

D

STOR

5

R

DATA ACQUISITION COMPONENT HANDBOOK

ORDERING GUIDE

THIS ORDERING GUIDE IS PRESENTED AS A PROCEDURAL GUIDE. FOR A FORMAL STATEMENT OF POLICIES REFER TO THE TERMS AND CONDITIONS OF SALE FOUND ON THE QUOTATION FORM OR ON THE CUSTOMER ACKNOWLEDGEMENT COPY OF THE SALES ORDER.

PLACING AN ORDER

When ordering a Datel-Intersil product, the complete model number, product description, and option description should be given. Orders may be placed with a Datel-Intersil field sales representative or with the factory by letter, telephone, TWX, or TELEX. **MINIMUM ORDER IS** \$50.00, except for cash or C.O.D. orders where minimum is **\$30.00**.

OUTSIDE THE U.S.A. AND CANADA: Orders should be placed with a Datel-Intersil Sales Subsidiary (in West Germany, France, the United Kingdom, and Japan) or with a Datel-Intersil overseas sales representative. Orders received directly will be treated the same as if placed through our overseas sales representative. In countries without a Datel-Intersil representative, orders should be placed by TELEX and confirmed by air mail.

FIELD SALES REPRESENTATIVES

Datel-Intersil employs field sales representatives throughout the United States, Canada, Europe, and the Far East. In addition, it has direct Sales Offices in Santa Ana, California; Sunnyvale, California; Gaithersburg, Maryland; and Dallas and Houston, Texas. Datel-Intersil also has Sales Subsidiaries in Munich, West Germany; Paris, France; London, England; and Tokyo and Osaka, Japan. These sales representatives are the only ones authorized by Datel-Intersil to solicit sales, and any information or data received by sources other than these authorized representatives or the Datel-Intersil factory cannot be considered binding.

PRICES

All prices are F.O.B., Mansfield, Massachusetts, U.S.A. in U.S. dollars. Applicable federal, state, and local taxes are extra and paid by buyer. Prices are subject to change without notice.

TERMS: Net 30 Days.

DISCOUNTS

Quantity discounts are available when placed in a single order. OEM discounts are available on an order or contract basis; consult the factory for details.

QUOTATIONS

Price and delivery quotations made by Datel-Intersil or its authorized field sales representatives are valid for 30 days unless otherwise stated.

DELIVERY

Datel-Intersil uses an IBM System 3, Model 12, for efficient processing of orders. All orders placed with Datel-Intersil are acknowledged within a few days by an acknowledge-

ment copy of our sales order form. This copy will indicate pertinent information including a formal statement of terms and conditions of sale and estimated delivery date. This date has preference over all other agreed upon dates unless otherwise specified.

All products are shipped in rugged commercial containers suitable for insuring safe delivery under normal shipping conditions. Unless shipping method is specified, the best available method will be used. UPS, UPS Blue Label, Parcel Post, and Air Parcel Post are among the methods normally used. Datel-Intersil recommends insurance on Parcel Post and Air Parcel Post shipments for tracing purposes. Shipping charges are normally prepaid and billed to the customer except for Air Freight charges which are sent collect. The appropriate data sheet and/or instruction is packed with each product shipped.

ORDER CANCELLATION

All orders entered with Datel-Intersil are binding and are subject to a cancellation charge if cancelled before or after the scheduled shipping date on the acknowledgement copy of the sales order form. The normal cancellation charge is 20% but may be higher depending on expenses already incurred and commitments made by Datel-Intersil.

WARRANTY

Datel-Intersil warrants that its products are free from defects in material and workmanship under normal use and service for a period of one year from the date of shipment for monolithic products. Datel-Intersil's obligations under this warranty are limited to replacement only. In no case shall Datel-Intersil's liability exceed the original purchase price.

RETURNS

When returning products for any reason, contact the factory first for **return authorization number** and shipping instructions. Items should not be returned air freight collect as they cannot be accepted. It is absolutely necessary to return products in the manner stated here otherwise considerable delay will result in processing the return.

RETURNS OUTSIDE THE U.S.A. AND CANADA: Contact the local sales representative or factory for authorization and shipping instructions first.

CERTIFICATE OF COMPLIANCE

Datel-Intersil will provide a standard Certificate of Compliance with all shipments when requested by the customer. This request must be specified on the purchase order.

ABOUT DATEL-INTERSIL

Datel-Intersil is an established international leader in all phases of data conversion technology. In order to meet the rapidly growing need for data acquisition components and systems to interface with computers in industrial, commercial, scientific and military applications. Datel-Intersil offers one of the broadest lines of products in the industry. This product line includes A/D and D/A converters, sample-holds, analog multiplexers, operational and instrumentation amplifiers. V/F and F/V converters, voltage references, temperature sensors, active filters, dataloggers and readers, data acquisition systems, computer analog I/O boards, digital panel meters, digital panel printers, digital voltage calibrators, linear and switching power supplies, and DC-DC converters.

Datel-Intersil's modern 120,000 square foot manufacturing facility in Mansfield, Massachusetts, just 40 minutes from Boston's Logan Airport, houses all Datel-Intersil operations. This new headquarters is dedicated to continuing our leadership position by supplying a steady stream of significant new products to meet the demand for high performance data acquisition devices in the 1980's.

ABOUT THIS PRODUCT HANDBOOK

You are holding two Datel-Intersil catalogs. This section is the Data Acquisition Components Handbook; simply turn this whole volume over to the opposite cover for access to the Instruments and Systems Handbook. This dual catalog reflects Datel-Intersil's dual expertise: leadership in data conversion components technology and leadership in data conversion systems and instrumentation technology.

DATA ACQUISITION COMPONENTS HANDBOOK

This handbook is written for the design engineer who requires detailed technical information about products in order to select and apply a product appropriate to a particular application.

In this handbook, comprised of pages 1C through 566C, products are categorized by function. Products in each category are organized into quick selection tables followed by detailed data sheets for our most popular products. Data Sheets not included in this catalog may be obtained by contacting Datel-Intersil's nearest sales office.

Datel-Intersil also maintains an Application Engineering Department to answer any additional questions that may arise concerning the application of our products.

Our highly qualified team of Field Sales Engineers is available to service your needs throughout the United States, Canada, Western Europe, the Mid East, and Far East.

DATA ACQUISITION COMPONENTS TABLE OF CONTENTS

A/D Converters	7C
D/A Converters	121C
Sample-Holds	, 209C
Analog Multiplexers	233C
Data Acquisition Modules	269C
Operational Amplifiers	307C
Instrumentation Amplifiers	363C
Special Functions	387C
Analog Switches	441C
Counters and Display Drivers	463C
Power Supplies	533C

INSTRUMENTS AND SYSTEMS

Digital Panel Meters	5S
Digital Voltage Calibrator	635
SineTrac Computer A/D-D/A Boards	67S
Panel-Mount Thermal Printers	131S
A/D-D/A Computer Data Systems	175S
Low-Power Digital Cassette Data Loggers	1995
Product Index	2C
New Products	4C
Sales Offices Inside	Systems
	Cover
Ordering Guide Inside Con	nponents
	Cover

Product Index

A/D CONVERTERS

ADC-E Series	10C 90C
ADC-Econoverter	100
	140 040
	140, 940
ADC-EH10B	14C, 96C
ADC-EH12B1, B2	14C, 98C
ADC-EH12B3	14C,100C
ADC-EK Series	8C. 16C
ADC-FT Series	80 200
ADC-G8B 10B	140
	100 660
	120, 000
ADC-HST2B	120, 700
ADC-HU3B	14C
ADC-HX12B	8C, 74C
ADC-HZ12B	12C. 74C
ADC-L Series	10C
ADC-M Series	100
ADC MA Series	100
ADC-MAGENES	
	80, 260
ADC-SH4B	14Ç
ADC-TV8B	14C,106C
ADC-UH Series	14C,102C
ADC-89A	10C
ADC-149-14B	120 1100
ADC-815	140 780
ADC-015	140, 780
ADC-616	140, 820
ADC-817	14C, 86C
ADC-825	12C, 78C
ADC-826	12C, 82C
ADC-827	12C. 86C
ADC-856	80 620
ADC-876	140 1120
	140,1120
	100 1160
ADC-881	12C,116C
ADC-881	12C,116C 12C, 30C
ADC-881 ADC-7104 ADC-7109	12C,116C 12C, 30C 8C, 46C
ADC-881 ADC-7104 ADC-7109 ADC-8068A	12C,116C 12C, 30C 8C, 46C 12C, 30C
ADC-881 ADC-7104 ADC-7109 ADC-8068A	12C,116C 12C, 30C 8C, 46C 12C, 30C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS	12C,116C 12C, 30C 8C, 46C 12C, 30C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-HA Series	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-HA Series DAC-HF Series	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C
ADC-881 ADC-7104 ADC-7109 ADC-8068A DAC-8068A DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HI Series DAC-HI Series	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 130C,196C 130C,180C 130C,200C 130C,200C
ADC-881 ADC-7104 ADC-7109 ADC-8068A DAC-8068A DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C 128C,184C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HK Series DAC-HK Series DAC-HK Series	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C 128C,184C 132C,188C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-HA Series DAC-HF Series DAC-HI Series DAC-HK Series DAC-HP Series DAC-HR Series	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 130C,196C 130C,180C 130C,200C 128C,184C 132C,204C 132C,204C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-HA Series DAC-HF Series DAC-HI Series DAC-HI Series DAC-HK Series DAC-HR Series DAC-HR Series	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 130C,196C 130C,180C 130C,200C 130C,200C 128C,184C 132C,188C 132C,204C 122C,192C
ADC-881 ADC-7104 ADC-7109 ADC-8068A DAC-8068A DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HK Series DAC-HK Series DAC-HP Series DAC-HR Series DAC-HZ Series DAC-I Series	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C 128C,184C 132C,188C 132C,204C 122C,192C 124C
ADC-881 ADC-7104 ADC-7109 ADC-7109 ADC-8068A DAC-B068A DAC-DG12B DAC-HA Series DAC-HA Series DAC-HI Series DAC-HI Series DAC-HP Series DAC-HR Series DAC-HZ Series DAC-IZ Series DAC-ISeries DAC-IC8B	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C 128C,184C 132C,188C 132C,204C 132C,192C 122C,134C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HR Series DAC-HZ Series DAC-I Series DAC-I C10B DAC-IC10B	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 130C,196C 130C,180C 130C,200C 128C,184C 132C,188C 132C,204C 122C,192C 124C 122C,134C 122C,138C
ADC-881 ADC-7104 ADC-7109 ADC-7109 ADC-8068A DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HK Series DAC-HR Series DAC-HR Series DAC-HZ Series DAC-IS Series DAC-IC Series DAC-IC10B DAC-IC10B DAC-ICP8B	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 130C,196C 130C,180C 130C,200C 132C,184C 132C,188C 132C,204C 122C,192C
ADC-881 ADC-7104 ADC-7109 ADC-8068A DAC-B068A DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HK Series DAC-HR Series DAC-HR Series DAC-HZ Series DAC-IC8B DAC-IC8B DAC-IC98B DAC-UP8B DAC-USeries	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C 128C,184C 132C,188C 132C,204C 122C,192C 124C 122C,134C 122C,138C 122C,142C 128C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HZ Series DAC-HZ Series DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-U28B DAC-V8 Series	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C 128C,184C 132C,188C 132C,204C 122C,192C 124C 122C,134C 122C,134C 122C,134C 122C,134C 122C,134C 122C,134C 122C,134C 122C,134C
ADC-881 ADC-7104 ADC-7109 ADC-709 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HZ Series DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-UP8B DAC-V Series DAC-V Series DAC-V Series DAC-V Series	12C,116C 12C, 30C 8C, 46C 12C, 30C 126C,174C 130C,196C 130C,196C 130C,200C 128C,184C 132C,188C 132C,204C 122C,188C 122C,134C 122C,134C 122C,134C 122C,134C 122C,134C 122C,142C
ADC-881 ADC-7104 ADC-7109 ADC-709 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HK Series DAC-HR Series DAC-HR Series DAC-IC4B DAC-IC8B DAC-IC8B DAC-IC10B DAC-UP8B DAC-V Series DAC-VR Series DAC-08B	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 130C,196C 130C,200C 130C,200C 132C,188C 132C,204C 132C,188C 132C,204C 122C,192C 124C 122C,134C 122C,134C 122C,142C
ADC-881 ADC-7104 ADC-7109 ADC-8068A DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HR Series DAC-HZ Series DAC-IC38B DAC-IC38B DAC-IC48B DAC-UP8B DAC-V Series DAC-VR Series DAC-08B DAC-9	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C 128C,184C 132C,188C 132C,204C 122C,192C 124C 122C,134C 122C,134C 122C,142C 128C 122C,146C 124C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HZ Series DAC-HZ Series DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-VR Series DAC-VR Series DAC-VR Series DAC-VR Series DAC-08B DAC-09 DAC-19	12C,116C 12C, 30C 8C, 46C 12C, 30C 126C,174C 130C,196C 126C,174C 130C,200C 128C,184C 132C,188C 132C,188C 122C,192C 124C 122C,134C 122C,134C 122C,134C 122C,142C 128C 122C,146C 124C
ADC-881 ADC-7104 ADC-7109 ADC-709 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-HA Series DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HZ Series DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-V Series DAC-VR Series DAC-VR Series DAC-VR Series DAC-08B DAC-9 DAC-9 DAC-29	12C,116C 12C, 30C 8C, 46C 12C, 30C 126C,174C 130C,196C 130C,196C 130C,200C 128C,174C 130C,200C 128C,188C 132C,204C 122C,188C 122C,188C 122C,134C 122C,134C 122C,142C
ADC-881 ADC-7104 ADC-7109 ADC-709 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HR Series DAC-HR Series DAC-IZ Series DAC-IC8B DAC-IC8B DAC-IC10B DAC-UP8B DAC-UP8B DAC-UP8B DAC-V Series DAC-V Series DAC-V Series DAC-VR Series DAC-08B DAC-9 DAC-9 DAC-29 DAC-29 DAC-29 DAC-29 DAC-49	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C 128C,184C 132C,188C 132C,204C 122C,188C 122C,142C 122C,142C 122C,142C 122C,142C 122C,146C
ADC-881 ADC-7104 ADC-7109 ADC-7109 ADC-8068A DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HR Series DAC-HZ Series DAC-IC38 DAC-IC38 DAC-IC38 DAC-IC38 DAC-IC48 DAC-VR Series DAC-VR Series DAC-VR Series DAC-VR Series DAC-088 DAC-9 DAC-29 DAC-29 DAC-49 DAC-49 DAC-69	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 130C,196C 130C,180C 130C,200C 128C,184C 132C,188C 132C,204C 122C,188C 122C,188C 122C,142C 122C,142C 122C,146C 122C,146C 124C 124C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HZ Series DAC-HZ Series DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-VR Series DAC-VR Series DAC-VR Series DAC-VR Series DAC-VR Series DAC-VR Series DAC-08B DAC-08B DAC-19 DAC-20 DAC-20 DAC	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C 128C,184C 132C,188C 132C,192C 124C 122C,134C 122C,134C 122C,134C 122C,142C 128C 128C 122C,146C 124C 124C 124C 124C 124C
ADC-881 ADC-7104 ADC-7109 ADC-709 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-DG12B DAC-HA Series DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HZ Series DAC-HZ Series DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-VR Series DAC-VR Series DAC-VR Series DAC-VR Series DAC-08B DAC-9 DAC-9 DAC-9 DAC-29 DAC-49 DAC-69 DAC-69 DAC-681	12C,116C 12C, 30C 8C, 46C 12C, 30C 126C,174C 130C,196C 130C,196C 130C,200C 128C,174C 130C,200C 128C,188C 132C,204C 122C,188C 122C,188C 122C,134C 122C,134C 122C,134C 122C,142C
ADC-881 ADC-7104 ADC-7109 ADC-709 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HR Series DAC-HZ Series DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC10B DAC-UP8B DAC-UP8B DAC-V Series DAC-V Series DAC-V Series DAC-V Series DAC-19 DAC-29 DAC-29 DAC-29 DAC-69 DAC-169 DAC-69 DAC-69 DAC-69	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C 128C,184C 132C,188C 132C,204C 122C,188C 122C,142C 122C,142C 122C,142C 122C,146C 122C,146C 122C,146C 122C,146C 122C,146C 122C,146C 122C,146C 122C,146C 122C,146C 122C,146C 122C,146C 124C 124C 124C 124C 124C
ADC-881 ADC-7104 ADC-7109 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HR Series DAC-HZ Series DAC-IC Series DAC-IC Series DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-VR Series DAC-VR Series DAC-VR Series DAC-08B DAC-08B DAC-29 DAC-29 DAC-29 DAC-29 DAC-49 DAC-69 DAC-69 DAC-681 DAC-7520	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C 128C,184C 132C,188C 132C,204C 122C,188C 122C,134C 122C,134C 122C,146C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HZ Series DAC-HZ Series DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-VR Series DAC-VR Series DAC-VR Series DAC-VR Series DAC-VR Series DAC-08B DAC-08B DAC-29 DAC-681 DAC-7520 DAC-7521	12C,116C 12C, 30C 8C, 46C 12C, 30C 130C,196C 126C,174C 130C,180C 130C,200C 128C,184C 132C,188C 132C,192C 124C 122C,134C 122C,134C 122C,146C 124C
ADC-881 ADC-7104 ADC-7109 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-DG12B DAC-HA Series DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HZ Series DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-VR Series DAC-VR Series DAC-VR Series DAC-VR Series DAC-08B DAC-9 DAC-9 DAC-9 DAC-19 DAC-29 DAC-69 DAC-69 DAC-681 DAC-681 DAC-7520 DAC-7523	12C,116C 12C, 30C 8C, 46C 12C, 30C 126C,174C 130C,196C 130C,196C 130C,200C 128C,184C 132C,188C 132C,204C 122C,188C 122C,138C 122C,134C 122C,134C 122C,134C 122C,134C 122C,142C
ADC-881 ADC-7104 ADC-7109 ADC-709 ADC-8068A D/A CONVERTERS DAC-DG12B DAC-DG12B DAC-HA Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HF Series DAC-HR Series DAC-HR Series DAC-HZ Series DAC-IC10B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-IC8B DAC-V Series DAC-V Series DAC-V Series DAC-V8B DAC-9 DAC-9 DAC-9 DAC-19 DAC-29 DAC-49 DAC-69 DAC-69 DAC-7521 DAC-7523 DAC-7523 DAC-7533	12C,116C 12C, 30C 8C, 46C 12C, 30C 126C,174C 130C,196C 130C,200C 130C,200C 128C,184C 132C,188C 132C,204C 122C,134C 122C,134C 122C,134C 122C,134C 122C,142C

	2 N 1
SHM-IC1 SHM-LM2 SHM-HU	210C,212C 210C,216C 210C,218C
SHM-UH SHM-UH3 SHM-1	210C,224C 210C,224C 210C
SHM-2 SHM-2E SHM-5 SHM-6	210C,228C 210C,228C 210C,230C 210C,230C
MU-6108	45 234C,236C
MU-6116	234C,242C
MU-6216	234C,254C
MV-Series	234C,260C 234C,264C
DATA ACQUISITION SY	STEMS
DAS-250	270C,298C
HDAS-952R	270C,272C 270C,278C
HDAS-16	270C,278C
MDAS-8D	270C,286C 270C,286C
MDXP-32	270C,292C
OPERATIONAL AMPLIF	IERS
AM-100	
AM-102	312C
AM-103 AM-303	312C
AM-410	308C,314C
AM-411	308C,314C 308C.318C
AM-450	312C,320C
AM-452	312C,320C
AM-460	308C,320C
AM-462	312C,320C
AM-470	310C,328C
AM-490	308C,330C
AM-7600	308C,334C
AM-7601	308C,334C
AM-7610	3100,3440
AIVI-/012	310C,344C
AM-7612	310C,344C 310C,344C
AM-7612 AM-7613 AM-7614 AM-7615	310C,344C 310C,344C 310C,344C 310C,344C
AM-7612 AM-7613 AM-7614 AM-7615 AM-8510	310C,344C 310C,344C 310C,344C 310C,344C 310C,344C 310C,352C
AM-7612 AM-7613 AM-7614 AM-7615 AM-8510 AM-8520 AM-8520 AM-8530	310C,344C 310C,344C 310C,344C 310C,344C 310C,352C 310C,352C 310C,352C
AM-7612 AM-7613 AM-7614 AM-7615 AM-8510 AM-8520 AM-8520 AM-8530	310C,344C 310C,344C 310C,344C 310C,344C 310C,352C 310C,352C 310C,352C MPLIFIERS
AM-7612 AM-7613 AM-7614 AM-7615 AM-8510 AM-8520 AM-8520 AM-8530 INSTRUMENTATION A I AM-201 AM-201	310C,344C 310C,344C 310C,344C 310C,352C 310C,352C 310C,352C 310C,352C MPLIFIERS 364C,382C 364C,366C
AM-7612 AM-7613 AM-7614 AM-7615 AM-8510 AM-8520 AM-8530 INSTRUMENTATION AI AM-201 AM-435 AM-542	310C,344C 310C,344C 310C,344C 310C,344C 310C,352C 310C,352C 310C,352C MPLIFIERS 364C,382C 364C,378C
AM-7612 AM-7613 AM-7614 AM-7615 AM-8510 AM-8520 AM-8520 AM-8530 INSTRUMENTATION AI AM-201 AM-435 AM-435 AM-542 AM-453 AM-453	310C,344C 310C,344C 310C,344C 310C,344C 310C,352C 310C,352C 310C,352C 310C,352C MPLIFIERS 364C,382C 364C,378C 364C,378C 364C,378C

SPECIAL FUNCTIONS

. . .

AMC-8013 FLT-U2 LA-8048 LA-8049 TT-590 VFQ-IC VFV-10K VFV-10K VFV-100K VI-7760 S88C VR-182 VR-8069 WG-8038	388C,392C 388C,404C 388C,396C 388C,396C 388C,410C 388C,410C 388C,412C 388C,416C 388C,416C 388C,416C 388C,428C 388C,430C 442C,444C
AS-5040 to AS-5051 AS-5140 to AS-5145	442C,444C 442C,454C
COUNTERS AND DISPL DRIVERS CD-7216 CD-7217 CD-7224 CD-7225 CD-7226 CD-7227 DD 7211	AY 464C,466C 464C,481C 464C,493C 464C,493C 464C,501C 464C,481C 464C,481C
DD-7212 DD-7212 DD-7218 POWER SUPPLIES LINE OPERATED POWE	464C,513C 464C,523C
SUPPLIES BCM-15/60 BCM-15/200 BCM-15/200 BPM-5/250 BPM-5/250 BPM-5/250 BPM-12/60 BPM-12/60 BPM-12/200 BPM-12/200 BPM-12/200 BPM-15/60 BPM-15/200 BPM-15/1 MPD-12/1 MPD-12/1 MPD-15/1 MPD-15/1 MPS-5/6 MPT-12/1.5-5/6 MPT-12/1.5-5/6 MPT-15/1.5-5/12	540C 540C 540C 538C

OV-1. OV-2. PCD-12/1 PCD-12/2 PCD-12/3 PCD-15/1 PCD-15/2 PCD-15/3 PCS-5/3 PCS-5/6 PCS-5/12 PCS-5/12 PCT-5/3-12/1 PCT-5/3-12/1 PCT-5/3-15/1 PCT-5/6-12/2 PCT-5/12-12/2 PCT-5/12-12/2 PCT-5/12-12/2 PCT-5/12-12/2 PCT-5/12-15/2 TPM-12/100-5/500 TPM-15/100-5/500 TPM-15/100-5/500 TPM-15/150-5/1000 UCM-5/500 UCM-5/500 UCM-5/1000 UCM-5/1000 UCM-5/250 UPM-5/1000 UPM-5	548C 548C 546C 546C 546C 546C 546C 546C 546C 546
USM-5/3	543C
USM-5/5	543C
DC-DC CONVERTER MODUL	LES
BPM-12/25-D5	552C
BPM-12/25-D12	552C
BPM-12/25-D28 BPM-12/40-D48	552C
BPM-12/100-D5	552C
BPM-12/100-D12	552C
BPM-12/100-D28	552C
BPM-12/125-D48	556C
BPM-12/210-D5	554C
BPM-12/210-D12 BPM-12/210-D28	554C
BPM-12/210-D48	5560
BPM-12/420-D5	554C
BPM-12/420-D12	554C
BPM-12/420-D28	554C
BPM-12/420-D48	556C
BPM-15/25-D12	552C
BPM-15/25-D28	552C
BPM-15/30-D48	556C
BPM-15/100-D5	552C
BDM-15/100-D12	552C

BPM-15/100-D28	5520	С
BPM-15/100-D48		С
BPM-15/150-D5	558	ĉ
BPM-15/150-D24	558	č
BPM-15/150-D28	558	ř
BPM-15/165-D5	554	~
BPM-15/165 D10		2
BPN-15/105-D12		
BPM-15/165-D28	5540	Ç
BPM-15/165-D48	5560	С
BPM-15/330-D5	5540	С
BPM-15/330-D12	5540	С
BPM-15/330-D28	5540	С
BPM-15/330-D48		С
BPM-18/25-D5	552	ñ
BPM-18/25-D12	552	č
BPM-18/25-D28	552	~
BFM-10/23-D20		2
BPM-10/100-D5		2
BPM-18/100-D12	5520	2
BPM-18/100-D28	5520	0
BPM-18/140-D5	5540	С
BPM-18/140-D12	5540	С
BPM-18/140-D28	5540	С
BPM-18/280-D5		С
BPM-18/280-D12	5540	č
BPM-18/280-D28	554	
UPM-5/200-D5	550	~
		2
UPM-5/200-D12		2
UPM-5/200-D28	5520	2
UPM-5/200-D48	5560	С
UPM-5/500-D5	5590	С
UPM-5/500-D12	5520	С
UPM-5/500-D28	5520	С
UPM-5/600-D48		С
UPM-5/1000-D5	5590	Ĉ
LIPM-5/1000-D12	554(ē
UPM-5/1000-D28	5540	~
	5560	ະ
		ະ
UPIM-5/2000-D5		2
UPM-5/2000-D12		ز
UPM-5/2000-D28	5540	С
UPM-5/2000-D48	5560	С
UPM-12/80-D5	5520	С
UPM-12/80-D28		С
UPM-12/80-D48		С
UPM-12/250-D5		ò
UPM-12/250-D28	5520	ñ
UPM-12/250-D48	5560	ň
LIPM-12/420-D5	5540	~
UDM 10/400 D09		ະ
UPM-12/420-D28		2
UPM-12/420-D48		ز
UPM-12/840-D5	5540	Ç
UPM-12/840-D28	5540	С
UPM-12/840-D48	5560	С
UPM-15/60-D48	5560	С
UPM-15/200-D48		С
UPM-15/330-D48	5560	C
UPM-15/660-D48	5560	ñ
UPM-24/40-D5	5500	ň
LIPM_24//0_012		~
11DM_04/105 DE		້
UFIVE24/120-D0		ະ
UPW-24/125-D12		ذ
UPM-24/210-D5	5540	ز
UPM-24/210-D12	5540	2
UPM-24/420-D5	5540	С
UPM-24/420-D12	5540	С

UPM-28/25-D5	552C
UPM-28/25-D12	552C
UPM-28/100-D5	552C
UPM-28/100-D12	552C
UPM-28/180-D5	554C
UPM-28/180-D12	554C
UPM-28/360-D5	554C
UPM-28/360-D12	554C
VI-7660 422C	,549C

INSTRUMENTS AND SYSTEMS SECTION Digital Panel Meters

Digital Fanci Meters	
DM-3100L	11S-14S
DM-3100B	15S-18S
DM-3100N	19S-22S
DM-31	23S-30S
DM-31000U1	31S-34S
DM-3100X	35S-38S
DM-3100U2, U3	39S-42S
DM-LX3	43S-45S
DM-4100L,N	46S-49S
DM-4100D	50S-58S
UPA-5/500	. 59S
DM-2115	. 60S
DM-350	. 61S
DM-2000AR	· 62S

SineTrac A/D-D/A Computer Analog Boards

U	0	n	p	u	ter	P	١	าล	10	g	в	oa	r	as	
_		_	÷.,		-	-	-								

ST-711, ST-732	71S-75S
ST-711RLY	76S-80S
ST-724	81S-87S
ST-800	88S-99S
ST-LSI 10	00S-111S
ST-LSI2 1	12S, 113S
ST-LSI-RLY 1	14S-121S
ST-68001	22S-130S

Panel-Mount Thermal Printers

Parallel APP-20	133S-146S
APP-20D	147S
Serial APP-20	148S-157S
CDPP-Q7/CAPP-20	158S, 159S
APP-48	160S,163S
DPP-Q7	164S, 174S

A/D-D/A Computer Data	Systems
DAS-256	176S-189S
PDAS-250	190S-196S
Interface Panel	197S, 198S

Low-Power	Digital	Cassette	Data
Loggers			
DL-2		201S	-204S
Uncased DL	-2		205S
DL-2T			206S
DL-2R		207S,	208S
LPS-16		2095	-211S
LPS-16 Inst.	Ampl.,		
Start Clock .		212S	,213S
LPR-16		214S	-217S
ICT		218S	-226S

New Data Acquisition Components From Datel-Intersil

Ultra-linear 8 bit A/D converter Ultra-fast 16 bit A/D converter Model ADC-881 Model ADC-876 ADC 876 8 bit resolution 16 bit resolution Statistically linearized conversion • 2 µsec conversion time ±0.0087% nonlinearity ±1/2 LSB linearity • ±5V analog input range • ±5V analog input range 1.5 μsec conversion time • True 500 KHz throughput rate Out of range indicator Compact 5" x 3" x 0.375" module For full information see page 116C For full information see page 112C CMOS 12 bit multiplying D/A converter Low cost open-frame power supplies Power chassis series Model DAC-7541 Open frame construction 12 bit resolution 4 quadrant multiplying 4 single output models • • 0.01% linearity error 6 dual output models • • 1 µsec current settling time 6 triple output models 115 VAC or 230 VAC operated +5V to +15V power supply range DTL/TTL/CMOS compatible • 0.05% line regulation For full information see page 546C For full information see page 168C High efficiency 25 watt switching power supplies Monolithic CMOS voltage inverter Model VI-7660 Model USM-5/5 DATEL DRAF USM-5/5 ISM 5/3 Converts +5V logic supply to ±5VDC supplies • 5VDC ± 1% at 5 AMPS Simple voltage multiplication • 80% efficiency, minimum 99.9% voltage conversion efficiency 98% power efficiency No overshoot on turn-on or turn-off • Short circuit and overvoltage protection Operates from 1.5V to 10.0V supplies Compact 3.5" x 2.5" x 1.25' Two package configurations For full information see page 422C For full information see page 543C

5C

Datel-Intersil's new 242 page Data Acquisition and Conversion Handbook

This handbook contains a wealth of useful information on the theory and application of data conversion circuits and systems. Written in clear concise language, this book contains 35 technical articles with 312 illustrations and 40 tables. It concludes with a handy glossary of the 200 most commonly used data acquisition terms.

Major topics covered:

- Principles of Data Acquisition and Conversion
- A/D and D/A Converters
- Data Conversion Systems
- Sample Holds
- High Speed Op Amps
- V/F Converters

You will want to add this useful reference work to your engineering library. Just mail the coupon with your payment. Please, No Purchase Orders. **PRICE:** U.S. & Canada \$4.95 Elsewhere add \$2.75 for air shipment and handling.

Massachusetts Residents add 5% Sales Tax.

TO: Datel-Intersil, Inc.

Attn: Marketing Department 11 Cabot Boulevard, Mansfield, MA 02048

NAME	·	λ	v ⁺	5
COMPANY		1. est.		
DEPT/MS				
STREET	a an		· .	
CITY	S	TATE	ZIP_	
				· ·

Analog-To-Digital Converters

ADC-EK	16C
ADC-ET	20C
ADC-MC8B	26C
ADC-7104/ADC-8068A	30C
ADC-7109	46C
ADC-856	62C
ADC-HC	66C
ADC-HS	70C
ADC-HX, ADC-HZ	74C
ADC-815, ADC-825	78C
ADC-816, ADC-826	82C
ADC-817, ADC-827	86C
ADC-E	90C
ADC-EH8B	94C
ADC-EH10B	96C
ADC-EH12B	98C
ADC-EH12B3	100C
ADC-UH	102C
ADC-TV8B	106C
ADC-149	110C
ADC-876	112C
ADC-881	116C

₫

Quick Selection: General Purpose A/D Converters

	MODEL	DESCRIPTION	RESOLUTION	CONVERSION TIME, MAX.	LINEARITY ERROR, MAX.	ANALOG INPUT RANGE
	ADC-EK8B ADC-EK10B ADC-EK12B ADC-EK12DC ADC-EK12DR ADC-EK12DM	Low Cost Integrating A/D	8 Bits 10 Bits 12 Bits 3 ¹ / ₂ Digits	1.8 msec 6 msec 24 msec 12 msec	±½ LSB	0 to +10V, ±5V 0 to +10V
lic	ADC-ET8BC ADC-ET8BM ADC-ET10BC	Low Cost Integrating A/D with Three-State Outputs	8 Bits	1.8 msec	±½ LSB	
NOLITH	ADC-ET10BM ADC-ET12BC ADC-ET12BR ADC-ET12BM		12 Bits	24 msec	±1½ LSB ±½ LSB	±5V
0 W	ADC-MC8BC ADC-MC8BM	Multifunction A/D-D/A	8 Bits	500 <i>µ</i> sec	±½ LSB	0 to +2.5V, 0 to +5V 0 to +10V
	ADC-856C ADC-856M	Tracking A/D Latched Outputs	10 Bits	1 μsec/LSB ¹	±1⁄2 LSB	0 to +5V, 0 to +10V ±2.5V, ±5V, ±10V
	ADC-7109C ADC-7109R ADC-7109M	Integrating A/D Byte-Organized Three State Outputs	13 Bits	33.3 msec	±1 LSB	±4V
HYBRID	ADC-HX12BGC ADC-HX12BMC ADC-HX12BMR ADC-HX12BMM	Successive Approximation A/D with Input Buffer Amp	12 bits	20 µsec	±1⁄2 LSB	0 to +5V, 0 to +10V ±2.5V, ±5V, ±10V

NOTES: 1. For tracking operation only, non-tracking Full Scale conversion time is 1.024 msec. max.

2. Coding: Bin = Straight Binary or Offset Binary

BCD = Binary Coded Decimal

C Bin = Complementary Binary

C2C = Complementary Two's Complement

Sign Mag Bin = Sign Magnitude Binary

OUTPUT CODING ²	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	PACKAGE MATERIAL	OPER. TEMP. RANGE (°C)	PRICE (1-24)	SEE PAGE	
				Plastic	0 to +70	\$ 11.50		
Bin				0	0 to +70	\$ 29.00		
	05			Ceramic	0 to +70	\$ 38.00	160	
	25 ppm/°C		24 pin DIP	Plastic	0 to +70	\$ 13.95	100	
BCD				Commis	-25 to +85	\$ 23.00		
			·	Ceramic	-55 to +125	\$ 43.00		
				Plastic	0 to +70	\$ 14.00		
				Ceramic	-55 to +125	\$ 42.00		
D'.	05	25 ppm/°C ±5VDC	24 pin DIP	Plastic	0 to +70	\$ 18.50	20C	
Bin	25 ppm/°C			Ceramic	-55 to +125	\$ 52.50		
				Plastic	0 to +70	\$ 19.50		
				Coromio	-25 to +85	\$ 41.50		
				Ceramic	-55 to +125	\$ 71.50		
Din	10	151		Plastic	0 to +70	\$ 9.95	- 260	
DIU		+5V	16 pin DIP	Ceramic	-55 to +125	\$ 22.00	200	
Dia	10			0	0 to +70	\$ 52.00		
BIN	40 ppm/°C	±ονDC	28 pin DIP	Ceramic	-55 to +125	\$ 83.00	020	
Sign Mag.				Plastic	0 to +70	\$ 18.22		
Bin. with	5 ppm/°C	5 ppm/°C ±5VDC 40 pin	±5VDC 40 pin DIP	ppm/°C ±5VDC 40 pin DIP Cerdip	Cerdip	-25 to +85	\$ 29.83	_ 46C
Overrange			-	Ceramic	-55 to +125	\$ 61.76		
				Epoxy Seal	0 to 70	\$ 87.00		
CBin	20 ppm/°C	±15VDC,	32 pin		0 to 70	\$110.00	74C	
C2C		+5V	Ceramic DIP	Hermetic	-25 to +85	\$125.00		
					Sear	-55 to +125	*\$165.00	

*Available with MIL-STD-883 class B screening.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Quick Selection: General Purpose A/D Converters

	MODEL	DESCRIPTION	DECOLUTION			ANALOG INPUT	
	ADC-Econoverter	Counter Type	6 Bits	50 μsec	±½ LSB	0 to +5, 0 to +10, ±2.5V, ±5V	
	ADC-89A8B	Counter Type	8 Bits	200 µsec	+1/ I SB	0 to +10V, ±5V	
	ADC-89A8D	oounter rype	2 Digits	100 <i>µ</i> sec	± ½ LOD	0 to +10V	
	ADC-E8B		8 Bits	312 µsec			
	ADC-E10B	Fast	10 Bits	1.25 msec		±1V, ±5V, ±10V	
	ADC-E12B	Dual Slope	12 Bits	5.0 msec	±½ LSB		
	ADC-E8D		2 ¹ / ₂ Digits	500 µsec		+21/+51/+101/	
Ś	ADC-E12D		3 ¹ / ₂ Digits	5.0 msec		$\pm 2V, \pm 5V, \pm 10V$	
Ξ.	ADC-L8B2		8 Bits	12 µsec		0 to +5V, 0 to +10V, ±5V, ±10V	
5	ADC-L10B2	Successive	10 Bits	16 µsec			
ā	ADC-L12B2	Approximation	12 Bits	20 µ sec	±½ LSB		
0	ADC-L8D2	Туре	2 Digits	12 µsec	2	$0 \pm 0 \pm 5V$ 0 to $\pm 10V$	
2	ADC-L12D2		3 Digits	20 µsec			
	ADC-MA10B2A	Successive	10 Rite	40 µsec			
	ADC-MA10B2B	Approximation	TO BILS	20 µsec	+1/2 LSB	0 to +5V, 0 to +10V	
	ADC-MA12B2A	Parallel or	12 Rite	40 µsec	- 12	±2.5V, ±5V, ±10V	
	ADC-MA12B2B	Serial Output		20 µsec		Sec. 1	
	ADC-M8B2		8 Bits	4.0 µsec	1.		
	ADC-M10B2	Fast	10 Bits	11.5 µsec		0 to +5V, 0 to +10V	
	ADC-M12B2	Successive	12 Bits	13.0 µsec	±½ LSB	±5V, ±10V	
	ADC-M8D2	Approximation	2 Digits	4.0 µsec		$0 t_0 + 5 V 0 t_0 + 10 V$	
	ADC-M12D2	Туре	3 Digits	13.0 µsec		$\left[\begin{array}{c} 0 & 10 \\ 1 & 3 \\ \end{array} \right]$	

OUTPUT CODING	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE SIZE INCHES (MM)	OPER. TEMP. RANGE (° C)	PRICE (1-9)	SEE PAGE
Bin	100ppm/° C	±15V, +5V	2x2x0.375 (51x51x10)	0 to +70	\$ 46.00	*
Bin BCD	50ppm/° C	±15VDC, +5V	3x2x0.375 (76x51x10)	0 to +70	\$ 84.00 \$ 84.00	*
Sign Mag. Bin Sign Mag. BCD	50ppm/° C	±15VDC, +5V	4x2x0.4 (102×51×10)	0 to +70	\$ 94.50 \$105.00 \$121.00 \$ 94.50 \$121.00	90C
Bin, 2C BCD	10ppm/° C	±15VDC +5V	3x2x0.375 (76x51x10) 4x2x0.4 (102x51x10)	0 to +70	\$157.50 \$180.50 \$203.50 \$157.50 \$203.50	*
Bin, 2C	30ppm/° C	±15VDC, +5V	4x2x0.4 (102x51x10)	0 to +70	\$132.00 \$146.00 \$140.50 \$194.00	* ************************************
Bin, 2C BCD	10ppm/° C	±15VDC +5V	4x2x0.4 (102x51x10)	0 to +70	\$266.50 \$343.50 \$405.00 \$266.50 \$405.00	*

*For Data Sheet Contact Nearest Datel Sales Office

Datel offers modular products in operating temperature ranges of $-25 \text{ to }+85^\circ\text{C}(\text{suffix-EX}) \text{ and }-55 \text{ to }+85^\circ\text{C}(\text{suffix-EXX-HS}). For information on these high reliability modules contact nearest Datel sales office.}$

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Quick Selection: High Performance A/D Converters

	MODEL	DESCRIPTION	RESOLUTIO	CONVERSION N TIME, MAX.	LINEARITY ERROR, MAX.	ANALOG INPUT RANGE
ON.	ADC-7104-14C	Integrating A/D; Byte Organized	15 Bits Analog Sec	81 msec	+1 I SB	+150mV to +10V
Ž	ADC-7104-16C	Three State Outputs	17 Bits	328 msec		
	ADC-HC12BMC ADC-HC12BMR ADC-HC12BMM	Low Power CMOS A/D	12 Bits	300 <i>µ</i> sec	±1/2 LSB	0 to +5V, 0 to +10V ±2.5V, ±5V, ±10V
	ADC-HS12BMC ADC-HS12BMR ADC-HS12BMM	Fast A/D with Sample-Hold	12 Bits	9 μsec	±1/2 LSB	0 to +5V, 0 to +10V ±2.5V, ±5V, ±10V
	ADC-HZ12BGC ADC-HZ12BMC ADC-HZ12BMR	Fast A/D with Input Buffer	12 Bits	8 µsec	±1⁄2 LSB	0 to +5V, 0 to +10V ±2.5V, ±5V, ±10V
нувки	ADC-825MC ADC-825MR ADC-825MM	Very Fast A/D Logic Controlled Bipolar Offset	8 Bits	1 <i>µ</i> sec	±1⁄2 LSB	0 to +5V, 0 to +10V 0 to +20V, ±2.5V, ±5V, ±10V
	ADC-826MC ADC-826MR ADC-826MM	Very Fast Successive Approximation A/D	10 Bits	1.4 <i>µ</i> sec	±1/2 LSB	0 to −5V, 0 to −10V, 0 to −20V, ±2.5V, ±5V, ±10V
	ADC-827MC ADC-827MR ADC-827MM	Very Fast A/D with Internal Buffer	12 Bits	3 µsec	±1/2 LSB	0 to −5V, 0 to −10V ±2.5V, ±5V, ±10V
0	ADC-881	Ultra-Linear	8 Bits	1.5 <i>μ</i> sec	±0.04 LSB	±5V
ž	ADC-149-14B	Fast High Res.	14 Bits	50 μ sec	±½ LSB	0 to -10, -20, ±5, ±10V

NOTES: 1. Two chip A/D converter, requires ADC-8068AC and either ADC-7104-14C or ADC-7104-16C for complete function.

 Output Coding: Bin = Straight Binary or Offset Binary 2C = Two's Complement C Bin = Complementary Binary

C2C = Complementary Two's Complement

Sign Mag Bin = Sign Magnitude Binary

OUTPUT CODING ²	GAIN TEMPCO	POWER REQUIREMEN	T PACKAGE	PACKAGE TYPE	OPER. TEMP. RANGE (° C)	PRICE (1-24)	SEE PAGE
Sign Mag			40 pin DIP	Plastic		\$ 34.12	
Bin. with	5ppm/°C	± 15 VDC,	14 pin DIP	Cerdip	0 to +70	\$ 12.10	30C
Over Range		+5V	40 pin DIP	Plastic		\$ 38.32	-
D.			00		0 to +70	\$129.00	
Bin,	30ppm/°C	+9 to $+15V$,	32 pin	Hermetic	-25 to +85	\$169.00	66C ·
20		±9 10 ±15V	Ceramic DIP	Sear	-55 to +125	*\$209.00	
C Bin				Hormotio	0 to +70	\$139.00	
	20ppm/°C	± 13 V DC,	32 pin	Soal	-25 to +85	\$189.00	70C
020		134	Ceramic DIP	Jeal	-55 to +100	*\$239.00	
				Epoxy Seal	0 to +70	\$119.00	74C
C Bin,	20ppm/° C	±15VDC, +5V	32 pin Ceramic DIP	Hermetic Seal	010170	\$130.00	
C2C					-25 to +85	\$165.00	
					-55 to +125	*\$205.00	
D.					0 to +70	\$165.00	
Bin	20ppm/°C	±15VDC,	24 pin	Hermetic Seal	-25 to +85	\$195.00	78C
2C		+5V	Ceramic DIP		-55 to +125	*\$235.00	
D:	× .		22 pip	11	0 to +70	\$180.00	
BIN	37ppm/°C		Sz pin Coromio DID	Hermetic	-25 to +85	\$210.00	82C
20		+5V	Ceramic DIP	Seal	-55 to +125	*\$255.00	
Dim				11	0 to +70	\$195.00	
Bin,	25ppm/°C	± 15 VDC,	32 pin	Hermetic	-25 to +85	\$225.00	86C
20			Ceramic DIP	Seal	-55 to +125	*\$275.00	
Bin	30ppm/°C	±15V, +5V	5"x3"x.375" (1	27x76x9,5mm)	0 to +70	Consult Factory	116C
Bin, 2C	15ppm/°C	±15V, +5V	4"x2"x.8" (102	x51x20mm)	0 to +70	(1-9) \$264.50	110C

*Available with MIL-STD-883 class B screening.

Datel offers modular products in operating temperature ranges of -25 to $+85^{\circ}C$ (suffix-EX) and -55 to $+85^{\circ}C$ (suffix-EXX-HS). For information on these high reliability modules contact nearest Datel sales office.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Quick Selection: High Speed A/D Converters

				CONVERSION	LINEARITY	ANALOG INPUT
	MODEL	DESCRIPTION	RESOLUTION	TIME, MAX.	ERROR, MAX.	RANGE
	ADC-HU3BMC	Ultra-Fast		the second s		
	ADC-HU3BMR	Flash Type	3 Bits	20 nsec	0.1%	+ 2 1V
	ADC-HU3BMM		0 810	2011000	0.170	
S	ADC-815MC	Ultra-Fast, No				0 to + 5v, 0 to + 10V
	ADC-815MR	Calibration, Logic	8 Bits	600 nsec	± 1⁄2 LSB	0 to $+20V$, $\pm 2.5V$
Ä	ADC-815MM	Controlled Bip. Offs.			-	±5V, ±10V
BR	ADC-816MC	Fastest Hybrid				0 to - 5V, 0 to - 10V,
¥	ADC-816MR	10 Bit A/D	10 Bits	800 nsec	± ½ LSB	0 to $-20V$, $\pm 2.5V$,
	ADC-816MM	Available				± 5V, ± 10V
	ADC-817MC	Ultra-Fast with				0 to - 5V, 0 to - 10V
	ADC-817MR	Input Buffer	12 Bits	2 µsec	± ½ LSB	± 2.5V, ± 5V
	ADC-817MM	Amplifier				± 5V
	ADC-SH4B	Int. Sample-Hold	4 Bits	500 nsec	± ⅓LSB	0 to + 1V
	ADC-UH4B	Ultra-Fast		40 nsec	± ½ LSB	0 to - 2.56V
	ADC-UH4B2	Flash Type	4 Bits			± 1.28V
	ADC-EH8B1	Fast with Par.	8 Bits	4 μsec	± ½ LSB	0 to + 10V,
	ADC-EH8B2	and Ser. Outputs	0 Bito	2 µsec		± 5V
	ADC-G8B	Ultra-fast	8 Bits	800 nsec	± 1/2 LSB	$0 \text{ to } -5, -10 \text{V}, \pm 5, \pm 10 \text{V}$
	ADC-UH8B	Two-Stage	8 Bite	100 nsec	+ 11 SP	0 to - 2.56V
ES	ADC-UH8B2	Flash Type	0 Dita	100 11360	TEOD	± 1.28V
Ц	ADC-TV8B1	Video Speed,	8 Bits	50 nsec	+ 1/41 SB	0 to + 1, + 2, + 5V
ā	ADC-TV8B2	20 MHz	0 Dita	0011000	± /2 LOB	$\pm 1, \pm 2, \pm 5V$
ž	ADC-EH10B1	Serial and	10 Bite	4 μsec	+ 1/1 SB	0 to 10V,
	ADC-EH10B2	Parallel Outputs	TO DILS	2 µsec	1 /2 LOD	±5V
	ADC-G10B	Ultra-fast	10 Bits	1 µsec	± ½ LSB	$0 \text{ to } -5, 10 \text{V}, \pm 5, \pm 10 \text{V}$
	ADC-EH12B1	Fast		8 µsec		
	ADC-EH12B2	Very Fast	12 Bits	4 μsec	± ½ LSB	0 to + 10V,
	ADC-EH12B3	Ultra-Fast		2 µsec	t part in	± 5V
	ADC-876	Fastest Available	16 Bits	2 µsec	± ½LSB	± 5V

NOTES: 1. Coding: Bin = Straight Binary or Offset Binary 2C = Two's Complement

OUTPUT CODING ¹	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	OPER. TEMP RANGE (°C)	PRICE (SINGLES)	SEE PAGE	
			32 Pin Hermetically	0 to + 70	\$169.00	1	
Bin	25 ppm/°C	±5VDC	Sealed Triple Spaced	- 25 to + 85	\$199.00	**	
			Ceramic DIP	- 55 to + 125	\$249.00	7	
Bin		+ 15VDC	24 Pin Hermetically	0 to + 70	\$205.00		
20	20 ppm/°C	± 13 V DC,	Sealed Triple Spaced	- 25 to + 85	\$235.00	78C	
20		+ 3 V	Ceramic DIP	- 55 to + 125	*\$275.00]	
Rin			32 Pin Hermetically	0 to + 70	\$245.00		
ып, 20	38 ppm/°C	± 15 VDC,	Sealed Triple Spaced	- 25 to + 85	\$275.00	82C	
20		+ 5 V	Ceramic DIP	- 55 to + 125	*\$315.00		
Rin			32 Pin Hermetically	0 to + 70	\$295.00		
ын, 20	25 ppm/°C	± 15 V DC,	Sealed Triple Spaced	- 25 to + 85	\$325.00	86C	
20		+50	Ceramic DIP	- 55 to + 125	*\$365.00]	
Bin.	200 ppm/°C	± 15V, + 5V	2 × 2 × .375 IN.(51 × 51 × 10mm)	0 to + 70	\$110.00	**	
Din	50 ppm/°C	50 ppm/°C	± 15VDC,	$5 \times 3 \times 1.15$ IN (127 $\times 76 \times 20$ mm)	$0 t_0 \pm 70$	\$379.00	1020
ып.		+ 5V	3×3×1:13 IN:(127×70×23IIIII)	010 +70	\$379.00	1020	
Bin,	50 ppm/°C	± 15VDC,	$2 \times 2 \times 275$ [N/51 × 51 × 10mm)	0 to 1 70	\$ 99.50	940	
2C	So ppin/ C	+ 5V	2 2 2 2 375 114(51 2 51 2 101111)	010 +70	\$151.00] 540	
Bin, 2C	25 ppm/°C	± 15V, + 5V	4 × 2 × .4 IN(102 × 51 × 10mm)	0 to + 70	\$264.50	**	
Din	50 ppm/90	± 15VDC,	$E \times 2 \times 1$ 15 $ N /127 \times 76 \times 20$ mm)	0 to 1 70	\$626.00	1020	
Din.	Supplin C	+ 5V	5 × 5 × 1:15 m (127 × 70 × 23 mm)	010 + 70	\$626.00	1020	
Bin (ECL)	60 ppm/90	± 15VDC,	7.5 × 4.25 × .875 IN	0 to + 70	\$941.00	1060	
Bin (TTL)	oo ppin/°C	+ 5V	$(191 \times 108 \times 22 mm)$	010 +70	\$998.50		
Bin,	20 ====/20	± 15VDC,	$2 \times 2 \times 275$ [N]/76 × 51 × 10mm)	0 to + 70	\$174.00	060	
2C	30 ppm/°C	+ 5V	3 X 2 X .375 IN(76 X 51 X 10IIIII)	010 + 70	\$210.00	- 900	
Bin, 2C	25 ppm/°C	± 15V, + 5V	4 × 2 × .8 IN(102 × 51 × 20mm)	0 to + 70	\$308.50	**	
Din					\$199.50	080	
ып, 20	30 ppm/°C	$\begin{array}{c c} 0 \text{ ppm/°C} \\ +5 V \\ \end{array} \begin{array}{c} \pm 15 \text{ VDC}, \\ +5 V \\ \end{array} \begin{array}{c} 4 \times 2 \times .375 \text{ II} \\ \end{array}$	4 × 2 × .375 IN(102 × 51 × 10mm)	0 to + 70	\$241.50	980	
20					\$286.50	100C	
Bin, 2C	25 ppm/°C	± 15V, + 5V	5 × 3 × .375 IN(127 × 76 × 10mm)	0 to + 70	Contact Fact.	112C	

*Available with MIL-STD-883 class B screening. **For data sheet contact nearest DATEL-INTERSIL sales office.

Datel offers modular products in operating temperature ranges of -25 to $+85^\circ\text{C}$ (suffix-EX) and -55 to $+85^\circ\text{C}$ (suffix-EXX-HS). For information on these high reliability modules contact nearest Datel sales office.

¥

THESE PRODUCTS ARE COVERED BY GSA CONTRACT ١

Monolithic Integrating Analog-to-Digital Converters ADC-EK Series

FEATURES

- Monolithic CMOS
- Binary or BCD Models
- 20mW Power Consumption
- To 12 Bit Accuracy
- No Missing Codes
- Low Cost

GENERAL DESCRIPTION

The ADC-EK series are low power, integrating A/D converters fabricated on a single monolithic chip using CMOS technology. The circuit employs a charge balancing integrator, current switch, comparator, clock counter, data counter, and control logic circuitry to implement conversion. The charge balancing integration technique gives high linearity and noise immunity along with inherent mono-tonicity resulting in no missing codes. Output data appears in parallel form on latched outputs which are CMOS, low power TTL, or low power Schottky TTL compatible. The ADC-EK series consists of 5 different models with 8, 10, and 12 bit binary coding and 31/2 digit BCD codina.

Conversion time is 1.8 to 24 milliseconds maximum depending on model. Nonlinearity is ±1/2 LBS max. while differential nonlinearity is ±1/4 LSB typical. Other specifications include gain tempco of ±25ppm/°C typ. and zero drift of ±50µ V/°C max. An external reference, integrating capacitor, and several other components are required for operation. The analog input voltage range is programmable by means of an external resistor which sets the current into the integrator at 10µA full scale. Standard operating mode is unipolar but bipolar operation is accomplished using an external op amp to provide an offset current from the reference.

Power requirement is ±5VDC at 2mA, giving a power consumption of only 20 milliwatts. The units are packaged in 24 pin ceramic or plastic DIP's.

CAUTION: The ADC-EK Series are CMOS devices and should be handled carefully to prevent static charge pickup which might damage the devices. The devices should be kept in the shipping containers until ready for installation.

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

SPECIFICATIONS, ADC-EN (Typical at 25°C, ±5V Supplies	K SERIES s, R _{BIAS} = 100K, unle	ess otherwise noted)	Т
MAXIMUM RATINGS I _{IN} IREF Digital Input Voltage VDD - Vss Package Dissipation	ADC-EK8B/10B/12B ±1 ±1 -0 3V to 50	ADC-EK12DC/DR/DM 0 mA 0 mA V _{DD} + 0 3V 18V 0 mW	1. The ADC and must vent dar Proper ar should be in conduct together connect
ANALOG INPUTS Type Analog Input Full Scale Input Current Reference Current	Single Ended + 10 µA - 20 µA		condition be applie open circ or start co It should bottom co connecte
DIGITAL INPUTS Logical "1" VIN Logical "0" VIN Start Convert Pulse	3.5\ 1.5\ >3.5V for 5	/ min / max. 00 nsec min.	2. Nominal and offse resistor ta tolerance +5% -35 scale fac
OUTPUTS Parallel Output Data Logic "1" Output Voltage Logic "0" Output Voltage E.O.C. (Status) DATA VALID	8. 10. 12 Lines +4 5V min. at -10 μA. +0.4 max HI During Conversio HI When Data Valid L	12 Lines and Overrange +2 4V min. at $-360 \ \mu A^2$ at $-360 \ \mu A^2$ n. LO When Completed O When Data Changing	can vary in the dia and bipol is recom (nominal) inal). The cermet t mended and RoFF
PERFORMANCE Resolution Coding Nonlinearity Differential Nonlinearity	8. 10. 12 Bits Straight Binary ½ LSB. max. ¼ LSB. typ. ½ LSB max.	3½ Digits BCD 0 025% max 0 025% max.	metal film nearest fi 111 for nearest f 000 for R 3. To choos
Diff. Nonlinearity Tempco No Missing Codes Initial Gain Error, Adj. to Zero Gain Temperature Coefficient Initial Zero Error, Adj. to Zero Zero Drift Tempco	±2.5 ppm/°C typ. ±5 ppm/°C max Over Operating Temperature Range +53% max 1 ±25 ppm/°C typ. ±75 ppm/°C max 1 ±50 mV max ±50 wV/°C max 1		for other following R _{IN} (nom
Conversion Time, max.	1.8 msec. (8 Bits) 6 msec. (10 Bits) 24 msec. (12 Bits)	12 msec (3½ Digits)	R _{OFF} (nor R _{REF} (nor
Power Supply Sensitivity	±0.05% of Fu	III Scale Gain ³	It is rec scale volt
POWER REQUIREMENT Voltage, Rated Performance Voltage Range, Operating Supply Quiescent Current ADC-EK8B, EK12DC ADC-EK10B, EK12B, EK12DR. ADC-EK12DM	±5 ±3.5 VDC . 5.0 m 2.5 m 3.5 m	VDC to ±7 VDC A A max. A max.	ORDE MODEL NO. BINARY
PHYSICAL-ENVIRONMENTAL Operating Temp. Range Storage Temp. Range Package	See Orderin -65°C t 24 P	g Information o + 150°C in DIP	ADC-EK8B ADC-EK10B ADC-EK12B BCD
NOTES: 1. For the ADC-EK12DN Tempco is ±40 ppm/ Tempco is 80 µV/°C. 2. ADC-EK12DM outpu 3. Supply Sensitivity give	A Only. Initial Gain Error "C typ., $\pm 80 \text{ ppm/°C m}$ ts can sink and source 5 an for V _{DD} = V _{SS} = 5V =	is ±5%. Gain hax. and Zero Drift 00 μΑ. ≿1V.	ADC-EK12DC ADC-EK12DR – ADC-EK12DM – THESE CO UNDER GS

TECHNICAL NOTES

- The ADC-EK series are CMOS devices and must be properly handled to prevent damage from static pick-up. Proper anti-static handling procedures should be observed including storage in conductive form or shorting all pins together with aluminum foil. Do not connect in circuits under "power on" conditions. The input voltage should be applied after power is on. Do not open circuit the zero adjust, reference, or start convert pins while power is on. It should also be noted that the top and bottom of the ceramic package are connected to the positive supply.
- 2. Nominal values of input, reference, and offset resistors are given in the resistor table. Due to the possible \pm 5% tolerance of the external reference and \pm 5% -3% tolerance on the converter scale factor, the actual resistor value can vary by almost \pm 10%. R_G and R_T in the diagrams are for trimming gain and bipolar offset during calibration. It is recommended that R_G be 1% of R_{IN} (nominal) and R_T be 1% of R_{OFF} (nominal). They should both be 100ppm/°C cermet trimming pots. The recommended procedure for selecting R_{IN} and R_{OFF} is to set the R_G and R_T to center of range and then choose 1% metal film resistor which gives the nearest fit at the full scale point 1111... 111 for R_{IN} and one that gives the nearest fit to zero scale point 1000... 000 for R_T.
- To choose any intermediate scale values for R_{IN} and R_T or values of R_{REF} for other reference voltages, use the following formulas:

 R_{IN} (nom.) = $\frac{FSR}{10\mu A}$

FSR is full scale range or total input voltage span for the converter.

 $_{OFF}$ (nom.) = $\frac{V_{REF}}{5\mu A}$

 $R_{REF}(nom.) = \frac{V_{REF}}{20\mu A}$

It is recommended that large fullscale voltage ranges be chosen such

ORDERING INFORMATION

MODEL NO.	OPER. TEMP RANGE	PACKAGE			
BINARY					
ADC-EK8B ADC-EK10B ADC-EK12B	0°C to +70°C -25°C to +85°C -25°C to +85°C	Plastic Ceramic Ceramic			
BCD					
ADC-EK12DC ADC-EK12DR ADC-EK12DM	0°C to +70°C -25°C to +85°C -55°C to +125°C	Plastic Ceramic Ceramic			
THESE CONVERTERS ARE COVERED					

NDER GSA CONTRACT

TECHNICAL NOTES (Cont'd.)

TIMING DIAGRAMS

as 0 to +10V, 0 to +5V etc. in order to keep the error due to input offset voltage drift to a minimum.

- 4. The temperature stability of the ADC-EK converters depends directly on the converter itself, R_{IN}, R_{REF}, R_{OFF}, and V_{REF}. Since the converter is typically ±20ppm/°C it is recommended that a 10ppm/°C reference be used along with 10ppm/°C metal film resistors for R_{IN}, R_{REF}, and R_{OFF} for best performance over temperature. On a statistical basis this would give about 28ppm/°C stability for the complete converter.
- 5. Other passive components used with the converter may have tolerances as indicated here: R_c is a ±10% carbon comp. resistor; C_c is a ±20% ceramic capacitor; C_{INT} is a ±10% glass or ceramic capacitor; R_{BIAS} is a ±10% carbon comp. resistor; and the two zero adjust resistors are ±10% carbon composition type. It is recommended that two 0.1 μ F bypass capacitors be used right at the power supply pins. C_{INT} should be connected as close as possible to pins 14 and 15 away from any noisy lines.
- The start convert pulse initiates conversion on the LO to HI transition after which the conversion cycle cannot be interrupted and must run to completion.
- Logic signals should not be routed under these devices or near the input reference, or zero adjust pins.
- The unused data output pins on the 8 and 10 bit models should not be used for external connection points since they have internal connections to the converter.
- All digital outputs will drive 2 low power TTL loads or 1 low power Schottky TTL load. They should not be overloaded as this will affect the performance of the converter.
- 10. Conversion accuracy is directly dependent on V_{REF} . In order to avoid degrading accuracy, V_{REF} voltage regulation must be \pm .04% for 8 bit models, \pm .01% for 10 bit models and \pm .0025% for 12 bit models.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION	
.1	BIT 1 OUT (MSB-12 BITS)	13	REFERENCE	
2	BIT 2 OUT	14	ANALOG INPUT	
3	BIT 3 OUT (MSB-10 BITS)	15	AMPLIFIER OUT	
4	BIT 4 OUT	16	ZERO ADJUST	
5	BIT 5 OUT (MSB-8 BITS)	17	BIAS	
6	BIT 6 OUT	18	-5V POWER	
7	BIT 7 OUT	19	+5V POWER	
8	BIT 8 OUT	20	GROUND	
9	BIT 9 OUT	21	START CONVERT	
10	BIT 10 OUT	22	EOC (STATUS)	
11	BIT 11 OUT	23	DATA VALID	
12	BIT 12 OUT (LSB-ALL)	24	BCD OVERRANGE	
'NO CONNECTION FOR OTHER MODELS				

FOR 8 AND 10 BIT MODELS DO NOT CONNECT TO UNUSED DATA OUTPUT TERMINALS SINCE THEY HAVE INTERNAL CONNECTIONS

CODING TABLES

STRAIGHT BINARY

	. 8 B	IT	10 B	IT	12 E	віт
SCALE	0 TO +10V	CODE	0 TO +10V	CODE	0 TO +10V	CODE
FS-1 LSB ½ FS 1LSB 0	+9.96V +5.00 +0.04 0.00	1111 1111 1000 0000 0000 0001 0000 0000	+9.990V +5.000 +0.010 0.000	11 1111 1111 10 0000 0000 00 0000 0001 00 0000 0000	+9.9976V +5.0000 +0.0024 0.0000	1111 1111 1111 1000 0000 0000 0000 0000 0001 0000 0000 0000

OFFSET BINARY

	8 B	IT	10 B	IT	12 E	3IT
SCALE	±5V	CODE	±5V	CODE	±5V	CODE
+FS-1 LSB 0 -FS + 1LSB -FS	+4.96V 0.00 -4.96 -5.00	1111 1111 1000 0000 0000 0001 0000 0000	+4.990V 0.000 -4.990 -5.000	11 1111 1111 10 0000 0000 00 0000 0001 00 0000 0000	+4.9976V 0.0000 -4.9976 -5.0000	1111 1111 1111 1000 0000 0000 0000 0000 0001 0000 0000 0000

	FULL SCALE RANGE			
SCALE	0 TO +2V	0 TO +10V	0 TO +20V	CODE
FS-1 LSB	+1.999V	+9.995V	+19.990V	1 1001 1001 1001
1/₂ FS	+1.000	+5.000	+10.000	1 0000 0000 0000
1 LSB	+0.001	+0.005	+ 0.010	0 0000 0000 0001
0	0.000	0.000	0.000	0 0000 0000 0000

CONNECTIONS AND CALIBRATION

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490
 Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

19C

Monolithic A/D Converters with Three-State Outputs ADC-ET Series

FEATURES

- Monolithic CMOS
- Three State Outputs
- To 12 Bit Accuracy
 No Missing Codes
- Low Cost
- Microprocessor Compatible

GENERAL DESCRIPTION

The ADC-ET series devices are low cost integrating A/D converters optimized for high accuracy, linearity and noise immunity. They operate at low power consumption, with sufficient speed to handle most industrial and instrumentation requirements. Discretely controllable three state outputs allow bus organized output connections making these units ideal for microprocessor interfacing.

Fabricated with monolithic CMOS techniques, each device is housed in a single 24 pin dual in-line package. The converter consists of an integrating operational amplifier, comparator, current switch, internal clock, two counters, latching output buffers and control logic circuitry. Operation of the circuit requires only a few external passive components and connection to external reference and power supplies. Conversion is accomplished by an incremental charge balancing technique which assures high linearity and noise immunity, along with inherent monotonicity resulting in no missing codes. At the completion of a conversion, the binary coded result appears in parallel form on discretely controlled latched outputs which are CMOS, low power TTL, or low power Schottky TTL compatible. The controllable outputs may be switched to a high impedance or off state by holding the ENABLE high.

Conversion times are 1.8.6 and 24 msec. for the 8, 10 and 12 bit units respectively. Other typical specifications include linearity to 1/4 LSB and a gain tempco of 25 ppm/°C. The analog input voltage range is programmable by means of an external resistor which sets the current into the integrator at 10 μ A full scale. Standard operating mode is unipolar but bipolar operation can be implemented by using an external op amp to provide an offset current from the reference. Power requirement is ±5 VDC at 2 mA which, for intermittent duty applications, may be reduced to only 200 µA during standby periods without affecting data in the output latches.

CAUTION: These are CMOS devices and may be damaged by static discharge.

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

SPECIFICATIONS, ADC-ET SERIES (Typical at 25 C, 5V Supplies, R_{BIAS} 100K Ω, unless otherwise noted)

MAXIMUM RATINGS

I _{IN}	±10 mA
BFF	±10 mA
Digital Input Voltage	-0.3V to V _{DD} +0.3V
Vpp-Vss	18V
Package Dissipation	500 mW

ANALOG INPUTS

Type Analog Input Single Ended Input Current Range 0 to +10 µA Reference Current -20 µA

DIGITAL INPUTS

Logical "1" V _{IN}	3.5V min.
Logical "0" VIN	1.5V max.
Start Convert Pulse Width	500 nsec. min
ENABLE Propagation Delay	500 nsec.

OUTPUTS

Output Off State Current	. 0.1 μA typ, ±10 μA max. - +4.5V min at −10 μA
Logie "0" Output Voltage	+2.4V min at -360μ A ⁴
Data Valid Output	Hi for Data Valid, Lo When Loading
Busy Output	. Hi During Conversion

PERFORMANCE

Resolution	
Coding, UnipolarStraight Binary	
BipolarOffset Binary	
Conversion Times	
8 Bits 1.8 msec. max	
10 Bits 6 msec. max.	
12 Bits 24 msec. max.	
Nonlinearity ±1/4 LSB typ., ±1/	'2 LSB Max.'
Differential Nonlinearity ±1/4 LSB typ., ±1/	2 LSB max.
Diff. Nonlinearity Tempco ±2.5 ppm/°C	
No Missing Codes Over Operating Te	mp. Range
Initial Gain Error, (Adj. to Zero) ±5% max.	
Gain Temperature Coefficient. ±25 ppm/°C typ, ±	75 ppm/°C max. ²
Initial Zero Error (Adj. to Zero). ±50 mV max.	
Zero Drift Tempco ±50 μV/°C max. ²	
Power Supply Sensitivity ±0.05% / % max. ³	

POWER REQUIREMENT

Voltage, Rated Performance.	±5 VDC
Voltage Range, Operating	±3.5 VDC to ±7 VDC
Supply Quiescent Current	
C Suffix	±5.0 mA max.
R Suffix	±2.5 mA max.
M Suffix	•• ±3.5 mA max.

PHYSICAL-ENVIRONMENTAL

Operating Temperatu	ire Range
C Suffix	0°C to +70°C
R Suffix	
M Suffix	
Package	
C Suffix	24 Pin Plastic DIP
R & M Suffix	24 Pin Ceramic DIP

NOTES:

Nonlinearity for model ADC-ET12BC only is typically ±1/4LSB, ±1-1/2LSB max.

- 2. For M suffix units only gain tempco is typically 40 ppm/°C, 80 ppm/°C max. and zero drift tempco is $\pm 80 \,\mu$ V / °C.
- 3. V_{DD} ±1V, V_{SS} ±1V

4. M suffix logic outputs can sink and source 500 µA.

TECHNICAL NOTES

- 1. The ADC-ET series are CMOS devices and must be properly handled to prevent damage due to static discharge. Proper anti-static precautions should be taken, including storage and transport in anti-static containers or conductive foam, and grounding of work stations, handling equipment and personnel. Do not connect in circuits under "power on" conditions. The input voltage should be applied after power is on. Do not open circuit the zero adjust, reference or start convert pins while the power is on. It should be noted that the top and bottom of the ceramic package are connected to the positive supply.
- 2. Nominal values of input, reference and offset resistors are given in the resistor table. Due to the possible ±5% tolerance of the external reference and the +5%, -3% tolerance of the converter scale factor, the actual resistor value can vary by almost $\pm 10\%$. R_G and R_T in the diagrams are for trimming gain and bipolar offset during calibration. It is recommended that R_g be 1% of R_{IN} (nominal) and that R_T be 1% of ROFF (nominal). They should both be 100 PPM/°C cermet trimming pots. The recommended procedure for selecting R_{IN} and R_{OFF} is to set R_{G} and R_{T} to the center of their ranges and choose a 1% metal film resistor which gives the closest fit at the full scale point 1111 111 for R_{IN} and one that gives the closest fit to the zero scale point 0000...000 for RT.
- 3. To choose any intermediate scale values for R_{IN} and R_{T} or values of RREF for other reference voltages, use the following formulas: FSR is full scale range or total input

FSR R_{IN} (NOM.) = 10µA

 R_{OFF} (NOM.) = $\frac{V_{REF}}{E}$

5µA

 R_{REF} (NOM.) = $\frac{V_{REF}}{V_{REF}}$ 20µA

voltage span for the converter.

It is recommended that large full scale voltage ranges be chosen, such as 0 to +10V, 0 to +5V etc., in order to keep the error due to input offset voltage drift to a minimum

- 4. The temperature stability of the ADC-ET converters depends directly on the converter itself, RIN, RREF, ROFF and VREF. Since the converter is typically ±25ppm/°C it is recommended that a 10ppm/°C reference be used along with 10ppm/°C metal film resistors for RIN, RREF and ROFF for best performance over temperature.
- 5. Passive components used with the converter may have tolerances as indicated here: Cc is a ±20% ceramic capacitor; C_{INT} is a ±10% glass or ceramic capacitor; $R_{\text{c1}},R_{\text{BIAS}}$ and the two zero adjust resistors are ±10% carbon composition type
- 6. It is recommended that two 0.1 μF bypass capacitors be used at the power supply pins as shown in the connection diagram. CINT should be connected as close as possible to pins 14 and 15 and as far as possible from any noisy lines.
- 7. Logic signals should not be routed under these devices or near the input, reference or zero adjust pins.
- 8. All digital outputs will drive two low power TTL loads or one low power Schottky TTL load. The outputs should not be overloaded as this will affect the performance of the converter
- 9. It should be noted that there is a propagation delay of approximately 500 nsec. between the time ENABLE changes state and the time that the outputs change state.
- 10. For intermittent conversion applications the ADC-ET can be configured to use only 200µA during standby. In this mode the op amp and internal clock are shut down but data at the output latches remains available. See application diagram.
- 11. Two's complement coding can be implemented by inverting the MSB signal.
- 12. IIN and IREF, pins 14 and 13 respectively, connect to the summing junction of an operational amplifier which requires a current input. Voltage sources cannot be attached directly to them, but must be buffered by external resistors. Refer to Test Circuit Diagrams. Analog input can be any positive voltage when applied through the proper scaling resistor.
- 13. Conversion accuracy is directly dependent on $V_{\text{REF}}.$ In order to avoid degrading accuracy, VREF voltage regulation must be ±.04% for 8 bit models, ±.01% for 10 bit models and ±.0025% for 12 bit models.

DESCRIPTION OF OPERATION

When the START CONVERT input is strobed with a positive pulse of at least 500 nsec. duration, the busy line latches high and a start up cycle of approximately $10 \,\mu$ sec. begins, during which the integrating capacitor is discharged and both counters are reset. Conversion begins at the end of an internal reset pulse.

During conversion, the sum of a continuous current, I_{IN} and pulses of an inversely signed reference current I_{REF} , is integrated. I_{IN} is proportional to the analog input voltage and I_{REF} is proportional to the reference voltage. A pulse of I_{REF} is applied as required to maintain the summing input of the integrating op amp near zero. The total number of pulses of I_{REF} required to maintain the summing input near zero is counted and the binary coded result is latched into the outputs at the end of conversion.

The end of conversion is signaled by a pulse generated by the clock counter or by the data counter when an overflow condition occurs; this pulse disables further inputs into both counters and begins a 10 μ sec. shutdown cycle. During the shutdown cycle, Data Valid goes low for 5 μ sec., while the result of the latest conversion is being transferred to the outputs. Until transfer is complete, the data at the outputs is not valid. At the end of the shutdown cycle, Data Valid goes high indicating that the outputs are latched with the result of the last conversion, and the Busy Output goes low indicating the conversion of the conversion.

When the converter is employed in a free-running mode, the START CONVERT input is held high (simply connect pin 21 to pin 19), the Busy Output will go low for approximately 2.5 μ sec. to mark the completion and initiation of consecutive conversion cycles. It should be noted that once conversion is initiated, the cycle cannot be interrupted; the START CONVERT pin is disabled when the Busy Output is high, and thus its logic state has no effect until completion of the conversion cycle. After the completion of a conversion, the output data remains valid for as long as power is applied to the circuit, or until Data Valid goes low at the end of a conversion.

RESISTOR TABLES

UNIPOLAR RANGE	BIPOLAR RANGE	R _{IN} (NOM.)
0 TO +2V	±1V	200K
0 TO +5V	±2.5V	500K
Ó TO +10V	±5V	1 MEG.
0 TO +20V	±10V	2 MEG

VREF	R _{REF} (NOM.)	R _{OFF} (NOM.)
-1.22V	61K	244K
-2.5V	125K	500K
-6.4V	320K	1.28 MEG.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 (MSB-12 BITS)	13 ·	REFERENCE
2	BIT 2	14	ANALOG INPUT
3	BIT 3 (MSB-10 BITS)	14	AMPLIFIER OUT
4	BIT 4	16	ZERO ADJUST
5	BIT 5 (MSB-8 BITS)	17	BIAS
6	BIT 6	18	-5V POWER
7.	BIT 7	19	+5V POWER
8	BIT 8	20	GROUND
9	BIT 9	21	START CONVERT
10	BIT 10	22	BUSY OUTPUT
-11	BIT 11	23	DATA VALID
12	BIT 12 (LSB-ALL)	24	ENABLE

NOTE:

Do not connect unused data output pins on 8 and 10 bit models, they are internally connected to the converter.

CODING TABLES

STRAIGHT BINARY

[8 BIT		10 B	Т	12 BIT		
SCALE	0 TO +10V	CODE	0 TO +10V	CODE	0 TO +10V	CODE	
FS-1 LSB ½ FS 1LSB 0	+9.96V +5.00 +0.04 0.00	1111 1111 1000 0000 0000 0001 0000 0000	+9.990V +5.000 +0.010 0.000	11 1111 1111 10 0000 0000 00 0000 0001 00 0000 0000	+9.9976V +5.0000 +0.0024 0.0000	1111 1111 1111 1000 0000 0000 0000 0000 0001 0000 0000 0000	

OFFSET BINARY

	8 B	IT	10 BIT		12 BIT		
SCALE	±5V	CODE	±5V	CODE	±5V	CODE	
+FS-1 LSB 0 -FS + 1LSB -FS	+4.96V 0.00 -4.96 -5.00	1111 1111 1000 0000 0000 0001 0000 0000	+4.990V 0.000 -4.990 -5.000	11 1111 1111 10 0000 0000 00 0000 0001 00 0000 0000	+4.9976V 0.0000 -4.9976 -5.0000	1111 1111 1111 1000 0000 0000 0000 0000 0001 0000 0000 0000	

ORDERING INFORMATION

OPERATING

TEMP. RANGE

0°C to +70°C

-55°C to +125°C

0°C to +70°C

-55°C to +125°C

MODEL

ADC-ET8BC ADC-ET8BM

ADC-ET10BC ADC-ET10BM ADC-ET12BC

ADC-ET12BR ADC-ET12BM

Ceramic Plastic Ceramic

PACKAGE

Plastic

Plastic

0°C to +70°C -25°C to +85°C -55°C to +125°C

C Ceramic C Ceramic

THESE CONVERTERS ARE COVERED UNDER GSA CONTRACT

22C

CONNECTIONS AND CALIBRATION

CONNECTION FOR UNIPOLAR OPERATION

CONNECTION FOR BIPOLAR OPERATION

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

25C

Low Cost, 8 Bit Monolithic A/D and D/A Converters Models ADC-MC8BC, ADC-MC8B

FEATURES

- Low Cost •
- 8 Bit Resolution
- Internal Reference
- **Single Supply Operation** •
- Multifunction-A/D-D/A
- Full Mil Temp. Range Available •

GENERAL DESCRIPTION

The ADC-MC8B is an 8-bit monolithic multifunction A/D-D/A converter with single +5 Volts supply operation. This device is a complete D/A converter which can be configured as an A/D converter by using the internal binary counter and two external IC's (311 comparator and a 74132 quad 2-input Schmitt trigger NAND gate).

The ADC-MC8B consists of eight current switches, a specially designed ladder network using diffused resistors, a precision +2.5V reference, an eight bit binary counter and a logic input select switch. This feature allows a single control signal to determine whether the switches accept the output from the binary counter (A/D MODE) or external digital inputs (D/A MODE).

The converter can be used with the internal reference to give an output voltage range of 0 to +2.5V or connected to an external reference for a 0 to +3.0V range. Full scale settling time is 2.0µS MAX for the voltage output mode. Using the device as a counter-comparator A/D, a full scale conversion time of 500 µS can be achieved.

The ADC-MC8B is ideal for such applications as complete low cost D/A's, multiplying D/A's, low cost A/D's and precision ramp generators.

This converter is available in two operating temperature ranges. The ADC-MC8BC (0°C to 70°C) is packaged in a plastic 16 pin DIP and the ADC-MC8BM (-55°C to +125°C) is packaged in a ceramic DIP.

4

5

6

8

BIT 8 (LSB)

BIT 7

BIT 6

+ Vcc

12

13

14

15

16

BIT 2

BIT 1 (MSB)

ANG OUT

VREFIN

VREFOUT

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICA	TIONS, MODEL ADC-MC8B (Typ	bical at 25°C, +5V supply unless	s otherwise noted)
MAXIMUM RATINGS Supply Voltage, Vcc Digital Input Voltage Reference Input Voltage	ADC-MC8BC ADC-MC8BM +7.0V +5.5V +5.5V	A/D PERFORMANCE Analog Input Range Resolution Nonlinearity Differential Nonlinearity Conversion Time	ADC-MC8BC ADC-MC8BM Dependent on values of R ₁ & R ₂ (see Range Select Chart) 8 Bits (1 part in 256) ±1/2 LSB ±1/2 LSB ±1/2 LSB 500µS max. ⁵
INPUT/OUTPUTS Coding, unipolar Coding, bipolar VREF VREF VREF Input Logic Level, Bit ON ("1")	Straight Binary Offset Binary 0 to + 3V + 2.55V, + 2.0V min.	POWER REQUIREMENT Supply Voltage	+5.0V ±10% 30 mA typ., 40 mA max.
Bit OFF (*0") Output Logic Level, "1" Output Logic Level, "0" Logic Loading Parallel Output Data	+0.7V max. +2.4V min. +0.4V max. 1 TTL load 12 Parallel lines of data held until next convert command.	PHYSICAL-ENVIRONMENTAL Operating Temperature Range Storage Temperature Range Package Type	0°C to 70°C55°C to + 125°C -55°C to + 125°C 16 Pin Plastic 16 Pin Ceramic
REFERENCE V _{REF} OUT V _{REF} Tempco	+ 2.55V ±40 ppm/°C	NOTES: 1. Internal Referen capacitor betwee 2. 0 to +2.55V wh 3. ±1/2 LSB max. t 4. ±1/2 LSB max. t +70°C	ce requires .22 $μ$ f stabilization en Pin 1 and 16. en using internal reference nonlinearity from 0°C to +70°C differential nonlinearity from 0°C to
D/A PERFORMANCE		5. See Graph CON	V. TIME vs VIN
Resolution Output Voltage Range Output Resistance Nonlinearity Differential Linearity Error. Zero Error Gain Error Zero Tempco Gain Tempco Nonlinearity Tempco Monoticity Settling Time, full scale change to 1/2 LSB Settling Time, 1 LSB change to 1/2 LSB	8 Bits (1 part in 256) 0 to +3.0V ² 10K Ohms ±1/2 LSB max. ±1 LSB max. ³ ±1/2 LSB ⁴ 3 mV 0.1% 5 μV/°C 3 ppm/°C 7.5 ppm/°C Guaranteed 0°C to +70°C 2μS 1μS	ORDERING INFORMATION OPERATING MODEL TEMP. RANG ADC-MC8BC 0 to 70°C ADC-MC8BM -55°C to + 1 Trimming Potentiometers: T D THE ADC-MC8BC and ADC-I CONTRACT	N GE CASE Plastic 25°C Ceramic P2K and TP10K are available from latel-Intersil MC8BM ARE COVERED BY GSA

A/D CONVERTER

THEORY OF OPERATION

A negative going pulse on the START line will reset counter to all zeros and enable the clock. If the DAC's output is less than ANG IN, the counter is incremented and DAC's output increases by one LSB. These comparisons continue until DAC's output is equal to the analog signal, at which time the EOC goes low (Logic "0") indicating that the digital output data is valid. Maximum clock frequency is 512 kHz. This may be varied by using different values for R and C.

Full Scale voltage may also be changed by setting $R_{\rm i} and R_{\rm 2}$ to desired gain function.

1% Metal Film resistors and 100 ppm/°C trim pots are recommended for best performance over temperature.

CALIBRATION PROCEDURES

- Connect converter as shown in connection diagram. Apply continuous start commands to the START input.
- ZERO ADJUSTMENT—Ground analog input. Vary ZERO ADJ. potentiometer until LSB flickers between logic "1" and "0" with all other bits at logic "0".
- 3. GAIN ADJUSTMENT—Apply FS-1/2 LSB to ANG IN. Vary GAIN ADJ. potentiometer until LSB flickers between logic "1" and "0" with all other bits at logic"1".

A/D TIMING DIAGRAM

D/A CONVERTER

THEORY OF OPERATION

Vout is directly proportional to digital input. R_z should be kept \geq 650K Ohms to assure good T.C. To remove offset voltage and calibration of converter, a buffer amplifier is necessary. The sources impedance of the inverting input should be approximately 6K Ohms to minimize temperature drift.

1% Metal Film resistors and 100 ppm/°C trim pots are recommended for best performance over temperature. For best settling time, a fast buffer amplifier is required (DATEL -INTERSIL'S AM-452).

CALIBRATION PROCEDURE

- Connect converter as shown in connections diagram. Apply continuous start commands to the START input.
- 2. Set all bits to logic "0" and vary ZERO ADJ. potentiometer until Vout is equal to zero volts.
- 3. Set all bits to logic "1" and vary GAIN ADJ. potentiometer until Vout = Nominal F.S.- 1 LSB FSR

$$LSB = \frac{15}{256}$$

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8866 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 NS SUB JECT TO CHANGE WITHOUT NOTICE

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

ADC-8068A/ADC-7104 Pair 16/14 Bit Binary A/D Converters for µProcessors

FEATURES

- 16 bit binary three-state latched outputs plus polarity and overrange. Also 14 bit version.
- Ideally suited for interface to UARTs, microprocessors, or other complex circuitry.
- Conversion on demand or continuously.
- Handshake byte-serial transmission synchronously or on demand.
- Guaranteed zero reading for zero volts input.
- True polarity at zero count for precise null detection.
- Single reference voltage for true ratiometric operation.
- Onboard clock and reference.
- Auto-Zero; Auto-Polarity
- Accuracy guaranteed to 1 count.
- All outputs TTL compatible.
- ±10V analog input range
- Status signal available for external sync, A/Z in preamp, etc.

GENERAL DESCRIPTION

The ADC-7104, combined with our model ADC-8068, forms a member of DATEL-INTERSIL's high performance A/D converter family. The 16-bit version, ADC-7104-16 performs the analog switching and digital function for a 16-bit binary A/D converter, with full three-state output, UART handshake capability, and other outputs for a wide range of output interfacing. The ADC-7104-14 is a 14 bit binary member of this series. The analog section, as with all DATEL-INTERSIL's integrating converters, provides fully precise Auto-Zero, Auto-Polarity (including ±0 null indication), single reference operation, very high input impedance, true input integration over a constant period for maximum EMI rejection, fully ratiometric operation, overrange indication, and a medium guality built-in reference. The chip pair also offers optional input buffer gain for high sensitivity applications, a built-in clock oscillator, and output signals for providing an external Auto-Zero capability in preconditioning circuitry, synchronizing external multiplexers, etc. The basic schematic connections are shown in Figure 1.

1: .8

8068A /7104 16/14 Bit A/D Converter Functional Block Diagram

ORDERING INFORMATION	·	······		
	MODEL*	DESCRIPTION	PACKAGE	
	ADC-7104-14C	14 Bit Digital Section	40 pin Epoxy DIP	
	ADC-7104-16C	16 Bit Digital Section	40 pin Epoxy DIP	
	ADC-8068AC	Analog Input Section	14 pin CerDIP	

*Two chip A/D converter, requires ADC-8068AC and either ADC-7104-14C or ADC-7104-16C for complete function.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Data Acquisition

8068/7104

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1)	500 mW
Storage Temperature65° C to -	+150° C
8068	
Supply Voltage	. ±18V
Differential Input Voltage(8068)	. ±30V
Input Voltage (Note 2) Output Short Circuit Duration,	. ±15V
All Outputs (Note 3) In	definite
Operating Temperature 0° C to Lead Temperature (Soldering, 60 Sec.)	0+70°℃

 7104

 V+ Supply (GND to V+)
 12

 V++ to V 32

 Positive Supply Voltage (GND to V++)
 17

 Negative Supply Voltage (GND to V-)
 17

 Analog Input Voltage (Pin 32-39) (Note 4)
 V+ to V

 Digital Input Voltage
 V+ +0.3V

 (Pins 2-30) (Note 5)
 GND -0.3V

Note 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below +70°C. For higher temperatures, derate 10mW/°C.

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Short circuit may be to ground or either supply. Rating applies to +70°C ambient temperature.

Note 4: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu$ A.

Note 5: Connecting any digital inputs or outputs to voltages greater than V+ or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources not on the same power supply be applied to the ADC-7104 before its power supply is established.

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7104 ELECTRICAL CHARACTERISTICS (V+ = +5V, V++ = +15V, V- = -15V, Ta = 25°C)

CHARACTERISTICS		SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Clock Input	CLOCK 1	lin	Vin = +5V to 0V	±2	±7	±30	μA
Comparator I/P	COMP IN (Note 1)	lin	Vin = 0V to +5V	-10	±0.001	+10	μA
Inputs	MODE	μн	Vin = +5V	+1	+5	+30	μA
with Pulldown		հլ	Vin = 0V	-10	±0.01	+10	μA
Inputs	SEN, R/A	łн	Vin = +5V	-10	±0.01	+10	μA
with	LBEN, MBEN, (Note 2)	հե	Vin = 0V	-30	-5	-1	μA
Pullups	HBEN, CE/LD)						
			· · · · · · · · · · · · · · · · · · ·				
Input High Voltage	All Digital Inputs	ViH		2.5	2.0	-	V
Input Low Voltage	All Digital Inputs	VIL	1		1.5	1.0	v
Digital	LBEN	Vol	I _{OL} = 1.6 mA	-	.27	.4	· V
Outputs	MB EN (16 only) (Note 3)	Voн	$I_{OH} = -10 \mu A$		4.5	_	V
Three-Stated	HBEN	Vон	I _{OH} = −240µА	2.4	3.5	-	v
On	CE/LD)						
	BIT n, POL, OR						
Digital	BIT n, POL, OR	ILO.	0 ⊆ Vout ≤ V+	-10	±.001	+10	μA
Outputs							
Three-Stated Off							
Non-Three-State	STTS	VOL	I _{OL} = 3.2 mA	_	.3	.4	v
Digital		VOH	$I_{OH} = -400 \mu A$	2.4	-3.3	_	V
Output	CLOCK 2	Vol	$I_{OL} = 320\mu A$		0.5		V
		<u>Vон</u>	$I_{OH} = -320\mu A$		4.5		<u>V</u>
	CLOCK 3 -14 UNLY	VOL	IOL = 1.0 mA	24	.21	.4	V
	Switch 1	Pag ON	10H - 320µA	2.4	254		0
	Switches 2.3			_	20K	20k	0
Switch	Switches 4.5.6.7.8.9	BosON			2k	10k	Ω
	Switch Leakage	IDOFF			15		pA
Clock	Clock Freq. (Note 4)			DC	200	400	kHz
Supply	+5V Supply Current	1+	Freq. = 200 kHz		200	600	μA
Currents	All outputs high impedance						
	+15V Supply Current	++	Freq. = 200 kHz		.3	1.0	mA
	15V Supply Current	~	Freq. = 200 kHz		25	100	μA
Supply Voltage	Logic Supply	V+	Note 5	4.0		+11.0	V
Range	Positive Supply	V++		+10.0		+16.0	V
	Negative Supply	V		-16.0		-10.0	V

Note 1: This spec applies when not in Auto-Zero phase.

Note 2: These specs apply when these pins are inputs i.e. the mode pin is low, and the 7104 is not in handshake mode.

Note 3: These specs apply when these pins are outputs, i.e. the mode pin is high or the 7104 is in handshake mode.

Note 4: Clock circuit shown in Fig. 12 or 13.

Note 5: V+ must not be more positive than V++.

8068/7104

		8068A			
CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
	EACH OP	ERATION	AL AMPLI	FIER	*
Input Offset Voltage	V _{CM} = 0V		20	65	mV
Input Current (either input) (Note 1)	$V_{CM} = 0V$		80	150	рА
Common-Mode Rejection Ratio	$V_{CM} = \pm 10V$	70	90		dB
Non-Linear Component of Common-					
Mode Rejection Ratio (Note 2)	$V_{CM} = \pm 2V$		110	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
Large Signal Voltage Gain	$R_L = 50k\Omega$	20,000			V/V
Slew Rate			6		V/µs
Unity Gain Bandwidth			2		MHz
Output Short-Circuit Current			5	10	mA
	COMP	ARATOR	AMPLIFIE	R	
Small-signal Voltage Gain	$R_L = 30 k\Omega$	-			V/V
Positive Output Voltage Swing		+12	+13		V
Negative Output Voltage Swing		-2.0	-2.6		V
	VOL	AGE RE	ERENCE		
Output Voltage		1.60	1.75	1.90	V
Output Resistance			5		ohms
Temperature Coefficient			40		ppm/°C
Supply Voltage Range		±10		±16	V
Supply Current Total			8	14	mA

8068 ELECTRICAL CHARACTERISTICS ($V_S = \pm 15V$ unless otherwise specified)

Note 1: The input bias currents are junction leakage currents which approximately double for every 10° C increase in the junction temperature, TJ. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. $T_J = T_A + \theta_j A P d$ where θ is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise. Note 2: This is the only component that causes error in dual-slope converter.

8068/7104

SYSTEM ELECTRICAL CHARACTERISTICS: 8068/7104

 $(V_{++} = +15V, V_{+} = +5V, V_{-} = -15V \text{ Clock Frequency} = 200 \text{ KHz}$

		8068A/7104-14		806	68A/7104	-16		
CHARACTERISTICS	CONDITIONS	MIN	ΤΥΡ	MAX	MIN	ΤΥΡ	MAX	UNITS
. Zero Input Reading	V _{in} = 0.0V Full Scale = 4.000V	-0.0000	±0.0000	+0.0000	-0.0000	±0.0000	+0.0000	Hexadecimal Reading
Ratiometric Reading (1)	V _{in} = V _{Ref} Full Scale = 4.000V	1FFF	2000	2001	7FFF	8000	8001	Hexadecimal Reading
Linearity over ± Full Scale (error of reading from best straight line)	$-4V \subseteq V_{in} \leq +4V$		0.5	1		0.5	1	LSB
Differential Linearity (difference between worse case step of adjacent counts and ideal step	$-4V \le V_{in} \le \pm 4V$.01			.01		LSB
Rollover error (Difference in reading for equal positive & negative voltage near full scale)	- V _{in} ≞ +V _{in} ≈ 4V		0.5	1		0.5	1	LSB
Noise (P-P value not exceeded 95% of time)	V _{in} = 0V Full scale = 4.000V		2			2		μV
Leakage Current at Input (2)	V _{in} = 0V		100	165		100	165	рA
Zero Reading Drift			0.5	2		0.5	2	μV/°C
Scale Factor Temperature (3) Coefficient	$\label{eq:Vin} \begin{split} V_{in} &= +4V \\ 0 \leq T_A \leq 50^\circ C \\ (ext. \ ref. \ 0 \ ppm/^\circ C) \end{split}$		2	5		2	5	ppm/°C

Note 1: Tested with low dielectric absorption integrating capacitor.

Note 2: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, T_J. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. T_J = T_A + θ jA Pd where θ jA is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.

Note 3: The temperature range can be extended to 70°C and beyond if the Auto-Zero and Reference capacitors are increased to absorb the high temperature leakage of the 8068. See note 2 above.

SYMBOL	DESCRIPTION	MIN	ТҮР	MAX	UNITS
tBEA	XBEN Min. Pulse Width		500		
tdab	Data Access Time from XBEN		200		
tDHB	Data Hold Time from XBEN		200		ns
t CEA	CE/LD Min. Pulse Width		500		
tdac	Data Access Time from CE/LD		200		
tрнс	Data Hold Time from CE/LD		200		-

TABLE 1: Direct Mode Timing Requirements
TABLE 2: Handshake	Timing Requirements
--------------------	---------------------

NAME	DESCRIPTION	MIN	ТҮР	MAX	UNITS
t _{MW}	MODE Pulse (minimum)		20		
tsm	MODE pin set-up time		-150		
tME	MODE pin high to low Z CE/LD high delay		200		
t _{MB}	MODE pin high to XBEN low Z (high) delay		200		
tCEL	CLOCK 1 high to CE/LD low delay		700		ns
t _{CEH}	CLOCK 1 high to CE/LD high delay		600		
t CBL	CLOCK 1 high to XBEN low delay	-	900		
tсвн	CLOCK 1 high to XBEN high delay		700		
t _{CDH}	CLOCK 1 high to data enabled delay		1100		1
tCDL	CLOCK 1 low to data disabled delay		1100		
tss	Send ENable set-up time		-350		
tсвz	CLOCK 1 high to XBEN disabled delay		2000		1
tCEZ	CLOCK 1 high to CE/LD disabled delay		2000		

PIN ASSIGNMENTS

HBEN

16

TABLE 3: Pi	n Assignment	and Function	Description
-------------	--------------	--------------	-------------

PIN	SYMBOL	OPTION	DESCRIPTION
1	V(++)		Positive Supply Voltage Nominally +15V
2	GND		Digital Ground .0V, ground
3	STTS		STaTuS output, HI during
,	0110		Integrate and Deintegrate
			until data is latched LO
			when analog section is in
	· · · ·		Auto-Zero configuration.
4	POL		POLarity. Three-state out- put. HI for positive input.
5	OR		OverRange. Three-state output.
6	BIT 16 BIT 14	-16	(Most significant hit)
7	BIT 15	-16	
	BIT 13	-14	
0		10	
8	BIT 12	-16	
		14	
q	BIT 13	-16	
5	BIT 11	-14	
	511 11		
10	BIT 12	-16	
10	BIT 10	-14	Data Bits. Three-state
			outputs. See Table 4 for
			format of ENables and
11	BIT 11	-16 * *	bytes.
	BIT 9	-14	
12	BIT 10	-16	
	nc	-14	
12	PIT O	-16	
. 10	Dri 3	-14	
14	BIT 8		
15	BIT 7		
16	BITE		
17	BIT 5		
10			
10			
19	BIT 3		
20	BIT 2		
21	BIT 1		Least significant bit
22	LBEN		Low Byte ENable. If not in
			nandshake mode (see pin 27)
	÷.,		30) activates low-order
			byte outputs, BITS 1-8
			When in handshake mode
			(see pin 27), serves as a
			low-byte flag output. See
			Figures 8, 9 and 10.
	MBEN	-16	Mid Byte ENable. Activates BITS 9-16, see LBEN (pin 22)
23	HBEN	14	High Byte ENable. Activates
			BITS 9-14, POL, OR, see
		1	LBEN (pin 22)
	HBEN	-16	High Byte ENable.
1. A. A.			Activates POL, OR, see
			LBEN (pin 22).
24	CLOÇK3	-14	RC oscillator pin. Can be
L			used as clock output.

PIN	N SYMBOL DESCRIPTION				
25	CLOCK1	Clock input. External clock or oscillator.			
26	CLOCK2	Clock output. Crystal or RC oscillator.			
27	MODE	Input LO;Direct output mode where CE/LD, HBEN, MBEN, and LBEN act as inputs directly controlling byte outputs. If pulsed HI causes immediate entry into handshake mode (see Figure 9). If HI, enables CE/LD, HBEN, MBEN, and LBEN as outputs. Handshake mode will be entered and data output as in Figures 7 & 8 at conversion completion.			
28	Ř/Ħ	Run/Hold; Input HI-conversions con- tinuously performed every 2 ¹⁷ (-16) 2 ¹⁵ (-14) clock pulses. Input LO-conversion in progress			
		completed, converter will stop in Auto-Zero 7 counts before input integrate.			
29	SEN	Send-ENable: Input controls timing of byte transmission in handshake mode. HI indicates 'send'.			
30	CE/LD	Chip-Enable/LoaD. With MODE (pin 27) LO, CE/LD serves as a master output enable; when HI, the bit outputs and POL, OR are disabled. With MODE HI, pin serves as a LoaD strobe (-ve going) used in handshake mode. See Figures 7 & 8.			
31	V (+)	Positive Logic Supply Voltage. Nominally +5V.			
32	AN.IN	ANalog INput. High side.			
33	BUF IN	BUFfer INput to analog chip			
34	REFCAP2	REFerence CAPacitor (negative side)			
35	AN.GND.	ANalog GrouND. Input low side and reference low side.			
36	A-Z	Auto-Zero node.			
37	VREF	Voltage REFerence input (positive side)			
38	REFCAP1	REFerence CAPacitor (positive side)			
39	COMP-IN	COMParator INput from 8068			
40	V(-) /	Negative Supply Voltage. Nominally-15V.			

TABLE 4: Three-State Byte Formats and ENable Pins.

DETAILED DESCRIPTION

Analog Section

Figure 4 shows the equivalent Circuit of the Analog Section of the 7104/8068 in the 3 different phases of operation. If the Run/Hold pin is left open or tied to V+, the system will perform conversions at a rate determined

by the clock frequency: 131,072 for -16; 32,368 for -14 clock periods per cycle (see Figure 5 conversion timing).

Figure 4D: Phase III - Deintegrate Figure 4: Analog Section of 8068 with 7104

1. Auto-Zero Phase I Fig. 4A.

During Auto-Zero, the input of the buffer is shorted to analog ground thru switch 2, and switch 1 closes a loop around the integrator and comparator. The purpose of the loop is to charge the Auto-Zero capacitor until the integrator output does not change with time. Also switches 4 and 9 recharge the reference capacitor to Vref.

2. Input Integrate Phase II Fig. 4B.

During input integrate the Auto-Zero loop is opened and the analog input is connected to the buffer input thru switch 3. (The reference capacitor is still being charged to Vref during this time.) If the input signal is zero, the buffer, integrator and comparator will see the same voltage that existed in the previous state (Auto-Zero). Thus the integrator output will not change but will remain stationary during the entire Input Integrate cycle. If Vin is not equal to zero, an unbalanced condition exists compared to the Auto-Zero phase, and the integrator will generate a ramp whose slope is proportional to Vin. At the end of this phase, the sign of the ramp is latched into the polarity F/F.

Deintegrate Phase III Fig. 4 C&D

During the Deintegrate phase, the switch drive logic uses the output of the polarity F/F in determining whether to close switches 6 and 9 or 7 and 8. If the input signal was positive, switches 7 and 8 are closed and a voltage which is Vref more negative than during Auto-Zero is impressed on the buffer input. Negative inputs will cause +V_{ref} to be applied to the buffer input via switches 6 and 9. Thus, the reference capacitor generates the equivalent of a (+) reference or a (-) reference from the single reference voltage with negligible error. The reference voltage returns the output of the integrator to the zero-crossing point established in Phase I. The time, or number of counts, required to do this is proportional to the input voltage. Since the Deintegrate phase can be twice as long as the Input integrate phase, the input voltage required to give a full scale reading = $2V_{ref}$.

Note: Once a zero crossing is detected, the system automatically reverts to Auto-Zero phase for the leftover Deintegrate time (unless Run/Hold is manipulated, see Run/ Hold Input in detailed description, digital section).

COUNTS								
Phase I Phase II Phase III								
-16	32768	32768	65536					
-14	8192	8192	16384					

Figure 5: Conversion Timing

/++ = +15V, V+ = 5V, V− = −15V, Clock Freq = 200 kHz									
8068 with		7104-16		7104-	UNIT				
Full scale V _{IN}	200	800	4000	100	4000	mV			
Buffer Gain	10	1	1 .	10	1				
RINT	100	43	200	47	180	kΩ			
CINT	.33	.33	.33	0.1	0.1	μF			

1.0

1.0

2000

61

1.0

1.0

400

12

1.0

10

100

3.1

Table 5: Some Typical Component Values

1.0

10

50

61

1.0

1.0

2000

244

μF

μĒ

mΫ μV

CAZ

Cref

Vref

Resolution

Component Value Selection

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

Integrating Resistor

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. This current should be small compared to the output short circuit current such that thermal effects are kept to a minimum and linearity is not affected. Values of 5 to 40 μ A give good results with a nominal of 20 μ A. The exact value may be chosen by

$$R_{INT} = \frac{\text{full scale voltage}^{\star}}{20\mu\text{A}}$$

*Note: If gain is used in the buffer amplifier then -

The product of integrating resistor and capacitor is selected to give 9 volt swing for full scale inputs. This is a compromise

to give 9 volt swing for full scale inputs. This is a compromise between possibly saturating the integrator (at +14 volts) due to tolerance build-up between the resistor, capacitor and clock and the errors a lower voltage swing could induce due to offsets referred to the output of the comparator. In general, the value of C_{INT} is give by

$$C_{INT} = \frac{\begin{bmatrix} (32768 \text{ for } -16 \\ (8192 \text{ for } -14 \text{ X clock period}) \end{bmatrix} X (20 \mu \text{A})}{\text{Integrator output voltage swing}}$$

A very important characteristic of the integrating capacitor is that it have low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.

This ratiometric condition should read half scale 100...000 and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

Auto-Zero and Reference Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.

Note: When gain is used in the buffer amplifier the reference capacitor should be substantially larger than the auto-zero capacitor. As a rule of thumb, the reference capacitor should be approximately the gain times the value of the auto-zero capacitor. The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

Reference Voltage

The analog input required to generate a full scale output is $V_{\text{IN}}=2~V_{\text{REF}}$

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the 7104 at 16 bits is one part in 65536, or 15.26ppm. Thus, if the reference has a temperature coefficient of $50ppm/^{\circ}C$ (on board reference) a temperature change of $1/3^{\circ}C$ will introduce a one-bit absolute error. For this reason, it is recommended that an external high quality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

Buffer Gain

At the end of the auto-zero interval, the instantaneous noise voltage on the auto-zero capacitor is stored, and subtracts from the input voltage while adding to the reference voltage during the next cycle. The result is that this noise voltage effectively is somewhat greater than the input noise voltage of the buffer itself during integration. By introducing some voltage gain into the buffer, the effect of the auto-zero noise (referred to the input) can be reduced to the level of the inherent buffer noise. This generally occurs with a buffer gain of between 3 and 10. Further increase in buffer gain merely increases the total offset to be handled by the autozero loop, and reduces the available buffer and integrator swings, without improving the noise performance of the system. The circuit recommended for doing this with the 8068/7104 is shown in Figure 6. With careful layout, the circuit shown can achieve effective input noise voltages on the order of $1-2\mu V$, allowing full 16-bit use with full scale inputs of as low as 150mV. Note that at this level, thermoelectric EMFs between PC boards, IC pins, etc., due to local temperature changes can be very troublesome.

Figure 6: Adding Buffer Gain to 8068

DETAILED DESCRIPTION

Digital Section

The digital section includes the clock oscillator circuit, a 16 bit or 14 bit binary counter with output latches and TTLcompatible three-state output drivers, polarity, over-range and control logic and UART handshake logic, as shown in the Block Diagram Figure 7 (16 bit verison shown).

Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined under "ADC-7104 Electrical Characteristics". For minimum power consumption, all inputs should swing from GND (low) to V+ (high). Inputs driven from TTL gates should have $3-5k\Omega$ pullup resistors added for maximum noise immunity.

Mode Input

The MODE input is used to control the output mode of the converter. When the MODE pin is connected to GND or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in three bytes for the 7104-16 or two bytes for the 7104-14, then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

STaTuS Output

During a conversion cycle, the STaTuS output goes high at the beginning of Input Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 5 for details of this timing. This signal may be used as a "data valid" flag (data never changes while STaTuS is low) to drive interrupts, or for monitoring the status of the converter.

Run/Hold Input

When the Run/Hold input is connected to V⁺ or left open (this input has a pullup resistor to ensure a high level when the pin is left open), the circuit will continuously perform conversion cycles, updating the output latches at the end of every Deintegrate (Phase III) portion of the conversion cycle (See Figure 5). (See under "Handshake Mode" for exception.) In this mode of operation, the conversion cycle will be performed in 131,072 for 7104-16, or 32768 for 7104-14 clock periods, regardless of the resulting value.

If Run/Hold goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to Auto-Zero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If Run/Hold stays or goes low, the converter will ensure a minimum Auto-Zero time, and then wait in Auto-Zero until the Run/Hold input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STaTuS output will go high) seven clock periods after the high level is detected at Run/Hold. See Figure 8 for details.

Using the Run/Hold input in this manner allows an easy "convert on demand" interface to be used. The converter may be held at idle in Auto-Zero with Run/Hold Iow. When Run/Hold goes high the conversion is started, and when the STaTuS output goes low the new data is valid (or transferred to the UART - see Handshake Mode). Run/Hold may now go low terminating Deintegrate and ensuring a minimum Auto-Zero time before stopping to wait for the next conversion. Alternately, Run/Hold can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the Run/Hold input can be provided by connecting it to the CLOCK3 (-14), CLOCK2 (-16) Output. In this mode the conversion time is dependent on the input value measured.

If the Run/ \overline{H} old input goes low and stays low during Auto-Zero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for Run/ \overline{H} old to go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected.

Direct Mode

When the MODE pin is left at a low level, the data outputs[bits 1 through 8 low order byte, see Table 4 for format of middle (-16) and high order bytes] are accessible under control of the byte and chip ENable terminals as inputs. These ENable inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip ENable input is low, taking a byte ENable

input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used, as shown in Figure 2. The timing requirements for these outputs are shown in Figure 2 and Table 1.

It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the data while it is being updated, which could lead to scrambled data. Synchronizing the access of data with the conversion cycle by monitoring the STaTuS output will prevent this. Data is never updated while STaTuS is low. Also note the potential bus conflict described under "Initial Clear Circuitry".

Figure 9: Handshake With SEN Held Positive

Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the 7104 to digital systems, where the A/D converter becomes active in controlling the flow of data instead of passively responding to chip and byte ENable inputs. This mode is specifically designed to allow a direct interface between the 7104 and industry-standard UARTs (such as the Intersil CMOS UART's, IM6402/3) with no external logic required. When triggered into the handshake mode, the 7104 provides all the control and flag signals necessary to sequence the three (7106-16) or two (7104-14) bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central controlling processor.

Entry into the handshake mode will occur if either of two conditions are fulfilled; first, if new data is latched (i.e. a conversion is completed) while MODE pin (pin 27) is high, in which case entry occurs at the end of the latch cycle; or secondly, if the MODE pin goes from low to high, when entry will occur immediately (if new data is being latched, entry is delayed to the end of the latch cycle). While in the handshake mode, data latching is inhibited, and the MODE pin is ignored. (Note that conversion cycles will continue in the normal manner). This allows versatile initiation of handshake operation without danger of false data generation; if the MODE pin is held high, every conversion (other than those completed during handshake operations) will start a new handshake operation, while if the MODE pin is pulsed high, handshake operations can be obtained "on demand."

When the converter enters the handshake mode, or when the MODE input is high, the chip and byte ENable terminals become TTL-compatible outputs which provide the control signals for the output cycle. The Send ENable pin (SEN) (pin 29) is used as an indication of the ability of the external device to receive data. The condition of the line is sensed once every clock pulse, and if it is high, the next (or first) byte is enabled on the next rising CLOCK 1 (pin 25) clock edge, the corresponding byte ENable line goes low, and the Chip ENable/LoaD line (pin 30) (CE/LD) goes low for one full clock pulse only, returning high.

On the next falling CLOCK 1 clock pulse edge, if SEN remains high, or after it goes high again, the byte output lines will be put in the high impedance state (or three-stated off). One half pulse later, the byte ENable pin will be cleared high, and (unless finished) the CE/LD and the next byte ENable pin will go low. This will continue until all three (2 in the case of 14 bit devices) bytes have been sent. The bytes are individually put into the low impedance state i.e.: three-stated on during most of the time that their byte ENable pin is (active) low. When receipt of the last byte has been acknowledged by a high SEN, the handshake mode will be cleared, re-enabling data latching from conversions, and recognizing the condition of the MODE pin again. The byte and chip ENable will be threestated off, if MODE is low, but held high by their (weak) pullups. These timing relationships are illustrated in Figure 9, 10, and 11, and Table 2.

Figure 10: Handshake - Typical UART Interface Timing

Figure 9 shows the sequence of the output cycle with SEN held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the CE/LD, LBEN, MBEN and HBEN terminals are active as outputs). The high level at the SEN input is sensed on the same high to low internal clock edge. On the next low to high internal clock edge, the CE/LD and the HBEN outputs assume a low level and the high-order byte (POL and OR, and except for -16, Bis 9-14) outputs are enabled. The CE/LD output remains low for one full internal clock period only, the data outputs remain active for 1-1/2 internal clock periods, and the high byte ENable remains low for two clock periods. Thus the $\overline{CE}/\overline{LD}$ output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the byte ENable as an output may be used as a byte identification flag. With SEN remaining high the converter completes the output cycle using CE/LD, MBEN and LBEN while the remaining byte outputs (see Table 4) are activated. The handshake mode is terminated when all bytes are sent (3 for -16, 2 for -14, -12).

Figure10 shows an output sequence where the SEN input is used to delay portions of the sequence, or handshake, to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEN input to the ICL7104 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the $\overline{CE}/\overline{LD}$ terminal of the ICL7104 drives the TBRL (Transmitter Buffer Register Load) input to the UART.

The data outputs are paralleled into the eight Transmitter Buffer Register inputs.

Assuming the UART Transmitter Buffer Register is empty. the SEN input will be high when the handshake mode is entered after new data is stored. The CE/LD and HBEN terminals will go low after SEN is sensed, and the high order byte outputs become active. When $\overline{CE}/\overline{LD}$ goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next 7104 internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the HBEN output returns high. At the same time, the CE/LD and MBEN (-16) or LBEN outputs go low, and the corresponding byte outputs become active. Similarly, when the $\overline{CE}/\overline{LD}$ returns high at the end of one clock period, the enabled data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7104 internal clock high to low edge, disabling the data outputs. For the 16 bit device, the sequence is repeated for LBEN. One-half internal clock later, the handshake mode will be cleared, and the chip and byte ENable terminals return high and stay active (as long as MODE stays high).

With the MODE input remaining high as in these examples, the converter will output the results of every conversion

Figure 11: Handshake Triggered By Mode

except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 11 shows a handshake output sequence triggered by such an edge. In addition, the SEN input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEN input, and the sequence for the first (high order) byte is similar to the sequence for the other bytes. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STaTuS output and Run/Hold input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is therefore lost.

Initial Clear Circuitry

The internal logic of the 7104 is supplied by an internal regulator between V++ and Digital Ground. The regulator includes a low-voltage detector that will clear various registers. This is intended to ensure that on initial power-up, the control logic comes up in Auto-Zero, with the 2nd, 3rd, and 4th MSB bits cleared, and the "mode" FF cleared (i.e. in "direct" mode). This, however, will also clear these registers if the supply voltage "glitches" to a low enough value. Additionally, if the supply voltage comes up too fast, this clear pulse may be too narrow for reliable clearing. In general, this is not a problem, but if the UART internal "MODE" FF should come up set, the byte and chip ENable lines will become active outputs. In many systems this could lead to buss conflicts, especially in non-handshake systems. In any case, SEN should be high (held high for nonhandshake systems) to ensure that the MODE FF will be cleared as fast as possible (see Fig. 9 for timing). For these and other reasons, adequate supply bypass is recommended.

Oscillator

The 7104 is provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillator.

Figure 12 shows the oscillator configured for RC operation. The internal clock will be of the same frequency and phase as the voltage on the CLOCK 3 pin. The resistor and capacitor should be connected as shown. The circuit will oscillate at a frequency given by f = .45/RC. An $100k\Omega$ resistor is recommended for useful ranges of frequency. For optimum 60Hz line rejection, the capacitor value should be chosen such that 32768 (-16) or 8192 (-14) clock periods is close to an integral multiple of the 60Hz period.

Figure 12: RC Oscillator

Note that CLOCK 3 has the same output drive as the bit outputs.

As a result of pin count limitations, the ICL7104-16 has only CLOCK 1 and CLOCK 2 available, and cannot be used as an RC oscillator. The internal clock will correspond to the inverse of the signal on CLOCK 2. Figure 13 shows a crystal oscillator circuit, which can be used with all 7104 versions. If an external clock is to be used, it should be applied to CLOCK 1. The internal clock will correspond to the signal applied to this pin.

Figure 13: Crystal Oscillator

POWER SUPPLY SEQUENCING

Because of the nature of the CMOS process used to fabricate the 7104, and the multiple power supplies used, there are certain conditions of these supplies under which a disabling and potentially damaging SCR action can occur. All of these conditions involve the V+ supply (nom. +5V) being more positive than the V++ supply. If there is any possibility of this occuring during start-up, shut down, under transient conditions during operation, or when inserting a PC board into a "hot" socket, etc., a diode should be placed between V- and V++ to prevent it. A germanium or Schottky rectifier diode would be best, but in most cases a silicon rectifier diode is adequate.

ANALOG AND DIGITAL GROUNDS

Extreme care must be taken to avoid ground loops in the layout of 8068/7104 circuits, especially in 16-bit and high sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line. A recommended connection sequence for the ground lines is shown in Figure 14.

PACKAGE DIMENSIONS

Printed in U.S.A. Copyright < 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L A) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8866 • Dallas, TX (214)241-0651 OVERSEAS · DATEL (UK) LTD-TEL ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089,77-60-95 • DATEL KK Tokyo 793-1031 NS SUBJECT TO CHANGE WITHOUT NOTICE 1/80

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

ADC-7109 12 Bit Binary A/D Converter for Microprocessor Interfaces

FEATURES

- 12 bit binary (plus polarity and overrange) dual slope integrating analog-to-digital converter.
- Byte-organized TTL-compatible three-state outputs and UART handshake mode for simple parallel or serial interfacing to microprocessor systems.
- RUN/HOLD input and STATUS output can be used to monitor and control conversion timing.
- True differential input and differential reference.
- Low noise-typically 15µV peak-to-peak.
- 1pA typical input current.
- Operates at up to 30 conversions per second.
- On-chip oscillator operates with inexpensive 3.58MHz TV crystal giving 7.5 conversions per second for 60Hz rejection, or may be operated as an RC oscillator for other clock frequencies.
- Combines analog and digital functions on a single low power LSI CMOS chip.
- All inputs fully protected against static discharge; no special handling precautions necessary.

GENERAL DESCRIPTION

The ADC-7109 is a high performance, low power integrating A/D converter designed to easily interface to microprocessors.

The output data (12 bits, polarity and overrange) may be directly accessed under control of two byte enable inputs and a chip select input for a simple parallel bus interface. A UART handshake mode is provided which allows the ADC-7109 to work with industry-standard UARTs to provide serial data transmission, ideal for remote data logging applications. The RUN/HOLD input and STATUS output allow monitoring and control of conversion timing.

The ADC-7109 provides the user the high accuracy, low noise, low drift, versatility, and economy of the dual-slope integrating A/D converter. Features like true differential input and reference, zero drift of less than $1\mu V/^{\circ}$ C max., input bias current of 10pA max., and typical power consumption of 20mW make the ADC-7109 an attractive per-channel alternative to analog multiplexing for many data acquisition applications.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Data Acquisition

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage (GND to V^*)	+6.2V
Negative Supply Voltage (GND to V ⁻)	9V
Analog Input Voltage (Lo or Hi) (Note 1)	V^+ to V^-
Reference Input Voltage (Lo or Hi) (Note 1)	V^+ to V^-
Digital Input Voltage	√ ⁺ + 0.3V
(Pins 2-27) (Note 2) GN	JD-0.3V
Power Dissipation (Note 3)	
Ceramic or Cerdip Package 1W	/ @ 85° C
Plastic Package	/ @ 70° C
Operating Temperature	
Ceramic or Cerdip Package $\dots \dots \dots$	√ ≤ 85° C
Plastic Package	$\sim 70^{\circ}$ C
Storage Temperature	$\leq 125^{\circ} C$
Lead Temperature (soldering, 60 sec)	. 300° C

Absolute maximum ratings define stress limitations which if exceeded may permanently damage the device. These ratings are not continuous duty ratings. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

TABLE I OPERATING CHARACTERISTICS

All parameters with V⁺=+5V, V⁻=-5V, GND = 0V, T_A= 25°C, unless otherwise indicated. Test circuit as shown on page 1.

ANALOG SECTION

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Zero Input Reading		V _{IN} = 0.0V Full scale = 409.6mV	0000 ₈	±00008	+00008	Octal Reading
Ratiometric Reading		$V_{IN} = V_{REF}$ $V_{REF} = 204.8mV$	3777 ₈	3777 ₈ 4000 ₈	4000 ₈	Octal Reading
Non-Linearity (Max deviation from best straight line fit)		Full scale = 409.6mV or 4.096V	-1	±.2	. +1	Counts
Roll-over Error (dif- ference in reading for equal pos. and neg. inputs near full scale.			-1	±.2	+1	Counts
Common Mode Rejection Ratio		$V_{CM} \pm 1V V_{IN} = 0V$ Full Scale = 409.6mV		50		μ V/V
Noise (p-p value not exceeded 95% of time)		V _{IN} = 0V Full Scale = 409.6mV		15		μV
Leakage Current at Input		V _{IN} = 0V		1	10	pА
Zero Reading Drift		$V_{IN} = 0V$		0.2	1	μV/°C
Scale Factor Temperature Coefficient		V _{IN} = 408.9mV => 7770 ₈ reading Ext. Ref. 0 ppm/°C		1	5	ppm/°C
Supply Current V ⁺ to GND	IDL	V _{IN} = 0, Crystal Osc.		700	1500	μA
Supply Current V+ to V-	IDA	2.58WHz test circuit Pins 2-21, 25, 26, 27, 29, open		700	1500	μA
Ref Out Voltage		Referred to V ⁺ , 25kΩ between V ⁺ and REF OUT	-2.4	-2.8	-3.2	V
Ref Out Temp. Coefficient		$25k\Omega$ between V ⁺ and REF OUT		80		ppm/°C

DIGITAL SECTION

PARAMETER		SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output High Voltage		Voh	I _{OUT} = 100μA Pins 2-16, 18, 19, 20	3.5	4.3		V
Output Low Voltage		VOL	I _{OUT} = 1.6mA		0.2	0.4	V
Output Leakage Curre	nt	-	Pins 3-16 high impedance		±.01	±1	μA
Control I/O Pullup Current			Pins 18, 19, 20 V _{OUT} = V+ -3V MODE input at GND		5		μA
Control I/O Loading		· · · ·	HBEN Pin 19 LBEN Pin 18			50	pF
Input High Voltage		ViH	Pins 18-21, 26, 27 referred to GND	2.5			V
Input Low Voltage		VIL	Pins 18-21, 26, 27 referred to GND			1	V
Input Pull-up Current			Pins 26, 27 V _{OUT} = V · −3V		5		μA
Input Pull-up Current			Pins 17, 24 V _{OUT} = V ⁺ -3V		['] 25		μA
Input Pull-down Current			Pin 21 VOUT GND +3V		5		μA
Oscillator Output High		Оон	$V_{OUT} = 2.5V$		1		mA
Current Low		OOL	V _{OUT} = 2.5V		1.5		mA
Buffered Oscillator High		ВООН	Vout - 2.5V		2		mA
Output Current Low		BOOL	V _{OUT} = 2.5V		5		mA
MODE Input Pulse Wid	lth			50			. ns

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to 100µA

Note 2: Due to the SCR structure inherent in the process used to fabricate these devices, connecting any digital inputs or outputs to voltages greater than V or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources not on the same power supply be applied to the ADC-7109 before its power supply is established, and that in multiple supply systems the supply to the ADC-7109 be activated first.

Note 3: This limit refers to that of the package and will not be obtained during normal operation.

CMOS MICROCOMPUTER

Figure 1B. Typical Connection Diagram Parallel Interface With 8748/8048 Microcomputer

CMOS A/D CONVERTER

PIN	SYMBOL	DESCRIPTION			
1	GND	Digital	Ground, 0V, Ground return for all		
		digital	logic		
2	STATUS	Output	- High during integrate and deinte-		
		grate u	ntil data is latched.		
1.1		- Low v	when analog section is in Auto-Zero		
		configu	iration.		
3	POL	Polarity	y. Three-State Output		
4	OR	Over-ra	ange. Three-State Output		
5	B12	Bit 12	Most Significant Bit		
6	B11	Bit 11			
7	B10	Bit 10			
8	B9	Bit 9			
9	B8	Bit 8			
10	B7	Bit 7			
11	B6	Bit 6	Data Bits. Three-State Output		
12	B5	Bit 5			
13	B4	Bit 4			
14	B3	Bit 3			
15	B2	Bit 2			
16	B1	Bit 1	Least Significant Bit		
17	TEST	Input H	ligh - Normal Operation.		
1		Input L	ow - Forces all bit outputs high.		
		Note: T	his input is used for test purposes		
		only.			
18	LBEN	Low By	te Enable - With Mode Pin 21 low.		
l		and CE	LOAD Pin 20 low, taking this pin		
		low act	ivates low order byte outputs B1-B8.		
1		- With N	Node Pin 21 high, this pin serves as		
		a low b	yte flag output used in handshake		
		mode.	See Figures 7, 8, 9.		
19	HBEN	High B	yte Enable - With Mode Pin 21 low.		
		and CE	LOAD Pin 20 low, taking this pin		
]		low act	ivates high order byte outputs B9-		
1		B12, P0	JL. OR.		
i .		- With N	Mode Pin 21 high, this pin serves as		
1		a high l	byte flag output used in handshake		
		mode.	See Figures 7, 8, 9.		
20	CE LOAD	Chip Er	hable Load - With Mode (Pin 21) low.		
		CE LO	AD serves as a master output enable.		
		When h	nigh. B1-B12. POL. OR outputs are		
1		disable	d.		
	3	- With M	Adde (Pin 21) high, this pin serves as		
		a load	strobe used in handshake mode.		
		See Fig	jures 7. 8, 9.		

r A	BL	Ε	2	-	Pin	Assignment	and	Function	Description
-----	----	---	---	---	-----	------------	-----	----------	-------------

PIN	SYMBOL	DESCRIPTION		
21	MODE	Input Low - Direct output mode where		
		CE/LOAD (Pin 20), HBEN (Pin 19) and		
		LBEN (Pin 18) act as inputs directly		
		controlling byte outputs.		
		Input Pulsed High - Causes immediate		
		entry into handshake mode and output of		
	·	data as in Figure 9.		
		Input High - Enables CE/LOAD (Pin 20),		
		HBEN (Pin 19), and LBEN (Pin 18) as out-		
		puts, handshake mode will be entered and		
		version completion		
100		Version completion.		
22				
23	030 001	Oscillator Output		
24	USC SEL	Oscillator Select - Input high configures		
	4	oscillator clock will be same phase and		
		duty cyclo as BLE OSC OLIT		
1		- Input low configures OSC IN OSC OUT		
		for crystal oscillator - clock frequency will		
		be 1.58 of frequency at BUE OSC OUT		
25	BUE OSC OUT	Buffered Oscillator Output		
26	BUN HOLD	Input High - Conversions continuously		
		performed every 8192 clock pulses		
		Input Low - Conversion in progress com-		
		pleted. converter will stop in Auto-Zero 7		
1		counts before integrate.		
27	SEND	Input - Used in handshake mode to indicate		
		ability of an external device to accept data.		
28	V	Analog Negative Supply - Nominally 5V		
		with respect to GND (Pin 1).		
29	REF OUT	Reference Voltage Output - Nominally 2.8V		
		down from V [®] (Pin 40).		
30	BUFFER	Buffer Amplifier Output		
31	AUTO-ZERO	Auto-Zero Node - Inside foil of CAZ		
32	INTEGRATOR	Integrator Output - Outside foil of CINT		
33	COMMON	Analog Common - System is Auto-Zeroed		
		to COMMON		
34	INPUT LO	Differential Input Low Side		
35	INPUT HI	Differential Input High Side		
36	REF IN ·	Differential Reference Input Positive		
37	REF CAP	Reference Capacitor Positive		
38	REF CAP	Reference Capacitor Negative		
39	REF IN	Differential Reference Input Negative		
40	V	Positive Supply Voltage - Nominally 5V		
1		with respect to GND Pin 1.		

DETAILED DESCRIPTION

Analog Section

Figure 2 shows the equivalent circuit of the Analog Section of the ADC-7109. When the RUN/HOLD input is left open or connected to V⁺, the circuit will perform conversions at a rate determined by the clock frequency (8192 clock periods per cycle). Each measurement cycle is divided into three phases as shown in Figure 3. They are (1) Auto-Zero (AZ), (2) Signal Integrate (INT) and (3) Deintegrate (DE).

1. Auto-Zero Phase

During auto-zero three things happen. First, input high and low are disconnected from their pins and internally shorted to analog common. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the autozero capacitor C_{AZ} to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the AZ accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than 10μ V.

2. Signal Integrate Phase

During signal integrate the auto-zero loop is opened, the internal short is removed and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between input high and input low for a fixed time of 2048 clock periods. At the end of this phase, the polarity of the integrated signal is determined.

3. Deintegrate Phase

The final phase is deintegrate, or reference integrate. Input low is internally connected to analog common and input high is connected across the previously charged (during auto-zero) reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to the zero crossing (established in Auto Zero) with a fixed slope. Thus the time for the output to returr. to zero (represented by the number of clock periods counted) is proportional to the input signal.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4V full scale with some loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.

The ADC-7109 has, however, been optimized for operation with analog common near digital ground. With power supplies of $\pm 5V$ and $\pm 5V$, this allows a 4V full scale integrator swing positive or negative maximizing the performance of the analog section.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to deintegrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for (+) or (-) input voltage will give a roll-over error. However, by

selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Values Selection below).

The roll-over error from these sources is minimized by having the reference common mode voltage near or at analog common.

Component Value Selection

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

The most important consideration is that the integrator output swing (for full-scale input) be as large as possible. For example, with ±5V supplies and COMMON connected to GND, the nominal integrator output swing at full scale is $\pm 4V$. Since the integrator output can go to 0.3V from either supply without significantly affecting linearity, a 4V integrator output swing allows 0.7V for variations in output swing due to component value and oscillator tolerances. With ±5V supplies and a common mode range of $\pm 1V$ required, the component values should be selected to provide $\pm 3V$ integrator output swing. Noise and rollover errors will be slightly worse than in the $\pm 4V$ case. For larger common mode voltage ranges, the integrator output swing must be reduced further. This will increase both noise and rollover errors. To improve the performance, supplies of ±6V may be used.

1. Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100\mu A$ of quiescent current. They supply 20µA of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 4.096 volt full scale, 200k() is near optimum and similarly a 20kΩ for a 409.6mV scale. For other values of full scale voltage, RINT should be chosen by the relation $R_{INT} = \frac{full scale voltage}{full scale voltage}$

2. Integrating Capacitor

The integrating capacitor CINT should be selected to give the maximum integrator output voltage swing without saturating the integrator (approximately 0.3 volt from either supply). For the ADC-7109 with ± 5 volt supplies and analog common connected to GND, a ±3.5 to ±4 volt integrator output swing is nominal. For 7-1/2 conversions per second (61.72KHz clock frequency) as provided by the crystal oscillator, nominal values for CINT and CAZ are $0.15\mu F$ and $0.33\mu F$, respectively. If different clock frequencies are used, these values should be changed to maintain the integrator output voltage swing. In general, the value of CINT is given by

$$C_{INT} = \frac{(2048 \text{ x clock period}) (20\mu\text{A})}{\text{integrator output voltage swing}}$$

An additional requirement of the integrating capacitor is that it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

3. Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system; a big capacitor, giving less noise. However, it cannot be increased without limits since it, in parallel with the integrating capacitor forms an R-C time constant that determines the speed of recovery from overloads and more important the error that exists at the end of an auto-zero cycle. For 409.6mv full scale where noise is very important and the integrating resistor small, a value of CAZ twice CINT is optimum. Similarly for 4.096V full scale where recovery is more important than noise, a value of CAZ equal to half of CINT is recommended.

For optimal rejection of stray pickup, the outer foil of CAZ should be connected to the R-C summing junction and the inner foil to pin 31. Similarly the outer foil of CINT should be connected to pin 32 and the inner foil to the R-C summing junction.

4. Reference Capacitor

A 1μ F capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the reference low is not at analog common) and a 409.6mV scale is used, a larger value is required to prevent roll-over error. Generally 10µF will hold the rollover error to 0.5 count in this instance.

5. Reference Voltage

The analog input required to generate a full scale output of 4096 counts is $V_{IN} = 2V_{REF}$. Thus for a normalized scale, a reference of 2.048V should be usd for a 4.096V full scale, and 204.8mV should be used for a 0.4096V full scale. However, in many applications where the A/D is sensing the output of a transducer, there will exist a scale factor other than unity between the absolute output voltage to be measured and a desired digital output. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682V. Instead of dividing the input down to 409.6mV, the input voltage should be measured directly and a reference voltage of 0.341V should be used. Suitable values for integrating resistor and capacitor are 34k and 0.15μ F. This avoids a divider on the input. Another advantage of this system occurs when a zero reading is desired for non-zero input. Temperature and weight measurements with an offset or tare are examples. The offset may be introduced by connecting the voltage output of the transducer between common and analog high, and the offset voltage between common and analog low, observing polarities carefully. However, in processor-based systems using the ADC-7109, it may be more efficient to perform this type of scaling or tare subtraction digitally using software.

6. Reference Sources

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ADC-7109 at 12 bits is one part in 4096, or 244ppm. Thus if the reference has a temperature coefficient of 80ppm/°C (onboard reference) a temperature difference of 3°C will introduce a one-bit absolute error. For this reason, it is recommended that an external highquality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

The ADC-7109 provides a Reference Output (pin 29) which may be used with a resistive divider to generate a suitable reference voltage. This output will sink up to about 20mA without significant variation in output voltage, and is provided with a pullup bias device which sources about 10 μ A. The output voltage is nominally 2.8V below V⁺, and has a temperature coefficient of ±80ppm/°C typ. When using the onboard reference, Ref Out (Pin 29) should be connected to Ref – (pin 39), and Ref+ should be connected to the wiper of a precision potentiometer between Ref Out and V⁺. The circuit for a 204.8mV reference is shown in the test circuit. For a 2.048V reference, the fixed resistor should be removed, and a 25k Ω precision potentiometer between Ref Out and V⁺ should be used.

DETAILED DESCRIPTION

Digital Section

The digital section includes the clock oscillator and scaling circuit, a 12-bit binary counter with output latches and TTL-compatible three-state output drivers, polarity, over-range and control logic, and UART handshake logic, as shown in the Block Diagram Figure 4.

Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined in Table 1 "Operating Characteristics". For minimum power consumption, all inputs should swing from GND (low) to V (high). Inputs driven from TTL gates should have 3-5k Ω pullup resistors added for maximum noise immunity.

MODE Input

The MODE input is used to control the output mode of the converter. When the MODE pin is connected to GND or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable

inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in two bytes, then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

STATUS Output

During a conversion cycle, the STATUS output goes high at the beginning of Signal Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 3 for details of this timing. This signal may be used as a "data valid" flag (data never changes while STATUS is low) to drive interrupts, or for monitoring the status of the converter.

RUN/HOLD Input

When the RUN/HOLD input is connected to V⁺ or left open (this input has a pullup resistor to ensure a high level when the pin is left open), the circuit will continuously perform conversion cycles, updating the output latches at the end of every Deintegrate (Phase III) portion of the conversion cycle (See Figure 3). In this mode of operation, the conversion cycle will be performed in 8192 clock periods, regardless of the resulting value.

If the RUN/HOLD input goes low (and stays there) during Integrate (Phase II) or Deintegrate (Phase III) before the zero crossing is detected, the converter will complete the conversion in progress, update the output latches, and then terminate Phase III, jumping to Auto-Zero (Phase I). If RUN/HOLD stays low, the converter will ensure a minimum Auto-Zero time, and wait in Auto-Zero until the RUN/HOLD input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STATUS output will go high) seven clock periods after the high level is detected at RUN/HOLD. See Figure 5 for details.

Figure 4: Digital Section

Figure 5: Run/Hold Operation

Using the RUN/HOLD input in this manner allows an easy "convert on demand" interface to be used. The converter may be held at idle in auto-zero with RUN/HOLD low. When RUN/HOLD goes high the conversion is started, and when the STATUS output goes low the new data is valid (or transferred to the UART - see Handshake Mode). RUN/HOLD may now go low terminating Deintegrate and ensuring a minimum Auto-Zero time before stopping to wait for the next conversion.

If RUN/HOLD goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to Auto-Zero. This feature can be used to "short-cycle" the converter by eliminating the time spent in Deintegrate after the zero crossing. The required activity on the RUN/HOLD input can be provided by connecting it to the Buffered Oscillator Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A030 for a discussion of the effects this will have on Auto-Zero performance.

If the RUN/HOLD input goes low and stays low during Auto-Zero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for RUN/HOLD to go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected.

Direct Mode

When the MODE pin is left at a low level, the data outputs (bits 1 through 8 low order byte, bits 9 through 12, polarity and over-range high order byte) are accessible under control of the byte and chip enable terminals as inputs. These three inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip enable input is low, taking a byte enable input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used, as shown in the section entitled "Interfacing." The timing requirements for these outputs are shown in Figure 6 and Table 3.

Table 3 - Direct Mode	Timing Requirements
-----------------------	---------------------

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t BEA	Byte Enable Width	200	500		ns
tdab	Data Access Time from Byte Enable		150	300	ns
tDнв	Data Hold Time from Byte Enable		150	300	ns
t CEA	Chip Enable Width	300	500		ns
tDAC	Data Access Time from Chip Enable		200	400	ns
tDHC	Data Hold Time from Chip Enable		200	400	ns

It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the data while it is begin updated, which could lead to scrambled data. Synchronizing the access of data with the conversion cycle by monitoring the STATUS output will prevent this. Data is never updated while STATUS is low.

Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the ADC-7109 to digital systems, where the A/D converter becomes active in controlling the flow of data instead of passively responding to chip and byte enable inputs. This mode is specifically designed to allow a direct interface between the ADC-7109 and industry-standard UARTs (such as the Intersil CMOS UARTs, IM6402/3) with no external logic required. When triggered into the handshake mode, the ADC-7109 provides all the control and flag signals necessary to sequence the two bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central controlling processor.

Entry into the handshake mode is controlled by the MODE pin. When the MODE terminal is held high, the ADC-7109 will enter the handshake mode after new data has been stored in the output latches at the end of every conversion performed (See Figures 7 and 8). The MODE terminal may also be used to trigger entry into the handshake mode on demand. At any time during the conversion cycle, the low to high transition of a short pulse at the MODE input will cause immediate entry

54C

into the handshake mode. If this pulse occurs while new data is being stored, the entry into handshake mode is delayed until the data is stable. While the converter is in the handshake mode, the MODE input is ignored, and although conversions will still be performed, data updating will be inhibited (See Figure 9) until the converter completes the output cycle and clears the handshake mode.

When the converter enters the handshake mode, or when the MODE input is high, the chip and byte enable terminals become TTL-compatible outputs which provide the control signals for the output cycle (See Figures 7, 8, and 9).

In handshake mode, the SEND input is used by the converter as an indication of the ability of the receiving device (such as a UART) to accept data.

Figure 7 shows the sequence of the output cycle with SEND held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the CE/LOAD, LBEN and HBEN terminals are active as outputs). The high level at the SEND input is sensed on the same high to low internal clock edge. On the next low to high internal clock edge, the CE/LOAD and the HBEN outputs assume a low level, and the high-order byte (bits 9 through 12, POL, and OR) outputs are enabled. The CE/LOAD output remains low for one full internal clock period only, the data outputs remain active for 1-1/2 internal clock periods, and the high byte enable remains low for two clock periods. Thus the CE/LOAD output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the

byte enable as an output may be used as a byte identification flag. With SEND remaining high the converter completes the output cycle using CE/LOAD and LBEN while the low order byte outputs (bits 1 through 8) are activated. The handshake mode is terminated when both bytes are sent.

Figure 8 shows an output sequence where the SEND input is used to delay portions of the sequence, or handshake, to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEND input to the ADC-7109 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the CE/LOAD terminal of the ADC-7109 drives the TBRL (Transmitter Buffer Register Load) input to the UART. The data outputs are paralleled into the eight Transmitter Buffer Register Interface.

Assuming the UART Transmitter Buffer Register is empty, the SEND input will be high when the handshake mode is entered after new data is stored. The CE/LOAD and HBEN terminals will go low after SEND is sensed, and the high order byte outputs become active. When CE/LOAD goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ADC-7109

Figure 9: Handshake Triggered By Mode

internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the HBEN output returns high. At the same time, the $\overline{CE/LOAD}$ and \overline{LBEN} outputs go low, and the low order byte outputs become active. Similarly, when the $\overline{CE/LOAD}$ returns high at the end of one clock period, the low order data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ADC-7109 internal clock high to low edge, disabling the data outputs. One-half internal clock later, the handshake mode will be cleared, and the $\overline{CE/LOAD}$, HBEN, and LBEN terminals return high and stay active (as long as MODE stays high).

With the MODE input remaining high as in these examples, the converter will output the results of every conversion except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 9 shows a handshake output sequence triggered by such an edge. In addition, the SEND input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEND input, and the sequence for the first (high order) byte is similar to the sequence for the second byte. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STATUS output and RUN/HOLD input functioning normally. The only difference is that new data will not be latched when in handshake mode. and is therefore lost.

Oscillator

The ADC-7109 is provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillator. The OSCILLATOR SELECT input changes the internal configuration of the oscillator to optimize it for RC or crystal operation.

When the OSCILLATOR SELECT input is high or left open (the input is provided with a pullup resistor), the oscillator is configured for RC operation, and the internal clock will be of the same frequency and phase as the signal at the BUFFERED OSCILLATOR OUTPUT. The resistor and capacitor should be connected as in Figure 10. The circuit will oscillate at a frequency given by f = .45/RC. A $100k\Omega$ resistor is recommended for useful ranges of frequency. For optimum 60Hz line rejection, the capacitor value should be chosen such that 2048 clock periods is close to an integral multiple of the 60Hz period.

When the OSCILLATOR SELECT input is low a feedback device and output and input capacitors are added to the oscillator. In this configuration, as shown in Figure 11, the

oscillator will operate with most crystals in the 1 to 5MHz range with no external components. Taking the OSCILLATOR SELECT input low also inserts a fixed ÷58 divider circuit between the BUFFERED OSCILLATOR OUTPUT and the internal clock. Using an inexpensive 3.58MHz TV crystal, this division ratio provides an integration time given by:

= (2048 clock periods) X
$$\left(\frac{58}{3.58MHz}\right)$$
 - 33.18ms

This time is very close to two 60Hz periods or 33.33ms. The error is less than one percent, which will give better than 40dB 60Hz rejection. The converter will operate reliably at conversion rates of up to 30 per second, which corresponds to a clock frequency of 245.8kHz.

If at any time the oscillator is to be overdriven, the overdriving signal should be applied at the OSCILLATOR INPUT, and the OSCILLATOR OUTPUT should be left open. The internal clock will be of the same frequency, duty cycle, and phase as the input signal when OSCILLATOR SELECT is left open. When OSCILLATOR SELECT is at GND, the clock will be a factor of 58 below the input frequency.

When using the ADC-7109 with the IM6403 UART, it is possible to use one 3.58MHz crystal for both devices. The BUFFERED OSCILLATOR OUTPUT of the ADC-7109 may be used to drive the OSCILLATOR INPUT of the UART, saving the need for a second crystal. However, the BUFFERED OSCILLATOR OUTPUT does not have a great deal of drive, and when driving more than one slave device, external buffering should be used

Test Input

Т

When the TEST input is taken to a level halfway between V and GND, the counter output latches are enabled, allowing the counter contents to be examed anytime.

When the TEST input is connected to GND, the counter outputs are all forced into the high state, and the internal clock is disabled. When the input returns to the 1/2 (V' - GND) voltage or to V' and one clock is input, the counter outputs will all be clocked to the negative state. This allows easy testing of the counter and its outputs.

INTERFACING Direct Mode

Figure 12 shows some of the combinations of chip enable and byte enable control signals which may be used when interfacing the ADC-7109 to parallel data lines. The CE/LOAD input may be tied low, allowing either byte to be controlled by its own enable as in Figure 12A. Figure 12B shows a configuration where the two byte enables are connected together. In this configuration, the CE/LOAD serves as a chip enable, and the HBEN and LBEN may be connected to GND or serve as a second chip enable. The 14 data outputs will all be enabled simultaneously. Figure 12C shows the HBEN and LBEN as flag inputs, and CE/LOAD as a master enable, which could be the READ strobe available from most microprocessors.

Figure 12: Direct Mode Chip and Byte Enable Combinations

Figure 13 shows an approach to interfacing several-ADC-7109s to a bus, ganging the $\overrightarrow{\text{HBEN}}$ and $\overrightarrow{\text{LBEN}}$ signals to several converters together, and using the $\overrightarrow{\text{CE/LOAD}}$ inputs (perhaps decoded from an address) to select the desired converter.

Some practical circuits utilizing the parallel three-state output capabilities of the ADC-7109 are shown in Figures 14 through 19. Figure 14 shows a straightforward application to the Intel MCS-48, -80 and -85 systems via an 8255PPI, where the ADC-7109 data outputs are active at all times. The I/O ports of an 8155 may be used in the same way. This interface can be used in a read-anytime mode, although a read performed while the data latches are being updated will lead to scrambled data. This will occur very rarely, in the proportion of setup-skew times to conversion time. One way to overcome this is to read the STATUS output as well, and if it is high, read the data again after a delay of more than 1/2 converter clock period. If STATUS is now low, the second reading is correct, and if it is still high, the first reading is correct. Alternatively, this timing problem is completely avoided by using a read-after-update sequence, as shown in Figure 15. Here the high to low transition of the STATUS output drives an interrupt to the microprocessor causing it to access the data. This application also shows the RUN/HOLD input being used to initiate conversions under software control.

A similar interface to Motorola MC6800 or MOS Technology MCS650X systems is shown in Figure 16. The high to low transition of the STATUS output generates an interrupt via the Control Register B CB1 line. Note that CB2 controls the RUN/HOLD pin through Control Register B, allowing software-controlled initiation of conversions in this system also.

Figure 17 shows an interface to the Intersil IM6100 CMOS microprocessor family using the IM6101 PIE to control the data transfers. Here the data is read by the microprocessor in an 8-bit and a 6-bit word, directly from the ADC-7109 to the microprocessor data bus. Again, the high to low transition of the STATUS output generates an interrupt leading to a software routine controlling the two read operations. As before, the RUN/HOLD input to the ADC-7109 is shown as being under software control.

The three-state output capability of the ADC-7109 allows direct interfacing to most microprocessor busses. Examples of this are shown in the Typical Connection Diagram on

Figure 13: Three-stating Several 7109's to a Small Bus

Page 3 and in Figures 18 and 19. It is necessary to carefully consider the system timing in this type of interface, to be sure that requirements for setup and hold times, and minimum pulse widths are met. Note also the drive limitations on long busses. Generally this type of interface is only favored if the

memory peripheral address density is low so that simple address decoding can be used. Interrupt handling can also require many additional components, and using an interface device will usually simplify the system in this case.

Figure 15: Full-time Parallel Interface to INTEL Microcomputers With Interrupt

Figure 17: ADC-7109-IM6100 Interface Using IM6101 PE

Figure 18: Direct ADC-7109-INTEL 8080/8085 Interface

Handshake Mode

The handshake mode allows ready interface with a wide variety of external devices. For instance, external latches may be clocked by the rising edge of CE/LOAD, and the byte enables may be used as byte identification flags or as load enables.

Figure 20 shows a handshake interface to Intel microprocessors again using an 8255PPI. The handshake operation with the 8255 is controlled by inverting its Input Buffer Full (IBF) flag to drive the SEND input to the ADC-7109, and using the CE/LOAD to drive the 8255 strobe. The internal control register of the PPI should be set in MODE 1 for the port used. If the 7109 is in handshake mode and the 8255 IBF flag is low, the next word will be strobed into the port. The strobe will cause IBF to go high (SEND goes low), which will keep the enabled byte outputs active. The PPI will generate an interrupt which when executed will result in the data being read. When the byte is read, the IBF will be reset low, which causes the ADC-7109 to sequence into the next byte. This figure shows the MODE input to the ADC-7109 connected to a control line on the PPI. If this output is left high, or tied high

separately, the data from every conversion (provided the data access takes less time than a conversion) will be sequenced in two bytes into the system.

If this output is made to go from low to high, the output sequence can be obtained on demand, and the interrupt may be used to reset the MODE bit. Note that the RUN/HOLD input to the ADC-7109 may also be driven by a bit of the 8255 so that conversions may be obtained on command under software control. Note that one port of the 8255 is not used, and can service another peripheral device. The same arrangement can also be used with the 8155.

Figure 21 shows a similar arrangement with the MC6800 or MCS650X microprocessors, except that both MODE and RUN/HOLD are tied high to save port outputs.

The handshake mode is particularly convenient for directly interfacing to industry standard UARTs (such as the Intersil IM6402/6403 or Western Digital TR1602) providing a minimum component count means of serially transmitting converted data. A typical UART connection is shown on page 3. In this circuit, any word received by the UART causes

Figure 20: Handshake Interface - ADC-7109 to INTEL MCS-48, -80, 85

Figure 21: Handshake Interface - ADC-7109 to MC6800, MCS650X

the UART DR (Data Ready) output to go high. This drives the MODE input to the ADC-7109 high, triggering the ADC-7109 into handshake mode. The high order byte is output to the UART first, and when the UART has transferred the data to the Transmitter Register, TBRE (SEND) goes high and the second byte is output. When TBRE (SEND) goes high again, LBEN will go high, driving the UART DRR (Data Ready Reset) which will signal the end of the transfer of data from the ADC-7109 to the UART.

Figure 22 shows an extension of the one converter - one UART scheme of the Typical Connection to several ICL7109s with one UART. In this circuit, the word received by the UART (available at the RBR outputs when DR is high)

is used to select which converter will handshake with the UART. With no external components, this scheme will allow up to eight ADC-7109s to interface with one UART. Using a few more components to decode the received word will allow up to 256 converters to be accessed on one serial line.

The applications of the ADC-7109 are not limited to those shown here. The purpose of these examples is to provide a starting point for users to develop useful systems, and to show some of the variety of interfaces and uses of the ADC-7109. Many of the ideas suggested here may be used in combination; in particular the uses of the STATUS, RUN/HOLD, and MODE signals may be mixed.

Printed in U.S.A. Copyright 🕤 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana. (714)B35-2751. (L.A.) (213)933-7256 • Sunnyvale. CA (408)733-2424 • Gaithersburg, MD (301)B40-9490 • Houston, (713)781-8886 • Dailas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

1/80

Monolithic 10 Bit Tracking A/D Converter ADC-856

FEATURES

- Continuous Tracking Operation
- 10⁶ Conversions/sec
- 10 Bit Resolution
- Monotonic Over Temperature
- Controllable Outputs
- TTL/CMOS Compatible

GENERAL DESCRIPTION

The ADC-856 is a 10 bit tracking A/D converter, capable of supplying continuously updated conversion data on full scale sinusoidal signals up to 300 Hz without the need for a sample and hold. This converter is linear to \pm ½ LSB min. and is monotonic over its operating temperature range. A number of innovative features give this device the flexibility for a wide range of applications.

The circuit is implemented in bipolar, monolithic form. The chip contains a fast window comparator, tracking logic, an up/down counter, a D/A converter, a precision voltage reference with amplifier, data transfer gates, and a data latch/shift register. The external parts required for operation have been held to a few passive components, and allow external programming of the analog input voltage range. Gain temperature coefficient of the circuit is ±10 ppm/°C, exclusive of reference.

The ADC-856 is optimized for operation in a continuous tracking mode. In this conversion technique each conversion of an analog signal is based on the last converted value of that signal. For signals that do not vary faster than the converter can track, or 1 LSB/ μ sec, continuous tracking will provide a valid, updated conversion result every microsecond.

Logic control inputs contribute to this device's usefulness in many different applications. The data transfer gates allow selection of the rate at which the output latch/shift register is updated. The rate may vary from once every microsecond to updating only upon receipt of a command from an external controller. External control also allows selection of output data form, which may be parallel or serial (by supplying an optional clock input). The outputs may be disabled completely in either mode by holding the output enable input low.

The ADC-856 operates on ± 5 VDC power at 50 mA with a power supply rejection of 0.1%/V. The device is packaged in a 28 ceramic DIP and is available in two operating temperature ranges: 0°C to +70°C and -55°C to +125°C.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Data Acquisition

SPECIFICATIONS ADC-856 Typical at 25° C, \pm 5V Supply and Internal	Reference, unless otherwise noted	TECHNICAL NOTES
MAXIMUM RATINGS Supply Voltage Logic Input Voltage	±7 Volts 0V to +V _{cc}	1. The transfer of conversion data to the outputs is controlled by the transfer gates. When TRANSFER DATA is held high the outputs update with each conversion. To update the outputs upon command, TRANSFER DATA is taken high for a maximum of 50 nsec., no sooner than 150 nsec. after the active
PERFORMANCE Resolution Linearity Error Differential Linearity Error No Missing Codes Conversion Time, 1 LSB change Conversion Time, Full Scale Change . Tracking Speed Tracking Bandwidth, Full Scale Gain Tempco Zero Tempco Power Supply Rejection	10 Bits $\pm \frac{1}{2}$ LSB max. $\pm \frac{1}{2}$ LSB Over Oper. Temp. Range 1 μ sec. 1.024 msec ¹ 1 LSB/ μ sec max. 300 Hz ² 10 ppm/° C ⁴ 7 ppm/° C of FSR ⁶ 0.1%/V	 (negative going) edge of the main clock. TRANSFER DATA must go low before the next main clock edge. When TRANSFER DATA is low, the data is held in the output register. 2. Conversion data appears at the outputs in parallel form. Data may be obtained in serial form by clocking DATA CLOCK at up to 1 MHz, with a minimum pulse width of 100 nsec and TRANSFER DATA low. Serial output data (MSB first) is then available at pin 27. 3. When OUTPUT ENABLE is taken low DATA CLOCK is disabled and all output transistors are turned off (all bit outputs go high).
INPUTS Analog Input Range ⁷ , Unipolar Bipolar Input Logic Level, HI ("1") Input Logic Level, LO ("0") Clock Pulse Width Clock Rate Data Transfer Input Output Enable Input Data Clock Input	0 to +5V, 0 to +10V $\pm 2.5V, \pm 5V, \pm 10V$ 1 mA ± 0.2 mA +2.0V min @ 50 μ A ³ +0.8V max. @ 1 μ A ³ 100 nsec. min. 1 MHz max. Hold HI for 50 nsec. min. to load output latches When LO, disables data clock and turns outputs off (HI) When driven by clock at \leq 1MHz with min. pulse width of 100 nsec., provides serial data ouput at Pin 27.	 4. The converter tracks the input signal level at a speed of 1 LSB/μsec; thus the conversion time for any input signal change is given by ΔV_{1N} = conversion time in μsec 1 LSB 5. Full Scale D/A output current is four times the reference current; for optimum performance the reference can be used which can range from .8 mA to 1.2 mA. 6. The tracking bandwidth is inversely proportional to the amplitude of the input signal, e.g., at half scale the bandwidth is 600 Hz.
OUTPUTS Reference Voltage Reference Tempco Reference Load Current, max D/A Output Current, Full Scale Data Output Output Logic Level, HI ("1") Output Logic Level, LO ("0") Coding, Unipolar Coding, Bipolar	2.48V $\pm 1.5\%$ 40 ppm/°C 4 mA 4 mA ⁵ Parallel or Serial +2.4V min. @ -40 μ A +0.4V max. @ 1.6 mA Straight Binary Offset Binary	 7. The window comparator and tracking logic determine whether the up/down counter will count up/count down or retain the same value on the negative going edge of the clock pulse. 8. Since the gain tempco of the converter is typically 10 ppm/°C, it is recommended that 10 ppm/°C metal film resistors be used for R₃, R₄ and R₅ for best performance over temperature. The internal reference will typically add 40 ppm/°C to the gain tempco. For improved performance a high quality external reference should be used.
POWER REQUIREMENT Supply Voltage Range Supply Current Power Consumption Operating Temperature Range ADC-856C ADC-856M Storage Temperature Range Package	$\pm 4.5V$ to $\pm 5.5V$ 50 mA 500 mW 0°C to +70°C -55°C to +125°C -55°C to +125°C 28 Pin Ceramic DIP	9. R_1 and R_2 compensate for the input bias currents of the reference amplifier and comparator whose inputs are at virtual ground. Thus $R_1 = R_3$ and $R_2 =$ the parallel combination of R_4 , R_5 and R_6 . The parallel combination of R_4 , R_5 and R_6 should be as close to 625Ω as possible as this determines the D/A settling time and therefore conversion time. Refer to the resistor tables for a list of typical values for these resistors.
 NOTES: Conversion time is directly dependent or Tracking bandwidth is inversely proport half scale bandwidth is 600 Hz. Vs = ±5.5V Exclusive of Reference. The Full Scale D/A Output Current is 4 FSR is Full Scale Range, the difference be Analog input range is programmed by a 	the magnitude of input signal change. ional to input signal amplitude, e.g. at Times I_{REF} . etween maximum and minimum inputs. in external resistor.	ORDERING INFORMATION MODEL OPER. TEMP. RANGE ADC-856C 0° C to +70° C ADC-856M -55° C to +125° C THESE CONVERTERS ARE COVERED BY GSA CONTRACT

I

THEORY OF OPERATION

APPLICATIONS

CONNECTION AND CALIBRATION

CALIBRATION PROCEDURE

- 1. Connect the converter as shown in the connection diagram. Note that Pin 6 is connected to R_3 and R_4 only when the internal reference is used (dotted line on diagram).
- 2. Select R_1 through R_6 from values given in the resistor table or calculate from the equations that accompany it.
- 3. Drive the MAIN CLOCK input (Pin 15) with a compatible clock signal at up to 1 MHz and apply a logic HI to TRANSFER DATA (Pin 28).

UNIPOLAR OPERATION

Zero and Gain Adjustments

- Apply an analog input voltage of zero +½ LSB.
 Adjust the zero adjustment so that the output code flickers between 000...000 and 000...001.
- 3. Apply an analog input voltage of +F.S. -11/2 LSB.
- Adjust the gain adjustment (R₃) so that the output code flickers between 111...110 and 111...111.

BIPOLAR OPERATION

Offset and Gain Adjustments

- 1. Apply an analog input voltage of -F.S. +1/2 LSB.
- Adjust the offset adjustment (R₄) so that the output code flickers between 000...000 and 000...001.
- 3. Apply an analog input voltage of +F.S. $-1\frac{1}{2}$ LSB.
- 4. Adjust the gain adjustment (R₃) so that the output code flickers between 111...110 and 111...111.

CALIBRATION RESISTOR VALUES

 R_4 adjusts the offset for bipolar operations; in unipolar operations R_4 is replaced with a zero adjustment circuit shown in applications. In either mode R_3 adjusts the gain. If the predicted values of these resistors do not supply the transition points expected, their values should be recalculated. Each may be trimmed with a 100 ppm/°C trimming pot used in series with the resistor. The trim pots should be constrained to approximately 1% of the nominal value calculated.

The values of R_1 through R_6 are calculated from the following:

*R₁ = R₃ *R₂ = the parallel combination of R₄, R₅ and R₆
R₃ =
$$\frac{V_{REF}}{1.0 \text{ mA}}$$
 R₄ = $\frac{-V_{REF}R_5}{V_{IN}\text{min}}$

$$R_{5} = \frac{FSR^{**}}{I_{OCT}(max)}$$

*R₆ is chosen so that the parallel combination of R₄, R₅ and R₆ is approximately 625Ω , this determines the D/A time constant and hence conversion time.

*The nearest preferred value may be used for these resistors.

**F.S.R. is Full Scale Range, the difference between maximum input voltage and minimum input voltage.

CONNECTION & CALIBRATION DIAGRAM

RESISTOR TABLES

ANALOG INPUT RANGE	V_{REF}^2	R_1^1	R_2^{1}	R ₃	R₊	R ₅	R ₆ 1
0 to +2.5V	2.5V	2.5K	625Ω	2.5K	~	625 Ω	8
0 to +5.0V	2.5V	2.5K	625Ω	2.5K	×	1.25K	1.25K
±2.5V	2.5V	2.5K	625Ω	2.5K	1.25K	1.25K	~
0 to +10V	2.5V	2.5K	625Ω	2.5K	~	2.5K	835Ω
±5V	2.5V	2.5K	625Ω	2.5K	1.25K	2.5K	2.5K
±10V	2.5V	2.5K	625 Ω	2.5K	1.25K	5K	1.67K

NOTES: 1. The nearest preferred value may be used for R_1 , R_2 and R_6 . 2. For external reference set $R_1 = V_{REF}$ (Kohms)

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana. (714)835-2751. (L. A.) (213)833-7256 • Sunnyvale. CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8866 • Dailas. TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

12 Bit, Low Power A/D Converter Model ADC-HC12B

FEATURES

- Single Supply Operation
- Automatic Standby Mode Control
- Low Power Consumption
- Six Input Ranges
- MIL Temp Range Available

GENERAL DESCRIPTION

The ADC-HC is a complete, 12 bit, low power analog to digital converter utilizing CMOS technology. This hybrid IC incorporates active laser trimming of highly stable thin-film resistors to provide module performance (ADC-CM) with IC price, size and reliability.

The device is ideal for portable and remote applications such as seismology, oceanoggraphy, meteorology, pollution monitoring and battery operation system. Other key applications include military and aerospace, requiring wide operating temperature range and high reliability.

The ADC-HC converter has the capability of operating from either a single +9V DC to +15V DC power source (interrupt power mode) or from a \pm 9VDC to \pm 15VDC power source (continuous power mode) at a maximum conversion rate of 3.3 kHz.

A key feature of this unit when operating in the interrupt power mode is the extremely low quiescent power consumption (less than $10\mu A @ 12V, 25^{\circ}C$).

Upon receipt of a convert command, the analog circuitry of the converter is energized and stabilizes in 50 μ sec. A complete conversion is performed at which time the EOC goes low, turning off the analog circuitry, and returns to its quiescent state. The digital data remains valid until it is updated by the next conversion.

Power consumption is a function of conversion rate. For 100, 1K and 2K conversions per second, the average power drain is approximately 3.5, 26 and 50 milliwatts respectively.

