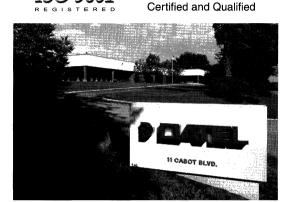


ISO 9001 REGISTERED MIL-STD-1772 CERTIFIED

DATA ACQUISITION COMPONENTS


DATEL Sampling A/D Converters and Data Acquisition Components

ISO 9001

About DATEL

Founded in 1970, today's DATEL is an international electronics manufacturing company that has achieved leadership status in all four of its core product lines; sampling A/D converters and data acquisition components; analog I/O boards for PCI, EISA, ISA, VME and Multibus platforms: switching DC/DC power converters; and digital panel voltmeters and instruments.

Our leadership status in high-performance sampling analogto-digital converters is unchallenged. If you are unfamiliar with our products, you are about to discover 14 and 16-bit ADS's whose outstanding electrical performance, small packaging, low power consumption, ease-of-use and affordable pricing will genuinely impress you.

MIL-STD-1772

All our products are proudly designed and manufactured in our modern 180,000 square-foot facility in Mansfield, Massachusetts (U.S.A.). To serve our international customers, we have wholly owned Subsidiary Sales Offices in Japan, Germany, France and the United Kingdom.

Manufacturing and Quality

DATEL's data acquisition components are manufactured and assembled using four basic technologies; monolithic CMOS. monolithic bipolar, thin and thick-film multi-chip module (MCM), and discrete component assemblies.

Our overall Company is ISO-9001 Registered. Our MCM facility is certified to MIL-STD-1772, and we are listed on QML-38534 (the Qualified Manufacturers List). Most of our standard products are MIL-STD-883 gualified, and many are covered by DESC SMD's.

Convenience

DATEL has direct sales offices in the United States (Mansfield, MA), Germany (Munich), France (Montigny Le Bretonneux), England (Tadley) and Japan (Tokyo and Osaka). We employ an extensive network of field sales representatives throughout the USA, Canada, Europe, the Far East and other areas around the world.

In the USA, dial 1-800-233-2765 to immediately receive literature, price and delivery information or applications assistance.

Our E-Mail address is datelcomp@aol.com

There are four ways in which to purchase DATEL Data Acquisition Components:

- VISA or Mastercard
- •C.O.D. Bank check or money order · Open an account with established credit

VISA

Availability

Most DATEL products are available, in small quantities, from stock and can be shipped from the USA within 24 hours. For price and delivery information, USA customers may contact DATEL directly. Our international customers should contact their local DATEL sales office or representative.

Applications Assistance

DATEL employs a large, knowledgeable, patient staff of degreed Applications and Sales Engineers in both our Headquarters and Subsidiary Offices. These experienced engineers are always available to answer any questions you may have concerning the use or modification of any of our products. Please don't hesitate to call us.

> Copyright DATEL, Inc. 1996 All Rights Reserved

Table of Contents

	Product Index II
	New Products III
	Selection GuidesXI
	Quality AssuranceXV
1	Sampling A/D Converters
	Selection Guides1-1
	10 Bits, Sampling Rates to 20MHz
	12 Bits, Sampling Rates to 10MHz
	14 Bits, Sampling Rates to 10MHz
	16 Bits, Sampling Rates to 2MHz
	Product Data Sheets 1-3
2	A/D Converters
3	S/H Amplifiers
4	Correlated Double Sampling Circuits4-1
5	Analog Multiplexers
6	D/A Converters
7	Operational and Instrumentation Amplifiers7-1
8	Single-Package Data Acquisition Systems8-1
9	Tunable Active Filters
	Other DATEL Literature
	Other DATEL Products
	Part Number Index
	Placing an Order

I

Product Index

1. Sampling A/D Converters	Page
ADS-112	. 1-3
ADS-117	. 1-9
ADS-118/118A	. 1-15
ADS-119	. 1-23
ADS-325A	. 1-31
ADS-916	. 1-39
ADS-917	. 1-47
ADS-919	
ADS-926	
ADS-927	
ADS-929	
ADS-930	
ADS-931	
ADS-932	
ADS-937	
ADS-941	
ADS-942	
ADS-942A	
ADS-943	
ADS-944	
ADS-945	
ADS-946	
ADS-CCD1201	
ADS-CCD1202	. 1-175

Evaluation Boards for Sampling A/D Converters See appropriate A/D datasheets.

Heat Sinks

HS-24/32/40 1-	-183	
----------------	------	--

2. Analog-to-Digital Converters

ADC-207	2-3
ADC-228	2-9
ADC-304	2-13
ADC-305	2-18
ADC-317	2-23
ADC-HX/HZ Series	2-28

3. Sample-Hold Amplifiers

SHM-12	3-3
SHM-14	3-9

3. Sample-Hold Amplifiers (continued) Page MSH-840 3-33 4. Correlated Double Sampling Circuits CDS-1401 4-3 CDS-1402 4-11 5. Analog Multiplexers MV/MVD Series 5-3 MX-1616/818 5-13 6. Digital-to-Analog Converters DAC-HP Series 6-11 DAC-HZ Series 6-15 7. Operational and Instrumentation Amplifiers AM-500 7-7 AM-551 7-10 8. Single-Package Data Acquisition Systems HDAS-524/528 8-10 HDAS-75/76 8-15 9. Active Filters

General Disclaimer

In accordance with our policy of continuous product improvement, DATEL, Inc. reserves the right to make changes/improvements to our products and/or their specifications at any time without prior notice to anyone. Prices are also subject to change without notice.

DATEL Inc. makes every effort to ensure information provided in our technical literature is accurate and reliable. We can not, however, assume responsibility for inadvertent errors, inaccuracies, omissions or subsequent changes. We similarly assume no responsibility for the use of this information, and any and all such use of this information shall be entirely at the user's own risk.

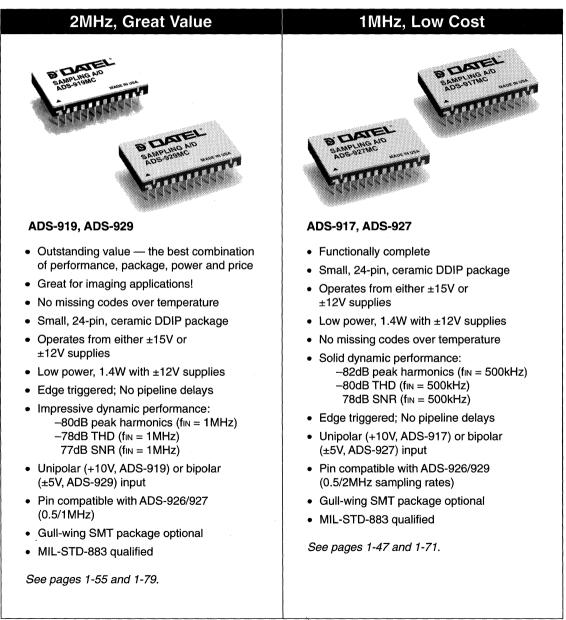
No patent rights or licenses applicable to any of the circuits or DATEL intellectual property described herein are granted to any third party, either directly, by implication or any other means. Furthermore, despite our efforts to ensure otherwise, we can make no representation of any kind that the information and/or circuitry described herein is free of infringement of any intellectual-property rights or any other rights of third parties.

Limitations on the Use of DATEL, Inc. Products

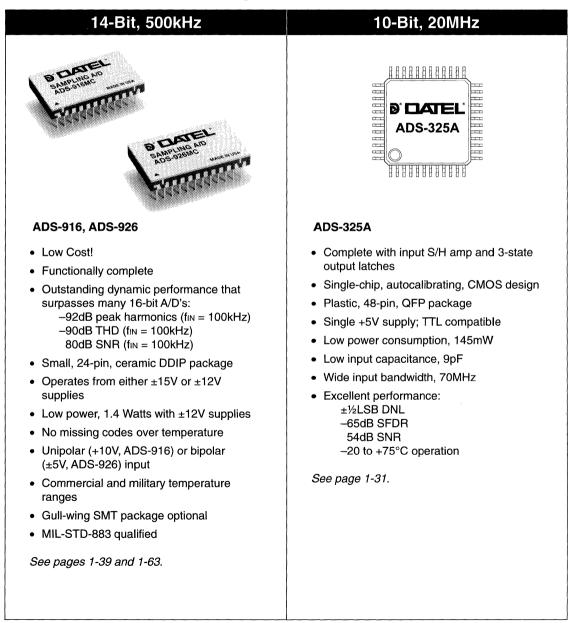
DATEL products are not designed for and should not be used, without the specific prior written consent of DATEL, Inc., in any lifesupport systems, nuclear-facility applications, aircraft-control applications or any other applications in which failure of the product, in any way, could reasonably result in harm to life, property or the environment.

A life-support system is defined as a product or system intended to support or sustain life and whose failure can be reasonably expected to result in significant personal injury or death. Nuclearfacility applications are defined as any application involving a nuclear reactor or the handling and processing of radioactive materials in which the failure of equipment, in any way, could reasonably result in harm to life, property or the environment.

Ш



1 and 2MHz, High Performance	1MHz, Low Power/Cost
ADS-931, ADS-932	ADS-937
 Functionally complete, requires no external support circuitry Small, 40-pin, ceramic TDIP package ±5V supplies; 1.85 Watts No missing codes over temperature Low noise, 50µVrms Impressive dynamic performance: Peak harmonics as low as -89dB THD as low as -89dB SNR as high as 87dB Ideal for both time and frequency-domain applications ±2.75V input range Commercial and military temperature ranges Edge triggered; On-board FIFO TTL compatible See pages 1-95 and 1-103. 	 Low cost! Outstanding value! Extremely low power, 1.1 Watts Small, 32-pin, ceramic, side-brazed TDIP package Guaranteed 1MHz sampling rate No missing codes over temperature Sampling to Nyquist frequencies Impressive dynamic performance: -84dB peak harmonics (fix = 500kHz) -82dB THD (fix = 500kHz) 80dB SNR (fix = 500kHz) TTL compatible; Edge triggered Unipolar (0 to -10V) or bipolar (±5V) input Commercial and military temperature ranges See page 1-111.


10MHz, Low Noise	8MHz, 24-Pin DIP
Provide and the second and the secon	B ELATEL SAMPLING AD SAMPLING AD TO STANK WIRTHING TO STANK
ADS-945	ADS-946
 Functionally complete, requires no external support circuitry 10MHz sampling rate guaranteed Low noise, 110µVrms Ideal for DSP/FFT signal processing Superb dynamic performance: -86dB peak harmonics (fin = 2.5MHz) -80dB THD (fin = 2.5MHz) 78dB SNR (fin = 2.5MHz) No missing codes over temperature Commercial and military temperature ranges Low power, 4.2 Watts 100kΩ input impedance; ±1.25V input range Custom, low-profile, 2" x 4" DIP package TTL compatible 	 A bonafide leading-edge product! Breaks all of today's performance/package/ power barriers Functionally complete, requires no external support circuitry 8MHz sampling rate guaranteed Small, 24-pin, ceramic DDIP package ±5V supplies, 1.9 Watts; TTL compatible Low noise, 150µVrms Impressive dynamic performance: -83dB peak harmonics (fiN = 500kHz) -81dB THD (fiN = 500kHz) 75dB SNR (fiN = 500kHz) No missing codes over temperature Edge triggered; No pipeline delays ±2V input range Commercial and military temperature ranges

5MHz, Low Noise	3MHz, Low Harmonics
B CANTER AD CANTER AND CONTRACTOR AD CONTRACTOR AD CONTRACTOR AD CONTRACTOR AD	B CLAREA SAMPLING AND ADS GROWCE WITH MILLING THE THE AND
ADS-944	ADS-943
 Functionally complete, requires no external support circuitry 5MHz sampling rate guaranteed Small, 32-pin, ceramic TDIP package Low power, 2.95 Watts Low noise, 135µVrms No missing codes over temperature Edge triggered; No pipeline delays Excellent dynamic performance: -78dB peak harmonics (fiN = 1MHz) -77dB THD (fiN = 1MHz) 76dB SNR (fiN = 1MHz) Commercial and military temperature ranges ±1.25V input range; TTL compatible SMT packaging optional (J-lead) MIL-STD-883 qualified DESC SMD available 	 Functionally complete, requires no external support circuitry 3MHz sampling rate guaranteed 24-pin DDIP package; ±5V supplies Low power, 1.9 Watts Low noise, 150µVrms Optimized for modern telecomm applications Impressive dynamic performance: -85dB peak harmonics (fiN = 500kHz) -83dB THD (fiN = 500kHz) -82dB two-tone IMD 79dB SNR (fiN = 500kHz) Edge triggered; No pipeline delays ±2V input range; TTL compatible Commercial and military temperature ranges No missing codes over temperature MIL-STD-883 gualified (Q4 1996)

Flash A/D Converters

8-Bit, 125MHz	8-Bit, 20MHz
DELATEL ADC-317 ŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ	D CLASTEL ADC-305-1 HIRING
ADC-317	ADC-305
 Low cost! ±½LSB INL and DNL 46dB signal-to-noise ratio 200MHz full power input bandwidth No sparkle-code errors High input impedance, 190kΩ // 18pF ECL compatible Single -5.2V supply 870mW power consumption -20 to +75°C temperature range 42-pin plastic DDIP See page 2-23. 	 90mW max. power dissipation ±1/2LSB INL, ±0.3LSB DNL 46dB signal-to-noise ratio 60MHz input bandwidth Uses two-step parallel conversion technique Complete with internal: Reference (for 2V input) S/H amplifier Output data latches Single +5V supply; TTL compatible -20 to +75°C operation 24-pin plastic DIP or SOP See page 2-18.

Application Specific for Imaging

B CLASTEL Sampling Mount Most Contraction Most Contraction Most Contraction Addition Contraction Additio	B CONTENTENT COMPENSATION LEAN COMPENSATION CONTENTS
ADS-CCD1201, ADS-CCD1202	CDS-1401, CDS-1402
 Performance optimized for electronic imaging with CCD's Unipolar input range, 0 to +10V 4096-to-1 dynamic range Outstanding ±1/4LSB DNL Low noise: 400µVrms (1/6LSB, CCD1201) 600µVrms (1/4LSB, CCD1202) Full scale step response (empty to full well) with ±1 count maximum error Operates from either ±15V or ±12V supplies 1.4 Watt power consumption Edge triggered; No pipeline delays Small, standard, 24-pin DDIP package See CDS front-end products Low cost! 	 Complete, single-package, CDS functions Subtract "kTC" noise for maximum dynamic range Use with most CCD's and high-speed A/D converters "Ping-pong" timing for high pixel rates and low noise High throughput in 14-bit applications: 1.25MHz CDS-1401 5MHz CDS-1402 Extremely versatile: independent S/H circuits Gain matching offset adjustments 4 A/D control lines Small, 24-pin DDIP package ±15V or ±5V supplies See A/D's optimized for imaging Low cost!

Sample-Hold Amplifiers Active Filters

High Speed, 12/14-Bit Linear	Resistor Tunable
SHM-12, SHM-14	FLJ-HR Series
 Low cost! Single-chip, complementary bipolar design Very linear: ±0.006% SHM-12 ±0.0012% SHM-14 Very fast: 20nsec to ±0.012% SHM-12 25nsec to ±0.012% SHM-14 Wide bandwidth: 120MHz SHM-12 250MHz SHM-14 Low output noise, 65µVrms High feedthrough rejection, 80dB 1psec aperture jitter ±5V supplies, 300mW max. power Ceramic LCC or plastic SOIC packages Industrial and military temperature ranges Evaluation boards available See pages 3-3 and 3-9. 	 fc (-3dB) variable to 1.6kHz or 100kHz fc selectable with only 4 resistors Lowpass, highpass and bandpass functions 4-pole and 2-pole models Cascadable Butterworth, Bessel, Cauer and Chebyshev characteristics 70dB minimum attenuation at 1MHz Small, 24-pin DIP package Industrial and military temperature ranges High-reliability screening optional See page 9-3.

Sampling Analog-to-Digital Converters

10-Bit and 12-Bit Resolution ^①

Model @	Sampling Rate (MHz)	Input Range(s) (Volts)	DNL (LSB)	No Missing Codes ③	SNR (dB)	THD (dB)	Power Supplies (Volts)	Power Dissipation (Watts)	Package	MIL-STD-883 Screening	Page
ADS-325A	20	+2 to +4	±0.5	Yes	54	65	+5	0.15	48-Pin VQFP	No	1-31
ADS-112	1997 1 997	±5, 0 to +10	±0.5	Yes	72	78	±15, +5	1.3	24-Pin DDIP	Yes	1-3
ADS-CCD1201 @	1.2	0 to +10	±0.25	Yes	73	84	±15, +5	1.7	24-Pin DDIP	No	1-167
ADS-117	2	±5, 0 to +10	±0.5	Yes	70	73	±15, +5	1.6	24-Pin DDIP	Yes	1-9
ADS-CCD1202 ④	2	0 to +10	±0.25	Yes	71	78	±15, +5	1.7	24-Pin DDIP	No	1-175
ADS-118	5	±1	±0.5	Yes	69	71	±5	1.3	24-Pin DDIP	No	1-15
ADS-118A	5	±1.25	±0.5	Yes	69	71	±5	1.3	24-Pin DDIP	No	1-15
ADS-119	10	±1.5	±0.5	Yes	69	68	±5	1.8	24-Pin DDIP	Yes	1-23

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

The ADS-325A has 10-bit resolution. All other devices in this table are 12-bit converters.

② DATEL offers MC (0 to +70°C) and MM (-55 to +125°C) versions of each model.
③ Guaranteed over the full military temperature range (-55 to +125°C).

The ADS-CCD1201/2 have been optimized for electronic-imaging applications. They are pin-compatible and operate from either ±12V or ±15V supplies.

14-Bit Resolution

Model ①	Sampling Rate (MHz)	Input Range(s) (Volts)	DNL (LSB)	No Missing Codes ②	SNR (dB)	THD (dB)	Power Supplies (Volts)	Power Dissipation (Watts)	Package	MIL-STD-883 Screening	Page
ADS-916 3	0.5	0 to +10	±0.5	Yes	80	82	±15, +5	1.6	24-Pin DDIP	No	1-39
ADS-926 3	0.5	±5	±0.5	Yes	80	87	±15, +5	1.6	24-Pin DDIP	Yes	1-63
ADS-917 3		0 to +10	±0.5	Yes	78	80	±15, +5	1.7	24-Pin DDIP	No	1-47
ADS-927 3	8 8 Y 1 6 8 7	±5	±0.5	Yes	78	80	±15, +5	1.7	24-Pin DDIP	Yes	1-71
ADS-941	100	±5, 0 to +10	±0.5	Yes	78	83	±15, +5	2.8	32-Pin TDIP	No	1-117
ADS-919 3	2	0 to +10	±0.5	Yes	77	76	±15, +5	1.7	24-Pin DDIP	No	1-55
ADS-929 3	2	±5	±0.5	Yes	77	79	±15, +5	1.7	24-Pin DDIP	Yes	1-79
ADS-942	2	±5, 0 to +10	±0.5	Yes	75	80	±15, +5	2.9	32-Pin TDIP	No	1-123
ADS-942A	2	±5, 0 to +10	±0.5	Yes	75	80	±15, ±5	2.2	32-Pin TDIP	No	1-129
ADS-943	3	±2	±0.5	Yes	79	78	±5	1.8	24-Pin DDIP	Yes ④	1-135
ADS-944	5	±1.25	±0.5	Yes	76	77	±15, +5, -5.2	2.95	32-Pin TDIP	Yes	1-143
ADS-946	8	±2	±0.5	Yes	76	76	±5	1.9	24-Pin DDIP	Yes ④	1-159
ADS-945	10	±1.25	±0.5	Yes	78	80	±15, +5, -5.2	4.2	Custom DIP	No	1-151

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

① DATEL offers MC (0 to +70°C) and MM (-55 to +125°C) versions of each model. ② Guaranteed over the full military temperature range (-55 to +125°C).

③ ADS-916, 917, 919, 926, 927 and 929 are all pin-compatible and operate from either ±12V or ±15V supplies.

16-Bit Resolution

Model ①	Sampling Rate (MHz)	Input Range(s) (Volts)	DNL (LSB)	No Missing Codes ②	SNR (dB)	THD (-dB)	Power Supplies (Volts)	Power Dissipation (Watts)	Package	MIL-STD-883 Screening	Page
ADS-930	0.5	±5, 0 to -10	±0.5	Yes	83	89	±15, +5	3.5	40-Pin TDIP	No	1-87
ADS-931		±2.75	±0.5	Yes	87	89	±5	1.85	40-Pin TDIP	No	1-95
ADS-937		±5, 0 to -10	±0.5	Yes	84	85	±15, ±5	1.1	32-Pin TDIP	No	1-111
ADS-932	2	±2.75	±0.5	Yes	86	88	±5	1.85	40-Pin TDIP	No	1-103

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

① DATEL offers MC (0 to +70°C) and MM (-55 to +125°C) versions of each model. ② Guaranteed over the full military temperature range (-55 to +125°C).

Analog-to-Digital Converters

Model ①	Resolution (Bits)	Guaranteed Conversion Rate/Time	Differential Linearity Error, Max. (LSB)	Integral Linearity Error, Max. (LSB)	Input Range(s) (Volts)	Power Supplies (Volts)	Power Dissipation (mW)	Package @	Page
ADC-207	7	20MHz	±0.5	±1	+5	+5	250	18-Pin DIP M 24-Pin CLCC M	2-3
ADC-228 3	8	20MHz	±0.5	±0.5	+5	+5, ±15	1.5 ④	24-Pin DDIP H	2-9
ADC-304	8	20MHz	±0.5	±0.5	-2	+5 or ±5	355	28-Pin DDIP M	2-13
ADC-305	8	20MHz	±0.5	±0.5 ⑤	+2	+5	60	24-Pin DIP M	2-18
ADC-317	8	125MHz	±0.7	±0.8	-2	-5.2	870	42-Pin DDIP M	2-23
ADC-HZ	12	8µs	±0.75	±0.5	+5/10, ±2.5/5/10	+5, ±15	1.1 ④	32-Pin TDIP H	2-28
ADC-HX	12	20µs	±0.75	±0.5	+5/10, ±2.5/5/10	+5, ±15	1.1 ④	32-Pin TDIP H	2-28

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

① MIL-STD-883 screening available on all models except ADC-304/305/317.

② M = Monolithic, H = Multi-chip-module hybrid. (3) The ADC-228 is a "complete" flash A/D with reference, input buffer, 3-state output, etc. ④ Watts.

(5) Listed specification is a typical.

Model ①	Acquisition Time to ±0.01% (nsec)	Linearity (%)	Aperture Jitter (psec)	Input Range (Volts)	Gain	Small Signal Bandwidth (MHz)	Hold-Mode Droop Rate (µV/µsec)	Power Supplies (Volts)	Power Dissipation (mW)	Package @	Page
SHM-12	20	±0.01	1	±1.5	+1	120	±500	±5	250	20-Pin SOIC M 20-Pin CLCC M	3-3
SHM-14	25	±0.002	1	±2.5	+1	250	±2000	±5	250	16-Pin SOIC M 20-Pin CLCC M	3-9
SHM-43	25	±0.01	1	±1	+1	150	±1	±5, +15	545	14-Pin DIP H	3-21
SHM-49	160	±0.01	25	±10	-1	16	±0.5	+5, ±15	365	8-Pin DIP H	3-27
SHM-4860	160	±0.01	50	±10	-1	16	±0.5	+5, ±15	730	24-Pin DDIP H	3-24
SHM-945	275 ③	±0.0004	10	±10	-1	16	±0.5	+5, ±15	305	24-Pin DDIP H	3-30
SHM-30C	650	±0.01	100	±10	+1	4.5	±0.01	±15	735	14-Pin DIP M	3-18
MSH-840 ④	775	±0.01	15	±10	+1/10	13	±1.5	+5, ±15	2.25 ⑤	32-Pin TDIP H	3-33
SHM-20C	1000	±0.01	300	±10	+1	2	±0.08	±15	330	14-Pin DIP M	3-15

Sample-Hold Amplifiers

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

1 High-reliability screening available on all models except SHM-20C and SHM-30C. ② M = Monolithic, H = Multi-chip-module hybrid.

3 to ±0.003%. The MSH-840 is a guad simultaneous S/H (SSH) with built-in output multiplexer. 5 Watts.

Correlated Double Sampling Circuits

Model	Minimum Guaranteed Pixel Rate (MHz) ①	Full Scale Input Range (Volts)	Broadband Noise (µVrms)	Dynamic Range (dB)	Signal Acquisition Time (nsec)	Hold-Mode Droop Rate (mV/µsec)	Power Supplies (Volts)	Power Dissipation (mW)	Package	Page
CDS-1401	1.25	±10	200	91	250 ©	±0.004	+5, ±15	700	24-Pin DDIP	4-3
CDS-1402	5	±2.5	200	79	65 3	±5	±5	350	24-Pin DDIP	4-11

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

① When used in a 14-bit application. Higher throughputs obtainable at lower resolutions.

② 5V step acquired to ±1mV accuracy. 3 2V step acquired to ±1mV accuracy.

Analog Multiplexers

						Input L	.eakage				
Model	Channels	Settling Time to ±0.01% (µsec)	Access Time (nsec)	Input Range (Volts)	On Resistance (Ohms)	Off Channel (pA)	On Channel (pA)	Power Supplies (Volts)	Maximum Power Dissipation (mW)	Package ①	Page
MX-850	4SE	0.04 @	20	±10	90	20	400	+5, ±15	270	14-Pin DIP H	5-21
MX-826 @	8SE	0.150 3	20	±10	2500	-		+5, ±15	575	24-Pin DDIP H	5-18
MX-1616C	16SE/8D	0.8	130	±15	750	10	40	±15	900	28-Pin DDIP M	5-13
MX-818C	8SE/4D	0.8	130	±15	750	10	15	±15	540	18-Pin DIP M	5-13
MV-1606	16SE	2.4	300	±15	270	30	1000	±15	60	28-Pin DDIP M	5-3
MVD-807	8D	2.4	300	±15	270	30	1000	±15	60	28-Pin DDIP M	5-3
MV-808	8SE	2.8	350	±15	250	20	100	+5, ±15	28	16-Pin DIP M	5-3
MVD-409	4D	2.8	350	±15	250	20	50	+5, ±15	28	16-Pin DIP M	5-3
MX-1606	16SE	3.5	500	±15	1500	30	100	±15	45	28-Pin DDIP M	5-8
MX-808	8SE	3.5	500	±15	1500	30	100	±15	45	16-Pin DIP M	5-8
MXD-409	4D	3.5	500	±15	1500	30	100	±15	45	16-Pin DIP M	5-8
MXD-807	8D	3.5	500	±15	1500	30	100	±15	45	28-Pin DDIP M	5-8

Listed specifications are typical at $T_A = +25^{\circ}C$, with nominal supplies, unless otherwise indicated.

① M = Monolithic, H = Multi-chip-module hybrid. ② 80ns to $\pm 0.001\%$.

3 300ns to ±0.003%.

④ MIL-STD-883 models available.

Digital-to-Analog Converters

Model ①	Resolution (Bits)	Settling Time (µsec)	Output	Differential Linearity Error, Max. (LSB)	Integral Linearity Error, Max. (LSB)	Coding	Power Supplies (Volts)	Maximum Power Dissipation (mW)	Package ②	Page
DAC-HF8B	8	0.025	+5, ±2.5mA	±0.5	±0.5	Bin	±15	750	24-Pin DDIP H	6-3
DAC-HF10B	10	0.025	+5, ±2.5mA	±0.5	±0.5	Bin	±15	825	24-Pin DDIP H	6-3
DAC-HF12B	12	0.05	+5, ±2.5mA	±0.5	±0.5	Bin	±15	975	24-Pin DDIP H	6-3
DAC-HK12B	12	3	+5/10, ±2.5/5/10V	±0.75	±0.5	Bin, 2C	+5, ±15	1000 ②	24-Pin DDIP H	6-7
DAC-HZ12B	12	3	+5/10, ±2.5/5/10V	±0.75	±0.5	CBin	±15	500	24-Pin DDIP H	6-15
DAC-HZ12D	3-Digit	3	+2.5/5/10V	±0.25	±0.25	CBCD	±15	500	24-Pin DDIP H	6-15
DAC-HP16B	16	15	+10, ±5/10V	±2	±2	CBin	±15	675 [@]	24-Pin DDIP H	6-11

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated. \odot MIL-STD-883 models available for all listed products except DAC-HZ Series. \odot H = N

② H = Multi-chip-module hybrid.
③ Typical.

Operational Amplifiers

Model	Open Loop Gain (000)	Gain Bandwidth Product (MHz)	Slew Rate (V/µsec)	Input Offset Voltage (mV)	Offset Voltage Drift (µV/°C)	Input Bias Current (nA)	Output (±V@±mA)	Power Dissipation (±V@±mA)	Package	Page
AM-500	1000	130	±1000	±0.5	±1	±1	10/50	15/22	14-Pin DIP	7-7
AM-1435	100	1000	±300	±2	±5	±20µA	7/14	15/22	14-Pin DIP	7-3

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

Instrumentation Amplifiers

Model	Input Impedance (10 ¹² Ω)	Slew Rate (V/µsec)	Settling Time, G=1 (µsec)	Gain	Gain Accuracy (%, Max.)	Gain Nonlinearity (%, Max.)	Input Offset Voltage (±mV, Max.)	Output (±V@±mA)	Power Dissipation (±V@±mA)	Package	Page
AM-551 ①	1 ②	±23	3	1-1000	±0.04	±0.01	1 x gain	11/5	15/27	16-Pin DIP	7-10

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

① 2-stage design. Front-end gain is resistor programmable. Back-end gain of 1 or 10 is pin selectable.

② CMV = ±11V, CMRR = 100dB.

Single-Package Data Acquisition Systems

Model ①	Resolution (Bits)	Input Channels	Throughput Rate (kHz, Min.)	Differential Linearity Error, Max. (LSB)	Integral Linearity Error, Max. (LSB)	Total Harmonic Distortion (–dB)	No Missing Codes	Power Supplies (Volts)	Maximum Power Dissipation (Watts)	Package	Page
HDAS-16	12	16SE	50	±1	±1	-	-55 to +125°C	+5, ±15	1.25	62-Pin QDIP	8-3
HDAS-8	12	8D	50	±1	±1	-	-55 to +125°C	+5, ±15	1.25	62-Pin QDIP	8-3
HDAS-75	12	8SE	75	±1	±1	73	-55 to +125°C	+5, ±15	0.7	40-Pin DDIP	8-15
HDAS-76	12	4D	75	±1	±1	73	-55 to +125°C	+5, ±15	0.7	40-Pin DDIP	8-15
HDAS-528	12	8SE	400	±0.75	±0.75	73	-55 to +125°C	+5, ±15	3	40-Pin DDIP	8-10
HDAS-524	12	4D	400	±0.75	±0.75	73	–55 to +125°C	+5, ±15	3	40-Pin DDIP	8-10

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

① MIL-STD-883 models available for all listed products except HDAS-524.

Tunable Active Filters

Model	Tuning Technique	Poles	Filter Type ①	Low Pass	High Pass	Band Pass	Band Reject	Rolloff (dB/Octave)	Frequency Cutoff Range (f _C)	Package	Page
FLT-U2 2	Resistors	2	BU, CH, BE, CA	Х	X	Х		12	0.001Hz-200kHz	16-Pin DDIP	9-11
FLJ-D Series	3-Digit BCD	2	BU, CH, BE	Х	X	X	X	12	0.1Hz-160kHz	40-Pin QDIP	9-2
FLJ-UR Series	Resistors	2, 4	BU, CH	Х	X	X	X	12, 24, 42	40Hz-20kHz	20-Pin SIP	9-2
FLJ-V Series	Voltage	4	BU	Х	X	X		12, 24	20Hz-100kHz	40-Pin QDIP	9-2
FLJ-HR Series ③	Resistors	2, 4	BU, CH, BE, CA	Х	X	X		12, 24, 42	10Hz-100kHz	24-Pin DDIP	9-3
FLJ-D5/D6	3-Bit Binary	5,6	СН	Х				60, 80	10Hz-20kHz	40-Pin QDIP	9-2
FLJ-R Series	Resistors	6, 8	CA	Х		X		100, 135	10Hz-20kHz	40-Pin QDIP	9-2

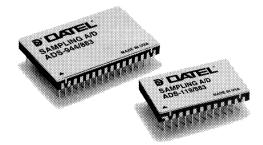
Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

① BU = Butterworth, BE = Bessel, CA = Cauer/elliptical, CH = Chebyshev

2 Commercial and military temperature ranges available.

③ High-reliability and military temperature range models available.

Quality Assurance


Military and High-Reliability Screening

As other suppliers rapidly exit the military components business, DATEL remains steadfastly committed to supporting our military/aerospace customers. Our commitment is evidenced by the fact we recently completed MIL-STD-883 qualifications for a number of our popular, high-performance sampling A/D converters. Our newest devices are now in the qualification process, and our extremely popular ADS-944 (14-Bit, 5MHz Sampling A/D Converter) is now covered by a DESC SMD.

DATEL remains on QML-38534 (the Qualified Manufacturers List) as we maintain our hybrid facility's MIL-STD-1772 certification. We routinely design, develop, manufacture and screen thick and thin-film chip-and-wire assemblies (nowadays called multi-chip-modules or MCM's) in full compliance with the demanding requirements of MIL-PRF-38534 and MIL-STD-883.

Continuous Improvement

Our overall Company, including our engineeringdesign functions, our Quality System, and our MCM, SMT and pcb assembly areas, is now ISO-9001 Registered! Not satisfied with this recent achievement, we are actively working to institute an enhanced Reliability Policy/Program that installs design-for-reliability practices earlier in our design cycles. Our standard in-house qualification programs

MIL-STD-1772 Certified and Qualified

now include HALT (highly accelerated life testing). Our new Qualmark HALT tester combines temperature and voltage extremes with 6-axis vibration to efficiently detect design weaknesses long before products enter the market.

Cost Savings for You!

DATEL recognizes that governments and military contractors are exploring ways to reduce the expense of many military programs, including lowering the cost of purchased components. In response to this need, we now offer a cost-effective alternative to full "883" processing. DATEL's "QL" program removes some of the more expensive aspects of "883" while maintaining its most important elements (burnin, temperature cycling, hermeticity testing etc.).

The "QL" program is extremely flexible and can be customized to meet your specific cost/reliability objectives. Our Quality Assurance Team stands ready to work with you.

The first table on the following page summarizes MIL-STD-883 screening and the DATEL "QL" Program. Some test conditions are slightly different for "QL" screening. The second table lists the DATEL data acquisition components currently available with MIL-STD-883 screening. Most DATEL products are available with "QL" screening.

Contact us directly if you have any questions.

Quality Assurance (continued)

MIL-STD-883 and DATEL "QL" Screening

883 Operation/Test	Method	Conditions	DATEL QL
Incoming Inspection	MIL-PRF-38534		Yes
Element Evaluation	MIL-PRF-38534		No
Wire Bond Pull	2011	Destructive/Nondestructive, In Process (Sample)	Yes
Internal Visual (Precap)	2017	100%	Yes
Temperature Cycling	1010	Test Condition C, -65 to +150°C, 100%	Yes
Constant Acceleration	2001	Test Condition A, Y Axis, 5kg, 100%	Yes
PIND	2020	Test Condition B	As Required
Pre-Burn-in Electrical	—	100%	Yes
Burn-in	1015	Test Condition B, 160hrs. @ +125°C, 100%	Yes
PDA	—	10%	Yes
Final Electrical	Static & Dynamic	Performed @ -55, +25 and +125°C, 100%	Yes
Seal (Fine and Gross Leak)	1014	Test Condition A (Fine), 100%	Yes
Jean (I me and Gross Leak)	1014	Test Condition C (Gross), 100%	Yes
External Visual	2009	100%	Yes
Group A	MIL-PRF-38534		As Required
Group B	MIL-PRF-38534		As Required
Group C	MIL-PRF-38534		As Required
Group D	MIL-PRF-38534		As Required

MIL-STD-883 Products	Description	DESC Drawing
ADS-111/883	12-Bit, 500kHz Sampling A/D Converter	_
ADS-112/883	12-Bit, 1MHz Sampling A/D Converter	_
ADS-117/883	12-Bit, 2MHz Sampling A/D Converter	_
ADS-119/883	12-Bit, 10MHz Sampling A/D Converter	
ADS-132/883	12-Bit, 2MHz Sampling A/D Converter	
ADS-926/883	14-Bit, 500kHz Sampling A/D Converter	_
ADS-927/883	14-Bit, 1MHz Sampling A/D Converter	5962-9475701
ADS-929/883	14-Bit, 2MHz Sampling A/D Converter	
ADS-944/883	14-Bit, 5MHz Sampling A/D Converter	5962-9319801
ADC-HZ12B/883	12-Bit, 8µsec A/D Converter	5962-8850802
ADC-HX12B/883	12-Bit, 20µsec A/D Converter	5962-8850801
ADC-816/883	10-Bit, 800nsec A/D Converter	-
ADC-511/883	12-Bit, 1µsec A/D Converter	
ADC-228/883	8-Bit, 20MHz, Complete Flash A/D Converter	_
ADC-208/883	8-Bit, 20MHz, Flash A/D Converter	
ADC-207/883	7-Bit, 20MHz, Flash A/D Converter	_
DAC-HZ12B/883	12-Bit, 3µsec, Voltage-Output D/A Converter	. —
DAC-HP16B/883	16-Bit, 15µsec, Voltage-Output D/A Converter	5962-8953101
DAC-HK12B/883	12-Bit D/A Converter with Input Register	5962-8952801
DAC-HF12/883	12-Bit, 50nsec, Current-Output D/A Converter	
DAC-HF10/883	12-Bit, 25nsec, Current-Output D/A Converter	
DAC-HF8/883	10-Bit, 25nsec, Current-Output D/A Converter	_
HDAS-76/883	12-Bit, 75kHz, 4-Channel Data Acquisition System	_
HDAS-75/883	12-Bit, 75kHz, 8-Channel Data Acquisition System	_
HDAS-16/883	12-Bit, 50kHz, 16-Channel Data Acquisition System	5962-8851404
HDAS-8/883	12-Bit, 50kHz, 8-Channel Data Acquisition System	5962-8851403
HDAS-528/883	12-Bit, 400kHz, 8-Channel Data Acquisition System	_
MX-826/883	Precision, 8-Channel, High-Speed Multiplexer	5962-9450601
SHM-4860/883	200nsec, ±0.01% Sample-Hold Amplifier	

Sampling A/D Converters

Incomparable combinations of high performance, small size, low power and affordable pricing define DATEL's unrivaled offering of Sampling A/D Converters. Virtually every new product we announce is a fully functional, easy-to-use device whose overall "value" instantly catapults it to the head of its speed class.

The advantages DATEL products offer are the result of years of engineering experience, an in-depth understanding of customer applications, and a multi-chip, mixed-technology assembly process (referred to as multi-chip-module or MCM technology). Our MCM technology combines integrated circuits fabricated from different semiconductor process technologies (bipolar, CMOS, biCMOS, etc.) with thick and thin-film passive elements into a single-package "seamless" function that exploits the most desirable aspects of each technology (high speed, low power, etc.). It is not limited by the unavoidable compromises inherent to any single technology.

MCM technology gives us the potential for continual performance improvements. Equally important, it allows us to quickly develop application-specific devices or easily modify standard products to meet your unique requirements.

Our new 14 and 16-bit Sampling A/D's feature unmatched performance, package, power and price attributes. All are 100% statically and dynamically tested (using FFT's). Proprietary, error-correcting and auto-calibration circuits enable each device to achieve specified performance over both 0 to +70°C and -55 to +125°C temperature ranges. Exhibiting *both* low noise (excellent DNL, high SNR) and wide bandwidth (low THD), these new A/D's excel in both time-domain (electronic imaging) and frequency-domain (digital communications) applications

These superior products are available *now*! Guarantee the future success of your design by choosing a DATEL Sampling A/D Converter today!

Table of Contents

Selection Guide	S	1-2
ADS-112	12-Bit, 1MHz, Low-Power Sampling A/D Converters	1-3
ADS-117	12-Bit, 2MHz, Low-Power Sampling A/D Converters	1-9
ADS-118/118A	12-Bit, 5MHz, Low-Power Sampling A/D Converters	1-15
ADS-119	12-Bit, 10MHz, Low-Power Sampling A/D Converters	1-23
ADS-325A	10-Bit, 20MHz Sampling A/D Converters	1-31
ADS-916	14-Bit, 500kHz, Low-Power Sampling A/D Converters	1-39
ADS-917	14-Bit, 1MHz, Low-Power Sampling A/D Converters	1-47
ADS-919	14-Bit, 2MHz, Low-Power Sampling A/D Converters	1-55
ADS-926	14-Bit, 500kHz, Low-Power Sampling A/D Converters	1-63
ADS-927	14-Bit, 1MHz, Low-Power Sampling A/D Converters	1-71
ADS-929	14-Bit, 2MHz, Low-Power Sampling A/D Converters	1-79
ADS-930	16-Bit, 500kHz Sampling A/D Converters	1-87
ADS-931	16-Bit, 1MHz Sampling A/D Converters	1-95
ADS-932	16-Bit, 2MHz Sampling A/D Converters	1-103
ADS-937	16-Bit, 1MHz, Low-Power Sampling A/D Converters	1-111
ADS-941	14-Bit, 1MHz Sampling A/D Converters	1-117
ADS-942	14-Bit, 2MHz Sampling A/D Converters	1-123
ADS-942A	14-Bit, 2MHz, Low-Power Sampling A/D Converters	1-129
ADS-943	14-Bit, 3MHz, Low-Power Sampling A/D Converters	1-135
ADS-944	14-Bit, 5MHz Sampling A/D Converters	1-143
ADS-945	14-Bit, 10MHz Sampling A/D Converters	1-151
ADS-946	14-Bit, 8MHz, Low-Power Sampling A/D Converters	1-159
ADS-CCD1201	12-Bit, 1.2MHz Sampling A/D Converters Optimized for Imaging	1-167
ADS-CCD1202	12-Bit, 2MHz Sampling A/D Converters Optimized for Imaging	1-175
HS-24/32/40	Heat Sinks for 24-Pin, 32-Pin and 40-Pin DIP's	1-183

1

Sampling Analog-to-Digital Converters

10-Bit and 12-Bit Resolution ^①

Model @	Sampling Rate (MHz)	Input Range(s) (Volts)	DNL (LSB)	No Missing Codes ③	SNR (dB)	THD (dB)	Power Supplies (Volts)	Power Dissipation (Watts)	Package	MIL-STD-883 Screening	Page
ADS-325A	20	+2 to +4	±0.5	Yes	54	65	+5	0.15	48-Pin VQFP	No	1-31
ADS-112	1	±5, 0 to +10	±0.5	Yes	72	78	±15, +5	1.3	24-Pin DDIP	Yes	1-3
ADS-CCD1201@	1.2	0 to +10	±0.25	Yes	73	84	±15, +5	1.7	24-Pin DDIP	No	1-167
ADS-117	2	±5, 0 to +10	±0.5	Yes	70	73	±15, +5	1.6	24-Pin DDIP	Yes	1-9
ADS-CCD1202@	2	0 to +10	±0.25	Yes	71	78	±15, +5	1.7	24-Pin DDIP	No	1-175
ADS-118	5	±1	±0.5	Yes	69	71	±5	1.3	24-Pin DDIP	No	1-15
ADS-118A	5	±1.25	±0.5	Yes	69	71	±5	1.3	24-Pin DDIP	No	1-15
ADS-119	10	±1.5	±0.5	Yes	69	68	±5	1.8	24-Pin DDIP	Yes	1-23

Listed specifications are typical at $T_A = +25^{\circ}C$, with nominal supplies, unless otherwise indicated.

 \odot The ADS-325A has 10-bit resolution. All other devices in this table are 12-bit converters.

② DATEL offers MC (0 to +70°C) and MM (-55 to +125°C) versions of each model.
③ Guaranteed over the full military temperature range (-55 to +125°C).

The ADS-CCD1201/2 have been optimized for electronic-imaging applications. They are pin-compatible and operate from either ±12V or ±15V supplies.

14-Bit Resolution

Model ①	Sampling Rate (MHz)	Input Range(s) (Volts)	DNL (LSB)	No Missing Codes ②	SNR (dB)	THD (-dB)	Power Supplies (Volts)	Power Dissipation (Watts)	Package	MIL-STD-883 Screening	Page
ADS-916 3	0.5	0 to +10	±0.5	Yes	80	82	±15, +5	1.6	24-Pin DDIP	No	1-39
ADS-926 3	0.5	±5	±0.5	Yes	80	87	±15, +5	1.6	24-Pin DDIP	Yes	1-63
ADS-917 3	1	0 to +10	±0.5	Yes	78	80	±15, +5	1.7	24-Pin DDIP	No	1-47
ADS-927 3	1	±5	±0.5	Yes	78	80	±15, +5	1.7	24-Pin DDIP	Yes	1-71
ADS-941	1	±5, 0 to +10	±0.5	Yes	78	83	±15, +5	2.8	32-Pin TDIP	No	1-117
ADS-919 3	2	0 to +10	±0.5	Yes	77	76	±15, +5	1.7	24-Pin DDIP	No	1-55
ADS-929 3	2	±5	±0.5	Yes	77	79	±15, +5	1.7	24-Pin DDIP	Yes	1-79
ADS-942	2	±5, 0 to +10	±0.5	Yes	75	80	±15, +5	2.9	32-Pin TDIP	No	1-123
ADS-942A	2	±5, 0 to +10	±0.5	Yes	75	80	±15, ±5	2.2	32-Pin TDIP	No	1-129
ADS-943	3	±2	±0.5	Yes	79	78	±5	1.8	24-Pin DDIP	Yes ④	1-135
ADS-944	5	±1.25	±0.5	Yes	76	77	±15, +5, -5.2	2.95	32-Pin TDIP	Yes	1-143
ADS-946	8	±2	±0.5	Yes	76	76	±5	1.9	24-Pin DDIP	Yes ④	1-159
ADS-945	10	±1.25	±0.5	Yes	78	80	±15, +5, -5.2	4.2	Custom DIP	No	1-151

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

① DATEL offers MC (0 to +70°C) and MM (-55 to +125°C) versions of each model. ② Guaranteed over the full military temperature range (-55 to +125°C).

③ ADS-916, 917, 919, 926, 927 and 929 are all pin-compatible and operate from either ±12V or ±15V supplies.

16-Bit Resolution

Model ①	Sampling Rate (MHz)	Input Range(s) (Volts)	DNL (LSB)	No Missing Codes ②	SNR (dB)	THD (dB)	Power Supplies (Volts)	Power Dissipation (Watts)	Package	MIL-STD-883 Screening	Page
ADS-930	0.5	±5, 0 to -10	±0.5	Yes	83	89	±15, +5	3.5	40-Pin TDIP	No	1-87
ADS-931	1	±2.75	±0.5	Yes	87	89	±5	1.85	40-Pin TDIP	No	1-95
ADS-937	1	±5, 0 to -10	±0.5	Yes	84	85	±15, ±5	1.1	32-Pin TDIP	No	1-111
ADS-932	2	±2.75	±0.5	Yes	86	88	±5	1.85	40-Pin TDIP	No	1-103

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

① DATEL offers MC (0 to +70°C) and MM (-55 to +125°C) versions of each model. ② Guaranteed over the full military temperature range (-55 to +125°C).

ADS-112 12-Bit, 1MHz, Low-Power Sampling A/D Converters


FEATURES

- 12-Bit resolution
- No missing codes
- 1MHz minimum sampling rate
- · Functionally complete
- Small 24-pin DDIP
- Low-power, 1.3 Watts
- · Three-state output buffers
- · Samples to Nyquist frequencies

GENERAL DESCRIPTION

DATEL's ADS-112 is a 12-bit, functionally complete, sampling A/D converter that is packaged in a space-saving 24-pin DDIP. Requiring \pm 15V and +5V supplies, a minimum sampling rate of 1MHz is achieved while only dissipating 1.3 Watts. The ADS-112 digitizes signals up to Nyquist frequencies. Models are available for use in either commercial (0 to + 70°C) or military (-55 to +125°C) operating temperature ranges.

Typical applications include spectrum, transient, vibration and waveform analysis. This device is also ideally suited for radar, sonar, video digitization, medical instrumentation and high-speed data acquisition systems.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 OUT (LSB)	24	-15V SUPPLY
2	BIT 11 OUT	23	ANALOG GROUND
3	BIT 10 OUT	22	+15V SUPPLY
4	BIT 9 OUT	21	+10V REFERENCE
5	BIT 8 OUT	20	BIPOLAR
6	BIT 7 OUT	19	ANALOG INPUT
7	BIT 6 OUT	18	COMP BIN
8	BIT 5 OUT	17	ENABLE (1–12)
9	BIT 4 OUT	16	START CONVERT
10	BIT 3 OUT	15	EOC
11	BIT 2 OUT	14	DIGITAL GROUND
12	BIT 1 OUT (MSB)	13	+5V SUPPLY

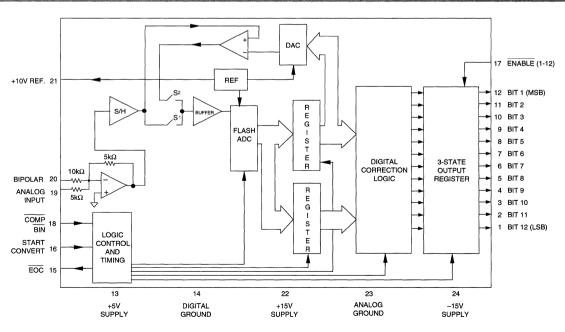


Figure 1. ADS-112 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 22)	0 to +18	Volts
-15V Supply (Pin 24)	0 to18	Volts
+5V Supply (Pin 13)	0 to +6	Volts
Digital Inputs		
(Pins 16, 17, 18)	-0.3 to +V _{DD} +0.3	Volts
Analog Input (Pin 19)	9 to +15	Volts
Lead Temp. (10 seconds)	300	°C

FUNCTIONAL SPECIFICATIONS

 $(T_A = +25^{\circ}C, \pm V_{CC} = \pm 15V, +V_{DD} = +5V, 1MHz$ sampling rate, and a minimum 1 minute warmup unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Ranges ①				
Bipolar	-	±5	-	Volts
Unipolar		0 to +10	—	Volts
Input Resistance	4.5	5	15	kΩ
Input Capacitance DIGITAL INPUTS		0	15	pF
Logic Levels				
Logic "1"	+2.0	_	_	Volts
Logic "0"	_	-	+0.8	Volts
Logic Loading "1"		-	+10	μA
Logic Loading "0"	-	-	-600	μΑ
A/D PERFORMANCE				
Resolution		12	Bits	
No Missing Codes (12 Bits; fin = 500kHz)	Over th	e operating	temperatur	e range
Integral Non-Linearity	<u> </u>		I	e .ungei
+25°C	_	±1/4	±3/4	LSB
0°C to +70°C	-	±1/4	±3/4	LSB
–55°C to +125°C	-	±1/2	±1.5	LSB
Differential Non-Linearity				
+25°C 0°C to +70°C	-	±1/4	±3/4	LSB
-55°C to +125°C	_	±1/4 ±1/2	±3/4 ±1	LSB LSB
Full Scale Absolute	_	±1/2	τı	130
Accuracy				
+25°C	-	±0.13	±0.25	%FSR
0°C to +70°C	-	±0.15	±0.44	%FSR
-55°C to +125°C		±0.25	±0.78	%FSR
Unipolar Zero Error †		0.074	0.005	0/ FOD
0°C to +70°C –55°C to +125°C	_	±0.074 ±0.224	±0.265 ±0.43	%FSR %FSR
Bipolar Zero Error †		±0.224	±0.45	%rən
0°C to +70°C	_	±0.074	±0.166	%FSR
-55°C to +125°C		±0.124	±0.210	%FSR
Bipolar Offset Error +				
0°C to +70°C	-	±0.1	±0.38	%FSR
-55°C to +125°C	-	±0.3	±0.60	%FSR
Gain Error †		±0.1	.0.20	%
0°C to +70°C -55°C to +125°C	_	±0.1 ±0.3	±0.38 ±0.60	%
Internal Reference	-	±0.5	±0.00	/0
Voltage, +25°C	+9.98	+10.0	+10.02	Volts
Drift		±5	±30	ppm/°C
External Current	-	-	1.5	mA
DYNAMIC PERFORMAN	ICE			
In-Band Harmonics (-0.5dB)	1			
dc to 100kHz	-	81	75	dB
100kHz to 500kHz	-	-75	-70	dB
Total Harm. Distort. (-0.5dB) dc to 100kHz		-78	-75	dB
100kHz to 500kHz	_	-78	-/5	dB dB
		_/0		

DYNAMIC PERF. (Cont.)	MIN.	TYP.	MAX.	UNITS
Signal-to-Noise Ratio				
(w/o distort., -0.5dB)				
dc to 100kHz	68	72	-	dB
100kHz to 500kHz	67	71	-	dB
Signal-to-Noise Ratio 2				
(& distort., –0.5dB) dc to 100kHz	66	70		dB
100kHz to 500kHz	66	70	_	dB
Two–Tone Intermodulation	00	10		
Distort. (fin = 75kHz,				
105kHz, fs = 1MHz, -7dB		88	80	dB
Two–Tone Intermodulation				
Distort. (fin = 480kHz,				
490kHz, fs = 1MHz, -0.5dB)	-	68	-65	dB
Input Bandwidth (-3dB)	8	10		MHz
Small Signal (-20dB input) Large Signal (-0.5dB input)	6	8		MHz
Slew Rate	_	±150	_	V/µs
Aperture Delay Time	_	_	20	ns
Effect. Aperture Delay Time	-	_	16	ns
Aperture Uncertainty (Jitter)			l	
RMS	-	-	15	ps
Peak	-	—	±50	ps
Overvoltage Recovery Time S/H Acquisition Time	160	250	1000 280	ns ns
Conversion Rate	100	200	200	115
(Changing Inputs)	l i			
+25°C	1	_	_	MHz
0°C to +70°C	1	_		MHz
-55°C to +125°C	1	-	—	MHz
DIGITAL OUTPUTS				
Output Coding				
Pin 18 High		raight binary		ry
Pin 18 Low		Complemen		
Logic Levels		mplementar	y onset bine	u y
LOGIC Levels				l
Logic "1"	+24			Volts
Logic "1" Logic "0"	+2.4	_	+0.4	Volts Volts
Logic "1" Logic "0" Logic Loading "1"	+2.4		+0.4 -160	Volts
Logic "0"	+2.4 	 		
Logic "0" Logic Loading "1"			-160	Volts µA
Logic "0" Logic Loading "1" Logic Loading "0"	 S		-160	Volts µA
Logic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENT: Power Supply Range +15V Supply	 S +14.25	 +15.0	160 +6.4 +15.75	Volts µA mA Volts
Loğic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENT Power Supply Range ③ +15V Supply -15V Supply		-15.0	160 +6.4 +15.75 15.75	Volts µA mA Volts Volts
Loğic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range ③ +15V Supply -15V Supply +5V Supply	 S +14.25		160 +6.4 +15.75	Volts µA mA Volts
Loğic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENT Power Supply Range ③ +15V Supply -5V Supply +5V Supply Power Supply Current		-15.0 +5.0	-160 +6.4 +15.75 -15.75 +5.25	Volts µA mA Volts Volts Volts
Loğic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range 3 +15V Supply -15V Supply +5V Supply Power Supply Current +15V Supply		-15.0 +5.0 +24	-160 +6.4 +15.75 -15.75 +5.25 +35	Volts µA mA Volts Volts Volts MA
Loğic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range ③ +15V Supply -15V Supply Power Supply Current +15V Supply -15V Supply -15V Supply -15V Supply		-15.0 +5.0 +24 -40	-160 +6.4 +15.75 -15.75 +5.25 +35 -48	Volts µA mA Volts Volts Volts mA mA
Loğic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range ③ +15V Supply -15V Supply +5V Supply +5V Supply -15V Supply +15V Supply +5V Supply +5V Supply		-15.0 +5.0 +24 -40 +80	-160 +6.4 +15.75 -15.75 +5.25 +35 -48 +95	Volts µA mA Volts Volts Volts Volts mA mA
Logic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range +15V Supply -15V Supply Power Supply Urrent +15V Supply -15V Supply -15V Supply +5V Supply Power Dissipation		-15.0 +5.0 +24 -40	-160 +6.4 +15.75 -15.75 +5.25 +35 -48 +95 1.7	Volts µA mA Volts Volts Volts Volts mA mA MA Watts
Loğic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range ③ +15V Supply -15V Supply +5V Supply +5V Supply -15V Supply +15V Supply +5V Supply +5V Supply	 +14.25 +4.25 +4.75 	-15.0 +5.0 +24 -40 +80	-160 +6.4 +15.75 -15.75 +5.25 +35 -48 +95	Volts µA mA Volts Volts Volts Volts mA mA
Loğic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range ③ +15V Supply +15V Supply +5V Supply +5V Supply +15V Supply +15V Supply +5V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMEN	 +14.25 +4.25 +4.75 	-15.0 +5.0 +24 -40 +80	-160 +6.4 +15.75 -15.75 +5.25 +35 -48 +95 1.7	Volts µA mA Volts Volts Volts Volts mA mA MA Watts
Loğic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range ③ +15V Supply -15V Supply Power Supply Current +15V Supply -15V Supply +5V Supply +5V Supply +5V Supply Power Dissipation Power Supply Rejection	 +14.25 +4.25 +4.75 	-15.0 +5.0 +24 -40 +80	-160 +6.4 +15.75 -15.75 +5.25 +35 -48 +95 1.7	Volts µA mA Volts Volts Volts Volts mA mA MA Watts
Loğic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range ③ +15V Supply -15V Supply Power Supply Current +15V Supply -15V Supply -15V Supply +5V Supply +5V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMEN Operating Temperature	 +14.25 +4.25 +4.75 	-15.0 +5.0 +24 -40 +80	-160 +6.4 +15.75 -15.75 +5.25 +35 -48 +95 1.7	Volts µA mA Volts Volts Volts Volts Watts %FSR%V
Loğic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range ③ +15V Supply -15V Supply Power Supply Qurrent +15V Supply -15V Supply -15V Supply -15V Supply -15V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMEN Operating Temperature Range, Case ADS-112MK, 883		-15.0 +5.0 +24 -40 +80	-160 +6.4 +15.75 -15.75 +5.25 +35 -48 +95 1.7 ±0.07	Volts µA mA Volts Volts Volts Wolts %FSR%V
Loğic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range +15V Supply -5V Supply Power Supply Current +15V Supply -15V Supply -15V Supply -15V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMEN Operating Temperature Range, Case ADS-112MC ADS-112MM, 883 Storage Temperature		-15.0 +5.0 +24 -40 +80	-160 +6.4 +15.75 -15.75 +5.25 +35 -48 +95 1.7 ±0.07 +70 +125	Volts µA mA Volts Volts Volts Watts %FSR/%V
Logic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range ③ +15V Supply -15V Supply Power Supply Current +15V Supply -15V Supply -15V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMEN Operating Temperature Range, Case ADS-112MC ADS-112MC ADS-112MM, 883 Storage Temperature Range		-15.0 +5.0 +24 -40 +80 1.3 	-160 +6.4 +15.75 -15.75 +5.25 +35 -48 +95 1.7 ±0.07 +70 +125 +150	Volts µA mA Volts Volts Volts Volts MA mA mA Watts %FSR%V
Logic "0" Logic Loading "1" Logic Loading "0" POWER REQUIREMENTS Power Supply Range ③ +15V Supply -15V Supply Power Supply Current +15V Supply -15V Supply +5V Supply +5V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMEN Operating Temperature Range, Case ADS-112MC ADS-112MC ADS-112MM, 883 Storage Temperature		15.0 +5.0 +24 40 +80 1.3 	-160 +6.4 +15.75 -15.75 +5.25 +35 -48 +95 1.7 ±0.07 +70 +125 +150	Volts µA mA Volts Volts Volts Volts Watts %FSR/%V

See Table 3 also.

② Effective bits is equal to:

(SNR + Distortion) - 1.76 +

6.02

20 log -

Full Scale Amplitude

Actual Input Amplitude

③ For ±12V, +5V operation, contact DATEL.

† See Tech Note 1

1-4

1

TECHNICAL NOTES

- Applications which are unaffected by endpoint errors or remove them through software will use the typical connections shown in Figure 3. Remove system errors or adjust the small initial errors of the ADS-112 to zero using the optional external circuitry shown in Figure 4. The external adjustment circuit has no effect on the throughput rate.
- For best performance, always connect the analog and digital ground pins to a ground plane beneath the converter. The analog and digital grounds are not connected to each other internally.
- 3. Bypass the analog and digital supplies and the +10V reference (pin 21) to ground with 4.7μ F, 25V tantalum electrolytic capacitors in parallel with 0.1μ F ceramic capacitors. Bypass the +10V reference (pin 21) to analog ground (pin 23).
- 4. Obtain straight binary/offset binary output coding by tying-COMP BIN (pin 18) to +5V or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie pin 18 to ground. The pin 18 signal is compatible with CMOS/TTL logic levels for those users desiring dynamic control of this function.
- To enable the three-state outputs, connect ENABLE (pin 17) to a logic "0" (low). To disable, connect pin 17 to a logic "1" (high).
- 6. Do not change the status of pin 18 when $\overline{\text{EOC}}$ is high.
- Re-initiating the START CONVERT (pin 16) while EOC is a logic "1" (high) will result in a new conversion sequence.

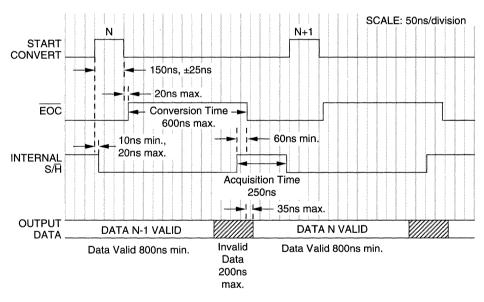


Figure 2. ADS-112 Timing Diagram

TIMING

Figure 2 shows the relationship between the various input signals. The timing shown applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

CALIBRATION PROCEDURE

1. Connect the converter per Figures 3 and 4 and Tables 1 and 3 for the appropriate input range. Apply a pulse of 150 nanoseconds to the START CONVERT input (pin 16) at a rate of 250kHz. This rate is chosen to reduce the flicker if LED's are used on the outputs for calibration purposes.

Table 1. Input Range Selection

INPUT RANGE	INPUT PIN	TIE TOGETHER
±5V	Pin 19	Pin 20 to Pin 21
0 to+10V	Pin 19	Pin 20 to Ground

2. Zero Adjustments

Apply a precision voltage reference source between the amplifier's analog input and ground. Adjust the output of the reference source per Table 2. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 with COMP BIN (pin 18) tied high (straight binary) or between 1111 1111 1111 and 1111 1111 1110 with pin 18 tied low (complementary binary).

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with pin 18 tied high (offset binary) or between 0111 1111 1111 and 01111 1111 1110 with pin 18 tied low (complementary offset binary).

Table 2. Zero and Gain Adjust

INPUT	ZERO ADJUST	GAIN ADJUST
RANGE	+1/2 LSB	+FS - 1 1/2 LSB
0 to +10V	+1.22mV	+9.9963V
±5V	+1.22mV	+4.9963V

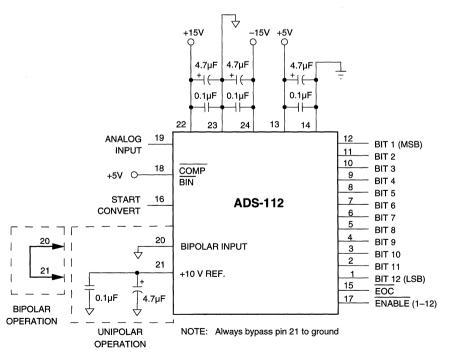
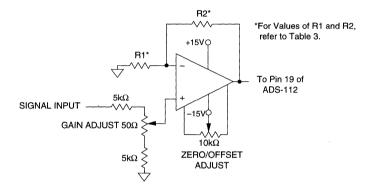
3. Full-Scale Adjustment

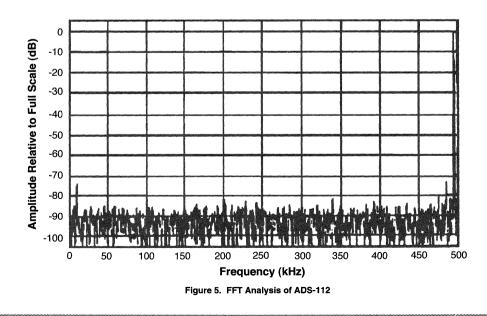
Set the output of the voltage reference used in step 2 to the value shown in Table 2. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 for pin 18 tied high or between 0000 0000 0001 and 0000 0000 0000 for pin 18 tied low.

To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

Table 3. Input Ranges (using external calibration)

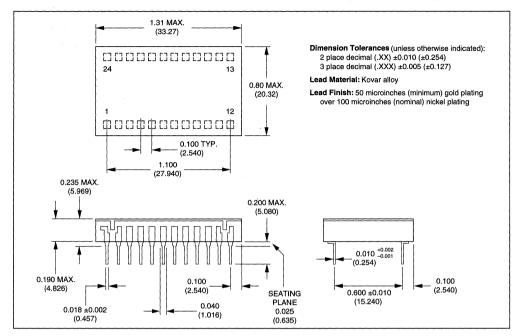
INPUT RANGE	R1	R2	UNIT
0 to +10V, ±5V	2	2	kΩ
0 to +5V, ±2.5V	2	6	kΩ
0 to +2.5V, ±1.25V	2	14	kΩ


Figure 3. Typical ADS-112 Connection Diagram

		STRAIGHT BIN.	COMP. BINARY		
UNIPOLAR	INPUT RANGE	OUTPUT	CODING	INPUT RANGE	BIPOLAR
SCALE	0 to +10V	MSB LSB	MSB LSB	±5V	SCALE
+FS -1 LSB	+9.9976	1111 1111 1111	0000 0000 0000	+4.9976	+FS -1 LSB
+7/8 FS	+8.7500	1110 0000 0000	0001 1111 1111	+3.7500	+3/4 FS
+3/4 FS	+7.5000	1100 0000 0000	0011 1111 1111	+2.5000	+1/2 FS
+1/2 FS	+5.0000	1000 0000 0000	0111 1111 1111	0.0000	0
+1/4 FS	+2.5000	0100 0000 0000	1011 1111 1111	-2.5000	-1/2 FS
+1/8 FS	+1.2500	0010 0000 0000	1101 1111 1111	-3.7500	-3/4 FS
+1 LSB	+0.0024	0000 0000 0001	1111 1111 1110	-4.9976	-FS +1 LSB
0	0.0000	0000 0000 0000	1111 1111 1111	-5.0000	-FS
	********	OFF. BINARY	COMP. OFF. BIN.		

Table 4. Output Coding



MECHANICAL DIMENSIONS

INCHES (mm)

ORDERING INFORMATION

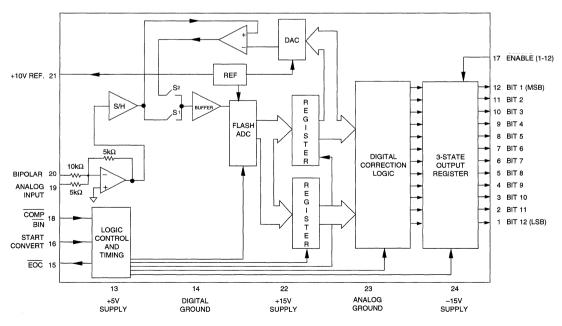
MODEL NUMBER	OPERATING TEMP. RANGE	ACCESSORIES	
ADS-112MC ADS-112MM ADS-112/883	0 to +70°C −55 to +125°C −55 to +125°C	ADS-EVAL1 HS-24	Evaluation board (without ADS-112) Heat sink for all ADS-112 models.
For MIL-STD-883 product specification or availability of surface-mount packaging, contact DATEL.			PC board mounting can be ordered through \$ 3-331272-8 (Component Lead Socket), 24

FEATURES

- 12-Bit resolution
- No missing codes
- 2MHz minimum throughput
- · Functionally complete
- Small 24-pin DDIP
- Low-power, 1.6 Watts
- Three-state output buffers
- · Samples to Nyquist frequencies

GENERAL DESCRIPTION

DATEL's ADS-117 is a functionally complete, 12-bit, 2MHz, sampling A/D converter. Its standard, 24-pin, double-width DIP contains a fast-settling sample-hold amplifier, a 12-bit subranging (two-step) A/D converter, a precision reference, three-state output register and all the timing and control logic necessary to operate from a single start convert pulse. Digital input and output levels are TTL.


Total harmonic distortion (THD) and signal-to-noise ratio (including distortion) typically run -78dB and 70dB, respectively, with full scale inputs up to 100kHz. The ADS-117 requires $\pm 15V$ and $\pm 5V$ power supplies and typically consumes 1.6 Watts. Models are available for use in either commercial (0 to $\pm 70^{\circ}$ C) or military (± 55 to $\pm 125^{\circ}$ C) operating temperature ranges.

12-Bit, 2MHz, Low-Power Sampling A/D Converters

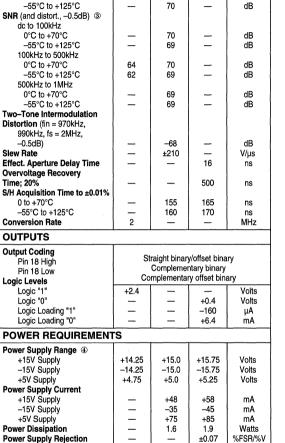
INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 OUT (LSB)	24	-15V SUPPLY
2	BIT 11 OUT	23	ANALOG GROUND
3	BIT 10 OUT	22	+15V SUPPLY
4	BIT 9 OUT	21	+10V REFERENCE
5	BIT 8 OUT	20	BIPOLAR
6	BIT 7 OUT	19	ANALOG INPUT
7	BIT 6 OUT	18	COMP BIN
8	BIT 5 OUT	17	ENABLE (1-12)
9	BIT 4 OUT	16	START CONVERT
10	BIT 3 OUT	15	EOC
11	BIT 2 OUT	14	DIGITAL GROUND
12	BIT 1 OUT (MSB)	13	+5V SUPPLY

Figure 1. ADS-117 Functional Block Diagram

ΔDS-117

100


ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 22)	0 to +16	Volts
-15V Supply (Pin 24)	0 to -16	Volts
+5V Supply (Pin 13)	0 to +6.0	Volts
Digital Inputs		
(Pins 16, 17, 18)	-0.3 to +V _{DD} +0.3	Volts
Analog Input (Pin 19)	-9 to +15	Volts
Lead Temp. (10 seconds)	300	°C

FUNCTIONAL SPECIFICATIONS

 $(T_A = +25^{\circ}C, \pm V_{CC} = +15V, +V_{DD} = +5V, 2MHz$ sampling rate, and a minimum 3 minute warmup unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Ranges ①				
Bipolar		±5	-	Volts
Unipolar	_	0 to +10	-	Volts
Input Resistance	4.5	5		kΩ
Input Capacitance		6	15	pF
DIGITAL INPUTS				
Logic Levels Logic "1"	+2.0			Volts
Logic "0"	+2.0		+0.8	Volts
Logic Loading "1"			+0.8	μΑ
Logic Loading "0"		_	-600	μΑ
PERFORMANCE		L		
Resolution		12	Bits	
No Missing Codes				
(12 Bits; fin = 1MHz)		0 to +	-70°C	
Integral Non–Linearity				
0°C to +70°C	-	±1/2	±2	LSB
-55°C to +125°C	-	±1	±3	LSB
Differential Non-Linearity				
0°C to +70°C	-	±1/2	±0.95	LSB
-55°C to +125°C		±1	±1.5	LSB
Full Scale Absolute				
Accuracy (see Tech Note 1)		.0.10	.0.44	%FSB
0°C to +70°C –55°C to +125°C		±0.13 ±0.25	±0.44 ±0.73	%FSR
Unipolar/Bipolar Zero Error	-	±0.25	±0.73	%F3H
0°C to +70°C (Tech. Note 1)		±0.07	±0.27	%FSB
-55°C to +125°C	_	±0.07 ±0.22	±0.27 ±0.73	%FSR
Bipolar Offset Error		10.22	10.70	701 011
0°C to +70°C (Tech. Note 1)	_	±0.1	±0.38	%FSR
-55°C to +125°C	_	±0.53	±0.73	%FSR
Gain Error (See Tech. Note 1)				/0.0.1
0°C to +70°C		±0.1	±0.38	%
-55°C to +125°C		±0.53	±0.73	%
Internal Reference				
Voltage				
0°C to +70°C	+9.97	+10.0	+10.03	Volts
-55°C to +125°C	+9.95	-	+10.05	Volts
External Current	-		1.5	mA
DYNAMIC PERFORMAN	ICE			
Spurious Free Dynamic Range (–0.5dB) ②				
dc to 100kHz	_	-81		dB
100kHz to 500kHz		-75	-70	dB
500kHz to 1MHz		-70		dB
Total Harm. Distort. (-0.5dB)	_			
dc to 100kHz	_	-78	_	dB
100kHz to 500kHz	- 1	-73	-68	dB
500kHz to 1MHz	_	-71	<u> </u>	dB
Input Bandwidth (-3dB)				
Small Signal (-20dB input)	8	10	_	MHz
			1	
Large Signal (-0.5dB input)	7	9	- 1	MHz

PHYSICAL /ENVIRONMENTAL

DYNAMIC PERF. (Cont.)

SNR (w/o distortion, -0.5dB) dc to 100kHz 0°C to +70°C

-55°C to +125°C

-55°C to +125°C

500kHz to 1MHz 0°C to +70°C

100kHz to 500kHz 0°C to +70°C MIN.

65

65

TYP.

72

72

70

70

70

Operating Temperature					
Range, Case					
ADS-117MC	0		+70	°C	
ADS-117MM, 883	-55	_	+125	°C	
Storage Temperature					
Range	-65	-	+150	°C	
Thermal Impedance			1		
өјс	`	3	-	°C/W	
θса	—	23	_	°C/W	
Package Type	24-pii	n, metal-sea	aled, ceramic	DDIP	
Weight		0.42 ounces (12 grams)			

6.02

Same specifications for in-band harmonics.
 Effective bits is equal to:

(SNR + Distortion) - 1.76 +

20 log Full Scale Amplitude Actual Input Amplitude

MAX.

.

_

UNITS

dB

dB

dB

dB

dB

See Table 1 also.

④ For ±12V, +5V operation, contact DATEL.

TECHNICAL NOTES

- Applications which are unaffected by endpoint errors or remove them through software will use the typical connections shown in Figure 3. Remove system errors or adjust the small initial errors of the ADS-117 to zero using the optional external circuitry shown in Figure 4. The external adjustment circuit has no effect on the throughput rate.
- Always connect the analog and digital grounds to a ground plane beneath the converter for best performance. The analog and digital grounds are not connected to each other internally.
- 3. Bypass the analog and digital supplies and the +10V reference (pin 21) to ground with 4.7 μ F, 25V tantalum electrolytic capacitors in parallel with 0.1 μ F ceramic capacitors. Bypass the +10V reference (pin 21) to ANALOG GROUND (pin 23).
- 4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 18) to +5V or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie pin 18 to ground. The pin 18 signal is compatible with CMOS/TTL logic levels for those users desiring dynamic control of this function. Do not change COMP BIN status while EOC is high.

- To enable the three-state outputs, connect ENABLE (pin 17) to a logic "0" (low). To disable, connect pin 17 to a logic "1" (high).
- 6. To meet the guaranteed conversion rate, a maximum start convert pulse is specified. A wider start convert pulse will result in slower conversion rates. An initial start convert pulse is required before performing an actual conversion after power-up to assure the sample-hold is in the acquisition mode.

Figure 2 shows the relationship between the various input signals. The timing shown applies over the operating temperature range and over the operating power supply range.

 Re-initiating the START CONVERT (pin 16) while EOC is a logic "1" (high) will result in a new conversion sequence.

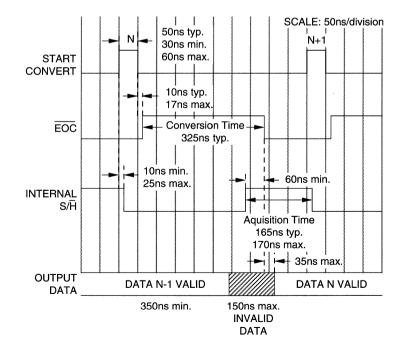


Figure 2. ADS-117 Timing Diagram

CALIBRATION PROCEDURE

 Connect the converter per Figure 3, Figure 4, and Table 1 for the appropriate input range. Apply a pulse of 150 nanoseconds to the START CONVERT input (pin 16) at a rate of 250kHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

Table 1. Input Ranges (using external calibration)

INPUT RANGE	R 1	R2	UNIT
0 to +10V, ±5V 0 to +5V, ±2.5V	2	2	kΩ kΩ
0 to +2.5V, ±1.25V	2	14	kΩ

2. Zero Adjustments

Table	2.	Zero	and	Gain	Adjust
-------	----	------	-----	------	--------

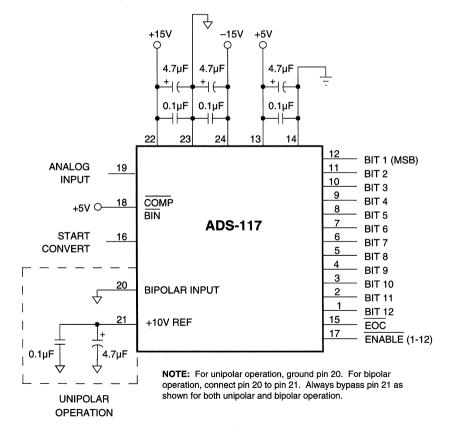
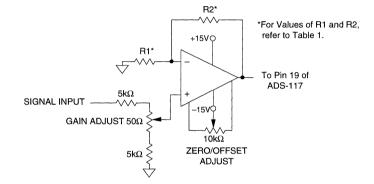
INPUT	ZERO ADJUST	GAIN ADJUST
RANGE	+ 1/2 LSB	+FS - 1 1/2 LSB
0 to +10V	+1.22mV	+9.9963V
±5V	+1.22mV	+4.9963V

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with pin 18 tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with pin 18 tied low (complementary offset binary).

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value.shown in Table 1. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 and 1111 1111 1111 for pin 18 tied high or between 0000 0000 0001 and 0000 0000 0000 for pin 18 tied low.

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

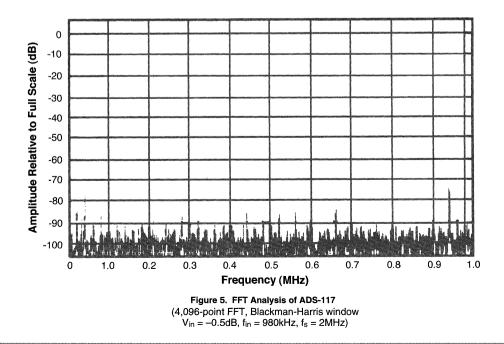
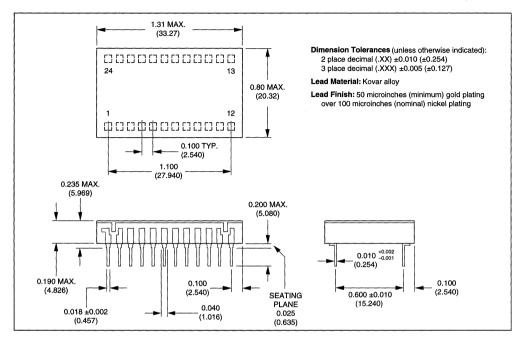

Figure 3. ADS-117 Connection Diagram

	Table 3. Output Coding					
		STRAIGHT BIN.	COMP. BINARY			
	INPUT RANGE 0 to +10V		CODING	INPUT RANGE	BIPOLAR SCALE	
+FS -1 LSB +7/8 FS +3/4 FS	+9.9976 +8.7500 +7.5000	1111 1111 1111 1110 0000 0000 1100 0000 0000	0000 0000 0000 0001 1111 1111 0011 1111 1111	+4.9976 +3.7500 +2.5000	+FS -1 LSB +3/4 FS +1/2 FS	
+1/2 FS +1/4 FS +1/8 FS	+5.0000 +2.5000 +1.2500	1000 0000 0000 0100 0000 0000 0010 0000 0000	0111 1111 1111 1011 1111 1111 1101 1111 1111	0.0000 -2.5000 -3.7500	0 -1/2 FS -3/4 FS	
+1 LSB 0	+0.0024 0.0000	0000 0000 0001 0000 0000 0000	1111 1111 1110 1111 1111 1111	-4.9976 -5.0000	-FS +1 LSB -FS	
		OFF. BINARY	COMP. OFF. BIN.			

Table 2 Output Coding



DATEL

MECHANICAL DIMENSIONS INCHES (mm)

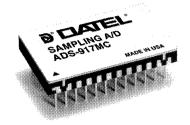
ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	ACCESSORIES	
ADS-117MC ADS-117MM ADS-117/883	0 to +70°C −55 to +125°C −55 to +125°C	ADS-EVAL1 HS-24	Evaluation board (without ADS-117) Heat sink for all ADS-117 models.
	luct specification or availability of		PC board mounting can be ordered through \$ 3-331272-8 (Component Lead Socket), 24

ADS-118, ADS-118A

12-Bit, 5MHz, Low-Power Sampling A/D Converters

FEATURES


- 12-Bit resolution
- 5MHz minimum sampling rate
- Functionally complete
- Small 24-pin DDIP
- Requires only ±5V supplies
- Low-power, 1.3 Watts
- Outstanding dynamic performance
- No missing codes over full military temperature range
- · Edge-triggered, no pipeline delay
- · Ideal for both time and frequency-domain applications

GENERAL DESCRIPTION

DATEL's ADS-118 and ADS-118A are 12-bit, 5MHz, sampling A/D converters packaged in space-saving 24-pin DDIP's. The ADS-118 offers an input range of \pm 1V and has three-state outputs. The ADS-118A has an input range of \pm 1.25V and features direct adjustment of offset error.

These functionally complete low-power devices (1.3 Watts) contain an internal fast-settling sample/hold amplifier, a 12-bit subranging A/D converter, a precise voltage reference, timing/control logic, and error-correction circuitry. All timing and control logic operates from the rising edge of a single start convert pulse. Digital input and output levels are TTL. Models are available for use in either commercial (0 to +70°C) or military (-55 to +125°C) operating temperature ranges.

Applications include radar, transient signal analysis, process control, medical/graphic imaging, and FFT spectrum analysis.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 (LSB)	24	NO CONNECT
2	BIT 11	23	ANALOG GROUND
3	BIT 10	22	NO CONNECT
4	BIT 9	21	+5V ANALOG SUPPLY
5	BIT 8	20	-5V SUPPLY
6	BIT 7	19	ANALOG INPUT
7	BIT 6	18	ANALOG GROUND
8	BIT 5	17*	ENABLE /OFFSET ADJ.
9	BIT 4	16	START CONVERT
10	BIT 3	15	EOC
11	BIT 2	14	DIGITAL GROUND
12	BIT 1 (MSB)	13	+5V DIGITAL SUPPLY

* ADS-118, Pin 17 is ENABLE

ADS-118A, Pin 17 is OFFSET ADJUST

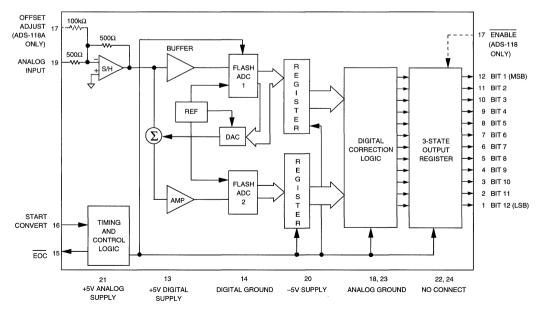


Figure 1. ADS-118/118A Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS		
+5V Supply (Pins 13, 21)	0 to +6	Volts		
-5V Supply (Pin 20)	0 to6	Volts		
Digital Inputs (Pins 16, 17)	0.3 to +V _{DD} +0.3	Volts		
Analog Input (Pin 19)	±5	Volts		
Lead Temp. (10 seconds)	300	°C		

FUNCTIONAL SPECIFICATIONS

 $(T_A=+25^\circ C,~\pm V_{DD}=\pm 5 V,~SMHz$ sampling rate, and a minimum 3 minute warmup $^{\odot}$ unless otherwise specified.)

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS			
Operating Temp. Range, Case							
ADS-118MC/AMC	0	_	+70	°C			
ADS-118MM/AMM	55	-	+125	°C			
Thermal Impedance							
θjc	-	2		°C/Watt			
θca		23		°C/Watt			
Storage Temperature Range	-65		+150	°C			
Package Type	24-pin, metal-sealed, ceramic DDIP or SMT						
Weight	0.42 ounces (12 grams)						

	+25°C			0 to +70°C			–55 to +125°C			
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range, ADS-118 ^②	1	±1	_		±1			±1	_	Volt
Input Resistance	475	500		475	500	_	475	500		Ω
Input Capacitance	475	6	15	4/5	6	15	475	6	15	pF
DIGITAL INPUTS			15		0	15		0	15	pi
	T	· · · · · · · · · · · · · · · · · · ·				· · · · · ·				
Logic Levels Logic "1"	+2.0	_		+2.0		_	+2.0	_	_	Volts
Logic "0"	+2.0		+0.8	72.0	_	+0.8	+2.0	_	+0.8	Volts
Logic Loading "1"			+0.0	_		+0.0		_	+0.0	uA
Logic Loading "0"			-20			-20			-20	μΑ
Start Convert Positive Pulse Width ³	50	100	-20	50	100	-20	50	100	-20	ns pr
STATIC PERFORMANCE	4							I	I	
Resolution		12	_		12	_		12		Bits
Integral Nonlinearity (fin = 10kHz)	-	±0.75	_		±1.0			±1.5	_	LSB
Differential Nonlinearity (fin = 10kHz)	_	±0.5	±0.75	_	±0.5	±0.95		±0.75	±0.95	LSB
Full Scale Absolute Accuracy	-	±0.1	±0.5		±0.5	±0.75		±0.75	±1.5	%FSR
Bipolar Zero Error (Tech Note 2)	_	±0.1	±0.5		±0.5	±0.75 ±0.85		±0.75	±2.0	%FSR
Bipolar Offset Error (Tech Note 2)	I _	±0.1	±0.5		± 0.5	±1.5		±1.5	±2.5	%FSR
Gain Error (Tech Note 2)	_	±0.1 ±0.1	±0.5 ±0.5	_	±0.5 ±0.5	±1.5 ±1.0		±1.0	±2.5 ±2.5	%
No Missing Codes (fin = 10kHz)	12	10.1		12			12			Bits
DYNAMIC PERFORMANCE			L					I		
Peak Harmonics (-0.5dB)	T									
dc to 500kHz	- 1	-76	-71		-74	-70	_	-72	-66	dB
500kHz to 1MHz	_	-75	-71	_	-74	-70		-70	-65	dB
1MHz to 2.5MHz		-74	-69		-73	-67		-66	-60	dB
Total Harmonic Distortion (-0.5dB)		, .				0.				üD
dc to 500kHz	_	-72	68		-71	-67		-70	-65	dB
500kHz to 1MHz	_	-71	-67	_	-70	-66		-67	-63	dB
1MHz to 2.5MHz		-70	-66		-69	-65		-66	-60	dB
Signal-to-Noise Ratio	-	-/0	-00		-03	-03		-00	-00	uр
(w/o distortion, -0.5dB)										
dc to 500kHz	67	69		66	69		64	67		dB
500kHz to 1MHz	66	69	_	65	68	_	63	66	_	dВ
1MHz to 2.5MHz	66	69		65	68		63	66	_	dВ
	00	09	_	65	00	_	03	00		uв
Signal-to-Noise Ratio ④										
(& distortion, -0.5dB)	65	6		~	67		co			
dc to 500kHz	65	68		64	67	-	62	66		dB
500kHz to 1MHz	65	68	-	64	67	-	61	65	-	dB
1MHz to 2.5MHz	64	67	_	63	66	-	60	64	-	dB
Noise	- 1	195	-	—	195	-		195	-	μVrms
Two-tone Intermodulation										
Distortion (f _{in} = 1MHz,										
975kHz, f _s = 5MHz,					74					
-0.5dB)		-74	-	-	-74	-	-	-74	-	dB
Input Bandwidth (-3dB)										
Small Signal (-20dB input)	-	20	-	-	20	-	—	20	-	MHz
Large Signal (-0.5dB input)	-	10	- 1		10	- 1		10	-	MHz
Feedthrough Rejection (fin = 2.5MHz)	-	80	- '		80	-	—	80		dB
Slew Rate	-	±400	-	-	±400	- 1	—	±400	-	V/µs
Aperture Delay Time	-	±10	-		±10	-		±10	-	ns
Aperture Uncertainty	-	3	-	-	3	-	—	3	-	ps rms
S/H Acquisition Time	1									1
(to ±0.01%FSR, 2V step)	-	85	90	_	85	90	_	85	90	ns
Overvoltage Recovery Time (5)	_	200	-	_	200	_		200	_	ns
A/D Conversion Rate	5	I _	_	5	_	_	5		_	MHz

1–16 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

DATEL

ADS-118/118A

		+25°C			0 to +70	°C	-5	5 to +12	5°C	
DIGITAL OUTPUTS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Logic Levels										
Logic "1"	+2.4	_	_	+2.4		_	+2.4	-	-	Volts
Logic "0"	-		+0.4	-	_	+0.4	_	-	+0.4	Volts
Logic Loading "1"	-	_	-4			-4	-	_	-4	mA
Logic Loading "0"	- 1	-	+4	_		+4	_	-	+4	mA
Delay, Falling Edge of EOC										
to Output Data Valid	-	_	20	-	-	20	-	_	20	ns
Delay, Falling Edge of ENABLE										
to Output Data Valid	-	_	10	-		10	-	-	10	ns
Output Coding	Offset Binary									
POWER REQUIREMENTS										
Power Supply Ranges ®										
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.9	+5.0	+5.25	Volts
-5V Supply	-4.75	-5.0	-5.25	-4.75	-5.0	-5.25	-4.9	-5.0	-5.25	Volts
Power Supply Currents										
+5V Supply	- 1	+205	+220	_	+205	+220		+205	+220	mA
-5V Supply		-80	-90		80	-90	_	-80	-90	mA
Power Dissipation	_	1.3	1.5	_	1.3	1.5	_	1.3	1.5	Watts
Power Supply Rejection	-	_	±0.1			±0.1		-	±0.1	%FSR/%V

Footnotes:

① All power supplies should be on before applying a start convert pulse. All supplies and the clock (start convert pulses) must be present during warmup periods. The device must be continuously converting during this time.

- 2 Input Voltage Range for ADS-118A is ±1.25V.
- A 100ns wide start convert pulse is used for all production testing. For applications requiring less than a 5MHz sampling rate, wider start convert pulses can be used. NOTE: The device only requires the rising edge of a start convert pulse to operate.

TECHNICAL NOTES

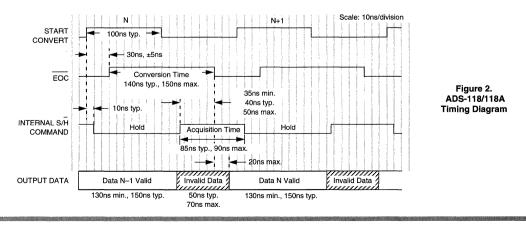
 Obtaining fully specified performance from the ADS-118 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 18, and 23) directly to a large analog ground plane beneath the package.

Bypass all power supplies to ground with 4.7μ F tantalum capacitors in parallel with 0.1μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible.

