

Copyright ${ }^{\odot} 1980$ by Intersil, Inc.

Printed in the United States of America. All rights reserved. This book, or parts of it, may not be reproduced in any form without written permission from the publisher.

Information furnished herein is believed to be accurate and reliable; however, no responsibility is assumed for any errors. Circuit diagrams illustrate typical applications and do not necessarily contain complete instructional information.

Intersil does not assume any responsibility for circuits shown or represent that they do not infringe on existing or future patent rights. Descriptions herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance herewith.

Additional copies may be ordered for $\$ 5.00$ from:
Intersil, Inc.
Attn: Marketing Services, MS 38
10710 N. Tantau Avenue
Cupertino, CA 95014
Use the order form in back of this book. Outside U.S. and Canada add $\$ 2.75$ for air shipment and handling.

About Our Cover

We, at Intersil, believe in using the wisdom of the past to help turn today's ideals into tomorrow's realities. This policy is reflected in our advertising posters, each of which shows one of history's great thinkers.

For a complimentary copy of our Henrik Ibsen poster, drop a line on your company letterhead to:

Intersil Inc.
Attn.: Marketing Services Dept.
10710 N. Tantau Avenue
Cupertino, CA 95014

Data Acquisition and Conversion Handbook

A Technical Guide to A/D and D/A Converters and Their Applications

[NIngrenl

U.S.A. - 10710 N. Tantau Avenue, Cupertino, California 95014, Tel: (408) 996-5000

France - 217 Bureaux de la Colline, de St. Cloud, Batiment D, 92213 Saint-Cloud Cedex, Tel: (1) 602.57 .11
West Germany - 8000 Munchen 2, Bavariaring 8, Tel: 89/539271
United Kingdom - 9th Floor, Snamprogetti House, Basing View, Basingstoke RG21 2 YS Hampshire, England, Tel: 0256-57361

Intersil cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an Intersil product. No other circuit patent licenses are implied. Intersil reserves the right to change the circuitry and specifications without notice at any time.
Printed in US A. Copyright 1980, Intersil, Inc., All Rights Reserved.

Contents

1. Principles of Data Acquisition and Conversion 1
2. A / D and D/A Converters 27
Selecting A/D Converters 29
Where and When to Use Which Data Converter 35
The Integrating A/D Converter 40
Applying the 7109 A/D Converter 44
Understanding the Auto-Zero and Common Mode Performance of the 7106/7107/7109 Family 48
Know Your Converter Codes 56
The ICL7104: A Binary Output A/D Converter for μ Processors 62
Power D/A Converters Using the ICH8510 76
Quad Current Switches for A/D Conversion 80
Digital Panel Meter Experiments for the Hobbyist 86
Low Cost Digital Panel Meter Designs 92
Building an Auto Ranging DMM with the ICL8052A/7103A A/D Converter Pair 98
4-1/2 Digit Panel Meter Demonstration/Instrumentation Boards 104
Hybrid and Monolithic Data Conversion Circuits 112
Hybrid 12-bit A/D Converter 121
Video Analog-to-Digital Conversion 127
Compensate for Temperature Drift in Data Conversion Circuits 133
Interpretation of Data Converter Accuracy Specs 139
Graphs Give Aperture Time Required for A/D Conversion 148
Do's and Dont's of Applying A/D Converters 152
3. Data Conversion Systems 155
Single Hybrid Package Houses 12-bit Data Acquisition System 157
Put Video A/D Converters to Work 163
Microcomputers in an Analog World 169
Interfacing Data Converters and Microprocessors 173
Straight Talk on A/D Converter Boards 182
Application of Analog Conversion Products in Microcomputers 186
Remote Data Acquisition System Needs Just One Twisted Pair to Link Analog Sensors to Host Computer 194
Dual Word Length Serial Protocol Improves Data Acquisition Network 200
4. Sample-Holds 209
Designing with a Sample-Hold Won't be a Problem if You Use the Right Circuit 211
Keep Track of a Sample-Hold from Mode to Mode to Locate Error Sources 217
Pick Sample-Holds by Accuracy and Speed and Keep HOLD Capacitors in Mind 225
Analyzing the Dynamic Accuracy of Simultaneous Sample and Hold Circuits 232
Test Your Sample-Hold IQ 236
5. High Speed Operational Amplifiers 243
High Speed Op Amps - They're in a Class by Themselves 245
Using the ICH8500 Ultra Low Bias Current Op Amp 251
The ICL8007 - A High Performance FET Input Op Amp 254
Using the ICL8043 Dual FET Input Op Amp 258
Using the 8048/8049 Log/Antilog Amp 262
The ICL8013 Four Quadrant Analog Multiplier 268
A Precision Waveform Generator and Voltage Controlled Oscillator 273
Everything You Always Wanted to Know About the 8038 280
Power Supply Design Using the ICL8211/8212 284
Unity Gain Buffer Amplifier is Ultra Fast 292
Commutating Design for IC Amplifier Virtually Eliminates Offset Errors 293
6. Analog Gates, Switches and Multiplexers 297
Switching Signals with Semiconductors 299
Understanding and Applying the Analog Switch 302
The IH5009 Analog Switch Series 318
A New CMOS Analog Gate Technology 326
Reduce CMOS Multiplexer Troubles Through Proper Device Selection 328
7. V/F Converters 333
Voltage to Frequency Converters 335
Voltage to Frequency Converters: Versatility Now at Low Cost 339
Consider V/F Converters for Data Acquisition Systems 344
Sending Transducer Signals Over 100 Feet? 351
Frequency Converter is a Dual Operator 356
Test Your V/F Converter IQ 359
8. Glossary of Data Acquisition Terms 365
9. Component Selector Guides 375
VMOS 376
Discrete 378
Analog Gates, Switches, Multiplexers 382
Data Acquisition 386
Linear 388
Timers, Counters, Display Drivers 392
RAMs, ROMs, PROMs, EPROMs 393

PREFACE

In recent years Intersil and Datel have published many technical articles on the subject of data acquisition and conversion in the industry trade journals. Since many engineers have requested reprints of these articles, it was decided to compile them into a useful, coherent reference handbook on data conversion and make it available at moderate cost. This handbook is the result of that effort. The book also contains a 23 page basic introduction to data conversion entitled "Principles of Data Acquisition and Conversion" and a useful "Glossary of Data Conversion Terms" which defines the 200 most common terms used in data conversion technology today.

The following authors have contributed to this work:

DB	Dave Bingham
PB	Peter Bradshaw
GB	George F. Bryant
LC	Larry Copeland
MD	Mike Dufort
LE	Lee Evans
DF	Dave Fullagar
LG	Larry Goff
RH	Ray Hendry
RJ	Ralph Johnston
JK	Jim Knitter
PM	Paresh Maniar
WM	Wayne E. Marshall
JM	John M. Mills
GM	Gene Murphy
BO	Bill O'Neill
SO	Skip Osgood
JP	Jan Prak
ES	Ed Sliger
DW	Dave Watson
RW	Dick Willenken
GZ	Eugene L. Zuch

1. Principles of Data Acquisition and Conversion

Principles of
 Data Acquisition and Conversion

Data Acquisition Systems

Introduction

Data acquisition and conversion systems interface between the real world of physical parameters, which are analog, and the artificial world of digital computation and control. With current emphasis on digital systems, the interfacing function has become an important one; digital systems are used widely because complex circuits are low cost, accurate, and relatively simple to implement. In addition, there is rapid growth in use of minicomputers and microcomputers to perform difficult digital control and measurement functions.
Computerized feedback control systems are used in many different industries today in order to achieve greater productivity in our modern industrial society. Industries which presently employ such automatic systems include steel making, food processing, paper production, oil refining, chemical manufacturing, textile production, and cement manufacturing.
The devices which perform the interfacing function between analog and digital worlds are analog-todigital (A/D) and digital-to-analog (D/A) converters, which together are known as data converters. Some of the specific applications in which data converters are used include data telemetry systems, pulse code modulated communications, automatic test systems, computer display systems, video signal processing systems, data logging systems, and sampled-data control systems. In addition, every laboratory digital multimeter or digital panel meter contains an A / D converter.
Besides A/D and D/A converters, data acquisition and distribution systems may employ one or more of the following circuit functions:

Basic Data Distribution Systems

Transducers
Amplifiers
Filters
Nonlinear Analog Functions
Analog Multiplexers
Sample-Holds
The interconnection of these components is shown in the diagram of the data acquisition portion of a computerized feedback control system in Figure 1.
The input to the system is a physical parameter such as temperature, pressure, flow, acceleration, and position, which are analog quantities. The parameter is first converted into an electrical signal
by means of a transducer; once in electrical form, all further processing is done by electronic circuits.

Figure 1. Data Acquisition System

Next, an amplifier boosts the amplitude of the transducer output signal to a useful level for further processing. Transducer outputs may be microvolt or millivolt level signals which are then amplified to 1 to 10 volt levels. Furthermore, the transducer output may be a high impedance signal, a differential signal with common-mode noise, a current output, a signal superimposed on a high voltage, or a combination of these. The amplifier, in order to convert such signals into a high level voltage, may be one of several specialized types.
The amplifier is frequently followed by a low pass active filter which reduces high frequency signal components, unwanted electrical interference noise, or electronic noise from the signal. The amplifier is sometimes also followed by a special nonlinear analog function circuit which performs a nonlinear operation on the high level signal. Such operations include squaring, multiplication, division, RMS conversion, log conversion, or linearization.
The processed analog signal next goes to an analog multiplexer which sequentially switches between a number of different analog input channels. Each input is in turn connected to the output of the multiplexer for a specified period of time by the multiplexer switch. During this connection time a samplehold circuit acquires the signal voltage and then holds its value while an analog-to-digital converter converts the value into digital form. The resultant digital word goes to a computer data bus or to the input of a digital circuit.
Thus the analog multiplexer, together with the sample-hold, time shares the A/D converter with a number of analog input channels. The timing and control of the complete data acquisition system is done by a digital circuit called a programmersequencer, which in turn is under control of the

DATA ACQUISITION \& CONVERSION HANDBOOK

computer. In some cases the computer itself may control the entire data acquisition system.
While this is perhaps the most commonly used data acquisition system configuration, there are alternative ones. Instead of multiplexing high-level signals, low-level multiplexing is sometimes used with the amplifier following the multiplexer. In such cases just one amplifier is required, but its gain may have to be changed from one channel to the next during multiplexing. Another method is to amplify and convert the signal into digital form at the transducer location and send the digital information in serial form to the computer. Here the digital data must be converted to parallel form and then multiplexed onto the computer data bus.

Figure 2. Data Distribution System

Basic Data Acquisition System

The data distribution portion of a feedback control system, illustrated in Figure 2, is the reverse of the data acquisition system. The computer, based on the inputs of the data acquisition system, must close the loop on a process and control it by means of output control functions. These control outputs are in digital form and must therefore be converted into analog form in order to drive the process. The conversion is accomplished by a series of digital-to-analog converters as shown. Each D/A converter is coupled to the computer data bus by means of a register which stores the digital word until the next update. The registers are activated sequentially by a decoder and control circuit which is under computer control.
The D/A converter outputs then drive actuators which directly control the various process parameters such as temperature, pressure, and flow. Thus the loop is closed on the process and the result is a complete automatic process control system under computer control.

Quantizing Theory

Introduction

Analog-to-digital conversion in its basic conceptual form is a two-step process: quantizing and coding. Quantizing is the process of transforming a continuous analog signal into a set of discrete output states. Coding is the process of assigning a digital code word to each of the output states. Some of the early A/D converters were appropriately called quantizing encoders.

Quantizer Transfer Function

The nonlinear transfer function shown in Figure 3 is that of an ideal quantizer with 8 output states; with output code words assigned, it is also that of

Figure 3. Transfer Function of Ideal 3-Bit Quantizer
a 3-bit A/D converter. The 8 output states are assigned the sequence of binary numbers from 000 through 111. The analog input range for this quantizer is 0 to +10 V .
There are several important points concerning the transfer function of Figure 3. First, the resolution of the quantizer is defined as the number of output states expressed in bits; in this case it is a 3 -bit quantizer. The number of output states for a binary coded quantizer is 2^{n}, where n is the number of bits. Thus, an 8 -bit quantizer has 256 output states and a 12 -bit quantizer has 4096 output states.
As shown in the diagram, there are $2^{n}-1$ analog decision points (or threshold levels) in the transfer function. These points are at voltages of +0.625 ,
$+1.875,+3.125,+4.375,+5.625,+6.875$, and +8.125 . The decision points must be precisely set in a quantizer in order to divide the analog voltage range into the correct quantized values.
The voltages $+1.25,+2.50,+3.75,+5.00,+6.25$, +7.50 , and +8.75 are the center points of each output code word. The analog decision point voltages are precisely halfway between the code word center points. The quantizer staircase function is the best approximation which can be made to a straight line drawn through the origin and full scale point; notice that the line passes through all of the code word center points.

Quantizer Resolution and Error

At any part of the input range of the quantizer, there is a small range of analog values within which the same output code word is produced. This small range is the voltage difference between any two adjacent decision points and is known as the analog quantization size, or quantum, Q. In Figure 3, the quantum is 1.25 V and is found in general by dividing the full scale analog range by the number of output states. Thus

$$
\mathrm{Q}=\frac{\mathrm{FSR}}{2^{\mathrm{n}}}
$$

where FSR is the full scale range, or 10 V in this case. Q is the smallest analog difference which can be resolved, or distinguished, by the quantizer. In the case of a 12 -bit quantizer, the quantum is much smaller and is found to be

$$
\mathrm{Q}=\frac{\mathrm{FSR}}{2^{\mathrm{n}}}=\frac{10 \mathrm{~V}}{4096}=2.44 \mathrm{mV}
$$

If the quantizer input is moved through its entire range of analog values and the difference between output and input is taken, a sawtooth error function results, as shown in Figure 3. This function is called the quantizing error and is the irreducible error which results from the quantizing process. It can be reduced only by increasing the number of output states (or the resolution) of the quantizer, thereby making the quantization finer.
For a given analog input value to the quantizer, the output error will vary anywhere from 0 to $\pm \mathbf{Q} / 2$; the error is zero only at analog values corresponding to the code center points. This error is also frequently called quantization uncertainty or quantization noise.
The quantizer output can be thought of as the ana\log input with quantization noise added to it. The
noise has a peak-to-peak value of \mathbf{Q} but, as with other types of noise, the average value is zero. Its RMS value, however, is useful in analysis and can be computed from the triangular waveshape to be $\mathrm{Q} / 2 \sqrt{3}$.

Sampling Theory

Introduction

An analog-to-digital converter requires a small, but significant, amount of time to perform the quantizing and coding operations. The time required to make the conversion depends on several factors: the converter resolution, the conversion technique, and the speed of the components employed in the converter. The conversion speed required for a particular application depends on the time variation of the signal to be converted and on the accuracy desired.

Aperture Time

Conversion time is frequently referred to as aperture time. In general, aperture time refers to the time uncertainty (or time window) in making a measurement and results in an amplitude uncertainty (or error) in the measurement if the signal is changing during this time.

Figure 4. Aperture Time and Amplitude Uncertainty

As shown in Figure 4, the input signal to the A/D converter changes by $\Delta \mathrm{V}$ during the aperture time t_{a} in which the conversion is performed. The error can be considered an amplitude error or a time error; the two are related as follows

$$
\Delta \mathrm{V}=\mathrm{t}_{\mathrm{a}} \frac{\mathrm{dV}(\mathrm{t})}{\mathrm{dt}}
$$

where $d V(t) / d t$ is the rate of change with time of the input signal.
It should be noted that $\Delta \mathrm{V}$ represents the maximum error due to signal change, since the actual error depends on how the conversion is done. At some point in time within ta, the signal amplitude corresponds exactly with the output code word produced.

For the specific case of a sinusoidal input signal, the maximum rate of change occurs at the zero crossing of the waveform, and the amplitude error is

$$
\Delta \mathrm{V}=\mathrm{t}_{\mathrm{a}} \frac{\mathrm{~d}}{\mathrm{dt}}(\mathrm{~A} \sin \omega \mathrm{t})_{\mathrm{t}=\mathrm{o}}=\mathrm{t}_{\mathrm{a}} \mathrm{~A} \omega
$$

The resultant error as a fraction of the peak to peak full scale value is

$$
\epsilon=\frac{\Delta V}{2 \mathrm{~A}}=\pi \mathrm{ft}_{\mathrm{a}}
$$

From this result the aperture time required to digitize a 1 kilohertz signal to 10 bits resolution can be found. The resolution required is one part in 2^{10} or 0.001 .

$$
\mathrm{t}_{\mathrm{a}}=\frac{\epsilon}{\pi \mathrm{f}}=\frac{0.001}{3.14 \times 10^{3}}=320 \times 10^{-9}
$$

The result is a required aperture time of just 320 nanoseconds!
One should appreciate the fact that 1 KHz is not a particularly fast signal, yet it is difficult to find a 10 bit A/D converter to perform this conversion at any price! Fortunately, there is a relatively simple and inexpensive way around this dilemma by using a sample-hold circuit.

Figure 5. Graph for Aperture Error for Sinusoidal Signals

Sample-Holds and Aperture Error

A sample-hold circuit samples the signal voltage and
then stores it on a capacitor for the time required to perform the A/D conversion. The aperture time of the A/D converter is therefore greatly reduced by the much shorter aperture time of the samplehold circuit. In turn, the aperture time of the sample-hold is a function of its bandwidth and switching time.
Figure 5 is a useful graph of Equation 5. It gives the aperture time required for converting sinusoidal signals to a maximum error less than one part in 2^{n} where n is the resolution of the converter in bits. The peak to peak value of the sinusoid is assumed to be the full scale range of the A / D converter. The graph is most useful in selecting a samplehold by aperture time or an A/D converter by conversion time.

Sampled-Data Systems and the Sampling Theorem

In data acquisition and distribution systems, and other sampled-data systems, analog signals are sampled on a periodic basis as illustrated in Figure 6. The train of sampling pulses in 6(b) represents a fast-acting switch which connects to the analog signal for a very short time and then disconnects for the remainder of the sampling period.

The result of the fast-acting sampler is identical with multiplying the analog signal by a train of sampling pulses of unity amplitude, giving the modulated pulse train of Figure 6(c). The amplitude of the original signal is perserved in the modulation envelope of the pulses. If the switch type sampler is replaced by a switch and capacitor (a samplehold circuit), then the amplitude of each sample is stored between samples and a reasonable reconstruction of the original analog signal results, as shown in 6(d).
The purpose of sampling is the efficient use of data processing equipment and data transmission facilities. A single data transmission link, for example, can be used to transmit many different analog channels on a sampled basis, whereas it would be uneconomical to devote a complete transmission link to the continuous transmission of a single signal.
Likewise, a data acquisition and distribution system is used to measure and control the many parameters of a process control system by sampling the parameters and updating the control inputs periodically. In data conversion systems it is common to use a single, expensive A/D converter of high speed and precision and then multiplex a number of analog inputs into it.
An important fundamental question to answer about sample-data systems is this: "How often must I sample an analog signal in order not to lose information from it?" It is obvious that all useful information can be extracted if a slowly varying signal is sampled at a rate such that little or no change takes place between samples. Equally obvious is the
fact that information is being lost if there is a significant change in signal amplitude between samples.

Figure 6. Signal Sampling

The answer to the question is contained in the wellknown Sampling Theorem which may be stated as follows: If a continuous, bandwidth-limited signal contains no frequency components higher than f c, then the original signal can be recovered without distortion if it is sampled at a rate of at least $2 f_{c}$ samples per second.

Frequency Folding and Aliasing

The Sampling Theorem can be demonstrated by the frequency spectra illustrated in Figure 7. Figure 7 (a) shows the frequency spectrum of a continuous bandwidth-limited analog signal with frequency components out to fc . When this signal is sampled at a rate f_{s}, the modulation process shifts the original spectrum out to fs , $2 \mathrm{fs}, 3 \mathrm{fs}$, etc. in addition to the one at the origin. A portion of this resultant spectrum is shown in Figure 7(b).

Figure 7. Frequency Spectra Demonstrating the Sampling Theorem

If the sampling frequency fs is not high enough, part of the spectrum centered about fs will fold over into the original signal spectrum. This undesirable effect is called frequency. folding. In the process of recovering the original signal, the folded part of the spectrum causes distortion in the recovered signal which cannot be eliminated by filtering the recovered signal.
From the figure, if the sampling rate is increased such that $f_{s}-f_{c}>f_{c}$, then the two spectra are separated and the original signal can be recovered without distortion. This demonstrates the result of the Sampling Theorem that $\mathrm{fs}_{\mathrm{s}}>2 \mathrm{fc}$. Frequency folding can be eliminated in two ways: first by using a high enough sampling rate, and second by filtering the signal before sampling to limit its bandwidth to $\mathrm{f}_{\mathrm{s}} / 2$.
One must appreciate the fact that in practice there is always some frequency folding present due to high frequency signal components, noise, and nonideal pre-sample filtering. The effect must be reduced to negligible amounts for the particular application by using a sufficiently high sampling rate. The required rate, in fact, may be much higher than the minimum indicated by the Sampling Theorem.
The effect of an inadequate sampling rate on a sinusoid is illustrated in Figure 8; an alias frequency in the recovered signal results. In this case, sampling at a rate slightly less than twice per cycle gives the low frequency sinusoid shown by the dotted line in the recovered signal. This alias frequency can be significantly different from the original frequency. From the figure it is easy to see that if the sinusoid is sampled at least twice per cycle, as required by the Sampling Theorem, the original frequency is preserved.

Figure 8. Alias Frequency Caused by Inadequate Sampling Rate

Coding for Data Converters

Natural Binary Code

A/D and D/A converters interface with digital systems by means of an appropriate digital code. While there are many possible codes to select, a few standard ones are almost exclusively used with data converters. The most popular code is natural binary, or straight binary, which is used in its fractional form to represent a number

$$
N=a_{1} 2^{-1}+a_{2} 2^{-2}+a_{3} 2^{-3}+\ldots .+a_{n} 2^{-n}
$$

DATA ACQUISITION \& CONVERSION HANDBOOK

where each coefficient " a " assumes a value of zero or one. N has a value between zero and one.
A binary fraction is normally written as 0.110101 , but with data converter codes the decimal point is omitted and the code word is written 110101. This code word represents a fraction of the full scale value of the converter and has no other numerical significance.
The binary code word 110101 therefore represents the decimal fraction $(1 \times 0.5)+(1 \times 0.25)+(1 \times 0.125)$ $+(1 \times 0.0625)+(0 \times 0.03125)+(1 \times 0.015625)$ $=0.828125$ or 82.8125% of full scale for the converter. If full scale is +10 V , then the code word represents +8.28125 V . The natural binary code belongs to a class of codes known as positive weighted codes since each coefficient has a specific weight, none of which is negative.
The leftmost bit has the most weight, 0.5 of full scale, and is called the most significant bit, or MSB; the rightmost bit has the least weight, $2^{-\mathrm{n}}$ of full scale, and is therefore called the least significant bit, or LSB. The bits in a code word are numbered from left to right from 1 to n .
The LSB has the same analog equivalent value as \mathbf{Q} discussed previously, namely

$$
\mathrm{LSB}(\text { Analog Value })=\frac{\mathrm{FSR}}{2^{\mathrm{n}}}
$$

Table 1 is a useful summary of the resolution, number of states, LSB weights, and dynamic range for data converters from one to twenty bits resolution.

RESOLUTION BITS n	$\begin{gathered} \text { NUMBER } \\ \text { OF STATES } \\ 2^{n} \\ \hline \end{gathered}$	LSB WEIGHT 2^{-n}	DYNAMIC RANGE dB
0	1	1	0
1	2	0.5	6
2	4	0.25	12
3	8	0.125	18.1
4	16	0.0625	24.1
5	32	0.03125	30.1
6	64	0.015625	36.1
7	128	0.0078125	42.1
8	256	0.00390625	48.2
9	512	0.001953125	54.2
10	1024	0.0009765625	60.2
11	2048	0.00048828125	66.2
12	4096	0.000244140625	72:2
13	8192	0.0001220703125	78.3
14	16384	0.00006103515625	84.3
15	32768	0.000030517578125	90.3
16	65536	0.0000152587890625	96.3
17	131072	0.00000762939453125	102.3
18	262144	0.000003814697265625	108.4
19	524288	0.0000019073486328125	114.4
20	1048576	0.00000095367431640625	120.4

Table 1. Resolution, Number of States, LSB Weight, and Dynamic Range for Data Converters

The dynamic range of a data converter in dB is found as follows:
$\mathrm{DR}(\mathrm{dB})=20 \log 2^{\mathrm{n}}=20 \mathrm{n} \log 2$

$$
=20 \mathrm{n}(0.301)=6.02 \mathrm{n}
$$

where $D R$ is dynamic range, n is the number of bits,
and 2^{n} the number of states of the converter. Since 6.02 dB corresponds to a factor of two, it is simply necessary to multiply the resolution of a converter in bits by 6.02 . A 12 -bit converter, for example, has a dynamic range of 72.2 dB .
An important point to notice is that the maximum value of the digital code, namely all 1's, does not correspond with analog full scale, but rather with one LSB less than full scale, or FS $\left(1-2^{-n}\right)$. Therefore a 12 bit converter with a 0 to +10 V analog range has a maximum code of 111111111111 and a maximum analog value of $+20 \mathrm{~V}\left(1-2^{-12}\right)=$ +9.99756 V . In other words, the maximum analog value of the converter, corresponding to all one's in the code, never quite reaches the point defined as analog full scale.

Other Binary Codes

Several other binary codes are used with A/D and D/A converters in addition to straight binary. These codes are offset binary, two's complement, binary coded decimal (BCD), and their complemented versions. Each code has a specific advantage in certain applications. BCD coding for example is used where digital displays must be interfaced such as in digital panel meters and digital multimeters. Two's complement coding is used for computer arithmetic logic operations, and offset binary coding is used with bipolar analog measurements.
Not only are the digital codes standardized with data converters, but so are the analog voltage ranges. Most converters use unipolar voltage ranges of 0 to +5 V and 0 to +10 V although some devices use the negative ranges 0 to -5 V and 0 to -10 V . The standard bipolar voltage ranges are $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. Many converters today are pin-programmable between these various ranges.

FRACTION OF FS	+ 10V FS	STRAIGHT BINARY	COMPLEMENTARY
BINARY			
+FS -1 LSB	+9.961	11111111	00000000
+ $3 / 4 \mathrm{FS}$	+7.500	11000000	00111111
+ $1 / 2 \mathrm{FS}$	+5.000	10000000	01111111
+ $1 / 2 \mathrm{FS}$	+2.500	01000000	10111111
+ $1 / \mathrm{FS}$	+1.250	00100000	11011111
+1 LSB	+0.039	00000001	11111110
0	0.000	00000000	11111111

Table 2. Binary Coding for 8 Bit Unipolar Converters
Table 2 shows straight binary and complementary binary codes for a unipolar 8 bit converter with a 0 to +10 V analog FS range. The maximum analog value of the converter is +9.961 V , or one LSB less than +10 V . Note that the LSB size is 0.039 V as shown near the bottom of the table. The complementary binary coding used in some converters is simply the logic complement of straight binary.
When A/D and D/A converters are used in bipolar operation, the analog range is offset by half scale,
or by the MSB value. The result is an analog shift of the converter transfer function as shown in Figure 9. Notice for this 3-bit A/D converter transfer function that the code 000 corresponds with $-5 \mathrm{~V}, 100$ with 0 V , and 111 with +3.75 V . Since the output coding is the same as before the analog shift, it is now appropriately called offset binary coding.

Figure 9. Transfer Function for Bipolar 3-Bit A/D Converter

Table 3 shows the offset binary code together with complementary offset binary, two's complement, and sign-magnitude binary codes. These are the most popular codes employed in bipolar data converters.

FRACTION OF FS		$\pm 5 \mathrm{VFS}$	OFFSET BINARY	COMP OFF. BINARY	TWO'S COMPLEMENT	SIGN-MAG BINARY
+FS - 1 LSB		+4.9976	11111111	00000000	01111111	11111111
$+3 / 4 \mathrm{FS}$		+3.7500	11100000	00011111	01100000	11100000
+1/2FS		+2.5000	11000000	00111111	01000000	11000000
$+1 / 2 \mathrm{FS}$		+1.2500	10100000	01011111	00100000	10100000
0		0.0000	10000000	01111111	00000000	1000 0000*
-1/4FS		--1.2500	01100000	10011111	11100000	00100000
$-1 / 2 \mathrm{FS}$		-2.5000	01000000	10111111	11000000	01000000
-3/FSS		-3.7500	00100000	11011111	10100000	01100000
-FS + 1 LSB		-4.9976	00000001	11111110	10000001	01111111
-FS		- 5.0000	00000000	11111111	10000000	-
*NOTE: Sign Magnitude Binary has two code words for zero as shown here.						
	SIGN-MAG BINARY					
$0+$ $0-$ 0	$\begin{aligned} & 1000000 \\ & 0000000 \end{aligned}$	$\begin{aligned} & 1000000 \\ & 1000000 \end{aligned}$				

Table 3. Popular Bipolar Codes Used with Data Converters.

The two's complement code has the characteristic that the sum of the positive and negative codes for the same analog magnitude always produces all zero's and a carry. This characteristic makes the two's complement code useful in arithmetic computations. Notice that the only difference between two's complement and offset binary is the
complementing of the MSB. In bipolar coding, the MSB becomes the sign bit.
The sign-magnitude binary code, infrequently used, has identical code words for equal magnitude analog values except that the sign bit is different. As shown in Table 3 this code has two possible code words for zero: 10000000 or 00000000 . The two are usually distinguished as $0+$ and $0-$, respectively. Because of this characteristic, the code has maximum analog values of \pm (FS-1 LSB) and reaches neither analog +FS or -FS.

BCD Codes

Table 4 shows BCD and complementary BCD coding for a 3 decimal digit data converter. These are the codes used with integrating type A/D converters employed in digital panel meters, digital multimeters, and other decimal display applications. Here four bits are used to represent each decimal digit. $B C D$ is a positive weighted code but is relatively inefficient since in each group of four bits, only 10 out of a possible 16 states are utilized.

FRACTION			
OF FS	+10V FS	BINARY CODED DECIMAL	COMPLEMENTARY
$+\mathrm{FS}-1 \mathrm{LSB}$	+9.99	100110011001	011001100110
$+3 / 4 \mathrm{FS}$	+7.50	011101010000	100010101111
$+1 / 2 \mathrm{FS}$	+5.00	010100000000	101011111111
$+1 / 4 \mathrm{FS}$	+2.50	001001010000	110110101111
$+1 / \mathrm{FS}$	+1.25	000100100101	111011011010
+1 LSB	+0.01	000000000001	111111111110
0	0.00	000000000000	111111111111

Table 4. BCD and Complementary BCD Coding.
The LSB analog value (or quantum, Q) for BCD is

$$
\operatorname{LSB}(\text { AnalogValue })=\mathrm{Q}=\frac{\mathrm{FSR}}{10^{\mathrm{d}}}
$$

where FSR is the full scale range and d is the number of decimal digits. For example if there are 3 digits and the full scale range is 10 V , the LSB value is

$$
\mathrm{LSB}(\text { Analog Value })=\frac{10 \mathrm{~V}}{10^{3}}=.01 \mathrm{~V}=10 \mathrm{mV}
$$

BCD coding is frequently used with an additional overrange bit which has a weight equal to full scale and produces a 100% increase in range for the A/D converter. Thus for a converter with a decimal full scale of 999 , an overrange bit provides a new full scale of 1999, twice that of the previous one. In this case, the maximum output code is 11001 1001 1001. The additional range is commonly referred to as $1 / 2$ digit, and the resolution of the A/D converter in this case is $31 / 2$ digits.
Likewise, if this range is again expanded by 100%, a new full scale of 3999 results and is called $33 / 4$ digits resolution. Here two overrange bits have been added and the full scale output code is 111001

DATA ACQUISITION \& CONVERSION HANDBOOK

1001 1001. When BCD coding is used for bipolar measurements another bit, a sign bit, is added to the code and the result is sign-magnitude $B C D$ coding.

Amplifiers and Filters

Operational and Instrumention Amplifiers

The front end of a data acquisition system extracts the desired analog signal from a physical parameter by means of a transducer and then amplifies and filters it. An amplifier and filter are critical components in this initial signal processing.
The amplifier must perform one or more of the following functions: boost the signal amplitude, buffer the signal, convert a signal current into a voltage, or extract a differential signal from common mode noise.

NON-INVERTING VOLTAGE GAIN
Figure 10. Operational Amplifier Configurations
To accomplish these functions requires a variety of different amplifier types. The most popular type of amplifier is an operational amplifier which is a general purpose gain block with differential inputs. The op amp may be connected in many different closed loop configurations, of which a few are shown in Figure 10. The gain and bandwidth of the circuits shown depend on the external resistors connected around the amplifier. An operational amplifier is a good choice in general where a single-ended signal is to be amplified, buffered, or converted from current to voltage.
In the case of differential signal processing, the instrumentation amplifier is a better choice since it maintains high impedance at both of its differential inputs and the gain is set by a resistor located elsewhere in the amplifier circuit. One type of instru-
mentation amplifier circuit is shown in Figure 11. Notice that no gain-setting resistors are connected to either of the input terminals. Instrumentation ampli-

Figure 11. Simplified Instrumentation Amplifier Circuit
fiers have the following important characteristics.

1. High impedance differential inputs.
2. Low input offset voltage drift.
3. Low input bias currents.
4. Gain easily set by means of one or two external resistors.
5. High common-mode rejection ratio.

Common Mode Rejection

Common-mode rejection ratio is an important parameter of differential amplifiers. An ideal differential input amplifier responds only to the voltage difference between its input terminals and does not respond at all to any voltage that is common to both input terminals (common-mode voltage). In nonideal amplifiers, however, the common-mode input signal causes some output response even though small compared to the response to a differential input signal.
The ratio of differential and common-mode responses is defined as the common-mode rejection ratio. Common-mode rejection ratio of an amplifier is the ratio of differential voltage gain to commonmode voltage gain and is generally expressed in $d B$.

$$
\mathrm{CMRR}=20 \log _{10} \frac{\mathrm{AD}_{\mathrm{D}}}{\mathrm{~A}_{\mathrm{CM}}}
$$

where $A D$ is differential voltage gain and ACM is common-mode voltage gain. CMRR is a function of frequency and therefore also a function of the impedance balance between the two amplifier input terminals. At even moderate frequencies CMRR can be significantly degraded by small unbalances in the source series resistance and shunt capacitance.

Other Amplifier Types

There are several other special amplifiers which are useful in conditioning the input signal in a data acquisition system. An isolation amplifier is used to amplify a differential signal which is superimposed on a very high common-mode voltage, perhaps several hundred or even several thousand volts. The isolation amplifier has the characteristics of an instrumentation amplifier with a very high commonmode input voltage capability.
Another special amplifier, the chopper stabilized amplifier, is used to accurately amplify microvolt level signals to the required amplitude. This amplifier employs a special switching stabilizer which gives extremely low input offset voltage drift. Another useful device, the electrometer amplifier, has ultra-low input bias currents, generally less than one picoampere and is used to convert extremely small signal currents into a high level voltage.

Filters

A low pass filter frequently follows the signal processing amplifier to reduce signal noise. Low pass filters are used for the following reasons: to reduce man-made electrical interference noise, to reduce electronic noise, and to limit the bandwidth of the analog signal to less than half the sampling frequency in order to eliminate frequency folding. When used for the last reason, the filter is called a pre-sampling filter or anti-aliasing filter.
Man-made electrical noise is generally periodic, as for example in power line interference, and is sometimes reduced by means of a special filter such as a notch filter. Electronic noise, on the other hand, is random noise with noise power proportional to bandwidth and is present in transducer resistances, circuit resistances, and in amplifiers themselves. It is reduced by limiting the bandwidth of the system to the minimum required to pass desired signal components.
No filter does a perfect job of eliminating noise or

Figure 12. Some Practical Low Pass Filter Characteristics
other undesirable frequency components, and therefore the choice of a filter is always a compromise. Ideal filters, frequently used as analysis examples, have flat passband response with infinite attenuation at the cutoff frequency, but are mathematical filters only and not physically realizable. In practice, the systems engineer has a choice of cutoff frequency and attenuation rate. The attenuation rate and resultant phase response depend on the particular filter characteristic and the number of poles in the filter function. Some of the more popular filter characteristics include Butterworth, Chebychev, Bessel, and elliptic. In making this choice, the effect of overshoot and nonuniform phase delay must be carefully considered. Figure 12 illusrtates some practical low pass filter response characteristics.
Passive RLC filters are seldom used in signal processing applications today due chiefly to the undesirable characteristics of inductors. Active filters are generally used now since they permit the filter characteristics to be accurately set by precision, stable resistors and capacitors. Inductors, with their undesirable saturation and temperature drift characteristics, are thereby eliminated. Also, because active filters use operational amplifiers, the problems of insertion loss and output loading are also eliminated.

Settling Time

Definition

A parameter that is specified frequently in data acquisition and distribution systems is settling time. The term settling time originates in control theory but is now commonly applied to amplifiers, multiplexers, and D/A converters.

Figure 13. Amplifier Settling Time

Settling time is defined as the time elapsed from the application of a full scale step input to a circuit to the time when the output has entered and remained within a specified error band around its final value. The method of application of the input step may vary depending on the type of circuit, but the definition still holds. In the case of a D/A con-

DATA ACQUISITION \& CONVERSION HANDBOOK

verter, for example, the step is applied by changing the digital input code whereas in the case of an amplifier the input signal itself is a step change. The importance of settling time in a data acquisition system is that certain analog operations must be performed in sequence, and one operation may have to be accurately settled before the next operation can be initiated. Thus a buffer amplifier preceding an A/D converter must have accurately settled before the conversion can be initiated.
Settling time for an amplifier is illustrated in Figure 13. After application of a full scale step input there is a small delay time following which the amplifier output slews, or changes at its maximum rate. Slew rate is determined by internal amplifier currents which must charge internal capacitances.
As the amplifier output approaches final value, it may first overshoot and then reverse and undershoot this value before finally entering and remaining within the specified error band. Note that settling time is measured to the point at which the amplifier output enters and remains within the error band. This error band in most devices is specified to either $\pm 0.1 \%$ or $\pm 0.01 \%$ of the full scale transition.

Amplifier Characteristics

Settling time, unfortunately, is not readily predictable from other amplifier parameters such as bandwidth, slew rate, or overload recovery time, although it depends on all of these. It is also dependent on the shape of the amplifier open loop gain characteristic, its input and output capacitance, and the dielectric absorption of any internal capacitances. An amplifier must be specifically designed for optimized settling time, and settling time is a parameter that must be determined by testing.

Figure 14. Amplifier Single-Pole Open Loop Gain Characteristic

One of the important requirements of a fast settling amplifier is that it have a single-pole open loop gain characteristic, i.e., one that has a smooth 6 dB per octave gain roll-off characteristic to beyond the unity gain crossover frequency. Such a desirable characteristic is shown in Figure 14.

It is important to note that an amplifier with a single-pole response can never settle faster than the time indicated by the number of closed loop time constants to the given accuracy. Figure 15 shows output error as a function of the number of time constants τ where

$$
\tau=\frac{1}{\omega}=\frac{1}{2 \pi \mathrm{f}}
$$

and f is the closed loop 3 dB bandwidth of the amplifier.

Figure 15. Output Settling Error as a Function of Number of Time Constants

Actual settling time for a good quality amplifier may be significantly longer than that indicated by the number of closed loop time constants due to slew rate limitation and overload recovery time. For example, an amplifier with a closed loop bandwidth of 1 MHz has a time constant of 160 nsec. which indicates a settling time of $1.44 \mu \mathrm{sec}$. (9 time constants) to 0.01% of final value. If the slew rate of this amplifier is $1 \mathrm{~V} / \mu \mathrm{sec}$., it will take more than 10 $\mu \mathrm{sec}$. to settle to 0.01% for a 10 V change.

Figure 16. Ultra-Fast Settling Hybrid Operational Amplifier

If the amplifier has a nonuniform gain roll-off characteristic, then its settling time may have one of two undesirable qualities. First, the output may reach the vicinity of the error band quickly but then
take a long time to actually enter it; second, it may overshoot the error band and then oscillate back and forth through it before finally entering and remaining inside it.
Modern fast settling operational amplifiers come in many different types including modular, hybrid, and monolithic amplifiers. Such amplifiers have settling times to 0.1% or 0.01% of $2 \mu \mathrm{sec}$. down to 100 nsec . and are useful in many data acquisition and conversion applications. An example of an ultra-fast settling operational amplifier of the hybrid type is shown in Figure 16.

Digital-To-Analog Converters

Introduction

Digital-to-analog converters are the devices by which computers communicate with the outside world. They are employed in a variety of applications from CRT display systems and voice synthesizers to automatic test systems, digitally controlled attenuators, and process control actuators. In addition, they are key components inside most A/D converters. D/A converters are also referred to as DAC's and are termed decoders by communications engineers.
The transfer function of an ideal 3-bit D/A converter is shown in Figure 17. Each input code word produces a single, discrete analog output value, generally a voltage. Over the output range of the converter 2^{n} different values are produced including zero; and the output has a one-to-one correspondence with input, which is not true for A/D converters. There are many different circuit techniques used to implement D/A converters, but a few popular

Figure 17. Transfer Function of Ideal 3-Bit D/A Converter
ones are widely used today. Virtually all D/A converters in use are of the parallel type where all bits change simultaneously upon application of an input code word; serial type D/A converters, on the other hand, produce an analog output only after receiving all digital input data in sequential form.

Weighted Current Source D/A Converter

The most popular D/A converter design in use today is the weighted current source circuit illustrated in Figure 18. An array of switched transistor current sources is used with binary weighted currents. The binary weighting is achieved by using emitter resistors with binary related values of R, $2 R, 4 R, 8 R, \ldots \ldots 2^{n} R$. The resulting collector currents are then added together at the current summing line.

Figure 18. Weighted Current Source D/A Converter

The current sources are switched on or off from standard TTL inputs by means of the control diodes connected to each emitter. When the TTL input is high the current source is on; when the input is low it is off, with the current flowing through the control diode. Fast switching speed is achieved because there is direct control of the transistor current, and the current sources never go into saturation.
To interface with standard TTL levels, the current sources are biased to a base voltage of +1.2 V . The emitter currents are regulated to constant values by means of the control amplifier and a precision voltage reference circuit together with a bipolar transistor.
The summed output currents from all current sources that are on go to an operational amplifier summing junction; the amplifier converts this output current into an output voltage. In some D/A
converters the output current is used to directly drive a resistor load for maximum speed, but the positive output voltage in this case is limited to about +1 volt.
The weighted current source design has the advantages of simplicity and high speed. Both PNP and NPN transistor current sources can be used with this technique although the TTL interfacing is more difficult with NPN sources. This technique is used in most monolithic, hybrid, and modular D/A converters in use today.
A difficulty in implementing higher resolution D / A converter designs is that a wide range of emitter resistors is required, and very high value resistors cause problems with both temperature stability and switching speed. To overcome these problems, weighted current sources are used in identical groups, with the output of each group divided down by a resistor divider as shown in Figure 19.

Figure 19. Current Dividing the Outputs of Weighted Current Source Groups

The resistor network, R_{1} through R_{4}, divides the output of Group 3 down by a factor of 256 and the output of Group 2 down by a factor of 16 with respect to the output of Group 1. Each group is identical, with four current sources of the type shown in Figure 18, having binary current weights of $1,2,4,8$. Figure 19 also illustrates the method of achieving a bipolar output by deriving an offset current from the reference circuit which is then subtracted from the output current line through resistor R_{0}. This current is set to exactly one half the full scale output current.

R-2R D/A Converter

A second popular technique for D / A conversion is the R-2R ladder method. As shown in Figure 20, the network consists of series resistors of value R and shunt resistors of value 2R. The bottom of each shunt resistor has a single-pole double-throw electronic switch which connects the resistor to either ground or the output current summing line.

The operation of the R-2R ladder network is based on the binary division of current as it flows down the ladder. Examination of the ladder configuration reveals that at point A looking to the right, one measures a resistance of 2 R ; therefore the reference input to the ladder has a resistance of R. At the reference input the current splits into two equal parts since it sees equal resistances in either direction. Likewise, the current flowing down the ladder to the right continues to divide into two equal parts at each resistor junction.
The result is binary weighted currents flowing down each shunt resistor in the ladder. The digitally controlled switches direct the currents to either the summing line or ground. Assuming all bits are on as shown in the diagram, the output current is

Figure 20. R-2R Ladder D/A Converter

$$
\mathrm{I}_{\mathrm{OUT}}=\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{R}}\left[1 / 2+1 / 4+1 / 8+\ldots .+\frac{1}{2^{\mathrm{n}}}\right]
$$

which is a binary series. The sum of all currents is then

$$
I_{O U T}=\frac{V_{\mathrm{REF}}}{R}\left(1-2^{-\mathrm{n}}\right)
$$

where the 2^{-n} term physically represents the portion of the input current flowing through the 2 R terminating resistor to ground at the far right.
As in the previous circuit, the output current summing line goes to an operational amplifier which converts current to voltage.
The advantage of the $\mathrm{R}-2 \mathrm{R}$ ladder technique is that only two values of resistors are required, with the resultant ease of matching or trimming and excellent temperature tracking. In addition, for high speed applications relatively low resistor values can be used. Excellent results can be obtained for high resolution D / A converters by using lasertrimmed thin film resistor networks.

Multiplying and Deglitched D/A Converters

The R-2R ladder method is specifically used for multiplying type D / A converters. With these converters, the reference voltage can be varied over the full range of $\pm \mathrm{V}_{\text {max }}$ with the output the product of the reference voltage and the digital input word. Multiplication can be performed in 1,2 , or 4 algebraic quadrants.

Figure 21. CMOS 14-Bit Multiplying D/A Converters

If the reference voltage is unipolar, the circuit is a one-quadrant multiplying DAC; if it is bipolar, the circuit is a two-quadrant multiplying DAC. For fourquadrant operation the two current summing lines shown in Figure 20 must be subtracted from each other by operational amplifiers.
In multiplying D / A converters, the electronic switches are usually implemented with CMOS devices. Multiplying DAC's are commonly used in automatic gain controls, CRT character generation, complex function generators, digital attenuators, and divider circuits. Figure 21 shows two 14-bit multiplying CMOS D/A converters.

Figure 22. D/A Converter Employing R-2R Ladder with Equal Value Switched Current Sources

Another important D/A converter design takes advantage of the best features of both the weighted current source technique and the R-2R ladder tech-
nique. This circuit, shown in Figure 22, uses equal value switched current sources to drive the junctions of the R-2R ladder network. The advantage of the equal value current sources is obvious since all emitter resistors are identical and switching speeds are also identical. This technique is used in many ultra-high speed D/A converters.

One other specialized type D/A converter used primarily in CRT display systems is the deglitched D/A converter. All D/A converters produce output spikes, or glitches, which are most serious at the major output transitions of $1 / 4 \mathrm{FS}, 1 / 2 \mathrm{FS}$, and $3 / 4 \mathrm{FS}$ as illustrated in Figure 23(a).
Glitches are caused by small time differences between some current sources turning off and others turning on. Take, for example, the major code transition at half scale from $0111 \ldots .1111$ to 1000 0000 . Here the MSB current source turns on while all other current sources turn off. The small difference in switching times results in a narrow half scale glitch. Such a glitch produces distorted characters on CRT displays.

Figure 23. Output Glitches (a) and Deglitched D/A Converter (b)

Glitches can be virtually eliminated by the circuit shown in Figure 23(b). The digital input to a D/A converter is controlled by an input register while the converter output goes to a specially designed sample-hold circuit. When the digital input is updated by the register, the sample-hold is switched into the hold mode. After the D/A has changed to its new output value and all glitches have settled out, the sample-hold is then switched back into the tracking mode. When this happens, the output changes smoothly from its previous value to the new value with no glitches present.
Figure 24 shows a modular deglitched D/A converter which contains the circuitry just described.

Voltage Reference Circuits

An important circuit required in both A / D and D/A converters is the voltage reference. The accuracy and stability of a data converter ultimately depends upon the reference; it must therefore produce a constant output voltage over both time and temperature.

DATA ACQUISITION \& CONVERSION HANDBOOK

Figure 24. Modular Deglitched D/A Converter
The compensated zener reference diode with a buffer-stabilizer circuit is commonly used in most data converters today. Although the compensated zener may be one of several types, the compensated subsurface, or buried, zener is probably the best choice. These new devices produce an avalanche breakdown which occurs beneath the surface of the silicon, resulting in better long-term stability and noise characteristics than with earlier surface breakdown zeners.
These reference devices have reverse breakdown voltages of about 6.4 volts and consist of a forward biased diode in series with the reversed biased zener. Because the diodes have approximately equal and opposite voltage changes with temperature, the result is a temperature stable voltage. Available devices have temperature coefficients from 100 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to less than $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Some of the new IC voltage references incorporate active circuitry to buffer the device and reduce its dynamic impedance; in addition, some contain temperature regulation circuitry on the chip to achieve ultra-low tempcos.

Figure 25. A Precision, Buffered Voltage Reference Circuit

A popular buffered reference circuit is shown in Figure 25; this circuit produces an output voltage
higher than the reference voltage. It also generates a constant, regulated current through the reference which is detemined by the three resistors. Some monolithic A/D and D/A converters use another type of reference device known as the bandgap reference. This circuit is based on the principle of using the known, predictable base-toemitter voltage of a transistor to generate a constant voltage equal to the extrapolated bandgap voltage of silicon. This reference gives excellent results for the lower reference voltages of 1.2 or 2.5 volts.

Analog-To-Digital Converters

Counter Type A/D Converter

Analog-to-digital converters, also called ADC's or encoders, employ a variety of different circuit techniques to implement the conversion function. As with D/A converters, however, relatively few of these circuits are widely used today. Of the various techniques available, the choice depends on the resolution and speed required.
One of the simplest A/D converters is the counter, or servo, type. This circuit employs a digital counter to control the input of a D / A converter. Clock pulses are applied to the counter and the output of the D/A is stepped up one LSB at a time. A comparator compares the D/A output with the analog input and stops the clock pulses when they are equal. The counter output is then the converted digital word.

Figure 26. Tracking Type A/D Converter

While this converter is simple, it is also relatively slow. An improvement on this technique is shown in Figure 26 and is known as a tracking A/D converter, a device commonly used in control systems. Here an up-down counter controls the DAC, and the clock pulses are directed to the pertinent counter input depending on whether the D/A output must increase or decrease to reach the analog input voltage. The obvious advantage of the tracking A/D converter is that it can continuously follow the input
signal and give updated digital output data if the signal does not change too rapidly. Also, for small input changes, the conversion can be quite fast. The converter can be operated in either the track or hold modes by a digital input control.

Sucessive-Approximation A/D Converters

By far, the most popular A/D conversion technique in general use for moderate to high speed applications is the successive-approximation type A/D. This method falls into a class of techniques known as feedback type A/D converters, to which the counter type also belongs. In both cases a D/A converter is in the feedback loop of a digital control circuit which changes its ouput until it equals the analog input. In the case of the successive-approximation converter, the DAC is controlled in an optimum manner to complete a conversion in just n -steps, where n is the resolution of the converter in bits.
The operation of this converter is analogous to weighing an unknown on a laboratory balance scale using standard weights in a binary sequence such as $1,1 / 2,1 / 4,1 / 8, \ldots \ldots 1 / n$ kilograms. The correct procedure is to begin with the largest standard weight and proceed in order down to the smallest one. The largest weight is placed on the balance pan first; if it does not tip, the weight is left on and the next largest weight is added. If the balance does tip, the weight is removed and the next one added. The same procedure is used for the next largest weight and so on down to the smallest. After the nth standard weight has been tried and a decision made, the weighing is finished. The total of the standard weights remaining on the balance is the closest possible approximation to the unknown.

Figure 27. Successive Approximation A/D Converter
In the successive-approximation A / D converter illustrated in Figure 27, a successive-approximation register (SAR) controls the D/A converter by implementing the weighing logic just described. The SAR first turns on the MSB of the DAC and the comparator tests this output against the analog input. A decision is made by the comparator to leave the bit on or turn it off after which bit 2 is turned on and a second comparison made. After n-
comparisons the digital output of the SAR indicates all those bits which remain on and produces the desired digital code. The clock circuit controls the timing of the SAR. Figure 28 shows the D/A converter output during a typical conversion.

The conversion efficiency of this technique means that high resolution conversions can be made in very short times. For example, it is possible to perform

Figure 28. D/A Output for 8-Bit Successive Approximation Conversion
a 10 bit conversion in $1 \mu \mathrm{sec}$. or less and a 12 bit conversion in $2 \mu \mathrm{sec}$. or less. Of course the speed of the internal circuitry, in particular the D/A and comparator, are critical for high speed performance.

The Parallel (Flash) A/D Converter

For ultra-fast conversions required in video signal processing and radar applications where up to 8 bits resolution is required, a different technique is employed; it is known as the parallel (also flash, or simultaneous) method and is illustrated in Figure 29.

Figure 29. 4-Bit Parallel A/D Converter

DATA ACQUISITION \& CONVERSION HANDBOOK

This circuit employs $2^{n}-1$ analog comparators to directly implement the quantizer transfer function of an A / D converter.
The comparator trip-points are spaced 1 LSB apart by the series resistor chain and voltage reference. For a given analog input voltage all comparators biased below the voltage turn on and all those biased above it remain off. Since all comparators change state simultaneously, the quantization process is a one-step operation.
A second step is required, however, since the logic output of the comparators is not in binary form. Therefore an ultra-fast decoder circuit is employed to make the logic conversion to binary. The parallel technique reaches the ultimate in high speed because only two sequential operations are required to make the conversion.
The limitation of the method, however, is in the large number of comparators required for even moderate resolutions. A 4 -bit converter, for example, requires only 15 comparators, but an 8 -bit converter needs 255 . For this reason it is common practice to implement an 8 -bit A/D with two 4 -bit stages as shown in Figure 30.

Figure 30. Two-Stage Parallel 8-Bit A/D Converter

The result of the first 4-bit conversion is converted back to analog by means of an ultra-fast 4-bit D/A and then subtracted from the analog input. The resulting residue is then converted by the second 4-bit A/D, and the two sets of data are accumulated in the 8 -bit output register.
Converters of this type achieve 8 -bit conversions at rates of 20 MHz and higher, while single stage 4-bit conversions can reach 50 to 100 MHz rates.

Integrating Type A/D Converters

Indirect A/D Conversion

Another class of A/D converters known as integrating type operates by an indirect conversion method. The unknown input voltage is converted into a time period which is then measured by a
clock and counter. A number of variations exist on the basic principle such as single-slope, dual-slope, and triple-slope methods. In addition there is another technique - completely differentwhich is known as the charge-balancing or quantized feedback method.
The most popular of these methods are dual-slope and charge-balancing; although both are slow, they have excellent linearity characteristics with the capability of rejecting input noise. Because of these characteristics, integrating type A / D converters are almost exclusively used in digital panel meters, digital multimeters, and other slow measurement applications.

Figure 31. Dual Slope A/D Converter

Dual-Slope A/D Conversion

The dual-slope technique, shown in Figure 31, is perhaps best known. Conversion begins when the unknown input voltage is switched to the integrator input; at the same time the counter begins to count clock pulses and counts up to overflow. At this point the control circuit switches the integrator to the negative reference voltage which is integrated until the output is back to zero. Clock pulses are counted during this time until the comparator detects the zero crossing and turns them off.

Figure 32. Integrator Output Waveform for Dual Slope A/D Converter

The counter output is then the converted digital word. Figure 32 shows the integrator output waveform where T_{1} is a fixed time and T_{2} is a time proportional to the input voltage. The times are related as follows:

$$
\mathrm{T}_{2}=\mathrm{T}_{1} \frac{\mathrm{E}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{REF}}}
$$

The digital output word therefore represents the ratio of the input voltage to the reference.
Dual-slope conversion has several important features. First, conversion accuracy is independent of the stability of the clock and integrating capacitor so long as they are constant during the conversion period. Accuracy depends only on the reference accuracy and the integrator circuit linearity. Second, the noise rejection of the converter can be infinite if T_{1} is set to equal the period of the noise. To reject 60 Hz power noise therefore requires that T_{1} be 16.667 msec . Figure 33 shows digital panel meters which employ dual slope A/D converters.

Figure 33. Digital Panel Meters Which Employ Dual Slope A/D Converters

Charge-Balancing A/D Conversion

The charge-balancing, or quantized feedback, method of conversion is based on the principle of generating a pulse train with frequency proportional to the input voltage and then counting the pulses for a fixed period of time. This circuit is shown in Figure 34. Except for the counter and timer, the circuit is a voltage-to-frequency (V/F) converter which generates an output pulse rate proportional to input voltage.
The circuit operates as follows. A positive input voltage causes a current to flow into the operational integrator through R_{1}. This current is integrated, producing a negative going ramp at the output. Each time the ramp crosses zero the comparator output triggers a precision pulse generator which puts out a constant width pulse.

Figure 34. Charge-Balancing A/D Converter

The pulse output controls switch S_{1} which connects R_{2} to the negative reference for the duration of the pulse. During this time a pulse of current flows out of the integrator summing junction, producing a fast, positive ramp at the integrator output. This process is repeated, generating a train of current pulses which exactly balances the input current-hence the name charge balancing. This balance has the following relationship:

$$
\mathrm{f}=\frac{1}{\tau} \frac{\mathrm{~V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{REF}}} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}
$$

where τ is the pulse width and f the frequency.
A higher input voltage therefore causes the integrator to ramp up and down faster, producing higher frequency output pulses. The timer circuit sets a fixed time period for counting. Like the dualslope converter, the circuit also integrates input noise, and if the timer is synchronized with the noise frequency, infinite rejection results. Figure 35 shows the noise rejection characteristic of all integrating type A / D converters with rejection plotted against the ratio of integration period to noise period.

Figure 35. Noise Rejection for Integrating Type A/D Converters

Analog Multiplexers

Analog Multiplexer Operation

Analog multiplexers are the circuits that time-share an A/D converter among a number of different analog channels. Since the A / D converter in many cases is the most expensive component in a data acquisition system, multiplexing analog inputs to the A / D is an economical approach. Usually the analog multiplexer operates into a sample-hold circuit which holds the required analog voltage long enough for A / D conversion.

Figure 36. Analog Multiplexer Circuit

As shown in Figure 36, an analog multiplexer consists of an array of parallel electronic switches connected to a common output line. Only one switch is turned on at a time. Popular switch configurations include 4, 8, and 16 channels which are connected in single (single-ended) or dual (differential) configurations.
The multiplexer also contains a decoder-driver circuit which decodes a binary input word and turns on the appropriate switch. This circuit interfaces

Figure 37. CMOS Analog Switch Circuit
with standard TTL inputs and drives the multiplexer switches with the proper control voltages. For the 8 -channel analog multiplexer shown, a one-of-eight decoder circuit is used.
Most analog multiplexers today employ the CMOS switch circuit shown in Figure 37. A CMOS driver controls the gates of parallel-connected P-channel and N-channel MOSFET's. Both switches turn on together with the parallel connection giving relatively uniform on-resistance over the required ana\log input voltage range. The resulting on-resistance may vary from about 50 ohms to 2 K ohms depending on the multiplexer; this resistance increases with temperature. A representative group of monolithic CMOS analog multiplexers is shown in Figure 38.

Figure 38. A Group of Monolithic CMOS Analog Multiplexers

Analog Multiplexer Characteristics

Because of the series resistance, it is common practice to operate an analog multiplexer into a very high load resistance such as the input of a unity gain buffer amplifier shown in the diagram. The load impedance must be large compared with the switch on-resistance and any series source resistance in order to maintain high transfer accuracy. Transfer error is the input to output error of the multiplexer with the source and load connected; error is expressed as a percent of input voltage. Transfer errors of 0.1% to 0.01% or less are required in most data acquisition systems. This is readily achieved by using operational amplifier buffers with typical input impedances from 10^{8} to 10^{12} ohms. Many sample-hold circuits also have very high input impedances.
Another important characteristic of analog multiplexers is break-before-make switching. There is a small time delay between disconnection from the previous channel and connection to the next channel which assures that two adjacent input channels are
never instantaneously connected together.
Settling time is another important specification for analog multiplexers; it is the same definition previously given for amplifiers except that it is measured from the time the channel is switched on. Throughput rate is the highest rate at which a multiplexer can switch from channel to channel with the output settling to its specified accuracy. Crosstalk is the ratio of output voltage to input voltage with all channels connected in parallel and off; it is generally expressed as an input to output attenuation ratio in dB .
As shown in the representative equivalent circuit of Figure 39, analog multiplexer switches have a

Figure 39. Equivalent Circuit of Analog Multiplexer Switch
number of leakage currents and capacitances associated with their operation. These parameters are specified on data sheets and must be considered in the operation of the devices. Leakage currents, generally in picoamperes at room temperature, become troublesome only at high temperatures. Capacitances affect crosstalk and settling time of the multiplexer.

Analog Multiplexer Applications

Analog multiplexers are employed in two basic types of operation: high-level and low-level. In high-level multiplexing, the most popular type, the analog signal is amplified to the 1 to 10 V range ahead of the multiplexer. This has the advantage of reducing

Figure 40. Flying Capacitor Multiplexer Switch
the effects of noise on the signal during the remaining analog processing. In low-level multiplexing the signal is amplified after multiplexing; therefore great care must be exercised in handling the lowlevel signal up to the multiplexer. Low-level multiplexers generally use two-wire differential switches in order to minimize noise pick-up. Reed relays, because of essentially zero series resistance and absence of switching spikes, are frequently employed in low-level multiplexing systems. They are also useful for high common-mode voltages.
A useful specialized analog multiplexer is the flyingcapacitor type. This circuit, shown as a single channel in Figure 40 has differential inputs and is particularly useful with high common-mode voltages. The capacitor connects first to the differential analog input, charging up to the input voltage, and is then switched to the differential output which goes to a high input impedance instrumentation amplifier. The differential signal is therefore transferred to the amplifier input without the common mode voltage and is then further processed up to A/D conversion.
In order to realize large numbers of multiplexed channels, you can connect analog multiplexers in parallel using the enable input to control each device. This is called single-level multiplexing. You can also connect the output of several multiplexers to the inputs of another to expand the number of channels; this method is double-level multiplexing.

Sample-Hold Circuits

Operation of Sample-Holds

Sample-hold circuits, discussed earlier, are the devices which store analog information and reduce the aperture time of an A/D converter. A samplehold is simply a voltage-memory device in which an input voltage is acquired and then stored on a high quality capacitor. A popular circuit is shown in Figure 41.

Figure 41. Popular Sample-Hold Circuit
A_{1} is an input buffer amplifier with a high input impedance so that the source, which may be an

DATA ACQUISITION \& CONVERSION HANDBOOK

analog multiplexer, is not loaded. The output of A_{1} must be capable of driving the hold capacitor with stability and enough drive current to charge it rapidly. S_{1} is an electronic switch, generally an FET, which is rapidly switched on or off by a driver circuit which interfaces with TTL inputs.
C is a capacitor with low leakage and low dielectric absorption characteristics; it is a polystyrene, polycarbonate, polypropylene, or teflon type. In the case of hybrid sample-holds, the MOS type capacitor is frequently used.
A_{2} is the output amplifier which buffers the voltage on the hold capacitor. It must therefore have extremely low input bias current, and for this reason an FET input amplifier is required.
There are two modes of operation for a samplehold: sample (or tracking) mode, when the switch is closed; and hold mode, when the switch is open. Sample-holds are usually operated in one of two basic ways. The device can continuously track the input signal and be switched into the hold mode only at certain specified times, spending most of the time in tracking mode. This is the case for a sample-hold employed as a deglitcher at the output of a D/A converter, for example.
Alternatively, the device can stay in the hold mode most of the time and go to the sample mode just to acquire a new input signal level. This is the case for a sample-hold used in a data acquisition system following the multiplexer.

The Sample-Hold as a Data Recovery Filter

A common application for sample-hold circuits is data recovery, or signal reconstruction, filters. The problem is to reconstruct a train of analog samples into the original signal; when used as a recovery filter, the sample-hold is known as a zero-order hold. It is a useful filter because it fills in the space

Figure 42. Gain and Phase Components of Zero-Order Hold Transter Function
between samples, providing data smoothing.
As with other filter circuits, the gain and phase components of the transfer function are of interest. By an analysis based on the impulse response of a sample-hold and use of the Laplace transform, the transfer function is found to be

$$
G_{o}(f)=\frac{1}{f_{s}}\left[\frac{\sin \pi\left(\frac{f}{f_{S}}\right)}{\pi\left(\frac{f}{f_{S}}\right)}\right] \epsilon^{-j \pi / / \mathrm{f}_{\mathrm{s}}}
$$

where f_{S} is the sampling frequency. This function contains the familiar $(\sin x) / x$ term plus a phase term, both of which are plotted in Figure 42.
The sample-hold is therefore a low pass filter with a cut-off frequency slightly less than $\mathrm{f}_{\mathrm{s}} / 2$ and a linear phase response which results in a constant delay time of $T / 2$, where T is the time between samples. Notice that the gain function also has significant response lobes beyond f_{s}. For this reason a sample-hold reconstruction filter is frequently followed by another conventional low pass filter.

Other Sample-Hold Circuits

In addition to the basic circuit of Figure 41, there are several other sample-hold circuit configurations which are frequently used. Figure 43 shows two such circuits which are closed loop circuits as contrasted with the open loop circuit of Figure 41. Figure 43(a) uses an operational integrator and another amplifier to make a fast, accurate inverting sample-hold. A buffer amplifier is sometimes added in front of this circuit to give high input impedance. Figure 43(b) shows a high input impedance noninverting sample-hold circuit.

Figure 43. Two Closed Loop Sample-Hold Circuits
The circuit in Figure 41, although generally not as accurate as those in Figure 43, can be used with a
diode-bridge switch to realize ultra-fast acquisition sample-holds, such as those shown in Figure 44.

Figure 44. Ultra-Fast Sample-Hold Modules Which Employ Diode-Bridge Switches

Sample-Hold Characteristics

A number of parameters are important in characterizing sample-hold performance. Probably most important of these is acquisition time. The definition is similar to that of settling time for an amplifier. It is the time required, after the sample-command is given, for the hold capacitor to charge to a fullscale voltage change and remain within a specified error band around final value.
Several hold-mode specifications are also important. Hold-mode droop is the output voltage change per unit time when the sample switch is open. This droop is caused by the leakage currents of the capacitor and switch, and the output amplifier bias current. Hold-mode feedthrough is the percentage of input signal transferred to the output when the sample switch is open. It is measured with a sinusoidal input signal and caused by capacitive coupling.
The most critical phase of sample-hold operation is the transition from the sample mode to the hold mode. Several important parameters characterize this transition. Sample-to-hold offset (or step) error is the change in output voltage from the sample

Figure 45. Some Sample-Hold Characteristics
mode to the hold mode, with a constant input voltage. It is caused by the switch transferring charge onto the hold capacitor as it turns off.

Aperture delay is the time elapsed from the hold command to when the switch actually opens; it is generally much less than a microsecond. Aperture uncertainty (or aperture jitter) is the time variation, from sample to sample, of the aperture delay. It is the limit on how precise is the point in time of opening the switch. Aperture uncertainty is the time used to determine the aperture error due to rate of change of the input signal. Several of the above specifications are illustrated in the diagram of Figure 45.
Sample-hold circuits are simple in concept, but generally difficult to fully understand and apply. Their operation is full of subtleties, and they must therefore be carefully selected and then tested in a given application.

Specification of Data Converters

Ideal vs. Real Data Converters

Real A/D and D/A converters do not have the ideal transfer functions discussed earlier. There are three basic departures from the ideal: offset, gain, and linearity errors. These errors are all present at the same time in a converter; in addition they change with both time and temperature.

Figure 46. Offset (a), Gain (b), and Linearity (c) Errors for an A/D Converter

DATA ACQUISITION \& CONVERSION HANDBOOK

Figure 46 shows A / D converter transfer functions which illustrate the three error types. Figure 46(a) shows offset error, the analog error by which the transfer function fails to pass through zero. Next, in Figure 46(b) is gain error, also called scale factor error; it is the difference in slope between the actual transfer function and the ideal, expressed as a percent of analog magnitude.
In Figure 46(c) linearity error, or nonlinearity, is shown; this is defined as the maximum deviation of the actual transfer function from the ideal straight line at any point along the function. It is expressed as a percent of full scale or in LSB size, such as $\pm 1 / 2 \mathrm{LSB}$, and assumes that offset and gain errors have been adjusted to zero.
Most A/D and D/A converters available today have provision for external trimming of offset and gain errors. By careful adjustment these two errors can be reduced to zero, at least at ambient temperature. Linearity error, on the other hand, is the remaining error that cannot be adjusted out and is an inherent characteristic of the converter.

Data Converter Error Characteristics

Basically there are only two ways to reduce linearity error in a given application. First, a better quality higher cost converter with smaller linearity error can be procured. Second, a computer or microprocessor can be programmed to perform error correction on the converter. Both alternatives may be expensive in terms of hardware or software cost.

Figure 47. Defining Differential Linearity Error
The linearity error discussed above is actually more precisely termed integral linearity error. Another important type of linearity error is known as differential linearity error. This is defined as the maximum amount of deviation of any quantum (or LSB change) in the entire transfer function from its ideal size of FSR $/ 2^{\mathrm{n}}$. Figure 47 shows that the actual quantum size may be larger or smaller than the ideal; for example, a converter with a maximum differential linearity error of $\pm 1_{2}$ LSB can have a quantum size between ${ }^{1 / 2} \mathrm{LSB}$ and $1{ }^{1} \cdot 2 \mathrm{LSB}$ anywhere in its tranfer function. In other words, any given analog step size is $\left(1 \pm 1_{2}\right)$ LSB. Integral and differ-
ential linearities can be thought of as macro and micro-linearities, respectively.

Figure 48. Nonmonotonic D/A Converter (a) and A/D Converter with Missing Code (b)

Two other important data converter characteristics are closely related to the differential linearity specification. The first is monotonicity, which applies to D/A converters. Monotonicity is the characteristic whereby the output of a circuit is a continuously increasing function of the input. Figure 48(a) shows a nonmonotonic D/A converter output where, at one point, the output decreases as the input increases. A D/A converter may go nonmonotonic if its differential linearity error exceeds 1 LSB; if it is always less than 1 LSB , it assures that the device will be monotonic.
The term missing code, or skipped code, applies to A / D converters. If the differential linearity error of an A/D converter exceeds 1 LSB, its output can miss a code as shown in Figure 48(b). On the other hand, if the differential linearity error is always less than 1 LSB , this assures that the converter will not miss any codes. Missing codes are the result of the A/D converter's internal D/A converter becoming nonmonotonic.
For A/D converters the character of the linearity error depends on the technique of conversion. Figure 49(a), for example, shows the linearity

Figure 49. Linearity Characteristics of Integrating (a) and Successive Approximation (b) A/D Converters
characteristic of an integrating type A / D converter. The transfer function exhibits a smooth curvature between zero and full scale. The predominant type of error is integral linearity error, while differential linearity error is virtually nonexistent.
Figure 49(b), on the other hand, shows the linearity characteristic of a successive approximation A/D converter; in this case differential linearity error is the predominant type, and the largest errors occur at the specific transitions at $1 / 2,1 / 4$, and $3 / 4$ scale. This result is caused by the internal D/A converter nonlinearity; the weight of the MSB and bit 2 current sources is critical in relation to all the other weighted current sources in' order to achieve $\pm 1 / 2$ LSB maximum differential linearity error.

Temperature Effects

Ambient temperature change influences the offset, gain, and linearity errors of a data converter. These changes over temperature are normally specified in ppm of full scale range per degree Celsius. When operating a converter over significant temperature change, the effect on accuracy must be carefully determined. Of key importance is whether the device remains monotonic, or has no missing codes, over the temperatures of concern. In many cases the total error change must be computed, i.e., the sum of offset, gain, and linearity errors due to temperature.
The characteristic of monotonicity, or no missing codes, over a given temperature change can be readily computed from the differential linearity tempco specified for a data converter. Assuming the converter initially has $1 / 2 \mathrm{LSB}$ of differential linearity error, the change in temperature for an increase to 1 LSB is therefore

$$
\Delta \mathrm{T}=\frac{2^{-n} \times 10^{6}}{2 \mathrm{DLT}}
$$

where n is the converter resolution in bits and DLT is the specified differential linearity tempco in ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C} . \Delta \mathrm{T}$ is the maximum change in ambient temperature which assures that the converter will remain monotonic, or have no missing codes.

Selection of Data Converters

One must keep in mind a number of important considerations in selecting A / D or D / A converters.

An organized approach to selection suggests drawing up a checklist of required characteristics. An initial checklist should include the following key items:

1. Converter type
2. Resolution
3. Speed
4. Temperature coefficient

After the choice has been narrowed by these considerations, a number of other parameters must be considered. Among these are analog signal range, type of coding, input impedance, power supply requirements, digital interface required, linearity error, output current drive, type of start and status signals for an A/D, power supply rejection, size, and weight. One should list these parameters in order of importance to efficiently organize the selection process.

Figure 50. Standard Operating Temperature Ranges for Data Converters

In addition, the required operating temperature range msut be determined; data converters are normally specified for one of three basic ranges known in the industry as commercial, industrial, or military. These temperature ranges are illustrated in Figure 50. Further, the level of reliability must be determined in terms of a standard device, a specially screened device, or a military standard 883 device.
And finally, not to be forgotten are those important specifications, price and delivery, to which the reputation of the manufacturer must be added.

2. AD and
 D/A Converters

DATA ACQUISITION \& CONVERSION HANDBOOK

SELECTING A/D CONVERTERS

One of the popular pastimes of the nineteen sixties was to predict the explosive growth of digital data processing, fed by the newly-develaped semiconductor MSI circuits, and the subsequent demise of analog circuitry. The first part of this prediction has certainly come true-the advent of the microprocessor has caused, and will continue to cause, a revolution in digital processing which was unthinkable 10 years ago. But far from causing the demise of analog systems, the reverse has occurred. Nearly all the data being processed (with the notable exception of financial data) consists of physical parameters of an analog nature - pressure, temperature, velocity, light intensity and acceleration to name but a few. In every instance this analog information must be converted into its digital equivalent, using some form of A/D converter. Converter products are thus assuming a key role in the realization of data acquisition systems.
Increased use of microprocessors has also causeđ dramatic cost reductions in the digital components of a typical system. The $\$ 8000$ mini-computer of a few years ago is being replaced by a $\$ 475$ dedicated microprocessor board. This trend is also being reflected in the analog components. No longer is it possible to justify buying a $\$ 400$ data acquisition module when a dedicated system, adequate for the task under consideration, can be put together for $\$ 50$.
Thus many engineers, who in the past have had limited exposure to analog circuitry, are having to come to grips with the characteristics of A/D converters, sample \& holds, multiplexers and operational amplifiers. Contrary to the propaganda put out by many of the specialty module houses, there is nothing mysterious about these components or the way they interface with one another. Now that many of them are available as one or two chip MSI circuits, a block diagram may be turned into a working piece of hardware with relative ease.
The purpose of this note is to compare and contrast the more popular A/D designs, and provide the reader with sufficient information to select the most appropriate converter for his or her needs.

THE IMPORTANT PARAMETERS

Let's begin by taking a look at some actual systems, since this will illustrate the diversity of performance required of A-to-D converters.
Case 1: A seismic recording truck is situated over a potential natural gas site. Some 32 recording devices are laid out over the surrounding area. An explosive charge is detonated and in a matter of seconds it is all over. During that time it is necessary to scan each recorder every 100 microseconds. Speed is clearly the most important requirement. In this instance, 12 bit accuracy is not required; and, since the truck contains many thousands of dollars of electronics, cost is not a critical parameter. The A/D will
be a high speed successive approximation design.
Case 2: A semiconductor engineer is measuring the 'thermal profile' of a furnace. It is necessary to make measurements accurate to a few tenths of a degree Centigrade, which is equivalent to a few microvolts of thermocouple output. Sampling rates of a few readings per second are adequate and costs should be kept low. The integrating ('dual slope', 'triphasic', 'quad slope', depending on which manufacturer you go to) A / D is the only type capable of the required precision/cost combination. It has the added advantage of maintaining accuracy in a noisy environment.
Case 3: A businessman is talking to his sales office in Rome. Assuming the phone company is not on strike, his voice will be sampled at a 10 KHz rate, or thereabouts, in order not to lose information in the audio frequency range up to 5 KHz . This requires a medium accuracy (8 bit) A/D with a cycle time of 100 microseconds or less. In this application the integrating type is not fast enough, so it is necessary to use a slow (for this approach) successive approximation design.
These examples serve to introduce both the two most popular conversion techniques (successive approximation and integrating) and the three key parameters of a converter, i.e. speed, accuracy and cost. In fact the first choice in selecting an A / D is between successive approximation and integrating, since greater than 95% of all converters fall into one of these two categories.

If we look at the whole gamut of available converters, with conversion speeds ranging from 100 ms to less than $1 \mu \mathrm{~s}$, we see that these two design approaches divide the speed spectrum into two groups with almost no overlap. (Table 1) However, before making a selection solely on the basis of speed, it is important to have an understanding of how the converters work, and how the data sheet specifications relate to the circuit operation.

TABLE 1

Type of converter	Relative speed	Conversion time			
		8 bits	10 bits	12 bits	16 bits
integrating	slow medium fast	$\begin{gathered} 20 \mathrm{~ms} \\ 1 \mathrm{~ms} \\ 0.3 \mathrm{~ms} \end{gathered}$	$\begin{array}{r} 30 \mathrm{~ms} \\ 5 \mathrm{~ms} \\ 1 \mathrm{~ms} \end{array}$	40 ms 20 ms 5 ms	$250 \mathrm{~ms}$
successive approximation	general purpose high per- formance fast high speed ultra-fast	$\begin{array}{r} 30 \mu \mathrm{~s} \\ \\ 10 \mu \mathrm{~s} \\ 5 \mu \mathrm{~s} \\ 2 \mu \mathrm{~s} \\ 0.8 \mu \mathrm{~s} \end{array}$	$\begin{array}{r} 40 \mu \mathrm{~s} \\ \\ 15 \mu \mathrm{~s} \\ 10 \mu \mathrm{~s} \\ 4 \mu \mathrm{~s} \\ 1 \mu \mathrm{~S} \end{array}$	$\begin{gathered} 50 \mu \mathrm{~s} \\ \\ 20 \mu \mathrm{~s} \\ 12 \mu \mathrm{~s} \\ 6 \mu \mathrm{~s} \\ 2 \mu \mathrm{~s} \end{gathered}$	$400 \mu \mathrm{~s}$

THE INTEGRATING CONVERTER

Summary of Characteristics

As the name implies, the output of an integrating converter represents the integral or average value of an input voltage over a fixed period of time. A sample-andhold circuit, therefore, is not required to freeze the input during the measurement period, and noise rejection is excellent. Equally important, the linearity error of integrating converters is small since they use time to quantize the answer - it is relatively easy to hold short-term clock jitter to better than 1 in 10^{6}.
The most popular integrating converter uses the dualslope principle, a detailed description of which is given in Ref. 1.
Its advantages and disadvantages may be summarized as follows:

Advantages:

Inherent accuracy
Non-critical components
Excellent noise rejection
No sample \& hold required
Low cost
No missing codes

Disadvantages:

Low speed (typically 3 to 100

$$
\text { readings } / \mathrm{sec} \text {) }
$$

In a practical circuit, the primary errors (other than reference drift) are caused by the non-ideal characteristics of analog switches and capacitors. In the former, leakage and charge injection are the main culprits; in the latter, dielectric absorption is a source of error. All these factors are discussed at length in Ref. 1.
A well-designed dual slope circuit such as Intersil's 8052A/7103A is capable of $41 / 2$ digit performance (± 1 in $\pm 20,000$) with no critical tweaks or close tolerance components other than a stable reference.

Timing Considerations

In a typical circuit, such as the 8052A/7103A referred to above, the conversion takes place in three phases as shown in Fig 1. Note that the input is actually integrated or averaged over a period of 10,000 clock pulses (or 83.3 ms with a 120 KHz clock) within a conversion cycle of 40,000 clock pulses in toto. Also note that the actual business of looking at the input signal does not begin for 10,000 clock pulses, since the circuit first goes into an auto-zero mode. For a $31 / 2$ digit product, such as the 7101 or 7103 , the measurement period is 1000 clock pulses (or 8.33 ms with a 120 KHz clock).
These timing characteristics give the dual slope circuit both its strengths and its weaknesses. By making the signal integrate period an integral number of line frequency periods, excellent 60 Hz noise rejection can be obtained. And of course integrating the input signal for several milliseconds smoothes out the effect of high frequency noise.
But in many applications such as transient analysis or sampling high frequency waveforms, averaging the input over several milliseconds is totally unacceptable. It is of course feasible to use a sample \& hold at the input, but the majority of systems that demand a short measurement window also require nigh speed conversions.

Figure 1: $4 \frac{1}{2}$ Digit A/D Converter Timing Diagram (8052A/7103A)

THE SUCCESSIVE APPROXIMATION CONVERTER

 How it works.The heart of the successive approximation A / D is a digital-to-analog converter (DAC) in a feedback loop with a comparator and some clever logic referred to as a successive approximation register' (SAR). Fig 2 shows a typical system. The DAC output is compared with the analog input, progressing from the most significant bit (MSB) to the least significant bit (LSB) one bit at a time. The bit in question is set to one. If the DAC output is less than the input, the bit in question is left at one. If the DAC output is greater than the input, the bit is set to zero. The register then moves on to the next bit. At the completion of the conversion, those bits left in the one state cause a current to flow at the output of the DAC which should match IIN within $\pm 1 / 2$ LSB. Performing an ' n ' bit conversion requires only ' n ' trials, making the technique capable of high speed conversion.

Figure 2: Successive Approximation A/D Converter
The advantages and disadvantages of successive approximation converters may be summarized as follows:

Advantages:

Hi Speed
(Typically 100,000 conversions/sec)

DATA ACQUISITION \& CONVERSION HANDBOOK

Disadvantages:

Several critical components
Can have missing codes
Requires sample and hold Difficult to auto-zero High cost

Error Sources

The error source in the successive approximation converter are more numerous than in the integrating type, with contributions from both the DAC and the comparator. The DAC generally relies on a resistor ladder and current or voltage switches to achieve quantization. Maintaining the correct impedance ratios over the operating temperature range is much more difficult than maintaining clock pulse uniformity in an integrating converter.
The data sheet for a hypothetical A/D might contain the following accuracy related specifications:

Resolution	$: 10$ Bits
Quantization Uncertainty $: \pm 1 / 2$ LSB	
Relative Accuracy	$: \pm 1 / 2$ LSB
Differential Non Linearity : $\pm 1 / 2$ LSB	
Gain Error	$:$ Adjustable to zero at $25^{\circ} \mathrm{C}$
Gain Temp. Coeff.	$: \pm 10 \mathrm{ppm}$ of Full Scale
	Reading $/{ }^{\circ} \mathrm{C}$
Offset Error	$:$ Adjustable to zero at $25^{\circ} \mathrm{C}$
Offset Temp. Coeff.	$\pm 20 \mathrm{ppm}$ of Full Scale
	Reading $/{ }^{\circ} \mathrm{C}$

Now, referring to the definition of terms on page 6, what does this tell us about the product? First of all, being told that the quantization uncertainty is $\pm 1 / 2$ LSB is like being told that binary numbers are comprised of ones and zeros - it's part of the system. The relative accuracy of $\pm 1 / 2$ LSB, guaranteed over the temperature range, tells us that after removing gain and offset errors, the transfer function
never deviates by more than $\pm 1 / 2$ LSB from where it should be. That's a good spec., but note that gain and offset errors have been adjusted prior to making the measurement. Over a finite temperature range, the temperature coefficients of gain and offset must be taken into account.
The differential non-linearity of $\pm 1 / 2$ LSB maximum is also guaranteed over temperature: this ensures that there are no missing codes.
The gain temperature coefficient is 10 ppm of FSR per ${ }^{\circ} \mathrm{C}$, or 0.001% per ${ }^{\circ} \mathrm{C}$. Now 1 LSB in a 10 bit system is 1 part in 1024 , or approximately 0.1%. So a $50^{\circ} \mathrm{C}$ temperature change from the temperature at which the gain was adjusted (i.e. from $+25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) could give rise to $\pm 1 / 2$ LSB error. This error is separate from, and in the limit could add to, the relative accuracy spec.
The offset temperature coefficient of 20 ppm per ${ }^{\circ} \mathrm{C}$ give rise to $\pm 1 \mathrm{LSB}$ error (over a $+25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ range) by the same reasoning applied to the gain tempco. The reference contributes an error in direct proportion to its percentage change over the operating temperature range.
We can summarize the effect of the major error sources:

Relative Accuracy	$\pm 1 / 2$ LSB or $\pm .05 \%$
Gain Temp. Coefficient	$\pm 1 / 2 \mathrm{LSB}$ or $\pm .05 \%$
Offset Temp. Coefficient	$\pm 1 \mathrm{LSB}$ or $\pm 0.1 \%$

A straight forward RMS summation shows that the A / D is 10 bits $\pm 1 \frac{1}{4} \mathrm{LSB}$ over a $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range. However it is over-optimistic to RMS errors with such a small number of variables, and yet we do know that the error cannot exceed ± 2 LSB. A realistic estimate might place the accuracy at 10 bits $\pm 11 / 2$ LSB.

Timing Considerations

The 2502/2503/2504 successive approximation register is now used in the majority of high speed A/D converters and the timing diagram shown in Fig. 3 is taken from the

-FOR PURPOSES OF ILLUSTRATION. SERIAL DATA OUT WAVEFORM SHOWN FOR 01010101.
Figure 3: Typical Timing Diagram for Successive Approximation Converter

2502 data sheet. However all successive approximation converters have essentially similar timing characteristics. Holding the start input Low for at least a clock period initiates the conversion. The MSB is set low and all the other bits high for the first trial. Each trial takes one clock period, proceeding from the MSB to the LSB. Note that, in contrast to the integrating converter, a serial output arises naturally from this conversion technique.
Although the successive approximation A/D is capable of very high conversion speeds, there is an important limitation on the slew rate of the input signal. Unlike integrating designs, no averaging of the input signal takes place. To maintain accuracy to 10 bits, for example, the input should not change by more than $\pm 1 / 2$ LSB during the conversion period. Fig 4(a) shows maximum allowable $d V / d t$ as a function of sampling (or aperture) time for various conversion resolutions. Now for a sinusoidal waveform represented by Esin ωt, the maximum rate of change of voltage $\Delta \mathrm{e} / \Delta \mathrm{t}$ is $2 \pi f \mathrm{E}$. The amplitude of one $1 / 2$ LSB is $E / 2^{n}$, since the $p k-p k$ amplitude is $2 E$. So the change in input amplitude $د e$ is given by:
$\Delta e=E / 2^{n}=2 \pi f E \Delta T$, where $\Delta T=$ conversion time

$$
f \max =\frac{1}{2 \pi \Delta T 2^{n}}
$$

Figure 4: Maximum input signal rate change (a) and sinewave frequency (b) as a function of sampling or aperture time for $\pm 1 / 2$ LSB accuracy in ' n ' bits.

This is the highest frequency that can be applied to the converter input without using a sample and hold. For $n=$ 10 bits, $\Delta T=10 \mu \mathrm{~s}, f \max =15.5 \mathrm{~Hz}$. Frequencies this low often come as a surprise to first time users of so-called high speed A/D converters, and explain why the majority of non-integrating converters are preceded by a sample \& hold. Fig. 4(b) plots equation (1) for a range of ΔT values. Note that when a sample \& hold is used, ΔT is the aperture time of the $S \& H$. With the help of a $\$ 5$ sample \& hold such as Intersil's IH5110 (worst case aperture time = 200 ns), f max in the above example becomes 780 Hz . Consideration must also be given to the input stage time constant of both the sample \& hold, if there is one, and the converter. The number of time constants taken to charge a capacitor within a given percentage of full scale is shown in Fig 5. For example, consider a product with a 10 pF input capacitance driven by a signal source impedance of $100 \mathrm{~K} \Omega$. For 12 bit accuracy, at least 9 time constants, or $9 \mu \mathrm{~s}$, should be allowed for charging.

Figure 5: Voltage across a capacitor (as \% of final value) as a function of time (\# of time constants)

CONVERTER CHECKLIST

In selecting a converter for a specific application, it will be helpful to go through the following checklist, matching required performance against data sheet guarantees:
a) How many bits?
b) What is total error budget over the temperature range?
c) What is full scale reading and magnitude of LSB? Make sure that the 95% noise is substantially less than the magnitude of the LSB. If no noise specifications are given, assume that the omission is intentional!
d) What input characteristics are required?

With most successive approximation converters, the input resistance is low ($=5 \mathrm{~K} \Omega$) since one is looking into the comparator summing junction. In a well designed dual slope circuit, there should be a high input resistance buffer ($\left.R_{\text {in }} \simeq 10^{12} \Omega\right)$ included within the auto-zero loop. However in some designs (Teledyne 8700, Analog Devices AD7550) the input looks directly into the integrating resistor ($1 \mathrm{M} \Omega$).
e) What aperture time (or measurement window) is required?
If an averaged value of the input signal (over some milliseconds) is acceptable, use an integrating converter. Refer to Fig. 4 for systems where an averaged value of the input is not acceptable. Remember most successive approximation systems rely on a sample \& hold to 'freeze' the input while the conversion is taking place. Thus the sample \& hold characteristics should be matched to the input signal slew rate, and the A / D converter characteristics matched to the required conversion rate.
f) What measurement frequency is required? This will determine the maximum allowable conversion time (including auto-zero time for integrating types).
g) Is microprocessor compatibility important? Some A/D's interface easily with microprocessors; others do not. Ref. 2 explores the microprocessor interface in considerable depth.

DATA ACQUISITION \& CONVERSION HANDBOOK

h) Does the converter form part of a multiplexed data acquisition system?
Note that some integrating converters (Motorola MC14433) assess polarity based on the input voltage during the previous conversion cycle. Such designs are clearly unsuitable for multiplexed inputs where the signal polarity bears no relationship to the previously measured value. They can also give trouble with inputs hovering around zero.
i) Is 60 Hz rejection important?

If the line frequency rejection capabilities of the integrating converter are important, make sure that the duration of the measurement (input integrate) period is a fixed number of clock pulses. In some designs, the input integration time is programmed by the autozero information, making rejection of specific frequencies impossible.

MULTIPLEXED DATA SYSTEMS

The foregoing discussion has summarized the characteristics of A / D converters as stand-alone components. However, one of the most important applications for A/Ds is as part of a multiplexed data acquisition system. Traditionally, systems of this type have used analog signal transmission between the transducer and a central multiplexer/converter console. (Fig 6a) To sample 100 data points 25 times per second requires a 100 input analog multiplexer and an A/D capable of 2500 conversions per second. A successive approximation converter would be the obvious choice.

Figure 6(a): Data Acquisition using one central A/D.

Figure 6(b): Data Acquisition using several local A/Ds
Another approach, which becomes attractive with the availability of low cost IC converters, is to use localized A/D conversion with digital transmission back to a central console. In the limit one could use a converter per transducer, but it is often more economical to have a local conversion station servicing several transducers (Fig 6b). Several advantages result from this approach. Firstly, digital transmission is more satisfactory in a noisy environment, and lends itself to optical isolation techniques better than analog transmission. Secondly, using local conversion stations significantly reduces the number of interconnects back to the central processor. When one considers that the instrumentation for a typical power plant uses 4.5 million feet of cable, this can result in real cost savings. Finally, by sharing the conversion workload among several A/Ds, it is frequently possible to switch from a successive approximation to a dual siope design.
An example of a local conversion station featuring an 8052/7103 dual slope A/D, a CMOS multiplexer, and an UART for serial data transmission is discussed in Ref 2. The local conversion station concept can be taken a stage further by the addition of a microprocessor. This may be used to reduce the data prior to transmission to the central computer, and/or to look for dangerous conditions, for example.

DEFINITION OF TERMS

Quantization Error. This is the fundamental error associated with dividing a continuous (analog) signal into a finite number of digital bits. A 10 bit converter, for example, can only identify the input voltage to 1 part in 2^{10}, and there is an unavoidable output uncertainty of $\pm 1 / 2$ LSB (Least Significant Bit). See Fig. 7.
Linearity. The maximum deviation from a straight line drawn between the end points of the converter transfer function. Linearity is usually expressed as a fraction of LSB size. The linearity of a good converter is $\pm 1 / 2$ LSB. See Fig. 8.
Differential Non-Linearity. This describes the variation in the analog value between adjacent pairs of digital numbers, over the full range of the digital output. If each transition is equal to 1 LSB, the differential non-linearity is clearly zero. If the transition is 1 LSB $\pm 1 / 2$ LSB, then there is a differential linearity error of $\pm 1 / 2$ LSB, but no possibility of missing codes. If the transition is 1 LSB ± 1 LSB, then there is the possibility of missing codes. This means that the output may jump from, say 011 . . . 111 to 100 . . . 001, missing out 100 000 . See Fig. 9.

Figure 7: Ideal A/D conversion

Figure 9: Differential Non-linearity

Relative Accuracy. The input to output error as a fraction of full scale, with gain and offset errors adjusted to zero. Relative accuracy is a function of linearity, and is usually specified at less than $\pm 1 / 2$ LSB.

Gain Error. The difference in slope between the actual transfer function and the ideal transfer function, expressed as a percentage. This error is generally adjustable to zero by adjusting the input resistor in a current-comparing successive approximation A/D. See Fig. 10.

Gain Temperature Coefficient. The deviation from zero gain error on a 'zeroed' part which occurs as the temperature moves away from $25^{\circ} \mathrm{C}$. See Fig. 10.

Offset Error. The mean value of input voltage required to set zero code out. This error can generally be trimmed to zero at any given temperature, or is automatically zeroed in the case of a good integrating design.

Offset Temperature Coefficient. The change in offset error as a function of temperature.

Figure 8: Linearity Error

Figure 10: Gain Error

Where and when to use which data converter

A broad shopping list of monolithic, hybrid, and discrete-component devices is available

With the commercial availability of data-converter products-the result of both hybrid (multichip) and monolithic (single-chip) technologies-users of analog-to-digital (A/D) and digital-to-analog (D/A) converters now have an impressive array of designs from which to choose. In addition, the older discrete-component designs still remain a viable choice for many high-performance applications, particularly those where broad operating characteristics and specialized features are important. Unfortunately, rather than helping the users to match the proper products to their needs, data-converter manufacturers confuse the issue by arguments over the relative merits of the different technologies. A closer look at the various types of data converters may help to clear up some of this confusion.

How data converters are used

Data converters are the basic interfaces between the physical world of analog parameters and the computational world of digital data processing. They are used in many industries in a wide variety of applications, including data telemetry, automatic process control, test and measurement, computer display, digital panel meters and multimeters, and voice communications, as well as in remote data recording and video signal processing.

As a typical example of the use of A / D and D / A converters, Fig. 1 illustrates how an entire industrial process can be controlled by a single digital computer, which may be located at a considerable distance from the process site. To communicate with the process, data inputs to the computer must be converted into digital form and the outputs reconverted into analog form.

Physical parameters of temperature, pressure, and flow are sensed by appropriate transducers and amplified to higher voltage levels by operational or instrumentation amplifiers. The various amplifier outputs are then fed into an analog multiplexer for sequential switching to the next stage-a sample-hold circuit that "freezes" the input voltage of a sequentially switched input for a fixed period of time, long enough for the following A / D converter to make a complete conversion cycle. In this manner, a single A / D converter is time-shared over a large number of analog input channels. Each channel is sampled peri-
odically at a rate that is relatively fast when compared with any change in the process.

After receiving data from the process, the computer calculates the existing "state" of the process and compares it with the "desired state" stored in its memory. From this comparison, corrections are determined for the process variables. This information is fed to D/A converters that convert the digital data into analog form, and are then used to supply inputs to the process to bring it to the desired state.

Types of data converters

Of the many different techniques that have been employed to perform data conversion, only a few are in wide use. Most D/A converter designs utilize a parallel-input circuit. In this scheme, the converter accepts a parallel binary input code and delivers an analog output voltage by means of binary weighted switches that act simultaneously upon application of the digital input. In the opening illustration, a representative parallel-input D / A-converter circuit is presented (A) in which binary weighted pnp-transistor current sources are controlled by emitter-connected diodes. For simplicity, a 4-bit converter is shown. The inputs operate from transis-tor-transistor logic (TTL) levels. The output current changes rapidly with a change in the digital input code. Since a voltage output is desired in most cases, the current from the pnp transistors is fed to an operational amplifier current-to-voltage converter. An internal voltage reference, which may be a Zener-diode or band-gap reference circuit, completes the circuit.

The most common A/D-conversion technique is the successive-approximation method, used in 70-80 percent of all present-day applications. As shown in the opening illustration, this circuit (B) incorporates the parallelinput D/A converter circuit previously described along with a successive-approximation register, a comparator, and a clock. The D/A converter's output, controlled by the successive-approximation register, is compared, one bit at a time, against the input signal, starting with the largest or most significant bit. A complete conversion is always accomplished in n steps for an n-bit converter, regardless of the input signal value. Successive-approximation A/D converters have the desirable characteristics of high conversion speed as well as excellent accuracy and stability, provided the circuit is well designed.

The next most popular A/D-conversion method is the dual-slope technique found in most digital panel meters and digital multimeters and commonly used in measurement and numeric display systems, also shown in the opening illustration (C). This converter circuit operates on an indirect principle, whereby the input voltage is

|1| A/D and D/A conversion products are a process-control system's basic interface elements between its physical variables and digital controlling computers.
converted to a time period measured by means of a reference and a counter. First, the input voltage is integrated for a fixed period of time, determined by the circuit's clock and counter. The integrator is then switched to the reference, causing integration in the opposite direction, until the output is back to zero, as determined by the comparator. The resultant digital-word output of the counter is proportional to the input voltage. The dualslope method is very accurate, as its accuracy and stability depend only on the accuracy and stability of the circuit's reference. Its disadvantage is a much slower conversion time than with successive-approximation converters.

A third A/D-conversion method is the less frequently used ultrahigh-speed parallel, or flash, technique. As shown in the opening illustration, this circuit (D) employs $2^{n}-1$ comparators to make an n-bit conversion. The comparators are biased by a tapped resistor connected to the reference voltage. The input signal is fed to the other comparator inputs all tied together. The result is a circuit that acts as a quantizer with 2^{n} levels, where n is the number of bits. For a given input-voltage level, all comparators biased below that level trip ON, and those biased above it remain OFF. The $2^{n}-1$ digital outputs from the comparator must then be decoded into binary outputs. Since the complete conversion cycle occurs in only two steps, very-high-speed conversions are possible. The limitation of this technique is that it is difficult to realize high resolution, because of the large number of comparators required.

A comparison of technologies

Traditionally, data converters have been of the dis-crete-component type, first becoming available in instrument cases and later in compact, encapsulated modules. The advantage of this approach is that optimum components of all types can be combined. For example, for very high levels of speed and precision, a high-speed comparator may be combined with precision, high-speed current switches utilizing very-low-temperature-coefficient resistors and a very-low-temperature-coefficient reference. The result of such flexible component selection has been the development of some very impressive high-performance discrete-component converters over the past several years. For example, Table I shows that

12-bit current-output D/A converters are available with settling times as low as 50 ns , with voltage-output units achieving settling times down to 600 ns . Resolution can be as high as 16 bits. Excellent stabilities are also possible; ultralow drifts of $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ are achievable.

Equally impressive performance is also obtainable from discrete-component A/D converters. The fastest are the parallel types with resolutions of 8 bits at a $17-\mathrm{MHz}$ conversion rate. Successive-approximation A/D converters offer rapid conversion times at various resolutions. As can be seen in Table II, conversion times of $0.80,1.0$, 2.0 , and 10μ s at respective resolutions of $8,10,12$, and 14 bits are possible. Slower but higher-resolution 14-bit dual-slope and 16 -bit successive-approximation A/D converters with excellent stabilities are also available.

Hybrid converters

Although hybrid-converter design is almost as flexible as that of discrete-component converters, it does have two limitations: Not all of the semiconductor components used in a hybrid converter are readily available in chip form. Moreover, thè number of chips used in a hybrid converter must be kept to a minimum for the converter to be economically producible. Minimizing the chip count minimizes the number of bonds required, which in turn minimizes labor content and maximizes both end-product yield and reliability.

Three factors have played a role in the emergence of new low-cost high-performance hybrid converters. The first is the availability of low-cost quad-current switches in chip form, which has simplified the circuitry required for the binary weighted current sources used. Second, new monolithic successive-approximation registers have minimized the logic circuitry required. And third, stable thin-film resistors with tight temperature tracking characteristics, and trimmable with fast laser trimming techniques, have made it possible to achieve economical 12-bit, and higher, resolutions. In fact, the excellent tracking characteristics of thin-film resistors (tracking within $1-2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ is considered routine) provides hybrid converters with an advantage over modular discretecomponent units.

As can be seen in Table I, hybrid devices include 8-, 10-, 12 -, and 16 -bit D/A converters with excellent performance characteristics. The 12 -bit D / A converters have temperature coefficients as low as $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, and some certain input registers. Most hybrid D/A converters do not require external output amplifiers.

Hybrid A/D converters with resolutions of 8,10 , and 12 bits are available, with respective conversion times of $0.9,6.0$, and $8.0 \mu \mathrm{~s}$. An attractive feature of such A/D converters is their low price; for example, 12 -bit models are now selling for under $\$ 100$. Such units are complete converters and, except for calibration adjustments, require no external circuitry.

Monolithic converters

Monolithic data converters are generally a step below discrete and hybrid units in performance. In addition, various external components are usually required for proper operation, although this may not be viewed as a serious limitation since the attractive low prices of monolithic converters may more than compensate for the cost of the added components.
One of the obvious fabrication difficulties is making stable monolithic resistors for 10 - and 12 -bit monolithic
I. Representative D/A converters

Resolution (bits)	Settling Time ($\mu \mathrm{s}$)	Output Type	Gain TC (ppm/ $\left.{ }^{\circ} \mathrm{C}\right)$	Comments
Discrete-component converters				
10	0.025	Current	15	Ultrafast
10	0.25	Voltage	60	Ulitrafast
12	0.05	Current	20	Ultrafast
12	2	Voltage	20	Fast; contains input register
12	5	Voltage	7	Low drift
12	0.60	Voltage	35	Ultrafast; deglitched
14	2	Voltage	10	Fast; low drift
16	25	Voltage	1	Ultralow drift
Hybrid converters				
8	2	Voltage	-	Contains input register
10	3	Voltage	-	Fast
12	3	Voltage	10	Fast
12	3	Voltage	20	Contains input register
16	50	Current	7	High resolution; requires external output amplifier
Monolithic converters				
8	0.085	Current	-	Fast; requires external reference
8	0.50	Current	-	Companding type for communication applications
10	1.5	Voltage	60	Complete unit; includes reference and output amplifier
10	0.50	Current	-	Multiplying type made from CMOS technology; requires external reference and output amplifier
10	0.25	Current	60	Uses thin-film resistors; has internal reference, but requires external output amplifier
12	0.50	Current	-	Multiplying type made from CMOS technology; does not have 12-bit linearity; requires external reference and output amplifier
12	0.30	Current	-	Bipolar type with true 12-bit linearity; requires external reference and output amplifier

converters. It is possible to use diffused resistors for 8-bit, and sometimes 10 -bit, converters, but tracking requirements at the 12 -bit level are severe, necessitating the use of thin-film resistors and the additional step of depositing the thin-film resistors onto the monolithic chip.

Monolithic-converter designers have been quite successful in employing ingenious circuit techniques to achieve what would have been difficult to do in a straightforward manner. This is one of the challenging aspects of monolithic circuitry. For example, although monolithic 12 -bit successive-approximation A/D converters are quite difficult to make, equivalent accuracy can be readily achieved by use of the slower dual-slope conversion technique. A number of low-cost 12 -bit monolithic units are on the market that offer good performance characteristics. They utilize either the dual-slope

II. Representative A/D converters

or charge-balancing technique.
Charge balancing involves switching, in discrete time intervals, the output of a current source fed into the summing junction of an operational integrator. The switching is controlled by a comparator, which is controlled, in turn, by the output of the operational integrator. The input signal, which is also fed into the operational integrator's summing junction, determines the switching current's pulse rate. As the input signal increases in magnitude, the switched current's pulse rate (controlled by the comparator) increases in proportion to the input signal, until a current balance is achieved at the operational integrator's summing junction.
Whereas earlier monolithic devices used a two-chip approach to separate the analog and digital portions of the circuit, newer converters are one-chip units. Never-

Abstract

A brief look backwards

High-performance data converters first became available in 1955, when the Epsco Corp. unveiled its Datrac B-611 A/D converter (one of the historical exhibits of last year's ELECTRO in Boston). This vacuum-tube-based instrument, together with its companion power supply, weighed 150 pounds (68 kg) and cost $\$ 8500$. Yet it offered impressive performance, even by today's standards: 11-bit resolution at a $44-\mathrm{kHz}$.conversion rate.

The deveiopment of early converters was spurred in part by the then infant U.S. space program, which used them for high-speed pulse-code-modulation (PCM) data-telemetry and computer data-reduction applications, and also for digitizing radar signals.

By 1958-1959, packaged transistors replaced vacuum tubes to produce 12-bit A/D converters that were substantially smaller in size than their predecessors. At least three such converters were introduced at that time-by Adage, Epsco, and Packard-Bell; they ranged in conversion times from 13 to $48 \mu \mathrm{~s}$. Selling price was still quite high (about $\$ 5000$) and by 1960, only about 2000 of these converters were in use.

A breakthrough occurred in 1966 when Epsco introduced its Datrac 3, a small hand-held 12-bit discrete-component A/D converter constructed on just two circuit boards in a metal-case module. The unit had $24-\mu$ s conversion and sold for $\$ 1200$. Similar devices soon followed and, by 1968 , the Redcor Corp. had introduced the first encapsulated dis-crete-component 12 -bit A/D converter with $50-\mu$ s conversion at a price of $\$ 600$.

The next year saw rapid improvement in discrete-component-converter performance, with 12-bit A/D-converter conversion times dropping down to $12 \mu \mathrm{~s}$. During that same period, the Beckman Instrument Co. unveiled a new-generation data converter-the first hybrid converter, an 8-bit D/A unit made from multiple monolithic IC chips and a thick-film resistor network. An 8-bit D/A with a thin-film resistor network was produced in 1970 by Micro Networks.

Monolithic data converters were also being developed in the late '60s. In 1968, Fairchild Semiconductor was able to build a monolithic 10-bit D/A converter based on its model $\mu \mathrm{A} 722$, although this unit was a basic building block requiring an external reference, resistor network, and output amplifier. By 1970, Analog Devices had manufactured the industry's first monolithic quad-current switches, to be used as building blocks for hybrid A/D and D/A converters up to 16 bits in resolution. It was also in 1970 that Precision Monolithics produced the first complete D/A converter in monolithic form-a 6-bit unit that included a reference and an output amplifier, and required no additional components for operation (model DAC-01)

Meanwhile, discrete-component converters continued to be improved in performance characteristics. By 1971 , conversion times for 12-bit A/D units had dropped to just $4 \mu \mathrm{~s}$, though prices still hovered around the $\$ 600-\$ 700$ mark. Hybrid-converter prices continued to drop, with an 11-bit D/A converter (Beckman Instruments' model 848) selling for \$155 in 1971 and a 12-bit unit (Micro Networks' model MN312) dropping to $\$ 100$ by the next year.

Monolithic units also continued to be improved. In 1972, Motorola announced an 8-bit monolithic D/A converter (model MC1408), and Precision Monolithics produced a 10-bit unit (model DAC-02) the next year.

By 1975, the price of hybrid data converters such as Datel Systems' 12-bit model ADC-HY 12B A/D converter had dropped below $\$ 100$. At the same time, 10 -bit monolithic D/A converters were selling for as low as $\$ 20$. And performance of discrete-component A/D converters such as Datel's ADC-EH12B3-a 12-bit 2- μ s unit-has reached a new high at a record low price of $\$ 300$, half the former price.

Monolithic-converter prices have continued to drop (now down to about $\$ 10$ for a 10-bit D/A unit requiring external components) while performance is up (300-ns for a 12-bit D/A converter from Precision Monolithics requiring only an external reference and an op amp).

theless, external components, such as an integrating capacitor, a reference, and some compensation parts, are needed for proper operation.
CMOS circuitry has been used to fabricate monolithic converters with BCD coding, for digital panel meters and small instruments. Among the other popular monolithic A/D converter types is an 8 -bit design that employs a variation of the successive-approximation technique. This device is made with an ion-implanted p-channel MOS technology. Instead of the conventional eight switches, it uses 255 switches connected to a 256 -seriesresistor chain. In hybrid or discrete form, this would be a gross waste of components, but not so in monolithic form. This approach results in a monotonic 8 -bit A/D converter.
Another successful monolithic approach has been to use bipolar technology to make an 8 -bit D/A converter with a companding characteristic for use in voice'PCM systems. A typical device has eight inputs, which select eight chords (straight-line approximations to a curve), each with 16 equal steps. As part of an A/D converter, this device compresses a signal (provides high gain at low signal levels and vice versa). When used as a D/A converter, it expands the signal according to a standardized logarithmic curve.
Tables I and II list some representative monolithic D/A and A / D converters. A large number of 8 -bit devices are on the market, chiefly because of their low prices and satisfactory performance levels. Several 10 -bit D/A
converters are also available, one of which can be obtained with a reference and an output amplifier. And one multiplying-type 10 -bit unit can have a variable reference applied to it. The CMOS 12 -bit monlithic D/A converter model available at this time is a multiplying type, and does not provide full 12 -bit linearity. Another bipolar 12 -bit D/A converter has been introduced that has true 12 -bit linearity, and requires an external reference and output amplifier.

Integrating A/D converters have two characteristics in common. First, as the name implies, their output represents the integral or average of an input voltage over a fixed period of time. Compared with techniques which require that the input is "frozen" with a sample-and-hold, the integrating converter will give repeatable results in the presence of high frequency* noise. A second and equally important characteristic is that they use time to quantise the answer, resulting in extremely small nonlinearity errors and no possibility of missing output codes. Furthermore, the integrating converter has very good rejection of frequencies whose periods are an integral multiple of the measurement period. This feature can be used to advantage in reducing line frequency noise, for example, in laboratory instruments. (Fig. 1).

Figure 1: Normal Mode Rejection of dual-slope converter as a function of frequency.

In addition, a competitive instrument-quality product should have the following features:

1. Single Reference Voltage. This is strictly a convenience to the user, but since many designs are available with single references that contribute negligible error, products requiring dual references are rapidly becoming obsolete.
2. Auto Zero. This eliminates one trim-pot and a troublesome calibration step. Furthermore, it allows the manufacturer to use op-amps with up to 10 mV offset while still achieving system offsets of only a few microvolts.
3. High Input Impedance. Recently developed monolithic FET technology allows input impedances of 1000 Mohm and leakages of a few pico amps to be achieved fairly readily.
The unique characteristics of the integrating converter have made it the natural choice for panel meters and digital voltmeter applications. For this reason, overall
*relative to the measurement period.
useage of integrating converters exceeds the combined total of all other conversion methods. Furthermore, the availability of low cost one and two chip converters will encourage digitizing at the sensor in applications such as process control. This represents a radical departure from traditional data logging techniques which in the past have relied heavily on the transmission of analog signals. The availability of one chip microprocessor system (with ROM and RAM on chip) will give a further boost to the conversion at the sensor' concept by facilitating local data processing. The advantage of local processing is that only essential data, such as significant changes or danger signals, will be transmitted to the central processor.

THE DUAL SLOPE TECHNIQUE - THEORY \& PRACTICE

The most popular integrating converter is the "dualslope" type, the basic operating principles of which will be described briefly. However, most of the comments relating to linearity, noise rejection, auto-zero capability, etc., apply to the whole family of integrating designs including charge balancing, triple ramps, and the 101 other techniques that have appeared in the literature. A simplified dual slope converter is shown in Figure 2.

Figure 2: Simplified dual-slope converter

The conversion takes place in three distinct phases (Fig. 3).

Figure 3: The three phases of a dual-slope conversion

Figure 4: the 7103/8052 A/D Converter pair.

Phase 1, Auto Zero: During auto zero, the errors in the analog components (buffer offset voltages, etc.) will be automatically nulled out by grounding the input and closing a feedback loop such that error information is stored on an "auto-zero" capacitor.
Phase 2, Signal Integrate: The input signal is integrated for a fixed number of clock pulses. For a $3^{11 / 2}$-digit converter, 1,000 pulses is the usual count; for a $41 / 2$-digit converter, 10,000 is typical. On completion of the integration period, the voltage V in Fig. 3 is directly proportional to the input signal.
Phase 3, Reference Integrate: At the beginning of this phase, the integrator input is switched from $V_{I N}$ to $V_{\text {REF }}$. The polarity of the reference is determined during Phase 2 such that the integrator discharges back towards zero. The number of clock pulses counted between the beginning of this cycle and the time when the integrator output passes through zero is a digital measure of the magnitude of $\mathrm{V}_{1 \mathrm{~N}}$.
The beauty of the dual slope technique is that the theoretical accuracy depends only on the absolute value of the reference and the equality of the individual clock pulses within a given conversion cycle. The latter can easily be held to 1 part in 10^{6}, so in practical terms the only critical component is the reference. Changes in the value of other components such as the integration capacitor or the comparator input offset voltage have no effect, provided they don't change during an individual conversion cycle. This is in contrast to Successive Approximation converters which rely on matching a whole string of resistor values for quantisation.
In a very real sense the designer is presented with a near perfect system; his job is to avoid introducing additional error sources in turning this text-book circuit into a real piece of hardware.
From the foregoing discussion, it might be assumed that designing a high performance dual-slope converter is as easy as falling off the proverbial log. This is not true, however, because in a practical circuit a host of pitfalls must be avoided. These include the non-ideal character-
istics of FET switches and capacitors, and the switching delay in the zero crossing detector.

ANALYZING THE ERRORS

At this point it is instructive to perform a detailed error analysis of a representative dual slope circuit, Intersil's 8052A/7103A pair. This is a $41 / 2$-digit design, where the analog circuitry is on a JFET/bipolar chip (the 8052) and the digital logic and switches on a MOS chip (7103A); the partitioning is shown in Fig. 4. The error analysis which follows relates to this specific pair - however, the principles behind the analysis apply to most integrating converters.
The analog section of the converter is shown in Fig. 5. Typical values are shown for 120 KHz clock and 3 measurements/second. Each measurement is divided into three parts. In part 1, the auto-zero FET switches 1, 2 and 3 are closed for 10,000 clock pulses. The reference capacitor is charged to $\mathrm{V}_{\text {REF }}$ and the auto-zero capacitor is charged to the voltage that makes $d V / d t$ of the integrator equal to zero. In each instance the capacitors are charged for 20 or more time-constants such that the voltage across them is only limited by noise.

Figure 5: Analog section of a dual slope converter.
In the second phase, signal integrate, switches 1,2 and 3 are opened and switch 4 is closed for 10,000 clock pulses. The integrator capacitor will ramp up at a rate that is proportional to $V_{I N}$. In the final phase, de-integrate, switch 4 is opened and, depending on the polarity of the input signal, switch 5 or 6 is closed. In either case the integrator will ramp down at a rate that is proportional to $\mathrm{V}_{\text {REF }}$. The
amount of time, or number of clock pulses, required to bring the integrator back to its auto-zero value is 10,000 $\left(\frac{V_{\text {IN }}}{V_{\text {REF }}}\right)$. Of course, this is a description of the "ideal" cycle. Errors from this ideal cycle are caused by:

1. Capacitor droop due to leakage.
2. Capacitor voltage change due to charge "suck-out" (the reverse of charge injection) when the switches turn off.
3. Non-linearity of buffer and integrator.
4. High-frequency limitations of buffer, integrator and comparator.
5. Integrating capacitor non-linearity (dielectric absorption).
6. Charge lost by $C_{R E F}$ in charging $C_{\text {stray }}$.

Each of these errors will be analyzed for its error contribution to the converter.

1. Capacitor droop due to leakage.

Typical leakage (${ }^{\text {Doff }}$) of the switches at normal operating voltage is 1 pA each and 2 pA at each input of the buffer and integrator op amps. In terms of offset voltage caused by capacitor droop, the effect of the auto-zero and reference capacitors is differential, i.e., there is no offset if they droop an equal amount. A conservative typical effect of droop on offset would be 2 pA discharging $1 \mu \mathrm{~F}$ for 83 milliseconds (10,000 clock periods), which amounts to an averaged equivalent of $.083 \mu \mathrm{~V}$ referred to the input. The effect of the droop on roll-over error (difference between equal positive and negative voltages near full scale) is slightly different. For a negative input voltage, switch 5 is closed for the de-integrate cycle. Thus the reference capacitor and auto-zero capacitor operate differentially for the entire measurement cycle. For a positive voltage, switch 6 is closed and the differential compensation of the reference capacitor is lost during de-integrate. A typical contribution to roll-over error is 3 pA discharging $1 \mu \mathrm{~F}$ capacitor for 166 milliseconds, equivalent to $.249 \mu \mathrm{~V}$ when averaged. These numbers are certainly insignificant for room temperature leakages but even at $100^{\circ} \mathrm{C}$ the contributions should be only $15 \mu \mathrm{~V}$ and $45 \mu \mathrm{~V}$ respectively. A roll-over error of $45 \mu \mathrm{~V}$ is less than 0.5 counts on this 20,000 count instrument.

2. Charge "suck-out" when the switches turn-off.

There is no problem in charging the capacitors to the correct value when the switches are on. The problem is getting the switches off without changing this value. As the gate is driven off, the gate-to-drain capacitance of the switch injects a charge on the reference or auto-zero capacitor, changing its value. The net charge injection of switch 3 turning-off can be measured indirectly by noting the offset resulting by using a $.01 \mu \mathrm{~F}$ auto-zero capacitor instead of $1.0 \mu \mathrm{~F}$. For this condition the offset is typically $250 \mu \mathrm{~V}$, and since the signal ramp is a straight line instead of a parabola the main error is due to charge injection rather than leakage. This gives a net injected charge of 2.5 picocouloumbs or an equivalent C_{gd} of 0.16 pF . The effect of switches $1,2,4,5$ and 6 are more complicated since they depend on timing and some switches are going on while others are going off. A substitution of an $.01 \mu \mathrm{~F}$ capacitor for reference capacitor gives less than $100 \mu \mathrm{~V}$ offset error. Thus, a conservative typical offset error for a $1.0 \mu \mathrm{~F}$ capacitor is $2.5 \mu \mathrm{~V}$. There is no contribution to rollover error (independent of offset). Also this value does not change significantly with temperature.

3. Non-linearity of buffer and integrator.

In this converter, since the signal and reference are injected at the same point, the gain of the buffer and integrator are not of first-order importance in determining accuracy. This means that the buffer can have a very poor CMRR over the input range and still contribute zero error as long as it is constant, i.e., offset changes linearly with common mode voltage. The first error term is the non-linear component of CMRR. Careful measurement of CMRR on 30 buffers indicated roll-over errors from 5 to $30 \mu \mathrm{~V}$. The contribution of integrator non-linearity is less than $1_{\mu} \mathrm{V}$ in each case.

4. High frequency limitations of amplifiers.

For a zero input signal, the buffer output will switch from zero to $V_{\text {REF }}(1.0$ volt) in 0.5μ seconds with an approximately linear response. The net result is to lose 25 μ seconds of de-integrate period. For a 120 KHz clock, this is 3% of a clock pulse or $3 \mu \mathrm{~V}$. This is not an offset error since the delay is equal for both positive and negative references. The net result is the converter would switch from 0 to 1 at $97 \mu \mathrm{~V}$ instead of $100 \mu \mathrm{~V}$ in the ideal case.
A much larger source of delay is the comparator which contributes 3μ seconds. At first glance, this sounds absolutely ridiculous compared to the few tens of nanoseconds delay of modern IC comparators. However, they are specified with 2 to 10 mV of overdrive. By the time the 8052A comparator gets 10 mV of overdrive, the integrator will have been through zero-crossing for 20 clock pulses! Actually, the comparator has a 300 MHz gain-bandwidth product which is comparable to the best IC's. The problem is that it must operate on $30 \mu \mathrm{~V}$ of overdrive instead of 10 mV . Again, this delay causes no offset error but means the converter switches from 0 to 1 at $60 \mu \mathrm{~V}$, from 1 to 2 at $160 \mu \mathrm{~V}$, etc. Most users consider this switching at approximately $1 / 2$ LSB more desirable than the "so-called ideal" case of switching at $100 \mu \mathrm{~V}$. If it is important that switching occur at $100 \mu \mathrm{~V}$, the comparator delay may be compensated by including a small value resistor ($\simeq 20 \Omega 2$) in series with the integration capacitor. (Further details of this technique are given on page 4 under the heading "Maximum Clock Frequency".)
The integrator time delay is less than 200 nsecond and contributes no measureable error.

5. Integrating capacitor dielectric absorption.

Any integrating A/D assumes that the voltage change across the capacitor is exactly proportional to the integral of the current into it. Actually, a very small percentage of this charge is "used up" in rearranging charges within the capacitor and does not appear as a voltage across the capacitor. This is dielectric absorption. Probably the most accurate means of measuring dielectric absorption is to use it in a dual-slope A/D converter with $\mathrm{V}_{\text {IN }} \equiv \mathrm{V}_{\text {REF }}$. In this mode, the instrument should read 1.0000 independent of other component values. In very careful measurements where zero-crossings were observed in order to extrapolate a fifth digit and all delay errors were calculated out, polypropylene capacitors gave the best results. Their equivalent readings were 0.99998 . In the same test polycarbonate capacitors typically read 0.9992 , polystrene 0.9997 . Thus, polypropylene is an excellent choice since they are not expensive and their increased temperature coefficient is of no consequence in this circuit. The dielectric absorption of the reference and auto-zero capacitors are only important at power-on or
when the circuit is recovering from an overload. Thus, smaller or cheaper capacitors can be used if very accurate readings are not required for the first few seconds of recovery.

6. Charge lost by $\mathrm{C}_{\text {REF }}$ in charging $\mathrm{C}_{\text {stray }}$ -

In addition to leakage and switching charge injection, the reference capacitor has a third method of losing charge and, therefore, voltage. It must charge $\mathrm{C}_{\text {stray }}$ as it swings from 0 to $V_{I N}$ to $V_{\text {REF }}$, (Figure 5). However, $C_{\text {stray }}$ only causes an error for positive inputs. To see why, let's look firstly at the sequence of events which occurs for negative inputs. During auto-zero $\mathrm{C}_{\text {REF }}$ and $\mathrm{C}_{\text {stray }}$ are both charged through the switches. When the negative signal is applied, $\mathrm{C}_{\text {REF }}$ and $\mathrm{C}_{\text {stray }}$ are in series and act as a capacitance divider. For $\mathrm{C}_{\text {stray }}=15 \mathrm{pf}$, the divider ratio is 0.999985 . When the positive reference is applied through switch \#5, the same divider operates. As mentioned previously, a constant gain network contributes no error and, thus, negative inputs are measured exactly.
For positive inputs, the divider operates as before when switching from auto-zero to $V_{I N}$, but the negative reference is applied by closing switch \#6. The reference capacitor is not used, and therefore the equivalent divider network is 1.0000 instead of .999985 . At full scale, this 15 $\mu \mathrm{V} / \mathrm{V}$ error gives a $30 \mu \mathrm{~V}$ rollover error with the negative reading being. $30 \mu \mathrm{~V}$ too low. Of course for smaller $\mathrm{C}_{\text {stray }}$, the error is proportionally less.

Summary.

Error analysis of the circuit using typical values shows four types of errors. They are (1) an offset error of $2.5 \mu \mathrm{~V}$ due to charge injection, (2) a full scale rollover error of 30 $\mu \mathrm{V}$ due to $\mathrm{C}_{\text {stray. (3) a full scale rollover error of } 5 \text { to } 30 \mu \mathrm{~V}, ~}^{\text {(3) }}$ due to buffer non-linearity and (4) a delay error of $40 \mu \mathrm{~V}$ for the first count. These numbers are in good agreement with actual results observed for the 8052A/7103A. Due to peak-to-peak noise of $20 \mu \mathrm{~V}$ around zero, it is possible only to say that any offsets are less than $10 \mu \mathrm{~V}$. Also, the observed rollover error is typically $1 / 2$ count $(50 \mu \mathrm{~V})$ with the negative reading larger than the positive. Finally, the transition from a reading of 0000 to 0001 occurs at $50 \mu \mathrm{~V}$. These figures illustrate the very high performance which can be expected from a well designed dual-slope circuit performance figures which can be achieved with no tricky 'tweaking' of component values. Furthermore, the circuit includes desirable convenience features such as autozero, auto-polarity and a single reference.

MAXIMUM CLOCK FREQUENCY

Because of the $3 \mu \mathrm{~S}$ delay in the 8052 comparator, the maximum recommended clock frequency is 160 KHz . In the error analysis it was shown that under these conditions half of the first reference integrate period is lost in delay. This means that the meter reading will change from 0 to 1 at $50 \mu \mathrm{~V}$, from 1 to 2 at $150 \mu \mathrm{~V}$, etc. As was noted earlier, most users consider this transition at midpoint to be desirable. However, if the clock frequency is increased appreciably above 160 KHz , the instrument will flash 1 on noise peaks even when the input is shorted. The clock frequency may be extended above 160 KHz , however, by using a low value resistor in series with the integration capacitor. The effect of the resistor is to introduce a small pedestal voltage on to the integrator output at the beginning of the reference integrate phase (Fig. 6). By careful selection of the ratio between this

Figure 6: Integrator and comparator outputs for uncompensated (a) and compensated (b) system
resistor and the integrating resistor (a few tens of ohms in the recommended circuit), the comparator delay can be compensated and the maximum clock frequency extended by approximately a factor of 3. At higher frequencies, ringing and second order breaks will cause significant non-linearities in the first few counts of the instrument.

NOISE

The peak-to-peak noise around zero is approximately 20 $\mu \mathrm{V}$ (pk-to-pk value not exceeded 95% of the time). Near full scale, this value increases to approximately $40 \mu \mathrm{~V}$.
Since much of the noise originates in the auto-zero loop, some improvement in noise can be achieved by putting gain in the buffer. Pin 10 of the 8052 brings out the inverting input, so this is easily done. A gain of about 5 X is optimum. Too much gain will cause the auto-zero switch to misbehave, because the amplified Vos of the buffer will exceed the switch operating range.
A low-noise version of the analog chip (8052-LN), using Bifet technology, should reduce the noise to about $3 \mu \mathrm{~V}$ pk-to-pk and even less with some gain in the buffer.

Applying the 7109 A/D converter

This article examines the operation and applications of the ICL 7109 monolithic, c.m.o.s., 12 bit, integrating analogue to digital converter which was introduced to the market early in 1979.

Figure 1 shows the equivalent circuit of the ICL. 7109. When the RUN/HOLD input is left open or connected to V^{+}, the circuit will perform conversions at a rate determined by the clock frequency (8192 clock periods per cycle). Each measurement cycle is divided into three phases as shown in Fig. 2. They are Auto-Zero (AZ), Signal Integrate (INT) and Deintegrate (DE).
Auto-zero phase. During auto-zero three things happen. First, input high and low are disconnected from their pins and internally shorted to analogue common. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $C_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the $A Z$ accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.
Signal integrate phase. During signal integrate the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between input high and input low for a fixed time of 2048 clock periods. At the end of this phase, the polarity of the integrated signal is determined.

Deintegrate phase. The final phase is deintegrate, or reference integrate. Input low is internally connected to analog common and input high is connected across thepreviously charged (during auto-zero) reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to the zero crossing (established in Auto Zero) with a fixed slope. Thus the time for the output to return to zero (represented by the number of clock periods counted) is proportional to the input signal.