Six input voltage ranges are provided by external pin connection: 0 to +5V, 0 to +10V, 0 to +20V, $\pm2.5\text{V}$, $\pm5\text{V}$, and $\pm10\text{V}$. Nonlinearity is specified at $\pm\frac{1}{2}$ LSB max. with a gain tempco of ±30 ppm/°C. Output coding is straight binary, offset binary or 2's complement. Serial data is also brought out.

The converters are cased in 32 pin DIP packages. Models are available for three different operating temperature ranges: 0 to +70, -25 to +85 and -55 to +125 degrees centi-

grade. High reliability versions of each temperature range are also available under Datel-Intersil's "S" program and MIL-STD-883 level B screening.

CAUTION: The ADC-HC Series are CMOS devices and should be handled carefully to prevent static charge pickup which might damage the devices. The devices should be kept in the shipping containers until ready for installation.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

1 of 4

SPECIFICATIONS, ADC-HC12B (Typical at 25°C, ±12V, unless otherwise noted)

MAXIMUM RATINGS

Positive Supply (VDD)	+ 18V 18V
Analog Inputs	±25V 0 to VDD

INPUTS

INPUIS	
Analog Input Ranges, unipolar Analog Input Ranges, bipolar Input Impedance	0 to $+5V$, 0 to $+10V$, 0 to $+20V$ $\pm 2.5V$, $\pm 5V$, $\pm 10V$ 5K (0 to $+5V$, $\pm 2.5V$) 10K (0 to $+10V$, $\pm 5V$) 20K (0 to $\pm 20V$, $\pm 10V$)
Start Convert, Interrupt Mode	Positive Pulse with duration of 50μ S min.
Start Convert,	
Continuous Mode	Positive Pulse with duration of 5µS min.
VIL (Logic "0"). VIH (Logic "1") Input Current. Input Capacitance.	0.05 VDD max. 0.95 VDD min. 30 pA 15 pF

OUTPUTS

Parallel Output Data	12 parallel lines of data, held
	until next conversion command
Vol (Logic "0")	0V2.0mA
Voн (Logic "1")	VDD, +4.0mA
All Digital Outputs	CMOS Compatible
Coding, unipolar	Straight Binary
Coding, bipolar	Offset Binary, 2's Complement
Serial Output	NRZ successive decision
	pulses out MSB first, Straight
	Binary or Offset Binary
Clock Output	Train of positive going (VDD)
	25 μS pulses, 40 kHz
E.O.C. (Status)	Conversion Status Signal, Logic
	"1" during reset and conversion,
	Logic "0" when conversion
	complete (data valid)

PERFORMANCE

Resolution Nonlinearity Differential Nonlinearity Gain Error Offset or Zero Error Gain Tempco Offset Tempco Diff. Nonlinearity Tempco Diff. Nonlinearity Tempco No Missing Codes Conversion Time Throughput Time Power Supply Rejection	12 Bits $\pm \frac{1}{2}$ LSB max. $\pm \frac{1}{2}$ LSB max. Adjust to zero Adjust to zero $\pm 30 \text{ ppm/}^{\circ}\text{C}$ max. $\pm 20 \text{ ppm/}^{\circ}\text{C}$ of FSR max. $\pm 10 \text{ ppm/}^{\circ}\text{C}$ of FSR Guaranteed over operating temperature range $300 \ \mu\text{S}$ max. $305 \ \mu\text{S}$ max. continuous power mode $350 \ \mu\text{S}$ max. interrupt power mode .003%/% Supply
Continuous Power Mode VDD.	+9.0V to +15.0V
Vss .	-9.0V to -15.0V
Interrupt Power Mode VDD	+9V to +15.0V
Continuous Mode	112 mW
Quiescent Mode	120μW max., 12μW typ.
PHYSICAL-ENVIRONMENTAL	
Operating Temperature Range	0°C to +70°C (BGC, BMC) -25°C to +85°C (BMR) -55°C to +125°C (BMM)
Storage Temperature Range	-65°C to +150°C
Package Type	Ceramic
Pine	Geranne
• •••• • • • • • • • • • • • • • • • • •	0.010 x 0.018 inch Kovar

TECHNICAL NOTES

- The ADC-HC contains CMOS components and must be properly handled to prevent damage from static pick-up. Proper anti-static handling procedures should be observed including storage in conductive foam or shorting all pins together with aluminum foil. Do not connect in circuit under "power on" conditions. Digital signals should be applied after the converters power has been turned on.
- 2. It is recommended for single supply (+12V nominal) or dual supply (±12V nominal) operation, the power input pins should be bypassed to ground with a $.1\mu$ F ceramic capacitor. It is not critical that the supplies be balanced.
- 3. Analog and digital grounds should be kept separate whenever possible to prevent digital signals from flowing in the analog ground circuit and inducing spurious analog signal noise. Analog Common (Pin 23) and Digital Ground (Pin 22) are not connected internally and must be tied together externally.
- 4. The ADC-HC can operate from either a single or dual supply. When using dual supplies, tie POWER MODE (Pin 17) to VDD (Pin 18). In this continuous power mode, an A/D conversion will take place when a 5µsec. or greater positive going pulse is applied to START CONVERT (Pin 21). For single supply operation (interrupt power mode), tie Power Mode (Pin 17) to E.O.C. (Pin 16). When EOC goes low the converter is switched to standby mode (power is disconnected to analog circuitry) and digital output data becomes valid and remains valid until next start pulse is applied. Upon receipt of a 50 µsec. min., 500 usec. max. pulse on START CONVERT (Pin 21), the converter will stabilize, make a complete conversion and return to standby mode.
- 5. Digital output codes are listed in coding tables. Parallel data is valid when EOC is in low state. This data can be transferred into latches during logic "1" to logic "0" transition of EOC line. Serial data out (Pin 14) is in NRZ (non-return to zero) format. This data is guaranteed valid in a 50 nsec. to 300 nsec. time frame after positive edge of clock. All digital inputs and outputs are CMOS compatible. See application notes for CMOS-TTL interface.
- 6. REF OUT (Pin 20) is a 6.3V ±5% internal reference pin connection.
- 7. For zero or offset and gain adjustment refer to connections and calibration notes. The trim pots should be located as close as possible to the converter to avoid noise pickup. Zero point is always adjusted first followed by gain the adjustment with analog input at the most positive end of analog range. The range of the OFFSET (ZERO)ADJ. is ± 15 mV. The range of GAIN ADJ. is .1% of full scale range can also be increased by decreasing the value of the series resistor (3.9 M Ω nominal). Potentiometer values are 10K and should be 100 ppm/°C ceramic type (such as Datel TP series).

ORDERING INFORMATION MODEL TEMP. RANGE SEAL ADC-HC12BMC 0 to +70°C Hermetic ADC-HC12BMR -25°C to +85°C Hermetic -55°C to +125°C Hermetic ADC-HC12BMM Trimming Potentiometers: TPK 10K (10K ohms) ' For high reliability versions of the ADC-HC series, including units screened to MIL-STD-883 Level B, contact factory.

THE CONVERTERS ARE COVERED BY GSA CONTRACT

CONNECTIONS AND CALIBRATION

ADC-HC TIMING DIAGRAM

OUTPUT CODING

0 to +20V +19.9951 +10.0000 + 0.0049 0.0000	UNIPOLAR 0 to +10V + 9.9976 + 5.0000 + 0.0024	0 to +5V +4.9988 +2.5000 +0.0012	STRAI MSB 1111 1000	GHT B	LSB 1111 0000
0 to +20V +19.9951 +10.0000 + 0.0049 0.0000	0 to +10V + 9.9976 + 5.0000 + 0.0024	0 to +5V +4.9988 +2.5000 +0.0012	MSB 1111 1000	1111 0000	LSB 1111 0000
+19.9951 +10.0000 + 0.0049 0.0000	+ 9.9976 + 5.0000 + 0.0024	+4.9988 +2.5000 +0.0012	1111 1000	1111 0000	1111
+ 10.0000 + 0.0049 0.0000	+ 5.0000 + 0.0024	+ 2.5000 + 0.0012	1000	0000	0000
+ 0.0049 0.0000	+ 0.0024	+ 0.0012	0000		
0.0000	0.0000		0000	0000	0001
	0.0000	0.0000	0000	0000	0000
BIPOLAR				ET BIN	IARY*
±10V	±5V	±2.5V	MSB		LSB
+ 9.9951	+ 4.9976	+ 2.4988	1111	1111	1111
+ 5.0000	+ 2.5000	+ 1.2500	1100	0000	0000
+ 0.0049	+ 0.0024	+ 0.0012	1000	0000	0001
0.0000	0.0000	0.0000	1000	0000	0000
- 9.9951	-4.9976	-2.4988	0000	0000	0001
-10.0000	-5.0000	-2.5000	0000	0000	0000
	<u>±10V</u> + 9.9951 + 5.0000 + 0.0049 0.0000 - 9.9951 -10.0000	BIPOLAR ±10V ±5V + 9.9951 + 4.9976 + 5.0000 + 2.5000 + 0.0049 + 0.0024 0.0000 0.0000 9.9951 -4.9976 -10.0000 -5.0000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BIPOLAR OFFS ±10V ±5V ±2.5V MSB + 9.9951 + 4.9976 + 2.4988 1111 5.0000 + 2.5000 + 1.2500 1100 + 0.0049 + 0.0024 + 0.0012 1000 0.0000 0.0000 0.0000 1000 - 9.9951 -4.9976 -2.4988 0000 -10.0000 -5.0000 -2.5000 0000	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

* For 2's COMPLEMENT, MSB is inverted, use MSB (pin 1)

INPUT PIN CONNECTIONS

INPUT VOLTAGE RANGE	INPUT PIN	CONNECT THESE PINS TOGETHER
0 to +5V	26	23 to 24, 25 to 27
0 to +10V	26	23 to 24
0 to +20V	27	23 to 24
±2.5V	26	24 to 25, 25 to 27
±5V	26	24 to 25
±10V	27	24 to 25

CALIBRATION PROCEDURE

1. Connect converter as shown in the Connection Diagram. Use the Input Pin Connections table for the desired input voltage range. Apply start conversion pulses to start pin.

2. Zero and Offset Adjustment.

Apply a precision voltage reference source between the selected analog input range and ground. Adjust the output of the reference source to + 1/2 LSB. Adjust zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 for unipolar and 1000 0000 0000 and 1000 0000 0001 for bipolar mode.

3. Full Scale Adjustment

Change the output of the precision reference source for +FS-1½ LSB. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111.

APPLICATIONS

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

12 Bit Microelectronic A/D Converter With Sample-Hold Model ADC-HS12 B

FEATURES

- 12 Bit Resolution
- Internal Sample Hold
- 6µsec. Acquisition Time
- 9µsec. Conversion Time
- Programmable Input Ranges
- Parallel & Serial Outputs

GENERAL DESCRIPTION

The ADC-HS12B is a high performance 12 bit hybrid A/D converter with a selfcontained sample-hold. It is specifically designed for systems applications where the sample-hold is an integral part of the conversion process. The internal sample-hold has a 6µsec. acquisition time for a full 10V input change: the A/D converter has a fast 9μ sec. conversion time. Five input voltage ranges are programmable by external pin connection: 0 to +5V, 0 to +10V, $\pm 2.5V$, $\pm 5V$, and $\pm 10V$. Input impedance to the sample-hold is 100 megohms. Output coding is complementary binary for unipolar operation and complementary offset binary for bipolar operation, with both parallel and serial outputs brought out.

This converter incorporates proven thin film hybrid technology used in high volume production. Quad current switches are combined with a nichrome thin film resistor network to implement the internal 12 bit DAC. To achieve 9μ sec. conversion time, the thin film resistors are fabricated on glass, giving lower stray capacitance. Other internal circuits include a precision zener reference, fast comparator, successive approximation register, clock, and sample hold. The thin film resistor network is functionally laser trimmed for optimum converter linearity.

Other features include a gain tempco of 20ppm/°C maximum and differential nonlinearity tempco of $\pm 2ppm/°C$; there are no missing codes over the operating temperature range. The package is a miniature 32 pin triple spaced DIP and different models are offered for each of the operating temperature ranges: 0 to 70C, -25 to +85C, and -55 to +100C. Power supply requirement is ± 15 VDC and +5VDC. High reliability versions are also available under Datel-Intersil's "S" program and MIL-STD-883 level B screening.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE
SPECIFICATIONS, ADC-HS12B (Typical at 25°C. ±15V and +5V supplies unless otherwise noted)

Positive Supply, pin 28	MAXIMUM RATINGS	
Negative Supply Voltage, pin 16+15 SV Digital Input Voltage, pin 16+15 SV Analog Input Ranges, unjpolar	Positive Supply, pin 28	+ 18V
Logic Supply Voltage, pin 16 +5.5V Digital Input Voltage, pin 30 ±15V INPUTS Analog Input Ranges, unipolar	Negative Supply, pin 31	18V
Digital Input Voltage, pins 14, 21, 32, +5, 5V Analog Input Ranges, unipolar	Logic Supply Voltage, pin 16	+5.5V
INPUTS Analog Input Ranges, bipolar. 0 to +5V, 0 to +10V Analog Input Ranges, bipolar. 2.5V, ±5V, ±10V Input Bias Current'. 50nA typ., 200nA max. Start Conversion. 22 W min, to +5 SV max, positive pulse with 100 nsc. Logic H to L0 transition resets convecter and initiates next conversion. Loading: 1 TTL load Sample Control Input. Logic HI = hold Logic L0 = sample Loading: 1 TTL load OUTPUTS' Parallel lines of data held until next conversion command Vourt (°1) ≥ +0.4V Yourt (°1) ≥ +0.4V Coding, unipolar .0 complementary Offset Binary Serial Output Data .9 Successive decision pulses out, NRZ format, MSB first End of Conversion (status). .0 Successive decision pulses out, NRZ format, signal Output is logic HI <td< th=""><th>Digital Input Voltage, pins 14, 21, 32</th><th>+5.5V</th></td<>	Digital Input Voltage, pins 14, 21, 32	+5.5V
INPUTS Analog Input Ranges, bipolar 0 to +5V, 0 to +10V Analog Input Ranges, bipolar ± 2, 5V, ± 5V, ± 10V Input Bias Current' .50nA typ, 200nA max. Start Conversion .2V min, to +5 5V max, positive pulse with 100 nsec, duration min, Rise and fall times < 30 nsec, duration min, Rise and fall times < 30 nsec, duration min, Rise and fall times < 30 nsec, duration min, Rise and fall times < 30 nsec, duration min, Rise and fall times < 30 nsec, duration min, Rise and fall times < 30 nsec, duration min, Rise and fall times < 30 nsec, duration min, Rise and fall times < 30 nsec, duration min, Rise and fall times < 30 nsec, duration min, Rise and fall times < 30 nsec, duration min, Rise and fall times < 30 nsec, duration min, Rise and fall times < 30 nsec, duration min, Rise and fall times < 30 OUTPUTS? Parallel Output Data .12 parallel lines of data held until next conversion falls Serial Output Data .50ccessive decision pulses out, NRZ format, MSB first End of Conversion (status) .Comversion status signal. Output is logic HI during reset and conversion and LO when conversion sic complete. .100 nsec. Clock Output.	Analog Input voltage, pin 30	VCI
Analog Input Ranges, unipolar. 0 to +5V, 0 to +10V Analog Input Ranges, bipolar. ± 25V, ±5V, ±10V Input Bias Current'. 50nA typ., 200nA max. Start Conversion 22 W min. to +5 5V max, positive pulse with 100 nsec. Logic HI to L0 transition resets converter and initiates next conversion. Loading: 11TL load OUTPUTS* Parallel Output Data 12 parallel lines of data held until next conversion command. Vourt (1) ≥ +0.4V Vourt (1) ≥ +2.4V Coding, unipolar Complementary Binary Coding, unipolar Complementary Binary Coding, bipolar Complementary Binary Serial Output Data Successive decision pulses out, NRZ format. MSB first End of Conversion (status) Conversion is complete. Conversion situe going +5V, 100 nsec. pulses at 1.5 MHz rate SAMPLE-HOLD PERFORMANCE* Aperture Delay Time Input Offset Drift 25µV/°C Acquisition Time, 10V to 0.01% 6µsec. Bandwidth 10 nsec. Aperture Delay Time 10 nsec. Aperture Delay Time 10 nsec. Aperture Uncertainty Time 10 nsec. Sample to Hold Error 25mV/°C of FSR max. <	INPUTS	
Analog Input Banges, bipolar ±25.9. ±50, ±10V Input Impedance ¹ 500 A typ. 200A max Start Conversion 2V min. to ±5.5V max, positive pulse with 100 nsec. duration min. Rise and fall times <30 Output Data	Analog Input Ranges, unipolar	. 0 to +5V, 0 to +10V
Input Biss Current' 100 megohms Start Conversion 20 min. to +5 5W max, positive pulse with 100 nsec. duration min. Rise and fall times < 30 nsec. Jogic HI to LO transition resets converter and initiates next conversion. Logic HI = hold Logic LG = sample Loading: 1 TTL load OUTPUTS* Parallel Output Data. Parallel Output Data. .12 parallel lines of data held until next conversion complementary Binary Coding, unipolar .Complementary Binary Coding, unipolar .Complementary Offset Binary Serial Output Data .Successive decision pulses out, NRZ format. MSB first End of Conversion (status) .Conversion is complete Clock Output .Train of positive going + 5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE* Input Offset Drift. .Sample to hold Error .25mV max. Hold Mode Droop. .200mV/µsec. max. Hold Mode Peodthrough. .01% sec. Sample to hold Error .25m/ to hold Error .25m/ cofficient of	Analog Input Ranges, bipolar	. ±2.5V, ±5V, ±10V
Input Bias Current* .50nA typ., 200nA max. Start Conversion .2V min. to +5.5V max. positive pulse with 100 nsec. duration min. Rise and fall times <30 nsec. Logic H1 to LO transition resets con- verter and initiates next conversion. Loading: 1 TTL load Sample Control Input. Logic H1 = hold Logic L0 = sample Loading: 1 TTL load OUTPUTS? Parallel lines of data held until next con- version command. Vourt (1) ≥ +2.4V Coding, unipolar. .complementary Binary Coding, bipolar. .complementary Binary Coding, bipolar. .complementary Oftset Binary Serial Output Data .Successive decision pulses out, NRZ format. MSB first End of Conversion (status) .Conversion status signal. Output is logic H1 during reset and conversion and LO when conversion is complete Clock Output. .Train of positive going +5V, 100 nsec. pulses at 1.5 MH2 rate. SAMPLE+HOLD PERFORMANCE* Input Oftset Drift. Input Oftset Drift. .00 nsec. Aperture Delay Time 100 nsec. Aperture Delay Time .001%. Binskitton .4V/r2C Acquisition Time, 10V to 0.01%. .6J/secc Bandwidth. .1 MH2 Aperture Delay Time .00 nsec. Aperture Delay Time .00 nsec.	Input Impedance ¹	. 100 megohms
Start Conversion	Input Bias Current ¹	. 50nA typ., 200nA max.
Inset: ouration min. Hise and fail times < 30 Inset: ouration resets converter and initiates next conversion. Loading: 1 TTL load Sample Control Input. Loading: 1 TTL load OUTPUTS: Parallel lines of data held until next conversion command. Vourt (° 1 ≥ + 0.4V Vourt (° 1 ≥ + 0.4V Coding, unipolar. Complementary Binary Complementary Binary Complementary Offset Binary Serial Output Data Successive decision pulses out, NRZ format, MSB first MSB first Conversion status signal. Output is logic HI donorse: pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ² Input Offset Drift. 100 nsec. Bandwidth. 100 nsec. Aperture Uncertainty Time. 100 nsec. Sample to Hold Error 200NV/wsec. max. Hold Mode Proop. 200mV/°C of FSR	Start Conversion	2v min. to +5.5v max. positive pulse with 100
Sample Control Input. Logic H1 = hold Logic H1 = hold Logic H2 = hold Loading: 1 TTL load OUTPUTS: Parallel Output Data. 12 parallel lines of data held until next conversion command. Vour (107) ≤ +0.4W Vour (117) ≥ +2.4W Coding, unipolar Complementary Binary Coding, bipolar Complementary Offset Binary Serial Output Data Successive decision pulses out, NRZ format, MSB first End of Conversion (status) Conversion status signal. Output is logic H1 during reset and conversion and LO when conversion is complete Clock Output Data Clock Output Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE? Input Offset Drift Input Offset Drift 25µ/V°C Acquisition Time, 10V to 0.01% 6µsec Bandwidth 1 MHz Aperture Delay Time 10 nsec. Sample to Hold Error 25mV max. Hold Mode Proop. 200nV/usec. max. Hold Mode Predthrough 0.01% max. Conversion Time. 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Temp. Coefficient of Caro, unipolar. ±50pm/°C o		nsec, Juration min. Hise and fail times <30
Loading: 1 TTL load Sample Control Input. Logic HI = hold Logic II = hold OUTPUTS? Parallel Output Data .12 parallel lines of data held until next conversion command. Vour (^1) ≥ +2.4V Coding, bipolar Complementary Binary Coding, bipolar Conversion status signal Output is logic HI during reset and conversion and LO when conversion is complete. Clock Output. Clock Output. Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ³ Input Offset Drift. 100 nsec. Aperture Delay Time. 100 nsec. Aperture Delay Time. 100 nsec. Sample to Hold Error. .25mV max. Hold Mode Droop. .001% max. CONVERTER PERFORMANCE Resolution. Resolution .12 bits (1 part in 4096) Nonlinearity Time. .001% max. CONVERTER PERFORMANCE Resolution of Gain. Temp. Coe		verter and initiates next conversion
Sample Control Input. Logic L0 = sample Loading: 1TTL load OUTPUTS? Parallel Output Data 12 parallel lines of data held until next con- version command. Vour ("0") ≤ +0.4V Vour ("0") ≤ +0.4V Vour ("1") ≥ +2.4V Coding, unipolar Complementary Binary Coding, bipolar Complementary Offset Binary Serial Output Data Successive decision pulses out. NRZ format. MSB first End of Conversion (status) Conversion status signal. Output is logic HI during reset and conversion and LO when conversion is complete. Clock Output Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ³ Input Offset Drift. Input Offset Drift. 25µV/°C Aquisition Time, 10V to 0.01%. <i>Gusec.</i> Bandwidth. 1 MHz Aperture Delay Time. 10 nsec. Sample to Hold Error 25mV max. Hold Mode Feedthrough. 0.01% max. CONVERTER PERFORMANCE 12 bits (1 part in 4096) Nonlinearity ±% LSB max. Temp. Coefficient of Gain 12 bots (2 FSR max. Temp. Coefficient of Offset, bipolar ± 50pm/°C of FSR max. Temp. Coefficient of Offset, bipolar ± 50pm/°C of FSR max. <th></th> <th>Loading: 1 TTL load</th>		Loading: 1 TTL load
Logic LO = sample Loading: 1 TTL load OUTPUTS? Parallel Output Data 12 parallel lines of data held until next con- version command. Vour (-1) ≥ +0.4V Vour (-1) ≥ +2.4V Coding, unipolar Complementary Binary Coding, bipolar Serial Output Data Successive decision pulses out, NRZ format. MSB first End of Conversion (status) Conversion status signal Output is logic HI during reset and conversion and LO when conversion is complete. Clock Output Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE? Input Offset Drift. Input Offset Drift. 25µV/°C Acquisition Time, 10V to 0.01%. Aperture Delay Time 100 nsec. Aperture Uncertainty Time Aperture Uncertainty Time 100 nsec. Sample to Hold Error Sample to Hold Error 25mV max. Hold Mode Preop. Hold Mode Preop. 200N/Visec max. Temp. Coefficient of Gain Terp. Coefficient of Gain ±2ppm/°C of FSR max. Temp. Coefficient of Gain Terp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Differential Nonlinearity ±2ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar Differential Nonlinearity ±2ppm/°C of FSR max. Temp. Coefficient of Gain Differential Nonlinearity ±2ppm/°C of FSR max. Temp. Coefficient of Sen <th>Sample Control Input.</th> <th>Logic HI = hold</th>	Sample Control Input.	Logic HI = hold
Loading: 1 TTL load OUTPUTS* Parallel Output Data 12 parallel lines of data held until next conversion command. Vourt (°) ≤ +0.4V Vourt (°) ≤ +0.4V Vourt (°) ≥ +0.4V Coding, unipolar Complementary Binary Coding, bipolar Complementary Offset Binary Serial Output Data Successive decision pulses out, NRZ format, MSB first End of Conversion (status) Conversion status signal. Output is logic HI during reset and conversion and LO when conversion is complete. Clock Output Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE? Input Offset Drift 25µV/°C Acquisition Time, 10V to 0.01% 6µsec. Bandwidth 10 nsec. Aperture Delay Time 100 nsec. Sample to Hold Error 25mV max. Hold Mode Proop 200nV/µsec. max. Hold Mode Proop 200nV/µsec. max. Temp. Coefficient of Gain 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Offset, bipol/°C of FSR Missing Codes. Missing Codes. None over oper. temp. range	• · · · • • • • • • • • • • • • • • • •	Logic LO = sample
OUTPUTS ² Parallel Output Data 12 parallel lines of data held until next conversion command Vour (°C) ≤ +0.4V Vour (°C) ≤ +0.4V Coding, unipolar Coding, bipolar Complementary Binary Coding, bipolar Complementary Offset Binary Serial Output Data Serial Output Data Successive decision pulses out, NRZ format, MSB first End of Conversion (status) Conversion status signal. Output is logic HI during reset and conversion and LO when conversion is complete. Clock Output Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ⁹ Input Offset Drift. Input Offset Drift. 100 nsec. Aperture Delay Time 100 nsec. Aperture Delay Time 100 nsec. Aperture Delay Time 10 nsec. Sample to Hold Error 25mV max. Hold Mode Freedthrough 0.01% max. CONVERTER PERFORMANCE #½ LSB max. Resolution 12 bits (1 part in 4096) Nonlinearity None over oper temp. range Conversion Time 200nV/usec. max. Temp. Coefficient of Gain ±20ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR max. Differential Nonlinearity Tempco <th></th> <th>Loading: 1 TTL load</th>		Loading: 1 TTL load
Parallel Output Data 12 parallel lines of data held until next conversion command. Vour ('0') ≤ +0.4V Vour ('1') ≥ +2.4V Coding, unipolar Complementary Binary Coding, bipolar Complementary Offset Binary Serial Output Data Successive decision pulses out, NRZ format. MSB first End of Conversion (status) Conversion status signal. Output is logic HI during reset and conversion and LO when conversion is complete Clock Output Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ⁹ Input Offset Drift Input Offset Drift 25µV/°C Acquisition Time, 10V to 0.01% 6µsec. Bandwidth 1 MHz Aperture Delay Time 100 nsec. Sample to Hold Error .25mV max. Hold Mode Feedthrough 0.01% max CONVERTER PERFORMANCE 12 bits (1 part in 4096) Nonlinearity Resolution 12 bits (1 part in 4096) Nonlinearity Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Zero, unipolar ±20ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±20ppm/°C of FSR <t< th=""><th>OUTPUTS²</th><th></th></t<>	OUTPUTS ²	
version command. Vour ("0") ≤ +0.4V Vour ("1") ≥ +2.4V Coding, unipolar. Complementary Binary Serial Output Data Successive decision pulses out, NRZ format, MSB first End of Conversion (status) Conversion status signal. Output is logic HI during reset and conversion and LO when conversion is complete. Clock Output Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate SAMPLE-HOLD PERFORMANCE ³ Input Offset Drift. Input Offset Drift. .25µV/°C Acquisition Time, 10V to 0.01% 6µsec. Bandwidth 1 MHz Aperture Delay Time 100 nsec. Sample to Hold Error .250mV max. Hold Mode Droop .200nV/µsec. max. Hold Mode Feedthrough 0.01% max. CONVERTER PERFORMANCE #20ppm/°C of FSR max. Resolution .12 bits (1 part in 4096) Nonlinearity .±½ LSB max. Differential Nonlinearity .±½ LSB max. Temp. Coefficient of Zero, unipolar .±20ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar .±10ppm/°C of FSR max. Differential Nonlinearity Tempco. .±20pm/°C of FSR max. Differential Nonlinearity Tempco. .±20pm/°C of FSR max.	Parallel Output Data	. 12 parallel lines of data held until next con-
Vour (*0*) ≤ +0.4V Vour (*0*) ≥ +2.4V Coding, bipolar Complementary Binary Serial Output Data Successive decision pulses out, NRZ format, MSB first End of Conversion (status) Conversion status signal. Output is logic HI during reset and conversion and LO when conversion is complete. Clock Output Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate SAMPLE-HOLD PERFORMANCE ³ Input Offset Drift. Input Offset Drift. 25µV/°C Acquisition Time, 10V to 0.01% 6µsec Bandwidth 1 MHz Aperture Delay Time 100 nsec. Aperture Uncertainty Time 100 nsec. Sample to Hold Error .26mV max. Hold Mode Droop .200nV/µsec. max. Hold Mode Feedthrough .0.01% max. CONVENTER PERFORMANCE #½ LSB max. Temp. Coefficient of Zero, unipolar. ±20pm/°C of FSR max. Differential Nonlinearity Tempco. .20pm/°C of FSR max. Differential Nonlinearity Tempco. .420pm/°C of FSR Missing Codes. None over oper. temp. range Conversion Time .9µsec. max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100m	-	version command.
Vour('1') ≥ +2.4V Coding, unipolar. Complementary Binary Coding, bipolar. Complementary Offset Binary Serial Output Data Successive decision pulses out, NRZ format. MSB first End of Conversion (status). Conversion status signal. Output is logic HI during reset and conversion and LO when conversion is complete. Clock Output. Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ³ Input Offset Drift. 25µV/°C Acquisition Time, 10V to 0.01% 6µsec. Bandwidth. 10 nsec. Sample to Hold Error 25mV max. Hold Mode Droop 200nV/µsec. max. Hold Mode Feedthrough. 0.01% max. CONVERTER PERFORMANCE #2 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Gain. ±20pm/°C of FSR max. Temp. Coefficient of Gain. ±20pm/°C of FSR max. Temp. Coefficient of Sector 9µsec. max. POWER REQUIREMENT. ±15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA 55°C to ±10		Vout ($"0"$) $\leq +0.4V$
Coding, unipolar. Complementary Binary Coding, bipolar. Complementary Offset Binary Serial Output Data Successive decision pulses out, NRZ format, MSB first End of Conversion (status). Conversion status signal. Output is logic HI during reset and conversion and LO when conversion is complete. Clock Output. Train of positive going ±5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ³ Input Offset Drift. Input Offset Drift. 25µV/°C Acquisition Time, 10V to 0.01% 6µsec. Bandwidth 1 MHz Aperture Delay Time. 10 nsec. Sample to Hold Error 25mV max. Hold Mode Droop 200NV/µsec. max. Hold Mode Preedthrough 0.01% max. CONVERTER PERFORMANCE Resolution Resolution 12 bits (1 part in 4096) Nonlinearity ±% LSB max. Temp. Coefficient of Zero, unipolar. ±20ppm/°C of FSR max. Temp. Coefficient of Gain ±20ppm/°C of FSR max. Differential Nonlinearity Tempco. ±2ppm/°C of FSR max. Differential Nonlinearity Tempco. ±2ppm/°C of FSR max. Power Supply Rejection 0.0002%/% max. POWER R		$VOUT((1)) \ge +2.4V$
Coung. orporar. Complementary Citset Binary Serial Output Data Successive decision pulses out, NRZ format, MSB first End of Conversion (status) Conversion status signal. Output is logic HI during reset and conversion and LO when conversion is complete. Clock Output Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ⁹ Input Offset Drift. 25µV/°C Acquisition Time, 10V to 0.01% 6µsec. Bandwidth 1 MHz Aperture Delay Time. 100 nsec. Sample to Hold Error 25mV max. Hold Mode Proop. 200nV/µsec. max. Hold Mode Feedthrough 0.01% max. CONVERTER PERFORMANCE Resolution Resolution 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20pm/°C max. Temp. Coefficient of Gain ±20pm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±20pm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±00pm/°C of FSR max. Differential Nonlinearity Tempco ±20pm/°C of FSR max. Power Supply Rejection 0.00	Coding, unipolar	Complementary Binary
Benar Couput Data MSB first End of Conversion (status) Conversion status signal. Output is logic HI during reset and conversion and LO when conversion is complete. Clock Output Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ² Input Offset Drift Input Offset Drift 25µV/°C Acquisition Time, 10V to 0.01% 6µsec. Bandwidth 1 MHz Aperture Delay Time 100 nsec. Aperture Uncertainty Time 100 nsec. Aperture Uncertainty Time 0.01% max. Hold Mode Droop 200nV/µsec. max. Hold Mode Feedthrough 0.01% max. CONVERTER PERFORMANCE Resolution Resolution 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20pm/°C max. Temp. Coefficient of Gain ±20pm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR max. Power Supply Rejection 0.002%/max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA	Coding, Dipolar	Successive decision pulses out NB7 format
End of Conversion (status) Conversion status signal. Output is logic HI during reset and conversion and LO when conversion is complete. Clock Output Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ³ Input Offset Drift Input Offset Drift 25µV/°C Acquisition Time, 10V to 0.01% 6µsec. Bandwidth 1 MHz Aperture Delay Time 100 nsec. Aperture Uncertainty Time 10 nsec. Sample to Hold Error .25mV max. Hold Mode Droop .200nV/µsec. max. Hold Mode Feedthrough 0.01% max. CONVERTER PERFORMANCE Resolution Resolution 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Zero, unipolar ±5ppm/°C of FSR max. Temp. Coefficient of Zero, unipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA +15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL Operating T		MSB first
during reset and conversion and LO when conversion is complete. Clock Output. Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ³ Input Offset Drift. 25µV/°C Acquisition Time, 10V to 0.01% 6µsec. Bandwidth. 1 MHz Aperture Delay Time 100 nsec. Sample to Hold Error 25mV max. Hold Mode Droop 200nV/µsec. max. Hold Mode Feedthrough. 0.01% max. CONVERTER PERFORMANCE *½ LSB max. Resolution 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20ppm/°C max. Temp. Coefficient of Jero, unipolar. ±5ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar. ±20ppm/°C of FSR max. Differential Nonlinearity Tempco. ±22ppm/°C of FSR max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.25V @ 100mA +5VDC ±0.25V @ 100mA -55°C to +85°C (BMR) -55°C to +150°C Package Type 32 pin ceramic Nons 0.018 inch Kovar Weight. 0.5 oz. (14 g.)	End of Conversion (status)	Conversion status signal. Output is logic HI
conversion is complete. Clock Output. Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ³ Input Offset Drift 25µV/°C Acquisition Time, 10V to 0.01% Bandwidth 1 Aperture Delay Time 100 nsec. Sample to Hold Error 25mV max. Hold Mode Droop 200nV/µsec. max. Hold Mode Feedthrough 0.01% max. CONVERTER PERFORMANCE Resolution 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Differential Nonlinearity Tempco. ±½ Dopm/°C of FSR max. Temp. Coefficient of Gain 20pm/°C of FSR max. Differential Nonlinearity Tempco. ±20pm/°C of FSR Missing Codes. None over oper. temp. range Conversion Time 9µsec. max. Power Supply Rejection 0.002%/% max. Power Supply Rejection 0.002%/% max. <th></th> <th>during reset and conversion and LO when</th>		during reset and conversion and LO when
Clock Output. Train of positive going +5V, 100 nsec. pulses at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ³ Input Offset Drift. 25µV/°C Acquisition Time, 10V to 0.01% 6µsec. Bandwidth. 1 MHz Aperture Delay Time 100 nsec. Aperture Uncertainty Time 10 nsec. Sample to Hold Error 25mV max. Hold Mode Droop 200nV/µsec. max. Hold Mode Feedthrough 0.01% max. CONVERTER PERFORMANCE Resolution Resolution 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Zero, unipolar. ±5ppm/°C of FSR max. Temp. Coefficient of Zero, unipolar. ±2ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR Missing Codes None over oper. temp. range Conversion Time -9µsec. max. Power Supply Rejection 0.002%/% max. POWER		conversion is complete.
at 1.5 MHz rate. SAMPLE-HOLD PERFORMANCE ³ Input Offset Drift.	Clock Output	Train of positive going +5V, 100 nsec. pulses
SAMPLE-HOLD PERFORMANCE ³ Input Offset Drift. 25µV/°C Acquisition Time, 10V to 0.01% 6µsec. Bandwidth. 1 MHz Aperture Delay Time. 100 nsec. Aperture Uncertainty Time. 10 nsec. Sample to Hold Error 25mV max. Hold Mode Droop 20mV/µsec. max. Hold Mode Feedthrough. 0.01% max. CONVERTER PERFORMANCE Resolution 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco. ±2ppm/°C of FSR max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.5V @ 100mA PhysiCAL-ENVIRONMENTAL 0°C to 70°C (BMC) Operating Temperature Range <		at 1.5 MHz rate.
Input Offset Drift 25μV/°C Acquisition Time, 10V to 0.01% 6μsec. Bandwidth 1 MHz Aperture Delay Time 100 nsec. Aperture Uncertainty Time 10 nsec. Sample to Hold Error 25mV max. Hold Mode Droop 200nV/µsec. max. Hold Mode Feedthrough 0.01% max. CONVERTER PERFORMANCE Resolution Resolution 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20ppm/°C max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.5V @ 100mA PHYSICAL-ENVIRONMENTAL 0°C to 70°C (BMC) Operating Temperature Range 0°C to 70°C (BMC) -55°C t	SAMPLE-HOLD PERFORMANCE ³	······································
Acquisition Time, 10V to 0.01% 6μsec. Bandwidth 1 MHz Aperture Delay Time 100 nsec. Aperture Uncertainty Time 10 nsec. Sample to Hold Error 25mV max. Hold Mode Droop 200nV/µsec. max. Hold Mode Feedthrough 0.01% max. CONVERTER PERFORMANCE Resolution Resolution 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20pm/°C of FSR max. Temp. Coefficient of Zero, unipolar ±5ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR Missing Codes None over oper. temp. range Conversion Time 9µsec. max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.5V @ 100mA	Input Offset Drift.	. 25µV/°C
Bandwidth	Acquisition Time, 10V to 0.01%	. 6µsec.
Aperture Delay Time	Bandwidth	1 MHz
Aperture Uncertainty Time 25mV max. Hold Mode Droop 200nV/µsec. max. Hold Mode Feedthrough 0.01% max. CONVERTER PERFORMANCE 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR max. Differential Nonlinearity Tempco ±0002%/% max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 100mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL 0°C to 70°C (BMC) Operating Temperature Range 0°C to 70°C (BMR) -55°C to +100°C (BMM) 55°C to +100°C (BMM) Storage Temperature Range -65°C to +150°C Package Type 32 pin ceramic Pins .0010 x 0.018 inch Kovar Weight .0.5 oz. (14 g.)	Aperture Delay Time	. 100 nsec.
Hold Mode Droop. 200n V/µsec. max. Hold Mode Feedthrough 0.01% max. CONVERTER PERFORMANCE Resolution. 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20ppm/°C max. Temp. Coefficient of Zero, unipolar ±5ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 100mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL 0°C to 70°C (BMC) 0perating Temperature Range 0°C to 70°C (BMM) Storage Temperature Range -65°C to +150°C Package Type. 92 pin ceramic 92 pin ceramic Pin ceramic Pin sec. .0.010 x 0.018 inch Kovar Weight	Aperture Uncertainty Time	25mV may
Hold Mode Feedthrough 0.01% max. CONVERTER PERFORMANCE Resolution Resolution 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20ppm/°C max. Temp. Coefficient of Jero, unipolar ±5ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR Missing Codes None over oper. temp. range Conversion Time 9µsec. max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.25V @ 100mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL 0°C to 70°C (BMR) Operating Temperature Range -65°C to +100°C (BMM) Storage Temperature Range -65°C to +100°C Package Type Pins .0010 x 0.018 inch Kovar Weight .0.5 oz. (14 g.)	Hold Mode Droon	· 200nV/usec max
CONVERTER PERFORMANCE Resolution 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20ppm/°C max. Temp. Coefficient of Gitset, bipolar ±10ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR Missing Codes None over oper. temp. range Conversion Time 9µsec. max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL 0°C to 70°C (BMC) Operating Temperature Range -65°C to +100°C (BMM) Storage Temperature Range -65°C to +150°C Package Type Pins .0010 x 0.018 inch Kovar Weight .0.5 oz. (14 g.)	Hold Mode Feedthrough	- 0.01% max.
CONVERTER PERFORMANCE Resolution		
Resolution 12 bits (1 part in 4096) Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20ppm/°C max. Temp. Coefficient of Jero, unipolar ±5ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR Missing Codes None over oper. temp. range Conversion Time 9µsec. max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.25V @ 100mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL 0°C to 70°C (BMC) Operating Temperature Range 0°C to 70°C (BMM) Storage Temperature Range -65°C to +100°C Package Type Storage Temperature Range .010 x 0.018 inch Kovar Weight Weight .0.5 oz. (14 g.)	CONVERTER PERFORMANCE	
Nonlinearity ±½ LSB max. Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20ppm/°C max. Temp. Coefficient of Zero, unipolar ±5ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR Missing Codes None over oper. temp. range Conversion Time 9µsec. max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL 0°C to 70°C (BMR) Operating Temperature Range 0°C to 70°C (BMM) Storage Temperature Range -65°C to +100°C (BMM) Storage Temperature Range -25 °C to +100°C Package Type Pins .0010 x 0.018 inch Kovar Weight	Resolution	.12 bits (1 part in 4096)
Differential Nonlinearity ±½ LSB max. Temp. Coefficient of Gain ±20ppm/°C max. Temp. Coefficient of Zero, unipolar ±5ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR Missing Codes None over oper. temp. range Conversion Time 9µsec. max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL Operating Temperature Range 0°C to 70°C BMR) -55°C to +100°C (BMR) -55°C to +100°C (BMM) 5torage Temperature Range Storage Temperature Range -65°C to +150°C Package Type 32 pin ceramic Pins .0010 x 0.018 inch Kovar Weight .0.5 oz. (14 g.)	Nonlinearity	$\pm \frac{1}{2}$ LSB max.
Temp. Coefficient of Gain ±20ppm/°C max. Temp. Coefficient of Zero, unipolar ±5ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR Missing Codes None over oper. temp. range Conversion Time 9µsec. max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL Operating Temperature Range 0°C to 70°C Operating Temperature Range -65°C to +100°C (BMR) -55°C to +100°C 79ackage Type Package Type 32 pin ceramic Pins .0010 x 0.018 inch Kovar Weight 0.5 oz. (14 g.)	Differential Nonlinearity	. ±½ LSB max.
Temp. Coefficient of Zero, unipolar ±5ppm/°C of FSR max. Temp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR max. Missing Codes	Temp. Coefficient of Gain	.±20ppm/°C max.
Iemp. Coefficient of Offset, bipolar ±10ppm/°C of FSR max. Differential Nonlinearity Tempco ±2ppm/°C of FSR Missing Codes. None over oper. temp. range Conversion Time. 9µsec. max. Power Supply Rejection. 0.002%/% max. POWER REQUIREMENT. +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL Operating Temperature Range. 0°C to 70°C (BMC) -25°C to +85°C (BMR) -55°C to +100°C (BMM) Storage Temperature Range. -65°C to +150°C Package Type. 32 pin ceramic Pins. 0.010 x 0.018 inch Kovar Weight. 0.5 oz. (14 g.)	Temp. Coefficient of Zero, unipolar.	. ±5ppm/°C of FSR max.
Differential Nonlinearity Tempco ±2ppm/°C of FSR Missing Codes None over oper. temp. range Conversion Time 9µsec. max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL Operating Temperature Range 0°C to 70°C (BMC) -25°C to +85°C (BMR) -55°C to +100°C (BMM) Storage Temperature Range -65°C to +150°C Package Type 32 pin ceramic Pins 0.010 x 0.018 inch Kovar Weight 0.5 oz. (14 g.)	Temp. Coefficient of Offset, bipolar.	± 10 ppm/°C of FSR max.
Power Supply Rejection 9µsec. max. Power Supply Rejection 0.002%/% max. POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL Operating Temperature Range 0°C to 70°C (BMC) -25°C to +85°C (BMR) -55°C to +100°C (BMM) Storage Temperature Range -65°C to +150°C Package Type 32 pin ceramic Pins 0.010 x 0.018 inch Kovar Weight 0.5 oz. (14 g.)	Missing Codes	
Power Supply Rejection. 0.002%/% max. POWER REQUIREMENT. +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL Operating Temperature Range 0°C to 70°C (BMC) -25°C to +85°C (BMR) -55°C to +100°C (BMM) Storage Temperature Range -65°C to +150°C Package Type 92 pin ceramic Pins. 0.010 x 0.018 inch Kovar Weight		9usec max
POWER REQUIREMENT. +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL Operating Temperature Range 0°C to 70°C (BMC) -25°C to +85°C (BMR) -55°C to +100°C (BMM) Storage Temperature Range -65°C to +150°C Package Type 32 pin ceramic Pins. .0010 x 0.018 inch Kovar Weight 0.5 oz. (14 g.)	Power Supply Rejection	.0.002%/% max.
POWER REQUIREMENT +15VDC ±0.5V @ 60mA -15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL Operating Temperature Range 0°C to 70°C (BMC) -25°C to +85°C (BMR) -55°C to +100°C (BMM) Storage Temperature Range -65°C to +100°C (BMM) Package Type 32 pin ceramic Pins .0010 x 0.018 inch Kovar Weight .0.5 oz. (14 g.)		
-15VDC ±0.5V @ 50mA +5VDC ±0.25V @ 100mA PHYSICAL-ENVIRONMENTAL Operating Temperature Range 0°C to 70°C (BMC) -25°C to +85°C (BMR) -55°C to +100°C (BMM) Storage Temperature Range -65°C to +150°C Package Type 32 pin ceramic Pins .0010 x 0.018 inch Kovar Weight .0.5 oz. (14 g.)		+15VDC +0.5V @ 60m^
Horbor = 50 BV @ 100mA PHYSICAL-ENVIRONMENTAL O°C to 70°C (BMC) -25°C to +85°C (BMR) -55°C to +100°C (BMM) Storage Temperature Range		-15 VDC ± 0.5 V @ 50mA
PHYSICAL-ENVIRONMENTAL 0°C to 70°C (BMC) Operating Temperature Range -25°C to +85°C (BMR) -55°C to +100°C (BMM) Storage Temperature Range -65°C to +150°C Package Type 32 pin ceramic Pins .010 x 0.018 inch Kovar Weight 0.5 oz. (14 g.)		+5VDC ±0.25V @ 100mA
Operating Temperature Range 0°C to 70°C (BMC) -25°C to +85°C (BMR) -55°C to +100°C (BMM) Storage Temperature Range -65°C to +150°C Package Type 32 pin ceramic Pins 0.010 x 0.018 inch Kovar Weight 0.5 oz. (14 g.)		
-25°C to +85°C (BMR) -55°C to +100°C (BMM) Storage Temperature Range -65°C to +150°C Package Type .32 pin ceramic Pins .0.010 x 0.018 inch Kovar Weight .0.5 oz. (14 g.)	Operating Temperature Range	0° C to 70°C (BMC)
-55°C to +100°C (BMM) -55°C to +100°C (BMM) Storage Temperature Range65°C to +150°C Package Type	eporating remperature nange	-25° C to $+85^{\circ}$ C (BMR)
Storage Temperature Range -65°C to +150°C Package Type 32 pin ceramic Pins 0.010 x 0.018 inch Kovar Weight 0.5 oz. (14 g.)		-55°C to +100°C (BMM)
Package Type 32 pin ceramic Pins 0.010 x 0.018 inch Kovar Weight 0.5 oz. (14 g.)	Storage Temperature Range	65°C to +150°C
Pins.	Package Type	. 32 pin ceramic
weignτ	Pins.	.0.010 x 0.018 inch Kovar
	weight	.U.5 OZ. (14 g.)

NOTES: 1. For sample-hold input

2. All digital outputs can drive 2 TTL loads

3. For 1000pF external hold capacitor

TECHNICAL NOTES

- 1. It is recommended that the -15V power input pins both be bypassed to ground with a .01µF ceramic capacitor in parallel with a 1μ F electrolytic capacitor and the +5V power input pin be bypassed to ground with a 1µF electrolytic capacitor as shown in the connection diagrams. In addition, pin 27 should be bypassed to ground with a 0.01µF ceramic capacitor. These precautions will assure noise free operation of the converter
- 2. Digital Common (pin 15) and Analog Common (pin 26) are not connected together internally, and therefore must be connected as directly as possible externally. It is recommended that a ground plane be run underneath the case between the two commons. Analog ground and $\pm 15V$ power ground should be run to pin 26 whereas digital ground and +5V ground should be run to pin 15.
- External adjustment of zero or offset and gain are provided for by trimming potentiometers connected as shown in the connection diagrams. The potentiometer values can be between 10K and 100K ohms and should be 100ppm/°C cermet types (such as Datel Systems TP series). The adjustment range is $\pm 0.5\%$ of FSR for zero or offset and $\pm 0.3\%$ for gain. The trimming pots should be located as close as possible to the converter to avoid noise pickup. Calibration of the ADC-HS12B is performed with the sample-hold connected and operating dynamically. This results in adjusting out the sample-hold errors along with the A/D converter. For slow throughput applications it is recommended that a 0.01µF hold capacitor be used for best accuracy. With this value the acquisition time becomes 25µsec. and the external timing must be adjusted accordingly.
- 4 The recommended timing shown in the Timing Diagram allows 6 microseconds for the sample-hold acquisition and then 1 microsecond after the sample-hold goes into the hold mode to allow for output settling before the A/D begins its conversion cycle.
- Short cycled operation results in shorter conversion times where the conversion can be truncated to less than 12 bits. This is done by connecting pin 14 to the output bit following the last bit desired. For example for an 8 bit conversion, pin 14 is connected to bit 9 output. Maximum conversion times are given for shortcycled conversions in the Table.
- Note that output coding is complementary coding. For unipolar operation it is complementary binary and for bipolar operation it is complementary offset binary. In cases where bipolar coding of offset binary is required, this can be achieved by inverting the analog input to the converter (using an op amp connected for gain of -1.0000). The converter is then calibrated so that -FS analog input gives an output code of 0000 0000 0000, and +FS-1LSB gives 1111 1111 1111.
- 7 These converters dissipate approximately 2 watts of power. The case to ambient thermal resistance is approximately 25°C per watt. For ambient temperatures above 50°C, care should be taken not to restrict air circulation in the vicinity of the converter.
- 8 These converters can be operated with an external clock. To accomplish this, a negative pulse train is applied to START CONVERT (Pin 21). The rate of the external clock must be lower than the rate of the internal clock. The pulse width of the external clock should be between 100 nsec. and 300 nsec. Each N bit converison cycle requires a pulse train of N + 1 clock pulses for completion, e.g., an 8 bit conversion requires 9 clock pulses for completion. A continuous pulse train may be used for consecutive conversions, resulting in an N bit conversion every N + 1 pulses, or the E.O.C. output may be used to gate a continuous pulse train for single conversions

ORDERING INFORMATION TEMP. RANGE SEAL

MODEL
ADC-HS12BMC
ADC-HS12BMR

0 to 70C Hermetic -25 to +85C Hermetic -55 to +100 C Hermetic

Mating Socket: DILS-2 (2 required per converter)

Trimming Potentiometers: TP50K For high reliability versions of the ADC-HS12B including units screened to MIL-STD-883 level B, contact factory.

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

TIMING, CONNECTIONS, AND CODING

TIMING DIAGRAM FOR ADC-HS12B

TRIGGER		- 100 nsec min.											<i>(</i>					
· · · · · · · · · · · · · · · · · · ·										· .		-				n in 1979 Victoria		
SAMPLE CONTROL	n de an		6µsec. ———				,								in en			
START CONVERT		an a				• 1μs	iec.				•	ang ang	•	- 1-				, is
						- 60	nsec.										1. 1 1 1.	na na san ∦na san san
E.O.C. (STATUS)											9µ	sec. max						PARALLEL DA
	1.00	in ditta and an	·	 		⊶ 40 ns	sec.			0 nsec.								- 50 nsec
CLOCK OUT			, -	÷ 4		<u>ا</u>	2	3	4 μ sec.	5	6	7	8	9	10	"	12	13
						40 ns	l iec•	40 ns	ec			1.1			1		1	
SERIAL DATA OUT	$\tilde{\chi} = -1$				1977		BIT 1 (MSB)	BIT 2	BIT 3	BIT 4	BIT 5	BIT 6	BIT 7	BIT8	BIT 9	BIT 10	BIT 11	BIT 12 (LSB)
1 			1		, 	40 n	sec.			1	1		T					
BIT 1 OUT (MSB)	1 		s*							 		<u> </u>			1	 .		
BIT 2 OUT							<u> </u>									<u> </u>		<u></u>
	· · · · · · · · · · · · · · · · · · ·			······································						!	1		1	1	1	1		
BIT 3 OUT	111	······	<u></u> ,				1		<u></u>	 		 	, , , , , ,					
BIT 12 OUT (LSB)			•			[.				i]	

NOTE: TRIGGER, SAMPLE CONTROL, AND START CONVERT PULSES MUST BE EXTERNALLY GENERATED

CODING TABLES

UNIPOLAR OPERATION

BIP	OLAR	OPE	RAT	ON

	RANGE	COMP BINARY CO	COMP. BINARY CODING			INPUT VOLTAGE RANGE			COMP. ET BIN	IARY
0 TO +10V	0 TO +5V	MSB	LSB		±10V	±5V	±2.5V	MSB		LSB
+9.9976V	+4.9988V	0000 0000	0000		+9.9951V	+4.9976V	+2.4988V	0000	0000	0000
+8.7500	+4.3750	0001 1111	1111		+7.5000	+3.7500	+1.8750	0001	1111	1111
+7.5000	+3.7500	0011 1111	1111		+5.0000	+2.5000	+1.2500	0011	1111	1111
+5.0000	+2.5000	0111 1111	1111		0.0000	0.0000	0.0000	0111	1111	1111
+2.5000	+1.2500	1011 1111	1111		-5.0000	-2.5000	-1.2500	1011	1111	1111
+1.2500	+0.6250	1101 1111	1111		-7.5000	-3.7500	-1.8750	1101	1111	1111
+0.0024	+0.0012	1111 1111	1110		-9.9951	-4.9976	-2.4988	1111	1111	1110
0.0000	0.0000	1111 1111	1111		-10.0000	-5.0000	-2.5000	1111	1111	1111

CONNECTIONS AND CALIBRATION

SHORT CYCLE OPERATION

PIN 14 CONNECTION RES. (BITS) **PIN 14 TO** CONV. TIME **PIN 11** 0.7 µsec. 2 **PIN 10** 1.3 3 PIN 9 2.0 4 PIN 8 2.6 PIN 7 3.3 5 PIN 6 6 40 PIN 5 7 46 8 PIN 4 5.3 9 PIN 3 6.0 10 PIN 2 6.6 PIN 1 7.3 11 12 **PIN 16** 9.0

INPUT CONNECTIONS

INPUT VOLTAGE RANGE	CONNECT THESE PINS TOGETHER						
0 to +5V	29 & 24	22 & 25	23 & 26				
0 to +10V	29 & 24	-	23 & 26				
±2.5V	29 & 24	22 & 25	23 & 22				
±5V	29 & 24	—	23 & 22				
±10V	29 & 25	-	23 & 22				

CALIBRATION PROCEDURE

1. Connect the ADC-HS12B as shown in one of the connection diagrams. The sample-hold and A/D converter should be timed as shown in the timing diagram. The trigger pulse should be applied at a rate of 70 kHz or less and should be 100 nsec. minimum width

2. Zero and Offset Adjustments

Apply a precision voltage reference source between the selected analog input and ground. Adjust the output of the reference source to the value shown in the Calibration Table for the unipolar zero adjustment (zero +1/2 LSB) or the bipolar offset adjustment (-FS+1/2 LSB). Adjust the trimming potentiometer so that the output code flickers equally between 1111 1111 1111 and 1111 1111 1110

3. Full Scale Adjustment

Change the output of the precision voltage reference source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment (+FS-11/2 LSB). Adjust the gain trimming potentiometer so that the output code flickers equally between 0000 0000 0001 and 0000 0000 0000.

CALIBRATION TABLE

UNIPOLAR RANGE	ADJUST.	INPUT VOLTAGE
0 TO +5V	ZERO GAIN	+0.6 mV +4.9982V
0 TO +10V	ZERO GAIN	+1.2 mV +9.9963V
BIPOLAR RANGE		
±2.5V	OFFSET GAIN	-2.4994V +2.4982V
±5V	OFFSET GAIN	-4.9988V +4.9963V
±10V	OFFSET GAIN	-9.9976V +9.9927V

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

12-Bit Microelectronic Analog-to-Digital Converters ADC-HX, ADC-HZ Series

FEATURES

- 12 Bits Resolution
- 8 or 20 μ Sec. Conversions
- 5 Input Ranges
- Internal Hi Z Buffer
- Short Cycle Operation

GENERAL DESCRIPTION

The ADC-HX12B and ADC-HZ12B are selfcontained, high performance, 12 bit A/D converters manufactured with thin-film hybrid technology. They use the successive approximation conversion technique to achieve a 12 bit conversion in 20 and 8 microseconds respectively. Five input voltage ranges are programmable by external pin connection: 0 to +5V, 0 to +10V, $\pm 2.5V$, $\pm 5V$, and $\pm 10V$. An internal buffer amplifier is also provided for applications where 100 megohm input impedance is required.

These converters utilize a fast 12 bit DAC consisting of tightly matched monolithic quad current switches, a stable nichrome thin-film resistor network, and a precision zener reference source. The circuit also contains a fast monolithic comparator, a monolithic 12 bit successive approximation register, a clock, and a monolithic buffer amplifier. The thin-film resistor network is functionally trimmed by a laser to precisely set the 8-4-2-1 current weighting in the guad current switches. The close tracking of the thin-film resistor and quad current switches result in a differential nonlinearity tempco of only ±2ppm/°C. Gain tempco is ±20ppm/°C maximum.

Both models have identical operation except for conversion speed. They can be shortcycled to give faster conversion in lower resolution applications. Use of the internal buffer amplifier increases conversion time by 3μ sec., the settling time of the amplifier. Output coding is complementary binary, complementary offset binary, or complementary 2's complement. Serial data is also brought out. The package is a 32 pin ceramic case. Eight different models are offered covering the operating temperature ranges of 0 to 70°C, -25 to +85°C, and -55 to +100°C.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, ADC-HX12B, ADC-HZ12B

(Typical at 25 C , \pm 15V and +5V sup	plies unless other	wise noted)	
INPUTS	ADC-HX12B	ADC-HZ12B	
Analog Input Ranges, unipolar	0 to +5V, 0 to +	10V FS	
Analog Input Ranges, bipolar	±2.5V, ±5V, ±10\	/ FS	
Input Impedance	2.5K (0 to +5V,	±2.5V)	
	5K (0 to +10V, ±	:5V)	
	10K (±10V)		
Input Impedance with Buffer	100 Megohms	•	
	125nA typ., 250n	A max.	
Start Conversion	±15¥ 2\/min_to55\/r	nax positive pulse with	
	duration of 100ns	ec min. Rise and fall	
	times < 30 nsec.		
	Logic "1" to "0"	transition resets	
	converter and init	tiates next conversion.	
	Loading: 1 TTL Id	bad	
OUTPUTS ¹			٦.
Parallel Output Data	12 parallel lines of	data held until next	1
· · · · · · · · · · · · · · · · · · ·	conversion comma	and.	
	VOUT (''0'') ≤ +0	.4∨	
	V _{OUT} ("1") ≥ +2	.4V	
Coding, unipolar	Complementary B	inary	
Coding, bipolar	Complementary O	ffset Binary	
	Complementary T	wo's Complement	
Serial Output Data	NRZ successive de	cision pulses out, MSB	
	first. Compl. Bina	y or Compl. Offset	
	Binary Coding		1
End of Conversion (Status)	Conversion status	signal. Output is logic	
	"1" during reset a	nd conversion and	
Clock Output	Train of positive a	nversion complete.	
	nulses 600 kHz fo	r ADC-HX12B and	
	1 5MHz for ADC-	712B (nin 17	
	arounded)		
······································			-
PERFORMANCE	10.11		
Resolution	12 bits (1 part in 4	1096)	1
Nonlinearity	±1/2 LSB max.		1
Gain Error before adjustment	± 1/2 LSB max. +0 1%		
Zero Error uninolar before adi	± 0.1% + 0.5% of ESB ³		
Offset Error bipolar before adj	±0.1% of ESB ³		
Temp. Coeff. of Gain	±20ppm/°C max.	•	
Temp. Coeff. of Zero, unipolar	±5ppm/°C of FSR	max. ³	
Temp. Coeff. of Offset, bipolar	±10ppm/°C of FSI	R max. ³	
Diff. Nonlinearity Tempco	±2ppm/°C of FSR	3	
No Missing Codes	Over oper. temp. r	an ge	
Conversion Time ² , 12 bits	20 µsec. max.	8.0 μsec. max.	76
10 bits⁴	15 μ se c. max.	6.0 μsec. max.	1
8 bits ⁴	10 μ sec. max.	4.0 μsec. max.	
Buffer Settling Time, 10V step	3.0 µsec. to .01%		
Power Supply Rejection	.002% / % Supply r	nax.	
OWER REQUIREMENT			Γ
	+ 15VDC ±0.5V @	55mA	
	- 15VDC ±0.5V @	45mA	
	+ 5VDC ±0.25@	TUUMA	4
HYSICAL-ENVIRONMENTAL			1
Operating Temperature Range	0 to 70°C, -25 to	+85°C,	1
	or -55 to +100°	c	
Storage Temperature Range	-65°C to +150°C		
Package Size	1.700 x 1.100 x 0	.160 inches	
Package Type	32 pin ceramic		1
Pins	0.010 x 0.018 inc	n Kovar	1
Weight	0.5 oz. (14g.)		1
	······································		┥_
NOTES:			1

1. All digital outputs can drive 2 TTL loads.

2. Without buffer amplifier used. ADC-HZ12B may require external adjustment of clock rate.

3. FSR is full scale range and is 10V for 0 to +10V or \pm 5V input and 20V for \pm 10V input.

4. Short cycled operation.

TECHNICAL NOTES

It is recommended that the ±15V power input pins both be bypassed to ground with a .01 μ F ceramic capacitor in parallel with a 1 μ F electrolytic capacitor and the +5V power input pin be bypassed to ground with a 10 μ F electrolytic capacitor as shown in the connection diagrams. In addition, pin 27 should be bypassed to ground with a .01 μ F ceramic capacitor. These precautions will assure noise free operation of the converter.

- 2. Digital Common (pin 15) and Analog Common (pin 26) are not connected together internally, and therefore must be connected as directly as possible externally. It is recommended that a ground plane be run underneath the case between the two commons. Analog ground and $\pm 15V$ power ground should be run to pin 26 whereas digital ground and $\pm 5V$ ground should be run to pin 15.
- 3. External adjustment of zero or offset and gain are provided for by trimming potentiometers connected as shown in the connection diagrams. The potentiometer values can be between 10K and 100K ohms and should be 100ppm/°C cermet types (such as Datel-Intersil's TP series). The adjustment range is ±0.2% of FSR for zero or offset and ±0.3% for gain. The trimming pots should be located as close as possible to the converter to avoid noise pickup. In some cases, for example 8 bit short-cycled operation, external adjustment may not be necessary.
- 4. Short cycled operation results in shorter conversion times where the conversion can be truncated to less than 12 bits. This is done by connecting pin 14 to the output bit following the last bit desired. For example for an 8 bit conversion, pin 14 is connected to bit 9 output. Maximum conversions of 8 or 10 bits. In these two cases the clock rate is also speeded up by connecting the clock rate adjust (pin 17) to +5V (10 bits) or +15V (8 bits). The clock rate should not be arbitrarily speeded up to exceed the maximum conversion rate at a given resolution, however, or missing codes will result.
- 5. Note that output coding is complementary coding. For unipolar operation it is complementary binary and for bipolar operation it is complementary offset binary or complementary 2's complement. In cases where bipolar coding of offset binary or 2's complement is required, this can be achieved by inverting the analog input to the converter (using an op amp connected for gain of -1.0000). The converter is then calibrated so that -FS analog input gives an output code of 0000 0000 0000, and +FS-1LSB gives 1111 1111 1111.
- . These converters dissipate approximately 2 watts of power. The case to ambient thermal resistance is approximately 25° C per watt. For ambient temperatures above 50° C, care should be taken not to restrict air circulation in the vicinity of the converter.

ORDERING INFORMATION

	TEMP.	
MODEL	RANGE	SEAL
DC-HX12BGC	0 to 70C	EPOXY
ADC-HX12BMC	0 to 70C	HERM.
ADC-HX12BMR	-25 to +85C	HERM.
ADC-HX12BMM	-55 to +100C	HERM.
ADC-HZ12BGC	0 to 70C	EPOXY
ADC-HZ12BMC	0 to 70C	HERM.
DC-HZ12BMR	-25 to +85C	HERM.
DC-HZ12BMM	-55 to +100C	HERM.
Aating Socket: DI	LS-2 (2/convert	er)

Trimming Potentiometers: TP2K, TP5K, TP10K, TP20K, TP50K or TP100K

THESE CONVERTERS ARE COVERED UNDER GSA CONTRACT

TIMING AND CONNECTION DIAGRAMS

UNIPOLAR OPERATION

BIPOLAR OPERATION

LSB

0000

1111

1111

1111

1111

1111

1110

1111

INPUT	RANGE	COMP. BINARY CODIN	G	INPUT VOLTAGE RANGE		COMP. INPUT VOLTAGE RANGE OFFSET BINAR			CON COM	AP. TWO'S
0 TO +10V	0 TO +5V	MSB LS	в	±10V	±5V	±2.5V	MSB	LSB	MSB	LS
+9.9976V	+4.9988V	0000 0000 000	0	+9.9951V	+4.9976V	+2.4988V	0000 0	0000 0000	1000	0000 00
+8.7500	+4.3750	0001 1111 111	1	+7.5000	+3.7500	+1.8750	0001 1	111 1111	1001	1111 11
+7.5000	+3.7500	0011 1111 111	1	+5.0000	+2.5000	+1.2500	0011 1	111 1111	1011	1111 11
+5.0000	+2.5000	0111 1111 111	1	0.0000	0.0000	0.0000	0111 1	111 1111	1111	1111 11
+2.5000	+1.2500	1011 1111 111	1	-5.0000	-2.5000	-1.2500	1011 1	111 1111	0011	1111 11
+1.2500	+0.6250	1101 1111 111	1	-7.5000	-3.7500	-1.8750	1101 1	111 1111	0101	1111 11
+0.0024	+0.0012	1111 1111 111	0	-9.9951	-4.9976	-2.4988	1111 1	111 1110	0111	1111-11
0.0000	0.0000	1111 1111 111	1	-10.0000	-5.0000	-2.5000	1111 1	111 1111	0111	1111 .11
						••••••••••••••••••••••••••••••••••••••	•			

CONNECTIONS AND CALIBRATION

INPUT CONNECTIONS

INPUT	wi	тноит в	JFFER		WITH	BUFFER		
VOLT.	INPUT	CONNEC	T THESE	INPUT	CO	CONNECT THESE		
RANGE	PIN	PINS TOGETHER		PIN	PI	NS TOGETI	HER	
0 TO +5V	24	22 & 25	23 & 26	30	22 & 25	23 & 26	29 & 24	
0 TO +10V	24	-	23 & 26	30		23 & 26	29 & 24	
±2.5V	24	22 & 25	23 & 22	30	22 & 25	23 & 22	29 & 24	
±5V	24		23 & 22	30	-	23 & 22	29 & 24	
±10V	25	-	23 & 22	30	-	23 & 22	29 & 25	

SHORT CYCLE OPERATION

CLOCK RATE VS. VOLTAGE

CLOCK RATE

ADC-HZ12B

1.5MHz

1.8MHz

2.2MHz

CONNECTIONS

ADC-HX12B

600 kHz

720 kHz

880 kHz

8, 10, & 12 BIT CONVERSION

RESOLUTION	12 BITS	10 BITS	8 BITS
ADC-HX12B CONV. TIME	20 µsec.	15 µsec.	10 µsec.
ADC-HZ12B CONV. TIME	8 μsec.	6 μsec.	4 μsec.
CONNECT THESE	17 & 15	17 & 16	17 & 28
PINS TOGETHER	14 & 16	14 & 2	14 & 4

PIN 14 CONNECTION

RES. (BITS)	PIN 14 TO	RES. (BITS)	PIN 14 TO
1	PIN 11	7	PIN 5
2	PIN 10	8	PIN 4
3	PIN 9	9	PIN 3
4	PIN 8	10	PIN 2
5	PIN 7	11	PIN 1
6	PIN 6	12	PIN 16

CALIBRATION PROCEDURE

 Connect converter as shown in the Standard Connection diagrams. Use the Input Connection Table for the desired input voltage range and input impedance. Apply Start Convert pulses of 100 nsec. minimum duration to pin 21. The spacing of the pulses should be no less than the maximum conversion time.

2. Zero and Offset Adjustments

TO SELECTED

DATA OUTPUT PIN

PIN 17

VOLTAGE

0V

+5V

+15V

Apply a precision voltage reference source between the selected analog input and ground. Adjust the output of the reference source to the value shown in the Calibration Table for the unipolar zero adjustment (zero +½ LSB) or the bipolar offset adjustment (-FS+½ LSB). Adjust the trimming potentiometer so that the output code flickers equally between 1111 1111 1111 and 1111 1111 1110.

3. Full Scale Adjustment

Change the output of the precision voltage reference source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment (+FS-1½ LSB). Adjust the gain trimming potentiometer so that the output code flickers equally between 0000 0000 0001 and 0000 0000 0000.

CALIBRATION TABLE

UNIPOLAR RANGE	ADJUST.	INPUT VOLTAGE
	ZERO	+0.6 mV
010+50	GAIN	+4.9982V
	ZERO	+1.2 mV
010 +100	GAIN	+9.9963V
BIPOLAR RANGE		
+2 5\/	OFFSET	2.4994V
±2.5V	GAIN	+2.4982V
+5)/	OFFSET	4.9988V
±5V	GAIN	+4.9963V
+101/	OFFSET	-9.9976V
±10V	GAIN	+9.9927V

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana. (714)835-2751. (L.A.) (213)933-7256 & Sunnyvale, CA (408)733-2424 & Gaithersburg, MD (301)840-9490 Houston, (713)781-8886 & Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11 & DATELEK SYSTEMS GmbH (089)77-60-95 & DATEL KK Tokyo 793-1031 S SLID LECT TO CHANCE WITHOUT NOTICE

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

77C

Ultra-Fast 8 Bit A/D Converters Models ADC-815, ADC-825

FEATURES

- 8 Bits Resolution
- + 600 nsec. or 1 $\mu {\rm sec.}$ Conversion Time
- 6 Input Ranges
- Parallel or Serial Outputs
- Logic-Controlled Bipolar Offset
- No Calibration Required

GENERAL DESCRIPTION

Datel-Intersil's ADC-815 and ADC-825 are very high speed 8 bit successive approximation A/D converters in miniature hybrid form. Both models have identical specifications except for conversion time. The ADC-825 has a maximum conversion time of 1 μ sec., while the ultra-fast ADC-815 accomplishes an 8 bit conversion in only 600 nsec., maximum.

These converters feature six analog input voltage ranges: 0 to +5V, 0 to +10V, 0 to +20V, $\pm 2.5V$, $\pm 5V$ and $\pm 10V$. Selection of input ranges is accomplished by simple external pin connection. Unipolar or bipolar operating mode is selected by a digital control applied to the bipolar offset input. Operation of these devices is further simplified by complete functional laser trimming, resulting in a factory-trimmed converter that requires no external adjustments.

Each converter is a functionally complete unit requiring a minimum of passive external components for operation, and is packaged in a miniature, hermetically sealed 24-pin ceramic DIP.

Output data is available in parallel or serial form by external pin connection. Parallel output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation. Output coding in the parallel mode is accomplished by connection to either the MSB output or the MSB output. Serial output data is coded as straight binary for unipolar operation.

Additional specifications shared by both models include maximum nonlinearity of $\pm\frac{1}{2}$ LSB, differential nonlinearity of $\pm\frac{1}{2}$ LSB maximum, gain tempco of 20 ppm/°C maximum, power supply rejection of $\pm 0.02\%$ /% supply maximum, and long term stability of $\pm 0.05\%$ /year. Both models require

 \pm 15V and 5V supplies, and are available in different versions for operating temperature ranges of 0 to +70°C, -25 to +85°C, or -55 to +125°C.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Data Acquisition

SPECIFICATIONS, ADC-815, ADC-825

Typical at 25°C, ±15 VDC and +5 VDC supplies, unless otherwise noted.

TECHNICAL NOTES

	ADC-815	ADC-825
MAXIMUM RATINGS Positive Supply	+1	8V
Negative Supply	-1	8V
Digital Inputs	+7	5.5V
Analog Inputs	±2	25V
INPUTS		
Analog Input Ranges,' Unipolar Bipolar	±2.5V, ±5V, ±10V, U	10 + 200,
Input Impedance, 5V Range	1.34K	
20V Range	2.3K 4.27K	
Start Conversion	+2V min. to +5.5V ma	ax. Positive Pulse 50
	times. Positive Going	Edge resets outputs
	to 011 1 and sets EC	DC HI. Negative going
	Loading: 2 TTL loads.	sion.
Bipolar Offset	Hold HI (+2.0V to +5	V) for bi <u>po</u> lar + 0.8V) for
	unipolar operation.	10.00101
OUTPUTS		
	Vout ("0") $\leq \pm 0.4V$	ry bits plus MSB)
	VOUT ("1") \geq +2.4V	
Serial Output Data	NRZ format successiv	e
	Decision pulse output	at internal clock rate
	Loading: 4 TTL loads	
Coding, Unipolar	Straight Binary	omplement
EOC	Conversion Status Sig	inal.
	$HI \ge +2.4V$ during co	nversion and reset
	Loading: 4 TTL loads	ion conv. complete.
Clock Output	Internal clock pulse tr	ain of negative going
	Loading: 6 TTL loads	
PERFORMANCE	600 nsec.	1 μsec.
Resolution	8 bits	
Nonlinearity	±½ LSB max.	
Gain Error	$\pm \frac{1}{2}$ LSB max.	
Zero Error Gain Tempco. 0°C to +70°C4	±½ LSB max. ±20 ppm of FSB/°C	max ⁵
Zero Drift	$\pm 100 \mu$ V/°C max.	
Long Term Stability	±10 ppm of FSR/°C i ±0.02%/vear	nax. ⁵
No Missing Codes	Over Operating Temp	Range
Analog Supply	+15V ±0.5V @ 35 mA	max.
	-15V ±0.05V @ 15 m +5V ±0.25V @ 100 m	A max. A max.
Power Dissipation	1.25W max.	
PHYSICAL ENVIRONMENTAL	000 1 1 7000	
BMR	-25°C to +85°C	
BMM	-55°C to +125°C	
Package Type	24 pin Ceramic DIP	
Pins	0.010×0.018 inch Ko	ovar
NUTES: 1. Unused analog inputs must be gr 2. At 15.9 MHz for the ADC-815.9	ounded. 52 MHz for the ADC-82!	5.
3. The conversion time temperature	e coefficient for these c	onverters is 0.15%/°C.
This tempco is positive from 0°C	to +125°C and from 0°	C to -55°C Maximum
700 nsec. at 25°C.	C. Max. Conversion Tin	ne for "M M" version is
4. Doubles outside this temperature	e range. 5. FSR is F	ull Scale Range.

1. The high operating speed of these converters requires that good high frequency board layout techniques be used. Leads from data outputs should be kept as short as possible, output leads longer than 1 inch (2.5 cm) require the use of an output register. Use of a ground plane is particularly important with high speed data converters as it reduces high frequency noise and aids in decoupling analog signals from digital signals. Ground loop problems are avoided by connecting all grounds on the board to the ground plane. The basic configuration of the ground plane directly below the ADC-815 or ADC-825 is shown in the ground plane layout diagram. This layout should be modified after selection of analog input range to include unused analog inputs.

- Analog input leads should be as short and direct as possible. The use of shielded cable as an analog input lead will ensure isolation of analog signals from environmental interference. Unused analog inputs should be grounded.
- For applications of the ADC-815 or ADC-825 that require an input buffer amplifier, an amplifier should be selected with particular attention to its high speed performance and low output impedance.
- 4. Analog and digital supplies are internally bypassed to ground with .01 μF capacitors; however, it is recommended that the +15V, -15V and +5V supplies be additionally bypassed externally with 1 μF electrolytic capacitors as shown in the connection diagrams.
- 5. For bipolar operation the bipolar offset input (pin 8) is held at logic HI (+2.0V to +5V); for unipolar operation pin 8 is held at logic LO (0V to +0.8V).
- 6. In the bipolar mode, two's complement output coding is available by using the MSB output (pin 16); offset binary coding is obtained by using the MSB output (pin 17). Unipolar operation requires use of the MSB output (pin 17) to achieve straight binary output coding.
- 7. Serial output data is available at pin 1 in standard NRZ format with the MSB appearing first. Coding is straight binary for unipolar operation or offset binary for bipolar operation. Synchronization of serial output data is achieved by use of the clock output (pin 13). Each data bit is valid when the clock output is HIGH and appears in succession from the MSB at the second clock LOW to HIGH transition to the LSB at the ninth clock LOW to HIGH transition.
- 8. Applications of these converters that require the use of a sample-hold may be satisfied by Datel-Intersil's model SHM-HU, an ultra-fast hybrid unit featuring 25 nsec acquisition time and a $\pm 2.5V$ input range.
- 9. These converters have a maximum power dissipation of 1.25W. The case-to-ambient thermal resistance for this package is approximately 33°C per watt. For operation in ambient temperatures exceeding 83°C, airflow of at least 400 linear feet per minute is recommended.

APPLICATIONS

TIMING DIAGRAM FOR ADC-815, ADC-825 OUTPUT: 10100001

CODING TABLES

UNIPOLAR OPERATION

UNIPOLAR	OUTPUT CODING*	A	NALOG INP	UT
SCALE	STRAIGHT BINARY	0 to +5V	0 to +10V	0 to +20V
F.S 1 LSB	1111 1111	+4.980V	+9.961V	+19.922V
¾ F.S.	1100 0000	+3.750V	+7.500V	+15.000V
½ F.S.	1000 0000	+2.500V	+5.000V	+10.000V
¼ F.S.	0100 0000	+1.250V	+2.500V	+5.000V
1 LSB	0000 0001	+0.020V	+0.039V	+0.078V
0	0000 0000	0.000V	0.000V	0.000V

***FOR PARALLEL OR SERIAL OUTPUT DATA**

BIPOLAR OPERATION

BIPOLAR	OUTP	UT CODING	INPUT	VOLTAGE	RANGE
SCALE	OFFSET BINARY	TWO'S COMPLEMENT ²	±2.5V	±5⊻	±10V
+F.S1 LSB	1111 1111	0111 1111	+2.480V	+4.961V	+9.922V
+½ F.S.	1100 0000	0100 0000	+1.250V	+2.500V	+5.000V
+1 LSB	1000 0001	0000 0001	+0.020V	+0.039V	+0.078V
0	1000 0000	0000 0000	0.000V	0.000V	0.000V
−½ F.S.	0100 0000	1100 0000	-1.250V	-2.500V	-5.000V
-F.S.+1 LSB	0000 0001	1000 0001	-2.480V	-4.961V	+9.922V
F.S.	0000 0000	1000 0000	-2.500V	-5.000V	+10.000V

NOTES: 1. FOR PARALLEL OR SERIAL OUTPUT DATA 2. FOR PARALLEL OUTPUT DATA ONLY

Mating Socket: DILS-3 (24-pin socket) Trimming Potentiometers: TP-100

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

BASIC GROUND PLANE LAYOUT

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD--TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ultra-Fast 10-Bit A/D Converters ADC-816, ADC-826

FEATURES

- 10 Bits Resolution
- 800 nsec or 1.4 μ sec Conversion Time
- 6 Input Ranges
- Unipolar and Bipolar Operation
- Programmable Output Coding

GENERAL DESCRIPTION

Datel-Intersil's ADC-816 and ADC-826 are very high speed 10 bit successive approximation A/D converters, realized as miniature thin-film hybrids. Both models have identical specifications except for conversion time. The ADC-826 has a maximum conversion time of $1.4 \, \mu \text{sec.}$ The ultra-fast ADC-816 offers a maximum conversion time of only 800 nsec, making this the fastest 10 bit A/D converter of any hybrid, monolithic, or modular unit currently available. Please note that these conversion times are specified as maximum at *full rated operating temperature!*

These converters feature six analog input voltage ranges: 0 to -5V, 0 to -10V, 0 to -20V, $\pm 2.5V$, $\pm 5V$ and $\pm 10V$. Selection of input range is accomplished by simple external pin connection.

Output data is available in parallel or serial form by external connection. Data is coded as straight binary for unipolar operation and as either offset binary or Two's complement for bipolar operation. Two's complement is available in the parallel output mode only and is selected by pin connection.

Specifications shared by both models include maximum nonlinearity of $\pm \frac{1}{2}$ LSB and differential nonlinearity of $\pm \frac{1}{2}$ LSB maximum.

These converters are functionally complete units requiring a minimum of passive external components for operation. Each unit is composed of a high speed comparator, an ultra-fast settling D/A converter, a precision voltage reference, successive approximation register, clock generator and control logic circuits. The combination of unique design and the latest hybrid fabrication technology allows this level of performance to be achieved in a miniature hermetically sealed 32 pin ceramic DIP package.

Both models require ± 15 VDC and $\pm 5V$ supplies, and are available in versions for the 0 to 70°C, -25 to $\pm 85°$ C or ± 55 to $\pm 125°$ C operating temperature ranges. For information on versions certified to MIL-STD-883 Class B, contact the factory.

MECHANICAL DIMENSIONS INCHES (MM)

INPUT/OUTPUT CONNECTIONS

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617)339-9341/TWX710-346-1453/TLX951340

SPECIFICATIONS ADC-816, ADC-826

		o supplies, unless otherwise noted)	
MAXIMUM BATINGS			1. Use of good high frequency circuit
Positive Supply, pin 12)	+16VDC	techniques is required for rated p
Negative Supply, plin 4		=16 VDC	The power common (pin 1) and
Logic Supply, pin 4		+7 VDC	common (pin 7) are not connecte
Logic Dupply, pin 17		+7 VDC	and therefore must be connected e
Analog Inpute	••••••	+ Twice selected analog input range	directly as possible through a low
		. I wice selected analog input range	low inductance nath The signal c
INPUTS			6) is connected to nower commo
Analog Input Ranges	s, unipolar ¹	0 to -5V, 0 to -10V, 0 to -20V	ternally and so may be used as a
	, bipolar	±2.5V, ±5V, ±10V	line to reference the signal input. T
	, reference	-9.5V to -10.5V	ubo of a ground plane for all comm
Input Impedance ²	,5V range	. 250Ω	tions is highly recommonded. Also
	,10V range	. 500Ω	monded that the appleg and digital
	, 20 V range	1 ΚΩ	though thou are interpally hypasse
	, bipolar input	. 1 ΚΩ	uF conspiters, be additionally bypasse
	, reference (pin 5)	. 2 ΚΩ	pally at the supply pine with 1 / E old
Start conversion		2V min to 5.5V max. positive pulse with duration	nally at the supply pins with t µr ele
		of 50 nsec min. Rise and fall times typ. 10 nsec.	2 The digital outputs are not buffere
		Logic "1" resets converter, Logic "0" initiates	internal application and so are ser
		conversion. Loading: 1 TTL Load.	usual loading or long lines. Term
		5	- Usual loading of long lines. Term
DUTPUTS			inchos from the data output size A
Parallel Output Data		11 Parallel lines of data (10 binary bits + MSB)	must be pop reactive such that I
		held until next conversion command. Vout ("0")	must be non-reactive such that le
		\leq +0.4V, Vout ("1") \geq +2.4V.	be short and purely resistive. I
		Loading: 2 TTL loads	component of any analog input
Coding ³ , unipolar		Straight Binary	seen at the analog input pin, sho
, bipolar ⁴		Offset Binary, Two's Complement	than 0.3% of the analog input resist
Serial Output Data		NRZ successive decision pulses out. MSB first	pin, for frequencies below 20 MHz
		at internal clock frequency	3. Conversion time is measured from
		Loading: 4 TTL Loads	edge of a 50 nsec start input pulse
End of Conversion (EQ	C)	Conversion Status Signal, Output is logic HI	edge of the EOC output. The conv
(20	••••	during reset and conversion LO when	is factory set at +25°C for the AD
		conversion is complete Loading: 4 TTL Loads	MR at 750 nsec, 875 nsec for
Clock Output		Train of positive going 0 to $\pm 5V_{-}30$ psec pulses	816MM, and 1.25 µsec for the AE
	C-816MC/MD ⁵	12.5 MHz	MR/MM. The worst case conver-
AD	C-826MC/MR/MM	6.6 MHz	the maximum rated operating ten
Reference Output Vol	itana	$-10.001/1 \pm 0.021/$	given as a maximum specification
Current Current, Vol	rrent	$0 \text{ to } \pm 20 \text{ mA}$ (cipk only)	4. To use the internal reference the
, 00	nodonoo	10.0 max for $10 MHz$	supply pin (pin 3) must be conne
, im	pedance	10.52 mdx , $10 \ge 10 \text{ MHz}$	-15V supply. If the reference supp
PERFORMANCE		· · · · · · · · · · · · · · · · · · ·	is disconnected or grounded, the
Resolution		10 Bits	erence will be disabled at a power
Conversion Time ⁶ , Al	DC-816MC/MR ⁷	.800 nsec max.	approximately 200 mW.
, AC	C-826MC/MR/MM	1.4 μsec max.	5. Serial output data is available in
Nonlinearity		±1/2 LSB max.	successive decision pulses, M
Differential Nonlineari	ity ⁸	±1/2 LSB max.	straight binary or offset binary c
Gain Error ⁹ , before ad	ljustment, unipolar.	. ±0.3% of FSR ¹⁰ , max.	chronization of the serial outr
	bipolar	±0.2% of FSR max.	achieved through the use of the
Zero Error, before adju	stment, unipolar	±0.2% of FSR max.	(pin 30). This same clock output a
Offset Error, before ad	iustment, bipolar	±0.1% of FSR max.	the output register such that at the
Gain Tempco ¹¹ , unipo	plar	±37 ppm/°C max.	of the output clock the previous dat
, bipola	ar	±28 ppm/°C max.	clocked out however, there will
Zero Tempco , unipola	ar	±12 ppm/°C max.	edge to clock out the LSB. A Seria
bipolar	· · · · · · · · · · · · · · · · · · ·	+23 ppm/°C max	covery circuit is diagrammed on
Conversion Time Tem	DCO	±0.1%/°C	tions page that will correct this
Reference Output Tem		±20 ppm/°C max	6. These converters have a case to a
Power Sunniv Paiactic	n	Effectively infinite for rated supplies	mal resistance of 22°C per watt
No miseing codes	······································	Over operating Temp, Range	tures above +70°C an air flow of
no masing cours			linear feet per minute is recommor
POWER REQUIREMEN	TS		arate at elevated temperatures
Analog Sunniv nin 19	· - >	+15\/ +0.1\/ @ 106mA max	mondod that the converter he
nin A		$-151/\pm0.51/$ @ 20mA max	rectly to the circuit board (without
Reference Supply nin	3	-15V ±0.5V @ 34mA max	mounting socket) and that as at the
Logic Supply, pin	•••••••	$+5V \pm 0.25V @ 194mA max$	that he established between the
Power Dissingtion	••••••	3.6W/ may	and the established between the C
	· · · · · · · · · · · · · · · · · · ·		and the circuit board ground plane
HYSICAL-FNVIRONM	ENTAL		silicone thermal joint compound s
Operating Town Ran	de Suffix C	0°C to +70°C	ketield Type 120 or equivalent.
Sherating temps trans	Suffix P	-25°C to +85°C	/ Applications of these converters
	Suffix M	-55°C to +125°C	the use of a sample-hold may be
Storage Temperature	Bange	-65° C to $+150^{\circ}$ C	Datel-Intersil's model SHM-HU, a
Package Type		32 nin hermetically sealed Caramic DIP	hybrid unit featuring 25 nsec acqu
Pins	• • • • • • • • • • • • • • • • • • • •	0.010 x 0.018 inch gold plated Kovar	and a ±2.5V input range.
Weight	•••••	0.8 oz (23a)	
weigin		. U.U UZ (ZOY)	
OTES: 1. Bipolar input must	be tied to ground.	6. Max. conversion time is specified at fu	ull rated operating temp. 10. FSR is Full Scale Range
2. Resistance toleran	nce is -30%, +50%, ±50	opm/°C. 7. The ADC-816MM has a maximum co	nversion time of 11. Includes internal refer
3. All coding is invert	ed analog.	975 nsec at full rated operating tempe	erature. Given as a maximum
4. Two's Complement	t Binary available for par	allel output only. 8. Tested over full rated operating tempe	erature range. these values improve
5. Clock frequency for	or ADC-816MM is 10.5 M	IHz. 9. Includes Zero Error.	TUV FSH, and by 20%

TECHNICAL NOTES

- Use of good high frequency circuit board layout techniques is required for rated performance. The power common (pin 1) and comparator common (pin 7) are not connected internally, and therefore must be connected externally as directly as possible, through a low resistance, low inductance path. The signal common (pin 6) is connected to power common (pin 1) internally and so may be used as a signal sense line to reference the signal input. The extensive use of a ground plane for all common connections is highly recommended. Also, it is recommended that the analog and digital supplies, although they are internally bypassed with 0.033 µF capacitors, be additionally bypassed externally at the supply pins with 1 µF electrolytic capacitors.
- The digital outputs are not buffered from their internal application and so are sensitive to unusual loading or long lines. Terminate these outputs with normal TTL inputs not more than 3 inches from the data output pin. Analog inputs must be non-reactive such that leads should be short and purely resistive. The reactive component of any analog input source, as seen at the analog input pin, should be less than 0.3% of the analog input resistance at that pin, for frequencies below 20 MHz.
- Conversion time is measured from the rising edge of a 50 nsec start input pulse to the falling edge of the EOC output. The conversion time is factory set at +25°C for the ADC-816 MC/ MR at 750 nsec, 875 nsec for the ADC-816MM, and 1.25 µsec for the ADC-826MC/ MR/MM. The worst case conversion time at the maximum rated operating temperature is given as a maximum specification.
- To use the internal reference the reference supply pin (pin 3) must be connected to the -15V supply. If the reference supply pin (pin 3) is disconnected or grounded, the internal reference will be disabled at a power saving of approximately 200 mW.
- Serial output data is available in NRZ format successive decision pulses, MSB first, in straight binary or offset binary coding. Synchronization of the serial output data is achieved through the use of the clock output (pin 30). This same clock output also controls the output register such that at the rising edge of the output clock the previous data bit may be clocked out, however, there will be no clock edge to clock out the LSB. A Serial DATA Recovery circuit is diagrammed on the applications page that will correct this.
- These converters have a case to ambient thermal resistance of 22°C per watt. At temperatures above +70°C an air flow of at least 400 linear feet per minute is recommended. To operate at elevated temperatures it is recommended that the converter be mounted directly to the circuit board (without the use of a mounting socket) and that good thermal contact be established between the case bottom and the circuit board ground plane by use of a silicone thermal joint compound such as Wakefield Type 120 or equivalent.
- Applications of these converters that require the use of a sample-hold may be satisfied by Datel-Intersil's model SHM-HU, an ultra-fast hybrid unit featuring 25 nsec acquisition time and a ±2.5V input range.

11. Includes internal reference Tempco.

Given as a maximum for 5V FSR, these values improve by 10% for

10V FSR, and by 20% for 20V FSR.

APPLICATIONS

CODING TABLES

UNIPOLAR OPERATION

INPUT RANGE			STRA	IGHT B	INARY
0 to-20V	0 to-10V	0 to -5V	MSB		LSB
-19.9805	-9.9902	-4.9951	1111	11	1111
-17.5000	-8.7500	-4.3750	1110	00	0000
-15.0000	-7.5000	-3.7500	1100	00	0000
-10.0000	-5.0000	-2.5000	1000	00	0000
-5.0000	-2.5000	-1.2500	0100	00	0000
-2.5000	-1.2500	-0.6250	0010	00	0000
-0.0198	-0.0098	-0.0049	0000	00	0001
0.0000	0.0000	0.0000	0000	00	0000

BINARY OPERATION

INF	UT RAN	GE	OFF	SET BI	NARY	TWO'S	COMPL	EMENT
±10V	±5V	±2.5V	MSB		LSB	MSB		LSB
-9.9805	-4.9902	-2.4951	1111	11	1111	0111	11	1111
-7.5000	-3.7500	-1.8750	1110	00	0000	0110	00	0000
-5.0000	-2.5000	-1.2500	1100	00	0000	0100	00	0000
0.0000	0.0000	0.0000	1000	00	0000	1100	00	0000
+5.0000	+2.5000	+1.2500	0100	00	0000	1100	00	0000
+7.5000	+3.7500	+1.8750	0010	00	0000	1010	00	0000
+9.9805	+4.9902	+2.4951	0000	00	0001	1000	00	0001
+10.0000	+5.0000	+2.5000	0000	00	0000	1000	00	0000

ORDERING INFORMATION

MODEL	OPERATING TEMP. RANGE	
ADC-816MC	0°C To +70°C	
ADC-816MR	-25°C To +85°C	
ADC-816MM	-55°C To +125°C	
ADC-826MC	0°C To +70°C	
ADC-826MR	-25°C To +85°C	
ADC-826MM	-55°C To +125°C	
Mating Socket	DILS-2 (2/converter)	
Trimming	TP20K, TP100, TP50	
Potentiometers		

CALIBRATION PROCEDURE

Connect the converter as shown in the applicable connections diagram. A trig-ger pulse of between 50 nsec and 100 nsec is applied to the start conversion input (pin 31) at the rate of 200KHz. Zero and Offset Adjustments

2

Apply a precision voltage reference source between the appropriate input for the selected full scale range and ground. Adjust the output of the reference source to the value shown in the Calibration Table for the unipolar zero adjustment (0-1/2 LSB) or the bipolar offset adjustment (+FS-1/2 LSB). Adjust the appropriate trim-ming potentiometer so that the output code flickers equally between X0000 00000 and X0000 00001. The MSB, indicated by X will be 0 for straight binary and offset binary coding or 1 for two's complement output coding.

3.

binary cooing or 1 for two s complement output cooing.
Full Scale Adjustment
Set the output of the voltage reference source used in step 2 to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment (-F\$ + 1 1/2 LSB).
Adjust the gain trimming potentiometers or that the output code flickers equally between X1111 11111 and X1111 11110. The MSB, indicated by X, will be 1 for straight binary and offset binary coding or coding or 0 for two's complement output coding.

UNIPOLAR RANGE	ADJUST.	INPUT VOLTAGE	BIPOLAR RANGE	ADJUST.	INPUT VOLTAGE
0 To -5V	Zero Gain	-2.4mV -4.9927V	±2.5V	Offset Gain	±2.4975V -2.4927V
0 To ~10V	Zero Gain	-4.9mV -9.9854V	±5V	Offset Gain	±4.9951V -4.9854V
0 to -20V	Zero Gain	-9.8mV -19.9707.V	±10V	Offset Gain	±9.9902V -9.9707V

PERFORMANCE DATA

HIGH SPEED THREE-STATE OUTPUT BUFFER **GROUND PLANE LAYOUT** FOR TWO'S COMPLEMENT OUTPUT CODING, THIS CONMECTION IS PIN 18 (MSB).

MSB OUT

BIT 5 OUT

BIT 6 OUT

LSB OUT

12

1

BOTTOM

VIEW

13 🛈

24

O OUTPUT ENABLE

*USE DM 8096 FOR INVERTING THE OUTPUT CODING.

AFTER 27 nsec MAXIMUI DELAY, OUTPUTS GO TO HIGH IMPEDANCE STATE

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ultra-Fast 12 Bit A/D Converters Models ADC-817, ADC-827

FEATURES

- 12 Bit Resolution
- 2 µsec or 3 µsec Conversion Times
- Unipolar & Bipolar Operation
- Short Cycle Operating Capability
- 5 Programmable Input Ranges
- Parallel or Serial Data Output

GENERAL DESCRIPTION

The ADC-817 and ADC-827 are high-speed successive approximation A/D converters in miniature hybrid form. Both Models have identical specifications except for conversion times. The ADC-827 has a maximum conversion time of 3 μ sec while the ultrafast ADC-817 accomplishes a 12 bit conversion in only 2.0 μ sec., maximum.

These converters feature five analog input voltage ranges: 0 to -5V, 0 to -10V, $\pm 2.5V$, $\pm 5V$, and $\pm 10V$. Selection of input range is accomplished by simple external pin connection. Both devices provide a user-selectable, fast settling precision input buffer with an input impedance of $100 \text{ M}\Omega$, allowing them to be driven directly from a high impedance source. The input buffer may be bypassed for maximum speed applications with low impedance sources such as a sample and hold.

Output data is available in parallel or serial form by external connection. Data is coded as straight binary for unipolar operation and as either offset binary or two's complement for bipolar operation. Two's complement coding is available in the parallel output mode only, and is selected by pin connection.

Specifications shared by both models include maximum nonlinearity of $\pm 1/2$ LSB, differential nonlinearity of $\pm 1/2$ LSB maximum, gain tempco of 25 ppm/°C maximum, and a power supply rejection of $\pm 0.01\%/\%$ supply maximum.

These converters are functionally complete units requiring a minimum of passive external components for operation. Each unit is composed of a fast settling precision input buffer, a high speed comparator, an ultrafast settling D/A converter, a precision voltage reference, successive approximation register, clock generator and control logic circuits. The combination of unique design and the latest hybrid fabrication technology allows this level of performance to be achieved in a miniature, hermetically sealed 32 pin ceramic DIP package.

Both models require ± 15 VDC and ± 5 V supplies, and are available in versions for the 0 to $\pm 70^{\circ}$ C, ± 25 to $\pm 85^{\circ}$ C or ± 25 to $\pm 125^{\circ}$ C operating temperature ranges. For information on versions certified to MIL-STD-883 Class B, contact the factory.

ADC-817, 827 INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 OUT (LSB)	17	CLOCK RATE
2	BIT 11 OUT	18	REFERENCE OUT
з	BIT 10 OUT	19	CLOCK OUT
4	BIT 9 OUT	20	EOC OUT
5	BIT 8 OUT	21	START CONVERSION
6	BIT 7 OUT	22	COMPARATOR IN
7	BIT 6 OUT	23	BIPOLAR OFFSET
8	BIT 5 OUT	24	10V INPUT RANGE
9	BIT 4 OUT	25	20V INPUT RANGE
10	BIT 3 OUT	26	ANALOG GROUND
11	BIT 2 OUT	27	REFERENCE OUT
12	BIT 1 OUT (MSB)	28	+15V POWER
13	BIT 1 OUT (MSB)	29	BUFFER OUT
14	SHORT CYCLE	30	BUFFER IN
15	DIGITAL GROUND	31	-15V POWER
16	+5V POWER	32	SERIAL OUT

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

Data Acquisition

MAXIMUM RATINGS	ADC-817 ADC-827
Positive Supply	+18V
Negative Supply	18V
Logic Supply	+/V +5 5V
Analog Inputs	+3.5V +20V
Buffer Amplifier Input	±15V
INDUTE	
Analog Input Banges Unipolar	0 to -5 V 0 to -10 V
Bipolar	±2.5V. ±5V. ±10V
Input Impedance 5V Ranges	1 ΚΩ
10V Ranges	2 ΚΩ
20V Ranges	4 ΚΩ
Start Conversion	+2V min. to +5.5V max. Positive Pulse with duration of
	50 nsec min.
	Logic "1" resets converter
	Logic "0" initiates conversion
	Loading: 2 TTL loads
Buffer Amplifier Gain	+1
Butter Amplitier Input Voltage	± 10.0V
Butter Amplifier Settling Time1	300 nsec
Sano Ampine Setting fille	
OUTPUTS	
Parallel Output Data	13 parallel lines (12 binary bits plus MSB)
	pulse to positive going edge of START
	CONVERSION pulse.
	V _{OUT} "0" ≤+0.4V
	V _{OUT} "1"≥+2.4V
	Loading: 4 TTL loads
Serial Output Data	NHZ format, successive decision pulse
	output at internal clock rate
	appears first
	Loading: 4 TTL loads
Coding, Unipolar ²	Straight Binary
Bipolar ³	Offset Binary, Two's Complement ³
End of Conversion (EOC)	Conversion Status Signal $V = "0" \le 10$ AV for conversion complete
	V_{OUT} 0 \leq +0.4V for conversion complete
Clock Output	Negative going pulses from +5V to 0V.
	gated on during conversion
L.	Loading: 6 TTL loads
PERFORMANCE	
Resolution	12 binary bits⁴
Nonlinearity	±1/2 LSB max.
Differential Nonlinearity	±1/2 LSB max.
Diff. Nonlinearity Tempco	±5 ppm/° C max.
Zero Tempco Uninclar	$\pm 25 \text{ ppm/}^{-1} \text{ C max}$
Offset Tempco, Bipolar	$\pm 15 \text{ ppm of FSR}^\circ \text{C max.}^5$
Power Supply Rejection	±0.01%/% Supply, max.
Conversion Time Over Full Temp.	2.0 µsec max. 3.0 µsec max.
POWER REQUIREMENT	
Supply Voltage	+15V ±0.5V @ 50 mA max.
	-15V ±0.5V @ 25mA max.
	$+ 5V \pm 0.25V @ 150 mA max.$
Power Dissipation	+ 5V ±0.25V @ 150 mA max. 1.9 W max.
Power Dissipation PHYSICAL-ENVIRONMENTAL	+ 5V ±0.25V @ 150 mA max. 1.9 W max.
Power Dissipation PHYSICAL-ENVIRONMENTAL Operating Temp. Range, BMC	+ 5V ±0.25V @ 150 mA max. 1.9 W max. 0° C to +70° C
Power Dissipation PHYSICAL-ENVIRONMENTAL Operating Temp. Range, BMC BMR	+ 5V ±0.25V @ 150 mA max. 1.9 W max. 0° C to +70° C −25° C to +85° C
Power Dissipation PHYSICAL-ENVIRONMENTAL Operating Temp. Range, BMC BMR BMM	+ 5V ±0.25V @ 150 mA max. 1.9 W max. 0° C to +70° C −25° C to +85° C −55° C to +125° C 65° C to +125° C
Power Dissipation PHYSICAL-ENVIRONMENTAL Operating Temp. Range, BMC BMR Storage Temp. Range Package Type	+ 5V ±0.25V @ 150 mA max. 1.9 W max. 0° C to +70° C -25° C to +85° C -55° C to +125° C -65° C to +125° C 32 nin hermetically sealed coromic DIP.
Power Dissipation PHYSICAL-ENVIRONMENTAL Operating Temp. Range, BMC BMR Storage Temp. Range Package Type Pins	+ 5V ±0.25V @ 150 mA max. 1.9 W max. 0° C to +70° C -25° C to +85° C -55° C to +125° C -65° C to +125° C 32 pin hermetically sealed ceramic DIP 0.010 × 0.018 inch Kovar
Power Dissipation PHYSICAL-ENVIRONMENTAL Operating Temp. Range, BMC BMR Storage Temp. Range Package Type Pins Weight	+ 5V $\pm 0.25V$ @ 150 mA max. 1.9 W max. 0° C to +70° C -25° C to +85° C -55° C to +125° C -65° C to +125° C 32 pin hermetically sealed ceramic DIP 0.010 × 0.018 inch Kovar 0.42 oz. (12q)
Power Dissipation PHYSICAL-ENVIRONMENTAL Operating Temp. Range, BMC BMR BMM Storage Temp. Range Package Type Pins Weight	+ $5V \pm 0.25V$ @ 150 mA max. 1.9 W max. 0° C to +70° C -25° C to +85° C -55° C to +125° C -65° C to +125° C 32 pin hermetically sealed ceramic DIP 0.010 × 0.018 inch Kovar 0.42 oz. (12g)
Power Dissipation PHYSICAL-ENVIRONMENTAL Operating Temp. Range, BMC BMR BMM Storage Temp. Range Package Type Pins Weight Votes: 1. 100 step to 0.01%. 5V and 20V steps settle to 0.0	+ 5V $\pm 0.25V$ @ 150 mA max. 1.9 W max. 0° C to +70° C -25° C to +85° C -55° C to +125° C -65° C to +125° C 32 pin hermetically sealed ceramic DIP 0.010 × 0.018 inch Kovar 0.42 oz. (12g) 11% in 150 nsec and 800 nsec. respectively.
Power Dissipation PHYSICAL-ENVIRONMENTAL Operating Temp. Range, BMC BMR BMM Storage Temp. Range Package Type Pins Weight IOTES: 1. 10V step to 0.01%, 5V and 20V steps settle to 0.0 2 These converters operate with inverted analog, the and +FS, is encoded as 0000 0000 00000 texamples	+ 5V $\pm 0.25V$ (@ 150 mA max. 1.9 W max. 0° C to +70° C -25° C to +85° C -55° C to +125° C -65° C to +125° C 32 pin hermetically sealed ceramic DIP 0.010 × 0.018 inch Kovar 0.42 oz. (12g) 11% in 150 nsec and 800 nsec. respectively. atts=F.S. +11.5B is encoded as 1111 1111 1111 given are for offset binary coding).

OPECIFICATIONS ADD 917 ADC 927

TECHNICAL NOTES

- The high operating speed of these converters requires that good high frequency board layout techniques be used. Leads from data outputs should be kept as short as possible, output leads longer than 1 inch (2.5 cm) require the use of an output register. Ground loop problems are avoided by connecting all grounds on the board to the ground plane.
- Analog input leads should be as short and direct as possible. The use of shielded cable as an analog input lead will ensure isolation of analog signals from environmental interference.
- 3. When the input buffer amplifier is used, a delay equal to its settling time must be allowed between input level change, such as multiplexer channel change, and the negative going edge of the START CONVERSION pulse. If the buffer is not required its input (pin 30) should be tied to analog ground (pin 26). This will prevent the unused amplifier from introducing noise into the converter. For applications in which the internal buffer is not used, the converter must be driven from a source with an extremely low input impedance.
- 4. Both analog and digital supplies should be bypassed to ground with 1 μ F electrolytic capacitors in parallel with 0.1 μ F ceramic capacitors as shown in the connections diagrams. Bypass capacitors should be located directly adjacent to, or on, each supply pin. The –10V reference output (pin 18) should be bypassed to ground with a 2.2 μ F electrolytic capacitor mounted as previously indicated.
- In the bipolar mode, two's complement output coding is available by using the MSB output (pin 13); offset binary coding is obtained by using the MSB output (pin 12).
 Unipolar operation requires use of the MSB output (pin 12) to achieve straight binary output coding.
- b. Serial output data is available at pin 32 in standard NRZ format with the MSB appearing first. Coding is straight binary for unipolar operation or offset binary for bipolar operation. Synchronization of serial output data is achieved by use of the clock output (pin 19). Each data bit is valid when the clock output is HIGH and appears in succession from the MSB at the second clock LOW to HIGH transition to the LSB at the thirteenth clock LOW to HIGH transition.
- 7. Applications of these converters that require the use of a sample-hold may be satisfied by Datel-Intersil's model SHM-6, a high-speed hybrid unit featuring 1.0 μ sec acquisition time, 0.01% accuracy, programmable gains from ± 1 to ± 10 and a ± 10 V output range.
- 8. These converters have a maximum power dissipation of 2.4W. The case-to-ambient thermal resistance for this package is approximately 28° C per watt. For operation in ambient temperatures exceeding 70° C, care must be taken to ensure free air circulation in the vicinity of the converter.
- Clock rate control (pin 17) is left unconnected for operation at rated conversion speed. Connect to +5V to decrease conversion time by 50-75 nsec, or to ground to increase conversion time by 50-75 nsec.

APPLICATIONS

OUTPUT CODING

UNIPOLAR	ANALOG	G INPUT STRAIGHT BIN			
SCALE	0 to -10V RANGE	0 to -5V RANGE	OU	DDE	
-FS + 1 LSB	-9.9976V	-4.9988V	1111	1111	1111
7/8 FS	8.7500V	-4.3750V	1110	0000	0000
- ¾ FS	-7.5000V	-3.7500V	1100	0000	0000
- ½ FS	-5.0000V	-2.5000V	1000	0000	0000
- ¼ FS	2.5000V	-1.2500V	0100	0000	0000
-1 LSB	-0.0024V	-0.0012V	0000	0000	0001
0	0.0000V	0.0000V	0000	0000	0000

BIPOLAR	۵	NALOG INPU	DATA OUTP OFFSET	PUT CODING TWO's		
SCALE	±10V RANGE	±5V RANGE	±2.5V RANGE	BINARY	COMPLEMENT	
-FS + 1 LSB	-9.9951V	-4.9976V	-2.4988V	1111 1111 1111	0111 1111 1111	
- 1% FS	-4.5000V	-2.5000V	-1.2500V	1100 0000 0000	0100 0000 0000	
-1 LSB	-0.0049V	-0.0024V	-0.0012V	1000 0000 0001	0000 0000 0001	
0	0.0000V	0.0000V	0.0000V	1000 0000 0000	0000 0000 0000	
+1LSB	+0.0049V	+0.0024V	+0.0012V	0000 0000 0001	1000 0000 0001	
+ 1% FS	+4.5000V	+2.5000V	+1.2500V	0100 0000 0000	1100 0000 0000	
+ FS - 1 LSB	+9.9951V	+4.9976V	+2.4988V	0000 0000 0001	1000 0000 0001	
+FS	+10.0000V	+5.0000V	+2.5000V	0000 0000 0000	1000 0000 0000	

SHORT CYCLE OPERATION

CONNE	CTION	CONVERSION TIME			
RES. (BITS)	PIN 14 TO	ADC-817	ADC-827		
1	PIN 11	300 nsec	462 nsec		
2	PIN 10	462 nsec	693 nsec		
3	PIN 9	615 nsec	923 nsec		
4	PIN 8	770 nsec	1.15 µsec		
5	PIN 7	923 nsec	1.38 µsec		
6	PIN 6	1.07 µsec	1.62 µsec		
7	PIN 5	1.23 µsec	1.85 µsec		
8	PIN 4	1.38 µsec	2.08 µsec		
9	PIN 3	1.54 µsec	2.31 µsec		
10	PIN 2	1.69 µsec	2.54 µsec		
11	PIN 1	1.85 <i>µ</i> sec	2.77 µsec		
12	NC	2.0 µsec	3.0 µsec		

ORDERING INFORMATION

MODEL	OPERATING TEMP. RANGE	PRICE (1-24)
ADC-817MC	0 to +70° C	\$295.00
ADC-817MR	-25 to +85° C	\$325.00
ADC-817MM	-55 to +125° C	\$365.00
ADC-827MC	0 to +70° C	\$195.00
ADC-827MR	-25 to +85° C	\$225.00
ADC-827MM	-55 to +125° C	\$275.00
Mating Socket: D Per Converter)	NLS-2 (2 Required	\$ 6.00 /Pr
Trimming Potent	iometer: TP-100	\$ 3.50

CONNECTIONS AND CALIBRATION

INPUT CONNECTIONS

22 to 25

22 to 25

WITH

PIN

22 to 25

22 to 25

WITH INPUT BUFFER

PINS TOGETHER

PIN

BIPOLAR OPERATION OUTPU 32 SERIAL D (24 13 MSB 12) MSB 69 11 BIT 2 10 BIT 3 9 BIT 4 8 BIT 5 6 BIT 7 6 BIT 10 2 BIT 11 1 LSB (30 ADC-817 OR ADC-827 PARALLEL DATA OUTPUTS GAIN ADJUST (14) UT INPUT BUFFER CONNECT THESE ______ _____2.2μF PINS TOGETHER 30 to 26 (21) START CONVERT CLOCK RATE ADJUST

17

Ŀ

32

CALIBRATION PROCEDURE

- 1. Connect the converter as shown in the applicable connections diagram. A trigger pulse of between 50 nsec and 100 nsec is applied to the start conver-sion input (pin 21) at a rate of 200 kHz.
- sion input (pin 21) at a rate of 200 kHz. 2. Zero and Offset Adjustments Apply a precision voltage reference source be-tween the appropriate input for the selected full scale range and ground. Adjust the output of the reference source to the value shown in the Cali-bration Table for the unipolar zero adjustment (O -1/2 LSB) or the bipolar offset adjustment (+FS LSB). Adjust the appropriate trimming poten-tiometer so that the output code flickers equally between X000 0000 0000 and X000 0000 0001. The MSB, indicated by X, will be 0 for straight binary and offset binary output coding, or 1 for two's complement output coding. 5 Full Scale Adjustment

complement output coding.
3. Full Scale Adjustment Set the output of the voltage reference source used in step 2 to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment (-F.S. +1½, LSB). Adjust the gain trimming poten-tiometer so that the output code flickers equally between X111 111 111 and X111 1111 110. The MSB, indicated by X, will be 1 for straight binary and offset binary output coding, or 0 for two's complement output coding.

ULTRA-FAST A/D WITH SAMPLE HOLD

When the ADC-817 or ADC-827 is configured as shown here with Datel-Intersil's SHM-6 hybrid sample-hold, a 10V input step can be when the ADC-or of ADC-or is configured as shown here with Date-intersits SIM-of typic sample-hold, a for input sep can be acquired to 0.01% accuracy in 1 µsec and held to within 20 μ V while the A/D conversion takes place. The SHM-6 can also be configured for inverting operation for applications with positive unipolar analog signals. Use of the SHM-6 reduces the time over which the input signal is averaged to a few nanoseconds (an A/D converter used without a samplehold averages the analog input signal over the total conversion time of the A/D).

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved. 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL. ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Fast, Dual-Slope Analog-to-Digital Converters ADC-E Series

FEATURES

- Differential or Single Ended Inputs
- Binary or BCD Coding
- Resolutions to 12 Bits or 3½ Digits
- 6 Input Ranges Available
- 100 Megohms Input Impedance
- 80 dB Common Mode Rejection

GENERAL DESCRIPTION

The ADC-E series devices are low cost, high accuracy analog-to-digital converters featuring differential inputs, high linearity and excellent noise immunity. These converters utilize a modified dual-slope conversion technique ideally suited for converting analog voltage levels such as transducer outputs at moderate speed. Models are available in 8, 10 and 12 binary bit resolutions with sign magnitude binary output coding, or in 2½ or 3½ BCD digit resolution with sign-magnitude BCD output coding.

These converters employ a differential input amplifier, resulting in high input impedance and excellent common mode input characteristics for the measurement of floating differential signals. The dualslope integrator yields high accuracy and linearity, integrating out spikes and noise that may degrade the accuracy of measurement. Performance is further enhanced through the use of a precision, temperature compensated reference source. Each converter also contains a clock generator, counter/output register and the necessary control logic circuitry to interface with DTL/TTL logic levels.

Data output format is either sign-magnitude binary or sign-magnitude BCD output code. Conversion data appears at the outputs in parallel form and is valid from the time that the end of conversion output goes low until the next start conversion command is received.

Analog input ranges available in this series are, $\pm 1V$, $\pm 5V$ and $\pm 10V$ for the binary version, and $\pm 2V$, $\pm 10V$ and $\pm 20V$ for the BCD version.

These converters are compact, fully encapsulated modules suitable for P.C. board mounting. Each is a functionally complete unit, requiring only external D.C. power for operation over a temperature range of 0°C to +70°C. Extended operating temperature range versions are also available.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

	·					
SPECIFICATIONS, ADC-E SERIES (Typical at 25°C, ±15 VDC and +5 VDC	supplies, unless oth	erwise noted)	TECHNICAL NOTES			
	ADC-E8B/ 10B/12B (Binary)	ADC-E8D/ E12D. (BCD)	1. Conversion time is comprised of integration time			
MAXIMUM RATINGS Analog Supply Voltage Logic Supply Voltage Analog Input Voltage	±16 +7 ±15		and encoding time. It is measured for integration time edge of the start conversion pulse to the negative going edge of the end of conversion pulse. This includes start conversion pulse width, analog input integration time and encoding time. Since			
INPUTS Analog Input Range, Differential Type, Suffix 2 Models ¹ Single Ended, Suffix 3 Models Input Impedance, Suffix 2 Models Suffix 3, 4 Models Suffix 3, 4 Models Input Bias Current Common Mode Voltage Common Mode Rejection, DC to 60 Hz External Start Conversion	$\pm 1V$ $\pm 5V$ $\pm 10V$ 100 Meg Typ^{-1} 10K typ. 250 nA typ, 500 nA $\pm 5V^{7}$ 80 dB $\pm 2.4V \text{ min to } \pm 5V \text{ m}$ $100 \text{ nsec to } 1 \mu \text{sec}$ rise and fall times of Positive going edge register and initiate: Loading: 1 TTL LOA	+2V ² ±10V ² ±20V ² max. max. Positive Pulse, wide, with maximum of 500 nsec. e resets converter s converter s conversion. AD	 The analog input signal is integrated over a known time period varies as a result. A maximum value is given to allow reliable timing of full scale conversions. The analog input signal is integrated over a known time period for the beginning of the start conversion pulse until the end of the counter ramp-up time. The counter ramp-up is used to provide a fixed time period for integration. Encoding time is the time required for the counters to sequence to the value of the input signal that has been acquired during the integration period. Since the counters sequence from zero to full scale, encoding time varies directly with the absolute value of the converter scale of the input, i.e., encoding time is ½ of maximum value for ±½ full scale inputs. 			
OUTPUTS Output Data Output Data Logic Levels Sign Overrrange Output Coding End of Conversion (E.O.C.)	8/10/12 Parallel Lines Vour ("0")≥+0.4V Vour ("1")≥+2.4V Loading: 6 TTL LO. Logic "1" for Positi Logic "1" for ± Inpr Sign-Mag. Binary Vour ("0")≥+0.4V, Co Vour ("1")≥+2.4V, Co Loading: 8 TTL LO.	s 10/14 Parallel Lines ADS ve Inputs ut > Full Scale Sign-Mag. BCD onversion Complete onversion in Progress ADS	 External start conversion pulse width should not be less than 100 nsec in order to insure resetting of the counters. Pulse widths over 1 µsec. will introduce an error due to their effect on integration time. For applications of these converters under external control, the end of conversion pulse may be used to trigger output data transfer and system initiation of the next start conversion pulse. 			
PERFORMANCE Resolution ³ Linearity Error No Missing Codes Gain Tempco Long Term Stability Input Integration Time ⁶ Conversion Time, max. ⁵ Conversion Rate, max. ⁶	8, 10, 12 Bin. Bits $2\frac{1}{2}$, $3\frac{1}{2}$ BCD Digits $\pm\frac{1}{2}$ LSB max. Over Operating Temp. Range ±50 ppm/°C max. $\pm0.1\%$ /Year, min. 8 bits, 103 μ sec $2\frac{1}{2}$ digits, 160 μ sec 10 bits, 410 μ sec $3\frac{1}{2}$ digits, 1.60 μ sec 10 bits, 410 μ sec $3\frac{1}{2}$ digits, 1.60 μ sec 12 bits, 1.64 msec 8 bits, 314 μ sec $2\frac{1}{2}$ digits, 478 μ sec 10 bits, 1.24 msec $3\frac{1}{2}$ digits, 4.79 msec 12 bits, 4.9 msec 8 bits, 32 KHz $2\frac{1}{2}$ digits, 2 KHz 10 bits, 800 Hz $3\frac{1}{2}$ digits, 200 Hz 12 bits, 200 Hz		 Output data is valid from the negative going edge of the end of conversion pulse until the positive going edge of the next start conversion pulse. All power supply inputs are internally bypassed. Due to the integration period used in the dual- slope conversion technique, input noise is attenuated. Attenuation of input noise with a period equal to an integer multiple of the integration period is effectively infinite. 			
POWER REQUIREMENT Analog Supply Digital Supply	+15V ±0.5 VDC @ -15V ±0.5 VDC @ +5V ±0.25 VDC @	50 mA max. 50 mA max. 150 mA max.	 NOTES: Bias current ground return required for differential input. Includes 100% overange. For bipolar inputs. 			
PHYSICAL-ENVIRONMENTAL Operating Temperature Range Storage Temperature Range Relative Humidity Case Material Case Size Pins Weight	0°C to +70°C -55°C to +85°C Up to 100% Non-condensing Black Diallyl Phthalate per MIL-M-14 4 × 2 × 0.4 inches (101,6 × 50,8 × 10,2 mm) .020" Round, Gold Plated, 0.250" Long min. 4 oz. (114g)		 Conversion data valid when E.O.C. is low, remains valid until positive going edge of next conversion command. Full scale input signal and 1 μsec start conversion pulsewidth. Refer to Technical Note 1. For 1 μsec start conversion pulse width. See Technical Note 2. The algebraic sum of both input voltage and common mode voltage must not exceed ±5V max. 			

APPLICATIONS INFORMATION

ADC-E TIMING DIAGRAM

INTERNAL/EXTERNAL TRIGGERING

NOTE: USE PIN 16 FOR DIGITAL GROUND

EXTERNAL TRIGGERING

INTERNAL/EXTERNAL TRIGGERING

INTERNAL/EXTERNAL TRIGGERING All ADC-E mudels include an internal clock for self triggering of the unit at approximately its maximum allowed rate, depending on the output register word length. The internal trigger circuit output when externally connected to the start conversion input, generates a main reset pulse which initiates a conversion, gates the clocked pulse train and sets up the sign polarity. The rate of the internal trigger can be reduced, if desired, with an external capacitor connected across pins 23.24, identified "Internal trigger rate adjust". When connected as directed, the external capacitor is in parallel with a0.1 µF internal timing capacitor. Addition of a0.1 µF external capacitor holes the rate of the internal trigger. The rate of the internal trigger can be increased by connecting a

The rate of the internal trigger can be increased by connecting a resistor of greater than 22K Ω from pin 23 to +15 VDC. When an external start conversion pulse is provided for system synchronization, the internal trigger output (Pin 22) is not connected and the internal clock should be disabled by connecting a shorting

ORDERING INFORMATION

8 Binary Bits 10 Binary Bits 12 Binary Bits

21/2 Digit BDC

3½ Digit BDC

IODEL	D	ES	C	R	IP	TI	0	N	l

ADC-E8B*	
ADC-E10B*	
ADC-E12B*	
ADC-E8D*	
ADC-E12D*	

N

*FULL SCALE ANALOG INPUT RANGE AND TYPE						
B MODELS SUFFIX	$2' = \pm 1V$ Differential Inputs $3 = \pm 5V$ Single Ended Inputs $4 = \pm 10V$ Single Ended Inputs					
D MODELS SUFFIX	 2 = ±2V Differential Inputs 3 = ±10V Single Ended Inputs 4 = ±20V Single Ended Inputs 					

DILS-2 **TP100**

Mating Socket, 2 Req'd Per Module Trimming Potentiometer, 1000

For extended temperature range operation, the following suffix is added to the model number. Consult factory for price and delivery.

-EX -25°C to +85°C operation

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

lead between pins 23 and 24. External start conversion pulses can be applied at up to the maximum conversion rate as defined in the specifications, or may be applied discretely when the end of of as short a duration as possible while still yielding reliable operation, i.e., approximately 150 resc. This will insure maximum converter accuracy during the analog input integration period.

CODING AND CALIBRATION

CODING TABLES

ADC-E12B

	ANALOG INPUT				SIGN MAGNITUDE BINARY OUTPUT CODE		
SCALE	±1V RANGE	±5V RANGE	±10V RANGE	SIGN BIT	MSB	LSB	
+F.S1 LSB +½F.S. +1 LSB +0 -0 -1 LSB -½ F.S. -F.S. -F.S.	+9.9951V +0.5000V +0.49mV 0.0000V 0.0000V -0.49mV -0.5000V -9.9951V	+4.9976V +2.5000V +2.44mV 0.0000V 0.0000V -2.44mV -2.5000V -4.9976V	+9.9952V +5.000V +4.880V 0.0000V -4.88mV -5.0000V -9.9952V	1 1 1 0 0 0	111111 1000000 0000000 0000000 0000000 000000	11111 20000 20001 20000 20000 20000 20001 20000 11111	

ADC-E10B

00415	ANAL	SIGN MAGNITUDE BINARY OUTPUT CODE				
SCALE	±1V RANGE	±5V RANGE	±10V RANGE	SIGN BIT	MSB	LSB
+F.S1 LSB	+0.9980V	+4.9902V	+9.9805V	1	111111	1111
+1/2F.S.	+0.5000V	+2.5000V	+5.0000V	1	100000	0000
+1 LSB	+2.0mV	+9.7mV	+19.5mV	1	000000	0001
+0	0.0000	0.0000	0.0000	1	000000	0000
-0	0.0000	0.0000	0.0000	0	000000	0000
-1 LSB	-2.0mV	-9.7mV	-19.5mV	0	000000	0001
-½ F.S.	-0.5000V	-2.5000V	-2.5000V	. 0	100000	0000
-E.S.+1 LSB	-0.9980V	-4.9902V	-9.9805V	0	11111	1111 -

ADC-E8B

6041 F	ANAL	OG INPUT	SIGN MAGNITUDE BINARY OUTPUT CODE		
SCALE	±1V RANGE	±5V RANGE	±10V RANGE	SIGN BIT MSB LSB	
+F.S1 LSB +½F.S. +1 LSB +0 -0 -1 LSB -½ F.S. -F.S.+1 LSB	+0.9922V +0.5000V +7.8mV 0.0000V 0.0000V -7.8mV -0.5000V -0.9922V	+4.9609V +2.5000V +39.1mV 0.0000V -39.1mV -2.5000V -4.9609V	+9.9219V +5.0000V +78.1mV 0.0000V 0.0000V -78.1mV -5.0000V -9.9219V	1 111111 1 100000 1 000001 1 000000 0 000000 0 000000 0 100000 0 100000 0 111111	

CALIBRATION PROCEDURE

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651, OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 NS SULP JECT TO CHANCE WITHOUT NOTICE

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

ADC-E8D

ADC-E12D

±10V RANGE

+9 995V

+5.000V

+0.005V

+0.005V +0.000V -0.000V -0.005V -5.000V -9.995V ±2V RANGE

+1 999V

+1.000V

+0.001V

+0.001V +0.000V -0.000V -0.001V -1.000V -1.999V

ANALOG INPUT

±20V

RANGE

+19,990V

+10.000V

+0.010V

+0.000V -0.000V

~0.010V -10.000V

-19.990V

SCALE

+F.S.-1LSD

-F.S.+1 LSD

+%F.S

+1 LSD +0

--0 --1 LSD --½F.S. 3½ DIGIT SIGN MAGNITUDE BCD OUTPUT CODE

> 1 1 1001 1001 1001 1 1 0000 0000 0000 1 0 0000 0000 0001

0 1 1001 1001 1001

SIGN

	ANALO	G INPUT	21 BDC	AGNIT SIGN
SCALE	±20V RANGE	±10V RANGE	±2V RANGE	SIGN
+F.S1LSD	+19.9	+9.95V	+1.99V	1 1 1001 1001
+½F.S.	+10.0V	+5.00V	+1.00V	1 1 0000 0000
+1 LSD	+0.1V	+0.05V	+0.01V	1 0 0000 0001
+0	+0.0V	+0.00V	+0.00V	1 0 0000 0000
-0	-0.0V	0.00V	-0.00V	0 0 0000 0000
-1 LSD	-0.1V	0.05V	-0.01V	0 0 0000 0001
-1/2F.S.	-10.0V	-5.00V	-1.00V	0 1 0000 0000
-F.S.+1 LSD	-19.9V	-9.95V	-1.99V	0 1 1001 1001

Fast, 8 Bit Analog-to-Digital Converters Model ADC-EH8B

FEATURES

- 8 Bit Resolution
- 4.0 & 2.0 µsec. Conversion Time
- Unipolar or Bipolar Operation
- Parallel & Serial Outputs
- Low Cost

GENERAL DESCRIPTION

The model ADC-EH8B is a fast, 8 bit successive approximation type analog to digital converter in a compact 2 x 2 x .375 inch module. These converters are low cost devices with application in pulse code modulation systems and instrumentation and control systems requiring fast data conversion rates up to 500,000 per second. There are two models to choose from based on conversion speed: ADC-EH8B1 with a conversion time of 4.0 µsec. (250 kHz rate), and ADC-EH8B2 with a conversion time of 2.0 μ sec. (500 kHz rate). The high speed in a small size is made possible by the use of an MSI integrated circuit which provides all the necessary successive approximation logic, along with other new integrated circuit components. The analog input range is either unipolar 0 to +10V or bipolar -5V to +5V, determined by external pin connection. For unipolar operation no external adjustments are necessary; for bipolar operation only a bipolar offset adjustment must be made externally. Parallel output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation. A serial output gives successive decision pulses in NRZ format with straight or offset binary coding. Other outputs are clock output for synchronization with serial data, and \overline{MSB} output for two's complement coding.

Other specifications include full scale temperature coefficient of 50 ppm/ $^{\circ}$ C max., long term stability of .05%/year, and linearity of ±1/2 LSB. Power requirement is ±15VDC and +5VDC.

PIN	FUNCTION
1	E.O.C. (STATUS)
2	SERIAL DATA OUTPUT
3	START CONVERT
4	BIT 1 OUT (MSB)
5	BIT 1 OUT (MSB)
6	BIT 2 OUT
7.	BIT 3 OUT
8	BIT 4 OUT
9	BIT 5 OUT
10	BIT 6 OUT
11	BIT 7 OUT
12	BIT 8 OUT (LSB)
13	CLOCK OUT
17	+5V POWER IN
18	+15V POWER IN
19	-15V POWER IN
20	POWER GROUND
21	BIPOLAR OFFSET
31	ANALOG GROUND
32	ANALOG INPUT

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

SPECIFICATIONS, ADC-EH8B

(Typical at 25°C, ±15V & +5V Supplies, unless otherwise indicated)

(Typical at 25°C, ±15V & +5	V Supplies, unless otherwise indicated)	ST	ART 10	0 nsec. min.				1
		1 -				······································	(Ο.
INPUTS Analog Input Range	0V to +10V FS or ±5V FS	E	D.C.	hsec. typ.			PARALLEL	1
Input Impedance	4.45K ohms ±50 ohms	-			· · · · · · · · · · · · · · · · · · ·		DATA NOW VA	LID 0
Input Overvoltage Start Conversion	±20V (no damage) 2V min. to 5.5V max. positive pulse with du-		60 m	sec. T ₃	<u> </u>		a la 30 nsec. typ.	1
	ration of 100 nsec. min. Rise and fall times	CL						
	<50 ns. Logic "1" resets converter		RIAL I				- 80 nsec. typ	о
	Logic "O" initiates conversion	D/ OL	1TA25 n	ISEC. BIT 1 BIT 2 B	IT 3 8 8 4 8 8 1 5			1
	Loading: 1 TTL load	-		(MSB)		ļ Lļ	(<u> (LSB)</u>	D
OUTPUTS		81	T 1	sec.			BIT 1	1
Parallel Output Data	8 parallel lines of data held until next con-							0
	V out ("0") ≤ +0.4V	81	T 2				BIT 2 OFF	
	V out ("1") \geq +2.4V Each output capable of driving up to 4 TTI	-						o
	loads.	BI (L)	T 8 I SB)	T. T.	т. т.	1	BITB	
Coding, Unipolar Operation Bipolar Operation	Straight Binary, positive true	-	i	ADC EH881 670 80 ADC EH882 400 45	440 3880 nse 200 2000 nse	ec. typ. !	1	0
	Two's Complement, positive true.							
Serial Output Data	NRZ successive decision pulse output gener-			OUTPU	T CODING			
	Straight binary or offset binary coding.		UNIPOLAR	(0 TO +10V)				
End of Commission (EOC)	Loading: 4 TTL loads		+ES-11SB	+9 96V	1111 11	11		
End of Conversion (EOC)	Conversion Status Signal. V out ("O") ≤ 0.4 V indicates		+7/8 FS	+8.75V	1110 00	00		
	conversion time completed. V out $(''1'') \ge +2.4V$ during reset		+3/4 FS +1/2 FS	+7.50V +5.00V	100 00	00		
	and conversion periods.		+1/4 FS	+2.50V	0100 00	00		
Clock Output	Loading: 4 IIL loads. Internal clock pulse train of negative		0	0.00V	0000 00	00		
•	going pulses from +5V to 0V gated on		BIPOLAR (-	5V TO +5V)				
	during conversion time. Loading: 6 TTL loads		SCALE	INPUT VOLTAGE	OFFSET BIN	2'S COMP	LEMENT	
	· · · · · · · · · · · · · · · · · · ·	11	+FS-1 LSB +3/4 FS	+4.96V +3.75V	1111 1111 1110 0000	0111	0000	
PERFORMANCE	9 Bits (1 part in 256)		+1/2 FS	+2.50V	1100 0000	0100 0	0000	
Linearity Error	± 1/2 LSB max.		-1/2 FS	-2.50V	0100 0000	1100 0	0000	
Differential Nonlinearity Temp. Coeff. of Gain	± 1/2 LSB max. ± 50ppm/°C max.		-3/4 FS -FS+1 LSB	-3.75V -4.96V	0010 0000 0000 0001	1010 0	0000 0001	
Temp. Coeff. of Zero, Unipolar	± 100μV/°C max.		-FS	-5.00V	0000 0000	1000 ()000	
Long Term Stability	± 35 ppm of FS/°C max. ± .05%/vear							
Power Supply Rejection	± .02% of FS/% supply, max.			ADC-EH8B	CALIBRAT	ION		
Conversion Time	4.0 μsec. max., ADC-EH8B1 2.0 μsec. max., ADC-EH8B2			+ ISVDC				`
			CONNECTION FOR	0 17		}		
POWER REQUIREMENT	± 15VDC ±0.5V @ 25mA max.	i c		0 18	BOTTOM			
	+5VDC ± 0.25V @ 125mA max.			~ 0 20		TRIMMING POTE	ENTIOMETER	
				21		IS 100 PPM/ ² C CI 15 TURN, ORDE	ERMET TYPE, R DATEL MODEI	L
Operating Temp. Range	0°C to 70°C			10032		TP100		
Storage Temp. Range	-55°C to +85°C		1. UNIPOLA	AR – No adjustment t used Eull scale a	ts are necessary	∕ and 100Ω ternally, set	trimming	
Relative Humidity	Up to 100% non-condensing 2 x 2 x 0.375 inches (50 8 x 50 8 x 9 5 mm)		than 1/2 l	_SB. Pin 21 is left of	pen.	ternarry set	to better	
Case Material	Black diallyl phthalate per MIL-M-14		2. BIPOLAF	R – Connect pin 18	3 (+15VDC) to	opin 21 t	hrough a	
Pins Weight	.020" round, gold plated, .250" lg. min.		voltage sc	mming potentiome ource to pin 32 and	set the input	voltage to -	+ 1/2 LSB	
vergint	2 02. max. (579.)		or +0.02	0V. Adjust the tri	mming potent	iometer so	that the	
			output co	de flickers equally t	between 1000 (0000 and 10		
			For extended	temperature range	operation, th	ne followin	g suffixes :	are
UNDERIN		i	added to the n	nodel number. Cons	ult factory for	pricing.		
ADC-EH8B			-EXX-HS	-55° C to +85° C	operation with	hermetical	ly sealed	
CONVERSION TIME		N	IOTE: ADC-E	EH8B1 & 2 replace	former models	ADC-EH1	& 2 and a	re
	MATING SOCKETS	ir H	mproved mod	els of these units i nodels is the 3 add	respectively. The	he only dif t pins for «	ference fro	m it
$1 = 4.0 \ \mu \text{SEC}.$ $2 = 2.0 \ \mu \text{SEC}.$	DILS-2 (2/MODULE)	c	lock output,	and MSB output, a	and a change in	n input imp	edance fro	m
-••	TP100 TRIMMING POT.	5 a	K ohms to 4. problem in a	45K ohms. If the ne n existing applicatio	ewly used pins n, they should	thos. 2, 4, a be clipped	ind 13) cau off.	se

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

Output: 10101010

TIMING DIAGRAM FOR ADC-EH8B

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751. (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490
 Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

95C

10 Bit, 2.0 and 4.0 μSec. Analog-to-Digital Converters Model ADC-EH10B

FEATURES

- 2.0 µsec. Conversion ADC-EH10B2
- 4.0 μ sec. Conversion ADC-EH10B1
- 10 Bit Resolution
- Compact 3" x 2" x .375" Module
- ±30ppm/°C max. Tempco

GENERAL DESCRIPTION

Model ADC-EH10B is a very fast 10 bit successive approximation type A/D converter in a compact low profile package. Low pricing makes this converter an ideal choice for many applications including fast scanning data acquisition systems, PCM systems, and fast pulse analysis. This converter is available in two versions based on conversion speed: ADC-EH10B1 with 4.0 μ sec. (250kHz rate) and ADC-EH10B2 with 2.0 μ sec. (500kHz rate).

High speed and moderate power consumption (1.7 watts) in a compact size $(3'' \times 2'' \times .375'')$ are made possible by use of an MSI integrated circuit successive approximation programmer/register used with 10 fast switching current sources driving a low impedance R-2R ladder network. A fast precision comparator and precision voltage reference circuit are also used.

Operating features include unipolar (0 to $\pm 10V$) or bipolar ($\pm 5V$) operation by external pin connection. The converter has a maximum full scale temperature coefficient of ±30ppm/°C and is monotonic over the full operating temperature range of 0°C to 70°C. External offset and gain adjustments are provided for precise calibration of zero and full scale. Parallel output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation. A serial output gives successive decision pulses in NRZ format with straight binary or offset binary coding. Other outputs include clock output for synchronizing serial data, MSB output for two's complement coding, and end of conversion (status) signal. All outputs are DTL/ TTL compatible. Power requirement is ±15VDC and +5VDC. The ADC-EH10B is also available in extended temperature range versions.

MECHANICAL DIMENSIONS INCHES (MM)

INPUT/OUTPUT CONNECTIONS

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD; MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

Data Acquisition

96C

		TIMING DIAGRAM FOR ADC-EH10B Output: 1010101010
SPECIFICATIONS, ADC-EI	H10B	
	Supplies, unless otherwise indicated)	CONVERT 60 msec, min.
INPUTS		
Analog Input Bange	0V to +10V ES or +5V ES	
Input Impedance	2.3K ±0.1%	
Input Overvoltage	±20V, no damage	
Start Conversion	2V min. to 5.5V max. positive pulse	
	and fall times <500 nsec.	SEPIAL 199
	Logic "1" resets converter	
	Logic "O" initiates conversion	
OUTPUTS		
Parallel Output Data	10 parallel lines of data held until	
	next conversion command.	BIT 3
	Vout(0) ≤ +0.4V Vout(''1'') ≥ +2.4V	
	Each output capable of driving up to	(LS0) I T T, T2 ADC-EMIOB 380 115 3600 neet typ East Start Convert = 50 nee
Coding Unipolar appretion	4 TTL loads.	ADC-EHIOB2 220 59 1900 neet typ } POI start Convert - 50 mac.
Bipolar operation	Offset Binary, positive true	OUTPUT CODING
	Two's complement, positive true	UNIPOLAB (0V TO +10V)
Serial Output Data	NRZ successive decision pulse output	
	generated during conversion with MSB first	+FS - 1 LSB +9.9902V 1111 1111 11
	Straight binary or offset binary,	+7/8 FS +8,7500V 1110 0000 00
	positive true coding.	+1/2 FS +5.000V 1000 000 00
End of Conversion (EOC)	Conversion Status Signal.	+1/4 FS +2.5000V 0100 0000 00 +1 LSB +0.0098V 0000 000 01
	V out ("0") \leq +0.4V indicates con-	0 0.0000V 0000 00
	version completed. V out $(''1'') \ge +2.4V$ during reset and	BIPOLAR (-5V TO +5V)
	conversion.	SCALE INPUT VOLTAGE OFFSET BINARY TWO'S COMPLEMENT
Clash Output	Loading: 4 TTL loads	+FS -1 LSB +4.9902V 1111 1111 11 0111 1111 11
	agoing pulses from +5V to 0V gated on	+3/4 FS +3.7500V 1110 0000 00 0110 0000 00 +1/2 FS +2.5000V 1100 0000 00 0100 000 00
	during conversion time.	0 0.0000V 1000 000 00 0000 00
	Loading: 6 TTL loads	-1/2 FS -2.5000V 0100 0000 00 1100 0000 00 -3/4 FS -3.7500V 0010 0000 00 1010 0000 00
05050000005		-FS + 1 LSB -4.9902V 0000 000 01 1000 0000 01
PERFORMANCE		
Resolution	10 Bits (1 part in 1024)	*Using MSB output for Bit 1
Differential Nonlinearity	± 1/2 LSB max. +1/2 LSB max	GAIN & OFFSET ADJUSTMENTS
Differential Nonlinearity T.C.	± 10 ppm/°C max.	
Temp. Coeff. of Gain	±30ppm/°C max.	+15V + 15V
Temp. Coeff. of Zero, unipolar	$\pm 150 \mu\text{V}$ /°C max.	
Power Supply Rejection	±20ppm/ C max. 01% FS/% supply max.	
Conversion Time	4.0 µsec. max., ADC-EH10B1	
	2.0 µsec. max., ADC-EH10B2	
BOWER REQUIREMENT		
FOWER REGOLAEMENT	- 15VDC ±0.5VDC @ 75mA max.	ANALOGO 32 { ANALOGO 32 }
	+5VDC ±0.25VDC @ 150mA max.	
PHYSICAL-ENVIRONMENTAL		UNIPOLAR OPERATION BIPOLAR OPERATION
Operating Temp, Range	0°C to 70°C	1. Apply START CONVERT pulses to pin 3 (see specifications and timing diagram) 1. Apply START CONVERT pulses to pin 3 (see
Storage Temp. Range	-25°C to +85°C	2. Apply a precision reference voltage source to ANALOG IN (pig 22) and ANALOG CROUND
Relative Humidity	Up to 100% non-condensing	(pin 31). Adjust the output of the voltage refer- ence to $Zec + 1/2$ (SR (44 pm)). Adjust the output of the voltage refer-
	3 x 2 x .375 inches (76 2 x 30 8 x 9 5mm)	ence to zero +1/2 LSB (+4.997V). Adjust the ence to -F5 +1/2 LSB (-4.995IV). Adjust the zero trimming potentiometer so that the output offset trimming potentiometer so that the output offset trimming potentiometer so that the output
Case Material	Black Diallyl Phthalate per MIL-M-14	and 0000 0000 01. and 0000 0000 01.
Pins	.020" round, gold plated,	3. Adjust the output of the voltage reference to +FS - 1 1/2 LSB (+9.9854V), Adjust the GAIN 3. Adjust the output of the voltage reference to +FS - 1 1/2 LSB (+4.9854V). Adjust the GAIN
Weight	.250" long min.	trimming potentiometer so that the output code flickers equally between 1111 1111 10 and trimming potentiometer so that the output code flickers equally between 1111 1111 10 and
weight	3 UZ. MAX. (859.)	1111 1111 11.
ORDERING INFORMA	TION	For extended temperature range operation, the following suffixes are added to the model number. Consult factory for pricing

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 NS SUB JECT TO CHANCE WITHOUT NOTICE

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ĩ

12 Bit, 4.0 and 8.0 μSec. Analog-to-Digital Converters Model ADC-EH12B1, B2

FEATURES

- 4.0 µsec. Conversion—ADC-EH12B2
- 8.0 µsec. Conversion ADC-EH12B1
- 12 Bit Resolution
- 30PPM/°C Tempco
- Low Profile-0.4" High

GENERAL DESCRIPTION

Model ADC-EH12B is a 4 microsecond, 12 bit successive approximation type A/D converter in a low profile $4 \times 2 \times 0.4$ inch module. This high performance converter is priced at about half that of other competing models; in addition, it consumes only 2.0 watts of power, much less than competing devices. It is ideal for application in PCM systems, data acquisition systems, and other instrumentation and control systems requiring very fast data conversion rates up to 250,000 per second. The ADC-EH12B is also available in an even lower cost 8.0 μ sec. version.

The ADC-EH12B design utilizes an MSI integrated circuit successive approximation programmer/register, 12 fast switching current sources, a low impedance R-2R resistor network, a precision voltage reference circuit, and a fast precision comparator to achieve its very fast conversion rate.

Operating features include unipolar (0 to $\pm 10V$ or bipolar ($\pm 5V$) operation by external pin connection. Full scale temperature coefficient is 30ppm/°C maximum and the converter is monotonic over its full operating temperature range of 0°C to 70°C. External offset and gain adjustments are provided for precise calibration of zero and full scale. Parallel output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation. A serial output gives successive decision pulses in NRZ format with straight binary or offset binary coding. Other outputs include clock output for synchronization with serial data, MSB output for use in two's complement coding. and end of conversion (status) signal. All outputs are DTL/TTL compatible.

Power requirement is ± 15 VDC and +5VDC. Extended temperature range versions are also available.

MECHANICAL DIMENSIONS INCHES (MM)

INPUT/OUTPUT CONNECTIONS

CO	NNECTIONS
PIN	FUNCTION
1	E.O.C. (STATUS)
2	CLOCK OUT
3	BIT 1 OUT (MSB)
4	SERIAL DATA OUT
5	BIT 1 OUT (MSB)
6	BIT 2 OUT
7	BIT 3 OUT
8	BIT 4 OUT
9	BIT 5 OUT
10	BIT 6 OUT
11	BIT 7 OUT
12	BIT 8 OUT
13	BIT 9 OUT
14	BIT 10 OUT
15	BIT 11 OUT
16	BIT 12 OUT (LSB)
17	+5V POWER IN
18	+15V POWER IN
19	-15V POWER IN
20	POWER GROUND
21	UNIPOLAR ZERO
22	BIPOLAR OFFSET
23	GAIN ADJUST
- 24	START CONVERT IN
31	ANALOG GROUND
32	ANALOG IN

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

TIMING DIAGRAM FOR ADC-EH12B Output: 101010101010 SPECIFICATIONS, ADC-EH12B (Typical at 25°C, ±15V & +5V Supplies, unless otherwise indicated) START 100 nsec min INPUTS E O.C (STATUS) DATA NOW τ. OV to +10V FS or ±5V FS Analog Input Range Input Impedance 2.3K ohms ±0.1% 30 neec typ 21, Input Overvoltage CLOCK ±20V no damage Start Conversion 2V min. to 5.5V max. positive pulse with duration of 100 nsec. min. Rise U BO nee and fall times <500 nsec. DATA OUT BIT 12 (L 58) Logic "1" resets converter Logic "0" initiates conversion BIT Loading: 1 TTL load typ 6IT 2 OUTPUTS Parallel Output Data 12 parallel lines of data held until 8IT 3 next conversion command. V out ("0") ≤ +0.4V V out ("1") ≥ +2.4V BIT 12 (LSB) ADC-EHI281 208 ADC-EHI282 105 7600 need, typ 3900 need, typ } For Start Convert = 100 need Each output capable of driving up to 4 TTL loads. Coding, Unipolar operation . . Straight Binary, positive true **OUTPUT CODING** Bipolar operation . . . Offset Binary, positive true UNIPOLAR (0V TO +10V) Two's complement, positive true Serial Output Data NRZ successive decision pulse output SCALE INPUT VOLTAGE STRAIGHT BINARY generated during conversion with +ES - 11 SB +9 9976V 1111 1111 1111 MSB first. +7/8 FS +8.7500V 1110 0000 0000 Straight binary or offset binary. +3/4 FS +7.5000V 1100 0000 0000 +1/2 FS +5.0000V 1000 0000 0000 positive true coding. 0100 0000 0000 +1/4+2.5000V Loading: 4 TTL loads +1 LSB +0.0024V 0000 0000 0001 End of Conversion (EOC) . . . Conversion Status Signal. V out ("0") \leq +0.4V indicates con-0000 0000 0000 0.0000V 0 version completed. BIPOLAR (-5V TO +5V) V out ("1") \ge +2.4V during reset and INPUT VOLTAGE OFFSET BINARY TWO'S COMPLEMENT* SCALE conversion. 0111 1111 1111 +FS - 1 LSB +4.9976V 1111 1111 1111 Loading: 4 TTL loads +3/4 ES +3.7500V 1110 0000 0000 0110 0000 0000 **Clock Output** Internal clock pulse train of negative +1/2 FS 0100 0000 0000 +2.5000V 100 0000 0000 going pulses from +5V to 0V gated on 0000 0000 0000 0 0.0000V 1000 0000 0000 -1/2 FS -2.5000V 0100 0000 0000 1100 0000 0000 during conversion time. -3/4 FS -3.7500V 0010 0000 0000 1010 0000 0000 Loading: 6 TTL loads 1000 0000 0001 FS + 1 LSB 4.9976V 0000 0000 0001 1000 0000 0000 -FS -5.0000V 0000 0000 0000 PERFORMANCE *Using MSB output for Bit 1 Resolution 12 Bits (1 part in 4096) GAIN & OFFSET ADJUSTMENTS $\pm 1/2$ LSB max. Nonlinearity Differential Nonlinearity ±1/2 LSB max. Differential Nonlinearity T.C. ±3ppm/°C max. + 15 V + 15 V ±30ppm/°C max. Temp. Coeff. of Gain ZERO $\pm 150 \ \mu V/^{\circ}C \ max.$ OFFSET ADJ. Temp. Coeff. of Zero, unipolar 52000 ADJ. ±15ppm of F.S./°C max. 21 Temp. Coeff. of Offset, bipolar 20K .01% FS/% supply, max. 022 Power Supply Rejection Conversion Time 8.0 µsec. max., ADC-EH12B1 -15V 023 023 ₹20 Ω GAIN ADJ. \$20Ω GAIN 4.0 µsec. max., ADC-EH12B2 ANALOG ANALOG 031 0 031 GN NAL ANALOG IN ΰGΟ 0.32 032 POWER REQUIREMENT ±15VDC ±0.5VDC @ 40mA max. +5VDC ±0.25VDC @ 150mA max. UNIPOLAR OPERATION **BIPOLAR OPERATION** PHYSICAL-ENVIRONMENTAL Apply START CONVERT pulses to pin 24 (see Apply START CONVERT pulses to pin 24 (see specifications and timing diagram). Apply a precision reference voltage source to ANALOG IN (ini 32) and ANALOG GROUND (pin 31). Adjust the output of the voltage refer-ence to Zero +1/2 LSB (+1.2mV). Adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000. Adjust the output of the voltage reference to +FS - 11/2 LSB (+9.9963V). Adjust the GAIN trimming potentiometer so that the output code flickers equally between 1111 1111 110 and 1111 1111. Apply START CONVERT pulses to pin 24 (see 1. Operating Temp. Range 0° C to 70° C specifications and timing diagram). Apply a precision reference voltage source to ANALOG IN (pin 32) and ANALOG GROUND 2. Storage Temp. Range $-25^{\circ}C$ to $+85^{\circ}C$ 2 Relative Humidity Up to 100% non-condensing (pin 31). Adjust the output of the voltage reference to -FS+1/2 LSB (-4.9988V). Adjust the offset trimming potentiometer so that the output code flickers equally between 0000 0000 0000 Case Size $4 \times 2 \times 0.4$ inches (101,6 x 50,8 x 10,2mm) code flickers equally between 0000 0000 0000 and 0000 0000. Adjust the output of the voltage reference to +F5 - 11/2 (258 (+4.9864V). Adjust the GAIN trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111. Black Diallyl Phthalate per MIL-M-14 Case Material 2 3 .020" round, gold plated, .200" long min. Weight 4 oz. max. (114 g.) ORDERING For extended temperature range operation, the following suffixes are INFORMATION added to the model number. Consult factory for pricing. ADC-EH12B -EX -25°C to +85°C operation -55°C to +85°C operation with hermetically sealed -EXX-HS semiconductor components CONVERSION TIME MATING SOCKETS: DILS-2 (2/MODULE) THE ADC-EH12B CONVERTERS ARE COVERED BY GSA CONTRACT. 1= 8.0 µsec. TRIMMING POTENTIOMETERS: 2= 4.0 µsec TP20 TP200 TP20K

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved. 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD--TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 NS SUB LECT TO CHANGE WITHOUT NOTICE

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ultra-Fast, 12 Bit **Analog-to-Digital** Converter Model ADC-EH12B3

FEATURES

- 2.0 µsec. Conversion Time
- 12 Bit Resolution
- Low Power Consumption 2.25W
- Low Profile Case 0.4" High
- **Economy Price**

GENERAL DESCRIPTION

Model ADC-EH12B3 is a new, ultra fast, 12 bit successive approximation A/D converter with a 2.0 microsecond maximum conversion time. This converter utilizes 12 very fast switched current sources with a low impedance R-2R ladder network, a fast precision comparator, a precision zener reference source, and an MSI integrated circuit successive approximation register to achieve its state of the art performance. It is encapsulated in a low profile 2 x 4 x 0.4 inch module and consumes only 2.25 watts of power. The ADC-EH12B3 opens up a broad range of fast data conversion applications where conversion rates up to 500,000 per second are required.

Input voltage ranges are 0 to +10V unipolar or ±5V bipolar by external pin connection; input impedance is 1.15K ohms. The parallel output is in straight binary, offset binary, or two's complement coding. Serial output data is also brought out in the form of an NRZ format MSB first pulse train. Full scale temperature coefficient is ±30ppm/°C maximum and zero temperature coefficient is ±150µV/°C maximum. Due to its low differential linearity temperature coefficient there are no missing codes over the 0°C to 70°C operating temperature range. Provision is made for precise alignment in a given application.

Other DTL/TTL compatible outputs include clock, MSB output (for two's complement coding), and end of conversion (status) output. Power supply requirement is ±15VDC and +5VDC.

20

21

23

24 31

32

UNIPOLAR ZERO BIPOL'AR OFFSET

GAIN ADJUST START CONVERT IN ANALOG GROUND

ANALOG IN

100

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

3.800

OPEN DOTS DESIGNATE OMITTED PINS 0.100 INCH = 2.5mm

SPECIFICATIONS, ADC-E (Typical at 25°C, ±15V & +5V	H12B3 Supplies, unless otherwise indicated)	TIMING DIAGRAM FOR ADC-EH12B Output 101010101010
INPUTS Analog Input Range	0V to +10V FS or ±5V FS 1.15K ohms ±0.1% ±20V, no damage 2V min. to 5.5V max. positive pulse with duration of 100 nsec. min. Rise and fall times <500 nsec. Logic "1" resets converter Logic "0" initiates conversion	E.O.C. (STATUS) U CLOCK H U UU
	Loading: 3 TTL loads	

OUTPUTS		ні ////
Parallel Output Data	12 parallel lines of data held until next conversion command. V out ("0") \leq +0.4V V out ("1") \geq +2.4V Each output capable of driving up to	
Coding, Unipolar operation Bipolar operation	4 TTL TOBOS. Straight Binary, positive true Offset Binary, positive true	
Serial Output Data	NRZ successive decision pulse output generated during conversion with MSB first. Straight binary or offset binary, position true optime	SCALE INPUT VOLTAGE STRAIGHT BINARY +FS +1.99976V 1111 1111 1111 +7/8 FS +8.7500V 1110 0000 0000 +3/4 FS +7.5000V 1100 0000 0000 +1/2 FS +5.0000V 1000 0000 0000
End of Conversion (EOC)	Loading: 4 TTL loads Conversion Status Signal. V out ("0") $\leq +0.4V$ indicates conversion completed.	+1/4 +2.5000V 0100 0000 0000 +1 LSB +0.0024V 0000 0000 0001 0 0.0000V 0000 0000 0000 BIPOLAR (-5V TO +5V)
Clock Output	V out ("1") ≥ +2.4V during reset and conversion. Loading: 4 TTL loads Internal clock pulse train of negative going pulses from +5V to 0V gated on during conversion time. Loading: 6 TTL loads	SCALE INPUT VOLTAGE OFFSET BINARY TWO'S COMPLEMENT* +FS - 1 LSB +4.9976V 1111 1111 1111 0111 1111 1111 +3/4 FS +3.7500V 1110 0000 0000 0110 0000 0000 +1/2 FS +2.5000V 1100 0000 0000 0100 0000 0000 0 0.0000V 1000 0000 0000 0000 0000 -1/2 FS -2.5000V 0100 0000 0000 1100 0000 0000 -3/4 FS -3.7500V 0010 0000 0001 1000 0000 0001 -FS + 1 LSB -4.9976V 0000 0000 0011 1000 0000 0001
PERFORMANCE		-FS -5.0000V 0000 0000 1000 0000 0000
PERFORMANCE	40.000 (4	*Using MSB output for Bit 1
Resolution Nonlinearity Differential Nonlinearity Differential Nonlinearity T.C Temp. Coeff. of Gain Temp. Coeff. of Jero, unipolar Temp. Coeff. of Offset, bipolar Power Supply Rejection Conversion Time	12 Bits (1 part in 4096) ±1/2 LSB max. ±1/2 LSB max. ±3ppm/°C max. ±30ppm/°C max. ±150μV/°C max. ±150μV/°C max. ±15ppm of F.S./°C max. .01% FS/% supply, max. 2.0 μsec. maximum	GAIN & OFFSET ADJUSTMENTS
POWER REQUIREMENT	+15VDC ±0.5V @ 80mA max. -15VDC ±0.5V @ 20mA max. +5VDC ±0.25V @ 150mA max.	$ \begin{bmatrix} \text{Arrandom} & \text{O} & 31 \\ \text{Avalue} & \text{O} & 32 \end{bmatrix} $
PHYSICAL ENVIRONMENTAL		UNIPOLAR OPERATION BIPOLAR OPERATION
Operating Temp. Range Storage Temp. Range Relative Humidity Case Size Case Material Pins Weight	0°C to 70°C -25°C to +85°C Up to 100% non-condensing 4 x 2 x 0.4 inches (101,6 x 50,8 x 10,2mm) Black Diallyl Phthalate per MIL-M-14 .020" round, gold plated, .200" long min. 4 oz. max. (114 g.)	 Apply START CONVERT pulses to pin 24 (see specifications and timing diagram). Apply a precision reference voltage source to ANALOG IN (pin 32) and ANALOG GROUND (pin 31). Adjust the output of the voltage refer- ence to Zero +1/2 LSB (+1 2mV). Adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0000. Adjust the output of the voltage reference to +FS - 1/2 LSB (+9.9953V). Adjust the GAIN trimming potentiometer so that the output code flickers equally between 1111 1111 110 and 1111 1111 1111.
ORDERING IN	FORMATION For extend added to t	ded temperature range operation, the following suffixes are he model number. Consult factory for pricing.
MATING SOCKETS DILS-2 (2/MODULE TRIMMING POTEN TP20, TP200, TP201	-EX -EXX- E) TIOMETERS: C	 -25°C to +85°C operation -55°C to +85°C operation with hermetically sealed semiconductor components EH12B3 CONVERTER IS COVERED UNDER GSA CONTRACT.
		ARD MANSELELD MA 02048
	TEL. (617)828-8000 PRICES AND SPEC	/ (617)339-9341 / TWX 710-346-1953 / TLX 951340 CIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Low Cost, 4 and 8 Bit Flash A/D Converters **ADC-UH Series**

FEATURES

- 4 bits at 25 MHz
- 8 bits at 8.33 MHz
- **Unipolar and Bipolar Models** 50 ppm/°C Tempco
- **Rugged modular construction**
- Low Cost

GENERAL DESCRIPTION

The ADC-UH series is made up of two ultra high speed analog to digital converters: an eight binary bit model operating at conversion rates up to 8.33 MHz and a four bit version operating at rates up to 25 MHz.

Converters in this series employ the ultra-fast parallel, or flash, conversion technique and are of modular construction. These high-speed designs have been tested and proven in many different applications. Close attention to circuit and layout detail has resulted in highly reliable converters having relatively low power consumption.

The ADC-UH4B uses a single stage parallel conversion technique to achieve a conversion in forty nanoseconds. This model is composed of a bank of 15 ultra-fast comparators, a 15 line to 4 bit decoder, a 4 bit storage register, and control logic circuitry.

The ADC-UH8B employs a two-stage parallel conversion technique to accomplish an 8 bit conversion every 120 nanoseconds. The two stage modification of the parallel conversion technique is employed to keep the number of comparators to 30 instead of 255 which would be required with the single stage technique. In addition to 30 ultra-fast comparators, the eight bit model contains two 15 line to 4 bit decoders, two 4 bit storage registers, a high speed 4 bit D/A converter, and control logic circuitry.

Output coding for both models is straight binary for unipolar operation and offset binary for bipolar operation. Converters for bipolar analog inputs are designated by the suffix "2" after the model number. All control inputs, outputs, and data outputs are compatible with standard TTL logic levels.

Each model is fully encapsulated in a 3" x 5" x 1.15" black anodized aluminum module suitable for direct mounting to pc boards. Input power requirements are ± 15 VDC and ±5 VDC. Operating temperature range is 0°C to +70°C.