2. The ADS-118 achieves its specified accuracies without the need for external calibration. If required, the device's small

④ Effective bits is equal to:

(SNR + Distortion) - 1.76 +


20 log Full Scale Amplitude Actual Input Amplitude

6.02

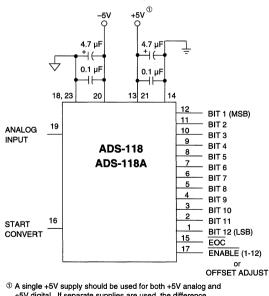
- ⑤ This is the time required before the A/D output data is valid once the analog input is back within the specified range.
- \circledast The minimum supply voltages of +4.9V and –4.9V for $\pm V_{DD}$ are required for –55°C operation only. The minimum limits are +4.75V and –4.75V when operating at +125°C.

initial offset and gain errors can be reduced to zero using the adjustment circuitry shown in Figures 3a and 3b. When using this circuitry, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.

- 3. To enable the three-state outputs, connect ENABLE (pin 17) to a logic "0" (low). To disable, connect pin 17 to logic "1" (high). The three-state outputs are permanently enabled in the ADS-118A.
- Applying a <u>start</u> convert pulse while a conversion is in progress (EOC = logic "1") will initiate a new and inaccurate conversion cycle.

1

CALIBRATION PROCEDURE


Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuits in Figures 3a and 3b are guaranteed to compensate for the ADS-118's initial accuracy errors and may not be able to compensate for additional system errors.

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-118, offset adjusting is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is $\pm 1/2LSB$ ($\pm 244\mu V$ for ADS-118; $\pm 305\mu V$ for ADS-118A).

Table 1. Output Coding for Bipolar Operation

BIPOLAR SCALE	ADS-118 INPUT VOLTAGE (±1V RANGE)	OUTPUT CODING OFFSET BINARY MSB LSB	ADS-118A INPUT VOLTAGE (±1.25V RANGE)
+FS -1 LSB	+0.99951V	1111 1111 1111	+1.2494V
+3/4 FS	+0.75000V	1110 0000 0000	+0.9375V
+1/2 FS	+0.50000V	1100 0000 0000	+0.6250V
0	0.00000V	1000 0000 0000	0.0000V
-1/2 FS	-0.50000V	0100 0000 0000	-0.6250V
-3/4 FS	-0.75000V	0010 0000 0000	-0.9375V
-FS +1 LSB	-0.99951V	0010 0000 0000	-1.2494V

+5V digital. If separate supplies are used, the difference between the two cannot exceed 100mV.

Figure 3. Typical Connection Diagram

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 1/2 LSB's (+0.99927V for ADS-118; +1.249085V for ADS-118A).

Zero/Offset Adjust Procedure

- 1. Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting.
- Apply +244µV (ADS-118) or +305µV (ADS-118A) to the ANALOG INPUT (pin 19).
- 3. Adjust the offset potentiometer until the output bits are 1000 0000 00000 and the LSB flickers between 0 and 1.

Gain Adjust Procedure

- 1. Apply +0.99927V (ADS-118) or +1.249085V (ADS-118A) to the ANALOG INPUT (pin 19).
- 2. Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between 1 and 0.
- 3. To confirm proper operation of the device, vary the input signal to obtain the output coding listed in Table 1.

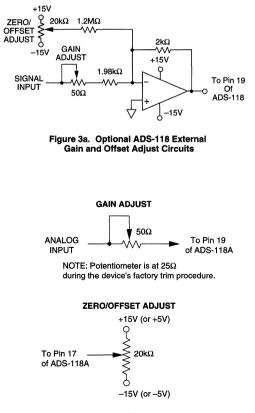


Figure 3b. Optional ADS-118A Gain and Offset Adjust Circuits

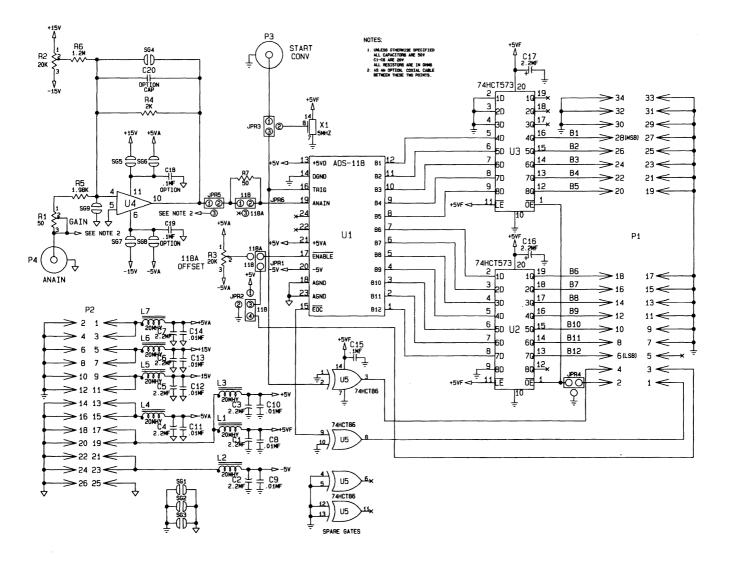


Figure 4. ADS-118/118A Evaluation Board Schematic (ADS-B118)

V

1-19

Sampling Analog-to-Digital Converters

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to + 125°C. All room-temperature (T_A = +25°C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

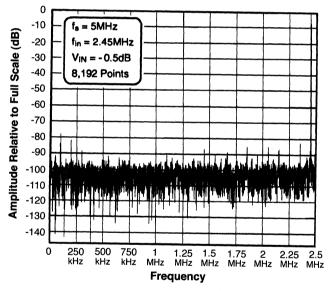
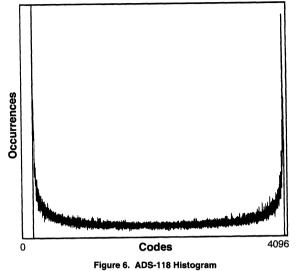
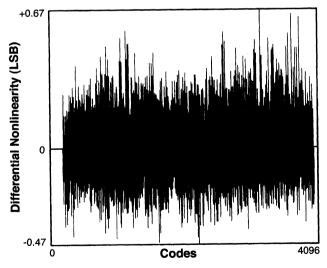
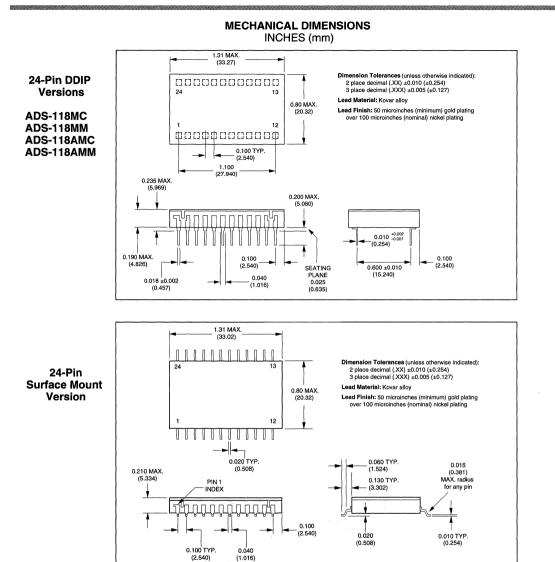




Figure 5. ADS-118 FFT Analysis



ADS-118/118A

の日本の

DATEL

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	ACCESSORIES	
ADS-118MC ADS-118MM ADS-118AMC ADS-118AMM	0 to +70°C −55 to +125°C 0 to +70°C −55 to +125°C	ADS-B118 HS-24	Evaluation board (without ADS-118) Heat sink for all DDIP ADS-118 models. or PC board mounting can be ordered through
	uct specification or availability of		t # 3-331272-8 (Component Lead Socket), 24

ADS-119 12-Bit, 10MHz, Low-Power Sampling A/D Converters

FEATURES

- 12-Bit resolution
- 10MHz minimum sampling rate
- · Functionally complete
- Small 24-pin DDIP or SMT package
- Requires only ±5V supplies
- Low-power, 1.8 Watts
- Outstanding dynamic performance
- · Edge-triggered
- No missing codes over temperature
- · Ideal for both time and frequency-domain applications

GENERAL DESCRIPTION

The ADS-119 is a high-performance, 12-bit, 10MHz sampling A/D converter. The device samples input signals up to Nyquist frequencies with no missing codes. The ADS-119 features excellent dynamic performance including a typical SNR of 69dB.

Packaged in a metal-sealed, ceramic, 24-pin DDIP, the functionally complete ADS-119 contains a fast-settling sample/hold amplifier, a subranging (two-pass) A/D converter, a precise voltage reference, timing/control logic, and error-correction circuitry. All timing and control logic operates from the rising edge of a single start convert pulse. Digital input and output levels are TTL.

Requiring only $\pm 5V$ supplies, the ADS-119 typically dissipates 1.8 Watts. The unit offers a bipolar input range of $\pm 1.5V$. Models are available for use in either commercial (0 to $+70^{\circ}$ C) or military (-55 to $+125^{\circ}$ C) operating temperature ranges.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 (LSB)	24	NO CONNECT
2	BIT 11	23	ANALOG GROUND
3	BIT 10	22	NO CONNECT
4	BIT 9	21	+5V ANALOG SUPPLY
5	BIT 8	20	-5V SUPPLY
6	BIT 7	19	ANALOG INPUT
7	BIT 6	18	ANALOG GROUND
8	BIT 5	17	OFFSET ADJUST
9	BIT 4	16	START CONVERT
10	BIT 3	15	DATA VALID
11	BIT 2	14	DIGITAL GROUND
12	BIT 1 (MSB)	13	+5V DIGITAL SUPPLY
(1	1	

Typical applications include signal analysis, medical/graphic imaging, process control, ATE, radar, and sonar.

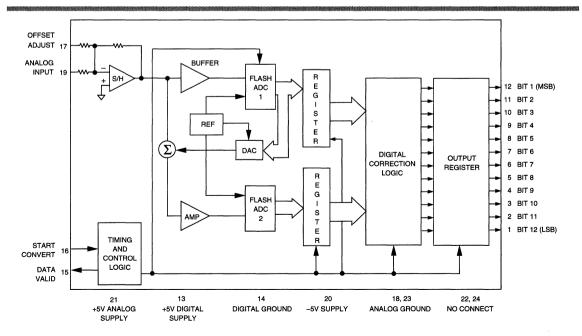


Figure 1. ADS-119 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+5V Supply (Pins 13, 21) -5V Supply (Pin 20)	0 to +6 0 to -6	Volts Volts
Digital Input (Pin 16)	-0.3 to +V _{DD} +0.3	Volts
Analog Input (Pin 19)	±5	Volts
Lead Temp. (10 seconds)	300) °C

8.5

FUNCTIONAL SPECIFICATIONS

 $(T_A=\pm 25^\circ C,~\pm V_{DD}=\pm 5 V,~10 MHz$ sampling rate, and a minimum 3 minute warmup $^{\odot}$ unless otherwise specified.)

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS		
Operating Temp. Range, Case ADS-119MC/GC ADS-119MM/GM/883 Thermal Impedance	0 55		+70 +125	°, v		
θic	-	3	—	°C/Watt		
θca	-	23		°C/Watt		
Storage Temperature Range	-65	_	+150	°C		
Package Type Weight	24-pin, metal-sealed, ceramic DDIP or SM 0.42 ounces (12 grams)					

		+25°C	_	0 to +70°C		5	i5 to +12	5°C	L	
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range ^②		±1.5			±1.5			±1.5		Volts
Input Resistance	300	350	_	300	350	_	300	350		Ω
Input Capacitance	300	6	15	300	6	15	300	6	15	pF
DIGITAL INPUTS		0	15		0	15		0	15	pr
	T	r	<u> </u>			[r		
Logic Levels Logic "1"	+2.0			+2.0		_	+2.0			Volts
Logic "0"	72.0	_	+0.8	+2.0	_	+0.8	+2.0	_	+0.8	Volts
Logic Loading "1"			+0.8	_		+0.0	_	_	+0.8	μA
Logic Loading "0"			-20			-20			-20	μΑ
Start Convert Positive Pulse Width ³	_	50	-20	_	50	-20	_	50	-20	ns pr
STATIC PERFORMANCE		L			L	1	<u></u>	L		
Resolution		12		_	12	_		12		Bits
Integral Nonlinearity (f _{in} = 10kHz)	_	±0.75	- 1		±1.0	_		±1.5	<u>ا</u>	LSB
Differential Nonlinearity (fin = 10kHz)	_	±0.5	±0.95	-0.95	±0.5	+1	-0.95	±0.75	+1.25	LSB
Full Scale Absolute Accuracy		±0.3 ±0.2	±0.55	-0.33	±0.5	±0.75		±0.75	±1.5	%FSR
Bipolar Zero Error (Tech Note 2)	_	±0.2	±0.6	_	±0.3	±0.7	_	±0.6	±1.0	%FSR
Bipolar Offset Error (Tech Note 2)	-	±0.1	±0.6	_	±0.3	±0.7		±0.7	±1.5	%FSR
Gain Error (Tech Note 2)	L	±0.1	±0.5		±0.5	±1.0	_	±1.0	±2.5	%
No Missing Codes (fin = 10kHz)	12			12			12			Bits
DYNAMIC PERFORMANCE		L			L	L		L	L	
Peak Harmonics (-0.5dB)	1		Γ		l				r	
dc to 1MHz	L _	-70	-63		-70	-63	_	-69	-61	dB
1MHz to 2.5MHz	_	-70	-63	_	-70	-63		-69	60	dB
2.5MHz to 5MHz	_	-70	-63	_	-70	-63	_	67	-60	dB
Total Harmonic Distortion (-0.5dB)										
dc to 1MHz	_	-69	-63	_	-69	-63	_	68	60	dB
1MHz to 2.5MHz	_	-68	-63		-68	-63	_	-67	-60	dB
2.5MHz to 5MHz	-	-68	-63		-67	-63		-66	-60	dB
Signal-to-Noise Ratio			000							ab
(w/o distortion, -0.5dB)					l	ļ				
dc to 1MHz	66	69	_	66	69	_	63	67	_	dB
1MHz to 2.5MHz	66	69	_	66	69	_	63	66	_	dB
2.5MHz to 5MHz	66	69	_	66	69		63	66		dB
Signal-to-Noise Ratio [®]		0.0								чь
(& distortion, -0.5dB)								l		
dc to 1MHz	62	66	_	62	66		60	65		dB
1MHz to 2.5MHz	62	66	_	62	66		60	65		dB
2.5MHz to 5MHz	62	66	_	62	66		60	64		dB
Noise	<u> </u>	250		02	300			400		µVrms
Two-tone Intermodulation Distortion (f _{in} = 2.45MHz, 2.2MHz, f _s =10MHz,		250								μ¥1110
-0.5dB)	_	-72	_	_	-72	_	_	-72	- 1	dB
Input Bandwidth (-3dB)		1 12			1 12	1		1		
Small Signal (-20dB input)	_	60	_		60		_	60	_	MHz
Large Signal (0dB input)	_	10	1 _	_	10		_	10		MHz
Feedthrough Rejection (fin = 5MHz)	_	76	_	_	76	_		76	_	dB
Slew Rate	_	±400	l _	_	±400	_		±400	_	V/us
Aperture Delay Time	_	5	_	_	5	_	_	5		ns
Aperture Uncertainty	_	3		_	3	_	_	3		ps rms
S/H Acquisition Time	_		_	_		_			_	he he has
(to ±0.01%FSR, 3V step)	30	35	37	30	35	37	30	35	37	ns
Overvoltage Recovery Time (5)		100	<u> </u>		100	J		100	37	ns
A/D Conversion Rate	10	100		10	100	_	10	100	_	MHz
AVD CONVERSION Frate		I –	1 -		. —		1 10		I	I INITZ

1–24 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

DIGITAL OUTPUTS ogic Levels Logic "1" Logic "0"	+2.4	ТҮР. —	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Logic "1" Logic "0"	+2.4	-								
Logic "0"	+2.4	-								
	_	1		+2.4	-		+2.4	_	_	Volts
	-	- 1	+0.4	-	- 1	+0.4	_		+0.4	Volts
Logic Loading "1"		-	-4	-	-	-4	-		-4	mA
Logic Loading "0"	-	-	+4		-	+4		-	+4	mA
output Coding					Offset	Binary				
OWER REQUIREMENTS										
ower Supply Ranges ®	1									
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.9	+5.0	+5.25	Volts
-5V Supply	-4.75	-5.0	-5.25	-4.75	-5.0	-5.25	-4.9	-5.0	-5.25	Volts
ower Supply Currents										ł
+5V Supply	-	+200	+215		+200	+215		+200	+215	mA
-5V Supply	-	-180	-205	-	-180	-205	-	-180	-205	mA
ower Dissipation	-	1.8	2.1	-	1.8	2.1		1.8	2.1	Watts
ower Supply Rejection	-	-	±0.1			±0.1	-	-	±0.1	%FSR/%V
ootnotes:				(4) E		ts is equal	to:	_		
All power supplies should be on I	oforo opply	ina o otort	convort			•		Full S	icale Amplitude	
pulse. All supplies and the clock					(SN	R + Distortion)	-1.76 + 2	0 100	I Input Amplitu	
present during warmup periods.			must be				L	- //0/00	in par i in pita	
continuously converting during th							6.0	19		
continuouoly convoluing during th	lo unio.			5 1	This is the	time requir			utout data i	s valid once
Contact DATEL for other input vo	Itage range	-							ed range.	
	age range								ided that th	
A 50ns wide start convert pulse is	used for al	Inroductio	n testing			amped to a				is analog
For applications requiring less the				•						
wider start convert pulses can be		serie hand		61	The minim	um supply	voltages o	of +4.9V ar	nd -4.9V fo	r ±Vnn are

- TECHNICAL NOTES
- Obtaining fully specified performance from the ADS-119 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 18, and 23) directly to a large *analog* ground plane beneath the package.

Bypass all power supplies to ground with 4.7μ F tantalum capacitors in parallel with 0.1μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible.

The ADS-119 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the adjustment circuitry shown in Figures 3 and 4. For operation without adjustment, tie pin 17 to analog ground. When using this circuitry, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.

 Applying <u>a start</u> convert pulse while a conversion is in progress (EOC = logic "1") will initiate a new and inaccurate conversion cycle.

required for -55° C operation only. The minimum limits are +4.75V and -4.75V when operating at +125°C.

 Data is valid only for the time period (55ns, typical) shown in Figure 2 even if the device is sampling at less than 10MHz.

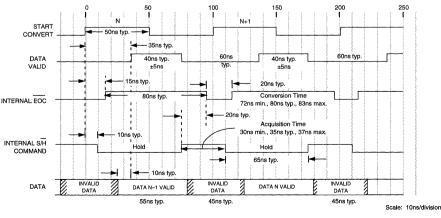


Figure 2. ADS-119 Timing Diagram

增

CALIBRATION PROCEDURE

(Refer to Figures 3 and 4, Table 1)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuits in Figure 3 and 4 are guaranteed to compensate for the ADS-119's initial accuracy errors and may not be able to compensate for additional system errors.

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

Offset adjusting for the ADS-119 is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is +1/2LSB (+366µV).

Table 1. Output Coding for Bipolar Operation

BIPOLAR SCALE	ADS-119 INPUT VOLTAGE (±1.5V RANGE)	OUTPUT CODING OFFSET BINARY MSB LSB
+FS -1 LSB	+1.49927V	1111 1111 1111
+3/4 FS	+1.12500V	1110 0000 0000
+1/2 FS	+0.75000V	1100 0000 0000
0	0.00000V	0100 0000 0000
-1/2 FS	-0.75000V	0100 0000 0000
-3/4 FS	-1.12500V	0010 0000 0000
-FS +1 LSB	-1.49927V	0000 0000 0001
-FS	-1.50000V	0000 0000 0000

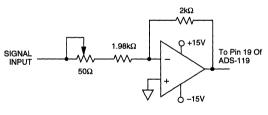
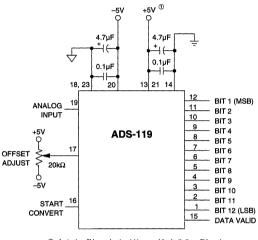


Figure 3. Optional Calibration Circuit, ADS-119


Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 1/2 LSB's (+1.4989V).

Zero/Offset Adjust Procedure

- 1. Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting.
- 2. Apply +366µV to the ANALOG INPUT (pin 19).
- 3. Adjust the offset potentiometer until the output bits are 1000 0000 0000 and the LSB flickers between 0 and 1.

Gain Adjust Procedure

- 1. Apply +1.4989V to the ANALOG INPUT (pin 19).
- 2. Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between 1 and 0.
- 3. To confirm proper operation of the device, vary the input signal to obtain the output coding listed in Table 1.

① A single +5V supply should be used for both the +5V analog and +5V digital. If separate supplies are used, the difference between the two cannot exceed 100mV.

Figure 4. Typical Connection Diagram

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to +125°C. All room-temperature (T_A = +25°C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electricallyinsulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

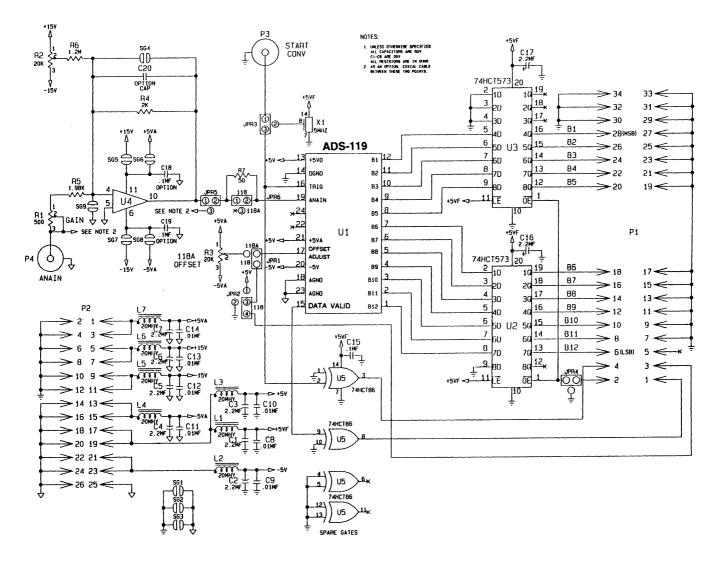
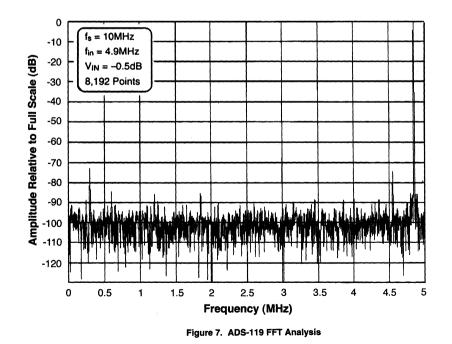


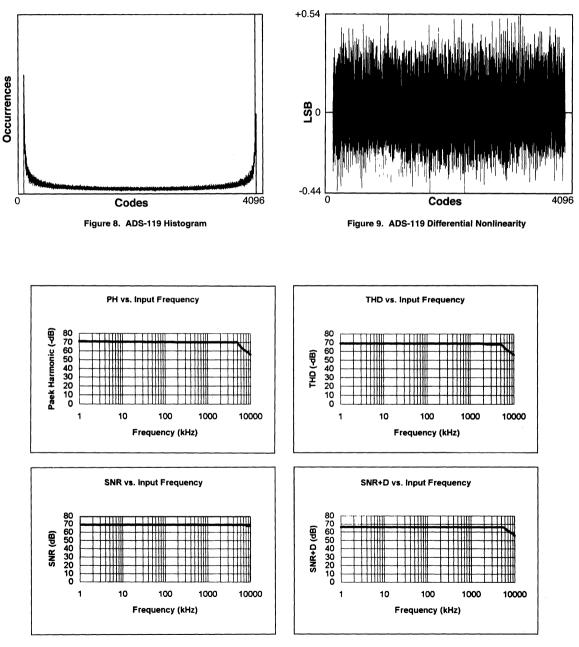
Figure 5. ADS-119 Evaluation Board Schematic (ADS-B119)

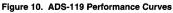
ADS-119

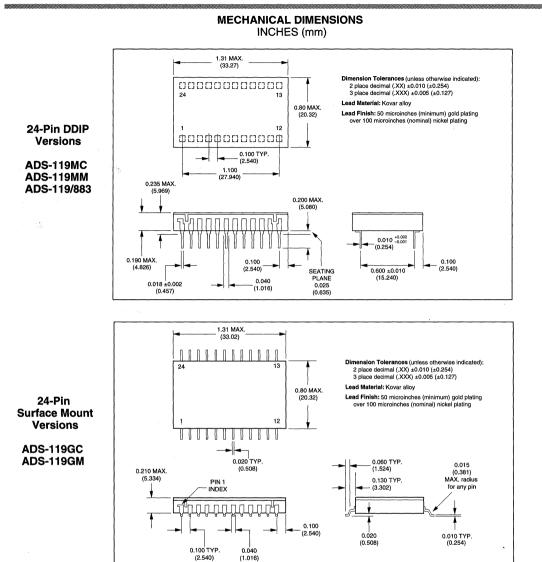

Sampling Analog-to-Digital Converters 1–27

PERFORMANCE DATA

This histogram represents the typical peak-to-peak noise (including quantization noise) associated with the ADS-119. 4,096 conversions were processed with the input to the ADS-119 tied to analog ground.


Digital Output Code


Figure 6. ADS-119 Grounded Input Histogram

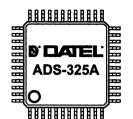


PERFORMANCE DATA (Continued)

という

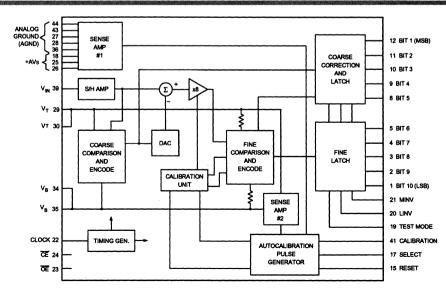
ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	ACCESSORIES	
ADS-119MC	0 to +70°C	ADS-B119	Evaluation Board (without ADS-119)
ADS-119MM	-55 to +125°C	HS-24	Heat Sink for all ADS-119 DDIP models
ADS-119/883	-55 to +125°C		
ADS-119GC	0 to +70°C	Receptacles for	PC board mounting can be ordered through AMP
ADS-119GM	-55 to +125°C	Inc., Part # 3-331	1272-8 (Component Lead Socket), 24 required. 3 product specifications contact DATEL.


FEATURES

- ±1/2LSB differential nonlinearity error
- Low, 145mW power dissipation
- · Internal sample-and-hold circuit
- 50µA input current
- 9pF input capacitance
- 70MHz input bandwidth
- TTL-compatible digital I/O
- · Latched three-state output buffer
- Single +5V supply
- · Internal calibration circuitry

GENERAL DESCRIPTION


The ADS-325A is a 10-bit, 20MHz, low-power, TTL-compatible sampling A/D converter designed for video applications. Its small, 48-pin, plastic VQFP package contains a sample-and-hold amplifier, a three-state output register, calibration circuitry, and all necessary control logic. Only an external reference voltage is required.

Dynamic performance includes a spurious free dynamic range of 65dB and a signal-to-noise ratio (with distortion) of 54dB with a 3MHz input. The ADS-325A is capable of operating from a single +5V power supply and typically consumes 145mW. The unit operates over the -25 to +75°C temperature range.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 10 (LSB)	48	DIGITAL GROUND (DGND)
2	BIT 9	47	NO CONNECTION
3	BIT 8	46	NO CONNECTION
4	BIT 7	45	+DV _S (Digital)
5	BIT 6	44	ANALOG GROUND (AGND)
6	DIGITAL GROUND (DGND)	43	ANALOG GROUND (AGND)
7	+DV _S (Digital)	42	TEST SIGNAL IN
8	BIT 5	41	CAL. PULSE IN (CAL)
9	BIT 4	40	NO CONNECTION
10	BIT 3	39	ANALOG SIGNAL IN (VIN)
11	BIT 2	38	TEST SIGNAL OUT
12	BIT 1 (MSB)	37	TEST SIGNAL IN
13	TEST PIN	36	ANALOG GROUND (AGND)
14	TEST SIGNAL IN	35	REFERENCE BOTTOM (VB)
15	RESET	34	REFERENCE BOTTOM (VB)
16	DIGITAL GROUND (DGND)	33	NO CONNECTION
17	SELECT	32	NO CONNECTION
18	+AVS (Analog)	31	NO CONNECTION
19	TEST MODE	30	REFERENCE TOP (VT)
20	LINV	29	REFERENCE TOP (VT)
21	MINV	28	ANALOG GROUND (AGND)
22	CLOCK INPUT	27	ANALOG GROUND (AGND)
23	OUTPUT ENABLE (OE)	26	+AVS (Analog)
24	CHIP ENABLE (CE)	25	+AVS (Analog)

ADS-325A

1

10-Bit, 20MHz Sampling A/D Converter

ABSOLUTE MAXIMUM RATINGS (Ta = +25°C)

PARAMETERS	LIMITS	UNITS	
Supply Voltages (+AVs and +DVs)	0 to +7	Volts	
Reference Voltage (VT and VB)	-0.5 to +V _S +0.5	Volts	
Input Voltage, Analog (VIN)	-0.5 to +V _S +0.5	Volts	
Input Voltage, Digital (VIH and VIL)	-0.5 to +Vs +0.5	Volts	
Output Voltage, Digital (VoH and VoL)	-0.5 to +Vs +0.5	Volts	

FUNCTIONAL SPECIFICATIONS

(Typical at $f_S = 20MHz$, $+AV_S = +5V$, $+DV_S = +3.3V$, $V_B = +2.0V$, $V_T = +4.0V$, and $T_A = +25^{\circ}C$ unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS				
Input Voltage Range, VIN Offset Voltage	+1.8	+2	+3	Volts				
Eot	+40	+90	+140	mV				
Еов	-120	-70	-20	mV				
Input Current								
$V_{IN} = +4V$ $V_{IN} = +2V$	-	-	±50 ±50	μΑ				
Capacitance, CIN	-	9	±50	μA pF				
Bandwidth (1dB)	_	70	-	MHz				
DIGITAL INPUTS								
Input Voltage								
ViH	+2.3	-	-	Volts				
Vi∟ Current	-	-	+0.8	Volts				
Lin ① ②		_	+5	μA				
	_	_	-5	μA				
Clock Pulse Width				•				
Tpw1	25			ns				
TPW0 Three-State Disable Time	25	-	-	ns				
Тан	20	25	30	ns				
Тна	10	15	20	ns				
REFERENCE		<u> </u>						
Input Voltage								
VB	+1.8	-	-	Volts				
VT			+AVs – 0.4	Volts				
Current ④	+5	+7	+11	mA				
l la	-11	-7	-5	mA				
Resistance (VT – VB)	180	280	380	Ω				
PERFORMANCE								
Throughput Rate (5) (FS)	20	-	-	MHz				
Minimum Throughput Rate (5)	0.5	- 1	-	MHz				
Integral Linearity Error	-	±1.3	±2	LSB				
Differential Linearity Error Differential Gain Error ©	_	±0.5	±1	LSB %				
Differential Phase Error ®	_	0.3		Degrees				
Output Delay, To (CL = 20pF)	8	13	18	ns				
Aperture Delay, Ts	2	4	6	ns				
Aperture Uncertainty	- 1	30	-	ps				
SNR & Distortion (-0dB) fin = 100kHz	_	53	_	dB				
$f_{IN} = 500 \text{kHz}$	_	52	-	dВ				
fin = 1MHz	_	53	-	dB				
fin = 3MHz	-	54	-	dB				
fin = 7MHz		47	-	dB				
fin = 10MHz SFDR (0dB)	-	45	-	dB				
fin = 100kHz	_	60	_	dB				
$f_{\rm IN} = 500 \rm kHz$		59	-	dB				
fin = 1MHz	- 1	60	-	dB				
fin = 3MHz	-	65	_	dB				
fin = 7MHz fin = 10MHz		50 49	_	dB dB				
		49		uв				

DIGITAL OUTPUTS	MIN.	TYP.	MAX.	UNITS
Current (OE = AGND; +DVs = Min.)	-3.5			mA
IOH ©	+3.5	_	_	mA
Current (OE = +AVs; +DVs = Max.)				
IOZH (9)	-	-	±1	μA
lozl ®	-		. ±1	μA
POWER REQUIREMENTS				
Power Supply Voltage				
+AVs	+4.75	+5.0	+5.25	Volts
+DVs	+3.05	+3.3	+5.25	Volts
IDGND – AGNDI	-	-	100	mV
Power Dissipation	-	145	-	mW
Supply Current				
Analog, IAs	+20	+27	+34	mA
Digital, IDs	-	+3	+5	mA
Standby Current (CE = High)	:			
Analog, IAst	-	-	+1	mA
Digital, IDst		-	+1	μA
PHYSICAL/ENVIRONMENTAL	-			
Operating Temperature Range	-20	_	+75	°C
Storage Temperature Range	-55	-	+150	°C
Weight		0.2 gr	ams	
Package		48-pin plas		

Foot	notes:
------	--------

U	+DVS = Maximum
2	V _{IH} = +DVs
3	$V_{IL} = 0V$
4	RESET = Low
5	f _{IN} = 1kHz

(i) NTSC 40 IRE mod ramp, f_C = 14.3MHz (i) V_{OH} = +DV_S - 0.5V (i) V_{OL} = +0.4V

⑨ Vон = +DVs 10 VoL = 0V

Table 1. Digital Output Coding

(TEST MODE = 1; LINV, MINV = 0)

Input Signal	-	Digital Output Code
Voltage	Step	MSB LSB
VT	0	1111111111
	1	1
T	511	1000000000
¥	512	0111111111
	$\mathbf{\uparrow}$	1
VB	1023	0000000000

TECHNICAL NOTES

- 1. It is possible to use +5V rather than +3.3V for +DVs. There will be no difference in electrical switching characteristics.
- A time differential between supplying both +AVs and +DVs may cause a latch-up problem. DATEL recommends using a common power supply for both +AVs and +DVs to avoid latch-up conditions.
- 3. Bypass +AVs and +DVs to ground using 10µF tantalum capacitors in parallel with 0.1µF ceramic capacitors as shown in the typical connection drawing, Figure 2.
- DATEL recommends installing additional 0.1µF ceramic capacitors to reduce noise. Refer to the typical connection drawing, Figure 2, for component locations.

1-32 DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For immediate assistance 800-233-2765

DATEL

- 5. It is recommended that the reference signal sources be capable of driving more than 10mA.
- 6. It is recommended that the unit be hard-wired for evaluation. Sockets may degrade actual performance.
- 7. The test signal input/output pins are used in the production process. During normal operation, the test signal input pins (pins 14 and 37) are normally tied to AGND. The test signal input pin (pin 42) is normally tied to +AVs. The test signal output pins (13 and 38) are normally left open.
- 8. For OE (pin 23), output will be enabled with digital low and disabled (high impedance state) with a digital high.
- For CE (pin 24), the normal operating mode is with a digital low input. Standby mode results from a digital high input.
- 10. For TEST MODE (pin 19), the digital outputs are fixed with a digital low applied. Normal output is achieved with a digital high applied.

- LINV (pin 20) inverts bits two through bit 10 when a digital high is applied. MINV (pin 21) inverts bit 1 when a digital high is applied.
- RESET (pin 15) is normally connected to digital high. A negative pulse, at least 1 clock cycle long, will re-initiate start-up calibration.
- 13. CAL (pin 41) is connected to digital high for internal calibration. Pulses are applied directly to pin 41 for external calibration. See Table 2 and Calibration Procedure.
- 14. SELECT (pin 17) is connected to digital high for internal calibration and to digital low for external start-up only calibration. See Table 2 and Calibration Procedure.

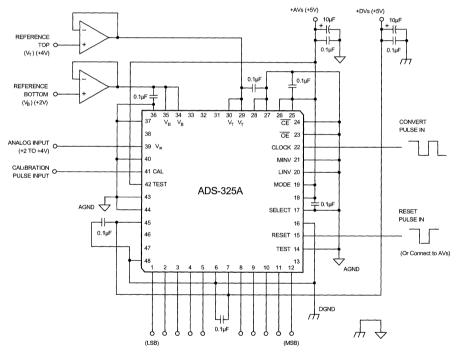
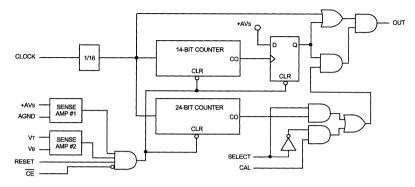


Figure 2. Typical ADS-325A Connection Diagram

CALIBRATION MODE	Pin 41, CAL	Pin 17, SELECT
External Calibration	Apply external calibration pulses	Connect to AGND
Internal Calibration	Connect to +AVs	Connect to +AVs
Start-Up Calibration Only	Connect to +AVS	Connect to AGND


South State

CALIBRATION PROCEDURE

The ADS-325A achieves its superior linearity using a start-up calibration function and a built-in auto-calibration pulse generation circuit. Figure 3a is a simplified block diagram of this internal calibration pulse generation circuit. The internal

calibration circuit can be disabled and external calibration pulses applied, or not, as desired. Whether internal, external, or no calibration is used, the ADS-325A automatically selfcalibrates upon start-up.

Start-up Calibration Function

The start-up calibration process requires over 600 calibration pulses. The internal start-up calibration function automatically supplies these pulses when power is first applied to the ADS-325A. The following five conditions, shown in Figure 3b, must be met to initiate the start-up calibration function:

- 1. The voltage difference between +AVs and AGND must be at least 2.5 Volts.
- 2. The voltage difference between VT and VB must be at least 1 Volt.
- 3. Condition 1 must be met before condition 2.
- 4. The RESET pin (pin 15) must be set high.
- 5. The CE pin (pin 24) must be set low.

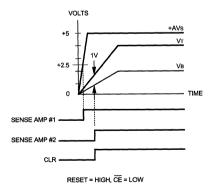


Figure 3b. Conditions for Start-Up Calibration

Once all of the above conditions have been met, the calibration pulses are generated by counting 16 clock cycles on a 14-bit

counter and closing the gate when the carry-out occurs. The time required for start-up calibration is determined by the following formula where, for example, a CLOCK frequency of 14.3MHz requires a calibration period of 18.3ms:

Start-up

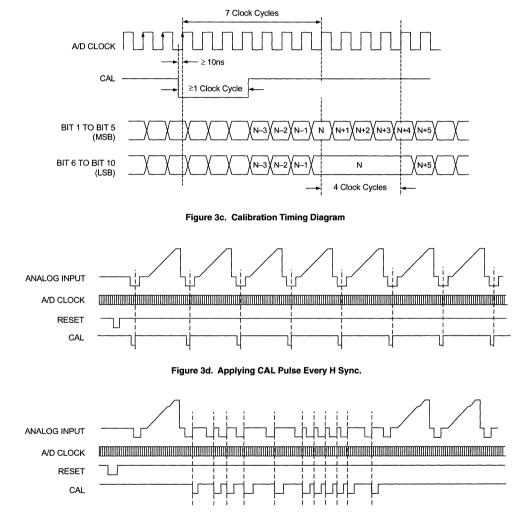
Calibration Time = CLOCK period x 16 x 16,384 = (1/CLOCK frequency) x 16 x 16,384 = (1/14.3MHz) x 16 x 16,384 = 18.3ms

Start-up Calibration Function Only

Auto or external calibration functions need not be employed after start-up calibration. To use only the start-up calibration function, connect the SELECT pin (pin 17) to AGND and connect the CAL pin (pin 41) to +AVs. This configuration requires that the analog supply voltage and reference voltage fluctuations be constrained to the following limits:

+AVs < ±100mV and IVT - VBI < 200mV

Auto Calibration Function


After the initial start-up calibration is completed, the internal calibration function periodically and automatically generates calibration pulses so that calibration can be performed. This function counts 16 CLOCK cycles on a 24-bit counter and uses the carry-out as the calibration pulse. The period of the calibration pulse generated is as follows:

Internal Calibration Pulse Generation Cycle = CLOCK period x 16 x 16,777,216

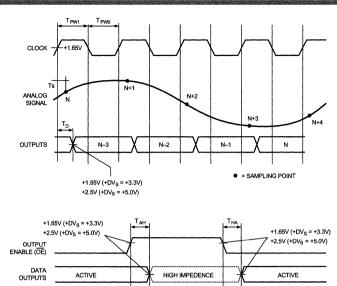
Therefore, if the CLOCK frequency is 14.3MHz, the calibration pulse generation cycle is 18.8 seconds; since calibration is performed once every seven pulses, the total calibration cycle is approximately 132 seconds. To use this function connect the SELECT pin (pin 17) and the CAL pin (pin 41) to +AVs.

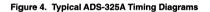
Calibration starts when the falling edge of the CAL pulse (which may be internally generated or supplied externally) is detected.

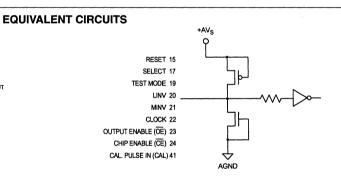
This occupies the lower comparator for four clock cycles, beginning at least 7 CLOCK cycles after the falling edge of the CAL pulse was detected, as shown in Figure 3c. Note that the time between the falling edge of the CAL pulse and the next rising edge of the CLOCK pulse must be at least 10ns. The lower comparator data remains constant through 4 CLOCK cycles (conversions). Due to the asynchronous nature of the internal calibration function, the lower 5 LSBs of data remaining constant through four conversions may create problems in certain applications.

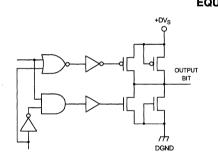
External Calibration Function

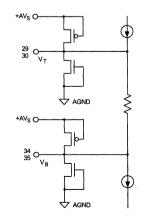
Calibration can be performed synchronously with the input signal by supplying an external calibration pulse. Input the external calibration pulse to the CAL pin (pin 41) with the SELECT pin (pin 17) connected to AGND. As described above for internal calibration, calibration starts when the falling edge of the CAL pulse is detected. For video applications, calibration can be performed outside of the video intervals by using the sync signal to input the CAL pulse. Figures 3d and 3e show examples of inputting the CAL pulse for every H-sync and V-sync, respectively.

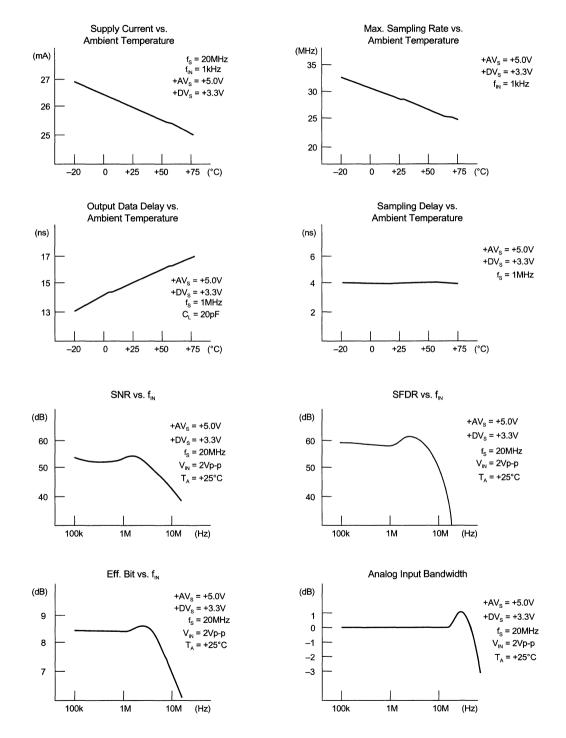

Re-initiation Of The Start-up Calibration Function


The start-up calibration function can be re-initiated after the power and reference voltages are supplied by applying a positive pulse to \overrightarrow{CE} pin (pin 24) or a negative pulse to the RESET pin (pin 15). The pulses must be wider than or equal to one CLOCK cycle.


ADS-325A

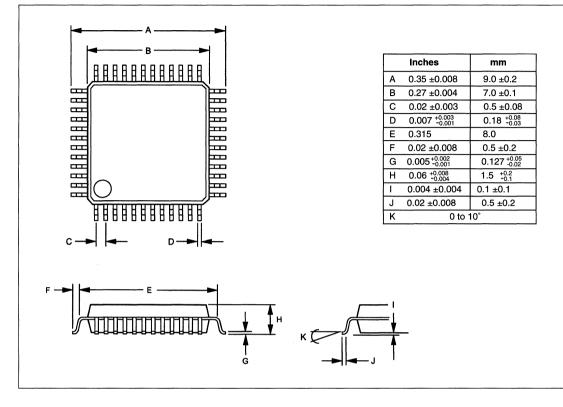

にはない





+AV_S O 39 O N AGND Analog Signal Input

Analog Signal Input


TYPICAL PERFORMANCE CURVES

ADS-325A

MECHANICAL DIMENSIONS

Table 3. Digital Output Truth Table

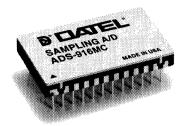
TEST			LSB									MSB
MODE	LINV	MINV	Bit 10	9	8	7	6	5	4	3	2	Bit 1
1	0	0	Р	Ρ	Р	Ρ	Ρ	Ρ	Р	Р	Р	Р
1	1	0	N	N	N	N	N	N	N	N	N	P
1	0	1	Р	Р	Р	Р	Р	Р	P	Р	Р	N
1	1	1	N	N	N	N	N	N	N	N	N	N
0	1	1	1	0	1	0	1	0	1	0	1	0
0	0	1	0	1	0	1	0	1	0	1	0	0
0	1	0	1	0	1	0	1	0	1	0	1	1
0	0	0	0	1	0	1	0	1	0	1	0	1

P = Positive; N = Negative (Inverted)

ORDERING INFORMATION

Model Number	Bits/Throughput Rate
ADS-325A	10 Bits/20MHz

FEATURES


- 14-Bit resolution
- 500kHz sampling rate
- No missing codes
- · Functionally complete
- Small 24-pin DDIP or SMT package
- · Low power, 1.8 Watts maximum
- Operates from ±15V or ±12V supplies
- · Unipolar 0 to +10V input range

GENERAL DESCRIPTION

The ADS-916 is a high-performance, 14-bit, 500kHz sampling A/D converter. This device samples input signals up to Nyquist frequencies with no missing codes. The ADS-916 features outstanding dynamic performance including a THD of –90dB.

Packaged in a small 24-pin DDIP, the functionally complete ADS-916 contains a fast-settling sample/hold amplifier, a subranging (two-pass) A/D converter, a precise voltage reference, timing/control logic, and error-correction circuitry. Digital input and output levels are TTL.

Requiring $\pm 15V$ (or $\pm 12V$) and $\pm 5V$ supplies, the ADS-916 dissipates only 1.8W (1.6W for $\pm 12V$), maximum. The unit is offered with a unipolar input (0 to $\pm 10V$). Models are available for use in either commercial (0 to $\pm 70^{\circ}$ C) or military (± 55 to $\pm 125^{\circ}$ C) operating temperature ranges. Applications include radar, sonar, spectrum analysis, and graphic/medical imaging.

14-Bit, 500kHz, Low-Power

Sampling A/D Converters

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 14 (LSB)	24	-12V/-15V SUPPLY
2	BIT 13	23	ANALOG GROUND
3	BIT 12	22	+12V/+15V SUPPLY
4	BIT 11	21	+10V REFERENCE OUT
5	BIT 10	20	ANALOG INPUT
6	BIT 9	19	ANALOG GROUND
7	BIT 8	18	BIT 1 (MSB)
8	BIT 7	17	BIT 2
9	BIT 6	16	START CONVERT
10	BIT 5	15	EOC
11	BIT 4	14	DIGITAL GROUND
12	BIT 3	13	+5V SUPPLY

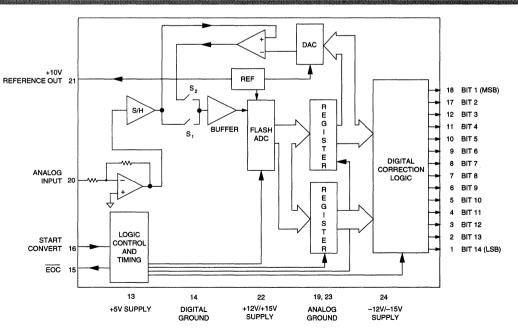


Figure 1. ADS-916 Functional Block Diagram

ADS-916

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS		
+12V/+15V Supply (Pin 22)	0 to +16	Volts		
-12V/-15V Supply (Pin 24)	0 to -16	Volts		
+5V Supply (Pin 13)	0 to +6	Volts		
Digital Input (Pin 16)	-0.3 to +VDD +0.3	Volts		
Analog Input (Pin 20)	-4 to +17	Volts		
Lead Temp. (10 seconds)	300	°C		

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS				
Operating Temp. Range, Case								
ADS-916MC/GC	0	- 1	+70	°C				
ADS-916MM/GM	-55	_	+125	°C				
Thermal Impedance								
θic	_	5	_	°C/Watt				
θca	-	22	_	°C/Watt				
Storage Temperature Range	-65	_	+150	°C				
Package Type	24-pin, metal-sealed, ceramic DDIP or SMT							
Weight		0.42 ounces	s (12 grams)					

FUNCTIONAL SPECIFICATIONS

(T_A=+25°C, ±V_{CC}=±15V (or ±12V), +V_{DD}=+5V, 500kHz sampling rate, and a minimum 1 minute warmup ^① unless otherwise specified.)

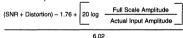
		+25°C		0 to +70°C			–55 to +125°C			
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
nput Voltage Range ^②		0 to +10			0 to +10			0 to +10		Volts
input Resistance		1	_	_	1		_	1	_	kΩ
Input Capacitance		7	15		7	15		7	15	pF
DIGITAL INPUTS			15		/	15			15	рг
		1			r			T		
Logic Levels										M . B .
Logic "1"	+2.0	-	_	+2.0	_		+2.0	-		Volts
Logic "0"			+0.8	-	-	+0.8	_	-	+0.8	Volts
Logic Loading "1"	-	-	+20	-	-	+20	_	- 1	+20	μA
Logic Loading "0"	-	-	-20		_	-20		-	-20	μA
Start Convert Positive Pulse Width ③		200			200	—	-	200	-	ns
STATIC PERFORMANCE	· · ·									
Resolution	-	14	-	-	14	-	-	14	-	Bits
ntegral Nonlinearity (f _{in} = 10kHz)	-	±0.5	_	-	±0.75	_	_	±1.5	-	LSB
Differential Nonlinearity (fin = 10kHz)	-	±0.5	±0.95		±0.5	±0.95	-0.95	±0.75	+1.25	LSB
Full Scale Absolute Accuracy	-	±0.05	±0.1	-	±0.1	±0.2	—	±0.15	±0.4	%FSR
Unipolar Offset Error (Tech Note 2)	-	±0.1	±0.2	-	±0.1	±0.2		±0.15	±0.4	%FSR
Gain Error (Tech Note 2)	-	±0.1	±0.25	-	±0.1	±0.25	-	±0.25	±0.4	%
No Missing Codes (f _{in} = 10kHz)	14	-	-	14	-	-	14	-	-	Bits
DYNAMIC PERFORMANCE										
Peak Harmonics (-0.5dB)										
dc to 100kHz	-	-91	-86	_	-91	-86	-	-90	82	dB
100kHz to 250kHz	-	-84	-79		-84	-79		-82	-76	dB
Total Harmonic Distortion (-0.5dB)										
dc to 100kHz	-	-90	85		90	-85	_	-87	-81	dB
100kHz to 250kHz	-	82	-77		-82	-77		-80	74	dB
Signal-to-Noise Ratio										
(w/o distortion, -0.5dB)	1									
dc to 100kHz	77	81)	77	81	- 1	76	80		dB
100kHz to 250kHz	75	80	_	75	80		74	78		dB
Signal-to-Noise Ratio ④										
(& distortion, -0.5dB)					[
dc to 100kHz	77	80	_	77	80	-	75	78	_	dB
100kHz to 250kHz	72	78		72	78	_	70	76		dB
Noise		310	_		310	_		360	_	μVrms
Two-tone Intermodulation Distortion (fin = 100kHz,										p r r r r r r
240kHz, f _s = 500 kHz,	1									
-0.5dB)	·	-86	-	- 1	-86		- 1	-86	- 1	dB
nput Bandwidth (-3dB)										
Small Signal (-20dB input)		7	-	-	7	-	-	7	-	MHz
Large Signal (-0.5dB input)	-	3	-	- 1	3	-	-	3	-	MHz
Feedthrough Rejection		1								
(f _{in} = 250kHz)	-	84	-		84	-	-	84	-	dB
Slew Rate	-	±40			±40			±40		V/µs
Aperture Delay Time	-	±20	-	-	±20	-	-	±20	-	ns
Aperture Uncertainty	-	5		_	5	- 1	_	5	- 1	ps rms
S/H Acquisition Time		· · ·								
(to ±0.003%FSR, 10V step)	1530	1570	1610	1530	1570	1610	1530	1570	1610	ns
Overvoltage Recovery Time (5)	_	1400	2000	_	1400	2000	_	1400	2000	ns
A/D Conversion Rate	500	- 1		500	_		500			kHz
					1		000			

		+25°C		0 to +70°C			–55 to +125°C			
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference										
Voltage	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	Volts
Drift	_	±5			+5			±5	_	ppm/°C
External Current	-	_	1.5	_		1.5	_		1.5	mA
DIGITAL OUTPUTS	1	L	L		L	I	L			
Logic Levels										
Logic "1"	+2.4			+2.4	_	_	+2.4		_	Volts
Logic "0"	_	-	+0.4		-	+0.4	_	l '	+0.4	Volts
Logic Loading "1"	_		4	_	_	4	_		4	mA
Logic Loading "0"	_		4	-	_	4	_		4	mA
Delay, Falling Edge of EOC										
to Output Data Valid	_	_	35	-		35	_		35	ns
Output Coding		I	00		Straig	t Binary				115
POWER REQUIREMENTS, ±15V		Congress and	2-10 ⁻⁰ -0-0-0		Straig	fill Dinary				
Power Supply Range	1	[[
+15V Supply	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	Volts
–15V Supply	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current	+4.75	+5.0	+0.20	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	VOIIS
+15V Supply	ļ	+50	+65		+50	+65	_	+50	+65	mA
	-		+00 50		+50	+65		+50	+05 50	
-15V Supply	-	-40					-			mA
+5V Supply	-	+70	+85	—	+70	+85		+70	+85	mA
Power Dissipation	-	1.6	1.8		1.6	1.8	-	1.6	1.8	Watts
Power Supply Rejection	<u> </u>		±0.01	_	-	±0.01	_	—	±0.01	%FSR/%\
POWER REQUIREMENTS, ±12V	, 					r				
Power Supply Range										
+12V Supply	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	Volts
-12V Supply	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current										
+12V Supply	-	+50	+65		+50	+65	_	+50	+65	mA
-12V Supply	- 1	-40	-50	_	-40	-50	_	-40	50	mA
+5V Supply	_	+70	+80	_	+70	+80	_	+70	+80	mA
Power Dissipation		1.4	1.6	_	1.4	1.6		1.4	1.6	Watts
Power Supply Rejection	l _		±0.01	_		±0.01		-	±0.01	%FSR/%\
rower supply nejection		_	±0.01	_		10.01	_	_	±0.01	/0F3N/

Footnotes:

① All power supplies must be on before applying a start convert pulse. All supplies and the clock (START CONVERT) must be present during warmup periods. The device must be continuously converting during this time. There is a slight degradation in performance when using ±12V supplies.

- ② See Ordering Information for availability of ±5V input range. Contact DATEL for availability of other input voltage ranges.
- ③ A 200ns wide start convert pulse is used for all production testing. Only the rising edge of the start convert pulse is


TECHNICAL NOTES

 Obtaining fully specified performance from the ADS-916 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19, and 23) directly to a large *analog* ground plane beneath the package.

Bypass all power supplies, as well as the REFERENCE OUTPUT (pin 21), to ground with 4.7μ F tantalum capacitors in parallel with 0.1 μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. If the user-installed offset and gain adjusting circuit shown in Figure 2 is used, also locate it as close to the ADS-916 as possible.

The ADS-916 achieves its specified accuracies without the need for external calibration. If required, the device's small required for the device to operate (edge-triggered).

④ Effective bits is equal to:

⑤ This is the time required before the A/D output data is valid once the analog input is back within the specified range.

initial offset and gain errors can be reduced to zero using the input circuit of Figure 2. When using this circuit, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.

- When operating the ADS-916 from ±12V supplies, do not drive external circuitry with the REFERENCE OUTPUT. The reference's accuracy and drift specifications may not be met, and loading the circuit may cause accuracy errors within the converter.
- Applying a <u>start</u> convert pulse while a conversion is in progress (EOC = logic "1") initiates a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid.

CALIBRATION PROCEDURE (Refer to Figures 2 and 3)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit in Figure 2 are guaranteed to compensate for the ADS-916's initial accuracy errors and may not be able to compensate for additional system errors.

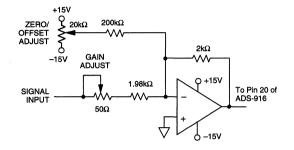
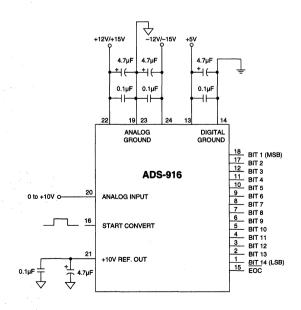



Figure 2. ADS-916 Calibration Circuit

All fixed resistors in Figure 2 should be metal-film types, and multiturn potentiometers should have TCR's of 100ppm/°C or less to minimize drift with temperature.

Table 1. Zero and Gain Adjust

INPUT VOLTAGE	ZERO ADJUST	GAIN ADJUST		
RANGE	+1/2 LSB	+FS - 1 1/2 LSB		
0 to +10V	+305µV	+9.999085V		

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-916, offset adjusting is normally accomplished at the point where all output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is +1/2LSB (+ 305μ V).

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 1/2 LSB's (+9.999085V).

Zero/Offset Adjust Procedure

- 1. Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting. If using LED's on the outputs, a 200kHz conversion rate will reduce flicker.
- 2. Apply +305µV to the ANALOG INPUT (pin 20).
- 3. Adjust the offset potentiometer until the output bits are all 0's and the LSB flickers between 0 and 1.

Gain Adjust Procedure

- 1. Apply +9.999085V to the ANALOG INPUT (pin 20).
- 2. Adjust the gain potentiometer until the output bits are all 1's and the LSB flickers between 1 and 0.

Table 2. Output Coding

INPUT VOLTAGE	UNIPOLAR	DIGITAL OUTPUT
(0 to +10V)	SCALE	MSB LSB
+9.999390	+FS -1LSB	11 1111 1111 1111
+7.500000	+3/4 FS	11 0000 0000 0000
+5.000000	+1/2 FS	10 0000 0000 0000
+2.500000	+1/4 FS	01 0000 0000 0000
+0.000610	+1LSB	00 0000 0000 0001
0	0	00 0000 0000 0000

Coding is straight binary; 1LSB = 610µV

Figure 3. Typical ADS-916 Connection Diagram

1

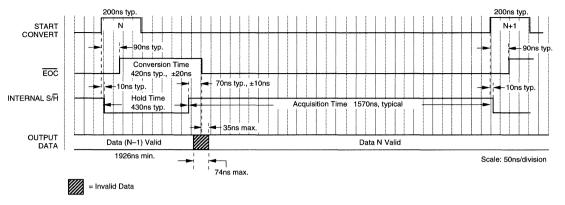
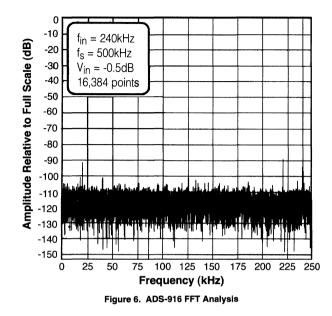


Figure 4. ADS-916 Timing Diagram

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ}$ C and -55 to $+125^{\circ}$ C. All room-temperature (T_A = $+25^{\circ}$ C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.


These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

DATEL

Figure 5. ADS-916 Evaluation Board Schematic

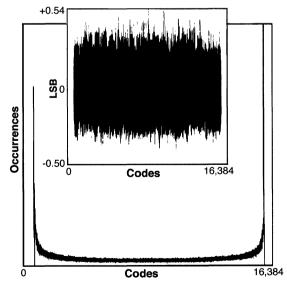
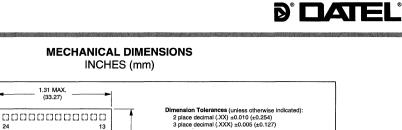



Figure 7. ADS-916 Histogram and Differential Linearity

ADS-916

Lead Material: Kovar allow

0.010 +0.002

0.600 ±0.010 (15.240)

0.100

(2.540)

Lead Finish: 50 microinches (minimum) gold plating over 100 microinches (nominal) nickel plating

0.80 MAX. (20.32)

0.200 MAX. (5.080)

SEATING

0.025

12

1.100 (27.940)

0.100 TYP. (2.540)

> 0.100 (2.540)

> > 0.040

(1.016)

Versions ADS-916MC ADS-916MM

24-Pin DDIP

24

0 235 MAX

(5.969)

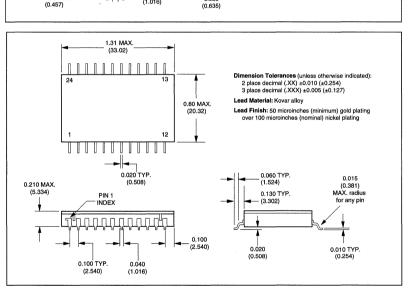
0.018 ±0.002

(0.457)

0.190 MAX. (4.826)

ADS-926MC ADS-926MM ADS-926/883

24-Pin


Surface Mount Versions

ADS-916GC

ADS-916GM

ADS-926GC

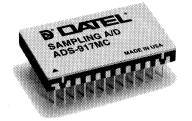
ADS-926GM

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	ANALOG INPUT	ACCESSORIES	
ADS-916MC ADS-916MM	0 to +70°C –55 to +125°C	Unipolar (0 to +10V) Unipolar (0 to +10V)	ADS-B916/917 HS-24	Evaluation Board (without ADS-916) Heat Sink for all ADS-916/926 DDIP models
ADS-916GC ADS-916GM ADS-926MC ADS-926MM ADS-926GC	0 to +70°C -55 to +125°C 0 to +70°C -55 to +125°C 0 to +70°C	Unipolar (0 to +10V) Unipolar (0 to +10V) Bipolar (±5V)* Bipolar (±5V)* Bipolar (±5V)*	Inc., Part # 3-3312	board mounting can be ordered through AMP 72-8 (Component Lead Socket), 24 required. product specification or availability of surface contact DATEL.
ADS-926GM ADS-926/883	-55 to +125°C -55 to +125°C	Bipolar (±5V)* Bipolar (±5V)*	*For more information	ation, see ADS-926 data sheet.

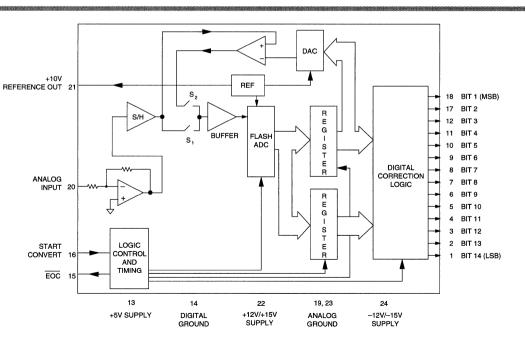
ADS-917 14-Bit, 1MHz, Low-Power Sampling A/D Converters

FEATURES


- 14-Bit resolution
- 1MHz sampling rate
- · No missing codes
- · Functionally complete
- Small 24-pin DDIP or SMT package
- · Low power, 1.9 Watts maximum
- Operates from ±15V or ±12V supplies
- Unipolar 0 to +10V input range

GENERAL DESCRIPTION

The ADS-917 is a high-performance, 14-bit, 1MHz sampling A/D converter. This device samples input signals up to Nyquist frequencies with no missing codes. The ADS-917 features outstanding dynamic performance including a THD of -80dB.


Packaged in a small 24-pin DDIP, the functionally complete ADS-917 contains a fast-settling sample/hold amplifier, a subranging (two-pass) A/D converter, a precise voltage reference, timing/control logic, and error-correction circuitry. Digital input and output levels are TTL.

Requiring $\pm 15V$ (or $\pm 12V$) and $\pm 5V$ supplies, the ADS-917 dissipates only 1.9W (1.6W for $\pm 12V$), maximum. The unit is offered with a unipolar input (0 to $\pm 10V$). Models are available for use in either commercial (0 to $\pm 70^{\circ}$ C) or military (± 55 to $\pm 125^{\circ}$ C) operating temperature ranges. Applications include radar, sonar, spectrum analysis, and graphic/medical imaging.

INPUT/OUTPUT CONNECTIONS

PIN FUNCTION PIN FUNCTION 1 BIT 14 (LSB) 24 -12V/-15V SUPPLY BIT 13 ANALOG GROUND 2 23 з BIT 12 22 +12V/+15V SUPPLY **BIT 11** 21 +10V REFERENCE OUT 4 5 **BIT 10** 20 ANALOG INPLIT 6 BIT 9 19 ANALOG GROUND BIT 1 (MSB) 7 BIT 8 18 17 BIT 2 8 BIT 7 9 BIT 6 16 START CONVERT EOC 10 BIT 5 15 BIT 4 14 DIGITAL GROUND 11 +5V SUPPLY 12 BIT 3 13

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS		
+12V/+15V Supply (Pin 22)	0 to +16	Volts		
-12V/-15V Supply (Pin 24)	0 to -16	Volts		
+5V Supply (Pin 13)	0 to +6	Volts		
Digital Input (Pin 16)	-0.3 to +V _{DD} +0.3	Volts		
Analog Input (Pin 20)	-4 to +17	Volts		
Lead Temp. (10 seconds)	300	°C		

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS		
Operating Temp. Range, Case						
ADS-917MC/GC	0		+70	°C		
ADS-917MM/GM	-55	_	+125	°C		
Thermal Impedance						
θjc		5		°C/Watt		
θca	-	22	-	°C/Watt		
Storage Temperature Range	65	-	+150	°C		
Package Type	24-pin, metal-sealed, ceramic DDIP or SMT					
Weight		0.42 ounces	(12 grams)			

FUNCTIONAL SPECIFICATIONS

(T_A = +25°C, ±V_{CC} = ±15V (or ±12V), +V_{DD} = +5V, 1MHz sampling rate, and a minimum 1 minute warmup ^① unless otherwise specified.)

		+25°C			0 to +70°	°C	-(55 to +12	5°C	UNITS
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Voltage Range ^②		0 to +10			0 to +10		_	0 to +10		Volts
Input Resistance	_	1			1	_		1		kΩ
Input Capacitance	-	7	15		7	15	-	7	15	pF
DIGITAL INPUTS		•			· · · · · · · · · · · · · · · · · · ·					
Logic Levels										
Logic "1"	+2.0		-	+2.0		-	+2.0		-	Volts
Logic "0"	-		+0.8	-	-	+0.8	-	-	+0.8	Volts
Logic Loading "1"	-		+20	-	-	+20		-	+20	μA
Logic Loading "0" Start Convert Positive Pulse Width ③	-	200	20 	—	200	-20 		200	-20	μA ns
		200			200	_		200	—	ns
Resolution Integral Nonlinearity (f _{in} = 10kHz)	-	14 ±0.5	_	_	14 ±0.75	_	_	14 ±1.5	_	Bits LSB
Differential Nonlinearity (fin = 10kHz)		±0.5 ±0.5	±0.95		±0.75 ±0.5	±0.95	-0.95	±1.5 ±0.75	+1.25	LSB
Full Scale Absolute Accuracy		±0.5 ±0.05	±0.95 ±0.1		±0.5 ±0.1	±0.95 ±0.2	-0.95	±0.75 ±0.15	+1.25 ±0.4	%FSR
Unipolar Offset Error (Tech Note 2)		±0.05 ±0.1	±0.1 ±0.2	_	±0.1 ±0.1	±0.2 ±0.2	_	±0.15 ±0.15	±0.4 ±0.4	%FSR
Gain Error (Tech Note 2)		±0.1	±0.25	_	±0.1	±0.25	_	±0.15 ±0.25	±0.4 ±0.4	%
No Missing Codes (f _{in} = 10kHz)	14	±0.1	10.23	14	±0.1	10.23	14	10.25	±0.4	Bits
	1	1		14				I		Dita
	Т	r	Г		1			Г		
Peak Harmonics (–0.5dB) dc to 100kHz		-87	-82		-87	-82		-85	-80	dB
100kHz to 500kHz	-	-81	-76	_	-07	02 76		-00	-74	dВ
	_	-01	-/6	_	-81	-/0		-/9	-/4	aв
Total Harmonic Distortion (-0.5dB)		05	00		05	00		04	00	-10
dc to 100kHz	_	-85	82 76		-85	82 76	-	-84 -79	-80	dB dB
100kHz to 500kHz	-	-80	-/6	_	-80	-/6		-79	-74	aв
Signal-to-Noise Ratio										
(w/o distortion, -0.5dB)	75	70		75	70		70			
dc to 100kHz	75	79		75	79		73	77	_	dB
100kHz to 500kHz	73	78		73	78		72	76		dB
Signal-to-Noise Ratio ④										
(& distortion, -0.5dB)	74			74			70	70		-10
dc to 100kHz	74	77	_	74	77	_	72	76	-	dB
100kHz to 500kHz	72	76		72	76	-	71	75		dB
Noise Two–tone Intermodulation	-	300	_	-	400	_		600	-	μVrms
Distortion (f _{in} = 100kHz,										
240kHz, f _s = 1MHz, –0.5dB)		-87			-86			-85		dB
	-	-87			-80	_		-85	_	aв
Input Bandwidth (-3dB) Small Signal (-20dB input)	1	7			7			7		MHz
Large Signal (-0.5dB input)	-	5			5		_	5		MHZ
Feedthrough Rejection	-	5	-	-	5	_		1 3		IVITIZ
(f _{in} = 500kHz)		84			84			84		dB
(lin = 500kHz)	-	84 ±60	_	-	84 ±60		_	84 ±60	-	
	_	±60 ±20	_	_	±60 ±20	_	_	±60 ±20	_	V/µs
Aperture Delay Time Aperture Uncertainty	-	±20 5	-		±20	-	_	±20	_	ns
	-	^{>}			0	-	-	0		ps rms
S/H Acquisition Time	500	E70	610	500	570	610	500	E70	010	
(to ±0.003%FSR, 10V step)	530	570	610	530	570	610	530	570	610	ns
Overvoltage Recovery Time [®]	-	400	1000	-	400	1000	-	400	1000	ns
A/D Conversion Rate	1	-	-	1		-	1	-	-	MHz

	+25°C		0 to +70°C		–55 to +125°C					
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference	1									
Voltage	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	Volts
Drift	10.00	±5			±5			±5		ppm/°C
External Current	_		1.5	_		1.5	_		1.5	mA
DIGITAL OUTPUTS					L	1				
Logic Levels	1	1						1		
Logic Levels	+2.4			+2.4			+2.4			Volts
		_								
Logic "0"			+0.4	-	- 1	+0.4	-	-	+0.4	Volts
Logic Loading "1"	-	1 -	4		- 1	4	-	1 -	4	mA
Logic Loading "0"		_	4			4		_	4	mA
Delay, Falling Edge of EOC										
	_		25	_		05			25	
to Output Data Valid	<u> </u>		35			35	L	L	35	ns
Output Coding	1				Straight	Binary				
POWER REQUIREMENTS, ±15V										
Power Supply Range								l		
+15V Supply	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	Volts
-15V Supply	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current		}			1	1				
+15V Supply	-	+50	+65	_	+50	+65	- 1	+50	+65	mA
-15V Supply	_	-41	-50		-41	-50	_	-41	-50	mA
+5V Supply	_	+70	+85		+70	+85	_	+70	+85	mA
	-						1			
Power Dissipation	-	1.7	1.9		1.7	1.9	- 1	1.7	1.9	Watts
Power Supply Rejection			±0.01	_	-	±0.01	-		±0.01	%FSR/%V
POWER REQUIREMENTS, ±12V	.				•			· · · · · · · · · · · · · · · · · · ·		
Power Supply Range	1									
+12V Supply	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	Volts
-12V Supply	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current										
+12V Supply	- 1	+50	+65		+50	+65	-	+50	+65	mA
-12V Supply		-40	-48		-40	-48	_	-40	-48	mA
+5V Supply	-	+70	+80		+70	+80	_	+70	+80	mA
	-			_						
Power Dissipation	-	1.4	1.6	-	1.4	1.6	-	1.4	1.6	Watts
Power Supply Rejection	-	-	±0.01	-	-	±0.01		-	±0.01	%FSR/%V
Footnotes:		L			I	L	.	.	L	·····
 All power supplies must be on before 	ore annluin	a a etart o	onvert	~						
				4	Effective b	nts is equa	lto:	-		
pulse. All supplies and the clock (must be					. Fi	ull Scale Am	plitude
present during warmup periods. T continuously converting during this		must be			(SNR +	Distortion) -	- 1.76 + 20)log	tual Input An	
, , ,		1.1.1						-		
2 See Ordering Information for avail Contact DATEL for availability of a								6.02		
Contact DATEL for availability of c	mer input	voitage rar	iges.	(E)	This is the	time roavi	red before	the A/D	utout data	is valid affo
				⑤ This is the time required before the A/D output data is w the analog input is back within the specified range.					is valid afte	
A 000no wide start convert	o upod for									
③ A 200ns wide start convert pulse is testing.	s used for a	all product	ion		the analog	input is ba	ack within	the specif	ied range.	

TECHNICAL NOTES

 Obtaining fully specified performance from the ADS-917 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19, and 23) directly to a large *analog* ground plane beneath the package.

Bypass all power supplies, as well as the REFERENCE OUTPUT (pin 21), to ground with 4.7 μ F tantalum capacitors in parallel with 0.1 μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. If the user-installed offset and gain adjusting circuit shown in Figure 2 is used, also locate it as close to the ADS-917 as possible.

2. The ADS-917 achieves its specified accuracies without the need for external calibration. If required, the device's small

initial offset and gain errors can be reduced to zero using the input circuit of Figure 2. When using this circuit, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.

- When operating the ADS-917 from ±12V supplies, do not drive external circuitry with the REFERENCE OUTPUT. The reference's accuracy and drift specifications may not be met, and loading the circuit may cause accuracy errors within the converter.
- Applying a start convert pulse while a conversion is in progress (EOC = logic "1") initiates a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid.

CALIBRATION PROCEDURE

(Refer to Figures 2 and 3)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit of Figure 2 are guaranteed to compensate for the ADS-917's initial accuracy errors and may not be able to compensate for additional system errors.

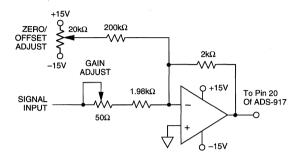


Figure 2. ADS-917 Calibration Circuit

All fixed resistors in Figure 2 should be metal-film types, and multiturn potentiometers should have TCR's of 100ppm/°C or less to minimize drift with temperature.

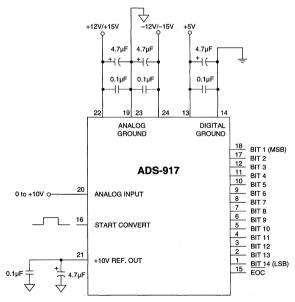


Figure 3. Typical ADS-917 Connection Diagram A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-917, offset adjusting is normally accomplished at the point where all output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is +1/2LSB (+ 305μ V).

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 1/2 LSB's (+9.999085V).

Zero/Offset Adjust Procedure

- Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting. If using LED's on the outputs, a 200kHz conversion rate will reduce flicker.
- 2. Apply +305µV to the ANALOG INPUT (pin 20).
- 3. Adjust the offset potentiometer until the output bits are all 0's and the LSB flickers between 0 and 1.

Gain Adjust Procedure

- 1. Apply +9.999085V to the ANALOG INPUT (pin 20).
- 2. Adjust the gain potentiometer until the output bits are all 1's and the LSB flickers between 1 and 0.

Table	1.	Zero	and	Gain	Adj	ust
-------	----	------	-----	------	-----	-----

INPUT VOLTAGE	ZERO ADJUST	GAIN ADJUST		
RANGE	+1/2 LSB	+FS - 1 1/2 LSB		
0 to +10V	+305µV	+9.999085V		

Table 2. Output Coding

INPUT VOLTAGE (0 to +10V)	UNIPOLAR SCALE	DIGITAL OUTPUT MSB LSB
+9.999390	+FS –1LSB	11 1111 1111 1111
+7.500000	+3/4 FS	11 0000 0000 0000
+5.000000	+1/2 FS	10 0000 0000 0000
+2.500000	+1/4 FS	01 0000 0000 0000
+0.000610	+1LSB	00 0000 0000 0001
0	0	00 0000 0000 0000

Coding is straight binary; 1LSB = 610µV

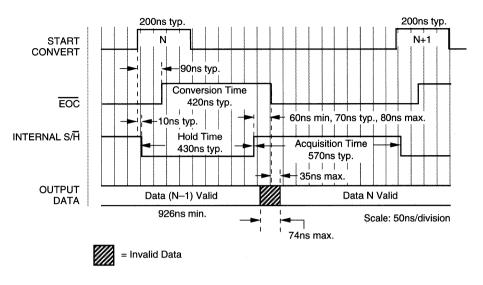


Figure 4. ADS-917 Timing Diagram

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ}$ C and -55 to $+125^{\circ}$ C. All room-temperature (T_A = $+25^{\circ}$ C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

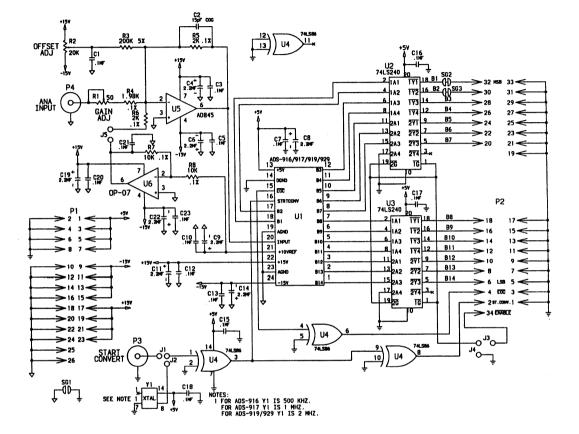


Figure 5. ADS-917 Evaluation Board Schematic

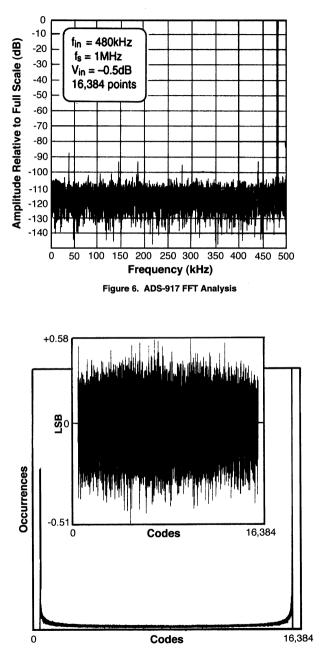
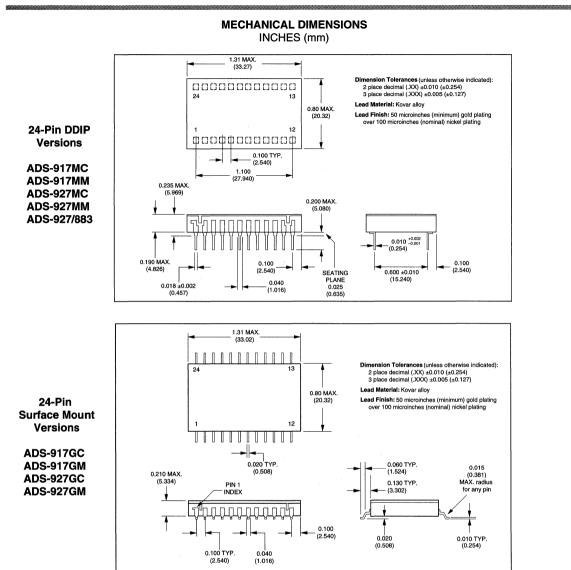



Figure 7. ADS-917 Histogram and Differential Linearity

ADS-917

DATEL

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	ANALOG INPUT	ACCESSORIES				
ADS-917MC ADS-917MM	0 to +70°C –55 to +125°C	Unipolar (0 to +10V) Unipolar (0 to +10V)	ADS-B916/917 HS-24	Evaluation Board (without ADS-917) Heat Sink for all ADS-917/927 DDIP models			
ADS-917GC ADS-917GM ADS-927MC ADS-927MM	0 to +70°C -55 to +125°C 0 to +70°C -55 to +125°C	Unipolar (0 to +10V) Unipolar (0 to +10V) Bipolar (±5V)* Bipolar (±5V)*	Receptacle for PC board mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 24 required. For MIL-STD-883 product specification or availability of surface mount packaging, contact DATEL. *For more information, see ADS-927 data sheet.				
ADS-927GC ADS-927GM ADS-927/883	0 to +70°C -55 to +125°C -55 to +125°C	Bipolar (±5V)* Bipolar (±5V)* Bipolar (±5V)*					

1-54 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

ADS-919 14-Bit, 2MHz, Low-Power Sampling A/D Converters

FEATURES

- 14-Bit resolution
- 2MHz sampling rate
- No missing codes
- · Functionally complete
- Small 24-pin DDIP or SMT package
- · Low power, 1.8 Watts
- Operates from ±15V or ±12V supplies
- · Edge-triggered, no pipeline delay
- Unipolar 0 to +10V input range

GENERAL DESCRIPTION

The ADS-919 is a high-performance, 14-bit, 2MHz sampling A/D converter. This device samples input signals up to Nyquist frequencies with no missing codes. The ADS-919 features outstanding dynamic performance including a THD of -74dB.

Packaged in a small 24-pin DDIP, the functionally complete ADS-919 contains a fast-settling sample/hold amplifier, a subranging (two-pass) A/D converter, a precise voltage reference, timing/control logic, and error-correction circuitry. Digital input and output levels are TTL.

Requiring $\pm 15V$ (or $\pm 12V$) and $\pm 5V$ supplies, the ADS-919 typically dissipates 1.8W (1.5W for $\pm 12V$). The unit is offered with a unipolar input (0 to $\pm 10V$). Models are available for use in either commercial (0 to $\pm 70^{\circ}$ C) or military (± 55 to $\pm 125^{\circ}$ C) operating temperature ranges. Applications include radar, sonar, spectrum analysis, and graphic/medical imaging.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 14 (LSB)	24	-12V/-15V SUPPLY
2	BIT 13	23	ANALOG GROUND
3	BIT 12	22	+12V/+15V SUPPLY
4	BIT 11	21	+10V REFERENCE OUT
5	BIT 10	20	ANALOG INPUT
6	BIT 9	19	ANALOG GROUND
7	BIT 8	18	BIT 1 (MSB)
8	BIT 7	17	BIT 2
9	BIT 6	16	START CONVERT
10	BIT 5	15	EOC
11	BIT 4	14	DIGITAL GROUND
12	BIT 3	13	+5V SUPPLY

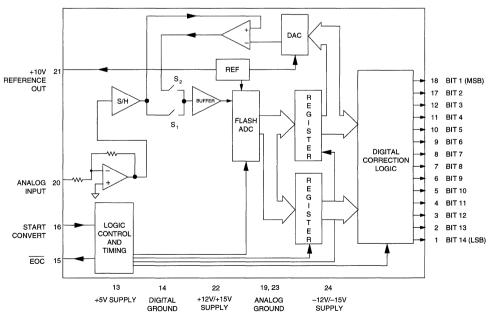


Figure 1. ADS-919 Functional Block Diagram

ĺ

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+12V/+15V Supply (Pin 22)	0 to +16	Volts
-12V/-15V Supply (Pin 24)	0 to16	Volts
+5V Supply (Pin 13)	0 to +6	Volts
Digital Input (Pin 16)	0.3 to +V _{DD} +0.3	Volts
Analog Input (Pin 20)	-4 to +17	Volts
Lead Temp. (10 seconds)	300	°C

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS	
Operating Temp. Range, Case ADS-919MC/GC ADS-919MM/GM	0 55		+70 +125	ů ů	
Thermal Impedance θjc	-55	6	+125	°C/Watt	
θca Storage Temperature Range Package Type	-65	24 —	+150	°C/Watt °C	
Weight	24-pin, metal-sealed, ceramic DDIP or 0.42 ounces (12 grams)				

FUNCTIONAL SPECIFICATIONS

 $(T_{A} = +25^{\circ}C, \pm V_{CC} = \pm 15V \text{ (or } \pm 12V), + V_{DD} = +5V, 2MHz \text{ sampling rate, and a minimum 1 minute warmup }$ ^① unless otherwise specified.)

		+25°C			0 to +70°	°C	-5	5 to +12	5°C	1
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range ^②	_	0 to +10			0 to +10			0 to +10		Volts
Input Resistance	_	1			1		_	1	-	kΩ
Input Capacitance	_	7	15	_	7	15		7	15	pF
DIGITAL INPUTS	1	I			l					F.
Logic Levels	1	1	[1				
Logic Levels	+2			+2			+2			Volts
Logic "0"		_	+0.8	T2	_	+0.8		_	+0.8	Volts
Logic Loading "1"	_	_	+20			+20		_	+20	μA
Logic Loading "0"	- 1	_	-20	_		-20		_	-20	μA
Start Convert Positive Pulse Width ③	50	200		50	200	_	50	200	-	ns
STATIC PERFORMANCE		1							Ja. <u></u>	Les es
Resolution	-	14	-	-	14	-		14	-	Bits
Integral Nonlinearity (fin = 10kHz)	-	±0.5	-	-	±0.75	-		±1	-	LSB
Differential Nonlinearity (fin = 10kHz)		±0.5	±0.95	-	±0.5	±0.95		±0.5	±0.99	LSB
Full Scale Absolute Accuracy		±0.1	±0.3		±0.2	±0.4		±0.4	±0.8	%FSR
Unipolar Offset Error (Tech Note 2)	-	±0.1	±0.25		±0.2	±0.4		±0.4	±1.25	%FSR
Gain Error (Tech Note 2)		±0.13	±0.3	-	±0.3	±0.5	-	±0.5	±1	%
No Missing Codes (f _{in} = 10kHz)	14			14			14			Bits
DYNAMIC PERFORMANCE		T								
Peak Harmonics (–0.5dB)	1									
dc to 500kHz	-	-76	-72	-	-76	-70		-74	-69	dB
500kHz to 1MHz	-	-76	-70	_	-76	-70	-	-74	-69	dB
Total Harmonic Distortion (-0.5dB)		l								
dc to 500kHz	-	-74	-70		-74	-70	-	-73	-69	dB
500kHz to 1MHz		-74	-70	_	-74	-70	-	-73	-68	dB
Signal-to-Noise Ratio		1						1		
(w/o distortion, –0.5dB) dc to 500kHz	74	77		74	77		71	76		dB
500kHz to 1MHz	74	77		74	77	_	71	75		dВ
Signal-to-Noise Ratio @	1 14		_	/4		_		/3		ub
(& distortion, -0.5dB)					1					
dc to 500kHz	70	74		70	74	_	68	73	_	dB
500kHz to 1MHz	70	74	_	70	74	_	68	72		dB
Two-tone Intermodulation										40
Distortion (fin = 200kHz,										
500kHz, $f_s = 2MHz$,					1					
–0.5dB)	- 1	-80	-	_	-80	-	-	-79	-	dB
Noise	-	300	-	-	350	-		450	-	μVrms
Input Bandwidth (–3dB)		1								
Small Signal (-20dB input)	-	9		- 1	9		-	9	-	MHz
Large Signal (-0.5dB input)		8	-	-	8	-	-	8	-	MHz
Feedthrough Rejection	1	1	1	1					1	
(f _{in} = 1MHz)	-	82	-		82		-	82	-	dB
Slew Rate		±200	-	- 1	±200	-	-	±200	-	V/µs
Aperture Delay Time	-	±20	-	-	±20	-	-	±20	-	ns
Aperture Uncertainty	-	5	-	-	5	-	-	5	-	ps rms
S/H Acquisition Time	150	100	000	150	100	000	150	100	000	
(to ±0.003%FSR, 10V step)	150	190	230 500	150	190	230	150	190	230	ns
Overvoltage Recovery Time [©] A/D Conversion Rate	2	400	500	2	400	500	2	400	500	ns MHz
A/D COnversion Hate	2			2	I —		2			

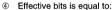
ADS-919

		+25°C			0 to +70	°C	-{	55 to +12	25°C	
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference										
Voltage	+9.95	+10	+10.05	+9.95	+10	+10.05	+9.95	+10	+10.05	Volts
Drift		±5		_	±5	_	_	±5		ppm/°C
External Current	-	_	1.5	—	_	1.5	-		1.5	mA
DIGITAL OUTPUTS										
Logic Levels										
Logic "1"	+2.4	_		+2.4			+2.4	_	_]	Volts
Logic "0"	_		+0.4	-	-	+0.4	- 1	_	+0.4	Volts
Logic Loading "1"	_	_	4		-	4			4	mA
Logic Loading "0"		_	4	_	_	4		_	4	mA
Delay, Falling Edge of EOC							ļ			
to Output Data Valid		_	35		_	35	-	-	35	ns
Output Coding					Strai	aht Binary				
POWER REQUIREMENTS, ±15V	,					· · · · · ·				
Power Supply Range										
+15V Supply	+14.5	+15	+15.5	+14.5	+15	+15.5	+14.5	+15	+15.5	Volts
-15V Supply	-14.5	15	-15.5	-14.5	-15	-15.5	-14.5	-15	-15.5	Volts
+5V Supply	+4.75	+5	+5.25	+4.75	+5	+5.25	+4.75	+5	+5.25	Volts
Power Supply Current										
+15V Supply		+45	+60	_	+45	+60	_	+45	+60	mA
–15V Supply	_	-45	-60		-45	-60	_	-45	-60	mA
+5V Supply		+85	+95		+85	+95	_	+85	+95	mA
Power Dissipation	_	1.8	2	_	1.8	2	_ !	1.8	2	Watts
Power Supply Rejection	-	_	±0.02	-	_	±0.02	-	_	±0.02	%FSR/%V
POWER REQUIREMENTS, ±12V				I						
Power Supply Range										
+12V Supply	+11.5	+12	+12.5	+11.5	+12	+12.5	+11.5	+12	+12.5	Volts
-12V Supply	-11.5	-12	-12.5	-11.5	-12	-12.5	-11.5	-12	-12.5	Volts
+5V Supply	+4.75	+5	+5.25	+4.75	+5	+5.25	+4.75	+5	+5.25	Volts
Power Supply Current										
+12V Supply		+45	+65	_	+45	+65	-	+45	+65	mA
-12V Supply	_	-45	-60	_	-45	-60		-45	-60	mA
+5V Supply	_	+85	+95	_	+85	+95	-	+85	+95	mA
Power Dissipation	-	1.5	1.7	_	1.5	1.7	_	1.5	1.7	Watts
Power Supply Rejection	_	_	±0.02			±0.02			±0.02	%FSR/%V

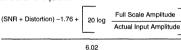
Footnotes:

① All power supplies must be on before applying a start convert pulse. All supplies and the clock (START CONVERT) must be present during warmup periods. The device must be continuously converting during this time. There is a slight degradation in performance when using ±12V supplies.

② See Ordering Information for availability of ±5V input range. Contact DATEL for availability of other input voltage ranges.


③ A 200ns wide start convert pulse is used for all production testing.

