input Current	± 1		$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {DD }}$	
Input Coding	Binary/Offset Binary				See Tables 1\&2 on pages 4 and 5.	
Input Capacitance(Note 3)	8		pF	Max		
POWER REQUIREMENTS Power Supply Voltage Range	+5 to +16		V		Accuracy is not guaranteed over this range	
Total Power Dissipation (including the ladder)			mA	Max	All digital inputs high or low	
	20		mW	Typ		

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, Rfeedback.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

Specifications subject to change without notice.

DAC-7541

TEST CIRCUITS

Figure 1. Nonlinearity

Figure 3. Noise

Figure 5. Feedthrough Error

Figure 2. Power Supply Rejection

Figure 4. Output Capacitance

Figure 6. Output Current Settling Time

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of (2^{-n}) (VREF). A bipolar converter of n bits has a resolution of $\left[2^{-(n-1)}\right]\left[V_{R E F}\right]$. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from VREF to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from lout1 and IOUT2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on lout1 terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

DAC-7541

GENERAL CIRCUIT INFORMATION

The DAC-7541 is a 12 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.
A simplified equivalent circuit of the DAC is shown in Figure 7. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.
Converter errors are further eliminated by using wider metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

(Switches shown for Digital Inputs "High")
Figure 7. DAC-7541 Functional Diagram

Each circuit is laser-trimmed, at the wafer level, to better than 12 bits linearity. For the first four bits of the ladder, special trim-tabbed geometries are used to keep the body of the resistors, carrying the majority of the output current, undisturbed. The resultant time stability of the trimmed circuits is comparable to that of untrimmed units.
The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first (Figure 8). This configuration results in DTL/TTL/CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2 R ladder resistors, resulting in accurate leg currents.

Figure 8. CMOS Switch

APPLICATIONS

General Recommendations

Static performance of the 7541 depends on lout1 and lout2 (pin 1 and pin 2) potentials being exactly equal to GND (pin 3).

The output amplifier should be selected to have a low input bias current (typically less than 75 nA), and a low drift (depending on the temperature range). The voltage offset of the amplifier should be nulled (typically less than $\pm 200 \mu \mathrm{~V}$).

The, bias current compensation resistor in the amplifier's non-inverting input can cause a variable offset. Noninverting input should be connected to GND with a low resistance wire.

Ground-loops must be avoided by taking all pins going to GND to a common point, using separate connections.

The $V_{D D}$ (pin 18) power supply should have a low noise level and should not have any transients exceeding +17 volts.

Unused digital inputs must be connected to GND or !'od for proper operation.

A high value resistor ($\sim 1 \mathrm{M} \Omega$) can be used to prevent static charge accumulation, when the inputs are open-circuited for any reason.

When gain adjustment is required, low tempco (approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) resistors or trim-pots should be selected.

DAC-7541

APPLICATIONS, Continued

UNIPOLAR BINARY OPERATION

The circuit configuration for operating the 7541 in unipolar mode is shown in Figure 9. With positive and negative VREF values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1. Schottky diode (HP 5082-2811 or equivalent) prevents lout1 from negative excursions which could damage the device. This precaution is only necessary with certain high speed amplifiers.

Figure 9. Unipolar Binary Operation (2-Quadrant Multiplication)

Zero Offset Adjustment

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $0 \mathrm{~V} \pm 0.5 \mathrm{mV}$ (max) at VOUT.
Gain Adjustment
3. Connect all digital inputs to VDD.
4. Monitor VOUT for a -VREF (1-1/212) reading.
5. To increase VOUT, connect a series resistor, 10 to 500 ohms), in the IOUT1 amplifier feedback loop.
6. To decrease VOUT, connect a series resistor, 10 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 1
Code Table - Unipolar Binary Operation

DIGITAL INPUT	ANALOG OUTPUT
111111111111	$-V_{\text {REF }}(1-1 / 212)$
100000000001	$-\operatorname{VREF}_{\text {RE }}(1 / 2+1 / 212)$
100000000000	$-\operatorname{VREF}_{\text {RE }} / 2$
011111111111	$-\operatorname{VREF}_{\text {RE }}(1 / 2-1 / 212)$
000000000001	$-\operatorname{VREF}^{(1 / 212)}$
000000000000	0

BIPOLAR (OFFSET BINARY) OPERATION

The circuit configuration for operating the 7541 in the bipolar mode is given in Figure 10. Using offset binary digital input codes and positive and negative reference voltage values Four-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.

Note: R1 and R2 should be 0.01%, low-TCR resistors.
Figure 10. Bipolar Operation (4-Quadrant Multiplication)
A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to IOUT1 bus. A "Logic 0 " input forces the bit current to IOUT2 bus. For any code the IOUT1 and IOUT2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of IOUT2 current and the transconductance amplifier at IOUT1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB = "Logic 1", All other bits = "Logic 0"), is corrected by using an external resistive divider, from VREF to IOUT2.

Offset Adjustment

1. Adjust VREF to approximately +10 V .
2. Connect all digital inputs to "Logic 1 "
3. Adjust IOUT2 amplifier offset zero adjust trimpot for $0 \mathrm{~V} \pm 0.1 \mathrm{mV}$ at IOUT2 amplifier output.
4. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".
5. Adjust IOUT1 amplifier offset zero adjust trimpot for $0 \mathrm{~V} \pm 0.1 \mathrm{mV}$ at IOUT1 amplifier output..
6. Adjust R4 for $0 \mathrm{~V} \pm 0.2 \mathrm{mV}$ at VOUT.

Gain Adjustment

1. Connect all digital inputs to VDD.
2. Monitor VOUT for a -VREF ($1-1 / 211$) volts reading.
3. To increase VOUT, connect a series resistor, 10 to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, 10 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 2
Code Table - Bipolar (Offset Binary) Operation

DIGITAL INPUT	ANALOG OUTPUT
111111111111	$-V_{\text {REF }}(1-1 / 211)$
100000000001	$-V_{\text {REF }}(1 / 211)$
100000000000	0
011111111111	$V_{\text {REF }}(1 / 211)$
000000000001	$V_{\text {REF }}(1-1 / 211)$
000000000000	VREF

Figure 11. General DAC Circuit with Compensation Capacitor, Cc.

Figure 12. $D A C-7541$ Response with: $A=$ Intersil 741 HS

Figure 13. DAC-7541 Response with: $A=$ Intersil 2515 $C_{C}=15 p F$

Figure 14. DAC-7541 Response with: $A=$ Datel $A M-452$

DYNAMIC PERFORMANCE

The dynamic performance of the DAC, also depends on the output amplifier selection. For low speed or static applications, AC specifications of the amplifier are not very critical. For high-speed applications slew-rate, settling-time, openloop gain and gain/phase-margin specifications of the amplifier should be selected for the desired performance.
The output impedance of the 7541 looking into IOUT1 varies between $10 \mathrm{k} \Omega$ ($\mathrm{R}_{\text {Feedback }}$ alone) and $5 \mathrm{k} \Omega$ ($\mathrm{R}_{\text {Feedback }}$ in parallel with the ladder resistance).

Similarly the output capacitance varies between the minimum and the maximum values depending on the input code. These variations necessitate the use of compensation capacitors, when high speed amplifiers are used.

A capacitor in parallel with the feedback resistor provides the necessary phase compensation to critically damp the output.
A small capacitor connected to the compensation pin of the amplifier may be required for unstable situations causing oscillations. Careful PC board layout, minimizing parasitic capacitances, is also vital.
Three typical circuits and the resultant waveforms are shown in Figures 11 to 14. A low-cost general purpose (Intersil 741 HS), a low-cost high-speed (Intersil 2515) and a highspeed fast-settling Datel AM-452 amplifier cover the principal application areas.

PACKAGE DIMENSIONS

18 PIN CERDIP

1. Lead no. 1 identified by dot or notch.
2. Dimensions in inches (millimeters).

Precision, Multiplying CMOS D/A Converters DAC-HA Series

FEATURES

- 10, 12 \& 14 Bit Binary Models
- 3 Digit BCD Model
- 20 MHz Reference Bandwidth
- $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Gain Tempco
- +5 V and +15 V Supply Versions
- Input Protected

GENERAL DESCRIPTION

The DAC-HA Series are new, high performance multiplying digital to analog converters specifically designed for critical applications. The series features 10, 12 , and 14 bit models and a 3 digit BCD model with a choice of either +5 V or +15 V power supply options. They are fabricated with advanced thin-film hybrid technology combining low ON-resistance CMOS switches with a precision laser trimmed R-2R ladder network. The ladder network is deposited on glass to realize low distributed capacitance resulting in a 20 MHz minimum reference bandwidth. Digital and power supply inputs áre protected against overvoltage and latchup.
The DAC-HA series offer significant performance advantages over similar monolithic multiplying DAC's while retaining the industry 7500 series pin compatibility. Tightly controlled process parameters hold the ladder resistance to 10 K ohms $\pm 30 \%$ rather than the $-50 \%,+100 \%$ tolerance common to monolithic versions. Close temperature tracking between the R-2R ladder and the feedback resistor results in a typical gain tempco of $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Linearity error is $\pm 1 / 2 \mathrm{LSB}$ max. for the 10 and 12 bit models and ± 1 LSB max. for the 14 bit model.
The +5 V supply versions draw only $1 \mu \mathrm{~A}$ of supply current while the +15 V supply versions draw 1.4 mA ; both have optimized accuracy at the specified supply voltages. Different models are also available for three standard operating temperature ranges along with MIL-STD-883 level B versions. The units are packaged in hermetically sealed 16,18 , or 20 pin ceramic packages for the 10, 12, and 14 bit verisons respectively.
Applications include digitally controlled attenuators, automatic gain control circuits, CRT character generation, one, two or four quadrant multiplier circuits, one or two quadrant divider circuits, complex function circuits and automatic bridge circuits.
CAUTION: These devices contain CMOS circuits and should be handled with standard anti-static procedures.

PIN	FUNCTION
1	OUTPUT 1
2	OUTPUT 2
3	GROUND
4	BIT 1 IN (MSB)
5	BIT 2 IN
6	BIT 3 IN
7	BIT 4 IN
8	BIT 5 IN
9	BIT 6 IN
10	BIT 7 IN
11	BIT 8 IN
12	BIT 9 IN
13	BIT 10 IN (LSB)
14	+ VDD
15	REFERENCE IN
16	FEEDBACK

PIN	FUNCTION
1	OUTPUT 1
2	OUTPUT 2
3	GROUND
4	BIT 1 IN (MSB)
5	BIT 2 IN
6	BIT 3 IN
7	BIT 4 IN
8	BIT 5 IN
9	BIT 6 IN
10	BIT 7 IN
11	BIT 8 IN
12	BIT 9 IN
13	BIT 10 IN
14	BIT 11 IN
15	BIT 12 IN (LSB)
16	+VDD
17	REFERENCE IN
18	FEEDBACK

PIN	FUNCTION
1	OUTPUT 1
2	OUTPUT 2
3	GROUND
4	BIT 1 IN (MSB)
5	BIT 2 IN
6	BIT 3 IN
7	BIT 4 IN
8	BIT 5 IN
9	BIT 6 IN
10	BIT 7 IN
11	BIT 8 IN
12	BIT 9 IN
13	BIT 10 IN
14	BIT 11 IN
15	BIT 12 IN
16	BIT 13 IN
17	BIT 14 IN (LSB)
18	+VDD
19	REFERENCE IN
20	FEEDBACK

	DAC-HA14B	DAC-HA12B	DAC-HA12D	DAC-HA10B
MAXIMUM RATINGS Vod, +5V Supply Option Vdd, +15V Supply Option. Logic Input Voltage Reference Input Voltage Output 1 or Output 2 Voltage Feedback Resistor to Gnd	$\begin{aligned} & +15 \mathrm{~V},-10 \mathrm{~V} \\ & +40 \mathrm{~V},-30 \mathrm{~V} \\ & +10 \mathrm{~V},-5 \mathrm{~V} \\ & \pm 25 \mathrm{~V} \\ & +5 \mathrm{~V},-0.5 \mathrm{~V} \\ & \pm 25 \mathrm{~V} \end{aligned}$			
INPUTS Resolution. Coding, Unipolar Operation Coding, Bipolar Operation. Logic Threshold, Bit ON (" 1 ") ${ }^{2}$. Logic Threshold, Bit OFF ("0") ${ }^{2}$ Logic Input Current ${ }^{3}$ Reference Input Voltage Range Reference Input Resistance. Reference Input Resistance vs Temp.	14 Bits Straight Binary Offset Binary $\begin{aligned} & \geq+4.0 \mathrm{~V} \\ & \leq+1.0 \mathrm{~V} \\ & \pm 1 \mu \mathrm{~A} \\ & \pm 12 \mathrm{~V} \\ & 10 \mathrm{~K} \pm 30 \% \\ & 0 \text { to }+50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	$12 \text { Bits }$	$\begin{gathered} 12 \text { Bits } \\ \text { BCD } \\ \quad= \end{gathered}$	$\begin{gathered} 10 \text { Bits } \\ \star \end{gathered}$
OUTPUTS Output Current Range, Either Output Output Capacitance, Output 1^{4} Output Capacitance, Output 2^{4} Output Capacitance, Output 1^{5} Output Capacitance, Output 2^{5}	$\begin{aligned} & \pm V_{\text {REF } / R I N} \\ & 260 \mathrm{pF} \\ & 160 \mathrm{pF} \\ & 160 \mathrm{pF} \\ & 260 \mathrm{pF} \end{aligned}$	260 pF 160 pF 160 pF 260 pF	260 pF 160 pF 160 pF 260 pF	$\begin{aligned} & 55 \mathrm{pF} \\ & 18 \mathrm{pF} \\ & 18 \mathrm{pF} \\ & 55 \mathrm{pF} \end{aligned}$
PERFORMANCE Integral Linearity Error ${ }^{6}$, max. Differential Linearity Error ${ }^{6}$ Differential Linearity Error Over Temp ${ }^{6}$ Gain Linearity Error, max. Gain Error, Before Trimming ${ }^{7}$ Output Leakage Current, max. ${ }^{8}$ Gain Temp. Coefficient, ppm $/{ }^{\circ} \mathbf{C}^{\mathbf{9}}$ Monotonicity Output Current Settling Time, max. ${ }^{10}$ Reference Input Bandwidth, -3 dB Feedthrough at 20 KHz . Power Supply Rejection.	$\begin{aligned} & \pm 1 \mathrm{LSB} \\ & \pm 1 / 2 \mathrm{LSB} \text { typ. } \\ & \pm 1 \mathrm{LSB} \text { max. } \\ & \pm 2 \mathrm{LSB} \text { max. } \\ & \pm 1 \mathrm{LSB} \\ & +0,-0.2 \% \\ & 100 \mathrm{pA} \\ & 2 \mathrm{typ}, 5 \mathrm{max} . \\ & \mathrm{At} 25^{\circ} \mathrm{C} \\ & 7 \mu \mathrm{sec} . \\ & 20 \mathrm{MHz} \\ & 0.025 \% \\ & 5 \mathrm{ppm} \text { of } \mathrm{FSR} / \% \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \text { LSB } \\ & \pm 1 / 4 \text { LSB typ. } \\ & \pm 1 / 2 \text { LSB max. } \\ & \pm 1 \text { LSB max. } \\ & \pm 1 / 2 \text { LSB } \\ & \star \\ & 100 \mathrm{pA} \\ & 2 \text { typ, } 5 \text { max. } \\ & \text { Over Temp Range } \\ & 5 \mu \mathrm{sec} . \\ & \star \\ & 0.025 \% \\ & 5 \mathrm{ppm} \text { of } \mathrm{FSR} / \% \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \text { LSB } \\ & \pm 1 / 4 \text { LSB typ. } \\ & \pm 1 / 2 \text { LSB max. } \\ & \pm 1 \text { LSB max. } \\ & \pm 1 / 2 \text { LSB } \\ & \star \\ & 100 \mathrm{pA} \\ & 2 \text { typ, } 5 \text { max. } \\ & \text { Over Temp Range } \\ & 5 \mu \mathrm{sec} . \\ & * \\ & 0.025 \% \\ & 5 \mathrm{ppm} \text { of } \mathrm{FSR} / \% \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \text { LSB } \\ & \pm 1 / 4 \text { LSB typ. } \\ & \pm 1 / 2 \text { LSB max. } \\ & \pm 1 \text { LSB max. } \\ & \pm 1 / 2 \text { LSB } \\ & \star \\ & 50 \mathrm{pA} \\ & 7 \text { typ, } 20 \text { max. } \\ & \text { Over Temp Range } \\ & 1.3_{\star} \text { sec. } \\ & 0.01 \% \\ & 0.01 \% \text { of } F S R / \% \end{aligned}$
POWER REQUIREMENT Standard Version Supply Voltage. Standard Version Supply Range. Standard Version Supply Current, max. . Optional Version Supply Voltage ${ }^{1}$ Optional Version Supply Range. Optional Version Supply Current, max.	$\begin{aligned} & +5 \mathrm{VDC} \\ & +3 \mathrm{~V} \text { to }+7.5 \mathrm{~V} \\ & 1 \mu \mathrm{~A} \\ & +15 \mathrm{VDC} \\ & +7.5 \mathrm{~V} \text { to }+20 \mathrm{~V} \\ & 1.4 \mathrm{~mA} \end{aligned}$	$*$ $*$ $*$ $*$ $*$	$*$ $*$ $*$ $*$ $*$	* $*$ $*$ $*$ $*$
PHYSICAL-ENVIRONMENTAL Operating Temp. Range, C Suffix R Suffix M Suffix. Storage Temp. Range. Package Type, Ceramic	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{O} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & 20 \text { Pin DIP } \end{aligned}$	18 Pin DIP	18 Pin DIP	
NOTES: 1. The optional +15 V version is designated by the Suffix -1 . 2. Interfaces with TTL logic. See Technical Notes 3. Over Operating Temperature Range 4. All Digital Inputs HI 5. All Digital Inputs LO 6. $\mathrm{V}_{\text {OUT }} 1=\mathrm{V}_{\text {OUT }} 2= \pm 200 \mathrm{mV}$ *Specification same as first column. 7. Adjustable to Zero 8. At $+125^{\circ} \mathrm{C}$ Leakages are 100 nA and 50 nA max. respectively. 9. Using feedback resistor. 10. To $1 / 2$ LSB for full scale digital input change.				

The circuit of the DAC-HA series uses a precision, thinfilm R-2R ladder network with $R=10 \mathrm{~K}$ ohms $\pm 30 \%$, as shown in Figure 1. An external reference source is applied at the input of the network, and, depending on the digital input code, the resulting current is split between the Output 1 and Output 2 terminals. The switches at the bottom of the 20K network resistors are low on-resistance, single pole double throw CMOS devices of the type shown in Figure 2. The equivalent input impedance seen by the reference source is shown in Figure 3.

Figure 1. PRECISION DAC-HA CIRCUIT
From the reference end of the network, the input current divides in two at each successive junction as it flows down the ladder. It should be noted that the 20K terminating resistor at the right end of the network goes to Output 2 in the DAC-HA series rather than to ground as in monolithic devices of the 7500 type. The output currents at Output 1 and Output 2 represent the digital complements of one another except for a 1 LSB analog difference. The result is that when Output 1 and Output 2 are added together they always sum to the reference input current.
Furthermore, with a digital input code of $1000 \ldots .0000$, the two output currents are precisely equal. Therefore, in 4 quadrant multiplying applications where the two outputs are subtracted, the result is zero. With 7500 series monolithic units these currents do not cancel each other and an additional 1 LSB offset current must be externally provided to give exact cancellation.
The DAC-HA series are designed to be used with an external operational amplifier which converts the current output into a voltage. Since the feedback resistor tracks the ladder network with temperature, the resulting gain tempco is $\pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical except for the 10 bit model. If the output current is used without the internal feedback resistor, the output current tempco is then 0 to $-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Figure 2. SINGLE POLE DOUBLE THROW CMOS SWITCH

With an external amplifier at Output 1 the output voltage ranges from zero to $-V_{\text {REF }}\left(1-2^{-n}\right)$, depending on the input code. If an external amplifier is used at Output 2 with the same value of feedback resistor, the output voltage ranges from zero to $-V_{\text {REF }}$ depending on input code

The DAC-HA series have optimized linearity for the two power supply options +5 V and +15 V . It should be noted that while 7500 series devices operate over a +5 V to +15 V supply range, nonlinearity increases as the supply voltage is decreased from +15 V .

To realize the specified linearity, it is necessary to carefully zero the input offset voltage of the amplifier or amplifiers used at the outputs. The input offset voltage should be zeroed to less than $\pm 0.1 \mathrm{mV}$ in order to have negligible effect on accuracy. Actually the two offset voltages can be as large as $\pm 200 \mathrm{mV}$ if they are within $\pm 0.1 \mathrm{mV}$ of each other.

Figure 3. EQUIVALENT INPUT IMPEDANCE OF DAC-HA REFERENCE INPUT

CODING TABLE

CODE	SCALE	OUTPUT 1	OUTPUT 2
$1111 \ldots 11 \mathrm{FS}-1$ LSB	$\operatorname{lin}\left(1-2^{-n}\right)$	$\operatorname{lin}\left(2^{-n}\right)$	
$1100 \ldots 00+3 / 4$ FS	$\operatorname{lin}\left(2^{-1}+2^{-2}\right)$	$\operatorname{lin}\left(2^{-2}\right)$	
$1000 \ldots 01+1 / 2$ FS +1 LSB	$\operatorname{lin}\left(2^{-1}+2^{-n}\right)$	$\operatorname{lin}\left(2^{-1}-2^{-n}\right)$	
$1000 \ldots 00+1 / 2 \mathrm{FS}$	$\operatorname{lin}\left(2^{-1}\right)$	$\operatorname{lin}\left(2^{-1}\right)$	
$0100 \ldots 00+1 / 4$ FS	$\operatorname{lin}\left(2^{-2}\right)$	$\operatorname{lin}\left(2^{-1}+2^{-2}\right)$	
$0000 \ldots 01+1$ LSB	$\operatorname{lin}\left(2^{-n}\right)$	$\operatorname{lin}\left(1-2^{-n}\right)$	
$0000 \ldots 00$	0	$\operatorname{lin}(0)$	$\operatorname{lin}(1)$

NOTE: $I_{I N}=\frac{V_{\text {REF }}}{R_{I N}}$
where $R_{\text {IN }}$ is ladder network impedance, or $10 k \pm 30 \%$

OUTPUT EQUATIONS

OUTPUT $1=\operatorname{lin}\left(a_{1} 2^{-1}+a_{2} 2^{-2}+a_{3} 2^{-3}+\ldots .+a_{n} 2^{-n}\right)$

OUTPUT $2=\operatorname{lin}\left(\overline{\mathrm{a}}_{1} 2^{-1}+\overline{\mathrm{a}}_{2} 2^{-2}+\overline{\mathrm{a}}_{3} 2^{-3}+\ldots .+\overline{\mathrm{a}}_{\mathrm{n}} 2^{-n}+2^{-n}\right)$

[^8]
TECHNICAL NOTES

1. CAUTION. The DAC-HA series contains MOS devices and should be handled carefully to prevent static charge pickup that might damage the units. The converters should be kept in conductive foam until ready for installation. During installation the user should be grounded by means of a conductive wrist strap. Do not insert or remove these devices from their sockets unless power is turned off.
2. Unused digital inputs should be connected to ground or to +5 V , never left open.
3. In general, pull-up resistors are not required for TTL logic interfacing. The DAC-HA series will interface directly. with all standard TTL circuits and operate within specifications.
4. The logic input voltages are stated as $\leq+1.0 \mathrm{~V}$ for a logic " 0 " and $\geq+4.0 \mathrm{~V}$ for a logic " 1 " at the recommended power supply voltages of +5 V or +15 V . For other supply voltages in the specified range, the logic " 1 " level becomes $V_{D D}-1$ for the 5 V version and $\frac{V_{D D}}{3}-1$ for the +15 V version.
5. For interfacing with HNIL or CMOS logic where logic HI is greater than +5 V , CD4050 interface circuits should be used and connected as shown in the applications diagram
6. The DAC-HA series devices are protected against both power supply and logic input overvoltages by means of series thin-film resistors. The result is that these devices are free from latch-up problems which have been associated with some CMOS multiplying DAC circuits in the past.
7. While the DAC-HA series gives optimum accuracy at recommended supply voltage and at room temperature, the maximum linearity error is ± 1 LSB over both specified supply range and temperature range for the 10 and 12 bit models and is ± 2 LSB for the 14 bit model.
8. The supply current is given as the quiescent value. The current increases to $200 \mu \mathrm{~A}$ max. for the +5 V version and 1.6 mA max. for the +15 V version with all bits switched at a 10 KHz rate at 50% duty cycle. Supply current increases at the rate of $1 \mu \mathrm{~A}$ per KHz of switching frequency.
9. The noise output of the DAC-HA devices can be computed from the Johnson noise of the resistance between either output terminal and ground. This resistance varies with input code from 6.67 K (based on nominal ladder resistance of 10 K) to 30 K for Output 2 and from 6.67 K to infinity for Output 1. When using an output amplifier at either output the feedback resistor is then in parallel with the ladder resistance, and the noise gain of the amplifier must also be used in the computation.
10. Feedthrough, which is specified at 20 KHz , is due to capacitive coupling from the reference input to the output, and increases directly with frequency. The frequency of the reference input is only limited by the amount of feedthrough error.
11. With most output amplifiers a small feedback capacitor across the feedback resistor is necessary to compensate for the output capacitance of the DAC-HA. By using a small trim capacitor, the compensation can be adjusted for optimum response.
12. It is recommended that output amplifiers with less than 25 nA input bias current be used with the DAC-HA series This permits precise adjustment of the output voltage to zero with all digital inputs OFF and at the same time assures that the input offset voltage is minimized. For most applications the 356 type op amp is an excellent choice. For faster response, however, Datel's AM-462 is recommended.

DAC-HA CONNECTION WITH 356 OUTPUT AMPLIFIER

Use 3 to 30pF trim capacitor and adjust for optimum step response

DAC-HA CONNECTION FOR FAST VOLTAGE OUTPUT USING DATEL AM-462 MONOLITHIC OPERATIONAL AMPLIFIER

*Use 3 to 30pF trim
capacitor and adjust for optimum step response

CMOS OR HNIL LOGIC INTERFACE

DIVISION CIRCUIT USING DAC-HA

$(D)=$ Digital Input $=\left(a_{1} 2^{-1}+a_{2} 2^{-2}+a_{3} 2^{-3}+\ldots . a_{n} 2^{-n}\right)$
$I_{1}=\frac{\text { OUT }(D)}{R}$ where R is internal ladder resistance $=10 \mathrm{~K}$
$I_{1}=\frac{-Z}{R} \quad \begin{aligned} & R \text { is feedback resistor which is matched to } \\ & \text { internal ladder resistance. }\end{aligned}$

$$
\frac{O U T(D)}{R}=\frac{-Z}{R} \quad \text { OUT }=\frac{-Z}{(D)}
$$

The circuit is stable for $\pm Z$.

MECHANICAL DIMENSIONS-INCHES (MM)

ORDERING INFORMATION

MODEL	OPERATING TEMP. RANGE	POWER SUPPLY	MODEL	OPERATING TEMP. RANGE	POWER SUPPLY
DAC-HA10BC DAC-HA10BR DAC-HA10BM	$\begin{gathered} 0 \text { to } 70^{\circ} \mathrm{C} \\ -25 \text { to }+85^{\circ} \mathrm{C} \\ -55 \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & +5 \mathrm{VDC} \\ & +5 \mathrm{VDC} \\ & +5 \mathrm{VDC} \end{aligned}$	DAC-HA10BC-1 DAC-HA10BR-1 DAC-HA10BM-1	$\begin{gathered} 0 \text { to } 70^{\circ} \mathrm{C} \\ -25 \text { to }+85^{\circ} \mathrm{C} \\ -55 \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & +15 \mathrm{VDC} \\ & +15 \mathrm{VDC} \\ & +15 \mathrm{VDC} \\ & \hline \end{aligned}$
DAC-HA12BC DAC-HA12BR DAC-HA12BM	$\begin{gathered} 0 \text { to } 70^{\circ} \mathrm{C} \\ -25 \text { to }+85^{\circ} \mathrm{C} \\ -55 \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & +5 \mathrm{VDC} \\ & +5 \mathrm{VDC} \\ & +5 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \text { DAC-HA12BC-1 } \\ & \text { DAC-HA12BR-1 } \\ & \text { DAC-HA12BM-1 } \end{aligned}$	$\begin{gathered} 0 \text { to } 70^{\circ} \mathrm{C} \\ -25 \text { to }+85^{\circ} \mathrm{C} \\ -55 \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & +15 \mathrm{VDC} \\ & +15 \mathrm{VDC} \\ & +15 \mathrm{VDC} \end{aligned}$
DAC-HA12DC DAC-HA12DR DAC-HA12DM	$\begin{gathered} 0 \text { to } 70^{\circ} \mathrm{C} \\ -25 \text { to }+85^{\circ} \mathrm{C} \\ -55 \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & +5 \mathrm{VDC} \\ & +5 \mathrm{VDC} \\ & +5 \mathrm{VDC} \end{aligned}$	DAC-HA12DC-1 DAC-HA12DR-1 DAC-HA12DM-1	$\begin{gathered} 0 \text { to } 70^{\circ} \mathrm{C} \\ -25 \text { to }+85^{\circ} \mathrm{C} \\ -55 \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & +15 \mathrm{VDC} \\ & +15 \mathrm{VDC} \\ & +15 \mathrm{VDC} \end{aligned}$
DAC-HA14BC DAC-HA14BR DAC-HA14BM	$\begin{aligned} & 0 \text { to } 70^{\circ} \mathrm{C} \\ &- 25 \text { to }+85^{\circ} \mathrm{C} \\ &-55 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +5 \mathrm{VDC} \\ & +5 \mathrm{VDC} \\ & +5 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \text { DAC-HA14BC-1 } \\ & \text { DAC-HA14BR-1 } \\ & \text { DAC-HA14BM-1 } \end{aligned}$	$\begin{gathered} 0 \text { to } 70^{\circ} \mathrm{C} \\ -25 \text { to }+85^{\circ} \mathrm{C} \\ -55 \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & +15 \mathrm{VDC} \\ & +15 \mathrm{VDC} \\ & +15 \mathrm{VDC} \end{aligned}$

Trimming Potentiometer: TP50 (50 ohms)
For high reliability versions of the DAC-HA series including units screened to
MIL-STD-883 level B, contact factory.
THESE CONVERTERS ARE COVERED BY GSA CONTRACT

FEATURES

- 8, 10, 12 Bit Resolution
- Settling Times to 25 nsec.
- $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Tempco
- Unipolar or Bipolar Operation
- Current Output
- Internal Feedback Resistor

GENERAL DESCRIPTION

The DAC-HF series of hybrid DAC's are ultra high speed. current output devices. They incorporate state-of-the art performance in a miniature package, achieving maximum output setting times of 25 nanoseconds for the 8 and 10 bit models and 50 nanoseconds for the 12 bit model They can be used to drive a resistor load directly for up to $\pm 1 \mathrm{~V}$ output or a fast operational amplifier (such as Datel-Intersil's AM-500) for higher voltage outputs with sub-microsecond settling times. A tapped feedback resistor and a biopolar offset resistor are included internally to give five programmable output voltage ranges with an external op amp.

The DAC-HF design combines proven hybrid production techniques with advanced circuit design to realize high speed current switching. The design incorporates fast PNP current switches driving a low impedance R-2R thin film ladder network. The nichrome thin film resistor network is deposited by electron beam evaporation on a low capacitance substrate to assure high speed performance. The resistors are then functionally trimimed by laser for optimum linearity.
The digital inputs are TTL compatible and use straight binary coding for unipolar operation and offset binary coding tor bipolar operation. Output current is 0 to +5 mA for unipolar operation and $\pm 2.5 \mathrm{~mA}$ for bipolar operation into an output amplifier summing junction. Linearity is $\pm 1 / 2$ LSB. and the converters are monotonic over the operating temperature range specified for each. Gain temperature coefficient is $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum.

Applications for the DAC-HF series include high speed function generators, fast computer control systems, graphic display systems, and CRT displays.

Power supply requirement is $\pm 15 \mathrm{VDC}$ with less than 780 milliwatts consumption. The DAC-HF is available in models covering three operating temperature ranges.

SPECIFICATIONS, DAC-HF SERIES
(Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ supplies unless otherwise specified)

MAXIMUM RATINGS Positive Supply, Pin 24. Negative Supply, Pin 22. Digital Input Voltage, Pins 1 to 12.	8B	10B	12B
	$\begin{aligned} & +18 \mathrm{~V} \\ & -18 \mathrm{~V} \\ & +15 \mathrm{~V} \end{aligned}$		
INPUTS Resolution, Bits Coding, Unipolar Output Coding, Bipolar Output. Input Logic Level, Bit ON ("1") Input Logic Level, Bit OFF ("0")			
	8	10	12
	Straight Binary Offset Binary $\begin{aligned} & +2.2 \text { to }+5.5 \mathrm{~V} @+40 \mu \mathrm{~A} \\ & \mathrm{oV} \text { to }+0.8 \mathrm{~V} @ 2.6 \mathrm{~mA} \end{aligned}$		
OUTPUT Output Current Range, Unipolar Output Current Range, Bipolar Output Voltage Compliance Output Voltage Ranges ${ }^{2}$. Output Resistance \qquad Output Capacitance. \qquad Output Leakage Current, All Bits OFF. \qquad	$\begin{aligned} & 0 \text { to }+5 \mathrm{~mA} \\ & \pm 2.5 \mathrm{~mA} \\ & \pm 1.2 \mathrm{~V} \\ & 0 \text { to }-5 \mathrm{~V} \\ & 0 \text { to }-10 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \\ & 400 \text { ohms } \\ & 15 \mathrm{pF} \\ & 15 \mathrm{nA} \end{aligned}$		
PERFORMANCE Linearity Error, max Differential Linearity Error, max Diff. Linearity Tempco. Monotonicity Gain Tempco, max. Offset Tempco, Bipolar, max Zero Tempco, max. Settling Time, nsec. max. ${ }^{1}$ Power Supply Sensitivity .	$\begin{aligned} & \pm 1 / 2 \mathrm{LSB} \\ & \pm 1 / 2 \mathrm{LSB} \\ & \pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \text { Guaranteed over } \\ & \text { oper. temp. range } \\ & \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { of F.S.R. }{ }^{3} \\ & \pm 1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { of F.S.R. }{ }^{3} \\ & \hline \end{aligned}$		
	25	25	50
	0.01\%/\% Supply		
POWER REQUIREMENT Supply Voltage. Positive Quiescent Current, max. Negative Quiescent Current, max .	$\pm 15 \mathrm{VDC} \pm 0.5 \mathrm{~V}$		
	$\begin{aligned} & 30 \mathrm{~mA} \\ & 12 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 35 \mathrm{~mA} \\ & 12 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~mA} \\ & 12 \mathrm{~mA} \end{aligned}$
PHYSICAL-ENVIRONMENTAL Operating Temperature Range . . .	$\begin{aligned} & \quad 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}(\mathrm{BMC}) \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}(\mathrm{BMR}) \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\mathrm{BMM}) \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & 24 \text { Pin Ceramic DIP } \\ & .010 \times .018 \text { inch Kovar } \\ & 0.2 \mathrm{oz} .(6 \mathrm{~g} .) \end{aligned}$		

NOTES: 1. Full scale current change to 1 LSB with 400Ω load

2. With External Operational Amplifier.
3. F.S.R. is Full Scale Range, or the difference between minimum and maximum output values.

TECHNICAL NOTES

1. Proper operation of the DAC-HF series converters is dependent on good board layout and connection practices. Supplies should be bypassed as shown in the connection diagrams. Bypass capacitors should be mounted close to the converter directly to the supply pins where possible
2. Use of a ground plane is particularly important in high speed D to A converters as it reduces high frequency noise and aids in decoupling the digital inputs from the analog output. Ground loop problems are avoided by connecting all grounds on the board to the ground plane. The configuration of the ground plane directly below the DAC-HF is shown in the ground plane layout diagram. The remainder of the ground plane should include as much of the circuit board as possible.
3. When the converter is configured for voltage output with an external op-amp, the leads from the converter to the output amplifier should be kept as short as possible
4. The high speed current switching technique used in the DACHF series inherently reduces the amplitude and duration of large transient spikes at the output ("glitches"). The most severe glitches occur at half-scale. the major carry transition from $011 \ldots 1$ to $100 \ldots 0$ or vice versa. At this time a skewing of the input codes can create a transition state code of 111...1. The duration of the "transition state code" is dependent on the degree of skewing but its effect is dependent on the speed of the DAC (an ultra-fast DAC will respond to these brief spurious inputs to a greater degree than a slow DAC). The effects of input skewing can be easily minimized through the use of a highspeed input register to match input switching times. The input register recommended for use with the DAC-HF is easily implemented with two Texas Instruments SN74S174 hex D-type flipflops. This register will reduce glitches to a very low level and ensure fast output settling times.
5. Testing of the DAC-HF should be performed with a low capacitance test probe (such as a 10X probe). Care should be taken to assure the shortest possible connection between probe ground and circuit ground. Long probe ground leads may pick up environmental E.M.I. causing artifacts on the scope display i.e. signals that do not originate at the unit under test
6. Passive components used with the DAC-HF may be as indicated here: $0.1 \mu \mathrm{~F}$ and $1 \mu \mathrm{~F}$ bypass capacitors should be ceramic type and tantalum type respectively: the 400Ω output load is a $0.1 \% 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ metal film type: adjustment potentiometers are cermet types: other resistors may be $\pm 10 \%$ carbon composition types.
7. Output voltage compliance is $\pm 1.2 \mathrm{~V}$ to preserve the linearity of the converter. In the bipolar mode the DAC-HF can be operated with no load to give an output voltage of $\pm 1.0 \mathrm{~V}$. In the unipolar mode the load resistance must be less than 600Ω to give less than +1.2 V output. The specified output currents of 0 to +5 mA and $\pm 2.5 \mathrm{~mA}$ are measured into a short circuit or an operational amplifier summing junction.

ORDERING INFORMATION		
MODEL		TEMP. RANGE
	SEAL	
DAC-HF8BMC	0° to $+70^{\circ} \mathrm{C}$	Hermetic
DAC-HF8BMR	-25° to $+85^{\circ} \mathrm{C}$	Hermetic
DAC-HF8BMM	-55° to $+125^{\circ} \mathrm{C}$	Hermetic
DAC-HF10BMC	0° to $+70^{\circ} \mathrm{C}$	Hermetic
DAC-HF10BMR	-25° to $+85^{\circ} \mathrm{C}$	Hermetic
DAC-HF10BMM	-55° to $+125^{\circ} \mathrm{C}$	Hermetic
DAC-HF12BMC	0° to $+70^{\circ} \mathrm{C}$	Hermetic
DAC-HF12BMR	-25° to $+85^{\circ} \mathrm{C}$	HermetiC
DAC-HF12BMM	-55° to $+125^{\circ} \mathrm{C}$	Hermetic

Mating Socket: DILS-3 (24-pin socket)
Trimming Potentiometers. TP-100 or TP25K
For high reliability versions of the DAC-HF series including units screened to MIL-STD-883 Level B, contact factory.

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

UNIPOLAR CURRENT OUTPUT CONNECTIONS

UNIPOLAR CURRENT OUTPUT

 CALIBRATION PROCEDURE1. Connect the converter as shown in the connection diagram.
2. Set all inputs LO and adjust the ZERO ADJUST potentiometer for a reading of V at the output.
3. Set all inputs HI and adjust the GAIN ADJUST potentiometer for a reading of -F.S. + ILSB (given in the coding table for 12 bit units).
bIPOLAR CURRENT OUTPUT CONNECTIONS

BIPOLAR CURRENT OUTPUT

 CALIBRATION PROCEDURE1. Connect the converter as shown in the connection diagram.
2. Set all inputs LO and adjust the OFFSET ADJUST potentiometer for an output reading of + F.S., (given in the coding table for 12 bit units).
3. Set all inputs HI and adjust the GAIN ADJUST potentiometer for an output reading of -F.S. +1 LSB, (given in the coding table for 12 bit units).

CODING TABLES UNIPOLAR OUTPUT

UNIPOLAR SCALE	INPUT CODING STRAIGHT BINARY	ANALOG OUTPUT		
		0 to +1 V F.S.	0 to -5V F.S.	0 to -10V F.S.
F.S. :1 LSB	111111	$+0.3008 \mathrm{~V}$	-4.0988V	-9.9975V
- $3 / 4$ F.S.	110000000000	+0.7500V	-3.7500V	-7.5000V
- $1 / 2$ F.S.	100000000000	+0.5000V	-2.5000V	$-5.0000 \mathrm{~V}$
- $1 / 4 \mathrm{FSS}$.	010000000000	+0.2500V	-1.2500V	-2.5000V
- 1 LSB	000000000001	+0.0002V	-0.0012V	-0.0024V
0	000000000000	0.0000 V	0.0000 V	0.0000 V

BIPOLAR OUTPUT

BIPOLAR	INPUT CODING	ANALOG OUTPUT			
SCALE	OFFSET BINARRY	$\pm \mathbf{0 . 5 V}$ F.S.	\pm 2.5V F.S.	\pm 5V F.S	\pm 10V F.S.
- F.S. +1 LSB	111111111111	+0.4998 V	-2.4988 V	-4.9976 V	-9.9951 V
$-1 / 2$ F.S.	110000000000	+0.1250 V	-1.2500 V	-2.5000 V	-5.0000 V
-1 LSB	100000000001	+0.0002 V	-0.0012 V	-0.0024 V	-0.0049 V
0	100000000000	0.0000 V	0.0000 V	0.0000 V	0.0000 V
$+1 / 2$ F.S.	010000000000	-0.1250 V	+1.2500 V	+2.500 V	+5.0000 V
+F.S. -1 LSB	000000000001	-0.4998 V	+2.4988 V	+4.9976 V	+9.9951 V
+ +F.S.	000000000000	-0.5000 V	+2.5000 V	+5.0000 V	+10.0000 V

PROGRAMMABLE OUTPUT RANGE PIN CONNECTIONS

OUTPUT VOLTAGE RANGE	FEEDBACK CONNECTION	CONNECT THESE PINS TOGETHER
0 to -5V	PIN 19	PIN 17 to PIN 18 PIN 20 to PIN 23
0 to -10V	PIN 19	PIN 20 to PIN 23
$\pm 2.5 \mathrm{~V}$	PIN 19	PIN 17 to PIN 18
PIN 20 to PIN 23		
$\pm 5 \mathrm{~V}$	PIN 19	PIN 20 to PIN 23
$\pm 10 \mathrm{~V}$	PIN 17	PIN 20 to PIN 23

In all Programmable Output Ranges
PIN 18 connects to external
OP-AMP inverting input

APPLICATIONS

Printed in U．S．A．Copyright（c） 1980 Datel－Intersil，Inc．All rights reserved

11 CABOT BOULEVARD，MANSFIELD．MA 02048 ／TEL．（617）339－9341／TWX 710－346－1953／TLX 951340
Santa Ana，（714）835－2751，（L．A．）（213）933－7256•Sunnyvale，CA（408）733－2424 • Gaithersburg，MD（301）840－9490
－Houston，（713）781－8886－Dallas，TX（214）241－0651 OVERSEAS：DATEL（UK）LTD－TEL：ANDOVER（O264）51055
－DATEL SYSTEMS SARL 602－57－11 • DATELEK SYSTEMS GmbH（089）77－60－95 • DATEL KK Tokyo 793－1031
PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

－12－Bit Resolution
－ $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Tempco
－Input Register
－ 3 Coding Options
－Fast Settling Time

GENERAL DESCRIPTION

The DAC－HK series hybrid D／A con－ verters are high performance 12－bit devices with a fast settling voltage output．They incorporate a level con－ trolled input storage register and are specifically designed for systems ap－ plications such as data bus interfac－ ing with computers．When the＂load＂ input is high data in the storage reg－ ister is held，and when the load input is low data is transferred through to the DAC．There are three basic mod－ els available by coding option：bi－ nary，BCD，and two＇s complement． The output voltage ranges are exter－ nally pin－programmable and include： 0 to $+2.5 \mathrm{~V}, 0$ to $+5 \mathrm{~V}, 0$ to +10 V ， $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，and $\pm 10 \mathrm{~V}$ ．
The DAC－HK design is based on proven，reliable thin film hybrid technology．Quad current switches are combined with a low T．C．thin film resistor network and a low T．C．Zener reference to achieve better than 20 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain tempco．Optimum lin－ earity is attained by functional laser trimming of the thin film nichrome resistors．The tight temperature tracking of these resistors and the quad current switch transistors re－ sult in a differential linearity error tempco of only $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．Each model of the DAC－HK series is mono－ tonic over its operating temperatiure range．
The converters are cased in 24－pin ceramic packages．Models are avail－ able for three different operating temperature ranges： 0 to $70,-25$ to +85 ，and -55 to +125 degrees Cen－ tigrade．High reliability versions of each model are also available under Datel－Intersil＇s＂S＂program and MIL－ STD－883 level B screening．Power requirement is $\pm 15 \mathrm{VDC}$ and +5 VDC．Total power dissipation is 900 milliwatts．

SPECIFICATIONS, DAC-HK SERIES
(Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ and +5 V supplies unless otherwise noted)

NOTES:

1. For two's complement coding order the model described under ordering information.
2. Logic levels are the same as for data inputs.
3. By external pin connection.

TECHNICAL NOTES

1. It is recommended that these converters be operated with local supply bypass capacitors of $1 \mu \mathrm{~F}$ (tantalum type) at the $+15,-15$, and +5 V supply pins. The capacitors should be connected as close to the pins as possible. In high RFI noise environments these capacitors should be shunted with $.01 \mu \mathrm{~F}$ ceramic capacitors
2. The analog, digital, and power grounds should be separated from each other as close as possible to pin 21 where they all must come together.
3. The "load" control pin is a level triggered input which causes the register to hold data with a HI input and transfer data to the DAC with a LO input.
4. A setup time of 50 nsec . minimum must be allowed for the input data. The DAC output voltage begins to change when the register output changes
5. The external gain adjustment shown in the Connection Diagrams has a range of $\pm 0.2 \%$ of full scale. If a wider range is desired the 18 -Megohm resistor can be decreased slightly in value. The full scale output is typically accurate within $\pm 0.1 \%$ with no adjustment. The zero, or offset, adjustment has a range of $\pm 0.35 \%$ of $F S$.
6. If the reference output terminal (pin 24) is used an operational amplifier in non-inverting mode should be used as a buffer. Current drawn from pin 24 should be limited to $\pm 10 \mu \mathrm{~A}$ in order not to affect the T.C. of the reference

ORDERING INFORMATION

MODEL

TEMP. RANGE SEAL
Binary Coding

DAC-HK12BGC	0 to $70^{\circ} \mathrm{C}$	Epoxy
DAC-HK12BMC	0 to $70^{\circ} \mathrm{C}$	Herm.
DAC-HK12BMR	-25 to $+85^{\circ} \mathrm{C}$	Herm.
DAC-HK12BMM	-55 to $+125^{\circ} \mathrm{C}$	Herm.
BCD Coding		
DAC-HK12DGC	0 to $70^{\circ} \mathrm{C}$	Epoxy
DAC-HK12DMC	0 to $70^{\circ} \mathrm{C}$	Herm.
DAC-HK12DMR	-25 to $+125^{\circ} \mathrm{C}$	Herm.
DAC-HK12DMM	-55 to $+125^{\circ} \mathrm{C}$	Herm.

2's Complement Coding

DAC-HK12BGC-2	0 to $70^{\circ} \mathrm{C}$	Epoxy
DAC-HK12BMC-2	0 to $70^{\circ} \mathrm{C}$	Herm.
DAC-HK12BMR-2	-25 to $+85^{\circ} \mathrm{C}$	Herm.
DAC-HK12BMM-2	-55 to $+125^{\circ} \mathrm{C}$	Herm.

Mating Socket: DILS-3(24-pin socket) Trimming Potentiometers: TP100K (100K ohms)

For high reliability versions of the DAC-HK series, including units screened to MIL-STD-883 level B, contact factory.

THESE CONVERTERS ARE COVERED BY GSA CONTRACT.

All rise and fall times $\leqslant 10$ nsec.

CONNECTION DIAGRAMS

UNIPOLAR OPERATION
(0 to +10 V)

OUTPUT CIRCUIT

BIPOLAR OPERATION

$(\pm 5 \mathrm{~V})$

OUTPUT RANGE SELECTION

BINARY, 2's COMP.	CONNECT THESE PINS TOGETHER			
$\pm 10 \mathrm{~V}$	$15 \& 19$	$17 \& 20$		
$\pm 5 \mathrm{~V}$	$15 \& 18$	$17 \& 20$		
$\pm 2.5 \mathrm{~V}$	$15 \& 18$	$17 \& 20$	$19 \& 20$	
+10 V	$15 \& 18$	$17 \& 21$		
+5	$15 \& 18$	$17 \& 21$	$19 \& 20$	
BCD	CONNECT THESE PINS TOGETHER			
+10 V	$15 \& 19$		$17 \& 21$	
+5 V	$15 \& 18$		$17 \& 21$	
+2.5 V	$15 \& 18$	$19 \& 20$	$17 \& 21$	

CODING TABLES

UNIPOLAR OPERATION

STRAIGHT BINARY	OUTPUT RANGES	
	LSB	0 to +10 V
111111111111	$\mathbf{0}$ to $+\mathbf{5} \mathbf{~ V}$	
110000000000	+9.9976	+4.9988
100000000000	+5.0000	+3.7500
010000000000	+2.5000	+2.5000
000000000001	+0.0024	+0.0012
000000000000	0.0000	0.0000

BCD	OUTPUT RANGES		
MSB LSB	0 to +10 V	0 to +5 V	0 to +2.5 V
100110011001	$+9.990$	+4.995	$+2.498$
100001010000	$+7.500$	+3.750	+1.875
010100000000	$+5.000$	+2.500	+1.250
001001010000	$+2.500$	+1.250	+0.625
000000000001	+0.010	$+0.005$	+0.003
000000000000	0.000	0.000	0.000

BIPOLAR OPERATION

OFFSET BINARY MSB LSB	TWO's COMPLEMENT MSB LSB	OUTPUT RANGES		
		$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}$
111111111111	011111111111	+9.9951	$+4.9976$	$+2.4988$
110000000000	010000000000	+5.0000	$+2.5000$	+1.2500
100000000000	000000000000	0.0000	0.0000	0.0000
010000000000	110000000000	-5.000	-2.5000	-1.2500
000000000001	100000000001	-9.9951	-4.9976	-2.4988
000000000000	100000000000	-10.0000	-5.0000	-2.5000

APPLICATION

INTERFACING TO ≥ 12 BIT DATA BUS

INTERFACING TO 8 BIT DATA BUS

CALIBRATION PROCEDURE

Select the desired output voltage range and connect the converter up as shown in the Output Range Selection Table and the Connection Diagrams. Refer to the Coding Tables.

UNIPOLAR OPERATION

1. Zero Adjustment. Set the input digital code to 000000000000 and adjust the ZERO ADJ. potentiometer to give 0.0000 V output.
2. Gain Adjustment. Set the input digital code to 111111111111 (straight binary) or 100110011001 (BCD) and adjust the GAIN ADJ. potentiometer to give the full scale output voltage shown in the Coding Table.

BIPOLAR OPERATION

1. Offset Adjustment. Set the digital input code to 000000000000 (offset binary) or 100000000000 (two's complement) and adjust the OFFSET ADJ. potentiometer to give the negative full scale output voltage shown in the Coding Table.
2. Gain Adjustment. Set the digital input code to 111111111111 (offset binary) or a 011111111111 (two's complement) and adjust the GAIN ADJ. potentiometer to give the positive full scale output voltage shown in the Coding Table.

16-Bit, Microelectronic Digital-to-Analog Converters DAC-HP16B And DAC-HP16D

FEATURES

- 16 Bit Binary Model
- 4 Digit BCD Model
- Voltage Output
- 15ppm $/{ }^{\circ} \mathrm{C}$ max. Gain Tempco
- Linearity to $\pm 0.003 \%$

GENERAL DESCRIPTION

The DAC-HP series are high resolution hybrid D/A converters with voltage output. They are self-contained, including a low tempco zener reference circuit and output operational amplifier, all in a miniature 24 pin double spaced ceramic DIP package. There are two basic models in the series. The DAC-HP16B has 16 bit binary resolution with $\pm 0.003 \%$ linearity while the DAC-HP16D has 4 digit BCD resolution with $\pm 0.005 \%$ linearity. Input coding is complementary binary and complementary offset binary for the DAC-HP16B and complementary BCD for the DAC-HP16D. The binary version operates in both unipolar and bipolar modes with output voltages of 0 to +10 V and $\pm 5 \mathrm{~V}$ respectively. Binary versions with a bipolar output voltage range of $\pm 10 \mathrm{~V}$ are available, denoted by the suffix "-1" after the model designation. The BCD version operates in the unipolar mode only with 0 to +10 V output.
The DAC-HP design incorporates thin film hybrid technology which has been in volume production. Selected low tempco nichrome-on-silicon thin film resistor networks are combined with tightly matched quad current switches to achieve 16 bit resolution. The thin film resistors together with the low tempco zener reference circuit result in a maximum gain tempco of $\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for the DAC. The thin film resistors are functionally laser trimmed for optimum converter linearity.
The resolution, stability, and voltage output of these converters make them ideal for precision applications such as speech and waveform reconstruction, precision ramp generators, and computer controlled testing. They are available in three operating temperature ranges: 0 to $70^{\circ} \mathrm{C},-25$ to $+85^{\circ} \mathrm{C}$, and -55 to $+125^{\circ} \mathrm{C}$. High reliability versions are also available under Datel Intersil's "S" program and MIL-STD-883 level B screening. Power requirement is $\pm 15 \mathrm{VDC}$.

SPECIFICATIONS, DAC-HP SERIES
(Typical at $25^{\circ} \mathrm{C}$, and $\pm 15 \mathrm{~V}$ supplies unless otherwise noted)

	DAC-HP16B (Binary)	DAC-HP16D (BCD)
MAXIMUM RATINGS Positive Supply, pin 23 Negative Supply, pin 19 Digital Input Voltage, pins 1-16 Output Current, pin 17	$\begin{aligned} & +18 \mathrm{~V} \\ & -18 \mathrm{~V} \\ & +5.5 \mathrm{~V} \\ & \pm 20 \mathrm{~mA} \end{aligned}$	
INPUTS Resolution Coding, unipolar output Coding, bipolar output	16 bits Comp. Binary Comp. Off. Binary	4 digits Comp. BCD \qquad
Input Logic Level, bit ON ("0") ${ }^{1}$ Input Logic Level, bit OFF ("1")'	$\begin{aligned} & 0 \mathrm{~V} \text { to }+0.8 \mathrm{~V} @-1 \mathrm{~mA} \\ + & 2.4 \mathrm{~V} \text { to }+5.5 \mathrm{~V} @+40 \mu \mathrm{~A} \end{aligned}$	
Logic Loading	1 TTL load	*
OUTPUT Output Voltage Range, Unipolar ${ }^{2}$ Output Voltage Range, Bipolar Output Voltage Range, "-1" Suffix Output Current, min. ${ }^{6}$ Output Impedance	$\begin{aligned} & 0 \text { to }+10 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \\ & \pm 5 \mathrm{~mA} \\ & 0.05 \mathrm{ohm} \end{aligned}$	$\begin{gathered} * \\ - \\ 0 \text { to }-5 \mathrm{~mA} \end{gathered}$
PERFORMANCE Linearity Error, max. Monotonicity, $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ Gain Error, before trimming Zero Error, before trimming Gain Tempco, max. ${ }^{3}$ Gain Tempco, max. BGC, DGC Zero Tempco, unipolar, max. Offset Tempco, bipolar, max. Differential Linearity Tempco Settling Time, 10V change ${ }^{5}$ Slew Rate Power Supply Rejection	$\begin{aligned} & \pm 0.003 \% \\ & 14 \mathrm{bits} \\ & \pm 0.1 \% \\ & \pm 0.1 \% \\ & \pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { of } \mathrm{FSR}^{4} \\ & \pm 8 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { of } \mathrm{FSR}^{4} \\ & \pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { of } \mathrm{FSR}^{4} \\ & 15 \mu \mathrm{sec} . \\ & 20 \mathrm{~V} / \mu \mathrm{sec} . \\ & \pm 0.002 \% \mathrm{FSR} / \% \end{aligned}$	$\begin{gathered} \pm 0.005 \% \\ 16 \text { bits } \\ \star \\ \star \\ \star \\ \star \\ - \\ * \\ 15 \mu \mathrm{sec} . \\ \star \\ \star \end{gathered}$
POWER REQUIREMENT (Quiescent, all bits HI)	$\begin{aligned} & +15 \mathrm{VDC} \text { at } 38 \mathrm{~mA} \\ & -15 \mathrm{VDC} \text { at } 38 \mathrm{~mA} \end{aligned}$	
PHYSICAL-ENVIRONMENTAL Operating Temperature Range Storage Temperature Range Package Type Pins Weight	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}(\mathrm{BMC}, \mathrm{DMC}, \mathrm{BGC}, \mathrm{DGC}) \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { (BMR, DMR) } \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { (BMM, DMM) } \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & 24 \text { pin ceramic } \\ & 0.010 \times 0.018 \text { inch diameter Kovar } \\ & \quad 0.2 \mathrm{oz} .(6 \mathrm{~g} .) \end{aligned}$	

NOTES:

1 Drive from TTL output with only the DAC-HP as load.
2. Unipolar output range for suffix "-1" models, 0 to +10 V , is reached at $1 / 2$ scale input.
3. For all models except DAC-HP16BGC \& DAC-16DGC.
4. FSR is 0 to +FS or -FS to +FS voltage.
5. To 0.005% FSR. 6 Pin 17

1. It is recommended that these converters be operated with local supply bypass capacitors of $1 \mu \mathrm{~F}$ (tantalum type) at the +15 V and -15 V supply pins. The capacitors should be connected as close to the pins as possible. In high frequency noise environments an additional $.01 \mu \mathrm{~F}$ ceramic capacitor should be used in parallel with each tantalum bypass.
2. The analog, digital, and powergrounds should be separated from each other as close as possible to pin 20 where they all must connect together.
3. The external gain adjustment shown in the diagrams gives an adjustment of $\pm 0.2 \%$ of full scale range. The converters are internally trimmed to $\pm 0.1 \%$ at full scale. A wider range of adjustment may be achieved by decreasing the value of the 510 K ohm resistor.
4. The zero adjustment, or offset adjustment, has an adjustment range of $\pm 0.35 \%$ of full scale range. The unipolar zero is internally set to zero within $\pm 0.1 \%$ of full scale range.
5. If the reference output ($\operatorname{pin} 24$) is used, it must be buffered by an operational amplifier in the noninverting mode. Current drawn from pin 24 should be limited to $\pm 10 \mu \mathrm{~A}$ in order that the temperature coefficient of the reference circuit not be affected. This is sufficient current for the bias current of most of the popular operational amplifier types

ORDERING INFORMATION		
MODEL	OPER TEMP. RANGE	SEAL
DAC-HP16BGC	0 to 70C	EPOXY
DAC-HP16BMC	0 to 70C	HERM.
DAC-HP-16BMR	-25 to +85C	HERM.
DAC-HP16BMM	-55 to +125 C	HERM.
DAC-HP16BMC-1	0 to 70C	HERM.
DAC-HP16BMR-1	-25 to +85 C	HERM.
DAC-HP16BMM-1	-55 to +125 C	HERM.
DAC-HP16DGC	0 to 70C	EPOXY
DAC-HP16DMC	0 to 70C	HERM.
DAC-HP16DMR	-25 to +85C	HERM.
DAC-HP16DMM	-55 to +125 C	HERM.
Mating Socket: DILS-3 (24 pin socket)		
Trimming Potentiometer: TP50K		
For high reliability versions of the DAC-HP series, including units screened to MIL-STD883 , Level B, contact factory.		
THESE CONVERTERS ARE COVERED BY GSA CONTRACT		

OUTPUT CIRCUIT

POWER SUPPLY BYPASSING

USE OF REFERENCE OUTPUT

*MAXIMUM OUTPUT CURRENT IS $\pm 10 \mu \mathrm{~A}$

PRECISION INDUSTRIAL POSITION CONTROLLER

CODING TABLES BIPOLAR OUTPUT-Complementary Offset Binary

| INPUT CODE | | LSB | SCALE | OUTPUT
 VOLTAGE |
| :--- | :---: | :---: | :---: | :---: | | OUTPUT VOLTAGE |
| :---: |
| SUFFIX "-1" MODELS |

UNIPOLAR OUTPUT-Complementary BCD

| MNPUT CODE | LSB | SCALE |
| :---: | :---: | :---: | | OUTPUT |
| :---: |
| VOLTAGE |

UNIPOLAR OUTPUT-Complementary Binary

| MNPUT CODE | LSB | SCALE |
| :---: | :---: | :---: | | OUTPUT |
| :---: |
| VOLTAGE |

UNIPOLAR OPERATION

BIPOLAR OPERATION

CALIBRATION PROCEDURE

Connect the converter as shown in the application diagrams. For bipolar operation connect Bipolar Offset (pin 18) to Summing Junction (pin 21). For unipolar operation connect Bipolar Offset (pin 18) to Ground (pin 20). In making the following adjustments, refer to the coding tables.

UNIPOLAR OPERATION

1. Zero Adjustment. Set the input digital code to 1111 111111111111 and adjust the ZERO ADJ. potentiometer to give 0.00000 V . output.
2. Gain Adjustment. Set the input digital code to 0000 000000000000 (complementary binary) or 0110 011001100110 (complementary BCD) and adjust the GAIN ADJ. potentiometer to give +9.99985 V output (complementary binary) or +9.999 V output (complementary BCD).

BIPOLAR OPERATION

1. Offset Adjustment. Set the Digital Input Code to 1111111111111111 and adjust the OFFSET ADJ. potentiometer to give the -F.S. output shown in the coding table above for the model being calibrated.
2. Gain Adjustment. Set the Digital Input Code to 0000 000000000000 and adjust the GAIN ADJ. potentiometer to give the +FS-1 LSB output shown in the coding table above for the model being calibrated. - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

Digital-to-Analog Converters
 DAC-HZ Series

FEATURES

- 12 Bit Binary or 3 Digit BCD
- 5 Output Ranges
- $3 \mu \mathrm{Sec}$. Settling Time
- Internal Ref. \& Output Amp.
- High Performance

GENERAL DESCRIPTION

The DAC-HZ series are high performance, hybrid 12 bit binary and 3 digit BCD digital-to-analog converters. These converters are manufactured in volume in Datel Intersil's modern in-house thin film hybrid facility. They are complete and self-contained with a precision internal reference and fast output operational amplifier. Pin programmable output voltage ranges are provided for a high degree of application flexibility; the output voltage ranges are 0 to +5 V , 0 to $+10 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$ with only unipolar ranges available on the BCD models. Current output is also provided.

The internal design utilizes three quad current switches, two thin film resistor networks, a precision zener reference circuit, reference control circuit and output amplifier. The thin film resistor networks are functionally trimmed with a laser to precisely set the binary weights of the current switches. The excellent tracking of the thin film resistors in conjunction with the tightly matched current switches results in a differential nonlinearity tempco of only $2 \mathrm{ppm} / /^{\circ} \mathrm{C}$. Temperature coefficient of gain is $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. and tempco of zero is $\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS max.

The DAC-Hz series consists of 8 different models covering the operating temperature ranges of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The models come in a 24 -pin ceramic package. Power requirement is ± 15 VDC at 35 mA with no 5 V logic supply required. Input coding is complementary binary or complementary BCD. Voltage output settling time is 3 $\mu \mathrm{sec}$. to $1 / 2$ LSB.

SPECIFICATIONS, DAC-HZ SERIES
(Typical at $25^{\circ} \mathrm{C}$ and $\pm \mathbf{1 5 V}$ supplies unless otherwise noted)

INPUTS Resolution Coding, unipolar output Coding, bipolar output	12 Binary bits Complementary Binary Comp. Offset Bin.	3 BCD digits Complementary BCD
Input Logic Level, bit ON ("0") Input Logic Level, bit OFF ("1") Logic Loading	$\begin{gathered} 0 \mathrm{~V} \text { to }+0.8 \mathrm{~V} @-1 \mathrm{~mA} \\ +2.4 \mathrm{~V} \text { to }+5.5 \mathrm{~V} @+40 \mu \mathrm{~A} \\ 1 \mathrm{TTL} \text { load } \end{gathered}$	
OUTPUTS Output Current, unipolar Output Current, bipolar Voltage Compliance, lout Output Impedance, lout, unipolar Output Impedance, lout, bipolar. Output Voltage Ranges, unipolar Output Voltage Ranges, bipolar . Output Current, Vout Output Impedance, Vout	$\begin{aligned} & 0 \text { to }-2 \mathrm{~mA}, \pm 10 \% \\ & \pm 1 \mathrm{~mA}, \pm 10 \% \\ & \pm 2.5 \mathrm{~V} \\ & 5 \mathrm{~K} \text { ohms } \\ & 2.8 \mathrm{~K} \text { ohms } \\ & 0 \mathrm{~V} \text { to }+5 \mathrm{~V} \\ & 0 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \\ & \pm 2.5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \\ & \pm 5 \mathrm{~mA} \text { min. } \\ & .05 \text { ohm } \end{aligned}$	$\begin{gathered} 0 \text { to }-1.25 \mathrm{~mA}, \pm 10 \% \\ * \\ * \\ - \\ 0 \text { to }+2.5 \mathrm{~V} \\ 0 \text { to }+5 \mathrm{~V} \\ 0 \text { to }+10 \mathrm{~V} \end{gathered}$
PERFORMANCE, Voltage Output Nonlinearity Differential Nonlinearity Gain Error, before trimming Zero Error, before trimming Gain Tempco, max. Zero Tempco, unipolar, max. Offset Tempco, biopolar, max. Diff. Nonlinearity Tempco Monotonicity Settling Time, lout to $1 / 2$ LSB 2 Settling Time, Vout to $\mathbf{1 / 2}$ LSB Slew Rate Power Supply Rejection	$\begin{aligned} & \pm 1 / 2 \text { LSB max. } \\ & \pm 1 / 2 \text { LSB max. } \\ & \pm 0.1 \% \text { of } \mathrm{FSR}^{1} \\ & \pm 0.1 \% \text { of } \mathrm{FSR}^{1} \\ & \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { of } \mathrm{FSR}^{1} \\ & \pm 10 \mathrm{ppm} / /^{\circ} \mathrm{C} \text { of } \mathrm{FSR}^{1} \\ & \pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { of } \mathrm{FSR}^{1} \\ & \text { Over oper. temp. } \\ & \text { range } \\ & 300 \text { nsec. } \\ & 3 \mu \text { sec. }{ }^{3} \\ & 20 \mathrm{~V} / \mu \mathrm{sec} . \\ & \pm .002 \% \text { FSR } / \\ & \% \text { Supply }{ }^{1} \end{aligned}$	$\begin{aligned} & \pm 1 / 4 \text { LSB max. } \\ & \pm 1 / 4 \text { LSB max. } \end{aligned}$
POWER REQUIREMENT Power Supply Voltage Quiescent Current	$\begin{array}{r} \pm 15 \mathrm{VD} \\ 3! \end{array}$	$\begin{aligned} & \pm 0.5 \mathrm{~V} \\ & \mathrm{~mA} \end{aligned}$
PHYSICAL-ENVIRONMENTAL Operating Temperature Ranges Storage Temperature Range Package Size Package Type Pins Weight	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C},-25^{\circ} \mathrm{C} \\ & \text { and }-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & 1.300 \times 0.800 \times 0.16 \\ & 24 \text { Pin Ceramic DIP } \\ & \text { Kovar } 0.010 \times 0.018 \\ & 0.22 \text { oz. }(63 \mathrm{~g} .) \end{aligned}$	$\text { to }+85^{\circ} \mathrm{C} \text {, }$ C 0 inches inches

*Specifications same as first column

1. FSR is full scale range and is 10 V for 0 to +10 V or -5 V to +5 V output; 20 V for $\pm 10 \mathrm{~V}$ output, etc.
2. Current output mode.
3. For 2.5 K or 5 K feedback (2 K or $4 \mathrm{~K}, \mathrm{BCD}$). For 10 K feedback $(8 \mathrm{~K}, \mathrm{BCD}$) the settling time is $4 \mu \mathrm{sec}$.

TECHNICAL NOTES

1. The DAC-HZ12 series converters are designed and factory calibrated to give $\pm 1 / 2$ LSB linearity (binary version) and $\pm 1 / 4$ LSB linearity ($B C D$ version) with respect to a straight line between end points. This means that if zero and full scale are exactly adjusted externally, the relative accuracy will be $\pm 1 / 2$ LSB ($\pm 1 / 4$ LSB, BCD) everywhere over the full output range without any additional adjustments to achieve a best straight line fit. The linearity specification is therefore a conservative one since the user does not have to make more complicated adjustments for a best straight line fit.
2. The external zero or offset adjustment for the converters has a range of $\pm 0.2 \%$ of full scale and the external gain adjustment has a range of $\pm 0.3 \%$ of full scale
3. These converters must be operated with local supply by-pass capacitors from +15 V to ground and -15 V to ground. Tantalum type capacitors of $1 \mu \mathrm{~F}$ are recommended and should be mounted as close as possible to the converter. If the converters are used in a high frequency noise environment a $.01 \mu \mathrm{~F}$ ceramic capacitor should be used across each tantalum capacitor.
4. When operating in the current output mode the equivalent internal current source of 2 mA ($1.25 \mathrm{~mA}, \mathrm{BCD}$) must drive both the internal source resistances and the external load resistor. A 300 nsec. output settling time is achieved for the voltage across a 100 ohm load resistor; for higher value resistors the settling time becomes longer due to the output capacitance of the converter. For fastest possible voltage output for a large transition, an external fast settling amplifier such as Datel-Intersil's AM-500 should be used in the inverting mode. Settling time of less than $1 \mu \mathrm{sec}$. can be achieved. See application diagram.

ORDERING INFORMATION

Operating

DAC-HZ12BGC
DAC-HZ12BMC
DAC-HZ12BMR
DAC-HZ12BMM
DAC-HZ12DGC
DAC-HZ12DMC
DAC-HZ12DMR
DAC-HZ12DMM

Operating
Temp. Range Seal $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Epoxy $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Hermetic $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Hermetic $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Hermetic $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Epoxy $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Hermetic $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Hermetic $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Hermetic

Mating Socket: DILS-3 (24 pin socket)

Trimming Potentiometers: TP10K OR TP100K

For high reliability versions of the DAC-HZ series, including units screened to MIL-STD-883 level B, contact factory.

The DAC-HZ12 SERIES CONVERTERS ARE COVERED BY GSA CONTRACT.

CALIBRATION PROCEDURE

1. Select the desired output range and connect the converter up as shown in the Output Range Selection table and the Standard Connection diagrams below.
2. To calibrate refer to the Coding Tables below. Note that complementary coding is used.
3. Zero and Offset Adjustments

For unipolar operation set all digital inputs to " 1 " $(+2.0$ to $+5.5 \mathrm{~V})$ and adjust the ZERO ADJ. potentiometer for zero output voltage or current. For bipolar operation (binary model only) set all digital inputs to " 1 " and adjust the OFFSET ADJ. potentiometer for the negative full scale (for voltage out) or positive full scale (for current out) output value shown in the Coding Table.
4. Gain Adjustment

For the binary model set all digital inputs to " 0 " (0 V to +0.8 V) and adjust the GAIN ADJ. potentiometer for the positive full scale (for voltage out) or negative full scale (for current out) output value shown in the Coding Table.
For the BCD model (unipolar only) set each BCD digit to 0110 and adjust the GAIN ADJ. potentiometer for the positive full scale (for voltage out) or negative full scale (for current out) output value shown in the Coding Table.

OUTPUT RANGE SELECTION

| BIN.RANGE | CONNECT THESE PINS TOGETHER | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\pm 10 \mathrm{~V}$ | $15 \& 19$ | $17 \& 20$ | | $16 \& 24$ |
| $\pm 5 \mathrm{~V}$ | $15 \& 18$ | $17 \& 20$ | | $16 \& 24$ |
| $\pm 2.5 \mathrm{~V}$ | $15 \& 18$ | $17 \& 20$ | $19 \& 20$ | $16 \& 24$ |
| +10 V | $15 \& 18$ | $17 \& 21$ | | $16 \& 24$ |
| +5 V | $15 \& 18$ | $17 \& 21$ | $19 \& 20$ | $16 \& 24$ |
| $\pm 1 \mathrm{~mA}$ | | $17 \& 20$ | | $16 \& 24$ |
| -2 mA | | $17 \& 21$ | | $16 \& 24$ |

BCD RANGE CONNECT THESE PINS TOGETHER

+10V	15 \& 19	17 \& 21		16 \& 24
$+5 \mathrm{~V}$	15 \& 18	17 \& 21		16 \& 24
$+2.5 \mathrm{~V}$	15 \& 18	17 \& 21	19 \& 20	16 \& 24
$-1.25 \mathrm{MA}$		17 \& 21		16 \& 24

VOLTAGE OUTPUT IS ATPIN 15. CURRENT OUTPUT IS AT PIN 20.

STANDARD CONNECTIONS

VOLTAGE OUTPUT CONNECTIONS
(FOR DIFFERENT OUTPUT SCALING REFER TO OUTPUT RANGE SELECTION TABLE)

UNIPOLAR

CURRENT OUTPUT CONNECTIONS

CODING TABLES
UNIPOLAR OUTPUT - COMPLEMENTARY BINARY
UNIPOLAR OUTPUT - COMPLEMENTARY BCD

BINARY						
MSB			LSB	UNIPOLAR OUTPUT RANGES		
0000	0000	0000	+9.9976 V	+4.9988 V	-1.9995 MA	
0011	1111	1111	+7.5000	+3.7500	-1.5000	
0111	1111	1111	+5.0000	+2.5000	-1.0000	
1011	1111	1111	+2.5000	+1.2500	-0.5000	
1111	1111	1110	+0.0024	+0.0012	-0.0005	
1111	1111	1111	0.0000	0.0000	0.0000	

BCD INPUT CODE			UNIPOLAR OUTPUT RANGES			
MSD		LSD	0 TO +10V	0 TO +5V	0 TO +2.5V	0 TO -1.25MA
0110	0110	0110	+9.990V	$+4.995 \mathrm{~V}$	+2.498V	-1.2488MA
1000	1010	1111	+7.500	+3.750	+ 1.875	-0.9375
1010	1111	1111	+5.000	+2.500	+1.250	-0.6250
1101	1010	1111	+2.5000	+1.250	+0.625	-0.3125
1111	1111	1110	+0.0100	+0.005	+0.003	-0.0013
1111	1111	1111	0.0000	0.000	0.000	0.0000

BIPOLAR OUTPUT - COMPLEMENTARY OFFSET BINARY

INPUT CODE			BIPOLAR OUTPUT RANGES			
MSB		LSB	$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}$	$\pm 1 \mathrm{MA}$
0000	0000	0000	+9.9951V	+4.9976V	+2.4988V	-0.9995MA
0011	1111	1111	+5,0000	+2.5000	+1.2500	-0.5000
0111	1111	1111	0.0000	0.0000	0.0000	0.0000
1011	1111	1111	-5.0000	-2.5000	-1.2500	+0.5000
1111	1111	1110	-9.9951	-4.9976	-2.4988	+0.9995
1111	1111	1111	-10.0000	-5.0000	-2.5000	+1.0000

EQUIVALENT CURRENT MODE OUTPUT CIRCUIT

USE OF HIGH SPEED EXTERNAL OP AMP FOR FASTER SETTLING

USE OF A SINGLE BUFFERED REFERENCE IN A MULTI-DAC SYSTEM FOR IMPROVED TEMPERATURE TRACKING

PRECISION, LOW COST BASE LINE RAMP GENERATOR

THIS CIRCUIT DEVELOPS A HIGHLY LINEAR (.01\%) OUTPUT VOLTAGE RAMP FROM 0 TO +10 V . THE RAMP CAN BE MADE AS SLOW AS DESIRED WITHOUT AFFECTING LINEARITY BY SETTING THE PULSE RATE OF THE TIMING CIRCUIT TO THE PROPER VALUE. THE OUTPUT RAMP IS GENERATED IN DISCRETE STEPS OF .024\% FS 14096 STEPS FOR PR CHANGE).

FEATURES

－± 2 LSB Max．Glitch
－ 600 nsec．Settling Time
－Up to 2.5 MHz Update Rate
－ 12 Bit Resolution
－Self－Contained Module
GENERAL DESCRIPTION
Model DAC－DG12B is a deglitched 12－ bit D / A converter with a fast voltage out－ put．The maximum output glitch ampli－ tude is ± 2 LSB＇s while settling time for a 10 volt output change is 600 nsec ．to 1 LSB．For a 10 volt change to 1% the settling time is 250 nsec ．，and for small output changes it is only 400 nsec．，per－ mitting update rates as fast as 2.5 MHz ． The unique circuit design of the DAC－ DG12B realizes both small size and low price at the same time．Unlike other deglitched DAC＇s which are comprised of several inter－connected modules mounted on a circuit card，the DAC－ DG12B is completely self－contained in a compact $4 \times 2 \times 0.4$ inch（ $102 \times 51 \times$ 10 mm ）module．It consists of several optimized circuit functions：digital input register，ultra－fast 12－bit current DAC， stable Zener voltage reference，fast de－ －glitching switch，and a fast output oper－ ational amplifier．
The DAC－DG12B has three voltage out－ put ranges determined by external pin connection： 0 to $-10 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$ ． Output current is $\pm 10 \mathrm{~mA}$ with output short circuit protection；for higher out－ pui current requirements an external current booster amplifier may be con－ nected inside the feedback loop of the output amplifier．There are two input coding options：complementary bina－ ry complementary offset binary or com－ plementary two＇s complement．
The DAC－DG12B is an ideal device for fast CRT display applications and for other test and measurement applica－ tions where monotonic output changes are required．

MECHANICAL DIMENSIONS－INCHES（MM）

NOTE：OPEN HOLES DESIGNATE OMITTED PINS

INPUT／OUTPUT CONNECTIONS

PIN	FUNCTION
1	+5 V POWER
2	5 V GND
3	STROBE
4	BIT 1 IN（MSB）
5	BIT 2 IN
6	BIT 3 IN
7	BIT 4 IN
8	BIT 5 IN
9	BIT 6 IN
10	BIT 7 IN
11	BIT 8 IN
12	BIT 9 IN
13	BIT 10 IN
14	BIT 11 IN
15	BIT 12 IN（LSB）
16	DIGITAL GND
18	＋15 V POWER
19	-15 V POWER
20	15 V GND
21	OFFSET
22	REF．OUT
23	REF IN
29	ANALOG GND
30	FEEDBACK
31	ANALOG OUT
32	FEEDBACK 2

```
SPECIFICATIONS, DAC-DG12B (Typical at \(25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}\) and +5 V supplies unless otherwise noted)
```


INPUTS

```
\begin{tabular}{|c|c|}
\hline Resolution & 12 bits \\
\hline Coding, unipolar & Complementary Binary \\
\hline Coding, bipolar & Complementary Offset Binary \({ }^{1}\) \\
\hline & Complementary Two's Comp. \({ }^{1}\) \\
\hline Input Logic Level, bit ON ("0"). & 0 V to +0.8 V \\
\hline Input Logic Level, bit OFF ("1") & +2.0 V to +5.5 V \\
\hline Logic Loading & 1 TTL load \\
\hline Input Strobe Pulse \({ }^{2}\). & HI to LO transition causes transfer of data from register to DAC. \\
\hline Input Strobe Loading & 2 TTL loads \\
\hline
\end{tabular}
```


OUTPUTS

Output Voltage, unipolar ${ }^{3} \ldots \ldots$	0 to -10 V
Output Voltage, bipolar ${ }^{3} \ldots \ldots$	$\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$
Output Current, S.C. protected \ldots	$\pm 20 \mathrm{~mA}$ typ., $\pm 10 \mathrm{~mA}$ min.
Output Impedance, DC	0.05 ohm

Output Impedance, 0.05 ohm

PERFORMANCE

Linearity Error	$\pm 1 / 2$ LSB max.
Differential Nonlinearity	$\pm 1 / 2$ LSB max.
Zero Error, before trimming	$\pm 1 / 2$ LSB max.
Gain Tempco.	$\pm 35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
Offset Tempco, bipolar	$\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
Zero Tempco, unipolar	$\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS max.
Diff. Nonlinearity Tempco	$\pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS
Monotonicity	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Settling Time, 10 V change to 1 LSB	600 nsec. typ., 700 nsec. max.
Settling Time, 20 V change to 1 LSB.	$1.0 \mu \mathrm{sec}$. typ., $1.2 \mu \mathrm{sec} . \max$.
Settling Time, 10 V change to 1%	250 nsec. max.
Settling Time, 20 V change to 1%	550 nsec. max.
Settling Time, ± 4 LSB change ${ }^{5}$.	400 nsec.
Slew Rate.	$50 \mathrm{~V} / \mu \mathrm{sec}$.
Glitch Amplitude ${ }^{4}$	± 1 LSB typ., ± 2 LSB max.
Glitch Area .	250 mV -nsec.
Power Supply Rejection	0.01\%/\% supply
POWER REQUIREMENT	$\begin{aligned} & +15 \mathrm{VDC} \pm 0.5 \mathrm{~V} @ 50 \mathrm{~mA} \\ & -15 \mathrm{VDC} \pm 0.5 \mathrm{~V} @ 35 \mathrm{~mA} \\ & +5 \mathrm{VDC} \pm 0.25 \mathrm{~V} @ 230 \mathrm{~mA} \end{aligned}$

PHYSICAL-ENVIRONMENTAL

Operating Temperature Range .
Storage Temperature Range. . . Case Size.

Case Material
Pins .
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$4 \times 2 \times 0.4$ inches
$(101,6 \times 50,8 \times 10,2 \mathrm{~mm})$
Black Diallyl Phthalate per MIL-M-14
$0.020^{\prime \prime}$ round, gold plated,
0.200 lg. min

Weight . 4 oz. max. (114 g)

NOTES

1. Because the analog output is inverted, in the bipolar mode the complementary offset binary code is equivalent to offset binary and the complementary two's complement code is equivalent to two's complement. See Technical Note 4.
2. Has same logic levels as data inputs.
3. Determined by external pin connection.
4. Measured with 20 MHz bandwidth oscilloscope at major carry (half scale) and at 7 transitions either side of major carry.
5. See Technical Note 7.

TECHNICAL NOTES

1. The sequence of operations inside the DAC-DG12B after the input strobe changes from HI to LO are:
a. the pulse transformer and switch are activated and turn ON
b. within 11 nanoseconds (typically) the data in the input register is transferred to the current DAC
c. during the next 19 nanoseconds (typically) the DAC output current changes
d. after 30 nanoseconds (typically) from the strobe change the pulse transformer and switch are deactivated, turning OFF
e. the output amplifier begins to change to its new output value
2. A 5 nanosecond minimum setup time is required for the input data to be valid before the input strobe goes from HI to LO. The input strobe then should not go HI again for at least 40 nanoseconds.
3. The maximum update rate for the DAC-DG12B is 2.5 MHz , based on the 400 nanosecond settling time for small output changes (± 4 LSB's max.). For 10 V changes to 1% of final value the maximum update rate is 4 MHz and for 10 V changes to within 1 LSB of final value the maximum update rate is 1.6 MHz .
4. From the coding tables it should be noted that each model of the DAC-DG12B has its coding defined in two ways when operating in bipolar mode. For the DAC-DG12B1 the complementary offset binary coding with inverted (negative) analog output is the same as offset binary coding with noninverted (positive) analog output except for an analog shift of 1 LSB. The converter therefore can be externally calibrated for either code. For the DAC-DG12B2 the complementary two's complement coding with inverted (negative) analog output is the same as two's complement coding with noninverted (positive) analog output except for an analog shift of 1 LSB.
5. The DAC-DG12B is internally calibrated at zero for unipolar operation, with a zero error of $\pm 1 / 2$ LSB maximum. In many applications, therefore, no external zero adjustment is required. For exact calibration the external zero adjustment should be used. The DAC-DG12B2 operates in unipolar mode except that its input code is complementary binary with the MSB inverted.
6. For higher output current drive capability a wideband current booster amplifier with unity voltage gain may be enclosed inside the feedback loop of the output amplifier.
7. The DAC-DG12B can be updated at up to 10 MHz with partial settling. This mode can be useful in some applications such as fast CRT displays. The DAC's output is integrated by the CRT deflection amplifier, resulting in a continuous, monotonic deflection signal that is offset by a small amount from its theoretical value. This small offset is the sole effect of the D/A's partial settling.

ORDERING INFORMATION

MODEL

DAC-DG12B1
DAC-DG12B2
Mating Socket: DILS-2, 2 Req'd Per Unit Trimming Potentiometers: TP100 (100 2), TP10K (10K Ω)
For extended temperature range operation, the following suffixes are added to the model number. Consult factory for pricing.

- EX	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operation
- EXX-HS	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operation with Hermetically
	sealed semiconductor components

THE DAC-DG12B IS COVERED BY GSA CONTRACT

INTERNAL TIMING

EXTERNAL TIMING

CODING TABLES

UNIPOLAR OPERATION

SCALE	VOLTAGE RANGE	DAC-DG12B1
	0 то-10 V	COMP. BINARY
0	0.0000	111111111111
O-1 LSB	--0.0024	111111111110
$-1 / 4 \mathrm{FS}$	--2.5000	101111111111
$-1 / 2 \mathrm{FS}$	-5.0000	011111111111
-3/4FS	-7.5000	001111111111
$-\mathrm{FS}+1 \mathrm{LSB}$	-9.9976	000000000000

BIPOLAR OPERATION

CALIBRATION PROCEDURE

Select the desired output voltage range (0 to $-10 \mathrm{~V}, \pm 5 \mathrm{~V}$, or $\pm 10 \mathrm{~V}$) and make the connections shown in the diagrams below. To calibrate refer to the coding tables on the previous page.

UNIPOLAR OPERATION (0 TO -10 V OUTPUT)

1. Zero Adjustment: Set the digital input code to 11111111 1111 and adjust the ZERO ADJ. potentiometer to give 0.0000 V output.
2. Gain Adjustment: Set the digital input code to 00000000 0000 and adjust the GAIN ADJ. potentiometer to give -9.9976 V output.

BIPOLAR OPERATION (± 5 V OR $\pm 10 \mathrm{~V}$ OUTPUT)

1. Offset Adjustment: Set the digital input code to 01111111 1111 (comp. offset binary), 100000000000 (offset binary), 111111111111 (comp. two's complement), or 00000000 0000 (two's complement) and adjust the BIPOLAR OFFSET ADJ. potentiometer to give 0.0000 V output.
2. Gain Adjustment: Set the digital input code to 00000000 0000 (comp. offset binary), 000000000001 (offset binary), 100000000000 (comp. two's complement), or 10000000 0001 (two's complement) and adjust the GAIN ADJ. potentiometer to give -4.9976 V output (for $\pm 5 \mathrm{~V}$ range) or -9.9951 V output (for $\pm 10 \mathrm{~V}$ range).
3. Repeat steps 1 and 2 to recheck adjustments.

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

Ultra-Fast Settling Digital-to-Analog Converters DAC-HI Series

FEATURES

- Settling to 25 nsec
- 8, 10 or 12 Bit Resolution
- Unipolar or Bipolar Operation
- 5 mA Current Output
- $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Gain Tempco

GENERAL DESCRIPTION
The DAC-HI series devices are ultra high speed, current output, modular D/A converters offering state of the art performance in a compact plug-in module. Full scale output transitions settle in only 25 nsec. max. with the 8 and 10 bit units and in 50 nsec. max. with the 12 bit model. Speed is attained without sacrificing accuracy or stability; linearity is guaranteed to $\pm 1 / 2$ LSB and the gain temperature coefficient is only $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
Input coding is straight binary for unipolar output and offset binary for bipolar output. These units may be used in the bipolar mode with two's complement coding by externally inverting the MSB.
One of the prime features of the DAC-HI series is output flexibility. The 5 mA current output can be fed directly into an external resistor to develop a +1.2 V maximum output or, by external pin strapping, a bipolar output of $\pm 1.2 \mathrm{~V}$ maximum can be generated across the resistor. For applications requiring greater voltage ranges or sign inversion, the output current drives an external operational amplifier. When the amplifier is Datel's AM-500, a 20 V output step will typically settle in 300 nsec .
These DAC's are completely self-contained, requiring only ± 15 VDC supplies. Each unit is packaged in a $2^{\prime \prime} \times 2^{\prime \prime} \times 0.375^{\prime \prime}$, low profile module; internal circuitry consists of digital interface Iogic, a precision resistor network, high speed electronic switches and a temperature compensated precision voltage reference source.
The combination of speed, accuracy, stability, and a choice of resolutions allow the DAC-HI series converters to meet a broad range of requirements. Applications for these devices include high speed graphic generators, CRT displays, high speed function generators and high speed computer control systems.

MECHANICAL DIMENSIONS

NOTES
NOTES
NUMBERS DESIGNATE ALLOWABLE PIN POSITIONS,
ONIY PINS SPECILIE ONLY PINS SPECIFIED IN INPUT/OUTPUT CONNECTIONS
TABLE ARE ACTUALLY PRESENT

INPUT/OUTPUT CONNECTIONS 8 AND 10 BIT MODELS

PIN	FUNCTION	PIN	FUNCTION
6	BIT 1 IN	14^{*}	BIT 9 IN
7	BIT 2 IN	15^{*}	BIT 10 IN
8	BIT 3 IN	18	+15 V POWER
9	BIT 4 IN	19	-15 V POWER
10	BIT 5 NN	20	GROUND
11	BIT 6 NN	21	OFFSET
12	BIT 7 IN	22	OUTPUT
13	BIT 8 N	31	N.C.

*These Pins Omitted on 8 Bit Model

12 BIT MODEL

PIN	FUNCTION	PIN	FUNCTION
4	BIT 1 IN	14	BIT 11 IN
5	BIT 2 IN	15	BIT 12 IN
6	BIT 3 IN	18	+15 V POWER
7	BIT 4 IN	19	-15 V POWER
8	BIT 5 IN	20	GROUND
9	BIT 6 IN	21	OFFSET
10	BIT 7 IN	22	OUTPUT
11	BIT 8 IN	30	REFERENCE OUT
12	BIT 9 IN	31	REFERENCE IN
13	BIT 10 iN		

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

SPECIFICATIONS, DAC-HI SERIES
(Typical at $25^{\circ} \mathrm{C}, \pm \mathbf{1 5 V}$ supplies unless otherwise noted)

	8 B	10 B	12 B

OUTPUTS

Output Current Range, Unipolar 0 to +5 mA
Output Current Range, Bipolar
Output Voltage Compliance
Output Impedance
Output Zero Offset. \qquad
\qquad
$\pm 2.5 \mathrm{~mA}$
$\pm 1.2 \mathrm{~V}$ max.
600 ohms $\pm 1 \%$
15 nA

ERFORMANCE
Linearity Error, max.
x.
$\pm 1 / 2$ LSB
Differential Linearity Error, max.
Differential Linearity Tempco
Monotonicity \qquad
Gain Tempco, ppm/ ${ }^{\circ} \mathbf{C}$ of FSR 3 max.
Bipolar Offset Tempco
ppm/ ${ }^{\circ} \mathrm{C}$ of FSR^{3} max.
Zero Tempco, ppm/ ${ }^{\circ} \mathrm{C}$ of FSR^{3} max.
Settling Time, nsec. max. ${ }^{2}$
Long Term Stability
Power Supply Sens., \% of FSR ${ }^{3} / \mathbf{V}$

POWER REQUIREMENT
Positive Supply..
Positive Supply Current, mA max.
Negative Supply
. .
Negative Supply Current, mA max.
$+15 \mathrm{~V} \pm 0.5 \mathrm{~V}$
75
40
$-15 \mathrm{~V} \pm 0.5 \mathrm{~V}$ @ 20 mA max
20

PHYSICAL-ENVIRONMENTAL
Operating Temperature Range
Storage Temperature Range.
Relative Humidity
Package Size \qquad
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Up to 100% Non-Condensing
$2+2+0.375$ inches
$50,8+50,8+9,5 \mathrm{~mm}$
$0.020^{\prime \prime}$ Round, Gold Plated
$0.250^{\prime \prime}$ Long, min
2 oz. $\max (57 \mathrm{~g})$

NOTES:

1. For two's complement coding, the MSB of the input code must be externally inverted.
2. Full scale output change to 1 LSB .
3. FSR is Full Scale Range, the difference between minimum maximum output.

TECHNICAL NOTES

1. Proper operation of the DAC-HI series converters is dependent on good board layout and connection practices.
2. Use of a ground plane is particularly important in high speed D/A converters as it reduces high frequency noise and aids in decoupling the digital inputs from the analog output. Ground loop problems are avoided by connecting all grounds on the board to the ground plane. The ground plane should pass beneath the converter and include as much of the circuit board as possible.
3. The high speed current switching technique used in the DAC-HI series inherently reduces the amplitude and duration of large transient spikes at the output ("glitches"). The most severe glitches occur at half-scale, the major carry transition from $011 \ldots 1$ to $100 \ldots 0$ or vice versa. At this time a skewing of the input codes can create a transition state code of $111 \ldots 1$. The duration of the "transition state code" is dependent on the degree of skewing, but its effect is dependent on the speed of the DAC (an ultra-fast DAC will respond to these brief spurious inputs to a greater degree than a slow DAC). The effects of input skewing can be easily minimized through the use of a high-speed input register to match input switching times. The input register recommended for use with the DAC-HI is easily implemented with two Texas Instruments SN74S174 hex Dtype flip-flops. This register will minimize skewinginduced glitches to a very low level and ensure fast output settling times.
4. When the converter is configured for voltage output with an external op amp the leads from the converter to the output amplifier should be kept as short as possible.
5. Testing of the DAC-HI should be performed with a low capacitance test probe (such as a 10X probe). Care should be taken to assure the shortest possible connection between the probe ground and circuit ground. Long probe leads may pick up environmental E.M.I. causing artifacts on the scope display, i.e., signals that do not originate at the unit under test.
6. Power supply inputs on the DAC-HI series are bypassed internally with $1 \mu \mathrm{~F}$ capacitors. For use in particularly noisy environments a $0.1 \mu \mathrm{~F}$ ceramic capacitor should be added between each supply input and ground.
7. Values given for $R_{\text {LOAD }}, R_{F}$ and R are nominal values only. These values should be approximated as closely as possible with $0.1 \% 10$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ metal film resistors and trimmed, if necessary, with a small value series carbon composition resistor.
8. These converters may be operated with two's complement input coding by externally inverting the MSB.
9. The DAC-HI series modules are fully repairable.

EQUIVALENT OUTPUT CIRCUIT

*OUTPUT VOLTAGE LIMITED TO $\pm 1.2 \mathrm{~V}$ max.

OUTPUT AMPLIFIER

 RESISTOR TABLE| OUTPUT
 RANGE | $\mathbf{R}_{\mathrm{F}}{ }^{*}$ | \mathbf{R}^{*} |
| :---: | :---: | :---: |
| 0 to -5 V
 $\pm 2.5 \mathrm{~V}$ | $1 \mathrm{~K} \Omega$ | 375Ω |
| to -10 V
 $\pm 5 \mathrm{~V}$ | $2 \mathrm{~K} \Omega$ | 462Ω |
| $\pm 10 \mathrm{~V}$ | $4 \mathrm{~K} \Omega$ | 522Ω |

*Nominal values, see Tech. Note 7.

ORDERING INFORMATION

MODEL
DESCRIPTION
DAC-HI8B
8 Bits, 25 nsec.
DAC-HI10B 10 Bits, 25 nsec .
DAC-HI12B 12 Bits, 50 nsec.
Mating Socket DILS-2, 2 Per Unit
Trimming Potentiometers: TP100 or TP500
THESE CONVERTERS ARE COVERED BY GSA CONTRACT

8 BIT MODEL

OUTPUT MODE	DIGITAL INPUT CODING	OUTPUT VOLTAGE RANGE			

*With External Output Amplifier

10 BIT MODEL

OUTPUT MODE	DIGITAL INPUT CODING	OUTPUT VOLTAGE RANGE			
UNIPOLAR	STRAIGHT BINARY	0 TO +1V	$0 \mathrm{TO}-5 \mathrm{~V}^{*}$	0 TO-10V*	
$\begin{aligned} & \text { F.S. - } 1 \text { LSB } \\ & 1 / 2 \text { F.S. } \\ & 1 \text { LSB } \\ & 0 \end{aligned}$	$\begin{aligned} & 1111111111 \\ & 1000000000 \\ & 0000000001 \\ & 0000000000 \end{aligned}$	$\begin{gathered} +0.9990 \mathrm{~V} \\ +0.5000 \mathrm{~V} \\ +0.00097 \mathrm{~V} \\ 0.0000 \mathrm{~V} \end{gathered}$	$\begin{gathered} -4.9951 \mathrm{~V} \\ -2.5000 \mathrm{~V} \\ -0.00488 \mathrm{~V} \\ 0.0000 \mathrm{~V} \end{gathered}$	$\begin{gathered} -9.9902 \mathrm{~V} \\ -5.0000 \mathrm{~V} \\ -0.00977 \mathrm{~V} \\ 0.0000 \mathrm{~V} \end{gathered}$	
BIPOLAR	OFFSET BINARY	$\pm 1 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}^{*}$	$\pm 5 \mathrm{~V}$	$\pm 10 \mathrm{~V}^{*}$
+FS - 1 LSB	1111111111	$+0.9980 \mathrm{~V}$	$-2.4951 \mathrm{~V}$	-4.9902V	$-9.9805 \mathrm{~V}$
+1 LSB	1000000001	+0.00195V	-0.00488V	$-0.00977 \mathrm{~V}$	-0.01953V
0	1000000000	0.0000 V	0.0000 V	0.0000 V	0.0000 V
$-\mathrm{FS}+1 \mathrm{LSB}$	0000000001	$-0.9980 \mathrm{~V}$	+2.4951V	$+4.9902 \mathrm{~V}$	$+9.9805 \mathrm{~V}$
$-F . S$	0000000000	$-1.0000 \mathrm{~V}$	$+2.5000 \mathrm{~V}$	$+5.0000 \mathrm{~V}$	$+10.0000 \mathrm{~V}$

*With External Output Amplifier

12 BIT MODEL

OUTPUT MODE	DIGITAL INPUT CODING	OUTPUT VOLTAGE RANGE			
UNIPOLAR	STRAIGHT BINARY	0 TO +1V	0 TO-5V*	0 TO-10V*	
$\begin{aligned} & \text { F.S. }-1 \text { LSB } \\ & 1 / 2 \text { F.S. } \\ & 1 \text { LSB } \\ & 0 \end{aligned}$	$\begin{aligned} & 111111111111 \\ & 100000000000 \\ & 000000000001 \\ & 000000000000 \end{aligned}$	$\begin{gathered} +0.9998 \mathrm{~V} \\ +0.5000 \mathrm{~V} \\ +0.00024 \mathrm{~V} \\ 0.0000 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline-4.9988 \mathrm{~V} \\ -2.5000 \mathrm{~V} \\ -0.00122 \mathrm{~V} \\ 0.0000 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \hline-9.9976 \mathrm{~V} \\ -5.0000 \mathrm{~V} \\ -0.00244 \mathrm{~V} \\ 0.0000 \mathrm{~V} \\ \hline \end{gathered}$	
BIPOLAR	OFFSET BINARY	$3 \pm 1 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}^{*}$	$\pm 5 \mathrm{~V}$ *	$\pm 10 \mathrm{~V} *$
+FS - 1 LSB	111111111111	$+0.9995 \mathrm{~V}$	-2.4988V	-4.9976V	$-9.9951 \mathrm{~V}$
+1 LSB	100000000001	$+0.00049 \mathrm{~V}$	-0.00122V	-0.00244V	-0.00488V
0	100000000000	0.0000 V	0.0000 V	0.0000 V	0.0000 V
-F.S. +1 LSB	000000000001	-0.9995V	$+2.4988 \mathrm{~V}$	+4.9976V	+9.9951V
-F.S.	000000000000	$-1.0000 \mathrm{~V}$	$+2.5000 \mathrm{~V}$	$+5.0000 \mathrm{~V}$	$+10.0000 \mathrm{~V}$

*With External Output Amplifier

CONNECTIONS TABLE

OUTPUT VOLTAGE RANGE	8 AND 10 BIT MODELS	12 BIT MODEL
0 TO +1V	Connect 300Ω load resistor between pin 13 and pin 15 Ground pin 14	Connect 300Ω load resistor between pin 17 and pin 15, connect 100 1 trim pot: between pin 18 and pin 19. Ground pin 16
$\pm 1 \mathrm{~V}$	Connect $2.32 \mathrm{~K} \Omega$ load resistor between pin 13 and pin 15. Connect 500 2 trim pot between pin 14 and pin 15	Connect $2.32 \mathrm{~K} \Omega$ between pin 17 and pin 15, connect 500 Ω trim pot. between pin 16 and pin 17. Connect 100s trim pot between pin 18 and pin 19.
$\begin{aligned} & 0 \text { TO }-5 \mathrm{~V} \\ & 0 \text { TO }-10 \mathrm{~V} \end{aligned}$	Connect pin 13 to pin 14 Connect external op amp as shown in diagram.	Connect pin 15 to pin 16. Connect 100 Ω trim pot between pin 18 and pin 19. Connect external op amp as shown in diagram.
$\begin{aligned} & \pm 2.5 \mathrm{~V} \\ & \\ & \pm 5 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \end{aligned}$	Connect 500s trim pot between pin 14 and pin 15. Connect external op. amp as shown in diagram.	Connect 500s trim pot between pin 16 and pin 17. Connect 100s trim pot between pin 18 and pin 19. Connect external op amp as shown in diagram.

UNIPOLAR CURRENT OUTPUT

HIGH SPEED INPUT REGISTER

High Resolution, Ultra-Low Drift D/A Converters DAC-HR Series

FEATURES

- 13 to 16 Bits Resolution
- $1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. Tempco
- $2 \mu \mathrm{sec}$ max. settling time
- Unipolar or Bipolar Output
- 2 mA Current Output
- Internal Feedback Resistors

GENERAL DESCRIPTION
Datel-Intersil's DAC-HR series converters are precision digital-to-analog converters that offer high linearity, extreme stability and high resolution. Models with 13 to 16 bits allow resolving up to one part in 65,536, with a linearity error of only $\pm 0.00075 \%$ and one of the lowest temperature coefficients of any commercially available converter, $1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
The DAC-HR's excellence in linearity and stability is due to a precision metal film resistor network that tracks to within 1 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$; an oven controlled zener reference which has a temperature coefficient of $0.25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and is current controlled within a high gain servo loop; plus the use of four individual monolithic quad current switches. The superior uniformity of these switches leads to inherently high accuracy of matching, requiring only minor trimming. The DAC-HR's are specifically designed for applications demanding a wide dynamic range, up to 96.3 dB for the 16 bit version. This allows a unit with a one volt full scale output to resolve down to $15 \mu \mathrm{~V}$.
A full scale output current step settles to within 0.025% of full scale in only 200 nsec and to within 0.0015% of full scale in $2 \mu \mathrm{sec}$ maximum.
These converters can be used for either unipolar or bipolar applications. Full scale output is 0 to -2 mA for unipolar operation and $\pm 1 \mathrm{~mA}$ for bipoiar operation. iviaximum voltage compliance is $\pm 1 \mathrm{~V}$. For applications where an external operational amplifier is used, the necessary feedback and offset resistors are provided internally. These resistors have temperature coefficients matched to the ladder network. When used with an appropriate operational amplifier, the feedback resistance may be externally connected to produce outputs of 0 to $+5 \mathrm{~V}, 0$ to $+10 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$.
Input coding is complementary binary for unipolar operation and complementary offset binary for bipolar operation. Inputs are compatible with standard DTL/TTL logic levels.
The DAC-HR series are completely selfcontained in a $4 \times 2 \times 0.4$ inch encapsulated module with dual in-line pinning compatibility.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

	$13 B$	$14 B$	$15 B$	$16 B$

. Linearity and output current specifications are measured into a short circuit or an operational amplifier summing junction. Operation of the device must be into the virtual ground of an operational amplifier summing junction. Any other output configuration can degrade linearity.
2. Calibration and adjustment should be carried out only after the D/A and all peripheral components have reached thermal equilibrium at their projected operating temperature. This is a necessary condition for realization of the high linearity and accuracy of these devices.
3. Although the DAC-HR series shares one of the lowest temperature coefficients of any commercially available D/A converters, high resolutions limit the allowable ambient temperature change from the calibration temperature to the values shown in the table provided. Performance is ensured by operation within these limits (as long as the operating temperature range of the unit is not exceeded).
4. The external operational amplifier selected for use must be matched for high accuracy low drift, low input bias current and low noise to the DACHR model selected. Datel-Intersil's AM-490-2 series chopper stabilized op amps feature three models with performance compatible to converters of the DAC-HR series.
5. Skewing of input codes can be a major contributor to the appearance of large transient spikes at the output ("glitches"). The most severe glitches occur at half-scale, the major carry transition from $011 \ldots .1$ to $100 \ldots 0$ or vice versa. At this time a skewing of the input codes can create a transition state code of $111 \ldots 1$ or $000 \ldots 0$. The duration of the "transition state code" is dependent on the degree of skewing, but its effect is dependent on the speed of the DAC (a fast DAC will respond to these brief spurious inputs to a greater degree than a slow DAC). The effects of input skewing can be easily minimized through the use of a highspeed input register to match input switching times. The input register shown is easily implemented with four Texas Instruments SN74S175 quad D-type flip-flops. Use of this register will minimize skewing induced glitching and ensure specified output settling times.
6. For bipolar output operation, the DAC-HR may be operated with complementary two's complement coding by externally complementing the MSB. Use of the input register shown makes this particularly easy as the flip-flops specified have complementary outputs, a feature that also allows the DAC-HR to be interfaced with straight binary coding as well as complementary binary.
7. Good board layout and connection practices are recommended to ensure proper operation of the converter. Leads to the external operational amplifier should be as short as possible.
8. The temperature controlled oven's ± 15 VDC supply is separate from that of the module. The oven current requirements depend on temperature and vary during the warm-up period. Typical behavior is shown on the graph provided.

NOTES:

1. With external operational amplifier.
2. Differential Linearity is ± 1 LSB max. for 16 Bit Units, performance remains monotonic.
3. Modules are fully repairable.
4. After 10 minute warm-up. See graph of Oven Current vs. Time.
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Up to 100% Non-Condensing
$2 \times 2 \times 0.4$ inches
$50,8 \times 50,8 \times 10,1 \mathrm{~mm}$
$0,020^{\prime \prime}$ Dia $\times 0.200^{\prime \prime}$ Long, min.
Gold Plated
Black Diallyl Phthalate,
Per MIL-M-143
4 Oz (113 g.)

Weight
+15 VDC ± 0.5 VDC @ 30 mA
-15 VDC ± 0.5 VDC @ 35 mA ± 15 VDC ± 0.5 VDC @ $45 \mathrm{~mA}^{4}$

Operating Temp. Range.
Storage Temp. Range
Relative Humidity
Package Size
Pins
Case Material \qquad
9. The DAC-HR series has externally accessible trimming potentiometers for the first three bits of each model. Calibration of these three bits at operating temperature insures linearity at operating temperature.

INPUT CODING TABLES
UNIPOLAR OUTPUT

UNIPOLAR OUTPUT SCALE	COMPLEMENTARY BINARY INPUT CODING	OUTPUT VOLTAGE FOR SELECTED RANGES	
		0 to +5V	0 to +10V
FS-1LSB	00000...00	+5V-1LSB*	+10V-1LSB*
7/8 FS	00011... 11	+4.3750V	$+8.7500 \mathrm{~V}$
$3 / 4 \mathrm{FS}$	00111... 11	+3.7500V	$+7.5000 \mathrm{~V}$
$1 / 2 \mathrm{FS}$	01111... 11	$+2.5000 \mathrm{~V}$	$+5.0000 \mathrm{~V}$
$1 / 4 \mathrm{FS}$	10111... 11	+1.2500V	$+2.5000 \mathrm{~V}$
$1 / 8 \mathrm{FS}$	11011... 11	$+0.6250 \mathrm{~V}$	+1.2500V
1 LSB	11111... 10	*	*
0	11111... 11	OV	OV

*SEE TABLE OF LSB VOLTAGES

BIPOLAR	COMPLE- MENTARY	OUTPUT VOLTAGE FOR SELECTED RANGES			
OUTPUT					
OFFSET BINARY					

SEE TABLE OF LSB VOLTAGES

Sample-Holds

SHM-IC1	212 C
SHM-LM2	216 C
SHM-HU	218 C
SHM-6	220 C
SHM-UH, SHM-UH3	224 C
SHM-2	228 C
SHM-5	230 C

Quick Selection: Sample-Holds

	MODEL	DESCRIPTION	ACCUR	ACQUIS TIME1	APERTU DELAY	$\begin{aligned} & \text { INPUT } \\ & \text { RANGE } \end{aligned}$	GAIN	BANDWITH
z	$\begin{array}{\|l\|} \hline \text { SHM-IC-1 } \\ \hline \text { SHM-IC-1M } \\ \hline \end{array}$	Low Cost Sample-Hold	0.01\%	$5 \mu \mathrm{sec}$	50 nsec	$\pm 10 \mathrm{~V}$	$\pm 1.00^{2}$	2 MHz
\sum	$\begin{array}{\|l\|} \hline \text { SHM-LM-2 } \\ \hline \text { SHM-LM-2M } \\ \hline \end{array}$	Low Cost Sample-Hold	0.01\%	$6 \mu \mathrm{sec}$	100 nsec	$\pm 10 \mathrm{~V}$	+1.00	1 MHz
$\frac{0}{\underline{x}}$	$\begin{aligned} & \text { SHM-6MC } \\ & \hline \text { SHM-6MR } \\ & \hline \text { SHM-6MM } \end{aligned}$	Fast Sample-Hold	0.01\%	$1 \mu \mathrm{sec}$	20 nsec	$\pm 10 \mathrm{~V}$	$\begin{aligned} & \pm 1 \text { to } \\ & \pm 10 \end{aligned}$	5 MHz
$\underset{\mathbf{~}}{\boldsymbol{m}}$	SHM-HUMC SHM-HUMR SHM-HUMM	Ultra-Fast Sample-Hold	0.1\%	25 nsec	6 nsec	$\pm 2.5 \mathrm{~V}$	+0.975	50 MHz
	SHM-1	General Purpose	0.025\%	$5 \mu \mathrm{sec}$	50 nsec	$\pm 10 \mathrm{~V}$	+1.00	650 kHz
¢	$\begin{array}{\|l\|} \hline \text { SHM-2 } \\ \hline \text { SHM-2E } \\ \hline \end{array}$	Ultra-Fast Sample-Hold	0.1\%	100 nsec	10 nsec	$\pm 10 \mathrm{~V}$	+1.00	10 MHz
0	SHM-5	Ultra-Fast Sample-Hold	0.01\%	350 nsec	20 nsec	$\pm 10 \mathrm{~V}$	-1.00	5 MHz
	$\begin{array}{\|l\|} \hline \text { SHM-UH } \\ \hline \text { SHM-UH3 } \\ \hline \end{array}$	Ultra-Fast Sample-Hold	$\frac{0.25 \%}{0.05 \%}$	$\frac{50 \mathrm{nsec}}{30 \mathrm{nsec}}$	$\frac{10 \mathrm{nsec}}{5 \mathrm{nsec}}$	$\pm 5 \mathrm{~V}$	$\begin{array}{r} +0.95 \\ \hline+0.98 \end{array}$	45 MHz

NOTES: 1. For 10 V Change.
2. Can be configured for gains greater than ± 1.
3. Maximum offset voltage over operating temperature range.