17

18

ANALOG INPUT ANALOG GROUND

NOTE: PINS 7, 10 AND 18 ARE INTERNALLY CONNECTED

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

NOTE: CASE IS BLACK ANODIZED ALUN

	ADC-UH4B	ADC-UH8B
ADC-UH8B MAXIMUM RATINGS Analog Supply Voltage Logic Supply Voltage Analog Input Voltage	±18 VDC ±5.25 VDC ±5 VDC	±18 VDC ±5.25 VDC ±5 VDC
NPUTS Analog Input Range, Unipolar Analog Input Range, Bipolar Input Impedance ² Input Capacitance Input Current Start Conversion	0V to -2.56V ±1.28V 100K 250 pF +150 μA 2V min. to 5V max. F 40 nsec min. width. I Edge Initiates Conve Loading: 1 HTTL Loa	0V to -2.56V ±1.28V 100K 20 pF ±30 μ A Positive Pulse, Positive Going rision.
OUTPUTS Output Data Output Logic Levels Output Coding, Unipolar Output Coding, Bipolar' End of Conversion	4 Parallel Lines Vouτ ("0" Vouτ ("1" Loading: 4 Straight Binary Offset Binary 2V min. to 5V max. P 45 nsec Width. Nega Indicates Conversior Loading: 1 HTTL Loa	8 Parallel Lines) ≤ +0.4V ')≥ +2.4V TTL Loads Straight Binary Offset Binary 'ositive Pulse tive Going Edge tive Going Edge o Complete. ad
PERFORMANCE Resolution Differential Linearity Error, max. Missing Codes Gain Tempco Long Term Stability Conversion Time Conversion Rate, max.	4 Bits (1 part in 16) ±¼ LSB None over oper. temp. range ±50 ppm/°C ±0.25%/Year 40 nsec. 25 MHz	8 Bits (1 part in 256 ±1 LSB None at 25°C ±50 ppm/°C ±0.25%/Year 120 nsec. 8.33 MHz
>OWER REQUIREMENT Analog Supply Voltage Positive Analog Current Negative Analog Current Logic Supply Voltage Positive Logic Current Negative Logic Current	±15 VDC ±0.2 VDC 80 mA 9 mA ±5 VDC ±0.1 VDC 650 mA 150 mA	±15 VDC ±0.2 VDC 80 mA 9 mA ±5 VDC ±0.1 VDC 1300 mA 250 mA
PHYSICAL-ENVIRONMENTAL Operating Temp. Range Storage Temp. Range Relative Humidity Package Type Package Size Pins Weight	0° C to +70° C -55° C to +85° C Up to 100% Non-Cor Black Anodized Alum 3 × 5 × 1.150 inches (76,2 × 127,0 × 29,2 0.020" Dia. × 0.250" 15 oz. (425g)	ndensing ninum Module mm) Long, Gold Plated
Operating Temp. Range Storage Temp. Range Relative Humidity Package Type Package Size Pins Weight	0° C to +70° C -55° C to +85° C Up to 100% Non-Cor Black Anodized Alum 3 × 5 × 1.150 inches (76,2 × 127,0 × 29,2 0.020″ Dia. × 0.250″ 15 oz. (425g)	i i L

TECHNICAL NOTES

- 1. Model ADC-UH8B has a throughput delay of 140 nsec. due to the two stage conversion technique used. However, a new conversion can be started every 120 nsec. for a conversion rate of 8.33 MHz.
- 2. The eight bit conversion result of the ADC-UH8B is made up of two 4 bit partial results that appear 95 nsec. apart. Since each 4 bit result is present at the outputs for 110 nsec., the 15 nsec. overlap between the two partial results is the period in which the complete 8 bit conversion result is available at the outputs. This overlap period occurs immediately prior to the falling edge of the end of conversion output pulse. While the 8 bit word is available at the outputs, it may be loaded into an external register for transfer. Transfer may be accomplished by using a zero hold-time register such as an SN74H106 or a fast quad Dtype flip-flop such as the SN74S175. One configuration of the ADC-UH8B is shown in the diagram titled "Two State Data Transfer Register". This register allows access to the full 8 bit word for 150 nsec. after the negative going edge of the end of conversion pulse and acts as a deskewing register.
- 3. For applications of the ADC-UH8B requiring a sample-hold, Datel-Intersil's SHM-UH3 is recommended. The SHM-UH3 is an ultra-fast sample-hold designed specifically for use with the ADC-UH8B. The ADC-UH4B generally does not require a sample-hold due to its high speed.
- 4. The ADC-UH series has inverted analog input. Therefore, for the bipolar ±1.280V analog input range, a -1.280V input results in an output code of 11111111. Conversely, an analog input of +1.280V is coded as 00000000. Coding for bipolar models is offset binary.
- 5. The ADC-UH is completely calibrated at the factory and does not require any customer adjustment. Due to the high speed and sophisticated design of these units, calibration is a complex procedure involving specialized equipment. No attempt at adjustment should be made without contacting the factory for assistance.
- 6. The ADC-UH series modules are supplied with two threaded mounting holes on the bottom of the case to allow securing the module to a circuit board. Screws used for mounting should be tightened to between 4 and 8 inch pounds.
- 7. During operation, airflow over the case must be unrestricted to provide proper cooling. For operations in ambient temperatures above 50°C airflow of at least 100 linear feet per minute is recommended.

ORDE	ORDERING INFORMATION	
MODEL	DESCRIPTION	
ADC-UH4B ADC-UH4B2 ADC-UH8B ADC-UH8B2	4 Bits, 25 MHz, Unipolar 4 Bits, 25 MHz, Bipolar 8 Bits, 8.33 MHz, Unipolar 8 Bits, 8.33 MHz, Bipolar	
For extended following suffinumber. Cons	temperature range operation the xes should be added to the model ult factory for price and delivery.	

-25°C to +85°C operation
-55°C to +85°C operation with all
hermetically sealed semiconductors

THESE CONVERTERS ARE COVERED BY GSA CONTRACT.

THEORY OF OPERATION

The ADC-UH4B employs the well-known parallel, or flash, high speed conversion technique. With this technique an analog input is digitized to a resolution of N bits by a bank of 2^{N} -1 comparators operating in parallel. These comparators are biased 1 LSB apart by a precision resistor network connected to a voltage reference. With an analog input applied, all comparators biased below the level of the input signal turn on (output "1") while those biased above the input level turn off (output "0"). Since the comparators operate simultaneously, the quantization takes place in the switching time of a single comparator. For a four bit converter, which requires a bank of 15 comparators, the results of this quantization appear in the form of a 15 line code which increments sequentially from all zeros to all ones. This result is fed to a special 15 line to 4 bit decoder, whose output is a 4 bit binary code.

To achieve high speed 8 bit conversions, the above technique is used in a two stage operation. The first quantization stage determines the four most significant bits. This four bit word is then stored in an output register that also controls a 4 bit digital-to-analog converter. The output of the D/A coverter is the analog value of the four most significant bits, which is then subtracted from the analog input. The resulting voltage difference is fed to a second comparator bank where the four least significant bits are determined and stored in a second output register. The contents of the two output registers is the 8 bit binary word representing the analog input signal level.

A useful result of this two stage method is that once the four most significant bits have been determined and stored in the output register, the first stage comparator bank is free to perform the next conversion. The second conversion will begin while the remaining four bits of the original conversion are being determined in the second stage (refer to the timing diagram for the dynamics of interleaved two-stage conversion). This mode of operation makes possible an 8.33 MHz word rate.

SHM-UH3 AND ADC-UH8B CONNECTION

ADC-UH8B/SHM-UH3 TIMING DIAGRAM

CODING TABLES

ADC-UH8B CODING TABLE

CONVERTER SCALE	ANALOG INPUT VOLTAGE	STRAIGHT BINARY OUTPUT CODE
-F.S. + 1LSB	-2.550V	11111111
-¾F.S.	-1.920V	11000000
-1/2 F.S.	-1.280V	1000000
-¼ F.S.	-0.640V	01000000
1 LSB	-0.010V	00000001
0	0.00V	00000000

ADC-UH4B2 CODING TABLE

	CONVERTER SCALE	ANALOG INPUT VOLTAGE	OFFSET BINARY OUTPUT CODE
	-F.S. + 1 LSB	-1.120V	1111
	-1/2 F.S.	-0.640V	1100
	-1 LSB	-0.160V	1001
	· 0	0.000V	1000
1	+½ F.S.	+0.640V	0100
	+ F.S.	+1.280V	0000

ADC-UH8B2 CODING TABLE

	ANALOG INPUT VOLTAGE	OFFSET BINARY OUTPUT CODE
-F.S. + 1 LSB	-1.270V	11111111
-1/2 F.S.	-0.640V	11000000
-1 LSB	-0.010V	1000001
0	0.000V	1000000
+½ F.S.	+0.640V	01000000
+F.S.	+1.280V	00000000

ADC-UH4B CODING TABLE

CONVERTER SCALE	ANALOG INPUT VOLTAGE	STRAIGHT BINARY OUTPUT CODE
-F.S. + 1 LSB	-2.400V	1111
-3/4 F.S.	-1.920V	1100
-½ F.S.	-1.280V	1000
-¼ F.S.	-0.640V	0100
-1 LSB	-0.010V	0001
0	0.000V	0000

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 OATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

8 Bit, 20MHz Video Analog-to-Digital Converter Model ADC-TV8B

FEATURES

- 8 Bit Resolution
- 20 MHz Encoding Rate
- Internal Sample Hold
- ECL or TTL Interfacing
- Hybrid Building Block Design

GENERAL DESCRIPTION

The ADC-TV8B is an 8 bit video analog to digital converter employing a unique new design concept. The circuit realization is based on a hybrid building block principle using four specially developed circuits: a 3-bit parallel decoded A/D, a 15 line (4 bit) D/A, an ultra-fast sample-hold, and an ultra-fast inverting op amp. These devices, manufactured with thin-film hybrid technology, are combined with other digital and analog IC's, in addition to passive components to construct the ADC-TV8B. This building block principle results in single circuit board construction in a compact, anodized aluminum module only 7.5 x 4.25 x 0.875 inches (191 x 108 x 22mm).

Digital and power connections are made through a 37-pin subminiature "D" connector and the analog input is a 3mm terminated coax connector. Ultra-fast 10,000 series ECL logic is used throughout the design, but there is a choice of two external logic interfaces: ECL or TTL. There is a further choice in analog input termination impedances of 50, 75, or 93 ohms and analog input ranges of 0 to +1V, 0 to +2V, 0 to +5V, $\pm 1V$, $\pm 2V$, or $\pm 5V$. These choices are made by selecting the appropriate converter model number.

The time between conversions is 50 nsec. maximum, giving a conversion rate of 20 MHz. The conversion delay, or time from the start convert pulse to the time data is valid, is 65 nsec. for the ECL version and 75 nsec. for the TTL version. Linearity error is $\pm 1/2$ LSB maximum, and there are no missing codes over the operating temperature range. Temperature coefficient is $\pm 60 \text{ ppm/°C}$ of full scale range.

Power requirement is \pm 15VDC and \pm 5VDC at 16 watts consumption. Operating temperature range is 0°C to 70°C.

· · · · · · · · · · · · · · · · · · ·				
FUNCTION	PIN	FUNCTION	PIN	FUNCTION
E.O.C. (ECL)*	14	BIT 3 OUT **	26	POWER COMMON
START CONV. (ECL)	15	BIT 4 OUT	27	– 5V POWER
START CONV. (TTL)	16	BIT5 OUT **	28	– 15V POWER
N.C.	17	BIT 6 OUT **	29	N.C.
+ 15V POWER	18	BIT 7 OUT **	30	BIT 1 OUT*
+ 5V POWER	19	BIT 8 OUT **	31	BIT 2 OUT*
POWER COMMON	20	E.O.C. (ECL)*	32	BIT 3 OUT*
POWER COMMON	21	START CONV. (ECL)	33	BIT 4 OUT*
-5V POWER	22	TTL COMMON	34	BIT 5 OUT*
-15V POWER	23	+ 15V POWER	35	BIT 6 OUT*
N.C.	24	+ 5V POWER	36	BIT 7 OUT*
BIT 1 OUT **	25	POWER COMMON	37	BIT 8 OUT*
BIT 2 OUT **	COAX CONNECTOR: ANALOG INPUT			
	FUNCTION E.O.C. (ECL)* START CONV. (ECL) START CONV. (TTL) N.C. + 15V POWER + 5V POWER POWER COMMON POWER COMMON -5V POWER -15V POWER -15V POWER N.C. BIT 1 OUT ** BIT 2 OUT **	FUNCTION PIN E.O.C. (ECL)* 14 START CONV. (ECL) 15 START CONV. (TTL) 16 N.C. 17 + 15V POWER 18 + 5V POWER 19 POWER COMMON 20 POWER COMMON 21 -5V POWER 22 -15V POWER 23 N.C. 24 BIT1 OUT ** 25 BIT2 OUT ** COA	FUNCTION PIN FUNCTION E.O.C. (ECL)* 14 BIT 3 OUT ** START CONV. (ECL) 15 BIT 4 OUT START CONV. (ECL) 16 BIT 5 OUT ** N.C. 17 BIT 6 OUT ** + 15V POWER 18 BIT 7 OUT ** + 5V POWER 19 BIT 8 OUT ** POWER COMMON 20 E.O.C. (ECL)* POWER COMMON 21 START CONV. (ECL) -5V POWER 22 TTL COMMON -15V POWER 23 + 15V POWER N.C. 24 + 5V POWER BIT 1 OUT ** 25 POWER COMMON BIT 2 OUT ** COAX CONNECTOR: ANA	FUNCTION PIN FUNCTION PIN E.O.C. (ECL)* 14 BIT 3 OUT ** 26 START CONV. (ECL) 15 BIT 4 OUT 27 START CONV. (ECL) 16 BIT 5 OUT ** 28 N.C. 17 BIT 6 OUT ** 29 + 15V POWER 18 BIT 7 OUT ** 30 + 5V POWER 19 BIT 8 OUT ** 31 POWER COMMON 20 E.O.C. (ECL)* 32 POWER COMMON 21 START CONV. (ECL) 33 -5V POWER 22 TTL COMMON 34 -15V POWER 23 + 15V POWER 35 N.C. 24 + 5V POWER 36 BIT 1 OUT ** 25 POWER COMMON 37 BIT 2 OUT ** COAX CONNECTOR: ANALOG 37

*Output for ECL or TTL models.

**ECL outputs present on all models.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340
SPECIFICATIONS, ADC-TV8B (Typical at 25°C, \pm 15V and \pm 5V supplies, after 5 minutes warmup, unless otherwise noted.)	TECHNICAL NOTES
MAXIMUM RATINGS Analog Supply Voltage, pins 5&23, 10&28	1. Note that there are two basic models of the ADC-TV8B: one for ECL interfacing (ADC-TV8B1) and one for TTL interfacing (ADC-TV8B2). The former is designed for complementary series 10,000 ECL interfacing and can be conveniently used with ECL differential line drivers and receivers. The latter model uses standard TTL interface levels.
Analog Input Voltage ± 15V INPUTS ¹ Analog Input Range ² , unipolar 0 to + 1V, 0 to + 2V, 0 to + 5V Analog Input Range ² , bipolar ± 1V, ± 2V, ± 5V Input Impedance ² 50, 75, or 93 ohms. Start Conversion, ECL ⁷ Complementary ECL 10,000 input pulses, 15 nsec. min. Conversion initiated on leading edge. Negative going pulse to pin 2. Start Conversion, TTL Positive going pulse, 15 nsec. min. levels. 50 ohms input impedance. Conversion initiated on leading edge.	 The ADC-TV8B1 dissipates 16 watts while the ADC-TV8B2, which draws slightly higher + 5V supply current, dissipates 17 watts. It is recommended in general that one side of the package (see Mechanical Dimensions) be mounted against a metal heat sink such as chassis. Internal components are heat sinked to this side of the package and there are tapped #4-40 mounting holes for this purpose. The analog input coax connector is a standard 3mm RF connector (mating part, Sealectro Corp. part no. 51-024-0000). The mating part to the subminiature "D" connector is Cinch type DC37S
OUTPUTS ¹ Parallel Output Data, ECL 8 pins of parallel lines, complementary ECL 10,000. Valid after E.O.C. pulse. Loading	 Each power supply connection has two pins connected in parallel. It is recommended that both of these pins be used in all cases. There is no requirement to bypass the power supply leads in most cases since this is done internally.
Parallel Output Data, TTL 8 parallel lines of data, valid after E. O.C. pulse. Vout ("0") $\leq +0.4$ Vout ("1") $\geq +2.4V$ Loading 10 TTL loads Skew ³ <5 nsec. Coding, unipolar ⁴ Offset binary Coding, bipolar ⁴ Offset binary Complementary ECL 000, 20 nsec	 5. The ADC-TV8B does not require any external adjustments. All adjustments have been made at the factory and after an initial 5 minute warm-up period, the unit will perform to specification. 6. The ECL model can be operated with a single start con-
End of Conversion, ECL Complementary ECL 10,000, 20 mask. pulse after which data is valid. Loading 20 ECL loads End of Conversion, TTL 20 nsec. positive pulse after which data is valid. Loading 10 TTL loads.	vert pulse applied to pin 2. The complementary input may be used in addition to improve noise immunity. If the start convert pulse, for either ECL or TTL versions remains HI longer than 35 nsec., the samplehold will remain in the hold mode for the duration of the start convert pulse.
PERFORMANCE Resolution 8 bits (1 part in 256) Linearity Error ± ½ LSB max. Conversion Delay, ECL 65 nsec. Conversion Delay, TTL 75 nsec. Time Between Conversions 50 nsec. min. Max. Conversion Rate 20 MHz Sample Hold Bandwidth 10 MHz Sample Hold Acquisition Time 25 nsec. Aperture Uncertainty <30 psec. Temperature Coefficient ± 60 ppm/°C of FSR ⁵ Missing Codes None over oper. temp. range. Signal to Noise Ratio, 50 dB DC to 5 MHz 50 dB Long Term Stability ± 0.15% per year	ORDERING INFORMATION ADC-TV8B LOGIC INTERFACE 1 = ECL 10,000 2 = TTL C = 92 ohms C = 92 oh
POWER REQUIREMENTS ±15VDC ±0.75V at 200 mA +5VDC ±0.25V at 0.5A ⁶ -5VDC ±0.25V at 1.5 A	*For other input voltage ranges and input impedances consult factory. $3 = \pm 0 to + 1V$ $5 = 0 to + 2V$ $6 = 0 to + 5V$
PHYSICAL-ENVIRONMENTAL Operating Temperature Range 0°C to 70°C Storage Temperature Range -55°C to + 85°C Relative Humidity Up to 100% non-condensing Size 7.5 x 4.25 x 0.875 inches 191 x 108 x 21,9 mm. Black Anodized Aluminum. Weight 16 oz. (454 g.)	PRICING Model Logic Interface ADC-TV8B1 ECL ADC-TV8B2 TTL The following mating connectors are supplied with ADC-TV8B: TRW Cinch DC37S Scalartary E1 024 0000
 NOTES: 1. ECL or TTL interface is determined by model number. 2. Input ranges and impedances are determined by model number. 3. Skew is defined as the maximum difference between times that any two bits change. 4. Determined by number. 5. Full scale range, or the difference between high and low ends of the input range. 6. For TTL model this current is 0.7 A. 7. Use of pin 21 for complementary drive is optional. 	For extended temperature range operation the following suffixes are added to the model number. Consult factory for price and delivery. -EX -25°C to + 85°C operation -EX -55°C to + 85°C operation -EX -55°C to + 85°C operation -EX -55°C to + 85°C operation THE ADC-TV8B IS COVERED BY GSA CONTRACT

107C

BLOCK DIAGRAM

DESCRIPTION OF OPERATION

The ADC-TV8B A/D converter employs a two step parallel conversion technique illustrated by the block diagram and timing diagram. Each of the 4 bit parallel A/D converters shown is made up of two 3 bit hybrid expandable A/D's.

The analog input comes from a terminated RF connector to an ultra-fast inverting op amp which scales the input to the desired level for the sample-hold and A/D converter. A conversion is initiated by an input start convert pulse which begins a timing sequence determined by 4 ECL digital delay circuits. The first delay causes the samplehold to go from the tracking mode to the hold mode for about 35 nanoseconds. The output of the sample-hold is buffered and goes to the first 4 bit A/D where the 4 most significant bits are converted and decoded into binary form. This A/D simultaneously drives a 4 bit D/A by means of a 15 line output.

The D/A output is subtracted from the buffered samplehold output and the analog remainder goes to the second 4 bit A/D which converts the 4 least significant bits into decoded binary form. The last delay circuit puts out a 20 nsec. pulse indicating that data is ready at the output of the 8 bit register.

The delay for a conversion is 65 nanoseconds for ECL outputs and 75 nanoseconds for TTL outputs. This is the time measured from the leading edge of the start convert pulse to the trailing edge of E.O.C. (or status) pulse. The time between successive conversions, however, is only 50 nanoseconds max. giving a conversion rate of 20 MHz.

APPLICATIONS

ECL SERIES 10,000 INTERFACING

UNIPOLAR MODELS

	UNIP	OLAR MOD	ELS			BIPC	LAR MODE	ELS	
INPUT VOLTAGE RANGE			INPUT VOLTAGE RANGE						
Scale	0 to + 1V	0 to + 2V	0 to + 5V	Output Code	Scale	±1V	± 2V	±5V	Output Code
+ FS -1LSB + ¾ FS + ½ FS	+ 0.996V + 0.750 + 0.500	+ 1.992V + 1.500 + 1.000	+ 4.998V + 3.750 + 2.500	1111 1111 1100 0000 1000 0000	+ FS -1LSB + ½FS ZERO	+ 0.992V + 0.500 0.000	+ 1.984 + 1.000 0.000	+ 4.961V + 2.500 0.000	1111 1111 1100 0000 1000 0000
+ ¼FS + 1LSB ZERO	+ 0.250 + 0.004 0.000	+ 0.500 + 0.008 0.000	+ 1.250 + 0.020 0.000	0100 0000 0000 0001 0000 0000	- ½FS -FS + 1LSB -FS	-0.500 -0.992 -1.000	-1.000 -1.984 -2.000	-2.500 -4.961 -5.000	0100 0000 0000 0001 0000 0000

DIGITIZING VIDEO SIGNALS

The most widely used digital standard found in digital video circuits involves an encoding rate based on 8 bits/sample at a sample rate of 3X or 4X the subcarrier. The ADC-TV can meet or exceed these conversion rates.

STANDARD	COLOR SUBCARRIER	3X	4X
	FREQUENCY (MHZ)	(MHZ)	(MHZ)
NTSC	3.58	10.74	14.32
PAL	4.43	13.29	17.72

For a NTSC or PAL signal, the subcarrier can extend from - 33 to + 133 IRE units, reference blanking level. Keep in mind that 1 IRE = 7.14 mV. To calculate the least significant bit (LSB) size, the following formula applies:

1 LSB = $\frac{166}{256}$ = .648 IRE units on 4.63 mV.

where 166 IRE is the full scale range* and 256 is the number of steps in an 8 bit A/D.

Differential linearity is the maximum deviation of an actual bit size from its theoretical value for any bit over the full range of the converter. If the differential Inearity is 1 LSB or greater, missing codes will appear on the A/D output. The ADC-TV is guaranteed not to miss codes over the entire operating temperature range.

*The ADC-TV can be supplied to this input range.

THERMAL MANAGEMENT

Circuit performance and long-term circuit reliability are affected by the junction temperature of the internal IC's. Normally, both are improved by keeping these junctions at a low temperature.

The ADC-TV has been designed to operate at case temperatures of 0 to 70°C. It is recommended that the converter not be operated outside this range.

The average junction temperature is dependent on the amount of power dissipation and the net thermal resistance between the heat source and a reference point. In this case, we have already determined that the case temperature is the reference point.

Controlled air flow over the case or a heat sink are effective means of reducing the ADC-TV's temperature. An air flow of 500 linear feet per minute is recommended especially when operating the unit with cooling air temperatures up to 50°C. A heat sink should be mounted on the side noted in the mechanical dimensions.

Care must be taken when mounting the device on a heat sink. To assure efficient heat transfer from case to heat sink when mounting the ADC-TV, the following special precautions should be observed:

- 1. Mounting torque should be between 4 and 8 inch-pounds.
- 2. The mounting holes should be kept small and free of burrs and ridges.
- 3. The mounting surface should be flat.
- Thermal Joint Compound (Wakefield Engineering Type 120 or equiva-4 lent) should be used.
- A lock washer or torque washer, made of material having sufficient 5. creep strength should be used to prevent degradation of heat sink efficiency during life.

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

TTL INTERFACING

14 Bit, 50 Microsecond Analog-to-Digital Converter Model ADC-149

FEATURES

- 14 Bit Resolution
- 50 µsec. Conversion Time
- Low Price
- Unipolar or Bipolar Inputs
- 15ppm/°C Gain Temp. Coeff.

GENERAL DESCRIPTION

The ADC-149 is a 14 bit successive approximation type analog to digital converter for OEM use. It was specifically designed to give high resolution and accuracy at moderate cost for incorporation into precision instruments for process control systems and test and measurement systems.

This converter accepts either unipolar or bipolar input voltages of 0 to -10V, 0 to -20V, $\pm 5V$, or $\pm 10V$ full scale by external pin connection and performs a 14 bit conversion in 50 μ sec. Several output codes are available including straight binary for unipolar inputs and either offset binary or two's complement for bipolar inputs. Two's complement is obtained by using the MSB output pin. Reverse coding sense is used with the most negative analog input corresponding to full scale digital output. A serial data output is also provided and has a nonreturn-to-zero (NRZ) format. Logic outputs ate DTL/TTL compatible and will drive 6 standard TTL loads.

The ADC-149 can resolve 1 part in 16,384 giving an operating dynamic range of 84.3dB. On the 10 volt full scale range it can detect an input change of less than 1 millivolt. Accuracy is adjustable to $\pm.005\%$ of full scale $\pm\%$ LSB. The temperature coefficient is held to a low $\pm15ppm/^{\circ}C$ over the 0° to 70°C operating temperature range.

This converter is encapsulated in a compact $2\times 4\times 0.8$ inch module with DIP compatible pin spacing for PC board mounting. It can be stored from -55° C to $+85^{\circ}$ C. Power supplies required are standard ± 15 VDC and ± 5 VDC. (Available from Datel's line of modular power supplies.)

The high resolution and accuracy of the ADC-149 make it particularly valuable in applications such as moderate speed data reduction, and computer arithmetic processing of analog inputs. Digitizing inputs from sensors and transducers allows data transmission or storage with drastically reduced degradation of accuracy compared to analog methods. This is also vital for automatic process and alarm limit computer control, and digital linearization of logarithmic or special function analog inputs.

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

SPECIFICATIONS (Typical @ +25°C unless noted)

INPUTS	
Analog Input Range ±5V FS, ±10V FS (single-ended input 0 to -10V FS, 0 to -20V FS referenced to ground)	
Input Overvoltage ±15VDC without damage to	unit.
Input Impedance	IV FS -20V FS
Start of Conversion +2.5V min. to +5.5V max. p pulse with 150 nsec. min. du Loading: 1mA Logic "1" resets converter Logic "0" initiates conversio	oositive Jration.
OUTPUTS	
Parallel Output Data 14 parallel lines of data held on next conversion command. Vout (Logic "0") ≤ +0.4V Vout (Logic "1") ≥ +2.4V Each output capable of drivin 6 TTL loads.	until the / / ng up to
Coding Straight Binary (Unipolar Inp Offset Binary (Bipolar Input) Two's Complem <u>ent (</u> Bipolar Pin 15 provides MSB output coding. (Reverse coding sense	out) Input) for this e used).
Serial Output NRZ successive decision puls generated during conversion o MSB first. LO = "1", HI = "C Straight binary or offset bina	e output with)" ry coding
End of Conversion Conversion Status Signal Vout (Logic "0") ≤ +0.4V co sion complete Vout (Logic "1") ≥ +2.4V du reset and conversion period	onver- uring
Clock Internal clock output, positiv 3 microsecond pulse. Loading 6 TTL loads.	e going g up to

PERFORMANCE

Resolution
Temperature Coefficient of Gain±15ppm/°C
Temperature Coefficient of Zero Unipolar ±10ppm/°C Bipolar ±10ppm/°C
Conversion Time 50µsec. max.
Throughput Rate
Power Requirements $\pm 15 \text{VDC} \pm 0.5 \text{VDC} @$ 80mA max. $\pm 5 \text{VDC} \pm 0.25 \text{ VDC} @$ 200mA max.

PHYSICAL-ENVIRONMENTAL

Operating Temperature Range	0°C to +70°C
Storage Temperature Range -	55°C to +85°C
Relative Humidity	Jp to 100% non-condensing
Size	2"W×4"L×0.8" H
Pins	020" round, gold plated, 0.250" ong min.
Case Material	Black Diallyl Phthalate per MIL-M-14
Weight	oz.
Mating SocketsD	ILS-2, 2 required @ \$6/pair

ORDERING INFORMATION

Model ADC-149-14B Mating Socket DILS 2

BIPOLAR UNIPOLAR Analo Input Range 0 to Analog Input Ranse 2's Complement (MSB Output) Officer Binary SV FS 10V FS 10V FS MSB LSB MSB LSB MSB LSR 5.0000 + 10.0000 000000000000000 100000000000000 0 0000 2.5000 + 5.0000 + 0.0012 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 5000 5 0000 7 5000 0.0006 0.0000 - 5.0000 -2.5000 9.9938 9 9994 NOTE: "Reverse coding sense is used with the most negative analog input corresponding to full scale digital output. Normal coding sense can be obtained by using an external inverting amplifier. Or complementary binary can be used by adjusting for a 1.158 offset.

UNIPOLAR (0 to -10V 0 to 20V) Adjustment Procedure - Unipolar Input

Start

djustment Procedure – Unipolar Input Connect a precision pulse generator to the "Star Convert" input terminal. See specifications for pulse width and amplitude. Connect a precision voltage reference source to the appropriate analog input terminals. See I/O Connections. В.

Zero Offset Control

Adjust the voltage output from the reference to minus % LSB. Rotate the zero offset control until the LSB output (Least Significant Bit) flickers between logic "zero" and logic "one".

Full Scale Gain Control

Adjust the output from the reference source to full scale minus 1% LSB. Rotate the gain control until the LSB output (Least Significant Bit) flickers between logic "zero" and logic "one".

Adjustment Procedure - Bipolar Input Adjustment Procedure — Bipolar Input A. Connect a precision pulse generator to the "Start Convert" input terminals. See specifications for pulse width and amplitude B. Connect a precision voltage reference source to the appropriate analog input terminals. See I/O

100 201

200

RING SIDE VIEW

NOTE All trimming pots are 100 ppm C, 15 turn Available from Datel at \$3 00 each

ADJ

0 27

0 28

C 29

O 3C

0.32

O 35

BIPOLAR (±5V, ±10V)

connections.

Zero Offset Control

Adjust the voltage output from the reference source to plus full scale minus % LSB Rotate the offset control until the LSB output (Least Significant Bit) flickers between logic "zero" and logic "one".

Gain Control

Sain Control Adjust the output from the reference source to minus full scale minus 1% LSB Rotate the gain control until LSB output (Least Significant Bit flickers between logic "zero" and logic "one"...

TRIMMING OF 3 MOST SIGNIFICANT BITS (INTERNAL)

The three trimming potentiometers on the side of the module are for periodic adjustment of the three most againfant bits. Normally no adjustment of these trimm is necessary since they are calibrated at the factory at 28 C. Should readjustment be required for optimum accuracy at a different temperature or to compensate periodically for long term drift, the following procedure should be carefully followed: 1. Adjust externel offset and gain as above.

 Readjust external gain trim and then bits 3, 2, and 1 in accordance with the table below. Adjust so that the
output flickers equally between the two codes shown. Readjust external zero or offset and gain. 3

Repeat steps 2 and 3 as necessary.

Input Voltage		Output Code	Adjustment	
Unipolar (0 to -10V) Bipolar (±5V)				
-0.625V -1/2 LSB	+4.375V - 1/2 LSB	0001001	Ģain Trim	
(-0.62531V)	(+4.37469V)	0001000		
-1.25V-1/2 LSB	+3.75V -1/2 LSB	0010001	Trim #3	
(-1.25031V)	(+3.74969V)	0010000	(Bit 3)	
-2.5V -1/2 LSB	+2.50V -1/2 LSB	0100001	Trim #2	
(-2.50031V)	(+2.49969V)		(Bit 2)	
-5.0V -1/2 LSB	0V -1/2 LSB	10000 01	Trim #1	
(-5.00031V)	(-0.00031V)	10000 00	(Bit 1)	

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

- 16 Bit Resolution
- 2 μsec Conversion Time
- ±1/2 LSB Linearity
- ±5V Analog Input Range
- 500 kHz Throughput
- Compact 5" \times 3" \times 0.375" Module

GENERAL DESCRIPTION

The ADC-876 is a 16 bit A/D converter with a maximum conversion time of 2μ sec. This ultra-fast high resolution converter utilizes the SABRE conversion technique, developed by Datel-Insersil (Successive Approximation By Residual Expansion). Although the potential for a unique combination of high speed and high resolution is inherent in this technique, realization of its potential requires real design leadership. As a result, this compact modular A/D has a number of key functions implemented as ultra-high performance thin-film hybrid components. It is these hybrid components that allow the ADC-876 to achieve levels of performance that would be impractical with discrete components.

This converter accepts analog inputs over a \pm 5V range and completes a full 16 bit conversion in 2 μ sec maximum, including all set-up, settling and delay times, thus providing a true throughput rate of 500 kHz. The conversion result is coded as complementary two's complement and is latched into the TTL compatible outputs until the next start conversion command.

The ADC-876 features $\pm \frac{1}{2}$ LSB maximum nonlinearity, $\pm \frac{1}{2}$ LSB maximum differential nonlinearity, offset drift of only ± 1 LSB over the rated operating temperature range and a reference output tempco of ± 5 ppm/ °C.The 16 bit resolution and $\pm 5V$ input range yield a LSB size of $152.5 \,\mu$ V.

The converter is housed in a compact 5" × 3" × 0.375" black enameled steel module. A 34 pin AMP connector mounted at one end supplies all interconnect points without extending case size. Each module is functionally complete, requiring only ±15 VDC and +5V supplies for operation, and has an operating temperature range of 0 to +70° C. For information on extended temperature range and high reliability versions, contact the factory.

Ultra-Fast 16 Bit A/D Converter Model ADC-876

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

PRELIMINARY SPECIFICATIONS , ADC-876 (Typical at +25°C +15 VDC, +5 VDC supplies, unless oth	erwise noted.)
INPUTS Analog Input Range	±5V
Input Impedance Analog Input Step Loading Analog Input Source Step Load	$1.25 \text{K}\Omega \pm 20\%$ $\pm 0.4 \text{mA}^1$
Recovery Required	≤30 nsec to 0.1% ≤200 nsec to 0.005%, Fo ± 0.4mA Step Load
Common Mode Range Common Mode Rejection Ratio Start Conversion	± 10 mV 40 dB, Fo ≤ 10 MHz +2.0V min. to +5.5V max. positive pulse.
	25 nsec minimum duration if \overline{EOC} is low when pulse is applied. 125 nsec minimum duration if \overline{EOC} is high when pulse is applied. Loading: 2 LSTTL loads
	control the state of the three state data output registers to allow for 8 bit or 16 bit data bussing. Data is available within 17 nsec of a low state input to the enable controls. Loading: $\frac{1}{4}$ LSTTL load for each input.
OUTPUTS	
Parallel Output Data	. 16 parallel lines of data. Loading: 20 LSTTL loads in enabled state, and $\pm 50 \mu A$ max. in disabled state.
EOC Output	. Complementary 2's complement . Conversion Status Signal. Normally low, the EOC rises 50 nsec max. after the rising edge of the start input and stays high during
	been strobed into the data output storage registers, Typ. 3 nsec before data is available at outputs.
Reference Output , Voltage ³	Loading: 9 LSTTL loads. .+10.000V, ±0.010V .≤ 2.0Ω, Fo≤ 1 MHz
, Noise⁴	$. \leq 20 \mu V RMS$
PERFORMANCE	
Conversion Time	. 2 µsec
Resolution	. 16 Bits + 1/ LSB
. Tempco	. ± 1 LSB over Full Rated Operating Temperature Range.
Differential Nonlinearity	. ± ½ LSB
, Tempco	.±1 LSB over Full Rated Operating Temperature Range.
. Tempco	. ± 1 LSB over Full Rated Operating Temperature Range.
Offset Error, Initial	Adjustable to $\leq \frac{1}{2}$ LSB over a range of 50 LSB.
, Tempco, max.	. ±1 LSB over Full Rated Operating Temperature.
.PSRR. max.	. ± 5 LSB/V.
Gain Error, Initial	. Adjustable to $\frac{1}{2}$ LSB over a range of 50 LSB.
, Tempco, max.	$\pm 1 \text{ LSB}, -25^{\circ} \text{ C to} + 70^{\circ} \text{ C}$ $\pm 25 \text{ npm}/{}^{\circ} \text{ C}, \pm 70^{\circ} \text{ C to} \pm 85^{\circ}$
,Stability	.±25 ppm/1000 hrs
, PSRR, max.	.±10 LSB/V
	±20 ppm/°C, -25°C to +70°C ±20 ppm/°C, +70°C to +85°C
PHYSICAL ENVIRONMENTAL	anage i Dhainin a farmana a sana a sana ana ana ana ana ana an
Operating Temperature Range	
ADC-876	. 0°C to +70°C
ADC-876-EX ADC-876-EXX-HS	25°C to +85°C
Storage Temperature Range Package Type ⁶	55°C to +125°C . Black enameled 25 gauge CR steel. 5 × 3 × 0.375 in. (127 × 76 × 10 mm).
Weight Connector	 6.5 oz (184G). 34 Pin AMP # 1-86063-3 at one end of case (mating connector supplied) supplies all interconnect points without extending case size.
POWER REQUIREMENTS	
Supply Voltage ⁵	. +15V ±0.5V @ 187mA max. -15V ±0.5V @ 187mA max.
	+5V ±0.5V @ 472mA max.
Power Dissipation, max	-5v ±0.5v @ 19mA max. . 8.4 Watts

APPLICATIONS

INPUT BUFFER AMPLIFIER

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	Bit 13	18	Power Common
2	Bit 12	19	Power Common
3	Bit 14	20	Power Common
4	Bit 11	21	REFERENCE OUTPUT
5	Bit 15	22	-15V
6	Bit 10	_23	START
7	Bit 16 (LSB)	24	+5V
8	Bit 9	25	ENABLE 1-8
9	EOC	26	N.C.
10	ENABLE 9-16	27	Bit 8
11	Common	28	Bit 1
12	+15V	29	Bit 7
13	Power Common	30	Bit 2
14	Power Common	31	Bit 6
15	Signal Input	32	Bit 3
16	Power Common	33	Bit 5
17	Signal Common	34	Bit 4

CODING TABLE

SCALE	INPUT VOLTAGE	O C TW	UTPUT O OMPLEM O'S CON	CODING ENTARY IPLEMEN	т
+F.S1LSB	+4.99985V	1000	0000	0000	0000
+¾ FS	+3.75000V	1001	1111	1111	1111
+1/2 FS	+2.5000V	1011	1111	1111	1111
+1 LSB	+0.152mV	1111	1111	1111	1110
0	0.00000V	1111	1111	1111	1111
-1/2 F.S.	-2.5000V	0011	1111	1111	1111
-¾ F.S.	-3.75000V	0101	1111	1111	1111
-F.S. +1LSB	-4.99985V	0111	1111	1111	1110
-F.S.	-5.00000V	0111	1111	1111	1111

ORDERING INFORMATION

MODEL ADC-876 DESCRIPTION

76 2µsec, 16 Bit A/D Converter

For information on extended temperature range versions consult factory

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

SPECIFICATIONS NOTES:

- 1. At 14.7 MHz during first 1000 nsec of the conversion cycle.
- 2. For two state operation, tie both enable inputs to digital common.
- 3. For 0 mA \leq Tref \leq 5mA.
- 4. BW = 10MHz

5. The internal reference heater draws 14mA from the ±15V at +25°C decreasing at 2.5mA/°C and dropping to zero above +70°C. At turn-on, an inrush of 130mA to the heater decays to 15mA in less than 10 seconds.

6. Four 4-40 threaded holes are available on the bottom of the case. It is recommended that the user secure the case to a .032 glass epoxy board or equivalent to help reduce the case temperature resulting from internal power dissipation. Good thermal contact between the case bottom and the circuit board may be established by the use of a silicone thermal joint compound such as Wakefield Type 120 or equivalent.

OPERATION

HIGH SPEED OPERATIONS DISPLAY

This sequence of photos shows the conversion sequence of the ADC-876 SABRE technique. Figure 1 shows the converter operating over it's full scale range at full conversion speed (2 µsec/ conversion, max.). Figure 2 shows this expanded to allow viewing bits 13-16, notice that the 4 least significant bits begin to appear. Figure 3 is expanded further to allow viewing the 4 least significant bits. Please note for all these photos the major carry is centered on the centeral vertical grid line.

CONVERSION, MAXIMUM THROUGHPUT RATE

Fig. 4 shows the start conversion input trace at the top with the EOC shown just below. The bottom trace shows the 4 least significant bits of the ADC-876 at full conversion speed.

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved. 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490
 Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055
 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

115C

Ultra-Linear 8 Bit A/D Converter Model ADC-881

FEATURES

- 8 Bit Resolution
- Statistically Linearized Conversion
- 12¹/₂ Bit Linearity
- ±15V Input Range
- 1.5 μ sec Conversion Time
- Out of Range Indication

GENERAL DESCRIPTION

The ADC-881 is an 8 bit analog to digital converter with an internal sample-hold. This converter employs a stochastic distributional technique to enhance the statistical (average) linearity by a factor of 11.2, thus achieving a linearity error of only .0087%. Systematic nonlinearities are scattered in a pseudorandom fashion over the range of the converter, thus appearing as noise rather than nonlinearities. This result is particularly desirable in applications that use the digital output of an A/D converter to compile a histogram. The fundamental properties of any non-distributive A/D converter cause class widths within the histogram to vary from the ideal, thereby artificially increasing or decreasing the frequency within discrete class widths.

This ultra-linear A/D has a wide range of applications in spectrum analysis, nuclear research, vibration analysis, geological research, sonar digitizing, medical imaging systems, industrial testing and other signal analysis applications.

The ADC-881 has an analog input range of \pm 5V and will accomplish an eight bit sample and conversion in 1.5 μ sec maximum. Output data is coded as offset binary with an over range output to indicate analog values out of the converter's range.

Additional specifications include a gain tempco of 30 ppm/°C maximum, offset tempco of 25 ppm/°C maximum, zero crossing tempco of 10 ppm/°C maximum and long term stability of ±0.02%/year.

Each converter is a functionally complete unit requiring only ± 15 Vdc and $\pm 5V$ power supplies for operation. The device is packaged in a compact 5" x 3" x 0.375" black enameled steel module. For information on extended temperature range versions contact the factory.

MECHANICAL DIMENSIONS INCHES

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

PRELIMINARY SPECIFICATIONS, ADC-881	n an an tha tha an an an ann an ann an ann an ann an a
(Typical at +25°C, ±15 VDC and +5 VDC supplies, unless otherwi	ise noted)
Positive Supply	+18V
Negative Supply	-18V
Logic Supply	. +7V +5 5V
INPUTS	
Analog Input Range	. ±5V
Analog Input Impedance	A pulse 20 psec to 80 psec duration with rise and fall times less than 10
	nsec. Logic "0" = 0V to +0.8V. Logic "1" +2.0 to +5.5V. Conversion
	commences on the leading edge of the pulse. Loading: 1 LSTTL load.
Start Select	. For positive start input pulses, set Start Select to a Logic "1" or leave
	ground.
OUTPUTS Parallel Output Data	8 parallel latched data lines - 8 bits binary V out "0"<+0.4V V out
	$"1" \ge +2.4V$. Loading: 5TTL loads
<u>Cod</u> ing	. Offset Binary
EOC	. Conversion Status Signal. High (V out "1" ≥+2.4V) from 32 nsec typical
	after leading edge of Start Convert to 14 nsec typical after all data outputs are valid. V out "0"<+0.4V
	Loading: 5 TTL loads.
EOC	. Conversion Status Signal. Complement of EOC.
	Loading: 5 TTL loads
Over Hange ²	. Out of Range Signal. High (Vout "1"≥+2.4V) for all Signal Input values within +5V. Low (V out "0"≤+0.4V for all Signal Input values beyond +5V.
PERFORMANCE	······································
Conversion Time ³ , max.	. 1.5 µsec
Resolution	. 8 Bits
Differential Linearity Error ⁴	0.0087% of FSR
Noise (RMS) ⁵	. 0.2% of FSR
Gain Error	. Adjustable to zero
Offset Error	Adjustable to zero
Offset Tempco, max.	. ±25 ppm of FSR/°C
Zero Crossing Tempco, max.	$\pm 10 \text{ ppm of FSR/$
Long Term Stability	.±0.02% / year
	. +15V ± 0.5V @ 130mA max.
	-15V ± 0.5V @ 148mA max.
Logic Supply	+5V ±0.25V @ 481mA max.
Power Dissipation, max.	. 6.58 Watts.
PHYSICAL ENVIRONMENTAL	
Operating Temperature Range	
ADC-881	0°C to +70°C
	-25°C to +85°C
Storage Temperature Range	-25 C to $+85$ C Hernielic Sealed Semiconductors
Package Type	Black enameled 25 gauge CR steel. $5 \times 3 \times 0.375$ in. $(127 \times 76 \times 10$ mm).
Weight	6.5 oz. (184g).
Connector	.025 square pins, gold plated phosphor bronze. Mating connector
NOTES	
NOTES:	
1. An alternate method for generating Start Input pulses is to drive	e the Start Input with a rising edge and the Start Select with a falling edge
delayed 20 nsec to 80 nsec.	
2. When the Signal Input is less than -5V, the Data Output lines are	all "0". When the Signal Input is greater than +5V, the Data Output lines are all "1".
2. Comparing Time is granted from the location of the Ol	$\frac{1}{100}$
 conversion time is measured from the leading edge of the Sta 	reconversion input to the trailing edge of the EUC output.

4. The Linearity Error is the systematic error which remains after a sufficient number of samples have been averaged to suppress the noise.

5. The RMS noise value is reduced by the second root of the number of samples that have been averaged.

THEORY OF OPERATION

Fig.1 The output of a non-linearized 8 bit A/D converter is shown above. The display shows the 4 least significant bits at the major carry transition, demonstrating differential nonlinearity. This is a property of all non-linearized A/D converters. (The unit used for this example is a typical non-linearized A/D with ±½ LSB of integral linearity and ±½ LSB of differential nonlinearity.

	INPU	T/OL	JTPL	JT C	ONN	ECTI	ONS
--	------	------	------	------	-----	------	-----

PIN	FUNCTION	PIN	FUNCTION
1	OVER RANGE	18	NC
2	BIT 4	19	NC
3	START SELECT	20	NC
4	BIT 3	21	Digital Common
5	START in	22	Digital Common
6	BIT 2	23	+5VDC
7	EOC	24	+5VDC
8	BIT 1 (MSB)	25	+15VDC
9	EOC	26	+15VDC
10	BIT 8 (MSB)	27	Power Common
11	NC	28	Power Common
12	BIT 7	29	-15VDC
13	NC	30	-15VDC
14	BIT 6	31	Signal Common
15	NC	32	Signal Common
16	BIT 5	33	Analog Input
17	NC	34	Signal Common

ORDERING INFORMATION

OPERATING TEMP. RANGE

MODEL ADC-881

0 to +70°C

For information on extended temperature range and high reliability versions of this product, contact factory.

THIS PRODUCT IS COVERED BY GSA CONTRACT.

Fig. 2 The output of a linearized 8 bit A/D shown for the 4 least significant bits at the major carry. Notice the improvement in differential nonlinearity. This photo shows the effect of averaging multiple conversions performed with the linearizing technique employed in the ADC-881.

The ADC-881 employs a statistically linearized conversion technique that yields unique advantages in many applications. This technique uses a fundamental property of all A/D converters, differential nonlinearity, in a pseudo-random distributional technique to yield a converter with an "ideal" transfer function. This technique scatters the effects of systematic nonlinearities over the full range of the A/D in pseudo-random (a random sequency of finite length) fashion. The average transfer function, taken over the full range of the pseudo-random sequence, has extremely good integral linearity and minimal differential non-linearity. The trade-off appears here as "noisy" codes, this is the result of distributing systemic non-linearities over a wide range. Noise may be suppressed by repeated sampling of the data since the average value of true random noise is zero. The RMS noise value of the data is reduced by the second root of the number of samples less one that have been averaged.

Since this converter's extreme linearity is realized in an average transfer function, it follows that averaging a larger number of conversions will improve linearity. This is true, with maximal linearity resulting as an average of all values within the pseudo-random sequence (127 random values). Since the ADC-881 has conversion times of 1.3 μ sec typical and 1.5 μ sec maximum, this averaging procedure will require between 165 and 191 μ sec (127 conversions x conversion time). In applications where repeated sampling is employed to reduce noise, this converter yields optimal linearity when the number of samples averaged is an integral multiple of 127 (this is inherent in the stochastic distributional technique used).

The largest group of applications for this class of converters is in areas in which recurring systematic nonlinearities have an adverse effect on the distribution of acquired data values. This is particularly of interest in situations where data is required to compile a histogram (a frequency distribution of sample data into discrete categories). The effects of converter nonlinearities cause some categories to be artificially "widened" while others are "narrowed", thus increasing and decreasing, respectively, the frequence of occurrence of data values within these categories. This effect causes a non-linearized converter to yield a "converter distorted" histogram. Until now many users had to resort to extensive computational processing of digitized data simply to minimize the effects of "converter distortion". The architecture of the ADC-881 obviates the need for this, allowing statistically valid processing of analog data in real-time. Thus we see that the ADC-881 is ideally suited for applications in spectrum analysis, particle event monitors, fast signal processing, vibration analysis, sonar digitizing, and a whole spectrum of imaging applications, from medical imaging to industrial non-destructive testing.

CONNECTION AND CALIBRATION

- Connect A/D to external test circuitry shown in "Calibration Connection" diagram with no power applied.
- Apply power to the A/D converter and test circuitry and allow 2 them to reach operating temperature.
- Observe A/D output as a crossplot on the oscilloscope. Cali-З. brate the axis gain for one cm per step and adjust crossplot dither amplitude for 10 cm. Calibrate Y axis for an easily read cross plot.
- 4 Apply a precision voltage reference set to -5V to the analog input (pin 33). Observe cross plot as shown in figure 3. The last step should be centered on the vertical grid line one cm to the left of center. Adjust offset potentiometer as necessary to achieve this positioning.
- 5. Set the precision voltage reference to +5V. Observe the cross plot as shown in figure 4. The last step should be centered on the vertical grid line two cm to the right of center. Adjust gain potentiometer as necessary to achieve this position.
- 6. Repeat steps 4 and 5 until no further adjustment is required. Repetition is necessary, as the offset and gain adjustments interact. The following technique will minimize the number of adjustments. After the initial adjustment outlined in steps 4 and 5, repeat step 4. At this point repeat step 5 but over adjust the gain potentiometer so that the error displayed maintains its initial magnitude but occurs in a direction opposite from its original one, i.e., if the crossplot is 1.5 cm to the left of its desired position, adjust the gain potentiometer so that the crossplot is 1.5 cm to the right of its desired position. Repeat steps 4 and 5, the crossplot should now show perfect position.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Digital-To-Analog Converters

134C
138C
142C
146C
150C
154C
160C
164C
168C
174C
180C
184C
188C
192C
196C
200C
204C

Quick Selection: General Purpose D/A Converters

	MODEL	DESCRIPTION	RESOLUTION	LINEARITY	OUTPUT	SETTLING TIME, MAX ¹	INPUT CODING ²
	DAC-IC8BC	Low Cost 8 bit Monolithic D/A	8 Bits	±½ LSB	Current	300 nsec	Bin
S E	DAC-08BC	Fast 8 bit	8 Bits	±½ LSB	Current	150 nsec	Bin
MONOLITH	DAC-08BM DAC-UP8BC	8 Bit Monolithic	8 Bits	+1/2 L SB	Voltage	2 usec	Bin
	DAC-UP8BM	with Input Register		_/2			-
	DAC-IC10BC	Low Cost Fast		±1 LSB		250 nsec	Bin
	DAC-IC10B	10 Bit Monolithic	10 Bits		Current		
	DAC-IC10BM	D/A		±½ LSB			
	DAC-681C	12 Bit Monolithic	12 Bits	±1/2 LSB	Current	400 nsec	Bin
	DAC-681M	Low cost with		$\pm \frac{1}{4}$ LSB			
	DAC-HZ12BGC DAC-HZ12BMC	5 Pin selected	12 Bits	±½ LSB	Voltage	3 µsec	C Bin
	DAC-HZ12BMM	Ranges					
B	DAC-HZ12DGC	Low cost with					
≯	DAC-HZ12DMC	3 Pin selected	2 Digita		Valtaga	2	RCD
_	DAC-HZ12DMR	Output Voltage	SDIgits	± 1/4 LOB	voitage	3 μsec	RCD
	DAC-HZ12DMM	Ranges					

NOTES:

1. For full scale output change to rated accuracy.

2. CODING: Bin = Straight binary or offset binary. BCD = Binary coded decimal. CBIW = Complementary binary.

OUTPUT RANGES	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	ТҮРЕ	OPERATING TEMP (° C)	PRICE (1-24)	SEE PAGE
0 to -2mA	20 ppm/° C	+5V, -15V	16 pin DIP	Cerdip	0 to +70 -55 to +125	\$ 3.50 \$ 9.50	134C
0 to -2mA	10 ppm/° C	±15VDC	16 pin DIP	Plastic Ceramic	0 to +70 -55 to +125	\$ 4.50 \$ 10.50	146C
±5V, 0 to 10V	80 ppm/° C	±15VDC	22 pin DIP	Plastic Cerdip	0 to +70 -55 to +125	\$ 13.00 \$ 26.50	142C
0 to -4mA	20 ppm/° C	±15VDC	16 pin DIP	Ceramic	0 to +70 -55 to +125	\$ 9.95 \$ 16.95 \$ 32.50	138C
0 to −5mA, ±2.5mA	10 ppm/° C	+5 to +15V, -15V	24 pin DIP	Ceramic	0 to +70 -55 to +125	\$ 24.50 \$152.00	150C
0 to +5V 0 to +10V ±2.5V, ±5V ±10V	20 ppm/° C	±15VDC	24 pin Ceramic DIP	Epoxy Seal Hermetic Seal	0 to +70 0 to +70 -25 to +85 -55 to +125	\$ 42.00 \$ 59.00 \$ 79.00 \$125.00 *	192C
0 to +2.5V 0 to +5V 0 to +10V	20 ppm/° C	±15VDC	24 pin Ceramic DIP	Epoxy Seal Hermetic Seal	0 to +70 0 to +70 -25 to +85 -55 to +125	\$ 42.00 \$ 59.00 \$ 79.00 \$125.00 *	192C

*Available with MIL-STD-833 class B screening.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Quick Selection: General Purpose D/A Converters

	MODEL	DESCRIPTION	RESOLUTION	LINEARITY	OUTPUT	SETTLING	
		DESCRIPTION	8 Bits	SINGATUT			Bin
		Low Cost	2 Digits				BCD
	DAC-98BIR	Low Cost	8 Bits	½ LSB	Current	500nsec	Bin
	DAC-98DIR	Ref.	2 Digits				BCD
	DAC-198B	Voltage	8 Bits	1⁄2 LSB			Bin, 2C
	DAC-198D	Output	2 Digits		Voltage	20 <i>µ</i> sec	BCD
	DAC-198BI	Current	8 Bits		Current	300 nsec	Bin
	DAC-198DI	Output	2 Digits				BCD
AR	DAC-298B	5 µsec	8 Bits	1/ 100	Voltago	5 4500	Bin, 2C
	DAC-298D	Output	2 Digits	/2 200	vonage	$5\mu\text{sec}$	BCD
3	DAC-4910B	Voltage or	10 Bits	1/6 L SB	Voltage	5 µsec	Bin, 2C
0	DAC-4910BI	Current	10 Bits		Current	300 nsec	Bin
ž	DAC-4912D	Output	3 Digits	/2	Voltage	5 <i>µ</i> sec	BCD
	DAC-4912DI		3 Digits		Current	300 nsec	
	DAC-6912B	Voltage or	12 Bits		Voltage	20 <i>µ</i> sec	Bin, 2C
	DAC-6912BI	Output	· · · · · · · · · · · · · · · · · · ·	½ LSB	Current	300 nsec	Bin
	DAC-I8B		8 Bits				
	DAC-I10B		10 Bits				Bin
	DAC-I12B	Fast	12 Bits	½ LSB	Current	150 nsec	
	DAC-18D	Settling	2 Digits				BCD
	DAC-I12D		3 Digits				

NOTES: 1. Coding: Bin = Straight Binary or Offset Binary

BCD = Binary Coded Decimal

2C = Two's Complement

2. These models derive their reference from the +15V supply.

OUTPUT RANGES	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	OPERATING TEMP. (° C)	PRICE (SINGLES)	SEE PAGE
0 to +2.6mA					\$ 30.00	
0 to +1.6mA			2x1x0.375 IN		\$ 30.00	
0 to +2.6mA	100 ppm/° C	+15V	(51x25x10mm)	0 to +70	\$ 32.00	*
0 to +1.6mA					\$ 32.00	
0 to +10V, ±5V					\$ 46.00	
0 to +10V			2x2x0.375 IN		\$ 46.00	
_0 to +2.5mA	50 ppm/° C	±15V	(51x51x10 mm)	0 to +70	\$ 46.00	*
0 to +1.54mA					\$ 46.00	
0 to +10V, ±5V			2x2x0.375 IN		\$ 52.50	-
0 to +10V	50 ppm/° C	±15V	(51x51x10mm)	0 to +70	\$ 52.50	*
0 to +10V, ±5V					\$ 66.00	
0 to +2.5mA			2x2x0.375 IN		\$ 66.00	
0 to +10V	50 ppm/° C	±15V	(51x51x10mm)	0 to +70	\$ 66.00	*
0 to +1.54mA					\$ 66.00	
0 to +10V, ±5V			2x2x0.375 IN		\$ 77.50	
0 to +2.5mA	50 ppm/° C	±15V	(51x51x10mm)	0 to +70	\$ 77.50	*
0 to +2mA, ±1mA					\$ 82.50	
			2x1x0.375 IN		\$ 92.50	1
	15 ppm/° C	±15V	(51x25x10 mm)	0 to +70	\$105.00	. *
0 to +1.25mA					\$ 82.00	
					\$105.00	

*For Data Sheet contact nearest Datel Sales Office.

Datel offers modular products in operating temperature ranges of -25 to $+85^\circ\text{C}$ (suffix-EX) and -55 to $+85^\circ\text{C}$ (suffix-EXX-HS). For information on these high reliability modules contact nearest Datel sales office.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Quick Selection: Multiplying D/A Converters

	MODEL	DESCRIPTION	RESOLUTIO	ON LINEARITY	OUTPUT	SETTLING, TIME, MAX ¹
	DAC-7523C DAC-7523R DAC-7523M	4 Quadrant Multiplying D/A	8 Bits	±½ LSB	Current	150 nsec
MONOLITHIC	DAC-7533C DAC-7533R DAC-7533M	4 Quadrant Multiplying D/A	10 Bits	±½ LSB	Current	600 nsec
	DAC-7520C DAC-7520R DAC-7520M	4 Quadrant Multiplying D/A	10 Bits	±½ LSB	Current	500 nsec
	DAC-7521C DAC-7521R DAC-7521M	4 Quadrant Multiplying D/A	12 Bits	±2 LSB	Current	500 nsec
	DAC-7541C DAC-7541R DAC-7541M	Low cost 4 Quadrant Multiplying D/A	12 Bits	±½ LSB	Current	1.0 <i>µ</i> sec
•	DAC-HA10BC DAC-HA10BR DAC-HA10BM	Precision 4 Quadrant Multiplying D/A	10 Bits	±½ LSB	Current	1.3 <i>µ</i> sec
IYBRIC	DAC-HA12BC DAC-HA12BR DAC-HA12BM	Precision 4 Quadrant Multiplying D/A	12 Bits	±½ LSB	Current	5.0 <i>µ</i> sec
T	DAC-HA12DC DAC-HA12DR DAC-HA12DM	Precision Multiplying D/A	3 Digits	±½ LSB	Current	5.0 <i>µ</i> sec
	DAC-HA14BC DAC-HA14BR DAC-HA14BM	High Resolution 4 Quadrant Multiplying D/A	14 Bits	±1 LSB	Current	7.0 µsec

NOTES: 1. Given for a fullscale output transition

2. Coding: Bin = Straight Binary or Offset Binary

3. For +15V supply option, add suffix -1 to model number.

	REFEREN	CE						
INPUT	INPUT	GAIN	POWER	D	OPERATING		DA O F	
CODING ²	RANGE	TEMPCO	REQUIREMENT	PACKAGE	= TEMP (°C)	PRICE (1-24)	PAGE	
				Plastic	0 to +70	\$ 3.82		
Bin	±10V	10ppm/° C	+15VDC	Cardin	<u>-25 to +85</u>	\$ 5.72		
				Ceruip	-55 to +125	\$ 12.62		
				Plastic	0 to +70	\$ 13.57		
Bin	$\pm 10V$	10ppm/°C	+15VDC	Cordin	-25 to +85	\$ 18.07	164C	
				Cerdip	-55 to +125	\$ 45.07		
				Plastic	0 to +70	\$ 18.22		
Bin	±10V	10ppm/° C	+15VDC	Cardin	-25 to +85	\$ 29.83	154C	
				Cerdip	-55 to +125	\$ 61.76		
				Plastic	0 to +70	\$ 18.87		
Bin	±10V	10ppm/°C	+15VDC	Canalia	-25 to +85	\$ 26.32	154C	
			×	Cerdip	-55 to +125	\$ 76.83		
	±10V		°C +15VDC	Plastic	0 to +70	\$ 27.12		
Bin		10ppm/°C		Cerdip	-25 to +85	\$ 36.08	168C	
					-55 to +125	\$103.58		
			+5V		0 to +70	\$ 30.00		
Bin	±12V	20ppm/°C	or	Ceramic	-25 to +85	\$ 36.00	174C	
			+15V ³		-55 to +125	* \$ 69.00		
			+5V		0 to +70	\$ 49.00		
Bin	±12V	5ppm/° C	or	Ceramic	-25 to +85	\$ 69.00	174C	
			+15V ³		-55 to +125	* \$ 95.00		
			+5V		0 to +70	\$ 49.00		
BCD	±12V	5ppm/° C	or	Ceramic	-25 to +85	\$ 69.00	174C ′	
			$+15V^{3}$		-55 to +125	* \$ 95.00		
			+5V		0 to +70	\$ 65.00		
Bin	±12V	±12V 5ppm/° (5ppm/° C	or	Ceramic	-25 to +85	\$ 95.00	174C
0				+15V [°]		-55 to +125	* \$125.00	

*Available with MIL-STD-883 class B screening.

Datel offers modular products in operating temperature ranges of -25 to $+85^\circ\text{C}$ (suffix-EX) and -55 to $+85^\circ\text{C}$ (suffix-EXX-HS). For information on these high reliability modules contact nearest Datel sales office.

Quick Selection: High Performance D/A Converters

	MODEL	DESCRIPTION	RESOLUTION	LINEARITY	OUTPUT	SETTLING TIME	INPUT CODING ¹
	DAC-HK12BGC			e de la constante de la constan La constante de la constante de		· c 1	
	DAC-HK12BMC						
	DAC-HK12BMR		12 Bits	1/2 LSB			Bin
	DAC-HK12BMM		· .				
Δ	DAC-HK12DGC	Fast Settling					
Ξ.	DAC-HK12DMC	Time with Input	3 Digits	1/4 LSB	Voltage	3 <i>µ</i> sec	BCD
8	DAC-HK12DMR	Register					
Ŧ	DAC-HK12DMM						
	DAC-HK12BGC-2						
	DAC-HK12BMC-2		12 Bits	1/2 LSB			2C
	DAC-HK12BMR-2		$(0,1) \in \mathbb{R}^{n}$	s.			
	DAC-HK12BMM-2						
	DAC-V8B		8 Bits				
	DAC-V10B	Fast	10 Bits				Bin
æ	DAC-V12B	Voltage	12 Bits	1/2 LSB	Voltage	2 <i>µ</i> sec	
Ā	DAC-V8D	Output	2 Digits				BCD
1	DAC-V12D		3 Digits				
ā	DAC-VR8B		8 Bits				
0	DAC-VR10B	Fast Voltage	10 Bits				Bin
Σ	DAC-VR12B	Output With	12 Bits	1/2 LSB	Voltage	2 <i>µ</i> sec	
	DAC-VR8D	Input Register	2 Digits		· ·		BCD
	DAC-VR12D		3 Digits				

NOTES: 1. Coding: Bin = Straight Binary or Offset Binary

BCD = Binary Coded Decimal 2C = Two's Complement

OUTPUT RANGES	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	SEAL	OPERATING TEMP (°C)	PRICE (SINGLES)	SEE PAGE	
0 to +5V,				Ероху	0 to +70	\$ 59.00		
0 to +10V,					0 to +70	\$ 75.00		
±2.5V, ±5V,				Hermetic	-25 to +85	\$ 89.00		
					∗ -55 to +125	\$145.00		
0 to +2.5V,				Epoxy	0 to +70	\$ 59.00		
0 to +5V,		+5V	24 Pin		0 to +70	\$ 75.00		
0 to +10V	20ppm/°C	±15V	Ceramic	Hermetic	-25 to +85	\$ 89.00	184C	
					* -55 to +125	\$145.00		
0 to +5V,				Ероху	0 to +70	\$ 59.00		
0 to +10V,					0 to +70	\$ 75.00		
±2.5V, ±5V,				Hermetic	-25 to +85	\$ 89.00		
±10V						∗ -55 to +125	\$145.00	
0 to +5V,						\$ 92.50		
0 to +10V,			2×	2x0.375IN		\$115.50		
±5V, ±10V	20ppm/°C	±15V	(5 ⁻	1x51x10 mm)	0 to +70	\$138.50	* *	
0 to +5V,	-					\$ 92.50		
0 to +10V						\$138.50		
0 to +5V,						\$105.00		
0 to +10V,			2×	2x0.3751N		\$128.00		
±5V, ±10V	20ppm/°C	±15V	(5 ⁻	1x51x10 mm)	0 to +70	\$151.00	* *	
0 to +5V,			·	-		\$105.00		
0 to +10V						\$151.00		

** For Data Sheet contact nearest Datel sales office.

* Available with MIL-STD-883 class B screening.

Date offers modular products in operating temperature ranges of -25 to $+85^{\circ}C$ (suffix-EX) and -55 to $+85^{\circ}C$ (suffix-EX). For information on these high reliability modules contact nearest Date sales office.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Quick Selection: High Speed D/A Converters

	MODEL	DESCRIPTION	RESOLUTION	LINEARITY	OUTPUT	SETTLING TIME, MAX ¹	INPUT CODING ²
	DAC-HF8BMC						
RID	DAC-HF8BMR	Ultra-Fast 8 bit	8 Bits	±½ LSB	Current	25 nsec	Bin
	DAC-HF8BMM	D/A	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	DAC-HF10BMC		1				
B	DAC-HF10BMR	Ultra-Fast 10 bit	10 Bits	±½ LSB	Current	25 nsec	Bin
≥	DAC-HF10BMM	D/A				·	
T	DAC-HF12BMC						
	DAC-HF12BMR	Ultra-Fast 12 bit	12 Bits	±½ LSB	Current	50 nsec	Bin
	DAC-HF12BMM	D/A					
ш	DAC-HI8B		8 Bits				-
	DAC-HI10B	Ultra-Fast	10 Bits	±½ LSB	Current	25 nsec	Bin
ngo	DAC-HI12B	D/A	12 Bits			50 nsec	
	DAC-DG12B1	Fast Deglitched	12 Bits	+1% SB	Voltage	600 nsec	Bin,
Σ	DAC-DG12B2	D/A		=72 =50	. s.tago		2C

NOTES:

- 1. For full scale output change to rated accuracy.
- 2. CODING: Bin = Straight binary or offset binary. 2C = Two's complement.

OUTPUT RANGES	GAIN TEMPCO	POWER REQUIREMENT	PACKAGE	OPERATING TEMP (° C)	PRICE SINGLES	SEE PAGE
			24 pin	0 to +70	\$ 99.00	
0 to +10mA,	20 ppm/° C	±15 VDC	Ceramic DIP	-25 to +85	\$119.00	180C
±5mA			Hermetic Seal	55 to +125	*\$189.00	
			24 pin	0 to +70	\$109.00	
0 to +10mA,	20 ppm/° C	±15 VDC	Ceramic DIP	-25 to +85	\$129.00	180C
±5mA			Hermetic Seal	55 to +125	*\$209.00	
			24 pin	0 to +70	\$129.00	
0 to +10mA,	20 ppm/° C	\pm 15 VDC	Ceramic DIP	-25 to +85	\$149.00	180C
±5mA			Hermetic Seal	55 to +125	*\$219.00	
					\$115.00	
±2.5mA,	15 ppm/° C	±15 VDC	2 x 2 x 0.375IN	0 to +70	\$138.50	200C
+5mA	20 ppm/° C	1	(51 x 51 x 10mm)		\$151.00	
−10V, ±5V, ±10V	25 ppm/2 C	±15 VDC	4 x 2 x 0.4 IN	0 to +70	\$290.00	1960
$\pm 5V$, $\pm 10V$	35 ppm/ C	+5V	(102 x 51 x 10mm)	010+70	\$290.00	1900

*Available with MIL-STD-883 Class B screening.

Datel offers modular products in operating temperature ranges of -25 to $+85^\circ\text{C}(\text{suffix-EX})$ and -55 to $+85^\circ\text{C}(\text{suffix-EXX-HS})$. For information on these high reliability modules contact nearest Datel sales office.

Quick Selection: High Resolution D/A Converters

						SETTLING
	MODEL	DESCRIPTION	RESOLUTION	LINEARITY	OUTPUT	TIME
	DAC-HA14BC	Multiplying		· · ·		
	DAC-HA14BR	CMOS	14 Bits	1 LSB	Current	7 µsec
	DAC-HA14BM	011100				
	DAC-HP16BGC	Internal				
۵	DAC-HP16BMC	Reference	16 Rits	41 SB		
R	DAC-HP16BMR	and	TO DITO	+ LOD		
НΥВ	DAC-HP16BMM	Output			Voltage	15 usec
	DAC-HP16DGC				vontage	10 4000
	DAC-HP16DMC	or Amp.	4 Digits	1⁄2 LSB		
	DAC-HP16DMR		an de la companya de La companya de la comp			
	DAC-HP16DMM	· · ·				
(0)	DAC-169-16B	Low	16 Bits	4 LSB	Voltage ³	30 μερς
JLES	DAC-169-16D	Cost	4 Digits	1⁄2 LSB	vonage	00 #300
Ő	DAC-HR13B		13 Bits			
ž	DAC-HR14B	Ultra-Low	14 Bits	½ LSB	0	
	DAC-HR15B	Drift	15 Bits		Current	Tμsec
	DAC-HR16B	·	16 Bits	1 LSB		

NOTES:

- 1. Coding: Bin = Straight binary or offset binary
 - BCD = Binary Coded Decimal
 - CBin = Complementary binary
 - CBCD = Complementary BCD
- For + 15V supply option add suffix "-1" to model number
 Can also be connected for current output. Current output is 0 to + 2mA or ± 1mA for binary version and
- 0 to 1.25 mA for BCD version.

INPUT CODING ¹	OUTPUT RANGES	GAIN TEMPCO	POWER REQUIRE- MENT	PACKAGE	OPERATING TEMP(°C)	PRICE (SINGLES)	SEE PAGE	
			+ 5V	20 Pin	0 to + 70	\$ 65.00		
Bin	±1mA	5 ppm/°C	or	Ceramic	- 25 to + 85	\$ 95.00	174C	
			+ 15V²	DIP	- 55 to + 125	\$125.00		
	$0 t_0 \pm 10V$	20 ppm/°C	-		0 to + 70	\$ 65.00		
CBin	+ 5\/				0 to + 70	\$ 82.00		
	± 5 V	15 ppm/°C		24 Din	- 25 to + 85	\$ 92.00		
			+ 15V	Coramic	- 55 to + 125	\$145.00	1000	
	0 to + 10V	20 ppm/°C	± 15V		0 to + 70	\$ 65.00	188C	
CBCD			1	DIF	0 to + 70	\$ 89.00		
		15 ppm/°C	15 ppm/°C			- 25 to + 85	\$ 92.00	
					-55 to +125	\$145.00		
Bin	0 to + 10V 0 to - 10V, ± 5V	10 000/90	± 15V	2 × 2 × 0.375 in	0 to + 70	\$126.00	*	
BCD	0 to + 10V 0 to - 10V			(51×51×10mm)	010 +70	\$126.00		
	0 to - 2mA ± 1mA 1.5ppm/°C					\$290.00		
CRin		in 0 to - 2mA ± 1mA 1.5p			$4 \times 2 \times 0.375$ in (102×51×10mm)	0 to + 70	\$306.00	204C
			1.5ppm/°C	± 15V			\$321.00	
						\$347.50		

*For data sheet contact nearest Datel Sales Office.

These products are covered by GSA contract.

Datel offers modular products in operating temperature ranges of -25 to $+85^\circ\text{C}(\text{suffix-EX})$ and -55 to $+85^\circ\text{C}(\text{suffix-EXX-HS})$. For information on these high reliability modules contact nearest Datel sales office.

Low Cost, 8 Bit Monolithic Digital-to-Analog Converters Model DAC-IC8B

FEATURES

- Low Cost
- 8 Bit Resolution
- Fast Settling-300 nsec.
- 1 or 2 Quadrant Multiplication
- ±½LSB Linearity
- DTL/TTL Compatible Inputs

GENERAL DESCRIPTION

The DAC-IC8BC, and DAC-IC8BM are 8 bit monolithic DAC's with fast setting current outputs. The units are housed in a 16 pin ceramic DIP and require only an external reference and output amplifier for fast voltage output operation. A full scale output change settles in only 300 nanoseconds for current output operation and 600 nanoseconds for voltage output operation and 600 nanoseconds for voltage output operation using a fast monolithic output amplifier (Datel-Intersil's AM-452). Digital input coding is straight binary for unipolar operation and offset binary for bipolar operation and is compatible with standard DTL/TTL logic.

The DAC-IC8B converters consist of 8 fast-switching current sources, a diffused R-2R resistor ladder network, a bias circuit, and a reference control amplifier. The diffused resistor ladder gives excellent temperature tracking resulting in a gain temperature coefficient of $-20ppm/^{\circ}C$. The monolithic fabrication results in excellent linearity and tempco, fast output settling, and low cost. Linearity is $\pm \frac{1}{2}$ LSB.

An external reference current of 2mA nominal programs the scale factor for the DAC; this is done by means of an external voltage reference source (such as Zener diode) and a resistor. This reference current can also be varied, resulting in one or two quadrant multiplying operation. The output voltage can be unipolar or bipolar depending on whether an external offsetting current (derived from the reference) is used. Output voltage compliance of the DAC is -0.6V to +0.5V; this can be made as large as -5V to +0.5V by external pin connection for cases where direct voltage output from a load resistor is desired.

Power supply requirement is +5VDC and -5V to -15VDC. Model DAC-IC8BC has an operating temperature range of 0°C to 70°C while DAC-IC8BM operates over -55°C to +125°C. The two models are pin compatible with industry standard devices 1408L-8 and 1508L-8 respectively.

16

COMPENSATION

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

V_{CC} = +5V, V_{EE} = -15V, and I_{REF} = 2mA unless othe	rwise specified)
ABSOLUTE MAXIMUM RATINGS Power Supply Voltage, V _{CC} · · · · · · · · · · · · · · · · · ·	+5.5V -16.5V +5.5V 5.0mA ^{+V} CC ^{, -V} EE 1.0 watt
INPUTS Resolution Coding, unipolar output Coding, bipolar output Input Logic Level, bit ON ("1") Input Logic Level, bit OFF ("0") Logic Loading Nominal Reference Current (+ Ref.) Reference Current Range (+ Ref.) Reference Bias Current (- Ref.)	8 bits Straight Binary Offset Binary +2.0V to +5.5V @ 40μA 0V to +0.8V @0.8mA 1 TTL load 2.0mA 0 to 4.2mA 3μA max.
OUTPUTSOutput Current, IREF = 2.0mAOutput Current Range, $V_{EE} = -5V$ Output Current Range, $V_{EE} = -6$ to $-15V$ Output Current, all bits OFFOutput Voltage Compliance, pin 1 gndedOutput Voltage Comp., pin 1 open, $V_{EE} < -10V$	2.0mA ±0.1mA 0 to 2.1mA 0 to 4.2mA 4μA maximum -0.6 to +0.5V 5.0V to +0.5V
PERFORMANCE Relative Accuracy ¹ Nonlinearity Differential Nonlinearity Temp. Coefficient of Gain Power Supply Rejection (V _{EE}) Settling Time, 2mA to ½LSB Update Rate Reference Current Slew Rate	±½LSB (±0.19%) maximum ±½LSB (±0.19%) maximum ±½LSB (±0.19%) -20ppm/°C 2.7μA/V max. 300 nsec. 3.3MHz 4.0mA/μsec
POWER REQUIREMENT V _{CC} Voltage V _{CC} Current V _{EE} Voltage V _{EE} Current	+5VDC ±0.5V 22mA maximum −4.5V to −16.5VDC 13mA maximum
PHYSICAL-ENVIRONMENTAL Operating Temp. Range, DAC-IC8BC Operating Temp. Range, DAC-IC8BM Storage Temp. Range, either model Package	0°C to 70°C -55°C to +125°C -65°C to +150°C 16 pin ceramic DIP
With zero and full scale adjustments made.	
ORDERING INFORMATION	
DAC-IC8B \longrightarrow OPER. TEMP. RANGE C = 0°C TO 70°C M = -55°C TO +125°C PRICES	

DAC-IC8BC

Trimming Potentiometers: TP500, TP1K, and TP20K are available from Datel-Intersil

The DAC-IC8BC and DAC-IC8BM converters are covered under GSA contract.

TECHNICAL NOTES

- 1. The General Connection Diagram shows the basic connections for the DAC-IC8B converter. The scale factor is set by a reference current injected into pin 14. Pins 14 and 15 are the input terminals to the reference control amplifier. When connected as shown, pin 15 is grounded through R₁₅ and pin 14 is at virtual ground. Therefore, the reference current is determined by the external voltage reference and R₁₄: I_{REF} = V_{REF}/R₁₄. R₁₄ should be a stable metal film resistor. R₁₅ is used only to compensate for the input bias current into pin 15 (1 μ A typical) and can be shorted out with negligible effect. R₁₅, if used, should be equal to R₁₄ and may be a carbon composition type. An I_{REF} of 2.0mA is recommended for most applications.
- 2. There is a second method of connecting the reference shown in *Two Ways to Connect Reference*. A negative reference can be applied to pin 15. In this case only the bias current must be supplied from the reference since pin 15 is a high impedance input. Pin 14 is at the negative voltage and IREF still flows into pin 14. Again, R15 is used only to compensate for bias current and may be omitted. There is an important requirement for this connection: the negative reference voltage must always be 3 volts above VEE.
- 3. The reference amplifier must be externally compensated, and this is done by capacitor C_c , connected from pin 16 to pin 3 (VEE). C_c may also be connected from pin 16 to ground, but connection to pin 3 improves the negative supply rejection. The value of C_c depends on R₁₄, and typical values are given in the compensation table. Compensation is particularly important when the DAC-IC8B is used as a multiplying D/A converter. Proper compensation assures that output peaking does not occur when the reference voltage steps to a new value. If pin 14 is driven from a high impedance current source such as a transistor collector, then much larger values of C_c must be used and the bandwidth of the reference amplifier is significantly reduced.
- 4. The Alternative Compensation Diagram shows another way of achieving the desired compensation. Here a 1.0K resistor is always used at pin 14, but it is in series with another R to the reference voltage. The junction of the two resistors is bypassed to ground by a 0.1 μ F capacitor. For high frequencies pin 14 always "sees" a 1K resistance, thus allowing a 15pF capacitor for C_C. R₁₅, if used, should be the sum of 1.0K and R. This compensation scheme is useful with voltage references such as 6.2 or 6.4 volt Zener diodes.
- It is recommended that pin 13 (V_{CC}) and pin 3 (V_{EE}) always be bypassed to ground with at least 0.1µF capacitors located close to the pins.
- As shown in the General Connection Diagram, pin 1 may 6. be either connected to ground or left open. This connection determines the voltage compliance at pin 4 (IOUT). For pin 1 grounded, the output compliance is -0.6 to +0.5 volt. This is satisfactory when pin 4 is used to drive a current to voltage converter and pin 4 is held at virtual ground. It is also satisfactory for low values of RL connected to pin 4 to directly convert the output current to a voltage. The voltage compliance may be extended to -5.0 volts by leaving pin 1 open and using a VEE more negative than -10 volts. In this way a 2.5K load resistor may be used at pin 14 to give an output voltage range of 0 to -5 volts (with reference current of 2mA). As shown in the table of Settling Time vs R_L , the output settling time is constant (300 nsec.) for ${\sf R}_{\sf L}$ values from 0 to 500 ohms; thereafter it increases to 1.2µsec for $R_{L} = 2.5K.$
- 7. The accuracy of the DAC-IC8B is specified for a reference current of 2.0mA; the accuracy, however, is essentially constant for reference currents from 1.5mA to 2.5mA. Typically, this device is monotonic for all values of reference current above 0.5mA. Reference currents up to 4.2mA may be used. When using a 4mA reference current, VEE must be more negative than -6 volts.

TECHNICAL NOTES (Cont'd)

CONNECTION DIAGRAMS

APPLICATION DIAGRAMS

CALIBRATION AND CODING TABLES

- 1. Select the desired output range by means of the feedback resistor of the external operational amplifier and the externally programmed reference current.
- 2. Zero and Offset Adjustments

For unipolar operation, set all digital inputs to "0" (0V to +0.8V) and adjust the output amplifier ZERO ADJUSTMENT for zero output voltage. For bipolar operation, set all digital inputs to "0" (0 to +0.8V) and adjust the OFFSET ADJUSTMENT for the negative full scale voltage shown in the Coding Table.

3. Gain Adjustment

For either unipolar or bipolar operation, set all digital inputs to "1" (+2.0 to +5.5V) and adjust the GAIN ADJUSTMENT for the positive full scale voltage shown in the Coding Table.

UNIPOLAR OPERATION-STRAIGHT BINARY CODING

INPUT CODE		UNIPOLAR OUTPUT RANGES			
MSB	LSB	0 TO +5V	0 TO +10V	0 TO -2MA	0 TO -4MA
1111	1111	+4.980	+9.961V	-1.992MA	-3.984MA
1110	0000	+4.375	+8.750	-1.750	-3.500
1100	0000	+3.750	+7.500	-1.500	-3.000
1000	0000	+2,500	+5.000	-1.000	-2.000
0100	0000	+1.250	+2.500	-0.500	-1.000
0000	0001	+0.020	+0.039	0.008	-0.016
0000	0000	0.000	0.000	0.000	0.000

BIPOLAR OPERATION-OFFSET BINARY CODING

INPUT CODE		BIPOLAR OUTPUT RANGES				
MSB	LSB	±5V	±10V	±1MA	±2MA	
1111	1111	+4.961V	+9.922V	-0.992MA	-1.984MA	
1110	0000	+3.750	+7.500	-0.750	-1.500	
1100	0000	+2.500	+5.000	-0.500	-1.000	
1000	0000	0.000	0.000	0.000	0.000	
0100	0000	-2.500	-5.000	+0.500	+1.000	
0000	0001	-4.961	-9.922	+0.992	+1.984	
0000	0000	5.000	-10.000	+1.000	+2.000	

Printed in U.S.A. Copyright © 1980 Datel-Intersil. Inc. All rights reserved. 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Low Cost, 10 Bit Monolithic Digital-to-Analog Converter DAC-IC10B Series

FEATURES

- 10 Bit Resolution
- Straight Binary Coding
- Current Output
- 250 nsec. Settling Time
- TTL/CMOS Compatible
- Low Cost

GENERAL DESCRIPTION

The DAC-IC10B is a low cost, 10 bit monolithic DAC with fast output current settling time. It is packaged in a 16 pin ceramic DIP and requires only an external reference and operational amplifier for voltage output operation. A full scale change in output current settles in 250 nanoseconds, and with a fast I.C. op amp (such as Datel-Intersil's AM-452) a 10V output change can settle within 1 microsecond. Digital input coding is straight binary for unipolar operation, and offset binary for bipolar operation; the logic inputs are compatible with TTL or CMOS.

This converter is manufactured with monolithic bipolar technology. The circuit incorporates 10 fast switching current sources which drive a diffused resistor R-2R network. The ladder network is laser trimmed by cutting aluminum links. The circuit also contains a reference control amplifier and a bias circuit. An external reference current of 2 mA is required at the + Reference input terminal; this is accomplished by an external voltage reference and a metal film resistor.

Other characteristics of the DAC-IC10B include linearity to $\pm \frac{1}{2}$ LSB and guaranteed monotonic performance. The gain temperature coefficient of this unit is typically $-20ppm/^{\circ}C$. Output voltage compliance is -2.5V to +0.2V, permitting direct driving of a 625 ohm resistor for a voltage output. The reference input current can be varied from 0.5 mA to 2.5mA to give monotonic operation as a one or two quadrant multiplier.

Power supply requirement is +5VDC and -15VDC. The DAC-IC10B is available in three models covering two temperature ranges, 0°C to +70°C and -55°C to +125°C.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, DAC-IC10B (Typical at 25°C, $V_{CC} = +5V$, $V_{EE} = -15V$, $I_{REF} = 2.0$ mA)

MAXIMUM RATINGS

V _{CC}	+7.0 Volts
VEE	+18.0 Volts
Digital Input Voltage	+15 Volts
Output Voltage, Pin 3	+0.5, -5.0 Volts
Ref. Current	2.5 mA
Diff. Ref. Voltage	0.7V

INPUTS

Resolution
Coding, Unipolar Output Straight Binary
Coding, Bipolar Output Offset Binary
nput Level, Logic "1" +2.0 to $+15V @ +40\mu A$
nput Level, Logic "0"0 to +0.8V @ -0.4 mA
Nom. Ref. Current, Pin 16 2.0 mA
Reference Current Range 0.5 mA to 2.5 mA
Ref. Bias Current, Pin 155 µA max.

OUTPUTS

Output Current	.4.0 mA ±0.2 mA
Output Current Range	.0 to 5.0 mA
Output Current, All Bits "0"	. 2.0 μA max.¹
Output Voltage Compliance	2.5 to +0.2V
Output Capacitance	.25 pF

PERFORMANCE

inearity Error, B, BM ±½ LSB, max.
BC ±1 LSB, max.
Diff. Linearity Error ± ½ LSB
Monotonicity, B, BM Full Temp. Range ²
BC At 25°C
Gain Tempco
60 ppm/°C max. ³
Ref. Current, Slew Rate 20 mA/µsec.
Ref. Current Settling
Dutput Current Settling 250 nsec.5
Jpdate Rate
Power Supply Sensitivity

POWER REQUIREMENT

V _{CC} Voltage	+5 VDC ±0.25V
V _{CC} Current	18 mA max.
V _{EE} Voltage	15 VDC ±0.75V
VEE Current	20 mA max.

PHYSICAL-ENVIRONMENTAL

 Operating Temp. Range

 DAC-IC10B, BC
 0°C to +70°C

 DAC-IC10BM
 -55°C to +125°C

 Storage Temp. Range
 -65°C to +125°C

 Package
 16 Pin Ceramic DIP

NOTES:

MODEL

- 1. 4.0 μ A max. for DAC-IC10BC only.
- All converters in this series typically retain rated monotonicity for values of input reference current from 0.5 mA to 2.5 mA.
- 3. 70 ppm/°C max. for DAC-IC10BM only.
- 4. Zero to 4 mA output change to rated accuracy.
- 5. Full scale change to ½ LSB.

ORDERING INFORMATION

OPER.	TEMP
RAN	IGE
0°C to	+70°C

DAC-IC10BC	0°C to +70°C
DAC-IC10B	0°C to +70°C
DAC-IC10BM	-55°C to +125°C

THESE CONVERTERS ARE COVERED BY GSA CONTRACT.

TECHNICAL NOTES

- 1. The General Connection Diagram shows the basic connections for the converter. The scale factor is set by a reference current injected into pin 16. Pins 15 and 16 are the input terminals to the reference control amplifier. When connected as shown, pin 15 is grounded through R₁₅ and pin 16 is at virtual ground. Therefore, the reference current is determined by the external voltage reference and R₁₆: $I_{REF} = V_{REF}/R_{16}$. R₁₆ should be a stable metal film resistor. R₁₅ is used only to compensate for the input bias current into pin 15 (1 μ A typical). R₁₅, if used, should be equal to R₁₆ and may be a carbon composition type. An I_{REF} of 2.0 mA is recommended for most applications.
- 2. There is a second method of connecting the reference shown in *Two Ways to Connect Reference*. A negative reference can be applied to pin 15. In this case only the bias current must be supplied from the reference since pin 15 is a high impedance input. Pin 16 is at the negative voltage and I_{REF} still flows into pin 16. Again, R₁₅ is used only to compensate for bias current. There is an important requirement for this connection: the negative reference voltage must always be 3 volts above V_{EE}.
- lout is inversely proportional to the reference input current (IREF) times the digital word. Scaling of the applied reference can be represented as follows:

$$I_{OUT} = -2\left(\frac{V_{REF}}{R_{REF}}\right)\left(\frac{A_n}{2^n}\right)$$

where n = 10 (10 bit DAC) $A_n = digital code$

Note: 1) The largest digital code for a 10 bit DAC is 1023. 2) The reference current is scaled by a factor of 2 within the DAC.

Example:

$$I_{OUT}(FS) = -2\left(\frac{2.5V}{1.25K}\right)\left(\frac{1023}{1024}\right)$$
$$= -3.996 \text{ mA (nominal)}$$
$$I_{OUT}(ZERO) = -2\left(\frac{2.5V}{1.25K}\right)\left(\frac{0}{1024}\right)$$
$$= 0 \text{ mA (nominal)}$$

- 4. The reference amplifier is internally compensated. The minimum reference current supplied from a current source is 0.5 mA for stability.
- 5. The voltage on pin 3 is restricted to a range of -2.5V to +0.2V. This compliance voltage is guaranteed at 25°C and nearly constant over temperature.
- 6. Full scale output current of 3.996 mA is guaranteed for input reference currents to pin 16 between 1.9 and 2.1 mA.
- 7. It is recommended that pin 14 (Vcc) and pin 1 (VEE) always be bypassed to ground with at least 0.1 μ F capacitors located close to the pins.
- The accuracy of the converter is specified for a reference current of 2.0 mA; the accuracy, however, is essentially constant for reference currents from 1.5 mA to 2.5 mA. Typically, this device is monotonic for all values of reference current above 0.5 mA.

TECHNICAL NOTES (cont'd.)

- 9. For fastest voltage output settling times in either unipolar or bipolar modes, two circuits using Datel-Intersil AM-452 monolithic operational amplifiers are recommended. These circuits, with the compensation shown, result in output settling times of typically 550 nsec. for a 10 volt change to 1 LSB. This is the worst case settling time which occurs when all bits are turned on. For current output and RL less than 500 ohms, this time is 250 nsec.; when all bits are turned off the time is shorter, typically 100 nsec. The two circuits shown also illustrate a simple method of deriving both reference current and offset current from a precision 6.4 volt Zener reference diode.
- 10. Both one and two quadrant multiplication are also possible with the converter as shown in the two diagrams. VIN is shown operating into pin 16; this results in an input impedance of 2.5K. Alternatively, VIN can be applied to pin 15 for a high impedance input as explained previously. The range of VIN is then 0 to −10V. For two quadrant multiplication VIN is unipolar and the digital input is bipolar with offset binary coding. Vout then varies over the bipolar range of ±5 volts. In multiplication applications, it is recommended that full scale IREF be set to 2.0 mA; the output is then monotonic as the reference current varies over 0.5 mA to 2.0 mA.

+ 5VDC **TWO WAYS TO CONNECT REFERENCE** -11-BIT 14 MSB 10 4 16 R₁₆ R16 20 5 16 16 6 30 2mA 15 2mA 7 40 R₁₅ VREF R15 5 0 8 15 15 3 60 9 5μA max. 5µA 10 70 RE 8 0 11 90 12 13 LSB 10 0 $\frac{V_{REF}}{2mA} = 2mA$ $R_{15} = R_{16}$ -15V CONNECTION FOR BIPOLAR VOLTAGE OUT +5 VDC

CONNECTION DIAGRAMS

GENERAL CONNECTION DIAGRAM

CONNECTION FOR DIRECT VOLTAGE OUTPUT

2 K

CALIBRATION AND CODING TABLE

- 1. Select the desired output range by means of the feedback resistor of the external operational amplifier and the externally programmed reference current.
- 2. Zero and Offset Adjustments/ For unipolar operation, set all digital inputs to "0" (0V to +0.8V) and adjust the output amplifier ZERO ADJUSTMENT for zero output voltage. For bipolar operation, set all digital inputs to "0" (0 to +0.8V) and adjust the OFFSET ADJUSTMENT for the negative full scale voltage shown in the Coding Table.
- Gain Adjustment/For either unipolar or bipolar operation, set all digital inputs to "1" (+2.0 to +5.5V) and adjust the GAIN ADJUSTMENT for the positive full scale voltage shown in the Coding Table.

INPUT CODE		UNIPOLAR OPERATION-STRAIGHT BINARY				INPUT CODE	BIPOLAR OPERATION – OFFSET BINARY CODING			
MSB	LSB	0 TO +5V	0 TO +10V	0 TO 2MA	0 TO 4MA	MSB LSB	±5V	±10V	±1MA	±2MA
111111	1111	+4.995V	+9.990	-1.998 MA	-3.996	11111111111	+4.990V	+ 9.980V	-0.998MA	-1.996MA
11 1000	0000	+4.375	+8.750	-1.750	-3.500	11 1000 0000	+3.750	+ 7.500	-0.750	-1.500
11 0000	0000	+3.750	+7.500	-1.500	-3.000	1100000000	+2.500	+ 5.000	-0.500	- 1.000
10 0 0 0 0	0000	+2.500	+5.000	-1.000	-2.000	10 0000 0000	0.000	0.000	0.000	0.000
01 0000	0000	+1.250	+2.500	-0.500	-0.100	01 0000 0000	-2.500	- 5.000	+0.500	+1.000
00 0 0 0 0 0	0001	+0.005	+0.010	-0.002	-0.004	00 0000 0001	-4.990	- 9.980	+0.998	+1.996
00 0 0 0 0 0	0000	0.000	0.000	0.000	0.000	00 0000 0000	-5.000	-10.000	+1.000	·⊦2.000

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dailas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD – TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

8-Bit Monolithic D/A Converter with Input Register Model DAC-UP8B

FEATURES

- Input Register
- Internal Reference
- Voltage Output
- Low Cost
- 8-Bit Resolution

GENERAL DESCRIPTION

The DAC-UP8BC and DAC-UP8BM are 8-bit monolithic DAC's with internal registers. Contained in the 22 pin DIP is a 8-bit DAC, stable reference, a high-speed output amplifier and an 8-bit input latch. These microprocessor compatible converters are ideal for low cost applications.

The output voltage range is 0 to + 10V for unipolar mode and \pm 5V for bipolar. Typical settling time is 2 µsec for a full scale change. Either the internal reference or an external reference can be used to bias the current switching network. The converter can function as a multiplying DAC by varying the reference input voltage. The reference and output amplifier are short circuit protected.

The input register is controlled by an enable line (LOAD). When low, the registers are transparent and any change on the digital input pins will be reflected on the analog output. A high state level will latch this digital information, and the data is retained until this enable line goes low. The data and latch enable input lines have low input load currents.

The DAC design consists of 8 fast-switching current sources, a diffused R-2R resistor ladder network and a control amplifier. The diffused resistor network gives excellent temperature tracking resulting in a gain temperature coefficient of 30 ppm/°C. This bipolar monolithic fabrication results in excellent linearity and temperature coefficient.

With an accuracy of .19% the device is monotonic (no missing codes) over the entire operating temperature range. Power supply requirements are \pm 12V to \pm 18V. The operating temperature range of the DAC-UP8BC is 0 to +70 °C while the DAC-UP8BM operates from -55 °C to \pm 125 °C.

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340
SPECIFICATIONS, DAC-UP8BC (Typical at 25 °C,± 15V Supply,Ref. In = +	& DAC-UP8BM -5V unless otherwise noted)	TECHNICAL NOTES
MAXIMUM RATINGS Positive Supply, pin 19 Negative Supply, pin 17 Digital Input Voltage, pins 2-10. Reference Input, pin 14 Summing Junction, pin 20	+ 18V - 18V + 18V + 12V + 12V	 It is recommended that the ±15V power input pins bothbe bypassed to ground with 0.1 µf ceramic capacitors. This precaution will assure noise free operation of the con- verter. Both the Output (pin 18) and Beference
INPUTS Resolution	8 bits Straight Binary Offset Binary + 2.0V to + $5.5V @ 10 \mu A$ $0V to + 0.8V @ -50 \mu A$ HI ("1") = Hold Data LO ("0") = Transfer Data 200 nsec min. + $5V \pm 10\%$ 5K $25V/\mu sec.$	 2. Doth the Output (pin 13) are short circuit protected. Output (pin 13) are short circuit protected. Output short circuit current is typically 40 mA for the Output and 15 mA for the Refer- ence Output. 3. The "LOAD" control pin is a level triggered input which causes the register to hold data with a logic "1" input state and trans- fer data to the DAC with a logic "0" input. 4. A Setup Time of 200 nsec. minimum must be allowed for the input data before the LOAD input goes from LO to HI. In addition, a 50 nsec. minimum Hold Time must be
OUTPUT Output Voltage Range, unipolar Output Voltage Range, bipolar. Output Current. Output Resistance. Reference Output Voltage. Reference Output Current.	0 to +10V ± 5V 5mA 5 ohms + 5V ± 10% 5mA	 allowed for the input data after the LOAD input goes from LO to HI. The minimum pulse width for the LOAD input is 200 nsec. The maximum update rate is determined by the output settling time. See Timing Diagram. 5. The output settling time may be decreased somewhat by decreasing the value of the 50 pF feedback capacitor from the amplifier Output (pin 18) to the Summing Junc.
PERFORMANCE Linearity Error Differentiał Linearity Error Monotonicity Gain Error Zero Error Gain Tempco. Zero Tempco, Unipolar Offset Tempco, Bipolar Reference Tempco Settling Time to ½ LSB ²	\pm 1/2 LSB max. \pm 1/2 LSB 8 Bits over oper. temp. range Adjustable to zero Adjustable to zero 20 ppm/°C 5 ppm/°C of FS. 10 ppm/°C of FS. 60 ppm/°C 2 µsec	 6. The gain temperature coefficient of the DAC-UP8B without the internal reference is 20 ppm/°C. By using the internal reference, which has a tempco of 60 ppm/°C, a total tempco of 80 ppm typical results for the converter. If greater temperature stability is required, a more stable external reference should be used.
Power Supply Rejection OWER REQUIREMENT Rated Power Supply Voltage Power Supply Voltage Range Supply Current, quiescent	± 1mV/V ± 15V DC ± 12 to ± 18V DC + 7mA, – 10mA	7. The data inputs (Bits 1 through 8) are high impedance inputs which give minimal log- ic loading. For an input LO, the current that must be sinked is only 50 μA maxi- mum, or about 1/32 of a standard TTL load. This minimizes the loading of the DAC- UP8B on a data bus.
PHYSICAL-ENVIRONMENTAL Operating Temperature Range Storage Temperature Range Package Type	0°C to + 70°C (BC) 55°C to +125°C (BM) - 65°C to +150°C 22 pin plastic (BC) 22 pin ceramic (BM)	ORDERING INFORMATION MODEL OPERATING CASE TEMP RANGE CASE DAC-UP8BC 0 to 70°C Plastic DAC-UP8BM – 55 to 125°C Ceramic
NOTES: 1. See Timing Diagram 2. For 10V change		THESE CONVERTERS ARE COVERED BY GSA CONTRACT

CONNECTION AND CALIBRATION

CALIBRATION PROCEDURE

1. Select the desired output range and connect as shown in OUTPUT RANGE SELECTION table.

2. Apply a logic "0" to LOAD (pin 10).

3. Zero and Offset Adjustments

For unipolar operation, set all digital inputs to "0" and adjust ZERO ADJ for zero output voltage. For bipolar operation, set all digital inputs to "0" and adjust ZERO ADJ for negative full scale voltage. of -5.000V.

4. Gain Adjustment

For either unipolar or bipolar operation, set all digital inputs to "1" and adjust FULL SCALE ADJ for the positive full scale voltage of +9.961V (unipolar) or +4.961V (bipolar).

INPUT CODE OUTPUT RANGES MSB LSB 0 to + 10V ± 5V + 9.961V + 4.961V + 8.750 + 3.750 + 7.500 + 2.500 Ó + 5.000 Ó 0.000 + 2.500 -2500+ 0.039 - 4.961 - 5.000 0.000

CODING TABLE

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	DIGITAL GND	12	REF ADJ
2	BIT 8 IN (LSB)	13	REF OUT
3	BIT 7 IN	14	REF IN
4	BIT 6 IN	15	BIPOLAR OFFSET
5	BIT 5 IN	16	DAC COMP
6	BIT 4 IN	17	– 15V
7	BIT 3 IN	18	OUTPUT
8	BIT 2 IN	19	+ 15V
9	BIT 1 IN (MSB)	20	SUM JUNCTION
10	LOAD	21	AMP COMP
11	NC	22	ANALOG GND

OUTPUT RANGE SELECTION

MODE	RANGE	CONNECTION
Unipolar	0 to +10V	Pin 15 open
Bipolar	± 5V	Pin 15 to 20

TIMING DIAGRAM

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

145G

High Speed, 8 Bit Monolithic Digital-to-Analog Converter Model DAC-08B

FEATURES

- 85 nsec Settling Time
- -10 to +18 Volt Compliance
- \pm 4.5 to \pm 18 Volt Supply
- 8 Bit Resolution
- 1 or 2 Quadrant Multiplication
- Low Cost

GENERAL DESCRIPTION

The DAC-08BC and DAC-08BM provide very high speed performance coupled with low cost and application flexibility. These units have guaranteed full 8-bit monotonicity with nonlinearity of 0.19% over the full operating temperature range. High speed current steering switches achieve 85 nanosecond settling time with a very low glitch for full scale changes. A large output voltage compliance range (-10 to +18 Volts) allows direct current to voltage conversion with just an output resistor, omitting the need for an op amp in many cases.

The DAC-08 consists of 8 fast-switching current sources, a diffused R-2R resistor ladder, a bias circuit, and a reference control amplifier. The diffused resistor ladder gives excellent temperature tracking resulting in a gain temperature coefficient of 10 ppm/°C. The monolithic fabrication results in excellent linearity and tempco, fast output settling and low cost. Linearity is $\pm \frac{1}{2}$ LSB.

An external reference current of 2 mA nominal programs the scale factor of the DAC. This reference current can also be varied, resulting in one or two quadrant multiplying operation. The output voltage can be unipolar or bipolar dependent upon the connection of the two complementary output sink currents.

DAC-08 applications include fast A/D converters, waveform generators, audio encoder and attentuators, CRT display drivers, and high speed modems.

Power supply requirements are $\pm 4.5V$ to $\pm 18V$. Operating temperature range is 0°C to 70°C for the DAC-08BC and -55°C to $\pm 125°$ C for the DAC-08BM. These models have equivalent specs and pinouts to industry standard DAC-08's.

MECHANICAL DIMENSIONS INCHES (MM)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	THRESHOLD CONTROL (VLC)
2	TOUT
3	VEE
4	IOUT
5	BIT 1 IN (MSB)
6	BIT 2 IN
7	BIT 3 IN
8	BIT 4 IN
9	BIT 5 IN
10	BIT 6 IN
11	BIT 7 IN
12	BIT 8 IN (LSB)
13	VCC
14	VREF+
15	VREF-
16	COMPENSATION

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

SPECIFICATIONS. DAC-08BC & DAC-08BM (Typical at 25°C, Vs = \pm 15V, IREF = 2.0 mA unless otherwise noted)

MAXIMUM RATINGS

VCC Supply to VEE Supply	36V
Digital Input Voltage	-VEE to -VEE plus 36V
VLC	-VEE to +VCC
Reference Input Voltage	-VEE to +Vcc
Reference Input Current	5.0 mA

INPUTS

Resolution	8 Bits
Coding, Unipolar Output	Straight Binary
Coding, Bipolar Output	Offset Binary
Input Logic Level, Bit ON ("1")	+2.0V min. @ +10.0μA
Input Logic Level, Bit OFF ("0")	+0.8V max. @ -10.0μA ¹
Nominal Reference Current	2.0 mA
Reference Bias Current	—1.0 μ A
Reference Input Slew Rate	8 mA/µsec

OUTPUTS

Output Current, IREF = 2.0 mA	1.99 mA ±.05 mA ²
Output Current Range, VEE = -5V	0 to 2.1 mA
Output Current Range, VEE = -7 to -18V	0 to 4.2 mA
Output Current, all bits OFF	$\pm 0.2\mu A$ typ. $\pm 2.0\mu A$ max.
Full Scale Symmetry	$\pm 1.0 \mu \text{A typ.} \pm 8.0 \mu \text{A max.}$
Output Voltage Compliance	-10 to +18V

PERFORMANCE

Relative Accuracy	±1/2 LSB (±0.19%) max.
Nonlinearity	±1/2 LSB (±0.19%) max.
Differential Nonlinearity	±1/2 LSB (±0.19%)
Full Scale Tempco	±10 ppm/°C typ.
	±50 ppm/°C max.
Settling Time, 2 mA to ½LSB	85 nsec. typ.,
	150 nsec. max.
Propagation Delay	60 nsec. max.
Power Supply Sensitivity, IREF = 1 mA.	±0.002%/%

POWER REQUIREMENTS

Vcc	+4.5V to +18V
VEE	-4.5V to -18V
Power Supply Current, IREF = 1.0mA	
$V = \pm 5V$	+3.8, -5.8 mA max.
Power Supply Current, IREF = 2.0mA	
$\mathbf{V} = +5\mathbf{V}, -15\mathbf{V}$	+3.8, -7.8 mA max.
$\mathbf{V} = \pm 15\mathbf{V} \dots \dots$	+3.8, -7.8 mA max.

PHYSICAL-ENVIRONMENTAL

Operating Temp Range	
DAC-08BC	0°C to 70°C
DAC-08BM	-55°C to 125°C
Storage Temp Range	-65°C to -150°C
Package	16 Pin Dip

NOTES

1. For TTL, DTL Interface, VLC = 0V. For other digital interfaces see TECHNICAL NOTE 3.

2. IOUT (Pin 4) + IOUT (Pin 2) = Output Current.

ORDERING INFORMATION OPERATING MODEL TEMP. RANGE PACKAGE DAC-08BC 0°C to 70°C Plastic DAC-08BM -55°C to +125°C Ceramic THESE D/A CONVERTERS ARE COVERED BY GSA CONTRACT.

TECHNICAL NOTES

1. The DAC-08 series is a multiplying D/A converter in which the output current is a product of the digital word and the input reference current. Excellent performance is obtained for I_{REF} from 4.0 mA to 4.0 μ A. Monotonic operation is maintained from 4.0 mA to 100 μ A. The full scale output current is a linear function of the reference current and is given by:

$$I_{FS} = \frac{255}{256} \times I_{REF}$$
 (I_{REF} is current at Pin 14)

- 2. Reference Amplifier Set-up. If a regulated power supply is used as the reference, a resistor divider should be used with the junction by-passed to gnd with a 0.1 μ f capacitor. TTL logic supplies are not recommended to be used as the refference. AC and DC reference applications will require the reference amplifier to be compensated using a capacitor (Cc) from pin 16 to VEE. For fixed reference application (DC). a 0.01 μ F capacitor is recommended. For AC reference applications, the value of C_C depends on the impedance present at pin 14. For R_{REF} values of 1.0, 2.5 and 5.0 KΩ, minimum values of C_C are 15, 37 and 75 pf respectively. Larger values of R14 require proportionately increased values of Cc for proper phase margin. See Graph on Reference Input Frequency Response. Low RREF values enable small Cc achieving highest throughput on VREF. If pin 14 is driven by a high impedance such as a transistor current source, the amplifier must be heavily compensated which will decrease overall bandwidth and slew rate. For $R_{REF} = 1.0 \text{ K}\Omega$ and $C_{C} = 15 \text{ pf}$, the reference amplifier slews at 4.0 mA/ μ sec. enabling a transition from I_{REF} = 0 to I_{REF} = 2.0 mA in 500 nsec.
- 3. Interfacing Various Logic Families. The DAC-08 design incorporates a unique logic input circuit which enables direct interface to all popular logic families and provides maximum noise immunity. A large input swing capability allows adjustable logic threshold voltage and 200 μ A max source current on pin 1. Minimum input logic swing and minimum logic threshold voltage is given by V_{EE} +(I_{REF} x 1.0 kΩ) +2.5V. Logic threshold is adjusted by appropriate voltage at V_{LC}. Interfacing Various Logic Families Diagram shows appropriate connections. Fastest settling times are obtained when V_{LC} sees a low impedance. Use .01 μ F by-pass capacitors whenever possible.
- 4. Analog Output Currents. Both true and complemented output sink currents are provided, Io + Io = Irs. Both outputs can be used simultaneously. If one of the outputs is not required, it must be connected to ground or a point capable of sourcing Irs. Do not leave unused output pin (Io or Io) open. The compliance voltage is the voltage swing on output pin without affecting DAC accuracy. Positive compliance is 36V above VEE and is independent of V +. Negative compliance is VEE + (IREF x 1kΩ) +2.5V.
- Settling Time. The DAC-08 is capable of extremely fast settling times, typically 85 nsec. at IREF = 2.0 mA. Judicious circuit design and careful board layout must be employed to obtain full performance. The output capacitance of the DAC including the package is approximately 15 pf; therefore the output RC time constant dominates at RL > 5000.

Settling time remains essentially constant for IREF values down to 1.0 mA, with gradual increases for lower IREF values. The switching transients (glitches) are very low and may be further reduced by small capacitive loads at the output. Settling time will be increased slightly.

 Power Supplies. The DAC-08 operates over a wide range of power supply voltages from a total supply of 9V to 36V. When operating at supplies of ±5V or less, IREF ≤ 1 mA is recommended. Low reference current operation decreases power consumption and increases negative compliance, reference amplifier negative common mode range, negative logic input range, and negative logic threshold range. For example,

operation at -4.5V with I_{REF} = 2 mA is not recommended because negative output compliance would be reduced to near zero. Operation from lower supplies is possible, however at least 8V total must be applied to insure turn-on of the internal bias network. It is recommended that V_{CC} and V_{EE} always be bypassed to ground with at least 0.1 μ f capacitors.

Symmetrical supplies are not required, as the DAC-08 is quite insensitive to variations in supply voltage. Battery operation is feasible, as no ground connection is required; however, an artificial ground may be useful to insure logic swings, etc. remain between acceptable limits.

Power consumption may be calculated as follows:

 $P_d = (I+)(V+) + (I-)(V-) + (2 I_{REF})(V-)$. A useful feature of the DAC-08 design is that supply current is constant and independent of input logic states; this is useful in cryptographic applications and further serves to reduce the size of the power supply bypass capacitors.

7. Temperature Performance. For most applications, a +10.0 Volt reference is recommended for optimum full scale temperature coefficient performance. Full scale trimming may by accomplished by adjusting I_{REF} (changing value of R_{REF}). R_{REF} and R_L should be selected for similar temperature coefficient to minimize accuracy error. Settling time of the DAC decreases approximately 10% at -55°C and increases 15% at 125°C.

APPLICATION DIAGRAMS (Cont'd)

REFERENCE INPUT FREQUENCY RESPONSE

 $\begin{array}{l} {\sf CURVE1: C_C=15pF, V_{IN}=2.0V_{P,p}\,{\sf CENTERED}\,AT+1.0V.}\\ {\sf CURVE2: C_C=15pF, V_{IN}=50mV_{P,p}\,{\sf CENTERED}\,AT+200mV.}\\ {\sf CURVE3: C_C=0pF, V_{IN}=100mV_{P,p}\,{\sf CENTERED}\,ATO\,VAND\,APPLIED\,THRU\,502}\\ {\sf CONNECTED}\,TO\,O\,IN1.4.+2.0V\,APPLIED\,TO\,R_{14}. \end{array}$

APPLICATION DIAGRAMS (Cont'd)

VOLTAGE OUTPUT OPERATION

CALIBRATION AND CODING TABLES

CALIBRATION PROCEDURE

 Select the desired output range by means of the feedback resistor of the external operational amplifier and the externally programmed reference current.

2. Zero and Offset Adjustments

For unipolar operation, set all digital inputs to "0" and adjust the output amplifier ZERO ADJUSTMENT for zero output

UNIPOLAR OPERATION - STRAIGHT BINARY CODING

INPUT CODE	Eo	Eo	lo	To
11111111	9.961	0.000	1.992	0.000
11100000	8.750	-1.211	1.750	0.242
11000000	-7.500	-2.461	1.500	0.492
10000000	-5.000	-4.961	1.000	0.992
01000000	-2.500	-7.461	0.500	1.492
00000001	-0.039	-9.922	0.008	1.984
000000000	0.000	-9.961	0.000	1.992

voltage. For bipolar operation, set all digital inputs to "0" and adjust the OFFSET ADJUSTMENT for the negative full scale voltage shown in the Coding Table.

3. Gain Adjustment

For either unipolar or bipolar operation, set all digital inputs to "1" and adjust the GAIN ADJUSTMENT for the positive full scale voltage shown in the DAC-08B Coding Table.

BIPOLAR OPERATION-OFFSET BINARY CODING

For 10k load resistors from pins 2 and 4 to +10V.

INPUT CODE	Eo	Ēo		
11111111	- 9.922	+10.000		
11100000	- 7.500	+ 7.578		
11000000	5.000	+ 5.078		
10000000	0.000	+ 0.078		
01000000	+ 5.000	- 4.922		
00000001	+ 9.922	- 9.844		
00000000	+10.000	- 9.922		
	L			

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved. 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 IONIS SUB JECT TO CHANCE WITHOUT NOTICE

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

- 12 Bit Resolution
- 300 nsec. Settling Time
- ±10ppm/°C Max. Tempco
- 5 Output Ranges
- ±¼ LSB Linearity
- 562 Pin Compatibility

GENERAL DESCRIPTION

The DAC-681 is a new high performance monolithic 12 bit D/A converter fabricated with advanced bipolar technology. The circuit uses a precision, laser-trimmed thin film R-2R ladder network driven by equal-value switched current sources to achieve % LSB typical linearity, 300 nsec. settling time and \pm 10 ppm/°C max. gain tempco.

The DAC-681 operates from TTL or CMOS input logic and provides a 0 to 5 mA or ± 2.5 mA output current. The converter contains tracking feedback and bipolar offsetting resistors to provide five output voltage ranges when used with an external operational amplifier: 0 to $\pm 5V$, 0 to $\pm 10V$, ± 2.5 , $\pm 5V$, and $\pm 10V$. Since these resistors closely track the R-2R ladder with temperature, gain stability of better than 10 ppm/°C is achieved. Differential linearity error is ¼ LSB typical and ½ LSB maximum, with output monotonicity guaranteed over the operating temperature range.

Output settling time for a full scale change to ½ LSB is 300 nsec. typical and 400 nsec. maximum.

The DAC-681 features pin compatibility with 562 type DAC's while offering superior performance to these earlier devices. The package is a 24 pin hermetically sealed ceramic DIP; power requirement is +5V to +15V and -15 VDC. There are two basic models: DAC-681C operates over 0°C to 70°C while DAC-681M operates over -55°C to +125°C.

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

Monolithic,

High Performance

Model DAC-681

12 Bit D/A Converter

SPECIFICATIONS, DAC-681 Typical at 25°C,+5V&-15V Supplies,+10V Reference unless otherwise noted. **DAC-681C DAC-681M** MAXIMUM RATINGS Positive Supply, pin 1..... +20V Negative Supply, pin 6..... -20V ±Supply Reference Ground, pin 3.... 0V -1V to +12V Digital Inputs, pins 13-24..... Logic Select Input, pin 2..... -1V to +12V Output, pin 9... +Supply, -5V Resistors, pins 7, 8, 10, 11..... ±Supply * INPUTS 12 Bits Resolution.... Straight Binary Coding, unipolar output..... Offset Binary Coding, bipolar output.... Input Logic Level, bit ON ("1")1...... Input Logic Level, bit OFF ("1")1...... Reference Input Voltage +2.0 min. @ 100nA max. +0.8V max. @ -100µA max. +10V 8K Reference Input Resistance..... OUTPUTS Output Current, unipolar..... 0 to -5 mA Output Current, bipolar ±2.5 mA Output Voltage Ranges, unipolar..... 0 to +5 V0 to +10V Output Voltage Ranges, bipolar..... ±2.5V ±5V $\pm 10V$ Output Voltage Compliance ±1V Output Resistance 1K Output Capacitance 20 pF PERFORMANCE Linearity Error, max..... ±¼ LSB ±% LSB Linearity Error Over Temp., ±1 LSB ±½ LSB Differential Linearity Error, typ..... ±½ LSB ±¼ LSB Monotonicity Over Oper. Temp. Range Gain Error, max.²..... ±0.25% Unipolar Zero Error, max.².... ±0.05% Bipolar Offset Error, max.²..... ±0.25% Gain Tempco, max.³.... ±10 ppm/°C ±5 ppm/°C Zero Tempco, max.³.... ±2 ppm/°C ±2 ppm/°C Bipolar Offset Tempco, max.³.... ±5 ppm/°C ±5 ppm/°C Settling Time to ½ LSB⁴..... 300 nsec. typ., 400 nsec. max. Power Supply Sensitivity ±7.5 ppm of FSR/% Supply Reference Slew Rate 6 mA/usec. * 10 MHz POWER REQUIREMENT Rated Power Supply Voltage +5 VDC, -15 VDC +4.75 VDC to +15 VDC Positive Supply Frange⁶..... Negative Supply Range..... -15 VDC ±10% Power Supply Quiescent Current, max.... +9 mA, -28 mA PHYSICAL-ENVIRONMENTAL Operating Temp. Range..... 0°C to +70°C -55°C to +125°C -65° C to +150°C Storage Temp. Range Package, Hermetically Sealed 24 pin ceramic *Specifications same as first column

NOTES:

- 1. + Supply must be $+5V \pm 5\%$ for DAC-681C and $+5V \pm 10\%$ for DAC-681M. For operation with CMOS logic see Technical Note 1.
- Adjustable to zero using external potentiometers. Specified error is for 24.9 ohm trim resistors and external op amp using internal feedback resistor.
- Using external op amp and internal feedback and offset resistor. Zero Tempco and Bipolar Offset Tempco are in ppm/PC of FSR (Full Scale Range)
- 4. For full scale change: all bits ON-to-OFF, or all bits OFF-to-ON.
- 5. See Technical Note 1.

TECHNICAL NOTES

- 1. For TTL input logic, pin 2 should be connected to pin 12 and the + supply must be +5 VDC (\pm 5% for DAC-681C and \pm 10% for DAC-681M). For CMOS input logic, connect pin 2 to pin 1 and use any + supply voltage from +4.75V to +12 VDC. CMOS threshold levels are then + Vs × 0.7 for bit ON and +Vs × 0.3 for bit OFF. Logic input current is the same as that specified for TTL.
- 2. Gain and bipolar offset errors are adjustable to zero by means of two 50 ohm trimming pots. The adjustment range is $\pm 0.3\%$ of FSR for gain and $\pm 0.6\%$ of FSR for bipolar offset. The unipolar zero error is adjustable to zero by means of the offset adjustment of the external output amplifier.
- 3. The output voltage compliance range of ±1V should not be exceeded or else accuracy will be affected. If a resistor load is driven instead of an op amp summing junction then the maximum resistor value is 200 ohms for unipolar operation and 400 ohms for bipolar operation.
- 4. Output settling time is specified for current output and is measured with a small current sampling resistor to ground (100 ohms). Voltage output settling time depends on the output operational amplifer used. Datel's AM-500 is recommended for about 500 nsec. settling and AM-452-2 is recommended for about 1.5 μsec. settling. Both should be used with a 3-20 pF variable compensating capacitor across the feedback resistor which should be adjusted for optimum settling time.
- For best high speed performance, both power supplies should be bypassed with 1 μF electrolytics in parallel with 0.01 μF ceramic capacitors as close as possible to the ± supply pins.
- 6. The gain and bipolar offset temperature coefficients are specified with the internal feedback and offset resistors used in conjunction with an external operational amplifier. This is because these resistors track the R-2R ladder with temperature and therefore the tempco's do not depend on absolute resistor tempco. The tempco of the external + 10V reference must also be included in the total converter tempco, however.
- 7 Because of the DAC-681 circuit which incorporates equally weighted current sources driving an R-2R ladder network, the turn ON and turn OFF times are virtually symmetrical, resulting in low output glitches compared with other DAC's. The major carry glitch typically has an amplitude of 14% of FSR. The time duration to 90% complete is typically 35 nsec.
- 8 The DAC-681 wideband output noise with all bits ON is typically 100 μV P-P over 0.1 Hz to 5 MHz.

ORDERING INFORMATION Model Temp. Range DAC-681C 0 to 70°C DAC-681M -55 to +125°C Trimming Potentiometer: TP 50 THESE CONVERTERS ARE COVERED BY GSA CONTRACT.

STANDARD CONNECTIONS

BIPOLAR OPERATION-See Output Range Selection Table

OUTPUT VOLTAGE RANGE SELECTION (See Connection Diagrams Above)

OUTPUT VOLTAGE RANGE		R _B , BIAS COMP. RESISTOR*			
0 to +5V	A & 10	9&11			510
0 to +10V	A & 10				680
±2.5V	A & 10	9&11	8&9	7 & B	430
±5V	A & 10	8&9	7 & B		560
_±10V	A & 11	8 & 9	7 & B		680

*Carbon composition resistor value used from amplifier + input terminal to ground to compensate for offset due to bias current.

CALIBRATION AND APPLICATION

+10V REFERENCE CIRCUIT

put. For best stability R1 & R2 should track each other closely with temperature. R4 should be a low tempco trimming pot or else a selected metal film trim resistor.

CODING TABLE—See Calibration Procedure

	OUTPUT VOLTAGE RANGE				
INPUT CODE	0 TO +5V	0 TO +10V	±2.5V	±5V	±10V
1111 1111 1111	+4.9988V	+9.9976V	+2.4988V	+4.9976V	+9.9951V
1100 0000 0000	+3.7500	+7.5000	+1.2500	+2.5000	+5.0000
1000 0000 0000	+2.5000	+5.0000	0.0000	0.0000	0.0000
0100 0000 0000	+1.2500	+2.5000	-1.2500	-2.5000	-5.0000
0000 0000 0001	+0.0012	+0.0024	-2.4988	-4.9976	-9.9951
0000 0000 0000	0.0000	0.0000	-2.5000	-5.0000	-10.0000

CALIBRATION PROCEDURE

UNIPOLAR OPERATION

- 1. Set all digital inputs LO. Adjust the output amplifier offset for 0 volts output.
- 2. Set all digital inputs HI. Adjust Gain trimming pot for an output of +FS-1LSB.

FS-1LSB = +9.9976V for 0 to +10V range.

= +4.9988V for 0 to +5V range.

BIPOLAR OPERATION

- 1. Set all digital inputs LO. Adjust Bipolar Offset trimming pot for one of the following output voltages:
 - -2.5V for $\pm 2.5V$ range
 - -5.0V for ±5V range
 - -10.0V for $\pm 10V$ range
- 2. Set bit 1 (MSB) input HI and all other digital inputs LO. Adjust Gain trimming pot for 0 volts output.

CIRCUIT FOR FAST VOLTAGE OUTPUT (≈0.5 µSEC. SETTLING)

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

153C

10 & 12 Bit Monolithic Multiplying D/A Converters DAC-7520, DAC-7521 Series

FEATURES

- DAC-7520: 10 Bit Resolution; 10 Bit Linearity
- DAC-7521: 12 Bit Resolution; 10 Bit Linearity
- Low Power Dissipation: 20 mW (Max)
- Low Nonlinearity Tempco: 2 PPM of FSR/°C (Max)
- Current Settling Time: 500 nS to 0.05% of FSR
- Supply Voltage Range: +5V to +15V
- DTL/TTL/CMOS Compatible
- Full Input Static Protection

GENERAL DESCRIPTION

The DAC-7520 and DAC-7521 are monolithic, high accuracy, low cost 10-bit and 12-bit resolution, multiplying digital-toanalog converters. DATEL-INTERSIL's thin-film on CMOS process enables 10-bit accuracy with DTL/TTL/CMOS compatible operation. Digital inputs are fully protected against static discharge by compensating diodes to ground and positive supply.

Typical applications for the DAC-7520 and DAC-7521 include: digital/analog interfacing, multiplication and division; programmable power supplies; CRT character generation; digitally controlled gain circuits, integrators and attenuators, etc.

DAC-7520, DAC-7521 10 & 12 Bit Monolithic Multiplying D/A Converters

Data Acquisition

154C

ABSOLUTE MAXIMUM RATINGS (T_A = 25° C unless otherwise noted)

VDD (to GND)	+17V
VREF (to GND)	±25V
Digital Input Voltage Range	VDD to GND
Output Voltage Compliance	100mV to VDD
Power Dissipation (package)	
up to +75°C	450 mW
derates above +75° C by	6 mW/° C

Operating Temperatures	
C Versions	0° C to +70° C
R Versions	–25° C to 85° C
M Versions	55° C to +125° C
Storage Temperature	65° C to +150° C

CAUTION: 1) The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.

2) Do not apply voltages higher than VDD or less than GND potential on any terminal except VREF. SPECIFICATIONS (VDD=+15V, VREF=+10V, TA=25°C unless otherwise specified)

PARAMETER	DAC-7520	DAC-7521	UNITS	LIMIT	TEST CONDITIONS	FIG.
DC ACCURACY (Note 1)						
Resolution	10	12	Bits			
Nonlinearity					M: over -55°C to +125°C	
	0.05 (1	0-Bit)	% of FSR	Max	-10V≤VREF≤+10V	1
Nonlinearity Tempco	2	2	PPM of FSR/°C	Мах		
Gain Error (Note 2)	0.	3	% of FSR	Тур	-10V⊴VREF≤+10V	
Gain Error Tempco (Note 2)	1()	PPM of FSR/°C	Max		
Output Leakage Current (either output)		200	nA	Max	Over the specified temperature range	
Power Supply Rejection	±0.0	005	% of FSR/%	Тур		2
AC ACCURACY Output Current Settling Time	50	0	nS	Тур	To 0.05% of FSR (All digital inputs low to high and high to low)	6
Feedthrough Error	10		mV pp	Max	VREF=20Vpp, 100 KHz All digital inputs low	5
REFERENCE INPUT	5	5K		Min		
Input Resistance (Note 3)	10	ĸ	Ω	Тур	All digital inputs high.	
	20	20K		Max	IOUT1 at ground.	
ANALOG OUTPUT Voltage Compliance (both outputs)	See absolute	max. ratings				
Output Capacitance		120 37	pF pF	Тур Тур	All digital inputs high	4
	IOUT1	37 120	pF pF	Тур Тур	All digital inputs low	4
Output Noise (both outputs)	Equivalent Johnsor	to 10KΩ n noise		Тур		3
DIGITAL INPUTS Low State Threshold High State Threshold Input Current	0.1 2.4 1	8	V V µA	Max Min Typ	Over the specified temp range	
(low to high state)	Dises (Of	inet Dinemu			Can Tables 1 8 2 an pages	
	Binary/Of	Binary/Offset Binary			4 and 5	
POWER REQUIREMENTS Power Supply Voltage Range	+5 to	o +15	v			
IDD	5		nA	Тур	All digital inputs at GND	1
	2		mA	Max	All digital inputs high or low	
Total Power Dissipation	20)	mW	Тур		

1. Full scale range (FSR) is 10V for unipolar and \pm 10V for bipolar modes. NOTES: 2. Using internal feedback resistor, RFEEDBACK.

Specifications subject to change without notice.

3. Ladder and feedback resistor Tempco is approximately -150 ppm/°C.

TEST CIRCUITS

NOTE: The following test circuits apply for the DAC-7520. Similar circuits can be used for the DAC-7521.

Figure 5. Feedthrough Error

DEFINITION OF TERMS

VREE

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire V_{REF} range.

RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of (2^{-n}) (V_{REF}). A bipolar converter of n bits has a resolution of $[2^{-(n-1)}]$ [V_{REF}]. Resolution in no way implies linearity.

SETTLING TIME: Time required for the output function of the DAC to settle to within 1/2 LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from V_{REF} to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from IOUT1 and IOUT2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on IOUT1 terminal with all digital inputs LOW or on IOUT2 terminal when all inputs are HIGH.

GENERAL CIRCUIT INFORMATION

The DAC-7520 and DAC-7521 are monolithic, multiplying D/ A converters. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters also enable low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

A simplified equivalent circuit of the DAC is shown in Figure 7. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential or virtual ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

(Switches shown for Digital Inputs "High")

Figure 7. 7520 (7521) Functional Diagram

Converter errors are further eliminated by using separate metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 8). This configuration results in DTL/TTL/ CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2R ladder resistors, resulting in accurate leg currents.

Figure 8. CMOS Switch

APPLICATIONS

UNIPOLAR BINARY OPERATION

The circuit configuration for operating the 7520 and 7521 in unipolar mode is shown in Figure 9. With positive and negative VREF values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1.

Figure 9. Unipolar Binary Operation (2-Quadrant Multiplication)

Zero Offset Adjustment

7520 or Connect all

7521 digital inputs to GND.

2. Adjust the offset zero adjust trimpot of the output operational amplifier for 0 V \pm 1 mV at VOUT. Gain Adjustment

- 1. Connect all 7520 or 7521 digital inputs to VDD.
- 2. Monitor VOUT for a $-VREF(1-2^{-n})$ reading. (n=10 for 7520 and n=12 for 7521.)
- 3. To decrease VOUT, connect a series resistor, (0 to 500 ohms), between the reference voltage and the VREF terminal.

4. To decrease VOUT, connect a series resistor, (0 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 1					
CODE TABL	E — UNIPOL	AR BINARY	OPERATION		

DIGITAL INPUT	ANALOG OUTPUT
111111111	$-V_{REF} (1 - 2^{-n})$
100000001	$-V_{\text{REF}}(1/2 + 2^{-n})$
100000000	-V _{REF} / 2
011111111	-V _{REF} (1/2 - 2 ⁻ⁿ)
000000001	-VREF (2 -n)
000000000	0

NOTE: 1. LSB = 2^{-n} V_{REF}

2. n=10 (12) for 7520 (7521)

(APPLICATIONS, Cont'd.)

BIPOLAR (OFFSET BINARY) OPERATION

The circuit configuration for operating the DAC-7520 or DAC-7521 in the bipolar mode is given in Figure 10. Using offset binary digital input codes and positive and negative reference voltage values 4-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.

Figure 10. Bipolar Operation (4-Quadant Multiplication)

A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to IOUT1 bus. A "Logic 0" input forces the bit current to IOUT2 bus. For any code the IOUT1 and IOUT2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of IOUT2 current and the transconductance amplifier at IOUT1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB="Logic 1", All other bits="Logic 0), is corrected by

using an external resistor, (10 Megohm), from VREF to IOUT2.

Offset Adjustment

1. Adjust VREF to approximately +10 V.

2. Connect all digital inputs to "Logic 1"

3. Adjust IOUT2 amplifier offset zero adjust trimpot for 0V±1 mV at IOUT2 amplifier output.

4. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".

5. Adjust IOUT1 amplifier offset zero adjust trimpot for 0V±1 mV at VOUT.

Gain Adjustment

1. Connect all DAC-7520 or DAC-7521 digital inputs to VDD.

2. Monitor VOUT for a -VREF $(1-2^{-(n-1)})$ volts reading. (n=10 for DAC-7520 and n=12 for DAC-7521).

3. To increase VOUT, connect a series resistor, (0 to 500 ohms), in the IOUT1 amplifier feedback loop.

4. To decrease VOUT, connect a series resistor, (0 to 500 ohms), between the reference voltage and the VREF terminal. TABLE 2

CODE TABLE - BIPOLAR (OFFSET BINARY) OPERATION					
DIGITAL INPUT	ANALOG OUTPUT				
111111111	-VREF (1 - 2 ⁻⁽ⁿ⁻¹⁾)				
100000001	-VREF (2-(n-1))				
100000000	0				
011111111	VREF (2 ⁻⁽ⁿ⁻¹⁾)				
000000001	VREF (1 - 2 ⁻⁽ⁿ⁻¹⁾)				
000000000	VREF				
NOTE: 1. LSB = 2 ⁻⁽ⁿ⁻¹⁾ V _{REF} 2. n = 10(12) for 7520 (7521)					

Figure 11. The Basic Power DAC

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 11. Datel's AM-8510 power amplifier (1 Amp continuous output with up to +25 V) is driven by the 7520.

A summing amplifier between the 7520 and the 8510 is used to separate the gain block containing the 7520 onchip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise 7520 can be directly connected to the 8510, by using a 25 volts reference for the DAC.

An important note on the 7520/101A interface concerns the connection of pin 1 of the DAC and pin 2 of the 101A. Since this point is the summing junction of an amplifier with an AC gain of 50,000 or better, stray capacitance should be minimized; otherwise instabilities and poor noise performance will result. Notice that the output of the 101A is fed into an inverting amplifier with a gain of -3, which can be easily changed to a non-inverting configuration.

(APPLICATIONS, Cont'd.)

ANALOG/DIGITAL DIVISION

With the 7520 connected in its normal multiplying configuration as shown in figure 15, the transfer function is

$$V_{O} = -V_{IN} \left(\frac{A_{1}}{2^{1}} + \frac{A_{2}}{2^{2}} + \frac{A_{3}}{2^{3}} + \cdots + \frac{A_{n}}{2^{n}} \right)$$

where the coefficients A_x assume a value of 1 for an ON bit and 0 for an OFF bit.

By connecting the DAC in the feedback of an operational amplifier, as shown in Figure 12, the transfer function becomes

$$V_{O} = \left(\frac{-V_{IN}}{\frac{A_{1}}{2^{1}} + \frac{A_{2}}{2^{2}} + \frac{A_{3}}{2^{3}} + \cdots + \frac{A_{n}}{2^{n}}} \right)$$

This is division of an analog variable (V_{IN}) by a digital word. With all bits off, the amplifier saturates to its bound, since division by zero isn't defined. With the LSB (Bit-10) ON, the gain is 1023. With all bits ON, the gain is 1 (\pm 1 LSB).

Figure 12. Analog/Digital Divider

PACKAGE DIMENSIONS

DAC-7521R, M

18 PIN CERDIP

65) 40)

ሊሊሊሊ

57.57

023.0

DAC-7520C

DAC-7521C 18 PIN PLASTIC DIP

1. Lead no. 1 identified by dot or notch.

2. Dimensions in inches (millimeters).

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dailas, TX (214)241-0651 OVERSEAS DATEL (UK) LTD-TEL ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089,77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

110

8 Bit Monolithic Multiplying D/A Converters Model DAC-7523

FEATURES

- 8 bit linearity
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTL/CMOS compatible
- +5 to +15 volts supply range
- Fast settling time: 100 nS
- Four guadrant multiplication

GENERAL DESCRIPTION

The DAC-7523 is a monolithic, low cost, high performance, 10 bit accurate, multiplying digital-to-analog converter (DAC), in a 16-pin DIP.

Datel-Intersil's thin-film resistors on CMOS circuitry provide 8-bit resolution and linearity, with DTL/TTL/CMOS compatible operation.

The DAC-7523's accurate four quadrant multiplication, full military temperature range operation, full input protection from damage due to static discharge by clamps to V+ and GND and very low power dissipation make it a very versatile converter.

Low noise audio gain control, motor speed control, digitally controlled gain and attenuators are a few of the wide number of applications of the 7523.

ABSOLUTE MAXIMUM RATINGS

$(T_A = 25^{\circ}C \text{ unless otherwise noted})$	Ceramic
VDD (to GND)	up to 75° C 450mW
VREF (to GND) ±25V	derates above 75° C by 6mW/° C
Digital Input Voltage Range	Operating Temperatures
Output Voltage Compliance	C Versions
Power Dissipation (package)	R Versions
Plastic	M Versions
up to +70° C 670mW	Storage Temperature
derates above +70° C by 8.3mW/° C	Lead Temperature (soldering, 10 seconds) +300° C

CAUTION: 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.

2. Do not apply voltages higher than VDD and lower than GND to any terminal except VREF.

SPECIFICATIONS (VDD = +15V, VREF = +10V unless otherwise specified)

		TA +25° C			LIMIT	TEST CONDITIONS
		+23 C	WIIN-WAA	UNITS		TEST CONDITIONS
DC ACCURACY (Note 1)				Dite		
Resolution	14(0100)	8	8	Bits	Min	
Nonlinearity (Note 2)	±1/2 LSB)	1 ±0.2	±0.2	% OF FSR	Мах	
						$-10V \le VREF \le +10V$
		<u> </u>	L		·	$v_{OUT1} = v_{OUT2} = 0v$
Monotonicity		Guara	Inteed			
Gain Error (Note 2)		±1.5	±1.8	% of FSR	Max	Digital inputs high.
Nonlinearity Tempco (Note 2	and 3)		2	PPM of FSR/°C	Max	-10V VREF +10V
Gain Error Tempco (Note 2 a	nd 3)		10	PPM of FSR/°C	Max	
Output Leakage Current (eith	er output)	±50	±200	nA	Max	$V_{OUT1} = V_{OUT2} = 0$
AC ACCURACY (Note 3)						
Power Supply Rejection (Note	e 2)	0.02	0.03	% of FSR/%	Max	V _{DD} = 14.0 to 15.0V
Output Current Settling Time		150	200	nS	Max	To 0.2% of FSR, R _L = 100Ω
Feedthrough Error	Feedthrough Error		±1	LSB	Max	VREF = 20V pp, 200KHz sine wave. All
						digital inputs low.
REFERENCE INPUT		5	δK	0	Min	
Input Resistance (Pin 15)		2	0K	32	Max	All digital inputs high. IOUT1 at ground.
Temperature Coefficient (Not	e 3)	-5	500	ppm/°C	Max	
ANALOG OUTPUT (Note 3)		1				Both outputs.
Voltage Compliance (Note 4)		-100m\	v to V _{DD}			See maximum ratings.
Output Capacitance	COUT1	1	00	pF	Max	All digital inputs high (VINH)
	COUT2	3	30	pF	Max	
· · · · ·	COUT1	3	30	pF	Max	All digital inputs low (VINL)
	COUT2	1	00	pF	Max	
DIGITAL INPUTS						
Low State Threshold (VINL)		0.8		V	Max	Guarantees DTL/TTL and CMOS (0.5
High State Threshold (VINH)		2.4		V	Min	max, 14.5 min) levels
Input Current (per input)		±1		μA	Max	$V_{IN} = 0V \text{ or } +15V$
Input Coding		Binary/Offset Binary				See Tables 1 & 2
Input Capacitance (Note 3)			4	pF	Мах	
POWER REQUIREMENTS		Τ				Accuracy is tested and guaranteed at
Power Supply Voltage Range		+5 to +16		V		$V_{DD} = +15V$, only.
IDD	~	1	00	μΑ	Мах	All digital inputs low or high.

NOTES: 1. Full scale range (FSR) is 10V for unipolar and \pm 10V for bipolar modes.

2. Using internal feedback resistor, RFEEDBACK.

3. Guaranteed by design; not subject to test.

4. Accuracy not guaranteed unless outputs at ground potential.

Specifications subject to change without notice.

APPLICATIONS UNIPOLAR OPERATION

Figure 1. Unipolar Binary Operation (2-Quadrant Multiplication)

Figure 2. Bipolar (4-Quadrant) Operation

DIGITAL INPUT ANALOG OUTPUT MSB LSB <u>255</u> 256 11111111 -VREF 129 10000001 -VREF 256 VREF 128 10000000 -VREF 256 2 127 01111111 -VREF 256 1 00000001 -VREF 256 0 00000000 -VREF = 0 256 1 256 Note: 1 LSB = (2^{-8}) (V_{REF})= (VREF) Table 1. Unipolar Binary Code Table

ANALOG OUTPUT
$-V_{REF}$ $\left(\frac{127}{128}\right)$
$-V_{\text{REF}}$ $\left(\frac{1}{128}\right)$
0
$+V_{REF}$ $\left(\frac{1}{128}\right)$
$+V_{REF}$ $\left(\frac{127}{128}\right)$
$+V_{REF}$ $\left(\frac{128}{128}\right)$

Note:
$$1LSB = (2^{-7}) (V_{REF}) = \left(\frac{1}{128}\right) (V_{REF})$$

Table 2. Bipolar (Offset Binary) Code Table

A typical power DAC designed for 10 bit accuracy and 8 bit resolution is shown in Figure 3. Date's AM-8510 power amplifier (1 Amp continuous output with up to +25V) is driven by the 7523.

A summing amplifier between the 7523 and the 8510 is used to separate the gain block containing the 7520 on-chip resistors

from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise 7523 can be directly connected to the 8510, by using a 25 volts reference for the DAC.

APPLICATIONS (continued) DIVIDER (DIGITALLY CONTROLLED GAIN)

MODIFIED SCALE FACTOR AND OFFSET

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire V_{REF} range.

RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of (2^{-n}) (V_{REF}). A bipolar converter of n bits has a resolution of $[2^{-(n-1)}]$ [V_{REF}]. Resolution in no way implies linearity.

SETTLING TIME: Time required for the output function of the DAC to settle to within 1/2 LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from V_{REF} to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from I_{OUT1} and I_{OUT2} terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on I_{OUT1} terminal with all digital inputs LOW or on I_{OUT2} terminal when all inputs are HIGH.

DAC-7523C

16 PIN PLASTIC DIP

1. Lead no. 1 identified by dot or notch.

2. Dimensions in inches (millimeters).

FEATURES

- Lowest cost 10-bit DAC
- True 10 bit linearity
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTL/CMOS direct interface
- +5 to +15 volts supply range
- Low power dissipation
- · Fast settling time
- Four quadrant multiplication
- Direct AD7520 equivalent

Low Cost, 10 Bit Monolithic Multiplying D/A Converters Model DAC-7533

GENERAL DESCRIPTION

The DAC-7533 is a low cost, monolithic 10-bit, fourquadrant multiplying digital-to-analog converter (DAC). Datel's thin-film resistors on CMOS circuitry provide TRUE 10 bit accuracy, full temperature range operation, +5V to +15V power range, full input protection from damage due to static discharge by clamps to V+ and ground and very low power dissipation. Pin and function equivalent to Industry Standard AD7520, the DAC-7533 is recommended as a lower cost alternative for old or new 10-bit DAC designs.

Application of DAC-7533 includes programmable gain amplifiers, digitally controlled attenuators, function generators and control systems.

ORDERING INFORMATION

Model	Oper. Temp. Range	Package
DAC-7533C	0 to +70° C	Epoxy
DAC-7533R	-25 to +85° C	Cerdip
DAC-7533M	-55 to +125° C	Cerdip

ABSOLUTE MAXIMUM RATINGS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

VDD (to GND)	0.3V, +17V
VREF (to GND)	±25V
Digital Input Voltage Range	-0.3V to V _{DD}
Output Voltage Compliance	-0.3 to VDD
Power Dissipation (package)	
Ceramic	
up to +75° C	450mW
derates above +75° C by	6mW/°C

Plastic	
up to 70°C	670mW
derates above 70° C by	8.3mW/°C
Operating Temperatures	
C Versions	\dots 0° C to +70° C
R Versions	–25° C to +85° C
M Versions	55° C to +125° C
Storage Temperature	-65° C to +150° C
Lead Temperature (soldering, 10 second	ls) +300°C

CAUTION: 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.

2. Do not apply voltages lower than ground or higher than V_{DD} to any pin except V_{REF} and R_{FB} .

SPECIFICATIONS (VDD = +15V, VREF = +10V, $V_{OUT1} = V_{OUT2} = 0$ unless otherwise specified)

		TA	TA			
PARAMETER		+25°C	MIN-MAX	UNITS	LIMIT	TEST CONDITIONS
DC ACCURACY (Note 1)						
Resolution		10	10	Bits	Min	
Nonlinearity (Note 2)						
		· ·	ļ	1		$-10V \le VREF \le +10V$
		±0.05	±0.05	% of FSR	Max	$V_{OUT1} = V_{OUT2} = 0V$
Gain Error (Note 2 and 5)		±1.4	±1.5	% of FS	Max	Digital Inputs = VINH
Output Leakage Current (eith	er output)	±50	±200	nA	Max	$V_{REF} = \pm 10V$
AC ACCURACY						
Power Supply Rejection (Note	e 2 and 3)	0.005	0.008	% of FSR/%	Max	V _{DD} = 14.0 to 17.0V
Output Current Settling Time		600	800	nS	Max	To 0.05% of FSR, $R_L = 100\Omega$
		(Note 6)	(Note 3)			
Feedthrough Error (Note 3)		±0.05	±0.1	% FSR	Max	VREF = $\pm 10V$, 100KHz sine wave.
						Digital inputs low.
REFERENCE INPUT		5	δK	· ·	Min	
Input Resistance (Pin 15)		2	0K	Ω	Max	All digital inputs high.
Temperature Coefficient	Temperature Coefficient		300	ppm/°C	Тур	
ANALOG OUTPUT						Both outputs.
Voltage Compliance (Note 4)		-100m	√ to V _{DD}			See maximum ratings.
Output Capacitance (Note 3)	COUT1	1	00	pF	Max	All digital inputs high (VINH)
	COUT2	3	35	pF	Max	
	COUT1	3	35	pF	Max	All digital inputs low (VINL)
	COUT2	1	00	pF	Max	
DIGITAL INPUTS		1				
Low State Threshold (VINL)		0	0.8	V	Max	
High State Threshold (VINH)		2	2.4	V	Min	
Input Current (IIN)		-	±1	μA	Max	$V_{IN} = 0V$ and V_{DD}
Input Coding		Binary/Of	fset Binary			See Tables 1 & 2
Input Capacitance (Note 3)			5	pF	Max	
POWER REQUIREMENTS						
VDD		+15 ±10%		+15 ±10%		Rated Accuracy
Power Supply Voltage Range		+5 to	o +16	V		
IDD			2	mA	Max	Digital Inputs = VINL to VINH
IDD		100	ΟμΑ	150µA	Max	Digital Inputs = 0V or VDD

NOTES: 1. Full scale range (FSR) is 10V for unipolar and $\pm 10V$ for bipolar modes.

2. Using internal feedback resistor, RFEEDBACK.

3. Guaranteed by design; not subject to test.

4. Accuracy not guaranteed unless outputs at ground potential.

5. Full scale (FS) = – (V_{REF}) • (1023/1024)

6. Sample tested to ensure specification compliance.

Specifications subject to change without notice.

GENERAL CIRCUIT INFORMATION

The DAC-7533 is a 10 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

A simplified equivalent circuit of the DAC is shown in Figure 1. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

(Switches shown for Digital Inputs "High") Figure 1

APPLICATIONS UNIPOLAR OPERATION (2-QUADRANT MULTIPLICATION)

1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED. 2. SCHOTTKY DIODE CR1 (HP5082-2811 OR EQUIV) PROTECTS OUT1 TERMINAL AGAINST NEGATIVE TRANSIENTS.

Figure 3. Unipolar Binary Operation (2-Quadrant Multiplication)

DIGITAL INPUT MSB LSB	NOMINAL ANALOG OUTPUT (Vout as shown in Figure 3)
111111111	V_{REF} $\left(\frac{1023}{1024}\right)$
100000001	$-V_{REF}$ $\left(\frac{513}{1024}\right)$
100000000	V_{REF} $\left(\frac{512}{1024}\right)$ $\frac{V_{\text{REF}}}{2}$
011111111	$\neg V_{REF} = \left(\frac{511}{1024}\right)$
000000001	$-V_{REF}$ $\left(\frac{1}{1024}\right)$
000000000	$-V_{\text{REF}}$ $\left(\frac{0}{1024}\right) = 0$

NOTES:

1. Nominal Full Scale for the circuit of Figure 3 is given by

$$= -V_{REF} \left(\frac{1023}{1024} \right)$$

FS =

2. Nominal LSB magnitude for the circuit of Figure 3 is given by 1 LSB = VREF

 $(\frac{1}{1024})$

Table 1. Unipolar Binary Code

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 2). This configuration results in DTL/TTL/CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2R ladder resistors resulting in accurate leg currents.

Figure 2

R3/R4 MATCH 0.05% OR BETTER.

R1, R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED. SCHOTTKY DIODES CR1 AND CR2 (HP5082-2811 OR EQUIV) 3. PROTECT OUT1 AND OUT2 TERMINALS FROM NEGATIVE TRANSIENTS

Figure 4. Bipolar Operation (4-Quadrant Multiplication)

DIGITAL INPUT MSB LSB	NOMINAL ANALOG OUTPUT (Vout as shown in Figure 4)				
, 111111111	$-V_{\text{REF}}$ $\left(\frac{511}{512}\right)$				
100000001	$-V_{\text{REF}}$ $\left(\frac{1}{512}\right)$				
100000000	0				
011111111	$+V_{\text{REF}}$ $\left(\frac{1}{512}\right)$				
000000001	$+V_{\text{REF}}$ $\left(\frac{511}{512}\right)$				
000000000	$+V_{\text{REF}}$ $\left(\frac{512}{512}\right)$				

NOTES:

1. Nominal Full Scale Range for the circuit of Figure 4 is given by

$$FSR = V_{REF} \left(\frac{1023}{512} \right)$$

2. Nominal LSB magnitude for the circuit of Figure 4 is given by $LSB = V_{REF} \left(\frac{1}{512}\right)$

Table 2. Bipolar (Offset Binary) Code Table

POWER DAC DESIGN USING DAC-7533

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 5. Datel Intersil's AM-8510 power amplifier (1 Amp continuous output with up to +25V) is driven by the DAC-7533.

A summing amplifer between the 7533 and the 8510 is used to separate the gain block containing the 7533 on-chip resistors from the power amplifier gain stage whose gain is set only by the

10-BIT AND SIGN MULTIPLYING DAC

PROGRAMMABLE FUNCTION GENERATOR

PACKAGE DIMENSIONS 16 PIN CERDIP

1. Lead no. 1 identified by dot or notch.

2. Dimensions in inches (millimeters).

12 Bit Monolithic Multiplying D/A Converters Model DAC-7541

FEATURES

- 12 bit linearity (0.01%)
- Pretrimmed gain
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTL/CMOS compatible
- +5 to +15 volts supply range
- Low power dissipation (20mW)
- Current settling time: 1µs to 0.01% of FSR
- Four quadrant multiplication

GENERAL DESCRIPTION

Datel-Intersil's DAC-7541 is a monolithic, low cost, high performance, 12-bit accurate, multiplying digital-to-analog converter.

Datel-Intersil's wafer level laser-trimmed thin-film resistors on CMOS circuitry provide true 12-bit linearity with DTL/TTL/ CMOS compatible operation.

Special tabbed-resistor geometries (improving time stability), full input protection from damage due to static discharge by diode clamps to V+ and ground, large IOUT1 and IOUT2 bus lines (improving superposition errors) are some of the features offered by Datel-Intersil's DAC-7541.

Pin compatible with DAC-7521, this new DAC provides accurate four quadrant multiplication over the full military temperature range.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD. MANSFIELD. MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

ABSOLUTE MAXIMUM RATINGS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

VDD (to GND)	+17V
VREF (to GND)	±25V
Digital Input Voltage Range VDE	to GND
Output Voltage Compliance100m	√ to VDD
Power Dissipation (package)	
up to +75°C	450mW
derates above +75°C by	ômW/°C

Operating Temperatures	
C Versions	\dots 0°C to +70°C
R Versions	\dots –25° C to +85° C
M Versions	\dots –55° C to +125° C
Storage Temperature	. −65° C to +150° C

CAUTION 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.

2. Do not apply voltages higher than VDD or less than GND potential on any terminal except VREF.

SPECIFICATIONS (VDD = +15V, VREF = +10V, TA = 25°C unless otherwise specified)

PARAMETER		TA +25° C	TA MIN-MAX	UNITS	LIMIT	TEST CONDITIONS	FIG.
DC ACCURACY (Note 1)							
Resolution		12	12	Bits	Min		
Nonlinearity (Note 2)							
		±0.010	±0.012	% of FSR	Max	-10V ≤ VREF ≤ +10V	1
			}			$V_{OUT1} = V_{OUT2} = 0V$	
Gain Error (Note 2)		± 0.3	±0.4	% of FSR	Max	-10V ≤ VREF ≤ +10V	
Output Leakage Current (either o	output)	±50	±200	nA	Max	$V_{OUT1} = V_{OUT2} = 0$	
AC ACCURACY (Note 3)							
Power Supply Rejection (Note 2)		±0.01	±0.02	% of FSR %	Max	V _{DD} = 14.5 to 15.5V	2
Output Current Settling Time			1	μS	Max	To 0.01% of FSR	6
Feedthrough Error			1	mV pp	Max	VREF = 20V pp, 10 KHz. All	5
						digital inputs low.	
REFERENCE INPUT		5K 10K			Min		
Input Resistance				Ω	Тур	All digital inputs high.	
		20	JK		Мах	IOUT1 at ground.	
ANALOG OUTPUT		100				Both outputs.	
Output Compliance (Note 4)		-100mv				See maximum ratings.	
Output Capacitance (Note 3)	Couti	20	00	pr .	Max	All digital inputs high (VINH)	4
	Court		30	pi	Max		
	COUT2	20	0	n F	Max		4
Output Noise (both outputs)	00012	Equivalen		p;	Typ		3
		Johnso	n noise		, yp		5
DIGITAL INPUTS							
Low State Threshold (VINL)	1	0.8		v	Max		
High State Threshold (VINH)		2	.4	v	Min	1	
Input Current		<u>+</u>	1	μA	Max	V _{IN} = 0 or V _{DD}	
Input Coding		Binary/Off	fset Binary			See Tables 1 & 2 on pages 4 and 5.	
Input Capacitance (Note 3)		8	3	pF	Max		
POWER REQUIREMENTS						Accuracy is not guaranteed	
Power Supply Voltage Range		+5 to	o +16	V		over this range	
IDD		2	2	mA	Max	All digital inputs high or low	
Total Power Dissipation (includin ladder)	g the	2	0	mW	Тур		

NOTES: 1. Full scale range (FSR) is 10V for unipolar and \pm 10V for bipolar modes.

2. Using internal feedback resistor, RFEEDBACK.

3. Guaranteed by design; not subject to test.

4. Accuracy not guaranteed unless outputs at ground potential.

Specifications subject to change without notice.

TEST CIRCUITS

Figure 2. Power Supply Rejection

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire V_{REF} range.

RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of (2^{-n}) (V_{REF}). A bipolar converter of n bits has a resolution of $[2^{-(n-1)}]$ [V_{REF}]. Resolution in no way implies linearity.

SETTLING TIME: Time required for the output function of the DAC to settle to within 1/2 LSB for a given digital input stimulus, i.e., 0 to Full Scale.

Figure 4. Output Capacitance

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from V_{REF} to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from I_{OUT1} and I_{OUT2} terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on IOUT1 terminal with all digital inputs LOW or on IOUT2 terminal when all inputs are HIGH.

GENERAL CIRCUIT INFORMATION

The DAC-7541 is a 12 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

A simplified equivalent circuit of the DAC is shown in Figure 7. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

Converter errors are further eliminated by using wider metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level. Each circuit is laser-trimmed, at the wafer level, to better than 12 bits linearity. For the first four bits of the ladder, special trim-tabbed geometries are used to keep the body of the resistors, carrying the majority of the output current, undisturbed. The resultant time stability of the trimmed circuits is comparable to that of untrimmed units.

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first (Figure 8). This configuration results in DTL/TTL/CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2R ladder resistors, resulting in accurate leg currents.

(Switches shown for Digital Inputs "High")

Figure 7. DAC-7541 Functional Diagram

Figure 8. CMOS Switch

APPLICATIONS

General Recommendations

Static performance of the 7541 depends on I_{OUT1} and I_{OUT2} (pin 1 and pin 2) potentials being exactly equal to GND (pin 3).

The output amplifier should be selected to have a low input bias current (typically less than 75nA), and a low drift (depending on the temperature range). The voltage offset of the amplifier should be nulled (typically less than $\pm 200\mu$ V).

The bias current compensation resistor in the amplifier's non-inverting input can cause a variable offset. Noninverting input should be connected to GND with a low resistance wire. Ground-loops must be avoided by taking all pins going to GND to a common point, using separate connections.

The V_{DD} (pin 18) power supply should have a low noise level and should not have any transients exceeding +17 volts.

Unused digital inputs must be connected to GND or V_{DD} for proper operation.

A high value resistor (~1M Ω) can be used to prevent static charge accumulation, when the inputs are open-circuited for any reason.

When gain adjustment is required, low tempco (approximately 50ppm/°C) resistors or trim-pots should be selected.

APPLICATIONS, Continued UNIPOLAR BINARY OPERATION

The circuit configuration for operating the 7541 in unipolar mode is shown in Figure 9. With positive and negative VREF values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1. Schottky diode (HP 5082-2811 or equivalent) prevents I_{OUT1} from negative excursions which could damage the device. This precaution is only necessary with certain high speed amplifiers.

Figure 9. Unipolar Binary Operation (2-Quadrant Multiplication)

BIPOLAR (OFFSET BINARY) OPERATION

The circuit configuration for operating the 7541 in the bipolar mode is given in Figure 10. Using offset binary digital input codes and positive and negative reference voltage values Four-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.

Note: R1 and R2 should be 0.01%, low-TCR resistors.

Figure 10. Bipolar Operation (4-Quadrant Multiplication)

A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to IOUT1 bus. A "Logic 0" input forces the bit current to IOUT2 bus. For any code the IOUT1 and IOUT2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of IOUT2 current and the transconductance amplifier at IOUT1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB = "Logic 1", All other bits = "Logic 0"), is corrected by using an external resistive divider, from VREF to IOUT2. Zero Offset Adjustment

1. Connect all digital inputs to GND.

2. Adjust the offset zero adjust trimpot of the output operational amplifier for 0V $\pm 0.5mV$ (max) at VOUT.

Gain Adjustment

1. Connect all digital inputs to VDD.

2. Monitor VOUT for a -VREF (1-1/212) reading.

3. To increase VOUT, connect a series resistor, (0 to 500 ohms), in the IOUT1 amplifier feedback loop.

4. To decrease VOUT, connect a series resistor, (0 to 500 ohms), between the reference voltage and the VREF terminal.

		TA	BLE 1			
Code	Table	— Uni	polar E	Binary	/ Opera	tion

DIGITAL INPUT	ANALOG OUTPUT				
11111111111	$-V_{\text{REF}}$ (1 - 1/212)				
10000000001	$-V_{REF}$ (1/2 + 1/212)				
10000000000	-V _{REF} /2				
01111111111	-V _{REF} (1/2 - 1/212)				
00000000001	VREF (1/212)				
00000000000	0				

Offset Adjustment

1. Adjust VREF to approximately +10V.

2. Connect all digital inputs to "Logic 1".

3. Adjust IOUT2 amplifier offset zero adjust trimpot for

 $0V \pm 0.1mV$ at IOUT2 amplifier output.

4. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".

5. Adjust IOUT1 amplifier offset zero adjust trimpot for $0V \pm 0.1$ mV at IOUT1 amplifier output.

6. Adjust R4 for $0V \pm 0.2mV$ at VOUT.

0. Adjust 14 101.00 ± 0.2110 at 000

Gain Adjustment

1. Connect all digital inputs to VDD.

2. Monitor VOUT for a -VREF (1 - 1/211) volts reading.

3. To increase VOUT, connect a series resistor, (0 to 500 ohms), in the IOUT1 amplifier feedback loop.

4. To decrease VOUT, connect a series resistor, (0 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 2

Code Table — Bipolar (Offset Binary) Operation

DIGITAL INPUT	ANALOG OUTPUT
11111111111	-V _{REF} (1 - 1/2 ¹¹)
10000000001	-VREF (1/211)
10000000000	0
01111111111	VREF (1/211)
00000000001	VREF (1 - 1/211)
00000000000	VREF

Capacitor, Cc.

Figure 12. DAC-7541 Response with: A = Intersil 741HS

Figure 14. DAC-7541 Response with: A = Datel AM-452

DYNAMIC PERFORMANCE

The dynamic performance of the DAC, also depends on the output amplifier selection. For low speed or static applications, AC specifications of the amplifier are not very critical. For high-speed applications slew-rate, settling-time, openloop gain and gain/phase-margin specifications of the amplifier should be selected for the desired performance.

The output impedance of the 7541 looking into I_{OUT1} varies between $10 k\Omega$ (R_{Feedback} alone) and $5 k\Omega$ (R_{Feedback} in parallel with the ladder resistance).

Similarly the output capacitance varies between the minimum and the maximum values depending on the input code. These variations necessitate the use of compensation capacitors, when high speed amplifiers are used.

A capacitor in parallel with the feedback resistor provides the necessary phase compensation to critically damp the output.

A small capacitor connected to the compensation pin of the amplifier may be required for unstable situations causing oscillations. Careful PC board layout, minimizing parasitic capacitances, is also vital.

Three typical circuits and the resultant waveforms are shown in Figures 11 to 14. A low-cost general purpose (Intersil 741HS), a low-cost high-speed (Intersil 2515) and a highspeed fast-settling Datel AM-452 amplifier cover the principal application areas.

PACKAGE DIMENSIONS

18 PIN CERDIP

1. Lead no. 1 identified by dot or notch.

2. Dimensions in inches (millimeters).

Precision, Multiplying CMOS D/A Converters DAC-HA Series

FEATURES

- 10, 12 & 14 Bit Binary Models
- 3 Digit BCD Model
- 20 MHz Reference Bandwidth
- 2 ppm/°C Gain Tempco
- +5V and +15V Supply Versions
- Input Protected

GENERAL DESCRIPTION

The DAC-HA Series are new, high performance multiplying digital to analog converters specifically designed for critical applications. The series features 10, 12, and 14 bit models and a 3 digit BCD model with a choice of either +5V or +15V power supply options. They are fabricated with advanced thin-film hybrid technology combining low ON-resistance CMOS switches with a precision laser trimmed R-2R ladder network. The ladder network is deposited on glass to realize low distributed capacitance resulting in a 20 MHz minimum reference bandwidth. Digital and power supply inputs are protected against overvoltage and latchup.