Differential input

The input can accept differential voltages anywhere within the common mode range of the input amplifier, or specifically from 0.5 V below the positive supply to 1 V above the negative supply. In this range the system has a c.m.r.r. of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to ensure that integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near fullscale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing
can be reduced to less than the recommended 4 V full scale with some loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

The ICL 7109 has, however, been optimised for operation with analogue common near digital ground. With power supplies of +5 V and -5 V , this allows a 4 V full scale integrator swing positive or negative, maximising the performance of the analogue section.

Differential reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The ICL 7109 provides a reference output (pin 29) which may be used with a resistive divider to generate a reference voltage. This output will sink up to about 20 mA without significant variation in output voltage, and is provided with a pullup bias device which sources about $10 \mu \mathrm{~A}$. The output voltage is nominally 2.8 V below V^{+}, and has a temperature coefficient of $\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICL 7109 at 12 bits is one part in 4096, or 244 ppm .
Thus if the reference has a temperature coefficient of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (onboard reference) a temperature difference of $3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error. For this reason, an external high-quality reference should be used where the ambient temperature is not controlled or where highaccuracy absolute measurements are being made. The internal reference may then be used as a pre-regulator for an external reference, such as the ICL8069 bandgap reference diode.

Digital section

The digital section includes the clock oscillator and scaling circuit, a 12-bit binary counter with output latches and t.t.l.-compatible three-state output drivers, polarity, over-range and control logic, and u.a.r.t. handshake logic.

The MODE input is used to control the output mode of the converter.
Direct mode. When the mODE pin is left at a low level, the data outputs (bits 1 to 8 low order byte, bits 9 to 12 , polarity and overrange high order byte) are accessible under control of the byte and chip enable terminals as inputs. These three inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip enable input is low, taking a byte enable input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used, and enables the converter to be interfaced directly, either as I/O or by memory mapping, to any microprocessor system with an 8-bit, 12-bit or 16 -bit word length.
Handshake mode. The handshake output mode is provided as an alternative means of interfacing the ICL 7109 to digital systems, where the A/D converter becomes active in controlling the flow of data instead of passively responding to chip and byte enable inputs. This mode is designed to allow a direct interface between the ICL 7109 and industry-standard u.a.r.t.s (such as the Intersil c.m.o.s. u.a.r.t.s, IM 6402/3) with no external logic required. When triggered into the handshake mode, the ICL 7109 provides all the control and flag signals necessary to sequence the two bytes of data into the u.a.r.t. and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimise the number of lines to the central controlling processor.
Entry into the handshake mode is controlled by the MODE input. When the mODE terminal is held high, the ICL 7109 will enter the handshake mode after new data has been stored in the output latches at the end of every conversion performed. The mODE terminal may also be used to trigger entry into the handshake mode on demand.
In this mode, the SEND input is connected to the L'ART Tbre output so that the ICL 7101 can detect when the u.a.r.t. is ready for more data. The CE/LOAD pin becomes an output strobe and is connected to the u.a.r.t. TBRL input to clock data into the u.a.r.t $\overline{\text { HBEN }}$ and $\overline{\text { LBEN }}$ also become outputs which identify the high and low bytes respectively. Figure 3 show's the output sequence.

Assuming the u.a.r.t transmitter buffer register is empty. the SEND input will be high when the handshake mode is entered after new data is stored. The CEDLAD and HBEN terminals will go low after SEND is sensed. and the high order bete outputs become active. When CEILOAD goes high at the end of one clock period. the high order byte data is clocked into the u.a.r.t. transmitter buffer register. The u.a.r.t. TBRE output will now go low. which halts the output crale with the HBEN output low, and the high order byte outputs active. When the uar.t has transferred the data to the transmitter register and cleared the trans-

Fig. 2.

Fig 3
mitter buffer register, the TBRE returns high. On the next ICL 7109 internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the $\overline{\text { HBEN }}$ output returns high. At the same time, the CE/LOAD and $\overline{\text { LBEN }}$ outputs go low, and the low order byte outputs become active. Similarly, when the $\overline{C E / L O A D}$ returns high at the end of one clock period, the low order data is clocked into the u.a.r.t transmitter buffer register. and tbre again goes low. When tbre returns to a high it will be sensed on the next ICL 7109 internal clock high to low edge, disabling the data outputs. One-half internal clock later, the handshake mode will be cleared, the the $\overline{\mathrm{CE} / L O A D}, \overline{\mathrm{HBEN}}$, and LBEN terminals return high and stay active (as long as MODE stays high).

Status output

During a conversion cycle, the status output goes high at the beginning of Signal

Integrate (Phase II) and goculow one-half clock period after neu data from the conversion has been stored in the output latches (See Fig. 2 for details of this timing). This signal mat be used as a "data valid" flag (data never changes while sTatus is low) to drive interrupts, wr for monitoring the status of the converter.

When RUN/HOIII is held high or left open (it has an internal pull-up resistor) the 7109 converts continuously. taking 8192 clock cycles for each conversion. If RUN/HOLD is taken low, the current conversion is completed and the 7109 then remains in Auto Zerostate until run hoi-i) is taken high. A single, positive pulse on RUN/HOLD will cause one conversion only to take place and is a simple way of providing a "convert on command"
From the foregoing, it will be seen that the ICL 7109 is a converter offering unusual flexibility in both input and output interfacing. Let us first see how

Fig. 4.
flexible input interface leads to a number of applications.

Bridge measurements

The differential input of an ICL 7109 lends itself to measurement of error voltages in resistance bridges, as the common mode voltage is immaterial. Moreover, because the 7109 is ratiometric. if the reference input to the chip is derived from the bridge supply, changes in the supply will not upset the output reading. A typical example is a bridge connected load cell.
Some strain gauge bridges have very low output voltages. The input noise of the ICL 7109 is about $15 \mu \mathrm{~V}$ peak to peak, so that if a bridge with say $5 \mu \mathrm{~V}$ per count were used the output reading would jitter. This problem can be solved in two ways. The first is to use a low drift. low offset amplifier, such as the ICL 7600) series commutating auto zeroing amplifier (CAZAMP) before the converter. An alternative is to have the microprocessor take the average of several conversions. (Usually 2, 4, 8 or 16 so that the division sum is a simple right shift of the binary word).

Offset zero measurements

By hooking Input Low of the 7109 to some voltage other than signal ground. measurements with an offset zero are easily possible. Consider a temperature measurement scheme using the $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ tem-
perature coefficient of the $V_{\text {be }}$ of a silicon transistor. By connecting one input pin to the transistor and the other to a variable voltage source the 7109 can be made to read zero at $0^{\circ} \mathrm{C}$, even though the transistor $V_{\text {be }}$ is still about 0.65 V . Because the temperature coefficient of the transistor is negative, IN HI and IN LO have been interchanged so that the output goes positive for increasing temperature.
These are just a few examples of how the fully differential, fully ratiometric inputs of the ICL 7109 can simplify the design of input circuitry. Now let us pass on to output configurations.

Direct parallel processor interfaces

The separately tri-state byte wide outputs of the ICL 7109 make it ideal for interfacing to 8 -bit microprocessor busses. Figure 4 shows a direct memory mapped interface to an 8 -bit Intel 8085 processor bus. In this case linear addressing is used to select the two data bytes.

Serial interface

The ICL 7109 is easily combined with a u.a.r.t., and if necessary an analogue multiplexer, to provide a complete remote serial data acquisition station (Fig. 5). The u.a.r.t. at the processor end of the serial link sends a digital word to the remote u.a.r.t. This word specifies the multiplexer address, and at the same time the remote
u.a.r.t. Data Ready flag takes the $\overline{R U N /}$ hold line of the 7109 high to initiate a conversion. The appropriate input is therefore selected and converted and when conversion is complete the 7109 enters its handshake sequence, transmitting the converted data over the serial link. The $\overline{\text { HBEN }}$ output from the 7109 also clears the u.a.r.t. Data Ready flag so that RUN/HOLD returns low and no further conversions take place.

Optoisolators can optionally be put in the serial lines to allow for large common mode voltage differences between processor and remote station. Because all components in the remote station are low power c.m.o.s., the generation of isolated supplies is simplified.

Replacing V to F converters

A popular method of making a low cost serial interface, particularly where optoisolation is required, is to use a V to F converter. Such an approach has its problems, as V to $F s$ need accurate and stable analogue components to operate correctly. They also do not generally have zero offset, scale factor drift and linearity commensurate with 12 -bit accuracy applications.

The ICL 7109 has a much more flexible input interface and better performance at a cost comprable with V to F converters. The STATUS output remains high for a period of $\mathrm{N}+2049 \frac{1}{2}$ clock cycles, where N is the digital reading. (See Fig. 2). Therefore if the BUF OSC OUT from the 7109 is gated with STATUS a pulse train results which can be passed through an opto-isolator and counted by a processor to determine the digital reading, in much the same way as it would with a V to F converter. The processor only needs a simple software timeout loop to determine when the pulse train has ended. There are no critical timing requirements such as are encountered when using a V to F converter.

Alternatively, the STATUS and BUF OSC out lines can be separately opto-isolated and fed to a hardware counter system, if display of data is required. A suitable counter/display system uses the ICM 7217 4 decade counter.

The $2049 \frac{1}{2}$ pulses are subtracted by presetting the counter to 7950, the tens complement of 2050. This technique has been used to make d.v.m.s with high voltage input isolation.

Conversion speed

The ICL 7109 is an integrating (dual slope) converter and as such is not intended for very fast applications. The data sheet specifications are quoted at $7 \cdot 5$ conversions per second (corresponding to an internal clock frequency of about 61.5 kHz , or a clock period of $16.3 \mu \mathrm{~s}$).

The speed of a dual slope converter is principally limited by the response time of the comparator, bearing in mind that the input to the comparator is a shallow ramp rather than a nice clean voltage step. In the ICL 7109 the comparator gain/bandwidth product is about 200 MHz , giving a delay of
about $4 \mu \mathrm{~s}$. For this delay to represent a $\frac{1}{2}$ increased, the integrator and auto zero cacount error the clock period would be $8 \mu \mathrm{~s}$, giving 15 conversions per second.
The logic of the ICL 7109 is capable of operating at up to 500 kHz , however, which would give about 60 conversions per second. At this speed the comparator delay will result in a zero offset. Linearity and resolution are, however, unaffected. (Remember that as the clock frequency is
pacitors should be reduced in proportion). In many systems it is a simple matter for the microprocessor to subtract the zero offset.

An alternative technique is to compensate the zero offset by placing a small resistor in series with the integrator capacitor. Because the current in the integrator capacitor is constant during de-

Fig. 5.

integrate, this resistor produces a "lead" on the ramp which can be calculated as follows.

Slope of the ramp, $\frac{d v}{d t}=\frac{I}{C}$
Offset voltage of ramp, $\Delta V=I R$
Time lead of ramp,
$\Delta t=\Delta V \cdot \frac{d I}{d V}=I R \cdot \frac{C}{I}=R C$
Therefore:- $R=\frac{\Delta t}{C}$, where $\Delta t=4 \mu \mathrm{~s}$.
By this means, the zero offset is cancelled (the system works for both input polarities). One error is being offset with another, and the two may not track with temperature, so this method is not to be relied on for wide temperature range applications.
The ICL 7109 has shown itself to be one of the most versatile and cost effective A/D converters on the market, replacing existing 12 -bit converters, as well as creating new applications which previously had been the domain of V to F converters and other devices.

Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7107/7109 Family

1. INTRODUCTION

Most of Intersil's one chip A/D converters offer differential input, differential reference and separable analog and digital ground references. The price of all this freedom, of course, is technical vigilance, and this note is intended as a defense manual against the potholes and landmines it makes accessible. The discussion is based on the ICL7106/7, but applies in large part to the ICL7116/7, the ICL7126, the ICL7109, and to a lesser extent to the ICL7135.

2. GENERAL DESCRIPTION

Figure 1 shows the Block Diagram of the Analog Section for the ICL7106 and 7107. Each measurement cycle is divided into three phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT) and (3) deintegrate (DE).

1. Auto-Zero Phase

During Auto-Zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

2. Signal Integrate Phase

During signal INTegrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between INHI and INLO for a fixed time. This differential voltage can be within a wide common mode range - within one volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, INLO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase the polarity of the integrated signal is determined.

3. De-Integrate Phase

The final phase is DE-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is

$$
1000\left(\frac{V_{\text {in }}}{V_{\text {ref. }}}\right)
$$

Figure 1. Analog Section of $7106 / 7107$

3. CMRR AND COMMON MODE VOLTAGE EFFECTS

There are three basic voltages applied to the ICL7106/7, etc. which can give "common mode voltage" consequences. These are indicated in Figures 2, 3, and 4 which show the analog section in the phases described above. The choices are 1) of reference voltage source to COMMON, 2) of input voltage source to COMMON, and 3) of COMMON to (digital) supply voltage.
During Auto-Zero, the outputs of the buffer, integrator, and comparator are all within various offset voltages of analog COMMON. These are marked on Figure 2, which shows the Auto-Zero phase. For the remainder of the discussion, these offset voltages will be ignored, since they are merely added to other voltage changes described. The non-inverting inputs of the buffer and integrator are also tied to analog COMMON, so it is convenient to describe all these voltages with respect to COMMON.

1. Reference Common Mode Voltage to COMMON

The reference capacitor is recharged during the Auto-Zero time; the stray capacitance shown in Figure 2 as CS1 and CS2 will also be charged. During DE-integrate (Figure 4) the reference capacitor is switched so that one or the other of its terminals is at analog COMMON. This will cause chargesharing with the stray capacitances on the other terminal. In particular, a common mode voltage on the reference input (with respect to COMMON) will give a roll-over error, since the effective DE-integrate reference will be higher in one polarity than the other. The ideal here is for (VREFHI $+\mathrm{V}_{\text {REFLO }}$) $=2$ VANCOM, at least for equal stray capacitances, but this is inconvenient in most applications. The roll-over error contribution at full scale (ignoring a second order term) is

2000
 $\frac{\left(\text { VREFLO }^{\text {CS }} 1+V_{\text {REFHI }} C_{S 2}\right)}{\text { VREF } C_{\text {REF }}} \simeq$
 $$
2000 \frac{V_{C M}\left(C_{S 1}+C_{S 2}\right)}{V_{\text {REF }} C_{\text {REF }}} \text { (counts) }
$$

For $C_{\text {REF }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{S}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{CM}} / \mathrm{V}_{\text {REF }}=10$, this can give two counts of error, but if $\mathrm{V}_{\text {REFLO }}=0$, and $\mathrm{C}_{\mathrm{s} 2}$ is 5 pF , the error is 0.1 counts, lost in the noise level. In the latter case (a very common application condition) CS1 does not contribute any errors, so putting the "outside foil" of the reference capacitor to this side will minimize roll-over. Also increasing Cref (without corresponding increases in $\mathrm{Cs}_{\text {s }}$) will reduce rollover. Note that stray capacitance to the buffer output is also unimportant if either REFHI or REFLO is at COMMON.

2. Input Voltage to COMMON

First, the direct CMRR of the buffer and integrator op amps will themselves lead to a scale factor error and an offset if INLO is not at analog COMMON. Higher order CMRR terms are generally negligible, and this first order term is very small for most devices. It can be adjusted out in most applications with a reference voltage adjustment. More serious is the effect of stray capacitance to ground of the integrating and auto-zero capacitors, and the AZ pin, Cs4 and Cs3 in Figure 2. The AZ pin will swing from COMMON to INLO (Figure 3) and $\mathrm{C}_{\text {S3 }}$ will have to be charged through $\mathrm{C}_{A Z}$, giving an error voltage on $\mathrm{C}_{A Z}$, during the integrate phase, of:

$$
\Delta V_{A Z}=V_{\text {INLO }} \frac{C_{S 3}}{C_{A Z}}
$$

This acts as an offset voltage referred to the input, and is most serious for small ratios of full-scale input voltage to common mode voltage: For $\mathrm{C}_{\mathrm{AZ}}=0.47 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{S} 3}=10 \mathrm{pF}, \mathrm{V}_{I N L O}=2 \mathrm{~V}$, the offset will be $40 \mu \mathrm{~V}$, or 0.4 counts for 200 mV full scale input. This charge is recovered in the transition back to COMMON

Figure 2. Auto-Zero Phase, with Offset Voltages and Stray Capacitances

Figure 3. Integrate Phase. All voltages shown with respect to COMMON.

Figure 4. DE-integrate Phase. Voltages shown with respect to COMMON, for positive input. | | shows values for negative input.
for DE-integrate (Figure 4), so the offset is not continued in this phase. The same charge, together with that due to C_{54}, also flows through the integrating capacitor. Ignoring second-order terms, the error voltage on the integrator output during the integrate phase will be:

$$
\Delta V_{I N T}=V_{I N L O}\left(\frac{C_{S 3}}{C_{A Z}}+\frac{C_{S 3}+C_{S 4}}{C_{I N T}}\right)
$$

However, the charge transferred through the integrating capacitor is also recovered for DE-integrate and does not cause any errors, except for inputs near zero. The decision as to the polarity of the input signal, and the required DEintegrate reference polarity is made precisely at the end of the integrate phase, and for small input signals the error charge on the integrating capacitor due to charging strays can exceed the true signal charge, leading to an incorrect choice of polarity. Thus, the return of the error charge at the beginning of DE-integrate will lead at once to a zero crossing and a result of zero with the wrong polarity. This shows up as a series of readings such as (in a bad case) $-4,-3,+0,+0,+0$, $+0,+1,+2,+3,+4$ for INLO negative (Figure 5). The magnitude of this effect is dependent on the full scale integrator swing, and is given by:

$$
\Delta \text { pol. }=2000\left(\frac{V_{\text {INLO }}}{V_{\text {INTFS }}}\right)\left(\frac{C_{S 3}}{C_{A Z}}+\frac{C_{S 3}+C_{S 4}}{C_{\text {INT }}}\right)(\text { in counts })
$$

For $\mathrm{CINT}_{\text {IN }}=.22 \mu \mathrm{~F}, \mathrm{CS}_{4}=10 \mathrm{pF}, \mathrm{V}_{\text {INTFS }}=+2 \mathrm{~V}$, and other values as before, this amounts to about 0.23 counts, but for $C_{A Z}=$ $0.047 \mu \mathrm{~F}$ (recommended for 2.0V F.S.) Δ pol is 0.6 counts. A small increase in stray capacitance or reduction of integrator swing will give a significant "gap" in the readings, as shown in Figure 5. This effect, the only one causing significant nonlinearity, can be reduced by guarding the integrating and auto-zero capacitors and resistor with either BUFFer out or INTegrator out pins in so far ds possible. This can readily be done on a PC board by simple extension of the traces leading from those pins to the three components, as suggested in Figure 6. Note that excessive capacitance across RINT will increase the width of the zero reading (see

Figure 5. "GAP" in readings due to VINLO \neq COMMON (a bad case shown)

Figure 6. Reducing Stray Capacitances $\mathrm{C}_{S 3}$ and $\mathrm{C}_{S 4}$

A017 for a discussion of a similar effect), while capacitance across $C_{A Z}$ and $C_{I N T}$ has no effect on the circuit.

3. Analog COMMON to digital supply voltages

The COMMON line on the ICL7106/7 family of devices provides a convenient ground-return point in many applications; particularly with floating (battery) supplies. However, in a fixed supply environment, improved integrator swing (improving many system parameters) can be achieved if COMMON is pulled more negative, and the circuit has been set up to allow this. The effects described above are all independent of the actual level of COMMON, but the next one is not!

The DE-integrate phase should ideally terminate when the output of the comparator returns to the value it had during Auto-Zero (analog COMMON), but will actually terminate when the output passes through the logic threshold of the zero-crossing gate and flip-flop combination. The "free" analog COMMON voltage is very close to the logic threshold, giving a negligible error, but if analog COMMON is pulled negative, zero crossing will be detected late for positive inputs, (reading high) and early for negative inputs (reading low), this leads to a (positive) offset. The polarity detection sees the same influence, so no nonlinearity results. The magnitude of this offset depends on comparator gain (typically $7-8 \mathrm{~K}$, but as low as 3 K in some devices) and F.S. integrator swing;

$$
\text { OFFSET }(\text { COMMON })=2000\left(\frac{V_{\text {COMMON }}-V_{T H}}{V_{I N T F S} A_{V C O M P}}\right)
$$

With a 2 V swing and 3 K gain, this will contribute $1 / 3$ count per COMMON negative volt. This can be used to measure comparator gain, at least with moderate accuracy, which is otherwise hard to do. Obviously, the offset can be minimized by maximizing the integrator swing. The comparator gain varies from device to device, and is limited also by the need to keep the comparator fast. Various improvements in this gain have been made, and will probably continue to be made in the future, but this offset should be considered carefully if COMMON is to be moved away from its "free" location, or if the logic supplies are altered.

4. The Auto-Zero Loop Residual

During the Auto-Zero phase, the converter self-corrects for all the offset voltages in the buffer, integrator, and comparator.
This section covers a normally undetectable, but under some circumstances significant, error generated in the auto-zero system. A similar effect which occurs in the 2-chip systems has been discussed previously (see A030, Appendix A), but the details and remedies are sufficiently different to warrant a separate discussion.
The relevant circuit to be discussed is shown in Figure 7 and the major cycle waveforms in Figure 8. Let us first assume that the prior auto-zero cycle has been indefinitely long, or is otherwise ideal, so that the conversion starts with no residual error on the auto-zero capacitor. The integrate and DEintegrate cycles will be classically perfect to the point at which a zero-crossing actually occurs (at the output of the integrator). However, from this point two delays occur; first the comparator output is delayed (due to comparator delay) and secondly the zero-crossing is not registered until the next appropriate clock edge. (For further discussion of this, see Application Note A017). At this point, the circuit is returned to the auto-zero connection (logic and switch delays may be absorbed in comparator delay as far as our discussion is concerned). The net result is that the integrator output voltage will have passed the zero-crossing point by an amount given by

$$
V_{\text {Ires }}= \pm V_{\text {IFS }}\left(\frac{C D+c X}{C F S}\right)
$$

where $0 \leq c x \leq 1$ is the variable delay, CD_{D} is the fixed delay, CFS is the full scale count in units of clock pulse periods, and $\mathrm{V}_{\text {IFS }}$ is the full scale integrator swing in volts.
Note: In all subsequent discussions, " C " indicates a capacitor, while " c " denotes a number (not necessarily an integer) of counts.
The range of this residual voltage corresponds to the integrator swing per count, and is independent of input value, except for polarity.

Note, however, that we have assumed a zero-crossing actually occurred. If the input is overloaded (past full scale), DE-integrate will terminate with a substantial residual voltage remaining on the integrator capacitor. The maximum value of this residual depends on the total possible swings of buffer and integrator, as compared to the "full scale" values used. In general, we may treat this case as corresponding to a large negative value of $c x$.
The immediate effect of closing the auto-zero loop may be seen by examining Figure 7. We may consider the comparator as acting as an op-amp. Under these conditions: the voltage across the auto-zero impedance is high, and the (nonlinear) impedance is low; on the other hand, the initial voltage across the integrating resistor is zero.
Thus, the auto-zero capacitor will be charged rapidly to exactly cancel the residual voltage, as shown in Figure 9. The output of the integrator is now at the correct position, but the auto-zero and integrator capacitors have shared the original error. The junction point of the two capacitors and resistor has been moved by a portion of the original residual voltage, given by:

$$
\begin{equation*}
V_{A Z I}=V_{\text {Ires }}\left(\frac{C_{\text {INT }}}{C_{A Z}+C_{\text {INT }}}\right) \tag{4.1}
\end{equation*}
$$

Figure 8. Major Cycle Waveforms

Figure 7. The Analog System (simplified to show only Auto-Zero connections)

This voltage will decay with a time constant controlled by the integrating resistor and the two capacitors, while the autozero capacitor is easily kept in step owing to the high comparator gain. Thus, at the end of the auto-zero time, $t_{A Z}=c_{A Z} t_{c p}$, the residual will be reduced to:

$$
\begin{aligned}
& V_{A Z \text { res }}=V_{A Z I} \exp \left(\frac{-\left(C_{A Z}\right)\left(t_{C P}\right)}{R_{I N T}\left(C_{I N T}+C_{A Z}\right)}\right) \\
& =V_{\text {Ires }}\left(\frac{C_{I N T}}{C_{A Z}+C_{I N T}}\right) \exp \left(\frac{\left.1-C_{A Z}\right)\left(t_{C P}\right)}{R_{I N T}\left(C_{I N T}+C_{A Z}\right)}\right)
\end{aligned}
$$

For the residual left after a zero-crossing, we may further refine this to:

$$
\begin{align*}
& V_{A Z \text { res }}=V_{I F S}\left(\frac{c X}{}+C_{D}\right. \\
& C F S \tag{4.2}
\end{align*} \frac{C_{I N T}}{\left(C_{A Z}+C_{I N T}\right)} .
$$

For the overrange case, we may again assume a large negative cx value.

Now Rint Cint is controlled by the buffer swing, VbFs, the integrator swing, $V_{I F S}$, and the integration time $\mathrm{t}_{\mathrm{INT}}=\mathrm{CINT} \mathrm{t}_{\mathrm{cp}}$, so that
$\mathrm{V}_{\text {BFS }} /$ RINT $\cdot \mathrm{t}_{\text {INT }}=\mathrm{C}_{\text {INT }} \mathrm{V}_{\text {IFS }}$, or RINT $C_{\text {INT }}=\mathrm{CINT} \frac{\mathrm{V}_{\text {BFS }}}{\mathrm{V}_{\text {IFS }}} \mathrm{t}_{\mathrm{CP}}$
Also we may write $\mathrm{C}_{\mathrm{AZ}}=\alpha \mathrm{C}_{\mathrm{INT}}$, for convenience, and will then obtain

$$
\begin{equation*}
V_{\text {AZres }}=V_{\text {Ires }}\left(\frac{1}{1+\alpha}\right) \exp \left(\frac{-\mathrm{CAZ}_{\mathrm{IIFS}}}{\mathrm{CINT} \mathrm{~V}_{\mathrm{BFS}}(1+\alpha)}\right) \tag{4.3}
\end{equation*}
$$

ALL ANALOG VOLTAGES ARE WITH RESPECT TO THEIR "AUTO-ZEROED" VALUE

Figure 9. Waveforms at Beginning of Auto-Zero Interval

This residual voltage on the auto-zero capacitor effectively increases the magnitude of the input voltage as seen on the output of the buffer. Thus, converting this voltage to countequivalents,

$$
\begin{align*}
& C_{A Z r e s}=\frac{V_{A Z r e S}}{V_{B F S}} \cdot C F S=\frac{V_{\text {IFS }}}{V_{B F S}} \frac{C_{X}+C_{D}}{1+\alpha!} \\
& \exp \left(-\frac{C_{A Z}}{C_{I N T}} \cdot \frac{V_{\text {IFS }}}{V_{B F S}} \cdot \frac{1}{1+\alpha}\right) \tag{4.4}
\end{align*}
$$

Since this voltage also subtracts from the reference, its effect at the input is magnified in the ratio

$$
\begin{align*}
& \text { CINres }=\text { CAZres }\left(\frac{C_{I N T}+C D E}{C I N T}\right) \text { so that } \\
& \text { CINres }=\left(1+\frac{C D E}{C I N T}\right)\left(\frac{V_{I F S}}{V_{B F S}}\right) \frac{(C X+C D)}{(1+\alpha)} \\
& \exp \left(-\frac{C A Z}{C_{I N T}} \cdot \frac{V_{I F S}}{V_{B F S}} \cdot \frac{1}{1+\alpha}\right) \tag{4.5}
\end{align*}
$$

Note that CDE is equal to the displayed result, except for overrange conditions, when it is equal to CFS and the first bracket becomes 3. Also, CAZ $=$ CINT; and this expression, so substituted, determines the overrange residual performance.

For the normal in-range condition, two things should be noted here. First, this residual acts to increase the input voltage magnitude, and secondly, a small increase in input voltage tends to decrease the magnitude of the residual (until the result count changes). These effects lead to "stickyness" in the readings; suppose, in a noise-free system, that the input voltage is at a level where the residual is a minimum; the detected zero-crossing follows the true one as closely as possible. A minute increase in input voltage will cause the zero-crossing to be detected one pulse later, and the residual to jump to its maximum value. The effect of this is a small increase in the apparent input voltage; thus if we now remove the minute increase, the residual voltage effect will maintain the new higher reading; in fact we will have to reduce the input voltage by an amount commensurate with the effective residual voltage to force the reading to drop back to the lower value. In more detail, we should consider the equilibrium conditions on the auto-zero capacitor. Clearly, the voltage added at the end of reference integrate must just balance that which decays away during the auto-zero interval. So far the relationships we have developed have assumed a zero residual before the conversion, but in the equilibrium condition the residual given by equation (4.4) remains, and at the end of conversion, the new amount, given by equation (4.1), is added to this, so we start the "auto-zero decay" interval with

$$
\begin{equation*}
\mathrm{CAZI}=\mathrm{CAZres}+\frac{\mathrm{V}_{1 F S}}{V_{B F S}} \frac{(\mathrm{CX}+\mathrm{CD})}{(1+\alpha)} \tag{4.6}
\end{equation*}
$$

By combining equations (4.4) and (4.6) we find, for the equilibrium condition,

$$
c_{A Z r e s}= \pm \frac{V_{\text {IFS }}}{V_{B F S}} \frac{\left(C X+C_{D}\right)}{(1+\alpha)}
$$

$$
\left[\exp \left\{+\frac{\mathrm{CAZ} \mathrm{~V}_{\mathrm{IFS}}}{\operatorname{CINT} \mathrm{~V}_{\mathrm{BFS}} \mid 1+\alpha!}\right\}-1\right]^{-1}
$$

Once again, the effect of this at the input is multiplied by the ratio of total input integrate times, so that, under equilibrium conditions,

$$
\begin{align*}
& \text { CINres }= \pm \frac{V_{I F S}}{V_{B F S}}\left(1+\frac{C D E}{C I N T}\right) \frac{(C X+C D)}{(1+\alpha)} \\
& {\left[\exp \left\{\frac{C A Z V_{I F S}}{\operatorname{CINT} V_{B F S}(1+\alpha)}\right\}-1\right]^{-1}} \tag{4.7}
\end{align*}
$$

Those expert at skipping to the end of the difficult bit will recognize that as the final equation, in terms of complexity. So let us now see what it means. Clearly, the error term is greater, the larger CDE/CINT, and the smaller CAZ/CINT. For the devices considered here (except some applications of the ICL7109) these are both worst case near full scale input, where $C_{D E} / C_{I N T} \approx 2$ and $C_{A Z} / C_{I N T} \approx 1$.
Substituting these, we find the worst case

$$
\begin{align*}
& \text { CINres } \simeq \pm \frac{V_{\text {IFS }}}{V_{\mathrm{BFS}}}(3) \frac{(C X+C D)}{(1+\alpha)} \tag{4.8}\\
& {\left[\exp \left\{\frac{V_{\text {IFS }}}{V_{\mathrm{BFS}}(1+\alpha)}\right\}-1\right]^{-1}}
\end{align*}
$$

Recall that C_{D} is fixed; and c_{x} must be between 0 and 1 . The expression is now a function purely of the ratio of integrator and buffer full scale swings, and the ratio of auto-zero and integrator capacitors, α. The effect of the latter ratio is mixed; a larger value reduces the initial error, but increases the time - constant for its decay. The relationship is plotted in Figure 10 and shows the desirability of keeping the integrator swing higher than the buffer swing. Note also that a lower capacitance ratio α always improves the residual. However, both noise and the common-mode effects discussed in Section 3 above require a large auto-zero capacitor, and a compromise must be reached. In general, if the full scale input is small, a large $\mathrm{C}_{A Z}$ is needed, but for larger full scale inputs, a smaller value is best. Note also that the comparator delay ($C D$ in equation (4.8)) is also effectively enhanced. This has the effect of shrinking the zero somewhat more than

Figure 10. Auto-Zero Loop Residual vs. Integrator/Buffer Swing and Capacitor Ratios (worst case)

Figure 11. Auto-Zero Loop Residual vs. Integrator/ Buffer Swing for Overload and Capacitor Ratio
normally occurs. Since this term changes sign with polarity, the converter will have a tendency to keep the current sign at zero input.
The effects of noise should be mentioned here. The worst case value of residual shown in Figure 10 assumes a very gradual approach to equilibrium, and any noise spike causing the reading to flash to the next value will destroy this carefully established residual value! Thus, for any system with noise of $1 / 3$ count or more, the effect is greatly reduced, and even $1 / 10$ count of noise will restrict the actual hysteresis value found in practice. The detailed analysis of the autozero residual problem in the presence of appreciable noise is left as an exercise for the masochist

For overrange conditions, the controlling equation is (4.5) with the appropriate substitutions for the count ratios. Specifically, putting COR for the count-equivalent value of the overrange above full scale, and ignoring $C D$, we obtain:

$$
\begin{equation*}
C_{\text {INres }}=3\left(\frac{V_{\mathrm{IFS}}}{V_{\mathrm{BFS}}}\right)\left(\frac{\mathrm{COR}}{1+\alpha}\right) \exp \left[-\frac{V_{\mathrm{IFS}}}{V_{\mathrm{BFS}}} \cdot \frac{1}{1+\alpha}\right] \tag{4.9}
\end{equation*}
$$

This is plotted in Figure 11, and shows the very strong dependence on the integrator to buffer swing ratio. The direction is the opposite of that for the post-zero-crossing residual, as well as being normally much larger. A positive overrange on one reading will tend to make the next reading(s) too negative, and vice versa. The influence on second and even subsequent readings after an overrange can also be appreciable in some cases. The miss-charge trapped on the auto-zero capacitor during the first conversion after an overrange will still be there at the end. If this conversion is in-range, we may ignore Cx and CD and just consider the continuation of the exponential decay during the following Auto-Zero phase. Thus, at the beginning of the second conversion, the residual will have been reduced to:

$$
\text { CAZres } 2=\mathrm{CAZres}^{\exp }\left[-\frac{\mathrm{CAZ}^{C I N T}}{\mathrm{CIN}^{2}} \cdot \frac{\mathrm{VIFS}}{\mathrm{~V}_{\mathrm{BFS}}} \cdot \frac{1}{1+\alpha}\right]
$$

Figure 12. Circuits to Reduce Civerrange Residual on ICL7109
where CAZres is given by equation (4.4). This will be similar for subsequent in-range conversions. The effect at the input is again increased by the time ratio of DE-integrate and INTegrate, and so we may write, for the effective error at the input on the nth conversion after the overrange:

CINresn $=$
$\left(1+\frac{\mathrm{CDE}}{\mathrm{CINT}}\right)\left(\frac{\mathrm{V}_{\mathrm{IFS}}}{\mathrm{V}_{\mathrm{BFS}}}\right)\left(\frac{\mathrm{COR}}{1+\alpha}\right)\left[\exp \left(-\frac{\mathrm{CAZ}}{\mathrm{CINT}} \cdot \frac{\mathrm{V}_{\mathrm{IFS}}}{\mathrm{V}_{\mathrm{BFS}}} \cdot \frac{1}{1+\alpha}\right)\right]^{n}$

This also is plotted in Figure 11, for various values of n against $\frac{V_{\text {IFS }}}{V_{\text {BFS }}} \frac{1}{1+\alpha}$, for worst case conditions (an overload followed by several full scale conversions).

The residual can be reduced for devices, such as the ICL7109, which provide indications of overrange conversions and auto-zero phase (OR and STATUS in the ICL7109) by reducing the integrator time constant during all or part of the Auto-Zero phase after an overrange conversion. This can be done by shorting out all or part of the integrating resistor Rint by a suitable analog switch. A circuit to do this is shown in Figure 12 for the ICL7109. Care should be taken to ensure that the switch does not cause errors due to charge injection into the capacitors when going OFF. Alternatively the clock can be slowed down or stopped, or Run/Hold used to extend the Auto-Zero phase under the same conditions. These techniques are much harder to apply to devices such as the

ICL7106/7 which do not provide the necessary signals. Generally, however, these devices are not used in multiplexing applications.

SUMMARY

This note has described the most common behavior patterns that cause concern and/or confusion among users of the ICL7106/7 and similar products, and their origins. Hopefully, it will help alleviate or eliminate any consequent applications problems with this family of devices. Naturally, some parts will not show all of the effects; for instance, the ICL7116/7 and ICL7135 cannot suffer from large common-mode voltages between reference and COMMON, because no such voltage can be applied, and the ICL7135 has a modified autozero sequence that alters the residual effects of Section 4.

Know your converter codes. When you work with a/d and d/a converters, there are many input and output codes to choose from. Here are some characteristics of each.

The right digital code can help simplify system design when analog-to-digital and digital-to-analog converters are used in the system.

While some custom a/d and d/a converters use special codes, off-the-shelf units employ one of a few common codes adopted by the industry as "standard" (Table 1). Understanding which code to use, and where, is the key to a simpler system design. And the added benefits with a standard code include lower cost of the converter and a wider choice of vendors.

Many designers are perplexed about application. There are unipolar codes-straight binary, complementary binary and binary coded decimal (BCD). There are bipolar codes-sign-magnitude binary, sign-magnitude BCD, offset binary, one's complement and two's complement. Other decimal codes include excess-three, 2421, 5421, 5311 and 74-2-1. And there are also reflective codes-such as the Grey code; and error-detecting codes-like the Hamming.

All codes used in converters are based on the binary numbering system. Any number can be represented in binary by the following
$\mathrm{N}=\mathrm{a}_{\mathrm{n}} 2^{\mathrm{n}}+\mathrm{a}_{\mathrm{n}-1} 2^{\mathrm{n}-1}+\ldots+\mathrm{a}_{2} 2^{2}+\mathrm{a}_{1} 2^{1}+\mathrm{a}_{0} 2^{0}$, where each coefficient a assumes a value of one or zero. A fractional binary number can be represented as

$$
N=a_{1} 2^{-1}+a_{2} 2^{-2}+a_{3} 2^{-3}+\ldots .+a_{n} 2^{-n}
$$

A specific binary fraction is then written, for example, as 0.101101 . In most converters it is this fractional binary number that is used for the basic converter code. Conventionally the fractional notation is assumed and the decimal point dropped.

The left-most digit has the most weight, 0.5 , and is commonly known as the most-significantbit (MSB). Thus the right-most digit would have the least weight, $1 / 2^{\mathrm{n}}$, and is called the least-significant-bit (LSB).

This coding scheme is convenient for converters, since the full-scale range used is simply interpreted in terms of a fraction of full scale. For instance, the fractional code word 101101 has a value of $(1 \times 0.5)+(0 \times 0.25)+(1 \times$

Table 1. Summary of coding for a / d and d/a converters

D/a converters		A/d converters
$\begin{aligned} & \frac{10}{0} \\ & \frac{0}{5} \\ & \frac{2}{5} \end{aligned}$	Straight binary	Straight binary
	BCD	BCD
	Complementary binary	Straight bin, invert. analog
	Complementary BCD	BCD, inverted analog
	Offset binary	Offset binary
	Complementary off. binary	Two's complement
	Two's complement	Offset bin, invert. analog
		Two's compl, invert. analog
		Sign + mag. binary
		Sign + mag. BCD

$0.125)+(1 \times 0.0625)+(0 \times 0.03125)+(1$ $\times 0.015625$), or 0.703125 of full-scale value. If all the bits are ONEs, the result is not full scale but rather $\left(1-2^{-n}\right) \times$ full scale. Thus a 10 -bit $\mathrm{d} /$ a converter with all bits ON has an input code of 1111111111 . If the unit has a $+10-\mathrm{V}$ full-scale output range, the actual analog output value is $\left(1-2^{-10}\right) \times 10 \mathrm{~V}=+9.990235 \mathrm{~V}$.
The quantization size, or LSB size, is full scale divided by 2^{n}-which in this case is 9.77 mV .

Analyzing digital codes

The four most common unipolar codes are straight binary, complementary binary, binarycoded decimal (BCD) and complementary BCD. Of these four, the most popular is straightbinary, positive-true. Positive-true coding means that a logic ONE is defined as the more positive of the two voltage levels for the logic family.

Negative-true logic defines things the other way-the more negative logic level is called ONE and the other level ZERO. Thus, for standard TTL, positive true logic makes the $+5-\mathrm{V}$ output logic ONE and 0 V a ZERO. In negative true logic the +5 V is ZERO and 0 V is ONE.

All four of the codes are defined (Table 2) in terms of the fraction of their full-scale values. Full-scale ranges of +5 and +10 V are shown. with 12 -bit codes.

Table 2. Unipolar codes-12 bit converter
Straight binary and complementary binary

Scale	+10 VFS	+5 V FS	Straight binary	Complementary binary
+ FS -1 LSB	+9.9976	+4.9988	111111111111	000000000000
$+7 / 8 \mathrm{FS}$	+8.7500	+4.3750	111000000000	000111111111
$+3 / 4 \mathrm{FS}$	+7.5000	+3.7500	110000000000	001111111111
$+5 / 8 \mathrm{FS}$	+6.2500	+3.1250	101002000000	010111111111
$+1 / 2 \mathrm{FS}$	+5.0000	+2.5000	100000000000	011111111111
$+3 / 8 \mathrm{FS}$	+3.7500	+1.8750	01100000000	100111111111
$+1 / 4 \mathrm{FS}$	+2.5000	+1.2500	01000000000	101111111111
$+1 / 8 \mathrm{FS}$	+1.2500	+0.6250	00100000000	110111111111
$0+1 \mathrm{LSB}$	+0.0024	+0.0012	000000000001	111111111110
0	0.0000	0.0000	00000000000	111111111111

BCD and complementary BCD

Scale	$+10 \mathrm{VFS}$	$+5 \mathrm{VFS}$	Binary coded decimal			Complementary BCD		
+FS - 1 LSB	+9.99	+4.95	1001	1001	1001	0110	0110	0110
+7/8 FS	+8.75	+4.37	1000	0111	0101	0111	1000	1010
+3/4 FS	+7.50	+3.75	0111	0101	0000	1000	1010	1111
$+5 / 8 \mathrm{FS}$	+6.25	+3.12	0110	0010	0101	1001	1101	1010
$+1 / 2 \mathrm{FS}$	+5.00	+2.50	0101	0000	0000	1010	1111	1111
$+3 / 8 \mathrm{FS}$	+3.75	+1.87	0011	0111	0101	1100	1000	1010
$+1 / 4 \mathrm{FS}$	+2.50	+1.25	0010	0101	0000	1101	1010	1111
$+1 / 8 \mathrm{FS}$	+1.25	+0.62	0001	0010	0101	1110	1101	1010
$0+1$ LSB	+0.01	+0.00	0000	0000	0001	1111	1111	1110
0	0.00	0.00	0000	0000	0000	1111	1111	1111

D/a and a/d converters: The operating basics

The basic transfer characteristic of an ideal d/a converter forms the plot shown in Fig. A. The d/a takes an input digital code and converts it to an analog output voltage or current. This form of discrete input and discrete output (quantized) gives the transfer function a straight line through the tops of the vertical bars. In general the analog values are completely arbitrary and a large number of binary digital codes can be used. Analog full-scale can be defined as 25.2 to 85.7 V as easily as 0 to 10 V .

In practice, though, the industry has settled on several codes and very simple ranges for most major applications. For instance, the transfer characteristics in Fig. A are for a d/a converter that uses a 3 -bit unipolar hinary code and an output defined only in terms of its full-scale value.

The ideal a/d converter (Fig. B) has a staircase transfer characteristic. Here an analog input voltage or current is converted into a digital word. The analog input is quantized into n levels for a converter with n bits resolution. For the ideal converter, the true analog value corresponding to a given output code word is centered between two decision levels. There are $2^{*} 1$ analog decision levels. The quantitization size, Q, is equal to the full-scale range of the converter divided by 2^{n}.

For the ideal d / a converter, there is a one-to-one correspondence between input and output, but for the a/d there is not, because any analog input within a range of Q will give the same output code word. Thus, for a given code word, the corresponding input analog value could have errors of from 0 to $\pm Q / 2$. This quantization error can be reduced only by an increase in converter resolution.

Although the analog input or output ranges are arbitrary, some of the standardized ranges include 0 to $+5,0$ to $+10,0$ to 5 and 0 to

10 V for unipolar converters, and 2.5 to $+2.5,-5$ to 5 and 10 to +10 V for bipolar units. Many units on the market are programmable types in which external pin connections determine the range of operation.

1. Weighted current-source configurations for straight binary (a) and complementary binary (b) coding gener.

ate output current in different directions. The resistor weighting determines the output code.

Complementary-binary, positive-true coding is also used in d / a converters. This scheme is used because of the weighted current source configuration employed in many converter designs.

Fig. 1 shows two commonly used weighted-current-source designs. The pnp version (Fig. 1a) delivers a positive output current with straight binary positive-true coding. When the logic input is ONE, or +5 V , the current source is on, since the input diode is back-biased. Thus the current from each ON weighted current source is summed at the common-collector connection and flows to the output. A ZERO input holds the cathode of the input diode at ground and steals the emitter current from the transistor, keeping it off.

The use of an npn current source (Fig. 1b) produces a negative output current with complementary binary positive-true coding. The pnp transistors operate in the same way as before, but each collector is connected to the emitter of an npn weighted current source, which is turned on or off by the pnp transistor. This basic
method finds common use in IC quad currentsource circuits.

Complementary binary, positive-true, coding is identical to straight binary negative true; these are just two definitions of the same code. Straight-binary, negative-true, coding is commonly used to interface equipment with many minicomputer input/output busses. Unipolar a/d converters most frequently use the straight binary positive-true coding. They also use straight-binary inverted-analog where the fullscale code word corresponds to the negative full scale analog value.

Another popular code used in many converters is BCD. Table 2 shows three-decade BCD and complementary BCD codes used with converters that have full-scale ranges of +5 or +10 V . BCD is an 8421 weighted code, with four bits used to code each decimal digit. This code is relatively inefficient, since only 10 of the 16 code states for each decade are used. It is, however, a very useful code for interfacing decimal displays and switches with digital systems.

2. Binary (a) and BCD (b) ladder networks in d/a converters use the same weighting in the resistor quads but different divider ratios.

3. Möst a/d converters for bipolar operation are offset by a current equal to the, value of the MSB. The halfscale then becomes $100 \ldots 0$.

With d/a converters, it is especially convenient to have input decimal codes for use with such equipment as digitally programmed power supplies. And, with a/d converters, BCD is particularly popular for the dual-slope type for direct connection to numeric displays.

BCD coding in converters can be achieved in two ways: binary-to-BCD code conversion or direct weighting of internal resistor ladders and current sources. Today it is almost always done by resistor weighting schemes (Fig. 2). Each of the weighted resistors gets switched to a voltage source and thus generates the weighted current for the amplifier. Fig. 2a shows an 8 -bit binary ladder network. Due to temperature-tracking constraints, groups of four resistors are used. Then the total resistance variation won't exceed 8-to-1.

In between the groups of four resistors is a current divider composed of two resistors that give a division ratio of 16 to 1 between resistor quads. The BCD ladder configuration is similar, with the same values in each of the groups of four resistors. In this case, however, the current divider has a ratio of 10 to 1 between resistor quads. Thus, because of the difference in internal weighting, BCD-coded converters cannot be pinstrapped for another code; they must be ordered only for BCD use.

Codes can be made bipolar

Most converters have provision for both unipolar and bipolar operation by external pin connection. The unipolar analog range is offset by one-half of full scale, or by the value of MSB current source, to get bipolar operation (Fig. 3). The current source, equal to the MSB current, is
derived from the internal voltage reference, so it will track the other weighted current sources with temperature.

For bipolar operation, this current source is connected to the converter's comparator input. Since the current flows in a direction opposite from that of the other weighted sources, its value is subtracted from the input range. With the weighted currents flowing away from the comparator input, the normal input voltage range is positive. Thus the offsetting can change a 0 to $+10-\mathrm{V}$ input range into a -5 to $+5-\mathrm{V}$ bipolar range.

If the analog range is offset for a converter with straight binary coding, the new coding becomes offset binary. This is the simplest code for a converter to implement, since no change in the coding is required. Table 3 shows offset binary coding for a bipolar converter with a ± 5-V input range. All ZEROs in the code correspond to minus full scale. The code word that was originally half-scale becomes the analog zero, 1000 00000000 . And all ONEs correspond to +5 V less one LSB. Successive-approximation a/d converters also have a serial, straight-binary output. This serial output is the result of the sequential conversion process, and it also becomes offset binary when the converter is connected for bipolar operation.

Three other types of binary codes are shown in Table 3, along with the offset binary. Of all four, the two most commonly used are offset binary and two's complement. Some converters use the sign-magnitude binary, but the one's complement is rarely used.

The two's complement code is the most popular because most digital arithmetic is performed in it; thus most interfacing problems are elim-

Table 3. Bipolar codes-12 bit converter

Table 4. Inverted analog offset binary coding comparison

Scale	Normal analog offset binary	Inverted analog offset binary	Normal analog comp. offset binary
+FS	111111111111	000000000000	
+FS - 1 LSB	110000000000	000000000001	000000000000
+1/2 FS	100000000000	010000000000	001111111111
0	010000000000	100000000000	011111111111
$-1 / 2$ FS	110000000000	101111111111	
-FS +1 LSB	000000000001	111111111111	111111111110
-FS	000000000000		111111111111

4. For two's complement coding in a d/a, the MSB current-source must go to the opposite terminal from the other weighted sources to avoid output glitches.

5. The inverted-analog d/a converter (a) and the invert-ed-analog a/d converter (b) have negative-going analog output and input values, respectively.
inated. The easiest way to characterize the two'scomplement code is to look at the sum of a positive and negative number of the same magnitude; the result is all ZEROs plus a carry.
'Visually the only difference between two's complement and offset binary is the left-most bit. In two's complement code it is the complement of the left-most bit in offset binary.
This left-most bit is normally called the MSB; in offset binary it is, in effect, the sign bit, and is so called in the other codes. Thus two's-complement coding is derived from offset binary when the sign bit is complemented and brought out as an additional output.

Coding has its limitations

Both two's-complement and offset-binary codes have magnitudes (if we temporarily forget about the sign bit) that increase from minus full scale to zero, and, with a sign change, from zero to plus full scale. Both codes have a single definition of zero. On the other hand, one's-complement and sign-magnitude codes have magnitudes that increase from zero to plus full scale and from zero to minus full scale. Both of these codes have two
code words for zero, as shown in Table 3. Because of the extra code word used for zero, the range of these codes is one LSB less than for offset-binary and two's-complement coding.

For positive numbers, one's-complement is the same as two's-complement. The negative number in one's-complement is obtained when the positive number is complemented. Sign-magnitude coding is identical to offset binary for positive numbers; negative numbers are obtained by use of the positive number with a complemented sign bit.

D a converters don't usually use two's complement coding. This is because it's hard to invert the MSB weighted current source. If the logic input is inverted, there is an extra digital delay in switching the current source, and this causes large output transients when the current is switched on and off.

The other alternative is to change the direction of the MSB current irstead of inverting the digital input. This is also difficult to do and can introduce switching delays.

One satisfactory way of inverting the MSB is shown in Fig. 4. Here a voltage output d a converter that uses two's-complement coding has the MSB current switched into the negative ampli-
fier input terminal, while the other weighted currents are switched into the load resistor and positive input terminal. Thus opposite-polarity output voltages are produced, and there are no additional switching delays in the MSB.

One other code in Table 1 is the sign-magnitude BCD. This code, used mostly in dual-slope a/d converters, usually requires 13 bits for a three-decade digital display. Of the 13 bits, 12 are for the BCD code and one for the sign bit. An additional output bit for an overrange indication is generally supplied.

Another scheme in Table 1 is inverted analog code. This is also called negative reference coding. While most converters use zero to plus full scale as analog values; the inverted configuration uses zero to minus full scale values. The coding then increases in magnitude when the analog level increases in magnitude from zero to minus full scale. For bipolar coding, normal analog has an increasing code as the analog value goes from minus full scale to plus full scale; inverted analog coding does the opposite-the code increases as the analog value goes from plus full scale to minus.
Why the need for this code? Fig. 5a shows a d/a converter that delivers a negative output current. With bipolar operation and use of the offset current source, the converter provides a code ZERO that corresponds to plus full scale
output current. However, if a current-to-voltage converter is used at the output, an inversion takes place, and a normal analog output voltage results.

In Fig. 6b, a d/a converter with positive output current is used in an a/d converter. Since the d / a output current is summed with the offset and input current at the comparator input, a negative input voltage is needed to balance these currents. The analog input thus goes from plus full scale to minus full scale for an increasing output code. Normal analog coding is achieved by use of an inverting amplifier ahead of the analog input terminal.

Inverted analog coding is compared with the normal offset binary coding in Table 4. This comparison shows that if the inverted analog offset binary code is rotated around the zero of the analog voltage, a normal analog offset binary output results. If inverted analog offset binary is compared with normal analog complementary offset binary, the two codes will appear identical except for an offset of one LSB. The relationship between these two codes can be expressed as:

Normal analog complementary binary +1 LSB $=$ Inverted analog offset binary.
Therefore a converter that uses one of these codes can also be used for the other with an external offset adjustment of 1 LSB .

The ICL7104
 A Binary Output A/D Converter for μ Processors

1. INTRODUCTION

The ICL7104, combined with the ICL8052 or ICL8068, forms a member of Intersil's high performance A/D converter family. The 16 -bit version, the ICL7104-16, performs the analog switching and digital function for a 16-bit binary A / D converter, with full three state output, UART handshake capability, and other outputs for a wide range of output interfacing. The ICL7104-14 and ICL7104-12 are 14 and 12bit versions. The analog section, as with all Intersil's integrating converters, provides fully precise Auto-zero, Auto-polarity (including ± 0 null indication), single reference operation, very high input impedance, true input integration over a constant period for maximum EMI rejection, fully ratiometric operation, over-range indication, and a medium quality built-in reference. The chip pair also offers optional input buffer gain for high sensitivity applications, a built-in clock oscillator, and output signals for providing an external auto-zero capability in preconditioning circuitry, synchronizing external multiplexers, etc., etc. The basic schematic connections are shown in Figure 1.

The chip pair operates as a dual-slope integrating converter. The conversion takes place in three stages, each with their own configuration. In the first, or auto-zero phase (this is also the "idle" condition), the converter self-corrects for all the offset voltages in the buffer, integrator, and comparator. During the second, or input integrate phase, the converter integrates the input signal for a fixed time (215 clock puises for the -16 part, 213 for $-14,211$ for -12). The converter then determines the (average) polarity of the input, and during the third, or deintegrate (alias reference integrate) phase, integrates the reference voltage in the opposite polarity, until the circuit returns to the initial condition. This point is known as the zero-crossing, and terminates the conversion process. The time (number of clock pulses) required to reach zerocrossing is proportional to the ratio of the input signal to the reference. A more detailed discussion of the operation of the dual-slope converter, including the ICL8052-ICL-710X family, is given in Application Note A017 "The Integrating A/D Converter." Figure 2 shows the basic waveforms of the Integrator.

Figure 1: $8052 \mathrm{~A}(8068 \mathrm{~A}) / 7104$ 16/14/12 Bit A/D Converter.

Figure 2: Simplified Dual-Slope Converter and the Three Phases of a Dual-Slope Conversion.

This application note will first cover the digital interface of the ICL8052(ICL8068)-ICL7104 chip pair to digital systems of various kinds, including microprocessors, using the three state output capabilities (covered in Section 2) and the handshake system built irito the 7104 (Section 3). Finally, some (mainly) analog techniques to enhance the system performance in certain applications are covered in Section 4. An Appendix covers a normally undetectable but under some circumstances significant error generated in the autozero system.

2. DIGITAL INTERFACE

(Without Internal Handshake)
The output format of the ICL7104 is extremely versatile, and includes a full internal handshake capability, which is discussed in the next section. Here we will be concerned only with the "normal" three state output lines. To disable the handshake circuitry, the MODE pin (pin 27) should be tied low (to digital gnd).
In this mode, the most useful output-timing signal is the STaTuS (STTS) line (pin 3), which goes high at the beginning of the signal integrate phase. When zero crossing occurs (or overload detection), new data is latched on the next clock pulse, and $1 / 2$ clock pulse later, the STTS line goes low. Thus, the new data is stable on this transition. The Run $/ \overline{\text { Hold }}$ pin (R/H) (pin 28) is also useful for controlling conversions. A more detailed description of the operation of this pin is given in Section 4.B, but it will suffice to say here that if it is high, conversions will be performed continuously, while if it is low, the current conversion will be completed, but no others will start until it goes high again. There are 18 data output lines (16 and 14 on the 14-bit and 12-bit versions), including the polarity and over-range lines. These lines are grouped in sets of no more than 8 for three stated enable purposes, in the format shown in Figure 3, under the control of the byte and chip disable lines shown. To enable any byte, both the chip disable and the corresponding byte disable lines must be low. If all four (three for 7104-14 and -12) disable lines are tied low, all the data output lines will be asserted full time, thus giving a latched parallel output. For a three state parallel output, the three (two) byte disable lines should be tied low, and the chip disable line will act as a normal three state control line, as shown in Figure 4. This technique assumes the use of an $18(16,14)$ bit wide bus, fairly common among minicomputers and larger computers, but still rare among microprocessors (note that "extra" bits can sometimes be sensed as condition flags, etc.). For small words, the bit groups can be enabled individually or in pairs, by tying the chip disable line low, and using the byte disable lines either individually or in any combination as three state control lines, as shown in Figure 5 . Several devices can be three stated to one bus by the technique suggested in Figure 6, comparable to row and column selection in memory arrays.

Figure 4: Full 18 Bit Three State Output

Figure 5: Various Combinations of Byte Disables

Figure 3: Three State Formats via Disable Pins

Figure 6: Three Stating Several 7104's to a Small Bus.

Some practical interface circuits utilizing the parallel and three state output capabilities of the ICL7104 are shown in Figures 7 through 13. Figure 7 shows a straightforward application to the Intel MCS-48, 80, and 85 systems via an 8255 PPI , using full-time parallel output. The I/O ports of an 8155 can be used in the same way. This interface can be used in a read-anytime mode, although there can be timing problems here, since a read performed as new data is being latched in the ICL7104 may lead to scrambled data. (Note that this will occur only very rarely, in proportion to the ratio
of setup-skew to conversion times). One way to overcome this problem is to read back the STTS line as well, and if it is high, read the data again after a delay exceeding $1 / 2$ (converter) clock cycle. If STTS is now low, the second reading is correct, if it is still high, the first reading was correct (note that data never changes when STTS is low, and it goes low $1 / 2$ clock cycle after data update occurs). Alternatively, the problem is completely avoided by using a read-after-update mode, as shown in Figure 8. Here the high to low transition of STTS triggers a "read data" operation

Figure 7: Full Time Parallel/Interface 8052(8068)-7104 to MCS-48, 80/85 Families

Figure 8: Full Time Parallel Interface 8052(8068)-7104 to MCS-48, 80/85 Families With Interrupt

through the MCS-8 Interrupt system. This application also shows the R / \bar{H} pin being used to initiate conversions under software control. If continuous conversions are desired, R / \bar{H} may be held high, and if the maximum possible conversion rate is desired, $\mathrm{R} / \overline{\mathrm{H}}$ may be tied to clock out (see Section 4.B below).

A similar interface to the Motorola MC6800 system is shown in Figure 9. Since the maximum input-port count here is only 16, while the 16 -bit ICL7104 has 18 outputs, control register A is used to input the two extra bits. The high to low transition of the STTS pin enables the two high bits, clocking the two interrupt flags in Control Register A if they are negative. A pullup resistor is needed on CA1, though CA2 has one internally. The same transition causes an interrupt via Control Register B's CB1 line. It is important to ensure that the software interrupt routine reads control register A before reading data port A, since the latter operation will clear the interrupt flags. Note that CB2 controls the $\mathrm{R} / \overline{\mathrm{H}}$ pin through control register B, allowing software initiation of conversions in this system also. Naturally, the 14 and 12 bit versions of the ICL7104 avoid this problem since 16 or fewer bits need to be read back. Since the MOS Technology MCS650X microprocessors are bus-compatible with the MC6800's the same circuit can be used with them also.

Figure 10 shows an interface to the Intersil IM6100 microprocessor family through the IM6101 PIE device. Here the data is read back in a 10-bit and an 8-bit word, directly from the 7104 onto the 12-bit data bus. Again, the high to low transition of the STTS line triggers an interrupt. This leads to a software routine which controls the two read operations. As before, the R / \bar{H} pin is shown as being under software control, though the options mentioned above are equally acceptable, depending on system needs.
These Interrupt-fed systems essentially use an external handshake operation, under software control. An interesting variation, using the Simultaneous Direct Memory Access (SDMA) capability of the IM6100 family, is shown in Figure 11. The IM6102 MEDIC allows DMA during bus-idle processor cycles, so the transfer takes no extra time. The current address and extended current address registers of the IM6102 control the memory location to which the data will be sent, and the STTS output of the ICL7104 allows data transfer only when the converter is not updating information. The ECA register is used to drive the byte select lines (CA should be set to 7777, and WC to 2) and the User Pulse controls Chip disable $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$. A more fully loaded system can use address latches for CA. A DMA system can also be set up on the MCS-8 system using the DMA controller, 8257, and the three state outputs of the ICL7104.

Figure 9: Parallel Interface from 7104 to MC 6800 Family (also MCS650X Family)

Figure 10: 8052(8068)/7104 Parallel Interface With $6100 \mu \mathrm{P}$

DATA ACQUISITION \& CONVERSION HANDBOOK

Figure 11: $8052(8068) / 7104$ Parallel Interface With $6100 \mu \mathrm{P}$ Using DMA

It is possible using the three state output capability, to connect the ICL7104 directly onto many microprocessor busses. Examples of this are shown in Figures 12 and 13. It is necessary to consider the system timing in this kind of application, and careful study should be made of the required set-up times from the microprocessor data sheets.

Note also the drive limitations on long busses. Generally this type of circuit is only favored if the memory peripheral address density is low, so that simple redundant address decoding can be used. Interrupt handling can require multiple external components also, and use of an interface device is normally advisable if this is needed.

Figure 12: Direct 8052(8068)/7104 to MC6800 Microprocessor Interface

Figure 13: Direct Connection of $8052(8068) / 7104$ to MCS-80/85 System

3. HANDSHAKE MODE INTERFACE

Entry into the handshake mode will occur if either of two conditions are fulfilled; first, if new data is latched (i.e. a conversion is completed) while MODE pin (27) is high, in which case entry occurs at the end of the latch cycle; or secondly, if the MODE pin goes from low to high, when entry will occur immediately (if new data is being latched, entry is delayed to the end of the latch cycle). While in the handshake mode, data latching is inhibited, and the MODE pin is ignored. (Note that conversion cycles will continue in the normal manner). This allows versatile initiation of handshake operation without danger of false data generation; if the MODE pin is held high, every conversion (other than those completed during handshake operations) will start a new handshake operation, while if the MODE pin is pulsed high, handshake operations can be obtained "on demand."
During handshake operations, the various "disable" pins become output pins, generating signals used for the handshake operation. The Send ENable pin (SEN) (pin 29) is used as an indication of the ability of the external device to receive data. The condition of the line is sensed once every clock pulse, and if it is high, the next (or first) byte is enabled on the next rising CL1 (pin 25) clock edge, the corresponding byte disable line goes low, and the $\bar{C} h i p$ Disabl $\bar{E} / \bar{L} o a \bar{D}$ line (pin 30) ($\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$) goes low for one full clock pulse only, returning high.
On the next falling CL1 clock pulse edge, if SEN remains high, or after it goes high again, the byte output lines will be put in the high impedance state (or three-stated off). One half pulse later, the byte disable pin will be cleared high, and (unless finished) the $\overline{C E} / \overline{L D}$ and the next byte disable pin will go low. This will continue until all three (2 in the case of 12 and 14 bit devices) bytes have been sent. The bytes are individually put into the low impedance state i.e.: threestated on during most of the time that their byte disable pin is
low. When receipt of the last byte has been acknowledged by a high SEN, the handshake mode will be cleared, re-enabling data latching from conversions, and recognizing the condition of the MODE pin again. The byte and chip disables will be three stated off, if the MODE pin is low, but held high by their (weak) pullups. These timing relationships are illustrated in Figure 14.
This configuration allows ready interface with a wide variety of external devices. For instance, external latches can be clocked on the rising edge of $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$, and the byte disables can be used to drive either load enables, or provide data identification flags, as shown in Figure 15. More usefully, the handshake mode can be used to interface with an 8 -bit microprocessor of the MCS-8 group (eg. 8048, 8080, 8085, etc.) as shown in Figure 16. The handshake operation with the 8255 Programmable Peripheral Interface (PPI) is controlled by inverting its Input Buffer Full (IBF) flag to drive the Send ENable pin, and driving its strobe with the $\overline{C E} / \overline{L D}$ line. The internal control register of the PPI should be set in mode 1 for the port used. If the 7104 is in handshake mode, and the 8255 IBF flag is low, the next word will be presented to the chosen port, and strobed. The strobe will cause IBF to rise, locking the three stated byte on. The PPI will cause a program interrupt in the MCS-8 system, which will result (after the appropriate program steps have been executed) in a "read" operation. The byte will be read, and the IBF reset low. This will cause the current byte disable to be dropped, and the next (if any) selected, strobed, etc., as before. The interface circuit as shown has the MODE pin tied to a control line on the PPI. If this bit is set always high cor mode is tied high separately), every conversion will be fed into the system (provided that the three interrupt sequences take less time than one conversion) as three 8 -bit bytes; if this bit is normally left low, setting it high will cause a data transmission on demand. The interrupt routine can be used

Figure 14: Timing Relationships in Handshake Mode
to reset the bit, if desired. Note also that the $R / \overline{\mathrm{H}}$ pin is also shown tied to a control bit so that conversions can be performed either continuously or on demand under software control. Note that one port is not used here, and can service another peripheral device. The same arrangement can again be used with an 8155 I/O port and control lines.

Similar methods can be used with other microprocessors, such as the MC6800 or MCS650X family, as shown in Figure

17, and the Intel MCS4/40 family, as shown in Figure 18. These both operate almost identically to the method described above, except that in the former both R / \bar{H} and MODE are shown tied high, to avoid using a full port for only two lines. Any 8-bit or wider microprocessor (or minicomputer), or narrower devices with 8-bit wide ports (most 4bit devices have 8-bit wide ports available) can be interfaced in a handshake mode with a minimum of additional hardware, frequently none at all.

Figure 15: Use of Byte Disable Lines as Flags or for Loading

Figure 16: 8052A(8068A)-7104 to MCS-48, -80 , or -85 Handshake Interface

Figure 17: $8052(8068) / 7104$ to MC6800 or MCS650X Microprocessor With Handshake

Figure 18: 8052A-7104 to MCS4/40 Microprocessor With Handshake

The handshake mode can also be used to interface with industry-standard UARTs, such as the Intersil IM6402/3 and the Western Digital TR1602. One method is shown in Figure 19. The arrangement here is such that if the UART receives any word serially down the Receiver Register Input line (RRI) the Data Received flag (DR) will be set. Since this is tied to the MODE pin, the current result will be loaded, full handshake style as before, into the transmitter buffer register, via the Transmitter Buffer Register Empty flag (TBRE) and the TBRLoad lines. The UART will thus transmit the full 18 (16, 14) bit result in $3(2,2) 8$-bit words, together with the requisite start, stop and parity bits, serially down the Transmitter Register Output (TRO) line. The DR flag is reset via DR $\overrightarrow{R e s e t, ~}$ here driven by a byte disable line. If we use DR to drive R/ \bar{H} instead, and use the received data word to drive a multiplexer, as shown in Figure 20, the multiplexer address sent to the UART will be selected, and a conversion initiated of the corresponding analog input. The result will be returned serially if the MODE pin is tied high. Thus a complete remote data logging station for up to 256 separate input lines can be controlled and readback through a three line interface. By adding a duplex or modem, telephone or radio link control is possible. (For a fuller discussion of this technique, see Application Note A025, Building A Remote Data Logging Station).
Alternatively, the data word could be used to select one of several A/D converters, as shown in Figure 21. The

Figure 19: $8052(8068) / 7104$ Serial Inferface Using UART
unselected A/Ds all have three stated disable lines as well as data lines, so provided only one device is selected at a time, no conflicts will occur. (Note that byte disable lines are internally pulled-up when not active, so $\overline{C E} / \overline{L D}$ has no effect on unselected converters). Naturally, care must be taken to avoid double selection errors in the data word, or an address decoder used. This technique could also be used to poll many stations on a single set of lines, provided that the TRO outputs are either three state or open collector/drain connections, since only that UART receiving an address that will trigger an attached converter will transmit anything.

Figure 20: 8052(8068)/7104 Serial Interface Using UART and Analog Multiplexer

Figure 21: Multiplexing Converters Through the Mode Pin

4. MISCELLANEOUS TECHNIQUES FOR PERFORMANCE ENHANCEMENT

This section covers a few techniques, primarily analog, that can be used to enhance the performance of the ICL8052 (ICL8068)/ICL7104 chip pair for certain applications. Section 4.A. deals with buffer gain, for sensitivity increases of up to about 5 or 10 to 1, Section 4.B. with a special interconnection to allow the maximum rate of conversion with lower-valued inputs, and Section 4.C. external auto-zero for extending the benefits of auto-zero operation to preamplifiers, etc., to cover specialized signal processing or sensitivity enhancement by 10-100 to 1 .

4. A. Buffer Gain

One of the significant contributions to the effective input noise voltage of a dual slope integrator is the so called autozero noise. At the end of the auto-zero interval, the instantaneous noise voltage on the auto-zero capacitor is stored, and subtracts from the input voltage while adding to the reference voltage during the next cycle. Although the open loop band width of the auto-zero loop is not wide, the gain from the input is very high, and the resulting closed loop band width to buffer noise is fairly wide. The result is that this noise voltage effectively is somewhat greater than the input noise voltage of the buffer-itself during integration. By introducing some voltage gain into the buffer, the effect of the auto-zero noise (referred to the input) can be reduced to the level of the inherent buffer noise. This generally occurs with a buffer gain of between 3 and 10. Further increase in buffer gain merely increases the total offset to be handled by the auto-zero loop, and reduces the available buffer and integrator swings, without improving the noise performance of the system (see also the appendix). The circuit recommended for doing this with the ICL8068/ICL7104
is shown in Figure 22. With careful layout, the circuit shown can achieve effective input noise voltages on the order of 1$2 \mu \mathrm{~V}$, allowing full 16 -bit use with full scale inputs of as low as 150 mV . Note that at this level, thermoelectric EMFs between PC boards, IC pins, etc., due to local temperature changes can be very troublesome. Considerable care has been taken with the internal design of the ICL7104 and the ICL8068 to minimize the internal thermoelectric effects, but device dissipation should be minimized, and the effects of heat from adjacent (and not-so adjacent) components must be considered to achieve full performance at this sensitivity level.

4.B. Minimal Auto-Zero Time Operation

The R/H pin (pin 28) can be used in two basic modes. If it is held high, the ICL7104-16 will perform a complete conversion cycle in 131K clock counts (strictly 217), regardless of the result value (for the $-14,2^{15}$ counts, $-12,2^{13}$ counts).
If, however, the R/ \bar{H} pin (ever) goes low between the time of the zero-crossing and the end of a full 216/14/12 count reference integrate phase, that phase is immediately terminated. If it is then held low, the 7104 will ensure a minimum auto-zero count (of 215/13/11 counts) and then wait in auto-zero until the R / \bar{H} pin goes high. On the other hand, if it goes high immediately subsequent to this minimal autozero count, the 7104 will start the next conversion after the least permissible time in auto-zero; i.e., at the maximum possible rate. The necessary "activity" on the R / \bar{H} pin can be readily provided by tying it to the clock out pin (pin 26). Obviously under these conditions, the conversion cycle time depends on the result. Also note the scale factor and autozero effects covered in the Appendix.

4. C. External Auto-Zero

In many systems, signal conditioning is required in front of the converter for preamplification, filtering, etc., etc. With the exception of buffer gain, discussed in Section 4.A. above, it is generally not possible to include these conditioning circuits in the auto-zero loop. However, a sample-and-difference circuit keyed to the auto-zero phase can be used to eliminate offset and similar errors in preamplifiers, multiplexers, etc. A suitable circuit for a simple system is shown in Figure 23. The ICL8053 is used as a switch here primarily because of its extremely low charge injection (typically well below 10 pC), even though it does limit the analog swing to $\pm 4 \mathrm{~V}$. The use of an IH 191 or IH 5043 avoids this restriction, but increases the charge injection. The circuit of Figure 24 includes some balancing, but still injects typically 60 pC (or 150 pC for a DG191). Note that all these circuits have some sensitivity to stray capacitance at the converter input node. The amplifying or conditioning stages indicated in both these circuits must be capable of passing the chopping frequency with small enough delay, rise time, and overshoot to lead to insignificant error. Filtering should be done before or after the switching devices. Note also that although the input signal is still integrated over the normal time period, the input reference level is not. The time constant of the hold capacitor charging circuit should take noise and interference effects into consideration.

For a multiplexed input system, an arrangement similar to that of Figure 25 may be needed with individual preconditioning amplifiers, and Figure 26 with a common preconditioning amplifer. Note that in both of these cases, the capacitor may be charged to different voltages on each channel. By putting a capacitor in each line of Figure 25, the capacitor charging transients are eliminated, but the multiplexer capacitance becomes an important source of stray capacitance.

5. SUMMARY

The list of applications presented here is not intended to be, nor can it be, exhaustive, but is intended to suggest the wide range of possible applications of the ICL8052(ICL8068)/ ICL7104 chip pair in A/D conversion in a digital environment. Many of the ideas suggested here may be used in combination; in particular, all the digital concepts discussed in Sections 2 and 3 can be used with any of the analog techniques outlined in Section 4, and many of the uses of the R / \bar{H} and MODE pins can be mixed.

Figure 23: External Auto-Zero System Using 8053 Switches

Figure 24: External Auto-Zero System for Large Signals Using IH5043 or Equivalent

Flgure 25: Multiplexed Auto-Zero System With Individual Preamps

Figure 26: Multiplexed Auto-Zero System With Common Preamp

APPENDIX A: The Auto-zero Loop Residual; A Relatively Complete Discussion for those with Strong Heads

The relevant circuit to be discussed is shown in Figure A1 and the major cycle waveforms in Figure A2. Let us first assume that the prior auto-zero cycle has been indefinitely long, or is otherwise ideal, so that the conversion starts with no residual error on the auto-zero capacitor. The integrate and deintegrate cycles will be classically perfect to the point at which a zero crossing actually occurs (at the output of the integrator). However, from this point two delays occur; first the comparator output is delayed (due to comparator delay) and secondly the zero crossing is not registered until the next appropriate clock edge. (For further discussion of this, see Application Note A017). At this point, the circuit is returned to the auto-zero connection (logic and switch delays may be absorbed in comparator delay as far as our discussion is concerned). The net result is that the integrator output voltage will have passed the zero-crossing point by an amount given by
$V_{\text {Ires }}= \pm V_{\text {IFS }}\left(\frac{C_{D}+c_{x}}{C F S}\right)$ where $0 \leq c_{x} \leq 1$
is the variable delay, where CD is the fixed delay, CFS is the full scale count in units of clock pulse periods, and Vifs is the full scale integrator swing in volts.

The range of this residual voltage corresponds to the integrator swing per count, and in independent of input value, except for polarity. The immediate effect of closing the auto-zero loop may be seen by examining Figure A3. We may consider the comparator as acting as an op-amp under these conditions: the voltage across the auto-zero impedance is high, and the (nonlinear) impedance is low; on the other hand, the initial voltage across the integrating resistor is zero. Thus the auto-zero capacitor will be charged rapidly to exactly cancel the residual voltage, as shown in Figure A4. The output of the integrator is now at the correct position, but the two inputs are not. The residual voltage will decay away with a time constant controlled by the integrating resistor and capacitor, while the auto-zero capacitor is easily kept in step owing to the high comparator gain. Thus at the end of the auto-zero time, $t_{A Z}=C_{A Z} t_{c p}$, the residual will be reduced to:

$$
\begin{align*}
V_{A Z \text { res }} & =V_{\text {Ires }} \exp \left(\frac{-C_{A Z} t_{C P}}{R_{I N T} C_{I N T}}\right) \\
& =V_{\text {IFS }}\left(C_{X}+C D^{C D}\right) \frac{1}{C F S} \exp \left(\frac{-C_{A Z} t_{C P}}{R_{I N T} C_{I N T}}\right) \tag{A2}
\end{align*}
$$

Figure A1: The Analog System

Figure A2: Major Cycle Waveforms

Figure A3: Analog System During Auto-Zero

all analog voltages are with respect to their "auto-zeroed" value
Flgure A4: Waveforms at Beginning of Auto-Zero Interval

Now RintCint is controlled by the buffer swing, Vbfs, the integrator swing, $\mathrm{V}_{\text {IFS }}$, and the integration time $\mathrm{t}_{\mathrm{N} T}=\mathrm{C}_{I N T} \mathrm{t}_{\mathrm{c}}$. so that

and $V_{A Z \text { res }}=V_{\text {ires }}\left(\exp -\frac{C_{A Z} V_{\text {IFS }}}{C_{I N T} V_{B F S}}\right)$
This residual voltage on the auto-zero capacitor effectively increases the magnitude of the input voltage as seen on the output of the buffer. Thus, converting this voltage to countequivalents,
$c_{A Z \text { res }}=\frac{V_{A Z r e s}}{V_{B F S}} \cdot c_{F S}=\frac{V_{I F S}}{V_{B F S}}\left(c_{x}+c_{D}\right) \exp \left(-\frac{C_{A Z}}{C_{I N T}} \cdot \frac{V_{\text {IFS }}}{V_{B F S}}\right)$

Since this voltage also subtracts from the reference, its effect at the input is magnified in the ratio
CINres $=$ CAZres $\left(\frac{\text { CINT }+ \text { CDE }}{\text { CINT }}\right)$ so that
CINres $=\left(1+\frac{C D E}{C_{I N T}}\right)\left(\frac{V_{I F S}}{V_{B F S}}\right)\left(c_{X}+C D D\right) \exp \left(-\frac{C_{A Z}}{C_{I N T}} \cdot \frac{V_{I F S}}{V_{B F S}}\right)$
Note that CDE is equal to the displayed result.
Two things should be noted here. First, this residual acts to increase the input voltage magnitude, and secondly, a small increase in input voltage tends to decrease the magnitude of the residual (until the result count changes). These effects lead to "stickyness" in the readings; suppose, in a noise-free system, that the input voltage is at a level where the residual is a minimum; the detected zero crossing follows the true one as closely as possible. A minute increase in input voltage will cause the zero crossing to be detected one pulse later, and the residual to jump to it's maximum value. The effect of this is a small increase in the apparent input voltage; thus if we now remove the minute increase, the residual voltage effect will maintain the new higher reading; in fact we will have to reduce the input voltage by an amount commensurate with the effective residual voltage to force the reading to drop back again to the lower value. In more detail, we should consider the equilibrium conditions on the auto-zero capacitor. Clearly, the voltage added at the end of reference integrate must just balance that which decays away during the auto-zero interval. So far the relationships we have developed have assumed a zero residual before the conversion, but clearly in the equilibrium condition the residual given by equation (A4) remains, and at the end of conversion, the new amount, given by equation (A1), is added to this, so we start the "auto-zero decay" interval with $c_{\text {Ires }}=c_{A Z r e s}+\frac{V_{\text {IFS }}}{V_{B F S}}\left(c_{x}+c_{D}\right)$
By combining equations (A4) and (A6) we find, for the equilibrium condition,
$C_{A Z r e s}= \pm \frac{V_{I F S}}{V_{B F S}}\left(c_{X}+C D\right)\left[\exp \left\{+\frac{C_{A Z} V_{I F S}}{C_{I N T} V_{B F S}}\right\}-1\right]^{-1}$
Once again, the effect of this at the input is multiplied by the ratio of total input integrate times, so that, under equilibrium conditions,
$C_{I N r e s}= \pm \frac{V_{\text {IFS }}}{V_{B F S}}\left(1+\frac{C_{D E}}{C_{I N T}}\right)\left(c x+C_{D}\right)\left[\exp \left\{\frac{C_{A Z} V_{I F S}}{C_{I N T} V_{B F S}}\right\}-1\right]^{-1}$

Those expert at skipping to the end of the difficult bit will recognize that as the final equation, in terms of complexity. So let us now see what it means. Clearly, the error term is greater, the larger $\frac{C D E}{C I N T}$, and the smaller $\frac{C A Z}{C I N T}$ For the ICL7104 combinations, (and also the ICL7103, and the data sheet systems for the ICL8053 pairs), these are both worst case near full scale input, where $\frac{C D E}{C I N T} \approx 2$ and $\frac{C A Z}{C I N T} \approx 1$. (Note that the minimum auto-zero time technique of section 4 B will make $\frac{\text { CAZ }}{\text { CINT }}=1$ for all input values). Substituting these, we find the worst case
$C_{\text {INres }} \approx \pm \frac{V_{\text {IFS }}}{V_{B F S}}(3)(c x+c D)\left[\exp \left(\frac{V_{\text {IFS }}}{V_{B F S}}\right)-1\right]^{-1}$
Recall the $C D$ is fixed; and c_{x} must be between 0 and 1 . The expression is now a function purely of the ratio of integrator and buffer full scale swings; the relationship is plotted in Figure A5, and shows the desirability of keeping the integrator swing higher than the buffer swing. Note also that the comparator delay ($C D$ in equation (A8)) is also effectively enhanced. This has the effect of shrinking the zero somewhat more than normally occurs. Since this term changes sign with polarity, the converter will have a tendency to keep the current sign at zero input.

Integrator/Buffer Swing Raxio
The effects of noise should be mentioned here. The worst case value of residual shown in Figure A5 assumes a very gradual approach to equilibrium, and any noise spike causing the reading to flash to the next value will destroy all this carefully established residual value! Thus for any system with noise of $-1 / 3$ count or more, the effect is greatly reduced, and even $1 / 10$ count of noise will restrict the actual hysteresis value found in practice. The detailed analysis of the auto-zero residual problem in the presence of appreciable noise is left as an exercise for the masochist.

POWER D/A CONVERTERS USING THE IH8510

THE POWER D/A CONVERTER

Intersil has introduced a family of power amplifiers - the IH 8510 family. These power amplifiers have been specifically designed to drive D.C. servo motors, D.C. linear and rotary actuators, electronic orifice valves and $X-Y$ printer motors. There are three versions presently offered - the 1 H 8510 is specified at 1 amp continuous output with up to $\pm 35 \mathrm{~V}$ power supplies; the 1 H 8520 is specified at 2 amps continuous output at up to $\pm 35 \mathrm{~V}$; finally the 1 H 8530 is a 3 amp version with the same power supply range.

The amplifiers are linear mode types and are basically a power version of the popular 741 differential op amp. The parts are available in 8 -pin TO-3 packages. Using $\pm 30 \mathrm{~V}$ power supplies, the amplifiers are capable of delivering up to $\pm 26 \mathrm{~V}$ swings into a 10Ω load. The parts are biased Class $A B$, and have typical no-load quiescent current of 20 mA . Frequency response, input offset voltage, input offset, and bias currents are the same as the 741 op amp. All three models can withstand indefinite shorts to ground on the output. When driving a D.C. motor, the amplifiers can also withstand the surges caused by motor lock-up and motor reversal (i.e., while running in one direction, the voltage is suddenly reversed).

The linear nature of these power amplifiers allows them to fit in very well with another Intersil product family - the D/A converter. Intersil has two low cost DAC's available the 7520 series, and the 7105 . When a DAC and a power amplifier are combined, one has a very useful building block for control functions, i.e., a digitally programmable power driver. This power DAC can interface directly with microprocessors, UARTS, computers, etc.

DESIGN DETAILS

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 1. The IH8510 power amplifier described in the introduction is driven by the Intersil 7520 monolithic D/A converter.

The 7520 contains the R/2R ladder network and the feedback resistor for proper scaling of the reference input voltage ($\pm 10 \mathrm{~V}$) and also the SPDT switches (CMOS) for each bit. Figure 2 shows a part of the system (first 4 bits). Note that a permanently biased "on" switch is in series with the $10 \mathrm{~K} \Omega$ feedback resistor. The RDS(on) of this "on" FET is $0.5 \times \mathrm{R}_{\mathrm{DS}}(\mathrm{on})$ of the Most Significant Bit (MSB) switch to maintain MSB accuracy (gain accuracy) at $25^{\circ} \mathrm{C}$ and over the temperature range. Since the FET switches are on the same I.C. chip, the temperature tracking is excellent. Actually, the 7520 specifies the temperature coefficient at $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum.

The circuit configuration is such that the SPDT switches in series with each $20 \mathrm{~K} \Omega$ resistor never see more than $\pm 25 \mathrm{mV}$; this minimizes $D A C$ errors caused by $I^{\prime} D$ (off) and $I D$ (on) leakages. It also allows the DAC switch to handle $\pm 10 \mathrm{~V}$ references with only a single +15 V power supply. The size of each DAC switch is scaled so that it does not distort the gain for each bit, i.e., the MSB switch RDS(on) is 25Ω; the next switch $R_{\text {DS(on) }}$ is 50Ω; the next is 100Ω, etc.
A summing amplifier is shown between the 7520 and the IH8510 in Figure 1. This apparently redundant amplifier is used to separate the gain block containing the 7520 on-chip resistors from the power amplifier gain stage whose gain is set only by external resistors. This approach minimizes drift since the resistor pairs will track properly.

Figure 1:
The Basic Power DAC

One of the decisions the user will have to make is the choice of summing amplifier. For 8 bit accuracy with 25 volt output swings, a $1 / 2$ LSB is equivalent to approximately 50 mV . The worst case errors introduced by the op-amp (i.e., the cummulative effects of I_{B}, and $I_{O S}$, and $\Delta V_{O S} / \Delta T$) should therefore be significantly less than 50 mV .

In Figure 1 a 101 A is shown. This amplifier meets the requirements outlined above. Over the military temperature range, the input bias current (average of the two input currents) is specified at 100 nA maximum. The input offset current is given as $20 n \mathrm{~A}$ maximum. Thus, in the worst case, one input bias current could be 110 nA , the other one 90 nA . Again, making the pessimistic simplification that $R_{1}=$ zero, that all the DAC switches are off, and that the higher of the two bias currents flows through the feedback resistor, the error due to input current equals $110 \times R_{f} \times 10^{-6} \mathrm{mV}$. Figure 3 shows this situation. The maximum value of R_{f} is not given in the 7520 data sheet, but in practice is around $15 \mathrm{~K} \Omega$. The input current error (absolute worst case) therefore calculates out at 1.65 mV . To this, one must add the effect of offset voltage drift. This amounts to a worst case of 1.5 mV over the temperature range. The summation of these two errors is still an order of magnitude less than $1 / 2$ LSB in 8 bits, a comfortable safety margin. In fact, the 101A would be adequate for a 10 bit power DAC.

Performing the same calculations on a 741 over the military temperature range, the input current (worst case) error is

Figure 3:
Worst Case Error Due to Input Current

26 mV , and the voltage drift (worst case) is 2.5 mV . The latter number is an estimate since the 741 data sheet does not guarantee drift. It can be seen from these numbers that the 741 is marginal for this application. However a more detailed analysis, taking into account a non-zero value for R_{1} (say $10 \mathrm{~K} \Omega$), would show the 741 in a better light.

The initial offset voltage of the buffer amplifier adds to that of the 1 H 8510 , and is multiplied by three before appearing at the output. Depending on the application, it may be desirable to null out this offset. The nulling should be done at the buffer in the manner recommended for the amplifier being used.

In the majority of DAC applications, a full scale output adjustment is necessary. For example, set point controllers in servo systems are typically required to have an error no greater than 0.3% of full scale reading. This can be achieved by either adjusting the reference voltage up or down from a nominal 10.000 V , or by using a potentiometer in the amplifier feedback network, as shown in Figure 4. The potentiometer should be a low temperature coefficient type.

A final important note on the 7520/101A interface concerns the connection between Pin 1 of the DAC and Pin 2 of the op amp. Remember this point is the summing junction of an amplifier with an AC gain of 50,000 or better, so stray capacitance should be minimized otherwise instabilities and

Figure 4:
Full Scale. Gain Adjustment

DATA ACQUISITION \& CONVERSION HANDBOOK

Figure 5:
Non-inverting Gain Connection
poor noise performance will result. Notice also that an inverting gain stage follows the 101A output; this is to boost the power DAC output to $\pm 30 \mathrm{~V}$; thus a gain of -3 is used. If a non-inverting gain of +3 is desired, then the configuration of Figure 5 should be used.

The 0.68Ω resistors from Pins 5 and 7 to Pin 6 are used to set current limits for the power amp. These are safe area limiting structures which follow a definite $\mathrm{V}_{\text {OUT }} / \mathrm{IOUT}$ profile This is shown in Figure 6.

Figure 6:
Output Current Limiting
Notice that maximum output current is obtained when $\mathrm{V}_{\text {OUT }}=+25 \mathrm{~V}-30 \mathrm{~V}$, for either polarity of $\mathrm{V}_{\text {OUT }}$; current falls off as VOUT decreases to limit the internal power dissipation. When driving 24 V to 28 V DC motors or actuators, the power amp delivers full power. Since IOUT is a maximum for this range, the internal power limiting does not affect normal performance. For example, consider driving a 24 V DC motor at 1.5 amps delivered current. The internal power dissipation is $(30 \mathrm{~V}-24 \mathrm{~V}) \times 1.5 \mathrm{amps}=9$ watts.

Now the load is also taking $1.5 \mathrm{amps} \times 24 \mathrm{~V}=36$ watts. The amplifier efficiency $=\frac{36 \text { watts }}{46 \text { watts }}=80 \%$. Now, if the output is mistakenly shorted to ground (through motor failure) then IOUT(max) goes to 0.5 amps and the power dissipation equals $30 \mathrm{~V} \times 0.5 \mathrm{amps}=15$ watts. As long as the amplifier is heat-sinked to dissipate this 15 watts, no damage will result and proper performance will return when the fault is corrected. A significant advantage of the IH8510 family is that the case is electrically isolated and is not tied to any pin. This means that multiple IH8510's can be mounted on the same heat sink.

The IH8510 family design is shown in Figure 7. It consists of a 741 op amp driving a custom chip (called the IH8063). The 8063 is a 60 V circuit which boosts the voltage and current outputs of the 741 to drive internal power transistors. It also contains plus and minus regulators to lower the $\pm 30 \mathrm{~V}$ input voltages to $\pm 15 \mathrm{~V}$ for safe 741 operation.

Figure 7:
IH8510 Schematic

COST OF THE POWER DAC SYSTEM

The complete, operational system is shown in Figure 4. At the time of writing, the 7520 sells for $\$ 10$ in small quantities, and the 301 A is in the $50 \$$ area. The IH8510 sells for $\$ 15$ each in small quantities, so the system cost is as follows:

7520 DAC (Intersil)	$\$ 10.00$
$5 \mathrm{~K} \Omega 50 \mathrm{ppm}$ pot (full scale trim)	2.00
301 A op amp (Intersil)	.50
100 pF capacitors	.20
Miscellaneous resistors	1.10
$0.68 \Omega 5$ watt resistors	.50
IH8510 power amplifier (Intersil)	$\underline{15.00}$
	$\$ 29.30$

To obtain a D.C. reference for the DAC, one can buy a 10 V reference or use a circuit such as that shown in Figure 8.

Figure 8:
Buffered DAC Reference

Power DAC Design Using 7105 D/A

ANOTHER WAY TO BUILD A POWERFUL D/A CONVERTER

Intersil will shortly introduce a D/A converter which operates on a new concept (no R/2R ladders or weighted resistors, etc.). Instead of dividing current or voltage into many small steps, the 7105 DAC divides time. The output configuration consists of a SPDT switch. A clock oscillator is provided, and data latches for the digital input. For a n-bit converter, in any 2^{n} consecutive clock pulses, the switch is thrown one way for a number of pulses corresponding to the input data and the other way for the remainder. Thus, if the switch is used to connect a reference voltage or current to an appropriate filter, the average output corresponds to the digital input as a ratio of the reference. The switching cycle is arranged so as to minimize the filtering required on the output; and hence optimize the settling time. By its very nature, this technique insures monotonicity and (except for two short sections near zero and full scale) excellent linearity. Other than the reference, no critical value components are needed, and the tolerance and temperature coefficients of the filter components affect only the settling time and ripple content. The main limitation of the converter is the relatively slow conversion rate. The technique does for D-to-A conversion what the dual-slope technique does for A / D conversion, that is it provides a slow but very accurate and stable conversion technique that avoids the use of high tolerance components.

A suitable interconnection between a 7105 D-toA converter and the 8510 power amplifier is shown in Figure 9. Note that two pole filtering is adequate for 8 through 12 bit converters, but three pole is required for optimum settling time on 14 and 16 bit devices.

APPLICATIONS

Motor Control

An important application for power D/A converters is in precision motor control systems (position controllers). Digitally controlled constant torque is best facilitated using the power DAC circuit shown in Figure 10. The desired torque is set by closing the appropriate DAC switches; this sets the DC output of the DAC. Torque is directly proportional to motor current, and the motor current is directly proportional to the voltage across RS, i.e.,

$$
\text { Torque }=K I_{m}=\frac{-K V_{1}}{R_{S}}
$$

By setting the DAC input switches $2^{0}, 2^{1}, 2^{2}$, etc., any desired torque can be obtained and a torque versus time profile can be established. Torque versus time profiles are important in controlling the acceleration and deceleration of motors and may be used to provide dynamic breaking for different load conditions. The digital control could be performed by a microprocessor or a programmable logic array such as \ln tersil's.IM5200 (Ref. 1).

Programmable Power Supply

Another big application for power DACs is the digitally controlled power supply. It is probably that the coarse and fine control adjustment knobs on power supplies will be replaced in the future by digit switches. With this, the user does not need to use a $31 / 2$ digit DVM just to set a power supply. An 8 -bit power DAC allows the supply to be set instantly and provided remote control automatically. The practical problem one runs into here is the maximum load capacity the power DAC can drive without oscillating. Power supplies often use $0.1 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ decoupling capacitors to ground; this will cause most op amps to oscillate, including the 8510. The only answer for this application is to reduce the bandwith to gain C_{L} drive capability. Of course, the lower the bandwith, the bigger the value of C_{L} to keep the output impedance to a certain minimum value; thus there is a compromise involved here. This compromise is not unique to the 8510; the amplifiers in typical series pass regulators must also be designed to handle capacitance loads without misbehaving. Another possible solution is to isolate the amplifier output from the load by using a series inductor. Thus, when large decoupling capacitors to ground are used, the amplifier still sees at least the inductance as a load.

Figure 10:
Power DAC Driving DC Motor

Quad Current Switches For D/A Conversion

BASIC D/A THEORY

The majority of digital to analog converters contain the elements shown in Figure 1. The heart of the D/A converter is the logic controlled switching network, whose output is an analog current or voltage proportional to the digital number on the logic inputs. The magnitude of the analog output is determined by the reference supply and the array of precision resistors, see fig. 2. If the switching network has a current output, often a transconductance amplifier is used to provide a voltage output.

Figure 1: Elements of a D/A Converter

Logic Input	Nominal Output Current (mA)
0000	1.875
0001	1.750
0010	1.625
0011	1.500
0100	1.375
0101	1.250
0110	1.125
0111	1.000
1000	0.825
1001	0.750
1010	0.625
1011	0.500
1100	0.375
1101	0.250
1110	0.125
1111	0.000

Figure 2: Truth Table

DEFINITION OF TERMS

The resolution of a D/A converter refers to the number of logic inputs used to control the analog output. For example, a D/A converter using two quad current sources would be an 8 bit converter. If three quads were used, a 12 bit converter would be formed. Resolution is often stated in terms of one part in, e.g., 256 since the number of controlling bits is related to total number of identifiable levels by the power of 2. The four bit quad has sixteen different levels (see Truth Table) each output corresponding to a particular logic input word.
Note that maximum output of the quad switch is $1+1 / 2+1 / 4$ $+1 / 8=1-7 / 8=1.875 \mathrm{~mA}$. If this series of bits were continued as $1 / 16+1 / 32+1 / 64 \ldots \ldots 1 / 2 n-1$, the maximum output limit would approach 2.0 mA . This limiting value is called full scale output. The maximum output is always less than the full scale output by one least significant bit, LSB. For a twelve bit system (resolution 1 part in 4096) with a full scale output of
10.0 volts the maximum output would be $\frac{4095}{4096} \times 10 \mathrm{~V}$. Since the numbers are extremely close for high resolution systems, the terms are often used interchangeably.
The accuracy of a D/A converter is generally taken to mean the largest error of any output level from its nominal value. The accuracy or absolute error is often expressed as a percentage of the full scale output.
Linearity relates the maximum error in terms of the deviation from the best straight line drawn through all the possible output levels. Linearity is related to accuracy by the scale factor and output offset. If the scale factor is exactly the nominal value and offset is adjusted to zero, then accuracy and linearity are identical. Linearity is usually specified as being within $\pm 1 / 2$ LSB of the best straight line.
Another desirable property of D/A converter is that it be monotonic. This simply implies that each successive output level is greater than the preceding one. A possible worst case condition would be when the output changes from most significant bit (MSB) OFF, all other bits ON to the next level which has the MSB ON and all other bits OFF, e.g., $10000 \ldots$ to 01111.
In applications where a quad current switch drives a transconductance amplifier (current to voltage converter), transient response is almost exclusively determined by the output amplifier itself. Where the quad output current drives a resistor to ground, switching time and settling time are useful parameters.
Switching time is the familiar 10% to 90% rise time type of measurement. Low capacitance scope probes must be used to avoid masking the high speeds that current source switching affords. The settling time is the elapsed time between the application of a fast input pulse and the time at which the output voltage has settled to or approached its final value within a specified limit of accuracy. This limit of accuracy should be commensurate with the resolution of the DAC to be used.
Typically, the settling time specification describes how soon after an input pulse the output can be relied upon as accurate to within $\pm 1 / 2$ LSB of an N bit converter. Since the 8018A family has been desiged with all the collectors of the current switching transistors tied together, the output capacitance is constant. The transient response is, therefore, a simple exponential relationship, and from this the settling time can be calculated and related to the measured rise time as shown in Figure 3.

Bits of Resolution	$\pm \mathbf{1 / 2}$ LSB Error $\%$ Full Scale	Number of Time Constants	Number of Rise Times
8	$.2 \%$	6.2	2.8
10	$.05 \%$	7.6	3.4
12	$.01 \%$	9.2	4.2
Rise Time $(10 \%-90 \%)=2.2$ RL C ${ }_{\text {eff }}$			

Figure 3: Settling Time vs. Rise Time Resistor Load

CIRCUIT OPERATION

An example of a practical circuit for the ICL8018A quad current switch is shown in Figure 4. The circuit can be analyzed in two sections; the first generates very accurate currents and the second causes these currents to be switched according to input logic signals. A reference current of $125 \mu \mathrm{~A}$ is generated by a stable reference supply and a precision resistor. An op-amp with low offset voltage

Figure 4: Typical Circuit
and low input bias current, such as the ICL8008, is used in conjunction with the internal reference transistor, Q_{6}, to force the voltage on the common base line, so that the collector current of Q_{6} is equal to the reference current. The emitter current of Q_{6} will be the sum of the reference current and a small base current causing a drop of slightly greater than 10 volts across the 80 k resistor in the emitter of Q6. Since this resistor is connected to -15 V , this puts the emitter of Q_{6} at nearly -5 V and the common base line at one V_{BE} more positive at -4.35 V typically.
Also connected to the common base line are the switched current source transistors Q_{7} through Q_{10}. The emitters of these transistors are also connected through weighted precision resistors to -15 V and their collector currents summed at pin 8 . Since all these transistors, Q_{6} through Q_{10}, are designed to have equal emitter-base voltages, it follows that all the emitter resistors will have equal voltage drops across them. It is this constant voltage and the precision resistors at the emitter that determine the exact value of switched output current. The emitter resistor of Q_{7} is equal to that of Q6, therefore, Q7's collector current will be Iref or $125 \mu \mathrm{~A}$. Q8 has 40 k in the emitter so that its collector current will be twice Iref or $250 \mu \mathrm{~A}$. In the same way, the 20 k and 10 k in the emitters of Q_{9} and Q_{10} contribute .5 mA and 1 mA to the total collector current.
The reference transistor and four current switching transistors are designed for equal emitter current density by making the number of emitters proportional to the current switched.
The remaining circuitry provides switching signals from the logic inputs. In the switch ON mode, zener diodes D5 through D_{8}, connected to the emitter of each current switch transistor Q_{7} thru Q_{10}, are reverse biased allowing the transistors to operate, producing precision currents summed in the collectors. The transistors are turned off by
raising the voltage on the zeners high enough to turn on the zeners and raise the emitters of the switching transistor. This reverse biases the emitter base diode thereby shutting off that transistor's collector current.
The analog output current can be used to drive one load directly, ($1 \mathrm{k} \Omega$) to ground for $\mathrm{FS}=1.875 \mathrm{~V}$ for example) or can be used to drive a transconductance amplifier to give larger output voltages.

EXPANDING THE QUAD SWITCH

While there are few requirements for only 4 bit D to A converters, the 8018A is readily expanded to 8 and 12 bits with the addition of other quads and resistor dividers as shown in Figure 5.
To maintain the progression of binary weighted bit currents, the current output of the first quad drives the input of the transconductance amplifier directly, while a resistor divider network divides the output current of the second quad by 16 and the output current of the third by 256 .

$$
\begin{aligned}
\text { e.g., } \text { ITotal }= & 1 \times(1+1 / 2+1 / 4+1 / 8)+1 / 16(1+1 / 2+1 / 4+1 / 8) \\
& +1 / 256(1+1 / 2+1 / 4+1 / 8)=1+1 / 2+1 / 4+1 / 8+ \\
& 1 / 16+1 / 32+1 / 64+1 / 128+1 / 256+1 / 512+ \\
& 1 / 1024+1 / 2048 .
\end{aligned}
$$

Note that each current switch is operating at the same high speed current levels so that standard 10k, 20k, 40k and 80k resistor networks can be used. Another advantage of this technique is that since the current outputs of the second and third quad are attenuated, so are the errors they contribute. This allows the use of less accurate switches and resistor networks in these positions; hence, the three accuracy grades of $.01 \%, 0.1 \%$, and 1% for the 8018A, 8019A and 8020A, respectively. It should be noted that only the reference transistor on the most significant quad is required to set up the voltage on the common base line joining the three sets of switching transistors (Pin 9).

Figure 5: Expanding the Quad Switch

GENERATING REFERENCE CURRENTS ZENER REFERENCE

As mentioned above, the 8018A switches currents determined by a constant voltage across the external precision resistors in the emitter of each switch. There are several ways of generating this constant voltage. One of the simplest is shown in Figure 6. Here an external zener diode is driven by the same current source line used to bias internal Zener D_{11}.

Figure 6: Simple Zener Reference
The zener current will be typically 1 mA per quad. The compensation transistor Q_{6} is connected as a diode in series with the external zener. The VBE of this transistor will approximately match the $V_{B E}$'s of the current switching transistors, thereby forcing the external zener voltage across each of the external resistors. The temperature coefficient of
the external zener will dominate the temperature dependence of this scheme, however using a temperature compensated zener minimizes this problem. Since Q_{6} is operating at a higher current density than the other switching transistors, the temperature matching of $V_{B E}$'s is not optimum, but should be adequate for a simple 8 or 10 bit converter.
The 8018A series is tested for accuracy with 10 V reference voltage across the precision resistors, implying use of a 10 volt zener. Using a different external zener voltage will only slightly degrade accuracy if the zener voltage is above 5 or 6 volts.
When using other than 10 volt reference, the effects on logic thresholds should also be noted (see logic levels below). Full scale adjustment can be made at the output amplifier.

PNP REFERENCE

Another simple reference scheme is shown in Figure 7. Here an external PNP transistor is used to buffer a resistor divider. In this case, the -15 volt supply is used as a reference. Holding the V^{-}supply constant is not too difficult since the 8018A is essentially a constant current load. In this scheme, the internal compensation transistor is not necessary, since the V_{BE} matching is provided by the emitter-base junction of the external transistor. A small pot in series with the divider facilitates full scale output adjustment. A capacitor from base to collector of the external PNP will lower output impedance and minimize transient effects.

FULL COMPENSATION REFERENCE

For high accuracy, low drift applications, the reference scheme of Figure 4, offers excellent performance. In this circuit, a high gain op-amp compares two currents. The first is a reference current generated in Rs by the temperature compensated zener and the virtual ground at the non-inverting opamp input. The second is the collector current of the reference transistor Q_{6}, provided on the quad switch. The output of the op-amp drives the base of Q_{6} keeping its collector current exactly equal to the reference current. Since the switching transistor's emitter current densities are equal and since the precision resistors are proportional, all of the switched collector currents will have the proper value.

Figure 7: PNP Reference

Figure 8

The op-amp feedback loop using the internal reference transistor will maintain proper currents in spite of VBE drift, beta drift, resistor drift and changes in V^{-}. Using this circuit, temperature drifts of $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ are typical. A discrete diode connected as shown will keep Q_{6} from saturating and prevent latch up if V^{-}is disconnected.
In any reference scheme, it is advisable to capacitively decouple the common base line to minimize transient effects. A capacitor, $.001 \mu \mathrm{~F}$ to $.1 \mu \mathrm{~F}$ from Pin 9 to analog ground is usually sufficient.

IMPROVED ACCURACY

As a final note on the subject of setting up reference levels, it should be pointed out that the largest contributor of error is the mismatch of $V_{B E}$'s of the current switching transistors. That is, if all the VBE's were identical, then all precision resistors would have exactly the same reference voltage across them. A one millivolt mismatch compared with ten volt reference across the precision resistors will cause a . 01% error. While decreasing the reference voltage will decrease the accuracy, the voltage can be increased to achieve better than $.01 \%$ accuracies. The voltage across the emitter resistors can be doubled or tripled with a proportional increase in resistor values resulting in improved absolute accuracy as well as improved temperature drift performance. This technique has been used successfully to implement up to 16 bit D/A converters.

PRACTICAL D/A CONVERTERS

The complete circuit for a high performance 12 bit D/A converter is shown in Figure 8. This circuit uses the "full compensation reference" described above to set the base line drive at the proper level, the temperature compensated zener is stabilized using an op-amp as a regulated supply, and the circuit provides a very stable, precise voltage reference for the D/A converter. The 16:1 and 256:1 resistor divider values are shown for a straight binary system; for a binary coded decimal system the dividers would be 10:1 and 100:1 (BCD is frequently encountered in building programmable voltage sources).
The analog output current of the 8018A current switches is converted to an output voltage using the 8017 as shown. The output amplifier must have low input bias current (small compared with the LSB current), low offset voltage and offset voltage drift, high slew rate and fast settling time. The input compensation shown helps improve pulse response by providing a finite impedance at high frequencies for a point that is virtual ground at DC.
An alternative bias scheme is shown in Figure 9. In this case, the bias at the common base line is fixed by inverting op-amp A_{4}, the gain of which is adjusted to give -5.0 volts at the emitter of the reference transistor. With the bias at the common base line fixed, the regular circuit of A_{1} uses the internal reference transistor and drives the bus connecting all the precision resistors. This isolates the precision resistors from V^{-}fluctuations. Zener D_{3} and constant current source Q_{1} keep the regulation $8008 \mathrm{op}-\mathrm{amp}$ in mid-range. There are several alternative bias schemes depending on power supplies available. If -20 volts is used for V^{-}, the bottom of the precision resistor will be at -15 and operation will be the same as the standard circuit. If only -15 V is available for V^{-} the gain of the output transconductance amplifier can be increased by 30% to allow use of a smaller switching currents with 7 volts across the precision resistors.

MULTIPLYING DAC

The circuit of Figure 9 is also convenient to use as a one quadrant multiplying D/A converter. In a multiplying DAC, the analog output is proportional to the product of a digital number and an analog signal. The digital number drives the logic inputs, while the analog signal replaces the constant reference voltage, and produces a current to set up the regulating $8008 \mathrm{op}-\mathrm{amp}$. To vary the magnitude of currents being switched, the voltage across all the $10 \mathrm{k}, 20 \mathrm{k}, 40 \mathrm{k}$ and 80 k resistors must be modulated according to the analog input. An analog input of 0 to +10 volts and an 80 k resistor at the input to the 8008 will fulfill this requirement.

CALIBRATING THE 12 BIT D/A CONVERTER

1. With all logic inputs high (ones) adjust the output amplifier offset for zero volts out.
2. Put in the word 000011111111 (Quad 1 maximum output Quad 2 and 3 off) and adjust full scale pot for V_{0} of $15 / 16$ (10V) where full scale output is to be 10 volts.
3. Put in the word 111100001111 and trim the Quad 2 divider for Vo of $15 / 256$ (10V). This adjustment compensates for $V_{B E}$ mismatches between quads although matched sets are available (see data sheet).
4. Put in the word 111111110000 and trim the Quad 3 divider for Vo of 15/4096 (10V).
5. Finally, with all bits $O N$ (all 0 's) readjust the full scale factor pot for

$$
V_{0}=4095 / 4096(10 \mathrm{~V})
$$

SYSTEM INTERFACE REQUIREMENTS

Using the 8018A series in practical circuits requires consideration of the following interface requirements.
Logic Levels: The 8018A is designed to be compatible with TTL, DTL and RTL logic drive systems. The one constraint imposed on the external voltage levels is that the emitters of the conducting current switch transistors be in the vicinity of -5 V ; this will be the same as the voltage on Pin 6 if the reference transistor is used. When using other than -5 V at Pin 6, the direct bearing on logic threshold should be considered.
Power Supplies: One advantage of the ICL8018A is its tolerance of a wide range of supply voltage. The positive supply voltage need only be large enough (greater than +4.5 V) to keep Q_{11} out of saturation, and the negative supply needs to be more negative than -10 V to ensure constant current operation of Q_{12}. The maximum supply voltage of $\pm 20 \mathrm{~V}$ is dictated by transistor breakdown voltages. It is often convenient to use $\pm 15 \mathrm{~V}$ supplies in systems with op-amps and other I.C.'s. These supplies tend to be better regulated and free from high current transients found on supplies used to power TTL Logic. As with any high speed circuit, attention to layout and adequate power supply decoupling will minimize switching effects.
Ground: High resolution D/A, e.g., 12 bits require fairly large logic drive currents. The change from all bits ON to all bits OFF is a considerable change in supply current being returned to ground. Because of this, it is usually advisable to maintain separate ground points for the analog and digital sections.
Resistors: Each quad current switch requires a set of matched resistors scaled proportional to their binary currents as R, 2R, 4R and 8R. For a 10 V resistor voltage drop and " 2 mA " full scale output current, resistor values of 10 k , $20 \mathrm{k}, 40 \mathrm{k}$ and 80 k are convenient. Other resistor values can be used, for example, to increase total output current. The
individual switched currents can be increased up to 100% of their nominal values. The overall accuracy of the complete D/A converter depends on the accuracy of the reference, the accuracy of the quad current switch and tolerance of resistor matching. Because of the binary progression of switched currents, the tolerance of $80 \mathrm{k} / 10 \mathrm{k}$ match can be twice that of the $40 \mathrm{k} / 10 \mathrm{k}$ which. in turn, can be twice the tolerance of the $20 \mathrm{k} / 10 \mathrm{k}$ ratio and still have equal output current errors. The current dividers between quads allows use of less well matched sets of resistors further along in the D/A just as it allows use of $.01 \%, 0.1 \%$, and 1% accurate quad current switches. There are several manufacturers producing the complete precision resistor networks required to implement up to 12 bit D/A converters. Contact Intersil for additional information.*
'Resistor Ladder Networks are manufactured by the following companies:
Micro Networks Corporation
5 Barbara Lane
Worcester, Massachusetts 01604
Tel. (617) 756-4635
Allen-Bradley Company
1201 S. Second Street
Milwaukee, Wisconsin 53204
Tel. (414) 671-2000
Hycomp, Inc.
146 Main Street
Maynard, Massachusetts 01754
Tel. (617) 897-4578

Figure 9

DIGITAL PANEL METER EXPERIMENTS FOR THE HOBBYIST

Digital displays have many advantages over their analog counter parts. They are more accurate, and more rugged since there are no moving parts. Equally important, unskilled operators can record accurate data due to the unambiguous nature of the readout. But ready-built digital panel meters (DPMs) are costly and, until recently, designing one's own from scratch was an ambitious undertaking.
Intersil's 7106 and 7107 one chip panel meter ICs have changed all that. By adding only a display and less than 10 passive components, anyone can build a high performance DPM for less than the cost of a good moving-coil meter. All that is needed is Ohm's Law and a soldering iron! The hobbyist can have digital display of his aquarium temperature or the speed of his sailboat, the serviceman can build his own test equipment, and the student of physics can measure his plasma potential.
The starting point for designs such as these is one of Intersil's digital panel meter kits. Two kits are offered. One uses a liquid crystal display (LCD), and is intended to be powered by a 9 V 'transistor radio' battery. The other uses light emitting diode (LED) displays, and will usually be driven by an external power supply. The kits include all the components necessary to build a 200 mV full scale panel meter, including the IC, circuit board, display, passive components and miscellaneous hardware. They are available from Intersil's distributors; the LCD kit (part \#ICL7106 EV/KIT) sells for $\$ 29.95$, the LED kit (part \#ICL7107 EV/KIT) sells for $\$ 24.95$. Figure 1 shows what the kits look like after assembly. Included in the kit is a detailed application note (\#A023) entitled Low Cost Digital Panel Meter Designs, which includes assembly instructions and schematics. For reference, the circuit diagram of each kit is repeated in Appendix 1 .
The following discussion uses the assembled panel meter as a basic building block and explains how it can be used to make fundamental electrical measurements of voltage, current, and resistance. Very little circuit design knowledge is assumed; the discussion is primarily directed towards engineers, technicians, students and hobbyists from fields other than electronics.

A. DC VOLTAGE MEASUREMENTS

The most frequently measured electrical parameter is voltage. In the majority of applications, it is desirable to have the displayed reading correspond directly to
the voltage being measured. Since the maximum value that can be displayed on the digital readout is 1999, voltmeters with full-scale readings of 199.9 mV , $1.999 \mathrm{~V}, 19.99 \mathrm{~V}$, etc., are easily made. The user must determine the full-scale reading that is most appropriate for his application. Then a reference voltage, and in some instances an input attenuator, must be selected.
The relationship between the full-scale input voltage and the reference voltage is very simple:

$$
V_{I N}(\text { full }- \text { scale })=1.999 \times V_{\text {REF }}
$$

There is, however, a restriction on the magnitude of $\mathrm{V}_{\text {REF }}$. It is not possible, for example, to measure a 199.9 volt signal by using a 100 volt reference - the integrated circuit chip would be damaged by voltages of this magnitude. The reference voltage should be between +100 mV and +1 volt, and to achieve the one-to-one relationship between $\mathrm{V}_{1 \mathrm{~N}}$ and the displayed value, it should be exactly +100.0 mV or +1.000 V . The evaluation kits are supplied with the components necessary to build a 200 mV (or, to be precise, a 199.9 mV) full-scale panel meter. The kit application note (A023) explains how to change the sensitivity from 200 mV to 2 V full scale.
To measure voltages greater than 2 volts, an input attenuator is needed as shown in Figure 2.
Now the full-scale sensitivity is given by:

$$
V_{I N}(\text { full-scale })=1.999 \mathrm{~V}_{\text {REF }} \times \frac{R_{2}}{\left(R_{1}+R_{2}\right)}
$$

For a panel meter which is to be used on a single fixed range, it is not necessary to buy $.05 \%$ (1 in 2000) or better resistors. Any small variations in the ratio $R_{2} /\left(R_{1}+R_{2}\right)$ can be compensated by tweaking the reference voltage. It is important, however, that the ratio remains fixed for the calibration period of the instrument. Metal film resistors with good long-term drift characteristics should be used. It is also important to use low temperature coefficient types, otherwise small temperature changes will effect the full .scale accuracy to an undesirable extent.
The input attenuator obviously reduces the input resistance of the circuit from $>10^{12}$ ohms to $\left(R_{1}+R_{2}\right)$. This places an upper limit of about $10 \mathrm{M} \Omega$ on the input resistance that can readily be achieved when using an attenuator before the A / D input current causes offset errors.

B. MULTI-RANGE DVM's

Multiple range voltmeters are frequently required and are easy to implement using the 7106 or 7107 . The full-scale voltage is selected via a rotary or push-button switch, or possibly an analog gate. Two schemes are commonly used, as shown in Figure 3a and 3b.
The circuit of Figure 3a has the advantage that any switch contact resistance appears in series with the $7106 / 7107$ input. Since the input resistance is $>10^{12} \Omega$, errors due to the switch are negligible. Another advantage is that precision voltage attenuators $\left(R_{1}\right.$ through R_{5}) are available from a number of manufacturers. Allen Bradley, for example, makes a thin film network which contains $1 \mathrm{~K}, 9 \mathrm{~K}, 90 \mathrm{~K}, 900 \mathrm{~K}$ and $9 \mathrm{M} \Omega$ resistors in one package (FN207) - ideal for a fiverange voltmeter. Most hobbyists, however, will find that it is less expensive to use medium precision resistors in series with potentiometers for the attenuator. Then the schematic of Figure 3b has some advantages because the resistors in the attenuator are non-interactive. Setting up the 10:1 attenuator, for example, has no influence on the 100:1, the 1000:1, etc., The circuit of Figure 3 b is also more amenable to solid state range switching. An analog switch or FETs may be used in place of the mechanical switch. Then, by adding a couple of zener diodes (or ordinary silicon diodes in the case of a 200 mV F.S. panel meter) the solid state switch is totally protected against overvoltages. By contrast, the configuration of Figure 3a exposes the switch to the full-input voltage, which may be several hundred volts. However, in 3b the switch resistance forms part of the attenuator and could contribute an error.

So far we have only discussed full-scale voltages of 200 mV or greater. On the 200 mV scale, the least significant digit represents $100 \mu \mathrm{~V}$ steps. To resolve smaller signals, it is necessary to use an operational amplifier prior to the 7106/7107 inputs. It is quite feasible to do this, provided one realizes that the autozeroing circuitry within the panel meter cannot take care of the op-amp offset or voltage drift. In a 741 the drift may amount to as much as $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, while a 308 A will have no more than $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

The initial offset can of course be zeroed in the usual way. Figure 4 shows a circuit with $\pm 20 \mathrm{mV}$ full-scale and an input resistance greater than $10 \mathrm{M} \Omega$.

C. AC VOLTAGE MEASUREMENTS

The 7106 and 7107 will not measure $A C$ voltages directly; an AC to DC converter is needed. The least expensive way to build such a converter is to use an opamp and some diodes in a half or full wave rectifying circuit. The type of circuit shown in Figure 5 has been used extensively in commercial $31 / 2$ digit DVM's. It has high input impedence ($10 \mathrm{M} \Omega$), good bandwidth
(20 Hz to 5 kHz) and introduces no DC errors since the CA 3140 is capacitively coupled to the 7106/7107.
It should be realized, however, that this circuit is responding to the average value of the applied waveform. The majority of AC voltmeters, on the other hand, are required to read RMS values. For a sinusoidal waveform, the relationship between the average value and the RMS value is fixed. Thus by altering the gain of the $A C$ to $D C$ converter (the $2 \mathrm{k} \Omega$ potentiometer Figure 5), the output can be adjusted to read RMS. But the more the measured waveform deviates from a sinewave, the greater will be the error. Other waveforms with fixed form-factors can be measured in a similar manner, provided the relationship between the average and the RMS value is known.
In applications where the AC waveforms being measured have widely varying form-factors, a true RMS converter should be used. National's LH0022 and Analog Devices' Model 536 are suitable. In any event, the subject of AC and DC converters is a complex one. The reader wishing to pursue the subject in greater depth is referred to Reference 1.

D. RESISTANCE MEASUREMENTS

The best way to measure resistance is to use the socalled ratiometric technique. The unknown resistance is put in series with a known standard and a current passed through the pair. The voltage developed across the unknown is applied to the input (between IN HI and IN LO), and the voltage across the known resistor applied to the reference input (between REF HI and REF LO). If the unknown equals the standard, the integrate and de-integrate ramps will be of equal slope and the display will read 1000. In general the displayed reading can be determined from the following expression:

$$
\text { Displayed reading }=\frac{R \text { UNKNOWN }}{R \text { STANDARD }} \times 1000
$$

Figure 6 shown a typical resistance measurement circuit. Note that due to its ratiometric nature, the technique does not require an accurately defined reference voltage. The display will overrange for Runknown $\geqslant 2 \times$ RSTANDARD.

E. CURRENT MEASUREMENTS

Current must be converted into voltage through the use of a shunt resistor. The relationship between the current and the displayed reading for the circuit of Figure 7 is given by the following expression:

$$
\text { Displayed reading }=\frac{l_{\text {in }} \times R_{\mathbf{S}}}{V_{R E F}} \times 1000
$$

In most current measurement applications, it is preferable to use a reference voltage of 100 mV . This minimizes the shunt resistance and, therefore, the voltage dropped across the shunt. A multirange current meter
is shown in Figure 8. Note that although the input current passes through the selector switch, IR drops across the switch do not contribute to the measured voltage.

F. ARBITRARY SCALE FACTORS

We have already noted that one of the advantages of a digital display is the unambiguous nature of the readout. When measuring other physical parameters, such as temperature, it is equally desirable to display $78.0^{\circ} \mathrm{C}$, for example, as 78.0 . With the 7106 or 7107 this can readily be achieved, even though the temperature sensing element may be a diode which changes $-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
For scale factors between 100 mV and 1 mV per least significant digit (LSD), simply determine the reference voltage required from the following equation:
$V_{\text {REF }}=($ Voltage change represented by 1 LSD $) \times 10^{3}$
For example, in the temperature-sensing diode discussed above, we may want the ieast significant digit to represent $0.1^{\circ} \mathrm{C}$, which would correspond to a voltage change across the diode of $210 \mu \mathrm{~V}$. To achieve this sensitivity, the reference should be set at $210 \mu \mathrm{~V} \times 1000=210 \mathrm{mV}$.
For scale factors greater than $1 \mathrm{mV} / \mathrm{LSD}$, the most straight forward approach is to use an input attenuator in conjunction with a 1 volt reference. For example,
consider a 0 to 2000 lb . weighing machine with a transducer that puts out 3.7 mV per pound. An input attenuation network that reduces the input signal to $1 \mathrm{mV} / \mathrm{lb}$ will give the desired scale factor.

G. TEMPERATURE MEASUREMENT

Many of the points discussed in the foregoing sections can be illustrated by considering the design of a digital thermometer. We have already seen how a diode-connected transistor can be used as the sensing element, since $V_{B E}$ has a temperature coefficient of about $-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Setting the reference at around 210 mV will give the desired scale factor of $0.1^{\circ} \mathrm{C}$ per count.
The other problem that must be considered is the zero adjustment. At $0^{\circ} \mathrm{C}$ and $100 \mu \mathrm{~A}$ bias current, the diode will have a forward voltage of about 550 mV . In order for the meter to read zero at $0^{\circ} \mathrm{C}$, we must set up a fixed 550 mV (approx.) source that can be used to offset the diode drop. Since the voltage between V+ and common is internally requlated at about 2.8 volts in the 7106 and 7107 , this is easily achieved. In the circuit of Figure 9, R_{5} should be adjusted to give 000.0 output reading with Q_{1} at $0^{\circ} \mathrm{C}$. Then R_{4} should be adjusted to give 100.0 reading with Q_{1} at $100^{\circ} \mathrm{C}$.

FIGURE 1: DIGITAL PANEL METER KITS FOR THE EXPERIMENTER.

FIGURE 2: INPUT ATTENUATOR FOR $V_{I N} \geqslant 2.0 \mathrm{~V}$.

FIGURE 3(a): MULTIRANGE VOLTMETER
*CAUTION: High voltages can be lethal. Proper operating precautions must be observed by the user. Intersil assumes no liability for unsafe operation.

FIGURE 3(b): MULTIRANGE VOLTMETER, ALTERNATIVE SCHEME.

GND* = IN THE ABSENCE OF SPLIT SUPPLY OPERATION, "TEST" (PIN 37) CAN BE USED AS GROUND.

FIGURE 4: $\mathbf{2 0 m V}$ FULL SCALE.

GND* = IN THE ABSENCE OF SPLIT SUPPLY OPERATION, "TEST" (PIN 37) CAN BE USED AS GROUND.

FIGURE 5: AC TO DC CONVERTER

FIGURE 6: RESISTANCE MEASUREMENT*.
(* REQUIRES SOME MODIFICATION TO THE KIT)

FIGURE 7: CURRENT MEASUREMENT

FIGURE 8: MULTIRANGE CURRENT METER.

FIGURE 9: DIGITAL THERMOMETER*
(* REQUIRES SOME MODIFICATION TO THE KIT)

APPENDIX 1 - EVALUATION KIT SCHEMATICS

Low Cost Digital Panel Meter Designs

Including Complete Instructions for Intersil's LCD and LED Kits

Intersil's 7106 and 7107 are the first ICs to contain all the active circuitry for a $31 / 2$ digit panel meter on a single chip. The 7106 is designed to interface with a liquid crystal display (LCD) while the 7107 is intended for light-emitting diode (LED) displays. In addition to a precision dual slope converter, both circuits contain BCD to seven segment decoders, display drivers, a clock and a reference. To build a high performance panel meter (with auto zero and auto polarity features) it is only necessary to add a display, 4 resistors, 4 capacitors, and an input filter if required (Figures 1 and 2).

Figure 1: LCD Digital Panel Meter Using ICL7106

Figure 2: LED Digital Panel Meter Using ICL7107

COST ADVANTAGES OF 7106 AND 7107

Until recently, the make or buy decision for any A-to-D system was dominated by the engineering costs. Even a simple panel meter, built from off-the-shelf digital and linear ICs, required at least six months of engineering effort for completion. However, the advent of truly single
chip panel meter functions (Intersil's 7106 and 7107) has reduced the design effort on the part of the user to zero. The make or buy decision becomes a simple question of dollars and cents.
At the time of writing, a $31 / 2$ digit LED display panel meter can be built for $\$ 18$ in production $(5,000)$ quantities. This figure includes labor at $\$ 3$ per hour with 300% overhead. The cost breakdown is as follows:

ICL7107 (@ 5000 pcs)	5.95
LEDs (4)	3.00
Capacitors (5)	.58
Resistors (4)	.12
Potentiometer	.60
Circuit Board	1.00
Misc. Hardware	.75
\quad TOTAL COMPONENTS	$\$ 12.00$
Labor	6.00

(1/2 hour at \$3/hour, 300\% overhead) TOTALCOST
$\$ 18.00$ including assembly and test

A $31 / 2$ digit LCD panel meter, using the 7106 , is $\$ 3$ to $\$ 4$ more expensive. This is due to the greater cost of the display.
These cost figures are considerably lower than the least expensive of the ready-built panel meters. However, the cost is not the only advantage; the do-it-yourself approach allows greater flexibility. Off-the-shelf panel meters have form factors which are frequently inconvenient, whereas a single IC design takes up a minimum of circuit board real estate. Consider the advantages for field servicing a military radar, for example, if each complex circuit card had its own built-in voltmeter and miniature switch. Fault finding would be greatly simplified by making critical voltages throughout the system instantly accessible.

THE EVALUATION KITS

After purchasing a sample of the 7106 or the 7107 , the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application. However, locating and purchasing even the small number of additional components required, then wiring a breadboard, can often cause delays of days or sometimes weeks. To avoid this problem and facilitate evaluation of these unique circuits, Intersil is offering a kit which contains all the necessary components to build a $31 / 2$ digit panel meter. With the help of this kit, an engineer or technician can have the system "up and running" in about half an hour.
Two kits are offered, the ICL7106EV/KIT and the ICL7107EV/KIT. Both contain the appropriate IC, a circuit board, a display (LCD for $7106 E V / K I T$, LEDs for $7107 \mathrm{EV} / \mathrm{KIT}$), passive components, and miscellaneous hardware.