$\begin{aligned} & \text { HOLD-MODE } \\ & \text { DROOP } \end{aligned}$	TEMPCO	POWER REQUIRE	PACKAGING	OPERATING TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { PRICE } \\ & (1-24) \end{aligned}$	SEE PAGE
$50 \mu \mathrm{~V} / \mathrm{msec}$	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	± 15 VDC	14 Pin Ceramic DIP Hermetically Sealed	0 to +70	\$ 12.50	212C
				-55 to +125	\$ 56.00	
$200 \mu \mathrm{~V} / \mathrm{msec}$	$10 \mathrm{mV}{ }^{3}$	$\pm 15 \mathrm{VDC}$	8 Pin TO-99 Hermetically Sealed	0 to +70	\$ 5.95	216C
$100 \mu \mathrm{~V} / \mathrm{msec}$	$5 \mathrm{mV}^{3}$			-55 to +125	\$ 52.50	
$10 \mu \mathrm{~V} / \mu \mathrm{sec}$	$100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	32 Pin Ceramic DIP Hermetically Sealed	0 to +70	\$119.00	220C
				-25 to +85	\$149.00	
				-55 to +100	\$209.00	
$50 \mu \mathrm{~V} / \mu \mathrm{sec}$	$50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	24 Pin Ceramic DIP Hermetically Sealed	0 to +70	\$ 99.00	218C
				-25 to +85	\$149.00	
				-55 to +100	\$199.00	
$1 \mu \mathrm{~V} / \mu \mathrm{sec}$	20ppm $/{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & -20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \times 1 \times 0.375 \mathrm{in} . \\ & (51 \times 25 \times 10 \mathrm{~mm}) \end{aligned}$	0 to +70	\$ 82.00	*
$50 \mu \mathrm{~V} / \mu \mathrm{sec}$	30ppm $/{ }^{\circ} \mathrm{C}$	± 15 VDC	$\begin{aligned} & 2 \times 1 \times 0.375 \mathrm{in} . \\ & (51 \times 25 \times 10 \mathrm{~mm}) \\ & \hline \end{aligned}$	0 to +70	\$105.00	*
$330 \mu \mathrm{~V} / \mu \mathrm{sec}$					\$110.00	
$20 \mu \mathrm{~V} / \mu \mathrm{sec}$	$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{VDC}$	$\begin{aligned} & 2 \times 2 \times 0.375 \mathrm{in} . \\ & (51 \times 51 \times 10 \mathrm{~mm}) \\ & \hline \end{aligned}$	0 to +70	\$219.00	230C
$50 \mu \mathrm{~V} / \mu \mathrm{sec}$	$50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \times 2 \times 0.375 \mathrm{in} . \\ & (51 \times 51 \times 10 \mathrm{~mm}) \end{aligned}$	0 to +70	\$210.00	224C
					\$231.00	

*For Data Sheet Contact Nearest Datel Sales Office

FEATURES

- $5 \mu \mathrm{sec}$. Acquisition to $\mathbf{. 0 1 \%}$
- 50 nsec. Aperture
- Inverting or Noninverting
- 2 MHz Bandwidth
- .01\% Feedthrough
- 14 Pin DIP Package

GENERAL DESCRIPTION

The SHM-IC-1 is a new monolithic integrated circuit sample and hold with excellent performance features. It is a self-contained device requiring only an external holding capacitor, the value of which can be chosen by the user to achieve his desired speed and accuracy requirement. The unit consists of a high gain differential input amplifier, a digitally controlled electronic switch, and a high input impedance buffer amplifier. The SHM-IC-1 operates in a closed loop configuration, either inverting or noninverting, with accuracy and speed determined by the input amplifier characteristics and the value of the holding capacitor. The electronic switch is controlled by a DTL/TTL compatible logic input.

The most common configuration for the SHM-IC-1 is a unity gain, noninverting sample and hold. In this configuration the device has $a \pm 10 \mathrm{~V}$ input and output range with 10 ohms input impedance. Specifications are given for this unit with two different values of holding capacitor, $.001 \mu \mathrm{~F}$ and $.01 \mu \mathrm{~F}$. The $.001 \mu \mathrm{~F}$ capacitor gives a $4 \mu \mathrm{sec}$. acquisition time to 0.1% for a 10 V change, a 2 MHz tracking bandwidth and $50 \mathrm{mV} / \mathrm{sec}$. maximum hold mode droop. The $.01 \mu \mathrm{~F}$ capacitor gives a $10 \mu \mathrm{sec}$. acquisition time, 1 MHz tracking bandwidth, and $5 \mathrm{mV} / \mathrm{sec}$. maximum droop. Characteristics for other values of holding capacitor can be determined from graphs which are shown. The SHM-IC-1 can also be configured as either an inverting or noninverting sample and hold with gain by the use of two external resistors.

This device is housed in a 14-pin hermetically sealed dual-in-line package. Operating temperature range is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the SHM-IC-1 and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the SHM-IC-1M.

PIN	FUNCTION
1	- IN
2	+ IN
3	OFFSET TRIM
4	OFFSET TRIM
5	$-15 V D C ~ P O W E R ~$
6	NO CONNECTION
7	OUTPUT
8	CASE
9	$+15 V D C$ POWER
10	GUARD
11	HOLD CAPACITOR $\left(C_{H}\right)$
12	GUARD
13	GROUND
14	DIGITAL CONTROL

INPUT AMPLIFIER SPECIFICATIONS DC Gain, volts/volt ${ }^{1}$ Bias Current Offset Current Offset Voltage (adjust. to zero) Offset Voltage Drift. Common Mode Voltage Range Common Mode Rejection Ratio Power Supply Rejection Gain Bandwidth Product	50K, 25K min. 50nA, 200nA max. $10 \mathrm{nA}, 50 \mathrm{nA}$ max. $3 \mathrm{mV}, 6 \mathrm{mV}$ max. $20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ $\pm 10 \mathrm{~V}$ min. 74 dB min . $\pm 30 \mu \mathrm{~V} / \%$ max. 2 MHz
GENERAL SPECIFICATIONS, SAMPLE \& HOLD, $G=+1$ Input Voltage Range Input Impedance Output Voltage Range Output Current, S.C. protected Output Impedance Aperture Delay Aperture Uncertainty Gain Error, sampling mode Hold Mode Noise Digital Input, Sample Mode, DTL/TTL Hold Mode, DTL/TTL ${ }^{2}$.	$\begin{aligned} & \pm 10 \mathrm{~V} \text { min. } \\ & 10^{8} \text { ohms } \\ & \pm 10 \mathrm{~V} \text { min. } \\ & \pm 10 \mathrm{~mA} \text { min. } \\ & 0.2 \mathrm{ohm} \\ & 50 \text { nsec. } \\ & 5 \text { nsec. } \\ & .01 \% \text { max. } \\ & 350 \mu \mathrm{~V} \text { RMS } \\ & 0 \text { to }+0.8 \mathrm{~V} @-0.8 \mathrm{~mA} \\ & +2.0 \text { to }+5.5 \mathrm{~V} @+20 \mu \mathrm{~A} \end{aligned}$
SAMPLE \& HOLD, $\mathrm{G}=+1, \mathrm{C}_{\mathrm{H}}=.001 \mu \mathrm{~F}$ Acquisition Time, 10 V to 0.1% Acquisition Time, 10 V to $.01 \%$ Bandwidth, small signal, sampling . Slew Rate Hold Mode Voltage Droop Hold Mode Feedthrough Sample-to-Hold Offset Error, $\mathrm{V}_{1 \mathrm{~N}}=0$ Sample-to-Hold Gain Error, $\mathrm{V}_{1 N}= \pm 10 \mathrm{~V}$ Sample-to-Hold Nonlinearity Error	$4 \mu \mathrm{sec}$. $5 \mu \mathrm{sec}$. 2.0 MHz $5 \mathrm{~V} / \mu \mathrm{sec}$. $50 \mathrm{mV} / \mathrm{sec}$. max. .01\% max. 20 mV max. .05\% max. of output .01\% max. of output
SAMPLE \& HOLD, $\mathbf{G}=+1, \mathrm{C}_{\mathrm{H}}=.01 \mu \mathrm{~F}$ Acquisition Time, 10V to 0.1% Acquisition Time, 10V to .01\% Bandwidth, small signal, sampling Slew Rate Hold Mode Voltage Droop Hold Mode Feedthrough Sample-to-Hold Offset Error, $\mathrm{V}_{1 \mathrm{~N}}=0$ Sample-to-Hold Gain Error, $\mathrm{V}_{1 \mathrm{~N}}= \pm 10 \mathrm{~V}$ Sample-to-Hold Nonlinearity Error	$10 \mu \mathrm{sec}$. $12 \mu \mathrm{sec}$. 1.0 MHz $3 \mathrm{~V} / \mu \mathrm{sec}$. $5 \mathrm{mV} /$ sec. max. .002\% max. 2mV max. .005\% max. .001\% max.
POWER REQUIREMENT	$\pm 15 \mathrm{VDC}$ @ 5mA max.
PHYSICAL-ENVIRONMENTAL Operating Temperature Range, SHM-IC-1 Operating Temperature Range, SHM-IC-1M Storage Temperature Range. Package, hermetically sealed ceramic DIP.	$\begin{aligned} & \quad 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & \text { TO-116 } \end{aligned}$

[^9]The most commonly used sample and hold configuration for the SHM-IC is the noninverting unity gain circuit. This gives a high input impedance of 10^{8} ohms, and the output voltage in the sample mode follows the input. Specifications are given for this configuration for two values of $\mathrm{C}_{\mathrm{H}}, .001 \mu \mathrm{~F}$ and $.01 \mu \mathrm{~F}$. The $.001 \mu \mathrm{~F}$ capacitor gives excellent speed ($4 \mu \mathrm{sec}$. acquisition) with good hold mode voltage droop (only $50 \mathrm{mV} / \mathrm{sec}$. max). For even better speed, a 100 pF capacitor may be used to give an acquisition time of only $2 \mu \mathrm{sec}$. The hold mode droop, however, increases by an order of magnitude to $500 \mathrm{mV} / \mathrm{sec}$., and the sample-to-hold errors also increase. For excellent accuracy a $.01 \mu \mathrm{~F}$ capacitor should be used, giving an acquisition time of $10 \mu \mathrm{sec}$., and a hold mode droop of only $5 \mathrm{mV} / \mathrm{sec}$. max. Even larger values of holding capacitor can be used with proportionate increases in accuracy but slower speed. The application graphs show the results for the different values.

For best results, C_{H} should be a good quality capacitor with very high insulation resistance and low dielectric absorption. For temperatures up to $+85^{\circ} \mathrm{C}$ polystyrene type capacitors are recommended. It is also recommended for lowest hold mode droop that a guard ring be used around the C_{H} terminal (pin 11) in the circuit board layout as shown on the last page. This is done to present leakage to other conductors on the circuit board due to board leakage and contamination. If a large value polystyrene capacitor is used, such as $1 \mu \mathrm{~F}$, hold mode droop as low as $20 \mu \mathrm{~V} / \mathrm{sec}$. (typical) can be achieved with an acquisition time of about 3 milliseconds.

Three error contributions are specified for sample-to-hold errors: offset error, gain error, and nonlinearity error. These sampling errors are caused by a small amount of charge being dumped to or from the holding capacitor by the sampling switch and are reduced by a larger value of C_{H}. It is possible to compensate for these errors by changing the gain and offset elsewhere in the external circuitry for the noninverting unity gain case. For the inverting case, the gain can be accomplished by adjusting the external resistor values and an offset can be applied to pin 2 of the input amplifier. When this external compensation is used, the output will be in error during sampling, but will be accurate in the hold mode. Only the nonlinearity error will remain of the sample-to-hold errors. The offset adjustment of the input amplifiers should be used only to zero the device in the sample mode.

In the inverting gain of one operating mode, the feedback and input resistors should be carefully matched or trimmed to give the desired gain of one. In general, the operating parameters are the same as in the noninverting unity gain configuration except that the sampling bandwidth is reduced by a factor of two. Likewise, for higher gain configurations the sampling bandwidth is proportionately reduced.

SAMPLE \& HOLD, UNITY GAIN, NONINVERTING

$$
\text { GAIN }=+1
$$

The 100 K ohm offset trimming potentiometer should be a $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ cermet 15 turn type. These are available from Datel-Intersil at each. To zero, ground input (pin 2) and digital control (pin 14) and adjust 100 K offset trim for zero output (pin 7).

SAMPLE \& HOLD, NONINVERTING WITH GAIN

$$
\text { GAIN }=1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}
$$

Bandwidth decreases proportionately with gain. R_{3} is equal to the parallel combination of R_{1} and R_{2} and is used to compensate for voltage offset caused by input bias current. R_{1} and R_{2} should be $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ metal film type resistors.

SAMPLE \& HOLD, INVERTING

$$
\text { GAIN }=-\frac{R_{2}}{R_{1}}
$$

For a gain of - $\mathbf{1}$ the bandwidth is one half of that given for the noninverting mode. R_{3} is equal to the parallel combination of R_{1} and R_{2} and is used to compensate for voltage offset caused by input bias current. R_{1} and R_{2} should be matched $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ metal film type resistors for a gain of -1 . For higher gains the ratio should be matched closely or trimmed with a small value carbon composition type resistor.

OPEN LOOP FREQUENCY RESPONSE Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ Supplies

SPEED CHARACTERISTICS VS． C_{H}
Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ Supplies

RECOMMENDED CIRCUIT BOARD LAYOUT USING GUARD RING

ACCURACY CHARACTERISTICS VS． C_{H}
Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ Supplies

HOLD MODE VOLTAGE DROOP VS．TEMPERATURE

Typical，$\pm 15 \mathrm{~V}$ Supplies

ORDERING INFORMATION

Model SHM－IC－1
Model SHM－IC－1M
Trimming Potentiometer TP100K（100K Ω ）

Contact Factory for Quantity Pricing

The SHM－IC－1 is covered under GSA Contract

Printed in U．S．A．Copyright © 1979 Datel－Intersil，Inc．All rights reserved

FEATURES

－ $5 \mu \mathrm{sec}$ ．Acquisition Time
－．01\％Gain Accuracy
－TTL／CMOS Logic Compatible
$- \pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Supplies
－TO－99 Package
－Low Cost

GENERAL DESCRIPTION

The SHM－LM－2 is a low cost monolithic sample－hold circuit with excellent per－ formance features．It is self－contained requiring only an external hold capaci－ tor with the value selected by the user for desired speed and accuracy charac－ teristics．Acquisition time is $6 \mu \mathrm{sec}$ ．for a 10 V change to $.01 \%$ using a 1000 pF capacitor and $25 \mu \mathrm{sec}$ ．using a $.01 \mu \mathrm{~F}$ capacitor．It is $5 \mu \mathrm{sec}$ ．and $20 \mu \mathrm{sec}$ ．res－ pectively for a 10 V change to 0.1% ．This device is internally configured as a unity gain follower with a gain error of less than $.01 \%$ in the sample mode．

The circuit consists of a bipolar input amplifier，a low leakage electronic switch，and an FET output amplifier． The monolithic fabrication process combines P channel junction FET＇s with bipolar transistors to achieve a low noise，high input impedance output am－ plifier．Other important specifications include 10^{10} ohms input impedance and 1 MHz bandwidth．Aperture time is less than 100 nsec．and hold mode feed－ through is less than $.005 \%$ ．Hold mode droop is $200 \mu \mathrm{~V} / \mathrm{msec}$ ．max．with a 1000pF hold capacitor and $20 \mu \mathrm{~V} / \mathrm{msec}$ ． max．with a $.01 \mu \mathrm{~F}$ capacitor．The SHM－ LM－2 can operate over a power supply range of $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ ．

Applications include sampling for A / D conversion，deglitching circuits，auto－ matic zeroing circuits，and analog demultiplexing circuits．It is recom－ mended that the holding capacitor（ C_{H} ） be a teflon，polystyrene，or polypropyl－ ene type for best results．Operating temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for SHM－LM－2 and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for SHM－LM－2M．

DATEL－INTERSIL，INC． 11 CABOT BOULEVARD，MANSFIELD，MA 02048／TEL．（617）339－9341／TWX 710－346－1953／TLX 95134

SPECIFICATIONS (Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ supplies and $\mathrm{C}_{\mathbf{H}}=.01 \mu \mathrm{~F}$ unless otherwise stated)	
MAXIMUM RATINGS Power Supply Voltage, pins 1 \& 4 Input Voltage, pin 3 Sample Control to Sample Reference, pin 8 to pin 7 Hold Capacitor Short Circuit	$\begin{aligned} & \pm 18 \mathrm{~V} \\ & \pm \text { Supply } \\ & +7,-30 \mathrm{~V} \\ & 10 \text { sec. } \end{aligned}$
INPUTS Input Voltage Range Input Overvoltage, no damage Input Impedance Input Bias Current Sample Control Sample Control Input Current ${ }^{1}$	$\begin{aligned} & \pm 11.5 \mathrm{~V} \text { min. } \\ & \pm \text { Supply } \\ & 1010 \text { ohms } \\ & 10 \text { nA typ., } 50 \text { nA max. } \\ & \text { TTL or CMOS } \\ & 10 \text { MA max. } \end{aligned}$
OUTPUT Output Voltage Range Output Current, S.C. protected Output Impedance \qquad	$\begin{aligned} & \pm 11.5 \mathrm{~V} \text { min. } \\ & \pm 5 \mathrm{~mA} \\ & 0.5 \mathrm{ohm} \end{aligned}$

PERFORMANCE

Gain. .
$+1.000,+0,-.01 \%$
Output Offset Voltage, adj. to zero
Offset Voltage Drift, SHM-LM-2.
$\pm 7 \mathrm{mV}$ max
Offset Voltage Drift, SHM-LM-2M
Sample to Hold Offset $20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}^{2}$

Output Noise, hold mode
($10 \mathrm{~Hz}-100 \mathrm{kHz}$)
Hold Mode Droop, $\mathbf{C}_{H}=1000$ pF $\ldots 200 \mu \mathrm{~V} / \mathrm{msec}$. max.
$C_{H}=.01 \mu \mathbf{F} \ldots 20 \mu \mathrm{~V} / \mathrm{msec} . \max$.

DYNAMIC RESPONSE

Acquisition Time
10V Change, $\mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF} \ldots$
$5 \mu \mathrm{sec}$. to 0.1%
10V Change, $\mathrm{C}_{\mathbf{H}}=1000 \mathrm{pF} \quad 6 \mu \mathrm{sec}$. to 01%
20V Change, $\mathbf{C}_{\mathbf{H}}=1000 \mathrm{pF} \ldots \quad 7 \mu \mathrm{sec}$. to 0.1%
20V Change, $\mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF} \ldots 8 \mathrm{sec}$. to $.01 \%$
10V Change, $C_{H}=.01 \mu$ F...... $20 \mu \mathrm{sec}$. to 0.1%
10V Change, $\mathbf{C}_{\mathbf{H}}=.01 \mu \mathbf{F} \ldots \ldots \quad 25 \mu \mathrm{sec}$. to $.01 \%$
Aperture Delay Time 100 nsec.
Hold Mode Settling Time ${ }^{3}$. 800 nsec.
Bandwidth, Sample Mode, -3 dB .
1 MHz
POWER REQUIREMENT
Voltage, rated performance
Voltage Range, operating
$\pm 15 \mathrm{VDC}$

Quiescent Current
$\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{VDC}$

PHYSICAL-ENVIRONMENTAL
Operating Temp. Range, SHM-LM-2 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
SMM-LM-2M $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range. $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Case . 8 pin TO-99
NOTES:

1. For either Sample Control or Sample Control Reference inputs
2. $28 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max.
3. The time for the output to settle within 1 mV of final value after the logic command to switch into hold mode.

ORDERING INFORMATION

Model
Operating Temp. Range
SHM-LM-2
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SHM-LM-2M $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Trimming Potentiometer, TP1K
THE SHM-LM-2 IS COVERED BY GSA CONTRACT

SAMPLE-CONTROL CONNECTIONS

HOLD MODE DROOP

TECHNICAL NOTES

1. The sample to hold offset can be adversely affected by stray capacitive coupling from input sample control signals to the hold capacitor. It is recommended that a guard ring connected to the output be put around pin 6 in a circuit board layout in order to minimize this effect.
2. For various types of logic inputs the logic threshold $\left(\mathrm{V}_{\mathrm{T}}\right)$ is set by two biasing resistors as shown in the diagram. Inverted or non-inverted pulses may be used by using either pin 7 or pin 8 as the sample control input.

FEATURES

25 nsec Acquisition Time 50 MHz Bandwidth
 10 psec Aperture Uncertainty Up to 8 Bit Accuracy
 $\pm 2.5 \mathrm{~V}$ Input Range
 GENERAL DESCRIPTION

The SHM－HU is an ultra high speed sample－ hold capable of video speed signal process－ ing．While specifically designed for use with Datel－Intersil＇s ADC－HU3B A／D converter，it is compatible with other ultrafast A／D＇s with resolutions up to 8 bits．The SHM－HU ac－ quires a full scale 5 V input change in just 25 nsec．and features a 10 psec aperture un－ certainty time．Bandwidth is 50 MHz and the slew rate is $200 \mathrm{~V} / \mu \mathrm{sec}$ ．
Through the use of thin film hybrid construc－ tion，this ultra high speed circuit is contained in a miniature 24 －pin ceramic package．A 53 picofarad MOS hold capacitor is incorpo－ rated inside the package and provision is made for externally added capacitance when necessary．The sample－hold requires four external resistors and an LH0033 fast buffer amplifier for completion．The circuit is zeroed by adjustment of the LH0033 ampli－ fier．
Other features of this unit include a $\pm 2.5 \mathrm{~V}$ input／output voltage range and a fixed gain of 0.955 ．The sampling switch is controlled by a complementary series 10,000 ECL in－ put．An ECL differential line driver can be conveniently used for the sample control in－ puts．
Power requirements are $\pm 15 \mathrm{VDC}$ at 60 mA and $\pm 5 \mathrm{VDC}$ at 70 mA ．There are three basic models covering three operating tempera－ ture ranges， 0 to $+70^{\circ} \mathrm{C},-25$ to $+85^{\circ} \mathrm{C}$ and -55 to $+100^{\circ} \mathrm{C}$ ．For high reliability versions of the SHM－HU，including Datel＇s＂ S ＂pro－ gram and MIL－STD－ 883 level B，contact the factory．

DATEL－INTERSIL INC．， 11 CABOT BOULEVARD，MANSFIELD，MA 02048／TEL．（617）339－9341／TWX 710－346－1953／TLX 951340

SPECIFICATIONS, SHM-HU
(Typical at $25^{\circ} \mathrm{C}, \pm \mathbf{1 5 V}$ and $\pm 5 \mathrm{~V}$ supplies with external LH0033 Buffer Amp. unless otherwise noted)

MAXIMUM RATINGS
Power Supplies, Pins 9-19
$\pm 6 \mathrm{~V}$
Analog Input Volatage, Pin $22 \ldots . . \quad \pm 5 \mathrm{~V}$
Sample Inputs, Pins $1 \& 3 \ldots \ldots \ldots . \pm 5 \mathrm{~V}$ Differential
Current, Pins 6, 7, 20, 23, 50 mA

\section*{| Input Volt |
| :--- |
| Input Bias |
| Maximum |
| Input Imp |
| Sample C |
| OUTPUT |}

$\begin{array}{ll}\text { Output Voltage Range, Min. } & \pm 2.5 \mathrm{~V} \\ \text { Output Current } \ldots \ldots \ldots \ldots . . & \pm 10 \mathrm{~m}\end{array}$
Output Impedance 6 Ohms
PERFORMANCE
Accuracy 0.1%
Gain +0.955
Output Offset Voltage ${ }^{2}$, Sample
Mode
$\pm 100 \mathrm{mV}$ max
Output Offset Voitage Drift $\quad \pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
Sample to Hold Offset Error $\pm 100 \mathrm{mV}$ max.
Hold Mode Droop $50 \mu \mathrm{~V} / \mu \mathrm{sec}$.
Hold Mode Feedthrough 0.02%
DYNAMIC RESPONSE
Acquisition Time, $\mathbf{5 V}$ Step to 0.2%.. 25 nsec.
Bandwidth, -3 dB , Sample Mode ... 50 MHz
Slew Rate.
200V/ $\mu \mathrm{sec}$.
Aperture Delay Time
6 nsec .
Aperture Uncertainty Time 10 psec.
POWER REQUIREMENTS ${ }^{3}$
$\pm 15 \mathrm{VDC} \pm 0.75 \mathrm{~V} @ 60 \mathrm{~mA}$ $\pm 5 \mathrm{VDC} \pm 0.25 \mathrm{~V} @ 70 \mathrm{~mA}$

PHYSICAL ENVIRONMENTAL
Operating Temperature Ranges

SHM-HUMC SHM-HUMR

Storage Temperature Range
Package Type
Pins.
Weight
NOTES

1. Output is from LH0033 amplifier and is not short circuit proof.
2. Output offset voltage adjustable to zero by LH0033 offset adjustment.
3. $\pm 12 \mathrm{~V}$ supplies can be used if the 360 ohm resistors at the Bias 1 pins are changed to 240 ohms and the 240 ohm resistors at the Bias 2 pins are changed to 160 ohms .
4. The SHM-HU can be driven by TTL logic input by biasing SAMPLE CONTROL input to +1.2 V and driving the SAMPLE CONTROL with a positive pulse for sample mode.

ORDERING INFORMATION
OPERATING TEMP.

MODEL
SHM-HUMC
SHM-HMUR
SHM-HUMM

RANGE TYPE SEAL
0 to $+70^{\circ} \mathrm{C} \quad$ Hermetic
25 to $+85^{\circ} \mathrm{C} \quad$ Hermetic
-55 to $+100^{\circ} \mathrm{C} \quad$ Hermetic

Mating Socket: DILS-3 (24-Pin Socket)
Trimming Potentiometer: TP100 (100 ohms)
For high reliability versions of the SHM-HU, including Datel's "S" program and MIL-STD-883 level B, contact factory
THE SHM-HU IS COVERED BY GSA CONTRACT.

TECHNICAL NOTES

1. It is recommended that the $\pm 5 \mathrm{~V}$ supplies of the SHM-HU be bypassed with $0.1 \mu \mathrm{~F}$ ceramic capacitors as close as possible to pins 9 and 19 . The $\pm 15 \mathrm{~V}$ supplies to the LH0033 should be bypassed with the same value capacitors.
2. It is essential that the output lead from pin 18 to pin 5 of the LH0033 be kept as short and direct as possible. Also, the complementary ECL driver should be as close as possible to pins 1 and 3 to minimize lead lengths to these pins.
3. With models SHM-HUGC, SHM-HUMC and SHM-HUMR, the LH0033C should be used, and with model SHM-HUMM, model LH0033 should be used.
4. An external hold capacitor may be added from pin 18 to pin 15. This capacitor should be an MOS or polystyrene type. Hold mode droop and sample-to-hold offset error will decrease proportionately with the size of this capacitor and acquisition time will increase proportionately.
5. The SHM-HU can be used with model ADC-HZ12B to realize a fast $4 \mu \mathrm{sec} \mathrm{A} / \mathrm{D}$ converter with sample-hold. The ultra high speed of the SHM-HU will add negligibly to the conversion time. The ADC-HZ12B in this configuration is connected for $\pm 2.5 \mathrm{~V}$ input and has its output coding short cycled to 8 bits instead of 12 .
6. Although the SHM-HU has been specifically designed for use with Datel-Intersil's ADC-HU3B A/D converter, it is compatible with other ultra-fast A / D s of up to 8 bits resolution.

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved 11 CABOT BOULEVARD, MANSFIELD. MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 - Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE
(

FEATURES

- 0.01\% Accuracy
- 1.0μ s Acquisition Time
- $2 \mathbf{n s e c}$ Aperture Uncertainty
- 5 MHz Bandwidth
- 50 mA Output Current
- Gain Programmable From ± 1 to ± 10

GENERAL DESCRIPTION

The SHM-6 is a high speed, high accuracy sample-hold circuit manufactured with thin film hybrid technology. This design offers the speed and performance of modular sample-holds with the compactness and integrity of advanced hybrid techniques. The unit's excellent high-speed characteristics include a guaranteed acquisition time of 800 nsec to 0.1% accuracy and $1.0 \mu \mathrm{sec}$ to 0.01% for a 10 volt change.
The SHM-6 is a complete sample-hold containing a precision MOS holding capacitor. The input amplifier is an open loop transductance amplifier which can be externally connected for closed loop gains from ± 1 to ± 10. In addition to its speed, accuracy and selectable gain, the SHM-6 has an output capability of 50 mA . These features allow this unit to offer an unusual degree of adaptability.
The most frequently utilized configuration of the SHM-6 is a unity gain, noninverting sample-hold. In this mode, the device has a $\pm 10 \mathrm{~V}$ input and output range with $10^{8} \Omega$ input resistance. Full power bandwidth is 500 KHz , and small signal tracking capability is 5 MHz . The input offset voltage and sample to hold error can be adjusted to zero with the use of two external trim pots.
The SHM-6 is a key component in fast data acquisition systems. A 110 KHz throughput rate can be accomplished using the SHM-6 in conjunction with Datel-Intersil's ADC-HZ
 maximum conversion time).
The sample-hold is cased in a 32 -pin ceramic package. Models are available in three operating temperature ranges: 0 to $+70,-25$ to +85 , and -55 to +100 degrees centigrade. High reliability versions of each módel are available under Datel-Intersil's " S " program and MIL-STD-883 level B. For further information on these, contact the factory.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, SHM-6
Typical at $25^{\circ} \mathrm{C}, \pm \mathbf{1 5 V}$ and +5 V supplies unless otherwise noted

MAXIMUM RATINGS

Positive Supply +18 V
Negative Supply -18 V
Logic Supply . +7.0 V
Digital Input Voltage +5.5 V
Analog Input Voltage \pm Vs
Differential Input Voltage $\pm 30 \mathrm{~V}$
INPUT AMPLIFIER SPECIFICATIONS
Offset Voltage $\pm 2 \mathrm{mV}$
Offset Voltage Tempco $\pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Offset Current . 1 nA max.
Offset Current vs. Temp. Doubles every $10^{\circ} \mathrm{C}$
Bias Current . 10 nA max.
Input Resistance $10^{8} \Omega$
Common Mode Voltage Range $\pm 10 \mathrm{~V}$ min.
Common Mode Rejection Ratio 74 dB min.
Open Loop Gain $10^{6} \mathrm{~V} / \mathrm{V}$
Gain Bandwidth Product 5 MHz
Power Supply Rejection Ratio $\quad 0.004 \% / \%$ Supply
DIGITAL INPUT CHARACTERISTICS
Digital Control Logic
DTL, TTL
Input Logic Level, Sample Mode OV to +0.8V @ -3.2 mA
Input Logic Level, Hold Mode +2.0V to +5.0V @ +80 A
ANALOG OUTPUT CHARACTERISTICS
Output Voltage Range $\pm 10 \mathrm{~V}$ min
Output Current $\pm 50 \mathrm{~mA}$ max.
Output Resistance 0.1Ω max
SAMPLE HOLD CHARACTERISTICS (Noninverting unity gain)
Acquisition Time, 10V Step to $\mathbf{0 . 1} \% \quad 800$ nsec. max.
Acquisition Time, 10V Step to $\mathbf{0 . 0 1 \%} 1 \mu \mathrm{sec}$. max.
Aperture Delay Time 20 nsec .
Aperture Uncertainty Time 2 nsec.
Sample to Hold Error Adjustable to Zero
Hold Mode Voltage Droop $10 \mu \mathrm{~V} / \mu \mathrm{sec} . \max$.
Hold Mode Feedthrough 0.01% max.
Offset . Adjustable to Zero
Gain . ± 1 to ± 10
Gain Error . 0.01% max.
Nonlinearity, $\mathbf{V}_{\text {OUT }}= \pm \mathbf{1 0 V} \quad 0.01 \%$ max.
Full Power Bandwidth, $\mathbf{V}_{\text {OUT }}= \pm \mathbf{1 0 V} 500 \mathrm{KHz}$
Slew Rate $40 \mathrm{~V} / \mu \mathrm{sec}$

POWER REQUIREMENTS

Positive Supply
+15 VDC $\pm 0: 5 \mathrm{~V} @ 55 \mathrm{~mA}$
Negative Supply $-15 \mathrm{VDC} \pm 0.5 \mathrm{~V}$ @ 60 mA
Logic Supply +5VDC $\pm 0.5 \mathrm{~V} @ 30 \mathrm{~mA}$

PHYSICAL-ENVIRONMENTAL	
Operating Temperature Ranges	
SHM-6MC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
SHM-6MR	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SHM-6MM	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Type	32 Pin Ceramic
Pins .	Kovar (.010 x .018)
Weight .	$0.5 \mathrm{Oz}(14 \mathrm{~g})$

Operating Temperature Ranges

TECHNICAL NOTES

1. It is essential that the $+15 \mathrm{~V},-15 \mathrm{~V}$ and +5 V supplies, pins 28,31 and 24 respectively, each be bypassed to ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor connected as close to the pins as possible.
2. Digital Common, pin 26, and Analog Common, pin 10 , are not connected together internally, therefore they must be connected externally as directly as possible. It is strongly recommended that a ground plane be run underneath the case between the two commons. Analog ground and $\pm 15 \mathrm{~V}$ power ground should be run to pin 10, digital ground and +5 V power ground should be run to pin 26 .
3. An external holding capacitor can be added to decrease hold mode voltage droop but with consequently longer acquisition time. For temperatures up to $+85^{\circ} \mathrm{C}$, polystyrene capacitors are recommended; for higher temperatures, polypropylene or teflon capacitors should be used.
4. In the inverting unity gain operating mode, the feedback and input resistors should be carefully matched or trimmed to yield the desired gain of one. In general, the operating parameters are the same as in the noninverting unity gain configuration, except that the sampling bandwidth is reduced by a factor of two. For applications of the SHM-6 with gain greater than one, sampling bandwidth is inversely proportional to gain.
5. Capacitive loads on the output should be limited to 100 pF to maximize acquisition time. The SHM-6 has a $\pm 50 \mathrm{~mA}$ current drive capability.
6. This device dissipates approximately 2 watts of power due to the transconductance amplifier. The case to ambient thermal resistance is approximately $25^{\circ} \mathrm{C}$ per watt. For ambient temperatures above $+50^{\circ} \mathrm{C}$, care should be taken to maintain air circulation in the vicinity of the case.
7. The adjustment procedures for the SHM-6 are as follows. Ground the input pin and connect the output to a D.V.M., operate the offset adjustment potentiometer to yield an output of zero as read on the D.V.M. The sample-hold step adjustment is performed with the input pin grounded and the output connected to an oscilloscope set to $1 \mathrm{mV} / \mathrm{cm}$ sensitivity. The digital input pin is driven with a compatible square wave at approximately 250 KHz and the sample-hold step adjustment potentiometer is operated to produce a flat-line output on the oscilloscope.

ORDERING INFORMATION OPERATING
 MODEL TEMP. RANGE

SHM-6MC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Hermetic
SHM-6MR	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Hermetic
SHM-6MM	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	Hermetic

Trimming Potentiometers TP2K

(2 Required Per SHM-6)
DILS-2 Mating Socket
(2 Required Per Sample-Hold)
For High Reliability versions of the SHM-6, including units screened to MIL-STD-883, Level B, contact the factory.

THESE SAMPLE-HOLDS ARE COVERED BY GSA CONTRACT.

SAMPLE-HOLD
NONINVERTING

$$
\text { GAIN }=+1
$$

The $z K \Omega$ offset trimming potentiometers should be of the $100 \mathrm{PM} /{ }^{\circ} \mathrm{C}$ cermet type. These are available from Datel-Intersil as model TP2K

TYPICAL PERFORMANCE
(Noninverting unity gain at $25^{\circ} \mathrm{C}, \pm \mathbf{1 5 V}$ and +5 V supplies unless otherwise noted)

Ultra-High Speed Sample-Holds SHM-UH Series

FEATURES

- 10 MHz Sampling Rate
- 30 nsec Acquisition Time
- 30 psec Aperture Uncertainty
- Diode Bridge Switch
- 45 MHz Bandwidth

GENERAL DESCRIPTION

The SHM-UH series is comprised of two ultra-fast sample-holds specifically designed for use with Datel-Intersil ACD-UH series, or other ultra-fast 6,8 and 10 bit A/D converters. Both models in this series use an open loop design optimized for ultra-high speed operation. This design consists of an ultra-fast input buffer amplifier, a transformer driven diode bridge switch, and a high impedance output buffer amplifier.
The unique pulse transformer driven diode bridge switch is a key design feature in attaining a 30 nsec . acquisition time for a 10 V signal change. This switch also holds aperture uncertainty time to less than 30 picoseconds for the SHM-UH3 and less than 200 picoseconds for the SHM-UH.
The SHM-UH3 is the newest member of this series and embodies substantial performance improvements on an already high performance design. This model is recommended for inclusion in new design applications. In addition to a 30 nsec acquisition time with only 30 picoseconds of aperture uncertainty, linearity is 0.05% of full scale and hold-mode feedthrough is -66 dB for inputs from DC to 10 MHz . The SHM-UH3 utilizes all hermetically sealed semiconductors in its design.

The SHM-UH is the lower cost version of the series. An acquisition time of 50 nsec , aperture uncertainty of less than 200 picoseconds, and linearity of 0.25% make this model wel! suited to use with ultra-high speed A/D converters with up to 8 bits resolution.

Both models have sample-mode bandwidths of 45 MHz , output slew rates of $500 \mathrm{~V} / \mu \mathrm{sec}$ and output current drive capabilities of $\pm 30 \mathrm{~mA}$. Each has an output offset adjustment accessible from the side of the module.
These sample-holds are encapsulated in 2 $\times 2 \times 0.375$ inch ($51 \times 51 \times 5 \mathrm{~mm}$) cases with dual-in-line pinning compatibility. Power requirements are $\pm 15 \mathrm{VDC}$ and +5 VDC. Standard versions operate over a temperature range of 0 to $+70^{\circ} \mathrm{C}$ with extended temperature range versions also available.

PIN	FUNCTION
1	SAMPLE CONTROL IN
2	SAMPLE CONTROL GND
15	ANALOG OUTPUT GND
16	ANALOG OUTPUT
17	$+5 V ~ P O W E R ~$
18	$5 V$ POWER GND
19	$+15 V$ POWER
20	$-15 V ~ P O W E R$
21	$15 V$ POWER GND
31	ANALOG INPUT GND
32	ANALOG INPUT

TECHNICAL NOTES

PHYSICAL-ENVIRONMENTAL
Operating Temp. Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temp. Range $\ldots \ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity Up to 100% Non-condensing
Case Size
$2 \times 2 \times 0.375$ inches $(50,8 \times 50,8 \times 9,5 \mathrm{~mm})$
Case Material Black Diallyl Phthalate, per MIL-M-14
Pins 0.020" Dia, Gold Plated $0.25^{\prime \prime}$ Long, min. $3 \mathrm{oz} .(85 \mathrm{~g})$

NOTES:

1. Maximum ratings represent the limits of device operation without damage. The devices should not be operated at these limits.
2. 150 pA max @ $25^{\circ} \mathrm{C}$. Doubles every $10^{\circ} \mathrm{C}$ (SHM-UH Only).
3. For full scale signal outputs. For small signal outputs ($\pm 1 \mathrm{~V}$), output load resistance must be decreased to 100Ω
4. See Feedthrough Attenuation Graph.
5. Model SHM-UH requires three sampling pulses to acquire a full scale signal change.
6. For the SHM-UH this will vary by ± 2 nsec max. with temperature.
7. See Technical Note 10.
8. This may vary between units by 3 nsec .
9. For input signal changes of $\pm 1.25 \mathrm{~V}$ max., larger input signal changés require additional sample pulses and settling time. See Technical Note• 9
10. 30 nsec sampling pulses with 70 nsec between pulses.
11. See Technical Note 4.
12. These devices are true sample-holds, rather than track and holds, in that they take an "instantaneous" sample of the input signal rather than continuously track it and hold on command. The extremely high speed available with this series allows a close approximation to sampling period of the ideal zero-order hold. Design considerations necessary to attain this level of performance place a limit on long-term holding ability. A/D converters used with these sample-holds should be selected for compatible speed and accuracy.
13. Aperture uncertainty time is a measurement of the time uncertainty or jitter of the actual point in time of the switch change to the off state. It is an indication of the repeatability of the switch characteristics. This time should not be confused with the aperture delay time which is a fixed delay and can be compensated for.
14. Acquisition time is the time required, after the sampling switch is closed, for the hold capacitor to charge to a full scale voltage change and remain within a specified error band around the final value.
15. Acquisition to output time is defined as the period from the receipt of the sample command until the output of the sample-hold has settled to within a specified error band of its final value. This is the operating period of the sample-hold, including all internal delays and settling time, and consequently defines the total time required for a single sample-hold operation
16. Digital and analog grounds are not connected internally. When using these sample-holds with A/D converters, good design practice dictates the connection of analog and digital grounds from both devices at one point, preferably at the A/D converter to avoid ground loops. Use of a ground plane is recommended for best performance.
17. For Model SHM-UH only, hold mode droop is from the held value of the analog input signal toward the signal level at the input. The droop experienced is also dependent on input signal characteristics and is related to the feedthrough attenuation characteristics. The combination of these factors may cause the observed hold mode voltage droop to be significantly less than 50 $\mu \mathrm{V} / \mu \mathrm{sec}$ for some applications, e.g., droop is zero for a constant input signal. In the case of Model SHM-UH3, droop is independent of feedthrough.
18. For both the SHM-UH and the SHM-UH3 input sources should be purely resistive.
19. Input overvoltage protection may be added to the SHM-UH3 by connecting diodes from the analog input and the analog input ground to the +5 V and -5 V supplies, see "Input Protection" diagram.
20. To acquire full scale input signal changes, the SHM-UH requires three sampling pulses with a 100 nsec . settling time allowed between each to acquire full scale input changes to rated linearity.
21. Sample pulse widths greater than those specified under MAXIMUM RATINGS will give unsatisfactory performance due to drive transformer saturation. For Model SHM-UH3, excessive pulse widths will result in the sample-hold returning to the hold mode before the sample control input is taken low. Model SHM-UH may be damaged by exceeding sample pulse width limits.

SAMPLE CONTROL INTERFACE SHM-UH

SAMPLE CONTROL INTERFACE SHM-UH3

ORDERING INFORMATION

MODEL
DESCRIPTION
SHM-UH
SHM-UH3
50 nsec, 0.25\%

Mating Socket DILS-2, 2 req'd/Module
For extended temperature range operation the following suffixes should be added to the model number. Consult Factory for Price and Delivery.
-EX
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operation
-EXX-HS
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operation, with all hermetically sealed semiconductor components.

THESE SAMPLE-HOLDS ARE COVERED BY GSA CONTRACT

HOLD MODE FEEDTHROUGH ATTENUATION

10HZ 100HZ 1 KHZ 10 KHZ 100KHZ 1 MHZ 10MHZ SINUSOIDAL INPUT FREQUENCY

HOLD-MODE FEEDTHROUGH IS A PHENOMENA THAT OCCURS AFTER THE SWITCH HAS BEEN OPENED AND THE SIGNAL IS BEING HELD. A SMALL PART OF THE SIGNAL ON THE INPUT WILL BE COUPLED TO THE OUTPUT.

ADJUSTMENT PROCEDURE

1. Connect the Analog Input (pin 32) to the Analog Input Ground (Pin 31).
2. Connoct a procision pulse generator with negative going outnut pulses via a terminated coaxial cable to the Sample Control Input (pin 1) and the Sample Control Ground (pin 2). Use the sample control interface shown in the applicable diagram.
3. Pulse Repetition Rate 50 KHz
Pulse Width 40 nsec
Pulse Amplitude
Note: Sample Control Input Impedance is 50 Ohms
4. Connect a precision digital voltmeter to the Analog Output (pin 16) and the Analog Output Ground (pin 15).
5. Adjust the Offset Adjust Potentiometer (accessible through side of case) until the digital voltmeter reads 0.0000 V .

SAMPLE-HOLD DEFINITIONS

T_{1}, \quad APERTURE DELAY TIME
The period between the receipt of the hold command and opening of the sampling switch. Due to sampling switch characteristics, the measurement of this period contains a small amount of uncertainty, i.e., the actual point in time of the opening of the sampling switch will vary by a small amount with each operation. This variance falls within a narrow time range which is specified as the aperture uncertainty time (see definition below).
T_{2}, \quad ACQUISITION TIME
The time required, after the closing of the sampling switch, for the hold capacitor to charge to a full scale voltage change and then remain within a specified error band around the final value.
T_{3}, \quad APERTURE UNCERTAINTY TIME
The time variation, or jitter, in the opening of the sample switch.

APERTURE UNCERTAINTY ERROR

An amplitude uncertainty in the held value due to the change in the analog input signal during the aperture uncertainty time. This error is the product of the rate of change of the input signal and the aperture uncertainty time. Therefore, small values of aperture uncertainty time yield small values of aperture uncertainty error.
T_{4}, HOLD MODE SETTLING TIME
The time from the hold command transition until the output has settled within a specified error band around the final value.
T_{5}, ACQUISITION TO OUTPUT TIME
The time from the receipt of the sample command unitil the output of the sample-hold has settled within a specified error band around the final value.

SHM-UH3 AND ADC-UH8B CONNECTION

 Ultra Fast Accurate Analog Storage Sample \＆Hold Models SHM－2，SHM－2E

FEATURES

－Ultra Fast Acquisition Time
－Short Aperture Time
－Wide Frequency Response
－Fast Output Settling
－Low Temperature Coefficient

DESCRIPTION

Model SHM－2 Sample and Hold is the ultimate in speed．Designed to oper－ ate in conjunction with Datel Intersil＇s analog to digital converters，SHM－2 can track a full scale analog input in less than 100 nsec＇s to within $\pm 0.1 \%$ of full scale accuracy．Additional fea－ tures include wide frequency re－ sponse（D．C．to 500 KHz ），an aperture uncertainty of less than 10 nsec＇s and an output settling time of one $\mu \mathrm{sec}$ to within $\pm 0.1 \%$ ．
SHM－2 is usually connected between a signal source to be quantized and analog to digital converter，providing an excellent throughput rate for an overall data system．

APPLICATION

When digitizing an analog signal which varies with time and having a fre－ quency spectrum，it is difficult to determine what point of this signal is exactly represented by the resultant digital output．Since the maximum time＂uncertainty＂of the conversion is the total conversion time of the converter which may be called＂aper－ ture time or ambiguity time＂；there－ fore，the maximum error due to this uncertainty is the difference of two points of the analog signal under mea－ surement from T_{0} to time，T_{1} repre－ senting the time required to con－ vert the changing analog signal．
A faster converter will obviously shorten the aperture and the error will be reduced proportionately，but a device such as the SHM－2 with very narrow aperture characteristics，con－ trolled by command，is far more use－ ful in trying to determine the exact point of the changing analog signal when converting．The purpose of SHM－2 is to＂hold＂upon command at the beginning of the conversion（ T_{0} time）the analog voltage applied at its input．The＂held＂value will remain constant during the conversion process． Relationships of error due to time uncertainty versus input frequency is plotted on the reverse side ot this sheet．

SPECIFICATIONS (Typical @ $25^{\circ} \mathrm{C}$ unless noted)

ELECTRICAL

Analog Input:

Analog input voltage range . . . Up to ± 10 VFS

Input overvoltage	$\pm 15 \mathrm{~V}$ (max.) with a recovery time of 500 nsec			
Input source current	$\pm 12 \mathrm{~mA}$ max drive during transition $\pm 2 \mathrm{~mA}$ bias during steady state. (Switching circuit is a diode bridge driven by 2 current sources.)			
Mode control input	DTL or TTL compatible, positive logic			
		Input	V In	ut
	Status	Code	Min.	Max.
	Sample Hold	" ${ }^{\prime \prime} 1$ " ${ }^{\prime \prime}$	$\begin{gathered} 0 \mathrm{~V} \\ +2.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & +0.8 \mathrm{~V} \\ & +5.5 \mathrm{~V} \end{aligned}$

Rise and Fall time $\leqslant 10$ nsec to maintain aperture time spec s.

Analog Output

Output voltage range
Up to ± 10 VFS
Output current
$\pm 5 \mathrm{~mA}, \mathrm{SHM}-2$ $\pm 10 \mathrm{~mA}, \mathrm{SHM}-2 \mathrm{E}$

Dynamic Characteristics:

Bandwidth
Acquisition time
Aperture time
Feedthrough @ any input
frequency

DC to 500 KHz (max.) full power @ 3 db point
100 nsec (max.) to $\pm 0.1 \%$ of FS of input signal (5 V step) 10 nsec max. (8 nsec delay, 2 nsec jitter)
0.5\%

Settling time $1 \mu \mathrm{sec}$ (max.) to $\pm 0.1 \%$, SHM-2 (10V step) 400nsec (max.) to $\pm 0.1 \%$ SHM-2E (10V step)
Hold decay rate $50 \mu \mathrm{~V} / \mu \mathrm{sec}$, SHM -2
Output slowing rate $250 \mathrm{~V} / \mu \mathrm{sec}$, SHM-2E

Performance:

Gain	1.00 Max. to +0.999 Min
Accuracy (@ $\mathbf{2 5}^{\circ} \mathrm{C}$)	$\pm 0.1 \%$ of FS
Linearity	$\pm 0.1 \%$ of FS
Temperature coefficient	$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS
L.ong term stability	$\pm 0.025 \% / 6$ months (gain \& offset)
Input power requirements	$\begin{aligned} & +15 \pm .5 \mathrm{VDC} @ 35 \mathrm{ma} \\ & -15 \pm .5 \mathrm{VDC} @ 35 \mathrm{ma} \end{aligned}$

PHYSICAL-ENVIRONMENTAL

Operating temperature range	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage temperature range .	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative humidity	Up to 100\% non-condensing
Size	$2^{\prime \prime} \mathrm{L} \times 1^{\prime \prime} \mathrm{W} \times 0.375^{\prime \prime} \mathrm{H}$ plug-in module
Pins	$0.020^{\prime \prime}$ round gold plated $0.250^{\prime \prime}$ long minimum
Case material	Black diallyl phthalate, per MIL-M-14. Fully repairable
Weight.	2 oz .
	Model SHM-2. Model SHM-2E
Mating Socket.	DILS-2, 2 Req'd.. . .

Model SHM-2 and SHM-2E sample and hold modules are fully encapsulated and feature dual in-line pinning compatibility (i.e., $0.100^{\prime \prime}$ grid pin spacing and $0.800^{\prime \prime}$ between rows of pins).

FEATURES

- 200nSec. Acquisition to 0.1\%
- 350 nSec. Acquisition to $.01 \%$
- 5 MHz Bandwidth
- .005\% Linearity
- 250 pSec. Aperture Uncertainty

GENERAL DESCRIPTION

Model SHM-5 is a new, ultra-fast acquisition sample-hold module for use with high speed 10 and 12 -bit A/D converters. When used with Datel-Intersil's model ADC-EH12B3, a 12-bit 2 $\mu \mathrm{sec}, \mathrm{A} / \mathrm{D}$, the SHM-5 permits sampling and conversion at rates up to 425 kHz . The key circuit element in the SHM-5 is an ultra-fast settling hybrid operational amplifier manufactured in Datel's thin-film hybrid facility. This amplifier operates in the inverting mode as a hold amplifier. A fast FET sampling switch operates between two virtual ground points in order to keep switching errors small and independent of signal level. A second FET switch operates out-of-phase with the first one to minimize signal feedthrough errors.

The SHM-5 is designed primarily for fast track \& hold and simultaneous sampling applications with A/D converters. From the tracking mode it realizes acquisition times of 200 nsec . to 0.1% or $350 \mu \mathrm{sec}$. to 0.01% for a 10 V change. When the input buffer amplifier must also make a 10 V change, as in multiplexer applications, the total acquisition time is $1 \mu \mathrm{sec}$. to 0.01%.
The SHM-5 operates in the inverting mode with a gain of -1 and an input impedance of 10^{8} ohms. Dynamic characteristics include a 5 MHz small signal bandwidth, and $25 \mathrm{~V} / \mu \mathrm{sec}$. slew rate in the sampling (tracking) mode. When acquiring a new sample, however, the internal slew rate across the holding capacitor is $200 \mathrm{~V} / \mu \mathrm{sec}$. Aperture delay time is 20 nanoseconds and aperture uncertainty time is 250 picOseconds.
This device is packaged in a $2 \times 2 \times$ 0.375 inch epoxy encapsulated module. Operating temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and power requirement is $\pm 15 \mathrm{VDC}$ at 75 mA maximum. Model SHM-5 is pin compatible with DatelIntersil's model SHM-UH3.
input output CONNECTIONS

PIN	FUNCTION
1	SAMPLE CONTROL
2	SAMPLE CONTROL GND
15	ANALOG OUTPUT GND
16	ANALOG OUTPUT
17	NO CONNECTION
18	OFFSET ADJ.
19	$+15 V ~ P O W E R$
20	-15V POWER
21	POWER GND
31	ANALOG INPUT GND
32	ANALOG INPUT

SPECIFICATIONS, SHM-5
(Typical at $25 \mathrm{C} . \pm 15 \mathrm{~V}$ supply unless otherwise noted)

INPUTS Input Voltage Range Input Overvoltage, no damage Input Impedance Input Bias Current Sample Control, sample mode hold mode Sample Control Loading Offset Adjustment Range	$\begin{aligned} & \pm 10 \mathrm{~V} \text { min. } \\ & \pm 15 \mathrm{~V} \\ & 10^{8} \text { ohms } \\ & 250 \mathrm{nA} \text { max. } \\ & +2.0 \text { to }+5.5 \mathrm{~V} \\ & 0 \mathrm{~V} \text { to }+0.8 \mathrm{~V} \\ & +1 \mathrm{~mA} \\ & \pm 300 \mathrm{mV} \end{aligned}$
OUTPUT Output Voltage Range, min. Output Current, S.C. protected. Output Impedance	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \pm 40 \mathrm{~mA} \\ & 0.1 \Omega \mathrm{max} . \end{aligned}$
PERFORMANCE Gain Gain Temp. Coefficient Output Offset Voltage, sample mode Output Offset Voltage Drift . Sample to Hold Offset Error. Tracking Nonlinearity Hold Mode Droop Hold Mode Feedthrough, DC-500kHz Output Offset vs Supply	$\begin{aligned} & -1.000 \pm 0.1 \% \\ & \pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { max. } \\ & \pm 50 \mathrm{mV} \text { max. } \\ & \pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { max. } \\ & \pm 5 \mathrm{mV} \max . \\ & \pm .005 \% \text { max. } \\ & 20 \mu \mathrm{~V} / \mu \mathrm{sec} \max . \\ & 0.02 \% \\ & 1 \mathrm{mV} / \mathrm{V} \end{aligned}$
DYNAMIC RESPONSE Acquisition Time ${ }^{1}, 10 \mathrm{~V}$ to 0.1% Acquisition Time ${ }^{1}, 10 \mathrm{~V}$ to $.01 \%$. Acquisition Time ${ }^{2}, 10 \mathrm{~V}$ to 0.01%. Bandwidth, tracking, $\mathbf{- 3 d B}$ Slew Rate, tracking Aperture Delay Time Aperture Uncertainty Time	200 nsec. max 350 nsec. max $1.0 \mu \mathrm{sec}$ typ., $1.5 \mu \mathrm{sec}$. max. 5 MHz $25 \mathrm{~V} / \mu \mathrm{sec}$. 20nsec 250 psec.
POWER REQUIREMENT Power Supply Voltage Quiescent Current	$\begin{aligned} & \pm 15 \mathrm{VDC} \pm 0.5 \mathrm{~V} \\ & 75 \mathrm{~mA} \text { max. } \end{aligned}$
PHYSICAL-ENVIRONMENTAL Operating Temp. Range Storage Temp. Range Relative Humidity Case Size Case Material \qquad Pins. Weight	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Up to 100% non-condensing $2.0 \times 2.0 \times 0.375 \mathrm{in}$, $50,8 \times 50,8 \times 9,5 \mathrm{~mm}$ Black diallyl phthalate per MIL-M-14 .020" round, gold plated; $25^{\prime \prime}$ long min . 2 oz. (57g.)

NOTES:

1. From tracking mode.
2. From input buffer.

ORDERING INFORMATION

SHM-5
Mating Socket: DILS-2 (2/module)
Trimming Potentiometer, TP2OK
For extended temperature range operation, the following suffix is added to the model number. Consult factory for price and delivery. -EX $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation.
-EXX-HS $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ with hermetically sealed semiconductor components.

TECHNICAL NOTES

1. The SHM-5 initial gain error of $\pm 0.1 \%$ must be adjusted out separately from the sample hold. This is most easily done by using the gain adjust of the A/D converter used with the SHM-5.
2. The maximum sample-to-hold offset error of 5 mV is constant with signal level. This error can be adjusted out in the hold mode by means of the external offset adjustment shown in the diagram. It should be noted that the SHM-5 can be adjusted for zero output offset in either the sample (tracking) mode or the hold mode, but not in both at the same time.
3. The sample control input is compatible with standard TTL levels. It is recommended that this input be driven from its own active pull-up Schottky TTL circuit, such as the 74S132. This will readily supply the +1 mA drive current required by the SHM -5 .
4. The analog signal delay from the input of the SHM-5 to the sampling switch is approximately 32 nsec . Aperture delay is 20 nsec.
5. When the SHM-5 is switched into the hold mode, about 50 nsec. is required for the switch transient to settle. This time should be allowed for before the first A / D conversion is made.

THE SHM-5 IS CGVERED BY GSA CONTRACT.

11 CABOT BOULEVARD. MANSFIELD. MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340
Santa Ana, (714)835-2751. (L.A.) (213)933-7256• Sunnyvale. CA (408)733-2424•Gaithersburg, MD (301)840-9490

- Houston, (713)781-8886• Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Analog Multiplexers

Quick Selection: Analog Multiplexers

	MODEL	FEATURES	CHANNELS NO. TYPE		INPUT VOLTAGE RANGE OPER. ABS. MAX.		CHANNEL RESISTANCE ON (Ω)	TRAN ACCU	CROSSTALK
$\begin{aligned} & U \\ & \frac{U}{E} \\ & \vdots \\ & 0 \\ & 2 \\ & 0 \\ & \Sigma \end{aligned}$	MX-808	Overvoltage Protection	8	Sing. End.	$\pm 15 \mathrm{~V}$	$\pm 35 \mathrm{~V}$	1.5 K	0.01\%	-86 dB
	MX-808M						1.2 K		
	MV-808	Low ON Resistance	8	Sing. End.	$\pm 15 \mathrm{~V}$	$\pm 17 \mathrm{~V}$	250	0.01\%	-86 dB
	MV-808M								
	MU-6108C	Low ON Resistance Low Leakage	8	Sing. End.	$\pm 14 \mathrm{~V}$	$\pm 17 \mathrm{~V}$	180	0.01\%	-
	MX-1606	Overvoltage Protection	16	Sing. End.	$\pm 15 \mathrm{~V}$	$\pm 35 \mathrm{~V}$	1.5K	0.01\%	-86 dB
	MX-1606M						1.2 K		
	MV-1606	Low ON Resistance	16	Sing. End.	$\pm 15 \mathrm{~V}$	$\pm 17 \mathrm{~V}$	270	0.01\%	-86 dB
	MV-1606M						170		
	MU-6116C	Low ON Resistance Low Leakage	16	Sing. End.	$\pm 11 \mathrm{~V}$	$\pm 16 \mathrm{~V}$	480	0.01\%	-
	MXD-409	Overvoltage Protection	4	Diff.	$\pm 15 \mathrm{~V}$	$\pm 35 \mathrm{~V}$	1.5K	0.01\%	-86 dB
	MXD-409M						1.2 K		
	MVD-409	Low ON Resistance	4	Diff.	$\pm 15 \mathrm{~V}$	$\pm 17 \mathrm{~V}$	250	0.01\%	-86 dB
	MVD-409M								
	MU-6208C	Low ON Resistance Low Leakage	4	Diff.	$\pm 14 \mathrm{~V}$	$\pm 16 \mathrm{~V}$	180	0.01\%	-
	MU-6208M								
	MXD-807	Overvoltage Protection	8	Diff.	$\pm 15 \mathrm{~V}$	$\pm 35 \mathrm{~V}$	1.5K	0.01\%	$-86 \mathrm{~dB}$
	MXD-807M						1.2K		
	MVD-807	Low ON Resistance	8	Diff.	$\pm 15 \mathrm{~V}$	$\pm 17 \mathrm{~V}$	270	0.01\%	-86 dB
	MVD-807M						170		
	MU-6216C	Low ON Resistance Low Leakage	8	Diff.	$\pm 11 \mathrm{~V}$	$\pm 16 \mathrm{~V}$	480	0.01\%	-
	MU-6216M								

COMMON MODE REJECTION	CHANNEL ACCESS TIME TURN ON (nSEC)	POWER REQUIR	PACKAGE SIZE	PACKAGE MATERIAL	OPERATING TEMP (${ }^{\circ} \mathrm{C}$)	SINGLE PRICE	SEE PAGE
-	500	± 15 VDC	$16 \mathrm{Pin}$	Ceramic	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\$ 17.50$	264C
-	350	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	$16 \mathrm{Pin}$ DIP	Ceramic	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{aligned} & \$ 16.50 \\ & \hline \$ 43.00 \end{aligned}$	260C
-	300	$\pm 15 \mathrm{VDC}$	$16 \mathrm{Pin}$ DIP	Plastic Cerdip	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{aligned} & \$ 9.92 \\ & \hline \$ 20.65 \end{aligned}$	236C
-	500	± 15 VDC	$\begin{aligned} & 28 \mathrm{Pin} \\ & \text { DIP } \end{aligned}$	Ceramic	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{aligned} & \$ 29.50 \\ & \$ 78.50 \end{aligned}$	264C
-	300	$\pm 15 \mathrm{VDC}$	$\begin{aligned} & 28 \mathrm{Pin} \\ & \text { DIP } \end{aligned}$	Ceramic	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{aligned} & \$ 19.50 \\ & \$ 60.00 \end{aligned}$	260C
-	600	$\pm 15 \mathrm{VDC}$	$\begin{aligned} & 28 \mathrm{Pin} \\ & \text { DIP } \end{aligned}$	Plastic Cerdip	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\frac{\$ 17.80}{\$ 56.20}$	242C
120 dB	500	$\pm 15 \mathrm{VDC}$	16 Pin DIP	Ceramic	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{aligned} & \$ 17.50 \\ & \$ 57.00 \end{aligned}$	264C
120 dB	350	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5 \mathrm{~V} \end{aligned}$	16 Pin DIP	Ceramic	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{aligned} & \$ 16.50 \\ & \$ 43.00 \end{aligned}$	260C
	300	± 15 VDC	16 Pin DIP	Plastic Cerdip	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{aligned} & \$ 9.92 \\ & \hline \$ 20.65 \end{aligned}$	248C
120 dB	500	± 15 VDC	$\begin{aligned} & 28 \text { Pin } \\ & \text { DIP } \\ & \hline \end{aligned}$	Ceramic	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{aligned} & \$ 29.50 \\ & \hline \$ 78.50 \\ & \hline \end{aligned}$	264C
120 dB	300	$\pm 15 \mathrm{VDC}$	$\begin{aligned} & 28 \mathrm{Pin} \\ & \text { DIP } \end{aligned}$	Ceramic	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{aligned} & \$ 19.50 \\ & \hline \$ 60.00 \\ & \hline \end{aligned}$	260C
	600	$\pm 15 \mathrm{VDC}$	$28 \mathrm{Pin}$	Plastic	0 to +70	$\$ 17.80$ $\$ 56.20$	254C

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

FEATURES

- Ultra Low Leakage $\leq 100 p A$ (Total IDoff)
- ron < $\mathbf{4 0 0}$ ohms over full signal and temperature range
- Power supply quiescent current less than $100 \mu \mathrm{~A}$
- $\pm 14 \mathrm{~V}$ analog signal range
- No Latch up or "S.C.R." action
- Break before make switching
- Binary strobe control (3 strobe inputs control 8 channels)
- TTL and CMOS compatible strobe control
- Pin - Pin with DG508 HI-508 \& AD7508

GENERAL DESCRIPTION

The 6108 is a CMOS monolithic, one-out-of-8 multiplexer. The part is a plug-in replacement for the DG508. Three line binary decoding is used so that the 8 channels can be controlled by 3 strobe inputs; additionally a fourth input is provided to use as a system enable; if the enable input is OV , none of the channels can be turned on. When the enable input is high (5 V) the channels are sequenced by the 3 line strobe inputs. The 3 strobe inputs are controlled by TTL logic or CMOS logic elements; a "0" corresponds to any voltage less than 0.8 V and a " 1 " corresponds to any voltage greater than 2.4 V ; however the enable input En must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

MU-6108

ABSOLUTE MAXIMUM RATINGS

VIN (A, En) to Ground -15 V to 15 V
V_{S} or V_{D} to $V_{C C}$...................................... $0,-32 V$
V_{S} or $V_{D}-V_{C c}$
$0,32 \mathrm{~V}$
+Vcc to Ground ... 16V

- Vcc to Ground $-16 \mathrm{~V}$
Current (Any Terminal) 30 mA
Current (Analog Drain) 20 mA
Current (Analog Source) 20 mA
Operating Temperature -55 to $125^{\circ} \mathrm{C}$
Storage Temperature -65 to $150^{\circ} \mathrm{C}$Power Dissipation (Package)* 1200 mW
*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS

CHARACTERISTIC		MEASURED TERMINAL	$\begin{array}{\|c} \text { NO } \\ \text { TESTS } \\ \text { PER } \\ \text { TEMP } \\ \hline \end{array}$	$\begin{aligned} & \text { TYP } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	MAX LIMITS						UNIT	TEST CONDITIONS (UNLESS OTHERWISE NOTED) $\begin{gathered} +V_{C C}=\mathbf{1 5 V},-V_{C C}=-15 \mathrm{~V}, \text { Ground }=\mathbf{0 V} \\ \mathbf{V}_{E_{\mathrm{C}}}=+\mathbf{5 V} \text { (Note 1) } \end{gathered}$		
		M SUFFIX			C SUFFIX									
		$-55^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$					
			S to D	8	180	300	300	400	350	350	450	Ω	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{IS}=-1.0 \mathrm{~mA}$	Sequence each switch on
	ros(on)			8	150	300	300	400	350	350	450		$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V} . \mathrm{Is}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{A}(\mathrm{L})}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}(\mathrm{H})}=2.4 \mathrm{~V}$
	S ${ }^{\text {rDS(ON }}$			20							\%	$\operatorname{\Delta rDS}(\mathrm{ON})=\frac{\mathrm{rDS}(\mathrm{ON}) \mathrm{MAX}-\mathrm{rDS}(\mathrm{ON}) \mathrm{MIN}}{\mathrm{rDS}^{(O N) A V G}}-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} 10 \mathrm{~V}$		
1	IS(OFF)	S	8	0.002		0.05	50		0.1	50	NA	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	$V_{E n}=0$	
T			8	0.002		0.05	50		0.1	50		$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$		
C	ID(OFF)	D	1	0.03		0.1	100		0.2	100		$V_{D}=10 \mathrm{~V}, V_{S}=-10 \mathrm{~V}$		
			1	0.03		0.1	100		0.2	100		$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}$		
	ldo (on)	D	8	0.1		0.2	100		0.4	100		$\mathrm{V}_{S(\text { AII }}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$	Sequence each switch on$V_{A(L)}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}(\mathrm{H})}=2.4 \mathrm{~V}$	
			8	0.1		0.2	100		0.4	100		$\mathrm{V}_{\text {S(All }}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$		
$\begin{array}{\|c\|} \hline 1 \\ N \\ P \\ U \\ T \end{array}$	1 IAN(ON) or	A_{0}, A_{1} or A_{2} Inputs	3	. 01		-10	-30		-10	-30	$\mu \mathrm{A}$	$V_{A}=2.4 \mathrm{~V} \text { or OV }$		
	- Ian(off)		3	. 01		10	30		10	30		$V_{A}=15 \mathrm{~V} \text { or } 0 \mathrm{~V}$		
	$12 n$	$\mathrm{A}_{0} \mathrm{~A}_{1}$											All $V_{A}=0$ (Strobe pins)	
		A_{2}	3			-10	-30		-10	-30		$V_{E_{n}}=5 \mathrm{~V}$		
		En	1			-10	-30		-10	-30		$\mathrm{V}_{\mathrm{E}_{\mathrm{n}}}=0$		
	transition	D		0.3		1		.			$\mu \mathrm{S}$	See Fig. 1		
D	topen	D		0.2								See Fig. 2		
Y	Y ton (En)	D		0.6		1.5						See Fig. 3		
N	\checkmark toff(En)	D		0.4		1								
A	A "OFF" Isolation	D		60							dB	$\begin{aligned} & V_{E_{n}}=0, R_{L}=200 \Omega, C_{L}=3 p F, V_{S}=3 \mathrm{VRMS}, \\ & f=500 \mathrm{kHz} \end{aligned}$		
1	Cs(OFF)			5							pF	$\mathrm{V}_{\mathrm{S}}=0$	$V_{E n}=0 V . f=140 \mathrm{kHz}$ to 1 MHz	
	Cd(OFF)			25								$V_{D}=0$		
C	CDS(OFF)			1								$V_{S}=0, V_{D}=0$		
	113($+\mathrm{V}_{\text {CC }}$)	$+\mathrm{V}_{\text {cc }}$	1	40		200			1000		$\mu \mathrm{A}$	$V_{E n}=5 \mathrm{~V}$	All $V_{A}=0$ OR 5 V	
P	$13\left(-V_{c c}\right)$	$-V_{C C}$	1	2		100			1000					
P	113 Standby	$+V_{c c}$	1	1		100			1000			$V_{\text {En }} 0$		
	Y 13 Standby	- V_{cc}	1	1		100			1000					

NOTE 1: See Section I. Enable Input Strobing Levels.

Figure 2. $\mathbf{t}_{\text {open }}$ Break-Before-Make Switching Test

Figure 3. $t_{o n}$ and $t_{o f f}$ Switching Test

MU-6108 APPLICATION INFORMATION

I. Enable Input Strobing Levels

The chip enable input on the 6108 requires a minimum of +4.5 V to trigger it into the " 1 " state and a maximum of +0.8 V to
trigger it into the " 0 " state. If the chip enable input is being driven from TTL logic, a pull-up resistor is required from the gate output to +5 V supply. The value of this resistor is not critical and can be in the 1 K to $3 \mathrm{~K} \Omega$ range (See Figure 4 .

Figure 4. Enable Input Strobing from TTL Logic

MU-6108

MU-6108 APPLICATION INFORMATION (CONT.)

When the En input is driven from CMOS logic, no pullup is necessary. Fig. 5 shows the CD4009 driving the En input.

Figure 5. Enable Input Strobing from CMOS Logic

The Supply Voltage of the CD4009 does affect the switching speed of the 6108. 'same is true for TTL Supply Voltage Levels The chart below shows the effect, on transition times, of supply varying from +4.5 V to +5.5 V .

CMOS OR TTL SUPPLY VOLTAGE

$$
\begin{gathered}
+4.5 \mathrm{~V} \\
+4.75 \mathrm{~V}
\end{gathered}
$$

$$
+5.00 \mathrm{~V}
$$

$$
+5.25 \mathrm{~V}
$$

$+5.50 \mathrm{~V}$

TYPICAL transition@ $\mathbf{2 5}^{\circ} \mathrm{C}$
400ns
300ns
250ns
200ns
175 ns

The throughput rate can therefore be maximized by using a +5 V to +5.5 V supply for the Enable Strobe Logic.

The cases shown in Figures 4 and 5 deal with enable strobing when expandability to more than eighf channels is required. In these cases the En terminal acts as a fourth binary input. If eight channels or less are being multiplexed, the En terminal can be directly connected to +5 V logic supply which would "enable" the 6108 at all times.

MU-6108

MU-6108 APPLICATION INFORMATION (CONT.)

APPLICATIONS

II. Using the MU-6108 with supplies other than $\pm 15 \mathrm{~V}$

The 6108 can be used with power supplies ranging from $\pm 6 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. The switch rosion) will increase as the supply voltages decrease. However, the multiplexer error term the product of leakage times ros(on) will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the chip enable (En) voltage is at least 0.7 V below V_{cc} at all times. If this is not done the binary input strobing levels will not function properly. This may be achieved quite simply by connecting En (pin 2) to $+V_{c c}$ (pin 13) via a silicon diode as shown in Figure 6. If the 6108 is hooked up in this type of a configuration a further requirement must be met - the strobe levels at A_{0} and A_{1} must be within 2.5 V of the En voltage to define a binary " 1 " state.

For the case shown in Figure 6 the En voltage is 11.3 V which means that logic high at A_{0} and A_{1} is $=+8.8 \mathrm{~V}$ (logic low continues to be $=0.8 \mathrm{~V}$). In this configuration the 6108 cannot be driven by TTL $(+5 \mathrm{~V})$ or CMOS $(+5 \mathrm{~V})$ logic. It can be driven by TTL open collector logic or CMOS logic with +12 V supplies.

If the logic and the 6108 have common supplies the En pin should again be connected to the supply through a silicon diode. In this case tying En to the logic supply directly will not work since it will violate the 0.7 V differential voltage required between $+V_{c c}$ and En on the 6108 (See Figure 7). A 1μ f capacitor can be placed across the diode to minimize switching glitches.

Figure 6. MU-6108 Connection Diagram for less than $\pm 15 \mathrm{~V}$ Supply Operation.

MU-6108 APPLICATION INFORMATION (CONT.)

Figure 7. MU-6108 Connection Diagram with Enable Input Strobing for less than $\pm 15 \mathrm{~V}$ Supply Operation.

III. Peak-to-Peak Signal Handling Capability

The MU-6108 can handle input signals up to $\pm 14 \mathrm{~V}$, actually -15 V to +14.3 V , when it has $\pm 15 \mathrm{~V}$ supplies. The input protection diode prevents the handling of signals up to +15 V . The
electrical specifications of the MU-16108 are guaranteed for $\pm 10 \mathrm{~V}$ signals but the specifications have very minor changes for $\pm 14 \mathrm{~V}$ signals. The notable changes would be slightly lower rosion) and slightly higher leakages.

PACKAGE DIMENSIONS

CMOS 16-Channel Analog Multiplexer Model MU-6116

FEATURES

- Pin Compatible with DG506, HI-506 \& AD7506
- Ultra Low Leakage $\leq 100 \mathrm{pA}$
- $\pm 11 \mathrm{~V}$ analog signal range
- ron $<\mathbf{7 5 0}$ ohms over full signal and temperature range
- Break before make switching
- TTL and CMOS compatible strobe control
- Binary strobe control (4 strobe inputs control 16 channels)
- Two tier submultiplexing to facilitate expandability
- Power supply quiescent current less than $100 \mu \mathrm{~A}$
- No Latch up or "S.C.R." action

MU-6116

ABSOLUTE MAXIMUM RATINGS

VIN (A, EN) to Ground. 15 V to 15 V

V_{1} to Ground
16 V
V_{2} to Ground
-16V
Current (Any Terminal) 30 mA
Current (Analog Drain)
20 mA
Current (Analog Source)
20 mA
Operating Temperature -55 to $125^{\circ} \mathrm{C}$
Storage Temperature -65 to $150^{\circ} \mathrm{C}$
Power Dissipation (Package)* 1200 mW
*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS

NOTE 1: See Section V. Enable Input Strobing Levels.

Figure 1

MU-6116 APPLICATIONS

I. 1 out of 32 channel multiplexer using $2 \mathrm{MU}-6116 \mathrm{~s}$.

Figure 4

DECODE TRUTH TABLE

\mathbf{A}_{4}	\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	$\mathbf{O N}$ SWITCH
0	0	0	0	0	S 1
0	0	0	0	1	S 2
0	0	0	1	0	S 3
0	0	0	1	1	S 4
0	0	1	0	0	S 5
0	0	1	0	1	S 6
0	0	1	1	0	S 7
0	0	1	1	1	S 8
0	1	0	0	0	S 9
0	1	0	0	1	S 10
0	1	0	1	0	S 11
0	1	0	1	1	S 12
0	1	1	0	0	S 13
0	1	1	0	1	S 14
0	1	1	1	0	S 15
0	1	1	1	1	S 16

DECODE TRUTH TABLE

\mathbf{A}_{4}	\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	ON SWITCH
1	0	0	0	0	S 17
1	0	0	0	1	S 18
1	0	0	1	0	S 19
1	0	0	1	1	S 20
1	0	1	0	0	S 21
1	0	1	0	1	S 22
1	0	1	1	0	S 23
1	0	1	1	1	S 24
1	1	0	0	0	S 25
1	1	0	0	1	S 26
1	1	0	1	0	S 27
1	1	0	1	1	S 28
1	1	1	0	0	S 29
1	1	1	0	1	S 30
1	1	1	1	0	S 31
1	1	1	1	1	S 32

MU-6116 APPLICATIONS

II. 1 out of 32 channel multiplexer using 2 MU- 6116 s ; using an AS-5041 for submultiplexing.

Figure 5

DECODE TRUTH TABLE

\mathbf{A}_{4}	\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	ON SWITCH
0	0	0	0	0	S 1
0	0	0	0	1	S 2
0	0	0	1	0	S 3
0	0	0	1	1	S 4
0	0	1	0	0	S 5
0	0	1	0	1	S 6
0	0	1	1	0	S 7
0	0	1	1	1	S 8
0	1	0	0	0	S 9
0	1	0	0	1	S 10
0	1	0	1	0	S 11
0	1	0	1	1	S 12
0	1	1	0	0	S 13
0	1	1	0	1	S 14
0	1	1	1	0	S 15
0	1	1	1	1	S 16

DECODE TRUTH TABLE

\mathbf{A}_{4}	\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	ON SWITCH
1	0	0	0	0	S17
1	0	0	0	1	S 18
1	0	0	1	0	S 19
1	0	0	1	1	S 20
1	0	1	0	0	S 21
1	0	1	0	1	S 22
1	0	1	1	0	S 23
1	0	1	1	1	S 24
1	1	0	0	0	S 25
1	1	0	0	1	S 26
1	1	0	1	0	S 27
1	1	0	1	1	S 28
1	1	1	0	0	S 29
1	1	1	0	1	S 30
1	1	1	1	0	S31
1	1	1	1	1	S 32

MU-6116

MU-6116 APPLICATIONS

III. 1 out of 64 multiplexer using $41 / 16$ s and IH 5053 as submultiplexer.

Figure 6

IV. GENERAL NOTE ON EXPANDABILITY OF MU-6116

The MU-6116 is a two tier multiplexer wherein sixteen input channels are routed to a common output in blocks of 4 channels at a time. Each block of 4 input channels is routed to one common output channel; thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs, and the 4 outputs are all tied together. Thus 20 switches are needed to handle the 16 channels of information. The advantage of this scheme is lower output capacity and lower leakage than a system with all 16 channels tied to one common output. Also the expandability into $32,64,128$, etc. is facilitated. Figures 4,5 , and 6 show how the MU-6116 is expanded.
Figure 4 shows a 1 out of 32 multiplexer using 2 of the MU-6116s. Since the 6116 is itself a 2 tier mux the system as shown is basically a 2 tier system. Now the four output channels of each 6116 are tied together so that 8 channels are tied for the Vout common point. Since only one channel of information is on at a time, the common output will consist of 7 off channels and 1 on channel. Thus the output leakage will correspond to $7 \mathrm{ID}(\mathrm{offs})$ and $1 \mathrm{ID}\left(\frac{n}{}\right)$; this should result in about 1.0 nA of typical leakage at room temperature. Thruput speed will be typically $0.8 \mu \mathrm{~s}$ for ton and $0.3 \mu \mathrm{~s}$ for toff. Thruput channel resistance will be in the 500 ohm area.
Figure 5 shows the same 1 out of 32 mux as Figure 4, except that a third tier of submultiplexing is added to further reduce leakage and output capacity. The AS-5041 has typical on resistances of 50 ohms (max. is 75 ohms) so it only increases thruput channel resistance from the 500 ohms of Figure 4 to about 550 ohms for Figure 5. Thruput channel speed is a little slower by about $0.5 \mu \mathrm{~s}$ for both on and off time. Output leakage is about 0.2 nA typical.

Figure 6 shows a 1 out of 64 mux using 3 tier muxing (similar to Figure 5 application). The Intersil IH 5053 is used to get the third tier of muxing. The $V_{\text {out }}$ point will see 3 off channels and 1 on channel at any time so that the typical leakages will be about 0.4 nA . Thruput channels resistance will be in the 550 ohm area and thruput switching speeds will be about $1.3 \mu \mathrm{~s}$ for on time and $0.8 \mu \mathrm{~s}$ for off time.

The IH5053 was chosen as the third tier of the mux because it will switch the same AC signals as themU-6116(typically plus and minus 11 V) and break before make switching is guaranteed so that the muxing system remains a break-before-make. Also power supply quiescent currents are typically $1 \mu \mathrm{~A}$ from any supply, so that no excessive system power is generated. Also the logic of the 5053 is such that it can be tied directly to the enable input (as shown in the figures) with no extra logic being required.

V. ENABLE INPUT STROBING LEVELS

The enable input (EN) acts as an enabling or disabling pin for the MU-6116, when used as a 16 channel mux; however, when expanding the mux to more than 16 channels, the EN pin acts as another address input. As an example, we see in Figures 4 and 5 that the EN pin acts as the A_{4} input.

For the system to function properly the EN input (pin 18) must go to $5 \mathrm{~V} \pm 5 \%$ for the high state and less than 0.8 V for the low state. When using TTL logic, a pull-up resistor should be used to pull the output voltage up to 5 V ; this resistor should be 1 k ohm or less. When using CMOS logic, the high state goes up to the power supply so no pull-up is required.

PACKAGE DIMENSIONS

NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of the elimination of external resistors in each channel the rDS(ON) of the switch is maintained at specified values.

4-Channel Differential Analog Multiplexer Model MU-6208

FEATURES

- Ultra low leakage ≤ 100 pA (Total IDoff)
- ron < $\mathbf{4 0 0}$ ohms over full signal and temperature range
- Power supply quiescent current less than $100 \mu \mathrm{~A}$
- $\pm 14 \mathrm{~V}$ analog signal range
- No latch up or "S.C.R." action
- Break before make switching
- Binary strobe control (2 strobe inputs controls 2 out of 8 channels).
- TTL and CMOS compatible strobe control
- Pin - Pin with HI509, DG509 \& AD7509

GENERAL DESCRIPTION

The MU-6208 is a 2 out of 8 CMOS monolithic multiplexer. The part is a plug-in replacement for the DG509. Two line binary decoding is used so that the 8 channels can be controlled in pairs by the binary inputs; additionally a third input is provided to use as a system enable; if the enable input is 0 V , none of the channels can be turned on. When the enable input is high (5 V) the channels are sequenced by the 2 line binary inputs. The 2 strobe inputs are controlled by TTL logic or CMOS logic elements; a " 0 " corresponds to any voltage less than 0.8 V and a " 1 " corresponds to any voltage greater than 2.4 V ; however the enable input (En) must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

MU-6208

ABSOLUTE MAXIMUM RATINGS
V_{IN} (A, En to Ground $-15 \mathrm{~V}, \mathrm{~V}_{1}$
V_{S} or V_{D} to $V_{C C}$
$0,-32 \mathrm{~V}$
V_{s} or V_{D} to $V_{C C}$
0, 32V

- VCc to Ground .. - 16 V

Current (Any Terminal) 30 mA
Current (Analog Drain) 20 mA

Current (Analog Source) 20 mA
Operating Temperature -55 to $125^{\circ} \mathrm{C}$
Storage Temperature 65 to $150^{\circ} \mathrm{C}$
Power Dissipation (Package)* 1200 mW
-All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS

NOTE 1: See Section I Enable Input Strobing Levels.

SWITCHING INFORMATION

Figure 1. ttransition Switching Test

Figure 2. topen Break-Before-Make, Switching Test

Figure 3. $\mathbf{t}_{o n}$ and $\mathbf{t}_{o f f}$ Switching Test

IH6208 APPLICATION INFORMATION

I. Enable Input Strobing Levels

The chip enable input on the MU-6208 requires a minimum of +4.5 V to trigger it into the " 1 " state and a maximum of +0.8 V to
trigger it into the " 0 " state. If the chip enable input is being driven from TTL logic, a pull-up resistor is required from the gate output to +5 V supply. The value of this resistor is not critical and can be in the 1 K to $3 \mathrm{~K} \Omega$ range (See Figure 4).

Figure 4. Enable Input Strobing from TTL Logic

MU-6208

6208 APPLICATION INFORMATION (CONT.)

When the En input is driven from CMOS logic, no pullup is necessary. Fig. 5 shows the CD4009 driving the En input

Figure 5

The Supply Voltage of the CD4009 does affect the switching speed of the MU-6208 with the same being true for Supply Voltage Levels . The chart below shows the effect, on transition times, of supply varying from +4.5 V to +5.5 V .

CMOS OR TTL SUPPLY	TYPICAL transition @ $\mathbf{2 5}^{\circ} \mathbf{C}$
+4.5 V	400 ns
+4.75 V	300 ns
+5.0 V	250 ns
+5.25 V	200 ns
+5.50 V	175 ns

The throughput rate can therefore be maximized by using a +5 V to +5.5 V supply for the Enable Strobe Logic.

The cases shown in Figures 4 and 5 deal with enable strobing when expandability to more than four differential channels is required. In these cases the En terminal acts as a third binary input. If four channel pairs or less are being multiplexed, the En terminal can be directly connected to +5 V logic supply which would "enable" the $\mathrm{MU}-6208$ at all times.

MU-6208 APPLICATION INFORMATION (CONT.)

APPLICATIONS

II. Using the MU-6208 with supplies other than $\pm 15 \mathrm{~V}$

The MU-6208 can be used with power supplies ranging from $\pm 6 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. The switch $\mathrm{rDS}(\mathrm{ON})$ will increase as the supply voltages decrease. However, the multiplexer error term the product of leakage times $\operatorname{rDS(ON)}$ will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the chip enable (En) voltage is at least 0.7 V below $\mathrm{V}_{C C}$ at all times. If this is not done the binary input strobing levels will not function properly. This may be achieved quite simply by connecting En (pin 2) to $+V_{C C}$ (pin 14 via a silicon diode as shown in Figure 6. If the MU-6208 is hooked up in this type of a configuration a further requirement must be met - the strobe levels at A_{0} and A_{1} must be within 2.5 V of the En voltage to define a
binary "1" state. For the case shown in Figure 6 the En voltage is 11.3 V which means that logic high at A_{0} and A_{1} is $=+8.8 \mathrm{~V}$ (logic low continues to be $=0.8 \mathrm{~V}$. In this configuration the MU-6208 cannot be driven by TTL $1+5 \mathrm{~V}$, or CMOS +5 V , logic. It can be driven by TTL open collector logic or CMOS logic with +12 V supplies.

If the logic and the MU-6208 have common supplies the En pin should again be connected to the supply through a silicon diode. In this case tying En to the logic supply directly will not work since it will violate the 0.7 V differential voltage required between $+V_{C C}$ and En on the MU-6208 See Figure 7 . A $1 \mu \mathrm{f}$ capacitor can be placed across the diode to minimize switching glitches.

Figure 6. MU-6208 Connection Diagram for less than $\pm 15 \mathrm{~V}$ Supply Operation.

MU-6208

MU-6208 APPLICATION INFORMATION

Figure 7. MU-6208 Connection Diagram with Enable Input Strobing for less than $\pm 15 \mathrm{~V}$ Supply Operation

III. Peak-to-Peak Signal Handling Capability

The MU-6208 can handle input signals up to $\pm 14 \mathrm{~V}$ actually -15 V to +14.3 V when it has $\pm 15 \mathrm{~V}$ supplies. The input protection diode prevents the handling of signals up to +15 V .

The electrical specifications of the MU-6208 are guaranteed for $\pm 10 \mathrm{~V}$ signals but the specifications have very minor changes for $\pm 14 \mathrm{~V}$ signals. The notable changes would be slightly lower rosion) and slightly higher leakages.

PACKAGE DIMENSIONS

CMOS 8-Channel Differential Analog Multiplexer Model MU-6216

FEATURES

- Pin Compatible with HI507, DG507 \& AD7507
- $\pm 11 \mathrm{~V}$ analog signal range
- ron < $\mathbf{7 5 0}$ ohms over full signal and temperature range
- Break before make switching
- TTL and CMOS compatible strobe control
- Binary strobe control (3 strobe inputs controls 2 out of 16 channels).
- Two tier submultiplexing to facilitate expandability
- Power supply quiescent current less than $100 \mu \mathrm{~A}$
- No latch up or "S.C.R." action
- Very low leakage $\leq 100 \mathrm{pA}$

GENERAL DESCRIPTION

The MU-6216 is a 2 out of 16 CMOS monolithic multiplexer. The part is a plug-in replacement for the DG507. Three line binary decoding is used so that the 16 channels can be controlled in pairs by the binary inputs; additionally a fourth input is provided to use as a system enable; if the enable input is 0 V , none of the channels can be turned on. When the enable input is high (5 V) the channels are sequenced by the 3 line binary inputs. The 3 strobe inputs are controlled by TTL logic or CMOS logic elements; a " 0 " corresponds to any voltage less than 0.8 V and a " 1 " corresponds to any voltage greater than 3.0 V ; however the enable input (EN) must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

ABSOLUTE MAXIMUM RATINGS

VIN (A, EN) to Ground	$5 \mathrm{~V}, \mathrm{~V}_{1}$
V_{s} or V_{D} to V_{1}	0,-32V
V_{s} or V_{D} to V_{2}	0,32V
V_{1} to Ground	16V
V_{2} to Ground	-16V
Current (Any Terminal)	30 mA
Current (Analog Drain)	20 mA

Current (Analog Source 20 mA
Operating Temperature -55 to $125^{\circ} \mathrm{C}$Storage Temperature -65 to $150^{\circ} \mathrm{C}$Power Dissipation (Package)* 1200mWLead Temperature (Soldering 10 sec) $300^{\circ} \mathrm{C}$*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{CHARACTERISTIC}} \& \multirow{3}{*}{\begin{tabular}{l}
MEASURED \\
TERMINAL
\end{tabular}} \& \multirow[t]{3}{*}{\begin{tabular}{l}
NO \\
TESTS \\
PER \\
TEMP
\end{tabular}} \& \multirow{3}{*}{\[
\begin{gathered}
\text { TYP } \\
25^{\circ} \mathrm{C}
\end{gathered}
\]} \& \multicolumn{6}{|c|}{MAX LIMITS} \& \multirow[t]{3}{*}{UNIT} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{TEST CONDITIONS (UNLESS OTHERWISE NOTED)
\[
\begin{gathered}
V_{1}=15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \text { Ground }=0 \\
V_{\mathrm{EN}}=+5 \mathrm{~V} \text { (Note 1) }
\end{gathered}
\]}} \\
\hline \& \& \& \& \& \multicolumn{3}{|c|}{M SUFFIX} \& \multicolumn{3}{|c|}{C SUFFIX} \& \& \& \\
\hline \& \& \& \& \& \(-55^{\circ} \mathrm{C}\) \& \(25^{\circ} \mathrm{C}\) \& \(125^{\circ} \mathrm{C}\) \& \(0^{\circ} \mathrm{C}\) \& \(25^{\circ} \mathrm{C}\) \& \(70^{\circ} \mathrm{C}\) \& \& \& \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{rDS(ON)}} \& \multirow[b]{2}{*}{\(S\) to D} \& 16 \& 480 \& 600 \& 600 \& 700 \& 650 \& ' 850 \& 750 \& \multirow[b]{2}{*}{ת} \& \(V_{D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA}\) \& \multirow[t]{2}{*}{Sequence each switch on
\[
V_{A(L)}=0.8 \mathrm{~V}, V_{A(H)}=3 \mathrm{~V}
\]} \\
\hline \& \& \& 16 \& 300 \& 600 \& 600 \& 700 \& 650 \& 650 \& 750 \& \& \(V_{D}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA}\) \& \\
\hline S \& \(\triangle \mathrm{rDS}(\mathrm{ON})\) \& \& \& 20 \& \& \& \& \& \& \& \% \& \multicolumn{2}{|l|}{\[
\operatorname{\Delta rDs}(\mathrm{ON})=\frac{\mathrm{rDS}(\mathrm{ON}) \mathrm{MAX}-\mathrm{rDS}(\mathrm{ON}) \mathrm{MIN}}{\operatorname{rDS}(\mathrm{ON}) \mathrm{AVG} .}-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} 10 \mathrm{~V}
\]} \\
\hline 1 \& \multirow[b]{2}{*}{IS(OFF)} \& \multirow[b]{2}{*}{S} \& 16 \& 0.01 \& \& 0.1 \& 50 \& \& 0.2 \& 50 \& \multirow{6}{*}{\(n A\)} \& \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline V_{S}=10 \mathrm{~V}, V_{D}=-10 \mathrm{~V} \\
\hline V_{S}=-10 \mathrm{~V}, V_{D}=10 \mathrm{~V} \\
\hline
\end{array}
\]} \& \multirow{4}{*}{\(V_{E N}=0\)} \\
\hline T \& \& \& 16 \& 0.01 \& \& 0.1 \& 50 \& \& 0.2 \& 50 \& \& \& \\
\hline \multirow[t]{4}{*}{H} \& \multirow[b]{4}{*}{ID(OFF)

ID(ON)} \& \multirow[b]{2}{*}{D} \& 2 \& 0.1 \& \& 0.2 \& 100 \& \& 0.4 \& 100 \& \& $V_{D}=10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$ \&

\hline \& \& \& 2 \& 0.1 \& \& 0.2 \& 100 \& \& 0.4 \& 100 \& \& $V_{D}=-10 \mathrm{~V}, \mathrm{~V}_{S}=10 \mathrm{~V}$ \&

\hline \& \& \multirow[b]{2}{*}{D} \& 16 \& 0.1 \& \& 0.2 \& 100 \& \& 0.4 \& 100 \& \& $\mathrm{V}_{\mathrm{S} \text { (AII) }}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$ \& \multirow[t]{2}{*}{Sequence each switch on

$$
V_{A(L)}=0.8 \mathrm{~V}, V_{A(H)}=3 \mathrm{~V}
$$}

\hline \& \& \& 16 \& 0.1 \& \& 0.2 \& 100 \& \& 0.4 \& 100 \& \& $\mathrm{V}_{S(\mathrm{AlI}}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$ \&

\hline 1 \& IAN(ON) or \& \& 3 \& 01 \& \& -10 \& -30 \& \& -10 \& -30 \& \multirow{5}{*}{$\mu \mathrm{A}$} \& \multicolumn{2}{|l|}{$V_{A}=3.0 \mathrm{~V}$}

\hline N \& IAN(OFF) \& \& 3 \& . 01 \& \& 10 \& 30 \& \& 10 \& 30 \& \& \multicolumn{2}{|l|}{$V_{A}=15 \mathrm{~V}$}

\hline P \& \multirow{3}{*}{${ }^{\prime} A$} \& $A_{0} A_{1}$ \& \& \& \& \& \& \& \& \& \& \& \multirow{3}{*}{All $V_{A}=0$}

\hline U \& \& $$
\mathrm{A}_{2} \mathrm{~A}_{3}
$$ \& 3 \& \& \& -10 \& 30 \& \& -10 \& -30 \& \& $V_{E N}=5 \mathrm{~V}$ \&

\hline T \& \& EN \& 1 \& \& \& -10 \& 30 \& \& -10 \& -30 \& \& $V_{\text {EN }}=0$ \&

\hline \multirow[b]{4}{*}{} \& transition \& D \& \& 0.6 \& \& 1 \& \& \& \& \& \multirow{4}{*}{$\mu \mathrm{S}$} \& \multicolumn{2}{|l|}{See Fig. 1}

\hline \& topen \& D \& \& 0.2 \& \& \& \& \& \& \& \& \multicolumn{2}{|l|}{See Fig. 2}

\hline \& ton(En) \& D \& \& 0.8 \& \& 1.5 \& \& \& \& \& \& \multicolumn{2}{|l|}{See Fig. 3}

\hline \& toff(En) \& D \& \& 0.3 \& \& 1 \& \& \& \& \& \& \&

\hline N

A \& "OFF" Isolation \& D \& \& 60 \& \& \& \& \& \& \& dB \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& V_{E N}=0, R_{L}=200 \Omega, C_{L}=3 \mathrm{pF}, V_{S}=3 \mathrm{VRMS}, \\
& f=500 \mathrm{kHz}
\end{aligned}
$$}

\hline M

1 \& CS(OFF) \& \& \& 5 \& \& \& \& \& \& \& \multirow{3}{*}{pF} \& $\mathrm{V}_{\mathrm{S}}=0$ \& \multirow{3}{*}{$$
\begin{aligned}
& V_{E N}=0, f=140 \mathrm{kHz} \text { to } \\
& 1 \mathrm{MHz}
\end{aligned}
$$}

\hline C \& $\mathrm{CD}^{(O F F)}$ \& \& \& 20 \& \& \& \& . \& \& \& \& $$
V_{D}=0
$$ \&

\hline \& CDS(OFF) \& \& \& 1 \& \& \& \& \& \& \& \& $\mathrm{V}_{\mathrm{S}}=0, \mathrm{~V}_{\mathrm{D}}=0$ \&

\hline S \& 11 \& V_{1} \& 1 \& 55 \& \& 200 \& \& \& 1000 \& \& \multirow{4}{*}{$\mu \mathrm{A}$} \& \multirow[b]{2}{*}{$V_{E N}=5 \mathrm{~V}$} \& \multirow{4}{*}{All $V_{\text {A }}=0$ OR 3V}

\hline P \& I_{2} \& V_{2} \& 1 \& 2 \& \& 100 \& \& \& 1000 \& \& \& \&

\hline P \& 1_{1} Standby \& V_{1} \& 1 \& 1 \& \& 100 \& \& \& 1000 \& \& \& \multirow[b]{2}{*}{$V_{E N}=0$} \&

\hline \& I2 Standby \& V_{2} \& 1 \& 1 \& \& 100 \& \& \& 1000 \& \& \& \&

\hline
\end{tabular}

NOTE 1: See Section V. Enable Input Strobing Levels.

SWITCHING INFORMATION

Figure 2

SWITCH OUTPUT Vo

(SEE FIG. 3)

Figure 3

MU-6216 APPLICATIONS

I. 2 out of 32 channel multiplexer

Figure 4

DECODE TRUTH TABLE

\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	ON SWITCH	
0	0	0	0	S1a	
0	0	0	1	S2a	
0	0	1	0	S3a	
0	0	1	1	S4a	
0	1	0	0	S5a	
0	1	0	1	S6a	
0	1	1	0	S7a	
0	1	1	1	Sou	
1	0	0	0	Souti	
1	0	0	1	S1a	
1	0	1	0	S11a	
1	0	1	1	S12a	
1	1	0	0	S1a	
1	1	0	1	S14a	
1	1	1	0	S15a	
1	1	1	1	S16a	

decode truth table

\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	ON SWITCH	
0	0	0	0	S1b	
0	0	0	1	S2b	
0	0	1	0	S3b	
0	0	1	1	S4b	
0	1	0	0	S5b	
0	1	0	1	S6b	
0	1	1	0	S7b	
0	1	1	1	S8b	VouT2
1	0	0	0	S9b	
1	0	0	1	S10b	
1	0	1	0	S11b	
1	0	1	1	S12b	
1	1	0	0	S13b	
1	1	0	1	S14b	
1	1	1	0	S15b	
1	1	1	1	S16b	

MU-6216 APPLICATIONS

II. 2 out of 32 channel multiplexer using $2 \mathrm{MU}-6216$ s; using an AS-5043 for submultiplexing.

Figure 5

DECODE TRUTH TABLE

A_{3}	A_{2}	A_{1}	A_{0}	ON SWITCH	
0	0	0	0	S1a	
0	0	0	1	S2a	
0	0	1	0	S3a	
0	0	1	1	S4a	
0	1	0	0	S5a	
0	1	0	1	S6a	
0	1	1	0	S7a	
0	1	1	1	S8a	VouT1
1	0	0	0	S9a	
1	0	0	1	S10a	
1	0	1	0	S11a	
1	0	1	1	S12a	
1	1	0	0	S13a	
1	1	0	1	S14a	
1	1	1	0	S15a	
1	1	1	1	S16a	

DECODE TRUTH TABLE

\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	ON SWITCH	
0	0	0	0	S1b	
0	0	0	1	S2b	
0	0	1	0	S3b	
0	0	1	1	S4b	
0	1	0	0	S5b	
0	1	0	1	S6b	
0	1	1	0	S7b	
0	1	1	1	S8b	VouT2
1	0	0	0	S9b	
1	0	0	1	S10b	
1	0	1	0	S11b	
1	0	1	1	S12b	
1	1	0	0	S13b	
1	1	0	1	S14b	
1	1	1	0	S15b	
1	1	1	1	S16b	

MU-6216 APPLICATIONS

III. 2 out of 64 , using $4 \mathrm{MU}-6216 \mathrm{~s}$ and 2 AS-5043s.

Figure 6

IV. GENERAL NOTE ON EXPANDABILITY

The MU-6216 is a two tier multiplexer wherein 8 pairs of input channels are routed to a pair of outputs in blocks of 4 channels at a time. Each block of 4 input channels is routed to one common output channel; thus the submultiplexed system looks like 4 bloks of 4 inputs routed to 4 different outputs, and the 4 outputs are tied in pairs. Thus 20 switches are needed to handle the 16 channels of information. The advantage of this scheme is lower output capacity and lower leakage than a system with all 8 channels tied to one common output. Also the expandability into 2 out of 32,64 , 128 , etc. is facilitated. Figures 4, 5, and 6 show how the MU-6216 is expanded.
Figure 4 shows a 2 out of 32 multiplexer using 2 of the MU-6216s. Since the 6216 is itself a 2 tier mux, the system as shown is basically a 2 tier system. Corresponding output points of each of the 6216 are connected together, and the enable input strobe is used as the A_{3} input. Since each output (pins 2 and 28) corresponds to an "on" fet and an "off" fet, the overall system looks like 1 "on" fet and 3 "off" fets foreach of the $\mathrm{V}_{\text {out } 1}$ and $\mathrm{V}_{\text {out2 }}$ outputs. Thus the output leakage will be 1 $\mathrm{ID}_{\mathrm{D}(\mathrm{on})}$ plus $3 \mathrm{ID}($ off) S or about 0.4 nA typical, at room temperature. Thruput speed will be typically $0.8 \mu \mathrm{~s}$ for ton and $0.3 \mu \mathrm{~s}$ for $\mathrm{t}_{\mathrm{fff}}$. Thruput channel resistance will be in the 500 ohm area.
Figure 5 shows the same 2 out of 32 mux as Figure 4, except that a third tier of submultiplexing is added to further reduce leakage and output capacity. The MU-6216 has typical on resistance of 50 ohms (max. is 75 ohms) so it only increases thruput channel resistance from the 500 ohms of Figure 4 to about 550 ohms for Figure 5. Thruput channel speed is a little slower by about $0.5 \mu \mathrm{~s}$ for both on and off time. Output leakage is about 0.2 nA typical.

PACKAGE DIMENSIONS

Figure 6 shows a 2 out of 64 mux using 3 tier muxing (similar to Figure 5 application). Again the Model AS-5043 is used to get the third tier of muxing. Each Vout point will see 3 off channels and 1 on channel at any time so that the typical leakages will be about 0.4 nA . Thruput channel resistance will be in the 550 ohm area and thruput switching speeds will be about $1.3 \mu \mathrm{~s}$ for on time and $0.8 \mu \mathrm{~s}$ for off time.
The MU-6216 was chosen as the third tier of the mux because it will switch the same AC signals as the MU-6216(typically plus and minus 15 V) and break before make switching is guaranteed so that the muxing system remains a break-before-make. Also power supply quiescent currents are typically $1 \mu \mathrm{~A}$ from any supply, so that no excessive system power is generated. Also the logic of the 5043 is such that it can be tied directly to the enable input (as shown in the figures) with no extra logic being required.

V. ENABLE INPUT STROBING LEVELS

The enable input (EN) acts as an enabling or disabling pin for the MU-6216 when used as a 2 out of 16 channel mux; however, when expanding the mux to more than 16 channels, the EN pin acts as another address input. As an example, we see in Figures 4 and 5 that the EN pin acts as the A_{3} input.
For the system to function properly the EN input (pin 18) must go to $5 \mathrm{~V} \pm 5 \%$ for the high state and less than 0.8 V for the low state. When using TTL logic, a pull-up resistor should be used to pull the output voltage up to 5 V ; this resistor should be 1 k ohm or less. When using CMOS logic, the high state goes up to the power supply so no pull-up is required.

NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of the elimination of external resistors in each channel the rDS(ON) of the switch is maintained at specified values.

FEATURES

- Low ON Resistance
- Break-Before-Make Switching
- Dielectrically Isolated CMOS
- Single Ended or Differential
- Fast Settling Time
- DTL/TTL/CMOS Compatible

GENERAL DESCRIPTION

The MV series analog multiplexers are 4, 8, and 16 channel monolithic devices featuring a low ON resistance of 270 ohms. These units are manufactured with CMOS technology using a dielectric isolation process. There are 8 and 16 channel single-ended models and 4 and 8 channel differential models in this series. Channel addressing is done by a 2,3 , or 4 bit binary code; an inhibit input enables or disables the entire device to permit expansion of the number of channels by using several devices together. Another important feature is break-beforemake switching, which insures that no two channels are ever momentarily shorted together.
With a high impedance load, transfer accuracies of 0.01% can be achieved at channel sampling rates up to 350 KHz . These multiplexers are ideal for multi-channel data acquisition systems where the multiplexer operates into a high impedance load such as a sample-hold, buffer amplifier, or instrumentation amplifier. The channel ON resistance is less than 500 ohms over full operating temperature range.
These multiplexers are packaged in 16 pin and 28 pin ceramic DIP's. Standard versions operate over 0 to $70^{\circ} \mathrm{C}$ while military versions operate from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The MV series is similar in specification to Datel's ivin series muitiplexers. The Mvo series is recommended where input overvoltage protection to 20 volts above supply voltage is required and where higher channel ON resistance can be tolerated.
CAUTION:
These multiplexers are CMOS devices and should be handled with anti-static precautions until installed in a circuit with leakage return paths.

	$\begin{aligned} & \text { MV-808 } \\ & \text { MV-808M } \end{aligned}$	$\begin{aligned} & \text { MV-1606 } \\ & \text { MV-1606M } \end{aligned}$	$\begin{aligned} & \text { MVD-409 } \\ & \text { MVD-409M } \end{aligned}$	MVD-807 MVD-807M
MAXIMUM RATINGS Power Supply, analog Power Supply, digital Analog Input Voltage Digital Input Voltage Package Dissipation, max.	$\begin{aligned} & \pm 20 \mathrm{~V} \\ & +30 \mathrm{~V} \\ & \pm \mathrm{Vs}+2 \mathrm{~V} \\ & \pm \mathrm{Vs} \\ & 780 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \pm 20 \mathrm{~V} \\ & - \\ & \pm \mathrm{Vs}+2 \mathrm{~V} \\ & \pm \mathrm{Vs}+4 \mathrm{~V} \\ & 1200 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \pm 20 \mathrm{~V} \\ & +30 \mathrm{~V} \\ & \pm \mathrm{Vs}+2 \mathrm{~V} \\ & \pm \mathrm{Vs} \\ & 780 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \pm 20 \mathrm{~V} \\ & - \\ & \pm \mathrm{Vs}+2 \mathrm{~V} \\ & \pm \mathrm{Vs}+4 \mathrm{~V} \\ & 1200 \mathrm{~mW} \end{aligned}$
ANALOG INPUTS Number of Channels Type Input Voltage Range Channel ON Resistance ${ }^{1}$ Channel ON Resistance ${ }^{2}$, max. over temp. Channel OFF Input Leakage Channel OFF Output Leakage Channel ON Leakage Channel OFF Input Capacitance Channel OFF Output Capacitance	8 Single Ended $\pm 15 \mathrm{~V}$ 250 Ω 500Ω 20pA 100pA 100pA 4 pF 20pF	16 Single Ended $\pm 15 \mathrm{~V}$ 270Ω 500Ω 30pA 1.0nA 1.OnA 4 pF 44pF	4 Differential $\pm 15 \mathrm{~V}$ 250 Ω 500 Ω 20pA 50pA 50pA 4 pF 10pF	8 Differential $\pm 15 \mathrm{~V}$ 270 Ω 500Ω 30pA 1.0nA 1.0nA 4 pF 22pF
DIGITAL INPUTS ${ }^{3}$ Logic "0" Threshold, max. Logic "1" Threshold, ${ }^{4}$ min. Input Current, max., HI or LO Channel Address Coding Channel Inhibit, all channels OFF	$\begin{aligned} & +0.4 \mathrm{~V} \\ & +4.0 \mathrm{~V} \\ & 1 \mu \mathrm{~A} \\ & 3 \text { Bits } \\ & \text { Logic "1" } \end{aligned}$	$\begin{aligned} & +0.8 \mathrm{~V} \\ & +2.4 \mathrm{~V} \\ & 5 \mu \mathrm{~A} \\ & 4 \text { Bits } \\ & \text { Logic " } 0 \text { " } \end{aligned}$	$\begin{aligned} & +0.4 \mathrm{~V} \\ & +4.0 \mathrm{~V} \\ & 1 / \mathrm{A} \\ & 2 \text { Bits } \\ & \text { Logic "1" } \end{aligned}$	$\begin{aligned} & +0.8 \mathrm{~V} \\ & +2.4 \mathrm{~V} \\ & 5 \mu \mathrm{~A} \\ & 3 \text { Bits } \\ & \text { Logic " } 0 \text { " } \end{aligned}$
PERFORMANCE Transfer Error, max. Crosstalk, 10 KHz Common Mode Rejection Settling Time, 20V to 0.1\% Settling Time, 20V to 0.01\% Turn ON Time Turn OFF Time Inhibit/Enable Delay Break-Before-Make Delay	0.01\% -86dB - $1.1 \mu \mathrm{sec}$. $2.8 \mu \mathrm{sec}$. 350 nsec . 250 nsec. 300 nsec. 100 nsec.	0.01\% -86dB - $1.2 \mu \mathrm{sec}$. $2.4 \mu \mathrm{sec}$. 300 nsec. 220 nsec . 300 nsec . 80 nsec	0.01\% $-86 \mathrm{~dB}$ 120 dB $1.1 \mu \mathrm{sec}$. $2.8 \mu \mathrm{sec}$. 350 nsec. 250 nsec. 300 nsec. 100 nsec .	0.01\% -86dB 120 dB $1.2 \mu \mathrm{sec}$. $2.4 \mu \mathrm{sec}$. 300 nsec . 220 nsec. 300 nsec . 80 nsec .
POWER REQUIREMENT Power Supply Voltage Power Supply Current, ${ }^{5}$ max. Digital Supply Voltage Digital Supply Current, max.	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +1,-2 \mathrm{~mA} \\ & +5 \mathrm{VDC} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5,-2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +1,-2 \mathrm{~mA} \\ & +5 \mathrm{VDC} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & +5,-2 \mathrm{~mA} \end{aligned}$
PHYSICAL-ENVIRONMENTAL Operating Temp. Range, standard version Operating Temp. Range, military, version Storage Temperature Range Package	$\begin{aligned} & 0 \text { to } 70^{\circ} \mathrm{C} \\ & -55^{\circ} \text { to }+125^{\circ} \mathrm{C} \\ & -65^{\circ} \text { to }+150^{\circ} \mathrm{C} \\ & 16 \text { Pin DIP } \end{aligned}$	$\begin{aligned} & 0 \text { to } 70^{\circ} \mathrm{C} \\ & -55^{\circ} \text { to }+125^{\circ} \mathrm{C} \\ & -65^{\circ} \text { to }+150^{\circ} \mathrm{C} \\ & 28 \text { Pin DIP } \end{aligned}$	$\begin{aligned} & 0 \text { to } 70^{\circ} \mathrm{C} \\ & -55^{\circ} \text { to }+125^{\circ} \mathrm{C} \\ & -65^{\circ} \text { to }+150^{\circ} \mathrm{C} \\ & 16 \operatorname{Pin} \text { DIP } \end{aligned}$	$\begin{aligned} & 0 \text { to } 70^{\circ} \mathrm{C} \\ & -55^{\circ} \text { to }+125^{\circ} \mathrm{C} \\ & -65^{\circ} \text { to }+150^{\circ} \mathrm{C} \\ & 28 \text { Pin DIP } \end{aligned}$

NOTES: 1. For MV-1606M \& MVD-807M typical value is 170 ohms
2. For MV-1606M \& MVD-807M max. value is 400 ohms.
3. Channel address and inhibit inputs.
4. For MV-808 and MVD-409, to drive from DTL/TTL logic 1 K pull-up resistors to +5 V should be used
5. For MV-1606M \& MVD-807M max. current is $+3,-1 \mathrm{~mA}$. For MV-808M \& MVD-409M max. current is $+0.5,-1 \mathrm{~mA}$ for analog supply, 1 mA for digital supply.