The DAC-HA series offer significant performance advantages over similar monolithic multiplying DAC's while retaining the industry 7500 series pin compatibility. Tightly controlled process parameters hold the ladder resistance to 10K ohms $\pm 30\%$ rather than the -50%, +100%tolerance common to monolithic versions. Close temperature tracking between the R-2R ladder and the feedback resistor results in a typical gain tempco of 2 ppm/°C. Linearity error is $\pm ½$ LSB max. for the 10 and 12 bit models and ± 1 LSB max. for the 14 bit model.

The +5V supply versions draw only 1 μ A of supply current while the +15V supply versions draw 1.4 mA; both have optimized accuracy at the specified supply voltages. Different models are also available for three standard operating temperature ranges along with MIL-STD-883 level B versions. The units are packaged in hermetically sealed 16, 18, or 20 pin ceramic packages for the 10, 12, and 14 bit versions respectively.

Applications include digitally controlled attenuators, automatic gain control circuits, CRT character generation, one, two or four quadrant multiplier circuits, one or two quadrant divider circuits, complex function circuits and automatic bridge circuits.

CAUTION: These devices contain CMOS circuits and should be handled with standard anti-static procedures.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, DAC-HA SERIES Typical at 25°C. VREF = \pm 10V. \pm 5V standard or \pm 15V optional ¹ power supply						
	DAC-HA14B	DAC-HA12B	DAC-HA12D	DAC-HA10B		
MAXIMUM RATINGS VDD, +5V Supply Option VDD, +15V Supply Option Logic Input Voltage Reference Input Voltage Output 1 or Output 2 Voltage Feedback Resistor to Gnd	+15V, -10V +40V, -30V +10V, -5V ±25V +5V, -0.5V ±25V	* * * *	* * * *	* * * *		
INPUTS Resolution Coding, Unipolar Operation Logic Threshold, Bit ON ("1") ² Logic Threshold, Bit OFF ("0") ² Logic Input Current ³ Reference Input Voltage Range Reference Input Resistance Reference Input Resistance vs Temp	14 Bits Straight Binary Offset Binary \geq +4.0V \leq +1.0V \pm 1 μ A \pm 12V 10K \pm 30% 0 to +50 ppm/°C	12 Bits * * * * * *	12 Bits BCD 	10 Bits * * * * * *		
OUTPUTS Output Current Range, Either Output Output Capacitance, Output 1 ⁴ Output Capacitance, Output 2 ⁴ Output Capacitance, Output 1 ⁵ Output Capacitance, Output 2 ⁵	±V _{REF} /R _{IN} 260 pF 160 pF 160 pF 260 pF	* 260 pF 160 pF 160 pF 260 pF	* 260 pF 160 pF 160 pF 260 pF	* 55 pF 18 pF 18 pF 55 pF		
PERFORMANCE Integral Linearity Error ⁶ , max Differential Linearity Error ⁰ ver Temp ⁶ Gain Linearity Error, max Gain Error, Before Trimming ⁷ Output Leakage Current, max. ⁸ Gain Temp. Coefficient, ppm/°C ⁹ Monotonicity. Output Current Settling Time, max. ¹⁰ Reference Input Bandwidth, -3 dB Feedthrough at 20 KHz.	\pm 1 LSB \pm ½ LSB typ. \pm 1 LSB max. \pm 2 LSB max. \pm 1 LSB +0, -0.2% 100 pA 2 typ, 5 max. At 25°C 7 μsec. 20 MHz 0.025% 5 ppm of ESB/%	$\pm \frac{1}{2} LSB$ $\pm \frac{1}{2} LSB typ.$ $\pm \frac{1}{2} LSB max.$ $\pm 1 LSB max.$ $\pm \frac{1}{2} LSB$ $\frac{1}{2} typ. 5 max.$ Over Temp Range $5 \mu sec.$ $\frac{1}{2} 0.025\%$ 5 nom of ESB/%	$\pm \frac{1}{2}$ LSB $\pm \frac{1}{2}$ LSB typ. $\pm \frac{1}{2}$ LSB max. ± 1 LSB max. $\pm \frac{1}{2}$ LSB $\frac{1}{2}$ LSB $\frac{1}{2}$ LSB $\frac{1}{2}$ typ, 5 max. Over Temp Range 5μ sec. $\frac{1}{2}$ Over 5 max. $\frac{1}{2}$ Over Temp Range 5μ sec.	$\pm \frac{1}{2}$ LSB $\pm \frac{1}{2}$ LSB typ. $\pm \frac{1}{2}$ LSB max. ± 1 LSB max. $\pm \frac{1}{2}$ LSB $\pm \frac{1}{2}$ LSB $\pm \frac{1}{2}$ LSB $\pm \frac{1}{2}$ LSB $\pm \frac{1}{2}$ LSB $\pm \frac{1}{2}$ LSB $\pm \frac{1}{2}$ LSB max. $\pm \frac{1}$		
POWER REQUIREMENT Standard Version Supply Voltage Standard Version Supply Range Optional Version Supply Voltage ¹ Optional Version Supply Range Optional Version Supply Range	+5 VDC +3V to +7.5V 1 μA +15 VDC +7.5V to +20V 1.4 mA	* * * * *	* * * * *	* * * * *		
PHYSICAL-ENVIRONMENTAL Operating Temp. Range, C Suffix R Suffix M Suffix Storage Temp. Range Package Type, Ceramic	0°C to 70°C -25°C to +85°C -55°C to +125°C -65°C to +150°C 20 Pin DIP	* * * 18 Pin DIP	* * * 18 Pin DIP	* * * 16 Pin DIP		

NOTES:

- 1. The optional +15V version is designated by the Suffix -1.
- Interfaces with TTL logic. See Technical Notes
 Over Operating Temperature Range
- 4. All Digital Inputs HI
- 5. All Digital Inputs LO
- 6. $V_{OUT} 1 = V_{OUT} 2 = \pm 200 \text{ mV}$

*Specification same as first column.

- Adjustable to Zero
 At +125°C Leakages are 100 nA and 50 nA max. respectively.

- 9. Using feedback resistor.
 10. To ½ LSB for full scale digital input change.

THEORY OF OPERATION

The circuit of the DAC-HA series uses a precision, thinfilm R-2R ladder network with R = 10K ohms $\pm 30\%$, as shown in Figure 1. An external reference source is applied at the input of the network, and, depending on the digital input code, the resulting current is split between the Output 1 and Output 2 terminals. The switches at the bottom of the 20K network resistors are low on-resistance, single pole double throw CMOS devices of the type shown in Figure 2. The equivalent input impedance seen by the reference source is shown in Figure 3.

Figure 1. PRECISION DAC-HA CIRCUIT

From the reference end of the network, the input current divides in two at each successive junction as it flows down the ladder. It should be noted that the 20K terminating resistor at the right end of the network goes to Output 2 in the DAC-HA series rather than to ground as in monolithic devices of the 7500 type. The output currents at Output 1 and Output 2 represent the digital complements of one another except for a 1 LSB analog difference. The result is that when Output 1 and Output 2 are added together they always sum to the reference input current.

Furthermore, with a digital input code of 1000....0000, the two output currents are precisely equal. Therefore, in 4 quadrant multiplying applications where the two outputs are subtracted, the result is zero. With 7500 series monolithic units these currents do not cancel each other and an additional 1 LSB offset current must be externally provided to give exact cancellation.

The DAC-HA series are designed to be used with an external operational amplifier which converts the current output into a voltage. Since the feedback resistor tracks the ladder network with temperature, the resulting gain tempco is ± 2 ppm/°C typical except for the 10 bit model. If the output current is used without the internal feedback resistor, the output current tempco is then 0 to -50 ppm/°C.

Figure 2. SINGLE POLE DOUBLE THROW CMOS SWITCH

With an external amplifier at Output 1 the output voltage ranges from zero to $-V_{REF}$ (1-2⁻ⁿ), depending on the input code. If an external amplifier is used at Output 2 with the same value of feedback resistor, the output voltage ranges from zero to $-V_{REF}$ depending on input code.

The DAC-HA series have optimized linearity for the two power supply options +5V and +15V. It should be noted that while 7500 series devices operate over a +5V to +15Vsupply range, nonlinearity increases as the supply voltage is decreased from +15V.

To realize the specified linearity, it is necessary to carefully zero the input offset voltage of the amplifier or amplifiers used at the outputs. The input offset voltage should be zeroed to less than ± 0.1 mV in order to have negligible effect on accuracy. Actually the two offset voltages can be as large as ± 200 mV if they are within ± 0.1 mV of each other.

Figure 3. EQUIVALENT INPUT IMPEDANCE OF DAC-HA REFERENCE INPUT

OUTPUT EQUATIONS

OUTPUT 1 = IIN $(a_1 2^{-1} + a_2 2^{-2} + a_3 2^{-3} + \dots + a_n 2^{-n})$

OUTPUT 2 = IIN ($\bar{a}_1 2^{-1} + \bar{a}_2 2^{-2} + \bar{a}_3 2^{-3} + \dots + \bar{a}_n 2^{-n} + 2^{-n}$)

"a's" are digital coefficients, 0 or 1. n = converter resolution in bits

TECHNICAL NOTES

- 1. CAUTION. The DAC-HA series contains MOS devices and should be handled carefully to prevent static charge pickup that might damage the units. The converters should be kept in conductive foam until ready for installation. During installation the user should be grounded by means of a conductive wrist strap. Do not insert or remove these devices from their sockets unless power is turned off.
- Unused digital inputs should be connected to ground or to +5V, never left open.
- In general, pull-up resistors are not required for TTL logic interfacing. The DAC-HA series will interface directly with all standard TTL circuits and operate within specifications.
- 4. The logic input voltages are stated as ≤ +1.0V for a logic "0" and ≥ +4.0V for a logic "1" at the recommended power supply voltages of +5V or +15V. For other supply voltages in the specified range, the logic "1" level becomes V_{DD}-1 for the 5V version and V_{DD}/3-1 for the +15V version.
- 5. For interfacing with HNIL or CMOS logic where logic HI is greater than +5V, CD4050 interface circuits should be used and connected as shown in the applications diagram.
- The DAC-HA series devices are protected against both power supply and logic input overvoltages by means of series thin-film resistors. The result is that these devices are free from latch-up problems which have been associated with some CMOS multiplying DAC circuits in the past.
- While the DAC-HA series gives optimum accuracy at recommended supply voltage and at room temperature, the maximum linearity error is ±1 LSB over both specified supply range and temperature range for the 10 and 12 bit models and is ±2 LSB for the 14 bit model.
- The supply current is given as the quiescent value. The current increases to 200 µA max. for the +5V version and 1.6 mA max. for the +15V version with all bits switched at a 10 KHz rate at 50% duty cycle. Supply current increases at the rate of 1 µA per KHz of switching frequency.
- 9. The noise output of the DAC-HA devices can be computed from the Johnson noise of the resistance between either output terminal and ground. This resistance varies with input code from 6.67K (based on nominal ladder resistance of 10K) to 30K for Output 2 and from 6.67K to infinity for Output 1. When using an output amplifier at either output the feedback resistor is then in parallel with the ladder resistance, and the noise gain of the amplifier must also be used in the computation.
- 10. Feedthrough, which is specified at 20 KHz, is due to capacitive coupling from the reference input to the output, and increases directly with frequency. The frequency of the reference input is only limited by the amount of feedthrough error.
- 11. With most output amplifiers a small feedback capacitor across the feedback resistor is necessary to compensate for the output capacitance of the DAC-HA. By using a small trim capacitor, the compensation can be adjusted for optimum response.
- 12. It is recommended that output amplifiers with less than 25 nA input bias current be used with the DAC-HA series. This permits precise adjustment of the output voltage to zero with all digital inputs OFF and at the same time assures that the input offset voltage is minimized. For most applications the 356 type op amp is an excellent choice. For faster response, however, Datel's AM-462 is recommended.

CONNECTIONS

DAC-HA CONNECTION WITH 356 OUTPUT AMPLIFIER

DAC-HA CONNECTION FOR FAST VOLTAGE OUTPUT USING DATEL AM-462 MONOLITHIC OPERATIONAL AMPLIFIER

CMOS OR HNIL LOGIC INTERFACE

177C

DIMENSIONS & ORDERING

MECHANICAL DIMENSIONS-INCHES (MM)

MODEL	OPERATING TEMP. RANGE	POWER SUPPLY	MODEL	OPERATING TEMP. RANGE	POWER SUPPLY
DAC-HA10BC	0 to 70°C	+5 VDC	DAC-HA10BC-1	0 to 70°C	+ 15 VDC
DAC-HA10BR	-25 to +85°C	+5 VDC	DAC-HA10BR-1	-25 to +85°C	+ 15 VDC
DAC-HA10BM	-55 to +125°C	+5 VDC	DAC-HA10BM-1	-55 to +125°C	+ 15 VDC
DAC-HA12BC	0 to 70°C	+5 VDC	DAC-HA12BC-1	0 to 70°C	+15 VDC
DAC-HA12BR	-25 to +85°C	+5 VDC	DAC-HA12BR-1	-25 to +85°C	+15 VDC
DAC-HA12BM	-55 to +125°C	+5 VDC	DAC-HA12BM-1	-55 to +125°C	+15 VDC
DAC-HA12DC	0 to 70°C	+5 VDC	DAC-HA12DC-1	0 to 70°C	+ 15 VDC
DAC-HA12DR	-25 to +85°C	+5 VDC	DAC-HA12DR-1	-25 to +85°C	+ 15 VDC
DAC-HA12DM	-55 to +125°C	+5 VDC	DAC-HA12DM-1	-55 to +125°C	+ 15 VDC
DAC-HA14BC	0 to 70°C	+5 VDC	DAC-HA14BC-1	0 to 70°C	+ 15 VDC
DAC-HA14BR	-25 to +85°C	+5 VDC	DAC-HA14BR-1	-25 to +85°C	+ 15 VDC
DAC-HA14BM	-55 to +125°C	+5 VDC	DAC-HA14BM-1	-55 to +125°C	+ 15 VDC

Trimming Potentiometer: TP50 (50 ohms) For high reliability versions of the DAC-HA series including units screened to MIL-STD-883 level B, contact factory.

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 NS SUBJECT TO CHANGE WITHOUT NOTICE

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ultra-Fast Microelectronic D/A Converters DAC-HF Series

FEATURES

- 8, 10, 12 Bit Resolution
- Settling Times to 25 nsec.
- 20 ppm/°C Tempco
- Unipolar or Bipolar Operation
- Current Output
- Internal Feedback Resistor

GENERAL DESCRIPTION

The DAC-HF series of hybrid DAC's are ultra high speed, current output devices. They incorporate state-of-the art performance in a miniature package, achieving maximum output settling times of 25 nanoseconds for the 8 and 10 bit models and 50 nanoseconds for the 12 bit model They can be used to drive a resistor load directly for up to $\pm 1V$ output or a fast operational amplifier (such as Datel-Intersil's AM-500) for higher voltage outputs with sub-microsecond settling times. A tapped feedback resistor and a biopolar offset resistor are included internally to give five programmable output voltage ranges with an external op amp.

The DAC-HF design combines proven hybrid production techniques with advanced circuit design to realize high speed current switching. The design incorporates fast PNP current switches driving a low impedance R-2R thin film ladder network. The nichrome thin film resistor network is deposited by electron beam evaporation on a low capacitance substrate to assure high speed performance. The resistors are then functionally trimmed by laser for optimum linearity.

The digital inputs are TTL compatible and use straight binary coding for unipolar operation and offset binary coding tor bipolar operation. Output current is 0 to ± 5 mA for unipolar operation and ± 2.5 mA for bipolar operation into an output amplifier summing junction. Linearity is $\pm \frac{1}{2}$ LSB, and the converters are monotonic over the operating temperature range specified for each. Gain temperature coefficient is ± 20 ppm/°C maximum.

Applications for the DAC-HF series include high speed function generators, fast computer control systems, graphic display systems, and CRT displays.

Power supply requirement is ± 15 VDC with less than 780 milliwatts consumption. The DAC-HF is available in models covering three operating temperature ranges.

INCHES (MM) CONNECTIONS 0.800 MAX (20,3) PIN FUNCTION PIN FUNCTION 0.160 MAX (4.1) BIT 1 IN (MSB) GROUND 13 0.150 MIN (3,8) 2 BIT 2 IN GROUND 14 0.010 x 0.018 KOVAR 3 BIT 3 IN 15 GROUND 112 13 1 1.200 4 BIT 4 IN REF. IN 16 5 BIT 5 IN 17 20 V RANGE 6 BIT 6 IN 18 OUTPUT 11 SPACES AT 0.100 7 BIT 7 IN 19 10 V RANGE EA (2.5) BOTTOM 1.300 MAX (33,0) BIT 8 IN 20 BIPOLAR OFFSET 8 9 BIT 9 IN 21 REF. OUT 10 BIT 10 IN 22 -15 VDC DOT ON TOP REFERENCES PIN 1 BIT 11 IN 23 GROUND 11 24 - 0.100 BIT 12 IN (LSB) 24 +15 VDC 12 0.100 0.600 (15.2) NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, DAC-HF SER (Typical at 25°C, ±15V supplies unless oth	IES nerwise spe	cified)			Т	ECHNICAL NO	DTES	
	8B	10B	12B	1. F	Proper operation on good board hould be bypass bass capacitors s lirectly to the sup	of the DAC-HF series layout and connec ed as shown in the c should be mounted ply pins where poss	sconverter tion pract onnection close to sible.	rs is dependent ices. Supplies diagrams. By- the converter.
Positive Supply, Pin 24 Negative Supply, Pin 22 Digital Input Voltage, Pins 1 to 12.	+18V -18V +15V			2. U ti c	Use of a ground p o A converters as lecoupling the di cop problems ar loard to the grou	lane is particularly ir s it reduces high fre- gital inputs from the e avoided by conne und plane. The con	nportant ir quency no e analog o cting all g figuration	high speed D ise and aids in utput. Ground rounds on the of the ground
INPUTS Resolution, Bits	8	10	12		plane directly belo ayout diagram. T clude as much of	ow the DAC-HF is sh he remainder of the the circuit board as	ground p possible.	e ground plane lane should in-
Coding, Unipolar Output	Straight I Offset Bin +2.2 to - 0V to +0	Binary nary +5.5V @ 1.8V @ 2.	+40μA 6mA	3. V e 4. 1	When the conver external op-amp, implifier should b The high speed c	ter is configured fo the leads from the be kept as short as p urrent switching tec	r voltage converter ossible. hnique us	output with an to the output ed in the DAC-
OUTPUT Output Current Range, Unipolar Output Current Range, Bipolar Output Voltage Compliance Output Voltage Ranges ²	0 to +5 r ±2.5mA ±1.2V 0 to -5V 0 to -10 ±2.5V ±10V 400 opm	mA V	· · · · · · · · · · · · · · · · · · ·		The series innered arge transient spi jitches occur at jitches occur at jitches occur at jitches occur at out a to 100 hout codes can co duration of the "tr pree of skewing bank of the series segister recommended with two 1 lose. This register	htty reduces the an kes at the output ("gl half-scale, the ma 0 or vice versa. At t create a transition st ransition state code but its effect is deper t DAC will respond degree than a slow [] easily minimized the ter to match input s ended for use with the fexas Instruments S	itches"). Ti jor carry 1 his time a ate code c i is depend dent on th to these br ough the witching til e DAC-HF N74S174	the duration of the most severe irransition from skewing of the if 1111. The Jent on the de- ne speed of the effects of input use of a high- mes. The input is easily imple- hex D-type figure
Output Capacitance Output Leakage Current, All Bits OFF	15 pF			5. 1 ii	ensure fast output esting of the DA tance test probe o assure the sh	t settling times. C-HF should be per (such as a 10X prob portest possible con	formed with he). Care s	th a low capac- hould be taken between probe
PERFORMANCE Linearity Error, max Differential Linearity Error, max Diff. Linearity Tempco Monotonicity Gain Tempco, max	$\pm 1/2$ LS $\pm 1/2$ LS ± 2 ppm, Guarante oper. tem ± 20 ppn	B B /°C eed over np. range n/°C		6. F	penvironmental e. signals that do Passive compon- dicated here: 0.1 peramic type and oad is a 0.1% 10 pmeters are cerm composition type	E.M.I. causing artifactor on to originate at the ents used with the μ F and 1 μ F bypa I tantalum type resp ppm/°C metal film et types: other resist s.	DAC-HF DAC-HF SS capaci ectively: th type: adjust	scope display, r test. may be as in- tors should be e 400Ω output stment potenti- e $\pm 10\%$ carbon
Zero Tempco, max Settling Time, nsec. max. ¹ Power Supply Sensitivity	±1.5 ppr <u>25</u> 0.01%/%	n/°C of F n/°C of I 25 Supply	50	- 7. (- t - r t	Dutput voltage cc he converter. In the vith no load to give node the load re han ± 1.2 Voutput and ± 2.5 mA are light and the second second second second the second	Simpliance is $\pm 1.2V$ the bipolar mode the veran output voltage is stance must be least. The specified output the specified output into a summing the distribution of the specified output the measured into a summing the specified output th	o preserve DAC-HF c of ± 1.0V. ss than 60 but current short circu	e the linearity of an be operated In the unipolar 0Ω to give less s of 0 to +5 mA it or an opera-
POWER REQUIREMENT Supply Voltage	±15VDC) ±0.5V					ATION	
Positive Quiescent Current, max . Negative Quiescent Current, max .	30mA 12mA	35mA 12mA	40mA 12mA	М	ODEL	TEMP. RANGE	SEAL	
PHYSICAL-ENVIRONMENTAL Operating Temperature Range Storage Temperature Range Package Type	0°C to -25°C to -55°C to -65°C to 24 Pin C	D +70°C D +85°C D +125° D +125° D +150° eramic D	(BMC) (BMR) C (BMM) C IP	ים ים ים ים ים ים	AC-HF8BMC AC-HF8BMR AC-HF8BMM AC-HF10BMC AC-HF10BMR AC-HF10BMM	0° to +70°C -25° to +85°C -55° to +125°C 0° to +70°C -25° to +85°C -55° to +125°C	Hermetic Hermetic Hermetic Hermetic Hermetic Hermetic	:
Pins Weight	.010 x .0 0.2 oz. (6	18 inch k Sg.)	(ovar	D/ D/ D/	AC-HF12BMC AC-HF12BMR AC-HF12BMM	0° to +70°C -25° to +85°C -55° to +125°C	Hermetic Hermetic Hermetic	
 NOTES: 1. Full scale current change 2. With External Operationa 3. F.S.R. is Full Scale Ran between minimum and r 	e to 1 LSB al Amplifie ge, or the naximum	with 400 r. differenc output va	Ω load. ce alues.	Ma Tri Fc un T F	ating Socket: DIL mming Potention or high reliability v its screened to N	S-3 (24-pin socket) meters. TP-100 or T versions of the DAC /IIL-STD-883 Level f	P25K HF series 3, contact 5D BY GS	including factory. A CONTRACT

CONNECTION AND CALIBRATION

UNIPOLAR CURRENT OUTPUT CONNECTIONS

UNIPOLAR CURRENT OUTPUT CALIBRATION PROCEDURE

- 1. Connect the converter as shown in the connection diagram.
- 2. Set all inputs LO and adjust the ZERO ADJUST potentiometer for a reading of 0V at the output.
- Set all inputs HI and adjust the GAIN ADJUST potentiometer for a reading of -F.S. +ILSB (given in the coding table for 12 bit units).

BIPOLAR CURRENT OUTPUT CALIBRATION PROCEDURE

- 1. Connect the converter as shown in the connection diagram.
- 2. Set all inputs LO and adjust the OFFSET ADJUST potentiometer for an output reading of +F.S., (given in the coding table for 12 bit units).
- 3. Set all inputs HI and adjust the GAIN ADJUST potentiometer for an output reading of -F.S. +1 LSB, (given in the coding table for 12 bit units).

CODING TABLES UNIPOLAR OUTPUT

UNIPOLAR	INPUT CODING	ANALOG OUTPUT		PUT
SCALE	STRAIGHT BINARY	0 to +1V F.S.	0 to - 5V F.S.	0 to -10V F.S.
F.S. 11 LSB	1111 1111 1111	+0.9998V	-4.9988V	-9.9976V
¾ F.S.	1100 0000 0000	+0.7500V	-3.7500V	-7.5000V
- ½ F.S.	1000 0000 0000	+0.5000V	-2.5000V	-5.0000V
- ¼ F.S.	0100 0000 0000	+0.2500V	-1.2500V	-2.5000V
-1 LSB	0000 0000 0001	+0.0002V	-0.0012V	-0.0024V
0	0000 0000 0000	0.0000V	0.0000V	V00000

BIPOLAR OUTPUT

BIPOLAR	INPUT CODING	ANALOG OUTPUT			
SCALE	OFFSET BINARY	±0.5V F.S.	±2.5V F.S.	±5V F.S.	±10V F.S.
-F.S.+1LSB	1111 1111 1111	+0.4998V	-2.4988V	-4.9976V	-9.9951V
-1/2 F.S.	.1100 0000 0000	+0.1250V	-1.2500V	-2.5000V	-5.0000V
-1 LSB	1000 0000 0001	+0.0002V	-0.0012V	-0.0024V	-0.0049V
0	1000 0000 0000	V0000.0	0.0000V	0.0000V	0.0000V
+½ F.S.	0100 0000 0000	-0.1250V	+1.2500V	+2.500V	+5.0000V
+F.S1LSB	0000 0000 0001	-0.4998V	+2.4988V	+4.9976V	+9.9951V
,+F.S.	0000 0000 0000	-0.5000V	+2.5000V	+5.0000V	+10.0000V

PROGRAMMABLE OUTPUT RANGE PIN CONNECTIONS

OUTPUT VOLTAGE RANGE	FEEDBACK CONNECTION	CONNECT THESE PINS TOGETHER
0 to −5V	PIN 19	PIN 17 to PIN 18 PIN 20 to PIN 23
0 to -10V	PIN 19	PIN 20 to PIN 23
±2.5V	PIN 19	PIN 17 to PIN 18 PIN 20 to PIN 23
±5V	PIN 19	PIN 20 to PIN 23
±10V	PIN 17	PIN 20 to PIN 23

In all Programmable Output Ranges PIN 18 connects to external OP-AMP inverting input

APPLICATIONS

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

12-Bit Hybrid DAC's with Input Register DAC-HK Series

FEATURES

- 12-Bit Resolution
- 20 ppm/°C Tempco
- Input Register
 Coding Option
- 3 Coding Options
 East Sottling Time
- Fast Settling Time

GENERAL DESCRIPTION

The DAC-HK series hybrid D/A converters are high performance 12-bit devices with a fast settling voltage output. They incorporate a level controlled input storage register and are specifically designed for systems applications such as data bus interfacing with computers. When the "load" input is high data in the storage register is held, and when the load input is low data is transferred through to the DAC. There are three basic models available by coding option: binary, BCD, and two's complement. The output voltage ranges are externally pin-programmable and include: 0 to +2.5 V, 0 to +5 V, 0 to +10 V, ± 2.5 V, ± 5 V, and ± 10 V.

The DAC-HK design is based on proven, reliable thin film hybrid technology. Quad current switches are combined with a low T.C. thin film resistor network and a low T.C. Zener reference to achieve better than 20 ppm/°C gain tempco. Optimum linearity is attained by functional laser trimming of the thin film nichrome resistors. The tight temperature tracking of these resistors and the quad current switch transistors result in a differential linearity error tempco of only 2 ppm/°C. Each model of the DAC-HK series is monotonic over its operating temperature range.

The converters are cased in 24-pin ceramic packages. Models are available for three different operating temperature ranges: 0 to 70, -25 to +85, and -55 to +125 degrees Centigrade. High reliability versions of each model are also available under Datel-Intersil's "S" program and MIL-STD-883 level B screening. Power requirement is ± 15 VDC and +5 VDC. Total power dissipation is 900 milliwatts.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, DAC-HK SER (Typical at 25°C, ±15 V and +5 V supplies	ES unless otherwise noted)	
	DAC-HK12B	DAC-HK12D
MAXIMUM RATINGS Positive Supply, pin 22 Negative Supply, pin 14 Logic Supply, pin 13 Digital Input Voltage, pins 1-12 & 16 Output Current, pin 15	+ 18 V - 18 V +5.25 V +5.5 V ±20 mA	* * * *
INPUTS Resolution Coding, unipolar output Coding, bipolar output	12 bits Straight Binary Offset Binary Two's Complement 1	3 digits BCD - -
Input Logic Level, bit ON ("1") Input Logic Level, bit OFF ("0") Logic Loading Load Input ² Load Input Loading	+2.0 V to - 0 V to +0 1 LSTTL I HI ("1") = ho LO ("0") = tr. 3 LSTTL I	+5.5 V 0.8 V oad Did data ansfer data oads
OUTPUT Output Voltage Ranges ³ , unipolar	0 to +5 V 0 to +10 V	0 to +2.5 V 0 to +5 V 0 to +10 V
Output Voltage Ranges ³ , bipolar Output Current Output Impedance	±2.5 V ±5 V ±10 V ±5 mA min. 0.05 ohm	- - * *
PERFORMANCE	1	
Linearity Error, max. Differential Linearity Error, max. Gain Error, before trimming. Zero Error, before trimming. Gain Tempco, max. Zero Tempco, unipolar, max. Offset Tempco, bipolar, max. Diff. Linearity Error Tempco.	±½ LSB ±½ LSB ±0.1% ±0.1% ±20 ppm/°C ±5 ppm/°C of FSR ±10 ppm/°C of FSR ±2 ppm/°C of FSR	±¼ LSB ±¼ LSB * * *
Monotonicity	Guaranteed over oper	. temp. range
Settling Time, 5 V change Settling Time, 10 V change Settling Time, 20 V change Settling Time, 1 LSB change Slew Rate Power Supply Rejection	3 μsec. 3 μsec. 4 μsec. 800 nsec. 20 V/μsec. ±0.002% FSR/%	3 μsec. 4 μsec. - * *
POWER REQUIREMENT	+15 VDC ±0.5 V at 15 -15 VDC ±0.5 V at 30 +5 VDC ±0.25V at 6	5 mA 0 mA 5mA
PHYSICAL-ENVIRONMENTAL Operating Temperature Range Storage Temperature Range Package Type Pins Weight	$\begin{array}{c} 0^{\circ}\text{C to } 70^{\circ}\text{C (BGC, BMC)} \\ -25^{\circ}\text{C to } +85^{\circ}\text{C (BMR)} \\ -55^{\circ}\text{C to } +125^{\circ}\text{C (BMM)} \\ -55^{\circ}\text{C to } +125^{\circ}\text{C} \\ 24\text{-pin Ceramic DIP} \\ 0.010 \times 0.018 \text{ inch Kovar} \\ 0.2 \text{ oz. (6g.)} \end{array}$	
	*Same specification a	s first column.

NOTES:

- 1. For two's complement coding order the model described under ordering information.
- 2. Logic levels are the same as for data inputs.
- 3. By external pin connection.

TECHNICAL NOTES

- 1. It is recommended that these converters be operated with local supply bypass capacitors of 1 μ F (tantalum type) at the +15, -15, and +5 V supply pins. The capacitors should be connected as close to the pins as possible. In high RFI noise environments these capacitors should be shunted with .01 μ F ceramic capacitors.
- The analog, digital, and power grounds should be separated from each other as close as possible to pin 21 where they all must come together.
- 3. The "load" control pin is a level triggered input which causes the register to hold data with a HI input and transfer data to the DAC with a LO input.
- A setup time of 50 nsec. minimum must be allowed for the input data. The DAC output voltage begins to change when the register output changes.
- 5. The external gain adjustment shown in the Connection Diagrams has a range of $\pm 0.2\%$ of full scale. If a wider range is desired the 18-Megohm resistor can be decreased slightly in value. The full scale output is typically accurate within $\pm 0.1\%$ with no adjustment. The zero, or offset, adjustment has a range of $\pm 0.35\%$ of FS.
- 6. If the reference output terminal (pin 24) is used an operational amplifier in non-inverting mode should be used as a buffer. Current drawn from pin 24 should be limited to $\pm 10\mu A$ in order not to affect the T.C. of the reference.

ORDERING	INFORMATION

MODEL	TEMP. RANGE	SEAL			
Binary Coding					
DAC-HK12BGC DAC-HK12BMC DAC-HK12BMR DAC-HK12BMM BCD Coding	0 to 70°C 0 to 70°C -25 to +85°C -55 to +125°C	Epoxy Herm. Herm. Herm.			
DAC-HK12DGC DAC-HK12DMC DAC-HK12DMR DAC-HK12DMR	0 to 70°C 0 to 70°C -25 to +125°C -55 to +125°C	Epoxy Herm. Herm. Herm.			
2's Complement C	oding				
DAC-HK12BGC-2 DAC-HK12BMC-2 DAC-HK12BMR-2 DAC-HK12BMM-2	0 to 70°C 0 to 70°C -25 to +85°C -55 to +125°C	Epoxy Herm. Herm. Herm.			
Mating Socket: DILS-3(24-pin socket) Trimming Potentiometers: TP100K (100K ohms)					
For high reliability versions of the DAC-HK se- ries, including units screened to MIL-STD-883 level B, contact factory.					
THESE CONVER	TERS ARE CO	ERED BY			

GSA CONTRACT.

TIMING DIAGRAM

CONNECTION DIAGRAMS

-O 20 SUM. JUNCTION

O 19 20V RANGE

• 18 10V RANGE O 15 OUTPUT

O 17 BIPOLAR OFF.

O 24 REF. OUT

O 21 GROUND

OUTPUT CIRCUIT

5K*

6.3V + REF. -

FULL SCALE I out

= 2 mA (BINARY)

*FOR BCD MODELS THESE RESISTORS ARE 4KΩ.

5K

Ş

= 1.25mA (BCD)

lout

OUTPUT RANGE SELECTION

BINARY, 2's COMP.	CONNECT	THESE PINS	TOGETHER
±10 V ±5 V ±2.5 V +10 V +5 V	15 & 19 15 & 18 15 & 18 15 & 18 15 & 18 15 & 18	17 & 20 17 & 20 17 & 20 17 & 21 17 & 21	19 & 20 19 & 20
BCD	CONNECT	THESE PINS	TOGETHER
+ 10 V + 5 V +2.5 V	15 & 19 15 & 18 15 & 18	19 & 20	17 & 21 17 & 21 17 & 21

5K*

6.3K

186C

CODING TABLES

UNIPOLAR OPERATION

STRAIGHT BINARY	OUTPUT RANGES		
MSB LSB	0 to +10 V	0 to +5 V	
1111 1111 1111 1100 0000 0000 1000 0000 0000 0100 0000 0000 0000 0000 0001	+9.9976 +7.5000 +5.0000 +2.5000 +0.0024	+ 4.9988 + 3.7500 + 2.5000 + 1.2500 + 0.0012	

BCD	0	OUTPUT RANGES			
MSB LS	B 0 to +10 V	0 to +5 V	0 to +2.5 V		
1001 1001 1001 1000 0101 0000 0101 0000 0000 0010 0101 0000 0000 0000 0001 0000 0000 0000	+9.990 +7.500 +5.000 +2.500 +0.010 0.000	+4.995 +3.750 +2.500 +1.250 +0.005 0.000	+2.498 +1.875 +1.250 +0.625 +0.003 0.000		

BIPOLAR OPERATION

OFFSET BINARY	TWO'S COMPLEMENT	OUTPUT RANGES		ES
MSB LSB	MSB LSB	±10 V	±5 V	±2.5 V
1111 1111 1111 1100 0000 0000 1000 0000 0000 0100 0000 0000 0000 0000 0001 0000 0000 0000	0111 1111 1111 0100 0000 0000 0000 0000 0000 1100 0000 0000 1000 0000 0001 1000 0000 0000	+9.9951 +5.0000 0.0000 -5.000 -9.9951 -10.0000	+4.9976 +2.5000 -2.5000 -4.9976 -5.0000	+2.4988 +1.2500 0.0000 -1.2500 -2.4988 -2.5000

APPLICATION

Printed in U.S.A. Copyright \circledast 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

187C

FEATURES

16 Bit Binary Model

- 4 Digit BCD Model
- Voltage Output
- 15ppm/°C max. Gain Tempco
- Linearity to ±0.003%

GENERAL DESCRIPTION

The DAC-HP series are high resolution hybrid D/A converters with voltage output. They are self-contained, including a low tempco zener reference circuit and output operational amplifier, all in a miniature 24 pin double spaced ceramic DIP package. There are two basic models in the series. The DAC-HP16B has 16 bit binary resolution with $\pm 0.003\%$ linearity while the DAC-HP16D has 4 digit BCD resolution with ±0.005% linearity. Input coding is complementary binary and complementary offset binary for the DAC-HP16B and complementary BCD for the DAC-HP16D. The binary version operates in both unipolar and bipolar modes with output voltages of 0 to +10V and ±5V respectively. Binary versions with a bipolar output voltage range of $\pm 10V$ are available, denoted by the suffix "-1" after the model designation. The BCD version operates in the unipolar mode only with 0 to +10V output.

The DAC-HP design incorporates thin film hybrid technology which has been in volume production. Selected low tempco nichrome-on-silicon thin film resistor networks are combined with tightly matched quad current switches to achieve 16 bit resolution. The thin film resistors together with the low tempco zener reference circuit result in a maximum gain tempco of \pm i5ppm/°C for the DAC. The thin film resistors are functionally laser trimmed for optimum converter linearity.

The resolution, stability, and voltage output of these converters make them ideal for precision applications such as speech and waveform reconstruction, precision ramp generators, and computer controlled testing. They are available in three operating temperature ranges: 0 to 70° C, -25 to $+85^{\circ}$ C, and -55 to $+125^{\circ}$ C. High reliability versions are also available under Datel Intersil's "S" program and MIL-STD-883 level B screening. Power requirement is ± 15 VDC.

16-Bit, Microelectronic Digital-to-Analog Converters DAC-HP16B And DAC-HP16D

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

0.600

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE

24

0.100

0.100

DOT ON TOP

REFERENCES PIN 1 **Data Acquisition**

SPECIFICATIONS, DAC-HP SERIES (Typical at 25°C, and ±15 V supplies unless otherwise noted)

DAC-HP16B (Binary)	DAC-HP16D (BCD)
+ 18V - 18V + 5.5V ± 20mA	- * * *
16 bits Comp. Binary Comp. Off. Binary OV to +0.8V	4 digits Comp. BCD
+2.4V to +5.9	5V @ +40μA *
0 to +10V ±5V ±10V ±5 mA 0.05 ohm	• - 0 to -5mA •
$\begin{array}{l} \pm 0.003\% \\ 14 \text{ bits} \\ \pm 0.1\% \\ \pm 0.1\% \\ \pm 15 \text{ppm/°C} \\ \pm 20 \text{ppm/°C} \\ \pm 20 \text{ppm/°C} \\ \pm 20 \text{ppm/°C} \\ \text{of FSR4} \\ \pm 2 \text{ppm/°C of FSR4} \\ \pm 2 \text{ppm/°C of FSR4} \\ 15 \mu \text{sec.} \\ 20 \text{V} / \mu \text{sec.} \\ \pm 0.002\% \text{ FSR/\%} \end{array}$	±0.005% 16 bits * * * * 15µsec. *
+ 15VDC - 15VDC	at 38mA at 38mA
. 0° C to 70° C (BMC, DMC, BGC, DG -25° C to +85° C (BMR, DMR) -55° C to +125° C (BMM, DMM) -65° C to +150° C . 24 pin ceramic . 0.010 x 0.018 inch diameter Kovar . 0.2 oz. (6g.)	
	DAC-HP16B (Binary) +18V -18V +5.5V ±20mA 16 bits Comp. Binary Comp. Off. Binary 0V to +0.8V +2.4V to +5.3 1 TTL load 0 to +10V ±5V ±10V ±5V ±10V ±5 mA 0.05 ohm ±0.003% 14 bits ±0.1% ±0.1% ±0.1% ±15ppm/°C ±20ppm/°C ±2.4V to +5.3 1 TTL load 0 to +10V ±5V ±10V ±5 mA 0.05 ohm ±0.003% 14 bits ±0.1% ±0.1% ±0.002% FSR4 ±2ppm/°C of FSR4

NOTES:

1 Drive from TTL output with only the DAC-HP as load.

2. Unipolar output range for suffix "—1" models, 0 to +10V, is reached at $\frac{1}{2}$ scale input.

3. For all models except DAC-HP16BGC & DAC-16DGC.

- 4. FSR is 0 to +FS or -FS to +FS voltage.
- 5. To 0.005% FSR. 6 Pin 17

TECHNICAL NOTES

- 1. It is recommended that these converters be operated with local supply bypass capacitors of 1μ F (tantalum type) at the +15V and -15V supply pins. The capacitors should be connected as close to the pins as possible. In high frequency noise environments an additional $.01\mu$ F ceramic capacitor should be used in parallel with each tantalum bypass.
- 2. The analog, digital, and power grounds should be separated from each other as close as possible to pin 20 where they all must connect together.
- 3. The external gain adjustment shown in the diagrams gives an adjustment of $\pm 0.2\%$ of full scale range. The converters are internally trimmed to $\pm 0.1\%$ at full scale. A wider range of adjustment may be achieved by decreasing the value of the 510K ohm resistor.
- 4. The zero adjustment, or offset adjustment, has an adjustment range of $\pm 0.35\%$ of full scale range. The unipolar zero is internally set to zero within $\pm 0.1\%$ of full scale range.
- 5. If the reference output (pin 24) is used, it must be buffered by an operational amplifier in the noninverting mode. Current drawn from pin 24 should be limited to $\pm 10\mu$ A in order that the temperature coefficient of the reference circuit not be affected. This is sufficient current for the bias current of most of the popular operational amplifier types.

ORDERING INFORMATION

	OPER.	
MODEL	TEMP. RANGE	SEAL
DAC-HP16BGC	0 to 70C	EPOXY
DAC-HP16BMC	0 to 70C	HERM.
DAC-HP-16BMR	-25 to +85C	HERM.
DAC-HP16BMM	-55 to +125C	HERM.
DAC-HP16BMC-1	0 to 70C	HERM.
DAC-HP16BMR-1	-25 to +85C	HERM.
DAC-HP16BMM-1	-55 to +125C	HERM.
DAC-HP16DGC	0 to 70C	EPOXY
DAC-HP16DMC	0 to 70C	HERM.
DAC-HP16DMR	-25 to +85C	HERM.
DAC-HP16DMM	-55 to +125C	HERM.

Mating Socket: DILS-3 (24 pin socket)

Trimming Potentiometer: TP50K

For high reliability versions of the DAC-HP series, including units screened to MIL-STD-883, Level B, contact factory.

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

APPLICATION

CONNECTION AND CALIBRATION

CODING TABLES

BIPOLAR OUTPUT – Complementary Offset Binary

INPUT CODE	SCALE	OUTPUT	OUTPUT VOLTAGE
MSB LSB		VOLTAGE	SUFFIX "-1" MODELS
0000 0000 0000 0000 0011 1111 1111 1111	+FS-1LSB +½FS 0 -½FS -FS+1LSB -FS	+4.99985V +2.50000 0.00000 -2.50000 -4.99985 -5.00000V	+9.99969V +5.0000 0.00000 -5.00000 -9.99969 -10.00000V

UNIPOLAR OUTPUT-Complementary BCD

		INPUT	CODE			OUTPUT	
N	ISB			LSB	SCALE	VOLTAGE	
	011	0 0110	01100)110 -	+FS-1LSB	+9.999V	
	100	0 1010	1111 1	111	+%FS	+7.500	
	101	0 1 1 1 1	11111	111	+½FS	+5.000	
	110	1 1010	11111	111	+¼FS	+2.500	
	111	1 1 1 1 1	11111	110	+1LSB	+1.00mV	
	111	1 1 1 1 1	1111 1	1111	0	0	

UNIPOLAR OUTPUT-Complementary Binary

			-	
INPUT	CODE			OUTPUT
MSB	LS	SB	SCALE	VOLTAGE
0000 0000	0000 0000) +	FS-1LSB	+9.99985V
0011 1111	1111 1111	1	+¾FS	+7.50000
0111 1111	1111 1111	1	+½FS	+5.00000
1011 1111	1111 1111	1	+¼FS	+2.50000
1111 1111	1111 1110)	+1LSB	+153μV
1111 1111	1111 111	1	0	0

UNIPOLAR OPERATION

BIPOLAR OPERATION

CALIBRATION PROCEDURE

Connect the converter as shown in the application diagrams. For bipolar operation connect Bipolar Offset (pin 18) to Summing Junction (pin 21). For unipolar operation connect Bipolar Offset (pin 18) to Ground (pin 20). In making the following adjustments, refer to the coding tables.

UNIPOLAR OPERATION

- 1. Zero Adjustment. Set the input digital code to 1111 1111 1111 1111 and adjust the ZERO ADJ. potentiometer to give 0.00000V output.
- 2. Gain Adjustment. Set the input digital code to 0000 0000 0000 0000 (complementary binary) or 0110 0110 0110 0110 (complementary BCD) and adjust the GAIN ADJ. potentiometer to give +9.99985V output (complementary binary) or +9.999V output (complementary BCD).

BIPOLAR OPERATION

- 1. Offset Adjustment. Set the Digital Input Code to 1111 1111 1111 1111 and adjust the OFFSET ADJ. potentiometer to give the -F.S. output shown in the coding table above for the model being calibrated.
- 2. Gain Adjustment. Set the Digital Input Code to 0000 0000 0000 0000 and adjust the GAIN ADJ. potentiometer to give the +FS-1 LSB output shown in the coding table above for the model being calibrated.

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dailas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

12 Bit Hybrid Digital-to-Analog Converters DAC-HZ Series

FEATURES

- 12 Bit Binary or 3 Digit BCD
- 5 Output Ranges
- 3 µSec. Settling Time
- Internal Ref. & Output Amp.
- High Performance

GENERAL DESCRIPTION

The DAC-HZ series are high performance, hybrid 12 bit binary and 3 digit BCD digital-to-analog converters. These converters are manufactured in volume in Datel Intersil's modern in-house thin film hybrid facility. They are complete and self-contained with a precision internal reference and fast output operational amplifier. Pin programmable output voltage ranges are provided for a high degree of application flexibility; the output voltage ranges are 0 to +5V, 0 to +10V, $\pm 2.5V$, $\pm 5V$, and $\pm 10V$ with only unipolar ranges available on the BCD models. Current output is also provided.

The internal design utilizes three quad current switches, two thin film resistor networks, a precision zener reference circuit, reference control circuit and output amplifier. The thin film resistor networks are functionally trimmed with a laser to precisely set the binary weights of the current switches. The excellent tracking of the thin film resistors in conjunction with the tightly matched current switches results in a differential nonlinearity tempco of only 2ppm/°C. Temperature coefficient of gain is ±20ppm/°C max. and tempco of zero is

The DAC-Hz series consists of 8 different models covering the operating temperature ranges of 0°C to 70°C, -25°C to +85°C, and -55°C to +125°C. The models come in a 24-pin ceramic package. Power requirement is ± 15 VDC at 35mA with no 5V logic supply required. Input coding is complementary binary or complementary BCD. Voltage output settling time is 3 μ sec. to ½ LSB.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, DAC-HZ SERIES (Typical at 25 $^{\circ}$ C and ±15V supplies unless otherwise noted)

	DAC-HZ12B (Binary)	DAC-HZ12D (BCD)
INPUTS Resolution	12 Binary bits Complementary Binary Comp. Offset Bin.	3 BCD digits Complementary BCD
Input Logic Level, bit ON ("0") Input Logic Level, bit OFF ("1") Logic Loading	0V to +0.8V +2.4V to +5.5 1 TTL	@ −1mA ;v @ +40μA load
OUTPUTS Output Current, unipolar Output Current, bipolar Voltage Compliance, lout Output Impedance, lout, unipolar Output Voltage Ranges, unipolar Output Voltage Ranges, bipolar Output Current, Vout Output Unipolar Ranges, bipolar	0 to -2mA, ±10% ±1mA, ±10% ±2.5V 5K ohms 2.8K ohms 0V to +5V 0V to +10V ±2.5V ±5V ±10V ±5mA min. .05 ohm	0 to -1.25mA, ±10% - * 0 to +2.5V 0 to +5V 0 to +10V - - * *
PERFORMANCE, Voltage Output Nonlinearity Differential Nonlinearity Gain Error, before trimming Zero Error, before trimming Gain Tempco, max. Zero Tempco, unipolar, max. Offset Tempco, biopolar, max. Diff. Nonlinearity Tempco Monotonicity Settling Time, lout to 1/2 LSB ² Slew Rate Power Supply Rejection	±1/2 LSB max. ±1/2 LSB max. ±0.1% of FSR ¹ ±0.1% of FSR ¹ ±20ppm/°C ±5ppm/°C of FSR ¹ ±10ppm/°C of FSR ¹ ±2ppm/°C of FSR ¹ Over oper. temp. range 300nsec. 3 μsec. ³ 20V/μsec. ±.002% FSR/ % Supply ¹	±1/4 LSB max. ±1/4 LSB max. * * * * * * * * *
POWER REQUIREMENT Power Supply Voltage Quiescent Current	±15VD0 35	C ±0.5V mA
PHYSICAL-ENVIRONMENTAL Operating Temperature Ranges	0°C to 70°C. –25°C	to +85°C.

 PHYSICAL-ENVIRONMENTAL
 0°C to 70°C, -25°C to +85°C, and -55°C to +125°C

 Operating Temperature Range
 -65°C to +125°C

 Storage Temperature Range
 -1300 x 0.800 x 0.160 inches

 Package Size
 24 Pin Ceramic DIP

 Pins
 Kovar 0.010 x 0.018 inches

 Weight
 0.22 oz. (63 g.)

*Specifications same as first column

- 1. FSR is full scale range and is 10V for 0 to +10V or -5V to +5V output; 20V for $\pm 10V$ output, etc.
- 2. Current output mode.
- 3. For 2.5K or 5K feedback (2K or 4K, BCD). For 10K feedback (8K, BCD) the settling time is 4 µsec.

TECHNICAL NOTES

- 1. The DAC-HZ12 series converters are designed and factory calibrated to give $\pm \%$ LSB linearity (binary version) and $\pm \%$ LSB linearity (BCD version) with respect to a straight line between end points. This means that if zero and full scale are exactly adjusted externally, the relative accuracy will be $\pm 1/2$ LSB ($\pm 1/4$ LSB, BCD) everywhere over the full output range without any additional adjustments to achieve a best straight line fit. The linearity specification is therefore a conservative one since the user does not have to make more complicated adjustments for a best straight line fit.
- 2. The external zero or offset adjustment for the converters has a range of $\pm 0.2\%$ of full scale and the external gain adjustment has a range of $\pm 0.3\%$ of full scale.
- 3. These converters must be operated with local supply by-pass capacitors from +15V to ground and -15V to ground. Tantalum type capacitors of 1μ F are recommended and should be mounted as close as possible to the converter. If the converters are used in a high frequency noise environment a .01 μ F ceramic capacitor should be used across each tantalum capacitor.
- 4. When operating in the current output mode the equivalent internal current source of 2mA (1.25mA, BCD) must drive both the internal source resistances and the external load resistor. A 300 nsec. output settling time is achieved for the voltage across a 100 ohm load resistor; for higher value resistors the settling time becomes longer due to the output capacitance of the converter. For fastest possible voltage output for a large transition, an external fast settling amplifier such as Datel-Intersil's AM-500 should be used in the inverting mode. Settling time of less than 1 µsec. can be achieved. See application diagram.

ORDERING INFORMATION

	Operating	
Model	Temp. Range	Seal
DAC-HZ12BGC	0° C to +70° C	Epoxy
DAC-HZ12BMC	0° C to +70° C	Hermetic
DAC-HZ12BMR	-25° C to +85° C	Hermetic
DAC-HZ12BMM	-55° C to +125°C	Hermetic
DAC-HZ12DGC	0° C to +70°C	Epoxy
DAC-HZ12DMC	0° C to $+70^{\circ}$ C	Hermetic
DAC-HZ12DMR	-25° C to +85° C	Hermetic
DAC-HZ12DMM	-55° C to +125° C	Hermetic

Mating Socket: DILS-3 (24 pin socket)

Trimming Potentiometers: TP10K OR TP100K

For high reliability versions of the DAC-HZ series, including units screened to MIL-STD-883 level B, contact factory.

The DAC-HZ12 SERIES CONVERTERS ARE COVERED BY GSA CONTRACT.

INTERCONNECTIONS AND CALIBRATION

CALIBRATION PROCEDURE

- Select the desired output range and connect the converter up as shown in the Output Range Selection table and the Standard Connection diagrams below.
- 2. To calibrate refer to the Coding Tables below. Note that complementary coding is used.
- 3. Zero and Offset Adjustments

For unipolar operation set all digital inputs to "1" (+2.0 to +5.5V) and adjust the ZERO ADJ, potentiometer for zero output voltage or current. For bipolar operation (binary model only) set all digital inputs to "1" and adjust the OFFSET ADJ, potentiometer for the negative full scale (for voltage out) or positive full scale (for current out) output value shown in the Coding Table.

4. Gain Adjustment

For the binary model set all digital inputs to "0" (0V to +0.8V) and adjust the GAIN ADJ, potentiometer for the positive full scale (for outrage out) or negative full scale (for current out) output value shown in the Coding Table. For the BCD model (unipolar only) set each BCD digit to 0110 and adjust the GAIN ADJ, potentiometer for the positive full scale (for outgae out) or negative full scale (for current out) output value shown in the Coding Table.

OUTPUT RANGE SELECTION

BIN RANGE	CONNEC	T THESE	PINS TOO	SETHER
±10V	15 & 19	17 & 20		16 & 24
±5V	15 & 18	17 & 20		16 & 24
±2.5V	15 & 18	17 & 20	19 & 20	16 & 24
+10V	15 & 18	17 & 21		16 & 24
+5 V	15 & 18	17 & 21	19 & 20	16 & 24
±1mA		17 & 20	1.1	16 & 24
-2mA	1.1	17 & 21		16 & 24
BCD RANGE	CONNEG	T THESE	PINS TO	GETHER
+10V	15 & 19	17 & 21	1	16 & 24
+5V	15 & 18	17 & 21	1 - 1 - 10	16 & 24
+2.5V	15 & 18	17 & 21	19 & 20	16 & 24
-1.25MA		17 & 21		16 & 24

VOLTAGE OUTPUT IS AT PIN 15. CUBBENT OUTPUT IS AT PIN 20.

STANDARD CONNECTIONS

EQUIVALENT CIRCUITS & APPLICATIONS USE OF HIGH SPEED EXTERNAL OP AMP EQUIVALENT CURRENT MODE OUTPUT CIRCUIT FOR FASTER SETTLING Refer to the 6.3k* BIPOLAR Output Range 17) ^^ _R OFFSET Selection Table. VOUT = ±2.5V MAXIMUM BIPOLAR OFFSET CURRENT Where pin 15 appears (OUTPUT VOLTAGE Pin 20 or 21 OUT COMPLIANCE) use oin X of external 20 amplifier and scale as 10 V. RANGE DAC-HZ12B desired OR В. 5КΩ DAC-HZ12D 5 Vout 20 V. RANGE R_{EQ} 6.3\ Jour 19 (Bin or BCD) CURRENT OUT OUT 20) DAC-HZ12B OR DAC-HZ12D EXTERNAL HIGH SPEED INVERTING OP AMP. USE DATEL SYSTEMS AM-500 FOR LESS THAN 1.0 #SEC. OUTPUT SETTLING. R_{EQ} = R_o = 5K for unipolar operation REO = RR II Ro = 2.8K for bipolar operation Open circuit in DAC-HZ12D OUT = 2mA binary = 1.25mA BCD USE OF A SINGLE BUFFERED REFERENCE IN A MULTI-DAC SYSTEM FOR IMPROVED TEMPERATURE TRACKING DAC #2 DAC #S DAC #1 012 130 012 130 ٥ 0 ٥ ٥ 012 13 0 000 ō 0 ō 0 16.0 16 0 0000 000000000 ō 00000 17 0 17 0 16.0 0 0 0 õ 170 0 0 0 o o õ 0 0 ō 0 0 0 000 0 μA741 0 o 0 01 24 0 01 24 Ŏ 0 OR FOUIVALENT 0 ò 01 24 0 BUFFER AMP EACH REFERENCE INPUT (PIN 16) DRIVEN PIN 17 SHOULD BE CONNECTED TO BY THE BUFFER AMP, DRAWS .125 MA PIN 20 FOR BIPOLAR OPERATION OR IN UNIPOLAR OPERATION AND 1,125 MA LEFT OPEN FOR UNIPOLAR OPERATION IN BIPOLAR OPERATION. OF DAC'S #2 AND #3. PRECISION, LOW COST BASE LINE RAMP GENERATOR +10 VOLTAGE 012 130 TIMING ο 0 VOUT (0 TO+10V) ΠΠ CIRCUIT -c 15 c 0 OUTPUT • 16 O EXTREMELY LINEAR 12 BIT 0 ō OUTPUT -0 DAC-RINARY 18 C • HZ12B COUNTER 90 ٥v RATE • 0 -----ADJUST o • o THIS CIRCUIT DEVELOPS A HIGHLY LINEAR (.01%) 24 C • OUTPUT VOLTAGE RAMP FROM 0 TO +10V. THE RAMP CAN BE MADE AS SLOW AS DESIRED WITHOUT AFFECTING LINEARITY BY SETTING THE PULSE

RATE OF THE TIMING CIRCUIT TO THE PROPER

VALUE, THE OUTPUT RAMP IS GENERATED IN DISCRETE STEPS OF .024% FS (4096 STEPS FOR

PS CHANGE).

ሪ

RESET

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Fast, 12-Bit Deglitched Digital-to-Analog Converter Model DAC-DG12B

FEATURES

- ±2 LSB Max. Glitch
- 600 nsec. Settling Time
- Up to 2.5 MHz Update Rate
- 12 Bit Resolution
- Self-Contained Module

GENERAL DESCRIPTION

Model DAC-DG12B is a deglitched 12bit D/A converter with a fast voltage output. The maximum output glitch amplitude is ±2 LSB's while settling time for a 10 volt output change is 600 nsec. to 1 LSB. For a 10 volt change to 1% the settling time is 250 nsec., and for small output changes it is only 400 nsec., permitting update rates as fast as 2.5 MHz. The unique circuit design of the DAC-DG12B realizes both small size and low price at the same time. Unlike other deglitched DAC's which are comprised of several inter-connected modules mounted on a circuit card, the DAC-DG12B is completely self-contained in a compact 4 x 2 x 0.4 inch (102 x 51 x 10 mm) module. It consists of several optimized circuit functions: digital input register, ultra-fast 12-bit current DAC, stable Zener voltage reference, fast de--glitching switch, and a fast output operational amplifier.

The DAC-DG12B has three voltage output ranges determined by external pin connection: 0 to -10 V, $\pm 5 \text{ V}$ and $\pm 10 \text{ V}$. Output current is $\pm 10 \text{ mA}$ with output short circuit protection; for higher output current requirements an external current booster amplifier may be connected inside the feedback loop of the output amplifier. There are two input coding options: complementary binary or complementary two's complement.

The DAC-DG12B is an ideal device for fast CRT display applications and for other test and measurement applications where monotonic output changes are required.

MECHANICAL DIMENSIONS-INCHES (MM) INPUT/OUTPUT CONNECTIONS PIN FUNCTION 4.000 (101.6) +5 V POWER 5 V GND STROBE BIT 1 IN (MSB) SIDE VIEW 0.400 (10,2) BIT 2 IN 5 6 7 BIT 3 IN BIT 4 IN BIT 5 IN BIT 6 IN 0.200 MIN. (5,1) 0.020 DIA. (0.5) 8 9 BIT 7 IN BIT 8 IN 10 11 12 13 14 15 16 18 19 20 21 22 23 29 30 31 32 1: -1.850 T BIT 9 IN 7 SPACES AT 0.100 EACH : BIT 10 IN BIT 11 IN BIT 12 IN (LSB) - 1. 150 2.000 (50,8) 23 * BOTTOM VIEW DIGITAL GND + 15 V POWER - 15 V POWER 15 V GND 25 7 SPACES 29 OFFSET REF. OUT REF. IN ANALOG GND 32 0 150 16 0.100 (2,5) 3.800 (96,5) FEEDBACK ANALOG OUT NOTE: OPEN HOLES DESIGNATE OMITTED PINS FEEDBACK 2

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

SPECIFICATIONS, DAC-DG12B **TECHNICAL NOTES** (Typical at 25° C, ±15 V and +5 V supplies unless otherwise noted) INPUTS 1. The sequence of operations inside the DAC-DG12B after the input strobe changes from HI to LO are: Resolution 12 bits a. the pulse transformer and switch are activated and Coding, unipolar.... Complementary Binary turn ON Coding, bipolar Complementary Offset Binary 1 b. within 11 nanoseconds (typically) the data in the input Complementary Two's Comp. register is transferred to the current DAC Input Logic Level, bit ON ("0").... 0V to +0.8 V c. during the next 19 nanoseconds (typically) the DAC out-+ 2.0 V to +5.5 V Input Logic Level, bit OFF ("1") ... put current changes 1 TTL load Logic Loading d. after 30 nanoseconds (typically) from the strobe change the pulse transformer and switch are deactivated, turn-Input Strobe Pulse² HI to LO transition causes ing OFF transfer of data from e. the output amplifier begins to change to its new output register to DAC value Input Strobe Loading 2 TTL loads 2. A 5 nanosecond minimum setup time is required for the input data to be valid before the input strobe goes from HI to LO. OUTPUTS The input strobe then should not go HI again for at least 40 Output Voltage, unipolar³.... 0 to -10 V nanoseconds. ±5 V. ±10 V Output Voltage, bipolar³.... 3. The maximum update rate for the DAC-DG12B is 2.5 MHz, Output Current, S.C. protected ±20 mA typ., ±10 mA min. based on the 400 nanosecond settling time for small output Output Impedance, DC. 0.05 ohm changes (±4 LSB's max.). For 10 V changes to 1% of final value the maximum update rate is 4 MHz and for 10 V PERFORMANCE changes to within 1 LSB of final value the maximum update rate is 1.6 MHz. Linearity Error ±1/2 LSB max. Differential Nonlinearity $\pm \frac{1}{2}$ LSB max. 4. From the coding tables it should be noted that each model ±1/2 LSB max. Zero Error, before trimming of the DAC-DG12B has its coding defined in two ways when Gain Tempco..... ±35 ppm/° C max. operating in bipolar mode. For the DAC-DG12B1 the com- $\pm 15 \text{ ppm/}^{\circ} \text{ C max}.$ Offset Tempco, bipolar plementary offset binary coding with inverted (negative) ±5 ppm/° C of FS max. Zero Tempco, unipolar analog output is the same as offset binary coding with non-Diff. Nonlinearity Tempco ±2 ppm/° C of FS inverted (positive) analog output except for an analog shift Monotonicity 0° C to 70° C of 1 LSB. The converter therefore can be externally cali-Settling Time. brated for either code. For the DAC-DG12B2 the comple-10 V change to 1 LSB 600 nsec. typ., 700 nsec. max. mentary two's complement coding with inverted (negative) Settling Time, analog output is the same as two's complement coding with 20 V change to 1 LSB 1.0 µsec. typ., 1.2 µsec. max. noninverted (positive) analog output except for an analog Settling Time, shift of 1 LSB. 10 V change to 1% 250 nsec. max. Settling Time, 5. The DAC-DG12B is internally calibrated at zero for unipolar 20 V change to 1% 550 nsec. max. operation, with a zero error of $\pm \frac{1}{2}$ LSB maximum. In many Settling Time, ±4 LSB change⁵. 400 nsec. applications, therefore, no external zero adjustment is re-Slew Rate..... 50 V/µsec. guired. For exact calibration the external zero adjustment Glitch Amplitude⁴..... ±1 LSB typ., ±2 LSB max. should be used. The DAC-DG12B2 operates in unipolar mode Glitch Area 250 mV-nsec. except that its input code is complementary binary with Power Supply Rejection 0.01%/% supply the MSB inverted. 6. For higher output current drive capability a wideband cur-POWER REQUIREMENT +15 VDC ±0.5 V @ 50 mA rent booster amplifier with unity voltage gain may be en--15 VDC ±0.5 V @ 35 mA closed inside the feedback loop of the output amplifier. + 5 VDC ±0.25 V @ 230 mA 7. The DAC-DG12B can be updated at up to 10 MHz with partial settling. This mode can be useful in some applications such PHYSICAL-ENVIRONMENTAL as fast CRT displays. The DAC's output is integrated by the CRT deflection amplifier, resulting in a continuous, mono-Operating Temperature Range . . 0° C to 70° C tonic deflection signal that is offset by a small amount from Storage Temperature Range -55° C to +125° C its theoretical value. This small offset is the sole effect of the Case Size 4 x 2 x 0.4 inches D/A's partial settling. (101,6 x 50,8 x 10,2 mm) Case Material Black Diallyl Phthalate per MIL-M-14 0.020" round, gold plated, ORDERING INFORMATION 0.200 lg. min. MODEL CODING Weight 4 oz. max. (114 g) DAC-DG12B1 Comp. Binary/Comp. Offset Binary DAC-DG12B2 Comp. Two's Complement NOTES Mating Socket: DILS-2, 2 Req'd Per Unit

- 1. Because the analog output is inverted, in the bipolar mode the complementary offset binary code is equivalent to offset binary and the complementary two's complement code is equivalent to two's complement. See Technical Note 4.
- 2. Has same logic levels as data inputs.
- 3. Determined by external pin connection.
- 4. Measured with 20 MHz bandwidth oscilloscope at major carry (half scale) and at 7 transitions either side of major carry.
- 5. See Technical Note 7.

THE DAC-DG12B IS COVERED BY GSA CONTRACT

For extended temperature range operation, the following

-25°C to +85°C Operation

suffixes are added to the model number. Consult factory for

sealed semiconductor components

-55°C to +85°C Operation with Hermetically

Trimming Potentiometers: TP100 (100 Ω),

ΤΡ10Κ (10ΚΩ)

pricing.

-EXX-HS

-FX

TIMING DIAGRAMS

EXTERNAL TIMING

CODING TABLES

SCALE	VOLTAGE RANGE	DAC-DG12B1	
SCALE	0 TO10 V	COMP. BINARY	
0 0-1 LSB - ¼FS - %FS - %FS - %FS - FS + 1 LSB	0 0000 0 0024 2 5000 5 0000 7 5000 9 9976	1111 1111 1111 1111 1111 1110 1011 1111 1111 0111 1111 1111 0011 1111 1111 0000 0000 0000	

UNIPOLAR OPERATION

BIPOLAR OPERATION

VOLTAGE RANGE		DAC-DAC	DAC-DAC-DG12B1		DAC-DG12B2	
SCALE	±5 V	±10 V	COMP. OFFS. BIN	OFFSET BINARY	COMP. 2's COMP.	2'S COMPLEMENT
+FS	+5.0000 V	+10,0000 V	1111 1111 1111		0111 1111 1111	A second s
+FS-1 LSB	+4.9976	+9.9951	1111 1111 1110	1111 1111 1111	0111 1111 1110	0111 1111 1111
0 + 1 LSB	+0.0024	+0.0049	1000 0000 0000	1000 0000 0001	0000 0000 0000	0000 0000 0001
0	0.0000	0.0000	0111 1111 1111	1000 0000 0000	1111 1111 1111	0000 0000 0000
-FS + 1 LSB	-4.9976	9.9951	0000 0000 0000	0000 0000 0001	1000 0000 0000	1000 0000 0001
-FS	-5.0000	10.000		0000 0000 0000		1000 0000 0000

CALIBRATION PROCEDURE

Select the desired output voltage range (0 to $-10 \text{ V}, \pm 5 \text{ V}$, or $\pm 10 \text{ V}$) and make the connections shown in the diagrams below. To calibrate refer to the coding tables on the previous page.

UNIPOLAR OPERATION (0 TO -10 V OUTPUT)

- 1. Zero Adjustment: Set the digital input code to 1111 1111 1111 and adjust the ZERO ADJ. potentiometer to give 0.0000 V output.
- 2. Gain Adjustment: Set the digital input code to 0000 0000 0000 and adjust the GAIN ADJ. potentiometer to give -9.9976 V output.

BIPOLAR OPERATION (±5 V OR ±10 V OUTPUT)

- 1. Offset Adjustment: Set the digital input code to 0111 1111 1111 (comp. offset binary), 1000 0000 0000 (offset binary), 1111 1111 1111 (comp. two's complement), or 0000 0000 0000 (two's complement) and adjust the BIPOLAR OFFSET ADJ. potentiometer to give 0.0000 V output.
- 2. Gain Adjustment: Set the digital input code to 0000 0000 0000 (comp. offset binary), 0000 0000 0001 (offset binary), 1000 0000 0000 (comp. two's complement), or 1000 0000 0001 (two's complement) and adjust the GAIN ADJ. potentiometer to give -4.9976 V output (for ±5 V range) or -9.9951 V output (for ±10 V range).
- 3. Repeat steps 1 and 2 to recheck adjustments.

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ultra-Fast Settling Digital-to-Analog Converters DAC-HI Series

FEATURES

- Settling to 25 nsec
- 8, 10 or 12 Bit Resolution
- Unipolar or Bipolar Operation
- 5 mA Current Output
- 20 ppm/°C Gain Tempco

GENERAL DESCRIPTION

The DAC-HI series devices are ultra high speed, current output, modular D/A converters offering state of the art performance in a compact plug-in module. Full scale output transitions settle in only 25 nsec. max. with the 8 and 10 bit units and in 50 nsec. max. with the 12 bit model. Speed is attained without sacrificing accuracy or stability; linearity is guaranteed to $\pm \%$ LSB and the gain temperature coefficient is only ± 20 pm/°C max.

Input coding is straight binary for unipolar output and offset binary for bipolar output. These units may be used in the bipolar mode with two's complement coding by externally inverting the MSB.

One of the prime features of the DAC-HI series is output flexibility. The 5 mA current output can be fed directly into an external resistor to develop a ± 1.2 V maximum output or, by external pin strapping, a bipolar output of ± 1.2 V maximum can be generated across the resistor. For applications requiring greater voltage ranges or sign inversion, the output current drives an external operational amplifier. When the amplifier is Datel's AM-500, a 20V output step will typically settle in 300 nsec.

These DAC's are completely self-contained, requiring only ± 15 VDC supplies. Each unit is packaged in a $2'' \times 2'' \times 0.375''$, low profile module; internal circuitry consists of digital interface logic, a precision resistor network, high speed electronic switches and a temperature compensated precision voltage reference source.

The combination of speed, accuracy, stability, and a choice of resolutions allow the DAC-HI series converters to meet a broad range of requirements. Applications for these devices include high speed graphic generators, CRT displays, high speed function generators and high speed computer control systems.

MECHANICAL DIMENSIONS

INPUT/OUTPUT CONNECTIONS 8 AND 10 BIT MODELS

PIN	FUNCTION	PIN	FUNCTION
6	BIT 1 IN	14*	BIT 9 IN
7	BIT 2 IN	15*	BIT 10 IN
8	BIT 3 IN	18	+15 V POWER
9	BIT 4 IN	19	-15 V POWER
10	BIT 5 IN	20	GROUND
11	BIT 6 IN	21	OFFSET
12	BIT 7 IN	22	OUTPUT
13	BIT 8 IN	31	N.C.
•These F	ins Omitted on 8 Bit	Model	

12 BIT MODEL						
PIN	FUNCTION	PIN	FUNCTION			
4	BIT 1 IN	14	BIT 11 IN			
5	BIT 2 IN	15	BIT 12 IN			
6	BIT 3 IN	18	+15 V POWER			
7	BIT 4 IN	19	-15 V POWER			
8	BIT 5 IN	20	GROUND			
9	BIT 6 IN	21	OFFSET			
10	BIT 7 IN	22	OUTPUT			
11	BIT 8 IN	30	REFERENCE OUT			
12	BIT 9 IN	31	REFERENCE IN			
13	BIT 10 IN	1				

DAC-HI Series Da

Ultra-Fast Settling Digital-to-Analog Converters

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

	8B	10B	12B
TS solution, Bits oding, Unipolar Output oding, Bipolar Output put Logic Level, Bit ON ("1") put Logic Level, Bit OFF ("0") gic Loading	8 Straight Binar Offset Binary +2.0V to +5.5 0V to +0.8V 2 TTL Loads	10 y or Two's Comp V	12 lement
UTS tput Current Range, Unipolar tput Current Range, Bipolar tput Voltage Compliance tput Impedance tput Zero Offset	0 to +5 mA ±2.5 mA ±1.2V max. 600 ohms ±1 15 nA	%	
DRMANCE earity Error, max. ferential Linearity Error, max. ferential Linearity Tempco in Tempco, ppm/°C of FSR ³ max olar Offset Tempco n/°C of FSR ³ max. o Tempco, ppm/°C of FSR ³ max. tling Time, nsec. max. ² ng Term Stability wer Supply Sens., % of FSR ³ /V	±½ LSB ±½ LSB ±2.7 ppm/°C Over Oper. To ±20 ±10 ±1.5 ±0.5%/yr. 0.05	of FSR ³ , max. emp. Range 25 0.05	50 0.0085
REQUIREMENT ive Supply ive Supply Current, mA max tive Supply Current, mA max	+15V ±0.5V 75 −15V ±0.5V @ 20	75 9 20 mA max.	40
CAL-ENVIRONMENTAL rating Temperature Range age Temperature Range tive Humidity (age Size	0° C to +70° C -55° C to +88 Up to 100% N 2 + 2 + 0.375 50,8 + 50,8 + 0.220" Round 0.250" Long, 2 oz. max (57	C o ^o C Jon-Condensing inches 9,5 mm , Gold Plated min. g)	· ·
5: two's complement coding, the MSB of th	ie input code		· · ·

TECHNICAL NOTES

. Proper operation of the DAC-HI series converters is dependent on good board layout and connection practices.

2. Use of a ground plane is particularly important in high speed D/A converters as it reduces high frequency noise and aids in decoupling the digital inputs from the analog output. Ground loop problems are avoided by connecting all grounds on the board to the ground plane. The ground plane should pass beneath the converter and include as much of the circuit board as possible.

speed current switching technique used AC-HI series inherently reduces the and duration of large transient spikes at ("glitches"). The most severe glitches half-scale, the major carry transition from 100...0 or vice versa. At this time a of the input codes can create a transition de of 111...1. The duration of the in state code" is dependent on the skewing, but its effect is dependent on d of the DAC (an ultra-fast DAC will o these brief spurious inputs to a greater nan a slow DAC). The effects of input can be easily minimized through the use -speed input register to match input times. The input register recommended ith the DAC-HI is easily implemented Texas Instruments SN74S174 hex Dlops. This register will minimize skewingglitches to a very low level and ensure it settling times.

4. When the converter is configured for voltage output with an external op amp the leads from the converter to the output amplifier should be kept as short as possible.

5. Testing of the DAC-HI should be performed with a low capacitance test probe (such as a 10X probe). Care should be taken to assure the shortest possible connection between the probe ground and circuit ground. Long probe leads may pick up environmental E.M.I. causing artifacts on the scope display, i.e., signals that do not originate at the unit under test.

 Power supply inputs on the DAC-HI series are bypassed internally with 1 μF capacitors. For use in particularly noisy environments a 0.1 μF ceramic capacitor should be added between each supply input and ground.

7. Values given for R_{LOAD}, R_F and R are nominal values only. These values should be approximated as closely as possible with 0.1% 10 ppm/°C metal film resistors and trimmed, if necessary, with a small value series carbon composition resistor.

 These converters may be operated with two's complement input coding by externally inverting the MSB.

The DAC-HI series modules are fully repairable.

APPLICATIONS INFORMATION

CODING TABLES

8 BIT MODEL

EQUIVALENT OUTPUT CIRCUIT

OUTPUT AMPLIFIER RESISTOR TABLE

R_F*

1ΚΩ

2ΚΩ

4ΚΩ

*Nominal values, see Tech. Note 7.

R*

375Ω

462Ω

522Ω

OUTPUT RANGE

0 to -5V

±2.5V 0 to -10V

±5V ±10V

		×		A	
OUTPUT MODE	DIGITAL INPUT CODING		OUTPUT VOL	TAGE RANGE	
UNIPOLAR	STRAIGHT BINARY	0 TO +1V	0 TO -5V*	0 TO -10V*	
F.S 1 LSB ½ F.S. 1 LSB 0	1111 1111 1000 0000 0000 0001 0000 0000	+0.9961V +0.5000V +0.00391V 0.0000V	-4.9805V -2.5000V -0.01953V 0.0000V	-9.9609V -5.0000V -0.03906V 0.0000V	
BIPOLAR	OFFSET BINARY	±1V	±2.5V*	±5V*	±10V*
+F.S 1 LSB +1 LSB 0 -F.S. +1 LSB -F.S.	1111 1111 1000 0001 1000 0000 0000 0001 0000 0000	+0.9922V +0.00781V 0.0000V -0.9922V -1.0000V	-2.4805V -0.01953V 0.0000V +2.4805V +2.5000V	-4.9609V -0.03906V 0.0000V +4.9609V +5.0000V	-9.9219V -0.07813V 0.0000V +9.9219V +10.0000V

*With External Output Amplifier

10 BIT MODEL

OUTPUT MODE	DIGITAL INPUT CODING	OUTPUT VOLTAGE RANGE				
UNIPOLAR	STRAIGHT BINARY	0 TO +1V	0 TO −5V*	0 TO -10V*		
F.S 1 LSB ½ F.S. 1 LSB 0	11111 11111 10000 00000 00000 00001 00000 00000	+0.9990V +0.5000V +0.00097V 0.0000V	-4.9951V -2.5000V -0.00488V 0.0000V	9.9902V 5.0000V 0.00977V 0.0000V		
BIPOLAR	OFFSET BINARY	±1V	±2.5V*	±5V	±10V*	
+FS - 1 LSB +1 LSB 0 -FS + 1 LSB -F.S.	11111 11111 10000 00001 10000 00000 00000 00001 00000 00001	+0.9980V +0.00195V 0.0000V -0.9980V -1.0000V	-2.4951V -0.00488V 0.0000V +2.4951V +2.5000V	-4.9902V -0.00977V 0.0000V +4.9902V +5.0000V	-9.9805V -0.01953V 0.0000V +9.9805V +10.0000V	

*With External Output Amplifier

12 BIT MODEL

OUTPUT MODE	DIGITAL INPUT CODING	OUTPUT VOLTAGE RANGE				
UNIPOLAR	STRAIGHT BINARY	0 TO +1V	0 TO -5V*	0 TO -10V*		
F.S 1 LSB ½F.S. 1 LSB 0	1111 1111 1111 1000 0000 0000 0000 0000 0001 0000 0000 0000	+0.9998V +0.5000V +0.00024V 0.0000V	-4.9988V -2.5000V -0.00122V 0.0000V	-9.9976V -5.0000V -0.00244V 0.0000V		
BIPOLAR	OFFSET BINARY	3±1V	±2.5V*	±5V*	±10V*	
+FS - 1 LSB +1 LSB 0 -F.S. +1 LSB -F.S.	1111 1111 1111 1000 0000 0001 1000 0000 0000 0000 0000 0001 0000 0000 0000	+0.9995V +0.00049V 0.0000V -0.9995V -1.0000V	-2.4988V -0.00122V 0.0000V +2.4988V +2.5000V	-4.9976V -0.00244V 0.0000V +4.9976V +5.0000V	-9.9951V -0.00488V 0.0000V +9.9951V +10.0000V	

*With External Output Amplifier

CONNECTIONS TABLE

OUTPUT VOLTAGE RANGE	8 AND 10 BIT MODELS	12 BIT MODEL
0 TO +1V	Connect 300 Ω load resistor between pin 13 and pin 15 Ground pin 14	Connect 300 Ω load resistor between pin 17 and pin 15, connect 100 Ω trim pot: between pin 18 and pin 19. Ground pin 16
±1V	Connect 2.32 K Ω load resistor between pin 13 and pin 15. Connect 500 Ω trim pot between pin 14 and pin 15	Connect 2.32 K Ω between pin 17 and pin 15, connect 500 Ω trim pot. between pin 16 and pin 17. Connect 100 Ω trim pot between pin 18 and pin 19.
0 TO -5V 0 TO - 10V	Connect pin 13 to pin 14 Connect external op amp as shown in diagram.	Connect pin 15 to pin 16. Connect 100Ω trim pot between pin 18 and pin 19. Connect external op amp as shown in diagram.
±2.5V ±5V ±10V	Connect 500Ω trim pot between pin 14 and pin 15. Connect external op. amp as shown in diagram.	Connect 500Ω trim pot between pin 16 and pin 17. Connect 100Ω trim pot between pin 18 and pin 19. Connect external op amp as shown in diagram.

ORDERING INFORMATION

MODEL	DESCRIPTION
DAC-HI8B	8 Bits, 25 nsec.
DAC-HI10B	10 Bits, 25 nsec.
DAC-HI12B	12 Bits, 50 nsec.

Mating Socket DILS-2, 2 Per Unit Trimming Potentiometers: TP100 or TP500

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

202C

APPLICATIONS

High Resolution, Ultra-Low Drift D/A Converters DAC-HR Series

FEATURES

- 13 to 16 Bits Resolution
- 1.5 ppm/°C max. Tempco
- 2 µsec max. settling time
- Unipolar or Bipolar Output
- 2 mA Current Output
- Internal Feedback Resistors

GENERAL DESCRIPTION

Datel-Intersil's DAC-HR series converters are precision digital-to-analog converters that offer high linearity, extreme stability and high resolution. Models with 13 to 16 bits allow resolving up to one part in 65,536, with a linearity error of only $\pm 0.00075\%$ and one of the lowest temperature coefficients of any commercially available converter, 1.5ppm/°C max.

The DAC-HR's excellence in linearity and stability is due to a precision metal film resistor network that tracks to within 1 ppm/°C; an oven controlled zener reference which has a temperature coefficient of 0.25 ppm/°C and is current controlled within a high gain servo loop; plus the use of four individual monolithic quad current switches. The superior uniformity of these switches leads to inherently high accuracy of matching, requiring only minor trimming. The DAC-HR's are specifically designed for applications demanding a wide dynamic range, up to 96.3 dB for the 16 bit version. This allows a unit with a one volt full scale output to resolve down to 15 μ V.

A full scale output current step settles to within 0.025% of full scale in only 200 nsec and to within 0.0015% of full scale in 2 μsec maximum.

These converters can be used for either unipolar or bipolar applications. Full scale output is 0 to -2 mA for unipolar operation and ± 1 mA for bipolar operation. Maximum voltage compliance is ± 1 V. For applications where an external operational amplifier is used, the necessary feedback and offset resistors are provided internally. These resistors have temperature coefficients matched to the ladder network. When used with an appropriate operational amplifier, the feedback resistance may be externally connected to produce outputs of 0 to +5V, 0 to +10V, ± 2.5 V, ± 5 V or ± 10 V.

Input coding is complementary binary for unipolar operation and complementary offset binary for bipolar operation. Inputs, are compatible with standard DTL/TTL logic levels.

The DAC-HR series are completely selfcontained in a $4 \times 2 \times 0.4$ inch encapsulated module with dual in-line pinning compatibility.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, DAC-HR SERIES (Typical at 25°C, \pm 15 VDC supplies unles	s otherwis	e noted)		
	13B	14B	15B	16B
INPUT CHARACTERISTICS Coding, Unipolar Output Coding, Bipolar Output Input Logic Input Logic Level, bit OFF ("1") Input Logic Level, bit ON ("0") Loading	Complen Complen DTL/TTI +2.0V mi 0V min tu 1 TTL lo.	nentary Bin nentary Of _ Compatil in to +5.5V o +0.8V m ad	nary fset Binar ble / max. ax.	y
OUTPUT Output Current Range, unipolar Output Current Range, bipolar Output Resistance Output Voltage Compliance Output Voltage Ranges ¹	0 to -2 n ±1 mA 5K ±1V 0 to +5V 0 to +10 ±2.5V ±5V ±10V	nA V		
PERFORMANCE Resolution, bits Linearity Error, ±LSB max ² Monotonicity Temperature Coefficient Output Current Settling Time Zero Current, all bits off Power Supply Rejection	13 ½ Uver Opr 1.5 ppm/° 200 nsec 2 μsec. t 5 nA ±10 ppm ±1 ppm	14 ¹ / ₂ er. Temp. I ^{(*} C max. vi C max. vii C max. vii 0 c max. vii 0 0.025 0 0.0015% 0 0.0015% 0 of FS/% S	15 ½ Range with ref. ove % of FS o of FS Supply (1 upply (+1)	16 1 n OFF 15V) 5V)
POWER REQUIREMENT Supply Voltage Oven Supply ⁴	+15 VDC -15 VDC ±15 VDC	2 ±0.5 VD0 ±0.5 VD0 2 ±0.5 VD0	C @ 30 m C @ 35 m C @ 45 m	A 4 A ⁴
PHYSICAL-ENVIRONMENTAL Operating Temp. Range Storage Temp. Range Relative Humidity Package Size Pins Case Material Weight	0° C to + -55° C to Up to 10 2 × 2 × 0 50,8 × 50 0,020″ D Gold Plat Black Dia Per MIL- 4 Oz. (11	70° C 0 +85° C 0% Non-C 0.4 inches 0.8 × 10, 1 ia × 0.200' ted allyl Phthal M-14 ³ 3 g.)	ondensing mm " Long, m late,) n.

NOTES:

1. With external operational amplifier.

- 2. Differential Linearity is ±1 LSB max. for 16 Bit Units, performance remains monotonic.
- 3. Modules are fully repairable.
- 4. After 10 minute warm-up. See graph of Oven Current vs. Time.

TECHNICAL NOTES

- Linearity and output current specifications are measured into a short circuit or an operational amplifier summing junction. Operation of the device must be into the virtual ground of an operational amplifier summing junction. Any other output configuration can degrade linearity.
- 2. Calibration and adjustment should be carried out only after the D/A and all peripheral components have reached thermal equilibrium at their projected operating temperature. This is a necessary condition for realization of the high linearity and accuracy of these devices.
- Although the DAC-HR series shares one of the lowest temperature coefficients of any commercially available D/A converters, high resolutions limit the allowable ambient temperature change from the calibration temperature to the values shown in the table provided. Performance is ensured by operation within these limits (as long as the operating temperature range of the unit is not exceeded).
- 4. The external operational amplifier selected for use must be matched for high accuracy low drift, low input bias current and low noise to the DAC-HR model selected. Datel-Intersil's AM-490-2 series chopper stabilized op amps feature three models with performance compatible to converters of the DAC-HR series.
- 5. Skewing of input codes can be a major contributor to the appearance of large transient spikes at the output ("glitches"). The most severe glitches occur at half-scale, the major carry transition from 011...1 to 100...0 or vice versa. At this time a skewing of the input codes can create a transition state code of 111...1 or 000...0. The duration of the "transition state code" is dependent on the degree of skewing, but its effect is dependent on the speed of the DAC (a fast DAC will respond to these brief spurious inputs to a greater degree than a slow DAC). The effects of input skewing can be easily minimized through the use of a highspeed input register to match input switching times. The input register shown is easily implemented with four Texas Instruments SN74S175 quad D-type flip-flops. Use of this register will minimize skewing induced glitching and ensure specified output settling times.
- 6. For bipolar output operation, the DAC-HR may be operated with complementary two's complement coding by externally complementing the MSB. Use of the input register shown makes this particularly easy as the flip-flops specified have complementary outputs, a feature that also allows the DAC-HR to be interfaced with straight binary coding as well as complementary binary.
- Good board layout and connection practices are recommended to ensure proper operation of the converter. Leads to the external operational amplifier should be as short as possible.
- 8. The temperature controlled oven's ±15 VDC supply is separate from that of the module. The oven current requirements depend on temperature and vary during the warm-up period. Typical behavior is shown on the graph provided.
- 9 The DAC-HR series has externally accessible trimming potentiometers for the first three bits of each model. Calibration of these three bits at operating temperature insures linearity at operating temperature.

APPLICATIONS INFORMATION

OUTPUT

VOLTAGE

RANGE

0 to +5V ±2.5V 0 to +10V ±5V

±10V

EQUIVALENT OUTPUT CIRCUIT

*AT ZERO SECONDS POWER IS APPLIED TO THE MODULE AND THE OVEN SIMULTANEOUSLY

HR-13B

+0.610mV

+1 221 mV

+2.441 mV

LSB OUTPUT VOLTAGES

HR-14B

+0.305mV

+0.610mV

+1.221 mV

OUTPUT VOLTAGE FOR LSB

HR-15B

+0.153mV

+0.305mV

+0.610mV

HR-16B

+0.076mV

+0.153mV

+0.305mV

MAXIMUM AMBIENT TEMPERATURE CHANGE FOR MONOTONICITY

DAC-HR MODEL	13B	14B	15B	16B ²
MAXIMUM CHANGE FROM CAL. TEMP ¹	±40°C	±20°C	±10°C	±5°C

1. All units must remain within specified operating temperature range. 2. For $\pm 1-1/2$ LSB linearity.

ORDERING INFORMATION

MODEL

DAC-HR13B	13
DAC-HR14B	14
DAC-HR15B	15
DAC-HR16B	16

Binary Bits Binary Bits **Binary Bits Binary Bits**

RESOLUTION

Mating Socket DILS-2; 2 Required Per Module Trimming Pot TP50 50 Ω Cermet 100 ppm/°C

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

HIGH SPEED INPUT REGISTER

CONNECTIONS AND CALIBRATION

UNIPOLAR VOLTAGE OUTPUT

BIPOLAR VOLTAGE OUTPUT

OUTPUT	BINARY INPUT	SELECTE	D RANGES	BIPOLAR	MENTARY	OUTPUT VOLT	AGE FOR SELI	ECTED RANGES
SCALE	CODING	0 to +5V	0 to +10V	OUTPUT	OFFSET BINARY			
FS-1LSB	0000000	+5V-1LSB*	+10V-1LSB*	SCALE	INPUT CODING	±2.5V	±5V	±10V
% FS	0001111	+4.3750V	+8.7500V	+FS-1LSB	0000000	+2.5V-1LSB*	+5V-1LSB*	+10V-1LSB*
34 FS	0011111	+3.7500V	+7.5000V	+¾ FS	0001111	+1.8750V	+3.7500V	+7.5000V
½ FS	0111111	+2.5000V	+5.0000V	+1/2 FS	0011111	+1.2500V	+2.5000V	+5.0000V
1⁄4 FS	1011111	+1.2500V	+2.5000V	+1 LSB	0111110	•	•	•
⅓ FS	1101111	+0.6250V	+1.2500V	0	0111111	0V	0V	0V
1 LSB	1111110	•	1 *	-1/2 FS	1011111	-1.2500V	-2.5000V	-5.0000V
0	1111111	OV	OV	-34 FS	1101111	-1.8750V	-3.7500V	-7.5000V
	*SEE TABLE OF	*SEE TABLE OF LSB VOLTAGES				-2.5000V	-5.0000V	-10.0000V

*SEE TABLE OF LSB VOLTAGES

Sample-Holds

SHM-IC1	212C
SHM-LM2	216C
SHM-HU	218C
SHM-6	220C
SHM-UH, SHM-UH3	224C
SHM-2	228C
SHM-5	230C

Quick Selection: Sample-Holds

	MODEL	DESCRIPTION	ACCURACY	ACQUISITION TIME ¹	APERTURE DELAY	INPUT RANGE	GAIN	BANDWITH
Ň	SHM-IC-1 SHM-IC-1M	Low Cost Sample-Hold	0.01%	5µsec	50 nsec	±10V	±1.00 ²	2 MHz
W	SHM-LM-2 SHM-LM-2M	Low Cost Sample-Hold	0.01%	6µsec	100 nsec	±10V	+1.00	1 MHz
RID	SHM-6MC SHM-6MR SHM-6MM	Fast Sample-Hold	0.01%	1µsec	20 nsec	±10V	±1 to ±10	5 MHz
НΥВ	SHM-HUMC SHM-HUMR SHM-HUMM	Ultra-Fast Sample-Hold	0.1%	25 nsec	6 nsec	±2.5V	+0.975	50 MHz
~	SHM-1	General Purpose	0.025%	5μsec	50 nsec	±10V	+1.00	650 kHz
ULAF	SHM-2 SHM-2E	Ultra-Fast Sample-Hold	0.1%	100 nsec	10 nsec	±10V	+1.00	10 MHz
NODI	SHM-5	Ultra-Fast Sample-Hold	0.01%	350 nsec	20 nsec	±10V	-1.00	5 MHz
2	SHM-UH SHM-UH3	Ultra-Fast Sample-Hold	0.25% 0.05%	50 nsec 30 nsec	10 nsec 5 nsec	±5V	+0.95 +0.98	45 MHz

NOTES:

1. For 10V Change.

Can be configured for gains greater than ±1.
 Maximum offset voltage over operating temperature range.

HOLD-MODE DROOP	TEMPCO	POWER REQUIREMENT	PACKAGING	OPERATING TEMP. (° C)	PRICE (1-24)	SEE PAGE
50µV/msec	20µV/° C	±15 VDC	14 Pin Ceramic DIP Hermetically Sealed	0 to +70 -55 to +125	\$ 12.50 \$ 56.00	212C
200µV/msec 100µV/msec	10mV ³ 5mV ³	±15 VDC	8 Pin TO-99 Hermetically Sealed	0 to +70 -55 to +125	\$5.95 \$52.50	216C
10µV/µsec	100µV/°C	±15 VDC +5V	32 Pin Ceramic DIP Hermetically Sealed	0 to +70 -25 to +85 -55 to +100	\$119.00 \$149.00 \$209.00	220C
50μV/μsec	50µV/° C	±15 VDC +5V	24 Pin Ceramic DIP Hermetically Sealed	0 to +70 -25 to +85 -55 to +100	\$ 99.00 \$149.00 \$199.00	218C
1μV/μsec	20ppm/°C	±15 VDC -20V	2 x 1 x 0.375 in. (51 x 25 x 10 mm)	0 to +70	\$ 82.00	*
50μV/μsec 330μV/μsec	30ppm/°C	±15 VDC	2 x 1 x 0.375 in. (51 x 25 x 10 mm)	0 to +70	\$105.00 \$110.00	*
20µV/µsec	15ppm/°C	±15 VDC	2 x 2 x 0.375 in. (51 x 51 x 10 mm)	0 to +70	\$219.00	230C
50µV∕µsec	50µV/° C	±15 VDC +5V	2 x 2 x 0.375 in. (51 x 51 x 10 mm)	0 to +70	\$210.00 \$231.00	224C

*For Data Sheet Contact Nearest Datel Sales Office

Datel offers modular products in operating temperature ranges of -25 to $+85^\circ C$ (suffix-EX) and -55 to $+85^\circ C$ (suffix-EXX-HS). For information on these high reliability modules contact nearest Datel sales office.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Monolithic Sample-Hold Model SHM-IC-1

FEATURES

- 5 µsec. Acquisition to .01%
- 50 nsec. Aperture
- Inverting or Noninverting
- 2MHz Bandwidth
- .01% Feedthrough
- 14 Pin DIP Package

GENERAL DESCRIPTION

The SHM-IC-1 is a new monolithic integrated circuit sample and hold with excellent performance features. It is a self-contained device requiring only an external holding capacitor, the value of which can be chosen by the user to achieve his desired speed and accuracy requirement. The unit consists of a high gain differential input amplifier, a digitally controlled electronic switch, and a high input impedance buffer amplifier. The SHM-IC-1 operates in a closed loop configuration, either inverting or noninverting, with accuracy and speed determined by the input amplifier characteristics and the value of the holding capacitor. The electronic switch is controlled by a DTL/TTL compatible logic input.

The most common configuration for the SHM-IC-1 is a unity gain, noninverting sample and hold. In this configuration the device has a $\pm 10V$ input and output range with 10 ohms input impedance. Specifications are given for this unit with two different values of holding capacitor, .001µF and .01µF. The .001µF capacitor gives a 4 μ sec. acquisition time to 0.1% for a 10V change, a 2MHz tracking bandwidth and 50mV/sec. maximum hold mode droop. The .01µF capacitor gives a 10 µsec. acquisition time, 1MHz tracking bandwidth, and 5mV/sec. maximum droop. Characteristics for other values of holding capacitor can be determined from graphs which are shown. The SHM-IC-1 can also be configured as either an inverting or noninverting sample and hold with gain by the use of two external resistors.

This device is housed in a 14-pin hermetically sealed dual-in-line package. Operating temperature range is 0° C to $+70^{\circ}$ C for the SHM-IC-1 and -55° C to $+125^{\circ}$ C for the SHM-IC-1M.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, SHM-IC-1 (Typical at 25°C, ±15V Supplies, unless otherwise noted)	
INPUT AMPLIFIER SPECIFICATIONS DC Gain, volts/volt ¹ Bias Current Offset Current Offset Voltage (adjust. to zero) Offset Voltage Drift Common Mode Voltage Range Common Mode Rejection Ratio Power Supply Rejection Gain Bandwidth Product	50K, 25K min. 50nA, 200nA max. 10nA, 50nA max. 3mV, 6mV max. 20 μV/ [°] C ±10V min. 74dB min. ±30μV/% max. 2MHz
GENERAL SPECIFICATIONS, SAMPLE & HOLD, G = +1 Input Voltage Range Output Impedance Output Current, S.C. protected Output Impedance Aperture Delay Aperture Uncertainty Gain Error, sampling mode Hold Mode Noise Digital Input, Sample Mode, DTL/TTL	± 10V min. 10 ⁸ ohms ± 10V min. ± 10mA min. 0.2 ohm 50 nsec. 5 nsec. .01% max. 350μV RMS 0 to +0.8V @-0.8mA +2.0 to +5.5V @ +20μA
$\begin{array}{l} \text{SAMPLE \& HOLD, G = +1, C_{H} = .001 \mu F} \\ \text{Acquisition Time, 10V to 0.1\%} \\ \text{Acquisition Time, 10V to .01\%} \\ \text{Bandwidth, small signal, sampling} \\ \text{Bandwidth, small signal, sampling} \\ \text{Slew Rate} \\ \text{Hold Mode Voltage Droop} \\ \text{Hold Mode Voltage Droop} \\ \text{Hold Mode Feedthrough} \\ \text{Sample-to-Hold Offset Error, } V_{1N} = 0 \\ \text{Sample-to-Hold Gain Error, } V_{1N} = \pm 10V \\ \text{Sample-to-Hold Nonlinearity Error} \\ \end{array}$	4 μsec. 5 μsec. 2.0MHz 5V/μsec. 50mV/sec. max. .01% max. 20mV max. .05% max. of output .01% max. of output
$\begin{array}{l} \text{SAMPLE \& HOLD, G = +1, C_{H} = .01 \mu F} \\ \text{Acquisition Time, 10V to 0.1\%} \\ \text{Acquisition Time, 10V to .01\%} \\ \text{Bandwidth, small signal, sampling} \\ \text{Slew Rate} \\ \text{Hold Mode Voltage Droop} \\ \text{Hold Mode Feedthrough} \\ \text{Sample-to-Hold Offset Error, V_{IN} = 0} \\ \text{Sample-to-Hold Gain Error, V_{IN} = ±10V} \\ \text{Sample-to-Hold Nonlinearity Error} \\ \end{array}$	10 μsec. 12 μsec. 1.0MHz 3V/μsec. 5mV/sec. max. .002% max. 2mV max. .005% max. .001% max.
POWER REQUIREMENT	±15VDC @ 5mA max.
PHYSICAL-ENVIRONMENTAL Operating Temperature Range, SHM-IC-1 Operating Temperature Range, SHM-IC-1M Storage Temperature Range, SHM-IC-1M Package, hermetically sealed ceramic DIP	0°C to 70°C −55°C to +125°C −65°C to +150°C TO-116
NOTES: 1. 40K and 20K respectively at +125°C for SHM-IC-1M. 2. +3.0 to +5.5V at -55°C for SHM-IC-1M.	

TECHNICAL NOTES

The most commonly used sample and hold configuration for the SHM-IC is the noninverting unity gain circuit. This gives a high input impedance of 10⁸ ohms, and the output voltage in the sample mode follows the input. Specifications are given for this configuration for two values of C_{H} , .001 μ F and .01 μ F. The .001 μ F capacitor gives excellent speed (4 µsec. acquisition) with good hold mode voltage droop (only 50mV/sec. max). For even better speed, a 100 pF capacitor may be used to give an acquisition time of only 2 µsec. The hold mode droop, however, increases by an order of magnitude to 500mV/sec., and the sample-to-hold errors also increase. For excellent accuracy a .01 μF capacitor should be used, giving an acquisition time of 10 µsec., and a hold mode droop of only 5mV/sec. max. Even larger values of holding capacitor can be used with proportionate increases in accuracy but slower speed. The application graphs show the results for the different values.

For best results, C_H should be a good quality capacitor with very high insulation resistance and low dielectric absorption. For temperatures up to +85°C polystyrene type capacitors are recommended. It is also recommended for lowest hold mode droop that a guard ring be used around the C_H terminal (pin 11) in the circuit board layout as shown on the last page. This is done to present leakage to other conductors on the circuit board due to board leakage and contamination. If a large value polystyrene capacitor is used, such as 1μ F, hold mode droop as low as 20μ V/sec. (typical) can be achieved with an acquisition time of about 3 milliseconds.

Three error contributions are specified for sample-to-hold errors: offset error, gain error, and nonlinearity error. These sampling errors are caused by a small amount of charge being dumped to or from the holding capacitor by the sampling switch and are reduced by a larger value of C_H. It is possible to compensate for these errors by changing the gain and offset elsewhere in the external circuitry for the noninverting unity gain case. For the inverting case, the gain can be accomplished by adjusting the external resistor values and an offset can be applied to pin 2 of the input amplifier. When this external compensation is used, the output will be in error during sampling, but will be accurate in the hold mode. Only the nonlinearity error will remain of the sample-to-hold errors. The offset adjustment of the input amplifiers should be used only to zero the device in the sample mode.

In the inverting gain of one operating mode, the feedback and input resistors should be carefully matched or trimmed to give the desired gain of one. In general, the operating parameters are the same as in the noninverting unity gain configuration except that the sampling bandwidth is reduced by a factor of two. Likewise, for higher gain configurations the sampling bandwidth is proportionately reduced.

OPERATING MODES

OUTPUT

(B) CASE

¥

-15V

(12)

Ŧ

63

(14)

GU

-15VDC +15VDC

 $R_2 \ge$

 $(\mathbf{R}_1, \frac{\mathbf{R}_1\mathbf{R}_2}{\mathbf{R}_1 + \mathbf{R}_2})$

SAMPLE & HOLD, UNITY GAIN, NONINVERTING

GAIN = +1

The 100K ohm offset trimming potentiometer should be a 100 ppm/ $^{\circ}$ C cermet 15 turn type. These are available from Datel-Intersil at each. To zero, ground input (pin 2) and digital control (pin 14) and adjust 100K offset trim for zero output (pin 7).

 $GAIN = 1 + \frac{R_2}{R_1}$

Bandwidth decreases proportionately with gain. R_3 is equal to the parallel combination of R_1 and R_2 and is used to compensate for voltage offset caused by input bias current. R_1 and R_2 should be 100 ppm/° C metal film type resistors.

SAMPLE & HOLD, INVERTING

$$GAIN = -\frac{R_2}{R_1}$$

For a gain of -1 the bandwidth is one half of that given for the noninverting mode. R_3 is equal to the parallel combination of R_1 and R_2 and is used to compensate for voltage offset caused by input bias current. R_1 and R_2 should be matched 100 ppm/°C metal film type resistors for a gain of -1. For higher gains the ratio should be matched closely or trimmed with a small value carbon composition type resistor.

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-242 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Low Cost Monolithic Sample-Hold Model SHM-LM-2

FEATURES

- \bullet 5 $\mu {\rm sec.}$ Acquisition Time
- .01% Gain Accuracy
- TTL/CMOS Logic Compatible
- ±5V to ±18V Supplies
- TO-99 Package
- Low Cost

GENERAL DESCRIPTION

The SHM-LM-2 is a low cost monolithic sample-hold circuit with excellent performance features. It is self-contained requiring only an external hold capacitor with the value selected by the user for desired speed and accuracy characteristics. Acquisition time is 6 μ sec. for a 10V change to .01% using a 1000pF capacitor and 25 μ sec. using a .01 μ F capacitor. It is 5 μ sec. and 20 μ sec. respectively for a 10V change to 0.1%. This device is internally configured as a unity gain follower with a gain error of less than .01% in the sample mode.

The circuit consists of a bipolar input amplifier, a low leakage electronic switch, and an FET output amplifier. The monolithic fabrication process combines P channel junction FET's with bipolar transistors to achieve a low noise, high input impedance output amplifier. Other important specifications include 10¹⁰ ohms input impedance and 1 MHz bandwidth. Aperture time is less than 100 nsec. and hold mode feedthrough is less than .005%. Hold mode droop is 200 μ V/msec. max. with a 1000pF hold capacitor and 20 μ V/msec. max. with a .01 µF capacitor. The SHM-LM-2 can operate over a power supply range of ±5V to ±18V.

Applications include sampling for A/D conversion, deglitching circuits, automatic zeroing circuits, and analog demultiplexing circuits. It is recommended that the holding capacitor (C_H) be a teflon, polystyrene, or polypropylene type for best results. Operating temperature range is 0° C to 70° C for SHM-LM-2 and -55°C to +125°C for SHM-LM-2M.

8

SAMPLE CONTROL

DATEL-INTERSIL, INC. 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 95134

NOTE: All leads gold plated KOVAR

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8866 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ultra-Fast, 0.1% Microelectronic Sample-Hold Model SHM-HU

FEATURES

25 nsec Acquisition Time 50 MHz Bandwidth 10 psec Aperture Uncertainty Up to 8 Bit Accuracy ± 2.5V Input Range

GENERAL DESCRIPTION

The SHM-HU is an ultra high speed samplehold capable of video speed signal processing. While specifically designed for use with Datel-Intersil's ADC-HU3B A/D converter, it is compatible with other ultrafast A/D's with resolutions up to 8 bits. The SHM-HU acquires a full scale 5V input change in just 25 nsec. and features a 10 psec aperture uncertainty time. Bandwidth is 50 MHz and the slew rate is 200V/µsec.

Through the use of thin film hybrid construction, this ultra high speed circuit is contained in a miniature 24-pin ceramic package. A 53 picofarad MOS hold capacitor is incorporated inside the package and provision is made for externally added capacitance when necessary. The sample-hold requires four external resistors and an LH0033 fast buffer amplifier for completion. The circuit is zeroed by adjustment of the LH0033 amplifier.

Other features of this unit include a $\pm 2.5V$ input/output voltage range and a fixed gain of 0.955. The sampling switch is controlled by a complementary series 10,000 ECL input. An ECL differential line driver can be conveniently used for the sample control inputs.

Power requirements are \pm 15 VDC at 60 mA and \pm 5 VDC at 70 mA. There are three basic models covering three operating temperature ranges, 0 to +70°C, -25 to +85°C and -55 to +100°C. For high reliability versions of the SHM-HU, including Datel's "S" program and MIL-STD-883 level B, contact the factory.

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

Data Acquisition

SPECIFICATIONS, SHM-HU	
(Typical at 25°C, ±15V and ±5V supplies	with external LH0033 Buffer
Amp. unless otherwise noted)	
Amp. amoor otherwise noted)	
MAXIMUM RATINGS	
Power Supplies, Pins 9-19	±6V
Analog Input Volatage, Pin 22	±5V
Sample Inputs. Pins 1 & 3	±5V Differential
Current Pins 6 7 20 23	50 mA
Outletin, 1 110 0, 1, 20, 20,	
INPUTS	
Input Voltage Range, Min	±2.5V
Input Bias Current	25µA
Maximum Source Impedance	51 Ohms
Input Impedance	10 ⁶ Ohms
Sample Control Inputs ⁴	Differential ECL 10,000
•	Positive Pulse on Pin 1 and
	Negative Pulse on Pin 2 gives
	Sample Mode
	······································
OUTPUT	10.51/
Output Voltage Range, Min.	±2.5V
Output Current	±10 mA
Output Impedance	6 Ohms
PERFORMANCE	
	0.1%
Gain	+0.955
Output Offset Voltage ² , Sample	
Mode	±100 mV max.
Output Offset Voltage Drift	$\pm 100 \mu V/^{\circ}C max$
Sample to Hold Offset Error	+100 mV max
Hold Mode Droop	50 UV/U sec
Hold Mode Freedthrough	0.02%
DYNAMIC RESPONSE	
Acquisition Time, 5V Step to 0.2%	25 nsec.
Bandwidth, -3 dB, Sample Mode	50 MHz
Slew Rate	200V/µsec.
Aperture Delay Time	6 nsec.
Aperture Uncertainty Time	10 psec.
POWER REQUIREMENTS ³	
	±15 VDC ±0.75V @ 60 mA
	±5 VDC ±0.25V @ 70 mA
PHISICAL ENVIRONMENTAL	
Operating Temperature Ranges	0.1
SHM-HUMC	
SHM-HUMR	-25 to +85°C
SHM-HUMM	-55 to +100°C
Storage Temperature Range	-65 to +150°C
Package Type	24 Pin Ceramic
Pins	.010 x .018 Inch Kovar
Weight	0.2 Oz (6 g)
NOTES	
1. Output is from LH0033 amplifier and	Lis not short circuit proof
2. Output offset voltage adjustable to ze	ro by LH0033 offset adjustment
3 +12V supplies can be used if the 360	ohm resistors at the Bias 1 pins
are changed to 240 ohms and the 240	0 ohm resistors at the Bias 2 nine
are changed to 160 ohms	e entre blas 2 pins
4 The SUM UIL can be driven by TT	logic input by bissing SAMPLE
CONTROL insistent 4 0V and the inc	a the CAMPLE CONTROL WITE
CONTROL input to +1.2V and drivin	y the SAMPLE CONTROL WITH a
positive pulse for sample mode.	
ORDERING INFO	RMATION
OPERATING TEMP.	
MODEL RANGE TY	PE SEAL
SHM-HUMC 0 to +70°C H	ermetic
SHM-HMUR -25 to +85°C H	ermetic
SHM-HUMM -55 to +100°C H	ermetic
Mation Coolicity DILC 0, (04 Dis Cool, 1)	
Mating Socket: DILS-3 (24-Pin Socket)	
Mating Socket: DILS-3 (24-Pin Socket) Trimming Potentiometer: TP100 (100 ohms)
Mating Socket: DILS-3 (24-Pin Socket) Trimming Potentiometer: TP100 (100 ohms For high reliability versions of the SHM-HU, i) ncluding Datel's ''S'' program and
Mating Socket: DILS-3 (24-Pin Socket) Trimming Potentiometer: TP100 (100 ohms For high reliability versions of the SHM-HU, i MIL-STD-883 level B, contact factory.) ncluding Datel's "S" program and
Mating Socket: DILS-3 (24-Pin Socket) Trimming Potentiometer: TP100 (100 ohms For high reliability versions of the SHM-HU, i MIL-STD-883 level B, contact factory. THE SHM-HU IS COVERED BY GSA CO) ncluding Datel's "S" program and

TECHNICAL NOTES

- 1. It is recommended that the ±5V supplies of the SHM-HU be bypassed with 0.1 µF ceramic capacitors as close as possible to pins 9 and 19. The ±15V supplies to the LH0033 should be bypassed with the same value capacitors.
- 2. It is essential that the output lead from pin 18 to pin 5 of the LH0033 be kept as short and direct as possible. Also, the complementary ECL driver should be as close as possible to pins 1 and 3 to minimize lead lengths to these pins.
- 3. With models SHM-HUGC, SHM-HUMC and SHM-HUMR, the LH0033C should be used, and with model SHM-HUMM, model LH0033 should be used.
- 4. An external hold capacitor may be added from pin 18 to pin 15. This capacitor should be an MOS or polystyrene type. Hold mode droop and sample-to-hold offset error will decrease proportionately with the size of this capacitor and acquisition time will increase proportionately.
- 5. The SHM-HU can be used with model ADC-HZ12B to realize a fast 4 µsec A/D converter with sample-hold. The ultra high speed of the SHM-HU will add negligibly to the conversion time. The ADC-HZ12B in this configuration is connected for ±2.5V input and has its output coding short cycled to 8 bits instead of 12.
- 6 Although the SHM-HU has been specifically designed for use with Datel-Intersil's ADC-HU3B A/D converter, it is compatible with other ultra-fast A/D s of up to 8 bits resolution.

CONNECTION TO DATEL SYSTEMS ADC-HU3B

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana. (714)835-2751. (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

0.01%, 1.0 μ Sec. Microelectronic Sample-Hold Model SHM-6

FEATURES

- 0.01% Accuracy
- 1.0 μs Acquisition Time
- 2 nsec Aperture Uncertainty
- 5 MHz Bandwidth
- 50mA Output Current
- Gain Programmable From ± 1 to ± 10

GENERAL DESCRIPTION

The SHM-6 is a high speed, high accuracy sample-hold circuit manufactured with thin film hybrid technology. This design offers the speed and performance of modular sample-holds with the compactness and integrity of advanced hybrid techniques. The unit's excellent high-speed characteristics include a guaranteed acquisition time of 800 nsec to 0.1% accuracy and 1.0 μ sec to 0.01% for a 10 volt change.

The SHM-6 is a complete sample-hold containing a precision MOS holding capacitor. The input amplifier is an open loop transductance amplifier which can be externally connected for closed loop gains from ±1 to ±10. In addition to its speed, accuracy and selectable gain, the SHM-6 has an output capability of 50 mA. These features allow this unit to offer an unusual degree of adaptability.

The most frequently utilized configuration of the SHM-6 is a unity gain, noninverting sample-hold. In this mode, the device has a $\pm 10V$ input and output range with $10^8\Omega$ input resistance. Full power bandwidth is 500 KHz, and small signal tracking capability is 5 MHz. The input offset voltage and sample to hold error can be adjusted to zero with the use of two external trim pots.

The SHM-6 is a key component in fast data acquisition systems. A 110 KHz throughput rate can be accomplished using the SHM-6 in conjunction with Datel-Intersil's ADC-HZ 12 bit Λ/D converter (which offers 8 μ sec maximum conversion time).

The sample-hold is cased in a 32-pin ceramic package. Models are available in three operating temperature ranges: 0 to +70, -25 to +85, and -55 to +100 degrees centigrade. High reliability versions of each model are available under Datel-Intersil's "S" program and MIL-STD-883 level B. For further information on these, contact the factory.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

ODEOLEIOATIONO CUMA O	
SPECIFICATIONS, SHM-6	
Typical at 25°C, \pm 15v and \pm 5v supplies	unless otherwise noted
MAXIMUM RATINGS	
Positive Supply	+18V
Negative Supply	-18V
Logic Supply	+7.0V
Digital Input Voltage	+5.5V
Analog Input Voltage	±Vs
Differential Input Voltage	±30V
Offeet Voltage	+2 m\/
Offset Voltage Tempco	+100 4// / ° C
Offset Current	1 nA max
Offset Current vs. Temp.	Doubles every 10°C
Bias Current	10 nA max.
Input Resistance	10 ⁸ Ω
Common Mode Voltage Range	±10V min.
Common Mode Rejection Ratio	74 dB min.
Open Loop Gain	10 ⁶ V/V
Gain Bandwidth Product	5MHz
Power Supply Rejection Ratio	0.004%/% Supply
Digital Control Logic	
	0/10 + 0.8/(20) - 3.2 mA
Input Logic Level, Bold Mode	+2 0V to +5 0V @ +800A
ANALOG OUTPUT CHARACTERISTIC	CS
Output Voltage Range	±10V min.
Output Current	±50 mA max.
Output Resistance	
	0.1Ω max.
SAMPLE HOLD CHARACTERISTICS (Noninverting unity gain)
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1%	Noninverting unity gain) 800 nsec. max.
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01%	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max.
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 µsec. max. 20 nsec.
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec.
SAMPLE HOLD CHARACTERISTICS (Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec. Adjustable to Zero
SAMPLE HOLD CHARACTERISTICS (Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μ sec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/ μ sec. max. 0.010 maxim
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μ sec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/ μ sec. max. 0.01% max. Adjustable to Zero
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μ sec. max. 20 nsec. 2 nsec. 2 nsec. Adjustable to Zero 10 μ V/ μ sec. max. 0.01% max. Adjustable to Zero +1 to +10
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μ sec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/ μ sec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max.
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μ sec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/ μ sec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max.
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Error Nonlinearity, V _{OUT} = ±10V Eull Power Bandwidth V	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μ sec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/ μ sec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 500 KHz
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Gain Error Nonlinearity, V _{OUT} = ±10V Full Power Bandwidth, V _{OUT} = ±10V Slew Rate	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μ sec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/ μ sec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max.
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Gain Error Nonlinearity, V _{OUT} = ±10V Full Power Bandwidth, V _{OUT} = ±10V Slew Rate	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μ sec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/ μ sec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 500 KHz 40V/ μ sec.
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Full Power Bandwidth, V _{OUT} = ±10V Slew Rate	Noninverting unity gain) 800 nsec. max. 1 μ sec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/ μ sec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 500 KHz 40V/ μ sec.
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Full Power Bandwidth, V _{OUT} = ±10V Slew Rate POWER REQUIREMENTS Positive Supply	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μV/μsec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 500 KHz 40V/μsec.
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Gain Error Nonlinearity, V _{OUT} = ±10V Full Power Bandwidth, V _{OUT} = ±10V Slew Rate POWER REQUIREMENTS Positive Supply Negative Supply	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μV/μsec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 500 KHz 40V/μsec. +15 VDC ±0.5V @ 55 mA -15 VDC ±0.5V @ 60 mA
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Gain Error Nonlinearity, V _{OUT} = ±10V Full Power Bandwidth, V _{OUT} = ±10V Slew Rate POWER REQUIREMENTS Positive Supply Negative Supply Logic Supply	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μV/μsec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 500 KHz 40V/μsec. +15 VDC ±0.5V @ 55 mA -15 VDC ±0.5V @ 60 mA +5 VDC ±0.5V @ 30 mA
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Gain Error Nonlinearity, V _{OUT} = ±10V Full Power Bandwidth, V _{OUT} = ±10V Slew Rate POWER REQUIREMENTS Positive Supply Negative Supply Logic Supply PHYSICAL-ENVIRONMENTAL	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μV/μsec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 0.01% max. 500 KHz 40V/μsec. +15 VDC ±0.5V @ 55 mA -15 VDC ±0.5V @ 60 mA +5 VDC ±0.5V @ 30 mA
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Gain Error Nonlinearity, V _{OUT} = ±10V Full Power Bandwidth, V _{OUT} = ±10V Slew Rate POWER REQUIREMENTS Positive Supply Logic Supply PHYSICAL-ENVIRONMENTAL Operating Temperature Ranges	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μV/μsec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 0.01% max. 500 KHz 40V/μsec. +15 VDC ±0.5V @ 55 mA -15 VDC ±0.5V @ 30 mA
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Full Power Bandwidth, V _{OUT} = ±10V Full Power Bandwidth, V _{OUT} = ±10V Slew Rate POWER REQUIREMENTS Positive Supply Logic Supply PHYSICAL-ENVIRONMENTAL Operating Temperature Ranges SHM-6MC	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μV/μsec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 0.01% max. 500 KHz 40V/μsec. +15 VDC ±0.5V @ 55 mA -15 VDC ±0.5V @ 60 mA +5 VDC ±0.5V @ 30 mA
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Gain Error Nonlinearity, V _{OUT} = ±10V Full Power Bandwidth, V _{OUT} = ±10V Slew Rate POWER REQUIREMENTS Positive Supply Logic Supply Logic Supply SHM-6MC SHM-6MR	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μV/μsec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 0.01% max. 500 KHz 40V/μsec. +15 VDC ±0.5V @ 55 mA -15 VDC ±0.5V @ 60 mA +5 VDC ±0.5V @ 30 mA
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Full Power Bandwidth, V _{OUT} = ±10V Slew Rate POWER REQUIREMENTS Positive Supply Logic Supply Logic Supply SHM-6MC SHM-6MR	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/μsec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 500 KHz 40V/μsec. +15 VDC ±0.5V @ 55 mA -15 VDC ±0.5V @ 60 mA +5 VDC ±0.5V @ 30 mA 0°C to +70°C -25°C to +85°C -55°C to +100°C
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Gain Error Nonlinearity, V _{OUT} = ±10V Full Power Bandwidth, V _{OUT} = ±10V Slew Rate POWER REQUIREMENTS Positive Supply Logic Supply Logic Supply SHM-6MC SHM-6MR SHM-6MM	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/μsec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 500 KHz 40V/μsec. +15 VDC ±0.5V @ 55 mA -15 VDC ±0.5V @ 60 mA +5 VDC ±0.5V @ 30 mA 0°C to +70°C -25°C to +85°C -55°C to +100°C -65°C to +150°C
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Gain Error Nonlinearity, V _{OUT} = ±10V Full Power Bandwidth, V _{OUT} = ±10V Slew Rate POWER REQUIREMENTS Positive Supply Logic Supply Logic Supply SHM-6MC SHM-6MR SHM-6MR SHM-6MM	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/μsec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 500 KHz 40V/μsec. +15 VDC ±0.5V @ 55 mA -15 VDC ±0.5V @ 60 mA +5 VDC ±0.5V @ 30 mA 0°C to +70°C -25°C to +85°C -55°C to +100°C -65°C to +150°C 32 Pin Ceramic
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Gain Error Nonlinearity, V _{OUT} = ±10V Full Power Bandwidth, V _{OUT} = ±10V Slew Rate POWER REQUIREMENTS Positive Supply Negative Supply Logic Supply Negative Supply SHM-6MC SHM-6MR SHM-6MR SHM-6MR SHM-6MR Storage Temperature Range Package Type Pins	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μsec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/μsec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 500 KHz 40V/μsec. +15 VDC ±0.5V @ 55 mA -15 VDC ±0.5V @ 60 mA +5 VDC ±0.5V @ 30 mA 0°C to +70°C -25°C to +85°C -55°C to +100°C -65°C to +150°C 32 Pin Ceramic Kovar (.010 x .018)
SAMPLE HOLD CHARACTERISTICS (I Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.01% Aperture Delay Time Aperture Uncertainty Time Sample to Hold Error Hold Mode Voltage Droop Hold Mode Feedthrough Offset Gain Gain Error Nonlinearity, V _{OUT} = ±10V Full Power Bandwidth, V _{OUT} = ±10V Slew Rate POWER REQUIREMENTS Positive Supply Negative Supply Logic Supply PHYSICAL-ENVIRONMENTAL Operating Temperature Ranges SHM-6MR SHM-6MR SHM-6MR SHM-6MR Storage Temperature Range Package Type Pins Weight	0.1Ω max. Noninverting unity gain) 800 nsec. max. 1 μ sec. max. 20 nsec. 2 nsec. Adjustable to Zero 10 μ V/ μ sec. max. 0.01% max. Adjustable to Zero ±1 to ±10 0.01% max. 0.01% max. 500 KHz 40V/ μ sec. +15 VDC ±0.5V @ 55 mA -15 VDC ±0.5V @ 60 mA +5 VDC ±0.5V @ 30 mA 0°C to +70°C -25°C to +85°C -55°C to +100°C -65°C to +150°C 32 Pin Ceramic Kovar (.010 x .018) 0.5 Oz (14g)

TECHNICAL NOTES

- 1. It is essential that the +15V, -15V and +5V supplies, pins 28, 31 and 24 respectively, each be bypassed to ground with a 0.1 μ F ceramic capacitor connected as close to the pins as possible.
- Digital Common, pin 26, and Analog Common, pin 10, are not connected together internally, therefore they must be connected externally as directly as possible. It is strongly recommended that a ground plane be run underneath the case between the two commons. Analog ground and ±15V power ground should be run to pin 10, digital ground and +5V power ground should be run to pin 26.
- An external holding capacitor can be added to decrease hold mode voltage droop but with consequently longer acquisition time. For temperatures up to +85°C, polystyrene capacitors are recommended; for higher temperatures, polypropylene or teflon capacitors should be used.
- 4. In the inverting unity gain operating mode, the feedback and input resistors should be carefully matched or trimmed to yield the desired gain of one. In general, the operating parameters are the same as in the noninverting unity gain configuration, except that the sampling bandwidth is reduced by a factor of two. For applications of the SHM-6 with gain greater than one, sampling bandwidth is inversely proportional to gain.
- 5. Capacitive loads on the output should be limited to 100 pF to maximize acquisition time. The SHM-6 has a ±50 mA current drive capability.
- 6. This device dissipates approximately 2 watts of power due to the transconductance amplifier. The case to ambient thermal resistance is approximately 25°C per watt. For ambient temperatures above+50°C, care should be taken to maintain air circulation in the vicinity of the case.
- 7. The adjustment procedures for the SHM-6 are as follows. Ground the input pin and connect the output to a D.V.M., operate the offset adjustment potentiometer to yield an output of zero as read on the D.V.M. The sample-hold step adjustment is performed with the input pin grounded and the output connected to an oscilloscope set to 1 mV/cm sensitivity. The digital input pin is driven with a compatible square wave at approximately 250 KHz and the sample-hold step adjustment potentiometer is operated to produce a flat-line output on the oscilloscope.

ORDERING INFORMATION											
OPERATING MODEL TEMP. RANGE SEAL											
SHM-6MC SHM-6MR SHM-6MM	0°C to +70°C -25°C to +85°C -55°C to +100°C	Hermetic Hermetic Hermetic									
Trimmina P	otentiometers TP2	ĸ									

Trimming Potentiometers TP2K (2 Required Per SHM-6)

DILS-2 Mating Socket

(2 Required Per Sample-Hold)

For High Reliability versions of the SHM-6, including units screened to MIL-STD-883, Level B, contact the factory.

THESE SAMPLE-HOLDS ARE COVERED BY GSA CONTRACT.

222C

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 Houston, (713)781-8886 • Dailas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055
 DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ultra-High Speed Sample-Holds SHM-UH Series

FEATURES

- 10 MHz Sampling Rate
- 30 nsec Acquisition Time
- 30 psec Aperture Uncertainty
- Diode Bridge Switch
- 45 MHz Bandwidth

GENERAL DESCRIPTION

The SHM-UH series is comprised of two ultra-fast sample-holds specifically designed for use with Datel-Intersil ACD-UH series, or other ultra-fast 6, 8 and 10 bit A/D converters. Both models in this series use an open loop design optimized for ultra-high speed operation. This design consists of an ultra-fast input buffer amplifier, a transformer driven diode bridge switch, and a high impedance output buffer amplifier.

The unique pulse transformer driven diode bridge switch is a key design feature in attaining a 30 nsec. acquisition time for a 10V signal change. This switch also holds aperture uncertainty time to less than 30 picoseconds for the SHM-UH3 and less than 200 picoseconds for the SHM-UH.

The SHM-UH3 is the newest member of this series and embodies substantial performance improvements on an already high performance design. This model is recommended for inclusion in new design applications. In addition to a 30 nsec acquisition time with only 30 picoseconds of aperture uncertainty, linearity is 0.05% of full scale and hold-mode feedthrough is -66 dB for inputs from DC to 10 MHz. The SHM-UH3 utilizes all hermetically sealed semiconductors in its design.

The SHM-UH is the lower cost version of the series. An acquisition time of 50 nsec, aperture uncertainty of less than 200 picoseconds, and linearity of 0.25% make this model well suited to use with ultra-high speed A/D converters with up to 8 bits resolution.

Both models have sample-mode bandwidths of 45 MHz, output slew rates of $500V/\mu$ sec and output current drive capabilities of ± 30 mA. Each has an output offset adjustment accessible from the side of the module.

These sample-holds are encapsulated in 2 \times 2 \times 0.375 inch (51 \times 51 \times 5 mm) cases with dual-in-line pinning compatibility. Power requirements are ±15 VDC and +5 VDC. Standard versions operate over a temperature range of 0 to +70°C with extended temperature range versions also available.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, SHM-UH SERIES (Typical at 25°C and \pm 15 VDC and \pm 5 VDC Supplies, unless otherwise noted)

	SHM-UH	SHM-UH3
MAXIMUM RATINGS ¹ Analog Input Voltage Sample Control Input Voltage Sample Pulse Width ⁷ Analog Supply Voltage Digital Supply Voltage	±15V +5.5V 70 nsec ±18V +5.5V	±5.5V +5.5V 100 nsec ±18V +5.5V
INPUTS Input Voltage Range Input Impedance Input Bias Current Sample Control Pulse Width Sample Control Pulse Width Sample Control Input Impedance Sample Pulse Rise or Fall Time	±5V 100 Meg 50 pA ² +5V @ 130.mA 40 ±10 nsec. 50Ω . 3 nsec, max.	±5V 100k ±20 μA +3.5 @ 60 mA 35 ±10 nsec. 50Ω 3 nsec, max.
OUTPUTS Output Voltage Range, min Output Current, max Output Impedance, DC Output Load ³ Maximum Capacitive Load	±5V ±30 mA 3Ω 500Ω 100 pF	±5V ±30 mA 3 Ω 500 Ω 100 pF
PERFORMANCE Gain Linearity Error, % of Full Scale Output Offset Voltage, Hold Mode Output Offset Voltage Drift Hold Mode Droop Hold Mode Feedthrough ⁴	+0.92 to +0.95 ±0.25%, max. ⁹ Adj. to Zero ±50 μV/°C 50 μV/μsec -50 dB @ 10 MHz	+0.95 to +0.98 ±0.05%, max. Adj. to Zero ±50 μV/°C 50 μV/μsec -66 dB, DC to 10 MHz 25 mV/V
DYNAMIC RESPONSE Acquisition Time Acquisition to Output Time ¹¹ Hold Mode Settling Time Bandwidth, Sample Mode Output Slew Rate Aperture Delay Time Aperture Uncertainty Time Sampling Rate, max.	50 nsec ⁵ 70 nsec 20 nsec 45 MHz 500V /μsec 12 nsec ⁶ 200 psec 10 MHz ¹⁰	30 nsec 50 nsec 20 nsec 45 MHz 500V/µsec 12 nsec ⁸ 30 psec 10 MHz ¹⁰
POWER REQUIREMENT Analog Power Supply Digital Power Supply	±15 VDC ±0.2 VDC @ +5 VDC ±0.25 VDC @	50 mA 100 mA
PHYSICAL-ENVIRONMENTAL Operating Temp. Range Storage Temp. Range Relative Humidity Case Size Case Material Pins Weight	0°C to +70°C -55°C to +85°C Up to 100% Non-conde $2 \times 2 \times 0.375$ inches (50,8 \times 50,8 \times 9,5 mm) Black Diallyl Phthalate, per MIL-M-14 0.020" Dia, Gold Plated 0.25" Long, min. 3 oz. (85g)	nsing
 NOTES: 1. Maximum ratings represent the limits of dev should not be operated at these limits. 2. 150 pA max @ 25°C. Doubles every 10°C 3. For full scale signal outputs. For small signal of decreased to 1000. 	ice operation without dama (SHM-UH Only), outputs (±1V), output load rea	ge. The devices sistance must be

- See Feedthrough Attenuation Graph.
- Model SHM-UH requires three sampling pulses to acquire a full scale signal change. For the SHM-UH this will vary by ± 2 nsec max, with temperature. See Technical Note 10.
- 6. 7.
- This may vary between units by 3 nsec.
- For input signal changes of ±1.25V max., larger input signal changes require additional sample pulses and settling time. See Technical Note 9.
- 10 30 nsec sampling pulses with 70 nsec between pulses.
- 11 See Technical Note 4.

TECHNICAL NOTES

- 1. These devices are true sample-holds, rather than track and holds, in that they take an "instantaneous" sample of the input signal rather than continuously track it and hold on command. The extremely high speed available with this series allows a close approximation to sampling period of the ideal zero-order hold. Design considerations necessary to attain this level of performance place a limit on long-term holding ability. A/D converters used with these sample-holds should be selected for compatible speed and accuracy.
- 2. Aperture uncertainty time is a measurement of the time uncertainty or jitter of the actual point in time of the switch change to the off state. It is an indication of the repeatability of the switch characteristics. This time should not be confused with the aperture delay time which is a fixed delay and can be compensated for.
- 3. Acquisition time is the time required, after the sampling switch is closed, for the hold capacitor to charge to a full scale voltage change and remain within a specified error band around the final value
- 4. Acquisition to output time is defined as the period from the receipt of the sample command until the output of the sample-hold has settled to within a specified error band of its final value. This is the operating period of the sample-hold, including all internal delays and settling time, and consequently defines the total time required for a single sample-hold operation.
- 5. Digital and analog grounds are not connected internally. When using these sample-holds with A/D converters, good design practice dictates the connection of analog and digital grounds from both devices at one point, preferably at the A/D converter to avoid ground loops. Use of a ground plane is recommended for best performance.
- 6. For Model SHM-UH only, hold mode droop is from the held value of the analog input signal toward the signal level at the input. The droop experienced is also dependent on input signal characteristics and is related to the feedthrough attenuation characteristics. The combination of these factors may cause the observed hold mode voltage droop to be significantly less than 50 $\mu V/\mu sec$ for some applications, e.g., droop is zero for a constant input signal. In the case of Model SHM-UH3, droop is independent of feedthrough.
- 7. For both the SHM-UH and the SHM-UH3 input sources should be purely resistive.
- 8. Input overvoltage protection may be added to the SHM-UH3 by connecting diodes from the analog input and the analog input ground to the +5V and -5V supplies, see "Input Protection" diagram.
- To acquire full scale input signal changes, the 9. SHM-UH requires three sampling pulses with a 100 nsec, settling time allowed between each to acquire full scale input changes to rated linearity.
- 10. Sample pulse widths greater than those specified under MAXIMUM RATINGS will give unsatisfactory performance due to drive transformer saturation. For Model SHM-UH3, excessive pulse widths will result in the sample-hold returning to the hold mode before the sample control input is taken low. Model SHM-UH may be damaged by exceeding sample pulse width limits.

APPLICATION

APPLICATION

SAMPLE-HOLD DEFINITIONS

T₁, APERTURE DELAY TIME

The period between the receipt of the hold command and opening of the sampling switch. Due to sampling switch characteristics, the measurement of this period contains a small amount of uncertainty, i.e., the actual point in time of the opening of the sampling switch will vary by a small amount with each operation. This variance falls within a narrow time range which is specified as the aperture uncertainty time (see definition below).

T₂, ACQUISITION TIME

The time required, after the closing of the sampling switch, for the hold capacitor to charge to a full scale voltage change and then remain within a specified error band around the final value.

T₃, APERTURE UNCERTAINTY TIME

The time variation, or jitter, in the opening of the sample switch.

APERTURE UNCERTAINTY ERROR

An amplitude uncertainty in the held value due to the change in the analog input signal during the aperture uncertainty time. This error is the product of the rate of change of the input signal and the aperture uncertainty time. Therefore, small values of aperture uncertainty time yield small values of aperture uncertainty error.

T₄, HOLD MODE SETTLING TIME

The time from the hold command transition until the output has settled within a specified error band around the final value.

T₅, ACQUISITION TO OUTPUT TIME

The time from the receipt of the sample command until the output of the sample-hold has settled within a specified error band around the final value.

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dailas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ultra Fast Accurate Analog Storage Sample & Hold Models SHM-2,SHM-2E

FEATURES

- Ultra Fast Acquisition Time
- Short Aperture Time
 Wide Frequency Response
- Fast Output Settling
- Low Temperature Coefficient

DESCRIPTION

Model SHM-2 Sample and Hold is the ultimate in speed. Designed to operate in conjunction with Datel Intersil's analog to digital converters, SHM-2 can track a full scale analog input in less than 100 nsec's to within $\pm 0.1\%$ of full scale accuracy. Additional features include wide frequency response (D.C. to 500 KHz), an aperture uncertainty of less than 10 nsec's and an output settling time of one μ sec to within $\pm 0.1\%$.

SHM-2 is usually connected between a signal source to be quantized and analog to digital converter, providing an excellent throughput rate for an overall data system.

APPLICATION

When digitizing an analog signal which varies with time and having a frequency spectrum, it is difficult to determine what point of this signal is exactly represented by the resultant digital output. Since the maximum time "uncertainty" of the conversion is the total conversion time of the converter which may be called "aperture time or ambiguity time"; therefore, the maximum error due to this uncertainty is the difference of two points of the analog signal under measurement from To to time, T1 representing the time required to convert the changing analog signal.

A faster converter will obviously shorten the aperture and the error will be reduced proportionately, but a device such as the SHM-2 with very narrow aperture characteristics, controlled by command, is far more useful in trying to determine the exact point of the changing analog signal when converting. The purpose of SHM-2 is to "hold" upon command at the beginning of the conversion (To time) the analog voltage applied at its input. The "held" value will remain constant during the conversion process. Relationships of error due to time uncertainty versus input frequency is plotted on the reverse side of this sheet.

SPECIFICATIONS (Typical @ 25°C unless noted)	
ELECTRICAL Analog Input: Analog input voltage range Up to ±10 VFS	Settling time 1 μsec (max.) to ±0.1%, SHM-2 (10V step) 400nsec (max.) to ±0.1% SHM 25 (10V step)
Input overvoltage ± 15V (max.) with a recovery time of 500 nsec	Hold decay rate
Input source current	Performance: Gain
Mode control input DTL or TTL compatible, positive logic Status Input Vinput Status Code Min. Max.	Linearity
Hold"1" $+2.0V$ $+5.5V$ Rise and Fall time < 10 nsec to maintain aperture time spec s.	PHYSICAL-ENVIRONMENTAL Operating temperature range $\dots 0^{\circ}$ C to +75°C Storage temperature range $\dots -55^{\circ}$ C to +85°C
Analog Output Output voltage range Up to ±10 VFS	Relative humidity
Output current	Pins 0.020" round gold plated 0.250" long minimum
Dynamic Characteristics: Bandwidth DC to 500 KHz (max.) full power	Case material
@ 3 db point Acquisition time	Model SHM-2 Model SHM-2E
Aperture time	Mating Socket. DILS-2, 2 Req'd. DILS-2, 2 Req'd. Model SHM-2 and SHM-2E sample and hold modules are fully appendixed for the single according according to the single accordin
Feedthrough @ any input frequency	0.100" grid pin spacing and 0.800" between rows of pins).

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ultra-Fast, .01% Sample-Hold Model SHM-5

FEATURES

- 200nSec. Acquisition to 0.1%
- 350nSec. Acquisition to .01%
- 5MHz Bandwidth
- .005% Linearity
- 250 pSec. Aperture Uncertainty

GENERAL DESCRIPTION

Model SHM-5 is a new, ultra-fast acquisition sample-hold module for use with high speed 10 and 12-bit A/D converters. When used with Datel-Intersil's model ADC-EH12B3, a 12-bit 2 μ sec, A/D, the SHM-5 permits sampling and conversion at rates up to 425 kHz. The key circuit element in the SHM-5 is an ultra-fast settling hybrid operational amplifier manufactured in Datel's thin-film hybrid facility. This amplifier operates in the inverting mode as a hold amplifier. A fast FET sampling switch operates between two virtual ground points in order to keep switching errors small and independent of signal level. A second FET switch operates out-of-phase with the first one to minimize signal feedthrough errors.

The SHM-5 is designed primarily for fast track & hold and simultaneous sampling applications with A/D converters. From the tracking mode it realizes acquisition times of 200 nsec. to 0.1% or $350 \,\mu$ sec. to 0.01% for a 10V change. When the input buffer amplifier must also make a 10V change, as in multiplexer applications, the total acquisition time is 1 μ sec. to 0.01%.

The SHM-5 operates in the inverting mode with a gain of -1 and an input impedance of 10⁸ ohms. Dynamic characteristics include a 5 MHz small signal bandwidth, and $25V/\mu$ sec. slew rate in the sampling (tracking) mode. When acquiring a new sample, however, the internal slew rate across the holding capacitor is $200V/\mu$ sec. Aperture delay time is 20 nanoseconds and aperture uncertainty time is 250 picoseconds.

This device is packaged in a 2 x 2 x 0.375 inch epoxy encapsulated module. Operating temperature range is 0°C to 70°C and power requirement is \pm 15VDC at 75 mA maximum. Model SHM-5 is pin compatible with Datel-Intersil's model SHM-UH3.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, SHM-5 (Typical at 25.0, ±15V supply unless otherwise noted)								
INPUTS Input Voltage Range Input Overvoltage, no damage Input Impedance Input Bias Current Sample Control, sample mode hold mode Sample Control Loading Offset Adjustment Range	±10V min. ±15V 10 ⁸ ohms 250nA max. +2.0 to +5.5V 0V to +0.8V +1mA ±300mV							
OUTPUT Output Voltage Range, min Output Current, S.C. protected Output Impedance.	±10V ±40mA 0.1 Ωmax.							
PERFORMANCE Gain	-1.000±0.1% ±15ppm/°C max. ±50mV max. ±30µV/°C max. ±3mV max. ±5mV max. ±.005% max. 20µV/µsec max. 0.02% 1mV/V							
DYNAMIC RESPONSE Acquisition Time ¹ , 10V to 0.1% Acquisition Time ¹ , 10V to 0.01% Acquisition Time ² , 10V to 0.01% Bandwidth, tracking, -3dB Slew Rate, tracking. Aperture Delay Time Aperture Uncertainty Time	200 nsec. max. 350 nsec. max. 1.0 μsec typ., 1.5 μsec. max. 5MHz 25V/μsec. 20nsec. 250 psec.							
POWER REQUIREMENT Power Supply Voltage Quiescent Current	±15VDC ±0.5V 75mA max.							
PHYSICAL-ENVIRONMENTAL Operating Temp. Range Storage Temp. Range Relative Humidity	0°C to 70°C -55°C to +85°C. Up to 100% pon-condensing							
Case Size	2.0 X 2.0 X 0.375 in, 50,8 X 50,8 X 9,5 mm Black diallyl phthalate							
Pins	per MIL-M-14 .020" round, gold plated; .25" long min. 2 oz. (57g.)							
NOTES:								

TECHNICAL NOTES

- 1. The SHM-5 initial gain error of $\pm 0.1\%$ must be adjusted out separately from the sample hold. This is most easily done by using the gain adjust of the A/D converter used with the SHM-5.
- 2. The maximum sample-to-hold offset error of 5mV is constant with signal level. This error can be adjusted out in the hold mode by means of the external offset adjustment shown in the diagram. It should be noted that the SHM-5 can be adjusted for zero output offset in either the sample (tracking) mode or the hold mode, but not in both at the same time.
- 3. The sample control input is compatible with standard TTL levels. It is recommended that this input be driven from its own active pull-up Schottky TTL circuit, such as the 74S132. This will readily supply the +1mA drive current required by the SHM-5.
- 4. The analog signal delay from the input of the SHM-5 to the sampling switch is approximately 32 nsec. Aperture delay is 20 nsec.
- 5. When the SHM-5 is switched into the hold mode, about 50 nsec. is required for the switch transient to settle. This time should be allowed for before the first A/D conversion is made.

THE SHM-5 IS COVERED BY GSA CONTRACT.

Printed in U.S.A. Copyright \circledast 1979 Datel-Intersil, Inc. All rights reserved

semiconductor components.

From tracking mode.
 From input buffer.

SHM-5

-EX

ORDERING INFORMATION

Mating Socket: DILS-2 (2/module) Trimming Potentiometer, TP20K

-25°C to +85°C operation.

-EXX-HS -55°C to +85°C with hermetically sealed

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

For extended temperature range operation, the following suffix is added to the model number. Consult factory for price and delivery.

Analog Multiplexers

MU-6108	236C
MU-6116	242C
MU-6208	248C
MU-6216	254C
MV-SERIES	260C
MX-SERIES	264C

Quick Selection: Analog Multiplexers

	MODEL FEATURES			CHANNELS NO. TYPE		VOLTAGE ABS. MAX	CHANNEL RESISTANCE . ON (Ω)	TRANSFE	Y CROSSTALK	
	MX-808 MX-808M	Overvoltage Protection	8	Sing. End.	±15V	±35V	1.5K 1.2K	0.01%	-86 dB	
	MV-808 MV-808M	Low ON Resistance	8	Sing. End.	±15V	±17V	250	0.01%	-86 dB	
	MU-6108C MU-6108M	Low ON Resistance Low Leakage	8	Sing. End.	±14V	±17V	180	0.01%		
	MX-1606 MX-1606M	Overvoltage Protection	16	Sing. End.	±15V	±35V	1.5K 1.2K	0.01%	-86 dB	
S	MV-1606 MV-1606M	Low ON Resistance	16	Sing. End.	±15V	±17V	270 170	0.01%	-86 dB	
NOLITH	MU-6116C MU-6116M	Low ON Resistance Low Leakage	16	Sing. End.	±11V	±16V	480	0.01%	—	
MO	MXD-409 MXD-409M	Overvoltage Protection	4	Diff.	±15V	±35V	1.5K 1.2K	0.01%	-86 dB	
	MVD-409 MVD-409M	Low ON Resistance	4	Diff.	±15V	±17V	250	0.01%	-86 dB	
	MU-6208C MU-6208M	Low ON Resistance Low Leakage	4	Diff.	±14V	±16V	180	0.01%	- <u>-</u> -	
	MXD-807 MXD-807M	Overvoltage Protection	8	Diff.	±15V	±35V	1.5K 1.2K	0.01%	-86 dB	
	MVD-807 MVD-807M	Low ON Resistance	8	Diff.	±15V	±17V	270 170	0.01%	-86 dB	
	MU-6216C MU-6216M	Low ON Resistance Low Leakage	8	Diff.	±11V	±16V	480	0.01%		

COMMON MODE REJECTION	CHANNEL ACCESS TIME TURN ON (nSEC)	POWER REQUIREMEN	PACKAGE	PACKAGE	OPERATING TEMP (°C)	SINGLE	SEE PAGE
	500	\pm 15 VDC	16 Pin DIP	Ceramic	0 to +70 -55 to +125	\$17.50 \$57.00	264C
	350	±15 VDC +5V	16 Pin DIP	Ceramic	0 to +70 -55 to +125	\$16.50 \$43.00	260C
	- 300 ±15 VDC		16 Pin DIP	Plastic Cerdip	0 to +70 -55 to +125	\$ 9.92 \$20.65	236C
—	500	±15 VDC	28 Pin DIP	Ceramic	0 to +70 -55 to +125	\$29.50 \$78.50	264C
	300 ±15 VDC		28 Pin DIP	Ceramic	0 to +70 -55 to +125	\$19.50 \$60.00	260C
	600	±15 VDC	28 Pin DIP	Plastic Cerdip	0 to +70 -55 to +125	\$17.80 \$56.20	242C
120 dB	500	±15 VDC	16 Pin DIP	Ceramic	0 to +70 -55 to +125	\$17.50 \$57.00	264C
120 dB	350	±15 VDC +5V	16 Pin DIP	Ceramic	0 to +70 -55 to +125	\$16.50 \$43.00	260C
	300 ±15 VDC		16 Pin DIP	Plastic Cerdip	0 to +70 -55 to +125	\$ 9.92 \$20.65	248C
120 dB 500		±15 VDC	28 Pin DIP	Ceramic	0 to +70 -55 to +125	\$29.50 \$78.50	264C
120 dB	300	\pm 15 VDC	28 Pin DIP	Ceramic	0 to +70 -55 to +125	\$19.50 \$60.00	260C
600 ±15 VDC		±15 VDC	28 Pin DIP	Plastic Cerdip	0 to +70 -55 to +125	\$17.80 \$56.20	254C

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Model MU-6108 CMOS 8 Channel Analog Multiplexer

FEATURES

- Ultra Low Leakage ≤ 100pA (Total I_{Doff})
- ron <400 ohms over full signal and temperature range
- Power supply quiescent current less than 100µA
- ±14V analog signal range
- No Latch up or "S.C.R." action
- Break before make switching
- Binary strobe control (3 strobe inputs control 8 channels)
- TTL and CMOS compatible strobe control
- Pin Pin with DG508 HI-508 & AD7508

GENERAL DESCRIPTION

The 6108 is a CMOS monolithic, one-out-of-8 multiplexer. The part is a plug-in replacement for the DG508. Three line binary decoding is used so that the 8 channels can be controlled by 3 strobe inputs; additionally a fourth input is provided to use as a system enable; if the enable input is 0V, none of the channels can be turned on. When the enable input is high (5V) the channels are sequenced by the 3 line strobe inputs. The 3 strobe inputs are controlled by TTL logic or CMOS logic elements; a "0" corresponds to any voltage less than 0.8V and a "1" corresponds to any voltage greater than 2.4V; however the enable input (En) must be taken to 5V to enable the system and less than 0.8V to disable the system.

ABSOLUTE MAXIMUM RATINGS

VIN (A, En) to Ground	–15V to 15V
Vs or Vp to Vcc	0, –32V
Vs or VD -VCC	0, 32V
+Vcc to Ground	16V
-Vcc to Ground	16V
Current (Any Terminal)	30 mA
Current (Analog Drain)	20 mA

Current (Analog Source)	20 mA
Operating Temperature55	to 125°C
Storage Temperature65	to 150° C
Power Dissipation (Package)*	1200 mW

*All leads soldered or welded to PC board. Derate 10 mW/° C above 70° C.

ELECTRICAL CHARACTERISTICS

		NO			MAX LIMITS						TEST C	ONDITIONS	
c	HARACTERISTIC	MEASURED	TESTS	TYP					UNIT	(UNLESS OTH	ERWISE NOTED)		
TERMINAL		TEMP	25 0	-55°C	25°C	A 125° C	0°C	250	70° C		$+\mathbf{v}_{CC} = 15\mathbf{v}, -\mathbf{v}_{CC}$	= -15V, Ground = UV	
⊢	Г. — — — — — — — — — — — — — — — — — — —			100	33 0	23 0	125 0	00	23 0	10 0		VEn ~ 1	
ł		0 to D	8	180	300	300	400	350	350	450		$V_{\rm D} = 10V, I_{\rm S} = -1.0 {\rm mA}$	Sequence each switch on
	rds(ON)	5 to D	8	150	300	300	400	350	350	450	Ω	$V_D = -10V. I_S = -1.0mA$	$V_{A(L)} = 0.8V, V_{A(H)} = 2.4V$
s w	Δrds(on)			20							%	$\Delta r_{DS(ON)} = \frac{r_{DS(ON)MA}}{r_{DS(O)}}$	^{lx −r} ds(on)min ON)AVG.
			8	0.002		0.05	50		0.1	50		$V_{S} = 10V, V_{D} = -10V$	
Т	S(OFF)	S	8	0.002		0.05	50		0.1	50		$V_{S} = -10V, V_{D} = 10V$	
С			1	0.03		0.1	100		0.2	100	NA	$V_D = 10V, V_S = -10V$	VEn = 0
н	ID(OFF)	D	1	0.03		0.1	100		0.2	100		$V_D = -10V, V_S = 10V$	
1			8	0.1		0.2	100		0.4	100		$V_{S(AII)} = V_D = 10V$	Sequence each switch on
	ID(ON)	D	8	0.1		0.2	100		0.4	100		$V_{S(AII)} = V_D = -10V$	$V_{A(L)} = 0.8V, V_{A(H)} = 2.4V$
1	IAN(ON) OF	A ₀ , A ₁ or A ₂	3	.01		-10	-30		-10	-30		V _A = 2.4V or 0V	
Ν	AN(OFF)	Inputs	3	.01		10	30		10	30		VA = 15V or 0V	
Ρ		A ₀ A ₁									μA		
υ	l2n	A2	3			-10	-30		-10	-30		V _{En} = 5V	All $V_A = 0$ (Strobe pins)
Т		En	1			-10	-30		-10	-30		V _{En} = 0	
	ttransition	D		0.3		1		•				See Fig. 1	
D	topen	D.		0.2								See Fig. 2	
Y	ton(En)	D		0.6		1.5					μS	See Fig. 3	
Ν	t _{off(En)}	D		0.4		1							
А	"OFF" Isolation	D		60							dB	$V_{En} = 0$, $R_L = 200\Omega$,	$C_L = 3pF$, $V_S = 3$ VRMS,
м												f = 500 kHz	
1	C _S (OFF)			5								V _S = 0	
С	C _D (OFF)			25							рF	V _D = 0	V _{En} = 0V. f = 140 kHz to 1 MHz
	CDS(OFF)			- 1								$V_{S} = 0, V_{D} = 0$	
S	I ₁₃ (+V _{CC})	+V _{CC}	1	40		200			1000				
P	I3(-VCC)	-Vcc	1	2		100			1000			VEn = 5V	
P	I ₁₃ Standby	+Vcc	1	1		100			1000		μA		All VA = 0 OR 5V
Ŷ	I ₃ Standby	-Vcc	1	1		100			1000			VEn - 0	

NOTE 1: See Section I. Enable Input Strobing Levels.

MU-6108 APPLICATION INFORMATION

I. Enable Input Strobing Levels

The chip enable input on the 6108 requires a minimum of +4.5V to trigger it into the "1" state and a maximum of +0.8V to

trigger it into the "0" state. If the chip enable input is being driven from TTL logic, a pull-up resistor is required from the gate output to +5V supply. The value of this resistor is not critical and can be in the 1K to $3K\Omega$ range (See Figure 4).

Figure 4. Enable Input Strobing from TTL Logic

MU-6108 APPLICATION INFORMATION (CONT.)

When the En input is driven from CMOS logic, no pullup is necessary. Fig. 5 shows the CD4009 driving the En input.

Figure 5. Enable Input Strobing from CMOS Logic

The Supply Voltage of the CD4009 does affect the switching speed of the 6108. same is true for TTL Supply Voltage Levels. The chart below shows the effect, on t_{transition} times, of supply varying from +4.5V to +5.5V.

CMOS OR TTL SUPPLY VOLTAGE	TYPICAL transition @ 25°C
+4.5V	400ns
+4.75V	300ns
+5.00V	250ns
+5.25V	200ns
+5.50V	175ns

The throughput rate can therefore be maximized by using a +5V to +5.5V supply for the Enable Strobe Logic.

The cases shown in Figures 4 and 5 deal with enable strobing when expandability to more than eight channels is required. In these cases the En terminal acts as a fourth binary input. If eight channels or less are being multiplexed, the En terminal can be directly connected to +5V logic supply which would "enable" the 6108 at all times.

MU-6108 APPLICATION INFORMATION (CONT.)

APPLICATIONS

II. Using the MU-6108 with supplies other than \pm 15V

The 6108 can be used with power supplies ranging from $\pm 6V$ to $\pm 16V$. The switch $r_{DS(on)}$ will increase as the supply voltages decrease. However, the multiplexer error term the product of leakage times $r_{DS(on)}$ will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the chip enable (En) voltage is at least 0.7V below V_{cc} at all times. If this is not done the binary input strobing levels will not function properly. This may be achieved quite simply by connecting En (pin 2) to $+V_{cc}$ (pin 13) via a silicon diode as shown in Figure 6. If the 6108 is hooked up in this type of a configuration a further requirement must be met — the strobe levels at A₀ and A₁ must be within 2.5V of the En voltage to define a binary "1" state.

For the case shown in Figure 6 the En voltage is 11.3V which means that logic high at A_0 and A_1 is = +8.8V (logic low continues to be = 0.8V). In this configuration the 6108 cannot be driven by TTL (+5V) or CMOS (+5V) logic. It can be driven by TTL open collector logic or CMOS logic with +12V supplies.

If the logic and the 6108 have common supplies the En pin should again be connected to the supply through a silicon diode. In this case tying En to the logic supply directly will not work since it will violate the 0.7V differential voltage required between $+V_{cc}$ and En on the 6108 (See Figure 7). A 1µf capacitor can be placed across the diode to minimize switching glitches.

Figure 6. MU-6108 Connection Diagram for less than $\pm 15V$ Supply Operation.

MU-6108 APPLICATION INFORMATION (CONT.)

Figure 7. MU-6108 Connection Diagram with Enable Input Strobing for less than $\pm 15V$ Supply Operation.

III. Peak-to-Peak Signal Handling Capability

The MU-6108 can handle input signals up to \pm 14V, actually -15V to +14.3V, when it has \pm 15V supplies. The input protection diode prevents the handling of signals up to +15V. The

electrical specifications of the MU-16108 are guaranteed for $\pm 10V$ signals but the specifications have very minor changes for $\pm 14V$ signals. The notable changes would be slightly lower $r_{DS(on)}$ and slightly higher leakages.

PACKAGE DIMENSIONS

CMOS 16-Channel Analog Multiplexer Model MU-6116

FEATURES

- Pin Compatible with DG506, HI-506 & AD7506
- Ultra Low Leakage ≤ 100pA
- ±11V analog signal range
- ron <750 ohms over full signal and temperature range
- Break before make switching
- TTL and CMOS compatible strobe control
- Binary strobe control (4 strobe inputs control 16 channels)
- Two tier submultiplexing to facilitate expandability
- Power supply quiescent current less than 100µA
- No Latch up or "S.C.R." action

FUNCTIONAL DIAGRAM S10-0-S2 0 O -₹_ So Or *0 Se 10 0 VOUTID So O -S10 0 10 SII O -*0 S12 0 *, S13 0 S14 0 *₀ S16 O TO DECODE LOGIC CONTROLLING BOTH EN (ENABLE INPUT) A0 **4 LINE BINARY STROBE INPUTS** 1) AND EN @ 5\

ABOVE EXAMPLE SHOWS CHANNEL 9 TURNED ON

GENERAL DESCRIPTION

The MU-6116 is a CMOS monolithic, one-out-of 16 multiplexer, and is a plug-in replacement for the DG506. Four line binary decoding is used so that the 16 channels can be controlled by 4 strobe inputs; additionally a fifth input is provided to use as a system enable; if the enable input is 0V, none of the channels can be turned on. When the enable input is high (5V) the channels are sequenced by the 4 line strobe inputs. The 4 strobe inputs are controlled by TTL logic or CMOS logic elements; a "0" corresponds to any voltage less than 0.8V and a "1" corresponds to any voltage greater than 3V; however the enable input (EN) *must* be taken to 5V to enable the system and less than 0.8V to disable the system.

DECODE TRUTH TABLE

	ORDERING	INFORMATION		
MODEL	OPER. TEMP RANGE	PACKAGE		
MU-6116C	0 to +70°C	28 Pin Epoxy DIP	1	
MU-6116M	−.55 to +125°C	28 Pin CerDIP		

ABSOLUTE MAXIMUM RATINGS

V _{IN} (A, EN) to Ground15V t	o 15V
$V_S \text{ or } V_D \text{ to } V_1 \dots \dots 0$,-32V
$V_S \text{ or } V_D \text{ to } V_2 \dots \dots$	0, 3 <mark>2</mark> V
V1 to Ground	. 16V
V ₂ to Ground	-16V
Current (Any Terminal) 3	30 m A
Current (Analog Drain) 2	20 m A

Current (Analog Source) 20 m	ιA
Operating Temperature55 to 125°	C
Storage Temperature	С
Power Dissipation (Package)* 1200 m	W

*All leads soldered or welded to PC board. Derate 10 mW/° C above 70° C.

ELECTRICAL CHARACTERISTICS

CHARACTERISTIC		MEASURED	NO TESTS	NO TESTS TYP			MAX L	MITS			UNIT	TEST CO (UNLESS OTHE	NDITIONS RWISE NOTED)
		TERMINAL	PER	25° C	M SUFFIX			C SUFFIX				V ₁ = 15V, V ₂ = -	15V, Ground = 0
			TEMP		-55°C	25° C	125° C	0° C	25°C	70° C]	V _{EN} = +5	V (Note 1)
			16	480	600	600	700	650	650	750		$V_D = 10V, I_S = -1.0mA$	Sequence each switch on
	rds(ON)	S to D	16	300	600	600	700	650	650	750	Ω	$h = -10V, I_{S} = -1.0mA$	$V_{A(L)} = 0.8V, V_{A(H)} = 3V$
s w	Δrds(on)			20							%	$\Delta r_{DS(ON)} = \frac{r_{DS(ON)MA}}{r_{DS(O)}}$	([_] rds(on)min −10V ≤Vs10V N)AVG.
Ļ			16	0.01		0.1	50		0.2	50		$V_{S} = 10V, V_{D} = -10V$	
1	IS(OFF)	S	16	0.01	l	0.1	50		0.2	50		$V_{S} = -10V, V_{D} = 10V$	
			1	0.1		0.2	100		0.4	100	NA	$V_{D} = 10V, V_{S} = -10V$	V _{EN} = 0
Г	ID(OFF)	D	1	0.1		0.2	100		0.4	100		$V_D = -10V, V_S = 10V$	
			16	0.1		0.2	100		0.4	100		$V_{S(AII)} = V_D = 10V$	Sequence each switch on
	ID(ON)	D	16	0.1		0.2	100		0.4	100		$V_{S(AII)} = V_D = -10V$	$V_{A(L)} = 0.8V, V_{A(H)} = 3V$
Т	IAN(ON) OF		4	.01		-10	-30		-10	-30		$V_{A} = 3.0V$	
N	IAN(OFF)		4	.01		10	30		10	30]	$V_A = 15V$	
Р		A ₀ A ₁									μΑ		
U	IA	A ₂ A ₃	4			-10	-30		-10	-30]	$V_{EN} = 5V$	All $V_A = 0$
Т		EN	1			-10	-30		-10	-30		V _{EN} = 0	
	ttransition	D		0.6		1						See Fig. 1	
L_	t _{open}	D		0.2]	See Fig. 2	
Ľ	t _{on(En)}	D		0.8		1.5					μs	See Fig. 3	
Ľ.	t _{off(En)}	D		0.3		1					1		
A	"OFF" Isolation	D		60							dB	$V_{EN} = 0, R_L = 200\Omega, C$ f = 500 kHz	$C_L = 3pF, V_S = 3 VRMS,$
	C _S (OFF)			5								Vs - 0	
С	C _D (OFF)			40							рF	$V_D = 0$	V _{EN} = 0, f = 140 kHz to 1 MHz
	CDS(OFF)			1]	$V_{S}=0, V_{D}=0$	-
S	11	V1	1	55		200			1000				
P	I ₂	V2	1	2		100			1000]	$V_{EN} = 5V$	
P	I ₁ Standby	V1	1	1		100			1000		μA		All V _A = 0 OR 3V
Ϋ́	I ₂ Standby	V2	1	1		100			1000		1	$V_{EN} = 0$	

NOTE 1: See Section V. Enable Input Strobing Levels.