(a) Assembly Instructions

The circuit board layouts and assembly drawings for both kits are given in the Appendices. The boards are singlesided to minimize cost and simplify assembly. Jumpers are used to allow maximum flexibility. For example, provision has been made for connecting an external clock (Test Point \#5). Provision has also been made for separating REF Lo from COMMON when using an external reference zener. In a production instrument, the board area could be reduced dramatically. Aside from the display, all the components can easily be placed in less than 4 square inches of board space.
Molex ${ }^{\circledR}$ pins are used to provide a low cost IC socket; one circuit board can thus be used to evaluate several ICs. (Strips of 20 pins should be soldered onto the P.C. boards; the top of the strip holding the pins together can then be broken off by bending it back and forth using needle-nose pliers). Solder terminals are provided for the five test points, and for the $\pm 5 \mathrm{~V}$ input on the 7107 kit.

(b) Full Scale Reading $\mathbf{- 2 0 0} \mathbf{m V}$ or $\mathbf{2 . 0 0 0 V}$?

The component values supplied with the kit are those specified in the schematics of Fig. 1 or Fig. 2. They have been optimized for 200.0 mV full scale reading. The complete absence of last digit jitter on this range illustrates the exceptional noise performance of the 7106 and 7107. In fact, the noise level (not exceeded 95% of time) is about $15 \mu \mathrm{~V}$, a factor of 10 less than some competitive one chip panel meters.
To modify the sensitivity to 2.000 volts full scale, the integrator time constant and the reference should be changed by substituting the component values given in the Table below. The auto-zero capacitor (C_{2}) should also be changed. These additional components are not supplied in the kits. In addition, the decimal point jumper should be changed so the display reads 2.000 .

TABLE 1: Component Values for Full Scale Options

COMPONENT (type)	200.0 mV Full Scale	2.000V Full Scale
C_{2} (mylar)	$0.47 \mu \mathrm{~F}$	$.047 \mu \mathrm{~F}$
R_{1}	$24 \mathrm{~K} \Omega$	$1.5 \mathrm{~K} \Omega^{*}$
R_{2}	$47 \mathrm{~K} \Omega$	$470 \mathrm{~K} \Omega$

*Changing R_{1} to $1.5 \mathrm{~K} \Omega$ will reduce the battery life of the 7106 kit. As an alternative, the potentiometer can be changed to $25 \mathrm{~K} \Omega$.

(c) Liquid Crystal Display (7106)

Liquid crystal displays are generally driven by applying a symmetrical square wave to the back-plane (B.P.). To turn on a segment, a waveform 180° out of phase with B.P. (but of equal amplitude) is applied to that segment. Note that excessive D.C. voltages ($>50 \mathrm{mV}$) will permanently damage the display if applied for more than a few minutes. The 7106 generates the segment drive waveform internally, but the user should generate the decimal point front plane drive by inverting the B.P. (pin 21) output.** In applications where the decimal point remains fixed, a
**In some displays, a satisfactory decimal point can be achieved by tying the decimal front plane to COMMON (pin 32). This pin is internally regulated at about 2.8 volts below V+. Prolonged use of this technique, however, may permanently burn-in the decimal, because COMMON is not exactly midway between B.P. high and B.P. Iow.
simple MOS inverter can be used (Fig. 3). For instruments where the decimal point must be shifted, a quad exclusive OR gate is recommended (Fig. 4). Note that in both instances, TEST (pin 37, TP1) is used as V- for the inverters. This pin is capable of sinking about 1 mA , and is approximately 5 volts below $\mathrm{V}+$. The B.P. output (pin 21) oscillates between $V+\&$ TEST.

Figure 3: Simple Inverter for Fixed Decimal Point

Figure 4: Exclusive 'OR' Gate for Decimal Point Drive

Before soldering the display onto the circuit board, make sure that it is inserted correctly. Many LCD packages do not have pin \#1 marked, but the segments of an unenergized display can be seen by viewing with reflected light. The package orientation should correspond with that shown in Appendix I.

(d) Light Emitting Diode Display (7107)

The 7107 pull-down FETs will sink about 8 mA per segment. Using standard common anode $.3^{\prime \prime}$ or .43 " red LEDs, this drive level produces a bright display suitable for almost any indoor application. However, additional brightness can be achieved through the use of Hewlett Packard high-efficiency LEDs. Note that the display contrast can be increased substantially by using a red filter. Ref. 4 discusses filter techniques and lists manufacturers of suitable materials.
A fixed decimal point can be turned on by tying the appropriate cathode to ground through a 150Ω resistor. The circuit boards supplied with the kit will accomodate either H.P. 0.3" displays or the popular MAN 3700 types. The difference between the two is that the H.P. has the decimal point cathode on pin 6, whereas the MAN 3700 uses pin 9. Due to the limited space on the circuit board, not all decimal points are brought to jumper pads; it may be necessary to wire directly from the 150Ω resistor to the display. For multiple range instruments, a 7400 series CMOS quad gate or buffer should be used. The majority of them are capable of sinking about 8 mA .

(e) Capacitors

The integration capacitor should be a low dielectric-loss type. Long term stability and temperature coefficient are unimportant since the dual slope technique cancels the effect of these variations. Polypropylene capacitors have been found to work well; they have low dielectric loss characteristics and are inexpensive. However, that is not to say that they are the only suitable types. Mylar capacitors are satisfactory for C_{1} (reference) and C_{2} (auto-zero).
For a more detailed discussion of recommended capacitor types, the reader is referred to page 3 of Reference 2.

(f) The Clock

A simple RC oscillator is used in the kit. It runs at about 48 kHz and is divided by 4 prior to being used as the system clock (Fig. 5). The internal clock period is thus $83.3 \mu \mathrm{~S}$, and the signal integration period (1000 clock pulses) is 83.3 mS . This gives a measurement frequency of 3 readings per second since each conversion sequence requires 4000 clock pulses. Setting the clock oscillator at precisely 48 kHz will result in optimum line frequency $(60 \mathrm{~Hz})$ noise rejection, since the integration period is an integral number of line frequency period (see Ref. 2 for discussion). Countries with 50 Hz line frequencies should set the clock at 50 kHz .

Figure 5: 7106/7107 Internal Oscillator/Clock
An external clock can also be used. In the 7106, the internal logic is referenced to TEST. External clock waveforms should therefore swing between TEST and V+ (Fig. 6a). In the 7107, the internal logic is referenced to GND so any generator whose output swings from ground to +5 V will work well (Fig. 6b).

Figure 6: External Clock Options

(g) The Reference

For 200.0 mV full scale, the voltage applied between REF Hi and REF Lo should be set at 100.0 mV . For 2.000 V full scale, set the reference voltage at 1.000 V . The reference inputs are floating, and the only restriction on the applied voltage is that it should lie in the range V - to $\mathrm{V}+$.
The voltage between $\mathrm{V}+$ and COMMON is internally regulated at about 2.8 volts. This reference is adequate for many applications and is used in the evaluation kits. It has a typical temperature coefficient of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The limitations of the on-chip reference should also be recognized, however. With the 7107, the internal heating which results from the LED drivers can cause some degradation in performance. Due to its higher thermal resistance, plastic parts are poorer in this respect than ceramic. The user is cautioned against extrapolating from the performance of the kit, which is supplied with a ceramic 7107, to a system using the plastic part. The combination of reference TC, internal chip dissipation, and package thermal resistance can increase noise near full scale from $25 \mu \mathrm{~V}$ to $80 \mu \mathrm{~V}$ pk-pk.
The linearity in going from a high dissipation count such as 1000 (19 segments on) to a low dissipation count such as 1111 (8 segments on) can also suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an overload condition. This is because overload is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between overload and a nonoverload count as the die alternately heats and cools. These problems are of course eliminated if an external reference is used.
The 7106, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added as shown in figures 7(a) or 7 (b).

Figure 7: Using an External Reference

(h) Power Supplies

The 7106 kit is intended to be operated from a 9 volt dry cell. INPUT Lo is shorted to COMMON, causing $V+$ to sit 2.8 volts positive with respect to INPUT Lo, and V- 6.2 volts negative with respect to INPUT Lo.
The 7107 kit should be operated from ± 5 volts. Noisy supplies should be bypassed with $6.8 \mu \mathrm{~F}$ capacitors to ground at the point where the supplies enter the board. INPUT Lo has an effective common mode range with respect to GND of a couple of volts.
The precise value is determined by the point at which the integrator output ramps within $\sim .3 \mathrm{~V}$ of one or other of the supply rails. This is governed by the integrator time
constant, the magnitude and polarity of the input, the common mode voltage, and the clock frequency: for further details, consult the data sheet. Where the voltage being measured is floating with respect to the supplies, INPUT Lo should be tied to some voltage within the common mode range such as GROUND or COMMON. If a -5 volt supply is unavailable, a suitable negative rail can be generated locally using the circuit shown in Fig. 8.

Figure 8: Generating Negative Supply from +5 v

(i) Input Filters

One of the attractive features of the 7106 and 7107 is the extremely low input leakage current, typically 1 pA at $25^{\circ} \mathrm{C}$. This minimizes the errors caused by high impedance passive filters on the input. For example, the simple RC ($1 \mathrm{M} \Omega / .01 \mu \mathrm{~F}$) combination used in the evaluation kits introduces a negligible $1 \mu \mathrm{~V}$ error.

PRELIMINARY TESTS

(a) Auto Zero

With power on and the inputs shorted, the display should read zero. The negative sign should be displayed about 50% of the time, an indication of the effectiveness of the auto-zero system used in the 7106 and 7107. Note that some competitive circuits flash negative on every alternate conversion for inputs near zero. While this may look good to the uninitiated, it is not a true auto zero system!
(b) Over-range

Inputs greater than full scale will cause suppression of the three least significant digits; i.e. only 1 or -1 will be displayed.

(c) Polarity

The absence of a polarity signal indicates a positive reading. A negative reading is indicated by a negative sign.

Further evaluation should be performed with the help of a precision DC voltage calibrator such as Fluke Model 343A. Alternatively a high quality $41 / 2$ digit DVM can be used, provided its performance has been measured against that of a reliable standard.

DPM COMPONENTS: SOURCES OF SUPPLY

It has already been shown that the 7106 and 7107 require an absolute minimum of additional components. The only critical ones are the display and the integration capacitor.

The following list of possible suppliers is intended to be of assistance in putting a converter design into production. It should not be interpreted as a comprehensive list of suppliers, nor does it constitute an endorsement by Intersil.

Liquid Crystal Displays

a) LXD Inc., Cleveland, Ohio, 216/831-8100
b) Hamlin Inc., Lake Mills, Wisconsin, 414/648-2361
c) IEE Inc., Van Nuys, California, 213/787-0311
d) Shelley Associates, Irvine, California, 714/549-3414
e) Crystaloid Electronics, Stow, Ohio, 216/688-1180

LED Displays (Common Anode)

a) Hewlett Packard Components, Palo Alto, California, 415/493-1212
b) Itac Inc., Santa Clara, California, 408/985-2290
c) Litronix Inc., Cupertino, California, 408/257-7910
d) Monsanto Inc., Palo Alto, California, 415/493-3300

Polypropylene Capacitors

a) Plessey Capacitors, West Lake Village, California, 213/889-4120
b) IMB Electronics Products, Santa Fe Springs, California, 213/921-3407
c) Elcap Components, Santa Ana, California, 714/ 979-4440
d) TRW Capacitors, Ogallala, Nebraska, 308/284-3611

CAUTION: Potential trouble areas when constructing the evaluation kits.

1. Certain LCD displays have a protective plastic sheet covering the plastic top. This sheet may be removed after installing the display to maximize display viewing.
2. Solder flux or other impurities on PC board may cause leakage paths between IC pins and board traces reducing performance and should be removed with rubbing alcohol or some other suitable cleaning agent. Displays should be removed when cleaning as damage could result to them.
3. Blue PC board material (PC 75) has been treated with a chemical which may cause surface leakage between the input traces. It is suggested that the board be scribed between the input traces and adjacent traces to eliminate this surface leakage.
4. In order to ensure that unused segments on the LCD displays do not turn on, tie them to the backplane pin (pin 21).

APPENDIX I: 7106 Printed Circuit Board Layout and Component 'Placement

\dagger Jumper to display decimal for temporary decimal point. See text.

APPENDIX II: 7107 Printed Circuit Board Layout and Component' Placement

Jumpers can be inserted here to short IN LO to GND or COMMON. Jumper to decimal point if required

Building an Auto-ranging DMM with the

 ICL7103A/8052A

 ICL7103A/8052A A/D Converter Pair

INTRODUCTION

The development of LSI A/D converters has carved the pathway for a new category of low cost, accurate digital panel meters (DPM) and digital multimeters (DMM). The 7103A/8052A A/D pair represents an excellent example of this new breed of converter products available today. The outstanding attributes of this pair include:

- Accuracy guaranteed to ± 1 count over the entire conversion range.
- Guaranteed zero reading for 0 volts input.
- Single reference voltage.
- Over-range and under-range signals available for autoranging.
- TTL compatible outputs.
- Six auxilliary outputs for enhanced interfacing capability. In effect, the user has available a near perfect system. The key to a successful design depends, almost exclusively, on the individual's ability to prevent adding errors to the system. The purpose of this applications bulletin is to describe the operation and potential pitfalls of a $10 \mu \mathrm{~V}$ resolution ($\mathrm{V}_{\text {REF }}=$ 100 mV) 4-1/2 digit auto-ranging scheme using the 7103A/ 8052A pair. Two auto-ranging circuits are included within the text. Each is discussed in terms of its advantages and disadvantages. Section One is intended to familiarize the reader with the circuitry common to both designs.

BLOCK DIAGRAM

SECTION 1

7103A/8052A VARIATIONS FROM DATA BOOK SCHEMATIC

The basic circuit for the 7103A/8052A A/D converter remains unchanged. However, a few modifications are necessary to accommodate a 100 mV reference. First, the reference voltage divider network ($5.1 \mathrm{~K}, 1 \mathrm{~K}$) is modified for greater. resolution. Second, the integrator resistor is reduced to $10 \mathrm{~K} \Omega$ to facilitate an approximate 8 volt integrator swing with

VIN $=200 \mathrm{mV}$. Third, a 300 K potentiometer should replace the $300 \mathrm{~K} \Omega$ fixed resistor in the comparator translation network. With $\mathrm{V}_{\mathrm{IN}}=0$ volts, this pot should be adjusted until the display reads equal intervals of positive and negative signs. This network brings the comparator output up to the threshold of the 7103A logic during auto-zero. The two JFET's connected across the integrator cap maintain the integrity of the integrator and auto-zero cap during a gross over range condition.

Input Divider

All auto-ranging systems use a resistive divider network of some kind. The particular type of network used is important and requires some thought. Shown below are two conventionai divider neiworks.

Type A

Each of these dividers has advantages and disadvantages. For example, type B can be implemented with analog gating, whereas, type A cannot. However, type B requires some form of input protection to prevent destructive breakdown when high voltage is applied.
The designer must also consider the potential hazards of four additional sources of leakage current (3 switches plus input protection). For $10 \mu \mathrm{~V}$ resolution, these leakage currents must be less than 10pA for the resistor values shown above.
A major advantage to type A is its versatility. It can easily be used to measure current and resistance as well as voltage. Type A was chosen for this application primarily for this reason. The absence of potential leakage current problems was also an important factor in favor of type A.

Ohm's Converter (See main schematics)

Measuring an unknown resistance relies on the basic fundamentals of ohm's law. The ohm's converter produces a constant voltage (adjustable) which is applied to the ladder network. A constant current is generated and the voltage developed across the resistor in question is measured. Four decades of resistance can be measured by connecting the ohm's converter to the four points on the resistor ladder. The op amp used should be a FET input device to eliminate constant current source errors.

AC Converter

With the addition of a precision rectifier and a low pass filter, AC measurements can be made. The precision rectifier shown below is a conventional circuit used for this application. Tolerances can be reduced below $\pm 1 \%$ by adjusting a single potentiometer. The user can expect dependable accuracy over a frequency range of 40 Hz to 40 kHz .

Clock Circuit

The actual clock frequency is not of first order importance assumina it does not varv durina a conversion cycle and is within the limits dictated by the integrating resistor and capacitor. However, some problems can result if the clock wave form contains severe ringing or spikes. The 311 clock generator shown in each schematic proved to be excellent for this application. It did not generate current spikes on the 5 volt supply line and it remained stable during supply fluctuations due to variations in LED current.

Decimal Point Logic

The anode of each decimal point used, (DP5, DP4, DP3) is connected to the common anode pin of its respective 7 segment display. The position of the zero bit in the shift register and the operating mode ($K \Omega$ or Volts) of the autoranging system determines which decimal point will be on. The table below defines when each decimal point should be on.

OPERATING MODE	D.P.5	D.P.4	D.P.3
DCV, ACV	2 V Scale (B)	20 V Scale (C)	200 mV Scale (A) 200 V Scale (D)
$\mathrm{k} \Omega$	$2 \mathrm{k} \Omega$ (D) $2 \mathrm{M} \Omega$	$20 \mathrm{k} \Omega$ (C) $)$	$200 \mathrm{k} \Omega$ (B)

The letter in parenthesis indicates the location of the zero bit in the shift register.

The two SPST switches (SW1, SW2) and the two transistors (Q1, Q2) provide the necessary switching. The only addition to this circuitry is a single LED and a 180Ω resistor. Connect the anode to 5 volts and the cathode (through 180Ω resistor) to register A, and the LED will differentiate between the 200 mV and 200 volt scales or the $2 \mathrm{k} \Omega$ and $2 \mathrm{M} \Omega$ scales.

SN74195 shift register

The 74195 shift left/shift right shift register is the heart of the auto-ranging logic. The location of a single zero bit determines which relay is closed and which decimal point is
on. Auto-ranging is accomplished by shifting the active bit either left or right until a non-over range (or under-range) condition exists. The digital section associated with the 74195 varies between the two designs and will be discussed later.

SECTION 2

This section is intended to familiarize the reader with individual characteristics of each design.

Schematic \#1

The basic idea behind circuit \#1 is to extend the auto-zero time whenever an over range or under range condition exists. If the auto-zero time is not long enough, it is possible for the auto-ranging circuitry to continuously rock between two adjacent scales. Basically, this phenomenon is due to a residual deintegrate charge stored on the auto-zero cap after an over range condition has occurred. The scale will increment up one decade but an under-range may result on the next conversion (VIN NET $=\mathrm{V}_{\text {IN ACTUAL }}-\mathrm{V}_{\text {residual }}$). The 74121 extends auto-zero to 250 ms whenever an under range or over range occurs. This time extension should enable the auto-zero loop to behave properly.

When an under range or over range occurs, several things happen. First, the true output of the 74121 goes high enabling a shift pulse. At the same time the \bar{Q} output goes low causing the 7103A to hold in auto-zero. Nine hundred clock pulses after the beginning of auto-zero, the coincidence between D_{1} and strobe generates the clock pulse that shifts the active bit in the register. Approximately 250 ms after the beginning of Auto-zero, the single shot will clear and another integrate/deintegrate cycle begins. The process will repeat on subsequent under range/over range conversions. One auto-range cycle requires approximately 450 ms (200 ms of integrate/deintegrate and 250 ms of autozero).

Schematic \#2

Circuit \#2 utilizes the $31 / 2-41 / 2$ digit mode of the $7103 A$ to auto-range in approximately one tenth the normal conversion time. The system is designed to operate in a normal $41 / 2$ digit mode until auto-ranging is necessary. The 7474 D flip-flop controls the $31 / 2-41 / 2$ digit mode of the 7103A, but it has a rather interesting twist to insure sufficient auto-zero time.
The integrator and comparator time constants are each reduced by a factor of 10 at the beginning of auto-zero if auto-ranging is required. However, the 7103A doesn't enter the $31 / 2$ digit mode until the input data to the 7474 is clocked into the register. This occurs 900 counts after auto-zero begins ($D_{1} \overline{\text { strobe }}$). The system completes the remainder of auto-zero and the subsequent conversion in the $31 / 2$ digit mode at 10 times the normal conversion rate (approximately 33 ms). The 7474 is then cleared 100 counts after the next auto-zero begins ($D_{5} \bullet$ strobe) and a $4 \frac{1}{2}$ digit mode is resumed. If subsequent auto-scaling is not necessary, the system continues to operate in the 4-1/2 digit mode, and if it is necessary, the integrator and comparator time constants remain in a 3-1/2 digit mode but the 7103A returns to a 4-1/2 digit mode when the 7474 is cleared. 800 counts later the data is strobed into the register and the 7103A once again enters the 3-1/2 digit mode and another 3-1/2 digit conversion cycle begins. The integrator and comparator will remain in the 3-1/ digit mode and the 7103A will switch to the 4-1/2 digit mode for only 800 counts of auto-zero (900 counts for the first auto-

1st AZ after invalid conversion Int

Deint.
Subsequent Auto-zero's

Operating Mode	Contents of Decade Counters					Comments
	Most Significant Decade	$\begin{gathered} \text { Decade } \\ 4 \end{gathered}$	Decade 3	Decade 2	Least Significant Decade	
4 1/2 Digit	0	0	9	0	0	900 counts after auto-zero begins, data is strobed into 7474.
$31 / 2$	0	9	1	0	X	total clock periods needed to fill counters with 1,000 equals 1810
$31 / 2$	1	0	0	0	X	next integrate cycle
$31 / 2$	2	0	0	0	X	max counts for deintegrate
$31 / 2$	0	1	0	0	X	7474 cleared
$41 / 2$	0	0	8	0	0	total counts of $41 / 2$ digit auto-zero
$31 / 2$	0	8	2	0	X	remaining auto-zero counts

Counts required for first auto-zero $=1810(\approx 15 \mathrm{~ms})$
Counts required for next conversion $=3000 \mathrm{max}(\approx 25 \mathrm{~ms})$
Counts required for second, third or fourth auto-zero $=1720(\approx 14.3 \mathrm{~ms})$
Total time required to auto-range through four decades $\cong 300 \mathrm{~ms}$ (170 ms are required for the initial integrate/deintegrate cycle)
zero after over-range or under-range) extends the effective auto-zero time to 1720 counts instead of 1000 (18100 for the first auto-zero after over-range or under-range). The faster time constants of the integrator and comparator, in addition to the extended auto-zero, ensures proper operation of the auto-zero loop and eliminates the possibility of oscillating between adjacent ranges.
The status of the 7103A/8052A is determined by 5 decade counters in the 7103A. The least significant counter is cleared and bypassed in the $31 / 2$ digit mode. A closer look at these counters, with respect to the auto-ranging circuitry, will clearly show the time available for auto-zero and individual conversion periods.

The shift pulse to the 74195 is enabled by AND gate \#2A. If an over range or under range occurs and register D contains a
logic 1 , the shift clock is enabled; if D is a logic 0 and a shift rignt condition exisis the ciock is disabied. ÂND gate \#iÁ insures the active bit will not shift out of the register when Vin $\leq 18.00 \mathrm{mV}$.

The $31 / 2$ digit mode is disabled when register A is a logic 0 and a shift left occurs, or if register D is a logic 0 and a shift right occurs. Basically, this means the 7103A/8052A will convert small inputs ($\mathrm{V}_{\mathrm{IN}} \leq 18.00 \mathrm{mV}$) and signals greater than 200 volts in a $41 / 2$ digit mode. This is accomplished with AND gates \#2B and \#3B and OR gate \#3.

The integrator and Comparator time constants are controled by OR gate \#4. Short time constants are enabled as soon as an over range or under range occurs and they remain enabled until a non-over-range/under range condition exists and the 7474 is cleared.

Auto-Ranging Schematic \#1

Auto-Ranging Schematic \#2

CAUTION

Using the 7103A/8052A solves a great number of conventional A/D design problems, however the user must pay special attention to the components and the board layout for the specific application. Listed below are some application notes. If the user spends some time reviewing these bulletins, fewer headaches will result.

SYMPTOMS/SOLUTIONS

It is very easy to build a system containing several error terms and if the user is unfamiliar with integrating A / D converters, a specific trouble shooting sequence may not be apparent. This section is intended to, a, identify specific errors, and b, suggest solutions.

- With $V_{I N}=0 V$, the display flashes zeros indicating an overrange.
a) Check power supplies. If the $\pm 15 \mathrm{~V}$ supply is not working properly the 7103A/8052A may over-range.
b) Check all component connections corresponding to the integrator, comparator, and analog switch network.
- With $\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$, display reads something other than zero
(offset error).
a) This symptom is typically a result of grounding problems or digital signals coupled to analog lines. Connect pin 11 (analog.ground) to the $100 \mathrm{k} \Omega$ resistor at signal input. If the offset disappears, the problem is a result of IR drops in the ground line. Reconnect ground lines similar to Figure 3.

Figure 3
If the offset remains the same, check the proximity of digital lines (digit drive, busy, under-range) to analog lines. They should be separated as far as possible. If the offset reduces but is not completely eliminated. The problem is most likely due to both types of errors.

- Unusually large rollover error.
a) Rollover is a result of the voltage drop on the auto-zero capacitor during the reference integrate phase, and stray capacitance present while charging CREF to the reference voltage. For a 1 volt reference, the 7103A/ 8052A pair is guaranteed to have less than one count of rollover. With a 100 mV reference, the rollover should be less than 2 counts. If larger rollover errors are present, clean the PC board, as any leakage current path must be removed. Also be sure the auto-zero and reference capacitors are high quality, low leakage capacitors.
- Unusually large amount of count instability.
a) Check noise on the power supplies. If large current spikes or 60 cycle noise are present, the converter will appear noisy. Also, if the comparator translation network ($36 \mathrm{k}, 300 \mathrm{k}$) is way out of adjustment, the comparator will not respond consistently to a zero crossing.

GENERALLY SPEAKING

- Minimize stray capacitance.
- Keep analog lines short.
- Build system around a stable analog ground.

4½ Digit Panel Meter Demonstrator/
 Instrumentation Boards

Intersil's 8052A/7103A precision A/D converter pair with its multiplexed BCD outputs and digit drivers combines dualslope conversion reliability with ± 1 count in 20,000 accuracy. The two chip system features performance characteristics such as 5pA input leakage, 0.002% linearity, auto-zero to $10 \mu \mathrm{~V}$ with drift less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and scale factor temperature coefficients of $3 p p m /{ }^{\circ} \mathrm{C}$ (with external reference). With these outstanding features, the 8052A/ 7103A two chip system is ideally suited for LED display Digital Panel Meter (DPM) and Digital Multimeter (DMM) applications.

DEMONSTRATOR BOARD

Two versions of the complete circuit for a $4 \frac{1}{2}$ digit DPM with ± 2.0000 volt full scale and LED readout will be discussed. The first version, the Demonstrator Board, is shown in schematic form in Figure 1. This circuit uses the internal reference of the 8052A for conversion reference and a buffered 2-inverter CMOS RC oscillator for the clock source. The Demonstrator Board contains all the components and displays for a $41 / 2$ DPM on one, double-sided PC board. In addition, the $B C D$ outputs, digit drivers, overrange, underrange, run/hold and busy lines from the 7103 are brought out to the edge connector making it possible to interface the DPM to a microprocessor or UART. The PC board layout diagram and component placement diagrams are shown in figures 2, 3 and 4.

Figure 1: Demonstrator Board Schematic

FRONT
Figure 2: Demonstrator Board Component Side

BACK
Figure 3: Demonstrator Board Back

Figure 4: Demonstrator Board Component Placement

INSTRUMENTATION BOARDS

The schematic diagram in Figure 5 is for the $41 / 2$ Digit Instrumentation Boards which feature a lower component count, a separate front panel display board and a compact main board. The display board uses 5 similar LED Displays for the full digits and the polarity $/ 1 / 2$ digit, with the 7 -segment decoder/driver on the reverse side of the board. The main board uses the 8052 reference, a CMOS clock circuit with variable frequency adjustment and has the BCD lines, digit driver lines, supply and ground lines, and input lines brought
out to the edge connector. Both boards use single-sided construction to simplify assembly and reduce fabrication costs. Figure 6 shows the main board PC layout with the component placement diagram in Figure 7. The display board artwork is shown in Figure 8 with component placement shown in Figures 9 and 10. Note that the displays are mounted on the trace side of the display board while the digit driver transistors, current-limiting resistors and the decoder/driver IC are mounted on the opposite side of the board.

Figure 5: Instrumentation Board Schematic (Numerals refer to edge connector pin numbers)

BACK
Figure 6: Main Instrumentation Board Back

XJAs
Figure 7: Main Instrumentation Board Component Placement

front
Figure 8: Display Instrumentation Board Artwork

Figure 9: Display Instrumentation Board (Non-Conductor Side) Component Placement

Figure 10: Display Instrumentation Board (Conductor Side) Component Placement

COMPONENT SELECTION

The only critical components for the $41 / 2$ digit DPM circuits are the reference, auto-zero and integrating capacitors, $I_{1} C_{1}$, C_{2}, and C_{3} respectively for the Instrumentation Boards and $\mathrm{C}_{4}, \mathrm{C}_{12}$, and C_{14} respectively for the Demonstrator Board).
The reference and auto-zero capacitor should have low dielectric absorption (D.A.) for quick start-up and recovery from overload while the integrating capacitor requires low DA for minimum rollover error and optimum ratiometric measurement performance. A complete list of components and suggested sources for each board may be found in tables 1 and 2.

EVALUATION

The Demonstrator and Instrumentation Boards both reflect design considerations regarding the separation of digital and analog ground lines, and grounding priorities to minimize the effects of IR drops on the grounds of various IC's. For instance, the analog ground of the 8052A (pin 5) is not only kept separate from digital ground, but is in close proximity to the edge connector to minimize the IR drop along the conductor and, hence, minimize ground line variations.

Table I

ICL8052A／7103A 4½ DIGIT DIGITAL PANEL METER

Electrical Parts List for Demonstrator Board

Reference Designation
IC1
IC2
IC3
IC4
IC5
C1
C2，C3，C6，C7，C9－
C11，C13，C16，C17
C4，C12
C5
C8
C14
R1，R19，R22
R2，R14，R15，R21
R3，R4
R5
R6－R12，R23
R13
R16
R17
R18
CR1，CR2
DS1－DS4
DS5

Description

Analog A／D Converter
Digital A／D Converter
7－Segment Decoder／Driver
Quad CMOS Nand Gate，2－Input
7－Transistor Array，Common Emitter
0.1μ F Ceramic Capacitor
$10 \mu \mathrm{~F}$ Tantalum Capacitor
1.0μ F Polypropylene Capacitor 20\％，200V dc
100pF Mica Capacitor
300pF Mica Capacitor
$0.22 \mu \mathrm{~F}$ Polypropylene Capacitor
$100 \mathrm{~K} \Omega$ 1／4W Resistor
39K Ω 1／4W Resistor
330 2 1／4W Resistor
2．2K $\Omega 1 / 4 \mathrm{~W}$ Resistor
120s $1 / 4$ W Resistor
82K Ω 1／4W Resistor
300K』 1／4W Resistor
510s $1 / 4 \mathrm{~W}$ Resistor
1K』 Trimmer Beckman 76PR1K
Small Signal Diode
7－Segment LED Display
± 1 Polarity Display

Recommended Manufacturer \＆Part Number
Intersil ICL8052A
Intersil ICL7103A
RCA CD4511BE
RCA CD4011AE
RCA CA3081
Sprague 7CZ5U104X0050D1
Kemet T39－C106－025AS
TRW X363UW

Arco CM4FD101J03
Arco CM4FD301J03
IMB GA2A224

1N914
HP 5082－7653
HP 5082－7656

Table II

ICL8052A／7103A 4 $1 / 2$ DIGIT DIGITAL PANEL METER
Electrical Parts List for Instrumentation Board

Reference Designation
IC1
IC2
IC3
IC4
C1，C2
C3
C4 thru C7
C8
C9
C10
R1
R2 thru R9
R10
R11
R12
R13
R14，R15
R16
R17
R18
D1，D2
Q1 thru Q7
DS1 thru DS5

Description

Analog A／D Converter
Digital A／D Converter
7 Segment Decoder／Driver
Quad CMOS Nor Gate， 2 input
$1.0 \mu \mathrm{~F}$ Polypropylene Capacitor
$0.22 \mu \mathrm{~F}$ Polypropylene Capacitor
$10 \mu \mathrm{~F}$ Tantalum Capacitor
100pF Mica Capacitor
300pF Mica Capacitor
$0.1 \mu \mathrm{~F}$ Polyester Capacitor
$1 \mathrm{k} \Omega$ Cermet Trimpot
120S $1 / 4 / \mathrm{W}$ Resistor
510s． $1 / 4 / \mathrm{W}$ Resistor
200k Ω 1／4W Resistor
100k Ω Trimmer
47k Ω 1／4W Resistor
100K』 1／4W Resistor
$4.7 \mathrm{~K} \Omega$ 1／4W Resistor
300k』 $1 / 4 \mathrm{~W}$ Resistor
36k Ω 1／4W Resistor
Small Signal Diodes
NPN Transistor
7 Segment LED Display

Recommended Manufacturer \＆Part Number
Intersil ICL8052A
Intersil ICL7103A
Texas Instruments SN7447AN
RCA CD4001AD
Plessey 171L105K160
IMB GA2A224
Kemet T39－C106－025AS
Arco CM4FD101J03
Arco CM4FD301J03
Siemens B325600．1／10／100
Bourns 3299P

Spectrol 62－3

IN914
Motorola MPS 3704
Fairchild FND507

One problem that exists on both PC boards regarding supply line variations is that of the CMOS clock source. Since the supply for the RC oscillator is shared with the LED display, any variation in supply voltage due to the display reading will also vary the supply voltage to the oscillator. The point at which this variation becomes critical is when the display changes from a full scale reading to overrange; i.e., 19999 to 0000. When in overrange, the display alternates between a blank display (all segments off) and the 0000 overrange indication. The supply voltage to the CMOS oscillator varies enough to cause a shift in the clock frequency. This shift occurs during the signal integrate/reference integrate phase of conversion causing a low display reading just after overrange recovery. For instance, if the signal voltage is 1.99995 volts, the display reading should toggle between 1.9999 and overrange. However, the clock frequency shift causes the display to read 1.9992 just after the 0000 overrange display before returning to the 1.9999 reading. The severity of the reading variation after overrange recovery depends on the magnitude of the clock variation which gets back to the stability of the supply voltage line to the RC oscillator.
The clock supply voltage modulation has been minimized on both boards by separating the display supply lines from the clock supply line. To eliminate any clock frequency shift completely, a clock source using Intersil's LM311 voltage comparator in positive feedback mode (Figure 11) could be substituted.
Another problem encountered with the 8052A/7103A DPM is that of gross over-voltage applied to the input. Any voltage in excess of ± 2.0000 volts may cause the display to give an erroneous voltage indication. The reason this occurs is the integrator continues to ramp towards the supply (positive for negative input voltages, negative for positive inputs) until the
integrator output saturates. When this occurs, the integrator can no longer source (or sink) current required to hold the summing junction (Pin 11) at the voltage stored on the auto zero capacitor. As a result, the voltage across the integrator capacitor decreases sufficiently to give a false voltage reading.

Figure 11: LM311 Clock Source
A simple solution to this problem is to use junction FET transistors across the integrator capacitor to source (or sink) current into the summing junction and prevent the integrator amplifier from saturating. Using an N channel and a P channel JFET, connect drains to pin 11 of the 8052A, sources to pin 14, the gate of the P channel to +15 V , and the gate of the N channel to -15 V (Figure 12). With the JFET's in this configuration, input voltages ranging from 2 to 6 volts positive and 2 to 10 volts negative will cause the correct overrange indication to occur.

Figure 12: Gross Overvoltage Protection Circuit

Demonstrator Board Back

BACK
Main Instrumentation Board Back

FRONT
Display Instrumentation Board Artwork

Hybrid and Monolithic Data Conversion Circuits

The first data conversion circuits made their debut over 20 years ago. Early devices, while achieving respectable performance even by today's standards, were quite bulky and expensive. And of course vacuum tubes were the active circuit elements. The development of the diffused planar transistor set the stage for the emergence of solid state data converters which quickly evolved into the form of compact modules. These modules were alone in the market for many years until in the late 1960's when the first hybrid and monolithic devices were developed. These early microelectronic devices, while leaving much to be desired in performance, nevertheless represented an important change.

The first hybrid data converters were 8 bit thick film D/A converters which were soon followed by 8 bit thin film devices. The first monolithic data converter was the $\mu \mathrm{A} 722$ circuit, a 10 bit D/A converter building block, introduced in 1968. The circuit consisted of a zener reference, 10 switched current sources, and a reference control amplifier but required an external resistor network. This device exhibited a 600 nsec. switching speed, and had 8 bit accuracy over a temperature range of 0 to 55 C .

QUAD CURRENT SWITCHES

The first "quad current switches" were introduced two years after the $\mu \mathrm{A} 722$ and were an excellent conceptual and technical approach to a practical data converter building block circuit in monolithic form. These devices are now available in several circuit variations from different manufacturers and are used extensively in hybrid data converters. The basic circuit concept is illustrated in Figure 1.

FIGURE 1. Basic Quad Current Switch Circuit

There are four NPN current source transistors and a reference transistor as shown in the diagram. The bases are all connected to a common line, and the reference transistor together with an operational amplifier form a reference control circuit which biases all of the current sources. A precision, trimmed resistor network is used to set the currents in the sources in the binary ratios of $1,21,41$, and 81 . To
achieve optimum tracking with temperature, the transistors are diffused with emitter areas in the binary ratios $1,2,4$, 8 , resulting in identical current density in each transistor. The tranșistors, therefore, have very closely matched base emitter voltage drops, and these voltages track each other with temperature change. The transistors also have matched betas with the base currents, therefore, also tracking each other.

In addition to the transistor matching which gives tight tracking characteristics, the stability of the circuit is also determined by the resistor network. This external network is generally a stable thin film nichrome device which has excellent absolute stability and tracking characteristics.

The current source collectors all connect to a common line which is the output current of the 4-bit device. Several quad current switches may be used together to achieve higher resolution. Each current source is switched on and off by current mode switching as shown in the current switching cell of Figure 2. When the digital output is low, current is sinked from the input diode which turns Q_{2} off and the current source Q_{1} on.

FIGURE 2. Detail Circuit of Quad Current Switching Cell
This particular circuit configuration gives standard TTL input voltage levels and results in a 40 nsec . switching time with a current output settling time of about 200 nsec. to 0.01\%.

HYBRID D/A CONVERTERS

High performance 12 bit D/A converters are made possible by combining quad current switches with a precision zener reference, reference control amplifier, a thin-film resistor network, and a fast output operational amplifier as shown in Figure 3.

Three quad current switches are used with a current dividing resistor network at the outputs of two of the quads. With respect to QCS no. 1 output, QCS no. 2 output is divided down by a factor of 16 and QCS output no. 3 is divided down by a factor of 256. Due to the excellent accuracy characteristics of the quad current switches, resolutions of 12 bits and higher may be realized in this manner.
The output amplifier is a fast monolithic op amp which operates as a current to voltage converter from the current

FIGURE 3. 12 Bit Hybrid D/A Converter Circuit
outputs of the quad switches. The reference control amplifier is connected differently from the one shown in Figure 1. By having the control amplifier drive the negative rail of the current sources, better immunity against negative supply voltage variations is achieved while not affecting the TTL input logic levels.
The circuit of Figure 3 is the basic design for Datel Systems' DAC-HZ12B series of high performance 12 bit D/A converters. Because of the quad current switch circuit configuration the input coding for this device is complementary binary, i.e., all zero's on the inputs produce a full scale output voltage and all one's produce zero output voltage. This coding can be changed to straight binary by using external digital inverters. In the case of the DAC-HK12B series D/A converters an internal level-controlled storage register is provided for storing a digital input word, and an inversion is done in the register to give straight binary coding.
By adding a fourth quad current switch to the circuit shown in Figure 3, additional resolutions of 13 to 16 bits can be attained. True 16 bit linearity is generally not possible, however, but a more practical specification of 16 bit resolution with 14 bit linearity is achievable over a reasonable temperature range. This performance is realized by Datel Systems model DAC-HP16B which has a companion model DAC-HP16D for 4 digit BCD applications.
An important feature designed into 12 bit hybrid D/A converters is the useful pin-programmable voltage output ranging. This is done, as shown in Figure 3, by providing a tapped feedback resistor for use with the output amplifier. The feedback resistor can thus be connected as R, 2R, or R/2 to give three possible voltage ranges. Another resistor is provided in series with the reference to permit offsetting the analog output by one half scale for bipolar operation. The final result of this is five useful output voltage ranges: 0 to $+5 \mathrm{~V}, 0$ to $+10 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$, all by simple pin connection.
Two of the primary advantages of the new hybrid D/A converters are their completeness (requiring no extra components for operation) and their operating flexibility, both at relatively low cost.

THIN FILM RESISTOR NETWORKS

Modern, low cost hybrid D/A converter designs are based on two premises: a standard circuit design with relatively few circuit components, and high volume production. The quad current switches significantly reduce the number of active circuit components required. In a similar manner thin-film resistor networks greatly reduce the number of passive circuit elements. The thin-film resistors are also an
important factor in determining the converter absolute temperature stability, tracking stability, and long term stability. When properly fabricated, these resistors result in excellent stability, surpassing that achievable in all but the most expensive discrete component converters.
The fabrication of good quality thin film resistors is a process involving many important operations. The following manufacturing steps are based Datel Systems' electron beam evaporation technique of making nickel-chromium thin-film resistor networks:

1. Oxidation of silicon substrate to form dielectric layer.
2. Deposition of nichrome thin film ($<100 \AA$) by electron beam evaporation.
3. Evaporation of barrier layer of nickel onto nichrome film.
4. Photolithographic definition and gold plating of conductor pattern.
5. Photolithographic definition and etching of resistor pattern.
6. Stabilization bake.
7. Photolithographic definition and etching of scribing grid pattern.
8. Chemical vapor deposition of silicon dioxide passivation layer.
9. Photolithographic definition and etching of bond pad openings over conductors.
10. Scribing and dicing wafer.
11. Test, inspection, and sorting of networks.

FIGURE 4. Summary of Steps in Making A Nichrome Thin-Film Resistor

Figure 4 summarizes some of the steps described above in processing a thin film resistor network. A starting three inch silicon wafer is shown together with a completely processed wafer in Figure 5; approximately 70 resistor networks are contained on this wafer. Each finished, tested resistor network is then bonded to the converter substrate.

FIGURE 5. Blank Silicon Water and Finished Resistor Networks

The substrate is made of alumina $\left(\mathrm{AlO}_{2}\right)$ and is itself a thin film component which is photolithographically defined and then electro-chemically plated with gold. Datel Systems uses thin film substrates in its hybrid products while some other companies use thick film. The main advantage of the thin film substrates is in the fine line widths which can be attained, resulting in more complex circuits. Figure 6 shows a magnified substrate mask for a 12-bit D/A converter; this conductor pattern has line widths down to 4 mils.

FIGURE 6. Substrate Mask (2.3 times Actual Size) Hybrid A/D Converter

The next step in the hybrid circuit fabrication is interconnection of the resistor network with the other circuit components. This is done, at Datel Systems, by ultrasonic, thermocompression ball banding of gold wires between the bond pads. For optimum reliability the wire bonding is always between a substrate conductor and a component bond pad. Figure 7 shows a cross section of a finished hybrid circuit. A ball bond is shown on the chips whereas a wedge bond is used on the substrate.

FIGURE 7. Cross-Section of Finished Hybrid Circuit

RESISTOR LASER TRIMMING

The next step in the manufacture of the hybrid converter is the functional laser trimming of the thin-film resistor network, illustrated in Figure 8. A pulsed Xenon laser trimmer is used to rapidly trim the resistors which control the most significant bit currents. The converter circuit is operated under power in a test fixture located underneath the laser beam. The trimming is observed in a magnified image on a TV monitor while the circuit operation is measured with an oscilloscope and DVM. Resistor values are initially low, and as the laser cuts away a portion of the metal film the value increases until the correct reading is obtained on the digital voltmeter.
The laser makes a precise 0.3 to 0.6 mil wide cut through

FIGURE 8. Laser Trimming a Thin-Film Resistor
the nichrome film as illistrated in Figure 8, which shouws detailed dimensions of the resistor. The resistor trimming results in quad switch currents which are in the required binary ratio with each other within very close tolerance. The trimming compensates for any mismatches, as in the base emitter voltage drops for example, and results in optimum linearity of the finished converter. The trimmed current sources must have binary ratioed values within a tolerance of $\pm 0.01 \%$ cumulative for a 12 bit converter.

It should be noted that the completed thin-film resistor is completely passivated by a 7000 A (approximately) layer of silicon dioxide. This prevents any chemical or moisture contamination of the resistor, and together with the stabilization bake performed earlier in the processing, results in excellent long term stability. When the resistor is laser trimmed the passivation layer is not affected and remains intact as shown in the illustration. This is so because the oxide layer is transparent to the wavelength of the laser light. Therefore, the laser beam passes directly through the oxide layer until it strikes the nichrome layer which is vaporized.

The nichrome resistors made in this way have absolute temperature coefficients from zero to $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ while achieving tracking tempcos of only 1 to $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Such tracking results in converters which have monotonic operation over a wide operating temperature range. The highest performance A/D and D/A converters are monotonic to 12 bits over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating range. Figure 9 shows a finished 12 bit hybrid D/A converter.

FIGURE 9. Finished Hybrid 12 Bit D/A Converter

VOLTAGE REFERENCES

One of the advantages of the hybrid microelectronic circuit design is that, like discrete component circuits, optimum components (in chip form) can be combined to achieve a given circuit design goal. This flexibility does not yet exist with monolithic circuits because of the different processes required for different types of optimum components.

A critical element in data conversion circuits is the voltage reference circuit; upon this the stability of the entire circuit depends. The reference governs, in large part, the gain stability of the circuit with both time and temperature. In the past, reference circuits generally used a compensated surface zener diode. New hybrid and monolithic circuits generally employ one of two newer reference devices: a compensated, buried (subsurface) zener diode or a bandgap voltage reference.

The buried zener exhibits both lower noise and better long term stability than the older surface zeners and as a result is becoming quite popular. Since avalanche breakdown occurs below the surface of the silicon in the bulk region, the noise and instability of the surface type zener are avoided. The breakdown voltage of the zener itself is about 5.6 volts and has a positive change with temperature of about 2 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$. To compensate this, a forward biased PN junction diode is fabricated in series with the zener. Since the junction diode has a negative change of $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, finished devices can be tested and selected for tempcos as low as $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
A commonly used reference circuit employing a compensated buried zener reference and an operational amplifier is shown in Figure 10. The amplifier is used to both supply a constant current through the Zener reference and to buffer its output for voltages higher than the zener voltage. Another output can be taken from the zener, but is an unbuffered output.

FIGURE 10. Temperature Compensated Reference Circuit

Datel Systems' DAC-HZ12BMR-1 uses such a low tempco, compensated, buried zener reference to achieve a low 10 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain stability over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.

Another reference circuit now used in many devices, particularly monolithic data converters, is the "bandgap reference." This circuit is based on the predictable base emitter voltage change of a transistor with temperature. By using two matched transistors operating at different current densities, a stable reference voltage numerically equal to the extrapolated bandgap voltage of silicon at $0^{\circ} \mathrm{K}$ is achieved. This voltage is 1.205 V , but in some reference circuits it is multiplied up to about 2.5 V . The bandgap reference in general has not achieved the stability of the new buried Zener references, however.

One circuit which employs the bandgap reference is Datel Systems' model ADC-MC8B, an 8 bit monolithic A/D converter which can also be used as a D/A converter. The advantage of the +2.5 V bandgap reference is that the entire circuit can operate from a single +5 V logic supply.

SUCCESSIVE APPROXIMATION A/D CONVERTERS

The most direct approach to analog to digital conversion is using a D/A converter in a digital feedback loop as shown in Figure 11. The loop is closed at the analog comparator which compares the current output of the D/A converter against the input current developed by the analog input voltage. This comparison is made one bit at a time, and the method is, therefore, known as the successive approximation technique.

FIGURE 11. Successive Approximation A/D Converter

A clock circuit steps the converter through n comparison steps, where n is the resolution of the converter in bits. In the first clock period the D/A converter's MSB (most significant bit) output, which is one half of full scale, is compared against the input. If it is smaller than the input, the MSB current is left on and in the next clock period the next largest bit is turned on. If the MSB current is larger than the input, in the next clock period it is turned off when the next bit current is furned on. The D/A converter output at any given time is the cumulative total of all the previous bit currents which have been left on.

The comparison process is continued one bit at a time from the MSB down to the LSB (least significant bit). After the last clock period, the output of the successive approximation register contains the digital word representing the analog input. The converter also puts out an end of conversion, or status, pulse indicating that conversion is complete. In addition to the parallel data output on n digital lines, there is also a useful serial output from most converters derived from the comparison process.
The successive aproximation A/D converter with up to 12 bits resolution is made possible in hybrid form by three recent developments:

1. availability of low cost monolithic quad current switches in chip form
2. availability of low cost monolithic successive approximation registers in chip form
3. availability of fast laser trimming systems for trimming thin film resistors

The first two developments drastically reduced the number of individual monolithic chips necessary to fabricate a complete hybrid A/D converter. The third development made rapid and inexpensive trimming of the complete converter possible.

The development of the monolithic SAR (successive approximation register) was particularly significant since it eliminated a large number of digital chips. The SAR is really a special purpose digital register that contains all the storage and control logic to perform the successive approximation operation. In hybrid data converters the low parts count is extremely important for several reasons. First it reduces parts cost and labor, thus allowing the device to be produced economically in large quantities. Secondly it results in high reliability by reducing the number of total interconnections in the device. Compared to a modular converter, for example, the hybrid has less than half the total number of connections. A module, in addition to the bonds in each circuit component, has at least the same number of soldered connections.
An important advantage in the new hybrid A/D converters in addition to low cost and small size, are the "universal operating features." Some of the operating features which result in application flexibility are:

1. Pin programmable input voltage ranges of 0 to +5 V , 0 to $+10 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$.
2. Buffered (100 megohm) or unbuffered input.
3. Parallel and serial output data
4. Short cycled operation (for less resolution at higher speed) by external pin connection.
5. Voltage reference and clock circuit outputs.

FIGURE 12. Hybrid A/D Converter Input Circuit

Some of these features are illustrated in the input circuit diagram of Figure 12. The comparator input has a tapped resistor which can be connected for input resistance values of $2.5 \mathrm{~K}, 5 \mathrm{~K}$, or 10 K , giving three different voltage ranges. If the bipolar offset pin is connected to the comparator summing junction, then the input is offset by one half scale to give bipolar operation with each of the previous voltage ranges. If high input impedance is required, the auxiliary buffer amplifier can be connected ahead of the input resistors. It should be noted, however, that the settling time of the amplifier must then be added to the conversion time of the A/D converter. The buffer output must have settled to within $\pm 1 / 2$ LSB (0.012% for 12 bits) of final value before the A/D conversion cycle can be initiated.

Another way to use the buffer amplifier, if it is not used in the input circuit, is to buffer the reference output for use with external circuitry. In this way the reference can drive up to $\pm 5 \mathrm{~mA}$ externally without affecting the temperature coefficient of the zener reference. External circuitry can, therefore, be made to track with the A/D converter over time and temperature.

Datel Systems' models ADC-HX12B, ADC-HZ12B, ADCHS12B, and ADC-HF12B are all high performance hybrid 12 bit A/D converters which use the successive approximation conversion technique. Conversion times vary with these devices from $20 \mu \mathrm{sec}$. down to only $2 \mu \mathrm{sec}$.

FAST AND ULTRA-FAST HYBRID DATA CONVERTERS

A typical hybrid 12 bit A/D converter, for example the low cost ADC-HX12B, has a conversion time in the area of 20 to $25 \mu \mathrm{sec}$. There are some limitations in trying to achieve shorter conversion times with the circuitry just described. The limitations are in the comparator switching time and in the output settling time of the quad current switches. For accurate conversion to 12 bits, each bit output current must settle to within 0.01% of full scale before the next.comparison takes place.
One of the factors that inhibits the comparator switching time and the D/A converter output settling time is the stray capacitance from the thin film resistors to the suitstiate conductor. Since the resistors are fabricated on a silicon wafer, this capacitance is significant because of the rather high (12) dielectric constant of silicon. The total stray capacitance seen at the QCS emitters and collectors, and also at the comparator input, significantly increases the time required for settling and switching.

One way to achieve higher conversion speed is to reduce this unwanted capacitance by fabricating the resistor network on glass instead of silicon. Glass has a dielectric constant of 4 , much less than that of silicon. A nichrome thin film resistor on glass is shown in Figure 13. This nichrome-on-glass resistor network is used in Datel Systems' ADCHZ12B 12 bit hybrid A/D converter to achieve a 12 bit conversion in $8 \mu \mathrm{sec}$. maximum.

FIGURE 13. Nichrome Thin Film Resistor on Glass

For faster 12 bit conversions another circuit technique must be used. There are basic limitations in the switching speed of quad current switches which cannot be further reduced. A faster technique is to use individual PNP switched current sources as shown in Figure 14. Here all the current sources are of equal value and drive a low impedance $R-2 R$ ladder network; the impedance at every junction in the ladder is identical. The key to very fast settling time is to use higher currents driving low impedances. In addition, since each current source is switched by a single diode connected to the emitter, the switching delays are very small.

The result of the circuit of Figure 14, when used as a

D/A converter, is a current output settling time of less than 50 nsec. for 12 bit resolution. This circuit is used in Datel Systems' ultra-fast D/A converters, the DAC-HF series. As

FIGURE 14. Ultra-Fast Current Output D/A Converter

with the other circuits, here the R-2R ladder network is also laser trimmed for optimum linearity. For ultra-fast 12 bit A/D conversion this D/A converter circuit can be used with a fast comparator and monolithic SAR to achieve a $2 \mu \mathrm{sec}$. conversion time (Datel model ADC-HF 12B).

Although in lower resolution A/D converters such as 8 bit units it is possible to achieve sub-microsecond conversion times, for the ultimate in conversion speed it is necessary to employ a technique other than successive approximation. This other technique is known as the parallel, or flash. method and is illustrated in Figure 15.

FIGURE 15. Parallel (Flash) Type A/D Converter
The parallel technique basically eliminates the n clock steps required for a complete conversion by the successive approximation converter. A bank of $2^{n}-1$ analog comparators
8 LINE OUTPUT
BINARY OUTPUT

$\frac{1}{0}$	$\frac{0}{1}$	$\frac{0}{1}$	$\frac{0}{1}$	OVERRANGE
0	1	1	0	
0	1	0	1	
0	1	0	0	
0	0	1	1	
0	0	1	0	
0	0	0	1	
0	0	0	0	

TABLE I Digital Outputs for 3 Bit Parallel Converter
form an input quantizer with trip points set one LSB apart by the resistor biasing network and reference. For a given analog voltage applied to the input of the converter, all comparators biased below the input voltage will turn on and all biased above the input voltage will remain off. The logic output from the comparators is not very useful since it is a $2^{n}-1$ line "thermometer" type scale as shown in Table 1 for a 3 bit parallel converter with an overrange bit. Therefore, a fast decoder circuit is used to convert this logic output into binary code.

The advantage of the parallel type A/D converter is that the complete conversion takes place in just two steps: the comparators switch state and the decoder switches state. With new high speed logic circuits this can be done in typically 15 nsec . The limitation is in the resolution that can be achieved with a reasonable number of comparators. The practical limit is a 4 bit converter which requires $2^{n}-1$, or 15 comparators. The number of comparators is limited by physical placement, power consumption, and the total bias current which cumulatively flows through the resistor biasing network.

FIGURE 16. Eight-Bit, Two Step Paraliel A/D Converter

To achieve 8 bit resolution, two 4 bit converters are used in a two-step approach shown in Figure 16. The first 4 bits are converted and the digital output goes to an ultra-fast 4 bit D/A converter which converts the result back to analog. The resultant analog voltage is then subtracted from the input voltage and this difference is converted into digital form by a second 4 bit parallel converter. The complete 8 bit digital word is held in an output register. Since the two steps occur at different times, the next first step can be performed while the result of the previous first step is held in the register and the second step is being done. This overlap mode of operation gives a faster conversion rate than would otherwise be possible.

The advantage of this two stage conversion is that just 30 comparators are required by the two 4 bit parallel converters as compared with 255 if a single stage 8 bit converter were used. The disadvantage is that some speed is sacrificed in the process: nevertheless, speeds as high as 20 MHz are achieved for an 8 bit conversion.
Datel Systems' HU series devices are hybrid building blocks for ultra-fast parallel type A/D converters. This is a new and very useful approach to ultra-high speed conversion since building block series may be connected in different ways to achieve a desired purpose. The ADC-HU3B is a 3-bit parallel A / D converter which is expandable. Two of these connected together make a 4-bit A/D and four connected to-
gether make a 5 -bit A/D. Used as a single stage, they have a 50 MHz conversion rate.

For a two stage converter, the DAC-HU4B is an ultra-fast 4 bit D/A converter which operates directly from a 15 line input from a 4 bit A/D. Another device in this series is the SHM-HU, which is an ultra-fast sample hold for use with the ADC-HU3B.

MONOLITHIC CIRCUIT FABRICATION

Monolithic techniques have made outstanding progress in the past few years. Monolithic technology, rather than relying on a variety of different components, must rely on devices that can be readily made monolithically. The circuit design rules, therefore, have been to minimize resistors, capacitors, etc. and rely on transistors, making use of the inherent advantages of close matching, excellent thermal coupling, and the economy of using large numbers of active devices with various device geometries. The engineering ingenuity used in maximizing the use of active components has resulted in monolithic circuits which schematically look quite different from their discrete equivalents. For example, the monolithic design for an operational amplifier is quite different from a discrete-design op amp.

Monolithic circuits which are available at the present time use one or more of the following technologies: bipolar, CMOS, ion implantation, TTL, $I^{2} L$, and thin film deposition. Recent progress has permitted the combination of two or more of these technologies in a single circuit, for example, bipolar and CMOS, bipolar and ion implanted FET's, and bipolar and $\mathrm{I}^{2} \mathrm{~L}$. The difficulty in making monolithic data conversion circuits has been in combining linear circuitry with digital circuitry and including precision, stable resistors.

Monolithic techniques achieved notable and rapid success with operational amplifiers, but with data conversion circuits the progress has been slower due to the above mentioned problems. Therefore, the first monolithic converters were simple 8 bit D/A converters without a reference or output amplifier. Recent progress, however, has permitted 10 and 12 bit D/A converters to be fabricated. A/D converters made with monolithic technology have been largely restricted to dual slope and charge balancing types, but some successive approximation devices are now becoming available. At the present time most monolithic data converters require a number of external parts, for example references, op amps, comparators, clock circuits, capacitors, and resistors. In spite of these limitations, monolithic circuits generally offer the lowest cost solution to a data conversion problem, and many of the earlier limitations are now being overcome.

FIGURE 17. Bipolar and CMOS Monolithic Devices

Figure 17 illustrates two basic monolithic techniques used in data conversion circuits. The first device (Figure 16a) is a standard diffused planar NPN transistor which is the key component in monolithic bipolar circuit design. It is fabricated in the following basic steps, starting with a P type silicon wafer:

1. Photolithographic definition and diffusion of $\mathrm{N}+$ buried layer. This is required to create a low collector resistance.
2. Growth of N type silicon epitaxial layer.
3. Isolation masking and diffusion ($\mathrm{P}+$ type).
4. Photolithographic definition and diffusion of base region (P type).
5. Photolithographic definition and diffusion of emitter region ($N+$ type).
6. Photolithographic definition and evaporation of metallization layer (Aluminum)
7. Testing, dicing, and sorting of devices.

The second device is a CMOS transistor pair. These devices are formed by successive diffusions in the same manner as the NPN transistor described above. The basic differences are that the initial wafer is N type silicon and the devices themselves are unipolar transistors. One device is a P-channel MOS transistor and the other is an N-channel MOS transistor. The insulation underneath each of the two metalized gates is a stable field-oxide layer.

An important element in monolithic data converters is the resistor. Stable resistor networks are the basis for accurate and stable data conversion. For lower resolution converters, namely up to 8 bits, diffused resistors are commonly used. The diffused resistor is the most economical type to use since it requires no additional processing steps beyond those already required for a monolithic circuit. A typical diffused resistor is shown in Figure 18; it is formed by the bulk resistance of a P-type base diffusion. The value of this resistor is determined by the sheet resistivity of the diffusion and the length and width of the resistor:

$$
R=R s L / W
$$

where Rs is the sheet resistivity.

FIGURE 18. Detail of Diffused Resistor

The temperature coefficient of these resistors is large, approximately $1500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Fortunately converter performance depends more critically upon the matching and temperature tracking of resistors than on the absolute temperature coefficient. The matching of diffused resistors to 0.5% or better and temperature tracking to $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better can be achieved in monolithic circuits.

DATA ACQUISITION \& CONVERSION HANDBOOK

The limit on using diffused resistors is generally 8 bits, although 10 bit resolution has been achieved by use of resistors with laser trimmed aluminum links. Diffused resistors, however, are no match for thin film resistors which can give less than $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ absolute tempco and 1 to $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tracking tempco. Therefore, most 10 bit and higher resolution monolithic converters have the additional operations of depositing, photolithographic etching, and laser trimming of a thin film resistor network on part of the monolithic chip.

MONOLITHIC CONVERTER DESIGNS

A common design used in 8 bit monolithic D/A converters is shown in Figure 19. A series of collector switched NPN current sources is used with a diffused R-2R ladder network. The ladder network is connected to the emitters as shown, in order to minimize the total number of resistors; in this way only two resistors per bit are required and they have just two different values, R and 2 R . Matching and tracking of the resistors is thereby simplified.

FIGURE 19. Bipolar D/A Converter with Diffused Resistor Network

A reference amplifier and reference control resistor are used to bias the current sources from an external reference voltage. Some circuits steer the collector outputs to two separate output lines which are analog logic complements of one another and are useful in a number of ways, including driving an output amplifier in push-pull.
The circuit of Figure 19 is used in Datel Systems' DAC-08B 8 bit D/A converters; these have 85 nsec. output settling time and high voltage compliance outputs (-10 to +18 V). In another Datel Systems model, the DAC-IC8B, the complemented collector output is not brought out but is internally tied to the positive supply voltage. Resolution is 8 bits, and output current settling time is typically 300 nsec . An extension of this device to 10 bits resolution is model DAC-IC10BC which uses identical circuitry but uses laser link resistor trimming of the higher order bits.

Another, popular D/A conversion method uses CMOS circuitry with a precision R-2R thin-film ladder network. This circuit, illustrated in Figure 20, is particularly well suited to multiplying applications where a variable reference voltage is used. The key to multiplying operation with high precision is the low resistance CMOS switches which are in series with high resistance 2 R resistors. A feedback resistor is also provided for use with an external operational amplifier. This resistor is also provided for use with an external operational amplifier. This resistor has an identical tempco with the ladder resistors since they are fabricated in the same network and, therefore, the output voltage tempco

FIGURE 20. A CMOS Multiplying D/A Converter
depends on the tracking tempco rather than the absolute resistor tempco.
A detailed circuit of the CMOS switch is shown in Figure 21. It is composed of two N channel MOSFET's which are driven out of phase with each other so that one switch is on while the other is off. The switches are driven by two CMOS inverters as shown.

FIGURE 21. Single Pole, Double Throw CMOS Switch
This technique is used to make both monolithic and hybrid multiplying D/A converters. The advantage of a 2 or 3 chip hybrid design is that higher accuracy can be attained, with resolutions up to 14 bits. Such devices are Datel Systems' DAC-HA series, composed of 10, 12 and 14 bit multiplying D / A converters.

Monolithic A/D converters have been much more difficult to make than D/A converters, especially for resolutions higher than 8 bits. This has been particularly true for successive approximation type A/D converters where two semiconductor technologies must be combined with thin film resistor technology. The combination that looks particularly promising in the near future is the combination of bipolar linear circuitry with I^{2} L digital circuitry and the use of nichrome thin-film resistors on the same chip.

Given the greater difficulty of making a high resolution successive approximation A/D converter in monolithic form, it is not surprising that another technique was used first. This technique is the dual slope method, which has been popular for many years in discrete component form. It is illustrated in Figure 22 and operates on an indirect conversion principle whereby the unknown input voltage is converted into a time period which is then measured by a counter.
The conversion cycle begins by switching the operational integrator to the input voltage, which is then integrated for a

FIGURE 22. Monolithic Dual Slope A/D Converter

fixed time period. After this time, the integrator is switched to a reference voltage of opposite polarity and the integrator outpuit integrates Éack io cerv íor a period of́ time which is measured by the counter. The resultant count is then the digital value of the input voltage. The important thing about the dual slope technique is that the accuracy and stability are dependent only on the reference, and not on other components in the circuit. This assumes, of course, that the operational integrator is linear. The technique is both simple and effective and is readily implemented with CMOS circuitry. Some devices also incorporate automatic zeroing circuitry to reduce the effect of offset drift with time and temperature.
The advantages of dual slope conversion are simplicity, accuracy, and noise immunity due to integration of the input signal. The chief drawback is relatively slow conversion time. Dual slope A/D converters are most commonly used in digital panel meters, digital multimeters, and other digital measuring instruments.
Another integrating conversion technique which has gained in popularity recently is the charge-balancing A/D converter. As illustrated in Figure 23, an operational integrator is enclosed in a digital feedback loop consisting of a comparator, pulse timer circuit, and a switched reference. A positive input voltage causes the integrator output voltage to cross zero volts, which is detected by the comparator and triggers the pulse timer circuit. The output pulse from the timer switches a negative reference current to the integrator input, and this current pulse is then integrated, causing the integrator output to increase in the positive direction. Therefore, every time the integrator output crosses zero another pulse is generated and integrated.

FIGURE 23. Charge Ealancing A/D Converter

A state of equilibrium exists when the average current developed by the pulses just equals the input current. Since each current pulse is a fixed amount of charge, the name "charge-balancing" is appropriate.
If a counter is used to count the output pulses from this circuit for a fixed period of time, the circuit is then a complete A/D converter. This technique, implemented by bipolar and CMOS circuitry, is used in Datel Systems' ADC-EK series A/D converters which consist of 8,10 , and 12 bit binary devices and a $31 / 2$ digit $B C D$ unit. If a counter is not used with the circuit then the device is the well known V/F (voltage to frequency) converter. Model VFQ-1 is a low cost monolithic V/F converter which also uses bipolar and CMOS circuitry on the same chip.

OTHER DATA ACQUISITION CIRCUITS

The devices described so far have been A / D and D / A converters. In addition to these, there are a number of other circuits which are commonly used in data acquisition applications. These circuits include sample-holds, analog multiplexers, operational and instrumentation amplifiers, and filters. All of these devices are also available in either monolithic or hybrid form; many of these products are described in the pages of this brochure.
Frequently, these various devices are combined together to make a complete "data acquisition system." Such a system has an input analog multiplexer, an instrumentation amplifier (sometimes), a sample-hold, an A/D converter, and the required control logic circuitry. These systems take care of the entire signal processing function from multiple analog inputs to the digital output which connects to a computer data bus line.
Such a system is also now available in a single hybrid package. This device is Datel Systems' model HDAS-16 and a companion device, model HDAS-8. The HDAS-16 provides 16 channels of analog multiplexing, an instrumentation amplifier with programmable gain from 1 to 1000, a samplehold, a 12 bit A/D converter, three state output bus drivers, and all the required control logic. The HDAS-8 is identical except that it contains an 8 channel differential multiplexer. This complex hybrid circuit is fabricated on two interconnected substrates and is shown in the photograph of Figure 24.

FIGURE 24. Photograph of Hybrid 12 Bit, 16 Channel Data Acquisition System

an industry standard Hybrid 12-Bit A/D Converters

Analog to digital converters interface analog signals to digital computers and other digital control circuits. In the world of data converters the moderate speed, low cost 12 -bit A/D converter is a real workhorse, serving in a broad range of applications from data acquisition systems and pulse code telemetry systems to computer-based process control systems, automatic test systems and other sampled-data systems

System designers often require that an A/D converter provide 12 -bit conversion with conversion times between 8 and 50 microseconds. Along with these basic specifications go a few other accepted parameters such as $\pm 1 / 2$ least significant
bit linearity and temperature coefficient between about 20 and 40 parts per million per degree Celsius. Twelve-bit resolution yields what most designers consider precision measurement: relative accuracy of 0.012% with 0.012% linearity.

The 0.012% accuracy figure, equal to $\pm 1 / 2$ bit accuracy, results from quantization uncertainty. Other factors such as nonlinearity, gain and offset temperature coefficients and long term drift degrade the 0.012% ideal accuracy figure. Also, the overall error budget for the complete analog portion of the external circuit may include an amplifier, analog multiplexer or sample-hold. Hence the use of a 12-bit A/D

Fig 1 Block diagram shows the internal structure of a typical 12-bit hybrid analog-to-digital converter. Pin connections shown are in a standard configuration.
converter commonly results in an overall system accuracy of 0.1%.

The development of monolithic and hybrid IC technology produced dramatic changes in data conversion device technology. In the past, 12 -bit A / D converters of the successive approximation type came in a standard 2 " $x 4$ " $x 0.4$ " encapsulated modular package. Manufactured by a number of companies and costing between $\$ 120$ and $\$ 200$ each, these units still enjoy wide use.

The first moderate cost, hybrid 12-bit A/D converters, introduced in 1974, were followed by a number of devices made by different manufacturers, all housed in a-standard 32-pin package with two basic pin configurations. Such standardization has been rare in the industry. Three factors weigh heavily in making these devices popular industry staridards: low price (many cost less than $\$ 100$), small size (about 1.1 " $\times 1.7$ " $\times 0.2$ ") and universal operating features that allow them tô serve iñ a wiule variéty of applications.

These converters are quite a contrast with earlier units of equivalent performance; such units sold for $\$ 5000$ in 1959 and $\$ 600$ in 1968 and were considerably larger. Hybrid data converters in themselves are not really new devices since they first appeared on the market in the late 1960s, but until recently they were not produced as standard products in large volume. Early hybrid converters served in military and aerospace application where small size and high reliability were overriding considerations, and low price was not. The circuitry at that time, much more complex than today's circuitry, gave very high chip counts and relatively low production yields.

Fig 2 This A/D converter, manufactured by Datel Systems, employs thin-film hybrid technology to provide 12-bit conversion.

TABLEI
 HYBRID 12 BIT A/D CONVERTER SPECIFICATION SUMMARY

Resolution
Nonlinearity
Gain Tempco
Analog Input Ranges

Coding, unipolar
Coding, bipolar
Conversion Time
Power Supply
12 Bits
$\pm 1 / 2$ LSB (0.012\%)
$\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
0 to $+5 \mathrm{~V}, 0$ to +10 V
$\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$
Comp. Binary
Comp. Offset Binary
$20 \mu \mathrm{sec}$. max.
$\pm 15 \mathrm{VDC} \&+5 \mathrm{VDC}$

Fig 3 Quad current switches play an important role in the operation of the converter. In this circuit diagram, teh QCSs and the current divider resistors form a network providing proper current source binary weighting.

DATA ACQUISITION \& CONVERSION HANDBOOK

Fig 4 External pin connections allow faster A/D conversion with lower resolution. The connection shown gives 10 -bit conversion. Connecting the short cycle to ground gives full resolution (12-bit) conversion.

Design and Operation

Several recent developments have allowed a significant reduction in number of chips required to implement a successive approximation register, and these technological advances have brought on the low cost hybrid converter. These developments include: the availability of low cost, quad current switches used to implement the converter portion of the circuit; the development of the monolithic successive approximation register; and the rapid laser trimming systems for actively trimming thin-film resistor networks.

The resulting low component count makes high yield production of a standard converter design a reality; since parts count and labor are reduced, production costs drop. In addition, reducing the parts count also reduces the number of wire bonds, thereby increasing reliability.

Fig 1 shows the block diagram of a complete 12 -bit hybrid device and Fig 2 shows one such device. The circuit basically consists of a 12 -bit D / A converter inside an ana$\log /$ digital feedback loop. The successive approximation register (SAR) controls the converter and in turn takes inputs from the clock circuit and analog comparator. A precision low drift voltage reference circuit stabilizes the converter.

Operation of the A/D converter is straightforward. The analog input voltage connects to one of the input resistors (either directly or through the buffer amplifier at, for example, pin 25). The analog comparator compares the current flowing through the input resistor with the D / A converter's output current. A start pulse to the SAR initiates the conversion cycle, turning on the first bit (most significant bit) of the converter. This current is compared with the input current. If the MSB current is less than the input current, the MSB current is left on and in the next clock period the second bit is turned on. If the MSB current is greater than the input, it is turned off, and the second bit turned on in the next clock period.

This comparison sequence continues through all twelve bits until the cumulative total of all bit currents left on has been compared with the input current. The digital output of the SAR (which is also the input to the D / A converter) is then the digital output word equivalent to the analog input voltage. This output word is held in the SAR's output
register until initiation of the next conversion cycle. The conversion is thus completed in 12 clock periods.

Construction and Technology

The quad current switches (QCS) play an important role in the implementation of the converter (see Fig 3). Three QCSs connect to give 12 weighted currents that are summed together at the output of the circuit. The first QCS with its four weighted current sources and reference current source is shown in detail in Fig 3. The other two QCSs are identical except that their reference current sources are not used.

The voltage reference circuit sets up a constant current in the reference transistor which is controlled by amplifier A_{1}. By means of the reference current source, all 12 current sources are biased by maintaining a constant voltage from the transistor bases at the negative voltage rail. The biasing is independent of supply voltage variations. The voltage reference circuit consists of a low tempco compensated zener reference and an op amp circuit that maintains constant current through the zener reference.

Weighting the emitter resistors $R, 2 R, 4 R$ and $8 R$ weights the currents in the NPN transistor current sources in binary ratios of $8,4,2$ and 1 . In order that the currents track each other closely over a wide temperature range, the NPN transistors are diffused with emitter areas in binary ratios of 1,2 , 4 and 8 , giving the same current density in each transistor. This identical current characteristic gives closely matched base-to-emitter voltage drops that track each other with temperature.

To get exact binary weighting of the current sources out to 12 bits, QCS2 and QCS3 both operate into precision current dividers that divide the QCS current outputs by factors of 16 and 256 respectively (compared with QCS1).
Thin-film technology. To ensure the stability of the A/D converter, the emitter, reference and current divider resistors are all fabricated in a single thin-film resistor network and then laser trimmed to the required accuracy. The resulting resistors have absolute temperature coefficients between zero and thirty parts per million $/{ }^{\circ} \mathrm{C}$. Trimming the resistors while

Fig 5 This circuit multiplexes slowly changing signals without sam-ple-hold. A throughput rate of 77 KHz can be achieved with ± 1 least significant bit accuracy. This circuit multiplexes up to $\mathbf{1 6}$ channels. The converter's buffer amp provides it with a high-Z load.

Fig 6 This circuit will provide accurate and stable measurements for computer usage. Because A/D converter's internal buffer amplifier is not used, the amplifier can drive the transducer bridge from the converter's reference.
the converter is powered and running allows you to achieve a linearity specification of $\pm 1 / 2$ least significant bit.

Universal Operating Features

Certain features appear in hybrid D/A converters that make them industry standards. These features became an important design goal after their appearance in some of the modular converters on the market a few years ago.
Pin-programmable input ranges. Hybrid A/D converters provide six usable input ranges: 0 to $+5 \mathrm{~V}, 0$ to $+10 \mathrm{~V}, 0$ to $+20 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. You can obtain the first three of these ranges by various connections of the two $5 \mathrm{~K} \Omega$ input resistors: in addition, if pin 22 is connected to pin 23 , an offset current derived from the internal reference is applied to the comparator input, offsetting the converter's range by exactly half-scale to give bipolar (positive/negative input) operation.
Internal buffer amplifier. This operational amplifier is connected as a unity gain follower and has an input impedance of typically 10^{8} to $10^{9} \Omega$. Externally pin-connecting the amplifier ahead of the input resistors increases the converter's input impedance from the normal range $(2.5 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$ depending on how the range-setting resistors are connected) to over $10^{8} \Omega$.

This high input impedance does not come without strings attached - the 0 to +20 V input range cannot be used since the amplifier's maximum input and output voltage ranges are $\pm 10 \mathrm{~V}$. Also, the conversion time of the A / D converter is increased by the settling time of the buffer amplifier. A little thought about the operation of the successive approximation converter reveals that the output of the buffer ampli-
fier must have settled to within $\pm 1 / 2$ least significant bit of final value before the A/D conversion cycle can be initiated. In some applications the settling time may not alter the conversion rate since the input amplifier can be settling to a new value during the time that the output of the A/D converter is being transferred out.
Short cycling capability. You can terminate the conversion cycle at less than 12 bits via external pin connection, resulting in a faster conversion time with less resolution. Speeding up the conversion time is also helped by speeding up the clock rate through an external connection. This method work: because lower resolution requires less settling time at the output of the D / A converter.

Fig 4 shows how to effect short cycling. The short cycle terminal (pin 14) of the SAR is externally connected to the $\mathrm{N}+1$ output bit for an N -bit conversion. The figure shows the connection for a 10 -bit conversion. For a full resolution 12-bit conversion the short cycle pin is connected to the +5 volt logic supply.

To speed up the clock rate, connect the clock rate input (pin 17) to an adjustable positive voltage. This voltage should be +5 V for 10 -bit conversion and +15 V for 8 -bit conversion. These changes result in reductions in conversion time of 25% for 10 bits and 50% for 8 bits (compared to 12 -bit conversion time).
Choice of output codes. You can choose complementary binary, complementary offset binary or complementary two's complement. Use of unipolar operation requires the first code; for bipolar operation, you can select either complementary offset binary or complementary two's complement codes by using either the most significant bit out-

DATA ACQUISITION \& CONVERSION HANDBOOK

put or the complemented most significant bit output from the converter.
Precision reference voltage output (pin 18). This output permits referencing external circuitry to the internal voltage reference in order to give identical tracking of the A/D converter and external circuits with both time and temperature. This results in stable ratiometric operation of the measurement, but the reference output must be buffered by a high impedance amplifier and hence cannot drive other circuits directly. 10 microamps can be drawn from the reference itself. One way you can buffer the reference uses the internal buffer amplifier, if your application does not require the amplifier at the A/D converter input.
Clocked serial output (pin 32). This serial output occurs during the conversion cycle and is synchronized with the clock (pin 19). The serial output format is most significant bit first, nonreturn to zero with either complementary binary or complementary offset binary coding. The serial output can aid in digital data transmission over long distances and in pulse code telemetry. Together with the clock output, the serial output can help align the converters since the codes are readily observed on an oscilloscope.

Applications

Fig 5 shows an application that requires multiplexing of slowly changing signals without sample-hold. The circuit shown will multiplex up to 16 channels. Since the multiplexer may have a channel resistance between 250Ω and $2 \mathrm{~K} \Omega$, the multiplexer must see a very high impedance at its output. The converter's buffer amplifier can provide this high impedance load.

If you use a hybrid A / D converter with an 8 microsecond conversion time and allow multiplexer buffer amplifier
settling time of 5 microseconds, you can realize a throughput as high as 77 KHz . The system will be accurate to ± 1 least significant bit for up to 5 Hz input signal frequency.

Fig 6 shows a typical measurement application where the measured value must be fed to a digital computer. The differential output of a transducer bridge is amplified by the instrumentation amplifier before being fed to the A/D converter input. Since the instrumentation amplifier buffers the bridge output with its high input impedance, you don't need the internal amplifier for input buffering. The amplifier can then drive the transducer bridge from the converter's internal reference. The buffer amplifier typically draws 125 nA bias current from the reference and provides up to 5 mA output current to the bridge.

This circuit arrangement achieves the most stable measurement results over time and temperature. In the circuit, as the internal reference changes, the magnitude of the input signal changes. The converter operates ratiometrically, providing error cancellation for reference changes.

Figure 7 shows the circuit connection for a sampling 10 bit A/D converter. A 12 -bit hybrid A/D with $8 \mu \mathrm{sec}$ conversion time is short cycled to 10 -bit operation. This is done by connecting the short cycle terminal, pin 14 , to pin 2 , the bit 11 output. Pins 3 through 12 then serve as data outputs with complementary offset binary coding. The input to the A/D converter is connected for $\pm 5 \mathrm{~V}$ bipolar operation.

Ahead of pin 24 is a sample-hold circuit (which is a monolithic device) that samples the analog input and provides high impedance buffering. This sample-hold requires a 1000 pF holding capacitor, and with this value acquires a 10 volt input change in $4 \mu \mathrm{sec}$. The sample control pulse is therefore set to $4 \mu \mathrm{sec}$ width.

After the sample control pulse returns to zero, putting

Figure 7 shows the circuit connection for a sampling 10 bit A/D converter. A 12 bit hybrid A/D with $8 \mu \sec$ conversion time is short cycled to 10 bit operation. This is done by connecting the short cycle terminal, pin 14, to pin 2, the bit 11 output. Pins 3 through 12 then serve as data outputs with complementary offset binary coding. The input to the A / D converter is connected for $\pm 5 \mathrm{~V}$ bipolar operation.

GLOSSARY OF TERMS

Absolute Accuracy: The output error, as a percent of full scale, referenced to the NBS standard volt.
Charge Balancing A/D Converter: A type of A/D Converter that uses a closed loop integrator with a switched current at its input to exactly balance the current produced by the input signal.
Conversion Time: The time from when a conversion is initiated until the output digital data, representing the analog input value, is ready.
Differential Linearity: The maximum deviation of the ana\log transition between any two adjacent codes in an A/D converter from the ideal value. This quantity is generally expressed as a fraction of a least significant bit.
Dual Slope A/D Converter: A type of A/D converter that operates by the indirect method of converting a voltage in put to a time period, using an integrator, and then measuring the time period by a clock and counter.
Error Budget: A detailed list of all sources of error in a sys. tem or circuit to determine overa!! accuracy.
Gain Error (or Scale Factor Error): The difference in slope between the actual transfer function and the ideal transfer function, generally given in percent.
Linearity (or Integral Linearity): The maximum deviation of the A / D converter's transfer function from an ideal straight line between its end points. It is generally given in percent of full scale or fraction of a least significant bit.
Missing Code: The phenomenon of skipping one or more of the sequence of output codes over the total analog input range.
Offset Error: The amount by which the A / D converter transfer function fails to pass through the origin, generally given in millivolts or percent of full scale.
Parallel A/D Converter (or Flash Converter): A type of A/D converter that uses a bank of $2^{n}-1$ comparators and a decoder circuit to perform ultra-fast conversions.
Quad Current Switch (QCS): A monolithic circuit which employs four matched, switched current sources and a reference current source to achieve 4 bit D / A conversion.
Quantizing Error (or Quantization Uncertainty): The inherent uncertainty associated with digitizing an analog signal by a finite number of digital output states. The ideal A/D converter has a maximum quantizing error of $\pm 1 / 2$ least sig. nificant bit

Reference: A circuit providing an accurate, stable voltage used as the standard for comparison in an A / D converter.
Relative Accuracy: The output error of an A / D converter as a percent of its full scale value.
Resolution: The smallest analog input change an A / D converter can distinguish. This is a function of the number of output states, 2^{n}, where n is the number of bits and is generally expressed in number of bits or in percent.
Successive Approximation Register (SAR): A digital circuit that controls the operation of a successive approximation A/D converter and accumulates the output digital word in its register.
Settling Time: In a D/A converter or an amplifier, the time elapsed from the application of a full scale input step to when the output has entered into and remained within a specified error band around its final value.

Short Cycling: Termination of the conversion sequence of an A / D converter to less than the total number of clock peiods required for a full resolution conversion.
Status Output: An output logic state indicating when the A / D converter is busy and when output data is ready.
Successive Approximation A/D Converter: A popular type of A/D converter in which conversion is accomplished by a sequence of n comparisons where n is the number of resolution bits.
Temperature Coefficient: The stability with temperature of the scale factor of the A/D converter, generally expressed in parts per million per degree Celsius.

Figure 8 illustrates simple calibration of the hybrid A/D converter. Two external $100 \mathrm{~K} \Omega$ potentiometers adjust zero and full scale for the converter.
the sample-hold circuit into the hold mode, a 100 nsec start convert pulse is applied to the A/D converter after a $1 \mu \mathrm{sec}$ delay. The $1 \mu \mathrm{sec}$ delay allows the sample-hold output to settle from its turn-off transient so that this does not cause a conversion error. The 10 -bit A/D conversion then takes place and is completed in just $6 \mu \mathrm{sec}$. The clock rate is increased by 20% by connecting the clock rate, pin 17 , to $\pm 5 \mathrm{~V}$. This, in addition to short cycling, reduces the conversion time from $8 \mu \mathrm{sec}$ at 12 bits to $6 \mu \mathrm{sec}$ for 10 bits.

The time required for sampling, delay, and conversion is therefore about $11 \mu \mathrm{sec}$, giving a maximum throughput rate of 90 KHz . Such a circuit is commonly used in fast data acquisition systems.

The sample-hold circuit reduces the aperture, or measurement uncertainty, time of the circuit. With the A/D converter alone the measurement time is $6 \mu \mathrm{sec}$, but with the sample-hold this time is reduced to about 5 nsec . This sampling A/D converter can thus accurately sample signals as fast as 70 kHz .

Figure 8 illustrates simple calibration of the hybrid A/D converter. Two external $100 \mathrm{~K} \Omega$ potentiometers adjust zero and full scale for the converter. A pulsed start convert pulse is applied to the start convert input and also externally triggers an oscilloscope. The converter output code is simply monitored by displaying the serial output together with the clock output on the vertical axis of the scope. There are 13 clock pulses and 12 intervals that show up as HI's or LO's on the scope.

Assuming 0 to $\pm 10 \mathrm{~V}$ input range, the input pin 24 should first be connected to a precision voltage source set to +1.2 mV (zero $+1 / 2 \mathrm{LSB}$). The zero adjust potentiometer is adjusted to give an output code that just flickers between 1111..... 1110 and 1111.....1111. Next, set the precision voltage source to $+9.9963 \mathrm{~V}(+\mathrm{FS}$ $11 / 2$ LSB) and adjust the gain potentiometer to give an output code that just flickers between 00000000 and 0000..... 0001 .

The converter is now precisely aligned and gives a quantization error of $\pm 1 / 2$ LSB maximum.

Video analog-to-digital conversion
 calls for virtuoso performances. And the plot really thickens when you have to produce high resolution.

Accurately digitizing analog signals containing high frequencies, demands ultrahigh-speed, or video, a / d converters. Such a converter is essential to diverse uses like radar-signature or transient analysis, highspeed digital-data transmission, video densitometry, and digital television. In television alone, a speedy converter can help enhance images, correct time-base errors, convert standards, synchronize or store frames, reduce noise, and record TV.

Most video a/d converters work in the 1-to- 20 MHz range. But at these speeds, resolution can be a problem. Fortunately, 8 bits and fewer most often suffice in ultrafast a / d applications.
Higher resolutions are hard (and expensive) to come by, particularly at 10 to 20 MHz . In this ultrahighspeed range, 4 bits is about the practical limit for a single-stage converter. However, you can cascade a / d stages for more than 4 bits.

Below 5 MHz , you can retain the "one bit at a time" concept of the familiar successive-approximation converter, while reducing the time delays inherent in converting each bit. The "propagation" (or variable-reference-cascade) converter of Fig. 1 does just this.

Comparators star in propagation a/d's

The critical parts of the circuit are the comparators, which must be very fast, and the switches, which must be not only very fast but also capable of withstanding the reference voltage. A propagation a / d converter uses one comparator per bit. Furthermore, each bit is converted in sequence, beginning with the most significant. With a -5 V reference, the circuit of Fig. 1 handles inputs from 0 to +10 V .

Comparator A_{1} makes its decision at a +5 V input: when the analog-input voltage exceeds +5 V , the output is true. The threshold of comparator A_{2} is set for an input of either +2.5 or +7.5 V , depending on the output of comparator A_{1}. If the analog input voltage exceeds +7.5 V , comparator A_{2} also goes true. If, however, the analog input voltage is between +5 and +7.5 V , the output becomes ZERO; an input

Table 1. Comparator thresholds for a 4-bit propagation-type a/d converter

Scale	Comparator Number			
	1	2	3	4
FS-1 LSB			+8.750	+9.375
+8 FS		+7.500		+8.125
			+6.250	+6.875
$1 / 2 \mathrm{FS}$	+5.000			+5.625
			+3.750	+4.375
$1 / 4$ FS		+2.500		+3.125
			+1.250	+1.875
1 LSB				+0.625

1. A propagation-type a/d converter uses one comparator per bit, with each bit converted in sequence. At best, this type of a / d runs at 5 MHz for up to four bits.
between +2.5 and +5 V produces a ONE. And for less than $2.5-\mathrm{V}$ input, the output becomes ZERO.

As you can see, then, the output of comparator A_{1} sets the threshold of comparator A_{2} via electronic switch $S_{1} . S_{1}$ switches one end of the resistive divider at comparator A_{2} to ground when the output of comparator A_{1} is ZERO, and to the -5 V reference when it is ONE. Therefore, the threshold of the second comparator is set for either of two analog-inputvoltage levels: +2.5 or +7.5 V .
This process continues for comparators A_{3} and A_{4}. Each succeeding threshold is set by the result of all previous comparator decisions. Thus, comparator A_{3} has four possible threshold levels, $+1.25,+3.75,+6.25$, or +8.75 V . Similarly, comparator A_{4} has eight possible threshold levels (for a summary of each comparator's threshold levels, see Table 1).
Obviousiy, a propagation-type converter becomes more complex as its resolution increases beyond 4 bits. Higher resolution requires not only more resistorsto set the new threshold levels-but also higher-value resistors. The resistor values go up in a $1,2,4$, 8 ,...binary sequence. So as the number of bits increases, the resistors soon take on values so large as to affect the conversion time for the less-significant bits. The fault lies with slow settling of the currents switch id through the resistors. The time constants, caused by switch plus stray capacitances and the highvalue resistors, cause the delays.
Still, you can achieve 50 -ns per bit conversions with a propagation-type converter. After a new input is applied to the converter, the resulting digital output word propagates rapidly down the converter-output lines, as each comparator and switch change states. Instead of simply allowing the circuit to propagate naturally, you can also operate it in a clocked mode by using sampling (gated) comparators, rather than the usual ungated kind.

But $5-\mathrm{MHz}$ and higher conversion rates, together with the complexity required for higher than 4 -bit resolution, severely limit the video uses of propaga-tion-type analog-to-digital converters.

Quantizer plays the lead

Fortunately, a much faster technique is available. Parallel conversion (also called flash, or simultaneous)

2. The quantizer transfer function for a 4-bit parallel-type converter shows how the analog input is broken into 16 different levels. Each word of digitally coded output signals represents a range, Q , of input voltage.
is more popular because it is faster than propagation. A parallel-type a/d converter is simply a quantizer circuit followed by a decoder circuit. As a matter of fact these two functions are fundamental to all a / d converters. The difference is that these functions are clearly separate in a parallel a / d.
The quantizer section of a parallel converter is defined by its transfer function, which is shown for a 4-bit quantizer, in Fig. 2. The quantizer breaks up the continuous-analog input (horizontal axis) into discrete-output levels (vertical axis).
In Fig. 2, the output is divided into 16 different states, or 2^{n} levels, where n is the number of bits. Along the horizontal axis of the transfer function are $2^{n}-1$ or 15 analog-transition points which represent the voltage levels that define the edges between adjacent output states or codes.
There is no one-to-one correspondence between input and output for the quantizer, which assigns one output code word to a small range, or band, of analoginput values. The size of this band is the quantum, Q , and is equal to the full-scale-analog range divided by the number of output states:

$$
\mathrm{Q}=\frac{\mathrm{FSR}}{2^{\mathrm{n}}}
$$

DATA ACQUISITION \& CONVERSION HANDBOOK

3. The circuit for a parallel 3-bit a/d converter (a) has just two basic sections: the quantizer and the decoder. The transition points in the quantizer are set by biasing each comparator, through a resistive divider and reference. The complete 3 -bit analog-to-digital converter comes packaged as a thin-film hybrid (b).

In Fig. 2, where the full-scale-input range is 10 V ,

$$
\begin{aligned}
Q & =\frac{10}{2^{4}} \\
& =\frac{10}{16} \\
& =0.625 \mathrm{~V} .
\end{aligned}
$$

Fig. 2 snows levels of 0 through 15 at the output. When binary-code words are assigned to these output states, as shown in the leftmost column, the transfer function becomes that of a complete a / d converter rather than just a quantizer alone.

Table 2. Parallel 3-bit a/d coding

Scale (fraction of full scale)	7-Line equally weighted code with overrange	Binary code
$+9 / 8$	11111111	1000
$+3 / 4$	01111111	0111
	00111111	0110
$+1 / 2$	00011111	0101
$+1 / 4$	00001111	0100
	00000111	0011
0	00000011	0010
	00000001	0001
	00000000	0000

The binary codes are assigned by a circuit that decodes the quantizer-output logic. Though you can select any code, the code shown, natural binary, is most used. Notice that the analog center of each code word-the exact analog value-is depicted by a dot on the transfer-function graph.
The transfer function in Fig. 2 depicts an ideal quantizer or a / d converter. A real device, of course, has errors in offset, scale-factor (gain) and linearity.

Fig. 3 shows a circuit implementation of a 3 -bit parallel a/d converter. Usually, the quantizer portion of such a circuit consists of a bank of $2^{n}-1$ high-speed comparators. But, in Fig. 3, 2n or 8, comparators are used, because this circuit also provides an overrange output that can be used for expansion.

The bank of comparators has 2^{n} analog-transition points. These are directly set by biasing one side of the comparator inputs from a reference with a series string of equal-value resistors, R . The Q for this circuit depends on the value of R, the reference voltage, and the total resistance:

$$
\mathrm{Q}=\left(\mathrm{V}_{\mathrm{REF}} \mathrm{R}\right) / \mathrm{R}_{\text {TOTAL }}
$$

The bottom and top resistors in the string have values of $R / 2$, which correspond to the values of the first and last analog-transition points. These transitions are at $Q / 2$ and $F S-(Q / 2)$, respectively.

Without the overrange output, the last analog transition point would be at FS - $(3 Q / 2)$. The value of the top resistor would then be $3 \mathrm{R} / 2$.

Enter the decoder

The parallel converter's decoder section is a rather straightforward logic circuit. It translates the logic outputs from the comparators into the most commonly used code, natural binary.

4. Two-stage parallel a/d converters can develop 8 -bit resolutions at 20 MHz . Though conversion 1 begins at the

Start-Convert pulse and ends 65 nanoseconds later, subsequent conversions take only 50 nanoseconds.

Table 2 shows the coding for quantizer and decoder outputs. In this quantizer-output code, the seven comparator-output lines (eight, counting the overrange comparator) are equally weighted. This equally weighted code is simple and unambiguous, but ineffi-cient-only one output line changes at a time from all-ZERO to all-ONE outputs. Except for not being cyclical, the quantizer code is like the Johnson code used in shift counters. Like the quantizer code, Johnson code proceeds from all-ZEROs to all-ONEs, but then cycles back to all ZEROs.
In the decoder, simple NOR and OR gates perform the logic according to the following equations:

$$
\begin{aligned}
& \text { Bit } 1=A_{4} \\
& \text { Bit } 2=A_{6}+A_{2} \cdot \overline{A_{4}} \\
& \text { Bit } 3=A_{7}+\left(\mathrm{A}_{5} \cdot \overline{A_{6}}\right)+\left(\mathrm{A}_{3} \cdot \overline{\mathrm{~A}_{4}}\right)+\left(\mathrm{A}_{1} \cdot \overline{\mathrm{~A}_{2}}\right),
\end{aligned}
$$

where the A_{n} 's are the numbered-comparator outputs in Fig. 3, Bit 1 is the MSB and Bit 3 is the LSB. The AND function in the equations is replaced by a NOR in the actual circuit. The OR function can be implemented by tying together the appropriate outputs of wire-ORed ECL logic.
With ultrafast analog comparators, parallel conversion offers the ultimate conversion speed. Since the comparators all change state simultaneously, the quantizer output is available after just one propagation time. Of course, the decoder adds more delay, but high-speed Schottky-TTL or ECL circuits can minimize the decoding time.
In 3-bit form with an additional comparator, for overrange, the parallel converter in Fig. 3 can be expanded for higher resolution. You can connect two converters, combine into one flash converter to get often-needed 4 -bit resolution. Likewise you can connect four such circuits for 5 -bit resolution-and so forth. In this way, these circuits can be used as "building blocks" for ultrafast a / d converters. Conversion rates of 50 MHz , for 3,4 , or 5 -bit a/d's, are
possible using the commercial hybrid version of these expandable parallel converters.

Comparator plays a complex role

The most critical component in a parallel a / d converter-as in a propagation converter-is the comparator. It not only determines the speed of the converter but also the accuracy. Ultrafast sampling comparators like the 685,686 and the dual 687 are excellent for this function.
A sampling comparator has two Latch-Enable inputs that switch it into either a Compare or Latched mode. In the latter, the comparator's digital output is locked until the next comparison is made.

Whether or not you use a sampling comparator, you must consider the propagation delay for small overdrive. This is important because the analog full-scalesignal range is generally small for ultrafast a / d converters-commonly between 1 and 4 V . The comparator must change state rapidly for a $\mathrm{Q} / 2$ analoginput change. For a 4 -bit converter with a $1-\mathrm{V}$ input range, this represents an overdrive of 31 mV ; for an 8 -bit converter with the same input range, the overdrive is just 2 mV .
The analog-input characteristics of a comparator are important because they affect conversion accuracy. Input-offset voltage and input-bias current are usually the most significant of these parameters. The offset voltage directly affects the accuracy of the quantizer's analog-transition points; the input-bias current also affects the accuracy through the effective input resistance of the comparator.

Since an ultrafast comparator generally has bias currents as high as $10 \mu \mathrm{~A}$, its inputs must look into low resistances. Fortunately, for small-signal ranges like 1 to 4 V , each resistance in the series network can be kept low. In an actual 3 -bit parallel hybrid

5. Timing for the 8-bit two-stage a/d converter allows for two modes in the sample-and-hold circuit-Hold and Track. These occur between successive Start-Converts. The second and succeeding conversions take 50 ns .

6. A generalized \mathbf{n}-bit, \mathbf{m}-stage \mathbf{a} / \mathbf{d} converter develops an output with $n \times m$ bits of resolution. In each stage, except the first, the analog result of the subtraction is amplified by a circuit whose gain is 2^{n}.
converter, laser-trimmed, thin-film-resistor networks make the transition points stable and accurate.

One comparator parameter that greatly affects speed is input capacitance. For example, the analoginput line to a 4 -bit a/d with overrange feeds 15 parallel-comparator inputs. It must be driven from a low-impedance source to retain high speed. Therefore, either a high-speed input-buffer amplifier or a sample-and-hold circuit drives the input.

Parallel a/d conversion suffers from one significant drawback; more resolution than four bits requires many comparators. The number (N_{c}) increases exponentially with n, the number of bits:

$$
\mathrm{N}_{\mathrm{c}}=2^{\mathrm{n}}-1
$$

An 8 -bit converter, for example, requires 255 comparators. That many comparators vastly complicates bias-current and input-capacitance problems-to say nothing of the high power dissipation they produce. Another problem, of course, is how to position so many comparators while minimizing lead lengths.

Coming onstage-the two-stage a / d

As a result, the practical limit of parallel a/d converters is usually 4 bits. Higher-resolution designs use a two-stage parallel technique that is really a combination of the parallel and propagation techniques. It cascades two 4 -bit conversions.

This two-stage method is illustrated in Fig. 4, which shows the block diagram of a complete $8-\mathrm{bit}, 20-\mathrm{MHz}$ converter, including buffer amplifiers and a sample-and-hold. Starting at the input, amplifier A termi-
nates the analog input with the proper impedance and scales the signal for the sample-and-hold circuit. During its conversion to digital form, the ultrafast sample-and-hold acquires and holds the analog-input.
The sample-and-hold output goes into two unitygain buffer amplifiers, one of which buffers the input to parallel 4 -bit a/d converter 1 . This a / d converts the input level, then stores the digital result in half of the output-data register. In addition, 15 undecoded comparator-output lines drive a 15 -line, equallyweighted digital-to-analog converter. This d / a, in turn, generates an analog voltage that is subtracted from the other buffered-input signal.

The subtraction result, a residual signal, goes to the input of the second parallel 4 -bit a/d, the output of which goes to the other half of the output-data register. The input signal is therefore sampled and converted to digital form in two 4 -bit steps.

Four digital delays time the converter as shown in Fig. 5. A pulse at the Start-Convert input begins the timing sequence. The Start-Convert pulse puts the sample-and-hold into the Hold mode for 30 ns . During this time, the first 4 -bit conversion is made and the second 4 -bit converter quantizes the residual signal. While the second a / d conversion is decoded and transferred to the data register, the sample-and-hold goes into the Track mode to acquire the next value.

When the conversion is done and the 8 -bit word is ready in the output register, the delay circuit generates and End of Conversion (or Status) pulse. In the timing diagram, numbers $1,2,3$ and 4 indicate the relationship of the signals for the first, second, third

Slower a/d converters are alive and well

The two most popular techniques for a / d conversion are dual-slope (a) and successive-approximation (b). Together these methods probably account for over 98% of all analog-to-digital converters in use.

Dual-slope conversion, an indirect method, converts the analog-input voltage into a time period. Then a digital clock and counter measure the interval. For only serial-output data, a simple gate replaces the counter. The method is simple, accurate, and inexpensive, but suffers one major drawback: Conversion is usually slow-often taking milliseconds.

Successive approximation a / d converters, on the other hand, can be much faster. They can convert to 12 bits in 2 to $50 \mu \mathrm{~s}$ and to 8 bits in 400 ns to $20 \mu \mathrm{~s}$. Also, every conversion is completed in a fixed number (n) of clock periods, where n is the resolution in bits.

Successive-approximation, a direct method, puts a d / a converter inside a feedback loop containing both analog and digital elements. The successive-approximation register controls the d / a converter, and the comparator and clock, in turn, control the register.

A conversion consists of turning on, in sequence, each bit of the d/a converter, starting with the most significant. During each clock period, the analog input and the d/a output are compared. The comparison determines whether to leave each bit on or turn it off.
So, after n clock periods, each bit has been turned on, a comparison has been made, each bit's logic state has been decided and the conversion is complete. Clock periods usually last from just fractions of a micro-
second to several $\mu \mathrm{s}$. Each clock period must allow time for comparator switching, changing successive-approximation-register states and d/a converter switching plus settling. Settling time for the d / a converter takes a large part of the clock period because the output must settle to within half the leastsignificant bit before the comparison starts.

able decoded a / d 's. Also, the 15 -line d / a converter, the sample-and-hold and the input-buffer amplifier can be readily hybridized. The remaining noncritical circuit elements can be made from standard monolithic devices and passive components.
The hybrid circuits' stable thin-film resistors can be laser-trimmed for optimum linearity. The entire circuit of Fig. 4 fits on a single circuit card, so laying out critical components is less formidable.
Propagation and parallel two-stage are specific examples of a more general conversion method by which m stages of n bits each, make an a / d converter with $m \times n$ bits of resolution (see Fig. 6). In each case, the residual analog signal from the subtraction is boosted for the next stage by an amplifier with gain of 2^{n}. This technique can produce a 12 -bit a/d converter using three parallel 4 -bit a/d stages.

Compensate for temperature drift in data-converter circuits

Data-converter circuits must operate in a nonideal world in which temperature drift can reduce the efficacy of their design. Beating the problem requires an understanding of drift components.

Compensating for data-converter temperature drift can be a complicated process, involving (depending upon system needs and designer expertise) one or more of the following:

- Properly calibrating the chosen converter
- Choosing a converter that best suits the system's stability needs
- Mounting the chosen converter in a temperature-regulated environment
- Using a converter with provision for an external reference
- Controlling drift by means of external error correction.
Whatever technique (or combination of techniques) you use, though, its effective application
requires an understanding of the sources of data-converter temperature drift.

Where does the drift come from?

Although all data-conversion devices can operate over a defined range of ambient temperature, as temperature varies within that range, the elements of a device's accuracy-its offset, gain and linearity-will change.

To compensate for this temperature drift, as well as for drift occurring over time, most data converters come with provisions for external adjustment of offset and gain errors. In nearconstant temperature environments, though, and for moderate-resolution devices, the drift remains small. Thus, in such environments, calibrating a converter for offset and gain at the

Fig 1-A popular data-converter configuration uses equal-value current sources to form either a DAC or (by connecting the dotted lines) a successive-approximation ADC.

Matching analog components improves temperature tracking

ambient operating temperature usually suffices. For a 12 -bit ADC or DAC with $20-\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum gain drift, for example, the maximum gain drift over $\pm 5^{\circ} \mathrm{C}$ is only ± 0.42 bit. (Converters with 14-bit (or greater) resolution, however, show significant drift even for small temperature changes.)

Consider a popular data-converter configuration (Fig 1), using a D/A converter employing equal-value, switched pnp current sources. An $\mathrm{R} / 2 \mathrm{R}$ resistor ladder provides binary weighting, and the servo loop of A_{1} maintains constant current through the transistors. In conjunction with feedback resistor R_{k}, the output amplifier (A_{2}) converts the output current into a voltage.
R_{0} and the reference voltage provide a one-half full-scale offset current for connection in the bipolar mode.

Connecting the circuitry represented by the dotted lines converts this circuit into a successive-approximation A/D converter, in which a clock-controlled successiveapproximation register (SAR) in turn controls the D / A converter, and A_{2} is a comparator rather than an op amp.

In both the D/A- and A/D-circuit versions, this circuitry's analog portion determines its temperature drift. Modern data-converter designs match discrete components in such a circuit to cancel the drift errors and furnish stable operation over temperature. In hybrid-type D/A converters, for example, identical $R_{F} s$ fabricated on the same thin-film chip track each other closely. Similary, the R and $2 R$ ladder resistors don't influence temperature drift so long as they track

Fig 2-Offset and gain drift in both unipolar (a) and bipolar (b) converters are linear.

Fig 3-Linearity drift in an integrating A / D converter (a) produces a change in the shape of the transfer function; in a successive-approximation A/D converter (b), it produces larger steps at adjacent code transitions.
each other. The current sources vary in proportion to the reference resistor R_{R}, but R_{F} compensates for this effect, tracking R_{R} over changes in temperature by altering the gain of A_{2}. In bipolar operation, R_{1}, must track R_{R} for stable operation. Other possible temperature-drift errors result from the change in transistor beta and V_{BF}, but the transistors, too, are matched for tracking.

Ideally, then, with perfect component temperature tracking, the circuit exhibits only three sources of drift:

- Offiset-voltage drift caused by A_{2} 's input drifts
- Leakage-current change in the current sources
- Gain drift caused by the temperature coefficient of the voltage-reference source.
In practice, of course, component tracking is not perfect, thereby adding to the drift problem; in well-designed circuits, the resulting drift

DIFFERENTIAL	
LINEARITY IN	
FRACTIONS LSB	
Tran $1=$	-0.3
Tran 2=	-0.1
Tran $3=$	-0.1
Tran 4=	-0.1
Tran 5=	-0.0
Tran 6=	-0.0
Tran 7=	-0.0
Tran $8=$	-0.0
Tran $9=$	0.0
Tran 10 $=$	0.0
Tran $11=$	-0.0

Fig 4-A test performed on a 12-blt D/A converter at ambient temperature shows its differential-linearity error.

Fig 5-Use this graph to determine the range over which a particular converter remains monotonic. The method assumes an initial linearity error of $\pm 1 / 2$ LSB.

SYMBOL	SOURCE OF DRIFT
d_{0}	OFFSET DRIFT DUE TO INPUT OFFSET VOLTAGE AND INPUT OFFSET CURRENT DRIFT OF OUTPUT AMPLIFIER A_{2} AND LEAKAGE-CURRENT DRIFT OF TRANSISTOR CURRENT SOURCES
$\mathrm{d}_{\text {Ro }}$	OFFSET DRIFT DUE TO DIFFERENTIAL TEMPERATURE TRACKING OF R R_{O} AND R_{R}
d_{c}	CIRCUIT GAIN DRIFT DUE TO DIFFERENTIAL TEMPER. ATURE TRACKING OF $R_{E} S$. TRANSISTOR $V_{B E} S$. TRANSISTOR BETAS AND INPUT OFFSET VOLTAGE AND CURRENT DRIFT OF SERVO AMPLIFIER A_{1}
$d_{\text {R }}$	GAIN DRIFT OF VOLTAGE REFERENCE CIRCUIT
$\mathrm{d}_{\text {RF }}$	GAIN DRIFT DUE TO DIFFERENTIAL TEMPERATURE TRACKING OF R F_{F} AND R_{R}
$d_{\text {L }}$	GAIN DRIFT DUE TO DIFFERENTIAL TEMPERATURE TRACKING OF R AND 2 R RESISTORS IN LADDER NETWORK

remains small but must nonetheless be accounted for. Component tracking is best when the resistors have equal values (and identical geometries) or are held to small resistance ratios.

Analyzing the drift

Table 1 describes the sources of temperature drift for the circuit in Fig 1, as well as delineating the symbols referring to each drift component. Table 2 groups these drift components according to their contribution to +FS , -FS or zero operating points.

Analyzing the circuit's unipolar operation is simple. With an input code of 0000 , all bits are OFF, and the DAC output is zero. The only offset drift, d_{φ}, comprises the input-offset voltage, the current drifts of A_{2} and the leakage current of the current sources. This last factor remains negligible at room temperature but doubles with each $10^{\circ} \mathrm{C}$ increase; it becomes significant at approximately $100^{\circ} \mathrm{C}$. The offset temperature drift arising from d_{0}, shown in Fig 2a, shifts the converter's entire transfer function up or down with temperature. It affects all points on the transfer function equally.
An input code of 1111 sets the DAC's output bits ON, producing -FS output $(-10 \mathrm{~V}$ in this case). (For simplicity's sake, Fig 2a shows the output inverted.) At this output level, several sources of gain drift come into play. Although d_{R} furnishes the most significant contribution, d_{c}, $d_{\text {RF }}$ and d_{1}, resulting from differential component tracking errors, must also be dealt with. The gain drift by itself rotates the transfer function around the origin, as shown in Fig 2a.

To summarize: The unipolar mode has the least drift at zero; it has the greatest drift at -FS.

Bipolar operation introduces additional drift sources. With an input code of 1000 , the converter output is zero. Adjusting the current through R_{6}, during calibration precisely balances the offset current and MSB source current to provide zero output. Three sources of drift- $\mathrm{d}_{0}, \mathrm{~d}_{\mathrm{C}}$, and $\mathrm{d}_{\mathrm{RO}}-$ combine here to move the transfer function up or

Linearity drift changes transfer-function shape

down with temperature.
An input code of 1111 produces $-\mathrm{FS}(-5 \mathrm{~V})$ output. Three new drift sources- $d_{k}, d_{R F}$ and d_{l}-add to the three present at zero. Finally, an input code of 0000 turns all bits OFF; the output is then +5 V or +FS . The only current into the output-amplifier summing junction comes from the reference through $R_{(, \text {. }}$. Now all drift sources except $d_{\text {c }}$ and d_{1} are present-all current sources are OFF.

To summarize: In the bipolar mode, the least drift occurs at zero output; the worst, when all imput bits are ON. When all bits are OFF, drift lies between these extremes.

A comparison of the two modes of operation shows that unipolar exhibits fewer drift sources and that in either mode the least drift occurs at zero output. Realize also that the largest source of temperature drift in either mode comes from the converter's reference.

Maintaining linearity can be difficult

Linearity drift (which changes the shape of the converter's transfer function) is the most difficult drift component to handle. Fig 3a illustrates the effect of this component on an integrating A/D converter: Integral linearity-the maximum deviation from an ideal straight line-is the
predominant type of linearity error here. A change in temperature increases the transfer function's curvature.

In a successive-approximation A/D converter, on the other hand, the predominant linearityerror form is differential-linearity error. Illustrated in Fig 3b, this error is the analog size difference between actual adjacent code transitions and the ideal LSB size. Differentiallinearity drift occurs primarily at major code transitions (one-half, one-quarter and threequarter scale), as shown in exaggerated form in Fig 3b. This deviation increases with temperature change.

Determining an n-bit converter's worst-case differential-linearity errors requires measuring $\mathrm{n}-1$ differences. The first measurement is the diifiference between the most significant bit and all other bits; the second measures the difference between the MSB plus the second bit with all other bits, and so on. Ideally, each measurement produces a 1-LSB difference. The results of such a test, performed at room temperature on a high-performance 12 -bit D/A converter, appear in Fig 4. Repeating the measurements at the operating-temperature extremes determines the converter's differential-linearity temperature coefficient (DLTC):

$$
\mathrm{DLTC}=\Delta \mathrm{DL} / \Delta \mathrm{T}
$$

where $\Delta \mathrm{DL}$ is the worst-case change in differential linearity between the two temperatures and ΔT is the temperature difference.
The combination of DLTC and temperature

Fig 6-A self-calibrating data-converter circuit requires two channels for the calibration process. The $\mu \mathrm{C}$ stores the correct output codes in its memory and compares them with the actual output codes.

change can, if large enough, cause a D/A convert er's output to be nonmonotonic; an A/D converter can skip output codes when the circuit's differential-linearity error exceeds 1 LSB .
To effectively use either an ADC or a DAC, then, first establish the range over which the DAC remains monotonic and the ADC produces all output codes. Use of manufacturer-provided DLTC specifications, combined with the initial linearity error, can determine this range. Fig 5, for example, assumes an initial differentiallinearity error of $\pm 1 / 2 \mathrm{LSB}$ at $25^{\circ} \mathrm{C}$, corresponding to most manufacturers' specifications. The graph, therefore, shows the temperature change required to produce the additional $1 / 2 \mathrm{LSB}$ of error that causes nonmonotonic operation or missing codes.)
As an example, a 14 -bit A/D converter operating over a temperature range of $\pm 10^{\circ} \mathrm{C}$ on either side of room temperature requires a DLTC less than $3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, according to Fig 5.

Combating the drift

Understanding the foregoing explanation of the sources of converter temperature drift permits taking effective measures to deal with that drift. Proper converter calibration is one important tool in this task. Performing this calibration at room temperature is unsatisfactory; a device must be calibrated at the temperature at which it will operate. Seem obvious? Possibly, but designers often ignore this basic consideration.

The choice of converter can also make a significant difference. In some applications, monotonicity can prove more important than gain or offset drift; in such cases, you should choose the converter by DLTC, using Fig 5. While converters with low TCs cost more than common, low-cost devices, spending the additional money can prove the most economical alternative in the long run: Compare this extra cost with the engineering effort required to provide accurate compensation.
In critical applications, mounting a converter in a temperature-regulated enclosure can prove expedient. Then, heating the converter to a controlled temperature above any ambient tem-

TABLE 3-DIFFERENTIAL-LINEARITY TEMPERATURE COEFFICIENTS REQUIRED TO GUARANTEE MONOTONICITY OVER STANDARD RANGES			
RESOLUTION	0 TO 70 C	25 TO +85 C	55 TO +125 C
(BITS)	गT $=45^{\circ}$	$\pm T=60^{\circ}$	गT $=100^{\circ}$
8	43.4	32.6	19.5
10	10.8	8.1	4.9
12	2.7	2.0	1.2
14	0.68	0.51	0.31
16	0.17	0.13	0.076
$\cdot \square$ T REPRESENTS THE CHANGE FROM +25 C			

perature it will experience can improve TC by a factor of approximately 10 to 20 . Although this alternative can also be expensive, the results can be remarkable. An ambient-temperature change of $50^{\circ} \mathrm{C}$, for example, could be effectively reduced to $2.5^{\circ} \mathrm{C}$.

A fourth effective tool for dealing with temperature drifts requires the use of a converter with provision for an external reference. Most converters' internal references achieve TCs ranging from ± 20 to $\pm 40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; more expensive references can reach the ± 0.5 - to $\pm 10-\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ range.
Finally, the most complex solution of all involves providing external error correction. Fig 6 illustrates one such scheme, which requires use of an expensive external precision reference. The system converts 14 analog channels into digital data; the 15th and 16th channels furnish offset and gain correction, respectively. A voltage divider sets channel 15 to $+1 / 16 \mathrm{FS}(+0.0625 \mathrm{~V})$ and channel 16 to $+15 / 16 \mathrm{FS}(+9.375 \mathrm{~V})$-full scale equals 10 V . (These voltages correspond to 12 -bit output codes of 000100000000 and 11110000 0000 , respectively.)

Through use of a $\mu \mathrm{C}$, the system calibrates itself near zero and then near full scale after each scan of its 14 channels. It deals with the offset first, in order to remove that error from the gain calibration. With the correct output codes for channels 15 and 16 stored in memory, the $\mu \mathrm{C}$ compares the actual converter output with this correct code, outputting a digital word to the register and 8 -bit DAC, which in turn corrects the gain or offset. This DAC connects to the ADC's gain- and offset-calibration terminals through resistors. Both 8 -bit devices operate in the bipolar mode and provide adjustment of $\pm 0.2 \%$ FS. With 8 -bit resolution, the range is incremented into 256 steps of 0.0016% FS (0.065 bit steps for a 12 -bit converter).

The system can perform a complete correction with every scan or once for every N scans, because any temperature changes generally occur slowly. Alternatively, each scan can result in a small correction, amounting to one count out of 256 , thereby minimizing the time required for calibration. After several initial scans, the con-

A device with large DLTC and ΔT can have a nonmonotonic output

verter is calibrated, and because the temperature changes slowly, this calibration technique follows those changes from then on.

Such an external error-correction scheme provides extremely stable operation in systems with a high-quality reference. But it corrects gain and offset errors, not those affecting linearity.

GZ

INTERPRETATION OF DATA CONVERTER ACCURACY SPECIFICATIONS

Cognizance of accuracy factors involved when interfacing data converters into system applications permits designers to meet overall error budget constraints. Transfer functions; quantization noise; offset, gain, and linearity errors; and temperature effects must be interpreted to satisfy specification requirements

Abstract

A nalog-to-digital and digital-to-analog converters are widely utilized to interface between the physical world of analog measurements and the computational world of digital computers. Dating from the early 1950s, the application of data converters has increased enormously as the use of minicomputers and microcomputers has grown. Typical applications of data converters involve the areas of process control and measurement where the inputs and outputs of the system must be in analog form, yet the computation and control functions are performed digitally. In such a system, input variables such as temperature, flow, pressure, and velocity must be converted into electrical form by a transducer, then amplified and converted into digital form by an analog-todigital converter for the computer to process.

Since the computer not only measures and determines the state of a process, but also controls it, its computations must be employed to close the loop around the system. This is done by causing the computer to actuate inputs to the process itself, thus controlling its state. Because the actuation is done by analog control parameters, the output of the digital computer must be converted into analog form by a digital-to-analog converter. Such a closed loop feedback control system is shown in Fig 1.

Interfacing by analog-to-digital (A-D) and digital-toanalog (D-A) converters performs a vital role. At the

present time, it is estimated that at least 15% of all microcomputers function in such control and measurement applications where data converters are required; this percentage is expected to grow to about 40% within a few years. For the designer of such computer controlled systems, it is fortunate that a broad choice of data converters exists. In fact, a virtual supermarket of $A-D$ and D-A converters of all prices, sizes, and performance specifications is available. This spectrum of converters encompasses those from simple 8 -bit monolithic devices costing a few dollars, through better performing hybrid devices with higher resolution, to higher cost discrete module converters with the best performance characteristics.

Design selection involves not only price and size, but also many facets of performance: resolution, linearity, temperature coefficient, speed, and various self-contained options. In the realm of A-D converters (ADCs), there is also the choice between basic conversion methods, such as successive approximation, dual-slope integrating, and parallel (or flash) techniques. Furthermore, there exists a choice between three competing technologies: monolithic, hybrid, and modular, each with its own specific advantages. Since A-D and D-A converters are hasically analog circuits that have digital inputs or outputs, the computer systems engineer who may be mostly familiar with digital techniques must become familiar

Fig 1 Computer controlled feedback control system. Computer closes loop around process to control its state. However, two interfaces are required: A-D converter and D-A converter

Fig 2 Ideal DAC transfer function. This I/O graph is shown for 3-bit DAC which has one-to-one correspondence between input and output

Fig 3 Ideal ADC transfer function. I/O graph illustrates 3 -bit ADC which has quantized characteristic
with the many analog specifications describing data converter performance in order to choose the correct converter for a specific requirement.

Data Converter Transfer Functions

Fig 2 shows the transfer function of an ideal 3-bit D-A converter (DAC). This converter is assumed to be of the parallel type, as are virtually all dacs in use today. A parallel DAC responds simultaneously to all digital input lines whereas a serial DAC responds sequentially to each digital input. The transfer function representing a 3-bit dAC is a discontinuous function; its analog output voltage or current changes only in discrete analog steps, or quanta, rather than continuously. However, a one-to-one correspondence exists between the binary input code and the analog output value. For each input code there is one, and only one, possible output value. Analog step magnitude, or quantum, is shown as Q .

The horizontal axis is the input binary code, in this case a 3 -bit code, increasing from 000 to 111 . The number of output states, or quanta, is 2^{n}, where n is the number of bits in the code. For a 3-bit dac, the number of states is 2^{3} or 8 ; for a 12 -bit DAC, the number of states is 2^{12} or 4096 .

Fig 3 illustrates the transfer function for an ideal 3-bit adC. This transfer function is also discontinuous but without the one-to-one correspondence between input and output. An ADC produces a quantized output from a continuously variable analog input. Therefore, each output code word corresponds to a small range (Q) of analog input values. The ADC also has 2^{n} output states and $2^{n}-1$ transition points between states; Q is the analog difference between these transition points.

For both adCs, Q represents the sinallest analog difference that the converter can resolve. Thus, it is the resolution of the converter expressed in analog units. Resolution for an A-D or D-A converter, however, is commonly expressed in bits, since this defines the number of

DATA ACQUISITION \& CONVERSION HANDBOOK

TABLE 1
Summary of Data Converter Characteristics

Resolution (n)	States (2")	Binary Weight $\left(2^{-1 "}\right)$	$\begin{aligned} & Q \text { for } \\ & 10 \vee F S \end{aligned}$
4	16	0.0625	0.625 V
6	64	0.0156	0.156 V
8	256	0.00391	39.1 mV
10	1024	0.000977	9.76 mV
12	4096	0.000244	2.44 mV
14	16384	0.0000610	$610 \mu \mathrm{~V}$
16	65536	0.0000153	$153 \mu \mathrm{~V}$

S/N Ratio (dB)
34.9
46.9
58.9
71.0
83.0
95.1
107.1

Dynamic Range (dB)		Max Output for 10 VFS (V)
24.1		9.3750
36.1		9.8440
48.2		9.9609
60.2		9.9902
72.2		9.9976
84.3		9.9994
96.3		9.9998

states of the converter. A converter with a resolution of 12 bits, then, ideally resolves 1 part in 4096 of its analog range.
For an ideal ADC or DAC, Q has the same value any where along the transfer function. This value is $Q=$ FSR $/ 2^{n}$, where FSR is the converter's full-scale range-the difference between the maximum and minimum analog values. For example, if a converter has a unipolar range of 0 to 10 V or a bipolar range of -5 to 5 V , FSR in both cases is $10 \mathrm{~V} . \mathrm{Q}$ is also referred to as one least significant bit (LSB), since it represents the smallest code change the converter can produce, with the last bit in the code changing from 0 to 1 or 1 to 0 .

Notice in the transfer functions of both A-D and D-A converters that the output never reaches full scale. This results because full scale is a nominal value that remains the same regardless of the resolution of the converter. For example, assume that a DAC has an output range of 0 to 10 V ; then 10 V is nominal full scale. If the converter has an 8 -bit resolution, its maximum output is $255 / 256 \times 10 \mathrm{~V}=9.961 \mathrm{~V}$. If the converter has 12 -bit resolution, its maximum output voltage is $4095 / 4096 \mathrm{x}$ $10 \mathrm{~V}=9.9976 \mathrm{~V}$.

In both cases, maximum output is one bit less than indicated by the nominal full-scale voltage. This is true because analog zero is one of the 2^{n} converter states; therefore, there are only $2^{n}-1$ steps above zero for either an A-D or D-A converter. To actually reach full scale would require $2^{\mathrm{n}}+1$ states, necessitating an additional coding bit. For simplicity and convenience then, data converters always have the analog range defined as nominal full scale rather than actual full scale for the particular resolution implemented.

In the transfer functions of Figs 2 and 3, a straight line is passed through the output values in the case of the DAC and through the code center points in the case of the adc. For the ideal converter, this line passes precisely through zero and full scale. Table 1 summarizes the characteristics of the ideal A-D or D-A converter for the most commonly applied resolutions.

Quantization Noise and Dynamic Range

Even an ideal A-D or D-A converter has an irreducible error, which is quantization uncertainty or quantization noise. Since a data converter cannot distinguish an analog difference less than Q, its output at any point may be in error by as much as $\pm Q / 2$.

Fig 4(a) shows an ideal ADC and an ideal DAC that digitize and then reconstruct an analog slow-voltage ramp signal. The ADC and output register are both triggered together so that the DAC is updated in synchronism with the a-D conversions. The dac output ramp is identical with the analog input ramp except for the discrete steps in its output (not counting time delay). If the output ramp is subtracted from the input ramp as shown, the difference is the quantization noise-a natural result of the conversion process. This noise [Fig 4(b)] is simply the difference between the transfer function and the straight line shown in Fig 3. Quantization noise from an ideal conversion is therefore a triangular waveform with a peak-to-peak value of Q.

As with most noise sources, the average value is zero, but the rms value is determined from the triangular shape to be E_{n} (rms) $=\mathrm{Q} / \sqrt{12}$. Thus, a data conversion system can be thought of as a simple signal processor that adds noise to the original signal by virtue of the quantization process. Since this noise is an inherent part of the conversion process, it cannot be eliminated except with a converter of infinite resolution. The best that can be done, even with ideal converters, is to reduce it to a level consistent with desired system accuracy. This is done by using a converter with sufficiently high resolution.

In many computerized signal processing applications, it is necessary to determine the signal-to-noise (s / N) ratio, which is a power ratio expressed in decibels. It can be found from the ratio of peak-to-peak signal to rms noise as follows.

Fig 4 Signal digitization and reconstruction (a) and quantization noise (b). Quantization noise is shown as difference between input and output for ideal data conversion system

Fig 5 Errors in nonideal A-D converters. Transfer functions are shown for ADCs with offset error (a), gain error (b), and linearity error (c). ADC with all three errors present will have quantization error as shown in (d)

$$
\begin{align*}
\mathrm{s} / \mathrm{N} \text { Ratio }(\mathrm{dB}) & =10 \log \left[\overline{2}^{\mathrm{Q}} \mathrm{Q} / \overline{\overline{2}}\right]^{2}=20 \log 2^{\mathrm{n}}+20 \log \sqrt{12} \\
& =6.02 \mathrm{n}+10.8 \tag{1}
\end{align*}
$$

The s / N ratio increases by a factor of about 6 dB for each additional bit of resolution.

Dynamic range of a data converter, another useful term, is found from the ratio of FSR to Q. This ratio is the same as the number of converter states.

Dynamic Range $(\mathrm{dB})=20 \log 2^{\mathrm{n}}=20 \mathrm{n} \log 2=6.02 \mathrm{n}$
Therefore, simply multiplying the number of bits of resolution by 6 dB gives the dynamic range. s / N ratio and dynamic range are summarized for the most popular resolutions in Table 1.

Nonideal Data Converters

Real A-D and D-A converters exhibit a number of departures from the ideal transfer functions just described. These departures include offset, gain, and linearity errors (Fig 5), all of which appear simultaneously in any given data converter. In addition, the errors change with both time and temperature. In Fig 5(a), the adc transfer function is shifted to the right from the ideal function. This offset error is defined as the analog value by which the transfer function fails to pass through zero; it is generally specified in millivolts or in percent of full scale.