CHANNEL ADDRESSING

MV-1606

8	4	2	1	INHIB	OHANNEL
\times	\times	x	x	0	NONE
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16

MV-808, MVD-807

4	2	1	MVD-807 INHIB.	MV-808 INHIB.	ON CHANNEL
\times	x	\times	0	1	NONE
0	0	0	1	0	1
0	0	1	1	0	2
0	1	0	1	0	3
0	1	1	1	0	4
1	0	0	1	0	5
1	0	1	1	0	6
1	1	0	1	0	7
1	1	1	1	0	8

MVD-409

2	1	INHIB.	OHANNEL
\times	X	1	NONE
0	0	0	1
0	1	0	2
1	0	0	3
1	1	0	4

PIN CONNECTIONS

TECHNICAL NOTES

1. The transfer accuracy of the MV series multiplexers depends on both the source resistance and load resistance. For example, with zero source resistance and assuming 500 ohms max. channel ON resistance, the load impedance must be at least 5 megohms to achieve 0.01% accuracy. In practice it is recommended that a load impedance of 10^{8} ohms or more be used. This is a typical input impedance value for most IC operational amplifiers connected in the follower mode (see Datel's AM-400 series) or for IC sample-holds (see Datel's SHM-IC-1 or SHM-LM-2). Source resistance should be kept as low as possible so that accuracy or settling time are not degraded. Less than 250 ohms is recommended.
2. For differential operation either two unity gain buffers or an instrumentation amplifier (such as Datel's AM-435) is recommended as the output load. To maintain high CMR, source impedance unbalance must be kept to a minimum, and amplifiers with high CMR should be used.
3. The maximum analog input overvoltage for the MV series is $\pm|\mathrm{Vs}+2 \mathrm{~V}|$. The maximum digital input voltage is $\pm \mathrm{Vs}$. It should be noted that the logic (channel address) inputs are protected with resistors and clamp diodes but the analog inputs are not. Because the analog inputs are not protected, the low ON resistance is achieved.
4. Channel expansion is accomplished by use of the inhibit input of the multiplexers. To expand the number of channels, use multiple multiplexers with the inhibit inputs connected to a decoder.
5. For the MV-808 and MVD-409 it is recommended that 1 K pull-up resistors to the +5 V logic supply be used when the logic inputs are driven from DTL or TTL circuits. Only these two models require a +5 V logic supply.

CIRCUIT CONNECTIONS

ON RESISTANCE VS. TEMPERATURE

BREAK-BEFORE-MAKE DELAY
(topen)

100 NS /DIV

ENABLE DELAY
(TON(EN), TOFF(EN))

100 NS/DIV

ACCESS TIME

200 NS/DIV

LEAKAGE CURRENT VS. TEMPERATURE

(1) MV-1606, MVD-807 CHANNEL OFF OUTPUT LEAKAGE
(2) MV- 808 CHANNEL OFF OUTPUT LEAKAGE
(3) MVD-409 CHANNEL OFF INPUT LEAKAGE
(4) MV-1606, MVD-807 CHANNEL OFF INPUT LEAKAGE
(5) MV-808, MVD-409 CHANNEL OFF INPUT LEAKAGE

NORMALIZED ON RESISTANCE VS. SUPPLY VOLTAGE

ORDERING INFORMATION

MODEL	CHANNELS	TEMP. RANGE
MV-808	8 S.E.	0 to 70 C
MV-808M	8 S.E.	-55 to +125 C
MV-1606	$16 \mathrm{S.E}$.	0 to 70 C
MV-1606M	$16 \mathrm{S.E}$	-55 to +125 C
MVD-409	4 Diff.	0 to 70 C
MVD-409M	4 Diff.	-55 to +125 C
MVD-807	8 Diff.	0 to 70 C
MVD-807M	8 Diff.	-55 to +125C
THESE MULTIPLEXERS ARE COVERED BY GSA CONTRACT		

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

4，8，and 16 Channel CMOS Multiplexers
 MX Series

FEATURES

－Dielectrically Isolated CMOS
－Break－Before－Make Switching
－Single－Ended and Differential
－Overvoltage Protection
－DTL／TTL／CMOS Compatible
－ 7.5 mW Standby Power

GENERAL DESCRIPTION

The MX series analog multiplexers are 4,8 ，and 16 channel monolithic devices manufactured with a dielectrically iso－ lated complementary MOS process． The circuits incorporate analog and digital input protection which protects the units from both overvoltage and loss of power．The digital inputs are DTL／TTL／CMOS compatible and ad－ dress the proper channel by means of a 2 ，3，or 4 bit binary code．An inhibit in－ put enables or disables the entire de－ vice and thus permits expansion of the number of channels by using several devices together．Another important feature of these multiplexers is the use of break－before－make switching to in－ sure that no two channels are ever momentarily shorted together．
Transfer accuracies of $.01 \%$ can be achieved at channel sampling rates up to 200 kHz and over $\pm 10 \mathrm{~V}$ signal ranges．These multiplexers are ideal for multi－channel data acquisition sys－ tems where the multiplexer operates into a high impedance load such as a sample－hold，buffer amplifier，or instru－ mentation amplifier．Channel ON resis－ tance is typically 1.5 K at $25^{\circ} \mathrm{C}$ and is less than 2 K over the operating temper－ ature range．
Foviver corrsumption is oniy 7.5 mvV at standby and 15 mW at 100 kHz switch－ ing rate．Power supply range is $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ ．The devices are packaged in 16 pin or 28 pin DIP＇s and operate over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range．

CAUTION：These are CMOS devices and may be damaged by static dis－ charge．Standard anti－static precau－ tions should be taken to prevent pos－ sible damage．

	$\begin{aligned} & M X-808 \\ & M X-808 M \end{aligned}$	$\begin{aligned} & M X-1606 \\ & M X-1606 M \end{aligned}$	$\begin{aligned} & \text { MXD-409 } \\ & \text { MXD-409M } \end{aligned}$	$\begin{aligned} & \text { MXD-807 } \\ & \text { MXD-807 M } \end{aligned}$
MAXIMUM RATINGS Voltage Between Supply Pins Vref to Ground, V+ to Ground Digital Input Overvoltage Analog Input Overvoltage Package Dissipation, max.	$\begin{aligned} & 40 \mathrm{~V} \\ & +20 \mathrm{~V} \\ & \pm\|\mathrm{Vs}+4 \mathrm{~V}\| \\ & \pm\|\mathrm{Vs}+20 \mathrm{~V}\| \\ & 725 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~V} \\ & +20 \mathrm{~V} \\ & \pm\|\mathrm{Vs}+4 \mathrm{~V}\| \\ & \pm\|\mathrm{Vs}+20 \mathrm{~V}\| \\ & 1200 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~V} \\ & +20 \mathrm{~V} \\ & \pm\|\mathrm{Vs}+4 \mathrm{~V}\| \\ & \pm\|\mathrm{Vs}+20 \mathrm{~V}\| \\ & 725 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~V} \\ & +20 \mathrm{~V} \\ & \pm\|\mathrm{Vs}+4 \mathrm{~V}\| \\ & \pm\|\mathrm{Vs}+20 \mathrm{~V}\| \\ & 1200 \mathrm{~mW} \end{aligned}$
ANALOG INPUTS Number/Type of Channels Input Voltage Range Channel ON Resistance Channel ON Resistance, Over Temp Channel OFF Input Leakage Channel OFF Output Leakage Channel ON Leakage Channel OFF Input Capacitance Channel OFF Output Capacitance	$\begin{aligned} & 8 \mathrm{Single} \text {-end } \\ & \pm 15 \mathrm{~V} \\ & 1.5 \mathrm{~K} \Omega \\ & 2.0 \mathrm{~K} \Omega \text {, max. } \\ & 30 \mathrm{pA} \\ & 1.0 \mathrm{nA} \\ & 100 \mathrm{pA} \\ & 5 \mathrm{pF} \\ & 25 \mathrm{pF} \end{aligned}$	```16 Single-end \pm15V 1.5 K\Omega 2.0 K\Omega. max. 30 pA 1.0 nA 100 pA 5 pF 50 pF```	$\begin{aligned} & 4 \text { Differential } \\ & \pm 15 \mathrm{~V} \\ & 1.5 \mathrm{~K} \Omega \\ & 2.0 \mathrm{~K} \Omega \text {, max. } \\ & 30 \mathrm{pA} \\ & 1.0 \mathrm{nA} \\ & 100 \mathrm{pA} \\ & 5 \mathrm{pF} \\ & 12 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 8 \text { Differential } \\ & \pm 15 \mathrm{~V} \\ & 1.5 \mathrm{~K} \Omega \\ & 2.0 \mathrm{~K} \Omega \text {, max. } \\ & 30 \mathrm{pA} \\ & 1.0 \mathrm{nA} \\ & 100 \mathrm{pA} \\ & 5 \mathrm{pF} \\ & 25 \mathrm{pF} \end{aligned}$
DIGITAL INPUTS ${ }^{1}$ Logic "0" Threshold Logic "1" Threshold, (TTL)² Logic "1" Threshold, (CMOS) ${ }^{3}$ Input Current, High or Low Channel Address Coding Channel Inhibit, All Channels OFF	$\begin{aligned} & +0.8 \mathrm{~V}, \text { max. } \\ & +4.0 \mathrm{~V}, \text { min. } \\ & +6.0 \mathrm{~V}, \min . \\ & 5 \mu \mathrm{~A}, \max . \\ & 3 \text { Bits } \\ & \text { Logic " } 0 \text { " } \end{aligned}$	$\begin{aligned} & +0.8 \mathrm{~V}, \text { max. } \\ & +4.0 \mathrm{~V}, \text { min } \\ & +6.0 \mathrm{~V}, \text { min } \\ & 5 \mu \mathrm{~A}, \text { max. } \\ & 4 \text { Bits } \\ & \text { Logic " } 0 . \end{aligned}$	$\begin{aligned} & +0.8 \mathrm{~V}, \max \\ & +4.0 \mathrm{~V}, \min \\ & - \\ & 5 \mathrm{\mu A}, \max \\ & 2 \text { Bits } \\ & \text { Logic }{ }^{\circ} \mathrm{O} \end{aligned}$	$\begin{aligned} & +0.8 \mathrm{~V}, \max . \\ & +4.0 \mathrm{~V} \text {, min. } \\ & - \\ & 5 \mu \mathrm{~A}, \text { max. } \\ & 3 \text { Bits } \\ & \text { Logic " } 0 \text { " } \end{aligned}$
PERFORMANCE Transfer Error, max. Crosstalk, 1 KHz Common Mode Rejection Settling Time ${ }^{4}$, 20V step to 0.1\% Settling Time ${ }^{4}$, 20V Step to 0.01\% Turn ON Time Turn OFF Time Break Before Make Delay Inhibit/Enable Delay	.01\% .005\% - $2 \mu \mathrm{sec}$ $3 \mu \mathrm{sec}$ 500 nsec. 300 nsec. 80 nsec. 300 nsec.	.01\% .005\% - $2 \mu \mathrm{sec}$ $3 \mu \mathrm{sec}$ 500 nsec. 300 nsec. 80 nsec . 300 nsec.	$\begin{aligned} & .01 \% \\ & .005 \% \\ & 120 \mathrm{~dB} \\ & 2 \mu \mathrm{sec} \\ & 3 \mu \mathrm{sec} \\ & 500 \mathrm{nsec} . \\ & 300 \mathrm{nsec} . \\ & 80 \mathrm{nsec} . \\ & 300 \mathrm{nsec} . \end{aligned}$	$\begin{aligned} & .01 \% \\ & .005 \% \\ & 120 \mathrm{~dB} \\ & 2 \mu \mathrm{sec} \\ & 3 \mu \mathrm{sec} \\ & 500 \mathrm{nsec} . \\ & 300 \mathrm{nsec} \\ & 80 \mathrm{nsec} . \\ & 300 \mathrm{nsec} . \end{aligned}$
POWER REQUIREMENT Rated Power Supply Voltage Power Supply Voltage Range Quiescent Current, max. Power Consumption, 10 KHz Sampling	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 5 \mathrm{~V} \text { to } \pm 20 \mathrm{~V} \\ & +5 .-2 \mathrm{~mA} \\ & 7.5 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 5 \mathrm{~V} \text { to } \pm 20 \mathrm{~V} \\ & +5,-2 \mathrm{~mA} \\ & 7.5 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 5 \mathrm{~V} \text { to } \pm 20 \mathrm{~V} \\ & +5,-2 \mathrm{~mA} \\ & 7.5 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 5 \mathrm{~V} \text { to } \pm 20 \mathrm{~V} \\ & +5,-2 \mathrm{~mA} \\ & 7.5 \mathrm{~mW} \end{aligned}$

PHYSICAL-ENVIRONMENTAL
Operating Temp. Range, Standard Models
Operating Temp. Range, M Suffix Models

| $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
| $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| 16 Pin DIP | 28 Pin DIP | 16 Pin DIP | 28 Pin DIP |

Storage Temp. Range
Package

NOTES: 1. The digital inputs are the channel address inputs and the inhibit input.
2. To drive from DTL/TTL circuits. 1 K pull-up resistors to +5 V are recommended. With models MX-1606 and MXD-807, pin 13 should be left open.
3. For $a+6.0 \mathrm{~V}$ threshold with models $\mathrm{MX}-1606$ and $\mathrm{MXD}-807$, pin 13 is connected to +10 V .
4. With a load impedance of >100 megohms in parallel with 2 pF .

PIN CONNECTIONS

NOTES:

CA CHANNEL ADDRESS
Vs SUPPLY VOLTAGE
Va REFERENCE VOLTAGE
NC - NO CONNECTIONS

MX-1606

CHANNEL ADDRESSING

MX-1606

8	4	2	1	INHIB.	ON
\times	\times	\times	\times	0	NONE
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16

MX-808, MXD-807

4	2	1	INHIB.	CHANNEL
X	X	\times	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

MXD-409			
2	1	INHIB.	CHANNEL
\times	\times	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

TECHNICAL NOTES

1. The transfer accuracy of these multiplexers depends on both the source resistance and the load resistance. With zero source resistance, and assuming 2 K ohms max. channel ON resistance, the load impedance should be at least 20 megohms to achieve $.01 \%$ accuracy. In practice it is recommended that a load impedance of at least 100 megohms be used to minimize errors. This can be done by using a good high gain, high CMR operational amplifier as a buffer (such as Datel's AM-462). Source resistance should be kept as low as possible so that accuracy is not affected; less than 1 K ohms is recommended. Higher source resistance, in addition to affecting accuracy, will degrade the settling time of the multiplexer.
2. For differential operation two buffer amplifiers or a good quality instrumentation amplifier (such as Datel's AM-201) shouid be used. To maintain high CMR, source impedance unbalance should be kept to a minimum, the highest possible load impedance should be used, and an amplifier with high CMR should be chosen.
3. The maximum analog input overvoltage for these models is $\pm|\mathrm{Vs}+20 \mathrm{~V}|$. Maximum logic input overvoltage is $\pm|\mathrm{Vs}+4 \mathrm{~V}|$.
4. Channel expansion is accomplished by use of the inhibit input of the multiplexer. A logic " 0 " on this input disables the multiplexer. The expansion technique shown in the diagram to the right applies to all of the multiplexer models.
5. The reference terminal (V_{R}) sets the noise immunity level of the input logic for models MX-1606 and MXD-807. In most cases this terminal is left open (TTL inputs). For higher level inputs (+6 V min.) this terminal should be connected to +10 V . When addressing from DTL/TTL logic it is recommended that 1 K ohm pull-up resistors to the +5 V supply be used.

EXPANSION TO 64 CHANNELS

BREAK－BEFORE－MAKE DELAY （t OPEN）

CROSSTALK VS．FREQUENCY OF INPUT SIGNAL

SETTLING TIME VS．SOURCE RESISTANCE（20V STEP）

LEAKAGE CURRENT VS．TEMP．

NORMALIZED ON RESISTANCE
VS．SUPPLY VOLTAGE

SUPPLY CURRENT VS． SAMPLING FREQUENCY

Printed in U．S．A．Copyright © 1979 Datel－Intersil，Inc．All rights reserved 11 CABOT BOULEVARD．MANSFIELD，MA 02048／TEL．（617）339－9341／TWX 710－346－1953／TLX 951340
Santa Ana，（714）835－2751．（L．A．）（213）933－7256 • Sunnyvale，CA（408）733－2424 • Gaithersburg．MD（301）840－9490
－Houston，（713）781－8886 • Dallas，TX（214）241－0651 OVERSEAS：DATEL（UK）LTD－TEL：ANDOVER（0264）51055 －DATEL SYSTEMS SARL 602－57－11 • DATELEK SYSTEMS GmbH（089）77－60－95 • DATEL KK Tokyo 793－1031
PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Data Acquisition Systems

Quick Selection: Data Acquisition Systems

Specifications at $25^{\circ} \mathrm{C}$	DAS-952R Monolithic	HDAS-16MC1 Hybrid	HDAS-8MC1 Hybrid
No. Channels	16	16	8
Input Type	Single Ended	Single Ended	Differential
Input Voltage Ranges, Unipolar	0 to +5 V	0 to $+10 \mathrm{mV}, 0$ to +10 V	0 to $+10 \mathrm{mV}, 0$ to +10 V
Input Voltage Ranges, Bipolar		$\pm 10 \mathrm{mV}$ to $\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{mV}$ to $\pm 10 \mathrm{~V}$
Input Impedance	$\pm 1 \mu \mathrm{~A}^{5}$	100 Meg .	100 Meg .
Channel Addressing	4 Bit Code	4 Bit Code	3 Bit Code
Address Logic Compatibility	CMOS	DTL/TTL	DTL/TTL
Resolution	8 Bits	12 Bits	12 Bits
Nonlinearity, max.	$1 / 2$ LSB	$1 / 2$ LSB	$1 / 2$ LSB
Differential Nonlinearity, max.	1/2 LSB	1/2 LSB	1/2 LSB
Max. Error at maximum throughput	0.2\%	.025\%	.025\%
Temp. Coefficient, max.	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
No Missing Codes	-25 to $+85^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$
Throughput Rate, max.	17 kHz	50 kHz	50 kHz
Acquisition Time	$2.5 \mu \mathrm{sec}$.	$10 \mu \mathrm{sec}$.	$10 \mu \mathrm{sec}$.
Conversion Time	$54 \mu \mathrm{sec}$.	$10 \mu \mathrm{sec}$.	$10 \mu \mathrm{sec}$.
Aperture Time	-	50 nsec .	50 nsec .
Output Coding ${ }^{3}$	Bin	Bin	Bin
Output Logic	3-State TTL	3-State TTL	3-State TTL
Power Requirement	+5V	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$	$\pm 15 \mathrm{~V},+5 \mathrm{~V}$
Package Size, Inches	40-Pin DIP	$2.3 \times 1.4 \times 0.24$	$2.3 \times 1.4 \times 0.24$
Package Size, mm	40-Pin DIP	$58 \times 36 \times 6$	$58 \times 36 \times 6$
Operating Temp. Range	-25 to $+85^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}^{2}$	0 to $70^{\circ} \mathrm{C}^{2}$
Price, singles	\$37.50	\$350.00	\$350.00
See Page	272C	278C	278C

NOTES: 1. Includes programmable gain instrumentation am-	4. Double Buffered
plifier	5. Input Current

2. Models for other temperature ranges:

HDAS-16MR, HDAS-8MR, $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \$ 467.00$
HDAS-16MM, HDAS-8MM, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \$ 787.00$
3. Coding: Bin = Straight Binary or Offset Binary

$$
2 \mathrm{C}=\text { Two's complement }
$$

MDAS-16 Modular	MDAS-8D Modular	DAS-250A Modular	DAS-250B Modular
16	8	16	16
Single Ended	Differential	Single Ended	Single Ended
0 to $+5,+10 \mathrm{~V}$	0 to $+5,+10 \mathrm{~V}$	0 to -10V	-
$\pm 2.5, \pm 5, \pm 10 \mathrm{~V}$	$\pm 2.5, \pm 5, \pm 10 \mathrm{~V}$	--	$\pm 5 \mathrm{~V}$
100 Meg .	100 Meg .	100 Meg .	100 Meg .
4 Bit Code	3 Bit Code	4 Bit Code	4 Bit Code
DTL/TTL	DTL/TTL	DTL/TTL	DTL/TTL
12 Bits	12 Bits	12 Bits	12 Bits
11/2 LSB	$1 / 2$ LSB	$1 / 2$ LSB	$1 / 2$ LSB
1/2 LSB	$1 / 2$ LSB	$1 / 2$ LSB	$1 / 2$ LSB
.025\%	.025\%	.025\%	.025\%
$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$45 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$45 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
0 to $70^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$	0 to $70 /{ }^{\circ} \mathrm{C}$
50 kHz	50 kHz	250 kHz	250 kHz
$6 \mu \mathrm{sec}$.	$6 \mu \mathrm{sec}$.	$2 \mu \mathrm{sec}$.	$2 \mu \mathrm{sec}$.
$14 \mu \mathrm{sec}$.	$14 \mu \mathrm{sec}$.	$2 \mu \mathrm{sec}$.	$2 \mu \mathrm{sec}$.
50 nsec .	50 nsec .	20 nsec.	20 nsec .
Bin, 2C	Bin, 2C	Bin, 2C	Bin, 2C
3-State TTL	3-State TTL	3-State TTL4	3 -State TTL4
$\pm 15 \mathrm{~V},+5 \mathrm{~V}$			
$4.6 \times 2.5 \times 0.375$	$4.6 \times 2.5 \times 0.375$	$5.0 \times 4.5 \times 1.5$	$5.0 \times 4.5 \times 1.5$
$117 \times 64 \times 10$	$117 \times 64 \times 10$	$127 \times 114 \times 38$	$127 \times 114 \times 38$
0 to $70^{\circ} \mathrm{C}$			
\$310.00	\$310.00	\$730.00	\$730.00
286C	286C	298C	298C

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

[^10]
FEATURES

- 16 Single Ended Channels
- 8 Bits Resolution
- Monolithic CMOS Construction
- Three-State Outputs
- Ratiometric Operation
- Low Cost

GENERAL DESCRIPTION

The DAS-952R is a single-chip, 16 channel, 8 bit data acquisition system. Monolithic CMOS technology allows a 16 channel multiplexer, 8 bit successive approximation A/D converter, and microprocessorcompatible control logic to be fabricated on a single chip and contained in a compact Dual-In-Line package.
The design of this system emphasizes high accuracy, excellent repeatability, low power consumption, and a minimum of adjustments (no full scale or zero adjustment required). Latched and decoded address inputs and latched TTL three-state outputs allow easy interfacing to microprocessors.
The input multiplexer allows random access to any one of 16 single ended analog input channels and provides necessary logic for additional channel expansion. Connection of the multiplexer output to the converter input is by external pin connection, thus permitting easy signal conditioning such as amplification, linearization, or the use of a sample and hold.
The 8 bit A/D converter uses a 256R ladder network, successive approximation register, and a chopper-stabilized comparator to implement the successive approximation conversion technique with a switching tree. Use of 256R ladder network ensures monotonicity while the chopper-stabilizer comparator makes the converter highly resistant to thermal effects and long term drift. In ratiometric conversion, the converter expresses the analog value being measured as a percentage of reference input. Full scale range may be selected within limits, to adjust the sensitivity of the converter to the desired application or to refer the output to a secondary standard.
Accuracy, speed, flexibility, excellent performance over a wide temperature range ($-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) and low cost make the DAS-952R an easy and practical answer to many data acquisition needs.

PIN	FUNCTION	PIN	FUNCTION
1	CH .4 IN	21	OUTPUT ENABLE
2	CH .5 IN	22	CLOCK INPUT
3	CH .6 IN	23	\cdots - REF. IN
4	CH .7 IN	24	BIT 8 OUT (LSB)
5	CH .8 IN	25	BIT 7 OUT
6	CH .9 IN	26	BIT 6 OUT
7	CH .10 iN	27	BIT 5 OUT
8	$\mathrm{CH}, 11 \mathrm{lN}$	28	BIT 4 OUT
9	$\mathrm{CH}, 12 \mathrm{IN}$	29	BIT 3 OUT
10	CH .13 IN	30	BIT 2 OUT
11	CH .14 lN	31	BIT 1 OUT (MSB)
12	CH .15 IN	32	ADDRESS ENABLE
13	E.O.C.	33	CA 8 INPUT
14	CH .16 N	34	CA 4 INPUT
15	MULTIPLEXER OUTPUT	35	CA 2 INPUT
16	START CONVERT	36	CA 1 INPUT
17	+Vs	37	EXPANSION CONTROL
18	A/D IN	38	CH. 1 INPUT
19	+REF. IN	39	CH 2 I INPUT
20	GROUND	40	CH .3 INPUT

SPECIFICATIONS, DAS-952R (Typical at $25^{\circ} \mathbf{C},+\mathbf{V}_{\text {Stppl. }}=+\mathbf{V}_{\text {RIf }},-\mathbf{V}_{\text {Rlit }}=\mathbf{G}_{\mathrm{ND}}$, clock $=640 \mathrm{KHz}$ unless otherwise noted)	TECHNICAL NOTES
MAXIMUM RATINGS Voltage at Any Pin (Except Digital and REF inputs) Voltage at Digital Inputs. $+\mathbf{R E F}$ $\begin{aligned} & -0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V} \\ & -0.3 \mathrm{~V} \text { to }+15 \mathrm{~V} \\ & +6.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}+0.1 \mathrm{~V} \end{aligned}$	1. The DAS-952R is a ratiometric data acquisition system. The analog input voltage is expressed as a percentage of full scale voltage range. Full scale voltage range may be varied from +0.512 V to +5.25 V . The
ANALOG INPUTS Number of Channels Input Voltage Range Channel ON-Resistance Channel ON-Resistance, $85^{\circ} \mathrm{C}$ Channel OFF Leakage Current, $\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$ Channel OFF Leakage Current, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ Channel Input Capacitance. \qquad REF Input Resistance \qquad REF Input Voltage A/D Converter Input Current ${ }^{4}$ 16 Single Ended ${ }^{1}$ 0 to +5.25 V max. $1.5 \mathrm{~K} \Omega$ typ, $3 \mathrm{~K} \Omega$ max. ${ }^{2}$ $6 \mathrm{~K} \Omega$ max. 10 nA typ., 200 nA max. -10 nA typ., -200 nA min. 5pF type., 7.5 pF max. $1 \mathrm{~K} \Omega$ min, $4.5 \mathrm{~K} \Omega$ typ. ${ }^{3}$ +0.512 V to $+5.25 \mathrm{~V}^{3}$ $\pm 0.5 \mu \mathrm{~A}$	system uses an 8 bit converter with the full scale range divided into 256 steps (one step $=1 \mathrm{LSB}$). The ability to select the full scale range by means of the reference voltage allows selection of the size of the LSB, thereby allowing selection of the converter's sensitivity. The center of the full scale voltage range must be held within $\pm 0.1 \mathrm{~V}$ of the center of the supply range because the analog switch tree changes from N -channel switches to P -channel switches at this poini. Failure to maintain the symmetry of these
DIGITAL INPUTS Logic HI ("1") Threshold, min. Logic LO ("0") Threshold, max Input Current, Max. HI or LO Input Capacitance Clock Frequency. $\begin{aligned} & V_{s}-1.5 \mathrm{~V} \\ & +1.5 \mathrm{~V} \\ & 1.0 \mu \mathrm{~A} \\ & 7.5 \mathrm{pF} \text { max. } \end{aligned}$ $10 \mathrm{KHz} \min ., 1.2 \mathrm{MHz} \max .$	This condition is automatically satisfied in configurations where + REF $=+V_{s}$ and - REF $=$ GND. For configurations where +REF $<+V_{s}$, -REF must be greater than GND by an equal amount. + REF can never exceed $+V_{s}$ and -REF can never be less than GND.
	2. The system requires less than 1 mA of supply current. For applications where full scale range is selected between +4.75 V and +5.25 V , the reference can be used to generate the supply.
CONVERTER PERFORMANCE 8 Bits Linearity Error . $\pm 1 / 2$ LSB, max. Zero Error . $\pm 1 / 2$ LSB, max. Full Scale Error $\pm 1 / 2$ LSB, max. Total Unadjusted Error $\pm 1 / 2$ LSB, max. ${ }^{5}$ Power Supply Rejection $\pm 0.15 \% / V \max { }^{6}$	3. To preserve the accuracy of the system over its full operating temperature range, the reference source should have a temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less. For ambient temperature changes less than $75^{\circ} \mathrm{C}$, a reference temperature coefficient of $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ is sufficient to maintain
DYNAMIC PERFORMANCE Conversion Time.................................. . . MUX Delay, from ADDRESS ENABLE 3-State Turn-ON Delay 100μ sec typ., $114 \mu \mathrm{sec}$ max. ${ }^{7}$ $1 \mu \mathrm{sec}$ typ., $2.5 \mu \mathrm{sec}$ max. 250 nsec max.	4. Conversion time and throughput rate for the
POWER REQUIREMENT \quad Supply Voltage, rated performance $\ldots \ldots \ldots \ldots$ $+5 \mathrm{~V} \pm .25 \mathrm{~V}$ Supply Voltage, operating range $\ldots \ldots \ldots \ldots$ +4.5 V to +6 V Supply Current $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{m}$. $300 \mu \mathrm{~A}$ typ., $1000 \mu \mathrm{~A}$ max.	frequency. The clock may be varied from 10 KHz to 12 KHz (see comparator input current graph).
PHYSICAL-ENVIRONMENTAL Operating Temperature Range. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Package 40 Pin Plastic DIP	ORDERING INFORMATION
NOTES: 1. Logic is provided for expanding the number of channels externally. 2. Channel ON-resistances matched to within 75Ω maximum difference between any two channels. 3. Measured from +REF input to -REF input. 4. This is the comparator input current, a bias current into or out of the chopper stabilized comparator. It varies directly with clock frequency and is relatively independent of temperature. 5. Total unadjusted error is the sum of linearity, zero, and full-scale errors at any point on the transfer function. 6. $V_{s}=+R E F=+5 \mathrm{~V} \pm .25 \mathrm{~V}$ 7. For clock frequency of 640 KHz . See technical note 4.	MODEL DAS-952R All external devices designated with in the Applications Diagrams are available from Datel/ Intersil. THIS DATA ACQUISITION SYSTEM IS COVERED BY GSA CONTRACT

Any one of 16 single-ended analog inputs may be selected by using the address decoder. The multiplexer input selection table shows the channel address input states required to select each channel. Channel address input states are latched into the address decoder on the low-to-high transition of the ADDRESS ENABLE input. Channel address inputs are required to be stable for 50 nsec . before and after the ADDRESS ENABLE low-to-high transition. Additional channel expansion is accomplished by disabling the internal multiplexer (all channels are off when EXPANSION CONTROL input is low) and connecting the additional signals directly to the converter input.

The converter input may also be used to introduce various signal conditioning devices into the analog signal path. The analog signal at the multiplexer input selected is available to the comparator after a maximum delay time of 2.5 usec . The converter's successive approximation register is reset on the positive going edge of 200 nsec. start conversion pulse, and conversion is initiated on the falling edge of the pulse.

A conversion in progress may be interrupted by a new start conversion pulse. The EOC output goes LO in 1 to 8 clock periods after the rising edge of the start conversion pulse. For continuous conversions the EOC output can be tied to the start conversion input and an initial external start conversion pulse applied after power up.

The 8 bit A/D converter requires 64 clock periods to resolve the analog signal voltage level. The converter employs a chopper stabilized comparator for extreme resistance to input offset drift errors. The 256R ladder network ensures monotonicity and does not cause load variations on the reference voltage. The values of the top and bottom resistors are different from the rest of the ladder so that the first output transition occurs when the analog voltage level reaches $+1 / 2$ LSB and each succeeding output transition occurs at intervals of 1 LSB up to full scale.

The 8 bit, straight binary, positive true result appears at the threestate output latches, which are enabled when the OUTPUT ENABLE control is HI .

MULTIPLEXER ON RESISTANCE

COMPARATOR INPUT CURRENT

CHANNEL ADDRESS TABLE

RATIOMETRIC CONVERSION SYSTEM

DATA ACQUISITION SYSTEM WITH SAMPLE-HOLD

For applications where a sample-hold is required, connections are made as shown in the accompanying diagram. The sample-hold may be put in the sample mode after the multiplexer output settles (see timing diagram). The start conversion input can be taken high as shown in the timing diagram but should not be taken low until the sample-hold has acquired the input voltage. The acquisition time of the samplehold is dependent on the value of the hold capacitance. This value must be selected for the acquisition time and hold-mode voltage droop required by the converter speed and accuracy, respectively. Optimal values of hold capacitance may be selected after throughput rate is determined. See SHM-LM-2 data sheet.

DUAL ADJUSTABLE REFERENCE NOTE: VALUES OF R_{1}, R_{2} and R_{3} ARE SELECTED TO YIELD	$30 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ REFERENCE AND SUPPLY
ADJUSTABLE REFERENCE AND SUPPLY	TYPICAL MICROPROCESSOR INTERFACE

12 Bit Microelectronic Data Acquisition System Models HDAS-16, HDAS-8

FEATURES

- Miniature 62 Pin Package
- 12 Bit Resolution
- 10 mV to 10 V Full Scale Range
- Three-State Outputs
- 16 Channels Single Ended or 8 Channels Differential

GENERAL DESCRIPTION

Utilizing hybrid technology, Datel-Intersil offers a data acquisition system with superior performance and reliability, combined with low cost.
The HDAS-8 with 8 differential input channels and HDAS-16 with 16 single ended input channels are complete high performance 12 bit data acquisition systems in a 62 pin package. Acquisition and conversion time combined is $20 \mu \mathrm{sec}$. max., giving a minimum throughput rate of 50 kHz . The twelve bit binary data can be transferred out in three four bit bytes, by means of the three-state data bus drivers. Output coding is straight binary in unipolar operation and offset binary in bipolar operation.
The HDAS circuit includes a multiplexer, programmable gain instrumentation amplifier, sample and hold circuit complete with MOS hold capacitor, 10 volt buffered reference, a twelve bit A/D converter with three-state outputs and digital logic.
The internal instrumentation amplifier is programmed with a single resistor for gains of 1 to 1000 . This key feature is useful in low level signal applications involving bridge amplifiers, transducers, strain gauge and thermocouple interface.
The HDAS is cased in a small hermetic 62 pin package. Models are available in three different temperature ranges: 0 to $+70,-25$ to +85 , and -55 to +125 degrees centigrade.
High reliability versions of each model are also available. Power requirements are $\pm 15 \mathrm{VDC}$ and +5 VDC .

PIN NO.	HDAS-16	HDAS-8	FUNCTION	DESCRIPTION	
	CH3 IN CH 2 IN CH 1 IN CHO IN MUX ENABLE R DELAY STROBE A8 A4 A2 A1 MDD OUT OUSS DIGITAL COM. $+5 \mathrm{VDC}$ LOAD ENABLE CLEAR ENABLE ENABLE (Bits 9-12) BIT 12 OUT (LSB) BIT 11 OUT BIT 10 OUT BIT 9 OUT ENABLE (Bits 5-8) BIT 8 OUT BIT 7 OUT BIT 6 OUT BIT 5 OUT ENABLE (Bits 1-4) BIT 4 OUT BIT 3 OUT BIT 2 OUT BIT 1 OUT (MSB) GAIN ADJ. OFFSET ADJ BIPOLAR INPUT SAMPLE/HOLD OUT +10 V OUT ANALOG SIGNAL COM ANALOG POWER COM. +15 VDC - 15 VDC C HOLD HI C HOLD LO R GAIN LO R GAIN HI AMP. IN HI AMP. IN LO CH 15 IN CH 14 IN CH 13 IN CH 12 IN CH11 IN CH 10 IN CH9 IN CH8 IN CH? ! CH6 IN CH 5 IN CH 4 IN	CH3 HI IN CH2 HI IN CH1 HI IN CHO HI IN \qquad CH7 LO IN CH6 LO IN CH5 LOIN CH4 LOIN CH3 LO IN CH2 LO IN CH1 LO IN CHO LO IN CH7 L! ! N CH6 HI IN CH5 HI IN CH 4 HI IN *Same as HDAS-16			
			DIGITAL INPUTS STROBE		
				0"Initiates acquisition and conversion of	
			$\overline{\text { LOAD }}$	Random Address Mode	
				Initiated on falling edge of $\overline{\text { STROBE }}$	
			$\overline{\text { CLEAR }}$	quential Address Mode	
				MUX ADDRESS to CHO overriding	
			MUX ENABLE	LOAD command.	
				Disables internal MUX	
			MUX ADDRESSIN	cts channel for R	
				Mode 8,4,2.1 natural binary coding	
			DIGITAL OUTPUTS E.O.C.		
				End of Conversion (STATUS)	
				Conversion complete	
			$\overline{\text { ENABLE (1-4) }}$	Enables three-state outputs Bits 1-4 Disables three-state outputs Bits 1-4	
			$\overline{\text { ENABLE (5-8) }}$	Enables three-state outputs Bits 5-8	
			ENABLE (9-12)	Disables three-state outputs Bits 5-8	
				Enables three-state outputs Bits 9-12	
			MUX ADDRESS OUT	Output of MUX Address Register	
				8.4.2.1 natural binary coding	
			ANALOG INPUTS Channel Inputs		
				Limit voltage to $\pm 20 \mathrm{~V}$ beyond power supplies. Ex.-if power supplies $\mathrm{ON}(\pm 15 \mathrm{~V})$. maximum input voltage is $\pm 35 \mathrm{~V}$. !f power supplies OFF (0 V). maximum input voltage is $\pm 20 \mathrm{~V}$. For unipolar operation. connect to PIN 39 (S/H OUT) For bipolar operation. connect to PIN 40 (+10 V OUT)	
			Bipolar Input.		
			ANALOG OUTPUTS		
			S/H OUT +10 V OUT	Sample/Hold Output Buffered +10 V reference output	
			+10V OUT		
			ANG SIG COM ... Low level analog signal retur		
			GAIN ADJ....... $\begin{aligned} & \text { External gain adjustment. see calibration } \\ & \text { instructions. }\end{aligned}$		
			OFFSETADJ	External offset adjustment. see calibration instructions.	
			R GAIN	Optional gain selection point. Factory adjusted for $\mathrm{G}-1$ when !eft open Optional hold capacitor connection. Optional acquisition time adjustment when connected to +5 V factory adjusted for $9 \mu \mathrm{~S}$.	
			C HOLDR DELAY		

TECHNICAL NOTES

1. Input channels are protected to 20 V beyond power supplies. All digital output pins have one second short circuit protection and CHOLD has a ten second short circuit protection.
2. To increase acquisition time allotment, (time for the multiplexer, instrumentation amplifier and sample-hold to settle out) connect a resistor from RDELAY (Pin 6) to +5 V (Pin 18). Refer to Table 2 for delay times and resistor values.
3. An external hold capacitor can be connected between CHOLD HI and CHOLD LO. The addition of this capacitor will improve the sample-hold droop rate especially at high operating temperature ranges. It is recommended that polypropylene or teflon capacitors be used for best results.
4. The HDAS has a self starting circuit for free running sequential operation. If. however, in a power up condition the supply voltage slew rate is less than $3 \mathrm{~V} / \mathrm{usec}$., the free running state may not be initialized. By applying a negative pulse to the STROBE, this condition will be eliminated
5. All digital inputs must be stable 50 nsec before and 50 nsec after high to low transition of STROBE
6. For UNIPOLAR operation connect BIPOLAR IN (Pin 38) to S/H out (Pin 39). For BIPOLAR operation connect BIPOLAR IN (Pin 38) to +10V OUT (Pın 40)
7. If HDAS reference (+10 V OUT) is used for external circuitry, source current should be limited to 1 mA .

TABLE 2 INPUT RANGE PARAMETERS (Typical)

INPUT RANGE	GAIN	RGAIN (Ω)	AMPLIFIER SETTLING TIME	RDELAY (Ω)	THROUGHPUT	SYSTEM ACCURACY
$\pm 10 \mathrm{~V}$	1	NONE	$9 \mu \mathrm{sec}$.	NONE	55.5 KHz	0.009%
$\pm 5 \mathrm{~V}$	2	20.0 K	$9 \mu \mathrm{sec}$.	NONE	55.5 KHz	0.009%
$\pm 2.5 \mathrm{~V}$	4	6.667 K	$9 \mu \mathrm{sec}$.	NONE	55.5 KHz	0.009%
$\pm 1 \mathrm{~V}$	10	2.222 K	$9 \mu \mathrm{sec}$.	NONE	55.5 KHz	0.009%
$\pm 200 \mathrm{mV}$	50	408.2	$16 \mu \mathrm{sec}$.	7 K	40.0 KHz	0.010%
$\pm 100 \mathrm{mV}$	100	202.0	$30 \mu \mathrm{sec}$.	21 K	25.6 KHz	0.011%
$\pm 50 \mathrm{mV}$	200	100.5	$60 \mu \mathrm{sec}$.	51 K	14.5 KHz	0.016%
$\pm 20 \mathrm{mV}$	500	40.08	$144 \mu \mathrm{sec}$.	135 K	6.5 KHz	0.035%
$\pm 10 \mathrm{mV}$	1000	20.02	$288 \mu \mathrm{sec}$.	$279 \mathrm{~K} *$	3.3 KHz	0.069%

*This value exceeds the maximum recommended for use over military temperature ranges
NOTES:
$\operatorname{RGAIN}(\Omega)=\frac{20,000}{(\text { GAIN }-1)} \quad \operatorname{RDELAY}(\Omega)=\frac{\text { Amp Setting time }}{10^{-9}}-9 \mathrm{~K}$

TABLE 3 CALIBRATION TABLE

UNIPOLAR RANGE	ADJUST	INPUT VOLTAGE
0 TO +5V	$\begin{aligned} & \text { ZERO } \\ & \text { GAIN } \end{aligned}$	$\begin{array}{r} +0.6 \mathrm{mV} \\ +4.9982 \mathrm{~V} \end{array}$
$0 \mathrm{TO}+10 \mathrm{~V}$	$\begin{aligned} & \text { ZERO } \\ & \text { GAIN } \end{aligned}$	$\begin{array}{r} +1.2 \mathrm{mV} \\ +9.9963 \mathrm{~V} \end{array}$
BIPOLAR RANGE		
$\pm 2.5 \mathrm{~V}$	OFFSET GAIN	$\begin{aligned} & -2.4994 \mathrm{~V} \\ & +2.4982 \mathrm{~V} \end{aligned}$
$\pm 5 \mathrm{~V}$	OFFSET GAIN	$\begin{array}{r} -4.9988 \mathrm{~V} \\ +4.9963 \mathrm{~V} \end{array}$
$\pm 10 \mathrm{~V}$	OFFSET GAIN	$\begin{aligned} & -9.9976 \mathrm{~V} \\ & +9.9927 \mathrm{~V} \end{aligned}$

CALIBRATION PROCEDURES

A) Offset and gain adjustments may be made by connecting two 20K trim potentiometers as shown in Figure 1.
B) Connect a precision voltage source to pin $4(\mathrm{CHO})$. If the HDAS-8 is used, connect pin 58 (CH.O LO) to analog ground. Ground pin 20 (CLEAR) and momentarily short pin 8 (STROBE). Trigger the A/D by connecting pin $7(\overline{\mathrm{EOC}})$ to pin 8 ($\overline{\mathrm{STROBE}})$. Select proper value for RGAIN and RDELAY by referring to Table 2.
C) Adjust the precision voltage source to the value shown in the Calibration Table for the unipolar zero adjustment (ZERO $+1 / 2$ LSB) or the bipolar offset adjustment (- FS $+1 / 2$ LSB). Adjust the offset trim potentiometer so that the output code flickers equally between 000000000000 and 000000000001.
D) Change the output of the precision voltage source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment ($+\mathrm{FS}-1 \frac{1}{2} \mathrm{LSB}$). Adjust the gain trim potentiometer so that the output flickers equally between 111111111110 and 1111 11111111.

1. Throughput time $=$ Amplifier Setting time and A/D Conversion Time A/D Conversion time $=9 \mu \mathrm{sec}$
2. Full Scale can be accommodated for analog signal ranges of $\pm 10 \mathrm{mV}$ to $\pm 10 \mathrm{~V}$.
3. The analog input range to the A / D Converter is 0 to +10.0 V for unipolar and -10.0 V to +10.0 V for bipolar operation.
FIG 1 EXTERNAL ADJ.

TABLE 4 OUTPUT CODING

	UNIPOLAR		STRAIGHT BINARY
	$\mathbf{0}$ to $+\mathbf{1 0} \mathbf{V}$	$\mathbf{0}$ to $+\mathbf{5 V}$	
+FS-1 LSB	+9.9976	+4.9988	111111111111
+ $1 / 2$ FS	+5.0000	+2.5000	100000000000
+1 LSB	+0.0024	+0.0012	000000000001
ZERO	0.0000	0.0000	000000000000
	BIPOLAR		OFFSET BINARY
	$\pm \mathbf{1 0} \mathbf{V}$	$\pm 5 \mathrm{~V}$	
	+9.9951	+4.9976	111111111111
+FS-1 LSB	+5.0000	+2.5000	110000000000
+1/2FS	+0.0049	+0.0024	100000000001
+1 LSB	0.0000	0.0000	100000000000
ZERO	-9.9951	-4.9976	000000000001
-FS + LSB	-10.000	-5.0000	000000000000

*For 2's complement - add inverter to MSB line.

TABLE 5 MUX CHANNEL ADDRESSING

\longleftrightarrow MUX ADDRESS \longrightarrow						
PIN						
9	10	11	12	5		
RA8	RA4	RA2	RA1	MUX ENAB.		
X	X	\times	X	0	NONE	
0	0	0	0	1	0	
0	0	0	1	1	1	
0	0	1	0	1	2	
0	0	1	1	1	3	
c	1	0	0	1	4	
0	1	0	1	1	5	
0	1	1	0	1	6	HDAS-8
0	1	1	1	1	7	(3 BIT ADDRESS)
1	0	0	0	1	8	
1	0	0	1	1	9	
1	0	1	0	1	10	
1	0	1	1	1	11	
1	1	0	0	1	12	
1	1	0	1	1	13	
1	1	1	0	1	14	HDAS-16
1	1	1	1	1	15	(4 BIT ADDRESS)

MULTIPLEXER ADDRESSING

Channel Selection

The HDAS is capable of two modes of addressing the multiplexer.

RANDOM ADDRESS

Set Pin 19 ($\overline{\text { LOAD }}$) to logic "0". The next falling edge of STROBE will load the MUX CHANNEL ADDRESS present on Pin 13 to Pin 16. Address inputs must be stable 50 nsec before and after falling edge of $\overline{\text { STROBE }}$ pulse.

FREE RUNNING SEQUENTIAL ADDRESS

Set Pin 19 ($\overline{\text { LOAD }) ~ a n d ~ P i n ~} 20$ ($\overline{\text { CLEAR }) ~ t o ~ l o g i c ~ " ~} 1$ " or leave open. Connect Pin $7(\overline{\mathrm{EOC}})$ to Pin 8 ($\overline{\mathrm{STROBE}}$). The falling edge of $\overline{E O C}$ will increment channel address. This means that when the EOC is low, the digital output data is valid for the previous channel $(\mathrm{CHn}-1)$ than that channel indicated on MUX ADDRESS OUTPUT. The HDAS will continually scan all 16 channels.
example

CH 4 has been addressed and a conversion takes place. The EOC goes low and that Channels data becomes valid but MUX ADDRESS CODE is now CH 5 .

TRIGGERED SEQUENTIAL ADDRESS

Set Pin 19 ($\overline{\text { LOAD }) ~ a n d ~ P i n ~} 20$ (CLEAR) to logic " 1 " or leave open. Apply a falling edge trigger pulse to Pin 8 (STROBE). This negative transition causes the contents of the address counter to be incremented by one followed by an A/D conversion in $9 \mu \mathrm{sec}$.

FIG. 2 HDAS TIMING DIAGRAM

FIG. 3 MULTIPLEXER EQUIVALENT CIRCUIT

INPUT VOLTAGE PROTECTION

As shown in Fig. 3, the multiplexer has reversed biased diodes which protect the input channels from being damaged by overvoltage signals. The HDAS input channels are protected up to 20 V beyond the supplies and can be increased by adding series resistors (Ri) to each channel. This input resistor must limit the current flowing through the protection diodes to 10 mA .

The value of Ri for a specific voltage protection range (Vp) can be calculated by the following formula:

$$
V p=(R \text { signal }+R i+R o n)(10 m A)
$$

$$
\text { where Ron }=2 \mathrm{~K}
$$

NOTE: Increased input series resistance will increase multiplexer settling time.

FIG. 4 LOW LEVEL INPUTS

Remote monitoring of low level signals can be difficult, especially when analog signals pass through an environment with high levels of electrical noise. One solution is to use an instrumentation amplifier to extract the common mode voltage and amplify the voltage difference. The HDAS-8, an eight channel differential input system,
can reject common-mode noise and allow amplification up to a gain of 1000. Direct connections to thermocouples, transducers, strain gages and RTD can be made through shielded twisted pairs. A differential RC filter may be used to attenuate normal mode noise.

FIG. 532 CHANNEL SINGLE ENDED DATA ACQUISITION SYSTEM

MX1606-16 CHANNEL CMOS MULTIPLEXER IC1 - TYPE "D" FLIP FLOP

FIG. 616 CHANNEL DIFFERENTIAL DATA ACQUISITION SYSTEM

MULTIPLEXER EXPANSION

Fig. 5 shows the interconnection scheme for expanding the multiplexer channel capacity of the HDAS-16 from 16 channels single ended to 32 channels. Fig. 6 shows a
similar scheme to expand the HDAS-16 to 16 differential channels.

FIG. 7 SIMPLE CONNECTION DIAGRAM

NOTES:

1. For HDAS-16, tie PIN 50 to "signal source common" if possible. Otherwise tie PIN 50 to PIN 41 (ANG SIG COM)
2. BIPOLAR connection yields +10 V range. UNIPOLAR connection yields 0 to $\pm 10 \mathrm{~V}$ range. Other ranges are created by selecting appropriate value of Rg
3. DIG COM, ANG PWR COM and ANG SIG COM are internally connected.

FIG. 8 PROCESSOR INTERFACE

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490

- Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

Miniature Modular Data Acquisition System Models MDAS-16, MDAS-8D

FEATURES

- 16 Channels Single Ended or 8 Channels Differential
- 12 Bits Resolution
- 50 kHz Throughput Rate
- Three-State Outputs
- Low Cost
- Miniature Size

DESCRIPTION

The MDAS-16 and MDAS-8D data acquisition modules are complete, selfcontained systems featuring 16 channel single ended or 8 channel differential operation respectively. Resolution is 12 bits and throughput rate is 50 kHz . Output data is buffered three-state for interfacing to mini or micro-computer data buses. Output data can be transferred in three 4 bit bytes. Output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation.

The $4.6 \times 2.5 \times 0.375$ inch size of these modules is $1 / 2$ inch narrower than other competitive models. The small size and low cost are made possible by extensive use of hybrid and monolithic circuits to reduce parts count and increase reliability. Both models use Datel-Intersil's new ADC-HZ12BGC 12 bit hybrid A/D converter along with a monolithic samplehold and analog multiplexer.

The MDAS-16 and MDAS-8D feature a high degree of user flexibility with pinprogrammable input ranges of 0 to +5 V , 0 to $+10 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$. The systems may be operated in either random or sequential channel addressing modes. For applications where lower than 12 bit resolution can be used, the A/D converter can be short-cycled to achieve a faster conversion rate. Output data is also available in serial form with a gated clock output.

The modules are housed in a shielded steel case. Input-output connections are made by means of a 72 -pin connector. The number of channels may be expanded by 32 for the MDAS -16 or by 16 for the MDAS-8D by use of the multiplexer expander modules MDXP-32, and MDXP-32-1

SPECIFICATIONS, MDAS-16 \& MDAS-8D
(Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ and +5 V supplies unless otherwise indicated)

NALOG INPUTS	
Number of Channels	16 Single Ended (MDAS-16) 8 Differential (MDAS-8D)
Input Voltage Ranges unipolar bipolar	$\begin{aligned} & 0 \text { to }+5 \mathrm{~V} 0 \text { to }+10 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{aligned}$
Common Mode Range, min. Max. Input Voltage. no damage	$\pm 10 \mathrm{~V}$ $\pm 15 \mathrm{~V}$
Input Impedance	100 megohms
Input Bias Current	3nA, 10nA max. 0 to $70^{\circ} \mathrm{C}$
Input Capacitance OFF channel ON channel	$\begin{aligned} & 10 \mathrm{pF} \\ & 100 \mathrm{pF} \end{aligned}$

ACCURACY

Resolution
Error, max. 50 kHz sampling
Nonlinearity, max.
Diff. Nonlinearity, max.
Gain Error
Offset Error
Temp. Coeff. of Gain, max.
Temp. Coeff. of Offset, max.
Diff. Linearity Tempco, max.
Common Mode Rejec., min.
Monotonicity
Power Supply Rejection
12 Bits
t. 025% of FSR
$\pm 1 / 2$ LSB
$\pm 1 / 2$ LSB
Adj to zero
Adj. to zero $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\pm 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS
$\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FS
70 dB at 1 kHz
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
01\%/\% Supply

DYNAMIC CHARACTERISTICS

Throughp	50 kHz
Acquisition Tim	$6 \mu \mathrm{sec}$.
Conversion Time	$14 \mu \mathrm{sec}$.
Aperture Time, max.	100 nsec .
Sample-Hold Droop, max.	$200 \mu \mathrm{~V} / \mathrm{msec}$.
Feedthrough, max.	01\%

DIGITAL OUTPUTS
Parallel Data Out

Coding
Serial Out

Mux Address Out

Delay Out
Clock Out
EOC (Status)
MSB Out
MSB Out

12 parallel lines of buffered threestate output data.
Drives 12 TL loads
Straight binary, offset binary, and two's complement
Output data in MSB first, NRZ format. Straight binary and offset binary coding Drives 5 TTL loads Buffered output of address register
Drives 20 TLL loads
Drives 5 TTL loads
Drives 5 TL loads
Drives 4 TLL loads
Drives 5 TL loads
Drives 5 TL loads

DIGITAL INPUTS

Enable

Mux Address In

Strobe

A/D Trigger
A/D Trigger
Mux Enable
Count Enable
Load Enable
Clear Enable
MSB In
Short Cycle

Three separate inputs which enable three-state outputs in 4 bit bytes 1 TTL load
3 bit (MDAS -8D) or 4 bit (MDAS -16) binary address 1 LS TLL load 1 LS TIL load with 10K pull-up resistor
1 LS TTL load with 10K pull-up resistor
1 LS TTL Load
1 TTL load with 10K pull-up resistor
1 LS TTL load with 10K pull-up resistor
1 LS TTL load with 10 K pull-up resistor
1 LS TTL load with 10K pull-up resistor
1 TL load
1 TLL load with 1OK pull-up resistor

```
POWER REQUIREMENT .. +15VDC +0.5V@ 65mA
    -15VDC }\pm0.5\textrm{V}@60\textrm{mA
    +5VDC £0.25V@ 200mA
```


PHYSICAL ENVIRONMENTAL

Operating Temp. Range $\ldots \quad 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Package Size
Package Type
Weight
$4.6 \times 2.5 \times 0.375$ inches $(116,8 \times 63,5 \times 9.5 \mathrm{~mm})$
Steel, shielded on 5 sides
6 oz . (170 g)

NOTES: 1. All outputs are Vout (" O ") $\leqslant+0.4 \mathrm{~V}$, Vout $(" 1$ ") $\geqslant+2.4 \mathrm{~V}$
2. All inputs are Vin $\left({ }^{\prime} O^{\prime \prime}\right) \leqslant+0.8 \mathrm{~V}$, $\operatorname{Vin}\left(" 1^{\prime \prime}\right) \geqslant+2.0 \mathrm{~V}$

ORDERING INFORMATION

MDAS-16

MDAS-8D

These modules are also available in extended temperature range versions designated with the suffix $\mathrm{EX}\left(-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$) or EXX-HS ($-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$) with hermetically sealed semiconductor components. Contact factory for price and delivery.
Included with each module is a mating right-angle 72 pin connector. (AMP 3-86063-2). Additional connectors may also be ordered by the following number: 58-2083010 Connector

Trimming Potentiometers:
Multiplexer expander modules are also available.
The MDXP- 32 adds 32 single ended or 16 differential channels with control logic.
The MDXP-32-1 is identical but without control logic.

PIN CONNECTIONS for MDAS-16				PIN CONNECTIONS for MDAS-8D			
	Top	Bottom			Top	Bottom	
+15VDC	1 T	1 B	-15VDC	+15VDC	1 T	1 B	-15VDC
Analog Gnd.	2 T	2B	Analog Gnd.	Analog Gnd.	2 T	2B	Analog Gnd.
Ch. 0 In	3 T	3B	Ch. 8 ln	Ch. OHiln	3 T	3B	Ch. 0 Lo In
Ch. 1 In	4 T	4B	Ch. 9 In	Ch. 1 Hi ln	4 T	4B	Ch. 1 Loln
Ch. 2 In	5 T	5B	Ch. 10 ln	Ch. 2 Hi In	5 T	5B	Ch. 2 Loln
Ch. 3 In	$6 T$	6B	Ch. 11 ln	Ch. 3 Hi ln	6 T	6B	Ch. 3 Lo In
Ch. 4 In	71	78	Ch. 12 ln	Ch. 4 Hi ln	71	7B	Ch. 4 Loln
Ch. 5 In	8 T	8B	Ch. 13 In	Ch. 5 Hi In	$8 \mathrm{8T}$	8B	Ch. 5 Loln
Ch. 6 In	9 T	9B	Ch. 14 ln	Ch. 6 Hi In	9 T	9B	Ch. 6 Lo In
Ch. 7 In	10 T	108	Ch. 15 In	Ch. 7 Hi In	10T	10B	Ch. 7 Lo In
Amplifier In Hi	11 T	11 B	Amplifier In Lo	Amplifier In Hi	11 T	11 B	Amplifier In Lo
Range 1 Select	12 T	12B	Range 2 Select	Range 1 Select	12 T	12 B	Range 2 Select
Sample Hold Out	13 T	13 B	Amplifier Out	Sample Hold Out	13 T	138	Amplifier Out
Enable (Bits 1-4 Out)	14 T	14 B	Sum. Junc. (Bipolar Off.)	Enable (Bits 1-4 Out)	14 T	14 B	Sum. Junc. (Bipolar Off!)
Bipolar Offset	15 T	15B	Enable (Bits 5-8 Out)	Bipolar Offset	15 T	15 B	Enable (Bits 5-8 Out)
Ext. Offset Adjust	16 T	16B	Ext. Gain Adjust	Ext. Offset Adjust	16 T	16 B	Ext. Gain Adjust
Enable (Bits 9-12)	177	178	Mux Enable	Enable (Bits 9-12 Out)	17 T	178	Mux Enable
Serial Out	18 T	18B	Count Enable	Serial Out	18 T	18 B	Count Enable
8 Out Mux	19 T	19B	8 In 7 Mux	8 Out Mux	19 T	19 B	8 In ${ }^{\text {mux }}$
4 Out Address	20 T	20B	4 In Address	4 Out Address	20 T	208	4 ln 2 ${ }^{\text {ln }}$, Address
2 Out 1 Out ${ }^{\text {L }}$ Lines	$21 T$ 221	21B	$\left.\begin{array}{l}2 \\ 1 \\ 1 \\ \text { In } \\ \end{array}\right\}$ Lines	2 Out 1 Out ${ }^{4}$ Lines	$21 T$ $22 T$	21B	
Delay Out	23 T	23 B	MSB Out (TTL)	Delay Out	23T	23B	MSB Out (TTL)
MSB In (TTL)	$24 T$	24B	Load Enable	MSB In (TTL)	24 T	24B	Load Enable
Strobe	25T	25B	Clear Enable	Strobe	25 T	25B	Clear Enable
A/D Trigger	$26 T$	26B	Clock Out	A/D Trigger	$26 T$	26B	Clock Out
A/D Trigger	271	278	EOC (status)	A/D Trigger	$27 T$	278	EOC (status)
Short Cycle	$28 T$	28B	MSB Out (TTL)	Short Cycle	$28 T$	28B	MSB Out (TTL)
Bit 1 Out* (MSB)	29T	29B	Bit 2 Out*	Bit 1 Out* (MSB)	29 T	29B	Bit 2 Out*
Bit 3 Out*	307	30B	Bit 4 Out*	Bit 3 Out*	307	30B	Bit 4 Out*
Bit 5 Out*	317	31B	Bit 6 Out*	Bit 5 Out*	317	31 B	Bit 6 Out*
Bit 7 Out*	32T	32B	Bit 8 Out*	Bit 7 Out*	32 T	32B	Bit 80 Out
Bit 9 Out*	33 T	338	Bit 10 Out*	Bit 9 Out*	33T	33B	Bit 10 Out*
Bit 11 Out*	34 T	34B	Bit 12 Out* (LSB)	Bit 11 Out*	34 T	34B	Bit 12 Out* (LSB)
Digital Gnd.	35T	35B	Digital Gnd.	Digital Gnd.	35 T	35B	Digital Gnd.
+5VDC	36T	36B	+5VDC	+5VDC	36T	36B	+5VDC
*Three-State Outputs				*Three-State Outputs			

TABLE I DESCRIPTION OF CONTROL PIN FUNCTIONS

FUNCTION	PIN	DESCRIPTION
Amplifier In Lo	11B	Analog monitoring point for MDAS-8D. For the MDAS-16 this pin must be grounded.
Amplifier In Hi	11T	Analog monitoring point.
Range 2 Select Range 1 Select	$\begin{aligned} & 12 \mathrm{~B} \\ & 12 \mathrm{~T} \\ & \hline \end{aligned}$	These pins program analog input voltage range. See Table II
Amplifier Out	13B	Analog monitoring point.
Sample Hold Out	13 T	Analog monitoring point.
Summing Junction	14B	Used to program analog input voltage range and bipolar offset. See Table II
Enable	14T	Input LO enables tri-state outputs for bits 1-4. Input HI inhibits outputs.
Enable	15B	Input LO enables tri-state outputs for bits 5-8. Input HI inhibits outputs.
Bipolar Offset	15 T	Connects to 14 B for bipolar operation and to analog ground for unipolar operation. See Table II
Ext. Gain Adjust	16B	Used to adjust out gain error. Operates independently of the internal adjustment. See External Adjustments diagram.
Ext. Offset Adjust	16 T	Used to adjust out offset error. Operates independently of the internal adjustment. See External Adjustments diagram.
Mux Enable	17B	Input HI enables analog multiplexer. Input LO inhibits analog multiplexer.
Enable	17 T	Input LO enables three-state outputs for bits 9-12.Input HI inhibits outputs.
Count Enable	18B	Input HI enables Mux Address Register. Input LO inhibits Mux address Register.
Mux Address In	$\begin{aligned} & 19 \mathrm{~B}, 20 \mathrm{~B}, \\ & 21 \mathrm{~B}, 22 \mathrm{~B} \end{aligned}$	Digital inputs for channel address selection in random addressing mode. Straight binary coding. See Table III
Mux Address Out	$\begin{aligned} & 19 \mathrm{~T}, 20 \mathrm{~T}, \\ & 21 \mathrm{~T}, 22 \mathrm{~T} \end{aligned}$	Straight binary coded output of Mux Address Register.
MSB Out	23B	Bit 1 TTL output of A/D converter. Connect to pin 24T for straight binary or offset binary output coding.
Delay Output	$23 T$	An output delay pulse for $6 \mu \mathrm{sec}$. to allow for multiplexer and amplifier settling time and sample hold acquisition time. This pin is normally connected to A/D Trigger (pin 27T) to initiate A/D conversion.
Load Enable	24B	Input HI for sequential addressing. Input LO for random addressing.
MSB In	24 T	Bit 1 input to three-state output buffers. Connect to either pin 23B (MSB Out) or pin 28B ($\overline{M S B}$ Out).
Clear Enable	25B	Input LO and a negative transition on pin 25T resets Mux address counter to zero.
Strobe	$25 T$	Negative input transition initiates channel scanning sequence in sequentia mode or a conversion in the random mode. A Schmidt trigger input adds hysteresis for good noise rejection.
Clock Output	26B	A/D converter clock pulses for synchronization of serial data. Negative going pulses of approximately 100 nsec . duration.
A/D Trigger	26 T	A positive logic transition on this input initiates A/D conversion.
$\overline{\overline{E O C}}$ (status)	27B	End of conversion (status) output. Output HI during conversion and LO when conversion is complete.
A/D Trigger	27	A negative logic transition on this input initiates A / D conversion. This pin is normally connected to pin 23T (Delay Output).
$\overline{\text { MSB Out }}$	28B	Complemented bit 1 TTL output of A/D converter. Connect to pin 24T for two's complement output coding.
Short Cycle	281	For 12 bit resolution connect this pin to ground. To short cycle A/D converter for lower resolution, connect this pin to output bit $n+1$ for a resolution of n bits. Short cycling of the A/D converter can only be done with the Enable inputs (pins 14T, 15B and 17T) LO.

TABLE II INPUT RANGE SELECTION

INPUT RANGE	CONNECT THESE PINS TOGETHER		
	RANGE 2	BIPOLAR OFF.	
	13 B	PIN 12B	PIN 15T
0 TO +10 V	2 B OR 2T	13 T	2 B OR 2T
$\pm 2.5 \mathrm{~V}$	13 B	13 T	2 B OR 2T
$\pm 5 \mathrm{~V}$	2 B OR 2T	13 T	14 B
$\pm 10 \mathrm{~V}$	$2 B$ OR 2T	OPEN	14 B

TABLE IV
THROUGHPUT RATES VS. NO. BITS FOR SHORT-CYCLED A/D CONVERTER

NO. BITS	THROUGHPUT
RATE	
12	50 kHz
10	53 kHz
8	57 kHz
4	67 kHz

TABLE III MUX
CHANNEL ADDRESSING

\longleftarrow MUX ADDRESS \longrightarrow					$\begin{gathered} \text { 岂 } \\ \text { z } \\ \text { z } \\ 0 \\ \hline \end{gathered}$	
PIN						
19B	20B	21B	22B	17B		
8	4	2	1	MUX ENAB.		
X	x	x	x	0	NONE	
0	0	0	0	1	0	
0	0	0	1	1	1	
0	0	1	0	1	2	
0	0	1	1	1	3	
0	1	0	0	1	4	
0	1	0	1	1	5	
0	1	1	0	1	6	MDAS -8D
0	1	1	1	1	7	(3 BIT ADDRESS)
1	0	0	0	1	8	
1	0	0	1	1	9	
1	0	1	0	1	10	
1	0	1	1	1	11	
1	1	0	0	1	12	
1	1	0	1	1	13	
1	1		0	1	14	MDAS-16
1		1	1	1	15	(4 BIT ADDRESS)

TABLE V
CALIBRATION TABLE

UNIPOLAR RANGE	ADJUST.	INPUT VOLTAGE
0 TO +5 V	ZERO	+0.6 mV
GAIN	+4.9982 V	
0 TO $+10 \mathrm{~V}$	ZERO	+1.2 mV
	GAIN	+9.9963 V
BIPOLAR RANGE		
$\pm 2.5 \mathrm{~V}$	OFFSET	-2.4994 V
	GAIN	+2.4982 V
	OFFSET	-4.9988 V
	GAIN	+4.9963 V
\pm	OFFSET	-9.9976 V
	GAIN	+9.9927 V

FIG. 1 EXTERNAL ADJUSTMENTS

SET-UP AND CALIBRATION INSTRUCTIONS

1. Select input voltage range desired and connect pins $12 B$ 12T, and 15 T in accordance with Table II. If the MDAS-16 is used, ground pin 11B. Ground all analog channel inputs which are not to be used. Leave pin 17B open.
2. Determine resolution to be used. For full 12 bits, ground pin 28T. For lower resolution requirements, connect pin $28 T$ to bit output $n+1$ for n bit resolution. For example: for 8 bit resolution connect pin 28T to pin 33T (Bit 9 Out). To operate the A/D converter in this short cycled mode, the Enable inputs (pins 14T, 15B, and 17T) must be connected to ground thereby enabling the three-state outputs. For 12 bit resolution the three-state outputs can be either enabled or disabled
3. Select the output coding desired. For straight binary (unipolar) or offset binary (bipolar) connect pin 23B (MSB Out) to pin 24T (MSB In). For two's complement (bipolar) connect pin 28B ($\overline{\mathrm{MSB}}$ Out) to pin 24 T .
4. Select desired multiplexer mode. Connect pin $23 T$ (Delay Out) to pin 27T (A/D Trigger).

A.Free Running Sequential Addressing

Connect pin 27B ($\overline{\mathrm{EOC}}$) to pin 25T ($\overline{\mathrm{Strobe}}$). Leave pins 24B (Load Enable) and 25B (Clear Enable) open. Sequencing is initiated by a positive logic transition applied to pin 26T (A/D Trigger). Pin 26T must remain HI during free running sequential addressing. Sequencing is stopped by a LO applied to pin 26T.

B. Triggered Sequential Addressing

Leave pins 24B (Load Enable) and 25B (Clear Enable) open. Apply a falling edge trigger to pin 25T (Strobe). The negative transition of the strobe will cause the contents of the address counter to be incremented by one.

C.Random Addressing

Ground pin 24B (Load Enable). Leave pin 25B
(Clear Enable) open. Each negative transition applied to pin 25 T ($\overline{\mathrm{Strobe}}$) will cause the data at pins 19B, 20B, 21B and 22B (Mux Address In) to be loaded into the Address Register. Address inputs must be stable for at least 300 nsec. after negative transition of Strobe.
5. Calibration Procedure
A. Offset and gain adjustments may be made either internally or externally. Self-contained trimming potentiometers are provided for the internal adjustments. For external adjustment, 20K trimming potentiometers must be used with pins 16 B and 16T. Connect as shown in Figure 1.
B. Connect power supplies to the module and a precision voltage source to pin 3T (Chan 0 In). If the MDAS-8D is used, connect pin 3B (Chan OLO) to analog ground. Ground pin 25B (Clear Enable) and momentarily short pin 25T (Strobe) to ground. Use an oscilloscope to monitor the serial output code at pin 18T. Trigger the A/D converter with 50 kHz positive going pulses applied to pin 26T (A/D Trigger).
C. Adjust the precision voltage source to the value shown in the Calibration Table for the unipolar zero adjustment (zero $+1 / 2$ LSB) or the bipolar offset adjustment (-FS $+1 / 2$ LSB). Adjust the offset trimming potentiometer so that the output code flickers equally between 000000000000 and 000000000001.
D. Change the output of the precision voltage source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment (+ FS $-1 \frac{1}{2}$ LSB). Adjust the gain trimming potentiometer so that the output flickers equally between 111111111110 and 111111111111.

MDAS-16, MDAS-8D TIMING DIAGRAM Output Code: 010101010101

FEATURES

- Compatible with MDAS-16 or MDAS-8D
- 32 Single Ended Channels
- 16 Differential Channels
- Expansion to 256 Channels
- Miniature Module
- Low Cost

GENERAL DESCRIPTION

The MDXP-32 and MDXP-32-1 are companion devices to Datel Systems' MDAS-16 and MDAS-8D Miniature Modular Data Acquisition Systems. They can also be used with data acquisition systems from other manufacturers. Both models contain 32 analog multiplex channels which permit expanding the MDAS-16 up to 48 single ended channels and the MDAS-8D up to 24 differential channels using single level multiplexing. With double level multiplexing up to 256 single ended channels or 128 differential channels can be realized using 1 MDXP-32 and 7 MDXP-32-1's with an MDAS-16 or MDAS-8D.

The MDXP-32 contains an address counter, address decoder, address detector logic, and two 16 channel analog multiplexers. The MDXP-32-1 contains two 16 channel analog multiplexers and an address decoder. The expanded systerns can be operated in three modes: free running sequential addressing, triggered sequential addressing, or random addressing. In sequential operation the system can be short cycled to any number of desired channels less than the maximum by use of the address detector in the MDXP-32. The MDXP-32-1 can be used to expand the MDAS-16 or MDAS-8D for random addressing operation only.
The analog multiplexers in these units are dielectrically isolated CMOS with fully protected inputs. The ON resistance of each channel is typically 1.5 K ohms. Transfer accuracies better than 0.01% are achieved if a very high impedance load such as a unity gain buffer amplifier input is used. The channels switch with a break-before-make delay of 80 nsec .
Both the MDXP-32 and MDXP-32-1 are contained in a $4.6 \times 2.5 \times 0.375$ inch $(116,8 \times 63,5 \times 9,5 \mathrm{~mm})$ shielded steel case. Operating temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

MAXIMUM RATINGS

Positive Supply Voltage, pin 1T . . . +20V
Negative Supply Voltage, pin 1B . . -20V
Logic Supply Voltage,
pins 36T \& 36B +5.5 V
Digital Input Voltages +5.5 V
Analog Input Voltages + Supply +20 V
-Supply -20V

ANALOG INPUTS

Number of Channels, single ended 32
Number of Channels, differential . 16
Input Voltage Range $\pm 15 \mathrm{~V}$
Channel ON Resistance 1.5K
Channel ON Resistance, $\max .0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. 2.0 K
Channel OFF Input Leakage 30pA
Channel ON Input Leakage 100pA

DIGITAL INPUTS

Input Logic Level', HI (' 1 ') +2.0 V to + 5.5 V	
Input Logic Level', LO ("0’)	
Logic Loading ${ }^{1}$. 1 LS TTL load	
Address Coding	. 4 bits (MDXP-32-1)
	6 bits (MDXP-32)
Mux Enable Inputs ${ }^{2}$, enable	. $\mathrm{HI}(+4.0 \mathrm{~V}$ to +Supp
disable	LO (0 to +0.8V)

DIGITAL OUTPUTS

Output Logic Level, HI (" 1 ") +2.4 V Min.
Output Logic Level, LO ("0") + +0.4V Max.
Output Drive Capability 10 LS TTL loads

PERFORMANCE

Transfer Error, max. ${ }^{3}$	0.01\%
Channel Crosstalk, 1 kHz	80 dB
Turn ON Time	500 ns
Turn OFF Time	300 nse
Break-Before-Make Delay	
Inhibit/Enable Delay	00

POWER REQUIREMENT
$+15 \mathrm{VDC} \pm 0.5 \mathrm{~V} @ 10 \mathrm{~mA}$
$-15 \mathrm{VDC} \pm 0.5 \mathrm{~V} @ 4 \mathrm{~mA}$
$+5 \mathrm{VDC} \pm 0.25 \mathrm{~V} @ 100 \mathrm{~mA}^{4}$

PHYSICAL-ENVIRONMENTAL

Operating Temperature Range $\ldots 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
Storage Temperature Range $\ldots . . .-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Package Size	$4.6 \times 2.5 \times 0.375$ inch
	$116,8 \times 63,5 \times 9,5 \mathrm{~mm}$
Package Type	. Steel, shielded on 5 sides
eight	6 oz. (170 g.)

NOTES:

1. All digital inputs except for Mux Enable Inputs on both models and Address Inputs on MDXP-32-1.
2. The logic levels are also the same for the Address Inputs on MDXP-32-1.
3. For zero source impedance and $\geqslant 20$ megohm load impedance.
4. MDXP-32 only. The MDXP-32-1 does not use +5 V power.

ORDERING INFORMATION

MDXP-32
MDXP-32-1
Included with each module is a mating right-angle 72-pin connector. Additional connectors may also be ordered by the following number.

> 58-2083010 Connector

THE MDXP-32 AND MDXP-32-1 ARE COVERED BY GSA CONTRACT

PIN CONNECTIONS for MDXP-32

	Top	Bottom	
+15VDC	1T	1B	-15VDC
Analog Gnd.	2 T	2B	Analog Gnd.
Ch. 0 In	3 T	3B	Ch. 16 ln
Ch. 1 In	4 T	4B	Ch. 17 ln
Ch. 2 In	5 T	5B	Ch. 18 ln
Ch. 3 In	$6 T$	6B	Ch. 19 In
Ch. 4 In	7 T	7B	Ch. 20 In
Ch. 5 In	8T	8B	Ch. 21 In
Ch. 6 In	9 T	9B	Ch. 22 In
Ch. 7 In	10T	10B	Ch. 23 In
Output, Ch. 0-15	11T	11B	Output, Ch. 16-31
16 ln Address	12T	12B	NC
32 In ! Inputs	13T	13B	NC
Ch. 8 In	14T	14B	Ch. 24 In
Ch. 9 In	15T	15B	Ch. 25 ln
Ch. 10 ln	16T	16B	Ch. 26 In
Ch. 11 In	17T	17B	Ch. 27 ln
Ch. 12 In	18T	18B	Ch. 28 In
Ch. 13 In	19T	19B	Ch. 29 ln
Ch. 14 ln	20T	20B	Ch. 30 ln
Ch. 15 In	21T	21B	Ch. 31 In
Addr. Det. In 1	22T	22B	Addr. Det. In 2
Addr. Det. In 3	23T	23B	Addr. Det. In 4
Enable Ch. 0-15	24T	24B	Enable Ch. 16-31
Addr. Det. In 5	25T	25B	Addr. Det. In 6
Addr. Det. In 7	26T	26B	Addr. Det. In 8
$16 \cdot \overline{32}$ Out	27T	27B	$\overline{16} \cdot 32$ Out
$\overline{16} \cdot \overline{32}$ Out	28 T	28B	Carry Out
1 ln	29 T	29B	1 Out
$2 \ln$ Address	307	30B	2 Out Address
4 ln Inputs	31T	31B	4 Out Outputs
8 ln 仡	32T	32B	8 Out
Address Det. Out	33T	33B	Clock
Load Enable	34T	34B	Clear Enable
Digital Gnd.	35T	35B	Digital Gnd.
+5VDC	36T	36B	+5VDC

PIN CONNECTIONS for MDXP-32-1

	Top	Bottom	
+15VDC	1T	1B	-15VDC
Analog Gnd.	2 T	2B	Analog Gnd.
Ch. 0 In	3 T	3B	Ch. 16 ln
Ch. 1 In	4 T	4B	Ch. 17 ln
Ch. 2 In	5 T	5B	Ch. 18 In
Ch. 3 In	$6 T$	6B	Ch. 19 In
Ch. 4 In	7 T	7 B	Ch. 20 In
Ch. 5 In	8 T	8B	Ch. 21 In
Ch. 6 In	9 T	9B	Ch. 22 In
Ch. 7 In	10T	10B	Ch. 23 In
Output, Ch. 0-15	11T	11B	Output, Ch. 16-31
NC	12T	12B	NC
NC	13T	13B	NC
Ch. 8 In	14 T	14B	Ch. 24 In
Ch. 9 In	15T	15B	Ch. 25 In
Ch. 10 ln	16T	16B	Ch. 26 In
Ch. 111 in	17 T	17B	Ch. 27 ln
Ch. 12 In	18T	18B	Ch. 28 In
Ch. 13 In	19T	19B	Ch. 29 In
Ch. 14 ln	20 T	20B	Ch. 30 In
Ch. 15 In	21 T	21B	Ch. 31 ln
NC	22 T	22B	NC
NC	23T	23B	NC
Enable Ch. 0-15	24T	24B	Enable Ch. 16-31
NC	25T	25B	NC
NC	26T	26B	NC
NC	27 T	27B	NC
NC	28T	28B	NC
NC	29 T	29B	1 ln Addres
NC	30T	30B	
NC	31 T	31 B	4 ln Inputs
NC	32T	32 B	8 ln
NC	33 T	33B	NC
NC	34T	34B	NC
NC	35T	35B	NC
NC	36T	36B	NC

DESCRIPTION OF CONTROL PIN FUNCTIONS

FUNCTION	PIN	DESCRIPTION
Load Enable	34T	Input HI for sequential addressing and LO for random addressing. Connect to MDAS Load Enable (pin 24B).
Clear Enable	34B	When input is LO a negative transition on the MDAS Strobe resets Address counter to zero. Connect to MDAS Clear Enable (pin 25B).
Clock	33B	Each LO to HI transition at this input increments the address counter. Connect to MDAS Delay Out (pin 23T).
Carry Out	28B	Output carry of the address counter which is used in double level multiplexing. Connect to MDAS Count Enable (pin 18B).
Address Detector Inputs	22T thru 26T 22B thru 26B	NAND gate inputs used to short cycle the number of channels in sequential mode. When all inputs are HI the Address Counter can be reset. Connect to Address Outputs and leave unused inputs open.
Address Detector Output	33 T	For short cycled sequential operation connect to Clear Enable on MDXP-32 (pin 34B) and MDAS (pin 25B). When output goes LO the Address Counter stops and is reset to zero when a negative transition is applied to the MDAS Strobe (pin 25T).
$16 \cdot 32$ Out	28 T	Decoder output enables channels 0 to 15 of the multiplexer for single level multiplexing. Connect to MDAS (pin 17B) for single-ended operation and MDXP-32 (pins 24B and 24T) for differential operation.
16-32 Out	27 T	Decoder output enables channels 16 to 31 of the multiplexer for single-level multiplexing. Connect to pin 24T for single-ended operation and MDAS (pin 17B) for differential operation.
16.32 Out	27B	Decoder output enables channels 32 to 47 of the multiplexer for single-level multiplexing. Connect to pin 24B for single-ended operation and leave unconnected for differential operation.
Address Inputs	29 T thru 32T	Input channel address. Connect to MDAS Address Inputs for single-level multiplexing.
Mux Enable	24B, 24T	Input HI enables multiplexer.

SINGLE LEVEL MULTIPLEXING

1. For up to 48 single-ended channels or up to 24 differential channels, single level multiplexing is used. This requires one MDAS-16 and one MDXP-32 or one MDAS-8D and one MDXP-32.
2. The three Address Decoder outputs are used in single level multiplexing only, to control the Mux Enable inputs as follows:

$$
\begin{array}{ll}
\overline{16} \cdot \overline{32} \text { Output selects Channels } 0 \text { to } 15 & \text { (MDAS pin 17B) } \\
\frac{16}{16} \cdot 32 \text { Output selects Channels } 16 \text { to } 31 & \text { (MDXP-32 pin 24T) } \\
16 \cdot 32 \text { Output selects Channels } 32 \text { to } 47 & \text { (MDXP-32 pin 24B) }
\end{array}
$$

3. Address inputs $1,2,4,8$ are common to both MDAS and MDXP-32. Address inputs 16 and 32 are applied to the MDXP-32 only.
4. For short cycling, which is required for sequential operation for any number of channels less than 256 , the Address Outputs of the MDXP-32 are connected to the Address Detector Inputs. The rule is to connect Address Outputs whose binary value equals the number of the last channel in sequence. Note that channels are counted from 0 to 47. For example, for 37 channels the Address Outputs 4 and 32 would be used (adding up to 36).

SINGLE LEVEL MULTIPLEXING UP TO 48 SINGLE ENDED CHANNELS (48 CHANNELS SHOWN)

SINGLE LEVEL MULTIPLEXING UP TO 24 DIFFERENTIAL CHANNELS (24 CHANNELS SHOWN)

APPLICATION NOTES

DOUBLE LEVEL MULTIPLEXING

1. For more than 48 single ended channels or more than 24 differential channels, double level multiplexing is required. Up to 256 single ended and up to 128 differential channels may be achieved by double level multiplexing. This technique uses all the channels of the MDAS for the second level of multiplexing so that these channels cannot be used as input channels.
2. One MDXP-32 and one MDAS-16 give 32 single ended channels, and each added MDXP-32-1 gives another 32 channels. Likewise, one MDXP-32 and one MDAS-8D give 16 differential channels and each added MDXP-32-1 gives another 16 channels.
3. With double level multiplexing the Mux Enable inputs of the MDXP-32 and MDXP-32-1's are connected to +5 V to permanently enable them.
4. One input to the Address Detector Inputs is the Carry Out (pin 28B). As a result of this connection the other Address Detector Inputs are determined from the desired nuinber of channels as follows:
Channel No. - 15 = Binary value of Address Outputs
Remembering that the channel count is from 0 to 255 the address output required for 157 channels would be $156-15=140$
This requires binary Address Outputs of 128, 8, and 4.
5. In the case of using the maximum 256 channels, the connection from the Address Detector Output (pin 33T) to Clear Enable (pin 34B) is left open and no Address Detector Inputs are required.

DOUBLE LEVEL MULTIPLEXING FOR UP TO 256 SINGLE ENDED CHANNELS (240 CHANNELS SHOWN)

YO SIX ADOITIONAL MOXP-32-I's
ANALOG INPUT RANGE SELECTION
SUPPLY CONNECTION NOT SHOWN.

DOUBLE LEVEL MULTIPLEXING FOR UP TO 128 DIFFERENTIAL CHANNELS (112 CHANNELS SHOWN)

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

250 KHZ, 12-Bit, 16-Channel Data Acquisition Module
 Model DAS-250

FEATURES

- 250,000 A/D Samples Per Second
- 12 Bits, 16 Channels
- Double-buffered, Tri-State Gatable Outputs for 4, 8, 12 or 16-bit computer busses
- Stored, Open-Collector BusCompatible Input Commands
- Automatic Channel Sequencing

DESCRIPTION

Datel's DAS-250 is a very fast, 16channel data acquisition (A/ D) system with a throughput period of 4 microseconds. The DAS-250 is a modular A / D front end for mini- and microcomputers. When operated with a very fast I/O cycle in the computer (one microsecond or less), data rates in excess of 200,000 analog samples per second may be achieved.

The DAS-250 features a 12-bit binary A/D output and a 4-bit channel address output both of which are latched and gated. This output data may be gated out in 4 -bit groups so that $4,8,12$ or 16 bit computer busses may be used. Most input commands are negative true and may be internally stored using device select and strobe commands. Again, this is ideal for open-collector computer control busses.

The DAS-250 includes an internal 16-channel address counter and analog multiplexer which increments with each A/D conversion for automatic sequential multi-channel scanning. Alternatively, this counter may be used as a jammed register which is loaded with a 4-bit address from an external processor. This lat

ter mode offers random channel addressing whereby some highactivity channels may be sampled more often than others under program control.

The DAS-250 uses Datel's very high speed, fast-settling SHM-5 Sample/Hold amplifier with a 20 nanosecond aperture time and 350 nanosecond settling time. Using this fast S / H amplifier plus latched data outputs and an ADC-EH12B3 A/D converter with 2 microsecond 12-bit conversion performance, the DAS-250 achieves its high speed using overlapped conversion and storage techniques.

The analog multiplexer is switched to a new channel at the start of A / D conversion while the S/H amplifier holds the present analog value stable during conversion. The multiplexer and

S/H input stage may then settle and track the next channel while the A / D is converting.

A/D data is valid in the output latches at the end of conversion and channel address data appears at either the beginning or end of conversion (a jumperselected mode).

The DAS-250 features an overall accuracy of $\pm 0.025 \% \pm 1$ LSB. It is packaged on 2 small PC boards which are joined by standoffs. Overall dimensions are 4.25"W $\times 5.00^{\prime \prime} \mathrm{D}$ with spacing between parallel dual-22-pin PC fingers of $1^{\prime \prime}$. Power requirements are +5VDC @ 450 mA (500 mA max.), +15VDC@165 mA (180 mA max.) and -15VDC @ 85 mA (100 mA max.), for 6 watts total. The operating temperature range is 0 to $+70^{\circ}$.

Overlapped Conversion and Storage Description

A/D Conversion begins with a start convert command after the input has been previously settled for 2 microseconds minimum. (This is usually achieved by having system reset to channel 1 while idle.) As the A/D conversion is started, the sample/hold (S / H) amplifier switches to temporarily hold the analog voltage stable during conversion. Simultaneously with the convert start, the channel address is stored in the output latches. Another jumper-selected mode delays this address storage until the end of conversion, but will store the next incremented address. This latter mode holds stable data all the way to the next end of conversion for processors which do not want the address data to change at start of conversion. Regardless of the mode chosen, the channel address sequencer is then incremented at start of conversion (or the sequencer is updated with a jamming external address in random mode). To summarize: channel address storage may occur at start or end of conversion, but channel address multiplexer sequencing always occurs at start of conversion (after storage, if done).
The analog multiplexer and sample/hold input stage settle and track the next channel during A/D conversion. At the end of conversion, A/D binary data are stored in the output latches. A slightly delayed BUSY output flags the external processor to collect the data by using Read Data commands to gate data onto the bus from the
latches. Address and MSB data should be taken first if the address latch will be updated with the next start convert command. Most fast minicomputers will take the next 2 microseconds to decode the BUSY falling edge and retrieve all data. Since the S / H returns to the sample mode at the end of conversion, one microsecond minimum must be allowed until the next start convert command to let the S/H output stage follow the new channel. The processor will have until the end of the next conversion to read the previous A/D data.
This timing is ideal for 8-bit bus systems which must take data in two bytes yet with high throughput speed. Singlechannel operations (such as Fast Fourier Transform vibration analysis), which run in random mode without updating the multiplexer, may achieve speeds up to 300 KHz and beyond, assuming data is taken quickly.
Of the two timing modes (channel address storage occurring at the beginning or end of conversion), storing at the beginning produces an address which coincides with the A/D data, but this address will be lost at the next convert start which occurs in 2 microseconds at 250 KHz . With the address stored at the end of conversion, both the address and A/D data latches are updated simultaneously (at end of conversion). However, the address leads data by one channel.

NOTES:

1. • DENOTES INTERNAL SIGNALS
2. EXAMPLE SHOWN IS FOR 16 SEQUENTIAL CHANNELS AFTER BEEN RESET TO CHANNEL ONE.
3. NOTE THAT AT LEAST 2μ SEC IS REQUIRED TO SELECT THE FIRST CHANNEL. TO AVOID THIS SETTLING TIME IT WOULD BE NECESSARY TO ALWAYS INITIALIZE TO CHANNEL ONE UPON POWER UP \& TO RETURN TO CHANNEL ONE AT THE END OF A GIVEN SEQUENCE. (THE LATTER IS AUTOMATICALLY DONE IN THE SEQUENTIAL MODE, WHEN THE LAST CHANNEL IS CONVERTED THE SEQUENCER ADVANCES TO CHANNEL ONE).
4. NOTE THERE ARE TWO JUMPER SELECTABLE OPTIONS FOR ADDRESS VALID. ONE REPRESENTS THE ACTUAL CHANNEL ADDRESS BUT ALLOWS MINIMAL TIME TO READ THE ADDRESS. THE OTHER ALLOWS MAXIMUM TIME TO READ THE ADDRESS BUT THE CHANNEL NUMBER IS ($\mathrm{N}+1$)
5. SIGNAL NAMES IN (PARENTHESES) ARE THE SAME AS THOSE SHOWN ON THE BLOCK DIAGRAM ON PAGE 2.

NOTES:

1. • DENOTES INTERNAL SIGNALS.
2. NOTE THAT IF THE CHANNEL ADDRESS IS GIVEN SIMULTANEOUSLY WITH THE CONVERT COMMAND THE PREVIOUS SELECTED CHANNEL WILL BE HELD BY THE SAMPLE \& HOLD AND CONVERTED WHILE THE MULTIPLEXER IS SET TO THE NEW CHANNEL. (THIS ALLOWS THE INPUT TO SETTLE WHILE THE CONVERSION IS BEING MADE.)
3. CHANNEL TWO WAS SELECTED BUT NOT CONVERTED, IF THIS IS TO BE THE FIRST CHANNEL OF THE NEXT SEQUENCE, THE 2μ SEC SETTLING TIME DELAY REQUIRED BETWEEN SELECTING A NEW CHANNEL \& CONVERTING DOES NOT APPLY.
4. NOTE THAT ADDRESS VALUE (2) IS MORE DESIRABLE FOR RANDOM OPERATION AS IT IS SYNCHRONOUS WITH THE OUTPUT DATA \& REPRESENTS THE ACTUAL CHANNEL CONVERTED.
5. SIGNAL NAMES IN (PARENTHESES) ARE THE SAME AS THOSE SHOWN ON THE BLOCK DIAGRAM ON PAGE 2.

MINICOMPUTER FRONT END

This block diagram indicates how the DAS-250 may be interfaced to a Digital Equipment Corporation PDP-11 Series minicomputer. The modules labeled "Address Decoder" and "Interrupt Logic" are standard DEC cards, types M105 and M7821 respectively which slide into the computer's connector block. Many interface circuit details have been omitted for clarity and are beyond the scope of this brochure.

To realize the full speed advantage of the DAS-250, a fast minicomputer is desirable. A slower 8 -bit microcomputer may also be used and the DAS-250 offers the advantage of quick data conversion 4 microseconds after an external event triggers the start of conversion. By contrast, slower conversion systems require 20 microseconds or greater before data is acquired, sampled and converted.

MOUNTING INSTRUCTIONS

For normal laboratory conditions, the dual card assembly will be adequately supported when mounted vertically in both PC board connectors.

For more rigid mounting in rough service applications, remove the four corner screws on the A/D PC board,
labeled PC 10306. The four corner standoffs will remain captive and boards will remain attached by means of the interboard connector. Drill four 0.129" holes (\#30 drill) on the desired mounting surface using the side view dimensions. Assemble four 4-40 bolts with $0.205^{\prime \prime}$ min spacers through the mounting surface and A/D board to thread into the captive standoffs.

CONNECTOR J1				CONNECTOR J2			
PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION
A	CH. 16 HI ANALOG INPUT	1	CH. 16 LO ANALOG INPUT	A	BIT 12 ADC OUTPUT (LSB)	1	BIT 1 CH . ADDR. OUTPUT
B	CH .15 HI ANALOG INPUT	2	CH. 15 LO ANALOG INPUT	B	BIT 11 ADC OUTPUT	2	BIT 2 CH . ADDR. OUTPUT
C	CH. 14 HI ANALOG INPUT	3	CH. 14 LO ANALOG INPUT	C	BIT 10 ADC OUTPUT	3	BIT 4 CH . ADDR. OUTPUT
D	CH. 13 HI ANALOG INPUT	4	CH. 13 LO ANALOG INPUT	D	BIT 9 ADC OUTPUT	4	BIT 8 CH . ADDR. OUTPUT
E	CH. 12 HI ANALOG INPUT	5	CH. 12 LO ANALOG INPUT	E	BIT 8 ADC OUTPUT	5	ADC SER. CLK. OUTPUT
F	CH. 11 HI ANALOG INPUT	6	CH. 11 LO ANALOG INPUT	F	BIT 7 ADC OUTPUT	6	READ DATA 4
H	CH. 10 HI ANALOG INPUT	7	CH. 10 LO ANALOG INPUT	H	BIT 6 ADC OUTPUT	7	READ DATA 1
J	CH. 9 HI ANALOG INPUT	8	CH. 9 LO ANALOG INPUT	J	BIT 5 ADC OUTPUT	8	READ DATA 2
K	MUX. EXPDR. INPUT	9	AUX. LO ANALOG INPUT	K	BIT 4 ADC OUTPUT	9	StART A/D CONVERT IN
L	DEVICE SELECT IN	10	RANDOM/SEQUENTIAL IN	L	BIT 3 ADC OUTPUT	10	READ DATA 3
M	STROBE INPUT	11	RESET IN	M	BIT 2 ADC OUTPUT	11	NO CONNECTION
N	2 RANDOM ADDR. INPUT	12	4 RANDOM ADDR. INPUT	N	BIT 1 ADC OUTPUT (MSB)	12	NO CONNECTION
P	1 RANDOM ADDR. INPUT	13	8 RANDOM ADDR. INPUT	P	ADC SERIAL OUTPUT	13	-15 VDC POWER INPUT
R	INHIBUT MUX.	14	aUX. LO ANALOG INPUT	R	SYSTEM BUSY OUTPUT	14	FRAME SYNC. OUTPUT
S	CH. 8 HI ANALOG INPUT	15	CH. 8 LO ANALOG INPUT	S	NO CONNECTION	15	BIT 1 LATCHED ADDR. OUT
T	CH. 7 HI ANALOG INPUT	16	CH. 7 LO ANALOG INPUT	T	NO CONNECTION	16	BIT 2 LATCHED ADDR. OUT
U	CH. 6 HI ANALOG INPUT	17	CH. 6 LO ANALOG INPUT	U	+15 VDC POWER INPUT	17	BIT 4 LATCHED ADDR. OUT
v	CH. 5 HI ANALOG INPUT	18	CH. 5 LO ANALOG INPUT	U	NO CONNECTION	18	BIT 8 LATCHED ADDR. OUT
w	CH. 4 HI ANALOG INPUT	19	CH. 4 LO ANALOG INPUT	W	GROUND	19	BIT 1 SHORT CYCLE IN.
x	CH. 3 HI ANALOG INPUT	20	CH. 3 LO ANALOG INPUT	x	GROUND	20	BIT 2 SHORT CYCLE IN.
Y	CH. 2 HI ANALOG INPUT	21	CH. 2 LO ANALOG INPUT	Y	+5 VDC POWER INPUT	21	BIT 4 SHORT CYCLE IN.
z	CH. 1 HI ANALOG INPUT	22	CH. 1 LO ANALOG INPUT	z	+5 VDC POWER INPUT	22	BIT 8 SHORT CYCLE IN.
Connector functions are arranged in vertical edgeboard view							

OUTLINE DIMENSIONS INCHES - (MM)					
A/D OUTPUT DATA CODING (Input voltages are system inputs) UNIPOLAR (OV TO -10V) BIPOLAR (+5V TO -5V)					
SCALE	INPUT VOLTAGE	STRAIGHT BINARY	SCALE	INPUT Voltage	OFFSET BINARY
-FS + 1 LSB $-7 / 8 \mathrm{FS}$ $-3 / 4 \mathrm{FS}$ $-1 / 2 \mathrm{FS}$ $-1 / 4$ -14 LSB 0	$\begin{gathered} -9.9976 \mathrm{~V} \\ -8.7500 \mathrm{~V} \\ -7.5000 \mathrm{~V} \\ -5.0000 \mathrm{~V} \\ -2.5000 \mathrm{~V} \\ -0.0024 \mathrm{~V} \\ 0.0000 \mathrm{~V} \end{gathered}$	111111111111 111000000000 110000000000 100000000000 010000000000 000000000001 000000000000	-FS + 1 LSB $-3 / 4 \mathrm{FS}$ $-1 / 2 \mathrm{FS}$ 0 $+1 / 2 \mathrm{FS}$ $+3 / 4 \mathrm{FS}$ $+\mathrm{FS}-1 \mathrm{LSB}$ +FS	-4.9976 V -3.7500 V -3.7500 V -2.5000 V 0.0000 V $+2.5000 \mathrm{~V}$ $+3.7500 \mathrm{~V}$ $+4.9976 \mathrm{~V}$ $+5.0000 \mathrm{~V}$	111111111111 111000000000 110000000000 100000000000 010000000000 001000000000 000000000001 000000000000
NOTE: ANALOG INPUT IS INVERTING OTHER INPUT RANGES ARE AVAILABLE FOR QUANTITY ORDERS CONTACT FACTORY					

Output Type

1. Next Channel Address (Stores address of next channel at falling edge of Busy out)
2. Present Channel Address (Stores address of present channel at rising edge of Busy out)
3. Sign Extension of ADC Bit 1 (MSB), Straight Binary or Offset Binary
4. Sign Extersion u* ADC Bit ; (MSB), 2's Complement
5. Leading Zero's

Bipolar Output Coding:

Offset Binary
Jumper 5 to 7

Jumper 5 to 6

Install Jumpers

4 to 9,3 to 11,2 to 12, 1 to 14,10 to 16

4 to 9,3 to 11,2 to 12
1 to 14,10 to 13

5 to 9,5 to 7,9 to 11 , 11 to 12,12 to 14

5 to 9,5 to 6 , 9 to 11,11 to 12 , 12 to 14
8 to 9,9 to 11 , 11 to 12,12 to 14 10 to 16
(Bit $1=\mathrm{MSB}$)
2's Complement
(Bit $1=$ MSB)

Operational Amplifiers

AM-410, AM-411	314C
AM-414	318C
AM-450, AM-460	320 C
AM453	324C
AM-464	326C
AM-470	328C
AM-490	330 C
AM-7600, AM-7601	$334 C$
AM-761X SERIES	$344 C$
AM-500	350 C
AM-8510 SERIES	352 C
AM-303	360 C

hIGH VOLTAGE OPEBATIONAL AMPLIFER AM303A vantwiss

Denter

high voltage operational AMPLIFIER
AM-308B
manvs.

Quick Selection: High Performance Op Amps

	MODEL	DESCRIPTION	DC OPE LOOP	GAIN BAND. WIDTH	SLEW RATE (V/ sec)	SETTLING TIME TO $0.1 \%^{1}$	OUTPUT, MIN.	COM. MODE RANGE, MIN.
	AM-410-2C	Wideband, JFET Input, Compensated	100K	18 MHz	8	$2 \mu \mathrm{sec}$	$\pm 11 \mathrm{~V}$	$\pm 10 \mathrm{~V}$
	AM-410-2M		150K			$1.7 \mu \mathrm{sec}$	$\pm 12 \mathrm{~V}$	
	AM-411-2C	Wideband, JFET Input, Uncomp.	100K	50 MHz	40	$1 \mu \mathrm{sec}$	$\pm 11 \mathrm{~V}$	$\pm 10 \mathrm{~V}$
	AM-411-2M		150K	60 MHz	50	. $85 \mu \mathrm{sec}$	$\pm 12 \mathrm{~V}$	
	AM-414-2A	Ultra-Low Drift Chopperless Op Amp	400K	600 kHz	0.17	-	$\pm 11.5 \mathrm{~V}$	$\pm 13 \mathrm{~V}$
	AM-414-2B		500K				$\pm 12 \mathrm{~V}$	
	AM-414-2M							
	AM-453-2C	Low Noise Wideband Op Amp	100K	10 MHz	13	-	$\pm 12 \mathrm{~V}$	$\pm 12 \mathrm{~V}$
	AM-453-2M							
	AM-460-2C	Wideband, Fast Settling Op Amp	150K	12 MHz	7	$1.5 \mu \mathrm{sec}$	$\pm 10 \mathrm{~V}$	$\pm 11 \mathrm{~V}$
	AM-460-2M							
	AM-490-2A	Chopper Stabilized	5×10^{8}	3 MHz	2.5	-	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$
	AM-490-2B							
	AM-490-2C							
	AM-490-2M							
	AM-7600C	Ultra-Low Offset CAZ Op Amp Compensated	105 dB	1.2 MHz	1.8	-	$\pm 4.9 \mathrm{~V}$	$\pm 4.2 \mathrm{~V}$
	AM-7600R							
	AM-7600M							
	AM-7601C	Ultra-Low Offset CAZ Op Amp Uncompensated	105 dB	1.8 MHz	1.8	-	$\pm 4.9 \mathrm{~V}$	$\pm 4.2 \mathrm{~V}$
	AM-7601R							
	AM-7601M							

NOTES: 1. 10 V output step unless otherwise noted.
2. Adjustable to Zero.

COMMON MODE REJECTION	INPUT IMPEDANCE	INPUT BIAS CURRENT, MAX.	INPUT OFFSET CURRENT, MAX.	INPUT OFFSET VOLTAGE, MAX. ${ }^{2}$	INPUT OF'FSET VOLTAGE DRIFT	$\begin{aligned} & \text { POWER } \\ & \text { SUPPLY } \\ & \text { RANGE } \end{aligned}$	OPERATING TEMP($\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { PRICE } \\ & (1.24) \end{aligned}$	SEE PAGE
86 dB	10^{12}	100 pA	50 pA	1.5 mV	$15 \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 5 \mathrm{VDC} \text { to } \\ & \pm 20 \mathrm{VDC} \end{aligned}$	0 to +70	\$ 6.95	314 C
		50 pA	10 pA	1.0 mV	$5 \mathrm{~V} /{ }^{\circ} \mathrm{C}$		-55 to +125	\$29.50	
86 dB	10^{12}	100 pA	50 pA	1.5 mV	$15 \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 5 \mathrm{VDC} \text { to } \\ & \pm 20 \mathrm{VDC} \end{aligned}$	0 to +70	\$ 9.95	314 C
		50 pA	10 pA	1.0 mV	$5 \mathrm{~V} /{ }^{\circ} \mathrm{C}$		-55 to +125	\$32.50	
100 dB	33 G	$\pm 7 \mathrm{nA}$	$\pm 6 \mathrm{nA}$	150 V	$2.0 \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 3 \mathrm{VDC} \text { to } \\ & \pm 18 \mathrm{VDC} \end{aligned}$	0 to +70	\$ 7.00	318C
106 dB	50 G	$\pm 4 \mathrm{nA}$	$\pm 3.8 \mathrm{nA}$	75 V	$1.3 \mathrm{~V} /{ }^{\circ} \mathrm{C}$		0 to +70	\$12.95	
110 dB	60 G	$\pm 3 \mathrm{nA}$	$\pm 2.8 \mathrm{nA}$				-55 to +125	\$22.50	
100 dB	100 K	15 A	300 nA	4 mV	$30 \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 3 \mathrm{VDC}$ to	0 to +70	\$ 6.50	324C
						$\pm 20 \mathrm{VDC}$	-55 to +125	\$19.50	
100	300	25 nA	25 nA	5 mV	10	$\pm 5 \mathrm{VDC}$ to	0 to +70	\$ 3.50	C
	,	2		5	10 V	$\pm 22.5 \mathrm{VDC}$	-55 to +125	\$14.50	
					$1.0 \mathrm{~V} /{ }^{\circ} \mathrm{C}$		0 to +70	\$30.50	
120 dB	100 M	150 p	50 pA	20 V	$0.3 \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 12 \mathrm{VDC}$ to	0 to +70	\$36.00	
					$0.1 \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 20 \mathrm{VDC}$	0 to +70	\$41.00	330 C
					$0.6 \mathrm{~V} /{ }^{\circ} \mathrm{C}$		-55 to +125	\$99.50	
						$\pm 4 \mathrm{VDC}$ to	0 to +70	\$ 9.81	
88 dB	-	3 nA	1.5 nA	5 V	. $01 \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 16 \mathrm{VDC}$	-25 to +85	\$15.07	334C
							-55 to +125	\$30.07	
						$\pm 4 \mathrm{VDC}$ to	0 to +70	\$ 9.81	
88 dB	-	3 nA	1.5 nA	5 V	. $01 \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 16 \mathrm{VDC}$	-25 to +85	\$15.07	334C
							-55 to +125	\$30.07	

1. 10 V output step unless otherwise noted.
2. Adjustable to Zero.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Quick Selection: High Performance Op Amps

	MODEL	DESCRIPTION	DC OPEN LOOP GAIN	GAIN BANDWIDTH	SLEW RATE (V/ $\mu \mathrm{sec}$)	$\begin{aligned} & \text { SETTLING } \\ & \text { TIME TO } \\ & 0.1 \%{ }^{1} \end{aligned}$	OUTPUT, MIN.	COM. MODE RANGE, MIN.	COM. MODE REJECTION
	$\begin{array}{\|l} \hline \text { AM-470-2C } \\ \hline \text { AM-470-2M } \\ \hline \end{array}$	Low Power, High Performance Op Amp	300K V/V	1 MHz	20	-	$\pm 12 \mathrm{~V}$	$\pm 11 \mathrm{~V}$	106 dB
$U$$I$$E$$E$222	$\begin{array}{\|l} \hline A M-7611 \mathrm{C} \\ \hline \mathrm{AM}-7611 \mathrm{M} \\ \hline \end{array}$	Low Power, Selectable Quiescent Current	104 dB	1.4 MHz	1.6	-	$\pm 4.9 \mathrm{~V}$	± 4.4	96 dB
	AM-7612C	Low Power, Extended Com. Mode Volt. Range	104 dB	1.4 MHz	1.6	-	$\pm 4.9 \mathrm{~V}$	± 5.3	96 dB
	$\begin{array}{\|l} \hline A M-7613 C \\ \hline A M-7613 M \\ \hline \end{array}$	Low Power, Input Protected to $\pm 200 \mathrm{~V}$	104 dB	1.4 MHz	1.6	-	$\pm 4.9 \mathrm{~V}$	± 4.4	96 dB
	$\begin{array}{\|l} \hline \text { AM-7614C } \\ \hline \text { AM-7614M } \\ \hline \end{array}$	Low Power, External Compensation	104 dB	1.4 MHz	1.6	* -	$\pm 4.9 \mathrm{~V}$	± 4.4	96 dB
	$\begin{array}{\|l} \hline \text { AM-7615C } \\ \hline \text { AM-7615M } \\ \hline \end{array}$	External Compensation, Input Protected $\pm 200 \mathrm{~V}$	104 dB	1.4 MHz	1.6	-	$\pm 4.9 \mathrm{~V}$	± 4.4	96 dB
	$\begin{array}{\|l} \hline A M-464-2 C \\ \hline A M-464-2 M \\ \hline \end{array}$	High Voltage Op Amp	100K V/V	4 MHz	5	-	$\pm 35 \mathrm{~V}$	$\pm 35 \mathrm{~V}$	74 dB
$\begin{aligned} & \frac{\mathbf{a}}{\boldsymbol{\alpha}} \\ & \frac{\mathbf{m}}{\mathbf{x}} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline A M-8510 R \\ \hline A M-8510 M \\ \hline \end{array}$	Hybrid Power Op Amp	100 dB	30 kHz	0.5	-	$\begin{aligned} & \pm 24 \mathrm{~V} \\ & @ 1 \mathrm{~A} \\ & \hline \end{aligned}$	$\pm 10 \mathrm{~V}$	70 dB
	$\begin{array}{\|l\|} \hline \text { AM-8520R } \\ \hline \text { AM-8520M } \\ \hline \end{array}$	Hybrid Power Op Amp	100 dB	30 kHz	0.5	-	$\begin{aligned} & \pm 24 \mathrm{~V} \\ & @ 2 \mathrm{~A} \end{aligned}$	$\pm 10 \mathrm{~V}$	70 dB
	$\begin{array}{\|l\|} \hline A M-8530 R \\ \hline A M-8530 M \\ \hline \end{array}$	Hybrid Power Op Amp	100 dB	30 kHz	0.5	-	$\begin{aligned} & \pm 24 \mathrm{~V} \\ & @ 2.7 \mathrm{~A} \\ & \hline \end{aligned}$	$\pm 10 \mathrm{~V}$	70 dB
$\underline{2}$	$\begin{array}{\|l\|} \hline \text { AM-303A } \\ \hline \mathbf{A M - 3 0 3 B} \\ \hline \end{array}$	Modular High Voltage Op Amp	$10^{6} \mathrm{~V} / \mathrm{V}$	10 MHz	100	$2.5 \mu \mathrm{sec}$	$\begin{aligned} & \pm 140 \mathrm{~V} \\ & @ 20 \mathrm{~mA} \end{aligned}$	$\pm 140 \mathrm{~V}$	100 dB

NOTES: 1. 10V output step unless otherwise noted.
2. Adjustable to zero.