TECHNICAL NOTES


 Obtaining fully specified performance from the ADS-919 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19, and 23) directly to a large *analog* ground plane beneath the package.

Bypass all power supplies, as well as the REFERENCE OUTPUT (pin 21), to ground with 4.7 μ F tantalum capacitors in parallel with 0.1 μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. If the user-installed offset and gain adjusting circuit shown in Figure 2 is used, also locate it as close to the ADS-919 as possible.

The ADS-919 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using

(5)

This is the time required before the A/D output data is valid after the analog input is back within the specified range.

the input circuit of Figure 2. When using this circuit, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.

 When operating the ADS-919 from ±12V supplies, do not drive external circuitry with the REFERENCE OUTPUT. The reference's accuracy and drift specifications may not be met, and loading the circuit may cause accuracy errors within the converter.

Table	1.	Zero	and	Gain	Adjust
-------	----	------	-----	------	--------

INPUT VOLTAGE	ZERO ADJUST	GAIN ADJUST
RANGE	+1/2 LSB	+FS - 1 1/2 LSB
0 to +10V	+305µV	+9.999085V

CALIBRATION PROCEDURE

(Refer to Figures 2 and 3)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit of Figure 2 are guaranteed to compensate for the ADS-919's initial accuracy errors and may not be able to compensate for additional system errors.

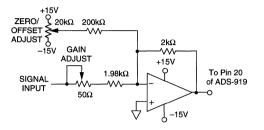


Figure 2. ADS-919 Calibration Circuit

All fixed resistors in Figure 2 should be metal-film types, and multiturn potentiometers should have TCR's of 100ppm/°C or less to minimize drift with temperature.

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting

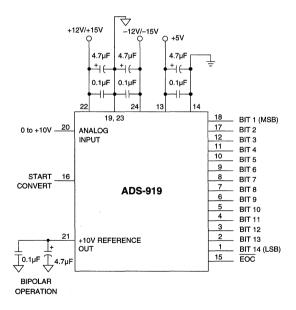
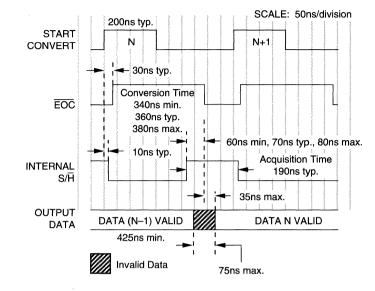
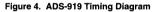


Figure 3. Typical ADS-919 Connection Diagram

LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-919, offset adjusting is normally accomplished at the point where all output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is +1/2LSB ($+305\mu$ V).


Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 1/2 LSB's (+9.999085V).


Zero/Offset Adjust Procedure

- Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting. If using LED's on the outputs, a 200kHz conversion rate will reduce flicker.
- 2. Apply +305µV to the ANALOG INPUT (pin 20).
- 3. Adjust the offset potentiometer until the output bits are all 0's and the LSB flickers between 0 and 1.

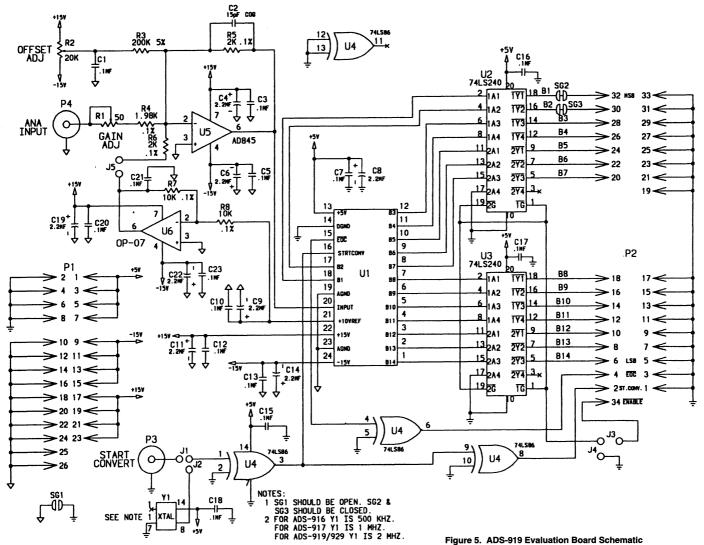
Gain Adjust Procedure

- 1. Apply +9.999085V to the ANALOG INPUT (pin 20).
- Adjust the gain potentiometer until the output bits are all 1's and the LSB flickers between 1 and 0.

THERMAL REQUIREMENTS

DATE

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to + 125°C. All room-temperature ($T_A = +25^{\circ}$ C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.


These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

INPUT VOLTAGE (0 to +10V)	UNIPOLAR SCALE	DIGITAL OUTPUT MSB LSB
+9.999390	+FS –1LSB	11 1111 1111 1111
+7.500000	+3/4 FS	11 0000 0000 0000
+5.000000	+1/2 FS	10 0000 0000 0000
+2.500000	+1/4 FS	01 0000 0000 0000
+0.000610	+1LSB	00 0000 0000 0001
0	0	00 0000 0000 0000

Table 2. Output Coding

Coding is straight binary; $1LSB = 610\mu V$

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

1-60

ADS-919

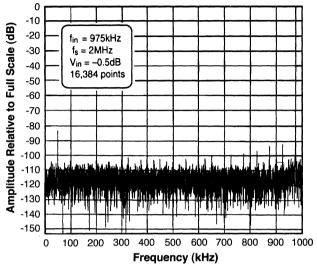
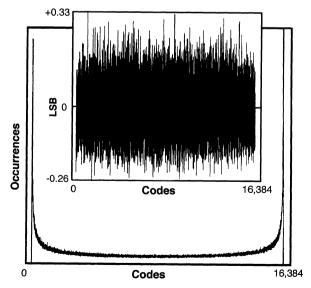
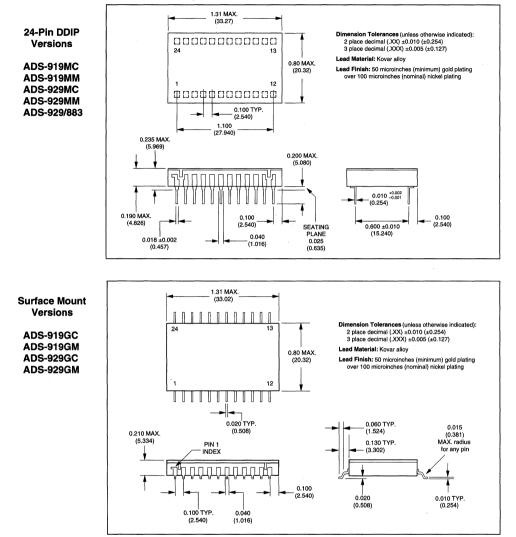


Figure 6. ADS-919 FFT Analysis




Figure 7. ADS-919 Histogram and Differential Nonlinearity

ADS-919

MECHANICAL DIMENSIONS

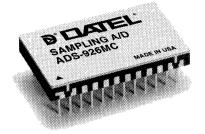
INCHES (mm)

ORDERING INFORMATION

	OPERATING TEMP. RANGE	ANALOG INPUT	ACCESSORIES	
ADS-919MC ADS-919MM ADS-919GC ADS-919GM ADS-929MC ADS-929MM ADS-929/883 ADS-929/883 ADS-929GC ADS-929GM	0 to +70°C -55 to +125°C 0 to +70°C -55 to +125°C 0 to +70°C -55 to +125°C -55 to +125°C 0 to +70°C -55 to +125°C	Unipolar (0 to +10V) Unipolar (0 to +10V) Unipolar (0 to +10V) Bipolar (±5V)* Bipolar (±5V)* Bipolar (±5V)* Bipolar (±5V)* Bipolar (±5V)*	Inc., Part # 3-3312 For MIL-STD-883 p	Evaluation Board (without ADS-919) Heat Sink for all ADS-919/929 DDIP models board mounting can be ordered through AMP 72-8 (Component Lead Socket), 24 required. broduct specification, contact DATEL. ation, see ADS-929 data sheet.

ADS-926 14-Bit, 500kHz, Low-Power Sampling A/D Converters

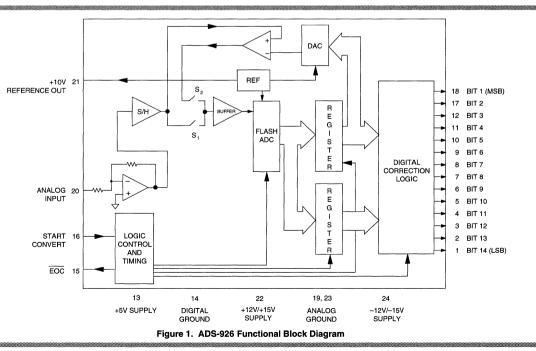
FEATURES


- 14-Bit resolution
- 500kHz sampling rate
- · No missing codes
- · Functionally complete
- Small 24-pin DDIP or SMT package
- · Low power, 1.75 Watts maximum
- Samples up to Nyquist frequencies
- · Outstanding dynamic performance
- · Bipolar ±5V input range

GENERAL DESCRIPTION

The ADS-926 is a high-performance, 14-bit, 500kHz sampling A/D converter. This device accurately samples full-scale input signals up to Nyquist frequencies with no missing codes and exhibits outstanding dynamic performance that surpasses most 16-bit, 500kHz sampling A/D's. THD and SNR, for example, are typically –90dB and 80dB when converting full-scale input signals up to 100kHz.

Packaged in a small 24-pin DDIP, the functionally complete ADS-926 contains a fast-settling sample-and-hold amplifier, a subranging (two-pass) A/D converter, a precise voltage reference, timing/control logic, and error-correction circuitry. Digital input and output levels are TTL.


Requiring ±15V and +5V supplies, the ADS-926 dissipates only 1.75W, maximum. The unit is offered with a bipolar input (-5V to +5V). Models are available for use in either commercial (0 to +70°C) or military (-55 to +125°C) operating temperature ranges.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 14 (LSB)	24	-15V SUPPLY
2	BIT 13	23	ANALOG GROUND
3	BIT 12	22	+15V SUPPLY
4	BIT 11	21	+10V REFERENCE OUT
5	BIT 10	20	ANALOG INPUT
6	BIT 9	19	ANALOG GROUND
7	BIT 8	18	BIT 1 (MSB)
8	BIT 7	17	BIT 2
9	BIT 6	16	START CONVERT
10	BIT 5	15	EOC
11	BIT 4	14	DIGITAL GROUND
12	BIT 3	13	+5V SUPPLY

Applications include radar, sonar, spectrum analysis, and graphic/medical imaging. Contact DATEL for information on devices screened to MIL-STD-883 or packaged in SMT packages.

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 22)	0 to +16	Volts
-15V Supply (Pin 24)	0 to -16	Volts
+5V Supply (Pin 13)	0 to +6	Volts
Digital Input (Pin 16)	-0.3 to +V _{DD} +0.3	Volts
Analog Input (Pin 20)	±15	Volts
Lead Temp. (10 seconds)	300	°C

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS		
Operating Temp. Range, Case						
ADS-926MC/GC	0	-	+70	°C		
ADS-926MM/GM/883	55		+125	°C		
Thermal Impedance						
θjc	_	6	-	°C/Watt		
θca	-	24		°C/Watt		
Storage Temperature Range	65		+150	°C		
Package Type	24-pin, metal-sealed, ceramic DDIP or SMT					
Weight		0.42 ounce	s (12 grams	5)		

FUNCTIONAL SPECIFICATIONS

(T_A = +25°C, ±V_{CC} = ±15V, +V_{DD} = +5V, 500kHz sampling rate, and a minimum 1 minute warmup ^① unless otherwise specified.)

		+25°C			0 to +70°	C	5	5 to +12	5°C	
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range ^②		±5			±5			±5		Volts
Input Resistance		1		_	1			1	-	kΩ
Input Capacitance		7	15		7	15		7	15	pF
DIGITAL INPUTS			15			15		/	15	рг
	1		r		r				1	
Logic Levels				.00			.0.0			Valla
Logic "1"	+2.0	-	-	+2.0	-	_	+2.0		_	Volts
Logic "0"		-	+0.8			+0.8		-	+0.8	Volts
Logic Loading "1"	-	-	+20		-	+20		-	+20	μA
Logic Loading "0"			-20			-20			-20	μA
Start Convert Positive Pulse Width ③	175	200	225	175	200	225	175	200	225	ns
STATIC PERFORMANCE					r					
Resolution	-	14	-		14			14	-	Bits
Integral Nonlinearity (fin = 10kHz)	-	±0.5			±0.75			±1.5	-	LSB
Differential Nonlinearity (fin = 10kHz)	-	±0.5	±0.95		±0.5	±0.95	—	±0.75	±0.99	LSB
Full Scale Absolute Accuracy		±0.08	±0.15	-	±0.15	±0.25		±0.3	±0.5	%FSR
Bipolar Zero Error (Tech Note 2)	-	±0.05	±0.1		±0.1	±0.25	-	±0.15	±0.3	%FSR
Bipolar Offset Error (Tech Note 2)	-	±0.05	±0.1		±0.1	±0.25		±0.25	±0.4	%FSR
Gain Error (Tech Note 2)		±0.1	±0.15		±0.15	±0.25		±0.25	±0.4	%
No Missing Codes (f _{in} = 10kHz)	14	-	- 1	14	-	—	14	_	-	Bits
DYNAMIC PERFORMANCE										
Peak Harmonics (-0.5dB)										
dc to 100kHz		-92	-88		-90	85	—	88	-81	dB
100kHz to 250kHz	- 1	-90	-85		-90	85		86	-80	dB
Total Harmonic Distortion (-0.5dB)									l i	
dc to 100kHz	- 1	-90	-86		-89	-82		87	-78	dB
100kHz to 250kHz	- 1	-87	82		-87	82		81	-76	dB
Signal-to-Noise Ratio	1									
(w/o distortion, -0.5dB)										
dc to 100kHz	78	80	_	78	80	_	74	78		dB
100kHz to 250kHz	78	80		78	80	_	74	77		dB
Signal-to-Noise Ratio @										
(& distortion, -0.5dB)										
dc to 100kHz	77	79	_	77	79	_	74	78	_	dB
100kHz to 250kHz	77	79	_	77	79		73	77	_	dB
Noise	1 _	300	_	<u> </u>	300	_		300	_	uVrms
Two-tone Intermodulation										μ
Distortion (fin = 100kHz,										
240 kHz, $f_s = 500$ kHz,										
-0.5dB)		87			-86			85		dB
Input Bandwidth (-3dB)	1	-0/	_		-00		_	-03	-	чD
Small Signal (-20dB input)		7			7			7		MHz
		3			3		_	3	_	MHZ
Large Signal (-0.5dB input)	-		-	-		_	_		-	
Feedthrough Rejection (fin = 250kHz)	-	84	-	-	84	-	-	84	-	dB
Slew Rate	-	±40	-		±40		-	±40	-	V/µs
Aperture Delay Time		±20	-	-	±20	-		±20	-	ns
Aperture Uncertainty		5	-	-	5		-	5	-	ps rms
S/H Acquisition Time						1				
(to ±0.003%FSR, 10V step)	1335	1390	1445	1335	1390	1445	1335	1390	1445	ns
Overvoltage Recovery Time (5)	-	1400	2000	-	1400	2000	-	1400	2000	ns
A/D Conversion Rate	500	_	_	500		I —	500		-	kHz

		+25°C			0 to +70	°C	-(55 to +12	5°C	
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference										
Voltage	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	Volts
Drift	_	±5			±5			±5	_	ppm/°C
External Current	-	-	1.5		-	1.5	-	-	1.5	mA
DIGITAL OUTPUTS										
Logic Levels										
Logic "1"	+2.4	_	-	+2.4	_	_	+2.4		-	Volts
Logic "0"		_	+0.4	_	-	+0.4			+0.4	Volts
Logic Loading "1"		_	4	_		4			4	mA
Logic Loading "0"	- 1	_	4		_	4	_	-	4	mA
Delay, Falling Edge of EOC										
to Output Data Valid		_	35	-	-	35	_	_	35	ns
Output Coding					Offs	et Binary				
POWER REQUIREMENTS										
Power Supply Range 6										
+15V Supply	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	Volts
-15V Supply	-14.5	-15.0	-15.5	-14.5	-15.0	15.5	-14.5	-15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current										
+15V Supply		+41	+60		+41	+60		+41	+60	mA
-15V Supply	- 1	-23	-40	-	-23	-40	-	-23	-40	mA
+5V Supply	-	+71	+85	-	+71	+85	-	+71	+85	mA
Power Dissipation	-	1.3	1.75	-	1.3	1.75	-	1.3	1.75	Watts
Power Supply Rejection	-	—	±0.02	-	—	±0.02		-	±0.02	%FSR/%
Footnotes:										
① All power supplies must be on l	pefore applyin	g a start c	onvert	4	Effective k	oits is equa	l to:			

① All power supplies must be on before applying a start convert pulse. All supplies and the clock (START CONVERT pulse) must be present during warmup periods. The device must be continuously converting during this time.

- ② See Ordering Information for 0 to +10V input range. Contact DATEL for availability of other input ranges.
- ③ A 200ns wide start convert pulse is used for all production testing. For applications requiring less than a 500kHz sampling rate, a wider start convert pulse can be used.
- Effective bits is equal to:

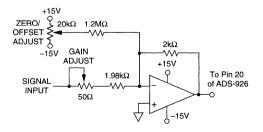
(SNR + Distortion) - 1.76 + 20 log Full Scale Amplitude

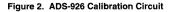
Actual Input Amplitude _

6.02

- ⑤ This is the time required before the A/D output data is valid once the analog input is back within the specified range.
- Interaction of the second s

TECHNICAL NOTES


 Obtaining fully specified performance from the ADS-926 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19, and 23) directly to a large *analog* ground plane beneath the package.


Bypass all power supplies, as well as the REFERENCE OUTPUT (pin 21), to ground with 4.7μ F tantalum capacitors in parallel with 0.1μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. If the user-installed offset and gain adjusting circuit shown in Figure 2 is used, also locate it as close to the ADS-926 as possible.

- 2. The ADS-926 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the input circuit of Figure 2. When using this circuit, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.
- Applying a start convert pulse while a conversion is in progress (EOC = logic "1") initiates a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid.

Table 1. Zero and Gain Adjust

INPUT VOLTAGE	ZERO ADJUST	GAIN ADJUST
RANGE	+1/2 LSB	+FS - 1 1/2 LSB
±5V	+305µV	+4.999085V

CALIBRATION PROCEDURE

(Refer to Figures 2 and 3)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit of Figure 2 are guaranteed to compensate for the ADS-926's initial accuracy errors and may not be able to compensate for additional system errors.

All fixed resistors in Figure 2 should be metal-film types, and multiturn potentiometers should have TCR's of 100ppm/°C or less to minimize drift with temperature.

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-926, offset adjusting is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is +1/2LSB (+305 μ V).

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 1/2 LSB's (+4.999085V) .

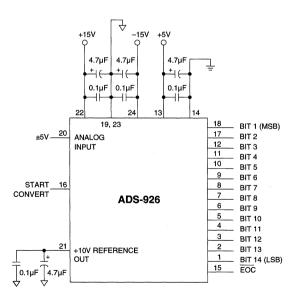


Figure 3. Typical ADS-926 Connection Diagram

Zero/Offset Adjust Procedure

- 1. Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting. If using LED's on the outputs, a 200kHz conversion rate will reduce flicker.
- 2. Apply +305 μV to the ANALOG INPUT (pin 20).
- 3. Adjust the offset potentiometer until the output bits are a 1 and all 0's and the LSB flickers between 0 and 1.

Gain Adjust Procedure

- 1. Apply +4.999085V to the ANALOG INPUT (pin 20).
- 2. Adjust the gain potentiometer until the output bits are all 1's and the LSB flickers between 1 and 0.

OFFSET MSB	BINARY LSB	INPUT RANGE ±5V	BIPOLAR SCALE		
11 1111 1	111 1111	+4.99939	+FS -1 LSB		
11 1000 0	0000 0000	+3.75000	+3/4 FS		
11 0000 0	0000 0000	+2.50000	+1/2 FS		
10 0000 0	0000 000	0.00000	0		
01 0000 0	0000 0000	-2.50000	-1/2 FS		
00 1000 0	0000 0000	-3.75000	3/4 FS		
00 0000 00	000 0001	-4.99939	-FS +1 LSB		
00 0000 0	0000 0000	-5.00000	–FS		

Table 2. Output Coding

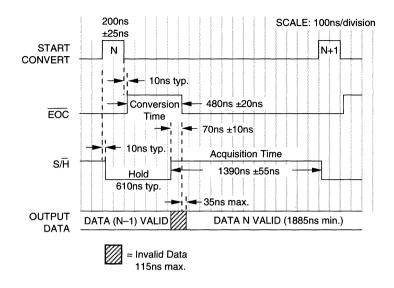


Figure 4. ADS-926 Timing Diagram

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to + 125°C. All room-temperature (T_A = +25°C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

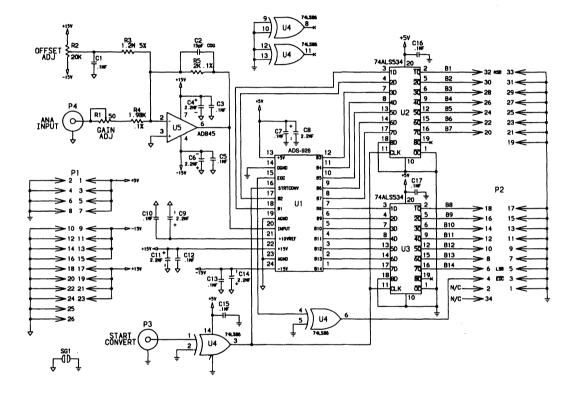
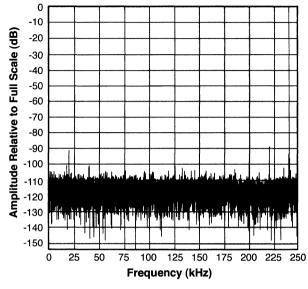
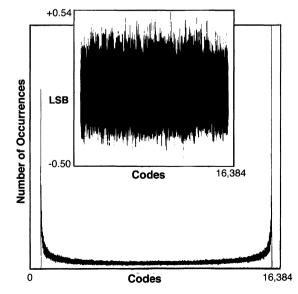


Figure 5. ADS-926 Evaluation Board Schematic

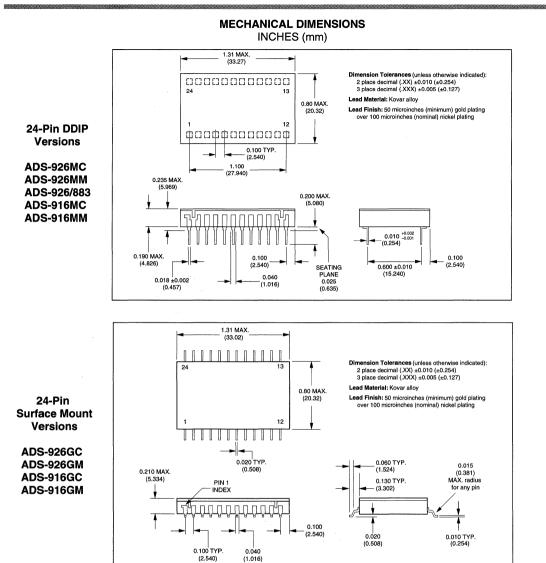


Figure 6. ADS-926 FFT Analysis (fin = 240kHz, fs = 500kHz, Vin = -0.5dB, 16,384 points)

ADS-926

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	ANALOG INPUT	ACCESSORIES	
ADS-926MC ADS-926MM ADS-926/883 ADS-926GC ADS-926GM ADS-916MC ADS-916MM ADS-916GC ADS-916GM	0 to +70°C -55 to +125°C -55 to +125°C 0 to +70°C -55 to +125°C 0 to +70°C -55 to +125°C 0 to +70°C -55 to +125°C -55 to +125°C	Bipolar (±5V) Bipolar (±5V) Bipolar (±5V) Bipolar (±5V) Unipolar (0 to +10V)* Unipolar (0 to +10V)* Unipolar (0 to +10V)* Unipolar (0 to +10V)*	Inc., Part # 3-3312 For MIL-STD-883 mount packaging,	Evaluation Board (without ADS-926) Heat Sink for all ADS-916/926 DDIP models C board mounting can be ordered through AMP 72-8 (Component Lead Socket), 24 required. product specification or availability of surface contact DATEL. ation, see ADS-916 data sheet.

1-70 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

ADS-927 14-Bit, 1MHz, Low-Power Sampling A/D Converters

FEATURES

- 14-Bit resolution
- 1MHz sampling rate
- · No missing codes
- · Functionally complete
- · Small 24-pin DDIP or SMT package
- · Low power, 1.9 Watts maximum
- Operates from ±15V or ±12V supplies
- · Bipolar ±5V input range

GENERAL DESCRIPTION

The ADS-927 is a high-performance, 14-bit, 1MHz sampling A/D converter. This device samples input signals up to Nyquist frequencies with no missing codes. The ADS-927 features outstanding dynamic performance including a THD of -80dB.

Packaged in a small 24-pin DDIP, the functionally complete ADS-927 contains a fast-settling sample/hold amplifier, a subranging (two-pass) A/D converter, a precise voltage reference, timing/control logic, and error-correction circuitry. Digital input and output levels are TTL.

Requiring $\pm 15V$ (or $\pm 12V$) and $\pm 5V$ supplies, the ADS-927 dissipates only 1.95W (1.65W for $\pm 12V$), maximum. The unit is offered with a bipolar input ($\pm 5V$ to $\pm 5V$). Models are available for use in either commercial (0 to $\pm 70^{\circ}$ C) or military (± 55 to $\pm 125^{\circ}$ C) operating temperature ranges. Applications include radar, sonar, spectrum analysis, and graphic/medical imaging.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 14 (LSB)	24	-12V/-15V SUPPLY
2	BIT 13	23	ANALOG GROUND
3	BIT 12	22	+12V/+15V SUPPLY
4	BIT 11	21	+10V REFERENCE OUT
5	BIT 10	20	ANALOG INPUT
6	BIT 9	19	ANALOG GROUND
7	BIT 8	18	BIT 1 (MSB)
8	BIT 7	17	BIT 2
9	BIT 6	16	START CONVERT
10	BIT 5	15	EOC
11	BIT 4	14	DIGITAL GROUND
12	BIT 3	13	+5V SUPPLY

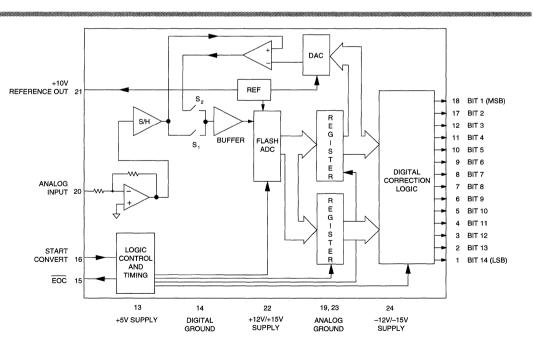


Figure 1. ADS-927 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+12V/+15V Supply (Pin 22)	0 to +16	Volts
-12V/-15V Supply (Pin 24)	0 to -16	Volts
+5V Supply (Pin 13)	0 to +6	Volts
Digital Input (Pin 16)	-0.3 to +V _{DD} +0.3	Volts
Analog Input (Pin 20)	-4 to +17	Volts
Lead Temp. (10 seconds)	300	°C

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS			
Operating Temp. Range, Case							
ADS-927MC/GC	0	-	+70	°C			
ADS-927MM/GM/883	-55		+125	°C			
Thermal Impedance							
θic		6		°C/Watt			
θca		24	_	°C/Watt			
Storage Temperature Range	-65		+150	°C			
Package Type	24-pin, metal-sealed, ceramic DDIP or SMT						
Weight		0.42 ounces (12 grams)					

FUNCTIONAL SPECIFICATIONS

(T_A = +25°C, ±V_{CC} = ±15V (or ±12V), +V_{DD} = +5V, 1MHz sampling rate, and a minimum 1 minute warmup ^① unless otherwise specified.)

		+25°C			0 to +70°	+70°C –55 to +125°C				
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range ^②		±5			±5	_		±5	_	Volts
Input Resistance		1	_		1	_		1	_	kΩ
Input Capacitance	_	7	15		7	15		7	15	pF
			10		·	10		, ,	10	Pi
Logic Levels	1							1		
Logic Levels	+2.0			+2.0			+2.0			Volts
Logic "0"	+2.0		+0.8	+2.0	_	+0.8	+2.0	_	+0.8	Volts
Logic Loading "1"		_	+0.0	_	_	+0.0		_	+0.0	μA
Logic Loading "0"			-20	_		-20			-20	μΑ
Start Convert Positive Pulse Width ③	175	200	225	175	200	225	175	200	225	ns
STATIC PERFORMANCE	L	L	L						L]	
Resolution		14			14	_		14	_	Bits
Integral Nonlinearity (f _{in} = 10kHz)	_	±0.5		_	±0.75	_	_	±1.5		LSB
Differential Nonlinearity (fin = 10kHz)	_	±0.5	±0.95		±0.5	±0.95	_	±0.75	+0.99	LSB
Full Scale Absolute Accuracy	_	±0.08	±0.35 ±0.15	_	±0.5	±0.35 ±0.25	_	±0.73	±0.55	%FSR
Bipolar Zero Error (Tech Note 2)	_	±0.05	±0.13		±0.15 ±0.1	±0.25 ±0.25		±0.15	±0.3	%FSR
Bipolar Offset Error (Tech Note 2)	_	±0.05	±0.1	_	±0.1	±0.25	_	±0.25	±0.5	%FSR
Gain Error (Tech Note 2)	_	±0.1	±0.15		±0.15	±0.25	_	±0.25	±0.4	%
No Missing Codes (fin = 10kHz)	14			14		10.25	14			Bits
DYNAMIC PERFORMANCE	.L	L	I		[1		1	L	
Peak Harmonics (-0.5dB)		[[
dc to 100kHz		-91	-83		-90	_		-88		dB
100kHz to 500kHz			-78	_	-82	-78		-80	-77	dB
Total Harmonic Distortion (-0.5dB)		-02	-70	_	-02	-70		-00	-11	чD
dc to 100kHz	_	-90	-81		-89			87		dB
100kHz to 500kHz	_	-80	-76	_	-80	-76		-79	-74	dB
Signal-to-Noise Ratio			10							uD
(w/o distortion, -0.5dB)										
dc to 100kHz	77	79		74	78		73	77		dB
100kHz to 500kHz	75	78	_	74	78		73	76		dB
Signal-to-Noise Ratio @		10		/ 4	10		10	10		ub
(& distortion, -0.5dB)										
dc to 100kHz	76	78	_	73	77		71	76		dB
100kHz to 500kHz	73	76		73	76		71	75	_	dB
Noise	<u> </u>	350	_		350	_	<u> </u>	350	_	μVrms
Two-tone Intermodulation Distortion (f _{in} = 100kHz,										
240kHz, f _s = 1MHz,										
-0.5dB)	-	-87	-	-	-86	-	-	-85	-	dB
Input Bandwidth (-3dB)		_						_		
Small Signal (-20dB input)		7		-	7	-	- 1	7	-	MHz
Large Signal (-0.5dB input)	-	5		-	5	-	- 1	5	-	MHz
Feedthrough Rejection										
$(f_{in} = 500 \text{kHz})$	-	84	-	-	84	-		84	-	dB
Slew Rate	-	±60	-	-	±60	- 1		±60	-	V/µs
Aperture Delay Time	-	±20	-		±20	- 1	-	±20	-	ns
Aperture Uncertainty	-	5	-		5	-	- 1	5	-	ps rms
S/H Acquisition Time	1									
(to ±0.003%FSR, 10V step)	335	390	445	335	390	445	335	390	445	ns
Overvoltage Recovery Time ⁽⁵⁾	-	400	1000	-	400	1000	-	400	1000	ns
A/D Conversion Rate	1	-	-	1	-	-	1		-	MHz

		+25°C			0 to +70	°C		55 to +12	5°C	
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference										
Voltage	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	Volts
Drift	-	±5	- 1	-	±5		-	±5		ppm/°C
External Current	-	-	1.5	-		1.5	—	-	1.5	mA
DIGITAL OUTPUTS		- <u>,</u>								
Logic Levels										
Logic "1"	+2.4	- 1		+2.4		1 -	+2.4		-	Volts
Logic "0"		-	+0.4	-		+0.4		-	+0.4	Volts
Logic Loading "1"		-	4	-		4	-		4	mA
Logic Loading "0"			4	-		4	-	- 1	4	mA
Delay, Falling Edge of EOC										
to Output Data Valid	—	-	35	_		35			35	ns
Output Coding					Offset E	Binary				
POWER REQUIREMENTS, ±15	V				1	r	T			
Power Supply Range										
+15V Supply	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	Volts
-15V Supply	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current										
+15V Supply	-	+43	+65	-	+43	+65	-	+43	+65	mA
-15V Supply	-	-25	-45	- 1	-25	-45	1 -	-25	-45	mA
+5V Supply	-	+71	+80	-	+71	+80	-	+71	+80	mA
Power Dissipation	-	1.6	1.95	-	1.6	1.95	-	1.6	1.95	Watts
Power Supply Rejection			±0.02			±0.02			±0.02	%FSR/%\
POWER REQUIREMENTS, ±12	<u>v</u>	T	T	·	T		T	T		
Power Supply Range										
+12V Supply	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	Volts
-12V Supply	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current										
+12V Supply	-	+42	+65	-	+42	+65	-	+42	+65	mA
-12V Supply		-25	-45	- 1	-25	-45	-	-25	-45	mA
+5V Supply	-	+71	+80	-	+71	+80	-	+71	+80	mA
Power Dissipation	-	1.4	1.65	-	1.4	1.65	-	1.4	1.65	Watts
Power Supply Rejection	-	-	±0.02	-		±0.02	-	-	±0.02	%FSR/%\
Footnotes: ① All power supplies must be on bin pulse. All supplies and the clock present during warmup periods. continuously converting during the	(START CO The device	ONVERT)		٩		oits is equa		loa	Scale Amplii al Input Amp	
 See Ordering Information for 0 to DATEL for availability of other in 	o +10V input		ontact					6.02		
A 200 po wide stat approximation		0		6	This is the	time requ	ired befor	e the A/D	output data	is valid afte

③ A 200ns wide start convert pulse is used for all production testing. For applications requiring less than a 1MHz sampling rate, a wider start convert pulse can be used.

TECHNICAL NOTES

 Obtaining fully specified performance from the ADS-927 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19, and 23) directly to a large *analog* ground plane beneath the package.

Bypass all power supplies, as well as the REFERENCE OUTPUT (pin 21), to ground with 4.7 μ F tantalum capacitors in parallel with 0.1 μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. If the user-installed offset and gain adjusting circuit shown in Figure 2 is used, also locate it as close to the ADS-927 as possible.

 The ADS-927 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the input circuit of Figure 2. When using this circuit, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.

the analog input is back within the specified range.

- When operating the ADS-927 from ±12V supplies, do not drive external circuitry with the REFERENCE OUTPUT. The reference's accuracy and drift specifications may not be met, and loading the circuit may cause accuracy errors within the converter.
- Applying a <u>start</u> convert pulse while a conversion is in progress (EOC = logic "1") initiates a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid.

CALIBRATION PROCEDURE

(Refer to Figures 2 and 3)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit of Figure 2 are guaranteed to compensate for the ADS-927's initial accuracy errors and may not be able to compensate for additional system errors.

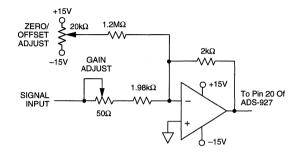


Figure 2. ADS-927 Calibration Circuit

All fixed resistors in Figure 2 should be metal-film types, and multiturn potentiometers should have TCR's of 100ppm/°C or less to minimize drift with temperature.

T	able	1.	Zero	and	Gain	Ad	iust

INPUT VOLTAGE	ZERO ADJUST	GAIN ADJUST
RANGE	+1/2 LSB	+FS - 1 1/2 LSB
±5V	+305µV	+4.999085V

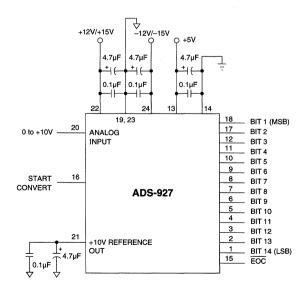


Figure 3. Typical ADS-927 Connection Diagram

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-927, offset adjusting is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is +1/2LSB ($+305\mu$ V).

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 1/2 LSB's (+4.999085V) .

Zero/Offset Adjust Procedure

- Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting. If using LED's on the outputs, a 200kHz conversion rate will reduce flicker.
- 2. Apply +305µV to the ANALOG INPUT (pin 20).
- 3. Adjust the offset potentiometer until the output bits are a 1 and all 0's and the LSB flickers between 0 and 1.

Gain Adjust Procedure

- 1. Apply +4.999085V to the ANALOG INPUT (pin 20).
- 2. Adjust the gain potentiometer until the output bits are all 1's and the LSB flickers between 1 and 0.

OFFSET BINARY MSB LSB	INPUT RANGE ±5V	BIPOLAR SCALE
11 1111 1111 1111	+4.99939	+FS -1 LSB
11 1000 0000 0000	+3.75000	+3/4 FS
11 0000 0000 0000	+2.50000	+1/2 FS
10 0000 0000 0000	0.00000	0
01 0000 0000 0000	-2.50000	1/2 FS
00 1000 0000 0000	-3.75000	–3/4 FS
00 0000 0000 0001	-4.99939	-FS +1 LSB
00 0000 0000 0000	-5.00000	–FS

Table 2. Output Coding

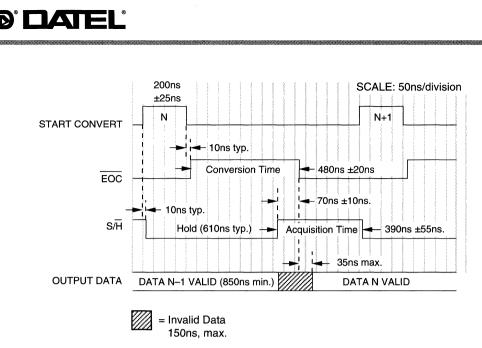


Figure 4. ADS-927 Timing Diagram

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to + 125°C. All room-temperature (T_A = +25°C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

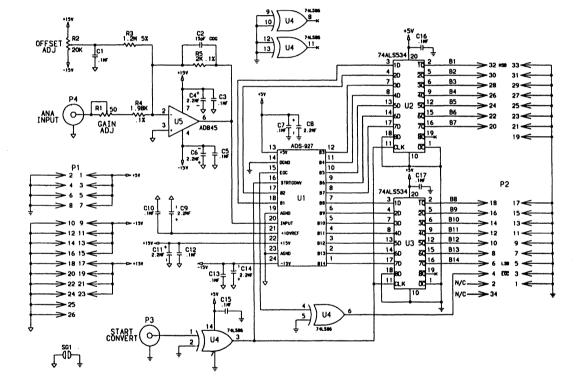


Figure 5. ADS-927 Evaluation Board Schematic

1

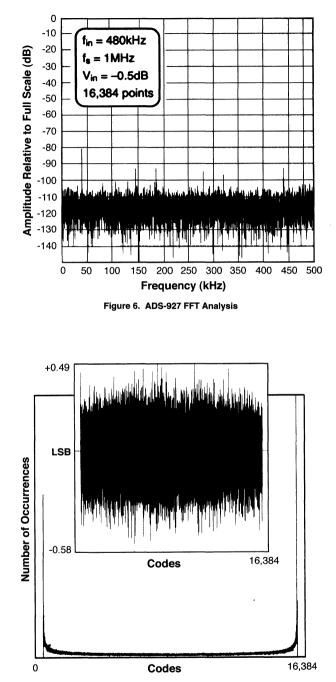
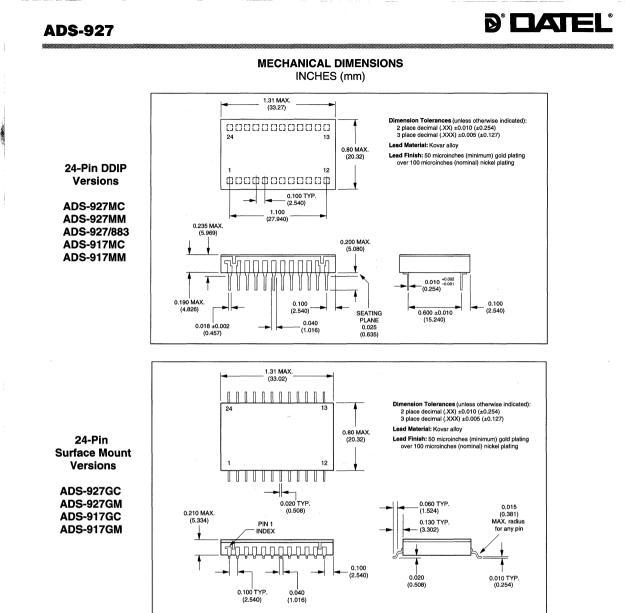



Figure 7. ADS-927 Histogram and Differential Linearity

MODEL NUMBER	OPERATING TEMP. RANGE	ANALOG INPUT	ACCESSORIES				
ADS-927MC ADS-927MM ADS-927GC	0 to +70°C −55 to +125°C 0 to +70°C	Bipolar (±5V) Bipolar (±5V) Bipolar (±5V)	ADS-B926/927 HS-24	Evaluation Board (without ADS-927) Heat Sink for all ADS-917/927 DDIP models			
ADS-927GM ADS-927GM ADS-927/883 ADS-917MC ADS-917MM	-55 to +125°C -55 to +125°C 0 to +70°C -55 to +125°C	Bipolar (±5V) Bipolar (±5V) Unipolar (0 to +10V)* Unipolar (0 to +10V)*	Receptacles for PC board mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 24 required. For MIL-STD-883 product specification or availability of surface mount packaging, contact DATEL.				
ADS-917GC ADS-917GM	0 to +70°C -55 to +125°C	Unipolar (0 to +10V)* Unipolar (0 to +10V)*	*For more informa	tion, see ADS-917 data sheet.			

FEATURES

- 14-Bit resolution
- 2MHz sampling rate
- · No missing codes
- · Functionally complete
- Small 24-pin DDIP or SMT package
- · Low power, 1.7 Watts
- Operates from ±15V or ±12V supplies
- · Edge-triggered, no pipeline delay
- Bipolar ±5V input range

GENERAL DESCRIPTION

The ADS-929 is a high-performance, 14-bit, 2MHz sampling A/D converter. This device samples input signals up to Nyquist frequencies with no missing codes. The ADS-929 features outstanding dynamic performance including a THD of -79dB.

Packaged in a small 24-pin DDIP, the functionally complete ADS-929 contains a fast-settling sample/hold amplifier, a subranging (two-pass) A/D converter, a precise voltage reference, timing/control logic, and error-correction circuitry. Digital input and output levels are TTL.

Requiring $\pm 15V$ (or $\pm 12V$) and $\pm 5V$ supplies, the ADS-929 typically dissipates 1.7W (1.4W for $\pm 12V$). The unit is offered with a bipolar input ($\pm 5V$ to $\pm 5V$). Models are available for use in either commercial (0 to $\pm 70^{\circ}$ C) or military (± 55 to $\pm 125^{\circ}$ C) operating temperature ranges. Applications include radar, sonar, spectrum analysis, and graphic/medical imaging.

INPUT/OUTPUT CONNECTIONS

PIN FUNCTION PIN FUNCTION 1 BIT 14 (LSB) 24 -12V/-15V SUPPLY BIT 13 2 23 ANALOG GROUND з **BIT 12** 22 +12V/+15V SUPPLY 4 BIT 11 21 +10V REFERENCE OUT 5 **BIT 10** 20 ANALOG INPUT 6 BIT 9 ANALOG GROUND 19 7 BIT 8 BIT 1 (MSB) 18 8 BIT 2 BIT 7 17 9 BIT 6 16 START CONVERT EOC 10 BIT 5 15 11 BIT 4 14 DIGITAL GROUND 12 BIT 3 13 +5V SUPPLY

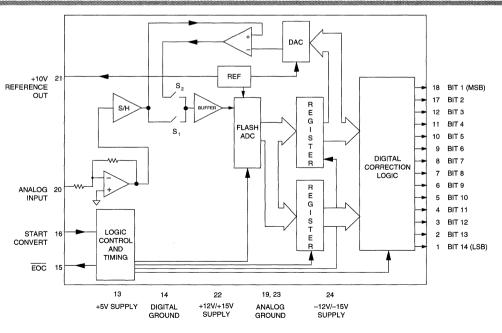


Figure 1. ADS-929 Functional Block Diagram

ADS-929

14-Bit, 2MHz, Low-Power

1

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS		
+12V/+15V Supply (Pin 22)	0 to +16	Volts		
-12V/-15V Supply (Pin 24)	0 to -16	Volts		
+5V Supply (Pin 13)	0 to +6	Volts		
Digital Input (Pin 16)	-0.3 to +V _{DD} +0.3	Volts		
Analog Input (Pin 20)	±15	Volts		
Lead Temp. (10 seconds)	300	°C		

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS		
Operating Temp. Range, Case ADS-929MC/GC	0	_	+70	°C		
ADS–929MM/GM/883 Thermal Impedance	-55		+125	°C		
θjc		6		°C/Watt		
θса		24		°C/Watt		
Storage Temperature Range	-65		+150	°C		
Package Type	24-pin, metal-sealed, ceramic DDIP or SMT					
Weight		0.42 ounce	s (12 gram	s)		

FUNCTIONAL SPECIFICATIONS

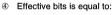
 $(T_A = +25^{\circ}C, \pm V_{CC} = \pm 15V \text{ (or } \pm 12V), + V_{DD} = +5V, 2MHz \text{ sampling rate, and a minimum 1 minute warmup } 0 \text{ unless otherwise specified.)}$

		+25°C			0 to +70°	C	-5	5 to +12	5°C	
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range ^②	_	±5		_	±5			±5		Volts
Input Resistance	_	1			1			1		kΩ
Input Capacitance		7	15	_	7	15 *		7	15	pF
DIGITAL INPUTS			15			15		/	15	μr
		r	r	r	r					
Logic Levels				.00						Valta
Logic "1"	+2.0	-		+2.0	-	_	+2.0	_	_	Volts
Logic "0"	-	-	+0.8			+0.8	-	_	+0.8	Volts
Logic Loading "1"	-		+20	_	-	+20		-	+20	μA
Logic Loading "0"	-	-	-20		-	-20		_	-20	μA
Start Convert Positive Pulse Width ③	50	200	-	50	200		50	200	-	ns
STATIC PERFORMANCE						•				
Resolution		14	-	_	14			14	-	Bits
Integral Nonlinearity (fin = 10kHz)	- 1	±0.5		_	±0.75	-		±1	-	LSB
Differential Nonlinearity (fin = 10kHz)	-	±0.5	±0.95	-	±0.5	±0.95		±0.5	±0.99	LSB
Full Scale Absolute Accuracy	-	±0.05	±0.15		±0.15	±0.4		±0.3	±0.5	%FSR
Bipolar Zero Error (Tech Note 2)		±0.05	±0.15	_	±0.1	±0.25		±0.4	±0.75	%FSR
Bipolar Offset Error (Tech Note 2)	-	±0.05	±0.15		±0.15	±0.4		±0.4	±0.95	%FSR
Gain Error (Tech Note 2)	_	±0.1	±0.3		±0.3	±0.5		±0.5	±1.25	%
No Missing Codes (fin = 10kHz)	14		10.0	14	10.0		14	10.0		Bits
	1 14						1			Dita
			r							
Peak Harmonics (-0.5dB)										
dc to 500kHz	-	-80	-75		-80	-75		79	-74	dB
500kHz to 1MHz		-80	-74	-	-80	-74	-	-74	-67	dB
Total Harmonic Distortion (-0.5dB)	1									
dc to 500kHz	-	-79	-74		-79	-74		-77	-72	dB
500kHz to 1MHz	_	-79	-74	_	-79	-74		-72	-67	dB
Signal–to–Noise Ratio										
(w/o distortion, -0.5dB)										
dc to 500kHz	76	78	_	76	78	_	75	77	_	dB
500kHz to 1MHz	75	77		75	77		74	76		dB
Signal-to-Noise Ratio @	1 10	1		,,,			7.1	10		üb
(& distortion, -0.5dB)										
dc to 500kHz	72	75		72	75		71	74		dB
500kHz to 1MHz	70	75	-	72	75		67	74		dВ
	70	/5		/0	/5		67	73	_	aв
Two-tone Intermodulation										
Distortion (f _{in} = 200kHz,						1				
500kHz, f _s = 2MHz,			1.1				-			
0.5dB)		-83	-	-	-82		- 1	-80	-	dB
Noise	-	300	-	-	450	-		600	-	μVrms
Input Bandwidth (-3dB)		1	1		1					
Small Signal (-20dB input)	-	9	-	-	9	-		9		MHz
Large Signal (-0.5dB input)		8	-	-	8	-		8	-	MHz
Feedthrough Rejection			1		1					
(f _{in} = 1MHz)	- 1	82	-	-	82	-	-	82	-	dB
Slew Rate	-	±200	-	-	±200	- 1	- 1	±200	- 1	V/us
Aperture Delay Time	_	±20	_		±20	_		±20	_	ns
Aperture Uncertainty		5	_		5			5		ps rms
S/H Acquisition Time			1		l ĭ					Po 1113
(to ±0.003%FSR, 10V step)	150	190	230	150	190	230	150	190	230	20
	1 100			150			150			ns
Overvoltage Recovery Time (5)		400	500	_	400	500	-	400	500	ns
A/D Conversion Rate	2	-	-	2		—	2			MHz

		+25°C	[0 to +70	°C		55 to +12	5°C	
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference										
Voltage	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	Volts
Drift		±5	_		±5	-	_	±5		ppm/°C
External Current	-		1.5			1.5		-	1.5	mA
DIGITAL OUTPUTS										
Logic Levels										
Logic "1"	+2.4	-	_	+2.4		-	+2.4	-	-	Volts
Logic "0"	-	-	+0.4	_	—	+0.4	-	-	+0.4	Volts
Logic Loading "1"	- 1	- 1	4	—	-	4	-	-	4	mA
Logic Loading "0"	-		4	—		4	-	-	4	mA
Delay, Falling Edge of EOC										
to Output Data Valid			35			35			35	ns
Output Coding					Offs	et Binary				
POWER REQUIREMENTS, ±15V										
Power Supply Range										
+15V Supply	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	Volts
-15V Supply	-14.5	-15.0	-15.5	-14.5	-15.0	15.5	14.5	-15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current										
+15V Supply	-	+45	+55		+45	+55		+45	+55	mA
-15V Supply		-43	-50	_	-43	-50		-43	-50	mA
+5V Supply	-	+80	+90		+80	+90	-	+80	+90	mA
Power Dissipation	- 1	1.7	1.9	_	1.7	1.9	-	1.7	1.9	Watts
Power Supply Rejection	-	—	±0.01		—	±0.01		-	±0.01	%FSR/%V
POWER REQUIREMENTS, ±12V										
Power Supply Range										
+12V Supply	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	Volts
-12V Supply	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current										
+12V Supply	-	+45	+55	-	+45	+55	-	+45	+55	mA
-12V Supply		-43	-50	-	-43	-50	-	-43	-50	mA
+5V Supply	-	+80	+90	-	+80	+90	-	+80	+90	mA
Power Dissipation	-	1.4	1.6	-	1.4	1.6	-	1.4	1.6	Watts
Power Supply Rejection	-	_	±0.01		-	±0.01		_	±0.01	%FSR/%V

Footnotes:

()) All power supplies must be on before applying a start convert pulse. All supplies and the clock (START CONVERT) must be present during warmup periods. The device must be continuously converting during this time. There is a slight degradation in performance when using ±12V supplies.


- See Ordering Information for 0 to +10V input range. Contact DATEL for availability of other input voltage ranges.
- ③ A 200ns wide start convert pulse is used for all production testing.

TECHNICAL NOTES

 Obtaining fully specified performance from the ADS-929 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19, and 23) directly to a large *analog* ground plane beneath the package.

Bypass all power supplies, as well as the REFERENCE OUTPUT (pin 21), to ground with 4.7 μ F tantalum capacitors in parallel with 0.1 μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. If the user-installed offset and gain adjusting circuit shown in Figure 2 is used, also locate it as close to the ADS-929 as possible.

2. The ADS-929 achieves its specified accuracies without the need for external calibration. If required, the device's small

6.02

⑤ This is the time required before the A/D output data is valid after the analog input is back within the specified range.

initial offset and gain errors can be reduced to zero using the input circuit of Figure 2. When using this circuit, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.

- When operating the ADS-929 from ±12V supplies, do not drive external circuitry with the REFERENCE OUTPUT. The reference's accuracy and drift specifications may not be met, and loading the circuit may cause accuracy errors within the converter.
- Applying a start convert pulse while a conversion is in progress (EOC = logic "1") initiates a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid.

1

1997

CALIBRATION PROCEDURE

(Refer to Figures 2 and 3)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit of Figure 2 are guaranteed to compensate for the ADS-929's initial accuracy errors and may not be able to compensate for additional system errors.

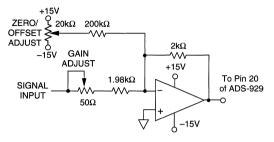
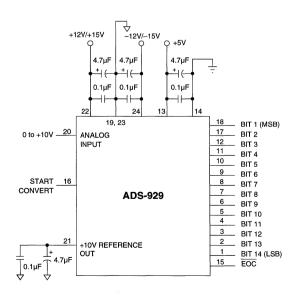



Figure 2. ADS-929 Calibration Circuit

All fixed resistors in Figure 2 should be metal-film types, and multiturn potentiometers should have TCR's of 100ppm/°C or less to minimize drift with temperature.

Table 1. Zero and Gain Adjust

INPUT VOLTAGE	ZERO ADJUST	GAIN ADJUST
RANGE	+1/2 LSB	+FS - 1 1/2 LSB
±5V	+305µV	+4.999085V

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-929, offset adjusting is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is +1/2LSB (+305µV).

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 1/2 LSB's (+4.999085V) .

Zero/Offset Adjust Procedure

- Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting. If using LED's on the outputs, a 200kHz conversion rate will reduce flicker.
- 2. Apply +305µV to the ANALOG INPUT (pin 20).
- 3. Adjust the offset potentiometer until the output bits are a 1 and all 0's and the LSB flickers between 0 and 1.

Gain Adjust Procedure

- 1. Apply +4.999085V to the ANALOG INPUT (pin 20).
- 2. Adjust the gain potentiometer until the output bits are all 1's and the LSB flickers between 1 and 0.

OFFSET BINARY MSB LSB	INPUT RANGE ±5V	BIPOLAR SCALE
11 1111 1111 1111	+4.99939	+FS -1 LSB
11 1000 0000 0000	+3.75000	+3/4 FS
11 0000 0000 0000	+2.50000	+1/2 FS
10 0000 0000 0000	0.00000	0
01 0000 0000 0000	-2.50000	-1/2 FS
00 1000 0000 0000	-3.75000	–3/4 FS
00 0000 0000 0001	-4.99939	-FS +1 LSB
00 0000 0000 0000	-5.00000	–FS

Table 2. Output Coding

Figure 3. Typical ADS-929 Connection Diagram

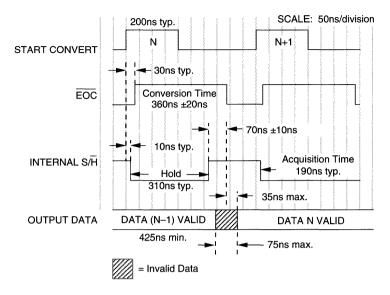


Figure 4. ADS-929 Timing Diagram

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to + 125°C. All room-temperature (T_A = +25°C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

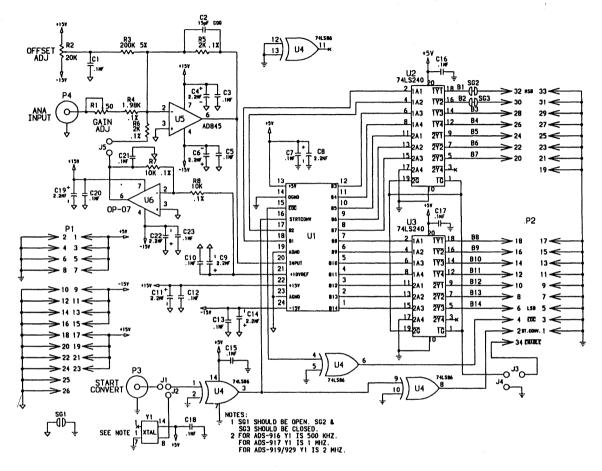
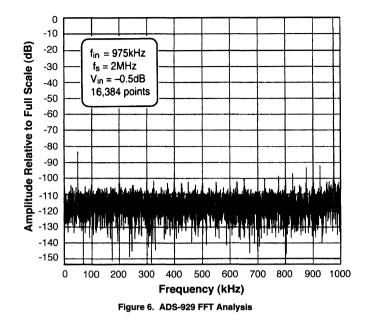



Figure 5. ADS-929 Evaluation Board Schematic

1

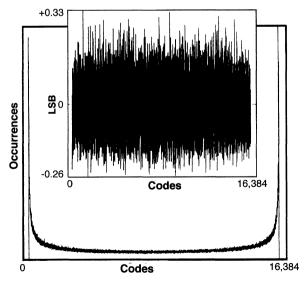
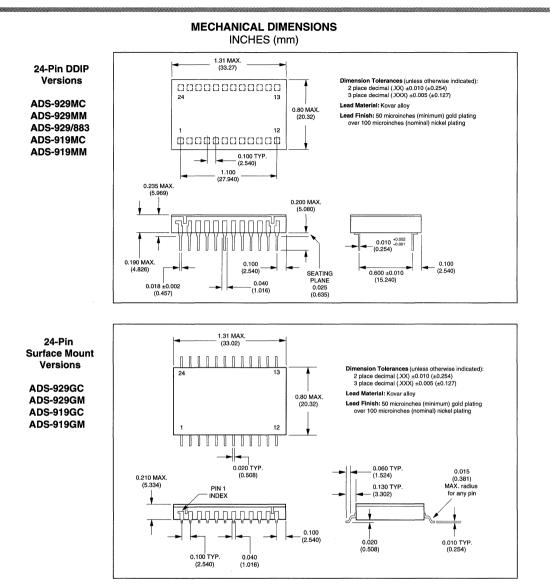



Figure 7. ADS-929 Histogram and Differential Nonlinearity

ADS-929

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	ANALOG INPUT	ACCESSORIES	
ADS-929MC ADS-929MM ADS-929/883 ADS-929GC ADS-929GM ADS-919MC ADS-919MM ADS-919GC ADS-919GM	0 to +70°C -55 to +125°C -55 to +125°C 0 to +70°C -55 to +125°C 0 to +70°C -55 to +125°C 0 to +70°C -55 to +125°C	Bipolar (±5V) Bipolar (±5V) Bipolar (±5V) Bipolar (±5V) Bipolar (±5V) Unipolar (0 to +10V)* Unipolar (0 to +10V)* Unipolar (0 to +10V)* Unipolar (0 to +10V)*	Inc., Part # 3-331272 For MIL-STD-883 pro	Evaluation Board (without ADS-929) Heat Sink for all ADS-919/929 DDIP models board mounting can be ordered through AMP -8 (Component Lead Socket), 24 required. bduct specification, contact DATEL. on, see ADS-919 data sheet.

ADS-930 16-Bit, 500kHz Sampling A/D Converters

FEATURES

- 16-Bit resolution
- 500kHz sampling rate
- Functionally complete
- Excellent dynamic performance
- 83dB SNR, –89dB THD
- No missing codes
- Small 40-pin TDIP package
- 3.5 Watts power dissipation
- On-board FIFO

GENERAL DESCRIPTION

The low-cost ADS-930 is a high-performance, 16-bit, 500kHz sampling A/D converter. This device accurately samples full-scale input signals up to Nyquist frequencies with no missing codes. The dynamic performance of the ADS-930 is optimized to achieve a THD of –89dB and a SNR of 83dB.

Packaged in a small, 40-pin TDIP, the functionally complete ADS-930 contains a fast-settling sample/hold amplifier, a subranging (three-pass) A/D converter, an internal reference, on-board FIFO, timing and control logic, three-state outputs and error-correction circuitry. Digital inputs/outputs are TTL.

Requiring $\pm 15V$ and +5V supplies, the ADS-930 typically dissipates 3.5 Watts. The unit is offered with a bipolar input range of $\pm 5V$ or a unipolar input range of to -10V. Models are available for use in either commercial (0 to $+70^{\circ}$ C) or military (-55 to $+125^{\circ}$ C) operating temperature ranges.

Typical applications include radar, sonar, medical/graphic imaging, and FFT spectrum analysis.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	+10V REF. OUT	40	BIT 1 (MSB)
2	BIPOLAR	39	BIT 1 (MSB)
3	ANALOG INPUT	38	BIT 2
4	ANALOG GROUND	37	BIT 3
5	OFFSET ADJUST	36	BIT 4
6	GAIN ADJUST	35	BIT 5
7	+15V SUPPLY	34	BIT 6
8	COMP. BITS	33	BIT 7
9	ENABLE	32	BIT 8
10	FIFO READ	31	BIT 9
11	ANALOG GROUND	30	ANALOG GROUND
12	-15V SUPPLY	29	BIT 10
13	ANALOG GROUND	28	BIT 11
14	OVERFLOW	27	BIT 12
15	EOC	26	BIT 13
16	+5V SUPPLY	25	BIT 14
17	START CONVERT	24	DIGITAL GROUND
18	DIGITAL GROUND	23	FIFO/DIR
19	FSTAT1	22	BIT 15
20	FSTAT2	21	BIT 16 (LSB)

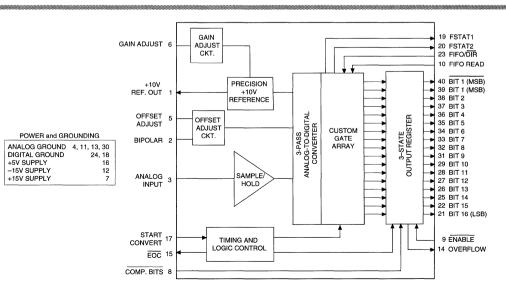


Figure 1. ADS-930 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

LIMITS	UNITS
0 to +16	Volts
0 to -16	Volts
0 to +6	Volts
0.3 to +V _{DD} +0.3	Volts
-12.5 to +12.5	Volts
-7.5 to +12.5	Volts
300	0°
	0 to +16 0 to -16 0 to +6 -0.3 to +V _{DD} +0.3 -12.5 to +12.5 -7.5 to +12.5

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS		
Operating Temp. Range, Case ADS-930MC	0	_	+70	°C		
ADS-930MM	-55		+125	°C		
Thermal Impedance						
θjc		4	—	°C/Watt		
θca	—	18		°C/Watt		
Storage Temperature Range	-65		+150	°C		
Package Type Weight	40-pin, metal-sealed, ceramic TDIP 0.56 ounces (16 grams)					

FUNCTIONAL SPECIFICATIONS

(T_A=+25°C, ±V_{CC}=±15V, +V_{DD}=+5V, 500kHz sampling rate, and a minimum 5 minute warmup ^① unless otherwise specified.)

	+25°C			0 to +70°C			–55 to +125°C			
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Ranges										
Bipolar	_	±5	-	_	±5			±5	_	Volts
Unipolar		0 to -10	-		0 to -10	_	_	0 to -10		Volts
Input Resistance	1.4	1.5	1.7	1.4	1.5	1.7	1.4	1.5	1.7	kΩ
Input Capacitance	_	7	15	_	7	15	_	7	15	pF
DIGITAL INPUTS	1	.I	L		L			1		• · · · ·
Logic Levels	1	1			[
Logic "1"	+2.0	l _	-	+2.0		_	+2.0	_		Volts
Logic "0"	_	_	+0.8			+0.8			+0.8	Volts
Logic Loading "1"		l _	+20	_	-	+20	_	_	+20	μA
Logic Loading "0" ²	-	_	-20	_		-20		- 1	-20	μA
Start Convert Positive Pulse Width ³	175	200	215	175	200	215	175	200	215	ns
	1	1				1				
Resolution		16			16	<u> </u>	_	16		Bits
Integral Nonlinearity (f _{in} = 10kHz)	_	±1.0	_	_	±1.5	_		±2.0		LSB
Differential Nonlinearity (fin = 10kHz)	_	±0.75		_	±1.0	_	_	±1.5	_	LSB
Full Scale Absolute Accuracy		±0.05	±0.18		±0.2	±0.5	_	±0.5	±0.8	%FSR
Unipolar Zero Error (Tech Note 2)	_	±0.05	±0.085		±0.1	±0.25	_	±0.25	±0.5	%FSR
Bipolar Zero Error (Tech Note 2)	_	±0.05	±0.085	_	±0.15	±0.25		±0.25	±0.5	%FSR
Bipolar Offset Error (Tech Note 2)	_	±0.05	±0.15	_	±0.1	±0.25	_	±0.25	±0.5	%FSR
Gain Error (Tech Note 2)		±0.1	±0.15	_	±0.15	±0.35	_	±0.25	±0.65	%
No Missing Codes (fin = 10kHz)	16	10.1	10.10	16	10.13	10.00	15	10.20	10.05	Bits
	10			10			15			Dita
	Т	1	r		Г			1	T	
Peak Harmonics (-0.5dB)					0.1			07		-10
dc to 100kHz		-91		_	-91	-	_	-87	-	dB
100kHz to 250kHz	-	-86	-		-86	-	-	84	-	dB
Total Harmonic Distortion (-0.5dB)										
dc to 100kHz	-	-89	-81		-89	-81		-85	-76	dB
100kHz to 250kHz	-	-84	-		-84		-	82	-	dB
Signal-to-Noise Ratio						1				
(w/o distortion, -0.5dB)										
dc to 100kHz	81	83		81	83	-	75	80	-	dB
100kHz to 250kHz		80	-		80		-	79	-	dB
Signal-to-Noise Ratio (4)					Į.	ļ				
(& distortion, –0.5dB)										
dc to 100kHz	78	81	- 1	77	81		72	78	-	dB
100kHz to 250kHz	-	78	-	—	78	-	-	76	-	dB
Two-tone Intermodulation										
Distortion (f _{in} = 100kHz,										
240kHz, $f_s = 500$ kHz,										
–0.5dB)	-	-82	-	-	-82	-	-	81	-	dB
Noise	-	150	-	-	150	-	-	150	-	μV/rms
Input Bandwidth (-3dB)	1									
Small Signal (-20dB input)	-	2	-	-	2	-	- 1	2	-	MHz
Large Signal (-0.5dB input)	-	1.1	-	_	1.1	-	-	1.1	-	MHz
Feedthrough Rejection (fin = 250kHz)	-	92	-	-	92		_	92	_	dB
Slew Rate	_	±80	-	-	±80	-	_	±80	-	V/µs
Aperture Delay Time	-	±10	- 1	- 1	±10	_		±10	- 1	ns
Aperture Uncertainty	-	5	_	_	5	_	_	5		ps rms
S/H Acquisition Time	1	Ĭ			1	1		Ĭ		
(to ±0.003%FSR, 10V step)	-	460	545	_	460	545		460	545	ns
Overvoltage Recovery Time		600	1000		600	1000	_	600	1000	ns
A/D Conversion Rate	500			500			500			kHz
	1 000	1	1	000	1	1		1	1	111/2

1-88 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

ADS-930

	+25°C			0 to +70°C			-55 to +125°C			
ANALOG OUTPUTS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference										
Voltage	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	Volts
Drift		±10	-	-	±10		-	±10		ppm/°C
External Current	-	—	1		-	1			1	mA
DIGITAL OUTPUTS										
Logic Levels										
Logic "1"	+2.4	-	-	+2.4			+2.4		—	Volts
Logic "0"	- 1	-	+0.4		-	+0.4		-	+0.4	Volts
Logic Loading "1"	-	-	-4		-	-4	-		-4	mA
Logic Loading "0"	-	-	+4	-	-	+4	-		+4	mA
Delay, Falling Edge of ENABLE	1									
to Output Data Valid			10			10			10	ns
Output Coding	Straight binary, offset binary, two's complement, complementary binary, complementary offset binary, C2C									
POWER REQUIREMENTS										
Power Supply Ranges										
+15V Supply	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	Volts
-15V Supply	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.75	Volts
Power Supply Currents										
+15V Supply	-	+110	+130		+110	+130		+110	+130	mA
-15V Supply	-	-100	-125		-100	-125	-	-100	-125	mA
+5V Supply	-	+80	+90		+80	+90		+80	+90	mA
Power Dissipation	- 1	3.5	4.25	-	3.5	4.25		3.5	4.25	Watts
Power Supply Rejection	-	-	±0.02	-	-	±0.02	—		±0.02	%FSR/%V
Footnotes:										
pulse. All supplies and the clock (START CONVERT) must be present during warmup periods. The device must be continuous- ly converting during this time.					A 200ns wide start convert pulse is used for all production testing. For applications requiring lower than 500kHz sampling rates, wider start convert pulses can be used.					

When COMP. BITS (pin 8) is low, logic loading "0" will be -350µA.

Effective bits is equal to:

(SNR + Distortion) -1.76 + 20 loa

6.02

Full Scale Amplitude

Actual Input Amplitude

TECHNICAL NOTES

1. Obtaining fully specified performance from the ADS-930 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (4, 11, 13, 18, 24, and 30) directly to a large analog ground plane beneath the package.

Bypass all power supplies and the +10V reference output to ground with 4.7µF tantalum capacitors in parallel with 0.1µF ceramic capacitors. Locate the bypass capacitors as close to the unit as possible.

- 2. The ADS-930 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the adjustment circuitry shown in Figure 2. When using this circuitry, or any similar offset and gain calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain. Tie pins 5 and 6 to ANALOG GROUND (pin 4) if not using offset and gain adjust circuits.
- 3. Pin 8 (COMP. BITS) is used to select the digital output coding format of the ADS-930. See Tables 3a and 3b. When this pin has a TTL logic "0" applied, it complements all of the ADS-930's digital outputs.

When pin 8 has a logic "1" applied and the ADS-930 is

operated within its unipolar 0 to -10V input range, the output coding is straight binary. Applying a logic "0" to pin 8 under these conditions changes the output coding to complementary binary.

When pin 8 has a logic "1" applied and the ADS-930 is operated within its bipolar ±5V input range, the output coding is offset binary. Applying a logic "0" to pin 8 under these conditions changes the coding to complementary offset binary. Using the MSB output (pin 40) instead of the MSB output (pin 39) under these conditions changes the respective output codings to two's complement and complementary two's complement.

Pin 8 is TTL-compatible and can be directly driven with digital logic in applications requiring dynamic control over its function. There is an internal pull-up resistor on pin 8 allowing it to be either connected to +5V or left open when a logic "1" is required.

- To enable the three-state outputs, connect ENABLE (pin 9) to a logic "0" (low). To disable, connect pin 9 to a logic "1" (high).
- Applying a start convert pulse while a conversion is in progress (EOC = logic "1") will initiate a new and probably inaccurate conversion cycle.
- 6. Do not enable/disable or complement the output bits or read from the FIFO during the conversion process (from the falling edge of START CONVERT to the falling edge of EOC).

INTERNAL FIFO OPERATION

The ADS-930 contains an internal, user-initiated, 18-bit, 16-word FIFO memory. Each word in the FIFO contains the 16 data <u>bits</u> as well as the MSB and overflow bits. Pins 23 (FIFO/DIR) and 10 (FIFO READ) control the FIFO's operation. The FIFO's status can be monitored by reading pins 19 (FSTAT1) and 20 (FSTAT2).

When pin 23 (FIFO/DIR) has a logic "1" applied, the FIFO is inserted into the digital data path. When pin 23 has a logic "0" applied, the FIFO is transparent, and the output data goes directly to the output three-state register (whose operation is controlled by pin 9 (ENABLE)). Read and write commands to the FIFO are ignored when the ADS-930 is operated in the "direct" mode. It takes a maximum of 20ns to switch the FIFO in or out of the ADS-930's operation.

FIFO WRITE and READ Modes

Once the FIFO has been enabled (pin 23 high), digital data is automatically written to it, regardless of the status of FIFO READ (pin 10). Assuming the FIFO is initially empty, it will accept data (18-bit words) from the next 16 consecutive A/D conversions. As a precaution, pin 10 (which controls the FIFO's READ function) should not be low when data is first written to an empty FIFO.

When the FIFO is initially empty, digital data from the first conversion (the "oldest" data) appears at the output of the FIFO immediately after the first conversion has been completed and remains there until the FIFO is read.

If the output three-state register has been enabled (logic "0" applied to pin 9), data from the first conversion will appear at the output of the ADS-930. Attempting to write a 17th word to a full FIFO will result in that data, and any subsequent conversion data, being lost.

Once the FIFO is full (indicated by FSTAT1 and FSTAT2 both = "1"), it can be read by dropping the FIFO READ line (pin 10) to a logic "0" and then applying a series of 15 rising edges to the read line. Since the first data word is already present at the FIFO output, the first read command (the first rising edge applied to FIFO READ) will bring data from the second conversion to the output. Each subsequent read command/rising edge brings the next word to the output lines. If a read command is issued after the FIFO has been emptied, the last word (the 16th conversion) will remain present at the outputs.

FIFO Reset Feature

At any time, the FIFO can be reset to an empty state by putting the ADS-930 into its "direct" mode (logic "0" applied to pin 23, FIFO/DIR) and also applying a logic "0" to the FIFO READ line (pin 10). The empty status of the FIFO will be indicated by FSTAT1 going to a "0" and FSTAT2 going to a "1". The status outputs will change 40ns after the control signals have been applied.

FIFO Status, FSTAT1 and FSTAT2

The status of the data in the FIFO can be monitored by reading the two status pins, FSTAT1 (pin 19) and FSTAT2 (pin 20).

<u>CONTENTS</u>	FSTAT1	FSTAT2
Empty (0 words)	0	1
<half (≤7="" full="" td="" words)<=""><td>0</td><td>0</td></half>	0	0
half-full or more (≥8 words)	1	0
Full (16 words)	1	1

DELAY	PIN	TRANSITION	MIN.	TYP.	MAX.	UNITS
Direct mode to FIFO enabled		01	-	10	20	ns
FIFO enabled to direct mode		10	_	10	20	ns
FIFO READ to output data valid	10	01	-		40	ns
FIFO READ to status update when changing from <half (1="" empty<="" full="" td="" to="" word)=""><td>10</td><td>10</td><td>-</td><td>_</td><td>28</td><td>ns</td></half>	10	10	-	_	28	ns
FIFO READ to status update when changing from ≥half full (8 words) to <half (7="" full="" td="" words)<=""><td>10</td><td>0-1</td><td>-</td><td>_</td><td>110</td><td>ns</td></half>	10	0-1	-	_	110	ns
FIFO READ to status update when changing from full (16 words) to ≥half full (15 words)	10	01	-	_	190	ns
Falling edge of EOC to status update when writing first word into empty FIFO	15	10	-	-	190	ns
Falling edge of EOC to status update when changing FIFO from <half (7="" (8="" full="" td="" to="" words)="" words)<="" ≥half=""><td>15</td><td>10</td><td>-</td><td>-</td><td>110</td><td>ns</td></half>	15	10	-	-	110	ns
Falling edge of $\overline{\text{EOC}}$ to status update when filling FIFO with 16th word	15	10	_	_	28	ns

Table 1. FIFO Delays

1–90 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

CALIBRATION PROCEDURE

(Refer to Figure 2 and Tables 2, 3a, and 3b)

Connect the converter per Table 2 for the appropriate input voltage range. Any offset/gain calibration procedures should not be implemented until the device is fully warmed up. To avoid interaction, adjust offset before gain. The ranges of adjustment for the circuits in Figure 2 are guaranteed to compensate for the ADS-930's initial accuracy errors and may not be able to compensate for additional system errors.

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This is accomplished by connecting LED's to the digital outputs and performing adjustments until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-930, offset adjusting is normally accomplished when the analog input is 0 minus 1/2LSB ($-76\mu V$). See Table 4a for the proper bipolar and unipolar output coding.

Gain adjusting is accomplished when the analog input is at nominal full scale minus 1 1/2LSB's (-9.999771V for unipolar and +4.999771V for bipolar).

Note: Connect pin 5 to ANALOG GROUND (pin 4) for operation without zero/offset adjustment. Connect pin 6 to pin 4 for operation without gain adjustment.

Zero/Offset Adjust Procedure

- 1. Apply a train of pulses to the START CONVERT input (pin 17) so that the converter is continuously converting.
- 2. For unipolar or bipolar zero/offset adjust, apply $-76.3\mu V$ to the ANALOG INPUT (pin 3).
- 3. For a bipolar input Adjust the offset potentiometer until the code flickers between 1000 0000 0000 0000 and 0111 1111 1111 1111 with pin 8 tied high (offset binary) or between 0111 1111 1111 1111 and 1000 0000 0000 0000 with pin 8 tied low (complementary offset binary).

For a unipolar input — Adjust the offset potentiometer until all output bits are 0's and the LSB flickers between 0 and 1 with pin 8 tied high (straight binary) or until all output bits are 1's and the LSB flickers between 0 and 1 with pin 8 tied low (complementary binary).

 Two's complement coding requires using BIT 1 (MSB) (pin 40). With pin 8 tied high, adjust the trimpot until the output code flickers between all 0's and all 1's.

Gain Adjust Procedure

- Apply +4.999771V to the ANALOG INPUT (pin 3) for bipolar gain adjust or apply -9.999771V to pin 3 for unipolar gain adjust.
- For a unipolar input Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between a 1 and 0 with pin 8 tied high (straight binary) or until all output bits are 0's and the LSB flickers between a 1 and 0 with pin 8 tied low (complementary binary).

For a bipolar input — Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between a 1 and 0 with pin 8 tied low (complementary offset binary) or until all output bits are 0's and the LSB flickers between a 1 and 0 with pin 8 tied high (offset binary).

 Two's complement coding requires using pin 40. With pin 8 tied high, adjust the gain trimpot until the output code flickers equally between 1000 0000 0000 0000 and 1000 0000 0000 0001. To confirm proper operation of the device, vary the applied input voltage to obtain the output coding listed in Table 3a.

Table 2. Input Connections

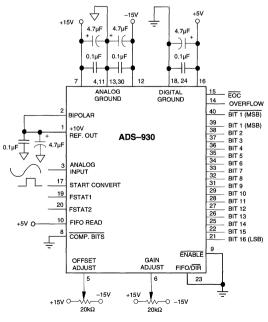
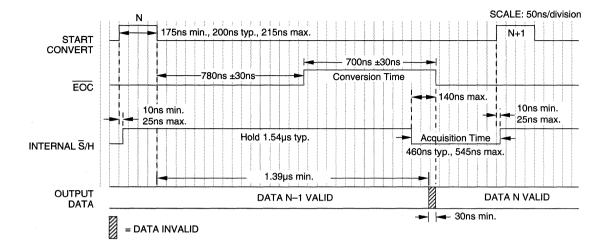
INPUT RANGE	INPUT PIN	TIE TOGETHER
0 to -10V	Pin 3	Pins 2 and 4
±5V	Pin 3	Pins 1 and 2

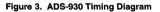
THERMAL REQUIREMENTS

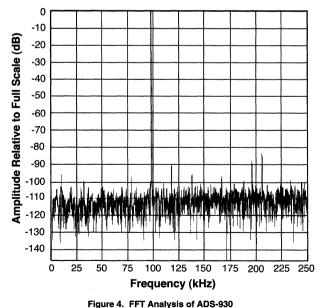
All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to +125°C. All room-temperature (T_A = +25°C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

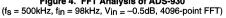
These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electricallyinsulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

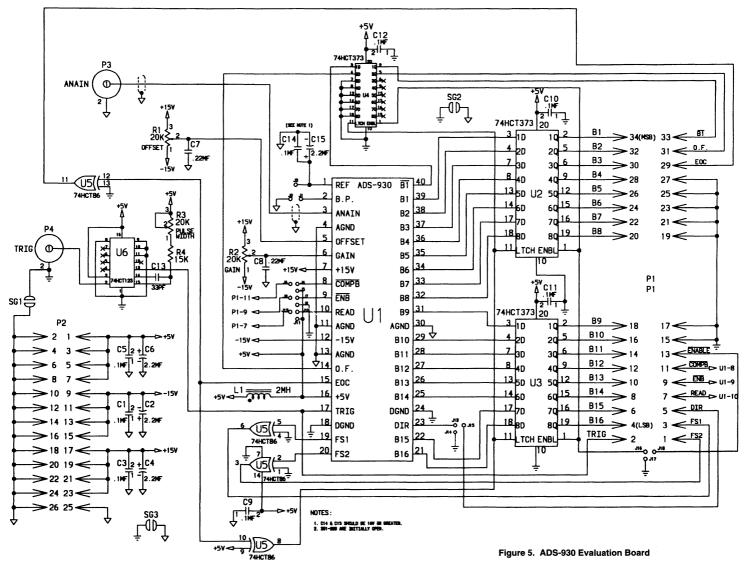




Figure 2. Bipolar Connection Diagram


1


DS-930

D'UATE



DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

1-92

ADS-930

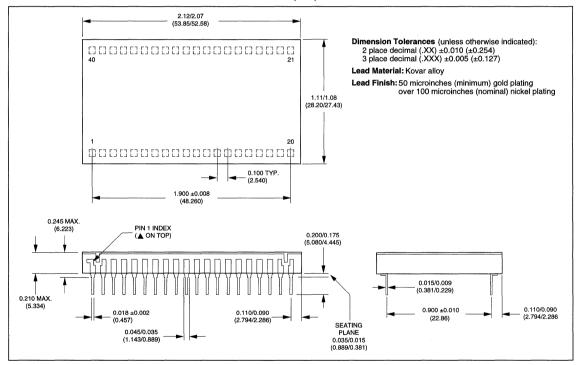

DATEL

Table 3a. Output Coding

		STRAIGHT BIN.	COMP. BINARY				
	INPUT RANGE		OUTPUT	r Coding		INPUT BANGE	BIPOLAR
SCALE	0 to -10V	MSB LSB	MSB LSB	MSB LSB	MSB LSB	±5V	SCALE
-FS +1 1/2 LSB - -7/8 FS - -3/4 FS - -1/2 FS - -1/2 FS - 1/2 FS - -1/4 FS - -1/8 FS - -1 LSB - - 1/2 LSB - - 1/2 LSB -	-9.999847 -9.999771 -8.750000 -7.50000 -5.00000 -5.00000 -4.999924 -2.50000 -1.250000 -0.000153 -0.00076 0.000000	$\begin{array}{c} 1111 \ 1111 \ 1111 \ 1111 \ LSB \ "1" \ to \ "0" \\ 1110 \ 0000 \ 0000 \ 0000 \\ 1000 \ 0000 \ 0000 \ 0000 \\ 1000 \ 0000 \ 0000 \ 0000 \\ 0000 \ 0000 \ 0000 \ 0000 \\ 0010 \ 0000 \ 0000 \ 0000 \\ 0000 \ 0000 \ 0000 \ 0000 \\ LSB \ "0" \ to \ "1" \\ 0000 \ 0000 \ 0000 \ 0000 \end{array}$	0000 0000 0000 0000 LSB "0" to "1" 0001 1111 1111 1111 0011 1111 1111 11	0111 1111 1111 1111 LSB "1" to "0" 0110 0000 0000 0000 0000 0000 0000 00	$\begin{array}{c} 1000\ 0000\ 0000\ 0000\\ LSB\ "0"\ to\ "1"\\ 1001\ 1111\ 1111\ 1111\\ 1111\ 1111\ 1111\ 1111\\ 1111\ 1111\ 1111\ 1111\\ 1111\ 1111\ 1111\ 1111\\ 0001\ 0000\ 0000\ 0000\\ 0001\ 1111\ 1111\ 1111\\ 0101\ 1111\ 1111\ 1111\\ 0111\ 1111\ 1111\ 1111\\ 0111\ 1111\ 1111\ 1111\\ LSB\ "1"\ to\ "0"\\ 0111\ 1111\ 1111\ 1111\\ \end{array}$	+4.999847 +4.999771 +3.750000 +2.500000 -0.000076 -2.500000 -3.750000 -4.999847 -4.999924 -5.000000	+FS -1 LSB +FS -1 1/2 LSB +3/4 FS +1/2 FS 0 -1/2 LSB -1/2 FS -3/4 FS -FS +1/2 LSB -FS +1/2 LSB -FS

MECHANICAL DIMENSIONS

INCHES (mm)

ORDERING INFORMATION

MODEL NUMBER ADS-930MC ADS-930MM

SPECIFIED TEMPERATURE RANGE 0 to +70°C

-55 to +125°C

ACCESSORIES

ADS-EVAL3 HS-40 Evaluation Board (without ADS-930) Heat Sink

Receptacles for PC board mounting can be ordered through AMP Inc., Part #3-331272-8 (Component Lead Socket), 40 required. For availability of MIL-STD-883 product, contact DATEL.

Table 3b. Setting Coding Selection (Pin 8) for Desired Output

OUTPUT FORMAT	PIN 8 LOGIC LEVEL
Straight Binary	1
Complementary Binary	0
Offset Binary	1
Complementary Offset Binary	0
Two's Complement	1
(Using MSB, pin 40)	
Complementary Two's Complemen	t 0
(Using MSB, pin 40)	

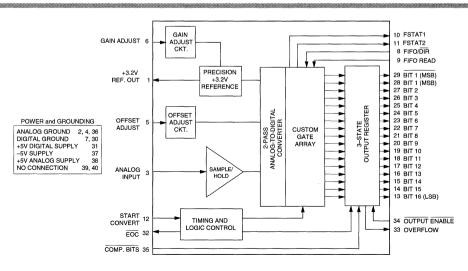
PRELIMINARY PRODUCT DATA

FEATURES

- 16-Bit resolution
- 1MHz sampling rate
- Functionally complete
- No missing codes over full military temperature range
- Edge-triggered
- ±5V supplies, 1.85 Watts
- Small, 40-pin, ceramic TDIP
- 87dB SNR, --89dB THD
- Ideal for both time and frequency-domain applications

GENERAL DESCRIPTION

The low-cost ADS-931 is a 16-bit, 1MHz sampling A/D converter. This device accurately samples full-scale input signals up to Nyquist frequencies with no missing codes. The dynamic performance of the ADS-931 has been optimized to achieve a signal-to-noise ratio (SNR) of 87dB and a total harmonic distortion (THD) of –89dB.


Packaged in a 40-pin TDIP, the functionally complete ADS-931 contains a fast-settling sample-hold amplifier, a subranging (two-pass) A/D converter, an internal reference, timing/control logic, and error-correction circuitry. Digital input and output levels are TTL. The ADS-931 only requires the rising edge of the start convert pulse to operate.

Requiring only \pm 5V supplies, the ADS-931 dissipates 1.85 Watts. The device is offered with a bipolar (\pm 2.75V) analog input range. Models are available for use in either commercial (0 to +70°C) or military (-55 to +125°C) operating temperature ranges. A proprietary, auto-calibrating, error-correcting circuit enables the device to achieve specified performance over the full military temperature range. Typical applications include medical imaging, radar, sonar, communications and instrumentation.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	+3.2V REF. OUT	40	NO CONNECTION
2	ANALOG GROUND	39	NO CONNECTION
3	ANALOG INPUT	38	+5V ANALOG SUPPLY
4	ANALOG GROUND	37	-5V SUPPLY
5	OFFSET ADJUST	36	ANALOG GROUND
6	GAIN ADJUST	35	COMP. BITS
7	DIGITAL GROUND	34	OUTPUT ENABLE
8	FIFO/DIR	33	OVERFLOW
9	FIFO READ	32	EOC
10	FSTAT1	31	+5V DIGITAL SUPPLY
11	FSTAT2	30	DIGITAL GROUND
12	START CONVERT	29	BIT 1 (MSB)
13	BIT 16 (LSB)	28	BIT 1 (MSB)
14	BIT 15	27	BIT 2
15	BIT 14	26	BIT 3
16	BIT 13	25	BIT 4
17	BIT 12	24	BIT 5
18	BIT 11	23	BIT 6
19	BIT 10	22	BIT 7
20	BIT 9	21	BIT 8

Figure 1. ADS-931 Functional Block Diagram

Sampling A/D Converters

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+5V Supply (Pins 31, 38)	0 to +6	Volts
-5V Supply (Pin 37)	0 to6	Volts
Digital Inputs (Pins 8,9,12,34,35)	-0.3 to +V _{DD} +0.3	Volt
Analog Input (Pin 3)	±5	Volts
Lead Temperature (10 seconds)	300	°C

PHYSICAL/ENVIRONMENTAL

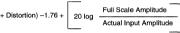
PARAMETERS	MIN.	TYP.	MAX.	UNITS			
Operating Temp. Range, Case ADS-931MC ADS-931MM	0 55	_	+70 +125	°C 0°			
Thermal Impedance θic	-55	4	+125	°C/Watt			
θca Storage Temperature Range	 65	18	 +150	°C/Watt °C			
Package Type Weight	40-pin, metal-sealed, ceramic TDI 0.56 ounces (16 grams)						

FUNCTIONAL SPECIFICATIONS

 $(T_A = +25^{\circ}C, \pm V_{CC} = \pm 5V, +V_{DD} = +5V, 1MHz$ sampling rate, and a minimum 1 minute warmup ⁽¹⁾ unless otherwise specified.)