In Fig 5(b), the converter transfer function has a slope difference from the ideal function. This gain, or scale factor, error is defined as the difference in fullscale values between the ideal and actual transfer functions when the offset error is zero; gain error is expressed in percent.
An adC transfer function in Fig 5(c) exhibits linearity error, a curvature from the ideal straight line. Linearity error, or nonlinearity, is the maximum deviation of the transfer function from a straight line drawn between zero and full scale; it is expressed in percent or in LSBS (such as $\pm 1 / 2$ LSB). Fig 5 (d) shows the total error of a nonideal

aDC, which contains offset, gain, nonlinearity, and quantization errors. Compare this curve with that of Fig 4(b).

Fortunately, most A-D and D-A converters on the market today have provision for trimming out the initial offset and gain errors. By means of two simple external potentiometer adjustments, the offset and gain errors can be virtually reduced to zero or within the limits of measurement accuracy. Then, only the linearity error remains.

Nonlinearity

Linearity error is the most difficult error to deal with since it cannot be eliminated by adjustment. Like quantization error, it is an irreducible error. Basically, there are just two methods to reduce linearity error, both of which are expensive: either use a higher quality converter with better linearity, or perform a digital error correction routine on the data using a computer. The latter, of course, may not be feasible in many applications. There is some merit in using a more expensive converter, however. For example, suppose that an ultralinear 8 -bit ADC is required. Most good quality converters have linearity errors specified to less than $\pm 1 / 2$ LSB. If a more expensive 12 -bit ADC is employed with only 8 output bits used, then its linearity error of $\pm 1 / 2$ LSB out of 12 bits is the same as $\pm 1 / 32$ LSB out of 8 bits. This converter, therefore, becomes an ultralinear 8-bit ADC and probably at not too great an additional cost.
Actually, two types of linearity errors existing in A-D and D-A converters are integral linearity error and differential linearity error. Integral linearity error in Fig 5 (c) is due to the curvature of the transfer function, resulting in departure from the ideal straight line. The definition given for integral linearity error as the maximum deviation of the transfer function from a straight line between zero and full scale is a conservative one used by most data converter manufacturers. It is an "end-point" definition, as contrasted with the normal definition of linearity error as the maximum deviation from the "best-fit" straight line.
Since determining the best-fit straight line for data converters can be a tedious process when calibrating the device, most manufacturers have opted for the more conservative definition. This means that the converter must be aligned accurately at zero and at full scale to realize the specified linearity. The end-point definition can mean a linearity that is twice as good as a best-fit definition, as illustrated in Fig 6. Notice that the curvature may be twice as great with the best-fit straight line definition.

Differential linearity error is the amount of deviation of any quantum from its ideal value. In other words, it is the deviation in the analog difference between two adjacent codes from the ideal value of $\operatorname{FsR} / 2^{\mathrm{n}}$. If a data converter has $\pm 1 / 2$ LSB maximum differential linearity error, then the actual size of any quantum in its transfer function is between $1 / 2$ LSB and $11 / 2$ LSB; each analog step is $1 \pm 1 / 2$ LsB. Fig 7 illustrates the definition. The first two steps shown are the ideal value $\mathrm{Q}=\mathrm{FSR} / 2^{\mathrm{n}}$. The next step is only $1 / 2 \mathrm{Q}$, and above this is $11 / 2 \mathrm{Q}$. These two steps are at the limit of the specification of $\pm 1 / 2$ LSB maximum differential linearity error. Most data converters today are specified in terms of both integral and differential linearity error. In production testing of data converters, quanta sizes are measured over the converter's full-scale range.

Two other important terms are commonly used in conjunction with the differential linearity error specification. The first is monotonicity, which applies to dacs. A monotonic dac has an analog output that is a continuously increasing function of the input. The dac transfer function shown in Fig 8(a) is monotonic even though it has a large differential linearity error. The transfer

Fig 8 Monotonic (a) and nonmonotonic (b) DAC outputs. Monotonicity means output is continuously increasing function of input
function of Fig $8(\mathrm{~b})$, on the other hand, is nonmonotonic since the output actually decreases at one point. In terms of differential linearity error, a dac may go nonmonotonic if the differential linearity error is greater than ± 1 LSB at some point; if the differential linearity error is less than ± 1 LSB, it assures that the output is monotonic.

The term missing, or skipped, code applies to adc.s. When the differential linearity error of an ADC is greater than ± 1 LSB, the output may have a missing code; if the differential linearity error is less than ± 1 LSB, it assures that there are no missing codes. Fig 9(a) shows the transfer function of an ADC with a large differential linearity error but with no missing codes. In Fig 9(b), however, the differential linearity error causes a code to be skipped in the output.

For ADCs, the linearity characteristic depends on the technique of A-D conversion used; each converter type exhibits its own specific nonlinearity characteristic. Fig 10 illustrates the nonlinearity characteristics of the two most popular types of adcs: successive approximation and dual-slope integrating. With the successive approximation ADC, and also with other feedback type ADCs that use a parallel input DAC in the feedback loop, differential linearity error is the dominant type of nonlinearity. This is due to the parallel input DAC, which is made up of

Fig 9 No missing code (a) and missing code (b) in ADC output. Differential linearity error of less than ± 1 LSB assures that there are no missing codes in transfer function
weighted current sources. The worst differential linearity errors occur at the major code transitions, such as $1 / 4$, $1 / 2$, and $3 / 4$ scale. If these differential linearity errors are small, then the integral linearity error will also be small.

The difficulty at the major transition points is that, for example, the most significant bit current source is turning on while all other current sources are turning off. This subtraction of currents must be accurate to $\pm 1 / 2$ LSB and is a severe constraint in high resolution dacs. This means that the weighted current sources must be precisely trimmed in manufacturing. The most difficult transition is at $1 / 2$ scale, where all bits change state (eg, for an 8 -bit converter, 01111111 to 10000000), and the worst differential linearity error generally occurs here.

The next most difficult transitions occur at $1 / 4$ scale and $3 / 4$ scale, where all but one of the bits change state (eg, for an 8 -bit converter, 00111111 to 01000000 and 10111111 to 11000000 , respectively). Relatively smaller differential linearity errors may also occur at the $1 / 8,3 / 8$, $5 / 8$, and $7 / 8$ scale transitions, and so on. Fig 10(a) shows a successive approximation ADC transfer function, illustrating exaggerated differential linearity errors at $1 / 4$, $1 / 2$, and $3 / 4$ scale. If these errors are properly trimmed out in manufacturing, then both differential and integral linearity errors will be less than $\pm 1 / 2$ LSB.

Fig 10 Linearity characteristic of successive approximation (a) and dual slope integrating (b) ADCs. Transfer function of successive approximation converter exhibits mostly differential linearity error while that of integrating converter shows mostly integral linearity error

Fig. 10(b) shows a dual-slope integrating adC transfer function. In this case, the predominant nonlinearity is the integral linearity error; differential linearity error is almost nonexistent in integrating type ADCs, which also includes charge balancing aDCs. The curvature of the transfer function is caused by a nonideal integrator circuit. Differential linearity is determined by the time between clock pulses in the converter, and this is constant within any conversion cycle.

Temperature Induced Errors

Ambient temperature changes cause variations in offset, gain, and linearity errors. If a converter is operated at a constant temperature within its specified operating temperature range, offset and gain errors can be zeroed by external adjustment at that temperature. But if the converter must operate with changing ambient temperature, then the problem becomes acute.

Offset change with temperature is generally specified in microvolts per degree Celsius, or in parts per million of full scale per degree Celsius. Gain temperature coefficient is specified in parts per million per degree Cel-
sius, and linearity error change with temperature is expressed in parts per million of full scale per degree Celsius.

Effective aproaches to minimizing gain and offset changes with temperature are available. If a converter operates most of the time at a given temperature, then its offset and gain should be zeroed at that temperature. If, however, the ambient temperature varies between two temperatures, the converter should be calibrated midway between those two temperatures. Another approach to minimizing changes with temperature is to use a converter with a low temperature coefficient to meet the desired specification. Data converters with low temperature coefficients are, of course, more expensive, but this may be the most economical solution to the problem when all design factors are considered. Another method of minimizing gain error is based on the fact that many data converters with internal references have provision for connecting an external reference. In such a case, it is possible to connect a lower temperature coefficient external reference to the converter. This can be particularly effective where a number of converters are used together and one reference is used for all of them.

Linearity error temperature coefficient is the most troublesome specification, since it resists correction. In many applications, it is desired that the converter be

monotonic, or have no missing codes, over the desired operating temperature range. From the converter differential linearity temperature coefficient, it is useful to determine the temperature range over which the converter will have guaranteed monotonicity or no missing codes. Using a conservative approach, it is assumed that the converter has a maximum initial differential linearity error of $\pm 1 / 2$ LSB. Then, if the differential linearity error changes by not more than an additional $1 / 2$ LSB, a dAC will remain monotonic and an ADC will have no missing codes.

With a 12 -bit adC for example, $1 / 2$ LSB is equal to 120 ppm. If the operating temperature range is 0 to $70^{\circ} \mathrm{C}$ and the converter is calibrated at $25^{\circ} \mathrm{C}$, the maximum temperature change is $70^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$, or $45^{\circ} \mathrm{C}$. To guarantee no missing codes, the differential linearity temperature coefficient must be $120 \mathrm{ppm} / 45{ }^{\circ} \mathrm{C}=2.7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of full scale, maximum. An even lower differential linearity temperature coefficient is required to assure no missing codes if the operating temperature range is the full -55 ${ }^{\circ} \mathrm{C}$ to $125{ }^{\circ} \mathrm{C}$ military range. Performing a similar computation gives $120 \mathrm{ppm} / 100{ }^{\circ} \mathrm{C}=1.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of full scale, maximum, for the differential linearity temperature coefficient.

Gain temperature coefficient is commonly specified by the butterfly limits shown in Fig 11. All the lines pass through zero at $25{ }^{\circ} \mathrm{C}$, where it is assumed that the initial measurt ment is made. The graph of Fig 11 shows the maximum gain temperature coefficient required for a ± 1 LSB gain error for a 12 -bit A-D or D-A converter over three different temperature ranges. Observe that the
gain deviation curve must be within the bounds shown to meet the specification of ± 1 LSB maximum change. The dotted curve shows an actual converter gain deviation that would qualify as a gain temperature coefficient of $\pm 2.4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over the -55 to $125{ }^{\circ} \mathrm{C}$ operating temperature range. This represents a very low temperature coefficient for an actual converter since most available devices fall in the range of 5 to $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Error Budget Summary

A common mistake in specifying data converters is to assume that the relative accuracy of a converter is determined only by the number of resolution bits. In fact, achievable relative accuracy is likely to be far different from the implied resolution, depending on the converter specifications and operating conditions. This simply means that the last few resolution bits may be meaningless in terms of realizable accuracy.
The best way to attack this design problem is with a systematic error budget. An error budget partitions all possible errors by source to arrive at a total error. In a given system, this must be done not only for the A-D or D-A converter, but also for the other circuits, such as transducer, amplifier, analog multiplexer, and sample and hold.
As an example, using the accuracy specifications for a typical 12-bit adc (Table 2), an error budget can be determined based on the following assumptions: operating temperature range of $0{ }^{\circ} \mathrm{C}$ to $50{ }^{\circ} \mathrm{C}$, maximum

DATA ACQUISITION \& CONVERSION HANDBOOK

TABLE 2
Accuracy Specifications for 12-Bit ADC

Characteristic
Resolution
Differential Linearity Error
Differential Linearity Tempco
Gain Tempco
Offset Tempco
Power Supply Sensitivity

$$
\begin{aligned}
& \text { Value } \\
& \hline 12 \text { Bits } \\
& \pm 1 / 2 \mathrm{LSB} \max \\
& \pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { of FSR max } \\
& \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { max } \\
& \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { of FSR max } \\
& 0.002 \% / \%
\end{aligned}
$$

TABLE 3

Error Budget for 12-Bit ADC

Specification	Error (\%)
Quantization Error ($\pm 1 / 2$ LSB)	0.012
Differential Linearity Error ($\pm 1 / 2$ LSB)	0.012
Differential Linearity Error over Temp $\left(2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 25\right)$	0.005
Gain Change over Temp $\left(20 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 25\right)$	0.05
Zero Change over Temp $\left(5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 25\right)$	0.0125
Change with Power Supply $(1 \times 0.002 \%)$	0.002
Long Term Change	0.02
Total Error, Worst Case	0.1135
Total Statistical (rms) Error	0.0581

power supply voltage change of 1% with time and temperature, and maximum converter change of 0.02% with time. Table 3 shows the resulting error budget with a total worst case error of 0.1135%. It is improbable that the errors will all add in one direction. Statistical (rms) addition of the errors yields a lower value of 0.0581%; this, on the other hand, may be too optimistic since the number of error sources is small. At any rate, the maximum error will be somewhere between 0.0581% and 0.1135%, a significant difference from what might be assumed as a 12 -bit or 0.024% converter. The ideal relative accuracy has been degraded by one to two resolution bits.

In applying data converters, best results are achieved by reading the data sheet carefully for accuracy specifications, computing total error by the error budget method, and then carefully aligning and testing the converter in its actual application.

Graphs give aperture time required for a-d conversion

The time required for an analog-to-digital converter to make a conversion is known as "aperture time," and depends on both the resolution and the particular conversion method employed. For commercially available a-d converters that use the successive approximation
method, the aperture time may be 40 microseconds for a relatively low-cost 12 -bit converter, or as little as $4 \mu \mathrm{~s}$ for a more expensive high-speed 12 -bit converter. In many cases a sample-hold circuit is used ahead of an ad converter to effectively reduce the aperture times; the sample-hold can take a very fast sample of the analog signal and then hold the value while the a-d operation is performed. (The time interval during which the signalhold circuit turns off is then the aperture time, and determines the conversion accuracy. The time for actual a-d conversion can be longer.)
It is important for the designer to know what aperture time is required to keep the system error to a tolerable value in terms of the resolution of his a-d coverter. The

1. Sampling time. Aperture time for 1-bit accuracy at various resolutions in a-d conversion are shown here. Graph (a) gives aperture time as a function of signal rate of change for signals that are 10 volts full scale or 10 volts peak to peak. Graph (b) gives aperture time as a function of frequency for sinusoidal signals. Aperture times for larger allowed error can be found by reading on line for lower resolution, e.g., a 2bit error and 8 -bit resolution requires the same time as a 1 -bit error and 7 -bit resolution. Equations for these graphs are found in text.

2. Error. Possibility of error in a-d conversion depends upon aperture time. The greater t_{A} is, the greater the uncertainty in value of an analog voltage that has been converted to digital level.
maximum aperture time that allows 1-bit accuracy in conversion of an analog signal to 4 bits, 6 bits, . . . or 16 bits is given here in two useful graphs. The graph in Fig. 1(a) shows this aperture time as a function of signal rate of change, for signals that are 10 volts full scale or peak to peak. Fig. 1(b) gives the aperture time as a function of the frequency of a sinusoidal signal.

The two graphs are derived with reference to Fig. 2, which shows a time-varying signal and the amplitude uncertainty ΔV associated with an aperture time t_{A}

$$
t_{\mathrm{A}}=\Delta V /(d V / d t)
$$

If the fractional error ε is the ratio of ΔV to full-scale voltage V_{FS},

$$
t_{\mathrm{A}}=\left(\varepsilon V_{\mathrm{FS}}\right) /(d V / d t)
$$

If $\Delta \mathrm{V}$ is held to 1 bit, and V_{FS} is resolved into n bits, then $\varepsilon=1 /\left(2^{\mathrm{n}}\right)$, and

$$
t_{\mathrm{A}}=V_{\mathrm{FS}} / 2^{\mathrm{n}}(d V / d t)
$$

This is the equation for the family of lines in Fig. 1(a), with $\mathrm{V}_{\mathrm{Fs}}=10$ volts and $\mathrm{n}=4,6, \ldots 16$.
For a sinusoidal signal, which has a maximum rate of change at its zero crossing,

$$
\Delta V=t_{\mathrm{A}}[d / d t(1 / 2)(V \sin \omega t)]_{t-0}=\omega V t_{\mathrm{A}} / 2
$$

where V is peak-to-peak signal value. This gives

$$
t_{\mathrm{A}}=(2 \Delta V) /(\omega V)=\varepsilon / \pi f=1 /\left(2^{\mathrm{n}} \pi f\right)
$$

for a 1 -bit error and n-bit resolution. This is the equation for the family of lines in Fig. 1(b).
If the allowed error is to be 2 bits instead of 1 bit, then $\varepsilon=2 /\left(2^{\mathrm{n}}\right)$, so aperture times are doubled. An error of 3 bits gives $\varepsilon=4 /\left(2^{n}\right)$, and so on; thus a 1 -bit increase in error is equivalent to a 1-bit decrease in resolution on the graphs.
As an example of the usefulness of these graphs, assume that a 1 -kilohertz sinusoidal signal is to be digitized to a resolution of 10 bits. What aperture time must be used to give less than 1 bit of error? The answer, readily found from Fig. 1(b), is 320 nanoseconds. For $1 / 2$ bit error the aperture time would have to be 160 ns . This is surprising, because a $1-\mathrm{kHz}$ signal is really not very fast, and a 10 -bit/320-ns converter is not to be found commercially available as a module. Therefore, a sample-hold circuit would be required ahead of a slower a-d converter.

NOTE: Pages 150 and 151 show large, detailed versions of Figure 1.

DO'S AND DONT'S OF APPLYING A/D CONVERTERS

In many applications, the limitation in the performance of any system lies in how the individual components are used. The Analog-to-Digital Converter (A/D) can also be considered as a component and, therefore, proper design procedures are necessary in order to obtain the optimum accuracy. Intersil IC A/D converters are inherently extremely accurate devices. To obtain the optimum performance from them, care should be taken in the hook-up and external components used. Test equipment used in system evaluation should be substantially more accurate and stable than the system needs to be. The following sections illustrate DO's and DON'Ts to obtain the best results from any system.

1. DONT INTRODUCE GROUND LOOP ERRORS

Plan your grounding carefully. Probably the most common source of error in any Analog-Digital system is improper grounding. Let's look at Fig 1. All the grounds are tied together, so everything should be alright, right? WRONG! Almost everything is wrong with this connection

FIGURE 1 Don't hook it up like this!
The power supply currents for the analog and digital sections, together with the output or display currents, all flow through a lead common to the input. Let us analyze some of the errors we have introduced. The average currents flowing in the resistance of the common lead will generate a D.C. offset voltage. Even the autozero circuit of an integrating A/D converter cannot remove this error. But, in addition, this current will have several varying components. The clock oscillator, and the various digital circuits driven from it, will show supply current variation at the clock frequency, and usually at submultiple also. For a successive approximation converter, these will cause an additional effective offset. For an integrating converter, at least the higher frequency components should average out. In some converters, the analog supply currents will also vary with the clock (or a submultiple) frequency. If the display is multiplexed, that current will vary with the multiplex frequency, usually some fraction of the clock frequency. For an integrating converter, both digital and analog section currents will
change as the converter goes from one phase of conversion to another. (Currents of this type injected into an autozero loop are particularly obstinate). Another serious source of variation is the change in digital and display section currents with the result value. This frequently shows up as an oscillating result, and/or missing results; one value being displayed displaces the effective input to a new value, which is converted and displayed, leading to a different displacement, a new value and so on. This sequence usually closes after two or three values, which are displayed in sequence.
A more subtle source of eriots in this circuit comes írom the clock oscillator frequency. For an integrating converter, variations in clock frequency during a single conversion cycle due to varying digital supply voltage or supply currents, or ground loops to a timing capacitor, will lead to incorrect results.
Fig 2 shows a much better arrangement. The digital and analog grounds are connected by a line carrying only the interface currents between sections, and the input section is also tied back by a low-current line. The display-current loop will not affect the analog section and the clock section is isolated by a decoupling capacitor. Note that external reference return currents and any other analog system currents must also be returned carefully to analog ground.

FIGURE 2 Do hook it up like this.

2. DON'T COUPLE DIGITAL SIGNALS INTO ANALOG LINES

Although Intersil's A/D converter circuits have been designed to minimize the internal coupling of digital signals into analog lines, the external capacitive coupling is controlled by the user. For the best results, it is advisable to keep analog and digital sections separated on PC boards. A few examples of the results of capacitive coupling follow.
On dual slope converters, the "busy" line swings from one state to the other at the end and beginning of the autozero cycle. Capacitive coupling from this line to the autozero or integrating capacitors will induce an effective input offset voltage. A similar effect occurs with the
"Measure/Zero" line on charge-balancing converters and for a successive approximation converter with coupling between "End of Conversion" and a sample-and-hold capacitor. For a multiplexed display device, coupling between the multiplex or "digit" lines and these capacitors can lead to non-linearity of the converter. And coupling from any digital line into a high-impedance input line can lead to errors in any system.

3. DO USE ADEQUATE QUALITY COMPONENTS

For successive approximation converters, the resistors used must have excellent time and temperature stability to maintain accuracy. Any adjustment potentiometers, etc. must be of compatible quality (note that in some trimpots, the slider position moves with temperature!)
For dual slope converters, the component selection is less critical. Long term drifts in the integrating resistor and the capacitors are not important. However, any resistive divider used on the reference, especially if it is adjustable, must be of sufficient stability not to degrade system accuracy. Dielectric absorption in the integrating capacitor is important (see reference 1) and the integrating resistor must have a negligible voltage coefficient to ensure linearity. Noisy components will lead to noisy performance, whether in the integrator, autozero or clock circuits.

4. DO USE A GOOD REFERENCE

Good references are like good wines; nobody is quite sure how to make them but generally the older the technology used, the better the result, and the proof lies in the tasting (or testing). Thus, it is hard to beat the old temperature compensated zener with the current flow adjusted to the optimum for each diode. If you aren't into Zinfandel Superior Premier Cru (1972), the Intersil 8052 has a fairly good reference built in. In either case, the division down from what you get to the required reference voltage requires care also (see above). And it is a fundamental fact that no converter can be better than its reference voltage.

5. DO WATCH OUT FOR THERMAL EFFECTS

All integrated circuits have thermal time constants of a few milliseconds to dissipation changes in the die. These can cause changes in such parameters as offset voltages and $V_{\text {be }}$ matching. For example, the power dissipation in an 8018 quad current switch depends on the digital value. Although the die is carefully designed to minimize the effects of this, the resultant temperature changes will affect the matching between current switch values to a small degree. Inappropriate choice of supply voltages and current levels can enhance these differences, leading to errors. Similarly, the power dissipated in a dual-slope converter circuit depends on the comparator polarity and hence varies during the conversion cycle. Offset voltage variations due to this cannot be autozero'd out, and so can lead to errors. Again a poor choice of comparator loading or swing will enhance this (normally) minor effect. The power dissipation in an output display could be coupled into the sensitive analog sections of a converter, leading to similar problems. And thermal gradients between IC packages and PC boards can lead to thermo-electric voltage errors in very sensitive systems.

6. DO USE THE MAXIMUM INPUT SCALE

To minimize all other sources of error, it is advisable to use the highest possible full scale input voltage. This is particularly important with successive approximation converters, where offset voltage errors can quickly get above 1LSB, but even for integrating-type converters, noise and the various other errors discussed above will increase in importance for lower-than-maximum full scale ranges. Pre-converter gain is usually preferable for small original signals. All Intersil's integrating converters have a digital output line that can be used to extend autozero to preconditioning circuits (being careful not to couple the digital signal into the analog system, of course).

Also, DO CHECK THESE AREAS

Tie digital inputs down (or up) if you are not using them. This will avoid stray input spikes from affecting operation. Bypass all supplies with a large and a small capacitor close to the package. Limit input currents into any I.C. pin to values within the maximum rating of the device (or a few mA if not specified) to avoid damaging the device. Ensure that power supplies do not reverse polarity or spike to high values when turned on or off. Remember that many digital gates take higher-than-normal supply currents for inputs between defined logic levels. And remember also that gates can look like amplifiers under these circumstances. An example is shown in Fig 3, where stray and internal input-to-output capacitance is multiplied by the gain of the gate just at the threshold causing a large effective load capacitance on the 8052 comparator (see reference 1 for the effects of this.) A noninverting gate here could lead to oscillations.

figure 3

External Adjustment Procedure

Most of the A/D converters now offered by Intersil do not require an offset adjustment. They have internal autozero circuits which typically give less than $10 \mu \mathrm{~V}$ of offset. Therefore, the only optional adjustment required to obtain optimum accuracy in a given application is the full scale or gain reading
With the A/D converter in a continuous mode of conversion, the following procedure is recommended: The full scale adjustment is made by setting the input voltage to precisely $1 / 2$ LSB less than full scale or $1 / 2$ LSB down from nominal full scale. (Note that the nominal full scale is actually never reached but is always one LSB short). Adjust the full scale control until the converter output just barely switches from full output to one count less than full output.

3. Data Conversion Systems

Single hybrid package houses 12-bit data-acquisition system

Handling either 8 differential or 16 single-ended inputs, device acquires data at 50 kHz or faster from many sources

\square The shift from minicomputers to microcomputers in data processing has been paralleled by the shift from boards and modules to microcircuits in data conversion. By now, complete microprocessor-compatible dataacquisition systems are available as single plug-in hybrid or monolithic components. Eight-bit performance has been the limit, though, with the hybrid devices being much faster though less economical than the monolithic converters. For 12 -bit performance, users have had to turn back to bulky modules or else interconnect two or more hybrid circuits.

Getting down to one package

But a new 12-bit hybrid data-acquisition system is offering users the convenience and cost savings of a single integrated-circuit-compatible package, together with the high performance and reliability of a hybrid circuit. Besides multichannel capability, the device includes address decoding logic, an adjustable-gain
instrumentation amplifier, a sample-and-hold circuit, a 12-bit successive-approximation analog-to-digital converter, control logic, and three-state output buffers for interfacing with a microprocessor data bus. It is manufactured in two versions, the HDAS-8 handling eight differential inputs and the HDAS-16 handling 16 single-ended inputs.

Housed in a hermetic 62-pin ceramic package, the device meets all the requirements of MIL-STD-883A, class B. To shrink its overall size, as well as optimize the internal layout and make external access easy, the pins are arranged around all four sides of the package, instead of in two parallel rows. The use of ceramic instead of metal keeps cost and especially weight down.

With such a complex hybrid, internal power consumption, of course, must be minimized. An equivalent modular unit uses about 4.5 watts, which in the hybrid's 62-pin ceramic package would push the temperature at the chip-mounting surface $50^{\circ} \mathrm{C}$ above ambient. Since

the unit must be able to operate at $125^{\circ} \mathrm{C}$ ambient, and silicon semiconductors deteriorate at junction temperatures above $150^{\circ} \mathrm{C}$, the internal temperature rise must be limited to $25^{\circ} \mathrm{C}$. Considerations of power therefore override those of space so that, wherever possible, the device employs bulky tantalum chip capacitors and low-power transconductance-mode amplifiers, while the digital control circuitry uses low-power Schottky transistortransistor logic only.

1. The device. Hybrid data-acquisition system (a) delivers 12-bit data for 8 differential or 16 single-ended input channels. A few simple connections (b), and the hybrid will automatically address the input channels sequentially for a system throughput rate of 50 kHz .

Finally, in a move that reduces device complexity as well as temperature rise, as many of the internal thinfilm resistors as possible are placed directly on the ceramic substrate, and not on separate chips of glass, silicon, or ceramic. With either technique, there will always be a resistor-to-conductor interface. But making a resistor part of the substrate eliminates the two wirebond interfaces at its terminations, making wire-bond weakness a less likely cause of failure.

How the device operates

The circuit configuration (Fig. 1a) for the device is a fairly common one for a data-acquisition system. At the front end is an analog multiplexer having either 8 differential or 16 single-ended channels, which may be addressed randomly or scanned sequentially. Following the multiplexer is an instrumentation amplifier that extracts the input signal from common-mode noise. The gain of this amplifier is adjustable (through an external resistor) from 1 to 1,000 , so that the maximum expected range of the input signal becomes ± 10 volts at the amplifier output for optimum dynamic range.

A precision sample-and-hold circuit then buffers the selected signal, holding its level constant during the actual conversion. The output of the sample-and-hold
serves as the input to a 12 -bit a-d converter, which produces a binary number that is the digital representation of the selected analog input. For flexibility in databus organization, three-state logic elements, which are configured in 4 -bit bytes, buffer the digital data output from the a-d converter.

The hybrid is very easy to use, as is evident from the simplicity of the circuit (Fig. 1b) needed to acquire eight differential inputs. A few straightforward connections, and the HDAS-8 delivers 12 -bit binary data at a rate of 50 kilohertz from eight sequentially addressed channels, each having a $\pm 10-\mathrm{v}$ signal range. Since no gain resistor is used, the amplifier's gain is unity. A single strap selects bipolar operation (+10 v), and another strap from R delay to the $+5-\mathrm{v}$ supply selects the internally allotted delay time for the multiplexer and the amplifier to settle.
To obtain continuous scanning of the input channels, the user need do nothing at all to the address control inputs. With its end-of-conversion flag tied to the strobe input, the device will acquire data continuously at the maximum rate. For self-strobe operation, though, the rise time (from 10% to 90%) of the +5 -v supply (when power is first applied or interrupted and then reapplied) must be less than 10 microseconds, or else a latchup may occur. For reliable operation, the user should examine the $\overline{E O C}$ flag and apply a STROBE signal when it is required. Even supply-bypass components are included in the package.

Protection

A good part of the device's ruggedness is due to overvoltage protection circuitry for the multiplexer. A 1 -kilohm resistor on each channel input limits the current flowing through protection diodes and, in combination with stray nodal capacitance, limits the rise time of large spikes so that the diode can clip them before they do any damage. Even without using any external components, protection is assured to 20 v beyond the $\pm 15-\mathrm{v}$ supply voltages.
Adding a series resistance to each input can increase protection up to a diode current limit of ± 10 milliamperes. But large values of input resistance are not altogether desirable. Besides raising the input noise, they increase the settling time of the instrumentation amplifier for changing input signals, as well as the multiplexer's recovery time from switching transients.
Expanding the channel capacity of the hybrid requires just one external component, connected as shown in Fig. 2a. This hookup converts the HDAS-16 from a 16 channel single-ended unit into a 16 -channel differential part. In fact, channels may be added almost without limit at very little cost, as Fig. 2b illustrates. Here, with the addition of just 15 multiplexers and one logic device (a one-of- 16 decoder), the HDAS-16 acquires 256 channels of low-level analog signals. In this application, the unit compares the outputs from 256 temperature-sensing
2. Easy channel expansion. One external component converts the HDAS-16 into a 16 -channel differential part (a). Adding 15 multiplexers and a single logic decoder accommodates 256 input channets (b). For throughput faster than 50 kHz , more hybrids are needed (c).

3. Handling high-frequency inputs. To acquire signals beyond the mid-audio range requires a sample-and-hold circuit for each channel (a). For a nonrepetitive high-frequency signal, a delay line and a string of sample-and-holds slice the input into 16 pieces (b).
diodes with the output of a single reference diode.
Indeed, the hybrid is built to be expanded-it can handle up to 65,536 channels with the addition of only 17 logic circuits. The unit's multiplexer-enable line is what makes this possible. Left alone, it is high, and the internal multiplexer is enabled. But when pulled low, it disables the internal multiplexer and frees the amplifier input lines for external multiplexer control.
Although the circuit of Fig. 2b is an economical way to handle 256 channels at a $50-\mathrm{kHz}$ rate, that throughput may not be fast enough for some applications. A faster throughput of 800 kHz is easily achieved by interleaving 16 hybrids into 256 channels (Fig. 2c). This circuit is actually just as simple as the slower one, for it still requires only one external decoder device. Because the hybrid uses three-state data outputs, all 16 units can be tied to one data bus and enabled one at a time during the delay period preceding the next conversion while the data from the last conversion is still valid.
Both the HDAS-8 and the HDAS- 16 are ideally suited to acquiring data quickly from many sources, with two provisos: the sources should all have similar maximum signal levels, and the highest frequency components of the signal sources must be in the low audio range. When the signal sources have dissimilar ranges, the dynamic range of some signals will be less than optimum because the gain of the differential amplifier will be set to accommodate the largest signal range. This limitation is normally overcome by using prescaling amplifiers, which also serve as convenient low-impedance signal line drivers and as filter points to reduce unwanted power-line signals and the like.

Acquiring high-frequency signals

When the signal sources are to contain high-frequency components that the data-acquisition system must recognize and acquire accurately, a very fast track-and-hold circuit or, better yet, a true sample-and-hold should intercept the signal and hold it for a precisely controlled time. Once the signal has been processed by the multiplexer, the amplifier, and so on, its bandwidth and phase delay are no longer precisely known. Figure 3a shows one way to do real-time analysis of input signals having frequencies up to 25 kHz . With this circuit, to retain precise information as to the time of sample, 16 fast sample-and-holds simultaneously sample the input signals, and the data-acquisition system digitizes the held analog value on each input channel.
Beyond 25 kHz , the inability of the hybrid to generate two data points per cycle of the input signal violates the Nyquist criteria of signal sampling. When repetitive events need not be analyzed in real time-for example, when synchronized sampling heads provide sample snatches with varying delays-the frequency limit extends to the bandwidth of the sample-and-hold circuits. But for real-time analysis of nonrepetitive signals, another approach is needed.
Radar pulses are a common example of nonrecurring pulses that contain critical target data that must be analyzed in exceedingly fine detail in real time. To handle them, the HDAS-16 data-acquisition system requires just a tapped delay line and a string of fast

4. Putting amplifier gain to work. It is even possible to turn the HDAS-16 into a 16 -bit a-d converter by applying the input signal to the internal amplifier's inverting input. Here, the amplifier-input-tow line is being viewed as a high-impedance, transient-free signal input.
sample-and-holds, as noted in Fig. 3b. In effect, the sample-and-holds slice the radar pulse into 16 easy-to-digest pieces, while the delay line causes each sample-and-hold to retain the analog information at incremental times following the synchronization pulse. Meanwhile, the hybrid can address and digitize each input slice at a comparatively leisurely pace, producing a 12-bit binary word for each of the 16 slices at a word rate of 50 kHz . Clearly, there is a limit to the number of sample-and-hold circuits that may be addressed and digitized before hold-capacitor droop problems destroy analog signal accuracy. This limit may be circumvented by adding more hybrids to the circuit, at any rate until system cost reaches that of a real-time video converter.

To increase resolution up to $\mathbf{1 6}$ bits

Besides being useful as a video a-d converter, the HDAS-16 may be operated as a 16 -bit a-d converter. Unlike the HDAS-8, in which the two multiplexer outputs are both committed to the amplifier's inputs, the HDAS-16 has only one multiplexer output so committed. It is tied internally to the amplifier's noninverting (high) input, leaving the inverting (low) amplifier input for the user to connect, for example, to the signal source common. (In-any event, the user must of necessity return eventually the signal source common to the hybrid's signal or power common.)

Another way of looking at the HDAS-16's amplifier-input-low line is as a high-impedance transient-free signal input, as illustrated in Fig. 4. Wired in this way, the HDAS-16 operates as a 16 -bit a-d converter. Fifteen resistors, precisely matched and equal in value, divide the internal $10-\mathrm{v}$ reference into 16 equally spaced voltages, so as to bias the input channels into 16 contiguous windows. The amplifier will only amplify the difference

5. High gain. In this fast spectrophotometer application for monitoring industrial waste, the hybrid's high-gain capability and adjustable settling time are exploited. Careful tailoring of delay time versus gain provides best system resolution in terms of data rate needs.
between the input signal and the selected channel voltage. (With R gain at 1,333 ohms, amplifier gain is 16 .)

Only one channel address will be associated with an in-range 12 -bit data word, and all other channels will yield all zeros or all ones. When the address of the selected channel is used as the top 4 bits and the resulting conversion data as the bottom 12 bits, the HDAS-16 generates a 16 -bit complementary binary data word. For input signals in the audio-frequency range, the channel address will change by no more than one count from one conversion to the next, so that no more than two conversions are ever necessary to obtain valid data. This means that the HDAS-16 will typically deliver 16 bits in 20 microseconds, or $40 \mu \mathrm{~s}$ maximum.

When high gain is needed

Some applications require both high gain and multichannel capability. However, when the gain exceeds 20, the hybrid's amplifier needs more than the internally allotted $9 \mu \mathrm{~s}$ for settling to within 12 -bit accuracy. Even though the signal inputs may change slowly, the amplifier sees the multiplexer output as a fast-changing step function, with changes occurring whenever the multiplexer address changes.

The amplifier, then, must have enough time to settle fully in response to these abrupt changes before a conversion takes place. Suppose, for example, the appli-

6. Odds and ends. Charge-pump loop (a) cancels troublesome offset errors for all time and temperature. A twin circuit could be used to cancel gain errors also. Register file (b) creates memory location for HDAS-16, so data access is independent of the hybrid's status.
cation calls for a fast spectrophotometer for monitoring industrial waste or a similar cost-sensitive task. Figure 5 shows one solution utilizing the hybrid's high-gain capability and its user-adjustable settling delay time. Here, the outputs of 16 photodiodes, each of which has a different narrow-band filter, are compared to the output of an unfiltered white-light reference diode. Since the
photon-induced diode voltage is small, amplifier gain must be large for a reasonable dynamic range. Instead of strapping the hybrid's R delay pin directly to the $+5-\mathrm{v}$ supply, as is usually done, the user may add a series resistor to increase the delay time between an address change and the start of a conversion. By carefully tailoring the delay time to the gain, the user can optimize system resolution versus data-rate needs. Even at a gain of 1,000 , throughput rate will be at least 3.3 kHz , with root-mean-square system noise held to less than $1 / 2$ least significant bit.

Dealing with accuracy errors

Many users of data-conversion devices are puzzled by the seeming inconsistency of specifications for relative accuracy and absolute accuracy. But distinguishing between the two is not all that difficult. In brief, relative accuracy is a measure of a device's differential linearity and monotonicity, while absolute accuracy icflccts the unit's gain and offset stability. Furthermore, relative accuracy requires that similar components do the same thing with time and temperature, whereas absolute accuracy requires that a component does not change with time and temperature - a requirement that flies in the face of reality.

As it advances, process technology will continue to reduce accuracy errors, but it will always come closer to optimizing relative than absolute accuracy. Certain circuit techniques, however, permit doing away with absolute-accuracy errors altogether. For example, the simple one shown in Fig. 6a cancels offset errors, and a twin circuit could be used to cancel gain errors as well. This technique uses a charge-pump loop to hold absolute errors below measurable levels for all time and all temperatures. When data (offset voltage) appears on channel zero, the transconductance amplifier receives a bias-set pulse for $5 \mu \mathrm{~s}$. If the data is zero, this amplifier sinks (or sources in the case of non-zero data) a current pulse to the integrator that minutely adjusts the hybrid's zero. At null, there is an imperceptible ± 1-pulse hunt traded off against capture time.

In a microprocessor-based system the time needed to digitize analog data can become very long with respect to the processor's cycle time, particularly if the dataconversion device is a reasonably priced unit. This time difference causes all sorts of software problems that require complex interrupt schemes to solve. But, in fact, the delay is totally unrelated to the need for fully updated signal data, and the data-conversion device is usually quite capable of generating digital data at a fast enough rate to satisfy most signal-analysis requirements.

One simple way to work around the delay is to insert a multiple-port register file between the data-conversion device and the digital processor, as shown in Fig. 6b. Essentially, the register file creates a memory location for a continuously scanning HDAS-16. Data access is fast, free, and independent of the hybrid's status. Thus, the hybrid generates new data words at 50 kHz and updates a 16 -word file at a rate of over 3 kHz . Meanwhile, the digital processor can request and retrieve data at normal memory-access speeds without disturbing or waiting for the data-acquisition system.

Put video a/d converters to work.
 These small, inexpensive show-stoppers can digitize the analog signals required for a variety of applications.

Video-speed, 8-bit, a/d converters-particularly those that use two, 4-bit, hybrid, flash stages ${ }^{1}$-are now small enough and inexpensive enough to work in a variety of applications, including digital television, transient recording, radar-signature analysis and distortion analyzers.

Probably the most extensive use of ultra-high-speed a/d converters will be broadcast TV; where digital picture processing has started a revolution that is perhaps even profounder than the transition from tubes to semiconductors.

Though the potential advantages of digital television were obvious for some time, its potentiality didn't become reality until compact, ultra-high-speed, reasonably priced, a / d converters and high-density LSI memory chips appeared.

Basically, digital television-picture processing requires three major steps:

1. Digitizing the analog signal from the camera (or other video source) using very fast a / d converters.
2. Processing the converted data digitally.
3. Reconverting the processed picture data into analog form for transmission via d / a converters.

Right now, digital TV extends only to processing video signals in studios. Digital data aren't transmitted to home receivers-yet. But the digitized video signals do have the following advantages:

- They're immune to noise.
- They can be stored in digital form and read out at selectable rates.
- They can be simply converted to different TV standards.
- They can be delayed, compressed and stretched.

Video a/d stars in digital TV

From the performance viewpoint, a digital-TV system's a / d converter is the most important block. The converter limits the system's two crucial charac-teristics-resolution and sampling rate. Fortunately, 8 -bit resolution faithfully reproduces a TV picture. At video speed, higher resolution gets prohibitively expensive. An 8-bit converter quantizes the luminance, or video-signal amplitude, into 2^{8}, or 256 , discrete

levels. These 0.4% amplitude steps produce a grey scale that appears continuous.

Today's high-speed a / d converters sample at the rates required by digital TV. The well-known Nyquist criterion of the sampling theorem spells out the required theoretical sampling rate (to recover a bandlimited signal without distortion, it must be sampled at least twice as fast as its highest-frequency component). In the U.S., the National Television System Committee (NTSC) standard is in force. The TV signal has a $4.2-\mathrm{MHz}$ bandwidth, which requires a minimum $8.4-\mathrm{MHz}$ sampling rate.

In practice the sampling frequency is higher than the required minimum, and usually an integral multiple (three or four) of the $3.58-\mathrm{MHz}$ color subcarrier. Thus, the most common sampling rates are 10.74 and 14.32 million per second.

There is another standard to consider: the widerbandwidth, European, phase-alternating line (PAL) standard. The video bandwidth is 5.5 MHz and the color-subcarrier frequency is 4.43 MHz . Sampling three and four times the color-subcarrier rate means 13.29 and $17.72-\mathrm{MHz}$ conversion rates, respectively. To compare data for both U.S. and European systems,

3. Digital noise reducers store the converted frame data for element-by-element processing in a recursive filter. To avoid smearing moving pictures, frames whose elements show too much motion aren't filtered.

2. Digital frame synchronizers retime TV frames to the local station's color subcarrier and vertical sync.

DATA ACQUISITION \& CONVERSION HANDBOOK

'see the information in the table.
One of the first TV problems solved by digital technology was signal jitter, or time-base error, which is a common problem at the output of video-tape recorders synchronized to a power-line frequency. TV broadcasting requires that recorders be synchronized to local-station color subcarriers.

Fig. 1 illustrates the basic operation of a digital time-base corrector system that synchronizes a videotape recorder's output to the local TV station's subcarrier. This system combines a fast, semiconductor, digital memory with an ultrafast a / d.

The memory is the key to resynchronization. The system reads out the stored converted video by means of its read-address counter, which is controlled by clock pulses from the station's color subcarrier. A phase-locked oscillator derives the $10.74-\mathrm{MHz}$ read pulses from the subcarrier. The data from memory updates an ultrafast, deglitched d/a converter that reconstructs the video signal.

No matter how much the input signal jitters, the output, after comparison and storage, is jitter-free because it is closely synchronized to the station's color subcarrier. But the time base itself must then be stable to within ± 5 nanoseconds.
Time-base-corrector memories generally store up to three video lines-with an associated delay of $189 \mu \mathrm{~S}$ for the three lines. Three-line storage requires the memory capacity for 2048 samples of 8 bits each. So, a 2 - $\times 8$-bit RAM is sufficient. Of course, the average rate of data into the memory can't exceed the average of data out, or the memory can run out of capacity.

Fast a/d and a memory: a TV twosome

Like the time-base corrector, another important TVprocessing system, a digital frame synchronizer, combines a video a/d converter and a memory. The frame synchronizer integrates nonsynchronous TV signals
from remote sources, into a broadcast, which enables a station to switch video sources without breaking up its picture. Moreover, all the station's video sources, both local and remote, are put into simultaneous raster and color phase.

Typical remote sources are portable news cameras, satellite links, and videotape recorders. Portablecamera signals are either relayed to the studio or recorded first on videotape. Satellite signals go to the network rather than to local studios.

Because it corrects both instantaneous time-base errors and source delays, a digital-frame synchronizer is more complex than a time-base corrector. To synchronize incoming and station-generated frames, the equipment is, in effect, a variable delay line.

Though it synchronizes frames similarly to the way time bases are corrected, a frame synchronizer requires more memory. Whereas a time-base corrector stores up to three lines of video, frame synchronizers store a full frame of 525 lines ($33-\mathrm{ms}$ delay). Because there are $455 / 2$ cycles of color subcarrier in each raster line, the memory capacity must be at least 2.87 Mbits (227.5 subcarrier cycles per line $\times 525$ lines \times three samples per cycle, \times eight bits per sample).

Fig. 2 shows a digital frame synchronizer in block diagram. This system first filters a video-source signal through a low-pass network, then sends it to the a/d converter. Separate circuits extract the color subcarrier and vertical sync from the incoming composite video. The color subcarrier controls a $10.74-\mathrm{MHz}$ phase-locked oscillator, which in turn triggers the a/d and controls the memory write-address counter. The vertical-sync pulse clears the write-address counter at the end of every frame. Thirty entire frames pass in and out of the memory, every second.

The frames of composite digitized video are read out of the memory independently of their writing, since the station color-subcarrier and vertical-sync signals control the read-address counter. The station

U.S. and European TV standards

	Lines	Color Width	Sub- Carrier	Sampling Rate Subcarrier	4X Subcarrier
NTSC	525	4.2 MHz	3.58 MHz	10.74 MHz	14.32 MHz
PAL	625	5.5 MHz	4.43 MHz	13.29 MHz	17.72 MHz

color subcarrier phase-locks the $10.74-\mathrm{MHz}$ oscillator, which both controls the read-address counter and synchronously updates the d / a input. The station vertical-sync pulse clears the read-address counter after every frame is completed.
The write-inhibit circuit in Fig. 2 prevents picture disturbance when the frame-synchronizer switches among nonsynchronous sources. To prevent changing video sources in the middle of a field when the input is switched, this circuit inhibits writing until the frame pulse of the new video source arrives.

All noise isn't sound

As in all communications systems, noise reduction has always been an objective in TV. Unlike their expensive analog predecessors, which reduce TV noise by only a few dB, digital noise-reduction systems like the one in Fig. 3 can mow down picture noise by 9 to 15 dB , and at a resonable cost.
This system is based on a one-frame, first-order, recursive filter. (A recursive filter's output depends on both its previous output and its input.) Depending on the filter coefficient, K, you can get almost any level of filtering you may need.

The noise-reduction technique rests on a simple concept-after a number of frames, the output is the average of all previous inputs, so noise averages out. However, there is a problem inherent in this system. Averaging delays the output to the point where the effect is objectionable on moving images. So, only still pictures can be averaged.

The motion-detection scheme is ingenious. It compares the luminance of each element of one picture with its counterpart in the previous frame. Changed luminance indicates motion and lowers K, and filtering and lag along with it. With little or no motion, K stays high and the frame is heavily filtered. As a result, noise disappears from relatively still pictures but remains in frames showing motion.

Fig. 3 shows a TV-noise reducer that stores an entire frame digitally. An ultrafast a/d digitizes the inputvideo signal, which then goes to a recursive digital filter. A deglitched d/a converts the recursive-filter output back to analog form. The digital frame store holds all picture elements from the previous frame.

After filtering, the frame store feeds both the recursive filter and the motion detector. The motion detector determines the recursive filter, K , by means of the filter-coefficient generator.

In addition to time-base correction, frame synchronization and noise reduction, digital-TV equipment using a / d converters can store still pictures and convert standards. The technique is called, notsurprisingly, still-store. TV news programs usually store still pictures via slide projection or card display. Digital still-store replaces both with a disc-based all-electronic system that uses an a / d converter.

The a / d converts stills into digital form, then a discpack memory, with up to a 200 -Mbyte capacity, stores the data. The stored pictures can then be recalled in fractions of a second. What's more, disc-based, digital still-store can deliver still pictures in whatever sequence you program it to.

Standards converters produce the signals required by the NTSC's $525-\mathrm{line}, 60-\mathrm{Hz}$ system from the PAL's $625-\mathrm{line}, 50-\mathrm{Hz}$ system, and vice-versa. Analog TVstandards converters have been expensive, complex and bulky. Digital standards converters, while smaller and less costly, are also rather complex.

There's more than TV

Of course, video a/d converters can do more than digitize TV signals. You can combine an ultra-highspeed a / d and a fast digital memory to record fast transients like those in shock and explosion testing, pulsed nuclear-magnetic resonance, high-speed chemical reactions and power-line disturbances. Fig. 4 shows such a transient recorder in block diagram. Here, the 8 -bit, $20-\mathrm{MHz}$ a/d samples a transient at up to a $20-\mathrm{MHz}$ rate. The fast, $1-\mathrm{k} \times 8$ random-access memory stores 1024 sequential a / d-output samples of 8 bits each. The converter and memory simply stay synchronized: The same signal clocks both the writeaddress counter and the a / d converter.

After the memory stores 1024 samples of digital data, representing the analog transient, the system switches modes from write to read. But reading is much slower than data entry, because the readaddress clocking is derived by dividing the $20-\mathrm{MHz}$ clock frequency by a constant, N. Unlike the one-shot

5. Radar-signature-analysis systems use powerful computers to process information contained in the return pulse's frequency content, amplitude and wave shape. You need a fast converter but not much memory.

7. "Ping-pong" operation of two fast a / d converters from a two-phase clock doubles the data-output rate.
way data are written into the RAM, reading is repetitive because the address counter recirculates to zero after address 1024.

The RAM output goes to a fast, 8 -bit d/a converter, which reconstructs the analog signal sample by sample. With a high N , you can read data slowly; by letting the clock run on, you can read over and over. The repetitive output signal is suitable for oscilloscope display. For an analog strip-chart recorder, data can be read only once, but even more slowly (higher N).
For a simple example of transient recording, look

6. Distortion analyzers follow the video a/d converter with only a single register for storage.
at the $50-\mu$ s transient in Fig. 4. Here, the circuit samples this wave 1024 times (approximately once every 50 ns). Reading recurrently with a $100-\mathrm{kHz}$ clock (20 MHz divided by 200) repeats the transient every 10 milliseconds. This period is compatible with slow time-base oscilloscope display.

Of course, by using fewer than the full 1024 samples, you can record transients that are even faster than 50 microseconds. For instance, you can capture $5-\mu \mathrm{s}$ transients by using only 100 samples.
To set the reconstructed analog output to an appropriate time base for display or recording, simply change the clock-frequency divisor.
You can even reverse the relative speeds of the input and output clocking. For a slowly varying input, you can also sample slowly and store the converted samples, then read these faster than they were sampled. In this way you speed up the time scalein effect, compressing the input signal in time. Naturally, the speed requirements reverse for the converters in such a signal compressor. The d / a must be a faster device than the a / d.

The spotlight's on radar

Another way to use ultra-high-speed a/d converters is in processing radar signals. A complete radar reflection often tells more than just time of arrival; additional information can be extracted from the shape, structure and frequency content of the received pulse, the object's radar signature. However, radarsignature analysis is often so complex that it must be done by a large-scale digital computer.
Fig. 5 shows the basics of a system that captures radar-signature data for computer analysis. Like the
transient recorder, this system also combines an ultrafast, 8-bit a/d converter with a fast digital memory-in this case, a scratchpad memory.
When the radar-return pulse reaches the returnpulse detector, the detector triggers the clock-pulsetrain generator. During the received pulse, each clock pulse triggers the a / d; the memory stores the resulting 8 -bit samples. After the return pulse, the memory is read into the computer for processing.
Yet another good home for video-speed a/d converters is in variable-frequency, sampled-data distortion analyzers. For complex waves, you'll have such a hard time analytically optimizing the sampling rate for minimum distortion that often your only practical approach is empirical. The system in Fig. 6 lets you set very high sampling rates via its ultrafast, 8 -bit a / d converter. For each sampling rate you can read the resulting distortion from the spectrum analyzer.
You must, of course, use a low-pass filter ahead of the converter to band-limit the input signal. Since the filter is variable, you can adjust the cutoff frequency as you vary the sampling rate (clock frequency).
After each a/d conversion, the digital output goes to a register. The register, in turn, updates the d / a converter that reconstructs the analog signal, which is then analyzed for distortion.
To use this set-up, apply the input wave and test the harmonic-distortion level at the output. Vary the clock and filter-cutoff frequencies until you get minimum distortion. Usually, the critical measurements will be at the upper range of clock frequencies.

Faster and faster

Sometimes even $20-\mathrm{MHz}$ conversion rates aren't enough. For example, efficient data transmission could call for $40-\mathrm{MHz}$ byte rates. Fortunately, you can often double the effective conversion rate at a reasonable cost with the "ping-pong" connection (Fig. 7).

With only two moderate-cost, 8 -bit, $20-\mathrm{MHz}$ devices, this scheme can convert every $25 \mathrm{~ns}-\mathrm{a} 40-\mathrm{MHz}$ rate. The technique involves alternately triggering each converter at its maximum $20-\mathrm{MHz}$ rate. Then you switch the final-output channel between the two 8bit converter outputs via a digital multiplexer.

Accuracy can be a problem, though. For oppositedirection linearity errors of both converters, the nonlinearity of the combination can be as much as twice that of each converter. By aligning both converters' zere and full-scale carefully, you can keep the combination's total nonlinearity to $\pm 1 \mathrm{LSB}$, for units with $\pm 1 / 2$ LSB max nonlinearity.a

Microcomputers In An Analog World

Here are some new analog applications that depend on the union of low-cost microcomputers with analog I/O conversion products.

Some form of analog I/O is required by an estimated 37 percent of all computer applications. Since more of these applications are being accomplished with microcomputers, there is a growing need to interface microcomputers and analog signals. Fortunately there are a variety of single board analog I/O products available. This article will explore analog I/O options and show some of the vastly different applications in which system designers have used them for measurement and control.

The application determines the type and number of analog signals involved. In some process control and monitoring systems, hundreds of control points may be continuously measured. In these, the data acquisition system is more likely to be a rack mounted system, separate from the computer. The microcomputer systems, that we are considering here, handle fewer analog signals. They are smaller in scope because of the limited throughput of their computers. Since there are fewer analog channels, the analog circuitry can be located on the same P.C. board as the I/O interface logic. This results in a single-board, plug-in unit, that is treated as a standard I/O peripheral and sold by several manufacturers in various versions. They are: A-D with $8-64$ channel input; multiplexer expander units for additional analog channels; D-A with 4-8 channel output; analog-out expander boards for multi-channel use; and combination A-D/D-A units with 8-32 analog input and 1-4 analog output channels. Numerous optional features are available on these microcomputer bus-compatible I/O cards (see box).
Because of the rich choice of options, the microcomputer system designer has considerable leeway in his choice of single board analog I/O peripherals to

TYPICAL ANALOG I/O OPTIONS

- Single ended or differential analog inputs
- Current loop (i.e. $4-20 \mathrm{~mA}$) inputs.
- High level analog inputs (0 to $+5 \mathrm{~V}, 0$ to +10 V , $\pm 5 \mathrm{~V}, \pm 10$).
- Low level ($10-100 \mathrm{mV}$ full scale) analog inputs requiring instrumentation amplifiers with gains of 100-1000.
- Amplifier with software programmable gains of 1 , 2,4 , and 8 .
- Operation under program control, program interrupt or DMA.
- With qr without DC to DC converter to generate $\pm 15 \mathrm{~V}$.
- Simultaneous sample and hold circuits on analog input channels.
- Different full scale voltage ranges on analog outputs.
- Current loop ($4-20 \mathrm{~mA}$) on analog output channels.
accomplish a wide variety of applications. Datel analog I/O peripherals, for example, were used in a range of applications including energy, process control, weather research, medicine, and communications.

MONITORING NUCLEAR REACTOR START-UP

Putting a reactor on-line at a nuclear power station requires a precise procedure with detailed information on the operating condition of many devices. This information must be available at all steps of the start-up procedure.

Temperature, pressure, and water flow had to be measured at 150 different points. Transducer outputs were connected to a signal conditioning unit which generated analog voltages in the 0 to $\pm 10 \mathrm{~V}$ range to a measurement system that operated in two modes.

In slow scan mode, each sensor is measured four times per hour to sense long term trends. Fast scan mode looks at important primary sensors during start-up or when taking the reactor off-line.

DMA operation was used to poll all units quickly and then release the machine to perform other control functions. Analog I/O boards provided DMA capability and multiplexer boards allowed expansion to 150 channels.

Fig. 1. Process Control System

This system was used as a monitoring station for operator information only, not as a control system. It is now being evaluated as a monitoring system to be used during power station operation. It would identify equipment for repair or replacement during scheduled maintenance periods.

For example, if the system was monitoring a group of pumps, and detected excessive wobble on one pump shaft, maintenance personnel could be alerted to replace or repair the pump during the next scheduled maintenance period. The use of microcomputers permits monitoring stations to be dedicated to specific groups of equipment and distributed around the power station.

RETURNING CONTROL TO THE PROCESS SITE

In a process control application, a materials manufacturer had to measure 53 channels of temperature, pressure, line speed, and other types of process data. Low level analog signals from the sensors were signal conditioned by external instrumentation amplifiers to present high level analog signals to the data acquisition analog input peripheral unit. Additional high level analog channels were entered through an analog channel expander board. Low level signal input ranges were up to 50 mV full scale and each had a bandwidth of less than 20 Hz (Fig. 1).

In operation, the analog channels are selected and digitized under control of the microcomputer. The microcomputer performs computation and processing
operations on the digitized analog data and switch position inputs. The microcomputer generates 20 analog signals via D-A converters located on the analog output peripheral boards. These analog outputs drive actuators in the manufacturing process to complete the real time, computer aided, process control loops. Additionally, the computer sends data to a local monitoring station. Process status is displayed in bar graphs on a color CRT and digital meters which show several process variables.
By using local micro-controllers at different stages of the process, on-site personnel can diagnose errors, correct problems, or fine tune the system by manual overide. Also, expensive cabling is reduced, cost is lowered, and misinterpretation of operation by operators at a remote computer site is prevented.

PHYSICAL STRUCTURE OF CLOUDS

This research effort is being conducted under the auspices of the NASA Goddard Space Flight Center.
Maps of parameters indicative of cloud physical structure are of value in studies of the earth's climate. The parameters to be measured are cloud amount, optical thickness, altitude, temperature, thermodynamic phase and particle number density. Global distributions of these parameters will be assembled according to season and local time and in this format will serve as input data to climate models based on radiative energy balance. This data base will also be of use in meterological studies of shorter
time scale such as severe storm and cloud physical studies.

The cloud climatology experiment combines active and passive remote observation techniques to infer cloud parameters. The passive section consists of a Cloud Physics Radiometer (CPR) which is an 8 channel scanning radiometer with 7 channels in the near infrared and one channel in the thermal infrared. The active section consists of a cloud Lidar System (CLS) which is a two wavelength polarized scanning laser radar. To prove the sensor technique and the utility of the data, engineering models of the CPR and the CLS will be flown on a NASA high altitude aircraft. Results from these flights will be used to design a Space Shuttle (Spacelab) sensor system.

The microcomputer controls all operating sections of the system. A microcomputer was used in this application because of physical size, as the entire system was to be installed on an aircraft.

The data acquisition microcomputer peripheral monitors the following parameters:

All system power supply voltages.
Temperature in all system boxes.
Pressure in all system boxes.
Laser water flow.
Laser water temperature.
The data distribution (D-A's) microcomputer peripheral is employed as a $\mu \mathrm{P}$ controlled test fixture with quick look CRT terminals.

PATIENT MONITORING

Applying computers to collect data and monitor patients has been going on for many years. Previously, in most cases, the monitoring computer has been remotely located, requiring the data to be transmitted over considerable distances. Portable bedside monitoring stations have become feasible by employing microcomputers and analog I/O peripherals. Such applications require analog conversion products, since most monitoring instruments provide information in analog form. Additionally, the number of parameters being monitored on each patient requires multi-channel data acquisition.

The emergence of the microcomputer has significantly reduced the cost of the monitoring systems. Also, by employing a microcomputer at each bedside station, the measurements taken can differ, catering to the exact nceds of the patient. Monitoring station terminals can be located at the bedside or nearby at the nurses' station.

Detailed here is a two-station patient monitoring system installed at St. Vincent's Hospital in New York that was developed by Edward De Wath at the Institute of Medical Sciences (Fig. 2).

Station \#1 monitors post-operative cardiac patients. It is a portable bedside station capable of simultaneously monitoring two patients.

Station \#2 monitors patients with acute respiratory insufficiencies.

As many as 16 parameters are measured at the bedside station. Gas flow and pressure transducers as well as gas analyzers are used as measuring devices. The system is supported by calibration devices for flow, pressure, and gas analyzing. A tank of known mixture of oxygen and carbon dioxide are used as calibration standards for the gas analyzers. A source of known positive pressure is used as a standard for the gas pressure transducer. A pump of known positive displacement is used as the calibration standard for the gas flow transducer.

All calibration procedures typically last 30 seconds and are operator initiated via a keyboard and then microcomputer controlled. Long term drifts are manually compensated for on a monthly basis.

The outputs of the sensors are digitized by the microcomputer's analog input peripheral and the data is transmitted via phone lines from the bedside to another microcomputer at a central control location. The second microcomputer interfaces to a large host computer specifically programmed for patient monitoring applications. The host computer is programmed to derive over thirty physiological functions from the transducer data it receives. These include blood pressure, heart rate, respiratory rate, resistance and compliance of the lungs, maximum inspiratory pressure, oxygen intake, carbon dioxide exhaled, positive end expiratory pressure, and measurement of tidal volume per breath.

This resulting computed information is transmitted via phone lines back to the bedside microcomputer station. There, it is available at the nurses' station either on a video display terminal or via a hard copy printer. A keyboard is located at the station to allow
the clinical staff to select which parameters of each patient are to be monitored.

FILM TO VIDEO TAPE

A system for electronic color correction of video signals, produced going from motion picture film to video tape, corrects scene by scene for hue and saturation of colors. It matches the spectral response in motion picture colors to the spectral distribution of the components in the film-to-video-converter or film chain (Fig 3).

The system corrects color at slow film speed prior to the actual reproducing of the film at normal speed. For sharpness and contrast reasons, it is not desirable to reproduce on video tape while running the film at a slow speed. The corrected color data is stored separately for use later in producing video tape.

The film is run on the projector on a frame by frame, scene by scene basis. Initially, a standard correction value is selected to provide a picture pleasing to the eye. Incremental corrections (from the color control panel) are added or subtracted on a scene by scene basis to compensate for different lighting, color patterns, cameras, etc.

These corrected values are digitized by the A-D peripheral and stored in the CPU in sync with the frame reference received from the projector. The film can be rerun, stopping on selected frames, until the desired color effect is obtained.

The film is rerun a final time and recorded on video tape. The corrected color signals are sent out from the CPU to the D-A converters to generate the correction signals to the film chain unit.

Interfacing data converters and

 microprocessorsIn intelligent
data-acquisition systems, microprocessors must stay as busy as possible

\square By latching onto the power and versatility of microprocessors, data-acquisition systems are vaulting into more extensive and demanding new applications. But the success of these "intelligent" data systems depends on the ability of the designer to mate the microprocessor to the other key system component, the analog-to-digital converter.
For a long time, converters have evolved independently of microprocessors, and there is often a communications gap between the two when they must work together as a team. Although this interface problem is usually not difficult to solve, many subtle details can make the difference between an efficient system and a wasteful one.

Oddly enough, the interface itself is not affected by the type of converter chosen-this decision depends largely on the particular application (see "Selecting the right converter," p. 84). Instead, the interface is primarily influenced by whether the digital data is transmitted in serial or parallel format and by the assistance options provided by the converter and the microprocessor being used.

Choosing between serial and parallel data

Clearly, the question of data format must be resolved before any progress can be made on the interface hardware at either the converter or microprocessor end. This choice is usually straightforward, and it depends principally on the distance separating the converter and the microprocessor.

Basically, the two methods of interfacing may be characterized as close-in parallel and remote serial. If

high sampling rates are required, the converter should be located near the microprocessor, and the interface between the two should certainly be parallel. On the other hand, when data is gathered several hundred yards from the microprocessor, a twisted-pair serial connection makes better sense than a parallel one.

At the a-d end of the system, there is not much difference between successive-approximation and integrating converters in terms of the ease with which they produce either parallel or serial data. For the most part, both types are designed to put out parallel data with no additional components, and both can produce serial data with a little help.

In contrast, the task of interfacing at the microprocessor end appears formidable at first sight, because even the popular chips differ greatly. In some, such as the Intel 8008 and Intersil's IM6100, both addresses and data are timeshared on the same bus lines, and control signals differentiate between them. In others, like Motorola's MC6800 and the mOS Technology 650X series, addresses and data flow on different lines simultaneously, though sometimes they require strobing to indicate when each is valid.

These mixed situations come about because of crowding between bits and pins. The 6800 provides 40 pins for 8 bits, whereas the 8008 has only 18 pins for 8 bits. Although some efforts toward bus standardization are under way, significant progress is unlikely soon, if ever, in view of the already wide acceptance of substantially different products.

Even so, there are ways around the situation. For serial data, there is a ready-made standard just waiting

1. Parallel interface. All microprocessor families contain a programable interface device that can mate the converter and the microprocessor when the data format is parallel. Some of these devices (a) handle data directly. while others (b) have read and write lines.
to be hooked up. And for parallel data, a de facto standard is available from the same people who created the problem in the first place-the microprocessor manufacturers.
All microprocessors are members of chip families, and somewhere in each family is a device called a programable peripheral interface, programable interface element, programable interface adapter, or something simi-lar-it may even be called "universal." This programable interface device handles address latching and decoding, relevant instruction recognition, interrupt processing, and bus access. It also has registers to control the polarity of incoming and outgoing signals, input/output status of outside lines, interrupt enabling and sensing, external flag lines, and the like.

De facto standard for parallel interfacing

When viewed from the outside, these devices look so similar that they constitute a de facto standard for parallel interfacing. Many, such as the Motorola MC6820 programable interface adapter and the Intel 8255 programable peripheral interface, give or take data directly on $4,8,12,16$, or.even 24 pins. Figure la shows an a-d converter connected to one of these. Others, like the Intersil IM6101 programable interface element, do not handle the data directly themselves but have writeenable and read-latch lines to put triple-state data onto and latch data off the bus. Figure lb shows the same converter interfaced in such a system.

In both situations, the converter can be set to run continuously or commanded to start. When a conversion has been completed, the microprocessor is interrupted to read back the data, if enabled to do so. Therefore, any a-d converter that provides a signal transition identifying the presence of new data and having standard triplestate output-disable controls in 8 -bit bytes can interface with one of these programable devices without the need for additional components, as long as the logic levels are compatible. Similarly, any digital-to-analog converter with input latches in 8 -bit groups can also interface directly with one of these chips.

In the past, a-d converters with serial outputs have been difficult to interface. The serial output was usually synchronous with some conversion clock and either had no synchronizing signals or had them on separate lines requiring gating for recognition. However, both these problems were solved by a device called a universal asynchronous receiver/transmitter (UART), which has become a standard pin-compatible part available from several suppliers.

UARTs handle serial interface

Any reasonable microprocessor family will interface with a LART or have a member of the family that looks like one from the outside - and two of these devices can talk to each other over pairs of wires. Although the UART grew out of teletypewriter-signal specifications, it can operate at much higher speeds and still provide synchro-
 be omitted if the system can tolerate continuous conversion and lack of overrange information, and polarity can be sent on the parity system, as in Fig. 2b.

Considering multiword applications

The number of bits that can be handled with the serial or parallel interface may not coincide with the requirements of the converter, which usually has words of 8,10 , 12,14 , or 16 bits. Depending on the microprocessor, a parallel interface can handle words of $4,8,12$, or 16 bits, but the UART can cope with only $5,6,7$, or 8 bits at a time.

When the interface is wider than the converter, the extra bits may be ignored, but the more common situation of a wider converter requires that several microprocessor data words be transferred to complete one converter word. In such multiword applications, some

2. Serial interface. A universal asynchronous receiver/transmitter easily handles serial interfaces, although extra components are needed at the converter end (a). Even these can be eliminated (b) by running the a-d continuously and sending polarity on parity system.
sequencing and recognition requirements must be met by both the converter and the microprocessor, and a way must be provided to avoid use of only partially updated information. In many systems, a programable interface device can simplify this operation somewhat.

Logic levels must be compatible

Most digital devices are directly compatible with each other with respect to logic level. Typically, converters have bipolar outputs (usually for mating with transistortransistor logic) or either p-channel MOS or complemen-tary-mOS outputs, which generally are TTL-compatible at

Selecting the right converter

There are many different ways to convert analog data to digital form, but the two most popular approaches are successive-approximation and integrating techniques, which dominate more than 95% of all applications. The three most important factors in selecting the appropriate analog-to-digital converter are speed, accuracy, and cost.

If speed were the only consideration, the choice would be simple because there's almost no overlap between integrating and successive-approximation types, as shown in the table. Integrating converters provide excellent accuracy at low cost, but they require from 1 to 30 milliseconds to make a 10 -bit conversion. Successiveapproximation converters are a lot faster. Some can complete a 12 -bit conversion in only 2 microseconds, but their cost is directly related to their accuracy.
fiow iniegrating types work. All integrating a-d converters have two characteristics in common. As the name implies, their output represents the integral or average of an input voitage over a fixed period of time. A sample-and-hold circuit, therefore is not required to freeze the input during the measurement period. Equally important. because they use time or frequency to quantize a signal, the linearity error is small.

Among the numerous versions of integrating converters, such as charge-balancing and triple-ramp devices. the most widely used is the so-called dual-slope technique. shown in a simplified diagram (a).

With a dual-slope device, the conversion takes place in three distinct phases. During the first phase, or auto-zero portion of the cycle, the errors (such as offset voltage) of the analog components are automatically nulled out. The converter's input is grounded, closing the feedback loop and causing the error information to be stored by the capacitor.

During the second phase. the input signal is integrated for a fixed number of clock pulses, yielding an integrator output voltage that is directly proportional to the input. At the beginning of the third phase, the input of the converter is switched from the signal voltage to the reference voltage. Because of the polarity of the reference. the integrator output discharges back toward zero. The number of clock pulses counted between the beginning of this phase and the time when the integrator output passes through zero is a digital measure of the magnitude of the input voltage.

In theory, the linearity of such a conversion is limited only by the equality of the individual clock-puise periods within a given cycle. This short-term frequency jitter can easily be held to 1 part in 10^{6}. Successive-approximation
converters, on the other hand, rely on matching resistor ratios for quantization and are hard-pressed to keep nonlinearities to less than 1 part in 10^{3}-and to achieve 1 part in 10^{4} requires trimming individual resistors in the binary ladder network.

Error sources are few. The dual-slope technique is immune to long-term changes in such components as the integrator capacitor and the comparator. In a very real sense, the designer is presented with a nearly perfect system, and his principal job is to avoid introducing error sources through ground loops or the use of noisy components, for example.

Although the integrating converter is conceptually straightforward, designing a good one is by no means a trivial task. Several sources of error must be taken into account. They include capacitor droop caused by switchleakage current, the change in capacitor voltage when the switch turns off, the nonlinearity and high-frequency limitations of the analog components, the dielectric absorption of the capacitor, and the charge lost by the capacitor to stray capacitance.

All in all, though, these error contributions are small. compared to those of the successive-approximation technique. In general, integrating converters provide the accuracy needed for making precision measurements. With a good monolithic part, for instance, the offsets are less than the peak-to-peak noise, typically as little as 10 microvolts. Also, rollover error, which is encountered when changing from a positive measurement to an identical negative measurement. should be held within $50 \mu \mathrm{~V}$. or the equivalent of half a count.

Successive approximation offers speed. When conversion times of 1 ms to $1 \mu \mathrm{~s}$ are required, successiveapproximation devices are without competition. They are

Type of converter	Relative speed	Conversion time			
		8 bits	10 bits	12 bits	16 bits
integrating	ston: medium fast	$\begin{array}{r} 20 \mathrm{~ms} \\ 1 \mathrm{~ms} \\ 0.3 \mathrm{~ms} \end{array}$	$\begin{array}{r} 30 \mathrm{~ms} \\ 5 \mathrm{~ms} \\ 1 \mathrm{~ms} \end{array}$	$\begin{array}{r} 40 \mathrm{~ms} \\ 20 \mathrm{~ms} \\ 5 \mathrm{~ms} \end{array}$	250 ms
successive approx.t"ation	general purpose high performance tas: magh sperer: "to	$\left.\begin{gathered} 30 \mu \mathrm{~s} \\ 10 \mu \mathrm{~s} \\ 5 \mu \mathrm{~s} \\ 2 \mu \mathrm{~s} \\ 08 \mu \mathrm{~s} \end{gathered} \right\rvert\,$	$\begin{gathered} 40 \mu \mathrm{~s} \\ 15 \mu \mathrm{~s} \\ 10 \mu \mathrm{~s} \\ 4 \mu \mathrm{~s} \\ 1 \mu \mathrm{~s} \end{gathered}$	$\begin{aligned} & 50 \mu \mathrm{~s} \\ & 20 \mu \mathrm{~s} \\ & 12 \mu \mathrm{~s} \\ & 6 \mu \mathrm{~s} \\ & 2 \mu \mathrm{~s} \end{aligned}$	$400 \mu \mathrm{~s}$

some supply voltages. Similarly, microprocessors come with bipolar or various BOS outputs, which are also usually TTL.-compatible at some supply voltages.

Problems arise in only two situations - when different logic-supply voltages are desired in different parts of the system and when long bus lines must be driven. The former could apply, for instance, when interfacing a (. MOS microprocessor and random-access memory operating at 10 volts (for maximum speed) with a bipolar programable successive-approximation register operating at 5 v .

However. integrated circuits are available for dealing with problems like these. Among them are Intersil's recently announced IM6404. which is a hex latch/driver capable of performing level translations from either $($. wos wos to TTI or from TTI to (-MOS Wos, and Intel's 8216, a 4 -bit bidirectional bus driver/receiver that can transmit data over long bus lines.

Another possible problem is the signal polarity, but this can be easily handled by the software via a c OMPIFMF:VT DATA instruction. Also, the "high true" polarity convention for binary-coded-decimal data is

DATA ACQUISITION \& CONVERSION HANDBOOK

most frequently used in data-acquisition systems that have a large number of inputs multiplexed through a single converter. Admittedly, successive-approximation converters are more expensive than integrating types of similar accuracy, but, because of their much faster datathroughput rate, they are usually less expensive on a perchannel basis.
Typically, a successive-approximation converter (b) consists of a digital-to-analog converter in a feedback loop with a comparator and some clever logic, which is usually referred to as a.successive-approximation register The output from the d-a is compared with the analog input, progressing from the most-significant bit to the least-significant bit (LSB), one bit at a time.

The bit being processed is set to logic 1 . If the d-a output is less than the input voltage, the bit in process is left at logic 1 . But, if the d-a output is greater than the input voltage, the bit is set to logic 0 , and the register moves onto the next bit. Since the decision to turn each

bit on or off is made before the next bit is tried, the digita output data can be presented in either serial or parallel format, after all decisions have been made

Accuracy can be expensive. Probably the greatest disadvantage of a successive-approximation converter is its numerous sources of error - conceptually, it is simply not as elegant as an integrating converter. The primary error-contributing components are the d-a converter and to a lesser extent, the comparator and the voltage reference.
All in all, nearly 10 different error contributions affect the fidelity of the conversion. They include quantization uncertainty, nonlinearities of the transfer function, outputleakage current, offset errors, and temperature drift.

Because many of the error sources are interrelated, a worst-case error analysis must be done to determine just how accurate the conversion will be. After all major error contributions are taken into account, any well-designed part should provide an accuracy of within $\pm 1 / 2$ LSB ove its full operating temperature range

Making converter tradeoffs. In selecting the mos appropriate a-d converter for a given application, the decision is seldom clear-cut. Because cost is always the bottom line, the designer is forced to shop around within a budget-trading off speed against accuracy and size requirements.

Integrating converters provide the tightest accuracy for the money; however, they are comparatively slow. On the other hand, successive-approximation converters are inherently fast, but because of their numerous error sources, tight accuracy at high throughput rates can be expensive. If the data-acquisition system contains a microprocessor, the selection process takes on yet another dimension - the necessity to make the most efticient use of computer time.

For example, the conversion time of successive-approxmation converters and the instruction-execution time of MOS microprocessor chips are on the order of a few microseconds. So putting the chip's central processor unit into a wait loop while the converter does its work doesn't waste much computing time. This combination is probably the best when many channels of analog data must be processed, but individual channels require minimal daw manipulation.
In contrast, integrating converters are a wise choice when only a few channels of analog information are being gathered. but a large number of computations must be carried out for each channel. While the microprocessor is executing its instructions, the converter can take its time to digitize the next channel
virtually a universally accepted industry standard.
Furthermore, the computing power of microprocessors permits ready conversion between two's complement and sign-magnitude notation. That leaves only control-signal polarity to worry about; however, all of the interface chips are programable enough to cope with almost any eventuality. Also, if the one selected has a triple-state enable that is low-active (strictly a disable line in positive logic), connections can be made directly from pin to pin without the need for intermediate inverters.

Another important consideration is the software to
handle the interface. Besides shaping hardware requirements, the operating mode of the converter affects software.

In general, d-a converters are easier to work with than a-d converters. A data word or a series of data words arrives, is assembled, and proceeds through the d-a. Some provision may be needed to avoid conversion of data that is partly new and partly old in multiword applications, and some users are expressing interest in read-back capability.

However, most d-a converters look much like the

3. Lending a helping hand. The microprocessor can even become part of the converter loop. With the setup shown, the software permits changing from a successive-approximation a-d to a tracking a-d, or even using both methods to their best advantage.
infamous write-only memory. The latch and read-back capability may be provided directly by a number of different programable interface chips, while other interface devices can produce this function via external latches. If a converter has its own latches, they can achieve double buffering or de-skew multi-word data.

A trio of software interrupts

A-d converters offer many more choices of operating modes thar d -a converters. If the $\mathrm{a}-\mathrm{d}$ is operated continuously, the microprocessor can access the most recent data, treating the a-d much like read-only memory. For a nonmultiplexed one-word interface, such a system may be adequate. However, most other interfaces require an interrupt capability.

Interrupts may be of three general types. One, known as the direct-memory-access or non-processor interrupt, steals an entire microprocessor cycle or a portion of one and transfers the digitized data from the a-d directly to a memory location by controlling the bus during this cycle. Because of the amount of hardware required, however, this type of interrupt is largely restricted to disk interfaces, and it is probably of limited use with a-d converters. One exception is the Intersil IM6100/6102 chip pair that provides the necessary hardware for direct-memory access.

The second type, which is called a nonvectored interrupt, causes the microprocessor to stop whatever it was doing after completing the current instruction, save certain vital information in an appropriate place, and jump to a predefined location. This predefined location should contain a routing for polling all relevant peripherals to determine which caused the interrupt so that the right peripheral is serviced. Finally, the interrupt is cleared, the vital information restored, and the microprocessor resumes what it had been doing.

With the third or vectored type of interrupt, the interrupting device sends out the address of its own service routine (the vector) at the appropriate time. This type of interrupt does not require polling of all the peripherals. Both the vectored and nonvectored interrupts can be regarded as software techniques, since the actual data transfer is controlled by instructions.

In systems that might have several peripherals interrupt simultaneously, some priority system is essential. The polling sequence of the nonvectored interrupt performs this function almost automatically, but the other two interrupts usually have hardware provisions for establishing priority. Motorola's MC6800/6820 chip pair is an example of a nonvectored or polling interrupt, while Intersil's IM6100/6101 devices provide vectored priority interrupt, as well as direct-memory-access capa-

4. Another approach. The microprocessor can do the digital processing for charge-balancing a-d However, because the up down switching for this type of converter must be continued throughout its operating cycle. microprocessor overhead can be substantial
bility with the addition of some extra hardware.
With any of these interrupt schemes, the a-d converter may run continuously. But every time new data is available, the converter will interrupt the microprocessor, and the data will be transferred to memory. For multiword applications, the word sequence may be controlled by the converter with several interruptions, as in Fig. la, or by the microprocessor on one interrupt, as in Fig. 1b. Multiplexer-command words may be sent out during these interrupts, if they are of the software type.
Alternatively, the a-d may be instructed to convert, and the microprocessor is interrupted only after a conversion has been completed. A variation of this technique is depicted in Fig. 2a, which shows how the bidirectional characteristics of the IART are used to send out a multiplex address that triggers a conversion after it has been received. At the end of the conversion caused by the multiplex address, the microprocessor is interrupted with the data. This whole operation could be performed at the ends of a long two- or three-wire system or even over telephone lines if one end of the system is as far away as the other side of the world.

One additional interface possibility is the interrogate-and-wait-till-ready approach. Although this method involves only polling of a status word, rather than interrupt processing, it is limited to use with underutilized microprocessors or fast a-d converters. However, such an approach does simplify the software, and for one-of-a-kind designs, it may prove cost-effective.
Finally, as might be expected, all the above interfaces can be run by a programable interface device under software control that permits the operating mode of a converter to be changed at any time.
The software depends on the microprocessor, of course. The instruction set uses one of two methods for
transferring data between peripheral devices and memory.
One involves specific 1/O-transfer instructions, which usually transfer data between an accumulator or register and the converter register (or a register of the programable interface device). This method has some portion of the $1 / 0$-transfer instruction devoted to a peripheral address and another portion for controlling the operation to be performed. Thus, instructions other than those involving only data transfer can be performed-for instance, skip on flag for wait-till-ready routines. Microprocessors that permit this form of software include the Intersil IM6100, DEC's PDP-8 on which it is based, and Irtel's 8008 and 8080 .

Another way to handle data transfer

The other form of software data transfer involves treating the peripheral device registers the same as memory. In this situation, no special I/O instructions are needed, and both arithmetic and logical operations can be performed directly on the peripheral's data. The simplicity and power of this method has led to its wide acceptance in such minicomputers as the dec PDP-11, and it has appeared in several microprocessors, too. including Motorola's 6800 and mos Technology's 650X families.

However, that technique has its drawbacks. The peri-pheral-device registers occupy what would otherwise be memory space, and only full words (sometimes bytes) can be exchanged or handled between registers. A wait-till-ready routine, for example, requires reading the control words and stripping the relevant bits, as well as test and skip operations.

An additional software concern related to a-d and d-a converters is the ease of working with double-precision

5. For dual slope. Designing the microprocessor into a dual-slope converter loop is comparatively easy on the software. In fact, during both the input and reference integration intervals, the microprocessor can service other routines, as well as interrupts.
(or multiprecision) arithmetic for handling, say 10 to 16 bits in an 8 -bit machine. For applications involving BCD converters, the degree of difficulty in converting between binary and BCD codes can be a factor in the interface. Some microprocessors, however, offer the ultimate in software simplicity, even including code-conversion instructions-among them, the Intel 4004 and the MOS Technology 650X series.

One factor sometimes overlooked when considering converter speeds is the length of the service routine required to handle the data. This routine usually involves more than simply storing the data in some memory location until it is overwritten by the next value.

A typical service routine could require that a zero correction factor be accessed and subtracted, maybe a scale factor used, and then upper- and/or lower-limit values accessed and compared, or a comparison made with a previous value.

On the basis of an out-of-limit value, a certain rate of change, or a possible maverick reading, a decision might have to be made either to flag an alarm or to adjust some system parameter. Also, a new conversion should be initiated. All this activity can easily take several hundred instruction cycles, especially if double-precision arithmetic is required, and total execution time can run as long as 1 millisecond.

DATA ACQUISITION \& CONVERSION HANDBOOK

One aspect of the microprocessor-converter interface that does not fit easily into any of the preceding discussions certainly deserves mention is the use of the microprocessor as part of the a-d system.

For successive-approximation conversion, a d-a converter and a comparator can be interfaced to the microprocessor, as shown.in Fig. 3. The successive-approximation routine is implemented in software, and the same $\mathrm{d}-\mathrm{a}$ can be used for analog outputs. For a moderate increase in the software overhead, a tracking a-d converter can be substituted, or better yet, a routine can be used to convert readily from one conversion system to the other, thereby utilizing the advantages of both techniques. Software routines to do this are available in such microprocessor-system libraries as Intel's MCS4 and MCS8.

The integrating converter system

For the under-utilized microprocessor, the same technique can be applied to dual-slope and charge-balancing conversion systems. The digital signals to control the integration steps can be derived from the control signals or one of the data registers of a programable interface device, with the microprocessor counting the time periods. Timing may be accomplished by having a timer interrupt the microprocessor at regular intervals or by counting around instruction loops of known length, although this process may preclude interrupts from other peripherals.

For a charge-balancing device like Intersil's LD111 analog a-d processor, the timer interrupt is virtually mandatory. The up/down switching for this device must be continued through all cycles, including auto-zero, so the microprocessor overhead can be substantial. A suitable interface is shown in Fig. 4, along with a summary of a possible software routine.

Dual-slope conversion (Fig. 5) is easier on the software. During the auto-zero portion of the conversion cycle, no actions are necessary. Since only a minimum time is required, any extra unaccounted time taken by interrupts is not important. During the input-integration interval, other routines and interrupts can be serviced if the time-counter location is incremented and tested after the correct number of instruction cycles. (All routines take a multiple of this number.) If the comparator is set to interrupt on the integrator's zero crossing, other routines and interrupts can also be serviced during the reference-integrate interval of the a-d conversion cycle.

With care in programing, one microprocessor could handle several a-d conversions simultaneously. This type of interface is generating some interest in applications where scale factors are important and where a microprocessor may be waiting for the result, as in point-of-sale terminals.

Interfacing v-f converters

A few words should be said about interfacing with voltage-to-frequency converters, which offer another approach to a-d conversion. These devices do not have much value in microprocessor-based systems because of the asynchronous nature of their outputs. Their value lies in the transmission of single-parameter information over
twisted-pair wires to a remote location, where the receiver is a frequency-to-voltage converter or a low-cost digital frequency meter.
If a v-f converter is essential to the application, a programable interface device can communicate with a gated counter, too. But if the microprocessor must do the counting, two sets of interrupts are required-one on each incoming pulse with a routine to increment a memory location, and another at the gating period to transfer the result and reset the counter. The gating timer may be implemented with standard clock-generating chips like the Intersil ICM7038, or by one of the microprocessor peripheral timers, like mos Technology's 6530 or Intersil's IM6102.

Interfacing an a-d converter with a microprocessor may be a fairly complex job, but new hardware developments are helping to simplify the task. Some converters now provide triple-state buffered outputs that deliver handshake-oriented signals for the microprocessor interface. Some complete data-acquisition subsystems on printed-circuit boards or implemented as compact handsized modules can even be plugged directly into micro-processor-based systems.

Easier times ahead

In the near future, converters are likely to offer direct compatibility with UART devices, and converters may be built to contain their own universal asynchronous transmitters or receivers. If bus standards are developed, converters probably will include at least some of the address and handshake signals, in addition to the dataline interface. Also, microprocessors with on-board useraccessible memory are already beginning to appear and will go a long way toward taking the hardships out of interfacing.
Since software is closely tied to the specific application, its development depends on how microprocessors and converters will be used in the future. Additional applications assistance probably will take the form of example interface routines for popular or proprietary microprocessors oriented to generalized tasks. Software optimization may also have some influence on the fine design details of microprocessor-oriented converters, although the increasingly lower cost of roms will not permit extensive improvements along these lines to be sufficiently viable.

PB DF LE BO

Straight talk on A/D converter boards

There's a lot more to picking an
A/D system than just looking at spec sheets.

Control engineers are using microcomputers and minicomputers for more and more data acquisition and control applications. In almost all cases, these computerbased systems will require an analog-to-digital (A / D) converter to make analog measurement signals compatible with the digital processors.

As a supplier of A / D converters, we continually find ourselves answering the same questions about speed, accuracy, resolution, expansion and cost. To help clear up some of the myths and misconceptions about converters, this article will explore the topics that seem to concern you.

How much accuracy?

The question of how much accuracy is needed comes up a great deal, especially when a user has an 8 -bit microcomputer and, for simplicity, wants to use an 8 -bit a/D converter. Users often say that since their process transducers only have $1 / 2 \%$ accuracy, an 8 -bit A / D converter should be just right for the job.

Although Table 1 shows that an 8 -bit converter does, indeed, have 0.4% accuracy, it's not that simple. The
table assumes an ideal, perfect conversion of signals right at the input terminals of the converter. This does not consider system accuracy, which can be affected by temperature drift, noise, nonlinearity, common mode voltages, power supply rejection, transducer deadband, hysteresis, aliasing errors, and so on.

These errors combine in complex ways to produce an overall system accuracy-or inaccuracy-that can be significant. The resolution and accuracy of a converter must be substantially better than the overall system accuracy, so many users find themselves needing 10 - or 12-bit converters, or better.

Even if system accuracy requirements are not difficult to meet, process transducers have dynamic ranges that must be considered. Dynamic range means the difference between the maximum full scale signal and lowest resolvable signal. Many 0.5% accuracy transducers have dynamic ranges of up to 80 to 90 dB , and that requires at least a 12 -bit A / D converter (see Table 1). To retain dynamic range, in some applications you should consider a 14 -bit or 16 -bit converter, or use a programmable gain amplifier (see Glossary)

Obtaining greater resolution is usually done at the expense of conversion speed. Costs go up too. A typical 14-bit A/D requires about 60 microseconds to perform a conversion, and its cost goes up sharply: A 14 -bit a / D converter costs $\$ 251$ vs $\$ 124$ for a 12 -bit device. Six-teen-bit conversions are best done with an integrating type of converter which is economical but very slowconversions are done in milliseconds. In contrast, a 12 bit conversion can take place in 20 microseconds.

Many customers are curious to know why higher resolution converters are so much more expensive. Increasing an $4 / \mathrm{D}$ converter from 8 -bit resolution to, say, 12 bits is not simply a matter of adding a quad switch and more resistors to the ladder network. The entire A / D converter system must comply with 12 -bit performance, including the reference source, thin-film ladder network, multiplexer, sample/hold amplifier, and input differential amplifier.

There are two basic options to trade off resolution, speed and cost:

- Many industrial applications require up to 14 bits of resolution. Yet 14 -bit $1 / \mathrm{D}$'s are fairly slow and quite expensive. A common solution is to take a faster, cheaper 12 -bit converter and add a programmable gain amplifier (PGA) "front end." Since 14 bits is 4 times the
resolution of 12 bits, popular PGA's with digitally-coded $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 4$ and X 8 gain ranges are ideal.
- If you don't need the speed, a 14 - or 16 -bit integrating a / D converter will give the required resolution and dynamic range at lower costs. Typically sampling on the order of 50 conversions per second, these converters are slower than successive approximation types.

Noise filtering

An A / D converter very faithfully converts anything you feed it-transducer signals, uF interference, switching transients, ac hum and so on. With its super fast sample/hold circuit, the $1 / \mathrm{D}$ system will pick off a narrow slice of a composite signal and noise waveform and dutifully convert it to a digital output. It will not tell you which part is signal and which part is noise.

If you have as little as 1% noise in your signal, watch out. That 1% noise will affect 4 or 5 of the least significant bits of a 12 -bit converter-so much that you can see them dance. Try it yourself: Set your $1 / \mathrm{D}$ to sample a noisy input at a modest rate, such as 100 conversions per second, and display the A / D output on the indicator lights on your computer. If you have 1% noise, the last 4 or 5 bits will jump around like crazy.

Glossary for digital data acquisition systems

Accuracy: In a measurement system, accuracy is the amount of deviation or error that the output will vary from an expected ideal or absolute output. Accuracy may be expressed as a portion (percentage, parts per million, $d B, e t c$) of the positive or negative full scale range or as a percentage of any reading between positive or negative full scale (\% of reading). Total system accuracy is composed of many error sources including temperature drifts, noise, non-linearity, power supply variation and many more factors beyond the scope of this article. Each element in a measurement system contributes its own errors, and each should be separately specified if they contribute significantly to the degradation of total system accuracy.

Aliasing: A sampling data system, such as an A/D converter, tends to produce false outputs (namely periodic false beat notes) if the sampling rate is insufficient compared to the highest frequency spectra of the input signal. Various solutions cure aliasing, including faster sampling and low pass filtering. A simplified expression of the Sampling Theorem states that the sampling rate must be at least twice the frequency of the highest frequency spectra in a measured signal to avoid aliasing and loss of data.

Dynamic Range: The proportion or ratio between a
full scale signal and the smallest resolvable signal is a system's dynamic range. Generally the signal becomes indecipherable when it approaches the limits of resolution or is buried in noise.

Programmable Gain Amplifier (PGA): This differential instrumentation amplifier changes its amplifıcation on command from a digital code supplied through a program instruction. PGA's are used to fit a wide dynamic range signal into a lower-resolution, lower-cost A/D converter. Generally, PGA's include range decoding. For example, Datel's AM251B uses two bits to select 4 gains of $X 1, X 2, X 4$ or X 8 corresponding to ranges of $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 2.5 \mathrm{~V}$, or $\pm 1.25 \mathrm{~V}$. Real-world PGA's are design compromises between stability, common mode rejection, noise, settling time, number of gain steps, size and cost. Generally, a PGA combined with a medium cost A / D has better performance and greater application flexibility than a single high resolution A/D alone.

Resolution: The smallest possible change in the input which can be measured is a system's resolution. The term is akin to the smallest scale graduations on a thermometer, meter face or ruler. In A/ D systems, resolution is usually limited by system structural factors, principally the number of bits used to quantize the input signal.

Table 1: Resolution, accuracy, and dynamic range

Digital encoded data	Resolution	Best accuracy as percentage of full scale range	Dynamic range	Best accuracy in parts per million (ppm)	LSB value if full scale $+\mathbf{1 0 V}$
2 BCD Digits	1 part in 100	1\%	40 dB		100 mV
$21 / 2 \mathrm{BCD}$ Digits	1 part in 200	0.5\%	46 dB		50 mV
8 Binary Bits	1 part in 256	0.4\%	48dB		39 mV
3 BCD Digits	1 part in 1000	0.1\%	60 dB	1000 ppm	10 mV
10 Binary Bits	1 part in 1024	0.1\%	60 dB	1000 ppm	10 mV
$31 / 2$ BCD Digits	1 part in 2000	0.05\%	66 dB	500 ppm	5 mV
12 Binary Bits	1 part in 4096	0.024\%	72 dB	240 ppm	2.4 mV
4 BCD Digits	1 part in 10.000	0.01\%	80 dB	100 ppm	1 mV
14 Binary Bits	1 part in 16,384	0.006\%	84.5 dB	59 ppm	$600 \mu \mathrm{~V}$
$41 / 2 \mathrm{BCD}$ Digits	1 part in 20,000	0.005\%	86dB	50 ppm	$500 \mu \mathrm{~V}$

Noise filtering obviously is a major concern of our customers. If you have, or expect to have, a noise problem, it's best to filter with hardware. You should filter close to the transducers, if possible, and watch out for periodic high frequency noise (see " aliasing" in Clossary). Most $1 / 1$) manufacturers can help you out with hardware filtering problems.
You can also filter with software. One easy way to do this is with an averaging method, and if you pick the right number of points to average, it's simple. If you pick any number of points that represents a power of two-such as $2,4,8,16$, and so on-then taking the average is simple. After you've summed the inputs, simply shift the sum to the right and you'll have the average. If you're averaging two points, shift right one bit; for four points, shift the sum two bits; for 8 points, shift right 3. This method works because computers operate on binary arithmetic, and each one bit shift to the right represents a divide by 2 operation.

Of course, if you decide to average 27 samples, the arithmetic is no longer easy. Also, if you have a severe

Fig. 1: The cost per channel for A/D converter subsystems increases linearly after the initial master board is purchased. If major components, such as a printed circuit board or chassis, have to be added, the costs can go up dramatically. Although this figure illustrates Datel Systems components, other manufacturers generally are within 10% of these prices (assuming identical configurations).
noise problem-such as periodic high frequency noise that produces severe aliasing in the data-you may have to write a numerical analysis program in rortran or basic: to average out the beat notes. In this case, it's better to filter with hardware.

Multichannel converters

Most applications require more than one $1 / \mathrm{p}$ channel, so almost all converter manufacturers offer multiplexers that provide from 8 to 128 channels on one or two boards. The boards can usually interface directly with a variety of popular mini and microcomputers. Prices vary from vendor to vendor. Table 2 shows Datel Systems' prices for several 8080 -based a/b converter

Table 2: A/D converter board costs ${ }^{1}$

Number of channels	Modules required	Total price	Cost/ channel
16	ST-800-16S (\$595) 16-channel master board with A/D	\$ 595	\$37.20
32	ST-800-32S (\$650) 32-channel master board with A/D	\$ 650	\$20.30
64	ST-800-32S (\$650) 32-channel master	\$1065	\$16.62
	ST-800ADX32S (\$415) 32 channels, slave mux expander board, no A/D		
80	ST-800-32S (\$650) 32-channel master	\$1125	\$14.08
	ST-800ADX48S (\$475) 48 channels, slave mux expander board. no A/D		
128	ST-800-32S (\$650) 32-channel master	\$1600	\$12.50
	(2) ST-800ADX48S (\$950) 48 channel expander boards		
For single-ended 12 -bit. 8080 -based A/D peripherals			

Cornered by success

One of our customers decided to expand an existing control system by installing a microprocessorbased data acquisition and control system at a remote site. The existing control system, a large minicomputer acting as a central host, already had many input channels installed with direct cables.

From past experience, we felt the customer would probably want to add many more channels, D/A outputs and additional remote site controllers later on. More importantly, we felt he should stick with a microcomputer version of his central minicomputer. This would enable him to use common programming languages, peripheral drivers and communications protocols. But the customer persisted with a low-cost Brand X microprocessor, home-brew chassis, power supply and custom programming. Ultimately, the system got working-sort of.

The remote micro had communication difficulties with the host mini, but the advantages of being able to locally control the process on site had the predictable result: The plant manager was impressed enough to authorize funding for six more remote systems. Now the scramble began. The design engineers had to untangle the software problems and hand-build six more custom units.

We finally convinced the customer to switch to a microcomputer version of his central mini. The off-the-shelf software supplied with the micro solved his communications problems. Then we convinced him to use "packaged" N D and D/A systems that come complete with power supplies and allow for future expansion. The happy ending was a system that works smoothly, has room for future expansion, and can be duplicated easily for additional applications.
modules. Figure 1 is a graph of cost vs. channel capacity, so you can get a general idea of how much the A / D peripherals will cost for your particular application.

Some companies offer a variety of channel expansion methods, but the variety is not infinite. For example, if your system has reached capacity and you want to add a few more input channels, the manufacturer will have to charge you for the next increment of channel ex-pansion-which may be many more channels than you need. Channel expansion is usually in increments of 16 , 32 or 48 channels.

Many customers are concerned about the additional cost of A / D channels and want to specify only the capacity that they need. While this is a good idea, be sure you don't limit yourself. Keep in mind that you will probably think of some other parameter that needs to be measured (if you don't think of it, someone else will).

If your calculations say that you need a certain number of channels, check the manufacturers you are con-
sidering to see what their next increment is. For example, if you need 30 channels and are considering a 32-channel a/D from Manufacturer X, is his next increment 48 or 64 channels? Will you have to buy an entire chassis or just an expansion board if you need more channels?

By selecting your multichannel A / D components carefully, you may spend a little more now, but you can also save a great deal if you have to expand in the future.

Getting out of the corner

Multichannel A/D converters that offer speed, accuracy and direct interfacing to your computer are expensive, to be sure. Although we certainly appreciate your need for economy, let me point out one rule of the data acquisition business: Don't paint yourself into a corner!

Stand back from your project for a few minutes and consider a few things. You are not simply buying a processor, data acquisition hardware, transducers and an output terminal. You are buying a system that will provide useful data for a measurement or control application over a long period of time. Don't let the details blind you into not seeing your system's function.

It is false economy to specify an 8 -bit micro and an 8 -bit a/D converter only to find out six months from now that your system isn't big enough or fast enough to handle the data. Anticipate that others may want to apply your system-or one just like it-to applications you haven't considered. If more people begin using your system, design limitations may begin to cripple it. Something as simple as the number of wires in the cable or the hardware/software methods for multiplexing data can come back to haunt your later on.
And there's always the unexpected. After you've had your system running for awhile, don't be amazed if the plant manager asks you to provide additional inputs from a processing site half a mile away. The half mile may seem insignificant to the plant manager, but you have to solve the communications problem-perhaps with modems, coaxial cable or a microwave unit. If your processor can't handle the additional data acquisition and communications work, you've got a problem. This is exactly the place not to be painted into a corner with a modest processor struggling to handle everything and no simple way to expand.

Anticipate that you may not see all the ramifications of your system design. Try to draw on the experiences of others who have installed systems. Select manufacturers who offer a variety of systems with expandability features, and don't buy a processor or an A / D input system on price alone. If you plan for future problems, maybe they won't be problems.

Application of Analog Conversion Products in Micro-computers

Introduction

A great many of the applications employing microcomputers also require some form of analog input or analog output. ${ }^{1}$ It is estimated that 37% of all computer applications require some form of analog I/O. The majority of these application areas can be classified as Data Measurement/Collection or Process Monitoring/Control.
Since most sensors and control elements are analog in nature, it is obvious that in areas where measurement and control are required, analog signals are most likely to be present and, therefore, must be generated (D-A's) or measured (A-D's).
The actual application determines both the type and number of analog signals involved. In some process control or process monitoring applications, hundreds of control points are being continuously measured. In these applications, the Data Acquisition System is more likely to be a rack mounted system separate from the computer. In other less complex systems, the number of analog signals would be in the area of 4-100 points. Micro-computer systems tend to be smaller in scope; and it is these type applications that are being considered here.
Fewer analog channels allow having the analog circuitry located directly on the same P.C. board as the I/() interface logic. This resulting unit is treated as a standard I/O peripheral and is offered by several manufacturers in many different versions with each version capable of providing many different options.
These peripherals are offered in the following versions:
a. Analog-in (A-D only) with 8-64 channel input capability.
b. Multiplexer expander units for applications requiring additional analog channels.
c. Analog-out (D-A only) with from 4-8 channel output capability.
d. Analog-out expander boards for multi-channel analog out capability.
e. Combination A-D/D-A units with 8-32 analog input and 1-4 analog output channels.
Of applications having some form of analog in/out, 45% have analog-in only, 15% have analog-out only and 40% require both analog input and analog output peripherals. The number of analog output channels may be superficially inflated, as in some applications, they are merely used for self-testing or calibrating the A-D section. At other times, the D-A's are used only to reproduce selected analog input channels on a strip chart recorder or CRT.
Typical optional features are listed below:
a. Single ended or differential analog inputs.
b. Current loop (i.e. $4-20 \mathrm{~mA}$) inputs.
c. High level analog inputs (0 to $+5 \mathrm{~V}, 0$ to +10 V , $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$).
d. Low Level ($10-100 \mathrm{mV}$ full scale) analog inputs requiring instrumentation amplifiers with gains of 100-1000.
e. Amplifier with software programmable gains of $1,2,4$, and 8 .
f. Operation under program control, program interrupt or DMA.
g. With or without DC to DC converter to generate ± 15 volts power (from +5 V supply) for analog circuitry.
h. Simultaneous sample and hold circuits on analog input channels.
i. Different full scale voltage ranges on analog outputs.
j. Current loop $(4-20 \mathrm{~mA})$ on analog output channels.
The actual applications described in this paper were selected as typical of those peculiar to microcomputers. These applications may not have been feasible, economically or otherwise, to have been accomplished using a mini-computer. Additionally, the applications were selected depicting different versions and options of the analog I/O peripherals and their employment in different application areas.

Energy

Monitoring Operating Status of Reactor During Power Station Start-Up

Putting a reactor on-line at a nuclear power station requires a precise procedure with detailed information on the operating condition of many devices. This information must be available at all steps of the start-up procedure.

ENERGY
In this application, it was necessary to monitor the status of 150 points. The physical parameters being measured were temperature, pressure, and water flow. The Reactor Vendor chose to use a microcomputer for cost reasons and because the power of a mini was not warranted. The outputs of the transducers were connected to a Signal Conditioning Unit which generated analog voltages in the 0 to +10 V range for inputting to the measurement system.

The measurement system operated in two modes:
a. A slow scan mode to sense long term trends where each sensor was measured four times per hour.
b. A fast scan mode to look at primary important sensors during start-up or when taking the reactor off-line.
The reactor vendor desired to operate the unit in a DMA mode to poll all units quickly and then release the machine to perform other control functions. The I)atel analog I/() boards (ST-80()-32S were capable of being operated in DMA and the ST-800-ADX boards allowed for expansion to 150 channels in increments of 48 channels per board.
This application was as a monitoring station for operator information only and was not used as a control system as there was no feedback to the system. While the primary function of this system was for monitoring purposes when putting the reactor on or off line, it is now being evaluated as a monitoring system during power station operation. It is extremely important that equipment repair or replacement be performed during scheduled maintenance periods.
If the system is monitoring a group of pumps, and detects excessive wobble on one pump shaft, maintenance personnel can be alerted to replace or repair the pump during the next scheduled maintenance period. If it failed, causing an unscheduled shutdown, the power plant would have to decrease the amount of power it could be depended upon to supply the grid.
By using micro-computers, these monitoring stations can be dedicated to specific groups of equipment and could be spread out over the power station. Employing the monitoring system in this manner. can be proven to be extremely cost effective.

Aviation

Digital Flight Controlled Simulator

This system was developed by the Redundancy Management Laboratory of BMAD (Boeing Military Airplane Development). The application illustrates a system that employs both mini and microcomputers. The Data General N()VA mini-computer was used for central processing and an Intel SBC-80/10 was used for distributed I/O.
This research effort was to investigate system problems associated with redundent high reliability digital flight control. As a result of using redundant controls for higher reliability operation, two sets each of N()VA's mini-computers, SBC-80's microcomputers and Datel SineTrac analog I/O peripherals, were employed.

The analog I/O peripherals were connected to an airframe simulator consisting of an analog computer, actuators, and a two axis platform on which sensors were mounted. The system contained 6 analog outputs (D-A's) and 18 analog inputs. The outputs entered an analog computer which drove aircraft actuators connected to the 2 axis platform. The actuators were dual with selection clutches for operation under control of one redundant system or the other.
An operator station is associated with each minicomputer, whereby the operator may input commands to the system to have the system simulate an abrupt altitude change from one position to another. The system would simulate this, via programs in the mini-computer, and measure changes from the sensors mounted on the simulator and generate commands (analog signals) to the simulator to stabilize the airframe.
The data acquisition system samples analog inputs from the simulator which are representative of the following:
a. Roll information from vertical gyros.
b. Pitch information from vertical gyros.
c. Roll rate from rate gyros.
d. Pitch rate from rate gyros.
e. Altitude information simulated from the analog computer.
f. Engine speed information simulated from the analog computer.
The micro-computer does some prescaling and limit checking on the data and sends the results to the mini-computer for processing. The mini-computer contains a full set of flight control equations and after processing the data transmits information back to the micro-computer for stabilizing the simulated airplane.

The micro-computer does some error checking on the data received and outputs to the micro-computer analog output peripheral (D-A). The output of the D-A's contain pitch, roll and throttle information which enter a small analog computer which drives the dual actuators controlling the 2 axis platform.

Manufacturing

Automatic Production Test Equipment

This system monitors the status of 64 products under life test. It can scan 64 similar products at preset time intervals outputting to the operator a hardcopy printout and a visual display of each product's status as it is scanned. Alarm levels are set to flag an item that is out of tolerance.
The parameters being measured are from photocelils and pressure and temperature sensors. The signal conditioning section performs two functions:
a. Amplifies the low level (20 mV full scale) input to high level (10 V full scale).
b. Isolates and ground references the signals that had high common mode voltages (up to 1 KV) or contained noise spikes of up to 150 volts.
The sequencing logic allows the data logger to make multi readings as each product is individually scanned. At each dual point the sequencer allows several conditions to be read and outputted to the logger. Timing and data channel number information is provided by the microprocessor to the sequencing

MICRO-COMPUTER CONTROLLED PRODUCT LIFE TEST SYSTEM MANUFACTURING
logic. The sequencer allows the data to be monitored as various loading and stress effects are changed on the product under life test. In actuality, 64 xN readings can be taken, where N represents the number of indexing steps of the load sequencer.
The microprocessor multiplexing technique was utilized because of the off-the-shelf availability of compatible products, namely, the Intel SBC-80/10 Single Board Micro-computer and the Datel SineTrac 800 Series Analog I/O System. The in-house availability of a micro-computer software development system and a PL/M high level language compiler allowed us to turn around software for this system rather rapidly.
The block diagram at the upper right hand corner of this page depicts the component parts of the system.

Process Control

Local Microcontrollers Return Control to Process Site

This is a process control application for a materials manufacturer who is measuring 53 channels of temperature, pressure, line speed and other types of process data. Low level analog signals from the sensors are signal conditioned by external instrumentation amplifiers to present high level analog signals to the Datel SineTrac Data Acquisition ana\log input peripheral unit (ST-800-32S). Additional high level analog channels (channels 33-53), are entered through a Datel analog channel expander board (ST-800-ADX). Low level signal input ranges were up to 50 mV full scale and each had a bandwidth of less than 20 Hz .
The analog channels are selected and digitized under control of the Intel Micro-computer (SBC-80/10). The micro-computer performs some computation and processing operations on the digitized analog data and some switch position inputs. The microcomputer outputs in two ways:
a. It generates 20 analog signals via D-A converters located on Datel analog output peripheral boards (ST-800-DA8). These analog outputs drive actuators in the manufacturing process to complete the real time, computer aided process control loops.
b. Additionally, the computer outputs data to a local monitoring station. Process status is displayed in the form of bar graphs on a color CRT as well as to some digital meters displaying several process variables in engineering units.
By using local micro-controllers at different stages of the process (versus a large remote main frame controlling the whole process), several advantages are realized.

a. It allows local line personnel to correct problems or fine tune the system by manual override.
b. Reduces miles of expensive cabling.
c. Reduces cost.
d. Reduces the possibility of misinterpretation of operation by operators at a remote computer site and allows on-site personnel to diagnose errors or process quality problems.

Environmental

Air Quality Monitoring and Data Logging System

The basic function of this micro-processor based data acquisition system is in the field of air quality monitoring and data reduction. A primary function is to analyze and record wind speed, direction, and radiation in the atmosphere after a nuclear explosion. It can also be employed to measure and record air quality in pollution control endeavors.
It is a self-contained system capable of being battery operated for unattended operation. The system contains the following component parts:

1. A bus orientated micro-computer using both random access and read only memory which stores the operating program.
2. A Iatel 16 channel differential micro-computer analog input peripheral (bus compatible to the micro-computer) with 12 bit A-D converter.
3. A 100 year real time calendar clock.
4. Operator control panel with LED) displays and thumbwheel switches for operator interaction.
5. 3M cassette tape drive.
6. Operational hard copy line printer.

The inputs to the system are analog signals from analyzers monitoring such parameters as wind speed, wind direction, sulfur dioxide content, nitrogen oxide and other parameters as determined by monitoring application. The analog input peripheral, under control of the microprocessor, digitizes the analyzer information to 12 bit accuracy.

The microcomputer stores the digitized information in random access memory where it is used in one of three ways:

1. It can be displayed on the Front Control Panel which allows for switch selection of the channels's data to be displayed.
2. It can be recorded directly on the tape cassette or sent out to the hard copy printer.
3. It can be used to calculate hourly or daily averages of any parameter and then output that average value.
The real time clock generates time in years, Julian day, hour, minute and second increments. Time can be set by front panel thumbwheel switches and displayed on front Panel LED's.
The Front Panel allows operator intervention for reading the status of selected inputs, read the time, set the real time clock, and actuate a reset pushbutton switch for program restart.
The cassett recorder operates at 30 IPS in an incremental mode with an average capacity of 102,000 bytes. It is servo controlled and has an error rate of 10^{-11}
()ther optional components are:
a. Hard copy line printer.
b. Analog input expansion to 256 channels.
c. Back-up battery pack.
d. Engineering units display.

Weather Research

Global Mapping of Distribution of Physical Structure of Clouds

This research effort is being conducted under the auspices of the NASA Goddard Space Flight Center.
Maps of parameters indicative of cloud physical structure are of principal value in studies of the earth's climate. The parameters to be measured are cloud amount, optical thickness, altitude, temperature, thermodynamic phase and particle number density. Global distributions of these parameters will be assembled according to season and local time and in this format will serve as input data to climate models based on radiative energy balance. This data base will also be of use in meteorological studies of shorter time scale such as severe storm and cloud physical studies.
The cloud climatology experiment combines active and passive remote observation techniques to infer cloud parameters. The passive section consists of a Cloud Physics Radiometer (CPR) which is an 8 channel scanning radiometer with 7 channels in the near infrared and one channel in the thermal infrared. The active section consists of a cloud Lidar System (CLS) which is a two wavelength polarized scanning laser radar. To prove the sensor technique and the utility of the data, engineering models of the CPR and the CLS will be flown on a NASA high altitude aircraft. Results from these flights will be used to design a Space Shuttle (Spacelab) sensor system. A block diagram of the CLS system is pictured here as an application example of a microcomputer with analog I/().

DATA ACQUISITION \& CONVERSION HANDBOOK

The micro-computer controlled all operating sections of the system. The most important reason a micro-computer was used in this applicaiton was physical size as the entire system was to be installed on an aircraft.
The Data Acquisition micro-computer peripheral monitored the following parameters:
a. All system power supply voltages.
b. Temperature in all system boxes.
c. Pressure in all system boxes.
d. Laser water flow.
e. Laser water temperature.

The Data Distribution (D-A's) micro-computer peripheral is employed as a $\mu \mathrm{P}$ controlled test fixture with quick look CRT terminals.

Medical
Patient Monitoring

Applying computers for collecting data and monitoring patients has been going on for many years. Previously, in most cases, the monitoring computer has been remotely located requiring the data to be transmitted over considerable distances. Portable bedside monitoring stations become feasible by employing micro-computers and micro-computer analog I/O peripherals. All such applications require these analog conversion products, as the greatest percentage of monitoring instruments provide information in analog form. Additionally, the number of parameters being monitored on each patient lends itself to multi-channel Data Acquisition System applications.
The emergence of the μ computer has significantly reduced the cost of the monitoring systems, actually making them cost effective versus the very expen-
sive systems of ten years ago. Additionally, by being able to employ a μ computer at each bedside station, the types of measurements taken can differ, catering to the exact needs of the patient. Monitoring stations can be located right at the bedside with visual terminals or they can be located nearby at the nurses' station.
As a result of the cost effectiveness, success in the field, and the ever increasing demand for health care, the present market of these products has exceeded $\$ 200$ million in 1976 . The market will have a growth rate of 36% through 1980 and reach $\$ 292$ million by $1980 .{ }^{2}$
The particular application being detailed here is a two-station patient monitoring system installed at St. Vincent's Hospital in New York.
Station \#1 monitors post-operative cardiac patients. It is a portable bedside station capable of simultaneously monitoring two patients.
Station \#2 monitors patients with acute respiratory insufficiencies.
Up to 16 parameters are measured at the bedside station. Gas flow and pressure transducers as well as gas analyzers are used as measuring devices. The system is supported by calibration devices for flow, pressure and gas analyzing. A tank of a known mixture of oxygen and carbon dioxide are used as calibration standards for the gas analyzers. A source of known positive pressure is used as a standard for the gas pressure transducer. A pump of known positive displacement is used as the calibration standard for the gas flow transducer.
All calibration procedures typically last 30 seconds and are operator initiated via a keyboard and then micro-computer controlled. Long term drifts are manually compensated for on a monthly basis. The outputs of the sensors are digitized by the micro-computer's analog input peripheral and the data is transmitted via phone lines from the bedside to another micro-computer at a central control location. The second micro-computer interfaces to a large host computer specifically programmed for patient monitoring applications. The host computer is programmed to derive from the transducer data it receives, over thirty physiological functions. These include blood pressure, heart rate, respiratory rate, resistance and compliance of the lungs, maximum inspiratory pressure, oxygen intake, carbon dioxide exhaled, positive and expiratory pressure; and measurement of tidal volume per breath. This resulting computer information is transmitted via phone lines back to the bedside micro-computer station. There it is available at the nurses' station either on a video display terminal or via a hard copy printer. A keyboard is also located at the station which allows the clinical staff to select which parameters of each patient are to be monitored.

By employing μ computers directly at portable bedside stations, the potential is there for having these computers operate independently of a host computer. The measurement capability of the analog I/O conversion units, and the computational and storage ability of the computer, allow the displaying of results, providing the attending physician with important up-to-date physiological data. It should be emphasized that computer based patient monitoring does not replace clinical staff, but is a diagnostic tool to aid in clinical decision making.

Communications

Color Correction Of Motion Picture Film For Video Use

This application describes a system for the electronic color correction of video signals produced going from motion picture film to video tape. The main features of this particular system are as follows:
a. Allow for scene by scene correction of hue and saturation of the colors.
b. Allows for the matching of the spectral response in motion picture colors to the spectral distribution of the components in the "film-to-video-converter" (Film Chain).
c. For color correcting at slow film speed prior to the actual reproducing of the film at normal speed. For sharpness and contrast reasons, it is not desirable to reproduce on video tape while running the film at a slow speed.
d. The corrected color data can be stored separately for use at a later date in producing new video tape.

The main component parts of the system are described below (see block diagram):
a. Film Projector on which the film being processed is run. This unit sends signals to the Film Chain Unit and frame signals to the C.P.U.
b. The Film Chain Unit is a film to video converter which separates varying primary color components to video signals to form a total luminance signal.
c. Color Control Panel which consists of 3 separate panels.

1. Color Balance Panel which contains potentiometers for controlling balance between red, green and blue components of the video signal.
2. The Luminance Panel allows for manually controlling the gain, gamma and pedestal of the red, green and blue signais.
3. The Hue and Saturation Panel controls the hue and saturation level of the 3 primary and 3 complementary colors of the video signal.
d. A Datel SineTrac Analog Input Conversion Peripheral which digitizes the correction signals from the control panel during the load or set-up mode. The digitized color correction values are stored in the C.P.U.
e. The Micro-computer performs the following functions:
4. Directs the timing operations of the system.
5. Performs control computations.
6. Stores corrected digital color data during the set-up mode.
7. Outputs to D-A's the corrected data during the run mode in sync with the proper film frame or scene.
f. Datel Analog Output Peripheral which provides correction signals to the Film Chain Unit during the run mode.
g. Video Tape Recorder records the corrected video tape during the RUN cycle.
The actual system operation sequence is as follows: The film is run on the projector on a frame by frame, scene by scene basis. Intitially, a standard correction value is selected to provide a picture pleasing to the eye. Incremental corrections (from the color control panel) are added or subtracted on a scene by scene basis to compensate for different lighting, color patterns, cameras, etc.
These corrected values are digitized by the A-D peripheral and stored in the C.P.U. in sync with the frame reference received from the projector. The film can be rerun, stopping on selected frames, until the desired color effect is obtained.

The film is rerun a final time and recorded on video tape. The corrected color signals are sent out from the C.P.U. to the D-A converters to generate the correction signals to the film chain unit (film to video converter).

Summary

The preceding applications illustrate two significant facts:
a. Micro-computers are not only replacing mini's in some applications, but more importantly, are generating many new market areas.
b. By putting analog I/O conversion products directly on micro-computer bus compatible plug-in cards, users enjoy the following advantages:

1. All interfacing logic is predesigned and assembled on the same plug-in card as analog circuitry.
2. Packaging and interface cabling problems are eliminated.
3. Interface and support documentation is readily available.
4. One supplier for both interface and analog conversion circuitry.
5. Some suppliers offer diagnostic software with the analog I/O peripherals.
6. Hardware and programmer's instruction manual supplied with peripheral.
Micro-computers are being employed in new market areas for the following reasons:
7. Most importantly because of their low costs.
8. Small size and lower power consumption.
9. Increased dependence on high technology to reduce costs and increase performance in all areas of modern living.
10. More interest on monitoring our effect on the environment (i.e. air, water, chemicals, contents of food, outer atmosphere, etc.).
11. Tendency among users to desire local control of each computer application rather than having a large centrally located computer controlling many separate operations. This allows local operators to control, monitor, and visually oversee the actual effect of the computer's operation and, if necessary, diagnose and manually correct any misoperation. These small local controller applications are best illustrated in the Process Control application where many small control computers could replace one large centrally located process control computer. Also, in the Patient Monitoring Application, the bedside portable monitoring stations would be much more effective than one centrally located main frame computer.
As can be seen in these examples, micro-computers in conjunction with their associated analog I/O conversion products, work together to accomplish many most interesting and worthwhile applications.

GB

Footnotes:

1. Data Acquisition Systems Marketing Report Venture Development Corporation Wellesley, Mass.
2. Patient Monitoring Market Report Frost \& Sullivan
New York, N.Y.

Remote data system needs just one twisted pair to link analog sensors with host computer

Using distributed microcomputers, a remote data-acquisition-and-control system delivers low-cost communications between analog transducer signals and a host computer as much as a mile apart-over a single twisted pair of wires. Dubbed REMDAC̣S, this new board family allows not only enough flexibility to meet any measurement requirements but also expandability to suit future system needs.

Two basic elements make up REMDACS: remote-station cards and a receiver/transmitter card (Fig. 1). The remote stations accommodate either voltage or temperature transducer inputs while providing digital input/output for control and in-
dication. The receiver/transmitter handles communications with the remote stations and formats data to and from the host computer.

REMDACS offers many cost and convenience advantages over a conventional data-acquisition system. Usually, sig-nal-conditioning circuitry costing from $\$ 100$ to $\$ 300$ per channel must be installed near the sensors to amplify, level-shift and convert the analog transducer signals for easier handling and for long-distance transmission. In addition, much of the host CPU overhead must be devoted to housekeeping tasks, such as controlling the multi-
plexer and analog-to-digital converter of a data-acquisition system.

Moreover, different analog signals often require different cabling, which can hike wiring expenses to as much as 30 to 50% of the total system cost. Lowlevel signals, for instance, require shielded wire, as do highlevel signals in noisy environments. Even 4 -to- $20-\mathrm{mA}$ cur-rent-loop signals normally require a separate cable.
REMDACS overcomes all these drawbacks. With distributed μ Cs handling controlcommunications protocol, the host CPU is relieved of many overhead chores. What's more, up to 512 remote stations may be located as far as one mile from the receiver/transmitter and linked with a low-cost 24 gauge twisted pair. Even better than that, measurement cost is only $\$ 15$ to $\$ 30$ per channel.

The remote stations come in either voltage or temperature versions. Whatever the version, the principal components are the same: a single-chip CMOS microcomputer (the IM80C48) and a 12 -bit, dual-slope a / d con-
verter (the ICL7109).
The remote voltage station accepts either 16 channels of single-ended analog inputs or eight channels of differential inputs, and provides one channel of digital I/O. The remote temperature station has one analog input channel and four digital I/O channels.

Every remote voltage station (Fig. 2a) also carries a pair of ultralow-leakage IH6108 eightchannel multiplexers. Unipolar inputs can range from 0 to 2 V , bipolar inputs over $\pm 1 \mathrm{~V}$. Common-mode rejection ratio is greater than 85 dB .
In addition, the 16 input signal lines may be configured in any manner-some lines can be used for single-ended inputs, others paired for differential inputs, and still others shorted or connected to a precision source for inserting a signal to give end-toend system zero and span calibration.
The on-board, dual-slope a / d converter operates in three phases. First, its input is grounded to measure offset voltage, which is stored as error information. Next, the selected signal is integrated for dualslope conversion. Since integration periods are referenced to 60 Hz , common line-frequency noise and harmonics are nulled.
The on-board $\mu \mathrm{C}$ and internal ROM-based routines control the two multiplexers, the converter, and support the serial-bus communications protocol.

The single digital channel on the remote voltage card supplies either input to monitor board status or output for control. The input signal has a $5-\mathrm{V}$ level with a typical impedance of $50 \mathrm{k} \Omega$. The output may be either a CMOS driver or an optically isolated link. For the CMOS driver, the output signal can be between 0 to 5 V , with $\pm 4.35-\mathrm{mA}$ sink or source current. For the optically isolated output, saturation voltage is 1.4 V with a maximum sink current of 5 mA .
The remote temperature sta-
tion (Fig. 2b) does not have any multiplexers, but carries a signal-conditioning circuit for the AD590 semiconductor temperature transducer, which can monitor temperatures from 0 to 100 C .
Both types of remote cards include a receiver that requires very low drive current and a power transformer that is electrostatically shielded for earthground isolation. Since the twisted-pair transmission link is not isolated for the low-drive receiver, all inputs and outputs must float above earth ground at the remote's ground potential. This prevents possibly harmful ground loops back to the interface with the host computer. When sensors must be grounded, optical couplers are available as options for the transmission link. The extra receiver drive required by the couplers limits the number of remote stations to 22 at one mile.
Since every remote station operates from 24 V ac, conduit is not required, thus simplifying
installation. For driving signalconditioning equipment or other uses, the remote cards provide supply voltages of +5 V at 20 $\mathrm{mA},-5 \mathrm{~V}$ at 10 mA , and +8 V at 5 mA .
The on-board $\mu \mathrm{C}$ on all the remote cards continually updates the digitized information from the sensors. This information is stored in on-board memory, where it may be accessed along with digital I/O information upon request. Data at the a/d converter may also be accessed, at will, from the REMDACS remote station.

Interfacing with the host

The receiver/transmitter card (Fig. 3a) also employs the IM80C48 $\mu \mathrm{C}$, which controls data flow to and from the host computer and formats remotestation messages. The receiver/transmitter card has four 8bit input latches to hold computer interface data, in aadition to five 8 -bit output latches to supply data and handshake sig-

Distributed remote data-acquisition-and-control system (REMDACS) comes on compact PC cards, works over a single twisted pair.
nals to the computer interface. Support circuitry handles the serial transmit-and-receive link with the remote stations via a $15-\mathrm{mA}$ digital current loop.
The receiver/transmitter may be interfaced directly with the host computer through a parallel output bus. Alternately, this card may be plugged into an RS- 232 interface board in the REMDACS family to provide communications with the RS-232 serial-I/0 port that is standard on most computers.
The RS-232 interface card (Fig. 3b) contains an IM6402 universal asynchronous receiver/ transmitter (UART), buffers to hold the receiver/transmitter data, and control and sequencing circuitry. The UART converts parallel receiver/transmitter data into serial form and automatically adds start, parity and stop bits. Data words are 8 bits long, while parity may be odd or even. Each RS-232 serial-interface card will support one receiver/transmitter card. Transmission line rates are selectable from 110 baud to 19.2 kbaud.
Remote stations communicate with the receiver/transmitter through the twisted pair by means of a special high-security, serial protocol. This party-line protocol has a dual word-length message format. The receiver/transmitter handles both 24 -bit and 44 -bit words, and remote stations respond according to their configuration. A total of 512 remote stations- 256 with 24 -bit words and 256 with 44 -bit words-can be addressed.
Both word lengths can be intermixed, in any order, on the same party line. Transmission speed is userselectable from 150 to 4800 bits per second. At 4800 baud, throughput is 95 channels per second.
The 24-bit word is intended for applications where the amount of data per acquisition point is small and maximum system throughput is important. The 44-

1. REMDACS consists of up to $512 \mu \mathrm{C}$-controlled remote stations and a $\mu \mathbf{C}$-controlled receiver/transmitter that handles communications over a single twisted pair and formats data for the host computer.
bit word is directed toward applications requiring more data per message with better integrity.
Communications between the receiver/transmitter and the remote stations is half-duplex. Once the host computer loads the receiver/transmitter with a command message, the receiver/transmitter formats the 24 or 44 -bit word, inserting start, control, errordetecting and stop bits. These bits are transparent to the host's software; the receiver/transmitter simply adds these bits to downline messages and strips them from upline messages.