INPUT IMPEDAN	INPUT BIAS CURRENT, MAX.	INPUT OFFSET CURRENT, MAX.	INPUT OFFSET VOLTAGE, MAX. ${ }^{2}$	input OFFSET VOLTAGE DRIFT	POWER SUPPLY RANGE	OPERATING TEMP ($\left.{ }^{\circ} \mathrm{C}\right)$	PRICE SINGLES	SEE PAGF
$500 \mathrm{M} \Omega$	40 nA	15 nA	5 mV	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 5.5 \mathrm{VDC} \text { to } \\ & \pm 20 \mathrm{VDC} \end{aligned}$	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{array}{\|r\|} \hline \$ \\ \hline \$.50 \\ \hline \$ 31.00 \end{array}$	328 C
$10^{12} \Omega$	50 pA	30 pA	5 mV	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 0.5 \mathrm{VDC} \text { to } \\ & \pm 8 \mathrm{VDC} \end{aligned}$	0 to +70	\$ 2.85	
						-55 to +125	\$ 5.25	344,
$10^{12} \Omega$	50 pA	30 pA	5 mV	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 0.5 \mathrm{VDC} \text { to } \\ & \pm 8 \mathrm{VDC} \end{aligned}$	0 to +70	\$ 3.15	
						-55 to +125	\$ 7.05	344C
$10^{12} \Omega$	50 pA	30 pA	5 mV	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 0.5 \mathrm{VDC} \text { to } \\ & \pm 8 \mathrm{VDC} \end{aligned}$	0 to +70	\$ 2.95	344 C
						-55 to +125	\$ 6.35	
$10^{12} \Omega$	50 pA	30 pA	5 mV	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 0.5 \mathrm{VDC} \text { to } \\ & \pm 8 \mathrm{VDC} \end{aligned}$	0 to +70	\$ 2.50	34.4
						-55 to +125	\$ 5.25	
$10^{12} \Omega$	50 pA	30 pA	5 mV	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 0.5 \mathrm{VDC} \text { to } \\ & \pm 8 \mathrm{VDC} \end{aligned}$	0 to +70	\$ 2.95	3440
						-55 to +125	\$ 6.35	
$200 \mathrm{M} \Omega$	30 nA	30 nA	6 mV	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 10 \mathrm{VDC} \text { to } \\ & \pm 40 \mathrm{VDC} \end{aligned}$	0 to +70	\$ 8.00	326\%
						-55 to +125	\$ 36.00	
$30 \mathrm{M} \Omega$	500 nA	200 nA	6 mV	$67 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 18 \mathrm{VDC} \text { to } \\ & \pm 30 \mathrm{VDC} \end{aligned}$	-25 to +85	\$ 30.99	350
				$60 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		-55 to +125	\$ 46.19	
$30 \mathrm{M} \Omega$	500 nA	200 nA	6 mV	$67 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 18 \mathrm{VDC} \text { to } \\ & \pm 30 \mathrm{VDC} \\ & \hline \end{aligned}$	-25 to +85	\$ 34.74	352
				$60 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		-55 to +125	\$ 51.99	
$30 \mathrm{M} \Omega$	500 nA	200 nA	6 mV	$67 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 18 \mathrm{VDC} \text { to } \\ & \pm 30 \mathrm{VDC} \end{aligned}$	-25 to +85	\$ 51.99	3520
				$60 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		-55 to +125	\$ 65.04	
$10^{12} \Omega$	100 pA	30 pA	1 mV	$50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \text { to } \\ & \pm 150 \mathrm{VDC} \\ & \hline \end{aligned}$	0 to +70	\$105.00	36\%
				$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		0 to +70	\$140.00	

Datel offers modular products in operating temperature ranges of
-25 to $+85^{\circ} \mathrm{C}$ (suffix-EX) and -55 to $+85^{\circ} \mathrm{C}$ (suffix-EXX-HS). For
information on these high reliability modules contact nearest
Datel sales office.

Quick Selection: High Speed Op Amps

	MODEL	DESCRIPTION	DC OPEN LOOP GAIN	GAIN BAND- WIDTH	SLEW RATE (V/ $\mu \mathrm{sec}$)	SETTLING TIME TO 0.1\% ${ }^{1}$	OUTPUT, MIN.	COM. MODE RANGE, MIN.	COM. MODE REJECTION
U111022	$\begin{array}{\|l\|} \hline A M-450-2 \\ \hline A M-450-2 M \end{array}$	Wideband Fast Settling Op Amp	25K	12 MHz	30	330nsec	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	90 dB
	$\begin{array}{\|l\|} \hline \text { AM-452-2 } \\ \hline \text { AM-452-2M } \\ \hline \end{array}$	Wideband Fast Settling	15K	20 MHz	120	200nsec	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	90 dB
	AM-462-1, -2	Wideband Fast Settling	150K	100 MHz	35	$1 \mu \mathrm{sec}$	$\pm 10 \mathrm{~V}$	$\pm 11 \mathrm{~V}$	100 dB
$\frac{\square}{\alpha}$	$\begin{array}{\|l\|} \hline \text { AM-500GC } \\ \hline \text { AM-500MC } \\ \hline \text { AM-500MR } \\ \hline \text { AM-500MM } \\ \hline \end{array}$	Ultra-Fast Hybrid Inverting Op Amp	10^{6}	130 MHz	1000	200nsec	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & @ 50 \mathrm{~mA} \end{aligned}$	-	-
$\begin{aligned} & \mathscr{\sim} \\ & \underset{3}{2} \\ & 0 \\ & 0 \\ & \Sigma \Sigma \Sigma \end{aligned}$	$\begin{array}{\|l\|l\|} \hline A M-100 A \\ \hline A M-100 B \\ \hline A M-100 C \\ \hline \end{array}$	Fast Settling Modular Op Amp	300K	13.5 MHz	45	550nsec	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & @ 20 \mathrm{~mA} \end{aligned}$	$\pm 10 \mathrm{~V}$	70 dB
	$\begin{array}{\|l\|l\|l\|} \hline A M-101 A \\ \hline A M-101 B \\ \hline \end{array}$	Optimized for Capac. Loads	300K	5.5 MHz	45	$1 \mu \mathrm{sec}$	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & @ 20 \mathrm{~mA} \end{aligned}$	$\pm 10 \mathrm{~V}$	93 dB
	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline A M-102 A \\ \hline A M-102 B \\ \hline \end{array}$	Fast Settling Follower	130K	32 MHz	140	550nsec	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & @ 20 \mathrm{~mA} \\ & \hline \end{aligned}$	$\pm 10 \mathrm{~V}$	93 dB
	$\begin{array}{\|l} \hline A M-103 A \\ \hline A M-103 B \\ \hline \end{array}$	Fast Slewing Modular Op Amp	130K	32 MHz	400	350nsec	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & @ 20 \mathrm{~mA} \end{aligned}$	$\pm 10 \mathrm{~V}$	70 dB

NOTES: 1. 10V output step unless otherwise noted.
2. Adjustable to zero.

INPUT IMPEDANCE	INPUT BIAS CURRENT, MAX.	INPUT OFFSET CURRENT, MAX.	INPUT OFFSET VOLTAGE, MAX. ${ }^{2}$	INPUT OFFSET VOLTAGE DRIFT	POWER SUPPLY RANGE	OPERATING TEMP (${ }^{\circ} \mathrm{C}$)	PRICE SINGLES	SEE PAGE
$50 \mathrm{M} \Omega$	250 nA	50 nA	8 mV	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 10 \mathrm{VDC} \text { to } \\ & \pm 20 \mathrm{VDC} \end{aligned}$	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{array}{cr} \$ & 3.95 \\ \hline \$ & 14.50 \end{array}$	320C
$100 \mathrm{M} \Omega$	250 nA	50 nA	5 mV	$30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 10 \mathrm{VDC} \text { to } \\ & \pm 20 \mathrm{VDC} \end{aligned}$	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{aligned} & \$ 10.50 \\ & \hline \$ 26.50 \end{aligned}$	320C
$300 \mathrm{M} \Omega$	25 nA	25 nA	3 mV	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 5 \mathrm{VDC} \text { to } \\ & \pm 22.5 \mathrm{VDC} \end{aligned}$	$\frac{0 \text { to }+70}{-55 \text { to }+125}$	$\begin{array}{rr} \$ & 9.50 \\ \hline \$ & 18.00 \end{array}$	320C
$30 \mathrm{M} \Omega$	4 nA	0.5 nA	3 mV	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 10 \mathrm{VDC} \text { to } \\ & \pm 18 \mathrm{VDC} \end{aligned}$	$\frac{0 \text { to }+70}{\frac{0 \text { to }+70}{-25 \text { to }+85}} \frac{-55 \text { to }+125}{}$	$\begin{array}{r} \$ 69.00 \\ \hline \$ 89.00 \\ \hline \$ 104.00 \\ \hline \$ 149.00 \end{array}$	350C
$10^{12} \Omega$	100 pA 50 pA 20 pA	10 pA	-	$\begin{aligned} & 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \hline 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \hline 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\pm 15 \mathrm{VDC}$	$\begin{aligned} & 0 \text { to }+70 \\ & \hline 0 \text { to }+70 \\ & \hline 0 \text { to }+70 \\ & \hline \end{aligned}$	$\begin{gathered} \$ 59.00 \\ \hline \$ 63.00 \\ \hline \$ 69.00 \end{gathered}$	**
$10^{12} \Omega$	$\begin{array}{\|c\|} \hline 50 \mathrm{pA} \\ \hline 20 \mathrm{pA} \\ \hline \end{array}$	10 pA	-	$\begin{aligned} & 40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \hline 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\pm 15 \mathrm{VDC}$	0 to +70	$\begin{aligned} & \$ 61.00 \\ & \hline \$ 66.00 \end{aligned}$	**
$10^{12} \Omega$	50 pA	10 pA	-	$\begin{aligned} & 40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \hline 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\pm 15 \mathrm{VDC}$	0 to 0 to +70	$\begin{aligned} & \$ 63.00 \\ & \hline \$ 72.00 \\ & \hline \end{aligned}$	**
$10^{12} \Omega$	50 pA	10 pA	-	$\frac{40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}{20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}$	$\pm 15 \mathrm{VDC}$	$\frac{0 \text { to }+70}{0 \text { to }+70}$	$\begin{aligned} & \$ 63.00 \\ & \hline \$ 72.00 \end{aligned}$	**

*Available with MIL-STD-833 Class B Screening
**For Data Sheet contact nearest Datel sales office.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Datel offers modular products in operating temperature ranges of -25 to $+85^{\circ} \mathrm{C}$ (suffix-EX) and -55 to $+85^{\circ} \mathrm{C}$ (suffix-EXX-HS). For information on these high reliability modules contact nearest Datel sales office.

> Wide Bandwidth, FET Input Monolithic Operational Amplifier AM-410 \& AM-411SERIES

FEATURES

- 60 MHz - Gain Bandwidth
- $50 \mathrm{~V} / \mu \mathrm{sec}$ - Slew Rate
- 850 nsec - Settling to 0.1\%
- 150,000 - Open Loop Gain
- $5 \mu \mathrm{~V} /{ }^{\circ} \mathbf{C}$ - Input Offset Voltage Drift
- $10^{12} \Omega$ - Input Impedance

GENERAL DESCRIPTION

The AM-410 and AM-411 series are monolithic wideband operational amplifiers manufactured with FET/bipolar technology. Active laser trimming of the input stage complements the high frequency capabilities of these amplifiers with excellent input characteristics. Features available on both devices include an input offset voltage of 1 mV maximum with a temperature drift of typically $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 50 pA maximum, and an input impedance of $10^{12} \Omega$. All devices provide a $\pm 11 \mathrm{~V}$ output at 8 mA , and open loop voltage gain of up to 150,000.

The AM-410 devices are compensated for unity gain operation. The dynamic characteristics of these devices include 10 MHz unity gain bandwidth, $8 \mathrm{~V} / \mu \mathrm{sec}$ slew rate, and a settling time of $1.7 \mu \mathrm{sec}$.
The AM-411 series units are uncompensated devices that are stable at closed loop gains of greater than 10 without external compensation. These units feature dynamic characteristics that include 60 MHz gain bandwidth, $50 \mathrm{~V} / \mu$ slew rate, and a settling time of 850 nsec .

These devices are ideal for use in sample and hold circuits, active filters, A/D input buffering, D/A output amplification and a wide variety of signal conditioning applications.

All models are available in both $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range or $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for suffix M models. All devices are packaged in a hermetically sealed, 8 pin, TO-99 case.

 DATEL-INTERSIL, INC. 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

MAXIMUM RATINGS Power Supply Voltage $\pm 20 \mathrm{VDC}$ Differential Input Voltage 40V Peak Output Current Full Short Internal Power Dissipation ${ }^{1}$. 300 mW	cuit Protec		
INPUT CHARACTERISTICS			
Input Offset Voltage, max. ${ }^{2}$. ${ }^{\text {a }}$. 5 mV	1.0 mV	1.5 mV	1.0 mV
Input Offiset Current, max. . . . 50pA	10pA	50 pA	10pA
Input Bias Current, max.100pA	50 pA	100pA	50 pA
Input Resistance $10^{10^{12} \Omega}$	$10^{12} \Omega$	$10^{12} \Omega$	$10^{12} \Omega$
Common Mode Voltage			
Range, min. $\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$
OUTPUT CHARACTERISTICS			
Output Voltage Swing, min. ${ }^{3} . \pm 11 \mathrm{~V}$ Short Circuit Output	$\pm 12 \mathrm{~V}$	$\pm 11 \mathrm{~V}$	$\pm 12 \mathrm{~V}$
Current, min............... . $\pm 8 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$	$\pm 8 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$
Outputimpedance40ת	30Ω	40Ω	30Ω
PERFORMANCE			
D.C. Open Loop Gain ${ }^{\text {a }}$. 100K V/V	150 K V/V	100 K V/V	150 K V/V
Full Power Bandwidth ${ }^{\text {5 }}$. 125KHz	150 KHz	625 KHz	625 KHz
Gain Bandwidth Product,			
	18 MHz	50 MHz	60 MHz
	$8 \mathrm{~V} / \mu \mathrm{sec}$	$40 \mathrm{~V} / \mu \mathrm{sec}$	$50 \mathrm{~V} / \mu \mathrm{sec}$
Rise Time ${ }^{\text {c }}$. 20 nsec	15 nsec	20 nsec	20 nsec
Settling Time, ${ }^{\mathbf{7}} \mathbf{1 0 \mathrm { V }}$ to 0.1\% . $2.0 \mu \mathrm{sec}$	$1.7 \mu \mathrm{sec}$	$1.0 \mu \mathrm{sec}$. $85 \mu \mathrm{sec}$
Input Offset Voltage Drift $15 \mu \mathrm{~V} / \mathrm{C}^{\circ}$	$5 \mu \mathrm{~V} / \mathrm{c}^{\circ}$	$15 \mu \mathrm{~V} / \mathrm{c}^{\circ}$	$5 \mu \mathrm{~V} / \mathrm{c}^{\circ}$
Power Supply Rejection			
Ratio ${ }^{8}$. 86 dB	86 dB	94 dB	94 dB

POWER REQUIREMENTS

Voltage, Rated Performance . $\pm 15 \mathrm{VDC}$
Operating Voltage Range $\ldots \pm 5 \mathrm{VDC}$ to $\pm 20 \mathrm{VDC}$
Supply Current, max.

$$
\begin{aligned}
& \text { Suffix - 2C } 8 \mathrm{~mA} \\
& \text { Suffix - 2M } 7 \mathrm{~mA}
\end{aligned}
$$

PHYSICAL ENVIRONMENT

Operating Temperature

Range

Suffix-2C $\ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Suffix - 2M.......... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package, Hermetically
Sealed TO -99

NOTES:

1. Derate by $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $+75^{\circ} \mathrm{C}$.
2. $2 m \mathrm{~V}$ max. at full operating temperature for devices with a -2 M suffix. 3.5 mV max. for devices with a -2 C suffix.
3. $R_{L}=10 \mathrm{~K} \Omega$.
4. Vout $= \pm 10 \mathrm{~V}, R_{L}=2 \mathrm{~K} \Omega$.
5. $R_{L}=2 K \Omega$.
6. $G=10$ for $A M-411, G=1$ for $A M-410$.
7. $G=-10$ for $A M-411, G=-1$ for $A M-410$.
8. At full operating temperature, Vsupp. $= \pm 10 \mathrm{VDC}$ to $\pm 20 \mathrm{VDC}$.
9. It is recommended that these amplifiers be operated with power supply lines decoupled to ground with $.01 \mu \mathrm{~F}$ ceramic capacitors. Decoupling capacitors should be located as close to the amplifier power pins as possible.
10. Input offset voltage may be adjusted to zero, if required, by connecting the amplifier as shown in the external offset and bandwidth compensation diagram. The trimming potentiometer used should be 100K cermet type with a temperature coefficient less than $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (available from Datel-Intersil as part no. TP-100K). It should be noted that adjustment of initial offset voltage may affect the input offset voltage drift tempco.
11. When the AM-410 or AM-411 are used to drive heavy capacitive loads ($\geq 100 \mathrm{pF}$)a small value resistor should be connected in series with the output and inside the feedback loop. Resistance values of approximately 100Ω are suggested.
12. When large values of feedback resistance are used, a small capacitor in parallel with the feedback resistor will neutralize the pole introduced by the input capacitance. Capacitor values of approximately 3 pF should be sufficient to stabilize high feedback resistance configurations.
13. The AM-411 is an uncompensated operational amplifier that is stable at closed loop gains of greater than 10 without external compensation. For stable operation in a unity gain configuration a suggested compensation circuit is given.

ORDERING INFORMATION

MODEL

OPERATING TEMP. RANGE
AM-410-2C
$0^{\circ} \mathrm{C}$ To $+70^{\circ} \mathrm{C}$
AM-410-2M $-55^{\circ} \mathrm{C}$ To $+125^{\circ} \mathrm{C}$
AM-411-2C $\quad 0^{\circ} \mathrm{C}$ To $+70^{\circ} \mathrm{C}$
AM-411-2M $-55^{\circ} \mathrm{C}$ To $+125^{\circ} \mathrm{C}$
Trimming Potentiometer: TP100K

OPEN LOOP FREQUENCY RESPONSE

AM-410

OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS BANDWIDTH CAPACITANCES

AM-410

SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

AM-410

OPEN LOOP FREQUENCY RESPONSE

AM-411

OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS BANDWIDTH CONTROL CAPACITANCES

AM-411

SETTLING TIME FOR VARIOUS

 OUTPUT STEP VOLTAGES

AM-411

11 CABOT BOULEVARD MANSFIELD MA 02048／TEL（617）339－9341／TWX 710－346－1953／TLX 951340
Santa Ana．（714）835－2751．（L．A．）（213）933－7256 • Sunnyvale，CA（408）733－2424 • Gaithersburg．MD（301）840－9490
－Houston．（713）781－8886 • Dallas．TX（214）241－0651 OVERSEAS：DATEL（UK）LTD－TEL：ANDOVER（O264）51055 －DATEL SYSTEMS SARL 602－57－11 • DATELEK SYSTEMS GmbH（089）77－60－95 • DATEL KK Tokyo 793－1031
PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ultra－Low Drift， Monolithic Operational Amplifier AM－414

FEATURES

$\bullet 1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max．Drift
－ $30 \mu \mathrm{~V}$ Input Offset
－500，000 Open Loop Gain
－± 4 nA Max．Bias
－ $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Voltage Noise
－ 123 dB CMRR

GENERAL DESCRIPTION

Model AM－414 is a chopperless，ultra－ low drift operational amplifier fabricated with bipolar monolithic technology．It is specifically designed forlaccurate，low lev－ el signaliamplification applications where low tnoise，｜low drift，land／precise closed loop gain are required．This amplifier features $0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical input offset voltage drift with $1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum； the drift rivals that of many chopper sta－ bilized amplifiers costing much more．
Other significant features include 500，000 open loop voltage gain，± 4 nA maximum bias current，and 123 typical common mode rejection ratio．The input offset voltage is oniy $\pm 75 \mu \mathrm{~V}$ maximum，making it unnecessary to zero the amplifiers in most applications；there is，however， provision for external zeroing for criti－ cal applications．The AM－414 also has 1.5 $\mu \mathrm{V}$ per month maximum long term drift． Output voltage range is $\pm 12 \mathrm{~V}$ minimum at $\pm 5 \mathrm{~mA}$ load current with a short cir－ cuit protected output．In addition to low drift，the AM－414 also has low input noise characteristics of $10 \mathrm{nV} / \mathrm{VHz}$ voltage noise density and $0.14 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ current noise density．Dynamic characteristics include 600 KHz unity gain bandwidth and $0.17 \mathrm{~V} / \mu \mathrm{sec}$ ．slew rate．
There are three versions of the AM－414 of which one is a military temperature range model．The amplifiers are＂pack－ aged in a hermetically sealed 8 pin TO－99 case．The AM－414 is ideal for transducer amplification，stable analog integrators， low drift active filters，and precision D／A converter output amplifiers．

INPUT／OUTPUT CONNECTIONS

PIN	FUNCTION
1	OFFSET TRIM
2	- INPUT
3	+ INPUT
4	- SUPPLY VOLTAGE
5	NO CONNECTION
6	OUTPUT
7	+ SUPPLY VOLTAGE
8	OFFSET TRIM

MECHANICAL DIMENSIONS
INCHES（MM）

NOTE：All leads gold plated KOVAR

SPECIFICATIONS，AM－414
Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ supply，unless otherwise noted

PERFORMANCE
OFFSET VOLTAGE CHANGE DUE TO THERMAL SHOCK

INPUT WIDEBAND NOISE VS．BANDWIDTH （ 0.1 Hz TO FREQUENCY INDICATED）

Printed in U．S．A．Copyright © 1979 Datel－Intersil，Inc．All rights reserved

FEATURES

－120V／μ sec．Slew Rate
－ 100 MHz Gain Bandwidth
－ 200 nsec．Settling to 0.1%
－ 300 Meg．Input Impedance
－Bipolar Differential Inputs
－ 5 nA Input Offset Current

GENERAL DESCRIPTION

Datel－Intersil＇s AM－450 and AM－460 series bipolar input op amps provide a wide spectrum of capabilities required for high－ speed，wide bandwidth signal processing applications．Features available within these two high－performance families include a 100 MHz gain－bandwidth product （AM－462），a $120 \mathrm{~V} / \mu \mathrm{sec}$ slew rate（AM－ 452）， 300 Meg input impedance（AM－460 and AM－462）and 200 nsec settling time to 0.1% of full scale（AM－452）．
All models provide a full $\pm 10 \mathrm{~V}$ output at 10 mA and may be operated in non－inverting as well as inverting modes．Other features common to these units are low input offset currents and low input offset voltages as well as common mode rejection ratios typically greater than 90 dB ．
The AM－460 devices are bipolar opera－ tional amplifiers with very high impedance differential inputs，making them particularly well suited to applications as high speed comparators，wideband active filters and low distortion oscillators．
Both AM－450 and the AM－460 series units find many applications as fast acquisition sample and hold amplifiers，D／A output amplifiers，A／D input buffer amplifiers， pulse amplifiers，and fast integrators．
The AM－462－1 and AM－462－1M are pack－ aged in a 14 pin ceramic DIP．All other models are packaged in an 8 lead， hermetically sealed TO－99 package with standard pin out，allowing them to be used easily as pin for pin replacements for general purpose IC operational amplifiers． All models are available in $0^{\circ} \mathrm{C}$ to +70 C operating temperature range or in $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for suffix M models．

SPECIFICATIONS, AM-450 AND AM-460 SERIES
(Typical @ $+25^{\circ} \mathbf{C}, \pm \mathbf{1 5}$ VDC Supplies, $\mathbf{R}_{\text {I }}+\mathbf{2 K}$, Unless Otherwise Noted)

	AM-450	AM-452	AM-460	AM-462
MAXIMUM RATINGS Power Supply Voltage \qquad Differential Input Voltage \qquad Peak Output Current	$\begin{aligned} & \pm 20 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & 50 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 20 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & 50 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 22.5 \mathrm{~V} \\ & \pm 12 \mathrm{~V} \\ & \text { S.C. Prot. } \end{aligned}$	$\begin{aligned} & \pm 22.5 \mathrm{~V} \\ & \pm 12 \mathrm{~V} \\ & \text { S.C. Prot. } \end{aligned}$
INPUT CHARACTERISTICS Common Mode Voltage Range ${ }^{1}$, min. Input Resistance Input Resistance, min. Input Offset Voltage \qquad Input Offset Current, typ. max. Input Bias Current, typ. max.	$\pm 10 \mathrm{~V}$ 50 Meg 20 Meg $\pm 4 \mathrm{mV}$ 20 nA 50 nA 125 nA 250 nA	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & 100 \mathrm{Meg} \\ & 20 \mathrm{Meg} \\ & \pm 5 \mathrm{mV} \\ & 20 \mathrm{nA} \\ & 50 \mathrm{nA} \\ & 125 \mathrm{nA} \\ & 250 \mathrm{nA} \end{aligned}$	```\pm11V 300 Meg 40 Meg \pm3 mV 5 nA 25 nA 5nA 25 nA```	$\begin{aligned} & \pm 11 \mathrm{~V} \\ & 300 \mathrm{Meg} \\ & 40 \mathrm{Meg} \\ & \pm 3 \mathrm{mV} \\ & 5 \mathrm{nA} \\ & 25 \mathrm{nA} \\ & 5 \mathrm{nA} \\ & 25 \mathrm{nA} \end{aligned}$
OUTPUT CHARACTERISTICS Output Voltage, min. Output Current, min. ${ }^{7}$	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \pm 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \pm 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \pm 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \pm 10 \mathrm{~mA} \end{aligned}$
PERFORMANCE DC Open Loop Gain ${ }^{2}$ Full Power Bandwidth ${ }^{2}$ Gain Bandwidth Product Slew Rate. \qquad Settling Time, 10 V to 0.1% Common Mode Rejection Ratio ${ }^{5}$, typ. max. Input Offset Voltage Drift . \qquad External Compensation Required Power Supply Rejection Ratio	$\begin{aligned} & 25 \mathrm{~K} \mathrm{~V} / \mathrm{V} \\ & 500 \mathrm{KHz} \\ & 12 \mathrm{MHz} \\ & 30 \mathrm{~V} / \mu \mathrm{sec} \\ & 330 \mathrm{nsec} \\ & 90 \mathrm{~dB} \\ & 74 \mathrm{~dB} \\ & 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mathrm{None} \\ & 90 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~K} \mathrm{~V} / \mathrm{V} \\ & 1600 \mathrm{KHz} \\ & 20 \mathrm{MHz} \\ & 120 \mathrm{~V} / \mu \mathrm{sec} \\ & 200 \mathrm{nsec} \\ & 90 \mathrm{~dB} \\ & 74 \mathrm{~dB} \\ & 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mathrm{Gains}<3 \\ & 90 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~K} \mathrm{~V} / \mathrm{V} \\ & 75 \mathrm{KHz} \\ & 12 \mathrm{MHz} \\ & 7 \mathrm{~V} / \mu \mathrm{sec} \\ & 1.5 \mu \mathrm{sec}^{4} \\ & 100 \mathrm{~dB} \\ & 74 \mathrm{~dB} \\ & 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \text { Gains }<3 \\ & 90 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~K} \mathrm{~V} / \mathrm{V} \\ & 600 \mathrm{KHz} \\ & 100 \mathrm{MHz} \\ & 35 \mathrm{~V} / \mu \mathrm{sec} \\ & 1.0 \mu \mathrm{sec} \\ & 100 \mathrm{~dB} \\ & 74 \mathrm{~dB} \\ & 15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \text { Gains }<5 \\ & 90 \mathrm{~dB} \end{aligned}$
POWER REQUIREMENTS Voltage, Rated Performance \qquad Operating Voltage Range, min. \qquad max. Supply Current, max.	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 10 \mathrm{~V} \\ & \pm 20 \mathrm{~V} \\ & 6 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 10 \mathrm{~V} \\ & \pm 20 \mathrm{~V} \\ & 6 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 5 \mathrm{~V} \\ & \pm 22.5 \mathrm{~V} \\ & 4 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 5 \mathrm{~V} \\ & \pm 22.5 \mathrm{~V} \\ & 4 \mathrm{~mA} \end{aligned}$
PHYSICAL-ENVIRONMENTAL Oper. Temp. Range, -1 \& -2 Models -1M \& -2M Models Storage Temp. Range Package Type, -2 \& -2M Models -1 \& -1M Models	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & \text { TO-99 } \\ & \text { 14 Pin Ceramic DIP } \end{aligned}$			

NOTES:

1. At Full Temperature
2. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$
3. $\mathrm{C}_{\mathrm{L}} 50 \mathrm{pF}$
4. $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
5. For $\pm 5 \mathrm{~V}$ Common Mode Range
6. $15 n \mathrm{~A}$ typ. for $\mathrm{AM}-460-2 \mathrm{M}$ only
7. AM-460 and AM-462 outputs are short circuit protected

$$
\begin{aligned}
& 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& \text { TO-99 } \\
& 14 \text { Pin Ceramic DIP }
\end{aligned}
$$

AM-452

AM-460

AM-462

INPUT/OUTPUT

 CONNECTIONSALL -2 AND -2M MODELS

PIN	FUNCTION
1	OFFSET ADJUST
2	- INPUT
3	+ INPUT
4	$-V s$
5	OFFSET ADJUST
6	OUTPUT
7	$+V s$
8	BANDWIDTH CONTROL
CASE -SUPPLY CONNECTED TO	

AM-462-1 AND AM-462-1M ONLY

PIN	FUNCTION
3	OFFSET ADJUST
4	- INPUT
5	+ INPUT
6	$-V s$
9	OFFSET ADJUST
10	OUTPUT
11	$+V s$
14	BANDWIDTH CONTROL
ALL OTHER PINS ARE NO CONNECTION. CASE IS CONNECTED TO -SUPPLY	

EXTERNAL OFFSET ADJUSTMENT AND BANDWIDTH COMPENSATION (ALL MODELS)

EXTERNAL OFFSET ADJUSTMENT AND BANDWIDTH COMPENSATION (ALL MODELS)

NOTE: PINS SHOWN FOR TO-99 CASE

INPUT BIAS AND OFFSET CURRENT
VS．TEMPERATURE

AM－460 AND AM－462

COMMON MODE VOLTAGE RANGE Vs SUPPLY VOLTAGE AM－460 AND AM－462

OPEN LOOP VOLTAGE GAIN Vs TEMPERATURE AM－460 AND AM－462

OPEN LOOP FREQUENCY RESPONSE AND EXTERNAL BANDWIDTH COMPENSATION

AM－450

NOTE：EXTERNAL COMPENSATION COMPONENTS ARE NOT REQUIRED
FOR STABILITY，BUT MAY BE ADDED TO REDUCE BANDWIDTH IF DESIRE

AM－452

NOTE：EXTERNAL COMPENSATION IS REQUIRED FOR CLOSED LOOP GAIN <3 ．

AM－460

NOTE：EXTERNAL COMPENSATION COMPONENTS ARE NOT REQUIRED FOR STABILITY，BUT MAY BE ADDED TO REDUCE BANDWIDTH IF DESIRED．
IFEXTERNAL COMPENSATION IS USED，ALSO CONNECT 100 PF CAPACITOR IF EXTERNAL COMPENSATION
FROM OUTPUT TO GROUND．

AM－462

NOTE：EXTERNAL COMPENSATION IS REQUIRED FOR
CLOSEDIOOP GAIN＜ 5 ．IF EXTERNAL COMPEN． CLOSED LOOP GAIN＜5．IF EXTERNAL COMPEN－
SATION IS USED，ALSO CONNECT 100pF CAPACITOR FROM OUTPUT TO GROUND．

FEATURES

－ $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Wideband Noise Voltage
－ $0.6 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ Wideband Noise Current
－ $13 \mathrm{~V} / \mu \mathrm{sec}$ ．Slew Rate
－ 20 mA Output Current
－$\pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ Supply Range GENERAL DESCRIPTION
The AM－453－2 is a high performance，low noise monolithic operational amplifier．It of－ fers better noise characteristics，improved output drive capability and extended small signal and power bandwidths when．com－ pared with standard operational amplifiers．
Typical input noise voltage is less than $7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 30 Hz and drops to $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ for frequencies greater than 200 Hz ．Input noise current is typically $2.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ at 30 Hz falling to only $0.6 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ for frequen－ cies above 1 KHz ．Along with low noise per－ formance，the AM－453－2 has a gain bandwidth product of 10 MHz and a full power frequency response that typically ex－ tends to 200 KHz for an output swing of $\pm 10 \mathrm{~V}$ ．In addition，the amplifier has the ca－ pability to drive 600Ω at 10 V （RMS）when supplied by $\pm 18 \mathrm{~V}$ ．The AM－453－2 is in－ ternally compensated for a gain of three or greater while frequency response may be optimized for various applications by the ad－ dition of an external compensation capaci－ tor．Other features include a minimum com－ mon mode rejection ratio of $80 \mathrm{~dB}, 13 \mathrm{~V} /$ $\mu \mathrm{sec}$ ．slew rate，input overvoltage protection by diodes and a large supply voltage range extending from $\pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ ．
Its low noise，wideband，extended output characteristics make the AM－453－2 ex－ ceptionally well－suited to applications in in－ strumentation and control circuits，data acquisition circuits，wideband transducer amplification and audio frequency analog signal processing including active filters． Packaged in an 8 lead hermetically sealed TO－99 case，the AM－453－2 is available in two operating temperature ranges， $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ or $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．

MECHANICAL DIMENSIONS INCHES（MM）

INPUT／OUTPUT CONNECTIONS

PIN	FUNCTION
1	BALANCE
2	－INPUT
3	＋INPUT
4	－SUPPLY
5	COMPENSATION
6	OUTPUT
7	＋SUPPLY
8	BAL．／COMP．

SPECIFICATIONS - AM-453-2
Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ Supply unless otherwise noted

MAXIMUM RATINGS Maximum Supply Voltage \qquad Max. Common Mode Voltage Range. Maximum Differential Input Voltage ${ }^{1}$. Maximum Power Dissipation \qquad	$\begin{aligned} & \pm 22 \mathrm{~V} \\ & \pm \mathrm{V} \text { Supply } \\ & \pm 0.5 \mathrm{~V} \\ & 680 \mathrm{~mW} \end{aligned}$
INPUT CHARACTERISTICS Input Offset Voltage Input Offset Current Input Bias Current Inpuî Resistance Common Mode Voltage Range	0.5 mV typ., 4 mV max. 20 nA typ., 300 nA max. 500 nA typ., $1.5 \mu \mathrm{~A}$ max. $100 \mathrm{~K} \Omega$ $\pm 12 \mathrm{~V}$ min.
OUTPUT CHARACTERISTICS Output Voltage. \qquad Output Current, S.C. Protected \qquad Output Resistance \qquad	$\begin{aligned} & \pm 12 \mathrm{~V} \text { min. } \\ & \pm 20 \mathrm{~mA} \\ & 0.3 \Omega \end{aligned}$
PERFORMANCE Input Offset Voltage Drift ${ }^{2}$ Input Noise Voltage, $\mathbf{3 0 \mathrm { Hz }}$ Input Noise Voltage, $200 \mathrm{~Hz}-100 \mathrm{KHz}$ Input Noise Current, 30 Hz Input Noise Current, $1 \mathrm{KHz}-100 \mathrm{KHz}$ Common Mode Rejection Ratio Power Supply Sensitivity \qquad D.C. Open Loop Gain \qquad Full Power Frequency, $\pm \mathbf{1 0 V}$ Output . Unity Gain Bandwidth \qquad Slew Rate	$\begin{aligned} & 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 7 \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & 4 \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & 2.5 \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & 0.6 \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & 100 \mathrm{~dB} \text { typ. } 80 \mathrm{~dB} \text { min. } \\ & 10 \mu \mathrm{~V} / \mathrm{V} \\ & 100,000 \mathrm{~V} / \mathrm{V} \\ & 200 \mathrm{KHz} \\ & 10 \mathrm{MHz} \\ & 13 \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
POWER REQUIREMENTS Supply Voltage Rated Performance .. $\pm 15 \mathrm{~V}$ Supply Voltage Range $\pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ Supply Current 4 mA typ., 8 mA max.	
PHYSICAL ENVIRONMENTAL Operating Temperature Range	
NOTES: 1. Since the inputs are protected against overvoltage by diodes differential input exceeding 0.6 V will cause large current flows unless current limiting resistors are used. Maximum current should be limited to $\pm 10 \mathrm{~mA}$. 2. $30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical for C models only, $30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum for M models.	
ORDERING INFORMATION OPERATING TEMP. RANGE	
AM-453-2C $0^{\circ} \mathrm{C}$ to +70 AM-453-2M $-55^{\circ} \mathrm{C}$ to $+125^{\circ}$ Trimming Pot TP 100K Cermet, 100 p	$\begin{aligned} & \mathrm{C} \\ & 5^{\circ} \mathrm{C} \\ & \mathrm{~m} /{ }^{\circ} \mathrm{C} \end{aligned}$
THE AM-453 AMPLIFIERS ARE COV	

OPEN LOOP FREQUENCY RESPONSE

BROADBAND INPUT NOISE VOLTAGE

INPUT NOISE VOLTAGE AND CURRENT VS. FREQUENCY

FREQUENCY COMPENSATION AND OFFSET VOLTAGE ADJUSTMENT CIRCUIT

FEATURES

－$\pm 35 \mathrm{~V}$ Output Swing
－$\pm 10 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$ Supply
－ 4 MHz Gain Bandwidth
－5V／μ sec．Slew Rate
－ 74 dB min．CMRR

GENERAL DESCRIPTION

The AM－464－2 is a monolithic IC oper－ ational amplifier with an input common mode voltage range of $\pm 35 \mathrm{~V}$ and an output voltage swing of $\pm 35 \mathrm{~V}$ when operated from a ± 40 supply．Along with high voltage performance this amplifier has a 4 MHz gain bandwidth product and a $5 \mathrm{~V} / \mu \mathrm{sec}$ ．output slew rate．It is particularly useful in data conversion circuits and other signal processing applications where higher than normal common mode voltage and output volt－ age swings are required．The AM－464－2 is internally compensated for all gains and has an on－chip temperature sens－ ing，output current－limiting circuit for absolute output short－circuit protection．
Other features of this amplifier include： common mode rejection of 74 dB mini－ mum，input bias current of 30 nA maxi－ mum，and open loop voltage gain of 100,000 minimum．The output slew rate of 5 volts per microsecond gives a 70 volt peak to peak sinusoidal output volt－ age at up to 23 kHz ．The power supply voltage can range from $\pm 10 \mathrm{~V}$ to ± 40 VDC to give output swings from $\pm 5 \mathrm{~V}$ to $\pm 35 \mathrm{~V}$ ．Power supply quiescent current is only 3.2 mA typical．
The AM－464－2 is packaged in an 8 lead， hermetically sealed TO－99 case and may be used as a pin for pin replacement for general purpose IC operational am－ plifiers such as 741,101 ，and 108 for higher voltage applications．Operating temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the AM－464－2 and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the AM－464－2M．

INPUT／OUTPUT CONNECTIONS

PIN	FUNCTION
1	TRIM
2	- IN
3	+ IN
4	- SUPPLY
5	TRIM
6	OUTPUT
7	＋SUPPLY
8	BANDWIDTH $\left(C_{B}\right)$

NOTE：All leads gold plated KOVAR

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 - Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATINNS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

－ $150 \mu \mathrm{~A}$ max．Quiescent Current
－20V／$\mu \mathrm{sec}$ ．Slew Rate
－ 106 dB CMRR
－Internally Compensated
－$\pm 12 \mathrm{~V}$ Output at $\pm 10 \mathrm{~mA}$
－$\pm 5.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ Supply

GENERAL DESCRIPTION

Model AM－470－2 is a high performance monolithic operational amplifier which features fast response and excellent DC characteristics while drawing only $75 \mu \mathrm{~A}$ quiescent operating current．This internally compensated amplifier，employing dielec－ tric isolation，has a gain－bandwidth product of 1 MHz and an output slew rate of $20 \mathrm{~V} /$ $\mu \mathrm{sec}$ ．，making it an ideal choice for low power data acquisition systems．While its quiescent operating current is very low，it nevertheless has a ± 12 volt output drive ca－ pability at ± 10 milliamperes；the output stage is also short circuit protected．
The AM－470－2 exhibits superior DC input characteristics．Input bias current is typi－ cally 5 nA and input offset voltage is typically $\pm 1 \mathrm{mV}$ ；input offset voltage drift is $\pm 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical．The common mode input voltage range is $\pm 11 \mathrm{~V}$ minimum and common mode rejection ratio is 106 dB ．DC open loop gain is 300,000 ，resulting in low summing junc－ tion error voltages．Power supply rejection ratio is 100 dB ．
This amplifier can be operated over a wide power supply range：$\pm 5.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ ．Two basic versions are available，the AM－470－ 2C for 0 to 70C operation，and the AM－470－ 2 M for -55 to +125 C operation．
Typical applications include transducer am－ plifiers，portable and remote instrumentation systems，battery operated data logging sys－ tems，data acquisition systems，instrumen－ tation amplifiers，and active filters．

INPUT／OUTPUT CONNECTIONS

PIN	FUNCTION
1	OFFSET ADJ．
2	- INPUT
3	+ INPUT
4	- SUPPLY \＆CASE
5	N．C．
6	OUTPUT
7	+ SUPPLY
8	OFFSET ADJ．

вотtom
VIEW
.040
NOTE：All leads gold plated KOVAR

SPECIFICATIONS, AM-470-2
Typical at $25^{\circ} \mathrm{C}, \pm \mathbf{1 5 V}$ supply unless otherwise noted

MAXIMUM RATINGS	
Power Supply Voltage	$\pm 22 \mathrm{~V}$
Differential Input Voltage	$\pm 18 \mathrm{~V}$
Package Dissipation	300 mW

INPUT CHARACTERISTICS	
Common Mode Voitage Range ..	$\pm 11 \mathrm{~V}$ min.
Input Offset Voltage ${ }^{1} \ldots \ldots \ldots \ldots$	$\pm 1 \mathrm{mV}$ typ., $\pm 5 \mathrm{mV}$ max.
Input Bias Current ${ }^{2} \ldots \ldots \ldots \ldots$	5 nA typ., 40 nA max.
Input Offset Current ${ }^{3} \ldots \ldots \ldots \ldots$	2.5 nA typ., 15 nA max.

OUTPUT CHARACTERISTICS

Output Voltage	$\pm 12 \mathrm{~V}$ min..
Output Current, S.C. Protected ..	$\pm 10 \mathrm{~mA} \mathrm{~min}$

PERFORMANCE

DC Open Loop Gain ${ }^{4}$
Common Mode Rejection Ratio ${ }^{5}$.
Input Offset Voltage Drift
Gain Bandwidth Product ${ }^{4}$ \qquad
$300.000 \mathrm{~V} / \mathrm{V}$ 106 dB typ., 80 dB min $\pm 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ 1.0 MHz $20 \mathrm{~V} / \mu \mathrm{sec}$
$\begin{array}{ll}\text { Input Offset Current over Temp. . } & 40 \mathrm{nA} \text { max } \\ \text { Power Supply Rejection Ratio ... } & 100 \mathrm{~dB}\end{array}$
$\begin{array}{ll}\text { Input Offset Current over Temp. . } & 40 \mathrm{nA} \mathrm{m} \\ \text { Power Supply Rejection Ratio ... } & 100 \mathrm{~dB}\end{array}$

POWER REQUIREMENT

Voltage, Rated Performance $\pm 15 \mathrm{~V}$
Voltage Range, Operating....... ± 5.5 to $\pm 20 \mathrm{~V}$
Quiescent Current $\quad 75 \mu \mathrm{~A}$ typ. $150 \mu \mathrm{~A}$ max

PHYSICAL-ENVIRONMENTAL
Operating Temperature Range
Mil-Version Temp. Range 0 to 70C (AM-470-2C)

Storage Temperature Range
Package, Hermetically Sealed
-65 to +150 C TO-99

NOTES

1. $\pm 3 \mathrm{mV}$ max for $\mathrm{AM}-470-2 \mathrm{M}$
2. 20 nA max for $\mathrm{AM}-470-2 \mathrm{M}$
3. 10 nA max for $A M-470-2 \mathrm{M}$
4. With 2 K load in parallel with 100 pF
5. For $\pm 5 \mathrm{~V}$ common mode voltage

ORDERING INFORMATION

Model
AM-470-2C
AM-470-2M
THESE AMPLIFIERS ARE COVERED BY GSA CONTRACT

CONNECTION FOR INVERTING GAIN OF 10

OPEN LOOP GAIN VS. FREQUENCY

POWER SUPPLY VS. TEMP. \& SUPPLY VOLTAGE

OPEN LOOP GAIN VS. TEMP. \& SUPPLY VOLTAGE
 - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

FEATURES

－Differential Inputs
－ 120 dB CMR
－Drift to $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max．
－ 5×10^{8} Open Loop Gain
－ $20 \mu \mathrm{~V}$ Input Offset Voltage
－ 200 msec．Warm－Up

GENERAL DESCRIPTION

Model AM－490－2 is a monolithic，chopper stabilized operational amplifier with differ－ ential inputs；it is specifically designed for applications requiring ultra－stable DC char－ acteristics together with good bandwidth． This device is available in three different grades of maximum input offset voltage drift： $1.0,0.3$ ，and $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ ．The ex－ tremely low input offset voltage drift and initial input offset voltage of only $20 \mu \mathrm{~V}$ eliminate the requirement for zero adjust－ ment in most applications．Other important input characteristics include an input imped－ ance of 100 megohms，input bias current of 150 pA ，and input offset current drift of $1 \mathrm{pA} /{ }^{\circ} \mathrm{C}$ ．This permits the $\mathrm{AM}-490-2$ to operate accurately with source impedances over 100 kilohms．A common mode rejec－ tion of 120 dB minimum and open loop gain of 5×10^{8} result in extremely low out－ put errors．Long term stability is typically $5 \mu \vee$ per year．
The circuit of the AM－490－2 utilizes a complex monolithic chip 93×123 mils with 256 active devices．Both bipolar and N channel MOS FET＇s are used to implement the linear and switching portions of the circuitry．The chopper circuitry utilizes two DC coupled sample－hold circuits driven by a multivibrator circuit．The DC coupling，con－ trasted with AC coupling commonly used in chopper amplifiers，results in fast overload recovery．Three external capacitors are re－ quired for the sample－hold circuits and the multivibrator which generates a 750 Hz chopping square wave．
Other specifications of the AM－490－2 in－ clude $\pm 10 \mathrm{~V}$ input common mode range and $\pm 10 \mathrm{~V}$ output at 7 mA which is short circuit protected．The operating power supply range is $\pm 12 \mathrm{~V}$ to $\pm 20 \mathrm{VDC}$ with a constant quiescent current drain of 3.5 mA typical over this range．Power supply rejection is 120 dB ．The low power drain and fast warm－up time of 200 msec ．make this device ideal for use in battery operated，inter－ rupted service circuits．Other applications include inverting，noninverting，and bal－ anced gain amplifier configurations in addi－ tion to very accurate integrators and sample－holds．The AM－490－2 is packaged in a hermetically sealed， 8 pin TO－99 case． CAUTION：The AM－490－2 has MOS FET input devices and should be handled care－ fully to prevent static charge pick－up which might damage the devices．

1. Three external capacitors are required for operation of the AM-490-2. One of these, $\mathrm{C}_{\mathrm{c}}(.0015 \mu \mathrm{~F})$ is used to set the timing oscillator to give a chopper frequency of 750 Hz ; the other two, C_{A} and C_{B} (both $0.1 \mu \mathrm{~F}$), are used as holding capacitors for the direct coupled internal sample-holds. All three of these capacitors should have good temperature stability, low leakage, and low dielectric absorption. Polystyrene, teflon or polycarbonate types are recommended. As a convenience, the capacitors are available as a kit of three miniature metallized polycarbonate types.
2. In most requirements the AM-490-2 eliminates the need for a zeroing adjustment. Typical input offset voltage is only $\pm 20 \mu \mathrm{~V}$ while the maximum is only $\pm 80 \mu \mathrm{~V}$ over the operating temperature range. In cases where zeroing is still necessary, however, there are two methods shown in the application diagrams. In the inverting mode where the negative summing junction is at virtual ground, the zeroing can be accomplished by injecting an offset current into the summing junction by means of a high value resistor connected to a potentiometer. (See "Precision Integrator" diagram). In all other cases, zeroing is accomplished by means of a voltage divider connection to the positive input terminal. (See "Differential Amplifier Connection").
3. The superior input offset voltage drift (1.0, 0.3 or $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max.) and input offset current drift ($1 \mathrm{pA} /{ }^{\circ} \mathrm{C}$) of this amplifier permit it, when properly applied, to resolve microvolt and picoampere level signals. To successfully amplify these very low level signals, it is necessary to use great care in circuit layout and assembly with particular attention given to proper grounding and shielding. Other potential error sources include leakage, thermal environment, and thermocouple effects.
4. The highest practical input impedance which can be used with the AM-490-2 is determined by the point where input offset current drift and input offset voltage drift produce equal errors. Thus:

$$
\mathrm{R}_{\mathrm{MAX}}=\frac{\Delta \mathrm{Eos} / \Delta \mathrm{T}}{\Delta \operatorname{los} / \Delta \mathrm{T}}
$$

Where $R_{\text {MAX }}$ is the maximum practicable input resistance seen by either input terminal of the amplifier. This comes out to 1 megohm for the A version, 300 kilohms for the B version, and 100 kilohms for the C version.
5. The amplifier input terminals are differential and symmetrical; for best results the
impedance to ground seen by each input terminal should be equal. Matched impedance (resistance and capacitance) as shown in the application diagrams result in minimum output offset drift due to bias currents and also minimum output chopper noise. Chopper noise appears as a common mode input current signal, and under balanced conditions of both resistance and capacitance this noise can be minimized to less than random noise at the output.
6. The AM-490-2 is dynamically stable with 100% feedback (unity gain follower) and 1000pF capacitive load. In very high closed loop gain configurations ($>70 \mathrm{~dB}$), it may become desirable to put a capacitor in parallel with the feedback resistor for better stability. This should be done to yield a gain-bandwidth product of 2 MHz ($\mathrm{RC}=80 \mu \mathrm{sec}$.) to insure absolute stability. In general, the closed loop bandwidth should be limited to that necessary to pass the required signal frequency components only; this results in minimum output noise. Minimum bandwidth should also be used to eliminate small modulation effects of input signal frequencies near the chopper frequency (750 Hz).
7. Other features of these amplifiers include an exceptionally high open loop gain of 5 $\times 10^{8}$. For an output voltage swing of $\pm 10 \mathrm{~V}$, this reduces the input error due to gain to only ± 20 nanovolts. Common mode rejection is very high 1120 dB minimum) at DC, but falls off rapidly with frequency as shown in the graph under Performance Parameters. CMR is typically greater than 100 dB at 10 Hz . For best common mode rejection, therefore, the signal frequency should be limited to about 10 Hz . The noise performance of the amplifier can be readily computed from the two noise graphs shown under Performance Parameters.
8. The AM-490-2 amplifiers draw a quiescent current of only 3.5 mA typical and 5 mA maximum; the current is virtually constant over the operating power supply range of $\pm 12 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. Bandwidth and slew rate change only slightly over this range as shown in the graph "Normalized AC Parameters vs. Power Supply". For the $\pm 12 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ supply range input common mode voltage range and output voltage range become $\pm 7 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$. The wide supply range together with the fast warm-up time of only 200 msec. make the AM-490-2 an excellent amplifier for precision, low power, interrupted supply operation in portable and remote instrumentation systems.

BATTERY POWERED LOAD CELL AMPLIFIER FOR DISCONTINUOUS SERVICE

For power interrupt applications the amplifier has a warm-up time of only 200 msec .

INPUT OFFSET CURRENT AND CHOPPER NOISE CONSIDERATIONS

Errors due to bias current and chopper spike current are minimized by making both amplifier inputs look back into equal impedances to ground.

PRECISION INTEGRATOR

This configuration shows zeroing by use of a current into the summing junction.

DIFFERENTIAL AMPLIFIER CONNECTION

Capacitors C are used only to reduce bandwidth and hence output noise.

OPEN LOOP FREQUENCY RESPONSE

NORMALIZED AC PARAMETERS VS. POWER SUPPLY

INPUT VOLTAGE NOISE

COMMON MODE REJECTION VS. FREQUENCY (TYPICAL)

TYPICAL INPUT DRIFT CHARACTERISTICS VS. TEMPERATURE

Printed in U.S.A. Copyright (c) 1979 Datel-Intersil, Inc. All rights reserved
11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340
Santa Ana, (714)835-2751, (L A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490

- Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055
- DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

- Exceptionally low input offset voltage -- $2 \mu \mathrm{~V}$
- Low long-term input offset voltage drift -$0.2 \mu \mathrm{~V} /$ year
- Low input offset voltage temperature drift -$0.005 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low DC input bias current -- 300 pA
- Low DC input offset bias current -- 150 pA
- Wide common mode and differential input voltage ranges
- Excellent low supply voltage operation -- Down to $\pm 2 \mathrm{~V}$
- Static-protected inputs -- no special handling required

GENERAL DESCRIPTION

The AM-7600/AM-7601 commutating auto-zero (CAZ) operational amplifiers are designed to replace almost any of today's expensive hybrid or monolithic ultra-low offset op amps, and will provide almost three orders of magnitude ($1000 \times$) reduction in input offset voltage compared with conventional device designs. This is achieved through an innovative CAZ amp principle, which uses an entirely new approach to low-frequency operational amplifier design.
The key feature of the CAZ principle is automatic compensation for long-term drift phenomena and temperature effects. Two internal op amps are connected so that when one amplifier is processing an input signal the other is maintained in an "auto-zero" mode. The CAZ amplifiers contain all of the circuitry required for system operation, including an oscillator, a counter, level translators, analog switches and operational amplifiers. Only two external gainsetting resistors and two auto-zero capacitors are needed for complete amplifier function. Control of the oscillator and counter section is provided through the OSC and DR (division ratio) terminals. Internal biasing of the two on-chip op amps is programmable through a three-voltage-level terminal designated BIAS.
The AM-7600 is internally-compensated and is intended for applications which require voltage gains from unity through 100. The uncompensated AM-7601 is intended for those situations which require voltage gains of greater than 20 . The major advantage of the AM-7601 over the AM-7600 at high gain settings is the reduction in communication noise and subsequent greater accuracy.
Minimum periodic adjustments and extremely low offset voltage and temperature coefficients make the CAZ operational amplifiers very desirable for operation in adverse environments (temperature, humidity, toxic or radioactive) where equipment service is difficult. Since the device will auto-zero its internal offset errors, no adjustment is required other than that of gain, which is established by the external resistors.

PIN CONFIGURATION	ORDERING INFORMATION			
	Compensation	Model	Oper.-Temp. Range	Package
		AM-7600C	0 to $+70^{\circ} \mathrm{C}$	14 Pin Epoxy DIP
	COMP.	AM-7600R	-25 to $+85^{\circ} \mathrm{C}$	14 Pin CERDIP
		AM-7600M	-55 to $+125^{\circ} \mathrm{C}$	14 Pin CERDIP
		AM-7601C	0 to $+70^{\circ} \mathrm{C}$	14 Pin Epoxy DIP
	UNCOMP.	AM-7601R	-25 to $+85^{\circ} \mathrm{C}$	14 Pin CERDIP
		AM-7601M	-55 to $+125^{\circ} \mathrm{C}$	14 Pin CERDIP

[^11]
AM-7600/AM-7601

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (sum of both positive and
negative supply voltages, V^{+}and V^{-}) $\ldots . . .$.
Positive Supply Voltage (GND to V^{+}) 18 Volts
Negative Supply Voltage (GND to V^{-}) 18 Volts
DR Input Voltage............ . ($\mathrm{V}^{+}+0.3$) to ($\mathrm{V}^{+}-8$) Volts
Input Voltage ($\mathrm{C}_{1}, \mathrm{C}_{2}$, +INPUT, -INPUT, BIAS,
OSC (Note 2)) ($\mathrm{V}^{+}+0.3$) to ($\mathrm{V}^{-}-0.3$) Volts
Differential Input Voltage (Note 3) . $\pm\left(\mathrm{V}^{+}+0.3\right.$) to ($\mathrm{V}^{-}-0.3$) Volts
Duration of Output Short Circuit (Note 4) Unlimited
Continuous Total Power Dissipation at or below $+25^{\circ} \mathrm{C}$
free air temperature (Note 5)
CERDIP Package 500 mW
Plastic Package 375 mW

Operating Temperature Range
Suffix M $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range
Suffix R $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature Range Suffix C ... 0 to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots-55$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 60 seconds) $\ldots+300^{\circ} \mathrm{C}$

Note 1: Stresses above those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent device failures. These are stress ratings only and functional operation of devices under conditions other than those indicated in the Table of Electrical Characteristics is not recommended. Exposure to absolute maximum rating conditions for extended periods of time can cause device failures.
Note 2: An SCR structure is inherent in the CMOS process used in the fabrication of these devices. If voltages in excess of $\left(V^{+}+0.3\right)$ to $(V-0.3)$ volts are connected to either inputs or outputs, destructive latchup can occur. For this reason it is recommended that no inputs from sources not on the same power supply or supplies be applied before the AM-7600/AM-7601 supplies are established, and that if multiple supplies are used the AM-7600/AM-7601 supplies be activated first.
Note 3: No restrictions are placed on the differential input voltages on either the inverting or non-inverting inputs, so long as these voltages do not exceed the power supply voltages by more than 0.3 V .

Note 4: Outputs may be shorted to ground (GND) or to either supply ($\mathrm{V}^{+}, \mathrm{V}^{-}$). Temperature and/or supply voltages must be limited to insure that the dissipation rating is not exceeded
Note 5: For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 500 mW for CERDIP and $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 375 mW for plastic above $25^{\circ} \mathrm{C}$.

BLOCK DIAGRAM

AM-7600/AM-7601

OPERATING CHARACTERISTICS:
Test Conditions: $\mathrm{V}^{+}=+5$ volts, $\mathrm{V}^{-}=-5$ volts, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, DR pin connected to $\mathrm{V}^{+}(\mathrm{f} \mathrm{COM} \cong 160 \mathrm{~Hz}), \mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F}$, Test Circuit 1 , unless otherwise specified.

AM-7600/AM-7601

TEST CIRCUITS

Test Circuit 1: Voltage Gain $=1000$

Test Circuit 3: Voltage Gain $=10$

Test Circuit 2: Unity Voltage Gain

Test Circuit 4: DC to 10 Hz Unity Gain Low Pass Filter

TYPICAL CHARACTERISTICS

INPUT OFFSET VOLTAGE AS A
FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET VOLTAGE AND
PK TO PK NOISE
VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGES

INPUT OFFSET VOLTAGE AND PK TO PK NOISE
VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY
($C_{1}, C_{2}=1 \mu F$)

INPUT OFFSET VOLTAGE AND PK TO PK NOISE AS A FUNCTION OF SUPPLY VOLTAGE
($\mathrm{V}^{+}-\mathrm{V}-$)

INPUT CURRENT AS A FUNCTION OF COMMUTATION FREQUENCY

MAXIMUM OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT LOAD RESISTANCE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

FREQUENCY RESPONSE OF THE 10 Hz LOW
PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 4).

TOTAL EQUIVALENT INPUT OFFSET
VOLTAGE AS A FUNCTION OF SOURCE IMPEDANCE - +INPUT

TOTAL EQUIVALENT INPUT OFFSET VOLTAGE AS A FUNCTION OF SOURCE IMPEDANCE - INPUT

AM-7600/AM-7601

DETAILED DESCRIPTION

CAZ Operational Amplifier Operation

The CAZ operational amplifier functions on principles which are very different from those encountered in conventional op amp types. An important advantage of the AM-7600/AM-7601 devices is the ability to self-compensate for internal error voltages, whether they are steady-state, related to temperature or supply voltage, or variable in nature over a long term.
Operation of the AM-7600/AM-7601 CAZ operational amplifier is demonstrated in Figure 1. The basic amplifier configuration represented by the large triangles has one more input than does a regular op amp--the $A Z$, or auto-zero input. The voltage at the $A Z$ input is that voltage to which each of the internal op amps must be auto-zeroed. In Mode A, op amp \#2 is connected into a unity gain mode through on-chip analog switches, and charges the external capacitor C_{2} to a voltage equal to the DC offset voltage of that amplifier, in addition to the instantaneous low frequency noise voltage. A short time later, the analog switches reconnect to the onchip op amps in the configuration shown in Mode B. In this mode, op amp \#2 has capacitor C_{2} (which was charged to a voltage equal to its offset and noise voltage) connected in series to its non-inverting (+) input and nulls out the input offset and noise voltage of the amplifier. While one of the op amps is processing the input signal, the other is placed in an auto-zero mode and charges a capacitor to a voltage equal to its equivalent DC and low-frequency error voltage. The internal op amps are connected (at a rate designated as the commutation frequency, fсом) so that at all times one or the other of the op amps is processing the input signal, while the voltages on capacitors C_{1} and C_{2} are being updated regularly to compensate for variables such as low-frequency noise voltage and input offset voltages due to drift with temperature, time, or supply voltage.

The CAZ amp concept offers a number of other advantages to the designer, as compared to standard bipolar or FETinput op amps:

- Effective input offset voltages can be made between 1000x and 10,000x less without trimming.
- Long-term drift phenomena are compensated for and dramatically reduced.
- Temperature effects are compensated for over a wide range. Reductions can be as high as 100 times or higher.
- Supply voltage sensitivity is reduced.

CMOS processing is ideally suited to implement the CAZ op amp structure. Not only is the digital section simple to design in CMOS, but the transmission gates (analog switches), which connect the internal op amps, are efficiently implemented for minimum charge injection and widest operating voltage range. The analog section, which includes the two on-chip op amps, provides performance which in most cases is similar to bipolar or FET input designs. Open loop gains of greater than 100 dB , typical offset voltages of $\pm 5 \mathrm{mV}$, and ultra-low input leakage currents (typically 1 pA) make the CMOS process quite suitable for the CAZ amp concept.
The on-chip op amps are connected internally to the external input and output terminals via CMOS analog switches, as shown in Figure 2. The analog switch structure shown in Figure 2 is arranged so that at any time three switches are open and three switches are conducting. Each analog switrh includes a P-channel transistor in parallel with an N -channel transistor.

Figure 1: Diagramatic representation of the 2 half cycles of operation of the CAZ OP AMP.

AM-7600/AM-7601

Figure 2: Schematic of analog switches connecting each internal OP AMP to the external inputs at the output.

APPLICATIONS

The AM-7600/AM-7601 CAZ op amp is ideal for use as a frontend preamplifier for dual-slope A / D converters which require high sensitivity for single-ended input sources such as thermocouples.
A typical high-sensitivity A / D converter system is shown in Figure 3. The system uses a model ADC-7109 12-bit monolithic A/D binary converter, and is intended for direct interface with microprocessors Both the AM-7600/AM-7601 and the ADC-7109 use power supply voltages of $\pm 5 \mathrm{~V}$, and the entire system consumes typically 2.5 mA of current.
The input signal is applied through a low-pass filter (150 Hz) to the CAZ op amp, which is connected in a non-inverting gain configuration of either 10 or 100 . The internal oscillator of the CAZ amp is allowed to run free at about $5,200 \mathrm{~Hz}$, resulting in a commutation frequency of 160 Hz , with the DR terminal connected to V^{\dagger}. The error-storage capacitors C_{1} and C_{2} are each $1 \mu \mathrm{~F}$ value, and provide a good compromise between the minimum equivalent input offset voltage and the lowest value of low-frequency noise.
The output signal is then passed through a low-pass filter ($1 \mathrm{M} \Omega$) and $0.1 \mu \mathrm{~F}$), with a bandwidth of 1.5 Hz . This results in an equivalent $D C$ offset voltage of 1 to $2 \mu \mathrm{~V}$, and a peak-topeak noise voltage of $1.7 \mu \mathrm{~V}$, referred to the input of the $C A Z$ amp. The output from the low-pass filter feeds directly into the input of the ADC-7109.

In a system such as that shown in Figure 3 there is a degree of flexibility possible in assigning various gains to the AM-7600/ AM-7601 pre-amplifier, and to various sensitivities for the ADC-7109. For optimum performance, the CAZ op amp must amplify the input signal so that the equivalent $15 \mu \mathrm{~V}$ input noise voltage of the A/D converter is masked. This implies a gain of at least 10 for the CAZ op amp preamplifier. On the other hand, if the gain of the CAZ op amp is increased too much, its output swing will be limited by the $\pm 5 \mathrm{~V}$ supplies. This condition imposes a maximum gain of 200 to produce an output of ± 0.000005 times 4,096 times 200 , or $\pm 4.096 \mathrm{~V}$, for a $5 \mu \mathrm{~V}$ per count sensitivity. Use of an AM-7600 is recommended for low gains (<20) and the AM-7601 for gains of more than 20.
The values of the integrating resistor and the reference voltage must be chosen to suit the overall sensitivity of the system. For example, in a system requiring a sensitivity of $5 \mu \mathrm{~V}$ per count, it is suggested to use a CAZ amp in a gain configuration of 100 (use AM-7601). Thus for a full scale count of 4096 (12 bits), the input voltage to the ADC-7109 would be $5 \mu \mathrm{~V}$ times 100 times 4096 or 2.048 volts. Since the ratio of input to reference is $2: 1$, the value of the reference voltage becomes 1.024 V , and a $100 \mathrm{k} \Omega$ integrating resistor is recommended. A system such as that shown in Figure 3 will allow a resolution of $1^{\circ} \mathrm{C}$ for low sensitivity platinum/ rhodium junctions. For $0.1^{\circ} \mathrm{C}$ resolution, use high sensitivity thermocouples having copper/constantan junctions.

AM-7600/AM-7601

The low-pass filter between the output of the CAZ op amp and the input of the ADC-7109 A/D converter can be used to improve the signal-to-noise ratio of the system by reducing bandwidth. A 10 Hz filter will result in an equivalent peak-topeak noise voltage figure of $4 \mu \mathrm{~V}$. If the bandwidth is reduced
to 1.5 Hz , the peak-to-peak noise voltage will be reduced to about $1.7 \mu \mathrm{~V}$, a reduction by a factor of three. The penalty for this reduction will be a lower system response time; however in most cases this will not be a major consideration, because of the large thermal inertia of many thermocouple probes.

SOME HELPFUL HINTS

Testing the AM-7600/AM-7601 CAZ Operational Amplifier

A simple and relatively accurate means of testing the CAZ op amp is to use a Tektronix Type 577 curve tracer, with the CAZ op amp inserted in a special 14-lead socket which plugs into a Tektronix 178, and which contains two soldered-in autozero capacitors of $1 \mu \mathrm{~F}$ each. This simple and convenient tester will provide most of the information needed for lowfrequency parameters. The test setup will allow resolution of input offset voltages to about $10 \mu \mathrm{~V}$.

For greater accuracy, it is suggested that a breadboard be built which minimizes thermoelectric effects and which includes an output low-pass filter of the type shown in Test Circuit \#4. The output from the CAZ amp can be connected to a dual-slope A/D converter as shown in Figure 3. The lowfrequency noise can then be displayed on a storage scope or on a strip chart recorder.

Bias Control

The on-chip op amps consume over 90% of the power required for the AM-7600/AM-7601. Three externallyprogrammable bias levels are provided. These levels are set by connecting the BIAS terminal to V^{+}, GND or V^{-}. The difference between each bias setting is approximately a factor of three, which allows a 9:1 ratio between supply current and the bias setting. The reason for this current programmability is to provide the user with a choice of device power dissipation levels, slew rate values the higher the slew rate the better the recovery from commutation spikes), and offset errors due to chip "voltage drop" and thermoelectric effects (the higher the power dissipation the higher the input offset error). In most cases, the medium (MED BIAS) setting will be the best choice.

Output Loading (Resistive)

With a $10 \mathrm{k} \Omega$ load the output swing can cover nearly the entire supply voltage range, and the device can be used with loads as low as $2 \mathrm{k} \Omega$. However, with loads of less than $50 \mathrm{k} \Omega$, the on-chip op amps become transconductance amplifiers, since their output impedances are about $50 \mathrm{k} \Omega$ each. Thus the open-loop gain is 20 dB less with a $2 \mathrm{k} \Omega$ load than it would be with a $20 \mathrm{k} \Omega$ load. For high gain configurations requiring high accuracy, output loads of $100 \mathrm{k} \Omega$ or more are suggested.

Another consideration which must not be overlooked is the additional power dissipation of the chip which results from a large output swing into a low value load. This added variable can affect the initial input offset voltages under certain conditions.

Output Loading (Capacitive)

In many applications, it is desirable to include a low-pass filter at the output to reduce high-frequency noise outside the signal passband of interest. With conventional op amps, the obvious solution would be to place a capacitor across the external feedback resistor to provide the low pass filter.
However, with the CAZ op amp, this is not feasible because of the nature of commutation voltage spikes. The voltage spikes show a low impedance characteristic in the direction of the auto-zero voltage, and a high impedance on the recovery edge, as shown in Figure 4. It can be seen that the effect of a large load capacitor is to produce an area error in the output waveform, and hence an effective gain error. The output low pass filter must be a high impedance type to avoid output voltage area errors. For example, a 1.5 Hz filter should use a $100 \mathrm{k} \Omega$ resistor and a $1.0 \mu \mathrm{~F}$ capacitor, or a $1.0 \mathrm{M} \Omega$ resistor and an $0.1 \mu \mathrm{~F}$ capacitor.

Oscillator and Digital Considerations

The oscillator has been designed to run free at about 5.2 kHz when the OSC terminal is open-circuited. If the full divider network is used, this will result in a commutation frequency of about 160 Hz nominal. The commutation frequency is the frequency at which the on-chip op amps are switched between the signal processing and the auto-zero modes. A 160 Hz commutation frequency represents approximately the optimum frequency at which the input offset voltage is close to minimum, where the low-frequency noise is acceptable, and where errors derived from_noise spikes will be low. Other commutation frequencies may provide optimization of other parameters, but always to the detriment of major characteristics.
The oscillator is of a high impedance type, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the desired frequency of the oscillation is 5.2 kHz , the terminal should be left unattached and open. In other instances, it may be desirable to lock the oscillator to a clock

Figure 4: Effect of a load capacitor on output voltage waveforms.

AM-7600/AM-7601

or to run it at another frequency. The AM-7600/AM7601 provides two degrees of flexibility. First, the DR (division ratio) terminal permits the user to choose between dividing the oscillator by 32 (DR terminal to V^{+}) or by 2 (DR terminal to GND), to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and V^{+}, or system ground terminals. For situations which required the commutation frequency to be locked onto a master clock, the OSC terminal can be driven from TTL logic (with resistive pull-up) or from CMOS logic, provided that the V^{+}supply (with respect to ground) is $+5 \mathrm{~V}(\pm 10 \%)$ and the logic driver also operates from a similar supply voltage. This is because the logic section -- including the oscillator -operates from an internal -5 V supply referenced to V^{+} generated on-chip, and is not accessible externally.

Thermoelectric Effects

The ultimate limitations to ultra-high-precision DC amplifiers are due to thermoelectric, Peltier or thermocouple effects whereby junctions consist of various metals, alloys, silicon, etc. Unless all junctions are at precisely the same temperature, small thermoelectric voltages will be produced, generally about $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. However, these voltages can be several tens of microvolts per ${ }^{\circ} \mathrm{C}$ for certain thermocouple materials.
In order to realize the extremely low offset voltages which the CAZ op amp can provide, it is essential to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. Special low-temperature solder (70% cadmium. 30% tin) should be used. In addition, the supply voltages and power dissipation should be kept to a minimum. Use the medium bias mode as well as a high impedance load, and keep well away from heat dissipated by surrounding equipment.

Component Selection

The two required auto-zero capacitors, C_{1} and C_{2}, should each be of $1.0 \mu \mathrm{~F}$ value. These are large values for nonelectrolytic capacitors, but since the voltages impressed on them do not change significantly, problems of dielectric absorption and the like are not as important as they would be in applications involving integrating dual-slope A / D converters.
Excellent results have been obtained in operation at commercial temperature ranges when using several of the smaller-size and more economical capacitors, since the absolute values of the capacitors need not be critical. Although not guaranteed, polarized electrolytic capacitors rated at $1.0 \mu \mathrm{~F} / 50 \mathrm{~V}$ have been used with success.

Commutating Voltage Transient Effects

While in most respects the CAZ op amp behaves like a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 100 Hz . This is because of the finite switching transients which occur in the input and output terminals due to commu-
tation effects. These transients have a frequency spectrum beginning at the commutation frequency, and include all of the higher harmonics. If the commutation frequency is higher than the highest in-band frequency, these transients can be effectively blanked with a low-pass filter.
The input commutation transients arise when each of the onchip op amps experiences a shift in voltage equal to the input offset voltage about ($5-10 \mathrm{mV}$), which usually occurs during the transition from the signal processing mode to the autozero mode. Since the input capacitances of the on-chip op amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage auto-zero capacitors C_{1} and C_{2} must be at least $10,000 \times 10 \mathrm{pF}$, or $0.1 \mu \mathrm{~F}$ each.

Figure 5: Output waveform from Test Circuit 1.
The charge which is injected into the op amp when it is switched into the signal-processing mode produces a rapidly-decaying voltage spike at the input, in addition to an equivalent DC bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically about 1.0 pA at ambient temperature of $25^{\circ} \mathrm{C}$.
The output waveform shown in Test Circuit \#1 (with no input) is treated in Figure 5. Note that the equivalent noise voltage shown is amplified 1000 times, and that because of the finite slew rate of the on-chip op amps the 7 mV input transients are not amplified by 1000 .
The output transient voltage effects (as distinct from the input effects which are propagated through the on-chip op amps) will occur if there is a difference in the output voltage of the internal op amps between the auto-zero modes and the signal-processing modes. The output stage of the on-chip op amp must slew from its auto-zero output voltage to the desired signal-processing output voltage. This is shown in Figure 6, where the system is auto-zeroed to ground.
The duration of the output transients is greatly affected by the gain configuration and the bias setting, since these two parameters have an effect on system slew rate. At low gains and high bias settings, the output transient durations are very short. For this reason there are two versions of the CAZ op amp, the AM-7600 which is compensated for unity gain and which can be used for gain configurations up to 100, and the AM-7601, which is uncompensated and recommended for operation in gain configurations greater than 20. Thus, when a signal is being processed in a high gain configuration, the effective output signal error is greater for the AM-7600 than it is for the $\mathrm{AM}-7601$.

Figure 6: Simple CAZ OP AMP circuit and the output voltage waveform.

PACKAGE DIMENSIONS

14 LEAD CERDIP PACKAGE

14 LEAD PLASTIC PACKAGE

FEATURES

- Wide Operating Voltage Range $\pm 0.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$
- Programmable Power Consumption as low as $10 \mu \mathrm{~W}$
- High Input Impedance - 1012 Ω
- Low Input Bias - 50 pA max.
- Internally Compensated and Uncompensated Models

GENERAL DESCRIPTION

The AM-761X series is a family of monolithic CMOS op amps. These amplifiers provide high performance operation at low supply voltages and selectable quiescent currents. Their features make them ideal for applications that require ultra low input current and low power drain.
The AM-7611, 12, and 13 have a unique quiescent current programming pin that allows the setting of standby current to 1 mA , $100 \mu \mathrm{~A}$ or $10 \mu \mathrm{~A}$ with no external components. This results in power drain as low as $10 \mu \mathrm{~W}$. These models are internally compensated and are stable for closed loop gains as low as 1 .
The basic amplifier will operate at supply voltages ranging from $\pm 0.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$, and may be operated from a single Ni-Cad battery. Output voltage swings range to within a few millivolts of the supply voltage.
Other significant features include 50 pA maximum input bias current, $10^{12} \Omega$ input impedance, and low noise current density, typically $01 \mathrm{pA} \sqrt{\mathrm{Hz} \text {. Dynamic character- }}$ istics include 1 MHz unity gain bandwidth and $1.6 \mathrm{~V} / \mu \mathrm{sec}$ slew rate at $\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}$.
All devices are internally protected by the use of input diodes, models AM-7613 and AM-7615 are protected for inputs of up to $\pm 200 \mathrm{~V}$. Outputs are fully short circuit protected.
Packaged in an 8 pin hermetically sealed TO-99 case, these devices are available in $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and in $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature ranges.

Vsupp $= \pm 5 \mathrm{~V}$	Vsupp $+ \pm 0.5 \mathrm{~V}^{1}$

MAXIMUM RATINGS ${ }^{2}$		
Power Supply Voltage	$\pm 9 \mathrm{~V}$	$\pm 9 \mathrm{~V}$
Power Dissipation ${ }^{3}$................................ .	250 mW	250 mW
Differential Input Voltage	$\pm\left[\left(V^{+}+0.3\right)-\left(V^{-}-0.3\right)\right] V$	$\pm\left[\left(V^{+}+0.3\right)-\left(V^{-}-0.3\right)\right] . \mathrm{V}$
Differential Input Voltage (AM-7613, AM-7615)	$\pm\left[\left(\mathrm{V}^{+}+200\right)-\left(\mathrm{V}^{-}-200\right)\right] \mathrm{V}$	$\pm\left[\left(\mathrm{V}^{+}+0.3\right)-\left(\mathrm{V}^{-}-0.3\right)\right] \mathrm{V}^{4}$
INPUT CHACTERISTICS		
Input Offset Voltage, max.	5 mV	5 mV
Input Bias Current, max.	50 pA	50 pA
Input Offset Current, max.	30 pA	30 pA
Common Mode Voltage Range, min.,		
$\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{5}$	$\pm 4.4 \mathrm{~V}$	$\pm 0.1 \mathrm{~V}$
$\mathrm{I}_{1}=100 \mu \mathrm{~A}$	$\pm 4.2 \mathrm{~V}$	---
$\mathrm{I}_{\mathrm{a}}=1 \mathrm{~mA}^{5}$.	$\pm 3.7 \mathrm{~V}$	---
Extended Common Mode Voltage Range, min.		
	$\pm 5.3 \mathrm{~V}$	$\pm 0.1 \mathrm{~V}$ to - 0.6 V
(AM-7612 Only) $\mathrm{I}_{\text {Q }}=100 \mu \mathrm{~A} \ldots \ldots$.	+5.3V	---
	-5.1V	
$\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{5} \ldots \ldots \ldots \ldots \ldots \ldots$.	+5.3V	---
	$-4.5 \mathrm{~V}$	
Input Resistance	$10^{12} \Omega$	$10^{12} \Omega$
OUTPUT CHARACTERISTICS		
PERFORMANCE		
Large Signal Voltage Gain	$80 \mathrm{~dB} \mathrm{~min}^{6}$	$80 \mathrm{db}^{7}$
Unity Gain Bandwidth, $\mathrm{I}_{0}=10 \mu \mathrm{~A}^{5}$	44 kHz	44 kHz
$\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{5}$	1.4 MHz	---
Common Mode Rejection Ratio,		
$l_{0}=10 \mu \mathrm{~A}^{5}$ $\mathrm{l}=100$	70 dB min	80 dB
$\mathrm{l}_{\mathrm{a}}=100 \mu \mathrm{~A}$	70 dB min	---
(${ }^{1} \begin{aligned} & \mathrm{l}_{0}=1 \mathrm{~mA}^{5}\end{aligned}$	60 dB min	---
Power Supply Rejection Ratio, $\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{5}$	Power Supply Rejection Ratio,	
$\mathrm{I}_{\mathrm{a}}=100 \mu \mathrm{~A}$	80 dB min	---
$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}^{5}$	70 dB min	---
Input Offset Voltage Drift	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Input Noise Voltage ${ }^{8}$	$100 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$100 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current ${ }^{8}$. $01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$. $01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
Slew Rate ${ }^{\text {R }} \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{5}$. $016 \mathrm{~V} / \mu \mathrm{sec}$. $016 \mathrm{~V} / \mu \mathrm{sec}$
$R_{L}=100 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$. $16 \mathrm{~V} / \mu \mathrm{sec}$	
$R_{L}=10 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{5}$.	$1.6 \mathrm{~V} / \mu \mathrm{sec}$	---
POWER REQUIREMENTS		
Voltage, Rated Performance	$\pm 5 \mathrm{VDC}$	$\pm 0.5 \mathrm{VDC}$
Supply Voltage Range .	$\pm 0.5 \mathrm{~V}$ to $\pm 8 \mathrm{VDC}$	$\pm 0.5 \mathrm{~V}$ to $\pm 8 \mathrm{VDC}$
Supply Current, max, $\mathrm{I}_{0}=10 \mu \mathrm{~A}^{5}$		$15 \mu \mathrm{~A}$
$\mathrm{la}_{0}=100 \mu \mathrm{~A}$	$250 \mu \mathrm{~A}$	
$\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}^{5}$	2.5 mA	---

PHYSICAL ENVIRONMENTAL

Operating Temperature Range

Suffix - C
Suffix - M
Storage Temperature Range
Package, Hermetically Sealed
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
TO-99

NOTES:

1. Operation at V supp $= \pm 0.5 \mathrm{~V}$ is guaranteed at $\mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}$ only. Those devices with a selectable lo of $10 \mu \mathrm{~A}$ are the AM-7611, 7612, and 7613.
2. Stresses above those listed under "MAXIMUM RATINGS" may cause permanent device failure. These are stress ratings only, functional operation of the device at these, or at conditions above those indicated in the operating section of this specification is not implied. Exposure to maximum rating conditions for extended periods may cause device failures.
3. At $+25^{\circ} \mathrm{C}$, for operation in ambient temperatures in excess of $+25^{\circ} \mathrm{C}$ derate by $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. AM-7613 only.
5. la is selectable on AM-7611, 12, and 13 only. On AM-7614, and $15, l_{Q}=100 \mu \mathrm{~A}$.
6. Vout $=4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}$
7. Vout $= \pm 0.1 \mathrm{~V}, R_{L}=100 \mathrm{~K} \Omega, l_{Q}=10 \mu \mathrm{~A}$
8. $R s=100 \Omega, f=1 \mathrm{kHz}$
9. $\mathrm{CL}=100 \mathrm{pF}, \operatorname{Vin}=8 \mathrm{~V}$
10. The AM-7611, 12, and 13 have an external lo control pin (pin 8), permitting the amplifiers quiescent current to be set at $1 \mathrm{~mA}, 100 \mu \mathrm{~A}$, or 10 $\mu \mathrm{A}$. These current settings change only very slightly over the entire supply voltage range. To set the lo of these programmable models, connect the l_{a} pin (pin 8) as follows:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{a}}=10 \mu \mathrm{~A} & -\mathrm{l}_{\mathrm{o}} \text { pin }(\text { pin } 8) \text { to } \mathrm{V}+(\text { pin } 7) \\
\mathrm{l}_{\mathrm{a}}=100 \mu \mathrm{~A} & \mathrm{I}_{\mathrm{Q}} \text { pin }(\mathrm{pin} 8) \text { to grnd. }-(\text { If this is } \\
& \text { impossible, any voltage from } \mathrm{V}+ \\
& -0.8 \mathrm{~V} \text { to } \mathrm{V}-+0.8 \mathrm{~V} \text { may be used) }
\end{aligned}
$$ $l_{Q}=1 \mathrm{~mA}-\mathrm{l}_{\mathrm{o}} \mathrm{pin}(\mathrm{pin} 8)$ to V - (pin 4)

Since the amount of negative current available is a function of quiescent current, for maximum p-p output voltage swings into low impedance loads, l_{Q} of 1 mA should be selected.
2. All models are provided with external offset null capability. Zeroing is accomplished by connecting a $25 \mathrm{~K} \Omega$ pot between the offset pins (pins 1 and 5) with the wiper connected to $\mathrm{V}+($ pin 7$)$.
3. Operation at V supp $= \pm 0.5 \mathrm{~V}$ is guaranteed at $\mathrm{l}_{\mathrm{Q}}=$ $100 \mu \mathrm{~A}$ only. This applies to those models, the AM-7611, 12, and 13, with a selectable lo
4. The AM-7611, 12 , and 13 are internally compensated through the use of a 33 pF capacitor. This compensation gives stable operation for closed loop gains as low as 1 for capacative loads up to 100 pF . The AM-7614, and 15 are externally compensated by connecting a capacitor between the compensation (pin 8) and output (pin 6) pins. For unity gain compensation, a 33 pF capacitor is required; for greater than unity gain applications, increased bandwidth and slew rate can be obtained by reducing the value of the compensating capacitor. Since the gm of the first stage is proportional to $\sqrt{1}$, greatest compensation is required when $\mathrm{l}_{\mathrm{o}}=1 \mathrm{~mA}$.
5. The AM-7613 and 15 include on-chip thin film resistors and clamping diodes which allow voltages of up to $\pm 200 \mathrm{~V}$ to be applied to either input for an indefinite time without device failure. These devices will be useful where high common mode voltages, differential mode voltages or high transients may be experienced.
6. The AM-7612 allows the common mode voltage range to exceed the magnitude of Vsupp. For those applications where V supp $\geq \pm 1.5 \mathrm{~V}$, the input common mode voltage range is allowed to exceed Vsupp by 0.1 V . Where V supp $\leq \pm 1.5 \mathrm{~V}$, the input common mode voltage range is limited to the magnitude of Vsupp in the positive direction, but may exceed Vsupp in the negative direction by 0.1 V .
7. To prevent latchup the amplifier supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current to 2 mA to prevent latchup. Also, no voltage greater than 0.3 V beyond Vsupp may be applied to any pin, with the exception of the AM-7613 and AM-7615 inputs, which are protected to $\pm 200 \mathrm{~V}$.
8. Due to the high input impedances, care should be taken in layout construction, board cleanliness, and supply filtering in order to avoid hum and noise pickup.

BURN-IN AND LIFE TEST CIRCUIT

UNITY GAIN FREQUENCY COMPENSATION

VOS NULL CIRCUIT

ORDERING INFORMATION

MODEL
AM-7611C
AM-7611M
AM-7612C
AM-7612M
AM-7613C
AM-7613M
AM-7614C
AM-7614M
AM-7615C
AM-7615M
Trimming Potentiometer: TP25K

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE

SUPPLY CURRENT AS A FUNCTION OF FREE-AIR TEMPERATURE

LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AS A FUNCTION OF FREE-AIR TEMPERATURE

LARGE SIGNAL DIFFERENTIAL vOLTAGE GAIN AND PHASE SHIFT AS A FUNCTION OF FREQUENCY

PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF LOAD RESISTANCE

MAXIMUM PEAK-TO-PEAK VOLTAGE AS A FUNCTION OF FREE-AIR TEMPERATURE
 FUNCTION OF SUPPLY VOLTAGE

FIFTH ORDER CHEBYSHEV MULTIPLE FEEDBACK LOW PASS FILTER
The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff. $\mathrm{f}_{\mathrm{C}}=10 \mathrm{~Hz}, \mathrm{AVOL}=4$, Passband ripple
$=0.1 \mathrm{~dB}$.

OUTPUT

Note that small capacitors $25-50 \mathrm{pF}$ may be needed for stability in some cases.

Ultra-Fast Microelectronic Operational Amplifiers AM-500 Series

FEATURES

- 200 nsec. Settling to $\mathbf{. 0 1 \%}$
- $1000 \mathrm{~V} / \mu \mathrm{sec}$. Slew Rate
- 100 MHz min. Gain-Bandwidth
- 10^{6} Open Loop Gain
- $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Drift
- $\pm 50 \mathrm{~mA}$ Output Current

GENERAL DESCRIPTION

The AM-500 series amplifiers are ultrafast settling operational amplifiers for use in inverting applications. A unique feedforward amplifier design combines the characteristics of a low drift DC amplifier with those of a very fast AC amplifier. For optimum fast settling performance, this amplifier has an open loop gain roll-off of 6 dB per octave to beyond 100 MHz . Miniature thin-film hybrid construction permits an optimum combination of semiconductor devices and minimum lead lengths to realize the amplifier circuitry. Applications for the AM-500 series include fast integrators, sample-holds, fast waveform drivers, and fast D/A converter output amplifiers.
Output settling time is 200 nanoseconds max. to $.01 \%$ for a 10 volt step change. Slew rate is $1000 \mathrm{~V} / \mu \mathrm{sec}$. for positive output transitions and $1800 \mathrm{~V} /$ $\mu \mathrm{sec}$. for negative transitions. This high slew rate permits undistorted reproduction of a full load, 20 V peak to peak sinewave out to 16 MHz . Gain bandwidth product is 100 MHz minimum.
DC characteristics of the AM- 500 series include a DC open loop gain of 10^{6}, 30 megohm input impedance, and 1 nanoampere bias current. Input offset voltage is $\pm 0.5 \mathrm{mV}$ and input offset voltage drift is $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Although these amplifiers do not operate differentially, a DC offset voltage in the range $\pm 5 \mathrm{~V}$ can be applied to the positive input terminal. Power supply requirement is $\pm 15 \mathrm{VDC}$ at 22 mA quiescent current. The amplifiers will operate over a supply range of $\pm 10 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. Output current capability is ± 50 mA with output short circuit protection. Four basic versions are available: AM500GC and AM-500MC for $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, AM-500MR for $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and AM500 MM for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The device package is a 14 pin ceramic.

INPUT CHARACTERISTICS
Input Common Mode Voltage Range ${ }^{1}$.. $\pm 5 \mathrm{~V}$
Max. Input Voltage, no damage $\ldots .$. . +18 V
Differential Input Impedance 30 Meg.
Input Blas Current
1nA typ., 4nA max.
Input Offset Current
0.5 nA

Input Offset Voltage 0.5 mV typ., 3 mV max

OUTPUT CHARACTERISTICS
Output Voltage
+10 Vmin .
Output Current, S.C. protected
Stable Capacitive Load
$\pm 50 \mathrm{~mA}$
100 pF

PERFORMANCE

DC Open Loop Gain
Input Offset Volt. Drift, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Blas Current Drift, $-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $+70^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Voltage Noise, .01 Hz to $1 \mathrm{~Hz}^{2}$ 100 Hz to $10 \mathrm{kHz}^{2}$ 1 Hz to $10 \mathrm{MHz}^{2}$
Power Supply Rejection Ratio
10^{6} volts/volt
$1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ., $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ., $7 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max$ $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ., $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max $-20 \mathrm{pA} /{ }^{\circ} \mathrm{C}$ doubles every $10^{\circ} \mathrm{C}$
$5 \mu \vee \mathrm{P}-\mathrm{P}$
$1 \mu \mathrm{~V}$ RMS
$20 \mu \mathrm{~V}$ RMS
80 dB min .

DYNAMIC CHARACTERISTICS

Gain Bandwidth Product
Slew Rate, positive going
Slew Rate, negative going
Full Power Frequency (20V P-P)
Settling Time, 10 V step to $1 \%^{3}$ 10V step to $0.1 \%^{3}$ 10 V step to $.01 \%^{3}$
Overload Recovery Time
130 MHz typ., 100 MHz min $1000 \mathrm{~V} / \mathrm{\mu sec}$.
$1800 \mathrm{~V} / \mu \mathrm{sec}$.
16 MHz
70 nsec .
100 nsec .
200 nsec. max
$10 \mu \mathrm{sec}$.

POWER REQUIREMENT
Voltage, rated performance
Voltage, operating
Quiescent Current
$+15 \mathrm{VDC}$
+10 V to $\pm 18 \mathrm{VDC}$
22 mA

PHYSICAL-ENVIRONMENTAL

Operating Temperature Range

AM-500GC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
AM-500MC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
AM-500MR	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AM-500MM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Package Type	14 pin ceramic
Pins	$0.010 \times 0.018^{\prime \prime}$ Kovar
Weight	0.09 oz. (2.5g)

NOTES:

1. DC only

2. -3 dB single pole bandwidth
3. 1 K input and feedback resistors, 2.4 pF feedback capacitor

ORDERING INFORMATION

MODEL OP. TEMP. RANGE

SEAL

AM-500GC
AM-500MC
AM-500MR
AM-500MM
Socket: Standar - Intersil

Trimming Potentiometer: TP 20 K
THE AM-500 AMPLIFIERS ARE COVERED BY GSA CONTRACT

CONNECTION FOR FAST SETTLING WITH GAIN OF -1

INPUT BIAS CURRENT VS. TEMPERATURE

TECHNICAL NOTES

1. The circuit design shows the connection of the AM500 series for fast settling operation with a closed loop gain of -1 . It can be used for fast settling at closed loop gains up to -10. The equivalent resistance seen by the summing junction should be 500 ohms or less. For gains larger than -1 use an input resistor of 500 ohms and pick a feedback resistor for the required closed loop gain (1 K for $-2,1.5 \mathrm{~K}$ for -3 , etc.).
2. A small feedback capacitor should be used across the feedback resistor. Determine C in picofarads from the following formula:

$$
C=\frac{1+|G|}{.816 R}
$$

where G is closed loop gain and R is in kilohms
3. Summing point leads must be kept as short as possible. Input and feedback resistors should be soldered close to the body of the resistor directly to the summing point (pin 4). Summing point capacitance to ground must be kept very low.
4. Low output impedance power supplies should be used with $1 \mu \mathrm{~F}$ tantalum bypassing capacitors at the amplifier supply terminals. There are internal $.03 \mu \mathrm{~F}$ ceramic capacitors in the amplifier.
5. Although these amplifiers are inverting mode only, a DC voltage in the range of $\pm 5 \mathrm{~V}$ may be applied to the positive input terminal for offsetting the amplifier.

Models $8510,20,30$ Power Amplifier Motor and Actuator Driver

KEY FEATURES:

- Capable of delivering 2.7 amps @ 24-28V d.c. operation (30V supplies)
- Protected against inductive kick back with internal power limiting
- Programmable current limiting (short circuit protection)
- Package is electrically isolated (allowing easy heat sinking)
- d.c. gain >100dB
- 20mA typical standy quiescent current
- Popular 8 pin TO-3 package
- Internal frequency compensation
- Can drive up to $\mathbf{0 . 1}$ horsepower motors.

DESCRIPTION:

The AM-8510/8520/8530 is a family of hybrid power amplifiers that have been specifically designed to drive linear and rotary actuators, electronic valves, push-pull solenoids, and d.c. \& a.c. motors.
There are three models available for up to $\pm 30 \mathrm{~V}$ power supply operation. One model will deliver up to 2.7 amps @ 24 volt output levels, while the remaining models deliver 2 amps \& $1 \mathrm{amp} @ 24 \mathrm{~V}$ outputs. All amplifiers are protected against shorts to ground by the addition of 2 external protection resistors.
The design uses a conventional 741 operational amplifier, a special monolithic driver chip (BL8063), NPN \& PNP power transistors, and internal frequency compensating capacitors. The chips are mounted on a beryllium oxide substrate, for optimum heat transfer to the metal package; this substrate provides electrical isolation between amplifiers and metal package.
The I.C. power driver chip has built-in regulators to drive the 741 @ typically $\pm 13 \mathrm{v}$ supply voltages.

AM-8510/8520/8530

ABSOLUTE MAXIMUM RATINGS @ $T_{A}=25^{\circ} \mathrm{C}$
Supply Voltage $\pm 35 \mathrm{~V}$
Power Dissipation, Safe Operating Area See Curves
Differential Input Voltage
Input Voltage
Peak Output Current
Output Short Circuit Duration (to ground)
Operating Temperature Range
$\pm 13 \mathrm{~V}$ (Note 1)
See Figs. 9 \& 13 (Note 2)
Continuous (Note 2)
M $-55^{\circ} \mathrm{C} \rightarrow+125^{\circ} \mathrm{C}$
R $-25^{\circ} \mathrm{C} \rightarrow+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$
Max Case Temperature

Note 1: Rating applies to supply voltage $> \pm 18$.
Note 2: Rating applies as long as maximum junction temperature is not exceeded ($200^{\circ} \mathrm{C}$). See important note on power dissipation, page 3.

ELECTRICAL SPECIFICATIONS @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (unless stated otherwise)

Description	Conditions	$\mathrm{V}_{\mathrm{CC}}= \pm \mathbf{3 0 V}$		$\mathrm{V}_{\mathrm{CC}}= \pm \mathbf{3 0 V}$		$\mathbf{V}_{C C}= \pm \mathbf{3 0 V}$	
		AM-8530R	AM-8530M	AM-8520R	AM-8520M	AM-8510R	AM-8510M
Max. Input Offset Change/Watt of Pdiss.	Part Mtd. on Wakefield 403 Heat Sink	$4 \mathrm{mv} /$ watt	2mv/watt	4mv/watt	2mv/watt	$4 \mathrm{mv} / \mathrm{watt}$	$2 \mathrm{mv} /$ watt
Maximum Input Offset Voltage	Rs $\leqq 10 \mathrm{~K} \Omega$, Pdiss. 1 watt	$\pm 6 \mathrm{mv}$	$\pm 3 \mathrm{mv}$	$\pm 6 \mathrm{mv}$	- 3 mv	$\pm 6 \mathrm{mv}$	- 3 mv
Maximum Input Offset Current	RS $10 \mathrm{~K} \Omega$, Pdiss. 1 watt	200na	100na	200na	100na	200na	100na
Maximum Input Bias Current	RS $\leqq 10 \mathrm{~K} \Omega$, Pdiss. < 1 watt	500na	250na	500na	250na	500na	250na
Minimum Large Signal Voltage Gain	$\begin{aligned} & R_{L}=20 \Omega, f=10 \mathrm{HZ} \\ & V_{\text {OUT }} \geqq 67 \% \mathrm{VCC} \end{aligned}$	100dB	100 dB	100dB	100dB	100 dB	100dB
Minimum Input Voltage Range		$\pm 10 \mathrm{v}$					
Minimum CMRR	$\mathrm{RS}_{S}=10 \mathrm{~K} \Omega, 1 \mathrm{f}$, 10 HZ	70 dB	70dB	70 dB	70 dB	70 dB	70 dB
Minimum PSRR	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{~K} \Omega, \mathrm{f}-10 \mathrm{HZ}$	77 dB					
Minimum Slew Rate	$\begin{aligned} & C_{L}=30 \mathrm{Pf}, A_{V}=1 \\ & R_{L}=20 \Omega 2, V_{\text {OUT }} \geqq 67 \% \mathrm{VCC} \end{aligned}$	$0.5 \mathrm{~V} / \mu \mathrm{s}$	$05 \mathrm{v} / \mathrm{\mu s}$	$0.5 \mathrm{v} / \mu \mathrm{s}$			
Minimum Output Voltage Swing (Vsw)	$\begin{aligned} & R_{L}=20 \Omega, A_{V}+10 \\ & f=1 \mathrm{KC} \end{aligned}$	$\pm 25 \mathrm{v}$	$\pm 25 v$	$\pm 26 \mathrm{v}$	$\pm 26 \mathrm{v}$	$\begin{gathered} \left(R_{L}=30 \Omega\right) \\ +26 \mathrm{v} \end{gathered}$	$\begin{gathered} \left(R_{L}=30 \Omega\right) \\ =26 \mathrm{v} \end{gathered}$
Minimum Output Current Capability (Imax)	Vout ${ }^{24 v}$ v Note 3	2.7 amps	2.7 amps	2 amps	2 amps	1 amp	1 amp
Max. : Vcc Power Supply Quiescent Current	$\mathrm{R}_{\mathrm{L}} * a, V_{\text {IN }}=O V$	50 ma	40ma	50 ma	40 ma	50 ma	40 ma

Note 3: Output current and $V_{\text {SWING }}$ are reduced as power supplies are lowered. See Figures 1, 2, \&9.

ELECTRICAL SPECIFICATIONS @ $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}(\mathrm{M})$ or $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}(\mathrm{R})$

Maximum Input Offset Voltage	Pdiss 1 watt	$\therefore 10 \mathrm{mv}$	$\therefore 9 \mathrm{mv}$	510 mv	$\pm 9 \mathrm{mv}$	$\pm 10 \mathrm{mv}$	$\pm 9 \mathrm{mv}$
Maximum Input Bias Current	Pdiss 1 watt	$1.5 \mu \mathrm{a}$	750na	$1.5 \mu \mathrm{a}$	750na	$1.5 \mu \mathrm{a}$	750na
Maximum Input Offset Current		500na	200na	500na	200na	500na	200na
Minımum Large Signal Voltage Gain	$\begin{aligned} & R_{L L}=20 \Omega, V_{\text {OUT }}=67 \% V_{C C} \\ & f=10 \mathrm{HZ} \text {; with heat sink } \end{aligned}$	90 dB					
Minimum Output Voltage Swing	$R_{L}=20 \Omega 2$. Pkg. Mtd. on Wakefield 403 Heat Sink	: 24 v	: 24 v	- 24 V	: 24 V	$\therefore 24 \mathrm{~V}$	- 24 v
Maximum Thermal Resistance Junction to Ambient	Without Heat Sink	$40^{\circ} \mathrm{C} /$ watt	$40^{\circ} \mathrm{C}$ watt	$40^{\circ} \mathrm{C} /$ watt			
Maximum Thermal Resistance Junction to Case		$2.5{ }^{\circ} \mathrm{C} /$ watt	$2.5{ }^{\circ} \mathrm{C} /$ watt	$2.5{ }^{\circ} \mathrm{C} /$ watt	$2.5^{\circ} \mathrm{C} /$ watt	$3.0^{\circ} \mathrm{C} /$ watt	$3.0^{\circ} \mathrm{C} /$ watt
Typical Thermal Resistance Junction to Ambient	Pkg. Mtd. on Wakefield 403 Heat Sink	$4.0^{\circ} \mathrm{C} /$ watt	$4.5^{\circ} \mathrm{C} /$ watt	$4.5{ }^{\circ} \mathrm{C} / \mathrm{watt}$			
. $V_{\text {CC }}$ Range (typical		$\pm 18 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$	$\pm 18 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$	$\pm 18 \mathrm{Vto} \pm 30 \mathrm{~V}$	$\pm 18 \mathrm{Vto} \pm 30 \mathrm{~V}$	$\pm 18 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$	$\pm 18 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$

AM-8510/8520/8530

How To Set The Externally Programmable, Current Limiting Resistors:

The maximum output current is set by the addition of two external resistors-R+s.c. and R-s.c. Because of the INTERNAL POWER LIMITING CIRCUITRY, the maximum output current is only available when Vout is
close to either power supply. As Vout moves away from $\pm \mathrm{V}_{\mathrm{cc}}$, the maximum output current decreases in proportion to output voltage. The curve below shows maximum output current versus output voltage.

FIGURE 1 Maximum Output Current for Given Rs.c.

In general, for a given Vout, Isc limit, and case temperature Tc, Rs.c. can be calculated from the equation below (Vout in Volts):

$$
\text { Rs.c. }=\frac{\left[600+(24 \times \text { Vout })-2.2\left(\mathrm{Tc}-25^{\circ} \mathrm{C}\right] \mathrm{mV}\right.}{\text { Isc limit }}
$$

i.e., If lout (maximum) $=1.5 \mathrm{amps} @$ Vout $=25 \mathrm{~V}$,
$\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$

$$
\text { Rs.c. }=\frac{1200 \mathrm{mV}}{1.5 \mathrm{amps}}=0.8 \Omega
$$

When an Rs.c. $=0.8 \Omega$ is used, lout $@$ Vout $=O V$ will be reduced to 750 mA . Except for small changes in the "Vsw Limit" area, the effects of changing Rs.c. on the lout vs Vout characteristics can be determined by merely changing the lout scale on Fig. 1 to correspond to the new value. Changes in Tc move the limit curve bodily up and down.
This INTERNAL POWER LIMITING CIRCUITRY however does not at all restrict the normal use of the driver. For any normal load, the static load line will be similar to that shown in Figure 1. Clearly, as Vout decreases, the lout requirement falls also, more steeply than the lout
available. For reactive loads, the dynamic load lines are more complex. Two typical operating point loci are sketched here:

Capacitive Load

IInductive Load (Note catch diode)

Thus the limiting circuitry protects the load and avoids needless damage to the driver during abnormal conditions. For any $24 \mathrm{Vdc}-28 \mathrm{Vdc}$ motor/actuator, the Rs.c. resistors must be calculated to get proper power delivered to the motor (up to a maximum of 2.7 amps) and $\pm \mathrm{VCC}$ set at $\pm 30 \mathrm{~V}$. For lower supply and/or output voltages, the maximum output current will follow graphs of Figures 1 and 10 .

IMPORTANT NOTE ON POWER DISSIPATION OF POWER AMPLIFIER

The steady state power dissipation equation is:

$$
P_{\text {diss max }}=\frac{T_{J M A X}-\text { TAMB }^{\left(\Theta_{J C}+\left(\Theta_{C H}+()_{H A}\right.\right.}}{\text { m }}
$$

Where:
TJMAX $=$ Maximum junction temperature
TAMB $=$ Ambient temperature
$\left.{ }^{-}\right) \mathrm{JC}=$ Thermal resistance from transistor junction to case of package
${ }^{\oplus} \mathrm{CH}=$ Thermal resistance from case to heat sink
$\left.{ }^{(}\right)$HA $=$Thermal resistance from heat sink to ambient air
Now:
$T_{\text {JMAX }}=200^{\circ} \mathrm{C}$ for silicon transistors
$\rightarrow j c \cong 2.0 \mathrm{C} /$ WATT for a steel bottom TO-3 package with die attachment to beryllia substrate to header
$\left.{ }^{\oplus}\right)_{\mathrm{CH}}=.045^{\circ} \mathrm{C} / \mathrm{W}$ for 1 mil thickness of Wakefield type 120 thermal joint compound.
$.09^{\circ} \mathrm{C} / \mathrm{W}$ for 2 mil thickness of type 120 $13^{\circ} \mathrm{C} / \mathrm{W}$ for 3 mil thickness of type 120 $17^{\circ} \mathrm{C} / \mathrm{W}$ for 4 mil thickness of type 120 $.21^{\circ} \mathrm{C} / \mathrm{W}$ for 5 mil thickness of type 120 $.24^{\circ} \mathrm{C} / \mathrm{W}$ for 6 mil thickness of type 120
$\Theta_{H A} \quad$ The choice of heat sink that a user selects depends upon the amount of room available to mount the heat sink. A sample calculation follows: by choosing a Wakefield 403 heat sink, with free air, natural convection (no fan). $\Theta_{H A} \cong 2.0^{\circ} \mathrm{C} / \mathrm{W}$. Using 4 mil joint compound,
$\therefore P_{\text {diss }}$ MAX $=\frac{200^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{AMB}}}{2.0^{\circ} \mathrm{C} / \mathrm{W}+.17^{\circ} \mathrm{C} / \mathrm{W}+2.0^{\circ} \mathrm{C} / \mathrm{W}}$

$$
=\frac{200^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{AMB}}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}
$$

\therefore Pdiss MAX at $\mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}=\frac{200^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=42$ watts
$P_{\text {diss }}$ MAX at $T_{A M B}=125^{\circ} \mathrm{C}$ is $\frac{200^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=18$ watts

[^12]
TYPICAL PERFORMANCE CURVES

Figure 2: Safe Operating Area; Iout vs Vout vs TC

Figure 3: Input Offset Voltage vs Power Dissipation

Figure 4: Input Impedance vs Gain vs Frequency

Figure 5: Quiescent Current vs Power Supply Voltage

AM-8510/8520/8530

TYPICAL PERFORMANCE CURVES, CONTINUED.

Figure 6: Large Signal Power Band Width

Figure 7: Small Signal Frequency Response

Figure 8: Maximum Output Current vs. Case Temperature

Figure 9: Maximum Output Current and Voltage vs. V_{CC}

AM-8510/8520/8530

BRIEF APPLICATION NOTES

The maximum input voltage range, for $\pm \mathrm{V}_{\mathrm{CC}}> \pm 18 \mathrm{~V}$, is substantially less than the available output voltage swing. Thus non-inverting amplifiers, as in Figure 11, should always be set up with a gain greater than about 2.5, (with $\pm 30 \mathrm{~V} \mathrm{VCC}$), so that the full output swing is available without hazard to the input. At first sight, it would seem that no restrictions would apply to inverting amplifiers, since the inputs are virtual ground and ground. However, under fault (output short-circuited) or high slew conditions, the input can be substantially removed from ground. Thus for inverting amplifiers with gains less than about 5 , some protection should be provided at this input. A suitable resistor from the input to ground will provide protection, but also increases the effect of input offset voltage at the output. A pair of diodes, as shown in Figure 12, has no effect on normal operation, but gives excellent protection.