Figure 1

MU-6116 APPLICATIONS

A3

A4

I. 1 out of 32 channel multiplexer using 2 MU-6116s.

A 2	A 1	A 0	ON SWITCH
0	0	0	S1
0	0	1	S2
0	1	0	S3
0	1	1	S4
1	0	0	S5
1	0	1	S6
1	1	0	S7
1	1	1	S8
0	0.	0	S9
0	0	1	S10
0	1	0	S11
0	1	1.	S12
1	0	0	S13
1	0	1	S14
1	1	0	S15
1	.1	1	S16

DECODE TRUTH TABLE

A 4	A 3	A 2	A 1	A 0	ON SWITCH
1	0	0	0	0	S17
1	0	0	0	1	S18
1	0	0	1	. 0	S19
1	-0	0	1	1	S20
1 1 .	0	1	0	0	S21
1	0	1	0	1	S22
1	0	1	1.	0	S23
1	0	1	1	1	S24
1	1	0	0	0.	S25
1	1	0	0	1.	S26
1	1	0	1	0	S27
1 1	1	0	1	<u>`</u> 1	S28
1	1	1	0	0	S29
1	1	1.	0	1	S30
1	1	1	1	0	S31
1	1	1	1	1	S32

DECODE TRUTH TABLE

MU-6116 APPLICATIONS

II. 1 out of 32 channel multiplexer using 2 MU-6116s; using an AS-5041 for submultiplexing.

	DECODE TRUTH TABLE												
A 4	A 3	A 2	A 1	ON SWITCH									
0	0	0	0	0	S1								
0	0	0	0	1	S2								
0	0	0	1	0 .	S3								
0	0	0	1	1	S4								
0	0	1	0	0	S5								
0	0	1	0	1	S6								
0	0	1	1	0	S7								
0	0	1	1	1	S8								
0	1	. 0	0	0	S9								
0	1	0	0	1	S10								
0	1	0	.1	0	S11								
0	1	0	1	1	S12								
0	1	1	0	0	S13								
0	1	1	0	1	S14								
0	1	1	1	0	S15								
0	1	1	1	1	S16								

DECODE TRUTH TABLE

i	A 4	A 3	A 2	A 1	A 0	ON SWITCH
	1	0	0	0	0	S17
	1	0	0	0	1	S18
1	1	0	0	1	0	S19
	1	0	0	1	1	S20
	1	0	1	0	0	S21
	1	0	1	0	1	S22
	1	0	1	1	0	S23
	1	0	1	1	1	S24
	1	1	0	0	0	S25
	1	1	0	0	1	S26
	1	1	0	1	0	S27
	1	1	0	1	1	S28
	1	1	1	0	0	S29
	1	1	1	0	1	S30
	1	1	1	1	0	S31
	1	1	1	1	1	S32

MU-6116 APPLICATIONS

III. 1 out of 64 multiplexer using 4 1/16s and IH5053 as submultiplexer.

Figure 6

IV. GENERAL NOTE ON EXPANDABILITY OF MU-6116

The MU-6116 is a two tier multiplexer wherein sixteen input channels are routed to a common output in blocks of 4 channels at a time. Each block of 4 input channels is routed to one common output channel; thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs, and the 4 outputs are all tied together. Thus 20 switches are needed to handle the 16 channels of information. The advantage of this scheme is lower output capacity and lower leakage than a system with all 16 channels tied to one common output. Also the expandability into 32, 64, 128, etc. is facilitated. Figures 4, 5, and 6 show how the MU-6116 is expanded.

Figure 4 shows a 1 out of 32 multiplexer using 2 of the MU-6116s.Since the 6116 is itself a 2 tier mux the system as shown is basically a 2 tier system. Now the four output channels of each 6116 are tied together so that 8 channels are tied for the V_{out} common point. Since only one channel of information is on at a time, the common output will consist of 7 off channels and 1 on channel. Thus the output leakage will correspond to 7 ID(offs) and 1 ID(on); this should result in about 1.0 nA of typical leakage at room temperature. Thruput speed will be typically 0.8 μ s for t_{on} and 0.3 μ s for t_{off}. Thruput channel resistance will be in the 500 ohm area.

Figure 5 shows the same 1 out of 32 mux as Figure 4, except that a third tier of submultiplexing is added to further reduce leakage and output capacity. The AS-5041 has typical on resistances of 50 ohms (max. is 75 ohms) so it only increases thruput channel resistance from the 500 ohms of Figure 4 to about 550 ohms for Figure 5. Thruput channel speed is a little slower by about 0.5μ s for both on and off time. Output leakage is about 0.2 nA typical.

Figure 6 shows a 1 out of 64 mux using 3 tier muxing (similar to Figure 5 application). The Intersil IH5053 is used to get the third tier of muxing. The V_{out} point will see 3 off channels and 1 on channel at any time so that the typical leakages will be about 0.4 nA. Thruput channels resistance will be in the 550 ohm area and thruput switching speeds will be about 1.3μ s for on time and 0.8μ s for off time.

The IH5053 was chosen as the third tier of the mux because it will switch the same AC signals as the MU-6116(typically plus and minus 11V) and break before make switching is guaranteed so that the muxing system remains a break-before-make. Also power supply quiescent currents are typically 1 μ A from any supply, so that no excessive system power is generated. Also the logic of the 5053 is such that it can be tied directly to the enable input (as shown in the figures) with no extra logic being required.

V. ENABLE INPUT STROBING LEVELS

The enable input (EN) acts as an enabling or disabling pin for the MU-6116, when used as a 16 channel mux; however, when expanding the mux to more than 16 channels, the EN pin acts as another address input. As an example, we see in Figures 4 and 5 that the EN pin acts as the A_4 input.

For the system to function properly the EN input (pin 18) must go to $5V \pm 5\%$ for the high state and less than 0.8V for the low state. When using TTL logic, a pull-up resistor should be used to pull the output voltage up to 5V; this resistor should be 1k ohm or less. When using CMOS logic, the high state goes up to the power supply so no pull-up is required.

PACKAGE DIMENSIONS

NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of the elimination of external resistors in each channel the rDS(ON) of the switch is maintained at specified values.

CMOS 4-Channel Differential Analog Multiplexer Model MU-6208

FEATURES

- Ultra low leakage ≤ 100pA (Total IDoff)
- ron < 400 ohms over full signal and temperature range
- Power supply quiescent current less than 100µA
- ±14V analog signal range
- No latch up or "S.C.R." action
- Break before make switching
- Binary strobe control (2 strobe inputs controls 2 out of 8 channels).
- TTL and CMOS compatible strobe control
- Pin Pin with HI509, DG509 & AD7509

GENERAL DESCRIPTION

The MU-6208 is a 2 out of 8 CMOS monolithic multiplexer. The part is a plug-in replacement for the DG509. Two line binary decoding is used so that the 8 channels can be controlled in pairs by the binary inputs; additionally a third input is provided to use as a system enable; if the enable input is 0V, none of the channels can be turned on. When the enable input is high (5V) the channels are sequenced by the 2 line binary inputs. The 2 strobe inputs are controlled by TTL logic or CMOS logic elements; a "0" corresponds to any voltage less than 0.8V and a "1" corresponds to any voltage greater than 2.4V; however the enable input (En) must be taken to 5V to enable the system and less than 0.8V to disable the system.

ABSOLUTE MAXIMUM RATINGS

V_{IN} (A, En) to Ground
Vs or Vp to Vcc $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 0,-32V$
Vs or Vp to Vcc $\hfill 0,32V$
$+V_{CC}$ to Ground $\hfill 16V$
-V_CC to Ground $\dots -16V$
Current (Any Terminal) 30 mA
Current (Analog Drain) 20 mA

Current (Analog Source)	20 mA
Operating Temperature55	to 125° C
Storage Temperature65	to 150° C
Power Dissipation (Package)*	1200 mW

*All leads soldered or welded to PC board. Derate 10 mW/° C above 70° C.

ELECTRICAL CHARACTERISTICS

		NO									TEST CONDITIONS			
c	HARACTERISTIC	MEASURED	TESTS	ТҮР			MAXL	IMITS	IMITS		UNIT	(UNLESS OTH	ERWISE NOTED)	
TERMINAL		TERMINAL	PER	25° C	M SUFFIX C SUFFIX			$+V_{CC} = 15V, -V_{CC} = -15V, Ground = 0V$						
			TEMP		- 5 5° C	25° C	125° C	0°C	25° C	70° C		V En = +	5V (Note 1)	
			8	180	300	300	400	350	350	450		$V_{\rm D} = 10V, I_{\rm S} = -1.0 \text{ mA}$	Sequence each switch on	
	rds(on)	S to D	8	150	300	300	400	350	350	450	Ω	$V_D = -10V$, $I_S = -1.0 \text{ mA}$	V _{A(L)} =0.8V, V _{A(H)} =2.4V	
s w	Δrds(on)			20							%	∆rds(on) = rds(on)mA rds(C	x =rds(on)min = 10V \leq Vs 10V N) AVG.	
11			8	0.002		0.05	50		0.1	50		$V_{S} = 10V, V_{D} = -10V$		
Т	IS(OFF)	S	8	0.002		0.05	50		0.1	50		$V_{S} = -10V, V_{D} = 10V$		
С			2	0.03		0.1	50		0.2	100	NA	$V_{D} = 10V, V_{S} = -10V$	VEn 0	
н	D(OFF)	D	2	0.03		0.1	50		0.2	100		$V_{D} = -10V, V_{S} = 10V$		
			8	0.1		0.2	50		0.4	100		$V_{S(AII)} = V_D = 10V$	Sequence each switch on	
	ID(ON)	D	8	0.1		0.2	50		0.4	100		$V_{S(AII)} = V_D = -10V$	V _{A(L)} =0.8V, V _{A(H)} =2.4V	
1	lan(on) or		2	.01		-10	-30		-10	-30		$V_A = 2.4V \text{ or } 0V$		
N	IAN(OFF)		2	.01		10	30		10	30		/ _A = 15V or 0V		
P											μA			
U	l2n	A0 A1	2			-10	-30		10	-30		V _{En} 5V	All $V_A = 0$	
Т		En	1			-10	-30		10	-30		V _{En} 0	(Strobe Pins)	
	ttransition	D		0.3		1						See Fig. 1		
	topen	D		0.2								See Fig. 2		
	ton(En)	D		0.6		1.5					μS	See Fig. 3		
I.	toff(En)	D		0.4		1								
A	"OFF" Isolation	D		60							dB	$\dot{V_{En}} = 0, R_L = 200\Omega, C_L$ f = 500 kHz	= 3 pF, V _S = 3 VRMS,	
	CS(OFF)			5								$V_{S} = 0$		
с	C _D (OFF)			12							рF	$V_D = 0$	V _{En} = 0, f = 140 kHz to 1 MHz	
	C _{DS} (OFF)			1								$V_{\rm S} = 0, V_{\rm D} = 0$		
s	I ₁₄ (+V _{CC})	+ Vcc	1	40		200			1000					
U P	I3 (-VCC)	-Vcc	1	2		100			1000			V _{En} 5V		
P	I ₁₄ Standby	+Vcc	1	1		100			1000		μA		All Va = 0 OR 5V	
Ŷ	l ₃ Standby	-Vcc	1	1		100			1000			V _{En} 0		

NOTE 1: See Section | Enable Input Strobing Levels.

SWITCHING INFORMATION

Figure 2. topen (Break-Before-Make) Switching Test

Figure 3. ton and toff Switching Test

IH6208 APPLICATION INFORMATION

I. Enable Input Strobing Levels

The chip enable input on the MU-6208 requires a minimum of +4.5V to trigger it into the "1" state and a maximum of +0.8V to

trigger it into the "0" state. If the chip enable input is being driven from TTL logic, a pull-up resistor is required from the gate output to +5V supply. The value of this resistor is not critical and can be in the 1K to $3K\Omega$ range (See Figure 4).

MU-6208

MU-6208

MU-6208

Figure 4. Enable Input Strobing from TTL Logic
6208 APPLICATION INFORMATION (CONT.)

When the En input is driven from CMOS logic, no pullup is necessary. Fig. 5 shows the CD4009 driving the En input.

The Supply Voltage of the CD4009 does affect the switching speed of the MU-6208 with the same being true for Supply Voltage Levels. The chart below shows the effect, on transition times, of supply varying from +4.5V to +5.5V.

CMOS OR TTL SUPPLY	TYPICAL transition @ 25°C
+4.5V	400ns
+4.75V	300ns
+5.0V	250ns
+5.25V	200ns
+5.50V	175ns

The throughput rate can therefore be maximized by using a +5V to +5.5V supply for the Enable Strobe Logic.

The cases shown in Figures 4 and 5 deal with enable strobing when expandability to more than four differential channels is required. In these cases the En terminal acts as a third binary input. If four channel pairs or less are being multiplexed, the En terminal can be directly connected to +5V logic supply which would "enable" the MU-6208 at all times.

MU-6208 APPLICATION INFORMATION (CONT.)

APPLICATIONS

II. Using the MU-6208 with supplies other than \pm 15V

The MU-6208 can be used with power supplies ranging from \pm 6V to \pm 16V. The switch r_{DS(ON)} will increase as the supply voltages decrease. However, the multiplexer error term (the product of leakage times r_{DS(ON)} will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the chip enable (En) voltage is at least 0.7V below V_{CC} at all times. If this is not done the binary input strobing levels will not function properly. This may be achieved quite simply by connecting En (pin 2) to \pm V_{CC} (pin 14) via a silicon diode as shown in Figure 6. If the MU-6208 is hooked up in this type of a configuration a further requirement must be met — the strobe levels at A₀ and A₁ must be within 2.5V of the En voltage to define a

binary "1" state. For the case shown in Figure 6 the En voltage is 11.3V which means that logic high at A_0 and A_1 is = +8.8V (logic low continues to be = 0.8V). In this configuration the MU-6208 cannot be driven by TTL (+5V) or CMOS (+5V) logic. It can be driven by TTL open collector logic or CMOS logic with +12V supplies.

If the logic and the MU-6208 have common supplies the En pin should again be connected to the supply through a silicon diode. In this case tying En to the logic supply directly will not work since it will violate the 0.7V differential voltage required between $\pm V_{CC}$ and En on the MU-6208 See Figure 7 . A 1µf capacitor can be placed across the diode to minimize switching glitches.

Figure 6. MU-6208 Connection Diagram for less than \pm 15V Supply Operation.

MU-6208 APPLICATION INFORMATION

Figure 7. MU-6208 Connection Diagram with Enable Input Strobing for less than \pm 15V Supply Operation.

III. Peak-to-Peak Signal Handling Capability

The MU-6208 can handle input signals up to $\pm 14V$ actually -15V to $\pm 14.3V$ when it has $\pm 15V$ supplies. The input protection diode prevents the handling of signals up to $\pm 15V$.

The electrical specifications of the MU-6208 are guaranteed for $\pm 10V$ signals but the specifications have very minor changes for $\pm 14V$ signals. The notable changes would be slightly lower rDS(on) and slightly higher leakages.

PACKAGE DIMENSIONS

1. Lead no. 1 identified by dot or notch.

2. Dimensions in inches (millimeters).

CMOS 8-Channel Differential Analog Multiplexer Model MU-6216

FEATURES

- Pin Compatible with HI507, DG507 & AD7507
- ±11V analog signal range
- ron < 750 ohms over full signal and temperature range
- Break before make switching
- TTL and CMOS compatible strobe control
- Binary strobe control (3 strobe inputs controls 2 out of 16 channels).
- Two tier submultiplexing to facilitate expandability
- Power supply quiescent current less than 100µA
- No latch up or "S.C.R." action
- Very low leakage \leq 100pA

GENERAL DESCRIPTION

The MU-6216 is a 2 out of 16 CMOS monolithic multiplexer. The part is a plug-in replacement for the DG507. Three line binary decoding is used so that the 16 channels can be controlled in pairs by the binary inputs; additionally a fourth input is provided to use as a system enable; if the enable input is 0V, none of the channels can be turned on. When the enable input is high (5V) the channels are sequenced by the 3 line binary inputs. The 3 strobe inputs are controlled by TTL logic or CMOS logic elements; a "0" corresponds to any voltage less than 0.8V and a "1" corresponds to any voltage greater than 3.0V; however the enable input (EN) <u>must</u> be taken to 5V to enable the system and less than 0.8V to disable the system.

ABSOLUTE MAXIMUM RATINGS

V _{IN} (A, EN) to Ground15	5V, V1
$V_S \text{ or } V_D \text{ to } V_1 \dots \dots 0,$	-32V
Vs or V _D to V ₂ 0), 32V
V1 to Ground	. 16V
V ₂ to Ground	-16V
Current (Any Terminal) 3	0 m A
Current (Analog Drain) 2	0mA

ELECTRICAL	CHARACTERISTICS

			NO								1	TEST CO	NDITIONS	
c	HARACTERISTIC	MEASURED	TESTS	ТҮР		MAX LIMITS			UNIT	(UNLESS OTHE	RWISE NOTED)			
	TERMINAL		PER	25° C		M SUFFI	x		C SUFFI)	(1	$V_1 = 15V, V_2 = -15V, Ground = 0$		
		-	ТЕМР		55° C	25°C	125° C	0° C	25°C	70° C	1	V EN = +5	V (Note 1)	
			16	480	600	600	700	650	650	750		V _D = 10V, I _S = - 1.0mA	Sequence each switch on	
	rDS(ON)	S to D	16	300	600	600	700	650	650	750	Ω	$V_{D} = -10V, I_{S} = -1.0mA$	V _{A(L)} =0.8V, V _{A(H)} =3V	
												rds(on)max	-rds(on)min	
s	$\Delta r_{DS(ON)}$			20							%	$\Delta r_{DS(ON)} =$	$-10V \le V_{S}10V$	
W											ļ	r _{DS} (O	N) AVG.	
Ľ		_	16	0.01		0.1	50		0.2	50	-	$V_{\rm S} = 10V, V_{\rm D} = -10V$		
1	IS(OFF)	S	16	0.01		0.1	50		0.2	50		$V_{\rm S} = -10V, V_{\rm D} = 10V$		
C			2	0.1		0.2	100		0.4	100		$V_{\rm D} = 10V, V_{\rm S} = -10V$	V _{EN} = 0	
н	ID(OFF)	D	2	0.1		0.2	100		0.4	100	1	$V_{\rm D} = -10V, V_{\rm S} = 10V$		
			16	0.1		0.2	100		0.4	100		$V_{S(AII)} = V_D = 10V$	Sequence each switch on	
	ID(ON)	D	16	0.1		0.2	100		0.4	100		$V_{S(AII)} = V_D = -10V$	V _{A(L)} =0.8V, V _{A(H)} =3V	
1	IAN(ON) OF		3	.01		-10	-30		10	-30	1	$V_A = 3.0V$		
Ν	AN(OFF)		3	.01		10	30		10	30		$V_A = 15V$		
Ρ		A0 A1							· ·	· ·	μΑ			
U	I _A	A ₂ A ₃	3			-10	- 30		-10	-30		$V_{EN} = 5V$	All V _A = 0	
Т		EN	1			10	30		-10	-30		$V_{EN} = 0$		
	t _{transition}	D		0.6		1						See Fig. 1		
	topen	D		0.2								See Fig. 2		
V	t _{on(En)}	D		0.8		1.5					μs	See Fig. 3		
L.	t _{off(En)}	D		0.3		1								
	"OFF" Isolation	D		60							dB	$V_{EN} = 0$, $R_L = 200\Omega$, $C_L = 3 \text{ pF}$, $V_S = 3 \text{ VRMS}$		
I.												f = 500 kHz		
	C _S (OFF)			5								V _S = 0		
Ľ	C _D (OFF)		[20	[pF	$V_D = 0$	$V_{EN} = 0, f = 140 \text{ kHz to}$	
ľ					[1 MHz	
	C _{DS} (OFF)			1								$V_{S} = 0, V_{D} = 0$		
S	11	V1	1	55		200			1000					
P	l ₂	V2	1	2		100			1000			$V_{EN} = 5V$		
P	I ₁ Standby	V1	1	1		100			1000		μA		All VA = 0 OR 3V	
Ϋ́	I ₂ Standby	V2	1	1		100			1000			$V_{EN} = 0$		

NOTE 1: See Section V. Enable Input Strobing Levels.

SWITCHING INFORMATION

MU-6216 APPLICATIONS

Figure 4

DECODE TRUTH TABLE

A 3	A 2	A 1	A 0	ON SWITCH	
0	0	0	0	S1a	
0	0	0	1	S2a	
0	0	11	0	S3a	
0	0	1	1	S4a	
0	1	0	0	S5a	
0	1	0	1	S6a	
0	1	1	0	S7a	
0	1	1	1	S8a	Vouti
1	0	0	0	S9a	
1	0	0	1 -	S10a	
1 1	0	1	0	S11a	1. S.
1	0	1 1	1	S12a	
1	1	0	0	S13a	
1	1	0	1	S14a	
1	1	1	0	S15a	
1	1	1	1	S16a	

DECODE TRUTH TABLE

-0 -2V

-0 VOUT

-0 -5V

0 VOUT

35pf

35pF

	A 3	A 2	A 1	A 0	ON SWITCH	
Г	0	0	0	0	S1b	
	0	0	0	1	S2b	
	0	0	1	0	S3b	
	0	0	1	1	S4b	
	0	1	0	0	S5b	
	0	1	0	1	S6b	
	0	1	1	0	S7b	
	0	1	1	1	S8b	VOUT2
	1	0	0	0	S9b	
	1	0	0	1	S10b	
	1	0	1	0	S11b	
	1	0	1	1 '	S12b	
	. 1	1	0	0	S13b	
	1	1	0	1 🗇	S14b	
	1	1	1	0	S15b	
Ľ	1	1	1	1	S16b	

MU-6216 APPLICATIONS

II. 2 out of 32 channel multiplexer using 2 MU-6216s; using an AS-5043 for submultiplexing.

Figure 5

DECODE TRUTH TABLE

A 3	A 2	A 1	A 0	ON SWITCH	
0	0	0	0	S1a	
0	0	0	1	S2a	
0	0	1	0	S3a	
0	0	1	1	S4a	
0	1	0	0	S5a	
0	1	0	1	S6a	
0	1	1	0	S7a	
0	1	1	1	S8a	VOUT1
1	0	0	0	S9a	
1	0	0	1	S10a	1 [
1	0	1	0	S11a) · ·]
1	0	1	1	S12a	
1	1	0	0	S13a	
1	1	0	1	S14a	
1	1	1	0	S15a	
1	1	1	1	S16a	

DECODE TRUTH TABLE

A 3	A 2	A 1	A 0	ON SWITCH	
0	0	0	0	S1b	
0	0	0	1	S2b	
0	0	1	0	S3b	
0	0	1 1	1	S4b	
0	1	0	0	S5b	
0	1	0	1	S6b	
0	1	1	0	S7b	
0	1	1	1	S8b	VOUT2
1	0.	0	0	S9b	
1	0	0	1	S10b	
1	0	1	0	S11b	
1	0	1	1	S12b	
1	1	0	0	S13b	
1	1	0	1	S14b	
1	1 -	1	0	S15b	
1	1	1	1	S16b	

MU-6216 APPLICATIONS

III. 2 out of 64, using 4 MU-6216s and 2 AS-5043s.

IV. GENERAL NOTE ON EXPANDABILITY

The MU-6216 is a two tier multiplexer wherein 8 pairs of input channels are routed to a pair of outputs in blocks of 4 channels at a time. Each block of 4 input channels is routed to one common output channel; thus the submultiplexed system looks like 4 bloks of 4 inputs routed to 4 different outputs, and the 4 outputs are tied in pairs. Thus 20 switches are needed to handle the 16 channels of information. The advantage of this scheme is lower output capacity and lower leakage than a system with all 8 channels tied to one common output. Also the expandability into 2 out of 32, 64, 128, etc. is facilitated. Figures 4, 5, and 6 show how the MU-6216 is expanded.

Figure 4 shows a 2 out of 32 multiplexer using 2 of the MU-6216s. Since the 6216 is itself a 2 tier mux, the system as shown is basically a 2 tier system. Corresponding output points of each of the 6216 are connected together, and the enable input strobe is used as the A₃ input. Since each output (pins 2 and 28) corresponds to an "on" fet and an "off" fet, the overall system looks like 1 "on" fet and 3 "off" fets for.each of the V_{out1} and V_{out2} outputs. Thus the output leakage will be 1 ID(on) plus 3 ID(off)s or about 0.4 nA typical, at room temperature. Thruput channel resistance will be in the 500 ohm area.

Figure 5 shows the same 2 out of 32 mux as Figure 4, except that a third tier of submultiplexing is added to further reduce leakage and output capacity. The MU-6216 has typical on resistance of 50 ohms (max. is 75 ohms) so it only increases thruput channel resistance from the 500 ohms of Figure 4 to about 550 ohms for Figure 5. Thruput channel speed is a little slower by about 0.5μ s for both on and off time. Output leakage is about 0.2 nA typical.

Figure 6 shows a 2 out of 64 mux using 3 tier muxing (similar to Figure 5 application). Again the Model AS-5043 is used to get the third tier of muxing. Each V_{out} point will see 3 off channels and 1 on channel at any time so that the typical leakages will be about 0.4 nA. Thruput channel resistance will be in the 550 ohm area and thruput switching speeds will be about 1.3µs for on time and 0.8µs for off time.

The MU-6216 was chosen as the third tier of the mux because it will switch the same AC signals as the MU-6216 (typically plus and minus 15V) and break before make switching is guaranteed so that the muxing system remains a break-before-make. Also power supply quiescent currents are typically 1 μ A from any supply, so that no excessive system power is generated. Also the logic of the 5043 is such that it can be tied directly to the enable input (as shown in the figures) with no extra logic being required.

V. ENABLE INPUT STROBING LEVELS

The enable input (EN) acts as an enabling or disabling pin for the MU-6216 when used as a 2 out of 16 channel mux; however, when expanding the mux to more than 16 channels, the EN pin acts as another address input. As an example, we see in Figures 4 and 5 that the EN pin acts as the A₃ input.

For the system to function properly the EN input (pin 18) must go to $5V \pm 5\%$ for the high state and less than 0.8V for the low state. When using TTL logic, a pull-up resistor should be used to pull the output voltage up to 5V; this resistor should be 1k ohm or less. When using CMOS logic, the high state goes up to the power supply so no pull-up is required.

PACKAGE DIMENSIONS

NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of the elimination of external resistors in each channel the rDS(ON) of the switch is maintained at specified values.

Low ON-Resistance CMOS Analog Multiplexers MV Series

FEATURES

- Low ON Resistance
- Break-Before-Make Switching
- Dielectrically Isolated CMOS
- Single Ended or Differential
- Fast Settling Time
- DTL/TTL/CMOS Compatible

GENERAL DESCRIPTION

The MV series analog multiplexers are 4, 8, and 16 channel monolithic devices featuring a low ON resistance of 270 ohms. These units are manufactured with CMOS technology using a dielectric isolation process. There are 8 and 16 channel single-ended models and 4 and 8 channel differential models in this series. Channel addressing is done by a 2, 3, or 4 bit binary code; an inhibit input enables or disables the entire device to permit expansion of the number of channels by using several devices together. Another important feature is break-beforemake switching, which insures that no two channels are ever momentarily shorted together.

With a high impedance load, transfer accuracies of 0.01% can be achieved at channel sampling rates up to 350 KHz. These multiplexers are ideal for multi-channel data acquisition systems where the multiplexer operates into a high impedance load such as a sample-hold, buffer amplifier, or instrumentation amplifier. The channel ON resistance is less than 500 ohms over full operating temperature range.

These multiplexers are packaged in 16 pin and 28 pin ceramic DIP's. Standard versions operate over 0 to 70°C while military versions operate from -55°C to +125°C. The MV series is similar in specification to Datel's MX series multiplexers. The MX series is recommended where input overvoltage protection to 20 volts above supply voltage is required and where higher channel ON resistance can be tolerated.

CAUTION:

These multiplexers are CMOS devices and should be handled with anti-static precautions until installed in a circuit with leakage return paths.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS Typical at ±15V supplies (and +5V supply for MV-808 & MVD-409), unless otherwise noted.

	MV-808 MV-808M	MV-1606 MV-1606M	MVD-409 MVD-409M	MVD-807 MVD-807M
MAXIMUM RATINGS Power Supply, analog Power Supply, digital Analog Input Voltage Digital Input Voltage Package Dissipation, max.	±20V +30V ± Vs+2V ±Vs 780mW	±20V — ±Vs+2V ±Vs+4V 1200mW	±20V +30V ⊭Vs+2V ±Vs 780mW	±20V — ℲVs+2Ŋ ℲVs+4Ŋ 1200mW
ANALOG INPUTS Number of Channels Type Input Voltage Range Channel ON Resistance ¹ Channel OFF Input Leakage Channel OFF Input Leakage Channel OFF Output Leakage Channel OFF Input Capacitance Channel OFF Output Capacitance	8 Single Ended ±15V 250Ω 500Ω 20pA 100pA 100pA 4pF 20pF	16 Single Ended ±15V 270Ω 500Ω 30pA 1.0nA 1.0nA 4pF 44pF	4 Differential ±15V 250Ω 500Ω 20pA 50pA 50pA 50pA 4pF 10pF	8 Differential ±15V 270Ω 500Ω 30pA 1.0nA 1.0nA 4pF 22pF
DIGITAL INPUTS ³ Logic "0" Threshold, max. Logic "1" Threshold, ⁴ min. Input Current, max., HI or LO Channel Address Coding Channel Inhibit, all channels OFF	+0.4V +4.0V 1µA 3 Bits Logic "1"	+0.8V +2.4V 5μΑ 4 Bits Logic "0"	+0.4V +4.0V 1/μΑ 2 Bits Logic "1"	+0.8V +2.4V 5μA 3 Bits Logic "0"
PERFORMANCE Transter Error, max. Crosstalk, 10KHz Common Mode Rejection Settling Time, 20V to 0.1% Settling Time, 20V to 0.01% Turn ON Time Turn OFF Time Inhibit/Enable Delay Break-Before-Make Delay	0.01% -86dB 2.8 μsec. 350 nsec. 250 nsec. 300 nsec. 100 nsec.	0.01% -86dB 1.2 µsec. 2.4 µsec. 300 nsec. 220 nsec. 300 nsec. 80 nsec.	0.01% -86dB 120dB 1.1 μsec. 2.8 μsec. 350 nsec. 250 nsec. 300 nsec. 100 nsec.	0.01% -86dB 120dB 1.2 μsec. 2.4 μsec. 300 nsec. 220 nsec. 300 nsec. 80 nsec.
POWER REQUIREMENT Power Supply Voltage Power Supply Current, ⁵ max. Digital Supply Voltage Digital Supply Current, max.	±15VDC +1, -2mA +5VDC 2mA	±15VDC +5, -2mA — —	±15VDC +1, -2mA +5VDC 2mA	±15VDC +5, -2mA —
PHYSICAL-ENVIRONMENTAL Operating Temp. Range, standard version Operating Temp. Range, military, version Storage Temperature Range Package	0 to 70°C -55° to +125°C -65° to +150°C 16 Pin DIP	0 to 70°C -55° to +125°C -65° to +150°C 28 Pin DIP	0 to 70°C -55° to +125°C -65° to +150°C 16 Pin DIP	0 to 70°C -55° to +125°C -65° to +150°C 28 Pin DIP
 For MV-1606M & MVD-807M typical value is 170 ohms. For MV-1606M & MVD-807M max. value is 400 ohms. Channel address and inhibit inputs. For MV-808 and MVD-409, to drive from DTL/TTL logic For MV-1606M & MVD-807M max. current is +3, -1 mA 	: 1 K pull-up resistors to +5 . For MV-808M & MVD-40	V should be used. 19M max. current is +0.5, -1	mA for analog supply, 1m	A for digital supply.

CHANNEL ADDRESSING

MV-1606 ON INHIB 8 4 2 1 ххх NONE х n 0 0 0 0 1 1 0 0 0 1 1 2 o ٥ 1 0 1 3 o 0 1 1 1 4 0 0 5 0 1 1 0 0 6 1 1 0 1 0 7 1 1 n 1 1 1 1 8 0 0 0 9 1 1 0 0 1 10 1 0 1 0 1 11 1 12 1 0 1 1 1 0 0 13 1 1 1 1 0 1 1 14 1 1 1 0 1 15 16 1 1 1 1

			MV-808	, MVD-8	07
4	2	1	MVD-807	MV-808 INHIB.	ON CHANNE
X	х	х	0	1	NONE
0	0	0	5 1	. 0	1
0	0	1	1	0	2
0	1	0	1	0	3
0	1	1	1	0	4
.1	0	0	<u> </u>	0	5
1	0	1	1	0	6
1	1	0	1	0	7
1	1	1	1 - 1	0	8
			MVD	409	
	2	1	INHIB.	ON CHANNEL	.] `
	х	х	1	NONE	7
	0	0	0	1	
	0	1	0	2	
	1	0	0	3	
	1	1		A	1

CAI CA2 11 + 5V 15 -Vs INHIBIT +Vs 14 CA3 13 - 1 IN 8 IN -5 12 - OUT 7 IN 11 - 2 IN 6IN 10 31N 5 I N 9 4 I N MVD-409 CA2 1. 16 CA1 -Vs + 5V 15 2 +Vs INHIBIT 3 14 B OUT 1A IN 13 4B IN 12 A OUT 3B IN -2A IN 11 2B IN 3A IN 1B IN 9 4A IN NOTES: CA = CHANNEL ADDRESS Vs = SUPPLY VOLTAGE NC = NO CONNECTIONS

TOP VIEW SHOWN

MV-808

MV-1606

TECHNICAL NOTES

- The transfer accuracy of the MV series multiplexers depends on both the source resistance and load resistance. For example, with zero source resistance and assuming 500 ohms max. channel ON resistance, the load impedance must be at least 5 megohms to achieve 0.01% accuracy. In practice it is recommended that a load impedance of 10⁸ ohms or more be used. This is a typical input impedance value for most IC operational amplifiers connected in the follower mode (see Datel's AM-400 series) or for IC sample-holds (see Datel's SHM-IC-1 or SHM-LM-2). Source resistance should be kept as low as possible so that accuracy or settling time are not degraded. Less than 250 ohms is recommended.
- For differential operation either two unity gain buffers or an instrumentation amplifier (such as Datel's AM-435) is recommended as the output load. To maintain high CMR, source impedance unbalance must be kept to a minimum, and amplifiers with high CMR should be used.
- 3. The maximum analog input overvoltage for the MV series is ±|Vs+2V|. The maximum digital input voltage is ±Vs. It should be noted that the logic (channel address) inputs are protected with resistors and clamp diodes but the analog inputs are not. Because the analog inputs are not protected, the low ON resistance is achieved.
- Channel expansion is accomplished by use of the inhibit input of the multiplexers. To expand the number of channels, use multiple multiplexers with the inhibit inputs connected to a decoder.
- For the MV-808 and MVD-409 it is recommended that 1K pull-up resistors to the +5V logic supply be used when the logic inputs are driven from DTL or TTL circuits. Only these two models require a +5V logic supply.

CIRCUIT CONNECTIONS

PIN CONNECTIONS

Z_{IN} = 10⁸TO 10¹⁰OHMS

PERFORMANCE GRAPHS

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

4, 8, and 16 Channel CMOS Multiplexers MX Series

FEATURES

- Dielectrically Isolated CMOS
- Break-Before-Make Switching
- Single-Ended and Differential
- Overvoltage Protection
- DTL/TTL/CMOS Compatible
- 7.5 mW Standby Power

GENERAL DESCRIPTION

The MX series analog multiplexers are 4, 8, and 16 channel monolithic devices manufactured with a dielectrically isolated complementary MOS process. The circuits incorporate analog and digital input protection which protects the units from both overvoltage and loss of power. The digital inputs are DTL/TTL/CMOS compatible and address the proper channel by means of a 2, 3, or 4 bit binary code. An inhibit input enables or disables the entire device and thus permits expansion of the number of channels by using several devices together. Another important feature of these multiplexers is the use of break-before-make switching to insure that no two channels are ever momentarily shorted together.

Transfer accuracies of .01% can be achieved at channel sampling rates up to 200 kHz and over \pm 10V signal ranges. These multiplexers are ideal for multi-channel data acquisition systems where the multiplexer operates into a high impedance load such as a sample-hold, buffer amplifier, or instrumentation amplifier. Channel ON resistance is typically 1.5K at 25°C and is less than 2K over the operating temperature range.

Power consumption is only 7.5 mW at standby and 15 mW at 100 kHz switching rate. Power supply range is \pm 5V to \pm 20V. The devices are packaged in 16 pin or 28 pin DIP's and operate over the 0°C to 70°C temperature range:

CAUTION: These are CMOS devices and may be damaged by static discharge. Standard anti-static precautions should be taken to prevent possible damage.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS MX-808 & MXD-409 Typical at 25°C, ±15V supplies, R source <1K, unless otherwise noted MX-1606 MXD-409 MXD-807 MX-808 MX-808M MX-1606M MXD-409M MXD-807M MAXIMUM RATINGS Voltage Between Supply Pins 40V 40V 40V 40V VREF to Ground, V+ to Ground +20V +20V +20V +20V Digital Input Overvoltage $\pm |V_{S} + 4V|$ $\pm |V_{S} + 4V|$ $\pm |V_{S} + 4V|$ $\pm |V_{S} + 4V|$ Analog Input Overvoltage ±|Vs +20V| ±|Vs +20V| ±|Vs +20V| ±|Vs +20V| Package Dissipation, max. 725 mW 1200 mW 725 mW 1200 mW ANALOG INPUTS Number/Type of Channels 8 Differential 8 Single-end 16 Single-end 4 Differential Input Voltage Range $\pm 15V$ $\pm 15V$ $\pm 15V$ $\pm 15V$ **Channel ON Resistance** $1.5~\mathrm{K}\Omega$ 1.5 KΩ 1.5 KΩ 1.5 KΩ Channel ON Resistance, Over Temp 2.0 KΩ, max. 2.0 KΩ, max. 2.0 KΩ, max. 2.0 KΩ, max. Channel OFF Input Leakage 30 pA 30 pA 30 pA 30 pA Channel OFF Output Leakage 1.0 nA 1.0 nA 10 nA 10 nA100 pA 100 pA Channel ON Leakage 100 pA 100 pA Channel OFF Input Capacitance 5 pF 5 pF 5 pF 5 pF **Channel OFF Output Capacitance** 50 pF 12 pF 25 pF 25 pF **DIGITAL INPUTS¹** Logic "0" Threshold Logic "1" Threshold, (TTL)² Logic "1" Threshold, (CMOS)³ +0.8V, max. +0.8V, max. +0.8V, max. +0.8V, max. +4.0V, min. +4.0V, min. +4.0V, min. +4.0V, min. +6.0V, min. +6.0V, min. Input Current, High or Low 5 μA, max. 5 μA, max. 5 µA. max. 5 µA. max. Channel Address Coding 3 Bits 4 Bits 2 Bits 3 Bits Logic 0 Channel Inhibit, All Channels OFF Logic "0" Logic "0" Logic "0" PERFORMANCE .01% Transfer Error, max. .01% .01% .01% Crosstalk, 1 KHz .005% .005% .005% .005% **Common Mode Rejection** 120 dB 120 dB Settling Time⁴, 20V step to 0.1% 2 µsec $2 \ \mu sec$ $2 \,\mu sec$ 2 µsec Settling Time⁴, 20V Step to 0.01% 3 µsec 3 µsec 3 µsec 3 µsec Turn ON Time 500 nsec. 500 nsec. 500 nsec 500 nsec Turn OFF Time 300 nsec. 300 nsec. 300 nsec. .300 nsec. Break Before Make Delay 80 nsec. 80 nsec. 80 nsec. 80 nsec. Inhibit/Enable Delay 300 nsec. 300 nsec. 300 nsec 300 nsec POWER REQUIREMENT **Rated Power Supply Voltage** ± 15 VDC ±15 VDC ± 15 VDC ± 15 VDC **Power Supply Voltage Range** $\pm 5V$ to $\pm 20V$ +5, -2 mA Quiescent Current, max +5, -2 mA +5, -2 mA +5, -2 mA Power Consumption, 10 KHz Sampling 7.5 mW 7.5 mW 7.5 mW 7.5 mW PHYSICAL-ENVIRONMENTAL $0^{\circ}C$ to $+70^{\circ}C$ **Operating Temp. Range, Standard Models** 0°C to +70°C 0° C to $+70^{\circ}$ C 0°C to +70°C **Operating Temp. Range, M Suffix Models** -55°C to +125°C ----55°C to +125°C -55°C to +125°C -55°C to +125°C Storage Temp. Range -65°C to +150°C -65°C to +150°C -65°C to +150°C -65°C to +150°C Package 16 Pin DIP 28 Pin DIP 16 Pin DIP 28 Pin DIP NOTES: 1. The digital inputs are the channel address inputs and the inhibit input. 2. To drive from DTL/TTL circuits, 1K pull-up resistors to +5V are recommended. With models MX-1606 and MXD-807, pin 13 should be left open. 3. For a +6.0V threshold with models MX-1606 and MXD-807, pin 13 is connected to +10V. 4. With a load impedance of >100 megohms in parallel with 2 pF.

CONNECTION & APPLICATION

- OUT

--Vs

8 IN

7 IN

6 IN

5 IN

4 IN

- 3 IN

- 2 IN

- 1 IN

- CA1

CA2

CA4

A OUT

-Vs

8A IN

7A IN

64 IN

5A IN

4A IN

3A IN

2A IN

1A IN

CA1

CA2

CA4

INHIBIT

INHIBIT

PIN CONNECTIONS

TECHNICAL NOTES

- 1. The transfer accuracy of these multiplexers depends on both the source resistance and the load resistance. With zero source resistance, and assuming 2K ohms max. channel ON resistance, the load impedance should be at least 20 megohms to achieve .01% accuracy. In practice it is recommended that a load impedance of at least 100 megohms be used to minimize errors. This can be done by using a good high gain, high CMR operational amplifier as a buffer (such as Datel's AM-462). Source resistance should be kept as low as possible so that accuracy is not affected; less than 1K ohms is recommended. Higher source resistance, in addition to affecting accuracy, will degrade the settling time of the multiplexer.
- 2. For differential operation two buffer amplifiers or a good quality instrumentation amplifier (such as Datel's AM-201) should be used. To maintain high CMR, source impedance unbalance should be kept to a minimum, the highest possible load impedance should be used, and an amplifier with high CMR should be chosen.
- 3. The maximum analog input overvoltage for these models is ± | Vs +20V |. Maximum logic input overvoltage is ± | Vs +4V | .
- 4. Channel expansion is accomplished by use of the inhibit input of the multiplexer. A logic "0" on this input disables the multiplexer. The expansion technique shown in the diagram to the right applies to all of the multiplexer models.
- 5. The reference terminal (VR) sets the noise immunity level of the input logic for models MX-1606 and MXD-807. In most cases this terminal is left open (TTL inputs). For higher level inputs (+6V min.) this terminal should be connected to +10V. When addressing from DTL/TTL logic it is recommended that 1K ohm pull-up resistors to the +5V supply be used.

CHANNEL ADDRESSING

MX-1606

MX-808, MXD-807

OUT

8	4	2	1	INHIB.	ON CHANNEL	4	2	1	INHIB.	ON CHANNEL
х	х	х	х	0	NONE	х	х	х	0	NONE
0	0	0	0	1	· 1 ·	0	0	0	1	1
0	0	0	1	1	2	0	0	1	1	2
0	Ò	1	0	1	3	0	1	0	1	3
0	0	1	1	1 -	4	0	1	1	1	4
0	1	0	0	1	5	1	0	0	1	5
0	1	0	1	1	6	1	0	1	1	6
0	1	1	0	1	7	1	1	0	1	7
0	1	1	1	1	8	1	1	1	1	8
1	0	0	0	1	9				MXD	-409
1	0	0	1	1	10	ſ		-		ON
1	0	1	0	1	11		2	1	INHIB.	CHANNEL
1	0	1	1	1	12		х	х	0	NONE
1	1	0	0	1	13		0	0	1	1
1	1	0	1	1	14	-	0	1	1	2
1	1	1	0	1	15		1	0	1	3
1	1	1	1	. 1	16		1	1	1	4

ANALOG MX-160

EXPANSION TO 64 CHANNELS

PERFORMANCE GRAPHS

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD — TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 NS SUBJECT TO CHANGE WITHOUT NOTICE

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Data Acquisition Systems

DAS-952R	272C
HDAS-8, HDAS-16	278C
MDAS	286C
MDXP	292C
DAS-250	298C

D

DAS

113:4

-952 R

49

Quick Selection: Data Acquisition Systems

Specifications at 25° C	DAS-952R Monolithic	HDAS-16MC ¹ Hybrid	HDAS-8MC ¹ Hybrid
No. Channels	16	16	8
Input Type	Single Ended	Single Ended	Differential
Input Voltage Ranges, Unipolar	0 to +5V	0 to +10mV, 0 to +10V	0 to +10mV, 0 to +10V
Input Voltage Ranges, Bipolar		\pm 10mV to \pm 10V	$\pm 10 mV$ to $\pm 10 V$
Input Impedance	±1µA ⁵	100 Meg.	100 Meg.
Channel Addressing	4 Bit Code	4 Bit Code	3 Bit Code
Address Logic Compatibility	CMOS	DTL/TTL	DTL/TTL
Resolution	8 Bits	12 Bits	12 Bits
Nonlinearity, max.	¹⁄₂ LSB	1/2 LSB	1/2 LSB
Differential Nonlinearity, max.	¹⁄₂ LSB	1⁄2 LSB	1/ ₂ LSB
Max. Error at maximum throughput	0.2%	.025%	.025%
Temp. Coefficient, max.	50 ppm/°C	30 ppm/° C	30 ppm/° C
No Missing Codes	-25 to +85° C	0 to 70° C	0 to 70° C
Throughput Rate, max.	17 kHz	50 kHz	50 kHz
Acquisition Time	2.5 <i>µ</i> sec.	10 <i>µ</i> sec.	10 <i>µ</i> sec.
Conversion Time	54 <i>µ</i> sec.	10 <i>µ</i> sec.	10 µsec.
Aperture Time		50 nsec.	50 nsec.
Output Coding ³	Bin	Bin	Bin
Output Logic	3-State TTL	3-State TTL	3-State TTL
Power Requirement	+5V	±15V, +5V	±15V, +5V
Package Size, Inches		2.3 imes 1.4 imes 0.24	2.3 imes1.4 imes0.24
Package Size, mm	40-PIN DIP	$58 \times 36 \times 6$	58 imes 36 imes 6
Operating Temp. Range	-25 to +85° C	0 to 70° C ²	0 to 70° C ²
Price, singles	\$37.50	\$350.00	\$350.00
See Page	272C	278C	278C

NOTES: 1. Includes programmable gain instrumentation amplifier

4. Double Buffered 5. Input Current

2. Models for other temperature ranges: HDAS-16MR, HDAS-8MR, -25° C to +85° C, **\$467.00** HDAS-16MM, HDAS-8MM, -55° C to +125° C, **\$787.00**

3. Coding: Bin = Straight Binary or Offset Binary 2C = Two's complement

MDAS-16 Modular	MDAS-8D Modular	DAS-250A Modular	DAS-250B Modular
16	8	16	16
Single Ended	Differential	Single Ended	Single Ended
0 to +5, +10V	0 to +5, +10V	0 to -10V	
±2.5, ±5, ±10V	±2.5, ±5, ±10V		±5V
100 Meg.	100 Meg.	100 Meg.	100 Meg.
4 Bit Code	3 Bit Code	4 Bit Code	4 Bit Code
DTL/TTL	DTL/TTL	DTL/TTL	DTL/TTL
12 Bits	12 Bits	12 Bits	12 Bits
1/2 LSB	1/ ₂ LSB	1/2 LSB	¹⁄₂ LSB
1/2 LSB	1⁄₂ LSB	1/2 LSB	1/2 LSB
.025%	.025%	.025%	.025%
30 ppm/° C	30 ppm/° C	45 ppm/° C	45 ppm/° C
0 to 70° C	0 to 70° C	0 to 70° C	0 to 70/°C
50 kHz	50 kHz	250 kHz	250 kHz
6 μsec.	6 μsec.	2 µsec.	2 µsec.
14 μsec.	14 <i>μ</i> sec.	2 µsec.	2 μsec.
50 nsec.	50 nsec.	20 nsec.	20 nsec.
Bin, 2C	Bin, 2C	Bin, 2C	Bin, 2C
3-State TTL	3-State TTL	3-State TTL ⁴	3-State TTL ⁴
±15V, +5V	±15V, +5V	±15V, +5V	±15V, +5V
4.6 imes 2.5 imes 0.375	$4.6\times2.5\times\!\!0.375$	5.0 imes 4.5 imes 1.5	5.0 imes 4.5 imes 1.5
$117 \times 64 \times 10$	117 imes 64 imes 10	127 × 114 × 38	127 imes 114 imes 38
0 to 70° C	0 to 70° C	0 to 70° C	0 to 70° C
\$310.00	\$310.00	\$730.00	\$730.00
286C	286C	298C	298C

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Datel offers modular products in operating temperature ranges of -25 to $+85^{\circ}$ C (suffix-EX) and -55 to $+85^{\circ}$ C (suffix-EXX-HS). For information on these high reliability modules contact nearest Datel sales office.

16 Channel, 8 Bit Monolithic Data Acquisition System DAS-952R

FEATURES

- 16 Single Ended Channels
- 8 Bits Resolution
- Monolithic CMOS Construction
- Three-State Outputs
- Ratiometric Operation
- Low Cost

GENERAL DESCRIPTION

The DAS-952R is a single-chip, 16 channel, 8 bit data acquisition system. Monolithic CMOS technology allows a 16 channel multiplexer, 8 bit successive approximation A/D converter, and microprocessorcompatible control logic to be fabricated on a single chip and contained in a compact Dual-In-Line package.

The design of this system emphasizes high accuracy, excellent repeatability, low power consumption, and a minimum of adjustments (no full scale or zero adjustment required). Latched and decoded address inputs and latched TTL three-state outputs allow easy interfacing to microprocessors.

The input multiplexer allows random access to any one of 16 single ended analog input channels and provides necessary logic for additional channel expansion. Connection of the multiplexer output to the converter input is by external pin connection, thus permitting easy signal conditioning such as amplification, linearization, or the use of a sample and hold.

The 8 bit A/D converter uses a 256R ladder network, successive approximation register, and a chopper-stabilized comparator to implement the successive approximation conversion technique with a switching tree. Use of 256R ladder network ensures monotonicity while the chopper-stabilizer comparator makes the converter highly resistant to thermal effects and long term drift. In ratiometric conversion, the converter expresses the analog value being measured as a percentage of reference input. Full scale range may be selected within limits, to adjust the sensitivity of the converter to the desired application or to refer the output to a secondary standard.

Accuracy, speed, flexibility, excellent performance over a wide temperature range (-25° C to $+85^{\circ}$ C) and low cost make the DAS-952R an easy and practical answer to many data acquisition needs.

PIN	FUNCTION	PIN	FUNCTION
1	CH. 4 IN	21	OUTPUT ENABLE
2	CH. 5 IN	22	CLOCK INPUT
3	CH. 6 IN	23	REF. IN
4	CH. 7 IN	24	BIT 8 OUT (LSB)
5	CH. 8 IN	25 .	BIT 7 OUT
6	CH. 9 IN	26	BIT 6 OUT
7	CH. 10 IN	27	BIT 5 OUT
8	CH. 11 IN	28	BIT 4 OUT
9	CH. 12 IN	29	BIT 3 OUT
10	CH. 13 IN	30	BIT 2 OUT
11	CH. 14 IN	31	BIT 1 OUT (MSB)
12 .	CH. 15 IN	32	ADDRESS ENABLE
13	E.O.C.	33	CA 8 INPUT
14	CH. 16 IN	34	CA 4 INPUT
15	MULTIPLEXER OUTPUT	35	CA 2 INPUT
16	START CONVERT	36	CA 1 INPUT
17	+Vs	37	EXPANSION CONTROL
18	A/D IN	38	CH. 1 INPUT
19	+REF. IN	39	CH. 2 INPUT
20	GROUND	40	CH. 3 INPUT

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Data Acquisition

SPECIFICATIONS, DAS-952R			
(Typical at 25° C, $+V_{SUPPLY} = +V_{REF}$, $-V_{REF} = G_{ND}$, clock = 640 KHz unless otherwise noted)			
MAXIMUM RATINGS			
Voltage at Any Pin (Except Digital and REF inputs) Voltage at Digital Inputs +Vs+ #FF	-0.3V to V _s +0.3V -0.3V to +15V +6.5V V. +0.1V	1. TI ac is vo	he cquis exp oltag
	Vs +0.1V	be	e va
ANALOG INPUTS Number of Channels Input Voltage Range Channel ON-Resistance, 85° C Channel OFF Leakage Current, $V_{IN} = +5V$ Channel OFF Leakage Current, $V_{IN} = 0V$ Channel Input Capacitance REF Input Resistance REF Input Voltage A/D Converter Input Current ⁴ .	16 Single Ended ¹ 0 to +5.25V max. 1.5KΩ typ, 3KΩ max. ² 6KΩ max. 10 nA typ., 200 nA max. -10 nA typ., -200 nA min. 5pF type., 7.5 pF max. 1 KΩ min, 4.5 KΩ typ. ³ +0.512V to +5.25V ³ ±0.5 μA	sy sc = al th sc vc th ar sv Fa	vster cale 1 L nge lows eret ensit oltag e ce nalog witch ailure
DIGITAL INPUTS Logic HI ("1") Threshold, min Logic LO ("0") Threshold, max Input Current, Max. HI or LO Input Capacitance Clock Frequency	Vs -1.5V +1.5V 1.0 μA 7.5 pF max. 10KHz min.,1.2MHz max.		his config onfig $(+V_s)$ $(+V_s)$ h eq V_s ar
		ł	
Logic HI ("1") OUT, $I_{OUT} = +360 \ \mu A$ Logic LO ("0") OUT, $I_{OUT} = -1.6 \ m A$ EOC Logic LO OUT, $I_{OUT} = -1.2 \ m A$ 3-State Output Current, $V_{OUT} = +5V$ 3-State Output Current $V_{OUT} = 0V$ 3-State Output Capacitance Output Coding	V _s -0.4V min. +0.45V max. +0.45V max. +3 μA max. -3 μA max. 7.5 pF Straight Binary, Positive True	2. TH SU SC +! ge	ne s upply cale 5.25 ener
CONVERTER PERFORMANCE		t	
Resoltuion Linearity Error Zero Error Full Scale Error Total Unadjusted Error Power Supply Rejection	8 Bits ±½ LSB, max. ±½ LSB, max. ±½ LSB, max. ±½ LSB, max. ⁵ ±0.15%/V max. ⁶	3. To its re co ar 75 30	o pre ful ferei oeffi mbie 5° C, 0 pp
DYNAMIC PERFORMANCE Conversion Time MUX Delay, from ADDRESS ENABLE 3-State Turn-ON Delay	100 μsec typ., 114 μsec max. ⁷ 1 μsec typ., 2.5 μsec max. 250 nsec max.	4. C	onve
POWER REQUIREMENT Supply Voltage, rated performance Supply Voltage, operating range Supply Current	+5V ±.25V +4.5V to +6V 300 μA typ., 1000 μA max.	fri K gi	AS- eque Hz to raph
Operating Temperature Range	-25°C to +85°C		
Package	40 Pin Plastic DIP		OR
 NOTES: 1. Logic is provided for expanding the number of channels externally. 2. Channel ON-resistances matched to within 75Ω maximum difference between any two channels. 			EL 952F
 Measured from +REF input to -REF input. This is the comparator input current, a bias current into or out of the chopper stabilized comparator. It varies directly with clock frequency and is relatively independent of the presenture. 		All ex Applic	xterr catio
 5. Total unadjusted error is the sum of linearity, zero point on the transfer function. ¿6. V_s = +REF = +5V ±.25V 	o, and full-scale errors at any	THIS	S D/ ER

7. For clock frequency of 640 KHz. See technical note 4.

TECHNICAL NOTES

DAS-952R is a ratiometric data sition system. The analog input voltage pressed as a percentage of full scale e range. Full scale voltage range may aried from +0.512V to +5.25V. The m uses an 8 bit converter with the full range divided into 256 steps (one step SB). The ability to select the full scale by means of the reference voltage selection of the size of the LSB, by allowing selection of the converter's ivity. The center of the full scale e range must be held within ±0.1V of enter of the supply range because the a switch tree changes from N-channel nes to P-channel switches at this point. e to maintain the symmetry of these is may result in erratic switch operation. condition is automatically satisfied in gurations where $+REF = +V_s$ and -REF ID. For configurations where +REF, -REF must be greater than GND by ual amount. +REF can never exceed nd -REF can never be less than GND.

system requires less than 1 mA of y current. For applications where full range is selected between +4.75V and V, the reference can be used to ate the supply.

eserve the accuracy of the system over Il operating temperature range, the nce source should have a temperature cient of 20 ppm/°C or less. For ent temperature changes less than a reference temperature coefficient of pm/°C is sufficient to maintain acy.

ersion time and throughput rate for the 1952R is dependent on external clock ency. The clock may be varied from 10 o 12 KHz (see comparator input current).

DERING INFORMATION

R

nal devices designated with D in the ns Diagrams are available from Datel/

ATA ACQUISITION SYSTEM IS ED BY GSA CONTRACT

DESCRIPTION OF OPERATION

Any one of 16 single-ended analog inputs may be selected by using the address decoder. The multiplexer input selection table shows the channel address input states required to select each channel. Channel address input states are latched into the address decoder on the low-to-high transition of the ADDRESS ENABLE input. Channel address inputs are required to be stable for 50 nsec. before and after the ADDRESS ENABLE low-to-high transition. Additional channel expansion is accomplished by disabling the internal multiplexer (all channels are off when EXPANSION CONTROL input is low) and connecting the additional signals directly to the converter input.

The converter input may also be used to introduce various signal conditioning devices into the analog signal path. The analog signal at the multiplexer input selected is available to the comparator after a maximum delay time of 2.5 usec. The converter's successive approximation register is reset on the positive going edge of 200 nsec. start conversion pulse, and conversion is initiated on the falling edge of the pulse.

A conversion in progress may be interrupted by a new start conversion pulse. The EOC output goes LO in 1 to 8 clock periods after the rising edge of the start conversion pulse. For continuous conversions the EOC output can be tied to the start conversion input and an initial external start conversion pulse applied after power up.

The 8 bit A/D converter requires 64 clock periods to resolve the analog signal voltage level. The converter employs a chopper stabilized comparator for extreme resistance to input offset drift errors. The 256R ladder network ensures monotonicity and does not cause load variations on the reference voltage. The values of the top and bottom resistors are different from the rest of the ladder so that the first output transition occurs when the analog voltage level reaches $\pm \frac{1}{2}$ LSB and each succeeding output transition occurs at intervals of 1 LSB up to full scale.

The 8 bit, straight binary, positive true result appears at the threestate output latches, which are enabled when the OUTPUT ENABLE control is HI.

CHANNEL ADDRESS TABLE

CHAN 8	NEL ADI	DRESS 2	INPUT 1		ON CHANNEL
Х	Х	Х	X	0	NONE
0	0	0	0	1	1
0	0	0	1	1	2.
0	0	1	0 .	1	3 .
0	0	1	· 1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	· 0	1	9
1	0	0	1	1 1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0,	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1.	1	1	1	1	16
					*

TYPICAL PERFORMANCE

MULTIPLEXER ON RESISTANCE

COMPARATOR INPUT CURRENT

RATIOMETRIC CONVERSION SYSTEM

TIMING DIAGRAM

DATA ACQUISITION SYSTEM WITH SAMPLE-HOLD

For applications where a sample-hold is required, connections are made as shown in the accompanying diagram. The sample-hold may be put in the sample mode after the multiplexer output settles (see timing diagram). The start conversion input can be taken high as shown in the timing diagram but should not be taken low until the sample-hold has acquired the input voltage. The acquisition time of the samplehold is dependent on the value of the hold capacitance. This value must be selected for the acquisition time and hold-mode voltage droop required by the converter speed and accuracy, respectively. Optimal values of hold capacitance See SHM-LM-2 data sheet.

APPLICATIONS

DIFFERENTIAL INPUT CONNECTION EXPANSION TO 64 CHANNELS CH 1 1B IN ANALOG ANALOG INPUTS DAS 962 R DAS 962 R DRESS ENABLE 0-1 CH 16 ADDRESS ENABLE 01 16 B IN D MX-1606 START CONVERT COMPARATO CA 1 CA 2 MUX OUT CA 4 CA8 MUX OUTPUT MUX OUT ANALOG 0 CA 1 Ð R_G 16 CHANNEL, DIFFERENTIAL INPUT DATA ACQUISITION SYSTEM WITH PROGRAMMABLE GAIN. MX-1606 o CA 2 CH 32 CA1 0-CA2 0-CA4 0-CA8 0-CHANNEL ADDRESS INPUTS AM-435 CHANNEL ADDRESS 0 CA 3 CA4 ∕∽∽ R_S 1 OF 4 DECODER CA 16 O сн 33 MUX OUTPUT COMPARATOR INPUT CA 32 O-MUX OUT ANALOG MSB CA 1 D X 1606 CA2 CA4 CA8 OUTPUT DATA Ð DAS-952R 1A IN MUX OUT ANALOG **D** MX 1606 ANALOG INPUTS о<u>!</u> Сн 64 16 A IN

32 CHANNEL, 35KHz DATA ACQUISITION SYSTEM

REFERENCE AND SUPPLY CIRCUITS

DUAL ADJUSTABLE REFERENCE

NOTE: VALUES OF R1, R2 and R3 ARE SELECTED TO YIELD THE DESIRED FULL SCALE CONVERSION RANGE. SEE TECHNICAL NOTE 1.

ADJUSTABLE REFERENCE AND SUPPLY

30 PPM/°C REFERENCE AND SUPPLY

TYPICAL MICROPROCESSOR INTERFACE

FEATURES

- Miniature 62 Pin Package
- 12 Bit Resolution
- 10mV to 10V Full Scale Range
- Three-State Outputs
- 16 Channels Single Ended or 8 Channels Differential

GENERAL DESCRIPTION

Utilizing hybrid technology, Datel-Intersil offers a data acquisition system with superior performance and reliability, combined with low cost.

The HDAS-8 with 8 differential input channels and HDAS-16 with 16 single ended input channels are complete high performance 12 bit data acquisition systems in a 62 pin package. Acquisition and conversion time combined is 20μ sec. max., giving a minimum throughput rate of 50 kHz. The twelve bit binary data can be transferred out in three four bit bytes, by means of the three-state data bus drivers. Output coding is straight binary in unipolar operation.

The HDAS circuit includes a multiplexer, programmable gain instrumentation amplifier, sample and hold circuit complete with MOS hold capacitor, 10 volt buffered reference, a twelve bit A/D converter with three-state outputs and digital logic.

The internal instrumentation amplifier is programmed with a single resistor for gains of 1 to 1000. This key feature is useful in low level signal applications involving bridge amplifiers, transducers, strain gauge and thermocouple interface.

The HDAS is cased in a small hermetic 62 pin package. Models are available in three different temperature ranges: 0 to +70, -25 to +85, and -55 to +125 degrees centigrade.

High reliability versions of each model are also available. Power requirements are ± 15 VDC and ± 5 VDC.

12 Bit Microelectronic Data Acquisition System Models HDAS-16, HDAS-8

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Data Acquisition

SPECIFICATIONS, HDAS-16 & HDAS-8 (Typical at 25°C, ±15V and +5V supplies unless otherwise indicated)

MΑ	XI	ΜU	M	RAT	INGS	5

-0.5V to +7.0V
-0.5V to +18.0V
+0.5 to -18.0V
±35V
-0.5V to +7.0V

ANALOG INPUTS

Number of Channels	16 Single Ended (HDAS-16)
Voltage Ranges², unipolar bipolar	8 Differential (HDAS-8) 0 to ± 10 W to ± 10 V ± 10 W to ± 10 V
Input Gain Equation	$G=1+\frac{20K}{RG}$
Common Mode Range	±11V min.
Input Resistance	100 megohms
Gain Equation Error	0.1% max.
Input Bias Current	200pA max.
Bias Current Tempco	Doubles every 10°C
Input Offset Current	50pA max.
Offset Current Tempco	Doubles every 10°C
Input Offset Voltage	8mV typ., 27 mV max.
Offset Voltage Tempco	$20\mu V/^{\circ}C + (10\mu V/^{\circ}C \times G)$
Voltage Noise (RMS)	
G=1	150μV RTI ³
G=1000	1.62µV RTI ³
Input Capacitance, OFF channel	10pF
ON channel	100pF (HDAS-16)
	50pF (HDAS-8)

ACCURACY

12 Bits
±0.025% of FSR⁴ max.
(±1 LSB)
±½LSB max.
±½LSB max.
Adj. to zero
Adj. to zero
±10ppm/°C typ.,
±30ppm/°C max.
±7ppm/°C of FSR max.
±3ppm/°C of FSR max.
82 db @ 10 KHz
110 db @ 60 Hz
Guaranteed over
operating temp range
.01%/%

DYNAMIC CHARACTERISTICS

Throughput Rate	50 kHz min.
Acquisition Time	9μ sec. typ. 10μ sec. max.
Conversion Time	9μ sec. typ. 10μ sec. max.
Aperture Delay Time	100nsec.
Sample-Hold Droop	1 μV/μsec.
Feedthrough (1 KHz)	.01% max.
Channel Crosstalk (MUX)	-80 dB at 1 kHz

DIGITAL OUTPUTS⁵

Parallel Data Out	12 parallel lines of buffered three-state output data. Drives 5 TTL loads.	
Coding	Straight binary,	
Mux Address Out	Buffered output of address register	
EOC (Status)	Drives 5 TTL loads. Drives 5 TTL loads.	

DIGITAL INPUTS	
Enable	Three separate inputs which enable three-state outputs in 4 bit bytes. 1 LS TTL load.
Mux Address In	3 Bit (HDAS-8) or 4 bit (HDAS-16) binary address
Strobe	1 LS TTL load Pulse Width: $40 \text{ psec} \le t_{\text{H}} \le \text{FOC}$
MuxEnable Load Clear	1 LS TTL load 1 LS TTL load 1 LS TTL load
POWER REQUIREMENT	+15VDC ±0.5V @ 67 mA max. -15VDC ±0.5V @ 71 mA max. +5VDC ±0.25V @ 155 mA max.
PHYSICAL ENVIRONMENTAL	

Operating Temperature Range.... 0°C to +70°C (MC)

Storage Temperati Package Size, max	ur (e	F	ła	ar	n e	g	e	•				•	
Package Type Pins	••••	•	•	•	•	•		•	•	•	•	•	•	•

-25°C to +85°C (MR) -55°C to +125°C (MM) -65°C to +150°C 2.33 × 1.42 × .3 inches (36,07 × 59,18 × 8,89 mm) 62 pin, hermetically sealed .. Kovar Weight..... 1.4 oz. (40 g)

NOTES:

- 1. $\pm 20V$ in power off condition
- 2. Selectable with proper gain range.
- 3. RTI Referred to Input
- 4. FSR Full Scale Range 10V for 0 to +10V input, 5V for ±2.5V input.
- 5. All outputs are LSTTL (low power Schottky) Vout ("O") \leq 0.4V Vout ("1") \geq 2.7V 6. All inputs are LSTTL
- Vin ("O") < 0.8V Vin ("1") $\ge 2.0V$

ORDERING INFORMATION

MODEL	OP. TEMP. RANGE	
HDAS-16MC	0°C to 70°C	
HDAS-16MR	-25°C to +85°C	
HDAS-16MM	-55°C to +125°C	
HDAS-8MC	0°C to 70°C	
HDAS-8MR	-25°C to +85°C	
HDAS-8MM	-55°C to +125°C	
through AMP Inc lead spring socket Evaluation socket cludes PC board bifurcated termina Trimming Potentic	corporated, #3-331272-4 (cc t) 62 required. , Datel P/N 58-6322-1 with offset and gain potent als for electrical connections. pmeter: TP20K (20 K ohms)	mponent In- iometers,

	PIN CONNECTIONS		TABLE 1 DESCRIPTION OF PIN FUNCTIONS
PIN NO.	HDAS-16	HDAS-8	LOGIC FUNCTION STATE DESCRIPTION
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\4\\35\\36\\37\\38\\39\\40\\41\\42\\43\\44\\45\\46\\47\\48\\49\\50\\51\\52\\53\\54\\55\\56\\57\\58\\59\\60\\61\\62\end{array} $	CH3 IN CH2 IN CH2 IN CH1 IN CH0 IN MUX ENABLE R DELAY E.OC. STROBE A8 MUX A4 A4 A4 A4 A4 A2 ADDRESS A2 OUT RA8 MUX RA4 MUX RA4 MUX RA4 A4 A4 ADDRESS A2 A1 DIGITAL COM. +5VDC LOAD ENABLE CLEAR ENABLE ENABLE (Bits 9-12) BIT 12 OUT (LSB) BIT 12 OUT (LSB) BIT 10 OUT BIT 9 OUT ENABLE (Bits 5-8) BIT 8 OUT BIT 6 OUT BIT 6 OUT BIT 6 OUT BIT 7 OUT BIT 6 OUT BIT 2 OUT BIT 4 OUT BIT 3 OUT BIT 2 OUT BIT 1 OUT (MSB) GAIN ADJ. OFFSET ADJ. BIPOLAR INPUT SAMPLE/HOLD OUT + 10V OUT ANALOG SIGNAL COM ANALOG POWER COM. + 15 VDC C HOLD HI C HOLD HI C HOLD HI C HOLD HI C HOLD HI C H11 IN C H12 IN C H12 IN C H12 IN C H14 IN C H3 IN C H4 IN C H5 IN C H5 IN C H4 IN C H5 IN C H5 IN C H4 IN C H5 IN	CH3 HI IN CH2 HI IN CH1 HI IN CH0 HI IN * * * * * * * * * * * * *	DIGITAL INPUTS 1" to "0" Initiates acquisition and conversion of analog signal LOAD "0" Random Address Mode Initiated on failing edge of STROBE Quisted on failing edge of STROBE OPERATORS Mode CLEAR "0" Allows next STROBE pulse to reset MUX ADDRESS to CHO overriding DOAD command. MUX ENABLE "0" Disables internal MUX MUX ADDRESS Selects channel for Random Address Mode 8.4.2.1 natural binary coding DIGITAL OUTPUTS End of Conversion (STATUS) EOC. End of Conversion in process ENABLE (1-4) "0" Enables three-state outputs Bits 1-4 ENABLE (5-8) "0" Enables three-state outputs Bits 5-8 ENABLE (9-12) "1" Disables three-state outputs Bits 5-12 MUX ADDRESS Output of MUX Address Register OUT Ba4.2.1 natural binary coding ANALOG INPUTS Limit voltage to ±20 V beyond power supplies OFF (0 V), maximum input voltage is ±35 V.16 power supplies OFF (0 V), maximum input voltage is ±20 V Bipolar Input. For unpolar operation, connect to PIN 39 (S/H OUT) For bipolar operation, connect to PIN 39 (S/H OUT) External gain adjustment, see calibration instructions. OFFSET ADJ External offset adjustment, see calibration instructions. OFFSET ADJ External offset adjustment, see calibration instructions.

TECHNICAL NOTES

- Input channels are protected to 20 V beyond power supplies. All digital output pins have one second short circuit protection and CHOLD has a ten second short circuit protection.
- To increase acquisition time allotment, (time for the multiplexer, instrumentation amplifier and sample-hold to settle out) connect a resistor from RDELAY (Pin 6) to +5 V (Pin 18). Refer to Table 2 for delay times and resistor values.
- An external hold capacitor can be connected between CHOLD HI and CHOLD LO. The addition of this capacitor will improve the sample-hold droop rate especially at high operating temperature ranges. It is recommended that polypropylene or teflon capacitors be used for best results.
- 4. The HDAS has a self starting circuit for free running sequential operation. If, however, in a power up condition the supply voltage slew rate is less than .3V/usec., the free running state may not be initialized. By applying a negative pulse to the STROBE, this condition will be eliminated.
- 5. All digital inputs must be stable 50nsec before and 50nsec after high to low transition of STROBE.
- 6. For UNIPOLAR operation connect BIPOLAR IN (Pin 38) to. S/H out (Pin 39). For BIPOLAR operation connect BIPOLAR IN (Pin 38) to +10V OUT (Pin 40).
- 7. If HDAS reference (+10V OUT) is used for external circuitry, source current should be limited to 1mA.

TABLE 2 INPUT RANGE PARAMETERS (Typical)

INPUT RANGE	GAIN	RGAIN (Ω)	AMPLIFIER SETTLING TIME	RDELAY (Ω)	THROUGHPUT	SYSTEM ACCURACY
±10V	1	NONE	9µsec.	NONE	55.5 KHz	0.009%
±5V	2	20.0K	9µsec.	NONE	55.5 KHz	0.009%
±2.5V	4	6.667K	9µsec.	NONE	55.5 KHz	0.009%
±1V	10	2.222K	9µsec.	NONE	55.5 KHz	0.009%
±200mV	50	408.2	16µsec.	7K	40.0 KHz	0.010%
±100mV	100	202.0	30µsec.	21K	25.6 KHz	0.011%
±50mV	200	100.5	60µsec.	51K	14.5 KHz	0.016%
±20mV	500	40.08	144µsec.	135K	→ 6.5 KHz	0.035%
±10mV	1000	20.02	288µsec.	279K*	3.3 KHz	0.069%

NOTES:

 $\mathsf{RGAIN}\left(\Omega\right) = \frac{20,000}{(\mathsf{GAIN-1})}$

 $\frac{\text{Amp Setting time}}{\text{RDELAY}(\Omega)} = \frac{1}{2}$

10⁻⁹ – 9K

TABLE 3 CALIBRATION TABLE

UNIPOLAR RANGE	ADJUST	INPUT VOLTAGE
0 TO +5V	ZERO GAIN	+0.6 mV +4.9982V
0 TO +10V	ZERO GAIN	+1.2 mV +9.9963V
BIPOLAR RANGE		
±2.5V	OFFSET GAIN	-2.4994V +2.4982V
±5V	OFFSET GAIN	-4.9988V +4.9963V
±10V	OFFSET GAIN	-9.9976V +9.9927V

CALIBRATION PROCEDURES

- A) Offset and gain adjustments may be made by connecting two 20K trim potentiometers as shown in Figure 1.
- B) Connect a precision voltage source to pin 4 (CHO). If the HDAS-8 is used, connect pin 58 (CH.0 LO) to analog ground. Ground pin 20 (CLEAR) and momentarily short pin 8 (STROBE). Trigger the A/D by connecting pin 7 (EOC) to pin 8 (STROBE). Select proper value for RGAIN and RDELAY by referring to Table 2.
- C) Adjust the precision voltage source to the value shown in the Calibration Table for the unipolar zero adjustment (ZERO+ $\frac{1}{2}$ LSB) or the bipolar offset adjustment (-FS + $\frac{1}{2}$ LSB). Adjust the offset trim potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001.
- D) Change the output of the precision voltage source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment (+FS-1½LSB). Adjust the gain trim potentiometer so that the output flickers equally between 1111 1111 1110 and 1111 1111 1111.

*This value exceeds the maximum recommended for use over military temperature ranges.

- Throughput time = Amplifier Setting time and A/D Conversion Time A/D Conversion time = 9 μsec
- 2. Full Scale can be accommodated for analog signal ranges of $\pm 10 mV$ to $\pm 10 V.$
- 3. The analog input range to the A/D Converter is 0 to +10.0V for unipolar and -10.0V to +10.0V for bipolar operation.

TABLE 4 OUTPUT CODING

	UNIPOLAR		STRAIGHT BINARY		
	0 to +10 V	0 to +5V			
+FS-1 LSB	+9.9976	+4.9988	1111 1111 1111		
+½FS	+5.0000	+2.5000	1000 0000 0000		
+1 LSB	+0.0024	+0.0012	0000 0000 0001		
ZERO	0.0000	0.0000	0000 0000 0000		
	BIPOLAR		OFFSET BINARY*		
	±10 V	±5V			
+FS-1 LSB	+9.9951	+4.9976	1111 1111 1111		
+1/2FS	+5.0000	+2.5000	1100 0000 0000		
+1 LSB	+0.0049	+0.0024	1000 0000 0001		
ZERO	0.0000	0.0000	1000 0000 0000		
-FS+1LSB	-9.9951	-4.9976	0000 0000 0001		
-FS	-10.000	-5.0000	0000 0000 0000		
*For 2's complement - add inverter to MSB line.					

TABLE 5 MUX CHANNEL ADDRESSING

MULTIPLEXER ADDRESSING

Channel Selection

The HDAS is capable of two modes of addressing the multiplexer.

RANDOM ADDRESS

Set <u>Pin 19</u> (LOAD) to logic "0". The next falling edge of STROBE will load the MUX CHANNEL ADDRESS present on Pin 13 to Pin 16. Address inputs <u>must be</u> stable 50 nsec before and after falling edge of STROBE pulse.

FREE RUNNING SEQUENTIAL ADDRESS

Set Pin 19 (LOAD) and Pin 20 (CLEAR) to logic "1" or leave open. Connect Pin 7 (EOC) to Pin 8 (STROBE). The falling edge of EOC will increment channel address. This means that when the EOC is low, the digital output data is valid for the previous channel (CHn - 1) than that channel indicated on MUX ADDRESS OUTPUT. The HDAS will continually scan all 16 channels.

example

CH 4 has been addressed and a conversion takes place. The EOC goes low and that Channels data becomes valid but MUX ADDRESS CODE is now CH5.

TRIGGERED SEQUENTIAL ADDRESS

Set Pin 19 (\overline{LOAD}) and Pin 20 (\overline{CLEAR}) to logic "1" or leave open. Apply a falling edge trigger pulse to Pin 8 (STROBE). This negative transition causes the contents of the address counter to be incremented by one followed by an A/D conversion in 9 μ sec.

FIG. 3 MULTIPLEXER EQUIVALENT CIRCUIT

INPUT VOLTAGE PROTECTION

As shown in Fig.3, the multiplexer has reversed biased diodes which protect the input channels from being damaged by overvoltage signals. The HDAS input channels are protected up to 20 V beyond the supplies and can be increased by adding series resistors (Ri) to each channel. This input resistor must limit the current flowing through the protection diodes to 10 mA.

The value of Ri for a specific voltage protection range (Vp) can be calculated by the following formula:

Remote monitoring of low level signals can be difficult, especially when analog signals pass through an environment with high levels of electrical noise. One solution is to use an instrumentation amplifier to extract the common mode voltage and amplify the voltage difference. The HDAS-8, an eight channel differential input system, can reject common-mode noise and allow amplification up to a gain of 1000. Direct connections to thermocouples, transducers, strain gages and RTD can be made through shielded twisted pairs. A differential RC filter may be used to attenuate normal mode noise.

MULTIPLEXER EXPANSION

Fig. 5 shows the interconnection scheme for expanding the multiplexer channel capacity of the HDAS-16 from 16 channels single ended to 32 channels. Fig. 6 shows a

similar scheme to expand the HDAS-16 to 16 differential channels .

FIG. 7 SIMPLE CONNECTION DIAGRAM

NOTES:

- 1. For HDAS-16, tie PIN 50 to "signal source common" if possible. Otherwise tie PIN 50 to PIN 41 (ANG SIG COM)
- 2. BIPOLAR connection yields $\pm 10V$ range. UNIPOLAR connection yields 0 to ± 10 V range. Other ranges are created by selecting appropriate value of Rg.
- 3. DIG COM, ANG PWR COM and ANG SIG COM are internally connected.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 ■ Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dailas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 ONS SUB JECT TO CHANGE WITHOUT NOTICE

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Miniature Modular Data Acquisition System Models MDAS-16, MDAS-8D

FEATURES

- 16 Channels Single Ended or 8 Channels Differential
- 12 Bits Resolution
- 50 kHz Throughput Rate
- Three-State Outputs
- Low Cost
- Miniature Size

DESCRIPTION

The MDAS-16 and MDAS-8D data acquisition modules are complete, selfcontained systems featuring 16 channel single ended or 8 channel differential operation respectively. Resolution is 12 bits and throughput rate is 50kHz. Output data is buffered three-state for interfacing to mini or micro-computer data buses. Output data can be transferred in three 4 bit bytes. Output coding is straight binary for unipolar operation and offset binary or two's complement for bipolar operation.

The 4.6 x 2.5 x 0.375 inch size of these modules is $\frac{1}{2}$ inch narrower than other competitive models. The small size and low cost are made possible by extensive use of hybrid and monolithic circuits to reduce parts count and increase reliability. Both models use Datel-Intersil's new ADC-HZ12BGC 12 bit hybrid A/D converter along with a monolithic sample-hold and analog multiplexer.

The MDAS-16 and MDAS-8D feature a high degree of user flexibility with pinprogrammable input ranges of 0 to +5V, 0 to +10V, \pm 2.5V, \pm 5V, and \pm 10V. The systems may be operated in either random or sequential channel addressing modes. For applications where lower than 12 bit resolution can be used, the A/D converter can be short-cycled to achieve a faster conversion rate. Output data is also available in serial form with a gated clock output.

The modules are housed in a shielded steel case. Input-output connections are made by means of a 72-pin connector. The number of channels may be expanded by 32 for the MDAS-16 or by 16 for the MDAS-8D by use of the multiplexer expander modules MDXP-32, and MDXP-32-1.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Data Acquisition
SPECIFICATIONS, MDAS-16 & MDAS-8D (Typical at 25°C, ±15V and +5V supplies unless otherwise indicated)

ANALOG INPUTS Number of Channels

Number of Channels	16 Single Ended (MDAS-16) 8 Differential (MDAS-8D)
Input Voltage Ranges unipolar bipolar	0 to +5V 0 to +10V ±2.5V, ±5V, ±10V
Common Mode Range, min.	±10V
Max. Input Voltage,	
no damage	±15V
Input Impedance	100 megohms
Input Bias Current	3nA, 10nA max. 0 to 70°C
Input Capacitance	
OFF channel	10 pF
ON channel	100pF

±5V, ±10V negohms

ACCURACY

Resolution	
Error, max. 50kHz sampling	
Nonlinearity, max.	
Diff. Nonlinearity, max.	
Gain Error	
Offset Error	
Temp. Coeff. of Gain, max.	
Temp. Coeff. of Offset, max.	
Diff. Linearity Tempco, max.	
Common Mode Rejec., min.	
Monotonicity	
Power Supply Rejection	

12 Bits ±.025% of FSR ±½ LSB ±1/2 LSB Adj. to zero Adj. to zero ±30ppm/°C ±7ppm/°C of FS ±3ppm/°C of FS 70 dB at 1 kHz 0°C to 70°C .01%/% Supply

DYNAMIC CHARACTERISTICS

Throughput Rate, max.	50 kHz
Acquisition Time	6 μsec.
Conversion Time	14 μsec.
Aperture Time, max.	100 nsec.
Sample-Hold Droop, max.	200 μV/msec.
Feedthrough, max	.01%
Channel Crosstalk (Mux.)	-80 dB at 1 kHz

DIGITAL OUTPUTS

Parallel Data Out	12 parallel lines of buffered three-
	state output data.
	Drives 12 TTL loads
Coding	Straightbinary, offset binary, and
0	two's complement
Serial Out	Output data in MSB first, NRZ
	format. Straight binary and offset
	binary coding.
	Drives 5 TTL loads
Mux Address Out	Buffered output of address
	register
	Drives 20 TTL loads
Delay Out	Drives 5 TTL loads
Clock Out	Drives 5 TTL loads
EOC (Status)	Drives 4 TTL loads
MSB Out	Drives 5 TTL loads
MSB Out	Drives 5 TTL loads

DIGITAL INPUTS

Enable	Three separate inputs which enable three-state outputs in 4 bit bytes.
Mux Address In	3 bit (MDAS-8D) or 4 bit (MDAS-16) binary address 1 LS TTL load
Strobe	1 LS TTL load with 10K pull-up
A /D Trigger	resistor
A/D Ingger	resistor
A/D Trigger	1 LS TTL Load
Mux Enable	1 TTL load with 10K pull-up
Count Enable	resistor 1 LS TTL load with 10K pull-up resistor
Load Enable	1 LS TTL load with 10K pull-up
	resistor
Clear Enable	1 LS TTL load with TOK pull-up
MSB In Short Cycle	1 TTL load 1 TTL load 1 TTL load with 10K pull-up resistor

POWER REQUIREMENT

+15VDC ±0.5V@65mA -15VDC ±0.5V@60 mA +5VDC ±0.25V @ 200mA

PHYSICAL ENVIRONMENTAL

Operating Temp. Range	0°C to 70°C
Storage Temperature Range	-25°C to +85°C
Package Size	4.6 x 2.5 x 0.375 inches
- -	(116,8 x 63,5 x 9,5 mm)
Package Type	Steel, shielded on 5 sides
Weight	6 oz. (170 g)

NOTES: 1. All outputs are Vout ("O")≤+0.4V, Vout ("1")≥+2.4V 2. All inputs are Vin ("O") ≤+0.8V, Vin ("1")≥+2.0V

ORDERING INFORMATION

MDAS-16 MDAS-8D

These modules are also available in extended temperature range versions designated with the suffix EX (-25°C to +85°C) or EXX-HS (-55°C to 85°C) with hermetically sealed semiconductor components. Contact factory for price and delivery.

Included with each module is a mating right-angle 72 pin connector. (AMP 3-86063-2). Additional connectors may also be ordered by the following number: 58-2083010 Connector

Trimming Potentiometers:

Multiplexer expander modules are also available. The MDXP-32 adds 32 single ended or 16 differential channels with control logic. The MDXP-32-1 is identical but without control logic.

BLOCK DIAGRAM MDAS-16, MDAS-8D

PIN CONNECTIONS for MDAS-16

+15VDC	Top	Bottom	-15VDC
Analog Gnd.	1T	1B	Analog Gnd.
Ch. 0 In	2T	2B	Ch. 8 In
Ch. 1 In	3T	3B	Ch. 9 In
Ch. 2 In	4T	4B	Ch. 10 In
Ch. 3 In	5T	5B	Ch. 10 In
Ch. 3 In	6T	6B	Ch. 11 In
Ch. 4 In	7T	7B	Ch. 12 In
Ch. 5 In	8T	8B	Ch. 13 In
Ch. 6 In	9T	9B	Ch. 14 In
Ch. 7 In	10T	10B	Ch. 15 In
8 Out 4 Out 2 Out 1 Out Delay Out MSB In (TTL) Strobe A/D Trigger A/D Trigger A/D Trigger Short Cycle Bit 1 Out* (MSB) Bit 3 Out* Bit 5 Out* Bit 7 Out* Bit 9 Out* Bit 1 Out* Digital Gnd. +5VDC	19T 20T 21T 22T 22T 24T 26T 26T 26T 26T 26T 30T 31T 32T 34T 35T 36T *Three-	19B 20B 21B 22B 23B 24B 26B 26B 27B 28B 29B 30B 31B 32B 33B 34B 35B 36B 36B	8 In 4 In Address 2 In Lines MSB Out (TTL) Load Enable Clear Enable Clock Out EOC (status) MSB Out (TTL) Bit 2 Out* Bit 4 Out* Bit 4 Out* Bit 4 Out* Bit 10 Out* Digital Gnd. +5VDC

PIN CONNECTIONS for MDAS-8D

+15VDC Analog Gnd. Ch. 0 Hi In Ch. 1 Hi In Ch. 2 Hi In Ch. 3 Hi In Ch. 3 Hi In Ch. 5 Hi In Ch. 6 Hi In Ch. 7 Hi In Amplifier In Hi Range 1 Select Sample Hold Out Enable (Bits 1-4 Out) Bipolar Offset Ext. Offset Adjust Enable (Bits 9-12 Out) Serial Out 8 Out Address 2 Out Lines 1 Out Delay Out Mux Address 2 Out Lines Delay Out MSB In (TTL) Strobe A/D Trigger A/D Trigger Short Cycle Bit 1 Out* Bit 5 Out* Bit 5 Out* Bit 9 Out*	Top 1T 2T 4T 5T 6T 7T 8T 9T 10T 12T 15T 16T 19T 20T 24T 26T 26T 27T 28T 33T 33T	Bottom 1B 2B 3B 4B 5B 6B 88 9B 10B 12B 13B 14B 15B 16B 17B 16B 17B 16B 17B 20B 21B 22B 23B 24B 22B 23B 24B 23B 24B 23B 24B 23B 24B 23B 24B 23B 23B 24B 23B 24B 23B 23B 23B 23B 23B 23B 23B 23	-15VDC Analog Gnd. Ch. 0 Lo In Ch. 1 Lo In Ch. 2 Lo In Ch. 3 Lo In Ch. 3 Lo In Ch. 5 Lo In Ch. 5 Lo In Ch. 7 Lo In Amplifier In Lo Range 2 Select Amplifier Out Sum Junc. (Bipolar Offl) Enable (Bits 5-8 Out) Ext. Gain Adjust Mux Enable Count Enable B In Mux 4 In Address 2 In Lines IIn MSB Out (TTL) Load Enable Clock Out EOC (status) MSB Out (TTL) Bit 2 Out* Bit 4 Out* Bit 4 Out* Bit 10 Out*
Bit 3 Out* Bit 5 Out*	30T 31T	30B 31B	Bit 4 Out* Bit 6 Out*
Bit 9 Out*	321 33T	33B	Bit 10 Out*
Digital Gnd.	341 35T	34B 35B	Digital Gnd.
+ 3 ¥DC	*Three	-State Out	tputs

TABLE I DESCRIPTION OF CONTROL PIN FUNCTIONS

FUNCTION	PIN	DESCRIPTION	
Amplifier In Lo	11B	Analog monitoring point for MDAS-8D. For the MDAS-16 this pin must be grounded.	
Amplifier In Hi	11T	Analog monitoring point.	
Range 2 Select Range 1 Select	12B 12T	These pins program analog input voltage range. See Table II	
Amplifier Out	13B	Analog monitoring point.	
Sample Hold Out	13T	Analog monitoring point.	
Summing Junction	14B	Used to program analog input voltage range and bipolar offset. See Table II	
Enable	14T	Input LO enables tri-state outputs for bits 1-4. Input HI inhibits outputs.	
Enable	15B	Input LO enables tri-state outputs for bits 5-8. Input HI inhibits outputs.	
Bipolar Offset	15T	Connects to 14B for bipolar operation and to analog ground for unipolar operation. See Table II	
Ext. Gain Adjust	16B	Used to adjust out gain error. Operates independently of the internal adjustment. See External Adjustments diagram.	
Ext. Offset Adjust	16T	Used to adjust out offset error. Operates independently of the internal adjustment. See External Adjustments diagram.	
Mux Enable	17B	Input HI enables analog multiplexer. Input LO inhibits analog multiplexer.	
Enable	17T	Input LO enables three-state outputs for bits 9-12. Input HI inhibits outputs	
Count Enable	18B	Input HI enables Mux Address Register. Input LO inhibits Mux address Register.	
Mux Address In	19B, 20B, 21B, 22B	Digital inputs for channel address selection in random addressing mode. Straight binary coding. See Table III	
Mux Address Out	19T, 20T, 21T, 22T	Straight binary coded output of Mux Address Register.	
MSB Out	23B	Bit 1 TTL output of A/D converter. Connect to pin 24T for straight binary or offset binary output coding.	
Delay Output	23T	An output delay pulse for 6μ sec. to allow for multiplexer and amplifier settling time and sample hold acquisition time. This pin is normally connected to A/D Trigger (pin 27T) to initiate A/D conversion.	
Load Enable	24B	Input HI for sequential addressing. Input LO for random addressing.	
MSB In	24T	Bit 1 input to three-state output buffers. Connect to either pin 23B (MSB Out) or pin 28B (MSB Out).	
Clear Enable	25B	Input LO and a negative transition on pin 25T resets Mux address counter to zero.	
Strobe	25T	Negative input transition initiates channel scanning sequence in sequential mode or a conversion in the random mode. A Schmidt trigger input adds hysteresis for good noise rejection.	
Clock Output	26B	A/D converter clock pulses for synchronization of serial data. Negative going pulses of approximately 100 nsec. duration.	
A/D Trigger	26T	A positive logic transition on this input initiates A/D conversion.	
EOC (status)	27B	End of conversion (status) output. Output HI during conversion and LO when conversion is complete.	
A/D Trigger	27T	A negative logic transition on this input initiates A/D conversion. This pin is normally connected to pin 23T (Delay Output).	
MSB Out	28B	Complemented bit 1 TTL output of A/D converter. Connect to pin 24T for two's complement output coding.	
Short Cycle	28T	For 12 bit resolution connect this pin to ground. To short cycle A/D converter for lower resolution, connect this pin to output bit $n + 1$ for a resolution of n bits. Short cycling of the A/D converter can only be done with the Enable inputs (pins 14T, 15B and 17T) LO.	

TABLE II INPUT RANGE SELECTION

	CONNECT THESE PINS TOGETHER				
INPUT RANGE	RANGE 1 PIN 12T	RANGE 2 PIN 12B	BIPOLAR OFF. PIN 15T		
0 TO +5V	13B	13T	2B OR 2T		
0 TO +10V	2B OR 2T	13T	2B OR 2T		
±2.5V	13B	13T	14B		
± 5V	2B OR 2T	13T	14B		
±10V	2B OR 2T	OPEN	1·4B		

TABLE IV

THROUGHPUT RATES VS. NO. BITS FOR SHORT-CYCLED A/D CONVERTER

NO. BITS	THROUGHPUT RATE	
12	50 kHz	
10	53 kHz	
8	57 kHz	
4	67 kHz	

TABLE III MUX CHANNEL ADDRESSING

MUX ADDRESS>						
PIN						
19B	20B	21B	22B	17B		
8	4	2	1	MUX ENAB.	ON	
х	х	х	· • • • •	0	NONE	
0	0	0	0	1	0	
0	0	0	1	1	1 1	
0	0	. 1	0	1	2	· · · · · · · · · · · · · · · · · · ·
0	0	1	1	1	3	
0 ·	1	0	0	1	4	· · · · ·
0	1	0	1	⇒ 1	5	
0	1	1	0	1	6	MDAS-8D
0	1	1	1	1	7	(3 BIT ADDRESS)
1	0	0	0	1 ¹	8	
1	0	Q	1	· 1	9	
1.	0	1	· · O	1	10	
. 1	0	1	1	1	11	
1	1	0	0	1	12	
1	1	0	1	1	. 13	
1	1	1	0	1	14	MDAS-16
1	1	1	1.	11	15	(4 BIT ADDRESS)

TABLE V

CALIBRATION TABLE

UNIPOLAR RANGE	ADJUST.	INPUT VOLTAGE
	ZERO	+0.6 mV
010 30	GAIN	+4.9982V
$0.TO \pm 10V$	ZERO	+1.2 mV
010 100	GAIN	+9.9963V
BIPOLAR RANGE		
12 51/	OFFSET	-2.4994V
±2.5V	GAIN	+2.4982V
· EV	OFFSET	-4.9988V
±3V	GAIN	+4.9963V
101/	OFFSET	-9.9976V
±iOV	GAIN	+9.9927V

SET-UP AND CALIBRATION INSTRUCTIONS

- 1. Select input voltage range desired and connect pins 12B, 12T, and 15T in accordance with Table II. If the MDAS-16 is used, ground pin 11B. Ground all analog channel inputs which are not to be used. Leave pin 17B open
- 2. Determine resolution to be used. For full 12 bits, ground pin 28T. For lower resolution requirements, connect pin 28T to bit output n + 1 for n bit resolution. For example: for 8 bit resolution connect pin 28T to pin 33T (Bit 9 Out). To operate the A/D converter in this short cycled mode, the Enable inputs (pins 14T, 15B, and 17T) must be connected to ground thereby enabling the three-state outputs. For 12 bit resolution the three-state outputs can be either enabled or disabled.
- 3. Select the output coding desired. For straight binary (unipolar) or offset binary (bipolar) connect pin 23B (MSB Out) to pin 24T (MSB In). For two's complement (bipolar) connect pin 28B (MSB Out) to pin 24T.
- 4 Select desired multiplexer mode. Connect pin 23T (Delay Out) to pin 27T (A/D Trigger).
 - A Free Running Sequential Addressing

Connect pin 27B (EOC) to pin 25T (Strobe). Leave pins 24B (Load Enable) and 25B (Clear Enable) open. Sequencing is initiated by a positive logic transition applied to pin 26T (A/D Trigger). Pin 26T must remain HI during free running sequential addressing. Sequencing is stopped by a LO applied to pin 26T.

B.Triggered Sequential Addressing

Leave pins 24B (Load Enable) and 25B (Clear Enable) open. Apply a falling edge trigger to pin 25T (Strobe). The negative transition of the strobe will cause the contents of the address counter to be incremented by one.

C.Random Addressing

Ground pin 24B (Load Enable). Leave pin 25B (Clear Enable) open. Each negative transition applied to pin 25T (Strobe) will cause the data at pins 19B, 20B, 21B and 22B (Mux Address In) to be loaded into the Address Register. Address inputs must be stable for at least 300 nsec. after negative transition of Strobe.

- 5. Calibration Procedure
 - A. Offset and gain adjustments may be made either internally or externally. Self-contained trimming potentiometers are provided for the internal adjustments. For external adjustment, 20K trimming potentiometers must be used with pins 16B and 16T. Connect as shown in Figure 1.
 - B. Connect power supplies to the module and a precision voltage source to pin 3T (Chan 0 In). If the MDAS-8D is used, connect pin 3B (Chan 0 LO) to analog ground. Ground pin 25B (Clear Enable) and momentarily short pin 25T (Strobe) to ground. Use an oscilloscope to monitor the serial output code at pin 18T. Trigger the A/D converter with 50kHz positive going pulses applied to pin 26T (A/D Trigger).
 - C. Adjust the precision voltage source to the value shown in the Calibration Table for the unipolar zero adjustment (zero + 1/2 LSB) or the bipolar offset adjustment (-FS + 1/2 LSB). Adjust the offset trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001.
 - D. Change the output of the precision voltage source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment (+FS - 11/2 LSB). Adjust the gain trimming potentiometer so that the output flickers equally between 1111 1111 1110 and 1111 1111 1111.

MDAS-16, MDAS-8D TIMING DIAGRAM Output Code: 010101010101

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Data Acquisition Expander Modules Models MDXP-32, MDXP-32-1

FEATURES

- Compatible with MDAS-16
 or MDAS-8D
- 32 Single Ended Channels
- 16 Differential Channels
- Expansion to 256 Channels
- Miniature Module
- Low Cost

GENERAL DESCRIPTION

The MDXP-32 and MDXP-32-1 are companion devices to Datel Systems' MDAS-16 and MDAS-8D Miniature Modular Data Acquisition Systems. They can also be used with data acquisition systems from other manufacturers. Both models contain 32 analog multiplex channels which permit expanding the MDAS-16 up to 48 single ended channels and the MDAS-8D up to 24 differential channels using single level multiplexing. With double level multiplexing up to 256 single ended channels or 128 differential channels can be realized using 1 MDXP-32 and 7 MDXP-32-1's with an MDAS-16 or MDAS-8D.

The MDXP-32 contains an address counter, address decoder, address detector logic, and two 16 channel analog multiplexers. The MDXP-32-1 contains two 16 channel analog multiplexers and an address decoder. The expanded systerns can be operated in three modes: free running sequential addressing, triggered sequential addressing, or random addressing. In sequential operation the system can be short cycled to any number of desired channels less than the maximum by use of the address detector in the MDXP-32. The MDXP-32-1 can be used to expand the MDAS-16 or MDAS-8D for random addressing operation only.

The analog multiplexers in these units are dielectrically isolated CMOS with fully protected inputs. The ON resistance of each channel is typically 1.5K ohms. Transfer accuracies better than 0.01% are achieved if a very high impedance load such as a unity gain buffer amplifier input is used. The channels switch with a break-before-make delay of 80 nsec.

Both the MDXP-32 and MDXP-32-1 are contained in a 4.6 x 2.5 x 0.375 inch (116,8 x 63,5 x 9,5 mm) shielded steel case. Operating temperature range is 0° C to 70° C.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, MDXP-32 & MDXP-32-1 (Typical at 25°C, ±15V and +5V supplies unless otherwise noted)

MAXIMUM RATINGS

PERFORMANCE

Transfer Error, max. ³	0.01%
Channel Crosstalk, 1 kHz	–80 dB
Turn ON Time	500 nsec.
Turn OFF Time	300 nsec.
Break-Before-Make Delay	80 nsec.
Inhibit/Enable Delay	300 nsec.

ANALOG INPUTS

Number of Channels, single ended	32
Number of Channels, differential	16
Input Voltage Range	$\pm 15V$
Channel ON Resistance	1.5K
Channel ON Resistance,	
max. 0°C to 70°C	2.0K
Channel OFF Input Leakage	30pA
Channel ON Input Leakage	100pA

DIGITAL INPUTS

Input Logic Level ¹ , HI ("1")	+2.0V to +5.5V
Input Logic Level ¹ , LO ("0")	0V to +0.8V
Logic Loading ¹	1 LS TTL load
Address Coding	4 bits (MDXP-32-1)
	6 bits (MDXP-32)
Mux Enable Inputs ² , enable	HI (+4.0V to +Supply)
disable .	LO (0 to +0.8V)

DIGITAL OUTPUTS

PHYSICAL-ENVIRONMENTAL

Operating Temperature Range	. 0°C to 70°C
Storage Temperature Range	-25°C to +85°C
Package Size	4.6 x 2.5 x 0.375 inches
	116,8 x 63,5 x 9,5 mm
Package Type	Steel, shielded on 5
	sides
Weight	6 oz. (170 g.)

NOTES:

- 1. All digital inputs except for Mux Enable Inputs on both models and Address Inputs on MDXP-32-1.
- 2. The logic levels are also the same for the Address Inputs on MDXP-32-1.
- 3. For zero source impedance and \ge 20 megohm load impedance.
- 4. MDXP-32 only. The MDXP-32-1 does not use +5V power.

ORDERING INFORMATION

Included with each module is a mating right-angle 72-pin connector. Additional connectors may also be ordered by the following number.

58-2083010 Connector

THE MDXP-32 AND MDXP-32-1 ARE COVERED BY GSA CONTRACT

BLOCK DIAGRAMS

294C

INPUT/OUTPUT CONNECTIONS

PIN CONNECTIONS for MDXP-32

	Тор	Bottor	n
	11	18	-15VDC
Analog Gnd.	21	28	Analog Gnd.
	31	38	Ch. 16 In
Ch. T In	41	4B	Ch. 17 In
Ch. 2 In	51 6T	20	
Ch. 3 In	71	00	Ch. 19 In
	/1 0T	/D	Ch. 20 In
	01		Ch. 21 III Ch. 22 In
	10T	100	Ch 22 m
Output Ch 0-15	11T	118	Output Ch 16-31
16 In) Address	12T	128	NC
32 In Innuts	131	138	NC
Ch 8 In	141	14B	Ch 24 In
Ch 9 In	15T	15B	Ch 25 In
Ch 10 ln	16T	16B	Ch 26 In
Ch. 11 ln	171	17B	Ch. 27 In
Ch. 12 In	18T	18B	Ch. 28 In
Ch. 13 In	19T	19B	Ch. 29 In
Ch. 14 In	20T	20B	Ch. 30 In
Ch. 15 In	21T	21B	Ch. 31 In
Addr. Det. In 1	22T	22B	Addr. Det. In 2
Addr. Det. In 3	23T	23B	Addr. Det. In 4
Enable Ch. 0-15	24T	24B	Enable Ch. 16-31
Addr. Det. In 5	25T	25B	Addr. Det. In 6
Addr. Det. In 7	26T	26B	Addr. Det. In 8
<u>16 · 32</u> Out	27T	27B	16 · 32 Out
16 · 32 Out	28T	28B	Carry Out
1 ln j	29T	29B	ן 1 Out
2 In Address	30T	30B	2 Out Address
4 In Inputs	31T	31B	4 Out Outputs
8 In J	32T	32B	8 Out
Address Det. Out	331	33B	Clock
Load Enable	341	34B	Clear Enable
Digital Gnd.	35T	35B	Digital Gnd.
+5VDC	36T	36B	+5VDC

10P 12T 3T 4T 56T 7T 8T 10T 11T 12T 14T 15T 11T 12T 12T 22T 22T 22T 22T 22T 22T 22	Botto 18 38 48 58 78 89 108 118 128 108 118 128 138 108 118 128 138 128 128 128 228 238 248 258 268 278 288 278 288 298 208 298 308 318 338 338 338 338 338 358 358 35	m - 15VDC Analog Gnd. Ch. 16 In Ch. 17 In Ch. 17 In Ch. 19 In Ch. 20 In Ch. 20 In Ch. 21 In Ch. 22 In Ch. 23 In Output, Ch. 16-31 NC Ch. 24 In Ch. 25 In Ch. 25 In Ch. 26 In Ch. 27 In Ch. 28 In Ch. 29 In Ch. 29 In Ch. 31 In NC NC NC NC NC NC NC NC NC NC
35T 36T	35B 36B	NC NC
	107 117 217 317 417 617 117 117 117 117 117 117 117 117 1	lop Botto 1T 1B 2T 2B 3T 3B 4T 4B 5T 5B 6T 6B 7T 7B 8T 8B 9T 9B 10T 10B 11T 11B 12T 12B 13T 13B 14T 14B 15T 15B 16T 16B 17T 17B 18T 18B 19T 19B 20T 20B 21T 21B 22T 23B 24T 24B 25T 26B 27T 27B 28T 28B 30T 30B 31T 31B 32T 32B 33T 33B 34T 34B 35T 36B

PIN CONNECTIONS for MDXP-32-1

DESCRIPTION OF CONTROL PIN FUNCTIONS

FUNCTION	PIN	DESCRIPTION
Load Enable	34T	Input HI for sequential addressing and LO for random addressing. Connect to MDAS Load Enable (pin 24B).
Clear Enable	34B	When input is LO a negative transition on the MDAS Strobe resets Address counter to zero. Connect to MDAS Clear Enable (pin 25B).
Clock	33B	Each LO to HI transition at this input increments the address counter. Connect to MDAS Delay Out (pin 23T).
Carry Out	28B	Output carry of the address counter which is used in double level multiplexing. Connect to MDAS Count Enable (pin 18B).
Address Detector Inputs	22T thru 26T 22B thru 26B	NAND gate inputs used to short cycle the number of channels in sequential mode. When all inputs are HI the Address Counter can be reset. Connect to Address Outputs and leave unused inputs open.
Address Detector Output	33T	For short cycled sequential operation connect to Clear Enable on MDXP-32 (pin 34B) and MDAS (pin 25B). When output goes LO the Address Counter stops and is reset to zero when a negative transition is applied to the MDAS Strobe (pin 25T).
16 · 32 Out	28T	Decoder output enables channels 0 to 15 of the multiplexer for single level multiplexing. Connect to MDAS (pin 17B) for single-ended operation and MDXP-32 (pins 24B and 24T) for differential operation.
16 32 Out	27T	Decoder output enables channels 16 to 31 of the multiplexer for single-level multiplexing. Connect to pin 24T for single-ended operation and MDAS (pin 17B) for differential operation.
16 · 32 Out	27B	Decoder output enables channels 32 to 47 of the multiplexer for single-level multiplexing. Connect to pin 24B for single-ended operation and leave unconnected for differential operation.
Address Inputs	29T thru 32T	Input channel address. Connect to MDAS Address Inputs for single-level multiplexing.
Mux Enable	24B. 24T	Input HI enables multiplexer.

SINGLE LEVEL MULTIPLEXING

- 1. For up to 48 single-ended channels or up to 24 differential channels, single level multiplexing is used. This requires one MDAS-16 and one MDXP-32 or one MDAS-8D and one MDXP-32.
- 2. The three Address Decoder outputs are used in single level multiplexing only, to control the Mux Enable inputs as follows:
 - $\overline{16} \cdot \overline{32}$ Output selects Channels 0 to 15 $16 \cdot \overline{32}$ Output selects Channels 16 to 31 $\overline{16} \cdot \overline{32}$ Output selects Channels 32 to 47

(MDAS pin 17B) (MDXP-32 pin 24T) (MDXP-32 pin 24B)

- 3. Address inputs 1, 2, 4, 8 are common to both MDAS and MDXP-32. Address inputs 16 and 32 are applied to the MDXP-32 only.
- 4. For short cycling, which is required for sequential operation for any number of channels less than 256, the Address Outputs of the MDXP-32 are connected to the Address Detector Inputs. The rule is to connect Address Outputs whose binary value equals the number of the last channel in sequence. Note that channels are counted from 0 to 47. For example, for 37 channels the Address Outputs 4 and 32 would be used (adding up to 36).

APPLICATION NOTES

DOUBLE LEVEL MULTIPLEXING

- 1. For more than 48 single ended channels or more than 24 differential channels, double level multiplexing is required. Up to 256 single ended and up to 128 differential channels may be achieved by double level multiplexing. This technique uses all the channels of the MDAS for the second level of multiplexing so that these channels cannot be used as input channels.
- 2. One MDXP-32 and one MDAS-16 give 32 single ended channels, and each added MDXP-32-1 gives another 32 channels. Likewise, one MDXP-32 and one MDAS-8D give 16 differential channels and each added MDXP-32-1 gives another 16 channels.
- 3. With double level multiplexing the Mux Enable inputs of the MDXP-32 and MDXP-32-1's are connected to +5V to permanently enable them.
- 4. One input to the Address Detector Inputs is the Carry Out (pin 28B). As a result of this connection the other Address Detector Inputs are determined from the desired number of channels as follows: Channel No. - 15 = Binary value of Address Outputs

Remembering that the channel count is from 0 to 255 the address output required for 157 channels would be 156 - 15 = 140

This requires binary Address Outputs of 128, 8, and 4.

5. In the case of using the maximum 256 channels, the connection from the Address Detector Output (pin 33T) to Clear Enable (pin 34B) is left open and no Address Detector Inputs are required.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

297C

250 KHZ, 12-Bit, 16-Channel **Data Acquisition Module** Model DAS-250

FEATURES

- 250,000 A/D Samples Per Second
- 12 Bits, 16 Channels
- Double-buffered, Tri-State Gatable Outputs for 4, 8, 12 or 16-bit computer busses
- Stored, Open-Collector Bus-**Compatible Input Commands**
- Automatic Channel Sequencing

DESCRIPTION

Datel's DAS-250 is a very fast, 16channel data acquisition (A/ D) system with a throughput period of 4 microseconds. The DAS-250 is a modular A/D front end for mini- and microcomputers. When operated with a very fast I/O cycle in the computer (one microsecond or less), data rates in excess of 200,000 analog samples per second may be achieved.

The DAS-250 features a 12-bit binary A/D output and a 4-bit channel address output both of which are latched and gated. This output data may be gated out in 4-bit groups so that 4, 8, 12 or 16 bit computer busses may be used. Most input commands are negative true and may be internally stored using device select and strobe commands. Again, this is ideal for open-collector computer control busses.

The DAS-250 includes an internal 16-channel address counter and analog multiplexer which increments with each A/D conversion for automatic sequential multi-channel scanning. Alternatively, this counter may be used as a jammed register which is loaded with a 4-bit address from an external processor. This lat

ter mode offers random channel addressing whereby some highactivity channels may be sampled more often than others under program control.

The DAS-250 uses Datel's very high speed, fast-settling SHM-5 Sample/Hold amplifier with a 20 nanosecond aperture time and 350 nanosecond settling time. Using this fast S/H amplifier plus latched data outputs and an ADC-EH12B3 A/D converter with 2 microsecond 12-bit conversion performance, the DAS-250 achieves its high speed using overlapped conversion and storage techniques.

The analog multiplexer is switched to a new channel at the start of A/D conversion while the S/H amplifier holds the present analog value stable during conversion. The multiplexer and

S/H input stage may then settle and track the next channel while the A/D is converting.

A/D data is valid in the output latches at the end of conversion and channel address data appears at either the beginning or end of conversion (a jumperselected mode).

The DAS-250 features an overall accuracy of ±0.025% ±1 LSB. It is packaged on 2 small PC boards which are joined by standoffs. Overall dimensions are 4.25"W x 5.00"D with spacing between parallel dual-22-pin PC fingers of 1". Power requirements are +5VDC @ 450 mA (500 mA max.), +15VDC @ 165 mA (180 mA max.) and -15VDC @ 85 mA (100 mA max.), for 6 watts total. The operating temperature range is 0 to +70°.

DAS-250 Data Acquisition

3

Nodule Model

FOR FULL 250 KHz, 256-CHANNEL SYSTEMS, SEE DATEL'S PDAS-250 SERIES

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

BLOCK DIAGRAM

Overlapped Conversion and Storage Description

A/D Conversion begins with a start convert command after the input has been previously settled for 2 microseconds minimum. (This is usually achieved by having system reset to channel 1 while idle.) As the A/D conversion is started, the sample/hold (S/H) amplifier switches to temporarily hold the analog voltage stable during conversion. Simultaneously with the convert start, the channel address is stored in the output latches. Another jumper-selected mode delays this address storage until the end of conversion, but will store the next incremented address. This latter mode holds stable data all the way to the next end of conversion for processors which do not want the address data to change at start of conversion. Regardless of the mode chosen, the channel address sequencer is then incremented at start of conversion (or the sequencer is updated with a jamming external address in random mode). To summarize: channel address storage may occur at start or end of conversion, but channel address multiplexer sequencing always occurs at start of conversion (after storage, if done).

The analog multiplexer and sample/hold input stage settle and track the next channel during A/D conversion. At the end of conversion, A/D binary data are stored in the output latches. A slightly delayed BUSY output flags the external processor to collect the data by using Read Data commands to gate data onto the bus from the latches. Address and MSB data should be taken first if the address latch will be updated with the next start convert command. Most fast minicomputers will take the next 2 microseconds to decode the BUSY falling edge and retrieve all data. Since the S/H returns to the sample mode at the end of conversion, one microsecond minimum must be allowed until the next start convert command to let the S/H output stage follow the new channel. The processor will have until the end of the next conversion to read the previous A/D data.

This timing is ideal for 8-bit bus systems which must take data in two bytes yet with high throughput speed. Singlechannel operations (such as Fast Fourier Transform vibration analysis), which run in random mode without updating the multiplexer, may achieve speeds up to 300 KHz and beyond, assuming data is taken quickly.

Of the two timing modes (channel address storage occurring at the beginning or end of conversion), storing at the beginning produces an address which coincides with the A/D data, but this address will be lost at the next convert start which occurs in 2 microseconds at 250 KHz. With the address stored at the end of conversion, both the address and A/D data latches are updated simultaneously (at end of conversion). However, the address leads data by one channel.

SPECIFICATIONS MODEL DAS-250 (Typical at +25° C unless noted)

0 + LO = +0.4V Max 1 = HI = +2.4V Min

A/D data outputs can drive 10 TTL loads. The A/D Channel Address outputs can drive 8 TTL loads. Busy and

Clock outputs are 74LS and 74S logic, respectively.

Data is arranged as four 4-bit latchable, gatable, tri-state outputs corresponding to 12 binary bits of A/D data and 4 bits of A/D binary channel address. The

4 channel bits may also be hard-wired

may be jumper-selected as straight or offset binary or 2's complement.

as A/D MSB sign extension or hard-wired all zero's or all one's. Coding

(Pins J2-A to J2-N: A/D Data) (Pins J2-15 to J2-18: Chan, Addr.)

DIGITAL OUTPUTS GENERAL Logic Levels System Type . 16 channel, very high speed Data and Loading All digital outputs are TTL levels Acquisition System with automatic sequential or external random channel addressing. Random (externally supplied address) Channel Addre Modes or Sequential (internal address counter) Multiplexer Break-before-make CMOS monolithic Type integrated circuit with internal voltage clamps Data Output Format ANALOG INPUTS Number of Channels 16 single-ended channels Channel Expansion Available using expander input and MUX inhibit at some sacrifice in speed depending on configuration Output Full Scale Coding Input Ranges 0 to -10 Volts (unipolar) or +5V to -5 Volts (bipolar) Channel Input Address Overvoltage ±20 Volts maximum sustained (no Outputs damage) Input Impedance Input Blas Current 100 Megohms minimum 250 nA max Input Capacitance 10 pF, OFF channel to ground Frame Sync Out 100 pF, ON channel to ground MUX Switches 1.5K Ohms, ON resistance, 30 pA, OFF System Busy input leakage Out PERFORMANCE Accuracy @ +25° C ... ±.025% of full scale range ± 1 LSB Non Linearity ±1/2 LSB max. Differential Serial Data Nonlinearity ±1/41.SB max Out Resolution 12 Binary Bits (1 part in 4096) Gain Error Adjustable to zero Offset or Zero Error Adjustable to zero Gain Temperature Drift Zero Tempera-... ±45ppm of FSR/°C, max ture Drift $\pm 130 \ \mu \ V/^{\circ} C$, max Power Supply Serial Data 1 mV per Volt Rejection **Clock Out** DYNAMIC CHARACTERISITICS Throughput Period 4 microseconds (See timing diagrams.) Throughput Rate 250,000 samples per second Acquisition Time 1.35 microseconds A/D Conversion Time 2 microseconds Sample/Hold Aperture Time Sample/Hold Switch 20 nanoseconds

Straight Binary (unipolar) or 2's complement (jumper-selected) or Offset Binary (bipolar) with inverted analog coding (Pins J2-1 through J2-4) 4 lines positive true, provides a binary output count of internal channel sequencer. (CH. 1 = 0000, Ch. 16 = 1111) May be used to short cycle channel scan up to a preselected channel. (Pin J2 - 14) Goes to logic LO during channel one and is HI during channels 2 through 16. (Pin J2 - R) Delayed End-of-Conversion (Status) output from the A/D converter. A falling edge indicates when data is Stabilized in the output buffer. The System Busy should be used to initiate a sequence of Read Data inputs to gate 4-bit output groups to the user's bus from the output buffers. (Pin J2 - P) This is a NRZ successive decision pulse generated during the 4 microsecond A/D conversion period. The most significant bit is presented first. This output is very useful for oscilloscope calibration of the A/D converter offset and gain adjust by triggering on the End of Conversion (A/D pin 1). (Pin J2 - 5) Use the falling edges of this clock to load or shift Serial Data from the A/D converter into external registers. DIGITAL INPUTS (NOTE: Most inputs are negative true coding, compatible with most com-puters and open-collector TTL buses) Device Select (Pin J1 - L) A logic LO on this line enables all other inputs (except short cycle inputs and mux inhibit) to be strobed into the DAS-250. This allows the controls to be multiplexed on a common bus with other external devices such as computer parallel I/O ports. ports. (Pin J1 - M) A logic LO on this line loads all other digital inputs into the DAS-250 on the Strobe falling edge. This does not apply to the short cycle address inputs or mux inhibit. The strobe Strobe In

Ordering Guide Full Scale Model Number Analog Input Range **DAS-250A** 0 to -10 Volts **DAS-250B** +5V to -5V 36-2075060 Dual 44-pin PC edge 2 connectors, solder tabs, .156" (included) 58-12140-27 Instruction Manual (included)

	DAS-250 is operated on a multiplexed
	bus. The Strobe function occurs only
	when Device Select is LO. (Strobe and
	Device Select are NANDed).
Mux Inhibit	(Pin J1 - R) This line includes an
	internal 1K ohm +5V pullup resistor so
	that analog multiplexer inputs are
	enabled when this line is normally left
	unconnected. Logic LO inhibits the
	multiplexer so that additional external
	channels may be switched through the
Dandom/	(Dip 11 10) Logic VI colorte the
Ranuom/	(FIT JT - TO) LOGIC HI Selects the
Sequential	Logis LO allows automatic abapted
III	sequencing by the internal channel
	address counter. Bandom/Sequential is
	enabled by (Device Select • Strobe)
Reset In	(Pin 11 - 11) Logic LO resets the internal
Neaet III	channel sequencer to channel 1. Reset
	is enabled by (Device Select • Strobe)
Bandom	(4 Pins JI-P N 12 13) This four-bit
Address in	binary input is a complementary iam
	input (when in Bandom mode) that
	selects one of 16 channels for data
	conversion. (Note negative true coding
	0 = LO, 1 = HI).
	111 = Ch. 1, 1110 = Ch. 2,
	0000 = Ch. 16. The Random Address is
	enabled by (Device Select . Strobe)
Short Cycle	(Pins J2 - 19 through J2 - 22) These
Channel	four inputs can be externally tied back
Address	to the channel address outputs to
Inputs	terminate the channel scan at any
	address. These lines are a 4-input
	NAND gate. To operate an untermi-
	nated full 16-channel scan, one of the
	short cycle inputs must be LO. With all
	inputs HI, the address will be reset to
	channel 1. Heset to channel one will
	been converted
Start Convert	(Pin 12 0) A falling odge triggers the
In Start Convert	(Fill 52 - 9) A failing edge triggers the
	50 pSec min 20Sec max This input is
	enabled by (Device Select Strobe) and
	normally start convert is held low all
	during scanning with starts initiated by
	the strobe (see timing).
Read Data 1	(Pin J2 - 7) A logic LO will gate out
	A/D bits 1 (MSB) thru 4.
Read Data 2	(Pin J2 - 8) A logic LO will gate out
	A/D bits 5 thru 8.
Read Data 3	(Pin J2 - 10) A logic LO will gate out
	A/D bits 9 thru 12 (LSB).
Read Data 4	(Pin J2 - 6) A logic LO will gate out the .
	4 address bits or MSB sign extension.
Power	+5VDC ± 25V @ Regulated,
Require-	450mA, typ. bypassed
ments (6	500mA, max. power supplies
Watts total)	+15VDC ±.5V @ must be used
	robmA, typ.
	400
	180mA, max.
	180mA, max. -15VDC ±.5V @.
	180mA, max. -15VDC ±.5V @ 85mA, typ. 100mA max
	180mA, max. -15VDC ±.5V @. 85mA, typ. 100mA, max. Logic series 50 mV max.

provides for storage of control status

PHYSICAL-ENVIRONMENTAL Size 4.25"W x 5.00"D x 1" spacing between PC card edges Operating Temperature 0 to +70°C (non-condensing) Range

Storage	
Temperature	
Range	-55° C to +85° C
Weight	1 pound (0,45 Kg)
Altitude	0 to 15,000 feet (4900 m)
Mounting	By PC edgeboard connectors. Users
Method	may attach standoffs at the 4 module
	card corners using 4-40 threaded
	hardware for firmer mounting.
Fabrication	Modules are soft-potted in black diallyl-
	phthlate cases with a hard-pot surface.

Feedthrough ±.005% of input

±.01% of input max

MUX Crosstalk

from OFF channeis

SEQUENTIAL MODE SYSTEM TIMING

- ADDRESS IS (N + 1) ie: ADDRESS AS LOADED AT EOC AFTER THE CHANNEL NO. HAS BEEN ADVANCED.

NOTES:

- 1. * DENOTES INTERNAL SIGNALS.
- 2. EXAMPLE SHOWN IS FOR 16 SEQUENTIAL CHANNELS AFTER BEEN RESET TO CHANNEL ONE.
- 3. NOTE THAT AT LEAST 2µ SEC IS REQUIRED TO SELECT THE FIRST CHANNEL. TO AVOID THIS SETTLING TIME IT WOULD BE NECESSARY TO ALWAYS INITIALIZE TO CHANNEL ONE UPON POWER UP & TO RETURN TO CHANNEL ONE AT THE END OF A GIVEN SEQUENCE. (THE LATTER IS AUTOMATICALLY DONE IN THE SEQUENTIAL MODE, WHEN THE LAST CHANNEL IS CONVERTED THE SEQUENCER ADVANCES TO CHANNEL ONE).
- 4. NOTE THERE ARE TWO JUMPER SELECTABLE OPTIONS FOR ADDRESS VALID. ONE REPRESENTS THE ACTUAL CHANNEL ADDRESS BUT ALLOWS MINIMAL TIME TO READ THE ADDRESS. THE OTHER ALLOWS MAXIMUM TIME TO READ THE ADDRESS BUT THE CHANNEL NUMBER IS (N + 1).
- 5. SIGNAL NAMES IN (PARENTHESES) ARE THE SAME AS THOSE SHOWN ON THE BLOCK DIAGRAM ON PAGE 2.

RANDOM MODE SYSTEM TIMING

	CONVERT
	CONVERT P*
•	SAMPLE/HOLD*
	BUSY* (EOC)
	BUSY "D"* * (LATCH)
-	
-	
	ADDRESS 1
	ADDRESS 2
-	ADDRESS 4
-	ADDRESS 8
-	DEVICE SELECT
-	DATA VALID
•	ADDRESS VALID (2) JUMPER 10 TO 13 CH 10 CH 11 CH 13 CH 16
	ADDRESS VALID (3) UT///// CH 10 CH 11 CH 13 CH 16
	MUX CHANNEL NO. CH10 CH 11 CH 13 CH 16 CH 2
	NOTE:
	NUTES:
	 DENOTES INTERNAL SIGNALS. NOTE THAT IF THE CHANNEL ADDRESS IS GIVEN SIMULTANÉ- OUSLY WITH THE CONVERT COMMAND THE PREVIOUS SELECTED CHANNEL WILL BE HELD BY THE SAMPLE & HOLD AND CONVERTED WHILE THE MULTIPLEXER IS SET TO THE NEW CHANNEL. (THIS ALLOWS THE INPUT TO SETTLE WHILE THE CONVERSION IS BEING MADE.)

3. CHANNEL TWO WAS SELECTED BUT NOT CONVERTED, IF THIS IS TO BE THE FIRST CHANNEL OF THE NEXT SEQUENCE, THE 2μ SEC SETTLING TIME DELAY REQUIRED BETWEEN SELECTING A NEW CHANNEL & CONVERTING DOES NOT APPLY.

4. NOTE THAT ADDRESS VALUE (2) IS MORE DESIRABLE FOR RANDOM OPERATION AS IT IS SYNCHRONOUS WITH THE OUTPUT DATA & REPRESENTS THE ACTUAL CHANNEL CONVERTED.

5. SIGNAL NAMES IN (PARENTHESES) ARE THE SAME AS THOSE SHOWN ON THE BLOCK DIAGRAM ON PAGE 2.

ſſſ
CH 13 CH 14 CH 15 CH 16 CH 1 CH 2
CH 12 CH 13 CH 14 CH 15 CH 16
· · · · · · · · · · · · · · · · · · ·
CH 12 CH 13 CH 14 CH 15 CH 16 CH 1
A NEW CONVERT COMMAND.
CH 13 CH 14 CH 15 CH 16 CH 1

COMPUTER INTERFACE BLOCK DIAGRAM

MINICOMPUTER FRONT END

This block diagram indicates how the DAS-250 may be interfaced to a Digital Equipment Corporation PDP-11 Series minicomputer. The modules labeled "Address Decoder" and "Interrupt Logic" are standard DEC cards, types M105 and M7821 respectively which slide into the computer's connector block. Many interface circuit details have been omitted for clarity and are beyond the scope of this brochure. To realize the full speed advantage of the DAS-250, a fast minicomputer is desirable. A slower 8-bit microcomputer may also be used and the DAS-250 offers the advantage of quick data conversion 4 microseconds after an external event triggers the start of conversion. By contrast, slower conversion systems require 20 microseconds or greater before data is acquired, sampled and converted.

MOUNTING INSTRUCTIONS

For normal laboratory conditions, the dual card assembly will be adequately supported when mounted vertically in both PC board connectors.

For more rigid mounting in rough service applications, remove the four corner screws on the A/D PC board,

labeled PC 10306. The four corner standoffs will remain captive and boards will remain attached by means of the interboard connector. Drill four 0.129" holes (#30 drill) on the desired mounting surface using the side view dimensions. Assemble four 4-40 bolts with 0.205" min spacers through the mounting surface and A/D board to thread into the captive standoffs.

MODEL DAS-250, INPUT/OUTPUT CONNECTIONS Π

CONNECTOR .II

	CONNE	сто	R J1		CONNE	сто	R J2
PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION
A B C D E F H J K L M N P R S T U V W X Y Z	CH. 16 HI ANALOG INPUT CH. 15 HI ANALOG INPUT CH. 15 HI ANALOG INPUT CH. 13 HI ANALOG INPUT CH. 12 HI ANALOG INPUT CH. 12 HI ANALOG INPUT CH. 10 HI ANALOG INPUT CH. 9 HI ANALOG INPUT MUX. EXPDR. INPUT DEVICE SELECT IN STROBE INPUT 2 RANDOM ADDR. INPUT 1 RANDOM ADDR. INPUT 1 RANDOM ADDR. INPUT 1 RANDOM ADDR. INPUT CH. 8 HI ANALOG INPUT CH. 7 HI ANALOG INPUT CH. 6 HI ANALOG INPUT CH. 5 HI ANALOG INPUT CH. 4 HI ANALOG INPUT CH. 2 HI ANALOG INPUT CH. 2 HI ANALOG INPUT CH. 2 HI ANALOG INPUT CH. 1 HI ANALOG INPUT CH. 1 HI ANALOG INPUT	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	CH. 16 LO ANALOG INPUT CH. 15 LO ANALOG INPUT CH. 15 LO ANALOG INPUT CH. 13 LO ANALOG INPUT CH. 12 LO ANALOG INPUT CH. 11 LO ANALOG INPUT CH. 10 LO ANALOG INPUT CH. 10 LO ANALOG INPUT AUX. LO ANALOG INPUT AUX. LO ANALOG INPUT ANDOM/SEQUENTIAL IN RESET IN 4 RANDOM ADDR. INPUT 8 RANDOM ADDR. INPUT 8 RANDOM ADDR. INPUT CH. 8 LO ANALOG INPUT CH. 7 LO ANALOG INPUT CH. 6 LO ANALOG INPUT CH. 5 LO ANALOG INPUT CH. 4 LO ANALOG INPUT CH. 4 LO ANALOG INPUT CH. 2 LO ANALOG INPUT CH. 2 LO ANALOG INPUT CH. 1 LO ANALOG INPUT	A B C D E F H J K L M N P R S T U U W X Y Z	BIT 12 ADC OUTPUT (LSB) BIT 11 ADC OUTPUT BIT 10 ADC OUTPUT BIT 9 ADC OUTPUT BIT 9 ADC OUTPUT BIT 8 ADC OUTPUT BIT 6 ADC OUTPUT BIT 5 ADC OUTPUT BIT 5 ADC OUTPUT BIT 4 ADC OUTPUT BIT 2 ADC OUTPUT BIT 2 ADC OUTPUT BIT 1 ADC OUTPUT BIT 1 ADC OUTPUT BIT 1 ADC OUTPUT SYSTEM BUSY OUTPUT NO CONNECTION NO CONNECTION +15 VDC POWER INPUT +5 VDC POWER INPUT +5 VDC POWER INPUT	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	BIT 1 CH. ADDR. OUTPUT BIT 2 CH. ADDR. OUTPUT BIT 2 CH. ADDR. OUTPUT BIT 4 CH. ADDR. OUTPUT ADC SER. CLK. OUTPUT ADC SER. CLK. OUTPUT READ DATA 4 READ DATA 1 READ DATA 2 START A/D CONVERT IN READ DATA 3 NO CONNECTION NO CONNECTION -15 VDC POWER INPUT FRAME SYNC. OUTPUT BIT 1 LATCHED ADDR. OUT BIT 2 LATCHED ADDR. OUT BIT 4 LATCHED ADDR. OUT BIT 1 SHORT CYCLE IN. BIT 2 SHORT CYCLE IN. BIT 4 SHORT CYCLE IN.
	Connector functions are arra	inged	in vertical edgeboard view	1			

OUTLINE DIMENSIONS 15/32 TAPPED STAND OFF ----SHIELD INCHES - (MM) ADC BD 7/16 SPACER MUX BD NO. 4-40 TYP. R Ð R1 GAIN ADJ. DIP JUMPER PLUG THIS BRD 4.35 (110,5) 0.185 TYP. (4,7) R2 ZERO ADJ. (UNIPOLAR ONLY) R2 9 R4 SAMPLE/HOLD STEP ADJ. R4 R3 ۲ R3 OFFSET ADJ. (BIPOLAR ONLY) 2.00 1.85 (47,0) 1.70 -¢-CONNECTOR CINCH 50-44A-30 J2 DATEL # 36-2075060 (2 INCLUDED) 1.00 1.06 (26,9) 1.20

	UNIP	OLAR	(0V TC) -10V)
--	------	------	--------	---------

-FS + 1 LSB -9.9976V 1111 1111 1111 -7/8 FS -8.7500V 1110 0000 0000 -3/4 FS -7.5000V 1100 0000 0000 -1/2 FS -5.0000V 1000 0000 0000 -1/4 -2.5000V 0100 0000 0000 -1 LSB -0.0024V 0000 0000 0 0.0000V 0000 0000	SCALE	INPUT VOLTAGE	STRAIGHT BINARY
	-FS + 1 LSB -7/8 FS -3/4 FS -1/2 FS -1/2 FS -1/4 -1 LSB 0	-9.9976V -8.7500V -7.5000V -5.0000V -2.5000V -0.0024V 0.0000V	1111 1111 1111 1110 0000 0000 1100 0000 0000 1000 0000 0000 0100 0000 0000 0000 0000 0001 0000 0000 0000

i INP JT IS INVERTING OTHER INPUT RANGES ARE AVAILABLE FOR QUANTITY ORDERS CONTACT FACTORY BIPOLAR (+5V TO -5V)

SCALE	INPUT VOLTAGE	OFFSET BINARY
-FS + 1 LSB -3/4 FS -1/2 FS 0 +1/2 FS +3/4 FS +FS - 1 LSB +FS	-4.9976V -3.7500V -2.5000V +2.5000V +3.7500V +4.9976V +5.0000V	1111 1111 1111 1110 0000 0000 1100 0000 0000 0100 0000 0000 0010 0000 0000 0000 0000 0001 0000 0000 0001

DIP JUMPER PLUG WIRING

Output Type	Install Jumpers	TO INSTALL 16 PIN ADAPTER PLUG
 Next Channel Address (Stores address of next channel at falling edge of Busy out) 	4 to 9, 3 to 11, 2 to 12, 1 to 14, 10 to 16	(atito
2. Present Channel Address (Stores address of <i>present</i> channel at rising edge of Busy out)	4 to 9, 3 to 11, 2 to 12 1 to 14, 10 to 13	
 Sign Extension of ADC Bit 1 (MSB), Straight Binary or Offset Binary 	5 to 9, 5 to 7, 9 to 11, [.] 11 to 12, 12 to 14	
4. Sign Extension of ADC Bit 1 (MSB), 2's Complement	5 to 9, 5 to 6, 9 to 11, 11 to 12, 12 to 14	A PTE
5. Leading Zero's	8 to 9, 9 to 11, 11 to 12, 12 to 14, 10 to 16	
Bipolar Output Coding:		
Offset Binary (Bit 1 = MSB)	Jumper 5 to 7	
2's Complement (Bit 1 = MSB)	Jumper 5 to 6	

DIP JUMPER PLUG WIRING AND INSTALLATION

The DAS-250 has a 16-bit full parallel data output. Twelve bits of this data are for A/D converter output. The additional four bits are unassigned and may be set by the user to indicate one of five data output types (see listing). These include the analog channel address (either the present address or next address), sign extension (either binary or two's complement coding) or all zeros. The channel address outputs are useful to the computer if the DAS-250 is controlling its own channel sequencing. Or they may be used to confirm a random channel address commanded by the computer. Sign extension mirrors the ADC most significant bit over to the highest order bit in the computer's accumulator. With bipolar inputs, this simplifies polarity detection of the data since the computer can test the displaced MSB by using a shift left (rotate) instruction. This enhances accumulator binary arithmetic (for example, simple averages). Also, data arithmetic carries into the accumulator's flag bit, which can be easily tested.

The five modes for the DAS-250's unassigned address bits are selected by soldering appropriate jumpers onto a 16-pin DIP plug (supplied) which inserts into a socket on the A/D board inside the DAS-250. This board is identified as having only one large module (the ADC-EH12B3 A/D Converter.)

The two PC boards of the DAS-250 must be separated to gain access to the DIP plug socket. Remove the four corner screws on the PC board labeled PC 10306 (*opposite* the PC board with "Datel DAS-250" etch). With the screws removed, only the interboard connector will remain holding the boards together. Separate the connector halves. The corner standoffs are threaded and will remain captive. After wiring the DIP jumper plug, insert it into its socket with the notch (pins 1 and 16) facing toward the PC edge connector, J2 (facing away from the ADC module). Reassemble the interboard connector and tighten the four corner screws.

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Operational Amplifiers

FAST	OP AN	IP.
7		

AM-410, AM-411	314C
AM-414	318C
AM-450, AM-460	320C
AM453	324C
AM-464	326C
AM-470	328C
AM-490	330C
AM-7600, AM-7601	334C
AM-761X SERIES	344C
AM-500	350C
AM-8510 SERIES	352C
AM-303	360C

307C

Quick Selection: High Performance Op Amps

	MODEL	DESCRIPTION	DC OPEN LOOP GAIN	GAIN BAND WIDTH	SLEW RATE (V/ sec)	SETTLING TIME TO 0.1%1	OUTPUT, MIN.	COM. MODE RANGE, MIN.	
	AM-410-2C	Wideband, JFET	100K			2 µsec	±11V		
	AM-410-2M	Input, Compensated	150K	18 MHZ	8	1.7 <i>µ</i> sec	± 12V	± 10V	
	AM-411-2C	Wideband, JFET	100K	50 MHz	40	1 µsec	±11V	+ 10V	
	AM-411-2M	Input, Uncomp.	150K	60 MHz	50	.85 µsec	± 12V	± 10V	
. 1	AM-414-2A	Ultra-Low Drift	400K				± 11.5V		
	AM-414-2B	Chopperless Op	500K	600 kHz	0.17		± 12V	± 13V	
	AM-414-2M	Amp							
HIC	AM-453-2C	Low Noise Wide-	100K 10	10 MHz	13		± 12V	± 12V	
	AM-453-2M	band Op Amp		10 10112	10			- 12 7	
	AM-460-2C	Wideband, Fast	150K	12 MH7	7	15.0500	+ 10V	+ 11V	
5	AM-460-2M	Settling Op Amp			•	1.0 µ300			
9	AM-490-2A								
Ō	AM-490-2B	Chopper	5 x 10 ⁸	3 MHz	2.5		+ 10V	+ 10V	
Σ	AM-490-2C	Stabilized		JIVITIZ	2.5		- 100	± 10V	
	AM-490-2M								
	AM-7600C	Ultra-Low Off-							
	AM-7600R	set CAZ Op Amp	105 dB	1.2 MHz	1.8		± 4.9V	± 4.2V	
	AM-7600M	Compensated							
	AM-7601C	Ultra-Low Off-							
	AM-7601R	set CAZ Op Amp	105 dB	1.8 MHz	1.8		± 4.9V	± 4.2V	
	AM-7601M	Uncompensated					and the second sec		

NOTES: 1. 10V output step unless otherwise noted. 2. Adjustable to Zero.

COMMON			INPUT		INPUT	POWER		an an an An an an an	
MODE REJECTION	INPUT IMPEDANCE	CURRENT, MAX.	CURRENT, MAX.	VOLTAGE, MAX. ²	VOLTAGE DRIFT	SUPPLY RANGE	OPERATING TEMP(°C)	PRICE (1-24)	SEE PAGE
86 d B	1012	100 pA	50 pA	1.5 mV	15 V/°C	± 5VDC to	0 to + 70	\$ 6.95	314C
		50 p A	10 pA	1.0 mV	5 V/°C	± 20VDC	– 55 to + 125	\$29.50	
86 d B	1012	100 pA	50 pA	1.5 mV	15 V/°C	± 5VDC to	0 to + 70	\$ 9.95	314C
	10	50 p A	10 p A	1.0 mV	5 V/°C	± 20 VDC	– 55 to + 125	\$32.50	
100 dB	33 G	±7nA	±6nA	150 V	2.0 V/°C	+ 3VDC to	0 to + 70	\$ 7.00	
106 dB	50 G	±4 nA	± 3.8nA	75 V	1.3 V/°C	+ 18VDC	0 to + 70	\$12.95	318C
110 dB	60 G	±3nA	± 2.8nA			10100	– 55 to + 125	\$22.50	
100 dB	100 K	15 A	300 n A	4 mV	30 V/°C	± 3VDC to	0 to + 70	\$ 6.50	3240
100 0.0	10010	1.0 A	000117	-7 111 V	00 1/ 0	±20VDC	– 55 to + 125	\$19.50	0240
100 dB	300 M	25 n ∆	25 n A	5 mV	10 V/°C	±5VDC to	0 to + 70	\$ 3.50	3200
100 00		201174	20114	0111	10 11 0	± 22.5VDC	– 55 to + 125	\$14.50	0200
				,	1.0 V/°C		0 to + 70	\$30.50	
120 dB	100 M	150 n A	50 n A	20 V	0.3 V/°C	± 12VDC to	0 to + 70	\$36.00	0000
120 00	100 101	100 PA	JUPA	20 1	0.1 V/°C	± 20VDC	0 to + 70	\$41.00	3300
					0.6 V/°C		– 55 to + 125	\$99.50	
						± 4VDC to	0 to + 70	\$ 9.81	
88 dB	—	3 nA	1.5 nA	5 V	.01 V/°C	± 16VDC	– 25 to + 85	\$15.07	334C
							– 55 to + 125	\$30.07	
						±4VDC to	0 to + 70	\$ 9.81	
88 dB		3 nA	1.5 nA	5 V	.01 V/°C	± 16VDC	– 25 to + 85	\$15.07	334C
							– 55 to + 125	\$30.07	

10V output step unless otherwise noted.
 Adjustable to Zero.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Quick Selection: High Performance Op Amps

	MODEL	DESCRIPTION	DC OPEN LOOP GAIN	GAIN BAND- WIDTH	SLEW RATE (V/µsec)	SETTLING TIME TO 0.1%1	OUTPUT, MIN.	COM. MODE RANGE, MIN.	COM. MODE REJECTION
	AM-470-2C AM-470-2M	Low Power, High Performance Op Amp	300K V/V	1 MHz	20	<u> </u>	±12V	±11V	106 dB
LHIC	AM-7611C AM-7611M	Low Power, Selectable Quiescent Current	104 dB	1.4 MHz	1.6		±4.9V	±4.4	96 dB
LIJONOM	AM-7612C AM-7612M	Low Power, Extended Com. Mode Volt. Range	104 dB	1.4 MHz	1.6		±4.9V	±5.3	96 dB
	AM-7613C AM-7613M	Low Power, Input Protected to ±200V	104 dB	1.4 MHz	1.6		±4.9V	±4.4	96 dB
	AM-7614C AM-7614M	Low Power, External Compensation	104 dB	1.4 MHz	1.6	×	±4.9V	±4.4	96 dB
	AM-7615C AM-7615M	External Com- pensation, Input Protected ±200V	104 dB	1.4 MHz	1.6		±4.9V	±4.4	96 dB
	AM-464-2C AM-464-2M	High Voltage Op Amp	100K V/V	4 MHz	5		±35V	±35V	74 dB
٥	AM-8510R AM-8510M	Hybrid Power Op Amp	100 dB	30 kHz	0.5		±24V @ 1A	±10V	70 dB
YBR	AM-8520R AM-8520M	Hybrid Power Op Amp	100 dB	30 kHz	0.5	`	±24V @ 2A	±10V	70 dB
I	AM-8530R AM-8530M	Hybrid Power Op Amp	100 dB	30 kHz	0.5		±24V @ 2.7A	±10V	70 dB
MOL	AM-303A AM-303B	Modular High Voltage Op Amp	10 ⁶ V/V	10 MHz	100	2.5 <i>µ</i> sec	±140V @ 20mA	±140V	100 dB

NOTES:

1. 10V output step unless otherwise noted.

2. Adjustable to zero.

INPUT IMPEDANC	INPUT BIAS CURRENT, E MAX.	INPUT OFFSET CURRENT, MAX.	INPUT OFFSET VOLTAGE, MAX. ²	INPUT OFFSET VOLTAGE DRIFT	POWER SUPPLY RANGE	OPERATING TEMP (°C)	PRICE SINGLES	SEE PAGE
500 MΩ	40 nA	15 nA	5 mV	5µV/° C	±5.5VDC to ±20VDC	0 to +70 -55 to +125	\$ 9.50 \$ 31.00	328C
						0 to +70	\$ 2.85	
10 ¹² Ω	50 pA	30 pA	5 mV	15µV/° C	±0.5VDC to ±8VDC	-55 to +125	\$ 5.25	344()
						0 to +70	\$ 3.15	
10 ¹² Ω	50 pA	30 pA	5 mV	15µV/°C	±0.5VDC to ±8VDC	-55 to +125	\$ 7.05	344C
10120	50 pA	30 nA	5 m\/	15.0V/°C	±0.5VDC to	0 to +70	\$ 2.95	3440
101-32	30 p.A	50 pA	5 11 1	15,4 V / C	±8VDC	-55 to +125	\$ 6.35	3440
10120	50 pA	30 n A	5 m\/	15.0V/°C	±0.5VDC to	0 to +70	\$ 2.50	3440
101-52	30 p.A	30 pA	5 11 4	13μν/ Ο	±8VDC	-55 to +125	\$ 5.25	0-40
10120	50 nA	30 n A	5 m\/	15///°C	±0.5VDC to	0 to +70	\$ 2.95	3440
10-52	50 pA	50 pA	5 11 4	15μν/ Ο	±8VDC	-55 to +125	\$ 6.35	0
200 MΩ	30 nA	30 nA	6 mV	15µV/°C	±10VDC to	0 to +70	\$ 8.00	3 26C
				07.1/00		-55 to +125	\$ 36.00	-
30 MΩ	500 nA	200 nA	6 mV	$67\mu V/^{\circ}C$ $60\mu V/^{\circ}C$	± 18 VDC to ± 30 VDC	-25 to +85 -55 to +125	\$ 30.99	3520
30 MΩ	500 nA	200 nA	6 mV	67µV/° C	±18VDC to	-25 to +85	\$ 34.74	3520
				60µV/°C	±30VDC	-55 to +125	\$ 51.99	
30 MΩ	500 nA	200 nA	6 mV	$67\mu V/^{\circ} C$	1 ±18VDC to	-25 to +85 -55 to +125	\$ 51.99 \$ 65.04	3520
				$50\mu V/^{\circ}C$	+15VDC to	0 to +70	\$105.04	
$10^{12}\Omega$	100 pA	30 pA	ιmV	20µV/°C	±150VDC	0 to +70	\$140.00	360C

Datel offers modular products in operating temperature ranges of -25 to $+85^\circ C$ (suffix-EX) and -55 to $+85^\circ C$ (suffix-EXX-HS). For information on these high reliability modules contact nearest Datel sales office.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Quick Selection: High Speed Op Amps

	MODEL	DESCRIPTION	DC OPEN LOOP GAIN	GAIN BAND- S WIDTH (\	LEW RATE //µsec)	SETTLING TIME TO 0.1%1	OUTPUT, MIN.	COM. MODE RANGE, MIN.	COM. MODE REJECTION
TIC	AM-450-2 AM-450-2M	Wideband Fast Settling Op Amp	25K	12 MHz	30	330nsec	±10V	±10V	90 dB
VOLITI	AM-452-2 AM-452-2M	Wideband Fast Settling	15K	20 MHz	120	200nsec	±10V	±10V	90 dB
MOM	AM-462-1, -2 AM-462-1M, 2M	Wideband Fast Settling	150K	100 MHz	35	1 <i>µ</i> sec	±10V	±11V	100 dB
HYBRID	AM-500GC AM-500MC AM-500MR AM-500MM	Ultra-Fast Hybrid Inverting Op Amp	106	130 MHz	1000	200nsec	±10V @50mA		
S	AM-100A AM-100B AM-100C	Fast Settling Modular Op Amp	300K	13.5 MHz	45	550nsec	±10V @20mA	±10V	70 dB
ULE	AM-101A AM-101B	Optimized for Capac. Loads	300K	5.5 MHz	45	1µsec	±10V @20mA	±10V	93 dB
MOD	AM-102A AM-102B	Fast Settling Follower	130K	32 MHz	140	550nsec	±10V @20mA	±10V	93 dB
	AM-103A AM-103B	Fast Slewing Modular Op Amp	130K	32 MHz	400	350nsec	±10V @20mA	±10V	70 dB

 10V output step unless otherwise noted.
 Adjustable to zero. NOTES:

INPUT IMPEDANCI	INPUT BIAS CURRENT, E MAX.	INPUT OFFSET CURRENT, MAX.	INPUT OFFSET VOLTAGE, MAX. ²	INPUT OFFSET VOLTAGE DRIFT	POWER SUPPLY RANGE	OPERATING TEMP (° C)	PRICE SINGLES	SEE PAGE
50 MΩ	250 nA	50 nA	8 mV	20µV/° C	±10VDC to ±20VDC	0 to +70 -55 to +125	\$ 3.95 \$ 14.50	320C
100 MΩ	250 nA	50 nA	5 mV	30µV/° C	±10VDC to ±20VDC	0 to +70 -55 to +125	\$ 10.50 \$ 26.50	320C
300 MΩ	25 nA	25 nA	3 mV	15μV/° C	±5VDC to ±22.5VDC	0 to +70 -55 to +125	\$ 9.50 \$ 18.00	320C
30 MΩ	4 nA	0.5 nA	3 mV	5µV/°C	±10VDC to ±18VDC	0 to +70 0 to +70 -25 to +85 -55 to +125	\$ 69.00 \$ 89.00 \$104.00 *\$149.00	350C
10 ¹² Ω	100 pA 50 pA 20 pA	10 pA		50μV/° C 25μV/° C 10μV/° C	±15VDC	0 to +70 0 to +70 0 to +70	\$ 59.00 \$ 63.00 \$ 69.00	* *
10 ¹² Ω	50 pA 20 pA	10 pA	_	40μV/° C 20μV/° C	±15VDC	0 to +70 0 to +70	\$ 61.00 \$ 66.00	* *
10 ¹² Ω	50 pA	10 pA		40μV/°C 20μV/°C	±15VDC	0 to +70 0 to +70	\$ 63.00 \$ 72.00	**
10 ¹² Ω	50 pA	10 pA		40μV/° C 20μV/° C	±15VDC	0 to +70 0 to +70	\$ 63.00 \$ 72.00	* *

*Available with MIL-STD-833 Class B Screening

**For Data Sheet contact nearest Datel sales office.

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Datel offers modular products in operating temperature ranges of -25 to $+85^\circ\text{C}(\text{suffix-EX})$ and -55 to $+85^\circ\text{C}(\text{suffix-EXX-HS}). For information on these high reliability modules contact nearest Datel sales office.$

Wide Bandwidth, FET Input Monolithic Operational Amplifier AM-410 & AM-411 SERIES

FEATURES

- 60 MHz Gain Bandwidth
- 50 V/µsec Slew Rate
- 850 nsec Settling to 0.1%
- 150,000 Open Loop Gain
- 5 µV/° C Input Offset Voltage Drift
- 10¹²Ω Input Impedance

GENERAL DESCRIPTION

The AM-410 and AM-411 series are monolithic wideband operational amplifiers manufactured with FET/bipolar technology. Active laser trimming of the input stage complements the high frequency capabilities of these amplifiers with excellent input characteristics. Features available on both devices include an input offset voltage of 1 mV maximum with a temperature drift of typically 5 μ V/°C, input bias current of 50 pA maximum, and an input impedance of $10^{12}\Omega$. All devices provide a ±11V output at 8 mA, and open loop voltage gain of up to 150,000.

The AM-410 devices are compensated for unity gain operation. The dynamic characteristics of these devices include 10 MHz unity gain bandwidth, 8V/ μ sec slew rate, and a settling time of 1.7 μ sec.

The AM-411 series units are uncompensated devices that are stable at closed loop gains of greater than 10 without external compensation. These units feature dynamic characteristics that include 60 MHz gain bandwidth, $50V/\mu$ slew rate, and a settling time of 850 nsec.

These devices are ideal for use in sample and hold circuits, active filters, A/D input buffering, D/A output amplification and a wide variety of signal conditioning applications.

All models are available in both 0°C to +70°C operating temperature range or -55°C to +125°C for suffix M models. All devices are packaged in a hermetically sealed, 8 pin, TO-99 case.

DATEL-INTERSIL, INC. 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, AM-410, AM-411 Typical at 25°C, 15 VDC supplies, unless otherwise noted.

AM-410-2C AM-410-2M AM-411-2C AM-411-2M

MAXIMUM RATINGS

Power Supply Voltage ±20VDC
Differential Input Voltage 40V
Peak Output Current Full Short Circuit Protection
Internal Power Dissipation ¹ . 300mW

INPUT CHARACTERISTICS			
Input Offset Voltage, max. ² 1.5mV	1.0mV	1.5mV	1.0mV
Input Offset Current, max 50pA	10pA	50pA	10pA
Input Bias Current, max100pA	50pA	100pA	50pA
Input Resistance1012Ω	$10^{12}\Omega$	10 ¹² Ω	10 ¹² Ω
Common Mode Voltage			
Range, min $\pm 10V$	±10V	±10V	±10V
Output Voltage Swing min 3 1111	1101/	(11)/	101/
Short Circuit Output	±12V	±ΙΙV	±IZV
	+10mA	+9 ~ 1	+10~~^
	±1011A	±011A	1011A
	5032	4032	5032
PERFORMANCE			
D.C. Open Loop Gain ^₄ 100K V/V	150K V/V	100K V/V	150K V/V
Full Power Bandwidth ⁵ 125KHz	150KHz	625KHz	625KHz
Gain Bandwidth Product,			
G=10 18MHz	18MHz	50MHz	60MHz
Slew Rate ⁶ 8 V/μsec	8 V/µsec	40 V∕µsec	50 V/µsec
Rise Time ⁶	15 nsec	20 nsec	20 nsec
Settling Time , 7 10V to 0.1% 2.0 μsec	1.7 μsec	1.0 µsec	.85 µsec
Input Offset Voltage Drift 15 μ V/c°	5μV/c°	15 μV/c°	5μV/c°
Power Supply Rejection	00.15		
Ratio [×]	86 dB	94 dB	94 dB

POWER REQUIREMENTS

Voltage, Rated Performance . ±15VDC **Operating Voltage Range** ... ±5VDC to ±20VDC Supply Current, max. Suffix - 2C8mA Suffix — 2M7mA

PHYSICAL ENVIRONMENT

Operating Temperature Range Suffix — 2M -55°C to +125°C Storage Temperature Range . -65°C to +150°C Package, Hermetically

SealedTO -99

NOTES:

- 1. Derate by 6.8 mW/°C for operation at ambient temperatures above +75°C. 2. 2mV max. at full operating temperature for devices with a -2M suffix. 3.5
- mV max. for devices with a -2C suffix.
- 3. $R_{L} = 10 K \Omega$.
- 4. Vout = $\pm 10V$, $R_L = 2K\Omega$.
- 5. $R_L = 2K\Omega$.
- 6. G = 10 for AM-411, G = 1 for AM-410.
- 7. G = -10 for AM-411, G = -1 for AM-410.
- 8. At full operating temperature, Vsupp. = ±10VDC to ±20VDC.

TECHNICAL NOTES

- 1. It is recommended that these amplifiers be operated with power supply lines decoupled to ground with .01µF ceramic capacitors. Decoupling capacitors should be located as close to the amplifier power pins as possible.
- 2. Input offset voltage may be adjusted to zero, if required, by connecting the amplifier as shown in the external offset and bandwidth compensation diagram. The trimming potentiometer used should be 100K cermet type with a temperature coefficient less than 100 ppm/°C (available from Datel-Intersil as part no. TP-100K). It should be noted that adjustment of initial offset voltage may affect the input offset voltage drift tempico.
- 3. When the AM-410 or AM-411 are used to drive heavy capacitive loads (\geq 100 pF)a small value resistor should be connected in series with the output and inside the feedback loop. Resistance values of approximately 100Ω are suggested.
- 4. When large values of feedback resistance are used, a small capacitor in parallel with the feedback resistor will neutralize the pole introduced by the input capacitance. Capacitor values of approximately 3 pF should be sufficient to stabilize high feedback resistance configurations.
- 5. The AM-411 is an uncompensated operational amplifier that is stable at closed loop gains of greater than 10 without external compensation. For stable operation in a unity gain configuration a suggested compensation circuit is given.

ORDERING INFORMATION

MODEL	OPERATING			
AM-410-2C	0°C To +70°C			
AM-410-2M	-55°C To +125°C			
AM-411-2C	0°C To +70°C			

AM-411-2M -55°C To +125°C Trimming Potentiometer: TP100K

TYPICAL PERFORMANCE CURVES

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dailas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ultra-Low Drift, Monolithic Operational Amplifier AM-414

FEATURES

- 1.3 µV/°C Max. Drift
- 30 µV Input Offset
- 500,000 Open Loop Gain
- ±4 nA Max. Bias
- 10 nV/VHz Voltage Noise
- 123 dB CMRR

GENERAL DESCRIPTION

Model AM-414 is a chopperless, ultralow drift operational amplifier fabricated with bipolar monolithic technology. It is specifically designed for faccurate, low level signaliamplification applications where low Inoise, Ilow drift, Iand I precise closed loop gain are required. This amplifier features 0.3 μ V/°C typical input offset voltage drift with 1.3 μ V/°C maximum; the drift rivals that of many chopper stabilized amplifiers costing much more.

Other significant features include 500,000 open loop voltage gain, ± 4 nA maximum bias current, and 123 typical common mode rejection ratio. The input offset voltage is only $\pm 75 \,\mu$ V maximum, making it unnecessary to zero the amplifiers in most applications; there is, however, provision for external zeroing for critical applications. The AM-414 also has 1.5 μ V per month maximum long term drift.

Output voltage range is $\pm 12V$ minimum at ± 5 mA load current with a short circuit protected output. In addition to low drift, the AM-414 also has low input noise characteristics of 10 nV/VHz voltage noise density and 0.14 pA/VHz current noise density. Dynamic characteristics include 600 KHz unity gain bandwidth and 0.17 V/µsec. slew rate.

There are three versions of the AM-414 of which one is a military temperature range model. The amplifiers are packaged in a hermetically sealed 8 pin TO-99 case. The AM-414 is ideal for transducer amplification, stable analog integrators, low drift active filters, and precision D/A converter output amplifiers.

PIN	FUNCTION
.1	OFFSET TRIM
2	– INPUT
3	+ INPUT
4	- SUPPLY VOLTAGE
5	NO CONNECTION
6	OUTPUT
7	+ SUPPLY VOLTAGE
8	OFFSET TRIM

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD – TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Wide Bandwidth, Fast Settling **Monolithic Operational Amplifiers AM-450** & **AM-460** Series

FEATURES

- 120V/µsec. Slew Rate
- 100 MHz Gain Bandwidth
- 200 nsec. Settling to 0.1%
- 300 Meg. Input Impedance
- Bipolar Differential Inputs
- 5 nA Input Offset Current

GENERAL DESCRIPTION

Datel-Intersil's AM-450 and AM-460 series bipolar input op amps provide a wide spectrum of capabilities required for highspeed, wide bandwidth signal processing applications. Features available within these two high-performance families include a 100 MHz gain-bandwidth product (AM-462), a 120V/µsec slew rate (AM-452), 300 Meg input impedance (AM-460 and AM-462) and 200 nsec settling time to 0.1% of full scale (AM-452).

All models provide a full ±10V output at 10 mA and may be operated in non-inverting as well as inverting modes. Other features common to these units are low input offset currents and low input offset voltages as well as common mode rejection ratios typically greater than 90 dB.

The AM-460 devices are bipolar operational amplifiers with very high impedance differential inputs, making them particularly well suited to applications as high speed comparators, wideband active filters and low distortion oscillators.

Both AM-450 and the AM-460 series units find many applications as fast acquisition sample and hold amplifiers. D/A output amplifiers, A/D input buffer amplifiers, pulse amplifiers, and fast integrators.

The AM-462-1 and AM-462-1M are packaged in a 14 pin ceramic DIP. All other models are packaged in an 8 lead, hermetically sealed TO-99 package with standard pin out, allowing them to be used easily as pin for pin replacements for general purpose IC operational amplifiers.