Start with a start bit

All messages begin with a start bit, followed by a select bit for either a 24 or 44 -bit word. The polarity of the select bit informs all remote stations of the message's length. For this reason, each remote station, whether 24 or 44 -bit in configuration, will always maintain synchronization with the start bit in each message.
The third bit, a transmit/receive (TX/RC) signal, allows the remote stations to distinguish between a command message from the receiver/transmitter or a response from another remote.

In the command message, the subsequent 16 or 32 bits (depending on message length) transmit the address, control and I/O information supplied by the host computer. For example, within the 24 -bit command message (Fig. 4a), the fourth through eleventh bits (D_{0} through D_{7}) address and select the required remote station. Bits D_{8} through D_{11} contain the control information that dictates the response of the remote station. Bits D_{12} through D_{15} send the digital I / O that programs the analog multiplexer. (The 44-bit word has two additional bytes for data.)
The remaining bits in the message word are used for error-checking. The 24 -bit message employs a 4 bit checksum error technique, while the 44 -bit word uses an 8 -bit cyclic redundancy check (CRC). Both error-checking techniques are implemented by microcomputer firmware.
Once it receives an error-free command message, the addressed remote station immediately replies by returning either a status or a data message. For 24bit remote stations, a data response (Fig. 4b) consists of a 12 -bit a/d conversion in two's-complement form (bits D_{0} through D_{11}) and four bits (D_{12} through D_{15}) of digital I/O. A status response (Fig. 4c) occupies eight bits of address echo (D_{0} through D_{7}), four bits of remote status (D_{8} through D_{11}), and four bits of digital I/O (D_{12} through D_{15}). Note: With the 44 -bit word, the two extra bytes may be used to obtain status and data simultaneously.
Data integrity is maintained by a 4 -bit checksum in the 24 -bit message format or an 8 -bit CRC remainder in the 44 -bit format. Before transmitting, both the remote station and the receiver/transmitter append the error-checking bits to the end of the message. Once the message is received, the sum-

2. The REMDACS remote voltage station (a) accepts up to 16 analog inputs and provides one channel of digital

I/O. The remote temperature station (b) has one analog input channel and four digital I/O channels.
the environment of a building. Such a management system typically includes many sensors located throughout the building, with outputs to control heating, ventilation and air-conditioning equipment.

REMDACS remote stations can be placed close to the signal sources, with the twisted-pair signal lines and low-voltage power lines routed through utility pipe shafts, above dropped ceilings and even through telephone raceways. In most cases, conduits would not be necessary, except to protect wiring from physical damage. Moreover, because of its flexibility and ease of installation, REMDACS can not only be used in newly constructed buildings but also retrofitted into older ones.

In a typical installation (Fig. 5), temperature sensors are distributed throughout the building and even within specific offices or areas. Pressure transducers are located on compressors, chillers and pumps. The rotating wheels on watt-hour meters are sensed to monitor power demand.

With REMDACS, the computer controls all building functions, turning off all unnecessary heating, ventilation and air-conditioning equipment at night. Shortly before the working day begins, this management
system activates the equipment to ensure proper temperature control when employees arrive. The system also slowly turns on lights in areas that have been darkened at night to conserve energy.

Throughout the working day, the system measures the temperatures in various areas and operates the equipment accordingly. Less power is required to maintain a room within certain temperature limits than to cool a hot one or heat a cold one. To reduce demand, therefore, equipment can be periodically shut down or cycled slowly.

Another important application area for REMDACS is industrial-process monitoring-in plants ranging from petrochemical to wood to paper. While each has its own data-acquisition requirements, they all need heat, which is usually supplied by an industrial boiler. However, federal, state and local environmental laws often require pollution control of flue or stack emissions.

A small change in fuel/air ratios often saves significant quantities of fuel, without producing the carbon monoxide that can cause violent flue or stack ex-
plosions. As a result, numerous combustion-chamber parameters are measured and compared with the data from other plant systems, including the stackemissions analyzer. Alarm indications permit plant personnel to apply appropriate procedures for safe operations.

Flexibility for test beds

Both building energy management and process monitoring involve relatively permanent installations. In test-bed applications, however, tests can range from simple to highly complex, and test procedures from routine to insane.

A good example of a simple procedure is the calibration of a hydraulic-line orifice. Differential pressures and flows would certainly be measured, and the procedure might specify a few other parameters. All the necessary measurement capability can be supplied by a small, basic version of REMDACS.

Suppose, however, that the testing is to be con-

3. The receiver/transmitter card (a) may interface directly with the host computer through a parallel output
bus. Or, the interface may be serial, through the REMDACS RS-232 interface card (b).

DO-D7 will address one of 256 remote stations.
D8 = 0; Do not program outputs with D12-D15.
D8 = 1; Do program outputs with D12-D15.

09	010	$D 11$	Function
0	0	0	Transmission error
0	0	1	Send status message
0	1	0	Send presem ADC and I/O data
0	1	1	Send last ADC and I/D, Program I/O (now MUX addreses), Strobe ADC
1	0	0	Strobe ADC, Send ADC and $1 / 0$ after conversion is complate
1	0	1	Transmisaion error
1	1	0	Transmission error
1	1	1	Transmission error

D12-D15 will be programmed at the remote's digital outputs (a) to address the multiplexer, when $\mathrm{D8}=1$.

D0-D11 represent the 12 binary ADC outputs, returned as requested in the command message sent by the receiver/transmitter.
D12-D15 represent the state of the four I/O lines to address the multiplexer.
(b)

D0-D7 represent the remote's address.
$D 8=1$; Power failure has occurred at remote since last status request.

09	D10	011	Function
0	0	0	Samue 0 K
0	0	1	Leat word recolved bofore stivia requeat had an Illogad 2W44-bt coving, or thet word was from another remion.
0	1	0	Lase word wea not ripen aderwas B0-07).
1	0	0	Leat word recelved has chackeum or framing error.

D12-D15 represent the state of the four I/O lines previously (C) programmed.

T signifies bits transparent to user's software.
4. A special serial protocol carries the half-duplex communications between remote stations and the recelver/transmitter. This party-line protocol has a dual word-length message format for 24 and $\mathbf{4 4}$-bit words. A 4-bit checksum detects errors.

5. An energy management system built with REMDACS permits the computer to control all building functions. Temperature and other sensors can be distributed throughout the building for cycling heating, ventilation and air-conditioning equipment.
siderably more complex, say, involving a new highpressure pump. The project-development group demands every conceivable measurement-pressure, flow, temperature, vibration, shock and speed. Moreover, since the team plans to cross-correlate computer-aided-design programs with measured data, the host computer must control the process and record the status for each step of the test procedure. And naturally the test results were needed yesterday.
In situations as demanding as this, REMDACS shines. Certainly the test is going to be a gigantic undertaking. New transducers and data points must be installed. Programs for the host computer must be written and patched and debugged-then rewritten and repatched and redebugged.
With REMDACS, new remote-station channels are quickly installed to satisfy new measurement, control and indication requirements. What's more, should simultaneous measurement or excitation capability be needed that is beyond the transmission capability of one REMDACS receiver/transmitter, additional units may simply be paralleled for increased speed..n

Dual Word Length Serial Protocol Improves Data Acquisition Network

Availability of monolithic, low cost, and accurate analog to digital converters enables implementation of a serial digital party line communications net serviced by a dual word length protocol for improved performance in process control data acquisition systems

Process control and energy management are two system applications characterized by a large number of analog inputs distributed over a wide area, and a data acquisition system for transfer of information from a variety of sensor types to a central computer. The computer must process sensor information, and either take direct action and control valves, switches, and pumps, or display the information and turn on alarms where operator control is indicated.

The classical system approach to data acquisition in process control or energy management involves analog signal flow between sensors and computer (Fig 1). A typical sensor, such as a thermocouple, supplies a voltage between 0 and 40 mV . Because this low level signal is unsuitable for long distance transmission, each sensor or transducer connects to a signal conditioning circuit that translates the signal, typically,
to a 4- to $20-\mathrm{mA}$ current loop. Analog output of each signal conditioner is fed via a separate cable or twisted pair to a central analog to digital converter that supplies digitized signals to a computer and to other devices such as displays, limit alarms, and chart recorders. The wiring system is usually in star configuration, with each sensor or point having an individual connection to the central location. As a result, wiring cost is high, in many cases accounting for 30 to 50% of total system cost.

Recent advances in semiconductor technology have made possible monolithic, accurate, low cost analog to digital converters (ADCs) that overcome fundamental limitations of the classical system. The cost of 8 - to 12-bit conversion at low speeds no longer requires that many analog inputs share the converter. Connecting a converter to each transducer (Fig 2) results in two

Fig 1 Classical data acquisition system. Low level analog signal from each sensor must be changed to $4-20 \mathrm{~mA}$ analog signal by signal conditioner and transmitted over individual lines to central shared ADC

Fig 2 Alternative data acquisition system. ADC and line driver at each sensor site can eliminate signal conditioner and transmit sensor information to host computer via digital link
major system benefits. First, the signal conditioning circuit can be simplified or eliminated because the converter is located close to the transducer. Transducer output can either be converted directly, or be conditioned by a single stage amplifier. Second, data transmission becomes a totally digital process, with inherent noise immunity and low cost.

A practical future system needs a data transmission link to provide data integrity at minimum cost. For this link, consider a serial vs parallel structure. The parallel bus is suitable for short distance, high data rate communications. However, process control and energy management systems require long distance, typically low speed data links, which indicate implementation of a serial data transmission concept. Whenever data rates permit, serial transmission should be used to reduce cable and wiring costs, allow use of common carrier facilities where appropriate, and facilitate system expansion. After a serial data link is chosen, other design elements such as data rate, 2 or 4 -wire, half- or full-duplex, and protocol structure must be decided upon. Obviously, in developing systems for distributed data acquisition and control, it is important that all key elements pertinent to the serial data link be standardized, and that the designer be provided with a wide choice of components and subsystems from various sources, all of which are compatible in data communication.
The serial data link allows the designer to consider a party line or multipoint system configuration, instead of the point to point, star-connected system. Other implications and possibilities opened up by the party line configuration are a distributed processing concept
and a variety of protocols, including a new asynchronous dual word length protocol.

Party Line Concept

Having decided that a serial data link is desirable, a multipoint or party line concept can be evaluated (Fig 3). Substantial cost reduction in cabling and wiring is readily apparent. Assuming the same flow of information from each remote point per unit time, data rates on the transmission link are increased. As an example, an energy management system has 200 remote temperature sensors. If each is interrogated with a 24 -bit message and responds with the same number of bits, a 4800 -baud serial party line system can make one complete scan of all sensors in 2 s , more than sufficient for acquiring temperature data.

The system can also address a variety of peripherals connected to the serial data link instead of being directly interfaced to the central computer. A remote point can be configured for acquisition of just one analog input or, in a more sophisticated manner, with localized intelligence for control applications. In the latter case, the local processor needs to inform the central computer of key remote parameters only at certain intervals, resulting in reduction of data communication rates. A logical outgrowth of the serial party line system, such an arrangement can be regarded as a distributed processing system, with the central computer acting in a supervisory capacity.

Fig 3 Serial party line (multipoint) concept. Cabling and wiring costs are greatly reduced. Concept allows for system expansion, as additional stations can be connected to serial bus at any time

In addition to providing minimum cabling costs, the serial party line system also allows for easy connection of additional remote stations to the serial bus after the system wiring is in place. The party line concept may therefore be considered as a modular system with built in expandability. The data transmission protocol for such a system must be chosen carefully to allow for future growth, minimal costs, reasonable addressing capability, and data integrity. Quality of error checking required will vary with the application. In energy management, error checking is not critical; the consequences of erroneous data or control decisions are minor and shortlived. However, in many process control situations high data integrity is essential; critical decisions have to be made that affect expensive equipment or large quantities of materials. By selecting a standard protocol for a system of this type, ie, one that can serve many different applications, hardware and software costs can be reduced, compatibility between component and subsystems manufacturers is enhanced, and users benefit from increased volume.

Protocol Selection

Several standard protocols are available for serial data link transmission. The Table summarizes some major characteristics of three popular protocols, and compares them to a packed ASCII format with unspecified conventions for interpreting the data. The protocols are generally characterized by synchronous operation, high data rates, complex error checking, and hardware complexity. These overhead items are useful for transmitting large quantities of data between two stations at high rates.

Data integrity vs overhead tradeoffs involve three common protocols:
Binary synchronous data link protocol (Bisync) is an

8-bit byte control protocol (BCP), with messages transmitted in blocks. The header, text, and error checking fields are all de-limited by special characters. The protocol is half duplex, synchronous, and either point to point or multipoint, and uses both vertical redundancy check (VRC) and cyclic redundancy check (CRC) with a 16 -bit polynomial. Minimum message length for an 8-bit address, 8-bit control, and 16-bit data word is 12×8 bits.
Synchronous data link sontrol (sDLC) and high level data link control (HDLC) are bit-oriented protocols (BOP) with messages transmitted in frames. Both protocols are half- or full-duplex, synchronous, point to point or multipoint, and use a 16 -bit CRC for error checking. Each message starts with a flag character, followed by an 8 -bit address (expandable for HDLC), 8 -bit control information, 16 -bit CRC remainder, and closing flag character. Since the flag acts as a synchronizing character and consists of six 1 s framed by two 0 s, any character with six or more contiguous 1 s is modified by insertion of a dummy 0 . Minimum overhead per message is 32 bits. The same message composed of address, control, and 16-bit data word uses, therefore, at least 8×8 bits and possibly more, if bit stuffing has occurred.

For all three protocols, data integrity is high. The 16 -bit CRC allows detection of all $1-, 2$, and 3 -bit errors for messages up to $2^{15}-1$ bits long, and detects all burst errors up to 16 bits long, as well as a major percentage of other errors. However, for shorter messages, this is wasteful overkill. Implementing the protocol in software in a l-chip microcomputer would take up a large percentage of available program memory space because of the complexity of the protocol and would cause a reduction in maximum data rates. These protocols are suitable for transmission of long serial data streams with high data integrity in situations where serial interface costs are small compared

Characteristics of Four Serial Data Link Protocols

	Bisync	SDLC	HDLC	Packed ASCII
Full duplex	No	Yes	Yes	Yes
Half duplex	Yes	Yes	Yes	Yes
Data transparency	Char stuffing	Bit stuffing	Bit stuffing	n/a
Asynchronous	No	No	No	Yes
Synchronous	Yes	Yes	Yes	No
Point to point	Yes	Yes	Yes	Yes
Multipoint	Yes	Yes	Yes	Yes
Error Detection	VRC, CRC-16	CRC-CCITT	CRC-CCITT	Parity Bit
Min message in bits for 8 -bit address, 8 -bit control, 16 -bit data	12×8	8×8	8×8	4×11
Hardware requirements	Complex	Complex	Complex	Simple

to remote station costs, and where extra hardware can be justified by a reduction in error rates.
Data Integrity with CRC-Cyclic redundancy check is a common error checking mechanism in serial data transmission. ${ }^{1,2}$ Mathematically, the data stream is divided (using modulo-2 arithmetic) by a selected polynomial. This division results in a remainder appended to the message as a check word. On the receiving end, both data and check word are divided by the same polynomial. If there are no errors, the result is a zero remainder. The following polynomials are frequently used:

$$
\begin{aligned}
& \mathrm{X}^{16}+\mathrm{X}^{15}+\mathrm{X}^{2}+1 \\
& \mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{5}+1 \\
& \mathrm{X}^{12}+\mathrm{X}^{11}+\mathrm{X}^{3}+\mathrm{X}^{2}+\mathrm{X}+1 \\
& \mathrm{X}^{8}+\mathrm{X}^{7}+\mathrm{X}^{5}+\mathrm{X}^{4}+\mathrm{X}+1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{CRC}-16 \\
& \mathrm{CRC}-\mathrm{CCITT} \\
& \mathrm{CRC}-12 \\
& \mathrm{CRC}-8
\end{aligned}
$$

The number of bits in the remainder is equal to the highest order term in the polynomial (16,12 or 8). Implementing a CRC check in hardware can be accomplished by using a recirculating shift register of ló, 12 or 8 bits with exclusive or gates at intermediate data inputs. If the register is preset to all 1 s and the data stream is shifted in, register contents will equal the remainder. Upon receiving data, a similar register is used and data plus remainder is shifted in: Only if register is all 0 s will the data transmission be valid.

It is also possible to implement a CRC check in software using a microcomputer. Provided that other aspects of the protocol are straightforward to program, in contrast to the protocols discussed earlier, total error checking software can be limited to a reasonable percentage of available program memory.

As shown in Ref 1 , the 16 -bit crc detects all single, double and triple errors for a data length up to 32767 ($2^{15}-1$) bits and burst errors of up to 16 bits long; the 8 -bit CRC detects all single-, double-, and tripleerrors for a data length up to $127\left(2^{7}-1\right)$ bits and burst errors up to 8 bits long.
Packed asciI format-A serial protocol can be made up from a sequence of ASCII characters, transmitted asynchronously in a standard universal asynchronous receiver/transmitter (UART) format (1 start, 1 stop, and 1 parity bit). Assume a message with 32 data bits, and add an additional horizontal parity check in the form of an 8 -bit checksum across four 8 -bit data words. This results in an easily implemented protocol with reasonable data integrity. Single bit errors are caught by the parity bit in each word. Double errors within one word are flagged by the checksum, while triple errors are flagged by the parity bit of the checksum. However, more 4-bit errors will get through than with the 8 -bit CRC, and immunity to burst errors is reduced. Overhead to achieve this integrity level is very high, 32 data plus 23 overhead bits, for a total of 55 transmitted bits. Expanding the checksum length, possibly up to the length of the data (full redundancy), gives only limited improvement in data integrity-4-bit errors can still slip through. Major impact is on singleburst errors, which can be detected if they are shorter
than the length of the checksum. Double-burst errors of only 2×2 bits cannot be fully detected if the two bursts are separated by the length of the checksum. 'The packed ascir format can be readily transmitted by existing hardware (UART) but does require some convention for synchronizing the system. This again adds to total transmission overhead. The format is low in efficiency and below average in data integrity and therefore not well suited to data acquisition/distributed processing applications.

Dual Word Length Protocol

Based on the attributes and limitations of existing protocols ${ }^{3}$ and error checking methods, requirements for an optimum serial protocol for data acquisition and control suitable for the party line concept can be established.

Data bits should comprise a large percentage of the total message; at any given baud rate, this gives the highest possible efficiency. The protocol should provide high data integrity, and accurate error checking that is transparent to the user. It should be capable of software implementation at high data rates. System throughput or channel to channel acquisition speed should be as high as possible. Modular construction is important to allow modification of data while keeping protocol framework intact; ie, many different systems can be connected to the same wires. The protocol should have a flexible format length-a single analog point does not require the same amount of data as a remote processor/controller. Transmission synchronization should be maintained with the lowest decrease in throughput when transmission errors occur.

Fig 4 shows a serial protocol that can fulfill these requirements. Basically, this dual-length format comprises a 24 -bit and a 44 -bit word. The 24 -bit word is aimed at applications where the amount of data per acquisition point is small and maximum system throughput is important. The 44 -bit word, on the other hand, is directed toward those applications requiring more data to be transmitted per message with better integrity. Both message formats are supported by the party line receiver-transmitter (Fig 3) and can be intermixed over the same twisted pair or party line link to best fulfill the particular requirements of the data acquisition activity.

The compatibility of the two formats arises from the use of the $24 / 44$ select bit. Polarity of this bit informs all remote stations of the length of the message currently being transmitted, so that each remote station, whether 24 - or 44 -bit in architecture, will always maintain synchronization with the start bit of each message. The transmit/receive (TX/RC) bit, in turn, allows remote stations to distinguish between a command message from host computer (via receiver-transmitter) or a response from another remote. This ability is essential to directing message flow to and from the host computer. The next 16 or 32 bits are available to the user to transmit address, control and input/ output ($1 / 0$) information to the 24 - or 44 -bit remote, respectively, transmitted in the form of a command message by the host computer. The addressed remote

NORMAL SEQUENCE FOR REMOTE STATION ACQUISITION

1. RECEIVER-TRANSMITTER TRANSMITS COMMAND MESSAGE

CONTAINING ADDRESS CONTROL, AND DATA INFORMATION
REMOTE STATION SELECTED RESPONDS WITH APPROPRIATE RESPONSE
WHICH COULD BE DATA, STATUS, ETC. BEFORE RECEIVER-
TRANSMITTER TIMES OUT.
3. RECEIVER-TRANSMITTER RECEIVES REMOTE'S RESPONSE AND RELATES

TO HOST COMPUTER.

Fig 4 Serial communication format. 24-bit message format is used to communicate with remote stations for analog input and low level control. 44-bit format is used for high security communication with remote stations requiring large data streams

Fig 5 Remote receive structure, 24-bit command format. Format contains address, control, and 1/O data. Any one of 256 remote stations can be addressed with one of four valid control words plus four bits of I/O information
will respond with such data as status, $1 / 0$, and transducer information, the type of response being determined by the command message. Data integrity is maintained by the use of a 4 -bit checksum in the 24 -bit message format and an 8-bit CRC remainder in the 44-bit message format. Both remote station and receivertransmitter append the error checking bits to the end
of the message before transmitting. Upon reception of a message, the same error checking bits are used to detect transmission errors. In the event of a command message error, the receiver-transmitter is alerted immediately by completion of a receive data time-out. The addressed remote station receiving the command message in error does not return a status or data

ADC READING
DO-D11 REPRESENT 12-BIT DUAL SLOPE ANALOG TO DIGITAL CONVERTER BINARY OUTPUTS RETURNED AS REQUESTED IN COMMAND MESSAGE SENT BY RECEIVER-TRANSMITTER
I/O
D12-D15 REPRESENT STATE OF FOUR I/O LINES USED IN MULTIPLEXER
ADDRESS INFORMATION IN EXAMPLE OF FIG. 5
Fig 6 Remote transmit structure, 24-bit data format. Format contains ADC and I/O information. This message format is used by addressed analog remote station as response to send ADC and I/O data

ADDRESS

BITS D0-D7 REPRESENT REMOTE'S ADDRESS I/O
BITS D12-D15 REPRESENT STATE OF FOUR I/O LINES PREVIOUSLY PROGRAMMED.

POWER FAIL

IF D8 = "1," POWER FAILURE HAS OCCURRED

Dg	D10	Di1	FUNCTION
0	0	0	STATUS OK
0	0	1	LAST WORD RECEIVED BEFORE STATUS REQUEST RECOGNIZED HAD AN ILLEGAL
24/44 BIT SETTING OR LAST WORO WAS FROM ANOTHER REMOTE			
0	1	0	LAST WORD WAS NOT RIGHT ADDRESS IDO-D7.
1	0	0	LAST WORD RECEIVED HAD CHECKSUM OR FRAMING ERROR

BITS LABELED "T" ARE TRANSPARENT TO USER'S SOFTWARE

Fig 7 Remote transmit structure, 24-bit status format. Contains address, status, and I/O information. This message format is used by analog remote station in response to status request
message, thus allowing the receiver-transmitter to timeout and alert the host computer.

Figs 5 to 7 show three unique structures within the 24-bit message format that allow efficient communication between host computer and remote station, remote station hardware consisting of a 12 -bit aDC buffered by a 16 -channel analog multiplexer. The three formats are remote receive command (Fig 5), remote transmit data (Fig 6), and remote transmit status (Fig 7). The remote receive command format, when sent to the selected remote, produces one of two responses: data or status. Purpose of the command message is to
select the remote station, tell it how to respond, and then to program its digital $1 / 0$. This type of communication between host computer and remote is half duplex. After the command message is received by the addressed remote and no transmission errors are detected, the command message is executed, and the appropriate response is transmitted back to the host computer.

The first eight bits of nontransparent data in the command message (Fig 5) are address bits used to select the remote station in question and allow for addressing up to 256 remotes. Next are four control
bits which dictate the remote response, followed by four bits of digital $1 / 0$ used to program the analog multiplexer. The remaining eight bits are user-transparent control bits that are common to all three structures, and required to support the protocol framework. These are the start, stop, 24/44, Tx/rc, and error checking bits. Transparency is important in maintaining low software overhead on the part of the user, to assure greatest possible throughput and ease of implementation. The remote data response (Fig 6) is the most often used of the two remote transmit formats; it contains the latest conversion and $1 / 0$ information. Status response (Fig 7), on the other hand, is used primarily for system diagnostics; however, it may also be used as a means to obtain additional data integrity when programming the remote $1 / 0$ lines. When a remote's digital I/o is programmed with a request status command, the resulting remote response contains address conformation, digital I/o echoing, transmission line history, and power-fail indication; an excellent way to obtain high security communication.

The party line concept allows for configuration of a data acquisition and control system, in which the efficiency of the message format for each station is maximized, resulting in a minimum of hardware and software support while providing a viable system capable of high data throughput.

Fig 8 sbows an energy management application for a serial party line data acquisition and control system, where the primary design goal is to monitor and control temperature conditions within a large building. Major
task of the host computer is to collect and process thousands of temperature readings in order to efficiently control the building's air conditioning and heating systems at reduced cost. In a data acquisition system of this magnitude, where several thousand points must be continually monitored, it is important to maximize the throughput rate while keeping the cost per data point low. Implementation of the 24 -bit message format with a single-chip microcomputer and a dual-slope adC (DSADC) makes this possible. The microcomputer is programmed to control the DSADC and to communicate with the party line system by means of the 24 -bit message format. Use of an IM80C48 microcomputer and an ICL 7109 DSADC allow for protocol emulation at a rate up to 4800 baud, resulting in a sampling throughput of approximately 100 points/s; the only speed limitation results from the microcomputer's inability to execute software any faster.

A receiver-transmitter completes the serial communication link by supporting the $24 / 44$-bit protocol and providing the host computer with the proper interface. Its primary function is to support the protocol and provide all necessary handshaking signals for proper interfacing. Required signals include transmitter buffer load, data received, transmitter register ready, receiver error, overrun error, and time-out error. Since this block resembles a standard UART, it interfaces easily to most computers. All that is necessary is a simple parallel interface to the host computer data bus. It would also be relatively easy to use yet another microcomputer along with the receiver-transmitter to allow the party line system to connect directly to a standard Rs-232 interface. This would greatly simplify interfacing requirements of the $24 / 44$ bit serial protocol to the host computer. Fig 9 shows

Fig 8 Energy management application. Host computer requests temperature data from analog remote stations. Receiver/transmitter sets up protocol handling and data integrity. Computer analyzes temperature data and supplies control information to both analog and digital remote stations

Fig 9 RS-232 serial interface for party line receiver/transmitter. Microprocessor 1 controls local bus and processes data to and from host computer using UART. RAM is used to store up to 512 command messages. These are transferred sequentially to microcomputer 2 which controls serial party line. Data returned by microcomputer 2 are stored in RAM for transmission to host upon request
a possible configuration. The microcomputers are used to split the required processing duties in order to maintain high efficiency and maximum data rate. This particular system would be able to accept up to 512 commands, store each one in memory, and execute the commands sequentially over the $24 / 44$-bit party line. After execution, remote data and status information received by microcomputer two would be stored in the memory of microcomputer one for transfer back to the host computer. This would allow the host computer to dump a series of commands, at high baud rates, to each of many unique party line systems. When ready, the host could retrieve the packed data for processing or storage and download the next series of commands (distributed multilevel processing).

Need for a serial digital data link between transducer and host computer in a data acquisition system has been demonstrated as a solution to many of the problems inherent in the classical system. The serial link provides ease of implementation, substantial reduction in cost per data point, and increased length of transmission line. However, inefficiencies exist in bit- and byteoriented protocols for data acquisition and control. 'CRC catches all 1-, 2-, and 3-bit errors, random bit errors, and burst errors. It can be implemented in software to run efficiently in a microcomputer based communication protocol requiring a sophisticated error detection scheme. Comparisons of efficiency vs throughput for several existing protocols-Bisync, sDLC, HDLC, and packed ascil-show varying values. Packed asciI, even though moderately inefficient, is the best suited for
applications involving serial data acquisition. Versatility and modularity, along with CRC error checking capabilities, make a serial protocol an attractive and inexpensive approach to party line data acquisition and control.

1. F. M. Ingels, Information and Coding Theory, Haddon Craftsmen, Pa, 1971
2. Hewlett-Packard, Guidebook to Data Communications, Hew-lett-Packard Co, Santa Clara, Calif, 1977
3. A. J. Weissberger, Data Communications Handbook, Signetics, Sunnyvale, Calif, 1977

4. Sample-Holds

Designing with a sample-hold won't be a problem if you use the right circuit

Sample-hold circuits are widely used in analog signal-processing and data-conversion systems to store an analog voltage accurately over periods ranging from less than a microsecond up to several minutes. This capability suits them to numerous applications including data-distribution systems, data-acquisition systems, simultaneous sample-hold systems, a/d converter front ends, sampling oscilloscopes and DVMs, signal reconstruction filters, and analog computation circuits.

Although sample-holds are conceptually simple, their application is full of subtleties. In general, applications that need only slow to moderate speed and moderate accuracy generate few problems, but high-speed, high-accuracy applications are the ones that need careful design. An example of the latter is taking a $10-\mathrm{V}$ sample in one microsecond or less with 0.01% accuracy.
To select the right sample-hold for a particular job, and apply it properly as well, requires understanding the intricacies of its design and operation.

Basically speaking

A sample-hold circuit is fundamentally a "voltage memory" device that stores a given voltage on a highquality capacitor. The circuit can take a voltage sample and then "freeze" it for some specified period, while some other circuit or system uses the voltage.

Fig. 1a shows a sample-hold circuit in conceptual form. An electronic switch is connected to a hold capacitor so that when the switch closes, the capacitor charges to the input voltage. When the switch opens,
the capacitor retains this charge and thus holds the desired voltage for a specified period.

There are three important sets of terminals in a sample-hold circuit: the analog input, the analog

1. In a basic sample-hold circuit (a), the switch closes to sample the input voltage. When the switch opens, the capacitor holds the voltage. A practical circuit (b) has unity-gain buffers to charge the capacitor without loading the source and to drive normal loads without changing the voltage stored by the capacitor.

2. A sample-hold can operate in two different ways. It can take a quick sample of the input and return right back to hold mode (a), or it can track the input for part of the time and hold it for the rest (b).
output, and the sample control terminals. Fig. 1b shows a practical circuit that includes input and output buffer amplifiers and a switch-driver circuit. The sample control input closes the switch for sample mode, or opens it for hold mode.

The sample-hold input terminals are usually the input of a high-impedance buffer amplifier since in most applications, such as operating at the output of an analog multiplexer, the source shouldn't be loaded. Likewise, the output has a low impedance so that the sample-hold can drive a load such as an a/d converter input. The output buffer amplifier must also present a very high input impedance, and very low bias current, to the hold capacitor so that its charge doesn't leak off too rapidly. In virtually all sample-hold designs, therefore, this amplifier has a junction-FET input stage. Similarly, the switch must be fast and have very low off-state leakage.

Sample-hold: An energy storage circuit

All sample-holds are basically accurate energy storage circuits. Since the hold capacitor is a key component in an accurate sample-hold, a fundamental question to be answered is: Why use a capacitor to store the energy?

It turns out that certain types of capacitors very nearly approach the ideal. They have extremely low leakage, and therefore very high equivalent parallel resistance. This resistance, commonly specified in megohm-microfarads and known as insulation resistance, is the parallel resistance of a one-microfarad capacitor and is numerically equal to the self-discharge time constant of the capacitor in seconds.

To find the parallel resistance for other capacitor values, divide the insulation resistance in megohmmicrofarads by the capacitance in microfarads. Since the parallel resistance. can be quite high for smaller value capacitors, most manufacturers specify a maximum "need not exceed" value, generally twice the insulation resistance. This means only that the parallel resistance is not measured or guaranteed by the manufacturer. It may well be as high as calculated.

The self-discharge time constant is the length of time required for an open-circuited capacitor to discharge to 36.8% of its charged voltage. High-quality capacitors used in sample-holds have insulation resistance as high as 10^{6} megohm-microfarads, equivalent to a self-discharge time constant of one million seconds, or $11-1 / 2$ days. In other words, this is only 1% droop in almost three hours.

To get back to why capacitors are used for the energy storage, they approach the ideal much more closely than the alternative, which is an inductor. The figure of merit for an energy-storage element is its selfdischarge time constant. A high quality short-
circuited inductor is hard pressed to give a selfdischarge time constant (L / R) as high as 10 seconds, while a capacitor can give a time constant (RC) of 10^{6} seconds. (The only exception, a superconducting induc-

3. A zero-order hold reconstructs an analog signal that's been transmitted as a series of pulse samples (a). It does so by holding the amplitude of each pulse to fill in the spaces between them (b). Practical averaging uses a lowpass filter (c) that has more delay than the ideal averaging shown in (b).

4. The gain response of a zero-order hold (a) in terms of the sampling frequency f_{s} takes the form of the absolute value of $(\sin x) / x$. The phase response (b) is linear because of the constant time delay.

(a)
5. Three types of holds reconstruct an original signal (dashed curve) differently. The output of a zero-order hold (a) is steady between samples. A first-order hold (b) extrapolates a new slope that's proportional to the dif-
ference between the two most-recent samples. Its output error is zero during constant-slope portions of the signal. The polygonal hold (c) interpolates between the two most recent samples.
tor, would, of course, be better than a high quality capacitor, but it would be difficult to package in an ordinary sample-hold circuit!)

Capacitors of certain types are therefore clearly superior to inductors when it comes to approaching the ideal. Acceptable types of capacitors include polystyrene, polycarbonate, polypropylene, and Teflon. In addition, MOS capacitors are excellent for hybrid circuit sample-holds.

Two other storage elements useful in specialized sample-holds are an electrochemical cell such as the Plessey Electro-Products E-Cell, and a register that holds the voltage digitally.

Sample-hold circuits are variously called zero-orderholds, track-and-holds, or sample-and-hold amplifiers. Although these terms are generally used interchangeably today, some technical distinctions should be pointed out.

Strictly speaking, a sample-hold takes a very fast sample and then goes into the hold mode. This means that the switch closes for only a very short period of time, usually because a pulse transformer drives the switch. A track and hold circuit, on the other hand, can track the input with the switch closed indefinitely and then go into the hold mode upon command.

A zero-order hold may be either a sample-hold or track-and-hold. When a device is called a zero-order hold, that means it's used as a signal recovery filter. There are various types of sample-hold recovery filters such as zero-order holds, first-order holds, fractionalorder holds, and polygonal holds.

The term "sample-and-hold amplifier" can refer to either a sample-hold or a track-and-hold, and originates from the fact that operational amplifiers are used to make sample-hold circuits.

Although there's a technical distinction between the terms sample-hold and track-and-hold, it's automatically assumed that both functions are included
in the term "sample-hold," as just about all sampleholds can also track and hold. The few circuits that can only sample for a short time, and cannot track the input, are clearly labeled this way.
To appreciate the difference between true samplehold operation and track-and-hold operation, see Fig. 2. In Fig. 2a, a sample-hold periodically takes a sample of the input, a sinusoid in this case, and holds it for the rest of the time. In Fig. 2b, a track-and-hold tracks the input for part of the time and holds it for the rest. Here, the track time and hold time are equal.

Zero-order hold

An important sample-hold application is reconstructing, or recovering, an analog signal that has been transmitted as a train of pulse samples, like those in Fig. 3a. To reconstruct the original signal waveform, a sample-hold, or zero-order hold, retains the peak value of a sample until the next one arrives, thus filling in the spaces between them, as in Fig. 3b. The result is a reasonable reconstruction of the original signal before it was converted to a pulse train. Ideally, the average of the reconstructed waveform, shown dashed in Fig. 3b, is a near-replica of the original waveform, delayed by half the sampling period, T .
If the staircase waveform of the output is objectionable, a low-pass filter following the zero-order hold will smooth the waveform further. This filter will add further phase delay, but the resulting reconstruction of the original signal is much better, as Fig. 3c shows. The cutoff frequency of this filter must be determined from the sampling rate and the bandwidth of the signal to be recovered. The lower the cutoff frequency, the better the smoothing.

The zero-order hold is a type of filter. As with other types of filters, its gain-phase characteristics are important to know. These gain and phase terms are

DATA ACQUISITION \& CONVERSION HANDBOOK

plotted in Fig. 4. The zero-order hold is obviously not an ideal filter with its $(\sin x) / x$ amplitude response. Nevertheless, it reconstructs signals respectably. Its gain is slightly more than 3 dB down at a frequency of $f_{s} / 2$, and it again goes to zero at integral multiples of the sampling frequency, f_{s} There are some undesirable gain peaks at frequencies of $3 / 2 f_{s}, 5 / 2 f_{s}$, etc. These peaks are frequently attenuated by a low-pass filter following the zero-order hold. A zero-order hold as a filter has a perfectly linear phase response (Fig. 4 b), which results in the constant phase delay of $\mathrm{T} / 2$ for the output signal.

There are also more-sophisticated recovery filters than the zero-order hold circuit. These higher-order hold circuits, known as first-order holds, second-order holds, etc., reconstruct a signal more accurately than a zero-order hold (Fig. 5). A first-order hold does this by retaining the value of the previous sample as well as the present one. It then extrapolates from existing data to predict the slope to the next sample, which hasn't arrived yet (Fig. 5b). When a new sample comes in, it generates a slope proportional to the difference between this sample and the previous one. If the slope of the original signal hasn't changed much, the resulting error is small; for a constant slope, the error is zero. When the original signal reverses its slope quickly, the output "goes the wrong way," causing a fairly large error for one sample period.

An interpolative first-order hold, also called a polygonal hold, reconstructs the original signal much more accurately. This circuit also generates a line segment with a slope proportional to the difference between consecutive samples, but rather than extrapolate into the future, it interpolates between samples already received. Its accuracy is achieved at the expense of a delay of one sample period, which is necessary because a new sample must arrive before the line segment can be generated by starting from the previous sample.

Lots of circuit variety

Sample-holds come in many different circuit configurations, each suited to different speed and accuracy requirements. It's important to know the common configurations and how they operate to choose the proper type and apply it properly.

One configuration is popular because it's accurate and simple. This circuit, shown in Fig. 6a, has a gain of -1 since $R_{1}=R_{2}$; however, making R_{2} larger than R_{1} gives inverting gains larger than one. When the switch closes, hold capacitor C_{H} charges to the negative of the input voltage. The switch opens after the capacitor has acquired this voltage to the desired accuracy.

Although potentially very accurate, this circuit is not a fast sample-hold. The capacitor charges slowly since it has a time constant of $\mathrm{R}_{2} \mathrm{C}_{\mathrm{H}}$; with practical values such as $\mathrm{R}_{2}=2 \mathrm{k}$ and $\mathrm{C}_{\mathrm{H}}=2 \mathrm{nF}$, the time

6. This type of inverting, closed-loop circuit is both accurate and simple. The charge time constant, $\mathrm{R}_{2} \mathrm{C}_{\mathrm{H}}$, of the basic circuit (a) is much too long for some applications. The current booster in (b) speeds up charging considerably. The input resistance, R_{1}, may be too low for some sources; the buffer raises it a great deal.
constant is $4 \mu \mathrm{~s}$. To reach a value within 0.01% of the input requires about nine time constants, or in this case, $36 \mu \mathrm{~s}$.

Speed can be improved considerably, as shown in Fig. 6b, by adding an amplifier with current gain, inside the feedback loop. The operational amplifier must also be able to supply this current to the capacitor. Since these amplifiers have low output resistance, the circuit's time constant is much lower. For example, with the same valued capacitor and an amplifier output resistance of 20Ω, the time constant is only 40 ns rather than $4 \mu \mathrm{~s}$. Now, only the amplifiers' output current capability limits charging.

With a maximum output current of 20 mA from this amplifier to charge the capacitor and a $40-\mathrm{ns}$ time constant, the capacitor takes just $1.2 \mu \mathrm{~s}$ to charge to within 0.01% of final value. This is much faster than the $36 \mu \mathrm{~s}$ for the previous circuit. Note that in the latter case, Fig. $6 b, R_{1}$ and R_{2} can be larger since R_{2} no longer determines the charging time constant.

An input buffer amplifier improves this circuit further by boosting the input resistance to a much higher value than that of the input resistor R_{1}. In fact, the input resistance can be as high as 10^{8} to 10^{12} ohms. Such high resistances are required when a samplehold follows an analog multiplexer. In this case the buffer amplifier must be fast, since its settling time becomes part of the time required to charge the holding capacitor. The buffer can also be added to the circuit of Fig. 6a. Both sample-holds in Fig. 6 are referred to as closed loop, since the capacitor charging takes place within a closed loop circuit.

Fig. 7 shows a noninverting closed-loop sample-hold in which A_{1}, that is serving as both an input buffer amplifier and an error-correcting amplifier, compares the output voltage to the input voltage, then charges the holding capacitor until this error is reduced to zero.

Amplifier A_{1} also gives this circuit a high input resistance.
Thanks to the error-correcting feedback in this sample-hold, A_{2} need not be very accurate so long as its gain is roughly unity. Resistor R isolates the output of A_{2} from the input of A_{1} during hold mode.
This circuit is both fast and accurate; how fast it charges the capacitor depends on the speed of A_{1} and its output current capability. Two back-to-back diodes clamp A_{1} 's output to its negative input so that A_{1} remains closed-loop stable when the switch is opened. Note that in this circuit the switch must float up and down with the input voltage, whereas in the circuits of Fig. 6 the switch always operates at virtual ground.

Operational transconductance amplifiers

Fig. 8 shows another type of sample-hold circuit, which is versatile and can be operated in a number of closed loop configurations. This circuit is an operational integrator that can be enclosed in the feedback loop of A_{1}. In this case, however, A_{1} is an operational transconductance amplifier; that is, one that produces an output current proportional to its input voltage. The current charges the holding capacitor while the integrator's input remains at virtual ground.
In this circuit, the two switches operate out of phase. Switch S_{1} closes to sample, then S_{2} closes to reduce hold-mode feedthrough when S_{1} opens again.
This circuit can be connected in different ways as a closed-loop sample-hold: Fig. 9a shows the most commonly used connection, a noninverting samplehold with a gain of +1 ; Fig. $9 b$ shows the noninverting connection with gain, and Fig. 9c shows the inverting connection with gain.
Both of the switches in these circuits operate at virtual ground, an advantage in driving the switch and producing an accurate output voltage. This circuit has been successfully used in monolithic, hybrid, and modular sample-hold devices.

Another popular noninverting, unity-gain circuit is shown in Fig. 10. It's basically the same as the one shown in Fig. 1b, with two unity-gain buffer amplifiers. This type of open-loop sample-hold is commonly used in ultra-fast designs. In this case, a pulse transformer drives a fast diode bridge switch.
Normally, the supply voltage back-biases the diodes. Sampling is done by a fast-rise command pulse that turns on the diodes to charge the hold capacitor from the input buffer. Using ultra-fast buffer amplifiers and an appropriate diode-gate switch, such sampleholds can charge the hold capacitor to a full-scale change in as little as 30 nanoseconds. Because of the open-loop configuration, there is no problem with phase delays from output to input caused by a feedback loop. This means that the circuit is both fast and stable.

7. Closed-loop sample-holds can also be noninverting. In this configuration, A_{1} is both an input buffer and an errorcorrecting amplifier. When the switch closes, current from A_{1} charges the hold capacitor until the output equals the input. The pair of diodes clamps A_{1} 's output to keep it stable when the switch is open.

8. Several closed-loop sample-hold configurations can be built around this circuit, shown without its feedback connections. Basically, it's an operational integrator driven by an operational transconductance amplifier, A_{1}.

The input buffer in this circuit is difficult to design, for it must be both fast and stable while driving the hold capacitor load. Sampling switches, however, cause no such problems.

The basic sampling switch circuits commonly use junction FETs, MOSFETs, D-MOS FETs, and diodegate switches. All of these can be both fast and accurate. The FET-type switches have the advantage of zero offset since they are purely resistive in the closed state. The diode-gate switch does have an offset voltage, however, which is minimized by properly matching the diode forward-voltage drops.

The infinite-hold circuit

All sample-hold circuits have the problem that once they are in the hold mode, the charge will gradually leak off the hold capacitor due to switch leakage, capacitor leakage, and output amplifier bias current. It was mentioned previously that a digital register can store a number equivalent to a voltage value as long as necessary.

The "infinite hold" circuit uses this principle to store a voltage value for any required time without any drift due to leakage. The circuit, shown in Fig. 11, is basically a tracking a / d converter, with its output

Know your circuit

Sample-hold: The generic term used for track-andhold, zero-order hold, or sample-and-hold amplifier, it describes basically a circuit that acquires an analog input voltage and accurately stores it for a specified period of time.
Track-and-hold: A sample-hold circuit that can continuously follow the input signal until switched into the hold mode.

Signal-recovery filter: A circuit that reconstructs an analog signal from a train of analog samples.

Zero-order hold: A sample-hold circuit used as a signal recovery filter. So called because its output represents the first term of a power-series approximation to the input.

First-order hold, or extrapolative hold: A complex signal-recovery filter that predicts the next sample value by generating an output slope equal to the slope of a line segment connecting previous and
present samples. In a sense, it works toward the future.

Polygonal hold, or interpolative hold: A complex signal-recovery filter that generates a straight-line segment output that joins the previous sample value to the present sample. It uses available data to reconstruct the signal more accurately than other hold circuits, but with a one-sample-period delay.

Infinite hold: An analog/digital sample-hold that digitally holds an analog voltage indefinitely without the decay of capacitor storage.

Closed-loop sample-hold: A sample-hold circuit that charges the hold capacitor within a negative feedback loop during sampling to achieve high accuracy.

Open-loop sample-hold: A sample-hold circuit that does not enclose the hold capacitor within a feedback loop.

9. Here are three different ways to connect the input and feedback to the partial circuit in Fig. 8. The circuit in (c) has unity gain if the input $\left(R_{1}\right)$ and feedback $\left(R_{2}\right)$ resistors have equal values.

10. Ultra-fast sample-holds often use a circuit like this. It has a diode-bridge switch and operates open-loop. The diodes are biased off until a sample command arrives; then the pulse transformer's output turns on the diodes, which connect the input buffer amplifier to the hold capacitor. A 30-ns full-scale change is possible.

11. Sometimes called an "infinite hold," this circuit can hold a sample indefinitely without the droop that happens with capacitor storage. It's an a/d converter with its output taken from the analog feedback line. A high on the sample command line lets the output follow the input. A low freezes the count inputs, so the count doesn't change.
from the analog feedback line rather than from the counter. It consists of a d/a converter, up-down counter, clock, and analog comparator. The circuit operates by directing clock pulses into the up or down count inputs of the bidirectional binary counter that controls a d/a converter.

An analog comparator tests the output voltage of the d/a converter against the input voltage and directs the clock pulses to the counter so that the converter's output voltage changes toward the input. When the input voltage is reached, the circuit oscillates within one count of the input value. When the sample command goes low, the counter retains its contents indefinitely until the next sample is taken.

This circuit is not particularly fast since it must go to each new value one count at a time until the input voltage is reached. Different counting techniques will speed it up, however. Its accuracy depends on the resolution of the d / a converter; $\pm 0.01 \%$ accuracy requires at least 12 bits.

Keep track of a sample-hold from mode to mode to locate error sources

Acomplicated process begins when a sample-hold takes a sample. The complications increase when it switches into the hold mode. To this bumper crop of complications, add the actual sample-to-hold transition itself, which, as a complex and important event, must not be overlooked. Understanding the intricate workings of this process is the basis for understanding the sources of error in the system and how to minimize them.

In the sample mode, the sampling switch closes and the circuit charges the hold capacitor to the input voltage. With the capacitor charged, the circuit tracks the input signal as it changes. However, tracking is possible only if the signal doesn't exceed the bandwidth or slew rate limit of the sample-hold. The term "sample mode" applies regardless of how long tracking continues.

The operating parameters that apply to the samplehold in the sampling mode are specified in the same way as an operational amplifier's. Offset voltage, expressed in millivolts, may be referred to either the input or output, and is usually adjustable to zero with an external potentiometer. Dc gain, the ratio of output to input voltage at dc, is commonly either +1 or -1 . With some sample-holds, adding external feedback resistors provides other gains, and some allow trimming external gain to precisely +1 or -1 .

Bandwidth, the sinusoidal frequency at which gain is down by 3 dB from its dc value, is measured with a small-signal sine wave below the slew rate limit. The slew rate is the fastest rate at which the sample-

1. Acquisition time of a sample-hold starts with the sample command and ends when the voltage on the hold capacitor enters and stays in the error band. Acquisition time is defined for a full-scale voltage change, measured at the hold capacitor.

2. This equivalent circuit for determining acquisition time
(a) shows the importance of the charging time constant, $\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{H}}$. Acquisition time is the sum of the various delays incurred in charging the hold capacitor to its final value (b), and is dominated by slew-limited charging.

3. Acquisition time may be less than or greater than the time it takes the output voltage to settle to its final value. In (a), the capacitor reaches its final value before the

output a mplifier catches up. In (b), the protective resistor permits the output to settle before the capacitor reaches its final voltage.
hold output can change. Specified in volts per microsecond, slew rate is generally determined by the charging rate of the hold capacitor.

Acquisition time counts

The most important specification of the sample-hold in the sample mode is acquisition time-the time required, after the sample command is given, for the hold capacitor to charge to a full-scale voltage change and remain within a specified error band about its final value.

As illustrated in Fig. 1, the definition applies to the capacitor voltage, not the output voltage of the circuit. The reason for this will become clear shortly. The figure shows an initial switching delay following the sample command. After this delay, the hold capacitor charges at a maximum rate which is determined by its charging current.
Initially, as the capacitor voltage attempts to enter the final value error band, it slightly overshoots the band, but then enters and remains within it. The amount of overshoot, generated by a wideband input amplifier driving a capacitive load, depends on this
amplifier's stability. Acquisition time is therefore measured from the beginning of the sample command transition to the point where the signal enters the error band and stays there.

Another useful definition of acquisition time is the amount of time following the sample command transition that the hold command can be given so that the hold capacitor retains the voltage change to the required accuracy. The full-scale voltage change is usually specified as a $10-\mathrm{V}$ change, although other magnitudes may be specifically stated. The error band is commonly specified from 0.2% down to 0.005%, with other values possible. Within this range there are sample-holds available that provide acquisition times from about $10 \mu \mathrm{~s}$ down to 20 ns . Basically, acquisition time determines the maximum sampling rate at which a sample-hold can be operated.

Several circuit limitations determine the achievable acquisition time for a sample-hold: the speed of the input amplifier with a capacitive load, the current available to drive the hold capacitor, the source resistance driving the hold capacitor (both amplifier output and switch), and the value of the hold capacitor. Either the input amplifier or the switch may limit

4. Hold-mode droop is caused by currents that charge or "inharge the hold capacitor. These include switchleakage, -tray-leakage, amplifier-bias currents and leakage within the hold capacitor itself.
the current available to drive the hold capacitor.
Fig. 2 shows the relationship between the acquisition time, the current available to charge the capacitor, and the time constant associated with the hold capacitor. For example, to determine the acquisition time for a $10-\mathrm{V}$ change to within 1 mV , or a 0.01% error band, assume a maximum charging current from the amplifier and switch of 20 mA and a capacitor value of $0.002 \mu \mathrm{~F}$. The rate of change of capacitor voltage $\mathrm{dV}_{\mathrm{C}} / \mathrm{dt}$ is

$$
\begin{equation*}
\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{C}_{\mathrm{H}}}=\frac{20 \times 10^{-3}}{2 \times 10^{-9}}=10^{7}=10 \mathrm{~V} / \mu \mathrm{s}, \tag{1}
\end{equation*}
$$

where I_{C} is the charging current and C_{H} is the capacitance of the hold capacitor. After a 50 -ns switching delay, the capacitor begins to charge at a constant rate of $10 \mathrm{~V} / \mu \mathrm{s}$ until it approaches final value and maximum charging current is no longer required. This happens when

$$
\begin{equation*}
\mathrm{V}_{\mathrm{C}}=10-\left(\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{T}}\right)=9.6 \mathrm{~V} \tag{2}
\end{equation*}
$$

R_{T}, the total resistance in the hold capacitor's charging path, is also the sum of the amplifier output resistance $\left(R_{0}\right)$ and the switch series resistance (R_{S}).

The capacitor charges exponentially over the final 400 mV with a time constant of

$$
\begin{equation*}
\mathrm{T}=\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{H}}=20 \times 2 \times 10^{-9}=40 \mathrm{~ns} \tag{3}
\end{equation*}
$$

Since the final value error band is specified as 1 mV , it takes six time constants to reduce the 400 mV error to 1 mV , or 0.25%. Six time constants give a $240-\mathrm{ns}$ exponential settling time. The acquisition time is then the sum of the three times that are indicated in Fig. 2 b , or $0.05+0.96+0.24=1.25 \mu \mathrm{~s}$.
This illustrates a fast sample-hold that acquires to 0.01% accuracy and shows as well that the charging current to the capacitor must be high and the hold capacitor time constant must be low. The same acquisition time limitations apply to the other samplehold circuits shown in Part 1 of this series, which is why a current booster amplifier is required in one case.
Direct measurement of a sample-hold's acquisition
time is not always possible since in some cases the capacitor voltage is not accessible externally. If a sample-hold has an operational integrator output stage, acquisition time can be measured, but in other circuits it may not be possible because the capacitor is inside the circuit.

The two interesting cases in Fig. 3 illustrate why the acquisition time is defined in terms of the hold capacitor. In Fig. 3a, the output buffer has a slower response time than the input amplifier and capacitor. This lag means that when the capacitor acquires a new voltage, its final value is reached before the output of the sample-hold. The switch can be opened when the capacitor voltage has entered the specified error band even though the output voltage has not. Slightly afterward, the output amplifier settles to the correct output voltage.

Fig. 3b shows the output stage of one of the popular monolithic sample-hold circuits that has a resistor in series with the hold capacitor. This resistor provides short circuit protection to the capacitor terminal. The resistor, however, causes a lag in the capacitor voltage, which means that the capacitor is not fully charged when the sample-hold output voltage has reached final value. To allow the capacitor to charge completely, the sampling switch in this circuit must remain closed longer than indicated by the output voltage. The acquisition time in this case must be measured by starting with a long sample time and then gradually reducing this time until the output starts to show an error. These cases underscore the fact that acquisition time is properly defined at the capacitor rather than at the sample-hold's output.

Then there's hold mode

The second mode of operation for a sample-hold, when the sampling switch is open, is the hold mode. Two important specifications that characterize hold mode are hold mode droop, or voltage decay, and holdmode feedthrough.

Hold-mode droop, defined as the output voltage change per unit of time while in the hold mode, is commonly specified in volts per second, microvolts per microsecond, or other convenient quantities. Holdmode droop originates as leakage from the hold capacitor (see Fig. 4). The four leakage components consist of capacitor insulation leakage I_{CL}, switch leakage current $\mathrm{I}_{\text {SL }}$, output amplifier bias current I_{B} and stray leakage $\mathrm{I}_{\text {STRAY }}$ from the common terminal connection. The rate of voltage change on the capacitor $\mathrm{dV} / \mathrm{dt}$ is the ratio of the total leakage current, I_{L}, to hold capacitance C_{H}

$$
\begin{equation*}
\frac{\mathrm{d} \mathrm{~V}_{\mathrm{C}}}{\mathrm{dt}}=\frac{\mathrm{I}_{\mathrm{L}}}{\mathrm{C}_{\mathrm{H}}} \tag{4}
\end{equation*}
$$

If all the leakage currents don't have the same

Know the lingo

Acquisition time: How long it takes after the sample command is given, for the hold capacitor to be charged to a full-scale voltage change and to remain within a specified error band around its final value.

Aperture delay time: The time elapsed from the hold command to the opening of the switch.
Aperture jitter: Also called "aperture uncertainty time," it's the time variation or uncertainty with which the switch opens, or the time variation in aperture delay.

Aperture time: The averaging time of a samplehold during the sample-to-hold transition.
Bandwidth: The frequency at which the gain is down 3 dB from its dc value. It's measured in sample (track) mode with a small-signal sine wave that doesn't exceed the slew rate limit.
Effective aperture delay: The time difference between the hold command and the time at which the input signal is at the held voltage.

Figure of merit: The ratio of the available charging current during sample mode to the leakage current during hold mode.

Hold-mode droop: The output voltage change per unit of time while in hold. Commonly specified in V/s, $\mu \mathrm{V} / \mu \mathrm{s}$ or other convenient units.

Hold-mode feedthrough: The percentage of an input sinusoidal signal that is measured at the output of a sample-hold when it's in hold mode.

Hold-mode settling time: The time from the holdcommand transition until the output of the samplehold has settled within the specified error band. It includes aperture delay time.

Sample-to-hold offset error: The difference in output voltage between the time the switch starts to open, and the time when the output has settled completely. It is caused by charge being transferred to the hold capacitor from the switch as it opens.
Slew rate: The fastest rate at which the samplehold output can change. It's specified in $\mathrm{V} / \mu \mathrm{s}$.
polarity, the result is a somewhat lower droop rate.
To measure hold-mode droop, simply acquire a given voltage and then while watching the output voltage on an oscilloscope, switch into the hold mode. The droop may be positive or negative and is not necessarily linear with time (See Fig. 5a). Several possible droop rates are illustrated. The value measured, which appears on data sheets, is the slope right after initiation of the hold mode when the output voltage feeds an a / d converter or other circuit.

In addition, hold-modè droop changes exponentially with temperature. Most of the leakage that causes this droop comes from silicon devices. Since a device's leakage approximately doubles for every 10 C increase in temperature, hold-mode droop shares this characteristic. Fig. 5b shows a normalized plot of hold-mode

5. Droop in hold mode can be positive or negative-going, and may not be linear with time (a). Since most leakage current comes from silicon devices, droop as a function of temperature is predictable (b).
droop vs. temperature for virtually any sample-hold. Droop rate is specified on a data sheet at 25 C . To consider an example, a sample-hold with a droop rate of $100 \mu \mathrm{~V} / \mathrm{ms}$ at 25 C will have a rate of $3.2 \mathrm{mV} / \mathrm{ms}$ at 75 C and a rate of $102 \mathrm{mV} / \mathrm{ms}$ at 125 C .

For a given operating temperature, droop rate must be determined based on the required hold time in order to know the resulting error. Of course, below 25 C , droop rate improves by a factor of two for every 10 C . In cases where better droop rate is required, an extra hold capacitor must be added or a better samplehold selected. Additional capacitance also increases the acquisition time of the circuit.

In the case of monolithic sample-holds, the holdmode leakage is specified on the data sheet so that the required capacitor value can be figured from the

6. Aperture time can be measured by repeatedly feeding a tiny step (a) to the sample-hold's input and repeatedly shifting from sample to hold (b) with a varying delay, t_{x}. A perfect sample-hold would have an output like (c) as a function of delay time t_{x}, but a real sample-hold averages this step over t_{A}.

7. Effective aperture delay time is the difference between the input amplifier time delay, t_{a}, and the delay between the hold command and the time when the switch opens $\left(t_{d}\right)$. EADT may be positive, zero, or negative. If t_{a} is greater than t_{d}, the hold capacitor sees a delayed version of the input (b), which results in holding an input voltage that occurred before the hold command.
relationships in equation 4.
Since the hold capacitor directly affects both speed and accuracy of a sample-hold, it's useful to have a figure of merit for sample-holds. Increasing the hold capacitance decreases the droop rate, but increases acquisition time. Likewise, decreasing the capacitance increases the droop rate although it does decrease the acquisition time.

The figure of merit is a ratio that measures the improvement in both acquisition time and droop rate together. It is a dimensionless quantity and may have values of 10^{9} or more for a high quality sample-hold.

A useful figure of merit sometimes used with sample-holds is the ratio of the current available to charge the capacitor (I_{C}) to the leakage current from the capacitor (I_{L}). This ratio is approximately equal to the ratio of slew rate to droop rate:

$$
\begin{equation*}
\text { Figure of Merit }=\frac{I_{C}}{I_{L}} \approx \frac{\text { Slew Rate }}{\text { Droop Rate }} \tag{5}
\end{equation*}
$$

A source of error in the hold mode, hold-mode feedthrough, or simply feedthrough, is the second specification that characterizes hold mode. This parameter is the percentage of an input sinusoidal signal that's measured at the output of a sample-hold in the hold mode.

To measure feedthrough, apply a $20-\mathrm{V}$ peak-to-peak sinusoid to the input of a sample-hold while it is in the hold mode. A greatly attenuated version of the input shows up at the output, passing through switch capacitance and stray coupling capacitance. The resulting feedthrough can be measured easily with an oscilloscope. Typical values of feedthrough for a welldesigned sample-hold are from 0.05% down to 0.005% of the input. Feedthrough is sometimes expressed in

dB of attenuation.

Hold-mode feedthrough may vary with frequency, either increasing or decreasing at higher frequencies depending on the particular design of the sample-hold. Feedthrough is a most important specification when a sample-hold follows an analog multiplexer that switches between many different channels. Note that feedthrough can also be measured with a square-wave input rather than a sinusoid, since the square wave contains many harmonic frequencies.

A critical parameter

The most critical part of sample-hold operation is during the short sample-to-hold transition when the sampling switch opens. It's during this transition period that the real subtleties of sample-hold operation appear, including one of the most important parameters associated with this period, called aperture time.

Aperture time is the most misunderstood of all sample-hold specifications. There are actually several related parameters which use the word aperture as part of the specification.

The concept of aperture time in electronics relates closely to the root meaning of aperture: an opening, or hole. In electronic measurements aperture is the "opening" or "window" of time during which a signal is averaged or measured. For example, in an a/d converter, the conversion time is the time required to measure the input signal and is also known as the aperture time of the converter. In fact, a sample-hold is the device that reduces the aperture time of an a / d converter by replacing the converter's time window with the sample-hold's much shorter window.

8. Timing uncertainty in the switch and driver circuit produces uncertainty in the held voltage, which for a given period of time, increases with the rate of change of the signal voltage.

9. To obtain the error due to aperture uncertainty time for a given signal rate of change, a full-log plot is helpful. This plot assumes a $10-\mathrm{V}$ full-scale signal.

10. Drain-to-gate capacitance, $C_{d g}$, transfers some charge, q, when a FET sampling switch opens. The resulting voltage step on the hold capacitor, C_{H}, is small if C_{H} is large. The switch in the first circuit (a) operates at virtual ground.

Ideally, a sample-hold takes a point sample of the input signal, that is, an accurate sample in zero time. Since this is impossible, the sample is actually taken in the short period of time when the switch opens, during which the signal is averaged. The aperture time
therefore occurs after the signal has been acquired, when the switch rapidly opens.

Aperture time is frequently, but mistakenly, defined as the turn-off time of the switch. If this were true, aperture times would be extremely small since the switch opens very quickly. The confusion stems from the fact that the switch follows a band-limited input amplifier which, even if the switch opening were instantaneous, averages the result over a small period of time.

To interpret aperture time, as in Fig. 6, assume the sample-hold receives a $1-\mathrm{mV}$ input step (Fig. 6a). The hold command transition (Fig. 6b) can be adjusted to occur before, with or after the input step. The timing difference between the two, designated t_{x}, can be positive, zero, or negative. (For simplicity, assume no delay between the hold command and the opening of the sampling switch.) To make the measurement, feed the sample-hold with repeated input steps and hold commands while slowly varying t_{x}. As the hold command transition effectively scans across the input step, the sample-hold's output in hold mode changes. Ideally, when hold-mode output is plotted against t_{x}, it should look like Fig. 6c. Such an output, a perfect sample with no averaging, requires an infinitebandwidth input amplifier in addition to an infinitelyfast switch.

Since this is not possible, the input step is averaged, or filtered, by both the switch with a non-zero opening time, and by the input amplifier, which has limited bandwidth. The actual waveform therefore looks like Fig. 6d. The filtering action of the switch and input amplifier slows the rise-time of the step to t_{A}, which is the aperture time or aperture window of the samplehold as shown in Fig. 6e. Mathematically convolving the input step (Fig. 6a) with the aperture window (Fig. 6e) gives the actual output (Fig. 6d).

In practice, because of amplifier and switch speed limitations, it is extremely difficult to achieve true aperture times less than a few nanoseconds.

Delayed window

Aperture delay time, another frequently used term concerning the sample-to-hold transition, is generally defined as the elapsed time between the hold command and the opening of the switch. Aperture delay time, a pure time delay, can be compensated out by advancing or delaying the hold command. Furthermore, this specification is difficult to measure, if not impossible, since the precise time when the switch turns off cannot be determined directly.

A more useful specification might be called effective aperture delay, and defirred as the time difference between the hold command and the time at which the
input signal and the held voltage were equal. In other words, effective aperture delay relates the hold command to the point on the input signal which was held (see Fig. 7).
Effective aperture delay really points out the difference between the two delay times snown in Fig. 7. The first is the analog delay through the input amplifier, while the second is the digital delay to the switch opening (Fig. 7a). Effective aperture delay (EAD) is then equal to $\left(\mathrm{t}_{\mathrm{d}}-\mathrm{t}_{\mathrm{a}}\right)$.
Notice that either a positive, negative, or zero value may be obtained depending on which delay is larger. Fig. 7b illustrates negative effective aperture delay. In this instance, time lag in the input amplifier has resulted in holding an input voltage which occurred before the hold command. Knowing effective aperture delay time then is more useful than knowing aperture delay time.

A related specification, aperture uncertainty time, or aperture jitter, is the uncertainty in the time at which the switch opens. Actually, it's the time variation in aperture delay time. If the sampling switch receives the hold command for a series of samples at the same point on a waveform, it will hold slightly different values each time.

Aperture uncertainty time originates in the digital driver circuit and switch. The hold command has a finite risetime and must pass through one or more logic thresholds that have voltage noise. These transitions therefore generate time uncertainties. The significance of aperture uncertainty time is that it causes an amplitude uncertainty in the held output of the sample-hold. This amplitude error, $\Delta \mathrm{A}$, shown in Fig. 8 , equals the product of the rate of change of the input signal $\mathrm{dV} / \mathrm{dt}$, and the aperture uncertainty t_{u}.

This product is the basis of a graph (Fig. 9) that gives aperture uncertainty vs. signal rate of change for various accuracies. The accuracy is based on 10volt full scale signals. The surprising fact is that moderate speed signals produce relatively large errors even with small aperture uncertainties. For example, if the aperture uncertainty is 10 ns and the input signal rate of change is $1 \mathrm{~V} / \mu \mathrm{s}$, the amplitude error is 0.1% for 10 V full scale. Reducing this error to 0.01% means that the aperture uncertainty time has to be reduced to just 1 ns .

Aperture uncertainty time is generally quite small in well-designed sample-holds since it's possible to achieve values of a few nanoseconds down to tens of picoseconds. As a rough rule of thumb, the aperture uncertainty tends to be 10% or less of the aperture delay time; in some designs it can be as low as 0.1%.

Sample-to-hold offset error develops when the switch opens, as a direct result of a phenomenon called charge dumping or charge transfer.

11. Sample-to-hold offset error varies with input signal voltage if the sampling switch floats with the signal, but is unaffected by variations in signal voltage if the switch operates at virtual ground.

12. When an a / d converter follows a sample-hold, the start-conversion pulse must be delayed until the output of the sample-hold has had enough time to settle within the error band and stay there.

There are two types of sample-hold switches; one operates at virtual ground (Fig. 10a), while the other operates at the signal voltage (Fig. 10b). Every electronic switch has a capacitance associated with it. In this case it is C_{dg}, the drain-to-gate capacitance of the junction FET switches shown. This capacitance couples the switch-control voltage on the gate to the hold capacitor.

Since the switch-control voltage must generally be rather large, a significant charge transfers from the hold capacitor to the gate-drive circuit when the switch is turned off. This charge is

$$
\begin{equation*}
\mathrm{q}=\mathrm{C}_{\mathrm{dg}} \Delta \mathrm{~V}_{\mathrm{g}} \tag{6}
\end{equation*}
$$

where $\Delta \mathrm{V}_{\mathrm{g}}$ is the change in gate voltage. The error this produces on the hold capacitor is then

$$
\begin{equation*}
\mathrm{V}_{\mathrm{c}}=\frac{\mathrm{q}}{\mathrm{C}_{\mathrm{H}}}=\frac{\mathrm{C}_{\mathrm{dg}}}{\mathrm{C}_{\mathrm{H}}} \Delta \mathrm{~V}_{\mathrm{g}} . \tag{7}
\end{equation*}
$$

This error typically might be 10 mV assuming 2 pF for C_{dg}, a $10-\mathrm{V} \Delta \mathrm{V}_{\mathrm{g}}$, and a $0.002 \mu \mathrm{~F}$ hold capacitor. Sample-to-hold offset error is one of the un-
desirable, inherent characteristics of sample-hold circuits. It should be looked for and recognized. The charge transfer that causes this error is expressed in picocoulombs and in practical circuits it may vary from 50 pC down to 0.1 pC . Since monolithic samplehold circuits require external hold capacitors, their voltage error must be determined by equation 7 . Sample-holds with internal capacitors have a specified sample-to-hold offset voltage. This offset, of course, can be decreased by adding an external capacitor to increase the total hold capacitance.
Note that the two switch configurations in Fig. 10 have somewhat different charge transfer characteristics. In the virtual ground switch the charge transfer is constant regardless of the signal voltage, since the gate voltage change is always the same. In the other switch, however, the gate voltage change varies with the signal voltage. This causes the charge transfer to vary with signal level. Furthermore, the drain-to-gate capacitance also varies with the signal voltage, so that the charge transfer itself is nonlinear and even has a "gain error."

Some have curved errors

The output error caused by charge transfer differs for the two types of switches (Fig. 11). The virtual ground switch produces a constant offset error vs. signal voltage, while the floating switch produces a nonlinear error vs. signal voltage. Charge transfer is
obviously a limiting factor in a high-accuracy, highspeed sample-hold. It works against attaining both these characteristics simultaneously. Some sampleholds have unique switch designs that minimize or compensate for this charge transfer. In some of them, an externally-adjustable compensation circuit minimizes the charge transfer. If the sample-to-hold offset error is constant with signal voltage, then the error is relatively easy to handle since it can be zeroed with a simple offset adjustment.
Another effect of the sample-to-hold transition is a small transient in the output just after going into the hold mode-the hold mode settling time (Fig. 12b). This is the time it takes the output of the samplehold to settle within the specified error band after the hold command transition. Notice that the hold mode settling time includes aperture delay time. Fig. 12 shows the small output transient caused by the rapid switch turn-off at the input to the buffer amplifier.
This transient occurs after the output settles to a new value that includes the sample-to-hold offset. Hold mode settling time may be a few nanoseconds to a microsecond or so, depending on the particular sample-hold. It is an important specification because an a/d conversion that follows sampling and holding cannot begin until hold-mode settling is complete without causing a conversion error. As Fig. 12 shows, the pulse that starts the converter is generated after the sample-hold output has settled within the specified error band.

Pick sample-holds by accuracy and speed and keep hold capacitors in mind

When it comes to selecting a sample-hold device, fortunately there's a fine assortment available: monolithic, hybrid and modular types can all give good performance. There are different degrees of good performance, of course, and for the most part the sample-hold that's finally selected will depend on the degree of speed and accuracy needed. Depending on the type of sample-hold and its application, it may need an external hold capacitor. This capacitor should be chosen with as much care as the sample-hold itself, for its quality directly affects the performance of the sample-hold. There will be more about selecting hold capacitors, but first, it's a good idea to consider error analysis, which is vital in appraising the total error contribution of a samplehold to a system.
In a given system, of course, the sample-hold is but one of the many sources of error that may also include an amplifier, filter, multiplexer, and a / d converter. Achieving total system accuracy on the order of 0.01% is by no means a trivial task, but quite the opposite. It pays to take a somewhat pessimistic approach in adding up the errors, and follow this by thorough testing of the sample-hold's accuracy in the system. In many cases the results will be a pleasant surprise, because a conservatively-specified device has been chosen. In other cases, it won't be a shock to discover that the analysis is about right because the samplehold that was selected has been specified right at the edge of its performance.
The best way to handle error analysis is with a
systematic listing like the one in Table 1, which gives errors for a fast, accurate system with 0.01% error as a design goal. The errors are computed for an assumed operating temperature range of 0 to 50 C and take into account all of the specifications discussed in this series.

What seems to be a large total error in Table 1 shouldn't be alarming. The sample-hold evaluated, designed for use in 12 -bit systems, has been conservatively specified. If all the errors add in the same direction, the total error is $\pm 0.036 \%$, but this is an unlikely possibility. Adding the errors statistically (RMS) gives a better figure of $\pm 0.017 \%$, which is a good bit closer to the goal. Since most of the errors are specified as maximums, the typical statistical error is actually close to 0.01%.
Speed and accuracy are the two foremost considerations in choosing a sample-hold, and the key to proper selection is an error analysis that takes the desired sampling rate into account. The circuit configuration, a subject discussed in Part 1 of this series, affects performance in certain applications, so it should be kept in mind as well.

Consider monolithics first

In general, a monolithic device should be considered first, since it will result in the lowest-cost design if moderate performance is acceptable. Moderate performance implies about $4 \mu \mathrm{~s}$ acquisition time to 0.1% and 5 to 25μ s to 0.01%. Monolithic devices use external hold capacitors, so one will need to be selected.

Hybrid microcircuit sample-holds offer a step up in performance without a major increase in size. Acquisition times of $5 \mu \mathrm{~s}$ down to $1 \mu \mathrm{~s}$, to 0.01% accuracy are available, and even faster acquisition times for 0.1% can be obtained. Most hybrid sampleholds include an internal hold capacitor, so there's no need to select one unless additional capacitance is needed. Many hybrids use MOS-type hold capacitors which offer exceptionally good performance.

Both the newer monolithic as well as hybrid devices equal or surpass the performance of many of the early low-cost modular sample-holds, but they can't match the newer, high-performance modular types. These new modules offer some difficult-to-achieve speed and accuracy specifications such as $350-\mathrm{ns}$ maximum ac-

Table 1. Error analysis of an accurate, high speed sample-hold

Source of error	Error contribution	Comments
Acquisition error	0.01\%	Maximum error specified for rated acquisition time.
Gain error	0.00	Externally adjustable to zero.
Offset error	0.00	Externally adjustable to zero.
Nonlinearity	0.005\%	Maximum specified.
Droop error	0.01\%	For 10μ s hold time. Using 25 C droop of $20 \mu \mathrm{~V} / \mu \mathrm{S}$ max. and multiplying by 10 to give droop of 1 mV at 50 C . This is 0.01% for 10 V full scale.
Gain change	0.004\%	Using specified 15 ppm $/{ }^{\circ} \mathrm{C}$ max., \times maximum temperature change of 25 C .
Offset change	0.008\%	Using specified $30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max., X max. temperature change of 25 C .
Dielectric absorption	0.003\%	Estimated error voltage during hold time using curve of Fig. 2.
Total RMS Total	$\begin{aligned} & 0.036 \% \\ & 0.017 \% \end{aligned}$	

quisition time to 0.01%, or 50 ns to 0.1%.
Once a sample-hold has been selected, it may need a hold capacitor. These capacitors have somewhat unusual requirements. Some parameters, such as tempco of capacitance, matter very little, while others, such as dielectric absorption, are very important. Dielectric absorption affects the accuracy of the held voltage, although insulation resistance is quite important as well, for the same reason.

When high accuracy is needed, the range of satisfactory capacitor dielectrics narrows down to those in Table 2, which gives the important specs for them. Note that insulation resistance, which is quite high at 25 C , drops drastically at higher temperatures, such as 125 C . That's because insulation resistance decreases exponentially with temperature.

It won't stay put

If a capacitor is charged to a given voltage, discharged by shorting it, and then open-circuited again, its voltage will begin to creep up from zero toward the original voltage. The capacitor exhibits a "voltage memory" characteristic known as dielectric absorption, which occurs because the dielectric material

1. In this example of dielectric absorption error, the hold capacitor has been sitting at +5 vor some time. Although given enough time to settle completely during sampling. in hold mode, the capacitor's voltage creeps back toward $+5 \mathrm{~V}(\mathrm{a})$. An imperfect capacitor with dielectric absorption can be modeled (b) by a perfect capacitor. C. the insulation resistance, R_{l}, and the long-time-constant components r_{d} and c_{d}, which simulate dielectric absorption.
doesn't polarize instantaneously-molecular dipoles need time to align themselves in an electric field. As a result, not all the energy stored in a charged capacitor can be quickly recovered upon discharge.
One way to measure dielectric absorption is to charge the capacitor to some voltage for 5 minutes, discharge it through a $5-\Omega$ resistor for 5 seconds, then disconnect it. Measure the capacitor voltage five minutes later. The ratio of the measured voltage to the charging voltage, expressed in percent, is the dielectric absorption.
Even though the time scale in a sample-hold is usually far shorter than 5 min , dielectric absorption is still a source of error and should be taken into account. Assume the hold capacitor has been resting at a given voltage V_{0} when a different voltage is sampled and held. Once hold mode begins, the voltage on the capacitor will begin to creep back toward V_{0}. Thus, the dielectric absorption causes an error as illustrated in Fig. 1a.
Fig. 1b shows a first-order approximation model of an imperfect capacitor, emphasizing dielectric absorption. Resistor R_{i} represents the insulation resistance and r_{d} and c_{d} represent the source of the dielectric absorption. (Actually, to model the absorption accurately, there should be a number of additional, parallel $r_{d} \mathbf{c}_{d}$ circuits with different values.)

After capacitor C in the model has been rapidly discharged from a previous voltage and then opencircuited, the long time constant of $r_{d} c_{d}$ causes some of the charge on c_{d} to transfer slowly to C , which develops a small voltage.

An accurate approximation to this "creep" voltage

2. A natural \log function of time is an accurate approximation to the voltage creep caused by dielectric absorption. Before sampling, the capacitor has been holding a voltage V_{0}. A new sample charges the capacitor to a new
voltage (zero, in this case, for simplicity), for period t_{s}. Once in hold mode, the capacitor reaches a voltage $\Delta \mathrm{V}$ at time $2 \mathrm{t}_{\mathrm{s}}$ and continues to creep toward V_{0} according to the logarithmic expression.

3. A data-acquisition system scans a number of analog inputs and converts them, one at a time, to digital form (a). The sample-hold provides an unchanging input to the

converter until its conversion is complete. When it's finished, the status line goes low to permit the next input in sequence to be converted (b).

First, determine the value of $\Delta \mathrm{V}$ from the measured dielectric absorption. The standard tests for dielectric absorption normally specify $t_{h} \gg t_{s}$, which is the correct way to make them. Since the equation is logarithmic, there is no asymptote to the curve, which continues to rise. For all practical purposes, however, a hold time much longer than the sample time will give a value for dielectric absorption that's far out on the curve.

Assume that the dielectric absorption is measured as 0.02% for a point at which $t_{\mathrm{h}}=15 \mathrm{t}_{\mathrm{s}}$ or $\mathrm{t}=$ $16 \mathrm{t}_{\mathrm{s}}$. Then

$$
\begin{aligned}
\Delta \mathrm{V} & =\frac{2 \times 10^{-4} \mathrm{~V}_{0}}{\ln 16} \\
& =7.21 \times 10^{-6} \mathrm{~V}_{0}
\end{aligned}
$$

where the dielectric absorption is defined as $\mathrm{V}_{\mathrm{c}} / \mathrm{V}_{\mathrm{o}}$ at $t=16 \mathrm{t}_{\mathrm{s}}$. 't'he resulting equation for creep voltage is

Table 2. Sample-hold capacitor characteristics

Type	Operating temperature range (${ }^{\circ} \mathrm{C}$)	Insulation resistance at 25 C (Megohmmicrofarads)	Insulation resistance at 125 C (Megohmmicrofarads)	Dielectric absorption
Polycarbonate	-55 to +125	5×10^{5}	1.5×10^{4}	0.05\%
Metallized polycarbonate	-55 to +125	3×10^{5}	4×10^{3}	0.05\%
Polypropylene	-55 to +105	7×10^{5}	$5 \times 10^{3}(1)$	0.03\%
Metallized polypropylene	-55 to +105	7×10^{5}	$5 \times 10^{3}(1)$	0.03\%
Polystyrene	-55 to +85	1×10^{6}	$7 \times 10^{4}(2)$	0.02\%
Teflon	-55 to +200	1×10^{6}	1×10^{5}	0.01\%
Metallized Teflon	55 to 1200	5×10^{5}	2.5×10^{4} (1) At 105 C (2) At 85 C	0.02\%

4. In a single-channel system, the settling time of the input buffer amplifier, A_{1}, isn't critical because the amplifier can follow changes in the signal (a). With multiplexed inputs (b), however, the input buffer may take additional time to settle to the new value at the multiplexer's output when it switches channels.

$$
\mathrm{V}_{\mathrm{c}}=7.21 \times 10^{-5} \mathrm{~V}_{0} \ln \frac{\mathrm{t}}{\mathrm{t}_{\mathrm{s}}}
$$

Two factors reduce considerably the error due to dielectric absorption in typical applications of a sample-hold. First, the dielectric absorption measurement assumes a long initial charging time, say 5 minutes, whereas in a sample-hold a new voltage is held for a relatively short time. Second, the dielectric absorption is specified for a long open-circuit time compared with the shorting time, whereas in a samplehold the hold time may be only slightly longer than the sample time.

The amount of creep voltage can also be reduced by remaining in the sample mode as long as possible relative to the hold time. The result of these factors is that a capacitor with a dielectric absorption of 0.02%, for instance, may contribute 0.005% or less
error to the sample-hold, as the curve in Fig. 2 shows.
At this point, there may be reason to wonder if all the care and time needed to select a sample-hold is worth it. It certainly is. There's an abundance of applications for these devices.

Take a sample

Undoubtedly one of the most common applications for a sample-hold is in data acquisition systems. A representative system would have an 8 -channel multiplexer followed by a sample-hold and a 12 -bit a/d converter (see Fig. 3a).

A logic-control circuit steps an address counter to sequence the analog multiplexer through the eight channels of analog data. For each channel the samplehold acquires the input signal and switches into the hold mode.

After allowing for the hold-mode settling time, a start-convert pulse initiates the a / d conversion, which is performed by successive approximation. After the conversion, the a / d converter's status output goes low.

When the conversion of this channel is finished, the analog multiplexer switches to the next channel while the output register of the a / d converter holds the digital word from the completed conversion. This word is then transferred out to a computer data bus. The sampling and conversion process is repeated for each analog channel in sequence.

From Fig. 3b, T is the time required for the multiplexer and sample-hold to acquire the signal and for the a / d to convert it. Then $1 / \mathrm{T}$ gives the throughput rate, or the fastest rate at which the analog channels can be scanned. The rates for practical 12bit data acquisition systems may vary from about 20 kHz up to 250 kHz corresponding to values of T that range from $50 \mu \mathrm{~s}$ down to $4 \mu \mathrm{~s}$.

5. A simultaneous sample-hold system such as this samples all analog inputs at the same time and hotds the samples for conversion. While one of the held voltages is being converted, the others mustn't droop ton much.

7. In an ultrafast a/d conversion system, acquisition time in a sample-hold takes up a sizable part of the cycle. Interleaving two sample-holds like this lets one of them acquire while the other one's output is being converted.

8. Sample-holds can serve as temporary analog signalstorage devices. The first sample-hold retains signal V_{A} 's peak value so the converter can divide it by the peak value of input V_{B}. which comes by later.

Indeed, considering the many applications for sample-holds, a good number are used in conjunction with a/d converters. This is because the sample-hold greatly reduces the converter's aperture time.

There are two important ways to use a sample-hold with an a/d converter, and each imposes a different requirement for the acquisition time. Fig. 4a shows a fast inverting sample-hold used ahead of an a/d converter, which converts just one input signal. The sample-hold continuously tracks the input signal until is goes into the hold mode.

Even while in the hold mode, input-buffer amplifier A_{1} continues to track the input signal and only A_{2} and A_{3} affect the acquisition time. Acquisition is very fast because A_{1} doesn't have to settle to a new voltage for every sample.

The same sample-hold can also follow an analog multiplexer, as in Fig. 4b. The required acquisition
time will be longer here since A_{1} must settle to a new voltage every time the multiplexer switches to a new channel. This means that the settling time of A_{1} is now part of the acquisition time.

These two situations are significant because A_{1} 's settling time may be larger than the acquisition time of the rest of the circuit. If it is, there'll be a great difference between the acquisition times of singlechannel and multichannel acquisition systems.

Another important consideration in a data-acquisition system is interfacing the sample-hold to the a / d converter. A successive-approximation a / d converter, without an input buffer amplifier (which adds to the conversion time), has a resistor input that goes to an analog comparator's input terminal. Since the comparator is changing state during the successive-approximation conversion, the input impedance to the a / d changes. Since this happens at high speed, there

9. An output developed by many d/a converters for certain input-code transitions temporarily goes the wrong way. This transient, or "glitch." is undesirable in some applications and can be removed by sampling the converter's output after the glitch has gone by.
may be errors if the sample-hold's high-frequency output impedance isn't low enough. Furthermore, most sample-holds have higher output impedance in the hold mode than in the sample mode.

Sample all at once

Another way to use sample-holds in a data-acquisition system is illustrated in the simultaneous samplehold system of Fig. 5. Here, data must be taken from all analog inputs at precisely the same time. To do this, the system requires a sample-hold per channel ahead of the analog multiplexer.

All the sample-holds are given the hold command simultaneously; then the multiplexer sequentially switches to each sample-hold output while the a / d converter converts it into digital form. Notice that a high-impedance buffer amplifier is required between the multiplexer and the a / d converter.

For this application, select sample-hold devices that are identical and have very small aperture-uncertainty times. In addition, the aperture delay times should be adjusted so that they all go into hold mode simultaneously. Another important criterion is that the droop rate be relatively low, since the last samplehold in the system must hold its voltage until all the other outputs have been converted.
In an application which is the reverse of data acquisition, sample-holds can send signals from a channel to many destinations in a data-distribution system. Such a system (see Fig. 6) uses a single d/a converter and storage register together with a number of sample-holds to distribute data to a series of analog channels. As digital data are transferred into the d/a converter and its output changes, the appropriate sample-hold samples the new output voltage and then, once the converter's output has settled, switches into hold mode.
Each sample-hold circuit is updated in sequence as

Table 3. Sample-hold comparison

	Accuracy	Acquisition time	Price
Monolithic	0.1%	4 to $20 \mu \mathrm{~s}$	
	0.01%	5 to $25 \mu \mathrm{~s}$	
Hybrid	0.1%	25 ns	$\$ 35$ to $\$ 135$
	0.01%	1 to $10 \mu \mathrm{~s}$	
Modular	0.1%	30 to 200 ns	$\$ 43$ to $\$ 208$
	0.01%	0.25 to $5 \mu \mathrm{~s}$	

new data arrive, and holds its voltage until all the other sample-holds have been updated and the sequence returns to the first one. The sample-holds used must be chosen for the required acquisition time, which depends on the rate of updating each output, and for the desired droop error between updates.

Back on the other side of the coin, ultrafast a / d converters can benefit from working with sampleholds. Interleaving two of them, as in Fig. 7, will eliminate acquisition time delay in many applications.

In such systems, the sample-hold's acquisition time can be a significant portion of the system's cycle time. With interleaved sample-holds, however, system cycle time depends only on the time required for a / d conversion.

Acquisition-time delay is eliminated by having one sample-hold acquire the next sample while the a / d is converting the output of the other sample-hold. The a / d converter, therefore, is simply switched from the output of one sample-hold to the other. The only dead time between conversions is the small delay in the analog switch.

Conversion time can be decreased further, but doing it requires a second a / d converter, with one a / d operating off each sample-hold. The sample-holds then are operated sequentially, and the outputs of the a/d's have to be digitally multiplexed. In this way the throughput time is reduced to half the conversion time of either a / d converter.

In yet another a/d application, a sample-hold can delay or "freeze" analog data that exist only briefly; this information can then be combined with later data. This circuit (see Fig. 8) computes the ratio of two peaks that occur at different times, t_{a} and t_{b}.

The first sample-hold stores the peak of signal V_{A} so that its value will still ke available to the ratiometric a / d converter when the peak of signal V_{B} comes by. The second sample-hold stores the peak while the ratio is being converted to digital form.

Sample-holds deglitch

The list of conversion applications for sample-holds seems almost endless. Even big problems can be solved. For example, major code transitions in a d/a converter can cause unwanted voltage spikes as large as half the full-scale output voltage. These spikes,

10. When analog signals are encoded by pulse-amplitude modulation and then multiplexed, they can be sorted out and reconstructed by a set of sample-holds with properly timed sample commands. The time scale of the input is shorter than that of the outputs.
commonly called glitches, are caused by switches in the converter that take longer to turn off than to turn on, or vice versa. The point is, in many d / a converter applications such as CRT displays and automatic testing, the converter output voltage should make a smooth, monotonic transition when it goes from one output voltage to the next.
This can be done by processing the $\mathrm{d} /$ a converter output with a sample-hold as shown in Fig. 9. First, a digital control circuit transfers the digital data from the register to the d / a converter. With this information at its input, the d / a converter generates a new output containing glitches. Once the glitches have settled, the sample-hold takes a sample of the new analog data and returns to hold mode before the d/a output changes again. The output of the sample-hold now has a smooth, monotonic transition between the old and the new levels.

Keeping up with high-speed analog d/a outputs generally requires ultrafast sample-holds for deglitching. Usually an inverting, current-input sample-hold follows the d/a converter to permit the highest possible operating speed. In fact, some specially designed d / a converters have self-contained sample-holds for deglitching, and not surprisingly, are called deglitched d/a converters.

Putting it all together

Data conversions aren't the only applications to benefit from sample-holds. As Part 1 of this series pointed out, a zero-order hold makes an excellent datareconstruction filter and is commonly used in pulseamplitude modulated (PAM) systems such as the one in Fig. 10. Here, time-division multiplexing is used to send a train of amplitude-modulated pulses over a transmission system, each pulse in sequence being the sample from one analog channel.

11. Cascaded sample-holds acquire a signal quickly and hold it for a long time with little droop. The first one needs to hold a signal only long enough for the second to acquire it. Typical acquisition would be 5μ s to 0.1%, with a droop rate of $30 \mu \mathrm{~V} / \mathrm{s}$.

To demodulate this pulse train, the control circuit synchronously switches on each sample-hold in sequence as the pulse arrives, then returns it to hold mode until the next pulse from that channel arrives. Pulse by pulse, the output of each sample-hold becomes the reconstructed analog signal of the appropriate channel. A low-pass filter can also be added to each sample-hold output to smooth the reconstructed signals further.

In some analog-circuit applications, sampling should be quick, yet the sampled value should hold steady for a long time. Such conflicting needs produce conflicting requirements on the sample-hold. The best solution to the problem is to use two cascaded samplehold devices, as in Fig. 11. The first sample-hold is a fast unit that acquires the input rapidly and accurately, while the second unit is a slow device with a very long hold time (low droop rate), perhaps on the order of minutes.
Basically, the first sample-hold must acquire the signal quickly and then hold the result long enough for the second sample-hold to acquire it. The errors need to be calculated carefully to be sure of meeting the accuracy requirements. In many cases two monolithic sample-holds in cascade might do the trick. External hold capacitors can then be chosen to give the desired performance.

For example, a $0.001-\mu \mathrm{F}$ polystyrene capacitor would be a good choice for the first sample-hold to give an acquisition time of $5 \mu \mathrm{~s}$ to 0.1%. For the second one, a $1.0-\mu \mathrm{F}$ capacitor would give an acquisition time of 10 ms but a hold time of 300 s to 0.1% accuracy. The resulting droop rate would be only $30 \mu \mathrm{~V} / \mathrm{s}$, which is quite low, indeed.

Analyzing the dynamic accuracy of simultaneous sample-and-hold circuits is straightforward. A wideband scope and a simple mathematical model supply the answers.

In most simultaneous data-acquisition systems a large number of analog input channels are strobed at precise time intervals and then sequentially digitized by an analog-to-digital converter. To check the multichannel sample-andhold circuits there are some simple tests the user can perform to verify correct circuit operation.

To start the error analysis, several assumptions can safely be made: All static errors have been eliminated-

- The offset error.
- The gain error.
- The hold step error.

Input voltage. V_{in}, to the sample-and-hold equals the output voltage, $\mathrm{V}_{\text {out }}$, from the sample-and-hold. V in is any dc voltage between $\pm 10 \mathrm{~V}$. The offset error is $V_{\text {out }}$ when $V_{\text {in }}=0$, while the gain error is the maximum value of the offset error divided by $\mathrm{V}_{\text {in }}$ maximum (10 V).

Looking at the dynamic errors

Normally, one sample-and-hold circuit is used for each a d converter with any multiplexing between input channels done previously. However, for a large number of channels this leads to errors due to the different conversion times of the various channels. In a simultaneous sample-and-hold configuration, a number of input analog channels are strobed at a precise time and the held voltages are sequentially converted to digital form.

At this point the most basic test that can be performed is to simultaneously apply the same voltage waveform to all inputs. Now, if we look at the output for each channel, the digital words representing each voltage should be identical. If the system fails this basic test, the user must search the specification sheets and the circuits themselves for the error sources.

The three major sources of dynamic errors can be traced to the following:

1. Plots of a single pole transfer function (a) and of the gain-error (b) are shown with a $1 \cdot \mathrm{MHz}$ cutoff frequency.

- A change in the gain during the sample mode as a function of frequency.
- A nonzero hold step as a function of frequency (hold-step error).
- A shift in the effective beginning of the holdstep as a function of $V_{\text {out }}, \mathrm{d}_{\text {out }} / \mathrm{dt}$, or frequency (aperture-shift error).

The aperture-shift error can be caused by a slowly opening switch or by a pole at the unity-gain - 3 dB point (f_{co}) of the unity-gain sample amplifier. The error advances the effective time of the switch opening to a time prior to its actually reaching open circuit. For applications of simultaneous sample-andhold circuits both the f_{co} 's and the switch opening times, must be matched.

The transfer function during sample

Gain in the sample stage can be represented by a linear transfer function-at least for amplitudes small enough that the amplifier slew-rate doesn't affect the results. Thus, a simple low-pass function with a pole at $f_{\text {co }}$, say 1 MHz , can be represented by the following:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{1+j \frac{f}{10^{6}}}
$$

The graph of this typical low-pass filter is shown in Fig. 1a. It has unity-gain transmission and a

$1-\mathrm{MHz}-3 \mathrm{~dB}$ point.

Usually, though, it proves more useful to plot small deviations from unity gain as shown in Fig. 1b. The formula used for this gain-error plot is

$$
\text { Gain error }=\frac{V_{\text {nut }}}{V_{1 n}}-1=\frac{-\mathrm{j} \frac{\mathrm{f}}{10^{6}}}{1+\mathrm{j} \frac{\mathrm{f}}{10^{6}}}
$$

While not usually seen in this form, this type of frequency-response plot is quite valid. From the equation we see, for example, that a circuit band-
width of 1 MHz , an input of 10 V at a frequency of 1 kHz results in an error of 0.001 or 10 mV .

By now finding the response of the circuit to a ramp of $\mathrm{K} \mathrm{V/sec}$, functions of all the channels of the sample-andhold stages. The gain-error transfer function is put into the s domain using LaPlace transforms and becomes

$$
\text { Ges } \quad \frac{\frac{-\mathrm{s}}{2 \pi \times 10^{6}}}{1+\frac{\mathrm{s}}{2 \pi \times 10^{6}}}
$$

The ramp is also transformed, and becomes $\mathrm{K} / \mathbf{s}^{2}$.

The sample-and-hold: What is it and where is it used?

A sample-and-hold (S/H) circuit holds or "freezes" a changing analog input signal voltage. Usually, the voltage thus frozen is then converted into another form, either by a volt-age-controlled oscillator, an analog-to-digital (a / d) converter or some other device.

The simplified block diagram of a lossless (ideal) S / H circuit is shown in Fig. 1. Here the amplifiers are assumed to be ideal-with infinite input impedances and bandwidths. zero output impedances and unity gains. The electronic switch is also considered ideal-with infinite speed, zero impedance in the sample position and infinite impedance in the hold position. Also, the sampling capacitor, C, is assumed to have no leakage or dielectric absorption.

Depending upon cost, the user has three basic methods to choose from when setting up a mul-tiple-signal data-acquisition system. The most basic but also the most expensive scheme is the
one shown in Fig. 2a. This circuit uses an individual S / H and a / d converter for each sensor line. Fig. 2b is a low cost alternative in which all the sensor lines are first multiplexed and then fed into a single S / H and a / d converter. Another method, falling between those of Figs. 2 a and 2 b in cost and performance; is shown in Fig. 2c. Here, the sensor signals are first sampled and then multiplexed and sent to a single a / d converter.

If the S / H circuits were ideal, the only significant errors would occur in the multiplexer or the a/d converters. In a real world situation, of course, the S / H circuits introduce some serious errors into the conversion circuit.

The circuits of Figs. 2a and 2c require additional qualities from the S / H circuits that are not needed for the system of Fig. 2b. Precise matching of the aperture delays and bandwidths is required.

2. Dynamic errors caused by the hold step and the aperture shift are hard to distinguish.

3. By extrapolating the two straight-line segments to meet each other, you can find the effective time at which the hold period starts.

4. If you use a different scope input, the effective point of hold initiation can be found by extrapolating back to the zero point.

5. The effective start time for hold is not affected by the slope of the input ramp-for a first-order analysis.

Taking the inverse transform of the product we get

$$
\frac{\mathrm{K}}{2 \pi \times 10^{6}}\left[1+\mathrm{e}^{-\left(2 \pi \times 10^{6}\right) \mathrm{t}}\right]
$$

as the output error for a ramp input.
The two terms in the result represent a gain error. This error is due to the ramp as a constant $\mathrm{K} / 2 \pi \mathrm{f}_{c o}$ and a delay of $1 / 2 \pi \mathrm{f}_{c o .}$ seconds. The delay in the output can be considered as an advance in the transition time of sample-to-hold statesbut this is not usually done. The inverse transfer function can always be applied after the data has been digitized. However, for multichannel simultaneous sample-and-hold applications it is unnecessarily complicated to keep track of, say, 32 different transfer functions. The solution to this problem is to match all the transfer functions so that the units will deliver identical outputs for the same input waveform.

Other error sources exist

Examination of the output voltage near the time of the sample-to-hold transition shows the errors caused by both a hold step and an aperture shift (Fig. 2).

The hold-step error appears as a sudden change in the sample capacitor voltage at the time of hold. If such an error exists only for a fast ramp input, a probable cause is dielectric absorption in the capacitor.

The aperture shift is a variation, in either direction, of the point in time at which hold occurs. It is also known as aperture uncertainty. As a function of input rate it is somewhat difficult to measure.
To measure aperture uncertainty, use an oscilloscope with a sampling amplifier or with a sensitive, wideband input having good recovery. Then observe the sample-and-hold output for an input slope of 0.5 or $1 \mathrm{~V} / \mu \mathrm{s}$. The resulting straight lines can then be extrapolated to a point where they meet, and the effective hold instant can be found, as shown in Fig. 3. A change of this point with the input waveform, or randomly, is called aperture jitter.

A similar type of measurement uses a scope's differential input. All static and dynamic errors, including linear ones, due to the transfer function can be measured by observing $\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {in }}$ as shown in Fig. 4. The slope during the hold period can be extrapolated back to zero to find the effec-

6. A typical analog switch introduces a delay in the sample-to-hold transition.

7. An ideal slow opening switch can be modeled by using a simple RC network and a three position switch.
tive time when hold starts. With a single-pole transfer function, the value of $\mathrm{V}_{\mathrm{ont}}-\mathrm{V}_{\text {in }}$ during sample for an input ramp is proportional to the slope of the waveform. But as shown in Fig. 5, to a first-order approximation, the start of hold is unaffected.

But, there is zero aperture uncertainty with the transfer function representation, thus the effective time of hold initiation occurs before the switch opens! The amount of this shift can be determined as a function of bandwidth. A transfer function with an $f_{c o}$ of 1 MHz can be represented by an RC low-pass filter with a resistor of 159Ω and a capacitor of 100 pF . An input ramp of $1 \mathrm{~V} / \mathrm{s}$ will cause a capacitor current of $1 \mathrm{~mA}(\mathrm{CV} / \mathrm{t})$ which in turn causes a resistor drop of 159 mV . Thus the effective time of hold occurs $159 \mathrm{mV} / \mathrm{V} / \mu \mathrm{s}$ or 159 ns before the actual switch opening.

The two measurements described are difficult to perform without high performance test equipment. Therefore, most manufacturers' specifications of aperture delay and uncertainty tend to be primarily concerned with the variation of switch resistance after the logic input changes to the hold state. Fig. 6 shows a typical logic switch resistance change during the sample-tohold transition.

8. The effective time at which hold commences occurs before the switch is fully opened.

The time T_{1} is known as the switching delay or aperture delay and is characteristic of any practical switch. Switching time, $\mathrm{T}_{\text {: }}$, usually is measured from the 10 to 90% points (as for logic circuits) and is sometimes called aperture time. The total switching time, T_{3}, is also referred to as either the aperture time or aperture delay. If the rise time of the switch varies with the input voltage waveform, or just randomly, the change in T_{3} is called the aperture jitter.

To further complicate matters, some definitions do not use switch resistance. Diode-bridge switches are characterized by stored charge and not by changes in resistance. The switch must then be viewed as a black box-apply a ramp voltage to it, open the switch and determine the effective time of opening by observing $\mathrm{V}_{\text {ou }}$ and extrapolating the straight lines as previously described. A second method relying on diode reverse-recovery measurements can be used but is not as accurate.

The example shown in Fig. 7 can demonstrate that the effective switch opening time occurs before the switch resistance reaches infinity. Let V_{I}, be a ramp of $\mathrm{K} \mathrm{V} / \mu \mathrm{s}$. If, at time $\mathrm{t}=0$, the switch goes from position 1 to 2 , then $1 \mu \mathrm{~s}$ later it goes to position 3, the effective time of hold can be seen from Fig. 8 to occur while the switch is in position 2. The aperture-time advance is fixed for an input ramp but will have jitter for waveforms that have curvature. The effective hold initiation will occur between instants T_{1} and T_{3}. This is why $\mathrm{T}_{3}-\mathrm{T}_{1}=\mathrm{T}_{2}$ is often specified as the aperture time.

Test your sample/hold IQ

While sample/holds have been around for a long time, don't let their seemingly simple functions contribute errors to your designs.

Engineers must become increasingly aware of error sources when designing fast dataacquisition systems; in some cases, the sample/ hold circuit that you incorporate can be the main cause of error and frustration. Likewise, when implementing other functions such as peak detectors and D/A deglitchers, you must select the proper device.

Unfortunately, even in today's high-technology marketplace, a certain vagueness still surrounds S/H specifications. One basic ambiguity lies in calling the circuit a "sample/hold" in the first place; by far, the majority of sample/holds on the market today actually operate as (and would be more correctly called) track-and-holds, because you can keep them in the sampling mode indefinitely (tracking). A true sampling circuit samples the signal for a specified amount of time, designated the aperture time. To compound matters, various S / H designs now cause specified acquisition times to assume slightly different meanings depending on design.

Finally, $\mathrm{S} / \mathrm{H}^{\prime} \mathrm{s}$ can do funny things that manufacturers hesitate to specify, let alone mention on data sheets. The following multiple-choice questions, based on various sample/hold concepts,
should help clarify these ambiguities and test your skill. The correct answers, along with a brief discussion of the principles involved, appear on pgs 122-124.

PENCILS READY? BEGIN!

1. Suppose you wish to use a sample/hold circuit as a deglitcher on the output of a D/A converter. Generally, what basic sample/hold designs from Fig 1 provide optimum performance?
a. Open-loop follower
b. Closed-loop integrator (type 1)
c. Closed loop
d. Closed-loop transconductance integrator (type 2)
e. No advantage among these designs.
2. Fig 2 shows a basic open-loop-follower sample/hold circuit, with accuracy to ten bits ($\pm 0.1 \% \mathrm{FS}$). You'll usually find this design in fast sample/holds. Both the input- and output-follower amplifiers (A_{1} and A_{2}) operate as buffers with settling times of 400 nsec to within 0.1% FS (10 V step input) and exhibit single-pole responses. Given that $R_{0 N}$ of the

Fig 1-If designing a deglitcher circuit, which S / H configuration would you choose? Note that the closed-loop integrator of (b) uses a voltage output to charge the holding capacitor while (c) feeds current directly into the capacitor. (See question 1)

Fig 2-In this open-loop-follower \mathbf{S} / \mathbf{H}, determine sampling output settling time and output acquisition time. (See questions 2 and 3)
sampling switch equals 100Ω and that the hold capacitor has a value of 100 pF , determine, to a first approximation, both the sampling output settling time to 0.1% for a 10 V step input and the output acquisition time to 0.1% for a continuous 10 V p-p 20 Hz sine wave on the input.
a. $870 \mathrm{nsec}, 470 \mathrm{nsec}$
b. $470 \mathrm{nsec}, 870 \mathrm{nsec}$
c. $570 \mathrm{nsec}, 406 \mathrm{nsec}$
d. $405 \mathrm{nsec}, 337 \mathrm{nsec}$.
3. Suppose that the sample/hold circuit of Fig 2 is an IC type in which you connect the hold capacitor externally. With $\mathrm{C}_{\mathrm{H}}=100 \mathrm{pF}$, the manufacturer specs the following: sample-to-hold offset error of 100 mV and hold-mode voltage droop of $250 \mathrm{mV} / \mathrm{sec}$.
A. If you change C_{H} to 2000 pF , what new values do the sample-to-hold offset error and hold-mode voltage droop assume?
a. $2 \mathrm{~V}, 12.5 \mathrm{mV} / \mathrm{sec}$
b. $100 \mathrm{mV}, 12.5 \mathrm{mV} / \mathrm{sec}$
c. $5 \mathrm{mV}, 5 \mathrm{~V} / \mathrm{sec}$
d. $5 \mathrm{mV}, 12.5 \mathrm{mV} / \mathrm{sec}$.
B. Find the input acquisition time to 0.1% FS for a 10 V step input with $\mathrm{C}_{\mathrm{H}}=100 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{H}}=2000 \mathrm{pF}$.
a. $570 \mathrm{nsec}, 11.47 \mu \mathrm{sec}$
b. $406 \mathrm{nsec}, 1.46 \mu \mathrm{sec}$
c. $570 \mathrm{nsec}, 878 \mu \mathrm{sec}$
d. $406 \mathrm{nsec}, 1.21 \mu \mathrm{sec}$.
4. A sample/hold operates in front of a 12-bit A/D converter that has a 10 V FS range and $20-\mu$ sec conversion time. This S/H uses FET switches and has a droop rate of $59.5 \mathrm{mV} / \mathrm{sec}$ at $25^{\circ} \mathrm{C}$. What maximum operating temperature can you choose so that the A/D sees less than $1 / 2$ LSB change on its input?
a. $60^{\circ} \mathrm{C}$
b. $85^{\circ} \mathrm{C}$
c. $100^{\circ} \mathrm{C}$
d. $125^{\circ} \mathrm{C}$.
5. When working with a track-and-hold circuit with a finite sampling time of 50 nsec in an environment with an operating range of -55 to $+125^{\circ} \mathrm{C}$, what type of holding capacitor

Fig 3-Simultaneous S/H's present special problems of their own. Do you know what they are? (See question 7)
gives best performance?
a. Ceramic
b. Teflon
c. Polystyrene
d. Polypropylene.
6. Suppose you're designing a system in which the maximum error introduced by the sample/hold must not exceed 0.01% and you apply a $20 \mathrm{~V} \mathrm{p}-\mathrm{p}$ sinusoidal signal to the input. If the only error source consists of a $32-\mathrm{nsec}$ aperture time, what maximum allowable input frequency can you use and remain within error budget?
a. 1 kHz
b. 2 kHz
c. 4 kHz
d. 7.5 kHz .
7. Fig 3 shows a simultaneous sample/hold circuit. If you sample a 20 V p-p sinusoidal signal with a frequency of 30 kHz , a $10-\mathrm{nsec}$ aperture uncertainty in the S / H causes errors of near what percentage full-scale range between units?
a. 1%
b. 0.05%
c. 0.09%
d. 0.009%.
8. The sample/hold circuit of Fig 4 consists of a closed-loop type with an operationalamplifier integrator in the feedback path of

Fig 4-By examining this closed-loop S/H with op-amp feedback, can you describe its general operating characteristics? (See questions 8 and 9)
the input buffer amplifier. What relationship exists between (I) the output settling time and (II) the input acquisition time (dependent on C_{H}) for a 10 V step input?
a. $1<11$
b. $1=11$
c. I> II
d. Insufficient data.
9. Refer again to the closed-loop integrating S / H configuration of Fig 4. What best describes the general characteristics of this type of circuit?
a. Fair accuracy, fast acquisition time, high droop rate
b. Extremely good accuracy, fast acquisition time, high droop rate
c. Extremely good accuracy, slow acquisition time, low droop rate
d. Fair accuracy, slow acquisition time, low droop rate.
10. A sample/hold with unity gain has specified accuracy of 12 bits (ie, gain error in sampling mode $=0.01 \%$ of' reading). In sampling mode this simple S / H exhibits a single-pole transfer function and a 20 V p-p-3 dB bandwidth of 500 kHz . If you want to sample a 20 V p-p sine wave to 12 -bit accuracy, what approximate maximum frequency can you input and still maintain that accuracy?
a. 50 Hz
b. 100 Hz
c. 7.1 kHz
d. 14.14 kHz .
11. Here's a quickie question to complete the quiz: Of the four S / H specs listed below, what is (are) the most commonly omitted parameter(s) on manufacturers' data sheets?
a. Sample-to-hold offset error
b. Hold-mode settling time
c. Output noise, hold mode
d. Output offset voltage drift.

Presenting the answers to our quiz on sample/holds

Confused? If not, you're an industry expert. Take this opportunity to learn some important facts about these deceivingly complicated devices.

ANSWERS		
1. a, d	4. d	8. b
2. c	5. b	$9 . \mathrm{c}$
3A. d	6. a	10. c
3B. b	7. c	11. b, c

This quiz should have given your knowledge of S/H's a real workout. In fact, it should have been difficult-you learn much more from tough exams. Here's how to score yourself (count 3A and 3B separately):

> 11-12 Send your resume to the authors 9-10 \quad Take over your design department $7-8 \quad$ Collect one "attaboy!" 5-6 Average 3-4 \quad Read up before doing any S / H designs 1-2 Don't let your boss see this.

Now for a more detailed discussion of the answers.

1. Generally, a and d work best. Although all sample/hold circuits contribute slight errors, open-loop-follower types don't exhibit large hold-to-sample transients (spikes) that generally occur on closed-loop types. And although spiking might not matter for large changes, it becomes extremely important in D/A deglitcher applications where you sequentially increase D/A digital inputs to generate an analog ramp. In this application, the sample/hold samples only 1-LSB changes from input to output, and even in this case the closed-loop types of \mathbf{b} and \mathbf{c} generate large hold-to-sample spikes (as high as 7 V), possibly worse than the D/A glitches that the S/H tries to eliminate. Because it keeps its loop open during hold, a closed-loop circuit must entirely reacquire the input in sample mode, even with unchanged inputs. Usually this process results in
a spike; however, the closed-loop transconductance integrator of Fig 1d won't exhibit large hold-to-sample spikes.
2. The sampling output settling time (ie, keeping the unit in sample mode and observing the output for a 10 V step input) depends on the signal going through three separate single-pole stages: the input buffer, the RC network composed of ON switch resistance and hold capacitor, and the output follower. On the other hand, when coming out of a hold state back into sample mode, the acquisition time required for the output to track the slow (20 Hz) sine wave diminishes because the input buffer already tracks the sine wave on its output. You can use the square root of the sum of squares formula as a first approximation for calculating the settling time of such cascaded single-pole circuits. The RC time constant of the switch-and-hold capacitor equals 10 nsec , and its settling time takes seven time constants- 70 nsec-to reach 0.1% of its final value.
Thus, sampling output settling time is

$$
\sqrt{400^{2}+70^{2}+400^{2}}=570 \mathrm{nsec},
$$

and the output acquisition time is

$$
\sqrt{70^{2}+400^{2}}=406 \mathrm{nsec} .
$$

3A. With $\mathrm{C}_{\mathrm{H}}=2000 \mathrm{pF}$, the sample-to-hold offset error $=5 \mathrm{mV}$ and the droop rate $=12.5 \mathrm{mV} / \mathrm{sec}$, because both specs vary inversely with C_{H}. Droop $d V / d t$ equals i / C_{H} where i represents the current leakage through the hold capacitor (the sum of output-amplifier bias current and switch leakage current). The sample-to-hold offset error consists of the step error that occurs at the initialization of the hold mode generated by dumping charge into the hold capacitor. Because droop $\mathrm{dV} / \mathrm{dt}=\mathrm{i} / \mathrm{C}_{\mathrm{H}}$
and sample/hold offset error $=Q / C$, if you increase C_{H} by a factor of 20 , both droop and offset decrease by 20 .
3B. This question is slightly deceptive. The true definition of input acquisition time is the time necessary, in sample mode, for the hold capacitor to acquire a step voltage. If $\mathrm{C}_{\mathrm{H}}=100 \mathrm{pF}$ as in the initial problem circuit, the time constant $\mathrm{RC}=10$ nsec and $7 R C=70 \mathrm{nsec}$. The input amplifier settles in 400 nsec , and, as before, input acquisition time is

$$
\sqrt{400^{2}+70^{2}}=406 \mathrm{nsec} .
$$

For $\mathrm{C}_{\mathrm{H}}=2000 \mathrm{pF}, 7 \mathrm{RC}=1400 \mathrm{nsec}$, and input acquisition time is

$$
\sqrt{400^{2}+1400^{2}}=1.46 \mu \mathrm{mec}
$$

4. The maximum allowable signal change on the input of the A/D is

$$
(0.5)\left(\frac{10 \mathrm{~V}}{2^{12}}\right)=1.22 \mathrm{mV}
$$

and maximum allowable slew rate equals

$$
\frac{1.22 \mathrm{mV}}{20 \mu \mathrm{sec}}=61 \mathrm{~V} / \mathrm{sec}
$$

This value also represents the maximum allowable droop rate for the sample/hold. Because the S/H uses FET switches, the droop rate doubles every $10^{\circ} \mathrm{C}$. Taking this into consideration, apply the following formula:

$$
\begin{aligned}
\mathrm{DR}_{\max } & =\mathrm{DR}_{25^{\circ} \mathrm{C}} \times 2^{\left(\Delta \mathrm{T} / 10^{\circ} \mathrm{C}\right)} \\
61 \mathrm{~V} / \mathrm{sec} & =59.5 \frac{\mathrm{mV}}{\mathrm{seC}} \times 2^{\left(\Delta \mathrm{T} / 10^{\circ} \mathrm{C}\right)}
\end{aligned}
$$

And because $\Delta \mathrm{T}=100^{\circ} \mathrm{C}, \mathrm{T}_{\text {max }}=125^{\circ} \mathrm{C}$.
5. A major error source in sample/holds with finite sample time periods comes from the storage capacitor's dielectric-absorption characteristic. Teflon exhibits the lowest dielectricabsorption property at $125^{\circ} \mathrm{C}$ and thus makes the best choice. This characteristic, also called dielectric hysteresis, determines the length of time a capacitor requires to discharge; a high dielectric-absorption value means that the capacitor won't react to sudden step changes in storage charge and also that high temperatures can cause extremely high sampling errors. The nearby table lists breakdown characteristics of commonly used capacitor types.
6. A sample/hold amplifier, actually a form of analog memory, ideally stores (in hold mode) an

instantaneous voltage (sample value) at a desired instant in time. The constraint on this time is aperture uncertainty. To compute the error (for sinusoidal waveforms), you must observe the following formula:

$$
E=\left(\frac{d V}{d t}\right) T
$$

where E-voltage error or change, $\mathrm{d}^{\prime}{ }^{\prime} \mathrm{d}_{\mathrm{u}} \mathrm{i}=$ signai slew rate and $T=$ aperture time. During time T, the maximum allowable change on the input of the sample/hold equals $(0.01 \% \times 20 \mathrm{~V})=2 \mathrm{mV}$. Also note that for sinusoidal waveforms, the maximum slew rate occurs at zero crossings.

Any sinusoidal input signal follows the form

$$
V_{\mathrm{in}}=V \sin (2 \pi \mathrm{ft}),
$$

and in this case $E=10 \mathrm{~V}$ for a 20 V p-p signal. Taking the first derivative, which represents slew rate, find

$$
\frac{d V}{d t}=(2 \pi f) V \cos (2 \pi f t)
$$

Then you know that zero crossings occur at

$$
t=\frac{n}{2 f}(n=1,2,3 \ldots)
$$

Thus,

$$
\mathrm{dV}=(2 \pi \mathrm{fV}) \mathrm{dt}
$$

To find the maximum allowable input frequency, use this equation and solve for f :

$$
\begin{gathered}
2 \mathrm{mV}=2 \pi \mathrm{f}(10 \mathrm{~V})(32 \mathrm{nsec}) \\
\mathrm{f}=0.995 \mathrm{kHz} .
\end{gathered}
$$

7. Find the answer in the same manner as in the previous question, but here the key lies in knowing how to use the $10-\mathrm{nsec}$ value in relation to this circuit. You know that

$$
E=\left(\frac{d V}{d t}\right) T
$$

where

$$
\begin{aligned}
\frac{\mathrm{dV}}{\mathrm{dt}} & =(2 \pi)\left(30 \times 10^{3}\right)(10) \\
& =1.8 \times 10^{6} \mathrm{~V} / \mathrm{sec}
\end{aligned}
$$

But because $T=10 \times 10^{-9} \mathrm{sec}, \mathrm{E}=18 \mathrm{mV}$; converting the value, you find that

$$
\text { Error }=\frac{1.8 \mathrm{mV}}{20 \mathrm{~V}}=0.9 \times 10^{-3}=0.09 \% \mathrm{FS} \text { range. }
$$

Aperture uncertainty is the variance of the aperture time, the uncertainty in the time interval. This parameter varies from unit to unit and typically ranges from 0.5 to 10 nsec. In this question, you see that aperture uncertainty becomes very important to consider in simultaneous S/H applications. This approach gives you a better grasp of worst-case errors. To conclude, aperture time is an important parameter to consider when sampling one channel with a fast-changing signal, and aperture uncertainty becomes important when performing simultaneous sample-holds.
8. Settling time and acquisition time tend to assume the same value because the output as well as the input controls the charge on the hold capacitor for closed-loop circuits.
9. Extremely good accuracy, slow acquisition time and low droop rate best describe the characteristics of closed loop integrating-type S / H circuits. High tracking accuracy results from a configuration that acts like one amplifier during the sampling time. Also, because an integrator is used, the sample/hold switch operates at ground potential, eliminating leakage problems through the feedback hold capacitor and thus reducing the droop rate i / C.
10. A single-pole transfer function with gain $=1$ and $\mathrm{a}-3 \mathrm{~dB} \mathrm{BW}=500 \mathrm{kHz}$ has the input/output relationship

$$
\frac{V(\text { out })}{V(\text { in })}=\frac{1}{1+j\left(\frac{f}{5 \times 10^{5}}\right)}
$$

To maintain 12 -bit (0.01%) accuracy, V (out)/ V (in), or gain, should not degrade more than $(1-0.01 \%)=0.9999$. Thus,

$$
\frac{1}{1+j\left(\frac{f}{5 \times 10^{5}}\right)} \leq 0.9999
$$

or f, the maximum sampling frequency, should not exceed 7071.6 Hz .
11. Data sheets will most likely omit \mathbf{b} and \mathbf{c}.

Generally, the p-p output noise in hold mode runs well below the specified linearity of the particular sample/hold, and its omission usually causes few problems. But this noise could cause slight linearity problems if you input its signal into an A/D. A more important missing sample/hold specification, hold-mode settling time, is defined as the time for the output to settle to the sample/hold accuracy after being given the logic command to switch into hold mode. This holdmode settling time could cause annoyances in D/A deglitcher (display) applications, but bigger headaches can result if you use the sample/hold with an A/D converter. Here, if you begin the conversion process (A/D clocking) before the sample-to-hold transient has settled to the LSB level, you run the risk of getting bad codes, especially noticeable at the half-scale level for successive-approximation-type A/D's and at lower voltages for counter-comparator types. The hold-mode settling time can run as high as $1 \mu \mathrm{sec}$ for the slower closed-loop-type $\mathrm{S} / \mathrm{H}^{\prime}$ s, while it usually runs only tens of nanoseconds for highspeed S/H's.

5. High Speed Operational Amplifiers

High-speed op ampsthey're in a class by themselves

The same special characteristics that make fast op amps useful in difficult applications can also create problems for unwary designers.

Fast operational amplifiers are not like other op amps. In addition to good dc characteristics such as high open-loop dc gain, low bias currents and low input offset drift, fast op amps have specially designed ac characteristics that come into play at high frequencies. Proper application of these amplifiers involves the selection of gainbandwidth product, slew rate, settling time and output current. In addition, you must pay particular attention to many small circuit details like power-supply bypassing, proper routing of grounds, short lead lengths and minimization of stray capacitance. Poor design practice invariably produces an oscillator instead of a high-speed amplifier.

You can't ignore op-amp characteristics

Operational amplifiers offer designers one fundamental attraction: The characteristics of the closed-loop feedback circuit are determined almost exclusively by external circuit elements rather than by the op amp itself. Precise control of gain, offset, linearity, temperature stability, etc., in amplifier design itself thus reduces the user's task to the proper selection of the passive circuit components used around the op amp. Unfortunately, this simple relationship in general doesn't hold true for high-speed op amps: They're more difficult to handle than their low-frequency counterparts, and a detailed knowledge of their characteristics becomes essential:

Open-loop gain and bandwidth-Refer to Fig. 1's gain-frequency (Bode) plot. The open-loop

Fig. 1-Well designed high-speed op amps have a smooth 20 dB/decade roll-off. Additional amplifier poles should not occur until well beyond f_{r}.
gain must be very high in a fast operational amplifier to reduce errors at the device's summing junction. Open-loop gain typically runs between 10^{5} and $10^{8} \mathrm{~V} / \mathrm{V}$ in a good quality, high-speed op amp. As illustrated, the gain is flat from dc out to a corner frequency (100 Hz in this case); then it decreases with increasing frequency. For well-designed amplifiers, gain decreases at a fixed rate of $20 \mathrm{~dB} /$ decade of frequency, a roll-off rate that assures stable closed-loop operation and also produces the best settling-time

DATA ACQUISITION \& CONVERSION HANDBOOK

performance.
The gain-frequency plot crosses the gain-ofone axis at unity gain frequency, f_{T}. This frequency should be as large as possible for a wide-bandwidth amplifier; 100 MHz is common. Along the $20 \mathrm{~dB} / \mathrm{decade}$ slope of the gain roll-off, the product of gain and frequency remains constant and equal to f_{T}. Therefore, the value of f_{T} is frequently referred to as the gain-bandwidth product of the amplifier.

Smooth roll-off is generally maintained out beyond f_{T} for most fast amplifiers. Another op-amp pole usually occurs at a higher frequency as a result of a nonideal amplifier circuit, but if this frequency is considerably greater than the circuit's closed-loop bandwidth, the extraneous pole will have very little effect on high-frequency performance.
Slew rate-The ability of a high-speed op amp to reproduce fast, large signal outputs depends primarily on its specified slew rate, the maximum rate at which the output can change, expressed in

Today's fast op amps ARE fast

Modular op amps introduced in the late 1960's featured settling times as low as 1 $\mu \mathrm{sec}$ to 0.01%, and they quickly became popular in 12-bit data-acquisition systems. Early in the 1970's, ultrafast modules became available, boasting even faster settling times, 100 MHz gain-bandwidth products and 1000 $\mathrm{V} / \mu \mathrm{sec}$ slew rates. More recently, hybrid units have achieved such performance levels, as shown below.

```
BASIC CHARACTERISTICS OF A TYPICAL HIGH-
        SPEED OP AMP (AM-500)
DC OPEN-LOOP GAIN . . . . . . . . 106 V/V
GAIN-BANDWIDTH PRODUCT . . . 130 MHz
SLEW RATE . . . . . . . . . . . . . . 1000 V/\muSEC
FULL POWER FREQUENCY
    (20V p-p) . . . . . . . . . . . . 16 MHz
SETTLING TIME, 10V TO 1% . . . . }70\mathrm{ nSEC
SETTLING TIME, 10V TO 0.1% ... 100 nSEC
SETTLING TIME, 10V TO 0.01% . . 200 nSEC
INPUT OFFSET DRIFT . . . . . . . . 1 }1/\textrm{V}/\mp@subsup{/}{}{\circ}\textrm{C
OUTPUT VOLTAGE ........... . . }10\textrm{V
OUTPUT CURRENT . . . . . . . . . . }\pm50\textrm{mA
```


Fig. 2-Slewing time must be included in settling-time measurements.
$\mathrm{V} / \mu \mathrm{sec}$. When the output must respond to a step-input change, slew-rate limitation causes a longer large-signal settling time than you might expect from the bandwidth characteristics alone. Slew rates of modern high-speed op amps equal or exceed $1000 \mathrm{~V} / \mu \mathrm{sec}$.

Settling time-In servo theory this term specifies the maximum time required to achieve an accuracy of 5% or so after a step input is applied to the servo. With regard to op amps, it refers to the time required for much greater accuracies, typically 0.1% to 0.01% of F.S., and is best defined as follows:
"Settling time is the elapsed time from the application of a step input to an amplifier to the instant when the output has entered into and remained within a specified error band around its final value." Note that settling time must be specified with both the error band and the magnitude of the step change given. Almost all cases specify a F.S. output change of 10 V .

Fig. 2 illustrates a typical settling response for a high-speed op amp. Usually the amplifier's output first goes into slew-rate limit, overshoots its final value, then enters the specified error band and remains there until it reaches the final steady-state level. (One word of caution: Measure settling time from $t=0$, the instant that the input step was applied. Some manufacturers play "specmanship" games and fail to include the amplifier slewing time in their measurements.)

You can't predict amplifier settling time from bandwidth and slew-rate specifications alone: It's a measured, as well as designed-in, parameter. You can usually tell an op amp specifically designed for fast settling time from one that's not: The former's settling-time spec will be fairly predictable from bandwidth and slew-rate considerations; the latter's won't.

Fig. 3-The summing junction is NOT a virtual ground in high speed op-amp applications. Thus the amplifier must be designed with a large input dynamic range (IDR), or distortion, limiting or clipping will result.

Low output impedance and high output current-High-speed operational amplifiers almost always are designed to give low output impedance and relatively high output current. Low output impedance proves critical to stability for driving capacitive loads, while high output current ($\mathbf{2 0}$ to 100 mA) is required for both driving capacitive loads at high speed ($\mathrm{I}=\mathrm{Cdv} / \mathrm{dt}$) and for driving relatively low-value feedback and load resistors. (Good high-frequency design practice keeps all impedances as low as possible to cut phase shifts from parasitic capacitances.)

Why is input dynamic range important?

Fig. 3 shows a simple, high speed op-amp circuit with an inverting gain of 2 to illustrate an important device characteristic. The signal input is a $10 \mathrm{~V} \mathrm{p}-\mathrm{p}$ sine wave at 10 MHz ; the output, an inverted $20 \mathrm{~V} p-\mathrm{p}$ sinusoid. If we assume that the amplifier has the Bode plot shown in Fig. 1, then its open-loop gain at 10 MHz is 10 . So for a 20 V $\mathrm{p}-\mathrm{p}$ output, the voltage at the op amp's summing junction must be 2 V p-p. This is a rather large signal; in fact, most general-purpose op amps couldn't handle such a high level without distorting, limiting and/or clipping. Therefore, highspeed op amps must possess a large input dynamic range; i.e., significant peak-to-peak voltages applied directly across the device's input terminals must not cause the output to slew-rate limit or distort. Calculation of a high-speed op amp's input dynamic range is straightforward (see box at right).
Knowing the input dynamic range of an operational amplifier can help you determine how to best utilize the device while carefully avoiding slew-rate limitation problems. For instance, Fig. 4 shows an op amp connected as a unity-gain inverter. If we assume that this device has an input dynamic range of $\pm 1.23 \mathrm{~V}$ (as calculated in the box), then the circuit can reproduce a 4.92 V input step as a -4.92 V output step without slew-rate limiting. (Observe that the 4.92 V input

Fig. 4-Staying within an amplifier's IDR avoids slew-rate limitation problems and produces a smooth output response.
step appears at the summing junction divided by a factor of two by the two equal-value resistors.)