Figure 10:
Non-Inverting Amplifier

Figure 11:
Inverting Amplifier

TYPICAL APPLICATIONS

I. Actuator Driving Circuit $(24 \rightarrow 28 \mathrm{Vd} . \mathrm{c}$. rated)

Figure 13: Power Amp Driving Actuator

The gain of the circuit is set to +10 , so a +2.4 V input Vin will produce a +24 V output (and will deliver up to 2.7 amps output current). To reverse the piston travel, invert Vin to -2.4 V and Vout will go to -24 V . Diodes D1 and D2 absorb the inductive kick of the motor during transients (turn-on or turn-off); their breakdown should exceed 60V.

Power dissipation is another important parameter to consider. The current protection circuit protects the device against short circuits to ground, (but only for transients to the opposite supply) provided the device has adequate heat sink. A curve of power dissipation vs VOUT under short circuit conditions is given in Figure 13. The limiting circuit is more closely dependent on case temperature than (output transistor) junction temperatures. Although these operating conditions are unlikely to be attained in actual use, they do represent the limiting case a heat sink must cope with. For fully safe design, the anticipated range of Vout values that could occur, (steady state, including faults) should be examined for the highest power dissipation, and the device provided with a heat sink that will keep the junction temperature below $200^{\circ} \mathrm{C}$ and the case temperature below $150^{\circ} \mathrm{C}$ with the worst case ambient temperature expected.

Figure 12: Power Dissipation under Short Circuit Conditions
II. Obtaining Up To 5 Amps Output Current Capability By Paralleling Amplifiers

Figure 14: Paralleling Power Amps for Increased Current Capability
This paralleling procedure can be repeated to get any desired output current. However, care must be taken to ensure that enough load is provided to avoid the amplifiers pulling against each other.

AM-8510/8520/8530

III. Driving A 48VDC Motor

Figure 15: Power Amp Driving 48 ViDC Motor
IV. Precise Rate Control of an Electronic Valve

To get very fine control of the opening of an orifice, driven by an electronic valve, there are two ways to go.

1. Keep the voltage constant, i.e., 24 Vdc or 12 Vdc , and vary the time the voltage is applied, i.e., if it takes five seconds to completely open an orifice at 24 Vdc , then applying 24 V for only $2-1 / 2$ seconds opens it only 50%.
2. Simply vary the d.c. driving voltage to valve. Most valves obtain full opening as an inverse of applied voltage., i.e., valves opens 100% in five seconds at 24 Vdc and in 10 seconds at 12 Vdc .
A circuit to perform the second method is shown below; the advantage of this is that digit switches can precisely set driving voltage to 0.2% accuracy (8 -bit DAC), thereby controlling the rate at which the valve opens.

Figure 16: Digitally Controlled Electronic Value
V. The circuit presented in IV is also an excellent way to get a precise power supply voltage; in fact, a precision,

Figure 17: Digitally Programmable Power Supply
variable power supply can be made. Using a BCD coded DAC with BCD Thumbwheel switches.

20	21	22	23	24	25	26	27	\emptyset BIT	Vout
1	1	1	1	1	1	1	1	1	$+25 V d . c$.
1	1	1	1	1	1	1	1	0	$-25 V$ d.c.
0	1	0	1	1	0	0	1	1	$+15 V d . c$.
0	1	0	1	1	0	0	1	0	$-15 V d . c$.
1	0	0	0	0	0	0	0	1	$+0.098 V$ d.c.
1	0	0	0	0	0	0	0	0	$-0.098 V d . c$.

The power supply can be set to $\pm 0.1 \mathrm{Vd} . \mathrm{c}$.

AM-8510/8520/8530

VI. There is great power available (no pun intended) in the sub-systems shown in IV and V; there the D/A converter is shown being set manually (via digit switches) to get a precise analog output (binary \# \times full scale voltage), then the driver amplifier multiplies this voltage to produce the final output voltage. It seems obvious that the next logical step is
to let a microprocessor (local) or C.P.U. program the D/A converter. Then total, pre-programmable, electronic control of an actuator, electronic valve, motor, etc., is obtained. This would be used in conjunction with a transducer/multiplex system for electronic monitoring and control of any electromechanical function.

ELECTRONIC CONTROL SYSTEM:

MUX = MX SERIES
S/HI (SAMPLE \& HOLD) $=$ SHM-LM 2
D/A CONVERTER = DAC-7520
POWER AMP $=$ AM $-8510 / 8520 / 8530$
A/D CONVERTER $=A D C-6108 A / 7104$
μ COMPUTER $=$ IM6100 family:

NOTE. This product contains Beryllia. If used in an application where the package integrity may be breached and the internal parts crushed or machined, avoid inhalation of the dust.

FEATURES
－$\pm 140 \mathrm{~V}$ Output Swing
－ 10 MHz Gain Bandwidth
－ 2.5μ sec．Settling Time
－100V／μ sec．Slew Rate
－ 100 dB CMRR
－Output Current Limiting

GENERAL DESCRIPTION

Datel－Intersil＇s AM－303 series are FET in－ put operational amplifiers which feature a combination of high voltage operation and very fast response．With a power sup－ ply of $\pm 150 \mathrm{~V}$ the output voltage swings $\pm 140 \mathrm{~V}$ at $\pm 25 \mathrm{~mA}$ output current．The supply voltage can range from $\pm 15 \mathrm{~V}$ to $\pm 150 \mathrm{~V}$ with the output voltage capability 10 V less than the supply voltage．A unique output current limiting circuit protects the output of the amplifier by means of volt－ age and temperature dependent limiting．

Common mode input voltage range is $\pm 140 \mathrm{~V}$ with a common mode rejection ratio of 100 dB minimum．The input offset voltage drift is $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max．for the $\mathrm{AM}-303 \mathrm{~A}$ and $\pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max．for the AM－303B．Input impedance is $10^{12} \mathrm{ohms}$ with bias current of 300 pA max．and open loop gain is 10^{6} volts per volt minimum．

Dynamic characteristics include a typical gain bandwidth product of 10 MHz and a slew rate exceeding $100 \mathrm{~V} / \mu \mathrm{sec}$ ．Settling time to 0.01% for a 10 V step is $2.5 \mu \mathrm{sec}$ ．

The AM－303 amplifiers are completely encapsulated and have an aluminum bot－ tom plate to permit external heat sinking for efficient heat removal．Although con－ vection cooling is sufficient for most appli－ cations．heat sinking should be employed when operating near maximum output capability or when driving capacitive loads at high speed．Two 4－40 screw inserts in the bottom plate permit easy mounting．

The AM－303 devices are ideal for electron beam deflectors，beam intensity modula－ tors and other high voltage applications． TheIAM－303 replaces both of Datel－Intersil＇s earlier AM－301 and AM－302 amplifiers．
AM－308B
meat wis s

INPUTIOUTPUT
CONNECTIONS

PIN	FUNCTION
1	- IN
2	TRIM
3	$+V \mathrm{VS}$
4	OUT
5	COM
6	-Vs
7	TRIM
8	+ IN
9	TRIM（WIPER）

SPECIFICATIONS, AM-303 SERIES
Typical at $25^{\circ} \mathrm{C}, \pm 150 \mathrm{~V}$ Supplies unless otherwise noted.

MAXIMUM RATINGS Power Supply Voltage Output Voltage Common Mode Input Voltage. Differential Input Voltage.	$\begin{aligned} & \pm 150 \mathrm{~V} \\ & \pm 140 \mathrm{~V} \\ & \pm V_{S} \\ & \pm V_{S} \end{aligned}$
INPUT CHARACTERISTICS Common Mode Voltage Range. Common Mode Input Impedance Differential Input Impedance. Input Bias Current. Input Offset Voltage ${ }^{1}$	$\pm\left(V_{S}-10\right)$ 10^{12} Ohms // 5 pF 10^{12} Ohms // 7 pF 300 pA max. $\pm 1 \mathrm{mV}$ max.
OUTPUT CHARACTERISTICS Output Voltage. Output Current, S.C. Protected ${ }^{2}$. Capacitive Load	$\begin{aligned} & \pm\left(\mathrm{V}_{\mathrm{s}}-10\right) \pm 140 \mathrm{~V} \text { max. } \\ & \pm 25 \mathrm{~mA} \text { min. } \\ & 100 \mathrm{pF} \text { max. } \end{aligned}$
PERFORMANCE DC Open Loop Gain. \qquad Input Offset Voltage Drift . AM-303A. AM-303B Input Bias Current Drift Common Mode Rejection Ratio ${ }^{3}$. Input Voltage Noise ${ }^{4}$ \qquad .01 Hz to 10 Hz 10 Hz to 10 KHz Power Supply Rejection Ratio	$\begin{aligned} & 10^{6} \mathrm{~V} / \mathrm{V} \text { min. } \\ & \pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { max. } \\ & \pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { max. } \\ & \text { Doubles every } 10^{\circ} \mathrm{C} \\ & 100 \mathrm{~dB} \text { min. } \\ & 5 \mu \mathrm{~V} \text { P-P } \\ & 3 \mu \mathrm{RMS} \\ & 5 \mu \mathrm{~V} / \mathrm{V} \end{aligned}$
DYNAMIC CHARACTERISTICS Gain Bandwidth Product . Settling Time to $0.01 \%^{5}$ Slew Rate. Full Power Output Frequency	10 MHz typ.. 5 MHz min. $2.5 \mu \mathrm{sec}$. $100 \mathrm{~V} / \mu \mathrm{sec} . \mathrm{min}$. 150 KHz min.
POWER REQUIREMENT Power Supply Voltage Range Quiescent Current	$\begin{aligned} & \pm 15 \mathrm{~V} \text { to } \pm 150 \mathrm{~V} \\ & \pm 12 \mathrm{~mA} \max . \end{aligned}$
PHYSICAL-ENVIRONMENTAL Operating Temperature Range. Storage Temperature Range Package Size. Case Material Pins. Bottom Cover Weight.	$-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$ $1.8 \times 2.4 \times 0.61$ inches $(45.7 \times 61.0 \times 15.4 \mathrm{~mm})$ Black Diallyl Phthalate Per MIL-M-14 $0.040^{\prime \prime}$ Round. Gold Plated $0.250^{\prime \prime}$ Long min. Black Anodized Aluminum for Heat Conduction 2.5 oz. (71 g .)

NOTES:

1. Adjustable to zero
2. For current limiting characteristics see Technical Note 1 and graph
3. Measured at DC
4. -3 dB single pole bandwidth
5. For 10 V output change at gain of -1 .

ORDERING INFORMATION

MODEL
AM-303A
AM-303B

INPUT OFFSET DRIFT, MAX.
$50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Mating Socket: MS-11
Trimming Potentiometer: TP100
THESE AMPLIFIERS ARE COVERED BY GSA CONTRACT

1. The output circuit of the AM-303 employs both voltage dependent and temperature dependent output current limiting to protect the output stage from excessive dissipation or second breakdown. The limiting depends on the + supply voltage minus the output voltage for sourcing and the - supply voltage plus the output voltage for sinking. See the figure below. The useful output current is approximately 40\% less than the limiting current shown in the graph.
2. In low closed loop gain configurations, use a small adjustable compensating capacitor across the feedback resistor. A 3 to 30 pF value will permit adjustment of the step response for optimum settling time.
3. When operating near maximum output current, the amplifier should be mounted on a metal heat sink using conductive silicone grease. The bottom of the AM-303 case is an anodized aluminum plate to give efficient heat conduction.

CONNECTION FOR GAIN OF -14 and $\pm 140 V$ OUTPUT

AM-303 OUTPUT CURRENT LIMITING CHARACTERISTIC
 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 - Houston, (713)781-8886 - Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (O264)51055 - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

Instrumentation Amplifiers

AM-435	366C
AM-7605, AM-7606	368C
AM-542, AM-543	378C
AM-201	382C

DR品踏
INSTRUMENTATION AMPLIFIER AM-201A

Quick Selection: Instrumentation Amplifiers

MODEL	DESCRIPTION	GAIN RANGE	GAIN NON. LINEARITY	GAIN TEMPCO	INPUT IMPEDANCE	INPUT BIAS CURRENT	INPUT OFFSET CURRENT	INPUT OFFSET VOLTAGE
AM-435-1C	LowCost	1 to 1000	0.1\%	$\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$2 \times 10^{12} \Omega$	40.pA	20 pA	$\pm 30 \mathrm{mV}$
AM-435-1M			0.05\%			20 pA	10 pA	$\pm 15 \mathrm{mV}$
AM-7605C	CAZ Amplifier Compensated	1 to 1000	-	-	-	1.5 nA	150 pA	$\pm 5 \mathrm{mV}$
AM.7605R								
AM-7605M								
AM.7606C	CAZ Amplifier Uncompensated	1 to 1000	-	-	-	1.5 nA	150 pA	$\pm 5 \mathrm{mV}$
AM.7606R								
AM-7605M								
AM-542AC	Digitally Programmable Gain, Low Drift	1 to 1024	0.01\%	$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$1.2 \times 10^{9} \Omega$	$\pm 14 \mathrm{nA}$	12 nA	$\pm 200 \mu \mathrm{~V}$
AM-542AR								
AM-542AM								
AM-542BC		1 to 1024	0.01\%	$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$1.2 \times 10^{9} \Omega$	$\pm 14 \mathrm{nA}$	12 nA	$\pm 200 \mu \mathrm{~V}$
AM-542BR								
AM-542BM								
AM-542CC		1 to 1024	0.01\%	$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$1.2 \times 10^{9} \Omega$	$\pm 14 \mathrm{nA}$	12 nA	$\pm 200 \mu \mathrm{~V}$
AM-542CR								
AM-542CM								
AM-543AC	Digitally Programmable Gain	1 to 1024	0.01\%	$\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$10^{12} \Omega$	$\pm 100 \mathrm{pA}$	20 pA	$\pm 1 \mathrm{mV}$
AM-543AR								
AM-543AM								
AM-201A	High Performance	1 to 1000	0.01\%	$\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$10^{9} \Omega$	$\pm 50 \mathrm{nA}$	2.5 nA	Adj. to Zero
AM-201B						$\pm 25 \mathrm{nA}$	1 nA	
AM-201C						$\pm 25 \mathrm{nA}$	1 nA	

NOTES: 1. $\mathrm{G}=1000$
2. 10 V to $0.1 \%, \mathrm{G}=1$
3. 20 V to $0.01 \%, \mathrm{G}=1$
4. 10 V to $0.01 \%, G=1000$

These products are covered by GSA contract.

INPUT OFFSET VOLTAGE DRIFT	SLEW RATE	SETTLING TIME	BANDWIDTH	COMMON MODE REJECTION ${ }^{1}$	POWER REQUIP MENT	PACKAGE	OPERATING TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	PRICE (SINGLES)	SEE PAGE
$\pm 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$1 \mathrm{~V} / \mu \mathrm{sec}$	$15 \mu \mathrm{sec}^{2}$	$7 \mathrm{KHz}{ }^{1}$	105dB	$\pm 15 \mathrm{~V}$	$16 \mathrm{Pin}$ Ceramic DIP	0 to +70	\$ 12.00	366C
				115dB			-55 to +125	\$ 28.50	
$0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	-	-	20 Hz	104dB	$\pm 5 \mathrm{~V}$	18 Pin Cerdip	0 to +70	\$ 22.58	368C
							-25 to +85	\$ 33.83	
							-55 to +125	\$ 67.58	
$0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	-	-	20 Hz	104dB	$\pm 5 \mathrm{~V}$	18 Pin Cerdip	0 to +70	\$ 22.58	368C
							-25 to +85	\$ 33.83	
							-55 to +125	\$ 67.58	
$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. $14 \mathrm{~V} / \mu \mathrm{sec}$	$160 \mu \mathrm{sec}^{3}$	-	120 dB	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$	$24 \text { Pin }$ Ceramic DIP	0 to +70	Contact Factory	378C
							-22 to +85		
							-55 to +125		
$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. $14 \mathrm{~V} / \mu \mathrm{sec}$	$160 \mu \mathrm{sec}^{3}$	-	120dB	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$	24 Pin Ceramic DIP	0 to +70	Contact Factory	378C
							-25 to +85		
							-55 to +125		
$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. $14 \mathrm{~V} / \mu \mathrm{sec}$	$160 \mu \mathrm{sec}^{3}$	-	120dB	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$	24 Pin Ceramic DIP	0 to +70	Contact Factory	378C
							-25 to +85		
							-55 to +125		
$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$3.3 / \mathrm{V} \mu \mathrm{sec}$	$10 \mu \mathrm{sec}^{3}$	-	100 dB	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$	24 Pin Ceramic DIP	0 to +70	Contact Factory	378C
							-25 to +85		
							-55 to +125		
$\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$1 \mathrm{~V} / \mu \mathrm{sec}$	$20 \mu \sec ^{4}$	45 KHz	100 dB	$\pm 15 \mathrm{~V}$	$\begin{gathered} 1.5 \times 1.5 \times 0.375 \\ (38 \times 38 \times 10) \end{gathered}$	0 to +70	\$ 84.00	382C
$\pm 0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$				106 dB				\$ 94.00	
$\pm 0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$				114 dB				\$105.00	

Monolithic Precision Instrumentation Amplifier Model AM-435

FEATURES

- 1 to 1000 Gain Range
- 3 pA typ. Bias Current
- 2×10^{12} Input Z
- $110 \mathrm{~dB} \min$. CMRR
- Low Power
- Low Cost

GENERAL DESCRIPTION

The AM-435 is a monolithic JFET input instrumentation amplifier. Designed as a high impedance, differential gain block, the unit accurately amplifies the voltage difference between the inputs. Common mode noise on the input line is rejected by the unit's high CMRR. The resultant signal is then transferred into a single-ended output, thus eliminating ground loops.
The amplifier's transfer function is set by two external resistors. The AM-435 utilizes internal differential current feedback eliminating the need for precision feedback resistors. The amplifier's gain can be easily adjusted for gains of 1 to 1000 by changing the value of one of the resistors. The AM-435 has a typical gain nonlinearity of 0.02%. The initial input offset voltage is 8 mV for the " M " version and 15 mV for the "C", with extremely low bias currents of 20pA and 40pA respectively.
The unique two stage amplifier design makes it possible to trim out any input offset errors which would otherwise be amplified by the closed loop gain. Output offset nulling can be achieved with a single optional trimming potentiometer.
The AM-435 offers a low cost solution for data acquisition applications. These easy to use components offer design engineers an alternative to both modular and inhouse designs. The device is commonly used as a transducer amplifier for thermocouples, strain gauge bridges, RTD's, current shunts, biological amplifiers, or simply as preamplifiers for processing small differential signals superimposed on common mode voltages.
The instrumentation amplifiers are packaged in 16-pin DIP packages. The operating temperature range of the $\mathrm{AM}-435-1 \mathrm{C}$ is 0 to $+70^{\circ} \mathrm{C}$ while the AM-435-1M operates from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Power supply requirement is $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. The maximum power dissipation for the "C" version is 54 mW and for the " M ", 45 mW .

PIN	FUNCTION
1	BIAS
2	OUTPUT TRIM
3	$+V_{I N}$
4	R_{G}
5	REFERENCE
6	R_{S}
7	COMPENSATION
8	OUTPUT
9	$+15 V$ DC
10	$-15 V$ DC
11	COMPENSATION
12	R_{S}
13	SENSE
14	R_{G}
15	- VIN
16	OUTPUT TRIM

MAXIMUM RATINGS		
Positive Supply，pin 9.	＋18V	＋ 22 V
Negative Supply，pin $10 \ldots . . .$.	－18V	－22V
Differential Input Voltage	$\pm 36 \mathrm{~V}$	$\pm 44 \mathrm{~V}$
Input Voltage Range．．	$\pm 18 \mathrm{~V}$	$\pm 22 \mathrm{~V}$
GAIN		
Gain Range	1 to 1000	1 to 1000
Gain Equation．	$\mathrm{R}_{\mathrm{S}} / \mathrm{R}_{\mathrm{G}}$	$\mathrm{R}_{\mathrm{s}} / \mathrm{R}_{\mathrm{G}}$
Gain Equation Error，max＇	0．2\％	0．1\％
Gain Nonlinearity．．．．．．．．．．．．	0．1\％max．	0．5\％max．
INPUT CHARACTERISTICS		
Common Mode Voltage Range	$\pm 12 \mathrm{~V}$	$\pm 12 \mathrm{~V}$
Input Impedance．．	2×10^{12} ohms	2×10^{12} ohms
Input Capacitance	2．5pF	2.5 pF
Input Bias Current，max．	40pA	20 pA
Input Offset Current，max．	20pA	10 pA
Input Offset Voltage．．．．．．	$\pm 15 \mathrm{mV}$	$\pm 8 \mathrm{mV}$
CMRR，DC to $60 \mathbf{H z}^{\mathbf{2}} \ldots \ldots . .$.		
$\mathrm{G}=1, \mathrm{~dB}$ min．$\ldots \ldots \ldots \ldots$	65 （80 typ．）	75 （85 typ．）
$\mathrm{G}=10, \mathrm{~dB}$ min．	85 （100 typ．）	95 （105 typ．）
$\mathrm{G}=100, \mathrm{~dB}$ min．	100 （120 typ．）	110 （125 typ．）
$\mathrm{G}=1000 \mathrm{~dB}$ min．$\ldots \ldots \ldots$.	105 （120 typ．）	115 （125 typ．）
OUTPUT CHARACTERISTICS		
Output Voltage Range．	$\pm 10 \mathrm{~V} \mathrm{~min}$ ．	$\pm 10 \mathrm{~V} \mathrm{~min}$ ．
Output Current S．C．prot．	$\pm 5 \mathrm{~mA}$	$\pm 5 \mathrm{~mA}$
Output Resistance， $\mathrm{G}=1$ ．	1.5 ohms	1.2 ohms
Output Offset Voltage ${ }^{3}$ ．	$\pm 400 \mathrm{mV}$ max．	$\pm 200 \mathrm{mV}$ max．
DRIFT ERRORS AND NOISE		
Gain Tempco．	$\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Input Bias Current Drift	$\times 2 / 10^{\circ} \mathrm{C}$	$\times 2 / 10^{\circ} \mathrm{C}$
Input Offset Current Drift	$1.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$	$3 \mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Drift	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Output Offset Volt．Drift．	$600 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$600 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Power Supply Rej．，G＝1000	100 dB	100 dB
Input Voltage Noise，		
0.1 Hz to $10 \mathrm{~Hz}, \mu \mathrm{~V}$ p．p．	$1.3+670 / \mathrm{G}$	$1.3+670 / \mathrm{G}$
10 Hz to $10 \mathrm{kHz}, \mu \mathrm{V}$ RMS	$8+450 / \mathrm{G}$	$8+450 / \mathrm{G}$
DYNAMIC RESPONSE		
Small Sig．Bandwidth，\pm 3dB		
$\mathrm{G}=1$ ．	140 kHz	140 kHz
$\mathrm{G}=10$ ．	50 kHz	50 kHz
$\mathrm{G}=100$	30 kHz	30 kHz
$G=1000$	7 kHz	7 kHz
Slew Rate．	$1 \mathrm{~V} / \mu \mathrm{sec}$ ．	$1 \mathrm{~V} / \mu \mathrm{sec}$ ．
Full Power Bandwidth．	25 kHz	25 kHz
Settling Time to 0.1% ，		
$\mathrm{G}=1$ to 10 ．	$15 \mu \mathrm{sec}$ ．	$15 \mu \mathrm{sec}$ ．
$\mathrm{G}=100$.	$40 \mu \mathrm{sec}$ ．	$40 \mu \mathrm{sec}$ ．
$G=1000$	$200 \mu \mathrm{sec}$ ．	$200 \mu \mathrm{sec}$ ．
POWER REQUIREMENT		
Voltage，Rated Performance	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Voltage Range，Operating Supply Current ．	$\begin{aligned} & \pm 5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & 1.8 \mathrm{~mA} \text { max. } \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \text { to } \pm 20 \mathrm{~V} \\ & 1.5 \mathrm{~mA} \text { max. } \end{aligned}$
PHYSICAL ENVIRONMENTAL		
Operating Temp．Range	0 to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temp．Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Type ．．	16 Pin DIP	16 Pin DIP

NOTES：	1．For gain range of 1 to 100 ，typical error is 0.05%.
2． 1 K source unbalance．	3．Can be adjusted to zero．
ORDERING INFORMATION	
MODEL	TEMP RANGE
AM－435－1C 0 to $+70^{\circ} \mathrm{C}$$\quad$ CASE	
AM－435－1M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Trimming Potentiometer：TP50K，TP10K	
THE AM－435 is COVERED BY GSA CONTRACT．	

1．Maximum differential input voltage is independent of the supply voltage，but neither input should exceed the negative supply．$(+36$ to -Vs$)$ ．Slew rate of the input should be limited to $5 \mathrm{~V} / \mu \mathrm{sec}$ to insure low input bias cur－ rents．
2．The gain of the $A M-435$ is set by the ratio of R_{S} and R_{G} ．For optimum gain stability，a low tempco gain setting resistor is recommended．A 5 or $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ metal film resistor is recommended．For more critical applications，we recom mend a Vishay type $\mathrm{S} 102\left(\pm 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ ．The resistors should be located as close to the terminals as possible． R_{G} should be used to select gain range keeping R_{S} constant．

GAIN	$\mathbf{R S}_{\mathbf{S}}$（OHMS）	\mathbf{R}_{G}（OHMS）
1	1 M	1 M
10	1 M	100 K
100	1 M	10 K
1000	1 M	1 K

3．The gain equation is as follows：

$$
\begin{aligned}
& \text { quation is as tollows: } \\
& V_{\text {OUT }}=\triangle V_{I N} \frac{R_{S}}{R_{G}}+V_{\text {REF }} \\
& \text { out small aain errors. a } 50 \mathrm{~K} \text { trimr }
\end{aligned}
$$

4．For nulling out small gain errors，a 50 K trimming potentio meter in series with a 953 K resistor should be used to replace Rs．
5．The maximum linear output swing is determined by the magnitude of resistor R_{S} ：

$$
\left(\text { VOUT }_{\text {OMA }}=10 \mu \mathrm{~A} \times \mathrm{R}_{\mathrm{S}}\right.
$$

6．The sense input is，in effect，the feedback＂summing point＂of the output section．This terminal is usually con－ nected to the output．For remote loads or for load current sensing，the sense terminal is run separately to the load or to the current sensing resistors．The reference terminal is normally connected to ground but may be connected to a voltage source in a range of $\pm 10 \mathrm{~V}$ in order to directly offset the amplifier output．The Reference Input is useful for zero－ ing offsets whether they occur in the source，the ampli－ fiers，or the system that follows．To minimize errors due to input current（typically $20 \mu \mathrm{~A}$ ），the effective resistances in series with the Sense and Reterence terminals should be equal．
7．The AM－435 is a two stage instrumentation amplifler and each stage contributes independently to the offset referred to the output（R．T．O．）
Total Offset（R．T．O．）$=($ Input Offset \times G）+ Output Offset For gains under 10，the output trim should be sufficient to zero out errors．If the output trim is not used，pins 2 and 16 must be connected together to the positive supply．If the input trim is not used，pin 1 must be connected to the posi－ tive supply．For gains greater than 10，the input offset zero－ ing circuit should be used to optimize accuracy．
8．A 160 ohm resistor in series with a $0.0022 \mu \mathrm{~F}$ capacitor be－ tween the COMP pins will compensate the unit for all gain ranges．External components should be located as close to the package as possible for maximum accuracy．

Printed in U．S．A．Copyright © 1979 Datel－Intersil，Inc．All rights reserved

11 CABOT BOULEVARD，MANSFIELD．MA 02048 ／TEL．（617）339－9341／TWX 710－346－1953／TLX 951340
Santa Ana，（714）835－2751，（L．A．）（213）933－7256 • Sunnyvale，CA（408）733－2424•Gaithersburg，MD（301）840－9490
－Houston，（713）781－8886 • Dallas，TX（214）241－0651 OVERSEAS：DATEL（UK）LTD－TEL：ANDOVER（O264）51055
－DATEL SYSTEMS SARL 602－57－11 • DATELEK SYSTEMS GmbH（089）77－60－95 • DATEL KK Tokyo 793－1031
PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

- Exceptionally low input offset voltage $-2 \mu \mathrm{~V}$
- Low long term input offset voltage drift $0.2 \mu \mathrm{~V} / \mathrm{year}$
- Low input offset voltage temperature drift $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Wide common mode input voltage range - 0.3 V above supply rail
- High common mode rejection ratio - 100 dB
- Excellent low supply voltage - Down to $\pm 2 \mathrm{~V}$
- Short circuit protection on outputs for $\pm 5 \mathrm{~V}$ operation
- Static-protected inputs - no special handling required

AM-7605/AM-7606 Instrumentation Amplifier

GENERAL DESCRIPTION

The AM-7605/AM-7606 commutating auto-zero (CAZ) instrumentation amplifiers are designed to replace almost any of today's expensive hybrid or monolithic instrumentation amplifiers for low frequency applications from DC to 10 Hz . This is made possible by the unique construction of this new device, which takes an entirely new design approach to low frequency amplifiers.
Unlike conventional amplifier designs which employ three op amps and require ultra-high accuracy in resistor tracking and matching, the CAZ instrumentation amplifier requires no trimming except for gain. The key feature of the CAZ principle involves automatic compensation for long term drift phenomena and temperature effects.
The AM-7605/AM-7606 is a monolithic CMOS chip which consists of two analog sections - a unity gain differential to single-ended voltage converter and a CAZ op amp. The first section serves to insure that at all times the differential input source is being sensed and applied to the CAZ amp section. The CAZ instrumentation amp section consists of an operational amplifier circuit which continuously corrects itself for input voltage errors, such as input offset voltage, temperature effects, and long term drift.
The AM-7605/AM-7606 is intended for low-frequency operation in applications such as strain gauges, which require voltage gains from 1 to 1000 and bandwidths from DC to 10 Hz . Since the CAZ amp automatically corrects itself for internal errors, the only periodic adjustment required is that of gain, which is established by two external resistors.
The no-adjustment feature, combined with extremely low offset and temperature coefficient figures, makes the CAZ instrumentation amplifier very desirable for operation in severe environments (temperature, humidity, toxicity, radiation, etc.) where equipment service is difficult.

AM-7605/AM-7606

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (sum of both positive and negative supply voltages V^{+}to V^{-}) \ldots.
Positive Supply Voltage (GND to V^{+}) 18 Volts
Negative Supply Voltage (GND to V^{-}) 18 Volts
DR Input Voltage ($\mathrm{V}^{+}+0.3$) to ($\mathrm{V}^{+}-8$) Volts
Input Voltage $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$, +DIFF \mathbb{N},
-DIFF IN, -INPUT, BIAS, OSC)
(Note 2) ($\mathrm{V}^{+}+0.3$) to $\left(\mathrm{V}^{-}-0.3\right)$ Volts
Differential Input Voltage (+DIFF IN to -DIFF IN)
(Note 3) $\ldots \ldots \ldots \ldots \ldots \ldots+\left(V^{+}+0.3\right)$ to $\left(V^{-}-0.3\right)$ Volts

Note 1 - Stresses above those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent device failure. These are stress ratings only, and functional operation of devices under conditions other than those indicated in the Table of Electrical Characteristics is not recommended. Exposure to absolute maximum rating conditions for extended periods of time can cause device failures.
Note 2 - An SCR structure is inherent in the CMOS process used in the fabrication of these devices. If voltages in excess of $\mathrm{V}^{+}+0.3$ volts to $V^{-}-0.3$ volts are connected to either inputs or outputs, destructive latchup can occur. For this reason it is recommended that no inputs from sources not on the same power supply or supplies be applied before the AM-7605/AM-7606 supplies are established, and that if multiple supplies are used the AM-7605/AM-7606 supplies be activated first.
Note 3 - No restrictions are placed on the differential input voltages on either the +DIFF IN or -DIFF IN inputs so long as these voltages do not exceed the power supply voltages by more than 0.3 V .
Note 4 - The outputs may be shorted to ground (GND) or to either supply (V^{+}or V^{-}). Temperatures and/or supply voltages must be limited to insure that the dissipation ratings are not exceeded.
Note 5 - For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 500 mW above $25^{\circ} \mathrm{C}$.

BLOCK DIAGRAM

AM-7605/AM-7606

OPERATING CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5$ volts, $\mathrm{V}^{-}=-5$ volts, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, DR pin connected to $\mathrm{V}^{+}($fcom $\cong 160 \mathrm{~Hz}$, fcom $1 \cong 80 \mathrm{~Hz}$), $C_{1}=C_{2}=C_{3}=C_{4}=1 \mu \mathrm{~F}$, Test Circuit 1 unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	VALUE			UNIT
			MIN	TYP	MAX	
Input Offset Voltage	Vos	RS $\leq 1 \mathrm{k} \Omega$ Low Bias Setting Med Bias Setting High Bias Setting MIL version over temp. Med Bias Setting		$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 7 \end{aligned}$	$\begin{array}{r} \pm 5 \\ +20 \\ \hline \end{array}$	$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
Average Input Offset Voltage Temperature Coefficient	TCVOS	Low or Med Bias Settings$-55^{\circ} \mathrm{C}$ $>T_{A}>+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $>T_{\mathrm{A}}>+85^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $>\mathrm{T}_{\mathrm{A}}>+125^{\circ} \mathrm{C}$		$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.1 \\ 0.1 \\ 0.15 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
Long Term Input Offset Voltage Stability	VOS/Time	Low or Med Bias Settings		0.5		$\mu \mathrm{V} / \mathrm{Year}$
Common Mode Input Range	CMVR		5.3		+5.3	V
Common Mode Rejection Ratio	CMRR	$\begin{aligned} & \text { Cosc }=0, \text { DR connected to } \mathrm{V}^{+}, \mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \\ & \text { Cosc }=1 \mu \mathrm{~F}, \text { DR connected to GND, C } C_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \\ & \text { CosC }=1 \mu \mathrm{~F}, \text { DR connected to GND, C } \mathrm{C}_{3}=\mathrm{C}_{4}=10 \mu \mathrm{~F} \end{aligned}$		$\begin{gathered} 94 \\ \\ 100 \\ 104 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Power Supply Rejection Ratio	PSRR			110		dB
-INPUT Bias Current	INTB	Any bias setting, $\mathrm{f}_{\mathrm{C}}=160 \mathrm{~Hz}$ (Includes charge injection currents)		0.15	1.5	nA
Equivalent Input Noise Voltage peak-to-peak	enp-p	Low Bias Mode Band Width Med Bias Mode 0.1 to 10 Hz High Bias Mode		$\begin{aligned} & 4.0 \\ & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
Equivalent Input Noise Voltage	eñp p	Band Width 0.1 to 1.0 Hz All Bias Modes		1.7		$\mu \mathrm{V}$
Voltage Gain	Av	$R_{L}=100 \mathrm{k} \Omega!$ Low Bias Setting \quad Hed Bias Sias Setting Setting	$\begin{aligned} & 90 \\ & 90 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Maximum Output Voltage Swing	Vout	R_{L} $1 \mathrm{M}!$! R_{L} $100 \mathrm{k}!!$ R_{L} $10 \mathrm{k}!$! Positive Swing Negative Swing	- 4.4	$\begin{array}{r} 4.9 \\ .48 \end{array}$	4.5	$\begin{aligned} & \hline v \\ & v \\ & v \\ & v \end{aligned}$
Band Width of Input Voltage Translator	GBW	$\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \quad$ All Bias Modes		10	;	Hz
Nominal Commutation Frequency	fCOM	Cosc $=0 \mathrm{pF}$ DR Connected to V DR Connected to GND		$\begin{gathered} 160 \\ 2560 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
Nominal Input Converter Commutation Frequency	fCOM1	Cosc $=0 \mathrm{pF}$ DR Connected to V DR Connected to GND		$\begin{gathered} 80 \\ 1280 \end{gathered}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
Bias Voltage to define Current Modes	$\begin{array}{\|l\|} \hline V_{B A} \\ V_{B M} \\ V_{B L} \\ \hline \end{array}$	Low Bias Setting Med Bias Setting High Bias Setting			$\begin{gathered} \hline V+0.3 \\ V=1.4 \\ V+0.3 \end{gathered}$	$\begin{aligned} & \hline V \\ & v \\ & V \end{aligned}$
Bias (Pin 8) Input Current	IBIAS			+30		pA
Division Ratio Input Current	IDR	$\mathrm{V}^{+}-8.0 \leq \mathrm{V}_{\mathrm{DR}} \leq \mathrm{V}^{+}+0.3$ volt		± 30		pA
DR Voltage to define Oscillator division ratio	VDRH VDRL	Internal oscillator division ratio 32 Internal oscillator division ratio 2	$\begin{gathered} \mathrm{V}-0.3 \\ \mathrm{~V} \cdot 8 \end{gathered}$		$\begin{aligned} & \mathrm{V}+0.3 \\ & \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Effective Impedance of Voltage Translator Analog Switches	RAS			30		k!
Supply Current	Is	High Bias Setting Med Bias Setting Low Bias Setting	$\begin{gathered} \hline 4 \\ 0.6 \\ 0.25 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \\ 1.7 \\ 0.6 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 5 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Operating Supply Voltage Range	V-V	High Bias Setting Med or Low Bias Setting	$\begin{aligned} & 5 \\ & 4 \end{aligned}$		$\begin{aligned} & \hline 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGES

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION

FREQUENCY ($\mathbf{C}_{1}, \mathbf{C}_{2}-\mathbf{1} \mu \mathbf{F}$)
ein - 0.1 TO 10 Hz P/P NOISE VOLTAGE - $\mu \mathrm{V}$

fCOM - COMMUTATION FREQUENCY-Hz

v- POSITIVE POWER SUPPLY VOLTAGE - V

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE AS A FUNCTION OF SUPPLY VOLTAGE (V-V)

fCOM-COMMUTATION FREQUENCY, Hz ©

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION
FREQUENCY $\left(\mathbf{C}_{1}, \mathbf{C}_{2}=\mathbf{0 . 1} \mu \mathbf{F}\right)$

INPUT CURRENT AS A FUNCTION OF COMMUTATION FREQUENCY

R_{L} - LOAD RESISTANCE

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING

FREQUENCY RESPONSE OF THE 10 Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 2).

DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER

TEST CIRCUIT 1: USE TO MEASURE:
a) INE TO MEASURE:
a) $\left(\frac{V_{\text {OUT }}}{1000}\right)$
b) INPUT EQUIV NOISE VOLTAGE
c) SUPPLY CURRENT
d) CMRR
e) PSRR

TEST CIRCUIT 2: DC to $10 \mathrm{~Hz}(1 \mathrm{~Hz})$ Unity Gain Low Pass Filter

AM-7605/AM-7606

DETAILED DESCRIPTION

CAZ Instrumentation Amp Overview

The CAZ instrumentation amplifier operates on principles which are very different from those of the conventional three op amp designs, which must use ultra-precise trimmed resistor networks in order to achieve acceptable accuracy. An important advantage of the AM-7605/AM-7606 CAZ instrumentation amp is the provision for self-compensation for internal error voltages, whether they are derived from steady-state conditions, temperature, supply voltage fluctuations, or are variable over a long term.
The CAZ instrumentation amplifier is constructed with monolithic CMOS technology, and consists of three distinct sections, two analog and one digital. The two analog sections - a differential to single-ended voltage converter, and a CAZ op amp - have on-chip analog switches to steer the input signal. The analog switches are driven from a self-contained digital section which consists of an RC oscillator, a programmable divider, and associated voltage translators. A functional layout of the AM-7605/AM-7606 is shown in Figure 1.

Figure 1: Simplified Block Diagram
The AM-7605/AM-7606 have approximately constant input equivalent noise voltage, CMRR, PSRR, input offset voltage and drift values independent of the gain configuration. By comparison, hybrid-type modules which use the traditional three op amp configuration have relatively poor performance at low gain (1 to 100) with improved performance above a gain of 100 .
The only major limitation of the AM-7605/AM-7606 is its lowfrequency operation (10 to 20 Hz maximum). However in many applications speed is not the most important parameter.

CAZ Op Amp Section

Operation of the CAZ amp section of the AM-7605/AM-7606 instrumentation amplifier is best illustrated by referring to Figure 2. The basic amplifier configuration, represented by the large triangles, has one more input than does a regular op amp - the $A Z$, or auto-zero terminal. The voltage on the $A Z$ input is that level to which each of the internal op amps are to be auto-zeroed. In Mode A, op amp \#2 is connected into a unity gain mode through on-chip analog switches, and charges external capacitor C_{2} to a voltage equal to the $D C$ input offset voltage of the amplifier, in addition to the instantaneous low-frequency noise voltage. A short time later, the analog switches reconnect the on-chip op amps to the configuration shown in Mode B. In this mode, op amp \#2 has capacitor C_{2} (which is charged to a voltage equal to the offset and noise voltage of op amp \#2) connected in series to its non-inverting (+) input in such a manner as to null out the input offset and noise voltages of the amplifier. While one of the on-chip op amps is processing the input signal, the second op amp is in an auto-zero mode, and charges a capacitor to a voltage equal to its equivalent DC and low frequency error voltage. The on-chip amplifiers are connected and reconnected at a rate designated as the commutation frequency (fCOM) so that at all times one or the other of the on-chip op amps is processing the input signal while the voltages on capacitors C_{1} and C_{2} are being updated regularly to compensate for variables such as low frequency noise voltage and input offset voltage changes due to temperature, drift or supply voltages effects.
Compared to the standard bipolar or FET input op amps, the CAZ amp scheme demonstrates a number of important advantages:

* Effective input offset voltages can be reduced from 1000 to 10,000 times without trimming.
* Long-term offset voltage drift phenomena can be compensated and dramatically reduced.
* Thermal effects can be compensated for over a wide operating temperature range. Reductions can be as much as 100 times or better.
* Supply voltage sensitivity is reduced.

CMOS processing is ideally suited to implement the CAZ amp structure. The digital section is easily fabricated, and

Figure 2: Diagrammatic representation of the 2 half cycles of operation of the CAZ OP AMP.

Figure 3: Schematic of analog switches connecting each internal OP AMP to the external inputs at the output.
the transmission gates (analog switches) which connect the on-chip op amps can be constructed for minimum charge injection and the widest operating voltage range. The analog section, which includes the on-chip op amps, contributes performance figures which are similar to bipolar or FET input designs. CMOS structure provides the CAZ amp concept with open-loop gains of greater than 100 dB , typical input offset voltages of $\pm 5 \mathrm{mV}$, and ultra-low output leakage currents, typically 1 pA

The CMOS transmission gates connect the on-chip op amps to external input and output terminals, as shown in Figure 3. Here, one op amp and its associated analog switches are required to connect each on-chip op amp so that at any time three switches are open and three switches are closed. Each analog switch consists of a P-channel transistor in parallel with an N -channel transistor.

DIFFERENTIAL-TO-SINGLE-ENDED UNITY GAIN VOLTAGE CONVERTER

An idealized schematic of a voltage converter block is shown in Figure 4. The mode of operation is quite simple, involving two capacitors and eight switches. The switches are arranged so that four are open and four are closed. The four conducting switches connect one of the capacitors across the differential input and the other from a ground or reference voltage to the input of the CAZ instrumentation amp. The output signal of this configuration is shown in Figure 5, where the voltage steps equal the differential voltage $\left(V_{A}-V_{B}\right)$ at commutation times a, b, c, etc. The output waveform thus represents all information contained in the input signal from DC up to the commutation frequency, commutation and noise voltages are added. Sampling theory states that to preserve the integrity of the information to be processed, at least two samples must be taken within a period $(1 / \mathbf{f})$ of the highest frequency of the signal being

The note at which the modes A \& B are cycled through is known as the INPUT COMMUTATION FREQUENCY

Figure 4: Schematic of the differential to single ended voltage converter

Figure 5: Input to Output Voltage waveforms from the differential to single ended voltage converter. For additional information, see frequency characteristics in Amplitude Response of the Input Differential to single ended voltage converter graph on page 5 .
sampled. Consequently this scheme preserves information up to the commutation frequency. Above the commutation frequency, the input signal is transferred to a lower frequency. This phenomenon is known as aliasing. Although the output responds above the commutation frequency, the frequencies of the output responses have been aliased down to frequencies below the commutation frequency.
The example shown in Figure 4 for the voltage converter is fabricated with CMOS analog switches, which contain a parallel combination of P-channel and N -channel transistors. The switches have finite ON impedances of $30 \mathrm{k} \Omega$, plus parasitic capacitances to the substrate. Because of the charge injection effects which appear at both the switches and the output of the voltage converter, the values of capacitors C_{0} and C_{0} must be about $1 \mu \mathrm{~F}$ to preserve signal translation accuracies to 0.01%. The $1 \mu \mathrm{~F}$ capacitors, coupled with the $30 \mathrm{k} \Omega$ equivalent impedance of the switches, produce a low-pass filter response from the voltage converter which is approximately 3 dB at 10 Hz .

APPLICATIONS

USING THE AM-7605/AM-7606 TO BUILD A DIGITAL READOUT TORQUE WRENCH

A typical application for the AM-7605/AM-7606 is in a strain gauge system, such as the digital readout torque wrench circuit shown in Figure 6. In this application, the CAZ intrumentation amplifier is used as a preamplifier, taking the differential voltage of the bridge and converting this voltage to a single-ended voltage reference to ground. The signal is then amplifier by the CAZ instrumentation amplifier and applied to the input of a 3-1/2 digit dual-slope A / D converter chip for LCD panel meter display. The A/D converter device used in this instance is the Intersil ICL7106.
In the digital readout torque wrench circuit, the internal reference voltage of the $\mathrm{C} C L 7106$ is used instead of the conventional external reference source. In order to set the full-scale reading, it is required that, given a certain strain
gauge bridge with a defined pressure voltage sensitivity, a value of gain for the AM-7605/AM-7606 instrumentation CAZ amp be selected along with an appropriate value for the reference voltage. The gain should be set so that at full scale the output will swing about 0.5 V . The reference voltage required is about one-half the maximum output swing, or approximately 0.25 V .
In this type of system, only one adjustment is required. Either the amplifier gain or the reference voltage must be varied for full-scale adjustment. Note that the common to V^{+}voltage of the CAZ amp is about 2.8 V . This voltage must therefore be divided by about 10 to provide the 0.25 V reference voltage. Total current consumption of all circuitry, less the current through the strain gauge bridge, is typically 2 mA .

Figure 6: 3-1/2 Digit Digital Readout Torque Wrench

SOME HELPFUL HINTS

Testing the AM-7605/AM-7606 CAZ Instrumentation Amplifier

Test Circuits \#1 and \#2 provide convenient means of measuring most of the important electrical parameters of the CAZ instrumentation amp. The output signal can be viewed on an oscilloscope after being fed through a low-pass filter. It is recommended that for most applications, a low-pass filter of about 1.0 to 1.5 Hz be used to reduce the peak-to-peak noise to about the same level as the input offset voltage.
The output low-pass filter must be of a high-input impedance type - not a capacitor across the feedback resistor R_{2} nor a low-impedance type of around $1 \mathrm{k} \Omega$ - but rather must be rated at about $100 \mathrm{k} \Omega$ and $1.0 \mu \mathrm{~F}$ so that the output dynamic loading on the CAZ instrumentation amp is about $100 \mathrm{k} \Omega$.

Bias Control

The on-chip op amps consume over 90% of the power required by the AM-7605/AM-7606 instrumentation op amp. For this reason, the internal op amps have externallyprogrammable bias levels. These levels are set by connecting the BIAS terminal to either V^{+}, GND, or V^{-}. The difference between each bias setting is about a factor of 3 , allowing a $9: 1$ ratio of power supply versus bias setting. This current programmability provides the user with a choice of device power dissipation levels, slew rates the higher the slew rate, the lower the amplitude of commutation spikes) and offset errors due to "IR" voltage drops and thermoelectric temperature gradients across the chip and the higher the temperature gradients across the chip and the highe the input offset error). In most cases, the medium bias (MED BIAS) setting will be found to be the best choice.

Output Loading (Resistive)

With a $10 \mathrm{k} \Omega$ load, the output voltage swing can vary across nearly the entire supply voltage range, and the device can be used with loads as low as $2 \mathrm{k} \Omega$.
However, with loads of less than 50k Ω, the on-chip op amps will begin to exhibit the characteristics of transconductance amplifiers, since their respective output impedances are nearly $50 \mathrm{k} \Omega$ each. Thus the open-loop gain is 20 dB less with a $2 k \Omega$ load than it would be with a $20 \mathrm{k} \Omega$ load. Therefore, for high gain configurations requiring high accuracy, an output loading of $100 \mathrm{k} \Omega$ or less is suggested.
There is another consideration in applying the CAZ instrumentation op amps which must not be overlooked, and that is the additional power dissipation of the chip which will result from a large output voltage swing into a low resistance load. This added power dissipation can affect the initial input offset voltages under certain conditions.

Output Loading (Capacitive)

In many applications, it is desirable to include a low-pass filter at the output of the CAZ instrumentation op amp to reduce high-frequency noise outside the desired signal passband. An obvious solution when using a conventional op amp would be to place a capacitor across the external feedback resistor and thus produce a low-pass filter.
However, with the CAZ op amp concept this is not possible because of the nature of the commutation spikes. These voltage spikes exhibit a low-impedance characteristic in the direction of the auto-zero voltage and a high-impedance characteristic on the recovery edge, as shown in Figure 7. It can be seen that the effect of a large load capacitor produces an area error in the output waveform, and hence an effective gain error. The output low-pass filter must be of a highimpedance type to avoid these area errors. For example, a 1.5 Hz filter will require a $100 \mathrm{k} \Omega$ resistor and a $1.0 \mu \mathrm{~F}$ capacitor, or a $1 \mathrm{M} \Omega$ resistor and an $0.1 \mu \mathrm{~F}$ capacitor.

Oscillator and Digital Circuitry Considerations

The oscillator has been designed to run free at about 5.2 kHz when the OSC terminal is open circuit. If the full divider network is used, this will result in a nominal commutation frequency of approximately 160 Hz . The commutation frequency is that frequency at which the on-chip op amps are switched between the signal processing and the auto-zero modes. A 160 Hz commutation frequency represents the best compromise between input offset voltage and low frequency noise. Other commutation frequencies may provide optimization of some parameters, but always at the expense of others.

The oscillator has a very high output impedance, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the natural oscillator frequency is desired (5.2 kHz) the terminal remains open circuit. In other instances, it may be desirable to synchronize the oscillator with an external clock source, or to run it at another frequency. The AM-7605/ AM-7606 CAZ amp provides two degrees of flexibility in this respect. First, the DR (division ratio) terminal allows a choice of either dividing the oscillator by 32 (DR terminal to V^{+}) or by 2 (DR terminal to GND) to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and the V^{+}or system GND terminals. For situations which require that the commutation frequency be synchronized with a master clock, (Figure 8) the OSC terminal may be driven from TTL logic (with resistive pull-up) or by CMOS logic, provided that the V^{+} supply (with respect to ground) is $+5 \mathrm{~V}(\pm 10 \%)$ and the logic driver also operates from a similar voltage supply. The

Figure 7: Effect or a load capacitor on output voltage waveforms.

Figure 8: AM-7605 being clocked from external logic into the oscillator terminal.
reason for this requirement is that the logic section (including the oscillator) operates from an internal -5 V supply, referenced to V^{+}support which is generated on-chip, and which is not accessible externally.

Thermoelectric Effects

The ultimate limitations to ultra-high-sensitivity DC amplifiers are due to thermoelectric, Peltier, or thermocouple effects whereby electrical junctions consist of various metals (alloys, silicon, etc.) Unless all junctions are at precisely the same temperature, small thermoelectric voltages will be produced, generally about $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. However, these voltages can be several tens of microvolts per ${ }^{\circ} \mathrm{C}$ for certain thermocouple materials.
In order to realize the extremely low offset voltages which the CAZ op amp can produce, it is necessary to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. Special thermoelectric solder (70% cadmium, 30% tin) should be used. In addition, the supply voltages and power dissipation should be kept to a minimum by use of the MED BIAS setting. Employ a high impedance load and keep well away from equipment which dissipates heat.

Component Selection

The two auto-zero capacitors (C_{1} and C_{2}) should each be about $1.0 \mu \mathrm{~F}$ value. These are relatively large values for nonelectrolytic capacitors, but since the voltages stored on them do not change significantly, problems of dielectric absorption, charge bleed-off and the like are not as significant as they would be for integrating dual-slope A / D converter applications. Polypropylene and Mylar are the best.
Excellent results have been obtained for commercial temperature ranges using several of the less-expensive, smaller-size capacitors, since the absolute values of the capacitors is not critical. Even polarized electrolytic capacitors rated at $1.0 \mu \mathrm{~F}$ and 50 V have been used successfully at room temperature, although no recommendations are made concerning the use of such capacitors.

Commutation Voltage Transient Effects

Although in most respects the CAZ instrumentation amplifier resembles a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 10 Hz . The is due to the finite switching transients which occur at both the input and
output terminals because of commutation effects. These transients have a frequency spectrum beginning at the commutation frequency, and including all of the higher harmonics of the commutation frequency. Assuming that the commutation frequency is higher than the highest in-band frequency, then the commutation transients can be filtered out with a low-pass filter.
The input commutation transients arise when each of the onchip op amps experiences a shift in voltage which is equal to the input offset voltages (about $5-10 \mathrm{mV}$), usually occurring during the transition between the signal processing mode and the auto-zero mode. Since the input capacitances of the on-chip op amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage auto-zero capacitors C_{1} and C_{2} must have values of at least $10,000 \times 10 \mathrm{pF}$, or $0.1 \mu \mathrm{~F}$ each. The charge that is injected into the input of each op amp when being switched into the signal processing mode produces a rapidly-decaying voltage spike at the input, plus an equivalent DC input bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically 1.0 pA at an ambient temperature of $25^{\circ} \mathrm{C}$.
The output waveform in Test Circuit \#1 (with no input signal) is shown in Figure 9. Note that the equivalent noise voltage is amplified 1000 times, and that due to the slew rate of the onchip op amps, the input transients of approximately 7 mV are not amplified by 1000 .

Figure 9: Output waveform from Test Circuit 1.

Layout Considerations

Care should be exercised in positioning components on the PC board, particularly the capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4}, all of which must be shielded from the OSC terminal. Also, parasitic PC board leakage capacitances associated with these four capacitors should be kept as low as possible to minimize charge injection effects.

PACKAGE DIMENSIONS

Programmable Gain Instrumentation Amplifiers Models AM-542, AM-543

FEATURES

- 1 to 1024 Gains
- 4 Bit Gain Programming
- $10^{12} \Omega$ Input Impedance
- .01\% Gain Nonlinearity
- Gain Drift to $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
- Fast Settling to $10 \mu \mathrm{sec}$
- CMRR to 120 dB

GENERAL DESCRIPTION

The AM-542 and AM-543 are high performance, digitally controlled Programmable Gain Instrumentation Amplifiers. These amplifiers permit selection of gains from 1 to 1024 in 11 binary weighted steps, through the input of a 4 bit TTL compatible word. One version is optimized for low drift and the other is optimized for fast settling. Use of these devices in data acquisition applications yields a system with wide dynamic range and high resolution. These amplifiers have special damping circuits which result in fast settling times with both gain range and signal amplitudes changing simultaneously. Most other PGIA's do not have this capability.
These amplifiers feature high input impedances, common mode rejection ratios to 120 dB , gain nonlinearity of 0.01%, maximum output impedance of 0.1Ω at 1 KHz , input overvoltage protection, and settling times that are not degraded by gain switching.
The AM-542 is optimized for the lowest drift performance currently attainable in a Programmable Gain Instrumentation Amplifier, with models available offering input offset voltage drift of only $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max. All AM542 's provide an input impedance of $1.2 \times$ $10^{9} \Omega$, common mode range of $\pm 11 \mathrm{~V}$ min., gain temperature coefficient of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max., common mode rejection up to 120 dB and a unity gain settling time to 0.01% of 160 $\mu \mathrm{sec}$.
The AM-543 is tailored to provide the fastest settling time for any hybrid PGIA; a 20 V output step settles to 0.01% in only $10 \mu \mathrm{sec}$ at unity gain. These high-speed units feature a slew rate of $3.3 \mathrm{~V} / \mu \mathrm{sec}$, an input impedance of $10^{12} \Omega$, output voltage range of $\pm 10 \mathrm{~V} \mathrm{~min}$. at 5 mA, common mode rejection up to 100 dB and a gain temperature coefficient of $\pm 15 \mathrm{ppm},{ }^{\circ} \mathrm{C}$.
State-of-the-art design and thin-film hybrid technology combine to permit these amplifiers to be packaged in a compact, hermetically seáled, 24 pin ceramic DIP. The AM-542 and AM-543 are available in versions for operation over the 0 to $+70^{\circ} \mathrm{C}$, $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or -55 to $+125^{\circ} \mathrm{C}$ temperature ranges.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (517)339-9341/TWX710-346-1453/TLX951340

SPECIFICATIONS, AM-542 and AM-543
(Typical at $+25^{\circ} \mathrm{C}, \pm \mathbf{1 5}$ VDC and +5 VDC supplies, unless otherwise noted).

	AM-542	AM-543
MAXIMUM RATINGS		
Positive Supply, Pin 19	+22V	+22V
Negative Supply, Pin 6	-22V	-22V
Input Voltage Range	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$
INPUT CHARACTERISTICS		
Input Offset Voltage	$\pm 200 \mu \mathrm{~V} \times$ Gain	$\pm 1 \mathrm{mV} \times$ Gain
Input Bias Current, max.	$\pm 14 \mathrm{nA}$	$\pm 100 \mathrm{pA}$
Input Offset Current, max.	12 nA	20 pA
Input Impedence, Diff. or Com.		
mode.	$1.2 \times 10 \Omega$	$10^{12} \Omega$
Common Mode Voltage Range,		
min. .	$\pm 11 \mathrm{~V}$	$\pm 11 \mathrm{~V}$
Digital Inputs, Logic "1".	$\mathrm{Vin}=\geq+2.4 \mathrm{~V}$	$\operatorname{Vin}=\geq+2.4 \mathrm{~V}$
Digital Inputs, Logic "0"	$\mathrm{Vin}=\leq+0.4 \mathrm{~V}$	$\mathrm{Vin}=\leq+0.4 \mathrm{~V}$
OUTPUT CHARACTERISTICS		
Output Voltage Range, min.	$\pm 11 \mathrm{~V}$	$\pm 10 \mathrm{~V}$
Output Current	5 mA	5 mA
Output Impedance ${ }^{1}$		
PERFORMANCE		
Gain Range 1 to 1024		1 to 1024
Gain Accuracy, $\mathbf{G}=1$ to 1024, max.	.02\%	.02\%
Gain NonLinearity, G=1 to 1024		
max.	. 01%	.01\%
Gain Temperature Coefficient. .	$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio, min.	86 dB	85 dB
Input Offset Temperature Drift,		
AM-54XB, max.	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	-
AM-54XC, max.	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	----
Input Voltage Noise, DC to		
$\begin{aligned} 100 \mathrm{~Hz}, \mathrm{G} & =1 \ldots \\ \mathrm{G} & =1024 \end{aligned}$	100 uV p-p	1 mV p-p, max.
Common Mode Rejection Ratio ${ }^{\text {, }}$		
G=1, DC	120 dB	100 dB
$\mathrm{G}=1,100 \mathrm{~Hz}$	100 dB	98 dB
$\mathrm{G}=1,1 \mathrm{KHz}$	96 dB	96 dB
$\mathrm{G}=1024$, DC	120 dB	100 dB
$\mathrm{G}=1024,100 \mathrm{~Hz}$	100 dB	98 dB
$\mathrm{G}=1024,1 \mathrm{KHz}$	96 dB	96 dB
Slew Rate	$0.14 \mathrm{~V} / \mu \mathrm{sec}$	$3.3 \mathrm{~V} / \mu \mathrm{sec}$
Settling Time to $0.01 \%{ }^{3}, \mathrm{G}=1 \ldots \ldots$	$160 \mu \mathrm{sec}$	$10 \mu \mathrm{sec}$
, G=1024 .	3 msec	$550 \mu \mathrm{sec}$
POWER REQUIREMENTS		
Analog Supply, Rated Value	+15V@ 50 mA	+15V@ 50 mA
	-15V@ 25 mA	-15V@ 25 mA
Analog Supply Range	$\pm 15 \mathrm{~V}$ to $\pm 22 \mathrm{VDC}$	$\pm 15 \mathrm{~V}$ to $\pm 18 \mathrm{VDC}$
Logic Supply	+5V@ 5 mA	+5V@5 mA

PHYSICAL ENVIRONMENTAL

Operating Temperature Range.

Suffix - C	0 to $+70^{\circ} \mathrm{C}$
Suffix - R	-25 to $+85^{\circ} \mathrm{C}$
Suffix $-\mathbf{M}$	-55 to $+125^{\circ} \mathrm{C}$
age Temperature Range.	-65 to $+150^{\circ} \mathrm{C}$
age Type.	24 Pin Ceramic DIP
ht	$0.2 \mathrm{oz}(6 \mathrm{~g})$

0 to $+70^{\circ} \mathrm{C}$
$-2510+5^{\circ} \mathrm{C}$
-65 to $+150^{\circ} \mathrm{C}$
24 Pin Ceramic DIP
$0.2 \mathrm{oz}(6 \mathrm{~g})$

1. The AM-542 and AM-543 have an offset adjustment capability for each stage, input and output. The output trim should be sufficient to zero out offset errors on the lower gain ranges, and adjustment should be made with a gain of 1 selected. For the higher gain ranges the input offset zeroing circuit should be used to optimize accuracy. Adjustment of the input offset should be made with a gain of 1024 selected.
2. Power supply inputs to the AM-542 and AM-543 are bypassed internally. However, for best performance both power supplies should be bypassed with $1 \mu \mathrm{~F}$ ceramic capacitors as close as possible to the \pm supply pins.
3. Pull-up resistors are required for interfacing with the logic inputs on the AM-542/543. Recommended values are $10 \mathrm{~K} \Omega$.

NOTES:

1. At 1 KHz , all gain ranges.
2. $1 \mathrm{~K} \Omega$ source imbalance.
3. For 20 V output change, with or without a range change.

MODEL	INPUT OFFSET VOLTAGE DRIFT	SETTLING TIME TO 0.01\% G-1	OPERATING TEMP. RANGE
AM-542AMC	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$160 \mu \mathrm{sec}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AM-542AMR			$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AM-542AMM			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AM-542BMC	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AM-542BMR			$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AM-542BMM			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AM-542CMC	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AM-542CMR			$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AM-542CMM			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AM-543AMC	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{sec}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AM-542AMR			$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AM-543AMM			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TRIMMING PO	TENTIOMETERS	TP20K	

The AM-542/543 are functionally laser trimmed to reduce initial offset voltage and offset voltage change due to gain change to a minimum level. However, for critical applications where zero offset is required, the following procedure can be followed to externally zero the offset.

1. Allow the Amplifier to reach operating temperature.
2. Set R_{1} and R_{2} to mid-range.
3. Adjust R_{2} for zero output. 5. Set gain to $1024 \mathrm{~V} / \mathrm{V}$.
4. Adjust R_{1} for zero output.
5. Set gain to $1 \mathrm{~V} / \mathrm{V}$.

This technique minimizes the offset voltage change over the maximum change in gain. Trimming may cause input offset temperature drift to increase slightly.

GAIN STATE TRUTH TABLE

DIGITAL INPUTS				
$\mathbf{A}_{\mathbf{8}}$ (PIN 14)	$\mathbf{A}_{\mathbf{4}}$ (PIN 15)	$\mathbf{A}_{\mathbf{2}}$ (PIN 16)	$\mathbf{A}_{\mathbf{0}}$ (PIN 17)	GAIN
0	0	0	0	1
0	0	0	1	2
0	0	1	0	4
0	0	1	1	8
0	1	0	0	16
0	1	0	1	32
0	1	1	0	64
0	1	1	1	128
1	0	0	0	256
1	0	0	1	512
1	0	1	0	1024

A typical application of the AM-542/543 is in a microprocessor controlled data acquisition system. The microprocessor loads the RAM with the desired gain coding. This coding relates the selected gain ranges to a specific address. When the processor instructs the multiplexer to multiplex a particular analog input channel, this instruction is also received by the RAM, which puts out the appropriate gain code to the AM-542/543. This system allows acquisition of signals over a wide dynamic range at high resolution.

HIGH SPEED 12 BIT DATA ACQUISITION SYSTEM

APPLICATION NOTE

A high speed data acquisition system with 8 differential inputs and 12 bit resolution that utilizes the AM-543. If the control logic is timed so that the Sample-Hold-ADC section is converting one analog value while the mux-amplifier section is allowed to settle to the next input value, throughput rates greater than 90 KH_{z} can be achieved. The AM-543 is used with Datel-Intersil's ADC-817, a 12 bit hybrid A/D with a $2 \mu \mathrm{sec}$ conversion rate, the SMH-6, a $.01 \%, 1 \mu \mathrm{sec}$ hybrid Sample-Hold, and the MVD-807, a low cost monolithic analog multiplexer. 11 CABOT BOULEVARD. MANSFIELD. MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340
Santa Ana. (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490

- Houston, (713)781-8886 • Dallas. TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 - DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

－Gain Range 1 to 1000
－Input Drift to $.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
－CMRR to 114 dB
－Gain Nonlinearity ．01\％Max．
－180kHz Bandwidth at G＝100

GENERAL DESCRIPTION

The AM－201 series instrumentation ampli－ fiers offer the highest available performance in a compact，low cost module．These amplifiers are specifically designed for crit－ ical applications where the lowest input drifts and noise are required together with the highest possible common mode rejec－ tion；at the same time wide bandwidth and excellent settling time are achieved．This series rivals the performance of expensive rack－mounted instrumentation amplifiers and yet is packaged in a small $1.5 \times 1.5 \times$ ． 375 inch module．
The key to the performance of the AM－201 series is a unique very high transcon－ ductance（ $\mathrm{gm}=50 \mathrm{mhos}$ ）input stage which gives optimum results for high gains of 100 to 1000．The amplifiers are programmed by a single external resistor for gains of 1 to 1000 and give guaranteed total voltage offset drifts referred to the input of 1．0， 0.5 ，and $0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at a gain of 1000 for the three models AM－201 A，AM－201B，and AM－201C respectively．At a gain of 1000 the common mode rejection ratio is 100 ， 106，and 114 dB minimum for the three models，with a source unbalance of 1 kilohm．The input stage gives very low bias currents and an input offset current drift of only $20 \mathrm{pA} /{ }^{\circ} \mathrm{C}$ ，allowing use of up to 50 kilohm balanced input source impedances． These performance characteristics are achieved without sacrificing good band－ width： 3 dB bandwidth is 45 kHz at $\mathrm{G}=1000$ and 180 kHz at $\mathrm{G}=100$ ．Output settling time is 20μ sec．for a 10 V step to $.01 \%$ ．
The gain equation for these models is： $\mathrm{G}=200 \mathrm{~K} / \mathrm{R}_{\mathrm{G}}$ ．Gain equation accuracy is $\pm 0.5 \%$ with a gain nonlinearity of $.01 \%$ maximum and gain temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum．Other input speci－ fications include input voltage noise of $1 \mu \mathrm{~V}$ peak to peak from 0.1 to 10 Hz and $1 \mu \mathrm{~V}$ RMS from 10 Hz to 10 kHz ．The input offset voltage is adjustable to zero by means of an external trimming potentiometer． These amplifiers also have sense and refer－ ence terminals for load sensing and ex－ ternally offsetting the output voltage．Out－ put capability is $\pm 10 \mathrm{~V}$ at 5 mA ，with output short circuit protection．

where [Δ Eos] 1000 is the drift spec. at $\mathrm{G}=1000$ and G is the programmed gain.
5. The sense terminal is normally connected to the output terminals, and the reference terminal is normally connected to ground. For remote loads or for load current sensing, the sense terminal is run separately to the load or to the current sensing resistor. The reference terminal may be connected to a voltage source in the range $\pm 10 \mathrm{~V}$ in order to directly offset the output of the amplifier by the same amount. Both sense and reference terminals should be connected only to low impedance sources (less than 10 ohms), as any impedance seen by these terminals will degrade the power supply rejection of the amplifier in proportion to the source impedance. A unity gain buffer amplifier can be used to isolate the reference terminal from high impedance sources. See application diagram.
6. The AM-201 series amplifiers have a distinct advantage over many other instrumentation amplifiers in gain-switched applications. Because the gain formula is $200 \mathrm{~K} / \mathrm{R}_{\mathrm{G}}$ the switched gain varies precisely inversely with R_{G}. If R_{G} is halved, for example, the gain is exactly doubled. Therefore, unlike instrumentation amplifiers with a constant term of 1 in the gain formula, the selection of gain setting resistors is greatly simplified. In switched gain applications the AM-201 amplifiers should be zeroed at the highest gain. The input offset voltage then will not change with gain.

SMALL SIGNAL BANDWIDTH AT SELECTED GAINS

ANALYSIS OF SIGNIFICANT ERROR SOURCES USING BRIDGE TRANSDUCER

The following errors are computed for an AM-201C operated from a bridge transducer over $a \pm 10^{\circ} \mathrm{C}$ ambient temperature range at a gain of 1000 .

Error Source Volt. Offset Drift Cur. Offset Drift Gain Change Noise (. 1 to 10 Hz) Gain Nonlinearity Power Supply Drift

Error \% 10V FS) $.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \times 10^{\circ} \mathrm{C} \times 1000$.025\% $\begin{array}{ll}20 \mathrm{pA} /{ }^{\circ} \mathrm{C} \times 10^{\circ} \mathrm{C} \times 10 \mathrm{~K} \times 1000 & .020 \% \\ .002 \% /{ }^{\circ} \mathrm{C} \times 10^{\circ} \mathrm{C} & .020 \%\end{array}$ $\begin{array}{ll}20 \mathrm{pA} /{ }^{\circ} \mathrm{C} \times 10^{\circ} \mathrm{C} \times 10 \mathrm{~K} \times 1000 & .020 \% \\ .002 \% /{ }^{\circ} \mathrm{C} \times 10^{\circ} \mathrm{C} & .020 \%\end{array}$ $1 \mu \mathrm{~V}$ P-P $\times 1000$
 .01\%
 Negligible

TOTAL OUTPUT ERROR .085\%

Power supply drift (assuming $.02 \% /{ }^{\circ} \mathrm{C}$) contributes a negligible amount to the error and therefore the computation is omitted. The total output errors for a $10^{\circ} \mathrm{C}$ temperature change are less than 0.1\%.

COMMON MODE REJECTION
RATIO VS. GAIN

TOTAL VOLTAGE OFFSET DRIFT (REFERRED TO INPUT) VS. GAIN

USING AN OUTPUT CURRENT BOOSTER

INPUT OFFSET TRIMMING: Short input terminals together and connect to ground or to common mode voltage at which input will be used. Adjust 50 K trimming pot for zero output voltage. For critical applications R_{G} should be a Vishay type S 102 and the trimming pot should be a Vishay type 1203. See technical notes.

OFFSETTING THE OUTPUT BY USE OF THE REFERENCE TERMINAL

DRIVING A GROUNDED LOAD USING CURRENT SENSING

GAIN SWITCHING WITH THE AM-201

Gain is inversely proportional to R_{G}. Thus if R_{G} is halved the gain is exactly doubled. Input offset voltage does not change with R_{G}.

WB
-

Special Functions

AMC-8013	392C
LA-8048, LA-8049	396C
FLT-U2	404C
TT-590	410C
VFQ-IC	412C
VFV SERIES	416C
VI-7660	422C
VR-182	428C
VR-8069	430C
WG-8038	$432 C$

Special Functions

MODEL	DESCRIPTION	NON LINEARITY $\%$ of F.S.	DRIFT $/{ }^{\circ} \mathrm{C}$	POWER REQUIREMENTS	OPER. TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { PRICE } \\ & (1.24) \end{aligned}$	$\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$
AMC-8013-CC	Four Quadrant Analog Multipliers with Accuracies To 0.5%. Feature +10 V Input Range, 1 MHz BandWidth, Division or Square Root Functions	± 0.8	0.06\%	$\pm 15 \mathrm{VDC}$	0 to +70	\$ 5.89	392C
AMC-8013-CM					-55 to +125	\$36.69	
AMC-8013-BC		+0.5			0 to +70	\$10.84	
AMC-8013-BM					-55 to +125	\$56.19	
AMC-8013-AC					0 to +70	\$24.84	
AMC-8013-AM					-55 to +125	\$62.79	
FLT-U2	Universal Active Filter	$\pm 5 \%$	0.01\%	± 5 to $\pm 18 \mathrm{~V}$	0 to +70	\$21.00	404C
LA-8048-CC	Log Amp. with 6 Decades Input 1 Volt/Decade Output	$\pm 1 \%$	0.8 mV	$\pm 15 \mathrm{VDC}$	0 to +70	\$21.67	396C
LA-8048-BC		$\pm 0.5 \%$			0 to +70	\$43.22	
LA-8049-CC	Anti-Log Amp. with 3 Decades Voltage Output	25 mV	$\begin{aligned} & 0.55 \mathrm{mV} \\ & 0.38 \mathrm{mV} \end{aligned}$	$\pm 15 \mathrm{VDC}$	0 to +70	\$21.67	396C
LA-8049-BC		10 mV			0 to +70	\$43.22	
TT-590.1	Two Terminal I.C. Temperature Transducer, $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$ Output for Temps. from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and Supplied from +4 V to +30 V	± 3.0	-	+4 to +30 V	-55 to +150	\$ 2.70	410C
TT-590.J		± 1.5			-55 to +150	\$ 3.15	
TT.590-K		± 0.8			-55 to +150	\$ 6.15	
TT-590.L		± 0.4			-55 to +150	\$12.15	
TT-590.M		± 0.3			-55 to +150	\$27.15	
VFQ-IC	V/F-F/V Converter Operates to 100 KHz	0.25\%	40 ppm	± 4 to $\pm 7.5 \mathrm{~V}$	0 to +70	\$ 6.95	412C
VFQ-IR					-25 to +85	\$14.25	
VFV-10K	Modular V/F-F/V Converter 10 KHz or 100 KHz Versions	0.005\%	20 ppm	$\pm 15 \mathrm{VDC}$	0 to +70	\$66.00	416C
VFV.100K		0.05\%	100 ppm		0 to +70	\$84.00	

MODEL	DESCRIPTION	NON- LINEARITY \% of F.S.	DRIFT/ ${ }^{\circ} \mathrm{C}$	POWER REQUIRE MENTS	OPER. TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { PRICE } \\ & \text { (1-24) } \end{aligned}$	$\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$
V1.7660PC	Monolithic Voltage Inverter Provides -1.5 to - 10 V From +1.5 to +10 V Supplies	-	-	+1.5 to +10V	- 20 to + 70	\$ 2.99	422C
VI-7660C					-20 to + 70	\$ 3.45	
VI-7660M					-55 to +125	\$ 8.85	
VR-182A	2.455V Precision Bandgap Voltage Reference with 0.1Ω Dynamic Impedance	$+35 \mathrm{mV}$	100 ppm	2 mA	0 to +70	\$ 1.95	428C
VR-182B			50 ppm		0 to +70	\$ 2.50	
VR-182C			30 ppm		0 to +70	\$ 2.95	
VR-8069-DC	1.2V Precision Bandgap Voltage Reference with 1Ω Dynamic Impedance	$\begin{aligned} & -20 \mathrm{mV}, \\ & +30 \mathrm{mV} \end{aligned}$	100 ppm	.05 to 5 mA	0 to +70	\$ 1.90	430 C
VR-8069-DM					- 55 to +125	\$ 3.70	
VR-8069.CC			50 ppm		0 to +70	\$ 2.60	
VR-8069-CM					- 55 to +125	\$ 5.35	
VR-8069-BC			25 ppm		0 to +70	\$ 6.85	
VR-8069-AC			10 ppm		0 to +70	\$15.10	
WG-8038-CC	Precision Waveform Gen. and Voltage Controlled Osc. with Sine, Square Triangle Sawtooth and Pulse Waveforms at .001 Hz to 1 MHz	+0.5	50 ppm	$\begin{gathered} +10 \text { to }+30 \mathrm{~V} \\ \text { or } \\ \pm 5 \text { to } \pm 15 \mathrm{~V} \end{gathered}$	0 to +70	\$ 4.12	432C
WG-8038-BC		± 0.2	100 ppm Max.		0 to +70	\$10.97	
WG-8038-BM					- 55 to +125	\$12.17	
WG-8038-AC			50 ppm , Max.		0 to +70	\$28.57	
WG-8038-AM					-55 to +125	\$31.12	

Special Functions-Problem Solvers

SIMPLE NEGATIVE CONVERTER

${ }^{*}$ NOTE: 1. VOUT $=-n \mathbf{V}^{+}$FOR $1.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 6.5 \mathrm{~V}$
DATEL-INTERSIL'S VI-7660 ALLOWS EASY GENERATION OF NEGATIVE SUPPLIES FROM POSITIVE SUPPLIES.
2. $\mathbf{V}_{\text {OUT }}=-\mathbf{n}\left(\mathbf{V}^{+}-V_{\text {FDX }}\right)$ FOR $6.5 \leq V^{+} \leq 10.0 \mathrm{~V}$

State variable active filter

DATEL-INTERSIL'S FLT-U2 ALLOWS A VARIETY OF FILTER FUNCTIONS WITH A MINIMUM OF EXTERNAL COMPONENTS; FOR EXAMPLE, THIS THREE POLE BUTTERWORTH LOW PASS FILTER.

HIGH NOISE IMMUNITY DATA TRANSMISSION

HIGH NOISE IMMUNITY DATA TRANSMISSION SYSTEM USES DATEL-INTERSIL'S VFV-10K.

DUAL ADJUSTABLE REFERENCE	TEMPERATURE TO FREQUENCY CONVERTER
	THE VFQ-1 ALLOWS THIS CIRCUIT TO ACHIEVE ACCURACY TO $1^{\circ} \mathrm{K}$.
WAVEFORM GENERATOR USED AS STABLE VCO IN A PHASE-LOCKED LOOP. THE WG-8038 PRODUCES A VARIETY OF WAVEFORM OR PULSE OUTPUTS WITH HIGH ACCURACY, USING A MINIMUM OF EXTERNAL COMPONENTS.	VARIABLE GAIN AMPLIFIER

FEATURES

- $\pm 0.5 \%$ Accuracy
- Internal Op-Amp for Level Shift, Division and Square Root Functions
- Uses Film Resistors for Minimum External Components
- Full ± 10 Volt Input/Output Voltage Range
- Wide Bandwidth - 1 MHz
- Operates with Standard ± 15 Volt Supplies

GENERAL DESCRIPTION

The 8013 is a four quadrant analog multiplier whose output is proportional to the algebraic product of two input signals. Feedback around an internal op-amp provides level shifting and can be used to generate division and square root functions. A simple arrangement of potentiometers may be used to trim gain accuracy, offset voltage and feedthrough performance. The high accuracy, wide bandwidth, and increased versatility of the $\mathbf{8 0 1 3}$ makes it ideal for all multiplier applications in control and instrumentation systems.

APPLICATIONS

- Multiplication, Division, Squaring, Square Roots
- RMS Measurements
- Frequency Doubler
- Balanced Modulator and Demodulator
- Electronic Gain Control
- Function Generator and Linearizing Circuits
- Process Control Systems

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Input Voltages $\left(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{X}_{\mathrm{o}}, Y_{o}, Z_{o}\right)$	$\pm \mathrm{V} \mathrm{Supply}$
Lead Temperature $(\mathbf{6 0 ~ s e c})$	$300^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

NOTE 1: Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperature above $75^{\circ} \mathrm{C}$.

AMC-8013

ELECTRICAL CHARACTERISTICS

(Uniess otherwise specified $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$, Gain and Offset Potentiometers Externally Trimmed)

the following specifications apply over the operating temperature ranges

Multiplication Error	$\begin{aligned} & -10<X<10, \\ & -10<Y<10 \end{aligned}$		1.5			2			3		\% Full Scale
Accuracy			0.06			0.06			0.06		\%/ ${ }^{\circ} \mathrm{C}$
Output Offset			0.2			0.2			0.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Scale Factor			0.04			0.04			0.04		$\% /{ }^{\circ} \mathrm{C}$
Input Bias Current											
X or Y Input				10			10			20	$\mu \mathrm{A}$
Z Input				70			70			100	$\mu \mathrm{A}$
Input Voltage (X, Y, or Z)				± 10			± 10			± 10	\checkmark
Output Voltage Swing	$\begin{aligned} & \mathbf{R}_{\mathrm{L}} \geq \mathbf{2 k} \\ & \mathbf{C}_{\mathrm{L}} \leq 1000 \mathrm{pF} \end{aligned}$	± 10			± 10			± 10			v

APPLICATIONS INFORMATION

MULTIPLIER Trimming Procedure

1. Set $X_{I N}=Y_{I N}=O V$ and adjust Z_{0} for zero Output.
2. Apply a low frequency sweep ($f_{0} \leq 100 \mathrm{~Hz}$ sine or triangle) of $= \pm 10 \mathrm{~V}$ to $\mathrm{Y}_{\text {IN }}$ with $\mathrm{X}_{\text {IN }}=0 \mathrm{~V}$ and adjust X_{0} for minimum Output.
3. Apply the sweep signal of Step 2 to $X_{I N}$ with $Y_{I N}=O V$ and adjust Y_{0} for minimum Output.
4. Readjust Z_{o} as in Step 1, if necessary.
5. With $X_{I N}=10.0 \mathrm{~V}$ dc and the sweep signal of Step 2 applied to $Y_{I N}$, adjust the Gain potentiometer for Output $=Y_{I N}$. This is easily accomplished with a differential scope plug-in ($\mathbf{A}+\mathrm{B}$) by inverting one signal and adjusting Gain control for (Output $-Y_{\text {IN }}$) = Zero.

DIVIDER Trimming Procedure

1. Set trimming potentiometers at mid-scale by adjusting voltage on pins 7,9 and $10\left(X_{0}, Y_{0}, Z_{0}\right)$ for zero volts.
2. With $Z_{I N}=O V$, trim Z_{o} to hold the Output constant, as $X_{I N}$ is varied from -10 V through -1 V .
3. With $Z_{I N}=0 \mathrm{~V}$ and $X_{I N}=-10.0 \mathrm{~V}$ adjust Y_{0} for zero Output voltage.
4. With $Z_{I N}=X_{I N}$ (and/or $Z_{I N}=-X_{I N}$) adjust X_{0} for minimum worst-case variation of Output as $X_{I N}$ is varied from -10 V to -1 V .
5. Repeat Steps 2 and 3 if Step 4 required a large initial adjustment.
6. With $Z_{I N}=X_{F N}$ (and/or $Z_{I N}=-X_{I N}$) adjust the gain control until the output is the closest average around +10.0 V $\left(-10 \mathrm{~V}\right.$ for $\left.Z_{I N}=-X_{I N}\right)$ as $X_{I N}$ is varied from -10 V to -3 V .

SQUARE ROOT Trimming Procedure

1. Connect the 8013 in the Divider configuration.
2. Adjust Z_{0}, Y_{0}, X_{0} and Gain using Steps 1 through 6 of Divider Trimming Procedure.
3. Convert to the Square Root configuration by connecting $X_{\text {IN }}$ to the Output and inserting a diode between Pin 4 and the Output node.
4. With $Z_{I N}=O V$ adjust Z_{o} for zero Output voltage.

TYPICAL APPLICATIONS

TRIMMING OFFSET AND FEEDTHROUGH

SQUARE ROOT

AMC-8013

TYPICAL PERFORMANCE CURVES

DEFINITION OF TERMS

Multiplication/Division Error: This is the basic accuracy specification. It includes terms due to linearity, gain, and offset errors, and is expressed as a percentage of the full scale output.

Feedthrough: With either input at zero the output of an ideal multiplier should be zero regardless of the signal applied to the other input. The output seen in a non-ideal
multiplier is known as the feedthrough.
Nonlinearity: The maximum deviation from the best straight line constructed through the output data, expressed as a percentage of full scale. One input is held constant and the other swept through its nominal range. The nonlinearity is the component of the total multiplication/division error which cannot be trimmed out.

ORDERING INFORMATION

Model	Multiplication Error, $\boldsymbol{m a x}$.	Oper. Temp. Range $\left({ }^{\circ} \mathbf{C}\right)$	Package
AMC-8013-CC	$\pm 2.0 \%$	0 to +70	TO-100
AMC-8013-CM	$\pm 2.0 \%$	-55 to +125	TO-100
AMC-8013-BC	$\pm 1.0 \%$	0 to +70	TO-100
AMC-8013-BM	$\pm 1.0 \%$	-55 to +125	TO-100
AMC-8013-AC	$\pm 0.5 \%$	0 to +70	TO-100
AMC-8013-AM	$\pm 0.5 \%$	-55 to +125	TO-100

PACKAGE DIMENSIONS

NOTE: Pin 5 connected to case.

FEATURES

－1／2\％Full Scale Accuracy
－Temperature Compensated $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
－Scale Factor 1V／Decade，Adjustable
－ 120 dB Dynamic Current Range（8048）
－ 60 dB Dynamic Voltage Range（8048 \＆8049）
－Dual FET－Input Op－Amps

GENERAL DESCRIPTION

The 8048 is a monolithic logarithmic amplifier capable of handling six decades of current input，or three decades of voltage input．It is fully temperature compensated and is nominally designed to provide 1 volt of output for each decade change of input．For increased flexibility，the scale factor，reference current and offset voltage are externally adjustable．
The 8049 is the antilogarithmic counterpart of the 8048 ；it nominally generates one decade of output voltage for each 1 volt change at the input．

8048 SCHEMATIC DIAGRAM

8049 SCHEMATIC DIAGRAM

LA-8048, LA-8049

MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$	Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Iin (Input Current)	2 mA	Output Short Circuit Duration	Indefinite
Iref (Reference Current)	2 mA	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage between Offset Null and V^{+}	$\pm 0.5 \mathrm{~V}$	Lead Temperature (Soldering, 60 sec.$)$	$300^{\circ} \mathrm{C}$
Power Dissipation	750 mW		

ELECTRICAL CHARACTERISTIC (Note 1)

PARAMETER	CONDITION	LA-8048-B			LA-8048-C			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Dynamic Range								
$\mathrm{I}_{\text {in }}(1 \mathrm{nA}-1 \mathrm{~mA})$		120			120			dB
$V_{\text {in }}(10 \mathrm{mV}-10 \mathrm{~V})$	$\mathrm{R}_{\text {IN }}=10 \mathrm{k} \Omega$	60			60			dB
Error, \% of Full Scale	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 1 / \mathrm{N}=1 \mathrm{nA}$ to 1 mA .		. 20	0.5		. 25	1.0	\%
Error, \% of Full Scale	$\begin{aligned} & \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{N}}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA} \end{aligned}$. 60	1.25		. 80	2.5	\%
Error, Absolute Value	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{1 \mathrm{~N}}=1 \mathrm{nA}$ to 1 mA		12	30		14	60	mV
Error, Absolute Value	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{IN}}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA} \end{aligned}$		36	75		50	150	$m V$
Temperature Coefficient of VOUT	$1 / \mathrm{N}=1 \mathrm{nA}$ to 1 mA		0.8			0.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Output		2.5			2.5		mV / V
Offset Voltage (A_{1} \& A_{2})	Before Nulling		15	25		15	50	mV
Wideband Noise	At Output, for $I_{1} \mathrm{~N}=100 \mu \mathrm{~A}$		250			250		$\mu \mathrm{V}$ (RMS)
Output Voltage Swing	$R_{L}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		\checkmark
Power Consumption			150	200		150	200	mW
Supply Current			5	6.7		5	6.7	mA

NOTE 1: Unless otherwise noted, specifications apply for $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA}$, scale factor adjusted for $1 \mathrm{~V} /$ decade. Accuracy specifications assume that offset voltages and scale factor have been adjusted using the procedure outlined on page 3 .

LA-8048, LA-8049

THEORY OF OPERATION

The 8049 relies on the same logarithmic properties of the transistor as the 8048. The input voltage forces a specific $\Delta V_{B E}$ between Q_{1} and Q_{2} (Fig. 2). This V_{BE} difference is converted into a difference of collector currents by the transistor pair. The equation governing the behavior of the transistor pair is derived from (2) on Page 3 and is as follows:

$$
\begin{equation*}
{ }^{I} C_{1} /{ }_{C_{2}}=\exp \left[q \Delta V_{B E} / k T\right] \tag{5}
\end{equation*}
$$

When numerical values for $q / k T$ are put into this equation, it is found that a $\triangle V_{B E}$ of 59 mV (at $25^{\circ} \mathrm{C}$) is required to change the collector current ratio by a factor of ten. But for ease of application, it is desirable that a 1 volt change at the input generate a tenfold change at the output. The required input attenuation is achieved by the network comprising $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$. In order that scale factors other than one decade per volt may be selected, $\mathbf{R}_{\mathbf{2}}$ is external to the chip. It should have a value of $1 \mathrm{k} \Omega$, adjustable $\pm 20 \%$, for one decade per volt. $\mathbf{R}_{\mathbf{1}}$ is a thin film resistor deposited on the monolithic chip; its temperature characteristics are chosen to compensate the temperature dependence of equation 5, as explained on Page 3.

The overall transfer function is as follows:

$$
\begin{equation*}
\text { IOUT } / I_{\text {REF }}=\exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{I N}}{k T}\right] \tag{6}
\end{equation*}
$$

Substituting VOUT $=$ IOUT \times ROUT gives:

$$
\begin{equation*}
V_{\text {OUT }}=\text { ROUT }^{\prime} I_{\text {REF }} \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{I N}}{k T}\right] \tag{7}
\end{equation*}
$$

For voltage references equation 7 becomes

$$
\begin{equation*}
V_{\text {OUT }}=V_{\text {REF }} \times \frac{R_{\text {OUT }}}{R_{\text {REF }}} \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right.} \times \frac{q V_{I N}}{k T}\right] \tag{8}
\end{equation*}
$$

OFFSET AND SCALE FACTOR ADJUSTMENT

As with the log amplifier, the antilog amplifier requires three adjustments. The first step is to null out the offset voltage of A_{2}. This is accomplished by reverse biasing the base-emitter of $\mathbf{O}_{\mathbf{2}} . \mathrm{A}_{\mathbf{2}}$ then operates as a unity gain buffer with a grounded input. The second step forces $\mathrm{V}_{\mathbf{I N}}=0$; the output is adjusted for VOUT $=10 \mathrm{~V}$. This step essentially "anchors" one point on the transfer function. The third step applies a specific input and adjusts the output to the correct voltage. This sets the scale factor. Referring to Fig. 2, the exact procedure for 1 decade/volt is as follows:

1) Connect the input (pin $\# 16$) to +15 V . This reverse biases the base-emitter of $\mathrm{Q}_{\mathbf{2}}$. Adjust R_{7} for $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$. Disconnect the input from +15 V .
2) Connect the input to Ground. Adjust R_{4} for $V_{\text {OUT }}=10 \mathrm{~V}$. Disconnect the input from Ground.
3) Connect the input to a precise 2 V supply and adjust R_{2} for $V_{\text {OUT }}=100 \mathrm{mV}$.
The procedure outlined above optimizes the performance over a 3 decade range at the output (i. e., VOUT from 10 mV to 10 V). For a more limited range of output voltages, for example 1 V to 10 V , it would be better to use a precise 1 volt supply and adjust for VOUT $=1 \mathrm{~V}$. For other scale factors and/or starting points, different values for R_{2} and R REF will be needed, but the same basic procedure applies.

8049
FIGURE 2

LA-8048, LA-8049

MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
$V_{\text {in (Input Voltage) }}$	$\pm 15 \mathrm{~V}$
Iref (Reference Current)	2 mA
Voltage between Offset Null and V^{+}	$\pm 0.5 \mathrm{~V}$
Power Dissipation	750 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Output Short Circuit Duration	Indefinite
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTIC (Note 1)

PARAMETER	CONDITION	LA-8049-B			LA-8049-C			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Dynamic Range ($\mathrm{V}_{\text {OUT }}$)	$\mathrm{V}_{\text {OUT }}=10 \mathrm{mV}$ to 10 V	60			60			dB
Error, Absolute Value	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3 \mathrm{~V}$		3	10		5	25	mV
Error, Absolute Value	$\begin{aligned} & \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3 V \end{aligned}$		20	75		30	150	$m V$
Temperature Coefficient, Referred to VIN	$V_{\text {IN }}=3 \mathrm{~V}$		0.38			0.55		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Input, for $V_{I N}=0 V$		2.0			2.0		$\mu \mathrm{V} / \mathrm{V}$
Offset Voltage (A_{1} \& A_{2})	Before Nulling		15	25		15	50	mV
Wideband Noise	Referred to Input, for $V_{I N}=0 \mathrm{~V}$		26			26		$\mu \mathrm{V}$ (RMS)
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		v
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		v
Power Consumption			150	200		150	200	mW
Supply Current			5	6.7		5	6.7	mA

NOTE 1: Unless otherwise noted, specifications apply for $V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, I_{R E F}=1 \mathrm{~mA}$, scale factor adjusted for 1 decade (out) per volt (in). Accuracy specifications assume that offset voltages and scale factor have been adjusted using the procedure on page 5.

LA-8048, LA-8049

THEORY OF OPERATION

The 8048 relies for its operation on the well-known exponential relationship between the collector current and the base-emitter voltage of a transistor:

$$
\begin{equation*}
I_{C}=I S\left[e^{q V_{B E} / k T}-1\right] \tag{1}
\end{equation*}
$$

For base-emitter voltages greater than 100 mV , Eq. (1) becomes

$$
\begin{equation*}
I_{C}=I_{S} e^{q V_{B E} / k T} \tag{2}
\end{equation*}
$$

From Eq. (2), it can be'shown that for two identical transistors operating at different collector currents, the V_{BE} difference ($\triangle \mathrm{V}_{\mathrm{BE}}$) is given by:

$$
\begin{equation*}
\Delta V_{B E}=-2.303 \times \frac{\mathrm{kT}}{\mathrm{q}} \log 10\left[\mathrm{I}_{\mathrm{C} 1} / \mathrm{I}_{\mathrm{C} 2}\right] \tag{3}
\end{equation*}
$$

Referring to Fig. 1, it is clear that the potential at the collector of Q_{2} is equal to the $\triangle \mathrm{V} E$ between Q_{1} and Q_{2}. The output voltage is $\Delta V_{B E}$ multiplied by the gain of A_{2} :

$$
\begin{equation*}
V_{\text {OUT }}=-2.303\left(\frac{R_{1} R_{2}}{R_{2}}\right)\left(\frac{k T}{q}\right) \log 10\left[I_{I N} / I_{R E F}\right] \tag{4}
\end{equation*}
$$

The expression $2.303 \times \frac{\mathrm{kT}}{\mathrm{q}}$ has a numerical value of 59 mV at $25^{\circ} \mathrm{C}$; thus in order to generate 1 volt/decade at the output, the ratio $\left(R_{1}+R_{2}\right) / R_{2}$ is chosen to be 16.9. For this scale factor to hold constant as a function of temperature, the $\left(R_{1}+R_{2}\right) / R_{2}$ term must have a $1 / T$ characteristic to compensate for kT / q.
In the 8048 this is achieved by making R_{1} a thin film resistor, deposited on the monolithic chip. It has a nominal
value of $15.9 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$, and its temperature coefficient is carefully designed to provide the necessary compensation. Resistor R_{2} is external and should be a low T.C. type; it should have a nominal value of $1 \mathrm{k} \Omega$ to provide 1 volt/ decade, and must have an adjustment range of $\pm 20 \%$ to allow for production variations in the absolute value of $\mathbf{R}_{\mathbf{1}}$.

OFFSET AND SCALE FACTOR ADJUSTMENT

A log amp, unlike an op-amp, cannot be offset adjusted by simply grounding the input. This is because the log of zero approaches minus infinity; reducing the input current to zero starves \mathbf{Q}_{1} of collector current and open the feedback loop around A_{1}. Instead, it is necessary to zero the offset voltage of A_{1} and A_{2} separately, and then to adjust the scale factor. Referring to Fig. 1, this is done as follows:

1) Temporarily connect a $10 \mathrm{k} \Omega$ resistor (R_{0}) between pins 2 and 7. With no input voltage, adjust R_{4} until the output of $\mathbf{A}_{\mathbf{1}}$ (pin 7) is zero. Remove $\mathbf{R}_{\mathbf{0}}$.
Note that for a current input, this adjustment is not necessary since the offset voltage of A_{1} does not cause any error for current-source inputs.
2) Set $I_{I N}=I_{\text {REF }}=1 \mathrm{~mA}$. Adjust R_{5} such that the output of $A_{2}($ pin 10$)$ is zero.
3) Set $I_{I N}=1 \mu A$, IREF $=1 \mathrm{~mA}$. Adjust R_{2} for $\mathrm{V}_{\text {OUT }}=3$ volts (for a 1 volt/decade scale factor) or 6 volts (for a 2 volt/decade scale factor).
Step \#3 determines the scale factor. Setting $\mathrm{I}_{\mathrm{IN}}=1 \mu \mathrm{~A}$ optimizes the scale factor adjustment over a fairly wide dynamic range, from 1 mA to 1 nA . Clearly, if the 8048 is to be used for inputs which only span the range $100 \mu \mathrm{~A}$ to 1 mA , it would be better to set $\mathrm{I}_{\mathrm{IN}}=100 \mu \mathrm{~A}$ in Step \#3. Similarly, adjustment for other scale factors would require different $I_{\text {IN }}$ and $V_{\text {OUT }}$ values.

FIGURE 1. 8048 OFFSET AND SCALE FACTOR ADJUSTMENT

LA-8048, LA-8049

APPLICATIONS INFORMATION

Scale Factor Adjustment

The scale factor adjustment procedures outlined on Page 3 (8048) and Page 5 (8049) are primarily directed towards setting up 1 volt ($\Delta V_{O U T}$) per decade ($\Delta I_{I N}$ or $\Delta V_{I N}$) for the log amp, or one decade ($\Delta V_{O U T}$) per volt $\left(\Delta V_{I N}\right)$ for the antilog amp.
This corresponds to $K=1$ in the respective transfer functions:

Antilog Amp: VOUT $=$ ROUT IREF $10^{- \text {VIN }^{2} / K}$

By adjusting R_{2} (Fig. 1 and Fig. 2) the scale factor " K " in equation 9 and 10 can be varied. The effect of changing K is shown graphically in Fig. 3 for the $\log \mathrm{amp}$, and Fig. 4 for the antilog amp. The nominal value of R_{2} required to give a specific value of K can be determined from equation 11. It should be remembered that R_{1} has a $\pm 20 \%$ tolerance in absolute value, so that allowance shall be made for adjusting the nominal value of R_{2} by $\pm 20 \%$.

$$
\begin{equation*}
\mathrm{R}_{2}=\frac{941}{(\mathrm{~K}-.059)} \Omega \tag{11}
\end{equation*}
$$

EFFECT OF VARYING "K" ON THE LOG AMPLIFIER

FIGURE 3

EFFECT OF VARYING "K' ON THE ANTILOG AMPLIFIER

FIGURE 4

Frequency Compensation

Although the op-amps in both the 8048 and the 8049 are compensated for unity gain, some additional frequency compensation is required. This is because the log transistors in the feedback loop add to the loop gain. In the 8048, 150 pF should be connected between Pins 2 and 7 (Fig. 1). In the 8049, 200 pF between Pins 3 and 7 is recommended (Fig. 2).

Error Analysis

Performing a meaningful error analysis of a circuit containing \log and antilog amplifiers is more complex than dealing with a similar circuit involving only op-amps. In this data sheet every effort has been made to simplify the analysis task, without in any way compromising the validity of the resultant numbers.

The key difference in making error calculations in log/ antilog amps, compared with op-amps, is that the gain of the former is a function of the input signal level. Thus, it is necessary, when referring errors from output to input, or vice versa, to check the input voltage level, then determine the gain of the circuit by referring to the graphs given on Pages 2 and 4.

The various error terms in the log amplifier, the 8048, are referred to the output (RTO) of the device. The error terms in the antilog amplifier, the 8049, are referred to the input (RTI) of the device. The errors are expressed in this way because in the majority of systems a number of log amps interface with an antilog amp, as shown in Fig. 5.

FIGURE 5

It is very straightforward to estimate the system error at node (A) by taking the square root of the sum-of-the squares of the errors of each contributing block.

$$
\text { Total Error }=\sqrt{x^{2}+y^{2}+z^{2}} \text { at }(A)
$$

If required, this error can be referred to the system output through the voltage gain of the antilog circuit, using the voltage gain plot on Page 4.
The numerical values of x, y, and z in the above equation are obtained from the maximum error voltage plots given on Pages 2 and 4. For example, with the 8048 BC , the maximum error at the output is 30 mV at $25^{\circ} \mathrm{C}$. This means that the measured output will be within 30 mV of the theoretical transfer function, provided the unit has been adjusted per the procedures on Page 3. Fig. 6 illustrates this point.

To determine the maximum error over the operating temperature range, the 0 to $70^{\circ} \mathrm{C}$ absolute error values given in the table of electrical characteristics should be used. For intermediate temperatures, assume a linear increase in the error between the $25^{\circ} \mathrm{C}$ value and the $70^{\circ} \mathrm{C}$ value.

For the antilog amplifier, the only difference is that the error refers to the input, i. e., the horizontal axis. It will be noticed that the maximum error voltage of the 8049, over the temperature range, is strongly dependent on the input voltage. This is because the output amplifier, A_{2}, has an offset voltage drift which is directly transmitted to the output. When this error is referred to the input, it must be divided by the voltage gain, which is input voltage dependent. At $\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$, for example, errors at the output are multiplied by $1 / .023(=43.5)$ when referred to the input.

It is important to note that both the 8048 and the 8049 require positive values of IREF, and the input and output currents (or voltages) respectively must also be positive. Application of negative IN to the 8048 or negative IREF to
either circuit will cause malfunction, and if maintained for long periods, would lead to device degradation. Some protection can be provided by placing a diode between pin 7 and ground.

SETTING UP THE REFERENCE CURRENT

In both the 8048 and the 8049 the input current reference pin (IREF) is not a true virtual ground. For the 8048, a fraction of the output voltage is seen on Pin 16 (Fig. 1). This does not constitute an appreciable error provided VREF is much greater than this voltage. A 10 V or 15 V reference' satisfies this condition. For the 8049, a fraction of the input voltage appears on Pin 3 (Fig. 2), placing a similar restraint on the value of $\mathrm{V}_{\text {REF }}$.
Alternatively, IREF can be provided from a true current source. One method of implementing such a current source is shown in Fig. 7.

LOG OF RATIO CIRCUIT, DIVISION

The 8048 may be used to generate the log of a ratio by modulating the IREF input. The transfer function remains the same, as defined by equation 9:

$$
\begin{equation*}
V_{\text {OUT }}=-K \log _{10}\left[I / I N / I_{\text {REF }}\right] \tag{9}
\end{equation*}
$$

Clearly it is possible to perform division using just one 8048, followed by an 8049 . For multiplication, it is generally necessary to use two log amps, summing their outputs into an antilog amp.
To avoid the problems caused by the IREF input not being a true virtual ground (discussed in the previous section), the circuit of Fig. 7 is again recommended if the IREF input is to be modulated.

FIGURE 7

LA-8048, LA-8049

DEFINITION OF TERMS

In the definitions which follow, it will be noted that the various error terms are referred to the output of the log

DYNAMIC RANGE The dynamic range of the 8048 refers to the range of input voltages or currents over which the device is guaranteed to operate. For the 8049 the dynamic range refers to the range of output voltages over which the device is guaranteed to operate.
ERROR, ABSOLUTE VALUE The absolute error is a measure of the deviation from the theoretical transfer function, after performing the offset and scale factor adjustments as outlined on Pages 3 (8048) or 5 (8049). It is expressed in mV and referred to the linear axis of the transfer function plot. Thus, in the case of the 8048, it is a measure of the deviation from the theoretical output voltage for a given input current or voltage. For the 8049 it is a measure of the deviation from the theoretical input voltage required to generate a specific output voltage.
The absolute error specification is guaranteed over the dynamic range.
ERROR, \% OF FULL SCALE The error as a percentage of full scale can be obtained from the following relationship:

Error, \% of Full Scale $=\frac{100 \times \text { Error, absolute value }}{\text { Full Scale Output Voltage }}$
amp, and to the input of the antilog amp. The reason for this is explained on Page 6.
temperature coefficient of Vout or Vin for the 8048 the temperature coefficient refers to the drift with temperature of VOUT for a constant input current.
For the 8049 it is the temperature drift of the input voltage required to hold a constant value of VOUT.

POWER SUPPLY REJECTION RATIO The ratio of the voltage change in the linear axis of the transfer function (VOUT for the 8048, VIN for the 8049) to the change in the supply voltage, assuming that the \log axis is held constant.

WIDEBAND NOISE For the 8048, this is the noise occurring at the output under the specified conditions. In the case of the 8049, the noise is referred to the input.

SCALE FACTOR For the log amp, the scale factor (K) is the voltage change at the output for a decade (i. e. 10:1) change at the input. For the antilog amp, the scale factor is the voltage change required at the input to cause a one decade change at the output. See equations 9 and 10.

ORDERING INFORMATION

LOGARITHMIC AMPLIFIER

MODEL	MAX. ERROR	OPER. TEMP RANGE	PACKAGE
LA-8048-BC	30 mV	0 to $+70^{\circ} \mathrm{C}$	16 pin Plastic DIP
LA-8048-CC	60 mV	0 而	

ANTI-LOGARITHMIC AMPLIFIER

MODEL	MAX. ERROR	OPER. TEMP RANGE	PACKAGE
LA-8049-BC	10 mV	0 to $+70^{\circ} \mathrm{C}$	16 pin Plastic DIP
LA-8049-CC	25 mV		

PACKAGE DIMENSIONS

FEATURES

- State Variable Filter
- LP, BP, or HP Functions
- 2 Pole Response
- Low Noise Op Amps
- 16-Pin DIP
- Low Cost

GENERAL DESCRIPTION

The FLT-U2 is a universal active filter manufactured with thick-film hybrid technology. It uses the state variable active filter principle to implement a second order transfer function. Three committed operational amplifiers are used for the second order function while a fourth uncommitted op amp can be used as a gain stage, summing amplifier, buffer amplifier, or to add another independent real pole.
Two-pole lowpass, bandpass, and highpass output functions are available simultaneously from three different outputs, and notch and allpass functions are available by combining these outputs in the uncommitted op amp. To realize higher order filters, several FLTU2's can be cascaded. Q range is from 0.1 to 1,000 and resonant frequency range is 0.001 Hz to 200 kHz . Frequency stability is $.01 \% /{ }^{\circ} \mathrm{C}$ and resonant frequency accuracy is within $\pm 5 \%$ of calculated values. Frequency tuning is done by two external resistors and Q tuning by a third external resistor. For resonant frequencies below 50 Hz two external tuning capacitors must be added. Exact tuning of the resonant frequency is done by varying one of the resistors around its calculated value.
The internal op amps in the FLT-U2 have 3 MHz gain bandwidth products and a wideband input noise specification of only $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. This results in considerably improved operation over most other competitive active filters which employ lower performance amplifiers. By proper selection of external components any of the popular filter types such as Butterworth, Bessel, Chebyshev, or Elliptic may be designed. Applications include audio, tone signalling, sonar, data acquisition, and feedback control systems.

Microelectronic Universal Active Filter Model FLT-U2

Data Acquisition

SPECIFICATIONS, FLT-U2
Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ supplies, unless otherwise stated

FILTER CHARACTERISTICS

Frequency Range ${ }^{1}$	0.001 Hz to 200 kHz
Q Range ${ }^{\text {' }}$	0.1 to 1,000
f_{0} Accuracy	$\pm 5 \%$
f_{0} Temperature Coefficient	0.01\%/ ${ }^{\circ} \mathrm{C}$
Voltage Gain ${ }^{1}$	0.1 to 1,000

AMPLIFIER CHARACTERISTICS

Input Offset Voltage 0.5 mV typ., 6 mV max.
Input Bias Current 40 nA typ., 500 nA max.
Input Offset Current 5 nA typ., 200 nA max.
Input Impedance 5 Megohms
Input Com. Mode Voltage Range .. $\pm 12 \mathrm{~V}$ min.
Input Voltage Noise, wideband $\ldots . .10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
Output Voltage Range $\pm 10 \mathrm{~V} \mathrm{~min}$.
Output Current $\pm 5 \mathrm{~mA}$ min.
Open Loop Voltage Gain 300,000
Common Mode Rejection Ratio ... 100 dB
Power Supply Rejection $10 \mu \mathrm{~V} / \mathrm{V}$
Unity Gain Bandwidth 3 MHz
Slew Rate . $1 \mathrm{~V} / \mu \mathrm{sec}$.

POWER SUPPLY REQUIREMENT
Voltage, rated performance ± 15 VDC
Voltage Range, operating $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
Quiescent Current 10 mA max.

PHYSICAL-ENVIRONMENTAL

NOTE: 1. $\mathrm{f}_{\mathrm{o}} \mathrm{Q} \leq 2 \times 10^{6}$

ORDERING INFORMATION

THE FLT-U2 IS COVERED BY GSA CONTRACT.

TECHNICAL NOTES

1. The FLT-U2 has simultaneous lowpass, bandpass, and highpass output functions. The chosen output for a particular function will be at unity gain based on Tables II and III. This means that the other two unused outputs will be at other gain levels. The gain of the lowpass output is always 10 dB higher than the gain of the bandpass output and 20 dB higher than the gain of the highpass output.
2. When tuning the filter and checking it over its frequency range, the outputs should be checked with a scope to make sure there is no waveform clipping present, as this will affect the operation of the filter. In particular the lowpass output should be checked since its gain is the highest.
3. f_{1}, the center frequency for bandpass and the cutoff frequency for lowpass or highpass, should be checked at the bandpass output. Here the peaking frequency can easily be determined for high Q filters and the 0° or 180° phase frequency can easily be determined for low Q filters (depending on whether inverting or noninverting).
4. Tuning resistors should be 1% metal film resistors with $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature stability or better for best performance. Likewise external tuning capacitors should be NPO ceramic or other stable capacitor types.

THEORY OF OPERATION

The FLT-U2 block diagram is shown in Figure 1. This is a second order state-variable filter using three operational amplifiers. Lowpass, bandpass, and highpass transfer functions are simultaneously produced at its three output terminals. These three transfer functions are characterized by the following second order equations:

$$
\begin{aligned}
& H(s)=\frac{K_{1}}{S^{2}+\frac{\omega_{0}}{Q} S+\omega_{0}^{2}} \quad \text { LOWPASS } \\
& H(s)=\frac{K_{2} S}{S^{2}+\frac{\omega_{0}}{Q} S+\omega_{0}^{2}} \quad \text { BANDPASS } \\
& H(s)=\frac{K_{3} S^{2}}{S^{2}+\frac{\omega_{0}}{Q} S+\omega_{0}^{2}} \quad \text { HIGHPASS }
\end{aligned}
$$

where K_{1}, K_{2}, and K_{3} are arbitrary gain constants.