		+25°C			0 to +70°	°C	-5	5 to +12	5°C	
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MiN.	TYP.	MAX.	UNITS
Input Voltage Range										
Bipolar	-	±2.75	-		±2.75	-		±2.75	-	Volts
Input Resistance	-	500	-	-	500			500	-	kΩ
Input Capacitance		10	15		10	15		10	15	рF
DIGITAL INPUTS										
Logic Levels										
Logic "1"	+2.0	-	-	+2.0		-	+2.0	-	-	Volts
Logic "0"		-	+0.8	-	_	+0.8		-	+0.8	Volts
Logic Loading "1" Logic Loading "0" ^②	-	-	+20 -20			+20 -20	_		+20 20	μΑ
Start Convert Positive Pulse Width ③		500	-20	_	500	-20	_	500	-20	μA ns
		000	I		000	L				110
	1				10	г				B ''
Resolution		16 ±1	_	-	16 ±1.5	_		16 ±2	_	Bits LSB
Integral Nonlinearity (fin = 10kHz) Differential Nonlinearity (fin = 10kHz)	-0.95	±0.75	+1.0	-0.95	±1.5 ±0.75	+1.0	-0.95	±2 ±0.75	+1.5	LSB
Full Scale Absolute Accuracy	-0.35	±0.15	±0.3	-0.35	±0.75	±0.5	-0.35	±0.75	±0.8	%FSR
Bipolar Zero Error (Tech Note 2)	_	±0.1	±0.2		±0.0	±0.0	_	±0.0	±0.6	%FSR
Bipolar Offset Error (Tech Note 2)	<u> </u>	±0.1	±0.2		±0.2	±0.4		±0.4	±0.6	%FSR
Gain Error (Tech Note 2)	1 <u>-</u>	±0.15	±0.3		±0.3	±0.5	—	±0.5	±0.8	%
No Missing Codes (fin = 10kHz)	16	- 1	-	16	-	-	16	-	-	Bits
DYNAMIC PERFORMANCE										
Peak Harmonics (-0.5dB)										
dc to 100kHz	- 1	-89	-83		89	-83		89	-79	dB
100kHz to 500kHz	-	-86	80	-	-86	-80		-84	-78	dB
Total Harmonic Distortion (-0.5dB)										
dc to 100kHz	-	-89	81		-89	-81	-	-85	-78	dB
100kHz to 500kHz	-	-84	-79		-84	-79		-82	-77	dB
Signal-to-Noise Ratio										
(w/o distortion, –0.5dB) dc to 100kHz	82	87		82	87		80	84		dB
100kHz to 500kHz	81	85		81	85	_	79	82		dB
Signal-to-Noise Ratio @		00		01	00		15	02		άĐ
(& distortion, -0.5dB)										
dc to 100kHz	80	83	-	80	83	_	78	81	_	dB
100kHz to 500kHz	79	81		79	81	- 1	77	80	-	dB
Noise	-	60	-		60	-	-	60	-	μVrms
Two-tone Intermodulation	1									
Distortion (fin = 100kHz,						1				
240kHz, f _s = 500 kHz,										
–0.5dB)	-	-87	-		-87	-	—	-87	-	dB
Input Bandwidth (-3dB)	1	0.0			0.0	1]	101-
Small Signal (-20dB input) Large Signal (-0.5dB input)		2.8 2.3	_		2.8 2.3	-		2.8 2.3		MHz MHz
Feedthrough Rejection	-	2.3	-	_	2.3	_	_	2.3	-	MITIZ
(f _{in} = 500kHz)	_	90	_		90	_	_	90	_	dB
Slew Rate	_	±47	_		±47	_	_	±47		V/µs
Aperture Delay Time	-	-5	_	_	-5	_	_	-5	_	ns
Aperture Uncertainty	-	3	-	-	3	-		3		ps rms
S/H Acquisition Time										
(to ±0.001%FSR, 5.5V step)	650	700	750	650	700	750	650	700	750	ns
Overvoltage Recovery Time 6	-	500	1000	-	500	1000	-	500	1000	ns
A/D Conversion Rate	1	-	-	1	-	-	1	-	-	MHz

		+25°C			0 to +70	°C	5	i5 to +12	5°C	
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference										
Voltage	-	+3.2	-	-	+3.2	-		+3.2	-	Volts
Drift	-	±30	-	-	±30	-		±30		ppm/°C
External Current	-	5	-	-	5	-		5	- 1	mA
DIGITAL OUTPUTS			•	•						
Logic Levels										i
Logic "1"	+2.4	-		+2.4	-	-	+2.4			Volts
Logic "0"	-	-	+0.4	-	-	+0.4			+0.4	Volts
Logic Loading "1"	- 1	-	-4	-		-4	-	-	-4	mA
Logic Loading "0"			+4	-		+4	-	-	+4	mA
Output Coding		Complemen	tary Offset E	Binary, Com	plementary	Two's Comp	lement, Off	set Binary, 1	wo's Comple	ement
POWER REQUIREMENTS										
Power Supply Range ®										
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.9	+5.0	+5.25	Volts
–5V Supply	-4.75	-5.0	-5.25	-4.75	-5.0	-5.25	-4.9	-5.0	-5.25	Volts
Power Supply Current	(1						
+5V Supply	-	+220	-	-	+220	-		+220	-	mA
-5V Supply	-	-150	—	-	-150		-	-150	-	mA
Power Dissipation	-	1.85	2.1	-	1.85	2.1	-	1.85	2.1	Watts
Power Supply Rejection			±0.07			±0.07			±0.07	%FSR/%V
Footnotes:										
 All power supplies must be on beling pulse. All supplies and the clock 				4	Effective	e bits is equ	ial to:			
present during warmup periods. ously converting during this time.					(SNR	+ Distortion)	-1.76 + 2	0 loa	Scale Amplitu al Input Ampli	


When COMP. BITS (pin 35) is low, logic loading "0" will be 2 -350µA.

- 3 A 500ns wide start convert pulse is used for all production testing. For applications requiring less than a 1MHz sampling rate, wider start convert pulses can be used.
- **TECHNICAL NOTES**
- 1. Obtaining fully specified performance from the ADS-931 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (2, 4, 7, 30 and 36) directly to a large *analog* ground plane beneath the package.

Bypass all power supplies and the +3.2V reference output to ground with 4.7µF tantalum capacitors in parallel with 0.1µF ceramic capacitors. Locate the bypass capacitors as close to the unit as possible.

- The ADS-931 achieves its specified accuracies without 2 the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the adjustment circuitry shown in Figure 2. When using this circuitry, or any similar offset and gain calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain. Tie pins 5 and 6 to ANALOG GROUND (pin 4) if not using offset and gain adjust circuits.
- Pin 35 (COMP. BITS) is used to select the digital output 3. coding format of the ADS-931. See Tables 2a and 2b. When this pin has a TTL logic "0" applied, it complements all of the ADS-931's digital outputs.

When pin 35 has a logic "1" applied, the output coding is complementary offset binary. Applying a logic "0" to pin

6.02

- ര This is the time required before the A/D output data is valid once the analog input is back within the specified range.
- 6 The minimum supply voltages of +4.9V and -4.9V for ±V_{DD} are required for -55°C operation only. The minimum limits are +4.75V and -4.75V when operating at +125°C.

35 changes the coding to offset binary. Using the $\overline{\text{MSB}}$ output (pin 29) instead of the MSB output (pin 28) changes the respective output codings to complementary two's complement and two's complement.

Pin 35 is TTL compatible and can be directly driven with digital logic in applications requiring dynamic control over its function. There is an internal pull-up resistor on pin 35 allowing it to be either connected to +5V or left open when a logic "1" is required.

- To enable the three-state outputs, connect OUTPUT 4 ENABLE (pin 34) to a logic "0" (low). To disable, connect pin 34 to a logic "1" (high).
- Applying a start convert pulse while a conversion is in 5. progress (\overline{EOC} = logic "1") will initiate a new and probably inaccurate conversion cycle. Data from both the interrupted and subsequent conversions will be invalid.
- 6. Do not enable/disable or complement the output bits or read from the FIFO during the conversion process (from the rising edge of EOC to the falling edge of EOC).
- The OVERFLOW bit (pin 14) switches from 0 to 1 when 7. the input voltage exceeds that which produces an output of all 1's or when the input equals or exceeds the voltage that produces all 0's. When COMP BITS is activated, the above conditions are reversed.

INTERNAL FIFO OPERATION

The ADS-931 contains an internal, user-initiated, 18-bit, 16-word FIFO memory. Each word in the FIFO contains the 16 data bits as well as the MSB and overflow bits. Pins 8 (FIFO/DIR) and 9 (FIFO READ) control the FIFO's operation. The FIFO's status can be monitored by reading pins 10 (FSTAT1) and 11 (FSTAT2).

When pin 8 (FIFO/DIR) has a logic "1" applied, the FIFO is inserted into the digital data path. When pin 8 has a logic "0" applied, the FIFO is transparent and the output data goes directly to the output three-state register (whose operation is controlled by pin 34 (ENABLE)). Read and write commands to the FIFO are ignored when the ADS-931 is operated in the "direct" mode. It takes a maximum of 20ns to switch the FIFO in or out of the ADS-931's operation.

FIFO WRITE and READ Modes

Once the FIFO has been enabled (pin 8 high), digital data is automatically written to it, regardless of the status of FIFO READ (pin 9). Assuming the FIFO is initially empty, it will accept data (18-bit words) from the next 16 consecutive A/D conversions. As a precaution, pin 9 (which controls the FIFO's READ function) should not be low when data is first written to an empty FIFO.

When the FIFO is initially empty, digital data from the first conversion (the "oldest" data) appears at the output of the FIFO immediately after the first conversion has been completed and remains there until the FIFO is read.

If the output three-state register has been enabled (logic "0" applied to pin 34), data from the first conversion will appear at the output of the ADS-931. Attempting to write a 17th word to a full FIFO will result in that data, and any subsequent conversion data, being lost.

Once the FIFO is full (indicated by FSTAT1 and FSTAT2 both = "1"), it can be read by dropping the FIFO READ line (pin 9) to a logic "0" and then applying a series of 15 rising edges to the read line. Since the first data word is already present at the FIFO output, the first read command (the first rising edge applied to FIFO READ) will bring data from the second conversion to the output. Each subsequent read command/rising edge brings the next word to the output lines. After the 15th rising edge brings the 16th data word to the FIFO output, the subsequent falling edge on READ will update the status outputs (after a 20ns maximum delay) to FAST1 = 0, FAST2 = 1 indicating that the FIFO is empty.

If a read command is issued after the FIFO empties, the last word (the 16th conversion) will remain present at the outputs.

FIFO Reset Feature

At any time, the FIFO can be reset to an empty state by putting the ADS-931 into its "direct" mode (logic "0" applied to pin 8, FIFO/DIR) and also applying a logic "0" to the FIFO READ line (pin 9). The empty status of the FIFO will be indicated by FSTAT1 going to a "0" and FSTAT2 going to a "1". The status outputs change 40ns after applying the control signals.

FIFO Status, FSTAT1 and FSTAT2

The status of the data in the FIFO can be monitored by reading the two status pins, FSTAT1 (pin 10) and FSTAT2 (pin 11).

<u>CONTENTS</u>	FSTAT1	FSTAT2
Empty (0 words)	0	1
<half (<8="" full="" td="" words)<=""><td>0</td><td>0</td></half>	0	0
half-full or more (≥8 words)	1	0
Full (16 words)	1	1

		IFO Delays				
DELAY	PIN	TRANSITION	MIN.	TYP.	MAX.	UNITS
Direct mode to FIFO enabled	8	0-1	-	10	20	ns
FIFO enabled to direct mode	8	10	-	10	20	ns
FIFO READ to output data valid	9	01	-	_	40	ns
FIFO READ to status update when changing from <half (1="" empty<="" full="" td="" to="" word)=""><td>9</td><td>10</td><td>-</td><td>-</td><td>28</td><td>ns</td></half>	9	10	-	-	28	ns
FIFO READ to status update when changing from ≥half full (8 words) to <half (7="" full="" td="" words)<=""><td>9</td><td>0-1</td><td>-</td><td>_</td><td>110</td><td>ns</td></half>	9	0-1	-	_	110	ns
FIFO READ to status update when changing from full (16 words) to ≥half full (15 words)	9	01	-	_	190	ns
Falling edge of $\overline{\text{EOC}}$ to status update when writing first word into empty FIFO	32	10	-	-	190	ns
Falling edge of EOC to status update when changing FIFO from <half (7="" full="" to<br="" words)="">≥half full (8 words)</half>	32	10	-	-	110	ns
Falling edge of $\overline{\text{EOC}}$ to status update when filling FIFO with 16th word	32	10	-	_	28	ns

Table 1. FIFO Delays

1–98 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

CALIBRATION PROCEDURE

(Refer to Figure 2 and Tables 2a, and 2b)

Connect the converter per Figure 2. Any offset/gain calibration procedures should not be implemented until the device is fully warmed up. To avoid interaction, adjust offset before gain. The ranges of adjustment for the circuit in Figure 2 are guaranteed to compensate for the ADS-931's initial accuracy errors and may not be able to compensate for additional system errors.

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This is accomplished by connecting LED's to the digital outputs and performing adjustments until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-931, offset adjusting is normally accomplished when the analog input is 0 minus 1/2LSB ($-42\mu V$). See Table 2b for the proper bipolar output coding.

Gain adjusting is accomplished when the analog input is at nominal full scale minus 1 1/2LSB's (+2.749874V).

Note: Connect pin 5 to ANALOG GROUND (pin 4) for operation without zero/offset adjustment. Connect pin 6 to pin 4 for operation without gain adjustment.

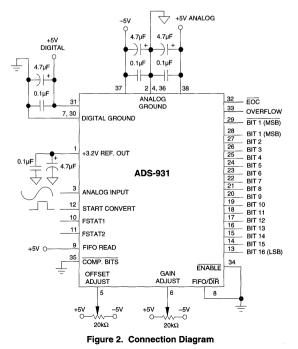
Zero/Offset Adjust Procedure

- 1. Apply a train of pulses to the START CONVERT input (pin 12) so that the converter is continuously converting.
- For zero/offset adjust, apply –42µV to the ANALOG INPUT (pin 3).
- 3. Adjust the offset potentiometer until the code flickers between 1000 0000 0000 0000 and 0111 1111 1111 1111 with pin 35 tied high (complementary offset binary) or between 0111 1111 1111 and 1000 0000 0000 0000 with pin 35 tied low (offset binary).
- Two's complement coding requires using BIT 1 (MSB) (pin 29). With pin 35 tied low, adjust the trimpot until the output code flickers between all 0's and all 1's.

Gain Adjust Procedure

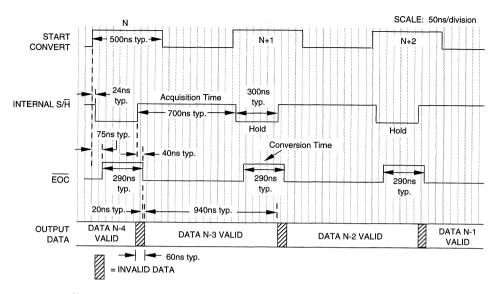
- 1. For gain adjust, apply +2.749874V to the ANALOG INPUT (pin 3).
- Adjust the gain potentiometer until all output bits are 0's and the LSB flickers between a 1 and 0 with pin 35 tied high (complementary offset binary) or until all output bits are 1's and the LSB flickers between a 1 and 0 with pin 35 tied low (offset binary).
- Two's complement coding requires using BIT 1 (MSB), pin 29. With pin 35 tied low, adjust the gain trimpot until the output code flickers equally between 0111 1111 1111 1111 and 0111 1111 1111 1110.
- To confirm proper operation of the device, vary the applied input voltage to obtain the output coding listed in Table 2b

Table 2a. Setting Output Coding Selection (Pin 35)


OUTPUT FORMAT	PIN 35 LOGIC LEVEL
Complementary Offset Binary	1
Offset Binary	0
Complementary Two's Compleme	ent 1
(Using MSB, pin 29)	
Two's Complement	0
(Using MSB, pin 29)	

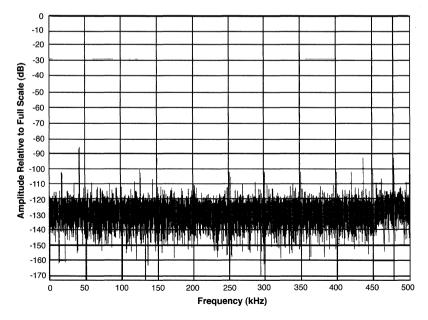
THERMAL REQUIREMENTS

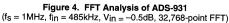
All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ}$ C and -55 to $+125^{\circ}$ C. All room-temperature (T_A = $+25^{\circ}$ C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

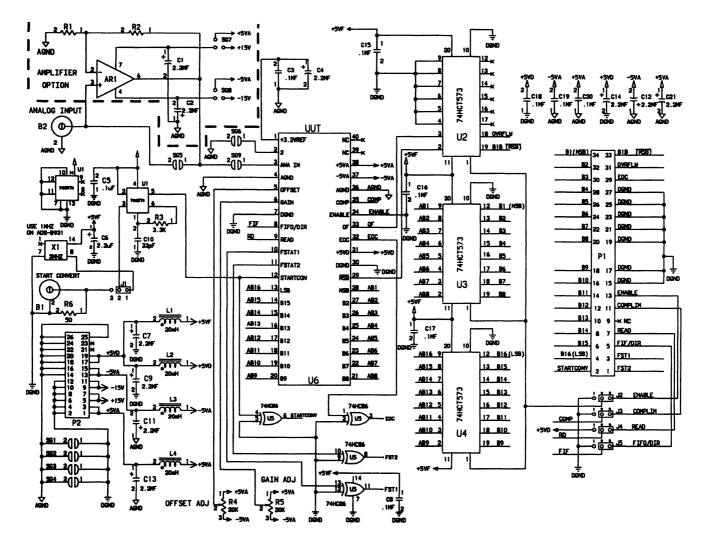

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electricallyinsulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

Sampling Analog-to-Digital Converters


Notes:


1. This device has three pipeline delays. Four start convert pulses (clock cycles) must be applied for valid data from the first conversion to appear at the output of the A/D.


2. Scale is approximately 50ns per division.

3. fs = 1MHz

Sampling Analog-to-Digital Converters

1-101

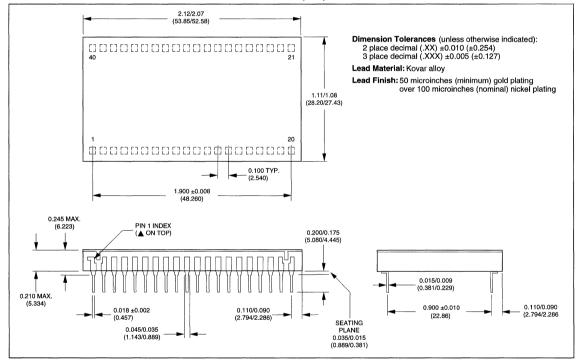


Table 25. Output County							
	OUTPUT CODING						
MSB LSI	B MSB LSB	MSB LSB	MSB LSB	RANGE ±2.75V	SCALE		
1111 1111 1111 1111	0000 0000 0000 0000	0111 1111 1111 1111	1000 0000 0000 0000	+2.749916	+FS –1 LSB		
LSB "1" to "0"	LSB "0" to "1"	LSB "1" to "0"	LSB "0" to "1"	+2.749874	+FS -1 1/2 LSB		
1110 0000 0000 0000	0001 1111 1111 1111	0110 0000 0000 0000	1001 1111 1111 1111	+2.062500	+3/4 FS		
1100 0000 0000 0000	0011 1111 1111 1111	0100 0000 0000 0000	1011 1111 1111 1111	+1.375000	+1/2 FS		
1000 0000 0000 0000	0 0111 1111 1111 1111	0000 0000 0000 0000	1111 1111 1111 1111	0.000000	0		
0111 1111 1111 1111	1000 0000 0000 0000	1111 1111 1111 1111	0000 0000 0000 0000	-0.000084	-1 LSB		
0100 0000 0000 0000) 1011 1111 1111 1111	1100 0000 0000 0000	0011 1111 1111 1111	-1.375000	-1/2 FS		
0010 0000 0000 0000) 1101 1111 1111 1111	1010 0000 0000 0000	0101 1111 1111 1111	-2.062500	3/4 FS		
0000 0000 0000 0001	1111 1111 1111 1111	1000 0000 0000 0001	0111 1111 1111 1110	-2.749916	-FS +1 LSB		
LSB "0" to "1"	LSB "1" to "0"	LSB "0" to "1"	LSB "1" to "0"	-2.749958	-FS + 1/2 LSB		
0000 0000 0000 0000) 1111 1111 1111 1111	1000 0000 0000 0000	0111 1111 1111 1111	-2.750000	–FS		
OFFSET BINARY	COMP. OFF. BIN.	TWO'S COMP.	COMP. TWO'S COMP.	· · · · ·			

Table 2b. Output Coding

MECHANICAL DIMENSIONS

INCHES (mm)

ORDERING INFORMATION

MODEL NUMBER	SPECIFIED TEMPERATURE RANGE
ADS-931MC	0 to +70°C
ADS-931MM	–55 to +125°C
ACCESSORIES	
ADS-B931	Evaluation Board (without ADS-931)
HS-40	Heat Sink
	board mounting can be ordered through AMP Inc., Par onent Lead Socket), 40 required. For availability of ct, contact DATEL.

PRELIMINARY PRODUCT DATA

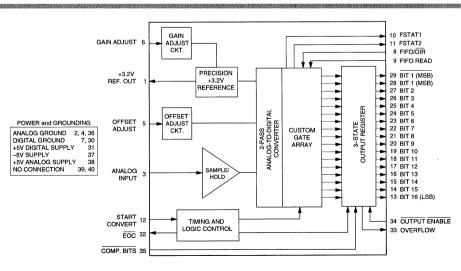
FEATURES

- 16-Bit resolution
- 2MHz sampling rate
- Functionally complete
- No missing codes over full military temperature range
- Edge-triggered
- ±5V supplies, 1.85 Watts
- Small, 40-pin, ceramic TDIP
- 86dB SNR, -88dB THD
- · Ideal for both time and frequency-domain applications

GENERAL DESCRIPTION

The low-cost ADS-932 is a 16-bit, 2MHz sampling A/D converter. This device accurately samples full-scale input signals up to Nyquist frequencies with no missing codes. The dynamic performance of the ADS-932 has been optimized to achieve a signal-to-noise ratio (SNR) of 86dB and a total harmonic distortion (THD) of -88dB.

Packaged in a 40-pin TDIP, the functionally complete ADS-932 contains a fast-settling sample/hold amplifier, a subranging (two-pass) A/D converter, an internal reference, timing/control logic, and error-correction circuitry. Digital input and output levels are TTL. The ADS-932 only requires the rising edge of the start convert pulse to operate.


Requiring only $\pm 5V$ supplies, the ADS-932 dissipates 1.85 Watts. The device is offered with a bipolar ($\pm 2.75V$) analog input range. Models are available for use in either commercial (0 to $+70^{\circ}$ C) or military (-55 to $+125^{\circ}$ C) operating temperature ranges. A proprietary, auto-calibrating, error-correcting circuit enables the device to achieve specified performance over the full military temperature range. Typical applications include medical imaging, radar, sonar, communications and instrumentation.

Sampling A/D Converters

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	+3.2V REF. OUT	40	NO CONNECTION
2	ANALOG GROUND	39	NO CONNECTION
3	ANALOG INPUT	38	+5V ANALOG SUPPLY
4	ANALOG GROUND	37	-5V SUPPLY
5	OFFSET ADJUST	36	ANALOG GROUND
6	GAIN ADJUST	35	COMP. BITS
7	DIGITAL GROUND	34	OUTPUT ENABLE
8	FIFO/DIR	33	OVERFLOW
9	FIFO READ	32	EOC
10	FSTAT1	31	+5V DIGITAL SUPPLY
11	FSTAT2	30	DIGITAL GROUND
12	START CONVERT	29	BIT 1 (MSB)
13	BIT 16 (LSB)	28	BIT 1 (MSB)
14	BIT 15	27	BIT 2
15	BIT 14	26	BIT 3
16	BIT 13	25	BIT 4
17	BIT 12	24	BIT 5
18	BIT 11	23	BIT 6
19	BIT 10	22	BIT 7
20	BIT 9	21	BIT 8

ADS-932 16-Bit, 2MHz

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+5V Supply (Pins 31, 38)	0 to +6	Volts
–5V Supply (Pin 37)	0 to -6	Volts
Digital Inputs (Pins 8, 9, 12, 34, 35)	-0.3 to +V _{DD} +0.3	Volts
Analog Input (Pin 3)	±5	Volts
Lead Temperature (10 seconds)	300	°C

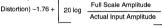
PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS	
Operating Temp. Range, Case					
ADS-932MC	0		+70	°C	
ADS-932MM	-55	-	+125	°C	
Thermal Impedance					
θjc	-	4		°C/Watt	
θca	_	18		°C/Watt	
Storage Temperature Range	65	—	+150	°C	
Package Type	40-pir	n, metal-sea	led, ceramic	TDIP	
Weight	0.56 ounces (16 grams)				

FUNCTIONAL SPECIFICATIONS

(T_A = +25°C, ±V_{CC} = ±5V, +V_{DD} = +5V, 2MHz sampling rate, and a minimum 1 minute warmup ^① unless otherwise specified.)

		+25°C		0 to +70°C		–55 to +125°C				
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range										
Bipolar	-	±2.75	_		±2.75	_	_	±2.75	_	Volts
Input Resistance	-	500	-		500	-	_	500	_	kΩ
Input Capacitance	-	10	15		10	15	—	10	15	pF
DIGITAL INPUTS										
Logic Levels										
Logic "1"	+2.0	-	-	+2.0	-	-	+2.0	-	-	Volts
Logic "0"	-	-	+0.8	-	-	+0.8		-	+0.8	Volts
Logic Loading "1"			+20		-	+20		-	+20	μA
Logic Loading "0" 2	-	-	-20	-	_	-20	-	-	-20	μA
Start Convert Positive Pulse Width ③	-	250		—	250			250	-	ns
STATIC PERFORMANCE					·····			,		
Resolution	-	16	-	—	16	-	-	16	-	Bits
Integral Nonlinearity (f _{in} = 10kHz)	-	±1	-		±1.5	-	-	±2	-	LSB
Differential Nonlinearity (f _{in} = 10kHz)	-0.95	±0.75	+1.0	-0.95	±0.75	+1.0	-0.95	±0.75	+1.5	LSB
Full Scale Absolute Accuracy	-	±0.15	±0.3	-	±0.3	±0.5	-	±0.5	±0.8	%FSR
Bipolar Zero Error (Tech Note 2)	-	±0.1	±0.2		±0.2	±0.4	-	±0.4	±0.6	%FSR
Bipolar Offset Error (Tech Note 2)		±0.1	±0.2	-	±0.2	±0.4	-	±0.4	±0.6	%FSR
Gain Error (Tech Note 2)	-	±0.15	±0.3		±0.3	±0.5	-	±0.5	±0.8	%
No Missing Codes (f _{in} = 10kHz)	16			16			16	-	-	Bits
DYNAMIC PERFORMANCE		T			1				r	
Peak Harmonics (-0.5dB)										
dc to 500kHz		-89	-81		-89	-81		-85	-79	dB
500kHz to 1MHz	-	-84	-78	-	84	-78		-83	-77	dB
Total Harmonic Distortion (-0.5dB)										
dc to 500kHz	-	-88	80	-	-88	-80	-	-84	-77	dB
500kHz to 1MHz	-	-83	-77	-	-83	-77		-82	-76	dB
Signal-to-Noise Ratio										
(w/o distortion, –0.5dB)										
dc to 500kHz	81	86	-	81	86		80	83		dB
500kHz to 1MHz	80	85	—	80	85		78	81	-	dB
Signal–to–Noise Ratio ④										
(& distortion, –0.5dB)										
dc to 500kHz	79	82		79	82	-	77	80	-	dB
500kHz to 1MHz	78	81	- 1	78	81		76	79	-	dB
Noise	-	70	-	-	70		-	70	- 1	μVrms
Two-tone Intermodulation Distortion (f _{in} = 200kHz,										
240kHz, f _s = 2MHz,	1	07	1	1	07			0.7		
–0.5dB)	-	-87			-87	-		-87	-	dB
Input Bandwidth (-3dB)		4-			4-			4-		
Small Signal (-20dB input)	-	4.5	-	-	4.5	-	-	4.5	-	MHz
Large Signal (-0.5dB input)	-	4	-		4		- 1	4		MHz
Feedthrough Rejection										
$(f_{in} = 2MHz)$		90	-	-	90	-	-	90	-	dB
Slew Rate	-	±75		-	±75	-	-	±75	-	V/µs
Aperture Delay Time		-5	-	-	-5	-	-	-5	-	ns
Aperture Uncertainty S/H Acquisition Time	-	3	-	-	3	-	-	3	-	ps rms
(to ±0.001%FSR, 5.5V step)	-	200	-	-	200	-	-	200	-	ns
Overvoltage Recovery Time 6		250	500	-	250	500	-	250	500	ns
A/D Conversion Rate	2		_	2		_	2	_	-	MHz


1-104 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

		+25°C			0 to +70	°C		55 to +12	5°C	
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference										
Voltage		+3.2	_	—	+3.2		-	+3.2	_	Volts
Drift	- 1	±30			±30		-	±30		ppm/°C
External Current	-	5	-	-	5	-	-	5	-	mA
DIGITAL OUTPUTS										
Logic Levels										
Logic "1"	+2.4	-	_	+2.4	_		+2.4			Volts
Logic "0"	_	_	+0.4	_		+0.4		_	+0.4	Volts
Logic Loading "1"			-4		-	-4	-	-	-4	mA
Logic Loading "0"		—	+4	-	_	+4	-	—	+4	mA
Output Coding		Complemen	tary Offset E	Binary, Com	plementary	Two's Comp	lement, Offs	set Binary, T	wo's Comple	ement
POWER REQUIREMENTS										
Power Supply Range 6										
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.9	+5.0	+5.25	Volts
-5V Supply	-4.75	-5.0	-5.25	-4.75	-5.0	-5.25	-4.9	-5.0	-5.25	Volts
Power Supply Current										
+5V Supply	-	+220			+220	_	-	+220	_	mA
–5V Supply		-150	-	_	-150	-		-150	_	mA
Power Dissipation		1.85	2.1	—	1.85	2.1	-	1.85	2.1	Watts
Power Supply Rejection		-	±0.07			±0.07			±0.07	%FSR/%V
Footnotes:										
Ill power supplies must be on bet pulse. All supplies and the clock present during warmup periods. ly converting during this time.	START CO	ŇVERT) I	must be			Dits is equa + Distortion) –		pc	le Amplitude	-

2 When COMP.BITS (pin 35) is low, logic loading "0" is -350µA.

A 250ns wide start convert pulse is used for all production testing. For applications requiring less than a 2MHz sampling rate, wider start convert pulses can be used.

6.02

- This is the time required before the A/D output data is valid once the analog input is back within the specified range.
- The minimum supply voltages of +4.9V and -4.9V for $\pm V_{DD}$ are required for -55°C operation only. The minimum limits are +4.75V and -4.75V when operating at +125°C.

TECHNICAL NOTES

1. Obtaining fully specified performance from the ADS-932 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (2, 4, 7, 30 and 36) directly to a large *analog* ground plane beneath the package.

Bypass all power supplies and the +3.2V reference output to ground with 4.7µF tantalum capacitors in parallel with 0.1µF ceramic capacitors. Locate the bypass capacitors as close to the unit as possible.

2. The ADS-932 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the adjustment circuitry shown in Figure 2. When using this circuitry, or any similar offset and gain calibration hardware, make adjustments following warmup.

To avoid interaction, always adjust offset before gain. Tie pins 5 and 6 to ANALOG GROUND (pin 4) if not using offset and gain adjust circuits.

3. Pin 35 (COMP. BITS) is used to select the digital output coding format of the ADS-932. See Tables 2a and 2b. When this pin has a TTL logic "0" applied, it complements all of the ADS-932's digital outputs.

When pin 35 has a logic "1" applied, the output coding is complementary offset binary. Applying a logic "0" to pin 35 changes the coding to offset binary. Using the MSB output (pin 29) instead of the MSB output (pin 28) changes the respective output codings to complementary two's complement and two's complement.

Pin 35 is TTL compatible and can be directly driven with digital logic in applications requiring dynamic control over its function. There is an internal pull-up resistor on pin 35 allowing it to be either connected to +5V or left open when a logic "1" is required.

- To enable the three-state outputs, connect OUTPUT 4. ENABLE (pin 34) to a logic "0" (low). To disable, connect pin 34 to a logic "1" (high).
- 5. Applying a start convert pulse while a conversion is in progress (\overline{EOC} = logic "1") will initiate a new and probably inaccurate conversion cycle. Data from both the interrupted and subsequent conversions will be invalid.
- 6. Do not enable/disable or complement the output bits or read from the FIFO during the conversion process (from the rising edge of EOC to the falling edge of EOC).
- 7. The OVERFLOW bit (pin 14) switches from 0 to 1 when the input voltage exceeds that which produces an output of all 1's or when the input equals or exceeds the voltage that produces all 0's. When COMP BITS is activated, the above conditions are reversed.

INTERNAL FIFO OPERATION

The ADS-932 contains an internal, user-initiated, 18-bit, 16-word FIFO memory. <u>Each word in the FIFO contains the 16</u> data bits as well as the $\overline{\text{MSB}}$ and overflow bits. Pins 8 (FIFO/DIR) and 9 (FIFO READ) control the FIFO's operation. The FIFO's status can be monitored by reading pins 10 (FSTAT1) and 11 (FSTAT2).

When pin 8 (FIFO/DIR) has a logic "1" applied, the FIFO is inserted into the digital data path. When pin 8 has a logic "0" applied, the FIFO is transparent and the output data goes directly to the output three-state register (whose operation is controlled by pin 34 (ENABLE)). Read and write commands to the FIFO are ignored when the ADS-932 is operated in the "direct" mode. It takes a maximum of 20ns to switch the FIFO in or out of the ADS-932's operation.

FIFO WRITE and READ Modes

Once the FIFO has been enabled (pin 8 high), digital data is automatically written to it, regardless of the status of FIFO READ (pin 9). Assuming the FIFO is initially empty, it will accept data (18-bit words) from the next 16 consecutive A/D conversions. As a precaution, pin 9 (which controls the FIFO's READ function) should not be low when data is first written to an empty FIFO.

When the FIFO is initially empty, digital data from the first conversion (the "oldest" data) appears at the output of the FIFO immediately after the first conversion has been completed and remains there until the FIFO is read. If the output three-state register has been enabled (logic "0" applied to pin 34), data from the first conversion will appear at the output of the ADS-932. Attempting to write a 17th word to a full FIFO will result in that data, and any subsequent conversion data, being lost.

Once the FIFO is full (indicated by FSTAT1 and FSTAT2 both = "1"), it can be read by dropping the FIFO READ line (pin 9) to a logic "0" and then applying a series of 15 rising edges to the read line. Since the first data word is already present at the FIFO output, the first read command (the first rising edge applied to FIFO READ) will bring data from the second conversion to the output. Each subsequent read command/rising edge brings the next word to the output lines. After the 15th rising edge brings the 16th data word to the FIFO output, the subsequent falling edge on READ will update the status outputs (after a 20ns maximum delay) to FAST1 = 0, FAST2 = 1 indicating that the FIFO is empty.

If a read command is issued after the FIFO has been emptied, the last word (the 16th conversion) will remain present at the outputs.

FIFO Reset Feature

At any time, the FIFO can be reset to an empty state by putting the ADS-932 into its "direct" mode (logic "0" applied to pin 8, FIFO/DIR) and also applying a logic "0" to the FIFO READ line (pin 9). The empty status of the FIFO will be indicated by FSTAT1 going to a "0" and FSTAT2 going to a "1". The status outputs will change 40ns after applying the control signals.

FIFO Status, FSTAT1 and FSTAT2

The status of the data in the FIFO can be monitored by reading the two status pins, FSTAT1 (pin 10) and FSTAT2 (pin 11).

<u>CONTENTS</u>	FSTAT1	FSTAT2
Empty (0 words)	0	1
<half (<8="" full="" td="" words)<=""><td>0</td><td>0</td></half>	0	0
Half-full or more (≥8 words)	1	0
Full (16 words)	1	1

PIN	TRANSITION	MIN.	TYP.	MAX.	UNITS
8	01	_	10	20	ns
8	1-0	_	10	20	ns
9	0-1	_	_	40	ns
9	10	_	_	28	ns
9	01	-	-	110	ns
9	01	-	_	190	ns
32	1	_	-	190	ns
32	10	_	-	110	ns
32	10	_	_	28	ns
	PIN 8 9 9 9 9 32 32	PIN TRANSITION 8 0^{-1} 8 1^{-1} 9 0^{-1} 9 0^{-1} 9 0^{-1} 9 0^{-1} 9 0^{-1} 9 0^{-1} 9 0^{-1} 9 0^{-1} 9 0^{-1} 9 0^{-1} 9 0^{-1} 32 1^{-0} 32 1^{-0} 1 0	PIN TRANSITION MIN. 8 $_0$ $^-1$ $^-$ 8 1 $_0$ $^-$ 9 $_0$ $^-1$ $^-$ 9 $_0$ $^-1$ $^-$ 9 $_0$ $^-1$ $^-$ 9 $_0$ $^-1$ $^-$ 9 $_0$ $^-1$ $^-$ 9 $_0$ $^-1$ $^-$ 32 1 $_0$ $^-$ 1 $_0$ $^-$	PIN TRANSITION MIN. TYP. 8 $0 - 1$ $-$ 10 8 $1 - 0$ $-$ 10 9 $0 - 1$ $ -$ 9 $0 - 1$ $ -$ 9 $0 - 1$ $ -$ 9 $0 - 1$ $ -$ 9 $0 - 1$ $ -$ 9 $0 - 1$ $ -$ 9 $0 - 1$ $ -$ 32 $1 - 0$ $ -$ 32 $1 - 0$ $ 1 - 0$ $ 32$ $1 - 0$ $ 1 - 0$ $ 1 - 0$ $ -$	PIN TRANSITION MIN. TYP. MAX. 8 $_0 _ 1^{-1}$ - 10 20 8 $^1 _ 0^{-1}$ - 10 20 9 $_0 _ 1^{-1}$ - 10 20 9 $_0 _ 1^{-1}$ - - 40 9 $_0 _ 1^{-1}$ - - 28 9 $_0 _ 1^{-1}$ - - 110 9 $_0 _ 1^{-1}$ - - 190 32 $_1 _ 0^{-1}$ - - 110 1 $_0 = 1^{-1}$ - - 110

Table 1. FIFO Delays

1-106 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

CALIBRATION PROCEDURE

(Refer to Figure 2 and Tables 2a, and 2b)

Connect the converter per Figure 2. Any offset/gain calibration procedures should not be implemented until the device is fully warmed up. To avoid interaction, adjust offset before gain. The ranges of adjustment for the circuit in Figure 2 are guaranteed to compensate for the ADS-932's initial accuracy errors and may not be able to compensate for additional system errors.

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This is accomplished by connecting LED's to the digital outputs and performing adjustments until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-932, offset adjusting is normally accomplished when the analog input is 0 minus 1/2LSB (-42µV). See Table 2b for the proper bipolar output coding.

Gain adjusting is accomplished when the analog input is at nominal full scale minus 1 1/2LSB's (+2.749874V).

Note: Connect pin 5 to ANALOG GROUND (pin 4) for operation without zero/offset adjustment. Connect pin 6 to pin 4 for operation without gain adjustment.

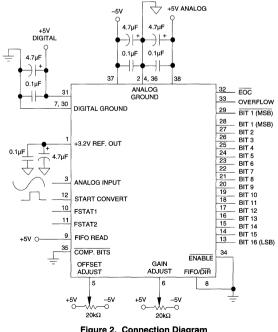
Zero/Offset Adjust Procedure

- 1. Apply a train of pulses to the START CONVERT input (pin so that the converter is continuously converting.
- 2. For zero/offset adjust, apply -42µV to the ANALOG INPUT (pin 3).
- 3. Adjust the offset potentiometer until the code flickers between 1000 0000 0000 0000 and 0111 1111 1111 1111 with pin 35 tied high (complementary offset binary) or between 0111 1111 1111 1111 and 1000 0000 0000 0000 with pin 35 tied low (offset binary).
- 4. Two's complement coding requires using BIT 1 (MSB) (pin 29). With pin 35 tied low, adjust the trimpot until the output code flickers between all 0's and all 1's.

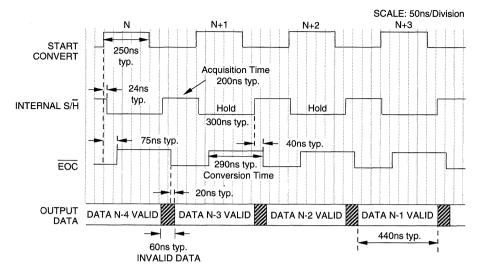
Gain Adjust Procedure

- 1. For gain adjust, apply +2.749874V to the ANALOG INPUT (pin 3).
- 2. Adjust the gain potentiometer until all output bits are 0's and the LSB flickers between a 1 and 0 with pin 35 tied high (complementary offset binary) or until all output bits are 1's and the LSB flickers between a 1 and 0 with pin 35 tied low (offset binary).
- 3. Two's complement coding requires using BIT 1 (MSB), pin 29. With pin 35 tied low, adjust the gain trimpot until the output code flickers equally between 0111 1111 1111 1111 and 0111 1111 1111 1110.
- 4. To confirm proper operation of the device, vary the applied input voltage to obtain the output coding listed in Table 2b.

Table 2a. Setting Output Coding Selection (Pin 35)

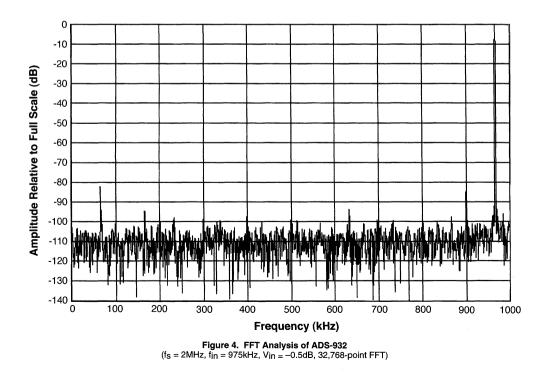

OUTPUT FORMAT	PIN 35 LOGIC LEVEL
Complementary Offset Binary	1
Offset Binary	0
Complementary Two's Compleme	ent 1
(Using MSB, pin 29)	
Two's Complement	0
(Using MSB, pin 29)	

THERMAL REQUIREMENTS


All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to + 125°C. All room-temperature ($T_A = +25$ °C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electricallyinsulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.



Notes:

- 1. This device has three pipeline delays. Four start convert pulses (clock cycles) must be applied for valid data from the first conversion to appear at the output of the A/D.
- 2. Scale is approximately 50ns per division.

3. f_s = 2MHz

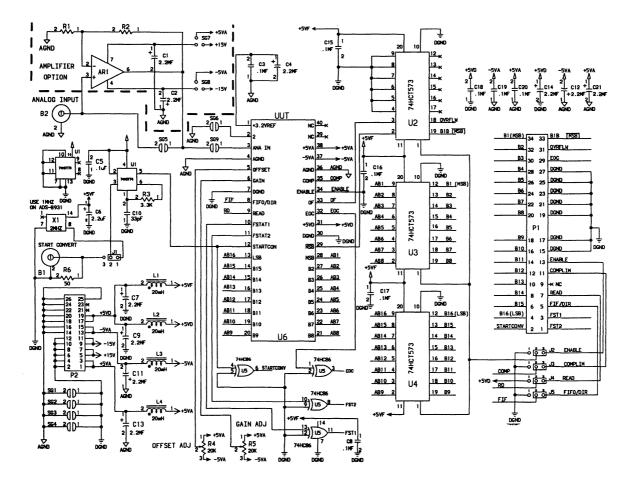


Figure 5. ADS-932 Evaluation Board

ADS-932

Q

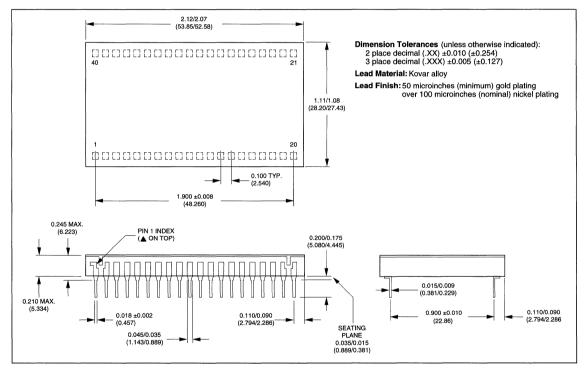

DATEL

Table	2b.	Output	Coding
-------	-----	--------	--------

	OUTPUT CODING						
MSB LSB	MSB LSB	MSB LSB	MSB LSB	RANGE ±2.75V	SCALE		
1111 1111 1111 1111 LSB "1" to "0" 1110 0000 0000 0000 1000 0000 0000	0000 0000 0000 0000 LSB "0" to "1" 0001 1111 1111 1111 0111 1111 1111	0111 1111 1111 1111 LSB "1" to "0" 0110 0000 0000 0000 0100 0000 0000	$\begin{array}{c} 1000\ 0000\ 0000\ 0000\ LSB\ 0^{\circ}\ to\ 1^{\circ}\\ 1001\ 1111\ 1111\ 1111\\ 1011\ 1111\ 1111\ 1111\\ 1111\ 1111\ 1111\ 1111\\ 1111\ 1111\ 1111\ 1111\\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 001\ 1111\ 1111\ 1111\\ 0101\ 1111\ 1111\ 1111\ 1111\ 1111\\ 0111\ 1111\ 1111\ 1111\ 1111\ 0111\ 1111\ 1111\ 0111\ 1111\ 0111\ 1111\ 0111\ 1111\ 0111\ 1111\ 0111\ 1111\ 0111\ 1111\ 0111\ 1111\ 000\ 000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 00\ 00\$	+2.749916 +2.749874 +2.062500 +1.375000 -0.000084 -1.375000 -2.062500 -2.749916	+FS -1 LSB +FS -1 1/2 LSB +3/4 FS +1/2 FS 0 -1 LSB -1/2 FS -3/4 FS -FS +1 LSB		
LSB "0" to "1" 0000 0000 0000 0000 OFESET BINABY	LSB "1" to "0" 1111 1111 1111 1111 COMP. OFF. BIN.	LSB "0" to "1" 1000 0000 0000 0000 TWO'S COMP.	LSB "1" to "0" 0111 1111 1111 1111 COMP. TWO'S COMP.	-2.749958 -2.750000	FS + 1/2 LSB FS		

INCHES (mm)

ORDERING INFORMATION

MODEL NUMBER	SPECIFIED TEMPERATURE RANGE
ADS-932MC ADS-932MM	0 to +70°C −55 to +125°C
ACCESSORIES	
ADS-B932 HS-40	Evaluation Board (without ADS-932) Heat Sink
	board mounting can be ordered through AMP Inc., Part onent Lead Socket), 40 required. For availability of ct, contact DATEL.

PRELIMINARY PRODUCT DATA

FEATURES

- · 16-Bit resolution
- 1MHz minimum sampling rate
- · No missing codes over full military temperature range
- · Very low power, 1.1 Watts
- Small, 32-pin, side-brazed, ceramic TDIP
- · Edge-triggered
- · Excellent performance
- · Ideal for both time and frequency-domain applications
- Low cost

GENERAL DESCRIPTION

The low-cost ADS-937 is a 16-bit, 1MHz sampling A/D converter. This device accurately samples full-scale input signals up to Nyquist frequencies with no missing codes. This combined with excellent signal-to-noise ratio (SNR) and total harmonic distortion (THD) make the ADS-937 the ideal choice for both time-domain (medical imaging, scanners, process control) and frequency-domain (radar, telecommunications, spectrum analysis) applications.

Packaged in a 32-pin, side-brazed, ceramic TDIP, the functionally complete ADS-937 contains a fast-settling sample-hold amplifier, a subranging (two-pass) A/D converter, an internal reference, timing/control logic, and error-correction circuitry. Digital input and output levels are TTL. The ADS-937 only requires the rising edge of the start convert pulse to operate.

Requiring $\pm 15V$ and $\pm 5V$ supplies, the ADS-937 typically dissipates 1.1 Watts. The device is offered with both bipolar ($\pm 5V$) and unipolar (0 to -10V) analog input ranges. Models are available for use in either commercial (0 to $+70^{\circ}$ C) or military (-55 to $+125^{\circ}$ C) operating temperature ranges.

A proprietary, auto-calibrating, error-correcting circuit enables

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	ANALOG INPUT	32	BIT 1 (MSB)
2	ANALOG GROUND	31	BIT 2
3	UNIPOLAR	30	BIT 3
4	OFFSET ADJUST	29	BIT 4
5	+5V REFERENCE OUT	28	BIT 5
6	GAIN ADJUST	27	BIT 6
7	COMPENSATION	26	BIT 7
8	-15V SUPPLY	25	BIT 8
9	+15V SUPPLY	24	BIT 9
10	+5V ANALOG SUPPLY	23	BIT 10
11	-5V ANALOG SUPPLY	22	BIT 11
12	ANALOG GROUND	21	BIT 12
13	DIGITIAL GROUND	20	BIT 13
14	+5V DIGITAL SUPPLY	19	BIT 14
15	EOC	18	BIT 15
16	START CONVERT	17	BIT 16 (LSB)

the device to achieve specified performance over the full military temperature range.

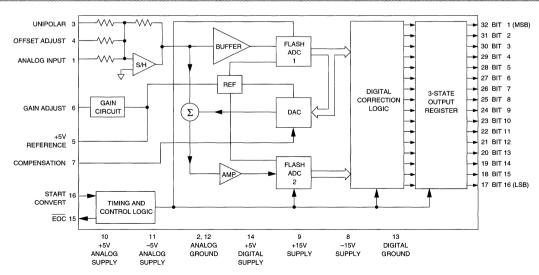


Figure 1. ADS-937 Functional Block Diagram

ADS-937

16-Bit, 1MHz, Low-Power

Sampling A/D Converters

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 9)	0 to +16	Volts
-15V Supply (Pin 8)	0 to -16	Volts
+5V Supply (Pins 10, 14)	0 to +6	Volts
-5V Supply (Pin 11)	0 to6	Volts
Digital Input (Pin 16)	-0.3 to +V _{DD} +0.3	Volts
Analog Input (Pin 1)	±15	Volts
Lead Temp. (10 seconds)	300	°C

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS		
Operating Temp. Range, Case						
ADS-937MC	0	_	+70	°C		
ADS-937MM	55		+125	°C		
Thermal Impedance						
θjc		TBD		°C/Watt		
θca	_	TBD		°C/Watt		
Storage Temperature Range	65	_	+150	°C		
Package Type	32-pin, side-brazed, ceramic TDIP					
Weight	0.42 ounces (12 grams)					

FUNCTIONAL SPECIFICATIONS

 $(T_A = +25^{\circ}C, \pm V_{CC} = \pm 15V, \pm V_{DD} = \pm 5V, 1MHz$ sampling rate, and a minimum 1 minute warmup ⁽¹⁾ unless otherwise specified.)

		+25°C		0 to +70°C			–55 to +125°C			
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Ranges ^②										
Bipolar	_	±5			±5			±5	_	Volts
Unipolar		0 to -10			0 to -10			0 to -10	_	Volts
Input Resistance		2.5	_	_	2.5	_	_	2.5		kΩ
	-								45	
Input Capacitance		7	15		7	15		7	15	pF
DIGITAL INPUTS									·····	
Logic Levels				.0			.0			Volts
Logic "1"	+2	-	_	+2	-	_	+2			
Logic "0"		-	+0.8		-	+0.8		-	+0.8	Volts
Logic Loading "1"		-	+20	—	- 1	+20	—	- 1	+20	μΑ
Logic Loading "0"	-	-	20		_	-20	_	-	20	μA
Start Convert Positive Pulse Width ③	-	500	-		500	—		500	—	ns
STATIC PERFORMANCE										
Resolution	-	16	-	-	16	-		16	—	Bits
Integral Nonlinearity (fin = 10kHz)		±0.75	-	-	±1.5	-		±2		LSB
Differential Nonlinearity (fin = 10kHz)	-0.95	±0.5	+1	-0.95	±0.5	+1	-0.95	±0.75	+1.25	LSB
Full Scale Absolute Accuracy		±0.1	±0.25	-	±0.25	±0.4	—	±0.4	±0.8	%FSR
Bipolar Zero Error (Tech Note 2)	-	±0.1	±0.15		±0.15	±0.25	_	±0.25	±0.5	%FSR
Bipolar Offset Error (Tech Note 2)	_	±0.1	±0.2		±0.2	±0.3		±0.3	±0.6	%FSR
Gain Error (Tech Note 2)	_	±0.1	±0.25		±0.25	±0.4	_	±0.4	±0.9	%
No Missing Codes (f _{in} = 10kHz)	16	±0.1	10.25	16	10.23	±0.4	16	10.4	10.3	Bits
		L			1					
Peak Harmonics (-0.5dB)	Т	<u> </u>								
dc to 100kHz	-	-87	-83		87	-83		-84	-80	dB
100kHz to 500kHz	_	-84	-80	_		-80	_	81	-77	
	-	-04	-60		-04	-00		-01	-//	dB
Total Harmonic Distortion (-0.5dB)										
dc to 100kHz		85	81	-	85	81		82	78	dB
100kHz to 500kHz	-	-82	-77		82	-77		-79	-74	dB
Signal-to-Noise Ratio										
(w/o distortion, -0.5dB)										
dc to 100kHz	80	84	_	80	84	_	77	82	_	dB
100kHz to 500kHz	77	80	_	77	80	-	74	78		dB
Signal-to-Noise Ratio @	1			,,,				1.0		чD
(& distortion, -0.5dB)										
	70	00		70	00		75	70		
dc to 100kHz	78	82	-	78	82	-	75	79		dB
100kHz to 500kHz	75	79	-	75	79	- 1	72	76	-	dB
Two-tone Intermodulation								1		
Distortion (fin = 100kHz,										
240kHz, f _s =1MHz,										
-0.5dB)	- 1	-85	-	_	84	-		-83		dB
input Bandwidth (3dB)					1					
Small Signal (-20dB input)	- 1	TBD	_	_	TBD	_	_	TBD		MHz
Large Signal (-0.5dB input)	_	TBD	_	_	TBD	_	_	TBD	_	MHz
Feedthrough Rejection										1011 12
		04			04			04		dD
$(f_{in} = 500 \text{kHz})$		84	-	_	84	-	—	84	-	dB
Slew Rate	-	±60	-	-	±60	-		±60		V/µs
Aperture Delay Time	-	±20	-		±20	-	-	±20		ns
Aperture Uncertainty	-	5	- 1	- 1	5	- 1	- 1	5	-	ps rms
S/H Acquisition Time										-
(to ±0.003%FSR, 10V step)	_	300	-		300	_	- 1	300		ns
Overvoltage Recovery Time ⁵	-	500	1000	_	500	1000	l _	500	1000	ns
A/D Conversion Rate	1	500	1000	1		1000	1		1000	MHz
ALD CONVERSION HALE										IVITIZ

1-112 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

		+25°C			0 to +70	°C		55 to +12	5°C	
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference										
Voltage	+4.95	+5.0	+5.05	+4.95	+5.0	+5.05	+4.95	+5.0	+5.05	Volts
Drift		±30	_		±30	_		±30	_	ppm/°C
External Current	-	1	—	-	1	—	-	1	-	mA
DIGITAL OUTPUTS		L							L	
Logic Levels										
Logic "1"	+2.4	_	-	+2.4			+2.4	-	-	Volts
Logic "0"	-	-	+0.4	_		+0.4	-	-	+0.4	Volts
Logic Loading "1"		—	-4		—	-4	-		-4	mA
Logic Loading "0"		-	+4			+4		_	+4	mA
Output Coding					Straight Bin	ary, Offset B	inary			
POWER REQUIREMENTS										
Power Supply Range										
+15V Supply	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	Volts
-15V Supply	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	-14.5	15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
-5V Supply	-4.75	-5.0	-5.25	-4.75	-5.0	-5.25	-4.75	-5.0	-5.25	Volts
Power Supply Current										
+15V Supply		+15	-	-	+15		-	+15	-	mA
-15V Supply	-	-12	_	_	-12	_	-	-12	_	mA
+5V Supply	- 1	+152	-	_	+152		-	+152	_	mA
-5V Supply		-28	-	-	-28	_	_	-28	_	mA
Power Dissipation	-	1.1	1.25	-	1.1	1.25	-	1.1	1.25	Watts
Power Supply Rejection	-		±0.05			±0.05		_	±0.05	%FSR/%\

Footnotes:

① All power supplies must be on before applying a start convert pulse. All supplies and the clock (START CONVERT) must be present during warmup periods. The device must be continuously converting during this time.

- 2 Contact DATEL for availability of other input voltage ranges.
- ③ A 500ns wide start convert pulse is used for all production testing. For applications requiring less than a 1MHz sampling rate, wider start convert pulses can be used.

TECHNICAL NOTES

 Obtaining fully specified performance from the ADS-937 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are not connected to each other internally. For optimal performance, tie all ground pins (2, 12 and 13) directly to a large *analog* ground plane beneath the package.

Bypass all power supplies and the +5V reference output to ground with 4.7 μ F tantalum capacitors in parallel with 0.1 μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. Tie a 47 μ F capacitor between COMPENSATION (pin 7) and the –15V SUPPLY (pin 8).

- 2. The ADS-937 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the adjustment circuitry shown in Figure 2. When using this circuitry, or any similar offset and gain calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain. Tie pins 4 and 6 to ANALOG GROUND (pin 2) if not using offset and gain adjust circuits
- .3. Applying <u>a start</u> convert pulse while a conversion is in progress (EOC = logic "1") will initiate a new and probably inaccurate conversion cycle.

Effective bits is equal to:

6.02

This is the time required before the A/D output data is valid once the analog input is back within the specified range.

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to + 125°C. All room-temperature (T_A = +25°C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electricallyinsulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

CALIBRATION PROCEDURE

(Refer to Figure 2 and Tables1 and 2)

Connect the converter per Table 1 for the appropriate input voltage range. Any offset/gain calibration procedures should not be implemented until the device is fully warmed up. To avoid interaction, adjust offset before gain. The ranges of adjustment for the circuit in Figure 2 are guaranteed to compensate for the ADS-937's initial accuracy errors and may not be able to compensate for additional system errors.

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This is accomplished by connecting LED's to the digital outputs and performing adjustments until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

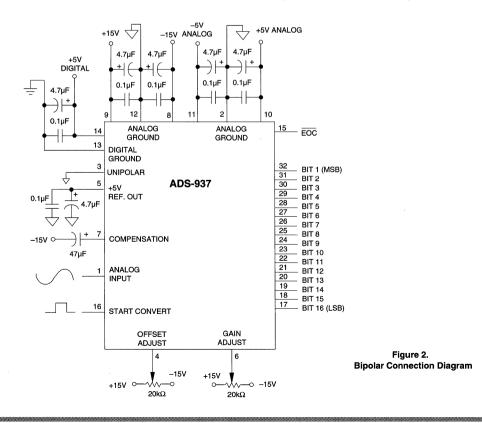
For the ADS-937, offset adjusting is normally accomplished when the analog input is 0 minus $1/2LSB (-76.3\mu V)$. See Table 2 for the proper bipolar and unipolar output coding.

Gain adjusting is accomplished when the analog input is at nominal full scale minus 1 1/2LSB's (-9.999771V for unipolar and -4.999771V for bipolar).

Note: Connect pin 4 to ANALOG GROUND (pin 2) for operation without zero/offset adjustment. Connect pin 6 to ANALOG GROUND (pin 2) for operation without gain adjustment.

Table 1	. Input	Connections
---------	---------	-------------

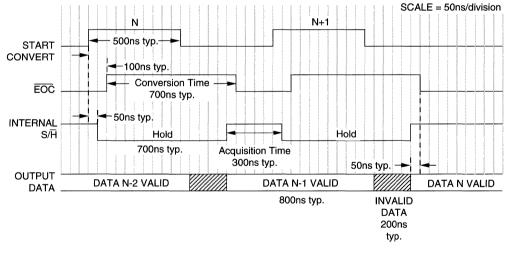
INPUT RANGE	INPUT PIN	TIE TOGETHER
±5V	Pin 1	Pins 2 and 3
0 to –10V	Pin 1	Pins 3 and 5


Zero/Offset Adjust Procedure

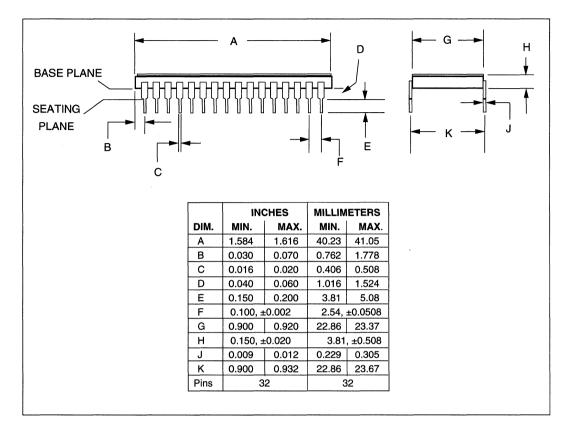
- 1. Apply a train of pulses to the START CONVERT input (pin 16) so that the converter is continuously converting.
- 2. For unipolar or bipolar zero/offset adjust, apply $-76.3\mu V$ to the ANALOG INPUT (pin 1).
- For a bipolar input Adjust the offset potentiometer until the code flickers between 1000 0000 0000 0000 and 0111 1111 1111 1111.

For a unipolar input - Adjust the offset potentiometer until all output bits are 0's and the LSB flickers between 0 and 1.

Gain Adjust Procedure


- Apply –4.999771V to the ANALOG INPUT (pin 1) for bipolar gain adjust or apply –9.999771V to pin 1 for unipolar gain adjust.
- For a unipolar input Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between 1 and 0.
 For a bipolar input - Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between 1 and 0.
- 3. To confirm proper operation of the device, vary the applied input voltage to obtain the output coding listed in Table 2.

		STRAIG	HT BIN.				
UNIPOLAR	INPUT RANGE		OUTPUT	CODING		INPUT RANGE	BIPOLAR
SCALE	0 to –10V	MSB	LSB	MSB	LSB	±5V	SCALE
-FS +1LSB	-9.999847	11111111	11111111	0000000	00000000	+4.999847	+FS –1LSB
-7/8 FS	-8.750000	11100000	00000000	00011111	11111111	+3.750000	+3/4 FS
–3/4 FS	-7.500000	11000000	00000000	00111111	11111111	+2.500000	+1/2 FS
–1/2 FS	-5.000000	10000000	00000000	01111111	11111111	0.000000	0
-1/4 FS	-2.500000	01000000	00000000	10111111	11111111	-2.500000	-1/2 FS
-1/8 FS	-1.250000	00100000	00000000	11011111	11111111	-3.750000	–3/4 FS
–1 LSB	-0.000153	00000000	00000001	11111111	11111110	-4.999847	-FS +1 LSB
0	0.000000	00000000	00000000	11111111	11111111	-5.000000	–FS
				OFFSE	T BIN.		


Table 2. Output Coding

MECHANICAL DIMENSIONS

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE					
ADS-937MC ADS-937MM	0 to +70°C −55 to +125°C					
ACCESSORIES						
ADS-B937	Evaluation Board (without ADS-937)					
Receptacles for PC board mounting can be ordered through AMP Inc. Part # 3-331272-8 (Component Lead Socket), 32 required.						

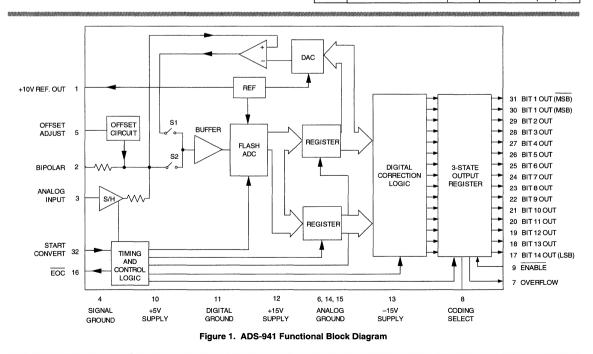
FEATURES

- 14-Bit resolution
- 1MHz minimum sampling rate
- · Functionally complete
- Internal reference and sample/hold
- · No missing codes
- Excellent performance
- Full Nyquist-rate sampling
- Small 32-pin DIP
- · Low power, 2.8 Watts

GENERAL DESCRIPTION

DATEL's ADS-941 is a functionally complete, 14-bit, 1MHz, sampling A/D converter. Its standard, 32-pin, triple-wide ceramic DIP contains a fast-settling sample/hold amplifier, a 14-bit subranging (two-pass) A/D converter, a precision reference, a three-state output register, and all the timing and control logic necessary to operate from a single start convert pulse.

The ADS-941 is optimized for wideband frequency-domain applications and is fully FFT tested. Total harmonic distortion (THD) and signal-to-noise ratio (including distortion) typically run at -85dB and 80dB, respectively, with full-scale inputs up to 100kHz.


The ADS-941 requires $\pm 15V$ and $\pm 5V$ supplies and typically consumes 2.8 Watts.

Sampling A/D Converters

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	+10V REF. OUT	32	START CONVERT
2	BIPOLAR	31	BIT 1 OUT (MSB)
3	ANALOG INPUT	30	BIT 1 OUT (MSB)
4	SIGNAL GROUND	29	BIT 2 OUT
5	OFFSET ADJUST	28	BIT 3 OUT
6	ANALOG GROUND	27	BIT 4 OUT
7	OVERFLOW	26	BIT 5 OUT
8	CODING SELECT	25	BIT 6 OUT
9	ENABLE	24	BIT 7 OUT
10	+5V SUPPLY	23	BIT 8 OUT
11	DIGITAL GROUND	22	BIT 9 OUT
12	+15V SUPPLY	21	BIT 10 OUT
13	-15V SUPPLY	20	BIT 11 OUT
14	ANALOG GROUND	19	BIT 12 OUT
15	ANALOG GROUND	18	BIT 13 OUT
16	EOC	17	BIT 14 OUT (LSB)

ADS-941 14-Bit, 1MHz 協調

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 12)	0 to +16	Volts
-15V Supply (Pin 13)	0 to -16	Volts
+5V Supply (Pin 10)	0 to +6.0	Volts
Digital Inputs (Pins 8, 9, 32)	-0.3 toVpp +0.3	Volts
Analog Input (Pin 3)	±15	Volts
Lead Temp. (10 seconds)	300	°C

FUNCTIONAL SPECIFICATIONS

 $(T_A = +25^{\circ}C, \pm V_{CC} = \pm 15V, +V_{DD} = +5V, 1MHz$ sampling rate, and a minimum 7 minute warmup unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range Unipolar Bipolar Input Impedance	 2.2	0 to +10 ±5 2.5		Volts Volts kΩ
Input Capacitance DIGITAL INPUTS		7	15	pF
Logic Levels Logic "1" Logic "0" Logic Loading "1" Logic Loading "0"	+2.0 — — —	 	 +0.8 +10 600	Volts Volts μΑ μΑ
PERFORMANCE				
Integral Nonlinearity (fin = 10kHz) +25°C	_	±1	±2	LSB
0 to +70°C -40 to +85°C Differential Nonlinearity	_	±1.5 ±2	±2 ±3	LSB LSB
(fin = 10kHz) +25°C 0 to +70°C	0.75 0.95	±0.5 ±0.75	+0.75 +0.95	LSB LSB
-40 to +85°C Full Scale Absolute Accuracy	-1	±0.95	+2.5	LSB
+25°C 0 to +70°C –40 to +85°C Unipolar Zero Error		±0.1 ±0.12 ±0.45	±0.122 ±0.36 ±0.85	%FSR %FSR %FSR
+25°C (see Figure 3) 0 to +70°C -40 to +85°C		±0.05 ±0.1 ±0.2	±0.122 ±0.2 ±0.3	%FSR %FSR %FSR
Bipolar Zero Error +25°C (see Figure 3) 0 to +70°C -40 to +85°C	 	±0.05 ±0.1 ±0.2	±0.122 ±0.2 ±0.3	%FSR %FSR %FSR
Bipolar Offset Error, +25°C(see Figure 3) 0 to +70°C -40 to +85°C		±0.05 ±0.12 ±0.6	±0.12 ±0.3 ±0.8	%FSR %FSR %FSR
Gain Error (see Figure 3) +25°C 0 to +70°C -40 to +85°C		±0.018 ±0.12 ±0.6	±0.12 ±0.3 ±0.8	% % %
No Missing Codes 14 Bits Resolution		0 to 14	+70°C Bits	

OUTPUTS	MIN.	TYP.	MAX.	UNITS
Output Coding	Comp.	Binary/Cor	et Binary/Tw mp. Offset E Two's Comp	Binary or
Logic Levels				
Logic "1"	+2.4	_		Volts
Logic "0" Logic Loading "1"	_	_	+0.4 	Volts µA
Logic Loading "0"		_	+6.4	mA
Internal Reference				
Voltage, +25°C	+9.98	+10.0	+10.02	Volts
Drift	-	±13	±30	ppm/°C
External Current			5	mA
PERFORMANCE				
Slew Rate		±250	—	V/µs
Aperture Delay Time	—	-	10	ns
Aperture Uncertainty	-	_	±5	ps
S/H Acquisition Time (to ±0.003%FS, 10V step)		250	350	ns
Total Harm. Distort. (-0.5dB)	_	250	550	115
dc to 100kHz	-78	85		dB
100kHz to 500kHz	-77	-80	—	dB
Signal-to-Noise Ratio				
(w/o distortion, -0.5dB)	75	00		-10
dc to 100kHz 100kHz to 500kHz	75 74	80 77	_	dB dB
Signal-to-Noise Ratio	/4		_	uD
(& distortion, -0.5dB)				
dc to 100kHz	74	80	-	dB
100kHz to 500kHz	73	78		dB
Spurious Free Dynamic Range	70	00		-10
dc to 100kHz 100 to 500kHz	78 77	86 83	_	dB dB
Two-tone Intermodulation		00	_	ub .
Distortion (fin = 100kHz,				
240kHz, fs=1MHz,				
-0.5dB)		-85	-	dB
Input Bandwidth (-3dB)				MHz
Small Signal (–20dB Input) Large Signal (0dB Input)	_	6 1.75	_	MHZ
Feedthrough Rejection		1.75		111112
$(f_{in} = 500 \text{kHz})$	_	87	_	dB
Overvoltage Recovery	-	1000	2000	ns
A/D Conversion Rate	1			MHz
Noise		250		μVrms
POWER REQUIREMENTS	5		·	
Power Supply Range				
+15V Supply	+14.25 -14.25	+15.0 15.0	+15.75 15.75	Volts Volts
 –15V Supply +5V Supply 	+4.75	+5.0	+5.25	Volts
Power Supply Current	14.70	10.0	10.20	Volto
+15V Supply	_	+62	+85	mA
-15V Supply	-	-80	-95	mA
+5V Supply	-	+140	+160	mA
Power Dissipation		2.8	3.3 ±0.02	Watts %FSR/%V
Power Supply Rejection		L	±0.02	/01-3FV %V
PHYSICAL/ENVIRONME	NTAL		r	
Oper. Temp. Range, Case			. 70	·~
ADS-941MC ADS-941ME	0		+70 +85	°C ℃
Storage Temperature	-+0	-	+00	
Range	-65	-	+150	°C
	32-pin, metal-sealed, ceramic TDIP			
		nin motal.	sealed cerr	amic LDIP
Package Type Weight	32-		ices (13 gra	

TECHNICAL NOTES

D'UTEL

- Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are not connected to each other internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- Bypass the analog and digital supplies and the +10V REF. OUT (pin 1) to ground with a 4.7μF, 25V tantalum electrolytic capacitor in parallel with a 0.1μF ceramic capacitor.
- CODING SELECT (pin 8) is compatible with CMOS/TTL logic levels for those users desiring logic control of this function. The device has an internal pull-up resistor on this pin, allowing pin 8 to be connected to +5V or left open when a logic 1 is needed. See the Calibration Procedure for selecting an output coding.
- To enable the three-state outputs, connect ENABLE (pin 9) to a logic "0" (low). To disable, connect pin 9 to a logic "1" (high).

Table 1. Input Connections

INPUT RANGE	INPUT PIN	TIE TOGETHER
0 to +10V	Pin 3	Pins 2 and 4
±5V	Pin 3	Pins 1 and 2

CALIBRATION PROCEDURE

 Connect the converter per Figure 3 and Table 1 for the appropriate input range. Apply a pulse of 50 nanoseconds minimum to START CONVERT (pin 32) at a rate of 200kHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

Apply a precision voltage reference source between ANALOG INPUT (pin 3) and SIGNAL GROUND (pin 4), then adjust the reference source output per Table 2.

INPUT	ZERO ADJUST	GAIN ADJUST
RANGE	+1/2 LSB	FS - 1 1/2 LSB
0 to +10V	+305µV	+9.999085V
±5V	+305µV	+4.999085V

Table 2. Zero and Gain Adjust

For bipolar operation, adjust the trimpot until the code flickers equally between 10 0000 0000 0000 and 10 0000 0000 0001 with pin 8 tied low (offset binary) or between 01 1111 1111 1111 and 01 1111 1111 1110 with pin 8 tied high (complementary offset binary).

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 2.

Adjust the gain trimpot until the output code flickers equally between 11 1111 1111 1110 and 11 1111 1111 1111 with pin 8 tied low for straight binary/offset binary or between 00 0000 0000 0000 and 00 0000 0000 0001 with pin 8 tied high for complementary binary/complementary offset binary.

Two's complement coding requires using pin 31. With pin 8 tied low, adjust the gain trimpot until the output code flickers equally between 01 1111 1111 1110 and 01 1111 1111 1111.

 To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ}$ C and -55 to $+125^{\circ}$ C. All room-temperature (TA = $+25^{\circ}$ C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electricallyinsulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

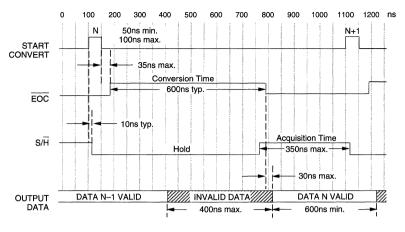


Figure 2. ADS-941 Timing Diagram

Removing System Errors

Use external potentiometers to remove system errors or to reduce the small initial errors to zero. Use a 100 Ω trimpot in series with the analog input for gain adjustment. Use a fixed 50 Ω resistor instead of the trimpot for operation without

adjustment. Use a $20k\Omega$ trimpot with the wiper tied to OFFSET ADJUST (pin 5) for zero/offset adjustment. Connect pin 5 to ANALOG GROUND (pin 6) for operation without zero/offset adjustment.

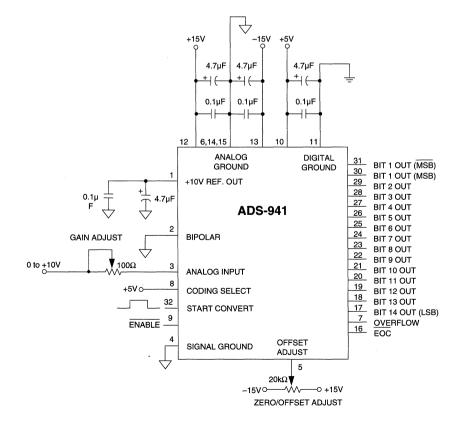


Figure 3. Typical ADS-941 Connection Diagram

1

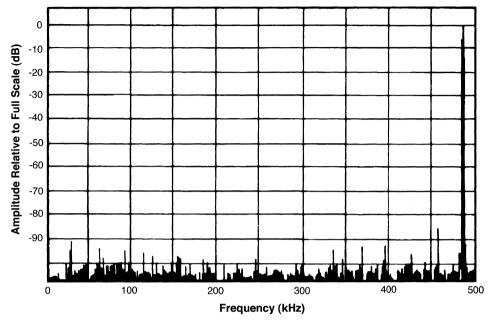
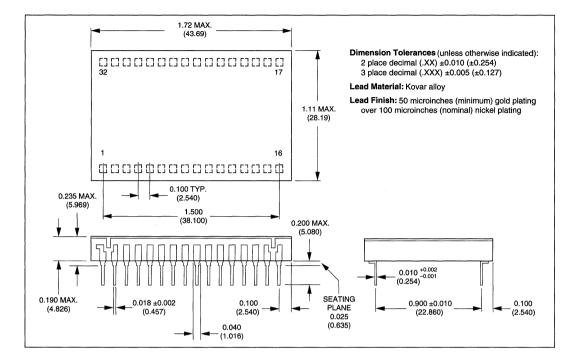



Figure 4. FFT Analysis of ADS-941 (fs = 1MHz, fin = 480kHz, Vin = -0.5dB, 4096 points)

Table 3. Output Coding

		STRAIGHT BIN.	COMP. BINARY			
UNIPOLAR SCALE	INPUT RANGE 0 to +10V	MSB LSB	OUTPUT CODING MSB LSB	MSB LSB	INPUT RANGE ±5V	BIPOLAR SCALE
+FS -1 LSB +7/8 FS +3/4 FS +1/2 FS +1/4 FS +1/8 FS +1 LSB	+9.999390 +8.750000 +7.500000 +5.000000 +2.500000 +1.250000	11 1111 1111 1111 11 1000 0000 0000 11 0000 0000 0000 10 0000 0000 0000 01 0000 0000 0000 00 1000 0000 0000 00 0000 0000 0000	00 1111 1111 1111 01 1111 1111 1111 10 1111 1111 1111	01 1111 1111 1111 01 1000 0000 0000 01 0000 0000 0000 00 0000 0000 0000 11 0000 0000 0000 10 1000 0000 0000 10 0000 0000 0001	+4.999390 +3.750000 +2.500000 -2.500000 -3.750000 -4.999390	+FS -1 LSB +3/4 FS +1/2 FS 0 -1/2 FS -3/4 FS -FS +1 LSB
0	+0.000610 0.000000	00 0000 0000 0001 00 0000 0000 0000 0FF. BINARY		10 0000 0000 0001 10 0000 0000 0000 TWO'S COMP.		-FS

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE			
ADS-941MC	0°C to +70°C			
ADS-941ME	-40°C to +85°C			
ACCESSORIES				
ADS-EVAL4	Evaluation Board (without ADS-941)			
HS-24	Heat Sink for all ADS-941 models			
Receptacles for PC board mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 32 required.				

FEATURES

- 14-Bit resolution
- 2MHz minimum throughput
- Functionally complete
- Internal reference and sample/hold
- –85dB total harmonic distortion
- 78dB signal-to-noise ratio
- · Full Nyquist-rate sampling
- Small 32-pin DIP
- Low-power, 2.9 Watts

GENERAL DESCRIPTION

DATEL's ADS-942 is a functionally complete, 14-bit, 2MHz, sampling A/D converter. Its standard, 32-pin, triple-wide ceramic DIP contains a fast-settling sample/hold amplifier, a 14-bit subranging (two-pass) A/D converter, a precision reference, three-state output register and all the timing and control logic necessary to operate from a single start convert pulse.

The ADS-942 is optimized for wideband frequency-domain applications and is fully FFT tested. The ADS-942 requires ±15V and +5V supplies and typically consumes 2.9 Watts.

INPUT/OUTPUT CONNECTIONS

		r	
PIN	FUNCTION	PIN	FUNCTION
1	+10V REF. OUT	32	START CONVERT
2	BIPOLAR	31	BIT 1 OUT (MSB)
3	ANALOG INPUT	30	BIT 1 OUT (MSB)
4	SIGNAL GROUND	29	BIT 2 OUT
5	OFFSET ADJUST	28	BIT 3 OUT
6	ANALOG GROUND	27	BIT 4 OUT
7	OVERFLOW	26	BIT 5 OUT
8	CODING SELECT	25	BIT 6 OUT
9	ENABLE	24	BIT 7 OUT
10	+5V SUPPLY	23	BIT 8 OUT
11	DIGITAL GROUND	22	BIT 9 OUT
12	+15V SUPPLY	21	BIT 10 OUT
13	-15V SUPPLY	20	BIT 11 OUT
14	ANALOG GROUND	19	BIT 12 OUT
15	ANALOG GROUND	18	BIT 13 OUT
16	EOC	17	BIT 14 OUT (LSB)

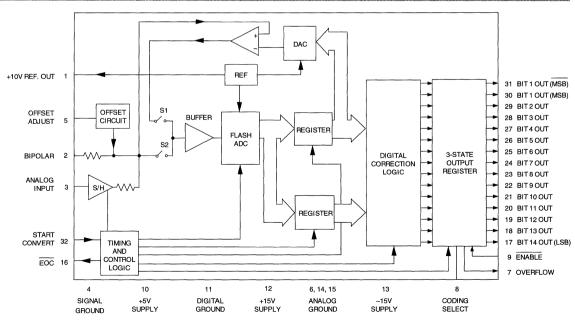


Figure 1. ADS-942 Functional Block Diagram

ADS-942 14-Bit, 2MHz あいろ

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS	
+15V Supply (Pin 12)	0 to +16	Volts	
-15V Supply (Pin 13)	0 to -16	Volts	
+5V Supply (Pin 10)	0 to +6	Volts	
Digital Inputs			
(Pins 8, 9, 32)	-0.3 to +V _{DD} +0.3	Volts	
Analog Input (Pin 3)	±15	Volts	
Lead Temp. (10 seconds)	300	°C	

FUNCTIONAL SPECIFICATIONS

 $(T_A = +25^{\circ}C, \pm V_{CC} = \pm 15V, +V_{DD} = +5V, 2MHz$ sampling rate, a minimum 7 minute warmup, unless otherwise specified.)

 4.9 +2.0 	0 to +10 ±5 5 7	 	Volts Volts kΩ pF
	±5 5	 15	Volts kΩ
	5	 15	kΩ
		15	
+2.0	7	15	рF
+2.0	_		
+2.0	_		
+2.0	_		
_			Volts
- 1		+0.8	Volts
	-	+5	μA
-		-600	μA
-	±1	±2	LSB
-			LSB
-	±2	±3	LSB
			1
			LSB
			LSB
-1	±1	+2.5	LSB
		0.400	
-			%FSR
_			%FSR
-	±0.45	±0.85	%FSR
	.0 OF	.0.100	%FSR
-			%FSR
-			%FSR
_	±0.2	±0.5	70FON
	+0.05	+0 122	%FSR
			%FSR
			%FSR
	10.2	10.0	
	+0.1	+0.2	%FSR
_			%FSR
_			%FSR
		2010	,
_	±0.018	±0.122	%
_			%
	±0.6	±0.8	%
	L		
	0 to ·	+70°C	
	-40 to	+85°C	
14 Bits			
		$\begin{array}{cccc} & \pm 1 \\ - & \pm 2 \\ - 0.75 & \pm 0.5 \\ - 0.95 & \pm 0.75 \\ - 1 & \pm 1 \\ - & \pm 0.12 \\ - & \pm 0.45 \\ - & \pm 0.12 \\ - & \pm 0.2 \\ - & \pm 0.1 \\ - & \pm 0.2 \\ - & \pm 0.1 \\ - & \pm 0.12 \\ - & \pm 0.12 \\ - & \pm 0.12 \\ - & \pm 0.6 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

① Same specification as In-Band Harmonics or Peak Harmonics.