To further appreciate the significance of input dynamic range, you must understand that within this input range the op amp's output rate of change is in direct proportion to the input voltage. Therefore, the output can make a large voltage transition in the time required to make a small voltage transition. Fig. 5 illustrates three

IDR is a function of $S R$ and GB

The input dynamic range (IDR) of a highspeed op amp is related to the unit's slew rate (or full-power frequency) and its gainbandwidth product. To compute IDR, assume that the output is at its full power frequency and amplitude (i.e., it's producing the largest and fastest output possible without distortion), then calculate the open-loop gain at this frequency, and finally plug these values in the following formula:
$\mathrm{IDR}=\left(\mathrm{V}_{\mathrm{pp}} \times \mathrm{FPF}\right) / \mathrm{GB}$
where $\mathrm{V}_{\mathrm{pp}}=$ peak-to-peak full-power voltage, $F P F=$ full-power frequency and $G B=$ gain-bandwidth product.

If the full-power frequency is not known, you can use an alternate equation:

$$
\mathrm{IDR}=\mathrm{V}_{\mathrm{pp}} \times \mathrm{SR} /(20 \pi \mathrm{~GB})
$$

where $S R=$ slew rate.

EXAMPLE

What is the input dynamic range of the amplifier described in the previous box (the AM-500)?

$$
\begin{aligned}
& \text { IDR }=(20 \times 16 \mathrm{MHz}) / 130 \mathrm{MHz}=2.46 \mathrm{~V} \text { p-p } \\
& \\
& \text { (or } \pm 1.23 \mathrm{~V}) .
\end{aligned}
$$

Thus, within an input range of $\pm 1.23 \mathrm{~V}$, the op amp won't go into slew-rate limitation.

Fig. 5-Rise times for pulses of varying heights remain constant as long as you observe IDR limits.
values of output steps for a fast op amp. Output steps 1 and 2 have identical rise times; since they lie within the IDR, they aren't slew-rate limited. Because Output 3 is generated outside the IDR, however, slew-rate limiting occurs, and the output takes considerably longer to reach its final value. Further, the waveform exhibits some overshoot, a common problem under slew-rate limit conditions.
It's no trivial task to design an op-amp input circuit that has good dc characteristics, plus good input dynamic range, plus the response needed to avoid slew-rate limiting. One approach combines the low-drift characteristics of a bipolar input op amp with the excellent IDR of an FET in a fast-feedforward design (Fig. 6). This circuit produces very wide bandwidth, high slew rate and fast settling time. It also provides extremely high open-loop gain and very low input offsetvoltage drift (typically $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$).

Fig. 6-Fast-feedforward amplifier design combines a lowdrift,. bipolar IC op amp with an FET feedforward stage to produce excellent dc and ac characteristics.

Your choice should start with bandwidth

When you select a high-speed operational amplifier, first determine your application's bandwidth requirement. The minimum closed-loop bandwidth is a function of both the op amp's
gain-bandwidth product and its noise gain in the application. "Noise gain" is defined as the gain of the closed-loop amplifier to voltage noise or to any other signal inserted in series with one of the amplifier inputs (Fig. 7).

Fig. 7-Noise gain and signal gain differ. In an inverting circuit the noise gain equals the signal gain plus one

The noise gain drawn on the Bode plot of an op amp determines the -3 dB closed-loop bandwidth. In Fig. 8, for example, closed-loop gain equals 99 , giving a noise gain of $(1+a)$ or 100 . When plotted on the diagram, this noise gain gives a closed-loop 3 dB bandwidth of 1 MHz for the 100 MHz gain-bandwidth amplifier illustrated.
(Note that for the common unity-gain inverting amplifier, the noise gain is 2 ; therefore the closed-loop bandwidth of such a circuit built with a 100 MHz of amp would equal 50 MHz , not 100 MHz .)

A single pole simplifies response calculations...

If an op amp has a true single-pole response (as many do), you can calculate its step response for the closed-loop circuit by the expression:

$$
\mathrm{E}_{0 \mathrm{l} \cdot \mathrm{r}}=\mathrm{a} \mathrm{E}_{\mathrm{N}}\left(1-\mathrm{e}^{-2 \pi \mathrm{f}_{\mathrm{r}} /(1+\mathrm{a})}\right)
$$

and the output error is then

$$
\epsilon=\mathrm{e}^{-2 \pi \mathrm{f}_{\mathrm{T}} /(1+\mathrm{a})}
$$

Fig. 8-If the op amp exhibits a single-pole response, you can compute its settling time from frequency and noise-gain data This approach works best at high noise gains.

Fig. 9-Output error decreases predictably as a function of the number of time constants when the op-amp circuit exhibits a single-pole response.

From the latter equation you can readily compute the settling time to various accuracies. For greatest convenience, perform this computation in terms of the time constant $\tau=(a+1) / 2 \pi f_{T}$, where a is the closed-loop gain. The amplifier configuration of Fig. 8, for instance, has a time constant (τ) of 159 nsec .

Fig. 9 shows the number of time constants necessary to reach a given error, assuming a single-pole response. Thus, the amplifier configuration of Fig. 8 would take nine time constants or $1.44 \mu \mathrm{sec}$ to settle to 0.01%. If the same amplifier ($\mathrm{CB}=100 \mathrm{MHz}$) were connected as a unity-gain inverter, its closed-loop bandwidth would equal 50 MHz , giving $\tau=3.2 \mathrm{nsec}$ and a settling time to 0.01% of 28.8 nsec .
Using the ideal single-pole response with no slew-rate limiting to determine settling is a valid approach. At worst it gives a first approximation of the settling time, and this approximation gets closer at high noise gains. Given an op amp designed and specified for fast settling, you can obtain an even closer approximation by adding to the computed settling time that estimated extra time required to slew to the final voltage.

...but multiple poles often occur

In some cases the op-amp circuit is not really a single-pole system. Fig. 10 shows three typical situations that add a second pole to the circuit. C_{1} represents the input capacitance of the amplifier plus any stray capacitance from the summing junction to ground, as well as (where applicable) the output capacitance of the device driving the op amp. C_{1} combines with resistances R and $a R$ to produce a pole located at $-\mathrm{aRC} \mathrm{C}_{1} /(\mathrm{a}+1)$ on the real axis of the s-plane. The finite output resistance of the amplifier, R_{0}, and load resistance R_{t}, com-

Fig. 10-Three sources of extraneous poles appear in this diagram: input capacitance, load capacitance and the op amp itself. C_{2} compensates for output ringing and is best chosen via experiments with the actual circuit components and layout.
bined with output capacitance C_{L} can add another pole located at $-R_{0} R_{L} C_{L} /\left(R_{0}+R_{L}\right)$. And the op amp itself can add a third extraneous pole if it has an extraneous high-frequency pole in its response as noted.
In general, one of these "extra" poles will be dominant; i.e., closer in frequency to the amplifier's unity-gain frequency than the others. This dominant pole, of course, converts our firstorder system into a second-order one and brings up the possibility of complex conjugate poles that produce ringing.
When ringing occurs, the amplifier must be compensated by a feedback capacitor (Fig. 10). You can determine experimentally the optimum value for this compensation capacitor by observing the step response and adjusting a trimmer to eliminate the ringing. Normally you want a damping ratio of one, but in some applications you may actually prefer a small amount of overshoot.

Calculations reveal that if the frequency of the second pole is at least $4 \times$ the op amp's closedloop bandwidth, the damping ratio will equal or exceed one, and overshoot won't occur. Since often you can quickly approximate the frequency of the extraneous pole, you can use this relationship to predict ringing in the circuit.
In the common situation where input capacitance C_{1} causes the second pole, a good starting value for compensation capacitor C_{2} is $C_{2}=C_{1} / a$. Increase C_{2} as necessary above this value to achieve a damping ratio of one. (The other two possible extraneous poles, even when they don't dominate, may still add some phase lag to the amplifier. This possibility explains the somewhat higher value of C_{2} often needed to give the required compensation.)

Success is just a design tip away

We conclude our discussion by offering six brief, but important, hints on applying highspeed op amps:

- Keep all component leads as short as possible, particularly at the summing junction. Also, diligently strive to keep stray capacitance at the summing junction to an absolute minimum.
- Separate signal grounds from power grounds, connecting them only at one common physical point.
- If you must locate the source or load some distance from the op amp, use properly terminated coaxial cable for best response.
- If you mount the op amp on a pc board, incorporate a ground piane into the board's design for best performance.
- Make the input and feedback resistors as small as possible consistent with inputsource drive capability and amplifier-output drive capability. A value in the range of 500 to 1000Ω is commonly used for the input resistor.
- Use good power-supply bypass capacitors and connect them right at the amplifier power-supply pins. We recommend tantalum capacitors in parallel with ceramics.

Using The ICH8500 Ultra Low Bias Current Op Amp

The Pico Ammeter

A very sensitive pico ammeter can be constructed with the ICH8500. The basic circuit (illustrated in Figure 1) employs the amplifier in the inverting or current summing mode.
Care must be taken to eliminate any stray currents from flowing into the current summing node. This can be accomplished by forcing all points surrounding the input to the same potential as the input. In this case the potential of the input is at virtual ground, or OV, therefore, the case of the device is grounded to intercept any stray leakage currents that may otherwise exist between the $\pm 15 \mathrm{~V}$ input terminals and the inverting input summing junctions. Feedback capacitance* should be kept to a minimum in order to maximize the response time of the circuit to step function input currents. The time constant of the
circuit is approximately the product of the feedback capacitance C_{fb} times the feedback resistor R_{fb}. For instance, the time constant of the circuit in Figure 1 is 1 sec if $\mathrm{C}_{\mathrm{fb}}=1 \mathrm{pF}$. Thus, it takes approximately $5 \mathrm{sec}(5$ time constants) for the circuit to stabilize to within 1% of its final output voltage after a step function of input current has been applied. C_{fb} of less than 0.2 to 0.3 pF can be achieved with proper circuit layout. A practical pico ammeter circuit is illustrated in Figure 2.
The internal diodes CR1 and CR2 together with external resistor R1 protect the input stage of the amplifier from voltage transients. The two diodes contribute no error currents, since under normal operating conditions there is no voltage across them.
*Feedback capacitance is the capacitance between the output and the inverting input terminal of the amplifier.

Figure 1. Basic Pico Ammeter Circuit

Figure 2. Pico Ammeter Circuit

Sample and Hold Circuit (Figure 3)

The basic principle of this circuit is to rapidly charge a capacitor Csto to a voltage equal to an input signal. The input signal is then electrically disconnected from the capacitor with the charge still remaining on Csto. Since Csto is in the negative feedback loop of the operational amplifier, the output voltage of the amplifier is equal to the voltage across the capacitor. Ideally, the voltage across Csto will remain constant, thus the output of the amplifier will also be constant, however, the voltage across Csto will decay at a rate proportional to the current being injected or taken out of the current summing node of the amplifier. This current can come from four sources: leakage resistance of Csto, leakage current due to the solid state switch SW2, currents due to high resistance paths on the circuit fixture, and most important, bias current of the operational amplifier. If the ICH8500A operational amplifier is employed, this bias current is a!most non-existent ($<0.01 \mathrm{pA}$). The voltage on the source, drain and gate of switch SW2 being zero or near zero when the circuit is in the hold mode, results in a negligible switch leakage current. Careful construction will eliminate stray resistance paths and capacitor resistance can be eliminated if a quality capacitor is selected. The net result is a quality sample and hold circuit.

As an example, suppose the leakage current due to all sources flowing into the current summing node of the sample and hold circuit is 100 pA . The rate of change of the voltage across the $0.01 \mu \mathrm{~F}$ storage capacitor is then $10 \mathrm{mV} / \mathrm{sec}$. In contrast, if an operational amplifier which exhibited an input bias current of 1 nA were employed, the rate of change of the voltage across Csto would be $0.1 \mathrm{~V} / \mathrm{sec}$. An error build up such as this could not be tolerated in most applications.
Wave forms illustrating the operation of the sample and hold circuit are shown in Figure 4.

The Gated Integrator

The circuit in Figure 3 can double as an integrator. In this application the inpui voitage is appiied to the integrator input terminal. The time constant of the circuit is the product of R1 and Csto. Because of the low leakage current associated with the ICH8500 and ICH8500A, very large values of R1 (Up to 1012 ohms) can be employed; this permits the use of small values of integrating capacitor (CsTO) in applications that require long time delays. Waveforms for the integrator circuit are illustrated in Figure 5.

Figure 3. Sample and Hold Circuit or Integrator Circuit

WAVEFORMS

Figure 4. Sample and Hold Circuit Waveforms
Figure 5. Gated Integrator Waveforms

The ICL8007 A High Performance FET Input Operational Amplifier

INTRODUCTION

During the last 10 years the Field Effect Transistor has become the accepted device for amplifying low level currents. Until recently, however, high performance FET amplifiers have been available in only relatively expensive module or discrete form. With the introduction of the ICL8007, the first inexpensive high performance FET input OPAMP, Intersil has provided a device for use in those applications previously considered impossible due to cost factors. It is extremely easy to use, is a pin for pin replacement for the popular 741 (Ref 1), has internal compensation, and is short circuit protected. The ICL8007 is available in a hermetic TO5 type package and is ideally suited to both military and commorcial applications.

CIRCUIT DESCRIPTION Input Stage Design

Figure 1 shows a simplified schematic of the ICL8007. It is a two stage-circuit with a class AB complementary output and internal phase compensation.
The input stage consists of two bootstrapped FET source followers driving a lateral PNP emitter coupled pair. By using the FET's in the source follower mode, run to run variations of g_{m} have no influence on the stability. The bootstrap serves a dual purpose: it ensures excellent common mode rejection, and also prevents excessive gate currents. The latter problem is frequently seen in FET amplifiers, where at one end of the common mode range the FET sees large drain to source voltages.

Another feature of the input design which deserves comment is the method of offset adjustment. To minimize the temperature coefficient of the input offset voltage, it is imperative that the current through the two FET's be closely matched. Any attempt to compensate for initial offset by mismatching the FET drain currents will result in excessive temperature drift. The best place to implement the offset nulling is in the PNP stage, provided that Q_{3} and Q_{4} are fed from a low temperature coefficient current source; zeroing the offset will have no detrimental effect on the drift.

Input Current

The input current of the ICL8007 is typically less than 3 pA; it is selected for an input current of 1 pA maximum at $25^{\circ} \mathrm{C}$. As with any junction FET input amplitier, this current approximately doubles for every $10^{\circ} \mathrm{C}$ increase in temperature, as shown in Figure 2.

Summary of Characteristics (Typ. at $25^{\circ} \mathrm{C}$)

	ICL8007M	ICL8007C	 ICL8007AC	UNITS
Input Offset Voltage	10	20	15	mV
Input Bias Current	2.0	3.0	0.5	pA
Input Resistance	106	106	106	$\mathrm{M} \Omega$
Common Mode Rejection	90	90	95	dB
Input Voltage Range	± 12	± 12	± 12	V
Slew Rate	6.0	6.0	6.0	$\mathrm{~V} / \mu \mathrm{s}$
Unity Gain Bandwidth	1.0	1.0	1.0	MHz

Figure 1: ICL8007 Simplified Schematic

Figure 2: Input Bias Current as a Function of Temperature

Input Offset Voltage Drift

The input offset voltage drift of an FET amplifier is inherently worse than that of a well-designed bipolar circuit. The ICL8007M and ICL8007C are guaranteed to have temperature coefficients of less than $75 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, while the ICL8007AM and ICL8007AC are specified at $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum. Practically the whole of the manufacturing distribution falls within these limits, and it is straight forward to screen for tighter limits on a custom basis.

Noise Performance

The total mean square noise of an operational amplifier for a bandwidth $\Delta f=f_{2}-f_{1}$ is given by

$$
\mathrm{e}^{2} \mathrm{~T}=\int \frac{f_{2}}{f_{1}}\left(\mathrm{e}_{\mathrm{n}}\right)^{2} \mathrm{df}+\mathrm{Rs}^{2} \quad \int \frac{\mathrm{f}_{2}}{f_{1}}\left(\mathrm{i}_{\mathrm{n}}\right) 2 \mathrm{df}+4 \mathrm{kTR} \Delta \mathrm{f}(1)
$$

where R_{S} is the source resistance, e_{n} is the input-referred noise voltage generator, and i_{n} is the input-referred noise current generator. Typical values for e_{n} and i_{n} are compared with the 741 in the table below.

	$e_{n}($ at 10 Hz$)$	in $($ at 10 Hz$)$
8007	$200 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$<0.1 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$
741	$25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$0.7 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$

Figure 3: Wideband Noise as a Function of Source Resistance
It is clear that for high source resistances (RS>1M) where in dominates, the FET input is superior to a general purpose bipolar design such as the 741 . The input-referred current noise in the ICL8007 is so low that accurate measurement is difficult. For source impedances between $1 \mathrm{M} \Omega$ and $50 \mathrm{M} \Omega$, the total noise shown in equation 1 is dominated by the third term, the thermal noise of the feedback and source resistors. This is of course independent of the amplifier itself.
The total input-referred noise is shown as a function of source resistance in Figure 3.

APPLICATIONS

1) Log and Antilog Amplifiers

An application which illustrates the advantages of low input current is the log circuit of Figure 4 and its antilog counterpart, Figure 5.
These circuits make use of the well known logarithmic relationship between the base-emitter voltage and the collector current in a transistor (equation 2):

Hence

$$
\begin{equation*}
V_{B E}=\left(\frac{m k T}{q}\right) \ln \frac{I_{C}}{I_{S}} \tag{2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\Delta V_{B E}=\left(\frac{m k T}{q}\right) \ln \frac{\mathrm{I}_{\mathrm{C} 1}}{\mathrm{I}_{\mathrm{C} 2}} \tag{3}
\end{equation*}
$$

at $25^{\circ} \mathrm{C} \quad \Delta V_{B E}=60 \log _{10} \frac{\mathrm{IC}_{1}}{\mathrm{IC} 2} \mathrm{mV}$

Figure 4: Basic Log Amplifier

Figure 5: Basic Antilog Amplifier
It can be seen from equation 4 that each factor of ten change in collector current produces a 60 mV change in V_{BE}. For a low leakage silicon transistor such as the IT120, this relationship holds true over a surprisingly wide dynamic range: 10 decades (0.1 pA to 1 mA) is quite common. Ref (3) contains an excellent discussion of the principles and limitations of this type of log amplifier.
At the low current end of the range, the accuracy of the circuit in Figure 4 is primarily dependent on the amplifier input current, making the FET input type an obvious choice. At high currents, accuracy is finally limited by base resistance and current crowding effects in the "log" transistor. Figure 6 shows the input/output characteristics of such an amplifier.
In the majority of applications where the logarithm function is used, the antilogarithm is subsequently derived. In such applications, the temperature dependence of equation 3 is usually unimportant, provided the log and antilog transistors are in good thermal contact. A monolithic transistor pair such as the IT120 will ensure the required thermal tracking. However there are occasions when direct readout of a log function is called for, and unless compensated, the temperature dependence of equation 3 becomes a serious limitation. Ref 4 contains a more detailed discussion of this problem, and outlines some temperature compensation techniques. One of these is used in the photo cell amplifier which follows.

Figure 6: Transfer Characteristic of a Log Amplifier

2) Photocell Amplifier

Figure 7 shows a light meter which directly displays the log of the light intensity as an Exposure Value.* The silicon cell is operated at zero voltage to minimize leakage errors. R_{1} and R_{2} form a temperature sensitive gainblock, thus compensating the kT / q term in equation 3 . The output reads EV -3 to $\mathrm{EV}+18$ (@ ASA 100) on a $500 \mu \mathrm{~A}$ meter.

3) Peak Detector

Both peak detectors and sample \& hold circuits benefit from the use of an FET input amplifier since the capacitor
discharge rate is a function of the amplifier input current. Two long time constant peak detectors are shown. Figure 8 shows a circuit having an input resistance of around $40 \mathrm{M} \Omega$ and provides an output in phase with the input; figure 9 shows an inverting version of the same circuit. Although the input resistance is reduced to $10 \mathrm{~K} \Omega$, there are no common mode errors due to the 741 since it is operating as a virtual ground amplifier. Note that in both cases the initial offset of the ICL8007 is automatically nulled out. The typical output voltage decay rate for either circuit is less than $1 \mathrm{mV} / \mathrm{min}$.
*This is a photographic term. Each unit change of EV corresponds to a factor of two change in light intensity.

Figure 7: Sensitive Photometer

4) Sample \& Hold Circuits

A straightforward sample \& hold circuit using the DG139A analog switch (Ref 5) is shown in Figure 10. During the hold mode, the input amplifier is connected in unity gain to avoid output saturation.

Figure 9: Inverting Peak Detector

A sample and hold with input multiplexing can also be designed using low cost Intersil analog switches. In Figure 11, one channel of the IH5009 (Ref 6) is used to control the sample and hoid, while the other 3 channels control the input multiplexing. Output voltage decay rates of about $5 \mathrm{mV} / \mathrm{sec}$ can be achieved with this circuit.

Figure 10: Sample and Hold Circuit

Figure 11: Sample and Hold With Input Multiplexing

5) High Impedance Buffer

Figure 12 shows a high impedance follower in which the output of the amplifier is used to drive a shielded cable. This circuit is used by Intersil to measure the performance of MOSFET's at wafer sort. Since the amplifiers are situated some distance from the probe tips, shielded cable is used. The reduction in test speed normally associated with high capacitance coax is eliminated by driving the shield in phase with the input.

Figure 12: Buffer with Screen Drive

6) Wein Bridge Oscillator

In many oscillator and other large signal applications, the high slew rate of the ICL8007 may be used to advantage. When using general purpose amplifiers, such as the 741, to process signals with amplitudes greater than about 100 mV , the slew rate determines the upper operating frequency. This
frequency is substantially less than the 1 MHz small signal bandwidth. It can easily be shown that for a sinusoidal waveform described by equation 5 the maximum rate of change of voltage is given by equation 6 .

$$
\begin{equation*}
V=V o \sin \omega t \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d v}{d t}(\max)=2 \pi f V o \tag{6}
\end{equation*}
$$

If the amplifier slew rate is less than $\mathrm{dv} / \mathrm{dt}$ (max), distortion will occur. An amplifier with $0.6 \mathrm{~V} / \mu \mathrm{s}$ slew rate will not handle 20 V p-p signals above about 10 kHz .
The ICL8007 has a typical slew rate of $6 \mathrm{~V} / \mu \mathrm{s}$, thus extending the large signal operating frequency range by a factor of 10 compared with the 741. The undistorted output voltage swing as a function of frequency is shown in Figure 13. Figure 14 illustrates the large signal pulse response characteristics.
The Wein Bridge Oscillator of Figure 15 makes use of the high slew rate to provide a 20 V peak to peak output at 40 kHz . The amplitude may be controlled by R_{4}; for smaller output swings correspondingly higher frequencies can be obtained.

Figure 13: Output Voltage Swing as a Function of Frequency

Figure 14: Voltage Foilower Large-Signal Pulse Response

Figure 15: Wein Bridge Oscillator

Using The ICL8043 Dual FET Input Op Amp

Abstract

APPLICATIONS Applications for any dual amplifier fall into two categories. There are those which use the two-in-one package concept simply to save circuit-board space and cost, but more interesting are those circuits where the two sides of the dual are used to complement one another in a subsystem application. The circuits which follow have been selected on this basis.

AUTOMATIC OFFSET SUPPRESSION CIRCUIT

The circuit shown in Figure 1 uses one amplifier $\left(\mathrm{A}_{1}\right)$ as a normai gain stage, whiie the other (A_{2}) torms part of an offset voltage zeroing loop. There are two modes of operation which occur sequentially; first, an offset null correction mode during which the offset voltage of A_{1} is nulled out. Following this nulling operation, A_{1} is used as a normal amplifier while the voltage necessary to zero its offset voltage is stored on the integrator comprised of A_{2} and C_{1}.
The advantage of this circuit is that it allows chopper amplifier performance to be achieved at one-tenth the cost. The only limitation is that during the offset nulling mode, A_{1} is disconnected from the input. However, in most data acquisition systems, many inputs are scanned sequentially. It is fairly simple to synchronize the offset nulling operation so that it does not occur when that particular amplifier is being "looked at". For the component values shown in Figure 1 , and assuming a total leakage of 50 pA at the inverting input of A_{2}, the offset voltage referred to the input of A_{1} will drift away from zero at only $40 \mu \mathrm{~V} / \mathrm{sec}$. Thus, the offset nulling
information stored on C_{1} can be "refreshed" relatively infrequently. The measured offset voltage of A_{1} during the amplification mode was $11 \mu \mathrm{~V}$; offset voltage drift with temperature was less than $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

STAIRCASE GENERATOR

The circuit shown in Figure 2 is a high input impedance version of the so-called "diode pump" or staircase generator. Note that charge transfer takes place at the negative-going eage of the input-signal.

The most common application for staircase generators is in low cost counters. By resetting the capacitor when the output reaches a predetermined level, the circuit may be made to count reliably up to a maximum of about 10. A straightforward circuit using a LM311 for the level detector, and a CMOS analog gate to discharge the capacitor, is shown in Figure 3. An important property of this type of counter is the ease with which the count can be changed; it is only necessary to change the voltage at which the comparator trips. A low cost A-D converter can also be designed using the same principle since the digital count between reset periods is directly proportional to the analog voltage used as a reference for the comparator.
A considerable amount of hysteresis is used in the comparator shown in Figure 3. This ensures that the capacitor is completely discharged during the reset period. In a more sophisticated circuit, a dual comparator "window detector" could be used, the lower trip point set close to ground to assure complete discharge. The upper trip point could then be adjusted independently to determinethepulse count.

Figure 2

Figure 3

SAMPLE \& HOLD CIRCUIT

Two important properties of the 8043 are used to advantage in this circuit. The low input bias currents give rise to slow output decay rates ("droop") in the hold mode, while the high slew rate ($6 \mathrm{~V} / \mu \mathrm{S}$) improves the tracking speed and the response time of the circuit. See Figure 4.
The ability of the circuit to track fast moving inputs is shown in Figure 5A. The upper waveform is the input ($10 \mathrm{~V} / \mathrm{div}$), the lower waveform the output ($5 \mathrm{~V} / \mathrm{div}$). The logic input is high.

Actual sample and hold waveforms are shown in Figure 5B. The center waveform is the analog input, a ramp moving at about $67 \mathrm{~V} / \mathrm{ms}$, the lower waveform is the logic input to the sample \& hold; a logic " 1 " initiates the sample mode. The upper waveform is the output, displaced by about 1 scope division (2V) from the input to avoid superimposing traces. The hold mode, during which the output remains constant, is clearly visible. At the beginning of a sample period, the output takes about $8 \mu \mathrm{sec}$ to catch up with the input, after which it tracks until the next hold period.

Figure 4

TOP: INPUT (10V/DIV)
BOTTOM: OUTPUT (5V/DIV)
HORIZONTAL: $\mathbf{1 0} \mu \mathrm{s} /$ DIV

TOP: 2V/DIV
CENTER: 2V/DIV
BOTTOM: 10V/DIV
HORIZONTAL: $10 \mu \mathrm{~s} /$ DIV

INSTRUMENTATION AMPLIFIER

A dual FET input operational amplifier is an attractive component around which to build an instrumentation amplifier because of the high input resistance. The circuit shown in Figure 6 uses the popular triple op-amp approach. The output amplifier is a High Speed 741 (741 HS, slew rate guaranteed $\geq 0.7 \mathrm{~V} / \mu \mathrm{s}$) so as to utilize the high slew rate of the 8043 to the maximum extent. Input resistance of the circuit (either input, regardless of gain configuration) is in excess of 1012 ohms.
For the component values shown, the overall amplifier gain is 200 (front end gain $=\frac{2 R_{1}+R_{2} \text {, back end gain, }=R_{6} / R_{4} \text {). }}{R_{2}}$.

Common mode rejection is largely determined by the matching between R_{4} and R_{5}, and R_{6} and R_{7}. In applications where offset nulling is required, a single potentiometer can be connected as shown in Figure 7.

Another popular circuit is given in Figure 8. In this case the gain is $1+R_{1} / R_{2}$, and the CMRR determined by the match between R_{1} and R_{4}, R_{2} and R_{3}.

Figure 6

ALL RESISTORS . 1%

Figure 8

Using The 8048/8049 Log/Antilog Amplifier

GENERAL DESCRIPTION

A common problem in instrumentation and data transmission is the processing of signals over a wide dynamic range. The ICL8048 is designed to provide the solution.
The 8048 is a complete DC logarithmic amplifier, consisting of two FET input op amps and utilizing the fundamental logarithmic properties of a transistor junction. It will handle six decades of input current or three decades of voltage input, is temperature compensated from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, and features adjustable scale factor, reference current and offset voltage.
The 8049 is the anti-log counterpart of the 8048 and is designed to supply one full decade of output voltage for each 1 volt change at the input. And like the 8048, the reference current scale factor and offset voltage are externally adjustable.

THEORY OF OPERATION (Figure 1)

The logarithmic gain of the 8048 is derived from the inherent exponential characteristics of a transistor junction. Transistor Q_{1} is used as the non-linear feedback element around op amp A_{1} which has a FET-input stage to provide low input current noise and very low input bias current. Negative feedback is applied to the emitter of Q_{1} through R_{4}. This forces the collector current of Q_{1} to be exactly equal to
the current through the input resistor R_{1}. The collector current for Q_{2} is set by R_{2} and the reference voltage, and since the collector current of Q_{2} remains constant, the emitter base voltage also remains constant. Therefore, only the emitter base voltage of Q_{1} varies with a change of input current. However, the output voltage is a function of the difference in emitter-base voltages of Q_{1} and Q_{2}.

$$
\begin{equation*}
V_{0}=\frac{R_{5}+R_{3}}{R_{3}}\left(V_{B E_{1}}-V_{B E_{2}}\right) \tag{1}
\end{equation*}
$$

For matched transistors operating at different collector currents, the emitter base differential is given by

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{BE}}=\frac{\mathrm{kt}}{\mathrm{q}} \quad \ln \frac{\mathrm{I}_{1}}{\mathrm{IC}_{2}} \tag{2}
\end{equation*}
$$

Combining Equation 1 and 2 and writing the expression for the output voltage gives

$$
\begin{equation*}
V_{0}=\frac{R_{5}+R_{3}}{R_{3}}\left(\frac{k t}{q}\right) \ell_{n} \frac{I_{c_{1}}}{I_{C_{2}}} \tag{3}
\end{equation*}
$$

This shows that the output is proportional to the logarithm of the input current, and hence voltage. The temperature dependence is minimized by control of the temperature coefficient of R5.

Figure 1: 8048 A Complete Monolithic Log Amp

The basic schematic of the 8049 is shown in Figure 2. A_{3} forces Q_{3} to operate at IREF, shifting down the emitter voltage of Q_{4} by the voltage applied to pin 2. The division ratio is controlled by R_{6} and R_{7}, thus the $V_{B E}$ of Q_{4} will force a collector current given by:

$$
\begin{aligned}
& \text { ector current given by: } \\
& \text { lout }=\mathrm{I}_{(\mathrm{Q}(\mathrm{Q})}=\left(\mathrm{I}_{\mathrm{REF}}\right)^{\alpha} \mathrm{V}_{\mathrm{IN}} \text {, where } \alpha=\frac{-\mathrm{q} \mathrm{R}_{6}}{\mathrm{kT}\left(\mathrm{R}_{6}+\mathrm{R}_{7}\right)}
\end{aligned}
$$

therefore giving the desired antilog dependence.
A4, together with R9, acts as a current to voltage converter:

$$
V_{O U T}=\mathrm{Rg}_{9}(\text { IREF }) \text { antilog }\left(\alpha \mathrm{V}_{\text {IN }}\right)
$$

Again the temperature coefficient of R_{7} corrects for the temperature dependence of α.

Figure 2: ICL8049 A Complete Monolithic Antilog Amp

SOURCES OF ERROR

Log Conformity Error: Log conformity error is the difference between actual output voltage and the output voltage predicted by the log transfer equation. A plot of input versus output should be a straight line (when plotted on semilog paper), with a slope $\mathrm{kT} / \mathrm{q}(60 \mathrm{mV} /$ decade $)$. Any deviation from this straight line is log conformity error.

Offset Voltage (Vos): The offset voltage of the internal FET amplifier. This voltage appears as a small DC voltage in series with the input terminals. For current logging applications, its error contribution is negligible, however for log voltage applications, best performance is obtained by nulling Vos.
Reference Current (IREF): IREF is the current generated by R_{2} and VREF (Fig. 1) to which all input currents are compared. IREF tolerance errors appear as a DC offset at the output; a $\pm 1 \%$ Iref error, referred to the input, corresponds to a DC offset of $\pm 4.3 \mathrm{mV}$ at the output. This offset is independent of input signal.
When a resistor is used to generate IREF, as shown in Fig. 1, pin 16 is not a true virtual ground. For the 8048, a fraction of
the output voltage is seen on pin 16. This does not constitute an appreciable error, provided VREF is much greater than this voltage; a 10 V or 15 V reference satisfies this condition. Alternatively, Iref can be provided from a true current source. See Figure 3.
Bandwidth: The gain bandwidth product of the logging element is relatively constant, and a change in gain will vary the bandwidth. Gain changes occur when input current to the logging elements varies with signal level. Consequently, slew rate and frequency response are specified as a function of input signal level and will vary accordingly.
It should be noted that zero collector current in the logging element for zero signal current is not the preferred condition, particularly if the input terminal is to be multiplexed and a rapid rise to the end value of output voltage is important. The rise time, in decades of collector current per second, is approximately proportional to collector current; accordingly, if the collector current had to start up from zero, the rise to the output voltage would take an undue length of time. This can be prevented by injecting a collector rest current equal to 1% of the lowest current to be measured.

ONE QUADRANT DIVIDER

Computing the ratio of two analog voltages can be done with general-purpose analog multipliers, but the accuracy decreases if the denominator varies over a wide range. With log-amps, a one-quadrant divider with a better full-scale accuracy over a dynamic range of 100:1 can be designed, and with the flexibility of external adjustments, the scale factors are readily adjustable and the circuit can easily be optimized for other ranges.
The circuit in Figure 1 may be used as divider or reciprocal generator. The output of the 8048 is actually the ratio of the input current and the reference current through R_{2}, when used as a log generator, the reference current is held constant by connecting R_{2} to a fixed voltage. If R_{2} is driven by an input voltage, rather than the 15 V reference, the output of the 8048 is the log ratio of the input current to the current through R_{2}. The antilog of this output voltage is the ratio of the inputs.

A complete one quadrant divider is shown in Figure 3. It is the log amplifier (8048) shown in Figure 1 driving the antilog amplifier (8049) shown in Figure 2. The log amplifier output drives the base of Q3 with a voltage proportional to the log of E_{1} / E_{2}. Transistor Q_{3} adds a voltage proportional to the log of E_{3} and drives the anti-log transistor, Q_{4}. The collector current of Q_{4} is converted to an output voltage by A_{4} and R_{6}, with the scale factor set by R_{6}.

$$
\begin{equation*}
\text { Vout }=\frac{E_{1}}{10 E_{2}} \tag{4}
\end{equation*}
$$

Note that the current corresponding to E_{2} is derived from a true current source to avoid the errors discussed above under "reference current".

Figure 3: Complete One Quadrant Divider Using an 8048 Log Amp and an 8049 Antilog Amp

ARBITRARY POWER LAW CIRCUIT

Log amplifiers are an excellent means of computing $Y=X^{\alpha}$ relationships. Powers or roots may be computed precisely by cascading a log amp (8048) and antilog amp (8049) with appropriate scale factors. General-purpose multipliers are good for squaring ($\alpha=2$), but non-integer exponents, such as 1.3 or 1.5 ; are sometimes needed. The circuit for this is shown in Figure 4.
The output of the 8048 log amplifier with a DC voltage input X that ranges from 1 V to 10 V is:

$$
\begin{equation*}
\text { VOUT }=-K_{1} \log _{10}\left(\frac{X}{10 K I_{\text {REF }}}\right) \tag{5}
\end{equation*}
$$

where K_{1} is the scale factor of the 8048 and $I_{\text {REF }}$ is the reference current. Setting IREF to $100 \mu \mathrm{~A}$ will make:

$$
\begin{equation*}
\text { VOUT }=-K_{1} \log _{10} X \tag{6}
\end{equation*}
$$

The output of the antilog circuit (8049) is:

$$
\begin{equation*}
\text { VOUT }=\text { ROUT I IREF2 antilog } 10\left(\frac{K_{1} \log _{10} X}{K_{2}}\right) \tag{7}
\end{equation*}
$$

or in other words,

$$
\begin{equation*}
\text { Vout }=\text { Rout } I_{\text {REF }}^{2} \text { (X) } K_{1} / K_{2} \tag{8}
\end{equation*}
$$

where
Rout Output resistor connected between pins 10 and 14 of the 8049.
IREF_{2} Reference current for the 8049.
$X-\quad$ Input $(+1 V \leq X \leq+10 \mathrm{~V})$.
K_{1} - Scale factor of 8048.
K_{2} - Scale factor of 8049.
The exponent is set by the ratio of the scale factors K_{1} and K_{2}, and the coefficient is set by the product Rolref ${ }_{2}$.

Figure 4: Circuit for Computing Exponential Functions

Referring to Figure 4, and considering that X varies between 1 V and 10 V , the output of the 8048 log amp will vary between K_{1} and zero, with a reference current of $100 \mu \mathrm{~A}$, set by the +15 V reference and R_{2}. Setting the scale factor K_{1} at $10 \mathrm{~V} /$ decade uses the full 10 V range. Since the exponent is set by a ratio of K_{1} and K_{2}, setting $\mathrm{K}_{2}=5 \mathrm{~V} /$ decade means the exponent is 2 . The coefficient for the 8049 is set by ROUT and $l_{R E F_{2}}$, while the reference current is set by the +15 V reference and R5.

$$
\begin{aligned}
& I_{\text {REF }}^{1} 10=100 \mu \mathrm{~A} \\
& I_{\text {REF }_{2}}=1 \mu \mathrm{~A} \\
& K_{1} / K_{2}=2 \\
& \text { Routlinef }_{2}=.01
\end{aligned}
$$

Putting these values into equation 5 :

$$
\text { Vout }=.01 \mathrm{X}^{2} \text { where }+1 \mathrm{~V} \leq \mathrm{X} \leq+10 \mathrm{~V}
$$

MULTIPLIER

In a variety of circuit applications, it is necessary to obtain linear product of two input signals. With two log amplifiers in conjunction with an antilog amplifier and summing amplifier, it is possible to generate products such as

$$
\begin{equation*}
Z=K X Y \tag{9}
\end{equation*}
$$

where K is the gain constant of the multiplier. A one quadrant multiplier is shown in Figure 5.
A_{1} and A_{2} are 8048 log amplifiers with the reference currents set for 1 mA and scale factors of 1 volt/decade. The output of \hat{A}_{1} and \hat{A}_{2} are summed together by the 741 operational amplifier and resistors R_{7} through R_{11}.
The 741 output drives A_{3}, an 8049 antilog amplifier. The reference current for the 8049 is set for 1 mA and the scale factor is adjusted so that a 1 volt change at the input
generates a decade change at the output. The output voltage of the 8049 is proportional to the product of the two inputs, X and Y. To make the maximum use of a large signal range, the multiplier gain K is set such that

$$
\begin{equation*}
V_{\text {OUT }}=\frac{X Y}{10} \tag{10}
\end{equation*}
$$

where X and Y are DC analog voltages that range from +0.1 V to +10 V .

Accuracy is defined as the maximum deviation of the actual output level from the idea! one, given by Eq. (10), for aniy choice of X or Y values withn the dynamic range of the multiplier. It is normally specified as a percentage of fullscale output. For example, 1 percent full-scale accuracy means that with +10 V output the actual output would be within $\pm 100 \mathrm{mV}$ of the ideal level.

Figure 5: Multiplier

LOG SWEEP

This circuit uses the output of the ICL8049 to control the frequency of the ICL8038 waveform generator, with the 741 op amp used to linearize the voltage-frequency response. The input voltage to the 8049 can be, for example, the horizontal sweep signal of an oscilloscope; the output of the

8038 will then sweep logarithmically across the audio range. By feeding this to the equipment being measured, and detecting the output, a standard frequency response can be obtained. If the output is fed through an ICL8048 before being displayed, a standard bode plot results.

Using the ICL8013 Four Quadrant Analog Multiplier

CIRCUIT DESCRIPTION

The fundamental element of the ICL8013 multiplier is the bipolar differential amplifier of Figure 1.

Figure 1: Differential Amplifier
The smail signal ditterential voltage gain of this circuit is given by

$$
A V=\frac{V_{O U T}}{V_{I N}}=\frac{R_{L}}{r_{e}}
$$

Substituting $r_{e}=\frac{1}{g_{m}}=\frac{k T}{q I_{E}}$

$$
V_{\text {OUT }}=V_{I N} \frac{R_{L}}{r_{e}}=V_{I N} \cdot \frac{q_{E} R_{L}}{k T}
$$

The output voltage is thus proportional to the product of the input voltage $\mathrm{VIN}_{\mathrm{I}}$ and the emitter current IE. In the simple transconductance multiplier of Figure 2, a current source comprising Q_{3}, D_{1}, and R_{Y} is used. If V_{Y} is large compared with the drop across D_{1}, then

$$
I_{D} \simeq \frac{V_{Y}}{R_{Y}}=2 I_{E} \text { and } \quad V_{O U T}=\frac{q R_{L}}{k T R_{Y}}\left(V_{X} \cdot V_{Y}\right)
$$

Figure 2: Transconductance Multiplier
There are several difficulties with this simple modulator:
1: V_{Y} must be positive and greater than V_{D}
2: Some portion of the signal at V_{X} will appear at the output unless $I_{E}=0$.
3: $V \times$ must be a small signal for the differential pair to be linear.
4: The output voltage is not centered around ground.

The first problem relates to the method of converting the V_{Y} voltage to a current to vary the gain of the V_{X} differential pair. A better method, Figure 3, uses another differential pair but with considerable emitter degeneration. In this circuit the differential input voltage appears across the common emitter resistor, producing a current which adds or subtracts from the quiescent current in either collector. This type of voltage to current converter handles signals from 0 volts to ± 10 volts with excellent linearity.

Figure 3: Voltage to Current Converter

The second problem is called feedthrough; i.e. the product of zero and some finite input signal does not produce zero output voltage. The circuit whose operation is illustrated by Figures $4 \mathrm{~A}, \mathrm{~B}$, and C overcomes this problem and forms the heart of many multiplier circuits in use today.
This circuit is basically two matched differential pairs with cross coupled collectors. Consider the case shown in 4A of exactly equal current sources biasing the two pairs. With a small positive signal at V_{IN}, the collector current of Q_{1} and Q_{4} will increase but the collector currents of Q_{2} and Q_{3} will decrease by the same amount. Since the collectors are cross coupled the current through the load resistors remains unchanged and independent of the $V_{I N}$ input voltage.

Figure 4A: Input Signal with Balanced Current Sources $\Delta V_{O U T}=0 \mathrm{~V}$

Figure 4B: No Input Signal with Unbalanced Current Sources Δ VOUT $=0 \mathrm{~V}$

In Figure 4B, notice that with $\mathrm{V}_{\mathrm{IN}}=0$ any variation in the ratio of biasing current sources will produce a common mode voltage across the load resistors. The differential output voltage will remain zero. In Figure 4C we apply a differential input voltage with unbalanced current sources. If $\mathrm{I}_{\mathrm{E} 1}$ is twice $I_{E 2}$, the gain of differential pair Q_{1} and Q_{2} is twice the gain of pair Q_{3} and Q_{4}. Therefore, the change in cross coupled collector currents will be unequal and a differential output voltage will result. By replacing the separate biasing current sources with the voltage to current converter of Figure 3 we have a balanced multiplier circuit capable of four quadrant operation (Figure 5).

Figure 4C: Input Signal with Unbalanced Current Sources, Differential Output Voltage

This circuit of Fig. 5 still has the problem that the input voltage Vin must be small to keep the differential amplifier in the linear region. To be able to handle large signals, we need an amplitude compression circuit.

Figure 5: Typical Four Quadrant Multiplier-Modulator

Figure 3 showed a current source formed by relying on the matching characteristics of a diode and the emitter base junction of a transistor. Extension of this idea to a differential circuit is shown in Fig. 6A. In a differential pair, the input voltage splits the biasing current in a logarithmic ratio. (The usual assumption of linearity is useful only for small signals.) Since the input to the differential pair in Figure 6A is the

Figure 6A: Current Gain Cell

Figure 6B: Voltage Gain with Signal Compression
difference in voltage across the two diodes, which in turn is proportional to the log of the ratio of drive currents, it follows that the ratio of diode currents and the ratio of collector currents are linearly related and independent of amplitude. If we combine this circuit with the voltage to current converter of Fig. 3, we have Fig. 6B. The output of the differential amplifier is now proportional to the input voltage over a large dynamic range, thereby improving linearity while minimizing drift and noise factors.

The complete schematic is shown in Figure 7. The differential pair Q_{3} and Q_{4} form a voltage to current converter whose output is compressed in collector diodes Q_{1} and Q_{2}. These diodes drive the balanced cross-coupled differential amplifier $Q_{7} / Q_{8} Q_{14} / Q_{15}$. The gain of these amplifiers is modulated by the voltage to current converter Q_{9} and Q_{10}. Transistors Q_{5}, Q_{6}, Q_{11}, and Q_{12} are constant current sources which bias the voltage to current converter. The output amplifier comprises transistors Q_{16} through Q_{27}.

Figure 7: ICL8013 Schematic

MULTIPLICATION

In the standard multiplier connection, the Z terminal is connected to the op amp output. All of the modulator output current thus flows through the feedback resistor R27 and produces a proportional output voltage.

Figure 8A: Multiplier Block Diagram

Figure 8B: Actual Circuit Connection

MULTIPLIER Trimming Procedure

1. Set $X_{I N}=Y_{I N}=O V$ and adjust $Z_{O S}$ for zero Output.
2. Apply a $\pm 10 \mathrm{~V}$ low frequency $(\leq 100 \mathrm{~Hz})$ sweep (sine or triangle) to $Y_{I N}$ with $X_{I N}=0 \mathrm{~V}$, and adjust X_{O} for minimum output.
3. Apply the sweep signal of Step 2 to $X_{I N}$ with $Y_{I N}=0 \mathrm{~V}$ and adjust Yos for mınimum Output.
4. Readjust Zos as in Step 1, if necessary.
5. With $X_{I N}=10.0 \mathrm{~V}$ DC and the sweep signal of Step 2 applied to $\mathrm{Y} \mathbb{N}$, adjust the Gain potentiometer for Output = $Y_{I N}$. This is easily accomplished with a differential scope plug-in $(A+B)$ by inverting one signal and adjusting Gain control for (Output - YiN $^{\prime}$) $=$ Zero.

DIVISION

If the Z terminal is used as an input, and the output of the opamp connected to the Y input, the device functions as a divider. Since the input to the op-amp is at virtual ground, and requires negligible bias current, the overall feedback forces the modulator output current to equal the current produced by Z.

$$
\begin{aligned}
& \text { Therefore } \mathrm{IO}=X \bullet Y=\frac{Z}{R}=10 Z \\
& \text { Since } Y=\text { EOUT, EOUT }=\frac{10 Z}{X}
\end{aligned}
$$

Note that when connected as a divider, the X input must be a negative voltage to maintain overall negative feedback.

Figure 9A: Division Block Diagram

Figure 9B: Actual Circuit Connection

DIVIDER Trimming Procedure

1. Set trimming potentiometers at mid-scale by adjusting voltage on pins 7, 9 and 10 (XOS, Yos, Zos) for zero volts.
2. With $Z_{I N}=0 V$, trim Zos to hold the Output constant, as $X_{I N}$ is varied from -10 V through -1 V .
3. With $\mathrm{Z}_{\mathbb{N}}=0 \mathrm{~V}$ and $\mathrm{X}_{\mathbb{N}}=-10.0 \mathrm{~V}$ adjust Y_{OS} for zero Output voltage.
4. With $Z_{I N}=X_{I N}$ (and/or $\left.Z_{I N}=-X_{I N}\right)$ adjust $X_{O \text { os }}$ for minimum worst-case variation of Output, as $\mathrm{X}_{\text {IN }}$ is varied from -10 V to -1 V .
5. Repeat Steps 2 and 3 if Step 4 required a large initial adjustment.
6. With $Z_{I N}=X_{I N}$ (and/or $\left.Z_{I N}=-X_{I N}\right)$ adjust the gain control until the output is the closest average around +10.0 V $\left(-10 \mathrm{~V}\right.$ for $\left.\mathrm{Z}_{\mathrm{IN}}=-\mathrm{X}_{\mathbf{I N}}\right)$ as X_{IN} is varied from -10 V to -3 V .

SQUARING

The squaring function is achieved by simply multiplying with the two inputs tied together. The squaring circuit may also be used as the basis for a frequency doubler since $\cos ^{2} \omega=1 / 2$ $(\cos 2 \omega+1)$.

Figure 10A: Squarer Block Diagram

Figure 10B: Actual Circuit Connection

SQUARE ROOT

Tying the X and Y inputs together and using overall feedback from the Op Amp results in the square root function. The output of the modulator is again forced to equal the current produced by the Z input.

$$
\begin{aligned}
& I_{O}=X \cdot Y=(- \text { EOUT })^{2}=10 Z \\
& \text { EOUT }=-\sqrt{10 Z}
\end{aligned}
$$

The output is a negative voltage which maintains overall negative feedback. A diode in series with the Op Amp output prevents the latchup that would otherwise occur for negative input voltages.

Figure 11A: Square Root Block Diagram

Figure 11B: Actual Circuit Connection

SQUARE ROOT Trimming Procedure

1. Connect the ICL8013 in the Divider configuration.
2. Adjust Zos, Yos, Xos, and Gain using Steps 1 through 6 of Divider Trimming Procedure.
3. Convert to the Square Root configuration by connecting $X_{\text {IN }}$ to the Output and inserting a diode between Pin 4 and the Output node.
4. With $Z_{I N}=O V$ adjust $Z_{O S}$ for zero Output voltage.

VARIABLE GAIN AMPLIFIER

Most applications for the ICL8013 are straight forward variations of the simple arithmetic functions described above. Although the circuit description frequently disguises the fact, it has already been shown that the frequency doubler is nothing more than a squaring circuit. Similarly the variable gain amplifier is nothing more than a multiplier, with the input signal applied at the X input and the control voltage applied at the Y input.

Figure 12: Variable Gain Amplifier

TYPICAL APPLICATIONS

POTENTIOMETERS FOR TRIMMING OFFSET AND FEEDTHROUGH

SQUARE ROOT

TYPICAL PERFORMANCE CURVES

AMPLITUDE AND PHASE AS A FUNCTION OF FREQUENCY

NONLINEARITY AS A FUNCTION OF FREQUENCY

FEEDTHROUGH AS A FUNCTION OF FREQUENCY

DEFINITION OF TERMS

Multiplication/Division Error: This is the basic accuracy specification. It includes terms due to linearity, gain, and offset errors, and is expressed as a percentage of the full scale output.
Feedthrough: With either input at zero, the output of an ideal multiplier should be zero regardless of the signal applied to
the other input. The output seen in a non-ideal multiplier is known as the feedthrough.
Nonlinearity: The maximum deviation from the best straight line constructed through the output data, expressed as a percentage of full scale. One input is held constant and the other swept through its nominal range. The nonlinearity is the component of the total multiplication/division error which cannot be trimmed out.

A Precision Waveform Generator and Voltage Controlled Oscillator

DESCRIPTION

The 8038 Waveform Generator is a monolithic integrated circuit, capable of producing sine, square, triangular, sawtooth and pulse waveforms of high accuracy. The frequency (or repetition rate) can be selected externally over a range from less than $1 / 100 \mathrm{~Hz}$ to more than $1 / 2 \mathrm{MHz}$ and is highly stable over a wide temperature and supply voltage range. Frequency modulation and sweeping can be accomplished with an external voltage and the frequency can be programmed digitally through the use of either resistors or capacitors. The Waveform Generator utilizes advanced monolithic technology, such as thin film resistors and Schottky-barrier diodes.

THEORY OF OPERATION

A block-diagram of the waveform generator is shown in Figure 1. An external capacitor C is charged and discharged by two current sources. Current source \#2 is switched on and off by a flip-flop, while current source \#1 is on continuously. Assuming that the flip-flop is in a state such that current source \#2 is off, then the capacitor is charged with a current I. Thus the voltage across the capacitor rises linearily with time. When this voltage reaches the level of comparator \#1 (set at $2 / 3$ of the supply

FIGURE 1. BLOCK-DIAGRAM OF WAVEFORM GENERATOR.
voltage), the flip-flop is triggered, changes states, and releases current source \#2. This current source normally carries a current 21, thus the capacitor is discharged with a net-current I and the voltage across it drops linearly with time. When it has reached the level of comparator \#2 (set at $1 / 3$ of the supply voltage), the flip-flop is triggered into its original state and the cycle starts anew.
Four waveforms are readily obtainable from this basic generator circuit. With the current sources set at I and 21 respectively, the charge and discharge times are equal. Thus a triangle waveform is created across the capacitor and the flip-flop produces a square-wave. Both waveforms are fed to buffer stages and are available at pins 3 and 9.
The levels of the current sources can, however, be selected over a wide range with two external resistors. Therefore, with the two currents set at values different from 1 and 21 , an asymmetrical sawtooth appears at terminal 3 and pulses with a duty cycle from less than 1% to greater than 99% are available at terminal 9.
The sine-wave is created by feeding the triangle-wave into a non-linear network (sine-converter). This network provides a decreasing shunt-impedance as the potential of the triangle moves toward the two extremes.

THE DETAILED CIRCUIT DIAGRAM (FIGURE 2)

The current sources are formed by transistors Q_{1} through Q_{13}. A reference voltage is formed by a resistance voltage divider $\left(R_{1}, R_{2}\right)$ at pin 7 ; this reference voltage is therefore a precise fraction of the supply voltage (set at 80%). If frequency modulation or sweep is not used, pins 7 and 8 are connected together for best temperature performance.
Q_{1} acts as an emitter follower, so that the impedance at pin 8 is very high. Two lateral pnp transistors $\left(Q_{2}\right.$ and $\left.Q_{3}\right)$ receive their base signal from the emitter of Q_{1}. These two transistors carry a current which is determined by the base voltage and the resistance connected in series with the emitters, i.e. the two external resistors.
Notice that cancellation of base-emitter voltage-drops takes place in this circuit. The emitter-voltage of Q_{1} is lower by one VBE compared to the reference voltage, but the voltages at pins 4 and 5 are higher by one $V_{B E}$ compared to that of the emitter of Q_{1}. Therefore, the voltages at pins 8,5 and 4 are equal and the two currents are given by

$$
I=\frac{V_{c c}-V_{\text {ref }}}{R_{e x t}}=\frac{R_{1} \times V_{c c}}{\left(R_{1}+R_{2}\right) R_{e x t}}=\frac{0.2 V_{c c}}{R_{e x t}}
$$

To allow a wide current range, npn transistors $\left(Q_{4}, Q_{5}\right)$ have been added to form composite pnp equivalents. In this way each current source can deliver up to 10 mA .

FIGURE 2. DETAILED CIRCUIT DIAGRAM OF WAVEFORM GENERATOR.*

A small amount of current is returned to the bases of Q_{2} and Q_{3} through the diode-biased transistor connection of Q_{7} and Q_{8}. This current is necessary to provide sufficient base current for the lateral pnp transistors. The diode Q6 acts as a start-up current path.
The transistors Q_{10} through Q_{13} are connected as a Wilson current source with a 2:1 current ratio. As long as the collector of Q_{11} is undisturbed, the collector of Q_{10} will sink a current which has precisely twice the magnitude of that flowing into terminal 5 . When the collector of Q_{11} is shorted to ground by the flip-flop (Q_{25}), the collector current in Q_{10} ceases to flow.
The two comparators are formed by transistors Q_{15} through Q_{22}. Each comparator consists of a differential Darlington pair. The two levels are derived from a precision voltage divider ($\mathrm{R}_{8}, \mathrm{R}_{9}, \mathrm{R}_{10}$) with three equal resistance values. As long as the voltage across capacitor C is below $2 / 3$ of the supply voltage, the entire current in the npn differential pair flows through Q_{17} and Q_{18}. At precisely $2 / 3 \mathrm{~V}_{C C}$ this current switches to Q_{15} and Q_{16}. This in turn causes a current to flow in Q_{14} which changes the state of the flip-flop.
The identical response is obtained from the pnp differential Darlington pair Q_{19} through Q_{22}. As long as the voltage across the capacitor is larger than $1 / 3 \mathrm{~V}_{C C}$, only Q_{21} and Q_{22} carry current. At $1 / 3 \mathrm{~V}_{\mathrm{Cc}}, Q_{19}$ and Q_{20} turn on and change the state of the flip-flop through Q_{29}.

Both comparators are made from Darlington pairs to afford a very high input impedance so that the waveform generator can be run with small timing currents. In addition, the comparators only draw currents at or near each threshold; in this way the error created by loading is negligible.

To achieve the highest possible speed, each transistor in the flip-flop is held out of saturation with a Schottkybarrier diode. Q_{26} and Q_{27}, together with resistors $\mathrm{R}_{13}, \mathrm{R}_{14}$ and R_{16} form the basic (RTL) flip-flop. Q_{28} and Q_{29} act as trigger elements, alternately shorting the collector and. the base of Q_{27} to ground and thus forcing the flip-flop to change states.

The flip-flop is operated at approximately 2 V through an internal dropping network consisting of Q_{30} through Q_{34}. Q_{25} controls current source \#2 (turning it on and off). Q_{23} and Q_{24} form the square-wave output buffer stage with an uncommitted collector. The performance of this output stage is shown in Figure 3. With a load resistor connected between terminal 9 and $V_{c c}$, the square-wave output alternates between $V_{C C}$ and the saturation voltage (near ground or -V .) Since the collector of Q_{23} is uncommitted (i.e. there is no internal load resistor) the load of the square-wave output can be connected to any supply voltage within the breakdown capability ($<30 \mathrm{~V}$) of the transistor.

FIGURE 3. PERFORMANCE OF THE SQUARE-WAVE OUTPUT (PIN 9).

Notice that the flip-flop is triggered only on the right-hand side, while the outputs are taken from the left-hand side. In this way the flip-flop is forced to change state before it is allowed to act on the current source, avoiding potential hang-up or false triggering problems.
Q_{35} through Q_{40} are connected as the triangle output buffer stage. The triangle waveform is picked up at a potential one $V_{B E}$ above that carried by the capacitor. A Darlington emitter follower (Q_{35}, Q_{36}) is used to provide a high impedance. Thus, at the emitter of Q_{36}, the potential of the waveform is one $V_{B E}$ below that of the capacitor. The subsequent Class-B output stage formed by Q_{39} and Q40 and their biasing chain Q_{37}, Q_{38} shift the dc level up by one $V_{B E}$ so that the waveform of pin 3 has the same dc potential and magnitude as that of the capacitor. Since the trigger thresholds are chosen at $1 / 3$ and $2 / 3 \mathrm{VCc}$, the average (or dc) potential of the triangle is precisely in the center of the supply voltage and the peak-to-peak amplitude is exactly $1 / 3$ of the supply voltage. Operating the waveform generator from a dual power-supply with equal positive and negative voltages puts the average of the triangle at ground level.
The performance of the triangle output stage is shown in Figure 4. Notice that the load can be connected to either grond, +V or -V .
The remainder of the circuitry, transistors Q_{41} through Q_{56}, is used to create the sine-wave. Eight reference voltages are provided by the resistance voltage divider R_{32} through R_{40}, symmetrically about the center point between the positive and negative supply voltage. As the triangle wave passes the level of the first reference voltage in the positive direction, Q41 starts conducting (the baseemitter voltages of an npn and a pnp transistor are nulled out so that the reference voltage appears both at the base of Q_{42} and the emitter of Q_{41}). Thus, at this voltage level, the triangle wave is attenuated by the ratio of R_{44} to R_{21}. At the higher voltage levels additional and decreasing resistances become active. This non-linear attenuator, therefore, shapes the triangle-wave into a sine-wave. An identical attenuator (with reversed polarity) is provided for the negative half of the waveform.

FIGURE 4. PERFORMANCE OF TRIANGLE-WAVE OUTPUT.

FIGURE 5. PERFORMANCE OF SINE-WAVE OUTPUT.

FIGURE 6. CURRENT CONSUMPTION AND FREQUENCY STABILITY.

The performance of the sine-wave output is shown in Figure 5. Figure 6 shows additional general information concerning current consumption and frequency stability and Figure 7 shows the phase relationship between the three waveforms.

FIGURE 7. PHASE RELATIONSHIP OF WAVEFORMS.

EXTERNAL ADJUSTMENTS

The symmetry of all waveforms can be adjusted with the external timing resistors. Two possible ways to accomplish this are shown in Figure 8. By far the best result is obtained by keeping the timing resistors separate (a). RA controls the rising portion of the triangle and sinewave and the 1 state of the square-wave. As previously discussed, the reference voltage for the two current sources is $0.2 \times \mathrm{Vcc}$. The current therefore is simply

$$
I_{A}=\frac{0.2 \times V_{C C}}{R_{A}}
$$

The magnitude of the triangle-waveform is set at $1 / 3 \mathrm{~V}_{\mathrm{CC}}$; therefore

$$
t_{1}=\frac{C \times V}{1}=\frac{C \times 1 / 3 \times V_{C C} \times R_{A}}{1 / 5 \times V_{C C}}=\frac{5}{3} R_{A} \times C
$$

During the falling portion of the triangle both current sources are on; the current created by R_{B} is doubled and I_{A} is subtracted from it

$$
\begin{aligned}
& I_{B}=\frac{1 / 5 \times V_{C C}}{R_{B}} \times 2-I_{A} \\
& =\frac{2}{5} \times \frac{V_{C C}}{R_{B}}-\frac{1}{5} \times \frac{V_{C C}}{R_{A}}
\end{aligned}
$$

and the time for the falling portion of the triangle and sinewave and the 0 state of the square wave is:
$t_{2}=\frac{C \times V}{1}=\frac{C \times 1 / 3 V_{C C}}{\frac{2}{5} \times \frac{V_{C C}}{R_{B}}-\frac{1}{5} \times \frac{V_{C C}}{R_{A}}}=\frac{5}{3} \times \frac{R_{A} R_{B} C}{2 R_{A}-R_{B}}$

Thus a 50% duty cycle is achieved when $R_{A}=R_{B}$.
If the duty-cycle is to be varied over a small range about 10% only, the connection shown in Figure 8 b is slightly more convenient. If no adjustment of the duty cycle is desired, terminals 4 and 5 can be shorted together, as shown in Figure 8c. This connection; however, carries an inherently larger variation of the duty-cycle, and other problems.
With two separate timing resistors, the frequency is given by

$$
f=\frac{1}{t_{1}+t_{2}}=\frac{1}{\frac{5}{3} R_{A} C\left(1+\frac{R_{B}}{2 R_{A}-R_{B}}\right)}
$$

or, if $R_{A}=R_{B}=R$

$$
f=\frac{0.3}{R C} \quad \text { (for Figure } 8 a \text {) }
$$

It is recommended that the value of R_{A} and R_{B} be greater than 500Ω, but not more than $1 \mathrm{M} \Omega$.
If a single timing resistor is used (Figures 8 b and c), the frequency is

$$
f=\frac{0.15}{R C}
$$

Also notice that neither time nor frequency are dependent on supply voltage, even though none of the voltages are regulated inside the integrated circuit. This is due to the fact that both currents and thresholds are direct, linear function of the supply voltage and thus their effects cancel.
(a)

(b)

(c)

FIGURE 8. POSSIBLE CONNECTIONS FOR THE EXTERNAL TIMING RESISTORS.

To minimize sine-wave distortion the $82 \mathrm{k} \Omega$ resistor between pins 11 and 12 is best made a variable one. With this arrangement distortion of less than 1% is achievable. To reduce this even further, two potentiometers can be connected as shown in Figure 9. This configuration allows a reduction of sinewave distortion close to 0.5%.

FIGURE 9. CONNECTION TO ACHIEVE MINIMUM SINE-WAVE DISTORTION.

POWER-SUPPLY CONNECTIONS

The waveform generator can be operated either from a single power supply (10 to $30 \mathrm{Volts)} \mathrm{or} \mathrm{a} \mathrm{dual} \mathrm{power} \mathrm{supply}$ (± 5 to ± 15 Volts). With a single power supply the average levels of the triangle and sine-wave are at exactly one-half of the supply voltage, while the square wave alternates between $+V$ and ground. A split power supply has the advantage that all waveforms move symmetrically about ground.

Also notice that the square wave output is not committed. The load resistor can be connected to a different power supply, as long as the applied voltage remains within the breakdown capability of the waveform generator (30 V). In this way, for example, can the square-wave output be made TTL compatible (load resistor connected to ± 5 Volts) while the waveform generator itself is powered from a much higher voltage.

FREQUENCY MODULATION AND SWEEPING

As explained earlier, the frequency of the waveform generator is a direct function of the DC voltage at terminal 8 (measured from +Vcc). Thus by altering this voltage, frequency modulation is achieved.

For small deviations (i.g. $\pm 10 \%$) the modulating signal can be applied directly to pin 8, merely providing dc decoupling with a capacitor, as shown in Figure 10a. An external resistor between pins 7 and 8 is not necessary, but it can be used to increase input impedance. Without it (i.e. terminals 7 and 8 connected together), the input impedance is $8 \mathrm{k} \Omega$; with it, this impedance increases to ($R+8 k \Omega$).

For larger FM deviations or for frequency sweeping, the modulating signal is applied between the positive supply voltage and pin 8 (Figure 10b). In this way the entire bias for the current sources is created by the modulating signal and a very large (e.g. 1000:1) sweep range is created ($f=0$ at $V_{\text {sweep }}=0$). Care must be taken, however, to regulate the supply voltage; in this configuration the charge current is no longer a function of the supply voltage (yet the trigger still are) and thus the frequency becomes dependent on the supply voltage. The potential on pin 8 may be swept from $\mathrm{V}_{c c}$ to about $2 / 3 \mathrm{~V}_{\mathrm{cc}}+2 \mathrm{~V}$. For example with + and -10 volt supplies, pin 8 should vary between 5.3 V and +10 V with respect to ground.
(a)

(b)

FIGURE 10. CONNECTIONS FOR FREQUENCY MODULATION (a) AND SWEEP (b).

USE IN PHASE-LOCKED LOOPS

Its high frequency stability makes the waveform generator an ideal building block for a phase-locked loop. In this application the remaining functional blocks, the phase-detector and the amplifier, can be formed by a number of available IC's (e.g. MC 4344, NE 562, HA 2800, HA 2820).
In order to match these building blocks to each other, two steps must be taken. First, if necessary, two different supply voltages are used and the square wave output is returned to the supply of the phase detector. This assures that the VCO input voltage will not exceed the capabilities of the phase detector. If a smaller VCO signal is required, a simple resistive voltage divider is connected between
pin 9 of the waveform generator and the VCO input of the phase-detector.
Second, the dc output level of the amplifier must be made compatible to the dc level required at the FM input of the waveform generator (pin 8, $0.8 \times \mathrm{Vcc}$.) The simplest solution here is to provide a voltage divider to $\mathrm{V}_{\mathrm{cc}}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right.$ as shown) if the amplifier has a lower output level or to ground if its level is higher. The divider can be made part of the low-pass filter.
This application not only provides for a free-running frequency with very low temperature drift, but it also has the unique feature of producing a large reconstituted sinewave signal with a frequency identical to that at the input.

FIGURE 11. WAVEFORM GENERATOR USED AS STABLE VCO IN A PHASE-LOCKED LOOP.

Everything You Always Wanted to Know about the $\mathbf{8 0 3 8}$

The 8038 is a function generator capable of producing sine, square, triangular, sawtooth and pulse waveforms (some at the same time). Since its introduction, marketing and application engineers have been manning the phones explaining the care and feeding of the 8038 to customers worldwide. This experience has enabled us to form articulate responses to the most frequently asked questions. So, with data sheet and breadboard in hand, read on and be enlightened.

Q1. I want to sweep the frequency externally but can only get a range of 100 to 1 . (or 50 to 1)[or 10 to 1]. Your data sheet says 1000 to 1 . How much sweep range can I expect?
A. Let's look at what determines the output frequency. Start by examining the circuit schematic at pin 8 in the upper left hand corner. From pin 8 to pin 5 we have the emitter-base of NPN Q1 and the emitterbase of PNP Q 2 . Since these two diode drops cancel each other (approximately) the potential at pins 8,5 and 4 are the same. This means that the voltage from $\mathrm{V}+$ to pin 8 is the same as the voltage across external resistors RA and RB. This is a textbook example of a voltage across two resistors which produce two currents to charge and discharge a capacitor between two fixed voltages. This is also a linear system. If the voltage across the resistors is dropped from 10 V to 1 V the frequency will drop by $10: 1$. Changing from 1 volt to 0.1 V will also change the frequency by $10: 1$. Therefore, by causing the voltage across the external resistors to change from say 10 V to 10 mV , the frequency can be made to vary at least 1000:1. There are, however, several factors which make this large sweep range less than ideal.
Q2. You say I can vary the voltage on pin 8 (FM sweep input) to get this large range, yet when I short pin 8 to $V+($ pin 6$)$ the ratio is only around 100:1.
A. This is often true. With pin 8 shorted to $\mathrm{V}+$, a check onthe potentials across the external RA and RB will show 100 mV or more. This is due to the VBE mismatch between Q_{1} and Q_{2} (also Q_{1} and Q_{3}) because of the geometries and current levels involved. Therefore, to get smaller voltages across these R's, pin 8 must be raised above $\mathrm{V}+$.
Q3. How can I raise pin 8 above $V+$ without a separate power supply?
A. First of all, the voltage difference need only be a few hundred millivolts so there is no danger of damaging the 8038 . One way to get this higher potential is to lower the supply voltage on the 8038 and external resistors. The simplest way to do this is to include a diode in series with pin 6 and resistors RA and RB.
See Figure 1. This technique should increase the sweep range to 1000 to 1.

FIGURE 1. VARIABLE AUDIO OSCILLATOR, 20 Hz to 20 KHz

Q4. O.K., now I can get a large frequency range but I notice that the duty cycle and hence my distortion changes at the lowest frequencies.
A. This is caused partly by a slight difference in the VBE's of Q_{2} and Q_{3}. In trying to manufacture two identical transistors, it is not uncommon to get VBE differences of several millivolts or more. In the standard 8038 connection with pins 7 and 8 connected together, there are several volts across RA and RB and this small mismatch is negligible. However, in a swept mode with the voltage at pin 8 near V+ and only tens of millivolts across RA and RB, the VBE mismatch causes a larger mismatch in charging currents, hence the duty cycle changes. For lowest distortion then, it is advisable to keep the minimum voltage across RA and RB around 100 millivolts. This would, of course, limit the frequency sweep range to around 100 to 1.
Q5. I have a similar duty cycle problem when I use high values of RA and RB. What causes this?
A. There is another error term which becomes important at very low charge and discharge currents. This error current is the emitter current of Q7. The application note on the 8038 gives a complete circuit description but it is sufficient to know that the current charging the capacitor is the current in RA which flows down through diode Q_{9} and into the external C. The discharge current is the current in RB which flows down through diode Q_{8}. Adding to the Q_{8} current is the current of Q_{7} which is only a few microamperes. Normally, this Q_{7} current is negligible, but with a small current in RB, this current will cause a faster discharge than would be expected. This problem will also appear in sweep circuits when the voltage across the external resistors is small.

Q6. How can I get the lowest distortion over the largest frequency sweep range?
A. First of all, use the largest supply voltage available $(\pm 15 \mathrm{~V}$ or +30 V is convenient). This will minimize VBE mismatch problems and allow a wide variation of voltage on pin 8 . The potential on pin 8 may be swept from $V_{C C}$ (and slightly higher) to ($2 / 3 \mathrm{~V}_{C C}+2 \mathrm{~V}$) where $V_{C C}$ is the total voltage across the 8038. Specifically for $\pm 15 \mathrm{~V}$ supplies (+30 V), the voltage across the external resistors can be varied from zero to nearly 8 volts before clipping of the triangle waveform occurs.
Second, keep the maximum currents relatively large (1 or 2 mA) to minimize the error due to Q7. Higher currents could be used, but the small geometry transistors used in the 8038 could give problems due to $V_{C E}$ (sat) and bulk resistance, etc.
Third, and this is important, use two separate resistors for RA and RB rather than one resistor with pins 4 and 5 connected together. This is because transistors Q_{2} and Q_{3} form a differential amplifier whose gain is determined by the impedance between pins 4 and 5 as well as the quiescent current. There are a number of implications in the differential amplifier connection (pin 4 and 5 shorted). The most obvious is that the gain determines the way the currents split between Q_{2} and Q_{3}. Therefore, any small offset or differential voltage will cause a marked imbalance in the charge and discharge currents and hence the duty cycle. A more subtle result of this connection is the effective capacitance at pin 10 . With pins 4 and 5 connected together, the "Miller effect" as well as the compound transistor connection of Q_{3} and Q_{5} can produce several hundred picofarads at pin 10 seriously limiting the highest frequency of oscillation. The effective capacitance would have to be considered important in determining what value of external C would result in a particular frequency of oscillation. The single resistor connection is fine for very simple circuits, but where performance is critical, the two separate resistors for RA and RB are recommended. Finally, trimming the various pins for lowest distortion deserves some attention. With pins 7 and 8 connected together and the pot at pin 7 and 8 externally set at its maximum, adjust the ratio of RA and RB for 50% duty cycle. Then adjust a pot on pin 12 or both pins 1 and 12 depending on minimum distortion desired. After these trims have been made, set the voltage on pin 8 for the lowest frequency of interest. The principle error here is due to the excess current of Q7 causing a shift in the duty cycle. This can be partially compensated for by bleeding a small current away from pin 5 . The simplest way to do this is to connect a high value of resistance (10 to $20 \mathrm{~m} \Omega$) from pin 5 to V-to bring the duty cycle back to 50%. This should result in a reasonable compromise between low distortion and large sweep range.

Q7. This waveform generator is a piece of junk. The triangle wave is non-linear and has large glitches when it changes slope.
A. You're probably having trouble keeping the constant voltage across RA and RB really constant. The pulse output on pin 9 puts a moderate load on both supplies as it switches current on and off. Changes in the supply reflect as variations in charging current, hence non-linearity. Decoupling both power supply pins to ground right at the device pins is a good idea. Also, pins 7 and 8 are susceptible to picking up switching transients (this is especially true on printed circuit boards where pins 8 and 9 run side by side). Therefore, a capacitor (. $1 \mu \mathrm{~F}$ or more) from $\mathrm{V}+$ to pin 8 is often advisable. In the case when the pulse output is not required, leave pin 9 open to be sure of minimizing transients.
Q8. What is the best supply voltage to use for lowest frequency drift with temperature?
A. The 8038AM, 8038AC, 8038 BM and 8038 BC are all temperature drift tested at $\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}$ (or $\pm 10 \mathrm{~V}$). A curve in the lower right hand corner of Page 4 of the data sheet indicates frequency versus temperature at other supply voltages. It is important to connect pin 7 and 8 together.
Q9. Why does connecting pin 7 to pin 8 give the best temperature performance?
A. There is a small temperature drift of the comparator thresholds in the 8038. To compensate for this, the voltage divider at pin 7 uses thin film resistors plus diffused resistors. The different temperature coefficients of these resistors causes the voltage at pins 7 and 8 to vary $0.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ to maintain overall low frequency drift at $V_{C C}=20 \mathrm{~V}$. At higher supply voltages e.g., $\pm 15 \mathrm{~V}(+30 \mathrm{~V})$, the threshold drifts are smaller compared with the total supply voltage. In this case, an externally applied constant voltage at pin 8 will give reasonably low frequency drift with temperature.
Q10. Your data sheet is very confusing about the phase relationship of the various waveforms.
A. Sorry about that! The thing to remember is that the triangle and sine wave must be in phase since one is derived from the other. A check on the way the circuit works shows that the pulse waveform on pin 9 will be high as the capacitor charges (positive slope on the triangle wave) and will be low during discharge (negative slope on the triangle wave).
The latest data sheet corrects the photograph Figure 7 on Page 5 of the data sheet. The 20% duty cycle square wave was inverted, i.e., should be 80% duty cycle. Also, on that page under "Waveform Timing" the related sentences should read "RA controls the rising portion of the triangle and sinewave and the 1 state of the square wave." Also, "the falling portion of the triangle and sine wave and the $\underline{0}$ state of the square wave is:"
Q11. Under Parameter Test Conditions on Page 3 of your 8038 data sheet, the suggested value for min. and max. duty cycle adjust don't seem to work.
A. The positive charging current is determined by RA alone since the current from RB is switched off. (See 8038 Application Note A012 for complete circuit description.) The negative discharge current is the difference between the RA current and twice the RB
current. Therefore, changing RB will effect only the discharge time, while changing RA will effect both charge and discharge times. For short negative going pulses (greater than 50\% duty cycle) we can lower the value of $R B$ (e.g., $R A=50 \mathrm{~K} \Omega$ and $R B=$ $1.6 \mathrm{~K} \Omega$). For short positive going pulses (duty cycles less than 50%) the limiting values are reached when the current in RA is twice that in RB (e.g., $\mathrm{RB}=50 \mathrm{~K} \Omega$ and $R A=25 \mathrm{~K} \Omega$). This has been corrected on the latest data sheet.

Q12. I need to switch the waveforms off and on. What's a good way to strobe the 8038 ?
A. With a dual supply voltage (e.g., $\pm 15 \mathrm{~V}$) the external capacitor (pin 10) can be shorted to ground so that the sine wave and triangle wave always begin at a zero crossing point. Random switching has a 50/50 chance of starting on a positive or negative slope. A simple AND gate using pin 9 will allow the strobe to act only on one slope or the other, see Figure 2. Using only a single supply, the capacitor (pin 10) can be switched either to V or ground to force the comparator to set in either the charge or discharge mode. The disadvantage of this technique is that the beginning cycle of the next burst will be 30% longer than the normal cycle.

FIGURE 2. STROBE - TONE BURST GENERATOR

Q13. How can I buffer the sine wave output without loading it down?
A. The simplest circuit is a simple op amp follower as shown in Figure 3A. Another circuit shown in Figure 3B allows amplitude and offset controls without disturbing the 8038. Either circuit can be DC or AC coupled. For AC coupling the op amp non-inverting input must be returned to ground with a $100 \mathrm{~K} \Omega$ resistor.

FIGURE 3. SINE WAVE OUTPUT BUFFER AMPLIFIERS

Q14. Your 8038 data sheet implies all waveforms can operate up to 1 Megahertz. Is this true?
A. Unfortunately, only the square wave output is useful at that frequency as can be seen from the curves on page 4 of the data sheet, distortion on the sine wave and linearity of the triangle wave fall off rapidly above two hundred kilohertz.
Q15. Is it normal for this device to run hot to the touch?
A. Yes. The 8038 is essentially resistive. The power dissipation is then $\frac{E^{2}}{R}$ and at ± 15 volts the device does run hot. Extensive life testing under this operating condition and maximum ambient temperature has verified the reliability of this product. Copies of the reliability report are available from Intersil.
Q16. My data sheet shows a device with only 12 pins. The 8038 I received has 14 pins. How can I hook it up?
A. Our artist got lazy and decided to draw only the twelve pins that are used and omitted pins 13 and 14 which are not connected. The pin numbers and their functions are correct. This drawing has been corrected on the latest data sheet.

Q17. How stable are the output amplitudes versus temperature?
A. The amplitude of the triangle waveform decreases slightly with temperature. The typical amplitude coefficient is $-.01 \% /{ }^{\circ} \mathrm{C}$ giving a drop of about 1% at $125^{\circ} \mathrm{C}$. The sine output is less sensitive and
decreases only about 0.6% at $125^{\circ} \mathrm{C}$. For the square wave output the $\mathrm{V}_{C E}$ (sat) goes from 0.12 V at room to 0.17 at $125^{\circ} \mathrm{C}$. Leakage current in the " 1 " state is less than a few nanoamperes even at $125^{\circ} \mathrm{C}$ and is usually negligible.

DETAILED SCHEMATIC

Power Supply Design Using
 The ICL8211 and 8212

INTRODUCTION

The Intersil ICL 8211/12 are micropower bipolar monolithic integrated circuits intended primarily for precise voltage detection and generation. These circuits consist of an accurate voltage reference, a comparator and a pair of output buffer/drivers.

Specifically, the ICL 8211 provides a 7 mA current limited output sink when the voltage applied to the THRESHOLD input is less than 1.15 volts. Figure 1 shows a simplified block diagram of the ICL 8211.

Figure 1:
ICL 8211 Block Diagram

The ICL 8212 provides a saturated transistor output (no current limit) whenever the input THRESHOLD voltage exceeds 1.15 volts. Both circuits have a low current HYSTERESIS output which is turned on when the THRESHOLD voltage exceeds 1.15 volts, enabling the user to add controlled hysteresis to his design. Figure 2 shows a simplified block diagram of the ICL 8212.

Figure 2:
ICL 8212 Block Diagram

For a detailed circuit description of the ICL 8211/ 12 refer to the data sheet pages 4 and 5 . For large volume applications the ICL 8211/12 may be customized by the use of metal mask options to include setting resistors or to vary the output options, or even to adapt the circuit as a temperature sensing element.

Applications for the ICL 8211/12 include a variety of voltage detection circuits, power supply malfunction detectors, regulators, programmable zeners, and constant current sources. In this discussion we will explore the uses of the ICL 8211/12 in power supply circuits of various types. Their attractiveness to the power supply designer lies largely in their ability to operate at low voltage and current levels where standard power supply regulator devices cannot be used. In addition, the unique features of the ICL 8211/12 make them useful in many ancillary circuits such as current sources, overvoltage crowbars, programmable zeners and power failure protection.

POSITIVE VOLTAGE REGULATORS

Using the ICL 8211/12 it is possible to design a series of power supply regulators having low minimum input voltage and small input/output differential. These are particularly useful for local regulation in electronic systems as their small input/ output differential results in low power loss.

The ICL 8211 in Figure 3 provides the voltage reference and regulator amplifier while Q1 is the series pass transistor. R1 defines the output current of the ICL 8211 while C1 and C2 provide loop stability and also act to suppress feedthrough of input transients to the output supply. R2 and R3 determine the output voltage as follows:

$$
\mathrm{V}_{\mathrm{OUT}}=1.15 \times \frac{\mathrm{R} 2+\mathrm{R} 3}{\mathrm{R} 3}
$$

In addition, the values of R2 and R3 are chosen to provide a small amount of standing current in Q1, which gives ad-
ditional stability margin to the circuit. Where accurate setting of the output voltage is required, either R2 or R3 can be made adjustable. If R2 is made adjustable the output voltage will vary linearly with shaft angle; however, if the potentiometer wiper were to open circuit, the output voltage would rise. In general, therefore, it is better to make R3 adjustable as this gives failsafe operation.

The choice of Q 1 depends upon the output requirements. The ICL 8211 has a worst case maximum output current of 4 mA , so with any reasonable device for Q 1 the circuit should be capable of 50 mA output current with an input to output drop of 0.5 V . If larger output currents are required Q1 could be made into a complementary quasi-darlington, but the input/output differential will then increase.

Note also that Q1 provides an inversion within the loop so the non-inverting ICL 8211 must be used to give overall negative feedback.

One limitation of the above circuit is that input voltages must be restricted to 30 volts due to the voltage rating of the ICL 8211. The circuit of Figure 4 avoids this problem.

Figure 4:
Positive Regulator - J-FET Boost

In this circuit the input voltage is limited only by the voltage rating of Q1. The input/output differential is now dependent on the $\mathrm{R}_{\mathrm{DS}}(\mathrm{ON})$ of the J-FET boost transistor. For instance, if Q1 were a 2N4391 the maximum output current would be equal to IDSS(MIN) which is 50 mA and the input/ output differential would be:

$$
\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \times \mathrm{I}_{\mathrm{LOAD}}=30 \Omega \times 50 \mathrm{~mA}=1.5 \text { Volts }
$$

However, at lower load currents the input/output differential will be proportionately lower.

A further consideration when choosing the FET boost transistor is that its pinch-off voltage must be less than the out-
put voltage in order for the ICL 8212 to be able to pull the gate down far enough to turn the device off at no load.

The predominant loop time constant is provided by R2 and C1. This time constant should be chosen as small as possible commensurate with loop stability as it also affects load transient response. After an abrupt change in load current C1 must be charged to a new voltage level by R2 to regulate the current in Q 1 to the new load level and therefore the smaller the $\mathrm{R} 2 \times \mathrm{C} 1$ product the better the load transient response. The value of C2 should be chosen to maintain the output within desired limits during the recovery period of the main loop. Note, however, that because of the wide bandwidth of the ICL 8212 and the absence of charge storage effects in the FET, these considerations are not particularly restrictive.

For higher current outputs the system could be further boosted using a bipolar transistor. One attraction of using a FET only output, however, is that the IDSS of the FET gives a measure of output short circuit protection. Should both the low input/output differential of the circuit of Figure 3 plus the extended input voltage capability of Figure 4 be required, the circuit of Figure 5 may be used.

Figure 5:
Positive Regulator - NPN + PNP Boost

This circuit is similar to that of Figure 3 except that Q 1 has been added as a common base stage to buffer the output of the ICL 8211 from the input supply and R1 and D1 to protect the input. Unfortunately, the ICL 8211 cannot be supplied from the regulated output as this would result in the power supply being non self-starting. The choice of values for R2, R3, R4, C1 and C2 is identical to that of Figure 3, while D1 must be a voltage equal to or larger than the output voltage. R1 must be chosen to provide the relatively low supply current requirement of the ICL 8211. An alternative arrangement for starting the circuit is to replace D1 with R5 and add D2. In this case the choice of R1 and R5 is such that once the output supply is established the ICL 8211 is supplied through D2.

Figure 6:
Positive Regulator - Thyristor Boost

In the circuit of Figure 5, Q1 and Q2 are connected in the classic S.C.R. or Thyristor configuration. Where higher input voltages or minimum component count are required the circuit of Figure 6 can be used. The thyristor is running in a linear mode with its cathode as the control terminal and its gate as the output terminal. This is known as the remote base configuration.

A word of warning, however. Thyristor data sheets do not generally specify individually the gain of the PNP portion of the thyristor, on which the circuit relies. It must therefore either be very conservatively designed or some screening or guarantee of the PNP gain be provided.

Note that, with the exception of the IDSS limit of Figure 4, none of the circuits so far described provide output current limiting. In general they are intended for applications in which the extra voltage drop of a current sensing resistor would be unacceptable. Where the circuits are used as local regulators and the output supplies are only connected to local circuitry the chance of output short circuits is relatively low and overcurrent protection is considered unnecessary. Where protection is required it can be added by any of the standard techniques. Figure 7 shows the simplest possible constant current protection added to the circuit of Figure 3

Figure 7:
Positive Regulator - PNP Boost
Current Limited

In this circuit the current threshold is set by the base-emitter voltage of Q1 so that when the voltage drop in R2, due to load current, is sufficient to turn on Q1 base drive is removed from Q2 by Q1 collector. Note that this circuit works only because the output current of the ICL 8211 is current limited so that there is no danger of Q1 and the ICL 8211 blowing each other up with unlimited current.

NEGATIVE VOLTAGE REGULATORS

Because the reference voltage of the ICL 8211/12 is connected to the negative supply rail, and their output consists of the open collector of an NPN transistor, it is not possible to construct a negative equivalent of the circuit of Figure 3. However, a negative equivalent of Figure 4 is easily constructed.

Figure 8:
Negative Regulator - J-FET Boost

Of course the J-FET must now be a P-channel device but otherwise the design considerations are identical to those for Figure 4. Should further boost of the output current level be required, an NPN boost transistor, Q2, (shown dotted) can be added. However, the charge storage effects of the NPN transistor will reduce the loop bandwidth so that R2 or C1 should be increased to maintain stability. Note also that in the circuit of Figure 8 an ICL 8211 is used instead of an ICL 8212 in order to maintain correct feedback polarity.

This is the closest negative equivalent to the circuits of Figures 5 and 6 . In this case R1, R2 and D1 ensure that the circuit is self starting. The divider R1/R2 must be chosen to ensure that sufficient voltage (say -1 volt) is present at the base of Q1 to start the circuit under minimum output voltage conditions, but once the circuit is running D1 must remain forward biased even at maximum input voltage, otherwise the output of the ICL 8212 will be unable to pull the emitter of Q1 low enough to turn it off under no load conditions. Thus for a 3 volt output supply which runs from a minimum 4 volt input the ratio of R 1 to ($\mathrm{R} 1+\mathrm{R} 2$) must be one quarter. In order that the base of Q1 is not taken below - 3 V once the circuit is running the maximum input voltage would therefore be -12 V . An alternative arrangement which avoids this restriction is to replace R1 with a zener diode, reduce the value of R2 and delete D1.

Figure 9:
Negative Regulator - NPN + PNP Boost

In this case the only restriction is that the zener voltage shall be less than or equal to the output voltage of the regulator.

In the circuit of Figure 9, R3 must be chosen to provide sufficient base drive for Q 2 via Q 1 under maximum load conditions. The maximum value of the current in R3 which may be tolerated is 12 mA , the worst case sink current of the ICL 8212 output transistor.

Current limit can be applied to the circuits of Figure 9 in an analogous manner to Figure 7. In this case R3 is the current source for the base of Q2, ensuring that the current limit transistor Q 3 has a defined maximum collector current.

Figure 10:
Current Limited Negative Regulator - NPN + PNP Boost

ANCILLARY POWER SUPPLY CIRCUITS

Figure 11 shows the ICL 8212 connected as a programmable zener diode. Zener voltages from 2 volts up to 30 volts may be programmed by suitable selection of R2, the zener voltage being:

$$
v_{Z}=1.15 \times \frac{R_{1}+R_{2}}{R_{1}}
$$

Because of the absence of internal compensation in the ICL 8212, C1 is necessary to ensure stability. Two points worthy of note are the extremely low knee current (less than $300 \mu \mathrm{~A}$) and the low dynamic impedance (typically 4 to 7 ohms) over the operating current range of $300 \mu \mathrm{~A}$ to 12 mA .

Figure 11:
Programmable Zener

Figure 12:
Constant Current Sources

The circuit of Figure 12 shows how the ICL 8211/12 may be used as constant current circuits. At the current levels obtained with the ICL 8211 or 12 on their own, the principal application will be in providing the "tail" currents of differential amplifiers which may be used in power supply design. A more useful application in power supplies is the programmable current source shown in Figure 13.

Figure 13:

Programmable Current Source

In this case the output current is given by:

$$
\mathrm{I}_{\mathrm{O}}=25 \mu \mathrm{~A}+\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{R} 1}+\frac{1.15}{\mathrm{R} 2}(1+\beta)
$$

where β is the forward current gain of Q 1 and V_{BE} is its emitter-base voltage. The principal causes of departure from a true current source for this circuit will be the variations in β with collector voltage of Q 1 . With the current settable anywhere in the range of about $300 \mu \mathrm{~A}$ to 50 mA and an operating voltage range from 2 to 30 V , this circuit is particularly suitable as the current source driving the base of an output transistor in conventional series regulator power supplies. Another useful application is as the current source feeding a reference zener in highly stable reference supplies. Again, because of the absence of internal compensation in the ICL 8212, C1 is provided to ensure loop stability. It also helps to keep output current constant during voltage changes or transients.

The standard method of overcurrent protection in simple series regulated supplies is shown in Figure 14.

Figure 14: Standard Current Limit

The current limit value is simply:

$$
\mathrm{i}_{\mathrm{CL}}=\frac{\mathrm{V}_{\mathrm{BE}}(\mathrm{O} 3)}{\mathrm{R} 2}
$$

The disadvantages of this circuits are the poor temperature coefficient of the emitter base voltage of Q3, the large variation of $V_{B E}$ between different devices and the badly defined transition between constant voltage and constant current states due to the low gain of the current regulation loop.

In this case the current limit value is:

$$
\mathrm{I}_{\mathrm{CL}}=\frac{1.15 \mathrm{~V}}{\mathrm{R} 2}
$$

One advantage of the circuit is the much improved temperature coefficient of the limit current. In Figure 14 the typical coefficient is $0.3 \% /{ }^{\circ} \mathrm{C}$, while in Figure 15 the typical coefficient is $0.02 \% /{ }^{\circ} \mathrm{C}$. In addition, the higher gain of the ICL 8212 gives a much sharper transition between voltage limit and current limit conditions. The spread of threshold voltages will also be lower in this circuit, but if precise adjustment of the threshold is required R3 and R4 may be added as shown in Figure 15.

Figure 15:
Improved Current Limit

The major penalty of the system is the extra 500 mV which must be dropped in R2 to effect current limiting. Note again that the low operating voltage and power supply current allow the ICL 8212 to be powered directly from the base drive voltage of the power supply.

Figure 16:
High Voltage Dump Circuit

This circuit protects sensitive loads against high voltage transients on the power supply rail. Should the input voltage exceed the threshold set by R2 and R1, the ICL 8211 will turn off Q 1 and hence protect the load from the transient. R3 provides optional voltage hysteresis if so desired.

Figure 17: Overvoltage Crowbar

The most popular form of overvoltage protection is the Thyristor crowbar, which short circuits the supply in the event of an overvoltage condition. The circuit of Figure 17 triggers a thyristor when the supply voltage reaches a threshold defined by R1 and R2. The very low quiescent current of the ICL 8212 means that there is negligible voltage drop in R4 during sensing so that accuracy is unimpaired and there is no danger of triggering the thyristor. The connection from pin 2 provides hysteresis which is necessary in this case because the reference will rise on the top of R4 as soon as the threshold is reached and otherwise would provide negative
feedback, which is overcome by the large positive feedback from pin 2. Resistor R3 limits the output current of the ICL 8212 to a safe value of, say, 20 mA . To operate properly the thyristor should have a gate trigger current not greater than about 10 mA . Where higher gate currents are necessary the circuit of Figure 18 may be used.

Figure 18: Overvoltage Crowbar

In this case the ICL 8211 holds down the base of Q 1 until the circuit is triggered. The current in R3 should not exceed 4 mA as this is the worst case current the ICL 8211 can sink at its output. With this circuit thyristors requiring gate drives in the 50 to 100 mA region are easily tolerated.

Notice that in both the above circuits no extra supplies are needed to make the crowbars work down to voltages as low as 3 V . In particular, this makes the circuits most suitable for use on 5 V logic supplies where no other rails may be available to power a crowbar circuit or where, for reasons of safety, one does not wish to rely on auxiliary supplies.

In some systems it is undesirable to allow the supply rail to be partially established. For instance, in a logic system logical malfunctions may occur. Another example is the LM199/ 299/399 temperature stabilized reference. If the heater supply falls below about 9 V the unit tends to "run away" and destroy itself.

Figure 19:
Low Voltage Disconnect

Should the power supply voltage fall below the level determined by R1 and R2, Q1 is turned off, disconnecting the load entirely so that it cannot operate at partial voltage. Note that the removal of the load may cause the supply voltage to rise and the possibility of an oscillatory condition exists. Resistor R3 therefore provides a small hysteresis, which should be calculated to exceed the full load regulation drop of the supply.

Figure 20 :
Power Suppiy Vinináow Detector

The circuits of Figures 16 and 19 can be combined so that a load is only connected to the supply when the supply voltage is within a specified range. In this case IC1 senses the overvoltage condition while IC2 senses the undervoltage condition. Again, hysteresis may be added as necessary by the addition of R3 and R5.

In many systems, particularly those using microprocessors, it is necessary to provide a logic signal which gives advance warning of an impeding power failure so that the system can execute a shutdown routine before power is lost. A simple undervoltage detector on the regulated supply is generally insufficient as by the time an undervoltage signal is generated,
the supply is already out of regulation and unless it falls very slowly there will not be sufficient time to shut the system down properly.

Figure 21:
Simple Power Fail System

In the circuit of Figure 21, an incipient power failure is detected at the unregulated input of the regulator. Note that the value of main reservoir capacitor C 1 must be large enough so that the shutdown routine can take place before the regulator drops out of regulation. Waveforms for a typical power failure are shown in Figure 22.

The threshold detector should be an ICL 8212 if a logic ' 1 ' is required to initiate shutdown, or an ICL 8211 if a logic ' 0 ' is required. Note that the ICL 8212 will drive 7 T.T.L. loads and the ICL 82112 T.T.L. loads.

Figure 22:
Simple Power Fail System Waveforms

Figure 23:
Improved Power Fail System

Notice that, because of the ripple always present on the unregulated supply, power failure was not actually detected until some time after the removal of input power. This waste of time means that larger voltage margins must be built into the system, reducing the regulator efficiency under normal operating conditions. In some instances, however, this circuit may be adequate.

In Figure 24, the power is monitored at a point isolated from the main capacitor C 1 so that failure can be detected without having to wait for C 1 to discharge below the minimum voltage of the normal ripple. Waveforms for this circuit are shown in Figure 24.

In this case R1 tops up C2 to the zener voltage each cycle, while C2 holds the input of the ICL 8211 or ICL 8212 (depending on the polarity of the required output signal) above its threshold during the zero crossings of the A.C. waveform. However, in the event of a power failure, C2 discharges
through R2 to the threshold voltage of 1.15 volts, at which point the power fail signal is activated.

In this case, the worst point at which a power failure can occur is just before C1 begins to charge on the rising side of the input A.C. signal. However, because of the fast warning given by the system, it is still superior than that of Figure 21 in the time allowed for a shutdown routine.

CONCLUSIONS

Just a few of the many possible applications of the ICL 8211 and ICL 8212 in power supply systems have been described. Both in power supply systems and elsewhere, the features of the ICL 8211 and ICL 8212 make them very useful general purpose circuits. Once aware of the useful features of these low power, low voltage circuits the designer will rapidly discover a large number of applications for himself.

Figure 24:
Improved Power Fail System Waveforms

Unity-gain buffer amplifier is ultrafast

Applications where transmission-line drivers, active voltage probes, or buffers for ultrahigh-speed analog-todigital converters are needed can use a stable buffer amplifier capable of driving a relatively low-resistance, moderate-capacitance load over a wide range of frequencies. The circuit shown in (a) fulfills these requirements. With a bandwidth of 300 megahertz, it exhibits no peaking of its response curve, having a gain of virtually 1 (0.995) under no-load conditions and $0 . \hat{y}$ under a maximum load of 90 ohms.

The circuit is a variation on a basic emitter-follower network, which is inherently capable of wideband performance. However, no feedback loops are needed anywhere within the circuit to boost the gain at the high frequencies, and dispensing with them contributes to the
stability of the circuit. Also, using two matched npn-pnp transistor pairs ensures close tracking between input and output voltages (a task normally addressed by suitable feedback circuitry) as well as low offset-voltage drift (20 microvolts $/{ }^{\circ} \mathrm{C}$).

The complementary-transistor pairs are 2 N 4854 s wired for active current sourcing and sinking so that bipolar input signals can be processed. Each transistor has a typical β of 100 . With the npn and pnp input-bias currents tending to cancel each other, the resultant input-bias current of the amplifier is ± 5 microamperes.
Layout is critical to the stability of the circuit. The buffer should be constructed as shown in (b). The two transistor pairs are mounted close together, in holes drilled in a copper-clad circuit board as shown. The flanges on the TO-99 cases encapsulating the 2 N 485 s should be soldered to the copper, which serves as a ground plane. The collector of each transistor must be bypassed by a 0.1 -microfarad ceramic-chip capacitor mounted close to the transistor. This is done by standing the capacitors on end, with the bottom contact lead soldered to the ground plane and the top contact lead soldered to the collector.

All leads must be less than $1 / 2$ inch in length and be as

Wideband buffer. Emitter-follower configuration yields unity gain from dc to 300 megahertz. Absence of feedback in circuit contributes to buffer stability. Use of mațched npn-pnp transistor pairs ensures almost perfect input/output signal tracking (a) Component layout is critical for circuit stability (b).

(b)

CHARACTERISTICS OF UNITY-GAIN BUFFER	
Input impedance	500 kilohms (dc)
Input bias current	$\pm 5 \mu \mathrm{~A}$
Input capacitance	16 pF max
Input/output voltage range	$\pm 3 \mathrm{~V}$
Output offset-voltage drift	$\pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Output impedance	10 ohms
Load resistance	90 ohms max
Gain, no load	+0.995
Bandwidth, -3 dB	300 MHz
Power supply, quiescent	$\pm 15 \mathrm{~V} \mathrm{dc} \mathrm{at} 1.5 \mathrm{~mA}$
	5 V dc at 4.5 mA
Power consumption	90 mW

directly wired as possible. One-eighth-watt resistors are used throughout and are soldered to the transistor leads as close as possible to the case. For clarity, not all components are shown. For coupling to or from the
amplifier, subminiature radio-frequency connectors can be mounted at the input and output ports of the buffer.

Typical characteristics of the unity-gain buffer circuit are listed in the table.

Commutating design for IC amplifiers virtually eliminates offset errors

Commutating auto zero, a new design concept for monolithic operational and instrumentation amplifiers, dramatically reduces initial input offset voltage and offset drift with changes in temperature and time. Dubbed CAZ, the new approach combines digital and linear techniques to bring down initial offset to a low 1 to $5 \mu \mathrm{~V}$ and hold offset drift to a mere $0.005 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and only $0.2 \mu \mathrm{~V} /$ year. Moreover, the CAZ design permits high-performance monolithic amplifiers to be fabricated with standard low-cost complementary-MOS processing.

The first CMOS chips to employ the CAZ technique include: a pair of operational amplifiers (the compensated ICL7600 for applications requiring voltage gains from unity to about 20, and the uncompensated ICL7601 for voltage gains greater than 20); and two instrumentation amplifiers, the ICL7605 and the ICL7606.

For the CAZ op amps, input offset voltage is three orders of magnitude lower than that of traditional monolithic bipolar op amps, like the 741. Similarly, compared to conventional instrumentation amplifiers, which require highly accurate resistor matching and tracking for their popular three-amplifier design, the CAZ instrumentation amplifiers eliminate the need for on-chip resistor trimming. The CAZ instrumentation amplifiers are intended for low-frequency applications that require voltage gains from 1 to 1000 and bandwidths from dc to 10 Hz .

How CAZ works

With the CAZ approach, on-chip analog switches connect two internal op amps between two modes of operation-when one amplifier is processing the input signal, the other is in an auto-zero mode. The commutation frequency is the rate at which the two internal op amps are switched between the two modes.

In the auto-zero mode, an external capacitor stores a voltage equal to the input offset voltage plus the low-frequency instantaneous noise voltage. In the signal-processing mode, this capacitor is connected in series with the overall amplifier's noninverting input
to cancel both the input offset and the instantenous low-frequency noise voltage.

The CAZ principle is perhaps best understood by examining the way it is implemented in the $7600 / 7601$ op amps. These devices contain all the necessary analog and digital circuitry on-chip, including two op amps, an oscillator counter, level translators and analog switches. The only external components required are two auto-zero capacitors.

All about the CAZ op amp

Fig. 1a shows the CAZ op amp as it sequences through its two internal states. In addition to the regular inverting and noninverting inputs, the CAZ op amp has a third auto-zero input, designated AZ. In most applications, this auto-zero input will be connected to system ground, although it may be connected to the noninverting input for improving common-mode rejection ratio.

Because capacitors C_{1} and C_{2} must have high values between 0.01 and $1 \mu \mathrm{~F}$ to minimize offset errors due to charge injection they are not suitable for monolithic integration. On the other hand, since resistors R_{1} and R_{2} have values of about $100 \mathrm{k} \Omega$ each, they can easily be fabricated on-chip.

As long as the commutation frequency is high compared to the leakage discharge times of C_{1} and C_{2} for the signal-processing mode, an input signal will be processed as though the CAZ op amp were a single amplifier. The discharge time constants of C_{1} and C_{2}, when each has a value of $0.2 \mu \mathrm{~F}$, are in the tens to hundreds of seconds.

During the auto-zero mode, with a suitable choice of values for the resistors and the capacitors, each internal op amp is connected, in turn, into a unitygain mode for frequencies approximately equal to or less than the commutation frequency. As a result, besides the dc offset voltage, each capacitor acquires a voltage equal to the instantaneous low-frequency noise below the commutation range of the internal op amps. In addition, the low-pass filter networks formed by R_{1} and C_{1}, as well as by R_{2} and C_{2}, attenuate highfrequency noise above the commutation frequency at 6 dB /octave.

This unique characteristic of the CAZ op amp to reduce, not only the dc offset voltage, but also the low-

1. In the CAZ op amp, analog gates switch two internal op amps between signal-processing and auto-zero modes to cancel offset errors and instantaneous low-frequency noise (a). In addition to this analog circuitry, the CMOS chip has digital circuitry, which includes an RC oscillator,for controlling the commutation frequency(b).
frequency noise below the commutation frequency has at least two very important implications:

- The CAZ op amp can approach a near-zero noise figure for frequencies from dc to about one-tenth the commutation frequency. For good noise performance below 10 Hz , the commutation frequency for the $7600 / 7601$ should be between 30 and 200 Hz .
- The low-frequency or flicker noise of the input transistors of the internal op amps is less critical than that for a conventional op amp. This is very convenient, because the input transistors for the CAZ op amp are MOSFETs, and their flicker noise is about five times worse than that of bipolar transistors or junction FETs.
As Fig. 1b illustrates, the $7600 / 7601$ op amps actually consist of three main functional blocks: a full complementary set of input and output analog switches for connecting the internal op amps into their two modes of operation; a digital section containing an RC oscillator, a divider chain and the necessary drivers for the analog switches; and an analog section comprising two internally-compensated CMOS op amps plus their feedback resistors (R_{1} and R_{2}).

In the switching section, six analog gates switch each internal op amp between the signal-processing mode and the auto-zero mode. The RC oscillator in the digital section operates from a low-voltage internally regulated supply. The oscillator output may be directed, by means of the DR terminal, either through a 5 -bit (divide-by-32) counter or a single-bit (divide-by-2) counter. The level translators provide full-supply voltage swings and break-before-make signals to the input and output analog switches. This arrangement gives the user considerable flexibility in controlling the commutation frequency.

With the OSC terminal open-circuited and the DR terminal connected to $\mathrm{V}+$, the commutation frequency is about 160 Hz . To lower it, the designer can add capacitance to the OSC terminal or use an external clock to drive this terminal with a signal of -5 V peak-to-peak, referenced to $\mathrm{V}+$. The oscillator may be stopped by connecting the OSC terminal to ground. To increase the commutation frequency above 160 Hz , the designer should connect the DR^{\prime} terminal to the GND supply. For an open-circuited OSC terminal, this connection gives a commutation frequency of 3.2 kHz .

In the analog section, the CMOS op amps each have two gain stages. By varying the biasing of these internal op amps, the user can select slew rate and unity-gain bandwidth. For example, at maximum bias, the slew rate is about $2 \mathrm{~V} / \mu \mathrm{s}$, unity-gain bandwidth is 1 MHz , and the minimum guaranteed stable closed-loop gain with any capacitive load is 10 .

The CAZ instrumentation amps

Delivering equally impressive performance the 7605/7606 CAZ instrumentation amplifiers, are true differential amplifiers, capable of amplifying a differential input signal (within the power-supply range) in the presence of large common-mode voltages and referencing the output signal to system ground or some other voltage. An important advantage of these CAZ instrumentation amplifiers over traditional bipolar devices is the automatic self-compensation for offset error voltages, whether they be steady-state, temperature, supply voltage, or long-term variable in nature.

Both CAZ instrumentation amplifiers are low-frequency devices, useful to perhaps as high as 20 Hz , although more commonly used in applications requiring less than 10 Hz . Unlike conventional differential instrumentation amplifiers, the CAZ devices have approximately constant input equivalent noise voltage, input offset voltage and drift values, as well as $100-\mathrm{dB}$ common-mode and power-supply rejection ratios-independent of gain.

As Fig. 2 shows, the CAZ instrumentation amplifier has four functional blocks, three of which are identical to those of the CAZ op amp. The fourth functional block is a differential-to-single-ended unity-gain voltage converter, which consists of a group of eight analog switches plus two external capacitors.

2. The CAZ instrumentation amplifier works well at bandwidths up to 10 Hz . It has four functional blocksthe analog, digital and switching sections of the CAZ op amp, plus a differential voltage converter.

When one of these capacitors is connected to the differential signal source, the other is connected to system ground, or a reference voltage, and to the input of one of the internal op amps. A short time later, the connections of the two capacitors are reversed. Thus, at all times, the differential input source is being sensed and applied to one of the internal op amps. The only external circuitry required are two resistors, to set the gain, and four capacitors-two for the internal amps and two for the voltage converter.
Of the eight analog switches in the voltage converter, only four are conducting at any one time. These are the four that connect one of the capacitors to the differential input and the other to ground, or a reference, and to the input of an internal op amp. This aliasing scheme preserves frequency information up to the commutation frequency. Above it, an input signal is transformed to a lower frequency at the output. Because of charge-injection phenomena at the switches and at the output to the voltage converter, the values of capacitors C_{3} and C_{4} must be about $1 \mu \mathrm{~F}$ to preserve signal accuracies to within 0.01%.

Applying the CAZ op amp

The principal application for the CAZ op amp is expected to be amplification of low-level signals from dc to 50 Hz , such as those produced by thermocouples. The CAZ op amp also is well-suited for use with dualslope analog-to-digital converters. The device's low noise permits sensing signal levels as low as $10 \mu \mathrm{~V}$.
Fig. 3a shows a typical application-a preamplifier having a fixed gain of 100 . Here, the $100-\mathrm{k} \Omega$ series input resistor and the $0.01-\mu \mathrm{F}$ capacitor protect the CAZ amp from damage even with overload voltages as high as $\pm 1 \mathrm{kV}$.
In Fig. 3b, the CAZ op amp teams with the ICL7109 12 -bit dual-slope a/d converter, which is designed for

3. Because of its sensitivity to low-level signals, the CAZ op amp makes an excellent high-gain preamplifier (a). The device is also well-suited for use with dual-slope analog-to-digital converters (b).
interfacing with microprocessors. The 7600/7601 and the 7109 use the same power supply of $\pm 5 \mathrm{~V}$, and the entire system typically consumes just 2.5 mA of current.
The input signal is applied through a low-pass (150 Hz) filter to the CAZ op amp, which is connected in a noninverting-gain configuration of either 20 or 100 . The internal oscillator of the 7600/7601 runs at about 5.2 kHz , resulting in a commutation frequency of 160 Hz , with the DR terminal connected to $\mathrm{V}+$. The errorstorage capacitors, C_{1} and C_{2}, are $1 \mu \mathrm{~F}$ each, for a good compromise between the minimum equivalent input dc offset voltage and the smallest value of lowfrequency noise.
The output signal also passes through a low-pass filter ($1 \mathrm{M} \Omega$ and $0.1 \mu \mathrm{~F}$), having a bandwidth of 1.5 Hz . This results in an equivalent dc offset voltage of 1 to $2 \mu \mathrm{~V}$ and a pk-pk noise voltage of $1.7 \mu \mathrm{~V}$, referred to the input of the 7600 . The output of the low-pass f:lter directly feeds the input of the converter.
The values of the converter's integrator resistor and the reference voltage must be chosen to suit the overall sensitivity of the system. For example, for a full-scale reading of $2.048 \mathrm{~V}(0.005 \mathrm{~V} /$ count times 4096 counts $)$, the reference should be 1.024 V , and the integrator resistor $100 \mathrm{k} \Omega$. With an amplifier gain of 100 , the system sensitivity will be $5 \mu \mathrm{~V} /$ count ($0.005 \mathrm{~V} /$ count divided by 100).

Alternatively, the gain of the $7600 / 7601$ can be reduced and different values used for the reference

4. In low-frequency applications, the CAZ instrumentation amplifier can replace its more costly hybrid or
monolithic counterparts. It easily senses bridge voltages (a) for building a digital-readout torque wrench (b).
voltage and the converter's integrator capacitor. With a $190-\mathrm{k} \Omega$ feedback resistor, a $0.2-\mathrm{V}$ reference and a $20-\mathrm{k} \Omega$ integrator resistor, the gain of the CAZ amp reduces to 20 , and the converter sensitivity increases fivefold-for the same output sensitivity.

Ideal for low-frequency tasks

In low-frequency applications with bandwidths from dc up to $10 \mathrm{~Hz}, 7605 / 7606 \mathrm{CAZ}$ instrumentation amplifiers can replace almost any of today's more expensive hybrid or monolithic instrumentation amplifiers. Since the CAZ devices do not require periodic adjustment and have extremely low offset drift, they perform particularly well in adverse environments where it is difficult to service equipment.

One application for the 7605 is measuring the voltage across a bridge network, as illustrated in Fig. 4a. The input common range for the amplifier's + DIFF and -DIFF inputs cannot exceed the supplyvoltage range, which might be, say, $\pm 5 \mathrm{~V}$. No adjustments are necessary, except for the gain resistors. In such a circuit, common-mode rejection ratio is typically 100 dB , and the commutation frequency about 50 Hz .

A more specific application for the $7605 / 7606 \mathrm{CAZ}$ instrumentation amplifier is in a strain-gauge system, like the digital-readout torque wrench of Fig. 4b. In this application, the CAZ amp serves as a pre-
amplifier, converting the differential voltage output from the bridge to a single-ended voltage reference to ground. The $7605 / 7606$ then applies the signal to the input of a panel-meter chip-in this case, the ICL7106 dual-slop a/d converter for a 3 -1/2-digit liquidcrystal display. This system employs the internal voltage reference of the converter, instead of an external reference source.
Setting a full-scale reading requires knowing the voltage sensitivity of the strain-guage bridge and then choosing both an appropriate gain for the CAZ amplifier and an appropriate value for the reference voltage. The proper amplifier gain should produce an output swing of about 0.5 V at full scale. The reference voltage required is one-half the maximum output swing, or 0.25 V . Once designed, this type of system requires only one full-scale adjustment-either the amplifier gain or the reference voltage. Total current consumption of the system, less the current drain of the strain-gauge bridge, is about 2 mA .

6. Analog Gates, Switches, and Multiplexers

Switching signals with semiconductors

Analog switches are fast, low cost, and work well with the high impedance of most signal circuits. Often they can replace reed relays

Until recently, signal routing and switching were controlled almost exclusively by electromechanical relays and mechanical switches. Now the electronic switch, also known as the analog switch, is being used for many such applications. Initially the electronic switch replaced relays in many applications. But design engineers soon realized that analog switches have unique characteristics that allow them to do things mechanical switches could never attempt. In particular. an ordinary electronic switch is about one thousand times as fast as a conventional relay

Further, the electronic switch is smaller, lighter, longer lived, more reliable and often lower in cost than an equivalent relay. These characteristics have allowed the development of such things as low cost, high speed, analog-to-digital and digital-to-analog converters, fast sample-andholds, video switching and many other circuits. Usage continues to grow and a number of different types of electronic switches have been developed for specific types of applications.

Transistors have been used as switches ever since they first appeared, but usually as on-off devices for controlling lights, relays, and other loads, as indicated in Fig

A - Transistor power switch

B - Electronic signal switching

1A. A diode is added to the equivalent circuit to show that current can flow in only one direction. Fig 1B shows the nature of electronic switching. The signals, voltage V_{1}, V_{2} and V_{3}, are usually low level and often have high impedance; they represent the flow of information rather than power. Further, the signals may be combined to produce new signals.

Analog switch vs reed relay. The reed relay is closest to the analog switch in size, speed, cost and usage; therefore it can serve as a basis for comparison. Current through the coil (Fig 2A) of the reed relay, opens or closes the associated contacts through which the signal passes.

The control input to the analog switch usually comes from TTL or cmos logic, which the driver translates to the voltage needed to turn on or turn off the channel. The channel is a field effect transistor (FET), with the signal to be switched fed to the source while the drain is the output terminal. Depending on the voltage the driver imposes on the gate, the channel is either a very high impedance-many megohms-or well below 100 ohms.

Advantages of the reed relay include the ability to handle much larger signals and a much lower resistance when on.

Some analog switches are severly limited in the magnitude and polarity of the signals they can handle. Because of the nature of semiconductors, the voltages applied to source and drain cannot be allowed to vary indiscriminately but must be held within a range established by the characteristics of the device as well as by the voltage applied to the gate by the driver. If the
range is exceeded, either the channel goes to the wrong state, or some intermediate state, or the device may be destroyed.

With respect to "on" resistance, it will be a long time (if ever) before analog switches with the low "on" resistances of relays are manufactured. However, the applications that require extremely low "on" resistance are few and most signal switching is done into high impedance loads.

Since electronic components are much smaller than their mechanical counterparts, many more switches can be put into one package, greatly reducing parts count as well as space and volume. In addition, electronic switches have no moving parts and consequently no contact bounce. They are, however, sensitive to static electricity and thus good handling procedures should be used during assembly. The life of a solid switch is orders of magnitude greater than a relay and no maintenance is required. Driving the switch is easy since it can interface directly with TTL or CMOS logic without requiring diode protection, as a reed relay normally does. Pricing on a per channel basis is often lower for the analog switch than the reed relay, although some high speed switches are priced higher. But the most significant advantage of the electronic switch remains its extremely fast switching speed. Its ability to switch in less than 1 microsecond has opened up possibilities that are inconceivable with a reed relay.

Switch functions duplicate those commonly found in reed relays: form A (normally closed), form B (normally open) and

1. Bipolar transistor for power switching. FETS for signal

[^0]
3. Output of the op-amp is determined by both the signal inputs and the logic inputs
form C (double throw). Both single pole and multi-pole circuits are available. Semiconductor technologies typically used include bipolar, PJFET, NJFET: MOSFET, varafet and cmos.
The p-channel JFETs. The simplest switch to understand and operate is a Junction Field Effect Transistor having a

4. Programmable gain op-amp has 16 levels of gain, from 1 to 1,000

5. Analog switch handles only positive voltage signals

6. Use of NJFETPlus varactor diode for sample-and-holds
channel doped with "positive" impurities -the pJfet. The pJfet channel is on (low resistance) in the absence of any controi signal. When the voltage at the gate terminal is made more positive than either the drain or the source terminal (by a minimum amount), the switch is turned off (high resistance). This phenomenon is known as the pinching-off of the channel through which the signal is flowing, and the voltage required to do this is called the pinch-off voltage. This voltage can be obtained directly from an open collector TTL or CMOS logic operating at +5 or +15 v. The pJfets have no quiescent current

No quiescent
current current.

Does not need driver, can be driven directly by TTL.

Lowest cost.

Can switch positive signals only unless a translator driver is used.

No quiescent

 current.Does not need driver, can be driven directly by TTL.

Low cost.
and do not require external power.
PJFETS make excellent special function switches. An example is switching signals into the virtual ground (inverting) terminal of an op amp. (Note: Although the inverting input of an op amp is often part of a more complex circuit, the circuit feeding this input of the op amp is tricked into believing the inverting input is at signal ground; hence virtual ground.) The PJFETS in the two-input circuit of Fig 3 (Note: the arrowhead orientation signifies

7. Sample-and-hold circuit, A, uses three varafets. CIrcuit configuration when sampling is shown at B, and hold mode at C

Monolithic CMOS	Monolithic CMOS driver gate combination (low cost).

Low quiescent current.

Lowest cost (for this category).

Good speed with moderate rDS(on) and leakage.

Overvoltage
protection to $\pm 25 v$.
Can switch up to
$\pm 13 v$ signals with
$\ddagger 15 \mathrm{v}$ supplies.

Highest speed switch.
Lowest quiescent current.

Lowest leakage resulting in lowest error.

Lower cost.
Can switch signals almost to the supply rails.

Lowest charge
injection. CMOS driver and VERAFET gate.

Lowest charge injection.

Very fast.
Very low quiescent current.

Ultra low leakage.
p-channel) can switch signals in the hundreds of volts as long as the op amp can handle such voltages. The only thing to keep in mind is that the current through each PJFET must be kept within its specified value. The solid line diodes D1 and D2 at the inputs limit the voltage at the source of the PJFET to about 0.7 volt and also shunts positive inputs to ground when the switch is off. With diodes D3 and D4 in place, the circuit can switch ± 100 volts. The diodes limit the input to the PJFET to ± 0.6 volt, but this is adequate since the op amp is actually forcing this point-the drains of the PJFETS-to ground.

In Fig 4, PJFETs are used to switch feedback resistors to provide an amplifier with 16 different programmable gains.
Another special function switch built using PJFETS handles only positive signals. This switch requires an external referral resistor, Fig 5, for proper operation, but is ideal for switching into the positive terminal of an op amp.
The N -channel JFET. An N -channel JFET-a JFET with the channel doped with "negative" impurities-is also turned on with no control signal applied, and is driven off by making the gate terminal more negative than source and drain. Since

8. CMOS' switches have extremely low drive and quiescent currents
the outputs of TTI and CMOS logic gates are either a positive voltage level or near zero, a driver is required to do level shifting and generate a negative control signal. Most NJFET switches come with the drivers built in. Drivers for NJFET gates are usually bipolar, or combined bipolar/mOS: they require significant quiescent currents and therefore consume power.

The negative impurities used in NJFET channels have extra electrons, which are far more mobile than the "holes" of PJFETS channels. As a result, the NJFETS have the lowest on resistance.
VARAFET switches. In some applications, such as sample-and-hold circuits, low charge injection is critical. For these applications the varafet gate, Fig 6, was developed. The gate consists of an NJFET with a varactor diode in series with the gate terminal. An NJFET by itself is not satisfactory because it will inject charge into the signal path when it is turned on and will thereby distort the output.
Varactor diodes can store charge and thus they prevent most of the injected charge from entering the channel. The varactor diode also eliminates the referral components otherwise required for switching NJFET transistors. Fig 7A shows a sample-and-hold using varafet gates. When a sample of the analog input is wanted, the logic signal applied to the driver causes output l to go low and 2 to go high. This puts the circuit into the configuration shown at 7 B . When this sample period is over, I goes low, 2 goes high, and the circuit is put in the hold mode, Fig. 7C.
mosfet switches. MOSFETS (Metal Oxide Silicon fet), unlik JFETs, are off when no control voltage is applied to the switch. They are turned on when the appropriate signal is applied to the gate terminal. MOSFET devices were among the first switches on the market but are now used
in very few applications. Their only outstanding feature is more switches per pack-age-up to six-than other technologies conered in this article.

смоs switches. Complimentary MOSFET (CMOS) switches are now beginning to dominate. In applications where the special function switches-the pJFETS, vafets, varafets-are not needed or cannot be used, cmos switches are the preferred devices.
cmos switches consist of drivers and gates made from cmos, usually on a single chip. A simplified circuit is shown in Fig. 8. The on-off input signal can be obtained from a cMos logic gate or TTL, either regular or open collector pulled to 15 volts. Switching speed is higher for 15 volt logic. When the logic input is low, both the P and N transistor are off. When the logic input is high, both transistors are on and signals up to ± 10 volts can flow either way through the circuits.
A summary selection guide to analog suitches is geven in the table which annears at the top of these facing pages.

Understanding and Applying the Analog Switch

INTRODUCTION

Historically the analog switch has been thought of as a solid state relay, and many of its common applications are areas where the relay dominated the scene a few years ago. Routing signals in telephone exchanges is the most obvious example. More recently, however, as creative designers are becoming aware of the unique properties of the analog switch, a new generation of applications is emerging which were simply not possible using relays. The ability to change the gain of an amplifier, or the time constant of an integrator, in less than a microsecond has far-reaching implications in real-time analog signal processing.

The purpose of this note is twofold. Firstly, to act as an introduction to analog switches to those who have hitherto only used relays. Secondly, to compare and contrast the features of the different switch families and to illustrate their use with practical applications.

RELAYS AND THE ANALOG SWITCH

Since the class of relay closest to the analog switch in terms of cost and packaging is the reed relay, the comparison
which follows is confined to this type of device. Reed relays have three advantages; they are easy to apply (current through a coil opens or closes isolated contacts), they will handle signals of the order of hundreds of volts, and their ON-resistance is low. So what does the solid-state analog switch have to offer? It outperforms the mechanical relay in almost every other specification. It is much faster, does not suffer from contact bounce problems, is more rugged since there are no moving parts, has several times the number of switches per package, and is easier to drive since the switch can interface directly with TTL without requiring back-EMF diode protection, etc. The salient features of the two switch types are given in Table 1.

Analog switches can be thought of in terms of form A, B, and C relays; it is only necessary to add some external connections as shown in Table 2. The table shows devices from the IH5040 series, with the switch states for a logic " 1 " input. In the normal state (logic " 0 " input) the contact closures drawn as closed would be open and vice versa.

TABLE 1

$\left.$| FAMILY | | TYPICAL
 REED RELAY |
 BIPOLAR SWITCH
 (IH5001) | C-MOS SWITCH
 (IH5040) | VIRTUAL GROUND
 SWITCH (IH5009) |
| :--- | :---: | :---: | :---: | :---: | :---: | | POSITIVE SIGNAL |
| :---: |
| SWITCH (IH5025) | \right\rvert\,

NOTE 1: When used as recommended at the virtual ground point of an operational amplifier.
NOTE 2: A method of switching +20 V signals is explained in the data sheet.

THE AVAILABLE SWITCH TYPES

There are basically four different switch types on the market at the present time. They may be summarized as follows:
a. Combination FET (MOS or Junction) and bipolar hybrid designs.
b. Monolithic C-MOS Designs.
c. Simple low-cost J-FET "virtual ground" designs.
d. Simple low-cost "positive signal" designs.

A. COMBINATION FET AND BIPOLAR HYBRID DESIGNS

These may be described as first generation single package analog switches. In many respects they are equivalent to the $\mu \mathrm{A} 709$ in the op-amp world; both deserve credit for pioneering the concept of a complete building block in a single package, and yet both have been outdated by advancing technologies and design concepts.
This family is of hybrid construction and consists of a Bipolar, monolithic driver chip and MOSFETs or junction

TABLE 2. Relay Equivalent Contact Forms

SPST
IH5040 (R DS $(O N)<75 \Omega$

DPST
(H5044 (R DS (ON) <75S2)

4PST
IH5047 ($\mathrm{R}_{\mathrm{DS}}(\mathrm{ON})<75 \Omega$)

DUAL A

DUAL SPST IH5041 (R ${ }_{\text {DS }}(O N)<75 \Omega$

DUAL DPST IH5049 (RDS (ON) <30) IH5045 (RDS (ON) <75)

FORM C

SPDT
IH5050 (R $\mathbf{D S}^{(O N)}$ < 30Ω)
IH5042 (R DS $($ ON $)<75 \Omega)$

DPDT
IH5046 (R DS $(O N)<75 s 2)$

DUAL C

DUAL SPDT
IH5051 (R ${ }_{\text {DS }} \overline{(O N)}$ <30 $)$ IH5043 (R DS $(O N)<75 \Omega$)

FETs as output devices. The driver stage is required to translate the TTL voltage levels to those suitable to drive the output stage; this is typically a 3 V to +15 V or a 0.8 V to -15 V translation.