A second order system is characterized by the location of its poles in the s-plane as shown in Figure 2. The natural radian frequency of this system is ω_{0}. In Hertz this is $f_{0}=\frac{\omega_{0}}{2 \pi}$

THEORY OF OPERATION, (Cont'd)

The resonant radian frequency of the circuit is different from the natural radian frequency and is:

$$
\omega_{1}=\omega_{0} \sin \emptyset=\sqrt{\omega_{0}^{2}-\sigma_{1}^{2}}
$$

The damping factor d determines the amount of peaking in the filter frequency response and is defined as:

$$
d=\cos \varnothing
$$

The point at which the peaking becomes zero is called "critical damping" and is $\mathrm{d}=\sqrt{2} / 2$.
Q is found from d and is a measure of the sharpness of the resonance of the peaking:

$$
\begin{aligned}
& Q=\frac{1}{2 d} \\
& \text { Also, } Q=\frac{f_{0}}{-3 d B \text { Bandwidth }}=\frac{\omega_{0}}{2 \sigma_{1}}
\end{aligned}
$$

For high Q filters the natural frequency and resonant frequency are approximately equal:

$$
\omega_{1} \simeq \omega_{0} \text { or } f_{1} \simeq f_{0}
$$

This is true since $\omega_{1}=\omega_{0} \sin \emptyset$ and $\sin \emptyset \simeq 1$ as the poles move close to the $j \omega$ axis in the s-plane.

For high Q s $(\mathrm{Q}>1)$ we therefore have for the second order filter:

$$
\begin{aligned}
& f_{0} \simeq \text { Bandpass center frequency } \\
& \simeq \text { Lowpass corner frequency } \\
& \simeq \text { Highpass corner frequency }
\end{aligned}
$$

In the simplified tuning procedure which follows, the tuning is accomplished by independently setting the natural frequency and Q of the filter. This is done most simply by assuming unity gain for the output of the desired filter function. Unity gain means a gain of one (\pm) at DC for lowpass, at center frequency for bandpass, and at high frequency ($f \gg f_{0}$) for highpass. Unity gain does not apply to all outputs simultaneously but only to the chosen output based on the component values given in the tables. Figure 3 shows the relative gains of the three simultaneous outputs assuming the bandpass gain is set to unity. Note that lowpass gain is always 10 dB higher than bandpass gain and highpass gain is always 10 dB lower than bandpass gain.

Figure 2. S-Plane Diagram

Figure 3.
Relative Gains of Simultaneous Outputs, $Q=1$

SIMPLIFIED TUNING PROCEDURE

1. Select the desired transfer function (lowpass, bandpass, or highpass) and inverted or noninverted output. From this determine the filter configuration (inverting or noninverting) using Table I.

TABLE I FILTER CONFIGURATION

	LP	BP	HP
INVERTING INPUT NONINVERTING INPUT	INV NON-INV	NON-INV INV	INV NON-INV

2. Starting with the desired natural frequency and Q (determined from the filter transfer function or s-plane diagram), compute $f_{0} Q$. For $f_{0} Q>10^{4}$ the actual realized Q will exceed the calculated value. At $f_{0} Q=10^{4}$ the increase is about 1% and at $f_{0} Q=10^{5}$ it is about 20%
3. Inverting Configuration. Using the value of Q from Step 2 find R_{1} and R_{3} from Table II. R_{2} is open, or infinite.

TABLE II INVERTING CONFIGURATION

	R_{1}	R_{2}	R_{3}
LOWPASS	100 K	OPEN	$\frac{100 \mathrm{~K}}{3.80 \mathrm{Q}-1}$
			$\frac{100 \mathrm{~K}}{3.48 \mathrm{Q}}$
BANDPASS	$\mathrm{Q} \times 31.6 \mathrm{~K}$	OPEN	
	10 K	OPEN	$\frac{100 \mathrm{~K}}{6.64 \mathrm{Q}-1}$

4. Noninverting Configuration. Using the value of Q from Step 2 find R_{2} and R_{3} from Table III. R_{1} is open, or infinite.

TABLE III NONINVERTING CONFIGURATION

	R_{1}	R_{2}	R_{3}
LOWPASS	OPEN	$\frac{316 \mathrm{~K}}{\mathrm{Q}}$	$\frac{100 \mathrm{~K}}{3.16 \mathrm{Q}-1}$
BANDPASS	OPEN	100 K	$\frac{100 \mathrm{~K}}{3.48 \mathrm{Q}-1}$
HIGHPASS	OPEN	$\frac{31.6 \mathrm{~K}}{\mathrm{Q}}$	$\frac{100 \mathrm{~K}}{0.316 \mathrm{Q}-1}$

5. Using the value of f_{0} from Step 2, set the natural frequency of the filter by finding R_{4} and R_{5} from the equation:

$$
R_{4}=R_{5}=\frac{5.03 \times 10^{7}}{f_{0}}
$$

where R_{4} and R_{5} are in ohms and f_{0} is in Hertz. The natural frequency varies as $\sqrt{R_{4} R_{5}}$ and therefore one value may be increased and the other decreased and the natural frequency will be constant if the geometric mean is constant. To maintain constant bandwidth at the bandpass output while varying center frequency, fix R_{4} and vary R_{5}.

Using the Uncommitted Op Amp to Add a Real Axis Pole

Figure 8.
Three Pole Butterworth Low Pass Filter Example

SIMPLIFIED TUNING PROCEDURE,(Cont'd)

6. For $f_{0}<50 \mathrm{~Hz}$ the internal 1000 pF capacitors should be shunted with external capacıtors across pins $5 \& 7$ and 13 \& 14. If equal value capacitors are used, R_{4} and R_{5} are then computed from:

$$
R_{4}=R_{5}=\frac{5.03 \times 10^{10}}{f_{0} C}(C \text { in } p F)
$$

For unequal value capacitors this becomes:

$$
R_{4}=R_{5}=\frac{5.03 \times 10^{10}}{f_{0} \sqrt{\mathrm{C}_{1} \mathrm{C}_{2}}}\left(\mathrm{C}_{1} \mathrm{C}_{2} \text { in } \mathrm{pF}\right)
$$

In both cases the capacitance is the sum of the external values and the internal 1000 pF values.
7. This procedure is based on unity gain output for the desired function. For additional gain, the fourth uncommitted operational amplifier should be used as an inverting or noninverting gain stage following the selected output. See Figure 4. A third pole on the real axis of the s-plane may also be added to the transfer function by adding a capacitor to the gain stage as shown in Figure 5

FILTER DESIGN EXAMPLES

Bandpass Filter With 1 kHz Center Frequency, $\mathbf{Q}=10$, and Inverted Output

1. From Table I the noninverting configuration is chosen to realize an inverted bandpass output. $f_{0} Q=10^{4}$ which means the realized Q will be about 1% higher than calculated
2. From Table III, using $Q=10$, we find

$$
\begin{aligned}
& R_{1}=\text { open } \\
& R_{2}=100 \mathrm{~K} \text { ohms } \\
& R_{3}=100 \mathrm{~K}-100 \mathrm{~K}=2.96 \mathrm{~K} \text { ohms }
\end{aligned}
$$

3. Using f_{0} of $1 \mathrm{kHz}, R_{4}$ and R_{5} are found from the equation

$$
R_{4}=R_{5}=\frac{5.03 \times 10^{7}}{1000}=50.3 \mathrm{~K} \mathrm{ohms}
$$

4. This completes the filter design which is shown in Figure 6. To choose the nearest 1% standard value resistors either 49.9 K or 51.1 K ohms could be used; likewise one value of 49.9 K and one of 51.1 K could be used giving the geometric mean of $\sqrt{\mathrm{R}_{4} \mathrm{R}_{5}}=\sqrt{49.9 \mathrm{~K} \times 51.1 \mathrm{~K}}=$ 50.5 K which is even closer. But due to the filter $\pm 5 \%$ frequency tolerance it may be better to hold R_{4} constant while varying R_{5} to tune it exactly.

Three-Pole Noninverting Butterworth Low Pass Filter With DC Gain Of 10 And Cutoff Frequency Of 5 kHz.

The s-plane diagram of the 3 -pole Butterworth filter is shown in Figure 7. We will use a second order filter to realize the two complex conjugate poles and the uncommitted op amp to provide the third real axis pole and a DC gain of 10 .

1. From Table I, the noninverting filter configuration would normally be used to give a noninverting low pass output.

FILTER DESIGN EXAMPLES, (Cont'd)

In this case, however, we choose an inverting uncommitted op amp with a gain of 10 and therefore we use the inverting configuration for the filter. By comparing the second order portion of the Butterworth function $\mathrm{S}^{2}+\omega \mathrm{S}+\omega_{0}{ }^{2}$ to the standard second order function $S^{2}+\omega_{0} S+\omega_{0}^{2}$ we find $Q=1$. $f_{0} Q$ is then 5×10^{3} so that Q Q
will not exceed its specified value
2. From Table II, using $Q=1$, we find:

$$
\begin{aligned}
& \mathrm{R}_{1}=100 \mathrm{~K} \text { ohms } \\
& \mathrm{R}_{2}=\mathrm{open} \\
& \mathrm{R}_{3}=\frac{100 \mathrm{~K}}{3.80 \mathrm{Q}-1}=35.7 \mathrm{~K} \mathrm{ohms}
\end{aligned}
$$

3. Using f_{0} of $5 \mathrm{kHz}, R_{4}$ and R_{5} are found from the equation:

$$
R_{4}=R_{5}=\frac{5.03 \times 10^{7}}{5000}=10.1 \mathrm{~K} \mathrm{ohms}
$$

4. For the uncommitted output amplifier, a gain of -10 is required. This defines $R_{1 /} R_{6}=10$ and we arbitrarily choose $\mathrm{R}_{6}=2 \mathrm{~K}, \mathrm{R}_{7}=20 \mathrm{~K}$ ohms
5. The final step is to realize the real axis pole of the Butterworth filter. This pole is at 5 kHz and is set by using capacitor C_{3} across the feedback resistor R_{7} :

$$
C_{3}=\frac{1}{2 \pi \mathrm{R}_{7}}=\frac{1}{6.28 \times 5 \times 10^{3} \times 20 \times 10^{3}}=1590 \mathrm{pF}
$$

6. This completes the 3 -pole Butterworth filter which is shown in Figure 8

Highpass Filter with Gain of $\mathbf{- 1 , 2 0} \mathbf{k H z}$ Cutoff Frequency, and Critical Damping

1. From Table I the inverting configuration must be used to realize a highpass gain of -1 . An s-plane diagram of this function is shown in Figure 9. Critical damping requires the pole positions to be on a line 45° with respect to the real axis and this results in no frequency peaking The damping factor d is:

$$
\begin{aligned}
& d=\cos \emptyset=\cos 45^{\circ}=0.707 \\
& Q=\frac{1}{2 d}=\frac{1}{2(.707)}=0.707
\end{aligned}
$$

Because this is a low Q system the natural frequency will not be the same as the highpass cutoff frequency f_{1}. From Figure 9:

$$
f_{0}=\frac{f_{1}}{\cos \emptyset}=\frac{20 \mathrm{kHz}}{0.707}=28.3 \mathrm{kHz}
$$

Then $f_{0} Q=0.707 \times 28.3 \times 10^{3}=2 \times 10^{4}$ and the Q will exceed its desired value by slightly over 1%.
2. From Table II, using $Q=0.707$ we find:

$$
\begin{aligned}
& R_{1}=10 \mathrm{~K} \text { ohms } \\
& R^{2}=\text { open } \\
& R_{3}=\frac{100 \mathrm{~K}}{6.64 \mathrm{Q}-1}=\frac{100 \mathrm{~K}}{3.69}=27.1 \mathrm{~K} \text { ohms }
\end{aligned}
$$

3. Using $f_{0}=28.3 \mathrm{kHz}, \mathrm{R}_{4}$ and R_{5} are found from the equation:

$$
R_{4}=R_{5}=\begin{aligned}
& 5.03 \times 10^{\prime}=1.78 \mathrm{~K} \mathrm{ohms} \\
& 28.3 \times 10^{3}=1.7
\end{aligned}
$$

4. This completes the highpass filter design which is shown in Figure 10. When using this filter, care should be exercised so that clipping does not occur in the filter due to excessive input levels. If clipping occurs, the filter will not operate properly. Clipping will first occur at the lowpass output around f_{0} since its gain is 20 dB higher than the highpass output. The signal level should be reduced so that clipping does not occur anywhere in the frequency range used. If higher signal level is required, the highpass output should be amplified by a gain stage using the uncommitted op amp.

ADVANCED FILTERS

All of the common filter types can be realized by using cascaded FLT-U2 stages. This includes multi-pole Butterworth. Bessel, Chebyshev, and Elliptic types. The basic procedure is to implement each pole pair with a single FLT-U2 and cascade enough units to realize all poles. A real axis pole is implemented by an uncommitted op amp. stage. Each stage should be separately tuned with an oscillator and scope and then the stages connected together and checked. See Figure 11

A notch filter can be constructed in several ways. The first way is to use the FLT-U2 as an inverting bandpass filter and sum the output of the filter with the input signal by means of the uncommitted op amp. This produces a net subtraction at the center frequency of the bandpass which produces a null at the output of the amplifier. (See Figure 12.) Likewise lowpass and highpass outputs (which are always in phase) can be subtracted from each other with an external op amp. The highpass output must have some gain added to it, however, so that its gain is equal to that of the lowpass output. A third method is to use two separate FLT-U2's, one as a two-pole lowpass filter and the other as a two-pole highpass filter. Again the outputs are subtracted in an op amp. This method permits independent tuning of the two sections to get the best null response.
Further discussion of filter designs is beyond the scope of this data sheet and the user is referred to the various texts on filter design, some of which are listed below.
Estep, G.J., The State Variable Active Filter Configuration Handbook, 2nd Edition, Agoura, Ca., 1974
Reference Data for Radio Engineers, Howard W. Sams \& Co. Inc., 5th Edition.
Christian, E., and Eisenmann, E., Filter Design Tables and Graphs. McGraw-Hill Book Co., 1974

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340
Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale. CA (408)733-2424 • Gaithersburg, MD (301)840-9490

- Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055
- DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

TT－590 Two－Terminal IC Temperature Transducer

FEATURES

－Linear current output： $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
－Wide range：$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
－Two－terminal device：Voltage in／current out
－Laser trimmed to $\pm 1^{\circ} \mathrm{C}$ calibration accuracy （TT－590－L）
－Excellent linearity：$\pm 0.5^{\circ} \mathrm{C}$ over full range （TT－590－L，K）
－Wide power supply range：+4 V to +30 V
－Sensor isolation from case
－Low cost

GENERAL DESCRIPTION

The TT－590 is a two－terminal integrated circuit temperature transducer which produces an output current proportional to absolute temperature．The device acts as a high impedance， constant current regulator passing $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$ for supply volt－ ages between +4 V and +30 V ．Laser trimming of the chip＇s thin film resistors is used to calibrate the device to $298.2 \mu \mathrm{~A}$ output at $298.2^{\circ} \mathrm{K}\left(+25^{\circ} \mathrm{C}\right)$ ．
The TT－ 590 should be used in any temperature sensing appli－ cation between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$ in which conventional
electrical temperature sensors are currently employed．The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the TT－590 an attractive alternative for many temperature measurement sit－ uations．Linearization circuitry，precision voltage amplifiers， resistance－measuring circuitry and cold junction compensa－ tion are not needed in applying the TT－590．In the simplest ap－ plication a resistor，a power source and any voltmeter can be used to measure temperature．

In addition to temperature measurement，applications in－ clude temperature compensation or correction of discrete components，and biasing proportional to absolute tem－ perature．
The TT－590 is particularly useful in remote sensing applica－ tions．The device is insensitive to voltage drops over long lines due to its hight impedance current output．Any well－ insulated twisted pair is sufficient for operation hundreds of feet from the receiving circuitry．The output characteristics also make the TT－590 easy to multiplex：the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output．

[^13]
ABSOLUTE MAXIMUM RATINGS

($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

$$
\begin{aligned}
& \text { Forward Voltage (} \mathrm{V}^{+} \text {to } \mathrm{V}^{-} \text {) .. }+44 \mathrm{~V} \\
& \text { Reverse Voltage (} \mathrm{V}^{+} \text {to } \mathrm{V}^{-} \text {) } 20 \mathrm{~V} \\
& \text { Breakdown Voltage (Case to } \mathrm{V}^{+} \text {or } \mathrm{V}^{-} \text {) ... } \pm 200 \mathrm{~V} \\
& \text { Rated Performance Temperature Range }-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& \text { Storage Temperature Range } 65^{\circ} \mathrm{C} \text { to }+275^{\circ} \mathrm{C} \\
& \text { Lead Temperature (Soldering, } 10 \mathrm{sec} \text {) .. }+300^{\circ} \mathrm{C}
\end{aligned}
$$

SPECIFICATIONS (Typical values at $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{S}=5 \mathrm{~V}$ unless otherwise noted)

CHARACTERISTICS	TT-590-1	TT-590-J	TT-590-K	TT-590-L	TT-590-M	UNITS
Output Nominal Output Current @ $+25^{\circ} \mathrm{C}\left(298.2^{\circ} \mathrm{K}\right)$	298.2	298.2	298.2	298.2	298.2	$\mu \mathrm{A}$
Nominal Temperature Coefficient	1.0	1.0	1.0	1.0	1.0	$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Calibration Error @ $+25^{\circ} \mathrm{C}$ (notes)	± 10.0 max	$\pm 5.0 \max$	± 2.5 max	$\pm 1.0 \max$	± 0.5 max	${ }^{\circ} \mathrm{C}$
Absolute Error $\left(-55\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ (Note 1) Without external calibration adjustment With external calibration adjustment	$\begin{aligned} & \pm 20.0 \mathrm{max} \\ & \pm 5.8 \mathrm{max} \end{aligned}$	$\begin{aligned} & \pm 10.0 \max \\ & \pm 3.0 \max \end{aligned}$	$\begin{aligned} & \pm 5.5 \max \\ & \pm 2.0 \max \end{aligned}$	$\begin{aligned} & \pm 3.0 \max \\ & \pm 1.6 \max \end{aligned}$	$\begin{aligned} & \pm 1.7 \mathrm{max} \\ & \pm 1.0 \mathrm{max} \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Non-Linearity	$\pm 3.0 \mathrm{max}$	$\pm 1.5 \mathrm{max}$	$\pm 0.8 \mathrm{max}$	± 0.4 max	± 0.3 max	${ }^{\circ} \mathrm{C}$
Repeatability (Note 2)	± 0.1 max	${ }^{\circ} \mathrm{C}$				
Long Term Drift (Note 3)	± 0.1 max	$\pm 0.1 \mathrm{max}$	$\pm 0.1 \mathrm{max}$	± 0.1 max	± 0.1 max	${ }^{\circ} \mathrm{C}$
Current Noise	40	40	40	40	40	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Power Supply Rejection $\begin{aligned} & +4<V_{S}<+5 \mathrm{~V} \\ & +5<\mathrm{VS}_{\mathrm{S}}<+15 \mathrm{~V} \\ & +15 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<+30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$
Case Isolation to Either Lead	1010	1010	1010	1010	1010	Ω
Effective Shunt Capacitance	100	100	100	100	100	pF
Electrical Turn-on Time (Note 1)	20	20	20	20	20	$\mu \mathrm{S}$
Reverse Bias Leakage Current (Note 4)	10	10	10	10	10	pA
Power Supply Range	+4 to +30	Volts				

Notes 1. Does not include self heating effects.
2. Maximum deviation between $+25^{\circ} \mathrm{C}$ reading after temperature cycling between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$; guaranteed, not tested.
3. Conditions: Constant +5 V , constant $+125^{\circ} \mathrm{C}$; Guaranteed, not tested.
4. Leakage current doubles every $+10^{\circ} \mathrm{C}$.

TYPICAL APPLICATIONS

Low Cost Monolithic Voltage to Frequency Converters Models VFQ-1C, VFQ-1R

FEATURES

- 10 kHz to 100 kHz FS
- 0.01% Typ. Linearity at 10 kHz
- 25 ppm $/{ }^{\circ} \mathrm{C}$ Gain Tempco
- Open Collector Output
- Pulse and Square Wave Outputs
- Operates as V/F or F/V

GENERAL DESCRIPTION

Model VFQ-1 is a new monolithic voltage to frequency converter using combined bipolar and CMOS technologies. This device accepts a positive analog input current and produces an output pulse train with a frequency linearly proportional to an input current. In addition to the pulse output, there is also a square wave output at half the pulse frequency. The full scale output pulse rate can be set from 10 kHz to 100 kHz by means of two external capacitors. Linearities are typically 0.01% for 10 kHz full scale and 0.1% for 100 kHz full scale; linearity holds all the way down to zero.

The VFQ-1 internal circuitry includes an operational integrator, a comparator, digital delay circuit, single-pole double-throw electronic switch, a start circuit, a divide by two circuit, and two output driver circuits. It operates on the well-known charge balancing integrator principle. The two outputs are open collector NPN which can sink up to 10 mA and give a logic HI output up to +18 volts.

In normal operation this converter requires only five external components and a reference. If the zeroing adjustment is used, a trimming potentiometer and two more resistors are required. The VFQ-1 can be operated from dual ± 4 to $\pm 7.5 \mathrm{~V}$ supplies or from a single +10 V to +15 V supply. Current drain is 4 mA max. The device can also be operated as a frequency to voltage converter.

There are two basic packages offered: a 14 pin plastic DIP for $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operation (VFQ-1C), and a 14 pin ceramic DIP for $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation (VFQ-1R).

SPECIFICATIONS, VFQ-1
(Typical at $25^{\circ} \mathrm{C}, \pm 5 \mathrm{~V}$ supplies, -5 V ref., unless otherwise noted)

	VFQ-1C	VFQ-1R
MAXIMUM RATINGS Supply Voltage, pin 4 to pin 14 Input Current, pin 3 Reference Current, pin 7 Output Voltage, pins 8 and 10 Reference (pin 7) to -Vss	$\begin{aligned} & 18 \text { Volts } \\ & \pm 10 \mathrm{~mA} \\ & \pm 10 \mathrm{~mA} \\ & +18 \text { Volts } \\ & \pm 1.5 \text { Volts } \end{aligned}$	
Input Current Range Input Current Overrange Input Offset Voltage. Reference Input	$\begin{aligned} & 0 \text { to }+10 \mu \mathrm{~A} \\ & +50 \mu \mathrm{~A} \\ & \pm 50 \mathrm{mV} \text { max. } \end{aligned}$	*
	Negative Voltage w negative supply	$\mathrm{n} \pm 1.5 \mathrm{~V} \text { of }$
OUTPUTS Type Outputs Pulse Output, pin 8 Square Wave Output, pin 10 Output Logic Levels	Open Collector, NP Negative going, 3μ Square Wave at $f_{0} / 2$ $\operatorname{Vout}(" \mathrm{O} ") \leq+0.4 \mathrm{~V}$ $\operatorname{VOUT}(" 1$ ") $=+\operatorname{VDD}$	pulses at f_{0}. $-10 \mathrm{~mA}$
PERFORMANCE Linearity, $\mathbf{1 0} \mathbf{~ k H z}$ Full Scale Linearity, 100 kHz Full Scale Gain Tempco, ppm $/{ }^{\circ} \mathrm{C}$	0.01\% typ., 0.05\% max. 0.1\% typ., 0.25\% max. ± 25 typ., ± 40 max.	
Full Scale Accuracy, before trim Output Settling Time. Power Supply Rejection.	$\pm 10 \%$	*
	2 Pulses of New Frequency	
	0.025\%/V	*
SPECIFICATION AS F/V Input Frequency Range Input Voltage, Minimum Input Voltage, Maximum . Input Impedance	$\begin{aligned} & 0 \text { to } 100 \mathrm{kHz} \\ & \pm 0.4 \mathrm{~V} \\ & -2 \mathrm{~V} \text { to }+\mathrm{VDD} \\ & 10 \mathrm{Meg} ., \mathrm{min} . \end{aligned}$	*
Input Pulse Width.		
Output Voltage Range Linearity. Output Load, Min.	$\begin{aligned} & 0 \mathrm{~V} \text { to }(+\mathrm{VDD}-1) \\ & \pm 0.1 \% \\ & 2 \mathrm{~K} \end{aligned}$	
POWER REQUIREMENT	+4.0 to $+7.5 \mathrm{~V} @ 4 \mathrm{~mA}$ max. -4.0 to $-7.5 \mathrm{~V} @ 4 \mathrm{~mA}$ max.	
PHYSICAL ENVIRONMENTAL		
Operating Temp. Range Storage Temp. Range Package, 14 pin	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & \text { Plastic DIP } \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & \text { Ceramic DIP } \end{aligned}$

*Same Specification as First Column

1. To calibrate the VFQ-1 as a V/F converter, connect as shown in the diagrams. Connect a precision voltage source (such as Datel-Intersil's DVC8500) to the input resistor. Connect a 5 digit counter, with time base set to one second, to the output (pin 8).
Zero. Set the voltage reference to +0.01 V and adjust the zero adjust potentiometer for an output frequency of 10 Hz (for 10 kHz FS) or 100 Hz (for 100 kHz FS).
Gain. Assuming 10V FS input, set the voltage reference to +10.000 V and trim the value of R1 to give an output frequency of $10,000 \mathrm{~Hz}$ (for 10 kHz FS) or $100,000 \mathrm{~Hz}$ (for 100 kHz FS).
2. The two outputs (pins 8 and 10) are open collector NPN transistor for easy interfacing to a variety of standard logic circuits. A pull-up resistor must be used as shown in the diagrams. The resistor may be tied to any voltage up to +18 V , which can be separate from +Vod.
3. Note that the negative reference voltage must be within $\pm 1.5 \mathrm{~V}$ of the negative supply (- Vss). For a given full scale output frequency the value of C_{2} is dependent on the negative reference voltage. See "VFQ-1 Formulas" for the relationship.
4. Note the min-max waveform requirements for the input when using the VFQ-1 as a frequency to voltage converter. See "Input Waveform Limits" diagram. The minimum $\pm 0.4 \mathrm{~V}$ must be observed as well as the minimum widths for both positive and negative going portions of the waveform. If the input waveform exceeds the maximum amplitude limits, an input resistor and back-to-back clamping diodes should be used as shown in the connection diagram.
5. The temperature to frequency converter shown in the application diagram is a simple but useful method of sensing temperature accurately and transmitting the result in digital form over some distance. Once calibrated at a known temperature the circuit has a resolution of $0.1^{\circ} \mathrm{C}$ (10 Hz per ${ }^{\circ} \mathrm{K}$).

ORDERING INFORMATION

MODEL TEMP. RANGE PACKAGE
VFQ-1C $\quad 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} \quad$ Plastic DIP

VFQ-1R $\quad 25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \quad$ Ceramic DIP
TRIMMING POTENTIOMETER: TP5OK

THESE CONVERTERS ARE COVERED BY GSA CONTRACT.

OUTPUT WAVEFORMS

INPUT WAVEFORM LIMITS (F/V CONVERTER)

VFQ-1 FORMULAS
fout $=\frac{V_{\text {IN }}}{R_{1}} \times \frac{1}{V_{\text {REF }} \quad C_{2}}$
$R_{1}=\frac{V_{\text {IN }}(\text { max. })}{10 \mu \mathrm{~A}}$
$82 \mathrm{~K} \leq \mathrm{R}_{2} \leq 120 \mathrm{~K}$
$3 \mathrm{C}_{2} \leq \mathrm{C}_{1} \leq 10 \mathrm{C}_{2}$
C_{1} (optimum) $=4 \mathrm{C}_{2}$
F/V CONVERTER
$V_{\text {OUt }}=$ fin $\times V_{\text {ref }} \times \mathrm{C}_{2} \times \mathrm{R}_{1}$
OUTPUT TIME CONSTANT: $T=R_{1} C_{1}$

NORMAL CONNECTION-10 kHz FULL SCALE

NOTE: FOR 100 kHz FULL SCALE, $\mathrm{C}_{1}=100 \mathrm{pF}$ AND $\mathrm{C}_{2}-20 \mathrm{pF}$

BIPOLAR OPERATION (0 to 20 kHz)

SINGLE SUPPLY OPERATION

FREQUENCY TO VOLTAGE CONVERTER
(0 to 100 kHz INPUT)

NOTE: IF THE AMPLITUDE OF THE INPUT WAVEFORM EXCEEDS THE SPECIFIED MAXIMUM, THE FOLLOWING INPUT CIRCUIT THE SPECIFIED MAX
SHOULD BE ADDED

TEMPERATURE TO FREQUENCY CONVERTER

NOTES:

1. $V_{g o}$ IS THE EXTRAPOLATED ENERGY-BAND-GAP VOLTAGE FOR SILICON AT $0^{\circ} \mathrm{K}$.
2. RIS A STABLE METAL FILM RESISTOR ($50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ OR BETTER) ITS EXACT VALUE SHOULD BE FOUND BY ADJUSTING IT TO ITS EXACT VALUE SHOULD BE FOUND BY ADJUSTING IT T GIVE AN OUTPUT FREQUENCY OF $10 \times^{\circ} \mathrm{K}$ IN HZ FOR BE CORRECTLY CALIBRATED FOR ALL OTHER TEMPERATURES.
3. WHEN PROPERLY IMPLEMENTED THIS CONVERTER IS ACCURATE TO 1OK.

Universal V-to-F and F-to-VConverter VFV Series

FEATURES

- Linearity to .005\%
- V or I Input
- V/F or F/V Conversion
- 10 kHz or 100 kHz FS
- DTL/TTL or CMOS Output

GENERAL DESCRIPTION
The VFV series voltage to frequency converters, with universal operating characteristics offers significant advantages over other available units. These converters can be operated as either voltage to frequency or frequency to voltage converters by external pin connection. In addition, voltage inputs of 0 to +10 V or 0 to -10 V and current inputs of 0 to +1 mA or 0 to -1 mA can be chosen by pin connection. As an F / V converter either 0 to +10 V or 0 to -10 V outputs can be chosen by pin connection. Output pulses can be selected to be positive or negative going, with DTL/TTL, CMOS, or high level logic interfacing. The output is short circuit proof to common or either supply voltage. The result of these universal pin connectable operating characteristics is wide flexibility in applications.
There are two basic models in this series, the VFV-10K and VFV-100K, with 10 kHz and 100 kHz full scale output frequencies respectively. Both models have a linear minimum overrange capability of 10%. The linearity holds down to zero input, resulting in an extremely wide dynamic range of operation. The output pulses are constant width pulses of $70 \mu \mathrm{sec}$. for the VFV-10K and $7 \mu \mathrm{sec}$. for the VFV100K. Both models are internally trimmed to 1% accuracy with external offset and gain adjustments for precise calibration in a specific application. When used as an F/V converter, an external capacitor can be used to reduce output ripple to a specified level.
NOTE: OPEN DOTS INDICATE OMITTED PINS. PIN POSITION. TOLERANCE IS $\pm 0.005^{\prime \prime}$ FROM DATUM, NON ACCUMULATIVE WEIGHT: 1.8 OZ ($\mathbf{(5 1 \mathrm { G })}$

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	voltage out
2	PULSE IN
3	OMITTED
4	"
5	,
6	"
7	1
8	"
9	POWER \& LOGIC GND
10	PULSE OUT
11	OMITTED
12	LOGIC SELECT
13	OMITTED
14	PULSE POLARITY
15	+ 15 VDC POWER
16	-15 VDC POWER
17	OMITTED
18	"
19	GAIN POTENTIOMETER
20	OMITTED
21	GAIN ADJUST
22	OMITTED
23	GAIN POTENTIOMETER
24	OMITTED
25	"
26	+ VOLTAGE IN
27	INVERTED OUT
28	- VOLTAGE IN
29	SIGNAL COMMON
30	- CURRENT IN
31	f JURRENT IN
32	ZERO ADJUST

SPECIFICA	NS					TE
Typical at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ Supplies unless otherwise noted				VFV-10K	VFV-100K	V/F CONVERTER OPERATION The V/F converter can be thought of as an A/D
V/F CONVERTER INPUT Input Voltage Range. Input Current Range. Input Overrange, min. Input Impedance, voltage in				$\begin{aligned} & 0 \text { to }+10 \mathrm{~V} \\ & 0 \text { to }-10 \mathrm{~V} \\ & 0 \text { to }+1 \mathrm{~mA} \\ & 0 \text { to }-1 \mathrm{~mA} \\ & 10 \% \\ & 10 \mathrm{~K} \text { ohms } \end{aligned}$		be counted. The first applications diagram shows the V/F converter used as A / D converter by connecting the output to a digital counter and register. The digital counter is shown with a one second counting time base and an output register to store the output data while the V/F. converter is making a conversion. The VFV-10K has a resolution of 1 part in 10,000
V/F CONVERTER OUTPUT Frequency Range Frequency Overrange, min Pulse Width Rise and Fall Time, max Pulse Polarity. Settling Time to $.01 \%$ Overload Recovery. Capacitive Loading, max Output Logic Output Loading, S.C. protected				0 to 10 kHz 10\% $70 \mu \mathrm{sec}$ 200 nsec . Pos. or Neg. 1 pulse of new freq. 1 pulse of new freq. 1000pF DTL/TTL or CMOS 12 TTL loads	0 to 100 kHz $7 \mu \mathrm{sec}$ * * 100pF	better than 13 bits binary resolution (1 part in 8,192). The nonlinearity of this model is 50 ppm maximum which is equivalent ($50 \mathrm{ppm}=$ $1 / 2$ LSB) to a better than 13 bit binary converter. With a gain temperature stability of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ worst case, the VFV-10K is equivalent to a very high quality A / D converter in its performance. The VFV-100K has a resolution of 1 part in 100,000 using a 1 second time base. This is equivalent to better than 16 bits binary resolution (1 part in 65,536). The VFV-100K can be used to give equivalent resolution to the VFV-10K with only one tenth the time base, or 0.1 second for a resolution of 1 part in 10,000.
ACCURACY Full Scale Error, pretrimmed, max. (adj. to zero). Nonlinearity, max. Offset Voltage, max. (adj. to zero). Temp. Coefficient of Gain max. Gain vs. time Temp. Coefficient of Zero, max. Zero Drift vs. Time Power Supply Sensitivity, max. Warm Up Time to Rated Accuracy				$\begin{aligned} & \pm 1 \% \\ & \pm .005 \% \\ & \pm 10 \mathrm{mV} \\ & \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \pm 100 \mathrm{ppm} / \text { day } \\ & \pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 10 \mu \mathrm{~V} / \text { day } \\ & .002 \% / \% \\ & 1 \text { minute } \end{aligned}$	$\begin{gathered} \pm .05 \% \\ * \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ * \\ * \\ * \\ .02 \% / \% \\ 5 \text { minutes } \end{gathered}$	An important characteristic of both the VFV-10K and VFV-100K is that their linearity does not fall off near zero as with some other converters. They are both linear right to zero, and this results in a wide dynamic operating range. In practice the lower limit of operation is about 1 millivolt input due to adjustment accuracy, long term stability, temperature drift, etc. This results in a dynamic range of 10,000 to 1 of 80 dB for both models. As a V/F converter positive inputs are achieved using inputs directly into the integrator (pins 26 or 31). For negative inputs the internal
F/V CONVERTE Input Pulses	SPECIF Input Code 1 0		$N S$ Max +0.8 V +15 V	Negative Going <1 TTL Load	*	inverting amplifier is connected ahead of the integrator and the input is applied to pin 28 or 30. Using both the inverting amplifier inputs and the integrator inputs it is possible to algebraically add and subtract inputs for V/F converter operation.
Input Impeda Input Pulse W Filter Time C Output Volta Output Imped Output Curre	e, min . th . . stant ce S.C. pro	tected		30K ohms 10-60 $\mu \mathrm{sec}$. 0.5 msec . 0 to +10 V 0 to -10V 0.1 ohm $\pm 5 \mathrm{~mA}$	4K ohms $1-6 \mu \mathrm{sec}$. .025 msec .	The output logic level can be set from 0 to +15 V by use of an external resistor connected to pin 10 while pin 12 is left open. The output voltage is determined by the resistor ratio with the internal 10 K ohm resistor as shown in the Output Logic Connections diagram. F/V CONVERTER OPERATION
POVVER REQUIR	ENT			$\begin{aligned} & \pm 15 \mathrm{VDC} @ 25 \mathrm{~mA} \\ & \text { quiescent } \end{aligned}$	*	going input pulses must be used. The pulses must go from a HI logic level of +2.0 V to +15 V
PHYSICAL-ENV Operating Tem Storage Temp Relative Hum Case Size. Case Material Pins Weight . . . Mating Socke *Specifications	ONMEN erature ature R ity. e as VF	NTAL Range. ange V-10K		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ Up to 100% non. cond. $2^{\prime \prime} \times 2^{\prime \prime} \times .375^{\prime \prime}$ Black Diallyl Phthalate, Epoxy Encapsulated $0.020^{\prime \prime}$ dia. round, gold plated, .250' min. 1.8 oz . (51 g .) DILS-2, 2 ea.	$*$ $*$ $*$ $*$ $*$ $*$ $*$	widths must be between 10 and $60 \mu \mathrm{sec}$ for the VFV-10K and 1 and $6 \mu \mathrm{sec}$ for the VFV-100K. If these pulse widths are not available, then input conditioning circuits must be used as shown in the diagrams of Input Conditioning for F/V Converter. Output ripple of the F/V converter can be made arbitrarily low by using an external filtering capacitor. This also slows down the output response time. As an F/V converter, a positive output is taken directly from the integrator output (pin1). For a negative output voltage the internal inverting amplifier is used after the integrator and the output is taken at pin 27.

AS F/V CONVERTER

Trimming potentiometers are $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 15$ turn type, available from Datel-Intersil

V/F CONVERTER

1. Connect the unit as a V / F converter as shown above with zero and gain trimming potentiometers.
2. Connect a precision dial-up voltage source to +Vin (pin 26) and a digital counter and display set to a 1 second time base to PULSE OUT (pin 10) as shown.
3. Set the precision voltage source to +.010 volt and adjust the zero trimming potentiometer to give an output count of 10 for the VFV-10K or 100 for the VFV-100K.
4. Set the precision voltage source to +10.000 volts and adjust the gain trimming potentiometer to give an output count of 10,000 for the VFV-10K or 100,000 for the VFV-100K.

The above procedure applies for a positive input voltage V/F converter. For a negative input voltage, connect pin 27 to pin 26 and use pin 28 as the input.

F/V CONVERTER

1. Connect the unit as an F/V converter as shown with desired external filter capacitor and zero and gain trimming potentiometers.
2. Connect a $4-1 / 2$ digit DVM to the Vout terminal (pin 1). Connect the PULSE IN terminal (pin 2) to +15 volt supply, and adjust the zero trimming potentiometer for 0.000 volts output.
3. Connect a pulse generator to PULSE IN (pin 2) and set the generator to give +5 volt negative going pulses $50 \mu \mathrm{sec}$ wide for the VFV-10K or $5 \mu \mathrm{sec}$ wide for the VFV-100K. Connect a digital counter to the pulse generator output and set the pulse rate to exactly 10 kHz for the VFV-10K or 100 kHz for the VFV-100K.
4. Adjust the gain trimming potentiometer to give +10.000 volts output.

The above procedure applies for a positive output voltage F / V converter. If negative output voltage is desired, connect pin 1 to pin 28 and measure the output at pin 27.

VFV OPERATING MODES

V/F CONVERTER, -V OR - I INPUT

F/V CONVERTER, +V OUT

F/V CONVERTER, - V OUT

OUTPUT RIPPLE FOR F/V CONVERTER

VFV-100K

INPUT CONDITIONING FOR F/V CONVERTER

INPUT CONDITIONING CIRCUIT FOR WIDE PULSE OR SQUARE WAVE

input conditioning circuit for sine wave, triangular wave, and other zero crossing waveforms

FEATURES

－Simple Conversion of +5 V Logic Supply to $\pm 5 \mathrm{~V}$ Supplies
－Simple Voltage Multiplication（VOUT $=(-) \mathbf{n} V_{I N}$ ）
－99．9\％Typical Open Circuit Voltage Conversion Efficiency
－98\％Typical Power Efficiency
－Wide Operating Voltage Range 1．5V to 10.0 V
－Easy to use－Requires only 2 External Non－ Critical Passive Components

APPLICATIONS

－On Board Negative Supply for up to 64 Dynamic RAMs．
－Localized μ－Processor（8080 type）Negative Supplies
－Inexpensive Negative Supplies
－Data Acquisition Systems

CONNECTION DIAGRAM

8 PIN DIP

Note：1．Pin 1 is designated by dot or notch for DIP．
ORDERING INFORMATION

PART NUMBER	TEMP．RANGE	PACKAGE
VI－7660C	-20° to $+70^{\circ} \mathrm{C}$	TO－99
$\mathrm{VI}-7600 \mathrm{C}$	-20° to $+70^{\circ} \mathrm{C}$	8 8IN MINI DIP
$\mathrm{VI}-7660 \mathrm{M}$	-55° to $+125^{\circ} \mathrm{C}$	TO－99

GENERAL DESCRIPTION

The VI－7660 is a monolithic CMOS power supply circuit which offers unique performance advantages over previously available devices．The VI－7660 performs the complete supply voltage conversion from positive to negative for an input range of +1.5 V to +10.0 V ，resulting in complementary output voltages of -1.5 to -10.0 V with the addition of only 2 non－ critical external capacitors needed for the charge pump and charge reservoir functions．Note that an additional diode is required for $\mathrm{V}_{\text {sUpply }}>6.5 \mathrm{~V}$ ．
Contained on chip are a series DC power supply regulator， RC oscillator，voltage level translator，four output power MOS switches，and a unique logic element which senses the most negative voltage in the device and ensures that the output N － channel switches are not forward biased．This assures latch－ up free operation．
The oscillator，when unloaded，oscillates at a nominal fre－ quency of 10 kHz for an input supply voltage of 5.0 volts．This frequency can be lowered by the addition of an external ca－ pacitor to the＂OSC＂terminal，or the oscillator may be over－ driven by an external clock．
The＂LV＂terminal may be tied to GROUND to bypass the in－ ternal series regulator and improve low voltage（LV）opera－ tion．At medium to high voltages（ +3.5 to +10.0 volts），the LV pin is left floating to prevent device latchup．
Typical applications for the VI－7660 will be data acquisition and microprocessor based systems where there is a +5 volt supply available for the digital functions and an additional－5 volt supply is required for the analog functions．The VI－7660 is also ideally suited for providing low current，-5 V body bias supply for dynamic RAMs．

BLOCK DIAGRAM

[^14]
VI-7660

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	10.5 V
Oscillator Input Voltage (Note 1)	-0.3V to ($\left.\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}<5.5 \mathrm{~V}$
	$\left(\mathrm{V}^{+}-5.5 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}>5.5 \mathrm{~V}$
	-0.3 V to ($\mathrm{V}^{+}+0.3 \mathrm{~V}$) for $\mathrm{V}^{+}<3.5 \mathrm{~V}$
LV (Note 1)	No connection for $\mathrm{V}^{+}>3.5 \mathrm{~V}$
Output Short Duration (VSUPPLY $\leq 5.5 \mathrm{~V}$)	Continuous
Power Dissipation (Note 2)	
VI-7660C	500 mW
VI-7660PC.	300 mW
VI-7660M	500 mW

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{COSC}=0$, Test Circuit Figure 1 (unless otherwise specified)

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
${ }^{+}$	Supply Current		170	500	$\mu \mathrm{A}$	$\mathrm{R}_{\mathrm{L}}=\infty$
$\mathrm{V}^{+} \mathrm{H}_{1}$	Supply Voltage Range - Hi (Dx out of circuit)	3.0		6.5	V	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LV $=$ No Connection
		3.0		5.0	V	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LV $=$ Ground
V^{+}L1	Supply Voltage Range - Lo (Dx out of circuit)	1.5		3.5	V	$\mathrm{MIN} \leq \mathrm{T}_{A} \leq M A X, R_{L}=10 \mathrm{k} \Omega$, LV $=$ Ground
$V^{+}{ }^{\text {H2 }}$	Supply Voltage Range - Hi (Dx in circuit)	3.0		10.0	V	$\mathrm{MIN} \leq \mathrm{T}_{A} \leq M A X, R_{L}=10 \mathrm{k} \Omega, \mathrm{LV}=$ No Connection
$\mathrm{V}^{+} \mathrm{L} 2$	Supply Voltage Range - Lo (Dx in circuit)	1.5		3.5	V	$\mathrm{MIN} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{MAX}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}=$ Ground
Rout	Output Source Resistance		55	100	Ω	IOUT $=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
				120	Ω	lout $=20 \mathrm{~mA},-20^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$
				150	Ω	IOUT $=20 \mathrm{~mA},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq+125^{\circ} \mathrm{C}$
				300	Ω	$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \text { Iout }=3 \mathrm{~mA}, \mathrm{LV}=\text { Ground, } \\ & -20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
				400	Ω	$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \text { IoUT }=3 \mathrm{~mA}, \mathrm{LV}=\text { Ground, }-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \\ & +125^{\circ} \mathrm{C} \text {, } \mathrm{Dx} \text { in circuit } \end{aligned}$
fosc	Oscillator Frequency		10		kHz	, ${ }^{\text {d }}$,
$\mathrm{P}_{\text {Ef }}$	Power Efficiency	95	98		\%	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$
Vout Ef	Voltage Conversion Efficiency	97	99.9		\%	$\mathrm{R}_{\mathrm{L}}=\infty$
Zosc	Oscillator Impedance		1.0		M Ω	$\mathrm{V}^{\dagger}=2$ Volts
			100		k Ω	$\mathrm{V}^{+}=5 \mathrm{~V}$ olts

Notes: 1. Connecting any terminal to voltages greater than V^{+}or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of the V 1-7660
2. Derate linearly above $50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT \& POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT

OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT

NOTES: 1. For large value of $\operatorname{Cosc}(>1000 \mathrm{pF})$ the values of C_{1} and C_{2} should be increased to $100 \mu \mathrm{~F}$.
2. D_{X} is required for supply voltages greater than 6.5 V (@) $-55^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, refer to performance curves for additional information.

Figure 1: VI-7660 Test Circuit

VI-7660

CIRCUIT DESCRIPTION

The VI-7660 contains all the necessary circuitry to complete a voltage doubler, with the exception of 2 external capacitors which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic capacitors. The mode of operation of the device may be best understood by considering Figure 3, which shows an idealized voltage doubler. Capacitor C_{1} is charged to a voltage, V^{+}, for the half cycle when switches S_{1} and S_{3} are closed. (Note: Switches S_{2} and S_{4} are open during this half cycle.) During the second half cycle of operation, switches S_{2} and S_{4} are closed, with S_{1} and S_{3} open, thereby shifting capacitor C_{1} negatively by V^{+}volts. Charge is then transferred from C_{1} to C_{2} such that the voltage on C_{2} is exactly V^{+}, assuming ideal switches and no load on C_{2}. The VI-7660 approaches this ideal situation more closely than existing non-mechanical circuits.
In the VI-7660, the 4 switches in Figure 3 are MOS power switches; S_{1} is a P-channel device and $S_{2}, S_{3} \& S_{4}$ are Nchannel devices. The main difficulty with this approach is
that in integrating the switches, the substrates of $S_{3} \& S_{4}$ must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions (VOUT $=\mathrm{V}^{+}$), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.
This problem is eliminated in the VI-7660 by a logic network which senses the output voltage (VOUT) together with the level translators and switches the substrates or $S_{3} \& S_{4}$ to the correct level to maintain necessary reverse bias.
The voltage regulator portion of the VI-7660 is an integral part of the anti-latchup circuitry, however it's inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the "LV" pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 3.5 volts the LV terminal must be left open to insure latchup proof operation, and prevent device damage.

Figure 3: Idealized Voltage Doubler

THEORETICAL POWER EFFICIENCY CONSIDERATIONS

In theory a voltage multiplier can approach 100% efficiency if certain conditions are met:

A The drive circuitry consumes minimal power
B The output switches have extremely low ON resistance and virtually no offset.
C The impedances of the pump and reservoir capacitors must be negligible at the pump frequency.

The VI-7660 approaches these conditions for negative voltage multiplication if large values of C_{1} and C_{2} are used.
ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE between capacitors if a change in voltage OCCURS. The energy lost is defined by:

$$
E=1 / 2 C_{1}\left(V_{1} 2-V_{2}\right)^{2}
$$

Where V_{1} and V_{2} are the voltages on C_{1} during the pump and transfer cycles. If the impedances of C_{1} and C_{2} are relatively high at the pump frequency (refer to Fig. 3) compared to the value of R_{L}, there will be a substantial difference in the voltages V_{1} and V_{2}. Therefore it is not only desirable to make C_{2} as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C_{1} in order to achieve maximum efficiency of operation.

DO'S AND DON'TS

1 Do not exceed maximum supply voltages.
2 Do not connect LV terminal to GROUND for supply voltages greater than 3.5 volts.

3 Do not short circuit the output to V^{+}supply for supply voltages above 5.5 volts for extended periods, however, transient conditions including startup are okay.
4 When using polarized capacitors, the + terminal of C_{1} must be connected to pin 2 of the VI-7660 and the + terminal of C_{2} must be connected to GROUND.
5 Add diode Dx as shown in Fig. 1 for hi-voltage, elevated temperature applications.

CONSIDERATIONS FOR HI VOLTAGE \& ELEVATED TEMPERATURE

The VI-7660 will operate efficiently over its specified temperature range with only 2 external passive components (charge \& pump capacitors), provided the operating supply voltage does not exceed 6.5 volts at $70^{\circ} \mathrm{C}$ and 5.0 volts at $+125^{\circ} \mathrm{C}$. Exceeding these maximums at the temperatures indicated may result in destructive latch-up of the VI-7660. (Ref: Graph "Operating Voltage Vs. Temperature")
Operation at supply voltages of up to 10.0 volts over the full temperature range without danger of latch-up can be achieved by adding a general purpose diode in series with the VI-7660 output, as shown by "Dx" in the circuit diagrams. The effect of this diode on overall circuit performance is the reduction of output voltage by one diode drop (approximately 0.6 volts).

TYPICAL APPLICATIONS

1. Simple Negative Voltage Converter

The majority of applications will undoubtedly utilize the VI-7660 for generation of negative supply voltages. Figure 4 shows typical connections to provide a negative supply where a positive supply is available. A similar scheme may be employed for supply voltages anywhere in the operating range of +1.5 V to +10.0 volts, keeping in mind that pin 6 (LV) is tied to the supply negative (GND) only for supply voltages below 3.5 volts, and that diode Dx must be included for proper operation at higher voltages and/or elevated temperatures.

The output characteristics of the circuit in Figure 4 are those of a nearly ideal voltage source in series with 70 ohms. Thus for a load current of -10 mA and a supply voltage of +5 volts, the output voltage will be -4.3 volts. The dynamic output impedance due to the capacitor impedances is $1 / \omega C$ where

$$
\begin{gathered}
C=C_{1}=C_{2} \\
\text { giving } \quad \frac{1}{\omega C}=\frac{1}{2 \pi \text { fosc } \times 10^{-5}}=3 \mathrm{ohms}
\end{gathered}
$$

for $C=10 \mu \mathrm{~F}$ and fosc $=5 \mathrm{kHz}$ (1/2 of oscillator frequency)

Figure 4: Simple Negative Converter
2. Paralleling Devices

Any number of VI-7660 voltage convertors may be paralleled to reduce output resistance. The reservoir capacitor, C_{2}, serves all devices while each device requires
its own pump capacitor, C_{1}. The resultant output resistance would be approximately

ROUT $=\frac{\text { ROUT (of VI-7660) }}{\mathrm{n} \text { (number of devices) }}$

Figure 5: Paralleling Devices

3. Cascading Devices

The VI-7660 may be cascaded as shown to produce larger negative multiplication of the initial supply voltage, however, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is
defined by:

$$
\text { VOUT }=-n\left(V_{\text {IN }}\right),
$$

where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the sum of the individual VI- 7660 Routs.

Figure 6: Cascading Devices for Increased Output Voltage

VI-7660

4. Changing the VI-7660 Oscillator Frequency

It may be desirable in some applications, due to noise or other considerations, to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 7. In order to prevent possible device latchup, a $1 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In the situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pullup resistor to V^{+}supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ of the clock frequency.
It is also possible to maximize the conversion efficiency of the VI-7660 by lowering the oscillator frequency. This is

Figure 7: External Clocking
achieved by connecting an additional capacitor Cosc as shown in Figure 8, however.

Lowering the oscillator frequency will necessitate an undesirable increase in the impedance of the pump (C_{1}) and reservoir (C_{2}) capacitors; this is overcome by increasing the values of C_{1} and C_{2} by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin $7(\mathrm{Osc})$ and V^{+}will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz la multiple of 10), and thereby necessitate a corresponding increase in the value of C_{1} and C_{2} (from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$).

Figure 8: Lowering Oscillator Frequency

5. Positive Voltage Multiplication

The VI-7660 may be employed to achieve positive voltage multiplication using the circuit shown in Figure 9. In this application, the pump inverter switches of the VI-7660 are used to charge C_{1} to a voltage level of $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{F}}$ (where V^{+}is the supply voltage and V_{F} is the forward voltage drop of diode D_{1}. On the transfer cycle, the voltage on C_{1} plus the supply voltage $\left(\mathrm{V}^{+}\right)$is applied through diode D_{2} to capacitor C_{2}. The voltage thus created on C_{2} becomes ($2 \mathrm{~V}^{+}$) - ($2 \mathrm{~V}_{\mathrm{F}}$) or twice the supply voltage minus the combined forward voltage drops of diodes D_{1} and D_{2}.
The source impedance of the output (VOUT) will depend on the output current, but for $\mathrm{V}^{+}=5$ volts and an output current of 10 mA it will be approximately 60 ohms.

Figure 9: Positive Voltage Multiplier
6. Combined Negative Voltage Conversion and Positive Supply Multiplication
Figure 10 combines the functions shown in Figures 4 and 9 to provide negative voltage conversion and positive voltage multiplication simultaneously. This approach would be, for example, suitable for generating +9 volts and -5 volts from an existing +5 volt supply. In this instance capacitors C_{1} and C_{3} perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors C_{2} and C_{4} are pump and reservoir respectively for the multiplied positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.

Figure 10: Combined Negative Converter and Positive Multiplier

FEATURES

- 2.455V Output
- Tempcos to $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- 2 to 120 mA Ref. Current
- $\pm 1.4 \%$ Tolerance
- 2-Terminal
- Low Cost

GENERAL DESCRIPTION

The VR-182 series precision references are two-terminal monolithic bandgap devices which feature 2.455 volts output with tight tolerance and low tempcos. Temperature coefficients are 100, 50 , and $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ respectively for Models VR-182A, VR-182B, and VR-182C.

An active regulator around the bandgap circuit results in 0.1 ohm typical dynamic impedance with a wide 2 to 120 mA reference current range. Furthermore, the dynamic impedance is flat to 4 KHz rising to only 1.2 ohms at 50 KHz . Other specifications include $\pm 1.43 \%$ voltage tolerance, $10 \mu \mathrm{~V}$ RMS output voltage noise, and 10 ppm per 1000 hours long term stability.
These low cost references are easy to use and are ideal for use with monolithic A/D and D/A converters which do not have internal references. They are also useful in voltage regulator circuits, switching power supplies, comparator circuits, and other analog signal processing applications.
The low 2.455 reference voltage allows these references to be used with 5 V logic supplies and other power supply voltages as low as 3.5 V . In many cases they give improved performance over higher priced Zener diode references which require higher supply voltages and have much higher dynamic impedances.
The VR-182 devices are supplied in a two-lead hermetically sealed TO-18 package and operate over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

uo!p!s!nbov eqea

MAXIMUM RATINGS Reference Current $120 \mathrm{~mA}^{*}$ Dissipation. 300 mW	
OUTPUT Output Voltage 2.455 V Output Voltage Tolerance, \% . . . $\pm 1.43 \%$ Output Voltage Tolerance, mV ... $\pm 35 \mathrm{mV}$	
PERFORMANCE Reference Current Range 2 to 120 mA*	
Temperature Coefficient, ppm $/{ }^{\circ} \mathrm{C}$	
	VR-182A 60 typ., 100 max.
	VR-182B 35 typ., 50 max.
	VR-182C 23 typ., 30 max.
	Dynamic Impedance, DC 0.1 typ., 0.2 ohm max.
	Dynamic Impedance, $50 \mathrm{KHz} \ldots 1.2$ ohms
	Noise Voltage, 1 Hz to $10 \mathrm{~Hz} \ldots . .10 \mu \mathrm{~V}$ RMS
	Long Term Stability $\pm 10 \mathrm{ppm} / 1000$ hours
PHYSICAL-ENVIRONMENTAL	
Operating Temperature Range. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
Storage Temperature Range ... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Package Type 2-iead TO-18	
	*Derate the 120 mA by $1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$

APPLICATION

VR-182 series voltage references are recommended for use with the following Datel products:

A/D Converters ADC-EK Series ADC-ET Series
 D/A Converters
 DAC-08B
 DAC-IC8B
 DAC-IC10B

Application Equation: $R=\frac{V S-2.455}{I L+I R}$
Vs = Supply Voltage
$I_{R}=$ Reference Current
$\mathrm{L}=$ Load Current

Datel-Intersil, Inc. All rights reserved Printed in U.S.A. Copyright (c) 1979

11 CABOT BOULEVARD, MANSFIELD. MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana. (714)835-2751. (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg. MD (301)840-9490 - Houston, (713)781-8886 • Dallas. TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 - DATEL SYSTEMS SARL 602-57-11 - DATELEK SYSTEMS GmbH (089)77-60-95 - DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

- Temperature Coefficient guaranteed to $\mathbf{1 0} \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
- Low Bias Current . . . 50 $\mu \mathrm{A}$ min
- Low Dynamic Impedance
- Low Reverse Voltage
- Low Cost

GENERAL DESCRIPTION

The VR-8069 is a 1.2 V temperature compensated voltage reference. It uses the band-gap principle to achieve excellent stability and low noise at reverse currents down to $50 \mu \mathrm{~A}$. Applications include analog-to-digital converters, digital-toanalog converters, threshold detectors, and voltage regulators. Its low power consumption makes it especially suitable for battery operated equipment.

TYPICAL CONNECTION DIAGRAMS

(a) Simple Reference (1.2 volts or less)

(b) Buffered 10 V Reference using a single supply.

(c) Double regulated 100 mV reference for ICL7107 one-chip DPM circuit.

ORDERING INFORMATION

Model	Tempco. of VRef, Max.	Oper. Temp. Range	Package
VR-8069-DC	$1.0 \% /{ }^{\circ} \mathrm{C}$	0 to $+70^{\circ} \mathrm{C}$	TO-52
VR-8069-DM		-55 to $+125^{\circ} \mathrm{C}$	
VR-8069-CC	. $005 \% /{ }^{\circ} \mathrm{C}$	0 to $+70^{\circ} \mathrm{C}$	
VR-8069-CM		-55 to $+125^{\circ} \mathrm{C}$	
VR-8069-BC	. $0025 \% /{ }^{\circ} \mathrm{C}$	0 to $+70^{\circ} \mathrm{C}$	
VR-8069-AC	. $001 \% /{ }^{\circ} \mathrm{C}$	0 to $+70^{\circ} \mathrm{C}$	

VR-8069 SERIES

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Reverse breakdown Voltage	$\mathrm{IR}=500 \mu \mathrm{~A}$	1.20	1.23	1.25	V
Reverse breakdown Voltage change	$50 \mu \mathrm{~A} \leq 1 \mathrm{l}$ ¢ $\leq 5 \mathrm{~mA}$		15	20	mV
Reverse dynamic Impedance	$\begin{aligned} & I_{R}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A} \end{aligned}$		1	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	Ω
Forward Voltage Drop	$\mathrm{I}_{\mathrm{F}}=500 \mu \mathrm{~A}$		7	1	V
RMS Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A} \end{aligned}$		5		$\mu \mathrm{V}$
Breakdown voltage Temperature coefficient: $\begin{aligned} & 8069 \mathrm{~A} \\ & 8069 \mathrm{~B} \\ & 8069 \mathrm{C} \\ & 8069 \mathrm{D} \end{aligned}$	$\left\{\begin{array}{l} \mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A} \\ \mathrm{~T}_{\mathrm{A}}=\text { operating } \\ \text { temperature range } \\ \text { (Note 3) } \end{array}\right.$			$\begin{aligned} & .001 \\ & .0025 \\ & .005 \\ & .01 \end{aligned}$	\%/ ${ }^{\circ} \mathrm{C}$
Reverse Current		. 050		5	mA

TYPICAL PERFORMANCE CHARACTERISTICS

voltage change as a FUNCTION OF REVERSE CURRENT

REVERSE VOLTAGE AS A FUNCTION OF CURRENT

REVERSE VOLTAGE AS A FUNCTION OF TEMPERATURE

Notes:

1) The diode should not be operated with shunt capacitances between 200 pF and $0.22 \mu \mathrm{~F}$, as it may oscillate at some currents. If circuit strays in excess of 200 pF are anticipated, a $4.7 \mu \mathrm{~F}$ shunt capacitor will ensure stability under all operating conditions.
2) In normal use, the reverse voltage cannot exceed the reference voltage. However when plugging units into a powered-up test fixture, an instantaneous voltage equal to the compliance of the test circuit will be seen. This should not exceed 20 V .
3) For the military part, measurements are made at $25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$. The unit is then classified as a function of the worst case T . C . from $25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$, or $25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

FEATURES

- Low Frequency Drift With

Temperature - 50 ppm $/{ }^{\circ} \mathrm{C}$ Max.

- Simultaneous Outputs - Sine-Wave, Square-Wave and Triangle.
- High Level Outputs - $T^{2} L$ to 28 V
- Low Distortion - 1\%
- High Linearity - 0.1\%
- Easy to Use - 50\% Reduction in External Components.
- Wide Frequency Range of Operation 0.001 Hz to 1.0 MHz
- Variable Duty Cycle - 2% to 98%

GENERAL DESCRIPTION

The 8038 Waveform Generator is a monolithic integrated circuit, capable of producing sine, square, triangular, sawtooth and pulse waveform of high accuracy with a minimum of external components (refer to Figures 8 and 9) The frequency (or repetition rate) can be selected externally over a range from less than $1 / 1000 \mathrm{~Hz}$ to more than 1 MHz and is highly stable over a wide temperature and supply voltage range. Frequency modulation and, sweeping can be accomplished with an external voltage and the frequency can be programmed digitally through the use of either resistors or capacitors. The Waveform Generator utilizes advanced monolithic technology, such as thin film resistors and Schottk y-barrier diodes. The 8038 Voltage Controlled Oscillator can be interfaced with phase lock loop circuitry to reduce temperature drift to below $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

[^15]
WG-8038

MAXIMUM RATINGS

Supply Voltage	V or 36 V Total
Power Dissipation	750 mW (Note 5)
Input Voltage (any pin)	Not To Exceed Supply Voltages
Input Current (Pins 4 and 5)	25 mA
Output Sink Current (Pins 3 and 9)	25 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range:	
Suffix "M"	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Suffix "C"	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

($V_{S}= \pm 10 \mathrm{~V}$ or $+20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$ Unless Otherwise Specified) Note 3.

	WG-8038-C			WG-8038-B			WG-8038-A			UNITS
GENERAL CHARACTERISTICS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage Operating Range Single Supply Dual Supplies Supply Current $\left(V_{S}= \pm 10 \mathrm{~V}\right)$ Note 1. Suffix "M" Suffix "C"	$\begin{gathered} +10 \\ +5 \end{gathered}$	12	$\begin{aligned} & +30 \\ & +15 \end{aligned}$	$\begin{gathered} +10 \\ +5 \end{gathered}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{array}{r} 30 \\ +15 \\ \\ 15 \\ 20 \end{array}$	$\begin{gathered} +10 \\ +5 \end{gathered}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{array}{r} 30 \\ +15 \\ \\ 15 \\ 20 \end{array}$	V V mA mA
FREQUENCY CHARACTERISTICS (all waveforms)										
Maximum Frequency of Oscillation Sweep Frequency of FM Sweep FM Range (Note 2) FM Linearity 10:1 Ratio Frequency Drift With Temperature Note 6 Frequency Drift With Supply Voltage (Over Supply Voltage Range) Recommended Programming Resistors (R_{A} and R_{B})	100,000 1000	10 40:1 0.5 50 0.05	$1 \mathrm{M}$	$100,000$ 1000	10 40:1 0.2 50 0.05	100 1 M	$100,000$ 1000	10 $40: 1$ 0.2 20 0.05	50 1 M	Hz kHz \% ppm/"C $\% / V_{S}$ $\Omega 2$
OUTPUT CHARACTERISTICS										
Square-Wave Leakage Current (V9/= 30v) Saturation Voltage (${ }^{\text {SINK }}=2 \mathrm{~mA}$) Rise Time ($R_{L}=4.7 \mathrm{k} \Omega$) Fall Time ($R_{L}=4.7 \mathrm{k} \Omega 2$) Duty Cycle Adjust	2	$\begin{gathered} 0.2 \\ 100 \\ 40 \end{gathered}$	$\begin{gathered} 1 \\ 0.5 \end{gathered}$ 98	2	$\begin{gathered} 0.2 \\ 100 \\ 40 \end{gathered}$	$\begin{gathered} 1 \\ 0.4 \\ \\ 98 \end{gathered}$	2	$\begin{gathered} 0.2 \\ 100 \\ 40 \end{gathered}$	$\begin{gathered} 1 \\ 0.4 \end{gathered}$	$\mu \mathrm{A}$ V ns ns \%
Triangle/Sawtooth/Ramp Amplitude $\left(\mathrm{R}_{\mathrm{T}}=100 \mathrm{k} \Omega\right.$) Linearity Output Impedance (${ }_{\mathrm{OUT}}=5 \mathrm{~mA}$)	0.30	$\begin{gathered} 0.33 \\ 0.1 \\ 200 \end{gathered}$		0.30	$\begin{array}{r} 0.33 \\ 0.05 \\ 200 \end{array}$		0.30	$\begin{array}{r} 0.33 \\ 0.05 \\ 200 \end{array}$		$\begin{gathered} \times V_{S} \\ \% \\ \Omega \end{gathered}$
Sine-Wave Amplitude $\left(R_{S}=100 \mathrm{ks} 2\right)$ THD ($\left.R_{S}=1 \mathrm{MS}\right)$ Note 4. THD Adjusted (Use Fig. 8b)	0.2	$\begin{gathered} 0.22 \\ 0.8 \\ 0.5 \end{gathered}$	5	0.2	$\begin{gathered} 0.22 \\ 0.7 \\ 0.5 \end{gathered}$	3	0.2	$\begin{gathered} 0.22 \\ 0.7 \\ 0.5 \end{gathered}$	1.5	$\begin{gathered} \times V_{\mathrm{S}} \\ \% \\ \% \end{gathered}$

NOTE 1: R_{A} and R_{B} collection currents not included
NOTE 2: $\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}$; R_{A} and $\mathrm{R}_{\mathrm{B}}=10 \mathrm{k} \Omega, \mathrm{f} \cong 9 \mathrm{kHz}$; Can be extended to 1000.1 See Figures 13 and 14
NOTE 3: All parameters measured in test circuit given in Fig. 2
NOTE 4: $82 \mathrm{k} \Omega$ connected between pins 11 and 12, Triangle Duty Cycle set at 50%. (Use R_{A} and R_{B})
NOTE 5: Derate ceramic package at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$
NOTE 6: Over operating temperature range, Fig. 2, pins 7 and 8 connected, $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$. See Fig. 6 c for T C. vs V_{S}

TEST CONDITIONS (See Fig. 2)

PARAMETER	$\mathbf{R}_{\text {A }}$	R_{B}	\mathbf{R}_{L}	C_{1}	SW ${ }_{1}$	MEASURE
Supply Current	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Current into Pin 6
Maximum Frequency of Oscillation	$1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	100pf	Closed	Frequency at Pin 9
Sweep FM Range (Note 1) -	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Open	Frequency at $\operatorname{Pin} 9$
Frequency Drift with Temperature	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Frequency at Pin 9
Frequency Drift with Supply Voltage (Note 2)	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Frequency at Pin 9
Output Amplitude: Sine	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Pk-Pk output at Pin 2
Triangle	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Pk-Pk output at Pin 3
Leakage Current (off) Note 3	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$		3.3 nF	Closed	Current into Pin 9
Saturation Voltage (on) Note 3	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Output (low) at Pin 9
Rise and Fall Times	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
Duty Cycle Adjust: MAX	$50 \mathrm{k} \Omega$	$\sim 1.6 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
MIN	$\sim 25 \mathrm{k} \Omega$	$50 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
Triangle Waveform Linearity	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 3
Total Harmonic Distortion	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 2

NOTE 1: The hi and lo frequencies can be obtained by connecting pin 8 to pin 7 (fhi) and then connecting pin 8 to pin 6 (fo). Otherwise apply Sweep Voltage at pin $8\left(2 / 3 V_{C C}+2 V\right) \leq V_{S W E E P} \leq V_{C C}$ where $V_{C C}$ is the total supply voltage. In Fig. 2, Pin 8 should vary between 5.3 V and 10 V with respect to ground.
NOTE 2: $10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cc}} \leq 30 \mathrm{~V}$, or $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$.
NOTE 3: Oscillation can be halted by forcing pin 10 to +5 volts or -5 volts.

DEFINITION OF TERMS:

Supply Current

Sweep FM Range

FM linearity

Frequency Drift with
Temperature
Frequency Drift with Supply Voltage

Output Amplitude

Saturation Voltage

Rise Time and Fall Time

Triangle Waveform Linearity

Total Harmonic Distortion

Frequency Range The frequency range at the square wave output through which circuit operation is guaranteed.
The current required from the power supply to operate the device, excluding load currents and the currents through R_{A} and R_{B}.

The ratio of maximum frequency to minimum frequency which can be obtained by applying a sweep voltage to Pin 8. For correct operation, the sweep voltage should be within the range $\left(2 / 3 \mathrm{~V}_{\mathrm{CC}}+2 \mathrm{~V}\right)<\mathrm{V}_{\text {sweep }}<\mathrm{V}_{\mathrm{CC}}$.
The percentage deviation from the best-fit straight line on the control voltage versus output frequency curve.
The change in output frequency as a function of temperature.

The change in output frequency as a function of supply voltage.

The peak-to-peak signal amplitude appearing at the outputs.

The output voltage at the collector of Q_{23} when this transistor is turned on. It is measured for a sink current of 2 mA .

The time required for the square wave output to change from 10% to 90%, or 90% to 10%, of its final value.

The percentage deviation from the best-fit straight line on the rising and falling triangle waveform.

The total harmonic distortion at the sine-wave output.

TEST CIRCUIT

FIGURE 2

FIGURE 3. PERFORMANCE OF THE SQUARE-WAVE OUTPUT (PIN 9).

FIGURE 4. PERFORMANCE OF TRIANGLE-WAVE OUTPUT.

FIGURE 5. PERFORMANCE OF SINE-WAVE OUTPUT.

FIGURE 6. CURRENT CONSUMPTION AND FREQUENCY STABILITY.

WG-8038

THEORY OF OPERATION

SQUARE-WAVE DUTY CYCLE - 50\%

SQUARE-WAVEDUTY CYCLE - 80\%

FIGURE 7. PHASE RELATIONSHIP OF WAVEFORMS.

The performance of the sine-wave output is shown in Figure 5. Figure 6 shows additional general information concerning current consumption and frequency stability and Figure 7 shows the phase relationship between the three waveforms.

WAVEFORM TIMING

The symmetry of all waveforms can be adjusted with the external timing resistors. Two possible ways to accomplish this are shown in Figure 8. Best results are obtained by keeping the timing resistors R_{A} and R_{B} separate (a). R_{A} controls the rising portion of the triangle and sine-wave and the 1 state of the square-wave.

The magnitude of the triangle-waveform is set at $1 / 3 \mathrm{~V}_{\mathrm{CC}}$; therefore the rising portion of the triangle is,

$$
t_{1}=\frac{C \times V}{I}=\frac{C \times 1 / 3 \times V_{C C} \times R_{A}}{1 / 5 \times V_{C C}}=\frac{5}{3} R_{A} \times C
$$

The falling portion of the triangle and sine-wave and the 0 state of the square-wave is:
$t_{2}=\frac{C \times V}{I}=\frac{C \times 1 / 3 V_{C C}}{\frac{2}{5} \times \frac{V_{C C}}{R_{B}}-\frac{1}{5} \times \frac{V_{C C}}{R_{A}}}=\frac{5}{3} \times \frac{R_{A} R_{B} C}{2 R_{A}-R_{B}}$
Thus a 50% duty cycle is achieved when $R_{A}=R_{B}$.

If the duty-cycle is to be varied over a small range about 50% only, the connection shown in Figure 8 b is slightly more convenient. If no adjustment of the duty cycle is desired, terminals 4 and 5 can be shorter together, as shown in Figure 8c. This connection, however, carries an inherently larger variation of the duty-cycle.

With two separate timing resistors, the frequency is given by

$$
f=\frac{1}{t_{1}+t_{2}}=\frac{1}{\frac{5}{3} R_{A} C\left(1+\frac{R_{B}}{2 R_{A}-R_{B}}\right)}
$$

or, if $R_{A}=R_{B}=R$

$$
f=\frac{0.3}{R C} \quad \text { (for Figure 8a) }
$$

If a single timing resistor is used (Figures 8c only), the frequency is

$$
f=\frac{0.15}{R C}
$$

Neither time nor frequency are dependent on supply voltage, even though none of the voltages are regu-lated inside the integrated circuit. This is due to the

FIGURE 8. POSSIBLE CONNECTIONS FOR THE EXTERNAL TIMING RESISTORS.

WG-8038

fact that both currents and thresholds are direct, linear function of the supply voltage and thus their effects cancel.

To minimize sine-wave distortion the $82 \mathrm{k} \Omega$ resistor between pins 11 and 12 is best made a variable one. With this arrangement distortion of less than 1% is achievable. To reduce this even further, two potentiometers can be connected as shown in Figure 9. This configuration allows a reduction of sine-wave distortion close to 0.5%.

FIGURE 9. CONNECTION TO ACHIEVE MINIMUM SINE-WAVE DISTORTION.

SELECTING R A, R_{B} and C

For any given output frequency, there is a wide range of RC combinations that will work. However certain constraints are placed upon the magnitude of the charging current for optimum performance. At the low end, currents of less than $1 \mu \mathrm{~A}$ are undesirable because circuit leakages will contribute significant errors at high temperatures. At higher currents ($1>5 \mathrm{~mA}$), transistor betas and saturation voltages will contribute increasingly larger errors. Optimum performance will be obtained for charging currents of $10 \mu \mathrm{~A}$ to 1 mA . If pins 7 and 8 are shorted together, the magnitude of the charging current due to R_{A} can be calculated from:

$$
I=\frac{R_{1} \times V_{C C}}{\left(R_{1}+R_{2}\right)} \times \frac{1}{R_{A}}=\frac{V_{C C}}{5 R_{A}}
$$

A similar calculation holds for R_{B}.
The capacitor value should be as large as possible.

WAVEFORM OUT LEVEL CONTROL AND POWER SUPPLIES

The waveform generator can be operated either from a single power-supply (10 to 30 Volts) or a dual powersupply (± 5 to ± 15 Volts). With a single power-supply the average levels of the triangle and sine-wave are at exactly one-half of the supply voltage, while the square-wave alternates between $+V$ and ground. A split power supply has the advantage that all waveforms move symmetrically about ground.
The square-wave output is not committed. A load resistor can be connected to a different power-supply, as long as the applied voltage remains within the breakdown capa-
bility of the waveform generator (30V). In this way, the square-wave output be made TTL compatible (load resistor connected to +5 Volts) while the waveform generator itself is powered from a much higher voltage.

FREQUENCY MODULATION AND SWEEPING

The frequency of the waveform generator is a direct function of the DC voltage at terminal 8 (measured from $\left.+\mathrm{V}_{\mathrm{CC}}\right)$. By altering this voltage, frequency modulation is performed.

For small deviations (e.g. $\pm 10 \%$) the modulating signal can be applied directly to pin 8, merely providing dc decoupling with a capacitor, as shown in Figure 10a. An external resistor between pins 7 and 8 is not necessary, but it can be used to increase input impedance. Without it (i.e. terminals 7 and 8 connected together), the input impedance is $8 k \Omega$; with it, this impedance increases to $(R+8 k \Omega)$.

For larger FM deviations or for frequency sweeping, the modulating signal is applied between the positive supply voltage and pin 8 (Figure 10b). In this way the entire bias for the current sources is created by the modulating signal and a very large (e.g. 1000:1) sweep range is created ($f=0$ at $V_{\text {sweep }}=0$). Care must be taken, however, to regulate the supply voltage; in this configuration the charge current is no longer a function of the supply voltage (yet the trigger thresholds still are) and thus the frequency becomes dependent on the supply voltage. The potential on Pin 8 may be swept from $V_{C C}$ to $\left(2 / 3 V_{C C}+2 V\right)$.

(b)

FIGURE 10. CONNECTIONS FOR FREQUENCY MODULATION (a) AND SWEEP (b).

APPLICATIONS

FIGURE 11. SINE WAVE OUTPUT BUFFER AMPLIFIERS
The sine wave output has a relatively high output impedance (1K $\Omega \Omega$ Typ). The circuit of Figure 11 provides buffering, gain and amplitude adjustment. A simple op amp follower could also be used.

FIGURE 12. STROBE - TONE BURST GENERATOR
With a dual supply voltage the external capacitor on Pin 10 can be shorted to ground to halt the 8038 oscillation. Figure 12 shows a FET switch, diode ANDed with an input strobe signal to allow the output to always start on the same slope.

FIGURE 13. VARIABLE AUDIO OSCILLATOR, 20 Hz to 20 KHz

To obtain a 1000:1 Sweep Range on the 8038 the voltage across external resistors RA and RB must decrease to nearly zero. This requires that the highest voltage on control Pin 8 exceed the voltage at the top of RA and RB by a few hundred millivolts.

The Circuit of Figure 13 achieves this by using a diode to lower the effective supply voltage on the 8038 . The large resistor on pin 5 helps reduce duty cycle variations with sweep.

FIGURE 14. LINEAR VOLTAGE CONTROLLED OSCILLATOR
The linearity of input sweep voltage verses output frequency can be significantly improved by using an op amp as shown in Figure 14.

WG－8038

DETAILED SCHEMATIC

PACKAGE DIMENSIONS
14 PIN CERDIP
 11 CABOT BOULEVARD．MANSFIELD，MA 02048 ／TEL．（617）339－9341／TWX 710－346－1953／TLX 951340 －DATEL SYSTEMS SARL 602－57－11 • DATELEK SYSTEMS GmbH（089）77－60－95 • DATEL KK Tokyo 793－1031
PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Analog Switches

AS-5040 to AS-5051	444C
AS-5141 to AS-5145	$454 C$

Quick Selection: Analog Switches

MODEL	SWITCH TYPE	ON RESISTANCE	OFF LEAKAGE CURRENT, MAX.	TURN ON TIME, MAX.	PACKAGE	OPER. TEMP. RANGE($\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { PRICE } \\ & (1-24) \end{aligned}$	SEE PAGE
AS-5040C	SPST	80Ω	5 nA	500nsec	16 PIN PLAS. DIP	0 to +70	\$ 4.27	444C
AS-5040M					16 PIN CERDIP	-55 to +125	\$12.00	
AS-5041C	DUAL SPST	80Ω	5 nA	500nsec	16 PIN PLAS. DIP	0 to +70	\$ 4.87	444C
AS-5041M					16 PIN CERDIP	-55 to +125	\$12.07	
AS-5042C	SPDT	80Ω	5 nA	500nsec	16 PIN PLAS. DIP	0 to +70	\$ 4.87	444C
AS-5042M					16 PIN CERDIP	-55 to +125	\$12.07	
AS-5043C	DUAL SPDT	80Ω	5nA	500nsec	16 PIN PLAS. DIP	0 to +70	\$ 6.82	444C
AS-5043M					16 PIN CERDIP	-55 to +125	\$22.50	
AS-5044C	DPST	80Ω	5nA	500nsec	16 PIN PLAS. DIP	0 to +70	\$ 5.87	444C
AS-5044M					16 PIN CERDIP	-55 to +125	\$12.00	
AS-5045C	DUAL DPST	80Ω	5 nA	500nsec	16 PIN PLAS. DIP	0 to +70	\$ 6.82	444C
AS-5045M					16 PIN CERDIP	-55 to +125	\$22.57	
AS-5046C	DPDT	80Ω	5nA	500nsec	16 PIN PLAS. DIP	0 to +70	\$ 6.82	444C
AS-5046M					16 PIN CERDIP	-55 to +125	\$22.57	
AS-5047C	4PST	80Ω	5nA	500 nsec	16 PIN PLAS. DIP	0 to +70	\$ 6.82	444C
AS-5047M					16 PIN CERDIP	-55 to +125	\$24.07	
AS-5048C	DUAL SPST	45Ω	5 nA	300 nsec	16 PIN PLAS. DIP	0 to +70	\$ 7.95	444C
AS-5048M					16 PIN CERDIP	-55 to +125	\$14.45	

MODEL	SWITCH TYPE	ON RESISTANCE	OFF LEAKAGE CURRENT, MAX.	TURN ON TIME, MAX.	PACKAGE	OPER. TEMP. RANGE($\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { PRICE } \\ & (1-24) \end{aligned}$	SEE PAGE
AS-5049C	DPST	45Ω	5nA	300nsec	16 PIN PLAS. DIP	0 to +70	\$10.50	444C
AS-5049M					16 PIN CERDIP	-55 to +125	\$27.75	
AS-5050C	SPDT	45Ω	5 nA	300nsec	16 PIN PLAS. DIP	0 to +70	\$ 7.95	444C
AS-5050M					16 PIN CERDIP	-55 to +125	\$14.45	
AS-5051C	SPDT	45Ω	5nA	300nsec	16 PIN PLAS. DIP	0 to +70	\$10.50	444C
AS-5051M					16 PIN CERDIP	-55 to +125	\$27.75	
AS-5140C	SPST	75Ω	$0.5 n \mathrm{~A}$	175nsec	16 PIN PLAS. DIP	0 to +70	\$ 6.17	454C
AS-5140M					16 PIN CERDIP	-55 to +125	\$26.35	
AS-5141C	DUAL SPST	75Ω	$0.5 n \mathrm{~A}$	175nsec	16 PIN PLAS. DIP	0 to +70	\$ 6.82	454C
AS-5141M					16 PIN CERDIP	-55 to +125	\$29.25	
AS-5142C	SPDT	75Ω	0.5nA	300nsec	16 PIN PLAS. DIP	0 to +70	\$ 6.82	454C
AS-5142M					16 PIN CERDIP	-55 to +125	\$29.25	
AS-5143C	DUAL SPDT	75Ω	0.5nA	300nsec	16 PIN PLAS. DIP	0 to +70	\$ 8.17	454C
AS-5143M					16 PIN CERDIP	-55 to +125	\$37.50	
AS-5144C	DPST	75Ω	0.5nA	300nsec	16 PIN PLAS. DIP	0 to +70	\$ 6.82	454C
AS-5144M					16 PIN CERDIP	-55 to +125	\$29.25	
AS-5145C	DUAL DPST	75Ω	0.5nA	300nsec	16 PIN PLAS. DIP	0 to +70	\$ 8.17	454C
AS-5145M					16 PIN CERDIP	-55 to +125	\$37.50	

THESE PRODUCTS ARE COVERED BY GAS CONTRACT

FEATURES

- Switches Greater Than 20Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $1 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching toff 200nsec, ton 300nsec Typical
- T²L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Low ros (ON) - 35Ω
- New DPDT \& 4PST Configurations
- Complete Monolithic Construction

AS-5040 through AS-5047

CMOS ANALOG GATE PRODUCT CONDITIONING

The following processes are performed 100% in accordance with MIL-STD-883
Precap Visual - Method 2010, Cond. B.
Stabilization Bake - Method 1008
Temperature Cycle - Method 1010
Centrifuge - Method 2001, Cond. E
Hermeticity - Method 1014, Cond. A, C.
(Leak Rate $<5 \times 10^{-7} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$)

GENERAL DESCRIPTION

The AS-5040 family of solid state analog gates are designed using an improved, high voltage CMOS monolithic technology. These devices provide ease-of-use and performance advantages not previously available from solid state switches. This improved CMOS technology provides input overvoltage capability to ± 25 volts without damage to the device, and destructive latch-up of solid state analog gates has been eliminated. Early CMOS gates were destroyed when power supplies were removed with an input signal present. The AS-5040 CMOS technology has eliminated this serious systems problem.
Key performance advantages of the 5040 series are TTL compatibility and ultra low-power operation. The quiescent current requirement is less than $1 \mu \mathrm{~A}$. Also designed into the 5040 is guaranteed Break-Before-Make switching, which is accomplished by extending the toN time (300 nsec TYP.) so that it exceeds toff time (200 nsec TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. This eliminates the need for external logic required to avoid channel to channel shorting during switching.
Many of the 5040 series improve upon and are pin-for-pin and electrical replacements for other solid state switches.

FUNCTIONAL DIAGRAM

FIGURE 1. TYPICAL DRIVER, GATE - AS-5042

FUNCTIONAL DESCRIPTION

PART NO.	TYPE		$\mathrm{R}_{\text {ON }}$	FUNCTIONAL EQUIVALENT
AS-5040		SPST	75Ω	
AS-5041	Dual	SPST	75Ω	
AS-5042		SPDT	75Ω	DG 188AA/BA
AS-5043	Dual	SPDT	75Ω	DG 191AP/BP
AS-5044		DPST	758	
AS-5045	Dual	DPST	75Ω	DG 185AP/BP
AS-5046		DPDT	75Ω	
AS-5047		4PST	7582	
AS-5048 (hybrid)) Dual	SPST	35Ω	
AS-5049 (hybrid)	Dual	DPST	35Ω	DG 184AP/BP
AS-5050 (hybrid)		SPDT	35Ω	DG 187AA/BA
AS-5051 (hybrid)	Dual	SPDT	35Ω	DG 190AP/BP

MAXIMUM RATINGS

Current (Any Terminal)
$<30 \mathrm{~mA}$
Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation
450 mW
(All Leads Soldered to a P. C. Board)
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

$V_{1}-V_{2}$	$<33 V$
$V_{1}-V_{D}$	$<30 V$
$V_{D}-V_{2}$	$<30 V$
$V_{D}-V_{S}$	$< \pm 22 V$
$V_{L}-V_{2}$	$<33 V$
$V_{L}-V_{I N}$	$<30 V$
$V_{L}-V_{R}$	$<20 V$
$V_{I N}-V_{R}$	$<20 V$

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$)

per channel		Min./MAx.LIMITS							test conotions
		MILITAAY			COMMERCIAL			unirs	
srmbol	characteristic	$55^{\circ} \mathrm{C}$	${ }^{255}{ }^{\text {c }}$	*125 c	\bigcirc	${ }^{25} \mathrm{c}$	${ }^{70} \mathrm{C}$		
Inoon)	${ }^{\text {Input Logec Cureen }}$	'	,		,	,	,	${ }^{\mu A}$	
'INof($)^{\prime}$	${ }^{\text {Inout Loges curener }}$,				,	,	${ }_{\sim}$	Vol 0.8 Nolet
'osion)	Dran sumece on	${ }^{51531}$	${ }^{25} 331$	${ }^{506601}$	80.451	${ }^{80} 451$	130145	${ }^{3}$	
د'osion)	Chmonelt 10 chamel	2515	25.151	25151	30151	${ }^{30151}$	${ }^{3015}$		
	Rosion Masth								
$\mathrm{v}_{\text {analog }}$	Min. Analog Signal	(11.00)	101	-17, 01	-100. 01	-10, 010	-100. 101	\checkmark	1. 10 matangasimus
'DOOFFI	Smuct off Leatsoge Cument	'(1)	(11)	1001100	${ }_{561}$	${ }^{515}$	100100	na	
		221	$2(2)$	2002000	$10(10)$	${ }^{10110}$	1002001	na	10v
${ }^{\text {Hsom) }}$	Curent ow								(50a8 inu 5051)
'on			500250			50038		ns	
'off	Sumen "off" Time		2501 150			25011501		ns	
$a_{\text {(10) }}$	Inpecton		(10)			20 (10)		mv	
Oirr	min oft somaton		${ }_{5} 4$			50		${ }^{\text {d }}$	
${ }^{\mathrm{V},}$,	,	10	10	10	${ }^{100}$	${ }_{\mu}$	
'vz	-			${ }^{10}$	10	10	100	${ }^{4}$	
iva	${ }^{\text {a }}$ - 5 supolver			10	10	10	${ }^{100}$	${ }^{\mu A}$	
ver	Grasupolv	,		${ }^{10}$	10	${ }^{10}$	${ }^{100}$	${ }^{4 A}$	
ccra			${ }^{54}$			50		${ }^{\text {dB }}$	
	Channel Cross								Chamel swictenes as eer fig E

TEST CIRCUITS

NOTE 1: Some channels are turned on by high " 1 " logic inputs and other channels are turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.

TYPICAL ELECTRICAL CHARACTERISTICS (Per Channel)

FIGURE D

OFF ISOLATION vs FREQUENCY

FIGURE F

AS-5040/AS-5051 Family

SWITCHING STATE DIAGRAMS (Cont.)

SWITCH STATES

DUAL SPST

5048 (rDS (ON) <35)

$\begin{aligned} & \text { DUAL DPST } \\ & 5049\left(r_{\text {DS }}(\mathrm{ON})<35 \Omega\right) \end{aligned}$	
$\begin{aligned} & \text { DUAL SPDT } \\ & 5051 \text { (rDS }(O N)<35 \Omega \text {) } \end{aligned}$	(DG190 EQUIVALENT)

APPLICATIONS

IMPROVED SAMPLE \& HOLD
USING AS-5043

FIGURE H

FIGURE I
EXAMPLE: If $-V_{\text {ANALOG }}=-10 \mathrm{VDC}$ and $+\mathrm{V}_{\text {ANALOG }}=+10 \mathrm{VDC}$ then Ladder Legs are switched between $\pm 10 \mathrm{VDC}$, depending upon state of Logic Strobe.

THEORY OF OPERATION

A. FLOATING BODY CMOS STRUCTURE

In a conventional C-MOS structure, the body of the " n " channel device is tied to the negative supply, thus forming a reverse biased diode between the drain/source and the body (Fig. J). Under certain conditions this diode can become forward biased; for example, if the supplies are off (at ground) and a negative input is applied to the drain. This can have serious consequences for two reasons. Firstly, the diode has no current limiting and if excessive current flows, the circuit may be permanently damaged. Secondly, this diode forms part of a parasitic SCR in the conventional C-MOS structure. Forward biasing the diode causes the SCR to turn on, giving rise to a "latch-up" condition.
The new improved C-MOS process incorporates an additional diode in series with the body (Fig. K). The cathode of this diode is then tied to $\mathrm{V}+$, thus effectively floating the body. The inclusion of this diode not only blocks the excessive current path, but also prevents the SCR from turning on.

B. OVERVOLTAGE PROTECTION

The floating body construction inherently provides overvoltage protection. In the conventional C-MOS process, the body of all N -channel FET s is tied to the most negative power supply and the body of all P-channel devices to the most positive supply (i. e., $\pm 15 \mathrm{~V}$). Thus, for an overvoltage spike of $> \pm 15 \mathrm{~V}$, a forward bias condition exists between drain and body of the MOSFET. For example, in Fig. J if the analog signal input is more negative than -15 V , the drain to body of the N -channel FET is forward biased and destruction of the device can result. Now by floating the body, using diode D1, the drain to body of the MOSFET is still forward biased, but D1 is reversed biased so no current flows (up to the breakdown of D1 which is $\geqslant 40 \mathrm{~V}$). Thus, negative excursions of the analog signal can go up to a maximum of -25 V . When the signal goes positive $(\geqslant+15 \mathrm{~V}$, D1 is forward biased, but now the drain to body junction is reversed for the N -channel FET; this allows the signal to go to a maximum of +25 V with no appreciable current flow. While the explanation above has been restricted to N -channel devices, the same applies to P -channel FETs and the construction is as shown in Fig. L. Fig. L describes an output stage showing the paralleling of an N and P channel to linearize the rDS(ON) with signal input. The presence of diodes D1 and D2 effectively floats the bodies and provides over voltage protection to a maximum of $\pm 25 \mathrm{~V}$.

figure J

figure K

FIGURE L

AS-5040/AS-5051 Family

DIGITALLY TUNED
LOW POWER ACTIVE FILTER

$$
f_{n}=\text { Center Frequency }=\frac{1}{2 \pi R C}
$$

Constant gain, constant Q, variable frequency filter which provides simultaneous Lowpass, Bandpass, and Highpass outputs. With the component values shown, center frequency will be 235 Hz and 23.5 Hz for high and low logic inputs respectively, $Q=100$, and Gain $=100$.

LOGIC INTERFACING

AS-5040/AS-5051 Family

for interfacing with tar open collector logic.

TYP. EXAMPLE FOR + 15 V CASE SHOWN

FOR USE WITH CMOS LOGIC.

ORDERING INFORMATION

MODEL	SWITCH CONFIGURATION	OPER. TEMP RANGE	PACKAGE
AS-5040C	SPST	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5040M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5041C	Dual SPST	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5041M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5042C	SPDT	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5042M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5043C	Dual SPDT	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5043M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5044C	DPST	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5044M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5045C	Dual DPST	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5045M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5046C	DPDT	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5046M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5047C	4PST	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5047M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5048C	Dual SPST	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5048M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5049C	Dual DPST	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5049M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5050C	SPDT	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5050M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5051C	Dual SPDT	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5051M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip

AS-5140/AS-5145 Family High Level CMOS Analog Gates

FEATURES

- Super fast break before make switching $t_{\text {on }} 80 \mathrm{~ns}$ typ, $\mathrm{t}_{\text {off }}$ 50ns typ (SPST switches)
- Power supply currents less than $1 \mu \mathrm{~A}$
- "OFF" leakages less than 100pA @ $25^{\circ} \mathrm{C}$ guaranteed
- Non-latching with supply turn-off
- Single monolithic CMOS chip
- Plug-in replacements for 5040 family and part of the DG180 family to upgrade speed and leakage
- Greater than 1 MHz toggle rate
- Switches greater than 20Vp-p signals with $\pm 15 \mathrm{~V}$ supplies
- \mathbf{T}^{2} L, CMOS direct compatibility

CMOS ANALOG GATE PRODUCT CONDITIONING

The following processes are performed 100% in accordance with MIL-STD-883.
Precap Visual - Method 2010, Cond. B Stabilization Bake - Method 1008 Temperature Cycle - Method 1010 Centrifuge - Method 2001, Cond. E Hermeticity - Method 1014, Cond. A, C (Leak Rate $<5 \times 10^{-7} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$)

GENERAL DESCRIPTION

The AS-5140 Family of CMOS monolithic switches utilizes latch-free junction isolated processing to build the fastest switches now available. "OFF" leakages are guaranteed to be less than 100 pA at $25^{\circ} \mathrm{C}$. These switches can be toggled at a rate of greater than 1 MHz with super fast ton times (80ns typical) and faster toff times (50 ns typical) guaranteeing break before make switching. This family of switches therefore combines the speed of the hybrid FET DG180 Family with the reliability and low power consumption of a monolithic CMOS construction.

No quiescent power is dissipated in either the "ON" or the "OFF" state of the switch. Maximum power supply current is $1 \mu \mathrm{~A}$ from any supply and typical quiescent currents are in the 10 nA range which makes these devices ideal for portable equipment and military applications.

The AS- 5140 Family is completely compatible with TTL (5V) logic, TTL open collector logic and CMOS logic gates. It is pin compatible with Datel's AS-5040 Family and part of the DG180/190 Family.

ORDERING INFORMATION

MODEL	SWITCH CONFIGURATION	OPER. TEMP RANGE	PACKAGE
AS-5140C	SPST	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5140M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5141C	Dual SPST	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5141M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5142C	SPDT	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5142M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5143C	Dual SPDT	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5143M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5144C	DPST	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5144M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip
AS-5145C	Dual DPST	0 to $+70^{\circ} \mathrm{C}$	16 pin Epoxy
AS-5145M		-55 to $+125^{\circ} \mathrm{C}$	16 pin Cerdip

MAXIMUM RATINGS

Current (Any Terminal $<30 \mathrm{~mA}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation 450 mW
All Leads Soldered to a P.C. Board
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$
Soldering Temperature
$\mathrm{V}_{1}-\mathrm{V}_{2}<33 \mathrm{~V}$
$V_{1}-V_{D}<30 V$
$V_{D}-V_{2}<30 V$
$V_{D}-V_{S}< \pm 22 V$
$V_{L}-V_{2}<33 V$
$V_{\text {L }}-V_{\text {IN }}<30 \mathrm{~V}$
$V_{L}-V_{R}<20 V$
$V_{I N}-V_{R}<20 V$

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$)

PER CHANNEL		MIN./MAX. LIMITS							
		MILITARY			COMMERCIAL			UNITS	
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		TEST CONDITIONS
IIN(ON)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ Note 1
IIN(OFF)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$V_{\text {IN }}=0.8 \mathrm{~V}$ Note 1
RDS(ON)	Drain-Source On Resistance	50	50	75	75	75	100	,	$\begin{aligned} & \text { Is }=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \end{aligned}$
$\triangle \mathrm{RDS}_{(O N)}$	Channel to Channel Ros(on) Match	25	25	25	30	30	30	Ω	Is $($ Each Channel $)=-10 \mathrm{~mA}$
$V_{\text {ANALOG }}$	Min. Analog Signal Handling Capability	± 11	± 11	± 11	± 10	± 10	± 10	V	$\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$
ID(OFF) IS(OFF)	Switch OFF Leakage Current	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	nA	$\begin{aligned} & V_{D}=+10 \mathrm{~V}, V_{S}=-10 \mathrm{~V} \\ & V_{D}=-10 \mathrm{~V}, V_{S}=+10 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { ID(ON) } \\ & +I_{S(O N)} \end{aligned}$	Switch On Leakage Current	0.2	0.2	40	1	1	40	nA	$V_{D}=V_{S}=-10 \mathrm{~V}$ to +10 V
ton toff	Switch "ON" Time Switch "OFF" Time	See pages 4 \& 5 for switching time specifications and timing diagrams.							
$Q_{(I N J)}$	Charge Injection		10			15		mVPP	See Fig. 4, Note 2
OIRR	Min. Off Isolation Rejection Ratio		54			50		dB	$f=1 \mathrm{MHz}, R_{L}=100 \Omega, C_{L} \leq 5 \mathrm{pF}$ See Fig. 5, Note 2
IV1	+ Power Supply Quiescent Current	1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$	
Iv2	- Power Supply Quiescent Current	1.0	1.0	10.0	10	10		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \end{aligned}$
IVL	+5 V Supply Quiescent Current	1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$	Switch Duty Cycle < 10\% See Fig. 6
IVR	Gnd Supply Quiescent Current	1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$.
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio		54			50		dB	One Channel Off: Any Other Channel Switches See Fig. 7, Note 2

Note: 1 . Some channels are turned on by high " 1 " logic inputs and other channels are turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.
2. Charge injection, OFF isolation, and Channel to Channel isolation are only sample tested in production.

AS-5140-AS-5145 Family

FIGURE 2. $R_{\text {DS(ON) }}$ vs. Temp., @ $\pm 15 \mathrm{~V},+5 \mathrm{~V}$ Supplies.

FIGURE 4. Charge Injection vs. Analog Signal.

FIGURE 6. Power Supply Current Draws vs. Logic Strobe Rate.

FIGURE 3. R $_{\text {DS(ON) }}$ vs. Power Supplies.

FIGURE 5. "OFF" Isolation vs. Frequency.

figure 7. Channel to Channel Cross Coupling Rejection vs. Frequency.

AS-5140-AS-5145 Family

SWITCHING TIME SPECIFICATIONS
(ton, $t_{\text {off }}$ are maximum specifications and $t_{o n-t_{o f f}}$ is minimum specifications)

Part Number	Symbol	Characteristics	MILITARY			COMMERCIAL			Units	Test Conditions
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		
$\begin{aligned} & 5140- \\ & 5141 \end{aligned}$	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{array}{r} 100 \\ 75 \\ 10 \\ \hline \end{array}$			$\begin{gathered} 150 \\ 125 \\ 5 \\ \hline \end{gathered}$		ns	Figure 8
	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} \hline 150 \\ 125 \\ 10 \end{gathered}$			$\begin{gathered} 175 \\ 150 \\ 5 \end{gathered}$		ns	Figure 9
$\begin{aligned} & 5142- \\ & 5143 \end{aligned}$	ton toff ton-tof	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 175 \\ 125 \\ 10 \end{gathered}$			$\begin{gathered} 250 \\ 150 \\ 5 \end{gathered}$		ns	Figure 8
	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} \hline 200 \\ 125 \\ 10 \\ \hline \end{gathered}$			$\begin{gathered} 300 \\ 150 \\ 5 \end{gathered}$		ns	Figure 9
	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} \hline 175 \\ 125 \\ 10 \end{gathered}$			$\begin{gathered} 250 \\ 150 \\ 5 \end{gathered}$		ns	Figure 10
	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 200 \\ 125 \\ 10 \\ \hline \end{gathered}$			$\begin{gathered} 300 \\ 150 \\ 5 \\ \hline \end{gathered}$		ns	Figure 11
$\begin{aligned} & 5144- \\ & 5145 \end{aligned}$	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 175 \\ 125 \\ 10 \end{gathered}$			$\begin{gathered} 250 \\ 150 \\ 5 \end{gathered}$		ns	Figure 8
	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 200 \\ 125 \\ 10 \end{gathered}$			$\begin{gathered} 300 \\ 150 \\ 5 \end{gathered}$		ns	Figure 9

FIGURE 10.

FIGURE 11.

AS-5140-AS-5145 Family

TYPICAL SWITCHING APPLICATIONS

SCALE: \quad VERT $=5 \mathrm{~V} / \mathrm{DIV}$.
HORIZ $=100 \mathrm{~ns} /$ DIV

TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 8 ,

$-55^{\circ} \mathrm{C}$

$+25^{\circ} \mathrm{C}$

$+125^{\circ} \mathrm{C}$

TTL OPEN COLLECTOR LOGIC DRIVE Corresponds to Figure 9

TTL OPEN COLLECTOR LOGIC DRIVE
Corresponds to Figure 10

$+25^{\circ} \mathrm{C}$

TTL OPEN COLLECTOR LOGIC DRIVE
, Corresponds to Figure 11

$+25^{\circ} \mathrm{C}$

AS-5140-AS-5 145 Family

APPLICATIONS

FIGURE 12. Improved Sample and Hold Using 5143

EXAMPLE: If $-V_{\text {ANALOG }}=-10 \mathrm{VDC}$ and $+V_{\text {ANALOG }}=+10 \mathrm{VDC}$ then Ladder Legs are switched between : 10VDC, depending upon state of Logic Strobe.

FIGURE 13. Using the CMOS Switch to Drive an R/2R Ladder Network (2 Legs)

CONSTANT GAIN, CONSTANT Q, VARIABLE FREQUENCY FILTER WHICH
PROVIDES SIMULTANEOUS LOWPASS, BANDPASS, AND HIGHPASS
OUTPUTS. WITH THE COMPONENT VALUES SHOWN, CENTER FREQUENCY WILL BE 235 Hz AND 23.5 Hz FOR HIGH AND LOW LOGIC INPUTS RESPECTIVELY, $Q=100$, AND GAIN $=100$.

$$
f_{n}=\text { CENTER FREQUENCY }=\frac{1}{2 \pi R C}
$$

FIGURE 14. Digitally Tuned Low Power Active Filter.

AS-5140-AS-5145 Family

APPLICATION NOTE

To maximize switching speed on the 5140 family use TTL open collector logic (15 V with a 1 K or less collector resistor). For SPST switches, typical ton $\approx 80 \mathrm{~ns}$ and typical $t_{\text {off }} \approx 50 \mathrm{~ns}$ for signals in range of -10 V to +10 V with this high level drive configuration. The SPDT and DPST switches are approximately 30ns slower in both ton and $t_{\text {off }}$ with the same drive configuration. 15 V CMOS logic levels can be used 0 V to +15 V , but propagation delays in the CMOS logic will slow down the switching (typical $50 \mathrm{~ns} \rightarrow 100 \mathrm{~ns}$ delays:
When driving the 5140 Family from either +5 V TTL or CMOS logic, switching times run 20 ns slower than if they were driven from +15 V logic levels. Thus $\mathrm{t}_{\mathrm{on}} \approx$ 105 ns typical, and $\mathrm{t}_{\mathrm{off}} \approx 75 \mathrm{~ns}$ typical for SPST switches and 135 ns typical and 105 ns typical (ton, toff) for SPDT or DPST switches. The low level drive can be made as fast as the high level drive if $\pm 5 \mathrm{~V}$ strobe levels are used instead of the usual $\mathrm{OV} \rightarrow+3.0 \mathrm{~V}$ drive. Pin 13 is taken to -5 V instead of the usual GND and strobe input is taken from +5 V to -5 V levels as shown in Figure 15.

The typical channel of the 5140 family consists of an N -channel MOS-FET. The N-channel MOS-FET uses a "Body Puller" FET to drive the body to $-15 \mathrm{~V}(\pm 15 \mathrm{~V}$ supplies) to get good breakdown voltages when the switch is in the off state (See Fig. 16). This "Body Puller" FET also allows the N -channel body to electrically float when the switch is in the on state producing a fairly constant $R_{D S}(O N)$ with different signal voltages. While this "Body Puller" FET improves switch performance, it can cause a problem when analog input signals are present (negative signals only) and power supplies are off. This fault condition is shown in Figure 17.
Current will flow from -10 V analog voltage through the drain to body junction of Q1, then through the drain to body junction of Q3 to GND. This means that there is 10 V across two forward-biased silicon diodes and current will go to whatever value the input signal source is capable of supplying. If the analog input signal is derived from the same supplies as the switch this fault condition cannot occur. Turning off the supplies would turn off the analog signal at the same time.

This fault situation can also be eliminated by placing a diode in series with the negative supply line (pin 14) as shown in Figure 18. Now when the power supplies are off and a negative input signal is present this diode is reverse biased and no current can flow.

FIGURE 15.

FIGURE 16.

FIGURE 17.

FIGURE 18.

AS-5140-AS-5145 Family

SWITCHING STATE DIAGRAMS SWITCH STATES ARE FOR LOGIC " 1 " INPUT

DUAL SPDT 5143 (R DS $(O N)<75 \Omega$)

DPST
$5144\left(R_{\text {DS }}(O N)<75 \Omega\right)$

DUAL DPST $5145\left(R_{\text {DS }}(O N)<75 \Omega\right)$

PACKAGE DIMENSIONS

16 PIN CERDIP
16 PIN PLASTIC DIP

[^16]2. Dimensions in inches (millimeters).