Output Coding Straight Bin /Offset Bin /2's Comp. Comp. Bin /Comp. Offset Bin /2's Comp. Comp. Bin /Comp. Offset Bin /2's Comp. Logic 10° Comp. Bin /Comp. Diffset Bin /2's Comp. Diff Logic 10° - - +0.4 Volts Logic Loading '1" - - +0.4 Volts Logic Loading '1" - - +0.4 Volts Logic Loading '1" - - - +0.4 Wolts MA Logic Loading '1" - - - +0.4 Wolts MA MA Voltage, +25°C +9.98 +10.0 +10.02 Volts MA Pomm'C DYNAMIC PERFORMANCE - - - - 80 - 6 Signal-to-Noise Ratio - - - 80 - 6 B 100kHz to 500kHz 73 75 - dB B - 6 B 100kHz to 500kHz 73 78 - B B - 6 - B 100kHz to 500kHz 73 78 - B B - <td< th=""><th>OUTPUTS</th><th>MIN.</th><th>TYP.</th><th>MAX.</th><th>UNITS</th></td<>	OUTPUTS	MIN.	TYP.	MAX.	UNITS		
Logic 1°1 +0.4 Voits Logic Loading 1°1 +0.4 Woits Voits Logic Loading 1°1 +6.4 MA Internal Reference +9.98 +10.00 +10.02 Voits DYNAMIC PERFORMANCE - - 5 mA DYNAMIC PERFORMANCE - - 80 -75 dB 100kHz to 500kHz - - - 80 -75 dB 500kHz to 10MHz - - - 75 dB 500kHz to 10MHz - 60 -75 dB 500kHz to 10MHz - 73 75 - dB 100kHz to 500kHz 73 78 - dB 500kHz to 10MHz - 72 - dB 500kHz to 10MHz	Output Coding						
Logic '1" +2.4 +0.4 Volts Logic Loading '1" +0.4 Wolts Logic Loading '1" +0.4 Wolts Internal Reference +10.0 +10.02 Volts pmm"C Diff +13 ±30 pmm"C F Diff 6 0 dc to 100kHz 6 0 Signal-to-Noise Ratio 6 0 (wo distortion, -0.5dB) 6 6 Gand Listortion, -0.5dB) 6 6 (and distortion, -0.5dB) 73 78 6 folokhz to 500kHz 72 75 - 6 folokhz to 500kHz 72 75 - 6		Comp. Bin./Comp. Offset Bin./C2C					
Logic Loging '1' — — +0.4 Voltage, Loging '10' Logic Loading '10' — … — …		+2.4	_	_	Volts		
Logic Loading "0" — — +6.4 mA Internal Reference Voltage, +25°C +9.98 +10.00 +10.02 Volts Drift — ±13 ±30 ppm/"C External Current — — = 5 mA DYNAMIC PERFORMANCE — — — 85 — 6B 100kHz to 500kHz — — — — 76 dB Signal-to-Noise Ratio — — — 73 75 — dB 100kHz to 500kHz 73 75 — dB 500kHz to 10MHz — 72 — dB 100kHz to 500kHz 73 78 — dB 500kHz to 10MHz — 72 — dB 500kHz to 10MHz — 72 75 — dB 500kHz to 10MHz — 72 — dB 500kHz to 10MHz — 72 — dB 100 to 500kHz —	Logic "0"	-	—				
Internaï Reference +9.98 +10.0 +10.02 Volts ppm/°C Dritt - - 5 mA DYNAMIC PERFORMANCE - - 5 mA DYNAMIC PERFORMANCE - - - 6 0 Total Harm. Distort. (-0.5dB) dc to 100kHz - - -80 -75 dB Signal-t-Ohoise Ratio - - - 73 dB - (wo distortion, -0.5dB) dc to 100kHz 73 75 - dB - dB Signal-t-Ohoise Ratio - - 73 75 - dB GotoNHz 500kHz 73 78 - dB - 100kHz 500kHz 73 78 - dB - 100kHz 500kHz 73 78 - dB - 100kHz 500kHz - - - B - Signal (-0.00kHz - - -		-	-				
Voltage, +25°C +9.98 +10.0 +10.02 Voltas Drift - - - - - - - - mA DYNAMIC PERFORMANCE - - - - - - 6 - 76 dB 100kHz - - - - - - - 6 - 76 dB Signal-to-Noise Ratio - - - - 73 - dB 100kHz 050kHz 73 75 - dB - - dB - - dB - - B - - dB - - dB - - dB - - dB - - - B - - - - - - - - - - - - - - - - - - -		_	_	+6.4	mA		
Drift ±13 ±30 ppm/°C External Current 5 mA DYNAMIC PERFORMANCE Total Harm. Distort. (-0.5dB) dc to 100kHz -85 -76 dB 500kHz to 10MHz -80 -75 dB Signal-to-Noise Ratio 73 dB (wo distortion, -0.5dB) dc to 100kHz 74 78 dB Signal-to-Noise Ratio 73 dB (and distortion, -0.5dB) 73 dB (and distortion, -0.5dB) 75 dB 500kHz to 10MHz 72 75 dB 500kHz fot to 00kHz 78 dB 50 500kHz to 10MHz 75 dB 500kHz 100 to 500kHz 10Mtz 75 dB		+9.98	+10.0	+10.02	Volts		
DYNAMIC PERFORMANCE Total Harm. Distort. (-0.5dB) dc to 100kHz 85 -76 dB 100kHz to 500kHz 80 -75 dB Signal-to-Noise Ratio (wo distrition, -0.5dB) dc to 100kHz 74 78 dB 100kHz to 500kHz 73 75 dB SolkHz to 10MHz -73 75 dB SolkHz to 10MHz 73 78 dB 100kHz to 500kHz 73 78 dB 500kHz to 10MHz 72 75 dB 500kHz to 500kHz 86 -77 dB 100 to 500kHz 86 -77 dB 500kHz to 10MHz 77 dB 0.5dB 0 to 500kHz 77 dB 0.5dB 10 to 500kHz 77 dB 500kHz to 10MHz MHz 10		-					
Total Harm. Distort. (-0.5dB) dc to 100kHz 85 76 80 -77 -75 dB dB dB dB dB Signal-to-Noise Ratio (w/o distortion, -0.5dB) dc to 100kHz 74 78 dB Signal-to-Noise Ratio (w/o distortion, -0.5dB) dc to 100kHz 74 78 dB Signal-to-Noise Ratio (and distortion, -0.5dB) dc to 100kHz 73 75 dB Signal-to-Noise Ratio (and distortion, -0.5dB) dc to 100kHz 73 78 dB Signal-to-Noise Ratio (and distortion, -0.5dB) dB Spurious Free Dyn. Range © dc to 100kHz dB SolkHz to 1MHz -75 dB SolkHz to 1MHz dB Two-tone Intermodulation Distortion (in = 100kHz, 1 = 240kHz, 1s = 2.0MHz, dB Two-tone Intermodulation Distortion (in = 10kHz) MHz Stew Rate Aperture Delay Time Sinusoidal (fm = 1MHz) 1.75 MHz Step input	External Current			5	mA		
dc to 100kHz	DYNAMIC PERFORMANC	DYNAMIC PERFORMANCE					
100kHz to 500kHz							
500kHz to 1MHz -77 dB Signal-to-Noise Ratio (w/o distortion, -0.5dB) dc to 100kHz 74 78 dB 500kHz to 1MHz 73 75 dB 500kHz to 1MHz 73 75 dB 500kHz to 1MHz 73 75 dB fand distortion, -0.5dB) 75 dB fand distortion, -0.5dB dB dB founktz to 1MHz 72 dB dB 500kHz to 1MHz 76 dB 500kHz to 1MHz 86 77 dB 100 to 500kHz 86 dB Two-tone Intermodulation dB dB Signal (-0.5dB input) 1.75 MHz		_					
Signal-to-Noise Ratio (w/o distortion, -0.5dB) Image: response of the sector of the sect		_		-75			
dc to 100kHz 74 78 — dB 100kHz to 500kHz 73 75 — dB 500kHz to 1MHz — 73 75 — dB icand distortion, -0.5dB) — dB 100kHz fB dc to 100kHz 73 78 — dB 500kHz to 500kHz 72 75 — dB 500kHz to 100kHz — -86 -77 dB 100 to 500kHz — -81 -75 dB 500kHz to 1MHz — -81 -75 dB 100 to 500kHz 100kHz, — -78 — dB 100 to 500kHz 1 - 6 — MHz 240kHz, fs = 2.0MHz, — - 5 MHz Signal (-20dB input) — 6 — MHz Signal (-0.5dB input) — 1.75 — MHz Siew Rate — ±250 — V/µs <							
100kHz to 500kHz 73 75 — dB Signal-to-Noise Ratio (and distortion, -0.5dB) – 73 78 — dB dc to 100kHz 73 78 — dB 500kHz to 500kHz 72 75 — dB 500kHz to 10MHz 72 75 — dB 500kHz to 10MHz — -86 -77 dB 100 to 500kHz — -86 -77 dB 500kHz to 11MHz — -86 -77 dB 100 to 500kHz — -86 -77 dB 500kHz to 11MHz — -86 -77 dB 100 to 500kHz 10 Hz — -78 - dB Two-tone Intermodulation Distortion (fin = 100kHz, - - HZ 240kHz, fs = 2.0MHz, - 1.75 — MHz Stargal (-0.5dB input) - 1.75 — MHz Stargal (-0.5dB input) - 1.20 </th <th></th> <th></th> <th></th> <th></th> <th></th>							
500kHz to 1MHz 73 dB Signal-to-Noise Ratio (and distortion, -0.5dB) dc to 100kHz 73 78 dB 100kHz to 500kHz 72 75 dB 500kHz to 1MHz 72 75 dB Spurious Free Dyn. Range ① dc to 100kHz -86 -77 dB 500kHz to 1MHz -81 -75 dB 500kHz to 1MHz -86 -77 dB 500kHz to 1MHz -86 -77 dB 500kHz to 1MHz -86 -77 dB 500kHz to 1MHz dB Two-tone Intermodulation dB Distortion (fin = 100kHz, 1, 50 dB Signal (-20dB input) 6 MHz Large Signal (-0.5dB input) 1.75 - ps rms S/H Acq. Time, (to ±0.003%FSR) 20 <				_			
Signal-to-Noise Ratio (and distortion, -0.5dB) dc to 100kHz 73 78 dB 100kHz to 500kHz 72 75 dB 500kHz to 1MHz 72 75 dB 500kHz to 1MHz 72 dB ft 00tb foothtz RB 75 dB 500kHz to 1MHz 78 dB 100 to 500kHz RB 75 dB 500kHz to 1MHz RB dB Two-tone Intermodulation Distortion (fin = 100kHz, 240kHz, fs = 2.0MHz, dB Sinusoidal (-20dB input) 6 MHz Large Signal (-0.5dB input) 1.75 MHz Shew Rate ±250 V/µs Aperture Delay Time 1.20 1s ns <th></th> <th></th> <th></th> <th>_</th> <th></th>				_			
dc to 100kHz 73 78 — dB 100kHz to 500kHz 72 75 — dB 500kHz to 1MHz — 72 75 — dB dc to 100kHz 100 to 500kHz — -86 -777 dB 100 to 500kHz — -81 -755 dB 500kHz to 1MHz — -78 — dB 100 to 500kHz — -78 — dB 500kHz to 1MHz — -78 — dB 240kHz, fs = 2.0MHz, — -78 — dB -0.5dB) —85 — — dB Singlignal (-0.5dB input) — 1.75 MHz Aperture Delay Time — ±250 — V/µs Aperture Uncertainty — 120 150 ns Sinusoidal (fm = 1MHz) — 120 150 ns Sinusoidal (fm = 1MHz) — 2 — — MHz <			. •				
100kHz to 500kHz 72 75 — dB 500kHz to 1MHz — 72 — dB purious Free Dyn. Range ① — — 86 — 77 dB 100 to 500kHz — — 861 — 75 dB 500kHz to 10MHz — — 86 — 77 dB 100 to 500kHz — — — 86 — 77 dB 500kHz to 10MHz — — — 78 — dB 100 to 500kHz — — — 78 — dB 100 to 500kHz 5 … — — dB 100 to 500kHz 00kHz — 6 … MHz 200kHz 100 … … 1.75 … MHz Step input … … … … … 1.00 ns Step input … … …	(and distortion, -0.5dB)						
500kHz to 1MHz 72 dB Spurious Free Dyn. Range ① -86 -77 dB 100 to 500kHz -81 -75 dB 500kHz to 1MHz dB Two-tone Intermodulation dB Distortion (fin = 100kHz, 240kHz, fs = 2.0MHz, dB -0.5dB) dB Simusoidal (fon = 100kHz, 240kHz, fs = 2.0MHz, dB Simusoidal (fon = 100kHz, 240kHz, fs = 2.0MHz, MHz Large Signal (-0.5dB input) 1.75 WHz Shew Rate ±250 V/µs Aperture Delay Time ±250 WHz Sinusoidal (fin = 1MHz) 120 150 ns Sinusoidal (fin = 1MHz) 85 dB Overvoltage Recovery, ±12V							
Spurious Free Dyn. Range ① dc to 100kHz		/2		_			
dc to 100kHz			12		ub		
500kHz to 1MHz -78 dB Two-tone Intermodulation Distortion (in = 100kHz, 240kHz, fs = 2.0MHz, -0.5dB) dB Input Bandwidth (-3dB) 6 MHz Small Signal (-20dB input) 6 MHz Large Signal (-0.5dB input) 1.75 MHz Silew Rate ±250 V/µs Aperture Delay Time ±10 ns Aperture Uncertainty 120 150 ns Sinusoidal (fin = 1MHz) 120 150 ns Conversion Rate MHz MHz Situs bidal (fin = 1MHz) 2 MHz Step input 85 dB Overvoltage Recovery, ±12V 85 dB Noise 10000 2000 ns Power Supply Ranges +15.0 +15		_	-86		dB		
Two-tone Intermodulation Distortion (fin = 100kHz, 240kHz, fs = 2.0MHz, -0.5dB)		-		75			
Distortion (fin = 100kHz, 240kHz, fs = 2.0MHz, -0.5dB) 85 dB Input Bandwidth (-3dB) Small Signal (-20dB input) 6 MHz Large Signal (-20dB input) 6 MHz Stew Rate ±250 V/µs Aperture Delay Time ±250 V/µs Aperture Ducertainty 5 ps rms S/H Acq. Time, (to ±0.003%FSR) Sinusoidal (fin = 1MHz) 120 150 ns Step input 250 450 ns Goverson Rate MHz MHz Step input 1.3 MHz MHz Step input 1.3 MHz MHz Step input 1.3 MHz MHz Step input 1.425			-/8	_	aв		
240kHz, fs = 2.0MHz, -0.5dB) 85 dB Input Bandwidth (-3dB) 6 MHz Large Signal (-20dB input) 1.75 MHz Large Signal (-0.5dB input) 1.75 WHz Slew Rate ±250 V/µs Aperture Delay Time ±250 V/µs Aperture Delay Time 5 ps rms Sinusoidal (fin = 1MHz) 120 150 ns Step input 250 450 ns Conversion Rate MHz Step input 1.3 MHz Feedthrough Rejection 85 dB Overvoltage Recovery, ±12V 10000 2000 ns Noise 165 +5.75 Volts -15V Supply -14.25 -15.0 -15.75 Volts<							
Input Bandwidth (-3dB) Small Signal (-20dB input) Large Signal (-20dB input) — 6 — MHz Slew Rate — 1.75 — MHz Slew Rate — ±250 — V/µs Aperture Delay Time — — ±10 ns Aperture Dicertainty — — ±250 — V/µs Sinusoidal (fm = 1MHz) — 120 150 ns Sitep input — 2 — — MHz Sinusoidal (fm = 1MHz) 2 — — MHz Step input 1.3 — — MHz Step input 1.3 — — MHz Feedthrough Rejection (fm = 1MHz) — 85 — dB Overvoltage Recovery, ±12V — 1000 2000 ns Noise — ±4.75 +5.0 +5.25 Volts +for Supply +14.25 +15.0 +5.25 Volts +15V Supply							
Small Signal (-20dB input) Large Signal (-0.5dB input) 6 MHz MHz Large Signal (-0.5dB input) 1.75 MHz Slew Rate Aperture Delay Time Aperture Uncertainty ±250 V/µs Aperture Delay Time (to ±0.003%FSR) ±20 10 ns Sinusoidal (fin = 1MHz) 120 150 ns Sinusoidal (fin = 1MHz) 250 450 ns Conversion Rate MHz Sinusoidal (fin = 1MHz) 2 MHz Step input 1.3 MHz Feedthrough Rejection (fin = 1MHz) 85 dB Overvoltage Recovery, ±12V 10000 2000 ns Noise 14.25 +15.0 +15.75 Volts -5V Supply -14.25 +5.0 +5.25 Volts -15V Supply 465 +87 mA		-85	—	-	dB		
Large Signal (-0.5dB input) 1.75 MHz Slew Rate ±250 V/µs Aperture Delay Time ±250 V/µs Aperture Delay Time ±10 ns Aperture Uncertainty 5 ps rms Sinusoidal (fin = 1MHz) 120 150 ns Step input 250 450 ns Conversion Rate MHz MHz MHz Step input 1.3 MHz Feedthrough Rejection (fin = 1MHz) 85 dB Overvoltage Recovery, ±12V 10000 2000 ns Noise 15.0 +15.75 Volts -15V Supply -14.25 +15.0 +5.25 Volts -15V Supply -14.25 +15.0 +5.25 Volts Power Supply Currents 80 -9			e		MUA		
Siew Rate Aperture Delay Time Aperture Uncertainty	Large Signal (-0.5dB input)	_		_			
Aperture Uncertainty S/H Acq. Time, (to ±0.003%FSR) Sinusoidal (fin = 1MHz) - - 5 ps rms Sinusoidal (fin = 1MHz) Step input - 120 150 ns Conversion Rate - 250 450 ns Conversion Rate - 0 MHz Situsoidal (fin = 1MHz) 2 - - MHz Feedthrough Rejection (fin = 1MHz) - 85 - dB Overvoltage Recovery, ±12V - 1000 2000 ns Noise - 250 - µVrms POWER REQUIREMENTS - 15.75 Volts r-15V Supply +14.25 +15.0 +15.75 Volts -15V Supply -14.25 -15.0 -15.75 Volts Power Supply Currents +4.75 +5.0 +5.25 Volts +15V Supply - +65 +87 mA -15V Supply - 160 94/5W/W 96 98 Power Dissipation - <th></th> <th></th> <th></th> <th></th> <th></th>							
S/H Acq. Time, (to ±0.003%FSR) Sinusoidal (fm = 1MHz) 120 150 ns Situspinput 250 450 ns Conversion Rate 250 450 ns Situspinput 2 MHz Step input 1.3 MHz Feedthrough Rejection (fm = 1MHz) 85 dB Overvoltage Recovery, ±12V 1000 2000 ns Power Supply Ranges 15.0 -15.75 Volts +15V Supply +14.25 +15.0 +15.75 Volts Power Supply Currents - -80 -98 mA +15V Supply +150 +165 mA -15V Supply 80 -98 mA -15V Supply 165 mA MA -15V Supply +150 +165 mA -15V Supply -80 -98		-	-				
Sinusoidal (fin = 1MHz) 120 150 ns Step input 250 450 ns Conversion Rate 250 450 ns Sinusoidal (fin = 1MHz) 2 MHz Step input 1.3 MHz Feedthrough Rejection (fin = 1MHz) 85 dB Overvoltage Recovery, ±12V 1000 2000 ns Noise 250 µVrms POWER REQUIREMENTS 15.0 +15.75 Volts +15V Supply +14.25 +15.0 +15.75 Volts +5V Supply -14.25 +5.0 +5.25 Volts Power Supply Currents - - 80 -98 mA +5V Supply +65 +87 mA +5V Supply +150 +165 mA +5V Supply +150 +165				5	ps rms		
Step input 250 450 ns Conversion Rate Sinusoidal (fin = 1MHz) 2 MHz Step input 1.3 MHz Feedthrough Rejection (fin = 1MHz) 85 dB Overvoltage Recovery, ±12V Noise 250 µVrms POWER REQUIREMENTS 250 µVrms Power Supply Ranges +15V Supply +14.25 +15.0 +15.75 Volts -5V Supply -14.25 -15.0 -15.75 Volts +5V Supply -14.25 +5.0 +5.25 Volts +15V Supply -680 -98 mA +15V Supply +65 +87 mA -15V Supply 165 mA -15V Supply 165 mA -15V Supply 165 mA -15V Supply 165 mA Power Dissipation			120	150	ns		
Sinusoidal (fin = 1MHz) Step input 2 MHz Feedthrough Rejection (fin = 1MHz) 1.3 85 dB Overvoltage Recovery, ±12V 1000 2000 ns Noise 250 µVrms POWER REQUIREMENTS 250 µVrms POwer Supply Ranges +15V Supply +14.25 +15.0 +15.75 Volts -15.V Supply -14.25 -15.0 -15.75 Volts +5V Supply +44.75 +5.0 +5.25 Volts Power Supply Currents +15V Supply +65 +87 mA +15V Supply +150 +165 mA +5V Supply +80 -98 mA +5V Supply +150 +165 mA +5V Supply +80 -98 mA +5V Supply ±150 +165 mA Power Dissipation <th></th> <th></th> <th></th> <th></th> <th></th>							
Step input Feedthrough Rejection (fin = 1MHz) 1.3 MHz Overvoltage Recovery, ±12V Noise 85 dB Overvoltage Recovery, ±12V Noise 250 µVrms POWER REQUIREMENTS 250 µVrms Power Supply Ranges + 15V Supply +14.25 +15.0 +15.75 Volts -15V Supply -14.25 -15.0 -15.75 Volts +5V Supply +44.75 +5.0 +5.25 Volts Power Supply Currents +15V Supply +65 +87 mA +15V Supply +60 -98 mA +5V Supply +150 +165 mA +15V Supply +60 -98 mA +5V Supply +150 +165 mA Power Dissipation 2.9 3.4 Watts Power Supply Rejection - +0.02 %FSR%V PhysiccaL/ENVIRO							
Feedthrough Rejection (fin = 1MHz)			-	-			
(fin = TMHz) 85 dB Overvoltage Recovery, ±12V 1000 2000 ns Power Supply Ranges 250 µVrms Power Supply Ranges +14.25 +15.0 +15.75 Volts +15V Supply -14.25 -15.0 -15.75 Volts +5V Supply +44.75 +5.0 +5.25 Volts +5V Supply -80 -98 mA +15V Supply -80 -98 mA +5V Supply +150 +165 mA +5V Supply -80 -98 mA +5V Supply +150 +165 mA +5V Supply - 2.9 3.4 Watts Power Dissipation - - - ±0.02 %FSR%V PHYSICAL/ENVIRONMENTAL - +85 °C ADS-942ME -40 -		1.3	_	_	MITZ		
Overvoltage Recovery, ±12V Noise − 1000 250 2000 − ns µVrms POWER REQUIREMENTS Power Supply Ranges +15V Supply +14.25 -15.0 +15.75 +15.75 Volts -15.75 Volts -15.75 Volts +5V Supply -44.25 +5V Supply +5.0 +5.25 Volts Power Supply Currents +15V Supply − +65 +87 mA +15V Supply − +80 -98 mA +5V Supply − +150 +165 mA +5V Supply − +150 +165 mA +5V Supply − +150 +165 mA Power Dissipation − 2.9 3.4 Watts Power Supply Rejection − − ±0.02 %FSR%V PHYSICAL/ENVIRONMENTAL 0 − +70 °C ADS-942MC 0 − +85 °C ADS-942MC −40 − +85 °C Storage Temperature Ra		- 1	85	-	dB		
POWER REQUIREMENTS Power Supply Ranges +15V Supply +14.25 -15V Supply +15.0 -14.25 -15.0 +15.75 -15.0 Volts -15V Supply -14.25 +5V Supply -14.25 +5.0 -15.75 +5.25 Volts Power Supply Currents +15V Supply - +65 +87 mA -80 -98 mA +5V Supply -15V Supply - +80 -98 mA -15V Supply - +150 +165 mA Power Dissipation - 2.9 3.4 Watts Power Supply Rejection - - +0.02 %FSR%V PHYSICAL/ENVIRONMENTAL - -40 - +85 °C ADS-942MC 0 - +70 °C C ADS-942ME -40 - +85 °C °C Storage Temperature Range -65 - +150 °C Package Type 32-pin, metal-sealed, ceramic TDIP *	Overvoltage Recovery, ±12V	-	1000	2000	ns		
Power Supply Ranges +15V Supply +14.25 -15V Supply +14.25 -15.0 +15.75 -15.0 Volts -15V Supply -14.25 +5V Supply -15.0 -15.75 +5.0 Volts Power Supply Currents +15V Supply +65 +87 +87 mA -15V Supply +65 +87 +87 mA -15V Supply -80 -80 -98 mA +5V Supply +150 +165 mA Power Dissipation 2.9 3.4 Watts Power Supply Rejection ±0.02 %FSR%V PHYSICAL/ENVIRONMENTAL 0 +70 °C ADS-942MC 0 +85 °C Storage Temperature Range -40 +150 °C Package Type 32-pin, metal-sealed, ceramic TDIP *			250		μVrms		
+15V Supply +14.25 +15.0 +15.75 Volts -15V Supply -14.25 -15.0 -15.75 Volts +5V Supply +4.75 +5.0 -15.75 Volts Power Supply Currents -14.25 +5.0 +5.25 Volts +15V Supply - +65 +87 mA -15V Supply - +65 +87 mA -15V Supply - -80 -98 mA +5V Supply - +150 +165 mA Power Dissipation - 2.9 3.4 Watts Power Supply Rejection - - ±0.02 %FSR%/ PHYSICAL/ENVIRONMENTAL - - ±0.02 %FSR%/ ADS-942MC 0 - +70 °C ADS-942MC -40 - +85 °C Storage Temperature Range -65 - +150 °C Package Type 32-pin, metal-seal-d, ceramic TDIP °C °C		S					
−15V Supplý −14.25 −15.0 −15.75 Volts +5V Supply +4.75 +5.0 +5.25 Volts Power Supply Currents - - - 8.0 +15V Supply - +65 +87 mA -15V Supply - -80 -98 mA +5V Supply - +165 mA Power Dissipation - 2.9 3.4 Watts Power Supply Rejection - ±0.02 %FSR%V PHYSICAL/ENVIRONMENTAL - ±0.02 %FSR%V ADS-942ME 0 - +70 °C ADS-942ME -40 - +85 °C Storage Temperature Range -65 - +150 °C Package Type 32-pin, metal-seat-d, ceramic TDIP ************************************		14.05		15 75	Volta		
+5V Supply +4.75 +5.0 +5.25 Volts Power Supply Currents - +65 +87 mA +15V Supply - +65 +87 mA +15V Supply - -80 -98 mA +5V Supply - +150 +165 mA Power Dissipation - 2.9 3.4 Watts Power Supply Rejection - - ±0.02 %FSR%V PHYSICAL/ENVIRONMENTAL - +70 °C ADS-942MC 0 - +85 °C ADS-942ME -40 - +85 °C Storage Temperature Range -65 - +150 °C Package Type 32-pin, metal-seal=d, ceramic TDIP °C °C							
Power Supply Currents - +65 +87 mA +15V Supply - +65 +87 mA -15V Supply - -80 -98 mA +5V Supply - +150 +165 mA Power Dissipation - 2.9 3.4 Watts Power Supply Rejection - - ±0.02 %FSR%/ PHYSICAL/ENVIRONMENTAL - +70 °C ADS-942MC 0 - +85 °C ADS-942MC -40 - +85 °C Storage Temperature Range -65 - +150 °C Package Type 32-pin, metal-sealed, ceramic TDIP *							
−15V Supply − −80 −98 mA +5V Supply − +150 +165 mA Power Dissipation − 2.9 3.4 Watts Power Supply Rejection − − ±0.02 %FSR%V PHYSICAL/ENVIRONMENTAL − +700 °C ADS-942MC 0 − +70 °C ADS-942ME −40 − +85 °C Storage Temperature Range −65 − +150 °C Package Type 32-pin, metal-seal-d, ceramic TDIP − −	Power Supply Currents						
+5V Supply +150 +165 mA Power Dissipation 2.9 3.4 Watts Power Supply Rejection 2.9 3.4 Watts PHYSICAL/ENVIRONMENTAL ±0.02 %FSR%/v Operating Temp. Range, Case ADS-942MC 0 +70 °C ADS-942ME -40 +85 °C Storage Temperature Range -65 +150 °C Package Type 32-pin, metal-sealed, ceramic TDIP		-					
Power Dissipation Power Supply Rejection - 2.9 - 3.4 ±0.02 Watts %FSR%/ PHYSICAL/ENVIRONMENTAL *<							
Power Supply Rejection - - ±0.02 %FSR%V PHYSICAL/ENVIRONMENTAL 0 - +70 °C ADS-942MC 0 - +70 °C ADS-942ME -40 - +85 °C Storage Temperature Range -65 - +150 °C Package Type 32-pin, metal-sealed, ceramic TDIP - - -		_					
Operating Temp. Range, Case 0 +70 °C ADS-942MC 0 +85 °C ADS-942ME -40 +85 °C Storage Temperature Range -65 +150 °C Package Type 32-pin, metal-sealed, ceramic TDIP		-	-				
ADS-942MC 0 +70 °C ADS-942ME -40 +85 °C Storage Temperature Range -65 +150 °C Package Type 32-pin, metal-sealed, ceramic TDIP	PHYSICAL/ENVIRONME	NTAL		•	•		
ADS-942ME -40 +85 °C Storage Temperature Range -65 +150 °C Package Type 32-pin, metal-sealed, ceramic TDIP	Operating Temp. Range, Case						
Storage Temperature Range -65 +150 °C Package Type 32-pin, metal-sealed, ceramic TDIP			-				
Package Type 32-pin, metal-sealed, ceramic TDIP			-				
weight 0.46 ounces (13 grams)		I .					
	weight		U.46 ounce	is (13 gram	S)		

DATEL

ADS-942

TECHNICAL NOTES

- Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are not connected to each other internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- Bypass the analog and digital supplies and the +10V REF. OUT (pin 1) to ground with a 4.7μF, 25V tantalum electrolytic capacitor in parallel with a 0.1μF ceramic capacitor.
- CODING SELECT(pin 8) is compatible with CMOS/TTL logic levels for those users desiring logic control of this function. The device has an internal pull-up resistor on this pin, allowing pin 8 to be connected to +5V or left open when a logic 1 is needed. See the Calibration Procedure for selection of output coding.
- To enable the three-state outputs, connect ENABLE (pin 9) to a logic "0" (low). To disable, connect pin 9 to a logic "1" (high).

Table 1.	Input	Connections
----------	-------	-------------

INPUT RANGE	INPUT PIN	TIE TOGETHER
0 to +10V	Pin 3	Pins 2 and 4
±5V	Pin 3	Pins 1 and 2

CALIBRATION PROCEDURE

Connect the converter per Figure 3 and Table 1 for the appropriate input voltage range. Apply a pulse of 35 nanoseconds minimum to START CONVERT (pin 32) at a rate of 200kHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

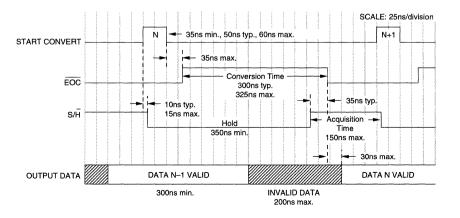
2. Zero Adjustments

Apply a precision voltage reference source between ANA-LOG INPUT (pin 3) and SIGNAL GROUND (pin 4), then adjust the reference source output per Table 2.

For bipolar operation, adjust the trimpot until the code flickers equally between 10 0000 0000 0000 and 10 0000 0000 0001 with pin 8 tied low (offset binary) or between 01 1111 1111 1111 and 01 1111 1111 1110 with pin 8 tied high (complementary offset binary).

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 2.


Table 2.	Zero an	d Gain	Adjust
----------	---------	--------	--------

INPUT	ZERO ADJUST	GAIN ADJUST
RANGE	+1/2 LSB	FS - 1 1/2 LSB
0 to +10V	+305µV	+9.999085V
±5V	+305µV	+4.999085V

Adjust the gain trimpot until the output code flickers equally between 11 1111 1111 1110 and 11 1111 1111 1111 with pin 8 tied low for straight binary/offset binary or between 00 0000 0000 0000 and 00 0000 0000 0001 with pin 8 tied high for complementary binary/complementary offset binary.

Two's complement coding requires using pin 31. With pin 8 tied low, adjust the gain trimpot until the output code flickers equally between 01 1111 1111 1110 and 01 1111 1111 1111.

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

Figure 2. ADS-942 Timing Diagram

ADS-942

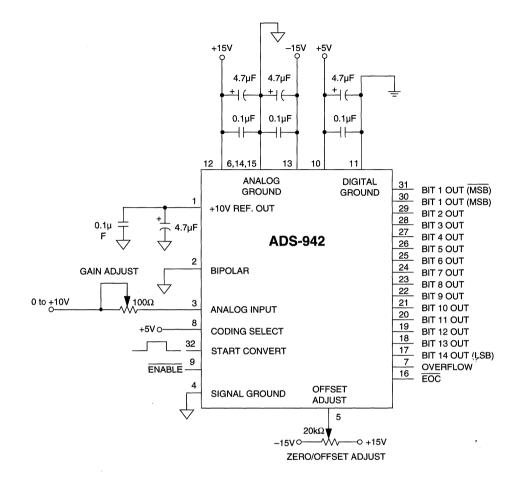


Figure 3. Typical ADS-942 Connection Diagram

Removing System Errors

Use external potentiometers to remove system errors or to reduce the small initial errors to zero. Use a 100 Ω trimpot in series with the analog input for gain adjustment. Use a fixed 50 Ω resistor instead of the trimpot for operation without adjustment. Use a 20k Ω trimpot with the wiper tied to OFFSET ADJUST (pin 5) for zero/offset adjustment. Connect pin 5 to ANALOG GROUND (pin 6) for operation without zero/offset adjustment.

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to + 125°C. All room-temperature (T_A = +25°C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electricallyinsulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

1

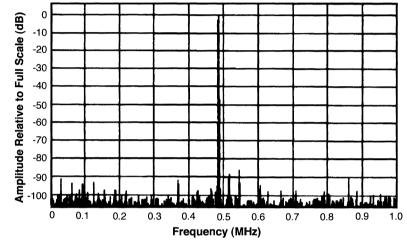
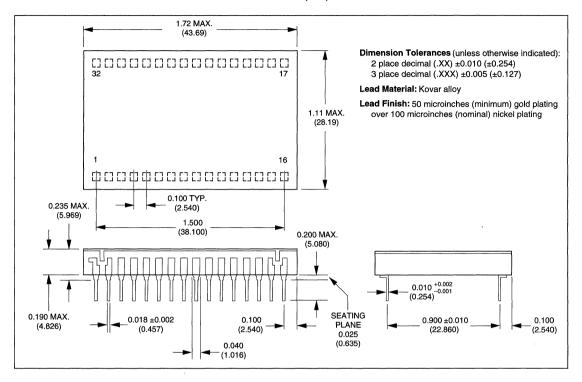


Figure 4. FFT Analysis of ADS-942 (f_s = 2MHz, f_{in} = 490kHz, V_{in} = -0.5dB, 4096 points)


Table 3. Output Coding

		STRAIGHT BIN.	COMP.	BINARY				
UNIPOLAR SCALE	INPUT RANGE 0 to +10V	MSB LSB		CODING	MSB	LSB	INPUT RANGE	BIPOLAR SCALE
+FS -1 LSB	+9.999390	11 1111 1111 1111		0000 0000	01 1111 1111		+4.999390	+FS -1 LSB
+7/8 FS	+8.750000	11 1000 0000 0000	00 0111	1111 1111	01 1000 0000	0000	+3.750000	+3/4 FS
+3/4 FS	+7.500000	11 0000 0000 0000	00 1111	1111 1111	01 0000 0000	0000	+2.500000	+1/2 FS
+1/2 FS	+5.000000	10 0000 0000 0000	01 1111	1111 1111	00 0000 0000	0000	0.000000	0
+1/4 FS	+2.500000	01 0000 0000 0000	10 1111	1111 1111	11 0000 0000	0000	-2.500000	-1/2 FS
+1/8 FS	+1.250000	00 1000 0000 0000	11 0111	1111 1111	10 1000 0000	0000 (-3.750000	-3/4 FS
+1 LSB	+0.000610	00 0000 0000 0001	11 1111	1111 1110	10 0000 0000	0001 (-4.999390	-FS +1 LSB
0	0.000000	00 0000 0000 0000	11 1111	1111 1111	10 0000 0000	0000	-5.000000	-FS
L	.	OFF. BINARY	COMP.	OFF. BIN.	TWO'S CC	MP.		

DATEL

MECHANICAL DIMENSIONS

INCHES (mm)

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE
ADS-942MC ADS-942ME	0°C to +70°C −40°C to +85°C
ACCESSORIES	
ADS-EVAL4 HS-24	Evaluation Board (without ADS-942) Heat Sink for all ADS-942 models
	ooard mounting can be ordered through AMP Inc., component Lead Socket), 32 required.

ADS-942A 14-Bit, 2MHz, Low-Power Sampling A/D Converters

FEATURES

- 14-Bit resolution
- · 2MHz minimum throughput
- · Low-power, 2.2 Watts
- · Functionally complete
- Internal reference and S/H amplifier
- · 78dB signal-to-noise ratio
- · Full Nyquist-rate sampling
- Small 32-pin TDIP

GENERAL DESCRIPTION

DATEL's ADS-942A is a functionally complete, 14-bit, 2MHz, sampling A/D converter. Packaged in a 32-pin TDIP, the unit contains a fast-settling sample/hold amplifier, a 14-bit subranging (two-pass) A/D converter, a precision reference, three-state output register, and all the timing/control logic necessary to operate from a single start convert pulse.

The ADS-942A is optimized for wideband frequency-domain applications and is fully FFT tested. The ADS-942A requires \pm 15V and \pm 5V supplies and typically consumes 2.2 Watts.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	+10V REF. OUT	32	START CONVERT
2	BIPOLAR	31	BIT 1 OUT (MSB)
3	ANALOG INPUT	30	BIT 1 OUT (MSB)
4	SIGNAL GROUND	29	BIT 2 OUT
5	OFFSET ADJUST	28	BIT 3 OUT
6	ANALOG GROUND	27	BIT 4 OUT
7	OVERFLOW	26	BIT 5 OUT
8	CODING SELECT	25	BIT 6 OUT
9	ENABLE	24	BIT 7 OUT
10	+5V SUPPLY	23	BIT 8 OUT
11	DIGITAL GROUND	22	BIT 9 OUT
12	+15V SUPPLY	21	BIT 10 OUT
13	-15V SUPPLY	20	BIT 11 OUT
14	-5V SUPPLY	19	BIT 12 OUT
15	ANALOG GROUND	18	BIT 13 OUT
16	EOC	17	BIT 14 OUT (LSB)

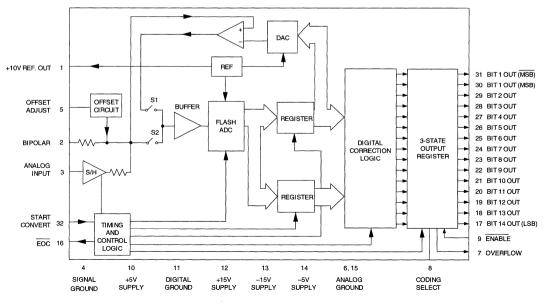


Figure 1. ADS-942A Functional Block Diagram

DATEL

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS	
+15V Supply (Pin 12)	0 to +16	Volts	
-15V Supply (Pin 13)	0 to -16	Volts	
+5V Supply (Pin 10)	0 to +6	Volts	
-5V Supply (Pin 14)	0 to6	Volts	
Digital Inputs			
(Pins 8, 9, 32)	-0.3 to +V _{DD} +0.3	Volts	
Analog Input (Pin 3)	±15	Volts	
Lead Temp. (10 seconds)	300	°C	

FUNCTIONAL SPECIFICATIONS

 $(T_A = +25^{\circ}C, \pm V_{CC} = \pm 15V, \pm V_{DD} = \pm 5V, 2MHz$ sampling rate, a minimum 7 minute warmup, unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range Unipolar Bipolar Input Impedance Input Capacitance	 2.3 	0 to +10 ±5 2.5 7		Volts Volts kΩ pF
DIGITAL INPUTS	L			
Logic Levels Logic "1" Logic "0" Logic Loading "1" Logic Loading "0"	+2.0 	 	+0.8 +10 -600	Volts Volts μΑ μΑ
PERFORMANCE				
Integral Non–Linearity +25°C 0 to +70°C -40 to +85°C		±1 ±1 ±2	±2 ±2 ±3	LSB LSB LSB
Differential Non–Linearity +25°C 0 to +70°C −40 to +85°C	 0.95 1	±0.5 ±0.75 ±1	±0.75 +0.95 +2.5	LSB LSB LSB
Full Scale Absolute Accuracy +25°C 0 to +70°C -40 to +85°C		±0.1 ±0.12 ±0.45	±0.122 ±0.36 ±0.85	%FSR %FSR %FSR
Unipolar Zero Error +25°C 0 to +70°C -40 to +85°C		±0.05 ±0.1 ±0.2	±0.122 ±0.2 ±0.3	%FSR %FSR %FSR
Bipolar Zero Error +25°C 0 to +70°C -40 to +85°C		±0.05 ±0.1 ±0.2	±0.122 ±0.2 ±0.3	%FSR %FSR %FSR
Bipolar Offset Error +25°C 0 to +70°C -40 to +85°C	 	±0.1 ±0.12 ±0.5	±0.2 ±0.3 ±0.8	%FSR %FSR %FSR
Gain Error +25°C 0 to +70°C -40 to +85°C		±0.018 ±0.12 ±0.6	±0.122 ±0.3 ±0.8	% % %
No Missing Codes (fin = 500kHz) 14 Bits 13 Bits Resolution		-40 t	+70°C o +85°C I Bits	

① Effective Bits is equal to:

(SNR + Distortion) - 1.76 +	20 100	Full Scale Amplitude
(SNR + Distortion) ~ 1.76 +	20 109	Actual Input Amplitude

6.02

Same specification as In-Band Harmonics and Peak Harmonics.
 Two-tone Intermodulation Distortion (IMD) conditions:

 $f_{in} = 100$ kHz, 240kHz, $f_s = 2$ MHz, -0.5dB

OUTPUTS	MIN.	TYP.	MAX.	UNITS
Output Coding			et Bin./2's (b. Offset Bir	
Logic Levels	·		. Onset bil	
Logic "1" Logic "0"	+2.4	_	+0.4	Volts Volts
Logic Loading "1"	_ i	-	-160	μA
Logic Loading "0" Internal Reference	-	-	+6.4	mA
Voltage, +25°C	+9.98	+10.0	+10.02	Volts
Drift	—	±13	±30	ppm/°C
External Current			5	mA
DYNAMIC PERFORMAN Total Harm. Distort. (-0.5dB)	CE	[r
dc to 100kHz	_	85	-76	dB
100kHz to 500kHz		-80	-75	dB
500kHz to 1MHz Signal-to-Noise Ratio		-77		dB
(w/o distortion, -0.5dB)			1	
dc to 100kHz	74	78		dB
100kHz to 500kHz 500kHz to 1MHz	73	75 73	_	dB dB
Signal-to-Noise Ratio				
(and distortion, –0.5dB) dc to 100kHz	73	78		dB
100kHz to 500kHz	72	75		dB
500kHz to 1MHz		72	-	dB
Spurious Free Dyn. Range @ dc to 100kHz		-86	-77	dB
100 to 500kHz	_	81	-75	dB
500kHz to 1MHz	_	-78	-	dB
Two-tone IMD ③ Input Bandwidth (-3dB)		85		dB
Small Signal (-20dB input)		6		MHz
Large Signal (-0.5dB input) Slew Rate	_	1.75 ±250	_	MHz V/µs
Aperture Delay Time	=	==_	±10	ns
Aperture Uncertainty		-	5	ps, rms
S/H Acq. Time, (to ±0.003%FSR) Sinusoidal (fin = 1MHz)	_	_	150	ns
Step input (10V)	_	250	450	ns
Conversion Rate Sinusoidal (fin = 1MHz)	2	_	_	MHz
Step input	1.3	_	_	MHz
Feedthrough Rejection				in
(fin = 1MHz) Overvoltage Recovery, ±12V	_	85 1000	2000	dB ns
Noise	—	250		μVrms
POWER REQUIREMENT	s			
Power Supply Ranges +15V Supply	14.05	+15.0	.15 75	Volts
-15V Supply	+14.25 14.25	-15.0	+15.75 -15.75	Volts
+5V Supply	+4.75	+5.0	+5.25	Volts
-5V Supply Power Supply Currents	-4.75	-5.0	-5.25	Volts
+15V Supply	_	+65	+80	mA
-15V Supply	-	-19	-35	mA
+5V Supply -5V Supply		+150 55	+175 65	mA mA
Power Dissipation	-	2.2	2.6	Watts
Power Supply Rejection	I		±0.03	%FSR/%V
PHYSICAL/ENVIRONME		r		·
Operating Temp. Range, Case ADS-942AMC	0	_	+70	°C
ADS-942AME	-40	—	+85	°C
Storage Temperature Range	65		+150	°C
Package Type	32-pi		aled, ceram	
Weight		0.46 OUNC	es (13 gram	s)

TECHNICAL NOTES

±5V

- Rated performance requires using good high-frequency circuit board layout techniques. Connect the digital and analog grounds to one point, the analog ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies. SIGNAL GROUND (pin 4) is not internally connected to ANALOG GROUND (pin 6, 15).
- Bypass the analog and digital supplies and the +10V REF. OUT (pin 1) to ground with a 4.7µF, 25V tantalum electrolytic capacitor in parallel with a 0.1µF ceramic capacitor.
- CODING SELECT(pin 8) is compatible with CMOS/TTL logic levels for those users desiring logic control of this function. There is an internal pull-up resistor on this pin; connect to +5V or leave open for logic 1. See the Calibration Procedure for selecting an output coding.
- To enable the three-state outputs, connect ENABLE (pin 9) to a logic "0" (low). To disable, connect pin 9 to a logic "1" (high).
- OVERFLOW (pin 7) changes from low (logic "0") to high (logic "1") when the input voltage exceeds the input voltage range limits by 1LSB (610µV).

NPUT RANGE	INPUT PIN	TIE TOGETHER			
0 to +10V	Pin 3	Pins 2 and 4			

Pins 1 and 2

Pin 3

Table 1. Input Connections

CALIBRATION PROCEDURE

 Connect the converter per Figure 3 and Table 1 for the appropriate input voltage range. Apply a pulse of 35 nanoseconds minimum to START CONVERT (pin 32) at a rate of 200kHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

Table 2. Zero and Gain Adjus	Tabl	e 2.	Zero	and	Gain	Ad	just
------------------------------	------	------	------	-----	------	----	------

INPUT	ZERO ADJUST	GAIN ADJUST
RANGE	+1/2 LSB	FS - 1 1/2 LSB
0 to +10V	+305μV	+9.999085V
±5V	+305μV	+4.999085V

2. Zero Adjustments

Apply a precision voltage reference source between ANALOG INPUT (pin 3) and SIGNAL GROUND (pin 4), then adjust the reference source output per Table 2.

For bipolar operation, adjust the trimpot until the code flickers equally between 10 0000 0000 0000 and 10 0000 0000 0001 with pin 8 tied low (offset binary) or between 01 1111 1111 and 01 1111 1111 1110 with pin 8 tied high (complementary offset binary).

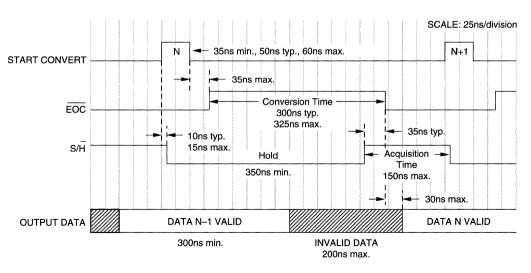


Figure 2. ADS-942A Timing Diagram

3. Full-Scale (Gain) Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 2.

Adjust the gain trimpot until the output code flickers equally between 11 1111 1111 and 11 1111 1111 1111 with pin 8 tied low (straight binary/offset binary) or between 00 0000 0000 0000 and 00 0000 0001 with pin 8 tied high (complementary binary/complementary offset binary). Two's complement coding requires using pin 31 (MSB). With pin 8 tied low, adjust the gain trimpot until the output code flickers equally between 01 1111 1111 1110 and 01 1111 1111 1111.

 To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

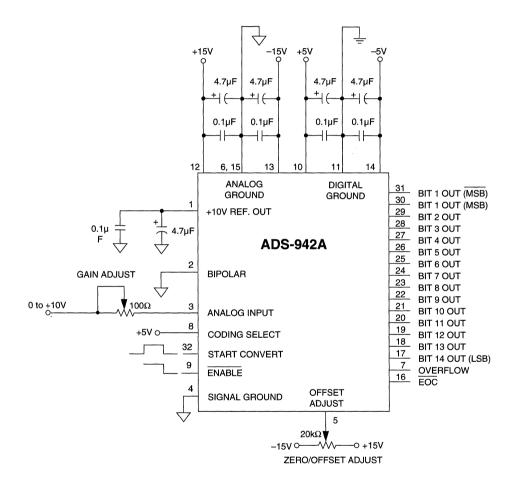


Figure 3. ADS-942A Connection Diagram (Unipolar Input)

Use external trimpots to remove system errors or to reduce small initial errors to zero. Use a 100Ω trimpot in series with the analog input for gain adjustment; use a fixed 50Ω resistor in its place for operation without adjustment.

Use a $20k\Omega$ trimpot with the wiper tied to OFFSET ADJUST (pin 5) for zero/offset adjustment. Connect pin 5 to ANALOG GROUND (pin 6) for operation without zero/offset adjustment.

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ}$ C and -55 to $+125^{\circ}$ C. All room-temperature (T_A = $+25^{\circ}$ C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

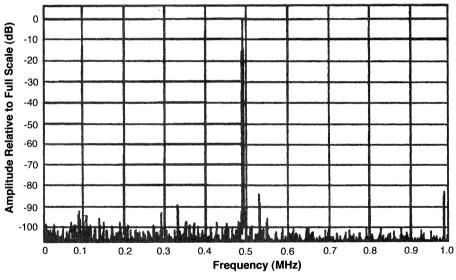
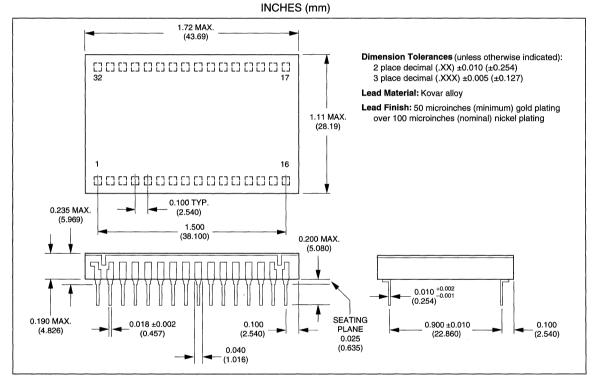



Figure 4. FFT Analysis of ADS-942A ($f_s = 2MHz$, $f_{in} = 490kHz$, $V_{in} = -0.5dB$, 4096 points)

Table 3. Output Coding						
		STRAIGHT BIN.	COMP. BINARY			
	INPUT VOLTAGE 0 to +10V	MSB LSB	OUTPUT CODING	MSB LSB	INPUT VOLTAGE ±5V	BIPOLAR SCALE
+FS -1 LSB +7/8 FS +3/4 FS +1/2 FS +1/4 FS +1/4 FS +1 LSB 0	+9.999390 +8.750000 +7.500000 +5.000000 +2.500000 +1.250000 +0.000610 0.000000	11 0000 0000 0000 10 0000 0000 0000 01 0000 0000 0000 00 1000 0000 0000 00 0000 0000 0001	00 0000 0000 0000 00 0111 1111 1111 01 1111 1111 1111 01 1111 1111 1111 10 1111 1111 1111 10 1111 1111 1111 11 1111 1111 1111 11 1111 1111 1111 11 1111 1111 1110 11 1111 1111 1111 11 1111 1111 1111	01 1111 1111 1111 01 1000 0000 0000 01 0000 0000 0000 00 0000 0000 0000 11 0000 0000 0000 10 1000 0000 0000 10 0000 0000 0001 10 0000 0000 0000	+4.999390 +3.750000 +2.500000 -2.500000 -3.750000 -4.999390 -5.00000	+FS -1LSB +3/4FS +1/2FS 0 -1/2FS -3/4FS -FS +1LSB -FS
0	0.000000	OFF. BINARY	COMP. OFF. BIN.	TWO'S COMP.	-5.000000	13

MECHANICAL DIMENSIONS

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE		
ADS-942AMC ADS-942AME	0 to +70°C −40 to +85°C		
ACCESSORIES			
ADS-EVAL4 HS-32	Evaluation Board (without ADS-942) Heat Sink for all ADS-942 models		
Receptacle for PC board mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 32 required.			

FEATURES

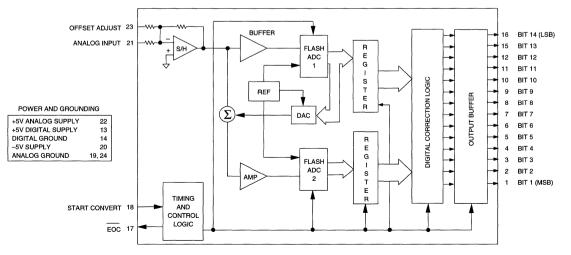
- 14-Bit resolution
- 3MHz minimum sampling rate
- · Ideal for both frequency and time-domain applications
- Excellent peak harmonics, –85dB
- Excellent signal-to-noise ratio, 79dB
- · No missing codes over full military temperature range
- ±5V supplies, 1.8 Watts
- Small, 24-pin ceramic DDIP
- Low cost

GENERAL DESCRIPTION

The low-cost ADS-943 is a 14-bit, 3MHz sampling A/D converter optimized to meet the demanding dynamic-range and sampling-rate requirements of contemporary digital telecommunications applications. The ADS-943's outstanding dynamic performance is evidenced by a peak harmonic specification of –85dB and a signal-to-noise ratio (SNR) of 79dB. Additionally, the ADS-943 easily achieves the 2.2MHz minimum sampling rate required by digital receivers in certain ADSL, HDSL and ATM applications. The ADS-943 also addresses size and power constraints normally associated with these types of applications. This device requires just ±5V supplies, dissipates 1.8 Watts, and is packaged in a very small 24-pin DDIP.

Although optimized for frequency-domain applications, the ADS-943's DNL and noise specifications are also outstanding, thereby making it an equally impressive device for time-domain applications (graphic and medical imaging, process control, etc.). In fact, the ADS-943 guarantees no missing codes to the 14-bit level over the full military operating temperature range.

The functionally complete ADS-943 contains a fast-settling sample-hold amplifier, a subranging (two-pass) A/D converter, an internal reference, timing/control logic, and error-correction circuitry. Digital input and output levels are TTL. The unit is



INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 (MSB)	24	ANALOG GROUND
2	BIT 2	23	OFFSET ADJUST
3	BIT 3	22	+5V ANALOG SUPPLY
4	BIT 4	21	ANALOG INPUT
5	BIT 5	20	-5V SUPPLY
6	BIT 6	19	ANALOG GROUND
7	BIT 7	18	START CONVERT
8	BIT 8	17	EOC
9	BIT 9	16	BIT 14 (LSB)
10	BIT 10	15	BIT 13
11	BIT 11	14	DIGITAL GROUND
12	BIT 12	13	+5V DIGITAL SUPPLY

edge-triggered, requiring only the rising edge of a start convert pulse to initiate a conversion.

The device is offered with a bipolar input range of ±2V. Models are available for use in either commercial (0 to +70°C) or military (-55 to +125°C) operating temperature ranges. A proprietary, auto-calibrating, error-correcting circuit allows the device to achieve specified performance over the full military temperature range.

Figure 1. ADS-943 Functional Block Diagram

「「「

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS		
+5V Supply (Pins 13, 22)	0 to +6	Volts		
-5V Supply (Pin 20)	0 to6	Volts		
Digital Input (Pin 18)	-0.3 to +V _{DD} +0.3	Volts		
Analog Input (Pin 21)	±5	Volts		
Lead Temp. (10 seconds)	300	°C		

FUNCTIONAL SPECIFICATIONS

 $(T_A = +25^{\circ}C, \pm V_{DD} = \pm 5V, 3MHz$ sampling rate, and a minimum 3 minute warmup $^{\odot}$ unless otherwise specified.)

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN. TYP. MAX. UNIT							
Operating Temp. Range, Case								
ADS-943MC	0	_	+70	°C				
ADS-943MM	-55		+125	°C				
Thermal Impedance								
θjc	6 — °C/M							
θca	_	23	_	°C/Watt				
Storage Temperature Range	-65		+150	°C				
Package Type	24-pin, metal-sealed, ceramic DDIP							
Weight		0.42 ounce	es (12 gram	s)				

		+25°C			0 to +70°	°C	5	5 to +12	5°C	
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range @		±2	_	_	±2	_		±2	_	Volts
Input Resistance	_	300			300	_		300		Ω
Input Capacitance		6	15		6	15		6	15	pF
DIGITAL INPUTS	1		1			1.15			15	Pi
	T					1		1	11	
Logic Levels Logic "1"	+2.0			+2.0	_		+2.0			Volts
	+2.0		+0.8	+2.0	_		+2.0	-	+0.8	Volts
	-	-		_	-	+0.8		-		
Logic Loading "1"	-	_	+20	-	-	+20		-	+20	μA
Logic Loading "0"			-20	_		-20		-	-20	μA
Start Convert Positive Pulse Width ³		150	-	-	150	-		150	-	ns
STATIC PERFORMANCE										
Resolution	-	14	-		14	-		14	-	Bits
Integral Nonlinearity (fin = 10kHz)	-	±0.75	-	-	±0.75	-	—	±1		LSB
Differential Nonlinearity (fin = 10kHz)	-0.95	±0.5	+1.25	-0.95	±0.5	+1.25	-0.95	±0.5	+1.5	LSB
Full Scale Absolute Accuracy	-	±0.15	±0.4	_	±0.15	±0.4	_	±0.4	±0.8	%FSR
Bipolar Zero Error (Tech Note 2)	-	±0.1	±0.3	-	±0.1	±0.3		±0.3	±0.6	%FSR
Gain Error (Tech Note 2)	-	±0.2	±0.4	-	±0.2	±0.4		±0.4	±1.5	%
No Missing Codes (f _{in} = 10kHz)	14	-	-	14	-	-	14		-	Bits
DYNAMIC PERFORMANCE										
Peak Harmonics (-0.5dB)	T									
dc to 500kHz	- 1	85	-78		-85	-77		81	-74	dB
500kHz to 1MHz	1 -	-80	-74		-80	-74		-77	-70	dB
1MHz to 1.5MHz		-79	-73		-79	-73	_	-73	68	dB
Total Harmonic Distortion (-0.5dB)										
dc to 500kHz	_	83	-76	_	-83	-75	_	-78	-72	dB
500kHz to 1MHz	1 _	-78	-72		-78	-72		-74	-68	dB
1MHz to 1.5MHz		-77	-71		-77	-71	_	-71	-66	dB
Signal-to-Noise Ratio			1 1		1 11	1 1			00	uD
(w/o distortion, -0.5dB)										
dc to 500kHz	75	79		75	79		73	76		dB
500kHz to 1MHz	75	79	_	75	79	_	73	76	_	dB
	75	79	-	75	79	-	73	76	-	dВ
1MHz to 1.5MHz	13	/0		/3	/0	_	12	/0	-	UD
Signal-to-Noise Ratio										
(& distortion, -0.5dB)	70			70	75		70	74		-10
dc to 500kHz	72	75	-	72	75		70	74	-	dB
500kHz to 1MHz	71	75	-	71	75	-	68	72	-	dB
1MHz to 1.5MHz	70	74	-	70	74	-	66	70	-	dB
Noise	-	150		- 1	150		-	150	-	μVrms
Two-tone Intermodulation		1						1		
Distortion (f _{in} = 975kHz,										
1.2MHz, $f_s = 3MHz$,	1					1				
-0.5dB)	-	82	-	-	-82	-	- 1	-82	-	dB
Input Bandwidth (-3dB)			Ì							
Small Signal (-20dB input)	-	30	-	-	30	-		30	-	MHz
Large Signal (-0dB input)		10	-	- 1	10	-	-	10	-	MHz
Feedthrough Rejection (fin = 1.5MHz)	-	85	-		85	-	_	85	-	dB
Slew Rate	1 -	±400	-	_	±400	- 1	-	±400	-	V/µs
Aperture Delay Time	-	+5	_	-	+5	-	-	+5	_	ns
Aperture Uncertainty	- 1	2	_	- 1	2	_	- 1	2	-	ps rms
S/H Acquisition Time	1							_	1	
(to ±0.003%FSR, 4V step)	-	228	235	- 1	228	235	- 1	228	235	ns
Overvoltage Recovery Time (5)		100	333	_	100	333		100	333	ns
A/D Conversion Rate	3			3			3		-	MHz
	1 0		1	1 0		1	L			IVIT1Z

1-136 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

+25°C 0 to +70°C –55 to +125°C										
DIGITAL OUTPUTS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Logic Levels										
Logic "1"	+2.4		_	+2.4		-	+2.4	_		Volts
Logic "0"			+0.4		-	+0.4	-	-	+0.4	Volts
Logic Loading "1"	-		-4	-	-	-4		-	-4	mA
Logic Loading "0"			+4			+4			+4	mA
Output Coding		Offset Binary								
POWER REQUIREMENTS										
Power Supply Ranges (6)										
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.9	+5.0	+5.25	Volts
-5V Supply	-4.75	-5.0	-5.25	-4.75	-5.0	-5.25	-4.9	-5.0	-5.25	Volts
Power Supply Currents										
+5V Supply	1 -	+220	+260		+220	+260		+220	+260	mA
–5V Supply	-	-110	-130	-	-110	-130	-	-110	-130	mA
Power Dissipation		1.8	2	-	1.8	2	- 1	1.8	2	Watts
i ener Biccipation			±0.1			±0.1			±0.1	%FSR/%V

6.02

- ⑤ This is the time required before the A/D output data is valid once the analog input is back within the specified range. This time is only guaranteed if the input does not exceed ±2.2V.
- The minimum supply voltages of +4.9V and -4.9V for ±V_{DD} are required for -55°C operation only. The minimum limits are +4.75V and -4.75V when operating at +125°C.

TECHNICAL NOTES

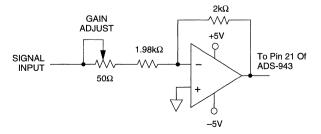
continuously converting during this time.

2 Contact DATEL for other input voltage ranges.

rate, wider start convert pulses can be used.

③ A 150ns wide start convert pulse is used for all production testing. For applications requiring less than a 3MHz sampling

 Obtaining fully specified performance from the ADS-943 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19 and 24) directly to a large *analog* ground plane beneath the package.


Bypass all power supplies to ground with 4.7μ F tantalum capacitors in parallel with 0.1μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible.

2. The ADS-943 achieves its specified accuracies without the need for external calibration. If required, the device's small

initial offset and gain errors can be reduced to zero using the adjustment circuitry shown in Figures 2 and 3.

When using this circuitry, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.

- Applying a <u>start</u> convert pulse while a conversion is in progress (EOC = logic "1") will initiate a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid.
- 4. A passive bandpass filter is used at the input of the A/D for all production testing.

Figure 2. Optional ADS-943 Gain Adjust Calibration Circuit

CALIBRATION PROCEDURE

(Refer to Figures 2 and 3 and Tables 1 and 2)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuits in Figures 2 and 3 are guaranteed to compensate for the ADS-943's initial accuracy errors and may not be able to compensate for additional system errors.

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

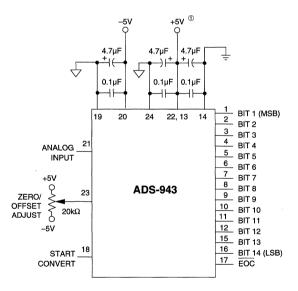
Offset adjusting for the ADS-943 is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is +1/2LSB ($+122\mu$ V).

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 1/2 LSB's (+1.99963V).

Zero/Offset Adjust Procedure

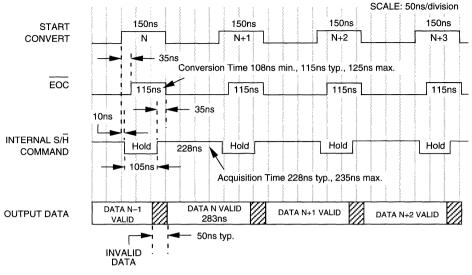
- 1. Apply a train of pulses to the START CONVERT input (pin 18) so the converter is continuously converting.
- 2. Apply +122µV to the ANALOG INPUT (pin 21).
- 3. Adjust the offset potentiometer until the output bits are 1000 0000 00000 and the LSB flickers between 0 and 1.

Table 1. Gain and Zero Adjust


INPUT VOLTAGE	ZERO ADJUST	GAIN ADJUST			
RANGE	+1/2 LSB	+FS-1 1/2 LSB			
±2V	+122µV				

Gain Adjust Procedure

- 1. Apply +1.99963V to the ANALOG INPUT (pin 21).
- 2. Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between 1 and 0.
- 3. To confirm proper operation of the device, vary the input signal to obtain the output coding listed in Table 2.


Table 2. Output Coding for Bipolar Operation	Output Coding for Bipolar Operation	'n
--	-------------------------------------	----

BIPOLAR SCALE	INPUT VOLTAGE (±2V RANGE)	OFFSET BINARY MSB LSB
+FS –1 LSB	+1.99976	11 1111 1111 1111
+3/4 FS	+1.50000	11 1000 0000 0000
+1/2 FS	+1.00000	11 0000 0000 0000
0	0.00000	10 0000 0000 0000
–1/2 FS	-1.00000	01 0000 0000 0000
–3/4 FS	-1.50000	00 1000 0000 0000
–FS +1 LSB	-1.99976	00 0000 0000 0001
–FS	-2.00000	00 0000 0000 0000

① A single +5V supply should be used for both the +5V analog and +5V digital. If separate supplies are used, the difference between the two cannot exceed 100mV.

Figure 3. Connection Diagram

Notes:

1. Scale is 50ns/division, sampling rate = 3MHz.

2. The START CONVERT pulse must be between 20 and 70ns wide or between 130 and 250ns wide when sampling at 3MHz.

Figure 4. ADS-943 Timing Diagram

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to + 125°C. All room-temperature ($T_A = +25$ °C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

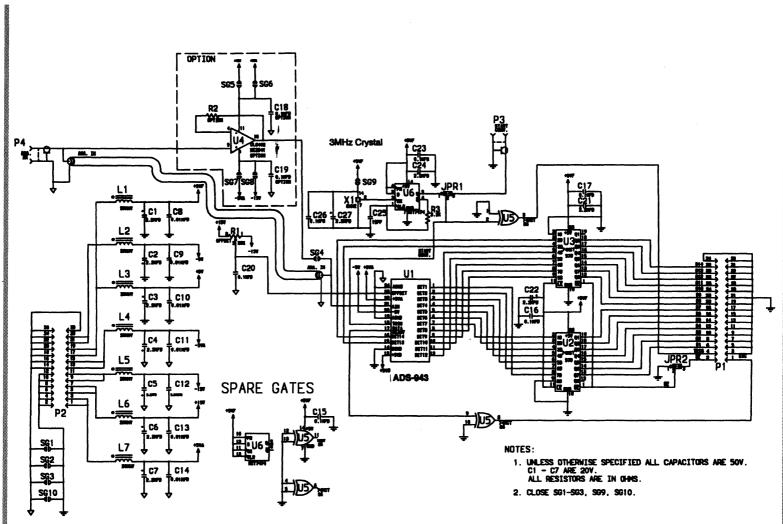


Figure 5. ADS-943 Evaluation Board Schematic

1-140 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tei: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

ADS-943

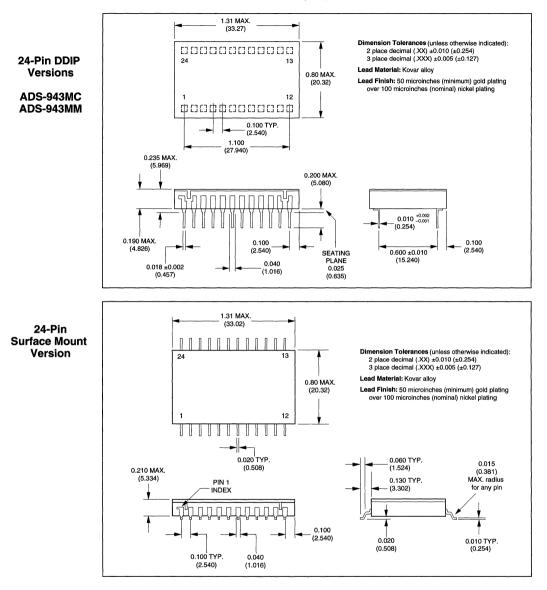



Figure 5. FFT Analysis of ADS-943 (fs = 3MHz, fin = 1.485MHz, Vin = -0.5dB, 16,384-point FFT)

MECHANICAL DIMENSIONS

INCHES (mm)

ORDERING INFORMATION

For MIL-STD-883 product, or surface-mount packaging, contact DATEL.	MODEL NUMBER ADS-943MC ADS-943MM	OPERATING TEMP. RANGE 0 to +70°C -55 to +125°C	ANALOG INPUT Bipolar (±2V) Bipolar (±2V)	Inc., Part # 3-33 For MIL-STD-88	Evaluation Board (without ADS-943) Heat Sink for all ADS-943 DDIP models PC board mounting can be ordered through AMP 31272-8 (Component Lead Socket), 24 required. 33 product, or surface-mount packaging, contact
--	--	---	---	-------------------------------------	---

ADS-944 14-Bit, 5MHz Sampling A/D Converters

FEATURES

- 14-Bit resolution
- 5MHz minimum sampling rate
- No missing codes over full military temperature range
- Edge-triggered, no pipeline delay
- · Low power, 2.95 Watts
- Small, 32-pin, ceramic TDIP package
- SMT package available
- Excellent dynamic performance
- MIL-STD-883 screening or DESC SMD available

GENERAL DESCRIPTION

The low-cost ADS-944 is a high-performance, 14-bit, 5MHz sampling A/D converter. This device accurately samples full-scale input signals up to Nyquist frequencies with no missing codes. The dynamic performance of the ADS-944 has been optimized to achieve a THD of -77dB and a SNR of 76dB.

Packaged in a small, 32-pin TDIP, the functionally complete ADS-944 contains a fast-settling sample-hold amplifier, a subranging (two-pass) A/D converter, an internal reference, timing and control logic, three-state outputs, and error-correction circuitry. Digital input and output levels are TTL.

Requiring ±15V,+5V and -5.2V supplies, the ADS-944 typically dissipates 2.95 Watts. The unit is offered with a bipolar input range of ±1.25V. Models are available for use in either commercial (0 to +70°C) or military (-55 to +125°C) operating temperature ranges. Typical applications include radar signal analysis, medical/graphic imaging, and FFT spectrum analysis.

INPUT/OUTPUT CONNECTIONS

PIN FUNCTION ΡΙΝ FUNCTION START CONVERT 1 +5V ANALOG SUPPLY 32 2 -5.2V DIGITAL SUPPLY 31 BIT 1 (MSB) 3 ANALOG INPUT 30 BIT 1 (MSB) BIT 2 4 ANALOG GROUND 29 5 OFFSET ADJUST 28 BIT 3 6 27 BIT 4 ANALOG GROUND 7 GAIN ADJUST 26 BIT 5 8 COMP. BITS 25 BIT 6 9 OUTPUT ENABLE 24 BIT 7 10 +5V DIGITAL SUPPLY 23 BIT 8 11 ANALOG GROUND 22 BIT 9 12 +15V SUPPLY 21 BIT 10 13 -15V SUPPLY 20 **BIT 11** 14 -5.2V ANALOG SUPPLY 19 **BIT 12** 15 DIGITAL GROUND 18 **BIT 13** 16 EOC 17 BIT 14 (LSB)

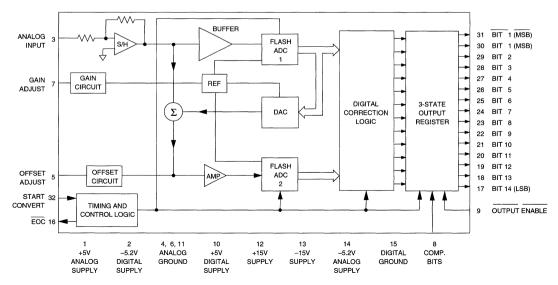


Figure 1. ADS-944 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 12)	0 to +16	Volts
-15V Supply (Pin 13)	0 to16	Volts
+5V Supply (Pins 1, 10)	0 to +6	Volts
-5.2V Supply (Pins 2, 14)	0 to6	Volts
Digital Inputs (Pins 8, 9, 32)	-0.3 to +VDD +0.3	Volts
Analog Input (Pin 3)	-5 to +5	Volts
Lead Temp. (10 seconds)	300	°C

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS				
Operating Temp. Range, Case ADS-944MC ADS-944MM/883	0 55	_	+70 +125	° C				
Thermal Impedance θjc θca	_	7 21	-	°C/Watt °C/Watt				
Storage Temperature Range Package Type Weight	−65							

FUNCTIONAL SPECIFICATIONS

(T_A=+25°C, ±V_{CC} = ±15V, +V_{DD} = +5V, -V_{DD} = -5.2V, 5MHz sampling rate, and a minimum 3 minute warmup ⁽¹⁾ unless otherwise specified.)

		+25°C			0 to +70°	2 [°] C	-5	5 to +12	5°C	
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range		±1.25		_	±1.25	_	_	±1.25		Volts
Input Resistance	500	550	- 1	500	550	-	500	550	-	Ω
Input Capacitance		6	15	_	6	15	—	6	15	pF
DIGITAL INPUTS										
Logic Levels			1							
Logic "1"	+2.0	_	_	+2.0	_	_	+2.0		_	Volts
Logic "0"	-	_	+0.8		_	+0.8		- 1	+0.8	Volts
Logic Loading "1"	-	-	+20	_	_	+20		-	+20	μA
Logic Loading "0" ²	-	-	-20	-	-	-20		- 1	-20	μA
Start Convert Positive Pulse Width ³	40	80		40	80		40	80	-	ns
STATIC PERFORMANCE										
Resolution	_	14	_	_	14	-		14	_	Bits
Integral Nonlinearity (fin = 10kHz)		±0.75			±0.75	-		±1.0	-	LSB
Differential Nonlinearity (fin = 10kHz)	-0.95	±0.5	+1.2	0.95	±0.5	+1.2	-0.95	±0.5	+1.5	LSB
Full Scale Absolute Accuracy	-	±0.15	±0.4	-	±0.15	±0.4	_	±0.4	±0.8	%FSR
Bipolar Zero Error (Tech Note 2)		±0.1	±0.3	-	±0.1	±0.3	-	±0.3	±0.6	%FSR
Bipolar Offset Error (Tech Note 2)	-	±0.2	±0.4	-	±0.2	±0.4	-	±0.3	±0.9	%FSR
Gain Error (Tech Note 2)	14	±0.2	±0.4	-	±0.2	±0.4		±0.4	±1.5	%
No Missing Codes (fin = 10kHz)	14			14			14			Bits
DYNAMIC PERFORMANCE	·		т	r	r	r			1	
Peak Harmonics (-0.5dB)		-85	77		85	-75	_	-81	-71	dB
dc to 100kHz 100kHz to 1MHz		-85	-77 -71		85 78	-/5	_	75	-/1	dB
1MHz to 2.5MHz	_	-75	-70		-75		_	-71	-61	dB
Total Harmonic Distortion (-0.5dB)	-	-/3	-70		-75	-00		-/	-01	ub ub
dc to 100kHz	_	-82	-76	_	-82	-74		-78	-70	dB
100kHz to 1MHz		-77	-70		-77	-70	_	-73	-65	dB
1MHz to 2.5MHz		-73	-68	_	-73	-65	_	70	-60	dB
Signal-to-Noise Ratio										
(w/o distortion, -0.5dB)		Į	l							
dc to 100kHz	73	76	-	73	76	-	71	75	-	dB
100kHz to 1MHz	73	76	- 1	73	76	-	71	75	- 1	dB
1MHz to 2.5MHz	73	75	-	73	75	-	71	75		dB
Signal-to-Noise Ratio 4	1									
(& distortion, –0.5dB) dc to 100kHz	71	75		71	75					dB
100kHz to 1MHz	70	75		69	75 73	-	68 65	73	1 -	dB
1MHz to 2.5MHz	68	73	_	66	71	_	62	69		dB
Noise		135			135	_		135	_	uD uVrms
Two-tone Intermodulation Distortion (f _{in} = 2.45MHz, 1.975MHz, f _s = 5MHz,										μτιπο
-0.5dB)	-	-82	_	_	-82	-	_	-82	_	dB
Input Bandwidth (-3dB)	1					1				
Small Signal (-20dB input)	-	20	-	-	20	-	-	20	-	MHz
Large Signal (0dB input)	-	13		-	13	-	-	13	-	MHz
Feedthrough Rejection (fin = 2.5MHz)	-	90	-	-	90	-	-	90	-	dB
Slew Rate	-	±110	-		±110	-	-	±110	-	V/µs
Aperture Delay Time	=	±10	-	-	±10	-		±10	_	ns
Aperture Uncertainty S/H Acquisition Time	-	3	-	-	3	-	-	3	-	ps rms
(to ±0.003%FSR, 2.5V step)		85	90		85	90		85	90	ns
Overvoltage Recovery Time (5)		200	90	_	200	90		200	50	ns
A/D Conversion Rate	5	200		5	200		5	200		MHz
		L	<u> </u>	L	L	1		L	L	

1-144 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

		+25°C			0 to +70	°C	–55 to +125°C				
DIGITAL OUTPUTS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	
Logic Levels											
Logic "1"	+2.4	-	- 1	+2.4			+2.4		-	Volts	
Logic "0"	_		+0.4		-	+0.4		-	+0.4	Volts	
Logic Loading "1"	- 1		-4		- 1	-4		-	-4	mA	
Logic Loading "0"	-		+4		-	+4		-	+4	mA	
Delay, Edge of ENABLE											
to Output Data Valid/Invalid		-	10			10	-	-	10	ns	
Output Coding			Offset B	inary, Comp	plementary (Offset Binary	Two's Com	plement			
POWER REQUIREMENTS											
Power Supply Ranges ®											
+15V Supply	+14.25	+15.0	+15.75	+14.25	+15.0	+15.75	+14.25	+15.0	+15.75	Volts	
-15V Supply	-14.25	-15.0	-15.75	-14.25	-15.0	-15.75	-14.25	-15.0	-15.75	Volts	
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.9	+5.0	+5.25	Volts	
–5.2V Supply	-4.95	-5.2	-5.45	-4.95	-5.2	-5.45	-5.1	5.2	-5.45	Volts	
Power Supply Currents 🕐	1									1	
+15V Supply	-	+36	+45		+36	+45		+36	+45	mA	
-15V Supply	-	-55	-65		-55	-65		-55	-65	mA	
+5V Supply	- 1	+155	+168		+155	+168		+155	+168	mA	
-5.2V Supply	-	-167	-175		-167	-175	-	-167	-175	mA	
Power Dissipation		2.95	3.3 ±0.05		2.95	3.3 ±0.05	-	2.95	3.3 ±0.05	Watts %FSR/%\	
Power Supply Rejection			±0.05			±0.05			±0.05	70507/701	
Footnotes:				6	This is the	timo roqui	rad bafara	the A/D e	utput ie vai	lid after the	
 All power supplies should be on be 					5 This is the time required before the A/D output is valid after analog input is back within its specified range.						
pulse. All supplies and the clock (must be		analoginp	at 13 back	within 113 3	pecilieu ie	inge.		
present during warmup periods. T continuously converting during this		nust be		ര	Interminimum supply voltages of +4.9V and -5.1V for ±V _{DI} required for -55°C operation only. The minimum limits are					or +Voo are	
continuously converting during this	s ume.										
2 When COMP. BITS (pin 8) is low,	logio logdir	on "∩" will	ha				perating at +125°C.				
2 when comp. Bits (pin s) is low, −350µA for this pin.	logic loauli	ig u will	pe		1.1.01 all		mon opon	ang at T			
-550pA for this pirt.				Ø	Typical +5	V and -5.2	V current	drain brea	kdowns ar	e as follows	
③ An 80ns wide start convert pulse is	s used for a	all product	tion		71						
testing. The start convert pulse sh					+5	V _{Analog} =	+85mA	-5.2	V _{Analog} =	–114mA	
	30 – 160ns to ensure proper operation. The latter range could be used for those applications requiring less than a 5MHz					V _{Digital} ≂		-5.2	VDigital =	<u>–53mA</u>	
					+5'	V _{Total} =	+155mA	-5.2	VTotal =	–167mA	
sampling rate.	0										
④ Effective bits is equal to:	,										
(SNR + Distortion) -1.76 +	Ful	I Scale Ampl	itude								
(SNR + Distortion) -1.76 +	20 log	ual Input Am	plitude								
	L	inportain									

TECHNICAL NOTES

- Obtaining fully specified performance from the ADS-944 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems *are not* connected to each other internally. For optimal performance, tie all ground pins (4, 6, 11, and 15) directly to a large *analog* ground plane beneath the package. Bypass all power supplies to ground with 4.7µF tantalum capacitors in parallel with 0.1µF ceramic capacitors. *It is very important that the bypass capacitors be located as close to the unit as possible.* Inductors or ferrite beads can also be used to improve the power supply filtering. Refer to Figure 4, the ADS-944 Evaluation Board Schematic, for more details.
- 2. The ADS-944 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the adjustment circuitry shown in Figure 2. When using this circuitry, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.
- 3. Pin 8 (COMP. BITS) selects the ADS-944's digital output coding. When a logic "1" is applied to pin 8, the output coding is complementary offset binary. When pin 8 has a logic "0" applied, the output coding becomes offset binary. The MSB output (pin 31) may be used under these conditions to achieve

two's complement coding. Pin 8 is TTL-compatible and can be driven with digital logic for those who want dynamic control of its function. There is an internal pull-up resistor on this pin, allowing pin 8 to be either connected to +5V or left open when a logic "1" is needed.

- <u>To enable the three-state outputs</u>, apply a logic "0" (low) to OUTPUT ENABLE (pin 9). To disable, apply a logic "1" (high) to pin 9.
- Applying a start convert pulse while a conversion is in progress (EOC = logic "1") initiates a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid.
- A passive bandpass filter is used at the input of the A/D for all production testing.
- 7. Though the ADS-944's digital outputs are capable of driving multiple <u>LSTTL</u> or HCT loads, we recommend the output bits and the EOC line each drive only a single gate. These gates should be located as close to the unit as possible. If they can not, 33Ω resistors placed in series with each output can aid in isolating pc run inductances. The ADS-944 digital outputs should not be connected directly to noisy digital busses.
- Do not enable/disable or complement the output bits during the conversion process (from the falling edge of START CONVERT to the falling edge of EOC).

CALIBRATION PROCEDURE

(Refer to Figure 2 and Table 1)

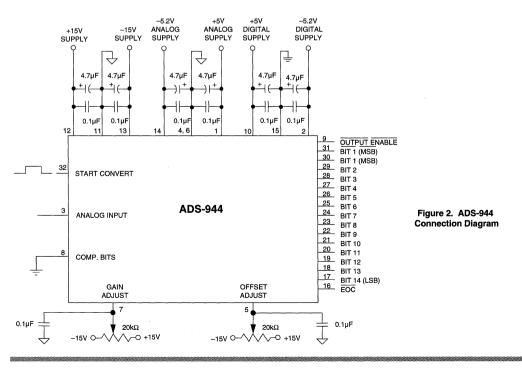
Note: Connect pin 5 to ANALOG GROUND (pin 6) for operation without zero/offset adjustment. Connect pin 7 to ANALOG GROUND (pin 6) for operation without gain adjustment.

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit in Figure 2 are guaranteed to compensate for the ADS-944's initial accuracy errors and may not be able to compensate for additional system errors.

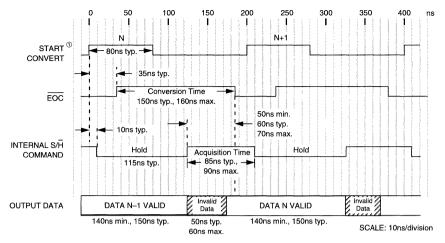
A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-944, offset adjusting is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is $+1/_{2}$ LSB (+76.3µV).

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus $11/_2$ LSB's (+1.249771).


Note: Due to inherent system noise, the averaging of several conversions may be needed to accurately adjust both offset and gain to 1LSB of accuracy.

Zero/Offset Adjust Procedure


- 1. Apply a train of pulses to the START CONVERT input (pin 32) so the converter is continuously converting.
- 2. Apply +76.3µV to the ANALOG INPUT (pin 3).
- Adjust the offset potentiometer until the output bits are 10 0000 0000 0000 and the LSB flickers between 0 and 1 with pin 8 tied low (offset binary) or between 01 1111 1111 1111 and 01 1111 1111 1110 with pin 8 tied high (complementary offset binary).

Gain Adjust Procedure

- 1. Apply +1.249771V to the ANALOG INPUT (pin 3).
- Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between 1 and 0 with pin 8 tied low (offset binary) or until all bits are 0's and the LSB flickers between 1 and 0 with pin 8 tied high (complementary offset binary).
- 3. Two's complement coding requires using pin 31. With pin 8 tied low, adjust the gain trimpot until the output code flickers equally between 01 1111 1111 1110 and 01 1111 1111 1111.
- 4. To confirm proper operation of the device, vary the applied input voltage to obtain the output coding listed in Table 1.

① START CONVERT pulse width: 40 to 80ns or 130 to 160ns

Figure 3. ADS-944 Timing Diagram

TIMING

The ADS-944 is an edge-triggered device. A conversion is initiated by the rising edge of the start convert pulse and no additional external timing signals are required. The device does not employ "pipeline" delays to increase its throughput rate. It does not require multiple start convert pulses to bring valid digital data to its output pins.

Approximately 10ns after the rising edge of the start convert signal, the ADS-944's internal sample-hold amplifier is driven into the hold mode by the internal S/H control line. After a 35ns delay to allow for S/H output transient settling, the conversion process begins, and the EOC line (pin 16) is driven high. The complete A/D conversion requires approximately 150ns. The falling of EOC signals that the conversion is now complete and digital output data is now valid.

This device actually guarantees that digital output data will be valid for 10ns prior to the falling edge of EOC. Therefore, EOC can be used to latch data into external registers that have appropriate setup times. Any other available timing edges, including a delayed EOC or the rising edge of the next EOC pulse, can also be used for this purpose.

The falling edge of the start convert pulse, though irrelevant to device timing, can cause conversion errors if it occurs at certain times. Therefore, the recommended start convert pulse width is between 40 and 80ns or between 130 and 160ns. DATEL performs ADS-944 production testing at the full 5MHz sampling rate using 80ns start convert pulses.

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to + 125°C. All room-temperature ($T_A = +25°C$) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package.

Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

Table	1.	Output	Coding
-------	----	--------	--------

	OUTPUT CODING	INPUT RANGE	BIPOLAR	
MSB LSE	MSB LSB	MSB LSB	±1.25V	SCALE
11 1111 1111 1111	00 0000 0000 0000	01 1111 1111 1111	+1.249847	+FS -1 LSB
11 1000 0000 0000	00 0111 1111 1111	01 1000 0000 0000	+0.937500	+3/4 FS
11 0000 0000 0000	00 1111 1111 1111	01 0000 0000 0000	+0.625000	+1/2 FS
10 0000 0000 0000	01 1111 1111 1111	00 0000 0000 0000	0.000000	0
01 0000 0000 0000	10 1111 1111 1111	11 0000 0000 0000	-0.625000	–1/2 FS
00 1000 0000 0000	11 0111 1111 1111	10 1000 0000 0000	-0.937500	–3/4 FS
00 0000 0000 0001	11 1111 1111 1110	10 0000 0000 0001	-1.249847	–FS +1 LSB
00 0000 0000 0000	11 1111 1111 1111	10 0000 0000 0000	-1.250000	–FS
OFF. BINARY	COMP. OFF. BIN.	TWO'S COMP.		

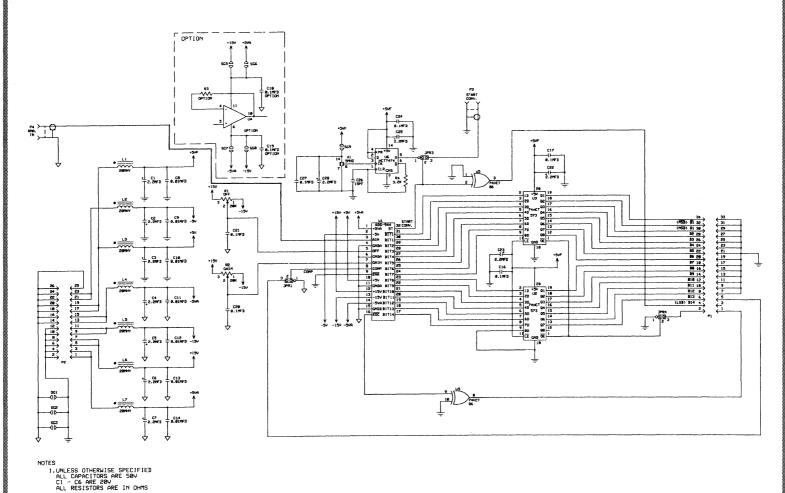
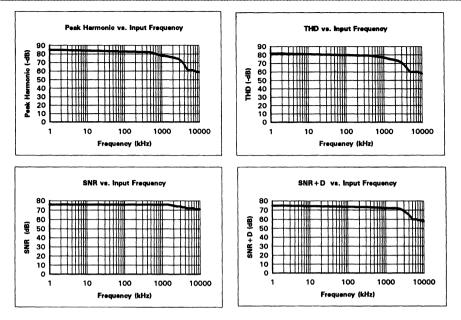
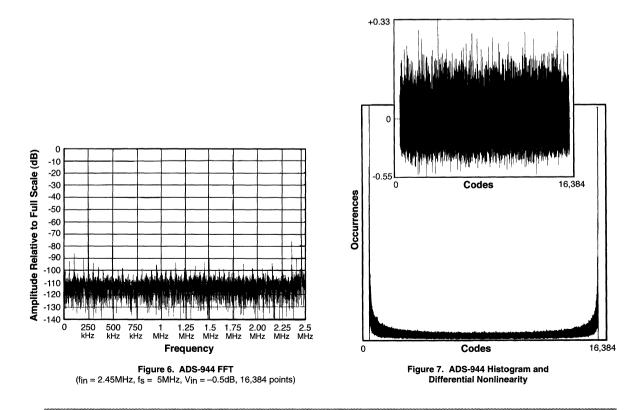
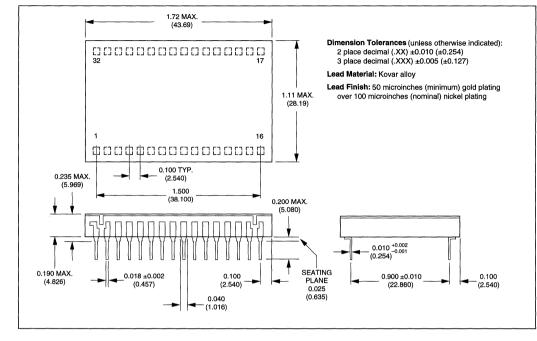
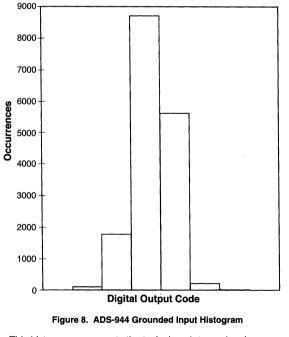


Figure 4. ADS-944 Evaluation Board Schematic

B'DATEL'

ADS-944


Figure 5. Typical ADS-944 Dynamic Performance vs. Input Frequency at +25°C

MECHANICAL DIMENSIONS

INCHES (mm)

This histogram represents the typical peak-to-peak noise (including quantization noise) associated with the ADS-944. 16,384 conversions were processed with the input to the ADS-944 tied to analog ground.

ORDERING INFORMATION

MODEL NUMBER ADS-944MC ADS-944MM ADS-944/883

OPERATING TEMP. RANGE

0 to +70°C -55 to +125°C -55 to +125°C

Contact DATEL for availability of surface-mount (J-lead) packaging or for MIL-STD-883 or DESC SMD product specifications.

ACCESSORIES

ADS-B944 HS-32 Evaluation Board (without ADS-944) Heat sink for ADS-944 DDIP models

Receptacle for PC board mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 24 required.

FEATURES

- 14-Bit resolution
- 10MHz minimum throughput
- Functionally complete
- No missing codes
- Low power, 4.2W
- Excellent dynamic performance
- Internally clamped input
- Edge triggered
- TTL compatible
- 2" x 4" module
- Very low profile

GENERAL DESCRIPTION

The low-cost ADS-945 is a high-performance, 14-bit, 10MHz sampling A/D converter. This device accurately samples full-scale input signals up to Nyquist frequencies with no missing codes. The dynamic performance of the ADS-945 has been optimized to achieve a THD of –82dB and a SNR of 79dB.

Packaged in a 2" x 4" module, the functionally complete ADS-945 contains a fast-settling sample/hold amplifier, a subranging (two-pass) A/D converter, a precise voltage reference, timing/control logic, three-state outputs, and error-correction circuitry. Digital inputs and outputs are TTL compatible (except for pins 29 and 30 which are ECL).

Requiring ±15V, +5V and -5.2V supplies, the ADS-945 typically dissipates 4.2W. The unit is offered with a bipolar input range of ±1.25V. Models are available for use in either commercial (0 to +70°C) or military (-55 to +125°C) operating temperature ranges. Typical applications include radar signal analysis, medical/graphic imaging, and FFT spectrum analysis.

Sampling A/D Converters

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1-3	ANALOG GROUND	70-76	ANALOG GROUND
4	ANALOG INPUT	69	+5V ANALOG SUPPLY
5-6	ANALOG GROUND	64-68	ANALOG GROUND
7	+10V REFERENCE OUT	63	-5.2V ANALOG SUPPLY
8	ANALOG GROUND	62	ANALOG GROUND
9	GAIN ADJUST	61	NO CONNECT
10-11	DO NOT CONNECT	58-60	DIGITAL GROUND
12	-15V SUPPLY	57	-5.2V DIGITAL SUPPLY
13	ANALOG GROUND	56	DO NOT CONNECT
14	+15V SUPPLY	55	+5V DIGITAL SUPPLY
15-17	ANALOG GROUND	54	DIGITAL GROUND
18	OFFSET ADJUST	53	BIT 1 (MSB)
19-25	ANALOG GROUND	52	BIT 2
26	MISSING PIN	51	BIT 3
27	DIGITAL GROUND	50	BIT 4
28	DIGITAL GROUND	49	BIT 5
29	T/H STATUS	48	BIT 6
30	T/H STATUS	47	BIT 7
31	DIGITAL GROUND	46	BIT 8
32	START CONVERT	45	BIT 9
33	OVERFLOW	44	BIT 10
34	OUTPUT ENABLE	43	BIT 11
35	DIGITAL GROUND	42	BIT 12
36	O.S. 3 *	41	BIT 13
37	DIGITAL GROUND	40	BIT 14 (LSB)
38	DIGITAL GROUND	39	DIGITAL GROUND

* Refer to Timing Diagram notes

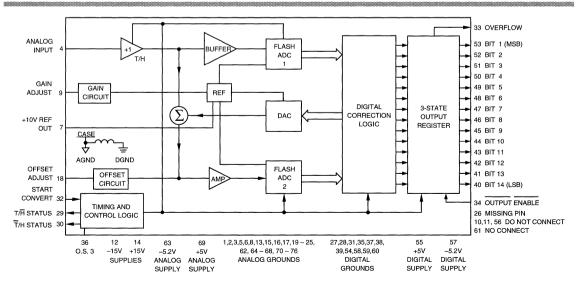


Figure 1. ADS-945 Functional Block Diagram

ADS-945 14-Bit. 10MHz

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 14)	0 to +17	Volts
-15V Supply (Pin 12)	0 to -17	Volts
+5V Supply (Pins 55, 69)	0 to +6	Volts
-5.2V Supply (Pins 57, 63)	0 to6	Volts
Digital Inputs (Pins 32, 34)	-0.3 to +Vpp +0.3	Volts
Analog Input (Pin 4)	-5 to +5	Volts
Lead Temperature (10 seconds)	300) °C

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS			
Operating Temp. Range, Case ADS-945	0	-	+70	°C			
ADS–945EX Thermal Impedance θic	-55	2	+125	°C °C/Watt			
θca Storage Temperature Range	65	8	+150	°C/Watt °C/Watt			
Package Type Weight	2" x 4" module 2.1 oz. (60 grams)						

FUNCTIONAL SPECIFICATIONS

(T_A = +25°C, ±V_{CC} = ±15V, +V_{DD} = +5V, -V_{DD} = -5.2V, 10MHz sampling rate, and a minimum 10 minute warmup[®] unless otherwise specified.)

	+25°C			0 to +70°C			i5 to +12	5°C		
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range ⁽²⁾	_	±1.25		_	±1.25	_	_	±1.25		Volts
Input Resistance	300	500		300	500		300	500		kΩ
Input Capacitance		10	15		10	15	000	10	15	pF
Input Bias Current	1 =	±3	15		±3	15		±3	15	μA
		13			10	_		10	_	μΑ
DIGITAL INPUTS		······	·		r	·				
Logic Levels										
Logic "1"	+2.0		-	+2.0	-	-	+2.0	-	-	Volts
Logic "0"	-	- 1	+0.8	-	-	+0.8	-	-	+0.8	Volts
Logic Loading "1"	-		+20		-	+20	-	-	+20	μA
Logic Loading "0"	- 1	- 1	-20	-	-	-20	-	- 1	-20	μΑ
Start Convert Positive Pulse Width ³	10	50	-	10	50	-	10	50	—	ns
STATIC PERFORMANCE										
Resolution	-	14	-	_	14	_	_	14	_	Bits
Integral Nonlinearity (fin = 10kHz)	_	±0.5	- 1	_	±0.75	-	_	±0.75	_	LSB
Differential Nonlinearity (fin = 10kHz)	_	±0.5	±0.75		±0.5	±0.75	-0.95	±0.75	+1.5	LSB
Full Scale Absolute Accuracy	1 _	±0.2	±0.4	_	±0.3	±0.5	_	±0.3	±0.7	%FSR
Bipolar Offset Error (Tech Note 2)		±0.15	±0.25	_	±0.25	±0.5		±0.3	±0.7	%FSR
Gain Error (Tech Note 2)	_	±0.1	±0.2		±0.2	±0.0	_	±0.0	±0.7	%
No Missing Codes (fin = 10kHz)	14	10.1	10.2	14	10.2		14	±0.5		Bits
DYNAMIC PERFORMANCE	I	L	L		L	L	L	I		
Peak Harmonics (-0.5dB)	1	1		1		I				
	1	00	70		-86	-78		-80	70	ol
dc to 1MHz	-	-86	-78	-			_		-72	dB
1MHz to 2.5MHz	-	-82	-75	-	-82	-75	-	-79	-70	dB
2.5MHz to 5MHz	-	-79	-74	- 1	-79	-74	- 1	-78	-70	dB
Total Harmonic Distortion (-0.5dB)	1									
dc to 1MHz	1 -	-82	-76	-	-82	-76	-	-78	-70	dB
1MHz to 2.5MHz	-	-80	-74	-	-80	-74	-	-76	-68	dB
2.5MHz to 5MHz	-	-78	-73	_	-78	-73		-76	-68	dB
Signal-to-Noise Ratio										
(w/o distortion, -0.5dB)			1		1			l	Į	
dc to 1MHz	76	79	1 -	76	79		70	78	-	dB
1MHz to 2.5MHz	76	78	- 1	76	78	- 1	70	77	-	dB
2.5MHz to 5MHz	75	77	_	75	77	- 1	70	75		dB
Signal-to-Noise Ratio 4									1	
(& distortion, -0.5dB)							l		1	
dc to 1MHz	73	77	-	73	77		67	74	_	dB
1MHz to 2.5MHz	72	76		72	76		· 67	74		dB
2.5MHz to 5MHz	71	74		71	70		66	74		dB
Noise		110			110			110		μVrms
Two-tone Intermodulation										μνιπο
Distortion (fin = 1.975MHz,										
		04	1	l	0.4			04		dB
2.45MHz, fs=10MHz, -0.5dB)	-	-84	-	-	-84	-	-	-84	-	uв
Input Bandwidth (-3dB)		100			100			100		A411_
Small Signal (-20dB input)	-	100	-	-	100	-	-	100		MHz
Large Signal (0dB input)	-	50	-		50	-	-	50	-	MHz
Feedthrough Rejection (fin = 4.85MHz)	-	90	-		90	-	-	90		dB
Slew Rate	-	±850	-	-	±850	-	-	±850	-	V/µs
Aperture Delay Time	-	+8	-	-	+8	- 1	-	+8	-	ns
Aperture Uncertainty	-	2	-	-	2	-	-	2	-	ps rms
S/H Acquisition Time	1		1		1	1	1	1	1	1
(to ±0.003%FSR, 2.5V step)	-	40	-	-	40	-		40	-	ns
Overvoltage Recovery Time (5)	1 -	30	100	-	30	100	-	30	100	ns
A/D Sampling Rate	10	<u> </u>	-	10	_	- 1	10	- 1	_	MHz
	1 10	1	1	1 10	1	1	1 10	1	1	

1-152 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765

		+25°C			0 to +70	°C	-	55 to +12	25°C	
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Reference Output	+9.99	+10	+10.01	+9.99	+10	+10.01	+9.99	+10	+10.01	Volts
Reference Temperature Drift	_	±40	_		±40		_	±40	_	ppm/°C
Reference Load Current			2.0		—	2.0		-	2.0	mA
DIGITAL OUTPUTS										
Logic Levels										
Logic "1"	+2.7			+2.7			+2.7		_	Volts
Logic "0"	_		+0.5		-	+0.5	-		+0.5	Volts
Logic Loading "1"		-	-0.4		—	-0.4	-		0.4	mA
Logic Loading "0"	- 1	-	+8	-	-	+8		-	+8	mA
Delay, Falling Edge of T/H										
to Output Data Valid	- 1	55	_	-	55	_	-	55	-	ns
Delay, Edge of ENABLE										
to Output Data Valid/Invalid	-	18	—	-	18		-	18	-	ns
Output Coding				Co	mplementa	ry Offset Bin	ary			
POWER REQUIREMENTS										
Power Supply Ranges										
+15V Supply	+14.25	+15.0	+15.75	+14.25	+15.0	+15.75	+14.25	+15.0	+15.75	Volts
-15V Supply	-14.25	-15.0	-15.75	-14.25	-15.0	-15.75	-14.25	-15.0	-15.75	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
-5.2V Supply	-4.95	-5.2	-5.45	-4.95	5.2	-5.45	-4.95	-5.2	-5.45	Volts
Power Supply Currents 6	1									
+15V Supply	1 -	+35	+45		+35	+45	_	+35	+45	mA
-15V Supply		-55	-65	~	-55	65		55	65	mA
+5V Supply		+140	+160		+140	+160	_	+140	+160	mA
-5.2V Supply	-	-430	-460		-430	-460	-	-430	-460	mA
Power Dissipation		4.2	4.5	-	4.2	4.5		4.2	4.5	Watts
Power Supply Rejection	-		±0.04	-		±0.04	_	1	±0.04	%FSR/%

Footnotes:

① All power supplies should be on before applying a start convert pulse. All supplies and the clock (start convert pulses) must be present during warmup periods. The device must be continuously converting during this period.