All models are available in 0°C to +70C operating temperature range or in -55° C to +125°C for suffix M models.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, AM-450 AND AM-(Typical @ +25°C, \pm 15 VDC Supplies, RL	460 SERIES + 2K, Unless Oth	nerwise Noted)		
	AM-450	AM-452	AM-460	AM-462
MAXIMUM RATINGS				
Power Supply Voltage	±20V	±20V	±22.5V	±22.5V
Differential Input Voltage	±15V	±15V	±12V	±12V
Peak Output Current	50 mA	50 mA	S.C. Prot.	S.C. Prot.
INPUT CHARACTERISTICS				
Common Mode Voltage Range ¹ , min	±10V	±10V	±11V	±11V
	50 Meg	100 Meg	300 Meg	300 Meg
Input Offeet Voltage	$\pm 4 \text{ mV}$	20 Meg +5 mV	40 Meg +3 mV	40 Meg
Input Offset Current, typ.	20 nA	20 nA	<u>-</u> 5 mV	5 nA
max	50 nA	50 nA	25 nA	25 nA
Input Bias Current, typ	125 nA	125 nA	5 nA⁰	5 nA
max	250 nA	250 nA	25 nA	25 nA
OUTPUT CHARACTERISTICS				
Output Voltage, min	±10V	±10V	±10V	±10V
Output Current, min. ⁷	±10 mA	±10 mA	±10 mA	±10 mA
PERFORMANCE				
DC Open Loop Gain ²	25K V/V	15K V/V	150K V/V	150K V/V
Full Power Bandwidth ²	500 KHz	1600 KHz	75 KHz	600 KHz
Gain Bandwidth Product	12 MHz	20 MHz	12 MHz	100 MHz
Siew Rate	$30V/\mu sec$	$120V/\mu sec$	/ V / μsec	35V/µsec
Common Mode Rejection Ratio ⁵ typ	90 dB		1.0µsec	1.0 µsec
max.	74 dB	74dB	74 dB	74 dB
Input Offset Voltage Drift	20 µV/°C	30 µV/°C	10 µV/°C	15 μV/°C
External Compensation Required	None	Gains <3	Gains <3	Gains <5
Power Supply Rejection Ratio	90 dB	90 dB	90 dB	90 dB
POWER REQUIREMENTS			a ta - Anna ann an Anna an Ann Anna an Anna an	· · · · · · · · · · · · · · · · · · ·
Voltage, Rated Performance	±15 VDC	±15 VDC	±15 VDC	±15 VDC
Operating Voltage Range, min	±10V	±10V	±5V	±5V
max	±20V	±20V	±22.5V	±22.5V
Supply Current, max	6 mA	6 mA	4 mA	4 mA
PHYSICAL-ENVIRONMENTAL				
Oper. Temp. Range1 & -2 Models		0°C 1	to +70° C	
-1M & -2M Models		-55° C 1	to +125°C	
Storage Temp. Range		-65° C	to +150°C	
Package Type, -2 & -2M Models		TO-99		
-1 & -1M Models		14 Pin (Ceramic DIP	
			ORDERING INFO	RMATION
NOTES:			OPERATING	TEMP.
1. At Full Temperature		MODEL	RANG	iE
$2. V_{OUT} - 110V$ 3. Cr 50 pE		AM-450-2	0°C to +7	70°C
4. $C_L = 100 \text{ pF}$		AM-450-2M	-55°C to +7	70°C
5. For \pm 5V Common Mode Range		AM-452-2M -55° to +125°C		
6. 15nA typ. for AM-460-2M only	olizoult protocolo -	AM-460-2	0°C to +7	/0°C 125°C
7. AMI-400 and AMI-402 OUTPUTS are short	circuit protected	AM-462-1, 2	0°C to +7	70°C
		AM-462-1M,	2M -55° to +1	25°C
		i rimming Po	tentiometers: 1P100	N, 1720N
		THESE AM	PLIFIERS ARE (CONTRAC	COVERED BY GSA

TYPICAL OPEN LOOP FREQUENCY AND PHASE RESPONSE

CONNECTIONS

INPUT/OUTPUT CONNECTIONS

ALL -2 AND -2M MODELS

PIN	FUNCTION	
1	OFFSET ADJUST	
2	-INPUT	
3	+INPUT	
4	-Vs	
5	OFFSET ADJUST	
6	OUTPUT	
7	+Vs	
8	BANDWIDTH CONTROL	
CASE IS CONNECTED TO -SUPPLY		

AM-462-1 AND AM-462-1M ONLY

PIN	FUNCTION		
3	OFFSET ADJUST		
4	-INPUT		
5	+INPUT		
6	-Vs		
9	OFFSET ADJUST		
10	OUTPUT		
11	+Vs		
14	BANDWIDTH CONTROL		
ALL OTHER PINS ARE NO CONNECTION CASE IS CONNECTED TO -SUPPLY			

EXTERNAL OFFSET ADJUSTMENT AND BANDWIDTH COMPENSATION (ALL MODELS)

TYPICAL PERFORMANCE CURVES

FREQUENCY H, NOTE: EXTERNAL COMPENSATION COMPONENTS ARE NOT REQUIRED FOR STABILITY, BUT MAY BE ADDED TO REDUCE BANDWIDTH IF DESIRED. AM-452 100K FREQUENCY H_z NOTE: EXTERNAL COMPENSATION IS REQUIRED FOR CLOSED LOOP GAIN <3. AM-460 $V_S = \pm 15V$ $T_A = + 25^{\circ}C$ 0pF 10nF 30pF

100p

1M

10M

100M

100N

100

NOTE: EXTERNAL COMPENSATION COMPONENTS ARE NOT REQUIRED FOR STABILITY, BUT MAY BE ADDED TO REDUCE BANDWIDTH IF DESIRED. IF EXTERNAL COMPENSATION IS USED, ALSO CONNECT 100pF CAPACITOR FROM OUTPUT TO GROUND.

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Low Noise, Wideband Monolithic OP AMP Model AM-453-2

FEATURES

- 4 nV//Hz Wideband Noise Voltage
- 0.6 pA//Hz Wideband Noise Current
- 13V/µsec. Slew Rate
- 20 mA Output Current
- \pm 3V to \pm 20V Supply Range

GENERAL DESCRIPTION

The AM-453-2 is a high performance, low noise monolithic operational amplifier. It offers better noise characteristics, improved output drive capability and extended small signal and power bandwidths when compared with standard operational amplifiers.

Typical input noise voltage is less than 7nV/ rHz at 30Hz and drops to 4 nV/ rHz for frequencies greater than 200 Hz. Input noise current is typically 2.5 pA/ VHz at 30 Hz falling to only 0.6 pA/ VHz for frequencies above 1 KHz. Along with low noise performance, the AM-453-2 has a gain bandwidth product of 10 MHz and a full power frequency response that typically extends to 200 KHz for an output swing of ±10V. In addition, the amplifier has the capability to drive 600Ω at 10V (RMS) when supplied by ±18V. The AM-453-2 is internally compensated for a gain of three or greater while frequency response may be optimized for various applications by the addition of an external compensation capacitor. Other features include a minimum common mode rejection ratio of 80 dB, 13V/ µsec. slew rate, input overvoltage protection by diodes and a large supply voltage range extending from ±3V to ±20V.

Its low noise, wideband, extended output characteristics make the AM-453-2 exceptionally well-suited to applications in instrumentation and control circuits, data acquisition circuits, wideband transducer amplification and audio frequency analog signal processing including active filters.

Packaged in an 8 lead hermetically sealed TO-99 case, the AM-453-2 is available in two operating temperature ranges, 0°C to 70°C or -55°C to +125°C.

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

High Voltage, Monolithic Operational Amplifier Model AM-464-2

FEATURES

- ±35V Output Swing
- ±10V to ±40V Supply
- 4 MHz Gain Bandwidth
- 5V/ μ sec. Slew Rate
- 74 dB min. CMRR

GENERAL DESCRIPTION

The AM-464-2 is a monolithic IC operational amplifier with an input common mode voltage range of ±35V and an output voltage swing of ±35V when operated from a ± 40 supply. Along with high voltage performance this amplifier has a 4 MHz gain bandwidth product and a 5V/ μ sec. output slew rate. It is particularly useful in data conversion circuits and other signal processing applications where higher than normal common mode voltage and output voltage swings are required. The AM-464-2 is internally compensated for all gains and has an on-chip temperature sensing, output current-limiting circuit for absolute output short-circuit protection.

Other features of this amplifier include: common mode rejection of 74 dB minimum, input bias current of 30nA maximum, and open loop voltage gain of 100,000 minimum. The output slew rate of 5 volts per microsecond gives a 70 volt peak to peak sinusoidal output voltage at up to 23 kHz. The power supply voltage can range from $\pm 10V$ to ± 40 VDC to give output swings from $\pm 5V$ to $\pm 35V$. Power supply quiescent current is only 3.2mA typical.

The AM-464-2 is packaged in an 8 lead, hermetically sealed TO-99 case and may be used as a pin for pin replacement for general purpose IC operational amplifiers such as 741, 101, and 108 for higher voltage applications. Operating temperature range is 0°C to 70°C for the AM-464-2 and -55°C to +125°C for the AM-464-2M.

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

- 150 µA max. Quiescent Current
- 20V/µsec. Slew Rate
- 106 dB CMRR
- Internally Compensated
- ±12V Output at ±10 mA
- ±5.5V to ±20V Supply

GENERAL DESCRIPTION

Model AM-470-2 is a high performance monolithic operational amplifier which features fast response and excellent DC characteristics while drawing only 75 µA quiescent operating current. This internally compensated amplifier, employing dielectric isolation, has a gain-bandwidth product of 1 MHz and an output slew rate of 20V/ usec., making it an ideal choice for low power data acquisition systems. While its quiescent operating current is very low, it nevertheless has a ±12 volt output drive capability at ±10 milliamperes; the output stage is also short circuit protected.

The AM-470-2 exhibits superior DC input characteristics. Input bias current is typically 5 nA and input offset voltage is typically ± 1 mV; input offset voltage drift is $\pm 5 \mu V/°C$ typical. The common mode input voltage range is ±11V minimum and common mode rejection ratio is 106 dB. DC open loop gain is 300,000, resulting in low summing junction error voltages. Power supply rejection ratio is 100 dB.

This amplifier can be operated over a wide power supply range: ±5.5V to ±20V. Two basic versions are available, the AM-470-2C for 0 to 70C operation, and the AM-470-2M for -55 to +125C operation.

Typical applications include transducer amplifiers, portable and remote instrumentation systems, battery operated data logging systems, data acquisition systems, instrumentation amplifiers, and active filters.

Fast, Low Power Monolithic **Operational Amplifier** Model AM-470-2

CONNECTIONS

E

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL, (617) 339-9341 / TWX 710-346-1953 / TLX 951340

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Chopper Stabilized Operational Amplifier Model AM-490-2

FEATURES

- Differential Inputs
- 120 dB CMR
- Drift to 0.1µV/°C max.
- 5 x 10⁸ Open Loop Gain
- 20µV Input Offset Voltage
- 200 msec. Warm-Up

GENERAL DESCRIPTION

Model AM-490-2 is a monolithic, chopper stabilized operational amplifier with differential inputs; it is specifically designed for applications requiring ultra-stable DC characteristics together with good bandwidth. This device is available in three different grades of maximum input offset voltage drift: 1.0, 0.3, and $0.1\mu V/^{\circ}C$. The extremely low input offset voltage drift and initial input offset voltage of only 20µV eliminate the requirement for zero adjustment in most applications. Other important input characteristics include an input impedance of 100 megohms, input bias current of 150pA, and input offset current drift of 1pA/°C. This permits the AM-490-2 to operate accurately with source impedances over 100 kilohms. A common mode rejection of 120 dB minimum and open loop gain of 5 x 10⁸ result in extremely low output errors. Long term stability is typically 5µV per year.

The circuit of the AM-490-2 utilizes a complex monolithic chip 93 x 123 mils with 256 active devices. Both bipolar and N channel MOS FET's are used to implement the linear and switching portions of the circuitry. The chopper circuitry utilizes two DC coupled sample-hold circuits driven by a multivibrator circuit. The DC coupling, contrasted with AC coupling commonly used in chopper amplifiers, results in fast overload recovery. Three external capacitors are required for the sample-hold circuits and the multivibrator which generates a 750 Hz chopping square wave.

Other specifications of the AM-490-2 include ±10V input common mode range and ±10V output at 7mA which is short circuit protected. The operating power supply range is ±12V to ±20VDC with a constant quiescent current drain of 3.5mA typical over this range. Power supply rejection is 120 dB. The low power drain and fast warm-up time of 200 msec. make this device ideal for use in battery operated, interrupted service circuits. Other applications include inverting, noninverting, and balanced gain amplifier configurations in addition to very accurate integrators and sample-holds. The AM-490-2 is packaged in a hermetically sealed, 8 pin TO-99 case,

CAUTION: The AM-490-2 has MOS FET input devices and should be handled carefully to prevent static charge pick-up which might damage the devices.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

(Typical at 25°C, \pm 15V supplies and C _A = C _B = 0	.1μF, C _C =	.0015µF uni	ess otherwis	e noted)	
	А	В	С	м	
INPUT CHARACTERISTICS				L	
Common Mode Voltage Range		±10V min.			
Maximum Diff. Input Voltage, no damage		±VS 100 mercebr	ne		
Input Capacitance		100 megorii 10oF	113		
Input Bias Current		150pA			
Input Offset Current		50pA			
Input Offset Voltage		±2 0 µ∨			
OUTPUT CHARACTERISTICS		1			
Output Voltage		±10V min.			
Output Current, S.C. protected		±7mA min.			
Output Resistance		200 ohms			
		ТОООрн			
PERFORMANCE		-			
DC Open Loop Gain, 2K load		5 x 10 ⁸			
Common Mode Rejection, DC, ±5V		120 dB min			
		∠uu msec.			
DRIFT AND NOISE	, 	T		1	
Input Óffset Voltage Drift, μ V/°C max	1.0	0.3	0.1	0.6	
Input Offset Current Drift		±1pA/°C			
Input Voltage Noise, .01 to 10 Hz		13µV P-P			
Input Voltage Noise, 10 Hz to 10 KHz		8nA RMS			
Input Current Noise, 10 Hz to 10 kHz		700pA RMS	3		
Chopper Voltage Noise, RTI, 100K unbal.		200µV P-P			
Power Supply Rejection		120 dB min			
Long Term Stability		±5µV/year			
DYNAMIC CHARACTERISTICS					
Gain Bandwidth Product		3 MHz			
Rise Time, small signal, 10%–90% ¹		200 nsec.			
Slew Rate	2.5V/µsec.				
Full Power Frequency		40 KHz			
	·	200 msec.			
POWER REQUIREMENT					
Voltage, rated performance		±15VDC, ±			
Current quiescent		3.5mA typ	5mA max		
PHYSICAL ENVIRONMENTAL		0°C 4- 70°	~		
Operating Temperature Range –2A, B, C		-55° C to \pm	- 125°C		
Storage Temperature Range –2W		-65°C to +	150°C		
Package, hermetically sealed		TO-99			
1.0	· ·				
 connected as voltage follower. Input common mode range and output range a 	re ±7V to +	15V.			
ORDERING INF	ORMATI	ON			
PRICES	(1-24)	0			
AM-490-2A 1.0μV/°C max.	0 to 70)ČC			
AM-490-2B 0.3µV/°C max.	0 to 70) C			
AIVI-490-2C $0.1\mu V/^{2}C$ max.	U to 70	10 125°C			
AIM-490-2M $0.6\mu V / C max.$	55 to -	F125 C			
AM-490-CK1 CAPACIT	OR KIT		• • -		
Consists of 3 miniature metallized polycark	conate cana	acitors for C.	Co., and C	_ :	

SPECIFICATIONS, AM-490-2

TECHNICAL NOTES

1. Three external capacitors are required for operation of the AM-490-2. One of these, C_c (.0015 μ F) is used to set the timing oscillator to give a chopper frequency of 750 Hz; the other two, C_A and C_B (both 0.1 μ F), are used as holding capacitors for the direct coupled internal sample-holds. All three of these capacitors should have good temperature stability, low leakage, and low dielectric absorption. Polystyrene, teflon or polycarbonate types are recommended. As a convenience, the capacitors are available as a kit of three miniature metallized polycarbonate types.

2. In most requirements the AM-490-2 eliminates the need for a zeroing adjustment. Typical input offset voltage is only ±20µV while the maximum is only $\pm 80\mu V$ over the operating temperature range. In cases where zeroing is still necessary, however, there are two methods shown in the application diagrams. In the inverting mode where the negative summing junction is at virtual ground, the zeroing can be accomplished by injecting an offset current into the summing junction by means of a high value resistor connected to a potentiometer. (See "Precision Integrator" diagram). In all other cases, zeroing is accomplished by means of a voltage divider connection to the positive input terminal. (See "Differential Amplifier Connection").

3. The superior input offset voltage drift (1.0, 0.3 or 0.1μV/°C max.) and input offset current drift (1pA/°C) of this amplifier permit it, when properly applied, to resolve microvolt and picoampere level signals. To successfully amplify these very low level signals, it is necessary to use great care in circuit layout and assembly with particular attention given to proper grounding and shielding. Other potential error sources include leakage, thermal environment, and thermocouple effects.

4. The highest practical input impedance which can be used with the AM-490-2 is determined by the point where input offset current drift and input offset voltage drift produce equal errors. Thus:

 $R_{MAX} = \frac{\Delta Eos/\Delta T}{\Delta Ios/\Delta T}$

Where R_{MAX} is the maximum practicable input resistance seen by either input terminal of the amplifier. This comes out to 1 megohm for the A version, 300 kilohms for the B version, and 100 kilohms for the C version.

5. The amplifier input terminals are differential and symmetrical; for best results the

THESE AMPLIFIERS ARE COVERED BY GSA CONTRACT

(.203"D x .438"L)

(.156"D x .438"L)

2 ea. 0.1µF ±10%

1 ea. .0015µF ±10%

TECHNICAL NOTES (Cont'd.)

OPERATION AND APPLICATIONS

impedance to ground seen by each input terminal should be equal. Matched impedance (resistance and capacitance) as shown in the application diagrams result in minimum output offset drift due to bias currents and also minimum output chopper noise. Chopper noise appears as a common mode input current signal, and under balanced conditions of both resistance and capacitance this noise can be minimized to less than random noise at the output.

- 6. The AM-490-2 is dynamically stable with 100% feedback (unity gain follower) and 1000pF capacitive load. In very high closed loop gain configurations (>70 dB), it may become desirable to put a capacitor in parallel with the feedback resistor for better stability. This should be done to yield a gain-bandwidth product of 2MHz (RC=80 µsec.) to insure absolute stability. In general, the closed loop bandwidth should be limited to that necessary to pass the required signal frequency components only; this results in minimum output noise. Minimum bandwidth should also be used to eliminate small modulation effects of input signal frequencies near the chopper frequency (750 Hz).
- 7. Other features of these amplifiers include an exceptionally high open loop gain of 5 x 10⁸. For an output voltage swing of $\pm 10V$, this reduces the input error due to gain to only ± 20 nanovol+s. Common mode rejection is very high (120 dB minimum) at DC, but falls off rapidly with frequency as shown in the graph under Performance Parameters. CMR is typically greater than 100 dB at 10 Hz. For best common mode rejection, therefore, the signal frequency should be limited to about 10 Hz. The noise performance of the amplifier can be readily computed from the two noise graphs shown under Performance Parameters.
- 8. The AM-490-2 amplifiers draw a quiescent current of only 3.5mA typical and 5mA maximum; the current is virtually constant over the operating power supply range of $\pm 12V$ to $\pm 20V$. Bandwidth and slew rate change only slightly over this range as shown in the graph "Normalized AC Parameters vs. Power Supply". For the $\pm 12V$ to ±20V supply range input common mode voltage range and output voltage range become $\pm 7V$ to $\pm 15V$. The wide supply range together with the fast warm-up time of only 200 msec. make the AM-490-2 an excellent amplifier for precision, low power, interrupted supply operation in portable and remote instrumentation systems.

BATTERY POWERED LOAD CELL AMPLIFIER FOR DISCONTINUOUS SERVICE

INPUT OFFSET CURRENT AND CHOPPER NOISE CONSIDERATIONS +|[₽]1 ♦+15V) IB1 0015 E20-AM-490-2 $=\frac{R_2}{R_1}(E_1-E_2)$ **(6)** + (I_{B1}-I_{B2})R2 4 Errors due to bias current and 1st chopper spike current are minimized by making both Is = chopper spik amplifier inputs look back into In = bias curren 15V equal impedances to ground.

332C

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Models AM-7600, AM-7601 Commutating Auto-Zero (CAZ) Operational Amplifier

FEATURES

- Exceptionally low input offset voltage -- 2 μV
- Low long-term input offset voltage drift --0.2 μV/ year
- Low input offset voltage temperature drift --0.005 μV/°C
- Low DC input bias current -- 300 pA
- Low DC input offset bias current -- 150 pA
- Wide common mode and differential input voltage ranges
- Excellent low supply voltage operation -- Down to ±2V
- Static-protected inputs -- no special handling required

GENERAL DESCRIPTION

The AM-7600/AM-7601 commutating auto-zero (CAZ) operational amplifiers are designed to replace almost any of today's expensive hybrid or monolithic ultra-low offset op amps, and will provide almost three orders of magnitude (1000×) reduction in input offset voltage compared with conventional device designs. This is achieved through an innovative CAZ amp principle, which uses an entirely new approach to low-frequency operational amplifier design.

The key feature of the CAZ principle is automatic compensation for long-term drift phenomena and temperature effects. Two internal op amps are connected so that when one amplifier is processing an input signal the other is maintained in an "auto-zero" mode. The CAZ amplifiers contain all of the circuitry required for system operation, including an oscillator, a counter, level translators, analog switches and operational amplifiers. Only two external gainsetting resistors and two auto-zero capacitors are needed for complete amplifier function. Control of the oscillator and counter section is provided through the OSC and DR (division ratio) terminals. Internal biasing of the two on-chip op amps is programmable through a three-voltage-level terminal designated BIAS.

The AM-7600 is internally-compensated and is intended for applications which require voltage gains from unity through 100. The uncompensated AM-7601 is intended for those situations which require voltage gains of greater than 20. The major advantage of the AM-7601 over the AM-7600 at high gain settings is the reduction in communication noise and subsequent greater accuracy.

Minimum periodic adjustments and extremely low offset voltage and temperature coefficients make the CAZ operational amplifiers very desirable for operation in adverse environments (temperature, humidity, toxic or radioactive) where equipment service is difficult. Since the device will auto-zero its internal offset errors, no adjustment is required other than that of gain, which is established by the external resistors.

PIN CONFIGURATION	ORDERING	ORDERING INFORMATION					
.	Compensation	Model	OperTemp. Range	Package			
$\begin{array}{ccc} C_1 & \blacksquare \bullet 1 \\ C_1 & \blacksquare \bullet 1 \\ C_2 & \blacksquare \bullet 12 \\ \Box & \Box & \Box \\ \Box & \Box &$		AM-7600C	0 to + 70° C	14 Pin Epoxy DIP			
	COMP.	AM-7600R	-25 to + 85° C	14 Pin CERDIP			
AZ 4 11 V+		AM-7600M	-55 to +125° C	14 Pin CERDIP			
		AM-7601C	0 to + 70° C	14 Pin Epoxy DIP			
$C_2 \square 7$ $B \square V^-$	UNCOMP.	AM-7601R	-25 to + 85° C	14 Pin CERDIP			
		AM-7601M	-55 to +125° C	14 Pin CERDIP			
	· · · · · · · · · · · · · · · · · · ·	7.111-7-00-1111	0010 1120 0				

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Data Acquisition

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (sum of both positive and
negative supply voltages, V ⁺ and V ⁻) 18 Volts
Positive Supply Voltage (GND to V^+) 18 Volts
Negative Supply Voltage (GND to V ⁻) 18 Volts
DR Input Voltage $(V^+ + 0.3)$ to $(V^+ - 8)$ Volts
Input Voltage (C ₁ , C ₂ , +INPUT, -INPUT, BIAS,
OSC (Note 2)) $(V^+ +0.3)$ to $(V^0.3)$ Volts
Differential Input Voltage (Note 3) . $\pm (V^+ + 0.3)$ to $(V^ 0.3)$
Volts
Duration of Output Short Circuit (Note 4) Unlimited
Continuous Total Power Dissipation at or below +25°C
free air temperature (Note 5)
CERDIP Package 500 mW
Plastic Package 375 mW

Operating Temperature Range	55º C to 1 125º C
Operating Temperature Range	-55 010 + 125 0
Suffix R	. –25° C to +85° C
Operating Temperature Range	
Suffix C	0 to +70° C
Storage Temperature Range	55 to +150° C
Lead Temperature (soldering, 60 seconds)	$\dots\dots + 300^{\circ}C$

Note 1: Stresses above those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent device failures. These are stress ratings only and functional operation of devices under conditions other than those indicated in the Table of Electrical Characteristics is not recommended. Exposure to absolute maximum rating conditions for extended periods of time can cause device failures.

Note 2: An SCR structure is inherent in the CMOS process used in the fabrication of these devices. If voltages in excess of (V^+ +0.3) to (V^- -0.3) volts are connected to either inputs or outputs, destructive latchup can occur. For this reason it is recommended that no inputs from sources not on the same power supply or supplies be applied before the AM-7600/AM-7601 supplies are established, and that if multiple supplies are used the AM-7600/AM-7601 supplies be activated first.

Note 3: No restrictions are placed on the differential input voltages on either the inverting or non-inverting inputs, so long as these voltages do not exceed the power supply voltages by more than 0.3V.

Note 4: Outputs may be shorted to ground (GND) or to either supply (V^{\dagger}, V^{-}). Temperature and/or supply voltages must be limited to insure that the dissipation rating is not exceeded.

Note 5: For operation above 25° C free-air temperature, derate 4mW/° C from 500mW for CERDIP and 3mW/° C from 375mW for plastic above 25° C.

BLOCK DIAGRAM

OPERATING CHARACTERISTICS:

Test Conditions: $V^+ = +5$ volts, $V^- = -5$ volts, $T_A = +25^{\circ}$ C, DR pin connected to V^+ ($f_{COM} \cong 160$ Hz), $C_1 = C_2 = 1\mu$ F, Test Circuit 1, unless otherwise specified.

	PARAMETER	SYMBOL	CONDITIC	ONS	MIN	VALUE TYP	MAX	UNIT
	Input Offset Voltage	Vos	$R_S \le 1k\Omega$	Low Bias Setting		±2		μV
			$C_1 = C_2 = 1\mu F$	Med Bias Setting		±2	,±5	μV
				High Bias Setting		±7		μV
			MIL version over temp.	Med Blas Setting			±20	μV
	Long Term Input Offset		Low as Mad Dias Cattings					Million
	Voltage Stability	VOS/Time	Low or Med Blas Settings	5500 x T x 10500		0.2	1	μv/year
	Average Input Offset	TCVos	Low or Med Blas Settings	$-55^{\circ}C > T_{A} > +25^{\circ}C$		0.005	0.1	μV/°C
	Coofficient			$+25^{\circ}C > T_{A} > +05^{\circ}C$		0.01	0.15	μV/°C
}	Obemclent		Pand Width	Low Riss		0.00	0.10	
1 A 1	Noise Voltage (BMS)	A		Med Bias		0.8		μV
	Noise Voltage (nivis)	en	$B_{S} \leq 1k()$	High Bias		1.0		μV
	Equivalent Input		Band Width	Low Bias		4.0		μŃ
	Noise Voltage	enn-n	0.1 to 10Hz	Med Bias		4.0		μV
	Peak-to-peak		$R_{S} \leq 1 k\Omega$	High Bias		5.0		μV
	Spot equivalent	en10	f = 10Hz Band Width 1	Hz			700	nV/√Hz
· .	Noise voltage						(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	
	Spot equivalent	İn10	f = 10Hz Band Width 1	Hz			0.1	pA/√Hz
	Noise Current							
	Differential Input	DIF VIN			V 0.3	to	V ⁺ +0.3	V
	Voltage Range		and the second second second					
	Common Mode		Low Bias		-4.2		+4.2	V
	Input Range	CMVR	Med Bias		-4.0		+4.0	v
			High Bias		-3.5		+3.5	V
	Common Mode Rejection Ratio	CMRR	Any Bias Setting			88		dB
	Power Supply Rejection Ratio	PSRR	Any Bias Setting			110		dB
	Non Inverting Input	INIB	Any Bias Setting,			0.300	3	nA
	Bias Current		(Includes charge injection	currents)				
	Inverting Input Bias	lıв	Any Bias Setting,			0.150	1.5	nA
	Current		(Includes charge injection	currents)				
	Voltage Gain	Av	$R_L = 100k\Omega$	Low Bias	90	105		dB
				Med Blas	90	105		
				High Blas	00	100		UB
	Maximum Output Voltage	VOUT	$H_L = 1M\Omega$			1.4.9		V
	Swing		$B_{\rm L} = 100 k_{\rm L}$	1		+ 4 8		v v
	С. С					- 1.0		v
			$R_L = 10k\Omega$	Positive Swing	+4.4		1.1	V
				Negative Swing			-4.5	V
	Large Signal Slew Rate	SR	Unity	High Bias Setting		1.8		V/µs
			Gain	Med Bias Setting		0.5		V/µs
			AM-7600	Low Bias Setting		0.2		V/µs
	Unity Gain Band Width	GBW		High Bias Setting		1.2		MHz
			AM-7600	Med Bias Setting		0.3		MHz
 			Test Circuit 2	Low Blas Setting		0.12		MHZ
	Extrapolated Unity	GBW	ANA 7601	High Blas Setting		1.8		MHZ MH~
	Gain Band Width		AW-/001	I ow Bias Setting		0.4		
	RIAS Terminal Input Current		V^{-} 0.2 < V (24.0 < V^{+} + 0.2 yr	LOW Dias Setting		+ 20		00
	BIAS Voltage to Define	IBIAS		/	V'-0.2	<u></u> 00	V*+0.2	
	Current Modes	∨вн	LOW BIAS Setting		v -0.3		v ⊤0.3	v
1		VBM	Med Bias Setting		V ⁻ +1.4		V [*] −1.4	v
		VBL	High Bias Setting		V ⁻ -0.3		V ^{-+0.3}	V
<u> </u>	DR (Division Ratio)	IDR	V* -8.0V ≤ VDR ≤ V*+0.3V	1990) - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990		±30		рА
	Input Current							
	DR Voltage to define	VDRH	Internal oscillator division	ratio 32	V [*] 0.3		V*+0.3	V
	oscillator division				•			
	ratio	VDRL	Internal oscillator division	ratio 2	V'8		V'-1.4	V
	Nominal Commutation	fcoм	Cosc = 0 pF E	R Connected to V		160		Hz
	Frequency		C	R Connected to GND		2560		Hz
	Supply Current	ls	High Bias Setting		4	7	15	mA
1			Medium Bias Setting		0.6	1.7	5	mA
ļ	·		Low Bias Setting	· · · · · · · · · · · · · · · · · · ·	0.25	0.6	1.5	mA
1	Operating Supply Voltage	V*-V-	High Bias Setting		5		16	V ·
	Hange	·	Medium or Low Bias Setti	ng	4		16	V

TYPICAL CHARACTERISTICS

INPUT CURRENT AS A FUNCTION OF COMMUTATION FREQUENCY

MAXIMUM OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT LOAD RESISTANCE

SUPPLY CURRENT AS A OSCILLATOR FREQUENCY AS A FUNCTION FUNCTION OF TEMPERATURE OF EXTERNAL CAPACITIVE LOADING 10 Ĩ. 7 HI BIAS fosc - OSCILLATOR FREQUENCY ٩u 6 fosc IS - SUPPLY CURRENT 1k Cosc 5 For v -V = 10 VOLTS NO LOAD 4 NO INPUT 3 100 2 MED BIAS 1 LO BIAS 0 10 -50 --25 ۵ 25 50 75 100 125 10 TA - AMBIENT TEMPERATURE °C

FREQUENCY RESPONSE OF THE 10 Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 4).

TOTAL EQUIVALENT INPUT OFFSET VOLTAGE AS A FUNCTION OF SOURCE IMPEDANCE --- INPUT

DETAILED DESCRIPTION

CAZ Operational Amplifier Operation

The CAZ operational amplifier functions on principles which are very different from those encountered in conventional op amp types. An important advantage of the AM-7600/AM-7601 devices is the ability to self-compensate for internal error voltages, whether they are steady-state, related to temperature or supply voltage, or variable in nature over a long term.

Operation of the AM-7600/AM-7601 CAZ operational amplifier is demonstrated in Figure 1. The basic amplifier configuration represented by the large triangles has one more input than does a regular op amp--the AZ, or auto-zero input. The voltage at the AZ input is that voltage to which each of the internal op amps must be auto-zeroed. In Mode A, op amp #2 is connected into a unity gain mode through on-chip analog switches, and charges the external capacitor C₂ to a voltage equal to the DC offset voltage of that amplifier, in addition to the instantaneous low frequency noise voltage. A short time later, the analog switches reconnect to the onchip op amps in the configuration shown in Mode B. In this mode, op amp #2 has capacitor C2 (which was charged to a voltage equal to its offset and noise voltage) connected in series to its non-inverting (+) input and nulls out the input offset and noise voltage of the amplifier. While one of the op amps is processing the input signal, the other is placed in an auto-zero mode and charges a capacitor to a voltage equal to its equivalent DC and low-frequency error voltage. The internal op amps are connected (at a rate designated as the commutation frequency, fCOM) so that at all times one or the other of the op amps is processing the input signal, while the voltages on capacitors C1 and C2 are being updated regularly to compensate for variables such as low-frequency noise voltage and input offset voltages due to drift with temperature, time, or supply voltage.

The CAZ amp concept offers a number of other advantages to the designer, as compared to standard bipolar or FET-input op amps:

• Effective input offset voltages can be made between 1000x and 10,000x less without trimming.

• Long-term drift phenomena are compensated for and dramatically reduced.

• Temperature effects are compensated for over a wide range. Reductions can be as high as 100 times or higher.

• Supply voltage sensitivity is reduced.

CMOS processing is ideally suited to implement the CAZ op amp structure. Not only is the digital section simple to design in CMOS, but the transmission gates (analog switches), which connect the internal op amps, are efficiently implemented for minimum charge injection and widest operating voltage range. The analog section, which includes the two on-chip op amps, provides performance which in most cases is similar to bipolar or FET input designs. Open loop gains of greater than 100 dB, typical offset voltages of \pm 5mV, and ultra-low input leakage currents (typically 1 pA) make the CMOS process quite suitable for the CAZ amp concept.

The on-chip op amps are connected internally to the external input and output terminals via CMOS analog switches, as shown in Figure 2. The analog switch structure shown in Figure 2 is arranged so that at any time three switches are open and three switches are conducting. Each analog switch includes a P-channel transistor in parallel with an N-channel transistor.

Figure 1: Diagramatic representation of the 2 half cycles of operation of the CAZ OP AMP.

Figure 2: Schematic of analog switches connecting each internal OP AMP to the external inputs at the output.

APPLICATIONS

The AM-7600/AM-7601 CAZ op amp is ideal for use as a frontend preamplifier for dual-slope A/D converters which require high sensitivity for single-ended input sources such as thermocouples.

A typical high-sensitivity A/D converter system is shown in Figure 3. The system uses a model ADC-7109 12-bit monolithic A/D binary converter, and is intended for direct interface with microprocessors Both the AM-7600/AM-7601 and the ADC-7109 use power supply voltages of \pm 5V, and the entire system consumes typically 2.5 mA of current.

The input signal is applied through a low-pass filter (150 Hz) to the CAZ op amp, which is connected in a non-inverting gain configuration of either 10 or 100. The internal oscillator of the CAZ amp is allowed to run free at about 5,200 Hz, resulting in a commutation frequency of 160 Hz, with the DR terminal connected to V'. The error-storage capacitors C₁ and C₂ are each 1 μ F value, and provide a good compromise between the minimum equivalent input offset voltage and the lowest value of low-frequency noise.

The output signal is then passed through a low-pass filter (1 M Ω and 0.1 μ F), with a bandwidth of 1.5 Hz. This results in an equivalent DC offset voltage of 1 to 2 μ V, and a peak-to-peak noise voltage of 1.7 μ V, referred to the input of the CAZ amp. The output from the low-pass filter feeds directly into the input of the ADC-7109.

In a system such as that shown in Figure 3 there is a degree of flexibility possible in assigning various gains to the AM-7600/AM-7601 pre-amplifier, and to various sensitivities for the ADC-7109. For optimum performance, the CAZ op amp must amplify the input signal so that the equivalent 15μ V input noise voltage of the A/D converter is masked. This implies a gain of at least 10 for the CAZ op amp preamplifier.

On the other hand, if the gain of the CAZ op amp is increased too much, its output swing will be limited by the \pm 5V supplies. This condition imposes a maximum gain of 200 to produce an output of \pm 0.000005 times 4,096 times 200,or \pm 4.096V, for a 5 μ V per count sensitivity. Use of an AM-7600 is recommended for low gains (<20) and the AM-7601 for gains of more than 20.

The values of the integrating resistor and the reference voltage must be chosen to suit the overall sensitivity of the system. For example, in a system requiring a sensitivity of 5μ V per count, it is suggested to use a CAZ amp in a gain configuration of 100 (use AM-7601). Thus for a full scale count of 4096 (12 bits), the input voltage to the ADC-7109 would be 5μ V times 100 times 4096 or 2.048 volts. Since the ratio of input to reference is 2:1, the value of the reference voltage becomes 1.024V, and a 100kΩ integrating resistor is recommended. A system such as that shown in Figure 3 will allow a resolution of 1°C for low sensitivity platinum/ rhodium junctions. For 0.1°C resolution, use high sensitivity thermocouples having copper/constantan junctions.

The low-pass filter between the output of the CAZ op amp and the input of the ADC-7109 A/D converter can be used to improve the signal-to-noise ratio of the system by reducing bandwidth. A 10 Hz filter will result in an equivalent peak-topeak noise voltage figure of 4μ V. If the bandwidth is reduced

SOME HELPFUL HINTS

Testing the AM-7600/AM-7601 CAZ Operational Amplifier

A simple and relatively accurate means of testing the CAZ op amp is to use a Tektronix Type 577 curve tracer, with the CAZ op amp inserted in a special 14-lead socket which plugs into a Tektronix 178, and which contains two soldered-in autozero capacitors of 1 μ F each. This simple and convenient tester will provide most of the information needed for lowfrequency parameters. The test setup will allow resolution of input offset voltages to about 10 μ V.

For greater accuracy, it is suggested that a breadboard be built which minimizes thermoelectric effects and which includes an output low-pass filter of the type shown in Test Circuit #4. The output from the CAZ amp can be connected to a dual-slope A/D converter as shown in Figure 3. The lowfrequency noise can then be displayed on a storage scope or on a strip chart recorder.

Bias Control

The on-chip op amps consume over 90% of the power required for the AM-7600/AM-7601. Three externallyprogrammable bias levels are provided. These levels are set by connecting the BIAS terminal to V⁺, GND or V⁻. The difference between each bias setting is approximately a factor of three, which allows a 9:1 ratio between supply current and the bias setting. The reason for this current programmability is to provide the user with a choice of device power dissipation levels, slew rate values (the higher the slew rate the better the recovery from commutation spikes), and offset errors due to chip "voltage drop" and thermoelectric effects (the higher the power dissipation the higher the input offset error). In most cases, the medium (MED BIAS) setting will be the best choice.

Output Loading (Resistive)

With a 10 k Ω load the output swing can cover nearly the entire supply voltage range, and the device can be used with loads as low as 2 k Ω . However, with loads of less than 50 k Ω , the on-chip op amps become transconductance amplifiers, since their output impedances are about 50 k Ω each. Thus the open-loop gain is 20 dB less with a 2 k Ω load than it would be with a 20 k Ω load. For high gain configurations requiring high accuracy, output loads of 100 k Ω or more are suggested.

to 1.5 Hz, the peak-to-peak noise voltage will be reduced to about 1.7 μ V, a reduction by a factor of three. The penalty for this reduction will be a lower system response time; however in most cases this will not be a major consideration, because of the large thermal inertia of many thermocouple probes.

Another consideration which must not be overlooked is the additional power dissipation of the chip which results from a large output swing into a low value load. This added variable can affect the initial input offset voltages under certain conditions.

Output Loading (Capacitive)

In many applications, it is desirable to include a low-pass filter at the output to reduce high-frequency noise outside the signal passband of interest. With conventional op amps, the obvious solution would be to place a capacitor across the external feedback resistor to provide the low pass filter.

However, with the CAZ op amp, this is not feasible because of the nature of commutation voltage spikes. The voltage spikes show a low impedance characteristic in the direction of the auto-zero voltage, and a high impedance on the recovery edge, as shown in Figure 4. It can be seen that the effect of a large load capacitor is to produce an area error in the output waveform, and hence an effective gain error. The output low pass filter must be a high impedance type to avoid output voltage area errors. For example, a 1.5 Hz filter should use a 100 k Ω resistor and a 1.0 μ F capacitor, or a 1.0 M Ω resistor and an 0.1 μ F capacitor.

Oscillator and Digital Considerations

The oscillator has been designed to run free at about 5.2 kHz when the OSC terminal is open-circuited. If the full divider network is used, this will result in a commutation frequency of about 160 Hz nominal. The commutation frequency is the frequency at which the on-chip op amps are switched between the signal processing and the auto-zero modes. A 160 Hz commutation frequency represents approximately the optimum frequency at which the input offset voltage is close to minimum, where the low-frequency noise is acceptable, and where errors derived from_noise spikes will be low. Other commutation frequencies may provide optimization of other parameters, but always to the detriment of major characteristics.

The oscillator is of a high impedance type, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the desired frequency of the oscillation is 5.2kHz, the terminal should be left unattached and open. In other instances, it may be desirable to lock the oscillator to a clock

Figure 4: Effect of a load capacitor on output voltage waveforms.

or to run it at another frequency. The AM-7600/AM7601 provides two degrees of flexibility. First, the DR (division ratio) terminal permits the user to choose between dividing the oscillator by 32 (DR terminal to V^+) or by 2 (DR terminal to GND), to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and V⁺, or system ground terminals. For situations which required the commutation frequency to be locked onto a master clock, the OSC terminal can be driven from TTL logic (with resistive pull-up) or from CMOS logic, provided that the V⁺ supply (with respect to ground) is $+5V (\pm 10\%)$ and the logic driver also operates from a similar supply voltage. This is because the logic section -- including the oscillator -operates from an internal -5V supply referenced to V⁺ generated on-chip, and is not accessible externally.

Thermoelectric Effects

The ultimate limitations to ultra-high-precision DC amplifiers are due to thermoelectric, Peltier or thermocouple effects whereby junctions consist of various metals, alloys, silicon, etc. Unless all junctions are at precisely the same temperature, small thermoelectric voltages will be produced, generally about 0.1 μ V/°C. However, these voltages can be several tens of microvolts per °C for certain thermocouple materials.

In order to realize the extremely low offset voltages which the CAZ op amp can provide, it is essential to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. Special low-temperature solder (70% cadmium. 30% tin) should be used. In addition, the supply voltages and power dissipation should be kept to a minimum. Use the medium bias mode as well as a high impedance load, and keep well away from heat dissipated by surrounding equipment.

Component Selection

The two required auto-zero capacitors, C₁ and C₂, should each be of 1.0 μ F value. These are large values for nonelectrolytic capacitors, but since the voltages impressed on them do not change significantly, problems of dielectric absorption and the like are not as important as they would be in applications involving integrating dual-slope A/D converters.

Excellent results have been obtained in operation at commercial temperature ranges when using several of the smaller-size and more economical capacitors, since the absolute values of the capacitors need not be critical. Although not guaranteed, polarized electrolytic capacitors rated at 1.0μ F/50V have been used with success.

Commutating Voltage Transient Effects

While in most respects the CAZ op amp behaves like a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 100 Hz. This is because of the finite switching transients which occur in the input and output terminals due to commu-

tation effects. These transients have a frequency spectrum beginning at the commutation frequency, and include all of the higher harmonics. If the commutation frequency is higher than the highest in-band frequency, these transients can be effectively blanked with a low-pass filter.

The input commutation transients arise when each of the onchip op amps experiences a shift in voltage equal to the input offset voltage about (5 - 10 mV), which usually occurs during the transition from the signal processing mode to the autozero mode. Since the input capacitances of the on-chip op amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage auto-zero capacitors C₁ and C₂ must be at least 10,000 x 10 pF, or 0.1μ F each.

Figure 5: Output waveform from Test Circuit 1.

The charge which is injected into the op amp when it is switched into the signal-processing mode produces a rapidly-decaying voltage spike at the input, in addition to an equivalent DC bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically about 1.0 pA at ambient temperature of 25°C.

The output waveform shown in Test Circuit #1 (with no input) is treated in Figure 5. Note that the equivalent noise voltage shown is amplified 1000 times, and that because of the finite slew rate of the on-chip op amps the 7 mV input transients are <u>not</u> amplified by 1000.

The output transient voltage effects (as distinct from the input effects which are propagated through the on-chip op amps) will occur if there is a difference in the output voltage of the internal op amps between the auto-zero modes and the signal-processing modes. The output stage of the on-chip op amp must slew from its auto-zero output voltage to the desired signal-processing output voltage. This is shown in Figure 6, where the system is auto-zeroed to ground.

The duration of the output transients is greatly affected by the gain configuration and the bias setting, since these two parameters have an effect on system slew rate. At low gains and high bias settings, the output transient durations are very short. For this reason there are two versions of the CAZ op amp, the AM-7600 which is compensated for unity gain and which can be used for gain configurations up to 100, and the AM-7601, which is uncompensated and recommended for operation in gain configurations greater than 20. Thus, when a signal is being processed in a high gain configuration, the effective output signal error is greater for the AM-7600 than it is for the AM-7601.

Figure 6: Simple CAZ OP AMP circuit and the output voltage waveform.

PACKAGE DIMENSIONS

14 LEAD CERDIP PACKAGE

14 LEAD PLASTIC PACKAGE

AM-761X Series Low Power CMOS Operational Amplifiers

FEATURES

- Wide Operating Voltage Range \pm 0.5V to \pm 8V
- Programmable Power Consumption as low as 10µW
- High Input Impedance 10¹²Ω
- Low Input Bias 50 pA max.
- Internally Compensated and Uncompensated Models

GENERAL DESCRIPTION

The AM-761X series is a family of monolithic CMOS op amps. These amplifiers provide high performance operation at low supply voltages and selectable quiescent currents. Their features make them ideal for applications that require ultra low input current and low power drain.

The AM-7611, 12, and 13 have a unique quiescent current programming pin that allows the setting of standby current to 1 mA, 100 μ A or 10 μ A with no external components. This results in power drain as low as 10 μ W. These models are internally compensated and are stable for closed loop gains as low as 1.

The basic amplifier will operate at supply voltages ranging from $\pm 0.5V$ to $\pm 8V$, and may be operated from a single Ni-Cad battery. Output voltage swings range to within a few millivolts of the supply voltage.

Other significant features include 50 pA maximum input bias current, $10^{12}\Omega$ input impedance, and low noise current density, typically .01 pA/ $\sqrt{-}$ Hz. Dynamic characteristics include 1 MHz unity gain bandwidth and $1.6V/\mu$ sec slew rate at $I_0 = 1$ mA.

All devices are internally protected by the use of input diodes, models AM-7613 and AM-7615 are protected for inputs of up to \pm 200V. Outputs are fully short circuit protected.

Packaged in an 8 pin hermetically sealed TO-99 case, these devices are available in 0° C to $+70^{\circ}$ C and in -55° C to $+125^{\circ}$ C operating temperature ranges.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS, AM-761X SERIES		
Typical 🤃 +25° C, RL = 100 K Ω, unless otherwise noted		
	Vsupp = ±5V	Vsupp +±0.5V ¹
MAXIMUM RATINGS ²	L	-
Power Supply Voltage	±9V	±9V
Power Dissipation ³	250 mW	250 mW
Differential Input Voltage	$\pm [(V + 0.3) - (V - 0.3)]V$	$\pm [(V + 0.3) - (V - 0.3)]V$
(AM-7613, AM-7615)	± [(V ⁺ +200) − (V [−] −200)] V	$\pm [(V^+ + 0.3) - (V^ 0.3)]V^4$
INPUT CHACTERISTICS		
Input Offset Voltage, max.	5 mV	5 mV
Input Blas Current, max.	50 pA	50 pA
Common Mode Voltage Bange min	30 pA	30 pA
$I_{\alpha} = 10 \ \mu \Delta^{5}$	+44V	+ 0.1V
$I_0 = 100 \ \mu A$	± 4.2V	
$I_{O} = 1 \text{ mA}^5$	± 3.7V	
Extended Common Mode Voltage Range, min.		
$I_{Q} = 10 \ \mu A^{5} \ldots$	± 5.3V	± 0.1V to -0.6V
(AM-7612 Only) Ι _Q = 100 μA	+ 5.3V	
	-5.1V	
l₀=1 mA⁵	+5.3V	
	-4.5V	4.040.0
Input Resistance	10 ¹² Ω	1012
OUTPUT CHARACTERISTICS		
Output Voltage	± 4.9V min	± 0.49V
PERFORMANCE		
Large Signal Voltage Gain	80 dB min ⁶	80 db ⁷
Unity Gain Bandwidth, $I_Q = 10 \ \mu A^5 \dots$	44 kHz	44 kHz
l₀ = 1 mA⁵	1.4 MHz	
Common Mode Rejection Ratio,		
$I_{Q} = 10 \ \mu A^{2} \ \dots \ \dots \ \dots$	70 dB min	80 dB
$I_{Q} = 100 \ \mu A \dots	70 dB min	
Ig= I MA ³ Power Supply Rejection Ratio	OU OB MIN	
$I_{0} = 10 \ \mu A^{5} $	80 dB min	80 dB
$I_0 = 100 \ \mu A$	80 dB min	
$I_0 = 1 \text{ mA}^5$	70 dB min	
Input Offset Voltage Drift	$15 \mu V/^{\circ} C$	15µV/°C
Input Noise Voltage ⁸	100 nV/ Hz	100 nV/ Hz
Input Noise Current ⁸	.01 pA 📈 Hz	.01 pA ∕√ Hz
Slew Rate ⁹ R _L = 1 M Ω , I _Q = 10 μ A ⁵	.016V/µsec	.016V/µsec
R _L = 100 K Ω, I _Q = 100 μA	.16V/µsec	
$R_{L} = 10 \text{ K} \Omega, I_{Q} = 1 \text{ mA}^{5} \dots$	1.6V/µsec	
POWER REQUIREMENTS		
Voltage, Rated Performance	±5 VDC	± 0.5 VDC
Supply Voltage Range	± 0.5V to ± 8 VDC	± 0.5V to ± 8 VDC
Supply Current, max, $I_{\alpha} = 10 \ \mu A^5$	20 µ A	15µA
$I_{\alpha} = 100 \ \mu A \ldots \ldots$	250 µ A	
I_Q = 1 MA ⁹	2.5 mA	
PHYSICAL ENVIRONMENTAL		1
Operating Temperature Range		00 O to 700 O
	•••••••••	-55° C to $\pm 125^{\circ}$ C
Sullix — M Storage Temperature Pange	• • • • • • • • • • • • • • • • • • • •	-55° C to $+150^{\circ}$ C
Package, Hermetically Sealed		TO-99
NOTES:		
1. Operation at Vsupp = $\pm 0.5V$ is guaranteed at I _a = 10 μ A	3. At +25°C, for operation in	ambient temperatures in excess
only. Those devices with a selectable I_{Q} of 10 μ A are the	of +25°C derate by 2 mW	/ °C.
AM-7611, 7612, and 7613.	4. AM-7613 only.	

 Stresses above those listed under "MAXIMUM RATINGS" may cause permanent device failure. These are stress ratings only, functional operation of the device at these, or at conditions above those indicated in the operating section of this specification is not implied. Exposure to maximum rating conditions for extended periods may cause device failures.

•

- 5. Io is selectable on AM-7611, 12, and 13 only. On AM-7614, and 15, Io = 100 $\mu A.$
- 6. Vout = 4V, R_L = 10 K Ω , I_Q = 100 μ A
- 7. Vout = ± 0.1 V, R_L = 100 K Ω , I_Q = 10 μ A
- 8. Rs = 100Ω, f = 1 kHz
- 9. CL = 100 pF, Vin = 8V

TECHNICAL NOTES

APPLICATIONS

TYPICAL PERFORMANCE CURVES

SUPPLY CURRENT

SUPPLY CURRENT AS A FUNCTION OF FREE-AIR TEMPERATURE

347C

TYPICAL PERFORMANCE CURVES

APPLICATIONS

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana. (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Ultra-Fast Microelectronic Operational Amplifiers AM-500 Series

FEATURES

- 200 nsec. Settling to .01% .
- 1000V/µsec. Slew Rate
- 100 MHz min. Gain-Bandwidth
- 10⁶ Open Loop Gain
- 1µV/°C Drift
- ±50 mA Output Current

GENERAL DESCRIPTION

The AM-500 series amplifiers are ultrafast settling operational amplifiers for use in inverting applications. A unique feedforward amplifier design combines the characteristics of a low drift DC amplifier with those of a very fast AC amplifier. For optimum fast settling performance, this amplifier has an open loop gain roll-off of 6 dB per octave to beyond 100 MHz. Miniature thin-film hybrid construction permits an optimum combination of semiconductor devices and minimum lead lengths to realize the amplifier circuitry. Applications for the AM-500 series include fast integrators, sample-holds, fast waveform drivers, and fast D/A converter output amplifiers.

Output settling time is 200 nanoseconds max. to .01% for a 10 volt step change. Slew rate is 1000V/µsec. for positive output transitions and 1800V/ μ sec. for negative transitions. This high slew rate permits undistorted reproduction of a full load, 20V peak to peak sinewave out to16 MHz.Gain bandwidth product is 100 MHz minimum.

DC characteristics of the AM-500 series include a DC open loop gain of 10⁶, 30 megohm input impedance, and 1 nanoampere bias current. Input offset voltage is ±0.5 mV and input offset voltage drift is $1\mu V/^{\circ}C$. Although these amplifiers do not operate differentially, a DC offset voltage in the range ±5V can be applied to the positive input terminal. Power supply requirement is ±15VDC at 22 mA guiescent current. The amplifiers will operate over a supply range of ±10V to ±18V. Output current capability is ±50 mA with output short circuit protection. Four basic versions are available: AM-500GC and AM-500MC for 0°C to 70°C. AM-500MR for -25° C to +85° C, and AM-500MM for -55° C to +125° C. The device package is a 14 pin ceramic.

PACES 100 EA 2,5) BOTTOM VIEW 0.800 MAX (20.3) 1 DOT ON TOP REFERENCES PIN 1 14 0.100 0.300 NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE

Ultra-Fast Microelectronic Operational Amplifiers AM-500 Series

Data Acquisition

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

	in the second
SPECIFICATIONS, AM-500 SERIES Typical at 25° C, ±15VDC supplies, inverting operation, unless otherwise noted.	CONNECTION FOR FAST SETTLING WITH GAIN OF —1
INPUT CHARACTERISTICS Input Common Mode Voltage Range ¹ ±5V Max. Input Voltage, no damage ±18V Differential Input Impedance	KEEP THESE LEADS AS SHORT AS POSSIBLE 1K 1K 4
Output Voltage +10V min. Output Current, S.C. protected ±50mA Stable Capacitive Load 100 pF	
PERFORMANCE 10 ⁶ volts/volt DC Open Loop Gain 10 ⁶ volts/volt Input Offset Volt. Drift, 0° C to 70° C 1μV/° C typ., 5μV/° C max. -25° C to +85° C 2μV/° C typ., 7μV/° C max. -55° C to +125° C 5μV/° C typ., 7μV/° C max. Input Bias Current Drift, -55° C to +70° C -20pA/° C +70° C to +125° C doubles every 10° C	ZERO ADJ. (*10mV) 20K 500 -15VDC
Input Voltage Noise, .01 Hz to 1Hz ² 5μV P-P 5μV P-P 100Hz to 10kHz ² 1μV RMS 1Hz to 10MHz ² 20μV RMS Power Supply Rejection Ratio	INPUT BIAS CURRENT VS. TEMPERATURE
DYNAMIC CHARACTERISTICS Gain Bandwidth Product 130MHz typ., 100 MHz min. Slew Rate, positive going 1000V/µsec. Slew Rate, negative going 1800V/µsec. Full Power Frequency (20V P-P) 16MHz Settling Time, 10V step to 1% ³ 70 nsec. 10V step to 0.1% ³ 100 nsec. 10V step to 0.1% ³ 200 nsec. max. Overload Recovery Time 10µsec. POWER REQUIREMENT +15VDC Voltage, rated performance +15VDC Voltage, operating +10V to ±18VDC Quiescent Current 22 mA	100hA = 100h
PHYSICAL-ENVIRONMENTAL	
Operating Temperature Range AM-500GC 0°C to 70°C AM-500MC 0°C to 70°C AM-500MR -25°C to +85°C AM-500MM -55°C to +125°C Storage Temperature Range -55°C to +125°C Package Type 14 pin ceramic Pins 0.010X0.018" Kovar Weight 0.09 oz. (2.5g)	 The circuit design shows the connection of the AM- 500 series for fast settling operation with a closed loop gain of -1. It can be used for fast settling at closed loop gains up to -10. The equivalent resistance seen by the summing junction should be 500 ohms or less. For gains larger than -1 use an input resistor of 500 ohms and pick a feedback resistor for the required closed loop gain (1K for -2, 1.5K for -3, etc.). A small feedback capacitor should be used across the feedback resistor. Determine C in picofarads from the following formula: C = 1 + G
3. 1K input and feedback resistors, 2.4pF feedback capacitor	.816R where G is closed loop gain and R is in kilohms. 3. Summing point leads must be kept as short as pos- sible. Input and feedback resistors should be soldered
ORDERING INFORMATION MODEL OP. TEMP. RANGE SEAL AM-500GC 0°C to 70°C Epoxy AM-500MC 0°C to 70°C Herm. AM-500MR -25°C to +85°C Herm. AM-500MM -55°C to +125°C Herm. Socket: Standard 14 pin DIP socket. Not available from Datel -Intersil Trimming Potentiometer: TP 20K THE AM-500 AMPLIFIERS ARE COVERED BY GSA CONTRACT	 close to the body of the resistor directly to the summing point (pin 4). Summing point capacitance to ground must be kept very low. 4. Low output impedance power supplies should be used with 1 μF tantalum bypassing capacitors at the amplifier supply terminals. There are internal .03 μF ceramic capacitors in the amplifier. 5. Although these amplifiers are inverting mode only, a DC voltage in the range of ±5V may be applied to the positive input terminal for offsetting the amplifier.
	Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved EL. (617)339-9341 / TWX 710-346-1953 / TLX 951340

Santa Ana. (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

351C

Models 8510, 20, 30 Power Amplifier Motor and Actuator Driver

KEY FEATURES:

- Capable of delivering 2.7 amps @ 24-28V d.c. operation (30V supplies)
- Protected against inductive kick back with internal power limiting
- Programmable current limiting (short circuit protection)
- Package is electrically isolated (allowing easy heat sinking)
- d.c. gain >100dB
- 20mA typical standy quiescent current
- Popular 8 pin TO-3 package
- Internal frequency compensation
- Can drive up to 0.1 horsepower motors.

DESCRIPTION:

The AM-8510/8520/8530 is a family of hybrid power amplifiers that have been specifically designed to drive linear and rotary actuators, electronic valves, push-pull solenoids, and d.c. & a.c. motors.

There are three models available for up to $\pm 30V$ power supply operation. One model will deliver up to 2.7 amps @ 24 volt output levels, while the remaining models deliver 2 amps & 1 amp @ 24V outputs. All amplifiers are protected against shorts to ground by the addition of 2 external protection resistors.

The design uses a conventional 741 operational amplifier, a special monolithic driver chip (BL8063), NPN & PNP power transistors, and internal frequency compensating capacitors. The chips are mounted on a beryllium oxide substrate, for optimum heat transfer to the metal package; this substrate provides electrical isolation between amplifiers and metal package.

The I.C. power driver chip has built-in regulators to drive the $741 \oplus$ typically $\pm 13v$ supply voltages.

ABSOLUTE MAXIMUM RATINGS @ T_A = 25° C

Supply Voltage Power Dissipation, Safe Operating Area Differential Input Voltage Input Voltage Peak Output Current Output Short Circuit Duration (to ground) Operating Temperature Range

Storage Temperature Range Lead Temperature (Soldering, 10 seconds) Max Case Temperature $\begin{array}{c} \pm 35 V \\ See Curves \\ \pm 30 V \\ \pm 13 V \ (Note \ 1) \\ See Figs. 9 & 13 \ (Note \ 2) \\ Continuous \ (Note \ 2) \\ M \ -55^{\circ} C \rightarrow +125^{\circ} C \\ R \ -25^{\circ} C \rightarrow +85^{\circ} C \\ -65^{\circ} C \ to +150^{\circ} C \\ 300^{\circ} C \\ 150^{\circ} C \end{array}$

Note 1: Rating applies to supply voltage $> \pm 18$.

Note 2: Rating applies as long as maximum junction temperature is not exceeded (200 °C). See important note on power dissipation, page 3.

		V _{CC} =	+30V	Vcc=	+ 30V	Vcc=	+30V
Description	Conditions	AM-8530R	AM-8530M	AM-8520R	AM-8520M	AM-8510R	AM-8510M
Max. Input Offset Change/Watt of Pdiss.	Part Mtd. on Wakefield 403 Heat Sink	4mv/watt	2mv/watt	4mv/watt	2mv/watt	4mv/watt	2mv∕watt
Maximum Input Offset Voltage	$R_S \cong 10 K\Omega$, Pdiss. < 1 watt	±6mv	±3mv	±6mv	⁺3mv	±6mv.	.⁺3mv
Maximum Input Offset Current	Rs≦10KΩ, Pdiss. < 1 watt	200na	100na	200na	100na	200na	100na
Maximum Input Bias Current	$R_S \le 10 K\Omega$, Pdiss. < 1 watt	500na	250na	500na	250na	500na	250na
Minimum Large Signal Voltage Gain	R∟=20Ω, f≕10HZ Vout≧67% Vcc	100dB	100d B	100d B	100dB	100d B	100dB
Minimum Input Voltage Range	· · · · · · · · · · · · · · · · · · ·	±10v	±10v	±10v	±10v	±10v	±10v
Minimum CMRR	R _S =10KΩ, f=10HZ	70dB	70dB	70dB	70dB	70dB	70dB
Minimum PSRR	R _S ≔10KΩ, f -10HZ	77dB	77dB	77dB	77dB	77dB	77dB
Minimum Slew Rate	C _L =30Pf, A _V = 1 R _L =20Ω, V _{OUT} ≧67% V _{CC}	0.5v/µs	0 5v/µs	0.5v/µs	0.5v/µs	0.5v/µs	0.5v∶µs
Minimum Output Voltage Swing (V _{SW})	R _L =20Ω, A _V = +10 f=1KC	±25v	±25v	±26v	±26v	$(R_L = 30\Omega)$ ± 26v	$(R_L = 30\Omega)$ ± 26v
Minimum Output Current Capability(I _{MAX})	Vou⊺≧24v Note 3	2.7 amps	2.7 amps	2 amps	2 amps	1 amp	1 amp
Max. ±V _{CC} Power Supply Quiescent Current	RL≖∝, Vin∺Ov	50ma	40ma	50ma	40ma	50ma	40ma

ELECTRICAL SPECIFICATIONS @ $T_A = +25^{\circ}C$ (unless stated otherwise)

Note 3: Output current and V_{SWING} are reduced as power supplies are lowered. See Figures 1, 2, &9.

ELECTRICAL SPECIFICATIONS @ $T_A = -55^{\circ}C \rightarrow +125^{\circ}C(M)$ or $T_A = -25^{\circ}C \rightarrow +85^{\circ}C(R)$

Maximum Input Offset Voltage	Pdiss 1 watt	:∟10mv	±9mv	±10mv	19mv	±10mv	- ±9mv
Maximum Input Bias Current	Pdiss · 1 watt	1.5µa	750na	1.5µa	_. 750na	1.5µa	750na
Maximum Input Offset Current		500na	200na	500na	200na	500na	200na
Minimum Large Signal Voltage Gain	$R_L=20\Omega$, $V_{OUT}=67\%$ V_{CC} f=10HZ; with heat sink	90dB	90dB	90dB	90dB	90dB	90dB
Minimum Output Voltage Swing	$R_L = 20\Omega$, Pkg. Mtd. on Wakefield 403 Heat Sink	. 24v	24v	<u>1</u> 24v	:24v	. <u>.</u> 24v	±24v
Maximum Thermal Resistance Junction to Ambient	Without Heat Sink	40° C/watt	40° C/watt	40° C/watt	40° C∕watt	40° C∮watt	40° C∥watt
Maximum Thermal Resistance Junction to Case		2.5° C/watt	2.5° C/watt	2.5° C/watt	2.5° C/watt	3.0° C/watt	3.0° C/watt
Typical Thermal Resistance Junction to Ambient	Pkg. Mtd. on Wakefield 403 Heat Sink	4.0° C/watt	4.0° C/watt	4.0° C/watt	4.0° C/watt	4.5° C/watt	4.5° C/watt
VCC Range (typical)		± 18V to ± 30V	± 18 Vto ± 30 V	± 18 Vto ± 30 V	± 18 Vto ± 30 V	\pm 18V to \pm 30V	± 18 Vto ± 30 V

How To Set The Externally Programmable, Current Limiting Resistors:

The maximum output current is set by the addition of two external resistors-R+s.c. and R-s.c. Because of the INTERNAL POWER LIMITING CIRCUITRY, the maximum output current is only available when Vout is

In general, for a given VOUT, Isc limit, and case temperature T_C, Rs.c. can be calculated from the equation below (Vour in Volts):

$$Rs.c. = \frac{[600 + (24 \times V_{OUT}) - 2.2 (T_C - 25^{\circ} C)] mV}{lsc limit}$$

i.e., If lout (maximum) = 1.5 amps @ Vout = 25V, $T_C = 25^{\circ}C$

Rs.c. =
$$\frac{1200 \text{ mV}}{1.5 \text{ amps}} = 0.8\Omega$$

When an Rs.c. = 0.8Ω is used, lout @ Vout = OV will be reduced to 750 mA. Except for small changes in the "Vsw Limit" area, the effects of changing Rs.c. on the IOUT vs VOUT characteristics can be determined by merely changing the lout scale on Fig. 1 to correspond to the new value. Changes in T_C move the limit curve bodily up and down:

This INTERNAL POWER LIMITING CIRCUITRY however does not at all restrict the normal use of the driver. For any normal load, the static load line will be similar to that shown in Figure 1. Clearly, as VOUT decreases, the IOUT requirement falls also, more steeply than the lour

IMPORTANT NOTE ON POWER DISSIPATION OF POWER AMPLIFIER

The steady state power dissipation equation is:

TJMAX - TAMB Pdiss max = - $\Theta_{JC} + \Theta_{CH} + \Theta_{HA}$

Where:

- T_{JMAX} = Maximum junction temperature
- T_{AMB} = Ambient temperature
- Θ_{JC} = Thermal resistance from transistor junction to case of package
- Θ_{CH} = Thermal resistance from case to heat sink
- Θ_{HA} = Thermal resistance from heat sink to ambient air
- Now:

T_{JMAX} = 200° C for silicon transistors

- $\Theta_{JC} \cong 2.0 \text{ C/WATT}$ for a steel bottom TO-3 package with die attachment to beryllia substrate to header
- $\Theta_{CH} = .045^{\circ} \text{ C/W}$ for 1mil thickness of Wakefield type 120 thermal joint compound. .09° C/W for 2mil thickness of type 120
 - .13° C/W for 3mil thickness of type 120
 - .17° C/W for 4mil thickness of type 120
 - .21° C/W for 5mil thickness of type 120
 - .24° C/W for 6mil thickness of type 120

close to either power supply. As Vout moves away from $\pm V_{CC}$, the maximum output current decreases in proportion to output voltage. The curve below shows maximum output current versus output voltage.

FIGURE 1 Maximum Output Current for Given Rs.c.

available. For reactive loads, the dynamic load lines are more complex. Two typical operating point loci are sketched here:

Thus the limiting circuitry protects the load and avoids needless damage to the driver during abnormal conditions. For any 24Vdc-28Vdc motor/actuator, the Rs.c. resistors must be calculated to get proper power delivered to the motor (up to a maximum of 2.7 amps) and $\pm V_{CC}$ set at $\pm 30V$. For lower supply and/or output voltages, the maximum output current will follow graphs of Figures 1 and 10.

The choice of heat sink that a user selects depends ΘΗΑ upon the amount of room available to mount the heat sink. A sample calculation follows: by choosing a Wakefield 403 heat sink, with free air, natural convection (no fan). $\Theta_{HA} \cong 2.0^{\circ}$ C/W. Using 4 mil joint compound,

$$P_{\text{diss MAX}} = \frac{200^{\circ} \text{ C-TAMB}}{2.0^{\circ} \text{ C/W} + .17^{\circ} \text{ C/W} + 2.0^{\circ} \text{ C/W}}$$

$$=\frac{200^{\circ}\text{ C-T}_{\text{AMB}}}{4.17^{\circ}\text{ C/W}}$$

200° C-25° C ... Pdiss MAX at TAMB = 25° C = = 42 watts 4.17° C/W Pdiss MAX at TAMB = 125° C is $\frac{200° \text{ C} \cdot 125° \text{ C}}{4.17° \text{ C}}$ = 18 watts 4.17° C/W

From Fig. 2 the worst case steady state power dissipation for an AM-8520 ($R_{sc} = 0.6\Omega$) are about 30 W and 18 W respectively. Thus this heat sink is adequate. The AM-8530 $(R_{sc} = 0.4\Omega)$ would need a bigger heat sink (or a blower) giving about 1° C/W for Θ_{CA} to maintain satisfactory junction and case temperatures with 25 W dissipation and $T_{\mbox{\scriptsize AMB}}$ = 125° C.

TYPICAL PERFORMANCE CURVES

Figure 2: Safe Operating Area; IOUT vs VOUT vs TC

Figure 3: Input Offset Voltage vs Power Dissipation

355C

TYPICAL PERFORMANCE CURVES, CONTINUED.

Figure 6: Large Signal Power Band Width

Figure 7: Small Signal Frequency Response

BRIEF APPLICATION NOTES

The maximum input voltage range, for $\pm V_{CC} > \pm 18V$, is substantially less than the available output voltage swing. Thus non-inverting amplifiers, as in Figure 11, should always be set up with a gain greater than about 2.5, (with $\pm 30V$ V_{CC}), so that the full output swing is available without hazard to the input. At first sight, it would seem that no restrictions would apply to inverting amplifiers, since the inputs are virtual ground and ground. However, under fault (output short-circuited) or high slew conditions, the input can be substantially removed from ground. Thus for inverting amplifiers with gains less than about 5, some protection should be provided at this input. A suitable resistor from the input to ground will provide protection, but also increases the effect of input offset voltage at the output. A pair of diodes, as shown in Figure 12, has no effect on normal operation, but gives excellent protection.

Figure 10: Non-Inverting Amplifier

16

Figure 11: Inverting Amplifier

TYPICAL APPLICATIONS

3

(4) - 30 V 5

I. Actuator Driving Circuit (24-28Vd.c. rated)

9K

30.0 (\mathbf{B})

7

6

Power dissipation is another important parameter to consider. The current protection circuit protects the device against short circuits to ground, (but only for transients to the opposite supply) provided the device has adequate heat sink. A curve of power dissipation vs Vout under short circuit conditions is given in Figure 13. The limiting circuit is more closely dependent on case temperature than (output transistor) junction temperatures. Although these operating conditions are unlikely to be attained in actual use, they do represent the limiting case a heat sink must cope with. For fully safe design, the anticipated range of VOUT values that could occur, (steady state, including faults) should be examined for the highest power dissipation, and the device provided with a heat sink that will keep the junction temperature below 200° C and the case temperature below 150° C with the worst case ambient temperature expected.

II. Obtaining Up To 5 Amps Output Current Capability By Paralleling Amplifiers

10K

30V (8)

7

6

5

∕∕∕∕ 10К

(8) 7

(6

0.4

Figure 14: Paralleling Power Amps for Increased Current Capability

٩ .30V

This paralleling procedure can be repeated to get any desired output current. However, care must be taken to ensure that enough load is provided to avoid the amplifiers pulling against each other.

The gain of the circuit is set to +10, so a +2.4V input Vin will produce a +24V output (and will deliver up to 2.7 amps output current). To reverse the piston travel, invert Vin to -2.4V and Vout will go to -24V. Diodes D1 and D2 absorb the inductive kick of the motor during transients (turn-on or turn-off); their breakdown should exceed 60V.

357C

III. Driving A 48VDC Motor

Figure 15: Power Amp Driving 48 WDC Motor

IV. Precise Rate Control of an Electronic Valve

To get very fine control of the opening of an orifice, driven by an electronic valve, there are two ways to go.

- Keep the voltage constant, i.e., 24Vdc or 12Vdc, and vary the time the voltage is applied, i.e., if it takes five seconds to completely open an orifice at 24Vdc, then applying 24V for only 2-1/2 seconds opens it only 50%.
- Simply vary the d.c. driving voltage to valve. Most valves obtain full opening as an inverse of applied voltage., i.e., valves opens 100% in five seconds at 24Vdc and in 10 seconds at 12Vdc.

A circuit to perform the second method is shown below; the advantage of this is that digit switches can precisely set driving voltage to 0.2% accuracy (8-bit DAC), thereby controlling the rate at which the valve opens.

Figure 16: Digitally Controlled Electronic Value

V. The circuit presented in IV is also an excellent way to get a precise power supply voltage; in fact, a precision,

Figure 17: Digitally Programmable Power Supply

variable power supply can be made. Using a BCD coded DAC with BCD Thumbwheel switches.

20	21	22	2 ³	24	25	26	27	Ø BIT	Vout
1	1	1	1	1	1	1	1	1	+25Vd.c.
1	1	1	1	1	1	1	1	0	-25Vd.c.
0	1	0	1	1	0.	0	1	1	+15Vd.c.
0	1	0	1	1.	0	0	1	0	-15Vd.c.
1 ·	0 -	0	0	0	0	0	0	1	+0.098Vd.c.
1	0	0	0	0	0	0	0	0	-0.098Vd.c.
Ftc									

The power supply can be set to ± 0.1 Vd.c.
AM-8510/8520/8530

VI. There is great power available (no pun intended) in the sub-systems shown in IV and V; there the D/A converter is shown being set manually (via digit switches) to get a precise analog output (binary #× full scale voltage), then the driver amplifier multiplies this voltage to produce the final output voltage. It seems obvious that the next logical step is to let a microprocessor (local) or C.P.U. program the D/A converter. Then total, pre-programmable, electronic control of an actuator, electronic valve, motor, etc., is obtained. This would be used in conjunction with a transducer/multiplex system for electronic monitoring and control of any electromechanical function.

ELECTRONIC CONTROL SYSTEM:

 $\begin{array}{l} \mathsf{MUX} = \mathsf{MX} \; \mathsf{SERIES} \\ \mathsf{S/HI} \; (\mathsf{SAMPLE \& HOLD}) = \mathsf{SHM}\mathsf{-}\mathsf{LM2} \\ \mathsf{D/A} \; \mathsf{CONVERTER} = \mathsf{DAC}\mathsf{-}7520 \\ \mathsf{POWER} \; \mathsf{AMP} = \mathsf{AM}\mathsf{-}8510/8520/8530} \\ \mathsf{A/D} \; \mathsf{CONVERTER} = \mathsf{ADC}\mathsf{-}6108\mathsf{A}/7104 \\ \mu \; \mathsf{COMPUTER} = \mathsf{IM6}\mathsf{100} \; \mathsf{family}: \end{array}$

NOTE. This product contains Beryllia. If used in an application where the package integrity may be breached and the internal parts crushed or machined, avoid inhalation of the dust.

Fast, High Voltage **FET Operational Amplifiers** AM-303 Series

FEATURES

- ±140V Output Swing
- 10 MHz Gain Bandwidth
- 2.5 usec. Settling Time
- 100V/µsec. Slew Rate 100 dB CMRR
- Output Current Limiting

GENERAL DESCRIPTION

Datel-Intersil's AM-303 series are FET input operational amplifiers which feature a combination of high voltage operation and very fast response. With a power supply of $\pm 150V$ the output voltage swings ±140V at ±25mA output current. The supply voltage can range from $\pm 15V$ to $\pm 150V$ with the output voltage capability 10V less than the supply voltage. A unique output current limiting circuit protects the output of the amplifier by means of voltage and temperature dependent limiting.

Common mode input voltage range is ±140V with a common mode rejection ratio of 100 dB minimum. The input offset voltage drift is $\pm 50 \ \mu$ V/°C max. for the AM-303A and $\pm 20 \ \mu$ V/°C max. for the AM-303B. Input impedance is 1012 ohms with bias current of 300 pA max, and open loop gain is 10⁶ volts per volt minimum.

Dynamic characteristics include a typical gain bandwidth product of 10 MHz and a slew rate exceeding 100V/µsec. Settling time to 0.01% for a 10V step is 2.5 μ sec.

The AM-303 amplifiers are completely encapsulated and have an aluminum bottom plate to permit external heat sinking for efficient heat removal. Although convection cooling is sufficient for most applications, heat sinking should be employed when operating near maximum output capability or when driving capacitive loads at high speed. Two 4-40 screw inserts in the bottom plate permit easy mounting.

The AM-303 devices are ideal for electron beam deflectors, beam intensity modulators and other high voltage applications. The/AM-303 replaces both of Datel-Intersil's earlier AM-301 and AM-302 amplifiers.

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

DIFF IN O AZ O INPUT O INPU

Instrumentation Amplifiers

AM-435	366C
AM-7605, AM-7606	368C
AM-542, AM-543	378C
AM-201	382C

Districted INSTRUMENTATION AMPLIFIER AM-201C MADE IN U S A

Quick Selection: Instrumentation Amplifiers

MODEL	DESCRIPTION	GAIN RANGE	GAIN NON- LINEAR- ITY	GAIN TEMPCO	INPUT IMPEDANCE	INPUT BIAS CURRENT	INPUT OFFSET CURRENT	INPUT OFFSET VOLTAGE
AM-435-1C	Low	1 +- 1000	0.1%	0	010120	40 pA	20 pA	± 30mV
AM-435-1M	Cost	1 to 1000	0.05%	± 3 ppm/°C	$2 \times 10^{12} \Omega$	20 pA	10 pA	±15mV
AM-7605C	CAZ							
AM-7605R	Amplifier	1 to 1000			—	1.5 nA	150 pA	±5mV
AM-7605M	Compensated							
AM-7606C	CAZ						4 a.	
AM-7606R	Amplifier	1 to 1000	_			1.5 nA	150 pA	±5mV
AM-7605M	Uncompensated							
AM-542AC								
AM-542AR		1 to 1024	0.01%	± 10 ppm/°C	1.2 × 10°Ω	± 14 nA	12 nA	±200 μV
AM-542AM	Digitally							
AM-542BC	Programmable						· · ·	
AM-542BR	Gain,	1 to 1024	0.01%	± 10 ppm/°C	1.2 × 10°Ω	± 14 nA	12 nA	±200 μV
AM-542BM	Low						-	
AM-542CC	Drift							
AM-542CR		1 to 1024	0.01%	± 10 ppm/°C	1.2 × 10°Ω	± 14 nA	12 nA	±200 μV
AM-542CM								
AM-543AC	Digitally							· .
AM-543AR	Programmable	1 to 1024	0.01%	± 15 ppm/°C	10 ¹² Ω	± 100 pA	20 pA	±1mV
AM-543AM	Gain	ч.						-
AM-201A	High					± 50 nA	2.5 nA	Adj.
AM-201B	Performance	1 to 1000	0.01%	± 20 ppm/°C	10°Ω	± 25 nA	1 nA	to
AM-201C	renormance			4		± 25 nA	1 nA	Zero

NOTES: 1. G = 1000

2. 10V to 0.1%, G = 1

3. 20V to 0.01%, G = 1

4. 10V to 0.01%, G = 1000

These products are covered by GSA contract.

INPUT OFFSET VOLTAGE DRIFT	SLEW RATE	SETTLING TIME	BANDWIDTH	COMMON MODE REJECTION	POWER REQUIRE MENT	- PACKAGE	OPERATING TEMP. (°C)	PRICE (SINGLE <u>S)</u>	SEE PAGE_
+ 10,0//90	1V/usec	15,05002	7 KHz1	105dB	+ 151/	16 Pin	0 to + 70	\$ 12.00	0000
Ξ 10μν/ Ο	TVIµSEC	15µ360	7 1012	115dB	TIJV	Ceramic DIP	– 55 to + 125	\$ 28.50	366C
						40 B'	0 to + 70	\$ 22.58	
0.1 <i>µ</i> V/°C		-	20 Hz	104dB	±5V	18 Pin	– 25 to + 85	\$ 33.83	368C
						Cerdip	– 55 to + 125	\$ 67.58]
						18 Pin	0 to + 70	\$ 22.58	
0.1µV/°C	_	_	20 Hz	104dB	± 5V	Cerdin	– 25 to + 85	\$ 33.83	368C
						Cerup	– 55 to + 125	\$ 67.58	
			*		+ 15V	24 Pin	0 to + 70	Contact	
10µV/°C	.14V/µsec	$160 \mu sec^3$	ec³ —	120dB	± 10V	Ceramic DIP	– 22 to + 85	Factory	378C
					+ 31	Ocramic Dir	– 55 to + 125	lactory	
					+ 15V	24 Pin	0 to + 70	Contact	
5µV/°C	.14V/µsec	160µsec³	_	120dB	± 5V	Ceramic DIP	– 25 to + 85	Factory	378C
					100		– 55 to + 125		
					+ 15V	24 Pin	0 to + 70	Contact	
2 <i>µ</i> V/°C	.14V/µsec	$160 \mu sec^{3}$		120dB	+ 5V	Ceramic DIP	– 25 to + 85	Factory	378C
							– 55 to + 125		
					+ 15V	24 Pin	0 to + 70	Contact	
15 <i>µ</i> V/°C	3.3/Vµsec	10µsec³	_	100dB	+ 5V	Ceramic DIP	– 25 to + 85	Factory	378C
					101		– 55 to + 125		
± 1μV/°C				100dB		15 1 5 0 375		\$ 84.00	
± 0.5µV/°C	1V/µsec	20µsec⁴	45 KHz	106dB	± 15V	(38 \ 38 \ 10)	0 to + 70	\$ 94.00	382C
±0.25µV/°C				114dB		(00 × 86 × 10)		\$105.00	

THESE PRODUCTS ARE COVERED BY GSA CONTRACT

Monolithic Precision Instrumentation Amplifier Model AM-435

FEATURES

- 1 to 1000 Gain Range
- 3 pA typ. Bias Current •
- 2 × 10¹² Input Z
- 110 dB min. CMRR
- Low Power •
- Low Cost

GENERAL DESCRIPTION

The AM-435 is a monolithic JFET input instrumentation amplifier. Designed as a high impedance, differential gain block, the unit accurately amplifies the voltage difference between the inputs. Common mode noise on the input line is rejected by the unit's high CMRR. The resultant signal is then transferred into a single-ended output, thus eliminating ground loops.

The amplifier's transfer function is set by two external resistors. The AM-435 utilizes internal differential current feedback eliminating the need for precision feedback resistors. The amplifier's gain can be easily adjusted for gains of 1 to 1000 by changing the value of one of the resistors. The AM-435 has a typical gain nonlinearity of 0.02%. The initial input offset voltage is 8mV for the "M" version and 15mV for the "C", with extremely low bias currents of 20pA and 40pA respectively.

The unique two stage amplifier design makes it possible to trim out any input offset errors which would otherwise be amplified by the closed loop gain. Output offset nulling can be achieved with a single optional trimming potentiometer.

The AM-435 offers a low cost solution for data acquisition applications. These easy to use components offer design engineers an alternative to both modular and inhouse designs. The device is commonly used as a transducer amplifier for thermocouples. strain gauge bridges, RTD's, current shunts, biological amplifiers, or simply as preamplifiers for processing small differential signals superimposed on common mode voltages.

The instrumentation amplifiers are packaged in 16-pin DIP packages. The operating temperature range of the AM-435-1C is 0 to + 70°C while the AM-435-1 M operates from - 55°C to + 125°C. Power supply requirement is \pm 5V to \pm 20V. The maximum power dissipation for the "C" version is 54mW and for the "M", 45 mW.

INPUT/OUTPUT CONNECTIONS

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

MECHANICAL DIMENSIONS

INCHES (MM)

SPECIFICATIONS, AM-435- (Typical at 25°C, ± 15V supplies, R	IC and AM-435-1M ; = 10K unless other	/I wise noted)
	AM-435-1C	AM-435-1M
MAXIMUM RATINGS		
Positive Supply, pin 9	+ 18V	+ 22V
Negative Supply, pin 10.	– 18V	- 22V
Differential Input Voltage	± 36V	± 44V + 22V
	± 10V	± 22 V
GAIN		
Gain Range	1 to 1000	1 to 1000
Gain Equation	H _S / H _G	H _S / H _G
Gain Equation Error, max	0.2 % 0.1% max	0.1 % max
INFOI CHARACTERISTICS	. 101/	. 101/
Common Mode Voltage Range .	$\pm 12V$ 2 $\times 10^{12}$ ohms	$\pm 12V$ 2 $\times 10^{12}$ obms
	2.5pF	2.5pF
Input Bias Current, max	40pA	20pA
Input Offset Current, max	20pA	10pA
Input Offset Voltage	± 15mV	± 8mV
	65 (90 tup)	75 (95 tup)
G = 10 dB min	85 (100 typ.)	95 (105 typ.)
G = 100, dB min.	100 (120 typ.)	110 (125 typ.)
G = 1000, dB min	105 (120 typ.)	115 (125 typ.)
OUTPUT CHARACTERISTICS		
Output Voltage Bange	+ 10V min	+ 10V min
Output Current S.C. prot.	± 5mA	± 5mA
Output Resistance, G = 1	1.5 ohms	1.2 ohms
Output Offset Voltage ³	± 400mV max.	± 200mV max.
DRIFT ERRORS AND NOISE		
Gain Tempco	± 3ppm/°C	± 3ppm/°C
Input Bias Current Drift	×2/10°C	× 2/10°C
Input Offset Current Drift	1.5pA/°C	3pA/°C
Input Offset Voltage Drift	10µV/°C	10µV/°C
Dutput Offset Volt. Drift	600μV/°C	600μV/°C
Input Voltage Noise	100 0.0	100 00
0.1 Hz to 10 Hz, µV p-p	1.3 + 670/G	1.3 + 670/G
10 Hz to 10 kHz, μ V RMS	8 + 450/G	8 + 450 / G
DYNAMIC RESPONSE		
Small Sig. Bandwidth, ± 3dB		
G = 1	140 kHz	140 kHz
G = 10	50 kHz	50 kHz
G = 100	30 kHz	30 kHz
G = 1000		1V/usec
Full Power Bandwidth	25 kHz	25 kHz
Settling Time to 0.1%,		
G = 1 to 10	15 µsec.	15 µsec.
G = 100	40 µ sec.	40 µsec.
G = 1000	200 µsec.	200 µsec.
POWER REQUIREMENT		
Voltage, Rated Performance	± 15V	± 15V
Voltage Range, Operating	$\pm 5V$ to $\pm 18V$	$\pm 5V$ to $\pm 20V$
	1.0IIIA IIIdx.	T.JITA Max.
PHISICAL ENVIRONMENTAL	A 1. 7010	FF 10 1 105 10
Operating Temp. Range	$0 \text{ to } + 70^{\circ}\text{C}$	$-55^{\circ}C$ to $+125^{\circ}C$
Storage Temp. Range	16 Pin DIP	16 Pin DIP
- aonago - ypo		
NOTES: 1. For gain range of 1 to 100, typic 2. 1K source unbalance. 3. Car	al error is 0.05%. be adjusted to zero.	
ORDERING INFORMATION		
MODEL TEMP RANGE	CASE	
AM-435-1C 0 to ± 70°C	Ceramic	
AM-435-1M - 55°C to + 125°C	Ceramic	
Trimming Potentiometer: TP50K, TP1	OK	
THE AM-435 is COVERED BY GS	A CONTRACT.	

TECHNICAL NOTES

- Maximum differential input voltage is independent of the 1. supply voltage, but neither input should exceed the negative supply. (+36 to -Vs). Slew rate of the input should be limited to 5V/µsec to insure low input bias currents.
- The gain of the AM-435 is set by the ratio of Rs and Rg. For 2 optimum gain stability, a low tempco gain setting resistor is recommended. A 5 or 10 ppm/°C metal film resistor is recommended. For more critical applications, we recommend a Vishay type S102 (± 1 ppm/°C). The resistors should be located as close to the terminals as possible. R_G should be used to select gain range keeping Rs constant.

GAIN	R _S (OHMS)	RG (OHMS)
1	1M	1M
10	1M	100K
100	1M	10K
1000	1M	1K

3. The gain equation is as follows:

$$V_{OUT} = \triangle V_{IN} - \frac{H_S}{B_C} + V_{REF}$$

- For nulling out small gain errors, a 50K trimming potentio-4. meter in series with a 953K resistor should be used to replace Rs.
- The maximum linear output swing is determined by the 5. magnitude of resistor RS:

$$(V_{OUT})_{MAX} = 10 \mu A \times R_S$$

- 6. The sense input is, in effect, the feedback "summing point" of the output section. This terminal is usually connected to the output. For remote loads or for load current sensing, the sense terminal is run separately to the load or to the current sensing resistors. The reference terminal is normally connected to ground but may be connected to a voltage source in a range of \pm 10V in order to directly offset the amplifier output. The Reference Input is useful for zeroing offsets whether they occur in the source, the amplifiers, or the system that follows. To minimize errors due to input current (typically 20 µ A), the effective resistances in series with the Sense and Reterence terminals should be equal
- The AM-435 is a two stage instrumentation amplifier and each stage contributes independently to the offset referred to the output (R.T.O.)

Total Offset (R.T.O.) = (Input Offset × G) + Output Offset For gains under 10, the output trim should be sufficient to zero out errors. If the output trim is not used, pins 2 and 16 must be connected together to the positive supply. If the input trim is not used, pin 1 must be connected to the positive supply. For gains greater than 10, the input offset zeroing circuit should be used to optimize accuracy.

A 160 ohm resistor in series with a $0.0022 \,\mu$ F capacitor be-8 tween the COMP pins will compensate the unit for all gain ranges. External components should be located as close to the package as possible for maximum accuracy.

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Commutating Auto-Zero (CAZ) Instrumentation Amplifier

FEATURES

- Exceptionally low input offset voltage 2μV
- Low long term input offset voltage drift $0.2\mu V/year$
- Low input offset voltage temperature drift 0.05μV/°C
- Wide common mode input voltage range 0.3V above supply rail
- High common mode rejection ratio 100 dB
- Excellent low supply voltage Down to $\pm 2V$
- Short circuit protection on outputs for ±5V operation
- Static-protected inputs no special handling required

GENERAL DESCRIPTION

The AM-7605/AM-7606 commutating auto-zero (CAZ) instrumentation amplifiers are designed to replace almost any of today's expensive hybrid or monolithic instrumentation amplifiers for low frequency applications from DC to 10 Hz. This is made possible by the unique construction of this new device, which takes an entirely new design approach to low frequency amplifiers.

Unlike conventional amplifier designs which employ three op amps and require ultra-high accuracy in resistor tracking and matching, the CAZ instrumentation amplifier requires no trimming except for gain. The key feature of the CAZ principle involves automatic compensation for long term drift phenomena and temperature effects.

The AM-7605/AM-7606 is a monolithic CMOS chip which consists of two analog sections — a unity gain differential to single-ended voltage converter and a CAZ op amp. The first section serves to insure that at all times the differential input source is being sensed and applied to the CAZ amp section. The CAZ instrumentation amp section consists of an operational amplifier circuit which continuously corrects itself for input voltage errors, such as input offset voltage, temperature effects, and long term drift.

The AM-7605/AM-7606 is intended for low-frequency operation in applications such as strain gauges, which require voltage gains from 1 to 1000 and bandwidths from DC to 10 Hz. Since the CAZ amp automatically corrects itself for internal errors, the only periodic adjustment required is that of gain, which is established by two external resistors. The no-adjustment feature, combined with extremely low offset and temperature coefficient figures, makes the CAZ instrumentation amplifier very desirable for operation in severe environments (temperature, humidity, toxicity, radiation, etc.) where equipment service is difficult.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Data Acquisition

368C

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (sum of both positive and	D
negative supply voltages V^+ to V^-)	C
Positive Supply Voltage (GND to V ⁺) 18 Volts	
Negative Supply Voltage (GND to V ⁻) 18 Volts	0
DR Input Voltage $\dots (V^+ + 0.3)$ to $(V^+ - 8)$ Volts	
Input Voltage (C1, C2, C3, C4, +DIFF IN,	
–DIFF IN, –INPUT, BIAS, OSC)	
(Note 2)	S
Differential Input Voltage (+DIFF IN to -DIFF IN)	L
(Note 3)	

Note 1 — Stresses above those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent device failure. These are stress ratings only, and functional operation of devices under conditions other than those indicated in the Table of Electrical Characteristics is not recommended. Exposure to absolute maximum rating conditions for extended periods of time can cause device failures.

Note 2 — An SCR structure is inherent in the CMOS process used in the fabrication of these devices. If voltages in excess of $V^++0.3$ volts to $V^--0.3$ volts are connected to either inputs or outputs, destructive latchup can occur. For this reason it is recommended that no inputs from sources not on the same power supply or supplies be applied before the AM-7605/AM-7606 supplies are established, and that if multiple supplies are used the AM-7605/AM-7606 supplies be activated first.

Note 3 — No restrictions are placed on the differential input voltages on either the +DIFF IN or -DIFF IN inputs so long as these voltages do not exceed the power supply voltages by more than 0.3V.

Note 4 — The outputs may be shorted to ground (GND) or to either supply (V^+ or V^-). Temperatures and/or supply voltages must be limited to insure that the dissipation ratings are not exceeded.

Note 5 — For operation above 25°C free-air temperature, derate 4mW/°C from 500 mW above 25°C.

BLOCK DIAGRAM

OPERATING CHARACTERISTICS

Test Conditions: $V^+ = +5$ volts, $V^- = -5$ volts, $T_A = +25^{\circ}$ C, DR pin connected to V^+ (f_{COM} \cong 160Hz, f_{COM1} \cong 80Hz), $C_1 = C_2 = C_3 = C_4 = 1\mu$ F, Test Circuit 1 unless otherwise specified.

				VALUE	1 A. 1	1. A. A. A.
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Input Offset Voltage	Vos	$R_S \le 1k\Omega$ Low Bias Setting	-	±2		μV
		Med Bias Setting		±2	±5	μV
		High Bias Setting		±7		·μV
		MIL version over temp. Med Bias Setting			±20	μV
Average Input Offset	TCVos	Low or Med Bias Settings -55° C > T _A > +25° C		0.01	0.1	μV/°C
Voltage Temperature		$+25^{\circ}C > T_{A} > +85^{\circ}C$		0.01	0.1	μV/°C
Coefficient		+25°C > T _A > +125°C		.0.05	0.15	μV/°C
Long Term Input	VOS/Time .	Low or Med Bias Settings		0.5		΄μV/Year
Offset Voltage Stability						
Common Mode Input Range	CMVR		- 5.3		+5.3	V
Common Mode Rejection Ratio	CMRR	$C_{OSC} = 0$, DR connected to V [*] , $C_3 = C_4 = 1\mu F_1$		94		dB
	11 A.			100		15
		$C_{OSC} = 1\mu F$, DR connected to GND, $C_3 = C_4 = 1\mu F$		100		dB
	0000	$C_{OSC} = 1\mu F$, DR connected to GND, $C_3 = C_4 = 10\mu F$		104		dB
Power Supply Rejection Ratio	PSRR			0.15	1.5	dB
-INPUT Blas Current	INTB	Any bias setting, to = 160Hz		0.15	1.5	nA
Faujualant Innut Najaa		(includes charge injection currents)		4.0	· · · · · ·	
Veltage peak to peak		Bond Width Mod Bios Mode		4.0		μv
Vollage peak-to-peak	enp-p	0.1 to 10Hz High Riss Mode		4.0		μv
Equivalent Input	07.0	Band Width		5.0	i	μ.ν
Noise Voltage	ent t			17		
Voltage Gain	Δ	$B_{L} = 100k(t)$	90	105		dB
Voltage Gain	Av	Med Bias Setting	90	105		dB
		High Bias Setting	80	100		dB
Maximum Output	Vout	B: 1M0		• 4 9		V
Voltage Swing	•001	$B_{\rm L} = 100 k\Omega$		• 4 8		·V
Voltage Stilling	· · ·	B 10k0 Positive Swing	•44	1.0		v
		Negative Swing			4.5	v i
Band Width of Input	GBW	$C_3 = C_4 = 1\mu F$ All Bias Modes		10	1	Hz
Voltage Translator		· · · · ·				
Nominal Commutation	fcoм	Cosc = 0pF DR Connected to V		160		Hz
Frequency		DR Connected to GND		2560		Hz
Nominal Input Converter	fcom1	Cosc = 0pF DR Connected to V'		80		Hz .
Commutation Frequency		DR Connected to GND		1280		Hz
Bias Voltage to define	VBA	Low Bias Setting	V ⁺ -0.3 ·		V*+0.3	V
Current Modes	Vвм	Med Bias Setting	V*+1.4		V 1.4	V ¹
	VBL	High Bias Setting	V -0.3		V~±0.3	V
Bias (Pin 8) Input Current	BIAS			±.30		рА
Division Ratio Input	ldr -	V^* -8.0 $\leq V_{DR} \leq V^*$ +0.3 volt		. ±30		рА
Current			111.0.0		11: 0.0	
DR Voltage to define	VDRH	Internal oscillator division ratio 32	V 0.3		V +0.3	V ^s
Oscillator division ratio	VDRL	Internal oscillator division ratio 2	<u> </u>		V 1.4	V
Voltage Translater	P.o.			20		k0
Analog Switches	MAS			30		K12
Analog Switches		High Bigs Setting	1	7	15	mΛ
Suppry Surrent	15	Med Bias Setting	0.6	17	5	m A
		Low Bias Setting	0.0	0.6	15	mΔ
Operating Supply	V'-V	High Bias Setting	5	0.0	10	
Voltage Bange		Med or Low Bias Setting	4		10	· v
. enage hange		mice of Low Dias Octunity	<u>'</u>	l		

INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGES

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY (C₁, C₂ = 1μ F)

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY (C₁, C₂ = 0.1 μ F)

INPUT OFFSET VOLTAGE AND **PK-TO-PK NOISE AS A FUNCTION** OF SUPPLY VOLTAGE (V'-V')

COMMON MODE REJECTION RATIO AS A FUNCTION OF THE INPUT DIFFERENTIAL TO SINGLE ENDED **VOLTAGE CONVERTER** CAPACITORS

INPUT CURRENT AS A FUNCTION OF COMMUTATION FREQUENCY

MAXIMUM OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT LOAD RESISTANCE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING

AMPLITUDE RESPONSE OF THE INPUT DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER

150k

INPUTO

150k

0.1µF

150k

0.1µF

TEST CIRCUIT 1: USE TO MEASURE: a) INPUT OFFSET VOLTAGE $\begin{pmatrix} V_{OUT} \\ 1000 \end{pmatrix}$ b) INPUT EQUIV NOISE VOLTAGE c) SUPPLY CURRENT d) CMRR e) PSRR

TEST CIRCUIT 2: DC to 10Hz (1Hz) Unity Gain Low Pass Filter

0.05µF

v

25k

LF356A

δv

-ov

NULL

OFFSET

• Vour

DETAILED DESCRIPTION CAZ Instrumentation Amp Overview

The CAZ instrumentation amplifier operates on principles which are very different from those of the conventional three op amp designs, which must use ultra-precise trimmed resistor networks in order to achieve acceptable accuracy. An important advantage of the AM-7605/AM-7606 CAZ instrumentation amp is the provision for self-compensation for internal error voltages, whether they are derived from steady-state conditions, temperature, supply voltage fluctuations, or are variable over a long term.

The CAZ instrumentation amplifier is constructed with monolithic CMOS technology, and consists of three distinct sections, two analog and one digital. The two analog sections — a differential to single-ended voltage converter, and a CAZ op amp — have on-chip analog switches to steer the input signal. The analog switches are driven from a self-contained digital section which consists of an RC oscillator, a programmable divider, and associated voltage translators. A functional layout of the AM-7605/AM-7606 is shown in Figure 1.

Figure 1: Simplified Block Diagram

The AM-7605/AM-7606 have approximately constant input equivalent noise voltage, CMRR, PSRR, input offset voltage and drift values independent of the gain configuration. By comparison, hybrid-type modules which use the traditional three op amp configuration have relatively poor performance at low gain (1 to 100) with improved performance above a gain of 100.

The only major limitation of the AM-7605/AM-7606 is its low-frequency operation (10 to 20 Hz maximum). However in many applications speed is not the most important parameter.

CAZ Op Amp Section

Operation of the CAZ amp section of the AM-7605/AM-7606 instrumentation amplifier is best illustrated by referring to Figure 2. The basic amplifier configuration, represented by the large triangles, has one more input than does a regular op amp - the AZ, or auto-zero terminal. The voltage on the AZ input is that level to which each of the internal op amps are to be auto-zeroed. In Mode A, op amp #2 is connected into a unity gain mode through on-chip analog switches, and charges external capacitor C₂ to a voltage equal to the DC input offset voltage of the amplifier, in addition to the instantaneous low-frequency noise voltage. A short time later, the analog switches reconnect the on-chip op amps to the configuration shown in Mode B. In this mode, op amp #2 has capacitor C₂ (which is charged to a voltage equal to the offset and noise voltage of op amp #2) connected in series to its non-inverting (+) input in such a manner as to null out the input offset and noise voltages of the amplifier. While one of the on-chip op amps is processing the input signal, the second op amp is in an auto-zero mode, and charges a capacitor to a voltage equal to its equivalent DC and low frequency error voltage. The on-chip amplifiers are connected and reconnected at a rate designated as the commutation frequency (f_{COM}) so that at all times one or the other of the on-chip op amps is processing the input signal while the voltages on capacitors C1 and C2 are being updated regularly to compensate for variables such as low frequency noise voltage and input offset voltage changes due to temperature, drift or supply voltages effects.

Compared to the standard bipolar or FET input op amps, the CAZ amp scheme demonstrates a number of important advantages:

* Effective input offset voltages can be reduced from 1000 to 10.000 times without trimming.

* Long-term offset voltage drift phenomena can be compensated and dramatically reduced.

* Thermal effects can be compensated for over a wide operating temperature range. Reductions can be as much as 100 times or better.

* Supply voltage sensitivity is reduced.

CMOS processing is ideally suited to implement the CAZ amp structure. The digital section is easily fabricated, and

Figure 2: Diagrammatic representation of the 2 half cycles of operation of the CAZ OP AMP.

Figure 3: Schematic of analog switches connecting each internal OP AMP to the external inputs at the output.

the transmission gates (analog switches) which connect the on-chip op amps can be constructed for minimum charge injection and the widest operating voltage range. The analog section, which includes the on-chip op amps, contributes performance figures which are similar to bipolar or FET input designs. CMOS structure provides the CAZ amp concept with open-loop gains of greater than 100 dB, typical input offset voltages of ± 5 mV, and ultra-low output leakage currents, typically 1 pA.

The CMOS transmission gates connect the on-chip op amps to external input and output terminals, as shown in Figure 3. Here, one op amp and its associated analog switches are required to connect each on-chip op amp so that at any time three switches are open and three switches are closed. Each analog switch consists of a P-channel transistor in parallel with an N-channel transistor.

DIFFERENTIAL-TO-SINGLE-ENDED UNITY GAIN VOLTAGE CONVERTER

An idealized schematic of a voltage converter block is shown in Figure 4. The mode of operation is guite simple, involving two capacitors and eight switches. The switches are arranged so that four are open and four are closed. The four conducting switches connect one of the capacitors across the differential input and the other from a ground or reference voltage to the input of the CAZ instrumentation amp. The output signal of this configuration is shown in Figure 5, where the voltage steps equal the differential voltage (VA-VB) at commutation times a, b, c, etc. The output waveform thus represents all information contained in the input signal from DC up to the commutation frequency, commutation and noise voltages are added. Sampling theory states that to preserve the integrity of the information to be processed, at least two samples must be taken within a period (1/f) of the highest frequency of the signal being

Figure 4: Schematic of the differential to single ended voltage converter

Figure 5: Input to Output Voltage waveforms from the differential to single ended voltage converter. For additional information, see frequency characteristics in Amplitude Response of the Input Differential to single ended voltage converter graph on page 5.

sampled. Consequently this scheme preserves information up to the commutation frequency. Above the commutation frequency, the input signal is transferred to a lower frequency. This phenomenon is known as aliasing. Although the output responds above the commutation frequency, the frequencies of the output responses have been aliased down to frequencies below the commutation frequency.

The example shown in Figure 4 for the voltage converter is fabricated with CMOS analog switches, which contain a parallel combination of P-channel and N-channel transistors. The switches have finite ON impedances of $30k\Omega$, plus parasitic capacitances to the substrate. Because of the charge injection effects which appear at both the switches and the output of the voltage converter, the values of capacitors C₀ and C₀ must be about 1μ F to preserve signal translation accuracies to 0.01%. The 1μ F capacitors, coupled with the $30k\Omega$ equivalent impedance of the switches, produce a low-pass filter response from the voltage converter which is approximately 3 dB at 10 Hz.

APPLICATIONS

USING THE AM-7605/AM-7606 TO BUILD A DIGITAL READOUT TORQUE WRENCH

A typical application for the AM-7605/AM-7606 is in a strain gauge system, such as the digital readout torque wrench circuit shown in Figure 6. In this application, the CAZ intrumentation amplifier is used as a preamplifier, taking the differential voltage of the bridge and converting this voltage to a single-ended voltage reference to ground. The signal is then amplifier by the CAZ instrumentation amplifier and applied to the input of a 3-1/2 digit dual-slope A/D converter chip for LCD panel meter display. The A/D converter device used in this instance is the Intersil ICL7106.

In the digital readout torque wrench circuit, the internal reference voltage of the ICL7106 is used instead of the conventional external reference source. In order to set the full-scale reading, it is required that, given a certain strain gauge bridge with a defined pressure voltage sensitivity, a value of gain for the AM-7605/AM-7606 instrumentation CAZ amp be selected along with an appropriate value for the reference voltage. The gain should be set so that at full scale the output will swing about 0.5V. The reference voltage required is about one-half the maximum output swing, or approximately 0.25V.

In this type of system, only one adjustment is required. Either the amplifier gain or the reference voltage must be varied for full-scale adjustment. Note that the common to V⁺ voltage of the CAZ amp is about 2.8V. This voltage must therefore be divided by about 10 to provide the 0.25V reference voltage. Total current consumption of all circuitry, less the current through the strain gauge bridge, is typically 2 mA.

Figure 6: 3-1/2 Digit Digital Readout Torque Wrench

SOME HELPFUL HINTS

Testing the AM-7605/AM-7606 CAZ Instrumentation Amplifier

Test Circuits #1 and #2 provide convenient means of measuring most of the important electrical parameters of the CAZ instrumentation amp. The output signal can be viewed on an oscilloscope after being fed through a low-pass filter. It is recommended that for most applications, a low-pass filter of about 1.0 to 1.5 Hz be used to reduce the peak-to-peak noise to about the same level as the input offset voltage.

The output low-pass filter must be of a high-input impedance type — not a capacitor across the feedback resistor R₂ nor a low-impedance type of around 1k Ω — but rather must be rated at about 100k Ω and 1.0 μ F so that the output dynamic loading on the CAZ instrumentation amp is about 100k Ω .

Bias Control

The on-chip op amps consume over 90% of the power required by the AM-7605/AM-7606 instrumentation op amp. For this reason, the internal op amps have externally-programmable bias levels. These levels are set by connecting the BIAS terminal to either V⁺, GND, or V⁻. The difference between each bias setting is about a factor of 3, allowing a 9.1 ratio of power supply versus bias setting. This current programmability provides the user with a choice of device power dissipation levels, slew rates (the higher the slew rate, the lower the amplitude of commutation spikes) and offset errors due to "IR" voltage drops and thermoelectric temperature gradients across the chip and the higher the input offset error). In most cases, the medium bias (MED BIAS) setting will be found to be the best choice.

Output Loading (Resistive)

With a 10k Ω load, the output voltage swing can vary across nearly the entire supply voltage range, and the device can be used with loads as low as $2k\Omega$.

However, with loads of less than $50k\Omega$, the on-chip op amps will begin to exhibit the characteristics of transconductance amplifiers, since their respective output impedances are nearly $50k\Omega$ each. Thus the open-loop gain is 20 dB less with a $2k\Omega$ load than it would be with a $20k\Omega$ load. Therefore, for high gain configurations requiring high accuracy, an output loading of $100k\Omega$ or less is suggested.

There is another consideration in applying the CAZ instrumentation op amps which must not be overlooked, and that is the additional power dissipation of the chip which will result from a large output voltage swing into a low resistance load. This added power dissipation can affect the initial input offset voltages under certain conditions.

Output Loading (Capacitive)

In many applications, it is desirable to include a low-pass filter at the output of the CAZ instrumentation op amp to reduce high-frequency noise outside the desired signal passband. An obvious solution when using a conventional op amp would be to place a capacitor across the external feedback resistor and thus produce a low-pass filter.

However, with the CAZ op amp concept this is not possible because of the nature of the commutation spikes. These voltage spikes exhibit a low-impedance characteristic in the direction of the auto-zero voltage and a high-impedance characteristic on the recovery edge, as shown in Figure 7. It can be seen that the effect of a large load capacitor produces an area error in the output waveform, and hence an effective gain error. The output low-pass filter must be of a highimpedance type to avoid these area errors. For example, a 1.5 Hz filter will require a 100k Ω resistor and a 1.0 μ F capacitor, or a 1 M Ω resistor and an 0.1 μ F capacitor.

Oscillator and Digital Circuitry Considerations

The oscillator has been designed to run free at about 5.2 kHz when the OSC terminal is open circuit. If the full divider network is used, this will result in a nominal commutation frequency of approximately 160 Hz. The commutation frequency is that frequency at which the on-chip op amps are switched between the signal processing and the auto-zero modes. A 160 Hz commutation frequency represents the best compromise between input offset voltage and low frequency noise. Other commutation frequencies may provide optimization of some parameters, but always at the expense of others.

The oscillator has a very high output impedance, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the natural oscillator frequency is desired (5.2 kHz) the terminal remains open circuit. In other instances, it may be desirable to synchronize the oscillator with an external clock source, or to run it at another frequency. The AM-7605/ AM-7606 CAZ amp provides two degrees of flexibility in this respect. First, the DR (division ratio) terminal allows a choice of either dividing the oscillator by 32 (DR terminal to V⁺) or by 2 (DR terminal to GND) to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and the V⁺ or system GND terminals. For situations which require that the commutation frequency be synchronized with a master clock, (Figure 8) the OSC terminal may be driven from TTL logic (with resistive pull-up) or by CMOS logic, provided that the V⁺ supply (with respect to ground) is $+5V (\pm 10\%)$ and the logic driver also operates from a similar voltage supply. The

Figure 7: Effect of a load capacitor on output voltage waveforms.

Figure 8: AM-7605 being clocked from external logic into the oscillator terminal.

reason for this requirement is that the logic section (including the oscillator) operates from an internal -5V supply, referenced to V⁺ support which is generated on-chip, and which is not accessible externally.

Thermoelectric Effects

The ultimate limitations to ultra-high-sensitivity DC amplifiers are due to thermoelectric, Peltier, or thermocouple effects whereby electrical junctions consist of various metals (alloys, silicon, etc.) Unless all junctions are at precisely the same temperature, small thermoelectric voltages will be produced, generally about $0.1\mu V/^{\circ}C$. However, these voltages can be several tens of microvolts per °C for certain thermocouple materials.

In order to realize the extremely low offset voltages which the CAZ op amp can produce, it is necessary to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. Special thermoelectric solder (70% cadmium, 30% tin) should be used. In addition, the supply voltages and power dissipation should be kept to a minimum by use of the MED BIAS setting. Employ a high impedance load and keep well away from equipment which dissipates heat.

Component Selection

The two auto-zero capacitors (C₁ and C₂) should each be about 1.0 μ F value. These are relatively large values for nonelectrolytic capacitors, but since the voltages stored on them do not change significantly, problems of dielectric absorption, charge bleed-off and the like are not as significant as they would be for integrating dual-slope A/D converter applications. Polypropylene and Mylar are the best.

Excellent results have been obtained for commercial temperature ranges using several of the less-expensive, smaller-size capacitors, since the absolute values of the capacitors is not critical. Even polarized electrolytic capacitors rated at 1.0μ F and 50V have been used successfully at room temperature, although no recommendations are made concerning the use of such capacitors.

Commutation Voltage Transient Effects

Although in most respects the CAZ instrumentation amplifier resembles a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 10 Hz. The is due to the finite switching transients which occur at both the input and output terminals because of commutation effects. These transients have a frequency spectrum beginning at the commutation frequency, and including all of the higher harmonics of the commutation frequency. Assuming that the commutation frequency is higher than the highest in-band frequency, then the commutation transients can be filtered out with a low-pass filter.

The input commutation transients arise when each of the onchip op amps experiences a shift in voltage which is equal to the input offset voltages (about 5-10mV), usually occurring during the transition between the signal processing mode and the auto-zero mode. Since the input capacitances of the on-chip op amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage auto-zero capacitors C1 and C₂ must have values of at least 10,000 x 10 pF, or 0.1μ F each. The charge that is injected into the input of each op amp when being switched into the signal processing mode produces a rapidly-decaying voltage spike at the input, plus an equivalent DC input bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly. exceed the inherent leakage currents of the input analog switches, which are typically 1.0 pA at an ambient temperature of 25°C.

The output waveform in Test Circuit #1 (with no input signal) is shown in Figure 9. Note that the equivalent noise voltage is amplified 1000 times, and that due to the slew rate of the onchip op amps, the input transients of approximately 7 mV are not amplified by 1000.

Layout Considerations

Care should be exercised in positioning components on the PC board, particularly the capacitors C_1 , C_2 , C_3 and C_4 , all of which must be shielded from the OSC terminal. Also, parasitic PC board leakage capacitances associated with these four capacitors should be kept as low as possible to minimize charge injection effects.

PACKAGE DIMENSIONS

PRELIMINARY DATA

FEATURES

• 1 to 1024 Gains

- 4 Bit Gain Programming
- 10¹²Ω Input Impedance
- .01% Gain Nonlinearity
- Gain Drift to 10ppm/°C max.
- Fast Settling to 10 µ sec
- CMRR to 120 dB

GENERAL DESCRIPTION

The AM-542 and AM-543 are high performance, digitally controlled Programmable Gain Instrumentation Amplifiers. These amplifiers permit selection of gains from 1 to 1024 in 11 binary weighted steps, through the input of a 4 bit TTL compatible word. One version is optimized for low drift and the other is optimized for fast settling. Use of these devices in data acquisition applications yields a system with wide dynamic range and high resolution. These amplifiers have special damping circuits which result in fast settling times with both gain range and signal amplitudes changing simultaneously. Most other PGIA's do not have this capability

These amplifiers feature high input impedances, common mode rejection ratios to 120dB, gain nonlinearity of 0.01%, maximum output impedance of 0.1 Ω at 1 KHz, input overvoltage protection, and settling times that are not degraded by gain switching.

The AM-542 is optimized for the lowest drift performance currently attainable in a Programmable Gain Instrumentation Amplifier, with models available offering input offset voltage drift of only $2 \,\mu$ V/°C max. All AM-542's provide an input impedance of 1.2 x 10°Ω, common mode range of ±11V min, gain temperature coefficient of 10 ppm/°C max., common mode rejection up to 120 dB and a unity gain settling time to 0.01% of 160 μ sec.

The AM-543 is tailored to provide the fastest settling time for any hybrid PGIA; a 20V output step settles to 0.01% in only 10 μ sec at unity gain. These high-speed units feature a slew rate of 3.3V/ μ sec, an input impedance of 10¹² Ω , output voltage range of ±10V min. at 5 mA, common mode rejection up to 100 dB and a gain temperature coefficient of ±15 ppm,/°C.

State-of-the-art design and thin-film hybrid technology combine to permit these amplifiers to be packaged in a compact, hermetically sealed, 24 pin ceramic DIP. The AM-542 and AM-543 are available in versions for operation over the 0 to $+70^{\circ}$ C, -25° C to $+85^{\circ}$ C or -55 to $+125^{\circ}$ C temperature ranges.

Programmable Gain Instrumentation Amplifiers Models AM-542, AM-543

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617)339-9341/TWX710-346-1453/TLX951340

	AM-542	AM-543
MAXIMUM RATINGS		
Positive Supply, Pin 19	+22V	+22V
Negative Supply, Pin 6	-22V	-22V
Input Voltage Range	±20V	±20V
INPUT CHARACTERISTICS		
Input Offset Voltage	$\pm 200 \mu\text{V} \times \text{Gain}$	±1 mV × Gain
Input Bias Current, max.	±14 nÅ	±100 pA
Input Offset Current, max	12 nA	20 pA
Input Impedence, Diff. or Com.	1 0 100	100
mode.	$1.2 \times 10\Omega$	1012(2
Common Mode voltage Range,	1 1 1 1	1 1 1 1
	$\pm 11V$	$\pm 11V$
Digital Inputs, Logic 1	$VIn = \ge +2.4V$	VIn = 2 + 2.4V
	$VIN = \leq +0.4V$	$VIn = \leq +0.4V$
OUTPUT CHARACTERISTICS		
Output Voltage Range, min.	±11V	±10V
Output Current	5 mA	5 mA
Output Impedance ¹	.1Ω	.1Ω
PERFORMANCE		*****
Gain Range1	to 1024	1 to 1024
Gain Accuracy, G=1 to 1024,		
Gain NonLinearity G-1 to 1024	.02%	.02%
max	01%	01%
Gain Temperature Coefficient	+10 nnm / °C	+15 nnm / °C
Power Supply Rejection Ratio,		÷ oppin/ O
min.	86 dB	85 dB
$\Delta M_{5}/YA may$	10 /// °C	15 /// 15
AM-5/YR may	$5 \mu V/^{\circ}C$	15μν/ Ο
AM-54XC may	$2 \mu V/ C$	
Innut Voltage Noise DC to	- μν/ U	
100Hz G=1	100 uV n-n	1 mV n n may
G=1024	100 uv p-p	1 mv p-p, max.
G-1024 Common Mode Dejection Detie ²		
Common Mode Rejection Ratio	100 -10	100 -10
	120 dB	100 dB
G=1,100 HZ	100 dB	98 dB
G=1, 1KHZ	100 dD	96 dB
G=1024, DC		100 dB
G= 1024, 100HZ		98 aB
G= 1024, 1KHZ	90 UB	96 aB
	0.14 V/µsec	3.3 V/µsec
Settling 11me to 0.01%, G=1 . G=1024	i bu µsec 3 msec	10 µsec 550 µsec
, <u> </u>	-	
POWER REQUIREMENTS	+15V @ 50 mA	+15V@50mA
Analog Supply, nated value	-15V @ 25 mA	-15V @ 25 mA
Analog Supply Bange	+15V to +20 VDC	+15V to +18 VDC
	$\pm 5 \sqrt{0} 5 m^{4}$	$\pm 5V @ 5 m^{4}$
Eogic Juppiy		
PHYSICAL ENVIRONMENTAL		ŕ
Operating Temperature Range.		
Suffix - C	0 to +70°C	
	-25 to +85°C	
Suffix - R		
Suffix - R Suffix - M	-55 to +125°C	
Suffix - R Suffix - M Storage Temperature Bange	−55 to +125°C −65 to +150°C	
Suffix - R Suffix - M Storage Temperature Range. Package Type	-55 to +125°C -65 to +150°C 24 Pin Ceramic DI	Ρ
Suffix - R Suffix - M Storage Temperature Range. Package Type. Weight	-55 to +125°C -65 to +150°C 24 Pin Ceramic DI 0.2 oz (6g)	P

TECHNICAL NOTES

- The AM-542 and AM-543 have an offset adjustment capability for each stage, input and output. The output trim should be sufficient to zero out offset errors on the lower gain ranges, and adjustment should be made with a gain of 1 selected. For the higher gain ranges the input offset zeroing circuit should be used to optimize accuracy. Adjustment of the input offset should be made with a gain of 1024 selected.
- 2. Power supply inputs to the AM-542 and AM-543 are bypassed internally. However, for best performance both power supplies should be bypassed with 1μ F ceramic capacitors as close as possible to the ± supply pins.
- 3. Pull-up resistors are required for interfacing with the logic inputs on the AM-542/543. Recommended values are 10 K $\Omega.$

NOTES:

- 1. At 1 KHz, all gain ranges.
- 2. 1 K Ω source imbalance.
- 3. For 20V output change, with or without a range change.

PERFORMANCE DATA

The AM-542/543 are functionally laser trimmed to reduce initial offset voltage and offset voltage change due to gain change to a minimum level. However, for critical applications where zero offset is required, the following procedure can be followed to externally zero the offset.

1. Allow the Amplifier to reach 4. Adjust R₂ for zero output. operating temperature. 5. Set gain to 1024 V/V.

2. Set R_1 and R_2 to mid-range. 6. Adjust R_1 for zero output. 3. Set gain to 1 V/V.

This technique minimizes the offset voltage change over the maximum change in gain. Trimming may cause input offset temperature drift to increase slightly.

GAIN STATE TRUTH TABLE

DIGITAL INPUTS					
A ₈ (PIN 14)	A₄(PIN 15)	A ₂ (PIN 16)	A ₀ (PIN 17)	GAIN	
0	0	0	0	1	
0	0	0	<u>े 1</u>	2	
0	0	1	0	4	
0	. 0	1	1	8	
0	1	0	0	16	
0	1	0	1	32	
0	1	1	0	64	
0	1	1	1	128	
1	0	0	0	256	
1	0	0	1	512	
1	0	1	0	1024	
	•				

ORDERING INFORMATION

MODEL	INPUT OFFSET VOLTAGE DRIFT	SETTLING TIME TO 0.01% G-1	OPERATING TEMP. RANGE
AM-542AMC			0°C to +70°C
AM-542AMR	10µV/°C		-25°C to +85°C
AM-542AMM			-55°C to +125°C
AM-542BMC			0°C to +70°C
AM-542BMR	5µV/°C	160 <i>µ</i> sec	-25°C to +85°C
AM-542BMM			-55°C to +125°C
AM-542CMC			0°C to +70°C
AM-542CMR	2 µV/°C		-25°C to +85°C
AM-542CMM			-55°C to +125°C
AM-543AMC			0°C to +70°C
AM-542AMR	15 µV/°C	10 <i>µ</i> sec	-25°C to +85°C
AM-543AMM			-55°C to +125°C

TRIMMING POTENTIOMETERS

TP20K

MICROPROCESSOR BASED DATA ACQUISITION SYSTEM

A typical application of the AM-542/543 is in a microprocessor controlled data acquisition system. The microprocessor loads the RAM with the desired gain coding. This coding relates the selected gain ranges to a specific address. When the processor instructs the multiplexer to multiplex a particular analog input channel, this instruction is also received by the RAM, which puts out the appropriate gain code to the AM-542/543. This system allows acquisition of signals over a wide dynamic range at high resolution.

TYPICAL APPLICATION

HIGH SPEED 12 BIT DATA ACQUISITION SYSTEM

and 12 bit resolution that utilizes the AM-543. If the control logic is timed so that the Sample-Hold-ADC section is converting one analog value while the mux-amplifier section is allowed to settle to the next input value, throughput rates greater than 90 KHz can be achieved. The AM-543 is used with Datel-Intersil's ADC-817, a 12 bit hybrid A/D with a 2 μ sec conversion rate, the SMH-6, a 01%, 1 μ sec hybrid Sample-Hold, and the MVD-807, a low cost monolithic analog multiplexer.

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved. 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Houston, (714)835-2751, (L.A.) (213)933-7256
Sunnyvale, CA (408)733-2424
Gaithersburg, MD (301)840-9490
Houston, (713)781-8886
Dallas, TX (214)241-0651
OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

High Performance Instrumentation Amplifiers AM-201 Series

FEATURES

- Gain Range 1 to 1000
- Input Drift to .25 μ V/°C
- CMRR to 114 dB
- Gain Nonlinearity .01% Max.
- 180kHz Bandwidth at G=100

GENERAL DESCRIPTION

The AM-201 series instrumentation amplifiers offer the highest available performance in a compact, low cost module. These amplifiers are specifically designed for critical applications where the lowest input drifts and noise are required together with the highest possible common mode rejection; at the same time wide bandwidth and excellent settling time are achieved. This series rivals the performance of expensive rack-mounted instrumentation amplifiers and yet is packaged in a small $1.5 \times 1.5 \times .375$ inch module.

The key to the performance of the AM-201 series is a unique very high transconductance (gm = 50 mhos) input stage which gives optimum results for high gains of 100 to 1000. The amplifiers are programmed by a single external resistor for gains of 1 to 1000 and give guaranteed total voltage offset drifts referred to the input of 1.0, 0.5, and $0.25\mu V/^{\circ}C$ at a gain of 1000 for the three models AM-201A, AM-201B, and AM-201C respectively. At a gain of 1000 the common mode rejection ratio is 100, 106, and 114 dB minimum for the three models, with a source unbalance of 1 kilohm. The input stage gives very low bias currents and an input offset current drift of only 20pA/°C, allowing use of up to 50 kilohm balanced input source impedances. These performance characteristics are achieved without sacrificing good bandwidth: 3 dB bandwidth is 45 kHz at G=1000 and 180 kHz at G=100. Output settling time is 20 μ sec. for a 10V step to .01%.

The gain equation for these models is: G=200K/R_G. Gain equation accuracy is $\pm 0.5\%$ with a gain nonlinearity of .01% maximum and gain temperature coefficient of 20ppm/°C maximum. Other input specifications include input voltage noise of 1 μ V peak to peak from 0.1 to 10 Hz and 1 μ V RMS from 10 Hz to 10 kHz. The input offset voltage is adjustable to zero by means of an external trimming potentiometer. These amplifiers also have sense and reference terminals for load sensing and externally offsetting the output voltage. Output capability is $\pm 10V$ at 5mA, with output short circuit protection.

DATEL-INTERSIL INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617) 339-9341 / TWX 710-346-1953 / TLX 951340

SPECIFICATIONS, AM-201 SERIES Typical at 25°C and ±15V supplies unless otherwise noted.

	А	В	С	`
Differential Input Voltage Bange		+10V min		
Common Mode Input Voltage Range		±10V min.		
Input Overvoltage no damage				
Input Impedance Diff or Com Mode		10 ⁹ ohms		
Input Rias Current nA max	50	25	25	1
Input Offset Current nA	25	25	1	
Input Impedance Bef & Sense Inputs	2.0	1104	•	}
Input Offset Voltage		Adi to zoro		
		Auj. to zero		
OUTPUT CHARACTERISTICS				
Output Voltage		±10V min.		
Output Current, S.C. protected		±5mA min.		
Output Impedance		0.1 ohm		
Capacitive Load		.01µF max.		
Output Offset Range		±10V min.		
PERFORMANCE				1
Gain Range		1 to 1000		
Gain Equation		200K/R _G		
Gain Equation Accuracy		±0.5%		
Gain Nonlinearity		.01% max.		
Gain Temperature Coefficient		±20ppm/°C	max.	
CMR, ±10V, 1K unbal., DC-120 Hz .		Г	[
G=1000, dB min.	100	106	114	
G=100 dB min	80	86	94	
G=10 dB min	60	66	74	
G=1 dB min.	40	46	54	
DRIFT AND NOISE]		
Input Offset Voltage Drift ¹ , µV/°C max.				1
at G=1000	±1.0	±0.5	±0.25	
Output Offset Voltage Drift, G=1		±100µV/°C		1
Input Bias Current Drift		100pA/°C		
Input Offset Current Drift		20pA/°C		
Power Supply Rej., $\mu V/V$ at G=1000	10	5	2	1
Input Voltage Noise, 0.1 to 10 Hz		1// P-P		1
Input Voltage Noise, 10 Hz to 10 kHz		1.V BMS		
Input Current Noise, 10 Hz to 10 kHz		20n4 RMS	,	1
		20074 11110		1
DYNAMIC RESPONSE				
Small Sig. Bandwidth, -3 dB, G=1000		45 kHz		
G=100		180 kHz		1
G=10		300 kHz		
Slew Rate		1 V/µsec.		
Full Power Response, 20V P-P		15 kHz		
Settling Time, 10V to .01% at G=1000		20 µsec.		
Overload Recovery		10 µsec.		1
				1
POWER REQUIREMENT				
Voltage, rated performance	:	±15VDC ±0.5V		
Voltage Range, operating ²	1.1.1	±12V to ±18VD	0	
Current, quiescent		5 mA		
PHYSICAL-ENVIRONMENTAL]
Operating Temperature Range	0°C to 70°C			
Storage Temperature Range	-55°C to +8	5°C		
Relative Humidity	Up to 100%	non-condensing		
	15-15-	375 inches		1
Gase 3120	/20 4 20 4			1
Case Motorial	(30,1 X 38,1	x 9,5 mm)	ALL NA 14	1
		r nunarate per N		
	.040 round,	yold plated, .250	J long min.	1
vveignt	2.5 oz. max.	(/ig.)		

1. With input offset voltage initially zeroed.

2. Signal input and output range is $\pm 7V$ to $\pm 13V$.

TECHNICAL NOTES

- 1. The guaranteed input offset voltage drift specification requires that the input offset voltage be zeroed. This is done by means of an external 50K trimming potentiometer connected from the TRIM pin to +15V. For minimum effect upon input offset drift, a low tempco trimming pot is recommended such as Vishay type 1203 (20ppm/°C). If the operating temperature range is relatively constant, then a 100ppm/°C cermet type trimming pot may be used (Datel Systems TP50K at \$3.00 each). A 100ppm/°C drift in the trimming pot causes a $0.3\mu V/^{\circ}C$ input offset voltage drift in the amplifier.
- 2. For optimum gain stability a low tempco gain setting resistor is recommended. The temperature coefficient of this resistor adds directly to the 20ppm/°C maximum gain tempco of the amplifier. For negligible effect on tempco Vishay type S102 $(\pm 1 \text{ppm/}^{\circ} \text{C})$ is recommended. For less critical applications a 5 or 10ppm/°C metal film resistor is recommended. The resistor should be located as close as possible to the ${\sf R}_{G}$ terminals of the amplifier, and shunt capacitance across the resistor should be kept to a minimum in order to prevent noise pick-up or instability at low gains. For gain-switched applications it is recommended that reed relays located close to the amplifier be used rather than running leads from a panel switch to the R_{G} terminals.
- 3. The differential input terminals require a bias current path to ground and therefore cannot be used with floating inputs. Due to the very low input offset current drift of 20pA/°C, balanced source resistances up to 50K ohms can be used with these amplifiers. For example, 50K ohms x 20pA/°C gives an equivalent input offset voltage drift of $1\mu V/^{\circ} C$.
- 4. The guaranteed input offset voltage drifts of 1.0, 0.5, or 0.25 μ V/°C include both input and output drifts referred to the input at a gain of 1000. Drifts at other gains are approximately (referred to input): $\triangle \operatorname{Eos} (\mu V/^{\circ} C) = (\triangle \operatorname{Eos})_{1000} + \frac{100}{G}$

ORDERING INFORMATION

AM-201A AM-201B AM-201C

Mating Socket: MS-9 Trimming Pot: 100ppm/°C Cermet Type тр50к

THE AM-201 SERIES AMPLIFIERS ARE COVERED BY GSA CONTRACT.

TECHNICAL NOTES (Cont'd)

PERFORMANCE DATA

- 5. The sense terminal is normally connected to the output terminals, and the reference terminal is normally connected to ground. For remote loads or for load current sensing, the sense terminal is run separately to the load or to the current sensing resistor. The reference terminal may be connected to a voltage source in the range ±10V in order to directly offset the output of the amplifier by the same amount. Both sense and reference terminals should be connected only to low impedance sources (less than 10 ohms), as any impedance seen by these terminals will degrade the power supply rejection of the amplifier in proportion to the source impedance. A unity gain buffer amplifier can be used to isolate the reference terminal from high impedance sources. See application diagram.
- 6. The AM-201 series amplifiers have a distinct advantage over many other instrumentation amplifiers in gain-switched applications. Because the gain formula is $200K/R_G$ the switched gain varies precisely inversely with RG. If RG is halved, for example, the gain is exactly doubled. Therefore, unlike instrumentation amplifiers with a constant term of 1 in the gain formula, the selection of gain setting resistors is greatly simplified. In switched gain applications the AM-201 amplifiers should be zeroed at the highest gain. The input offset voltage then will not change with gain.

ANALYSIS OF SIGNIFICANT ERROR SOURCES USING BRIDGE TRANSDUCER The following errors are computed for an AM-201C operated from a bridge transducer over a ±10°C ambient temperature range at a gain of 1000.

Power supply drift (assuming .02%/°C) contributes a negligible amount to the error and therefore the computation is omitted. The total output errors for a 10°C temperature change are less than 0.1%.

TOTAL VOLTAGE OFFSET DRIFT (REFERRED TO INPUT)

APPLICATION DIAGRAMS

INPUT OFFSET TRIMMING: Short input terminals together and connect to ground or to common mode voltage at which input will be used. Adjust 50K trimming pot for zero output voltage. For critical applications R_G should be a Vishay type S102 and the trimming pot should be a Vishay type 1203. See technical notes.

DRIVING A GROUNDED LOAD USING CURRENT SENSING

USING AN OUTPUT CURRENT BOOSTER

CONNECTION FOR DRIVING LOAD WITH CURRENT BOOSTER USING LOAD CURRENT SENSING

NOTE: The output voltage using the gain equation will appear across Rs. The load impedance and output of the current booster must be compatible with this. Highly inductive loads may cause ringing or oscillation. In this case add Rp and Cp as shown.

GAIN SWITCHING WITH THE AM-201

Gain is inversely proportional to R_G. Thus if R_G is halved the gain is exactly doubled. Input offset voltage does not change with RG.

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 DATEL SYSTEMS SARL 602-57-11
DATELEK SYSTEMS GmbH (089)77-60-95
DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Special Functions

AMC-8013	392C
LA-8048, LA-8049	396C
FLT-U2	404C
TT-590	410C
VFQ-IC	412C
VFV SERIES	416C
VI-7660	422C
VR-182	428C
VR-8069	430C
WG-8038	432C

Special Functions

	anna an fairte ann an tha an tha s Ann ann an Ann ann an tha an tha an	NON		POWER					
		LINEARITY		REQUIRE	OPER. TEMP.	PRICE	SEE		
MODEL	DESCRIPTION	% of F.S.	DRIF1/°C	MENTS	RANGE (°C)	(1-24)	PAGE		
AMC-8013-CC	Four Quadrant Analog	+0.8	1. Sec. 1. Sec		0 to + 70	\$ 5.89			
AMC-8013-CM	Multipliers with Accuracies				– 55 to + 125	\$36.69			
AMC-8013-BC	To 0.5%. Feature + 10V		0.06%	± 15VDC	0 to + 70	\$10.84	392C		
AMC-8013-BM	Input Range, 1MHz Band-	+05	0.00 /0		- 55 to + 125	\$56.19			
AMC-8013-AC	Width, Division or Square	+ 0.5			0 to + 70	\$24.84			
AMC-8013-AM	Root Functions				- 55 to + 125	\$62.79			
FLT-U2	Universal Active Filter	±5%	0.01%	± 5 to $\pm 18V$	0 to + 70	\$21.00	404C		
LA-8048-CC	Log Amp. with 6 Decades Input	±1%	0.8m\/	± 15VDC	0 to + 70	\$21.67	396C		
LA-8048-BC	1 Volt/Decade Output	± 0.5%	0.0111		0 to + 70	\$43.22			
LA-8049-CC	Anti-Log Amp. with 3	25mV	0.55mV	+ 15VDC	0 to + 70	\$21.67	3060		
LA-8049-BC	Decades Voltage Output	10mV	0.38mV	± 13700	0 to + 70	\$43.22	0000		
TT-590-1	Two Terminal I.C. Temperature	± 3.0		· · · ·	- 55 to + 150	\$ 2.70			
TT-590-J	Transducer, $1\mu A/^{\circ}C$ Output	± 1.5		+4 to +30V	- 55 to + 150	\$ 3.15	410C		
TT-590-K	for Temps. from – 55°C to	± 0.8	. —		- 55 to + 150	\$ 6.15			
TT-590-L	+ 150°C and Supplied from	± 0.4			- 55 to + 150	\$12.15			
TT-590-M	+ 4V to + 30V	± 0.3			- 55 to + 150	\$27.15			
VFQ-IC	V/F-F/V Converter	0.25% 40.000	± 4 to ± 7.5 V	0 to + 70	\$ 6.95	1120			
VFQ-IR	Operates to 100KHz	0.20 /0	-to phill	± + 10 ± 7.5V	- 25 to + 85	\$14.25	-120		
VFV-10K	Modular V/F-F/V Converter	0.005%	20 ppm	+ 15VDC	0 to + 70	\$66.00	416C		
VFV-100K	10KHz or 100KHz Versions	0.05%	100 ppm	± 157DC	0 to + 70	\$84.00	4100		

		NON-		POWER			
		LINEARITY		REQUIRE	OPER. TEMP.	PRICE	SEE
MODEL	DESCRIPTION	% of F.S.	DRIFT/°C	MENTS	RANGE (°C)	(1-24)	PAGE
VI-7660PC	Monolithic Voltage				– 20 to + 70	\$ 2.99	
VI-7660C	Inverter Provides – 1.5 to – 10V	-		+ 1.5 to + 10V	- 20 to + 70	\$ 3.45	422C
VI-7660M	From + 1.5 to + 10V Supplies				- 55 to + 125	\$ 8.85	
VR-182A	2.455V Precision		100 ppm		0 to + 70	\$ 1.95	
VR-182B	Bandgap Voltage Reference	+ 35mV	50 ppm	2mA	0 to + 70	\$ 2.50	428C
VR-182C	with 0.1 Ω Dynamic Impedance		30 ppm	r.	0 to + 70	\$ 2.95	
VR-8069-DC	1.2V Precision Bandgap		100 nnm		0 to + 70	\$ 1.90	
VR-8069-DM	Voltage Reference		100 ppm		- 55 to + 125	\$ 3.70	
VR-8069-CC	with 1 Ω Dynamic	– 20mV,	50 ppm	05 to	0 to + 70	\$ 2.60	1300
VR-8069-CM	Impedance	+ 30mV	50 ppm	.00 to	- 55 to + 125	\$ 5.35	+500
VR-8069-BC			25 ppm	UIIA	0 to + 70	\$ 6.85	
VR-8069-AC			10 ppm		0 to + 70	\$15.10	
WG-8038-CC	Precision Waveform Gen.	+ 0.5	50 ppm		0 to + 70	\$ 4.12	
WG-8038-BC	and Voltage Controlled Osc.		100 ppm	+ 10 to + 30V	0 to + 70	\$10.97	
WG-8038-BM	with Sine, Square Triangle	± 0.2	Max.	or	- 55 to + 125	\$12.17	1320
WG-8038-AC	Sawtooth and Pulse Waveforms		50 ppm,	± 5 to $\pm 15V$	0 to + 70	\$28.57	-520
WG-8038-AM	at .001Hz to 1MHz		Max.		- 55 to + 125	\$31.12	

Special Functions—Problem Solvers

AMC-8013 Four Quadrant Analog Multiplier

FEATURES

- ±0.5% Accuracy
- Internal Op-Amp for Level Shift, Division and Square Root Functions
- Uses Film Resistors for Minimum External Components
- Full ±10 Volt Input/Output Voltage Range
- Wide Bandwidth 1 MHz
- Operates with Standard ±15 Volt Supplies

SCHEMATIC DIAGRAM

GENERAL DESCRIPTION

The 8013 is a four quadrant analog multiplier whose output is proportional to the algebraic product of two input signals. Feedback around an internal op-amp provides level shifting and can be used to generate division and square root functions. A simple arrangement of potentiometers may be used to trim gain accuracy, offset voltage and feedthrough performance. The high accuracy, wide bandwidth, and increased versatility of the 8013 makes it ideal for all multiplier applications in control and instrumentation systems.

APPLICATIONS

- Multiplication, Division, Squaring, Square Roots
- RMS Measurements
- Frequency Doubler
- Balanced Modulator and Demodulator
- Electronic Gain Control
- Function Generator and Linearizing Circuits
- Process Control Systems

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Power Dissipation (Note 1)	500 mW
Input Voltages (X, Y, Z, X _o , Y _o , Z _o)	±V Supply
Lead Temperature (60 sec)	300°C
Storage Temperature Range	-65°C to +150°C

NOTE 1: Derate at 6.8 mW/°C for operation at ambient temperature above 75°C.

AMC-8013

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified $T_A = 25^{\circ}C$, $V_S = \pm 15V$, Gain and Offset Potentiometers Externally Trimmed)

04.04.0675.0	CONDITIONS	8013-A			8013-B		8013-C				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	ΜΑΧ	MIN	ТҮР	MAX	UNITS
Multiplier Eurotion			XY			XY			XY		
	10 < Y < 10		10	5		10	10		10	2.0	% Eull Scolo
Multiplication Error	-10 < Y < 10						1.0			2.0	% Full Scale
Divider Eurotion		-	<u>10Z</u>			<u>10Z</u>			<u>10Z</u>		
Division Error	X = -10		X 0.3			X 0.3			X 0.3		% Full Scale
	X = -1		1.5			1.5			1.5		% Full Scale
Feedthrough	$X = 0$ $Y = 20V_{p,p}$ f = 50 Hz Y = 0 $X = 20V_{p,p}$ f = 50 Hz			50 50			100 100			200 150	mV _{p·p} mV _{pp}
Nonlinearity X Input	X = 20V _{ρρ} Y = ±10 Vdc		±0.5			±0.5			±0.8		%
Y Input	$Y = 20 V_{pp}$ $X = \pm 10 V dc$		±0.2			+0.2			±0.3		%
Frequency Response Small Signal Bandwidth (-3 dB)			1.0			10			1.0		MHz
Full Power Bandwidth			750			750			750		kHz
Slew Rate			45			45			45		V/µs
1% Amplitude Error			75			75			75		kHz
1% Vector Error (0.5° Phase Shift)			5			5			5		kHz
Settling Time (to ±2% of Final Value)	E _{IN} = ±10V		1			1	-		1		μs
Overload Recovery (to ±2% of Final Value)			1			1 .			1		μs
Output Noise	5 Hz to 10 kHz 5 Hz to 5 MHz		0.6 3			0.6 3			0.6 3		mVrms mVrms
Input Resistance X Input Y Input Z Input			10 6 36			10 6 36			10 6 36		MΩ MΩ kΩ
Input Bias Current X or Y Input Z Input			2 25	5		25	7.5		25	10	μΑ μΑ
Power Supply Variation Multiplication Error Output Offset			0.2	50		0.2	75		0.2	100	%/% mV/V
Scale Factor			0.1			0.1			0.1		%/%
Quiescent Current	-		3.5	6.0		3.5	6.0		3.5	6.0	mA
THE FOLLOWING SPECIFICATIONS APPLY OVER THE OPERATING TEMPERATURE RANGES											
Multiplication Error	- 10 < X < 10, - 10 < Y < 10		1.5			2			3		% Full Scale
Average Temperature Coefficient Accuracy Output Offset Scale Factor	of		0.06 0.2 0.04			0.06 0.2 0.04			0.06 0.2 0.04		%/°C mV/ [°] C %/°C
Input Bias Current X or Y Input Z Input				10 70			10 70			20 100	μΑ μΑ
Input Voltage (X, Y, or Z)				±10			±10			.±10	v
Output Voltage Swing	R∟≳ 2k C∟≦1000 pF	±10			±10			±10			v

AMC-8013

APPLICATIONS INFORMATION

MULTIPLIER Trimming Procedure

- 1. Set $X_{IN} = Y_{IN} = 0V$ and adjust Z_o for zero Output.
- 2. Apply a low frequency sweep ($f_o \le 100$ Hz sine or triangle) of = $\pm 10V$ to Y_{IN} with $X_{IN} = 0V$ and adjust X_o for minimum Output.
- 3. Apply the sweep signal of Step 2 to X_{IN} with $Y_{IN} = 0V$ and adjust Y_o for minimum Output.
- 4. Readjust Z_o as in Step 1, if necessary.
- 5. With $X_{IN} = 10.0V$ dc and the sweep signal of Step 2 applied to Y_{IN} , adjust the Gain potentiometer for Output = Y_{IN} . This is easily accomplished with a differential scope plug in (A + B) by inverting one signal and adjusting Gain control for (Output - Y_{IN}) = Zero.

DIVIDER Trimming Procedure

- Set trimming potentiometers at mid-scale by adjusting voltage on pins 7, 9 and 10 (X_o, Y_o, Z_o) for zero volts.
- 2. With $Z_{1N} = 0V$, trim Z_0 to hold the Output constant, as X_{1N} is varied from -10V through -1V.

- 3. With $Z_{1N} = 0V$ and $X_{1N} = -10.0V$ adjust Y_0 for zero Output voltage.
- 4. With $Z_{IN} = X_{IN}$ (and/or $Z_{IN} = -X_{IN}$) adjust X_o for minimum worst-case variation of Output as X_{IN} is varied from -10V to -1V.
- 5. Repeat Steps 2 and 3 if Step 4 required a large initial adjustment.
- 6. With $Z_{IN} = X_{HN}$ (and/or $Z_{IN} = -X_{IN}$) adjust the gain control until the output is the closest average around +10.0V (-10V for $Z_{IN} = -X_{IN}$) as X_{IN} is varied from -10V to -3V.

SQUARE ROOT Trimming Procedure

- 1. Connect the 8013 in the Divider configuration.
- 2. Adjust Z_o, Y_o, X_o and Gain using Steps 1 through 6 of Divider Trimming Procedure.
- 3. Convert to the Square Root configuration by connecting X_{IN} to the Output and inserting a diode between Pin 4 and the Output node.
- 4. With $Z_{IN} = 0V$ adjust Z_o for zero Output voltage.

TYPICAL APPLICATIONS

MULTIPLICATION

SQUARE ROOT

AMC-8013

TYPICAL PERFORMANCE CURVES

DEFINITION OF TERMS

Multiplication/Division Error: This is the basic accuracy specification. It includes terms due to linearity, gain, and offset errors, and is expressed as a percentage of the full scale output.

Feedthrough: With either input at zero the output of an ideal multiplier should be zero regardless of the signal applied to the other input. The output seen in a non-ideal

multiplier is known as the feedthrough.

Nonlinearity: The maximum deviation from the best straight line constructed through the output data, expressed as a percentage of full scale. One input is held constant and the other swept through its nominal range. The nonlinearity is the component of the total multiplication/division error which cannot be trimmed out.

ORDERING INFORMATION

Model	Multiplication Error, max.	Oper. Temp. Range (°C)	Package
AMC-8013-CC	±2.0%	0 to +70	TO-100
AMC-8013-CM	±2.0%	-55 to +125	TO-100
AMC-8013-BC	±1.0%	0 to +70	TO-100
AMC-8013-BM	±1.0%	-55 to +125	TO-100
AMC-8013-AC	±0.5%	0 to +70	TO-100
AMC-8013-AM	±0.5%	-55 to +125	TO-100

PACKAGE DIMENSIONS

230 T YP

NOTE: Pin 5 connected to case.

LA-8048, LA-8049 Monolithic Log Amplifier Monolithic Antilog Amplifier

FEATURES

- 1/2% Full Scale Accuracy
- Temperature Compensated 0°C to 70°C
- Scale Factor 1V/Decade, Adjustable
- 120dB Dynamic Current Range (8048)
- 60dB Dynamic Voltage Range (8048 & 8049)
- Dual FET-Input Op-Amps

GENERAL DESCRIPTION

The 8048 is a monolithic logarithmic amplifier capable of handling six decades of current input, or three decades of voltage input. It is fully temperature compensated and is nominally designed to provide 1 volt of output for each decade change of input. For increased flexibility, the scale factor, reference current and offset voltage are externally adjustable.

The 8049 is the antilogarithmic counterpart of the 8048; it nominally generates one decade of output voltage for each 1 volt change at the input.

MAXIMUM RATINGS

Supply Voltage	±18 V
lin (Input Current)	2 mA
Iref (Reference Current)	2mA
Voltage between Offset Null and V ⁺	±0.5 V
Power Dissipation	750mW

Operating Temperature Range Output Short Circuit Duration Storage Temperature Range Lead Temperature (Soldering, 60 sec.) 0°C to +70°C Indefinite –65°C to +125°C 300°C

ELECTRICAL CHARACTERISTIC (Note 1)

			LA-8048-B			LA-8048-C		
PARAMETER	CONDITION	MIN.	IN. TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Dynamic Range								
l _{in} (1nA–1mA)		120			120			dB
V _{in} (10mV–10V)	$R_{IN} = 10 k\Omega$	60			60			dB
Error, % of Full Scale	$T_A = 25^{\circ}C$, $I_{IN} = 1 nA$ to 1 mA.		.20	0.5		.25	1.0	%
Error, % of Full Scale	$T_A = 0^{\circ}C$ to +70°C,		.60	1.25		.80	2.5	%
Error, Absolute Value	$T_A = 25^{\circ}C$, $I_{IN} = 1 nA$ to 1 mA		12	30		14	60	mV
Error, Absolute Value	$T_A = 0^\circ C$ to +70°C, I _{IN} = 1 nA to 1 mA		36	75		50	150	mV
Temperature Coefficient of VOUT	$I_{IN} = 1 nA$ to $1 mA$		0.8			0.8		mV/°C
Power Supply Rejection Ratio	Referred to Output		2.5			2.5		mV/V
Offset Voltage (A ₁ & A ₂)	Before Nulling		15	25		15	50	mV
Wideband Noise	At Output, for $I_{IN} = 100 \mu A$		250			250		μV (RMS)
Output Voltage Swing	RL = 10kΩ	±12	±14		±12	±14		v
	RL = 2 kΩ	±10	±13		±10	±13		v
Power Consumption			150	200		150	200	mW
Supply Current			5	6.7 🧋	-	5	6.7	mA

NOTE 1: Unless otherwise noted, specifications apply for V_S = ±15V, T_A = 25°C, I_{REF} = 1mA, scale factor adjusted for 1V/decade. Accuracy specifications assume that offset voltages and scale factor have been adjusted using the procedure outlined on page 3.

INPUT CURRENT (AMPS)

MAXIMUM ERROR VOLTAGE AT THE OUTPUT AS A FUNCTION OF INPUT CURRENT

OUTPUT VOLTAGE (VOLTS)

INPUT VOLTAGE

MAXIMUM ERROR VOLTAGE AT THE OUTPUT AS A FUNCTION OF INPUT VOLTAGE

 $\begin{array}{l} \mbox{SMALL SIGNAL VOLTAGE GAIN} \\ \mbox{AS A FUNCTION OF INPUT} \\ \mbox{VOLTAGE FOR R_S} = 10 \ \mbox{k}\Omega \end{array}$

THEORY OF OPERATION

The 8049 relies on the same logarithmic properties of the transistor as the 8048. The input voltage forces a specific ΔV_{BE} between Ω_1 and Ω_2 (Fig. 2). This V_{BE} difference is converted into a difference of collector currents by the transistor pair. The equation governing the behavior of the transistor pair is derived from (2) on Page 3 and is as follows:

$$\frac{I_{C_1}}{I_{C_2}} = \exp \begin{bmatrix} q \Delta V_{BE} \\ kT \end{bmatrix}$$
(5)

When numerical values for q/kT are put into this equation, it is found that a ΔV_{BE} of 59mV (at 25°C) is required to change the collector current ratio by a factor of ten. But for ease of application, it is desirable that a 1 volt change at the input generate a tenfold change at the output. The required input attenuation is achieved by the network comprising R₁ and R₂. In order that scale factors other than one decade per volt may be selected, R₂ is external to the chip. It should have a value of 1k Ω , adjustable ±20%, for one decade per volt. R₁ is a thin film resistor deposited on the monolithic chip; its temperature characteristics are chosen to compensate the temperature dependence of equation 5, as explained on Page 3.

The overall transfer function is as follows:

$$IOUT / I_{REF} = exp \left[\frac{-R_2}{(R_1 + R_2)} \times \frac{q V_{IN}}{kT} \right]$$
(6)

Substituting VOUT = IOUT × ROUT gives:

$$V_{OUT} = R_{OUT} I_{REF} \exp\left[\frac{-R_2}{(R_1 + R_2)} \times \frac{q V_{IN}}{kT}\right]$$
(7)

For voltage references equation 7 becomes

$$V_{OUT} = V_{REF} \times \frac{R_{OUT}}{R_{REF}} \exp\left[\frac{-R_2}{(R_1 + R_2} \times \frac{q V_{IN}}{kT}\right]$$
(8)

OFFSET AND SCALE FACTOR ADJUSTMENT

As with the log amplifier, the antilog amplifier requires three adjustments. The first step is to null out the offset voltage of A₂. This is accomplished by reverse biasing the base-emitter of Q₂. A₂ then operates as a unity gain buffer with a grounded input. The second step forces $V_{IN} = 0$; the output is adjusted for $V_{OUT} = 10V$. This step essentially "anchors" one point on the transfer function. The third step applies a specific input and adjusts the output to the correct voltage. This sets the scale factor. Referring to Fig. 2, the exact procedure for 1 decade/volt is as follows:

- 1) Connect the input (pin #16) to +15V. This reverse biases the base-emitter of Q_2 . Adjust R7 for VOUT = 0V. Disconnect the input from +15V.
- Connect the input to Ground. Adjust R4 for VOUT = 10V. Disconnect the input from Ground.
- 3) Connect the input to a precise 2V supply and adjust R_2 for $V_{OUT} = 100 mV$.

The procedure outlined above optimizes the performance over a 3 decade range at the output (i. e., VOUT from 10mV to 10V). For a more limited range of output voltages, for example 1V to 10V, it would be better to use a precise 1 volt supply and adjust for VOUT = 1V. For other scale factors and/or starting points, different values for R₂ and R_{REF} will be needed, but the same basic procedure applies.

MAXIMUM RATINGS

Supply Voltage Vin (Input Voltage) Iref (Reference Current) Voltage between Offset Null and V⁺ Power Dissipation Operating Temperature Range Output Short Circuit Duration Storage Temperature Range Lead Temperature (Soldering, 60 sec.) ±18 V ±15 V 2mA ±0.5 V 750 mW 0°C to +70°C Indefinite -65°C to +150°C 300°C

ELECTRICAL CHARACTERISTIC (Note 1)

		L	LA-8049-B LA-8049-C			-C		
PARAMETER	CONDITION	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Dynamic Range (V _{OUT})	V _{OUT} = 10mV to 10V	60			60			dB
Error, Absolute Value	$T_A = 25^{\circ}C, 0V \le V_{IN} \le 3V$		3	10		5	25	mV
Error, Absolute Value	T _A = 0°C to +70°C, 0V≤V _{IN} ≤3V		20	75		30	150	m∨
Temperature Coefficient, Referred to VIN	V _{IN} = 3 V		0.38			0.55		mV/°C
Power Supply Rejection Ratio	Referred to Input, for V _{IN} = 0V		2.0			2.0		μV/V
Offset Voltage (A1 & A2)	Before Nulling		15	25		15	50	mV
Wideband Noise	Referred to Input, for VIN = 0V		26			26		µV(RMS)
Output Voltage Swing	R _L = 10kΩ	±12	±14		±12	±14		V
	R _L = 2kΩ	±10	±13		±10	±13		v
Power Consumption			150	200		150	200	mW
Supply Current		l	5	6.7		5	6.7	mA

NOTE 1: Unless otherwise noted, specifications apply for $V_S = \pm 15V$, $T_A = 25^{\circ}C$, $I_{REF} = 1mA$, scale factor adjusted for 1 decade (out) per volt (in). Accuracy specifications assume that offset voltages and scale factor have been adjusted using the procedure on page 5.

SMALL SIGNAL VOLTAGE GAIN AS A FUNCTION OF INPUT VOLTAGE

THEORY OF OPERATION

The 8048 relies for its operation on the well-known exponential relationship between the collector current and the base-emitter voltage of a transistor:

$$I_{C} = I_{S} \begin{bmatrix} q V_{BE} / K_{T} \\ e \end{bmatrix}$$
(1)

For base-emitter voltages greater than 100mV, Eq. (1) becomes

$$I_{C} = I_{S} e^{q \, V_{BE}} / kT$$
(2)

From Eq. (2), it can be shown that for two identical transistors operating at different collector currents, the VBE difference (Δ VBE) is given by:

$$\Delta V_{\mathsf{BE}} = -2.303 \times \frac{\mathsf{kT}}{\mathsf{q}} \log 10 \left[\mathbf{I_{C1}} / \mathbf{I_{C2}} \right]$$
(3)

Referring to Fig. 1, it is clear that the potential at the collector of Ω_2 is equal to the ΔV_{BE} between Ω_1 and Ω_2 . The output voltage is ΔV_{BE} multiplied by the gain of A_2 :

$$V_{OUT} = -2.303 \left(\frac{R_1 R_2}{R_2}\right) \left(\frac{kT}{q}\right) \log_{10} \left[\frac{I_{IN}}{I_{REF}}\right]$$
(4)

The expression 2.303 x $\frac{\kappa_1}{q}$ has a numerical value of 59mV

at 25°C; thus in order to generate 1 volt/decade at the output, the ratio $(R_1 + R_2)/R_2$ is chosen to be 16.9. For this scale factor to hold constant as a function of temperature, the $(R_1 + R_2)/R_2$ term must have a 1/T characteristic to compensate for kT/q.

In the 8048 this is achieved by making R_1 a thin film resistor, deposited on the monolithic chip. It has a nominal

value of 15.9k Ω at 25°C, and its temperature coefficient is carefully designed to provide the necessary compensation. Resistor R₂ is external and should be a low T.C. type; it should have a nominal value of 1k Ω to provide 1 volt/decade, and must have an adjustment range of ±20% to allow for production variations in the absolute value of R₁.

OFFSET AND SCALE FACTOR ADJUSTMENT

A log amp, unlike an op-amp, cannot be offset adjusted by simply grounding the input. This is because the log of zero approaches minus infinity; reducing the input current to zero starves Q_1 of collector current and open the feedback loop around A₁. Instead, it is necessary to zero the offset voltage of A₁ and A₂ separately, and then to adjust the scale factor. Referring to Fig. 1, this is done as follows:

 Temporarily connect a 10kΩ resistor (R₀) between pins 2 and 7. With no input voltage, adjust R4 until the output of A₁ (pin 7) is zero. Remove R₀.

Note that for a current input, this adjustment is not necessary since the offset voltage of A1 does not cause any error for current-source inputs.

- 2) Set IIN = IREF = 1mA. Adjust R5 such that the output of A2 (pin 10) is zero.
- 3) Set IIN = 1 μ A, IREF = 1mA. Adjust R₂ for V_{OUT} = 3 volts (for a 1 volt/decade scale factor) or 6 volts (for a 2 volt/decade scale factor).

Step #3 determines the scale factor. Setting $I_{IN} = 1\mu A$ optimizes the scale factor adjustment over a fairly wide dynamic range, from 1mA to 1nA. Clearly, if the 8048 is to be used for inputs which only span the range 100 μ A to 1mA, it would be better to set $I_{IN} = 100\mu$ A in Step #3. Similarly, adjustment for other scale factors would require different I_{IN} and V_{OUT} values.

FIGURE 1. 8048 OFFSET AND SCALE FACTOR ADJUSTMENT

APPLICATIONS INFORMATION

Scale Factor Adjustment

The scale factor adjustment procedures outlined on Page 3 (8048) and Page 5 (8049) are primarily directed towards setting up 1 volt (ΔV_{OUT}) per decade (ΔI_{IN} or ΔV_{IN}) for the log amp, or one decade (ΔV_{OUT}) per volt (ΔV_{IN}) for the antilog amp.

This corresponds to K = 1 in the respective transfer functions:

Log Amp:
$$V_{OUT} = -K \log_{10} \begin{bmatrix} I_{IN} \\ I_{REF} \end{bmatrix}$$
 (9)

Antilog Amp: VOUT = ROUT IREF
$$10^{-VIN}$$
 K (10)

By adjusting R₂ (Fig. 1 and Fig. 2) the scale factor "K" in equation 9 and 10 can be varied. The effect of changing K is shown graphically in Fig. 3 for the log amp, and Fig. 4 for the antilog amp. The nominal value of R₂ required to give a specific value of K can be determined from equation 11. It should be remembered that R₁ has a $\pm 20\%$ tolerance in absolute value, so that allowance shall be made for adjusting the nominal value of R₂ by $\pm 20\%$.

$$R_2 = \frac{941}{(K - .059)} \Omega$$
 (11)

Frequency Compensation

Although the op-amps in both the 8048 and the 8049 are compensated for unity gain, some additional frequency compensation is required. This is because the log transistors in the feedback loop add to the loop gain. In the 8048, 150 pF should be connected between Pins 2 and 7 (Fig. 1). In the 8049, 200 pF between Pins 3 and 7 is recommended (Fig. 2).

Error Analysis

Performing a meaningful error analysis of a circuit containing log and antilog amplifiers is more complex than dealing with a similar circuit involving only op-amps. In this data sheet every effort has been made to simplify the analysis task, without in any way compromising the validity of the resultant numbers.

The key difference in making error calculations in log/ antilog amps, compared with op-amps, is that the gain of the former is a function of the input signal level. Thus, it is necessary, when referring errors from output to input, or vice versa, to check the input voltage level, then determine the gain of the circuit by referring to the graphs given on Pages 2 and 4.

The various error terms in the log amplifier, the 8048, are referred to the output (RTO) of the device. The error terms in the antilog amplifier, the 8049, are referred to the input (RTI) of the device. The errors are expressed in this way because in the majority of systems a number of log amps interface with an antilog amp, as shown in Fig. 5.

It is very straightforward to estimate the system error at node (A) by taking the square root of the sum-of-the squares of the errors of each contributing block.

Total Error =
$$\sqrt{x^2 + y^2 + z^2}$$
 at (A)

401C

If required, this error can be referred to the system output through the voltage gain of the antilog circuit, using the voltage gain plot on Page 4.

The numerical values of x, y, and z in the above equation are obtained from the maximum error voltage plots given on Pages 2 and 4. For example, with the 8048BC, the maximum error at the output is 30mV at $25^{\circ}C$. This means that the measured output will be within 30mV of the theoretical transfer function, provided the unit has been adjusted per the procedures on Page 3. Fig. 6 illustrates this point.

To determine the maximum error over the operating temperature range, the 0 to 70° C absolute error values given in the table of electrical characteristics should be used. For intermediate temperatures, assume a linear increase in the error between the 25° C value and the 70° C value.

For the antilog amplifier, the only difference is that the error refers to the input, i. e., the horizontal axis. It will be noticed that the maximum error voltage of the 8049, over the temperature range, is strongly dependent on the input voltage. This is because the output amplifier, A₂, has an offset voltage drift which is directly transmitted to the output. When this error is referred to the input, it must be divided by the voltage gain, which is input voltage dependent. At V_{IN} = 3V, for example, errors at the output are multiplied by 1/.023 (= 43.5) when referred to the input.

It is important to note that both the 8048 and the 8049 require positive values of I_{REF} , and the input and output currents (or voltages) respectively must also be positive. Application of negative IN to the 8048 or negative IRFF to

either circuit will cause malfunction, and if maintained for long periods, would lead to device degradation. Some protection can be provided by placing a diode between pin 7 and ground.