The DG111 through DG125 grouping has a bipolar driver and a P-MOS monolithic output stage, with up to six (6) independent MOSFETs on each chip (Fig. 1). These are enhancement mode MOSFETs and are turned off with no power applied. The range of switching is $\pm 10 \mathrm{~V}$ with +20 V and -10 V power supplies. Typical $R_{D S(o n)}$ is 70Ω for +10 V signals, 150Ω for low level signals and about 300Ω for -10 V signals. Notice the switch does not show a constant impedance as signal level is varied. To minimize this modulation effect by the signal, these parts should work into relatively high load resistances (i.e., $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{~K} \Omega$).
The DG126 through DG164 family, and also the IH5001 through IH5007, again have a bipolar driver chip for voltage translation, but discrete J-FET chips are used as output stages here (Fig. 2). Typical $\mathrm{R}_{\mathrm{DS} \text { (on) }}$'s are in the 5Ω to 50Ω range (depending on Part \#), and all are characterized by a constant switch resistance. Typical analog switching levels are $\pm 8 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies.
For both of the above families, the following are common characteristics:

1. Construction is hybrid.
2. Switching speeds are typically $0.3 \mu \mathrm{~S}$ and $1.0 \mu \mathrm{~S}$ (t_{on} and $t_{\text {off }}$)
3. Leakages are in 1 nA range.
4. Charge injections are very similar.
5. Circuit power dissipation is very similar.

The new monolithic C-MOS analog switches discussed in the next section will outperform these earlier hybrids in almost every parameter, will ultimately be much less costly to manufacture, and will undoubtably become the 741's and 101A's of the analog switch world.

FIGURE 1. DG118 (ONE CHANNEL)

FIGURE 2. IH5001

B. MONOLITHIC C-MOS DESIGNS

For all new designs, the C-MOS switches should be considered along with the more specialized types described in c. and d. It will be shown later that the C-MOS switch is extremely versatile; in fact, the only reason not to use it is in those instances where the much simpler (and less costly) specialized circuits can perform the task.
These switches are of monolithic construction and include part \#'s 1 H 5040 through 1 H 5052 . Each part is a complete driver and output stage combination and the family has the following salient features:

1. TTL compatible.
2. Switches up to $\pm 14 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies.
3. Has overvoltage protection to $\pm 25 \mathrm{~V}$ signal inputs.
4. Draws $<100 \mu \mathrm{~A}$ ($1 \mu \mathrm{~A}$ typ.) from $\pm 15 \mathrm{~V}$ supplies.
5. Break-before-make switching with typical $\mathrm{t}_{\text {on }} \equiv 500 \mathrm{nS}$ and typical $\mathrm{t}_{\text {off }} \equiv 250 \mathrm{nS}$.
6. $\mathrm{R}_{\mathrm{DS}(\text { on) }}<75 \Omega$.
7. Improved reliability due to lower power consumption and monolithic construction.
The use of C-MOS processing allows the fabrication of a family of switches with superior parameters compared with the older hybrid techniques. For example, the C-MOS parts can switch within 1 V of power supplies $(\pm 14 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies) while parts in group a) switch $\pm 8 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$ with +20 V and -10 V typically. Also, the C-MOS quiescent current is typically microamperes instead of milliamperes; thus it is ideal for portable equipment. C-MOS is compatible with any logic, while the hybrid families are strictly designed for TTL (+5 V logic).
The C-MOS switches are offered in a variety of switch configurations, i.e., SPST, DUAL SPST, DPST, DUAL DPST, DPDT, 4PST, etc. Each different part is merely a metal mask option of the basic C-MOS device. A typical schematic is shown in Fig. 3.

FIGURE 3. IH5042 SCHEMATIC

A. HYBRID ANALOG GATE USING MONOLITHIC BIPOLAR DRIVERS AND FET SWITCHES.

B. MONOLITHIC C-MOS ANALOG GATE.

C. VIRTUAL GROUND SWITCH FAMILY

The Combination FET and Bipolar Hybrid Designs and Monolithic C-MOS Designs are families which feature great versatility; while there are differences in signal handling capability, speed, power consumption, etc., between the two groups, there is little doubt that both families will handle most switching needs. The disadvantage of this added versatility is the price one pays for it. If you need the flexibility to switch A.C. signals into any load, and up to $\pm 10 \mathrm{~V}$ amplitude, then you need either of the a) or b) groups. On the other hand, if you are switching into the inverting input of an operational amplifier, or are switching low level signals, the IH5009 through IH5024 provides the best cost performance tradeoff.
The IH5009 family came into being at Intersil to fill the need for a $\$ 1$ per channel switch function. It was found that 40% of all switching applications encountered could be satisfied by a simpler switch than the driver/gate combination designs. Since the switch could be simpler, the costs were less and customer objectives could be met. This "designing for need" concept led to the P-channel J-FET analog switch (IH5009 family). A P-channel was chosen as the gating element since it could be driven directly from positive going logic (TTL); thus the TTL gate acted as a driver for the FET and resulted in an immediate cost saving to end users, since previous designs had required a separate driver.

The phrase low level switching is a misnomer as applied to the IH5009 family of "virtual ground switches" (the negative feedback point of an op amp is a virtual ground). In reality, the switch could handle $\pm 100 \mathrm{~V}$ if one could find an op amp capable of $\pm 100 \mathrm{~V}$ output swings, since the signal appearing at the virtual ground is attenuated by the open loop gain. When the switch is off, it is the diodes that limit the swings, at the J-FET, to levels compatible with the logic.

FIGURE 4. IH5009 SCHEMATIC

FIGURE 5. SWITCHING AT VIRTUAL GROUND OF AN OP-AMP (2 CHANNELS SHOWN)

The diodes from the source to ground limit the swing at the J-FET to +0.7 V typically so the circuit operates correctly regardless of the signal voltage.

While the intent of the 5009 family was to reduce cost, some unique advantages accompany this reduction:

1. Since the TTL logic element is the driver, the switch is very fast; this implies that most analog switches are speed limited by the driver or translator and this is true. If the driver takes $1 \mu \mathrm{~S}$ to switch from +15 V to -15 V then $t_{\text {off }}$ time of driver-gate combination (N -channel) will be approximately $1 \mu \mathrm{~S}$. Only in the 5009 and the 5025 family is the FET speed capability fully utilized; this then turns out to be inherent in the design. Typical $t_{\text {on }}$ times are 50 nS and typical $\mathrm{t}_{\mathrm{off}}$ times are 150 nS .
2. The method of switching is current switching and the output/input relationship follows the well known inverting feedback amplifier gain equation. If the op amp has high open loop gain, the signal present at summing junction will be $\mu \mathrm{V}$ or mV and therefore, the output is just the input current times the total feedback resistance. Thus, for 0.1% or 0.01% switching accuracy, a feedback J-FET is used in series with the feedback resistor $\left(R_{f}\right)$;
this feedback FET compensates for the error due to $I_{\text {in }} \times$ $R_{\text {DS }}$ loss at the input ($\mathrm{R}_{\mathrm{DS}}=$ "on" resistance of $\mathrm{P}-\mathrm{JFET}$). In the 5009 family, a "compensating FET" is included in the package specifically for this purpose (Fig. 6). The two FETs track so the gain tracks through temperature and system accuracy can be maintained.

FIGURE 6. USE OF "COMPENSATING FET" TO REDUCE RDS(ON) ERROR

The 5009 series is broken up into two different groups. All the odd-numbered parts (5009, 5011, etc.) are designed to be used with TTL open collector logic (+15 V power supply) while the even-numbered ones are designed to be used with +5 V TTL logic. For odd-numbered parts, the J-FETs have a pinch-off voltage of 4 V to 10 V and a maximum $\mathrm{R}_{\mathrm{DS}(o n)}$ of 100Ω (65Ω typical) and the even numbers have a pinch-off range of 2 V to 3.9 V and a maximum $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ of 150Ω (90Ω typical).
For both even and odd numbers, the match between any two channels is better than 50Ω and versions at 25Ω, $10 \Omega, 5 \Omega$ are available at increased cost over the basic 50Ω match. Additional information on the 5009 series is given in Intersil Application Note A004 "The IH5009 Series of Low Cost Analog Switches."

D. POSITIVE SIGNAL SWITCH FAMILY

Just as the 5009 series fits a particular need for virtual ground switching applications, the IH5025 through IH5038 fits into a certain niche when only positive signals are switched. The 5025 series has been designed to switch any signal from OV to +10 V using TTL open collector logic (+15 V power supply). Signals up to +25 V can be switched

FIGURE 7. IH5025 SCHEMATIC
by using a +30 V supply at open collector terminal point. There is no restriction on the load, as in the 5009 family, and load resistances from 50Ω to infinity are easily handled. A typical switching circuit is shown in Fig. 8 below:

FIGURE 8. TYPICAL SWITCHING CIRCUIT (ONE CHANNEL)
Notice that no op amp is required to be part of the switching circuit, as is the case in the 5009 family. The disadvantage of this series is that negative signals cannot be switched unless external parts are added as in Fig. 9.

FIGURE 9. SWITCHING BIPOLAR SIGNALS USING THE IH5025

Thus, by adding a PNP (2N3638 or 2N2907, etc.) and two resistors, the 5025 family becomes just as versatile as any other analog switch. Of course, open collector logic must still be used. When switching only positive signals, so that the circuit is driven directly from logic, speed is very fast; in fact, $t_{\text {(on) }} \approx 50 \mathrm{nS}$ and $\mathrm{t}_{\text {(off) }} \approx 200 \mathrm{nS}$ up to $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$ loads ($C_{L} \leqq 10 \mathrm{pF}$). When driving through PNP stage shown, speed is considerably reduced (to $300 \mathrm{nS}, 1 \mu \mathrm{~S}$ for $\mathrm{t}_{\text {(on) }}$, $t_{\text {(off) }}$ respectively).
The 5025 family is broken up into 2 distinct groups, all of which have a pinch-off range of 2 V to 3.9 V . The oddnumbered parts have a maximum $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ of 100Ω and the even numbers have a maximum of 150Ω; the difference between the two groups is that a larger geometry FET is used for odd-numbered parts. This larger geometry, while producing a lower on resistance, also inherently has about twice the charge injection when compared with the evennumbered parts. This is specified at 20 mV maximum into $10,000 \mathrm{pF}$ for all parts. Typical charge injections are 7 mV for even-numbered parts and 14 mV for odd-numbered parts.

As with the 5009 family, the 5025 series has a channel to channel $R_{\text {DS(on) }}$ match of 50Ω or less, with typicals running in the 25Ω area.
While the 5025 family has been targeted for use with TTL open collector logic, it can be used with 5 V logic under the restraint that a maximum of 1 V signal is switched. While this is rather restrictive, there are a few applications where this 1 V maximum would be no problem; i.e., when switching transducer signals directly.

COMPARING THE PARAMETERS

Table 1 compares the key features of different switch types. A more detailed description of specific parameters follows:

A. SIGNAL HANDLING

It has already been pointed out that one of the primary differences between relays and semiconductor switches is the degree of isolation between the control signal and the signal being switched. In the case of the semiconductor switch, the maximum analog signal that can be handled is related to the characteristics of the FETs or MOSFETs, and the supply voltages. When the switch itself is an N channel J-FET, which in the absence of any gate bias is in the ON state, the device is held off by driving the gate towards the negative supply. Clearly, if the potential on the drain or source comes within V_{p} (the pinch-off voltage) of the gate, the device will turn on. With MOSFETs an analogous situation exists: The analog signal modulates the gate bias and can give rise to incorrect switch states if the recommended signal amplitudes are exceeded.

For virtual ground family (IH5009, etc.) the situation is somewhat different. The maximum signal which can be handled at the switch itself is only +700 mV ; however, when used as recommended at the virtual ground point of an op-amp, signals at $V_{\text {in }}$ and $V_{\text {out }}$ may be much larger, as previously stated (i.e., $\pm 100 \mathrm{~V}$). It is worth noting that low level signals, such as those from a thermocouple, may be switched using an IH5009 without the need for an op-amp provided the amplitudes are less than 700 mV .

B. ON RESISTANCE

The ON-resistance of a good reed relay is substantially less than that of a typical analog switch. However, the widespread use of high input-impedance op-amp buffers has tended to decrease the importance of ON-resistance as a key parameter. It is almost always possible to design the circuitry interfacing with the switch so that an ON-resistance of 30Ω to 100Ω does not contribute a substantial error. Some of these techniques are illustrated in the applications given on pages 10 through 16.

In the case of the IH5009 series, the effective ON-resistance of the switches may be further reduced by use of the "compensating FET" as described earlier.

The linearity of ON-resistance as a function of the analog signal is dependent on the switch type. For junction FET switches, which are normally on, $\mathrm{R}_{\mathrm{DS}(o n)}$ is independent of the analog signal (Fig. 10). For P-MOS switches, a negative gate bias is required to turn the device on. The analog signal thus modulates the bias voltage, giving rise to the characteristics seen in Fig. 11. In the case of the C-MOS switch, the $R_{\text {DS(on) }}$ of the " p " and the " n " channel in parallel tend to compensate, as shown in Fig. 12.

The temperature characteristics of the different switch types are shown in Fig. 13 through 15.
ros ${ }^{(O N)}$ AS A FUNCTION OF THE
anAlog signal voltage

FIGURE 10. J-FET SWITCH
${ }^{r}$ DS (ON) AS A FUNCTION OF THE ANALOG SIGNAL VOLTAGE

FIGURE 11. P-MOS SWITCH
${ }^{r}$ DS $(O N)$ AS A FUNCTION OF THE ANALOG SIGNAL VOLTAGE

FIGURE 12. C-MOS SWITCH

C. SPEED

Table 1 shows the maximum switching times for various switch families. The waveform photos which follow illustrate the typical performance that can be expected under normal operating conditions. When the 5009 and the 5025 series are used in conjunction with an op-amp, the switching characteristics are usually limited by the slew rate and settling time of the op-amp. At the present time, for example, there are no monolithic op-amps capable of swinging 10 volts and settling to $.01 \%$ in less than 500 nS , even though the 1 H 5009 is capable of such performance.

TYPICAL SWITCHING WAVEFORMS

HORIZONTAL $=1 \mu \mathrm{~s} / \mathrm{div}$
VERTICAL $=5 \mathrm{~V} / \mathrm{div}$

FIGURE 16. DG118 (Note "Make-Before-Break" Action)

HORIZONTAL $=1 \mu \mathrm{~s} / \mathrm{div}$ VERTICAL $=5 \mathrm{~V} / \mathrm{div}$

FIGURE 17. IH5010

FIGURE 18. IH5025

HORIZONTAL $=1 \mu \mathrm{~s} / \mathrm{div}$ VERTICAL $=5 \mathrm{~V} / \mathrm{div}$

FIGURE 19. IH5041 (Note "Break-Before-Make" Action)

FIGURE 20.

FIGURE 21.

INTERFACING 5009 FAMILY WITH 5V AND 15V TTL

FIGURE 22

FIGURE 23 INTERFACING 5025 FAMILY WITH 5V AND 15V TTL

FIGURE 24

FIGURE 25

D. LOGIC COMPATIBILITY

All the popular solid state switches are compatible with TTL output swings; some require a pull-up resistor to guarantee correct operation however. Schematics showing how to interface with both standard (5V) TTL and high level open collector (15V) are given in Fig. 20 through 25.

E. POWER SUPPLIES

The IH5009 and IH5025 require no external supplies; the only power used is gate leakage current drawn from the logic. The IH5040 C-MOS circuits require ± 15 volts and +5 volts, but again the only steady state power drain is a leakage current of $1 \mu \mathrm{~A}$ typical. The hybrid switches utilizing bipolar drivers require ± 15 volt supplies, and typically use 2 mA in the ON condition. In the OFF state this current is much reduced and may only consist of a few microamps.

F. CHARGE INJECTION

Most analog switches exhibit some degree of charge injection, due to capacitive coupling between the FET gate and the channel. This is a difficult parameter to define in quantitative terms since it depends on the rate of change of the gate drive signal.
However, it turns out that all the analog gates under discussion in this note exhibit similar charge injection characteristics. Using the IH5025, for example, in the test circuit of Fig. 26, the waveform at the output is as shown in Fig. 27. Note that the equivalent circuit of Fig. 26 is simply a capacitance divider between the gate-channel capacitance and the load capacitance. For other operating conditions, the amplitude of the charge injection spike can be scaled proportionately. For example, doubling the size of the load capacitance will halve the spike amplitude.

FIGURE 26. CHARGE INJECTION TEST CIRCUIT

UPPER WंAVEFORM = LOGIC INPUT ($10 \mathrm{~V} / \mathrm{div}$) LOWER WAVEFORM = OUTPUT ($5 \mathrm{mV} / \mathrm{div}$) HORIZONTAL $=1.0 \mu \mathrm{~s} / \mathrm{div}$

FIGURE 27. IH5025 CHARGE INJECTION

SUMMARY

As a guide to users trying to decide which of Intersil's family of analog gates is most appropriate for their system needs, the following summary may help to narrow the choice:

Use

Any portable equipment

Telephone switching

Computer interfacing equipment
(Disc readouts. Read and write circuits from memory drums, etc.)
Video or radar switching
Military Avionics
a. Ground support material
b. Airborne equipment

Any switching done in conjunction with operational amplifiers (i.e., switched integrators, switched gain, integrating sample and hold, etc.)

Any system requiring switch to be off when power is off

Intersil Family \& Key Features

IH5040 CMOS family. Lowest power dissipation ($25 \mu \mathrm{~W}$ typ.). Compatible with CMOS logic levels.

IH5009 or IH5025 family. Very fast switching to allow multiplexing many signals over the same line; lowest cost part.
IH5009 or IH5025 family for low cost.

IH5025 family for fastest speed.

DG116 thru DG164 family or IH5040 family when versatility is more important than cost.
IH5040 family for minimum waste of power and versatility to perform many different switching functions with the same part.
IH5009 family can be switched directly from logic in virtual ground applications.

DG116 thru DG125 family or IH5050 family. MOSFET and CMOS devices require power to be turned on.

APPLICATIONS - DG120 SERIES

FIGURE 28. 3-CHANNEL DIFFERENTIAL MULTIPLEXER

APPLICATIONS - IH5009 SERIES

FIGURE 29. GAIN PROGRAMMABLE AMPLIFIER

FIGURE 30. PROGRAMMABLE INTEGRATOR WITH RESET

APPLICATIONS - IH5009 SERIES (Cont.)

CHARACTERISTICS SLEW RATE IOV $\mu \mathrm{s}$
GAIN AICURACY
5°, (11H5009) TO 05
(ITS7322) See Table 1
CHANNEL
SELECT

FIGURE 31. LOW COST 4 CHANNEL MULTIPLEXER

FIGURE 32. 3 CHANNEL MULTIPLEXER WITH SAMPLE \& HOLD

FIGURE 32. GAIN RANGING CIRCUIT

APPLICATIONS - IH5009 SERIES (Cont.)

FIGURE 33. 16 CHANNEL MULTIPLEXER

APPLICATIONS - IH5025 SERIES

FIGURE 34. MULTIPLEXER FROM POSITIVE OUTPUT TRANSDUCERS

$0 .{ }^{25 v}$

FIGURE 35. SAMPLE AND HOLD SWITCH

FIGURE 36. SWITCHING UP TO +20V SIGNALS WITH T² LOGIC

NOTE TO SWITCH : $10 \mathrm{VAC}(20 \mathrm{~V}$ PP $)$ (1) INCREASE $: 5 \mathrm{~V}$ SUPPLY TO +10 V (2) INCREASE TTL SUPPLY FROM +15 V to +25 V

FIGURE 37. SWITCHING BIPOLAR SIGNALS WITH T²L LOGIC (ALTERNATE METHOD)

APPLICATIONS - IH5025 SERIES (Cont.)

FIGURE 38. USING THE IH5028 AS A DUAL SPDT TO DRIVE LADDER NETWORKS FOR BI-POLAR SWITCHING (UP TO $\pm 10 V$)

FIGURE 39. HIGH INPUT IMPEDANCE GAIN CONTROL FOR POSITIVE INPUT SIGNALS USING IH5025.

APPLICATIONS - IH5040 SERIES

FIGURE 40. IMPROVED SAMPLE \& HOLD USING IH5043
(NOTE: This circuit is available as a hybrid from Intersil. Part number is IH5110/5111)

FIGURE 41. USING THE CMOS SWITCH TO DRIVE AN R/2R LADDER NETWORK (2 LEGS)

APPLICATIONS - IH5040 SERIES (Cont.)

FIGURE 42. DIGITALLY TUNED LOW POWER ACTIVE FILTER.

INTRODUCTION

The IH5009 series of analog switches described in this note were designed by Intersil to fill the need for an easy-to-use, inexpensive switch for both industrial and military applications. Although low cost was one of the primary design objectives (less than $\$ 1 /$ switch in volume), performance and versatility have not been sacrificed. Up to four channels per package are available, no external power supplies are required, and switching speeds are guaranteed to be less than 500 ns.

CIRCUIT OPERATION

Switching Virtual Ground Signals

The signals seen at the drain of a junction FET type analog switch can be arbitrarily divided into two categories: Those which are less than $\pm 200 \mathrm{mV}$, and those which are greater than $\pm 200 \mathrm{mV}$. The former category includes all those circuits where switching is performed at the virtual ground point of an op-amp, and it is primarily towards these applications that the IH5009 family of circuits is directed. In applications where the signal amplitude at the switch is greater than $\pm 200 \mathrm{mV}$, the simple design of the IH5009 is no longer appropriate and a more complex switch design is called for. See REF. 1 for a complete discussion of this type of switch.

It is important to realize that the $\pm 200 \mathrm{mV}$ limitation applies only to the signal at the drain of the FET switch; signals of $\pm 10 \mathrm{~V}$ or greater can be commutated by the IH5009 in a circuit of the type shown in Figure 1. For a high gain inverting amplifier the signal level at the virtual ground point will only be a few microvolts for +10 V input and output swings.

FIGURE 1: SWITCHING AT VIRTUAL GROUND POINT

The Compensating FET

Those devices which feature common drains (IH5009,5010, 5013,5014 , etc.) have another FET in addition to the channel switches (Figure 2). This FET, which has gate and source connected such that $\mathrm{V}_{\mathrm{GS}}=0$, is intended to compensate for the on-resistance of the switch. When placed in series with the feedback resistor (Figure 3) the gain is given by
GAIN =

$$
\frac{10 \mathrm{k} \Omega+\mathrm{T}_{\mathrm{DS}} \text { (compensator) }}{\left.10 \mathrm{k} \Omega+\text { RDS }_{\text {(switch }}\right)}
$$

Clearly, the gain error caused by the switch is dependent on the match between the FETs rather than the absoiute vaiue of the FET on-resistance. For the standard product, all the FETs in a given package are guaranteed to match within 50Ω. Selections down to 5Ω are available however. The part numbers are shown in Table I. Since the absolute value of RDS(ON) is only guaranteed to be less than 100Ω or 150Ω, it is clear that a substantial improvement in gain accuracy can be obtained by using the compensating FET. This is only true however when the input resistor and the feedback resistor are similar in value: for dissimilar values, the benefits of the compensating FET are less pronounced.

FIGURE 2: SCHEMATIC OF IH5009 \& IH5010

FIGURE 3: USE OF COMPENSATION FET

TABLE I

PART NUMBER	INPUT LOGIC DRIVE	DESCRIPTION	EFFECTIVE rDS(ON) (OHMS) MAX.	rDS(ON) (OHMS) MAX.
IH5009	High Level	4-Channel, 15V Logic	50	100
IH5010	DTL, TTL, RTL	4-Channel, 5V Logic	50	150
ITS7318	High Level	4-Channel, 15V Logic	25	100
ITS7319	DTL, TTL, RTL	4-Channel, 5V Logic	25	150
ITS7320	High Level	4-Channel, 15V Logic	10	100
ITS7321	DTL, TTL, RTL	4-Channel, 5V Logic	10	150
ITS7322	High Level	4-Channel, 15V Logic	5	100
ITS7323	DTL, TTL, RTL	4-Channel, 5V Logic	5	150
IH5013	High Level	3-Channel, 15V Logic	50	100
IH5014	DTL, TTL, RTL	3-Channel, 5V Logic	50	150
ITS7324	High Level	3-Channel, 15V Logic	25	100
ITS7325	DTL, TTL, RTL	3-Channel, 5V Logic	25	150
ITS7326	High Level	3-Channel, 15V Logic	10	100
ITS7327	DTL, TTL, RTL	3-Channel, 5V Logic	10	150
ITS7328	High Level	3-Channel, 15V Logic	5	100
ITS7329	DTL, TTL, RTL	3-Channel, 5V Logic	5	150
IH5017	High Level	2-Channel, 15V Logic	50	100
IH5018	DTL, TTL, RTL	2-Channel, 5V Logic	50	150
ITS7330	High Level	2-Channel, 15V Logic	25	100
ITS7331	DTL, TTL, RTL	2-Channel, 5V Logic	25	150
ITS7332	High Level	2-Channel, 15V Logic	10	100
ITS7333	DTL, TTL, RTL	2-Channel, 5V Logic	10	150
ITS7334	High Level	2-Channel, 15V Logic	5	100
ITS7335	DTL, TTL, RTL	2-Channel, 5V Logic	5	150
IH5021	High Level	1-Channel, 15V Logic	50	100
IH5022	DTL, TTL, RTL	1-Channel, 5V Logic	50	150
ITS7336	High Level	1-Channel, 15V Logic	25	100
ITS7337	DTL, TTL, RTL	1-Channel, 5V Logic	25	150
ITS7338	High Level	1-Channel, 15V Logic	10	100
ITS7339	DTL, TTL, RTL	1-Channel, 5V Logic	10	150
ITS7340	High Level	1-Channel, 15V Logic	5	100
ITS7341	DTL, TTL, RTL	1-Channel, 5V Logic	5	150

Logic Compatibility

The 5009 through 5024 series parts are primarily intended for constant - impedance multiplexing. The diode connected to the J-FET source acts like a shunt switch, while the FET itself acts as a series switch. The advantage of this configuration is its high noise immunity when the series element is off. The diode then clamps the source to +0.7 TYP. with a low AC impedance to ground and prevents false triggering of the FET for positive inputs. Negative inputs present no problems since they further increase the OFF voltage beyond pinchoff.

The even-numbered devices in the family (5010 through 5024) are designed for interfacing with 5 V logic. The pinch-
off of the FETs is selected to be less than $3.7 \mathrm{~V}(\mathrm{Vp} @ \mathrm{ID}=1$ $n A)$; therefore, a positive logic level +4.5 V will supply adequate safety margin for proper gating action. To guarantee this +4.5 V from series $54 / 74$ TTL logic requires the use of a pull-up resistor: Values from $2 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ are suitable depending upon the speed requirements (Figure 4). Alternatively the TTL may be operated from +6 V supplies. The " 1 " level will then be greater than +4.5 V without the need for a pull-up resistor. The maximum on-resistance is guaranteed for +0.5 V on the gate of the FET. Since the maximum low level outut voltage from TTL is 0.4 V , the ON-resistances specified are conservative. With OV applied to the FET gate, typical ON-resistances of 90Ω will be obtained.

The odd-numbered devices in the family (5009 through 5023) are designed for interfacing with 15 V logic. The pinch-off of these parts is selected to be less than 10V, so that a +11 V positive logic level provides adequate safety margin. To obtain this level from open collector TTL logic also requires a
pull-up resistor; $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ is suitable depending on the speed and fan-out requirements (Figure 5). The ONresistance is measured with +1.5 V applied to the gate and is guaranteed to be less than 100Ω at $25^{\circ} \mathrm{C}$. For OV on the gate, the typical Ron is 60Ω.

FIGURE 4: INTERFACING WITH +5V LOGIC

FIGURE 5: INTERFACING WITH + 15V OPEN COLLECTOR LOGIC

In applications where low ON-resistance is critical, special selections can be made. Since high pinch-off FETs have lower ON-resistances than low pinch-off types (for a given geometry) it is advantageous to make such selections from the odd-numbered devices and use high level TTL for the control logic.

Maximum Switch Current

The maximum current through the switch is dictated primarily by leakage considerations rather than power dissipation problems. When the drain of the FET is held at virtual ground, current through the channel tends to bias the source positive. Eventually, the source-gate junction will forward bias, giving rise to large leakage currents. This is most likely to occur at high temperature when the junction turn-on potential is at its lowest. The data sheet guarantees maximum leakage for $\mathrm{Is}=1 \mathrm{~mA}$ and 2 mA , with $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$. The substantial increase seen in the leakage in changing Is from 1 mA to 2 mA (at $70^{\circ} \mathrm{C}$) indicates that the turn-on potential is being approached rapidly under these conditions. Specifying the leakage for $\mathrm{V}_{\mathbb{N}}$ (the gate potential) $=0 \mathrm{~V}$ is a worst case condition; under most circumstances $\mathrm{V}_{\mathbb{N}}=+200$ mV would be a more typical value. Thus 200 mV additional signal would be required at the source to give the same leakage current.

Switching Speed and Crosstalk

The switching speed is guaranteed to be less than 500 ns at $25^{\circ} \mathrm{C}$. Typical turn-on and turn-off times are 150 ns and 300 ns, respectively.
When analog switches are used in conjunction with operational amplifiers, settling time is often an important parameter. In a typical fast amplifier, settling times of $1 \mu \mathrm{~s}$ to 0.1% are seen. This time is primarily caused by non-linear modes of operation within the amplifier, and the inclusion of an analog switch at the virtual ground point will not cause significant degradation of the settling time.
Crosstalk can be measured using the circuit of Figure 6. At low frequencies, it is very difficult to obtain accurate values since the separation is better than 120 dB . Typical crosstalk as a function of frequency is shown in Figure 7.

PRODUCT SUMMARY

Table 2 shows the different product numbers, their schematics, and their equivalent circuits. The even numbers are designed to be driven from 5 V TTL, while odd numbers are designed to be driven from TTL open collector logic (15V).

FIGURE 6: CROSSTALK MEASUREMENT CIRCUIT

FIGURE 7: CROSSTALK AS A FUNCTION OF FREQUENCY

IH5009 ($\mathrm{rDS}(\mathrm{ON}) \leq 100 \Omega$)
IH5010 (rDS(ON) $\leq 150 \Omega$)
14 PIN SILICON DIP

IH5013 (rDS(ON) $\leq 100 \Omega$)
IH5014 (rDS(ON) $\leq 150 \Omega$)
14 PIN SILICON DIP

IH5017 (rDS(ON) $\leq 100 \Omega$)
IH5018 (rDS(ON) $\leq 150 \Omega$)
8 PIN SILICON DIP

IH5021 ($\mathrm{rDS}(\mathrm{ON}) \leq 100 \Omega$)
IH5022 (rDS(ON) $\leq 150 \Omega$)
8 PIN SILICON DIP

IH5011 (rDS(ON) $\leq 100 \Omega$)
IH5012 (rDS(ON) $\leq 150 \Omega$)
16 PIN SILICON DIP

IH5015 ($\mathrm{rDS}(\mathrm{ON}) \leq 100 \Omega$)
IH5016 (rDS(ON) $\leq 150 \Omega$) 16 PIN SILICON DIP

IH5019 (rDS(ON) $\leq 100 \Omega$) IH5020 (rDs(ON) $\leq 150 \Omega$) 8 PIN SILICON DIP

IH5023 ($\mathrm{rDS}(\mathrm{ON}) \leq 100 \Omega$) IH5024 (rDS(ON) $\leq 150 \Omega$) 8 PIN SILICON DIP

3-CHANNEL MULTIPLEXER WITH SAMPLE \& HOLD

CHARACTERISTICS: GAIN $=1$ FOR CHANNEL 1 ON; CHANNELS 2, 3, 4 OFF GAIN $=2$ FOR CHANNEL 2 ON; CHANNELS 1, 3, 4 OFF GAIN $=10$ FOR CHANNEL 3 ON; CHANNELS 1, 2, 4 OFF GAIN $=50$ FOR CHANNEL 4 ON; CHANNELS 1, 2, 3 OFF GAIN $=100$ FOR ALL CHANNELS OFF SLEW RATE $=10 \mathrm{~V} / \mu \mathrm{s}$

GAIN PROGRAMMABLE AMPLIFIER

EIN 13 N~~

CHARACTERISTICS: ERROR $=0.4 \mu \mathrm{~V}$ TYPICAL @ $25^{\circ} \mathrm{C}$ $10 \mu \mathrm{~V}$ TYPICAL @ $70^{\circ} \mathrm{C}$
note: the analog switch between the op-amp and the 16 INPUT SWITCHES REDUCES THE ERRORS DUE TO LEAKAGE.

A New CMOS
 Analog Gate Technology

INTRODUCTION

A new C-MOS process has been developed by Intersil which is destined to have a significant impact on the future of this technology in the fabrication of analog gates and multiplexers.
Up to the present time, all the analog gates and multiplexers manufactured with standard C-MOS technology have suffered from a serious limitation: under certain conditions, these circuits "latch-up", i.e., go into a non-operative state. They will only recover if both the power supplies and the input are removed and reapplied in a specific sequence. Under some circumstances the latch-up is destructive and the only cure is replacement of the I.C.
This new process, developed and patented by Intersil, totally eliminates these problems. As well as preventing the latchup condition, this process provides effective overvoltage protection (to $\pm 25 \mathrm{~V}$) without degradation of ON-resistance.

UNDERSTANDING THE LATCH-UP PROBLEM

A simplified schematic of one channel of a typical C-MOS analog switch (or multiplexer) is shown in Figure 1.

Figure 1: Typical C-MOS Anaiog Switch or Multiplexer

The latch-up condition occurs when a negative analog signal is applied to either the drain or source of the MOS transistors while V is at $0 V$. Since analog switches are frequently used to interface between different systems and sub-systems, these conditions occur surprisingly often, especially if the different parts of the system or sub-system have independent power supplies. It should also be noted that these conditions have only to occur briefly (as transients) for latch-up to take place.
With V^{-}at 0 V , and a negative potential on the analog input or output, a high current path exists through the forward biased body to drain junction of the N -channel device. Permanent damage or complete destruction of the I.C. can result from this current. This is shown in Figure 2.

Figure 2: Dangerous Condition

However, the diode is not sufficient in itself to give rise to the latch-up phenomena, but carefu! inspection of the cross section shown in Figure 3 will reveal that this diode forms part of an SCR. The drain and body of the N-channel FET form the emitter and base of the NPN transistor part of the SCR (Figure 4), the body of the P-channel FET (the substrate) acts as the collector; the source and body of the P-channel FET form the emitter and base of the PNP part of the SCR and the body of the N -channel device forms the collector for this PNP. If the beta product of these two transistors exceeds 1 , an excellent SCR is formed. It is clear from Figure 4 that grounding the body of the N-channel FET (the gate of the SCR) and applying a negative potential to the analog input (the cathode of the SCR) will turn on the SCR and cause it to latch.

N CHANNEL P CHANNEL

Figure 3: C-MOS Cross Section

Figure 4: The SCR Structure

INTERSIL'S FLOATING BODY PROCESS

Intersil's improved C-MOS process incorporates an additional diode in the connection to the body of the N channel FET (Figure 5). The cathode of this diode is then tied to V^{+}, thus effectively floating the body. The inclusion of this diode not only blocks the excessive current path described earlier, but also prevents the SCR from turning on. As an additional precaution, processing changes have been incorporated which reduce the beta product of the NPN-PNP combination to less than one. Thus in the unlikely event of excessive over-voltages being applied to the circuit (which could break down the blocking diode) the SCR action will still not occur.

Figure 5: Protective Circuitry for N -channel FET.

CONCLUSION

Prior to "Floating Body" technology, solutions to the latchup problem have involved either using expensive and exotic manufacturing processes, such as dielectric isolation, or the addition of external components. Apart from being inconvenient, adding external components such as current limiting resistors always compromises the electrical performance.
The new "Floating Body" C-MOS technology overcomes these problems and has resulted in a reliable, low cost monolithic analog gate function. For the first time it is possible to realize a monolithic gate capable of approaching $\$ 1.00$ per channel without compromising performance or reliability.

Reduce CMOS-Multiplexer Troubles Through Proper Device Selection

CMOS analog multiplexers exhibit problems with output leakage currents and overvoltage-protection circuitry. Here's how to deal with them.

A CMOS analog multiplexer (MUX) is basically a channel-selector switch which can interface signal sensors and computers. It provides a number of input channels, which are time-shared onto a common output terminal. A central computer or microprocessor digitally sequences the MUX to "see" one channel at a time. The goal of designers is to pass the sensed signal through this multiplexer with virtually no error terms present. Providing adequate overvoltage protection also presents a challenge. Both objectives can tax designers' ingenuity unless they are familiar with muitiplexer anatomy.

Many designers devise unnecessarily complex
circuits in their efforts to avoid the substantial level of error terms that can be encountered during the multiplexing operation and to provide overvoltage protection for the CMOS circuitry. But you can save pc-board space, reduce component count and cost, and avoid the possibility of introducing new errors through proper identification of error sources. And adequate circuit self-protection is the result of the proper choice of multiplexing devices.

Output leakage-the major error source

A typical data-acquisition system, extending from sensors to computer, is shown in Fig 1. Here the sensors feed directly into the multiplexer input lines, but this is an idealized case, because

Fig 1-Although the multiplexer diagrammed here is a 1-of-4 device. multiplexers in data-acquisition systems can switch as few as two or as many as 1000 channels to a common output.

Identification of error sources reduces component count and cost
most users insert operational amplifiers between the sensors and the MUX inputs. You can eliminate these op amps, however, if you utillze an IC MUX with very low output leakagecurrents.

Fig 2-With all but one channel OFF, this equivalent circuit for the MUX/buffer portion of Fig 1 shows potential error terms.

Most popular CMOS analog multiplexers have finite $O N$ resistance and leakage currents. Typical of these ICs are the DG506 to DG509 (Siliconix), HI506 to HI509 (Harris) and the IH6116/6208 Series (Intersil).

As noted, the design goal for the system in Fig 1 is to transfer the sensed signal into the sample-and-hold circuit with as little error as possible. Some potential error sources are labeled in Fig 2. One such error source arises from a voltage-divider action between $r_{10, \infty}$, of a multiplexer ON channel (a consequence of finite channel resistance) and the input impedance of the follower op amp $\left(R_{i n}\right)$. The signal level at the positive input of the op amp is equal to the sensor voltage times $R_{\text {in }} / R_{\text {in }}+r_{\text {Dsw }}$. And the error produced is equal to the ratio of $R_{\text {in }}$ to $R_{\text {in }}+r_{\text {Dsoms }}$ Because $R_{\text {in }}$ (at low frequencies to de level $)=100 \mathrm{M} \Omega$ and $\mathrm{r}_{\mathrm{Dsm}}=1 \mathrm{k} \Omega$, the error equals $10^{\kappa} / 10^{8}+10^{3}=1 / 1+10^{-5}$. This set of conditions yields an accuracy of $0.001 \% ; \mathrm{r}_{\mathrm{Ds}}$, can range as high as $10 \mathrm{k} \Omega$ and still provide 0.01% accuracy. The obvious conclusion to be drawn is that the $r_{10 s i n}$,

Fig 3-Boosting sensor output levels can overcome leakage and $r_{1 m, \ldots,}$ errors, but you must pay for the added op amps and the resistors.

Fig 4-The diagram in (a) shows a typical CMOS MUX channel; (b) and (c) demonstrate the effects of power-down and overvoltage faults. respectively. Inserting diodes in the MUX supply lines affords protection from excessive currents (d).
of the ON channel is not a very significant factor so long as it is less than $10 \mathrm{k} \Omega$.
A second and much more significant source of multiplexer error stems from $\mathrm{I}_{\text {Turn. }}$ (basically total leakage plus input bias current) flowing across $r_{\text {Dsus }}$. (The total leakage is the sum of the OFF-channel leakage plus the $I_{1,}$ channel leakage.) For example, assume that $I_{\left(1+F I_{1-4}\right)}=150 \mathrm{nA}$, $\mathrm{I}_{1 \mathrm{~N}}=25 \mathrm{nA}$ and $\mathrm{r}_{1 \mathrm{scos}}=2 \mathrm{k} \Omega$, all at $125^{\circ} \mathrm{C}$. The voltage drop across $r_{\text {Dsum }}$, is then 175 nA times 2 $k \Omega$, or $350 \mu \mathrm{~V}$. This $350-\mu \mathrm{V}$ figure might be considered acceptable if the sensor output were 10V FS. However, thermocouple outputs of 16 mV FS over a $160^{\circ} \mathrm{C}$ temperature range correspond to $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Thus, the $350-\mu \mathrm{V}$ voltage drop across the switch is equivalent to a $3.5^{\circ} \mathrm{C}$ error-a deplorable level of accuracy. Of course, the same error would be reduced by a factor of approximately 1000 when the ambient temperature drops from $125^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}: 0.350 \mu \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ is virtually error-free.

Specifically, the error factors cannot be reduced to $\mathrm{r}_{1 \mathrm{~s}}$,
 able DG506 (1-of-16) multiplexers are specified at $500 \mathrm{nA} \max$ at $125^{\circ} \mathrm{C}$, and $\mathrm{r}_{\mathrm{D}, \mathrm{N}}$, is in the 500Ω range, producing an error term of $250 \mu \mathrm{~V}$ for the multiplexer itself (exclusive of op-amp input bias currents). By comparison, IH6116 parts are rated at $100 \mathrm{nA} \max$ at $125^{\circ} \mathrm{C}$, with $\mathrm{r}_{\mathrm{ps}} \mathrm{m}_{\mathrm{N}}$, of $1 \mathrm{k} \Omega$; the maximum error term therefore equals $100 \mu \mathrm{~V}$, or $\pm 1^{\circ} \mathrm{C}$ for typical thermocouple sensors.

Dealing with leakage

Fig 3 is a block diagram of a circuit providing a solution to the problem of leakage and $r_{\text {psum }}$ errors. In it, the signal levels are boosted so that
the MUX error becomes a much smaller proportion of the multiplexer input signal. But this technique is expensive; the parts count is larger, more pc-board space is used, and new sources of error are introduced: op-amp offsets and temperature drifts.

You can zero the raw offset down to $100 \mu \mathrm{~V}$ with a $\$ 0.50$ potentiometer. But how do you reduce offset drift?

Because the thermocouple scale is $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, the op-amp drift must be no greater than 100 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ to contribute less than 10% error. Therefore, the best solution is to avoid inserting op amps between the sensors and the multiplexer, and to choose instead a multiplexer with significantly lower output leakages.

You might have to spend a few dollars more to obtain a MUX specified at, say, a maximum $\mathrm{I}_{\left.\mathrm{DM}()_{\mathrm{F}}\right)} \leqq 100 \mathrm{nA}$ at $125^{\circ} \mathrm{C}$. But the alternative is the 16 op amps and all those gain resistors required for 16 channels of low-level sensing. And even if you use 741s, following this approach will cost you at least $\$ 4$ (16 op amps at $\$ 0.25$ each). However, if you choose a MUX with the lower leakage specifications, you'll save both money and pc-board space.

Overvoltage fault protection

As noted, CMOS multiplexers are designed to operate as sequential, time-shared multiple switches: When all supplies are correctly operating, only one channel is ON at a time. But when power supplies to a CMOS MUX are turned off, all sorts of damaging effects can occur.

Most of today's IC multiplexers operate from $\pm 15 \mathrm{~V}, \mathrm{GND}$ and perhaps +5 V . The sensor signals come from instruments powered by local sup-

Channel ON resistance is not as significant as leakage currents

plies, which are usually independent of the MUX power supplies. When the multiplexer power is down while the signal inputs are active, the majority of today's CMOS multiplexers will not operate sequentially-instead, all channels will be turned ON simultaneously. In that case, one transducer is forced to drive the other transducers via the ON-channel resistances-operation that can be very tough on the sensors. The origin of this problem lies in the design and fabrication techniques currently employed in manufacturing a CMOS multiplexer like the DG506 or IH6116.

A typical CMOS channel circuit is shown in Fig 4 a. If the sensor input signals are lower than $\pm 15 \mathrm{~V}$ with MUX power on, no malfunctions occur. But if the sensor signals exceed the levels of the MUX power supplies, or if the multiplexer power is off, the channels are coupled.

Fig 4b depicts a condition where the MUX power is down with sensor signals present. Note that with the power off, the gates and bodies of the parallel n - and p-channel MOSFETs are at ground potential. Because most threshold voltages fall in the range of 1 to 5 V , the devices are in the enhancement mode (turned ON) when the signal levels exceed these threshold voltages.

For example, assume that $\pm 5 \mathrm{~V}$ levels are being switched, with the n-channel $\mathrm{V}_{\text {thrwnin }}$ at +2 V and the p-channel $\mathrm{V}_{\text {thrr...holic }}$ at -3 V . Thus, for -5 V levels, the $V_{6:-}$ of the n-channel device equals +5 V when the gate is at ground potential; this value is +3 V more than the threshold voltage, and the FET turns ON. A similar condition occurs at +5 V levels, when as a result, the p-channel device is
turned ON. Either situation couples all channels with voltage levels higher than the MOSFET's threshold voltage.

While this coupling phenomenon occurs only with multiplexer power down, a similar situation occurs if the MUX power is at a normal $\pm 15 \mathrm{~V}$ level and the signal levels exceed $\pm 15 \mathrm{~V}$, as happens with voltage spikes. Electrically, this condition is indistinguishable from the previous fault situation. Fig 4c shows that for levels in excess of -20 V , the n -channel device's $\mathrm{V}_{\text {,. }}$ equals -15 V minus the -20 V value (resulting in a final figure of +5 V), and the device is enhanced (ON). The opposite condition occurs at +20 V , when the p-channel device is $O N$. In either case, all channels are coupled.

Another harmful condition can occur either when a multiplexer is powered-down or when excessive signal levels are present: Heavy current supplied by the sensors flows into the bodies of the n-channel or p-channel MOSFETs; this current could damage the sensors.

The origin of this problem lies in the junctionisolation technique inherent in the fabrication of CMOS devices. Fig 5 shows a cross-section of typical CMOS parts. Note that the body of the n -channel device contains the p - well (usually tied to -15 V) and that the source-to-body junction is an $n+/ p-$ silicon junction that looks like a reverse-biased diode under no-fault operation. Specifically, the $n+$ source is $=+15 \mathrm{~V}$ and $2-15 \mathrm{~V}$ when the $\mathrm{p}-$ well is tied to -15 V . When the -15 V level is off, the p-well rides at ground potential, and the source might be forward-biased into the body. The only limits on current flow are the maximum current that the sensor can deliver and the bulk resistance of the substrate. A similar situation occurs in the p-channel device, at the source/body pn junction.

A common technique to prevent this excessive

Fig 5-Power-down or overvoltage faults forward-bias the n-channel source/p-well junction and the p-channel source/n-epi junction.
(a)

Fig 6-A series structure protects against power-down and overvoltage faults.
current flow from the sensor into the MOSFETs' bodies is to add diodes to the multiplexer supply lines, as shown in Fig 4d. Addition of these diodes reduces the signal-handling level to +14 V (with $\pm 15 \mathrm{~V}$ supplies). But this factor is somewhat academic because most operational amplifiers have maximum input levels below $\pm 14 \mathrm{~V}$ (see the follower op amp in Figs 1 or 2).

Better protection with a new structure

Another family of CMOS multiplexers (Intersil's IH5108 and IH5208), slated for introduction early this year, features an improved faultprotection structure. These devices have a series combination of n - and p-channel MOSFETs instead of the parallel arrangement found in more conventional devices.
The new structures' output-channel configuration is shown in Fig 6a. The series-connected n -channel devices are located on either side of the p-channel MOSFET. The IH5108/5208 IC's

series-oriented design produces the following electrical characteristics:

- When the $\pm 15 \mathrm{~V}$ multiplexer power is off, all channels are OFF, rather than being ON as occurs in the parallel output stage in Fig 4.
- No current is drawn from the sensors-only leakage current is present.
- All channels remain OFF and draw only leakage currents for $\pm 25 \mathrm{~V}$ overvoltage inputs, regardless of whether multiplexer power is on or off.
Figs $\mathbf{6 b}$ and $\mathbf{6 c}$ show two fault conditions and the performance of the series multiplexers' structure under these conditions. In Fig 6b, \mathbf{Q}_{1} is turned $O N$ by the fault condition, but Q_{2} and Q_{3} remain OFF. Q_{2} and Q_{3} share a 50 V breakdown, and the device with the lowest leakage has the highest voltage drop across it. The series structure is symmetrical, with an n-channel device on either side of the p-channel MOSFET. Reversing the 25 V polarity has no effect, because only one n-channel device will be ON with either polarity in effect; the remaining two devices will always be OFF.

The same conditions exist in Fig 6c, with the $\pm 15 \mathrm{~V}$ MUX power turned on. In this case, the gates are driven to -15 V for the n-channel devices and to +15 V for the p-channel transistor-corresponding to the OFF-channel condition. The gate drive voltages derive from the on-chip TTL translator circuitry. Again, as in Fig $6 \mathbf{b}, Q_{1}$ is turned $O N$ by the overvoltage; Q_{2} and Q_{3} are OFF and serve to stand-off the 50 V voltage drop.

7. V/F Converters

Voltage to frequency converters

Voltage-to-frequency converters in recent years have become quite popular due to their low cost and application versatility in a variety of electronic control and measurement systems. Getting down to basic definitions, a voltage-to-frequency (V/F) converter is an electronic circuit that converts an input voltage into a train of digital output pulses at a rate that is directly proportional to the input.

A V/F converter with its transfer function is illustrated in Fig. 1. An important characteristic of the transfer function is its high degree of linearity; that is, the relationship of input voltage to output pulse rate is very nearly a straight line function. Another important characteristic is that the output pulses are at levels that directly interface with standard digital logic circuits such as DTL, TTL and CMOS.

Not many years ago, V/F converters were infrequently used rack-mounted instruments, both bulky and expensive. About five years ago they first became available as low-cost modular devices that were easy to use and had excellent linearity and stability characteristics. As a result, the application of V / F converters increased rapidly.

A more recent development has been the introduction of monolithic V/F converters: miniature low-cost devices. Fig. 2 shows examples of both modular and monolithic highperformance V/F converters.
How and why V/F converters are used

The important feature of V / F converters is that they convert analog signals into digital form: a train of serial pulses. Since the output data is in digital form, generally at TTL compatible voltage levels, the analog input has been converted into a noise-immune
output that can be transmitted over considerable distances. The transmission can be accomplished by a twisted pair cable or coaxial cable.

Fig. 3 illustrates a common application of V/F converters where the output of a transducer is locally amplified and then converted to a digital pulse train by the V/F. This pulse train is sent to a central location where the data is recorded and processed. In Fig. 3(a) the pulses are counted over a fixed period of time by a digital counter. The output can then be converted to hard copy by a digital printer. Fig.

3(b) shows the analog data reconstructed by the use of a frequency-to-voltage (F / V) converter. Back in analog form, the data can be recorded on an analog chart recorder.

A common application is to transmit temperature or pressure data from an industrial process in this manner. The only restriction on the analog data to be transmitted is that it not change too rapidly for the V/F converter to follow.

V/F as an A/D converter

A V/F converter is actually the front end of an analog-to-digital
(A/D) converter. A/D converters change an analog input voltage into an equivalent parallel digital output code word for computer processing. Since a V/F converter changes the analog input into a train of pulses, it is only necessary to convert the pulse train into a parallel digital code word. This is done by counting the pulses for a fixed period of time, as illustrated in Fig. 4.

Fig. 4 shows a complete A/D converter with a V/F converter as the analog front end. Following the V/F is a NAND gate controlled by a precision timer which gates the pulses through to a counter. The counter counts the pulses until the timer turns them off at the gate and then holds the output as a parallel digital word. As with other A/D converters, a trigger pulse initiates a conversion by triggering the timer and resetting the counter to zero.

The timer circuit must generate a precise, stable timing pulse to control the count. For example, if the V / F converter has a full-scale pulse rate of 10 KHz and the timer circuit is set to produce a precise 0.4096 -second pulse, then the full scale output of the counter is 4096 counts: equivalent to 12 bits (2^{12}) binary resolution. The circuit of Fig. 4 is then that of a complete 12-bit A/D converter.

With a good quality V/F converter, this circuit will match the performance of many commercial 12-bit A/D converters. Its only disadvạntage is a relatively slow conversion time of 0.41 second. Nevertheless, in many control and measurement applications this speed is sufficient and the circuit has the additional advantage of excellent noise rejection at the input by virtue of its 0.41 -second signal averaging time.

To obtain faster conversion times one must use faster V / F converters.
at the analog input. V/F converters today are available in a number of full-scale frequency ranges with 10 KHz and 100 KHz being the most popular; but there are also V/F's with 1 MHz and up to 10 MHz outputs available. If, for example, a $1-\mathrm{MHz} \mathrm{V} / \mathrm{F}$ converter were used in the circuit of Fig. 4, then a 12-bit conversion could be done in just 4.096 msec , or 100 times faster than with a $10-\mathrm{KHz} \mathrm{V} / \mathrm{F}$ converter.

The A/D converter circuit shown in Fig. 4 is called a chargebalancing, or quantized feedback, A/D converter, since this is the circuit technique employed in the V/F converter. This type of A/D converter falls into the general class of integrating A / D converters, which includes methods known as single-slope, dual-slope, and tripleslope A/D converters.

Integrating A/D converters are all relatively slow devices but have two important characteristics. First, they integrate input noise to give a relatively noise immune conversion. Second, the linearity curve for these converters is a smooth one with slight curvature. This curvature, illustrated in Fig. 5, is the nonlinearity of the converter and is the maximum deviation from a straight line, expressed in percent. How V/F converters work

The charge-balancing, or quantized feedback, technique used to

Fig. 1. Ideal V/F converter and transfer function.

(a)

make a V / F converter is shown in Fig. 6. This is a unique method of realizing voltage to pulse rate conversion with a very high degree of linearity. The circuit consists of an operational integrator with a pulse generating feedback loop around it.

The circuit operates as follows. A positive input voltage causes a current to flow into the operational integrator through R_{1}. This current is integrated by the amplifier and capacitor to produce a negativegoing ramp at the output. When the ramp crosses the comparator

Fig. 4. The V/F converter used as an A / D converter.
threshold voltage at ground, the comparator output changes state and causes a pulse timing circuit to generate a narrow voltage pulse.

This pulse controls switch S_{1}, which switches from ground to a negative reference voltage for the duration of the pulse. During this time a narrow pulse of current flows out of the integrator through $\mathbf{R}_{\mathbf{2}}$. This current pulse is also integrated by the operational integrator, and causes a rapid ramp up in the output voltage for the duration of the pulse. This process is then repeated, creating a sequence of pulses that are also buffered as the output of the V / F converter.
A higher input voltage to the charge-balancing circuit causes the integrator to ramp down faster, thereby generating pulses at a higher rate from the pulse timer circuit. Likewise, a lower input voltage causes the integrator to ramp down slower and generates pulses at a lower rate than before.

The term "charge-balancing" is appropriate since the feedback loop, which is closed around the integrator, causes an average of the current pulses (through R_{2}). Each current pulse through R_{2} is a fixed charge of value: $\mathrm{Q}=\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{R}_{2}} \times \tau=\tau \mathrm{I}_{2}$ where τ is the width of the pulse.
"Quantized feedback" is a term that describes the feedback around the integrator, which is in the form of quantized current pulses rather than a continuous current. The linearity, and hence accuracy, of the V/F converter circuit depends on both the linearity of the integrator, the constant width of the pulses generated, and on the switching characteristic of S_{1}.

Calibrating a V/F converter

In applying V / F converters, optimum accuracy in a given application is desired. This is achieved by properly calibrating the converter for both zero and gain in the given application. Fig. 7 shows the connections required for a monolithic V/F converter. This
device requires a bias resistor, compensating capacitors. It has output pull-up resistor, and two provision for both an external zero

Fig. 5. Nonlinearity of charge-balancing A / D converter.

Fig. 6. Charge-balancing V/F converter circuit.

Fig. 7. Calibration of low-cost monolithic V/F converter.

adjustment and external gain adjustment. The connection shown is for a $10-\mathrm{KHz}$ full-scale output frequency with a +10 V full-scale input.
To calibrate this V/F converter, a precision voltage reference source and a frequency counter are required. Set the counter for a one-second time base and the precision voltage source to +0.01 V and adjust the zero trimming pot to give an output frequency of 10 Hz . Then set the precision voltage source to +10.000 V and adjust the gain trimming potentiometer to give an output frequency of $10,000 \mathrm{~Hz}$. Proper zero and gain calibration resuits in optimum accuracy by eliminating zero and gain errors, leaving only the nonlinearity.

Some applications of V/F converters

 REMOTE TRANSDUCER READOUT IN A HIGH NOISE ENVIRONMENTFig. 8 shows a V/F converter located at a transducer site. Because of the high electrical noise environment, a differential line driver and receiver are used to transmit the pulse data over a twisted pair line. At the readout location is a gate, timer and counter. In this case a BCD counter is used, which goes to a driver and then an LED decimal display. If the timer is set to generate pulses at desired intervals, then the display is automatically updated.

INTEGRATING A REMOTE TRANSDUCER OUTPUT

A most useful application of a V/F converter is as a zero drift digital integrator. Fig. 9 shows a V/F converter that transmits a fluid flow rate in digital form. In this application there is a difference in ground potentials between the remote location and the measurement location. Therefore an optical isolator is used to isolate between the two grounds and transmit the pulses.
At the measurement location, if the pulses are counted for fixed intervals the result is flow rate. If, however, the counter is allowed to

Fig. 9. Digital integration of transducer output.

run for a long period of time, it totalizes the pulses to give the integral of flow rate, or total flow. The V/F converter is a perfect integrator when its output is totalized. A $10-\mathrm{KHz} V / \mathrm{F}$, for example, produces one output pulse for every millivolt-second of input signal.

MULTIPLE REMOTE MONITOR

Another type of remote monitor, shown in Fig. 10, automatically scans a number of transducer outputs in sequence, transmitting the measurement results to a central location for display or recording. This is done by using an analog multiplexer in conjunction with a synchronized set of counters and a single V/F converter. An additional line is required for clock pulses to synchronize the counters at both locations.

At the remote location, the channel counter steps the multiplexer input decoder through the various channels in sequence. At the central location the clock drives a digital divider and a counter. The divider gates the pulses from the V / F converter to a BCD counter. The channel counter drives a decoder and display indicator that shows which transducer output is being displayed.
FUTURE PROGRESS IN V/F At this point, V / F converters have a bright future indeed. The advent of low-cost, high-performance monolithic units means that remote industrial monitoring with a V / F converter per transducer will be a growing application area. At the same time higher performance modular devices will find application in higher speed requirements.

Fig. 10. Multiple transducer remote monitor.

Voltage-to-frequency converters: versatility now at a low cost

Modular units that fit in your hand and go for less than \$50 are moving into low-cost instruments and systems, putting their excellent linearity and temperature stability to wider use
\square Voltage-to-frequency converters can be purchased today for one tenth the price they were going for as rack mounted instruments less than three years ago. This, together with the v-f converter's long-prized linearity and temperature stability, accounts for the heightened interest they now enjoy among systems designers.
There are other reasons as well. The converter's recent evolution into a modular component package gives it a size advantage that widens the range of applications. One such application-not to be overlooked for certain data acquisition or control functions-involves the v-f converter's capability to interface between analog and digital circuits. By the same token, high common-mode voltage isolation, ratiometric measurements, and analog-signal integration also represent fertile areas for v-f applications. It has already been put to use in instruments that include low-cost $31 / 2$-digit multimeters, high-performance digital panel meters, and hand-held probe-type digital multimeters.
While the modular component v-f converter is relatively new, the basic technique of translating a given voltage level into a frequency signal is not. Until fairly recently, however, v-f converters have been available
only in the form of rather expensive instruments.
A v-f converter accepts an analog voltage or current input and generates an output train of digital pulses at a rate directly proportional to the amplitude of the input. In its most basic form [see Fig. (a) in the accompanying panel, "Converting v-to-f: three techniques"] conversion is accomplished by allowing the incoming voltage to charge a capacitor until it reaches a value equivalent to a reference voltage. At that point, a comparator triggers a monostable multivibrator which puts out a con-stant-width pulse. Other variations [panel figures (b), (c) and (d)] provide improved linearity and stability, or permit output pulses to be synchronized to a clock.
Datel Systems Inc. uses the charge-balancing technique in its v-f converters [see panel Fig. (c)]. And, by changing the connections at the external pins, the same module becomes a frequency-to-voltage converter. The $\mathrm{f}-\mathrm{v}$ connections remove the logic buffer and permit an input pulse to be delivered to the timing circuit, and voltage to be taken from the output of the op amp.

The v-f converter has as its key characteristics good linearity-typically 0.002% to 0.05% over the input-output operating range-and excellent temperature stabil-

1. Isolation. Because the v - f converter has a serial output, the pulses can be transmitted through a single optical isolator. The v-f converter
is floated at the high common-mode voltage at which the measurement is made. It is also powered by a floating and isolated supply.

ity-typically 10 to 100 parts per million per ${ }^{\circ} \mathrm{C}$ over the operating temperature range. The analog input range is 0 to +10 v or 0 to -10 v for voltage inputs and 0 to +1 mA or 0 to -1 mA for current inputs; there is an input overrange of 10%. The most popular models today are units having output pulse rates of 0 to 10 kHz and 0 to 100 kHz . The outputs are usually constant-width pulses compatible with diode-transistor, transistor-transistor, or C-MOS logic levels, permitting a direct interface with digital circuits.
On the input side, v-f converter modules take analog inputs in the -10 v to +10 v range, making them directly compatible with analog modules and ICs such as operational amplifiers, sample and holds, analog multipliers, etc. In addition, they also operate from standard $\pm 15 \mathrm{v}$ op amp power supplies drawing only a moderate amount of current. V-f converters also have provision for external trimming for precise calibration of zero-and full-scale values.

Using v-f as a-d

While the v-f module is a relatively slow way to convert a-d, the cost is low and accuracy can be high. The digital output of the converter is in serial form, and must be counted over some period to give a final conversion value in parallel form.
To get a complete digital measuring instrument, it is only necessary to precede a v-f converter with a signal conditioning circuit, such as a high input impedance amplifier, and follow it with a digital counter and display. Then, if the time base for the counter is set to one second, the actual output pulse rate of the v-f converter will be displayed. If a 10 kHz converter is used, a fullscale value of 10,000 would be displayed with a one-second time base; with a 10 -second time base a full scale value of 100,000 would be displayed, although the
2. Ratiometric measurements. One converter is used as the input $\mathrm{v}-\mathrm{f}$, a second converter is used as a reterence and is followed by a divide-by- N digital circuit. The output of the divide-by- N is used as the time base for the digital counter.
counting time would be too long for many applications.
It is useful to discuss the characteristics of v-f converters in terms of well known a-d converter specifications. For a v-f converter, conversion time is determined by the time base, one second being a convenient time base for many applications. For faster conversion time, a 0.1 second time base could be used, giving a full-scale count of 1,000 for a 10 kHz converter. With a 100 kHz converter, the full-scale count is 10,000 .

For an a-d converter, resolution is expressed in bits and is determined by the number of parts into which the full-scale range is divided. By comparison, a 10 kHz v-f converter has a resolution of 1 part in 10,000 , assuming a one-second conversion time. This is equivalent to a resolution of greater than 13 bits (1 part in 8,192). A 100 kHz converter with a one-second time base gives greater than 16 -bit resolution (1 part in 65,536).

Linearity is another important a-d converter specification. A good a-d converter has a linearity of $\pm 1 / 2$ LSB (least significant bit) over its full-scale input range. For a 10 kHz v-f converter with a typical linearity figure of 0.002%, the linearity is equivalent to that of a 14 -bit a-d converter. Therefore, a 10 kHz v-f converter, as described, has equivalent performance to at least that of a 13-bit a-d converter in both resolution and linearity.

The 100 kHz converters, while offering better resolution, have generally worse linearity than 10 kHz converters. The reason for this is that circuit parasitic time constants vary with pulse duty cycle. At high output pulse rates the small variations in pulse width with duty cycle will be proportionately more significant, thus increasing the amount of non-linearity. Therefore, the best resolution and linearity are achieved with slower pulse rates, namely the $10-\mathrm{kHz}$ converters with a $10-\mathrm{sec}-$ ond time base. These achieve better than 16-bit resolution with better than 14 bits of linearity.

A 10 -second time base is prohibitive for many applications, but is obtainable by using a sample-and-hold circuit with a long holding time. A large holding capacitor is needed to make voltage decay negligible.

Another useful way of looking at v-f converters is in terms of dynamic range. This specification is critically dependent on linearity. Some v-f converters become

3. VCO improvement. A frequency-to-voltage converter is the key to a low-cost voltage-controlled oscillator. A special feedback control loop forces the VCO output to track the superior linearity and stability of the f -v converter.
nonlinear near zero and, therefore, the dynamic range is limited. A $10-\mathrm{kHz} \mathrm{v}-\mathrm{f}$ converter that holds its linearity down to zero can be calibrated externally from an input of 1.0 millivolt to its full-scale value of 10 v . This is a dynamic range of 4 decades, or 80 db . Similarly a $100-$ kHz converter has a dynamic range of 5 decades, or 100 dB , if its linearity is maintained through zero. One mv is chosen as a practical lower limit because of drift in the zero-adjust potentiometer, long-term drift of the circuit, and noise at the input to the integrator.

V-f converters have two other significant features when considered for analog conversion. First is their monotonicity. (A monotonic a-d converter is one that has a continuously increasing output for a continuously increasing input over the full input range of the converter.) A v-f converter is naturally monotonic because its output pulse rate must increase with increasing input voltage.

Second is the excellent noise rejection inherent in using a reasonably long time base like one second. Random and periodic noise are effectively integrated over the conversion period. Periodic noise, such as a 60 Hz power pick-up, is effectively integrated when the conversion period is long compared to the 60 Hz period of 16.66 ms . For a 60 Hz noise that is integrated over an unsynchronized 1 -second measurement period, the noise rejection is approximately 46 dB ; for a 0.1 -second period the rejection is 26 dB .

Monitoring from a distance

Remote data monitoring is one application well suited to the v-f technique. Remote monitoring can be a difficult problem, especially when analog signals pass through an environment with high levels of electrical noise, as in a manufacturing facility where there is heavy equipment. If a high degree of accuracy must be maintained, analog signal transmission becomes prohibitive.

An obvious solution is to transmit the signals in dig-
ital form. This can be done by applying the analog signal to an a-d converter. The digital pulses can then be transmitted in parallel or serial format. If transmitted serially, the pulses will have to be transformed ultimately into parallel form at the receiving end for display or storage.

A superior solution in terms of cost is to use a v-f converter to transmit the data directly in serial form. This is a simple and effective way to achieve an accurate system of 10 to 13 bits resolution (0.1% to 0.01%) if the data rate is slow. At the monitoring end, the pulse train can be simply counted for a one-second period and then displayed to show the analog value. This can be done with a low-cost 4 -digit counter if a 10 kHz v -f converter is used. The cost of the v-f converter is less than half that of a good 12 -bit a-d converter.
Some instrumentation problems involve parameters that must be derived from high-voltage measurements. In these circumstances, transmission of the desired information back to normal ground-potential circuits requires some form of isolation. One answer to this is to use an isolation amplifier powered from a non-isolated supply. If the data eventually is desired in digital form, the output from the amplifier would then go to an a-d converter. The cost of an isolation amplifier and a good quality 12 -bit a-d converter (0.024% accuracy) runs around $\$ 200$.

An effective alternative is to use a v-f converter with a floating power supply while optically coupling the digital data back to ground-level circuitry. The v-f converter output is a serial pulse train and, therefore, requires only one low-cost optical isolator for a total of roughly $\$ 60$. The isolated power-supply cost must also be factored in. This can be relatively low (around $\$ 50$) if the voltage is not too high (up to $1,500 \mathrm{v}$ peak). For slow data rates this part of the system, shown in Fig. 1, is currently available for slightly over $\$ 100$.
An interesting variation that would reconstruct the original analog signal is shown dotted in Fig. 1. This
might be useful for a feedback control system. Another f-v converter hooked up to the isolator output reconstructs the signal into analog form.

Measuring the ratio

Ratiometric measurements are important for applications in which a transducer output might be affected by variations in the exciting power-supply voltage, as, for example, in a resistor bridge. This can be overcome by a measurement system that determines the ratio of transducer output to excitation voltage.

There are several ways of taking this measurement. One is simply to use a digital multimeter with ratiometric option. Such an option is usually obtainable on the more expensive models of digital multimeters, and sometimes on digital panel meters and a-d converters. But, in general, this capability is limited to high-priced models of a-d converters or digital panel meters, and the range is usually quite limited. Many models permit only a $\pm 10 \%$ variation in the reference voltage to achieve ratiometric operation; some models go up to about $\pm 50 \%$. This means that ratios with wide dynamic range cannot be measured at all by conventional means.

A simple and inexpensive way of using two v-f converters for accurate ratio measurements over a dynamic range of up to 1,000 to 1 is illustrated in Fig. 2. The resistance-bridge transducer is excited by reference voltage V_{R} which also goes to the input of v-f converter No. 2. The output of the bridge is amplified and goes to v-f converter No. 1. The resulting pulse rate is fed to a digital counter circuit. The output pulse rate of v-f No. 2 representing V_{R} is fed to a divide-by- N circuit, and the resulting pulse train is used as the time base for the counter. The parallel output of the counter drives a numerical display. Since the counting time is one half the output period of the divide-by-N circuit, the output count $=2 \mathrm{~N}_{1} / \mathrm{V}_{\mathrm{R}}$.

The value of N can be chosen so that the time base is one second or less. The table in Fig. 2 gives the results for different values of V_{1} and based on the use of a 10 kHz v -f converter with N equal to 500 . The ratio measurement can be made over a dynamic range of 1,000 to 1 while keeping the time base one second or less. If the time base is allowed to go to 10 seconds, the dynamic range can be increased to 10,000 to 1 . The time base can also be shortened by a factor of 10 by using $100-\mathrm{kHz}$ v-f converters.

Integrating analog

Accurate analog integration over a wide dynamic signal range is difficult, especially over an extended period like several minutes. The problem is drift error in the operational integrator. In the end a very expensive, lowinput current amplifier with low drift must be used along with an expensive, stable capacitor that has low leakage and low dielectric absorption. Even with the best of components, the operational integrator cannot work well when the integration period exceeds 10 minutes. A simple alternative is an analog/digital integrator using a v-f converter. The analog signal is applied to the input of a v-f converter, and the output goes to a
counter operated in the totalizing mode to give a total count equal to the time integral of the signal.

$$
\int V(t) d t=k \int f d t=k \int d N(t) d t / d t=k N
$$

where N is the tota! count and k is a constant.
Because of the superior linearity, the integration is accurate for a signal dynamic range of 10,000 to 1 . Since the output is an accumulated pulse count, there is no integrator drift as there would be with an operational integrator. Also, the counter can be stopped at any time for an indefinite period without affecting the integrated value. The limitation on the total integral is the total count capacity of the counter. Therefore, counter capacity must be based on the signal values and period of integration.
The actual integration time can be days if a counter has sufficient capacity. Assume, for example, a signal with an average value around 2 v but with occasional high peaks up to 10 v (full-scale input of the v -f converter). The output frequency of a 10 kHz converter is then 2 kHz , on average. If an 8 -decade counter is used ($99,999,999$ full scale count), the integration period can be as long as 50,000 seconds, or 13.88 hours. The counter itself can be made from low cost ICs and be operated manually or by an external logic signal.

F-v useful, too

-Applications using the counterpart to v-f converters, the $\mathrm{f}-\mathrm{v}$ converter, can include frequency measurements in flowmeters and tachometer problems in motor speed controls. Output pulse rates from these devices are used to develop an analog voltage proportional to speed or flow. The voltage, in turn, is usually fed back to regulate the process or system. The f-v converter basically is an analog pulse counter as the output voltage is linearly proportional to input rate-with excellent temperature stability. Once the pulse rate is in analog form at the $\mathrm{f}-\mathrm{v}$ converter output, other analog operations can be performed. Subtracting the output of two f-v converters gives an analog frequency difference, a quantity more difficult to obtain by other means.

Another application of the f-v converter is in stabilization and linearization of a voltage-controlled oscillator. vCOs with a high degree of linearity and low temperature coefficients are quite expensive, especially if a wide variation of output frequency is needed. Very high quality vcos use an oven-controlled inductance-capacitance element (LC) to stabilize the frequency. On the other hand, low cost vcos have only moderate linearity and temperature stability.

A low-cost vco can be combined with a low-cost f-v converter to achieve a linearity of better than 0.005% and a temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum. As shown in Fig. 3, the f-v converter is used in a feedback loop to control the vco frequency. Of course, if a pulse output is satisfactory for a system, a v-f converter could be used directly. A large proportion of vCOs, however, are used with sinusoidal outputs and, in addition, at frequencies higher than those available in v-f converters.

Converting v-to-f: three techniques

In its simplest form, Fig. (a), v-f conversion involves a current source driving a capacitor that charges linearly to a threshold voltage level determined by $\mathrm{V}_{\text {REF }}$. At this voltage level, the comparator changes state and triggers a monostable multivibrator which puts out a constant-width pulse. At the same time a switch is used to discharge the capacitor and the cycle repeats itself. If the current source is designed to be proportional to input voltage, v-f conversion takes place.

A better implementation of the ramp-threshold method in Fig. (a) is the variation shown in Fig. (b). Here an operational integrator is used with a bipolar-transistor switch across the integrating capacitor. Starting with a negative input voltage, the circuit integrates in a positive direction until the reference voltage level is reached. The comparator then trips and triggers the monostable multivibrator, while at the same time resetting the integrator to zero by means of the saturating transistor switch. The disadvantage of this circuit is that it seldom offers better than a fraction of 1% linearity.

For higher linearity, the charge-balancing method is preferred, Fig (c). Here voltage or current is fed to an operational integrator. The output of the integrator goes to a
precision pulse-timing circuit whose output drives a pulsed current source that pulls current pulses out of the summing junction of the integrator. The current pulses occur at a rate that exactly balances the positive input current to the integrator.
This technique also can be used for frequency-to-voltage conversion by opening the feedback loop at the output of the integrator and connecting the input pulses directly to the timing reference circuit, Fig. (e). In this case, the input resistor of the integrator is also connected back to the output to form a single-pole low-pass filter which averages the train of input pulses.

Still another form, the "delta-sigma" converter, Fig. (d), is used when output pulses must be synchronized to a clock. Current pulses are generated by a D flip-flop when the integrator output is high and when a clock pulse is present. Note here the assumption that a negative input current or voltage is used, and that the pulsed current source is operating in a direction opposite that of (c). Output pulses are a result of ANDing the Q output of the D flip-flop with input clbck pulses. As a result the output pulses are both proportional to the input voltage and synchronous with the clock.

Consider v/f converters for dataacquisition systems. They offer high resolution and accuracy when used as analog-to-digital converters.

Examine the performance specifications of voltage-to-frequency converters before you pick an analog-to-digital converter for your application. Three relatively inexpensive (under $\$ 100$) meth-ods--the successive-approximation, dual-slope and voltage-to-frequency conversion schemes-can deliver equal accuracy, but each is used best in a different application (Table 1).

Look at the key converter specifications (Table 2) to evaluate the performance of v / f converters compared to the two other methods. Some of the most commonly specified parameters are resolution, linearity, conversion time, temperature stability and monotonicity (no missing codes).

V/f conversion: an alternative a/d method

Seldom used until a few years ago, v/f conversion techniques are rapidly becoming popular as an alternative to successive-approximation or dual-slope techniques. There are several ways to build a v / f conversion circuit, but the chargebalancing method (Fig. 1a) is the most popular.

If V_{i} is positive, the integrator output ramps down until its output voltage V_{1}, crosses the comparator's threshold (ground, in this case) and causes the comparator to change state. The transition, in turn, triggers a precision timing circuit that delivers a constant-width pulse. The pulse gets fed to two places: a buffer circuit that then feeds the output; and the integrator, where the pulse causes the integrator output to rapidly ramp up (Fig. 1b).

The timing circuit is, in effect, a precision one-shot multivibrator that is stable with both time and temperature. The reference current, $I_{r e f}$, must also be stable, and a precision regulator with a voltage reference source is included for that purpose.

Since the reference current is pulled from the integrator summing junction for a fixed amount of time, and at intervals determined by the input voltage, the positive-input current feed-
ing the integrator balances the current pulses being pulled out. The integrator can be made extremely linear and, when combined with the charge-balancing feedback loop, can achieve nonlinearities as low as 0.005%.

To form an a / d converter with the v / f technique, the output of the v / f circuit must feed a counter that is gated for the desired maximum count (for a converter with a $10-\mathrm{kHz}$ output, a four-digit BCD counter or a four-stage binary counter can be used).

Nail down the definitions first

Before you start comparing specifications, make sure the specs are defined. Resolution tells you the smallest quantity the converter can distinguish. Even though the quantity is usually an analog voltage the resolution is given in terms of bits: $8,10,12$ or more.

The usable resolution of a converter can be less than the stated resolution. However, because it's a function of linearity and stability, the usable resolution can often change with time and temperature.
In the v / f form of an a/d converter, the resolution is determined by the full-scale frequency, the time base and the capacity of the counter used (Fig. 2). If a $10-\mathrm{kHz} \mathrm{v} / \mathrm{f}$ converter is used with a time base of 1 second and four decade counters, its resolution is one part in 10,000 , or four binary-coded decimal (BCD) digits. Successiveapproximation or dual-slope converters with straight binary coding would have to deliver a digital output of at least 13 bits to come close (13 bits $=1$ part in 8192). A $v /$ f-based a / d converter can also deliver straight binary. To make a 12 -bit unit, use three 4 -bit binary counters and set the time base equal to 0.4096 seconds.

In dual-slope converters, resolution is also a function of integration time, clock frequency and counter capacity. Successive-approximation units use weighted current sources, and the number of sources determines the resolution. The higher the number of bits, the harder it becomes to maintain the linearity of the weighted sources.

Table 1. Typical converter applications

A/d converter type	Common applications
Successive approximation	High-speed data-acquisition systems Pulse-code-modulation systems Waveform sampling \& digitizing Automatic test systems Digital process control systems
Dual slope	Digital multimeters Digital panel meters Laboratory measurements Slow-speed data-acquisition systems Monitoring systems Ratiometric measurements Measurements in high-noise environments
Voltage to frequency	Digital multimeters Digital panel meters Remote data transmission Totalizing measurements Measurements in high-noise environments High-voltage isolation measurements Ratiometric measurements

Table 2. Comparison of a/d converter types

Specification	Successive approximation	Dual slope	Voltage to frequency
Resolution	12 bits	12 bits	12 bits
Missing codes	none by careful design	none, inherent	none, inherent
Nonlinearity	$\pm 0.012 \%$ max.	± 0.05 to 0.01% max.	$\pm 0.005 \%$ max.
Diff. nonlinearity	$\pm 1 / 2 \mathrm{LSB}$	10 to $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	≈ 0
Tempco	10 to $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	5 to 77 ms	
Conversion time	2 to $50 \mu \mathrm{~s}$		
Noise rejection, 60 Hz	None	40 to 60 dB	10 to $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

*For 0.41-s conversion time.

Linearity is the acid test of any a/d converter specification since resolution can be unusable if linearity error doesn't hold to less than ± 0.5 LSB (1 LSB at the worst). At a fixed temperature, linearity is the only error that remains after offset and gain errors have been adjusted out.

The linearity error of a converter is the maximum deviation of the output values from a straight line drawn from zero to the maximum output. For 12 -bit a/d converters a "good-quality," successive-approximation unit has a non-
linearity of about $\pm 0.012 \%$. a dual-slope unit about ± 0.05 to $\pm 0.01 \%$ and a v/f converter about ± 0.01 to $\pm 0.005 \%$.

The nonlinearity characteristic of successiveapproximation converters differs fundamentally from that of the dual-slope or v / f. Typical nonlinearity curves are shown (slightly exaggerated) in Fig. 3.

Both the v/f and dual-slope converter linearity characteristics tend to have a bow that is caused by the operational integrators used in the con-

1. The basic charge balancing \mathbf{v} / \mathbf{f} converter (a) uses an operational integrator with a precision timing circuit con-

* OR 0.4096 SEC WHEN USED WITH BINARY COUNTERS

2. By using a v / f converter and a precision timer, you can build an a/d converter that delivers a BCD output.

3. Nonlinearities of v / f and dual-slope a / d converters appear as a slight bow in the curve. However, succes-sive-approximation nonlinearities make the curve jagged.

nected in a feedback loop. The output pulse width (b) is proportional to the charge stored in the capacitor.
verters. By contrast, the successive-approximation converter's linearity is determined by the major-carry transitions of the weighted current sources. These points are located chiefly where $1 / 2$ and $1 / 4$-scale current values are switched in or out during the conversion process.

As shown in the graph of Fig. 3, a jump in the curve signifies when a major-carry current value is slightly off its correct value. A very linear converter restricts these jumps to very small amounts ($\pm 0.012 \%$ for a 12 -bit converter).

Don't let the converter slow you down

The v / f converter takes the longest to do a complete conversion. The time base used in Fig. 1 is 1 second for a single conversion-rather slow for most applications. Dual-slope converters are faster, with conversion times ranging from 5 ms to 100 ms .

Successive-approximation converters are the fastest of the three, with conversion times as short as 2μ s for 12 -bits. Most successive-approximation converters have conversion times between 3.5 and $50 \mu \mathrm{~s}$.

However, if time isn't a problem, you can increase the time base to 10 seconds, add another decade counter and, voila: a converter with a resolution of one part in 100,000 . Such a long conversion time could cause difficulty in many applications. And, the linearity of the 10 kHz unit would not be commensurate ($\pm 1 / 2 \mathrm{LSB}$) with the increased resolution.

Since the time for conversion can be made equal to the inverse of the line-voltage frequency, the dual-slope converter can be designed to reject much of the noise caused by the power line. The integrating technique used by dual-slope and v / f converters gives them the ability to reject

Successive approximation and dual slope conversion methods

The successive-approximation approach is the most widely used (Fig. A) of the three most popular conversion schemes. It compares the output of an internal d/a converter against the input signal, one bit at a time. Therefore, N fixed time periods are needed to deliver an output N bits long, but the total time needed is independent of input-voltage value.

The first step after the start pulse in a successiveapproximation conversion cycle is turning on the MSB, which sets the d/a converter's output at halfscale (Fig. B). This analog signal is then fed back to the comparator. The MSB is left on if the d/a converter's output is smaller than the analog input, and turned off if the output is larger.

Next, the second bit is turned on, and the quar-ter-scale value added to the d / a converter output and the comparator again does its job. This process continues until the LSB has been tested and the final comparison made. When the process is complete, the converter signals this by changing the state of its end-of-conversion (status) output. The final digital output can then be read from the output of the successive-approximation register of the converter.

Successive-approximation converters can achieve conversion speeds of $100 \mathrm{~ns} /$ bit in medium-priced
($\$ 250$ to $\$ 350$) 8 and 10 -bit units. Converters with 12 -bit outputs are typically available with conversion times ranging from 2 to $50 \mu \mathrm{~s}$.

Dual-slope units slow the pace

The dual-slope converter uses a simple counter to indirectly measure the input signal after an operational integrator converts a voltage into a time period (Fig. C). This scheme is the second most commonly employed method and is used, almost exclusively, in such instruments as digital multimeters and panel meters.

The conversion cycle begins when the analoginput signal is switched to the input of the operational integrator. The voltage is integrated (Fig. D) for a fixed time period determined by the clock frequency and the counter size. At the end of the period, the integrator input is switched to an internal reference whose polarity is opposite that of the original analog input. The reference is then integrated until the output reaches zero and triggers the comparator.

During the second integration, the clock is gated into a counter chain that accumulates the count until the comparator inhibits the clock. When the clock signal stops, the conversion is complete.

high levels of input noise.
For these two integrating converters, the longer the signal is integrated, the better the noise attenuation. When the integration period equals a multiple of the inverse of the line frequency (for dual-slope units), the noise rejection becomes infinite at integral values Tf_{n}, where T is the integration period and f_{v} is the noise frequency (Fig. 4). V/f converters don't, in general, use a period that is a multiple of any periodic noise, and so the asymptote of the noise-rejection curve is used to determine the rejection at a given Tf_{n}.
The v/f converter's noise-rejection asymptote rises by 20 dB per decade, and, for a $60-\mathrm{Hz}$ power

4. Integrating a/d converters can have exceptional noiserejection capability if you merely adjust their measurement cycle to equal the period (or a multiple) of the noise frequency to be rejected.

5. Simple digital measuring systems can be built with dual-slope (a) and successive-approximation (b) converters. Both systems shown usually require signal conditioning for each input.
line and a 0.41 -s conversion time, the rejection can be computed at 33.8 dB . Dual-slope converters have rejection ratios as high as 60 dB when conversion is synchronized with the noise frequency.

Successive-approximation converters have no noise-rejection capability whatsoever. Input noise at any time during the conversion process can cause significant conversion errors. (Noise feeds directly to the comparator and can change the decision point.) The only way to minimize noise is to add an input noise filter to the converter.

Temperature coefficients change converter specs

Operation at different temperatures can tremendously alter converter performance, no matter which converter type you select. These changes affect offset and gain, two important converter parameters. Even though offset and gain are adjusted during calibration, they can change significantly with temperature.

Offset is a function of current-source leakage, comparator bias current and comparator input voltage offset. Gain (sometimes called scale factor) is a function of the voltage reference, resistor tracking and semiconductor-junction matching-and is usually the most difficult parameter to control. Absolute accuracy is affected by offset and gain changes, so if these change during operation, output errors will occur.

And, if the linearity degrades, a converter can actually skip output codes (become nonmonotonic). (An a/d converter is said to have no missing codes when, as the analog input of the converter increases from zero to full scale or viceversa, the digital output passes through all of its possib'e states.) Both the dual-slope and v/f converters are inherently monotonic because of their integration techniques and the use of counting circuits to deliver the digital output.

The successive-approximation a / d converter, on the other hand, is more prone to missing codes. The code jumps occur when the analog transitions between adjacent output codes become greater than 1 LSB. Because the jumps can be greater than 1 LSB , another spec differential nonlinearity, becomes very important. Differential nonlinearity is defined as the maximum deviation of the size of any adjacent code transitions from their ideal value of 1 LSB.

A specified differential nonlinearity of ± 0.5 LSB tells you that the magnitude of every code transition is $1 \mathrm{LSB} \pm 0.5 \mathrm{LSB}$, maximum. The differential nonlinearity can reach a maximum of $\pm 1 \mathrm{LSB}$ before converter performance is in doubt.

Picking the right converter for your application is no easy matter. For example, digital multimeters typically use a dual-slope converter since high speed isn't necessary but high noise rejec-

6. V / f converters can be used in simple, remote data. gathering applications since only a twisted pair of wires is needed to transmit the signals (a). Differential line drivers can be added if long transmission distances are requireل (b), or an opto-isolator can be used to eliminate large, common-mode voltage problems (c).

7. A microprocessor or computer-based controller can be used to make a multiple-channel data-collection system with a v/f converter at each point (a). If manual switches are used instead of a timer, you can turn a v / f-based a/d converter into an "infinite" integrator (b).

8. The integration process in a \mathbf{v} / f converter can be de fined in terms of millivolt-seconds for each pulse de livered. To get the total area, simply multiply the total count by 0.001 .

9. If you use two v/f converters, you can make a highaccuracy, ratiometric a/d converter. Because of the wide frequency span covered, the dynamic range of the converter can reach 10,000:1.
tion is. However, in other applications, such as in fast-throughput data acquisition, the succes-sive-approximation converter must be used.

Dual-slope converters are widely used in applications requiring human interface in measurement and control. A simple digital measurement system (Fig. 5a) that uses a 3-1 2 digit, BCDoutput converter can handle various signal inputs. The instrumentation amplifier used on the front end offers flexible gain settings with a single resistor value change.

The converter can be either a modular unit manufactured by several vendors or one made from the various IC building blocks. In many industrial and even in some lab environments, pickup from $60-\mathrm{Hz}$ radiation or magnetic coupling can cause measurement problems. By including a conversion time adjustment, you can synchronize the clock to the $60-\mathrm{Hz}$ line and obtain noise rejection of more than 40 dB .
When multiple channels of data must be handled and you need all the data quickly, use the speedy successive-approximation converter. The circuit shown in Fig. 5b is a commonly used system organization for multichannel data acquisition. Although various analog-input devices
might be slow in responding-and not require a fast a d converter-the fast scanning rate of the multiplexer may require a new conversion every 2 to $30 \mu \mathrm{~s}$. Because of the speed requirement, the a d converter can be an expensive part of the system-costing between $\$ 100$ and $\$ 300$ by itself.

You do have an alternative to sending analog signals over long cables to a central multiplexer. Instead of using a successive-approximation unit split the converter into an analog front end (a v f converter) and the digital receiving end (the timing and counting circuits) as in Fig. 6a.

To get even better noise immunity, you can use several simple circuits to manipulate digital levels. Cable runs of several thousand feet are possible if you let the v f circuit feed a differential line driver that, in turn, feeds a twisted pair terminated in a receiver (Fig. 6b). When electrical isolation is critical, use optocouplers to separate the transducer output from the long lines (Fig. 6c). This is especially important if large ground potential differences are present.

Other converter-system variations are possible. You can design a multichannel data-acquisition system to operate under microprocessor control with a minimum of hardware (Fig. 7a). Simple totalizing a d converters can be built by using manual start stop and reset switches (Fig. 7b).

Drift-free integration is only one bonus

Unlike analog integrators that must use "super high quality" components when the integration period extends past several minutes, the v f integrator uses inexpensive components and can even hold its value indefinitely.

A $10-\mathrm{kHz}$ v f converter delivers a pulse every 0.1 ms if the input is 10 V , or a pulse every 1 ms if the input drops to 1 V . You can manipulate these facts and say that the converter generates an output pulse for every millivolt-second of input signal. The output-pulse count then represents a piece-by-piece addition of input voltage ${ }^{\prime}$ time area (Fig. 8). The integral of the signal with time is the total count multiplied by 0.001 volt-seconds.

You can put together a ratiometric a/d converter (Fig. 9) by combining two v / f converters and a divide chain. Input V_{1} acts as the numerator and V_{2} as the denominator, while the divide chain acts as a scale factor.

S:nce the gating pulse is half the output period, N , of the divider circuit, the counter output is

Count $=2 \mathrm{NV}_{1} / \mathrm{V}_{2}$.
If you use $10-\mathrm{kHz}$ v f converters, the time base period is no longer than 1 second for ratios of up to 1000 to 1 . Unlike other ratio-measurement methods that have rather limited dynamic ranges, using two v / f converters permits a possible dynamic range of 10,000 to 1 .

Sending transducer signals over 100 feet?

Try voltage-to-frequency converters. They should give you the accuracy you need.

A common problem confronting system and instrument engineers is the measurement of low level transducer analog output signals after transmission over long wires (100 ft or more). Fortunately, the problems can be resolved by both traditional and newer, less known methods. The need for the remote monitoring of signals can be for many reasons such as safety, due to potential hazards at the actual monitoring site, for temporary test setups at a nearby remote position, and of course, for normal control applications and systems.

Remote monitoring can be a difficult problem, especially when analog signals pass through an environment with high levels of electrical noise, as in a manufacturing facility where there is heavy electrical equipment. If a high degree of accuracy must be maintained, analog signal transmission becomes especially prohibitive beyond a few hundred feet.

One obvious solution to the noise problem would be to transmit the signals in digital form. This can be done by applying the analog signal to an analog-to-digital (A / D) converter. The digital pulses can then be transmitted in either parallel or serial format. If transmitted serially, the pulses may have to be transformed ultimately into parallel form at the receiving end for display or storage.

A better solution, in terms of cost, is to use a voltage-to-frequency (v / F) converter to transmit the transducer data directly in serial form. This is a simple and effective way to achieve an accurate system of 10 to 13 bits resolution $(0.1 \%$ to $0.01 \%)$ if the data rate is slow. At the receiving end, the pulse train can be simply counted for a 1 second period or less and then displayed to show the analog value. While this may be the "best approach" for many applications, direct analog signal processing using instrumentation amplifiers is far from extinct.

Here then are some important points, suggestions, and applications to aid in selecting the most effective method for your needs using commercially available

Fig. 1: Here is a typical transducer bridge circuit (a) and its equivalent circuit (b). The variable resistor, X, is the actual monitoring transducer in the bridge.

Fig. 2: This is the plot of a bridge transducer error voltage, $e_{2}-e_{1}$ vs. the variable leg resistance, X. Plot shows that there is excellent linearity between R and 5R for this transducer, meaning that the transducer is good for monitoring applications in the linear portion.

Fig. 3: Simple sketch of instrumentation amplifier illustrates the input and output signals. The resistor, Rg, is used to adjust the instrumentation amplifier's gain.
modular building blocks driven by transducers. So let's start at the beginning, with the transducers.

Transducer signal source

Transducers often take the form of a Wheatstone bridge as shown in Fig. 1. With the advantages of high null resolution and means for temperature compensating, the bridge has the ability to measure a minute voltage differential appearing across it in the presence of significantly larger excitation and noise voltages. In other words, the output is differential:

$$
e_{2}-e_{1}=\frac{V e x c}{2}-V e x c \quad\left(\frac{R}{X+R}\right)=\frac{V e x c}{2}\left(\frac{X-R}{X+R}\right)
$$

where Vexc is the bridge excitation voltage and X is the variable resistor branch.

The resistor X might be a strain gage element or a resistive thermal device (RTD^{1}) which changes in a nearlinear manner with temperature. We will use the latter as the X element in the Wheatstone bridge plot in Fig. 2. Note the excellent linearity between the values $X=$ R through $X=5 R$. A commercially available platinum RTD 1 with suitable linearity exhibits nominal 100 ohm resistance at $0^{\circ} \mathrm{C}$ and a temperature coefficient of +0.392 ohms $/{ }^{\circ} \mathrm{C}$; the output of a 100 ohm bridge between $0^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ using this device is shown in Table 1. With only millivolts of output, this circuit will serve as a signal to be measured over long lines.

Amplify first

To be useful, the millivolt-level differential output of the bridge must usually be amplified to levels well above ambient noise. Specifically designed for this task, the instrumentation amplifier (IA) in Fig. 3 will boost the differential bridge output by 1000 times or more. The actual gain is a function of the values selected for the external gain setting resistor, Rg. This resistor enables the user to set the full scale output to a convenient value. It is possible to use a variable resistor here for final trimming.

Another benefit of the instrumentation amplifier is that it amplifies on the difference in voltage between the signal and signal-return leads. Interference signals on both leads in the same phase are not amplified. This is known as common-mode rejection (CMR) and is the principal advantage of using these amplifiers. It is this property that enables the amplifier to ignore ground loop voltages due, for example, to the long wires while responding to differential signals as mentioned above for transducer outputs.

The rid measurement system, shown in Fig. 4 illustrates the need for shielding and bypassing techniques to minimize rFi (radio frequency interference) and line frequency $(60 \mathrm{~Hz})$ interference. The need to keep the bridge/amplifier ensemble in close proximity to one another, to bypass the amplifier power supply input terminals at the amplifier socket and to return the shield to the single point input reference ground are crucial to the success of this system.

Fig. 5 shows an ia transmitting its output, the amplified bridge signal, over long wires to a monitoring instrument. It is a fairly common practice to use twisted and often shielded pairs of wires. Unfortunately, the capacitive effect of these wires degrades the amplifier's frequency response, and encourages undesirable oscillation. In other words, this can distort the desired information being transmitted.

Permissible capacitive output loading of the instrumentation amplifier will vary from supplier-to-supplier; typically this will range from 300 to $10,000 \mathrm{pF}$ (picofarads). Shielded twisted pairs of wire may have 25 pF of capacitance per foot. So, in a 100 ft . run, equivalent capacitance would be 2500 pF . This is certainly not a limiting factor, but it is one that must be seriously considered, especially when faced with longer telemetry distances.

A small series resistance, on the order of 50 ohms to

200 ohms, can be placed in the amplifier output to maintain stability with capacitive loading. Series resistance incurred with shielded twisted pairs of wire, (or any good transmission line) is negligible; a practical value is 50 ohms per mile, roughly 1 ohm per 100 ft .

You can see that direct analog measurement approach is vulnerable to all forms of electrical noisemfi, emi and power line interference. Further, capacitive loading can create amplifier instability and the long lines, which can act as antennas, will themselves induce undesired extraneous signals.

Finally, the amplifier can be scaled higher in order to boost desired signals to the level of volts, improving CMR capability while reducing the amplifier frequency response. But this can be an advantage in low fre.quency because high frequency noise will be partially filtered.

Fig. 6: With the addition of a V/F converter, transducer bridge output can be sent over greater distances. A low
priced DPM will display the information through the addition of a divider and a AND gate.

Digital or analog readout?

Acknowledging that "moving pointer" readouts (or analog meters) cost less, some features of the digital panel meter (DPM) can far outweigh the analog meters:

- The dPM provides unambiguous readings with up to 0.01% resolution, with no guessing.
- The dpm presents a high input impedance to its signal source, making long line measurements less of a chore.
- Many DPM's can be manipulated by digital signals to perform a surprising array of tasks.

In its simplest form, the DPM uses the single slope conversion method. It is, in fact, nothing more than a "dumb" counter which can be made "smart" by externally controlling the interval over which pulses are counted. This feature allows the dPM to perform like a frequency meter. (See right hand portion of Fig. 6.) This method can serve as a basis for digital transmission of analog data. But first, why should we transmit digitally?

Digital vs. analog data transmission

The wide noise margin and the relatively large amplitude of logic levels make digital transmission highly
immune to the effects of noise. For example, millivoltlevel analog signals can be represented by transistortransistor logic (TTL) digital signals that vary between 0 to 0.8 volts for zero levels and 2.4 to 5.0 volts for one logic levels. Commercially available \mathbf{v} / \mathbf{F} converters can produce this type of output in the form of a digital pulse train with a rate proportional to the analog input amplitude (voltage).
Most v / F 's have a 0 to 10 volt full-scale analog input and they output either 0 to 10 kHz or 0 to 100 kHz digital pulse trains. The 10 kHz full-scale units are very popular because of their extremely good linearity (accuracy) performance. Linearity for the 10 kHz full scale (F.S.) units is $\pm 0.005 \%$ or $\pm 1 / 2 \mathrm{~Hz}$. Thus, if 5 volts are applied to the input, the output pulse train will be a 5 $\mathrm{kHz} \pm 1 / 2 \mathrm{~Hz}$ rate, which is very accurate. For simple systems, the hook-up is not very difficult. It can often be "cook booked" from literature readily available from the module manufacturers.
To recap briefly, the information from the transducer is amplified to a high level ($1-10$ volts); it is then used to drive the input of the v / F converter. The output of the converter is then transmitted via wires to an indicator, which is most commonly a DPM.

Fig. 7: A F/V converter is added to the system in Fig. 6. This addition presents an analog signal to the DPM, eliminating the need for a divider or AND gate. It also
makes analog control signals available for other applications.

While it is not intended to be covered here, if you had long wire runs of several hundred feet and more, you should use a differential line driver to drive the twisted pair. Then, at the other end of the line, you would use a differential line receiver to feed the digital counter.

Mating the V/F to the frequency meter

Fig. 6 shows the entire signal processing system using an instrumentation amplifier to amplify and scale the transducer output, a v / F converter to time encode and digitally transmit the amplified analog signal, and a dPM to present a properly scaled numerical display of the transducer voltage (temperature). This circuit features a 2.4 volt noise threshold. Over long distances it is advisable to include a line driver at the \mathbf{v} / F converter output and a line receiver at the corresponding and gate input; these drivers minimize the edge-rounding that can be caused by capacitive storage in a system.

Another approach-somewhat more complexpresents a dPM with an analog input signal in the manner shown in Fig. 7. Here, a v / F converter drives an F / v converter (the \mathbf{v} / F counterpart) over long lines and the F/v drives the analog inputs of the DPM. This circuit rejects up to 1.8 volts of noise and is recommended for applications where the conditioned analog signal, the dPM input, must also be available for other system functions.

Other applications using the F / v converter can include frequency measurements in flow meters and tachometer problems in motor speed controls. Output pulse rates for these devices are used to develop an ana\log voltage proportional to speed or flow. The voltage, in turn, can be fed back to regulate the process or system. Basically, the F / v converter is a temperature stable analog pulse counter with an output voltage that is proportional to input rate. Once the pulse rate is in analog form at the F / v converter output, other analog operations can be performed.

Because the \mathbf{v} / F converters perform integration, they actively reject time varying signals that are symmetrical about zero. This feature provides even higher noise immunity in system applications.

All the components mentioned are readily available products that can be obtained from numerous sources in a variety of forms, performance levels and prices. Further, applications assistance and notes are offered by most manufacturers to help you with your requirements.

Frequency converter is a dual operator

Voltage-to-frequency converters are analog/digital interface devices that generate digital output pulses at a rate linearly proportional to the input voltage. Universal voltage-to-frequency converters have pin-programmable input/output features that make them extremely versatile devices for a wide variety of applications. They operate:

- As voltage-to-frequency or frequency-to-voltage converters with either positive or negative voltage or current inputs; or with either positive or negative going output pulses.
- As an F/V converter with either positive or negative output voltage. They are compatible with DTL/TTL, CMOS, or other high level logic circuits.
The key specifications of Datel's 10 kHz and 100 kHz universal V/F converters are given in Table 1. The main advantage to using a universal type of V/F converter is its flexibility. Since it is pinprogrammable, it isn't necessary to stock various models for different applications.
A typical V/F/V converter using charge balancing is shown in Fig. 1. When operating as a V/F converter, the $\mathrm{V}_{\text {ocT }}$ terminal is connected to the Pulse In terminal. Therefore, the timing reference circuit is triggered by the integrator output as it passes through a threshold level. The timing reference
circuit generates a precise, constant width pulse that is converted into a current pulse by the charge feedback circuit. The the current pulse, or charge, is pulled from the integrator input terminal. The rate of charge generation exactly balances the input current to the integrator; therefore the output pulse rate is linearly proportional to input voltage or current. The voltage pulses from the timing reference circuit are fed to a special logic buffering circuit. This circuit programs the pulse output leve! and polarity. It also short-circuit proofs the unit.
The second amplifier in the diagram is a unity gain amplifier, and is used to invert inputs when the module is used as a V/F converter or to invert outputs when used as an F/V converter. In the F/V mode, pin 26 is connected to pin 1 and the input pulses are applied to the Pulse In terminal. Thus, the 10 k input resistor at the $+\mathrm{V}_{\text {IN }}$ terminal is effectively in parallel with C and the integrating amplifier acts as a low pass filter that filters the current pulses from the charge feedback circuit. An external capacitor can be connected between the $+\mathrm{I}_{\text {IN }}$ terminal and $\mathrm{V}_{\mathrm{OUT}}$ to increase the filter's time constant. The universal V/F converter's usefulness centers around its analog/digital interfacing capability. The V / F converter is like an A/D converter with serial output pulses.

Fig. 1. The inverting amplifier shown in color switches the converter between the V/F and F/V modes. External connections also in color are used when calibrating the converter in the V/F mode. F/V calibrations are illustrated by dashed lines. Note the 10 k gain pot and the 20 k zero adjust pot are used in both calibration procedures.

TABLE I SPECIFICATIONS OF UNIVERSAL V/F CONVERTERS		
Specification	VFK-10K	VFK-100K
Input voltage Input current Input Z (voltage)	$\begin{aligned} & 0 \text { to }+10 \mathrm{v}, 0 \text { to }-10 \mathrm{v} \\ & 0 \text { to }+1 \mathrm{ma}, 0 \text { to }-1 \mathrm{ma} \\ & 10 \mathrm{k} \text { ohms } \end{aligned}$	
Frequency range Nonlinearity, max Gain Tempco, max Zero temp drift Outut pulse width	$\begin{aligned} & 0 \text { to } 10 \mathrm{kHz} \\ & \pm 0.005 \% \\ & \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \pm 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 75 \mu \mathrm{sec} \end{aligned}$	$\begin{aligned} & 0 \text { to } 100 \mathrm{kHz} \\ & \pm 0.05 \% \\ & \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \pm 10 \mu \mathrm{v} /{ }^{\circ} \mathrm{C} \\ & 7.5 \mu \mathrm{sec} \end{aligned}$
Output loading Power requirement	12 TIL loads $\pm 15 \mathrm{vdc}$ at 25 ma	
Case size	$2^{\prime \prime} \times 2^{\prime \prime} \times 0.375^{\prime \prime}$	
Price (1 to 9)	\$59	\$79

A $10 \mathrm{kHz} \mathrm{V} / \mathrm{F}$ converter has a resolution of one part in 10,000 , equivalent to a resolution of better than 13 binary bits (one part in 8192). The worst case linearity is 50 ppm , also equivalent to that of a 13 bit A/D converter. The gain temperature stability of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for the Datel VFV-10K, combined with the resolution and linearity figures, makes this unit equivalent to a high quality A / D converter. However, this is based on slow conversion rates, and is not useful where high data conversion rates are required, although somewhat faster conversion times are possible by sacrificing resolution. Alternatively, a faster unit, such as the 100 kHz converter, can be used with a 0.1 second time base to give the same resolution as the 10 k unit, but it does not have as good linearity.
The lower operating limit of these units is about 1 millivolt. This is due to the resolution of the zero adjustment, long ter'm stability, temperature drift, etc. The useful dynamic range of both the 10 kHz and 100 kHz models is $10,000: 1$, or 80 db .

Calibrating a V/F/V converter

In general, calibration is done in a manner similar to that of A / D converters with external gain and zero adjustments made by trimming potentiometers. The calibration steps for the V/F mode are as follows:

- Connect the unit as a V/F converter with zero and gain trimming potentiometers as shown in Fig. 1.
- Connect a precision voltage source to the input and a digital counter set to a one second time base to the pulse output.
- Set the precision voltage source to +10.000 V and adjust the gain trimming potentiometer to give an output count of $10,000(\mathrm{VFV}-10 \mathrm{~K})$ or 100,000 (VFV-100K).
- Set the precision voltage source to +0.010 V and adjust the zero timming potentiometer to give an output count of 10 (VFV-10K), or 100 (VFV-100K).
- Repeat the +10.000 V adjustment.

When used in the F/V conversion mode, the unit can be calibrated in the V/F converter mode and
reconnected as an F/V converter; or the module can be directly calibrated as an F/V converter using the following procedure:

- Connect the module as shown in Fig. 1 with an external $1 \mu \mathrm{f}$ (film type) integrating capacitor.
- Connect a pulse ger. srator to the pulse input and set to give +5 v negative going pulses $50 \mu \mathrm{sec}$ wide for the VFV-10K or $5 \mu \mathrm{sec}$ wide for the VFV-100K. Connect a digital counter to the output of the pulse generator and set the pulse rate to 10 kHz for the VFV-10K or 100 kHz for the VFV-100K.
- Connect a $41 / 2$ digit DVM to the voltage output terminal; adjust the gain trimming potentiometer to give +10.000 V output on the meter.
- Set the pulse generator output to 10 Hz for the VFV-10K and 100 Hz for the VFV-100K and adjust the zero trimming potentiometer to give +0.010 V output.
- Repeat the +10.000 V adjustment.

In the calibration procedure as a V/F converter, the module was shown connected as a positive input, voltage to frequency converter. By using the current input terminal, the unit becomes a positive input, current to frequency converter with a current range of 0 to 1 ma . For negative input voltages and currents, the inverting amplifier is connected ahead of the integrator. Since this amplifier has both current and voltage inputs, the ranges are 0 to -10 V for voltage and 0 to -1 ma for current.

Operating point

The Logic Select terminal (pin 12) selects the logic level used, either the 5 v levels for DTL/TTL or the 15 V levels for CMOS and high level logic. Other arbitrary logic levels between 5 V and 15 V can be obtained by leaving the Logic Select pin open and connecting an external resistor from the Pulse Out pin to ground. The outputs are summarized in Table II. For a given logic level V_{L}, the value of this resistance is derived from the equation:

$$
+V_{L}=\frac{15 R_{\mathrm{ext}}}{R_{\mathrm{ext}}+10 \mathrm{k}}
$$

TABLE IIPULSE OUTPUT PROGRAMMING			
Pulse Type	Pulse Output	Logic Select	Pulse Polarity
Positive going 5 v pulses	$\left.\begin{array}{r}+5 \\ 0\end{array}\right] \square \square$	Ground	+15v
Negative going 5 v pulses	$\begin{array}{rr}+5 & \square \\ 0 & \square\end{array}$	Ground	Open
Positive going 15 v pulses	$\left.\begin{array}{r}+15 \\ 0\end{array}\right] \square$	Open	+15v
Negative going 15 v pulses	$\begin{array}{r}+15 \\ 0 \\ \hline\end{array}$	Open	Open

Fig. 2. Output ripple characteristics of the F/F/V-10k.
where $R_{\text {ext }}$ is the external resistance between pin 10 and ground.
The Pulse Polarity terminal is connected to 15 V or left open, depending on whether the output pulse is positive going from ground or negative going from a positive level.
When used as a F/V converter, the feedback loop is opened and the input pulses are fed directly to the input of the timing reference circuit. These pulses must be negative going pulses from a high state greater than 2.0 V to a low state less than 0.8 V . The pulse width must be between 10 and 60 $\mu \mathrm{sec}$ for the VFV-10K and 1 and $6 \mu \mathrm{sec}$ for the VFV-100K. For wider pulses and other waveforms, input conditioning is necessary.

Acts as a filter

Again, in the F/V operating mode, the integrator circuit is used as a single pole, low pass filter with a time constant determined by the 10 k ohm resistor and capacitor C. The converter's output ripple magnitude (Fig. 2) depends on the input pulse rate and the value of C (Fig. 1). The capacitor values shown include an internal value of $0.047 \mu \mathrm{f}$. Increased external capacitance gives better filtering but sacrifices response time. When $C=1 \mu \mathrm{f}$, the peak to peak ripple component is 100 mV maximum with a step response time of about 22 msec .
A V/F converter can be used to transmit data to other locations with very high noise immunity. For example, information from a transducer is amplified to a high level (1 to 10 V) and is used to drive the input of the V / F converter. The converter feeds a twisted-pair cable that carries the signal through the noisy environment. At the other end of the line, a differential line receiver feeds a digital counter and display, or alternatively an F/V converter. The counter and display read out data directly.
In some cases, however, it might be desired to reconstruct the original analog signal. This is done by using an F/V converter with an appropriate external capacitor to convert the digital pulses back to the analog signal. Using differential line drivers and receivers results in very high noise immunity to common mode noise.

A universal V/F converter can be used to transmit data directly from an industrial transducer with 4 to 20 ma output current. The V/F converter differential line driver ahead of a is offset by a 2.5 V reference voltage applied to the inverting input amplifier, and the output of this amplifier is fed through a 10 k ohm resistor to the summing junction of the operational integrator and pins 1 and 2 are shorted. A 665 ohm load resistor is connected across the transducer's output. Because of the offset, a 4 ma transducer output corresponds to a zero input to the V/F converter, and a 20 ma output corresponds to a full scale input of 10 V . The digitally transmitted data from the transducer can then be read out at the other location on a digital counter and display.
The universal V/F converter has 4 inputs ($+\mathrm{A},+\mathrm{B}$, $-\mathrm{C},-\mathrm{D}$) including both the integrator and inverting amplifier inputs. If the inverting amplifier is used, it must have its output connected either to the $+\mathrm{V}_{\text {IN }}$ input or through a 10 k ohm resistor to the $+\mathrm{I}_{\text {IN }}$ input. Additional input resistors added to the $+\mathrm{I}_{\text {IN }}$ terminal result in the algebraic summation and subtraction of the input signals. The output frequency, assuming a 10 kHz model, is:

$$
\mathrm{f}=10 \mathrm{kHz}\left[\frac{\mathrm{~A}+\mathrm{B}-\mathrm{C}-\mathrm{D}}{10 \mathrm{~V}}\right]
$$

In addition to the straight summation shown, summation with gain can also be achieved. In this case, the inverting amplifier is used as a gain stage rather than as an integrator. This is done by hanging input resistors with values less than 10 k ohms on the $-I_{\text {IN }}$ terminal. Gain for a given input signal is $\mathrm{G}=-10 \mathrm{k} / \mathrm{R}$.
A number of data channels can be read out by a single digital counter and display. The counter/display, for a low cost system, is simply switched from one channel to another. Each data channel has its own V/F converter that is programmed for the particular transducer or signal used. Therefore gain, addition or subtraction, inversion, etc., can be individually accomplished for each separate information channel.

Test your V/F converter IQ

While V/F's aren't new, today's designs transform them into highly versatile, low-cost building blocks. Do you know how to use them?

A basic understanding of the operation and characteristics of the modern voltage-tofrequency converter is a must for system or circuit design engineers. Based on an old method, V/F's in modular or IC form combine latest component and design technologies into "data converters with a difference." Not only do they compete for traditional analog-to-digital interface applications with successive-approximation and dual-slope type converters, they also compete with discrete
circuits of many types for cost-effective solutions to general-purpose problems.
Unfortunately, though, V/F converters aren't widely appreciated and are often misunderstood. To correct this situation we present, as a test of skill and (hopefully) a source of inspiration, 14 multiple-choice questions based on the unit described in the box. The correct answers, along with brief discussions of the principles involved, appear elsewhere in this issue. Good luck!

Given: a typical V/F converter

Voltage-to-frequency converters generate a train of output pulses with a frequency linearly proportional to the input voltage. The input range, generally 0 to +10 V , interfaces with such analog circuits as op amps, multipliers and sample/hold amplifiers. The output, which typically has a F.S. range of 10 or 100 kHz , is DTL/TTL or CMOS compatible to interface directly with digital logic.

V/F converters list among their most important features high linearity, excellent temperature stability and low to moderate cost. When used with a precision timing circuit, gate and counter, they make a complete A/D converter with high resolution, linearity and stability, but not high speed.

Table 1 lists the key specifications of a typical commercially available V/F converter-the Datel Systems' VFV-10K.

TABLE 1 - KEY SPECIFICATIONS, VFV-10k	
INPUT VOLTAGE RANGE	0 to +10 V
INPUT OVERRANGE. MIN.	10\%
INPUT IMPEDANCE	$10 \mathrm{k} \Omega$
OUTPUT FREQUENCY	0 to 10 kHz
FREQUENCY OVERRANGE. MIN.	10\%
PULSE WIDTH	$70 \mu \mathrm{sec}$
RISE \& FALL TIMES	200 nsec
SETTLING TIME TO 0.01\%	1 PULSE AT NEW FREQUENCY
OUTPUT COMPATIBILITY	DTL/TTL OR CMOS
FULL SCALE ERROR	ADJUSTABLE TO ZERO
OFFSET ERROR	ADJUSTABLE TO ZERO
NONLINEARITY, MAX.	0.005\%
TEMPCO OF ZERO. MAX.	$\pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
TEMPCO OF GAIN, MAX.	$\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
POWER REQUIREMENT	$\pm 15 \mathrm{VDC}$ @ 25 mA

1. Which of the following circuit techniques has no relation to V/F conversion?
a. Charge dumping
b. Voltage-controlled oscillator (VCO)
c. Charge balancing
d. Variable transconductance
2. Assuming that the linearity of the V / F converter of Table 1 holds all the way down to zero input voltage (which it does), and that the input offset voltage can be accurately zeroed for an input as low as +1 mV (which it can), what dynamic range of the output frequency can be realized?
a. 60 dB
b. 66 dB
c. 80 dB
d. 100 dB
3. The V / F converter is useful for high noiseimmunity remote data transmission because:
a. It amplifies the input signal but not the noise
b. It integrates the input signal, rejecting noise
c. It transmits the data in the form of digital pulses that are relatively noise immune
d. It can be used with an optical isolator at the output for high common-mode rejection

Fig. 1
4. In the V/F converter of Fig. 1, how does the stability of capacitors C_{1} and C_{2} affect the accuracy of the converter?
a. C_{1} directly affects the accuracy but C_{2} does not
b. C_{2} directly affects the accuracy but C_{1} does not
c. Both C_{1} and C_{2} directly affect the accuracy
d. Neither C_{1} nor C_{2} directly affects accuracy

Fig. 2
5. In the V / F converter diagramımed in Fig. 2, how does the stability of capacitors C_{1} and C_{2} affect the accuracy of the converter?
a. C_{1} directly affects the accuracy but C_{2} does not
b. C_{2} directly affects the accuracy but C_{1} does not
c. Both C_{1} and C_{2} directly affect the accuracy
d. Neither C_{1} nor C_{2} directly affects accuracy

Fig. 3
Questions 6 through 9 refer to the voltage-tofrequency type A/D converter illustrated in Fig. 3. The V/F converter used is described in Table 1.
6. To make a 12 -bit binary A/D converter, we use a 12 -bit binary counter. Assuming that the V/F is calibrated to give exactly 10 kHz at F.S. $(+10 \mathrm{~V})$ input, what should be the width of the pulse from the timing circuit?
a. 0.4096 sec
b. 1.000 sec
c. $\quad 2.048 \mathrm{msec}$
d. 40.96 msec
7. To change the circuit of Fig. 3 into a 4-digit BCD A/D converter, which of the following changes must be made?
a. Change the V/F converter to a $100-\mathrm{kHz}$ unit and the counter to a 4 -decade BCD counter
b. Change the counter to a 4-decade BCD counter and the timing pulse width to 1.000 sec
c. Change the timing pulse width to 1.000 sec
d. Change the counter to a 4-decade BCD counter, and NAND gate to a NOR
8. For the 12 -bit A/D converter described in Question 6, what is the approximate linearity?
a. $\pm 1 / 10 \mathrm{LSB}$
b. $\pm 1 / 4$ LSB
c. $\pm 1 / 2$ LSB
d. ± 1 LSB
9. Voltage-to-frequency A / D converters possess good noise rejection characteristics since they average the input signal during the conversion time. Assuming a $1.0-\mathrm{sec}$ conversion time (or counting time) for this type converter, what is its noise rejection for $60-\mathrm{Hz}$ input noise?
a. 26 dB
b. 33.8 dB
c. 35.6 dB
d. 41.6 dB
10. Which of the following is an advantage of the successive approximation A/D converter over the voltage-to-frequency A / D converter?
a. Noise rejection
b. Inherent monotonicity (no missing codes)
c. Excellent temperature stability
d. None of the above
11. Differential nonlinearity for an A/D converter is defined as the maximum deviation of any bit size from its theoretical value of 1 LSB over the full conversion range. Since a voltage-tofrequency•A/D converter has a smooth, bow-type linearity characteristic, its differential nonlinearity is approximately:
a. Zero
b. $\pm 1 / 2$ LSB
c. ± 1 LSB
d. Cannot be determined

12. One of the applications for a V/F converter is a voltage-controlled oscillator (VCO) with either pulse- or square-wave output (Fig. 4). How does the V/F converter basically differ from a VCO?
a. The V/F converter is linear over its full operating range and the linearity holds down to zero
b. The V / F converter is smaller and cheaper
c. The V/F converter has a pulse output, whereas a VCO has a sine-wave output
d. No difference
13. Which of the following characteristics do voltage-to-frequency and dual-slope A/D converters have in common?
a. Excellent noise rejection
b. Inherent monotonicity (no missing codes)
c. Slow conversion time
d. All of the above

Fig. 5
14. Fig. 5 shows a pulsed sine wave with a peak-to-peak amplitude of 8 V . This waveiorm is squared by an analog multiplier and then integrated by applying it to a $10-\mathrm{kHz} \mathrm{V}^{\prime} / \mathrm{F}$ converter and counting output pulses for a specified period of time. If the capacity of the counter is 10 BCD digits, what is the length of time over which the waveform can be integrated?
a. 6944.4 hrs .
b. 3472.2 hrs .
c. 2777.7 hrs .
d. 1000 hrs .11

Presenting: the answers to our quiz on V/F converters

To ace this exam you need more than just a passing familiarity with V/F's. Our explanations should help clear up any misconceptions.

Fourteen questions do not an expert make. But if you've answered all of our queries correctly, consider yourself very well versed on at least the basics of V / F converters. (An average score is 6-8 correct.) This quiz, combined with a careful reading of the reference articles, should give you an excellent grasp of the subject.

Our comments to the questions follow.

1. Variable transconductance is a circuit technique used for analog multiplication, division and other nonlinear functions. It has no relation to V/F conversion.
2. The analog input range is 1 mV to 10 V ; the corresponding output frequency range, 1 Hz to 10 kHz . This represents a dynamic range of $10,000: 1$ or 80 dB .
3. Although \mathbf{b} and \mathbf{d} are true statements, they do not explain the V/F's high noise immunity in the transmission of remote data. Rather, the reason for \mathbf{c} is that the analog information is converted
into a digital pulse train, which has relatively high noise immunity compared to an analog signal.
4. Fig. 1 diagrams a charge-balancing V/F converter. C_{1} determines the amplitude of voltage transition at the integrator output but does not affect the accuracy of the output pulse frequency. C_{2} directly affects accuracy because the average current pulled out of the integrator's summing junction is directly determined by the width of the pulse from the one shot.
5. A charge-dumping V / F is shown in Fig. 2. Here C_{1} directly affects accuracy since it determines how fast the output of the integrator gets to the trip point of the comparator. C_{2}, on the other hand, merely sets the output pulse width and has no effect on accuracy.
6. A 12-bit binary A/D converter has a total of 4096 output states. Therefore, the pulse width must be 0.4096 sec to produce this number of states from a $10-\mathrm{kHz}$ pulse rate.
7. The 4-decade $B C D$ converter has 10,000 output states, so it needs a $1.000-\mathrm{sec}$ timing pulse width and a 4-decade BCD counter.
8. The V/F converter used has a nonlinearity of 0.005% max. that corresponds to about $1 / 4$ LSB out of 12 bits (1 LSB in 12 bits is 0.024%).
9. Noise rejection of an averaging type A / D converter is $20 \log 2 \mathrm{Tf}_{\mathrm{n}}$, where T is the averaging or conversion time and f_{n} is the noise frequency. Therefore, $41.6-\mathrm{dB}$ rejection of $60-\mathrm{Hz}$ noise is correct, based on the noise rejection asymptote. Note that this doesn't assume that the $1.000-\mathrm{sec}$ conversion time is a precise multiple of the $60-\mathrm{Hz}$
period. If it were an exact multiple, the noise rejection would be infinite.
10. Choices \mathbf{a}, \mathbf{b} and \mathbf{c} are characteristics of integrating and voltage-to-frequency type A / D converters. Successive approximation machines are noted for their speed.
11. Because of the V/F converter's smooth, bow-type linearity characteristic, all bits over its full range are almost exactly the same size (1 LSB) and the differential nonlinearity is very nearly zero.
12. Choices \mathbf{b} and \mathbf{c} are true in many cases, but \mathbf{a} is the best choice. A VCO is basically linear over a limited range of output frequency and does not operate down to zero frequency.
13. The best answer is "all of the above." We might add that for a given resolution (≥ 10 bits), V/F based and integrating A / D 's generally cost less than successive approximation types.
14. This question involves some computation. At the output of the multiplier the squared sine wave has an amplitude of +1.6 V and an average value of +0.8 V . Since it is ON only half the time, the actual average is +0.4 V . This voltage produces an average output frequency of 400 Hz from a 10 $\mathrm{kHz} \mathrm{V} / \mathrm{F}$ converter. The maximum integration time in hours is then: $T=10^{1 \prime \prime} /(400 \times 3600)=$ 6944.4 hrs. 「 J

8. Glossary of Data Conversion Terms

Glossary of Data Conversion Terms

This glossary defines the most often used terms in the field of data conversion technology. Each of the terms has been described or referred to elsewhere in this book.

ABSOLUTE ACCURACY: The worst-case input to output error of a data converter referred to the NBS standard volt.
ACCURACY: The conformance of a measured value with its true value; the maximum error of a device such as a data converter from the true value. See relative accuracy and absolute accuracy.
ACQUISITION TIME: For a sample-hold, the time required, after the sample command is given, for the hold capacitor to charge to a full scale voltage change and then remain within a specified error band around final value.
ACTIVE FILTER: An electronic filter which uses passive circuit elements with active devices such as gyrators or operational amplifiers. In general, resistors and capacitors are used but no inductors.
ACTUATOR: A device which converts a voltage or current input into a mechanical output.
ADC: Abbreviation for analog-to-digital converter. See A / D converter.
A/D CONVERTER: Analog-to-digital converter. A circuit which converts an analog (continuous) voltage or current into an output digital code.
ALIAS FREQUENCY: In reconstructed analog data, a false lower frequency component which is the result of insufficient sampling rate, i.e., less than that required by the sampling theorem.
ALIASING: See Alias Frequency.
ANALOG MULTIPLEXER: An array of switches with a common output connection for selecting one of a number of analog inputs. The output signal follows the selected input within a small error.
ANTI-ALIAS FILTER: See Pre-Sampling Filter. APERTURE DELAY TIME: In a sample-hold, the time elapsed from the hold command to the actual opening of the sampling switch.
APERTURE JITTER: See Aperture Uncertainty Time.
APERTURE TIME: The time window, or time uncertainty, in making a measurement. For an A/D converter it is the conversion time; for a samplehold it is the signal averaging time during the sample-to-hold transition.
APERTURE UNCERTAINTY TIME: In a samplehold, the time variation, or time jitter, in the opening of the sampling switch; also the variation in aperture delay time from sample to sample.

AUTO-ZERO: A stabilization circuit which servos an amplifier or A/D converter input offset to zero during a portion of its operating cycle.
BANDGAP REFERENCE: A voltage reference circuit which is based on the principle of the predictable base-to-emitter voltage of a transistor to generate a constant voltage equal to the extrapolated bandgap voltage of silicon ($\approx 1.22 \mathrm{~V}$).
BANDWIDTH: The frequency at which the gain of an amplifier or other circuit is reduced by 3 dB from its DC value; also the range of frequencies within which the attenuation is less than 3 dB from the center frequency value.

BCD: See Binary Coded Decimal.

BINARY CODE: See Natural Binary Code.
BINARY CODED DECIMAL (BCD): A binary code used to represent decimal numbers in which each digit from 0 to 9 is represented by four bits weighted $8-4-2-1$. Only 10 of the 16 possible states are used.
BIPOLAR MODE: For a data converter, when the analog signal range includes both positive and negative values.
BIPOLAR OFFSET: The analog displacement of one half of full scale range in a data converter operated in the bipolar mode. The offset is generally derived from the converter reference circuit.
BREAK-BEFORE-MAKE SWITCHING: A characteristic of analog multiplexers in which there is a small time delay between disconnection from the previous channel and connection to the next channel. This assures that no two inputs are ever momentarily shorted together.
BUFFER AMPLIFIER: An amplifier employed to isolate the loading effect of one circuit from another.
BURIED ZENER REFERENCE: See Subsurface Zener Reference.
BUSY OUTPUT: See Status Output.
BUTTERFLY CHARACTERISTIC: An error versus temperature graph in which all errors are contained within two straight lines which intersect at room temperature, or approximately $25^{\circ} \mathrm{C}$.
CHARGE BALANCING A/D CONVERTER: An analog-to-digital conversion technique which employs an operational integrator circuit within a pulse generating feedback loop. Current pulses from the feedback loop are precisely balanced against the analog input by the integrator, and the resulting pulses are counted for a fixed period of time to produce an output digital word. This technique is also called quantized-feedback.
CHARGE DUMPING: See Charge Transfer.
CHARGE INJECTION: See Charge Transfer.