- 2 The input to the ADS-945 is internally clamped at ±2.3V.
- ③ A 50ns wide start convert pulse is used for all production testing. For applications requiring less than a 10MHz sampling rate, a wider start convert pulse can be used.
- Effective bits is equal to:
 (SNR + Distortion) -1.76 + 20 log Full Scale Amplitude

Actual Input Amplitude

6.02

⑤ This is the time required before the A/D output is valid once the analog input is back within the specified range.

⑥ Typical +5V and -5.2V current drain breakdowns are as follows:

+5V _{Analog}	=	+100mA	-5.2V _{Analog}	=	-210mA
+5V _{Digital}	=	+40mA	-5.2V _{Digital}	=	<u>-220mA</u>
+5V _{Total}	=	+140mA	$-5.2V_{Total}$	=	–430mA

TECHNICAL NOTES

 Obtaining fully specified performance from the ADS-945 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems *are* connected to each other internally. For optimal performance, tie all ground pins directly to a large *analog* ground plane beneath the package.

Bypass all power supplies to ground with 10μ F tantalum capacitors in parallel with 0.1μ F ceramic capacitors. The bypass capacitors should be located as close to the unit as possible.

 The ADS-945 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the adjustment circuitry shown in Figure 2. The typical adjustment range is ±0.2%FSR for this circuitry. When using this circuitry, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.

- To enable the three-state outputs, apply a logic "0" (low) to OUTPUT ENABLE (pin 34). To disable, apply a logic "1" (high) to pin 34.
- 4. A passive bandpass filter (Allen Avionics F4202 Series) is used at the input of the A/D for all production testing.
- The ADS-945's digital outputs should not be directly connected to a noisy data bus. Drive the bus with 573 or 574 type latches and use "low-noise" logic, such as the 74LS series.

CALIBRATION PROCEDURE

(Refer to Figure 2 and Table 1)

Note: Connect pin 18 to ANALOG GROUND (pin 19) for operation without zero/offset adjustment. Connect pin 9 to ANALOG GROUND (pin 8) for operation without gain adjustment.

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit in Figure 2 are guaranteed to compensate for the ADS-945's initial accuracy errors and may not be able to compensate for additional system errors.

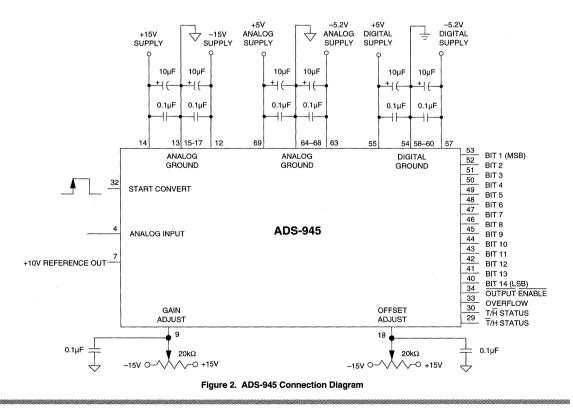
A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-945, offset adjusting is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is +1/2LSB ($+76.3\mu$ V).

Gain adjusting is accomplished when all bits are 0's and the LSB just changes from a 0 to a 1. This transition ideally occurs when the analog input is at +full scale minus 1 1/2LSB's (+1.249771V) .

Note: Due to inherent system noise, the averaging of several conversions may be needed to accurately adjust both offset and gain to 1LSB of accuracy.

Zero/Offset Adjust Procedure


- 1. Apply a train of pulses to the START CONVERT input (pin 32) so the converter is continuously converting.
- 2. Apply +76.3µV to the ANALOG INPUT (pin 4).
- 3. Adjust the offset potentiometer until the output bits are 10 0000 0000 0000 and the LSB flickers between 0 and 1.

Gain Adjust Procedure

- 1. Apply +1.249771V to the ANALOG INPUT (pin 4).
- 2. Adjust the gain potentiometer until all output bits are 0's and the LSB flickers between 0 and 1.
- 3. To confirm proper operation of the device, vary the applied input voltage to obtain the output coding listed in Table 1.

Note: A single +5V supply can be used for both the +5V ANALOG and the +5V DIGITAL. If separate supplies are used, the difference between the two can not exceed 100mV. This also applies to the -5.2V supply requirements.

Datel recommends using ferrite beads to separate the analog and digital supplies (FAIR-RITE # 2643000301.)

ADS-945

1

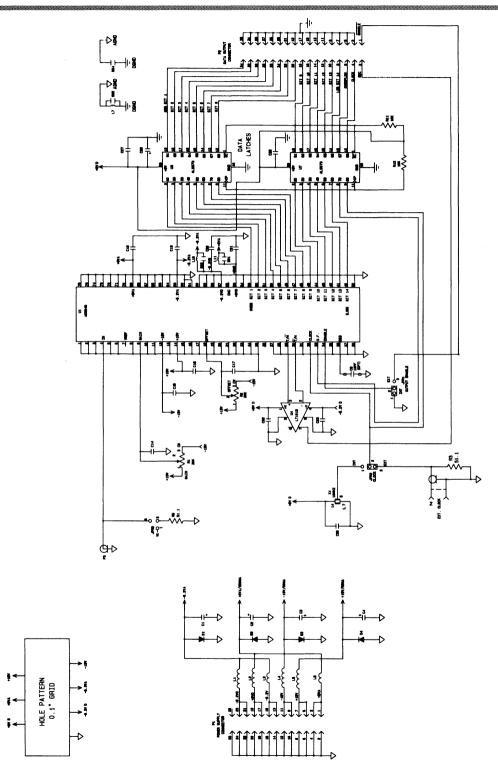
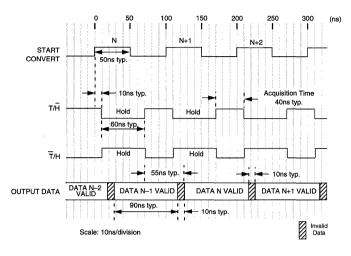
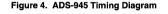
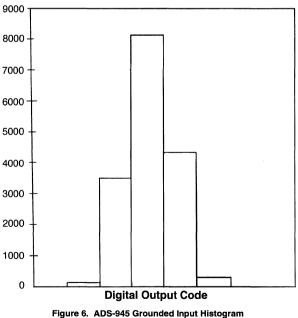



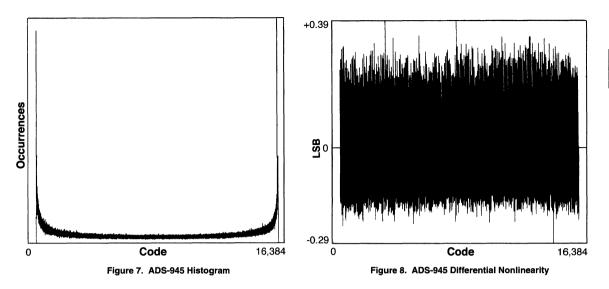

Figure 3. ADS-945 Evaluation Board Schematic (DATEL Dwg. # A-23442)

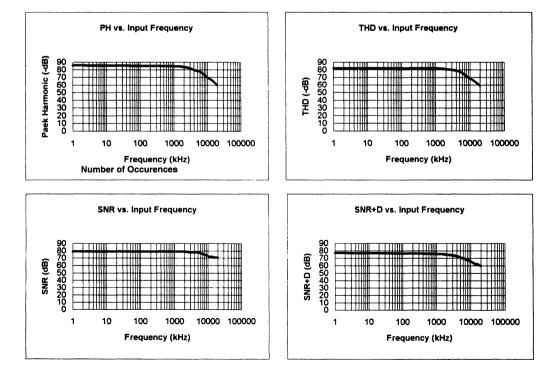




Timing Notes:

- The ADS-945 is an edge-triggered device requiring no additional external timing signals. The rising edge of the start convert pulse initiates a conversion.
- 2. A start convert pulse of 50ns is recommended when sampling at 10MHz.
- The falling edge of the subsequent start convert pulse (N+1) or the rising edge of the N+2 pulse can be used to latch data from conversion N (1 pipeline delay).
- 4. For a sampling rate of 10MHz, do not connect pin 36.
- For sampling rates between 7.75 and 8.25MHz, place a 22pF capacitor to digital ground on pin 36.





This histogram represents the typical peak-to-peak noise (including quantization noise) associated with the ADS-945. 16,384 conversions were processed with the input to the ADS-945 tied to analog ground.

Figure 9. ADS-945 Dynamic Performance vs. Input Frequency at +25°C

DATEL

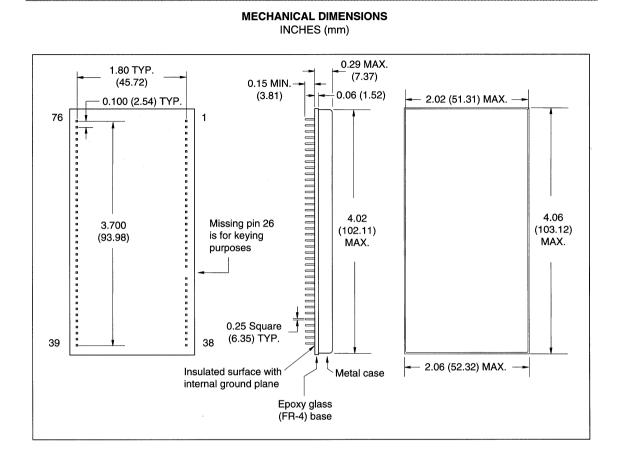


Table 1. Output Coding

OUTPUT	CODING	INPUT RANGE	BIPOLAR
MSB	LSB	±1.25V	SCALE
00 0000 00	0000 0000	+1.249847	+FS -1 LSB
00 1000 00	000 0000	+0.937500	+3/4 FS
01 0000 00	000 0000	+0.625000	+1/2 FS
10 0000 00	000 0000	0.000000	0
11 0000 00	000 000	-0.625000	–1/2 FS
11 1000 00	000 0000	-0.937500	–3/4 FS
11 1111 11	111 1110	-1.249847	-FS +1 LSB
11 1111 11	111 1111	-1.250000	–FS
COMP. OFF	. BINARY		۰

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE
ADS-945 ADS-945EX	0 to +70°C −55 to +125°C
ACCESSORIES ADS-B945	Evaluation Board (without ADS-945)
SAMTEC, their SS strips). Receptacle	C board mounting can be ordered through W and SSQ series (0.025" square socket as (75 required) can be ordered through 30-0-15-01-47-27-10-0).

PRELIMINARY PRODUCT DATA

ADS-946 14-Bit, 8MHz Sampling A/D Converters

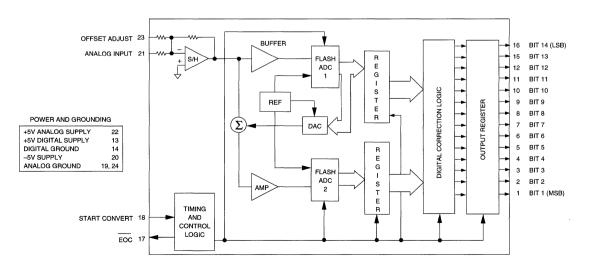
FEATURES

- 14-Bit resolution
- 8MHz minimum sampling rate
- No missing codes over full military temperature range
- · Ideal for both time and frequency-domain applications
- Excellent THD (-81dB) and SNR (76dB)
- Edge-triggered, no pipeline delays
- Small, 24-pin, ceramic DDIP or SMT
- Requires only ±5V supplies
- Low-power, 1.9 Watts
- · Low cost

GENERAL DESCRIPTION

The low-cost ADS-946 is a 14-bit, 8MHz sampling A/D converter. This device accurately samples full-scale input signals up to Nyquist frequencies with no missing codes. Excellent differential nonlinearity error (DNL), signal-to-noise ratio (SNR), and total harmonic distortion (THD) make the ADS-946 the ideal choice for both time-domain (CCD/FPA imaging, scanners, process control) and frequency-domain (radar, telecommunications, spectrum analysis) applications .

The functionally complete ADS-946 contains a fast-settling sample/hold amplifier, a subranging (two-pass) A/D converter, an internal reference, timing/control logic, and error-correction circuitry. Digital input and output levels are TTL. The ADS-946 only requires the rising edge of a start convert pulse to operate.


Requiring only $\pm 5V$ supplies, the ADS-946 typically dissipates just 1.9 Watts. The device is offered with a bipolar input range of $\pm 2V$. Models are available for use in either commercial (0 to $+70^{\circ}$ C) or military (-55 to $+125^{\circ}$ C) operating temperature ranges. A

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 (MSB)	24	ANALOG GROUND
2	BIT 2	23	OFFSET ADJUST
3	BIT 3	22	+5V ANALOG SUPPLY
4	BIT 4	21	ANALOG INPUT
5	BIT 5	20	-5V SUPPLY
6	BIT 6	19	ANALOG GROUND
7	BIT 7	18	START CONVERT
8	BIT 8	17	EOC
9	BIT 9	16	BIT 14 (LSB)
10	BIT 10	15	BIT 13
11	BIT 11	14	DIGITAL GROUND
12	BIT 12	13	+5V DIGITAL SUPPLY

proprietary, auto-calibrating, error-correcting circuit allows the device to achieve specified performance over the full military temperature range.

ABSOLUTE MAXIMUM RATINGS

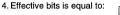
PARAMETERS	LIMITS	UNITS
+5V Supply (Pins 13, 22)	0 to +6	Volts
-5V Supply (Pin 20)	0 to6	Volts
Digital Input (Pin 18)	-0.3 to +V _{DD} +0.3	Volts
Analog Input (Pin 21)	±5	Volts
Lead Temperature (10 seconds)	300	°C

FUNCTIONAL SPECIFICATIONS

 $(T_A=+25^\circ C,\ \pm V_{DD}=\pm 5V,$ BMHz sampling rate, and a minimum 3 minute warmup $^{\odot}$ unless otherwise specified.)

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS		
Operating Temp. Range, Case						
ADS-946MC	0	—	+70	°C		
ADS-946MM	-55	_	+125	°C		
Thermal Impedance						
θjc	_	6		°C/Watt		
θca	—	23	-	°C/Watt		
Storage Temperature Range	-65		+150	°C		
Package Type	24-pin, metal-sealed, ceramic DDIP or SMT					
Weight		0.46 ounce	s (13 grams)		


		+25°C			0 to +70°	C	-5	5 to +12	5°C		
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	
Input Voltage Range ^②	_	±2			±2	_	_	±2	_	Volts	
Input Resistance	_	200		_	200			200		Ω	
Input Capacitance	-	6	15		6	15	_	6	15	pF	
DIGITAL INPUTS		L									
Logic Levels	T										
Logic "1"	+2	_	_	+2	_	_	+2	_	_	Volts	
Logic "0"	-	-	+0.8			+0.8		_	+0.8	Volts	
Logic Loading "1"	1 -	- 1	+20	_	- 1	+20			+20	μA	
Logic Loading "0"	_	-	-20	_		-20	_	_	-20	μÂ	
Start Convert Positive Pulse Width ³	-	20	-	-	20	—	-	20	-	'ns	
STATIC PERFORMANCE											
Resolution	-	14	-	_	14	-		14		Bits	
Integral Nonlinearity (fin = 10kHz)	-	±0.75	-	-	±0.75	-	-	±1		LSB	
Differential Nonlinearity (fin = 10kHz)	-0.95	±0.5	+1.25	-0.95	±0.5	+1.25	-0.95	±0.5	+1.5	LSB	
Full Scale Absolute Accuracy	-	±0.15	±0.4		±0.15	±0.4	-	±0.4	±0.8	%FSR	
Bipolar Zero Error (Tech Note 2)	-	±0.1	±0.3	—	±0.1	±0.3	-	±0.3	±0.6	%FSR	
Gain Error (Tech Note 2)	-	±0.2	±0.4		±0.2	±1.4	_	±0.4	±1.5	%	
No Missing Codes (f _{in} = 10kHz)	14	-	-	14	-	-	14	_	-	Bits	
DYNAMIC PERFORMANCE											
Peak Harmonics (-0.5dB)											
dc to 500kHz	-	-83	-76	_	-83	-75		-79	-71	dB	
500kHz to 1MHz	-	-78	-72	—	78	-72		-73	-68	dB	
1MHz to 4MHz	-	-76	-71		-76	-71	- 1	-71	-65	dB	
Total Harmonic Distortion (-0.5dB)											
dc to 500kHz	-	81	74		-81	-74	- 1	-77	-70	dB	
500kHz to 1MHz	- 1	-76	-71		-76	-71	-	-72	-66	dB	
1MHz to 4MHz	-	-74	-69	-	74	-69		-69	-63	dB	
Signal-to-Noise Ratio											
(w/o distortion, -0.5dB)		ļ									
dc to 500kHz	73	76	-	73	76	-	71	75	-	dB	
500kHz to 1MHz	73	76	-	73	76	-	71	75	-	dB	
1MHz to 4MHz	72	75	- 1	72	75	-	71	75	-	dB	
Signal-to-Noise Ratio 4											
(& distortion, –0.5dB)											
dc to 500kHz	70	74	-	70	74	-	68	73		dB	
500kHz to 1MHz	70	74	-	70	74	-	66	71	-	dB	
1MHz to 4MHz	69	73	l –	69	73	-	65	70		dB	
Noise	-	150	-		150	-	-	150	-	μVrms	
Two-tone Intermodulation Distortion (fin = 2.45MHz,										-	
1.975MHz, f _s = 8MHz, –0.5dB)	1	-82			-82			82		dB	
	-	-02	-	-	-02	-	-	-02	-	uD	
Input Bandwidth (-3dB)		20			30			30		MHz	
Small Signal (-20dB input)		30	-	-			-		-		
Large Signal (-0dB input)	-	10		-	10	-	-	10	-	MHz	
Feedthrough Rejection (fin = 4MHz)	-	85		- 1	85	-	-	85	-	dB	
Slew Rate	-	±400	-	-	±400	-	-	±400		V/µs	
Aperture Delay Time	-	+5		- 1	+5	-	-	+5		ns	
Aperture Uncertainty	-	2	-	-	2	-	-	2	-	ps rms	
S/H Acquisition Time			60		67	60		65	60		
(to ±0.003%FSR, 4V step)		55	60	-	55	60	-	55	60	ns	
Overvoltage Recovery Time (5)	-	100	125		100	125	-	100	125	ns	
A/D Conversion Rate	8		1 -	8	-	- 1	8	- 1	I —	MHz	

		+25°C		0 to +70°C		–55 to +125°C				
DIGITAL OUTPUTS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Logic Levels										
Logic "1"	+2.4	_	1 –	+2.4	_	_	+2.4			Volts
Logic "0"	_	_	+0.4		_	+0.4		-	+0.4	Volts
Logic Loading "1"	- 1	_	-4	_		-4			-4	mA
Logic Loading "0"	- I	- 1	+4	_	- 1	+4	_	_	+4	mA
Output Coding		Offset Binary					I			
POWER REQUIREMENTS										
Power Supply Ranges 6										
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.9	+5.0	+5.25	Volts
-5V Supply	-4.75	-5.0	-5.25	-4.75	-5.0	-5.25	-4.9	-5.0	-5.25	Volts
Power Supply Currents										
+5V Supply	<u> </u>	+220	+270		+220	+270	_	+220	+280	mA
-5V Supply		-120	-160	-	-120	-160		-120	-160	mA
Power Dissipation	_	1.9	2.1		1.9	2.1		1.9	2.1	Watts
Power Supply Rejection	-	- 1	±0.1			±0.1	_	_	±0.1	%FSR/%V

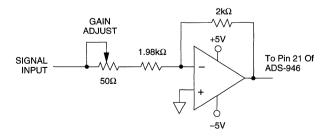
Footnotes:

- All power supplies should be on before applying a start convert pulse. All supplies and the clock (start convert pulses) must be present during warmup periods. The device must be continuously converting during this time.
- 2. Contact DATEL for other input voltage ranges.
- 3. A 20ns wide start convert pulse is used for all production testing. For applications requiring less than an 8MHz sampling rate, a wider start convert pulse can be used.

(SNR + Distortion) – 1.76 + 20 log Full Scale Amplitude Actual Input Amplitude

6.02

- 5. This is the time required before the A/D output data is valid once the analog input is back within the specified range. This time is only guaranteed if the input does not exceed ±2.2V.
- The minimum supply voltages of +4.9V and -4.9V for ±V_{DD} are required for -55°C operation only. The minimum limits are +4.75V and -4.75V when operating at +125°C.


TECHNICAL NOTES

 Obtaining fully specified performance from the ADS-946 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19 and 24) directly to a large *analog* ground plane beneath the package.

Bypass all power supplies to ground with 4.7μ F tantalum capacitors in parallel with 0.1μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible.

2. The ADS-946 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the adjustment circuitry shown in Figures 2 and 3. When using this circuitry, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.

- Applying a start convert pulse while a conversion is in progress (EOC = logic "1") will initiate a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid.
- 4. A passive bandpass filter is used at the input of the A/D for all production testing.

CALIBRATION PROCEDURE

(Refer to Figures 2 and 3 and Tables 1 and 2)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuits in Figures 2 and 3 are guaranteed to compensate for the ADS-946's initial accuracy errors and may not be able to compensate for additional system errors.

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

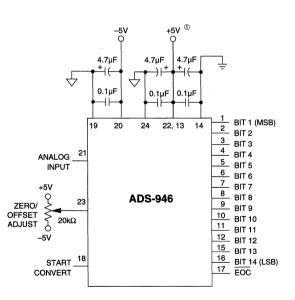
Offset adjusting for the ADS-946 is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is +1/2LSB (+122 μ V).

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 1/2 LSB's (+1.99963V).

Zero/Offset Adjust Procedure

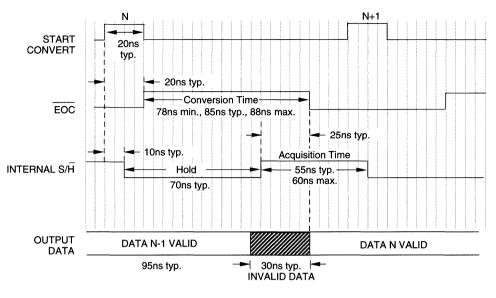
- 1. Apply a train of pulses to the START CONVERT input (pin 18) so the converter is continuously converting.
- 2. Apply +122µV to the ANALOG INPUT (pin 21).
- 3. Adjust the offset potentiometer until the output bits are 1000 0000 00000 and the LSB flickers between 0 and 1.

T	able	1.	Gain	and	Zero	Adjust	


INPUT VOLTAGE	ZERO ADJUST	GAIN ADJUST
RANGE	+1/2 LSB	+FS-1 1/2 LSB
±2V	+122µV	

Gain Adjust Procedure

- 1. Apply +1.99963V to the ANALOG INPUT (pin 21).
- 2. Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between 1 and 0.
- 3. To confirm proper operation of the device, vary the input signal to obtain the output coding listed in Table 2.


Table 2.	Output	Coding f	or Bipolar	Operation
----------	--------	----------	------------	-----------

BIPOLAR SCALE	INPUT VOLTAGE (±2V RANGE)	OFFSET BINARY MSB LSB
+FS –1 LSB	+1.99976	11 1111 1111 1111
+3/4 FS	+1.50000	11 1000 0000 0000
+1/2 FS	+1.00000	11 0000 0000 0000
0	0.00000	10 0000 0000 0000
-1/2 FS	-1.00000	01 0000 0000 0000
–3/4 FS	-1.50000	00 1000 0000 0000
–FS +1 LSB	-1.99976	00 0000 0000 0001
–FS	-2.00000	00 0000 0000 0000

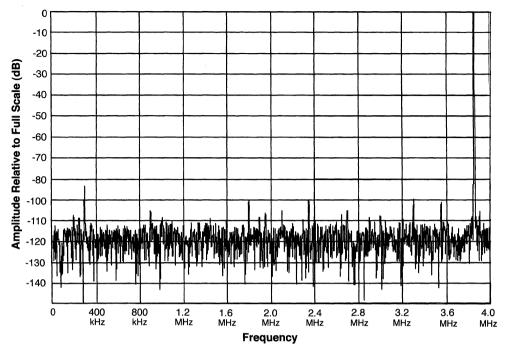
① A single +5V supply should be used for both the +5V analog and +5V digital. If separate supplies are used, the difference between the two cannot exceed 100mV.

Figure 3. ADS-946 Connection Diagram

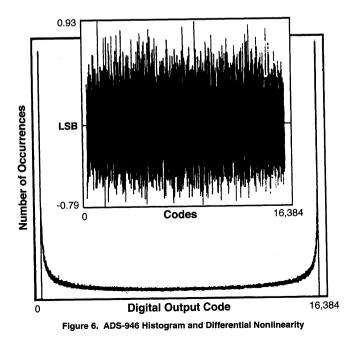
Notes:

- 1. Scale is approximately 5ns per division. Sampling rate = 8MHz
- 2. The start convert pulse must be between 20 and 50ns wide or between 80 and 110ns wide when sampling at 8MHz.

Figure 4. ADS-946 Timing Diagram

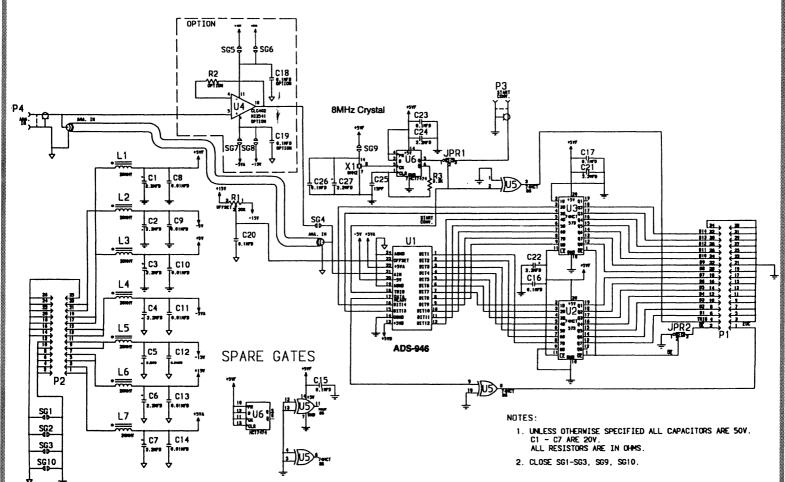

THERMAL REQUIREMENTS

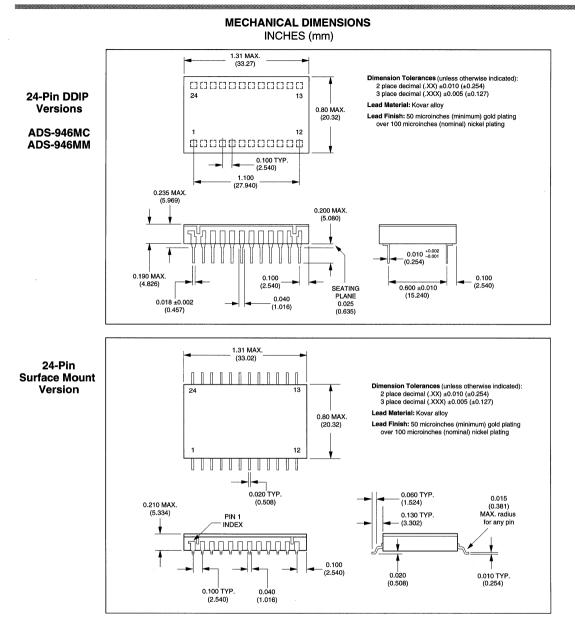
All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ}$ C and -55 to $+125^{\circ}$ C. All room-temperature (T_A = $+25^{\circ}$ C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.


These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

1-164 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765




Figure 5. ADS-946 Evaluation Board Schematic (ADS-B946)

.

Q

ADS-946

DATEL

ORDERING INFORMATION

MODEL NUMBER ADS-946MC ADS-946MM	OPERATING TEMP. RANGE 0 to +70°C -55 to +125°C	ANALOG INPUT Bipolar (±2V) Bipolar (±2V)	Inc., Part # 3-331	Evaluation Board (without ADS-946) Heat Sink for all ADS-946 models PC board mounting can be ordered through AMP 272-8 (Component Lead Socket), 24 required. For duct, or surface mount packaging, contact DATEL.
--	---	---	--------------------	---

ADS-CCD1201 12-Bit, 1.2MHz, Sampling A/D's

Optimized for CCD Applications

FEATURES

- Unipolar input range (0 to +10V)
- 1.2MHz sampling rate
- 4096-to-1 dynamic range (72.2dB)
- Low noise, 400µVrms (1/6 of an LSB)
- Outstanding differential nonlinearity error (±0.35 LSB max.)
- Small, 24-pin ceramic DDIP
- Low power, 1.7 Watts
- Operates from ±12V or ±15V supplies
- · Edge-triggered, no pipeline delay

GENERAL DESCRIPTION

The functionally complete, easy-to-use ADS-CCD1201 is a 12-bit, 1.2MHz Sampling A/D Converter whose performance and production testing have been optimized for use in electronic imaging applications, particularly those employing charge coupled devices (CCD's) as their photodetectors. The ADS-CCD1201 delivers the lowest noise (400μ Vrms) and the best differential nonlinearity error (± 0.35 LSB max.) of any commercially available 12-bit A/D in its speed class. It can respond to full scale input steps (from empty to full well) with less than a single count of error, and its input is immune to overvoltages that may occur due to blooming.

Packaged in an industry-standard, 24-pin, ceramic DDIP, the ADS-CCD1201 requires $\pm 15V$ (or $\pm 12V$) and $\pm 5V$ supplies and typically consumes 1.7 (1.4) Watts. The device is 100% production tested for all critical performance parameters and is fully specified over both the 0 to $\pm 70^{\circ}C$ and ± 55 to $\pm 125^{\circ}C$ operating temperature ranges.

For those applications using correlated double sampling, the

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 (LSB)	24	-12V/-15V SUPPLY
2	BIT 11	23	GROUND
3	BIT 10	22	+12V/+15V SUPPLY
4	BIT 9	21	+10V REFERENCE OUT
5	BIT 8	20	ANALOG INPUT
6	BIT 7	19	GROUND
7	BIT 6	18	NO CONNECT
8	BIT 5	17	NO CONNECT
9	BIT 4	16	START CONVERT
10	BIT 3	15	EOC
11	BIT 2	14	GROUND
12	BIT 1 (MSB)	13	+5V SUPPLY

ADS-CCD1201 can be supplied without its internal sample-hold amplifier. DATEL will also entertain discussions about including the CDS circuit internal to the ADS-CCD1201. Please contact us for more details.

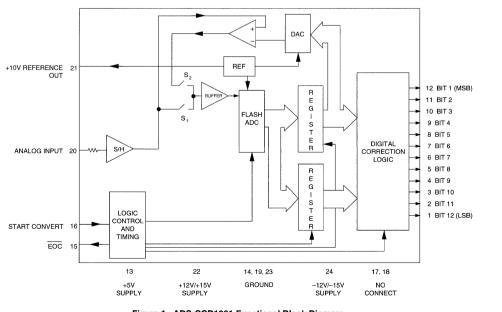


Figure 1. ADS-CCD1201 Functional Block Diagram

ADS-CCD1201

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+12V/+15V Supply (Pin 22)	0 to +16	Volts
-12V/-15V Supply (Pin 24)	0 to -16	Volts
+5V Supply (Pin 13)	0 to +6	Volts
Digital Input (Pin 16)	-0.3 to +V _{DD} +0.3	Volts
Analog Input (Pin 20)	-4 to +17	Volts
Lead Temp. (10 seconds)	300	°C

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS
Operating Temp. Range, Case ADS-CCD1201MC ADS-CCD1201MM Thermal Impedance	0 55		+70 +125	°℃ ℃
θjc θca		5 24		°C/Watt °C/Watt
Storage Temperature Range	65	24 —	+150	°C/watt °C
Package Type Weight		metal-seal 0.42 ounces		

FUNCTIONAL SPECIFICATIONS

 $(T_A = +25^{\circ}C, \pm V_{CC} = \pm 15V \text{ (or } \pm 12V), + V_{DD} = +5V, 1.2MHz \text{ sampling rate, and a minimum 1 minute warmup } 0 \text{ unless otherwise specified.}$

		+25°C			0 to +70°	C	–55 to +125°C				
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	
Input Voltage Range ^②	_	0 to +10			0 to +10	_		0 to +10		Volts	
Input Resistance	l _	1	_		1	_		1	_	kΩ	
Input Capacitance	_	7	15		7	15		7	15	pF	
	1	1			I			L		P.	
Logic Levels	1	1									
Logic "1"	+2.0		_	+2.0	_	_	+2.0	_	_	Volts	
Logic "0"	_	_	+0.8		_	+0.8			+0.8	Volts	
Logic Loading "1"	_	_	+20		_	+20		_	+20	μA	
Logic Loading "0"	l		-20			-20	_		-20	μA	
Start Convert Positive Pulse Width ③	50	100	_	50	100	_	50	100	—	ns	
STATIC PERFORMANCE					L				L		
Resolution	-	12			12			12		Bits	
Integral Nonlinearity (fin = 10kHz)	-	±0.5	-	-	±0.5	-	-	±1	-	LSB	
Differential Nonlinearity (fin = 10kHz)	-	±0.25	±0.35	-	±0.25	±0.35	—	±0.35	±0.75	LSB	
Full Scale Absolute Accuracy		±0.1	±0.3	-	±0.2	±0.5	—	±0.3	±0.5	%FSR	
Offset Error (Tech Note 2)	-	±0.05	±0.15	-	±0.1	±0.15	—	±0.15	±0.4	%FSR	
Gain Error (Tech Note 2)	-	±0.1	±0.3		±0.2	±0.5		±0.3	±0.5	%	
No Missing Codes (f _{in} = 10kHz)	12	L –	_	12	-	_	12		-	Bits	
DYNAMIC PERFORMANCE		T									
Peak Harmonics (-0.5dB)											
dc to 100kHz	-	86	-80		-86	-80	-	-82	-76	dB	
100kHz to 500kHz	-	84	78	-	-84	-78	-	-81	-75	dB	
Total Harmonic Distortion (-0.5dB)											
dc to 100kHz		-84	-79	-	-84	-79	-	-77	-71	dB	
100kHz to 500kHz	-	-82	-77	—	-82	-77	-	-76	-70	dB	
Signal-to-Noise Ratio											
(w/o distortion, -0.5dB)							70				
dc to 100kHz	72	73	-	72	73	-	70	72	-	dB	
100kHz to 500kHz Signal-to-Noise Ratio ④	71	72	—	71	72	_	70	72	_	dB	
(& distortion, -0.5dB)	1										
dc to 100kHz	71	73	_	71	73	_	68	71	_	dB	
100kHz to 500kHz	71	73	_	71	72		68	71		dВ	
Two-tone Intermodulation		[']	_		12	-	00	/ //	_	ub	
Distortion (fin = 100kHz,											
240kHz, f _s = 1.2MHz,]]			
-0.5dB)		-85	_	_	-84	_	_	-83		dB	
Noise	-	400	_	_	500	_		700	_	μVrms	
Input Bandwidth (-3dB)	1									P.1110	
Small Signal (-20dB input)	_	7.5	_	_	7.5	_	_	7.5	_	MHz	
Large Signal (-0.5dB input)		6	_	_	6	_		6	_	MHz	
Feedthrough Rejection											
$(f_{in} = 500 \text{kHz})$	-	84			84	-	_	84	_	dB	
Slew Rate	-	±60	_		±60	_	_	±60	_	V/µs	
Aperture Delay Time	-	±20	_	_	±20	-	_	±20	-	ns	
Aperture Uncertainty	-	5		-	5	-	_	5		ps rms	
S/H Acquisition Time											
(to ±0.01%FSR, 10V step)	360	400	440	360	400	440	360	400	440	ns	
Overvoltage Recovery Time (5)	-	400	833	-	400	833	_	400	833	ns	
A/D Conversion Rate	1.2	l —		1.2			1.2	-		MHz	

ADS-CCD120

		+25°C			0 to +70	°C		55 to +12	5°C	
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference										
Voltage	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	Volts
Drift		±5	_	_	±5	_	_	±5		ppm/°C
External Current	-	-	1.5		—	1.5	-	—	1.5	mA
DIGITAL OUTPUTS										
Logic Levels										
Logic "1"	+2.4	-	-	+2.4			+2.4		-	Volts
Logic "0"		-	+0.4	—	—	+0.4	-	—	+0.4	Volts
Logic Loading "1"		-	-4		_	-4	_	_	4	mA
Logic Loading "0"	- 1	-	+4	_	_	+4	-	_	+4	mA
Delay, Falling Edge of EOC										
to Output Data Valid		-	35	_		35	-	_	35	ns
Output Coding					Straig	ht Binary				
POWER REQUIREMENTS, ±15V										
Power Supply Range										
+15V Supply	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	Volts
-15V Supply	-14.5	-15.0	-15.5	-14.5	15.0	-15.5	-14.5	15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current										
+15V Supply	_	+50	+65	_	+50	+65	_	+50	+65	mA
-15V Supply		-40	-50		-40	-50	_	-40	-50	mA
+5V Supply		+70	+85		+70	+85		+70	+85	mA
Power Dissipation		1.7	1.9	_	1.7	1.9	_	1.7	1.9	Watts
Power Supply Rejection	—	-	±0.01		-	±0.01	-	-	±0.01	%FSR/%
POWER REQUIREMENTS, ±12V										
Power Supply Range										
+12V Supply	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	Volts
-12V Supply	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current										
+12V Supply	—	+50	+65		+50	+65	_	+50	+65	mA
-12V Supply	_	-40	-48	_	-40	-48	_	-40	-48	mA
+5V Supply	-	+70	+80		+70	+80	_	+70	+80	mA
Power Dissipation	_	1.4	1.6	_	1.4	1.6	_	1.4	1.6	Watts
Power Supply Rejection			±0.01	_	_	±0.01	_		±0.01	%FSR/%

All power supplies must be on before applying a start convert ∩ pulse. All supplies and the clock (START CONVERT) must be present during warmup periods. The device must be continuously converting during this time.

- 2 Contact DATEL for availability of other input voltage ranges.
- 3 A 100ns wide start convert pulse is used for all production testing.

TECHNICAL NOTES

1. Obtaining fully specified performance from the ADS-CCD1201 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19, and 23) directly to a large analog ground plane beneath the package.

Bypass all power supplies, as well as the REFERENCE OUTPUT (pin 21), to ground with 4.7µF tantalum capacitors in parallel with 0.1µF ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. If the user-installed offset and gain adjusting circuit shown in Figure 2 is used, also locate it as close to the ADS-CCD1201 as possible.

2. The ADS-CCD1201 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the input circuit of Figure 2. When using this circuit, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.

Full Scale Amplitude (SNR + Distortion) -1.76 + 20 log Actual Input Amplitude

6.02

- This is the time required before the A/D output data is valid once 6 the analog input is back within the specified range.
- 3. When operating the ADS-CCD1201 from ±12V supplies, do not drive external circuitry with the REFERENCE OUTPUT (pin 21). The reference's accuracy and drift specifications may not be met, and loading the circuit may cause accuracy errors within the converter.
- 4. A passive bandpass filter is used at the input of the A/D for all production testing.
- 5. Applying a start pulse while a conversion is in progress (EOC = logic "1") initiates a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid.

Table 1. Zero and Gain Adjus

INPUT VOLTAGE	ZERO ADJUST	GAIN ADJUST
RANGE	+1/2 LSB	+FS - 1 1/2 LSB
0 to +10V	+1.2207mV	+9.99634V

CALIBRATION PROCEDURE

(Refer to Figures 2 and 3)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit of Figure 2 are guaranteed to compensate for the ADS-CCD1201's initial accuracy errors and may not be able to compensate for additional system errors.

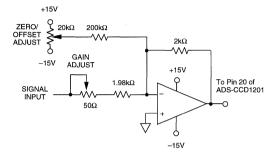


Figure 2. ADS-CCD1201 Calibration Circuit

All fixed resistors in Figure 2 should be metal-film types, and multi-turn potentiometers should have TCR's of 100ppm/°C or less to minimize drift with temperature. In many applications, the CCD will require an offset-adjust (black balance) circuit near its output and also a gain stage, presumably with adjust capabilities, to match the output voltage of the CCD to the input range of the A/D. If one is performing a "system I/O calibration" (from light in to digital out), these circuits can be used to compensate for the relatively small initial offset and gain errors of the A/D. This would elliminate the need for the circuit shown in Figure 2.

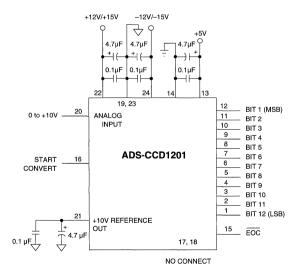


Figure 3. Typical ADS-CCD1201 Connection Diagram

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-CCD1201, offset adjusting is normally accomplished at the point where all output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is +1/2LSB (+1.2207mV).

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 1/2 LSB's (+9.99634V).

Offset Adjust Procedure

- 1. Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting. If using LED's on the outputs, a 200kHz conversion rate will reduce flicker.
- 2. Apply +1.2207mV to the ANALOG INPUT (pin 20).
- 3. Adjust the offset potentiometer until the output bits are 0000 0000 00000 and the LSB flickers between 0 and 1.

Gain Adjust Procedure

- 1. Apply +9.99634V to the ANALOG INPUT (pin 20).
- 2. Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between 1 and 0.

INPUT VOLTAGE (0 to +10V)	UNIPOLAR SCALE	DIGITAL OUTPUT MSB LSB
+9.9976	+FS -1LSB	1111 1111 1111
+7.5000	+3/4 FS	1100 0000 0000
+5.0000	+1/2 FS	1000 0000 0000
+2.5000	+1/4 FS	0100 0000 0000
+0.0024	+1LSB	0000 0000 0001
0	0	0000 0000 0000

Table 2. ADS-CCD1201 Output Coding

Coding is straight binary; 1LSB = 2.44mV

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ}$ C and -55 to $+125^{\circ}$ C. All room-temperature (T_A = $+25^{\circ}$ C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electricallyinsulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

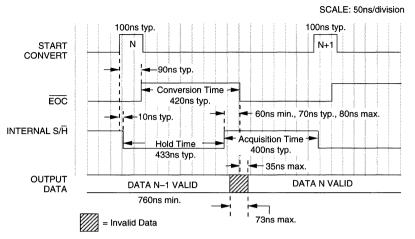
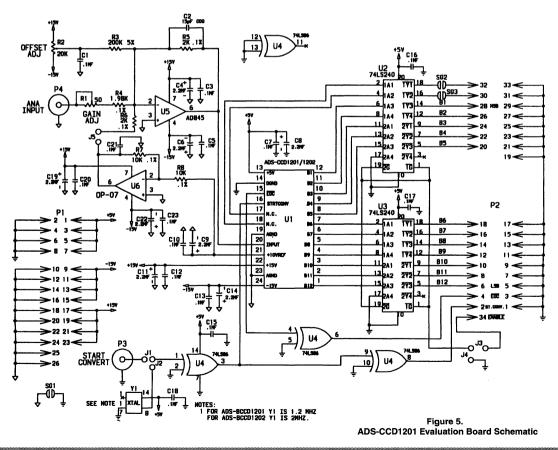
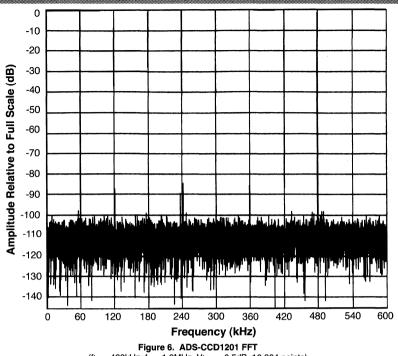
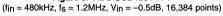



Figure 4. ADS-CCD1201 Timing Diagram

TIMING


The ADS-CCD1201 is an edge-triggered device. A conversion is initiated by the rising edge of the start convert pulse and no additional external timing signals are required. The device


does not employ "pipeline" delays to increase its throughput rate. It does not require multiple start convert pulses to bring valid digital data to its output pins.

ADS-CCD1201

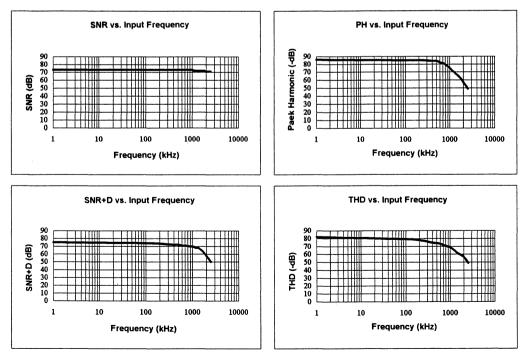
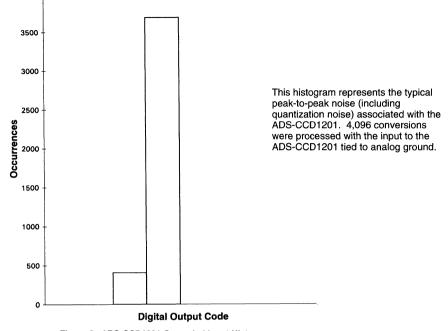
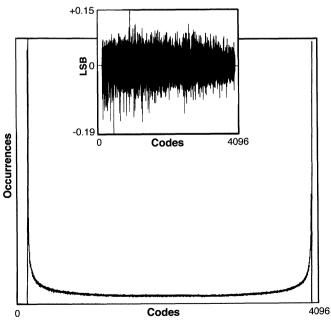
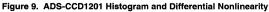
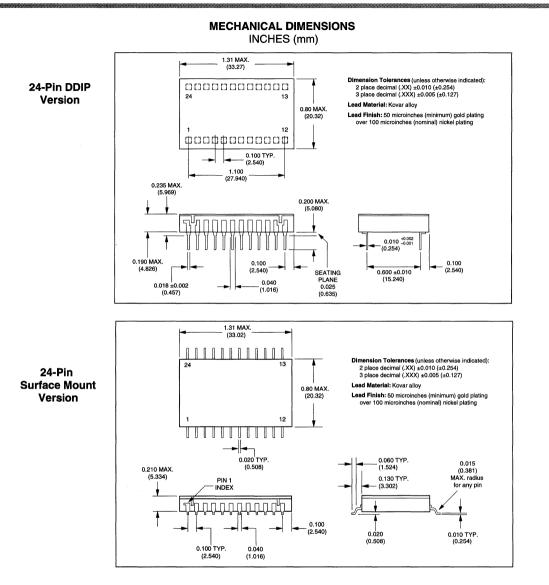



Figure 7. Typical ADS-CCD1201 Dynamic Performance vs. Input Frequency at +25°C $(V_{in} = -0.5 dB, f_S = 1.2 MHz)$


1-172 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For Immediate Assistance 800-233-2765



4000



ADS-CCD1201

B DATEL

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	ANALOG INPUT	ACCESSORIES	
ADS-CCD1201MC ADS-CCD1201MM	0 to +70°C −55 to +125°C	Unipolar (0 to +10V) Unipolar (0 to +10V)	ADS-BCCD1201 HS-24	Evaluation Board (without ADS-CCD1201) Heat Sink for all ADS-CCD1201 models
Contact DATEL for a high-reliability screen		ce-mount packaging or		PC board mounting can be ordered through 3-331272-8 (Component Lead Socket), 24

ADS-CCD1202 12-Bit, 2MHz, Sampling A/D's for CCD Imaging Applications

FEATURES

- Unipolar input range (0 to +10V)
- · 2MHz sampling rate
- 4096-to-1 dynamic range (72.2dB)
- Low noise, 600µVrms (1/4th of an LSB)
- Outstanding differential nonlinearity error (±0.45LSB max.)
- Small, 24-pin ceramic DDIP
- · Low power, 1.75 Watts
- Operates from ±12V or ±15V supplies
- · Edge-triggered, no pipeline delay
- Low cost

GENERAL DESCRIPTION

The functionally complete, easy-to-use ADS-CCD1202 is a 12-bit, 2MHz Sampling A/D Converter whose performance and production testing have been optimized for use in CCD applications. This device delivers the lowest noise (600μ Vrms) and the best differential linearity error ($\pm 0.45LSB$ maximum) of any commercially available 12-bit A/D in its speed class. It can respond to full scale input steps (from empty to full well) with less than a single count of error, and its input is immune to overvoltages that may occur due to blooming.

Packaged in an industry-standard, 24-pin, ceramic DDIP, the ADS-CCD1202 requires \pm 15V (or \pm 12V) and +5V supplies and typically consumes 1.75 (1.45) Watts. The device is 100% production tested for all critical performance parameters and is fully specified over both the 0 to +70°C and -55 to +125°C operating temperature ranges.

For those applications using correlated double sampling, the ADS-CCD1202 can be supplied without its internal

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 (LSB)	24	-12V/-15V SUPPLY
2	BIT 11	23	GROUND
3	BIT 10	22	+12V/+15V SUPPLY
4	BIT 9	21	+10V REFERENCE OUT
5	BIT 8	20	ANALOG INPUT
6	BIT 7	19	GROUND
7	BIT 6	18	NO CONNECT
8	BIT 5	17	NO CONNECT
9	BIT 4	16	START CONVERT
10	BIT 3	15	EOC
11	BIT 2	14	GROUND
12	BIT 1 (MSB)	13	+5V SUPPLY

sample-hold amplifier and achieve conversion rates up to 2.5MHz. DATEL will also entertain discussions about including the CDS circuit internal to the ADS-CCD1202. Please contact us for more details.

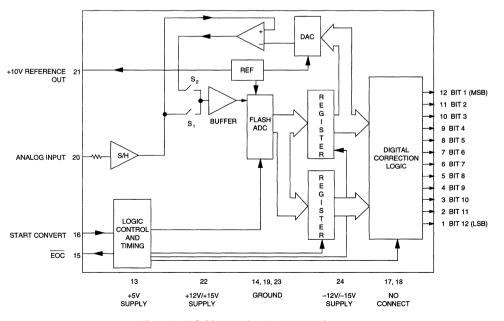


Figure 1. ADS-CCD1202 Functional Block Diagram

ADS-CCD1202

ABSOLUTE MAXIMUM RATINGS

LIMITS	UNITS
0 to +16	Volts
0 to16	Volts
0 to +6	Volts
-0.3 to +V _{DD} +0.3	Volts
-5 to +14	Volts
300	°C
	0 to +16 0 to -16 0 to +6 -0.3 to +V _{DD} +0.3 -5 to +14

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS	
Operating Temp. Range, Case ADS-CCD1202MC ADS-CCD1202MM Thermal Impedance	0 55	_	+70 +125	°℃ ℃	
θjc θca Storage Temperature Range	 65	5 24	 +150	°C/Watt °C/Watt °C	
Package Type Weight	24-pin, metal-sealed, ceramic DDIP 0.42 ounces (12 grams)				

FUNCTIONAL SPECIFICATIONS

(T_A=+25°C, ±V_{CC} = ±15V (or ±12V), +V_{DD} = +5V, 2MHz sampling rate, and a minimum 1 minute warmup ⁽¹⁾ unless otherwise specified.)

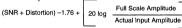

		+25°C			0 to +70°	С	-5	55 to +12	5°C		
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	
Input Voltage Range [@]	_	0 to +10			0 to +10			0 to +10		Volts	
Input Resistance	0.99	1	1.01	0.99	1	1.01	0.99	1	1.01	kΩ	
Input Capacitance	0.99	7	15	0.99	7	15	0.99	7	1.01	pF	
		′	15			15			15	pr	
DIGITAL INPUTS	T	1			· · · · · · · · · · · · · · · · · · ·	r		TT			
Logic Levels Logic "1"	+2	1		+2			+2			Volts	
Logic 1 Logic "0"	+2		+0.8	+2	_	+0.8	+2	_	+0.8	Volts	
Logic Loading "1"		_	+0.8		_	+0.8	_	_	+0.8	μA	
Logic Loading "0"			-20			-20			-20	μΑ	
Start Convert Positive Pulse Width ③	_	200	-20	_	200	-20		200	-20	ns	
STATIC PERFORMANCE	-	1		I				L			
Resolution		12		_	12	_		12	_	Bits	
Integral Nonlinearity (f _{in} = 10kHz)	_	±0.5		_	±0.5			±1	_	LSB	
Differential Nonlinearity (fin = 10kHz)	_	±0.25	±0.45	_	±0.25	±0.45		±0.35	±0.75	LSB	
Full Scale Absolute Accuracy	_	±0.1	±0.3	_	±0.2	±0.5		±0.3	±0.8	%FSR	
Offset Error (Tech Note 2)	-	±0.15	±0.3	_	±0.2	±0.5	_	±0.5	±1.2	%FSR	
Gain Error (Tech Note 2)	_	±0.1	±0.4	_	±0.4	±0.8	_	±0.5	±1.4	%	
No Missing Codes (f _{in} = 10kHz)	12	-	-	12		—	12	-	-	Bits	
DYNAMIC PERFORMANCE											
Peak Harmonics (-0.5dB)											
dc to 500kHz	-	80	-75	-	-80	-75	-	-76	-72	dB	
500kHz to 1MHz		-77	-71	-	-77	-71		-73	66	dB	
Total Harmonic Distortion (-0.5dB)											
dc to 500kHz	-	-76	-73	-	-76	-73		-74	-70	dB	
500kHz to 1MHz	-	-75	-70	-	-75	-70	-	-71	65	dB	
Signal-to-Noise Ratio	1				1						
(w/o distortion, -0.5dB)										10	
dc to 500kHz	71	72	-	71	72	-	71	72	-	dB	
500kHz to 1MHz Signal-to-Noise Ratio ④	71	72		71	72	-	70	72	-	dB	
(& distortion, -0.5dB)		N.	1		[(
dc to 500kHz	70	71		70	71		68	70		dB	
500kHz to 1MHz	68	71		68	71	_	65	69	_	dВ	
Two-tone Intermodulation	00	1 ''	_	00	1 ''		05	03		чD	
Distortion (fin = 200kHz,]	ļ						
500 kHz, $f_s = 2$ MHz,	1				1			{			
-0.5dB)	-	-83	_	_	-82	- 1	_	-81	_	dB	
Noise	_	600	-	_	600	_	_	600	- 1	μVrms	
Input Bandwidth (-3dB)										F	
Small Signal (-20dB input)	_	9	-	-	9	- 1	_	9	_	MHz	
Large Signal (-0.5dB input)	-	8	-	-	8	_		8	-	MHz	
Feedthrough Rejection		1									
$(f_{in} = 1 MHz)$	-	82	-	-	82	-		82	-	dB	
Slew Rate	-	±200		-	±200	-	-	±200	-	V/µs	
Aperture Delay Time	-	±20	-	-	±20		—	±20	-	ns	
Aperture Uncertainty	-	5	-	-	5	-	-	5	-	ps rms	
S/H Acquisition Time											
(to ±0.01%FSR, 10V step)	150	190	230	150	190	230	150	190	230	ns	
Overvoltage Recovery Time ⁽⁵⁾	-	400	500	-	400	500	-	400	500	ns	
A/D Conversion Rate	2	-	-	2	- 1	-	2	-	-	MHz	

ADS-CCD1202

		+25°C			0 to +70°C		{	–55 to +125°C		
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference										
Voltage	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	Volts
Drift	_	±5		1	±5		_	±5	-	ppm/°C
External Current		-	1.5	-	-	1.5	_	-	1.5	mA
DIGITAL OUTPUTS										
Logic Levels										
Logic "1"	+2.4			+2.4	-		+2.4		-	Volts
Logic "0"	_	- 1	+0.4	-		+0.4		- 1	+0.4	Volts
Logic Loading "1"	_	-	-4		-	-4		-	-4	mA
Logic Loading "0"	_	-	+4		_	+4	_		+4	mA
Delay, Falling Edge of EOC										
to Output Data Valid		-	35		-	35			35	ns
Output Coding					Strai	ght Binary				
POWER REQUIREMENTS, ±15V										
Power Supply Range										
+15V Supply	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	Volts
-15V Supply	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current										
+15V Supply		+43	+55	-	+43	+55	-	+43	+55	mA
-15V Supply		-48	55	-	-48	55	-	-48	55	mA
+5V Supply		+82	+95	-	+82	+95	-	+82	+95	mA
Power Dissipation		1.75	1.95		1.75	1.95	- 1	1.75	1.95	Watts
Power Supply Rejection		-	±0.01		—	±0.01	-	-	±0.01	%FSR/%
POWER REQUIREMENTS, ±12V										
Power Supply Range										
+12V Supply	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	Volts
–12V Supply	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	-11.5	-12.0	12.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Current										
+12V Supply		+43	+55		+43	+55		+43	+55	mA
-12V Supply		-48	-55	-	-48	-55	-	-48	-55	mA
+5V Supply		+82	+95	-	+82	+95	-	+82	+95	mA
Power Dissipation		1.45	1.65		1.45	1.65	-	1.45	1.65	Watts
rower bissipation						±0.01			±0.01	%FSR/%

In the second second

③ A 200ns wide start convert pulse is used for all production testing.


TECHNICAL NOTES

 Obtaining fully specified performance from the ADS-CCD1202 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19, and 23) directly to a large *analog* ground plane beneath the package.

Bypass all power supplies, as well as the REFERENCE OUTPUT (pin 21), to ground with 4.7μ F tantalum capacitors in parallel with 0.1 μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. If the user-installed offset and gain adjusting circuit shown in Figure 2 is used, also locate it as close to the ADS-CCD1202 as possible.

 The ADS-CCD1202 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the input circuit of Figure 2. When using this circuit, or any similar offset and gain-calibration hardware,

6.02

⑤ This is the time required before the A/D output data is valid once the analog input is back within the specified range.

make adjustments following warmup. To avoid interaction, always adjust offset before gain.

- When operating the ADS-CCD1202 from ±12V supplies, do not drive external circuitry with the REFERENCE OUTPUT. The reference's accuracy and drift specifications may not be met, and loading the circuit may cause accuracy errors within the converter.
- Applying a start convert pulse while a conversion is in progress (EOC = logic "1") initiates a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid.

Table 1. Zero and Gain Adjust

INPUT VOLTAGE		ZERO ADJUST	GAIN ADJUST		
RANGE		+1/2 LSB	+FS - 1 1/2 LSB		
0 to +	-10V	+1.2207mV	+9.99634V		

CALIBRATION PROCEDURE

(Refer to Figures 2 and 3)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit of Figure 2 are guaranteed to compensate for the ADS-CCD1202's initial accuracy errors and may not be able to compensate for additional system errors.

All fixed resistors in Figure 2 should be metal-film types, and multiturn potentiometers should have TCR's of 100 ppm/°C or

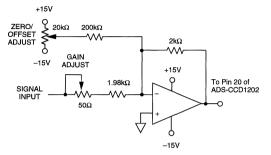


Figure 2. ADS-CCD1202 Calibration Circuit

less to minimize drift with temperature. In many applications, the CCD will require an offset-adjust (black balance) circuit near its output and also a gain stage, presumably with adjust capabilities, to match the output voltage of the CCD to the input range of the A/D. If one is performing a "system I/O calibration" (from light in to digital out), these circuits can be used to compensate for the relatively small initial offset and gain errors of the A/D. This would obviate the need for the circuit shown in Figure 2.

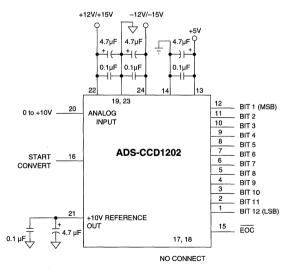


Figure 3. Typical ADS-CCD1202 Connection Diagram

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-CCD1202, offset adjusting is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is +1/2LSB (+1.2207mV).

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 1/2 LSB's (+9.99634V) .

Offset Adjust Procedure

- Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting. If using LED's on the outputs, a 200kHz conversion rate will reduce flicker.
- 2. Apply +1.2207mV to the ANALOG INPUT (pin 20).
- 3. Adjust the offset potentiometer until the output bits are all 0's and the LSB flickers between 0 and 1.

Gain Adjust Procedure

- 1. Apply +9.99634V to the ANALOG INPUT (pin 20).
- 2. Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between 1 and 0.

INPUT VOLTAGE (0 to +10V)	UNIPOLAR SCALE	DIGITAL OUTPUT MSB LSB
+9.9976	+FS –1LSB	1111 1111 1111
+7.5000	+3/4 FS	1100 0000 0000
+5.0000	+1/2 FS	1000 0000 0000
+2.5000	+1/4 FS	0100 0000 0000
+0.0024	+1LSB	0000 0000 0001
0	0	0000 0000 0000

Table 2. ADS-CCD1202 Output Coding

Coding is straight binary; 1LSB = 2.44mV

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to +70°C and -55 to + 125°C. All room-temperature (T_A = +25°C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electricallyinsulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

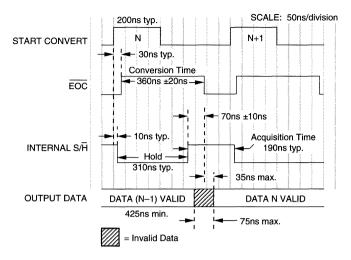
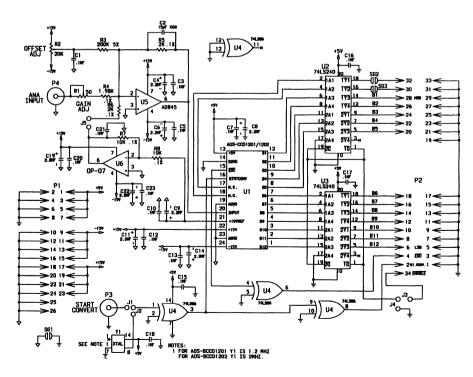
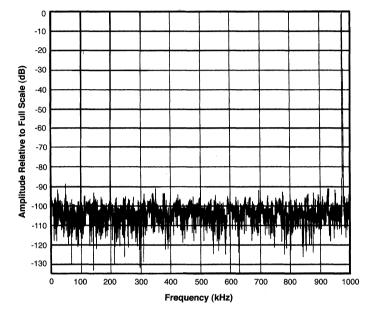
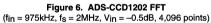



Figure 4. ADS-CCD1202 Timing Diagram

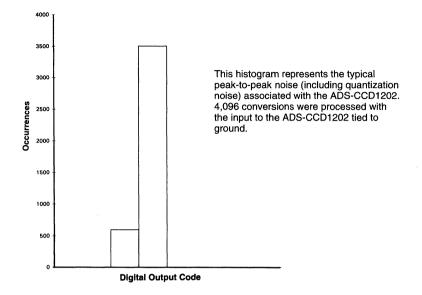
TIMING

The ADS-CCD1202 is an edge-triggered device. A conversion is initiated by the rising edge of the start convert pulse and no additional external timimg signals are required. The device


does not employ "pipeline" delays to increase its throughput rate. It does not require multiple start convert pulses to bring valid digital data to its output pins.



ADS-CCD1202



1

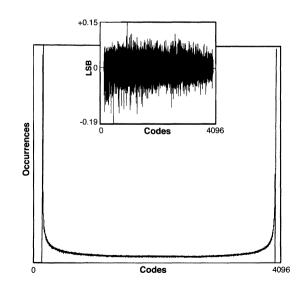
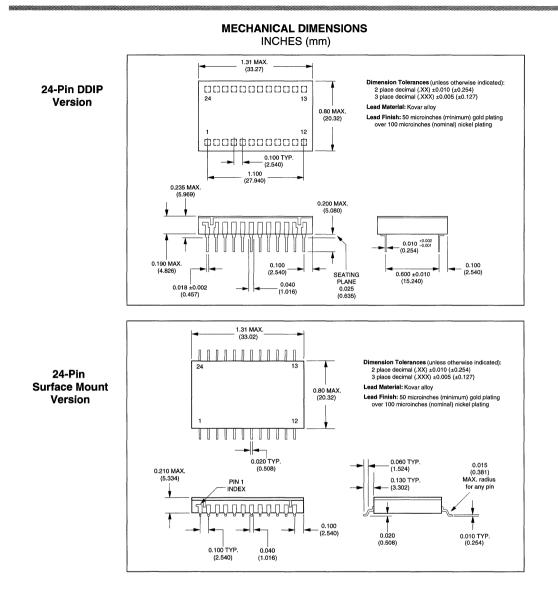



Figure 8. ADS-CCD1202 Histogram and Differential Nonlinearity

ADS-CCD1202

B DATEI [®]

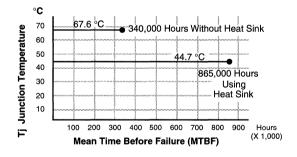
ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	ANALOG INPUT	ACCESSORIES	
ADS-CCD1202MC ADS-CCD1202MM	0 to +70°C –55 to +125°C	Unipolar (0 to +10V) Unipolar (0 to +10V)	ADS-BCCD1202 HS-24	Evaluation Board (without ADS-CCD1202) Heat Sink for all ADS-CCD1202 DDIP models
Contact DATEL for a high-reliability screen		ce-mount packaging or		PC board mounting can be ordered through 3-331272-8 (Component Lead Socket), 24

HS-24, HS-32, HS-40

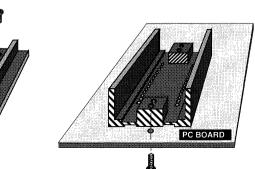
Heat Sinks for 24-Pin, 32-Pin and 40-Pin DIPS

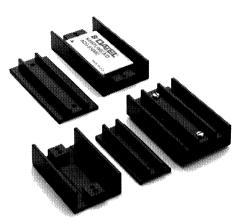
FEATURES


- · Supports hybrid or monolithic components
- Drastically decreases thermal resistance, θ ca
- · Improves hybrid performance and reliability
- Anodized aluminum construction
- Low cost

GENERAL DESCRIPTION

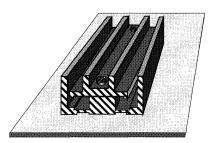
To further increase both the electrical performance and reliability of hybrid components, DATEL has developed a series of aluminum heat sinks for conventional 24-pin DDIP, 32-pin TDIP, and 40-pin TDIP packages.


The HS Series of heat sinks is suitable for use with both sideand bottom-brazed dual in-line packages. The heat sinks consist of a top and bottom assembly (cover and base) which together enclose the package. A compressible, thermally-conductive silicone preform is used to seal the top and bottom components to the respective surfaces of the package, maximizing thermal contact. The HS-24, HS-32, and HS-40 heat sinks are designed for printed circuit board mounting. The HS heat sinks are made of anodized aluminum which provides high levels of heat conduction and dissipation.


Performance improvements include a typical increase in MTBF of 250 percent and an average reduction in case temperature (Tc) of 35 percent. This corresponds to an average decrease in junction temperature of approximately 30 percent.

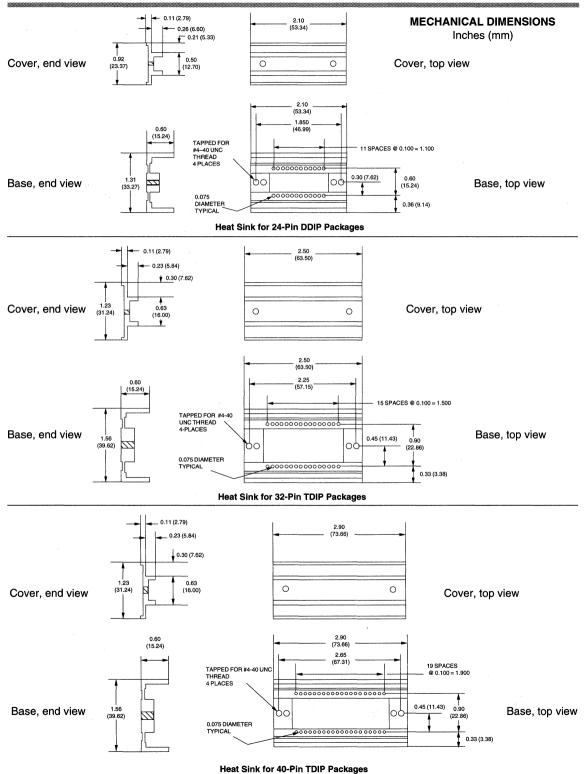
BASE

SPECIFICATIONS


Package	θca (typ.)	Units
24-pin without HS-24	23	°C/W
24-pin with HS-24	9	°C/W
32-pin without HS-32	18	°C/W
32-pin with HS-32	7	°C/W
40-pin without HS-40	17	°C/W
40-pin with HS-40	6	°C/W


ORDERING INFORMATION

PART NUMBER HS-24 HS-32 HS-40 PACKAGE TYPE 24-pin DDIP 32-pin TDIP 40-pin TDIP


For additional information, request DATEL Application Note AN-8

ASSEMBLED (DIP not Visible)

Analog-to-Digital Converters

Table of Contents

Selection Guide)	2-1
ADC-207	7-Bit, 20MHz, CMOS Flash A/D Converters	2-3
ADC-228	8-Bit, 20MHz, Complete Flash A/D Converters	2-9
ADC-304	8-Bit, 20MHz, Low-Power Flash A/D Converters	2-13
ADC-305	8-Bit, 20MHz, Low-Power Video A/D Converters	2-18
ADC-317	8-Bit, 125MHz, Low-Power Flash A/D Converters	2-23
ADC-HX Series	12-Bit, 20µsec A/D Converters	2-28
ADC-HZ Series	12-Bit, 8µsec A/D Converters	2-28

Selection Guide

Model ①	Resolution (Bits)	Guaranteed Conversion Rate/Time	Differential Linearity Error, Max. (LSB)	Integral Linearity Error, Max. (LSB)	Input Range(s) (Volts)	Power Supplies (Volts)	Power Dissipation (mW)	Page
ADC-207	7	20MHz	±0.5	±1	+5	+5	250	2-3
ADC-228 @	8	20MHz	±0.5	±0.5	+5	+5, ±15	1.5 ③	2-9
ADC-304	8	20MHz	±0.5	±0.5	-2	+5 or ±5	355	2-13
ADC-305	8	20MHz	±0.5	±0.5 ④	+2	+5	60	2-18
ADC-317	8	125MHz	±0.7	±0.8	-2	-5.2	870	2-23
ADC-HZ	12	8µs	±0.75	±0.5	+5/10, ±2.5/5/10	+5, ±15	1.1 ③	2-28
ADC-HX	12	20µs	±0.75	±0.5	+5/10, ±2.5/5/10	+5, ±15	1.1 ③	2-28

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

- ① MIL-STD-883 screening available on all models except ADC-304/305/317.
- 2 The ADC-228 is a "complete" flash A/D with reference, input buffer, 3-state output, etc.
- 3 Watts.

④ Listed specification is a typical.

For literature or technical assistance

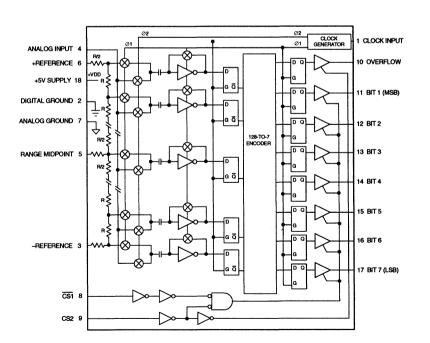
or contact your local DATEL Sales Office or Representative

ADC-207 7-Bit, 20MHz, CMOS Flash A/D Converters

FEATURES

- 7-bit flash A/D converter
- 20MHz sampling rate
- Low power (250mW)
- Single +5V supply
- 1.2 micron CMOS technology
- 7-bit latched 3-state output with overflow bit
- Surface-mount versions
- · High-reliability version
- No missing codes

GENERAL DESCRIPTION


The ADC-207 is the industry's first 7-bit flash converter using an advanced high-speed VLSI 1.2 micron CMOS process. This process offers some very distinctive advantages over other processes, making the ADC-207 unique. The smaller geometrics of the process achieve high speed, better linearity and superior temperature performance.

Since the ADC-207 is a CMOS device, it also has very low power consumption (250mW). The device draws power from a single +5V supply and is conservatively rated for 20MHz operation. The ADC-207 allows using sampling apertures as small as 12ns, making it more closely approach an ideal sampler. The small sampling apertures also let the device operate at greater than 20MHz.

The ADC-207 has 128 comparators which are auto-balanced on every conversion to cancel out any offsets due to temperature and/or dynamic effects. The resistor ladder has a midpoint tap for use with an external voltage source to improve integral linearity beyond 7 bits. The ADC-207 also provides the user with 3-state outputs for easy interfacing to other components.

There are six models of the ADC-207 covering two operating temperature ranges, 0 to $+70^{\circ}$ C and -55 to $+125^{\circ}$ C. Two high-reliability "QL" models are also available.

INPUT/OUTPUT CONNECTIONS

DIP PINS	FUNCTION	LCC PINS
1	CLOCK INPUT	1
2	DIGITAL GROUND	4
3	-REFERENCE	5
4	ANALOG INPUT	6
5	MIDPOINT	7
6	+REFERENCE	8
7	ANALOG GROUND	9
8	CS1	11
9	CS2	12
10	OVERFLOW	13
11	BIT 1 (MSB)	14
12	BIT 2	16
13	BIT 3	17
14	BIT 4	19
15	BIT 5	20
16	BIT 6	21
17	BIT 7 (LSB)	23
18	+5V SUPPLY	24

Figure 1. ADC-207 Functional Block Diagram (DIP Pinout)

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
Power Supply Voltage (+V _{DD}) Digital Inputs Analog Input Reference Inputs Digital Outputs (short circuit protected to ground)	$\begin{array}{c} -0.5 \text{ to } +7 \\ -0.5 \text{ to } +5.5 \\ -0.5 \text{ to } (+V_{DD} +0.5) \\ -0.5 \text{ to } +V_{DD} \\ -0.5 \text{ to } +5.5 \end{array}$	Volts Volts Volts Volts Volts
Lead Temperature (10 sec. max.)	+300	°C

FUNCTIONAL SPECIFICATIONS

(Typical at +5V power, +25°C, 20MHz clock, +REFERENCE = +5V, -REFERENCE = ground, unless noted)

ANALOG INPUT	MIN.	TYP.	MAX.	UNITS
Input Type	Single	e-ended, no	n-isolated	
Input Range (dc-20MHz)	0	-	+5	Volts
Input Impedance	_	1000	_	Ohms
Input Capacitance (Full Range)	-	10	_	pF
DIGITAL INPUTS				
Logic Levels				
Logic "1"	+3.2	-		Volts Volts
Logic "0" Logic Loading "1"			+0.8 ±5	microamps
Logic Loading "0"		±1	±5 ±5	microamps
Sample Pulse Width		- 1	10	microamps
(During Sampling Portion of Clock)	12		_	ns
Reference Ladder Resistance	225	330	_	Ohms
PERFORMANCE	L			
Conversion Rate ①	20	25		MHz
Harmonic Distortion 2	20	25	_	IVITIZ
(8MHz 2nd Order Harmonic)	_	-40	_	dB
Differential Gain 3	_	3	_	%
Differential Phase ③	_	1.5	_	degrees
Aperture Delay		8	-	ns
Aperture Jitter	-	50	-	ps
No Missing Codes				
LC/MC grade	0	- 1	+70	℃ ℃
LM/MM grade	55	±0.8	+125 ±1	LSB
Integral Linearity ④ Over Temperature Range		±0.0	±1	LSB
Differential Nonlinearity	_	±0.3	±0.5	LSB
Over Temperature Range	_	±0.4	±0.6	LSB
Power Supply Rejection	-	±0.02	_	%FSR/%Vs
DIGITAL OUTPUTS				L
Data Coding	S	traight bina	ry	
Data Output Resolution	7			Bits
Logic Levels				
Logic "1"	+2.4	+4.5		Volts
Logic "0" (at 1.6mA)	-4		+0.4	Volts
Logic Loading "1" Logic Loading "0"	-4 +4			mA mA
Output Data Valid Delay	1 **	_	_	
(From Rising Edge)	-	15	17	ns
POWER REQUIREMENTS			1	L
Power Supply Range (+VDD)	+3.0	+5.0	+5.5	Volts
Power Supply Current	-	+50	+70	mA
Power Dissipation	-	250	385	mW
Footnotes:	ł	I	I	

Footnotes:

① At full power input and chip selects enabled.

② At 4MHz input and 20MHz clock.

③ For 10-step, 40 IRE NTSC ramp test.

(4) Adjustable using reference ladder midpoint tap. See ADC-207 Operation.

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS
Operating Temp. Range, Case: LC/MC Versions MM/LW/QL Versions Storage Temp. Range	0 55 65		+70 +125 +150	ů ů ů
Package Type DIP LCC	18-pin ceramic DIP 24-pin ceramic LCC			

TECHNICAL NOTES

- Input Buffer Amplifier Since the ADC-207 has a switched capacitor type input, the input impedance of the 207 is dependent on the clock frequency. At relatively slow conversion rates, a general purpose type input buffer can be used; at high conversion rates DATEL recommends either the HA-5033 or Elantec 2003. See Figure 2 for typical connections.
- Reference Ladder Adjusting the voltage at +REFERENCE adjusts the gain of the ADC-207. Adjusting the voltage at –REFERENCE adjusts the offset or zero of the ADC-207. The midpoint pin is usually bypassed to ground through a 0.1µF capacitor, although it can be tied to a precision voltage halfway between +REFERENCE and –REFERENCE. This would improve integral linearity beyond 7 bits.
- Clock Pulse Width To improve performance at Nyquist bandwidths, the clock duty cycle can be adjusted so that the low portion of the clock pulse is 12ns wide. The smaller aperture allows the ADC-207 to closely resemble an ideal sampler. See Figure 4.
- 4. At sampling rates less than 100kHz, there may be some degradation in offset and differential nonlinearity. Performance may be improved by increasing the clock duty cycle (decreasing the time spent in the sample mode).

CAUTION

Since the ADC-207 is a CMOS device, normal precautions against static electricity should be taken. Use ground straps, grounded mats, etc. The Absolute Maximum Ratings of the device MUST NOT BE EXCEEDED as irrevocable damage to the ADC-207 will occur.

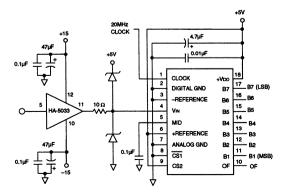
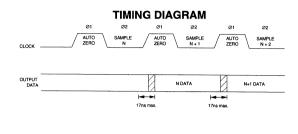


Figure 2. Typical Connections for Using the ADC-207



OUTPUT CODING

(+REFERENCE = +5.12V, -REFERENCE = ground, MIDPOINT = no connection)

NOTE: The reference should be held to ±0.1% accuracy or better. Do not use the +5V power supply as a reference input without precision regulation and high frequency decoupling.

Values shown here are for a +5.12V reference. Scale other references proportionally. Calibration equipment should test for code changes at the midpoints between these center values shown in Table 1. For example, at the half-scale major carry, set the input to 2.54V and adjust the reference until the code flickers equally between 63 and 64. Note also that the weighting for the comparator resistor network leaves the first and last thresholds within 1/2LSB of the end points to adjust the code transition to the proper midpoint values.

Table 1	. ADC-207	Output	Coding
---------	-----------	--------	--------

Analog Input (Center Value)	Code	Overflow	1 MSB	2	3	4	5	6	7 LSB	Decimal	Hexadecima (Incl. 0V)
0.00V	Zero	0	0	0	0	0	0	0	0	0	00
+0.04V	+1LSB	0	0	0	0	0	0	0	1	1	01
+1.28V	+1/4FS	0	0	1	0	0	0	0	0	32	20
+2.52V	+1/2FS – 1LSB	0	0	1	1	1	1	1	1	63	3F
+2.56V	+1/2FS	0	1	0	0	0	0	0	0	64	40
+2.60V	+1/2FS + 1LSB	0	1	0	0	0	0	0	1	65	41
+3.84V	+3/4FS	0	1	1	0	0	0	0	0	96	60
+5.08V	+FS	0	1	1	1	1	1	1	1	127	7F
+5.12V	Overflow	1	1	1	1	1	1	1	1	255*	FF

ADC-207 OPERATION

The ADC-207 uses a switched capacitor scheme in which there is an auto-zero phase and a sampling phase. See Figure 1 and Timing Diagram. The ADC-207 uses a single clock input. When the clock is at a high state (logic 1), the ADC-207 is in the auto-zero phase (Ø1). When the clock is at a low state (logic 0), the ADC-207 is in the sampling phase (Ø2). During phase 1, the 128 comparator outputs are shorted to their inputs through CMOS switches. This serves the purpose of bringing the inputs and outputs to the transition levels of the respective comparators. The inputs to the comparators are also connected to 128 sampling capacitors. The other end of the 128 capacitors are also shorted to 128 taps of a resistor ladder, via CMOS switches. Therefore, during phase 1 the sampling capacitors are charged to the differential voltage between a resistor tap and its respective comparator transition voltage.

This eliminates offset differences between comparators and yields better temperature performance. During phase 2 (Ø2) the input voltage is applied to the 128 capacitors, via CMOS switches. This forces the comparators to trip either high or low. Since the comparators during phase 1 were sitting at their transition point, they can trip very quickly to the correct state. Also during phase 2, the outputs of the comparators are loaded into internal latches which in turn feed a128-to-7 encoder. When going back into phase 1, the output of the encoder is loaded into an output latch. This latch then feeds the 3-state output buffer.

This means that the ADC-207 is of pipeline design. To do a single conversion, the ADC-207 requires a positive pulse

followed by a negative pulse followed by a positive pulse. Continuous conversion requires one cycle/sample (one positive pulse and one negative pulse). The 3-state buffer has two enable lines, $\overline{CS1}$ and $\overline{CS2}$. Table 2 shows the truth table for chip select signals. $\overline{CS1}$ has the function of enabling/ disabling bits 1 through 7. CS2 has the function of enabling/ disabling bits 1 through 7 and the overflow bit. Also, a full-scale input produces all ones, including the overflow bit at the output. The ADC-207 has an adjustable resistor ladder string. The top end, idle point, and bottom end are brought out for use with applications circuits.

These pins are called +REFERENCE, MIDPOINT and -REFERENCE, respectively. In typical operation +REFERENCE is tied to +5V, -REFERENCE is tied to ground, and MIDPOINT is bypassed to ground. Such a configuration results in a 0 to +5V input voltage range. The MIDPOINT pin can also be tied to a +2.5V source to further improve integral linearity. This is usually not necessary unless better than 7-bit linearity is needed.

CS1	CS2	Bits 1-7	Overflow Bit
0	0	3-State Mode	3-State Mode
1	0	3-State Mode	3-State Mode
0	1	Data Outputed	Data Outputed
1	1	3-State Mode	Data Outputed

DATEL

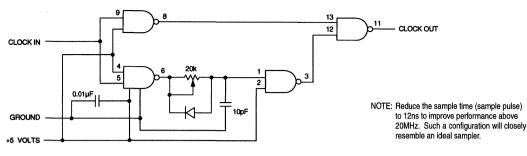


Figure 3. Optional Pulse Shaping Circuit

USING TWO ADC-207'S FOR 8-BIT RESOLUTION

Two ADC-207's (A and B) are cascadable for applications requiring 8-bit resolution. The device A provides a typical 7-bit output. The OVERFLOW signal of device A turns off device A and turns on the device B. The OVERFLOW signal of device A is also used as MSB for 8-bit operation. The device B provides the other seven bits from the input signal. Figure 4 shows the circuit connections for the application.

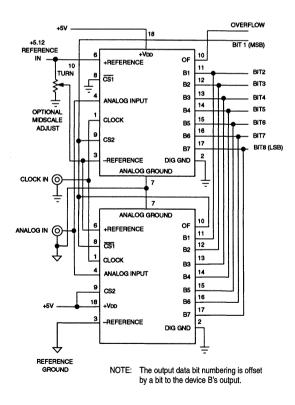


Figure 4. Using Two ADC-207's for 8-Bit Operation

BEAT FREQUENCY AND ENVELOPE TESTS

Figure 5 shows an actual ADC-207 plot of the Beat Frequency Test. This test uses a 20MHz clock input to the ADC-207 with a 20.002MHz full-scale sine wave input. Although the converter would not normally be used in this mode because the input frequency violates Nyquist criteria for full recovery of signal information, the test is an excellent demonstration of the ADC-207's high-frequency performance.

The effect of the 2kHz frequency difference between the input and the clock is that the output will be a 2kHz sinusoidal digital data array which "walks" along the actual input at the 2kHz beat note frequency. Any inability to follow the 20.002MHz input will be immediately obvious by plotting the digital data array. Further arithmetic analysis may be done on the data array to determine spectral purity, harmonic distortion, etc. This test is an excellent indication of:

- 1. Full power input bandwidth of all 128 comparators. (Any gain loss would show as signal distortion.)
- Phase response linearity vs. instantaneous signal magnitude. (Phase problems would show as improper codes.)
- 3. Comparator slew rate limiting.

Figure 6 shows an actual ADC-207 plot of the Envelope Test. This test is a variation of the previous test but uses a 10.002MHz sinewave input to give two overlapping cycles when the data is reconstructed by a D/A converter output to an oscilloscope. The scope is triggered by the 20MHz clock used by the A/D. Any asymmetry between positive and negative portions of the signal will be very obvious. This test is an excellent indication of slew rate capability. At the peaks of the envelope, consecutive samples swing completely through the input voltage range.

2

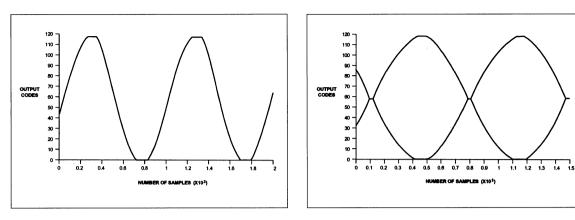


Figure 5. Beat Frequency Test at 20MHz

Figure 6. 10MHz Envelope Test

FFT TEST

.....

This test actually produces an amplitude versus frequency graph (Figure 7) which indicates harmonic distortion and signal-to-noise ratio. The theoretical rms signal-to-noise ration for a 7-bit converter is +43.8dB.

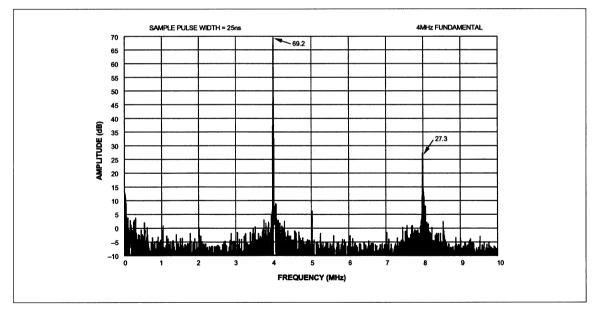
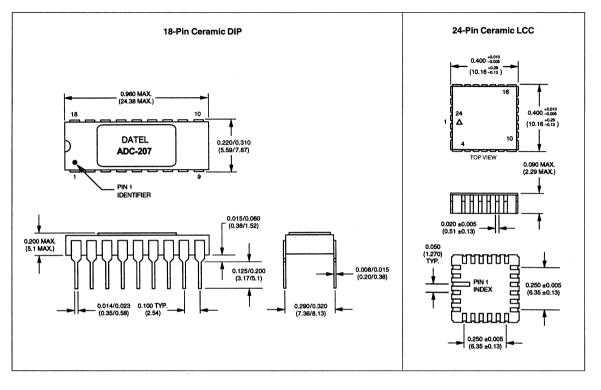



Figure 7. FFT Test Using the ADC-207

MECHANICAL DIMENSIONS INCHES (MM)

ORDERING INFORMATION

MODEL	TEMP. RANGE	PACKAGE
ADC-207MC	0 to +70°C	18-pin DIP
ADC-207MM	–55 to +125°C	18-pin DIP
ADC-207MM-QL	–55 to +125°C	18-pin DIP
ADC-207LC	0 to +70°C	24-pin CLCC
ADC-207LM	-55 to +125°C	24-pin CLCC
ADC-207LM-QL	-55 to +125°C	24-pin CLCC
ACCESSORIES		
ADC-B207/208	Evaluation Board fo (without ADC-207)	or DIP Version

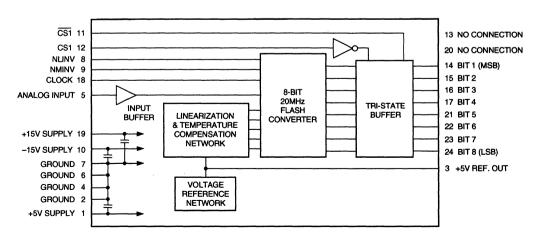
ADC-228 8-Bit, 20MHz, Complete Flash A/D Converter

FEATURES

- 8-Bit flash A/D converter
- 20MHz sampling rate
- Complete support circuitry
- Low power, 1.5W
- 7MHz full power bandwidth
- Sample-hold not required
- Three-state outputs
- MIL-STD-883 versions

GENERAL DESCRIPTION

The ADC-228 combines analog front-end circuitry and a flash A/D converter to digitize high-speed analog signals at a rate of 20 million samples per second. The ADC-228 contains an 8-bit, 20MHz, flash A/D, a wideband analog input buffer, a precision voltage reference, temperature compensation circuitry, reference trims, and a three-state output buffer in a 24-pin package.


The ADC-228 offers significant savings by combining all of the circuitry in a single package. Valuable board real estate is saved, and design time and manufacturing costs are reduced.