Counters, Display Drivers

CD-7216	466C
CD-7217, CD-7227	481C
$C D-7224, C D-7225$	493C
$C D-7226$	$501 C$
$D D-7211$, DD-7212	$513 C$
DD-7218	$523 C$

Quick Selection: Counters And Display Drivers

MODEL	DESCRIPTION	PACKAGE	OPER. TEMP. RANGE (${ }^{\circ} \mathbf{C}$)	PRICE $(1-24)$	SEE PAGE
CD-7216AC	Eight Digit Universal Counter Drives Seven Segment LED Display, Measures Frequency, Period, Freq. Ratio, Time Interval or Units	28 Pin Cerdip	-20 to +70	\$32.13	466C
CD-7216BC		28 Pin Plastic DIP	-20 to +70	\$26.80	
CD-7216CC		28 Pin Cerdip	-20 to +70	\$26.78	
CD-7216DC		28 Pin Plastic DIP	-20 to +70	\$21.55	
CD-7217C	Four Digit CMOS Up/Down Counter Drives Seven Segment LED Display. Presettable Start/ Count and Compare Register. Thumbwheel Switch Controlled.	28 Pin Cerdip	-20 to +70	\$12.53	481C
CD-7217AC		28 Pin Plastic DIP	-20 to +70	\$11.40	
CD-7217BC		28 Pin Cerdip	-20 to +70	\$12.53	
CD-7217CC		28 Pin Plastic DIP	-20 to +70	\$10.50	
CD-7224C	41/2 Digit High Speed Counter/ Decoder/Driver, 25 MHz Typ., for LCD Application	40 Pin Plastic DIP	-20 to +70	\$11.47	493C
CD-7224AC			-20 to +70	\$11.47	
CD-7225C	4 $1 / 2$ Digit High Speed Counter/ Decoder/Driver, 25 MHz Typ., for LED Displays	40 Pin Plastic DIP	-20 to +70	\$ 8.77	493C
CD-7225AC			-20 to +70	\$ 8.77	
CD-7226AC	8 Digit Universal Counter Drives 7 Seg. LED Displays. Counts Freq., Period, Units.	40 Pin Cerdip	-20 to +70	\$32.00	501C
CD-7226BC		40 Pin Plastic DIP	-20 to +70	\$26.87	

MODEL	DESCRIPTION	PACKAGE	OPER. TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { PRICE } \\ & (1-24) \end{aligned}$	SEE PAGE
CD-7227C	Four Digit CMOS Up/Down Counter Drives Seven Segment LED Display. Presettable Start/Count and Compare Register. $\mu \mathrm{P}$ Controlled. Applications.	28 Pin Cerdip	-20 to +70	\$14.58	481C
CD-7227AC		28 Pin Plastic DIP	-20 to +70	\$12.55	
CD-7227BC		28 Pin Cerdip	-20 to +70	\$14.58	
CD-7227CC		28 Pin Plastic DIP	-20 to +70	\$12.55	
CD-7211C	Four Digit Display Decoder Drivers for LCD Applications. BCD Input, Hexadecimal Code B Output. Simplifies Alphanumeric Displays for $\mu \mathrm{Ps}$.	40 Pin Plastic DIP	-20 to +70	\$ 8.62	513C
DD-7211AC			-20 to +70	\$ 6.22	
DD-7211AMC			-20 to +70	\$ 6.22	
DD-7211MC			-20 to +70	\$8.62	
DD-7212C	Four Digit Display Decoder Drivers for LED Displays. BCD Input, Hexadecimal Code B Output. Simplifies Alphanumeric Displays for $\mu \mathrm{Ps}$.	40 Pin Plastic DIP	-20 to +70	\$ 6.22	513C
DD-7212AC			-20 to +70	\$ 6.22	
DD-7212AMC			-20 to +70	\$ 6.22	
DD-7212MC			-20 to +70	46.22	
DD-7218AC	LED Driver System for μ Ps. Features Digit and Segment Drivers, Multiplex Scan Circuitry, 8×8 Static Memory, Hexadecimal Code B Decoders, Hardwire Controllable Versions.	28 Pin Cerdip	-20 to +70	\$10.88	523C
DD-7218BC		28 Pin Plastic DIP	-20 to +70	\$10.35	
DD-7218CC		28 Pin Cerdip	-20 to +70	\$10.88	
DD-7218DC		28 Pin Plastic DIP	-20 to +70	\$10.35	
DD-7218EC		40 Pin Ceramic DIP	-20 to +70	\$14.45	

CD－7216A 10 MHz Universal Counter，Drives Common Anode LED＇s CD－7216B 10 MHz Universal Counter，Drives Common Cathode LED＇s CD－7216C 10 MHz Frequency Counter，Drives Common Anode LED＇s CD－7216D 10 MHz Frequency Counter，Drives Common Cathode LED＇s
 features
 GENERAL DESCRIPTION

CD－7216A AND B

－Functions as a Frequency Counter，Period Counter， Unit Counter，Frequency Ratio Counter or Time Interval Counter
－Four Internal Gate Times： $0.01 \mathrm{sec}, 0.1 \mathrm{sec}, 1 \mathrm{sec}, 10 \mathrm{sec}$ in Frequency Counter Mode
－ 1 Cycle， 10 Cycles， 100 Cycles， 1000 Cycies in Period，Frequency Ratio and Time Interval Modes
－Measures Frequencies from DC to $10 \mathbf{~ M H z}$
－Measures Period from $0.5 \mu \mathrm{sec}$ to 10 sec
CD－7216C AND D
－Functions as a Frequency Counter．Measures Frequencies from DC to $10 \mathbf{M H z}$
－Decimal Point and Leading Zero Blanking May be Externally Selected

ALL VERSIONS：

－Eight Digit Multiplexed LED Outputs
－Output Drivers will Directly Drive Both Digits and Segments of Large LED Displays．Both Common Anode and Common Cathode Versions are Available
－Single Nominal 5V Supply Required
－Stable High Frequency Oscillator，Uses Either 1 MHz or 10 MHz Crystal
－Internally Generated Multiplex Timing with Interdigit Blanking，Leading Zero Blanking and Overflow Indication
－Decimal Point and Leading Zero Blanking Controlled Directly by the Chip
－Display Off Mode Turns Off Display and Puts Chip into Low Power Mode
－Hold and Reset Inputs for Additional Flexibility
－Test Speedup Function Included
－All Terminals Protected Against Static Discharge

ORDERING INFORMATION

Universal Counter for use with Common Anode LED Display： Universal Counter for use with Common Cathode LED Display： Frequency Counter for use with Common Anode LED Display： Frequency Counter for use with Common Cathode LED Display：

The CD－7216A and B are fully integrated Universal Counters with LED display drivers．They combine a high frequency oscillator，a decade timebase counter， an 8 decade data counter and latches，a 7 segment decoder，digit multiplexers and 8 segment and 8 digit drivers which can directly drive large LED displays． The counter inputs have a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes．Both inputs are digital inputs．In many applications，amplification and level shifting will be required to obtain proper digital signals for these inputs．
The CD－7216A and B can function as a frequency counter，period counter，frequency ratio $\left(f_{A} / f_{B}\right)$ counter，time interval counter or as a totalizing counter．The counter uses either a 10 MHz or 1 MHz quartz crystal timebase．For period and time interval， the 10 MHz timebase gives a $0.1 \mu \mathrm{sec}$ resolution．In period average and time interval average，the resolution can be in the nanosecond range．In the frequency mode，the user can select accumulation times of $0.01 \mathrm{sec}, 0.1 \mathrm{sec}, 1 \mathrm{sec}$ and 10 sec ．With a 10 sec accumulation time，the frequency can be displayed to a resolution of 0.1 Hz in the least significant digit．There is 0.2 seconds between measurements in all ranges．
The CD－7216C and D function as frequency counters only，as described above．
All versions of the CD－7216 incorporate leading zero blanking．Frequency is displayed in KHz ．In the $\mathrm{CD}-7216 \mathrm{~A}$ and B ，time is displayed in $\mu \mathrm{sec}$ ．The display is multiplexed at 500 Hz with a 12.5% duty cycle for each digit．The CD－7216A and C are designed for common anode display with typical peak segment currents of 25 mA ．The CD－7216B and D are designed for common cathode displays with typical peak segment currents of 12 mA ．In the display off mode， both digit drivers and segment drivers are turned off enabling the display to be used for other functions．

CD-7216
 PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Maximum Supply Voltage $\mathrm{V}^{+}-\mathrm{V}^{-}, \ldots . .6 .5$ Volts Maximum Digit Output Current 400 mA Maximum Segment Output Current 60 mA Voltage On Any Input or
Output Terminal 11 \qquad $\mathrm{V}^{+}+.3 \mathrm{~V}$ to $\mathrm{V}^{-}-.3 \mathrm{~V}$
Maximum Power Dissipation at
$70^{\circ} \mathrm{C} . \ldots \ldots \ldots \ldots . . .$. . 1.0 Watts (7216A \& C) 0.5 Watts (7216 B \& D)

Maximum Operating Temperature
Range $\ldots .-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Storage Temperature
Range $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

Notes:

1. The 7216 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if input or output are forced to voltages exceeding V^{+}to V^{-}by more than 0.3 volts.

CD-7216

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}-\mathrm{V}^{-}=5.0 \mathrm{~V}$, Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNITS
7216A/B Operating Supply Current	IDD	Display Off, Unused Inputs to V^{-}		2	5	mA
Supply Voltage Range		$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$. Input A . Input B Frequency at $\mathrm{F}_{\text {MAX }}$	4.75		6.0	Volts
Maximum Frequency Input A. Pin 28	FA MAX	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}^{-}-\mathrm{V}^{-}<6.0 \mathrm{~V}, \text { Figure } 1 . \\ & \text { Function }=\text { Frequency, Ratio. Unit } \\ & \text { Counter } \\ & \text { Function = Period. Time Interval } \end{aligned}$	$\begin{aligned} & 10 \\ & 2.5 \\ & \hline \end{aligned}$.	\%	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Maximum Frequency Input B. Pin 2	FBMAX	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$ $4.75 \mathrm{~V}<\mathrm{V}^{+}-\mathrm{V}^{-} \cdot 6.0 \mathrm{~V}$ Figure 2	2.5			MHz
Minimum Separation Input A to Input B Time Interval Function		$-20^{\circ} \mathrm{C}<\mathrm{T}_{A}<70^{\circ} \mathrm{C}$ $4.75 \mathrm{~V} \cdot \mathrm{~V}^{+}-\mathrm{V}^{-} 66.0 \mathrm{~V}$ Figure 3	250			nsec
Maximum Osc. Freq. and Ext. Osc. Frequency		$\begin{aligned} & -20^{\circ} \mathrm{C} \mathrm{~T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}^{+}-\mathrm{V}^{-}<6.0 \mathrm{~V} \end{aligned}$	10			MHz
Minimum Ext. Osc. Freq.					100	KHz
Oscillator Transconductance	gm	$\mathrm{V}^{\cdot}-\mathrm{V}^{-}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	2000			$\mu \mathrm{mhos}$
Multiplex Frequency	$f_{\text {mux }}$	$\mathrm{f}_{\text {osc }}=10 \mathrm{MHz}$		500		Hz
Time Between Measurements		$f_{\text {OSC }}=10 \mathrm{MHz}$		200		msec
Input Voltages: Pins 2.13.25.27,28 Input Low Voltage Input High Voltage	$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	$-20^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C}$	3.5		1.0	Volts Volts
Input Resistance to V^{+} Pins 13,24	R	$V_{\text {IN }}=V^{+}-1.0 \mathrm{~V}$	100K	400K		ohms
Input Leakage Pin 27.28.2	IL				20	$\mu \mathrm{A}$
7216A Digit Driver: Pins 15.16.17.19.20.21.22.23 High Output Current Low Output Current	$\begin{aligned} & 10 \mathrm{OH} \\ & 1 \mathrm{OL} \end{aligned}$	VOUT $V-2.0 \mathrm{~V}$ $\mathrm{V}_{\text {OUT }}=\mathrm{V}^{-}+1.0 \mathrm{~V}$	-150	$\begin{array}{r} -180 \\ +0.3 \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Segment Driver: Pins 4.5.6.7.9, 10.11.12 Low Output Current High Output Current	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \end{aligned}$	$\begin{aligned} & V_{\text {OUT }}=V^{-}+1.5 \mathrm{~V} \\ & V_{\text {OUT }}=V^{+}-2.5 \mathrm{~V} \end{aligned}$	25	$\begin{gathered} 35 \\ -100 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Multiplex Inputs: Pins 1.3.14 Input Low Voltage Input High Voltage Input Resistance to V^{-}	$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & R \end{aligned}$	$\mathrm{VIN}^{\mathrm{N}}=\mathrm{V}^{-}+1.0 \mathrm{~V}$	$\left\|\begin{array}{c} V^{-}+2.0 \\ 50 \end{array}\right\|$	100	0.8	Volts Volts K Ω
7216B Digit Driver: Pins 4.5.6.7.9,10.11.12 Low Output Current High Output Current	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \end{aligned}$	$\begin{aligned} & \text { VOUT }=\mathrm{V}^{-}+1.0 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	50	$\begin{gathered} 75 \\ -100 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Segment Driver: Pins 15.16.17.19.20.21.22.23 High Output Current Leakage Current	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IL} \end{aligned}$	$\begin{aligned} & \text { VOUT }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \text { VOUT }^{+}=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	-10		10	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Multiplex Inputs: Pins 1.3.14 Input Low Voltage Input High Voltage Input Resistance to V^{+}	$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & R \end{aligned}$	$V_{\text {IN }}=V^{+}-1.0 \mathrm{~V}$	$\begin{gathered} v^{+}-0.8 \\ 200 \end{gathered}$	360	$v^{+}-2.0$	Volts Volts K』

CD-7216

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{-}-\mathrm{V}^{-}=5.0 \mathrm{~V}$. Test Circuit. $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX	UNITS
7216C/D Operatıng Supply Current	100	Display Off. Unused Inputs to V^{-}		2	5	mA
Supply Voltage Range		$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$. Input A Frequency at $\mathrm{F}_{\text {MAX }}$	4.75		6.0	Volts
Maximum Frequency Input A. Pin 28	FMAX	$\begin{aligned} & -20^{\circ} \mathrm{C}=T_{A}<, 70^{\circ} \mathrm{C} \\ & 4.75 \cdot \mathrm{~V}^{+}-V^{-} \cdot 6.0 \mathrm{~V} \text {. Figure } 1 \end{aligned}$	10			MHz
Maxımum Osc. Freq and Ext. Osc. Frequency		$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{A}<\cdot 70^{\circ} \mathrm{C} \\ & 4.75-V^{+}-V^{-} \cdot 8.0 \mathrm{~V} \end{aligned}$	10			MHz
Minımum Ext Osc Freq.					100	KHz
Oscillator Transconductance	gm	$\mathrm{V}^{+}-\mathrm{V}=4.75 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	2000			$\mu \mathrm{mhos}$
Multiplex FreGuency	$f_{\text {mux }}$	fosc 10 MHz		500		Hz
Time Between Measurements		fosc 10 MHz		200		msec
Input Voltages: Pins 12.27. 28 Input Low Voltage Input High Voltage	$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<\cdot 70^{\circ} \mathrm{C}$	3.5		1.0	Volts Volts
Input Resistance to V^{+} Pins 12.24	R	$V_{\text {IN }} \mathrm{V}^{+}-1.0 \mathrm{~V}$	100	400		K Ω
Input Leakage Pin 27. Pin 28	iL				20	$\mu \mathrm{A}$
Output Current	IOL	$\mathrm{VOL}=\mathrm{V}^{+}+.4 \mathrm{~V}$	0.36			mA
Pin 2	${ }^{1} \mathrm{OH}$	$\mathrm{VOH}-\mathrm{V}^{+}-.8 \mathrm{~V}$	265			$\mu \mathrm{A}$
7216C Digit Driver: Pins 15.16.17.19,20.21.22.23 High Output Current Low Output Current	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOL} \end{aligned}$	$\begin{aligned} & \text { VOUT }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=1.0 \mathrm{~V} \end{aligned}$	-150	$\begin{array}{r} -180 \\ +0.3 \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Segment Driver: Pins 3.4.5.6.8.9.10.11 Low Output Current High Output Current	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \end{aligned}$	$\begin{aligned} & \text { VOUT }=V^{-}+1.5 \mathrm{~V} \\ & V_{\text {OUT }}=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	25	$\begin{array}{r} 30 \\ -100 \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Multiplex Inputs: Pins 1.13.14 Input Low Voltage Input High Voltage Input Resistance to V^{-}	$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & R \end{aligned}$	$V_{1 N}=V^{--}+1.0 V$	$\left\lvert\, \begin{gathered} V^{-}+2.0 \\ 50 \end{gathered}\right.$	100	$V^{-}+0.8$	Volts Volts KI
7216D Digit Driver: Pins 3.4.5.6.8.9.10.11 Low Output Current High Output Current	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VOUT }=V^{-}+2.0 V \\ & \text { VOUT }=V^{+}-2.5 V \end{aligned}$	50	$\begin{gathered} 75 \\ 100 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Segment Driver: Pins 15.16.17.19.20.21.22.23 High Output Current Leakage Current	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{I}_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & V_{\text {OUT }}=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	10	15	10	$\begin{gathered} m A \\ \mu \mathrm{~A} \end{gathered}$
Multiplex Inputs: Pins 1.13.14 Input Low Voltage Input High Voltage Input Resistance to V^{+}	$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	$V_{\text {IN }}=V^{+}-1.0 \mathrm{~V}$	$v^{+}-0.8$	360	$v^{+}-2.0$	Volts Volts ks

INPUT A

FIGURE 1. Waveform for Guaranteed Minimum Famax Function = Frequency, Frequency Ratio, Unit Counter.

INPUT A OR INPUT B

FIGURE 2. Waveform for Guaranteed Minimum Fbmax and Famax for Function = Period and Time Interval.

TIME INTERVAL MEASUREMENT

The CD-7216/7226 can be used to accurately measure the time interval between two events. With a 10 MHz timebase crystal, the time between the two events can be as long as ten seconds. Accurate resolution in time interval measurement is 100 ns .

The feature operates with Channel A going low at the start of the event to be measured, followed by Channel B going low at the end of the event.

CH. A

FIGURE 3a.

FIGURE 3b. Waveform for Minimum Time Between Transitions of Input A and Input B.

When in the time interval mode and measuring a single event, the CD-7216/7226 must first be "primed" prior to measuring the event of interest. This is done by placing both Channel A and Channel B at V^{+}, then causing A to toggle to V^{-}and back to V^{+}followed by B toggling to V^{-}and back to V^{+}The input is then ready for measurement.

FIGURE 3c.

This can be easily accomplished with the following circuit: (Figure 3d)

FIGURE 3d. Priming Circuit, Signal A\&B High or Low.

Following the priming procedure (when in single event or 1 cycle range input) the device is ready to measure one (only) event.
When timing repetitive signals, it is not necessary to "prime" the CD-7216/7226 as the first alternating signal states automatically prime the device.

During any time interval measurement cycle, the CD-7216/7226 requires 200 ms following B going low to update all internal logic. A new measurement cycle will not take place until completion of this internal update time.

FIGURE 3 e.

BLOCK DIAGRAM

TEST CIRCUIT

OVERFLOW WILL BE INDICATED ON THE DECIMAL POINT OUTPUT OF DIGIT 7.

LED OVERFLOW INDICATOR CONNECTIONS

	CATHODE	ANODE
CD-7216AC	DEC. PT.	D_{7}
CD-7216BC	D_{7}	DEC. PT.
CD-7216CC	DEC. PT.	D_{7}
$C D-7216 \mathrm{C}$	D_{7}	DEC. PT.

APPLICATIONS NOTES

GENERAL

Inputs A and B

Inputs A and B are digital inputs with a typical switching threshold of 2.0 V at $\mathrm{V}^{+}=5.0 \mathrm{~V}$. For optimum performance the peak-to-peak input signal should be at least 50% of the supply voltage and centered about the switching voltage. When these inputs are being driven from T2L logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs.

Note: The amplitude of the input should not exceed the supply, otherwise, the circuit may be damaged.

Multiplexed Inputs

The function, range, control and external decimal point inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically $125 \mu \mathrm{sec}$). The multiplex inputs are active high for the common anode CD-7216A and C and active low for the common cathode CD-7216B and D.
Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a 10 K resistor should be placed in series with the multiplex inputs as shown in the application notes.
Table 1 shows the functions selected by each digit for these inputs.

Control Input Functions

Display Test - All segments are enabled continuously, giving a display of all 8's with decimal points. The display will be blanked if Display Off is selected at the same time.
Display Off - To enable the Display Off mode it is necessary to input D_{3} to the control input and have the HOLD input at V^{+}. The chip will remain in the Display Off mode until HOLD is switched back to V^{-}. While in the Display Off mode, the segment and digit driver outputs are open. During Display Off the oscillator continues to run with a typical supply current of 1.5 mA with a 10 MHz crystal and no measurements are made. In addition, inputs to the multiplexed inputs will have no effect. A new measurement is initiated when the HOLD input is switched to V^{-}.
1 MHz Select - The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as with a 10 MHz crystal. The decimal point is also shifted one digit to the right in Period and Time Interval, since the least significant digit will be in μ second increments rather than $0.1 \mu \mathrm{sec}$ increments.
External Oscillator Enable - In this mode the external oscillator input is used instead of the on-chip oscillator for Timebase input and Main Counter input in Period and Time interval modes. The on-chip oscillator will continue to function when the external oscillator is selected. The external oscillator input frequency must be greater than 100 KHz or the chip will reset itself to enable the on-chip oscillator.

TABLE 1

	FUNCTION	DIGIT				
Function Input	Frequency	D_{0}				
Pin 3						
CD-7216A \& B						
Only			\quad		Frequency Ratio Time Interval Unit Counter Oscillator Frequency	D_{1}
:---	:---	:---				

[^17]These functions select which signal is counted into the Main Counter and which signal is counted by the reference counter, as shown in Table 2. In Time Interval, a flip flop is toggled first by a 1-0 transition of Input A and then by a 1-0 transition of Input B. The oscillator is gated into the Main Counter from the time Input A toggles the flip flop until Input B gates the flip flop. A change in the function input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the Function Input is changed.

TABLE 2

DESCRIPTION	MAIN COUNTER	REFERENCE COUNTER
Frequency (F_{A})	Input A	$\begin{aligned} & 100 \mathrm{~Hz} \text { (Oscillator } \text {. } \\ & \div 105 \text { or } 104 \text {) } \end{aligned}$
Period (T_{A})	Oscillator	Input A
Ratio ($\mathrm{F}_{\mathrm{A}} / \mathrm{F}_{\mathrm{B}}$)	Input A	Input B
Time Interval $(A \rightarrow B)$	Osce (Time Interval FF)	Time Interval FF
Unit Counter (Count A)	Input A	Not Applicable
Osc. Freq. (Fosc)	Oscillator	100 Hz (Oscillator $\div 105 \text { or } 104$

External Decimal Point Input - When the external decimal point is selected this input is active. Any of the digits, except D_{7}, can be connected to this point. D_{7} should not be used since it will override the overflow output and leading zeros will remain unblanked after the decimal point. This input is available on the CD-7216C and D only.

Hold Input - When the Hold Input is at V^{+}, any measurement in progress is stopped, the main counter is reset and the chip is held ready to initiate a new measurement. The latches which hold the main counter data are not updated so the last complete measurement is displayed. When Hold is changed to V^{-}, a new measurement is initiated.
Reset Input - The Reset Input is the same as a Hold Input, except the latches for the Main Counter are enabled, resulting in an output of all zeros

DISPLAY CONSIDERATIONS

The display is multiplexed at a 500 Hz rate with a digit time of $244 \mu \mathrm{sec}$. An interdigit blanking time of $6 \mu \mathrm{sec}$ is used to prevent ghosting between digits. The decimal point and leading zero blanking have been implemented for right hand decimal point displays, zeros following the decimal point will not be blanked. Also, the leading zero blanking will be disabled when the Main Counter overflows.
The CD-7216A and C are designed to drive common anode LED displays at peak current of $25 \mathrm{~mA} /$ segment, using displays with $V_{F}=1.8 \mathrm{~V}$ at 25 mA . The average $D C$ current will be over 3 mA under these conditions. The CD-7216B and D are designed to drive common cathode displays at peak current of $15 \mathrm{~mA} /$ segment using displays with $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$ at 15 mA . Resistors can be added in series with the segment drivers to limit the display current in very efficient displays, if
required. Figures 4,5,6 and 7 show the digit and segment currents as a function of output voltage.
To get additional brightness out of the displays, V^{+}may be increased up to 6.0 V . However, care should be taken to see that maximum power and current ratings are not exceeded.

FIGURE 4. CD-7216A \& C Typical $I_{D I G}$ vs. $V^{+}-V_{\text {OUT }}$, $4.5 \mathrm{~V} \leq \mathrm{V}^{+}-\mathrm{V}^{-} \leq 6.0 \mathrm{~V}$

FIGURE 5. CD-7216A \& C Typical $I_{\text {SEG }}$ vs. $V_{\text {OUT }}-V^{-}$

FIGURE 6. CD-7216B \& D Typical $I_{\text {DIGIT }}$ vs. $V_{\text {OUT }}-V^{-}$

FIGURE 7. CD-7216B \& D Typical $I_{\text {SEG }}$ vs. $V^{+}-V_{\text {OUT }}$, $4.5 \mathrm{~V} \leq \mathrm{V}^{+}-\mathrm{V}^{-} \leq 6.0 \mathrm{~V}$

The segment and digit outputs in CD-7216's are not directly compatible with either TTL or CMOS logic. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals.

Segment Identification:

ACCURACY

In a Universal Counter crystal drift and quantization errors cause errors. In Frequency, Period and Time Interval modes, a signal derived from the oscillator is used in either the Reference Counter or Main Counter. Therefore, in these modes an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of $20 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$ will ċause a measurement error of $20 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$.

In addition, there is a quantization error inherent in any digital measurement of ± 1 count. Clearly this error is reduced by displaying more digits. In the Frequency mode the maximum accuracy is obtained with high frequency inputs and in Period mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 8, the least accuracy will be obtained at 10 KHz . In Time Interval measurements there can be an error of 1 count per interval. As a result there is the same inherent accuracy in all ranges as shown in Figure 9. In Frequency Ratio measurement can be more accurately obtained by averaging over more cycles of Input B as shown in Figure 10.

FIGURE 8. Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors

FIGURE 9. Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors

FIGURE 10. Maximum Accuracy for Frequency Ratio Measurement Due to Limitation of Quantization Errors

CIRCUIT APPLICATIONS

The CD-7216 has been designed for use in a wide range of Universal and Frequency counters. In many cases, prescalers will be required to reduce the input frequencies to under 10 MHz . Because Input A and Input B are digital inputs, additional circuitry is often required for input buffering, amplification, hysterisis, and level shifting to obtain a good digital signal.

The CD-7216A or B can be used as a minimum component complete Universal Counter as shown in Figure 11. This circuit can use input frequencies up to 10 MHz at Input A and 2 MHz at Input B.

For input frequencies up to 40 MHz the circuit shown in Figure 12 can be used to implement a frequency counter. To obtain the correct measured value, it is necessary to divide the oscillator frequency by four as well as the input frequency. In doing this the time between measurements is also lengthened to 800 msec and the display multiplex rate is decreased to 125 Hz .

FIGURE 11. 10MHz Universal Counter

CD-7216

FIGURE 12. 40 MHz Frequency Counter

If the input frequency is prescaled by ten, then the oscillator can remain at 10 or 1 MHz , but the decimal point must be moved one digit to the right. Figure 13 shows a frequency counter implemented with a $\div 10$ prescaler and an CD-7216C. Since there is no external decimal point with the CD-7216A or B, the decimal point must be implemented with additional drivers as shown in Figure 14. Note that there can be one zero to the left of the decimal point since the internal leading zero blanking cannot be changed. In Figure 15 additional logic has been added to count the input directly in period mode for maximum accuracy. In both Figures 13 and 14, Input A comes from Q_{C} of the prescaler rather than Q_{A} to obtain an input duty cycle of 40%. If the signal at Input A has a very low duty cycle then it may be necessary to use a 74121 monostable multivibrator or similar circuit to stretch the input pulse width to guarantee 50 nsec minimum pulse width.

FIGURE 13. 100 MHz Frequency Counter

FIGURE 14. 100 MHz Multifunction Counter

FIGURE 15. 100MHz Frequency, 2 MHz Period Counter

OSCILLATOR CONSIDERATIONS

The oscillator has been implemented as a high gain complementary FET inverter. An external resistor of $10 \mathrm{M} \Omega$ or $22 \mathrm{M} \Omega$ should be connected between the oscillator input and output to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a static capacitance of 22 pF and a series resistance of less than 35 ohms.

For a specific crystal and load capacitance, the required g_{m} can be calculated as follows:

$$
\begin{aligned}
& g_{m}=\omega^{2} C_{\text {in }} C_{\text {out }} R_{s}\left(1+\frac{C_{o}}{C_{L}}\right)^{2} \\
& \text { where } C_{L}=\left(\frac{C_{\text {in }} C_{o u t}}{C_{\text {in }}+C_{o u t}}\right) \\
& C_{o}=\text { Crystal Siatic Capacitance } \\
& R_{S}=\text { Crystal Series Resistance } \\
& C_{\text {in }}=\text { Input Capacitance } \\
& C_{o u t}=\text { Output Capacitance } \\
& \omega=2 \pi f
\end{aligned}
$$

The required g_{m} should exceed the g_{m} specified for the CD-7216 by at least 50% to insure reliable startup. The oscillator input and output pins each contribute about 5 pf to $C_{i n}$ and $C_{\text {out }}$. For maximum stability of frequency, $C_{\text {in }}$ and Cout should be approximately twice the specified crystal static capacitance.

In cases where non decade prescalers are used it may be desirable to use a crystal which is neither 10 MHz or 1 MHz . In that case both the multiplex rate and time between measurements will be different. The multiplex rate is $f_{\max }=$ $\frac{\text { fosc }}{2 \times 10^{4}}$ for 10 MHz mode and $f_{\text {max }}=\frac{\text { fosc }}{2 \times 10^{3}}$ for the 1 MHz mode. The time between measurements is $\frac{2 \times 10^{6}}{f_{\text {osc }}}$ in the 10 MHz mode and $\frac{2 \times 10^{5}}{f_{\text {osc }}}$ in the 1 MHz mode.
The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. Coupling from the External oscillator input to the oscillator output or input can cause undesirable shifts in oscillator frequency.

$\mathrm{F}_{\mathrm{A} M A X}, \mathrm{~F}_{\mathrm{B} \text { max }}$ as a Function of $\mathrm{V}^{+}-\mathbf{V}^{-}$

FIGURE 16. Typical Operating Characteristics

PACKAGE DIMENSIONS

28 PIN CERDIP DUAL IN LINE PACKAGE

28 PIN PLASTIC DUAL IN LINE PACKAGE

FEATURES

- Four decade, presettable up-down counter with parallel zero detect
- Settable register with contents continuously compared to counter
- Directly drives multiplexed 7 segment common anode or common cathode LED displays
- On-board multiplex scan oscillator
- Schmitt trigger on count input
- TTL compatible BCD I/O port, carry/borrow, equal, and zero outputs
- Display blank control for lower power operation; quiescent power dissipation $<5 \mathrm{~mW}$
- All terminals fully protected against static discharge
- Single 5V supply operation

DESCRIPTION

The CD-7217 and CD-7227 are four digit, presettable up/ down counters, each with an onboard presettable register continuously compared to the counter. The CD-7217 versions are intended for use in hardwired applications where thumbwheel switches are used for loading data, and simple SPDT switches are used for chip control. The CD-7227 versions are for use in processor-based systems, where presetting and control functions are performed under processor control.

These circuits provide multiplexed 7 segment LED display outputs, with common anode or common cathode configurations available. Digit and segment drivers are provided to directly drive displays of up to $1^{\prime \prime}$ character height at a 25% duty cycle. The frequency of the onboard multiplex oscillator may be controlled with a single capacitor, or the oscillator may be allowed to free run. Leading zeroes can be blanked. The data appearing at the 7 segment and BCD outputs is latched; the content of the counter is transferred into the latches under external control by means of the Store pin.

The CD-7217C/7227C (common anode) and CD-7217AC/ 7227AC (common cathode) versions are decade counters, providing a maximum count of 9999, while the CD-7217BC/ 7227BC (common anode) and CD-7217CC/7227CC (common cathode) are intended for timing purposes, providing a maximum count of 5959 .
These circuits provide 3 main outputs; a carry/borrow output, which allows for direct cascading of counters, a zero output, which indicates when the count is zero, and an equal output, which indicates when the count is equal to the value contained in the register. Data is multiplexed to and from the device by means of a tri-state BCD $1 / O$ port. The carry/borrow, equal, zero outputs, and the BCD port will each drive one standard TTL load.
To permit operation in noisy environments and to prevent multiple triggering with slowly changing inputs, the count input is provided with a Schmitt trigger.
Input frequency is guaranteed to 2 MHz , although the device will typically run with $f_{\text {in }}$ as high as 5 MHz .

CONNECTION DIAGRAMS

COMMON ANODE

COMMON CATHODE

ABSOLUTE MAXIMUM RATINGS

$\left.\begin{array}{l}\text { Power Dissipation (common anode/Cerdip) } 1 \text { Watt } \\ \text { Power Dissipation (common cathode/Plastic) } 5 \text { Watt }\end{array}\right\}$ Note 1	
Supply Voltage $\mathrm{V}^{+}-\mathrm{V}^{-}$ 6 V
Input voltage (any termina	-0.3V-Note 2
Operating temperature range	$20^{\circ} \mathrm{C}$ to $+70^{\circ}$
Storage temperature ra	

Absolute maximum ratings define stress limitations which if exceeded may permanently damage the device. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics.

OPERATING CHARACTERISTICS

$\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Test Circuit, Display Diode Drop 1.7V, unless otherwise specified

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply current (Lowest power mode)	IMIN, (7217)	Display Off, LC, DC, UP/DN, ST, RS, BCD I/O Floating or at V^{+}(Note 3)		350	500	$\mu \mathrm{A}$
Supply current (Lowest power mode)	IMIN, (7227)	Display off (Note 3)		300	500	$\mu \mathrm{A}$
Supply current OPERATING	Iop	Common Anode, Display On, all " 8 's"	175	200		mA
		Common Cathode, Display On, all "8's"	85	100		mA
Supply Voltage	$\mathrm{V}^{+}-\mathrm{V}^{-}$		4.5	5	5.5	V
Digit Driver output current	IdIG	Common anode, $\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}-2.2 \mathrm{~V}$	175	200		mA peak
Segment driver output current	ISEG	Common anode, VOUT $=\mathrm{V}+1.3 \mathrm{~V}$	25	-40		mA peak
Digit Driver output current	Idig	Common cathode, VOUT $=\mathrm{V}+1.3 \mathrm{~V}$	75	-100		mA peak
Segment Driver output current	ISEG	Common cathode VOUT $=\mathrm{V}^{+}-2 \mathrm{~V}$	10	12.5		$\begin{gathered} \text { mA } \\ \text { peak } \\ \hline \end{gathered}$
$\overline{\mathrm{ST}}, \overline{\mathrm{RS}}, \mathrm{UP} / \mathrm{DN}$ input pullup current	Ip	Vout $=\mathrm{V}^{+}-2 \mathrm{~V}$ (See Note 3)	5	25		$\mu \mathrm{A}$
3 level input impedance				100		k!
BCD I/O input high voltage	$\mathrm{V}_{\text {BIH }}$	7217 common anode (Note 4)	1.3			V
		7217 common cathode (Note 4)	4.1			V
		7227 with 50pF effective load	3			V
BCD I/O input low voltage	VBIL	7217 common anode (Note 4)			0.8	V
		7217 common cathode (Note 4)			3.7	V
		7227 with 50pF effective load			15	V
BCD I/O input pullup current	IBPU	7217 common anode VIN $=\mathrm{V}^{+}-2 \mathrm{~V}$ (Note 3)	5	25		$\mu \mathrm{A}$
BCD I/O input pulldown current	IBPD	7217 common cathode $\mathrm{V}_{\text {IN }}=\mathrm{V}+1.3 \mathrm{~V}$ (Note 3)	5	25		$\mu \mathrm{A}$
BCD I/O, Carry/borrow zero, equal outputs output high current	$\mathrm{I}_{\mathrm{BOH}}$	$\mathrm{VOH}=\mathrm{V}^{+}-1.5 \mathrm{~V}$	100			$\mu \mathrm{A}$
BCD I/O, Carry/borrow zero, equal outputs output low current	IBOL	$\mathrm{VOL}=\mathrm{VOL}^{-}+0.4 \mathrm{~V}$	-2			mA
Count input frequency (Guaranteed)	fin	$\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V} \pm 10 \%,-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$	0	5	2	MHz
Count input threshold	VTC	$\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$		2		V
Count input hysteresis	V_{HC}	$\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$		0.5		V
Display scan oscillator frequency	fds	Free-running (SCAN terminal open circuit)		10		KHz
Operating Temperature Range	$\mathrm{T}_{\text {A }}$		-20		70	${ }^{\circ} \mathrm{C}$

NOTE 1 These limited refer to the package and will not be obtained during normal operation.
NOTE 2 Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than V^{+}or less than V^{-}may cause destructive device latchup. For this reason it is recommended that the power supply to the device be established before any inputs are applied and that in multiple systems the suppiy to the $7217 / 7227$ be turned on first.
NOTE 3 In the 7217 the Up/Down, Store, Reset and the BCD I/O as inputs have pullup devices which consume power when connected to the negative supply. When all these terminals are connected to the negative supply, with the display off, the device will consume typically 750 $\mu \mathrm{A}$. The 7227 devices do not have these pullups and thus are not subject to this condition.
NOTE 4 These voltages are adjusted to allow the use of thumbwheel switches for the 7217 versions. Note that a positive level is taken as a logic zero for 7217 common-cathode versions only.

CD-7217/7227

TEST CIRCUITS

Figure 1

Figure 1 shows the CD-7217 in the common-anode version and the CD-7227 in the common-cathode version.

Figure 2: Block Diagram CD-7217

CD-7217/7227

Figure 3: Multiplex Timing

Figure 4: Thumbwheel switch/diode connections

Figure 5: CD-7227 I/O Timing (See Table 2)

CONTROL INPUT DEFINITIONS ICM7217

INPUT	TERMINAL	VOLTAGE	FUNCTION
$\overline{\text { Store }}$ ($\overline{\mathrm{ST}}$)	9	$\begin{gathered} \hline \mathrm{V}^{+} \text {(or floating) } \\ \mathrm{V}^{-} \\ \hline \end{gathered}$	Output latches not updated Output latches updated
Up/Down (U/效)	10	$\begin{gathered} \hline \mathrm{V}^{+} \text {(or floating) } \\ \mathrm{V}^{-} \\ \hline \end{gathered}$	Counter counts up Counter counts down
$\overline{\text { Reset (}} \overline{\mathrm{RST}}$)	14	$\begin{gathered} \mathrm{V}^{+} \text {(or floating) } \\ \mathrm{V}^{-} \end{gathered}$	Normal Operation Counter Reset
Load Counter LC///O OFF	12	$\begin{gathered} \hline \text { Unconnected } \\ \mathrm{V}^{+} \\ \mathrm{V}^{-} \\ \hline \end{gathered}$	Normal operation Counter loaded with BCD data BCD port forced to Hi Z condition
Load Register LR/OFF	11	$\begin{gathered} \text { Unconnected } \\ V^{+} \\ V^{-} \end{gathered}$	Normal operation Register loaded with BCD data Display drivers disabled; BCD port forced to Hi Z condition, mpx counter reset to D3; mpx oscillator inhibited
Display Control (DC)	23 Common Anode 20 Common Cathode	$\begin{gathered} \text { Unconnected } \\ V^{+} \\ V^{-} \end{gathered}$	Normal operation Segment drivers disabled Leading zero blanking inhibited

CONTROL INPUT DEFINITIONS CD-7227

INPUT		TERMINAL	VOLTAGE	FUNCTION
		13	$\begin{aligned} & \hline \mathrm{V}^{+} \\ & \mathrm{V}^{-} \end{aligned}$	Normal Operation Causes transfer of data as directed by select code
Control Word Port "	Store (ST)	9	V^{+}(During $\overline{\mathrm{CWS}}$ Pulse) V^{-}	Output latches updated Output latches not updated
	Up/Down (U/D)	10	v^{+}(During $\overline{\mathrm{CWS}}$ Pulse) V^{-}	Counter counts up Counter counts down
	$\begin{aligned} & \text { Select Code Bit } 1 \text { (SC1) } \\ & \text { Select Code Bit } 2 \text { (SC2) } \end{aligned}$	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}=1 \\ & \mathrm{~V}^{-}=0 \end{aligned}$	SC1, SC2 00 Change store and up/down latches. No data transfer. 01 Output latch data active 10 Counter to be preset 11 Register to be preset
		14	$\begin{aligned} & \mathrm{V}^{+} \\ & \mathrm{V}^{-} \end{aligned}$	Normal operation Causes control word to be written into control latches
	Display Control (DC)	23 Common Anode 20 Common Cathode	Unconnected V^{+} V^{-}	Normal operation Display drivers disabled Leading zero blanking inhibited

DESCRIPTION OF OPERATION
 OUTPUTS

The carry/borrow output is a positive going signal occurring typically 500 nS after the positive going edge of the count input. It advances the counter from 9999 to 0000 when counting up and from 0000 to 9999 when counting down. This output allows direct cascading of counters.
The equal output assumes a negative level when the contents of the counter and register are equal.
The $\overline{\text { zero }}$ output assumes a negative level when the content of the counter is 0000 .
The carry/borrow, $\overline{\text { equal, and }} \overline{\text { zero }}$ outputs will drive a single TTL load over the full range of supply voltage and ambient temperature; for a logic zero, these outputs will sink 2 mA @ 0.4 V (on resistance 200 ohms), and for a logic one, the
outputs source $>60 \mu \mathrm{~A}$.
The digit and segment drivers provide a decoded 7 segment display system, capable of directly driving common anode LED displays at typical peak currents of $40 \mathrm{~mA} / \mathrm{seg}$. This corresponds to average currents of $10 \mathrm{~mA} / \mathrm{seg}$ at a 25% multiplex duty cycle. For the common cathode versions, peak segment currents are 12.5 mA , corresponding to average segment currents of 3.1 mA . The display pin controls the display output using three level logic. The pin is selfbiased to a voltage approximately $1 / 2\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)$; this corresponds to normal operation. When this pin is connected to V^{+}, the segments are inhibited, and when connected to V^{-}, the leading zero blanking feature is inhibited. For normal operation (display on with leading zero blanking) the pin may be left open. The display may be controlled with a 3 position SPDT switch; see fig. 1.

CD-7217/7227

The BCD I/O port provides a means of transferring data to and from the device. The CD-7217 versions multiplex data into the counter or register via thumbwheel switches, depending on inputs to the load counter or load register pins; in the CD-7227 versions, input/output control and timing must be provided externally. When functioning as outputs, the BCD I/O pins will drive one standard TTL load
The onboard multiplex scan oscillator has a nominal freerunning frequency of 10 kHz . This may be reduced by the addition of a single capacitor between the Scan pin and the positive supply, or the oscillator may be directly overdriven to about 20 kHz . Capacitor values and corresponding nominal oscillator frequencies, digit repetition rates, and loading times (for CD-7217 versions) are shown in Table 1 below.
The internal oscillator output has a duty cycle of approximately 25:1, providing a short pulse occurring at the oscillator frequency. This pulse clocks the four-state counter which provides the four multiplex phases. The short pulse width is used to delay the digit driver outputs, thereby providing inter-digit blanking which prevents ghosting. The digits are scanned from MSD (D4) to LSD (D1). See Fig. 3 for the display digit multiplex timing.

Table 1

Scan Capacitor	Nominal Oscillator Frequency	Digit Repetition Date	Scan Cycle Time
None	10 kHz	2.5 kHz	$400 \mu \mathrm{~s}$
20 pF	5 kHz	1.2 kHz	$800 \mu \mathrm{~s}$
90 pF	1 kHz	250 Hz	4 ms

CONTROL OF CD-7217

The counter is incremented by the rising edge of the count input signal when U/D is high. It is decremented when U/D is low. A Schmitt trigger on the count input provides hysteresis to prevent double triggering on slow rising edges and permits operation in noisy environments.
The $\overline{\text { ST }}$ pin controls the internal latches and consequently the signals appearing at the 7 segment and BCD outputs. Bringing the store pin to V^{-}transfers the contents of the counter into the latches.
The counter is asynchronously reset to 0000 by bringing the $\overline{\text { RST }}$ pin to V^{-}. The count input is inhibited during reset and load counter operations. The $\overline{S T}, \overline{\mathrm{RST}}$ and Up/ $\overline{\mathrm{Down}}$ pins are provided with pullup resistors of approximately $75 \mathrm{k} \Omega$.
The BCD I/O pins, the load counter (LC), and load register (LR) pins combine to provide presetting and compare functions. LC and LR are three-level inputs, being selfbiased at approximately $1 / 2\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)$for normal operation. With both LC and LR open, the BCD I/O pins provide a multiplexed BCD output of the latch contents, scanned from MSD
to LSD by the display multiplex. In this mode of operation, the BCD pins will drive one TTL load. When either or both of the LC or LR pins is connected to V^{+}, the TTL driver devices are turned off and the BCD pins become high-impedance inputs. When LC is connected to V^{+}, the count input is inhibited and the levels at the BCD pins are multiplexed into the counter. When LR is connected to V^{+}, the levels at the $B C D$ pins are multiplexed into the register without disturbing the counter. When both are connected to V^{+}, the count is inhibited and both register and counter are presettable. When LR is connected to V^{-}, the oscillator is inhibited, the $B C D$ I/O pins go to the high impedance state, and the segment and digit drivers are turned off. This allows the display to be used for other purposes and minimizes power consumption. In this display off condition, the circuit will continue to count, and the carry/borrow, equal, zero, up/ down, reset and store functions operate as normal. When LC is connected to V^{-}, the BCD I/O pins are forced to the high impedance state without disturbing the counter or register. See "Control Input Definitions" for a cataloging of the pins that function as three-state self-biased inputs and their respective operations.

Note that the 7217C and 7217BC have been designed to drive common anode displays. The BCD inputs are active high, as are the BCD outputs.
The 7217ACand 7217CCare used to drive common cathode displays, and the $B C D$ inputs are active low. $B C D$ outputs are active high.
The 7227 series has been designed to permit microprocessor control of the inputs. BCD inputs and outputs are active high.

NOTES ON THUMBWHEEL SWITCHES \& MULTIPLEXING

The thumbwheel switches used with these circuits (both common anode and common cathode) are TRUE BCD coded; i.e. all switches open corresponds to 0000.
Since the thumbwheel switches are connected in parallel, diodes must be provided to prevent crosstalk between digits. See fig. 4.
In order to maintain reasonable noise margins, these diodes should be specified with low forward voltage drops.
During load counter and load register operations, the multiplex oscillator is disconnected from the scan input and is allowed to free-run. In all other conditions, the oscillator may be directly overdriven; however the internal oscillator output will be of the same duty cycle and phase as the overdriving signal, and the digits are blanked during the time the internal oscillator output is at a positive level. To insure proper leading zero blanking, the blanking time should not be less than about $2 \mu \mathrm{~s}$, and by varying the duty cycle, the display brightness may be altered. Overdriving the oscillator at less than 200 Hz may cause display flickering. See fig. 6 for brightness control circuits.
These circuits are variable-duty-cycle oscillators suitable for overdriving the multiplex oscillator at the Scan input of a CD-7217. The inverters should be CMOS CD4000 series, and the diodes may be any inexpensive device such as IN914.

Figure 6: Brightness Circuits

OUTPUT AND INPUT RESTRICTIONS

The carry/borrow output is not valid during load counter and reset operations.
The equal output is not valid during load counter or load register operations.
The $\overline{z e r o}$ output is not valid during a load counter operation. The reset input may be susceptible to noise if its input rise time coming out of reset) is less than about $500 \mu \mathrm{~s}$. This will present no problems when this input is driven by active devices (i.e., TTL or CMOS logic) but in hardwired systems adding virtually any capacitance to the reset input can cause trouble. A simple circuit which provides a reliable power-up reset and a fast rise time on the $\overline{\text { reset }}$ input is shown below.

CONTROL OF 7227 VERSIONS

In the 7227 versions, the Store, Up/ $\overline{\text { Down, }}$ SC1 and SC2 (select code bits 1 and 2) pins form a four-bit control word input. A negative-going pulse on the $\overline{\mathrm{CWS}}$ (control word strobe) pin writes the data on these pins into four internal control latches, and resets the multiplex counter in preparation for sequencing a data transfer operation. The select code 00 is reserved for changing the state of the Store and/or Up/Down latches without initiating a data transfer. Writing a one into the Store latch sets the latch and causes the data in the counter to be transferred into the output latches, while writing a zero resets the latches causing them to retain data and not be updated. Similarly, writing a one into the

Up/ $\overline{\text { Down latch causes the counter to count up and writing a }}$ zero causes the counter to count down. The state of the Store and Up/Down latches may also be changed with a nonzero select code.
Writing a nonzero select code initiates a data transfer operation. Writing select code of 01 (SC1, SC2) indicates that the data in the output latches will be active and enables the BCD I/O port to output the data. Writing a select code of 11 indicates that the register will be preset, and a 10 indicates that the counter will be preset.
When a nonzero select code is read, the clock of the fourstate multiplex counter is switched to the $\overline{D T}$ (data transfer) pin. Negative-going pulses at this pin then sequence a digit-by-digit data.transfer, either outputting data or presetting the counter or register as determined by the select code. The output drivers of the BCD I/O port will be enabled only while $\overline{\mathrm{DT}}$ is low during a data transfer initiated with a 01 select code.
The sequence of digits will be D4-D3-D2-D1, i.e. when outputting, the data from D4 will be valid during the first $\overline{D T}$ pulse, then D3 will be valid during the second pulse, etc. When presetting, the data for D4 must be valid at the positivegoing transition (trailing edge) of the first $\overline{\mathrm{DT}}$ pulse, the data for D3 must be valid during the second $\overline{D T}$ pulse, etc.
At the end of a data transfer operation, on the positive going transition of the fourth $\overline{\mathrm{DT}}$ pulse, the SC1 and SC2 control latches will automatically reset, terminating the data transfer and reconnecting the multiplex counter clock to the oscillator. In the 7227 versions, the multiplex oscillator is always free-running, except during a data transfer operation when it is disabled.
Fig. 5 shows the timing of data transfers initiated with a 11 select code (writing into the register) and a 01 select code (reading out of the output latches). Typical times during which data must be valid at the control word and BCD I/O ports are indicated in Table 2.

Table 2

SYMBOL	DEFINITION	TIME, NS	SYMBOL	DEFINITION	TIME, NS
tcws	CONTROL WORD STROBE WIDTH	200	$\mathrm{t}_{\text {can }}$	$\begin{aligned} & \text { CONTROL } \\ & \text { DATA HOLD } \end{aligned}$	100
tics	INTERNAL CONTROL SETUP	500	$\mathrm{t}_{1} \mathrm{ds}$		100
$t \overline{d t}$	DATA TRANSFER PULSE WIDTH	200	$\mathrm{t}_{\text {t }}$ an	$\begin{aligned} & \hline \text { INPUT } \\ & \text { DATA HOLD } \end{aligned}$	100
			toda	$\begin{aligned} & \text { OUTPUT } \\ & \text { DATA } \\ & \text { ACCESS } \end{aligned}$	100
tcds	CONTROL DATA SETUP	100	toan	$\begin{aligned} & \hline \text { OUTPUT } \\ & \text { DATA } \\ & \text { HOLD } \end{aligned}$	100

CD-7217/7227

APPLICATIONS

1. FIXED DECIMAL POINT

In the common anode versions, a fixed decimal point may be implemented by connecting the D.P. segment lead from the appropriate digit (with separate digit displays; through a 39』) series resistor to V^{-}. With common cathode devices, the D.P. segment lead should be connected through a 75! 2 series resistor to V .

To force the device to display leading zeroes after a fixed decimal point, use a bipolar transistor and base resistor in a configuration like that of Fig. 8 with the resistor connected to the digit output driving the D.P. for left hand D.P. displays, and to the next least significant digit output for right hand D.P. display. For common cathode devices use a PNP and NPN transistor as shown below:

2. UNIT COUNTER WITH BCD OUTPUT (Figure 7)

The simplest application of the CD-7217 is a 4 digit unit counter. All that is required is a CD-7217, a power supply and a 4 digit display. Add a momentary switch for reset, an SPDT center-off switch to blank the display or view leading zeroes, and one more SPDT switch for up/down control. Using a CD7217AC and a common-cathode calculator-type display, results in the least expensive digital counter/display system available.

Figure 7: Unit Counter

3. PRECISION ELAPSED TIME/COUNTDOWN TIMER (Figure 8)

This circuit uses an ICM7213 precision one minute/one second timebase generator and a 4.1943 MHz crystal oscillator and divider for generating pulses counted by an CD-7217BC. The thumbwheel switches allow a starting time to be entered into the counter for a preset-countdown type timer, and allow the register to be set for compare functions. For instance, to make a 24 -hour clock with BCD output the register can be preset with 2400 and the Equal output used to reset the counter. Note the 10 k resistor connected between the LC terminal and V^{-}. This resistor pulls the LC input low when not loading, thereby inhibiting the BCD output drivers. This resistor should be eliminated and SW4 replaced with an SPDT center-off switch if the BCD outputs are to be used. This technique may be used on any 3-level input. The 100k pullup resistor on the count input is used to ensure proper logic voltage swing from the ICM7213. For a less expensive (and less accurate) timebase, a 555 timer may be used in a configuration like that shown in Fig. 12 to generate a 1 Hz reference.

Figure 8: Precision Timer

4. 8-DIGIT UP/DOWN COUNTER (Figure 9)

This circuit shows how to cascade counters and retain correct leading zero blanking. The NAND gate detects whether a digit is active since one of the two segments \bar{a} or \bar{b} is active on any unblanked number. The flip flop is clocked by the least significant digit of the high order counter, and if this digit is not blanked, the Q output of the flip flop goes high
and turns on the NPN transistor, thereby inhibiting leading zero blanking on the low order counter.
It is possible to use separate thumbwheel switches for presetting, but as the devices load data with the oscillator free-running, the multiplexing of the two devices is difficult to synchronize. This presents no problems with the CD-7227 devices, since the two devices are operated as peripherals to a processor.

Figure 9: 8 Digit Up/Down Counter

5. TAPE RECORDER POSITION INDICATOR/ CONTROLLER (Figure 10)

This circuit shows an application which uses the up/down counting feature of the CD-7217 to keep track of tape position. This circuit is representative of the many applications of up/down counting in monitoring dimensional position. For example, an CD-7227 as a peripheral to a processor can monitor the position of a lathe bed or digitizing head, transfer the data to the processor, drive interrupts to the processor using the $\overline{\text { equal }}$ or $\overline{\text { zero }}$ outputs, and serve as a numerical display for the processor.
In the tape recorder application, the preset register, equal and $\overline{\text { zero }}$ outputs are used to control the recorder. To make the recorder stop at a particular point on the tape, the
register can be set with the stop point and the equal output used to stop the recorder either on fast forward, play or rewind.
To make the recorder stop before the tape comes free of the reel on rewind, a leader should be used. Resetting the counter at the starting point of the tape, a few feet from the end of the leader, allows the zero output to be used to stop the recorder on rewind, leaving the leader on the reel.
The $1 \mathrm{M} \Omega$ resistor and $.0047 \mu \mathrm{~F}$ capacitor on the count input provide a time constant of about 5 ms to debounce the reel switch. The Schmitt trigger on the count input of the CD-7217 squares up the signal before applying it to the counter. This technique may be used to debounce switchclosure inputs in other applications.

Figure 10: Recorder Indicator

6. PRECISION FREQUENCY COUNTER/ TACHOMETER (Figure 11)

This circuit is a simple implementation of a four digit frequency counter, using an ICM7207A to provide the one second gating window and the store and $\overline{\text { reset }}$ signals. In this configuration, the display reads hertz directly. With Pin 11 of the ICM7027A connected to V^{+}, the gating time will be 0.1 second; this will display tens of hertz as the least significant digit. For shorter gating times, an ICM7207 may be used (with
a 6.5536 MHz crystal), giving a 0.01 second gating with Pin 11 connected to V^{+}, and a 0.1 second gating with Pin 11 open. To implement a four digit tachometer, the ICM7207A with one second gating should be used. To get the display to read directly in RPM, the rotational frequency of the object to be measured must be multiplied by 60 . This can be done electronically using a phase-locked loop, or mechanically by using a disc rotating with the object with the appropriate number of holes drilled around its edge to interrupt the light from an LED to a photo-dector. For faster updating, use 0.1 second gating, and multiply the rotational frequency by 600.

Figure 11: Precision Frequency Counter

7. INEXPENSIVE FREQUENCY COUNTER/
 TACHOMETER (Figure 12)

This circuit uses an inexpensive 556 dual timer rather than an ICM7027A to generate the gating, $\overline{\text { store and }} \overline{\text { reset }}$ signals. To provide the gating signal, one timer is configured as an astable multivibrator, using R_{A}, R_{B} and C to provide an output that is positive for approximately 1 second and negative for approximately $300-500 \mu \mathrm{~S}$. The gating positive time is given by $G_{L}=0.693\left(R_{A}+R_{B}\right) C$ while the gating low time is $G_{L}=0.693 R_{B C}$. The system is calibrated by using a $5 M \Omega$ potentiometer for R_{A} as a "coarse" control and a 1 k

Abstract

potentiometer for RB as a "fine" control. The other timer in the 556 is configured as a one-shot triggered by the negativegoing edge of the gating signal. This one-shot output is inverted to serve as the store pulse and to hold reset high When the one-shot times out and store goes high, $\overline{\text { reset goes }}$ low, resetting the counter for the next measurement. The one-shot pulse width will be approximately $50 \mu \mathrm{~s}$ with the component values shown. When "fine" trimming the gating signal with R_{B}, care should be taken to keep the gating low time ($=0.693 R_{B} C$) at least twice as long as the one-shot pulse width.

Figure 12: Inexpensive Frequency Counter

8. INEXPENSIVE CAPACITANCE METER (Figure 13)

This circuit uses two 555 timers (or one 556) to generate a gated count to the CD-7217 dependent on the value of an arbitrary capacitor. The clock timer operates as a fixed oscillator whose output period is determined by R_{1}, R_{2} and C (which is switched with the range). The relation is $\mathrm{TCL}_{\mathrm{L}}=0.693$ $\left(R_{1}+2 R_{2}\right) \mathrm{C}$. The gating timer also operates as an oscillator, but its output high time (and period) is determined by the value of the measured capacitor in combination with R_{3} and R_{4} (also switched with range). The output high time of this timer is given by $\mathrm{G}_{\mathrm{H}}=0.693\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \mathrm{Cm}$. The number of clock pulses during one gating time is thus given by

$$
N=\frac{\left(R_{3}+R_{4}\right) C m}{\left(R_{1}+2 R_{2}\right) C}
$$

With the values shown, this number is ten times the number to be displayed when the circuit is calibrated. This allows the use of a dummy divide by 10 (the CD4017) to eliminate jitter in the least significant digit of the display. The R_{3} resistors should be precision potentiometers for greatest accuracy, and the circuit must be calibrated in each range. Range A reads $1-9999 \mathrm{pF}$, Range B reads $1-9999 \mathrm{nF}$, and Range C reads $1-9999 \mu \mathrm{~F}$.
Note that in comparison to Fig. 12, the store and $\overline{\text { reset }}$ signals are generated by CD4000 series one-shots. The operation of the two circuits is similar.

Figure 13: Capacitance Meter

9. LCD DISPLAY INTERFACE (Figure 14)

The low-power operation of the CD-7217 makes an LCD interface desirable. The Siliconix CF4114 digit BCD to LCD display driver easily interfaces to the CD-7217AC with one CD4000series package to provide a total system power consumption of less than 5 mW . The common-cathode devices should be used, since the digit drivers are CMOS, while the commonanode digit drivers are NPN devices and will not provide full logic swing.

Figure 14: LCD Display Interface

10. MICROPROCESSOR INTERFACE-
 7227
 (Figure 15)

This circuit shows the hardware necessary to interface the CD-7227 to an Intersil IM6100 CMOS microprocessor. Using an IM6101 Parallel Interface Element (PIE) allows the addition of one or more CD-7227 devices as generalized peripherals to any IM6100 system, using a minimum of external components.

A similar configuration may be used with the MC6800 using the corresponding PIE, while an 8223 can be used to interface 8080 based systems.

The CD-7227 can perform many "accessory" functions that are inefficient or impossible for the processor to perform. For simple systems, the CD-7227 can provide a cost-effective display latch/decoder/driver. By adding a timebase such as an ICM7213, and using a 7227CC or DC, an inexpensive real-time clock/display, directly accessible by the procesor, can be implemented.

In the area of "intelligent" instrumentation, the CD-7227 can serve as a high speed (up to 2 MHz) counter/comparator. This is the element often used for converting time, frequency, and positional and occurence data into digital form. For example, an CD-7207A can be used with two CD-7227's to provide an 8 digit, 2 MHz frequency counter.
Since the CD-7207A gating output has a 50% duty cycle, there is 1 second for the processor to respond to an interrupt, generated by the negative going edge of this signal while it inhibits the count. The processor can respond to the interrupt using ROM based subroutines, to store the data, reset the counter, and read the data into main memory. To add simultaneous period display, the processor inverts the data and a DD-7218 Universal Display Driver stores and displays it. Capacitance can be measured by counting the frequency of an oscillator, as in the Capacitance Meter circuit, allowing the measurement of fluid levels, proximity detectors, etc.
Future Application Notes and Bulletins will address the CD-7227 more fully, and users are welcome to submit any circuits or unique uses for review and possible publication in application information.

Figure 15: IM6100 Interface

OPTION MATRIX \& ORDERING INFORMATION

Hardwired Control Versions	Order Part Number	Display Option	Count Option Max Count	28-LEAD Package
	CD-7217C	Common Anode	Decade/9999	CERDIP
	CD-7217AC	Common Cathode	Decade/9999	PLASTIC
	CD-7217BC	Common Anode	Timer/5959	CERDIP
	CD-7217CC	Common Cathode	Timer/5959	PLASTIC
Processor Control Versions	CD-7227C	Common Anode	Decade/9999	CERDIP
	CD-7227AC	Common Cathode	Decade/9999	PLASTIC
	CD-7227BC	Common Anode	Timer/5959	CERDIP
	CD-7227CC	Common Cathode	Timer/5959	PLASTIC

PACKAGE DIMENSIONS

4½ Digit Counter/Decoder/Drivers

FEATURES

- High frequency counting - guaranteed 15 MHz , typically 25 MHz at 5 V
- Low power operation - less than $100 \mu \mathrm{~W}$ quiescent
- Direct $4 \mathbf{1 / 2}$ digit seven-segment display drive -CD-7224 for LCD displays, CD-7225 for LED displays
- Store and Reset inputs permit operation as frequency or period counter
- True count inhibit disables first counter stage
- Carry output for cascading four-digit blocks
- Schmitt-trigger on the count input allows operation in noisy environments or with slowly changing inputs
- Leading zero blanking input and output for correct leading zero blanking with cascaded devices
- LCD devices provide complete onboard oscillator and divider chain to generate backplane frequency, or backplane driver may be disabled allowing segments to be slaved to a master backplane signal
- LED devices provide Brightness input which can function digitally as a display enable or with a single potentiometer as a continuous display brightness control
- All inputs fully protected against static discharge no special handling precautions necessary

DESCRIPTION

The CD-7224 and CD-7225 devices constitute a family of high-performance CMOS $41 / 2$-digit counters, including decoders, output latches, display drivers, count inhibit, leading zero blanking, and reset circuitry. The CD-7224 (19999 maximum count) and CD-7224A (15959 maximum count) provide 29 segment outputs and a backplane driver output, generating the zero dc component signals necessary to darive a conventional

41/2-digit liquid crystal display. These devices also include a complete RC oscillator and divider chain to generate the backplane frequency, and a backplane driver disable control which allows the segments to be slaved to a master backplane signal.
The CD-7225 (19999 maximum count) and CD-7225A (15959 maximum count) provide 28 segment and 1 half-digit opendrain n-channel transistor outputs, suitable for directly driving common-anode LED displays at greater than 5 mA per segment. These devices provide a brightness input which may be used digitally as a display enable, or with a potentiometer as a continuous display brightness control.
The counter section of all the devices in the CD-7224/ CD-7225 family provides direct static counting from DC to 15 MHz , guaranteed, with a $5 \mathrm{~V} \pm 10 \%$ supply over the operating temperature range. At normal ambient temperatures, the devices will typically count up to 25 MHz . The count input is provided with a Schmitt trigger to allow operation in noisy environments and correct counting with slowly changing inputs. These devices also provide count inhibit, store and reset circuitry which allows a direct interface with the ICM7207/A devices to implement a low cost, low power frequency counter with a minimum component count.
These devices also incorporate several features intended to simplify cascading four-digit blocks. The carry output allows the counter to be cascaded, while the leading zero blanking input and output allows correct leading zero blanking between four-decade blocks. The backplane driver of the LCD devices may be disabled, allowing the segments to be slaved to another backplane signal, which is necessary when using an eight or twelve digit, single backplane display. In LED systems, the brightness input to several CD-7225 devices may be ganged to one potentiometer.
All the devices in the CD-7224/CD-7225 family are packaged in a standard 40-pin dual-in-line plastic package.
Table 1, the option matrix and ordering information, shows the four standard devices in the CD-7224/CD-7225 family and their markings, which serve as part numbers for ordering purposes.

ORDERING INFORMATION

Model	Display Compatibility	Count Option	Oper. Temp. Range	Package
CD-7224C	$411 / 2$ Digit LCD	19999	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin Plastic DIP
CD-7224AC	$41 / 2$ Digit LCD	15959	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin Plastic DIP
CD-7225C	$41 / 2$ Digit LED	19999	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin Plastic DIP
CD-7225AC	$41 / 2$ Digit LED	15959	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin Plastic DIP

CD-7224/CD-7225

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1)	0.5 Watt @ $70^{\circ} \mathrm{C}$
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	6.5 Volts
Input Voltage (Any	
Terminal) (Note 2)	+ $+0.3 \mathrm{~V}, \mathrm{~V}^{-}-0.3 \mathrm{~V}$
Operating Temperature Ran	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Absolute maximum ratings define stress limitations which, if exceeded, may permanently damage the device. These are not continuous duty ratings. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics.'

OPERATING CHARACTERISTICS TABLE 2

(All Parameters measured with $\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$ unless otherwise indicated)
CD-7224 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating current	lop	Test circuit, Display blank		10	50	$\mu \mathrm{A}$
Operating supply voltage range	V_{s}	$\mathrm{V}^{+}-\mathrm{V}^{-}$	3	5	6	V
Oscillator input current	IOSL	Pin 36		± 2	± 10	$\mu \mathrm{A}$
Segment rise/fall time	$\mathrm{trfs}^{\text {f }}$	Cload $=200 \mathrm{pf}$		0.5		$\mu \mathrm{S}$
Backplane rise/fall time	$\mathrm{t}_{\text {ff }}$	$\mathrm{Cl}_{\text {load }}=5000 \mathrm{pf}$		1.5		$\mu \mathrm{s}$
Oscillator frequency	fosc	Pin 36 Floating		16		KHz
Backplane frequency	fbp	Pin 36 Floating		125		Hz

CD-7225 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating current display off	IOPQ	Pin 5 (Brightness) at V^{-} Pins 29, 31-34 at V^{+}		10	50	$\mu \mathrm{~A}$
Operating supply voltage range	V_{s}	$\mathrm{V}^{+}-\mathrm{V}^{-}$	4	5	6	V
Operating current	IOP	Pin 5 at V^{+}, Display 18888		200		mA
Segment leakage current	ISL	Segment Off		± 0.01	± 1	$\mu \mathrm{~A}$
Segment on current	IS	Segment On, Vout $=\mathrm{V}^{-}+3 \mathrm{~V}$	5	8		mA
Half digit on current	IH_{H}	Half digit on, Vout $=\mathrm{V}^{-}+3 \mathrm{~V}$	10	16		mA

FAMILY CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Pullup Currents	IPU	Pins 29, 31, 33, 34 Vout $=V^{+}-3 \mathrm{~V}$		10		$\mu \mathrm{A}$
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Pins 29, 31, 33, 34	3			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Pins 29, 31, 33, 34			2	V
Count Input Threshold	$\mathrm{V}_{\text {CT }}$			2		V
Count Input Hysteresis	V CH			0.5		V
Output High Current	IOH	Carry Pin 28 Leading Zero Out Pin 30 Vout $=\mathrm{V}^{+}-3 \mathrm{~V}$	350	500		$\mu \mathrm{A}$
Output Low Current	IDL	Carry Pin 28 Leading Zero Out Pin 30 $\text { Vout }=\mathrm{V}^{-}+3 \mathrm{~V}$	350	500		$\mu \mathrm{A}$
Count Frequency	$f_{\text {count }}$	$4.5 \mathrm{~V}>\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)>6 \mathrm{~V}$	0		15	MHz
Store, Reset Minimum Pulse Width	ts, t_{R}		3			$\mu \mathrm{S}$

NOTE 1: This limit refers to that of the package and will not be obtained during normal operation.
NOTE 2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than V^{+}or less than V^{-}may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the $7224 / 7225$ be turned on first.

TYPICAL CHARACTERISTICS

BACKPLANE FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

LED SEGMENT CURRENT
AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE

BACKPLANE FREQUENCY AS A FUNCTION OF OSCILLATOR CAPACITOR COSC

LED SEGMENT CURRENT
AS A FUNCTION OF OUTPUT VOLTAGE

OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE

CD-7224/CD-7225

CONTROL INPUT DEFINITIONS

In this table, V^{+}and V^{-}are considered to be normal operating input logic levels. Actual input low and high levels are specified in Table 2. For lowest power consumption, input signals should swing over the full supply.

INPUT	TERMINAL	VOLTAGE	FUNCTION
Leading Zero Input	29	V^{+}or Floating V^{-}	Leading Zero Blanking Enabled Leading Zeroes Displayed
Count Inhibit	31	V^{+}or Floating V^{-}	Counter Enabled Counter Disabled
Reset	33	V^{+}or Floating V^{-}	Inactive Counter Reset to 0000
Store	34	V^{+}or Floating V^{-}	Output Latches not Updated Output Latches Updated

BLOCK DIAGRAMS

CD-7224 (A)

CD-7225 (A)

CONNECTION DIAGRAMS

$\mathrm{v}^{+} 1$		40	D1
E1 2		39	C1
G1 3		38	B1
F1 4		37	A1
BP 5		36	Oscillator
A2 6		35	V
B2 7		34	Store
C2 8		33	Reset
D2 9	7224	32	Count Input
E2 10		31	Count Inhibit
G2 11		30	Leading Zero Output
F2 12		29	Leading Zero Input
A3 13		28	Carry Output
B3 14		27	1/2 Digit
C3 15		26	F4
D3 16		25	G4
E3 17		24	E4
G3 18		23	D4
F3 19		22	C4
A4 20		21	B4

TEST CIRCUIT

SEGMENT ASSIGNMENT

DISPLAY WAVEFORMS

DESCRIPTION OF OPERATION

LCD Devices

The LCD devices in the family (7224C and 7224AC) provide outputs suitable for driving conventional four digit by seven segment LCD displays, including 29 individual segment drivers, backplane driver, and a self-contained oscillator and divider chain to generate the backplane frequency.
The segment and backplane drivers each consist of a CMOS inverter, with the n-and p-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any dc component which could arise from differing rise and fall times, and ensures maximum display life.
The backplane output devices can be disabled by connecting the oscillator input (pin 36) to the negative supply. This allows the 29 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to the backplane output of one master device or the backplane may be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device will represent a load of approximately 200 pF (comparable to one additional segment). The limitation on how many devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to
minimize power consumption is to keep the rise and fall times less than about 5 microseconds. The backplane driver devices of one device should handle the backplane to a display of 16 one-half-inch characters without the rise and fall times exceeding $5 \mu \mathrm{~s}$ (ie, 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the CD-7224 devices be slaved to it.
This external signal should be capable of driving very large capacitive loads with short ($1-2 \mu \mathrm{~s}$) rise and fall times. The maximum frequency for a backplane signal should be about 125 Hz , although this may be too fast for optimum display response at lower display temperatures, depending on the display used.
The onboard oscillator is designed to free run at approximately 16 KHz at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 125 Hz with the oscillator free-running. The oscillator frequency may be reduced by connecting an external capacitor to the oscillator terminal (pin 36); see the plot of oscillator/backplane frequency vs. external capacitance for detailed information. The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a d.c. component to the display). This

CD-7224/CD-7225

can be done by driving the oscillator input between the positive supply and a level out of the range where the backplane disable is sensed, about one fifth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

LED Devices

The LED devices in the family (7225C and 7225AC) outputs suitable for directly driving four digit by seven segment common-anode LED displays, including 28 individual segment drivers and one half-digit driver, each consisting of a low-leakage current-controlled open-drain nchannel transistor.
The drain current of these transistors can be controlled by varying the voltage at the Brightness input (pin 5). The voltage at this pin is transferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Fig (3). The potentiometer should be a high value ($100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$) to minimize I2R power consumption, which can be significant when the display is off.
The brightness input may also be operated digitally as a display enable; when at V^{+}, the display is fully on, and at V^{-} fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two supplies at the Brightness input.
Note that the LED devices have two connections for V^{-}; both of these pins should be connected to the negative supply. The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible.
When operating the LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at $25^{\circ} \mathrm{C}$, derated linearly above $35^{\circ} \mathrm{C}$ to 500 mW at $70^{\circ} \mathrm{C}$ $\left(-15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$ above $\left.35^{\circ} \mathrm{C}\right)$. Power dissipation for the device is given by:

$$
P=\left[\left(V^{+}-V^{-}\right)-V_{F L E D}\right]^{-} \times I_{S} \times N_{S}
$$

where $\mathrm{V}_{\text {FLED }}$ is the LED forward voltage drop, I_{S} is segment current, and N_{s} is the number of "on" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the Brightness input to keep power dissipation within the limits described above.

Figure 3: Brightness Control

COUNTER SECTION

The devices in the CD-7224/CD-7225 family implement a four digit ripple carry resetable counter, including a Schmitt trigger on the count input and a carry output. Also included is an extra D-type flip-flop, clocked by the carry signal and outputting to the half-digit segment driver, which can be used as either a true half-digit or as an overflow indicator. The counter will index on the negative-going edge of the signal at the count input, and the carry output will provide a
negative-going edge following the count which indexes the counter from 9999 (or 5959) to 10000 . Once the half-digit flipflop has been clocked, it can only be reset (with the rest of the counter) by a negative level at the Reset terminal, pin 33. However, the four decades will continue to count in a normal fashion after the half digit is set, and subsequent carry outputs will not be affected.
A negative level at the Count Inhibit input disables the first divide-by-two in the counter chain without affecting its clock. This provides a true count inhibit which is not sensitive to the state of the count input, preventing false counts which can result from using a normal logic gate forcing the state of the clock to prevent counting.
Each decade of counter drives directly into a four-to-seven decoder which derives the seven segment output code. Each decoder output corresponds to one segment terminal of the device. The output data is latched at the driver; when the Store pin is at a negative level, these latches are updated, and when the Store pin is left open or at a positive level, the latches hold their contents.
The decoders also include zero detect and blanking logic to provide leading zero blanking. When the leading zero input is floating or at a positive level, this circuitry is enabled and the device will blank leading zeroes. When the leading zero input is at a negative level, or the half digit is set, leading zero blanking is inhibited, and zeroes in the four digits will be displayed. The leading zero output is provided to allow cascaded devices to blank leading zeroes correctly. This output will assume a positive level only when all four digits are blanked, which can only occur when the leading zero input is at a positive level and the half digit is not set.
For example in an eight-decade counter with overflow using two CD-7224/CD-7225 devices, the leading zero output of the high order digit device would be connected to the leading zero input of the low order digit device. This will assure correct leading zero blanking for all eight digits.
The Store, Reset, Count Inhibit, and Leading Zero inputs are provided with pullup devices, so that they may be left open when a positive level is desired. The Carry and Leading Zero outputs are suitable for interfacing to CMOS logic in general, and are specifically designed to allow cascading of CD-7224 or CD-7225 devices in four digit blocks.

MAXIMUM COUNT FREQUENCY (TYPICAL) AS A FUNCTION OF SUPPLY VOLTAGE

APPLICATIONS

1. Two-Hour Precision Timer

CD-7224/CD-7225

2. Eight-Digit Precision Frequency Counter

3. Unit Counter

PACKAGE DIMENSIONS
40 Pin Plastic Dual-In-Line Package

CD-7226A Drives Common Anode LED's CD-7226B Drives Common Cathode LED's

GENERAL DESCRIPTION

The CD-7226 is a fully integrated Universal Counter and LED display driver. It combines a high frequency oscillator, a decade timebase counter, an 8 decade data counter and latches, a 7 segment decoder, digit multiplexer and 8 segment and 8 digit drivers which can directly drive large LED displays. The counter inputs accept a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital signals for these inputs.

The CD-7226 can function as a frequency counter, period counter, frequency ratio (f_{A} / f_{B}) counter, time interval counter or as a totalizing counter. The counter uses either a 10 MHz or 1 MHz crystal timebase. An external timebase input is also provided. For period and time interval, the 10 MHz timebase gives a $0.1 \mu \mathrm{sec}$ resolution. In period average and time interval average, the resolution can be in the nanosecond range. In the frequency mode, the user can select accumulation time of $.01 \mathrm{sec}, .1 \mathrm{sec}, 1 \mathrm{sec}$ and 10 sec . With a 10 sec accumulation time, the frequency can be displayed to a resolution of .1 Hz in the least significant digit. There is 0.2 second interval between measurements in all ranges. Control signals are provided to enable gating and storing of prescaler data.
Leading zero blanking has been incorporated with frequency displayed in KHz and time in usec. The display is multiplexed at a 500 Hz rate with a 12.5% duty cycle for each digit. The CD-7226A is designed for common anode display with typical peak segment currents of 25 mA . The CD-7226B is designed for common cathode displays with typical segment currents of 12 mA . In the display off mode both digit drivers \& segment drivers are turned off allowing the display to be used for other functions.

PIN CONFIGURATION

[^18]
ABSOLUTE MAXIMUM RATINGS

Maximum Supply Voltage ($\mathrm{V}+$ - V -)	6.5 volts
Maximum Digit Output Current	400 mA
Maximum Segment Output Current	60 mA
Voltage on any Input or Output Terminal (Note 2)	Not to exceed $\mathrm{V}^{+}-\mathrm{V}^{-}$
Maximum Power Dissipation at	by more than ± 0.3 volts 1.0 watts (7226A)
$70^{\circ} \mathrm{C}$ (Note 1)	0.5 watts (7226B)
Maximum Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Absolute maximum ratings refer to values that if exceeded may destroy or permanently change the device. The device is guaranteed for continous operation only under the conditions defined under the section TYPICAL OPERATING CHARACTERISTICS.
Note 1: The 7226 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if input or outputs are forced to voltages exceeding $\mathrm{V}^{+}-\mathrm{V}^{-}$by more than 0.3 volts.

ELECTRICAL CHARACTERISTICS $\mathrm{v}^{+}-\mathrm{v}^{-}=5.0 \mathrm{~V}$, Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Operating Supply Current	IDD	Display Off Unused inputs to V^{-}		2	5	mA
Supply Voltage Range		$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ Input A, Input B Frequency at $\mathrm{F}_{\text {max }}$	4.75		6.0	volts
Maximum Guaranteed Frequency Input A, Pin 40	Famax	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ $4.75 \mathrm{~V}<\mathrm{V}^{\prime}-\mathrm{V}^{-}<6.0 \mathrm{~V}$ Figure 1 Function $=$ Frequency, Ratio, Unit Counter Function $=$ Period, Time Interval	$\begin{aligned} & 10 \\ & 2.5 \end{aligned}$	14		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Maximum Frequency Input B, Pin 2	FBMAX	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}^{+}-\mathrm{V}^{-}<6.0 \mathrm{~V} \end{aligned}$ Figure 2	2.5			MHz
Minimum Separation Input A to Input B Time Interval Function		$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}^{+}-\mathrm{V}^{-}<6.0 \mathrm{~V} \\ & \text { Figure } 3 \end{aligned}$	250			nsec
Maximum osc. freq. and ext. osc. freq. Minimum ext. osc. freq.		$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}^{+}-\mathrm{V}^{-}<6.0 \mathrm{~V} \end{aligned}$	10		100	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{kHz} \end{aligned}$
Oscillator Transconductance	gm	$\begin{aligned} & \mathrm{V}^{+}-\mathrm{V}^{-}=4.75 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	2000			$\mu \mathrm{S}$
Multiplex Frequency Time Between Measurements	$F_{\text {max }}$	$\begin{aligned} & \mathrm{f}_{\text {osc }}=10 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{osc}}=10 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 500 \\ & 200 \end{aligned}$		$\begin{gathered} \mathrm{Hz} \\ \mathrm{msec} \end{gathered}$

Figure 1: Waveform for Guaranteed Minimum FAMAX Function = Frequency, Frequency Ratio, Unit Counter.

Figure 2: Waveform for Guaranteed Minimum FBMAX and FAMAX for Function $=$ Period and Time Interval.

Figure 3: Waveform for Minimum Time Between Transitions of Input A and Input B.

For single or "one-shot" time interval measurements, Input A then Input B must have a high to low transition prior to the interval which is to be measured. Provisions for "priming" the circuit as described above must be made using external circuitry. For repetitive signals this occurs automatically.

CD-7226A/B

ELECTRICAL CHARACTERISTICS $=\mathrm{V}^{+}-\mathrm{V}^{-}=5.0 \mathrm{~V}$, test circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
INPUT VOLTAGES PINS 2,19,33,39,40 input low voltage input high voltage	$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & \text { Referred to } \mathrm{V}^{-} \\ & \hline \end{aligned}$	1.0		3.5	$\begin{aligned} & V \\ & V \end{aligned}$
PIN 2, 39, 40 INPUT LEAKAGE, A, B	IL				20	$\mu \mathrm{A}$
PIN 33 input low voltage input high voltage	$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & \text { Referred to } \mathrm{V}^{-} \\ & \hline \end{aligned}$. 8		2.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input resistance to V^{+} PINS 19,33	R	V IN $=\mathrm{V}^{+}-1.0 \mathrm{~V}$.	100	400		$k \Omega$
Input resistance to V^{-} PIN 31	R	$\mathrm{V}_{\text {IN }}=\mathrm{V}^{-}+1.0 \mathrm{~V}$	50	100		$k \Omega$
Output Current PINS 3,5,6,7,17,18,32,38	IOL	$\mathrm{VOL}_{\mathrm{OL}}=\mathrm{V}^{-}+0.4 \mathrm{~V}$. 40			mA
PINS 5,6,7,17,18,32	IOH	$\mathrm{VOH}=\mathrm{V}^{-}+0.4 \mathrm{~V}$	100			$\mu \mathrm{A}$
PINS 3,38	IOH	$\mathrm{VOH}=\mathrm{V}^{+}-.8 \mathrm{~V}$	265			$\mu \mathrm{A}$
7226A DIGIT DRIVER PINS 22,23,24,26,27,28,29,30 high output current low output current	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOL} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {out }}=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=\mathrm{V}^{-}+1.0 \mathrm{~V} \end{aligned}$	150	$\begin{array}{r} 180 \\ -.3 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
SEGMENT DRIVER PINS 8,9,10,11,13,14,15,16 low output current high output current	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {out }}=\mathrm{V}^{-}+1.5 \\ & \mathrm{~V}_{\text {out }}=\mathrm{V}^{+}-1.0 \mathrm{~V} \end{aligned}$	25	$\begin{gathered} 35 \\ 100 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
MULTIPLEX INPUTS PINS 1,4,20,21 input low voltage input high voltage	$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Referred to V^{-}	2.0		. 8	$\begin{aligned} & V \\ & V \end{aligned}$
Input Resistance to V-	R	$\mathrm{V}_{\text {IN }}=\mathrm{V}^{-}+1.0 \mathrm{~V}$	50	100		k Ω
7226B DIGIT DRIVER PINS 8,9,10,11,13,14,15,16 low output current high output current	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {out }}=\mathrm{V}^{-}+1.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	50	$\begin{array}{r} 75 \\ 100 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
SEGMENT DRIVER PINS 22,23,24,26,27,28,29,30 high output current leakage current	$\begin{gathered} \mathrm{IOH} \\ \mathrm{IL} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\text {out }}=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=\mathrm{V}^{-} \end{aligned}$	10	15	10	mA $\mu \mathrm{A}$
MULTIPLEX INPUTS PINS 1.4,20,21 input low voltage input high voltage	$\begin{aligned} & V_{I L} \\ & V_{\text {IH }} \end{aligned}$		$\mathrm{V}^{+}-.8$.	$\mathrm{V}^{+}-2.0$	$\begin{aligned} & V \\ & V \end{aligned}$
input resistance to V^{+}	R	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}^{+}-1.0 \mathrm{~V}$	200	360		kS

ORDERING INFORMATION

Model	Display Option	Oper. Temp. Range	Package
CD-7226AC	Common Anode	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin Cerdip
$C D-7226 \mathrm{BC}$	Common Cathode	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin Plastic DIP

BLOCK DIAGRAM

TEST CIRCUIT

APPLICATION NOTES

GENERAL

Inputs A \& B

The signal to be measured is input at Input A in Frequency, Period, Unit Counter, Frequency Ratio and Time Interval modes. The other input signal to be measured is input at Input B in Frequency Ratio and Time Interval. In Frequency Ratio F_{A} should be larger than F_{B}.

Both inputs are digital inputs with a typical switching threshold of 2.0 V at $\mathrm{V}^{+}=5.0 \mathrm{~V}$. For optimum performance the peak to peak input signal should be at least 50% of the supply voltage and centered about the switching voltage. When these inputs are being driven from TTL logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs.
Note: The amplitude of the input should not exceed the supply by more than .3 volt otherwise, the circuit may be damaged.

Multiplexed Inputs

The function, range, control and external decimal point inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically $125 \mu \mathrm{sec}$). The multiplex inputs are active high for the common anode CD-7226A and active low for the common cathode CD-7226B.
Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a 10 K resistor should be placed in series with the multiplex inputs as shown in the application notes.
Table 1 shows the functions selected by each digit for these inputs.

TABLE 1

	FUNCTION	DIGIT
FUNCTION INPUT	Frequency	D_{0}
PIN 4	Period	D_{7}
	Frequency Ratio	D_{1}
	Time Interval	D_{4}
	Unit Counter	D_{3}
	Oscillator Frequency	D_{2}
RANGE INPUT	.01 Sec/1 Cycle	D_{0}
PIN 21	.1 Sec/10 Cycles	D_{1}
	1 Sec/100 Cycles	D_{2}
External Range Input	10 Sec/1k Cycles	D_{3}
PIN 31	Enabled	D_{4}
CONTROL INPUT	Blank Display	$D_{3} \& H o l d$
PIN 1	Display Test	D_{7}
	1MHz Select	D_{1}
	External Oscillator Enable	D_{0}
	External Decimal Point	
	Enable	D_{2}
	Test	D_{4}

Control Input Functions

Display Test - All segments are enabled continuously, giving a display of all 8's with decimal points. The display will be blanked if Display Off is selected at the same time.

Display Off - To enable the Display Off mode it is necessary to input D_{3} to the control input and have the HOLD input at V^{+}. The chip will remain in the Display Off mode until HOLD is switched back to V^{-}. While in the Display Off mode, the segment and digit driver outputs are open. During Display Off the oscillator continues to run with a typical supply current of 1.5 mA with a 10 MHz crystal and no measurements are made. In addition, inputs to the multiplexed inputs will have no effect. A new measurement is initiated when the HOLD input is switched to V^{-}.
$\mathbf{1 M H z}$ Select - The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as with a 10 MHz crystal. The decimal point is also shifted one digit to the right in Period and Time Interval, since the least significant digit will be in μ second increments rather than $0.1 \mu \mathrm{sec}$ increments.
External Oscillator Enable - In this mode the external oscillator input is used instead of the on chip oscillator for the Timebase input and Main Counter input in Period and Time interval modes. The on chip oscillator will continue to function when the external oscillator is selected, but will have no effect on circuit operation. The external oscillator input frequency must be greater than 100 KHz or the chip will reset itself to enable the on chip oscillator.
External Decimal Point Enable - When external decimal point is enabled a decimal point will be displayed whenever the digit driver connected to the external decimal point is active. Leading Zero Blanking will be disabled for all digits following the decimal point.
Test Mode - In the test mode the main counter is split into groups of two digits each and the groups are clocked in parallel. The reference counter is split such that the clock into the reference count goes directly to the clock of the third decade counter ($10 \mathrm{sec} / 1 \mathrm{k}$ cycle range). Store is also enabled so the count in the main counter is continuously output.

Range Input - The range input selects whether the measurement is made for $1,10,100,1000$ counts of the reference counter or if the external range input determines the measurement time. In all functional modes except Unit Counter a change in the range input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the Range Input is changed.
Function Input - The six functions that can be selected are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency.
These functions select which signal is counted into the main counter and which signal is counted by the reference counter as shown in Table 2. In Time Interval a flip flop is toggled first by a $1 \rightarrow 0$ transition at Input A and then by a $1 \rightarrow 0$ transition at Input B. The oscillator is gated into the Main Counter from the time Input A toggles the flip flop until Input B gates the flip flop. A change in the function input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the Function Input is changed. If main counter overflows, an overflow indication is output on the decimal point output during D7.

TABLE 2

DESCRIPTION	MAIN COUNTER	REFERENCE COUNTER
Frequency $\left(\mathrm{F}_{\mathrm{A}}\right)$	Input A	$100 \mathrm{~Hz}($ Oscillator \div 105 or 104)
Period $\left(\mathrm{T}_{\mathrm{A}}\right)$	Input A	
Ratio $\left(\mathrm{F}_{\mathrm{A}} / \mathrm{F}_{\mathrm{B}}\right)$	Input A	Input B
Time Interval $(\mathrm{A} \rightarrow \mathrm{B})$	Osc•Time Interval FF Time Interval FF	
Unit Counter(Count A$)$	Input A	Not Applicable
Osc. Freq. (Fosc)	Oscillator	$100 \mathrm{~Hz}($ Osc $\div 105$ or

External Decimal Point Input - when the external decimal point is selected this input is active. Any of the digits, except D_{7}, can be connected to this point. D_{7} should not be used since it will overide the overflow output and leading zeros will remain unblanked after the decimal point.
Hold Input - Except in the Unit counter mode when the Hold Input is at V^{+}, any measurement in progress is stopped, the main counter is reset and the chip is held ready to initiate a new measurement. The latches which hold the main counter data are not updated so the last complete measurement is displayed. In Unit counter mode when Hold Input is at V^{+}the counter is stopped but not reset. When Hold is changed to V^{-} the count continues from where the counter stopped.
$\overline{\text { Reset Input - The } \overline{\text { Reset }} \text { Input is the same as a Hold Input, }}$ except the latches for the main counter are enabled, resulting in an output of all zeros.
External Range Input - The External Range Input is used to select different ranges than those provided on the chip. Figure 4 shows the relationship between Measurement In Progress and External Range Input.

Figure 4: External Range Input to End of Measúrement in Progress.
$\overline{\text { Measurement In Progress }}, \overline{\text { Store }}$ and $\overline{\text { Reset Outputs - These }}$ outputs are provided to enable display of prescaler digits. Figure 5 shows the relationship between these signals during the time between measurements. All three outputs can drive a low power Schottky TTL load. The Measurement In Progress Output can directly drive an ECL load, if the ECL device is powered from the same power supply as the 7226.

Figure 5: Reset, $\overline{\text { Store, and Measurement in Progress }}$ Outputs Between Measurements.

BCD Outputs - The BCD representation of each digit output is output on the BCD outputs. Leading zero blanking of the display has no effect on the BCD output. Each BCD output will drive one low power Schottky TTL load. Table 3 shows the truth table for the BCD outputs.

TABLE 3 Truth Table BCD Outputs

	D	C	B	A
NUMBER	PIN 7	PIN 6	PIN 17	PIN 18
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Buffered Oscillator Output - The Buffered Oscillator Output has been provided to enable use of the on chip oscillator signal without loading the oscillator itself. This output will drive one low power Schottky TTL load. Care should be taken to minimize capacitive loading on this pin.

DISPLAY CONSIDERATIONS

The display is multiplexed at a 500 Hz rate with a digit time of $244 \mu \mathrm{sec}$. An interdigit blanking time of $6 \mu \mathrm{sec}$ is used to prevent ghosting between digits. The decimal point and leading zero blanking have been implemented for right hand decimal point displays. Any zeros following the decimal point will not be blanked. Also, the leading zero blanking will be disabled if the Main Counter overflows. The decimal point has been implemented to display frequency in KHz and time in $\mu \mathrm{sec}$.
The 7226A is designed to drive common anode LED displays at peak current of $25 \mathrm{~mA} /$ segment, using displays with $\mathrm{V}_{\mathrm{F}}=$ 1.8 V at 25 mA . The average DC current will be over 3 mA under these conditions. The 7226B is designed to drive common cathode displays at peak current of $15 \mathrm{~mA} /$ segment using displays with $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$ at 15 mA . Resistors can be added in series with the segment drivers to limit the display current in very efficient displays, if required. Figures 6, 7, 8 and 9 show the digit and segment currents as a function of output voltage for common anode and common cathode drivers.

Figure 6: 7226B Typical $I_{\text {SEG }} V s . V^{+}-\mathrm{V}_{\text {out }}$
$4.5 \leq \mathrm{V}^{+}-\mathrm{V}^{-} \leq 6.0 \mathrm{~V}$

(a)

(b)

Figure 7: 7226 B Typical $\mathrm{I}_{\text {SEG }} \mathrm{Vs} . \mathrm{V}^{+}-\mathrm{V}_{\text {out }}$

Figure 8: $\quad 7226 \mathrm{~B}$ Typical Idigir Vs. Vout- V^{-}

Figure 9: 7226B Typical $l_{\text {SEG }} V s . V^{+}-V_{\text {out }}$ $4.5 \mathrm{~V} \leq \mathrm{V}^{+}-\mathrm{V}^{-} \leq 6.0 \mathrm{~V}$

To increase the light output from the displays, V^{+}may be increased up to 6.0 V , however, care should be taken to see that maximum power and current ratings are not exceeded.

The segment and digit outputs in both the 7226A and B are not directly compatible with either TTL or CMOS logic. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals.

Segment Identification

ACCURACY

In a Universal Counter crystal drift and quantization errors cause errors. In Frequency, Period and Time Interval Modes, a signal derived from the oscillator is used in either the Reference Counter or Main Counter. Therefore, in these modes an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will cause a measurement error of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
In addition, there is a quantization error inherent in any digital measurement of ± 1 count. Clearly this error is reduced by displaying more digits. In the Frequency Mode the maximum accuracy is obtained with high frequency inputs and in Period Mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 10, the least accuracy will be obtained at 10 KHz . In Time Interval measurements there is a maximum error of 1 count per interval. As a result there is the same inherent accuracy in all ranges as shown in Figure 11. In Frequency Ratio measurement more accuracy can be obtained by averaging over more cycles of Input B as shown in Figure 12.

Figure 10: Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors.

Figure 11: Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors.

Figure 12: Maximum Accuracy for Frequency Ratio Measurement Due to Limitations of Quantization Errors.

CIRCUIT APPLICATIONS

The 7226 has been designed to be used as a complete Universal Counter or with prescalers and other circuitry in a variety of applications. Since Input A and Input B are digital inputs additional circuitry will be required in many applications for input buffering, amplification, hysteresis, and level shifting to obtain the required digital voltages. For many applications an FET source follower can be used for input buffering and an ECL 10116 line receiver can be used for amplification and hysteresis to obtain a high impedance input, sensitivity and bandwidth. However, cost and complexity of this circuitry can vary widely depending upon the sensitivity and bandwidth required. When TTL prescalers or input buffers are used, pull up resistors to V^{+}should be used to obtain optimal voltage swing at Inputs A and B.
If prescalers aren't required the 7226 can be used to implement a minimum component Universal counter as shown in figure 13. This circuit can be for input frequencies up to 10 MHz at Input A and 2 MHz at Input B.
For input frequencies up to 40 MHz the circuit shown in figure 14 can be used to implement a Frequency and Period Counter. To obtain the correct value when measuring

CD-7226A/B

frequency and period it is necessary to divide the 10 MHz oscillator frequency down to 2.5 MHz . In doing this the time between measurements is also lengthened to 800 msec . and the display multiplex rate is decreased to 125 Hz .
If the input frequency is prescaled by ten then the oscillator frequency can remain at 10 or 1 MHz , but the decimal point must be moved. Figure 15 shows use of a $\div 10$ prescaler in frequency counter mode. Additional logic has been added to
have the 7226 count the input directly in Period mode for maximum accuracy. Note that Input A comes from Q_{c} rather than Q_{D} to obtain an input duty cycle of 40%. If an output without a duty cycle near 50% must be used then it may be necessary to use a 74121 monostable multivibrator or similar circuit to stretch the input pulse to guarantee a 50 nsec minimum pulse width.

Figure 13: 10 MHz Universal Counter

Notes: 1) If a 2.5 MHz crystal is used then diode D1 and I.C's 1 and 2 can be eliminated.
Figure 14: 40 MHz Frequency, Period Counter

CD-7226A/B

Figure 16 shows the use of a CD4016 analog multiplexer to multiplex the digital outputs back to the Function Input. Since the CD4016 is a digitally controlled analog transmission gate no level shifting of the digit output is required. CD4051's or CD4052's could also be used to select the proper inputs for the multiplexed input on the 7226 from 2 or 3 bit digital inputs. These analog miltiplexers could also be used
in systems in which the mode of operation is controlled by a microprocessor rather than directly from front panel switches. TTL multiplexers such as the 74153 or 74251 could also be used, but some additional circuitry will be required to convert the digit output to TTL compatible logic levels.

Figure 15: 100 MHz Multi Function Counter

Figure 16: 100 MHz Frequency Period Counter

CD-7226A/B

If the prescaler information needs to be displayed, then the Measurement in Progress, Store and Reset outputs from the CD-7226 can be used to control the prescaler and data latch as shown in figure 17. Note that the output of IC 7 has been decoded with a NAND to obtain a 40% duty cycle for the signal into input A.
To obtain a full Universal Counter with prescalers with the count displayed, it is necessary to add significantly more
circuitry to implement the Time External Mode as shown in figure 18.
All of the circuits shown directly drive a multiplexed LED display, however, the BCD outputs can be used with external $B C D$ to 7 segment decoders and appropriate level shifting to drive other types of displays.

Figure 17: 9 Digit Multi Function Counter

Figure 18: 9 Digit Universal Counter

The circuit shown in figure 19 can be used in any of the circuit applications shown to implement a single measurement mode of operation. This circuit uses the Store output to put the 7226 into a hold mode. The Hold input can also be used to reduce the time between measurements. The circuit shown in Figure 20 puts a short pulse into the Hold input a short time after Store goes low. A new measurement wil be initiated at the end of the pulse on the Hold Input. This circuit reduces the time between measurements to less than 40 msec from 200 msec . Use of the circuit shown in Figure 20 on the circuit shown in Figure 14 will reduce the time between measurements from 800 msec . to 1600 msec .

Figure 19: Single Measurement Circuit for Use With 7226

Figure 20: Circuit for Reducing Time Between Measurements

Figure 21: Typical Operating Characteristics

OSCILLATOR CONSIDERATIONS

The oscillator has been implemented as a high gain complementary FET inverter. An external resistor of 10 MS . or $22 \mathrm{M} \Omega$ should be connected between the oscillator input and output to provide biasing. The oscillator is designed to work with a parallel resonance of 10 MHz quartz crystal with a static capacitance of $22 p F$ and a series resistance of less than 35 ohms.
For a specific crystal and load capacitance, the required gm_{m} can be calculated as follows:

$$
\begin{aligned}
& g_{m}=\omega^{2} \text { Cin Cout Rs }\left(1+\frac{C_{0}}{C_{L}}\right)^{2} \\
& \text { where } C_{L}=\left(\frac{\text { CinCout }}{\text { Cin+Cout }}\right) \\
& \mathrm{Co}_{0}=\text { Crystal static capacitance } \\
& \text { Rs }=\text { Crystal Series Resistance } \\
& \text { Cin = Input Capacitance } \\
& \text { Cout }=\text { Output Capacitance } \\
& \omega=2 \pi f
\end{aligned}
$$

The required g_{m} should exceed the g_{m} specified for the 7226 by at least 50% to insure reliable startup. The oscillator input and output pins each contribute about 5 pf to Cin and Cout. For maximum frequency stability, Cin and

PACKAGE DIMENSIONS

Cout should be approximately twice the specified crystal static capacitance.
In cases where non decade prescalers are used it may be desirable to use a crystal which is neither 10 MHz . In that case, both the multiplex rate and time between measurements will be different. The multiplex rate is $f_{\max }=\frac{f_{\text {OSC }}}{2 \times 10^{4}}$ for 10 MHz mode and $f_{\max }=\frac{f_{\text {OSC }}}{2 \times 10^{3}}$ for the 1 MHz mode. The time between measurements is $\frac{2 \times 106}{f_{\text {Osc }}}$ in the 10 MHz mode and 2×105 in the 1 MHz mode. The buffered oscillator output should be used for an oscillator test point or to drive additional logic. This output will drive one low power Schottky TTL load. When the buffered oscillator output is used to drive CMOS or to drive the external oscillator input, a $10 \mathrm{k} \Omega$ resistor should be added from buffered oscillator output to V^{+}.
The crystal and oscillator components should be located as close to to the chip as practical to minimize pickup from other signals. In particular, coupling from the Buffered Oscillator Output and External Oscillator Input to the oscillator output or input can cause undesirable shifts in oscillator frequency. To minimize this coupling, pins 34 and 37 should be connected to V^{+}or V^{-}and these two signals should be kept away from the oscillator circuit.

DD－7211（LCD）FEATURES

－Four digit non－multiplexed 7 segment LCD display outputs with backplane driver．
－Complete onboard RC oscillator to generate back－ plane frequency．
－Backplane input／output allows simple synchroniza－ tion of slave－device segment outputs with a master backplane signal．
－DD－7211 devices provide separate digit select inputs to accept multiplexed BCD input（Pinout and func－ tionally compatible with Siliconix DF411）．
－D－7211M devices provide data and digit select code input latches controlled by chip select inputs to pro－ vide a direct high speed processor interface．
－DD－7211 device for binary－to－hexadecimal decod－ ing；DD－7211A device for binary－to－EHLP－dash－ blank decoding．

DD－7212（LED）FEATURES

－ 28 current－limited segment outputs provide 4 digit non－multiplexed direct LED drive at $>5 \mathrm{~mA}$ per segment．
－Brightness input allows direct control of LED segment current with a single potentiometer，or can function digitally as a display enable．

FAMILY FEATURES

－All devices fabricated using high density CMOS LSI technology for very low－power，high－performance operation．
－All inputs fully protected against static discharge；no special handling precautions necessary．

DESCRIPTION

THE DD－7211（LCD）and DD－7212（LED）devices constitute a family of non－multiplexed four digit seven segment display decoder－drivers．
The DD－7211 devices are configured to drive conventional LCD displays，by providing a complete（no external compon－ ents necessary）RC oscillator，divider chain，backplane driver devices，and 28 segment outputs．These outputs provide the zero d．c．component signals necessary for long display life．
The DD－7212 devices are configured to drive common－ anode LED displays，providing 28 current－controlled low leakage open－drain n－channel outputs．These devices provide a Brightness input which may be used at normal logic levels as a display enable，or with a potentiometer as a continuous display brightness control．

Both the LCD and LED devices are available with two input configurations．The basic devices provide four data－bit in－ puts and four digit select inputs．This configuration is suit－ able for interfacing with multiplexed BCD or binary output devices，such as the CD－7217 or CD－7226．The microproces－ sor interface devices provide data input latches and digit se－ lect code latches under control of high－speed chip select in－ puts．These devices simplify the task of implementing a cost－ effective alphanumeric 7 segment display for microproces－ sor systems，without requiring extensive ROM or CPU time for decoding and display updating．
The standard devices available will provide two different decoder configurations．The basic device will decode the four bit binary input into a seven－segment alphanumeric hexa－decimal output．The＂A＂versions will provide the same output code as the DD－7218＂Code B＂，i．e．，0－9，E，H，L，P， dash，blank．Either device will correctly decode true BCD to seven segment decimal outputs．
All devices in the DD－7211／7212 family are packaged in a standard 40 pin plastic dual－in－line package．
Table 1，the option matrix and ordering information，shows the 8 standard devices of the DD－7211／7212 family and their markings，which serve as part numbers for ordering purposes

ORDERING INFORMATION

ORDER PART NUMBER		OUTPUT CODE	INPUT CONFIGURATIONS
$\begin{aligned} & \text { LCD } \\ & \text { DISPLAY } \end{aligned}$	DD－7211C	HEXADECIMAL CODE B	MULTIPLEXED 4－BIT
	DD－7211AC		
	DD－7211MC	HEXADECIMAL CODE B	MICROPROCESSOR INTERFACE
	DD－7211AMC		
$\begin{aligned} & \text { LED } \\ & \text { DISPLAY } \end{aligned}$	DD－7212C	HEXADECIMAL CODE B	MULTIPLEXED 4－BIT
	DD－7212AC		
	DD－7212MC	HEXADECIMAL CODE B	MICROPROCESSOR INTERFACE
	DD－7212AMC		

DD-7211/DD-7212

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1)
0.5Watt @ $70^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$
6.5 Volts
Input Voltage (Any
Terminal) (Note 2) $\mathrm{V}^{+}+0.3 \mathrm{~V}, \mathrm{~V}^{-}-0.3 \mathrm{~V}$
Operating Temperature Range..$\ldots \ldots .20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Absolute maximum ratings define stress limitations which, if exceeded, may permanently damage the device. These are not continuous duty ratings. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

TABLE 2: OPERATING CHARACTERISTICS
All parameters measured with $\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$

DD-7211 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Supply Voltage Range	V_{s}	$\mathrm{V}^{+}-\mathrm{V}^{-}$	3	5	6	V
Operating Current	lop	Test circuit, Display blank		10	50	$\mu \mathrm{A}$
Oscillator Input Current	lost	Pin 36		± 2	± 10	$\mu \mathrm{A}$
Segment Rise/Fall Time	trfis	$\mathrm{Cload}^{\text {lo }}$ 200pf		0.5		$\mu \mathrm{s}$
Backplane Rise/Fall Time	trfb	$\mathrm{Cload}^{\text {lo }}$ 5000pf		1.5		$\mu \mathrm{s}$
Oscillator Frequency	fosc	Pin 36 Floating		16		kHz
Backplane Frequency	$\mathrm{fbp}^{\text {b }}$	Pin 36 Floating		125		Hz

DD-7212 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Supply Voltage Range	Vs	$\mathrm{V}^{+}-\mathrm{v}^{-}$	4	5	6	V
Operating Current	Iopo	Pin 5 (Brightness) at V^{-}		10	50	$\mu \mathrm{A}$
Display Off		Pins 27-34				
Operating Current	lop	Pin 5 at V^{+}, Display all 8 's		200		mA
Segment Leakage Current	ISL	Segment Off		± 0.01	± 1	$\mu \mathrm{A}$
Segment On Current	Is	Segment On, Vout $=\mathrm{V}-+3 \mathrm{~V}$	5	8		mA

INPUT CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Logical " 1 " input voltage	V_{IH}	Referred to V^{-}	3			V
Logical "0" input voltage	$V_{\text {IL }}$	Referred to V^{-}			2	V
Input leakage current	IDL	Pins 27-34		$\pm .01$	± 1	$\mu \mathrm{A}$
Input capacitance	$\mathrm{Cln}^{\text {n }}$	Pins 27-34		5		pF
$\mathrm{BP} /$ Brightness input leakage	llbpi	Measured at pin 5 with Pin 36 at V^{-}		$\pm .01$	± 1	$\mu \mathrm{A}$
$\mathrm{BP} / \mathrm{Brightness}$ input capacitance	CBPI	All Devices		200		pF
AC CHARACTERISTICS - MULTIPLEXED INPUT CONFIGURATION						
Digit Select Active Pulse Width	$\mathrm{t}_{\text {sa }}$	Refer to Timing Diagrams	1			$\mu \mathrm{S}$
Data Setup Time	tds		500			ns
Data Hold Time	tah		200			ns
Inter-Digit Select Time	tids		2			$\mu \mathrm{S}$
AC CHARACTERISTICS - MICROPROCESSOR INTERFACE						
Chip Select Active Pulse Width	tcsa	other chip select either held active, or both driven together	200			ns
Data Setup Time	${ }_{\text {t }}^{\text {dsm }}$		100			ns
Data Hold Time	tanm		10	0		ns
Inter-Chip Select Time	tics		2			$\mu \mathrm{s}$

NOTE 1: This limit refers to that of the package and will not be obtained during normal operation.
NOTE 2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than V^{+}or less than V^{-}may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the 7211/7212 be turned on first.

TYPICAL CHARACTERISTICS

OPERATING SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

BACKPLANE FREQUENCY
AS A FUNCTION OF SUPPLY VOLTAGE

LED SEGMENT CURRENT
AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE

BACKPLANE FREQUENCY AS A FUNCTION OF OSCILLATOR CAPACITOR COSC

LED SEGMENT CURRENT
as a function of output voltage

OPERATING POWER (LED DISPLAY)
AS A FUNCTION OF SUPPLY VOLTAGE

CONNECTION DIAGRAMS

[^19]
BLOCK DIAGRAMS

DD-7211/DD-7212

INPUT DEFINITIONS

In this table, V^{+}and V^{-}are considered to be normal operating input logic levels. Actual input low and high levels are specified in Table 2. For lowest power consumption, input signals should swing over the full supply.

INPUT	TERMINAL	CONDITION	FUNCTION			
B0	27	V^{+}= Logical One $\mathrm{V}^{-}=$Logical Zero	Ones (Least Significant)		\quad	Data Input Bits
:---						
B1						

DD-7211/DD-7212
MULTIPLEXED-BINARY INPUT CONFIGURATION

INPUT	TERMINAL	CONDITION	FUNCTION
D1	31	$\left\{\begin{array}{l} \mathrm{V}^{+}=\text {Active } \\ \mathrm{V}^{-}=\text {Inactive } \end{array}\right.$	D1 (Least significant) Digit Select
D2	32		D2 Digit Select
D3	33		D3 Digit Select
D4	34		D4 (Most significant) Digit Select

DD-7211M/DD-7212M
MICROPROCESSOR INTERFACE INPUT CONFIGURATION

INPUT	DESCRIPTION	TERMINAL	CONDITION	FUNCTION
DS1	Digit Select Code Bit 1	31	$\mathrm{V}^{+}=$Logical One $\mathrm{V}^{-}=$Logical Zero	DS1 \& DS2 serve as a two bit Digit Select Code Input DS1, DS2 $=00$ selects D4 DS1, DS2 $=01$ selects D3 DS1, DS2 $=10$ selects D2 DS1, DS2 $=11$ selects D1
DS2	Digit Select Code bit 2	32		
CS1	Chip Select 1	33	$\begin{aligned} & \mathrm{V}^{+}=\text {Inactive } \\ & \mathrm{V}^{-}=\text {Active } \end{aligned}$	When both CS1 and CS2 are taken to V^{-}, the data at the Data and Digit Select code inputs are written into the input latches. On the rising edge of either Chip Select, the data is decoded and written into the output latches.
CS2	Chip Select 2	34		

TEST CIRCUIT

Figure 1: Multiplexed Input Timing Diagram

Figure 2: Microprocessor Interface Input Timing Diagram

DESCRIPTION OF OPERATION

LCD Devices

The LCD devices in the family $7211,7211 \mathrm{~A}, 7211 \mathrm{M}, 7211 \mathrm{AM})$ provide outputs suitable for driving conventional four digit by seven segment LCD displays, including 28 individual segment drivers, backplane driver, and a self-contained oscillator and divider chain to generate the backplane frequency.
The segment and backplane drivers each consist of a CMOS inverter, with the n-and p-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any dc component which could arise from differing rise and fall times, and ensures maximum display lite.
The backplane output devices can be disabled by connecting the oscillator input (pin 36) to the negative supply. This allows the 28 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to the backplane output of one master device or the backplane may be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device will represent a load of approximately 200pF (comparable to one additional segment). The limitation on how many devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to minimize power consumption is to keep the rise and fall times less than about 5 microseconds. The backplane driver devices of one device should handle the backplane to a display of 16 one-half-inch characters without the rise and fall times exceeding $5 \mu \mathrm{~s}$. (ie, 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the 7211 devices slaved to it. This external signal should be capabale of driving very large capacitive loads with short

Display Waveforms
$\left(1-2 \mu^{\mathrm{s}}\right)$ rise and fall times. The maximum frequency for a backplane signal should be about 125 Hz althougin this may be too fast for optimum display response at lower display temperatures, depending on the display used.
The onboard oscillator is designed to free run at approximately 16 KHz at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 125 Hz with the oscillator free-running. The oscillator frequency may be reduced by connecting an external capacitor to the oscillator terminal (pin 36); see the plot of oscillator/backplane frequency vs. external capacitance for detailed information.
The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a d.c. component to the display). This can be done by driving the oscillator input between the positive supply and a level out of the range where the backplane disable is sensed, about one fifth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

LED Devices

The LED devices in the 7212, 7212A, $7212 \mathrm{M}, 7212 \mathrm{AM}$) provide outputs suitable for directly driving four digit by seven segment common-anode LED displays, including 28 individual segment drivers, each consisting of a low-leakage current- controlled open-drain n-channel transistor.

The drain current of these transistors can be controlled by varying the voltage at the Brightness input (pin 5). The voltage at this pin is transferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Fig (3). The potentiometer should be a high value ($100 \mathrm{~K} \Omega$ to $1 \mathrm{M} \Omega$) to minimize I2R power consumption, which can be significant when the display is off.
The brightness input may also be operated digitally as a display enable; when at V^{+}, the display is fully on, and at V^{-} fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two supplies at the Brightness input.
Note that the LED devices have two connections for V^{-}; both of these pins should be connected to the negative supply. The double connection is necessary to minimize effects of

DD-7211/DD-7212

bond wire resistance with the large total display currents possible.
When operating the LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at $25^{\circ} \mathrm{C}$, derated linearly above $35^{\circ} \mathrm{C}$ to 500 mW at $70^{\circ} \mathrm{C}$ $\left(-15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$ above $\left.35^{\circ} \mathrm{C}\right)$. Power dissipation for the device is given by:

$$
P=\left[\left(V^{+}-V^{-}\right)-V_{F L E D}\right] \times I_{S} \times N_{S}
$$

where $V_{F L E D}$ is the LED forward voltage drop, I_{s} is segment current, and N_{S} is the number of "on" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the Brightness input to keep power dissipation within the limits described above.