SETTING UP THE REFERENCE CURRENT

In both the 8048 and the 8049 the input current reference pin (IREF) is not a true virtual ground. For the 8048, a fraction of the output voltage is seen on Pin 16 (Fig. 1). This does not constitute an appreciable error provided VREF is much greater than this voltage. A 10V or 15V reference satisfies this condition. For the 8049, a fraction of the input voltage appears on Pin 3 (Fig. 2), placing a similar restraint on the value of VREF.

Alternatively, IREF can be provided from a true current source. One method of implementing such a current source is shown in Fig. 7.

LOG OF RATIO CIRCUIT, DIVISION

The 8048 may be used to generate the log of a ratio by modulating the I_{REF} input. The transfer function remains the same, as defined by equation 9:

$$V_{OUT} = -K \log_{10} \left[\frac{I_{IN}}{I_{REF}} \right]$$
(9)

Clearly it is possible to perform division using just one 8048, followed by an 8049. For multiplication, it is generally necessary to use two log amps, summing their outputs into an antilog amp.

To avoid the problems caused by the I_{REF} input not being a true virtual ground (discussed in the previous section), the circuit of Fig. 7 is again recommended if the I_{REF} input is to be modulated.

+ 15 V

FIGURE 6

 V_{REF} V_{REF} V_{REF} V_{REF/R_1} V_{REF} V_{REF/R_1} V_{REF} (TO PIN 16 ON 8048)TO PIN 3 ON 8049

FIGURE 7

DEFINITION OF TERMS

In the definitions which follow, it will be noted that the various error terms are referred to the output of the log

DYNAMIC RANGE The dynamic range of the 8048 refers to the range of input voltages or currents over which the device is guaranteed to operate. For the 8049 the dynamic range refers to the range of output voltages over which the device is guaranteed to operate.

ERROR, ABSOLUTE VALUE The absolute error is a measure of the deviation from the theoretical transfer function, after performing the offset and scale factor adjustments as outlined on Pages 3 (8048) or 5 (8049). It is expressed in mV and referred to the linear axis of the transfer function plot. Thus, in the case of the 8048, it is a measure of the deviation from the theoretical output voltage for a given input current or voltage. For the 8049 it is a measure of the deviation from the theoretical input voltage required to generate a specific output voltage.

The absolute error specification is guaranteed over the dynamic range.

ERROR, % OF FULL SCALE The error as a percentage of full scale can be obtained from the following relationship:

Error, % of Full Scale = $\frac{100 \times \text{Error}, \text{ absolute value}}{\text{Full Scale Output Voltage}}$

amp, and to the input of the antilog amp. The reason for this is explained on Page 6.

TEMPERATURE COEFFICIENT OF V_{OUT} OR V_{IN} For the 8048 the temperature coefficient refers to the drift with temperature of V_{OUT} for a constant input current.

For the 8049 it is the temperature drift of the input voltage required to hold a constant value of VOUT.

POWER SUPPLY REJECTION RATIO The ratio of the voltage change in the linear axis of the transfer function (VOUT for the 8048, VIN for the 8049) to the change in the supply voltage, assuming that the log axis is held constant.

WIDEBAND NOISE For the 8048, this is the noise occurring at the output under the specified conditions. In the case of the 8049, the noise is referred to the input.

SCALE FACTOR For the log amp, the scale factor (K) is the voltage change at the output for a decade (i. e. 10:1) change at the input. For the antilog amp, the scale factor is the voltage change required at the input to cause a one decade change at the output. See equations 9 and 10.

ORDERING INFORMATION

LOGARITHMIC AMPLIFIER

MODEL	MAX. ERROR	OPER. TEMP RANGE	PACKAGE
LA-8048-BC	30mV	$0 to +70^{\circ} C$	16 nin Plastic DIP
LA-8048-CC	60mV		

ANTI-LOGARITHMIC AMPLIFIER

MODEL	MAX. ERROR	OPER. TEMP RANGE	PACKAGE
LA-8049-BC	10mV	$0 \text{ to } +70^{\circ} \text{ C}$	16 pin Plastic DIP
LA-8049-CC	25mV	0101700	

PACKAGE DIMENSIONS

16 PIN PLASTIC DIP

FEATURES

- State Variable Filter
- LP, BP, or HP Functions
- 2 Pole Response
- Low Noise Op Amps
- 16-Pin DIP
- Low Cost

GENERAL DESCRIPTION

The FLT-U2 is a universal active filter manufactured with thick-film hybrid technology. It uses the state variable active filter principle to implement a second order transfer function. Three committed operational amplifiers are used for the second order function while a fourth uncommitted op amp can be used as a gain stage, summing amplifier, buffer amplifier, or to add another independent real pole.

Two-pole lowpass, bandpass, and highpass output functions are available simultaneously from three different outputs, and notch and allpass functions are available by combining these outputs in the uncommitted op amp. To realize higher order filters, several FLT-U2's can be cascaded. Q range is from 0.1 to 1,000 and resonant frequency range is 0.001 Hz to 200 kHz. Frequency stability is .01%/°C and resonant frequency accuracy is within ±5% of calculated values. Frequency tuning is done by two external resistors and Q tuning by a third external resistor. For resonant frequencies below 50 Hz two external tuning capacitors must be added. Exact tuning of the resonant frequency is done by varying one of the resistors around its calculated value.

The internal op amps in the FLT-U2 have 3 MHz gain bandwidth products and a wideband input noise specification of only 10nV//Hz. This results in considerably improved operation over most other competitive active filters which employ lower performance amplifiers. By proper selection of external components any of the popular filter types such as Butterworth, Bessel, Chebyshev, or Elliptic may be designed. Applications include audio, tone signalling, sonar, data acquisition, and feedback control systems.

Microelectronic Universal Active Filter Model FLT-U2

MECHANICAL DIMENSIONS CONNECTIONS **INCHES (MM)** DIAGRAM 16 15 14 13 12 11 10 Rol 16 DATEL-INTERSI RIN 590 (14. 9) 15 FLT-U2 14 PIN FLT-U2 ONE П П v+ [BP OUT IDENT 3 4 5 (TOP VIEW) LP OUT 12 🗌 V-195 (4, 9) 900 (22, 9) BUF OUT .050 (1, 2) ٦ 600 100 TVP (15.2) (2, 5)

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS. FLT-U2 **TECHNICAL NOTES** Typical at 25°C, ±15V supplies, unless otherwise stated FILTER CHARACTERISTICS 1. The FLT-U2 has simultaneous lowpass, bandpass, and highpass output functions. The chosen output for a par-Frequency Range¹ 0.001 Hz to 200 kHz ticular function will be at unity gain based on Tables II **Q Range**¹ 0.1 to 1,000 and III. This means that the other two unused outputs f_0 Accuracy $\pm 5\%$ will be at other gain levels. The gain of the lowpass outfo Temperature Coefficient 0.01%/°C put is always 10 dB higher than the gain of the bandpass output and 20 dB higher than the gain of the highpass output. AMPLIFIER CHARACTERISTICS 2. When tuning the filter and checking it over its frequency Input Offset Voltage0.5 mV typ., 6 mV max. range, the outputs should be checked with a scope to make sure there is no waveform clipping present, as this will affect the operation of the filter. In particular the lowpass output should be checked since its gain is the Input Com. Mode Voltage Range ... ±12V min. highest. Input Voltage Noise, wideband 10nV/√Hz Output Voltage Range ±10V min. 3. f1, the center frequency for bandpass and the cutoff Output Current±5mA min. frequency for lowpass or highpass, should be checked at the bandpass output. Here the peaking frequency can Common Mode Rejection Ratio ... 100 dB easily be determined for high Q filters and the 0° or Power Supply Rejection $\dots \dots 10 \ \mu V/V$ 180° phase frequency can easily be determined for low Q filters (depending on whether inverting or noninvert-Slew Rate1 V/µsec. ing). POWER SUPPLY REQUIREMENT Tuning resistors should be 1% metal film resistors with 4 100 ppm/°C temperature stability or better for best Voltage, rated performance ±15 VDC performance. Likewise external tuning capacitors Voltage Range, operating ±5V to ±18V should be NPO ceramic or other stable capacitor types. Quiescent Current 10 mA max. PHYSICAL-ENVIRONMENTAL Operating Temperature Range 0°C to 70°C THEORY OF OPERATION Storage Temperature Range-25°C to +85°C CaseCeramic 16-pin DIP (double-spaced) The FLT-U2 block diagram is shown in Figure 1. This is a second order state-variable filter using three operational amplifiers. Lowpass, bandpass, and highpass transfer func-**NOTE:** 1. $f_0Q \le 2 \times 10^6$ tions are simultaneously produced at its three output terminals. These three transfer functions are characterized by the following second order equations: ORDERING INFORMATION $H(s) = \frac{K_1}{S^2 + \frac{\omega_0}{Q}S + {\omega_0}^2}$ LOWPASS THE FLT-U2 IS COVERED BY GSA CONTRACT. $H(s) = \frac{K_2 S}{S^2 + \frac{\omega_0}{Q} S + {\omega_0}^2}$ BANDPASS $H(s) = \frac{K_3 S^2}{S^2 + \frac{\omega_0}{\Omega} S + \omega_0^2}$ HIGHPASS where K₁, K₂, and K₃ are arbitrary gain constants. A second order system is characterized by the location of its poles in the s-plane as shown in Figure 2. The natural radian frequency of this system is ω_0 . In Hertz this is $f_0 = \frac{\omega_0}{2\pi}$

THEORY OF OPERATION, (Cont'd)

The resonant radian frequency of the circuit is different from the natural radian frequency and is:

$$\omega_1 = \omega_0 \sin \phi = \sqrt{\omega_0^2 - \sigma_1^2}$$

The damping factor d determines the amount of peaking in the filter frequency response and is defined as:

d = cos Ø

The point at which the peaking becomes zero is called "critical damping" and is $d = \sqrt{2}/2$.

Q is found from d and is a measure of the sharpness of the resonance of the peaking:

$$Q = \frac{1}{2d}$$

Also, Q =
$$\frac{f_0}{-3 \text{ dB Bandwidth}} = \frac{\omega_0}{2\sigma_1}$$

For high Q filters the natural frequency and resonant frequency are approximately equal:

$$\omega_1 \simeq \omega_0 \text{ or } f_1 \simeq f_0$$

This is true since $\omega_1 = \omega_0 \sin \phi$ and $\sin \phi \simeq 1$ as the poles move close to the j ω axis in the s-plane.

For high Q's (Q \geq 1) we therefore have for the second order filter:

f₀ ≃ Bandpass center frequency ≃ Lowpass corner frequency ≃ Highpass corner frequency

In the simplified tuning procedure which follows, the tuning is accomplished by independently setting the natural frequency and Q of the filter. This is done most simply by assuming unity gain for the output of the desired filter function. Unity gain means a gain of one (\pm) at DC for lowpass, at center frequency for bandpass, and at high frequency ($f >> f_0$) for highpass. Unity gain does not apply to all outputs simultaneously but only to the chosen output based on the component values given in the tables. Figure 3 shows the relative gains of the three simultaneous outputs assuming the bandpass gain is set to unity. Note that lowpass gain is always 10 dB higher than bandpass gain and highpass gain is always 10 dB lower than bandpass gain.

Relative Gains of Simultaneous Outputs, Q=1

SIMPLIFIED TUNING PROCEDURE

1. Select the desired transfer function (lowpass, bandpass, or highpass) and inverted or noninverted output. From this determine the filter configuration (inverting or noninverting) using Table I.

TABLE I FILTER CONFIGURATION

	LP	BP	HP
INVERTING INPUT	INV.	NON-INV	INV
NONINVERTING INPUT	NON-INV.	INV	NON-INV

- 2. Starting with the desired natural frequency and Q (determined from the filter transfer function or s-plane diagram), compute f₀Q. For f₀Q>10⁴ the actual realized Q will exceed the calculated value. At $f_0Q = 10^4$ the increase is about 1% and at $f_0Q = 10^5$ it is about 20%
- 3. Inverting Configuration. Using the value of Q from Step 2 find R1 and R3 from Table II. R2 is open, or infinite.

TABLE II INVERTING CONFIGURATION

	R ₁	R ₂	R₃
LOWPASS	100K	OPEN	<u>100K</u> 3.80 Q-1
BANDPASS	Q × 31.6K	OPEN	<u>100K</u> 3.48Q
HIGHPASS	10K	OPEN	<u>100K</u> 6.64Q-1

4. Noninverting Configuration. Using the value of Q from Step 2 find R₂ and R₃ from Table III. R₁ is open, or infinite.

TABLE III	NONINVERTING	CONFIGURATION

	R۱	R₂	R₃
LOWPASS	OPEN	<u>316K</u> Q	<u>100K</u> 3.16Q-1
BANDPASS	OPEN	100K	<u>100K</u> 3.48Q-1
HIGHPASS	OPEN	<u>31.6K</u> Q	<u>100K</u> 0.316Q-1

5. Using the value of fo from Step 2, set the natural frequency of the filter by finding R4 and R5 from the equation:

$$R_4 = R_5 = \frac{5.03 \times 10^7}{f_0}$$

where R_4 and R_5 are in ohms and f_0 is in Hertz. The natural frequency varies as $\sqrt{R_4R_5}$ and therefore one value may be increased and the other decreased and the natural frequency will be constant if the geometric mean is constant. To maintain constant bandwidth at the bandpass output while varying center frequency, fix R4 and vary R₅

Using the Uncommitted Op Amp to Add a Real Axis Pole

S-Plane Diagram of 3-Pole Butterworth Lowpass Filter

SIMPLIFIED TUNING PROCEDURE, (Cont'd)

 For f₀ <50 Hz the internal 1000pF capacitors should be shunted with external capacitors across pins 5 & 7 and 13 & 14. If equal value capacitors are used, R₄ and R₅ are then computed from:

$$R_4 = R_5 = \frac{5.03 \times 10^{10}}{f_0 C} (C \text{ in pF})$$

For unequal value capacitors this becomes:

$$R_4 = R_5 = \frac{5.03 \times 10^{10}}{f_0 \sqrt{C_1 C_2}} (C_1 C_2 \text{ in pF})$$

In both cases the capacitance is the sum of the external values and the internal 1000 pF values.

7. This procedure is based on unity gain output for the desired function. For additional gain, the fourth uncommitted operational amplifier should be used as an inverting or noninverting gain stage following the selected output. See Figure 4. A third pole on the real axis of the s-plane may also be added to the transfer function by adding a capacitor to the gain stage as shown in Figure 5.

FILTER DESIGN EXAMPLES

Bandpass Filter With 1 kHz Center Frequency, Q = 10, and Inverted Output

- 1. From Table I the noninverting configuration is chosen to realize an inverted bandpass output. $f_0Q = 10^4$ which means the realized Q will be about 1% higher than calculated.
- 2. From Table III, using Q = 10, we find:

$$R_1 = open$$

 $R_2 = 100K ohms$
 $R_3 = \frac{100K}{3.480-1} = \frac{100K}{33.8} = 2.96K ohms$

3. Using f_0 of 1 kHz, R_4 and R_5 are found from the equation:

$$R_4 = R_5 = \frac{5.03 \times 10^7}{1000} = 50.3 \text{K ohms}$$

4. This completes the filter design which is shown in Figure 6. To choose the nearest 1% standard value resistors either 49.9K or 51.1K ohms could be used; likewise one value of 49.9K and one of 51.1K could be used giving the geometric mean of $\sqrt{R_4R_5} = \sqrt{49.9K \times 51.1K} = 50.5K$ which is even closer. But due to the filter $\pm 5\%$ frequency tolerance it may be better to hold R₄ constant while varying R₅ to tune it exactly.

Three-Pole Noninverting Butterworth Low Pass Filter With DC Gain Of 10 And Cutoff Frequency Of 5 kHz.

The s-plane diagram of the 3-pole Butterworth filter is shown in Figure 7. We will use a second order filter to realize the two complex conjugate poles and the uncommitted op amp to provide the third real axis pole and a DC gain of 10.

1. From Table I, the noninverting filter configuration would normally be used to give a noninverting low pass output.

FILTER DESIGN EXAMPLES, (Cont'd)

In this case, however, we choose an inverting uncommitted op amp with a gain of 10 and therefore we use the inverting configuration for the filter. By comparing the second order portion of the Butterworth function $S^2 + \omega_0 S + \omega_0^2$ to the standard second order function $S^2 + \omega_0 S + \omega_0^2$ we find Q=1. f₀Q is then 5 × 10³ so that Q Q

will not exceed its specified value.

2. From Table II, using Q = 1, we find:

$$R_1 = 100K \text{ ohms}$$

 $R_2 = \text{open}$
 $R_3 = \frac{100K}{3.80Q-1} = 35.7K \text{ ohms}$

3. Using f_0 of 5 kHz, R_4 and R_5 are found from the equation:

$$R_4 = R_5 = \frac{5.03 \text{ X } 10^7}{5000} = 10.1 \text{ K ohms}$$

- 4. For the uncommitted output amplifier, a gain of -10 is required. This defines $R_t/R_6 = 10$ and we arbitrarily choose $R_6 = 2K$, $R_7 = 20$ K ohms.
- 5. The final step is to realize the real axis pole of the Butterworth filter. This pole is at 5 kHz and is set by using capacitor C₃ across the feedback resistor R₇:

$$C_{3} = \frac{1}{2\pi f R_{7}} = \frac{1}{6.28 \times 5 \times 10^{3} \times 20 \times 10^{3}} = 1590 \text{ pF}$$

6. This completes the 3-pole Butterworth filter which is shown in Figure 8.

Highpass Filter with Gain of $-1,\,20\,\text{kHz}$ Cutoff Frequency, and Critical Damping

 From Table I the inverting configuration must be used to realize a highpass gain of -1. An s-plane diagram of this function is shown in Figure 9. Critical damping requires the pole positions to be on a line 45° with respect to the real axis and this results in no frequency peaking. The damping factor d is:

$$d = \cos \emptyset = \cos 45^{\circ} = 0.707$$

and
$$Q = \frac{1}{2d} = \frac{1}{2(.707)} = 0.707$$

Because this is a low Q system the natural frequency will not be the same as the highpass cutoff frequency f_1 . From Figure 9:

$$f_0 = \frac{f_1}{\cos \emptyset} = \frac{20 \text{ kHz}}{0.707} = 28.3 \text{ kHz}$$

Then $f_0Q=0.707\times 28.3\times 10^3=2\times 10^4$ and the Q will exceed its desired value by slightly over 1%.

2. From Table II, using Q = 0.707 we find:

$$\begin{array}{l} R_1 = 10 \text{K ohms.} \\ R_2 = \text{open} \\ R_3 = \frac{100 \text{K}}{6.64 \text{Q}\text{-}1} = -\frac{100 \text{K}}{3.69} = -27.1 \text{K ohms.} \end{array}$$

Using f₀ = 28.3 kHz, R₄ and R₅ are found from the equation:

$$R_4 = R_5 = \frac{5.03 \times 10^7}{28.3 \times 10^3} = 1.78 K \text{ ohms}$$

4. This completes the highpass filter design which is shown in Figure 10. When using this filter, care should be exercised so that clipping does not occur in the filter due to excessive input levels. If clipping occurs, the filter will not operate properly. Clipping will first occur at the lowpass output around f_0 since its gain is 20 dB higher than the highpass output. The signal level should be reduced so that clipping does not occur anywhere in the frequency range used. If higher signal level is required, the highpass output should be amplified by a gain stage using the uncommitted op amp.

ADVANCED FILTERS

All of the common filter types can be realized by using cascaded FLT-U2 stages. This includes multi-pole Butterworth, Bessel, Chebyshev, and Elliptic types. The basic procedure is to implement each pole pair with a single FLT-U2 and cascade enough units to realize all poles. A real axis pole is implemented by an uncommitted op amp. stage. Each stage should be separately tuned with an oscillator and scope and then the stages connected together and checked. See Figure 11.

A notch filter can be constructed in several ways. The first way is to use the FLT-U2 as an inverting bandpass filter and sum the output of the filter with the input signal by means of the uncommitted op amp. This produces a net subtraction at the center frequency of the bandpass which produces a null at the output of the amplifier. (See Figure 12.) Likewise lowpass and highpass outputs (which are always in phase) can be subtracted from each other with an external op amp. The highpass output must have some gain added to it, however, so that its gain is equal to that of the lowpass output. A third method is to use two separate FLT-U2's, one as a two-pole lowpass filter and the other as a two-pole highpass filter. Again the outputs are subtracted in an op amp. This method permits independent tuning of the two sections to get the best null response.

Further discussion of filter designs is beyond the scope of this data sheet and the user is referred to the various texts on filter design, some of which are listed below.

Estep, G.J., *The State Variable Active Filter Configuration Handbook*, 2nd Edition, Agoura, Ca., 1974.

Reference Data for Radio Engineers, Howard W. Sams & Co. Inc., 5th Edition.

Christian, E., and Eisenmann, E., *Filter Design Tables and Graphs.* McGraw-Hill Book Co., 1974.

Printed in U.S.A. Copyright © 1979 Datel-Intersil, Inc. All rights reserved

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD--TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

TT-590 Two-Terminal IC Temperature Transducer

FEATURES

- Linear current output: 1µA/°K
- Wide range: -55°C to +150°C
- Two-terminal device: Voltage in/current out
- Laser trimmed to $\pm 1^\circ \text{C}$ calibration accuracy (TT-590-L)
- Excellent linearity: ±0.5°C over full range (TT-590-L,K)
- Wide power supply range: +4V to +30V
- Sensor isolation from case
- Low cost

GENERAL DESCRIPTION

The TT-590 is a two-terminal integrated circuit temperature transducer which produces an output current proportional to absolute temperature. The device acts as a high impedance, constant current regulator passing $1\mu A/°K$ for supply voltages between +4V and +30V. Laser trimming of the chip's thin film resistors is used to calibrate the device to 298.2 μA output at 298.2°K (+25°C).

The TT-590 should be used in any temperature sensing application between -55°C and $+150^\circ\text{C}$ in which conventional

electrical temperature sensors are currently employed. The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the TT-590 an attractive alternative for many temperature measurement situations. Linearization circuitry, precision voltage amplifiers, resistance-measuring circuitry and cold junction compensation are not needed in applying the TT-590. In the simplest application a resistor, a power source and any voltmeter can be used to measure temperature.

In addition to temperature measurement, applications include temperature compensation or correction of discrete components, and biasing proportional to absolute temperature.

The TT-590 is particularly useful in remote sensing applications. The device is insensitive to voltage drops over long lines due to its high impedance current output. Any wellinsulated twisted pair is sufficient for operation hundreds of feet from the receiving circuitry. The output characteristics also make the TT-590 easy to multiplex: the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output.

ORDERING INFORMATION								
ABS. ERROR OVER TEMP.	NON—LINE- ARITY MAX.	MODEL		ABS. ERROR OVER TEMP.	NON-LINE- ARITY MAX.	MODEL		
±5.8°C max.	±3.0°C	TT-590-I		±1.6°C max.	±0.4°C	TT-590-L		
±3.0°C max.	±1.5°C	TT-590-J		±1.0°C max.	±0.3°C	TT-590-M		
±2.0°C max.	±0.8°C	ТТ-590-К						

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Ū

80

TT-590

ABSOLUTE MAXIMUM RATINGS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

Forward Voltage (V ⁺ to V ⁻)	+44V
Reverse Voltage (V* to V ⁻)	-20V
Breakdown Voltage (Case to V ⁺ or V ⁻)	±200V
Rated Performance Temperature Range55°C to +	150° C
Storage Temperature Range65°C to +	275° C
Lead Temperature (Soldering, 10 sec)+	300° C

SPECIFICATIONS (Typical values at $T_A = +25^{\circ}C$, $V_S = 5V$ unless otherwise noted)

CHARACTERISTICS	TT-590-I	TT-590-J	TT-590-K	TT-590-L	TT-590-M	UNITS
Output Nominal Output Current @ +25°C (298.2°K)	298.2	298.2	298.2	298.2	298.2	μΑ
Nominal Temperature Coefficient	1.0	1.0	1.0	1.0	1.0	μΑ/°C
Calibration Error @ +25°C (notes)	±10.0max	± 5.0max	+ ± 2.5max	± 1.0max	± 0.5max	°C
Absolute Error (-55 to +150°C) (Note 1) Without external calibration adjustment	±20.0max	±10.0max	± 5.5max	± 3.0max	± 1.7max	°C
adjustment	± 5.8max	± 3.0max	± 2.0max	± 1.6max	± 1.0max	°C
Non-Linearity	± 3.0max	± 1.5max	± 0.8max	± 0.4max	± 0.3max	°C
Repeatability (Note 2)	± 0.1max	± 0.1max	± 0.1max	± 0.1max	± 0.1max	°C
Long Term Drift (Note 3)	± 0.1max	± 0.1max	± 0.1max	± 0.1max	± 0.1max	°C
Current Noise	40	40	40	40	40	pA/√Hz
Power Supply Rejection +4 < V _S < +5V	0.5	0.5	0.5	0.5	0.5	μA/V
$+5 < V_{S} < +15V$	0.2	0.2	0.2	0.2	0.2	μA/V
+15V < V _S < +30V	0.1	0.1	0.1	0.1	0.1	μA/V
Case Isolation to Either Lead	10 10	1010	1010	1010	10 10	Ω
Effective Shunt Capacitance	100	100	100	100	100	pF
Electrical Turn-on Time (Note 1)	20	20	20	20	20	μS
Reverse Bias Leakage Current (Note 4)	10	10	10	10	10	pA
Power Supply Range	+4 to +30	+4 to +30	+4 to +30	+4 to +30	+4 to +30	Volts

Notes 1. Does not include self heating effects.

2. Maximum deviation between +25°C reading after temperature cycling between -55°C and +150°C; guaranteed, not tested.

3. Conditions: Constant +5V, constant +125°C; Guaranteed, not tested.

4. Leakage current doubles every +10°C.

TYPICAL APPLICATIONS

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserve

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340
 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490
 Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055
 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

- 10 kHz to 100 kHz FS
- 0.01% Typ. Linearity at 10 kHz
- 25 ppm/°C Gain Tempco
- Open Collector Output
- Pulse and Square Wave Outputs
- Operates as V/F or F/V

GENERAL DESCRIPTION

Model VFQ-1 is a new monolithic voltage to frequency converter using combined bipolar and CMOS technologies. This device accepts a positive analog input current and produces an output pulse train with a frequency linearly proportional to an input current. In addition to the pulse output, there is also a square wave output at half the pulse frequency. The full scale output pulse rate can be set from 10 kHz to 100 kHz by means of two external capacitors. Linearities are typically 0.01% for 10 kHz full scale and 0.1% for 100 kHz full scale; linearity holds all the way down to zero.

The VFQ-1 internal circuitry includes an operational integrator, a comparator, digital delay circuit, single-pole double-throw electronic switch, a start circuit, a divide by two circuit, and two output driver circuits. It operates on the well-known charge balancing integrator principle. The two outputs are open collector NPN which can sink up to 10 mA and give a logic HI output up to +18 volts.

In normal operation this converter requires only five external components and a reference. If the zeroing adjustment is used, a trimming potentiometer and two more resistors are required. The VFQ-1 can be operated from dual ± 4 to ± 7.5 V supplies or from a single +10V to +15V supply. Current drain is 4 mA max. The device can also be operated as a frequency to voltage converter.

There are two basic packages offered: a 14 pin plastic DIP for 0°C to 70°C operation (VFQ-1C), and a 14 pin ceramic DIP for -25°C to +85°C operation (VFQ-1R).

Low Cost Monolithic Voltage to Frequency Converters Models VFQ-1C, VFQ-1R

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Data Acquisition

SPECIFICATIONS, VFQ-1 (Typical at 25°C, ±5V supplies, -5V ref., unless otherwise noted)						
	VFQ-1C	VFQ-1R				
MAXIMUM RATINGS Supply Voltage, pin 4 to pin 14 Input Current, pin 3 Reference Current, pin 7 Output Voltage, pins 8 and 10 Reference (pin 7) to -Vss	18 Volts ±10 mA ±10 mA +18 Volts ±1.5 Volts	* * * *				
INPUTS Input Current Range Input Current Overrange Input Offset Voltage Reference Input	0 to + 10 μ A +50 μ A ±50 mV max. Negative Voltage within egative supply	* * n ±1.5V of				
OUTPUTS Type Outputs Pulse Output, pin 8 Square Wave Output, pin 10 Output Logic Levels	Open Collector, NPN Negative going, 3 μ sec pulses at f ₀ . Square Wave at f ₀ /2 Vout ("0") $\leq +0.4V @ -10 \text{ mA}$ Vout ("1") $= +VDD$					
PERFORMANCE Linearity, 10 kHz Full Scale Linearity, 100 kHz Full Scale Gain Tempco, ppm/°C	0.01% typ., 0.05% max. 0.1% typ., 0.25% max. ±25 typ., ±40 max.					
Full Scale Accuracy, before trim	±10% *					
Output Settling Time	2 Pulses of New Frequency					
Power Supply Rejection	0.025%/V *					
SPECIFICATION AS F/V Input Frequency Range Input Voltage, Minimum Input Voltage, Maximum Input Impedance	0 to 100 kHz * ±0.4V * -2V to +VDD * 10 Meg., min. *					
Input Pulse Width	0.5 μsec. min. (Negative Pulse) 5.0 μsec. min. (Positive Pulse)					
Output Voltage Range Linearity Output Load, Min	0 V to (+VDD-1) * ±0.1% * 2K *					
POWER REQUIREMENT	+4.0 to +7.5V @ 4 mA max. -4.0 to -7.5V @ 4 mA max.					
PHYSICAL ENVIRONMENTAL Operating Temp. Range Storage Temp. Range Package, 14 pin	0°C to 70°C −65°C to +150°C Plastic DIP	-25°C to +85°C -65°C to +150°C Ceramic DIP				
	*Same Specification as First Column					

TECHNICAL NOTES

To calibrate the VFQ-1 as a V/F converter, connect as shown in the diagrams. Connect a precision voltage source (such as Datel-Intersil's DVC-8500) to the input resistor. Connect a 5 digit counter, with time base set to one second, to the output (pin 8).
 Zero. Set the voltage reference to

- +0.01V and adjust the zero adjust potentiometer for an output frequency of 10 Hz (for 10 kHz FS) or 100 Hz (for 100 kHz FS).
- Gain. Assuming 10V FS input, set the voltage reference to +10.000V and trim the value of R1 to give an output frequency of 10,000 Hz (for 10 kHz FS) or 100,000 Hz (for 100 kHz FS).
- The two outputs (pins 8 and 10) are open collector NPN transistor for easy interfacing to a variety of standard logic circuits. A pull-up resistor must be used as shown in the diagrams. The resistor may be tied to any voltage up to +18V, which can be separate from +Vpp.
- Note that the negative reference voltage must be within ±1.5V of the negative supply (-Vss). For a given full scale output frequency the value of C₂ is dependent on the negative reference voltage. See "VFQ-1 Formulas" for the relationship.
- 4. Note the min-max waveform requirements for the input when using the VFQ-1 as a frequency to voltage converter. See "Input Waveform Limits" diagram. The minimum ±0.4V must be observed as well as the minimum widths for both positive and negative going portions of the waveform. If the input waveform exceeds the maximum amplitude limits, an input resistor and back-to-back clamping diodes should be used as shown in the connection diagram.
- 5. The temperature to frequency converter shown in the application diagram is a simple but useful method of sensing temperature accurately and transmitting the result in digital form over some distance. Once calibrated at a known temperature the circuit has a resolution of 0.1°C (10 Hz per °K).

ORDERING INFORMATION						
MODEL	TEMP. RANGE	PACKAGE				
VFQ-1C VFQ-1R	0°C to 70°C 25°C to +85°C	Plastic DIP Ceramic DIP				
TRIMMING POTENTIOMETER: TP50K						
THESE CONVERTERS ARE COVERED BY						

GSA CONTRACT.

PERFORMANCE CHARACTERISTICS

ŧ

MIN.

MAX

5.0µsec. MIN.

0.5µsec. MIN.

VFQ-1 FORMULAS

+ V_{DD} -----

+0.4V

-0.4V ---

2V

APPLICATIONS DIAGRAMS

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Universal V-to-F and F-to-V Converter VFV Series

FEATURES

- Linearity to .005%
- V or I Input
- V/F or F/V Conversion
- 10kHz or 100kHz FS
- DTL/TTL or CMOS Output

GENERAL DESCRIPTION

The VFV series voltage to frequency converters, with universal operating characteristics offers significant advantages over other available units. These converters can be operated as either voltage to frequency or frequency to voltage converters by external pin connection. In addition, voltage inputs of 0 to +10V or 0 to -10V and current inputs of 0 to +1mA or 0 to -1mA can be chosen by pin connection. As an F/V converter either 0 to +10V or 0 to -10V outputs can be chosen by pin connection. Output pulses can be selected to be positive or negative going, with DTL/TTL, CMOS, or high level logic interfacing. The output is short circuit proof to common or either supply voltage. The result of these universal pin connectable operating characteristics is wide flexibility in applications.

There are two basic models in this series, the VFV-10K and VFV-100K, with 10kHz and 100kHz full scale output frequencies respectively. Both models have a linear minimum overrange capability of 10%. The linearity holds down to zero input, resulting in an extremely wide dynamic range of operation. The output pulses are constant width pulses of 70 μ sec. for the VFV-10K and 7 µsec. for the VFV-100K. Both models are internally trimmed to 1% accuracy with external offset and gain adjustments for precise calibration in a specific application. When used as an F/V converter, an external capacitor can be used to reduce output ripple to a specified level.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

SPECIFICATIONS		
Typical at 25°C, ±15V Supplies unless otherwise noted	VFV-10K	VFV-100K
V/F CONVERTER INPUT Input Voltage Range Input Current Range Input Overrange, min Input Impedance, voltage in	0 to +10V 0 to -10V 0 to +1mA 0 to -1mA 10% 10K ohms	•
V/F CONVERTER OUTPUT Frequency Range Frequency Overrange, min. Pulse Width Rise and Fall Time, max. Pulse Polarity. Settling Time to .01% Overload Recovery. Capacitive Loading, max. Output Logic Output Logic 1 1 0 0	0 to 10kHz 10% 70 μsec 200 nsec. Pos. or Neg. 1 pulse of new freq. 1 pulse of new freq. 1000pF DTL/TTL or CMOS	0 to 100kHz * 7 μsec * * * 100pF *
Output Loading, S.C. protected	12 TTL loads	*
Tot zero) Nonlinearity, max. Offset Voltage, max. (adj. to zero). Temp. Coefficient of Gain max. Gain vs. time Temp. Coefficient of Zero, max. Zero Drift vs. Power Supply Sensitivity, max. Warm Up Time to Rated Accuracy	±1% ±.005% ±10mV ±20ppm/°C ±100ppm/day ±30μV/°C ±10μV/day .002%/% 1 minute	* ±.05% * ±100ppm/°C * * * .02%/% 5 minutes
F/V CONVERTER SPECIFICATIONS Input Pulses Input Code Min. Max. 1 0V +0.8V 0 +2 0V +15V	Negative Going <1TTL Load	•
Input Impedance, min. Input Pulse Width Filter Time Constant Output Voltage Output Impedance Output Current, S.C. protected	30K ohms 10 - 60 μsec. 0.5 msec. 0 to +10V 0 to -10V 0.1 ohm ±5mA	4K ohms 1 – 6 µsec. .025 msec. * *
POWER REQUIREMENT	±15VDC@25mA quiescent	*
PHYSICAL-ENVIRONMENTAL Operating Temperature Range Storage Temperature Range Relative Humidity Case Size Case Material Pins Weight Mating Sockets	0° C to 70° C -55° C to +85° C Up to 100% non. cond. 2'' x 2'' x .375'' Black Diallyl Phthalate, Epoxy Encapsulated 0.020'' dia. round, gold plated, .250'' min. 1.8 oz. (51 g.) DILS-2, 2 ea.	•
opecifications same as vir v = IUN		

TECHNICAL NOTES

V/F CONVERTER OPERATION

The V/F converter can be thought of as an A/D converter with serial output pulses which must be counted. The first applications diagram shows the V/F converter used as A/D converter by connecting the output to a digital counter and register. The digital counter is shown with a one second counting time base and an output register to store the output data while the V/F. converter is making a conversion. The VFV-10K has a resolution of 1 part in 10,000 using a 1 second time base. This is equivalent to better than 13 bits binary resolution (1 part in 8,192). The nonlinearity of this model is 50 ppm maximum which is equivalent (50 ppm = 1/2 LSB) to a better than 13 bit binary converter. With a gain temperature stability of 20 ppm/°C worst case, the VFV-10K is equivalent to a very high quality A/D converter in its performance.

The VFV-100K has a resolution of 1 part in 100,000 using a 1 second time base. This is equivalent to better than 16 bits binary resolution (1 part in 65,536). The VFV-100K can be used to give equivalent resolution to the VFV-10K with only one tenth the time base, or 0.1 second for a resolution of 1 part in 10,000.

An important characteristic of both the VFV-10K and VFV-10OK is that their linearity does not fall off near zero as with some other converters. They are both linear right to zero, and this results in a wide dynamic operating range. In practice the lower limit of operation is about 1 millivolt input due to adjustment accuracy, long term stability, temperature drift, etc. This results in a dynamic range of 10,000 to 1 of 80dB for both models.

As a V/F converter positive inputs are achieved using inputs directly into the integrator (pins 26 or 31). For negative inputs the internal inverting amplifier is connected ahead of the integrator and the input is applied to pin 28 or 30. Using both the inverting amplifier inputs and the integrator inputs it is possible to algebraically add and subtract inputs for V/F converter operation.

The output logic level can be set from 0 to +15V by use of an external resistor connected to pin 10 while pin 12 is left open. The output voltage is determined by the resistor ratio with the internal 10K ohm resistor as shown in the Output Logic Connections diagram.

F/V CONVERTER OPERATION

For operation as an F/V converter negative going input pulses must be used. The pulses must go from a HI logic level of +2.0V to +15V to a LO logic level of 0 to +0.8V. The pulse widths must be between 10 and 60 μ sec for the VFV-10K and 1 and 6 μ sec for the VFV-10K. If these pulse widths are not available, then input conditioning circuits must be used as shown in the diagrams of Input Conditioning for F/V Converter.

Output ripple of the F/V converter can be made arbitrarily low by using an external filtering capacitor. This also slows down the output response time. As an F/V converter, a positive output is taken directly from the integrator output (pin1). For a negative output voltage the internal inverting amplifier is used after the integrator and the output is taken at pin 27.

CALIBRATION PROCEDURE

AS V/F CONVERTER

AS F/V CONVERTER

Trimming potentiometers are 100ppm/°C, 15 turn type, available from Datel-Intersil

V/F CONVERTER

- 1. Connect the unit as a V/F converter as shown above with zero and gain trimming potentiometers.
- 2. Connect a precision dial-up voltage source to +Vin (pin 26) and a digital counter and display set to a 1 second time base to PULSE OUT (pin 10) as shown.
- 3. Set the precision voltage source to +.010 volt and adjust the zero trimming potentiometer to give an output count of 10 for the VFV-10K or 100 for the VFV-100K.
- 4. Set the precision voltage source to +10.000 volts and adjust the gain trimming potentiometer to give an output count of 10,000 for the VFV-10K or 100.000 for the VFV-100K.

The above procedure applies for a positive input voltage V/F converter. For a negative input voltage, connect pin 27 to pin 26 and use pin 28 as the input.

F/V CONVERTER

- 1. Connect the unit as an F/V converter as shown with desired external filter capacitor and zero and gain trimming potentiometers.
- 2. Connect a 4-1/2 digit DVM to the Vout terminal (pin 1). Connect the PULSE IN terminal (pin 2) to +15 volt supply, and adjust the zero trimming potentiometer for 0.000 volts output.
- 3. Connect a pulse generator to PULSE IN (pin 2) and set the generator to give +5 volt negative going pulses 50 μ sec wide for the VFV-10K or 5 μ sec wide for the VFV-100K. Connect a digital counter to the pulse generator output and set the pulse rate to exactly 10kHz for the VFV-10K or 100kHz for the VFV-100K.
- 4. Adjust the gain trimming potentiometer to give +10.000 volts output.

The above procedure applies for a positive output voltage F/V converter. If negative output voltage is desired, connect pin 1 to pin 28 and measure the output at pin 27.

PULSE

POLARITY (PIN 14)

+15V

OPEN

+15V

OPEN

LOGIC

SELECT (PIN 12)

GND

GND

OPEN

OPEN

APPLICATIONS (cont'd)

421C

Monolithic Voltage Converter Model VI-7660

FEATURES

- Simple Conversion of +5V Logic Supply to ±5V Supplies
- Simple Voltage Multiplication (V_{OUT} = (-) nV_{IN})
- 99.9% Typical Open Circuit Voltage Conversion Efficiency
- 98% Typical Power Efficiency
- Wide Operating Voltage Range 1.5V to 10.0V
- Easy to use Requires only 2 External Non-Critical Passive Components

APPLICATIONS

- On Board Negative Supply for up to 64 Dynamic RAMs.
- Localized μ-Processor (8080 type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems

CONNECTION DIAGRAM

Note: 1. Pin 1 is designated by dot or notch for DIP.

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
VI-7660C	-20° to +70° C	TO-99
VI-7600PC	-20° to +70° C	8 PIN MINI DIF
VI-7660M	-55° to +125° C	TO-99

BLOCK DIAGRAM

GENERAL DESCRIPTION

The VI-7660 is a monolithic CMOS power supply circuit which offers unique performance advantages over previously available devices. The VI-7660 performs the complete supply voltage conversion from positive to negative for an input range of +1.5V to +10.0V, resulting in complementary output voltages of -1.5 to -10.0V with the addition of only 2 non-critical external capacitors needed for the charge pump and charge reservoir functions. Note that an additional diode is required for V_{SUPPLY} >6.5V.

Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, four output power MOS switches, and a unique logic element which senses the most negative voltage in the device and ensures that the output Nchannel switches are not forward biased. This assures latchup free operation.

The oscillator, when unloaded, oscillates at a nominal frequency of 10kHz for an input supply voltage of 5.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be overdriven by an external clock.

The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages (+3.5 to +10.0 volts), the LV pin is left floating to prevent device latchup.

Typical applications for the VI-7660 will be data acquisition and microprocessor based systems where there is a +5 volt supply available for the digital functions and an additional -5volt supply is required for the analog functions. The VI-7660 is also ideally suited for providing low current, -5V body bias supply for dynamic RAMs.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Linea

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	10.5V
Oscillator Input Voltage (Note 1)	
	$(V^+ - 5.5V)$ to $(V^+ + 0.3V)$ for $V^+ > 5.5V$
	-0.3V to (V ⁺ +0.3V) for V ⁺ < 3.5V
LV (Note 1)	No connection for $V^+ > 3.5V$
Output Short Duration (V _{SUPPLY} ≤5.5V) Power Dissipation (Note 2)	Continuous
VI-7660C	
VI-7660PC	
VI-7660M	500mW

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS V^{*} = 5V, T_A = 25°C, C_{OSC} = 0, Test Circuit Figure 1 (unless otherwise specified)

		LIMITS				
SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
+	Supply Current		170	500	μA	R _L = ∞
V⁺H1	Supply Voltage Range - Hi	3.0		6.5	V	0° C \leq T _A \leq 70° C, R _L = 10k Ω , LV = No Connection
	(D _X out of circuit)	3.0		5.0	V	$-55^{\circ}C \leq T_{A} \leq 125^{\circ}C, \ R_{L} = 10 k\Omega, \ LV = Ground$
V ⁺ L1	Supply Voltage Range - Lo (Dx out of circuit)	1.5		3.5	V	$MIN \leq T_A \leq MAX, R_L = 10 k \Omega, LV = Ground$
V ⁺ H2	Supply Voltage Range - Hi (Dx in circuit)	3.0		10.0	V	MIN \leq T _A \leq MAX, R _L = 10k Ω , LV = No Connection
V ⁺ L2	Supply Voltage Range - Lo (Dx in circuit)	1.5		3.5	V	$\text{MIN} \leq \text{T}_{\text{A}} \leq \text{MAX}, \text{R}_{\text{L}} = 10 \text{k}\Omega, \text{LV} = \text{Ground}$
			55	100	Ω	$I_{OUT} = 20 \text{mA}, T_A = 25^{\circ} \text{C}$
				120	Ω	I_{OUT} = 20mA, -20°C \leq T _A \leq +70°C
				150	Ω	I_{OUT} = 20mA, -55°C \leq T _A \leq +125°C
Rout	Output Source Resistance			300	Ω	$V^+ = 2V$, I _{OUT} = 3mA, LV = Ground,
		L				$-20^{\circ}C \leq T_{A} \leq +70^{\circ}C$
	,			400	Ω	$V^+ = 2V$, $I_O U_T = 3mA$, $LV = Ground$, $-55^\circ C \le T_A \le 105^\circ C$
face	Oppillator Ergguanou		10		1.1.1.	+125°C, DX in circuit
IOSC	Device Efficiency		10	<u> </u>		
PEf	Power Efficiency	95	98		%	$R_L = 5k\Omega$
VOUT Ef	Voltage Conversion Efficiency	97	99.9		%	$R_L = \infty$
Zosc	Oscillator Impedance		1.0		MΩ	V ⁺ = 2 Volts
			100		kΩ	$V^+ = 5$ Volts

Notes: 1. Connecting any terminal to voltages greater than V* or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of the V I-7660.

2. Derate linearly above 50° C by 5.5mW/° C.

TYPICAL PERFORMANCE CHARACTERISTICS

LOAD CURRENT IL (mA)

1 2 3 4 5 6 7 8

NOTES: 1. For large value of C_{OSC} (>1000pF) the values of C₁ and C₂ should be increased to 100μ F.

2. Dx is required for supply voltages greater than 6.5V (a) $-55^{\circ} \leq T_A \leq +70^{\circ}$ C; refer to performance curves for additional information.

Figure 1: VI-7660 Test Circuit

CIRCUIT DESCRIPTION

The VI-7660 contains all the necessary circuitry to complete a voltage doubler, with the exception of 2 external capacitors which may be inexpensive 10μ F polarized electrolytic capacitors. The mode of operation of the device may be best understood by considering Figure 3, which shows an idealized voltage doubler. Capacitor C₁ is charged to a voltage, V⁺, for the half cycle when switches S₁ and S₃ are closed. (Note: Switches S₂ and S₄ are open during this half cycle.) During the second half cycle of operation, switches S₂ and S₄ are closed, with S₁ and S₃ open, thereby shifting capacitor C₁ negatively by V⁺ volts. Charge is then transferred from C₁ to C₂ such that the voltage on C₂ is exactly V⁺, assuming ideal switches and no load on C₂. The VI-7660 approaches this ideal situation more closely than existing non-mechanical circuits.

In the VI-7660, the 4 switches in Figure 3 are MOS power switches; S_1 is a P-channel device and S_2 , $S_3 \& S_4$ are N-channel devices. The main difficulty with this approach is

that in integrating the switches, the substrates of $S_3 \& S_4$ must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions (V_{OUT} = V⁺), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.

This problem is eliminated in the VI-7660 by a logic network which senses the output voltage (V_{OUT}) together with the level translators and switches the substrates or S₃ & S₄ to the correct level to maintain necessary reverse bias.

The voltage regulator portion of the VI-7660 is an integral part of the anti-latchup circuitry, however it's inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the "LV" pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 3.5 volts the LV terminal must be left open to insure latchup proof operation, and prevent device damage.

THEORETICAL POWER EFFICIENCY CONSIDERATIONS

In theory a voltage multiplier can approach 100% efficiency if certain conditions are met:

- A The drive circuitry consumes minimal power
- **B** The output switches have extremely low ON resistance and virtually no offset.
- **C** The impedances of the pump and reservoir capacitors must be negligible at the pump frequency.

The VI-7660 approaches these conditions for negative voltage multiplication if large values of C_1 and C_2 are used. ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by:

$E = 1/2 C_1 (V_1^2 - V_2^2)$

Where V₁ and V₂ are the voltages on C₁ during the pump and transfer cycles. If the impedances of C₁ and C₂ are relatively high at the pump frequency (refer to Fig. 3) compared to the value of R_L, there will be a substantial difference in the voltages V₁ and V₂. Therefore it is not only desirable to make C₂ as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C₁ in order to achieve maximum efficiency of operation.

DO'S AND DON'TS

- 1 Do not exceed maximum supply voltages.
- 2 Do not connect LV terminal to GROUND for supply voltages greater than 3.5 volts.

- 3 Do not short circuit the output to V⁺ supply for supply voltages above 5.5 volts for extended periods, however, transient conditions including startup are okay.
- 4 When using polarized capacitors, the + terminal of C₁ must be connected to pin 2 of the VI-7660 and the + terminal of C₂ must be connected to GROUND.
- 5 Add diode D_X as shown in Fig. 1 for hi-voltage, elevated temperature applications.

CONSIDERATIONS FOR HI VOLTAGE & ELEVATED TEMPERATURE

The VI-7660 will operate efficiently over its specified temperature range with only 2 external passive components (charge & pump capacitors), provided the operating supply voltage does not exceed 6.5 volts at $+70^{\circ}$ C and 5.0 volts at $+125^{\circ}$ C. Exceeding these maximums at the temperatures indicated may result in destructive latch-up of the VI-7660. (Ref: Graph "Operating Voltage Vs. Temperature")

Operation at supply voltages of up to 10.0 volts over the full temperature range without danger of latch-up can be achieved by adding a general purpose diode in series with the VI-7660 output, as shown by "Dx" in the circuit diagrams. The effect of this diode on overall circuit performance is the reduction of output voltage by one diode drop (approximately 0.6 volts).

TYPICAL APPLICATIONS

1. Simple Negative Voltage Converter

Ĺ

The majority of applications will undoubtedly utilize the VI-7660 for generation of negative supply voltages. Figure 4 shows typical connections to provide a negative supply where a positive supply is available. A similar scheme may be employed for supply voltages anywhere in the operating range of $\pm 1.5V$ to ± 10.0 volts, keeping in mind that pin 6 (LV) is tied to the supply negative (GND) only for supply voltages below 3.5 volts, and that diode D_X must be included for proper operation at higher voltages and/or elevated temperatures.

The output characteristics of the circuit in Figure 4 are those of a nearly ideal voltage source in series with 70 ohms. Thus for a load current of -10mA and a supply voltage of +5 volts, the output voltage will be -4.3 volts. The dynamic output impedance due to the capacitor impedances is $1/\omega$ C where

$$C = C_1 = C_2$$

iving $\frac{1}{\omega C} = \frac{1}{2\pi f_{OSC} \times 10^{-5}} = 3 \text{ ohms}$

for $C = 10\mu F$ and $f_{OSC} = 5kHz$ (1/2 of oscillator frequency)

g

Figure 4: Simple Negative Converter

2. Paralleling Devices

Any number of VI-7660 voltage convertors may be paralleled to reduce output resistance. The reservoir capacitor, C_2 , serves all devices while each device requires

ROUT =

3. Cascading Devices

The VI-7660 may be cascaded as shown to produce larger negative multiplication of the initial supply voltage, however, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is

defined by:

$V_{OUT} = -n (V_{IN}),$

where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the sum of the individual VI-7660 ROUTS.

Figure 6: Cascading Devices for Increased Output Voltage

4. Changing the VI-7660 Oscillator Frequency

It may be desirable in some applications, due to noise or other considerations, to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 7. In order to prevent possible device latchup, a $1k\Omega$ resistor must be used in series with the clock output. In the situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10k\Omega$ pullup resistor to V⁺ supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be 1/2 of the clock frequency.

It is also possible to maximize the conversion efficiency of the VI-7660 by lowering the oscillator frequency. This is

5. Positive Voltage Multiplication

The VI-7660 may be employed to achieve positive voltage multiplication using the circuit shown in Figure 9. In this application, the pump inverter switches of the VI-7660 are used to charge C₁ to a voltage level of $V^+ - V_F$ (where V^+ is the supply voltage and V_F is the forward voltage drop of diode D₁). On the transfer cycle, the voltage on C₁ plus the supply voltage (V^+) is applied through diode D₂ to capacitor C₂. The voltage thus created on C₂ becomes ($2V^+$) – ($2V_F$) or twice the supply voltage minus the combined forward voltage drops of diodes D₁ and D₂.

The source impedance of the output (V_{OUT}) will depend on the output current, but for $V^+ = 5$ volts and an output current of 10mA it will be approximately 60 ohms.

Figure 9: Positive Voltage Multiplier

achieved by connecting an additional capacitor $C_{\mbox{OSC}}$ as shown in Figure 8, however.

Lowering the oscillator frequency will necessitate an undesirable increase in the impedance of the pump (C_1) and reservoir (C_2) capacitors; this is overcome by increasing the values of C_1 and C_2 by the same factor that the frequency has been reduced. For example, the addition of a 100pF capacitor between pin 7 (Osc) and V⁺ will lower the oscillator frequency to 1kHz from its nominal frequency of 10kHz (a multiple of 10), and thereby necessitate a corresponding increase in the value of C_1 and C_2 (from 10μ F to 100μ F).

6. Combined Negative Voltage Conversion and Positive Supply Multiplication

Figure 10 combines the functions shown in Figures 4 and 9 to provide negative voltage conversion and positive voltage multiplication simultaneously. This approach would be, for example, suitable for generating +9 volts and -5 volts from an existing +5 volt supply. In this instance capacitors C_1 and C_3 perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors C_2 and C_4 are pump and reservoir respectively for the multiplied positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.

Figure 10: Combined Negative Converter and Positive Multiplier

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Precision Bandgap Voltage References VR-182 Series

FEATURES

- 2.455V Output
- Tempcos to 30 ppm/°C
- 2 to 120 mA Ref. Current
- ±1.4% Tolerance
- 2-Terminal
- Low Cost

GENERAL DESCRIPTION

The VR-182 series precision references are two-terminal monolithic bandgap devices which feature 2.455 volts output with tight tolerance and low tempcos. Temperature coefficients are 100, 50, and 30 ppm/°C respectively for Models VR-182A, VR-182B, and VR-182C.

An active regulator around the bandgap circuit results in 0.1 ohm typical dynamic impedance with a wide 2 to 120 mA reference current range. Furthermore, the dynamic impedance is flat to 4 KHz rising to only 1.2 ohms at 50 KHz. Other specifications include ±1.43% voltage tolerance, 10 μ V RMS output voltage noise, and 10 ppm per 1000 hours long term stability.

These low cost references are easy to use and are ideal for use with monolithic A/D and D/A converters which do not have internal references. They are also useful in voltage regulator circuits, switching power supplies, comparator circuits, and other analog signal processing applications.

The low 2.455 reference voltage allows these references to be used with 5V logic supplies and other power supply voltages as low as 3.5V. In many cases they give improved performance over higher priced Zener diode references which require higher supply voltages and have much higher dynamic impedances.

The VR-182 devices are supplied in a two-lead hermetically sealed TO-18 package and operate over the 0°C to 70°C temperature range.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Datel-Intersil, Inc. All rights reserved Printed in U.S.A. Copyright © 1979

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (LA) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dailas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

VR-8069 Series Low Voltage Reference

FEATURES

- Temperature Coefficient guaranteed to 10 ppm/° C max.
- Low Bias Current . . . 50µA min
- Low Dynamic Impedance
- Low Reverse Voltage
- Low Cost

GENERAL DESCRIPTION

The VR-8069 is a 1.2V temperature compensated voltage reference. It uses the band-gap principle to achieve excellent stability and low noise at reverse currents down to 50μ A. Applications include analog-to-digital converters, digital-to-analog converters, threshold detectors, and voltage regulators. Its low power consumption makes it especially suitable for battery operated equipment.

ORDERING INFORMATION

Model	Tempco. of V _{REF,} Max.	Oper. Temp. Range	Package
VR-8069-DC	1.0%/9.0	0 to +70° C	
VR-8069-DM	1.0%/ C	-55 to +125° C	
VR-8069-CC	0059/ /9 C	0 to +70° C	TO 52
VR-8069-CM	.005%/ C	-55 to +125° C	10-52
VR-8069-BC	.0025%/° C	0 to +70° C	ж.
VR-8069-AC	.001%/°C	0 to +70° C	
VR-8069 SERIES

ABSOLUTE MAXIMUM RATINGS

Reverse Voltage See Note 2
Forward Current 10mA
Reverse Current 10mA
Power Dissipation . Limited by max forward/reverse current
Storage Temperature
Operating Temperature
Suffix "C" 0°C to +70°C
Suffix "M"
Lead Temperature (Soldering, 10 Sec) 300° C

ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted)

CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
Reverse breakdown Voltage	I _R = 500μA	1.20	1.23	1.25	v
Reverse breakdown Voltage change	$50\mu A \le I_R \le 5mA$		15	20	mV
Reverse dynamic Impedance	$I_{R} = 50\mu A$ $I_{R} = 500\mu A$		1 1	2 2	Ω
Forward Voltage Drop	IF = 500μA		.7	1	V
RMS Noise Voltage	$\begin{array}{l} 10 Hz \leq f \leq 10 kHz \\ I_{R} = 500 \mu A \end{array}$		5		μV
Breakdown voltage Temperature coefficient: 8069A 8069B 8069C 8069D	$\begin{cases} I_R = 500 \mu A \\ T_A = operating \\ temperature range \\ (Note 3) \end{cases}$.001 .0025 .005 .01	%/°C
Reverse Current		.050		5	mA

TYPICAL PERFORMANCE CHARACTERISTICS

VOLTAGE CHANGE AS A FUNCTION OF REVERSE CURRENT

REVERSE VOLTAGE AS A FUNCTION OF CURRENT

REVERSE VOLTAGE AS A FUNCTION OF TEMPERATURE

Notes:

1) The diode should not be operated with shunt capacitances between 200pF and 0.22µF, as it may oscillate at some currents. If circuit strays in excess of 200pF are anticipated, a 4.7µF shunt capacitor will ensure stability under all operating conditions.

2) In normal use, the reverse voltage cannot exceed the reference voltage. However when plugging units into a powered-up test fixture, an instantaneous voltage equal to the compliance of the test circuit will be seen. This should not exceed 20V.

3) For the military part, measurements are made at 25° C, -55° C, and +125° C. The unit is then classified as a function of the worst case T.C. from 25° C to -55° C, or 25° C to +125° C.

WG-8038 Precision Waveform Generator Voltage Controlled Oscillator

FEATURES

- Low Frequency Drift With Temperature – 50ppm/°C Max.
- Simultaneous Outputs Sine-Wave, Square-Wave and Triangle.
- High Level Outputs T² L to 28V
- Low Distortion 1%
- High Linearity 0.1%
- Easy to Use 50% Reduction in External Components.
- Wide Frequency Range of Operation 0.001Hz to 1.0MHz
- Variable Duty Cycle 2% to 98%

GENERAL DESCRIPTION

The 8038 Waveform Generator is a monolithic integrated circuit, capable of producing sine, square, triangular, sawtooth and pulse waveform of high accuracy with a minimum of external components (refer to Figures 8 and 9) The frequency (or repetition rate) can be selected externally over a range from less than 1/1000 Hz to more than 1MHz and is highly stable over a wide temperature and supply voltage range. Frequency modulation and sweeping can be accomplished with an external voltage and the frequency can be programmed digitally through the use of either resistors or capacitors. The Waveform Generator utilizes advanced monolithic technology, such as thin film resistors and Schottky-barrier diodes. The 8038 Voltage Controlled Oscillator can be interfaced with phase lock loop circuitry to reduce temperature drift to below 50ppm/°C.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD. MANSFIELD. MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

Data Acquisitior

MAXIMUM RATINGS

Supply Voltage	$\dots \dots \dots \pm 18V$ or 36V Total
Power Dissipation	
Input Voltage (any pin)	Not To Exceed Supply Voltages
Input Current (Pins 4 and 5)	
Output Sink Current (Pins 3 and 9)	25mA
Storage Temperature Range	65°C to +125°C
Operating Temperature Range:	
Suffix "M"	55°C to +125°C
Suffix "C"	$\dots \dots 0^{\circ}C$ to $+70^{\circ}C$
Lead Temperature (Soldering, 10 sec.)	300° C

ELECTRICAL CHARACTERISTICS

(V_S = \pm 10V or +20V, T_A = 25°C, R_L = 10 K Ω Unless Otherwise Specified) Note 3.

		WG-803	8-C		WG-803	8- B	١	VG-8038	9-A	
GENERAL CHARACTERISTICS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
Supply Voltage Operating Range										
Single Supply	+10		+30	+10		30	+10		30	v
Dual Supplies	. ±5		+15	+ 5		+15	±5		+15	V
Supply Current (V _S = ±10V) Note 1.										
Suffix "M"					12	15		12	15	mA
Suffix "C"		12	20		12	20		12	20	mA
FREQUENCY CHARACTERISTI	CS (all v	vaveforms								
Maximum Frequency of Oscillation	100,00	0		100,000			100,000			Hz
Sweep Frequency of FM		10			10			10		kH <i>z</i>
Sweep FM Range (Note 2)		40:1			4 0:1			40:1		4 - 1 ²
FM Linearity 10:1 Ratio		0.5			0.2			0.2		%
Frequency Drift With Temperature Note 6		50			50	100		20	50	ppm/"C
Frequency Drift With Supply Voltage (Over Supply Voltage Range)	l	0.05			0.05			0.05		%/Vs
Recommended Programming Resistors (R _A and R _B)	1000		1 M	1000		1 M	1000		1 M	Ω
OUTPUT CHARACTERISTICS	•									
Square-Wave										
Leakage Current (V9= 30v)			1			1			1	μA
Saturation Voltage (I _{SINK} = 2mA)		0.2	0.5		0.2	0.4		0.2	0.4	v
Rise Time ($R_L = 4.7 k\Omega$)		100			100			100		ns
Fall Time ($R_L = 4.7 k\Omega$)		40			40			40		ns
Duty Cycle Adjust	2		98	2		98	2		98	%
Triangle/Sawtooth/Ramp										
Amplitude (R _T = 100kΩ)	0.30	0.33	÷.	0.30	0.33		0.30	0.33		×V _S
Linearity		0.1			0.05			0.05		%
Output Impedance (I _{OUT} = 5mA)		200			200			200		Ω
Sine-Wave										
Amplitude (Re = 100ks2)	0.2	0.22		0.2	0.22		0.2	0.22		×Vs
THD (R _S = 1M̃Ω) Note 4.		0.8	5		0.7	3		0.7	1.5	%
THD Adjusted (Use Fig. 8b)		0.5			0.5			0.5		%

NOTE 1: RA and RB collection currents not included.

NOTE 2: $V_{S,=}$ 20V; R_A and R_B = 10k Ω , f = 9kHz; Can be extended to 1000.1 See Figures 13 and 14

NOTE 3: All parameters measured in test circuit given in Fig. 2

NOTE 4: $82k\Omega$ connected between pins 11 and 12, Triangle Duty Cycle set at 50%. (Use R_A and R_B)

NOTE 5: Derate ceramic package at 12.5mW/°C for ambient temperatures above 100°C

NOTE 6: Over operating temperature range, Fig. 2, pins 7 and 8 connected, V_S = ±10V. See Fig. 6c for T.C. vs V_S

TEST CONDITIONS (See Fig. 2)

PARAMETER	RA	RB	RL	C 1	SW1	MEASURE
Supply Current	10kΩ	10kΩ	10kΩ	3.3nF	Closed	Current into Pin 6
Maximum Frequency of Oscillation	1kΩ	1kΩ	4,7kΩ	100pf	Closed	Frequency at Pin 9
Sweep FM Range (Note 1)	10kΩ	10kΩ	10kΩ	3.3nF	Open	Frequency at Pin 9
Frequency Drift with Temperature	10kΩ	10kΩ	10kΩ	3.3nF	Closed	Frequency at Pin 9
Frequency Drift with Supply Voltage (Note 2)	10kΩ	10kΩ	10kΩ	3.3nF	Closed	Frequency at Pin 9
Output Amplitude: Sine	10kΩ	10kΩ	10kΩ	3.3nF	Closed	Pk-Pk output at Pin 2
Triangle	10kΩ	10kΩ	10kΩ	3.3nF	Closed	Pk-Pk output at Pin 3
Leakage Current (off) Note 3	10kΩ	10kΩ	1. A 1.	3.3nF	Closed	Current into Pin 9
Saturation Voltage (on) Note 3	10kΩ	10kΩ	10kΩ	3.3nF	Closed	Output (low) at Pin 9
Rise and Fall Times	10kΩ	10kΩ	4.7kΩ	3.3nF	Closed	Waveform at Pin 9
Duty Cycle Adjust: MAX	50kΩ	~1.6kΩ	10kΩ	3.3nF	Closed	Waveform at Pin 9
MIN	~25kΩ	50kΩ	10kΩ	3.3nF	Closed	Waveform at Pin 9
Triangle Waveform Linearity	10kΩ	10kΩ	10kΩ	3.3nF	Closed	Waveform at Pin 3
Total Harmonic Distortion	1 0 kΩ	10kΩ	10kΩ	3.3nF	Closed	Waveform at Pin 2

NOTE 1: The hi and lo frequencies can be obtained by connecting pin 8 to pin 7 (fhi) and then connecting pin 8 to pin 6 (flo).

Otherwise apply Sweep Voltage at pin 8 (2/3 V_{CC} +2V) \leq V_{SWEEP} \leq V_{CC} where V_{CC} is the total supply voltage. In Fig. 2, Pin 8 should vary between 5.3V and 10V with respect to ground.

NOTE 2: $10V \le V_{CC} \le 30V$, or $\pm 5V \le V_S \le \pm 15V$.

NOTE 3: Oscillation can be halted by forcing pin 10 to +5 volts or -5 volts.

DEFINITION OF TERMS:

TEST CIRCUIT

Supply Current	The current required from the power supply to operate the device, excluding load currents and the currents through $\rm R_A$ and $\rm R_B.$
Frequency Range	The frequency range at the square wave output through which circuit operation is guaranteed.
Sweep FM Range	The ratio of maximum frequency to minimum frequency which can be obtained by applying a sweep voltage to Pin 8. For correct operation, the sweep voltage should be within the range (2/3 V _{CC} + 2V) < V _{sweep} < V _{CC} .
FM linearity	The percentage deviation from the best-fit straight line on the control voltage versus output frequency curve.
Frequency Drift with Temperature	The change in output frequency as a function of temperature.
Frequency Drift with Supply Voltage	The change in output frequency as a function of supply voltage.
Output Amplitude	The peak-to-peak signal amplitude appearing at the outputs.
Saturation Voltage	The output voltage at the collector of Ω_{23} when this transistor is turned on. It is measured for a sink current of 2mA.
Rise Time and Fall Time	The time required for the square wave output to change from 10% to 90%, or 90% to 10%, of its final value.
Triangle Waveform Linearity	The percentage deviation from the best-fit straight line on the rising and falling triangle waveform.
Total Harmonic	The total harmonic distortion at the sine-wave output.

FIGURE 2

WG-8038 CHARACTERISTIC CURVES

FIGURE 4. PERFORMANCE OF TRIANGLE-WAVE OUTPUT.

FIGURE 6. CURRENT CONSUMPTION AND FREQUENCY STABILITY.

THEORY OF OPERATION

The performance of the sine-wave output is shown in Figure 5. Figure 6 shows additional general information concerning current consumption and frequency stability and Figure 7 shows the phase relationship between the three waveforms.

WAVEFORM TIMING

The symmetry of all waveforms can be adjusted with the external timing resistors. Two possible ways to accomplish this are shown in Figure 8. Best results are obtained by keeping the timing resistors R_A and R_B separate (a). R_A controls the rising portion of the triangle and sine-wave and the 1 state of the square-wave.

The magnitude of the triangle-waveform is set at $1/3 \text{ V}_{\text{CC}}$; therefore the rising portion of the triangle is,

$$t_1 = \frac{C \times V}{I} = \frac{C \times 1/3 \times V_{CC} \times R_A}{1/5 \times V_{CC}} = \frac{5}{3} R_A \times C$$

The falling portion of the triangle and sine-wave and the 0 state of the square-wave is:

 $t_{2} = \frac{C \times V}{I} = \frac{C \times 1/3 V_{CC}}{\frac{2}{5} \times \frac{V_{CC}}{R_{B}} - \frac{1}{5} \times \frac{V_{CC}}{R_{A}}} = \frac{5}{3} \times \frac{R_{A} R_{B} C}{2 R_{A} - R_{B}}$

Thus a 50% duty cycle is achieved when $R_A = R_B$.

If the duty-cycle is to be varied over a small range about 50% only, the connection shown in Figure 8b is slightly more convenient. If no adjustment of the duty cycle is desired, terminals 4 and 5 can be shorter together, as shown in Figure 8c. This connection, however, carries an inherently larger variation of the duty-cycle.

With two separate timing resistors, the *frequency* is given by

$$f = \frac{1}{t_1 + t_2} = \frac{1}{\frac{5}{3} R_A C} \left(1 + \frac{R_B}{2 R_A - R_B}\right)$$

or, if $R_A = R_B = R$

$$f = \frac{0.3}{R C}$$
 (for Figure 8a)

If a single timing resistor is used (Figures 8c only), the frequency is

$$f = \frac{0.15}{BC}$$

Neither time nor frequency are dependent on supply voltage, even though none of the voltages are regulated inside the integrated circuit. This is due to the

FIGURE 8. POSSIBLE CONNECTIONS FOR THE EXTERNAL TIMING RESISTORS.

fact that both currents and thresholds are direct, linear function of the supply voltage and thus their effects cancel.

To minimize *sine-wave* distortion the 82k Ω resistor between pins 11 and 12 is best made a variable one. With this arrangement distortion of less than 1% is achievable. To reduce this even further, two potentiometers can be connected as shown in Figure 9. This configuration allows a reduction of sine-wave distortion close to 0.5%.

FIGURE 9. CONNECTION TO ACHIEVE MINIMUM SINE-WAVE DISTORTION.

SELECTING RA, RB and C

For any given output frequency, there is a wide range of RC combinations that will work. However certain constraints are placed upon the magnitude of the charging current for optimum performance. At the low end, currents of less than 1μ A are undesirable because circuit leakages will contribute significant errors at high temperatures. At higher currents (I > 5 mA), transistor betas and saturation voltages will contribute increasingly larger errors. Optimum performance will be obtained for charging currents of 10μ A to 1 mA. If pins 7 and 8 are shorted together, the magnitude of the charging current due to R_A can be calculated from:

$$I = \frac{R_1 \times V_{CC}}{(R_1 + R_2)} \times \frac{1}{R_A} = \frac{V_{CC}}{5R_A}$$

A similar calculation holds for R_B.

The capacitor value should be as large as possible.

WAVEFORM OUT LEVEL CONTROL AND POWER SUPPLIES

The waveform generator can be operated either from a single power-supply (10 to 30 Volts) or a dual power-supply (± 5 to ± 15 Volts). With a single power-supply the average levels of the triangle and sine-wave are at exactly one-half of the supply voltage, while the square-wave alternates between +V and ground. A split power supply has the advantage that all waveforms move symmetrically about ground.

The square-wave output is not committed. A load resistor can be connected to a different power-supply, as long as the applied voltage remains within the breakdown capability of the waveform generator (30V). In this way, the square-wave output be made TTL compatible (load resistor connected to +5 Volts) while the waveform generator itself is powered from a much higher voltage.

FREQUENCY MODULATION AND SWEEPING

The frequency of the waveform generator is a direct function of the DC voltage at terminal 8 (measured from $+V_{CC}$). By altering this voltage, frequency modulation is performed.

For small deviations (e. g. $\pm 10\%$) the modulating signal can be applied directly to pin 8, merely providing dc decoupling with a capacitor, as shown in Figure 10a. An external resistor between pins 7 and 8 is not necessary, but it can be used to increase input impedance. Without it (i.e. terminals 7 and 8 connected together), the input impedance is 8k Ω ; with it, this impedance increases to (R+8k Ω).

For larger FM deviations or for frequency sweeping, the modulating signal is applied between the positive supply voltage and pin 8 (Figure 10b). In this way the entire bias for the current sources is created by the modulating signal and a very large (e.g. 1000:1) sweep range is created (f = 0 at V_{sweep} = 0). Care must be taken, however, to regulate the supply voltage; in this configuration the charge current is no longer a function of the supply voltage (yet the trigger thresholds still are) and thus the frequency becomes dependent on the supply voltage. The potential on Pin 8 may be swept from V_{CC} to (2/3 V_{CC} + 2V).

FIGURE 10. CONNECTIONS FOR FREQUENCY MODULATION (a) AND SWEEP (b).

APPLICATIONS

FIGURE 11. SINE WAVE OUTPUT BUFFER AMPLIFIERS

The sine wave output has a relatively high output impedance $(1K\Omega \ Typ)$. The circuit of Figure 11 provides buffering, gain and amplitude adjustment. A simple op amp follower could also be used.

FIGURE 12. STROBE - TONE BURST GENERATOR

With a dual supply voltage the external capacitor on Pin 10 can be shorted to ground to halt the 8038 oscillation. Figure 12 shows a FET switch, diode ANDed with an input strobe signal to allow the output to always start on the same slope.

FIGURE 13. VARIABLE AUDIO OSCILLATOR, 20Hz to 20 KHz

To obtain a 1000:1 Sweep Range on the 8038 the voltage across external resistors RA and RB must decrease to nearly zero. This requires that the highest voltage on control Pin 8 exceed the voltage at the top of RA and RB by a few hundred millivolts.

The Circuit of Figure 13 achieves this by using a diode to lower the effective supply voltage on the 8038. The large resistor on pin 5 helps reduce duty cycle variations with sweep.

FIGURE 14. LINEAR VOLTAGE CONTROLLED OSCILLATOR

The linearity of input sweep voltage verses output frequency can be significantly improved by using an op amp as shown in Figure 14.

DETAILED SCHEMATIC

PACKAGE DIMENSIONS 14 PIN CERDIP

1218 தாட

Printed in U.S.A. Copyright © 1980 Datel-Intersil, Inc. All rights reserved.

11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dallas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD—TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031 PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Analog Switches

AS-5040 to AS-5051	444C
AS-5141 to AS-5145	454C

Quick Selection: Analog Switches

MODEL	SWITCH TYPE	ON RESISTANCE	OFF LEAKAGE CURRENT, MAX.	TURN ON TIME, MAX.	PACKAGE	OPER. TEMP. RANGE(°C)	PRICE (1-24)	SEE PAGE	
AS-5040C					16 PIN PLAS.				
	ерет	800	E.A.	5000000	DIP	0 to + 70	\$ 4.27	1110	
AS-5040M	5751	0012	AIIC	Sumsec	16 PIN CERDIP	– 55 to + 125	\$12.00	4440	
AS-5041C					16 PIN PLAS.				
· · · · · · · · · · · · · · · · · · ·		••••	5 n A	5000000	DIP	0 to + 70	\$ 4.87	1110	
AS-5041M	DUAL SPST	0012	AIIC	Soonsec	16 PIN CERDIP	– 55 to + 125	\$12.07	4440	
AS-5042C					16 PIN PLAS. DIP	0 to + 70	\$ 4.87		
AS-5042M	SPDT	80Ω	5nA	500nsec	16 PIN CERDIP	- 55 to + 125	\$12.07	444C	
AS-5043C					16 PIN PLAS.				
					DIP	0 to + 70	\$ 6.82		
AS-5043M	DUAL SPDT	80()	5nA	500nsec	16 PIN CERDIP	- 55 to + 125	\$22.50	444C	
AS-5044C					16 PIN PLAS.				
	DDCT		F . A	E00mono	DIP	0 to + 70	\$ 5.87	1110	
AS-5044M	DPST	8017	SNA	Soonsec	16 PIN CERDIP	– 55 to + 125	\$12.00	444C	
AS-5045C	-				16 PIN PLAS.				
			5 - A	5005000	DIP	0 to + 70	\$ 6.82	1110	
AS-5045M	DUAL DPST	8011	Anc	Soonsec	16 PIN CERDIP	– 55 to + 125	\$22.57	4440	
AS-5046C					16 PIN PLAS.				
	DDDT	***	E.A.	5000000	DIP	0 to + 70	\$ 6.82	1110	
AS-5046M	DPDI	8012	And	SUUNSEC	16 PIN CERDIP	– 55 to + 125	\$22.57	4440	
AS-5047C		- · · · · · · · · · · · · · · · · · · ·			16 PIN PLAS.				
	4000	000	E.a.A	5000000	DIP	0 to + 70	\$ 6.82	1110	
AS-5047M	4501	8017	AIIC	JUUIISEC	16 PIN CERDIP	- 55 to + 125	\$24.07	4440	
AS-5048C					16 PIN PLAS.				
		450	50 4	3000000	DIP	0 to + 70	\$ 7.95	1110	
AS-5048M	DUAL SPST	4012	JIIA	SUUNSEC	16 PIN CERDIP	– 55 to + 125	\$14.45	4440	

MODEL	SWITCH TYPE	ON RESISTANCE	OFF LEAKAGE CURRENT, MAX.	TURN ON TIME, MAX.	PACKAGE	OPER. TEMP. RANGE(°C)	PRICE (1-24)	SEE PAGE
AS-5049C			,		16 PIN PLAS.			
		45.0	E. A	2005000	DIP	0 to + 70	\$10.50	1110
AS-5049M	DPSI	4542	AIIC	Soonsec	16 PIN CERDIP	– 55 to + 125	\$27.75	4440
AS-5050C					16 PIN PLAS.	-		
		150		200	DIP	0 to + 70	\$ 7.95	
AS-5050M	SPDI	4512	5nA	300nsec	16 PIN CERDIP	– 55 to + 125	\$14.45	4440
AS-5051C					16 PIN PLAS. DIP	0 to + 70	\$10.50	
AS-5051M	SPDT	45Ω	5nA	300nsec	16 PIN CERDIP	- 55 to + 125	\$27.75	444C
AS-5140C	-				16 PIN PLAS.			
		_			DIP	0 to + 70	\$ 6.17	
AS-5140M	SPST	75 Ω	0.5nA	175nsec	16 PIN CERDIP	- 55 to + 125	\$26.35	454C
AS-5141C					16 PIN PLAS.			
		750	0.5-4	175	DIP	0 to + 70	\$ 6.82	4540
AS-5141M	DUAL SPST	/512	U.SNA	Transec	16 PIN CERDIP	– 55 to + 125	\$29.25	4540
AS-5142C					16 PIN PLAS.			
	CDDT	750	0.5-4	200	DIP	0 to + 70	\$ 6.82	45.40
AS-5142M	5PD1	7512	0.5hA	Subhsec	16 PIN CERDIP	– 55 to + 125	\$29.25	4540
AS-5143C					16 PIN PLAS.			
		75.0	0.5-0	2000000	DIP	0 to + 70	\$ 8.17	1510
AS-5143M	DUAL SPDT	/312	U.SNA	Soonsec	16 PIN CERDIP	– 55 to + 125	\$37.50	4340
AS-5144C					16 PIN PLAS.			
	DPet	75.0	0.55.4	2000000	DIP	0 to + 70	\$ 6.82	4540
AS-5144M	0-31	1012	0.5HA		16 PIN CERDIP	– 55 to + 125	\$29.25	4040
AS-5145C					16 PIN PLAS.			
		75.0	0.5~4	2000000	DIP	0 to + 70	\$ 8.17	4540
AS-5145M	DUAL DPST	1314	U.ShA	Soonsec	16 PIN CERDIP	– 55 to + 125	\$37.50	4040

THESE PRODUCTS ARE COVERED BY GAS CONTRACT

AS-5040/AS-5051 Family High Level CMOS Analog Gates

FEATURES

- Switches Greater Than 20Vpp Signals With ±15V Supplies
- Quiescent Current Less Than 1µA
- Overvoltage Protection to ±25V
- Break-Before-Make Switching t_{OFF} 200nsec, t_{ON} 300nsec Typical
- T²L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Low r_{DS} (ON) 35Ω
- New DPDT & 4PST Configurations
- Complete Monolithic Construction AS-5040 through AS-5047

CMOS ANALOG GATE PRODUCT CONDITIONING

The following processes are performed 100% in accordance with MIL-STD-883. Precap Visual – Method 2010, Cond. B. Stabilization Bake – Method 1008 Temperature Cycle – Method 1010 Centrifuge – Method 2001, Cond. E Hermeticity – Method 1014, Cond. A, C. (Leak Rate $< 5 \times 10^{-7}$ atm cc/s)

FUNCTIONAL DIAGRAM

GENERAL DESCRIPTION

The AS-5040 family of solid state analog gates are designed using an improved, high voltage CMOS monolithic technology. These devices provide ease-of-use and performance advantages not previously available from solid state switches. This improved CMOS technology provides input overvoltage capability to ± 25 volts without damage to the device, and destructive latch-up of solid state analog gates has been eliminated. Early CMOS gates were destroyed when power supplies were removed with an input signal present. The AS-5040 CMOS technology has eliminated this serious systems problem.

Key performance advantages of the 5040 series are TTL compatibility and ultra low-power operation. The quiescent current requirement is less than 1 μ A. Also designed into the 5040 is guaranteed Break-Before-Make switching, which is accomplished by extending the t_{ON} time (300 nsec TYP.) so that it exceeds t_{OFF} time (200 nsec TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. This eliminates the need for external logic required to avoid channel to channel shorting during switching.

Many of the 5040 series improve upon and are pin-for-pin and electrical replacements for other solid state switches.

FUNCTIONAL DESCRIPTION

				FUNCTIONAL
PART NO.	TΥ	PE	RON	EQUIVALENT
AS-5040		SPST	75Ω	
AS-5041	Dual	SPST	75 Ω	
AS-5042		SPDT	75 Ω	DG 1 88AA/BA
AS-5043	Dual	SPDT	75Ω	DG 191AP/BP
AS-5044		DPST	75Ω	
AS-5045	Dual	DPST	75Ω	DG 185AP/BP
AS-5046		DPDT	75 Ω	
AS-5047		4PST	75 Ω	
AS-5048 (hyb	rid) Dua	SPST	35Ω	
AS-5049 (hyb	rid) Dua	DPST	35 Ω	DG 184AP/BP
AS-5050 (hyb	rid)	SPDT	35Ω	DG 187AA/BA
AS-5051 (hyb	rid) Dua	SPDT	35Ω	DG 190AP/BP

MAXIMUM RATINGS	V _I -V ₂	< 33V
Current (Any Terminal) < 30mA	VI-VD	< 30 V
Storage Temperature -65° C to $\pm 150^{\circ}$ C	$V_D - V_2$	< 30 V
Operating Temperature -55° C to $+125^{\circ}$ C	V _D V _S	< ±22V
Power Dissipation 460mW	$V_L - V_2$	< 33V
(All Leads Soldered to a P. C. Board)	$v_L - v_{IN}$	< 30V
Derate 6mW/°C Above 70°C	V _L -V _R	< 20 V
Lead Temperature (Soldering, 10 sec) 300°C	$v_{IN} - v_R$	< 20 V

ELECTRICAL CHARACTERISTICS (@ 25°C, V₁ = +15 V, V₂ = -15 V, V_L = +5 V, V_R = 0 V)

		MIN./MAX. LIMITS							4
PER	CHANNEL		MILITARY		с	OMMERCIA	NL .		
SYMBOL	CHARACTERISTIC	- 55 " C	+25°C	+125 °C	0	+25 C	+70 C	UNITS	TEST CONDITIONS
IN(ON)	Input Logic Current	1	1	1	1	1	1	μA	Vin 2.4 V Note 1
IN(OFF)	Input Logic Current	1	1 .	1	1	1	1	μA	Vm 0.8 V Note 1
DS(ON)	Drain Source On Resistance	75(35)	75(35)	150(60)	80 (45)	80 (45)	130 (45)	52	
$\Delta r_{\rm DS(ON)}$	Channel to Channel ^R DS(ON) ^{Match}	25(15)	25 (15)	25(15)	30(15)	30(15)	30(15)	Ω	(5048 thru 5051) I≲ (Each Channel) = 1 mA.
VANALOG	Min. Analog Signal Handling Capability	+11(+10)	+11(+10)	+11(+10)	+10(+10)	+10(+10)	+10(+10)	, V	ls = 10 mA (5048 thru 5051)
D(OFF)	Switch OFF Leakuge Current	1(1)	1(1)	100(100)	5(5)	5(5)	100(100)	nA	V _{AUALOS} 10 V to 10 V (5048 thru 5051)
^I D(ON) ^{+I} S(ON)	Switch On Leakage Current	2(2)	2(2)	200(200)	10(10)	10 (10)	100(200)	nA	V _D V _S 10 V to 10 V (5048 thru 5051)
^t ON	Switch "ON" Time		500(250)			500(300)		ns	Ri = 1 kΩ, V _{ANALOG} = 10V to - 10 V See Fig. A
¹ OFF	Switch "OFF" Time		250(150)			250(150)		ns	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Q _(INJ.)	Charge Injection		15 (10)			20 (10)		mV	(5048 (hru 5051) See Fig. B (5048 thru 5051)
OIRR	Min. Off Isolation Rejection Ratio		54			50		dB	$f=1~MHz,~R_L=100\Omega,~C_L=5~pF$ See Fig. C
I _{V1}	+ Power Supply Quiescent Current	1	1	10	10	10	100	μΑ	
1 _{V2}	Power Supply Quiescent Current	1	1	10	10	10	100	μA	$V_1 \rightarrow 15 V_2 V_2 = 15 V_1 V_1 \rightarrow 5 V_2 V_2 = 0$
VL .	+5 V Supply Quiescent Current	1	1	10	10	10	100	μA	Switch Duty Cycle 10%
^I VR	Gnd Supply Quiescent Current	1	1	10	10	10	100	μA	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio		54		,	50		dB	One Channel Off: Any Other Channel Switches as per Fig. E

TEST CIRCUITS

APPLICATIONS

of Logic Strobe.

THEORY OF OPERATION

A. FLOATING BODY CMOS STRUCTURE

In a conventional C-MOS structure, the body of the "n" channel device is tied to the negative supply, thus forming a reverse biased diode between the drain/source and the body (Fig. J). Under certain conditions this diode can become forward biased; for example, if the supplies are off (at ground) and a negative input is applied to the drain. This can have serious consequences for two reasons. Firstly, the diode has no current limiting and if excessive current flows, the circuit may be permanently damaged. Secondly, this diode forms part of a parasitic SCR in the conventional C-MOS structure. Forward biasing the diode causes the SCR to turn on, giving rise to a "latch-up" condition.

The new improved C-MOS process incorporates an additional diode in series with the body (Fig. K). The cathode of this diode is then tied to V+, thus effectively floating the body. The inclusion of this diode not only blocks the excessive current path, but also prevents the SCR from turning on.

B. OVERVOLTAGE PROTECTION

The floating body construction inherently provides overvoltage protection. In the conventional C-MOS process, the body of all N-channel FETs is tied to the most negative power supply and the body of all P-channel devices to the most positive supply (i. e., ±15V). Thus, for an overvoltage spike of $> \pm 15V$, a forward bias condition exists between drain and body of the MOSFET. For example, in Fig. J if the analog signal input is more negative than -15V, the drain to body of the N-channel FET is forward biased and destruction of the device can result. Now by floating the body, using diode D1, the drain to body of the MOSFET is still forward biased, but D1 is reversed biased so no current flows (up to the breakdown of D1 which is \geq 40V). Thus, negative excursions of the analog signal can go up to a maximum of -25V. When the signal goes positive (\ge +15V, D1 is forward biased, but now the drain to body junction is reversed for the N-channel FET; this allows the signal to go to a maximum of +25V with no appreciable current flow. While the explanation above has been restricted to N-channel devices, the same applies to P-channel FETs and the construction is as shown in Fig. L. Fig. L describes an output stage showing the paralleling of an N and P channel to linearize the r_{DS(ON)} with signal input. The presence of diodes D1 and D2 effectively floats the bodies and provides over voltage protection to a maximum of ±25V.

FIGURE K

ORDERING INFORMATION

MODEL	SWITCH CONFIGURATION	OPER. TEMP RANGE	PACKAGE
AS-5040C	ерет	0 to +70° C	16 pin Epoxy
AS-5040M	3F31 -	-55 to +125° C	16 pin Cerdip
AS-5041C	Dual SPST	0 to +70° C	16 pin Epoxy
AS-5041M	Duar Sr St	-55 to +125°C	16 pin Cerdip
AS-5042C	SPDT	0 to +70° C	16 pin Epoxy
AS-5042M	5101	−55 to + 125 °C	16 pin Cerdip
AS-5043C	Dual SPDT	0 to +70° C	16 pin Epoxy
AS-5043M		-55 to +125° C	16 pin Cerdip
ÁS-5044C	DPST	0 to +70° C	16 pin Epoxy
AS-5044M	БТОТ	-55 to +125° C	16 pin Cerdip
AS-5045C		0 to +70° C	16 pin Epoxy
AS-5045M	Dual DF31	-55 to +125° C	16 pin Cerdip
AS-5046C		0 to +70° C	16 pin Epoxy
AS-5046M		-55 to +125° C	16 pin Cerdip
AS-5047C	APST	0 to +70° C	16 pin Epoxy
AS-5047M		-55 to +125° C	16 pin Cerdip
AS-5048C	Dual SPST	0 to +70° C	16 pin Epoxy
AS-5048M		-55 to +125° C	16 pin Cerdip
AS-5049C		0 to +70° C	16 pin Epoxy
AS-5049M	Dual Dr St	-55 to +125° C	16 pin Cerdip
AS-5050C		0 to +70° C	16 pin Epoxy
AS-5050M		-55 to +125° C	16 pin Cerdip
AS-5051C		0 to +70° C	16 pin Epoxy
AS-5051M	Duai SPD1	-55 to +125° C	16 pin Cerdip

AS-5140/AS-5145 Family High Level CMOS Analog Gates

FEATURES

- Super fast break before make switching ton 80ns typ, toff 50ns typ (SPST switches)
- Power supply currents less than 1µA
- "OFF" leakages less than 100pA @ 25°C guaranteed
- Non-latching with supply turn-off
- Single monolithic CMOS chip
- Plug-in replacements for 5040 family and part of the DG180 family to upgrade speed and leakage
- Greater than 1MHz toggle rate
- Switches greater than 20Vp-p signals with ±15V supplies
- T²L, CMOS direct compatibility

CMOS ANALOG GATE PRODUCT CONDITIONING

The following processes are performed 100% in accordance with MIL-STD-883. Precap Visual — Method 2010, Cond. B Stabilization Bake — Method 1008 Temperature Cycle — Method 1010 Centrifuge — Method 2001, Cond. E Hermeticity — Method 1014, Cond. A, C (Leak Rate < 5 x 10⁻⁷ atm cc/s)

GENERAL DESCRIPTION

The AS-5140 Family of CMOS monolithic switches utilizes latch-free junction isolated processing to build the fastest switches now available. "OFF" leak-ages are guaranteed to be less than 100pA at 25°C. These switches can be toggled at a rate of greater than 1MHz with super fast t_{on} times (80ns typical) and faster t_{off} times (50ns typical) guaranteeing break before make switching. This family of switches therefore combines the speed of the hybrid FET DG180 Family with the reliability and low power consumption of a monolithic CMOS construction.

No quiescent power is dissipated in either the "ON" or the "OFF" state of the switch. Maximum power supply current is 1μ A from any supply and typical quiescent currents are in the 10nA range which makes these devices ideal for portable equipment and military applications.

The AS-5140 Family is completely compatible with TTL (5V) logic, TTL open collector logic and CMOS logic gates. It is pin compatible with Datel's AS-5040 Family and part of the DG180/190 Family.

ORDERING INFORMATION

MODEL	SWITCH CONFIGURATION	OPER. TEMP RANGE	PACKAGE
AS-5140C	CDCT	0 to +70° C	16 pin Epoxy
AS-5140M		-55 to +125° C	16 pin Cerdip
AS-5141C	Duel SDST	0 to +70° C	16 pin Epoxy
AS-5141M	Dual SFS1	−55 to +125°C	16 pin Cerdip
AS-5142C	CODT	0 to +70° C	16 pin Epoxy
AS-5142M		-55 to +125° C	16 pin Cerdip
AS-5143C		0 to +70° C	16 pin Epoxy
AS-5143M	Dual SFD1	−55 to +125° C	16 pin Cerdip
AS-5144C	DBST	0 to +70° C	16 pin Epoxy
AS-5144M	DFST	-55 to +125° C	16 pin Cerdip
AS-5145C	Dual DPST	0 to +70° C	16 pin Epoxy
AS-5145M		-55 to +125° C	16 pin Cerdip

MAXIMUM RATINGS

Current (Any Terminal)	< 30 mA
Storage Temperature	-65°C to +150°C
Operating Temperature	-55°C to +125°C
Power Dissipation	450 mW
All Leads Soldered to a P.C. Board Derate 6 mW/°C Above 70°C Soldering Temperature)

VI-V2	<33V
VI-VD	<30V
V _D -V ₂	<30V
VD-Vs	<±22V
$V_L - V_2$	<33V
VL-VIN	<30V
VL-VR	<20V
VIN-VR	<20V

ELECTRICAL CHARACTERISTICS (@ 25°C, $V_1 = +15V$, $V_2 = -15V$, $V_L = +5V$, $V_R = 0$ V)

		MIN./MAX. LIMITS							
FER CHANNEL		MILITARY COMMERCIAL							
SYMBOL	CHARACTERISTIC	-55° C	+ 25° C	+125° C	0	+25° C	+70° C	UNITS	TEST CONDITIONS
lin(on)	Input Logic Current	1	1	1	1	.1	1	μA	V _{IN} = 2.4 V Note 1
IN(OFF)	Input Logic Current	1	1	1	1	1	1	μA	V _{IN} = 0.8 V Note 1
R _{DS(ON)}	Drain—Source On Resistance	50	50	75	75	75	100	Ω	$I_S = -10 \text{ mA}$ Vanalog = -10 V to +10 V
JRDS(ON)	Channel to Channel [®] R _{DS(ON)} Match	25	25	25	30	30	30	Ω	I_{S} (Each Channel) = -10 mA
Vanalog	Min. Analog Signal Handling Capability	±11	±11	±11	±10	±10	±10	v	I _S = 10 mA
ID(OFF)	Switch OFF Leakage	0.1	0.1	20	0.5	0.5	20	nA	$V_{D} = +10 \text{ V}, \text{ V}_{S} = -10 \text{ V}$
IS(OFF)	Current	0.1	0.1	20	0.5	0.5	20		$V_{D} = -10V, V_{S} = +10 V$
ID(ON)	Switch On Leakage	0.2	0.2	40	1	1 :	40	nA	$V_{D} = V_{S} = -10 V \text{ to } +10 V$
+IS(ON)	Current								
ton	Switch "ON" Time	See pages 4 & 5 for switching time specifications and timing diagrams.				diagrams.			
toff	Switch "OFF" Time								
Q(INJ.)	Charge Injection		10			15		mVPP	See Fig. 4, Note 2
OIRR	Min. Off Isolation Rejection Ratio		54			50		dB	$\label{eq:rescaled} \begin{array}{l} f=1 \mbox{ MHz}, R_L=100\Omega, C_L \leq 5 pF \\ \mbox{ See Fig. 5, Note 2} \end{array}$
Iv1	+ Power Supply Quiescent Current	1.0	1.0	10.0	10	10	100	μA	
Iv2	- Power Supply Quiescent Current	1.0	1.0	10.0	10	10		μΑ	$V_1 = +15 V, V_2 = -15 V, V_L = +5 V, V_R = 0$
IVL	+5 V Supply Quiescent Current	1.0	1.0	10.0	10	10	100	μΑ	Switch Duty Cycle < 10% See Fig. 6
Ivr	Gnd Supply Quiescent Current	1.0	1.0	10.0	10	10	100	μΑ	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio		54			50		dB	One Channel Off; Any Other Channel Switches See Fig. 7, Note 2

Note: 1. Some channels are turned on by high "1" logic inputs and other channels are turned on by low "0" inputs; however 0.8V to 2.4V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.

2. Charge injection, OFF isolation, and Channel to Channel isolation are only sample tested in production.

FIGURE 2. $R_{DS(ON)}$ vs. Temp., @ ±15V, +5V Supplies.

0.01

0.014

CHANNEL PINS (3, 4)

CHANNEL PINS (1, 16)

0

+10

+5

0

-5

-10

-10

-5

VINJECT (MV PEAK TO PEAK)

+3V

+VINJECT

VINLEGT

0ν

+VINJECT 0mV

VINJECT

6

NOTE:

ANALOG SIGNAL VOLTAGE (V)

+5 +10

FIGURE 5. "OFF" Isolation vs. Frequency.

AS-5140-AS-5145 Family

SWITCHING TIME SPECIFICATIONS

 $(t_{on}, t_{off} are maximum specifications and t_{on}-t_{off} is minimum specifications)$

[MILITARY		0	OMMERCI	4L		
Part Number	Symbol	Characteristics	-55° C	+25° C	+125° C	0° C	+25° C	+70° C	Units	Test Conditions
	ton	Switch "ON" time		100			150			
	tOFF	Switch "OFF" time	{	75			125		ns	Figure 8
5140-	ton-toff	Break-before-make		10			5			Ū
5141	ton	Switch "ON" time		150			175			
	tOFF	Switch "OFF" time		125			150		ns	Figure 9
	ton-toff	Break-before-make		10			-5			_
	ton	Switch "ON" time		175			250			
	tOFF	Switch "OFF" time		125			150		ns	Figure 8
	ton-toff	Break-before-make		10			5			
	ton	Switch "ON" time		200			300			
	t OFF	Switch "OFF" time		125			150		ns	Figure 9
5142-	ton-toff	Break-before-make		10			5			
5143	ton	Switch "ON" time		175			250			
	t OFF	Switch "OFF" time		125			150		ns	Figure 10
	ton-toff	Break-before-make		10			5			· ·
	ton	Switch "ON" time		200			300			
	toff	Switch "OFF" time		125			150		ns	Figure 11
	ton-toff	Break-before-make		10			5			
	ton	Switch "ON" time		175			250			
	tOFF	Switch "OFF" time		125			150		ns	Figure 8
5144-	ton-toff	Break-before-make		10			5			
5145	ton	Switch "ON" time		200		-	300			
	toff	Switch "OFF" time		125			150		ns	Figure 9
	ton-toff	Break-before-make		10			5			

NOTE: SWITCHING TIMES ARE MEASURED @ 90% PTS.

FIGURE 8.

FIGURE 11.

TYPICAL SWITCHING APPLICATIONS

SCALE: VERT. = 5V/DIV. HORIZ. = 100ns/DIV.

TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 8)

TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 9)

-55°C

+25°C

+125°C

TTL OPEN COLLECTOR LOGIC DRIVE Corresponds to Figure 10

+25°C

TTL OPEN COLLECTOR LOGIC DRIVE Corresponds to Figure 11

+25°C

APPLICATIONS

EXAMPLE: If $-V_{ANALOG} = -10VDC$ and $+V_{ANALOG} = +10VDC$ then Ladder Legs are switched between +10VDC, depending upon state of Logic Strobe.

FIGURE 13. Using the CMOS Switch to Drive an R/2R Ladder Network (2 Legs)

CONSTANT GAIN, CONSTANT Q, VARIABLE FREQUENCY FILTER WHICH PROVIDES SIMULTANEOUS LOWPASS, BANDPASS, AND HIGHPASS OUTPUTS. WITH THE COMPONENT VALUES SHOWN, CENTER FREQUENCY WILL BE 235Hz AND 23.5Hz FOR HIGH AND LOW LOGIC INPUTS RESPECTIVELY, Q = 100, AND GAIN = 100.

 $f_n = CENTER FREQUENCY = \frac{1}{2\pi RC}$

FIGURE 14. Digitally Tuned Low Power Active Filter.

459C

APPLICATION NOTE

To maximize switching speed on the 5140 family use TTL open collector logic (15V with a 1K or less collector resistor). For SPST switches, typical $t_{on} \approx 80$ ns and typical $t_{off} \approx 50$ ns for signals in range of -10V to +10V with this high level drive configuration. The SPDT and DPST switches are approximately 30ns slower in both t_{on} and t_{off} with the same drive configuration. 15V CMOS logic levels can be used (0V to +15V), but propagation delays in the CMOS logic will slow down the switching (typical 50ns \rightarrow 100ns delays).

When driving the 5140 Family from either +5V TTL or CMOS logic, switching times run 20ns slower than if they were driven from +15V logic levels. Thus $t_{on} \approx$ 105ns typical, and $t_{off} \approx$ 75ns typical for SPST switches and 135ns typical and 105ns typical (t_{on} , t_{off}) for SPDT or DPST switches. The low level drive can be made as fast as the high level drive if ±5V strobe levels are used instead of the usual 0V→+3.0V drive. Pin 13 is taken to -5V instead of the usual GND and strobe input is taken from +5V to -5V levels as shown in Figure 15.

The typical channel of the 5140 family consists of an N-channel MOS-FET. The N-channel MOS-FET uses a "Body Puller" FET to drive the body to $-15V (\pm 15V \text{ supplies})$ to get good breakdown voltages when the switch is in the off state (See Fig. 16). This "Body Puller" FET also allows the N-channel body to electrically float when the switch is in the on state producing a fairly constant R_{DS}(ON) with different signal voltages. While this "Body Puller" FET improves switch performance, it can cause a problem when analog input signals are present (negative signals only) and power supplies are off. This fault condition is shown in Figure 17.

Current will flow from -10V analog voltage through the drain to body junction of Q1, then through the drain to body junction of Q3 to GND. This means that there is 10V across two forward-biased silicon diodes and current will go to whatever value the input signal source is capable of supplying. If the analog input signal is derived from the same supplies as the switch this fault condition cannot occur. Turning off the supplies would turn off the analog signal at the same time.

This fault situation can also be eliminated by placing a diode in series with the negative supply line (pin 14) as shown in Figure 18. Now when the power supplies are off and a negative input signal is present this diode is reverse biased and no current can flow.

FIGURE 15.

SWITCHING STATE DIAGRAMS SWITCH STATES ARE FOR LOGIC "1" INPUT

DUAL SPST 5141 (R_{DS} (ON) <75Ω)

5143 (R_{DS} (ON) <75Ω)

PACKAGE DIMENSIONS 16 PIN CERDIP 16 PIN PLASTIC DIP ቢ ሊ ሊ ሊ л л .300 (7.62) .240 (6.09) T .260 (6.60) + ŧ
 →
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
Г ጌ ∇ ᠶᢧ ጌ .320 (8.128) .300 ± .010 (7.62 ± .254 .785 (19.94) (130 ± .005 (3.30 ± .127) 750 (19.05) .040 (1.02) .015 (.380) .025 (.635) .015 (.381) .180 (4.572) .140 (3.556) ŧ ŧ .015 (0.381) .135 (.343) .125 (3.17) .010 ± .001 (.254 ± .0254) 200 (5.080 125 (3.175) 400 (10.160) .070 (1.778) .030 (0.762) .110 (2 .794) .023 (0.584) .020 (.508) .018 (.457) .325 ± .025 (8.25 ± .635) .110 (2.79)

1. Lead no. 1 identified by dot or notch.

2. Dimensions in inches (millimeters).

Counters, Display Drivers

CD-7216	466C
CD-7217, CD-7227	481C
CD-7224, CD-7225	493C
CD-7226	501C
DD-7211, DD-7212	513C
DD-7218	523C

Quick Selection: Counters And Display Drivers

MODEL	DESCRIPTION	PACKAGE	OPER. TEMP. RANGE (°C)	PRICE (1-24)	SEE PAGE
CD-7216AC	Eight Digit	28 Pin Cerdip	-20 to +70	\$32.13	
CD-7216BC	Universal Counter	28 Pin Plastic DIP	-20 to +70	\$26.80	4660
CD-7216CC	Drives Seven	28 Pin Cerdip	-20 to +70	\$26.78	4000
CD-7216DC	Segment LED	28 Pin Plastic DIP	-20 to +70	\$21.55	
	Display, Measures Frequency, Period, Freq. Ratio, Time Interval or Units				
CD-7217C	Four Digit CMOS	28 Pin Cerdip	-20 to +70	\$12.53	
CD-7217AC	Up/Down Counter	28 Pin Plastic DIP	-20 to +70	\$11.40	481C
CD-7217BC	Drives Seven	28 Pin Cerdip	-20 to +70	\$12.53	4010
CD-7217CC	Segment LED	28 Pin Plastic DIP	-20 to +70	\$10.50	
	Display. Pre- settable Start/ Count and Compare Register. Thumb- wheel Switch Controlled.				
CD-7224C	4½ Digit High	40 Din Plantia DIP	-20 to +70	\$11.47	4020
CD-7224AC	Speed Counter/	40 Fill Flastic DIF	-20 to +70	\$11.47	4930
	Decoder/Driver, 25 MHz Typ., for LCD Application			·	
CD-7225C	4½ Digit High	40 Pin Plastic DIP	-20 to +70	\$ 8.77	493C
CD-7225AC	Speed Counter/		-20 to +70	\$ 8.77	1000
	Decoder/Driver, 25 MHz Typ., for LED Displays				
CD-7226AC	8 Digit Universal	40 Pin Cerdip	-20 to +70	\$32.00	501C
CD-7226BC	Counter Drives	40 Pin Plastic DIP	-20 to +70	\$26.87	0010
	7 Seg. LED Displays. Counts Freq., Period, Units.				

MODEL	DESCRIPTION	PACKAGE	OPER. TEMP. RANGE (° C)	PRICE (1-24)	SEE PAGE
CD-7227C	Four Digit CMOS	28 Pin Cerdip	-20 to +70	\$14.58	
CD-7227AC	Up/Down Counter	28 Pin Plastic DIP	-20 to +70	\$12.55	4910
CD-7227BC	Drives Seven Segment	28 Pin Cerdip	-20 to +70	\$14.58	4010
CD-7227CC	LED Display. Pre-	28 Pin Plastic DIP	-20 to +70	\$12.55	
	settable Start/Count and Compare Register. μ P Controlled. Applications.				
CD-7211C	Four Digit Display		-20 to +70	\$ 8.62	
DD-7211AC	Decoder Drivers for	40 Pin Plastic DIP	-20 to +70	\$ 6.22	513C
DD-7211AMC	LCD Applications.	to I III I lastic Di	-20 to +70	\$ 6.22	5150
DD-7211MC	BCD Input, Hexa-		-20 to +70	\$ 8.62	
	decimal Code B Output. Simplifies Alphanumeric Displays for µPs.				
DD-7212C	Four Digit Display		-20 to +70	\$ 6.22	
DD-7212AC	Decoder Drivers for	10 Pin Plastic DIP	-20 to +70	\$ 6.22	5130
DD-7212AMC	LED Displays. BCD	40 FIII Flastic Dir	-20 to +70	\$ 6.22	5150
DD-7212MC	Input, Hexadecimal		-20 to +70	4 6.22	
	Code B Output. Simplifies Alpha- numeric Displays for µPs.				
DD-7218AC	LED Driver System for	28 Pin Cerdip	-20 to +70	\$10.88	
DD-7218BC	μ Ps. Features Digit and	28 Pin Plastic DIP	-20 to +70	\$10.35	523C
DD-7218CC	Segment Drivers, Multi-	28 Pin Cerdip	-20 to +70	\$10.88	0200
DD-7218DC	plex Scan Circuitry,	28 Pin Plastic DIP	20 to +70	\$10.35	
DD-7218EC	8x8 Static Memory,	40 Pin Ceramic DIP	-20 to +70	\$14.45	
	Hexadecimal Code B Decoders, Hardwire Controllable Versions.			1	

CD-7216A/B/C/D

CD-7216A 10 MHz Universal Counter, Drives Common Anode LED's CD-7216B 10 MHz Universal Counter, Drives Common Cathode LED's CD-7216C 10 MHz Frequency Counter, Drives Common Anode LED's CD-7216D 10 MHz Frequency Counter, Drives Common Cathode LED's

FEATURES

CD-7216A AND B

- Functions as a Frequency Counter, Period Counter, Unit Counter, Frequency Ratio Counter or Time Interval Counter
- Four Internal Gate Times: 0.01 sec, 0.1 sec, 1 sec, 10 sec in Frequency Counter Mode
- 1 Cycle, 10 Cycles, 100 Cycles, 1000 Cycles in Period, Frequency Ratio and Time Interval Modes
- Measures Frequencies from DC to 10 MHz
- Measures Period from 0.5µ sec to 10 sec

CD-7216C AND D

- Functions as a Frequency Counter. Measures Frequencies from DC to 10 MHz
- Decimal Point and Leading Zero Blanking May be Externally Selected

ALL VERSIONS:

- Eight Digit Multiplexed LED Outputs
- Output Drivers will Directly Drive Both Digits and Segments of Large LED Displays. Both Common Anode and Common Cathode Versions are Available
- Single Nominal 5V Supply Required
- Stable High Frequency Oscillator, Uses Either 1 MHz or 10 MHz Crystal
- Internally Generated Multiplex Timing with Interdigit Blanking, Leading Zero Blanking and Overflow Indication
- Decimal Point and Leading Zero Blanking Controlled Directly by the Chip
- Display Off Mode Turns Off Display and Puts Chip into Low Power Mode
- Hold and Reset Inputs for Additional Flexibility
- Test Speedup Function Included
- All Terminals Protected Against Static Discharge

ORDERING INFORMATION

Universal Counter for use with Common Anode LED Display: Universal Counter for use with Common Cathode LED Display: Frequency Counter for use with Common Anode LED Display: Frequency Counter for use with Common Cathode LED Display:

GENERAL DESCRIPTION

The CD- 7216A and B are fully integrated Universal Counters with LED display drivers. They combine a high frequency oscillator, a decade timebase counter, an 8 decade data counter and latches, a 7 segment decoder, digit multiplexers and 8 segment and 8 digit drivers which can directly drive large LED displays. The counter inputs have a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital signals for these inputs.

The CD-7216A and B can function as a frequency counter, period counter, frequency ratio (f_A/f_B) counter, time interval counter or as a totalizing counter. The counter uses either a 10 MHz or 1 MHz quartz crystal timebase. For period and time interval, the 10MHz timebase gives a 0.1 μ sec resolution. In period average and time interval average, the resolution can be in the nanosecond range. In the frequency mode, the user can select accumulation times of 0.01 sec, 0.1 sec, 1 sec and 10 sec. With a 10 sec accumulation time, the frequency can be displayed to a resolution of 0.1 Hz in the least significant digit. There is 0.2 seconds between measurements in all ranges.

The CD-7216C and D function as frequency counters only, as described above.

All versions of the CD-7216 incorporate leading zero blanking. Frequency is displayed in KHz. In the CD-7216A and B, time is displayed in μ sec. The display is multiplexed at 500Hz with a 12.5% duty cycle for each digit. The CD-7216A and C are designed for common anode display with typical peak segment currents of 25mA. The CD-7216B and D are designed for common cathode displays with typical peak segment currents of 12mA. In the display off mode, both digit drivers and segment drivers are turned off enabling the display to be used for other functions.

	MODEL	OPERATING TEMP. RANGE
	CD-7216 AC	-20° C to +70° C
:	CD-7216 BC	-20° C to +70° C
	CD-7216 CC	-20° C to +70° C
v:	CD-7216 DC	-20° C to +70° C
CD-7216 PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Maximum Supply Voltage (V ⁺ - V ⁻) 6.5 Volts
Maximum Digit Output Current 400mA
Maximum Segment Output Current 60mA
Voltage On Any Input or
Output Terminal [1] $\dots V^+ + .3V$ to V^3V
Maximum Power Dissipation at
70°C 1.0 Watts (7216A & C)
0.5 Watts (7216B & D)
Maximum Operating Temperature
Range20° C to +70° C
Maximum Storage Temperature
Range

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

Notes:

1. The 7216 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if input or output are forced to voltages exceeding V⁺ to V[−] by more than 0.3 volts.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $V^{+} - V^{-} = 5.0V$, Test Circuit, T_A = 25°C, unless otherwise specified.

7216A/B Ibo Display Off. Unused Inputs to V 2 5 mA Supply Voltage Pange -20°C ~ TA ~ 70°C, Input A 4.75 6.0 Volts Maximum Frequency FA.MAX -20°C ~ TA ~ 70°C, Input A, 175 6.0 Volts Maximum Frequency FA.MAX -20°C ~ TA ~ 70°C, Input A, 175 6.0 Volts Maximum Frequency Fa.MAX -20°C ~ TA ~ 70°C, 176 10 M+2 Maximum Frequency Fa.MAX -20°C ~ TA ~ 70°C, 176 25 M+2 Mommum Separation -20°C ~ TA ~ 70°C, 176 25 M+2 Mommum Dec. Freq. and Ext. -20°C ~ TA ~ 70°C, 200 10 M+2 Oscillator Transconductance 9° V - V - 4 70°C, 200 100 M+2 Minimum Ext. Dac. Freq. -20°C ~ TA ~ 70°C 200 Hats 100 K+2 Oscillator Transconductance 9° V - V - 4 70°C, 7A ~ 70°C 200 Hats 100 K+2 Oscillator Transconductance 9° V - V - 4 70°C, 7A ~ 70°C 200 mesee 100 K+2 <	PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNITS
	7216A/B						
	Operating Supply Current	IDD	Display Off, Unused Inputs to V $^-$		2	5	mA
Imput B Frequency at Fax.x 4.75 6.0 Voits Maximum Frequency Input A. Pin 28 F_A Max A since the second	Supply Voltage Range		-20°C < T _A < +70°C, Input A,		·		
Maximum Frequency Input A. Pin 28 FA MAX $20^{\circ} C < T_A < +70^{\circ} C$ Guy Input A. Pin 28 Maximum Frequency Input B. Pin 2 Fa MAX $475 < V^{-} - c$ 60V, Figure 1, Function = Period. Time Interval 10 MHz Maximum Frequency Input B. Pin 2 FamAX $-20^{\circ} C < T_A < 70^{\circ}			Input B Frequency at FMAX	4.75		6.0	Volts
Impute A - Initial Function = Frequency, Figure 1, unit Counter Impute 1, unit Function = Period, Time Interval Impute 1, 25 Maximum Frequency, Input B, Pn 2 FBMAX 20° C - Ta < 70° C 4 750 < V - V - C = 60V	Maximum Frequency	Fa max	$-20^{\circ}C < T_{A} < +70^{\circ}C$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	input A, Fin 26		Function = Frequency, Ratio, Unit				
Function = Fend of, time interval 2.5 MHz Maximum Frequency Input B Pin 2 FBMAX -20° C + Ta < 70^{\circ} C 4.75V < V ⁺ - V ⁻ - 6.0V Figure 3 2.5 MHz Minimum Separation Input A to Input B -20° C + Ta < 70^{\circ} C 4.75V < V ⁺ - V ⁻ - 6.0V 2.5 mesc Maximum Osc. Freq and Ext. Osc. Frequency -20° C + Ta < 70^{\circ} C 4.75V · V ⁻ - V ⁻ < 6.0V			Counter	10			MHz
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Function = Period, Time Interval	2.5		4	MHz
Multinum Separation Input A to Input B 20° C < T_A < 70^{\circ}C 250 nsec Maximum OSc. Freq. and Ext. Osc. Frequency 20° C < T_A < 70^{\circ}C 0	Input B. Pin 2	F BMAX	$-20^{\circ} \text{C} < 1^{\circ} \text{A} < +70^{\circ} \text{C}$ 4.75V < V ⁺ - V 6.0V Figure 2	2.5			MHz
Time Interval Function Figure 3 Low Index Maximum OSc. Freq. and Ext. Osc. Frequency -20° C · TA < +70° C	Minimum Separation		$-20^{\circ}C < T_{A} < 70^{\circ}C$ 4 75V × V ⁺ – V × 6 0V	250			nsec
Maximum Osc. Freq. and Ext. -20° C < T_A < $+70^{\circ}$ C 10 MHz Minimum Kit Osc. Freq. 100 KHz Mit Disc.	Time Interval Function		Figure 3	200			nsec
Minimum Ext. Osc. Freq. Image: State of the state of th	Maximum Osc. Freq. and Ext. Osc. Frequency		$\begin{array}{l} -20^{\circ}C < T_{A} < +70^{\circ}C \\ 4.75 < V^{*} - V^{-} < 6.0V \end{array}$	10			MHz
Oscillator Transconductance gm $V^ V^- = 4.75V, T_A = +70^\circ C$ 2000 $\mu mhos$ Multiplex Frequency Imux fasc = 10MHz 500 Hz Time Between Measurements Iosc = 10MHz 200 msec Input Voltages: -20°C < T_A < +70°C	Minimum Ext. Osc. Freq.			×		100	KHz
Multiplex Frequency f_{mux} $f_{osc} = 10MHz$ 500 Hz Time Between Measurements $f_{osc} = 10MHz$ 200 msec Input Voltage: -20°C < TA < +70°C	Oscillator Transconductance	g m	$V^{+} - V^{-} = 4.75V, T_{A} = +70^{\circ}C$	2000			μmhos
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Multiplex Frequency	fmux	f _{osc} = 10MHz		500		Hz
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time Between Measurements		f _{osc} = 10MHz		200		msec
Input Resistance to V ⁺ R Vin = V ⁺ - 1.0V 100K 400K ohms Input Leakage Pin 27.28.2 IL 100K 400K ohms 7216A IL 20 μ A 7216A IDH Vour V - 2.0V -150 -180 mA Oigt Driver. Pins 15.16.17.19.20.21.22.23 IDH Vour V' - 2.0V -150 -180 mA Segment Driver. Pins 4.5.6.7.9.10.11.12 Vour Vour -1.5V 25 35 mA Low Output Current IOL Vour V' - 1.5V 25 35 mA High Output Current IOL Vour V' - 1.5V 25 35 mA High Output Current IOL Vour V' - 1.5V 25 35 mA High Output Current IOL Vour V' - 1.5V 25 35 mA Input Hesistance to V' R VIN = V' - 1.0V 50 100 KΩ Voits Input Hesistance to V' R <td>Input Voltages: Pins 2.13,25,27,28 Input Low Voltage Input Higb Voltage</td> <td>VIL</td> <td>-20°C < T_A < +70°C</td> <td>3.5</td> <td></td> <td>1.0</td> <td>Volts Volts</td>	Input Voltages: Pins 2.13,25,27,28 Input Low Voltage Input Higb Voltage	VIL	-20°C < T _A < +70°C	3.5		1.0	Volts Volts
Input Leakage Pin 27.28.2 IL 20 μA 7216A Digit Driver: Pins 15.16.17.19.20.21.22.23 IDH VOUT V' = 2.0V -150 -180 mA Low Output Current IDH VOUT V' = 2.0V -150 -180 mA Segment Driver: Pins 4.5.6.7.9.10.11.12 IDH VOUT V' = 1.5V 25 35 mA Multiplex Inputs: Input High Voltage Input High Voltage UPUT Current IDL VOUT V'' = 2.5V -100 μA 7216B Digit Driver: Pins 4.5.6.7.9.10.11.12 VIL Input High Voltage VIH VIL VIN = V'' + 1.0V V'' + 2.0 50 0.8 Volts Volts 7216B Digit Driver: Pins 1.5.6.7.9.10.11.12 VIL IDH VIN = V'' + 1.0V 50 75 -100 mA Multiplex Inputs: Pins 1.5.16.17.19.20.21.22.23 High Output Current IDH VOUT = V'' - 2.5V -100 μA Segment Driver: Pins 15.16.17.19.20.21.22.23 High Output Current IDH VOUT = V'' - 2.0V VOUT = V'' - 2.5V -100 μA Segment Driver: Pins 15.16.17.19.20.21.22.23 High Output Current IDH VOUT = V'' - 2.0V VOUT = V'' - 2.5V -1	Input Resistance to V ⁺ Pins 13,24	R	$V_{IN} = V^+ - 1.0V$	100K	400K		ohms
7216A Digit Driver: max Prins 15.16,17,19.20.21.22.23 IOH Vour V' - 2.0V -150 -180 mA Segment Driver: IOH Vour V' - 2.0V -150 -180 mA Segment Driver: Prins 4.5.6.7.9.10.11.12 max max max max Low Output Current IOH Vour V' - 1.5V 25 35 mA High Output Current IOH Vour V' - 2.5V -100 μ A Multiplex Inputs: Prins 1.3.14 Input Low Voltage ViL VIL VIL Volts Volts <t< td=""><td>Input Leakage Pin 27,28,2</td><td>ال ا</td><td></td><td></td><td></td><td>20</td><td>μA</td></t<>	Input Leakage Pin 27,28,2	ال ا				20	μA
Digit Driver: Prins 15.16,17,19.20.21.22.23 High Output Current IOH VOUT V' = 2.0V VOUT = V' = 1.0V -150 -180 mA Segment Driver: Prins 4.5.6.7.9.10.11.12 Low Output Current IOL VOUT = V' = 1.0V -150 -180 mA Multiplex Inputs: Prins 1.3.14 Input Low Voltage Input High Voltage ViH Prins 1.3.14 IOL VOUT = V' = 2.5V 25 35 mA Digit Driver: Prins 4.5.6.7.9.10.11.12 Low Output Current VIL IOH VIL VIL 0.8 Volts Input Low Voltage Input Resistance to V' VIL R VIN = V = + 1.0V 50 100 K11 Zesement Driver: Prins 15.6.7.9.10.11.12 Low Output Current IOL VOUT = V' = + 1.0V 50 75 mA Migh Output Current IOL VOUT = V' = + 1.0V 50 75 mA Migh Output Current IOL VOUT = V' = - 2.5V -100 #A Segment Driver: Prins 15.16.17.19.20.21.22.23 IOH VOUT = V' = - 2.5V -10 mA High Output Current IOH VOUT = V' = - 2.5V -10 mA High Output Current IOH VOUT = V' = - 2.5V	7216A						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Digit Driver:						
Ingli Output CurrentIouVour $2.5V$ Iou 100 1	Pins 15,16,17,19,20,21,22,23	100	$V_{OUT} = V_{0} = 2.0V$	-150	-180		mA
Segment Driver: Pins 4.5.6.7.9.10.11.12 IoL $V_{OUT} = V^- + 1.5V$ 25 35 mA High Output Current IoH $V_{OUT} = V^- + 2.5V$ -100 μA Multiplex Inputs: Pins 1.3.14 Input High Voltage VIL 0.8 Volts Input High Voltage VIL VIH VIN = V^- + 1.0V 50 100 KΩ 7216B Volt Current IoL Vout = V^- + 1.0V 50 75 mA Digit Driver: Pins 4.5.6.7.9.10.11.12 IoL Vout = V^- + 1.0V 50 75 mA High Output Current IoL Vout = V^- + 2.0V -100 μA Segment Driver: Pins 1.5.16.17.19.20.21.22.23 IoH Vout = V^+ - 2.5V -100 μA Segment Driver: Pins 1.3.14 Vout = V^+ - 2.5V -10 mA Multiplex Inputs: Pins 1.3.14 Vout = V^+ - 2.5V 10 μA Multiplex Inputs: Pins 1.3.14 ViL ViL ViL V'+ - 0.8 V'+ - 2.0 Voits Input High Voltage ViL ViL ViL ViL	Low Output Current	IOL	$V_{OUT} = V^- + 1.0V$	100	+0.3		mA
Pins 4.5.6.7.9.10.11.12 IOL VOUT = V ⁺ + 1.5V 25 35 mA High Output Current IOH VOUT = V ⁺ - 2.5V -100 μ A Multiplex Inputs: Pins 1.3.14 V_{IL} 0.8 Volts Input Low Voltage VIL V_{IH} 0.8 Volts Input Resistance to V R $V_{IN} = V^{-} + 1.0V$ 50 100 KD 7216B Input Resistance to V R $V_{IN} = V^{-} + 1.0V$ 50 75 mA Digit Driver: Pins 4.5.6.7.9.10.11.12 IOH VOUT = V ⁻ + 1.0V 50 75 mA High Output Current IOH VOUT = V ⁻ + 1.0V 50 75 mA High Output Current IOH VOUT = V ⁺ - 2.5V -100 μ A Segment Driver: Pins 15.16.17.19.20.21.22.23 IOH VOUT = V ⁺ - 2.0V -10 mA High Output Current IDH VOUT = V ⁺ - 2.5V -10 IOH μ A Multiplex Inputs: Pins 1.3.14 VIL VOUT = V ⁺ - 2.5V -10 V ⁺ - 2.0 Voits Input Resista	Segment Driver:		,				
Low Output CurrentIoLVour = V^+ - 2.5VIoNHigh Output CurrentIoH $V_{OUT} = V^ 2.5V$ -100 μA Multiplex Inputs: Prins 1.3.14VILVIL0.8VoltsInput High Voltage Input Resistance to V^-VILVIN = V = + 1.0V50100KΩ7216BVILVIN = V = + 1.0V50100KΩDigit Driver: Pins 4.5.6.7.9.10.11.12IoLVout = V^- + 1.0V5075mALow Output CurrentIoHVout = V^- + 1.0V5075mAHigh Output CurrentIoHVout = V^- + 2.5V-100 μA Segment Driver: Pins 15.16.17.19.20.21.22.23IoHVout = V^ 2.0V-10mAMultiplex Inputs: Pins 13.14IoHVout = V^ 2.5V-100 μA Multiplex Inputs: Pins 13.14VIL Input High VoltageVIL VIHVIL VIHVIL VIN = V^+ - 1.0V200360V'+ - 2.0	Pins 4,5.6,7,9,10,11,12			25	35		mΑ
Multiplex Inputs: Pins 1.3.14 Input Low Voltage Input High Voltage Input Resistance to V ⁻ VIL VIL RVIL VIN = V ⁻ + 1.0VV ⁻ + 2.0 500.8Volts Volts Volts7216B Digit Driver: Pins 4.5.6.7.9.10.11.12 Low Output Current High Output Current High Output Current Leakage CurrentIOL IOHVOUT = V ⁻ + 1.0V VOUT = V ⁻ + 2.5V5075 mA -100mA μ ASegment Driver: Pins 15.16.17.19.20.21.22.23 High Output Current Leakage CurrentIOH ILVOUT = V ⁺ - 2.0V VOUT = V ⁺ - 2.5V-10mA μ AMultiplex Inputs: Pins 1.3.14 Input High Voltage Input High Voltage Input High Voltage Input Hesistance to V ⁺ ViL RVill V ⁺ - 1.0VV/+ - 0.8 200V/+ - 2.0 Volts KD	High Output Current	Іон	$V_{OUT} = V^* - 2.5V$	2.5	-100	·	μA
Pins 1,3.14 Input Low Voltage Input High Voltage Input Resistance to V ⁻ ViL ViL RViL VIN = V ⁻ + 1.0VV ⁻ + 2.0 500.8Volts Volts Volts7216B Digit Driver: Pins 4,5.6,7,9,10,11,12 Low Output Current High Output CurrentIOL IOHVOUT = V ⁻ + 1.0V VOUT = V ⁻ + 1.0V5075 -100mA μA Segment Driver: Pins 15.16,17,19,20,21,22,23 High Output Current Leakage CurrentIOH ILVOUT = V ⁺ - 2.0V VOUT = V ⁺ - 2.5V-10mA μA Multiplex Inputs: Pins 1,3,14 Input High Voltage Input High Voltage Input High Voltage Input High Voltage Input High Voltage Input High VoltageViL ViL VILViL = V ⁺ - 1.0V060V ⁺ - 0.8 200060Volts Volts	Multiplex Inputs:						
Input Low Voltage Input High Voltage Input Resistance to V $\overline{}$ ViL V RVin = V $\overline{}$ + 1.0VV $\overline{}$ + 2.0 50Volts VOlts7216BInput Resistance to V $\overline{}$ Input R	Pins 1.3.14	No				0.8	Volte
Input Resistance to V ⁻ R $V_{IN} = V^{-} + 1.0V$ 50 100 KΩ 7216B Digit Driver: Pins 4.5.6.7.9.10.11.12 Low Output Current IOL $V_{OUT} = V^{-} + 1.0V$ 50 75 mA High Output Current IOH $V_{OUT} = V^{-} + 1.0V$ 50 75 mA Segment Driver: Pins 15.16.17.19.20.21.22.23 High Output Current IOH $V_{OUT} = V^{+} - 2.0V$ -10 mA Multiplex Inputs: Pins 1.3.14 Input Low Voltage VIL VIL VIL VIL VIL VIL V ⁺ - 0.8 V ⁺ - 2.0 Volts Input Resistance to V ⁺ R VIN = V ⁺ - 1.0V Z00 360 V ⁺ - 2.0 Volts	Input High Voltage	VIL VIH		V ⁻ + 2.0		0.0	Volts
7216BImage: Digit Driver: Pins 4.5.6.7.9.10.11.12 Low Output CurrentIoL $V_{OUT} = V^- + 1.0V$ 5075mAHigh Output CurrentIoH $V_{OUT} = V^+ - 2.5V$ 5075-100 μA Segment Driver: Pins 15.16.17.19.20.21.22.23 High Output CurrentIoH $V_{OUT} = V^+ - 2.0V$ -10mALeakage CurrentIoH $V_{OUT} = V^+ - 2.5V$ -1010 μA Multiplex Inputs: Pins 1.3.14 Input Low Voltage Input High VoltageViL V_{IH} $V_{IH} = V^+ - 1.0V$ $V^+ - 0.8$ 200 $V^+ - 2.0$	Input Resistance to V $^-$	R	VIN = V = + 1.0V	50	100		KΩ
Digit Driver: Pins 4.5.6,7.9,10,11,12 Nouther the second state of the second state o	7216B			1. S.			
Pins 4.5.6,7.9,10,11,12 IoL Vout = V^- + 1.0V 50 75 mA High Output Current IoH Vout = V^ 2.5V -100 μ A Segment Driver: Pins 15.16.17,19,20,21,22,23 IOH Vout = V^ 2.5V -10 mA High Output Current IOH Vout = V^ 2.0V -10 IOH mA Leakage Current IL Vout = V^+ - 2.5V -10 IO μ A Multiplex Inputs: Pins 1.3.14 Input Low Voltage ViL ViH V'+ - 0.8 V'+ - 2.0 Volts Input High Voltage ViH ViH ViH ViH ViH V'+ - 0.8 200 360 K11	Digit Driver:						
Low Output CurrentIoLVout = V + 1.0VS075IIIAHigh Output CurrentIOHVOUT = V^+ - 2.5V-100 μA Segment Driver:Pins 15.16.17.19.20.21.22.23IOHVOUT = V^+ - 2.0V-10mALeakage CurrentILVOUT = V^+ - 2.5V-1010 μA Multiplex Inputs:ILVOUT = V^+ - 2.5V10V/+20Pins 1.3.14VILVILVIHV/+ - 0.8V/+ - 2.0Input High VoltageVIHVIHVIN = V^+ - 1.0V200360KD	Pins 4,5,6,7,9,10,11,12						m ^
Segment Driver: Pins 15.16.17.19.20.21.22.23 High Output Current Leakage CurrentIOH IL $V_{OUT} = V^+ - 2.0V$ $V_{OUT} = V^+ - 2.5V$ -10mA mA 10Multiplex Inputs: Pins 1.3.14 Input Low Voltage Input High Voltage Input High Voltage VIH Nut Resistance to V^+VIL RVIL VIN = V^+ - 1.0VV'+ - 0.8 200V'+ - 2.0 Volts Volts K11	High Output Current	IOL IOH	$V_{OUT} = V + 1.0V$ $V_{OUT} = V^+ - 2.5V$	50	-100		μΑ
Pins 15.16.17.19.20.21.22.23 High Output Current Leakage CurrentIOH IL $V_{OUT} = V^+ - 2.0V$ $V_{OUT} = V^+ - 2.5V$ -10mA mA μA Multiplex Inputs: 	Segment Driver:						
High Output Current Leakage CurrentIOH IL $V_{OUT} = V - 2.0V$ $V_{OUT} = V^+ - 2.5V$ -10mA mA μA Multiplex Inputs: Pins 1.3.14 Input Low VoltageVIL VILVVVVVinut Low Voltage Input Resistance to V^+VIL RVIN = V^+ - 1.0VV^+ - 0.8 200V/+ - 2.0Volts Volts	Pins 15.16,17,19,20,21,22,23						
Learning ControlILControlLowIntMultiplex Inputs: Pins 1.3.14 Input Low Voltage Input High Voltage Input High Voltage Input Resistance to V ⁺ VilVilVilVin = V ⁺ - 1.0V200360Vil	High Output Current	Юн	$V_{OUT} = V^{+} - 2.0V$ Volt = V ⁺ - 2.5V	-10		10	
Prins 1.3.14 Input Low VoltageVIL VIHVIL VIHVIN = V^+ - 1.0VV^+ - 0.8 	Multiplex Inputs	.(L	VOUT - V 2.0V	+		+	,
Input Low VoltageVILVILVILVIInput High VoltageVIHVIN = V^+ - 1.0VV^+ - 0.8V^+ - 2.0VoltsInput Resistance to V^+RVIN = V^+ - 1.0V200360K\Omega	Pins 1,3,14						
Input Resistance to V ⁺ R $V_{IN} = V^+ - 1.0V$ v_{OIIS} K_{Ω}	Input Low Voltage	VIL		V+ 00		V ⁺ - 2.0	Volts
	Input Resistance to V ⁺	R	$V_{IN} = V^+ - 1.0V$	200	360		KΩ

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $V^{+} - V^{-} = 5.0V$, Test Circuit, $T_A = 25^{\circ}C$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNITS
7216C/D						
Operating Supply Current	IDD	Display Off. Unused Inputs to V ⁻		2	5	. mA
Supply Voltage Range		-20° C ≪ T _A ≪ ∓70° C. Input A Frequency at F _{MAX}	4.75		6.0	Volts
Maximum Frequency Input A. Pin 28	FMAX	-20° C < T _A < +70° C 4.75 < V ⁺ − V < 6.0V. Figure 1	10			MHz
Maximum Osc. Freq and Ext. Osc. Frequency		-20° C < T _A < +70° C 4.75 < V ⁺ - V [−] = 6.0V	10			MHz
Minimum Ext. Osc. Freq.					100	KHz
Oscillator Transconductance	gm	$V^+ - V^- = 4.75V$, $T_A = +70^{\circ}C$	2000			μmhos
Multiplex Frequency	f _{mux}	f _{osc} = 10MHz		500		Hz
Time Between Measurements		f _{osc} 10MHz		200		msec
Input Voltages: Pins 12.27.28 Input Low Voltage Input High Voltage	Vil Vih	-20° C <t<sub>A < ·70° C</t<sub>	3.5		1.0	Volts Volts
Input Resistance to V ⁺ Pins 12.24	R	V _{IN} = V ⁺ - 1.0V	100	400		KΩ
Input Leakage Pin 27, Pin 28	ار				20	μA
Output Current	IOL	V _{OL} = V = + .4V	0.36			mA
Pin 2	- Юн	Vон - V*8V	265			μΑ
7216C Digit Driver: Pins 15.16.17,19,20,21,22,23 High Output Current Low Output Current	Iон Iol	V _{OUT} = V ⁺ - 2.0V V _{OUT} = 1.0V	-150	-180 +0.3		mA mA
Segment Driver: Pins 3,4,5,6,8,9,10,11 Low Output Current High Output Current	Іог Іон	Vout = V + 1.5V Vout = V ⁺ - 2.5V	25	30 - 100		mA μA
Multiplex Inputs: Pins 1.13.14 Input Low Voltage Input High Voltage Input Resistance to V	Vil Vin R	V _{IN} = V + 1.0V	V ⁻ + 2.0 50	100	V +0.8	Volts Volts KΩ
7216D						
Digit Driver: Pins 3.4,5,6,8,9,10,11 Low Output Current High Output Current	Іог Іон	V _{OUT} = V ⁻ + 2.0V V _{OUT} = V ⁺ - 2.5V	50	75 100		mA μA
Segment Driver: Pins 15.16.17.19.20.21.22.23 High Output Current Leakage Current	Іон Іс	$V_{OUT} = V^{+} - 2.0V$ $V_{OUT} = V^{+} - 2.5V$	10	15	10	mA μA
Multiplex Inputs: Pins 1.13.14 Input Low Voltage Input High Voltage Input Resistance to V ⁺	Vil Vih	$V_{IN} = V^{+} - 1.0V$	V ⁺ - 0.8 200	360	V ⁺ - 2.0	Volts Volts kΩ

FIGURE 1. Waveform for Guaranteed Minimum FAMAX Function = Frequency, Frequency Ratio, Unit Counter.

FIGURE 2. Waveform for Guaranteed Minimum FBMAX and FAMAX for Function = Period and Time Interval.

TIME INTERVAL MEASUREMENT

The CD-7216/7226 can be used to accurately measure the time interval between two events. With a 10 MHz timebase crystal, the time between the two events can be as long as ten seconds. Accurate resolution in time interval measurement is 100ns.

The feature operates with Channel A going low at the start of the event to be measured, followed by Channel B going low at the end of the event.

FIGURE 3b. Waveform for Minimum Time Between Transitions of Input A and Input B.

When in the time interval mode and measuring a single event, the CD-7216/7226 must first be "primed" prior to measuring the event of interest. This is done by placing both Channel A and Channel B at V^+ , then causing A to toggle to V^- and back to V^+ followed by B toggling to V^- and back to V^+ The input is then ready for measurement.

This can be easily accomplished with the following circuit: (Figure 3d)

FIGURE 3d. Priming Circuit, Signal A&B High or Low.

Following the priming procedure (when in single event or 1 cycle range input) the device is ready to measure one (only) event.

When timing repetitive signals, it is not necessary to "prime" the CD-7216/7226 as the first alternating signal states automatically prime the device.

During any time interval measurement cycle, the CD-7216/7226 requires 200ms following B going low to update all internal logic. A new measurement cycle will not take place until completion of this internal update time.

BLOCK DIAGRAM

TEST CIRCUIT

OVERFLOW WILL BE INDICATED ON THE DECIMAL POINT OUTPUT OF DIGIT 7.

LED OVERFLOW INDICATOR CONNECTIONS

	CATHODE	ANODE
CD-7216AC	DEC. PT.	D ₇
CD-7216BC	D ₇	DEC. PT.
CD-7216CC	DEC. PT.	D ₇
CD-7216DC	D ₇	DEC. PT.

APPLICATIONS NOTES

GENERAL

Inputs A and B

Inputs A and B are digital inputs with a typical switching threshold of 2.0V at V⁺= 5.0V. For optimum performance the peak-to-peak input signal should be at least 50% of the supply voltage and centered about the switching voltage. When these inputs are being driven from T²L logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs.

Note: The amplitude of the input should not exceed the supply, otherwise, the circuit may be damaged.

Multiplexed Inputs

The function, range, control and external decimal point inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically 125μ sec). The multiplex inputs are active high for the common anode CD-7216A and C and active low for the common cathode CD-7216B and D.

Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a 10K resistor should be placed in series with the multiplex inputs as shown in the application notes.

Table 1 shows the functions selected by each digit for these inputs.

Control Input Functions

Display Test — All segments are enabled continuously, giving a display of all 8's with decimal points. The display will be blanked if Display Off is selected at the same time.

Display Off — To enable the Display Off mode it is necessary to input D₃ to the control input and have the HOLD input at V⁺. The chip will remain in the Display Off mode until HOLD is switched back to V⁻. While in the Display Off mode, the segment and digit driver outputs are open. During Display Off the oscillator continues to run with a typical supply current of 1.5mA with a 10 MHz crystal and no measurements are made. In addition, inputs to the multiplexed inputs will have no effect. A new measurement is initiated when the HOLD input is switched to V⁻.

1 MHz Select — The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as with a 10 MHz crystal. The decimal point is also shifted one digit to the right in Period and Time Interval, since the least significant digit will be in μ second increments rather than 0.1 μ sec increments.

External Oscillator Enable — In this mode the external oscillator input is used instead of the on-chip oscillator for Timebase input and Main Counter input in Period and Time interval modes. The on-chip oscillator will continue to function when the external oscillator is selected. The external oscillator input frequency must be greater than 100 KHz or the chip will reset itself to enable the on-chip oscillator.

TABLE 1

`	FUNCTION	DIGIT
Function Input	Frequency	Do
Pin 3	Period	D7
(CD-7216A & B	Frequency Ratio	D ₁
	Time Interval	D4
	Unit Counter	D ₃
	Oscillator Frequency	D ₂
Range Input	.01 sec/1 Cycle	D ₀
Pin 14	.1 sec/10 Cycles	D1
	1 sec/100 Cycles	D ₂
	10 sec/1K Cycles	D ₃
Control Input	Blank Display	D ₃ and Hold
Pin 1	Display Test	D7
	1 MHz Select	D1
	External Oscillator	D ₀
	Enable External Decimal Point Enable	D ₂
	Test	D4
External Decimal Point Input Pin 13, CD-7216C & D Only	Decimal point is ou digit that is conn input	utput for same ected to this

External Decimal Point Enable — When external decimal point is enabled a decimal point will be displayed whenever the digit driver connected to the external decimal point is active. Leading Zero Blanking will be disabled for all digits following the decimal point.

Test Mode — In the test mode the main counter is split into groups of two digits each and the groups are clocked in parallel. The reference counter is split such that the clock into the reference count goes directly to the clock of the second decade counter (.1 sec/10 cycle range). The count in the main counter is continuously output.

Range Input — The range input selects whether the measurement is made for 1, 10, 100, 1000 counts of the reference counter. In all functional modes except Unit Counter a change in the range input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the Range Input is changed.

Function Input — The six functions that can be selected are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency. This Input is available on the CD-7216A and B only.

These functions select which signal is counted into the Main Counter and which signal is counted by the reference counter, as shown in Table 2. In Time Interval, a flip flop is toggled first by a 1-0 transition of Input A and then by a 1-0 transition of Input B. The oscillator is gated into the Main Counter from the time Input A toggles the flip flop until Input B gates the flip flop. A change in the function input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the Function Input is changed.

T	'A	B	L	E	2
		-	_	_	

DESCRIPTION	MAIN COUNTER	
Frequency (F _A)	Input A	100 Hz (Oscillator ÷ 10 ⁵ or 10 ⁴)
Period (T _A)	Oscillator	Input A
Ratio (FA/FB)	Input A	Input B
Time Interval $(A \rightarrow B)$	Osc●(Time Interval FF)	Time Interval FF
Unit Counter (Count A)	Input A	Not Applicable
Osc. Freq. (F _{OSC})	Oscillator	100 Hz (Oscillator ÷ 10 ⁵ or 10 ⁴)

External Decimal Point Input — When the external decimal point is selected this input is active. Any of the digits, except D7, can be connected to this point. D7 should not be used since it will override the overflow output and leading zeros will remain unblanked after the decimal point. This input is available on the CD-7216C and D only.

Hold Input — When the Hold Input is at V^+ , any measurement in progress is stopped, the main counter is reset and the chip is held ready to initiate a new measurement. The latches which hold the main counter data are not updated so the last complete measurement is displayed. When Hold is changed to V^- , a new measurement is initiated.

Reset Input — The Reset Input is the same as a Hold Input, except the latches for the Main Counter are enabled, resulting in an output of all zeros.

DISPLAY CONSIDERATIONS

The display is multiplexed at a 500 Hz rate with a digit time of 244 μ sec. An interdigit blanking time of 6 μ sec is used to prevent ghosting between digits. The decimal point and leading zero blanking have been implemented for right hand decimal point displays, zeros following the decimal point will not be blanked. Also, the leading zero blanking will be disabled when the Main Counter overflows.

The CD-7216A and C are designed to drive common anode LED displays at peak current of 25mA/segment, using displays with $V_F = 1.8$ V at 25mA. The average DC current will be over 3mA under these conditions. The CD-7216B and D are designed to drive common cathode displays at peak current of 15mA/segment using displays with $V_F = 1.8$ V at 15mA. Resistors can be added in series with the segment drivers to limit the display current in very efficient displays, if

required. Figures 4,5,6 and 7 show the digit and segment currents as a function of output voltage.

To get additional brightness out of the displays, V^+ may be increased up to 6.0V. However, care should be taken to see that maximum power and current ratings are not exceeded.

V⁺-V_{OUT} (VOLTS)

FIGURE 4. CD-7216A & C Typical I_{DIG} vs. V⁺ – V_{OUT}, 4.5V \leq V⁺ – V⁻ \leq 6.0V

FIGURE 5. CD-7216A & C Typical I_{SEG} vs. V_{OUT} - V⁻

FIGURE 6. CD-7216B & D Typical IDIGIT vs. VOUT - V

FIGURE 7. CD-7216B & D Typical I_{SEG} vs. V^+ – $V_{OUT},$ 4.5V \leq V^+ – $V^ \leq$ 6.0V

The segment and digit outputs in CD-7216's are not directly compatible with either TTL or CMOS logic. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals.

Segment Identification:

ACCURACY

In a Universal Counter crystal drift and quantization errors cause errors. In Frequency, Period and Time Interval modes, a signal derived from the oscillator is used in either the Reference Counter or Main Counter. Therefore, in these modes an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of 20ppM/°C will cause a measurement error of 20ppM/°C.

In addition, there is a quantization error inherent in any digital measurement of ± 1 count. Clearly this error is reduced by displaying more digits. In the Frequency mode the maximum accuracy is obtained with high frequency inputs and in Period mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 8, the least accuracy will be obtained at 10 KHz. In Time Interval measurements there can be an error of 1 count per interval. As a result there is the same inherent accuracy in all ranges as shown in Figure 9. In Frequency Ratio measurement can be more accurately obtained by averaging over more cycles of Input B as shown in Figure 10.

FIGURE 8. Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors

FIGURE 9. Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors

FIGURE 10. Maximum Accuracy for Frequency Ratio Measurement Due to Limitation of Quantization Errors

CIRCUIT APPLICATIONS

The CD-7216 has been designed for use in a wide range of Universal and Frequency counters. In many cases, prescalers will be required to reduce the input frequencies to under 10 MHz. Because Input A and Input B are digital inputs, additional circuitry is often required for input buffering, amplification, hysterisis, and level shifting to obtain a good digital signal.

The CD-7216A or B can be used as a minimum component complete Universal Counter as shown in Figure 11. This circuit can use input frequencies up to 10 MHz at Input A and 2 MHz at Input B.

For input frequencies up to 40 MHz the circuit shown in Figure 12 can be used to implement a frequency counter. To obtain the correct measured value, it is necessary to divide the oscillator frequency by four as well as the input frequency. In doing this the time between measurements is also lengthened to 800 msec and the display multiplex rate is decreased to 125 Hz.

FIGURE 11. 10MHz Universal Counter

If the input frequency is prescaled by ten, then the oscillator can remain at 10 or 1 MHz, but the decimal point must be moved one digit to the right. Figure 13 shows a frequency counter implemented with a ÷10 prescaler and an CD-7216C. Since there is no external decimal point with the CD-7216A or B, the decimal point must be implemented with additional drivers as shown in Figure 14. Note that there can be one zero to the left of the decimal point since the internal leading zero blanking cannot be changed. In Figure 15 additional logic has been added to count the input directly in period mode for maximum accuracy. In both Figures 13 and 14, Input A comes from Q_C of the prescaler rather than Q_A to obtain an input duty cycle of 40%. If the signal at Input A has a very low duty cycle then it may be necessary to use a 74121 monostable multivibrator or similar circuit to stretch the input pulse width to guarantee 50 nsec minimum pulse width.

FIGURE 15. 100MHz Frequency, 2MHz Period Counter

OSCILLATOR CONSIDERATIONS

The oscillator has been implemented as a high gain complementary FET inverter. An external resistor of 10M Ω or 22M Ω should be connected between the oscillator input and output to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a static capacitance of 22pF and a series resistance of less than 35 ohms.

For a specific crystal and load capacitance, the required g_m can be calculated as follows:

 $g_{m} = \omega^{2} C_{in} C_{out} Rs \left(1 + \frac{C_{O}}{C_{L}}\right)^{2}$ where $C_{L} = \left(\frac{C_{in}C_{out}}{C_{in}+C_{out}}\right)$ $C_{O} = Crystal Static Capacitance$ $R_{S} = Crystal Series Resistance$ $C_{in} = Input Capacitance$ $C_{out} = Output Capacitance$ $\omega = 2 \pi f$

The required g_m should exceed the g_m specified for the CD-7216 by at least 50% to insure reliable startup. The oscillator input and output pins each contribute about 5pf to C_{in} and C_{out} . For maximum stability of frequency, C_{in} and C_{out} should be approximately twice the specified crystal static capacitance.

In cases where non decade prescalers are used it may be desirable to use a crystal which is neither 10 MHz or 1 MHz. In that case both the multiplex rate and time between measurements will be different. The multiplex rate is $f_{max} = \frac{f_{osc}}{2x10^4}$ for 10 MHz mode and $f_{max} = \frac{f_{osc}}{2x10^3}$ for the 1 MHz mode. The time between measurements is $\frac{2x10^6}{f_{osc}}$ in the

10 MHz mode and $\frac{2 \times 10^5}{f_{osc}}$ in the 1 MHz mode. The crystal and oscillator commutative sectors.

The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. Coupling from the External oscillator input to the oscillator output or input can cause undesirable shifts in oscillator frequency.

 $F_{A\ MAX},\,F_{B\ MAX}$ as a Function of V^+ – V^-

CD-7217 Series CD-7227 Series 4 Digit CMOS Up/Down Counter/ Display Driver

FEATURES

- Four decade, presettable up-down counter with parallel zero detect
- Settable register with contents continuously compared to counter
- Directly drives multiplexed 7 segment common anode or common cathode LED displays
- · On-board multiplex scan oscillator
- Schmitt trigger on count input
- TTL compatible BCD I/O port, carry/borrow, equal, and zero outputs
- Display blank control for lower power operation; quiescent power dissipation < 5mW
- All terminals fully protected against static discharge
- Single 5V supply operation

DESCRIPTION

The CD-7217 and CD-7227 are four digit, presettable up/ down counters, each with an onboard presettable register continuously compared to the counter. The CD-7217 versions are intended for use in hardwired applications where thumbwheel switches are used for loading data, and simple SPDT switches are used for chip control. The CD-7227 versions are for use in processor-based systems, where presetting and control functions are performed under processor control. These circuits provide multiplexed 7 segment LED display outputs, with common anode or common cathode configurations available. Digit and segment drivers are provided to directly drive displays of up to 1" character height at a 25% duty cycle. The frequency of the onboard multiplex oscillator may be controlled with a single capacitor, or the oscillator may be allowed to free run. Leading zeroes can be blanked. The data appearing at the 7 segment and BCD outputs is latched; the content of the counter is transferred into the latches under external control by means of the Store pin.

The CD-7217C/7227C (common anode) and CD-7217AC/ 7227AC (common cathode) versions are decade counters, providing a maximum count of 9999, while the CD-7217BC/ 7227BC (common anode) and CD-7217CC/7227CC (common cathode) are intended for timing purposes, providing a maximum count of 5959.

These circuits provide 3 main outputs; a carry/borrow output, which allows for direct cascading of counters, a zero output, which indicates when the count is zero, and an equal output, which indicates when the count is equal to the value contained in the register. Data is multiplexed to and from the device by means of a tri-state BCD I/O port. The carry/borrow, equal, zero outputs, and the BCD port will each drive one standard TTL load.

To permit operation in noisy environments and to prevent multiple triggering with slowly changing inputs, the count input is provided with a Schmitt trigger.

Input frequency is guaranteed to 2MHz, although the device will typically run with f_{in} as high as 5MHz.

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (common anode/Cerdip)	1 Watt) Note 1
Power Dissipation (common cathode/Plastic)	0.5 Watt / Note 1
Supply Voltage V ⁺ -V ⁻	6V
Input voltage (any terminal)	V ⁺ +0.3V V ⁻ -0.3V - Note 2
Operating temperature range	20° C to +70° C
Storage temperature range	–55° C to +125° C

Absolute maximum ratings define stress limitations which if exceeded may permanently damage the device. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

OPERATING CHARACTERISTICS

 $V^+-V^- = 5V$, $T_A = 25^{\circ}C$, Test Circuit, Display Diode Drop 1.7V, unless otherwise specified

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply current	IMIN	Display Off LC DC UP/DN				
(Lowest power mode)	(7217)	ST, RS, BCD I/O Floating or at V ⁺ (Note 3)		350	500	μA
Supply current		Display off (Note 3)		300	500	μA
(Lowest power mode)	(7227)				000	μ., Υ.
Supply current		Common Anode, Display On, all "8's"	175	200		mA
OPERATING		Common Cathode, Display On, all "8's"	85	100		mA
Supply Voltage	V+-V-		4.5	5	5.5	V
Digit Driver output		Common anode. Vout = V^+ -2.2V	175	200		mA
current						peak
Segment driver	ISEG	Common anode, $V_{OUT} = V^- + 1.3V$	-25	-40	1	mA
output current						peak
Digit Driver	IDIG	Common cathode, $V_{OUT} = V^{-} + 1.3V$	-75	100		mA
output current						peak
Segment Driver	ISEG	Common cathode $V_{OUT} = V^+ - 2V$	10	12.5		mA
output current						peak
ST, RS, UP/DN input	lp	$V_{OUT} = V^+ - 2V$ (See Note 3)	5	25		μA
pullup current						
3 level input impedance				100		kΩ
BCD I/O input	VBIH	7217 common anode (Note 4)	1.3			V
high voltage		7217 common cathode (Note 4)	4.1			V
		7227 with 50pF effective load	3	L		V
BCD I/O input	VBIL	7217 common anode (Note 4)			0.8	V
low voltage		7217 common cathode (Note 4)			3.7	V
	· · · · · · · · · · · · · · · · · · ·	7227 with 50pF effective load			1.5	V
BCD I/O input	IBPU	7217 common anode V _{IN} = V ⁺ -2V (Note 3)	5	25		μA
pullup current				ļ	ļ	
BCD I/O input	IBPD	7217 common cathode $V_{IN} = V^{-1} + 1.3V$ (Note 3)	5	25		μA
pulldown current				L		
BCD I/O, Carry/borrow	вон	$V_{OH} = V^+ - 1.5V$	100			μA
zero, equal outputs						
Output high current				 		
BCD I/O, Carry/borrow	BOL	$V_{OL} = V_{OL} V + 0.4 V$	-2			mA
output low current			1			
	£	$V_{+}^{+} = -5V_{+} + 100'_{-} - 200 \circ -5T_{-} < 1.700 \circ -5T_{-}$		<u> </u>		
(Guarantood)	lin	$V^{+} - V^{-} = 5V \pm 10\%, -20^{\circ}C < 1A < +70^{\circ}C$	0	5	2	IVIFIZ
Count input throshold	1/70	V^+ V^- – EV			<u> </u>	
	VIC	v - v - 3v		2		V
Count input hysteresis	VHC	V - V = 5V	ļ	0.5	<u> </u>	V
Display scan	Tds	Free-running (SCAN terminal open circuit)		10		KHZ
Operation Trequency				 	70	
Derating Temperature	IA		-20	1	10	°C
пануе	1				1	

NOTE 1 These limited refer to the package and will not be obtained during normal operation.

NOTE 2 Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than V⁺ or less than V⁻ may cause destructive device latchup. For this reason it is recommended that the power supply to the device be established before any inputs are applied and that in multiple systems the supply to the 7217/7227 be turned on first.

NOTE 3 In the 7217 the Up/Down, Store, Reset and the BCD I/O as inputs have pullup devices which consume power when connected to the negative supply. When all these terminals are connected to the negative supply, with the display off, the device will consume typically 750 μA. The 7227 devices do not have these pullups and thus are not subject to this condition.

NOTE 4 These voltages are adjusted to allow the use of thumbwheel switches for the 7217 versions. Note that a positive level is taken as a logic zero for 7217 common-cathode versions only.

TEST CIRCUITS

Figure 1

Figure 1 shows the CD-7217 in the common-anode version and the CD-7227 in the common-cathode version.

Figure 2: Block Diagram CD-7217

Figure 3: Multiplex Timing

Figure 5: CD-7227 I/O Timing (See Table 2)

CONTROL INPUT DEFINITIONS ICM7217

	VOLIAGE	FUNCTION
0	1	-
9	V ⁺ (or floating)	Output latches not updated
	V ⁻	Output latches updated
10	V ⁺ (or floating)	Counter counts up
	V ⁻	Counter counts down
14	V ⁺ (or floating)	Normal Operation
	V	Counter Reset
12	Unconnected	Normal operation
	V ⁺	Counter loaded with BCD data
	V ⁻	BCD port forced to Hi Z condition
11	Unconnected	Normal operation
	V ⁺	Register loaded with BCD data
	V-	Display drivers disabled; BCD port
		forced to Hi Z condition, mpx counter
		reset to D3; mpx oscillator inhibited
23 Common Anode	Unconnected	Normal operation
20 Common Cathode	V ⁺	Segment drivers disabled
	V ⁻	Leading zero blanking inhibited
	10 14 12 11 23 Common Anode 20 Common Cathode	$V^ V^-$ 10 V^+ (or floating)14 V^- 12Unconnected12 V^- 11Unconnected23 Common Anode V^+ 20 Common Cathode V^+

CONTROL INPUT DEFINITIONS CD-7227

	INPUT	TERMINAL	VOLTAGE	FUNCTION
	Data Transfer (DT)	13	V+ V-	Normal Operation Causes transfer of data as directed by select code
Control Word	Store (ST)	9	V ⁺ (During CWS Pulse) V ⁻	Output latches updated Output latches not updated
" "	Up/Down (U/D)	10	V^+ (During \overline{CWS} Pulse) V^-	Counter counts up Counter counts down
	Select Code Bit 1 (SC1) Select Code Bit 2 (SC2)	11 12	$V^+ = 1$ $V^- = 0$	SC1, SC2 00 Change store and up/down latches. No data transfer. 01 Output latch data active 10 Counter to be preset 11 Register to be preset
	Control Word Strobe (CWS)	14	V+ V-	Normal operation Causes control word to be written into control latches
	Display Control (DC)	23 Common Anode 20 Common Cathode	Unconnected V ⁺ V ⁻	Normal operation Display drivers disabled Leading zero blanking inhibited

DESCRIPTION OF OPERATION OUTPUTS

The carry/borrow output is a positive going signal occurring typically 500nS after the positive going edge of the count input. It advances the counter from 9999 to 0000 when counting up and from 0000 to 9999 when counting down. This output allows direct cascading of counters.

The equal output assumes a negative level when the contents of the counter and register are equal.

The zero output assumes a negative level when the content of the counter is 0000.

The carry/borrow, equal, and zero outputs will drive a single TTL load over the full range of supply voltage and ambient temperature; for a logic zero, these outputs will sink 2mA @ 0.4V (on resistance 200 ohms), and for a logic one, the

outputs source $>60\mu$ A.

The digit and segment drivers provide a decoded 7 segment display system, capable of directly driving common anode LED displays at typical peak currents of 40mA/seg. This corresponds to average currents of 10mA/seg at a 25% multiplex duty cycle. For the common cathode versions, peak segment currents are 12.5mA, corresponding to average segment currents of 3.1mA. The display pin controls the display output using three level logic. The pin is selfbiased to a voltage approximately 1/2 (V⁺-V⁻); this corresponds to normal operation. When this pin is connected to V⁺, the segments are inhibited, and when connected to V⁻, the leading zero blanking feature is inhibited. For normal operation (display on with leading zero blanking) the pin may be left open. The display may be controlled with a 3 position SPDT switch; see fig. 1.

The BCD I/O port provides a means of transferring data to and from the device. The CD-7217 versions multiplex data into the counter or register via thumbwheel switches, depending on inputs to the load counter or load register pins; in the CD-7227 versions, input/output control and timing must be provided externally. When functioning as outputs, the BCD I/O pins will drive one standard TTL load.

The onboard multiplex scan oscillator has a nominal freerunning frequency of 10kHz. This may be reduced by the addition of a single capacitor between the Scan pin and the positive supply, or the oscillator may be directly overdriven to about 20kHz. Capacitor values and corresponding nominal oscillator frequencies, digit repetition rates, and loading times (for CD-7217 versions) are shown in Table 1 below.

The internal oscillator output has a duty cycle of approximately 25:1, providing a short pulse occurring at the oscillator frequency. This pulse clocks the four-state counter which provides the four multiplex phases. The short pulse width is used to delay the digit driver outputs, thereby providing inter-digit blanking which prevents ghosting. The digits are scanned from MSD (D4) to LSD (D1). See Fig. 3 for the display digit multiplex timing.

Table 1	1
---------	---

Scan Capacitor	Nominal Oscillator Frequency	Digit Repetition Date	Scan Cycle Time
None	10kHz	2.5kHz	400µs
20pF	5kHz	1.2kHz	800µs
90pF	1kHz	250Hz	4ms

CONTROL OF CD-7217

The counter is incremented by the rising edge of the count input signal when U/D is high. It is decremented when U/D is low. A Schmitt trigger on the count input provides hysteresis to prevent double triggering on slow rising edges and permits operation in noisy environments.

The \overline{ST} pin controls the internal latches and consequently the signals appearing at the 7 segment and BCD outputs. Bringing the store pin to V⁻ transfers the contents of the counter into the latches.

The counter is asynchronously reset to 0000 by bringing the RST pin to V⁻. The count input is inhibited during reset and load counter operations. The ST, RST and Up/Down pins are provided with pullup resistors of approximately 75 k Ω .

The BCD I/O pins, the load counter (LC), and load register (LR) pins combine to provide presetting and compare functions. LC and LR are three-level inputs, being self-biased at approximately 1/2 (V⁺-V⁻) for normal operation. With both LC and LR open, the BCD I/O pins provide a multiplexed BCD output of the latch contents, scanned from MSD

to LSD by the display multiplex. In this mode of operation, the BCD pins will drive one TTL load. When either or both of the LC or LR pins is connected to V⁺, the TTL driver devices are turned off and the BCD pins become high-impedance inputs. When LC is connected to V⁺, the count input is inhibited and the levels at the BCD pins are multiplexed into the counter. When LR is connected to V⁺, the levels at the BCD pins are multiplexed into the register without disturbing the counter. When both are connected to V⁺, the count is inhibited and both register and counter are presettable. When LR is connected to V^- , the oscillator is inhibited, the BCD I/O pins go to the high impedance state, and the segment and digit drivers are turned off. This allows the display to be used for other purposes and minimizes power consumption. In this display off condition, the circuit will continue to count, and the carry/borrow, equal, zero, up/ down, reset and store functions operate as normal. When LC is connected to V⁻, the BCD I/O pins are forced to the high impedance state without disturbing the counter or register. See "Control Input Definitions" for a cataloging of the pins that function as three-state self-biased inputs and their respective operations.