The ADC-228 is housed in a 24-pin ceramic DDIP package and is available in the commercial, 0 to +70°C, or military, -55 to +125°C, temperature ranges. A MIL-STD-883 version is also available. Operation is from ±15V and +5V power supplies.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	+5V SUPPLY	24	BIT 8 (LSB)
2	GROUND	23	BIT 7
3	+5V REFERENCE OUT	22	BIT 6
4	GROUND	21	BIT 5
5	ANALOG INPUT	20	NO CONNECTION
6	GROUND	19	+15V SUPPLY
7	GROUND	18	CLOCK INPUT
8	NLINV	17	BIT 4
9	NMINV	16	ВІТ З
10	-15V SUPPLY	15	BIT 2
11	CS1	14	BIT 1 (MSB)
12	CS1	13	NO CONNECTION
1	J		

Figure 1. Functional Block Diagram

ADC-228

ABSOLUTE MAXIMUM RATINGS

PARAMETER	LIMITS
Power Supply Voltage, Pin 1	-0.5 to +7V
Pin 19	-0.3 to +18V
Pin 10	+0.3 to -18V
Digital Inputs, Pins 8,9,11,12,18	-0.5 to +5.5V
Analog Input, Pin 5	-6 to +7.5V
Digital Outputs	-0.5 to +5.5V (short circuit protected to ground)
Lead Temp. (10 seconds)	+300°C

FUNCTIONAL SPECIFICATIONS

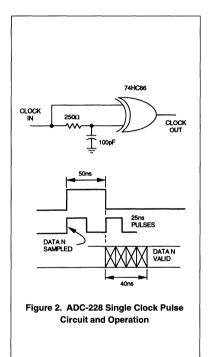
(Apply over the operating temperature range with 20MHz clock and $\pm 15V$ and $\pm 5V$ power supply voltages, unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
ANALOG INPUTS	WIIN.	116.	WAA.	UNITS
Single-Ended, Non-Isolated Input Range, dc-20MHz Input Resistance Input Capacitance	0 2.45 —	 2.5 5	+5.0 2.55 10	Volts kΩ pF
DIGITAL INPUTS				
Logic Levels Logic 1 Logic 0 Logic Loading	+2.0	_	 +0.8	Volts Volts
Logic 1 Logic 0	_		+160 0.5	μA mA
Clock Pulse Widths "High" "Low"	25 19	 _	-	ns ns
DIGITAL OUTPUTS				
Coding Resolution	Straig	ht bin., comp comp. two 8 b	o's comp.	comp.,
Logic Levels Logic 1 Logic 0	+2.4	_	+0.4	Volts Volts
Logic Loading Logic 1 Logic 0	-		-1 +1	mA mA
Output Data Valid Delay From Rising Edge Output Hold Time	5	30 —	40 —	ns ns
PERFORMANCE		L	L	
Sampling Rate ① Differential Linearity ②	20		_	MHz
Code Transitions Code Centers Integral Linearity, +25°C	-	±0.5 ±0.25	±0.75 ±0.5	LSB LSB
End-point Best-fit Line Over Temperature End-point Best-fit Line	 	±0.5 ±0.35 —	±0.75 ±0.5 ±1 ∽ ±1	LSB LSB LSB LSB
Zero-Scale Offset Code "0" to "1" Transition +25°C -55 to +125°C Gain error		 ±0.5 ±0.5	±0.5 ±1.5 ±1.5	LSB LSB LSB
Gain error Full Scale Absolute Accuracy Differential Gain ③ Differential Phase ③	_	±0.5 ±0.5 2	±1.5 ±1.5 —	LSB LSB % deg.
Aperture Delay Aperture Jitter No Missing Codes		8 50		ns ps
Power Supply Rejection		he operating 0.02% FSR/		

	1		Γ	
DYNAMIC PERFORMANCE	MIN.	TYP.	MAX.	UNITS
Total Harm. Distortion, -0.5dB				
DC to 2.5 MHz	-	-55	-53	dB
2.5 MHz to 5 MHz	-	50	48	dB
5 MHz to 10 MHz	-	-39	-36	dB
Signal-to-Noise Ratio				
and Distortion, -0.5dB				
DC to 2.5 MHz	44	49		dB
2.5 MHz to 5 MHz	43	46	-	dB
5 MHz to 10 MHz	35	38	-	dB
Signal-to-Noise Ratio				
w/o Distortion, -0.5 dB				
DC to 2.5 MHz	45	48	-	dB
2.5 MHz to 5 MHz	45	48		dB
5 MHz to 10 MHz	42	45	-	dB
Effective Bits, -0.5dB				
DC to 2.5 MHz	7.1	7.75	-	Bits
2.5 MHz to 5 MHz	6.9	7.4	-	Bits
5 MHz to 10 MHz	5.6	6.1	-	Bits
Input Bandwidth				
Full Power	7	-		MHz
Small Signal (–20dB)	40	-	-	MHz
POWER SUPPLY				
Power Supply Range				
+15V Supply	+11	+15	+15.75	Volts
-15V Supply	-11	-15	-15.75	Volts
+5V Supply	+4.75	+5	+5.25	Volts
Power Supply Current				
+15V Supply	-	_	+30	mA
-15V Supply	-	-	-10	mA
+5V Supply	-	- 1	+230	mA
Power Dissipation				
±12V, +5V Nominal	-	1.4	1.65	Watts
Over full supply range	_	1.6	1.85	Watts
±15V, +5V Nominal	-	1.5	1.75	Watts
PHYSICAL/ENVIRONMENTA	NL			
Operating Temp. Range, Case				
ADC-228MC	1	0 to -	⊦70°C	
ADC-228MM, ADC-228/883		-55 to	+125°C	
Storage Temp. Range	1	-65 to	+150°C	
	-65 to +150°C			
Package Type	24-pin, ceramic DDIP			

D D A T E

Footnotes:


① At full power input and chip selects enabled.

② See Technical Note 3.

③ For 10-step, 40 IRE NTSC ramp test.

TECHNICAL NOTES

- Rated performance requires using good high-frequency techniques. The analog and digital ground pins are connected to each other internally. Avoid ground related problems by connecting the grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- Bypass all the analog and digital supplies and the +5V REFERENCE (pin 3) to ground with a 4.7μF, 25V tantalum electrolytic capacitor in parallel with a 0.1μF ceramic capacitor.
- DATEL uses conservative definitions when specifying integral linearity (end-point) and differential linearity (code transition). The specifications using the less conservative definitions have also been provided as a comparative specification for products specified this way.
- 4. Single conversions (one-shot mode) would require another clock edge to read out data. Users desiring to provide just a single clock pulse could use the circuit shown in Figure 2 to obtain the data.

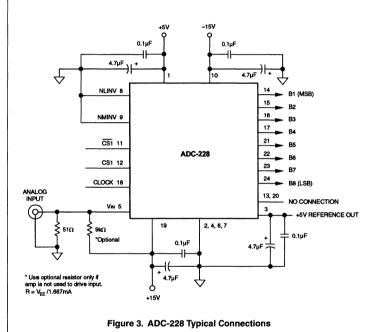
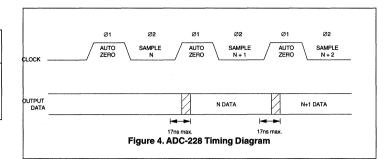


Table 1. ADC-228 Unipolar Output Coding

ANALOG INPUT	CODE	STRAIGHT BIN. NMINV = 0 NLINV = 0	COMP. BIN. NMINV = 1 NLINV = 1
+4.96V	+FS – 1 LSB	1111 1110	0000 0001
+3.75V	+ 3/4 FS	1100 0000	0011 1111
+2.50V	+ 1/2 FS	1000 0000	0111 1111
+1.25V	+ 1/4 FS	0100 0000	1011 1111
+0.02V	+ 1 LSB	0000 0001	1111 1110
0.00V	ZERO	0000 0000	1111 1111

Table 2. ADC-228 Bipolar Output Coding (Assumes analog input is externally offset)


ANALOG INPUT	CODE	TWO'S COMP. NMINV = 1 NLINV = 0	COMP. TWO'S COMP. NMINV = 0 NLINV = 1
+2.480V	+FS – 1 LSB	0111 1111	1000 0000
+1.250V	+1/2 FS	0100 0000	1011 1111
+0.020V	+1 LSB	0000 0001	1111 1110
+0.000V	ZERO	0000 0000	1111 1111
-1.250V	-1/2 FS	1100 0000	0011 1111
-2.480V	FS + 1 LSB	1000 0001	0111 1110
-2.500V	–FS	1000 0000	0111 1111

ADC-228

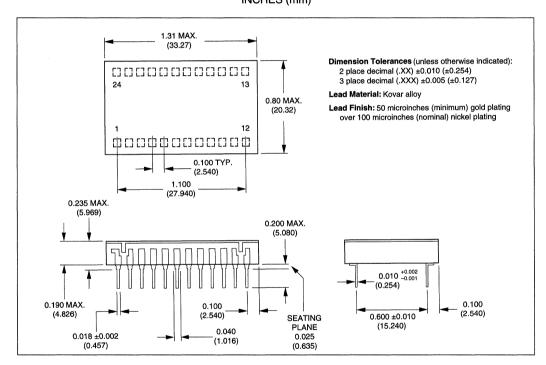


Table 3. Chip Select Truth Table

CS1 Pin 12	CS1 Pin 11	Bits 1-8
0	0	Three State Mode
0	1	Three State Mode
1	0	Data Outputted
1	1	Three State Mode

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL	TEMP. RANGE
ADC-228MC	0 to +70°C
ADC-228MM	–55 to +125°C
ADC-228/883	-55 to +125°C

Receptacle for PC board mounting can be ordered through AMP Inc., part # 3-331272-8 (component lead socket), 24 required. Contact DATEL for 883 product specifications

ADC-304 8-Bit, 20MHz, Low-Power Flash A/D Converters

FEATURES

- 8-bit resolution
- 20MHz conversion rate
- ±1/2LSB maximum nonlinearity
- 8MHz input bandwidth
- Low power consumption, 375mW
- TTL compatible
- · Single or dual supply operation

GENERAL DESCRIPTION

Datel's ADC-304 is an 8-bit, 20MHz analog-to-digital flash converter. The ADC-304 offers many performance features not obtainable from other flash A/D's.

Key reatures include a low power dissipation of 375mW and TTL-compatible outputs. A wide analog input bandwidth of 8MHz (–3dB) allows operation without the need of a sample-hold. Also, single +5V supply operation is obtainable with an input range of +3 to +5V, eliminating the need for an additional power supply. A 0 to –2V input range is available with \pm 5V supply operation.

Another novel feature of the ADC-304 is its user-selectable output coding. The MINV and LINV pins allow selection of binary, complementary binary, and if external offset circuitry is used for bipolar inputs, offset binary, two's complement and complementary two's complement coding.

The ADC-304 is supplied in a 28-pin plastic DIP or a 28-pin plastic SOP package. Operating temperature range is -20 to $+75^{\circ}$ C. Storage temperature range is -55 to $+150^{\circ}$ C.

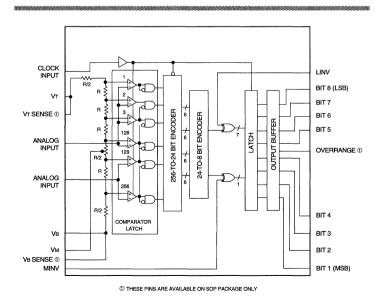


Figure 1. ADC-304 Functional Block Diagram

2

INPUT/OUTPUT CONNECTIONS PLASTIC DIP PACKAGE

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 (MSB)	28	MINV
2	BIT 2	27	VM
3	BIT 3	26	VB
4	BIT 4	25	ANALOG GND
5	DIGITAL GND	24	NO CONNECT
6	+5V POWER	23	ANALOG INPUT
7	-5.2V POWER	22	NO CONNECT
8	-5.2V POWER	21	ANALOG INPUT
9	-5.2V POWER	20	NO CONNECT
10	+5V POWER	19	ANALOG GND
11	DIGITAL GND	18	VT
12	LINV	17	CLOCK INPUT
13	BIT 5	16	BIT 8 (LSB)
14	BIT 6	15	BIT 7

INPUT/OUTPUT CONNECTIONS PLASTIC SOP PACKAGE

PIN	FUNCTION	PIN	FUNCTION
1	ANALOG INPUT	28	ANALOG INPUT
2	V _B SENSE	27	V _T SENSE
3	ANALOG GND	26	ANALOG GND
4	VB	25	VT
5	VM	24	CLOCK INPUT
6	NO CONNECT	23	BIT 8 (LSB)
7	MINV	22	BIT 7
8	BIT 1 (MSB)	21	BIT 6
9	BIT 2	20	BIT 5
10	BIT 3	19	LINV
11	BIT 4	18	DIGITAL GND
12	DIGITAL GND	17	+5V POWER
13	+5V POWER	16	OVERRANGE
14	-5.2V POWER	15	-5.2V POWER

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS	
Supply Voltages	+V _S to GND -V _S to GND	0 to +6 0 to -6	Volts Volts
Input Voltage (Analog)	Vin (dual power supply)	-V _S to (ANA GND + 0.3)	Volts
Input Voltage (Reference)	V _T , V _B , V _M (dual power supply)	-V _S to (ANA GND + 0.3)	Volts
	IVT-VBI	2.5	Volts
Input Current Input Voltage (Digital)	I _M Digital Inputs	-3.0 to +3.0 -0.5 to +V _S	mA Volts

FUNCTIONAL SPECIFICATIONS

Unless otherwise noted, the following specifications apply to the ADC-304 when used

For single power supply operation: +V _S = +5V, DIG GND = 0V -V _S = 0V, V _T = +5V V _B = +3V, T _A = +25°C ANA GND = +5V, fs = 20MHz	For dual power supply operation: +V _S = +5V, DIG GND = 0V $-V_S = -5.2V$, V _T = 0V, V _B = -2V, TA = +25°C ANA GND = 0V, f _S = 20MHz				
ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS	
Input Range Input Capacitance Input Bias Current Offset Voltage	V _B — 15	30 50	V _T 35 100	Voits pF μA	
V _T V _B	8 0	-13 +5	-19 +11	mV mV	
DIGITAL INPUTS	L	I	L	I	
Logic Levels Logic "1" Logic "0" Logic Input Currents	+2.0	_	+0.8	Volts Volts	
Logic "1" Logic "0"	-0.1	-100 -0.32	-150 -0.5	μA mA	
PERFORMANCE					
Conversion Rate ① Integral Nonlinearity Differential Nonlinearity Differential Gain Error ② Differential Phase Error ② Aperture Delay Ta Aperture Uncertainty	20 			MHz LSB LSB % degrees ns ps	
Signal-to-Noise and Distortion (Vin = full scale, fs = 20MHz) fin = 1MHz fin = 5MHz fin = 10MHz		47 43 35		dB dB dB	
Clock Pulse Width Tpw1 Tpw0 Reference Pin Current Reference Resistance (V _T to V _B) Reference Input (dual supply)	35 10 11 —	— — 15 130		ns ns mA Ohms	
VT VB	-0.1 -1.8	0 -2.0	+0.1 -2.2	Volts Volts	

Footnotes:

1 fin = 1kHz, ramp

② NTSC 40 IRE-modulated ramp, fs = 14.3MHz

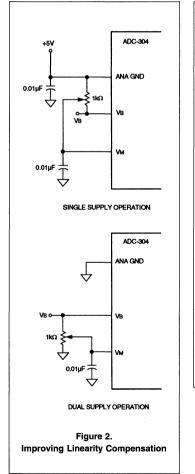
DIGITAL OUTPUTS	MIN.	TYP.	MAX.	UNITS
Resolution and Output Coding	8 Straight binary Complementary binary Two's complement Complementary two's complement			bits
Logic Levels Logic "1" Logic "0" Logic Loading "1" Logic Loading "0" Output Data Delay	+2.7 — — —	+3.4 500 	 +0.5 +3	Volts Volts µA mA
TDLH TDHL	15 22	20 26	30 35	ns ns
POWER REQUIREMENTS				
Single Power Supply Supply Voltage = +V _S Supply Voltage = -V _S Supply Current = +I _S Power Dissipation Dual Power Supply Supply Voltage = +V _S Supply Voltage = -V _S Supply Current = +I _S Supply Current = -I _S	+4.75 +56 280 +4.75 -4.75 +7 -50	+5.0 0 +71 355 +5.0 -5.2 +10 -62	+5.25 +91 455 +5.25 -5.5 +14 -78	Volts Volts mA mW Volts Volts mA mA
Power Dissipation PHYSICAL/ENVIRONMENTA	295	375	476	mW
Operating Temperature Storage Temperature	-20 -55	_	+75 +150	℃ ℃

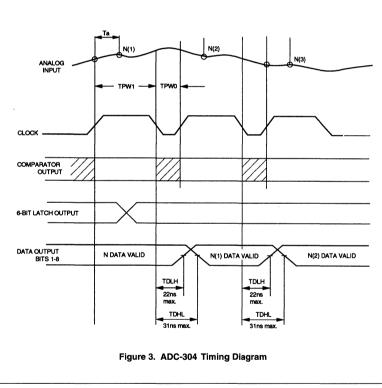
TECHNICAL NOTES

- 1. The two DIGITAL GND pins (pins 5 and 11 on the DIP, pins 12 and 18 on the SOP) are not connected to each other internally and neither are the two +5V POWER pins (6 and 10 on the DIP, 13 and 17 on the SOP). All four pins must be externally connected to the appropriate pcb patterns. Also, the DIGITAL GND and ANALOG GND pins are not connected to each other internally.
- 2. Layout of the analog and digital sections should be separated to reduce interference from noise. To further quard against unwanted noise, it is recommended to bypass, as close as possible, the voltage supply pins to their respective ground pins with 1µF tantalum and 0.01µF ceramic disk capacitors in parallel.
- 3. The input capacitance of the analog input is much smaller than that of a typical flash A/D converter. It is necessary to use an amplifier with sufficient bandwidth and driving power. The analog input pins are separated internally, so they should be connected together externally. If the ADC-304 is driven with a low output impedance amplifier, parasitic oscillations may occur.

These parasitic oscillations can be prevented by introducing a small resistance of 2 to 10Ω between the amplifier output and the ADC-304's A/D input. This resistance must have a very low value of series inductance at high frequencies.

Note that each of the analog input pins is divided in this manner with these resistances. Connect the driving amplifier as close as possible to the A/D input of the ADC-304.

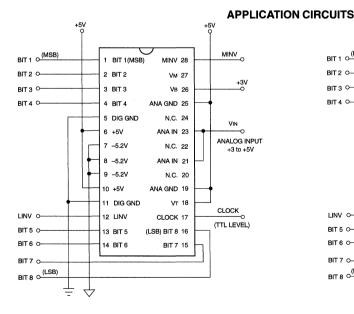

DATEL


4. The voltage between V_T and V_B is equivalent to the dynamic range of the analog input. Bypass V_B to ANALOG GND USING a 1µF and a 0.01µF capacitor in parallel. To balance the characteristics of the ADC-304 at high frequencies, bypass V_M with a 0.01µF capacitor to ANALOG GND.

Also, V_M can be used as a trimming pin for more precise linearity compensation. A stable voltage source with a potential equal to V_B and a 1k Ω potentiometer can be connected to V_M as shown in Figure 2 for this purpose.

- Separate the clock input, CLOCK, from other leads as much as possible, observing proper EMI and RFI wiring techniques. This reduces the inductive pick-up of this lead from interfering with the "clean" operation of the ADC-304.
- 6. The analog input signal is sampled on the positive-going edge of CLOCK. Corresponding digital data appears at the output on the negative-going edge of the CLOCK pulse after a brief delay of 31ns maximum (TDLH, TDHL). Refer to the Timing Diagram (Figure 3) for more information.
- 7. Connect all free pins to ANALOG GND to reduce unwanted noise.

The analog input range is equal to a 2V spread. The voltage on V_T-V_B will equal 2V. The connection of V_T and ANALOG GND is 2V higher than V_B. Whether using a single or dual power supply, the analog input will range from the value of V_T to V_B. If V_T equals +5V, then V_B will equal +3V and the analog input range will be from +3 to +5V.



		Straight Binary	Complementary Two's Complement	Two's Complement	Complementary Binary
Unipolar	MINV	0	0	1	1
Scale	LINV	0	1	0	1
+FS – 1SLB	+4.9922V	11111111	1000000	01111111	00000000
+7/8FS	+4.7500V	11011111	10100000	01011111	00100000
+3/4FS	+4.5000V	10111111	11000000	00111111	01000000
+1/2FS	+4.0000V	01111111	00000000	11111111	1000000
+1/4FS	+3.5000V	00111111	01000000	10111111	11000000
+1/8FS	+3.2500V	00011111	01100000	10011111	11100000
+1LSB	+3.0078V	00000001	01111110	10000001	11111110
Zero	+3.0000V	00000000	01111111	1000000	11111111

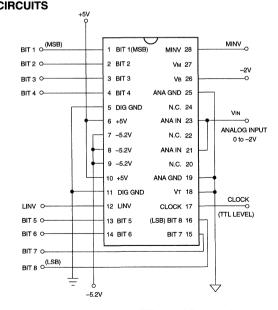
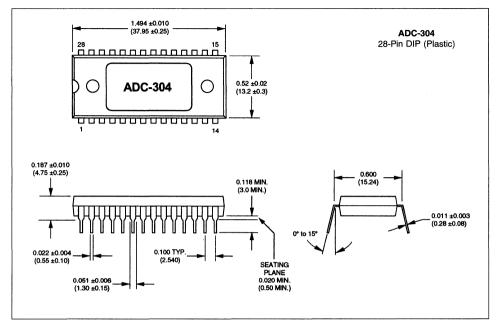

Table 1. Output Coding for +5V Power Supply Operation (+3 to +5V Signal Input)

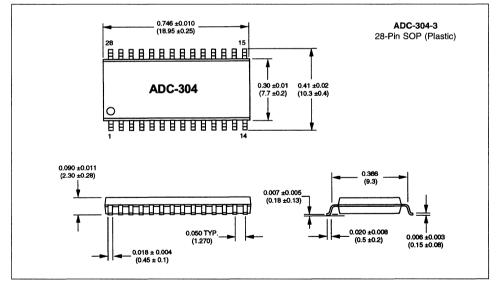
Table 2. Output Coding for ±5V Power Supply Operation (0 to -2V Signal Input)

		Straight Binary	Complementary Two's Complement	Two's Complement	Complementary Binary
Unipolar	MINV	0	0	1	1
Scale	LINV	0	1	0	1
Zero	0.0000V	11111111	1000000	01111111	00000000
-1LSB	-0.0078V	11111110	10000001	01111110	00000001
-1/8FS	-0.2500V	11011111	10100000	01011111	00100000
-1/4FS	-0.5000V	10111111	11000000	00111111	01000000
1/2FS	-1.0000V	01111111	00000000	11111111	1000000
3/4FS	-1.5000V	00111111	01000000	10111111	11000000
–7/8FS	-1.7500V	00011111	01100000	10011111	11100000
-FS + 1SLB	-1.9922V	00000000	01111111	1000000	11111111

NOTE: 28-pin DIP package shown

NOTE: 28-pin DIP package shown


Figure 4. Connections for +5V Power Supply Operation


Figure 5. Connections for ±5V Power Supply Operation

2V 0000000 01111111 100000

MECHANICAL DIMENSIONS

ORDERING INFORMATION

MODEL ADC-304 ADC-304-3

PACKAGE 28-pin DIP (plastic)

28-pin SOP (plastic)

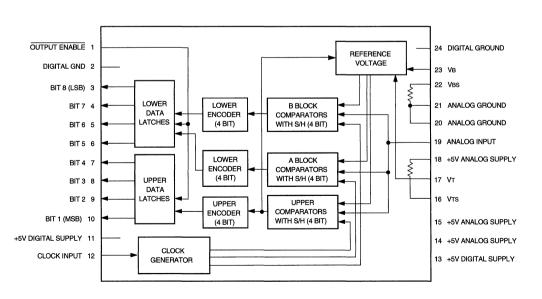
ADC-305 8-Bit, 20MHz, Low-Power Video A/D Converters

FEATURES

- 8-bit resolution
- 20MHz conversion rate
- ±1/2LSB nonlinearity
- Built-in S/H circuit
- Low power consumption (60mW)
- TTL compatibile
- Single-supply operation (+5V)

GENERAL DESCRIPTION

DATEL'S ADC-305 is an 8-bit, 20MHz CMOS analog-to-digital converter using a 2-step parallel conversion technique.


Its main features include a low power dissipation of only 60mW at a 20MHz conversion rate. This monolithic silicongate CMOS IC operates from a single +5V supply. The technology used allows operation up to and beyond the minimum specified conversion rate without the need of an external sample-hold.

Another novel feature allows the self generation of reference voltages via pins V_{TS} and V_{BS} . The ADC-305 is supplied in a 24-pin plastic DIP or SOP package and operates over a -20 to $+75^{\circ}$ C temperature range. Storage temperature ranges from -55 to $+150^{\circ}$ C.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	OUTPUT ENABLE (OE)	24	DIGITAL GROUND
2	DIGITAL GROUND	23	VB
3	BIT 8 (LSB)	22	VBS
4	BIT 7	21	ANALOG GROUND
5	BIT 6	20	ANALOG GROUND
6	BIT 5	19	ANALOG INPUT
7	BIT 4	18	+5VANALOG SUPPLY
8	BIT 3	17	VT
9	BIT 2	16	Vts
10	BIT 1 (MSB)	15	+5VANALOG SUPPLY
11	+5V DIGITAL SUPPLY	14	+5VANALOG SUPPLY
12	CLOCK INPUT	13	+5V DIGITAL SUPPLY

Figure 1. Functional Block Diagram

2

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

PARAMETERS	LIMITS	UNITS
Supply Voltage (+Vs)	+7	Volts
Reference Voltage (VT, VB)	+Vs to GND	Volts
Analog Input Voltage (VIN)	+Vs to GND	Volts
Digital Input Voltage (CLOCK)	+Vs to GND	Volts
Digital Output Voltage (VOH, VOL)	+Vs to GND	Volts

FUNCTIONAL SPECIFICATIONS

(Typical at T_A = +25°C, +V_S = +5.0V, V_T = +2.6V, V_B = +0.6V, and f_S = 20MHz unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS			
Input Voltage Range Input Capacitance Offset Voltage	V _B	+0.6 to +2.6 11	V _T	Volts pF			
V _T V _B	-10 0	-35 +15	60 +45	mV mV			
DIGITAL INPUTS	DIGITAL INPUTS						
Input Voltage V _{IH} V _{IL}	+4.0	_		Volts Volts			
Input Current հյ _H կլլ	_		+5 -5	μΑ μΑ			
PERFORMANCE	L	1		L			
Conversion Rate Integral Nonlinearity Differential Nonlinearity Differential Gain Error Differential Phase Error	20 — — —	35 ±0.5 ±0.3 1.0 0.5		MHz LSB LSB % deg.			
SNR & Distortion(V _{IN} = Full Scale, f _S = 20MHz, f _{IN} = 1MHz) Input Signal Bandwidth	-	46	_	dB			
Full Scale (–3dB) Aperture Uncertainty Aperture Delay, Ta Clock Pulse Width		60 30 4		MHz ps ns			
T _{PW1} T _{PW0}	25 25	 _	-	ns ns			
OUTPUTS							
Output Coding Output Voltage	See Table 1 3-State TTL compatible						
Output Current IoH IoL Resolution Data Delay, Td	-1.1 +3.7 	 8 18	 30	mA mA Bits ns			
REFERENCE				L			
Reference Input Voltage $V_B \\ V_T$		0 and above +2.8 and below		Volts Volts			
Reference Pin Current Reference Resistance	4.5	6.6	8.7	mA			
V _T to V _B Self Bias 1 ① V _B V _T – V _B	230 +0.60 +1.96	300 +0.64 +2.09	450 +0.68 +2.21	Ω Volts Volts			
Self Bias 2 ② V _T	+2.25	+2.39	+2.53	Volts			

Footnotes:

① Short VB to VBS. Short VT to VTS. ② Short VT to VTS. VB = analog ground.

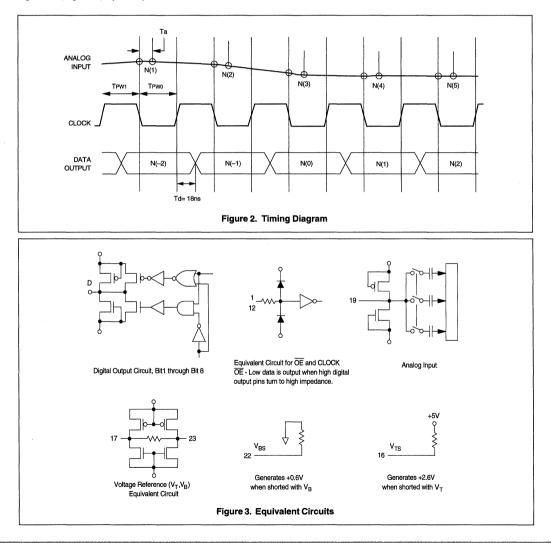
POWER SUPPLY	MIN.	TYP.	MAX.	UNITS
Supply Voltage +Vs +Is Dig Gnd - Ana Gnd Power Dissipation	+4.75 — — —	+5.0 +12 0 to 100 60	+5.25 +17 90	Volts mA mV mW
PHYSICAL/ENVIRONME	NTAL	- I	•	
Operating Temperature Storage Temperature		-20 to +75 -55 to +150		

TECHNICAL NOTES

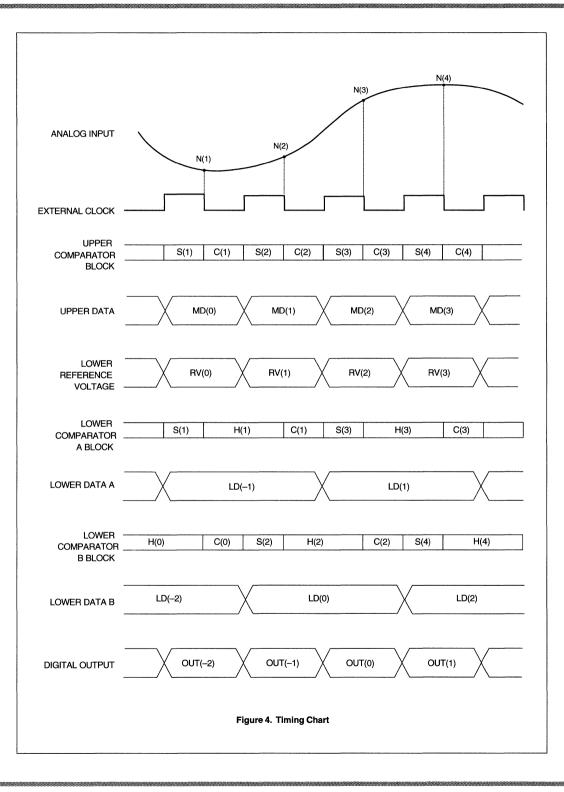
- To reduce noise effects, separate the analog and digital systems close to the device. For both the digital and analog +5V pins, use a ceramic capacitor of about 0.1µF set as close as possible to the pin to bypass to the respective GND's.
- 2. The guaranteed sampling rate of the ADC-305 is 20MHz min. It is, however, not recommended to use sampling rates below 500kHz since this will cause too much droop. This is due to the fact that each pair of the internal 4-bit lower comparator groups with S/H work alternately, i.e., one group is in hold mode while the other one is in conversion mode.
- 3. Compared with a traditional flash type A/D converter, the input capacitance of the analog input is very small. However, it is necessary to drive the input with an amplifier featuring sufficient bandwidth and driving capability. When driving with an amplifier of low output impedance, parasitic oscillations may occur. This may be prevented by inserting a resistance of about 100Ω in series between the amplifier output and the A/D input.
- 4. The voltage between V_T and V_B determines the dynamic range of the analog input. Stable characteristics are obtained by bypassing V_T and V_B pins to GND using 0.1µF capacitors. By shorting V_T to V_{TS} and V_B to V_{BS}, the self bias function generates +2.6V on V_T and +0.6V on V_B.
- 5. The analog input is sampled with the falling edge of the clock. Following a delay of 2.5 clock cycles, the digital data is output on the rising edge of the clock. The delay from the clock rising edge to the data output is about 18ns.
- By connecting OE (pin 1) to GND, output enable is obtained. Connecting to +5V will disable the output.
- The clock line wiring should be as short as possible. To avoid any interference with other signals, it should also be separated from other circuits.
- The analog and digital supplies should be from a common source. This is to avoid latch up due to a possible voltage difference between supplies when power is turned on.

INPUT	CODE	ST DEC	EP HEX	DATA B MSB	ITS OUT LSB
V _B ↓	Zero ↓ +1/2FS –1LSB +1/2FS ↓	0 ↓ 127 128 ↓	00 ↓ 7F 80 ↓	0000 ¥ 0111 1000 ¥	0000 ↓ 1111 0000 ↓
VT	+FS	255	FF	1111	1111

Table 1. Digital Output Coding

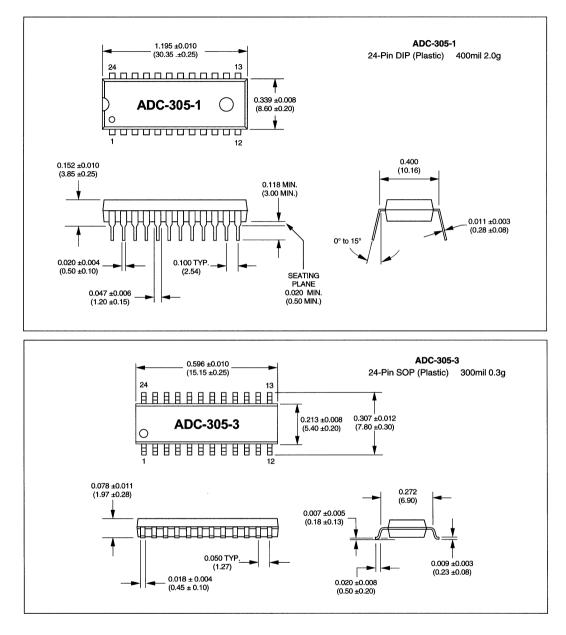

THEORY OF OPERATION

(See Functional Block Diagram, Figure 1, and Timing Chart, Figure 4)


- 1. The DATEL ADC-305 is a 2-step parallel A/D converter featuring a 4-bit upper comparator group and two 4-bit lower comparator groups, each with built-in sample and hold. A reference voltage equal to the voltage between $(V_T V_B)/16$ is constantly applied to the 4-bit upper comparator block. A voltage corresponding to the upper data is fed through the reference supply to the lower data. VTs and VBs pins provde the self generation function for VT (reference voltage top) and VB (reference voltage bottom) voltages.
- This converter uses an offset cancelation type comparator and operates synchronously with the external clock. It features various operating modes which are shown in the Timing Chart (Figure 4) by the symbols S, H and C. These

characters stand for Input Sampling (Auto Zero) Mode, Input Hold Mode and Comparison Mode.

3. The operation of the respective parts is as indicated in the chart. For instance, input voltage N(1) is sampled with the falling edge of the first clock by means of the upper comparator block and the lower comparator A block. Input voltage N(2) is sampled with the falling edge of the second clock by means of the upper comparator block and lower comparator B block. The upper comparator block finalizes comparison data MD(1) with the rising edge of the second clock. Simultaneously the reference supply generates the lower reference voltage RV(1) that corresponds to the upper results. The lower comparator block finalizes comparison data LD(1) with the rising edge of the third clock. MD(1) and LD(1) are combined and routed to the output as Out(1) with the rising edge of the fourth clock. Thus there is a 2.5 clock delay from the analog input sampling point to the digital data output.



MECHANICAL DIMENSIONS

ORDERING INFORMATION

MODEL NUMBER	PACKAGE
ADC-305-1	24-Pin Plastic DIP
ADC-305-3	24-Pin Plastic SOP

ADC-317 8-Bit, 125MHz, Low-Power Flash A/D Converter

FEATURES

- 8-Bit resolution
- ±1/2LSB integral and differential nonlinearity
- 125MHz minimum conversion rate
- Low power consumption (870mW)
- Wide input bandwidth (200MHz)
- Low input capacitance (18pF)
- Single –5.2V supply

GENERAL DESCRIPTION

DATEL's ADC-317 is an 8-bit, high-speed flash A/D converter capable of digitizing analog signals at a guaranteed rate of 125MHz. The ADC-317 is virtually free of sparkle code errors up to Nyquist conditions and has a built-in integral nonlinearity (INL) compensation circuit that keeps the INL at typically ±0.5LSB. The ADC-317 is available in a 42-pin, plastic, dual-in-line package and operates over the extended commercial

temperature range of -20 to $+75^{\circ}$ C. The digital I/O levels of this A/D converter are compatible with ECL 100K/10KH/10K families.

Compared with earlier devices, the ADC-317's performance is superior due to the incorporation of advanced processing, new circuit design, and carefully considered layout.

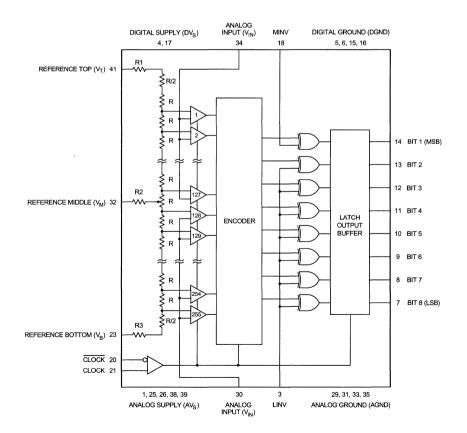


Figure 1. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
Supply Voltages AV _S , DV _S	+0.5 to -7	Volts
Input Voltage VIN	+0.5 to -2.7	Volts
Reference Voltages VT, VB, VM	+0.5 to -2.7	Volts
Reference Voltage IVT - VBI	2.5	Volts
Digital Inputs	+0.5 to4	Volts
Clock - Clock	2.7	Volts
V _M Input Current	-3 to +3	mA
Digital Output Currents	0 to -30	mA

FUNCTIONAL SPECIFICATIONS

(Specifications are typical at TA = +25°C, AVs = DVs = -5.2V, VT = 0V, VB = -2.0V, fs = 125MHz unless otherwise specified.)

INPUTS	MIN.	TYP.	MAX.	UNITS
Analog Input Voltage Analog Input Capacitance	-	0 to2		Volts
Analog Input Capacitance $(V_{IN} = -1V + 0.07Vrms)$ Analog Input Resistance Analog Input Bias Current	 50	18 190	-	pF kΩ
$(V_{IN} = -1V)$ Digital Input Voltage	+20	+130	+400	μA
V _H V _L Digital Input Current	-1.13 —	-	 _1.50	Volts Volts
$I_H (@V_H = -0.8V)$ $I_L (@V_L = -1.6V)$ Digital Input Capacitance	0 50 	 7	+50 +50 —	μΑ μΑ pF
Clock Pulse Width T _{PW1} T _{PW0}	3.8 3.8	-		ns ns
REFERENCE INPUTS				
Reference Input Voltage $\textcircled{1}{V_B}$ V_B V_T Reference Resistance, V_T to V_B Offset Voltage	-2.2 -0.1 75	2.0 0 110	-1.8 +0.1 155	Volts Volts Ω
V _B V _T	0 8	+9 -17	+24 32	mV mV
PERFORMANCE		.		
Resolution Conversion Rate Integral Non-linearity Differential Non-linearity Differential Gain Error Differential Phase Error Aperture Jitter (Tj) Sampling Delay (Tsd)	8 125 0.3	 160 ±0.5 ±0.5 1.0 0.5 10 1.5		Bits MHz LSB LSB % deg. ps ns
DYNAMIC CHARACTERIST	ICS ©			
Full Scale Input Bandwidth $V_{IN} = 2V$ peak-to-peak Bandwidth (@ -3dB) Signal-to-Noise Ratio Input = 1MHz, FS Input = 31.249MHz, FS Error Rate	200 — —			MHz dB dB
Input = 31.249MHz, FS (Error = 16 LSB min.)	_	10-14	10-9	TPS 3

MIN.	TYP.	MAX.	UNITS		
-1.10	-	_	Volts		
	-	-1.62	Volts		
3.0	3.6	4.2	ns		
0.5	0.9	1.2	ns		
0.5	1.0	1.3	ns		
POWER REQUIREMENTS					
-4.95	5.2	-5.5	Volts		
	-160	-230	mA		
	870	-	mW		
	-	±50	mV		
-	-	±50	mV		
L					
-20	_	+75	°C		
65	_	+150	°C		
—	62	-	°C/W		
42-pin plastic DIP					
0.23 ounces (6.4 grams)					
	-1.10 	-1.10 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Footnotes:

① Refer to Functional Block Diagram, Figure 1.

② For conversion rate of 125MHz.

③ TPS = Times per sample. Each unit is production tested for 10 seconds.

④ 220Ω pull-down resistors required on digital outputs.

TECHNICAL NOTES

- Even with its low input capacitance of 18pF, the ADC-317 still requires an input amplifier with good drive capability. The amplifier will require wide bandwidth and high slew rate (±250V/µs typical) to take full advantage of the converter's input bandwidth.
- The input impedance of the A/D is primarily capacitive which may result in the input amplifier becoming unstable and causing oscillations. Stop oscillations by placing a 2-to-4Ω resistor between the amplifier and the converter's input.
- CLOCK and CLOCK (ECL) are usually differentially driven. The ADS-317 is operable without CLOCK input, but using complementary inputs is recommended to obtain stable high-speed performance.
- 4. The polarity of the output data is controlled by input MINV, which controls the MSB alone, and LINV, which controls bits 2 through 8 (LSB). The combination of "0" and "1" on these inputs offer the user various code options shown in Table 1. Leave the inputs open for a logic level "0"; connect a 3.9kΩ resistor to GND for logic level "1".
- 5. Digital output bits 1 through 8 require 220Ω pull-down resistors connected to the negative supply rail. Refer to Figure 2.
- 6. The reference voltage range (–2.0V to 0V typical) determines the dynamic range of the input voltage. Adjustments to this range can be made within the range of $V_B = -2 \pm 0.2V$ and $V_T = 0V \pm 0.1V$. The reference input V_B should be decoupled to GND using 1µF and 0.01µF capacitors. Improvement in the high-frequency stability can be achieved by decoupling terminal V_M using a 0.01µF capacitor.

- The VM input (pin 32) is used to achieve a more accurate linearity than that specified. The connection diagram shows an external circuit designed to maximize the ADC-317's linearity.
- 8. Tie all pins not being used to ground.
- Substantial analog and digital ground planes must be provided. It is recommended that these ground planes are taken to a common point, the power ground plane, as close to the ADC as possible.
- 10. The analog and digital power supply inputs (-5.2V) are internally connected through a resistance of 4 to 6 Ohms, and it is possible to use one power source for both inputs. For best performance, the power supplied to the analog and digital inputs (-5.2V) should be supplied from separate, isolated power supplies. If one of the power supplies fails or is shorted to ground for more than 1 second, the device may be destroyed. Both -5.2V lines should be decoupled using 1µF and 0.01µF capacitors located as close to the pins as possible.

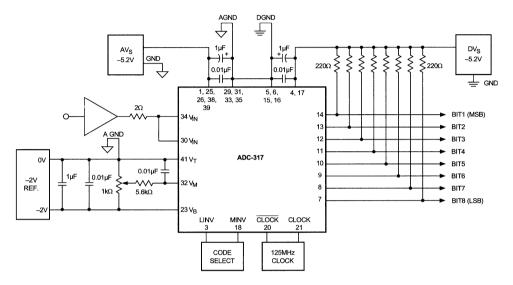
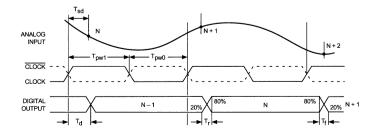
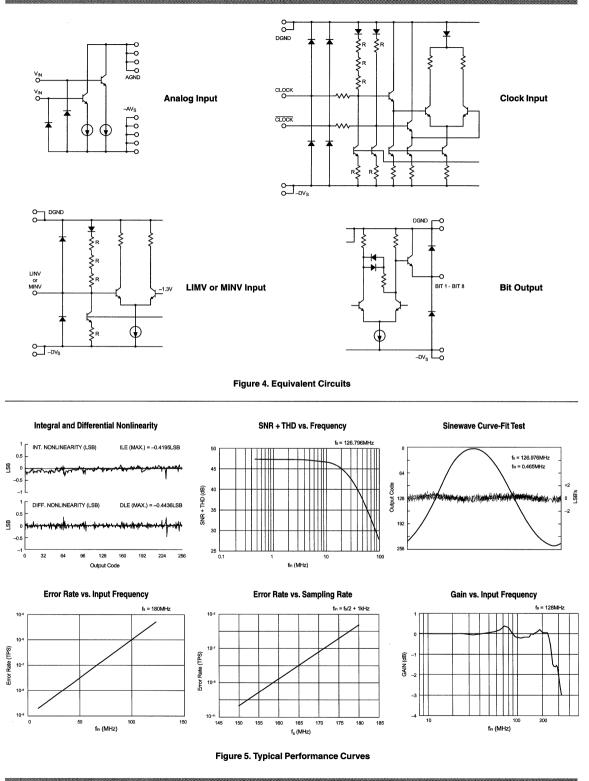



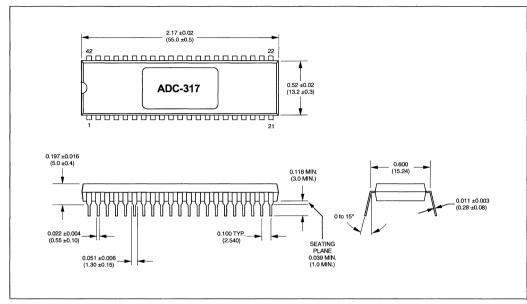
Figure 2. ADC-317 Typical Connection Drawing

Table 1. Digital Output

This table and the Timing Diagram indicate the compatibility between the analog input and the digital output code.


V _{IN}	MINV	1	0	1	0
	LINV	1	1	0	0
0.0000V		000 00	10000	011 11	111 11
-0.0078V		000 01	10001	011 10	111 10
-0.9922V		011 11	11111	000 00	100 00
-1.0000V		100 00	00000	111 11	011 11
-1.9844V		111 10	01110	100 01	000 01
-1.9922V		111 11	01111	100 00	000 00

ADC-317



ADC-317

INCHES (mm)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	ANALOG SUPPLY (AVs)	42	NO CONNECTION
2	NO CONNECTION	41	REFERENCE TOP (VT)
3	LINV	40	NO CONNECTION
4	DIGITAL SUPPLY (DVs)	39	ANALOG SUPPLY (AV _s)
5	DIGITAL GROUND	38	ANALOG SUPPLY (AVs)
6	DIGITAL GROUND	37	NO CONNECTION
7	BIT 8 (LSB)	36	NO CONNECTION
8	BIT 7	35	ANALOG GROUND
9	BIT 6	34	ANALOG INPUT (VIN)
10	BIT 5	33	ANALOG GROUND
11	BIT 4	32	REF. MIDDLE (V _M)
12	BIT 3	31	ANALOG GROUND
13	BIT 2	30	ANALOG INPUT (VIN)
14	BIT 1 (MSB)	29	ANALOG GROUND
15	DIGITAL GROUND	28	NO CONNECTION
16	DIGITAL GROUND	27	NO CONNECTION
17	DIGITAL SUPPLY (DVs)	26	ANALOG SUPPLY (AVs)
18	MINV	25	ANALOG SUPPLY (AVs)
19	NO CONNECTION	24	NO CONNECTION
20	CLOCK	23	REF. BOTTOM (V _B)
21	CLOCK	22	NO CONNECTION

ORDERING INFORMATION

ADC-317 8-Bit, 125MHz Low-Power Flash A/D Converter

2

ADC-HX, ADC-HZ Series 12-Bit, 8 and 20µsec Analog-to-Digital Converters

FEATURES

- 12-bit resolution
- 8 or 20 microsecond conversion times
- 5 input voltage ranges
- Internal high Z input buffer
- Short-cycle operation
- MIL-STD-883 models available

GENERAL DESCRIPTION

The ADC-HX and ADC-HZ Series are self-contained, highperformance, 12-bit A/D converters manufactured with thick and thin-film hybrid technology. They use the successive approximation conversion technique to achieve a 12-bit conversion in 20 and 8 microseconds, respectively. Five input voltage ranges are programmable by external pin connection. An internal buffer amplifier is also provided for applications in which 50 megohm input impedance is required.

These converters utilize a fast 12-bit monolithic DAC which includes a precision zener reference source. The circuit also contains a fast monolithic comparator, a monolithic 12-bit successive approximation register, a clock and a monolithic buffer amplifier. Nonlinearity is specified at $\pm 1/2LSB$ maximum.

Both models have identical operation except for conversion speed. They can be short-cycled to give faster conversions in lower-resolution applications. Use of the internal buffer amplifier increases conversion time by 3 microseconds, the settling time of the amplifier. Output coding is complementary binary, complementary offset binary, or complementary two's complement. Serial data is also brought out. The package is a 32-pin ceramic TDIP. Models are available for use in either commercial (0 to +70°C) or military (-55 to +125°C) operating

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 (LSB)	32	SERIAL DATA OUTPUT
2	BIT 11	31	–15V POWER
3	BIT 10	30	BUFFER INPUT
4	BIT 9	29	BUFFER OUTPUT
5	BIT 8	28	+15V POWER
6	BIT 7	27	GAIN ADJUST
7	BIT 6	26	ANALOG COMMON
8	BIT 5	25	20V INPUT RANGE
9	BIT 4	24	10V INPUT RANGE
10	BIT 3	23	BIPOLAR OFFSET
11	BIT 2	22	COMPARATOR INPUT
12	BIT 1 (MSB)	21	START CONVERT
13	BIT 1 (MSB)	20	E.O.C. (STATUS)
14	SHORT CYCLE	19	CLOCK OUT
15	DIGITAL COMMON	18	REFERENCE OUT
16	+5V POWER	17	CLOCK RATE

temperature ranges. MIL-STD-883 and DESC Standard Military Drawing models are also available.

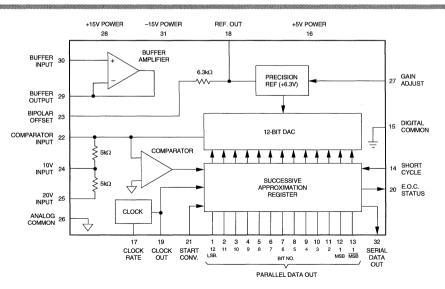


Figure 1. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply, Pin 28	+18	Volts
-15V Supply, Pin 31	-18	Volts
+5V Supply, Pin 16	+7	Volts
Digital Inputs, Pins 14, 21	±5.5	Volts
Analog Inputs, Pins 24, 25	±25	Volts
Buffer Input, Pin 30	±15	Volts
Lead Temperature (10 seconds)	300	°C

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C and ±15V and +5V supplies unless otherwise noted)

INPUTS	ADC-HX12B	ADC-HZ12B			
Analog Input Ranges					
Unipolar	0 to +5V, 0 to +10V				
Bipolar	±2.5V, ±5V, ±10V				
Input Impedance	2.5k (0 to +5V, ±2.5V)				
	5k (0 to +10V, ±5V)				
	10k (±10V)				
Input Impedance with Buffer	50 megohms				
Input Bias Current of Buffer	125nA typical, 250nA m				
Start Conversion	+2V min. to +5.5V max. p				
	ation of 100ns min. Rise				
	Logic "1" to "0" transition				
	initiates next conversion	. Loading: 2 TTL loads.			
PERFORMANCE					
Resolution	12 bits				
Nonlinearity	±1/2LSB max.				
Differential Nonlinearity	±3/4LSB max.				
Accuracy Error ①					
Gain (before adjustment)	±0.2%				
Zero, Unipolar (before adj.)	±0.1% of FSR @				
Offset, Bipolar (before adj.)	±0.2% of FSR 2				
Temperature Coefficient					
Gain	±20ppm/°C max.				
Zero, Unipolar	±5ppm/°C of FSR max.	2			
Offset, Bipolar	±10ppm/°C of FSR max				
Diff. Nonlinearity Tempco	±2ppm/°C of FSR max. ②				
No Missing Codes	Over opererating temperature range				
Conversion Time ③					
12 Bits	20µs max.	8µs max.			
10 Bits ④	15µs max.	6µs max.			
8 Bits ④	10µs max. 4µs max.				
Buffer Settling Time (10V step)	3µs to ±0.01%				
Power Supply Rejection	±0.004%/% supply max				

OUTPUTS (5)

Parallel Output Data	12 parallel lines of data held until next conversion command. V_{OUT} ("0") \leq +0.4V V_{OUT} ("1") \geq +2.4V
Unipolar Coding	Complementary binary
Bipolar Coding	Complementary offset binary
	Complementary two's complement
Serial Output Data	NRZ successive decision pulses out, MSB first.
	Compl. binary or compl. offset binary coding.
End of Conversion (Status)	Conversion status signal. Output is logic "1"
	during reset and conversion and logic "0"
	when conversion complete.
Clock Output	Train of positive going +5V 100ns pulses.
	600kHz for ADC-HX and 1.5MHz for
	ADC-HZ (pin 17 grounded).
Internal Reference	+6.3V
Reference Tempco	±20ppm/°C max.
External Reference Current	2.5mA max.

POWER REQUIREMENTS							
Power Supply Voltages	+15V ±0.5V at +20mA -15V ±0.5V at -25mA +5V ±0.25V at +85mA						
PHYSICAL/ENVIRONMENT	PHYSICAL/ENVIRONMENTAL						
Operating Temp. Range, Case Storage Temperature Range Package Type Weight Thermal Impedance θ_{JC} θ_{JA}	0 to +70°C or -55 to +125°C -65 to +150°C 32-pin ceramic TDIP 0.5 ounces (14 grams) 6°C/W 30°C/W						

Footnotes:

① Adjustable to zero.

- ② FSR is full scale range and is 10V for 0 to +10V or ±5V inputs and 20V for ±10V input, etc.
- ③ Without buffer amplifier used. ADC-HZ may require external adjustment of clock rate.

④ Short cycled operation.

(5) All digital outputs can drive 2 TTL loads.

TECHNICAL NOTES

- It is recommended that the ±15V power input pins both be bypassed to ground with a 0.01µF ceramic capacitor in parallel with a 1µF electrolytic capacitor and the +5V power input pin be bypassed to ground with a 10µF electrolytic capacitor as shown in the connection diagrams. In addition, GAIN ADJUST (pin 27) should be bypassed to ground with a 0.01µF ceramic capacitor. These precautions will assure noise free operation of the converter.
- DIGITAL COMMON (pin 15) and ANALOG COMMON (pin 26) are not connected together internally, and therefore must be connected as directly as possible externally. It is recommended that a ground plane be run underneath the case between the two commons. Analog ground and ±15V power ground should be run to pin 26 whereas digital ground and +5V ground should be run to pin 15.
- 3. External adjustment of zero or offset and gain are made by using trimming potentiometers connected as shown in the connection diagrams. The potentiometer values can be between 10k and 100k Ohms and should be 100ppm/°C cermet types. The trimming pots should be located as close as possible to the converter to avoid noise pickup. In some cases, for example 8-bit short-cycled operation, external adjustment may not be necessary.
- 4. Short-cycled operation results in shorter conversion times when the conversion is truncated to less than 12 bits. This is done by connecting SHORT CYCLE (pin 14) to the output bit following the last bit desired. For example, for an 8-bit conversion, pin 14 is connected to the bit 9 output. Maximum conversion times are given for short-cycled conversions of 8 or 10 bits. In these two cases, the clock rate is accelerated by connecting the CLOCK RATE adjust (pin 17) to +5V (10 bits) or +15V (8 bits). The clock rate should not be arbitrarily speeded up to exceed the maximum conversion rate at a given resolution, as missing codes will result.

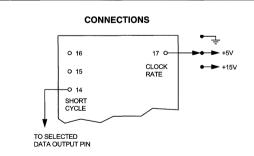
ADC-HX, ADC-HZ

- 5. Note that output coding is complementary coding. For unipolar operation it is complementary binary, and for bipolar operation it is complementary offset binary or complementary two's complement. In cases in which bipolar coding of offset binary or two's complement is required, this can be achieved by inverting the analog input to the converter (using an op amp connected for gain of –1). The converter is then calibrated so that –FS analog input gives an output code of 0000 0000 0000, and +FS – 1LSB gives 1111 1111.
- 6. These converters can be operated with an external clock. To accomplish this, a negative pulse train is applied to START CONVERT (pin 21). The rate of the external clock must be lower than the rate of the internal clock as adjusted (see Short Cycle Operation tables) for the converter resolution selected. The pulse width of the external clock

should be between 100 and 300 nanoseconds. Each N-bit conversion cycle requires a pulse train of N + 1 clock pulses for completion, e.g., an 8-bit conversion requires 9 clock pulses for completion. A continuous pulse train may be used for consecutive conversions, resulting in an N-bit conversion every N + 1 pulses, or the E.O.C. output may be used to gate a continuous pulse train for single conversions.

7. When the input buffer amplifier is used, a delay equal to its settling time must be allowed between the input level change, such as a multiplexer channel change, and the negative-going edge of the START CONVERT pulse. If the buffer is not required, BUFFER INPUT (pin 30) should be tied to ANALOG COMMON (pin 26). This prevents the unused amplifier from introducing noise into the converter. For applications not using the buffer, the converter must be driven from a source with an extremely low output impedance.

CODING TABLE


BIPOLAR OPERATION

INPUT F	RANGE	COM BINARY C		INPL	INPUT VOLTAGE RANGE		COMP. OFFSET BINARY		COMP. TWO'S COMPLEMENT	
0 to +10V	0 to +5V	MSB	LSB	±10V	±5V	±2.5V	MSB	LSB	MSB	LSB
+9.9976V	+4.9988V	0000 0000	0000	+9.9951V	+4.9976V	+2.4988V	0000 000	0000 00	1000 0	000 0000
+8.7500	+4.3750	0001 111	1 1111	+7.5000	+3.7500	+1.8750	0001 11	1 1111	1001 1	111 1111
+7.5000	+3.7500	0011 111	1 1111	+5.0000	+2.5000	+1.2500	0011 11	1 1111	1011 1	111 1111
+5.0000	+2.5000	0111 111	1 1111	0.0000	0.0000	0.0000	0111 11	1 1111	1111 1	111 1111
+2.5000	+1.2500	1011 111	1 1111	-5.0000	-2.5000	-1.2500	1011 11	1 1111	0011 1	111 1111
+1.2500	+0.6250	1101 111	1 1111	-7.5000	-3.7500	-1.8750	1101 11	1 1111	0101 1	111 1111
+0.0024	+0.0012	1111 111	1 1110	-9.9951	-4.9976	-2.4988	1111 11	1 1110	0111 1	111 1110
0.0000	0.0000	1111 111	1 1111	-10.0000	-5.0000	-2.5000	1111 11	1 1111	0111 1	111 1111

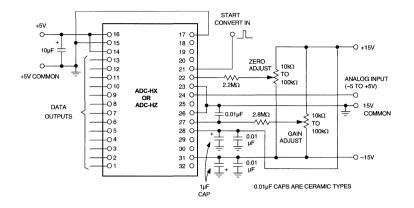
CODING TABLE UNIPOLAR OPERATION

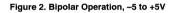
SHORT CYCLE OPERATION

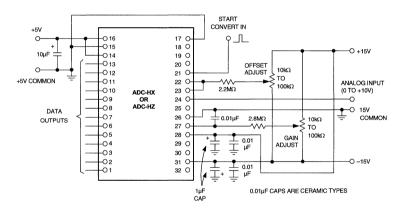
Refer to Technical Note 4 for methods of reducing the ADC-HX or ADC-HZ conversion times.

CLOCK RATE VS. VOLTAGE

PIN 17	CLOCK RATE ADC-HX ADC-HZ			
VOLTAGE				
٥V	600kHZ	1.5MHZ		
+5V	720kHZ	1.8MHz		
+15V	880kHz	2.2MHz		


8, 10 & 12-BIT CONVERSION TIMES


RESOLUTION	12 BITS	10 BITS	8 BITS
ADC-HX Conversion Time ADC-HZ Conversion Time	20µs 8µs	15µs 6µs	10µs 4µs
Connect These	17 & 15	17 & 16	4μ5 17 & 28
Pins Together	14 & 16	14 & 2	14 & 4


PIN 14 CONNECTION

PIN 14 TO	RES. (BITS)	PIN 14 TO
PIN 11	7	PIN 5
PIN 10	8	PIN 4
PIN 9	9	PIN 3
PIN 8	10	PIN 2
PIN 7	11	PIN 1
PIN 6	12	PIN 16
	PIN 11 PIN 10 PIN 9 PIN 8 PIN 7	PIN 11 7 PIN 10 8 PIN 9 9 PIN 8 10 PIN 7 11

CONNECTIONS AND CALIBRATION

INPUT CONNECTIONS

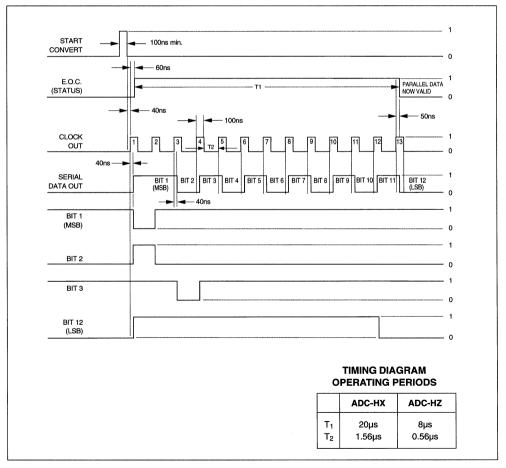
	WITHOUT BUFFER			WITH BUFFER				
INPUT VOLTAGE RANGE	INPUT PIN	CONNECT THESE PINS TOGETHER		INPUT PIN		NNECT THE		
0 to +5V 0 to +10V	24 24	22 & 25 	23 & 26 23 & 26	30 30	22 & 25	23 & 26 23 & 26	29 & 24 29 & 24	
±2.5V	24	22& 25	23 & 22	30	22 & 25	23 & 22	29 & 24	
±5V	24	—	23 & 22	30	_	23 & 22	29 & 24	
±10V	25		23 & 22	30	—	23 & 22	29 & 25	

CALIBRATION PROCEDURE

 Connect the converter for bipolar or unipolar operation. Use the input connection table for the desired input voltage range and input impedance. Apply START CONVERT pulses of 100 nanoseconds minimum duration to pin 21. The spacing of the pulses should be no less than the maximum conversion time.

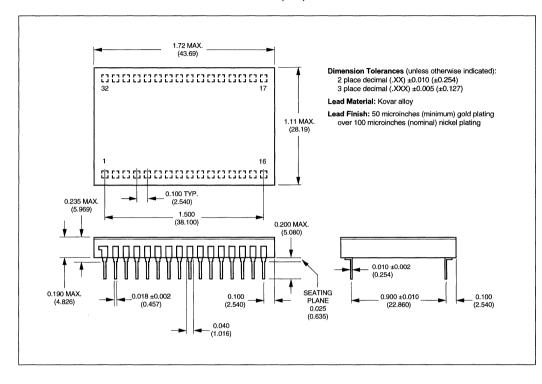
2. Zero and Offset Adjustments

Apply a precision voltage reference source between the selected analog input and ground. Adjust the output of the reference source to the value shown in the Calibration Table for the unipolar zero adjustment (zero + 1/2LSB) or the bipolar offset adjustment (-FS + 1/2LSB). Adjust the trimming potentiometer so that the output code flickers equally between 1111 1111 1111 and 1111 1111.


3. Full Scale Adjustment

Change the output of the precision voltage reference source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment (+FS – 1.5LSB). Adjust the gain trimming potentiometer so that the output code flickers equally between 0000 0000 0001 and 0000 0000 0000.

CALIBRATION TABLE

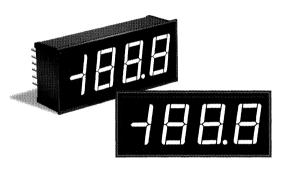

	RANGE	ADJUST.	INPUT VOLTAGE
UNIPOLAR	0 to +5V	Zero Gain	+0.6mV +4.9982V
	0 to +10V	Zero Gain	+1.2mV +9.9963V
BIPOLAR	±2.5V	Offset Gain	-2.4994V +2.4982V
	±5V	Offset Gain	-4.9988V +4.9963V
	±10V	Offset Gain	9.9976V +9.9927V

TIMING DIAGRAM FOR ADC-HX, ADC-HZ OUTPUT: 101010101010

MECHANICAL DIMENSIONS INCHES (mm)

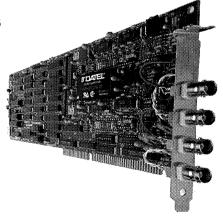
ORDERING INFORMATION

MODEL	TEMP. RANGE
ADC-HX12BGC	0 to +70°C
ADC-HX12BMC	0 to +70°C
ADC-HX12BMM	–55 to +125°C
ADC-HX12BMM-QL	–55 to +125°C
ADC-HX/883	–55 to +125°C
ADC-HZ12BGC	0 to +70°C
ADC-HZ12BMC	0 to +70°C
ADC-HZ12BMM	–55 to +125°C
ADC-HZ12BMM-QL	–55 to +125°C
ADC-HZ/883	-55 to +125°C


Other DATEL Products

High-Quality Modular DC/DC Converters

- · Low cost! Stock delivery!
- "Plug-in" convenience from 3 to 70 Watts
- · Single/dual/triple/quad outputs. Isolated and non-isolated
- Standard outputs: 3.3/5/5.2/12/15 Volts
- Wide-range inputs: 4.6-13.2V, 9-36V, 18-72V
- Full EMI/EMC capabilities
- UL, CSA, IEC approvals
- · Extensive ap notes on theory, testing and applications
- Call us for application-specific "mods" and specials!



Digital Panel Voltmeters and Instruments

- 3 1/2 and 4 1/2 digit resolutions
- LED (7 colors) or LCD (optional backlight) displays
- · Miniature, panel or board-mount, 12-pin DIP packages
- · Industry's only "low-power" LED meters
- Self-powered instruments: 4-20mA, 60/400Hz, 12/24Vdc, etc.
- Smart displays. "Plug-on" application boards
- "Plug-in" ac voltage and frequency meters
- Full set of Application Notes

Computer Analog I/O Boards

- For PCI, EISA, PC/ISA, VME and Multibus
- 12/14/16-bit A/D and D/A converters to 10MHz
- 1-256 input channels. Simultaneous S/H with 1-16 A/D's
- Streaming data acquisition to 64M with no lost samples
- · On-board DSP's for data pre-processing
- COMM ports link directly to array processors
- Virtual Instruments: Arbitrary waveform generators (2-16 channels) Programmable power supplies Power-supply test cards
- Windows and LabVIEW[®] bridge software

Sample-Hold Amplifiers

Table of Contents

Selection Guid	e	3-1
SHM-12	Ultra-Fast, 12-Bit Linear, Monolithic S/H Amplifiers	3-3
SHM-14	Ultra-Fast, 14-Bit Linear, Monolithic S/H Amplifiers	3-9
SHM-20	High-Speed, ±0.01%, Monolithic S/H Amplifiers	3-15
SHM-30	Very High-Speed, ±0.01%, Monolithic S/H Amplifiers	3-18
SHM-43	High-Speed, ±0.01%, Hybrid S/H Amplifiers	3-21
SHM-4860	Industry-Standard, High-Speed, ±0.01% S/H Amplifiers	3-24
SHM-49	Miniature, High-Speed, ±0.01% S/H Amplifiers	3-27
SHM-945	Precision, ±0.0008%, High-Speed S/H Amplifiers	3-30
MSH-840	Quad, Simultaneous S/H Amplifier with Multiplexer	3-33

Selection Guide

Model ①	Acquisition Time to ±0.01% (nsec)	Linearity (%)	Aperture Jitter (psec)	Input Range (Volts)	Gain	Small Signal Bandwidth (MHz)	Hold-Mode Droop Rate (µV/µsec)	Power Supplies (Volts)	Power Dissipation (mW)	Page
SHM-12	20	±0.01	1	±1.5	+1	120	±500	±5	250	3-3
SHM-14	25	±0.002	1	±2.5	+1	250	±2000	±5	250	3-9
SHM-43	25	±0.01	1	±1	+1	150	±1	±5, +15	545	3-21
SHM-49	160	±0.01	25	±10	-1	16	±0.5	+5, ±15	365	3-27
SHM-4860	160	±0.01	50	±10	-1	16	±0.5	+5, ±15	730	3-24
SHM-945	275 ©	±0.0004	10	±10	-1	16	±0.5	+5, ±15	305	3-30
SHM-30C	650	±0.01	100	±10	+1	4.5	±0.01	±15	735	3-18
MSH-840 3	775	±0.01	15	±10	+1/10	13	±1.5	+5, ±15	2.25 ④	3-33
SHM-20C	1000	±0.01	300	±10	+1	2	±0.08	±15	330	3-15

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated. \odot High-reliability screening available on all models except SHM-20C and SHM-30C.

2 To ±0.003%.

③ The MSH-840 is a quad simultaneous S/H (SSH) with built-in output multiplexer.

④ Watts.

3

For literature or technical assistance

or contact your local DATEL Sales Office or Representative

SHM-12 Ultra-Fast, 12-Bit Linear Monolithic Sample-Hold Amplifiers

FEATURES

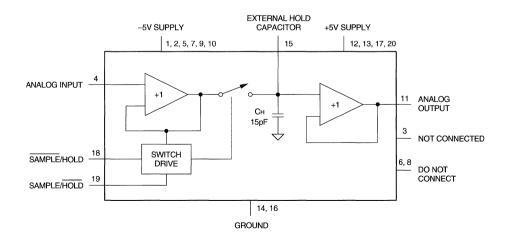
• Fast acquisition time:

10ns to ±0.1% 15ns to ±0.024% 20ns to ±0.012%

- ±0.006% Nonlinearity
- 65µVrms output noise
- 120MHz small signal bandwidth
- 55MHz full power bandwidth
- –80dB feedthrough
- 1ps Aperture jitter
- 250mW power dissipation
- Low cost

GENERAL DESCRIPTION

The SHM-12 is an extremely high-speed and accurate monolithic sample-and-hold amplifier designed for fast data acquisition applications. The SHM-12 is accurate (\pm 1LSB at 12 bits over the full military temperature range) and is very fast (10ns and 15ns acquisition times to accuracies of 10 and 12-bits, respectively). With this high performance and a full power bandwidth of 55MHz, the SHM-12 is an ideal device for driving flash and high-resolution subranging A/D converters.


A careful design optimizes the device for accuracy and speed over the full military temperature range. The droop rate is a low ± 0.5 mV/µs. The 30mA output current and guaranteed specifications for a 100 Ω load provide high drive capability. Operating from ± 5 V supplies, the SHM-12 consumes only 250mW of power.

INPUT/OUTPUT CONNECTIONS (CLCC and SOIC-20 Packages)

PIN	FUNCTION	PIN	FUNCTION
1	-5V SUPPLY	20	+5V SUPPLY
2	-5V SUPPLY	19	SAMPLE/HOLD
3	NOT CONNECTED	18	SAMPLE/HOLD
4	ANALOG INPUT	17	+5V SUPPLY
5	-5V SUPPLY	16	GROUND
6	DO NOT CONNECT	15	EXT. CAPACITOR
7	-5V SUPPLY	14	GROUND
8	DO NOT CONNECT	13	+5V SUPPLY
9	-5V SUPPLY	12	+5V SUPPLY
10	-5V SUPPLY	11	ANALOG OUTPUT

The SHM-12 is built using a fast complementary bipolar process. The device is available in both military and industrial temperature ranges. The SHM-12 is packaged in a 20-pin plastic SOIC or ceramic LCC.

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+5V Supply	0 to +6	Volts
-5V Supply	0 to6	Volts
Analog Input	+5V Supply –1	Volts
	-5V Supply +1	Volts
Continuous Output Current	±50	mA
Digital Inputs	<supply td="" voltages<=""><td>Volts</td></supply>	Volts
Junction Temperature	+175	°C
Lead Temperature (10 seconds)	+300	°C
Output shorted to any supply	will cause permanent dama	age.

FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range using a 100 Ω resistive load, 10pF capacitive load, ECL digital input levels, a 47pF external hold capacitor, and ±5V nominal supplies, unless otherwise specified.)

INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	-1.5	_	+1.5	Volts
Input Impedance	0.3	1	_	MΩ
Digitals Inputs (Balanced ECL)				
Logic Levels				
Logic 1	0.8		+1.8	Volts
Logic 0	-2.5	-	-1.8	Volts
Logic Loading				
Logic 1	-	+10	+50	μA
Logic 0		-30	-150	μA
OUTPUTS				
Output Voltage Range	-1.5	-	+1.5	Volts
Output Current ①	± 30	_	—	mA
Output Impedance (dc)		0.3	1	Ω
Stable Capacitive Load	-		50	pF
PERFORMANCE				
Nonlinearity (±1V)				
+25°C	-	±0.006	-	%
-40 to +85°C	- '		±0.024	%
-55 to +125°C	-	-	±0.024	%
Sample Mode Offset				.,,
+25°C	-	±12		mV
-40 to +85°C	-	-	±20	mV
-55 to +125°C Pedestal		_	±30	mV
+25°C				mV
-40 to +85°C	-	±3	±20	mV
-55 to +125°C			±20 ±20	mV
Gain. +25°C	+0.98	+0.995	120	V/V
Gain Drift (±1V)	10.00	10.000		•/•
-40 to +85°C	_	_	±20	ppm/°C
-55 to +125°C	_		±30	ppm/°C
Aperture Delay				PP
-40 to +85°C	-	2	-	ns
-55 to +125°C	-	2	_	ns
Aperture Jitter				
-40 to +85°C	-	1	-	ps rms
–55 to +125°C	-	1	-	ps rms
Harmonic Distortion (±1V)				
dc to 1MHz	-	-75	-	dB
dc to 10MHz	1		1	
+25°C	-	-62	_	dB
-40 to +85°C	=	-	-56	dB
-55 to +125°C	-	-	-54	dB
Acquisition Time (±0.012%, ±1V)				
-40 to +85°C	-	20	-	ns
-55 to +125°C	-	30	-	ns
Acquisition Time (±0.024%, ±1V)		15	20	
-40 to +85°C		15	30	ns
-55 to +125°C	-	25	40	ns
Acquisition Time (±0.05%, ±1V) -40 to +85°C		12	25	
-40 10 +85°C -55 to +125°C		12	30	ns
		1 10	1 30	ns

PERFORMANCE (Cont.)	MIN.	TYP.	MAX.	UNITS
Acquisition Time (±0.1%, ±1V)				
-40 to +85°C	_	10	20	ns
-55 to +125°C		10	20	ns
Hold Mode Settling (±0.012%)				
-40 to +85°C	-	10	-	ns
-55 to +125°C	—	10		ns
Hold Mode Settling (±0.024%)				
-40 to +85°C	—	7	18	ns
-55 to +125°C		7	18	ns
Hold Mode Settling (±0.05%)				
-40 to +85°C	-	6	15	ns
-55 to +125°C	_	6	15	ns
Hold Mode Settling (±0.1%)				
-40 to +85°C	—	5	12	ns
-55 to +125°C	-	5	12	ns
Slew Rate	±220	±350		V/µs
Full Power Bandwidth (±1V)	35	55	—	MHz
Small Signal Bandwidth	50	120	-	MHz
Output Noise, Hold Mode		65	-	µVrms
Feedthrough (2V Step)		-80	-	dB
Droop Rate				
+25°C	-	±0.5	±1.5	mV/µs
-40 to +85°C		±2	±5	mV/µs
-55 to +125°C	-	±2.5	±10	mV/µs
POWER SUPPLY REQUIREMENTS	5			
Power Supply Range				
+5V Supply	+4.5	+5	+5.5	Volts
-5V Supply	-5.5	-5	-4.5	Volts
Power Supply Current				
+5V Supply	+17	+25	+30	mA
-5V Supply	-17	-25	-30	mA
Power Dissipation	170	250	300	mW
Power Supply Rejection Ratio	40	60	-	dB
ENVIRONMENTAL			J	l
Operating Temp. Range, Case				
SHM-12S, SHM-12L	-40	_	+85	°c
SHM-12LM	-55	_	+125	vč
Storage Temperature Range	-65		+150	⊸č
Package Type				
SHM-12S		20-Pin nl	astic SOIC	
SHM-12L, SHM-12LM	20-Pin plastic SOIC			

Footnotes:

① Short circuit protection at ±50mA.

TECHNICAL NOTES

The SHM-12 employs an open loop architecture to achieve its superior high-speed characteristics. The first stage buffer amplifier incorporates the sample-and-hold switch. This allows for a fast acquisition time which is not limited by slew current like the traditional Schottky diode bridge switch. The output amplifier uses a closed loop voltage feedback design which provides a low (0.3 Ω , typical) output impedance. Gain and linearity are not affected by heavy loads.

The design has been optimized to achieve the high accuracy associated with fast transient responses over the military temperature range. During the track-to-hold transient, the integral nonlinearity is not affected and the pedestal remains constant over the full $\pm 1.5V$ input range.

An innovative circuit design ensures an extremely low droop rate. An external hold capacitor can be added to the 15pF internal hold capacitor to obtain a lower droop rate (the droop rate is proportional to the inverse of the total hold capacitor value) without increasing transient response times by more than a few ns. The external hold capacitor should not exceed 100pF.

GROUNDING AND LAYOUT

Obtaining fully specified performance from the SHM-12 requires careful attention to pc-board layout and power supply decoupling.

For optimal performance, tie all grounds directly to a large analog ground plane beneath and around the package. Bypass all power supplies to ground with 10μ F tantalum capacitors in parallel with 0.1μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible.

For best performance, controlled impedance transmission line techniques, such as microstrip, should be used. Mount all components as close to the required pins as possible. It is strongly recommended that the SHM-12 not be socket-mounted.

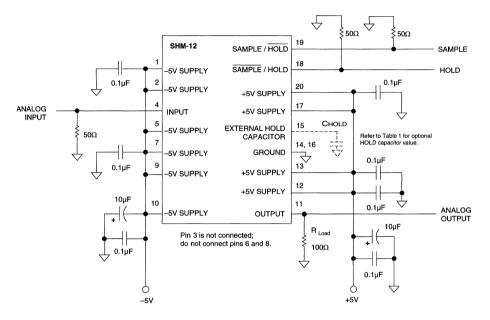
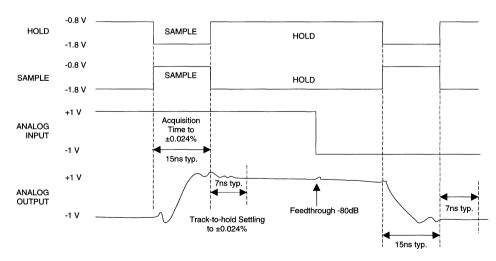
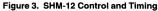
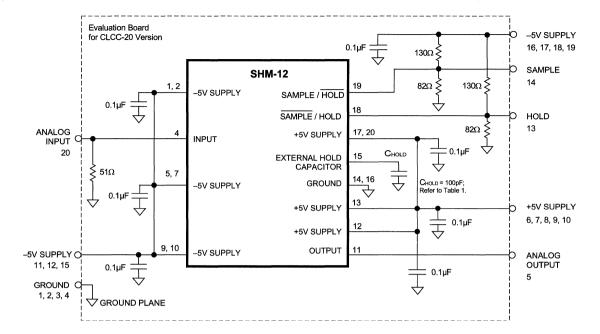
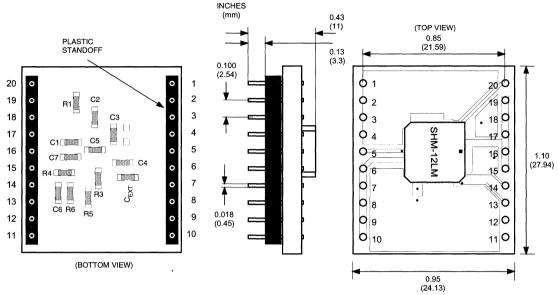





Figure 2. SHM-12 Simplified Connection Diagram

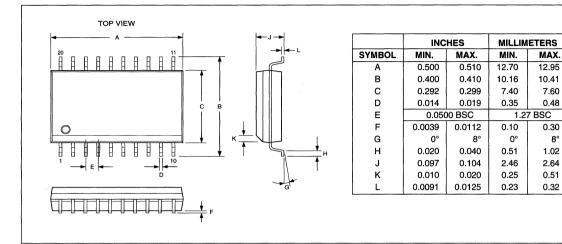


DATEL

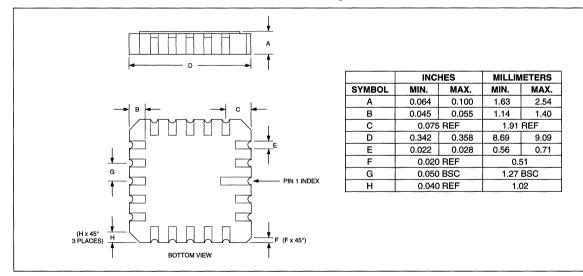
Figure 4. SHM-12 Evaluation Board Schematic

Table 1. Optional External HOLD Capacitor

Model	Operating Temperature Range	Type of HOLD Capacitor (Ceramic, ≤100pF, ±10%)
SHM-12L, -12S	–40 to +85°C	Type I or II, NPO or X7R
SHM-12LM	−55 to +125°C	Type I or NPO



PIN	FUNCTION	
1	GROUND	
2	GROUND	
3	GROUND	
4	GROUND	
5	ANALOG OUTPUT	
6	+5V SUPPLY	
7	+5V SUPPLY	
8	+5V SUPPLY	
9	+5V SUPPLY	
10	+5V SUPPLY	
11	-5V SUPPLY	
12	-5V SUPPLY	
13	HOLD	
14	SAMPLE	
15	-5V SUPPLY	
16	–5V SUPPLY	
17	-5V SUPPLY	
18	–5V SUPPLY	
19	–5V SUPPLY	
20	ANALOG INPUT	


SHM-12 Evaluation Board Connections

3

MECHANICAL DIMENSIONS SOIC-20 Package

CLCC-20 Package

ORDERING INFORMATION

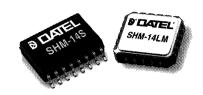
MODEL NUMBER	PACKAGE	TEMPERATURE RANGE
SHM-12S	SOIC-20	-40 to +85°C
SHM-12L	CLCC-20	-40 to +85°C
SHM-12LM	CLCC-20	-55 to +125°C
EVB-SHM12	Evaluation Bo	ard (with SHM-12LM)

SHM-14 Ultra-Fast, 14-Bit Linear Monolithic Sample-Hold Amplifiers

FEATURES

• Fast acquisition time:

10ns to ±0.1% 20ns to ±0.024% 25ns to ±0.012%


- ±0.0012% Nonlinearity
- · 65µV rms output noise
- 250MHz small signal bandwidth
- 70MHz full power bandwidth
- –80dB feedthrough
- 1ps Aperture jitter
- 250mW power dissipation
- Low cost

GENERAL DESCRIPTION

The SHM-14 is an extremely high-speed and accurate monolithic sample-and-hold amplifier designed for fast data acquisition applications. The SHM-14 is accurate (± 0.5 LSB to 14-bits over the full military temperature range) and is very fast (10ns and 20ns acquisition times to accuracies of 10 and 12 bits respectively). With this high performance and a full power bandwidth of 70MHz, the SHM-14 is an ideal device for driving flash and high-resolution subranging A/D converters.

A careful design optimizes the device for accuracy and speed over the full military temperature range. The droop rate is a low $\pm 2mV/\mu s$ and can be further reduced by adding an optional external hold capacitor. The 30mA output current and guaranteed specifications for a 100 Ω load provide high drive capability. Operating from \pm 5V supplies, the SHM-14 consumes only 250mW of power.

The SHM-14 is built using a fast complementary bipolar process. The device is available in both military and industrial temperature ranges. The SHM-14 is packaged in a 16-pin plastic SOIC or in a 20-pin ceramic LCC.

INPUT/OUTPUT CONNECTIONS — SOIC

PIN	FUNCTION	PIN	FUNCTION
1	-5V SUPPLY	16	SAMPLE/HOLD
2	DO NOT CONNECT	15	SAMPLE/HOLD
3	ANALOG INPUT	14	+5V SUPPLY
4	DO NOT CONNECT	13	EXT. CAPACITOR
5	-5V SUPPLY	12	GROUND
6	DO NOT CONNECT	11	+5V SUPPLY
7	DO NOT CONNECT	10	+5V SUPPLY
8	-5V SUPPLY	9	ANALOG OUTPUT

INPUT/OUTPUT CONNECTIONS — CLCC

PIN	FUNCTION	PIN	FUNCTION
1	NOT CONNECTED	20	NOT CONNECTED
2	-5V SUPPLY	19	SAMPLE/HOLD
3	NOT CONNECTED	18	SAMPLE/HOLD
4	ANALOG INPUT	17	+5V SUPPLY
5	NOT CONNECTED	16	NOT CONNECTED
6	DO NOT CONNECT	15	EXT. CAPACITOR
7	-5V SUPPLY	14	GROUND
8	DO NOT CONNECT	13	+5V SUPPLY
9	DO NOT CONNECT	12	+5V SUPPLY
10	-5V SUPPLY	11	ANALOG OUTPUT

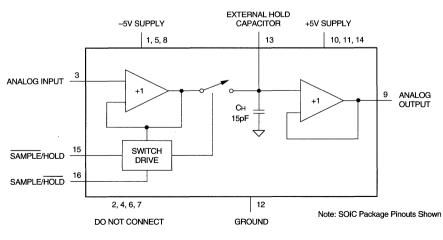


Figure 1. SHM-14 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+5V Supply	0 to +6	Volts
-5V Supply	0 to6	Volts
Analog Input	+5V Supply –1	Volts
	-5V Supply +1	Volts
Continuous Output Current	±50	mA
Digital Inputs	<supply td="" voltages<=""><td>Volts</td></supply>	Volts
Junction Temperature	+175	°C
Lead Temperature (10 seconds)	+300	°C
Output shorted to any supply	will cause permanent dama	ge.

FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range using a 100Ω resistive load, 10pF capacitive load, ECL digital input levels, and ±5V nominal supplies, unless specified.)

-2.5			L
-2.0		+2.5	Volts
0.3		+2.5	MΩ
0.5		_	11122
-0.8	_	+18	Volts
	_		Volts
2.0			1
_	+10	+50	μA
-	-30	-150	μA
1			
-25		+25	Volts
			mA
	0.3	1	Ω
	_	50	pF
1			P
_	+0.0012		%
_		+0 002	%
_	_		%
			,-
_	±12	—	mV
-	_	±20	mV
-		±30	mV
-	±3	-	mV
-	-	±20	mV
	-	±20	mV
+0.98	+0.995	-	V/V
-	-		ppm/°C
-	-	±30	ppm/°C
-			ns
-	2		ns
-		-	ps rms
-		_	ps rms
	70		dB
-	-12	_	UD
I _	_58		dB
		-50	dB
_			dB
1		10	
-	25	_	ns
-	35	-	ns
-	20	35	ns
-	25	40	ns
-	19	30	ns
1	20	35	ns
	-0.8 -2.5 ± 30 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

PERFORMANCE (Cont.)	MIN.	TYP.	MAX.	UNITS
Acquisition Time (±0.1%, ±2V)				
-40 to +85°C		10	16	ns
-55 to +125°C	_	10	19	ns
Hold Mode Settling (±0.012%)				
-40 to +85°C	-	12		ns
-55 to +125°C	-	15	-	ns
Hold Mode Settling (±0.024%)		_		
-40 to +85°C	_	7	18	ns
-55 to +125°C	-	1	18	ns
Hold Mode Settling (±0.05%)			10	
-40 to +85°C -55 to +125°C	_	6	16	ns
Hold Mode Settling (±0.1%)	-	0	16	ns
-40 to +85°C		5	12	ns
-40 to +65 C		5	12	ns
Slew Rate	±300	±430	12	V/us
Full Power Bandwidth (±1V)	45	70		ν/μs MHz
Small Signal Bandwidth	100	250	_	MHz
Output Noise, Hold Mode	_	65	_	uVrms
Feedthrough (2V Step)	- 1	-80		dB
Droop Rate				
+25°C	_	±2	±6	mV/µs
-40 to +85°C	-	±5	±15	mV/µs
-55 to +125°C	-	±10	±30	mV/µs
POWER SUPPLY REQUIREMENT	S	1		
Power Supply Range				
+5V Supply	+4.5	+5	+5.5	Volts
-5V Supply	-5.5	-5	-4.5	Volts
Power Supply Current		-		
+5V Supply	+17	+25	+30	mA
-5V Supply	-17	-25	-30	mA
Power Dissipation	170	250	300	mW
Power Supply Rejection Ratio	40	60	-	dB
ENVIRONMENTAL				
Operating Temp. Range, Case				
SHM-14S, SHM-14L	-40	- 1	+85	°C
SHM-14LM	-55	- 1	+125	°Č
Storage Temperature Range	-65	_	+150	°C
Package Type				
SHM-14S		16-Pin pla	astic SOIC	
SHM-14L, SHM-14LM		20-Pin cer	amic LCC	
L	L			

Footnotes:

① Short circuit protection at ±50mA.

TECHNICAL NOTES

The SHM-14 employs an open loop architecture in order to achieve its superior high-speed characteristics. The first stage buffer amplifier, which charges the hold capacitor, incorporates the sample-and-hold switch into its design. This technique allows for a fast acquisition time which is not limited by slew current like the traditional Schottky diode bridge switch. The output amplifier uses a closed loop voltage feedback design which provides a low (0.3 Ω , typical) output impedance. Gain and linearity are not affected by heavy loads.

The design has been optimized to achieve the high accuracy associated with fast transient responses over the full military temperature range. During the track-to-hold transient, the integral nonlinearity is not affected and the pedestal remains constant over the full $\pm 2.5V$ input range.

An external hold capacitor can be added to the 15pF internal hold capacitor to obtain a lower droop rate (the droop rate is proportional to the inverse of the total hold capacitor value) without increasing transient response times by more than few ns. Settling and acquisition times are typically increased by 5ns and 10ns respectively for 47pF and 100pF external hold capacitors. The external hold capacitor should not exceed 100pF.

GROUNDING AND LAYOUT

Obtaining fully specified performance from the SHM-14 requires careful attention to pc-board layout and power supply decoupling.

For optimal performance, tie all grounds directly to a large analog ground plane beneath and around the package. Bypass all power supplies to ground with 10μ F tantalum capacitors in parallel with 0.1μ F ceramic capacitors.

Locate the bypass capacitors as close to the unit as possible.

For best performance, controlled impedance transmission line techniques, such as microstrip, should be used. Mount all components as close to the required pins as possible. It is strongly recommended that the SHM-14 not be socket-mounted.