Figure 3: Brightness control

Input Configurations And Output Codes

The standard devices in the DD-7211/12 family accept a fourbit true binary (ie, positive level = logical one) input at pins 27 thru 30, least significant bit at pin 27 ascending to the most significant bit at pin 30. The DD-7211, DD-7211M, DD-7212, and DD-7212M devices decode this binary input into a sevensegment alphanumeric hexadecimal output. The DD-7211A, DD-7211AM, DD-7212A, and DD-7212AM decode the binary input into the same seven-segment output as in the ICM 7218 "Code B", ie 0-9, E, H, L, P, dash, blank. These codes are shown explicitly in Table 3. Either decoder option will correctly decode true BCD to a seven-segment decimal output.

The DD-7211, DD-7211A, DD-7212, and DD-7212A devices are intended to accept multiplexed binary or BCD output. These devices provide four separate digit lines (least significant digit at pin 31 ascending to most significant digit at pin 34), each of which when taken to a positive level decodes and stores in the output latches of its respective digit the character corresponding to the data at the input port, pins 27 through 30 . More than one digit select may be activated simultaneously (which will write the same character into all selected digits), although the timing requirements shown in Fig (1) and Table 2 for data setup, hold, and inter-digit select times must be met to ensure correct output.
The DD-7211M, DD-7211AM, DD-7212M, and DD-7212AM devices are intended to accept data from a data bus under processor control.
In these devices, the four data input bits and the two-bit digit select code (DS1 pin 31, DS2 pin 32) are written into input buffer latches when both chip select inp: 1 ts (CS1 pin 33, CS2 pin 34) are taken to a negative level. On the rising edge of either chip select input, the content of the data input latches is decoded and stored in the output latches of the digit selected by the contents of the select code latches.

A select code of 00 writes into $\mathrm{D} 4, \mathrm{SC} 2=0, \mathrm{SC} 1=1$ writes into D3, SC2 $=1, \mathrm{SC} 1=0$ writes into D2, and 11 writes into D1. The timing relationships for inputting data are shown in Fig (2), and the chip select pulse widths and data setup and hold times are specified in Table 2.

Table 3 Output Codes

BINARY				HEXADECIMAL ICM7211(M)	$\begin{gathered} \text { CODE B } \\ \text { ICM7211A(M) } \end{gathered}$
B3	B2	B1	B0	ICM7212(M)	ICM7212A(M)
0	0	0	0	I-1	-1
0	0	0	1	1	'
0	0	1	0	\square	\square
0	0	1	1	-i	\exists
0	1	0	0	-1	-1
0	1	0	1	\%	5
0	1	1	0	E	E
0	1	1	1	7	7
1	0	0	0	\%	8
1	0	0	1	9	9
1	0	1	0	F	-
1	0	1	1	\bigcirc	E
1	1	0	0	i_{-}^{-}	H'
1	1	0	1	-1	i-
1	1	1	0	E	9
1	1	i	1	F-	(BLANK)

SEGMENT ASSIGNMENT

APPLICATIONS

1. Ganged 7211's Driving 8-Digit LCD Display.

DD-7211/DD-7212

2. 4 1/2 Digit LCD DPM with Digit Blanking on Overrange.

DD-7211/DD-7212

3. 8048/8748 Microprocessor Interface.

PACKAGE DIMENSIONS

40 Pin Plastic Dual-In-Line Package

DD-7218 Series CMOS Universal 8 Digit LED Driver System

FEATURES

- Total circuit integration on chip includes:
a) Digit and segment drivers
b) All multiplex scan circuitry
c) 8×8 static memory
d) 7 segment Hexadecimal and Code B decoders
- Output drive suitable for large LED displays
- Both common anode and common cathode LED drive versions
- Single 5 volt supply required
- Data retention to 2 volts supply
- Shutdown feature - turns off display and puts chip into very low power dissipation mode
- Pin selectable choice of $\mathbf{2}$ seven segment decoders Hexa or Code B
- Pin selectable choice of seven segment decode or no decoder
- Microprocessor compatible and hardwire versions
- All terminals protected against static discharge

GENERAL DESCRIPTION

The DD-7218 series of universal LED driver systems provide, in a single package, all the circuitry necessary to interface most common microprocessors or digital systems and an LED display. Included on chip is an 8×8 static memory array providing storage for the displayed information, 2 types of 7 segment decoders, all the multiplex scan circuitry and the high power digit and segment drivers.

The DD-7218A and DD-7218B are intended to be used primarily in microprocessor systems. Data is read directly from the I/O bus line from the microprocessor. 2 Control lines (Write, and Mode) define chip select, which reads either 4 bits of control information (Data Coming, Shutdown, Decode, Hexa or Code B Decoding) or 8 bits of Display Input Data. Display Input Data (8 words, 8 bits each) is automatically sequenced into the memory on successive negative going Write pulses. Data may be displayed either directly or decoded in Hexadecimal or Code B formats. The DD-7218A drives a common anode display while the DD-7218B drives a common cathode display. (See Block Diagram 1)
The DD-7218C and DD-7218D feature 2 lines for control information (Write, Three Level Input; Hexa, Code B, Shutdown), 4 lines for Input Data and 3 lines for BCD Data Addressing of each of eight data memory locations.
Data is written into memory by setting up a BCD Data Address memory location, defining 4 lines of Input Data and then strobe the Write line low. The Three Level Control Input is independent of the Write instruction. Only Hexadecimal and Code B decoding are available for the Display Outputs. The DD-7218C drives a common anode display, the DD-7218D a common cathode display. (See Block Diagram 2)

The DD-7218E provides 4 separate lines for control information (Write, Hexa-Code B, Decode, Shutdown), 8 lines for input data, and 3 lines for BCD digit address. Data is written into the memory by setting up a BCD Data Address memory location, defining 8 lines of Input Data, and then strobe the Write line low. Control information is on separate lines and is independent of the \bar{W} rite instruction. Data may be displayed either directly or decoded in Hexadecimal or Code B formats. The DD-7218E drives a common anode display. (See Block Diagram 3)

ORDERING INFORMATION
Microprocessor Control Applications

Model	Display Option	Package
DD-7218AC	Common Anode	28 Pin CERDIP
DD-7218BC	Common Cathode	28 Pin PLASTIC

Hardwire Control Applications

Model	Display Option	Package
DD-7218CC	Common Anode	28 Pin CERDIP
DD-7218DC	Common Cathode	28 Pin PLASTIC
DD-7218EC	Common Anode	40 Pin CERAMIC

DD-7218 SERIES

ABSOLUTE MAXIMUM RATINGS

Supply Voltage .. 6 V	
Digit Output Current	300 mA
Segment Output Current	50 mA
Input Voltage (any terminal)	$\mathrm{V}^{+}+0.3 \mathrm{~V}$ to $\mathrm{V}^{-}-0.3 \mathrm{~V}$
	NOTE 1
Power Dissipation (28 Pin CERDIP)	1 watt NOTE 2
Power Dissipation (28 Pin Plastic)	0.5 watt NOTE 2
Power Dissipation (40 Pin Ceramic)	1 watt NOTE 2
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE 1 Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than V^{+}or less than V^{-}may cause destructive device latchup. For this reason it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established. When using multiple supply systems the supply to the DD-7218 should be turned on first.
NOTE 2 These limits refer to the package and will not be obtained during normal operation. Derate above $50^{\circ} \mathrm{C}$ by 25 mW per ${ }^{\circ} \mathrm{C}$.

SYSTEM ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Test Circuit, Display Diode Drop 1.7V

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage	$\begin{aligned} & \mathrm{V}^{+}-\mathrm{V}^{-} \\ & \mathrm{V}^{+}-\mathrm{V}^{-} \end{aligned}$	Power Down Mode	$\begin{aligned} & 4 \\ & 2 \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Quiescent Supply Current	10	Shutdown (Note 3)	6	10	300	$\mu \mathrm{A}$
Operating Supply Current	IDP	Decoder On, Outputs Open Ckt No Decode, Outputs Open Ckt	$\begin{aligned} & 250 \\ & 200 \\ & \hline \end{aligned}$		$\begin{array}{r} 950 \\ 450 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Digit Drive Current	ID	Common Anode Vout $=\mathrm{V}^{+}-2.0$ Common Cathode Vout $=\mathrm{V}^{-}+1 \mathrm{~V}$	$\begin{gathered} \hline-170 \\ 50 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Digit Leakage Current	IDL				100	$\mu \mathrm{A}$
Peak Segment Drive Current	Is	Common Anode Vout $=\mathrm{V}+1.5 \mathrm{~V}$ Common Cathode Vout $=\mathrm{V}^{+}-2.0 \mathrm{~V}$	$\begin{gathered} 20 \\ -10 \end{gathered}$	25		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Segment Leakage Current	ISL				50	$\mu \mathrm{A}$
Display Scan Rate	FMuX			250		Hz
Three Level Input Logical "1" Input Voltage Floating Input Logical "0" Input Voltage	$\begin{aligned} & V_{T H} \\ & V_{T D} \\ & V_{T L} \end{aligned}$	Hexidecimal 7218C, D (Pin 9) Code B 7218C, D (Pin 9) Shutdown 7218C, D (Pin 9)	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 1.75 \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Three Level Input Impedance				100		k ת
Logical "1" Input Voltage Logical "0" Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$		2.4		. 8	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Write Pulse Width (Negative) Write Pulse Width (Positive)	$\begin{aligned} & t w \\ & t \bar{w} \end{aligned}$		$\begin{aligned} & 550 \\ & 550 \end{aligned}$			$\begin{aligned} & \mathrm{nS} \\ & \mathrm{nS} \end{aligned}$
Mode Pulse Width	tm		400			nS
Data Set Up Time	tds		400			nS
Data Hold Time	tah .		25			nS
Digit Address Set Up Time Digit Address Hold Time	$\begin{aligned} & \mathrm{t}_{\text {das }} \\ & \mathrm{t}_{\text {dah }} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 7218 \\ 7218 \\ \hline \end{array}$	$\begin{aligned} & 400 \\ & 100 \end{aligned}$			$\begin{aligned} & \mathrm{nS} \\ & \mathrm{nS} \end{aligned}$
Operating Temperature Range	TA	Industrial Temperature Range	-20		70	${ }^{\circ} \mathrm{C}$

NOTE 3 In the 7218C and D (hardwire control versions) the Hexa/Code B/Shutdown Input (Pin 9) has internal biasing resistors to hold it at $\mathrm{V}^{+} / 2$ when Pin 9 is open circuited. These resistors consume power and result in a Quiescent Supply Current (lo) of typically $50 \mu \mathrm{~A}$. The $218 \mathrm{~A}, \mathrm{~B}$, and E devices do not have these biasing resistors and thus are not subject to this condition.
NOTE 4 For AC and BC suffixes only, 250nsec min for CC, DC and EC suffixes.

DD-7218 SERIES

BLOCK DIAGRAMS

PIN CONFIGURATION

DD-7218 SERIES

CONTROL INPUT DEFINITIONS DD-7218A and B

INPUT	TERMINAL	VOLTAGE	FUNCTION
Write	8	High Low	Input Not Loaded Into Memory Input Loaded Into Memory
Mode	9	High Low	Load Control Word on Write Pulse Load Input Data on Write Rulse
ID6 (Hexadecimal/Code B)	5	High Low	Hexadecimal Decoding Code B Decoding
ID5 (Decode/No Decode)	6	High Low	No Decode Decode
ID7 (Data Coming/Input D.F.)	7	High Low	Data Coming No Data Corning
ID4 Shutdown	10	High Low	Normal Operation Shutdown (Oscillator, Decoder, and Displays Disabled)
Input Data	$11,12,13$,	High	Loads Mone" (Note 2) ID0-ID7

CONTROL INPUT DEFINITIONS DD-7218C and D

INPUT	TERMINAL	VOLTAGE	FUNCTION
$\overline{\text { Write }}$	8	High Low	Inputs Not Loaded Into Memory Inputs Loaded Into Memory
Three Level Input (Note 1)	High Floating Low	Hexadecimal Decode Code B Decode Shutdown (Oscillator, Decoder and Displays Disabled)	
Digit Address	$5,6,10$	High Low	Loads "Ones" Loads "Zeros"
DAO-DA2	$11,12,13$,	High	Loads "Ones" (Note 2)
Input Data	14,5,	$6,10,7$	Low
IDO-ID7		Loads "Zeros"	

CONTROL INPUT DEFINITIONS DD-7218E

INPUT	TERMINAL	VOLTAGE	FUNCTION
$\overline{\text { Write }}$	9	High Low	Input Latches Not Updated Input Latches Updated
Shutdown	10	High Low	Normal Operation Shutdown (Oscillator, Decoder and Displays Disabled)
Digit Address (0,1,2) DAO-DA2	$13,14,12$	High Low	Loads "Ones" Loads "Zeros"
Decode/No Decode	33	High Low	No Decode Decode
Hexadecimal/Code B	32	High Low	Code B Decoding Hexadecimal Decoding
Input Data	$16,17,18,19$ 6	High	Loads "Ones" (Note 2) ID0-ID7

NOTE 1 In the 7218C and 7218D versions, Hexadecimal, Code B and Shutdown are controlled with a three level input on Pin 9 . Pulling Pin 9 high decodes Hexadecimal. Floating Pin 9 decodes Code B and pulling Pin 9 low puts the 7218 in a Shutdown mode.
NOTE 2 In the No Decode Mode, "Ones" represents "on" segments for all inputs except for the Decimal Point, where "Zero" represents "on" segments, (i.e. segments are positive true, decimal point is negative true).

Figure 1: Multiplex Timing

Figure 2: Segment Assignments

APPLICATIONS

Decode/No Decode

For the DD-7218A/B/E products, there are 3 input data formats possible; either direct segment and decimal point information-8 bits per digit or 2 BCD codes plus decimal point- 5 bits per digit. The 7 segment decoder on chip may be disabled if direct segment information is inputted.

In the No Decode format, the inputs directly control the outputs as follows:

Input Data: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Output Segments: $\overline{\text { D.P. a }}$ b \quad c e g f d
The No Decode Mode, "Ones" represents on segments for all inputs except for the Decimal Point, where "zero" represents on segments.
Hexadecimal or Code B Decoding:
For all products, a choice of either Hexa or Code B decoding may be made. Hexa decoding provides 7 segment plus six alpha characters while Code B provides a negative sign $(-)$, a blank (for leading zero blanking) and certain useful alpha characters for most numeric formats.

The four bit binary code is set up on inputs ID3-ID0.
Binary Code $01 \begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 1011 \\ 12131415\end{array}$

Shutdown

Shutdown performs several functions: it puts the device into a very low dissipation mode (typically $10 \mu \mathrm{~A}$ at $\mathrm{V}^{+}-\mathrm{V}^{-}=5$), turns off both the digit and segment drivers, stops the multiplex scan oscillator (this is the only way the scan oscillator can be disabled). However, it is still possible to input the memory during shutdown - only the output and read sections of the device are disabled.

Powerdown

In a Shutdown Mode, the supply voltage may be reduced to 2 volts without data being lost in memory. However, data should not be written into memory if the supply voltage is less than 4 volts.

Output Drive

The common anode output drive is approximately 200 mA per digit at a 12% duty cycle. With 5 segments being driven, this is equal to about 40 mA per segment peak drive or 5 mA average drive. The common cathode drive is approximately one half that of the common anode drive. If high impedance LED displays are used, the drive will be correspondingly less.

Inter Digit Blanking

A blanking time of approximately 10μ s occurs between digit strobes to ensure that segment information is correct before the next digit drive thereby avoiding ghosting.

Leading Zero Blanking

This may be programmed into chip memory in the nodecode operation (each segment programmed for a zero for the blanked digits) or by using the 16th state (binary 15) with the Code B decoder.

Driving Larger Displays

If a higher average drive current per digit is required, it is possible to parallel connect digit drives together. For example, by paralleling pairs of digit drives together to drive a 4 digit display 10 mA average segment drive can be obtained.

DD-7218 SERIES

APPLICATIONS, continued

Power Dissipation Considerations

Assuming common anode drive at $\mathrm{V}^{+}-\mathrm{V}^{-}=5$ volts and all digits on with an average of 5 segments driven per digit, the average current would be approximately 200 mA . Assuming further a 1.8 volt drop across the LED display would result in a 3.2 volt drop across the DD-7218. The device power dissipation will, therefore, be 640 mW rising to about 900 mW for all ' 8 's displayed. Caution: Position device in system such that air can flow freely to provide maximum cooling. The common cathode dissipation is approximately one half that of the common anode dissipation.

Processor Input Drive Considerations (DD-7218A/B)

The control instructions are read from the input bus lines if Mode is high and Write low. The instructions occur on 4 lines and are - Decode/no Decode, type of Decode (if desired), Shutdown/no Shutdown and Data Coming/not Coming. After the control instructions have been read (with Data Coming instruction) display data can be written into memory with each following negative going pulse of Write, Mode being low. After all 8 words or digit memory locations have been re-written, additional transitions of the state of Write
are ignored. It is not possible to change for example digit \#7 only without refreshing the data for all the other digits. (This can, however, be achieved with the DD-7218C/D/E where the digits are individually addressed.)
Hardwire Input Drive Considerations (DD-7218C/D/E)
Control instructions are provided to the DD-7218C/D by a single three level input terminal (Pin 9), which operates independently of the Write pulse. The DD-7218E control instructions are also indepenaent but are on three separate pins (10, 32, 33).
Data can be written into memory on the DD-7218C/D/E by setting up a 3 bit binary code (one of eight) on the digit address inputs, which define the digit where the data is to be written into the memory, and apply a negative going Write pulse. For example, it is possible to change only digit 7 without refreshing the data for all the other digits. (However, this cannot be achieved with the DD-7218A/B.

Supply Capacitor

A. $1 \mu \mathrm{~F}$ capacitor is recommended between V^{+}and V^{-}to inhibit multiplex noise.

SWITCHING WAVEFORMS DD-7218

Figure 3

CHIP ADDRESS SEQUENCE DD-7218A and B

Figure 4

CHIP ADDRESS SEQUENCE EXAMPLE DD-7218C/D/E

Figure 5

DD-7218 SERIES

TEST CIRCUITS

TYPICAL CHARACTERISTICS

DD-7218 SERIES

TYPICAL CHARACTERISTICS, continued

COMMON CATHODE

DIGIT DRIVER
Idig VS. (Vout- ${ }^{-}$)
AT $25^{\circ} \mathrm{C}$

COMMON CATHODE
SEG. DRIVER
ISEG VS. (\mathbf{V}^{+}-VOUT)

COMMON CATHODE DIGIT DRIVER
IDIG VS. (VOUT-V)

APPLICATION EXAMPLES

8 DIGIT MICROPROCESSOR DISPLAY APPLICATION

The display interface (7218) is shown with an Intel 8048 microprocessor. The 8 bit data bus DB0/DB7-ID0/ID7 transfers control and data information to the 7218 display interface on successive Write pulses. When Mode is high a control word is transferred. Mode low allows data transfer on a Write pulse. Eight memory address locations in the 8×8 static memory are automatically sequenced on each successive Write
pulse. After eight Write pulses have occurred, further pulses are ignored and the display interface returns to normal display operations until a new control word is transferred. See Figure 4.

Decoding of the stored data in memory is defined by the control word and may be decoded in Hexadecimal, Code B, or No-Decode formats.

Figure 6: 8 Digit Microprocessor Display

DD-7218 SERIES

16 DIGIT MICROPROCESSOR DISPLAY APPLICATION

Both 7218's are addressed simultaneously with a 3 bit word, DA2-DA0.

Display data from the 8048 I/O bus (DB7-DB0) is transferred to both 7218 (ID3-ID0) simultaneously, 4 bits +4 bits on Write enable.

Display digits from both 7218's are interleaved to allow adjacent pairs of digits to be loaded sequentially on a single 8 bit data bus, ie D0 D1, D2 D3, D4 D5, etc.

Decimal point information (from 8048, P26-P27) is supplied to the 7218 on bus lines ID7 to both devices.

Choice of decoding is available in either Hexadecimal or Code-B format by hardwiring or decoding to a Three Level format on Pin 9 of the 7218.

Multiplexing is asynchronous with respect to the microprocessor and is completely performed by the 7218.

Figure 7: 16 Digit Display

The 7218 can be used as a microprocessor based LED status panel driver. The microprocessor selected control word would include "No Decode" and "Data Coming". The computer then outputs word oriented "Ones" and Zeroes" to indicate on-off states. This data is read into the 7218 which in turn directly drives appropriate descrete LEDs. LED indicators can be red or green (8 "segments" $\times 8$ digits $=64$ dots $\div 2$ per red or green $=32$ channels) on red, yellow or green (21 channels).

Additional 7218's may be bussed and addressed (see Figure 7) to expand the status panel capacity. Note per figure 4 that after the 7218 has read in its data (8 write pulses), it ignores additional information on the data lines. A new control word must be received before the next write sequence can be accommodated. Consequently, by address decoding and write pulse enabling, numerous 7218's can be bussed together to allow a large number of indicator channels.

DD-7218 SERIES

PACKAGE DIMENSIONS

28 Pin CERDIP Dual-In-Line Package
28 Pin Plastic Dual-In-Line Package

40 Pin Ceramic Dual-In-Line Package

Power Supplies and DC-DC Converters

Single Output Modules	536C
Dual Output Modules	538C
Chassis Mount Modules	540C
Triple Output Modules	542C
Modular Switching Supplies	543 C
High Voltage Modules	544 C
Plug-In Power Adapter	545 C
Power Chassis Series	546 C
Overvoltage Protectors	548 C
Monolithic Voltage Inverters	549 C
High Power Modules	550 C
1 \& 3 Watt DC-DC Converters	552 C
5 \& 10 Watt DC-DC Converters	554 C
48 Volt DC-DC Converters	556 C
4.5 Watt DC-DC Converters	558 C
5 Volt Isolator-Regulators	559 C
Case Outline Drawings	560 C

Glossary of Power Supply Terms

Abstract

AMBIENT TEMPERATURE: The temperature of still air surrounding a power supply. For power supplies a good practical definition is: the temperature measured at a point $1 / 2^{\prime \prime}$ from the body of a power supply which is protected from direct air movement by a suitable enclosure. It should be noted that the temperature of circulating air, such as in a temperature chamber with a fan, is not a correct ambient temperature measurement since the power supply is being cooled by the circulating air.

BACK RIPPLE CURRENT: For DC to DC converters, the input peak to peak AC current, as a percentage of input current, with an ideal voltage source input. This ripple current is caused by switching transients in the converter and is less than 1% in well-designed converters. See Figure 1.

Figure 1. Back Ripple Current of a DC-DC Converter.
BREAKDOWN VOLTAGE: The maximum AC or DC voltage which may be applied between input and output terminals of a supply. See Figure 2.

EFFICIENCY: The ratio of output power to input power expressed as a percentage. This is generally measured under full load at nominal line voltage.

FARADAY SHIELD: An electrostatic shield between input and output windings of a transformer. This is done to reduce capacitive coupling between the input and output of the power supply.

FOLDBACK CURRENT LIMITING: An overload protection method whereby the output current is decreased as the load approaches short circuit. Under output short circuit, the output current is therefore less than rated output current. This technique minimizes internal power dissipation under overload conditions. See Figure 3 (b).

ISOLATION: The resistive and capacitive coupling between the input and output of an isolated supply. This is
generally given in megohms and picofarads and is normally determined by the transformer characteristics. See Figure 2.

Figure 2. Breakdown Voltage and Isolation.

LEAKAGE CURRENT: The AC or DC current flowing between input and output of an isolated supply with a specified voltage applied between input and output.

LINE REGULATION: The maximum deviation of the output voltage in percent as the input voltage is varied from nominal to high line and nominal to low line. Output load and ambient temperature are held constant.

LOAD REGULATION: The maximum deviation of the output voltage in percent as the load is changed from minimum to maximum rated load. Input voltage is nominal value and ambient temperature is constant.

OUTPUT CURRENT LIMITING: An overload protection method whereby the maximum output current is automatically limited in value under overload conditions so that the power supply is not damaged. See Figure 3 (a).

Figure 3. Output Overload Characteristics.

OUTPUTIMPEDANCE: Defined as dVout/dlout. This can be measured at DC or at a specified AC frequency. A typical output impedance vs. frequency graph is shown in Figure 4. Output impedance is sometimes called "dynamic load regulation".

OUTPUT VOLTAGE : The nominal DC value of the voltage at the output terminals of the supply. It is assumed that any ripple or noise is averaged in the measurement.

OUTPUT VOLTAGE ACCURACY: The maximum deviation of the output voltage from its rated DC value. Input voltage is nominal value and temperature is room temperature ($+25^{\circ} \mathrm{C}$).

OVERSHOOT: A transient voltage change in excess of the normal regulation limits which can occur when a power supply is turned on or off, or when there is a step change in line voltage or load.

OVER VOLTAGE PROTECTION: A mechanism whereby the output is shut down if the output voltage for any reason exceeds a specified value. This feature is specially important for 5 Volt logic supplies.

Figure 4. Output Impedance vs. Frequency.

RATED OUTPUT CURRENT: The maximum current which can be drawn from the output of the supply for specified regulation or temperature change. The output current is derated with temperature for some supplies.

REMOTE SENSING: A method whereby the regulator circuit senses the voltage directly at the load. This is done by running separate wires from the regulator to the load in order to circumvent the voltage drop in the lines carrying the load current. See Figure 14.

RIPPLE AND NOISE: The magnitude of AC voltage appearing superimposed on the DC output. It is usually
stated in either peak to peak or RMS volts. For line operated supplies the ripple is normally a 120 Hz waveform. For DC to DC converters the ripple is twice the switching frequency.

SERIES REGULATION: A popular regulation method whereby a control device (transistor) is placed in series with the power source in order to regulate the voltage across the load. See Figure 13.

STABILITY: The percent change in output voltage as a function of time at constant input voltage, load, and temperature.

TEMPERATURE COEFFICIENT: The average change in output voltage per degree Centigrade change in temperature with load and input voltage held constant. The coefficient is generally derived from output voltage measurements at room temperature and the two extremes of the operating temperature range.

TEMPERATURE RANGE, OPERATING: The range of environmental temperatures (usually in ${ }^{\circ} \mathrm{C}$) over which a power supply can be safely operated.

TEMPERATURE RANGE, STORAGE: The range of environmental temperatures (usually in ${ }^{\circ} \mathrm{C}$) over which a power supply can be safely stored, nonoperating.

TRANSIENT RECOVERY TIME: The time required for the output voltage to settle within specified regulation limits after an instantaneous change in output load current. This is generally measured with a defined load change. See Figure 5.

Figure 5. Transient Recovery Time.
WARM-UP TIME: The time (after power turn on) required for the output voltage to reach its equilibrium value within the output accuracy specification.

Single Output Line Operated Power Modules

SPECIFICATIONS, $25^{\circ} \mathrm{C}$	UPM-5/250	UPM-5/500	UPM-5/1000	UPM-5/1000B	UPM-5/2000
Output Voltage	5VDC	5VDC	5VDC	5VDC	5VDC
Output Voltage Accuracy	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$	$\pm 2 \%$	$\pm 1 \%$
Rated Output Current	250 mA	500 mA	1.0A	1.0A	2.0A
Line Regulation, max.	.05\%	.05\%	.05\%	0.25\%	.05\%
Load Regulation, max.	0.1\%	0.1\%	0.1\%	0.25\%	0.1\%
Temp. Coefficient, max.	. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$	$\cdot .02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$
Output Ripple, RMS max.	1 mV				
Output Impedance, max.	. 05Ω	. 05Ω	. 01Ω	.01 Ω	. 005Ω
Trans. Recovery Time, max.	$50 \mu \mathrm{sec}$.				
Isolation Resistance, min.	100 Meg .				
Isolation Capacitance, max.	250pF	250pF	250pF	250pF	250pF
Breakdown Voltage, min.	1500 VAC	1500 VAC	1500VAC	1500VAC	1500VAC
Operating Temp. Range		$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$	(No Derating)		(2)
Storage Temp. Range		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Case Material	Phenolic	Phenolic	Phenolic	Phenolic	Phenolic
Module Size, inches	$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.56$
Module Size, millimeters	$88,9 \times 63,5 \times 22,2$	$88,9 \times 63,5 \times 22,2$	88,9×63,5×31,8	88,9×63,5×31,8	$88,9 \times 63,5 \times 39,6$
Module Weight	14 oz. (397g)	14 oz. (397g)	18 oz. (510g)	18 oz. (510g)	24 oz. (680g)
Case/Pin Configuration	C1	C1	C2	C2	C3
Other Versions	E, J (1)	E, J (1)	E,J	E, J	E, J
Mating Socket	MS-7	MS-7	MS-7	MS-7	MS-7
Price (1-9)	\$45.00	\$53.50	\$72.50	\$57.00	\$83.00

NOTES: 1. For "E" version module size is C2 ($3.5 \times 2.5 \times 1.25$ inches, 18 oz .)
2. For UPM-5/2000 operating temp. range should be restricted for a max. case temperature of $80^{\circ} \mathrm{C}$ in use.

DESCRIPTION

This line of single output, voltage regulated DC power supplies features six 5 volt outpui models with output currents from 250 mA to 4 amperes. In addition, there are 4 other models with 6 V to 15 V outputs. All outputs have current limiting short circuit protection. Temperature coefficients are $.02 \% /{ }^{\circ} \mathrm{C}$ and output ripple voltage is 1 to 2 millivolts RMS.

INPUT VOLTAGE SPECIFICATIONS

Standard input specification: 115VAC $\pm 10 \%$
@ 60-440 Hz
E version: 220VAC $\pm 10 \%$ @ $48-440 \mathrm{~Hz}$ J version: 100VAC $\pm 10 \%$ @ $48-440 \mathrm{~Hz}$
There is no extra charge for E and J versions. When ordering, add E or J suffix after model number. Note that in some instances the module size is larger for the E version. MS-7 sockets are $\$ 4.00$ each.

UPM-5/500

UPM-6/150A	UPM-9/100A	UPM-12/100A	UPM-15/100A
6VDC	9VDC	12VDC	15VDC
$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$
150 mA	100 mA	100 mA	100 mA
.05\%	.05\%	.02\%	.02\%
0.1\%	0.1\%	.05\%	.05\%
. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$.02\%/ ${ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$
1 mV	2 mV	2 mV	2 mV
. 05Ω	. 01Ω	. 01Ω	. 01Ω
$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.
100 Meg .	100 Meg .	100 Meg .	100 Meg .
250pF	250pF	250pF	250pF
1500VAC	1500VAC	1500VAC	1500VAC
$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ (No Derating)			
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Phenolic	Phenolic	Phenolic	Phenolic
$3.5 \times 2.5 \times .875$			
$88,9 \times 63,5 \times 22,2$			
14 oz. (397g)	14 oz . 397 g)	14 oz. (397g)	14 oz . $(397 \mathrm{~g})$
C1	C1	C1	C1
E,J (1)	E, J (1)	E,J (1)	E,J (1)
MS-7	MS-7	MS-7	MS-7
\$44.00	\$44.00	\$51.50	\$51.50

Dual Output Line Operated Power Modules

NOTES: 1. For "E" version module size is C2 ($3.5 \times 2.5 \times 1.25$ inches, 18 oz .)
2. For " E " version module size is C3 $(3.5 \times 2.5 \times 1.56$ inches, 24 oz .)
3. For BPM-12/300 and BPM-15/300, operating temp. range should be restricted for max. case temperature of $80^{\circ} \mathrm{C}$ in use.

Temperature coefficient is $.02 \%$ per degree Centigrade and output ripple voltage is 1 to 2 millivolts RMS. These rugged, encapsulated modules are useful for powering a wide variety of devices including linear IC's, op amps, data converters, and other analog circuits.

INPUT VOLTAGE SPECIFICATIONS

Standard input specification:
115VAC $\pm 10 \%$ @ 60-440 Hz. E version: 220VAC $\pm 10 \%$ @ $48-440 \mathrm{~Hz}$. J version: 100VAC $\pm 10 \%$ @ $48-440 \mathrm{~Hz}$.
There is no extra charge for E and J versions. When ordering, add E or J suffix after model number. Note that in some instances the module size is larger for the E version. MS-7 sockets are $\$ 4.00$ each.

BPM-15/60	BPM-15/100	BPM-15/200	BPM-15/300
$\pm 15 \mathrm{VDC}$	$\pm 15 \mathrm{VDC}$	$\pm 15 \mathrm{VDC}$	$\pm 15 \mathrm{VDC}$
$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$
$\pm 60 \mathrm{~mA}$	$\pm 100 \mathrm{~mA}$	$\pm 200 \mathrm{~mA}$	$\pm 300 \mathrm{~mA}$
.02\%	.02\%	.02\%	.02\%
.05\%	.05\%	.05\%	.05\%
. $02 \% /{ }^{\circ} \mathrm{C}$			
2 mV	2 mV	2 mV	2 mV
0.2Ω	0.1Ω	. 05Ω	. 03Ω
$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.
100 Meg .	100 Meg .	100 Meg .	100 Meg .
250pF	250pF	250pF	250pF
1500VAC	1500 VAC	1500VAC	1500 VAC
$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ (No Derating)			(3)
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Phenolic	Phenolic	Phenolic	Phenolic
$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.56$
$88,9 \times 63,5 \times 22,2$	$88,9 \times 63,5 \times 22,2$	$88,9 \times 63,5 \times 31,8$	$8,9 \times 63,5 \times 39,6$
14 oz (397 g)	14 oz (397 g)	18 oz (510 g)	24 oz . (680g)
C1	C1	C2	C3
E,J(1)	E,J(1)	E, J	E, J
MS-7	MS-7	MS-7	MS-7
\$43.00	\$51.50	\$67.00	\$86.00

THESE POWER SUPPLIES ARE COVERED BY GSA CONTRACT

Chassis Mounting Modules

SPECIFICATIONS, $\mathbf{2 5}^{\circ} \mathbf{C}$	UCM-5/250	UCM-5/500	UCM-5/1000	UCM- $\mathbf{5} / \mathbf{1 0 0 0 B}$
Output Voltage	5 VDC	5 VDC	5 VDC	5 VDC
Output Voltage Accuracy	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$	$\pm 2 \%$
Rated Output Current	250 mA	500 mA	1.0 A	1.0 A
Line Regulation, max.	$.05 \%$	$.05 \%$	$.05 \%$	0.25%
Load Regulation, max.	0.1%	0.1%	0.1%	$.025 \%$
Temperature Coefficient, max. $.02 \% /{ }^{\circ} \mathrm{C}$				
Output Ripple, RMS max.	1 mV	1 mV	1 mV	1 mV
Output Impedance, max.	$.05 \Omega$	$.05 \Omega$	$.01 \Omega$	$.01 \Omega$
Transient Recovery Time, max.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.
Isolation Resistance, min.	100 Meg.	100 Meg.	100 Meg.	100 Meg.
Isolation Capacitance, max.	250 pF	250 pF	250 pF	250 pF
Breakdown Voltage, min.	1500 VAC	1500 VAC	1500 VAC	1500 VAC
Operating Temp. Range		$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}(\mathrm{No} \mathrm{Derating)}$		
Storage Temp. Range		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Case Material	Phenolic	Phenolic	Phenolic	Phenolic
Module Size, inches	$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.25$
Module Size, millimeters	$88,9 \times 63,5 \times 22,288,9 \times 63,5 \times 22,288,9 \times 63,5 \times 31,8$	$88,9 \times 63,5 \times 31,8$		
Module Weight	$14 \mathrm{oz} .(397 \mathrm{~g})$	$14 \mathrm{oz} .(397 \mathrm{~g})$	$18 \mathrm{oz} .(510 \mathrm{~g})$	18 oz. $(510 \mathrm{~g})$
Case/Pin Configuration	D 1	D 1	D 2	D 2
Other Versions	$\mathrm{E}, \mathrm{J}(1)$	$\mathrm{E}, \mathrm{J}(1)$	E, J	E, J
Price (1-9)	$\$ 45.00$	$\$ 55.50$	$\$ 75.50$	$\$ 60.00$

NOTES: 1. For "E" version module size is D2 ($3.5 \times 2.5 \times 1.25$ inches, 18 oz. $)$
2. For UCM-5/2000 and BCM-15/300 operating temp. range should be restricted for a max. case temperature of $80^{\circ} \mathrm{C}$ in use.
3. All outputs are short circuit protected - current limited

This line of popular power supplies has input-output connections made to a terminal strip on top of the modules. These supplies are useful in applications where it is impractical or undesirable to use printed circuit cards or sockets. For simple mounting to a metal chassis, screw inserts are provided on the bottom of the modules.

INPUT VOLTAGE SPECIFICATIONS

Standard Input Specification:
$115 \mathrm{VAC} \pm 10 \%$ @ 60-440 Hz.
E version: 220VAC $\pm 10 \%$ @ $48-440 \mathrm{~Hz}$.
J version: 100VAC $\pm 10 \%$ @ $48-440 \mathrm{~Hz}$.

UCM-5/2000	BCM-15/60	BCM-15/100	BCM-15/200	BCM-15/300
5VDC	$\pm 15 \mathrm{VDC}$	$\pm 15 \mathrm{VDC}$	$\pm 15 \mathrm{VDC}$	$\pm 15 \mathrm{VDC}$
$\pm 1 \%$				
2.0A	$\pm 60 \mathrm{~mA}$	100 mA	200 mA	300 mA
.05\%	.02\%	.02\%	.02\%	.02\%
.01\%	.05\%	.05\%	.05\%	.05\%
. $02 \% /{ }^{\circ} \mathrm{C}$				
1 mV	2 mV	2 mV	2 mV	2 mV
. 005Ω	0.2Ω	0.1Ω	. 05Ω	. 05Ω
$50 \mu \mathrm{sec}$.				
100 Meg .				
250pF	250pF	250pF	250pF	250pF
1500VAC	1500VAC	1500VAC	1500VAC	1500VAC
(2)	$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ (No Derating)			(2)
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
Phenolic	Phenolic	Phenolic	Phenolic	Phenolic
$3.5 \times 2.5 \times 1.56$	$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times .875$	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.56$
$88,9 \times 63,5 \times 39,6$	$88,9 \times 63,5 \times 22,2$	$88,9 \times 63,5 \times 22,2$	$88,9 \times 63,5 \times 31,8$	88,9 $\times 63,5 \times 39,6$
24 oz. 680 g)	14 oz. 397 g)	14 oz. 397 g)	$18 \mathrm{oz} .(510 \mathrm{~g})$	24 oz. 680 g)
D3	D1	D1	D2	D3
E,J	E,J(1)	E,J(1)	E, J	E, J
\$86.00	\$45.00	\$61.00	\$71.50	\$86.00

these power supplies are covered by gsa contract

Triple Output Modules

These power modules are specially designed for operation with data conversion and other circuits where both a dual analog supply and a 5 V logic supply are required. Using a triple output supply to power these circuits can be more economical than using two separate equivalent supplies.

INPUT VOLTAGE SPECIFICATIONS

Standard input specifications: 115VAC $\pm 10 \%$ @ 60-440 Hz
E version: 220VAC $\pm 10 \%$ @ 48-440 Hz. J version: 100VAC $\pm 10 \%$ @ 48-440 Hz.
Mating MS-13 sockets are $\$ 4.00$ each

SPECIFICATIONS	$\begin{aligned} & \text { TPM-15/100-5/500 } \\ & \text { TPM-12/100-5/500 } \end{aligned}$	$\begin{aligned} & \text { TPM-15/200-5/500 } \\ & \text { TPM-12/200-5/500 } \end{aligned}$	$\begin{aligned} & \text { TPM-15/150-5/1000 } \\ & \text { TPM-12/150-5/1000 } \end{aligned}$
Output Voltages, dual 15V	$\pm 15 \mathrm{VDC} / 5 \mathrm{VDC}$	$\pm 15 \mathrm{VDC} / 5 \mathrm{VDC}$	$\pm 15 \mathrm{VDC} / 5 \mathrm{VDC}$
Output Voltages, dual 12V	$\pm 12 \mathrm{VDC} / 5 \mathrm{VDC}$	$\pm 12 \mathrm{VDC} / 5 \mathrm{VDC}$	$\pm 12 \mathrm{VDC} / 5 \mathrm{VDC}$
Output Voltage Accuracy	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$
Rated Output Current	$\pm 100 \mathrm{~mA} / 500 \mathrm{~mA}$	$\pm 200 \mathrm{~mA} / 500 \mathrm{~mA}$	$\pm 150 \mathrm{~mA} / 1000 \mathrm{~mA}$
Line Regulation, max.	.02\%/.05\%	.02\%/.05\%	.02\%/.05\%
Load Regulation, max.	.05\%/0.1\%	.05\%/0.1\%	.05\%/0.1\%
Temperature Coefficient, max.	. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$
Output Ripple, RMS max.	$2 \mathrm{mV} / 1 \mathrm{mV}$	$2 \mathrm{mV} / 1 \mathrm{mV}$	$2 \mathrm{mV} / 1 \mathrm{mV}$
Output Impedance, max.	0.1/.05 ohm	0.1/.05 ohm	0.1/.05 ohm
Transient Recovery Time, max.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.
Isolation Resistance, min.	100 Meg .	100 Meg .	100 Meg .
Isolation Capacitance, max.	250pF	250pF	250pF
Breakdown Voltage, min.	1500VAC	1500VAC	1500 VAC
Operating Temp. Range	$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$		
Storage Temp. Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Case Material	Phenolic	Phenolic	Phenolic
Module Size, inches	$3.5 \times 2.5 \times 1.56$	$3.5 \times 2.5 \times 1.56$	$3.5 \times 2.5 \times 1.56$
Module Size, millimeters	$88,9 \times 63,5 \times 39,6$	$88,9 \times 63,5 \times 39,6$	$88,9 \times 63,5 \times 39,6$
Module Weight	24 oz (681 g)	24 oz . (681g)	24 oz (681 g)
Case/Pin Configuration	E3	E3	E3
Other Versions	E, J	E, J	E, J
Mating Socket	MS-13	MS-13	MS-13
Price (1-9)	\$72.50	\$83.00	\$93.50

Modular Switching Supplies

GENERAL DESCRIPTION

These supplies are compact, line operated switching modules producing 5 VDC at 3 or 5 amperes with 80% efficiency. The design employs a monolithic switching regulator and Schottky rectifiers, operating at 20 KHz minimum to give silent operation. The output has an overvoltage protection circuit with SCR crowbar fixed at 6.5 V and also short circuit protection. The USM-5/3 and USM-5/5 produce no output overshoot on turn-on or turn-off.
Input voltage specification 90 to 130 VAC, 47 to 450 Hz . Mating MS-7 sockets are $\$ 3.50$ each.

INPUT VOLTAGE SPECIFICATION

90 to $130 \mathrm{VAC}, 47$ to 450 Hz
Mating MS-7 sockets are $\$ 4.00$ each.

SPECIFICATIONS $25^{\circ} \mathrm{C}$	USM-5/3	USM-5/5
Output Voltage	5VDC	5VDC
Output Voltage Accuracy	$\pm 1 \%$	$\pm 1 \%$
Rated Output Current	3 Amps	5 Amps
Efficiency, min.	80\%	80\%
Line Regulation, max.	.05\%	.05\%
Load Regulation, max.	0.1\%	0.1\%
Temp. Coefficient, max.	. $02 \% /{ }^{\circ} \mathrm{C}$. $02 \% /{ }^{\circ} \mathrm{C}$
Output Ripple, P-P, max.	50 mV	50 mV
Output Impedance, max.	. 001Ω	. 002Ω
Trans. Recovery Time, typ.	$300 \mu \mathrm{sec}$.	$300 \mu \mathrm{sec}$.
Isolation Resistance, min.	50 Meg .	50 Meg .
Isolation Capacitance, typ.	100 pF	100 pF
Breakdown Voltage, min.	1800 VAC	1800 VAC
Operating Temp. Range		
Storage Temp. Range		
Case Material	Phenolic	Phenolic
Module Size, inches	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.25$
Module Size, millimeters	88,9×63,5×31,8	$88,9 \times 63,5 \times 31,8$
Module Weight	$14 \mathrm{oz}$. (397 g)	$14 \mathrm{oz} .(397 \mathrm{~g})$
Case/Pin Configuration	C 2	C2
Mating Socket	MS-7	MS-7
Price (1-9)	\$98.50	\$114.50

NOTE: For the USM-5/5 only-derate $60 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ from $35^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$

High Voltage
 Dual Output Modules

DESCRIPTION

This series of dual high voltage supplies is specially designed for use with high voltage operational amplifiers such as Datel Systems AM-300 series. The 3 supplies in this series offer output voltages of $\pm 120, \pm 150$, and ± 180 volts with excellent regulation, stability, and low output ripple.
INPUT VOLTAGE SPECIFICATIONS
Standard input specification: 115VAC $\pm 10 \%$ @ 60-550 Hz.
E version: 220VAC $\pm 10 \%$ @ 48-440 Hz. J version: 100VAC $\pm 10 \%$ @ $48-440 \mathrm{~Hz}$.

풉클
TNIEFII
DUAL OUTPUT POWER SUPPLY
BPM-120/25

OUAL OUTPUT POWER SUPPLY BPM-150/20

Mating MS-13 sockets are $\$ 4.00$ each

SPECIFICATIONS, $\mathbf{2 5}^{\circ} \mathbf{C}$	$\mathrm{BPM}-\mathbf{1 2 0} / \mathbf{2 5}$	BPM-150/20	BPM-180/16
Output Voltage	$\pm 120 \mathrm{VDC}$	$\pm 150 \mathrm{VDC}$	$\pm 180 \mathrm{VDC}$
Output Voltage Accuracy	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$
Rated Output Current	25 mA	20 mA	16 mA
Line Regulation, max.	$.05 \%$	$.05 \%$	$.05 \%$
Load Regulation, max.	0.2%	0.2%	0.2%
Temperature Coefficient, max. $.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \% /{ }^{\circ} \mathrm{C}$	
Output Ripple, RMS max.	10 mV	10 mV	10 mV
Output Impedance, max.	5 ohms	5 ohms	5 ohms
Transient Recovery Time, max. $50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	
Isolation Resistance, min.	100 Meg.	100 Meg.	100 Meg.
Isolation Capacitance, max.	250 pF	250 pF	250 pF
Breakdown Voltage, min.	1500 VAC	1500 VAC	1500 VAC
Operating Temp. Range		$-25^{\circ} \mathrm{C} \mathrm{to}+71^{\circ} \mathrm{C} \mathrm{(No} \mathrm{Derating)}$	
Storage Temp. Range		$-25^{\circ} \mathrm{C} \mathrm{to}+85^{\circ} \mathrm{C}$	
Case Material	Phenolic	Phenolic	Phenolic
Module Size, inches	$3.5 \times 2.5 \times 1.56$	$3.5 \times 2.5 \times 1.56$	$3.5 \times 2.5 \times 1.56$
Module Size, millimeters	$88,9 \times 63,5 \times 39,6$	$88,9 \times 63,5 \times 39,6$	$88,9 \times 63,5 \times 39,6$
Module Weight	$24 \mathrm{oz} .(681 \mathrm{~g})$.	$24 \mathrm{oz} .(681 \mathrm{~g})$.	$24 \mathrm{oz} .(681 \mathrm{~g})$.
Case/Pin Configuration	C 3	C 3	C 3
Other Versions	E, J	E, J	E, J
Mating Socket	$\mathrm{MS}-7$	$\mathrm{MS}-7$	$\mathrm{MS}-7$
Price (1-9)	$\$ 86.00$	$\$ 86.00$	$\$ 86.00$

THESE POWER SUPPLIES ARE COVERED BY GSA CONTRACT

Plug-In Regulated Power Adapter AC to DC

Ouly \$15.75 The 5 Volt Source For Digital Panel Meters

FEATURES

- Low Cost
- Isolated - Low Voltage Operation of Product
- Flame Retardant Molded Case
- Designated for U.L. and C.S.A. Listing
- Portable Power Supply
- Direct Plug-in to U.S. AC Outlets

ADVANTAGES

- No Heat Dissipation
- Easier Maintenance of Power Source
- Reduction or Elimination of the Costly Need to Submit Equipment for U.L. or C.S.A. Investigation
- Ease of Replacement

DC OUTPUT
 - 5VDC @ 500mA

Power Chassis Series： Open Frame Power Supplies

MODEL	OUTPUT VOLTAGE \＆CURRENT（ 0 to $50^{\circ} \mathrm{C}$ ）	LINE REG． （MAX．）	LOAD REG． （MAX．）	TEMPCO （MAX．）	OUTPUT IMPED （MAX．）
SINGLE OUTPUT					
PCS－5／3	5V＠3．0A	．05\％	0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$1.6 \mathrm{~m} \Omega$
PCS－5／6	5V＠6．0A	．05\％	0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$0.9 \mathrm{~m} \Omega$
PC S－5／12	5V＠12．0A	．05\％	0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$0.5 \mathrm{~m} \Omega$
PCS－5／18	5V＠18．0A	．05\％	0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$0.3 \mathrm{~m} \Omega$
DUAL OUTPUT					
PCD－12／1	$\pm 12 \mathrm{~V} @ 1.0 \mathrm{~A}$	．05\％	0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$15 \mathrm{~m} \Omega$
PCD－15／1	$\pm 15 \mathrm{~V} @ 1.0 \mathrm{~A}$	．05\％	0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$15 \mathrm{~m} \Omega$
PCD－12／2	$\pm 12 \mathrm{~V} @ 2 \mathrm{~A}$	．05\％	0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$7.5 \mathrm{~m} \Omega$
PCD－15／2	$\pm 15 \mathrm{~V} @ 2 \mathrm{~A}$	．05\％	0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$7.5 \mathrm{~m} \Omega$
PCD－12／3	土12V＠3．0A	．05\％	0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$5 \mathrm{~m} \Omega$
PCD－15／3	$\pm 15 \mathrm{~V} @ 3.0 \mathrm{~A}$	．05\％	0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$5 \mathrm{~m} \Omega$
TRIPLE OUTPUT					
PCT－12／1－5／3	$\pm 12 \mathrm{~V} @ 1 \mathrm{~A} / 5 \mathrm{~V} @ 3 \mathrm{~A}$	．05／0．1\％	．05／0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$15 \mathrm{~m} \Omega$
PCT－15／1－5／3	土15V＠1A／5V＠3A	．05／0．1\％	．05／0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$15 \mathrm{~m} \Omega$
PCT－12／2－5／6	$\pm 12 \mathrm{~V} @ 2 \mathrm{~A} / 5 \mathrm{~V} @ 6 \mathrm{~A}$	．05／0．1\％	．05／0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$7.5 \mathrm{~m} \Omega$
PCT－15／2－5／6	$\pm 15 \mathrm{~V} @ 2 \mathrm{~A} / 5 \mathrm{~V} @ 6 \mathrm{~A}$	．05／0．1\％	．05／0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$7.5 \mathrm{~m} \Omega$
PCT－12／3－5／12	$\pm 12 \mathrm{~V} @ 3 \mathrm{~A} / 5 \mathrm{~V} @ 12 \mathrm{~A}$	．05／0．1\％	．05／0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$5 \mathrm{~m} \Omega$
PCT－15／3－5／12	土15V＠3A／5V＠12A	．05／0．1\％	．05／0．1\％	． $02 \% /{ }^{\circ} \mathrm{C}$	$5 \mathrm{~m} \Omega$

NOTES：1．Input voltage is selected by transformer connection．
2．Derated to 40% of output current at $71^{\circ} \mathrm{C}$ ．

GENERAL SPECIFICATIONS

COMMON TO ALL MODELS

Input Voltage ${ }^{1}$	230VAC $\pm 10 \%$
Line Frequency	$48-440 \mathrm{~Hz}$
Output Voltage Adjustment	$\pm 10 \%$
Output Ripple	2 mV RMS, max.
Transient Response	$50 \mu \mathrm{sec}$. max.
Output Protection	Current Limiting or Foldback Limiting
Isolation Resistance	100 Meg . min.
Voltage Stability, after warmup	$\pm 0.25 \%, 24$ hours
Breakdown Voltage	1500VAC min.
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
	(No Derating)
Storage Temperature Range ${ }^{2}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

CHASSIS SIZE		CHASSIS SIZE	WEIGHT	PRICES	
INCHES	$(L \times H \times W)$	(CM)	(LBS.)	(KG.)	$(1-9)$

$4.9 \times 4.0 \times 1.6$	$12 \times 10 \times 4$	2	. 91	\$ 35.00
$5.6 \times 4.9 \times 2.5$	$14 \times 12 \times 6$	3	1.4	\$ 55.00
$9.0 \times 5.1 \times 2.8$	$23 \times 13 \times 7$	7.2	3.3	\$ 85.00
$14 \times 5.1 \times 2.8$	$36 \times 13 \times 7$	9.8	4.5	\$115.00
$6.5 \times 4 \times 1.62$	$26 \times 16 \times 6.48$	1.6	3.52	\$ 59.00
$6.5 \times 4 \times 1.62$	$26 \times 16 \times 6.48$	1.6	3.52	\$ 59.00
$7 \times 4.87 \times 2.5$	$28 \times 19.48 \times 10$	3.6	7.92	\$ 75.00
$7 \times 4.87 \times 2.5$	$28 \times 19.48 \times 10$	3.6	7.92	\$ 75.00
$9.38 \times 4.87 \times 2.75$	$37.52 \times 19.48 \times 11$	55	12.1	\$89.00
$9.38 \times 4.87 \times 2.75$	$37.52 \times 19.48 \times 11$	55	12.1	\$89.00
$10.25 \times 4 \times 2.5$	$41 \times 16 \times 10$	4.2	9.24	\$89.00
$10.25 \times 4 \times 2.5$	$41 \times 16 \times 10$	4.2	9.24	\$89.00
$11.25 \times 4.87 \times 2.75$	$45 \times 19.48 \times 11$	5.8	12.76	\$105.00
$11.25 \times 4.87 \times 2.75$	$45 \times 19.48 \times 11$	5.8	12.76	\$105.00
$14.25 \times 5.1 \times 2.75$	$57 \times 20.4 \times 11$	9.8	21.56	\$159.00
$14.25 \times 5.1 \times 2.75$	$57 \times 20.4 \times 11$	9.8	21.56	\$159.00

Overvoltage Protection Modules

OV-1 AND OV-2 MODULES

OVERVOLTAGE PROTECTION

OV-1 and OV-2 are available for use with the Power Chassis (PC) series of open frame power supplies.

The OV models are only designed for use with the 5 volt outputs on the PC series. Each model has a screwdriver pot adjustment - adjustable from 6.0 V to 8.0 V .

MODELS

OV-1 - for 3 and 6 Amp PC models
Used with PCS-5/3
PCS-5/6
PCT-5/3-12/1
PCT-5/3-15/1
PCT-5/6-12/1
РСТ-5/6-15/1
OV-2 for 12 and 18 Amp PC models
Used with: PCS-5/12
PCS-5/18
PCT-5/12-12/2
PCT-5/12-15/2

CUSTOM

Overvoltage protection modules are available for other open frame power supply outputs, but on special request only. Contact the factory for voltage ranges that can be custom designed.

OV MODULES ARE USED WITH THE PC SERIES OPEN FRAME SUPPLIES

MECHANICAL DIMENSIONS

Mounting holes are provided in the PC series open

PRICE: (1-9)
$\begin{array}{ll}\text { OV-1 } & \$ 8.00 \\ \text { OV-2 } & \$ 10.00\end{array}$

frames for the OV modules

$\$ 10.00$

Monolithic Voltage Converter

FEATURES

- Simple Conversion of +5 V Logic Supply to $\pm 5 \mathrm{~V}$ Supplies
- Simple Voltage Multiplication (VOUT $\left.=(-) \mathbf{n} V_{I N}\right)$
- 99.9\% Typical Open Circuit Voltage Conversion Efficiency
- 98\% Typical Power Efficiency
- Wide Operating Voltage Range 1.5V to 10.0 V
- Easy to use - Requires only 2 External NonCritical Passive Components

APPLICATIONS

- On Board Negative Supply for up to 64 Dynamic RAMs.
- Localized μ-Processor (8080 type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems

GENERAL DESCRIPTION

The VI-7660 is a monolithic CMOS power supply circuit which offers unique performance advantages over previously available devices. The VI-7660 performs the complete supply voltage conversion from positive to negative for an input range of +1.5 V to +10.0 V , resulting in complementary output voltages of -1.5 to -10.0 V with the addition of only 2 noncritical external capacitors needed for the charge pump and charge reservoir functions. Note that an additional diode is required for $\mathrm{V}_{\text {SUPpLY }}>6.5 \mathrm{~V}$.
Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, four output power MOS switches, and a unique logic element which senses the most negative voltage in the device and ensures that the output N channel switches are not forward biased. This assures latchup free operation.

The oscillator, when unloaded, oscillates at a nominal frequency of 10 kHz for an input supply voltage of 5.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be overdriven by an external clock.
The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages (+3.5 to +10.0 volts), the LV pin is left floating to prevent device latchup.
Typical applications for the VI-7660 will be data acquisition and microprocessor based systems where there is a +5 volt supply available for the digital functions and an additional -5 volt supply is required for the analog functions. The VI-7660 is also ideally suited for providing low current, -5 V body bias supply for dynamic RAMs.

ABSOLUTE MAXIMUM RATINGS	
Supply Voltage 10.5V
Oscillator Input Voltage (Note 1)	-0.3 V to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}<5.5 \mathrm{~V}$
	$\left(\mathrm{V}^{+}-5.5 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}>5.5 \mathrm{~V}$
	-0.3 V to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}<3.5 \mathrm{~V}$
LV (Note 1)	... No connection for $\mathrm{V}^{+}>3.5 \mathrm{~V}$
Output Short Duration (VSUPPLY $\leq 5.5 \mathrm{~V}$)	... Continuous
Power Dissipation (Note 2)	
VI-7660C.	.. 500mW
VI-7660PC.	300 mW
V1-7660M.	. 500 mW

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{COSC}=0$, Test Circuit Figure 1 (unless otherwise specified)

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	Max.		
$\stackrel{1}{+}^{+}$	Supply Current		170	500	$\mu \mathrm{A}$	$\mathbf{R}_{\mathbf{L}}=\infty$
$\mathrm{V}^{+} \mathrm{H} 1$	Supply Voltage Range - Hi (Dx out of circuit)	3.0		6.5	V	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, $\mathrm{LV}=$ No Connection
		3.0		5.0	V	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LV $=$ Ground
$\mathrm{V}^{+} \mathrm{LI}^{\prime}$	Supply Voltage Range - Lo (Dx out of circuit)	1.5		3.5	V	$\mathrm{MIN} \leq \mathrm{T}_{A} \leq M A X, R_{L}=10 \mathrm{k} \Omega, \mathrm{LV}=$ Ground
$\mathrm{V}^{+} \mathrm{H}_{2}$	Supply Voltage Range - Hi (Dx_{x} in circuit)	3.0		10.0	V	$\mathrm{MIN} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{MAX}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}=$ No Connection
$\mathrm{V}^{+} \mathrm{L} 2$	Supply Voltage Range - Lo (Dx in circuit)	1.5		3.5	V	$\mathrm{MIN} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{MAX}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}=$ Ground
Rout	Output Source Resistance		55	100	Ω	IOUT $=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
				120	Ω	Iout $=20 \mathrm{~mA},-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq+70^{\circ} \mathrm{C}$
				150	Ω	IOUT $=20 \mathrm{~mA},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
				300	Ω	$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \text { Iout }=3 \mathrm{~mA}, \mathrm{LV}=\text { Ground, } \\ & -20^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \end{aligned}$
				400	Ω	$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \text { lout }=3 \mathrm{~mA}, \mathrm{LV}=\text { Ground, }-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \\ & +125^{\circ} \mathrm{C}, \mathrm{Dx} \text { in circuit } \end{aligned}$
fosc	Oscillator Frequency		10		kHz	
PEf	Power Efficiency	95	98		\%	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$
Vout Ef	Voltage Conversion Efficiency	97	99.9		\%	$\mathrm{R}_{\mathrm{L}}=\infty$
Zosc	Oscillator Impedance		1.0		$\mathrm{M} \Omega$	$\mathrm{V}^{+}=2$ Volts
			100		$\mathrm{k} \Omega$	$\mathrm{V}^{+}=5$ Volts

Notes: 1. Connecting any terminal to voltages greater than V^{+}or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of the VI-7660 2. Derate linearly above $50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

VI-7660

CONNECTION DIAGRAM

SPIN DIP

Note: 1. Pin 1 is designated by dot or notch for DIP

ORDERING INFORMATION

PART NUMBER TEMP. RANGE		PACKAGE	1-24
VI-7660C	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99	\$3.45
VI-7600PC	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 PIN MINIDIP	\$2.99
VI-7660M	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99	\$8.8

NOTES: 1. For large value of $\operatorname{CosC}(>1000 \mathrm{pF})$ the values of C_{1} and C_{2} should be increased to $100 \mu \mathrm{~F}$
2. Dx is required for supply voltages greater than 6.5 V @ $-55^{\circ} \leq T_{A} \leq+70^{\circ} \mathrm{C}$; refer to performance curves for additional information.

Figure 1: VI-7660 Test Circuit

MP Series：High Power Enclosed Modular Supplies

MODEL \quad \＆	OUTPUT VOLTAGE \＆CURRENT（ 0 to $65^{\circ} \mathrm{C}$ ）	OUTPUT 1 AT $71^{\circ} \mathbf{C} 1$	LINE REG． （MAX．）${ }^{2}$	LOAD REG． （MAX．）${ }^{3}$	TEMPCO （TYPICAL）	RIPPLE （RMS MAX．）4
SINGLE OUTPUT						
MPS－5／3	5V＠3．0A	2．5A	0．1\％	0．1\％	． $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPS－5／6	5V＠6．0A	5．0A	0．1\％	0．1\％	． $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPS－5／12	5V＠12．0A	10．0A	0．1\％	0．1\％	$.01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPS－5／18	5V＠18．0A	15．0A	0．1\％	0．1\％	． $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
DUAL OUTPUT						
MPD－12／1	$\pm 12 \mathrm{~V} @ 1.0 \mathrm{~A}$	0．85A	．05\％	．05\％	． $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPD－15／1	土15V＠1．0A	0．85A	．05\％	．05\％	$.01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPD－12／1．5	土12V＠1．5A	1．25A	．05\％	．05\％	． $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPD－15／1．5	土15V＠1．5A	1．25A	．05\％	．05\％	． $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPD－12／3	$\pm 12 \mathrm{~V} @ 3.0 \mathrm{~A}$	2．5A	．05\％	． 05%	$.01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPD－15／3	土15V＠3．0A	2.5 A	．05\％	．05\％	． $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
TRIPLE OUTPUT						
MPT－12／1－5／3	土12V＠1A／5V＠3A	0．85／2．5A	．05／0．1\％	．05／0．1\％	． $01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPT－15／1－5／3	$\pm 15 \mathrm{~V}$＠1A／5V＠3A	0．85／2．5A	．05／0．1\％	．05／0．1\％	$.01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPT－12／1．5－5／6	$\pm 12 \mathrm{~V}$＠1．5A／5V＠6A	1．25／5．0A	．05／0．1\％	．05／0．1\％	$.01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPT－15／1．5－5／6	$\pm 15 \mathrm{~V}$＠1．5A／5V＠6A	1．25／5．0A	．05／0．1\％	．05／0．1\％	$.01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPT－12／1．5－5／12	$\pm 12 \mathrm{~V}$＠1．5A／5V＠12A	1．25／10．0A	．05／0．1\％	．05／0．1\％	$.01 \% /{ }^{\circ} \mathrm{C}$	1 mV
MPT－15／1．5－5／12	$\pm 15 \mathrm{~V}$＠1．5A／5V＠12A	1．25／10．0A	．05／0．1\％	．05／0．1\％	$.01 \% /{ }^{\circ} \mathrm{C}$	1 mV

NOTES：1． 15% derating from $65^{\circ} \mathrm{C}$ output．
2．For $\pm 10 \%$ line change．
3．No load to full load．
4．Typically 3 mV peak to peak．
5． 0.1% tracking over operating temp．range．

GENERAL SPECIFICATIONS

 COMMON TO ALL MODELS| Input Voltage | $30 \mathrm{VAC} \pm 10 \%$ |
| :---: | :---: |
| Line Frequency | $48-440 \mathrm{~Hz}$ |
| Output Voltage Adjustment | $\pm 5 \%$ |
| Output Ripple | 1 mV RMS, max. 3 mV P-P typ. |
| Transient Response | $50 \mu \mathrm{sec}$. max. |
| Output Protection | Current Limiting or Foldback Limiting |
| Overvoltage Protection, 5V outputs | .6.2V $\pm 5 \%$ |
| Voltage Stability, after warmup | $\pm 0.25 \%, 24$ hours |
| Dual Output Tracking | $.05 \%, 0.1 \%$ over temp. range |
| Operating Temperature Range | $0^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |

EFFICIENCY TRACKING REMOTE OVER-VOLT. \quad CASE SIZE \quad WEIGHT \quad PRICE

40\%	-	YES	YES	$2.0 \times 4.6 \times 7.6 / 50,8 \times 116,8 \times 193,0$	3.6/1,6	\$ 62.00
40\%	-	YES	YES	$4.9 \times 5.3 \times 10.3 / 12,4 \times 13,5 \times 26,2$	6.5/2,9	\$ 93.50
40\%	-	YES	YES	$4.9 \times 5.3 \times 11.9 / 12,4 \times 13,5 \times 30,2$	10.4/4,7	\$146.00
40\%	-	YES	YES	$4.9 \times 5.3 \times 11.9 / 12,4 \times 13,5 \times 30,2$	14.0/6,3	\$167.00
50\%	. 05%	YES	NO	$2.5 \times 4.9 \times 10.0 / 6,4 \times 12,4 \times 25,4$	5.0/2,3	\$ 93.50
50\%	. 05%	YES	NO	$2.5 \times 4.9 \times 10.0 / 6,4 \times 12,4 \times 25,4$	5.0/2,3	\$ 93.50
50\%	. 05%	YES	NO	$3.7 \times 5.3 \times 10.3 / 9,4 \times 13,5 \times 26,2$	6.5/2,9	\$110.00
50\%	. 05%	YES	NO	$3.7 \times 5.3 \times 10.3 / 9,4 \times 13,5 \times 26,2$	6.5/2,9	\$110.00
50\%	. 05%	YES	NO	$4.9 \times 5.3 \times 10.3 / 12,4 \times 13,5 \times 26,2$	10.5/4,8	\$150.00
50\%	.05\%	YES	NO	$4.9 \times 5.3 \times 10.3 / 12,4 \times 13,5 \times 26,2$	10.5/4,8	\$150.00

| 45% | $.05 \%$ | 5V ONLY $5 V$ ONLY | $3.4 \times 4.9 \times 11.0 / 8,6 \times 12,4 \times 27,9$ | $11.0 / 5,0$ | $\mathbf{\$ 1 4 6 . 0 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 45% | $.05 \%$ | 5V ONLY $5 V$ ONLY | $3.4 \times 4.9 \times 11.0 / 8,6 \times 12,4 \times 27,9$ | $11.0 / 5,0$ | $\mathbf{\$ 1 4 6 . 0 0}$ |
| 45% | $.05 \%$ | 5V ONLY 5 V ONLY | $4.9 \times 5.3 \times 14.0 / 12,4 \times 13,5 \times 35,6$ | $14.0 / 6,3$ | $\mathbf{\$ 1 8 3 . 0 0}$ |
| 45% | $.05 \%$ | $5 V$ ONLY $5 V$ ONLY | $4.9 \times 5.3 \times 14.0 / 12,4 \times 13,5 \times 35,6$ | $14.0 / 6,3$ | $\mathbf{\$ 1 8 3 . 0 0}$ |
| 45% | $.05 \%$ | 5V ONLY $5 V$ ONLY | $4.9 \times 5.3 \times 15.6 / 12,4 \times 13,5 \times 39,6$ | $17.0 / 7,7$ | $\mathbf{\$ 2 3 5 . 0 0}$ |
| 45% | $.05 \%$ | 5V ONLY 5V ONLY | $4.9 \times 5.3 \times 15.6 / 12,4 \times 13,5 \times 39,6$ | $17.0 / 7,7$ | $\mathbf{\$ 2 3 5 . 0 0}$ |

THESE POWER SUPPLIES ARE COVERED BY GSA CONTRACT

I and 3 Watt DC-DC Converters

1 WATT SERIES

MODEL	OUTPUT VOLTAGE	OUTPUT CURRENT	INPUT vOLTAGE	INPUT VOLT. TOLERANCE	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICIENCY (FULL LOAD)	LINE
UPM-5/200-D12	$+5 \mathrm{~V}$	200 mA	12VDC	$\pm 10 \%$	40 mA	170 mA	50\%	.05\%
UPM-5/200-D28	$+5 \mathrm{~V}$	200 mA	28VDC	$\pm 10 \%$	20 mA	72 mA	50\%	.05\%
UPM-12/80-D5	$+12 \mathrm{~V}$	80 mA	5VDC	$\pm 10 \%$	95 mA	370 mA	50\%	.05\%
UPM-12/80-D28	+12V	80 mA	28VDC	$\pm 10 \%$	20 mA	65 mA	55\%	.05\%
UPM-24/40-D5	$+24 \mathrm{~V}$	40 mA	5VDC	$\pm 10 \%$	95 mA	370 mA	50\%	.05\%
UPM-24/40-D12	+24V	40 mA	12VDC	$\pm 10 \%$	40 mA	150 mA	55\%	.05\%
UPM-28/25-D5	$+28 \mathrm{~V}$	25 mA	5VDC	$\pm 10 \%$	70 mA	280 mA	50\%	.05\%
UPM-28/25-D12	+28V	25 mA	12VDC	$\pm 10 \%$	40 mA	105 mA	55\%	.05\%
BPM-12/25-D5	$\pm 12 \mathrm{~V}$	25 mA	5VDC	$\pm 10 \%$	90 mA	220 mA	55\%	.05\%
BPM-12/25-D12	$\pm 12 \mathrm{~V}$	25 mA	12VDC	$\pm 10 \%$	25 mA	90 mA	55\%	.05\%
BPM-12/25-D28	$\pm 12 \mathrm{~V}$	25 mA	28VDC	$\pm 10 \%$	15 mA	38 mA	55\%	.05\%
BPM-15/25-D5	$\pm 15 \mathrm{~V}$	25 mA	5VDC	$\pm 10 \%$	80 mA	300 mA	50\%	.05\%
BPM-15/25-D12	$\pm 15 \mathrm{~V}$	25 mA	12VDC	$\pm 10 \%$	40 mA	115 mA	55\%	.05\%
BPM-15/25-D28	$\pm 15 \mathrm{~V}$	25 mA	28VDC	$\pm 10 \%$	15 mA	48 mA	55\%	.05\%
BPM-18/25-D5	$\pm 18 \mathrm{~V}$	25 mA	5VDC	$\pm 10 \%$	95 mA	370 mA	50\%	.05\%
BPM-18/25-D12	$\pm 18 \mathrm{~V}$	25 mA	12VDC	$\pm 10 \%$	40 mA	136 mA	55\%	.05\%
BPM-18/25-D28	$\pm 18 \mathrm{~V}$	25 mA	28VDC	$\pm 10 \%$	15 mA	58 mA	55\%	.05\%

3 WATT SERIES

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT IMPEDANCE	CASE CONFIG.	PRICE $(1-9)$
0.1%	$.02 \% /{ }^{\circ} \mathrm{C}$	$.07 \Omega$	F	$\mathbf{\$ 4 4 . 0 0}$
0.1%	$.02 \% /{ }^{\circ} \mathrm{C}$	$.07 \Omega$	F	$\mathbf{\$ 4 4 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\mathbf{\$ 4 4 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\mathbf{\$ 4 4 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\$ 44.00$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\mathbf{\$ 4 4 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\mathbf{\$ 4 4 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\mathbf{\$ 4 4 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\mathbf{\$ 5 1 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\mathbf{\$ 5 1 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\mathbf{\$ 5 1 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\mathbf{\$ 5 1 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\mathbf{\$ 5 1 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\$ 51.50$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\$ 51.50$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\$ 51.50$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.02 \Omega$	F	$\mathbf{\$ 5 1 . 5 0}$

LOAD REGULATION COEFFICIENT	OUTPUT IMPEDANCE	CASE CONFIG.	PRICE $(1-9)$	
0.1%	$.02 \% /{ }^{\circ} \mathrm{C}$	$.07 \Omega$	G 1	$\mathbf{\$ 6 7 . 0 0}$
0.1%	$.02 \% /{ }^{\circ} \mathrm{C}$	$.07 \Omega$	G 1	$\mathbf{\$ 6 7 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 6 7 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 6 7 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 6 7 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 6 7 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 6 7 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 6 7 . 0 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 7 2 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 7 2 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 7 2 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 7 2 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 7 2 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 7 2 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 7 2 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 7 2 . 5 0}$
$.05 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	0.2Ω	G 1	$\mathbf{\$ 7 2 . 5 0}$

DESCRIPTION

This broad line of DC-DC converters features 17 one watt models and 18 three watt models with single and dual output voltages. Input voltages are 5,12 , and 28 V with single outputs of $5,12,24$, and 28 V , and dual outputs of $\pm 12, \pm 15$, and $\pm 18 \mathrm{~V}$. Output voltage accuracies are $\pm 1 \%$ with $.02 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient. Other features include low output ripple, 100 megohm isolation, and output current limiting.

GENERAL SPECIFICATIONS-ALL MODELS

Output Voltage Accuracy
Output Noise and Ripple, max. Back Ripple Current, max. Capacitive Coupling, max. Breakdown Voltage, min.
Transient Recovery Time, max. Operating Temp. Range Storage Temp. Range Case Material

MODULE SIZES
F Case:
Weight:
G1 Case:
Weight:
$\pm 1 \%$
20 mV P-P (2mV RMS)
1% of lin
250 pF
300 VDC
$50 \mu \mathrm{sec}$.
$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Diallyl Phthalate (G2)
$1.5 \times 2.0 \times 0.375$ inches $38,1 \times 50,8 \times 9,5 \mathrm{~mm}$
$1.5 \mathrm{oz} .(43 \mathrm{~g}$.
$20 \times 2.0 \times 0.432$ inches $50,8 \times 50,8 \times 11,0 \mathrm{~mm}$ 2.5 oz. (71g.)

Both 1 and 3 watt series use 2 DILS-1 or DILS2 terminal strips (at $\$ 6.00 /$ pair) for sockets.

THESE DC-DC CONVERTERS ARE COVERED BY GSA CONTRACT

5 and 10 Watt DC-DC Converters

5 WATT SERIES

MODEL	OUTPUT VOLTAGE	OUTPUT CURRENT	INPUT Voltage	INPUT VOLT. TOLERANCE	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	Efficiency (FULL LOAD)	LINE EGULATION
UPM-5/1000-D12	$+5 \mathrm{~V}$	1000 mA	12VDC	$\pm 10 \%$	200 mA	830 mA	50\%	.05\%
UPM-5/1000-D28	$+5 \mathrm{~V}$	1000 mA	28VDC	$\pm 10 \%$	100 mA	360 mA	50\%	.05\%
UPM-12/420-D5	+12V	420 mA	5VDC	$\pm 10 \%$	500 mA	2000 mA	50\%	.05\%
UPM-12/420-D28	$+12 \mathrm{~V}$	420 mA	28VDC	$\pm 10 \%$	75 mA	325 mA	55\%	.05\%
UPM-24/210-D5	+24V	210 mA	5VDC	$\pm 10 \%$	400 mA	1830 mA	55\%	.05\%
UPM-24/210-D12	$+24 \mathrm{~V}$	210 mA	12VDC	$\pm 10 \%$	170 mA	760 mA	55\%	.05\%
UPM-28/180-D5	$+28 \mathrm{~V}$	180 mA	5VDC	$\pm 10 \%$	400 mA	1830 mA	55\%	.05\%
UPM-28/180-D12	+28V	180 mA	12VDC	$\pm 10 \%$	170 mA	760 mA	55\%	.05\%
BPM-12/210-D5	$\pm 12 \mathrm{~V}$	210 mA	5VDC	$\pm 10 \%$	500 mA	2000 mA	50\%	.05\%
BPM-12/210-D12	$\pm 12 \mathrm{~V}$	210 mA	12VDC	$\pm 10 \%$	170 mA	760 mA	55\%	.05\%
BPM-12/210-D28	$\pm 12 \mathrm{~V}$	210 mA	28VDC	$\pm 10 \%$	75 mA	325 mA	55\%	.05\%
BPM-15/165-D5	$\pm 15 \mathrm{~V}$	165 mA	5VDC	$\pm 10 \%$	500 mA	2000 mA	50\%	.05\%
BPM-15/165-D12	$\pm 15 \mathrm{~V}$	165 mA	12VDC	$\pm 10 \%$	170 mA	760 mA	55\%	.05\%
BPM-15/165-D28	$\pm 15 \mathrm{~V}$	165 mA	28VDC	$\pm 10 \%$	75 mA	325 mA	55\%	.05\%
BPM-18/140-D5	$\pm 18 \mathrm{~V}$	140 mA	5VDC	$\pm 10 \%$	500 mA	2000 mA	55\%	.05\%
BPM-18/140-D12	$\pm 18 \mathrm{~V}$	140 mA	12VDC	$\pm 10 \%$	170 mA	760 mA	55\%	.05\%
BPM-18/140-D28	$\pm 18 \mathrm{~V}$	140 mA	28VDC	$\pm 10 \%$	75 mA	325 mA	55\%	.05\%

10 WATT SERIES

MODEL	OUTPUT VOLTAGE	OUTPUT CURRENT	INPUT VOLTAGE	INPUT VOLT. TOLERANCE	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICI (FULL	LINE EGULATION
UPM-5/2000-D12	$+5 \mathrm{~V}$	2000 mA	12VDC	$\pm 10 \%$	300 mA	1660 mA	50\%	.05\%
UPM-5/2000-D28	$+5 \mathrm{~V}$	2000 mA	28VDC	$\pm 10 \%$	150 mA	720 mA	50\%	.05\%
UPM-12/840-D5	+12V	840 mA	5VDC	$\pm 10 \%$	1000 mA	4000 mA	50\%	.05\%
UPM-12/840-D28	+12V	840 mA	28VDC	$\pm 10 \%$	150 mA	650 mA	55\%	.05\%
UPM-24/420-D5	+24V	420 mA	5VDC	$\pm 10 \%$	900 mA	3600 mA	55\%	.05\%
UPM-24/420-D12	$+24 \mathrm{~V}$	420 mA	12VDC	$\pm 10 \%$	360 mA	1530 mA	55\%	.05\%
UPM-28/360-D5	$+28 \mathrm{~V}$	360 mA	5VDC	$\pm 10 \%$	900 mA	3600 mA	55\%	.05\%
UPM-28/360-D12	$+28 \mathrm{~V}$	360 mA	12VDC	$\pm 10 \%$	360 mA	1530 mA	55\%	.05\%
BPM-12/420-D5	$\pm 12 \mathrm{~V}$	420 mA	5VDC	$\pm 10 \%$	1000 mA	4000 mA	50\%	.05\%
BPM-12/420-D12	$\pm 12 \mathrm{~V}$	420 mA	12VDC	$\pm 10 \%$	360 mA	1530 mA	55\%	.05\%
BPM-12/420-D28	$\pm 12 \mathrm{~V}$	420 mA	28VDC	$\pm 10 \%$	150 mA	650 mA	55\%	.05\%
BPM-15/330-D5	$\pm 15 \mathrm{~V}$	330 mA	5VDC	$\pm 10 \%$	1000 mA	4000 mA	50\%	.05\%
BPM-15/330-D12	$\pm 15 \mathrm{~V}$	330 mA	12VDC	$\pm 10 \%$	360 mA	1530 mA	55\%	.05\%
BPM-15/330-D28	$\pm 15 \mathrm{~V}$	330 mA	28VDC	$\pm 10 \%$	150 mA	650 mA	55\%	.05\%
BPM-18/280-D5	$\pm 18 \mathrm{~V}$	280 mA	5VDC	$\pm 10 \%$	900 mA	3600 mA	55\%	.05\%
BPM-18/280-D12	$\pm 18 \mathrm{~V}$	280 mA	12VDC	$\pm 10 \%$	360 mA	1530 mA	55\%	.05\%
BPM-18/280-D28	$\pm 18 \mathrm{~V}$	280 mA	28VDC	$\pm 10 \%$	150 mA	650 mA	55\%	.05\%

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT IMPEDANCE	CASE CONFIG.	$\begin{gathered} \text { PRICE } \\ (1-9) \end{gathered}$
0.1\%	.02\%/ ${ }^{\circ} \mathrm{C}$. 005Ω	G2	\$72.50
0.1\%	.02\%/ ${ }^{\circ} \mathrm{C}$. 005Ω	G2	\$72.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 015Ω	G2	\$72.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 15Ω	G2	\$72.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$72.50
.05\%	. $03 \% /{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$72.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 035Ω	G2	\$72.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 035Ω	G2	\$72.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$78.00
.05\%	.02\%/ ${ }^{\circ} \mathrm{C}$. 03Ω	G2	\$78.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$78.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$78.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$78.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$78.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$78.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$78.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$78.00

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT IMPEDANCE	CASE CONFIG.	$\begin{aligned} & \text { PRICE } \\ & (1-9) \end{aligned}$
0.1\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 005Ω	CB	\$93.50
0.1\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 005Ω	CB	\$93.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 02Ω	CB	\$93.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 02Ω	CB	\$93.50
.05\%	.02\%/ ${ }^{\circ} \mathrm{C}$. 02Ω	CB	\$93.50
.05\%	.02\%/ ${ }^{\circ} \mathrm{C}$. 02Ω	CB	\$93.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 02Ω	CB	\$93.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 02Ω	CB	\$93.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 02Ω	CB	\$98.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 02Ω	CB	\$98.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 02Ω	CB	\$98.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 02Ω	CB	\$98.50
.05\%	.02\%/ ${ }^{\circ} \mathrm{C}$. 02Ω	CB	\$98.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 02Ω	CB	\$98.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 02Ω	CB	\$98.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 02Ω	CB	\$98.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 02Ω	CB	\$98.50

DESCRIPTION

This comprehensive line of higher power DC-DC converters features 34 different models with both single and dual outputs. Input voltages are 5,12 , and 28 V with single output voltages of $5,12,24$, and 28 volts, and dual outputs of $\pm 12, \pm 15$, and ± 18 volts. Output voltage accuracies are $\pm 1 \%$ with $.02 \% /{ }^{\circ} \mathrm{C}$ temperature coefficients. Other features include low output ripple, 100 megohm isolation, and output current limiting protection.

GENERAL SPECIFICATIONS-

ALL MODELS

Output Voltage Accuracy $\pm 1 \%$
Output Noise and Ripple, max. 20 mV P-P (2mV RMS)
Back Ripple Current, max. 1% of lin
Capacitive Coupling, max. 250 pF
Breakdown Voltage, min. 300 VDC
Transient Recovery Time, max. $50 \mu \mathrm{sec}$.
Operating Temp. Range
Storage Temp. Range
Case Material

MODULE SIZES
G2 Size:
Weight
CB Size:
Weight
$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Diallyl Phthalate (G2)
Phenolic (CB)
$2.0 \times 2.0 \times .750$ inches $50,8 \times 50,8 \times 19,1 \mathrm{~mm}$ 4.5 oz . (128g.)
$3.5 \times 2.5 \times .875$ inches $88,9 \times 63,5 \times 22,2 \mathrm{~mm}$ 14 oz. (397g.)

The 5 watt series use 2 DILS-1 or DILS-2
terminal strips
The 10 watt series use the MS-7 socket

THESE DC-DC CONVERTERS ARE COVERED BY GSA CONTRACT

48 Volt Input DC-DC Converters

1 WATT SERIES

UPM-5/200-D48	+5 V	200 mA	48 VDC	$\pm 12.5 \%$	10 mA	42 mA	50%	$.05 \%$
UPM-12/80-D48	+12 V	80 mA	48 VDC	$\pm 12.5 \%$	10 mA	42 mA	50%	$.05 \%$
UPM-15/60-D48	+15 V	60 mA	48 VDC	$\pm 12.5 \%$	10 mA	42 mA	50%	$.05 \%$
BPM-12/40-D48	$\pm 12 \mathrm{~V}$	40 mA	48 VDC	$\pm 12.5 \%$	10 mA	42 mA	50%	$.05 \%$
BPM-15/30-D48	$\pm 15 \mathrm{~V}$	30 mA	48 VDC	$\pm 12.5 \%$	10 mA	42 mA	50%	$.05 \%$

3 WATT SERIES

MODEL	OUTPUT VOLTAGE	OUTPUT CURRENT	INPUT voltage	INPUT VOLT. tolerance	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICIENCY (FULL LOAD)	LINE REGULATION
UPM-5/600-D48	+ 5V	600 mA	48VDC	$\pm 12.5 \%$	45 mA	125 mA	50\%	.05\%
UPM-12/250-D48	+12V	250 mA	48VDC	$\pm 12.5 \%$	45 mA	125 mA	50\%	.05\%
UPM-15/200-D48	+15V	200 mA	48VDC	$\pm 12.5 \%$	45 mA	125 mA	50\%	.05\%
BPM-12/125-D48	$\pm 12 \mathrm{~V}$	125 mA	48 VDC	$\pm 12.5 \%$	45 mA	125 mA	50\%	.05\%
BPM-15/100-D48	$\pm 15 \mathrm{~V}$	100 mA	48VDC	$\pm 12.5 \%$	45 mA	125 mA	50\%	.05\%

5 WATT SERIES

		NO LOAD FULL LOAD
MODEL	OUTPUT OUTPUT input input Volt. INPUT INPUT EFFICIENCY LINE	
VOLTAGE CURRENT VOLTAGE TOLERANCE CURRENT CURRENT (FULL LOAD) REGULATION		

UPM-5/1000-D48 +5 V	1000 mA	48 VDC	$\pm 12.5 \%$	60 mA	208 mA	50%	$.05 \%$
UPM-12/420-D48 +12 V	420 mA	48 VDC	$\pm 12.5 \%$	60 mA	208 mA	50%	$.05 \%$
UPM-15/330-D48 +15 V	330 mA	48 VDC	$\pm 12.5 \%$	60 mA	208 mA	50%	$.05 \%$
BPM-12/210-D48	$\pm 12 \mathrm{~V}$	210 mA	48 VDC	$\pm 12.5 \%$	60 mA	208 mA	50%
BPM-15/165-D48	$\pm 15 \mathrm{~V}$	165 mA	48 VDC	$\pm 12.5 \%$	60 mA	208 mA	50%

10 WATT SERIES

MODEL	OUTPUT VOLTAGE	OUTPUT CURRENT	INPUT VOLTAGE	INPUT VOLT. TOLERANCE	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICIENCY (FULL LOAD)	LINE REGULATION
UPM-5/2000-D48	$+5 \mathrm{~V}$	2000mA	48VDC	$\pm 12.5 \%$	120 mA	415 mA	50\%	.05\%
UPM-12/840-D48	+12V	840mA	48VDC	$\pm 12.5 \%$	120 mA	415 mA	50\%	.05\%
UPM-15/660-D48	+15V	660 mA	48VDC	$\pm 12.5 \%$	120 mA	415 mA	50\%	.05\%
BPM-12/420-D48	$\pm 12 \mathrm{~V}$	420 mA	48VDC	$\pm 12.5 \%$	120 mA	415 mA	50\%	.05\%
BPM-15/330-D48	$\pm 15 \mathrm{~V}$	330 mA	48VDC	$\pm 12.5 \%$	120 mA	415 mA	50\%	.05\%

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT IMPEDANCE CONFIG.	CASE (1-9)	
0.1%	$.02 \% / \mathrm{C}$	$.07 \Omega$	F	$\$ 44.00$
0.1%	$.02 \% / \mathrm{C}$	$.2 \Omega$	F	$\$ 44.00$
0.1%	$.02 \% / \mathrm{C}$	$.2 \Omega$	F	$\$ 44.00$
0.1%	$.02 \% / \mathrm{C}$	$.2 \Omega$	F	$\$ 51.50$
0.1%	$.02 \% / \mathrm{C}$	$.2 \Omega$	F	$\$ 51.50$

| LOAD | TEMP. | OUTPUT CASE | PRICE |
| :---: | :---: | :---: | :---: | :---: |
| REGULATION | COEFFICIENT | ImPEDANCE CONFIG. | (1-9) |

$.01 \%$	$.02 \%{ }^{\circ} \mathrm{C}$	$.07 \Omega$	G1	$\$ 67.00$
$.05 \%$	$.02 \%{ }^{\circ} \mathrm{C}$	0.2Ω	G1	$\$ 67.00$
$.05 \%$	$.02 \% \%^{\circ} \mathrm{C}$	0.2Ω	G1	$\mathbf{\$ 6 7 . 0 0}$
$.05 \%$	$.02 \%^{\circ} \mathrm{C}$	0.2Ω	G1	$\mathbf{\$ 7 2 . 5 0}$
$.05 \%$	$.02 \%{ }^{\circ} \mathrm{C}$	0.2Ω	G1	$\mathbf{\$ 7 2 . 5 0}$

0.1\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 005Ω	G2	\$72.50
.05\%	. $02 \%{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$72.50
.05\%	. $02 \%{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$72.50
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$78.00
.05\%	. $02 \% /{ }^{\circ} \mathrm{C}$. 03Ω	G2	\$78.00

$.1 \%$	$.02 \% /{ }^{\circ} \mathrm{C}$	$.005 \Omega$	CB	$\mathbf{\$ 9 3 . 5 0}$
$.05 \%$	$.02 \%{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\mathbf{\$ 9 3 . 5 0}$
$.05 \%$	$.02 \%{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\mathbf{\$ 9 3 . 5 0}$
$.05 \%$	$.02 \%{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\mathbf{\$ 9 8 . 5 0}$
$.05 \%$	$.02 \%{ }^{\circ} \mathrm{C}$	$.02 \Omega$	CB	$\mathbf{\$ 9 8 . 5 0}$

DESCRIPTION

This new series of 48 volt input DC-DC converters features 20 different models with both single and dual outputs. There are 12 single output models offering 5, 12 and 15 volts. There are 8 dual output models offering ± 12 or ± 15 volts. Output voltage accuracies are $\pm 1 \%$ with $.02 \%{ }^{\circ} \mathrm{C}$ temperature coefficients. Other features include low output ripple, 100 megohm isolation and output current limiting protection.

GENERAL SPECIFICATIONS

ALL MODELS

Output Voltage Accuracy $\pm 1 \%$
Output Noise and Ripple, max. 20 mV P-P (2 mV RMS)
Back Ripple Current, max. 1% of lin
Capacitive Coupling, max. $\quad 250 \mathrm{pF}$
Breakdown Voltage, min. 300VDC
Transient Recovery Time, max. $50 \mu \mathrm{sec}$.
Operating Temp. Range $\quad-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
Storage Temp. Range $\quad-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

MODULE SIZES

F Case:
Weight:
G1 Case:
Weight:
G2 Size:
Weight:
CB Size:
Weight:
Case Material
$1.5 \times 2.0 \times 0.375$ inches $38,1 \times 50,8 \times 9,5 \mathrm{~mm}$ 1.5 oz . (43g.) $2.0 \times 2.0 \times 0.432$ inches $50,8 \times 50,8 \times 11,0 \mathrm{~mm}$ 2.5 oz. (71g.) $2.0 \times 2.0 \times .750$ inches $50,8 \times 50,8 \times 19,1 \mathrm{~mm}$ 4.5 oz . (128g.) $3.5 \times 2.5 \times .875$ inches $88,9 \times 63,5 \times 22,2 \mathrm{~mm}$ 14 oz. (397 g.) Diallyl Phthalate (F), (G1), (G2) Phenolic (CB)

Both 1 and 3 watt series use 2 DILS- 1 or DILS-2 terminal strips (at \$6.00/pair) for sockets. The 5 watt series use 2 DILS-1 or DILS-2 terminal strips at $\$ 6.00$ /pair for sockets. The 10 watt series use the MS-7 socket at $\$ 4.00$ each.

THESE DC-DC CONVERTERS ARE COVERED BY GSA CONTRACT

4.5 Watt DC-DC Converters

These miniature, aluminum cased DC-DC converters are ideal for applications where mounting space is tight, yet highly regulated $\pm 15 \mathrm{VDC}$ is required at up to 150 mA output current. Specifications include voltage accuracy of $\pm 1 \%$, line regulation of $.05 \%$ max., load regulation of $.05 \%$ max., and tempco of $.005 \% /{ }^{\circ} \mathrm{C}$. For convenient heat sinking, two 2-56 studs are provided on the bottom of the case. All models have output current limiting protection.

SPECIFICATIONS, $25{ }^{\circ} \mathrm{C}$	$\mathrm{BPM}-15 / 150-\mathrm{D} 5$	BPM-15/150-D24	BPM-15/150-D28
Output Voltage	$\pm 15 \mathrm{VDC}$	$\pm 15 \mathrm{VDC}$	$\pm 15 \mathrm{VDC}$
Output Voltage Accuracy	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$
Rated Output Current ${ }^{1}$	$\pm 150 \mathrm{~mA}$	$\pm 150 \mathrm{~mA}$	$\pm 150 \mathrm{~mA}$
Input Voltage	5 VDC	24 VDC	28 VDC
Input Voltage Tolerance	$\pm .25 \mathrm{~V}$	$\pm 3.5 \mathrm{~V}$	$\pm 4 \mathrm{~V}$
Maximum Input Current	1.75 A	0.35 A	0.3 A
Efficiency, full load	51%	54%	54%
Line Regulation, max.	$.05 \%$	$.05 \%$	$.05 \%$
Load Regulation, max.	$.05 \%$	$.05 \%$	$.05 \%$
Temperature Coefficient, max.	$.005 \% /{ }^{\circ} \mathrm{C}$	$.005 \% /{ }^{\circ} \mathrm{C}$	$.005 \% /{ }^{\circ} \mathrm{C}$
Output Ripple RMS max.	1 mV	1 mV	1 mV
Output Impedance, max.	$.05 \Omega$	$.05 \Omega$	$.05 \Omega$
Transient Recovery Time, max.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.	$50 \mu \mathrm{sec}$.
Case Material	Aluminum	Aluminum	Aluminum
Module Size, inches	$2.0 \times 2.0 \times 0.4$	$2.0 \times 2.0 \times 0.4$	$2.0 \times 2.0 \times 0.4$
Module Size, millimeters	$50,8 \times 50,8 \times 10,2$	$50,8 \times 50,8 \times 10,2$	$50,8 \times 50,8 \times 10,2$
Module Weight	$3.0 \mathrm{oz} .(85 \mathrm{~g})$.	$3.0 \mathrm{oz} .(85 \mathrm{~g})$.	$3.0 \mathrm{oz} .(85 \mathrm{~g})$.
Case/Pin Configuration	B	B	B
Mating Socket	$\mathrm{MS}-6$	$\mathrm{MS}-6$	$\mathrm{MS}-6$
Price (1-9)	$\$ 83.00$	$\$ 83.00$	$\$ 83.00$

NOTE: 1. Above $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$ mounting surface temperature, derate $1.3 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

5 Volt Input DC-DC Isolator Regulators

DESCRIPTION

Datel-Intersil offers a line of 5 Volt DC isolator regulators in $1,3,5$, and 10 Watt capacities. These isolator-regulators provide a stable, accurate, low-ripple +5 Vdc source from supplies of +4.5 to +5.5 VDC , including 5 V sources with poor regulation, ripple or noise characteristics.

Output voltage accuracy is $\pm 1 \%$ with $0.02 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient. Other features include low output ripple, 100 megohm isolation, and output current limiting.

All models in this series are compact encapsulated modules designed to occupy a minimum of space on a printed circuit board.

GENERAL SPECIFICATIONS ALL MODELS

Input Voltage Tolerance	$\pm 10 \%$
Output Voltage Accuracy	$\pm 1 \%$
Regulation	
\quad Line	$.05 \%$
Load	0.1%
Temperature Coefficient, max.	$.02 \% /^{\circ} \mathrm{C}$
Output Noise and Ripple, max.	20 mV P-P (2mV
	$\mathrm{RMS})$
Back Ripple Current, max.	$1 \% \mathrm{of} 1 \mathrm{IN}$
Capacitive Coupling, max.	250 pF
Breakdown Voltage, min.	300 VDC
Transient Recovery Time, max.	$50 \mu \mathrm{sec}$.
Operating Temp. Range	$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
Storage Temp. Range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

MODULE SIZES
F Case: $\quad 1.5 \times 2.0 \times 0.375$ inches $38,1 \times 50,8 \times 9,5 \mathrm{~mm}$
Weight:
G1 Case:
Weight:
G2 Size:
Weight:
CB Size:
Weight:
Case Material:
1.5 oz . (43g.)
$2.0 \times 2.0 \times 0.432$ inches $50,8 \times 50,8 \times 11,0 \mathrm{~mm}$ 2.5 oz . (719.)
$2.0 \times 2.0 \times .750$ inches $50,8 \times 50,8 \times 19,1 \mathrm{~mm}$ 4.5 oz (128 g .)
$3.5 \times 2.5 \times .875$ inches
$88,9 \times 63,5 \times 22,2 \mathrm{~mm}$
14 oz. (397 g .)
Diallyl Phthalate (F) (G1), (G2)
Phenolic (CB)

Both 1 and 3 watt series uses 2 DILS-1 or DILS-2 terminal strips (at $\$ 6.00 /$ pair) for sockets. The 5 watt series uses 2 DILS-1 or DILS-2 terminal strips at $\$ 6.00 /$ pair for sockets. The 10 watt series uses the MS-7 socket at $\$ 4.00$ each.

			NO LOAD	FULL LOAD				
MODEL	OUTPUT	OUTPUT	INPUT	INPUT	EFFICIENCY	OUTPUT	CASE	PRICE
	VOLTAGE	CURRENT	CURRENT	CURRENT	(FULL LOAD)	IMPEDANCE	CONFIG.	(1-9)

1 WATT SERIES

UPM-5-200-D 5	+5 V	200 mA	95 mA	370 mA	50%	$.07 \Omega$	F	$\mathbf{\$ 4 4 . 0 0}$

3 WATT SERIES

UPM-5/500-D 5	+5 V	500 mA	300 mA	125 mA	40%	$.07 \Omega$	G1	$\$ 67.00$

5 WATT SERIES

UPM-5/1000-D 5	+5 V	1000 mA	500 mA	2000 mA	50%	$.015 \Omega$	G2	$\mathbf{\$ 7 2 . 5 0}$

10 WATT SERIES

UPM-5/2000-D5	+5 V	2000 mA	1000 mA	4000 mA	50%	$.005 \Omega$	CB
	THESE DC-DC CONVERTERS ARE COVERED BY	$\$ 93.50$					

Case/Pin Configurations and Sockets

CASE G

NOTE: PARENTHESES INDICATE CONNECTIONS

SOCKET MS-6

140 DIA.THRU CSK 82° TO 235 DIA. FARSIDE

SOCKET MS-7

SOCKET MS-13
SOCKETS DILS - 1, DILS - 2

Model	No. of Contacts	A	B	C
DILS.1	20	2.090	1.900	.645
DILS-2	20	2.090	1.900	.145

MP Series Supplies

MODEL	MECHANICAL DIMENSIONS													
	A	B	C	D	E	F	6	H	J	K	L	M	N	P
MPS-5/3	1.72			. 57	-	-	4.60	. 80	. 55	5.80	7.62	. 59	3.40	2.20
MPD-12/1	2.03	2.68	-	2.16	2.16	-	4.84	1.34	. 80	7.00	10.00	. 66	3.50	2.57
MPD-15/1	2.03	2.68	-	2.16	2.16	-	4.84	4	4	7.00	10.00	. 66	3.50	2.67
MPD-12/1.5	2.00	2.50	-	2.60	2.60	-	5.29			7.30	10.28	. 63	4.00	3.84
MPD-15/1.5	2.00	2.50		2.60	2.60		5.29			7.30	10.28	. 63	4.00	3.84
MPT-12/1-5/3	2.36	3.18	2.53	. 66	2.50	2.50	4.84	'	'	7.95	10.97	. 78	3.25	3.56
MPT-15/1-5/3	2.36	3.18	2.53	. 66	2.50	2.50	4.84	1.34	. 80	7.95	10.97	. 78	3.25	3.56

FOR 115 VAC INPUT, JUMPER PINS 1 \& 2 AND $3 \& 4$. INPUT IS TO PINS 1 AND 4
FOR 230 VAC INPUT, JUMPER PINS 2 \& 3. INPUT IS TO PINS 1 AND 4.

MODEL	$\begin{aligned} & \text { NO. OF } \\ & \text { TERM. } \end{aligned}$	TERMINAL DESIGNATIONS						
		6	7	8	9	10	11	12
MPS-5/6	9	+OUT	+SENS	-SENS	-OUT	-	-	-
MPS-5/12	11	+OUT	+OUT	+SENS	-SENS	-0UT	-OUT	-
MPS-5/18	11	+OUT	+OUT	+SENS	-SENS	-OUT	-OUT	-
MPD-12/3	12	+12V	SENS HI	SENS LO	COM	SENS LO	SENS HI	$-12 \mathrm{~V}$
MPD-15/3	12	+15V	SENS HI	SENS L0	COM	SENS LO	SENS HI	-15V
MPT-12/1,5-5/6	12	+5V OUT	+SENS	-SENS	+5V RET	+12V	COM	-12V
MPT-15/1.5-5/6	12	4	T	4	1	+15V	4	-15
MPT-12/1.5-5/12	12	-	.	-	-	+12V	\downarrow	-12
MPT-15/1.5-5/12	12	+5V OUT	+SENS	-SENS	+5V RET	+15V	COM	-15

MODEL	MECHANICAL DIMENSIONS										
	A	B	C	D	E	F	G	H	J	K	L
MPS-5/6	3.10	-	-	1.08	-	-	1.59	6.00	10.28	. 63	4.00
MPS-5/12	2.70	-	-	1.33	-	-	4	7.50	11.91	1	4
MPS-5/18	2.70	-	\square	1.33	-	-		7.50	11.91		
MPD-12/3	2.00	2.50	-	2.60	2.60	-	'	6.00	10.28	\checkmark	-
MPD-15/3	2.00	2.50	-	2.60	2.60	-	1.59	6.00	10.28	. 63	4.00
MPT-12/1.5-5/6	3.17	3.21	11.73	1.10	1.13	4.50	1.85	10.92	13.98	. 29	4.50
MPT-15/1.5-5/6	3.17	3.21	11.73	1.10	4	4	1	10.92	13.98	1	4
MPT-12/1.5-5/12	2.70	3.06	13.36	1.33	\dagger	1	1	12.59	15.55	\dagger	-
MPT-15/1.5-5/12	2.70	3.06	13.36	1.33	1.13	4.50	1.85	12.59	15.55	. 29	4.50

MODEL	$\begin{gathered} \text { NO. OF } \\ \text { TERM. } \end{gathered}$	TERMINAL DESIGNATIONS						
		6	7	8	9	10	11	12
MPS-5/3	9	+0UT	+SENS	-SENS	-OUT	-	-	-
MPD-12/1	12	+12V	SENS HI	SENS LO	COM	SENS 10	SENS HI	-12V
MPD-15/1	12	+15V					I	-15V
MPD-12/1.5	12	+12V	\downarrow	1	1	1	1	-12V
MPD-15/1.5	12	+15V	SENS HI	SENS LO	COM	SENS LO	SENS HI	-15V
MPT-12/1-5/3	12	+5V OUT	+SENS	-SENS	+5V RET	+12V	COM	-12V
MPT-15/1-5/3	12	+5V OUT	+SENS	-SENS	+5V RET	+15V	COM	-15V

FOR 115 VAC INPUT, JUMPER
PINS 1 \& 2 AND $3 \& 4$. INPUT IS TO PINS 1 AND 4.
FOR 230 VAC INPUT, JUMPER PINS 2 \& 3. INPUT IS TO PINS 1 AND 4.

Power Chassis Series:

BOTH ENDS

$M O D E L$	A	B	C	D	E	F
$P C S-5 / 12$	9.00	.50	8.00	5.10	4.125	.50
$P C S-5 / 18$	14.00	.50	13.00	5.10	4.125	.50
PCD-12/3 $P C D-15 / 3$	9.38	.50	8.375	4.87	4.125	.50
PCT-5/3-12/1 PCT-5/3-15/1	10.25	.50	9.250	4.00	3.375	.37
PCT-5/6-12/2 PCT-5/6-15/2	11.25	3.25	7.500	4.87	4.125	.50
PCT-5/12-12/2 PCT-5/12-15/2	14.25	5.00	8.750	5.10	4.125	.50

MODEL	G	H	J	K	L	M
PCS-5/12	2.75	1.250	.75	.60	1.250	.75
$P C S-5 / 18$	2.75	1.250	.75	.67	1.250	.75
PCD-12/3 PCD-15/3	2.75	1.250	.75	.67	1.250	.75
PCT-5/3-12/1 PCT-5/3-15/1	2.50	1.250	.75	.42	1.250	.75
PCT-5/6-12/2 PCT-5/6-15/2	2.75	1.250	.75	.54	1.250	.75
PCT-5/12-12/2 PCT-5/12-15/2	2.75	1.250	.75	.67	1.250	.75

Power Chassis Series:

MODEL	A	B	C	D	E	F
$P C S-5 / 6$	4.87	.25	4.125	5.62	4.875	.50
$P C D-12 / 1$ $P C D-15 / 1$	4.00	.25	3.375	6.50	5.750	.50
$P C D-12 / 2$ $P C D-15 / 2$	4.87	.25	4.125	7.00	6.250	.50

MODEL	G	H	J	K	L	M
$P C S-5 / 6$	2.50	1.250	.75	.37	1.25	.75
$P C D-12 / 1$ $P C D-15 / 1$	1.62	-	.75	.80	-	.75
$P C D-12 / 2$ $P C D-15 / 2$	2.50	1.250	.75	.93	1.25	.75

END OF
 DATA ACQUISITION COMPONENTS SECTION

FOR OUR COMPLETE CATALOG OF INSTRUMENTS AND SYSTEMS INVERT THIS VOLUME AND TURN TO PAGE 1 S ．

－OL ヨפVd OL Nyח1 QNV ヨWกาO＾SIH \perp I \exists ANI SLNヨNOdWOO NOILISINOOV $\forall 1 \forall \square$

NOI 103 S
SWヨISAS GNV SNヨWחY JO QNヨ

[^0]: ＊Two chip A／D converter，requires ADC－8068AC and either ADC－7104－14C or ADC－7104－16C for complete function．

[^1]: NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE

[^2]: NOTES: 1. 10 V step to $0.01 \%, 5 \mathrm{~V}$ and 20 V steps settle to 0.01% in 150 nsec and 800 nsec , respectively.
 These converters operate with inverted analog that is $15 . \mathrm{S}$. + 1 LSB is encoded as 111111111111 These converters operate with inverted analog, that is - F.S. +1 LSB is encoded as 1111
 and +F.S. is encoded as 000000000000 (examples given are for offset binary coding).
 Parallet output data only is available in offset binary (uses MSB out) or two's complement cod
 3. Parallef output data only s avallable in offset binary (uses MSB out) or two's complement coding (uses MSB out)
 5. FSR is Full Scale Range

[^3]: Datel offers modular products in operating temperature ranges of
 -25 to $+85^{\circ} \mathrm{C}$ (suffix-EX) and -55 to $+85^{\circ} \mathrm{C}$ (suffix-EXX-HS). For
 information on these high reliability modules contact nearest Datel sales office.

[^4]: Datel offers modular products in operating temperature ranges of
 -25 to $+85^{\circ} \mathrm{C}$ (suffix-EX) and -55 to $+85^{\circ} \mathrm{C}$ (suffix-EXX-HS). For
 information on these high reliability modules contact nearest Datel sales office.

[^5]: 1. Lead no. 1 identified by dot or notch.
 2. Dimensions in inches (millimeters).
[^6]: 1. Lead no. 1 identified by dot or notch.
[^7]: 2. Dimensions in inches (millimeters).
[^8]: "a's" are digital coefficients, 0 or 1 . $\mathrm{n}=$ converter resolution in bits

[^9]: NOTES: 1. 40 K and 20 K respectively at $+\mathbf{1 2 5}^{\circ} \mathrm{C}$ for SHM-IC-1M. 2. +3.0 to +5.5 V at $-55^{\circ} \mathrm{C}$ for SHM-IC- 1 M .

[^10]: Datel offers modular products in operating temperature ranges of -25 to $+85^{\circ} \mathrm{C}$ (suffix-EX) and -55 to $+85^{\circ} \mathrm{C}$ (suffix-EXX-HS). For information on these high reliability modules contact nearest Datel sales office.

[^11]: DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

[^12]: From Fig. 2 the worst case steady state power dissipation for an $A M-8520\left(R_{s c}=0.6 \Omega\right)$ are about 30 W and 18 W respectively. Thus this heat sink is adequate. The AM-8530 ($R_{s C}=0.4 \Omega$) would need a bigger heat sink (or a blower) giving about $1^{\circ} \mathrm{C} / \mathrm{W}$ for Θ_{CA} to maintain satisfactory junction and case temperatures with 25 W dissipation and $T_{\text {AMB }}$ $=125^{\circ} \mathrm{C}$.

[^13]: DATEL－INTERSIL，INC．， 11 CABOT BOULEVARD，MANSFIELD，MA 02048／TEL．（617）339－9341／TWX 710－346－1953／TLX 951340

[^14]: DATEL－INTERSIL，INC．， 11 CABOT BOULEVARD．MANSFIELD．MA 02048／TEL．（617）339－9341／TWX 710－346－1953／TLX 951340

[^15]: DATEL-INTERSIL, INC., 11 CABOT BOULEVARD. MANSFIELD. MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

[^16]: 1. Lead no. 1 identified by dot or notch.
[^17]: External Decimal Point Enable - When external decimal point is enabled a decimal point will be displayed whenever the digit driver connected to the external decimal point is active. Leading Zero Blanking will be disabled for all digits following the decimal point.

 Test Mode - In the test mode the main counter is split into groups of two digits each and the groups are clocked in parallel. The reference counter is split such that the clock into the reference count goes directly to the clock of the second decade counter (. $1 \mathrm{sec} / 10$ cycle range). The count in the main counter is continuously output.

 Range Input - The range input selects whether the measurement is made for $1,10,100,1000$ counts of the reference counter. In all functional modes except Unit Counter a change in the range input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the Range Input is changed.
 Function Input - The six functions that can be selected are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency. This Input is available on the CD-7216A and B only.

[^18]: *FOR MAXIMUM FREQUENCY
 STABILITY, CONNECT TO ${ }^{+}$OR V^{-}

[^19]:

 Data Inputs
 lect 2
 ip Select 1
 Digit Select Code Bit 2 Data Inputs
 \qquad