Note that the 7217C and 7217BC have been designed to drive common anode displays. The BCD inputs are active high, as are the BCD outputs.

The 7217A Cand 7217CCare used to drive common cathode displays, and the BCD inputs are active low. BCD outputs are active high.

The 7227 series has been designed to permit microprocessor control of the inputs. BCD inputs and outputs are active high.

NOTES ON THUMBWHEEL SWITCHES & MULTIPLEXING

The thumbwheel switches used with these circuits (both common anode and common cathode) are TRUE BCD coded; i.e. all switches open corresponds to 0000.

Since the thumbwheel switches are connected in parallel, diodes must be provided to prevent crosstalk between digits. See fig. 4.

In order to maintain reasonable noise margins, these diodes should be specified with low forward voltage drops.

During load counter and load register operations, the multiplex oscillator is disconnected from the scan input and is allowed to free-run. In all other conditions, the oscillator may be directly overdriven, however the internal oscillator output will be of the same duty cycle and phase as the overdriving signal, and the digits are blanked during the time the internal oscillator output is at a positive level. To insure proper leading zero blanking, the blanking time should not be less than about 2μ s, and by varying the duty cycle, the display brightness may be altered. Overdriving the oscillator at less than 200Hz may cause display flickering. See fig. 6 for brightness control circuits.

These circuits are variable-duty-cycle oscillators suitable for overdriving the multiplex oscillator at the Scan input of a CD-7217. The inverters should be CMOS CD4000 series, and the diodes may be any inexpensive device such as IN914.

Figure 6: Brightness Circuits

OUTPUT AND INPUT RESTRICTIONS

The carry/borrow output is not valid during load counter and reset operations.

The equal output is not valid during load counter or load register operations.

The zero output is not valid during a load counter operation.

The reset input may be susceptible to noise if its input rise time (coming out of reset) is less than about 500μ s. This will present no problems when this input is driven by active devices (i.e., TTL or CMOS logic) but in hardwired systems adding virtually any capacitance to the reset input can cause trouble. A simple circuit which provides a reliable power-up reset and a fast rise time on the reset input is shown below.

CONTROL OF 7227 VERSIONS

In the 7227 versions, the Store, Up/Down, SC1 and SC2 (select code bits 1 and 2) pins form a four-bit control word input. A negative-going pulse on the CWS (control word strobe) pin writes the data on these pins into four internal control latches, and resets the multiplex counter in preparation for sequencing a data transfer operation. The select code 00 is reserved for changing the state of the Store and/or Up/Down latches without initiating a data transfer. Writing a one into the Store latch sets the latch and causes the data in the counter to be transferred into the output latches, while writing a zero resets the latches causing them to retain data and not be updated. Similarly, writing a one into the

Up/ $\overline{\text{Down}}$ latch causes the counter to count up and writing a zero causes the counter to count down. The state of the Store and Up/ $\overline{\text{Down}}$ latches may also be changed with a nonzero select code.

Writing a nonzero select code initiates a data transfer operation. Writing select code of 01 (SC1, SC2) indicates that the data in the output latches will be active and enables the BCD I/O port to output the data. Writing a select code of 11 indicates that the register will be preset, and a 10 indicates that the counter will be preset.

When a nonzero select code is read, the clock of the fourstate multiplex counter is switched to the $\overline{\text{DT}}$ (data transfer) pin. Negative-going pulses at this pin then sequence a digitby-digit data.transfer, either outputting data or presetting the counter or register as determined by the select code. The output drivers of the BCD I/O port will be enabled only while $\overline{\text{DT}}$ is low during a data transfer initiated with a 01 select code.

The sequence of digits will be D4-D3-D2-D1, i.e. when outputting, the data from D4 will be valid during the first $\overline{\text{DT}}$ pulse, then D3 will be valid during the second pulse, etc. When presetting, the data for D4 must be valid at the positive-going transition (trailing edge) of the first $\overline{\text{DT}}$ pulse, the data for D3 must be valid during the second $\overline{\text{DT}}$ pulse, etc.

At the end of a data transfer operation, on the positive going transition of the fourth $\overline{\text{DT}}$ pulse, the SC1 and SC2 control latches will automatically reset, terminating the data transfer and reconnecting the multiplex counter clock to the oscillator. In the 7227 versions, the multiplex oscillator is always free-running, except during a data transfer operation when it is disabled.

Fig. 5 shows the timing of data transfers initiated with a 11 select code (writing into the register) and a 01 select code (reading out of the output latches). Typical times during which data must be valid at the control word and BCD I/O ports are indicated in Table 2.

Table 2

SYMBOL	DEFINITION	TIME, NS	SYMBOL	DEFINITION	TIME, NS
t cws	CONTROL WORD STROBE WIDTH	200	tcan ,	CONTROL DATA HOLD	100
tics	INTERNAL CONTROL SETUP	500	t _{ids}	INPUT DATA SETUP	100
tat	DATA	200	t _i dh	DATA HOLD	100
	TRANSFER PULSE WIDTH		t _{oda}	OUTPUT DATA ACCESS	100
t _{cds}	CONTROL DATA SETUP	100	todh	OUTPUT DATA HOLD	100

APPLICATIONS

1. FIXED DECIMAL POINT

In the common anode versions, a fixed decimal point may be implemented by connecting the D.P. segment lead from the appropriate digit (with separate digit displays) through a 39 Ω series resistor to V⁻. With common cathode devices, the D.P. segment lead should be connected through a 75 Ω series resistor to V⁻.

To force the device to display leading zeroes after a fixed decimal point, use a bipolar transistor and base resistor in a configuration like that of Fig. 8 with the resistor connected to the digit output driving the D.P. for left hand D.P. displays, and to the next least significant digit output for right hand D.P. display. For common cathode devices use a PNP and NPN transistor as shown below:

2. UNIT COUNTER WITH BCD OUTPUT (Figure 7)

The simplest application of the CD-7217 is a 4 digit unit counter. All that is required is a CD-7217, a power supply and a 4 digit display. Add a momentary switch for reset, an SPDT center-off switch to blank the display or view leading zeroes, and one more SPDT switch for up/down control. Using a CD-7217AC and a common-cathode calculator-type display, results in the least expensive digital counter/display system available.

Figure 7: Unit Counter

3. PRECISION ELAPSED TIME/COUNTDOWN TIMER (Figure 8)

This circuit uses an ICM7213 precision one minute/one second timebase generator and a 4.1943 MHz crystal oscillator and divider for generating pulses counted by an CD-7217BC. The thumbwheel switches allow a starting time to be entered into the counter for a preset-countdown type timer, and allow the register to be set for compare functions. For instance, to make a 24-hour clock with BCD output the register can be preset with 2400 and the Equal output used to reset the counter. Note the 10k resistor connected between the LC terminal and V⁻. This resistor pulls the LC input low when not loading, thereby inhibiting the BCD output drivers. This resistor should be eliminated and SW4 replaced with an SPDT center-off switch if the BCD outputs are to be used. This technique may be used on any 3-level input. The 100k pullup resistor on the count input is used to ensure proper logic voltage swing from the ICM7213. For a less expensive (and less accurate) timebase, a 555 timer may be used in a configuration like that shown in Fig. 12 to generate a 1Hz reference.

4. 8-DIGIT UP/DOWN COUNTER (Figure 9)

This circuit shows how to cascade counters and retain correct leading zero blanking. The NAND gate detects whether a digit is active since one of the two segments \overline{a} or \overline{b} is active on any unblanked number. The flip flop is clocked by the least significant digit of the high order counter, and if this digit is not blanked, the Q output of the flip flop goes high and turns on the NPN transistor, thereby inhibiting leading zero blanking on the low order counter.

It is possible to use separate thumbwheel switches for presetting, but as the devices load data with the oscillator free-running, the multiplexing of the two devices is difficult to synchronize. This presents no problems with the CD-7227 devices, since the two devices are operated as peripherals to a processor.

Figure 9: 8 Digit Up/Down Counter

5. TAPE RECORDER POSITION INDICATOR/ CONTROLLER (Figure 10)

This circuit shows an application which uses the up/down counting feature of the CD-7217 to keep track of tape position. This circuit is representative of the many applications of up/down counting in monitoring dimensional position. For example, an CD-7227 as a peripheral to a processor can monitor the position of a lathe bed or digitizing head, transfer the data to the processor, drive interrupts to the processor using the equal or zero outputs, and serve as a numerical display for the processor.

In the tape recorder application, the preset register, equal and zero outputs are used to control the recorder. To make the recorder stop at a particular point on the tape, the register can be set with the stop point and the equal output used to stop the recorder either on fast forward, play or rewind.

To make the recorder stop before the tape comes free of the reel on rewind, a leader should be used. Resetting the counter at the starting point of the tape, a few feet from the end of the leader, allows the zero output to be used to stop the recorder on rewind, leaving the leader on the reel.

The 1M Ω resistor and .0047 μ F capacitor on the count input provide a time constant of about 5ms to debounce the reel switch. The Schmitt trigger on the count input of the CD-7217 squares up the signal before applying it to the counter. This technique may be used to debounce switchclosure inputs in other applications.

6. PRECISION FREQUENCY COUNTER/ TACHOMETER (Figure 11)

This circuit is a simple implementation of a four digit frequency counter, using an ICM7207A to provide the one second gating window and the store and reset signals. In this configuration, the display reads hertz directly. With Pin 11 of the ICM7027A connected to V⁺, the gating time will be 0.1 second; this will display tens of hertz as the least significant digit. For shorter gating times, an ICM7207 may be used (with a 6.5536 MHz crystal), giving a 0.01 second gating with Pin 11 connected to V⁺, and a 0.1 second gating with Pin 11 open. To implement a four digit tachometer, the ICM7207A with one second gating should be used. To get the display to read directly in RPM, the rotational frequency of the object to be measured must be multiplied by 60. This can be done electronically using a phase-locked loop, or mechanically by using a disc rotating with the object with the appropriate number of holes drilled around its edge to interrupt the light from an LED to a photo-dector. For faster updating, use 0.1 second gating, and multiply the rotational frequency by 600.

7. INEXPENSIVE FREQUENCY COUNTER/ TACHOMETER (Figure 12)

This circuit uses an inexpensive 556 dual timer rather than an ICM7027A to generate the gating, store and reset signals. To provide the gating signal, one timer is configured as an astable multivibrator, using R_A, R_B and C to provide an output that is positive for approximately 1 second and negative for approximately 300-500 μ S. The gating positive time is given by G_L = 0.693 (R_A + R_B) C while the gating low time is G_L = 0.693R_BC. The system is calibrated by using a 5M Ω potentiometer for R_A as a "coarse" control and a 1k

potentiometer for R_B as a "fine" control. The other timer in the 556 is configured as a one-shot triggered by the negativegoing edge of the gating signal. This one-shot output is inverted to serve as the store pulse and to hold reset high. When the one-shot times out and store goes high, reset goes low, resetting the counter for the next measurement. The one-shot pulse width will be approximately 50μ s with the component values shown. When "fine" trimming the gating signal with R_B, care should be taken to keep the gating low time (= 0.693R_BC) at least twice as long as the oné-shot pulse width.

8. INEXPENSIVE CAPACITANCE METER (Figure 13)

This circuit uses two 555 timers (or one 556) to generate a gated count to the CD-7217 dependent on the value of an arbitrary capacitor. The clock timer operates as a fixed oscillator whose output period is determined by R_1 , R_2 and C (which is switched with the range). The relation is $T_{CL} = 0.693$ ($R_1 + 2R_2$) C. The gating timer also operates as an oscillator, but its output high time (and period) is determined by the value of the measured capacitor in combination with R_3 and R_4 (also switched with range). The output high time of this timer is given by $G_H = 0.693$ ($R_3 + R_4$) Cm. The number of clock pulses during one gating time is thus given by

$$N = \frac{(R_3 + R_4) Cm}{(R_1 + 2R_2) C}$$

With the values shown, this number is ten times the number to be displayed when the circuit is calibrated. This allows the use of a dummy divide by 10 (the CD4017) to eliminate jitter in the least significant digit of the display. The R₃ resistors should be precision potentiometers for greatest accuracy, and the circuit must be calibrated in each range. Range A reads 1-9999pF, Range B reads 1-9999nF, and Range C reads 1-9999 μ F.

Note that in comparison to Fig. 12, the store and reset signals are generated by CD4000 series one-shots. The operation of the two circuits is similar.

Figure 13: Capacitance Meter

9. LCD DISPLAY INTERFACE (Figure 14)

The low-power operation of the CD-7217 makes an LCD interface desirable. The Siliconix CF411 4 digit BCD to LCD display driver easily interfaces to the CD-7217AC with one CD4000series package to provide a total system power consumption of less than 5mW. The common-cathode devices should be used, since the digit drivers are CMOS, while the commonanode digit drivers are NPN devices and will not provide full logic swing.

10. MICROPROCESSOR INTERFACE- 7227 (Figure 15)

This circuit shows the hardware necessary to interface the CD-7227 to an Intersil IM6100 CMOS microprocessor. Using an IM6101 Parallel Interface Element (PIE) allows the addition of one or more CD-7227 devices as generalized peripherals to any IM6100 system, using a minimum of external components.

A similar configuration may be used with the MC6800 using the corresponding PIE, while an 8223 can be used to interface 8080 based systems.

The CD-7227 can perform many "accessory" functions that are inefficient or impossible for the processor to perform. For simple systems, the CD-7227 can provide a cost-effective display latch/decoder/driver. By adding a timebase such as an ICM7213, and using a 7227CC or DC, an inexpensive real-time clock/display, directly accessible by the procesor, can be implemented. In the area of "intelligent" instrumentation, the CD-7227 can serve as a high speed (up to 2MHz) counter/comparator. This is the element often used for converting time, frequency, and positional and occurence data into digital form. For example, an CD-7207A can be used with two CD-7227's to provide an 8 digit, 2MHz frequency counter.

Since the CD-7207A gating output has a 50% duty cycle, there is 1 second for the processor to respond to an interrupt, generated by the negative going edge of this signal while it inhibits the count. The processor can respond to the interrupt using ROM based subroutines, to store the data, reset the counter, and read the data into main memory. To add simultaneous period display, the processor inverts the data and a DD-7218 Universal Display Driver stores and displays it. Capacitance can be measured by counting the frequency of an oscillator, as in the Capacitance Meter circuit, allowing the measurement of fluid levels, proximity detectors, etc.

Future Application Notes and Bulletins will address the CD-7227 more fully, and users are welcome to submit any circuits or unique uses for review and possible publication in application information.

Figure 15: IM6100 Interface

OPTION MATRIX & ORDERING INFORMATION

	Order Part Number	Display Option	Count Option Max Count	28-LEAD Package
Hardwired Control Versions	CD-7217C CD-7217AC CD-7217BC CD-7217CC	Common Anode Common Cathode Common Anode Common Cathode	Decade/9999 Decade/9999 Timer/5959 Timer/5959	CERDIP PLASTIC CERDIP PLASTIC
Processor Control Versions	CD-7227C CD-7227AC CD-7227BC CD-7227CC	Common Anode Common Cathode Common Anode Common Cathode	Decade/9999 Decade/9999 Timer/5959 Timer/5959	CERDIP PLASTIC CERDIP PLASTIC

PACKAGE DIMENSIONS

CD-7224 (LCD) CD-7225 (LED)

41/2 Digit Counter/Decoder/Drivers

FEATURES

- High frequency counting guaranteed 15MHz, typically 25MHz at 5V
- Low power operation less than 100µW quiescent
- Direct 4 1/2 digit seven-segment display drive -CD-7224 for LCD displays, CD-7225 for LED displays
- Store and Reset inputs permit operation as frequency or period counter
- True count inhibit disables first counter stage
- Carry output for cascading four-digit blocks
- Schmitt-trigger on the count input allows operation in noisy environments or with slowly changing inputs
- Leading zero blanking input and output for correct leading zero blanking with cascaded devices
- LCD devices provide complete onboard oscillator and divider chain to generate backplane frequency, or backplane driver may be disabled allowing segments to be slaved to a master backplane signal
- LED devices provide Brightness input which can function digitally as a display enable or with a single potentiometer as a continuous display brightness control
- All inputs fully protected against static discharge no special handling precautions necessary

DESCRIPTION

The CD-7224 and CD-7225 devices constitute a family of high-performance CMOS 4 1/2-digit counters, including decoders, output latches, display drivers, count inhibit, leading zero blanking, and reset circuitry. The CD-7224 (19999 maximum count) and CD-7224A (15959 maximum count) provide 29 segment outputs and a backplane driver output, generating the zero dc component signals necessary to darive a conventional 4 1/2-digit liquid crystal display. These devices also include a complete RC oscillator and divider chain to generate the backplane frequency, and a backplane driver disable control which allows the segments to be slaved to a master backplane signal.

The CD-7225 (19999 maximum count) and CD-7225A (15959 maximum count) provide 28 segment and 1 half-digit opendrain n-channel transistor outputs, suitable for directly driving common-anode LED displays at greater than 5mA per segment. These devices provide a brightness input which may be used digitally as a display enable, or with a potentiometer as a continuous display brightness control.

The counter section of all the devices in the CD-7224/ CD-7225 family provides direct static counting from DC to 15 MHz, guaranteed, with a 5V \pm 10% supply over the operating temperature range. At normal ambient temperatures, the devices will typically count up to 25 MHz. The count input is provided with a Schmitt trigger to allow operation in noisy environments and correct counting with slowly changing inputs. These devices also provide count inhibit, store and reset circuitry which allows a direct interface with the ICM7207/A devices to implement a low cost, low power frequency counter with a minimum component count.

These devices also incorporate several features intended to simplify cascading four-digit blocks. The carry output allows the counter to be cascaded, while the leading zero blanking input and output allows correct leading zero blanking between four-decade blocks. The backplane driver of the LCD devices may be disabled, allowing the segments to be slaved to another backplane signal, which is necessary when using an eight or twelve digit, single backplane display. In LED systems, the brightness input to several CD-7225 devices may be ganged to one potentiometer.

All the devices in the CD-7224/CD-7225 family are packaged in a standard 40-pin dual-in-line plastic package.

Table 1, the option matrix and ordering information, shows the four standard devices in the CD-7224/CD-7225 family and their markings, which serve as part numbers for ordering purposes.

Model	Display Compatibility	Count Option	Oper. Temp. Range	Package
CD-7224C	41/2 Digit LCD	19999	-20° C to +70° C	40 pin Plastic DIP
CD-7224AC	41/2 Digit LCD	15959	-20°C to +70°C	40 pin Plastic DIP
CD-7225C	41/2 Digit LED	19999	-20°C to +70°C	40 pin Plastic DIP
CD-7225AC	41/2 Digit LED	15959	-20°C to +70°C	40 pin Plastic DIP

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1)	0.5 Watt @ 70° C
Supply Voltage $(V^+ - V^-)$	6.5 Volts
Input Voltage (Any	
Terminal) (Note 2)	+0.3V, V ⁻ -0.3V
Operating Temperature Range	-20° C to +70° C
Storage Temperature Range	55° C to +125° C

Absolute maximum ratings define stress limitations which, if exceeded, may permanently damage the device. These are not continuous duty ratings. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

OPERATING CHARACTERISTICS TABLE 2

(All Parameters measured with $V^+ - V^- = 5V$ unless otherwise indicated)

CD-7224 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating current	lop	Test circuit, Display blank		10	50	μA
Operating supply voltage range	Vs	V ⁺ -V	3	5	6	V
Oscillator input current	IOSL	Pin 36		±2	±10	μA
Segment rise/fall time	trfs	Cload = 200pf		0.5		μS
Backplane rise/fall time	t _{rfb}	C _{load} = 5000pf		1.5		μS
Oscillator frequency	fosc	Pin 36 Floating		16		KHz
Backplane frequency	f _{bp}	Pin 36 Floating		125		Hż

CD-7225 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating current display off	IOPQ	Pin 5 (Brightness) at V [−] Pins 29, 31-34 at V ⁺		10	50	μA
Operating supply voltage range	Vs	V ⁺ -V	4	5	6	V
Operating current	IOP	Pin 5 at V ⁺ , Display 18888		200		mA
Segment leakage current	ISL	Segment Off	· ·	±0.01	±1	μA
Segment on current	Is	Segment On, Vout = $V^- + 3V$	5	8		mA
Half digit on current	Ін	Half digit on, Vout = $V^- + 3V$	10	16		mA

FAMILY CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input	IPU	Pins 29, 31, 33, 34		10		μA
Pullup Currents		Vout = V^+ - 3V				
Input High Voltage	VIH	Pins 29, 31, 33, 34	3			V
Input Low Voltage	VIL	Pins 29, 31, 33, 34			2	V
Count Input Threshold	Vct		1	2		V
Count Input Hysteresis	Vcн			0.5		V
Output High	Юн	Carry Pin 28	350	500		μA
Current		Leading Zero Out Pin 30				
			250	500		
Output Low		Carry Pin 26	350	500		μΑ
Current		Vout = $V^- + 3V$				
Count Frequency	fcount	$4.5V > (V^+ V^-) > 6V$	0		15	MHz
Store, Reset Minimum Pulse Width	ts,t _R		3			μs

NOTE 1: This limit refers to that of the package and will not be obtained during normal operation.

NOTE 2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than V⁺ or less than V⁻ may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the 7224/7225 be turned on first.

TYPICAL CHARACTERISTICS

OPERATING SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

BACKPLANE FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

LED SEGMENT CURRENT AS A FUNCTION OF

BRIGHTNESS CONTROL VOLTAGE

· - 3V

2 3 4 VPIN 5 (Referred to V") Volts

5

SEGMENT OUTPUT AT V

OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE

AS A FUNCTION OF OSCILLATOR

BACKPLANE FREQUENCY CAPACITOR COSC

1000

12

10

8

2

0

0

٩u

SEG

495C

CONTROL INPUT DEFINITIONS

In this table, V^* and V^- are considered to be normal operating input logic levels. Actual input low and high levels are specified in Table 2. For lowest power consumption, input signals should swing over the full supply.

INPUT	TERMINAL	VOLTAGE	FUNCTION
Leading Zero Input	29	V ⁺ or Floating V [−]	Leading Zero Blanking Enabled Leading Zeroes Displayed
Count Inhibit	31	V ⁺ or Floating V [−]	Counter Enabled Counter Disabled
Reset	33	V ⁺ or Floating V [−]	Inactive Counter Reset to 0000
Store	34	V ⁺ or Floating V [−]	Output Latches not Updated Output Latches Updated

BLOCK DIAGRAMS

CD-7225 (A)

CONNECTION DIAGRAMS

TEST CIRCUIT

DESCRIPTION OF OPERATION LCD Devices

The LCD devices in the family (7224C and 7224AC) provide outputs suitable for driving conventional four digit by seven segment LCD displays, including 29 individual segment drivers, backplane driver, and a self-contained oscillator and divider chain to generate the backplane frequency.

The segment and backplane drivers each consist of a CMOS inverter, with the n- and p- channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any dc component which could arise from differing rise and fall times, and ensures maximum display life.

The backplane output devices can be disabled by connecting the oscillator input (pin 36) to the negative supply. This allows the 29 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to the backplane output of one master device or the backplane may be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device will represent a load of approximately 200 pF (comparable to one additional segment). The limitation on how many devices that can be slaved to one master device backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to

minimize power consumption is to keep the rise and fall times less than about 5 microseconds. The backplane driver devices of one device should handle the backplane to a display of 16 one-half-inch characters without the rise and fall times exceeding 5μ s (ie, 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the CD-7224 devices be slaved to it.

This external signal should be capable of driving very large capacitive loads with short $(1-2 \ \mu s)$ rise and fall times. The maximum frequency for a backplane signal should be about 125Hz, although this may be too fast for optimum display response at lower display temperatures, depending on the display used.

The onboard oscillator is designed to free run at approximately 16KHz at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 125Hz with the oscillator free-running. The oscillator frequency may be reduced by connecting an external capacitor to the oscillator terminal (pin 36); see the plot of oscillator/backplane frequency vs. external capacitance for detailed information. The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal

(which could cause a d.c. component to the display). This

can be done by driving the oscillator input between the positive supply and a level out of the range where the backplane disable is sensed, about one fifth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

LED Devices

The LED devices in the family (7225C and 7225AC) outputs suitable for directly driving four digit by seven segment common-anode LED displays, including 28 individual segment drivers and one half-digit driver, each consisting of a low-leakage current-controlled open-drain n-channel transistor.

The drain current of these transistors can be controlled by varying the voltage at the Brightness input (pin 5). The voltage at this pin is transferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Fig (3). The potentiometer should be a high value (100k Ω to 1M Ω) to minimize I²R power consumption, which can be significant when the display is off.

The brightness input may also be operated digitally as a display enable; when at V^+ , the display is fully on, and at V^- fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two supplies at the Brightness input.

Note that the LED devices have two connections for V⁻; both of these pins should be connected to the negative supply. The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible.

When operating the LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at 25°C, derated linearly above 35°C to 500mW at 70°C (-15mW/°C above 35°C). Power dissipation for the device is given by:

$\mathsf{P} = [(\mathsf{V}^+ - \mathsf{V}^-) - \mathsf{V}_{\mathsf{FLED}}]^* \times \mathsf{I}_s \times \mathsf{N}_s$

where V_{FLED} is the LED forward voltage drop, I_s is segment current, and N_s is the number of "on" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the Brightness input to keep power dissipation within the limits described above.

The devices in the CD-7224/CD-7225 family implement a four digit ripple carry resetable counter, including a Schmitt trigger on the count input and a carry output. Also included is an extra D-type flip-flop, clocked by the carry signal and outputting to the half-digit segment driver, which can be used as either a true half-digit or as an overflow indicator. The counter will index on the negative-going edge of the signal at the count input, and the carry output will provide a negative-going edge following the count which indexes the counter from 9999 (or 5959) to 10000. Once the half-digit flipflop has been clocked, it can only be reset (with the rest of the counter) by a negative level at the Reset terminal, pin 33. However, the four decades will continue to count in a normal fashion after the half digit is set, and subsequent carry outputs will not be affected.

A negative level at the Count Inhibit input disables the first divide-by-two in the counter chain without affecting its clock. This provides a true <u>count</u> inhibit which is not sensitive to the state of the count input, preventing false counts which can result from using a normal logic gate forcing the state of the clock to prevent counting.

Each decade of counter drives directly into a four-to-seven decoder which derives the seven segment output code. Each decoder output corresponds to one segment terminal of the device. The output data is latched at the driver; when the Store pin is at a negative level, these latches are updated, and when the Store pin is left open or at a positive level, the latches hold their contents.

The decoders also include zero detect and blanking logic to provide leading zero blanking. When the leading zero input is floating or at a positive level, this circuitry is enabled and the device will blank leading zeroes. When the leading zero input is at a negative level, or the half digit is set, leading zero blanking is inhibited, and zeroes in the four digits will be displayed. The leading zero output is provided to allow cascaded devices to blank leading zeroes correctly. This output will assume a positive level only when all four digits are blanked, which can only occur when the leading zero input is at a positive level and the half digit is not set.

For example in an eight-decade counter with overflow using two CD-7224/CD-7225 devices, the leading zero output of the high order digit device would be connected to the leading zero input of the low order digit device. This will assure correct leading zero blanking for all eight digits.

The Store, Reset, Count Inhibit, and Leading Zero inputs are provided with pullup devices, so that they may be left open when a positive level is desired. The Carry and Leading Zero outputs are suitable for interfacing to CMOS logic in general, and are specifically designed to allow cascading of CD-7224 or CD-7225 devices in four digit blocks.

MAXIMUM COUNT FREQUENCY (TYPICAL) AS A FUNCTION OF SUPPLY VOLTAGE

APPLICATIONS

1. Two-Hour Precision Timer

2. Eight-Digit Precision Frequency Counter

3. Unit Counter

PACKAGE DIMENSIONS

500C

CD-7226A/B 10 MHz Universal Counter System

CD-7226A Drives Common Anode LED's CD-7226B Drives Common Cathode LED's

FEATURES

- Functions as a frequency counter, period counter, unit counter, frequency ratio counter or time interval counter
- Output drivers directly drive both digits and segments of large 8 digit LED displays. Both common anode and common cathode versions are available
- Measures frequencies from DC to 10 MHz
- Measures period from 0.5μ sec to 10 sec
- Stable high frequency oscillator, uses either 1MHz or 10MHz crystal
- Control signals available for gating of prescalers and prescaler display logic
- Multiplexed BCD outputs
- All terminals protected against static discharge; no special handling precautions required

GENERAL DESCRIPTION

The CD-7226 is a fully integrated Universal Counter and LED display driver. It combines a high frequency oscillator, a decade timebase counter, an 8 decade data counter and latches, a 7 segment decoder, digit multiplexer and 8 segment and 8 digit drivers which can directly drive large LED displays. The counter inputs accept a maximum frequency of 10MHz in frequency and unit counter modes and 2MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital signals for these inputs.

The CD-7226 can function as a frequency counter, period counter, frequency ratio (f_A/f_B) counter, time interval counter or as a totalizing counter. The counter uses either a 10MHz or 1MHz crystal timebase. An external timebase input is also provided. For period and time interval, the 10MHz timebase gives a 0.1 μ sec resolution. In period average and time interval average, the resolution can be in the nanosecond range. In the frequency mode, the user can select accumulation time of .01 sec, .1 sec, 1 sec and 10 sec. With a 10 sec accumulation time, the frequency can be displayed to a resolution of .1 Hz in the least significant digit. There is 0.2 second interval between measurements in all ranges. Control signals are provided to enable gating and storing of prescaler data.

Leading zero blanking has been incorporated with frequency displayed in KHz and time in usec. The display is multiplexed at a 500Hz rate with a 12.5% duty cycle for each digit. The CD-7226A is designed for common anode display with typical peak segment currents of 25mA. The CD-7226B is designed for common cathode displays with typical segment currents of 12mA. In the display off mode both digit drivers & segment drivers are turned off allowing the display to be used for other functions.

CD-7226A/B

ABSOLUTE MAXIMUM RATINGS

Maximum Supply Voltage (V+-V-)	6.5 volts
Maximum Digit Output Current	400mA
Maximum Segment Output Current	60mA
Voltage on any Input or Output Terminal (Note 2)	Not to exceed V^+-V^-
	by more than ± 0.3 volts
Maximum Power Dissipation at	1.0 watts (7226A)
70° C (Note 1)	0.5 watts (7226B)
Maximum Operating Temperature Range	20°C to +70°C
Maximum Storage Temperature Range	55° C to +125° C

Absolute maximum ratings refer to values that if exceeded may destroy or permanently change the device. The device is guaranteed for continous operation only under the conditions defined under the section TYPICAL OPERATING CHARACTERISTICS.

Note 1: The 7226 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if input or outputs are forced to voltages exceeding $V'-V^-$ by more than 0.3 volts.

ELECTRICAL CHARACTERISTICS $V^+-V^- = 5.0V$, Test Circuit, $T_A = 25^{\circ}C$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN	ΤΥΡ	MAX	UNITS
Operating Supply	IDD	Display Off				
Current		Unused inputs to V		2	5	mA
Supply Voltage Range		$-20^{\circ}C < T_A < 70^{\circ}C$				
		Input A, Input B	4.75		6.0	volts
		Frequency at FMAX				
Maximum Guaranteed						
Frequency	Famax	$-20^{\circ} \text{C} < T_{\text{A}} < 70^{\circ} \text{C}$				
Input A, Pin 40		4.75V < V ⁺ -V ⁻ < 6.0V Figure 1				
		Function = Frequency,				
		Ratio, Unit Counter	10	14		MHz
		Function = Period, Time Interval	2.5			MHz
Maximum Frequency	FBMAX	$-20^{\circ} \text{C} < \text{T}_{\text{A}} < 70^{\circ} \text{C}$				
Input B, Pin 2		$4.75V < V^{-} - V < 6.0V$	2.5			MHz
		Figure 2				
Minimum Separation		$-20^{\circ} \text{C} < \text{T}_{\text{A}} < 70^{\circ} \text{C}$				
Input A to Input B		$4.75V < V^* - V^- < 6.0V$	250			nsec
Time Interval Function		Figure 3				
Maximum osc. freq. and ext. osc.		$-20^{\circ} \text{C} < \text{T}_{\text{A}} < 70^{\circ} \text{C}$				
freq.		$4.75V < V^* - V^- < 6.0V$	10			MHz
Minimum ext. osc. freq.	·····	-			100	kHz
Oscillator Transconductance	gm	$V^{+} - V^{-} = 4.75V$	2000			μS
		$T_{A} = +70^{\circ}C$				
Multiplex Frequency	FMAX	$f_{osc} = 10 \text{ MHz}$		500		Hz
Time Between Measurements		$f_{osc} = 10 \text{ MHz}$		200		msec

Figure 2: Waveform for Guaranteed Minimum F_{BMAX} and F_{AMAX} for Function = Period and Time Interval.

Figure 3: Waveform for Minimum Time Between Transitions of Input A and Input B.

For single or "one-shot" time interval measurements, Input A then Input B must have a high to low transition prior to the interval which is to be measured. Provisions for "priming" the circuit as described above must be made using external circuitry. For repetitive signals this occurs automatically.
ELECTRICAL CHARACTERISTICS = $V^+ - V^- = 5.0V$, test circuit, $T_A = 25^{\circ}C$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN	ΤΥΡ	MAX	UNITS
INPUT VOLTAGES						
PINS 2,19,33,39,40						
input low voltage	VIL	$-20^{\circ}C < T_{A} < +70^{\circ}C$	1.0			v
input high voltage	ViH	Referred to V ⁻			3.5	V
PIN 2, 39, 40 INPUT LEAKAGE, A, B	١L				20	μA
PIN 33						
input low voltage	VIL	$-20^{\circ}C < T_A < 70^{\circ}C$.8			V
input high voltage	ViH	Referred to V [~]			2.0	v
Input resistance to V ⁺						
PINS 19,33	R	$V_{IN} = V^+ - 1.0V.$	100	400		kΩ
Input resistance to V						
PIN 31	R	$V_{IN} = V^{-} + 1.0V$	50	100		kΩ
Output Current						
PINS 3,5,6,7,17,18,32,38	IOL	$V_{OL} = V^{-} + 0.4V$.40			mA
PINS 5,6,7,17,18,32	Іон	$V_{OH} = V^- + 0.4V$	100			μA
PINS 3,38	Іон	$V_{OH} = V^+8V$	265			μA
7226A						
DIGIT DRIVER						
PINS 22,23,24,26,27,28,29,30						
high output current	Іон	$V_{out} = V^+ - 2.0V$	150	180		mA
low output current	IOL	$V_{out} = V^- + 1.0V$		3		mA
SEGMENT DRIVER						
PINS 8,9,10,11,13,14,15,16						
low output current	IOL	$V_{out} = V^- + 1.5$	25	35		mA
high output current	ЮН	$V_{out} = V^+ - 1.0V$		100		μA
MULTIPLEX INPUTS						
PINS 1,4,20,21						
input low voltage	VIL				.8	V
input high voltage	Viн	Referred to V ⁻	2.0			V
Input Resistance to V-	R	$V_{IN} = V^- + 1.0V$	50	100		kΩ
7226B						
DIGIT DRIVER						
PINS 8,9,10,11,13,14,15,16						
low output current	IOL	$V_{out} = V^- + 1.0V$	50	75		mA
high output current	ЮН	$V_{out} = V^+ - 2.5V$		100		μA
SEGMENT DRIVER						
PINS 22,23,24,26,27,28.29,30						
high output current	ЮН	$V_{out} = V^+ - 2.0V$	10	15		mA
leakage current	IL IL	$V_{out} = V^-$			10	μA
MULTIPLEX INPUTS						
PINS 1.4,20,21						
input low voltage	VIL				V ⁺ −2.0	V
input high voltage	ViH		V ⁺ 8			V
input resistance to V	R	$V_{IN} = V^{+} - 1.0V$	200	360	1	kΩ

ORDERING INFORMATION

Model	Display Option	Oper. Temp. Range	Package
CD-7226AC	Common Anode	-20° C to +70° C	40 pin Cerdip
CD-7226BC	Common Cathode	-20°C to +70°C	40 pin Plastic DIP

BLOCK DIAGRAM

TEST CIRCUIT

APPLICATION NOTES

GENERAL

Inputs A & B

The signal to be measured is input at Input A in Frequency, Period, Unit Counter, Frequency Ratio and Time Interval modes. The other input signal to be measured is input at Input B in Frequency Ratio and Time Interval. In Frequency Ratio F_A should be larger than F_B .

Both inputs are digital inputs with a typical switching threshold of 2.0V at $V^+ = 5.0V$. For optimum performance the peak to peak input signal should be at least 50% of the supply voltage and centered about the switching voltage. When these inputs are being driven from TTL logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs.

Note: The amplitude of the input should not exceed the supply by more than .3 volt otherwise, the circuit may be damaged.

Multiplexed Inputs

The function, range, control and external decimal point inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically 125 μ sec). The multiplex inputs are active high for the common anode CD-7226A and active low for the common cathode CD-7226B.

Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity; a 10K resistor should be placed in series with the multiplex inputs as shown in the application notes.

Table 1 shows the functions selected by each digit for these inputs.

	FUNCTION	DIGIT	
FUNCTION INPUT	Frequency	D ₀	
PIN 4	Period	D7	
	Frequency Ratio	D1	
	Time Interval	D4	
	Unit Counter	D ₃	
	Oscillator Frequency	D ₂	
RANGE INPUT	.01 Sec/1 Cycle	D ₀	
PIN 21	.1 Sec/10 Cycles	D1	
	1 Sec/100 Cycles	D ₂	
	10 Sec/1k Cycles	D ₃	
External Range Input			
PIN 31	Enabled	D4	
CONTROL INPUT	Blank Display	D ₃ &Hold	
PIN 1	Display Test	D7	
	1MHz Select	D1	
	External Oscillator Enable	D ₀	
	External Decimal Point		
	Enable	D2	
	Test	D4	
EXTERNAL DECIMAL	Decimal Point is Output for Same Digi		
POINT INPUT, PIN 20	That is Connected to This Input		

TABLE 1

Control Input Functions

Display Test - All segments are enabled continuously, giving a display of all 8's with decimal points. The display will be blanked if Display Off is selected at the same time.

Display Off - To enable the Display Off mode it is necessary to input D_3 to the control input and have the HOLD input at V⁺. The chip will remain in the Display Off mode until HOLD is switched back to V⁻. While in the Display Off mode, the segment and digit driver outputs are open. During Display Off the oscillator continues to run with a typical supply current of 1.5mA with a 10MHz crystal and no measurements are made. In addition, inputs to the multiplexed inputs will have no effect. A new measurement is initiated when the HOLD input is switched to V⁻.

1MHz Select - The 1MHz select mode allows use of a 1MHz crystal with the same digit multiplex rate and time between measurements as with a 10MHz crystal. The decimal point is also shifted one digit to the right in Period and Time Interval, since the least significant digit will be in μ second increments rather than 0.1 μ sec increments.

External Oscillator Enable - In this mode the external oscillator input is used instead of the on chip oscillator for the Timebase input and Main Counter input in Period and Time interval modes. The on chip oscillator will continue to function when the external oscillator is selected, but will have no effect on circuit operation. The external oscillator input frequency must be greater than 100KHz or the chip will reset itself to enable the on chip oscillator.

External Decimal Point Enable - When external decimal point is enabled a decimal point will be displayed whenever the digit driver connected to the external decimal point is active. Leading Zero Blanking will be disabled for all digits following the decimal point.

Test Mode - In the test mode the main counter is split into groups of two digits each and the groups are clocked in parallel. The reference counter is split such that the clock into the reference count goes directly to the clock of the third decade counter (10 sec/1k cycle range). Store is also enabled so the count in the main counter is continuously output.

Range Input - The range input selects whether the measurement is made for 1, 10, 100, 1000 counts of the reference counter or if the external range input determines the measurement time. In all functional modes except Unit Counter a change in the range input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the Range Input is changed.

Function Input - The six functions that can be selected are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency.

These functions select which signal is counted into the main counter and which signal is counted by the reference counter as shown in Table 2. In Time Interval a flip flop is toggled first by a $1 \rightarrow 0$ transition at Input A and then by a $1 \rightarrow 0$ transition at Input B. The oscillator is gated into the Main Counter from the time Input A toggles the flip flop until Input B gates the flip flop. A change in the function input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the Function Input is changed. If main counter overflows, an overflow indication is output on the decimal point output during D7.

CD-7226A/B

TABLE 2

DESCRIPTION	MAIN COUNTER	REFERENCE COUNTER
Frequency (F _A)	Input A	100Hz (Oscillator ÷ 10 ⁵ or 10 ⁴)
Period (T _A)	Oscillator	Input A
Ratio (F _A /F _B)	Input A	Input B
Time Interval (A→B)	Osc•Time Interval FI	Time Interval FF
Unit Counter(Count A)	Input A	Not Applicable
Osc. Freq. (Fosc)	Oscillator	100Hz (Osc ÷ 10 ⁵ or 10 ⁴)

External Decimal Point Input - when the external decimal point is selected this input is active. Any of the digits, except D7, can be connected to this point. D7 should not be used since it will overide the overflow output and leading zeros will remain unblanked after the decimal point.

Hold Input - Except in the Unit counter mode when the Hold Input is at V⁺, any measurement in progress is stopped, the main counter is reset and the chip is held ready to initiate a new measurement. The latches which hold the main counter data are not updated so the last complete measurement is displayed. In Unit counter mode when Hold Input is at V⁺ the counter is stopped but not reset. When Hold is changed to V⁻ the count continues from where the counter stopped.

Reset Input - The Reset Input is the same as a Hold Input, except the latches for the main counter are enabled, resulting in an output of all zeros.

External Range Input - The External Range Input is used to select different ranges than those provided on the chip. Figure 4 shows the relationship between Measurement In Progress and External Range Input.

Figure 4: External Range Input to End of Measurement in Progress.

Measurement In Progress, Store and Reset Outputs - These outputs are provided to enable display of prescaler digits. Figure 5 shows the relationship between these signals during the time between measurements. All three outputs can drive a low power Schottky TTL load. The Measurement In Progress Output can directly drive an ECL load, if the ECL device is powered from the same power supply as the 7226.

Figure 5: Reset, Store, and Measurement in Progress Outputs Between Measurements.

BCD Outputs - The BCD representation of each digit output is output on the BCD outputs. Leading zero blanking of the display has no effect on the BCD output. Each BCD output will drive one low power Schottky TTL load. Table 3 shows the truth table for the BCD outputs.

TABLE 3 Truth Table BCD Outputs

NUMBER	D PIN 7	C PIN 6	B PIN 17	A PIN 18
0	0	0	0	0
1	0	0	0	· · · 1
2	0	0	· 1 ·	0
3	0	0	1	1
4	0	-1: 1	0	0
5	0	1 1	0 0	·. · 1
6	0	1	1	0
7	0	1	1	1 1
8	1	0	0	0
9	1	0	0	- 1

Buffered Oscillator Output - The Buffered Oscillator Output has been provided to enable use of the on chip oscillator signal without loading the oscillator itself. This output will drive one low power Schottky TTL load. Care should be taken to minimize capacitive loading on this pin.

DISPLAY CONSIDERATIONS

The display is multiplexed at a 500Hz rate with a digit time of 244 μ sec. An interdigit blanking time of 6 μ sec is used to prevent ghosting between digits. The decimal point and leading zero blanking have been implemented for right hand decimal point displays. Any zeros following the decimal point will not be blanked. Also, the leading zero blanking will be disabled if the Main Counter overflows. The decimal point has been implemented to display frequency in KHz and time in μ sec.

The 7226A is designed to drive common anode LED displays at peak current of 25mA/segment, using displays with $V_F =$ 1.8V at 25mA. The average DC current will be over 3mA under these conditions. The 7226B is designed to drive common cathode displays at peak current of 15mA/ segment using displays with $V_F =$ 1.8V at 15mA. Resistors can be added in series with the segment drivers to limit the display current in very efficient displays, if required. Figures 6, 7, 8 and 9 show the digit and segment currents as a function of output voltage for common anode and common cathode drivers.

Figure 9: 7226B Typical I_{SEG} Vs. V*–V_out 4.5V \leq V*–V $^- \leq 6.0V$

To increase the light output from the displays, V⁺ may be increased up to 6.0V, however, care should be taken to see that maximum power and current ratings are not exceeded.

The segment and digit outputs in both the 7226A and B are not directly compatible with either TTL or CMOS logic. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals.

Segment Identification

ACCURACY

In a Universal Counter crystal drift and quantization errors cause errors. In Frequency, Period and Time Interval Modes, a signal derived from the oscillator is used in either the Reference Counter or Main Counter. Therefore, in these modes an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of 20ppm/°C will cause a measurement error of 20ppm/°C.

In addition, there is a quantization error inherent in any digital measurement of ± 1 count. Clearly this error is reduced by displaying more digits. In the Frequency Mode the maximum accuracy is obtained with high frequency inputs and in Period Mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 10, the least accuracy will be obtained at 10 KHz. In Time Interval measurements there is a maximum error of 1 count per interval. As a result there is the same inherent accuracy in all ranges as shown in Figure 11. In Frequency Ratio measurement more accuracy can be obtained by averaging over more cycles of Input B as shown in Figure 12.

Figure 11: Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors.

Figure 12: Maximum Accuracy for Frequency Ratio Measurement Due to Limitations of Quantization Errors.

CIRCUIT APPLICATIONS

The 7226 has been designed to be used as a complete Universal Counter or with prescalers and other circuitry in a variety of applications. Since Input A and Input B are digital inputs additional circuitry will be required in many applications for input buffering, amplification, hysteresis, and level shifting to obtain the required digital voltages. For many applications an FET source follower can be used for input buffering and an ECL 10116 line receiver can be used for amplification and hysteresis to obtain a high impedance input, sensitivity and bandwidth. However, cost and complexity of this circuitry can vary widely depending upon the sensitivity and bandwidth required. When TTL prescalers or input buffers are used, pull up resistors to V⁺ should be used to obtain optimal voltage swing at Inputs A and B.

If prescalers aren't required the 7226 can be used to implement a minimum component Universal counter as shown in figure 13. This circuit can be for input frequencies up to 10MHz at Input A and 2MHz at Input B.

For input frequencies up to 40 MHz the circuit shown in figure 14 can be used to implement a Frequency and Period Counter. To obtain the correct value when measuring

frequency and period it is necessary to divide the 10MHz oscillator frequency down to 2.5MHz. In doing this the time between measurements is also lengthened to 800 msec. and the display multiplex rate is decreased to 125 Hz.

If the input frequency is prescaled by ten then the oscillator frequency can remain at 10 or 1MHz, but the decimal point must be moved. Figure 15 shows use of a \div 10 prescaler in frequency counter mode. Additional logic has been added to

have the 7226 count the input directly in Period mode for maximum accuracy. Note that Input A comes from Q_c rather than Q_D to obtain an input duty cycle of 40%. If an output without a duty cycle near 50% must be used then it may be necessary to use a 74121 monostable multivibrator or similar circuit to stretch the input pulse to guarantee a 50 nsec minimum pulse width.

Notes: 1) If a 2.5MHz crystal is used then diode D1 and I.C's 1 and 2 can be eliminated.

Figure 14: 40MHz Frequency, Period Counter

Figure 16 shows the use of a CD4016 analog multiplexer to multiplex the digital outputs back to the Function Input. Since the CD4016 is a digitally controlled analog transmission gate no level shifting of the digit output is required. CD4051's or CD4052's could also be used to select the proper inputs for the multiplexed input on the 7226 from 2 or 3 bit digital inputs. These analog miltiplexers could also be used

in systems in which the mode of operation is controlled by a microprocessor rather than directly from front panel switches. TTL multiplexers such as the 74153 or 74251 could also be used, but some additional circuitry will be required to convert the digit output to TTL compatible logic levels.

Figure 16: 100MHz Frequency Period Counter

If the prescaler information needs to be displayed, then the Measurement in Progress, Store and Reset outputs from the CD-7226 can be used to control the prescaler and data latch as shown in figure 17. Note that the output of IC 7 has been decoded with a NAND to obtain a 40% duty cycle for the signal into input A.

To obtain a full Universal Counter with prescalers with the count displayed, it is necessary to add significantly more

circuitry to implement the Time External Mode as shown in figure 18.

All of the circuits shown directly drive a multiplexed LED display, however, the BCD outputs can be used with external BCD to 7 segment decoders and appropriate level shifting to drive other types of displays.

Figure 17: 9 Digit Multi Function Counter

Figure 18: 9 Digit Universal Counter

The circuit shown in figure 19 can be used in any of the circuit applications shown to implement a <u>single</u> measurement mode of operation. This circuit uses the Store output to put the 7226 into a hold mode. The Hold input can also be used to reduce the time between measurements. The circuit shown in Figure 20 puts a short pulse into the Hold input a short time after Store goes low. A new measurement wil be initiated at the end of the pulse on the Hold Input. This circuit reduces the time between measurements to less than 40 msec from 200 msec. Use of the circuit shown in Figure 20 on the circuit shown in Figure 14 will reduce the time between measurements from 800 msec.

Figure 19: Single Measurement Circuit for Use With 7226

Figure 20: Circuit for Reducing Time Between Measurements

OSCILLATOR CONSIDERATIONS

The oscillator has been implemented as a high gain complementary FET inverter. An external resistor of $10M\Omega$ or $22M\Omega$ should be connected between the oscillator input and output to provide biasing. The oscillator is designed to work with a parallel resonance of 10 MHz quartz crystal with a static capacitance of 22pF and a series resistance of less

For a specific crystal and load capacitance, the required g_m can be calculated as follows:

$$g_m = \omega^2 \operatorname{Cin} \operatorname{Cout} \operatorname{Rs} \left(1 + \frac{\operatorname{Co}}{\operatorname{CL}}\right)^2$$

where $C_L = \left(\frac{\operatorname{Cin}\operatorname{Cout}}{\operatorname{Cin} + \operatorname{Cout}}\right)$
 $C_0 = \operatorname{Crystal} \operatorname{static} \operatorname{capacitance}$
 $\operatorname{Rs} = \operatorname{Crystal} \operatorname{Series} \operatorname{Resistance}$
 $\operatorname{Cin} = \operatorname{Input} \operatorname{Capacitance}$

 $\omega = 2 \pi f$

than 35 ohms.

The required g_m should exceed the g_m specified for the 7226 by at least 50% to insure reliable startup. The oscillator input and output pins each contribute about 5pf to Cin and Cout. For maximum frequency stability, Cin and

PACKAGE DIMENSIONS

Cout should be approximately twice the specified crystal static capacitance.

In cases where non decade prescalers are used it may be desirable to use a crystal which is neither 10MHz. In that case, both the multiplex rate and time between measurements will be different. The multiplex rate is $f_{max} = \frac{f_{osc}}{2 \times 10^4}$ for 10MHz mode and $f_{max} = \frac{f_{osc}}{2 \times 10^3}$ for the 1MHz mode. The time between measurements is $\frac{2 \times 10^5}{f_{osc}}$ in the 10MHz mode and 2×10^5 in the 1MHz mode. The buffered oscillator output should be used for an oscillator test point or to drive additional logic. This output will drive one low power Schottky TTL load. When the buffered oscillator output is used to drive CMOS or to drive the external oscillator input, a 10k\Omega resistor should be added from buffered oscillator output to V^{*}.

The crystal and oscillator components should be located as close to to the chip as practical to minimize pickup from other signals. In particular, coupling from the Buffered Oscillator Output and External Oscillator Input to the oscillator output or input can cause undesirable shifts in oscillator frequency. To minimize this coupling, pins 34 and 37 should be connected to V⁺ or V⁻ and these two signals should be kept away from the oscillator circuit.

DD-7211 (LCD) DD-7212 (LED)

Four Digit Display Decoder-Drivers

DD-7211 (LCD) FEATURES

- Four digit non-multiplexed 7 segment LCD display outputs with backplane driver.
- Complete onboard RC oscillator to generate backplane frequency.
- Backplane input/output allows simple synchronization of slave-device segment outputs with a master backplane signal.
- DD-7211 devices provide separate digit select inputs to accept multiplexed BCD input (Pinout and functionally compatible with Siliconix DF411).
- D-7211M devices provide data and digit select code input latches controlled by chip select inputs to provide a direct high speed processor interface.
- DD-7211 device for binary-to-hexadecimal decoding; DD-7211A device for binary-to-EHLP-dashblank decoding.

DD-7212 (LED) FEATURES

- 28 current-limited segment outputs provide 4 digit non-multiplexed direct LED drive at > 5mA per segment.
- Brightness input allows direct control of LED segment current with a single potentiometer, or can function digitally as a display enable.

FAMILY FEATURES

- All devices fabricated using high density CMOS LSI technology for very low-power, high-performance operation.
- All inputs fully protected against static discharge; no special handling precautions necessary.

DESCRIPTION

THE DD-7211(LCD) and DD-7212(LED) devices constitute a family of non-multiplexed four digit seven segment display decoder-drivers.

The DD-7211 devices are configured to drive conventional LCD displays, by providing a complete (no external components necessary) RC oscillator, divider chain, backplane driver devices, and 28 segment outputs. These outputs provide the zero d.c. component signals necessary for long display life.

The DD-7212 devices are configured to drive commonanode LED displays, providing 28 current-controlled low leakage open-drain n-channel outputs. These devices provide a Brightness input which may be used at normal logic levels as a display enable, or with a potentiometer as a continuous display brightness control.

Both the LCD and LED devices are available with two input configurations. The basic devices provide four data-bit inputs and four digit select inputs. This configuration is suitable for interfacing with multiplexed BCD or binary output devices, such as the CD-7217 or CD-7226. The microprocessor interface devices provide data input latches and digit select code latches under control of high-speed chip select inputs. These devices simplify the task of implementing a costeffective alphanumeric 7 segment display for microprocessor systems, without requiring extensive ROM or CPU time for decoding and display updating.

The standard devices available will provide two different decoder configurations. The basic device will decode the four bit binary input into a seven-segment alphanumeric hexa-decimal output. The "A" versions will provide the same output code as the DD-7218 "Code B", i.e., 0-9, E, H, L, P, dash, blank. Either device will correctly decode true BCD to seven segment decimal outputs.

All devices in the DD-7211/7212 family are packaged in a standard 40 pin plastic dual-in-line package.

Table 1, the option matrix and ordering information, shows the 8 standard devices of the DD-7211/7212 family and their markings, which serve as part numbers for ordering purposes.

OR	DER PART NUMBER	OUTPUT CODE	INPUT CONFIGURATIONS
	DD-7211C	HEXADECIMAL	
LCD	DD-7211AC	CODE B	
DISPLAY	DD-7211MC	HEXADECIMAL	
	DD-7211AMC	CODE B	MICHOF HOCESSON IN TENTAGE
	DD-7212C	HEXADECIMAL	
LED	DD-7212AC	CODE B	
DISPLAY	DD-7212MC	HEXADECIMAL	
1	DD-7212AMC	CODE B	

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1)	0.5 Watt @ 70° C
Supply Voltage (V ⁺ -V ⁻)	6.5 Volts
Input Voltage (Any	
Terminal) (Note 2)	V ⁺ +0.3V, V ⁻ -0.3V
Operating Temperature Range	
Storage Temperature Range	55°C to +125°C

Absolute maximum ratings define stress limitations which, if exceeded, may permanently damage the device. These are not continuous duty ratings. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

TABLE 2: OPERATING CHARACTERISTICSAll parameters measured with $V^+ - V^- = 5V$ DD-7211 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Operating Supply Voltage Range	Vs	V*-V-	3	5	6	V
Operating Current	lop	Test circuit, Display blank		10	50	μA
Oscillator Input Current	IOSL	Pin 36		±2	±10	μA
Segment Rise/Fall Time	trfs	C _{load} = 200pf		0.5		μs
Backplane Rise/Fall Time	trfb	Cload = 5000pf	ĺ	1.5		μs
Oscillator Frequency	fosc	Pin 36 Floating		16		kHz
Backplane Frequency	f _{bp}	Pin 36 Floating		125		Hz

DD-7212 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Operating Supply Voltage Range	Vs	V ⁺ -V ⁻	4	5	6	v
Operating Current	IOPQ	Pin 5 (Brightness)		10	50	μA
Display Off		Pins 27-34				
Operating Current	IOP	Pin 5 at V⁺, Display all 8's		200		mA
Segment Leakage Current	ISL	Segment Off		±0.01	±1	μA
Segment On Current	ls	Segment On, Vout = V- +3V	5	8		mA

INPUT CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Logical "1" input voltage	ViH	Referred to V	3			V
Logical "0" input voltage	VIL	Referred to V			2	l v
Input leakage current	IDL	Pins 27-34		±.01	±1	μA
Input capacitance	Cin	Pins 27-34		5		pF
BP/Brightness input leakage	ILBPI	Measured at pin 5 with Pin 36 at V		±.01	±1	μA
BP/Brightness input capacitance	Сврі	All Devices		200		pF
AC CHARACTERISTICS - MULTIPLEX	ED INPUT	CONFIGURATION				
Digit Select Active Pulse Width	tsa	Refer to Timing Diagrams	1			μS
Data Setup Time	tds		500			ns
Data Hold Time	tdh		200			ns
Inter-Digit Select Time	tids		2			μs
AC CHARACTERISTICS - MICROPRO	CESSOR I	NTERFACE				
Chip Select Active Pulse Width	t _{csa}	other chip select either held active, or	200			ns
		both driven together				
Data Setup Time	tdsm		100			ns
Data Hold Time	tdhm		10	0		ns
Inter-Chip Select Time	tics		2			μs

NOTE 1: This limit refers to that of the package and will not be obtained during normal operation.

NOTE 2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than V⁺ or less than V⁻ may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the 7211/7212 be turned on first.

TYPICAL CHARACTERISTICS

BACKPLANE FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

BACKPLANE FREQUENCY AS A FUNCTION OF OSCILLATOR

LED SEGMENT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE

CONNECTION DIAGRAMS

516C

517C

INPUT DEFINITIONS

In this table, V^+ and V^- are considered to be normal operating input logic levels. Actual input low and high levels are specified in Table 2. For lowest power consumption, input signals should swing over the full supply.

INPUT	TERMINAL	CONDITION	FUNCTION	
B0	27	V ⁺ = Logical One		· · · ·
		V ⁻ = Logical Zero	Ones (Least Significant)	
		V ⁺ = Logical One		
B1	28	V ⁻ = Logical Zero	Twos	Data Input Pita
		V ⁺ = Logical One		Data input bits
B2	29	V ⁻ = Logical Zero	Fours	
		V ⁺ = Logical One		
B3	30	V ⁻ = Logical Zero	Eights (Most significant)	
OSC	36	Floating or with	Oscillator input	
(LCD Devices Only)	1. A.	external capacitor		
		V ⁻	Disables BP output devices external signal input at the	s, allowing segments to be synced to an BP terminal (Pin 5)

DD-7211/DD-7212

MULTIPLEXED-BINARY INPUT CONFIGURATION

INPUT	TERMINAL	CONDITION	FUNCTION
D1	31		D1 (Least significant) Digit Select
D2	32	V ⁺ = Active	D2 Digit Select
D3	33	V ⁻ = Inactive	D3 Digit Select
D4	34		D4 (Most significant) Digit Select

DD-7211M/DD-7212M

MICROPROCESSOR INTERFACE INPUT CONFIGURATION

INPUT	DESCRIPTION	TERMINAL	CONDITION	FUNCTION
DS1	Digit Select	31		DS1 & DS2 serve as a two bit Digit Select Code Input
	Code Bit 1	-	V ⁺ = Logical One	DS1, DS2 = 00 selects D4
DS2	Digit Select	32	V ⁻ = Logical Zero	DS1, $DS2 = 01$ selects $D3$
	Code bit 2			DS1, $DS2 = 10$ selects $D2$
				DS1, DS2 = 11 selects D1
CS1	Chip Select 1	33	V ⁺ = Inactive	When both CS1 and CS2 are taken to V ⁻ , the data at the Data
CS2	Chip Select 2	34	V ⁻ = Active	and Digit Select code inputs are written into the input latches.
				On the rising edge of either Chip Select, the data is decoded
	1. 11 A.	· .		and written into the output latches.

TEST CIRCUIT

Figure 2: Microprocessor Interface Input Timing Diagram

DESCRIPTION OF OPERATION LCD Devices

The LCD devices in the family 7211, 7211A, 7211M, 7211AM) provide outputs suitable for driving conventional four digit by seven segment LCD displays, including 28 individual segment drivers, backplane driver, and a self-contained oscillator and divider chain to generate the backplane frequency.

The segment and backplane drivers each consist of a CMOS inverter, with the n- and p- channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any dc component which could arise from differing rise and fall times, and ensures maximum display life.

The backplane output devices can be disabled by connecting the oscillator input (pin 36) to the negative supply. This allows the 28 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to the backplane output of one master device or the backplane may be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device will represent a load of approximately 200pF (comparable to one additional segment). The limitation on how many devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to minimize power consumption is to keep the rise and fall times less than about 5 microseconds. The backplane driver devices of one device should handle the backplane to a display of 16 one-half-inch characters without the rise and fall times exceeding 5μ s. (ie, 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the 7211 devices slaved to it. This external signal should be capabale of driving very large capacitive loads with short

 $(1-2\mu^{s})$ rise and fall times. The maximum frequency for a backplane signal should be about 125Hz although this may be too fast for optimum display response at lower display temperatures, depending on the display used.

The onboard oscillator is designed to free run at approximately 16KHz at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 125Hz with the oscillator free-running. The oscillator frequency may be reduced by connecting an external capacitor to the oscillator terminal (pin 36); see the plot of oscillator/backplane frequency vs. external capacitance for detailed information. The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a d.c. component to the display). This can be done by driving the oscillator input between the positive supply and a level out of the range where the backplane disable is sensed, about one fifth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

LED Devices

The LED devices in the 7212, 7212A, 7212M, 7212AM) provide outputs suitable for directly driving four digit by seven segment common-anode LED displays, including 28 individual segment drivers, each consisting of a low-leakage current- controlled open-drain n-channel transistor.

The drain current of these transistors can be controlled by varying the voltage at the Brightness input (pin 5). The voltage at this pin is transferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Fig (3). The potentiometer should be a high value (100K Ω to 1M Ω) to minimize I²R power consumption, which can be significant when the display is off.

The brightness input may also be operated digitally as a display enable; when at V^+ , the display is fully on, and at V^- fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two supplies at the Brightness input.

Note that the LED devices have two connections for V⁻; both of these pins should be connected to the negative supply. The double connection is necessary to minimize effects of

bond wire resistance with the large total display currents possible.

When operating the LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at 25°C, derated linearly above 35°C to 500mW at 70°C (-15mW/°C above 35°C). Power dissipation for the device is given by:

$P = [(V^+ - V^-) - V_{FLED}] \times I_s \times N_s$

where V_{FLED} is the LED forward voltage drop, I_s is segment current, and N_s is the number of "on" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the Brightness input to keep power dissipation within the limits described above.

Figure 3: Brightness control

Input Configurations And Output Codes

The standard devices in the DD-7211/12 family accept a fourbit true binary (ie, positive level = logical one) input at pins 27 thru 30, least significant bit at pin 27 ascending to the most significant bit at pin 30. The DD-7211, DD-7211M, DD-7212, and DD-7212M devices decode this binary input into a sevensegment alphanumeric hexadecimal output. The DD-7211A, DD-7211AM, DD-7212A, and DD-7212AM decode the binary input into the same seven-segment output as in the ICM 7218 "Code B", ie 0-9, E, H, L, P, dash, blank. These codes are shown explicitly in Table 3. Either decoder option will correctly decode true BCD to a seven-segment decimal output.

The DD-7211, DD-7211A, DD-7212, and DD-7212A devices are intended to accept multiplexed binary or BCD output. These devices provide four separate digit lines (least significant digit at pin 31 ascending to most significant digit at pin 34), each of which when taken to a positive level decodes and stores in the output latches of its respective digit the character corresponding to the data at the input port, pins 27 through 30. More than one digit select may be activated simultaneously (which will write the same character into all selected digits), although the timing requirements shown in Fig (1) and Table 2 for data setup, hold, and inter-digit select times must be met to ensure correct output.

The DD-7211M, DD-7211AM, DD-7212M, and DD-7212AM devices are intended to accept data from a data bus under processor control.

In these devices, the four data input bits and the two-bit digit select code (DS1 pin 31, DS2 pin 32) are written into input buffer latches when both chip select inputs (CS1 pin 33, CS2 pin 34) are taken to a negative level. On the rising edge of either chip select input, the content of the data input latches is decoded and stored in the output latches of the digit selected by the contents of the select code latches. A select code of 00 writes into D4, SC2 = 0, SC1 = 1 writes into D3, SC2 = 1, SC1 = 0 writes into D2, and 11 writes into D1. The timing relationships for inputting data are shown in Fig (2), and the chip select pulse widths and data setup and hold times are specified in Table 2.

Table 3 Output Codes

B3	BIN B2	ARY B1	во	HEXADECIMAL ICM7211(M) ICM7212(M)	CODE B ICM7211A(M) ICM7212A(M)
0	0	0	0	Ū	O
0	0	0	1	1	1
0	0	1	0	2	2
0	0	1	1	. Э	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1 :	1	0	5	5
0	- 1	1	1	7	7
1	0	0	0	8	8 .
1	0	0	1	9	9
1	0	1	0	R	-
1	0	1	1	6	ε
1	1	0	0	E	Н
1	1	0	1	്	L
1	1	1	0	E	P
1	1	, 1	1	Ē	(BLANK)

SEGMENT ASSIGNMENT

APPLICATIONS

1. Ganged 7211's Driving 8-Digit LCD Display.

2. 4 1/2 Digit LCD DPM with Digit Blanking on Overrange.

3. 8048/8748 Microprocessor Interface.

PACKAGE DIMENSIONS

DD-7218 Series CMOS Universal 8 Digit LED Driver System

FEATURES

- Total circuit integration on chip includes:
 - a) Digit and segment drivers
 - b) All multiplex scan circuitry
 - c) 8X8 static memory
- d) 7 segment Hexadecimal and Code B decoders
- Output drive suitable for large LED displays
- Both common anode and common cathode LED drive versions
- Single 5 volt supply required
- Data retention to 2 volts supply
- Shutdown feature turns off display and puts chip into very low power dissipation mode
- Pin selectable choice of 2 seven segment decoders -Hexa or Code B
- Pin selectable choice of seven segment decode or no decoder
- Microprocessor compatible and hardwire versions
- All terminals protected against static discharge

GENERAL DESCRIPTION

The DD-7218 series of universal LED driver systems provide, in a single package, all the circuitry necessary to interface most common microprocessors or digital systems and an LED display. Included on chip is an 8x8 static memory array providing storage for the displayed information, 2 types of 7 segment decoders, all the multiplex scan circuitry and the high power digit and segment drivers. The DD-7218A and DD-7218B are intended to be used primarily in microprocessor systems. Data is read directly from the I/O bus line from the microprocessor. 2 Control lines (Write, and Mode) define chip select, which reads either 4 bits of control information (Data Coming, Shutdown, Decode, Hexa or Code B Decoding) or 8 bits of Display Input Data. Display Input Data (8 words, 8 bits each) is automatically sequenced into the memory on successive negative going Write pulses. Data may be displayed either directly or decoded in Hexadecimal or Code B formats. The DD-7218A drives a common anode display while the DD-7218B drives a common cathode display. (See Block Diagram 1)

The DD-7218C and DD-7218D feature 2 lines for control information (Write, Three Level Input; Hexa, Code B, Shutdown), 4 lines for Input Data and 3 lines for BCD Data Addressing of each of eight data memory locations.

Data is written into memory by setting up a BCD Data Address memory location, defining 4 lines of Input Data and then strobe the Write line low. The Three Level Control Input is independent of the Write instruction. Only Hexadecimal and Code B decoding are available for the Display Outputs. The DD-7218C drives a common anode display, the DD-7218D a common cathode display. (See Block Diagram 2)

The DD-7218E provides 4 separate lines for control information (Write, Hexa-Code B, Decode, Shutdown), 8 lines for input data, and 3 lines for BCD digit address. Data is written into the memory by setting up a BCD Data Address memory location, defining 8 lines of Input Data, and then strobe the Write line low. Control information is on separate lines and is independent of the Write instruction. Data may be displayed either directly or decoded in Hexadecimal or Code B formats. The DD-7218E drives a common anode display. (See Block Diagram 3)

Model	Display Option	Package	
DD-7218AC	Common Anode	28 Pin CERDIP	
DD-7218BC	Common Cathode	28 Pin PLASTIC	
Hardwire Conti Model	rol Applications	Package]
Hardwire Cont Model	rol Applications Display Option	Package	
Hardwire Cont Model DD-7218CC	rol Applications Display Option Common Anode	Package 28 Pin CERDIP	
Hardwire Cont Model DD-7218CC DD-7218DC	rol Applications Display Option Common Anode Common Cathode	Package 28 Pin CERDIP 28 Pin PLASTIC	

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	
Digit Output Current	
Segment Output Current	50mA
Input Voltage (any terminal)	$ V^+ + 0.3V$ to $V^ 0.3V$
	NOTE 1
Power Dissipation (28 Pin CERDIP)	1 watt NOTE 2
Power Dissipation (28 Pin Plastic)	0.5 watt NOTE 2
Power Dissipation (40 Pin Ceramic)	1 watt NOTE 2
Operating Temperature Range	20° C to +70° C
Storage Temperature Range	55° C to +125° C

NOTE 1 Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than V⁺ or less than V⁻ may cause destructive device latchup. For this reason it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established. When using multiple supply systems the supply to the DD-7218 should be turned on first.

NOTE 2 These limits refer to the package and will not be obtained during normal operation. Derate above 50°C by 25mW per °C.

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Operating Voltage	V ⁺ -V [−]		4		6	V
	V*-V	Power Down Mode	2		6	V
Quiescent Supply Current	la	Shutdown (Note 3)	6	10	300	μA
Operating Supply Current	IDP	Decoder On, Outputs Open Ckt	250		950	μA
		No Decode, Outputs Open Ckt	200		450	μA
Digit Drive Current	ID	Common Anode Vout = V^+ –2.0	-170			mA
		Common Cathode Vout = $V^- + 1V$	50			mA
Digit Leakage Current	IDL I				100	μA
Peak Segment Drive Current	Is	Common Anode Vout = $V + 1.5V$	20	25		mA
	-	Common Cathode Vout = V ⁺ -2.0V	-10			mA
Segment Leakage Current	ISL				50	μA
Display Scan Rate	FMUX			250		Hz
Three Level Input						
Logical "1" Input Voltage	Vтн	Hexidecimal 7218C, D (Pin 9)	4.0			V
Floating Input	VTD	Code B 7218C, D (Pin 9)	2.0		3.0	V
Logical "0" Input Voltage	VTL	Shutdown 7218C, D (Pin 9)			1.75	V
Three Level Input Impedance				100		kΩ
Logical "1" Input Voltage	ViH		2.4	•••		V
Logical "0" Input Voltage	VIL				.8	V
Write Pulse Width (Negative)	tw		550			nS
Write Pulse Width (Positive)	t₩		550			nS
Mode Pulse Width	tm		400			nS
Data Set Up Time	tds		400			nS
Data Hold Time	tdh •		25			nS
Digit Address Set Up Time	t _{das}	7218	400			nS
Digit Address Hold Time	tdah	7218	100			nS
Operating Temperature Range	TA	Industrial Temperature Range	-20		70	°C

SYSTEM ELECTRICAL CHARACTERISTICS V^+ - $V^- = 5V$, $T_A = 25^{\circ}$ C, Test Circuit, Display Diode Drop 1.7V

NOTE 3 In the 7218C and D (hardwire control versions) the Hexa/Code B/Shutdown Input (Pin 9) has internal biasing resistors to hold it at V*/2 when Pin 9 is open circuited. These resistors consume power and result in a Quiescent Supply Current (I_o) of typically 50µA. The 218A, B, and E devices do not have these biasing resistors and thus are not subject to this condition.

NOTE 4 For Ac and BC suffixes only, 250nsec min. for CC, DC and EC suffixes.

BLOCK DIAGRAMS

PIN CONFIGURATION

CONTROL INPUT DEFINITIONS DD-7218A and B

INPUT	TERMINAL	VOLTAGE	FUNCTION
Write	8	High	Input Not Loaded Into Memory
		Low	Input Loaded Into Memory
Mode	9	High	Load Control Word on Write Pulse
	1999 A.	Low	Load Input Data on Write Pulse
ID6 (Hexadecimal/Code B)	. 5	High	Hexadecimal Decoding
		Low	Code B Decoding
ID5 (Decode/No Decode)	6	High	No Decode
		Low	Decode
ID7 (Data Coming/Input D.P.)	7	High	Data Coming
		Low	No Data Coming
	10	High	Normal Operation
ID4 Shutdown		Low	Shutdown (Oscillator, Decoder, and Displays
			Disabled)
Input Data	11,12,13,	High	Loads "One" (Note 2)
	14,5,6		
ID0-ID7	10,7	Low	Loads "Zero"

CONTROL INPUT DEFINITIONS DD-7218C and D

INPUT	TERMINAL	VOLTAGE	FUNCTION
Write	8	High	Inputs Not Loaded Into Memory
		Low	Inputs Loaded Into Memory
Three Level Input (Note 1)	9	High	Hexadecimal Decode
		Floating	Code B Decode
		Low	Shutdown (Oscillator, Decoder and Displays
			Disabled)
Digit Address	5,6,10	High	Loads "Ones"
DA0-DA2		Low	Loads "Zeros"
Input Data	11,12,13,	High	Loads "Ones" (Note 2)
	14,5,		`
, ID0-ID7	6,10,7	Low	Loads "Zeros"

CONTROL INPUT DEFINITIONS DD-7218E

INPUT	TERMINAL	VOLTAGE	FUNCTION
Write	9	High	Input Latches Not Updated
		Low	Input Latches Updated
Shutdown	10	High	Normal Operation
		Low	Shutdown (Oscillator, Decoder and Displays
			Disabled)
Digit Address (0,1,2)	13,14,12	High	Loads "Ones"
DA0-DA2		Low	Loads "Zeros"
Decode/No Decode	33	High	No Decode
		Low	Decode
Hexadecimal/Code B	32	High	Code B Decoding
		Low	Hexadecimal Decoding
Input Data	16,17,18,19	High	Loads "Ones" (Note 2)
	6		
ID0-ID7	7,11,8	Low	Loads "Zeros"

NOTE 1 In the 7218C and 7218D versions, Hexadecimal, Code B and Shutdown are controlled with a three level input on Pin 9. Pulling Pin 9 high decodes Hexadecimal. Floating Pin 9 decodes Code B and pulling Pin 9 low puts the 7218 in a Shutdown mode.

NOTE 2 In the No Decode Mode, "Ones" represents "on" segments for all inputs except for the Decimal Point, where "Zero" represents "on" segments, (i.e. segments are positive true, decimal point is negative true).

Figure 1: Multiplex Timing

Figure 2: Segment Assignments

APPLICATIONS

Decode/No Decode

For the DD-7218A/B/E products, there are 3 input data formats possible; either direct segment and decimal point information-8 bits per digit or 2 BCD codes plus decimal point-5 bits per digit. The 7 segment decoder on chip may be disabled if direct segment information is inputted.

In the No Decode format, the inputs directly control the outputs as follows:

Input Data: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

Output Segments: D.P. a b c e g f d

The No Decode Mode, "Ones" represents on segments for all inputs except for the Decimal Point, where "zero" represents on segments.

Hexadecimal or Code B Decoding:

For all products, a choice of either Hexa or Code B decoding may be made. Hexa decoding provides 7 segment plus six alpha characters while Code B provides a negative sign (–), a blank (for leading zero blanking) and certain useful alpha characters for most numeric formats.

The four bit	bin	ar	ус	od	e is	5 S6	et i	ip (on	in	out	s II	D3-	ID	0.		
Binary Code	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Hexa Code	0	1	2	3	Ч	5	5	٦	8	9	R	Ь	E	ď	Ε	F	
Code B	0	ł	2	3	Ч	5	5	7	8	9	-	ε	Н	L	Р	(Blank)	

Shutdown

Shutdown performs several functions: it puts the device into a very low dissipation mode (typically 10μ A at V⁺-V⁻ = 5), turns off both the digit and segment drivers, stops the multiplex scan oscillator (this is the only way the scan oscillator can be disabled). However, it is still possible to input the memory during shutdown - only the output and read sections of the device are disabled.

Powerdown

In a Shutdown Mode, the supply voltage may be reduced to 2 volts without data being lost in memory. However, data should not be written into memory if the supply voltage is less than 4 volts.

Output Drive

The common anode output drive is approximately 200 mA per digit at a 12% duty cycle. With 5 segments being driven, this is equal to about 40mA per segment peak drive or 5mA average drive. The common cathode drive is approximately one half that of the common anode drive. If high impedance LED displays are used, the drive will be correspondingly less.

Inter Digit Blanking

A blanking time of approximately $10\mu s$ occurs between digit strobes to ensure that segment information is correct before the next digit drive thereby avoiding ghosting.

Leading Zero Blanking

This may be programmed into chip memory in the nodecode operation (each segment programmed for a zero for the blanked digits) or by using the 16th state (binary 15) with the Code B decoder.

Driving Larger Displays

If a higher average drive current per digit is required, it is possible to parallel connect digit drives together. For example, by paralleling pairs of digit drives together to drive a 4 digit display 10 mA average segment drive can be obtained.

APPLICATIONS, continued

Power Dissipation Considerations

Assuming common anode drive at $V^+-V^- = 5$ volts and all digits on with an average of 5 segments driven per digit, the average current would be approximately 200mA. Assuming further a 1.8 volt drop across the LED display would result in a 3.2 volt drop across the DD-7218. The device power dissipation will, therefore, be 640mW rising to about 900mW for all '8's displayed. Caution: Position device in system such that air can flow freely to provide maximum cooling. The common cathode dissipation is approximately one half that of the common anode dissipation.

Processor Input Drive Considerations (DD-7218A/B)

The control instructions are read from the input bus lines if Mode is high and Write low. The instructions occur on 4 lines and are - Decode/no Decode, type of Decode (if desired), Shutdown/no Shutdown and Data Coming/not Coming. After the control instructions have been read (with Data Coming instruction) display data can be written into memory with each following negative going pulse of Write, Mode being low. After all 8 words or digit memory locations have been re-written, additional transitions of the state of Write are ignored. It is not possible to change for example digit #7 only without refreshing the data for all the other digits. (This can, however, be achieved with the DD-7218C/D/E where the digits are individually addressed.)

Hardwire Input Drive Considerations (DD-7218C/D/E)

Control instructions are provided to the DD-7218C/D by a single three level input terminal (Pin 9), which operates independently of the Write pulse. The DD-7218E control instructions are also independent but are on three separate pins (10, 32, 33).

Data can be written into memory on the DD-7218C/D/E by setting up a 3 bit binary code (one of eight) on the digit address inputs, which define the digit where the data is to be written into the memory, and apply a negative going Write pulse. For example, it is possible to change only digit 7 without refreshing the data for all the other digits. (However, this cannot be achieved with the DD-7218A/B.

Supply Capacitor

A $.1\mu F$ capacitor is recommended between V^{\star} and V^{-} to inhibit multiplex noise.

SWITCHING WAVEFORMS DD-7218

CHIP ADDRESS SEQUENCE DD-7218A and B

CHIP ADDRESS SEQUENCE EXAMPLE DD-7218C/D/E

Figure 5

TEST CIRCUITS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS, continued COMMON CATHODE DIGIT DRIVER COMMON CATHODE COMMON CATHODE SEG. DRIVER IDIG VS. (VOUT-V") DIGIT DRIVER AT 25° C ISEG VS. (V+-VOUT) IDIG VS. (VOUT-V) 200 30 200 °C 20° C 5.0\ 150 25 150 20 25 °c (MA) (mA) loid (mA) 100 100 SEG 70° C Dig 70° C 10 50 50 v 6.0V v 5.0V 0 n 2 0 VOUT (VOLTS) ۷ (VOLTS) v. νουτ VOUT ۷ (VOLTS)

APPLICATION EXAMPLES

8 DIGIT MICROPROCESSOR DISPLAY APPLICATION

The display interface (7218) is shown with an Intel 8048 microprocessor. The 8 bit data bus DB0/DB7 - ID0/ID7 transfers control and data information to the 7218 display interface on successive Write pulses. When Mode is high a control word is transferred. Mode low allows data transfer on a Write pulse. Eight memory address locations in the 8 ×8 static memory are automatically sequenced on each successive Write

pulse. After eight Write pulses have occurred, further pulses are ignored and the display interface returns to normal display operations until a new control word is transferred. See Figure 4.

Decoding of the stored data in memory is defined by the control word and may be decoded in Hexadecimal, Code B, or No-Decode formats.

Figure 6: 8 Digit Microprocessor Display

16 DIGIT MICROPROCESSOR DISPLAY APPLICATION

Both 7218's are addressed simultaneously with a 3 bit word, DA2-DA0.

Display data from the 8048 I/O bus (DB7-DB0) is transferred to both 7218 (ID3-ID0) simultaneously, 4 bits + 4 bits on Write enable.

Display digits from both 7218's are interleaved to allow adjacent pairs of digits to be loaded sequentially on a single 8 bit data bus, ie D0 D1, D2 D3, D4 D5, etc. Decimal point information (from 8048, P26 - P27) is supplied to the 7218 on bus lines ID7 to both devices.

Choice of decoding is available in either Hexadecimal or Code-B format by hardwiring or decoding to a Three Level format on Pin 9 of the 7218.

Multiplexing is asynchronous with respect to the microprocessor and is completely performed by the 7218.

Figure 7: 16 Digit Display

The 7218 can be used as a microprocessor based LED status panel driver. The microprocessor selected control word would include "No Decode" and "Data Coming". The computer then outputs word oriented "Ones" and Zeroes" to indicate on-off states. This data is read into the 7218 which in turn directly drives appropriate descrete LEDs. LED indicators can be red or green (8 "segments" \times 8 digits = 64 dots \div 2 per red or green = 32 channels) on red, yellow or green (21 channels).

Additional 7218's may be bussed and addressed (see Figure 7) to expand the status panel capacity. Note per figure 4 that after the 7218 has read in its data (8 write pulses), it ignores additional information on the data lines. A new control word must be received before the next write sequence can be accommodated. Consequently, by address decoding and write pulse enabling, numerous 7218's can be bussed together to allow a large number of indicator channels.

PACKAGE DIMENSIONS

Power Supplies and DC-DC Converters

Single Output Modules	536C
Dual Output Modules	538C
Chassis Mount Modules	540C
Triple Output Modules	542C
Modular Switching Supplies	543C
High Voltage Modules	544C
Plug-In Power Adapter	545C
Power Chassis Series	546C
Overvoltage Protectors	548C
Monolithic Voltage Inverters	549C
High Power Modules	550C
1 & 3 Watt DC-DC Converters	552C
5 & 10 Watt DC-DC Converters	554C
48 Volt DC-DC Converters	556C
4.5 Watt DC-DC Converters	558C
5 Volt Isolator-Regulators	559C
Case Outline Drawings	560C

Glossary of Power Supply Terms

AMBIENT TEMPERATURE: The temperature of still air surrounding a power supply. For power supplies a good practical definition is: the temperature measured at a point $\frac{1}{2}$ " from the body of a power supply which is protected from direct air movement by a suitable enclosure. It should be noted that the temperature of circulating air, such as in a temperature chamber with a fan, is not a correct ambient temperature measurement since the power supply is being cooled by the circulating air.

BACK RIPPLE CURRENT: For DC to DC converters, the input peak to peak AC current, as a percentage of input current, with an ideal voltage source input. This ripple current is caused by switching transients in the converter and is less than 1% in well-designed converters. See Figure 1.

Figure 1. Back Ripple Current of a DC-DC Converter.

BREAKDOWN VOLTAGE: The maximum AC or DC voltage which may be applied between input and output terminals of a supply. See Figure 2.

EFFICIENCY: The ratio of output power to input power expressed as a percentage. This is generally measured under full load at nominal line voltage.

FARADAY SHIELD: An electrostatic shield between input and output windings of a transformer. This is done to reduce capacitive coupling between the input and output of the power supply.

FOLDBACK CURRENT LIMITING: An overload protection method whereby the output current is decreased as the load approaches short circuit. Under output short circuit, the output current is therefore less than rated output current. This technique minimizes internal power dissipation under overload conditions. See Figure 3 (b).

ISOLATION: The resistive and capacitive coupling between the input and output of an isolated supply. This is generally given in megohms and picofarads and is normally determined by the transformer characteristics. See Figure 2.

Figure 2. Breakdown Voltage and Isolation.

LEAKAGE CURRENT: The AC or DC current flowing between input and output of an isolated supply with a specified voltage applied between input and output.

LINE REGULATION: The maximum deviation of the output voltage in percent as the input voltage is varied from nominal to high line and nominal to low line. Output load and ambient temperature are held constant.

LOAD REGULATION: The maximum deviation of the output voltage in percent as the load is changed from minimum to maximum rated load. Input voltage is nominal value and ambient temperature is constant.

OUTPUT CURRENT LIMITING: An overload protection method whereby the maximum output current is automatically limited in value under overload conditions so that the power supply is not damaged. See Figure 3 (a).

Figure 3. Output Overload Characteristics.

Δ

OUTPUT VOLTAGE : The nominal DC value of the voltage **at the output terminals** of the supply. It is assumed that any ripple or noise is averaged in the measurement.

OUTPUT VOLTAGE ACCURACY: The maximum deviation of the output voltage from its rated DC value. Input voltage is nominal value and temperature is room temperature (+25°C).

OVERSHOOT: A transient voltage change in excess of the normal regulation limits which can occur when a power supply is turned on or off, or when there is a step change in line voltage or load.

OVER VOLTAGE PROTECTION: A mechanism whereby the output is shut down if the output voltage for any reason exceeds a specified value. This feature is specially important for 5 Volt logic supplies.

Figure 4. Output Impedance vs. Frequency.

RATED OUTPUT CURRENT: The maximum current which can be drawn from the output of the supply for specified regulation or temperature change. The output current is derated with temperature for some supplies.

REMOTE SENSING: A method whereby the regulator circuit senses the voltage directly at the load. This is done by running separate wires from the regulator to the load in order to circumvent the voltage drop in the lines carrying the load current. See Figure 14.

RIPPLE AND NOISE: The magnitude of AC voltage appearing superimposed on the DC output. It is usually

stated in either peak to peak or RMS volts. For line operated supplies the ripple is normally a 120 Hz waveform. For DC to DC converters the ripple is twice the switching frequency.

SERIES REGULATION: A popular regulation method whereby a control device (transistor) is placed in series with the power source in order to regulate the voltage across the load. See Figure 13.

STABILITY: The percent change in output voltage as a function of time at constant input voltage, load, and temperature.

TEMPERATURE COEFFICIENT: The average change in output voltage per degree Centigrade change in temperature with load and input voltage held constant. The coefficient is generally derived from output voltage measurements at room temperature and the two extremes of the operating temperature range.

TEMPERATURE RANGE, OPERATING: The range of environmental temperatures (usually in °C) over which a power supply can be safely operated.

TEMPERATURE RANGE, STORAGE: The range of environmental temperatures (usually in °C) over which a power supply can be safely stored, nonoperating.

TRANSIENT RECOVERY TIME: The time required for the output voltage to settle within specified regulation limits after an instantaneous change in output load current. This is generally measured with a defined load change. See Figure 5.

Figure 5. Transient Recovery Time.

WARM-UP TIME: The time (after power turn on) required for the output voltage to reach its equilibrium value within the output accuracy specification.

Single Output Line Operated Power Modules

SPECIFICATIONS, 25° C	UPM-5/250	UPM-5/500	UPM-5/1000	UPM-5/1000B	UPM-5/2000
Output Voltage	5VDC	5VDC	5VDC	5VDC	5VDC
Output Voltage Accuracy	±1%	±1%	±1%	±2%	±1%
Rated Output Current	250mA	500mA	1.0A	1.0A	2.0A
Line Regulation, max.	.05%	.05%	.05%	0.25%	.05%
Load Regulation, max.	0.1%	0.1%	0.1%	0.25%	0.1%
Temp. Coefficient, max.	.02%/°C	.02%/°C	•.02%/° C	.02%/°C	.02%/°C
Output Ripple, RMS max.	1mV	1mV	1mV	1mV	1mV
Output Impedance, max.	.05Ω	.05Ω	.01Ω	.01Ω	.005Ω
Trans. Recovery Time, max.	50 <i>µ</i> sec.	50 <i>µ</i> sec.	50 <i>µ</i> sec.	50 <i>µ</i> sec.	50 µsec.
Isolation Resistance, min.	100 Meg.	100 Meg.	100 Meg.	100 Meg.	100 Meg.
Isolation Capacitance, max.	250pF	250pF	250pF	250pF	250pF
Breakdown Voltage, min.	1500VAC	1500VAC	1500VAC	1500VAC	1500VAC
Operating Temp. Range		–25° C to +71° C	(No Derating)	· .	(2)
Storage Temp. Range	· · · · · · · · · · · · · · · · · · ·	–25° C to +85° C	;		
Case Material	Phenolic	Phenolic	Phenolic	Phenolic	Phenolic
Module Size, inches	3.5 imes 2.5 imes .875	3.5 imes 2.5 imes .875	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.25$	$3.5 \times 2.5 \times 1.56$
Module Size, millimeters	88,9×63,5×22,2	88,9×63,5×22,2	88,9×63,5×31,8	88,9×63,5×31,8	88,9×63,5×39,6
Module Weight	14 oz. (397g)	14 oz. (397g)	18 oz. (510g)	18 oz. (510g)	24 oz. (680g)
Case/Pin Configuration	C1	C1	C2	C2	C3
Other Versions	E,J (1)	E,J (1)	E,J	E,J	E,J
Mating Socket	MS-7	MS-7	MS-7	MS-7	MS-7
Price (1-9)	\$45.00	\$53.50	\$72.50	\$57.00	\$83.00

NOTES: 1. For "E" version module size is C2 $(3.5 \times 2.5 \times 1.25 \text{ inches}, 18 \text{ oz.})$

2. For UPM-5/2000 operating temp. range should be restricted for a max. case temperature of 80° C in use.

DESCRIPTION

This line of single output, voltage regulated DC power supplies features six 5 volt output models with output currents from 250mA to 4 amperes. In addition, there are 4 other models with 6V to 15V outputs. All outputs have current limiting short circuit protection. Temperature coefficients are .02%/°C and output ripple voltage is 1 to 2 millivolts RMS.

INPUT VOLTAGE SPECIFICATIONS

Standard input specification: 115VAC $\pm 10\%$

@ 60-440 Hz

E version: 220VAC ±10% @ 48-440 Hz J version: 100VAC ±10% @ 48-440 Hz

There is no extra charge for E and J versions. When ordering, add E or J suffix after model number. Note that in some instances the module size is larger for the E version. MS-7 sockets are \$4.00 each.

UPM-6/150A	UPM-9/100A	UPM-12/100A	UPM-15/100A
6VDC	9VDC	12VDC	15VDC
 ±1%	±1%	±1%	±1%
 150mA	100mA	100mA	100mA
.05%	.05%	.02%	.02%
0.1%	0.1%	.05%	.05%
.02%/°C	.02%/°C	.02%/°C	.02%/° C
1mV	2mV	2mV	2mV
 .05Ω	.01Ω	.01Ω	.01Ω
 50 <i>µ</i> sec.	50 µsec.	50 <i>µ</i> sec.	50 <i>µ</i> sec.
100 Meg.	100 Meg.	100 Meg.	100 Meg.
250pF	250pF	250pF	250pF
1500VAC	1500VAC	1500VAC	1500VAC
	-25°C to +71°C (No	Derating)	
	-25°C to +85°C		
Phenolic	Phenolic	Phenolic	Phenolic
3.5 imes2.5 imes.875	3.5 imes2.5 imes.875	3.5 imes2.5 imes.875	3.5 imes 2.5 imes .875
88,9 × 63,5 × 22,2	88,9 imes 63,5 imes 22,2	88,9 × 63,5 × 22,2	88,9 imes 63,5 imes 22,2
 14 oz. (397g)	14 oz. (397g)	14 oz. (397g)	14 oz. (397g)
 C1	C1	C1	C1
 E,J (1)	E,J (1)	E,J (1)	E,J (1)
MS-7	MS-7	MS-7	MS-7
\$44.00	\$44.00	\$51.50	\$51.50

THESE POWER SUPPLIES ARE COVERED BY GSA CONTRACT

Dual Output Line Operated Power Modules

SPECIFICATIONS, 25° C	BPM-5/250	BPM-5/500	BPM-12/60	BPM-12/100	BPM-12/200	BPM-12/300
Output Voltage	±5VDC	±5VDC	±12VDC	±12VDC	±12VDC	±12VDC
Output Voltage Accuracy	±1%	±1%	±1%	±1%	±1%	±1%
Rated Output Current	±250mA	±500mA	±60mA	±100mA	±200mA	±300mA
Line Regulation, max.	.05%	.05%	.02%	.02%	.02%	.02%
Load Regulation, max.	0.1%	0.1%	.05%	.05%	.05%	.05%
Temp. Coefficient, max.	.02%/° C	.02%/°C	.02%/°C	.02%/°C	.02%/°C	.02%/°C
Output Ripple, RMS max.	1mV	1mV	2mV	2mV	2mV	2mV
Output Impedance, max.	.05Ω	.03Ω	0.2Ω	0.1Ω	.05Ω	.05Ω
Trans. Recovery Time, max.	50 µsec.	50 µsec.	50 µsec.	50 µsec.	50 µsec.	50 µsec.
Isolation Resistance, min.	100 Meg.	100 Meg.	100 Meg.	100 Meg.	100 Meg.	100 Meg.
Isolation Capacitance, max.	250pF	250pF	250pF	250pF	250pF	250pF
Breakdown Voltage, min.	1500VAC	1500VAC	1500VAC	1500VAC	1500VAC	1500VAC
Operating Temp. Range	-25°C to +71°C (No Derating)					(3)
Storage Temp. Range	-25° C to +85° C					
Case Material	Phenolic	Phenolic	Phenolic	Phenolic	Phenolic	Phenolic
Module Size, inches	3.5 imes 2.5 imes .875	3.5 imes2.5 imes1.25	3.5 imes 2.5 imes .875	3.5 imes 2.5 imes .875	$3.5 \times 2.5 \times 1.25$	3.5 imes 2.5 imes 1.56
Module Size, millimeters	88,9×63,5×22,2	88,9×63,5×31,8	88,9×63,5×22,2	88,9×63,5×22,2	88,9×63,5×318	88,9×63,5×396
Module Weight	14 oz. (397g)	18 oz. (510g)	14 oz. (397g)	14 oz. (397g)	18 oz. (510g)	24 oz. (680g)
Case/Pin Configuration	C1	C2	C1	C1	C2	C3
Other Versions	E,J(1)	E,J(2)	E,J(1)	E,J(1)	E,J	E,J
Mating Socket	MS-7	MS-7	MS-7	MS-7	MS-7	MS-7
Price (1-9)	\$72.50	\$83.00	\$43.00	\$51.50	\$67.00	\$86.00

NOTES: 1. For "E" version module size is C2 ($3.5 \times 2.5 \times 1.25$ inches, 18 oz.)

2. For "E" version module size is C3 (3.5 \times 2.5 \times 1.56 inches, 24 oz.)

3. For BPM-12/300 and BPM-15/300, operating temp. range should be restricted for max. case temperature of 80° C in use.
Temperature coefficient is .02% per degree Centigrade and output ripple voltage is 1 to 2 millivolts RMS. These rugged, encapsulated modules are useful for powering a wide variety of devices including linear IC's, op amps, data converters, and other analog circuits.

INPUT VOLTAGE SPECIFICATIONS

Standard input specification: 115VAC ±10% @ 60-440 Hz. E version: 220VAC ±10% @ 48-440 Hz. J version: 100VAC ±10% @ 48-440 Hz.

There is no extra charge for E and J versions. When ordering, add E or J suffix after model number. Note that in some instances the module size is larger for the E version. MS-7 sockets are \$4.00 each.

BPM-15/60	BPM-15/100	BPM-15/200	BPM-15/300
±15VDC	±15VDC	±15VDC	±15VDC
±1%	±1%	±1%	±1%
±60mA	±100mA	±200mA	±300mA
.02%	.02%	.02%	.02%
.05%	.05%	.05%	.05%
.02%/° C	.02%/° C	.02%/°C	.02%/° C
2mV	2mV	2mV	2mV
0.2Ω	0.1Ω	.05Ω	.03Ω
50 µsec.	50 μsec.	50 μsec.	50 μsec.
100 Meg.	100 Meg.	100 Meg.	100 Meg.
250pF	250pF	250pF	250pF
1500VAC	1500VAC	1500VAC	1500VAC
	–25° C to -	+71°C (No Derating)	(3)
	–25° C to -	+85° C	· · ·
Phenolic	Phenolic	Phenolic	Phenolic
3.5 × 2.5 × .875	3.5 × 2.5 ×.875	3.5 imes2.5 imes1.25	3.5 imes2.5 imes1.56
88,9 imes 63,5 imes 22,2	88,9 imes 63,5 imes 22,2	88,9 $ imes$ 63,5 $ imes$ 31,8	8,9 imes 63,5 $ imes$ 39,6
14 oz. (397g)	14 oz. (397g)	18 oz. (510g)	24 oz. (680g)
C1	C1	C2	C3
E,J(1)	E,J(1)	E,J	E,J
MS-7	MS-7	MS-7	MS-7
\$43.00	\$51.50	\$67.00	\$86.00

Chassis Mounting Modules

SPECIFICATIONS, 25° C	UCM-5/250	UCM-5/500	UCM-5/1000	UCM-5/1000B
Output Voltage	5VDC	5VDC	5VDC	5VDC
Output Voltage Accuracy	±1%	±1%	±1%	±2%
Rated Output Current	250mA	500mA	1.0A	1.0A
Line Regulation, max.	.05%	.05%	.05%	0.25%
Load Regulation, max.	0.1%	0.1%	0.1%	.025%
Temperature Coefficient, max.	.02%/° C	.02%/° C	.02%/°C	.02%/°C
Output Ripple, RMS max.	1mV	1mV	1mV	1mV
Output Impedance, max.	.05Ω	.05Ω	.01Ω	.01Ω
Transient Recovery Time, max.	50µsec.	50µsec.	50µsec.	50µsec.
Isolation Resistance, min.	100 Meg.	100 Meg.	100 Meg.	100 Meg.
Isolation Capacitance, max.	250pF	250pF	250pF	250pF
Breakdown Voltage, min.	1500VAC	1500VAC	1500VAC	1500VAC
Operating Temp. Range		-25° C to +71° C	(No Derating)	
Storage Temp. Range		-25° C to +85° C		
Case Material	Phenolic	Phenolic	Phenolic	Phenolic
Module Size, inches	3.5 imes 2.5 imes.875	3.5 imes 2.5 imes.875	$3.5\times2.5\times1.25$	$3.5 \times 2.5 \times 1.25$
Module Size, millimeters	88,9×63,5×22,2	88,9×63,5×22,2	88,9×63,5×31,8	88,9×63,5×31,8
Module Weight	14 oz.(397g)	14 oz.(397g)	18 oz.(510g)	18 oz.(510g)
Case/Pin Configuration	D1	D1	D2	D2
Other Versions	E,J(1)	E,J(1)	E,J	E,J
Price (1-9)	\$45.00	\$55.50	\$75.50	\$60.00

NOTES: 1. For "E" version module size is D2 (3.5 × 2.5 × 1.25 inches, 18 oz.)
2. For UCM-5/2000 and BCM-15/300 operating temp. range should be restricted for a max. case temperature of 80°C in use.

3. All outputs are short circuit protected - current limited

This line of popular power supplies has input-output connections made to a terminal strip on top of the modules. These supplies are useful in applications where it is impractical or undesirable to use printed circuit cards or sockets. For simple mounting to a metal chassis, screw inserts are provided on the bottom of the modules.

INPUT VOLTAGE SPECIFICATIONS

Standard Input Specification: 115VAC ±10% @ 60-440 Hz. E version: 220VAC ±10% @ 48-440 Hz. J version: 100VAC ±10% @ 48-440 Hz.

UCM-5/2000	BCM-15/60	BCM-15/100	BCM-15/200	BCM-15/300
5VDC	±15VDC	±15VDC	±15VDC	±15VDC
±1%	±1%	±1%	±1%	±1%
2.0A	±60mA	100mA	200mA	300mA
.05%	.02%	.02%	.02%	.02%
.01%	.05%	.05%	.05%	.05%
.02%/° C	.02%/° C	.02%/°C	.02%/°C	.02%/° C
1mV	2mV	2mV	2mV	2mV
.005Ω	0.2Ω	0.1Ω	.05Ω	.05Ω
50µsec.	50µsec.	50µsec.	50µsec.	50µsec.
100 Meg.	100 Meg.	100 Meg.	100 Meg.	100 Meg.
250pF	250pF	250pF	250pF	250pF
1500VAC	1500VAC	1500VAC	1500VAC	1500VAC
(2)	-25°C to +71°C (No Derating) (2)		(2)	
	−25° C t	o +85° C		
Phenolic	Phenolic	Phenolic	Phenolic	Phenolic
3.5 imes 2.5 imes 1.56	3.5 imes 2.5 imes .875	3.5 imes 2.5 imes .875	3.5 imes 2.5 imes 1.25	3.5 imes 2.5 imes 1.56
88,9 × 63,5 × 39,6	88,9 imes 63,5 imes 22,2	88,9 × 63,5 × 22,2	88,9 imes 63,5 imes 31,8	88,9 × 63,5 × 39,6
24 oz.(680g)	14 oz.(397g)	14 oz.(397g)	18 oz.(510g)	24 oz.(680g)
D3	D1	D1	D2	D3
E,J	E,J(1)	E,J(1)	E,J	E,J
\$86.00	\$45.00	\$61.00	\$71.50	\$86.00

Triple Output Modules

These power modules are specially designed for operation with data conversion and other circuits where both a dual analog supply and a 5V logic supply are required. Using a triple output supply to power these circuits can be more economical than using two separate equivalent supplies.

INPUT VOLTAGE SPECIFICATIONS

Standard input specifications: 115VAC \pm 10% @ 60-440 Hz E version: 220VAC \pm 10% @ 48-440 Hz. J version: 100VAC \pm 10% @ 48-440 Hz.

Mating MS-13 sockets are \$4.00 each

SPECIFICATIONS	TPM-15/100-5/500 TPM-12/100-5/500	TPM-15/200-5/500 TPM-12/200-5/500	TPM-15/150-5/1000 TPM-12/150-5/1000
Output Voltages, dual 15V	±15VDC/5VDC	±15VDC/5VDC	±15VDC/5VDC
Output Voltages, dual 12V	±12VDC/5VDC	±12VDC/5VDC	±12VDC/5VDC
Output Voltage Accuracy	±1%	±1%	±1%
Rated Output Current	±100mA/500mA	±200mA/500mA	±150mA/1000mA
Line Regulation, max.	.02%/.05%	.02%/.05%	.02%/.05%
Load Regulation, max.	.05%/0.1%	.05%/0.1%	.05%/0.1%
Temperature Coefficient, max.	.02%/°C	.02%/°C	.02%/° C
Output Ripple, RMS max.	2mV/1mV	2mV/1mV	2mV/1mV
Output Impedance, max.	0.1/.05 ohm	0.1/.05 ohm	0.1/.05 ohm
Transient Recovery Time, max.	50µsec.	50µsec.	50µsec.
Isolation Resistance, min.	100 Meg.	100 Meg.	100 Meg.
Isolation Capacitance, max.	250pF	250pF	250pF
Breakdown Voltage, min.	1500VAC	1500VAC	1500VAC
Operating Temp. Range	–25° (C to +71°C	
Storage Temp. Range	-25°C	C to +85°C	
Case Material	Phenolic	Phenolic	Phenolic
Module Size, inches	3.5 imes 2.5 imes 1.56	3.5 imes 2.5 imes 1.56	3.5 imes 2.5 imes 1.56
Module Size, millimeters	88,9 imes 63,5 imes 39,6	88,9 × 63,5 × 39,6	88,9 $ imes$ 63,5 $ imes$ 39,6
Module Weight	24 oz. (681g)	24 oz. (681g)	24 oz. (681g)
Case/Pin Configuration	E3	E3	E3
Other Versions	E, J	E, J	E, J
Mating Socket	MS-13	MS-13	MS-13
Price (1-9)	\$72.50	\$83.00	\$93.50

THERE WINED SHORE ARE COVERED BY GSA CONTRACT

Modular Switching Supplies

GENERAL DESCRIPTION

These supplies are compact, line operated switching modules producing 5 VDC at 3 or 5 amperes with 80% efficiency. The design employs a monolithic switching regulator and Schottky rectifiers, operating at 20 KHz minimum to give silent operation. The output has an overvoltage protection circuit with SCR crowbar fixed at 6.5V and also short circuit protection. The USM-5/3 and USM-5/5 produce no output overshoot on turn-on or turn-off.

Input voltage specification 90 to 130 VAC, 47 to 450 Hz. Mating MS-7 sockets are \$3.50 each.

INPUT VOLTAGE SPECIFICATION

90 to 130 VAC, 47 to 450 Hz Mating MS-7 sockets are \$4.00 each.

SPECIFICATIONS 25°C	USM-5/3	USM-5/5
Output Voltage	5VDC	5VDC
Output Voltage Accuracy	±1%	±1%
Rated Output Current	3 Amps	5 Amps
Efficiency, min.	80%	80%
Line Regulation, max.	.05%	.05%
Load Regulation, max.	0.1%	. 0.1%
Temp. Coefficient, max.	.02%/°C	.02%/°C
Output Ripple, P-P, max.	50 mV	50mV
Output Impedance, max.	.001Ω	.002Ω
Trans. Recovery Time, typ.	300µsec.	300µsec.
Isolation Resistance, min.	50 Meg.	50 Meg.
Isolation Capacitance, typ.	100pF 100pF	
Breakdown Voltage, min.	1800VAC 1800VAC	
Operating Temp. Range	-25°	C to +71°C
Storage Temp. Range	-25°	C to +85° C
Case Material	Phenolic	Phenolic
Module Size, inches	3.5×2.5×1.25	3.5×2.5×1.25
Module Size, millimeters	88,9×63,5×31,8	88,9×63,5×31,8
Module Weight	14 oz. (397g)	14 oz. (397g)
Case/Pin Configuration	C2	C2
Mating Socket	MS-7	MS-7
Price (1-9)	\$98.50	\$114.50

NOTE: For the USM-5/5 only-derate 60mA/° C from 35° C to 71° C

High Voltage Dual Output Modules

DESCRIPTION

This series of dual high voltage supplies is specially designed for use with high voltage operational amplifiers such as Datel Systems AM-300 series. The 3 supplies in this series offer output voltages of ± 120 , ± 150 , and ± 180 volts with excellent regulation, stability, and low output ripple.

INPUT VOLTAGE SPECIFICATIONS

Standard input specification: 115VAC ±10% @ 60-550 Hz.

E version: 220VAC ±10% @ 48-440 Hz. J version: 100VAC ±10% @ 48-440 Hz. Mating MS-13 sockets are \$4.00 each

SPECIFICATIONS, 25° C	BPM-120/25	BPM-150/20	BPM-180/16
Output Voltage	±120VDC	±150VDC	±180VDC
Output Voltage Accuracy	±1%	±1%	±1%
Rated Output Current	25mA	20mA	16mA
Line Regulation, max.	.05%	.05%	.05%
Load Regulation, max.	0.2%	0.2%	0.2%
Temperature Coefficient, max	ĸ. .02%/°C	.02%/°C	.02%/°C
Output Ripple, RMS max.	10mV	10mV	10mV
Output Impedance, max.	5 ohms	5 ohms	5 ohms
Transient Recovery Time, ma	x. 50µsec.	50µsec.	50µsec.
Isolation Resistance, min.	100 Meg.	100 Meg.	100 Meg.
Isolation Capacitance, max.	250pF	250pF	250pF
Breakdown Voltage, min.	1500VAC	1500VAC	1500VAC
Operating Temp. Range	-25	°C to +71°C (No Derat	ting)
Storage Temp. Range	-25	°C to +85°C	· · · · · · · · · · · · · · · · · · ·
Case Material	Phenolic	Phenolic	Phenolic
Module Size, inches	3.5 imes 2.5 imes 1.56	3.5 imes 2.5 imes 1.56	3.5 imes 2.5 imes 1.56
Module Size, millimeters	88,9 imes 63,5 imes 39,6	88,9 $ imes$ 63,5 $ imes$ 39,6	88,9 $ imes$ 63,5 $ imes$ 39,6
Module Weight	24 oz. (681g.)	24 oz. (681g.)	24 oz. (681 g.)
Case/Pin Configuration	C3	C3	C3
Other Versions	E,J	E,J	E,J
Mating Socket	MS-7	MS-7	MS-7
Price (1-9)	\$86.00	\$86.00	\$86.00

Plug-In Regulated Power Adapter AC to DC

Owly \$15.75 The 5 Volt Source For Digital Panel Meters

SPECIFICATIONS

FEATURES	
----------	--

- Low Cost
- Isolated Low Voltage Operation of Product
- Flame Retardant Molded Case
- Designated for U.L. and C.S.A. Listing
- Portable Power Supply
- Direct Plug-in to U.S. AC Outlets

ADVANTAGES

- No Heat Dissipation
- Easier Maintenance of Power Source
- Reduction or Elimination of the Costly Need to Submit Equipment for U.L. or C.S.A. Investigation
- Ease of Replacement

Power Chassis Series: Open Frame Power Supplies

MODEL	OUTPUT VOLTAGE & CURRENT (0 to 50° C)	LINE REG. (MAX.)	LOAD REG. (MAX.)	TEMPCO (MAX.)	OUTPUT IMPED (MAX.)
SINGLE OUTPUT					-
PCS-5/3	5V @ 3.0A	.05%	0.1%	.02%/°C	1.6mΩ
PCS-5/6	5V @ 6.0A	.05%	0.1%	.02%/°C	0.9mΩ
PC S-5/12	5V @ 12.0A	.05%	0.1%	.02%/° C	0.5mΩ
PCS-5/18	5V @ 18.0A	.05%	0.1%	.02%/° C	0.3mΩ
DUAL OUTPUT					·
PCD-12/1	±12V @ 1.0A	.05%	0.1%	.02%/° C	15mΩ
PCD-15/1	±15V @ 1.0A	.05%	0.1%	.02%/° C	15mΩ
PCD-12/2	±12V @ 2A	.05%	0.1%	.02%/° C	7.5mΩ
PCD-15/2	±15V @ 2A	.05%	0.1%	.02%/° C	7.5mΩ
PCD-12/3	±12V @ 3.0A	.05%	0.1%	.02%/°C	5mΩ
PCD-15/3	±15V @ 3.0A	.05%	0.1%	.02%/° C	5mΩ
TRIPLE OUTPUT					
PCT-12/1-5/3	±12V @ 1A/5V @ 3A	.05/0.1%	.05/0.1%	.02%/°C	15mΩ
PCT-15/1-5/3	±15V @ 1A/5V @ 3A	.05/0.1%	.05/0.1%	.02%/°C	15mΩ
PCT-12/2-5/6	±12V @ 2A/5V @ 6A	.05/0.1%	.05/0.1%	.02%/°C	7.5mΩ
PCT-15/2-5/6	±15V @ 2A/5V @ 6A	.05/0.1%	.05/0.1%	.02%/°C	7.5mΩ
PCT-12/3-5/12	±12V @ 3A/5V @ 12A	.05/0.1%	.05/0.1%	.02%/°C	5mΩ
PCT-15/3-5/12	±15V @ 3A/5V @ 12A	.05/0.1%	.05/0.1%	.02%/°C	5mΩ

NOTES: 1. Input voltage is selected by transformer connection. 2. Derated to 40% of output current at 71°C.

GENERAL SPECIFICATIONS COMMON TO ALL MODELS

Input Voltage ¹	115/230VAC ±10%
Line Frequency	48-440 Hz
Output Voltage Adjustment	±10%
Output Ripple	2mV RMS, max.
Transient Response	50µsec. max.
Output Protection	Current Limiting or Foldback Limiting
Isolation Resistance	100 Meg. min.
Voltage Stability, after warmup	±0.25%, 24 hours
Isolation Capacitance	250pF max.
Breakdown Voltage	1500VAC min.
Operating Temperature Range	0° C to 50° C
2	(No Derating)
Storage Temperature Range ¹	-25° C to +85° C

CHASSIS SIZE	CHASSIS SIZE		WEIGHT	PRICES
INCHES	(LxHxW) (CM)	(LBS	S.) (KG.)	(1-9)
4.9 X 4.0 X 1.6	12 X 10 X 4	2	.91	\$ 35.00
5.6 X 4.9 X 2.5	14 X 12 X 6	3	1.4	\$ 55.00
9.0 X 5.1 X 2.8	23 X 13 X 7	7.2	3.3	\$ 85.00
14 X 5.1 X 2.8	36 X 13 X 7	9.8	4.5	\$115.00
6.5 X 4 X 1.62	26 X 16 X 6.48	1.6	3.52	\$ 59.00
6.5 X 4 X 1.62	26 X 16 X 6.48	1.6	3.52	\$ 59.00
7 X 4.87 X 2.5	28 X 19.48 X 10	3.6	7.92	\$ 75.00
7 X 4.87 X 2.5	28 X 19.48 X 10	3.6	7.92	\$ 75.00
9.38 X 4.87 X 2.75	37.52 X 19.48 X 1	1 55	12.1	\$ 89.00
9.38 X 4.87 X 2.75	37.52 X 19.48 X 1	1 55	12.1	\$ 89.00
10.25 X 4 X 2.5	41 X 16 X 10	4.2	9.24	\$ 89.00
10.25 X 4 X 2.5	41 X 16 X 10	4.2	9.24	\$ 89.00
11.25 X 4.87 X 2.75	45 X 19.48 X 11	5.8	12.76	\$105.00
11.25 X 4.87 X 2.75	45 X 19.48 X 11	5.8	12.76	\$105.00
14.25 X 5.1 X 2.75	57 X 20.4 X 11	9.8	21.56	\$159.00
14.25 X 5.1 X 2.75	57 X 20.4 X 11	9.8	21.56	\$159.00

Overvoltage Protection Modules

OV-1 AND OV-2 MODULES

OV MODULES ARE USED WITH THE PC SERIES OPEN FRAME SUPPLIES

OVERVOLTAGE PROTECTION

OV-1 and OV-2 are available for use with the Power Chassis (PC) series of open frame power supplies.

The OV models are only designed for use with the 5 volt outputs on the PC series. Each model has a screwdriver pot adjustment — adjustable from 6.0V to 8.0V.

MODELS

OV-1 — for 3 and 6 Amp PC models Used with PCS-5/3 PCS-5/6 PCT-5/3-12/1 PCT-5/3-15/1 PCT-5/6-12/1 PCT-5/6-15/1

OV-2 for 12 and 18 Amp PC models Used with: PCS-5/12 PCS-5/18 PCT-5/12-12/2 PCT-5/12-15/2

CUSTOM

Overvoltage protection modules are available for other open frame power supply outputs, but on special request only. Contact the factory for voltage ranges that can be custom designed.

MECHANICAL DIMENSIONS

Mounting holes are provided in the PC series open frames for the OV modules

PRICE: (1-9)	
OV-1	\$ 8.00
OV-2	\$10.00

Monolithic Voltage Converter

FEATURES

- Simple Conversion of +5V Logic Supply to ±5V Supplies
- Simple Voltage Multiplication (Vout = (-) nVIN)
- 99.9% Typical Open Circuit Voltage Conversion Efficiency
- 98% Typical Power Efficiency
- Wide Operating Voltage Range 1.5V to 10.0V
- Easy to use Requires only 2 External Non-Critical Passive Components

APPLICATIONS

- On Board Negative Supply for up to 64 Dynamic RAMs.
- Localized µ-Processor (8080 type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems

GENERAL DESCRIPTION

The VI-7660 is a monolithic CMOS power supply circuit which offers unique performance advantages over previously available devices. The VI-7660 performs the complete supply voltage conversion from positive to negative for an input range of +1.5V to +10.0V, resulting in complementary output voltages of -1.5 to -10.0V with the addition of only 2 non-critical external capacitors needed for the charge pump and charge reservoir functions. Note that an additional diode is required for V_{SUPPLY} >6.5V.

Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, four output power MOS switches, and a unique logic element which senses the most negative voltage in the device and ensures that the output Nchannel switches are not forward biased. This assures latchup free operation. The oscillator, when unloaded, oscillates at a nominal frequency of 10kHz for an input supply voltage of 5.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be overdriven by an external clock.

The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages (+3.5 to +10.0 volts), the LV pin is left floating to prevent device latchup.

Typical applications for the VI-7660 will be data acquisition and microprocessor based systems where there is a +5 volt supply available for the digital functions and an additional -5volt supply is required for the analog functions. The VI-7660 is also ideally suited for providing low current, -5V body bias supply for dynamic RAMs.

VI-7660

Supply Voltage	
Oscillator Input Voltage (Note 1)	$-0.3V$ to $(V^+ + 0.3V)$ for $V^+ < 5.5V$
0	$V^* - 5.5V$) to $(V^* + 0.3V)$ for $V^* > 5.5V$
	-0.3V to (V ⁺ +0.3V) for V ⁺ < 3.5V
LV (Note 1)	No connection for $V^+ > 3.5V$
Output Short Duration (VSUPPLY ≤5.5V)	Continuous
Power Dissipation (Note 2)	
VI-7660C	
VI-7660PC	
VI-7660M	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

		LIMITS					
SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS	
1+	Supply Current		170	500	μA	RL = ∞	
V*H1	Supply Voltage Range - Hi	3.0		6.5	V	$0^{\circ}C \le T_A \le 70^{\circ}C$, $R_L = 10k\Omega$, $LV = No$ Connection	
	(Dx out of circuit)	3.0		5.0	V	-55° C \leq T _A \leq 125° C, R _L = 10k Ω , LV = Ground	
V*L1	Supply Voltage Range - Lo (Dx out of circuit)	1.5		3.5	V	$\text{MIN} \leq \text{T}_{\text{A}} \leq \text{MAX}, \text{R}_{\text{L}} = 10 \text{k} \Omega, \text{LV} = \text{Ground}$	
V [*] H2	Supply Voltage Range - Hi (Dx in circuit)	3.0		10.0	v	MIN \leq T_A \leq MAX, R_L = 10k\Omega, LV = No Connection	
V⁺L2	Supply Voltage Range - Lo (Dx in circuit)	1.5		3.5	V	$MIN \leq T_A \leq MAX, R_L = 10k\Omega, LV = Ground$	
			55	100	Ω	$I_{OUT} = 20 \text{mA}, T_A = 25^{\circ} \text{C}$	
				120	Ω	$I_{OUT} = 20 \text{mA}, -20^{\circ} \text{C} \le T_{\text{A}} \le +70^{\circ} \text{C}$	
				150	Ω	$I_{OUT} = 20mA$, $-55^{\circ}C \le T_A \le +125^{\circ}C$	
Rout	Output Source Resistance			300	Ω	$\label{eq:V_star} \begin{array}{l} V^{*} = 2V, \ I_{OUT} = 3mA, \ LV = Ground, \\ -20^{\circ}C \leq T_{A} \leq +70^{\circ}C \end{array}$	
				400	Ω	$V^+ = 2V$, $I_{OUT} = 3mA$, $LV = Ground$, $-55^{\circ}C \le T_A \le +125^{\circ}C$, D_X in circuit	
fosc	Oscillator Frequency	T	10	Ι	kHz		
PEt	Power Efficiency	95	98		%	$R_L = 5k\Omega$	
VOUT Ef	Voltage Conversion Efficiency	97	99.9		%	R _L = ∞	
Zosc	Oscillator Impedance		1.0		MΩ	V ⁺ = 2 Volts	
	· · · · ·		100	T	kO	$V^+ = 5$ Volts	

 Connecting any terminal to voltages greater than V^{*} or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of the V I-7660.
 Derate linearly above 50°C by 5.5mW/°C.

ORDERING INFORMATION

PART NUMBER	R TEMP. RANGE	PACKAGE	1-24
VI-7660C	-20° C to + 70° C	TO-99	\$3.45
VI-7600PC	-20° C to + 70° C	8 PIN MINI DIP	\$2.99
VI-7660M	55° C to +125° C	TO-99	\$8.85

MP Series: High Power Enclosed Modular Supplies

MODEL	OUTPUT VOLTAGE & CURRENT (0 to 65°C)	OUTPUT 1 AT 71° C1	LINE REG. (MAX.) ²	LOAD REG. (MAX.) ³	TEMPCO (TYPICAL)	RIPPLE (RMS MAX.)4
SINGLE OUTPU	Т					-
MPS-5/3	5V @ 3.0A	2.5A	0.1%	0.1%	.01%/°C	1mV
MPS-5/6	5V @ 6.0A	5.0A	0.1%	0.1%	.01%/°C	1mV
MPS-5/12	5V @ 12.0A	10.0A	0.1%	0.1%	.01%/°C	1mV
MPS-5/18	5V @ 18.0A	15.0A	0.1%	0.1%	.01%/°C	1mV
DUAL OUTPUT					-	-
MPD-12/1	±12V @ 1.0A	0.85A	.05%	.05%	.01%/°C	1mV
MPD-15/1	±15V @ 1.0A	0.85A	.05%	.05%	.01%/°C	1mV
MPD-12/1.5	±12V @ 1.5A	1.25A	.05%	.05%	.01%/°C	1mV
MPD-15/1.5	±15V @ 1.5A	1.25A	.05%	.05%	.01%/°C	1mV
MPD-12/3	±12V @ 3.0A	2.5A	.05%	.05%	.01%/°C	1mV
MPD-15/3	±15V @ 3.0A	2.5A	.05%	.05%	.01%/°C	1mV
TRIPLE OUTPUT	r					
MPT-12/1-5/3	±12V @ 1A/5V @ 3A	0.85/2.5A	.05/0.1%	.05/0.1%	.01%/°C	1mV
MPT-15/1-5/3	±15V @ 1A/5V @ 3A	0.85/2.5A	.05/0.1%	.05/0.1%	.01%/°C	1mV
MPT-12/1.5-5/6	±12V @ 1.5A/5V @ 6A	1.25/5.0A	.05/0.1%	.05/0.1%	.01%/°C	1mV
MPT-15/1.5-5/6	±15V @ 1.5A/5V @ 6A	1.25/5.0A	.05/0.1%	.05/0.1%	.01%/°C	1mV
MPT-12/1.5-5/12	±12V @ 1.5A/5V @ 12A	1.25/10.0A	.05/0.1%	.05/0.1%	.01%/° C	1mV
MPT-15/1.5-5/12	±15V @ 1.5A/5V @ 12A	1.25/10.0A	.05/0.1%	.05/0.1%	.01%/°C	1mV
	····					

NOTES: 1. 15% derating from 65°C output.

2. For $\pm 10\%$ line change.

3. No load to full load.

4. Typically 3mV peak to peak.

5. 0.1% tracking over operating temp. range.

GENERAL SPECIFICATIONS COMMON TO ALL MODELS

Input Voltage	115/230VAC $\pm10\%$
Line Frequency	48-440 Hz
Output Voltage Adjustment	±5%
Output Ripple	1mV RMS, max. 3mV P-P typ.
Transient Response	50 µsec. max.
Output Protection	Current Limiting of Foldback Limiting
Overvoltage Protection, 5V outputs	6.2V ±5%
Voltage Stability, after warmup	± 0.25 %, 24 hours
Dual Output Tracking	05%, 0.1% over temp. range
Operating Temperature Range	0°C to 71°C
Storage Temperature Range	-25°C to +85°C

EFFICIE (NOM. L	INCY TRACK	(ING REMO .S)5 SENS	OTE C ING PI	OVER-VOLT. ROTECTION	CASE SIZE ($H \times W \times L$, INCHES/CM)	WEIGHT (LBS./KG)	PRICE (1-9)
				Alterial designation with a contract term			
40%	Without a starting	YES	YES	2.0 imes4.6 imes	7.6 /50,8 \times 116,8 \times 193,0	3.6/1,6	\$ 62.00
40%		YES	YES	4.9 imes5.3 imes	10.3/12,4 × 13,5 × 26,2	6.5/2,9	\$ 93.50
40%		YES	YES	4.9 imes5.3 imes	11.9/12,4 × 13,5 × 30,2	10.4/4,7	\$146.00
40%		YES	YES	4.9 imes5.3 imes	11.9/12,4 × 13,5 × 30,2	14.0/6,3	\$167.00
50%	.05%	YES	NO	2.5 imes4.9 imes	10.0/6,4 × 12,4 × 25,4	5.0/2,3	\$ 93.50
50%	.05%	YES	NO	2.5 imes4.9 imes	10.0/6,4 × 12,4 × 25,4	5.0/2,3	\$ 93.50
50%	.05%	YES	NO	3.7 imes5.3 imes	10.3/9,4 × 13,5 × 26,2	6.5/2,9	\$110.00
50%	.05%	YES	NO	3.7 imes5.3 imes	10.3/9,4 × 13,5 × 26,2	6.5/2,9	\$110.00
50%	.05%	YES	NO	4.9 imes5.3 imes	10.3/12,4 × 13,5 × 26,2	10.5/4,8	\$150.00
50%	.05%	YES	NO	4.9 imes5.3 imes	10.3/12,4 × 13,5 × 26,2	10.5/4,8	\$150.00
45%	.05%	5V ONLY	5V ONL	$Y 3.4 \times 4.9 \times$	11.0/8,6 × 12,4 × 27,9	11.0/5,0	\$146.00
45%	.05%	5V ONLY	5V ONL	.Y $3.4 \times 4.9 \times$	11.0/8,6 × 12,4 × 27,9	11.0/5,0	\$146.00
45%	.05%	5V ONLY	5V ONL	.Y $4.9 \times 5.3 \times$	14.0/12,4 × 13,5 × 35,6	14.0/6,3	\$183.00
45%	.05%	5V ONLY	5V ONL	Y $4.9 \times 5.3 \times$	14.0/12,4 × 13,5 × 35,6	14.0/6,3	\$183.00
45%	.05%	5V ONLY	5V ONL	.Y $4.9 \times 5.3 \times$	15.6/12,4 × 13,5 × 39,6	17.0/7,7	\$235.00
45%	.05%	5V ONLY	5V ONL	Y $4.9 \times 5.3 \times$	15.6/12,4 × 13,5 × 39,6	17.0/7,7	\$235.00

I and 3 Watt DC-DC Converters

1 WATT SERIES

MODEL	OUTPUT VOLTAGE	OUTPUT CURRENT	INPUT VOLTAGE	INPUT VOLT. TOLERANCE	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICIENCY	LINE REGULATION
UPM-5/200-D12	+ 5V	200mA	12VDC	±10%	40mA	170mA	50%	.05%
UPM-5/200-D28	+ 5V	200mA	28VDC	±10%	20mA	72mA	50%	.05%
UPM-12/80-D5	+12V	80mA	5VDC	±10%	95mA	370mA	50%	.05%
UPM-12/80-D28	+12V	80mA	28VDC	±10%	20mA	65mA	55%	.05%
UPM-24/40-D5	+24V	40mA	5VDC	±10%	95mA	370mA	50%	.05%
UPM-24/40-D12	+24V	40mA	12VDC	±10%	40mA	150mA	55%	.05%
UPM-28/25-D5	+28V	25mA	5VDC	±10%	70mA	280mA	50%	.05%
UPM-28/25-D12	+28V	25mA	12VDC	±10%	40mA	105mA	55%	.05%
BPM-12/25-D5	±12V	25mA	5VDC	±10%	90mA	220mA	55%	.05%
BPM-12/25-D12	±12V	25mA	12VDC	±10%	25mA	90mA	55%	.05%
BPM-12/25-D28	±12V	25mA	28VDC	±10%	15mA	38mA	55%	.05%
BPM-15/25-D5	±15V	25mA	5VDC	±10%	80mA	300mA	50%	.05%
BPM-15/25-D12	±15V	25mA	12VDC	±10%	40mA	115mA	55%	.05%
BPM-15/25-D28	±15V	25mA	28VDC	±10%	15mA	48mA	55%	.05%
BPM-18/25-D5	±18V	25mA	5VDC	±10%	95mA	370mA	50%	.05%
BPM-18/25-D12	±18V	25mÅ	12VDC	±10%	40mA	136mA	55%	.05%
BPM-18/25-D28	±18V	25mA	28VDC	±10%	15mA	58mA	55%	.05%

3 WATT SERIES

MODEL	OUTPUT VOLTAGE	OUTPUT CURRENȚ	INPUT VOLTAGE	INPUT VOLT. TOLERANCE	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICIENC	Y LINE D) REGULATION
UPM-5/500-D12	+ 5V	500mA	12VDC	±10%	100mA	470mA	45%	.05%
UPM-5/500-D28	+ 5V	500mA	28VDC	±10%	50mA	200mA	45%	.05%
UPM-12/250-D5	+12V	250mA	5VDC	±10%	300mA	1250mA	50%	.05%
UPM-12/250-D28	+12V	250mA	28VDC	±10%	50mA	195mA	55%	.05%
UPM-24/125-D5	+24V	125mA	5VDC	±10%	300mA	1250mA	50%	.05%
UPM-24/125-D12	+24V	125mA	12VDC	±10%	90mA	450mA	55%	.05%
UPM-28/100-D5	+28V	100mA	5VDC	±10%	270mA	1120mA	50%	.05%
UPM-28/100-D12	+28V	100mA	12VDC	±10%	90mA	420mA	55%	.05%
BPM-12/100-D5	±12V	100mA	5VDC	±10%	210mA	960mA	50%	.05%
BPM-12/100-D12	±12V	100mA	12VDC	±10%	90mA	400mA	50%	.05%
BPM-12/100-D28	±12V	100mA	28VDC	±10%	40mA	156mA	55%	.05%
BPM-15/100-D5	±15V	100mA	5VDC	±10%	350mA	1300mA	45%	.05%
BPM-15/100-D12	±15V	100mA	12VDC	±10%	80mA	460mA	55%	.05%
BPM-15/100-D28	±15V	100mA	28VDC	±10%	50mA	195mA	55%	.05%
BPM-18/100-D5	±18V	100mA	5VDC	±10%	350mA	1500mA	50%	.05%
BPM-18/100-D12	±18V	100mA	12VDC	±10%	120mA	545mA	55%	.05%
BPM-18/100-D28	±18V	100mA	28VDC	±10%	60mA	240mA	55%	.05%

PRICE (1-9)	CASE CONFIG.	OUTPUT IMPEDANCE	TEMP. COEFFICIENT	LOAD REGULATION
\$44.00	F	.07Ω	.02%/°C	0.1%
\$44.00	F	.07Ω	.02%/° C	0.1%
\$44.00	F	.02Ω	.02%/°C	05%
\$44.00	F	.02Ω	.02%/°C	.05%
\$44.00	F	.02Ω	.02%/°C	.05%
\$44.00	F	.02Ω	.02%/° C	.05%
\$44.00	F	.02Ω	.02%/° C	.05%
\$44.00	F	.02Ω	.02%/°C	.05%
\$51.50	F	.02Ω	.02%/° C	.05%
\$51.50	F	.02Ω	.02%/° C	.05%
\$51.50	F	.02Ω	.02%/° C	.05%
\$51.50	F	.02Ω	.02%/°C	.05%
\$51.50	F	.02Ω	.02%/° C	.05%
\$51.50	F	.02Ω	.02%/° C	.05%
\$51.50	F	.02Ω	.02%/° C	.05%
\$51.50	F	.02Ω	.02%/° C	.05%
\$51.50	F	.02Ω	.02%/° C	.05%

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT	CASE CONFIG.	PRICE (1-9)
0.1%	.02%/° C	.07Ω	G1	\$67.00
0.1%	.02%/° C	.07Ω	G1	\$67.00
.05%	.02%/° C	0.2Ω	G1	\$67.00
.05%	.02%/° C	0.2Ω	G1	\$67.00
.05%	.02%/° C	0.2Ω	G1	\$67.00
.05%	.02%/°C	0.2Ω	G1	\$67.00
.05%	.02%/° C	0.2Ω	G1	\$67.00
.05%	.02%/°C.	0.2Ω	G1	\$67.00
.05%	.02%/° C	0.2Ω	G1	\$72.50
.05%	.02%/°C	0.2Ω	G1	\$72.50
.05%	.02%/° C	0.2Ω	G1	\$72.50
.05%	.02%/° C	0.2Ω	G1	\$72.50
.05%	.02%/° C	0.2Ω	G1	\$72.50
.05%	.02%/° C	0.2Ω	G1	\$72.50
.05%	.02%/° C	0.2Ω	G1	\$72.50
.05%	.02%/° C	0.2Ω	G1	\$72.50
.05%	.02%/°C	0.2Ω	G1	\$72.50

DESCRIPTION

This broad line of DC-DC converters features 17 one watt models and 18 three watt models with single and dual output voltages. Input voltages are 5, 12, and 28V with single outputs of 5, 12, 24, and 28V, and dual outputs of ± 12 , ± 15 , and $\pm 18V$. Output voltage accuracies are $\pm 1\%$ with .02%/°C temperature coefficient. Other features include low output ripple, 100 megohm isolation, and output current limiting.

GENERAL SPECIFICATIONS—ALL MODELS

±1%

1% of Iin 250 pF

300VDC

50µsec.

-25°C to +71°C -55°C to +85°C

Diallyl Phthalate (G2)

20mV P-P (2mV RMS)

Output Voltage Accuracy Output Noise and Ripple, max. Back Ripple Current, max. Capacitive Coupling, max. Breakdown Voltage, min. Transient Recovery Time, max. Operating Temp. Range Storage Temp. Range Case Material

Μ	0	D	U	L	Ε	S	I	Z	Ε	S	
_	-										

F Case:	$1.5 \times 2.0 \times 0.375$ inches
Weight:	1.5 oz. (43g.)
G1 Case:	$20 \times 2.0 \times 0.432$ inches
Weight:	2.5 oz. (71g.)
- ,	

Both 1 and 3 watt series use 2 DILS-1 or DILS-2 terminal strips (at \$6.00/pair) for sockets.

THESE DC-DC CONVERTERS ARE COVERED BY GSA CONTRACT

5 and 10 Watt DC-DC Converters

5 WATT SERIES

MODEL	OUTPUT VOLTAGE	OUTPUT CURRENT	INPUT VOLTAGE	INPUT VOLT. TOLERANCE	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICIENC) (FULL LOAD	LINE REGULATION
UPM-5/1000-D12	+ 5V	1000mA	12VDC	±10%	200mA	830mA	50%	.05%
UPM-5/1000-D28	+ 5V	1000mA	28VDC	±10%	100mA	360m A	50%	.05%
UPM-12/420-D5	+12V	420mA	5VDC	±10%	500mA	2000mA	50%	.05%
UPM-12/420-D28	+12V	420mA	28VDC	±10%	75mA	325mA	55%	.05%
UPM-24/210-D5	+24V	210mA	5VDC	±10%	400mA	1830mA	55%	.05%
UPM-24/210-D12	+24V	210mA	12VDC	±10%	170mA	760mA	55%	.05%
UPM-28/180-D5	+28V	180mA	5VDC	±10%	400mA	1830mA	55%	.05%
UPM-28/180-D12	+28V	180mA	12VDC	±10%	170mA	760mA	55%	.05%
BPM-12/210-D5	±12V	210mA	5VDC	±10%	500mA	2000mA	50%	.05%
BPM-12/210-D12	±12V	210mA	12VDC	±10%	170mA	760mA	55%	.05%
BPM-12/210-D28	±12V	210mA	28VDC	±10%	75mA	325mA	55%	.05%
BPM-15/165-D5	±15V	165mA	5VDC	±10%	500mA	2000mA	50%	.05%
BPM-15/165-D12	±15V	165mA	12VDC	±10%	170mA	760mA	55%	.05%
BPM-15/165-D28	±15V	165mA	28VDC	±10%	75mA	325mA	55%	.05%
BPM-18/140-D5	±18V	140mA	5VDC	±10%	500mA	2000mA	55%	.05%
BPM-18/140-D12	±18V	140mA	12VDC	±10%	170mA	760mA	55%	.05%
BPM-18/140-D28	±18V	140mA	28VDC	±10%	75mA	325m A	55%	.05%

10 WATT SERIES

		OUTPUT	OUTPUT		INPUT VOLT.	NO LOAD	FULL LOAD	EFFICIENC	
MODEL		VOLTAGE	CURRENT	VOLTAGE	TOLERANCE	CURRENT	CURRENT	(FULL LOAD	REGULATION
UPM-5/2000-D12	1	+ 5V	2000mA	12VDC	±10%	300mA	1660mA	50%	.05%
UPM-5/2000-D28		+ 5V	2000mA	28VDC	±10%	150mA	720mA	50%	.05%
UPM-12/840-D5		+12V	840mA	5VDC	±10%	1000mA	4000mA	50%	.05%
UPM-12/840-D28		+12V	840mA	28VDC	±10%	150mA	650m A	55%	.05%
UPM-24/420-D5		+24V	420mA	5VDC	±10%	900mA	3600mA	55%	.05%
UPM-24/420-D12		+24V	420mA	12VDC	±10%	360mA	1530mA	55%	.05%
UPM-28/360-D5		+28V	360mA	5VDC	±10%	900mA	3600mA	55%	.05%
UPM-28/360-D12		+28V	360mA	12VDC	±10%	360mA	1530mA	55%	.05%
BPM-12/420-D5		±12V	420mA	5VDC	±10%	1000mA	4000mA	50%	.05%
BPM-12/420-D12		±12V	420mA	12VDC	±10%	360mA	1530mA	55%	.05%
BPM-12/420-D28		±12V	420mA	28VDC	±10%	150mA	650mA	55%	.05%
BPM-15/330-D5		$\pm 15V$	330mA	5VDC	±10%	1000mA	4000mA	50%	.05%
BPM-15/330-D12	`	±15V	330mA	12VDC	±10%	360mA	1530mA	55%	.05%
BPM-15/330-D28		$\pm 15V$	330mA	28VDC	±10%	150mA	650mA	55%	.05%
BPM-18/280-D5		±18V	280mA	5VDC	±10%	900mA	3600mA	55%	.05%
BPM-18/280-D12		±18V	280mA	12VDC	±10%	360mA	1530mA	55%	.05%
BPM-18/280-D28		±18V	280mA	28VDC	±10%	150mA	650mA	55%	.05%

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT	CASE CONFIG.	PRICE (1-9)
0.1%	.02%/° C	.005Ω	G2	\$72.50
0.1%	.02%/° C	.005Ω	G2	\$72.50
.05%	.02%/° C	.015Ω	G2	\$72.50
.05%	.02%/°C	.15Ω	G2	\$72.50
.05%	.02%/°C	.03Ω	G2	\$72.50
.05%	.03%/°C	.03Ω	G2	\$72.50
.05%	.02%/° C	.035Ω	G2	\$72.50
.05%	.02%/° C	.035Ω	G2	\$72.50
.05%	.02%/° C	.03Ω	G2	\$78.00
.05%	.02%/° C	.03Ω	G2	\$78.00
.05%	.02%/° C	.03Ω	G2	\$78.00
.05%	.02%/°C	.03Ω	G2	\$78.00
.05%	.02%/°C	.03Ω	G2	\$78.00
.05%	.02%/°C	.03Ω	G2	\$78.00
.05%	.02%/°C	.03Ω	G2	\$78.00
.05%	.02%/° C	.03Ω	G2	\$78.00
.05%	.02%/° C	.03Ω	G2	\$78.00

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT IMPEDANCE	CASE CONFIG.	PRICE (1-9)
0.1%	.02%/°C	.005Ω	СВ	\$93.50
0.1%	.02%/° C	.005Ω	СВ	\$93.50
.05%	.02%/° C	.02Ω	СВ	\$93.50
.05%	.02%/° C	.02Ω	СВ	\$93.50
.05%	.02%/° C	.02Ω	СВ	\$93.50
.05%	.02%/° C	.02Ω	СВ	\$93.50
.05%	.02%/°C	.02Ω	СВ	\$93.50
.05%	.02%/° Č	.02Ω	СВ	\$93.50
.05%	.02%/° C	.02Ω	СВ	\$98.50
.05%	.02%/°C	.02Ω	СВ	\$98.50
.05%	.02%/°C	.02Ω	СВ	\$98.50
.05%	.02%/° C	.02Ω	СВ	\$98.50
.05%	.02%/° C	.02Ω	CB	\$98.50
.05%	.02%/°C	.02Ω	СВ	\$98.50
.05%	.02%/° C	.02Ω	СВ	\$98.50
.05%	.02%/°C	.02Ω	СВ	\$98.50
.05%	.02%/°C	.02Ω	СВ	\$98.50

DESCRIPTION

This comprehensive line of higher power DC-DC converters features 34 different models with both single and dual outputs. Input voltages are 5, 12, and 28V with single output voltages of 5, 12, 24, and 28 volts, and dual outputs of $\pm 12, \pm 15$, and ± 18 volts. Output voltage accuracies are $\pm 1\%$ with .02%/°C temperature coefficients. Other features include low output ripple, 100 megohm isolation, and output current limiting protection.

GENERAL SPECIFICATIONS— ALL MODELS

Output Voltage Accuracy Output Noise and Ripple, max. Back Ripple Current, max. Capacitive Coupling, max. Breakdown Voltage, min. Transient Recovery Time, max. Operating Temp. Range Storage Temp. Range Case Material ±1% 20mV P-P (2mV RMS) 1% of lin 250 pF 300VDC 50µsec. -25°C to +71°C -55°C to +85°C Diallyl Phthalate (G2) Phenolic (CB)

MODULE SIZES

G2 Size:

Weight

Weight

CB Size:

 $2.0 \times 2.0 \times .750$ inches $50,8 \times 50,8 \times 19,1$ mm 4.5 oz. (128g.) $3.5 \times 2.5 \times .875$ inches $88,9 \times 63,5 \times 22,2$ mm 14 oz. (397g.)

The 5 watt series use 2 DILS-1 or DILS-2

terminal strips

The 10 watt series use the MS-7 socket

THESE DC-DC CONVERTERS ARE COVERED BY GSA CONTRACT

48 Volt Input DC-DC Converters

1 WATT SERIES

MODEL	OUTPUT VOLTAGE	OUTPUT	INPUT VOLTAGE	INPUT VOLT. TOLERANCE	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICIENCY (FULL LOAD)	LINE REGULATION
UPM-5/200-D48	+ 5V	200mA	48VDC	±12.5%	10mA	42mA	50%	.05%
UPM-12/80-D48	+12V	80mA	48VDC	±12.5%	10mA	42mA	50%	.05%
UPM-15/60-D48	+15V	60mA	48VDC	±12.5%	10mA	42mA	50%	.05%
BPM-12/40-D48	±12V	40mA	48VDC	±12.5%	10mA	42mA	50%	.05%
BPM-15/30-D48	±15V	30mA	48VDC	±12.5%	10mA	42mA	50%	.05%

3 WATT SERIES

MODEL	OUTPUT VOLTAGE	OUTPUT CURRENT	INPUT VOLTAGE	INPUT VOLT. TOLERANCE	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT) EFFICIENCY (FULL LOAD)	LINE REGULATION
UPM-5/600-D48	+ 5V	600mA	48VDC	±12.5%	45mA	125mA	50%	.05%
UPM-12/250-D48	+12V	250mA	48VDC	±12.5%	45mA	125mA	50%	.05%
UPM-15/200-D48	+15V	200mA	48VDC	±12.5%	45mA	125mA	50%	.05%
BPM-12/125-D48	±12V	125mA	48VDC	±12.5%	45mA	125mA	50%	.05%
BPM-15/100-D48	±15V	100mA	48VDC	±12.5%	45mA	125mA	50%	.05%

5 WATT SERIES

				•	NO LOAD	FULL LOAD		
	OUTPUT	OUTPUT	INPUT	INPUT VOLT.	INPUT	INPUT	EFFICIENCY	LINE
MODEL	VOLTAGE	CURRENT	VOLTAGE	TOLERANCE	CURRENT	CURRENT	(FULL LOAD)	REGULATION
	- 34 7	.,						
UPM-5/1000-D48	+ 5V	1000mA	48VDC	±12.5%	60mA	208mA	50%	.05%
UPM-12/420-D48	+12V	420mA	48VDC	±12.5%	60mA	208mA	50%	.05%
UPM-15/330-D48	+15V	330mA	48VDC	±12.5%	60mA	208mA	50%	.05%
BPM-12/210-D48	±12V	210mA	48VDC	±12.5%	60mA	208mA	50%	.05%
BPM-15/165-D48	±15V	165mA	48VDC	±12.5%	60mA	208mA	50%	.05%

10 WATT SERIES

		NO LOAD FULL LOAD						
	OUTPUT	OUTPUT	INPUT	INPUT VOLT.	INPUT	INPUT	EFFICIENCY	LINE
MODEL	VOLTAGE	CURRENT	VOLTAGE	TOLERANCE	CURRENT	CURRENT	(FULL LOAD)	REGULATION
UPM-5/2000-D48) + 5V	2000mA	48VDC	±12.5%	120mA	415mA	50%	.05%
UPM-12/840-D48	8 +12V	840mA	48VDC	±12.5%	120mA	415mA	50%	.05%
UPM-15/660-D48	3 +15V	660mA	48VDĈ	±12.5%	120mA	415mA	50%	.05%
BPM-12/420-D48	±12V	420mA	48VDC	±12.5%	120mA	415mA	50%	.05%
BPM-15/330-D48	±15V	330mA	48VDC	±12.5%	120mA	415mA	50%	.05%

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT	CASE CONFIG.	PRICE (1-9)
0.1%	.02%/° C	.07Ω	F	\$44.00
0.1%	.02%/° C	.2 Ω	F	\$44.00
0.1%	.02%/° C	.2 Ω	F	\$44.00
0.1%	.02%/° C	.2 Ω	F	\$51.50
0.1%	.02%/° C	.2 Ω	F	\$51.50

LOAD REGULATION	TEMP.	OUTPUT IMPEDANCE	CASE CONFIG.	PRICE (1-9)
.01%	.02%/° C	.07Ω	G1	\$67.00
.05%	.02%/° C	0.2Ω	G1	\$67.00
.05%	.02%/° C	0.2Ω	G1	\$67.00
.05%	.02%/° C	0.2Ω	G1	\$72.50
.05%	.02%/° C	0.2Ω	G1	\$72.50

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT	CASE CONFIG.	PRICE (1-9)
0.1%	.02%/° C	.005Ω	G2	\$72.50
.05%	.02%/° C	.03 Ω	G2	\$72.50
.05%	.02%/° C	.03 Ω	G2	\$72.50
.05%	.02%/° C	.03 Ω	G2	\$78.00
.05%	.02%/° C	.03 Ω	G2	\$78.00

LOAD REGULATION	TEMP. COEFFICIENT	OUTPUT	CASE CONFIG.	PRICE (1-9)
.1%	.02%/° C	.005Ω	СВ	\$93.50
.05%	.02%/° C	.02 Ω	СВ	\$93.50
.05%	.02%/° C	.02 Ω	СВ	\$93.50
.05%	.02%/° C	.02 Ω	СВ	\$98.50
.05%	.02%/° C	.02 Ω	СВ	\$98.50

DESCRIPTION

This new series of 48 volt input DC-DC converters features 20 different models with both single and dual outputs. There are 12 single output models offering 5, 12 and 15 volts. There are 8 dual output models offering ± 12 or ± 15 volts. Output voltage accuracies are $\pm 1\%$ with .02%/° C temperature coefficients. Other features include low output ripple, 100 megohm isolation and output current limiting protection.

GENERAL SPECIFICATIONS ALL MODELS

Output Voltage Accuracy	±1%
Output Noise and Ripple, max.	20mV P-P (2mV RMS)
Back Ripple Current, max.	1% of lin
Capacitive Coupling, max.	250 pF
Breakdown Voltage, min.	300VDC
Transient Recovery Time, max.	50µsec.
Operating Temp. Range	-25° C to +71° C
Storage Temp. Range	-55° C to +85° C

MODULE SIZES

F Case:	$1.5 \times 2.0 \times 0.375$ inches
	38,1 $ imes$ 50,8 $ imes$ 9,5 mm
Weight:	1.5 oz. (43g.)
G1 Case:	$2.0 \times 2.0 \times 0.432$ inches
	50,8 $ imes$ 50,8 $ imes$ 11,0 mm
Weight:	2.5 oz. (71g.)
G2 Size:	2.0 imes 2.0 $ imes$.750 inches
	50,8 $ imes$ 50,8 $ imes$ 19,1 mm
Weight:	4.5 oz. (128g.)
CB Size:	3.5 imes 2.5 $ imes$.875 inches
	88,9 $ imes$ 63,5 $ imes$ 22,2 mm
Weight:	14 oz. (397 g.)
Case Material	Diallyl Phthalate (F),
	(G1), (G2)
	Phenolic (CB)

Both 1 and 3 watt series use 2 DILS-1 or DILS-2 terminal strips (at \$6.00/pair) for sockets. The 5 watt series use 2 DILS-1 or DILS-2 terminal strips at \$6.00/pair for sockets. The 10 watt series use the MS-7 socket at \$4.00 each.

THESE DC-DC CONVERTERS ARE COVERED BY GSA CONTRACT

4.5 Watt DC-DC Converters

These miniature, aluminum cased DC-DC converters are ideal for applications where mounting space is tight, yet highly regulated ± 15 VDC is required at up to 150mA output current. Specifications include voltage accuracy of $\pm 1\%$, line regulation of .05% max., load regulation of .05% max., and tempco of .005%/°C. For convenient heat sinking, two 2-56 studs are provided on the bottom of the case. All models have output current limiting protection.

OTHER SPECIFICATIONS

Isolation Resistance, min.100 Meg.Isolation Capacitance, max.100 pFBreakdown Voltage, min.300VDCOperating Temp. Range-25° C to +71° CStorage Temp. Range-55° C to +85° CMS-6 sockets are \$4.00 each-

SPECIFICATIONS, 25 °C	BPM-15/150-D5	BPM-15/150-D24	BPM-15/150-D28
Output Voltage	±15VDC	±15VDC	±15VDC
Output Voltage Accuracy	±1%	±1%	±1%
Rated Output Current ¹	±150mA	±150mA	±150mA
Input Voltage	5VDC	24VDC	28VDC
Input Voltage Tolerance	±.25V	±3.5V	±4V • \
Maximum Input Current	1.75A	0.35A	0.3A
Efficiency, full load	51%	54%	54%
Line Regulation, max.	.05%	.05%	.05%
Load Regulation, max.	.05%	.05%	.05%
Temperature Coefficient, max.	.005%/°C	.005%/°C	.005%/°C
Output Ripple RMS max.	1mV	1mV	1mV
Output Impedance, max.	.05Ω	.05Ω	.05Ω
Transient Recovery Time, max.	50µsec.	50µsec.	50µsec.
Case Material	Aluminum	Aluminum	Aluminum
Module Size, inches	2.0 imes 2.0 imes 0.4	2.0 imes 2.0 imes 0.4	2.0 imes 2.0 imes 0.4
Module Size, millimeters	50,8 imes50,8 imes10,2	50,8 imes50,8 imes10,2	50,8 $ imes$ 50,8 $ imes$ 10,2
Module Weight	3.0 oz. (85g.)	3.0 oz. (85g.)	3.0 oz. (85g.)
Case/Pin Configuration	В	В	В
Mating Socket	MS-6	MS-6	MS-6
Price (1-9)	\$83.00	\$83.00	\$83.00

NOTE: 1. Above 35°C (95°F) mounting surface temperature, derate 1.3mA/°C.

5 Volt Input DC-DC Isolator Regulators

DESCRIPTION

Datel-Intersil offers a line of 5 Volt DC isolator regulators in 1, 3, 5, and 10 Watt capacities. These isolator-regulators provide a stable, accurate, low-ripple +5 Vdc source from supplies of +4.5 to +5.5 VDC, including 5V sources with poor regulation, ripple or noise characteristics.

Output voltage accuracy is \pm 1% with 0.02%/°C temperature coefficient. Other features include low output ripple, 100 megohm isolation, and output current limiting.

All models in this series are compact encapsulated modules designed to occupy a minimum of space on a printed circuit board.

GENERAL SPECIFICATIONS - ALL MODELS

Input Voltage Tolerance	±10%
Output Voltage Accuracy	±1%
Regulation	
Line	.05%
Load	0.1%
Temperature Coefficient, max.	.02%/
Output Noise and Ripple, max.	20mV
. ,.	RMS)
Back Ripple Current, max.	1% of
Capacitive Coupling, max	250 n

Capacitive Coupling, max. Breakdown Voltage, min. Transient Recovery Time, max. Operating Temp. Range Storage Temp. Range .05% 0.1% .02%/°C 20mV P-P (2mV RMS) 1% of 1IN 250 pF 300VDC 50µsec. -25°C to +71°C -55°C to +85°C

MODULE SIZES F Case:

Weight: G1 Case:

Weight: G2 Size:

Weight: CB Size:

Weight: Case Material: $\begin{array}{l} 1.5 \times 2.0 \times 0.375 \text{ inches} \\ 38,1 \times 50,8 \times 9,5 \text{ mm} \\ 1.5 \text{ oz. } (43g.) \\ 2.0 \times 2.0 \times 0.432 \text{ inches} \\ 50,8 \times 50,8 \times 11,0 \text{ mm} \\ 2.5 \text{ oz. } (71g.) \\ 2.0 \times 2.0 \times .750 \text{ inches} \\ 50,8 \times 50,8 \times 19,1 \text{ mm} \\ 4.5 \text{ oz. } (128g.) \\ 3.5 \times 2.5 \times .875 \text{ inches} \\ 88,9 \times 63,5 \times 22,2 \text{ mm} \\ 14 \text{ oz. } (397g.) \\ Diallyl Phthalate (F) \\ (G1), (G2) \\ Phenolic (CB) \end{array}$

Both 1 and 3 watt series uses 2 DILS-1 or DILS-2 terminal strips (at \$6.00/pair) for sockets. The 5 watt series uses 2 DILS-1 or DILS-2 terminal strips at \$6.00/pair for sockets. The 10 watt series uses the MS-7 socket at \$4.00 each.

MODEL	OUTPUT VOLTAGE	OUTPUT CURRENT	NO LOAD INPUT CURRENT	FULL LOAD INPUT CURRENT	EFFICIENCY (FULL LOAD)	OUTPUT IMPEDANCE	CASE CONFIG.	PRICE (1-9)
1 WATT SERIES								
UPM-5-200-D5	+5V	200mA	95mA	370mA	50%	.07Ω	F	\$44.00
3 WATT SERIES								
UPM-5/500-D5	+5V	500mA	300mA	125mA	40%	.07Ω	G1	\$67.00
5 WATT SERIES								
UPM-5/1000-D5	+5V	1000mA	500mA	2000mA	50%	.015Ω	G2	\$72.50
10 WATT SERIES								
UPM-5/2000-D5	+5V	2000mA	1000mA	4000mA	50%	.005Ω	СВ	\$93.50

THESE DC-DC CONVERTERS ARE COVERED BY GSA CONTRACT

Case/Pin Configurations and Sockets

CASE B

CASE E3

560C

MP Series Supplies

	MECHANICAL DIMENSIONS													
MODEL	A	В	C	D	E	F	G	Н	J	К	L.	М	N	Р
MPS-5/3	1.72			57،			4.60	.80	.55	5.80	7.62	,59	3.40	2.20
MPD-12/1	2.03	2.68		2.16	2.16		4.84	1.34	.80	7.00	10.00	.66	3,50	2.67
MPD-15/1	2.03	2.68		2.16	2.16		4.84	4	•	7.00	10.00	.66	3,50	2.67
MPD-12/1.5	2.00	2,50		2.60	2.60		5.29			7,30	10.28	.63	4.00	3.84
MPD-15/1.5	2.00	2,50		2.60	2.60		5.29			7.30	10.28	.63	4.00	3.84
MPT-12/1-5/3	2.36	3.18	2.53	,66	2,50	2.50	4.84	•	+	7.95	10.97	,78	3.25	3.56
MPT-15/1-5/3	2.36	3.18	2.53	.66	2,50	2.50	4.84	1.34	. 80	7.95	10.97	.78	3.25	3.56

MODEL	NO. OF			TERMINAL	_ DESIGN/	TIONS		
MUDEL	TERM.	6	7	8	9	10	11	12
MPS-5/6	9	+OUT	+SENS	-SENS	-OUT	-	-	-
MPS-5/12	11	+OUT	+OUT	+SENS	-SENS	-OUT	-OUT	-
MPS-5/18	11	+OUT	+0UT	+SENS	-SENS	-OUT	-OUT	-
MPD-12/3	12	+12V	SENS HI	SENS LO	COM	SENS LO	SENS HI	-12V
MPD-15/3	12	+15V	SENS HI	SENS LO	COM	SENS LO	SENS HI	-15V
MPT-12/1.5-5/6	12	+5V OUT	+SENS	-SENS	+5V RET	+12V	COM	-12V
MPT-15/1.5-5/6	12	4	4	•	4	+15V	4	-15
MPT-12/1.5-5/12	12					+12V		-12
MPT-15/1.5-5/12	12	+5V OUT	+SENS	-SENS	+5V RET	+15V	COM	-15

FOR 115 VAC INPUT, JUMPER PINS 1 & 2 AND 3 & 4. INPUT IS TO PINS 1 AND 4. FOR 230 VAC INPUT, JUMPER PINS 2 & 3. INPUT IS TO PINS 1 AND 4.

				MECHA	NICAL DI	MENSIONS					
MODEL	А	·B	С	D	E	F	G	Н	J	К	L
MPS-5/6	3.10			1.08			1.59	6.00	10.28	.63	4.00
MPS-5/12	2.70			1.33			4	7.50	11.91	4	↓
MPS-5/18	2.70			1.33				7,50	11.91		
MPD-12/3	2.00	2.50		2.60	2.60		•	6.00	10.28	+	+
MPD-15/3	2.00	2.50		2.60	2.60	-	1.59	6.00	10.28	,63	4.00
MPT-12/1.5-5/6	3.17	3.21	11.73	1.10	1.13	4.50	1.85	10.92	13.98	.29	4.50
MPT-15/1.5-5/6	3.17	3.21	11.73	1.10	+	4	+	10.92	13,98	+	1
MPT-12/1.5-5/12	2.70	3.06	13.36	1.33	+	ł	•	12.59	15,55	•	•
MPT-15/1.5-5/12	2.70	3.06	13.36	1.33	1.13	4.50	1.85	12.59	15,55	, 29	4,50

MODEL	NO. OF	TERMINAL DESIGNATIONS								
HODEL	TERM,	6	7	8	9	10	11	12		
MPS-5/3	9	+OUT	+SENS	-SENS	-OUT	-	-	-		
MPD-12/1	12	+12V	SENS HI	SENS LO	COM	SENS LO	SENS HI	-12V		
MPD-15/1	12	+15V	4	4	4	1	ł	-15V		
MPD-12/1,5	12	+12V						-12V		
MPD-15/1.5	12	+15V	SENS HI	SENS LO	COM	SENS LO	SENS HI	-15V		
MPT-12/1-5/3	12	+5V OUT	+SENS	-SENS	+5V RET	+12V	COM	-12V		
MPT-15/1-5/3	12	+5V OUT	+SENS	-SENS	+5V RET	+15V	COM	-15V		

FOR 115 VAC INPUT, JUMPER PINS 1 & 2 AND 3 & 4. INPUT IS TO PINS 1 AND 4. FOR 230 VAC INPUT, JUMPER PINS 2 & 3. INPUT IS TO PINS 1 AND 4.

Power Chassis Series:

MODEL	Α	В	С	D	E	F
PCS-5/12	9.00	. 50	8.00	5.10	4.125	.50
PCS-5/18	14.00	. 50	13.00	5.10	4.125	.50
PCD-12/3	0.7.0	50	0 775	4 07	A 105	5.0
PCD-15/3	9.38	.50	8.375	4.0/	4.125	.50
PCT-5/3-12/1 PCT-5/3-15/1	10,25	.50	9.250	4.00	3 .375	. 37
PCT-5/6-12/2 PCT-5/6-15/2	11,25	3.25	7.500	4.87	4.125	.50
PCT-5/12-12/2 PCT-5/12-15/2	14.25	5.00	8 .750	5.10	4.125	. 50

MODEL	G	н	J	к	L	М
PCS-5/12	2.75	1.250	.75	. 60	1.250	.75
PCS-5/18	2.75	1.250	.75	.67	1.250	.75
PCD-12/3 PCD-15/3	2.75	1.250	.75	. 67	1.250	.75
PCT-5/3-12/1 PCT-5/3-15/1	2.50	1.250	.75	. 42	1.250	.75
PCT-5/6-12/2 PCT-5/6-15/2	2.75	1.250	.75	. 54	1.250	.75
PCT-5/12-12/2 PCT-5/12-15/2	2.75	1.250	.75	. 67	1.250	.75

Power Chassis Series:

MODEL	A	B	C	D	E	F
PCS-5/6	4.87	. 25	4.125	5.62	4.875	.50
PCD-12/1 PCD-15/1	4.00	. 25	3.375	6.50	5.750	.50
PCD-12/2 PCD-15/2	4.87	. 25	4.125	7.00	6.250	. 50
					-	
MODEL	G	н	J	K.	L	м
PCS-5/6	2.50	1.250	.75	.37	1.25	.75
PCD-12/1 PCD-15/1	1.62		.75	.80		.75
PCD-12/2 PCD-15/2	2.50	1.250	.75	. 93	1.25	.75

565C

END OF DATA ACQUISITION COMPONENTS SECTION

FOR OUR COMPLETE CATALOG OF INSTRUMENTS AND SYSTEMS INVERT THIS VOLUME AND TURN TO PAGE 1S.

566C

227 S

FOR OUR COMPLETE CATALOG OF DATA ACQUISITION COMPONENTS INVERT THIS VOLUME AND TURN TO PAGE 1C. TURN TO PAGE 1C.

END OF SECTION SECTION