CHARGE TRANSFER: In a sample-hold, the phenomenon of moving a small charge from the sampling switch to the hold capacitor during switch turn-off. This is caused by the switch control voltage change coupling through switch capacitance to the hold capacitor. Also called charge dumping or charge injection.
CHOPPER-STABILIZED AMPLIFIER: An operational amplifier which employs a special DC modulator-demodulator circuit to reduce input offset voltage drift to an extremely low value.
CLOCK: A circuit in an A/D converter that generates timing pulses which synchronize the operation of the converter.
CLOCK RATE: The frequency of the timing pulses of the clock circuit in an A/D converter.
COMMON-MODE REJECTION RATIO: For an amplifier, the ratio of differential voitage gain to common-mode voltage gain, generally expressed in dB .

$$
\mathrm{CMRR}=20 \log _{10} \frac{\mathrm{~A}_{\mathrm{D}}}{\mathrm{~A}_{\mathrm{CM}}}
$$

where A_{D} is differential voltage gain and $A_{C M}$ is common mode voltage gain.
COMPANDING CONVERTER: An A/D or D/A converter which employs a logarithmic transfer function to expand or compress the analog signal range. These converters have large effective dynamic ranges and are commonly used in digitized voice communication systems.
COMPLEMENTARY BINARY CODE: A binary code which is the logical complement of straight binary. All 1's become 0 's and vice versa.
CONVERSION TIME: The time required for an A/D converter to complete a single conversion to specified resolution and linearity for a full scale analog input change.
CONVERSION RATE: The number of repetitive A/D or D/A conversions per second for a full scale change to specified resolution and linearity.
COUNTER TYPE A/D CONVERTER: A feedback method of A/D conversion wh reby a digital counter drives a D/A converter which generates an output ramp which is compared with the analog input. When the two are equal, a comparator stops the counter and output data is ready. Also called a servo type A/D converter.
CREEP VOLTAGE: A voltage change with time across an open capacitor caused by dielectric absorption. This causes sample-hold output error.
CROSSTALK: In an analog multiplexer, the ratio of output voltage to input voltage with all channels connected in parallel and off. It is generally expressed as an input to output attenuation ratio in dB .

DAC: Abbreviation for digital-to-analog converter. See D / A Converter.
D/A CONVERTER: Digital-to-analog converter. A circuit which converts a digital code word into an output analog (continuous) voltage or current.
DATA ACQUISITION SYSTEM: A system consisting of analog multiplexers, sample-holds, A/D converters, and other circuits which process one or more analog signals and convert them into digital form for use by a computer.
DATA AMPLIFIER: See Instrumentation Amplifier.
DATA CONVERTER: An A/D or D/A Converter. DȦTA DISTRIBUTION SYSTEM: A system which uses D/A converters and other circuits to convert the digital outputs of a computer into analog form for control of a process or system.
DATA RECOVERY FILTER: A filter used to reconstruct an analog signal from a train of analog samples.
DATA WORD: A digital code-word that represents data to be processed.
DECAY RATE: See Hold-Mode Droop.
DECODER: A communications term for D/A converter.
DEGLITCHED DAC: A D/A converter which incorporates a deglitching circuit to virtually eliminate output spikes (or glitches). These DAC's are commonly used in CRT display systems.
DEGLITCHER: A special sample-hold circuit used to eliminate the output spikes (or glitches) from a D/A converter.
DIELECTRIC ABSORPTION: A voltage memory characteristic of capacitors caused by the dielectric material not polarizing instantaneously. The result is that not all the energy stored in a charged capacitor can be quickly recovered upon discharge, and the open capacitor voltage will creep. See also Creep Voltage.
DIFFERENTIAL LINEARITY ERROR: The maximum deviation of any quantum (LSB change) in the transfer function of a data converter from its ideal size of $\mathrm{FSR} / 2^{\mathrm{n}}$.
DIFFERENTIAL LINEARITY TEMPCO: The change in differential linearity error with temperature for a data converter, expressed in ppm $/{ }^{\circ} \mathrm{C}$ of FSR (Full Scale Range).
DIGITIZER: A device which converts analog into digital data; an A/D converter.
DOUBLE-LEVEL MULTIPLEXING: A method of channel expansion in analog multiplexers whereby the outputs of a group of multiplexers connect to the inputs of another multiplexer.
DROOP: See Hold-Mode Droop.

DUAL SLOPE A/D CONVERTER: An indirect method of A/D conversion whereby an analog voltage is converted into a time period by an integrator and reference and then measured by a clock and counter. The method is relatively slow but capable of high accuracy.
DYNAMIC ACCURACY: The total error of a data converter or conversion system when operated at its maximum specified conversion rate or throughput rate.
DYNAMIC RANGE:, The ratio of full scale range (FSR) of a data converter to the smallest difference it can resolve. In terms of converter resolution:

Dynamic Range $(\mathrm{DR})=2^{\mathrm{n}}$
It is generally expressed in dB :
$\mathrm{DR}=20 \log _{10} 2^{\mathrm{n}}=6.02 \mathrm{n}$
where n is the resolution in bits.
EFFECTIVE APERTURE DELAY: In a samplehold, the time difference between the hold command and the time at which the input signal equalled the held voltage.
ELECTROMETER AMPLIFIER: An amplifier characterized by ultra-low input bias current and input noise which is used to measure currents in the picoampere region and lower.
ENCODER: A communications term for an A/D converter.
E.O.C.: End of Conversion. See Status Output.

ERROR BUDGET: A systematic listing of errors in a circuit or system to determine worst case total or statistical error.
EXTRAPOLATIVE HOLD: See First-Order Hold. FEEDBACK TYPE A/D CONVERTER: A class of analog-to-digital converters in which a D/A converter is enclosed in the feedback loop of a digital control circuit which changes the D/A output until it equals the analog input.
FIRST-ORDER HOLD: A type of sample-hold, used as a recovery filter, which uses the present and previous analog samples to predict the slope to the next sample. Also called an extrapolative hold.
FLASH TYPE A/D CONVERTER: See Parallel A/D Converter.
FLYING-CAPACITOR MULTIPLEXER: A multiplexer switch which employs a double-pole, doublethrow switch connected to a capacitor. By first connecting the capacitor to the signal source and then to a differential amplifier, a signal with a high common-mode voltage can be multiplexed to a ground-referenced circuit.
FRACTIONALORDER HOLD: A type of samplehold, used as a recovery filter, which uses a fixed fraction of the difference between the present and previous analog samples to predict the slope to the next sample.

FREQUENCY FOLDING: In the recovery of sampled data, the overlap of adjacent spectra caused by insufficient sampling rate. The overlapping results in distortion in the recovered signal which cannot be eliminated by filtering the recovered signal.
FREQUENCY-TO-VOLTAGE (F/V) CONVERTER: A device which converts an input pulse rate into an output analog voltage.

FSR: Full Scale Range.

FULL POWER FREQUENCY: The maximum frequency at which an amplifier, or other device, can deliver rated peak-to-peak output voltage into rated load at a specified distortion level.
FULL SCALE RANGE (FSR): the difference between maximum and minimum analog values for an A/D converter input or D/A converter output.
F/V CONVERTER: See Frequency-To-Voltage Converter.
GAIN-BANDWIDTH PRODUCT: The product of gain and small signal bandwidth for an operational amplifier or other circuit. This product is constant for a single-pole response.
GAIN ERROR: The difference in slope between the actual and ideal transfer functions for a data converter or other circuit. It is expressed as a percent of analog magnitude.
GAIN TEMPCO: The change in gain (or scale factor) with temperature for a data converter or other circuit, generally expressed in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
HIGH-LEVEL MULTIPLEXING: An analog multiplexing circuit in which the analog signal is first amplified to a higher level (1 to 10 volts) and then multiplexed. This is the preferred method of multiplexing to prevent noise contamination of the analog signal.
HOLD CAPACITOR: A high quality capacitor used in a sample-hold circuit to store the analog voltage. The capacitor must have low leakage and low dielectric absorption. Types commonly used include polystyrene, teflon, polycarbonate, polypropylene, and MOS.
HOLD-MODE: The operating mode of a sample-hold circuit in which the sampling switch is open.
HOLD-MODE DROOP: In a sample-hold, the output voltage change per unit of time with the sampling switch open. It is commonly expressed in $\mathrm{V} / \mathrm{sec}$. or $\mu \mathrm{V} / \mu$ sec.
HOLD-MODE FEEDTHROUGH: In a sample-hold, the percentage of input sinusoidal or step signal measured at the output with the sampling switch open.
HOLD-MODE SETTLING TIME: In a sample-hold, the time from the hold-command transition until the output has settled within a specified error band.
HYSTERESIS ERROR: The small variation in analog transition points of an A/D converter whereby the transition level depends on the direction from

DATA ACQUISITION \& CONVERSION HANDBOOK

which it is approached. In most A / D converters this hysteresis is very small and is caused by the analog comparator.
IDEAL FILTER: A low pass filter with flat passband response, infinite attenuation at the cutoff frequency, and zero response past cutoff; it also has linear phase response in the passband. Ideal filters are mathematical filters frequently used in textbook examples but not physically realizable.
INDIRECT TYPE A/D CONVERTER: A class of analog-to-digital converters which converts the unknown input voltage into a time period and then measures this period.
INFINITE-HOLD: A sample-hold circuit which converts an analog voltage into digital form which is then held indefinitely, without decay, in a register.
INPUT DYNAMIC RANGE: In an amplifier, the maximum permissible peak-to-peak voltage across the input terminals which does not cause the output to slew rate limit or distort. Mathematically it is found as

$$
\text { IDR (Input Dynamic Range) } \frac{\text { SR }}{\pi \mathrm{GB}}
$$

where SR is the slew rate and GB is gain bandwidth. INSTRUMENTATION AMPLIFIER: An amplifier circuit with high impedance differential inputs and high common-mode rejection. Gain is set by one or two resistors which do not connect to the input terminals.
INTEGRAL LINEARITY ERROR: The maximum deviation of a data converter transfer function from the ideal straight line with offset and gain errors zeroed. It is generally expressed in LSB's or in percent of FSR.
INTEGRATING A/D CONVERTER: One of several types of A/D conversion techniques whereby the analog input is integrated with time. This includes dual slope, triple slope, and charge balancing type A/D converters.
INTERPOLATIVE HOLD: See Polygonal Hold. ISOLATION AMPLIFIER: An amplifier which is electrically isolated between input and output in order to be able to amplify a differential signal superimposed on a high common-mode voltage.
LEAST SIGNIFICANT BIT (LSB): The rightmost bit in a data converter code. The analog size of the LSB can be found from the converter resolution:

$$
\text { LSB Size }=\frac{\text { FSR }}{2^{\mathrm{n}}}
$$

where FSR is full scale range and n is the resolution in bits.
LINEARITY ERROR: See Integral Linearity Error and Differential Linearity Error.
LONG TERM STABILITY: The variation in data converter accuracy due to time change alone. It is commonly specified in percent per 1000 hours or per year.

LOW-LEVEL MULTIPLEXING: An analog multiplexing system in which a low amplitude signal is first multiplexed and then amplified.
LSB: Least Significant Bit.
LSB SIZE: See Quantum.
MAJOR CARRY: See Major Transition.
MAJOR TRANSITION: In a data converter, the change from a code of $1000 \ldots 000$ to $0111 \ldots 1111$ or vice-versa. This transition is the most difficult one to make from a linearity standpoint since the MSB weight must ideally be precisely one LSB larger than the sum of all other bit weights.
MISSING CODE: In an A/D converter, the characteristic whereby not all output codes are present in the transfer function of the converter. This is caused by a nonmonotonic D / A converter inside the A / D.
MONOTONICTIY: For a D/A converter, the chaiacteristic of the transfer function whereby an increasing input code produces a continuously increasing analog output. Nonmonotonicity may occur if the converter differential linearity error exceeds $\pm 1 \mathrm{LSB}$.
MOST SIGNIFICANT BIT (MSB): The leftmost bit in a data converter code. It has the largest weight, equal to one half of full scale range.
MSB: Most Significant Bit.
MULTIPLYING D/A CONVERTER: A type of digital-to-analog converter in which the reference voltage can be varied over a wide range to produce an analog output which is the product of the input code and input reference voltage. Multiplication can be accomplished in one, two, or four algebraic quadrants.
MUX: Abbreviation for multiplexer. See Analog Multiplexer.
NATURAL BINARY CODE: A positive weighted code in which a number is represented by

$$
N=a_{0} 2^{0}+a_{1} 2^{1}+a_{2} 2^{2}+a_{3} 2^{3}+\ldots+a_{n} 2^{n}
$$

where each coefficient " a " has a value of zero or one. Data converters use this code in its fractional form where:

$$
N=a_{1} 2^{-1}+a_{2} 2^{-2}+a_{3} 2^{-3}+\ldots a_{n} 2^{-n}
$$

and N has a fractional value between zero and one. NEGATIVE TRUE LOGIC: A logic system in which the more negative of two voltage levels is defined as a logical 1 (true) and the more positive level is defined as a logical 0 (false).
NOISE REJECTION: The amount of suppression of normal mode analog input noise of an A/D converter or other circuit, generally expressed in dB . Good noise rejection is a characteristic of integrating type A / D converters.
NONMONOTONIC: A D/A converter transfer characteristic in which the output does not continuously increase with increasing input. At one or more points there may be a dip in the output function.

NORMAL-MODE REJECTION: The attenuation of a specific frequency or band of frequencies appearing directly across two electrical terminals. In A/D converters, normal-mode rejection is determined by an input filter or by integration of the input signal.
NOTCH FILTER: An electronic filter which attenuates or rejects a specific frequency or narrow band of frequencies with a sharp cutoff on either side of the band.
NYQUIST THEOREM: See Sampling Theorem. OFFSET BINARY CODE: Natural binary code in which the code word $0000 \ldots .0000$ is displaced by one-half analog full scale. The code represents analog values between -FS and +FS (full scale). The code word $1000 \ldots .0000$ then corresponds to analog zero.
OFFSET DRIFT: The change with temperature of analog zero for a data converter operating in the bipolar mode. It is generally expressed in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FSR.
OFFSET ERROR: The error at analog zero for a data converter operating in the bipolar mode.
ONE'S COMPLEMENT CODE: A bipolar binary code in which positive and negative codes of the same magnitude sum to all one's.
PARALLEL TYPE A/D CONVERTER: An ultrafast method of A/D conversion which uses an array of $2^{\mathrm{n}}-1$ comparators to directly implement a quantizer, where n is the resolution in bits. The quantizer is followed by a decoder circuit which converts the comparator outputs into binary code.
PARALLEL TYPE D/A CONVERTER: The most commonly used type of D/A converter in which upon application of an input code, all bits change simultaneously to produce a new output.
PASSIVE FILTER: A filter circuit using only resistors, capacitors, and inductors.
POLYGONAL HOLD: A type of sample-hold, used as a signal recovery filter, which produces a voltage output which is a straight line joining the previous sample value to the present sample. This results in an accurate signal reconstruction but with a one sample-period output delay.
POSITIVE TRUE LOGIC: A logic system in which the more positive of two voltage levels is defined as a logical 1 (true) and the more negative level is defined as a logical 0 (false).
POWER SUPPLY SENSITIVITY: The output change in a data converter caused by a change in power supply voltage. Power supply sensitivity is generally specified in \%/V or in \%/\% supply change. PRECISION: The degree of repeatability, or reproducibility of a series of successive measurements. Precision is affected by the noise, hysteresis, time, and temperature stability of a data converter or other device.

PRE-SAMPLING FILTER: A low pass filter used to limit the bandwidth of a signal before sampling in order to assure that the conditions of the Sampling Theorem are met. Therefore frequency folding is eliminated or greatly diminished in the recovered signal spectrum.
PROGRAMMABLE GAIN AMPLIFIER: An amplifier with a digitally controlled gain for use in data acquisition systems.
PROGRAMMER-SEQUENCER: A digital logic circuit which controls the sequence of operations in a data acquisition system.
PROPAGATION TYPE A/D CONVERTER: A type of A/D conversion method which employs one comparator per bit to achieve ultra-fast A/D conversion. The conversion propagates down the series of cascaded comparators.
QUAD CURRENT SWITCH: A group of four current sources weighted 8-4-2-1 which are switched on and off by TTL inputs. They are used to implement A/D and D/A converter designs up to 16 bits resolution by using multiple quads with current dividers between each quad.
QUANTIZATION NOISE: See Quantization Error. QUANTIZATION UNCERTAINTY: See Quantization Error.
QUANTIZED FEEDBACK A/D CONVERTER: See Charge Balancing A/D Converter.
QUANTIZER: A circuit which transforms a continuous analog signal into a set of discrete output states. Its transfer function is the familiar staircase function.
QUANTIZING ERROR: The inherent uncertainty in digitizing an analog value due to the finite resolution of the conversion process. The quantized value is uncertain by up to $\pm \mathrm{Q} / 2$ where Q is the quantum size. This error can be reduced only by increasing the resolution of the converter. Also called quantization uncertainty or quantization noise.
QUANTUM: The analog difference between two adjacent codes for an A/D or D/A converter. Also called LSB size.
R-2R LADDER NETWORK: An array of matched resistors with series values of R and shunt values of 2 R in a standard ladder circuit configuration.
RATIOMETRIC A/D CONVERTER: An analog-to-digital converter which uses a variable reference to measure the ratio of the input voltage to the reference.

RECONSTRUCTION FILTER: See Data Recovery

 Filter.RECOVERY FILTER: See Data Recovery Filter.
REFERENCE CIRCUIT: A circuit which produces a stable output voltage over time and temperature

DATA ACQUISITION \& CONVERSION HANDBOOK

for use in A/D and D/A converters. The circuit generally uses an operational amplifier with a precision Zener or bandgap type reference element. RELATIVE ACCURACY: The worst case input to output error of a data converter, as a percent of full scale, referred to the converter reference. The error consists of offset, gain, and linearity components.
RESOLUTION: The smallest change that can be distinguished by an A/D converter or produced by a D/A converter. Resolution may be stated in percent of full scale, but is commonly expressed as the number of bits n where the converter has 2^{n} possible states.
SAMPLE-HOLD: A circuit which accurately acquires and stores an analog voltage on a capacitor for a specified period of time.
SAMPLE-HOLD FIGURE OR MERIT: The ratio of capacitor charging current in the sample-mode to the leakage current off the capacitor in the hold-mode.
SAMPLE-MODE: The operating mode of a samplehold circuit in which the sampling switch is closed.
SAMPLER: An electronic switch which is turned on and off at a fast rate to produce a train of analog sample pulses.
SAMPLE-TO-HOLD OFFSET ERROR: For a sample-hold, the change in output voltage from the sample-mode to the hold-mode, with constant input voltage. This error is caused by the sampling switch transferring charge onto the hold capacitor as it opens.
SAMPLE-TO-HOLD STEP: See Sample-to-Hold Offset Error.
SAMPLE-TO-HOLD TRANSIENT: A small spike at the output of a sample-hold when it goes into the hold mode. It is caused by feedthrough from the sampling switch control voltage.
SAMPLING THEOREM: A theorem due to Nyquist which says if a continuous bandwidth-limited signal contains no frequency components higher than f_{c}, then the original signal can be recovered without distortion if it is sampled at a rate of at least $2 f_{c}$ samples per second.
SAR: Successive approximation register. A digital control circuit used to control the operation of a successive approximation A/D converter.
SCALE FACTOR ERROR: See Gain Error.
SERIAL TYPE D/A CONVERTER: A type of digital-to-analog converter in which the digital input data is received in sequential form before an analog output is produced.

SERVO-TYPE A/D CONVERTER: See Counter-

 Type A / D Converter.SETTLING TIME: The time elapsed from the application of a full scale step input to a circuit to the time when the output has entered and remained within a specified error band around its final value.

This term is an important specification for operational amplifiers, analog multiplexers, and D/A converters.
SHORT CYCLING: The termination of an A/D conversion process at a resolution less than the full resolution of the converter. This results in a shorter conversion time for reduced resolution in A/D converters with a short cycling capability.
SIGNAL RECONSTRUCTION FILTER: A low pass
filter used to accurately reconstruct an analog signal from a train of analog samples.
SIGN-MAGNITUDE BCD: A binary coded decimal code in which a sign bit is added to distinguish positive from negative in bipolar operation.
SIGN-MAGNITUDE BINARY CODE: The natural binary code to which a sign bit is added to distinguish positive from negat ${ }^{+\cdots}$ in hipolar operation.
SIMULTANEOUS SAMPLE-HOLD: A system in which a series of sample-hold circuits are used to sample a number of analog channels, all at the same instant. This requires one sample-hold per analog channel.
SIMULTANEOUS TYPE A/D CONVERTER: See Parallel Type A / D Converter.
SINGLE-LEVEL MULTIPLEXING: A method of channel expansion in analog multiplexers whereby several multiplexers are operated in parallel by connecting their outputs together. Each multiplexer is controlled by a digital enable input.
SINGLE-SLOPE A/D CONVERTER: A simple A/D converter technique in which a ramp voltage generated from a voltage reference and integrator is compared with the analog input voltage by a comparator. The time required for the ramp to equal the input is measured by a clock and counter to produce the digital output word.
SKIPPED CODE: See Missing Code.
SLEW RATE: The maximum rate of change of the output of an operational amplifier or other circuit. Slew rate is limited by internal charging currents and capacitances and is generally expressed in volts per microsecond.
SPAN: For an A/D or D/A converter, the full scale range or difference between maximum and minimum analog values.
START-CONVERT: The input pulse to an A/D converter which initiates conversion.
STATIC ACCURACY: The total error of a data converter or conversion system under DC input conditions.
STATUS OUTPUT: The logic output of an A/D converter which indicates whether the device is in the process of making a conversion or the conversion has been completed and output data is ready. Also called busy output or end of conversion output.

STRAIGHT BINARY CODE: See Natural Binary Code.

SUBSURFACE ZENER REFERENCE: A compensated voltage reference diode in which avalanche breakdown occurs below the surface of the silicon in the bulk region rather than at the surface. This results in lower noise and higher stability. The reversed biased diode is temperature compensated by a series connected, forward biased signal diode.

SUCCESSIVE APPROXIMATION A/D

CONVERTER: An A/D conversion method that compares in sequence a series of binary weighted values with the analog input to produce an output digital word in just n steps, where n is the resolution in bits. The process is efficient and is analogous to weighing an unknown quantity on a balance scale using a set of binary standard weights.
TEMPERATURE COEFFICIENT: The change in analog magnitude with temperature, expressed in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
THREE-STATE OUTPUT: A type of A/D converter output used to connect to a data bus. The three output states are logic $1, \operatorname{logic} 0$, and off. An enable control turns the output on or off.
THROUGHPUT RATE: The maximum repetitive rate at which a data converison system can operate to give specified output accuracy. It is determined by adding the various times required for multiplexer settling, sample-hold acquisition, A/D conversion, etc. and then taking the inverse of total time.
TRACK-AND-HOLD: A sample-hold circuit which can continuously follow the input signal in the sam-ple-mode and then go into hold-mode upon command.
TRACKING A/D CONVERTER: A counter-type analog-to-digital converter which can continuously follow the analog input at some specified maximum rate and continuously update its digital output as the input signal changes. The circuit uses a D/A converter driven by an up-down counter.
TRANSDUCER: A device which converts a physical parameter such as temperature or pressure into an electrical voltage or current.
TRANSFER FUNCTION: The input to output characteristic of a device such as a data converter expressed either mathematically or graphically.
TRIPLE-SLOPE A/D CONVERTER: A variation
on the dual slope type A/D converter in which the time period measured by the clock and counter is divided into a coarse (fast slope) measurement and a fine (slow slope) measurement.
TWO'S COMPLEMENT CODE: A bipolar binary code in which positive and negative codes of the same magnitude sum to all zero's plus a carry.
TWO-STAGE PARALLEL A/D CONVERTER:
An ultra-fast A/D converter in which two parallel type A/D's are operated in cascade to give higher resolution. In the usual case a 4 -bit parallel converter first makes a conversion; the resulting output code drives an ultra-fast 4-bit D/A, the output of which is subtracted from the analog input to form a residual. This residual then goes to a second 4 bit parallel A/D. The result is an 8 bit word converted in two steps.
UNIPOLAR MODE: In a data converter, when the analog range includes values of one polarity only.

V/F CONVERTER: See Voltage-to-Frequency

 Converter.VIDEO A/D CONVERTER: An ultra-fast A/D converter capable of conversion rates of 5 MHz and higher. Resolution is usually 8 bits but can vary depending on the application. Conversion rates of 20 MHz and higher are common.
VOLTAGE DECAY: See Hold-Mode Droop. VOLTAGE REFERENCE: See Reference Circuit. VOLTAGE-TO-FREQUENCY (V/F) CONVERTER: A device which converts an analog voltage into a train of digital pulses with frequency proportional to the input voltage.

WEIGHTED CURRENT SOURCE D/A

CONVERTER: A digital-to-analog converter design based on a series of binary weighted transistor current sources which can be turned on or off by digital inputs.
ZERO DRIFT: The change with temperature of analog zero for a data converter operating in the unipolar mode. It is generally expressed in $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$.
ZERO ERROR: The error at analog zero for a data converter operating in the unipolar mode.
ZERO-ORDER HOLD: A name for a sample-hold circuit used as a data recovery filter. It is used to accurately reconstruct an analog signal from a train of analog samples.

9. Component Selector Guides

Selector Guide
 N-Channel Enhancement Mode V-MOS Power MOS

80 V MIN		90V MIN		$\begin{aligned} & \text { PACKAGE } \\ & \text { AND } \\ & \text { PIN-OUT } \end{aligned}$
ZENER	NON-ZENER	ZENER	NON-ZENER	
VN89AA	IVN5200KNF IVN5201KNF	IVN6658 VN90AA	VN98AL VN99AJ	TO-3
	IVN5200TNF IVN5201TNF IVN5000TNF IVN5001TNF	IVN6661 VN90AB	IVN5000TNG IVN5001TNG VN98AK VN99AK	
	IVN5000SNF IVN5001SNF			
	IVN5200HNF IVN5201HNF			TO-66
VN88AF VN89AF	IVN5000BNF IVN5001BNF			TO-202 (PLASTIC)
	IVN5201CNF			TO-220 (PLASTIC)
	IVN5000ANF IVN5001ANF			TO-237 (PLASTIC)

Switches-Junction FET

Switches and Amplifiers-MOSFET

Ordering Preferred Part Number Package		$\begin{gathered} V_{G s}(T H) \\ * V_{G S}(\text { off) } \\ \min / \max \\ V \end{gathered}$		$B V_{\text {gss }}$ min V	Ioss max pA	$\mathrm{I}_{\text {Gss }}$ max PA	$\begin{gathered} \mathbf{g}_{\mathrm{Fs}} \\ \mathrm{~min} \\ \mu \mathrm{mho} \end{gathered}$	$r_{\text {DS (on) }}$ max ohm	$I_{\text {(on) }}$ \min mA	
P-channel Enhancement: Gen. used where max isolation btwn. signal source and logic drive req'd: sw. "On" resistance varies with signal amplitude										
3N160	TO-72	-1.5	-5.0	-25	-10nA	-50.0	3.5	-	-40	-120
3N161	TO-72	-1.5	-5.0	-25	-10nA	-100.0	3500.0		-40	-120 Diode Protected
3N163	TO-72	-2.0	-5.0	-40	-200	-10.0	2000.0	250	-5	-30
3N164	TO-72	-2.0	-5.0	-30	400	10.0	1.0	300	-3	-30
3N172	TO-72	-2.0	-5.0	-40	-400	-10.0	1500.0	250	-5	-30 Diode Protected
3N173 IT1700	TO-72	$\begin{array}{r} -2.0 \\ 0.2 \end{array}$	$\begin{aligned} & -5.0 \\ & -50 \end{aligned}$	$\begin{aligned} & -30 \\ & -40 \end{aligned}$	$\begin{gathered} -10 n A \\ 200 \end{gathered}$	$\begin{array}{r} -500.0 \\ 10.0 \end{array}$	-2.0	$\begin{aligned} & 350 \\ & 400 \end{aligned}$	-5	-30
N-channel	ement:	ch po	ves	rectly	L logic	quires d	anslato	to sw	olar	
2N4351	TO-72	1.0	5.0	25	10 nA	10.0	1000.0	300	3	
3N169	TO-72	0.5	1.5	25	10 nA	10.0	1000.0	200	10	
3N170	TO-72	1.0	2.0	25	10 nA	10.0	1000.0	200	10	
3N171	TO-72	1.5	3.0	25	10 nA	10.0	1000.0	200	10	
IT1750	TO-72	0.5	3.0	25	10 nA	10.0	30.0	50	10	100
M116	T0-72	1.0	5.0	30	-	100.0	-	100	-	-

Amplifiers-N-Channel Junction FET

Ordering Preferred Part Number	Package		$\underset{\substack{\mathbf{g}_{\text {fs }} \\ \min _{\text {mho }}}}{ }$	$\underset{\operatorname{mA}}{\substack{\mathrm{I}_{\text {oss }} \\ \min / \text { max }}}$		$\underset{v}{\mathbf{v i n}_{p} / \max }$		$\begin{aligned} & \mathrm{I}_{\text {oss }} \\ & \text { max } \\ & \text { and } \end{aligned}$	$\underset{\substack{\mathbf{B N} \mathbf{V}_{\text {Gss }} \\ \mathbf{V}}}{ }$	$\underset{\substack{\text { ciss } \\ \underset{\text { pf }}{ }}}{ }$	$\underset{\substack{\mathrm{C}_{\text {nss }} \\ \mathrm{pf}}}{ }$	$\max _{n v / V H z}^{\mathbf{e}_{n}}$
2N3684	TO-72	TO-92	2000	2.5	7.5	-2.0	-5.0	-100	-50	4	1.2	140 @ 100 Hz
2N3685	TO-72	TO-92	1500	1.0	3.0	-1.0	-3.5	- 100	-50	4	1.2	140 @ 100 Hz
2N3686	T0-72	TO-92	1000	0.4	1.2	-0.6	-2.0	- 100	-50	4	1.2	$140 @ 100 \mathrm{~Hz}$
2N3687	TO-72	TO-92	500	0.1	0.5	-0.3	-1.2	-100	-50	4	1.2	$140 @ 100 \mathrm{~Hz}$
2N3821	T0-72		1500	0.5	2.5	-4.0		-0.1 nA	-50	6	3.0	200 @ 10 Hz
2N3822	TO-72	TO-92	3000	2.0	10.0		-6.0	-100	-50	6	3.0	200 @ 10 Hz
2N3823	TO-72		3500	4.0	20.0	-8.0		$-0.5 \mathrm{nA}$	-30	6	2.0	
2N3824	T0-72		-					-0.1 nA	-50	6	3.0	
2 N 4117	TO-72	TO-92	70	0.03	0.09	-0.6	-1.8	-10	-40	3	1.5	
2N4117A	TO-72	TO-92	70	0.03	0.09	-0.6	-1.8	-1	-40		1.5	
2N4118	TO-72	TO-92	80	0.08	0.24	-1.0	-3.0	-10	-40	3	1.5	
2N4118A	T0-72	T0-92	80	0.08	0.24	-1.0	-3.0	-1	-40	3	1.5	
2 N 4119	TO-72	TO-92	100	0.2	0.6	-2.0	-6.0	-10	-40	3	1.5	
2N4119A	TO-72	TO-92	100	0.2	0.6	-2.0	-6.0	-1	-40	3	1.5	
2N4220	T0-72	T0-92	1000	0.5	3.0		-4.0	-100	-30	6	2.0	
2N4221	TO-72	TO-92	2000	2.0	6.0		-6.0	- 100	-30	6	2.0	
2N4222	TO-72	TO-92	2500	5.0	15.0		-8.0	- 100	-30	6	2.0	
2N4223	T0-72		3000	3.0	18.0	-0.1	-8.0	-250	-30	6	2.0	
2N4224	TO-72		2000	2.0	20.0	-0.1	-0.8	-150	-30	6	2.0	
2N4338	TO-18	TO-92	600	0.2	0.6	-0.3	-1.0	-100	-50	7	3.0	65 @ 1 kHz
2N4339	TO-18	TO-92	800	0.5	1.5	-0.6	-1.8	-100	-50	7	3.0	$65 @ 1 \mathrm{kHz}$
2 N 4340	TO-18	TO-92	1300	1.2	3.6	-1.0	-3.0	-100	-50	7	3.0	$65 @ 1 \mathrm{kHz}$
2N4341	TO-18	TO-92	2000	3.0	9.0	-2.0	-6.0	-100	-50	7	3.0	65 @ 1 kHz
2N4416	TO-72	TO-92	4500	5.0	15.0		-6.0	-100	-30	25	2.0	
2N4867	TO-72	TO-92	700	0.4	1.2	-0.7	-2.0	-250	-40	25	5.0	10 @ 1 kHz
2N4867A	TO-72	TO-92	700	0.4	1.2	-0.7	-2.0	-250	-40	25	5.0	$5 @ 1 \mathrm{kHz}$
2N4868	TO-72	TO-92	1000	1.0	3.0	-1.0	-3.0	-250	-40	25	5.0	10@1 kHz
2N4868A	TO-72	TO-92	1000	1.0	3.0	-1.0	-3.0	-250	-40	25	5.0	5 @ 1 kHz
2N4869	TO-72	TO-92	1300	2.5	7.5	-1.8	-5.0	-250	-40	25	5.0	$10 @ 1 \mathrm{kHz}$
2N4869A	TO-72	TO-92	1300	2.5	7.5	-1.8	-5.0	-250	-40	25	5.0	5 @ 1 kHz
2N5397 2N5398	TO-72	TO-92	${ }_{\text {6000 @ }}^{\text {¢ }}$ (1 mA	10.0 5.0	30.0 40.0	-1.0	-6.0 -0.1	-100	-25 -25	5 5.5	1.2 1.3	3 db @ 450 mHz
2N5457	T0-92		1000	1.0	5.0	-0.5	-6.0	1 nA	25	5	3.0	3 dB @ 450 mHz
2N5458	T0-92		1500	2.0	9.0	-1.0	-7.0	1 nA	25	7	3.0	3 dB @ 450 mHz
2N5459	TO-92		2000	4.0	16.0	-2.0	-8.0	$-1 \mathrm{nA}$	-25	7	3.0	3 dB @ 450 mHz
2N5484	T0-92		3000	1.0	5.0	-0.3	-3.0	$-1 \mathrm{nA}$	-25	5	1.0	120 @ 1 kHz
2N5485	T0-92		3500	4.0	10.0	-0.5	-4.0	$-1 \mathrm{nA}$	-25	5	1.0	120 @ 1 kHz
ITE4416	TO-72	TO-92	4500	5.0	15.0		-6.0	-100	-30	4	2.0	
2N5486	TO-92		4000	8.0	20.0	-2.0	-6.0	-1 nA	-25			120 @ 1 kHz
U308	TO-52	TO-92	10,000	12.0	60.0	-1.0	-6.0	-150	-25	7 typ.	4.0 typ.	10 @ 10 Hz typ.
U309	TO-52	TO-92	10,000	12.0	30.0	-1.0	-4.0	-150	-25	7 typ.	4.0 typ.	10 @ 10 Hz typ.
U310	TO-52	TO-92	10,000	24.0	60.0	-2.5	-6.0	-150	-25	7 typ.	4.0 typ.	$10 @ 10 \mathrm{~Hz}$ typ.
U311	TO-92		10,000	20.0	60.0	-1.0		-150	-25	-		10@ 100 Hz
J 308 J 309	TO-92		8000 10,000	12.0 12.0	60.0 30.0	-1.0 -1.0		-1 nA -1 nA	-25 -25	二	二	$10 @ 100 \mathrm{~Hz}$ $10 @ 100 \mathrm{~Hz}$
J310	то-92		8000	24.0	60.0	-2.0		-1 nA	-25	-	-	$10 @ 100 \mathrm{~Hz}$

Amplifiers-P-Channel Junction FET

Order Preferred Part Number	Package		$\begin{gathered} \mathbf{g}_{\mathrm{Fs}} \\ \mathbf{m i n} \\ \mu \mathrm{mho} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {Dss }} \\ \min / \max \\ \mathrm{mA} \\ \hline \end{gathered}$		$\underset{V}{V_{p}} \underset{\min / \max }{ }$		$I_{\text {Gss }}$ max nA	$B V_{G s s}$ min V	$C_{\text {iss }}$ max pf	$\mathrm{C}_{\text {Rss }}$ max pf	$\max _{n V / V H z}^{e_{n}}$
2N2606	TO-18	TO-92	110	-0.1	-0.5	1.0	4.0	1	30	7	2	400 @ 1 kHz
2N2607	TO-18	TO-92	330	-0.3	-1.5	1.0	4.0	3	30	7	2	400 @ 1 kHz
2N2608	TO-18	TO-92	1000	-0.9	-4.5	1.0	4.0	10	30	7	2	180 @ 1 kHz
2N2609	TO-18	TO-92	2500	-2.0	-10.0	1.0	4.0	30	30	7	2	180 @ 1 kHz
2N3329	TO-72		1000@-1 mA	-1.0	-3.0		5.0	10	20	7	2	400 @ 1 kHz
2N3330	TO-72		1500@-2mA	-2.0	-6.0		6.0	10	20	7	2	400 @ 1 kHz
2N3331	TO-72		200@-5mA	-5.0	-15.0		8.0	10	20	7	2	400 @ 1 kHz
2N5265	TO-72		900	-0.5	-1.0		3.0	2	60	7	2	115 @ 100 Hz
2N5266	TO-72		1000	-0.8	-1.6		3.0	2	60	7	2	115 @ 100 Hz
2N5267	TO-72		1500	-1.5	-3.0		6.0	2	60	7	2	115 @ 100 Hz
2N5268	TO-72		2000	-2.5	-5.0		6.0	2	60	7	2	115@100 Hz
2N5269	TO-72		2200	-4.0	-8.0		8.0	2	60	7	2	115 @ 100 Hz
2N5270	TO-72		2500	-7.0	-14.0		8.0	2	60	7	2	115 @ 100 Hz
2N5460	TO-92		1000	-1.0	-5.0	0.75	6.0	5	40	7	2	115 @ 100 Hz
2N5461	TO-92		1500	-2.0	-9.0	1.0	7.5	5	40	7	2	115 @ 100 Hz
2N5462	TO-92		2500	-4.0	-16.0	1.5	9.0	5	40	7	2	115 @ 100 Hz
2N5463	TO-92		1000	-1.0	-5.0	0.75	6.0	5	60	7	2	115@100 Hz
2N5464	TO-92		1500	-2.0	-9.0	1.0	7.5	5	60	7	2	115 @ 100 Hz
2N5465	TO-92		2500	-4.0	16.0	1.8	9.0	5	60	7	2	115 @ 100 Hz
U304	TO-18			-30	-90			. 5	30	27	7	-
U305	TO-18			-15	-60		3	. 5	30	27	7	-
U306	TO-18			-5	-25		1	. 5	30	27	7	-

Differential Amplifiers-Dual Monolithic N-Channel Junction FETS

Ordering Preferred Part Number	Pation Package	$\mathbf{V}_{\text {GS1-2 }}$ \max mV	$\underset{\max _{\mathrm{V} /{ }^{\circ} \mathrm{C}}^{\Delta \mathrm{V}_{\mathrm{GS}}}}{ }$	I_{G} max pA	$B_{\text {GSs }}$ min V^{-}	$\underset{V}{V_{p}} \underset{\min / \max }{ }$		$\underset{\mu \mathrm{mho}}{\mathrm{~g}_{\mathrm{ts}}}$		$\underset{\operatorname{mA}}{\substack{\mathbf{I}_{\text {oss }} \\ \min / \max }}$		$\max _{n V / \vee H z}^{e_{n}}$
2N3921	TO-71	5	10	-250	-50	-	-3.0	1500	7500	1.0	10.0	-
2N3922	TO-71	5	25	-250	-50		-3.0	1500	7500	1.0	10.0	
2N3954	TO-71	5	10	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100 Hz
2N3954A	TO-71	5	5	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100 Hz
2N3955	TO-71	10	25	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100 Hz
2N3955A	TO-71 TO-71	10 15	15 50	-50 -50	-50 -50	-1.0 -1.0	-4.5 -4.5	1	3 3	0.5 0.5	5.0 5.0	$160 @ 100 \mathrm{~Hz}$ $160 @ 100 \mathrm{~Hz}$
2N3956	T0-71	15	50 75	-50 -50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100 Hz
2N3957	TO-71	20	75	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100 Hz
2N3958	TO-71	25	100	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100 Hz
2N5196	TO-71	5	5	-15	-50	-0.7	-4.0	700 @	$\mu \mathrm{\mu}$ A	0.7	7.0	20 @ 1 kHz
2N5197	TO-71	5	10	-15	-50	-0.7	-4.0	700 @	$00 \mu \mathrm{~A}$	0.7	7.0	20 @ 1 kHz
2N5198	TO-71	10	20	-15	-50	-0.7	-4.0	700	$00 \mu \mathrm{~A}$	0.7	7.0	$20 @ 1 \mathrm{kHz}$
2N5199	TO-71	15	40	-15	-50	-0.7	-4.0	700 @	$00 \mu \mathrm{~A}$	0.7	7.0	$20 @ 1 \mathrm{kHz}$
2N5452	TO-71	5	5	IGSS-100	-50	-1.0	-4.5	1	4	0.5	5.0	$20 @ 1 \mathrm{kHz}$
2N5453	TO-71	10	10	IGSS -100	-50	-1.0	-4.5	1	4	0.5	5.0	$20 @ 1 \mathrm{kHz}$
2N5454	TO-71	15	25	IGSS-100	-50	-1.0	-4.5	1	4	0.5	5.0	$20 @ 1 \mathrm{kHz}$
2N5515	TO-71	5	5	-100	-40	-0.7	-4.0	1	4	0.5	7.5	$30 @ 10 \mathrm{~Hz}$
2N5516	TO-71	5	10	-100	-40	-0.7	-4.0	1	4	0.5	7.5	$30 @ 10 \cdot \mathrm{~Hz}$
2N5517	TO-71	10	20	-100	-40	-0.7	-4.0	1	4	0.5	7.5	$30 @ 10 \mathrm{~Hz}$
2N5518	TO-71	15	40	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10 Hz
2N5519	TO-71	15	80	-100	-40	-0.7	-4.0	1	4	0.5	7.5	$30 @ 10 \mathrm{~Hz}$
2N5520	TO-71	5	5	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15@10Hz
2N5521	TO-71	5	10	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10 Hz
$2 i v 5522$	T0-7i	i0	20	- i00	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10 Hz
2N5523	TO-71	15	40	- 100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10 Hz
2N5524	TO-71	15	80	-100	-40	-0.7	--4.0	1	4	0.5	7.5	15 @ 10 Hz
2N5902	TO-99	5	5	-3	-40	-0.6	-4.5	70	250	0.3	0.5	100 @ 1 kHz
2N5903	TO-99	5	10	-3	-40	-0.6	-4.5	70	250	0.03	. 05	100 @ 1 kHz
2N5904	TO-99	10	20	-3	-40	-0.6	-4.5	70	250	0.03	. 05	$100 @ 1 \mathrm{kHz}$
2N5905	TO-99	15	40	-3	-40	-0.6	-4.5	70	250	0.03	0.5	100 @ 1 kHz
2N5906	TO-99	5	5	-1	-40	-0.6	-4.5	70	250	0.03	0.5	100 @ 1 kHz
2N5907	TO-99	5	10	-1	-40	-0.6	-4.5	70	250	0.03	0.5	$100 @ 1 \mathrm{kHz}$
2N5908	TO-99	10	20	-1	-40	-0.6	-4.5	70	250	0.03	0.5	$100 @ 1 \mathrm{kHz}$
2N5909	TO-99	15	40	-1	-40	-0.6	-4.5	70	250	0.03	0.5	100 @ 1 kHz
2N5911	TO-99	10	20	-100	-25	- 1.0	-5.0	5/10	5 mA	7.0	40.0	20 @ 10 kHz
2N5912	TO-99	15	40	-100	-25	-1.0	-5.0	5/10	5 mA	7.0	40.0	$20 @ 10 \mathrm{kHz}$
2N6483	TO-71	5	5	-100	-50	-0.7	-4.0	1000	4000	0.5	7.5	$10 @ 10 \mathrm{~Hz}$
2N6484	TO-71	10	10	-100	-50	-0.7	-4.0	1000	4000	0.5	7.5	$10 @ 10 \mathrm{~Hz}$
2N6485	TO-71	15	25	-100	-50	-0.7	-4.0	1000	4000	0.5	7.5	10 @ 10 Hz
IMF5911	TO-99	10	20	-100	-25	-1.0	-5.0	5/10	5 mA	7.0	40.0	20 @ 10 kHz
IMF5912	TO-99		40	-100	-25	-1.0	-5.0	5/10	5 mA	7.0	40.0	20 @ 10 kHz
IMF6485	TO-71	25	40	-100	-50	-0.7	-4.0	1000	4000	0.5	7.5	15@10 Hz
IT500	TO-52	5	5	-5	-50	-0.7	-4.0	700	1600	0.7	7.0	$35 @ 10 \mathrm{~Hz}$
IT501	TO-52	5	10	-5	-50	-0.7	-4.0	700	1600	0.7	7.0	$35 @ 10 \mathrm{~Hz}$
IT502	TO-52	10	20	-5	-50	-0.7	-4.0	700	1600	. 0.7	7.0	35 @ 10 Hz
	TO-52	15	40	-5	-50	-0.7	-4.0	700	1600	0.7	7.0	35 @ 10 Hz
SU2365	TO-71	5	10	-100	-30		-3.5	1/2	$00 \mu \mathrm{~A}$	0.5	10.0	15 @ 1 kHz
SU2365A	TO-71	5	10	-20	-30		-3.5	1/2@	$00 \mu \mathrm{~A}$	0.5	10.0	50 @ 1 kHz
SU2366	TO-71	10	10	-100	-30		-3.5	1/2 @	$00 \mu \mathrm{~A}$	0.5	10.0	$15 @ 1 \mathrm{kHz}$
SU2366A	TO-71	10	10	-20	-30		-3.5	1/2 @	$00 \mu \mathrm{~A}$	0.5	10.0	50 @ 1 kHz
SU2367	TO-71	10	25	-100	-30		-3.5	1/2	$00 \mu \mathrm{~A}$	0.5	10.0	15 @ 1 kHz
SU2367A	TO-71	10	25	-20	-30		-3.5	1/2 @	$00 \mu \mathrm{~A}$	0.5	10.0	$50 @ 1 \mathrm{kHz}$
SU2368	TO-71	15	25	-100	-30		-3.5	1/2 @	00 A	0.5	10.0	15@1 kHz
SU2368A	TO-71	15	25	-20	-30		-3.5	1/2@	$00 \mu \mathrm{~A}$	0.5	10.0	$50 @ 1 \mathrm{kHz}$
U231	TO-71	5	10	-50	-50	-0.5	-4.5	600	1600	0.5	5.0	80 @ 100 Hz
U232	TO-71	10	20	-50	-50	-0.5	-4.5	600	1600	0.5	5.0	80 @ 100 Hz
U233	TO-71	15	50	-50	-50	-0.5	-4.5	600	1600	0.5	5.0	80 @ 100 Hz
U234	TO-71	20	75	-50	-50	-0.5	-4.5	600	1600	0.5	5.0	80 @ 100 Hz
U235	TO-71	25	100	-50	-50	-0.5	-4.5	600	1600	0.5	5.0	80 @ 100 Hz
U401	TO-71	5	10	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	$20 @ 10 \mathrm{~Hz}$
U402	T0-71	10	10	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	$20 @ 10 \mathrm{~Hz}$
U403	TO-71	10	25	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	$20 @ 10 \mathrm{~Hz}$
U404	TO-71	15	25	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	$20 @ 10 \mathrm{~Hz}$
U405	TO-71	20	40	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	$20 @ 10 \mathrm{~Hz}$
U406	TO-71	40	80	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	$20 @ 10 \mathrm{~Hz}$
U421	TO-99	10	10	0.1	-60	0.4	2.0	300	800	60-10	\% A	20 @ 10 Hz
U422	TO-99	15	25	0.1	-60	0.4	2.0	300	800	60-100	\% A	$20 @ 10 \mathrm{~Hz}$
U423	TO-99	25	40	0.1	-60	0.4	2.0	300	800	60-10	\% A	$20 @ 10 \mathrm{~Hz}$
U424	TO-99	10	10	0.5	-60	0.4	3.0	300	1000	60-180	$0{ }_{\mu} \mathrm{A}$	$20 @ 10 \mathrm{~Hz}$
U425	TO-99	15	25	0.5	-60	0.4	3.0	300	1000	60-180	0 \% A	20 @ 10 Hz
U426	TO-99	25	40	0.5	-60	0.4	3.0	300	1000	60-18	00 A	20 @ 10 Hz
2N5564	TO-71	5	10	-	-40	-0.5	-3.0	7.5	12.5	5.0	30.0	10 @ 10 Hz
2N5565	T0-71	10	25	-	-40	-0.5	-3.0	7.5	12.5	5.0	30.0	10 @ 10 Hz
2N5566	TO-71	20	50	-	-40	-0.5	-3.0	7.5	12.5	5.0	30.0	$10 @ 10 \mathrm{~Hz}$
IMF5564	TO-71	5	10	-	-40	-0.5	-3.0	7.5	12.5	5.0	30.0	10 @ 10 Hz
IMF5565 IMF5566	TO-71 TO-71	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	-	-40 -40	-0.5 -0.5	-3.0 -3.0	7.5	12.5 12.5	5.0 5.0	30.0 30.0	$\begin{aligned} & 10 @ 10 \mathrm{~Hz} \\ & 10 @ 10 \mathrm{~Hz} \end{aligned}$

Differential Amplifiers—Dual Monolithic P－Channel MOSFETS （Enhancement）

Ordering Preferred Part Number	rmation Package	$\begin{gathered} V_{\text {GS (it) }} \\ \min / \max \\ V \end{gathered}$		$\underset{V}{B V_{\text {oss }}}$	$\mathrm{I}_{\text {oss }}$ \max pA	$\mathrm{I}_{\text {Gss }}$ \max pA	$\underset{\substack{\mathbf{g}_{\mathrm{fs}} \\ \mu \mathrm{mho}}}{\mathrm{~min}^{2}}$	$\begin{gathered} \mathrm{I}_{\mathrm{D} \text { (on) }} \\ \min / \max \\ \mathrm{mA} \\ \hline \end{gathered}$		$\mathbf{r}_{\text {os（on）}}$ max ohm	$V_{G S 1-2}$ max mV
3N165	TO－99	－2	－5	－40	－200	－10	1500	－5．0	－ 30	300	100
3N166	TO－99	－2	－－5	－40	－200	－10	1500	－5．0	－30	300	
3N188	TO－99	－2	－5	－40	－200	－200	1500	－－5．0	－30	300	100 Zener Protected
3N189	TO－99	－2	－5	－40	－20n	－200	1500	－5．0	－30	300	Zener Protected
3N190	TO－99	－2	－5	－40	－200	－200	1500	－5．0	－30	300	
3N191	TO－99	－2	－5	－40	－200	－200	1500	－5．0	－30	300	

Differential Amplifiers—Dual NPN Bipolar Transistors

	information Package	$\begin{aligned} & \mathbf{V}_{\mathrm{BE},-2} \mathrm{~m} \\ & \mathrm{max} \\ & \hline \end{aligned}$			$\begin{gathered} \mathrm{I}_{\mathrm{B}}{ }_{12,2} @ \\ \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ \mathrm{nA} \\ \max \\ \hline \end{gathered}$		$\begin{aligned} & I_{\text {c80 }} \\ & \text { max } \\ & \text { max } \end{aligned}$	$\begin{gathered} \text { Noise } \\ \text { dB } \\ \max \end{gathered}$	$\underset{\min }{\mathbf{M H z}_{\mathbf{f}_{1}^{\prime}} @ \mathbf{I}_{\mathbf{c}} .}$	$\begin{gathered} \mathrm{c}_{\text {ofo }} \\ \text { max } \end{gathered}$	Structure
2N2453	TO－78	3	10	80		30	5	7	$150 @ 1 \mathrm{~mA}$	8	Junc．Isol．
2N2453A	T0－78	3	5	80	． $6 \mu \mathrm{~A} @ 100 \mu \mathrm{~A}$	60	5	4	150 ＠ 1 mA	4	Junc．Isol．
2N4044	T0－78	3	3	200	5	60	． 1	2	200 ＠ 1 mA	． 8	Dielec．Isol．
2N4045	TO－78	5	10	80	25	45	． 1	3	150 ＠ 1 mA	． 8	Dielec．Isol．
2N4100	T0－78	5	5	150	10	55	． 1	3	150 ＠ 1 mA	8	Dielec．Isol．
2N4878	T0－71	3	3	200	5	60	.1	2	200 ＠ 1 mA	8	Dielec．Isol．
2N4879	TO－71	5	5	150	10	55	.1	3	150 ＠ 1 mA		Dielec．Isol．
2N4880	TO－71	5	10	80	25	45	． 1		150 ＠ 1 mA	． 8	Dielec．Isol．
17120	TO－78	$\stackrel{2}{1}$	5	200	5	45	1	2 typ．	$150 @ 1 \mathrm{~mA}$	2	Junc．Isol．
IT120A	TO－78 TO－71	1	3	200	2.5	60	1	2 typ．	150 ＠ 1 mA	2	Junc．Isol．
T124	TO－78 TO－78	3． 5	10 15	1500 1500	$6 \mathrm{~A} V_{\text {cE }}=1 \mathrm{~V}$ $0.6 \mathrm{C} V^{\text {ce }}=1 \mathrm{~V}$	2	1 1	3	$100 @ 200 \mu \mathrm{~A}$ $100 @ 100 \mu \mathrm{~A}$	8	Dielec．Isol．
T1124B	T0－78 T0．78	3． 5	15	4000	0．6A $\mathrm{V}_{\text {ce }}^{\text {CE }}=1 \mathrm{~V}$	2	1	3	$100 @ 100 \mu \mathrm{~A}$	． 8	
IT125	T0－78	－	－	1000	$0.6 \mathrm{~A} \mathrm{~V}_{\text {cE }}=1 \mathrm{~V}$	2	． 1		$100 @ 100 \mu \mathrm{~A}$	． 8	
IT126	T0－78 T0－71	1	3	200	2.5	60	． 1	1 typ．	250 ＠ 10 mA	4	Dielec．Isol．
IT－127	TO－78 TO－71	2	5	200	5	45	1	1 typ．	250 ＠ 10 mA	4	Dielec．Isol．
T1128	T0－78 T0－71	5	10	100	10	45	． 5	1 typ．	$250 @ 10 \mathrm{~mA}$	4	Dielec．Isol．
1T129	TO－78 T0－71	10	20	100	25	45	． 5	1 typ．	250 ＠ 10 mA	4	Dielec．Isol．
LM194 LM394	TO－5	0.15 0.15	0.8	200	二	40	二	二	二		

Differential Amplifiers—Dual PNP Bipolar Transistors

Analog Switches with Driver

Electrical Characteristics @ $+25^{\circ} \mathrm{C}$-Military Temperature Devices

Multi-Channel FET Switches

Electrical Characteristics @ $+25^{\circ} \mathrm{C}$-Military Temperature Devices

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type} \& \multirow[b]{2}{*}{No. of Channels} \& \multirow[b]{2}{*}{Device No.} \& \multirow[b]{2}{*}{Switch Technology} \& \multicolumn{2}{|c|}{$\mathrm{r}_{\text {DS (on) }}$} \& \multirow[t]{2}{*}{$I_{D \text { (ot) }}$ na max} \& \multirow[t]{2}{*}{$$
\begin{gathered}
\mathbf{t}_{\text {on }} \\
\max ^{*}
\end{gathered}
$$} \& \multirow[t]{2}{*}{$$
\begin{gathered}
\mathbf{t}_{\text {off }} \\
\text { nsax}^{*}
\end{gathered}
$$} \& \multicolumn{2}{|l|}{Logic Input}

\hline \& \& \& \& $$
\begin{gathered}
\text { ohms } \\
\text { max(4) }
\end{gathered}
$$ \& $$
\begin{gathered}
\text { ohms } \\
\max (1)
\end{gathered}
$$ \& \& \& \& Logic Level \& type

\hline \multirow[b]{5}{*}{SPST

Diff} \& 3 \& \[
$$
\begin{aligned}
& \text { MM-455 } \\
& \text { MM-555 } \\
& \text { G-124 } \\
& \text { G-125 } \\
& \text { G-126 }
\end{aligned}
$$

\] \& | P-MOS |
| :--- |
| P-MOS |
| P-MOS |
| $\mathrm{N}-\mathrm{JFET}$ |
| N-JFET | \& \[

$$
\begin{aligned}
& 200 \\
& 200 \\
& 100 \\
& 500 \\
& 250
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 600 \\
& 600 \\
& 450 \\
& 500 \\
& 250
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0.2 \\
20.0 \\
2.0 \\
0.05 \\
0.05
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
50 \\
50 \\
100 \\
30 \\
30
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
50 \\
50 \\
100 \\
50 \\
50
\end{array}
$$

\] \& | P-MOS |
| :--- |
| P-MOS |
| P-MOS |
| -5 V PMOS |
| -10V PMOS | \& \[

$$
\begin{aligned}
& \text { lo } \\
& \text { lo } \\
& \text { hi } \\
& \text { hi } \\
& \text { hi }
\end{aligned}
$$
\]

\hline \& \& \[
$$
\begin{aligned}
& \text { G-127 } \\
& \text { G-128 } \\
& \text { G-129 } \\
& \text { G-130 } \\
& \text { G-131 }
\end{aligned}
$$

\] \& | N-JFET |
| :--- |
| N -JFET |
| N-JFET |
| N-JFET |
| N-JFET | \& \[

$$
\begin{array}{r}
90 \\
45 \\
500 \\
250 \\
90
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
90 \\
45 \\
500 \\
250 \\
90
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.1 \\
& 0.1 \\
& 0.05 \\
& 0.05 \\
& 0.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 30 \\
& 30 \\
& 30 \\
& 30 \\
& 30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50 \\
& 50 \\
& 50 \\
& 50 \\
& 50
\end{aligned}
$$

\] \& | -5 V PMOS -10V PMOS -5V PMOS |
| :--- |
| -10V PMOS |
| -5V PMOS | \& \[

$$
\begin{aligned}
& \mathrm{hi} \\
& \mathrm{hi} \\
& \mathrm{hi} \\
& \mathrm{hi} \\
& \mathrm{hi}
\end{aligned}
$$
\]

\hline \& 4 \& \[
$$
\begin{aligned}
& \mathrm{G}-132 \\
& \mathrm{G}-1330 \\
& \mathrm{G}-1340 \\
& \mathrm{G}-1350 \\
& \mathrm{G}-1360
\end{aligned}
$$

\] \& | N-JFET |
| :--- |
| N -JFET |
| $\mathrm{N}-\mathrm{JFET}$ |
| N -JFET |
| N-JFET | \& 45

20
10
20
10 \& 45
20
10
20

10 \& $$
\begin{aligned}
& 0.1 \\
& 0.5 \\
& 0.5 \\
& 0.5 \\
& 0.5
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 30 \\
& 30 \\
& 30 \\
& 30 \\
& 30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50 \\
& 50 \\
& 50 \\
& 50 \\
& 50
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
\text { - 10V PMOS } \\
\text { - } 5 \mathrm{~V} \text { PMOS } \\
-10 \mathrm{VMOS} \\
-5 \mathrm{~V} \text { PMOS } \\
-10 \mathrm{~V} \text { PMOS }
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \text { hi } \\
& \text { hi }
\end{aligned}
$$
\]

\hline \& 5 \& | MM-451 |
| :--- |
| MM-452 |
| MM-551 |
| MM-552 |
| G-116 | \& | P-MOS |
| :--- |
| P-MOS |
| P-MOS |
| P-MOS |
| P-MOS | \& \[

$$
\begin{aligned}
& 200 \\
& 200 \\
& 200 \\
& 200 \\
& 100
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 600 \\
& 600 \\
& 600 \\
& 600 \\
& 450
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.2 \\
0.2 \\
20.0 \\
20.0 \\
-2.5
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
50 \\
50 \\
50 \\
50 \\
100
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
50 \\
50 \\
50 \\
50 \\
100
\end{array}
$$

\] \& | P-MOS |
| :--- |
| P-MOS |
| P-MOS |
| P-MOS |
| P-MOS | \& \[

$$
\begin{aligned}
& 10 \\
& 10 \\
& 10 \\
& 10 \\
& 10
\end{aligned}
$$
\]

\hline \& 6

2 \& \[
$$
\begin{aligned}
& \mathrm{G}-117 \\
& \mathrm{G}-115 \\
& \mathrm{G}-118 \\
& \mathrm{G}-123 \\
& \mathrm{MM}-450
\end{aligned}
$$

\] \& | P-MOS |
| :--- |
| P-MOS |
| P-MOS |
| P-MOS |
| P-MOS | \& \[

$$
\begin{aligned}
& 100 \\
& 100 \\
& 100 \\
& 125 \\
& 200
\end{aligned}
$$
\] \& 450

450
450
500

600 \& $$
\begin{array}{r}
-0.5 \\
-10.0 \\
-3.0 \\
-10.0 \\
0.2
\end{array}
$$ \& \[

$$
\begin{array}{r}
100 \\
100 \\
100 \\
100 \\
50
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
100 \\
100 \\
100 \\
100 \\
50
\end{array}
$$

\] \& | P-MOS |
| :--- |
| P-MOS |
| P-MOS |
| P-MOS |
| P-MOS | \& \[

$$
\begin{aligned}
& 10 \\
& 10 \\
& 10 \\
& 10 \\
& 10
\end{aligned}
$$
\]

\hline SPST \& 3 \& \[
$$
\begin{aligned}
& \text { MM-550 } \\
& \text { G-119 }
\end{aligned}
$$

\] \& | P-MOS |
| :--- |
| P-MOS | \& \[

$$
\begin{aligned}
& 200 \\
& 100
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 600 \\
& 450
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
20.0 \\
-1.5
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
50 \\
100
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
50 \\
100
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \text { P-MOS } \\
& \text { P-MOS }
\end{aligned}
$$

\] \& \[

10
\]

\hline
\end{tabular}

*These times are dependent on the driver used.

Drivers for FET Switches

Electrical Characteristics @ $+25^{\circ} \mathrm{C}$ —Military Temperature Devices

No. of Channels	Device No.	Positive volts	Negative volts	$\begin{gathered} \mathbf{t}_{\text {on }} \\ \text { ns } \\ \text { max } \end{gathered}$	$t_{\text {off }}$ ns max	$\underset{\operatorname{mA}(\text { Max })}{\text { Lo }}$	$\begin{gathered} \mathrm{HI} \\ \mu \mathrm{~A} \text { (Max) } \\ \hline \end{gathered}$	Logic Input Level	\qquad
2	$\begin{aligned} & \text { D112 } \\ & \text { D113 } \\ & \text { D120 } \\ & \text { D121 } \\ & \text { IH6201 } \end{aligned}$	$\begin{array}{r} +9.9 \\ +9.9 \\ +9.9 \\ +9.9 \\ +14.0 \end{array}$	$\begin{aligned} & -19.2 \\ & -19.2 \\ & -19.2 \\ & -19.2 \\ & -14.0 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \\ & 200 \end{aligned}$	$\begin{array}{r} 1500 \\ 1500 \\ 600 \\ 600 \\ 300 \end{array}$	$\begin{array}{r} 0.7 \\ 1.0 \\ 0.7 \\ 1.0 \\ 1.0 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \text { TTL } \\ & \text { TTL } \\ & \text { TTL } \\ & \text { TTL } \end{aligned}$	$\begin{array}{r} 200 \\ 200 \\ 200 \\ 200 \\ .350 \end{array}$
4 6	$\begin{aligned} & \text { D129 } \\ & \text { D123 } \\ & \text { D125 } \end{aligned}$	$\begin{aligned} & V_{c c} \\ & V_{c c} \\ & V_{c c} \end{aligned}$	$\begin{aligned} & -19.3 \\ & -19.7 \\ & -19.7 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{array}{r} 1000 \\ 600 \\ 600 \end{array}$	$\begin{array}{r} -0.2 \\ 1.0 \\ 0.7 \end{array}$	$\begin{aligned} & 0.25 \\ & 1.0 \\ & 1.0 \end{aligned}$	TTUDTL TTUDTL TTL	$\begin{aligned} & 100 \\ & 125 \\ & 300 \\ & \hline \end{aligned}$

NOTES:

1. Switch Resistance under worst case analog voltage.
2. Positive logic lo ("O") or hi (" 1 ") voltage at driver input necessary to turn switch on.
3. Logic "O" or "l" can be arbitrarily assigned for double-throw switches.
4. Switch resistance under best case analog voltage.

VARAFET

Type	$\begin{gathered} \mathbf{r}_{\mathrm{DS}(\text { Ion })} \\ \Omega \\ \max \end{gathered}$	$\underset{\max }{\mathbf{v}_{\mathbf{v}}}$	$I_{s \text { (off) }}$ PA max	Ioss mA \min	$\begin{gathered} \mathbf{t}_{\text {no }} \\ \text { ms } \\ \max \end{gathered}$	$t_{\text {of }}$ ns max	Package 4 FETS/Pkg	$V_{\text {analos }}$ V_{p-p} min	$V_{\text {inject }}$ V_{D-D} max
$\begin{aligned} & \hline \mathrm{HH} 401 \\ & \text { IH401A } \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	7.5 $5 .$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 45 \text { min } \\ & 35 \text { min } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	16 Pin Dip 16 Pin Dip	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$

Notes:

1. Intersil continues to produce the oider DG111 family of switches (DG1111 through (DG125).

The most significant feature of this family is that it has the maximum number of switches per package.
2. Intersil also markets devices that consist of drivers only (D112 through D129 and the IH6201) and gates only (G115 through G135, MM450 through MM555 and the IH401).

For switches whose outputs go into the input of an Op Amp:	For switching positive signals only:
5009 FAMILY VIRTUAL GROUND SWITCH	5025 FAMILY POSITIVE SIGNAL SWITCH
Output of switch must go into the virtual ground point of an Op Amp (unless signal is $<0.7 \mathrm{~V}$).	Can switch positive signals only unless a translator driver is used.
Features	Features
1. Very low quiescent current	1. Very low quiescent current
2. Does not need driver, can be driven directly by TTL.	2. Does not need driver, can be driven directly by TTL.
3. Low cost.	3. Low Cost
Notes	Notes
1. All switches in 5009 family are SPST.	1. All switches in 5025 family are SPST.
2. Odd numbered devices are driven by TTL open collector logic.	2. All devices can be driven by TTL open collector logic. All devices can be driven by low
3. Even numbered devices are driven by TTL low level logic.	level TTL logic if input signal is less than 1 V .
4. Commonly used for signals going into the inverting input of Op-Amps.	3. Commonly used for signals going into the non-inverting input of Op-Amps. 4. Odd numbered devices have
5009,5010 quad, compensated	5. 100Ω max $r_{\text {ss }}$ (on) $@ 25^{\circ} \mathrm{C}$.
5011,5012 quad, uncompensated 5013,5014 triple, compensated	5. Even numbered devices have 150 max $\mathrm{r}_{\mathrm{DS}(\mathrm{on)}} @ 25^{\circ} \mathrm{C}$.
5015,5016 triple, uncompensated 5017,5018 dual, compensated	5025,5026 quad, common drain
5019,5020 dual, uncompensated	5027,5028 quad.
5021,5022 single, compensated	5029,5030 triple, common drain
5023,5024 single, uncompensated	```5031,5032 triple. 5033,5034 dual, common drain 5035,5036 dual. 5037,5038 single.```

Integrating Analog-to-Digital Converters for Display

Maximum Electrical Specification at $25^{\circ} \mathrm{C}$ unless otherwise noted.

Single Chip				Two Chip System			
Model	$\begin{gathered} \text { New } \\ \text { ICL7126 } \end{gathered}$	ICL7106/ICL7116	ICL7107/ICL7117	$\begin{aligned} & \text { ICL8052/ } \\ & \text { ICL8053 } \end{aligned}$	$\begin{aligned} & \text { ICL8052/ } \\ & \text { ICL7101 } \end{aligned}$	$\begin{aligned} & \text { ICL8068A } \\ & 71 \mathrm{C} 03 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { ICL8052A } \\ & \text { 71C03A } \end{aligned}$
Resolution	$\pm 31 / 2$ digit	$\pm 31 / 2$ digit	$\pm 31 / 2$ digit	Depends on counter used	$\pm 31 / 2$ digit	$\pm 41 / 2 \mathrm{digit}$	$\pm 41 / 2$ digit
Accuracy Nonlinearity Zero Input Reading Ratiometric Reading (Ratiometric) Rollover Error	$\begin{aligned} & \pm 1 \text { count } \\ & \pm 0.000 \\ & +1.000 . \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \end{aligned}$	$\begin{aligned} & \pm 1 \text { count } \\ & \pm 0.000 \\ & +1.000 \text {. } \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \end{aligned}$	$\begin{aligned} & \pm 1 \text { count } \\ & \pm 0.000 \\ & +1.000 . \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \end{aligned}$	$\begin{aligned} & \pm 0.002 \% \\ & \pm 0.0000 \\ & +1.0000 . \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1 \text { count } \\ & \pm 0.000 \\ & +1.000 . \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \end{aligned}$	$\begin{aligned} & \pm 1 \text { count } \\ & \pm 0.000 \\ & +1.000 . \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \end{aligned}$	$\begin{aligned} & \pm 1 \text { count } \\ & \pm 0.0000 \\ & +1.0000 . \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \end{aligned}$
Stability Offset vs Temperature Gain vs Temperature Conversion Rate	$\begin{aligned} & 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \mathrm{to} 3 \\ & \text { conv } / \mathrm{sec} \end{aligned}$	$\begin{aligned} & 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \text { to } 15 \\ & \text { conv } / \text { sec } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \text { to } 15 \\ & \text { conv } / \mathrm{sec} \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \text { to } 30 \\ & \text { conv } / \mathrm{sec} \end{aligned}$	$\begin{aligned} & 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \text { to } 30 \\ & \text { conv } / \mathrm{sec} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \text { to } 30 \\ & \text { conv } / \mathrm{sec} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \text { to } 30 \\ & \text { conv } / \mathrm{sec} \\ & \hline \end{aligned}$
Analog Input Voltage Range Impedance Leakage Current Noise (peak-to-peak)	$\begin{aligned} & \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\ & 10^{12} \Omega \\ & 2 \mathrm{pA} \\ & 15 \mu \mathrm{~V} \text { typ } \end{aligned}$	$\begin{aligned} & \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\ & 10^{12} \Omega \\ & 2 \mathrm{pA} \\ & 15 \mu \mathrm{~V} \text { typ } \end{aligned}$	$\begin{aligned} & \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\ & 10^{12} \Omega \\ & 3 \mathrm{pA} \\ & 15 \mu \mathrm{~V} \text { typ } \end{aligned}$	$\begin{aligned} & \pm 2 \mathrm{~V} \\ & 10^{9} \Omega \\ & 30 \mathrm{pA} \\ & 20 \mu \mathrm{~V} \text { typ } \end{aligned}$	$\begin{aligned} & \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\ & 10^{9} \Omega \\ & 30 \mathrm{pA} \\ & 20 \mu \mathrm{~V} \text { typ } \end{aligned}$	$\begin{aligned} & \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\ & 10^{9} \Omega \\ & 200 \mathrm{pA} \\ & 2 \mu \mathrm{~V} \text { typ } \end{aligned}$	$\begin{aligned} & \pm 2 \mathrm{~V} \\ & 10^{9} \Omega \\ & 10 \mathrm{pA} \\ & 20 \mu \mathrm{~V} \text { typ } \end{aligned}$
Digital Input		Display Hold (7116)	Display Hold (7117)				
Digital Outputs Format Logic Level	7 segment LCD display AC: 4.5 V down from $V+$	7 segment LCD display AC: 4.5 V down from $\mathrm{V}+$	7 segment LED display 11. Comm Anode DTL TTL CMOS	Depends oin counter used Depends on counter used	Latutieut Parallel BCD TTL/CMOS	ivilitiplex BCD TTL/CMOS	iviuiiipiex BCD TTL/CMOS
Power Supply Voltage Current Package	$\begin{aligned} & +9 \mathrm{~V} \\ & 100 \mu \mathrm{~A} \\ & 40 \text { pin DIP } \end{aligned}$	$\begin{aligned} & +9 \mathrm{~V} \\ & 1.8 \mathrm{~mA} \\ & 40 \mathrm{pin} \text { DIP } \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & 1.8 \mathrm{~mA} \\ & 40 \mathrm{pin} \text { DIP } \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} ;+5 \mathrm{~V} \\ & 12 \mathrm{~mA} \\ & \text { (2) } 14 \mathrm{pin} \\ & \text { DIP } \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} ;+5 \mathrm{~V} \\ & 17 \mathrm{~mA} ; 25 \mathrm{~mA} \\ & 16 \mathrm{pin} \text { DIP } \\ & 40 \text { pin DIP } \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} ;+5 \mathrm{~V} \\ & 20 \mathrm{~mA} ; 30 \mathrm{~mA} \\ & 16 \mathrm{pin} \text { DIP } \\ & 24 \text { pin DIP } \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} ;+5 \mathrm{~V} \\ & 18 \mathrm{~mA} ; 30 \mathrm{~mA} \\ & 16 \mathrm{pin} \text { DIP } \\ & 24 \text { pin DIP } \end{aligned}$

Also available LD110/111/114 (not recommended for new designs)

Integrating Analog-to-Digital Converters for Data Acquisition

Maximum Electrical Specifications at $+25^{\circ} \mathrm{C}$ unless otherwise noted

Type	Single-Chip	Two-Chip						
Model	New ICL7109	$\begin{array}{\|l\|} \hline \text { ICL8068/ } \\ \text { ICL7104-12 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ICL8068/ } \\ \text { ICL7104-14 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ICL8068/ } \\ & \text { ICL7104-16 } \end{aligned}$	$\begin{array}{\|l\|} \text { ICL8052/ } \\ \text { ICL7101 } \end{array}$	$\begin{aligned} & \text { ICL8068A/ } \\ & \text { ICL7103B } \end{aligned}$	$\begin{aligned} & \text { ICL8052A/ } \\ & \text { ICL7103A } \end{aligned}$	$\begin{aligned} & \text { ICL8052/ } \\ & \text { ICL8053 } \end{aligned}$
Resolution	$\pm 12-\text { Bit }$ Binary	$\begin{aligned} & \pm 12 \text {-Bit } \\ & \text { Binary } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \pm 14-\text { Bit } \\ \text { Binary } \\ \hline \end{array}$	$\begin{aligned} & \pm 16-\text { Bit } \end{aligned}$ Binary	$\begin{aligned} & 31 / 2 \text {-Digit } \\ & \text { BCD } \end{aligned}$	$\begin{aligned} & \text { 41⁄2-Digit } \\ & \text { BCD } \end{aligned}$	$\begin{aligned} & 41 / 2 \text {-Digit } \\ & B C D \end{aligned}$	$\pm 12-\text { Bit }$ Binary
$\mu \mathrm{P}$ Compatible	yes							
Output	Programmable: 1. Latched parallel 3 state Binary 2. Controlled 2-8 bit byte	Programmable: 1. Latched parallel 3 state binary 2. Controlled $32-8$ Bit byte for ICL710412/14, 3-8 bit byte for ICL7104-16			Latched parallel BCD	$\begin{array}{\|l} \hline \text { Multiplexed } \\ \text { BCD } \end{array}$	$\begin{aligned} & \text { Multiplexed } \\ & \text { BCD } \end{aligned}$	Interface to MOS, TTL, $\mu \mathrm{P}$
Control Lines	Start/Convert, Busy, Byte Enable, Mode, Load, Send Enable, Out of Range				Start/Convert. Busy, Out of Range	Start/Convert, Busy, Strobe Out of Range Underrange	Start/Convert Busy, Strobe Out of Range Underrange	Auto-zero, Signal Interpret Two Reference, Integrate, and Comparator Output
UART Compatible	yes	yes	yes	yes	no	yes	yes	no

Digital-to-Analog Converters*

Maximum Electrical Specifications at $+25^{\circ} \mathrm{C}$ unless otherwise noted

Model	$\begin{aligned} & \text { New } \\ & \text { AD7523 } \end{aligned}$	$\begin{aligned} & \text { New } \\ & \text { AD7533 } \end{aligned}$	AD7520 (7530)	New ICL7113	AD7521 (7531)	$\begin{aligned} & \text { New } \\ & \text { AD7541 } \end{aligned}$	New ICL7112
Resolution	8 bit	10 bit	10 bit	3 digit	12 bit	12 bit	12 bit
Accuracy Linearity Zero Offset Full Scale Reading	$\begin{aligned} & \hline \text { J/K/L } \\ & 0.2 \% / 0.1 \% / 0.05 \% \\ & 50 \mu \mathrm{~A} \\ & 1.5 \% \max \\ & \hline \end{aligned}$	$\begin{aligned} & \text { J/K/L } \\ & 0.2 \% / 0.1 \% / 0.05 \% \\ & 200 \mathrm{nA} \\ & 1.4 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline J / K / L \\ & 0.2 \% / 0.1 \% / 0.05 \% \\ & 200 \mathrm{nA}(300 \mathrm{nA}) \\ & 0.3 \% \text { typ } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B/A } \\ 0.2 \% / 0.05 \% \\ 200 \mathrm{nA} \\ 0.3 \% \text { typ } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline J / K / L \\ 0.2 \% / 0.1 \% / 0.05 \% \\ 200 \mathrm{nA}(300 \mathrm{nA}) \\ 0.3 \% \text { typ } \\ \hline \end{array}$	$\mathrm{J} / \mathrm{K} / \mathrm{L}$ $0.02 \% / 0.01 \% / 0.01 \%$ 50 nA 0.3%	$\begin{array}{\|l\|} \hline J / K \\ 0.02 \% / 0.01 \% \\ 200 \mathrm{nA} \\ 0.3 \% \end{array}$
Stability Gain vs. Temp Linearity vs. Temp	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{ppm}-{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & \text { Setting Time } \\ & \text { to } \pm 0.05 \% \text { F.S. } \end{aligned}$	150 ns	600 ns typ	500 ns typ	500 ns typ	500 ns typ	$1 \mu \mathrm{~s}$	500 ns typ
Input Code Logic Compatibility option	$\begin{aligned} & \hline \text { DTL/TTL/CMOS } \\ & \text { Binary } \\ & \text { Offset Binary } \end{aligned}$	$\begin{aligned} & \hline \text { DTL/TTL/CMOS } \\ & \text { Binary } \\ & \text { Offset Binary } \end{aligned}$	$\begin{aligned} & \hline \text { DTL/TTL/CMOS } \\ & \text { Binary } \\ & \text { Offset Binary } \end{aligned}$	$\begin{aligned} & \text { DTL/TTL/CMOS } \\ & \text { BCD } \end{aligned}$	$\begin{aligned} & \hline \text { DTL/TTL/CMOS } \\ & \text { Binary } \\ & \text { Offset Binary } \end{aligned}$	$\begin{aligned} & \text { DTL/TTL/CMOS } \\ & \text { Binary } \\ & \text { Offset Binary } \end{aligned}$	DTL/TTL/CMOS Binary Offset Binary
Power Supply Voltage Current	$\begin{aligned} & +5 \text { to }+16 \mathrm{~V} \\ & 100 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & +5 \text { to }+15 \mathrm{~V} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +5 \text { to }+15 \mathrm{~V} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +5 \text { to }+15 \mathrm{~V} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +5 \text { to }+15 \mathrm{~V} \\ & 2 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & +5 \text { to }+16 \mathrm{~V} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +5 \text { to }+15 \mathrm{~V} \\ & 2 \mathrm{~mA} \end{aligned}$
Package	16 pin DIP	16 pin DIP	16 pin DIP	18 pin DIP	18 pin DIP	18 pin DIP	18 pin DIP

*R2R Ladder Multiplying Type

Successive Approximation Registers AM2502/2503/2504

Quad Current Switches ICL8018/8019/8020

Sample and Hold

Type	$\mathbf{V}_{\text {analoo }}$ $\left(\mathbf{V}_{\text {p-p }}\right)$	$\mathbf{Z}_{\text {in }}$ $(\mathbf{M i I} @ 10 \mathbf{H z})$	$\mathbf{V}_{\text {os }}$ $(\mathbf{m V})$	Drift Rate $(\mathbf{m V} / \mathbf{s e c})$
IH5110	± 15	100	40	5
IH5111	± 20	100	40	5
IH5112	± 15	100	10	5
IH5113	± 20	100	5	
IH5114	± 15	50	5	
IH5115	± 20	100	5	

Monolithic Voltage Converter - The ICL7660

Converts positive voltage into negative voltages over a range of +1.5 V through +10 V . May be cascaded for higher negative output voltages, paralleled for greater output current, used as a positive voltage multiplier, or any combination of the above. Typical supply current is $170 \mu \mathrm{~A}$, and output source resistance is 55Ω at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}$.

Operational Amplifiers-General Purpose

Type	Description	$\begin{aligned} & V_{\mathrm{OS}} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{gathered} I_{b} \\ (n A) \end{gathered}$	Avol (V/V)	GxB/W (MHz)	$\begin{gathered} I_{c c} \\ (m A) \end{gathered}$	$\begin{aligned} & \mathbf{T}_{\hat{A}} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Packages*	Remarks
101A	Gen Purpose, Uncompensated	2.0	75	50,000	0.8*	3.0	$-55,+125$	J,F,T	
101ALN	Guaranteed Noise 101A	2.0	75	50,000	0.8*	3.0	$-55,+125$	J,F,T	$50 \mathrm{nV} / \mathrm{V} \mathrm{Hz}$ @ 10 Hz
107	Gen Purpose, Compensated	2.0	75	50,000	-	3.0	$-55,+125$		
108	Low Level, Uncompensated	2.0	2.0	50,000	1.0*	0.6	-55, + 125	J,F,T	
108A	Low offset 108	0.5	2.0	80,000	1.0*	0.6	$-55,+125$	J,F,T	
108LN	Guaranteed Noise 108	2.0	2.0	50,000	1.0*	0.6	$-55,+125$	T	$70 \mathrm{nV} / \mathrm{V} \mathrm{Hz}$ @ 10 Hz
124	Quad, Compensated	5.0	300	100,000*	1.0*	2.0	$-55,+125$	J	
207	Low bias, Compensated	2.0	75	50,000	-	3.0	$-25,+85$	T	
208	Low Level, Uncompensated	2.0	2.0	50,000	1.0*	0.6	$-25,+85$	J,F,T	
208A	Low offset 208	0.5	2.0	80,000	1.0*	0.6	$-25,+85$	J,F,T	
224	Quad, Compensated	7.0	500	100,000*	1.0*	2.0	$-25,+85$	J	
301A	Gen Purpose, Uncompensated	7.5	250	25,000	0.8*	3.0	$0,+70$	P,T	
301 ALN	Guaranteed noise 301A	7.5	250	25,000	$0.8 *$	3.0	0, +70	P,T	$50 \mathrm{nV} / \mathrm{V} / \mathrm{Hz} @ 10 \mathrm{~Hz}$
307	Low bias, Compensated	7.5	250	25,000	- ${ }^{*}$	3.0	$0,+70$	P, ${ }^{\text {P }}$	
308	Low Level, Uncompensated	7.5	7.0	25,000	1.0*	0.8	$0,+70$	F,J,P,T	
308A	Low offset 308	0.5	7.0	80,000	1.0*	0.8	$0,+70$		
308 LN 324	Guaranteed noise 308	7.5 7.0	7.0 500	25,000 100,000*	$1.0 *$ $1.0{ }^{*}$	0.8 2.0	$0,+70$ $0,+70$	${ }_{\text {J,P }}$	$70 \mathrm{nV} / \mathrm{V} \mathrm{Hz} @ 10 \mathrm{~Hz}$
324 741	Quad, Compensated ${ }^{\text {Gen Purpose, Compensated }}$	7.0 5.0	500 500	100,000** 50,000	1.0 1.0 1.	2.0 2.8	$0,+70$ $-55,+125$	${ }_{\text {J,P }}$	
${ }^{741}$ (${ }^{\text {c }}$	Gen Purpose, Compensated	5.0 6.0	500 500	50,000 25,000	1.0*	2.8 2.8	$-55,+125$ $0,+70$	P,T	
741HS	Guaranteed Slew Rate 741	5.0	500	50,000	1.0*	2.8	$-55,+125$	J, T	Slew Rate $0.7 \mathrm{~V} / \mu \mathrm{S}$
741 CHS 741 LN	Guaranteed Slew Rate 741C Guaranteed Noise 741	6.0 5.0	500 500					$\underset{\mathrm{J}, \mathrm{~F}, \mathrm{~T}}{ }$	
741LN 741 CLN	Guaranteed Noise 741	6.0 6.0	500 500	50,000 25,000	1.0**	2.8 2.8	$\begin{gathered} -55,+125 \\ 0,+70 \end{gathered}$	J,F,T P, ${ }^{\text {, }}$,	$50 \mathrm{nV} / \sqrt{ } \mathrm{Hz} @ 10 \mathrm{~Hz}$
741KLN	Guaranteed Noise ${ }^{\text {High Accuitacy }} 741$	0.5	500	25,000	1.0*	2.8	0,+70	$\frac{\mathrm{T}}{\mathrm{T}}$ T	$50 \mathrm{nV} / \mathrm{VHz}$ @ 10 Hz
748	General Purpose	1.0	80	25,000	0.8	2.0	-55 to 125	P,T	
748 C	General Purpose, Compensated	1.0	80	25,000	0.8	2.0	0 to 70	P,T	
777	General purpose comparator	0.7	25	150,000	0.8	2.5	$-55,+125$	P,T	
777C	General purpose comparator	0.7	25	150,000	0.8	2.5	0, +70	P,T	
8008M	Low bias current, Compensated	5.0	10	20,00	$1.0 *$	2.8	$-55,+125$	J,T	
8008C	Low bias current, Compensated	6.0	25	20,000	1.0*	2.8	0, +70	J,P,T	
IH5101	Ulitra low noise		1,000	100,000	10.0	15.0	-55 to +125	1	
LH2101A	Dual high performance	2.0	100	25,000	0.8	2.5	-55 to 125	D	
LH2108	Dual super beta	2.0	3.0	25,000	1.0	0.4	- 55 to 125	D	
LH2108A	Dual super beta	0.5	3.0	40,000	1.0	0.4	-55 to 125	D	
LH2301A	Dual high performance	7.5	300	15,000	0.8	2.5	0 to 70	D	
LH2308	Dual super beta	7.5	10	15,000	1.0	0.4	0 to 70	D	
LH2308A	Dual super beta	0.5	10	60,000	1.0	0.4	0 to 70	D	
LM2902	Quad, Compensated	2.0	45	100,000	1.0	0.7	-40 to 85	P	

Operational Amplifiers—Low Power Programmable

Type	Description	$\begin{aligned} & V_{\mathrm{os}} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{gathered} I_{\mathrm{b}} \\ (\mathrm{nA}) \end{gathered}$	Avol (V/V)	GxB/W (MHz)	$\begin{gathered} \mathbf{I}_{\mathrm{cc}} \\ (\mu \mathrm{~A}) \end{gathered}$	$\begin{aligned} & \text { at } \mathbf{I}_{\text {set }} \\ & (\mu \mathrm{A}) \end{aligned}$	$\begin{gathered} \text { at } V_{s} \\ (V) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\boldsymbol{t}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Packages*
4250	Programmable, Uncompensated	5.0	10	25,000	-	8.0	1	± 1.5	-55 to 125	T
4250C	Programmable, Compensated	5.0	10	25,000	-	8.0	1	± 1.5	0,+70	T
		6.0	75	25,000	-	90	10	± 1.5		
8021M	Programmable, Compensated	3.0	20	50,000	0.27	40	30	± 6.0	$-55,+125$	J,T
8021C	Programmable, Compensated	6.0	30	50,000	0.27	50	30	± 6.0	0, + 70	T
8022M	Dual 8021M	3.0	20	50,000	0.27	40	30	± 6.0	$-55,+125$	J,F
8022C	Dual 8021C	6.0	30	50,000	0.27	50	30	± 6.0	0, + 70	J,P
8023M	Triple 8021M	3.0	20	50,000	0.27	40	30	± 6.0	$-55,+125$	J
8023C	Triple 8021C	6.0	30	50,000	0.27	50	30	± 6.0	0, +70	J,P

*See package key, page 391.

Operational Amplifiers-F.E.T. Input

Type	Description	$\begin{gathered} V_{\mathrm{OS}} \\ (\mathrm{mV}) \end{gathered}$	$\begin{gathered} \mathbf{I}_{\mathrm{b}} \\ (\mathbf{p A}) \end{gathered}$	$\begin{gathered} \mathbf{A}_{\text {vol }} \\ (\mathbf{V} / \mathbf{V}) \end{gathered}$	GxB/W (MHz)	$\begin{aligned} & \hline \text { Slew } \\ & \text { Rate } \\ & \text { V/S } \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{cc}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{C}} \\ \left({ }^{\mathbf{C}}\right) \end{gathered}$	Packages*	Remarks
LH0042	General Purpose	5.0	10	50,000		6	2.3	-55 to 125	T	
LF155	BIFET, Compensated	5	100	50,000	2.5*	5*	4	$-55,+125$	T	
LF155A	BIFET, Compensated	2	50	50,000	2.5*	3	4	$-55,+125$	T	
LF156	BIFET, Compensated	5	100	50,000	5*	7.5	7	-55, + 125	T	
LF156A	BIFET, Compensated	2	50	50,000	4	10	7	$-55,+125$	T	
LF157	BIFET, Compensated for $A_{v} \geqslant 5$	5	100	50,000	20*	30	7	-55, + 125	T	All BIFET amplifiers
LF157A	BIFET, Compensated for $A_{\text {vk\| } A \geq} \geqslant 5$	2	50	50,000	15	40	7	$-55,+125$	T	offer low noise-
LV255	BIFET, Compensated	5	100	50,000	2.5*	5*	4	$-25,+85$	T	See data sheets
LF256	BIFET, Compensated	5	100	50,000	5*	7.5*	7	$-25,+85$	T	
LF257	BIFET, Compensated for $\mathrm{A}_{v} \geqslant 5$	5	100	50,000	20*	30	7	$-25,+85$	T	
LF355	BIFET, Compensated	10	200	25,000	2.5*	5*	4	0,+70	T,P	
LF355A	BIFET, Compensated	2	50	50,000	2.5*	3	4	$0,+70$	T, P	
LF356	BIFET, Compensated	10	200	25,000	5*	12*	10	$0,+70$	T, P	
LF356A	BIFET, Compensated	2	50	50,000	4	10	7	$0,+70$	T, P	
LF357	BIFET, Compensated for $\mathrm{A}_{v} \geqslant 5$	10	200	25,000	20*	50*	10	$0,+70$	T,P	
LF357A	BIFET, Compensated for $A_{v} \geqslant 5$	2	50	50,000	15	40	7	$0,+70$	T, P	
AD503	High accuracy, low offset	20	10	50,000		3	7 max	$0,+70$	T	
SU536	General Purpose	30	30	50,000		6	6	-55 to 85	T	
740M	General Purpose	20	200	50,000	3*	6*	5.2	$-55,+125$	T	
740 C	General Purpose	110	2000	20,000	1^{*}	$6 *$	8.0	0,+70	T	
8007M	General Purpose, Compensated	20	20	50,000	1.0^{*}	6^{*}	5.2	$-55,+125$	T	
8007AM	8007 M , Low ID	30	1.0	20,000	1.0*	2.5	6	$-55,+125$	T	
8007C	General Purpose, Compensated	50	50	20,000	1.0*	6*	6	0, + 70	T	
8007AC	8007 C , Low l_{b}	30	1.0	20,000	1.0*	2.5	6	0, + 70	T	
8007M-5	8007 M , Low $\mathrm{V}_{\text {os }}$, Ib	10	10	50,000	1.0*	3.0	5.2	$-55,+125$	T	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
8007C-4	8007C, Low Vos, Offset Null	10	10	50,000	1.0*	3.0	6	$0,+70$	T	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
8007C-5	8007 C , Low Vos , Offset Null	10	10	50,000	$1.0 *$	3.0	6	$0,+70$	T	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
8043M	Dual 8007M	20	20	50,000	1.0*	6.0*	6	$-55,+125$	J	
8043C	Dual 8007C	50	50	20,000	1.0*	6.0*	6.8	$-55,+125$	J,P	
8500	MOSFET Input, Compensated	50	0.1	20,000	0.7*	0.5*	2.7*	$-25,+85$	T	
8500A	MOSFET Input, Super Low I_{b}	50	0.01	20,000	0.7*	0.5*	2.7*	$-25,+85$	T	

Operational Amplifiers-High Speed

Type	Description	$\begin{gathered} \mathbf{V}_{G S} \\ (\mathrm{mV}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{b}} \\ (\mathrm{nA}) \end{gathered}$	Avol (V/V)	GxB/W (MHz)	Slew Rate $\mathbf{V} / \mu S$	$\begin{gathered} \mathrm{I}_{\mathrm{cc}} \\ (\mathrm{~mA}) \end{gathered}$		Packages *
HA2500	High slew rate, Compensated	5.0	200	20,000	12**	25	6.0	$-55,+125$	F,T,J
HA2502	High slew rate, Compensated	8.0	250	15,000	12**	20	6.0	$-55,+125$	F,T,J
HA2505	High slew rate, Compensated	8.0	250	15,000	12*	20	6.0	0,+75	F,T
HA2507	High slew rate, Compensated	5.0	125	15,000	12	30	4.0	0 to 75	F,T
HA2510	High slew rate, Compensated	8.0	200	10,000	12*	50	6.0	$-55,+125$	F,T
HA2512	High slew rate; Compensated	10.0	250	7,500	12**	40	6.0	$-55,+125$	F,T
HA2515	High slew rate, Compensated	10.0	250	7,500	12*	40	6.0	$0,+75$	F,T
HA2517	High slew rate, Compensated	5.0	125	7,500	12	60	4.0	0 to 75	F,T
HA2520	Compensated for $A_{v} \geqslant 3$	8.0	200	10,000	30^{*}	100	6.0	$-55,+125$	F,T,J
HA2522	Compensated for $\mathrm{A}_{v} \geqslant 3$	10.0	250	7,500	30*	80	6.0	$-55, \div 125$	F,T,J
HA2525	Compensated for $A_{v} \geqslant 3$	10.0	250	7,500	30*	80	6.0	0,+75	F,T,J
HA2527	High slew rate, Compensated for $A_{v} \geqslant 3$	5.0	125	7,500	20	120	4.0	-65 , to 150	F,T
8017M	High speed, Inverting	5.0	200	25,000	10*	130*	7.0	$-55,+125$	T,F
8017C	High speed, Inverting	7.0	200	25,000	10*	130*	8.0	0, + 70	T,F

Operational Amplifiers—High Impedance

Type	Description	$\begin{gathered} V_{\sigma} \\ (\mathrm{mV}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{b}}(\mathrm{nA}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Avol } \\ & \text { (V/V) } \end{aligned}$	$\begin{gathered} \text { Slew } \\ \text { Rate } \\ (\mathbf{V} / \mu \mathrm{S}) \end{gathered}$	$\begin{gathered} \boldsymbol{I}_{\infty} \\ (\mathrm{mA}) \end{gathered}$	$\begin{gathered} { }^{\left.{ }^{\circ} \hat{\mathbf{C}}\right)} \\ \hline \end{gathered}$	Packages*
HA2600	High impedance, Compensated	4.0	10	100,000	4	3.7	$-55 .+125$	F,J,T
HA2602	High impedance, Compensated	5.0	25	80,000	4	4.0	$-55,+125$	F.J.T
HA2605	High impedance, Compensated	5.0	25	80,000	4	4.0	$0,+75$	F,J,T
HA2607	High impedance, Compensated	4.0	5	70,000	25	3.0	0 to 75	
HA2620	2600 Compensated for $A_{v} \geqslant 5$	4.0	15	100,000	25	3.7	$-55,+125$	F,J,T
	2602 Compensated for $A_{v} \geqslant 5$	5.0	25	80,000	20	4.0	$-55,+125$	F,J,T
HA2625 HA2627	2605 Compensated for $A_{v} \geqslant 5$ 2607 Compensated for $A_{v} \geqslant 5$	5.0 4.0	25 5	80,000 70,000	20 35	4.0 3.0	$0,+75$ 0 to 75	F_{P}.

Video Amplifiers

Type	Description	Gains (V/V)	Bandwidths (MHz)	$\underset{\mu V(\mathbf{I m s})}{\mathbf{E}_{N}(\mathbf{N})}$	Output Offset (V)	$\begin{aligned} & I_{\infty} \\ & (m A) \end{aligned}$	$\begin{aligned} & \left.\mathrm{T}^{\mathrm{o}} \hat{\mathbf{C}}\right) \\ & \hline \end{aligned}$	Packages*
$\begin{aligned} & 733 M \\ & 733 C \end{aligned}$	Gain selectable video amp. Gain selectable video amp.	$\begin{aligned} & 400,100,10^{*} \\ & 400,100,10^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & 40,90,120^{*} \\ & 40,90,120^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{gathered} -55,+125 \\ 0,+70 \end{gathered}$	T

[^1]
Voltage Followers

Type	Description	$\begin{gathered} \mathbf{V}_{\sigma \boldsymbol{F}} \\ (\mathrm{mV}) \end{gathered}$	$\begin{aligned} & \mathbf{I}_{\text {NN }} \\ & (\mathrm{nA}) \end{aligned}$	$\begin{gathered} A_{V}(M I N) \\ (V / V) \end{gathered}$	$\begin{gathered} \text { 3db B/W } \\ \text { (MHz) } \end{gathered}$	$\begin{gathered} \text { Slew } \\ \text { Rate } \\ (\mathbf{V} / \mu \mathbf{S}) \end{gathered}$	Swing (V)	$\begin{gathered} \mathrm{I}_{\mathrm{cc}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Packages*
102	Voltage Follower	5	10	0.999	-	-	± 10	4.0	$-55,+125$	F,T
110	Voltage Follower	4	3	0.999	-	-	± 10	-	$-55,+125$	D,F,T
202	Voltage Follower	10	15	0.999	-	-	± 10	-	-25,+85	
210	Voltage Follower	4	3	0.999	15*	30*	± 10	4.0	$-25,+85$	D,T
302	Voltage Follower	15	30	0.9985	15*	30*	± 10	4.0	0,+70	T
$\begin{aligned} & 310 \\ & \text { LH2110 } \\ & \text { LH2310 } \end{aligned}$	Voltage Follower	7.5 4.0 7.5	7 3 7	$\begin{aligned} & 0.999 \\ & 0.999 \\ & 0.999 \end{aligned}$	15*	30*	± 10 ± 10 ± 10	- 4.0	$\begin{gathered} 0,+70 \\ -55 \text { to } 125 \\ 0 \text { to } 70 \end{gathered}$	$\begin{aligned} & \text { D,P,T } \\ & \text { D } \\ & \text { D } \end{aligned}$

Comparators

Notes: Tpd measured for 100 mV step with 5 mV overdrive. $l_{o c}$ measured for $V_{s}= \pm 15 \mathrm{~V}$

Type	Description	$\begin{aligned} & \mathbf{V}_{\mathrm{os}} \\ & \left(V_{)}\right. \end{aligned}$	$\begin{gathered} I_{b} \\ (n A) \end{gathered}$	$\underset{(V / m V)}{A_{V}}$	$\begin{gathered} \text { tpd } \\ \text { (nS) } \end{gathered}$	$\begin{gathered} I_{c} \\ (m A) \end{gathered}$	$\begin{aligned} & V_{0} \\ & (V) \end{aligned}$	at $\begin{gathered}\mathrm{I}_{01} \\ (\mathrm{~mA})\end{gathered}$	$\begin{gathered} \mathbf{T}_{\hat{A}} \\ \left({ }^{\circ} \mathbf{C}\right) \end{gathered}$	Packages*
111	Precision Comparator	3	100	200*	200*	6	0.4	8	$-55,+125$	D,F,T
211	Precision Comparator	3	100	200*	200*	6	0.4	8	$-25,+85$	D,FT
311	Precision Comparator	7.5	250	200*	200*	7.5	0.4	8	0,+70	D,F,J,P,T
8001M	Low Power Comparator	3	100	15	250*	2	0.5	2	$-55,+125$	
8001C	Low Power Comparator	5	250	15	250*	2	0.4	2	0, + 70	T
LM139	Quad. Comparator	5	100	200*	1300**	2	0.7	4	$-55,+125$	D
Livis3an	Lừ Offiset i33	2	100	$200 *$	iЗûũ*	2	0.4	3	$-55,+125$	U
LM239	Quad. Comparator	5	250	200*	1300*	2	0.7	4	$-25,+85$	D
LM239A	Low Offset 239	2	250	200*	1300*	2	0.4	3	$-25,+85$	D
LM339	Quad. Comparator	5	250	200*	1300*	2	0.7	4	0,+70	D,P
LM339A	Low Offset 339	2	250	200*	1300*	2	0.4	3	$0,+70$	D, P
LH2111	Dual Precision Comparator	3	100	200	200	6	0.4	8	-55 to 125	D
LH2311	Dual Precision Comparator	7.5	250	200	200	7.5	0.4	8	0 to 70	D
MC2901	Quad. Comparator	2	25	100	300	0.8	. 25	4	0 to 70	D,F
MC3302	Quad. Comparator	3	25	30	300	0.8	. 25	4	0 to 70	D,F

Power Amplifiers

Note 1. Specifications apply at $\pm 30 \mathrm{~V}$ supplies
2. All units packaged in 8 lead TO3 can.
3. Fully protected against inductive current flow.
4. Externally settable output current limiting.

Type	Description	Use	Output Current (A)	Output Swing (V)	$\begin{aligned} & V_{o s} \\ & (m V) \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{b}} \\ (\mathrm{nA}) \end{gathered}$	Avol (V/V)	$\begin{gathered} \text { Slew } \\ \text { Rate } \\ (\mathbf{V} / \mu \mathbf{S}) \end{gathered}$	$\begin{gathered} \text { Qulescent } \\ I_{c c} \\ (\mathrm{~mA}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
ICH8510M	Hybrid Power Amp.	Servo	1.0	± 26	3.0	250	100,000	0.5	40	$-55,+125$
ICH18510C	Hybrid Power Amp.	and	1.0	± 26	6.0	500	100,000	0.5	50	$-25,+85$
ICH8520M	Hybrid Power Amp.	Actuator	2.0	± 26	3.0	250	100,000	0.5	40	$-55,+125$
ICH8520C	Hybrid Power Amp.		2.0	± 26	6.0	500	100,000	0.5	50	$-25,+85$
ICH8530M	Hybrid Power Amp.		2.7	± 25	3.0	250	100,000	0.5	40	$-55,+125$
ICH8530C	Hybrid Power Amp.		2.7	± 25	6.0	500	100,000	0.5	50	$-25,+85$
ICL8063C	Monolithic Power Amp.	Power	2.0	± 27	50		- 6		250	0, +70
ICL8063M	Monolithic Power Amp.	Transistors	2.0	± 27	75		6		300	$-55,+125$

Voltage Regulators

Type	Input Voltage (V)		Output Voltage (V)		Input/Output Differential (V)		Load Current (mA)		Load Reg ${ }^{\text {n }}$ O-F.L. (■)	Line Reg ${ }^{n}$ ($/$ /V)	Avg. Temp Coeff (• $/{ }^{\circ} \mathrm{C}$)	Pd at $25^{\circ} \mathrm{C}$ (mW)	$\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{T}_{j}}$	Packages*
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX						
100	8.5	40	2.0	30	3.0	30	3.0	12	0.5	0.2	0.005	500	$-55,+150$	F,T
105	8.5	50	4.5	40	3.0	30	0	12	0.05	0.06	0.005	500	$-55,+150$	F,T
300	8.0	30	2.0	20	3.0	20	3.0	12	0.5	0.2	0.03	300	0, + 70	T
305	8.0	40	4.5	30	3.0	30	0	12	0.05	0.06	0.03	500	0,+70	T
723	9.5	40	2.0	37	3.0	38	0	50	0.15	0.03	0.015	800	$-55,+125$	T, J
723C	9.5	40	2.0	37	3.0	38	0	50	0.2	0.03	0.015	660	0, +70	P,T

*See package key, page 391.

Monolithic Voltage Converter - The ICL7660

Converts positive voltage into negative voltages over a range of +1.5 V through +10 V . May be cascaded for higher negative output voltages, paralleled for greater output current, used as a positive voltage multiplier, or any combination of the above. Typical supply current is $170 \mu \mathrm{~A}$, and output source resistance is 55Ω at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{IO}=20 \mathrm{~mA}$.

Special Function Circuits

Type		Accuracy	$\begin{aligned} & \mathbf{V}_{\mathrm{s}} \\ & (\mathbf{V}) \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Packages*
AD590	Temperature transducer-output linear at $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$	$\pm 1^{\circ} \mathrm{C}$	4 to 15	-55 to 150	H
8013AM	Four quadrant multiplier. Output proportional to algebraic products	$\pm 0.5 \%$	± 15	$-55,+125$	T
8013BM	of two input signals. Features $\pm 0.5 \%$ accuracy; internal op-amp	$\pm 1.0 \%$	± 15	$-55,+125$	T
8013CM	for level shift, division and square root functions; full $\pm 10 \mathrm{~V}$	$\pm 2.0 \%$	± 15	$-55,+125$	T
8013AC	input/output range; 1 MHz bandwidth.	$\pm 0.5 \%$	± 15	$0,+70$	T
8013BC		$\pm 1.0 \%$	± 15	$0,+70$	T
8013CC		$\pm 2.0 \%$	± 15	0, + 70	T
8038AM	Simultaneous Sine, Square, and Triangle wave outputs $\mathrm{T}^{2} \mathrm{~L}$	1.5\%	± 5 to ± 15	$-55,+125$	J
8038AC	compatible to 28 V over frequency range from 0.001 Hz to 1.0 MHz .	1.5\%	± 5 to +15	0, + 70	P
8038BM	Low distortion ($<1 \%$); high linearity (0.1%); low frequency drift with	3.0\%	± 5 to ± 15	$-55,+125$	J
8038BC	temperature (50ppm/ ${ }^{\circ} \mathrm{C}$ max.), variable duty cycle $2 \%-98 \%$).	3.0\%	± 5 to ± 15	0,+70	P
8038CC	External frequency modulation.	5.0\%	± 5 to ± 15	$0,+70$	P
8048BC	Log amp. $1 \mathrm{~V} /$ decade (Adjustable). 120 db range	$\pm 30 \mathrm{mV}$	± 15	$0,+70$	J, P
8048CC	with current input. Error referred to output	$\pm 60 \mathrm{mV}$	± 15	$0,+70$	J,P
8049BC	Antilog amp, adjustable scale factor.	$\pm 10 \mathrm{mV}$	± 15	$0,+70$	J, P
8049CC	Error referred to input	$\pm 30 \mathrm{mV}$	± 15	$0,+70$	J,P
$\begin{aligned} & \text { ICL8061 } \\ & \text { ICL8062 } \end{aligned}$	The ICL8061 converts a wide range of photographic variables to electronic signals from which f-stop, aperture, EV and BV may be obtained. The ICL8062 converts the signals from the 8061 into output drive voltages.				
8069	1.2 V temperature compensated voltage reference		5 to 15	-55 to 125	Q
8211M	Micropower voltage detector/indicator/voltage regulator/		2 to 30	$-55,+125$	T
8211 C	programmable zener. Contains 1.15 V micropower reference		2 to 30	0, + 70	P, T
8212M	plus comparator and hysteresis output. Main output		2 to 30	$-55,+125$	T
8212C	inverting (8212) or non-inverting (8211).		2 to 30	$0,+70$	P,T

Notes: 1. All parameters are specified at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.
2. All parameters are worst case MIN/MAX limits except for those marked * which are typical.

PACKAGE KEY
D-Solder lid side brazed ceramic dual in line.
F-Ceramic flat pack.
J -Glass frit seal ceramic dual in line.
P—Plastic dual in line.
T-Metal can (TO5 size)

Operational Amplifiers-CMOS

Type	Description	Compensation	Offset Null	$\mathrm{V}_{\text {os }}$ Selection	Ios	I_{8}	Input CMR	Output Swing	Packages*
7611	Single, Selectable I_{0}	Internal	Yes	2, $5,15 \mathrm{mV}$	0.5pA	1pA	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {SuPPLY }}-100 \mathrm{mV}$	P,T
7612	Single, Selectable I_{0}, Extended CMVR	Internal	Yes	2, $5,15 \mathrm{mV}$	0.5 pA	1pA	$V_{\text {SUPPLY }}+300 \mathrm{mV}$	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	P,T
7613	Single, Selectable I_{0}, Input Protected	Internal	Yes	2, $5,15 \mathrm{mV}$	0.5pA	1pA	$V_{\text {SuPply }}-100 \mathrm{mV}$	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	P,T
7614	Single, Fixed Io	External	Yes	2, 5, 15 mV	0.5pA	${ }_{1} 1 \mathrm{pA}$	$V_{\text {SUPpLY }}-100 \mathrm{mV}$	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	P,T
7615	Single, Fixed $\mathrm{I}_{\text {a }}$, Input Protected	External	Yes	2, 5, 15 mV	0.5 pA	1 pA	$V_{\text {supply }}-100 \mathrm{mV}$	$V_{\text {supplr }}-100 \mathrm{mV}$	P, T
7621	Dual, Fixed I_{0}	Internal	No	2, $5,15 \mathrm{mV}$	0.5pA	1pA	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {Supplr }}-100 \mathrm{mV}$	P,T
7622	Dual, Fixed Io	Internal	Yes	2,5,15 mV	0.5 pA	1 pA	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	P, J
7631	Triple, Selectable Io	Internal	No	5, 10, 20 mV	0.5pA	1 pA	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {Supply }}-100 \mathrm{mV}$	P, J
7632	Triple, Selectable Io	None	No	$5,10,20 \mathrm{mV}$	0.5pA	1 pA	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	P, J
7641	Quad, Fixed I_{0}	Internal	No	$5,10,20 \mathrm{mV}$	0.5pA	1pA	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	P,J
7642	Quad, Fixed I_{0}	Internal	No	$5,10,20 \mathrm{mV}$	0.5pA	1pA	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	P, J

Instrumentation Amplifiers-Commutating Auto Zero

Type	Description	$\begin{aligned} & \mathbf{V}_{\mathrm{OS}} \\ & (\mu \mathrm{~V}) \end{aligned}$	$\begin{gathered} \Delta V_{\text {os }} \\ (\mu \mathrm{V} / \text { year }) \end{gathered}$	$\begin{aligned} & I_{\text {supp }} \\ & \text { (pA) } \end{aligned}$	$\begin{gathered} A_{v} \\ \text { (dB) } \end{gathered}$	$\mathbf{V}_{\text {supply }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{BIAS}} \\ & (\mathrm{pA}) \end{aligned}$	Packages *	$\mathrm{T}_{\wedge}{ }^{\circ} \mathrm{C}$
ICL7600C	Compensated	± 2	0.2	1	90 min	+5 to +16	± 30	J,P	0 to 70
ICL76001	Compensated	± 2	0.2	1	90 min	+5 to +16	+30	J,P	-25 to 85
ICL7600M	Compensated	± 2	0.2	1	90 min	+5 to +16	± 30	J,P	-55 to 125
ICL7601C	Uncompensated	± 2	0.2	1	90 min	+5 to +16	± 30	J,P	0 to 78
ICL76011	Uncompensated	± 2	0.2	1	90 min	+5 to +16	± 30	J,P	-25 to 85
ICL7601M	Uncompensated	± 2	0.2	1	90 min	+5 to +16	± 30	J,P	-55 to 125

Operational Amplifiers-Commutating Auto Zero

Type	Description	$\begin{aligned} & \hline \mathbf{V}_{\text {os }} \\ & (\mu \mathrm{V}) \end{aligned}$	$\begin{gathered} \Delta \mathbf{V}_{\text {os }} \\ (\mu \mathbf{V} / \text { year }) \end{gathered}$	$\begin{aligned} & I_{\text {supp }} \\ & (\mathrm{mA}) \\ & \hline \end{aligned}$	$\begin{aligned} & A_{y} \\ & \text { (dB) } \\ & \hline \end{aligned}$	$\mathbf{V}_{\text {supply }}$	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{BiAA}} \\ & \text { (PA) } \end{aligned}$	Packages *	$\mathrm{T}_{1}{ }^{\circ} \mathrm{C}$
ICL7605C	Compensated	± 2	0.5	1.7	90 min	5 to 10	± 30	J, P	0 to 70
ICL76051	Compensated	± 2	0.5	1.7	90 min	5 to 10	± 30	J,P	-25 to 85
ICL7605M	Compensated	± 2	0.5	1.7	90 min	5 to 10	± 30	J, P	-55 to 125
ICL7606C	Uncompensated	± 2	0.5	1.7	90 min	5 to 10	± 30	J, P	0 to 70
ICL7606I	Uncompensated	± 2	0.5	1.7	90 min	5 to 10	± 30	J,P	-25 to 85
ICL7606M	Uncompensated	± 2	0.5	1.7	90 min	5 to 10	± 30	J,P	-55 to 125

[^2]
Counters, Timers and Display Drivers

Part Number	Circuit Description	Package	Crystal Frequency	Output
ICM7045A	Complete industrial stopwatch precision decade timer to count seconds, minutes or hours by selection of suitable oscillator frequencies.	28-Pin DIP	Seconds: 1.31 MHz Minutes: 2.18 MHz	Seven-digit common-cathode LED drive. Displays up to 240,000 seconds, 2,400 minutes, 24 hours.
ICM7201	Low battery voltage indicator	TO-72	Not applicable	Lights LED at voltage below 2.9V.
ICM7206	Touch-tone encoder; requires one contact per key	16-Pin DIP	3.57954 MHz	2-of-8 sine wave for tone dialing
ICM7206A	Touch-tone encoder; requires two contacts per key with common line connected to + supply.	16-Pin DIP	3.57954 MHz	$2-\mathrm{f}-8$ sine wave for tone dialing
ICM7206B	Touch-tone encoder; common line connected to negative supply and oscillator enabled when key is pressed.	16-Pin DIP	3.57954 MHz	2-of-8 sine wave for tone dialing
ICM7207 ICM7207A	Frequency counter timebase. Includes $0.01,0.1$, or 1 -second count window plus store, reset and MUX	14-Pin DIP 14-Pin DIP	$\begin{aligned} & 6.5536 \mathrm{MHz} \\ & 5.24288 \mathrm{MHz} \end{aligned}$	Crysal frequency $\div 2^{13}, \div 2^{17}, \div 10\left(2^{17}\right)$ divider stage
ICM7208	7-digit unit counter. With addition of 7207 the circuit becomes a complete timer-frequency counter	28-Pin DIP	-	LED display drive
ICM7209	High-frequency clock-generator for 5-volt systems	8-Pin DIP	to 10 MHz	Crystal frequency, $\div 2^{3}$ divider stage
ICM7211 ICM7212	Four-digit display decoder drivers; ICM7211 is LCD; ICM7212 is LED; Non-multiplexed for low noise, BCD input, decoded display drive output.	40-Pin DIP (plastic)	-	Four-digit, seven-segment direct display drive; LED or LCD
ICM7213	Oscillator and frequency divider	14-Pin DIP (plastic)	to 10 MHz	$1 \mathrm{pps}, 1 \mathrm{ppm}, 10 \mathrm{~Hz}$, composite
ICM7216 !CM7226	Eight-digit universal counter; measures frequency, period, frequency ratio, time intervat, unitis.	28-Pin DIP 40̂-Fin DiP (Cerdip, ceramic, plastic)	1 or 10 kHz	Eight-digit common anode or common cathode direct LED drive
ICM7217 ICM7227	Four-digit CMOS up/down counter; presettable start/count and compare register; for hard-wired or microprocessor control applications; cascadable	28-Pin Cerdip or plastic	-	Four-digit, seven-segment common anode or common cathode direct LED display drive; equal, zero, carry/borrow
ICM7218A/D ICM7218E	LED display driver system with 8×8 memory; numeric or dot (1 of 64) decoding; microprocessor compatible	$\begin{aligned} & \text { 28-Pin DIP } \\ & \text { 40-Pin DIP } \\ & \text { (ceramic or plastic) } \end{aligned}$	-	Eight-digit, seven-segment plus decimal point; common cathode or common anode
ICM7219	Audio generator; digitally programmable; 5 bit input	14-Pin DIP (ceramic or plastic)		$0-100 \mathrm{kHz}$ output; waveform fully programmable
ICM7224 ICM7225	41/2-digit high speed counter/decoder/driver; 25 MHz typ; ICM7224 is LCD, ICM7225 is LED; direct display drive; cascadable	40-Pin DIP (plastic)	-	4 $1 / 2$-digit seven-segment direct display driver; LED or LCD
ICM7555 ICM7556	Single or dual CMOS version of industry-standard 555 timer; $80 \mu \mathrm{~A}$ typ. supply current; 500 kHz guaranteed; $2-18 \mathrm{~V}$ power supply	8-Pin DIP 14-Pin DIP	-	
ICM7240 ICM7242 ICM7250 ICM7260	CMOS programmable counters/timers using external RC time base set. Programmable from minutes to years. Hr. accuracy $= \pm 0.5 \%$ typ.	16-Pin DIP	External	Timed output

Dynamic RAMS

Organization	Max Access Time (ns)	Min Read Cycle (ns)		$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Pins } \end{gathered}$	$\begin{gathered} \text { Input } \\ \text { Levels } \\ \mathbf{V}_{1} / \mathbf{v}_{\mathrm{IH}}(\mathrm{~V}) \end{gathered}$	Power Supplies (V)	$\begin{gathered} \text { Max } \\ \text { Operating } \\ \text { Power (mW) } \end{gathered}$	Standby Power (mW)	$\underset{(\text { Pkg }}{\text { (note }} \text {) }$	$\begin{gathered} \text { Temp } \\ \text { Range } \\ \text { (note 2) } \end{gathered}$
16384×1										
IM4116-2	150	375	375	16	.8/2.4	+12, ± 5	550	27	J	C
IM4116-3	200	375	375	16	.8/2.4	+12, ± 5	550	27	J	C
IM4116-4	250	375	375	16	.8/2.4	+12, ± 5	550	27	J	C
$\begin{aligned} & 4096 \times 1 \\ & \text { IM } 7027-1 \end{aligned}$	120	250	325	16	.8/2.2	+12, ± 5	462	27	J	C
MK4027-2	150	320	325	16	.8/2.2	+12, ± 5	462	27	J	C
MK4027-3	200	375	420	16	.8/2.2	+12, ± 5	462	27	J	C
MK4027-4	250	375	480	16	.8/2.2	+12, ± 5	462	27	J	C

Static RAMS

Organization	$\begin{gathered} \text { Max } \\ \text { Access } \\ \text { Time (ns) } \end{gathered}$	Min Read Cycle (ns)	$\begin{gathered} \text { No } \\ \text { of } \\ \text { Pins } \end{gathered}$	$\begin{gathered} \text { Input } \\ \text { Levels } \\ \mathbf{V}_{1} / \mathbf{v}_{\mathrm{it}}(\mathbf{V}) \end{gathered}$	Power Supplies (V)	$\begin{gathered} \text { Max } \\ \text { Operating } \\ \text { Power (mW) } \end{gathered}$	$\underset{(\text { Pote 1) }}{\text { Pkg }}$	Temp Range (note 2)
4096×1								
IM7141-2	200	200	18	.8/2.0	+5	370	J	C,M
IM7141-3	300	300	18	.8/2.0	+5	370	J	C,M
IM7141	450	450	18	.8/2.0	+5	370	J	C,M
IM7141L2	200	200	18	.8/2.0	+5	265	J	C
IM7141L3	300	300	18	.8/2.0	+5	265	J	C
IM7141L	450	450	18	.8/2.0	+5	265	J	C
1024×4								
IM2114-2	200	200	18	.8/2.0	+5	525	J	C
IM2114-3	300	300	18	.8/2.0	+5	525	J	C
IM2114	450	450	18	.8/2.0	+5	525	J	C
IM2114L2	200	200	18	.8/2.0	+5	370	J	C,M
IM2114L3	300	300	18	.8/2.0	+5	370	J	C,M
IM2114L	450	450	18	.8/2.0	+5	370	J	C,M
IM7114L2	200	200	18	.8/2.0	+5	265	J	C
IM7114L3	300	300	18	.8/2.0	+5	265	J	C
IM7114L	450	450	18	.8/2.0	+5	265	J	C
IM2147	70	70	18	.8/2.4	+5	880/110	D, J	C
IM2147-3	55	55	18	.8/2.4	+5	990/165	D, J	C

Organization	Max Access Time (ns)	No. of Pins	$\underset{\max (V)}{V_{o c}}$	$\underset{(\mu \mathrm{A})}{\mathrm{I}_{\substack{ }} \text { Max }}$	Pkg ${ }^{2}$	Temp Range
$\begin{aligned} & 4096 \times 1 \\ & \text { IM6504 } \end{aligned}$	170	18	5.5	0.2 (typ.)	D,J,F,	C,I,M
1024×1						
IM6508/6518	460	16/18	7.0	100	D, J,F	C,I,M
IM6508-1/6518-1	300	16/18	7.0	10	D, J,F	I,M
IM6508A/6518A	150	16/18	11.0	500	D, J,F	!, M
IM6508A-1/6518A-1	95	16/18	12.0	100	D, J,F	I,M
256×4						
IM6551/61	360	18/22	8.0	100	D, J,F	I,M
IM6551A/61A	180	18/22	12.0	500	D,J,F	I,M
$\begin{aligned} & 256 \times 1 \\ & \text { IM6523 } \end{aligned}$	800	16	7.0	50	D,J,F	I,M
64×12						
IM6512 IM6512A	460 150	18 18	8.0 12.0	100 500	D, J,F	$\underset{\mathrm{C}, \mathrm{M}}{\mathrm{C}, \mathrm{M}}$

UV-ERASABLE CMOS PROMS

Organization	Max Access Time (ns)	No. of Pins	Operating Range (V)	I_{∞} max $(\mu$ A)	Pkg 2	Temp Range
1024×4	600	24	5	20	D,J	I,M
6653	450	24	5	20	D,J	1
$6653-1$	300	24	10	20	D,J	1
$6653 A$						
512×8	600	24	5	20	D,J	I,M
6654	450	24	5	20	D,J	1
$6654-1$	300	24	10	20	D,J	1
$5554 A$						

CMOS ROM's

Organization	$\begin{gathered} \text { Max } \\ \text { Access Time (ns) } \end{gathered}$	No. of Pins	$V_{\max ^{\prime}(V)}$	$\underset{(\mu A)}{I_{\text {Ic }} \operatorname{Max}}$	Pkg ${ }^{2}$	Temp Range
$\begin{gathered} 1024 \times 12 \\ \text { IM6312 } \\ \text { IM6312A } \end{gathered}$	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{array}{r} 7.0 \\ 11.0 \end{array}$	100 500	$\begin{aligned} & \text { D,J } \\ & \text { D,J } \end{aligned}$	$\begin{gathered} \mathrm{C}, \mathrm{I}, \mathrm{M} \\ \mathrm{I}, \mathrm{M} \end{gathered}$
$\begin{array}{r} 2048 \times 8 \\ \text { IM6316 } \end{array}$	350 (typ)	24	7.0	100 (typ)	D, J	C,I,M
$\begin{array}{r} 8192 \times 8 \\ \text { IM6364 } \end{array}$	350(typ)	24	7.0	100(typ)	D, J	C,I,M

BIPOLAR PROM's

Organization	$\begin{gathered} \text { Max } \\ \text { Access Time (ns) } \end{gathered}$	No. of Pins	Output Type ${ }^{1}$	Pkg ${ }^{2}$	Temp
FPLA IM5200 48 Product Terms 14 Inputs, 8 Outputs	100	24	OC	J	C
$\begin{aligned} & 32 \times 8 \\ & \text { IM5600 } \\ & \text { IM5610 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{OC} \\ & \mathrm{TS} \end{aligned}$	$\begin{aligned} & \mathrm{D}, \mathrm{~J}, \mathrm{~F} \\ & \mathrm{D}, \mathrm{~J}, \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{C}, \mathrm{M} \\ & \mathrm{C}, \mathrm{M} \end{aligned}$
$\begin{aligned} & 256 \times 4 \\ & \text { IM5603A } \\ & \text { IM5623 } \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{OC} \\ & \mathrm{TS} \end{aligned}$	D, J,F	$\begin{aligned} & \mathrm{C}, \mathrm{M} \\ & \mathrm{C}, \mathrm{M} \end{aligned}$
$\begin{aligned} & 512 \times 4 \\ & \text { IM5604 } \\ & \text { IM5624 } \end{aligned}$	70 70	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	OC TS	D, J,F D,, F	C,M C, M
$\begin{aligned} & 512 \times 8 \\ & \text { IM5605 } \\ & \text { IM5625 } \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & \hline \end{aligned}$	24 24	OC TS	D	C,M C, M

Note 1: OC-Open Collector Output
TS-Tri-State Output
Note 2: D: Ceramic Dual-In-Line
J: Cerdip Dual-In-Line
F: Ceramic Flat Package

This is Datel-Intersil

The merger of Intersil and Datel Systems, Inc. has made the Company the third largest data acquisition supplier in the industry. The "marriage" of these two groups provides an ideal blending of Intersil's integrated circuit capability with Datel's expertise in the system's marketplace.
Intersil's Semiconductor Division produces virtually all the circuits required to produce complete data acquisition systems, including analog to digital converters, digital to analog converters, operational amplifiers, multiplexers, display drivers, analog switches, sample-holds, operational and instrumentation amplifiers, and temperature sensors.
The Datel-Intersil Division produces a broad spectrum of data conversion modules, hybrid and monolithic circuits, power supplies, analog input/output boards, digital panel instruments, digital printers, data loggers and high-speed data acquisition systems.
The merging of these complementary technologies has now created the most comprehensive line of data acquisition products in the industry. If you would like additional information on any of these products please send in the form in the back of this handbook.

Intersil Field Sales Offices

CALIFORNIA

1272 Forgewood Avenue
Sunnyvale, California 94086
Tel: (408) 744-0618
TWX: 910-339-9260
400 Oceangate, Suite \#1102
Long Beach, CA 90802
Tel: (213) 436-9261
TWX: 910-341-6829

COLORADO

5 Parker Place, Suite 351
2600 S. Parker Road
Aurora, Colorado 80014
Tel: (303) 750-7004
TWX: 910-320-2982

FLORIDA

1001 N.W. 62nd Street, Suite \#309
Fort Lauderdale, Florida 33309
Tel: (305) 772-4122
TWX: 510-955-9883

ILLINOIS

201 Ogden Avenue, Suite \#230
Hinsdale, Illinois 60521
Tel: (312) 986-5303
TWX: 910-651-0859
MASSACHUSETTS
2 Militia Drive, Suité 12
Lexington, Massachusetts 02173
Tel: (617) 861-6220
TWX: 710-326-0887

MINNESOTA
6550 York Avenue, South, Suite \#307
Minneapolis, Minnesota 55435
Tel: (612) 925-1844
TWX: 910-576-2780
NEW JERSEY
560 Sylvan Avenue
Englewood Cliffs, New Jersey 07632
Tel: (201) 567-5585
TWX: 710-991-9730
OHIO
228 Byers Road
Miamisturg, Ohio 45342
Tel: (513) 866-7328
TWX: 810-473-2981

TEXAS

12820 Hillcrest Drive, Suite \#118
Dallas, Texas 75230
Tel: (214) 387-0539
TWX: 910-860-5482
CANADA
338 Queen Street East, Suite \#208
Brampton, Ontario L6V 1C4
Tel: (415) 457-1014
TWX: 610-492-2691

INTERNATIONAL MARKETING
 HEADQUARTERS

Intersil Inc.
10710 N. Tantau Avenue
Cupertino, California 95014
U.S.A.

Tel: (408) 996-5000
TWX: 910-338-0533 (INTRSLINT CPTO)
NORTHERN EUROPEAN
HEADQUARTERS
Intersil Electronics Ltd.
9th Floor
Snamprogetti House
Basing View
Basingstoke RG21 2 YS
Hampshire
England
Tel: 0256-57361
TLX: 847227 INTRSL G

SOUTHERN EUROPEAN HEADQUARTERS

Intersil Inc.
217, Bureaux de la Colline de St. Cloud
Batiment D
92213 Saint-Cloud Cedex
France
Tel: (1) 602.57.11
TLX: 204280

CENTRAL EUROPEAN

HEADQUARTERS
Intersil GmbH
8000 Munchen 2
Bavariaring 8
West Germany
Tel: 89/539271
TLX: 5215736 INSL D

[^0]: 2. Reed relay performs the same function as an electronic switch
[^1]: *See package key, page 391.

[^2]: *See package key above.