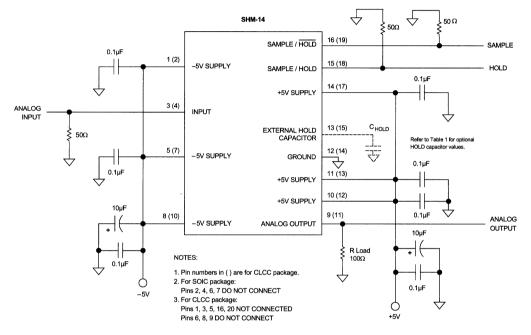
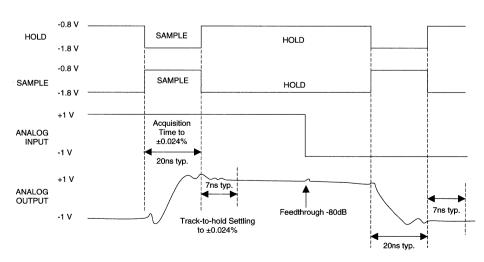



Figure 2. SHM-14 Simplified Connection Diagram

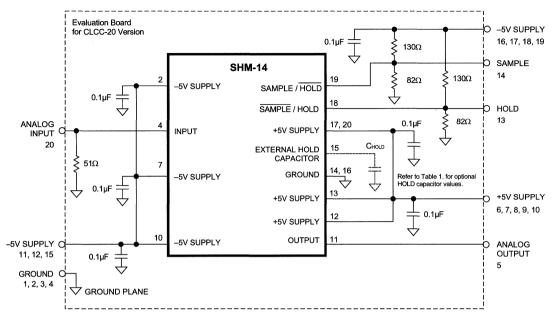
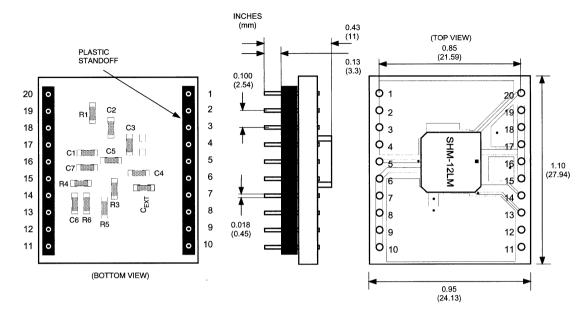
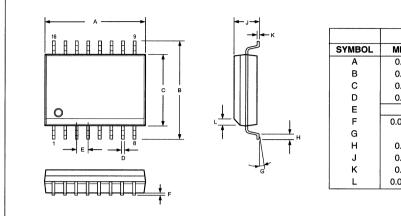



Figure 4. SHM-14 Evaluation Board Schematic

Table 1. Optional External HOLD Capacitor

Model	OperatingType of HOLD CapacitModelTemperature Range(Ceramic, ≤100pF, ±10)			
SHM-14L, -14S	–40 to +85°C	Type I or II, NPO or X7R		
SHM-14LM	–55 to +125°C	Type I or NPO		

3



SHM-14	Evaluation	Board	Connections
--------	------------	-------	-------------

PIN	FUNCTION
1	GROUND
2	GROUND
3	GROUND
4	GROUND
5	ANALOG OUTPUT
6	+5V SUPPLY
7	+5V SUPPLY
8	+5V SUPPLY
9	+5V SUPPLY
10	+5V SUPPLY
11	–5V SUPPLY
12	–5V SUPPLY
13	HOLD
14	SAMPLE
15	–5V SUPPLY
16	–5V SUPPLY
17	–5V SUPPLY
18	–5V SUPPLY
19	–5V SUPPLY
20	ANALOG INPUT

MECHANICAL DIMENSIONS SOIC-16 Package

	INCHES		MILLIMETER			
SYMBOL	MIN. MAX.		MIN.	MAX.		
А	0.402	0.412	10.21	10.46		
В	0.400	0.410	10.16	10.41		
С	0.292	0.299	7.40	7.60		
D	0.014	0.019	0.35	0.48		
Е	0.0500 BSC		1.27 BSC			
F	0.0039	0.0112	0.10	0.30		
G	0°	8°	0°	8°		
н	0.020	0.040	0.51	1.02		
J	0.097	0.104	2.46	2.64		
К	0.010	0.020	0.25	0.51		
L	0.0091	0.0125	0.23	0.32		

CLCC-20 Package

	INCHES		MILLIM	ETERS
SYMBOL	MIN. MAX.		MIN.	MAX.
A	0.064	0.100	1.63	2.54
В	0.045 0.055		1.14	1.40
С	0.075 REF		1.91 REF	
D	0.342	0.342 0.358		9.09
E	0.022	0.028	0.56	0.71
F	0.020 REF		0.9	51
G	0.050 BSC		1.27	BSC
Н	0.040 REF		1.02	

ORDERING INFORMATION

MODEL NUMBER	PACKAGE	TEMPERATURE RANGE
SHM-14S	SOIC-16	40 to +85°C
SHM-14L	CLCC-20	-40 to +85°C
SHM-14LM	CLCC-20	-55 to +125°C
EVB-SHM14	Evaluation Boa	rd (with SHM-14LM)

SHM-20 High-Speed, ±0.01% Monolithic Sample-Hold

FEATURES

- Internal hold capacitor
- 1µs Acquisition time to ±0.01%
- 0.3ns Aperture uncertainty
- 3 x 105 DC gain
- ±0.08µV/µs droop rate
- Differential inputs

GENERAL DESCRIPTION

DATEL's SHM-20 is a low-cost, complete, monolithic samplehold amplifier which includes an internal 100pF MOS hold capacitor. Primarily designed for high-speed analog signal processing applications, the SHM-20 features a typical acquisition time of 1 μ sec for a 10V input step to $\pm 0.01\%$. Aperture uncertainty is typically 0.3ns, and droop rate is as low as $\pm 0.08\mu V/\mu s$.

The SHM-20 consists of an input transconductance amplifier, a low-leakage analog switch, an output integrating amplifier, and a 100pF MOS hold capacitor. Charge injection on the hold cap (and the resulting \pm 1mV pedestal error) is constant over the entire \pm 10V input/output voltage range. If necessary, the pedestal error can be eliminated using the external offset adjust capability. For improved droop rate, additional hold capacitance may be added externally at the expense of acquisition time.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	-INPUT
2	+INPUT
3	OFFSET ADJUST
4	OFFSET ADJUST
5	-15V SUPPLY
6	SIGNAL GROUND
7	OUTPUT
8	INTEGRATOR COMPENSATION
9	+15V SUPPLY
10	NO CONNECTION
11	EXTERNAL HOLD CAPACITOR
12	NO CONNECTION
13	POWER GROUND
14	S/H CONTROL

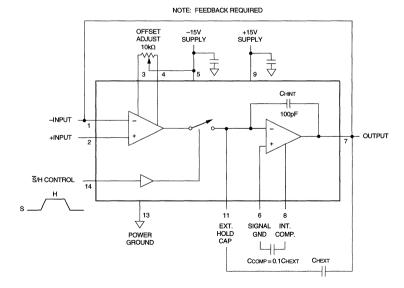


Figure 1. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

Voltage between Supply Pins (9 & 5) Differential Input Voltage	40V ±24V
Digital Input Voltage, Pin 14	~15 to +8V
Output Current, Continuous ①	±20mA
Junction Temperature	+175°C

FUNCTIONAL SPECIFICATIONS

(Typical at TA = +25°C with ±15V supplies, using internal hold capacitor, unless noted.)

ANALOG INPUT	MIN.	TYP.	MAX.	UNITS
Input Voltage Range ② Input Impedance Input Capacitance Input Offset Voltage Input Offset Voltage Drift ③ Input Bias Current ③ Input Offset Current ② Common Mode Range ③ CMRR (V _{CM} = ±5V)	±10 1 ±10 72			Volts MΩ pF mV µV/°C nA nA Volts dB
DIGITAL INPUTS				
Logic Levels Logic "1" (Hold Mode) Logic "0" (Sample Mode) Logic Loading "1" Logic Loading "0"	+2.0 	- - -	 +0.8 +0.1 10	Volts Volts μΑ μΑ
Ουτρυτ				
Output Voltage Range ② Output Current ③ Output Impedance, Hold Mode	±10 ±10 —	 - 1		Volts mA Ω
PERFORMANCE				
Accuracy DC Gain Gain Error Tempco Gain Bandwidth Product ④	3 x 105	±0.01 — 2	 ±0.6	% V/V ppm/°C MHz
Gain Bandwidth Product (C _H = 1000pF) ④ Full Power Bandwidth ⑤ Hold Mode Feedthrough,		0.18 600		MHz kHz
10Vp-p, 100kHz @ Droop Rate @ Charge Transfer ® Pedestal Error ® @	 	2 ±0.08 ±1.2 0.1 ±1		mVp-p μV/μs μV/μs pC mV
Total Output Noise, DC to 10MHz	_	—	200	μVrms
Power Supply Rejection Ratio 2 +15V Supply -15V Supply		80 65	_	dB dB
DYNAMIC CHARACTERISTI	cs			
Acquisition Time 10V Step to ±0.1% 10V Step to ±0.01% Aperture Delay Time Aperture Uncertainty Time Aperture Time Hold Mode Settling Time,	 	0.8 1.0 30 0.3 25		µs µs ns ns ns
To ±0.01% [©] Rise Time Overshoot Slew Rate [®]	 	185 100 15 ±45	 	ns ns % V/µs

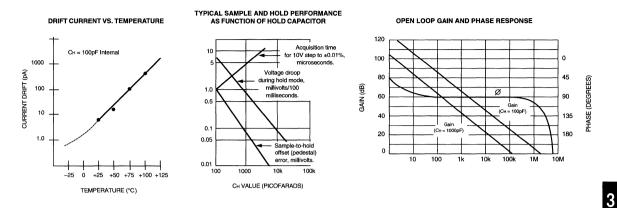
POWER	REQUIRI	EMENT	S (9)	

+15V, ±0.5V at 11mA -15V, ±0.5V at -11mA

PHYSICAL/ENVIRONMENTAL

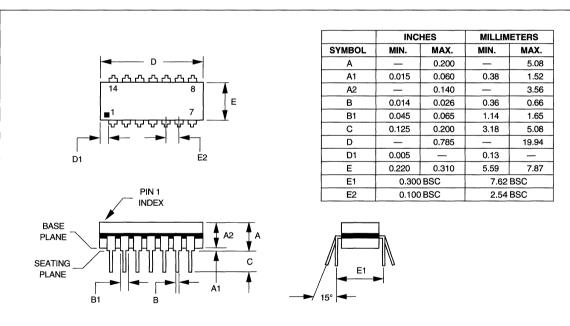
Positive Supply, Pin 9 Negative Supply, Pin 5

Operating Temp. Range, Ambient	0 to +70°C
Storage Temp. Range	-65 to +150°C
Package Type	14-pin ceramic DIP


Footnotes:

① Internal power dissipation may limit output current below ±20mA.

- ② Over full operating temperature range.
- ③ Output is not short-circuit protected. Only momentary short circuits to ground can be tolerated
- (4) Output voltage = 200mVp-p; load resistance = $2k\Omega$; load capacitance = 50pF.
- (5) Output voltage = 20Vp-p; load resistance = $2k\Omega$; load capacitance = 50pF.
- Input voltage = 0V; digital input voltage = +3.5V.
- \oslash For C_{H} = 100pF. For C_{H} = 100pF, pedestal error is $\pm 0.1mV.$ For C_{H} = 0.01µF, pedestal error is $\pm 0.01mV.$
- ⑧ Output voltage = 20V step.
- ③ A power supply voltage as low as ±12V may be used. However, this will cause some degradation in performance.


TECHNICAL NOTES

- The SHM-20 has the uncommitted differential inputs of an op amp. This allows the sample-and-hold function to be combined with conventional op-amp circuits. Figure 1 shows the SHM-20 connected in a unity-gain non-inverting amplifier configuration.
- 2. A printed circuit board with ground plane is recommended for best performance. The supply pins (pins 5 and 9) should be bypassed to ground with a 0.01 to 0.1μ F ceramic capacitors as close to the pins as possible.
- 3. If an external hold capacitor (CHEXT) is connected between pins 7 and 11, then a noise bandwidth capacitor with a value of 10% of the value of the external hold capacitor should be connected from pin 8 to signal ground, pin 6. Exact value and type are not critical.
- 4. The hold capacitor (CHEXT) should have high insulation resistance and low dielectric absorption to minimize droop error. For operating temperatures up to +70°C, polystyrene dielectric is a good choice. Any pc connections to the hold capacitor terminal (pin 11) should be kept short and "guarded" by the ground plane to avoid errors due to drift currents from nearby signal lines or power supply voltages.
- The offset adjust may be used to eliminate the pedestal error by connecting a 10k Ohm pot between pins 3 and 4 and connecting the wiper to the –15V supply, pin 5.

MECHANICAL DIMENSIONS

ORDERING INFORMATION

MODEL NUMBER

OPERATING TEMP. RANGE

SHM-20C

0 to +70°C

SHM-30 Very High-Speed, ±0.01% Monolithic Sample-Hold

FEATURES

- 650ns Acquisition time to ±0.01%
- Internal hold capacitor
- Low droop, ±0.01µV/µs
- ±90V/µs Slew rate
- Low ±0.2mV typical offset voltage
- Fully differential inputs

GENERAL DESCRIPTION

DATEL's SHM-30 is a complete monolithic sample-hold amplifier which includes an internal 90pF MOS hold capacitor. Primarily designed to be used in precision, high-speed data acquisition applications, the SHM-30 features an acquisition time of 650ns typical to $\pm 0.01\%$ and a droop rate of $\pm 0.01\mu V/\mu s$. Other salient features of the SHM-30 include an aperture uncertainty time of 0.1ns, a slew rate of $\pm 90V/\mu s$, and a fully differential input.

The SHM-30 is composed of an input amplifier designed to deliver large amounts of current, a low-leakage switch, and an integrator. The low pedestal error of ± 0.5 mV can be trimmed to zero with a single potentiometer for demanding applications.

The SHM-30 is packaged in a 14-pin ceramic DIP and operates over the 0 to $+70^{\circ}$ C temperature range. It requires $\pm 15V$ supplies and has a maximum power consumption of 735mW.

INPUT/OUTPUT CONNECTIONS

	PIN	FUNCTION	
	1	+INPUT	
l	2	NO CONNECTION	
	3	OFFSET ADJUST	
	4	OFFSET ADJUST	
	5	–15V SUPPLY (–Vs)	
	6	NO CONNECTION	
	7	OUTPUT	
	8	S/H CONTROL	
	9	NO CONNECTION	
	10	+15V SUPPLY (+Vs)	
	11	POWER GROUND	
	12	SIGNAL GROUND	
	13	NO CONNECTION	
	14	-INPUT	

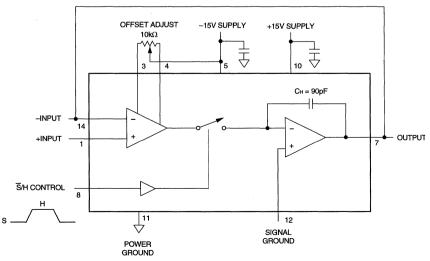


Figure 1. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

Voltage Between +Vs and PWR/SIG GND	+20V
Voltage Between –Vs and PWR/SIG GND	-20V
Differential Voltage Between SIG and PWR GND	±2V
Differential Input Voltage	±24V
Digital Input Voltage	-6 to +8V
Output Current, Continuous ①	±17mA
Junction Temperature	+175°C

FUNCTIONAL SPECIFICATIONS

(Typical at TA = +25°C with ±15V supplies and unity-gain configuration, unless noted.)

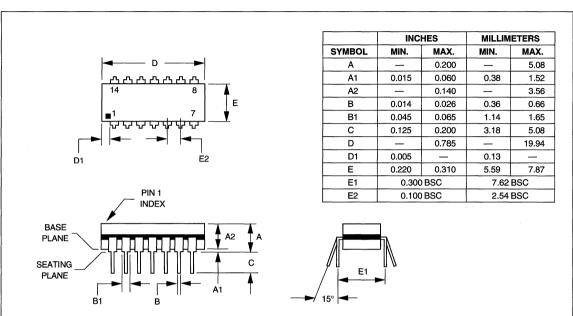
ANALOG INPUT	MIN.	TYP.	MAX.	UNITS
Input Voltage Range ②	±10	-	-	Volts
Input Impedance	5		-	MΩ
Input Capacitance		3 ±0.2	±1.5	pF mV
Input Offset Voltage Input Offset Voltage Drift @		±0.2	±1.5 ±10	μV/°C
Input Bias Current @			±300	nA
Input Offset Current @			±300	nA
Common Mode Range 2	±10			Volts
DIGITAL INPUTS				
Logic Levels				
Logic "1"	+2.0			Volts
Logic "0"	-	-	+0.8	Volts
Logic Loading "1"			+40	μA
Logic Loading "0"			-40	μA
ANALOG OUTPUT				
Output Voltage Range 2	±10	_	-	Volts
Output Current @	±10	-	-	mA
Output Impedance, Hold Mode	-	0.2	-	Ohms
PERFORMANCE				
DC Gain 2	2 x 106	_	_	V/V
Gain Bandwidth Product ③		4.5	-	MHz
Hold Mode Feedthrough,				
20Vp-p, 100kHz 2		-88		dB
Droop Rate	-	±0.01	- 1	μV/μs
Droop Rate 2			±10	μV/μs
Pedestal Error ④		±0.5	-	mV
Total Output Noise, DC to 4MHz				
Sample Mode		230	-	μVrms
Hold Mode		190		μVrms
Power Supply Rej. Ratio 26	86		- 1	dB
Common Mode Rejection Ratio 26	86			dB
	00			uв
DYNAMIC CHARACTERISTI	cs	r	r	
Acquisition Time				
10V step to ±0.1%		500		ns
Over full temp. range	-		700	ns
10V step to ±0.01%	-	650		ns
Over full temp. range			900	ns
Aperture Delay Time	-	-25	-	ns
Aperture Uncertainty Time		0.1	200	ns
Hold Mode Settling Time, ±0.01% Rise Time ⑦		70	200	ns ns
Overshoot ⑦		10		ns %
Slew Rate ⑦	_	±90	_	v/µs
POWER REQUIREMENTS ®		[I	
Positivo Supply Din 10		+15V, ±0.5V	at 21ml	
Positive Supply, Pin 10		-15V, ±0.5V -15V, ±0.5V		
Negative Supply, Pin 5	-	-13V, ±0.3V	ai 2011A Ma	ι.

PHYSICAL/ENVIRONMENTAL

Operating Temperature Range
Storage Temperature Range
Package Type

0 to +70°C -55 to +150°C 14-pin ceramic DIP

Footnotes:


- ① Internal power dissipation may limit output current below ±17mA.
- Over full operating temperature range.
- $(V_0 = 200 \text{mVp-p}, \text{R}_L = 2 \text{k}\Omega, \text{C}_L = 50 \text{pF.}$
- $\textcircled{V}_{IN} = 0V; \overline{S}/H$ control signal +3.5V with 20ns rise time from 0V to +3.5V.
- (5) Based on a three-volt delta in each supply, i.e., 15V = ±1.5V.

 $V_{CM} = \pm 10 V dc.$

- \oslash V_O = 20V step, RL = 2k\Omega, CL = 50pF.
- Power supply voltages as low as ±11 Volts may be used. However, this will
 cause some degradation in performance.

TECHNICAL NOTES

- The SHM-30 has the uncommitted differential inputs of an operational amplifier. This permits the sample-and-hold function to be combined with most conventional op-amp circuits. Figure 1 shows the SHM-30 in a non-inverting, unity-gain configuration.
- A printed circuit board design with extensive ground plane is recommended for optimum performance. Bypass capacitors (0.01 to 0.1μF ceramic) should be provided from each power supply pin to the PWR GND terminal on pin 11.
- 3. The internal hold capacitor is 90pF MOS.
- 4. The output circuit is not short-circuit protected. Only momentary short-circuits to ground are permissable.
- 5. Offset and pedestal adjustments may be performed by using a $10k\Omega$ trimpot between pins 3 and 4 with the wiper connected to -15 Volts.

MECHANICAL DIMENSIONS

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE
SHM-30C	0 to +70°C

SHM-43 High-Speed, ±0.01% Hybrid Sample-Hold Amplifiers

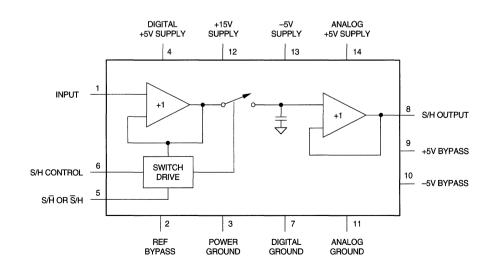
FEATURES

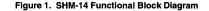
- 35ns maximum acquisition time to ±0.01%
- 30ns maximum hold-mode settling to ±0.01%
- · 1ps aperture uncertainty
- 150MHz small signal bandwidth
- 545mW power dissipation
- Small 14-pin DIP package
- CMOS control signal

GENERAL DESCRIPTION

The SHM-43 sample-hold utilizes a proprietary architecture to deliver acquisition times of 35 nanoseconds maximum to $\pm 0.01\%$ accuracy and 25 nanoseconds maximum to $\pm 0.1\%$ accuracy.

Operation requires +15V and \pm 5V supplies, and the analog input range is \pm 1V. Packaged in a small 14-pin DIP, the SHM-43 offers a CMOS compatible sample command while dissipating just 545 milliwatts.


The SHM-43 has been designed for applications that demand fast acquisition times (25ns, $\pm 0.01\%$), fast hold-mode settling (20ns, $\pm 0.01\%$), wide bandwidth, and the ability to drive resistive (100 Ω) and capacitive (50pF) loads with no compromise in performance. These features make the SHM-43 an ideal choice for driving flash A/D converters in applications such as radar and communications.


Two temperature ranges are offered; commercial 0 to +70°C and military -55 to +125°C.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	INPUT
2	REF BYPASS
3	POWER GROUND
4	DIGITAL +5V SUPPLY
5	S/H OR S/H
6	S/H CONTROL
7	DIGITAL GROUND
8	S/H OUTPUT
9	+5V BYPASS
10	-5V BYPASS
11	ANALOG GROUND
12	+15V SUPPLY
13	-5V SUPPLY
14	ANALOG +5V SUPPLY

ABSOLUTE MAXIMUM RATINGS

-0.5 to +18 -0.5 to +7 +0.5 to -7 +5V Supply +1	Volts Volts Volts Volts
+0.5 to -7	Volts
+5V Supply +1	Volts
-5V Supply -1	Volts
-0.5 to +7	Volts
300	°C
70	mA

Output shorted to any supply will cause permanent damage

FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range with $\pm 1V$ input range, 100 Ω load, $\pm 5V$ nominal supplies, unless otherwise specified.)

INPUTS	MIN	ТҮР	МАХ	UNITS
	IVIIIN	118		
Input Voltage Range	±1	±2	-	Volts
Input Impedance	50	160	-	kΩ
Digital Inputs				
(Digital Supply = +5V)				
Logic Levels Logic 1	+3.8	_		Volts
Logic 0	+3.0	_	+1.35	Volts
Logic Loading			11.00	Volto
Logic 1		+1	+5	μA
Logic 0	—	-1	-5	μA
OUTPUTS				
Voltage Range	±1	±2	_	Volts
Output Current	±30	—	-	mA
Output Impedance (dc)		0.1	0.25	Ohms
Stable Capacative Load	50			pF
PERFORMANCE				
Nonlinearity, DC (±1V)				
+25°C		-	±0.01	%
0 to +70°C	-	-	±0.01	%
-55 to +125°C			±0.02	%
Sample Mode Offset, +25°C 0 to +70°C	_	±5 ±25	±30 ±35	mV mV
-55 to +125°C		±25 ±25	±35 ±35	mV
Pedestal, +25°C	_	±5	±35 ±15	mV
0 to +70°C	_		±20	mV
-55 to +125°C		_	±20	mV
Gain, +25°C	_	1	_	V/V
Gain Error, +25°C		—	±2	%
0 to +70°C	-	-	±2.25	%
-55 to +125°C		_	±2.25	%
Aperture Delay, +25°C	-	5	10	ns
0 to +70°C -55 to +125°C	_	10 10	20 20	ns
Aperture Jitter, +25°C		1	20	ns ps
0 to +70°C		2	6	ps ps
-55 to +125°C		2	6	ps
Slew Rate	±190	±250	-	V/µs
Full Power BW, ±1.5V	20	25	-	MHz
Small Signal Bandwidth	100	150	-	MHz
Harmonic Distortion				_
±1V, DC to 5MHz	-70	-74	-	dB
±1V, 5 to 10MHz, +25°C 0 to +70°C	60 50	-70	-	dB dB
-55 to +125 °C	50 50	_		dB dB
Acq.Time ±0.01%, ±1V, +25°C ①	-50	25	35	ns
0 to +70°C			35	ns
-55 to +125°C		_	45	ns
Acq.Time ±0.1%, ±1V, +25°C ①		15	25	ns
0 to +70°C		I _	35	ns
-55 to +125°C				

PERFORMANCE (Cont.)	MIN.	TYP.	MAX.	UNITS
FEIT ORMANCE (COIII.)				01113
Hold Mode Settling ±0.01%, +25°C	-	20	30	ns
0 to +70°C		-	50	ns
-55 to +125°C	-	-	50	ns
Hold Mode Settling, ±0.1%, +25°C		—	20	ns
0 to +70°C	-		35	ns
-55 to +125°C		270	35	ns u)/rma
Output Noise, Hold Mode Feedthrough Rejection 2V Step	76	80	_	µVrms dB
Droop Rate, +25°C	70	+1	±5	uV/us
0 to + 70°C	_		±50	μV/μs
-55 to +125°C		+25	±50	μV/μs
				μ.,μο
POWER SUPPLY REQUIREM	ENTS			
Range				
Ănalog +5V	+4.75	+5.0	+5.25	Volts
Digital +5V	+4.75	+5.0	+5.25	Volts
_5V	-4.75	5.0	-5.25	Volts
+15V	+14.25	+15.0	+15.75	Volts
Current Drain				
Analog +5V	-	+38	+45	mA
Digital +5V	-	+10	+50	mA
-5V	_	-47	-50	mA
+15V	-	8 545	12	mA mW
Power Dissipation	52	545 60	655	mvv dB
Power Supply Rejection Ratio	52	60	_	aв
PHYSICAL/ENVIRONMENTAL	PHYSICAL/ENVIRONMENTAL			
Operating Temp. Range, Case				
SHM-43MC	0		+70	°C
SHM-43MM	-55	_	+125	°č
Storage Temp. Range	-65	_	+150	°Č
Package Type		14-pin cer	amic DIP	I

① DATEL uses the conservative definition of acquisition time, which includes the aperture delay time.

TECHNICAL NOTES

1. Bypass the \pm 5V and +15V supplies with a 1 μ F, 25V tantalum capacitor in parallel with a 0.01 μ F ceramic capacitor mounted as close to the pin as possible.

To achieve optimum performance ----

- Additional bypass capacitors are necessary, because of internal high switching speeds and the high slew rates of internal components. REF BYPASS (pin 2), +5V BYPASS (pin 9), and -5V BYPASS (pin 10) are internal connections that must be bypassed with a minimum 1µF tantalum capacitor mounted as close to the pins as possible. The polarity of the connections are shown in Figure 2.
- 3. As with all high-speed analog circuits, it is essential that good grounding techniques be used. Tie all ground pins together at a single ground point beneath the device, and use a short low-impedance run to the ground of the analog power supplies. The ground point should be a solid ground plane under the device and any associated data converter.
- 4. The offset, pedestal and gain errors of the SHM-43 are laser trimmed at DATEL, and no external compensation capabilities have been provided. This prevents introducing noise through the offset adjust terminals of the S/H amplifier and guarantees excellent gain linearity, offset drift and pedestal performance.
- 5. A true sample/hold, the SHM-43 will return to the sample mode after three to four microseconds in the hold mode.

3-22

3

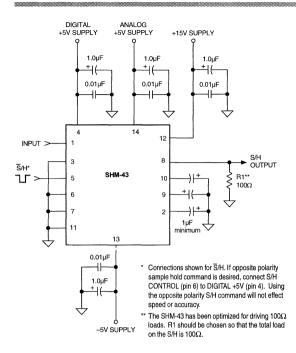


Figure 2. Test Circuit Connections

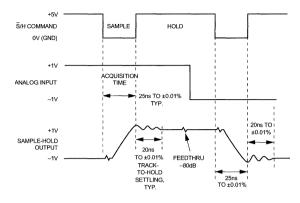
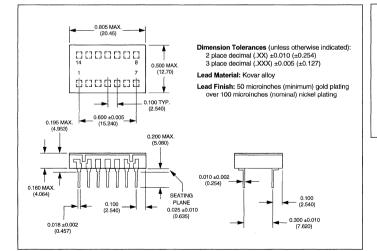



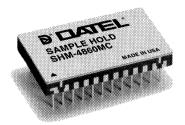
Figure 3. Test Method for Circuit Shown in Figure 2

MECHANICAL DIMENSIONS INCHES (MM)

ORDERING INFORMATION

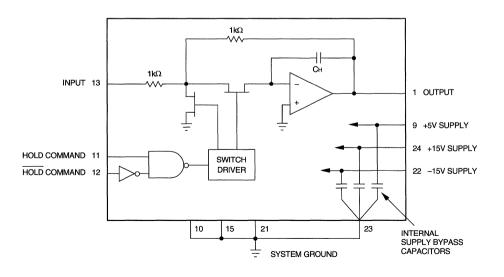
MODEL NO.	TEMPERATURE RANGE			
SHM-43MC SHM-43MM	0 to +70 °C −55 to +125 °C			
Receptacles for pc board mounting are available from Amp, Inc. part number 3-331272-8 (component lead socket), 14 required.				
Contact DATEL for reliability (QL) ver	or availability of a high- rsion.			

SHM-4860 Industry-Standard, High-Speed ±0.01% Sample-Hold Amplifiers


FEATURES

- 200ns Maximum acquisition time
- ±0.01% Accuracy
- 100ns Maximum sample-hold settling time
- 74dB Feedthrough attenuation
- ±50ps Aperture uncertainty
- Industry standard

GENERAL DESCRIPTION


DATEL's SHM-4860 is a high-speed, highly accurate samplehold amplifier designed for precision, high-speed analog signal processing applications. Manufactured using modern, highquality hybrid technology, the SHM-4860 features excellent dynamic specifications including a maximum acquisition time of only 200ns for a 10V step to $\pm 0.01\%$. Sample-to-hold settling time, to $\pm 0.01\%$ accuracy, is 100ns maximum with an aperture uncertainty of ± 50 ps.

The SHM-4860 is a complete sample-hold circuit, containing a precision MOS hold capacitor and a MOSFET switching configuration which results in faster switching and better feedthrough attenuation. Additionally, a FET-input amplifier design allows faster acquisition and settling times while maintaining a considerably lower droop rate.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	OUTPUT	24	+15V SUPPLY
2	N.C.	23	GROUND
3	N.C.	22	-15V SUPPLY
4	N.C.	21	GROUND
5	N.C.	20	N.C.
6	N.C.	19	N.C.
7	N.C.	18	N.C.
8	N.C.	17	N.C.
9	+5V SUPPLY	16	N.C.
10	GROUND	15	GROUND
11	HOLD COMMAND	14	N.C.
12	HOLD COMMAND	13	INPUT

Figure 1. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

±15V Supply Voltages, Pins 24, 22 +5V Supply Voltage, Pin 9 Analog Input, Pin 13 ①	±18V -0.5V to +7V ±18V	
Digital Inputs, Pins 11, 12	-0.5V to +7V	
Output Current @	±65mA	

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C with ±15V and +5V supplies unless otherwise noted.)

ANALOG INPUT/OUTPUT Input/Output Voltage Range ① Input Impedance Output Current ② Output Impedance Maximum Capacitive Load	MIN. ±10.25	TYP. ±11.25	MAX.	UNITS				
Input Impedance Output Current Output Impedance	±10.25		_					
Output Current @ Output Impedance	-			V				
Output Impedance		1	-	kΩ				
	-	-	±40	mA				
		0.1 250		kΩ pF				
· · · · · · · · · · · · · · · · · · ·	_	250	_	рг				
Input Logic Level								
Logic "1"	+2.0	-	+5.0 +0.8	V V				
Logic "0" Loading	0	_	+0.0	v				
Logic "1"		_	+40	μA				
Logic "0"	-	-	-1.6	mA				
TRANSFER CHARACTERIS	TICS							
Gain		-1	_	V/V				
Gain Accuracy	-	±0.05	±0.1	%				
Gain Linearity Error ③	-	±0.005	±0.01	%FS				
Sample-Mode Offset Voltage Sample-to-Hold Offset Error ④		±0.5	±5	mV				
(Pedestal)		±2.5	±20	mV				
Gain Tempco (Drift)	-	±0.5	±5	ppm/°C				
Sample-Mode Offset Drift	-	±3	±15	5				
Sample-to-Hold Offset Drift	-	±4		6				
DYNAMIC CHARACTERISTI	cs							
Acquisition Time								
10V to ±0.01%FS	-	160	200 170	ns				
10V to ±0.1%FS 10V to ±1%FS		100 90	170	ns ns				
1V to ±1%FS	_	75	_	ns				
Sample-to-Hold Settling Time								
10V to ±0.01%FS	-	60	100	ns				
10V to ±0.1%FS	-	40	-	ns				
Sample-to-Hold Transient	-	180	-	mV p-p				
Aperture Delay Time Aperture Uncertainty (Jitter)		6 ±50	_	ns ps				
Output Slew Rate		±300	_	μV/μs				
Small Signal Bandwidth (-3dB)		16	—	MHz				
Droop: +25°C	-	±0.5	±5	μV/µs				
+70°C	-	±15	-	μV/μs				
+125°C Feedthrough Attenuation	_	±1.2 74	_	mV/µs dB				
Overload Recovery Time	-	/4	_	UD				
Positive		200	_	ns				
Negative	-	700	—	ns				
POWER REQUIREMENTS	·	·						
Voltage Range: ±15V Supplies		±3	_	%				
+5V Supply	-	±5	-	%				
Power Supply Rejection Ratio	-	±0.5	-	mV/V				
Quiescent Current Drain		+21	+25	mA				
+15V Supply –15V Supply	_	+21 22	+25 -25	mA mA				
+5V Supply	_	+17	+25	mA				
Power Consumption	-	730	875	mW				

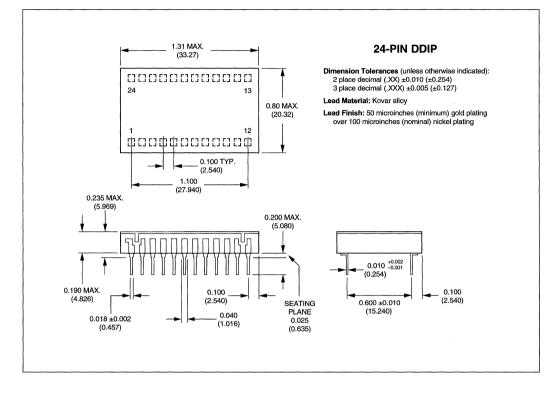
PHYSICAL/ENVIRONMENTAL

Operating Temperature Ranges SHM-4860MC SHM-4860MM, 883 Storage Temperature Range	0 to +70°C (ambient) −55 to +125°C (case) −65 to +150°C
Package Type	24-pin ceramic DDIP

Footnotes:

- ① Input signal should not exceed the supply voltage.
- The SHM-4860's output is current limited at approximately ±65mA. The device can withstand a sustained short to ground. However, shorts from the output to either supply will cause permanent damage. For normal operation, the load current should not exceed ±40mA.
- ③ Full Scale (FS) = 10V. Full Scale Range (FSR) = 20V.
- ③ Sample-to-Hold Offset Error (Pedestal) is constant regardless of input/output level.
- (5) Units are ppm of FSR/°C.

TECHNICAL NOTES


- All ground pins (10, 15, 21, 23) should be tied together and connected to system analog ground as close to the package as possible. It is recommended to use a ground plane under the device and solder all four ground pins directly to it. Care must be taken to ensure that no ground potentials can exist between Pin 10 and the other ground pins.
- 2. Although the power supply pins (9, 22, 24) are internally bypassed to ground with 0.01μ F ceramic capacitors, additional external 0.1μ F to 1μ F tantalum bypass capacitors may be required in critical applications.
- 3. A logic "0" on the HOLD COMMAND input (Pin 11), or a logic "1" on the HOLD COMMAND input (Pin 12), will put the device in the sample mode. In this mode, the device acts as an inverting unity-gain amplifier, and its output will track its input. A logic "1" on Pin 11 (logic "0" on Pin 12) will put the device in the hold mode, and the output will be held constant at the last input level present when the hold command was given.

If the HOLD COMMAND input (Pin 11) is used to control the device, Pin 12 must be tied to digital ground. If HOLD COMMAND input (Pin 12) is used to control the device, Pin 11 must be tied to +5V.

4. The maximum capacitive load to avoid oscillation is typically 250pF. Recommended resistive load is 500Ω, although values as low as 250Ω may be used. Acquisition and sample-to-hold settling times are relatively unaffected by resistive loads down to 250Ω and capacitive loads up to 50pF. However, higher capacitances will affect both acquisition and settling time.

MECHANICAL DIMENSIONS

INCHES (mm)

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE
SHM-4860MC	0 to +70°C
SHM-4860MM	–55 to +125°C
SHM-4860/883	–55 to +125°C

Contact DATEL for 883 product specifications.

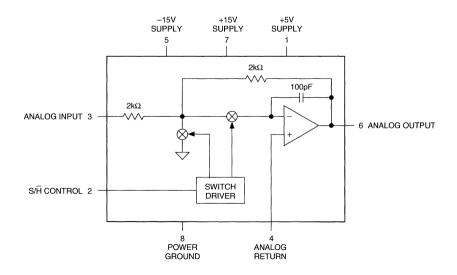
SHM-49 Miniature, High-Speed ±0.01% Sample-Hold Amplifiers

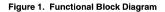
FEATURES

- Small 8-pin DIP package
- 200ns max. acquisition time to ±0.01%
- 100ns max. sample-to-hold settling time to ±0.01%
- 16MHz small signal bandwidth
- 74dB feedthrough attenuation
- ±25 picoseconds aperture uncertainty
- 415mW maximum power dissipation

GENERAL DESCRIPTION

DATEL's SHM-49 is a high-speed, highly accurate sample/hold designed for precision, high-speed analog signal processing applications. The SHM-49 features excellent dynamic specifications including a maximum acquisition time of only 200 nanoseconds for a 10V step to $\pm 0.01\%$.


Sample-to-hold settling time, to $\pm 0.01\%$ accuracy, is 100 nanoseconds maximum with an aperture uncertainty of ± 25 picoseconds.


The SHM-49 is a complete sample/hold circuit, containing a precision MOS hold capacitor and a MOSFET switching configuration which results in faster switching and better feedthrough attenuation. Additionally, a FET input amplifier design allows faster acquisition and settling times while maintaining a considerably lower droop rate.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	+5V SUPPLY
2	S/H CONTROL
3	ANALOG INPUT
4	ANALOG RETURN
5	-15V SUPPLY
6	ANALOG OUTPUT
7	+15V SUPPLY
8	POWER GROUND

3-28

ABSOLUTE MAXIMUM RATINGS

±15V Supply Voltage +5V Supply Voltage Analog Input Digital Input	±18V -0.5V to +7V ±18V -0.5V to +5.5V
Output Current	±65 mA

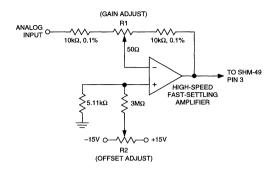
FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range with $\pm 15V$ and $\pm 5V$ supplies unless otherwise specified.)

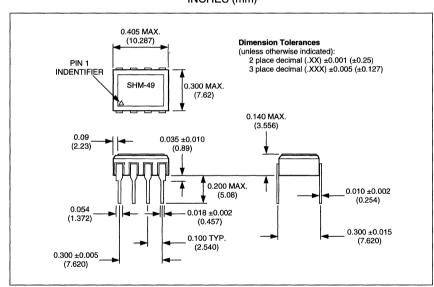
ANALOG INPUT/OUTPUT	MIN.	TYP.	MAX.	UNITS			
	witty.	116.	MAA.	01113			
Input/Output Voltage Range	10						
±15V Nominal Supplies	±10	±11.5	-	Volts			
±12V Nominal Supplies	±7	±8.5	-	Volts			
Input Impedance	1.75	2		kΩ			
Output Current	-	-	±40	mA			
Output Impedance	_	0.1		Ω			
Capacitive Load	100	250	-	pF			
DIGITAL INPUT							
Input Logic Levels							
Logic 1	+2.0	-	+5.0	Volts			
Logic 0	0	-	+0.8	Volts			
Loading							
Logic 1	-	-	+5	μA			
Logic 0	-	-	-5	μA			
TRANSFER CHARACTERISTIC	cs						
Gain	—	-1	-	V/V			
Gain Error, +25°C	-	±0.05	±0.5	%			
Linearity Error ①	-	±0.005	±0.01	%FS			
Sample Mode Offset , +25°C	-	±2	±7	mV			
Sample-to-Hold Offset							
(Pedestal), +25°C 2		±2.5	±25	mV			
Gain Drift	-	±0.5	±15	ppm/°C			
Sample Mode Offset Drift ①	-	±3	±15	ppm of			
Sample-to-Hold Off. (Pedestal) Drift	-	±5	±20	FSR/°C ppm of FSR/°C			
	Ļ			FSH/ C			
DYNAMIC CHARACTERISTICS	> 		1	1			
Acquisition Time			1				
10V to ±0.01%FS (±1 mV)							
+25 °C	-	160	200	ns			
-55 to +125 °C	-	-	265	ns			
10V to ±0.1%FS (±10 mV)		100	150				
+25 °C	-	100	150	ns			
-55 to +125 °C	-	-	215	ns			
10V to ±1%FS (±100 mV)	-	90	-	ns			
1V to ±1%FS (±10 mV)	-	75	-	ns			
Sample-to-Hold Settling Time			100				
10V to ±0.01%FS (±1 mV)	-	60	100	ns			
10V to ±0.1%FS (±10 mV)	-	40	80	ns			
Sample-to-Hold Transient	-	100		mVp-p			
Aperture Delay Time	-	10	15	ns			
Aperture Uncertainty (Jitter)		±25	±50	ps			
Output Slew Rate	±200	±300	-	V/µs			
Small Signal BW (-3dB)	10	16	-	MHz			
Output Droop			1				
+25 °C	-	±0.5	±10	μV/μs			
0 to +70 °C	-	±15	±30	μV/μs			
–55 to +125 °C	-	±1.2	±2.4	mV/µs			
Feedthrough Rejection	69	74		dB			

POWER REQUIREMENTS	MIN.	TYP.	MAX.	UNITS
Voltage Range				
+15V Supply	+11.5	+15.0	+15.5	Volts
-15V Supply	-11.5	-15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	Volts
Power Supply Rejection Ratio		±0.5	±1	mV/V
Quiescent Current Drain				
+15V Supply	-	+12	+13.5	mA
-15V Supply	-	-12	-13.5	mA
+5V Supply	-	+1	+1.5	mA
Power Consumption	-	365	415	mW
PHYSICAL/ENVIRONMENTAL	-			
Operating Temp. Range, Case				
SHM-49MC		0 to +	70 °C	
SHM-49MM		-55 to +	125 °C	
Storage Temperature Range	-65 to +150 °C			
Thermal Impedance				
Өјс	15°C/W			
Өса	35°C/W			
Package Type	8-pin ceramic DIP			

Footnotes:


① Full Scale (FS) = 10V. Full Scale Range (FSR) = 20V.

② Sample-to-hold offset error (pedestal) is constant regardless of input/output level.


TECHNICAL NOTES

- All ground pins should be tied together and connected to system analog ground as close to the package as possible. It is recommended to use a ground plane under the device and solder ground pins directly to it. Take care to ensure that no ground potentials can exist between ground pins.
- External 0.1µF to 1µF tantalum bypass capacitors are required in critical applications.
- 3. A logic 1 on S/H puts the unit in the sample mode. A logic 0 puts the unit in hold mode.
- 4. The maximum capacitive load to avoid oscillation is typically 250pF. Recommended resistive load is 500Ω , although values as low as 250Ω may be used. Acquisition and sample-to-hold settling times are relatively unaffected by resistive loads down to 250Ω and capacitive loads up to 50pF. Greater load capacitances will affect both acquisition and settling time.
- 5. Gain and offset adjusting can be accomplished using the external circuitry shown in Figure 2. Adjust offset with a 0V input. Adjust gain with a ±FS input. Adjust so that the output in the hold mode matches the input.

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

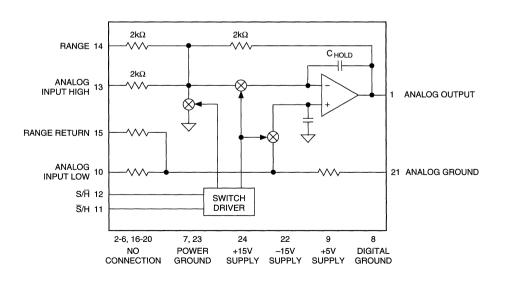
MODEL	OPERATING TEMP. RANGE
SHM-49MC	0 to +70°C
SHM-49MM	–55 to +125°C
For availability o contact DATEL.	f high-reliability versions of the SHM-49,

FEATURES

- 500ns maximum acquisition time to ±0.00076%
- Differential input
- ±0.0004% maximum linearity error
- 16-bit performance over military temperature range
- Small 24-pin DDIP package
- User-selectable gain (-0.5, -1, -2)

GENERAL DESCRIPTION

DATEL's SHM-945 is a precision, high-speed, sample-and-hold amplifier featuring a maximum acquisition time of 500 nanoseconds to $\pm 0.00076\%$ accuracy. Differential inputs are provided to reject common-mode signals found in applications requiring 16-bit accuracy. A range pin allows gain selections of -0.5, -1 and -2.


The SHM-945 contains an internal hold capacitor with internal compensation networks for pedestal error, feedthrough and dielectric absorption.

Packaged in a small, 24-pin, metal-sealed, ceramic DDIP, the SHM-945 requires \pm 15V and \pm 5V supplies and dissipates 385mW maximum. Its active state can be controlled from either positive or inverted logic.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	ANALOG OUTPUT	24	+15V SUPPLY
2	N.C.	23	POWER GROUND
3	N.C.	22	-15V SUPPLY
4	N.C.	21	ANALOG GROUND
5	N.C.	20	N.C.
6	N.C.	19	N.C.
7	POWER GROUND	18	N.C.
8	DIGITAL GROUND	17	N.C.
9	+5V SUPPLY	16	N.C.
10	ANALOG INPUT LOW	15	RANGE RETURN
11	SAMPLE/HOLD	14	RANGE
12	SAMPLE/HOLD	13	ANALOG INPUT HIGH

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS	
+15V Supply (+Vs), Pin 24	-0.5 to +18	Volts	
-15V Supply (-Vs), Pin 22	+0.5 to -18	Volts	
+5V Supply, Pin 9	-0.5 to +7	Volts	
Digital Inputs, Pins 11,12	-0.5 to +7	Volts	
Analog Input, Pin 13	-Vs to +Vs	Volts	
Lead Temperature (10 seconds)	300	°C	
Short Circuit to Ground	50	mA	

FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range with $\pm 15V$ and $\pm 5V$ supplies unless otherwise specified. Gain = -1.)

INPUTS	MIN.	TYP.	MAX.	UNITS
Voltage Range	±10	±10.5		Volts
Common Mode Voltage Range	±100	±10.5		mV
Common Mode Rejection Ratio	86			dB
Digital Inputs	00			
Logic 1 Level	+2.0	_	_	Volts
Logic 0 Level	12.0	_	+0.8	Volts
Logic 1 Loading	_	_	±1	μΑ
Logic 0 Loading	_		±1	μΑ
OUTPUT				µ" (
	. 40	10.5	[\/-H-
Voltage Range	±10	±10.5	_	Volts
Output Current	±30	±35		mA
Stable Capacitive Load	_		50	pF
Output Impedance		0.05	0.25	Ohms
PERFORMANCE				
Nonlinearity (DC ±10V)				
+25°C	—	-	±0.0004	%FS
–55 to +125°C	_	-	±0.00076	%FS
Sample Mode Offset Error				
+25°C		±0.5	±2	mV
0 to +70°C		-	±2.5	mV
-55 to +125°C	-	-	±3	mV
S/H Offset (Pedestal) Error				
+25°C	-	±2	±5	mV
0 to +70°C	-	±5	±7.5	mV
-55 to +125°C	-	±7	±10	mV
Pedestal Nonlinearity	-	-	±0.00076	%FS
Gain Cain France	-	-1	-	V/V
Gain Error			.0.00	0/
+25°C 0 to +70°C	-	_	±0.02	%
-55 to +125°C		_	±0.035	%
Harmonic Distortion (Below FS) ①	-96	_	±0.05	% dB
Acq. Time, ±0.003%FS, 10V Step	-30	-	_	uD
+25°C	_	275	350	ns
0 to +70°C			350	ns
-55 to +125°C		_	425	ns
Acq. Time, ±0.003%FS, 20V Step			120	110
+25°C		375	400	ns
0 to +70°C	_		450	ns
-55 to +125°C	_		500	ns
Acq. Time, ±0.00076%FS, 10V Step				
+25°C		400	500	ns
0 to +70°C			550	ns
-55 to +125°C		_	600	ns
Acg. Time, ±0.00076%FS, 20V Step				
+25°C	_	550	650	ns
0 to +70°C		_	700	ns
–55 to +125°C		_	750	ns
		·	·	

PERFORMANCE (Cont.)	MIN.	TYP.	MAX.	UNITS
Aperture Delay, +25°C	_	5	10	ns
-55 to +125°C	_	_	13	ns
Aperture Uncertainty, +25°C	_	10	15	ps
-55 to +125°C	_	-	30	ps
Slew Rate	±120	±150	_	V/µs
Full Power BW (±FS)	1.6	1.9	_	MHz
Small Signal BW (-3dB)	12	16	_	MHz
Hold Mode Settling, ±0.003%FS				
+25°C	-	130	150	ns
0 to +70°C	-	-	150	ns
–55 to +125°C			175	ns
Hold Mode Settling, ±0.00076%FS		ł		
+25°C	-	200	250	ns
0 to +70°C	-	-	250	ns
–55 to +125°C	-	-	300	ns
Feedthrough Rejection, 10V Step	92	100	-	dB
Droop Rate, +25°C	-	±0.5	±1	μV/μs
0 to +70°C	-	-	±50	μV/μs
–55 to +125°C	-	250	±500	μV/μs
Output Noise, Hold Mode	—	580	-	μVrms
POWER SUPPLY REQUIREM	ENTS			
Range, +15V	+14.25	+15.0	+15.75	Volts
-15V	-14.25	-15.0	-15.75	Volts
+5V	+4.75	+5.0	+5.25	Volts
Current, +15V	-	+10	+12	mA
–15V	-	-10	-12	mA
+5V	-	+0.5	+1.5	mA
Power Dissipation	-	305	385	mW
Power Supply Rejection	88	110	—	dB
PHYSICAL/ENVIRONMENTAL	L			
Operating Temp. Range				
SHM-945MC	0	-	+70	°C
SHM-945MM	-55	-	+125	°C
Storage Temp. Range	65		+150	°C
Package Type	24-pin ceramic DDIP			
Weight	0.28 ounces (8 grams)			

① DC to 1 MHz, 10Vp-p.

TECHNICAL NOTES

- 1. Bypass the \pm 15V and +5V supplies with 1µF, 25V tantalum electrolytic capacitors in parallel with a 0.01µF ceramic capacitors mounted as close to the pins as possible.
- Tie all ground pins together at a single ground point beneath the device and use a short, low-impedance run to the ground of the analog power supplies. The ground point should be a solid ground plane under the sample/hold and related A/D converter.
- 3. Differential amplifier high-resolution applications frequently require the ability to sense ground at a distant signal source. To avoid errors due to different ground potentials, use the SHM-945's Analog Input Low (pin 10) to sense the ground at the signal source. In noisy applications, using shielded twisted pair wire, with one end of the shield tied to ground at the sample/hold, is recommended. Analog Input Low and Range Return (when used) must be ≤100mV maximum with respect to Analog Ground.

- 4. For gain range selection refer to Figure 2 and Table 1.
- When using the Sample/Hold control pin (pin 11), connect pin 12 to Digital Ground. If using the Sample/Hold control pin (pin 12), tie pin 11 to +5V.
- 6. The offset, pedestal and gain errors of the SHM-945 are laser trimmed at DATEL and no external compensation capabilities have been provided. This prevents introducing noise through the offset adjust terminals of the S/H amplifier and guarantees excellent gain linearity, offset drift, and pedestal performance.

Most A/D converters provide offset and gain adjustment capabilities with a range capable of eliminating the gain and offset contributions of the SHM-945. The offset errors in the SHM-945 include the sample-mode offset error and the error incurred when going into the hold mode (pedestal error). These combined offset errors should be adjusted with the Sample-Hold being actively sampled and held to assure the pedestal error is removed.

Table 1. SHM-945 Gain Range Selection

Connect Pin 14 to:	Connect Pin 15 to:
Pin 1	Pin 21 (Ground)
Do Not Connect	Do Not Connect
Pin 13	Pin 21 (Ground)
	Pin 1 Do Not Connect

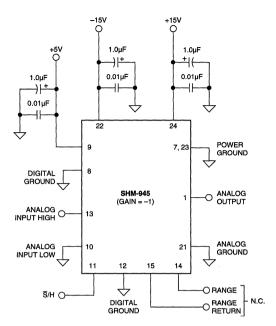
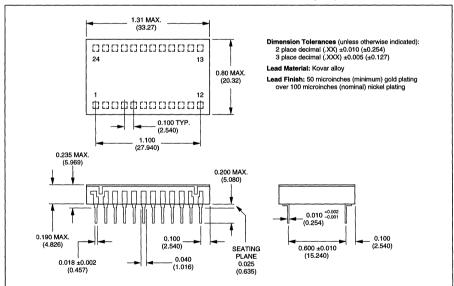
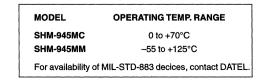




Figure 2. SHM-945 Typical Connection Diagram

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MSH-840 Quad, Simultaneous

3

Sample-Hold with Multiplexer

FEATURES

- · 4 Simultaneous sample-hold amplifiers
- Internal 4-channel multiplexer
- 775ns acquisition time 10V step to ±0.01% (including multiplexer)
- 2 Channels with optional X10 gain
- · Control logic for interfacing to A/D's
- 100MΩ minimum input impedance
- · Low power, 2.25 Watts
- · Small, 32-pin, ceramic TDIP
- –55°C to +125°C versions

GENERAL DESCRIPTION

The MSH-840 is a quad, simultaneous sample-hold featuring an acquisition time (including the internal multiplexer!) of 775 ns for a 10V step to $\pm 0.01\%$ accuracy. Control logic is provided for strobing the channels simultaneously and for interfacing to A/D's. A four-channel multiplexer allows individual S/H outputs to be selected.

The MSH-840 requires \pm 15V and \pm 5V power supplies and dissipates just 2.25 Watts. Packaged in a small, 32-pin, ceramic TDIP, both commercial 0 to \pm 70°C and military \pm 55 to \pm 125°C operating temperature range models are offered.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	DIGITAL GROUND	32	RESET
2	+5V SUPPLY	31	EOC IN
3	SSH1 IN	30	Ŝ/H IN
4	OFFSET ADJUST 1	29	CONVERT IN
5	SSH1 OUT	28	START CONVERT OUT
6	SSH2 IN	27	CA0
7	OFFSET ADJUST 2	26	CA1
8	SSH2 OUT	25	ANALOG GROUND
9	SSH3 IN	24	MUX IN1
10	OFFSET ADJUST 3	23	MUX IN2
11	GX10 CH3	22	MUX IN3
12	SSH3 OUT	21	MUX IN4
13	SSH4 IN	20	MUX OUTPUT
14	OFFSET ADJUST 4	19	-15V SUPPLY
15	GX10 CH4	18	POWER GROUND
16	SSH4 OUT	17	+15V SUPPLY

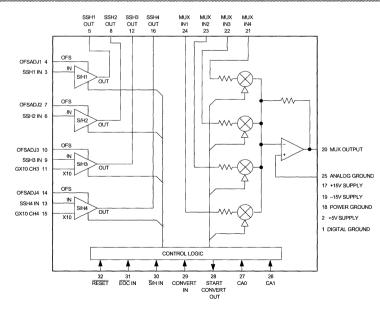


Figure 1. Functional Block Diagram

3-34

ABSOLUTE MAXIMUM RATINGS

PARAMETER	LIMITS	UNITS
+15V Supply, Pin 17	0 to +18	Volts
-15V Supply, Pin 19	0 to -18	Volts
+5V Supply, Pin 2	-0.5 to +7.0	Volts
Digital Inputs, Pins 26-27, 29-32	-0.3 to +5.5	Volts
Analog Inputs, Pins 3, 4,		
6, 7, 9, 10, 13, 14	-Vcc to +Vcc	Volts
Lead Temperature (10 seconds)	300	l °C
Output Short Circuit To Ground	50	mA

FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range and at ±15V and +5V unless specified.)

INPUTS	MIN.	TYP.	MAX.	UNITS
Input Type		Single-Ended	1	
Input Voltage Ranges	_	±10V		Volts
Input Impedance	100	_		MΩ
Digital Inputs				
Logic Levels				
Logic 1	+2.0	-		Volts
Logic 0	-		+0.8	Volts
Logic Loading				
Logic 1	_	-	+1.0	μA
Logic 0 CONVERT IN Minimum	_	_	-1.0	μA
Pulse Width				
+25°C	20			ns
0 to +70°C	25	_	_	ns
-55 to +125°C	40	_		ns
OUTPUTS				
Output Range	±10	-	-	Volts
Output Current	_	-	±20	mA
Stable Capacitive Load	100	- 1	-	pF
Output Impedance	-	0.003	-	Ω
START CONVERT OUT				
Pulse Width	40	50	60	ns
CONVERT IN to				
START CONVERT OUT delay				
+25°C 0 to +70°C	_	-	60 75	ns
-55 to +125°C			90	ns ns
	l	L		113
PERFORMANCE			r	
Nonlinearity (5)	-	±0.005	±0.01	%FS
Nonlinearity TC	-	-	±1	4
Sample Mode Offset Error				
(Gain =1)		±2	±15	mV
Sample Mode Offset Error (Gain =10)		±20	±150	mV
Sample Mode Offset Tempco	_	±20 ±2	±150 ±4	(ffiv) (4)
Offset Adjustment Range	±0.5			%FS
S/H Offset (Pedestal) Error	20.0			
(Over Full Input)		-	±10	mV
Gain	-	+1		V/V
Gain Tempco				
(+ tempco of gain pot. or resistor)	-	±2	±5	ppm/°C
Gain Adjustment Range	±1	-	-	%
Gain Error				
(Externally Adjustable to Zero)				
25Ω gain resistor	-	-	±0.3	%
50Ω gain resistor	-	-	±0.3	%
No gain resistor (shorted)	-	-	±0.3	%
Harmonic Distortion (dc to 500kHz, 20Vp-p)	-69	-70		dB
(uc to 500kHz, 20VP-P)	-09	-/0		

			r	,
PERFORMANCE (Cont.)	MIN.	TYP.	MAX.	UNITS
Acquisition Time ①				
±0.1%FS, 20V Step		800	850	ns
±0.01%FS, 10V Step 2		775	900	ns
±0.01%FS, 20V Step		1.2	1.4	μs
±0.003%FS, 20V Step		1.5	2.0	μs
Aperture Delay		15	60	ns
Aperture Uncertainty		15	50	psec
Slew Rate	±45		_	V/µs
Full Power BW	300	500		kHz
Small Signal BW (-3dB)	8	13	_	MHz
Hold Mode Settling Time	-			
To ±10mV		_	100	ns
To ±1mV	_	_	200	ns
To ±0.3mV		_	300	ns
Feedthrough Rejection				
(20V Step)	-	-74	-70	dB
Hold Mode Crosstalk 3		-74	70	dB
Droop Rate				
+25°C	_		±1.5	μV/μs
0 to +70°C		_	±25	μV/μs
–55 to +125°C	-	_	±3	mV/µs
Output Noise, Hold Mode	-	-	600	μVrms
POWER REQUIREMENTS				
Ranges				
+15V Supply	+14.25	+15	+15.75	Volts
-15V Supply	-14.25	-15	-15.75	Volts
+5V Supply	+4.5	+5	+5.25	Volts
Currents				
+15.75V Supply		+75	+90	mA
-15.75V Supply	-	-75	-90	mA
+5V Supply	_	_	+1.0	mA
Power Dissipation		2.25	2.75	Watts
Power Supply Rejection		-	±0.006	%FSR/%V
PHYSICAL/ENVIRONMENTA	L			
Operating Temp. Range, Case				
MSH-840MC	0	_	+70	°C
MSH-840MC MSH-840MM	-55		+125	°C
Storage Temp. Range	-55		+125	°C ℃
Storage remp. nange	-05	_	+150	
Package Type	32-n	in, metal-sea	aled, ceramic	DIP
Weight	~~ P	0.5 ounces		
	l			

Footnotes:

① Includes multiplexer.

② +25°C

③ 500kHz

④ Units are ppm of FS/°C.

⑤ FS = full scale = 10V.

TECHNICAL NOTES

- Avoid ground related problems by connecting the analog, power and digital grounds to one point, the ground plane beneath the MSH-840. The analog, power and digital grounds are not connected to each other internally.
- 2. Bypass the analog and digital supplies to ground with a 2.2μ F, 25V tantalum electrolytic capacitor in parallel with a 0.1μ F ceramic capacitor.
- Offset adjustments are provided by connecting the offset adjust pins (OFSADJ1-4) to the wipers of 20kΩ trimpots connected between the ±15 Volt power supplies. For operation without offset adjustments, connect these pins to ground.

DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For immediate assistance 800-233-2765

- 4. Gain adjustments are made by connecting 50Ω trimpots between each SSH OUT pin and its respective MUX IN pin. See the typical connection diagram in Figure 4. For the most accurate operation without adjustment, use a 25Ω fixed resistor instead of a trimpot. A short between the respective SSH OUT and MUX IN pins can also be used for operation without adjustment, but with increased gain error.
- 5. A gain of 10 is possible on channels 3 and 4 by grounding pins GX10 CH3 (pin 11) or GX10 CH4 (pin 15) respectively. Do not connect GX10 CH3/CH4 for gain = 1 operation.

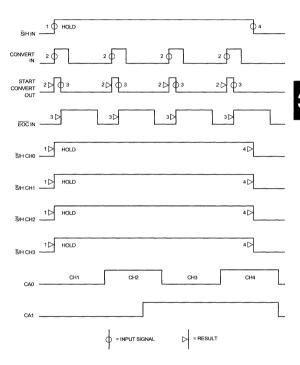
Scan Mode (Simultaneous Sample-Hold)

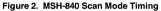
The MSH-840's scan mode allows sampling up to four channels at the same time. There are two ways to put the MSH-840 into a sampling mode:

1. Toggling the RESET line (pin 32) low and then high again, upon power-up for instance, puts the four sample-holds into the sampling mode.

2. The four sample-holds can also be put into the sampling mode by using the \overline{S} /H IN control line (pin 30). Using pin 30 is preferred over toggling the RESET line because pin 30 can also put the MSH-840 into the hold mode.

After waiting for the appropriate acquisition time, all four sample-holds can be simultaneously put into the hold mode by bringing the \overline{S}/H IN pin to a high state.


External A/D conversions can begin after waiting for the appropriate hold mode settling time. The rising edge of a signal on CONVERT IN (pin 29) generates a 50ns start convert pulse on the START CONVERT OUT line (pin 28). An external A/D converter requiring 50ns start convert pulses could use these pulses to begin conversions.


Refer to Table 1 to see how channel address selectors CA0 and CA1 (pins 27, 26) select the particular channel to be digitized by the A/D converter. $\overrightarrow{\text{EOC}}$ IN serves no function in this simultaneous scan mode and should be tied to ground.

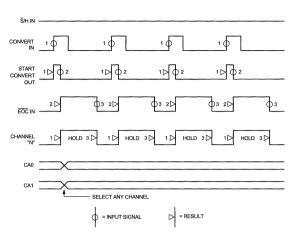
RESET L	=	Resets all sample-holds to the sample mode (\overline{S}/H must be low during the negative transition of RESET)
S/H IN	=	Sets all sample-holds to hold mode
	=	Sets all sample-holds to sample mode
CONVERT	=	Internally generates a start convert pulse for use with an external A/D converter
EOC IN	=	No function during scan (while \widetilde{S}/H is high)
START		
CONVERT OUT	=	A 50 nanosecond positive pulse generated by CONVERT IN
CA0 and CA1	=	A two-bit binary word to select one of the four multiplexer channels

Table 1. Output Channel Selection

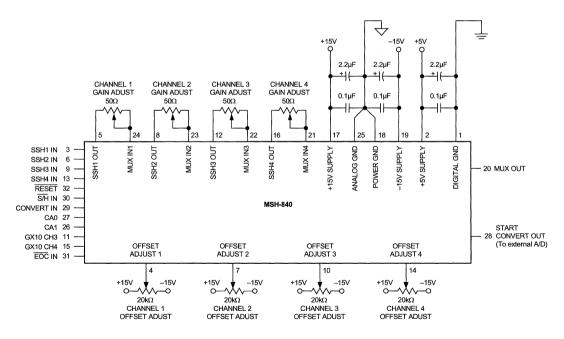
	CA1	CA0	
Channel 1	0	0	
Channel 2	0	1	
Channel 3	1	0	
Channel 4	1	1	

Random Single Channel Mode

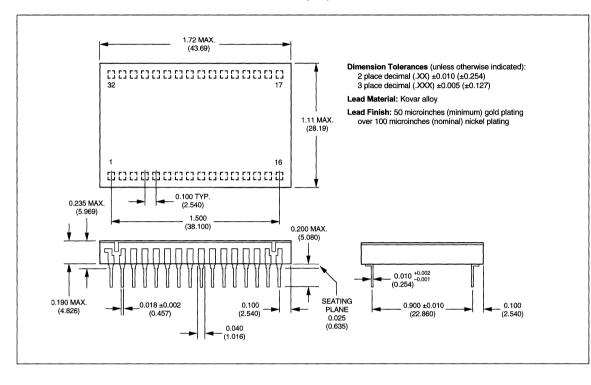
The MSH-840's single channel mode can randomly select a particular channel(s) for digitization by an external A/D converter. Once again, the RESET function can set all sample-holds to the sample mode on initial power-up. Channels are selected using the CA0 and CA1 channel address pins. The S/H IN pin serves no function in this mode and should be tied to ground.


A high-to-low falling edge on $\overrightarrow{\text{EOC}}$ IN (pin 31) puts the particular channel chosen into the sample mode. After the initial falling edge on $\overrightarrow{\text{EOC}}$ IN, this signal could be derived from the A/D converter's $\overrightarrow{\text{EOC}}$ or status pin, which would indicate completion of the previous conversion. The sample-hold could then be put back into the sample mode.

A low-to-high rising edge on the CONVERT IN pin puts the selected channel into the hold mode. After putting the sample-hold into hold, this same edge generates a 50 ns wide start convert signal on START CONVERT OUT (pin 28). An external A/D converter requiring 50ns start convert pulses could use these pulses to begin conversions.


MSH-840

RESET L	=	Resets all sample-holds to the sample mode (\overline{S}/H) must be low during the negative transition of RESET)
S/H IN	=	Tie to ground
CONVERT IN	=	Sets the channel selected by CA0 and CA1 to hold and internally generates a start convert pulse for use with an external A/D converter
	=	Sets the selected sample-hold to the sample mode
START CONVERT OUT	=	A 50 nanosecond positive pulse generated by CONVERT IN
CA0 and CA1	=	A two-bit binary word to select one of the four multiplexer channels



MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL

MSH-840MC MSH-840MM

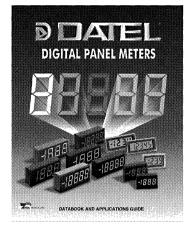
TEMPERATURE RANGE

0 to +70°C –55 to +125°C

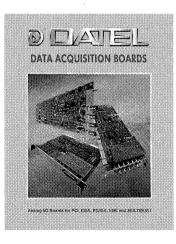
ACCESSORIES

Receptacle for PC board mounting is available from AMP, Inc. Part Number 3-331272-8 (Component Lead Socket), 32 required.

For availability of a MIL-STD-883 version, contact DATEL.


Other DATEL Literature

Modular DC/DC Converters



NEW 152-page, full-color catalog! Data sheets and applications for high-quality, low-cost, modular DC/DC Converters: 3-50W, single/dual/triple outputs, wide-range inputs (4.6-13.2V, 9-36V, 18-72V), isolated and non-isolated, many 3.3V devices. New Products: 5W in 1" x 1"; 40W/12A, non-isolated, 5V-to-3.3V; 20W triples in 2" x 2"; 30W triples. 50 pages on theory, testing and applications. Quality assurance, custom capabilities and EMI/EMC facilities described. Digital Panel Voltmeters & Instruments

NEW 100-page, full-color catalog! Selection guides, performance specs and a full set of application notes for 200 3 1/2 and 4 1/2 digit, low-cost, miniature, panel or board-mount DPM's. 12-pin DIP packages. LED/LCD displays. LCD meters operate from +5V or 9V batteries. 7 LED colors. New, lowpower LED meters compete with LCD's. Ap notes for ammeters, tachometers, battery monitors, 4-20mA, etc. Includes "plug-in" ac meters, "plug-on" application boards, self-powered instruments and smart displays.

Computer Analog I/O Boards

NEW 216-page catalog! Data sheets, applications and sample software for industry's leading line of high-speed analog I/O boards for PCI, EISA, PC/ISA, VME and Multibus. Streaming data acquisition with FIFO's, RAM's, COMM ports and DSP's. 1-256 input channels. 12/14/16-bit A/D's to 10MHz. Simultaneous sampling with 2-16 A/D's. Arbitrary waveform generators (2-16 channels). Programmable power supplies. Power-supply test cards. Windows and LabVIEW® bridge software.

Application Notes

DATEL publishes a set of 8 application notes for data acquisition applications as listed below. Our DC/DC Converter and Panel Meter catalogs also include extensive applications sections.

- AN-1 High-Speed A/D Converter Designs: Layout and Interfacing Pitfalls
- AN-2 Picking the Right S/H Amp for Various Data Acquisition Needs
- AN-3 Data Converters: Getting to Know Dynamic Specs
- AN-4 Understanding Data Converter Frequency Domain Specifications
- AN-5 Subranging ADC's: Architectures, Specifications and Testing
- AN-6 Seeing is Believing: A/D Converters Make the Difference in Imaging Applications
- AN-7 Modifying Start Convert Pulses Using Commercially Available Devices
- AN-8 Heat Sinks for DIP Data Converters

For literature or technical assistance 800-233-2765

or contact your local DATEL Sales Office or Representative

Correlated Double Sampling (CDS) Circuits

DATEL's new CDS-1401 (±10V input, 1.25MHz pixel rate in a 14-bit system) and CDS-1402 (±2.5V input, 5MHz pixel rate in a 14-bit system) are complete, single-channel, CDS circuits that implement the critical analog-signal-processing function at the output of CCD's (charge coupled devices) in electronic-imaging applications. Each is a reasonably priced, extremely versatile device that exploits a new "sample-subtract-sample" architecture optimized for both speed (throughput) and dynamic range (signal-to-noise ratio).

DATEL is extremely adept at developing high-speed, wide-dynamic-range sampling and A/D-conversion functions for electronic-imaging applications. Our MCM (multi-chip-module) technology enables us to combine different components, fabricated using different semiconductor process technologies, into a single-package function that exploits the best capabilities of each technology.

We recognize that no two imaging systems are the same and welcome the opportunity, for OEM applications, to tailor an application-specific solution that gives your system the cost/performance advantage it needs to beat your competition. Please contact our applications engineering group to discuss your requirements.

A summary listing of DATEL's high-performance Sampling A/D Converters appears on the following page.

Table of Contents

Selection Guide	Correlated Double Sampling Circuits	4-1
Selection Guide	Sampling Analog-to-Digital Converters	4-2
CDS-1401	14-Bit, Fast-Settling Correlated Double Sampling Circuit	4-3
CDS-1402	14-Bit, Faster-Settling Correlated Double Sampling Circuit	4-11

Selection Guide

Model	Minimum Guaranteed Pixel Rate (MHz) ①	Full Scale Input Range (Volts)	Broadband Noise (µVrms)	Dynamic Range (dB)	Signal Acquisition Time (nsec)	Power Supplies (Volts)	Power Dissipation (mW)	Page
CDS-1401	1.25	±10	200	91	250 ②	±15, +5	700	4-3
CDS-1402	5	±2.5	200	79	65 3	±5	350	4-11

① When used in a 14-bit application. Higher throughputs obtainable at lower resolutions.

② 5V step acquired to ±1mV accuracy.

③ 2V step acquired to ±1mV accuracy.

Selection Guides

Sampling Analog-to-Digital Converters

10-Bit and 12-Bit Resolution ①

Model @	Sampling Rate (MHz)	Input Range(s) (Volts)	DNL (LSB)	No Missing Codes ③	SNR (dB)	THD (dB)	Power Supplies (Volts)	Power Dissipation (Watts)	Package	MIL-STD-883 Screening	Page
ADS-325A	20	+2 to +4	±0.5	Yes	54	65	+5	0.15	48-Pin VQFP	No	1-31
ADS-112	1	±5, 0 to +10	±0.5	Yes	72	78	±15, +5	1.3	24-Pin DDIP	Yes	1-3
ADS-CCD1201@	1.2	0 to +10	±0.25	Yes	73	84	±15, +5	1.7	24-Pin DDIP	No	1-167
ADS-117	2	±5, 0 to +10	±0.5	Yes	70	73	±15, +5	1.6	24-Pin DDIP	Yes	1-9
ADS-CCD1202@	2	0 to +10	±0.25	Yes	71	78	±15, +5	1.7	24-Pin DDIP	No	1-175
ADS-118	5	±1	±0.5	Yes	69	71	±5	1.3	24-Pin DDIP	No	1-15
ADS-118A	5	±1.25	±0.5	Yes	69	71	±5	1.3	24-Pin DDIP	No	1-15
ADS-119	10	±1.5	±0.5	Yes	69	68	±5	1.8	24-Pin DDIP	Yes	1-23

Listed specifications are typical at $T_A = +25^{\circ}C$, with nominal supplies, unless otherwise indicated.

The ADS-325A has 10-bit resolution. All other devices in this table are 12-bit converters.

② DATEL offers MC (0 to +70°C) and MM (-55 to +125°C) versions of each model.
③ Guaranteed over the full military temperature range (-55 to +125°C).

The ADS-CCD1201/2 have been optimized for electronic-imaging applications. They are pin-compatible and operate from either ±12V or ±15V supplies.

14-Bit Resolution

Model ①	Sampling Rate (MHz)	Input Range(s) (Volts)	DNL (LSB)	No Missing Codes ②	SNR (dB)	THD (-dB)	Power Supplies (Volts)	Power Dissipation (Watts)	Package	MIL-STD-883 Screening	Page
ADS-916 3	0.5	0 to +10	±0.5	Yes	80	82	±15, +5	1.6	24-Pin DDIP	No	1-39
ADS-926 3	0.5	±5	±0.5	Yes	80	87	±15, +5	1.6	24-Pin DDIP	Yes	1-63
ADS-917 3	1	0 to +10	±0.5	Yes	78	80	±15, +5	1.7	24-Pin DDIP	No	1-47
ADS-927 3	1	±5	±0.5	Yes	78	80	±15, +5	1.7	24-Pin DDIP	Yes	1-71
ADS-941	1	±5, 0 to +10	±0.5	Yes	78	83	±15, +5	2.8	32-Pin TDIP	No	1-117
ADS-919 3	2	0 to +10	±0.5	Yes	77	76	±15, +5	1.7	24-Pin DDIP	No	1-55
ADS-929 3	2	±5	±0.5	Yes	77	79	±15, +5	1.7	24-Pin DDIP	Yes	1-79
ADS-942	2	±5, 0 to +10	±0.5	Yes	75	80	±15, +5	2.9	32-Pin TDIP	No	1-123
ADS-942A	2	±5, 0 to +10	±0.5	Yes	75	80	±15, ±5	2.2	32-Pin TDIP	No	1-129
ADS-943	3	±2	±0.5	Yes	79	78	±5	1.8	24-Pin DDIP	Yes ④	1-135
ADS-944	5	±1.25	±0.5	Yes	76	77	±15, +5, -5.2	2.95	32-Pin TDIP	Yes	1-143
ADS-946	8	±2	±0.5	Yes	76	76	±5	1.9	24-Pin DDIP	Yes ④	1-159
ADS-945	10	±1.25	±0.5	Yes	78	80	±15, +5, -5.2	4.2	Custom DIP	No	1-151

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

DATEL offers MC (0 to +70°C) and MM (-55 to +125°C) versions of each model.
 Guaranteed over the full military temperature range (-55 to +125°C).
 ADS-916, 917, 919, 926, 927 and 929 are all pin-compatible and operate from either ±12V or ±15V supplies.
 Available Q4-96.

16-Bit Resolution

Model ①	Sampling Rate (MHz)	Input Range(s) (Volts)	DNL (LSB)	No Missing Codes ②	SNR (dB)	THD (dB)	Power Supplies (Volts)	Power Dissipation (Watts)	Package	MIL-STD-883 Screening	Page
ADS-930	0.5	±5, 0 to -10	±0.5	Yes	83	89	±15, +5	3.5	40-Pin TDIP	No	1-87
ADS-931	1	±2.75	±0.5	Yes	87	89	±5	1.85	40-Pin TDIP	No	1-95
ADS-937	1	±5, 0 to -10	±0.5	Yes	84	85	±15, ±5	1.1	32-Pin TDIP	No	1-111
ADS-932	2	±2.75	±0.5	Yes	86	88	±5	1.85	40-Pin TDIP	No	1-103

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated. ① DATEL offers MC (0 to +70°C) and MM (-55 to +125°C) versions of each model. ② Guaranteed over the full military temperature range (-55 to +125°C).

CDS-1401

14-Bit, Fast-Settling Correlated Double Sampling Circuit

FEATURES

- Use with 10 to 14-bit A/D converters
- 1.25 Megapixels/second minimum throughput (14 bits)
- ±10V input/output ranges, Gain = −1
- Low noise, 200µVrms
- Two independent S/H amplifiers
- Gain matching between S/H's
- Offset adjustments for each S/H
- Four external A/D control lines
- Small package, 24-pin ceramic DDIP
- Low power, 700mW
- Low cost

GENERAL DESCRIPTION

The CDS-1401 is an application-specific, correlated double sampling (CDS) circuit designed for electronic-imaging applications that employ CCD's (charge coupled devices) as their photodetector. The CDS-1401 has been optimized for use in digital video applications that employ 10 to 14-bit A/D converters. The low-noise CDS-1401 can accurately determine each pixel's true video signal level by sequentially sampling the pixel's offset signal and its video signal and subtracting the two. The result is that the consequences of residual charge, charge injection and low-frequency "kTC" noise on the CCD's output floating capacitor are effectively eliminated. The CDS-1401 can also be used as a dual sample-hold amplifier in a data acquisition system.

The CDS-1401 contains two sample-hold amplifiers and appropriate support/control circuitry. Features include independent offset-adjust capability for each S/H, adjustment for matching gain between the two S/H's, and four control

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	OFFSET ADJUST V1	24	+15V ANALOG SUPPLY
2	OFFSET ADJUST I1	23	ANALOG GROUND
3	ANALOG INPUT 1	22	V OUT
4	ANALOG INPUT 2	21	ANALOG GROUND
5	ANALOG GROUND	20	A/D CLOCK2
6	S/H1 OUT	19	A/D CLOCK2
7	S/H1 ROUT	18	A/D CLOCK1
8	S/H2 SUMMING NODE	17	A/D CLOCK1
9	OFFSET ADJUST V2	16	+5V DIGITAL SUPPLY
10	OFFSET ADJUST 12	15	DIGITAL GROUND
11	S/H1 COMMAND	14	ANALOG GROUND
12	S/H2 COMMAND	13	-15V ANALOG SUPPLY

lines for triggering the A/D converter used in conjunction with the CDS-1401. The CDS circuit's "ping-pong" timing approach (the offset signal of the "n+1" pixel can be acquired while the video output of the "nth" pixel is being converted) guarantees a minimum throughput, in a 14-bit application, of 1.25MHz. In other words, the true video signal (minus offset) will be available (continued on page 4-5)

100kΩ 1kΩ OFFSET ADJUST V1 100Ω OFFSET ADJUST I1 2 7 S/H1 ROUT -11 CH = 100pF 1kΩ ANALOG INPUT 1 3 6 S/H1 OUT S/H OPTIONAL 100kO 9000 OFFSET ADJUST V2 9 8 S/H2 1kO SUMMING NODE OFFSET ADJUST I2 10 1kO CH = 100pF ANALOG INPUT 2 4 22 V OUT S/H Ĺί S/H1 COMMAND 11 18 A/D CLOCK 1 17 A/D CLOCK 1 19 A/D CLOCK 2 S/H2 COMMAND 12 20 A/D CLOCK 2 5, 14, 21, 23 24 13 15 16 ANALOG GROUND +15V SUPPLY - 15V SUPPLY +5V DIGITAL DIGITAL SUPPLY GROUND

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS		
+15V Supply (Pin 24)	0 to +16	Volts		
-15V Supply (Pin 13)	0 to -16	Volts		
+5V Supply (Pin 16)	0 to +6	Volts		
Digital Inputs (Pins 11, 12)	-0.3 to +VDD +0.3	Volts		
Analog Inputs (Pins 3, 4)	±12	Volts		
Lead Temp. (10 seconds)	300	°C		
Lead Temp. (To seconds)	000	0		

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS			
Operating Temp. Range, Case							
CDS-1401MC	0		+70	°C			
CDS-1401MM	-55		+125	°C			
Thermal Impedance							
θjc	_	5	-	°C/W			
Өса		22	-	°C/W			
Storage Temperature Range	-65	-	+150	°C			
Package Type Weight	24-pin, metal-sealed, ceramic DDIP 0.42 ounces(12 grams)						

FUNCTIONAL SPECIFICATIONS

 $(T_A = +25^{\circ}C, \pm V_{CC} = \pm 15V, +V_{DD} = +5V, pixel rate = 1.25MHz, and a minimum warmup time of two minutes unless otherwise noted.)$

	1.	+25°C			0 to +70°C	;	-5	55 to +125	°C	
ANALOG INPUTS ①	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range Input Resistance Input Capacitance	±10 	1000 7	 15	±10 — —	 1000 7		±10 	1000 7	 15	Volts Ohms pF
DIGITAL INPUTS	-	1	l		L	la		I		J
Logic Levels Logic "1" Logic "0" Logic Loading "1" Logic Loading "0"	+2 		 +0.8 +10 -10	+2 	-	+0.8 +10 -10	+2 		 +0.8 +10 -10	Volts Volts μΑ μΑ
PERFORMANCE										
Sample Mode Offset Error - S/H1 Gain Error - S/H1 Pedestal - S/H1 Sample Mode Offset Error - S/H2 Gain Error - S/H2 Pedestal - S/H2 Sample Mode Offset Error - CDS Differential Gain Error - CDS Pedestal - CDS Pixel Rate (14-bit settling) Input Bandwidth, ±5V Small Signal (-20dB input) Large Signal (-0.5dB input) Slew Rate Aperture Uncertainty S/H Acquisition Time (to ±0.003%, 10V step) Hold Mode Settling Time (to ±0.15mV) Noise Feedthrough Rejection Overvoltage Recovery Time S/H Saturation Voltage Droop Rate		±1 ±0.2 ±15 ±1 ±0.2 ±15 ±1 ±0.25 ±15 7 5 ±80 10 5 340 TBD 200 72 4000 ±12.5 ±0.004	±10 ±1 ±35 ±10 ±1 ±35 ±10 ±1 ±35 400 ±0.02		+2 +0.25 +15 +2 +0.25 +15 +2 +0.25 +15 +2 +0.25 +15 -7 5 +20 7 5 +80 10 5 350 72 350 72 4000 +12.5 +0.4	±10 ±1 ±35 ±10 ±1 ±35 ±10 ±1 ±35 		±4 ±0.3 ±15 ±4 ±0.3 ±15 ±15 ±7 7 5 ±80 10 5 350 TBD 200 72 400 ±12.5 ±0.8	±10 ±1.5 ±35 ±10 ±1.5 ±35 ±10 ±1.5 ±35 400 ±4	mV % mV % WV MV MHz V/µs ns ps rms ns µVrms dB ns votts mV/µs
ANALOG OUTPUTS 3										_
Output Voltage Range Output Impedance Output Current	±10 — —	 0.5 	 ±20	±10 — —	 0.5 	 ±20	±10 — —	 0.5 	 ±20	Volts Ohms mA
DIGITAL OUTPUTS										
Logic Levels Logic "1" Logic "0" Logic Loading "1" Logic Loading "0"	+3.9 			+3.9 — — —	 		+3.9 — — —			Volts Volts mA mA

① Pins 3 and 4. ② See Figure 4 for relationship between input voltage, accuracy, and acquisition time. ③ Pins 6 and 22.

POWER REQUIREMENTS	+25°C			0 to +70°C			–55 to +125°C			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Power Supply Ranges										
+15V Supply	+14.75	+15.0	+15.25	+14.75	+15.0	+15.25	+14.75	+15.0	+15.25	Volts
-15V Supply	-14.75	-15.0	~15.25	-14.75	-15.0	-15.25	-14.75	-15.0	-15.25	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Currents			1	}		}				
+15V Supply	- 1	+23	+27)	+23	+27		+23	+27	mA
-15V Supply		-23	-27	-	-23	-27	-	-23	-27	mA
+5V Supply		+1	+2		+1	+2		+1	+2	mA
Power Dissipation	-	700	850	-	700	850	-	700	850	mW
Power Supply Rejection	-	100	- 1		100	- 1	_	100	- 1	dB

GENERAL DESCRIPTION (continued)

at the output of the CDS-1401 every 800ns. This correlates with the fact that an acquisition time of 400ns is required for each internal S/H amplifier (10V step setting to ±0.003%). The input and output of the CDS-1401 can swing up to ± 10 Volts.

The functionally complete CDS-1401 is packaged in a single. 24-pin, ceramic DDIP. It operates from ±15V and +5V supplies and consumes 700mW. Though the CDS-1401's approach to CDS appears straightforward (see Description of Operation), the circuit actually exploits an elegant architecture whose tradeoffs enable it to offer wide-bandwidth, low-noise and highthroughput combinations unachievable until now. The CDS-1401 is a generic type of circuit that can be used with almost any 10 to 14-bit A/D converter. However, DATEL does offer A/D converters that are optimized for use with the CDS-1401.

TECHNICAL NOTES

- 1. To achieve specified performance, all power supply pins should be bypassed with 2.2µF tantalum capacitors in parallel with 0.1µF ceramic capacitors. All ANALOG GROUND (pins 5, 14, 21 and 23) and DIGITAL GROUND (pin 15) pins should be tied to a large analog ground plane beneath the package.
- 2. In the CDS configuration, to avoid saturation of the S/H amplifiers, the maximum analog inputs and conditions are as follows:

ANALOG INPUT 1 < ±12V (ANALOG INPUT 1 - ANALOG INPUT 2) < ±12V

- 3. The combined video and reference/offset signal from the CCD array must be applied to S/H2, while the reference/ offset signal is applied to S/H1.
- 4. To use as a CDS circuit, tie pin 8 (S/H2 SUMMING NODE) to either pin 6 (S/H1 OUT), through a 200 Ohm potentiometer, or directly to pin 7 (S/H1 ROUT). In both cases, the CCD's output is tied to pins 3 (ANALOG INPUT 1) and 4 (ANALOG INPUT 2). As shown in Figure 5, the 200Ω potentiometer is for gain matching.
- 5. To use as a dual S/H, leave pin 7 (S/H1 ROUT) and pin 8 (S/H2 SUMMING NODE) floating. Pin 6 (S/H1 OUT) will be the output of S/H1 and pin 22 (V OUT) will be the output of S/H2.
- 6. See Figure 4 for acquisition time versus accuracy and input voltage step amplitude.

FUNCTIONAL DESCRIPTION

Correlated Double Sampling

All photodetector elements (photodiodes, photomultiplier tubes, focal plane arrays, charge coupled devices, etc.) have unique output characteristics that call for specific analog-signalprocessing (ASP) functions at their outputs. Charge coupled devices (CCD's), in particular, display a number of unique characteristics. Among them is the fact that the "offset error" associated with each individual pixel (i.e., the apparent photonic content of that pixel after having had no light incident upon it) changes each and every time that particular pixel is accessed.

Most of us think of an offset as a constant parameter that either can be compensated for (by performing an offset adjustment) or can be measured, recorded, and subtracted from subsequent readings to yield more accurate data. Contending with an offset that varies from reading to reading requires measuring and recording (or capturing and storing) the offset each and every time, so it can be subtracted from each subsequent data reading.

The "double sampling" aspect of CDS refers to the operation of sampling and storing/recording a given pixel's offset and then sampling the same pixel's output an instant later (with both the offset and the video signal present) and subsequently subtracting the two values to yield what is referred to as the "valid video" output for that pixel.

The "correlated" in CDS refers to the fact that the two samples must be taken close together in time because the offset is constantly varying. Reasons for this phenomena are discussed below.

At the output of all CCD's, transported pixel charge (electrons) is converted to a voltage by depositing the charge onto a capacitor (usually called the output or "floating" capacitor). The voltage that develops across this capacitor is obviously proportional to the amount of deposited charge (i.e., the number of electrons) according to $\Delta V = \Delta Q/C$. Once settled, the resulting capacitor voltage is buffered and brought to the CCD's output pin as a signal whose amplitude is proportional to the total number of photons incident upon the relevant pixel.

After the output signal has been recorded, the floating capacitor is discharged ("reset", "clamped", "dumped") and made ready to accept charge from the next pixel. This is when the problems begin. (This is a somewhat oversimplified

explanation in that the floating capacitor is not usually "discharged" but, in fact, "recharged" to some predetermined dc voltage, usually called the "reference level". The pixel offset appears as an output deviation from that reference level.)

The floating capacitor is normally discharged (charged) via a shunt switch (typically a FET structure) that has a non-zero "on" resistance. When the switch is on, its effective series resistance exhibits thermal noise (Johnson noise) due to the random motion of thermally energized charge. Because the shunt switch is in parallel with the floating capacitor, the instantaneous value of the thermal noise (expressed in either Volts or electrons) appears across the cap. When the shunt switch is opened, charge/voltage is left on the floating cap.

The magnitude of this "captured noise voltage" is a function of absolute temperature (T), the value of the floating capacitor (C) and Boltzman's constant (k). It is commonly referred to as "kTC" noise.

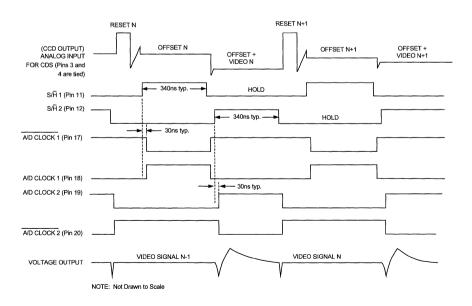
The second contributor to the constantly varying pixel offsets is the fact that, at high pixel rates, the floating capacitor never has time to fully discharge (charge) during the period in which its shunt switch is closed. There is always some "residual" charge left on the cap, and the amount of this charge varies as a function of what was the total charge held during the previous pixel. This amount of residual charge is, in fact, deterministic (if you know the previous charge and the number of time constants in the discharge period), however, it is less of a contributor than kTC noise.

The third major contributor to pixel offset is the fact that as the shunt FET is turned off, the voltage across (and the charge

stored on) its parasitic junction capacitances changes. The result is an "injection" of excess charge onto the floating cap causing a voltage step normally called a "pedestal".

The fourth major contributor to pixel offset is a low-frequency noise component (usually called 1/f noise or pink noise) associated with the CCD's output buffer amplifier.

Due to all of these contributing factors, "pixel offsets" vary from sample to sample in an inconsistent, unpredictable manner.


Traditional Approach to CDS

There are a number of techniques for dealing with the varyingoffset idiosyncrasy of CCD's. The most prevalent has been what can be called the "sample-subtract" technique. This approach requires the use of two high-speed sample-hold (S/H) amplifiers and a difference amplifier. The first S/H is used to acquire and hold a given pixel's offset. Immediately after that, the second S/H acquires and holds the same pixel's offset+video signal. After both the S/H outputs have fully settled, the difference amplifier subtracts the offset from the offset+video yielding the valid video signal.

CDS-1401 Approach (See Figure 1)

The DATEL CDS-1401 takes a slightly different, though clearly superior, approach to CDS. It can be called the "samplesubtract-sample" approach.

Note that the CDS-1401 has been configured to offer the greatest amount of user flexibility. Its two S/H circuits function independently. They have separate input and output pins. Each has its own independent control lines. The control-line signals are delayed, buffered, and brought back out of the

Figure 2. CDS-1401 Typical Timing Diagram

package so they can be used to control other circuit functions. Each S/H has two pins for offset adjusting (if required), one for current and one for voltage.

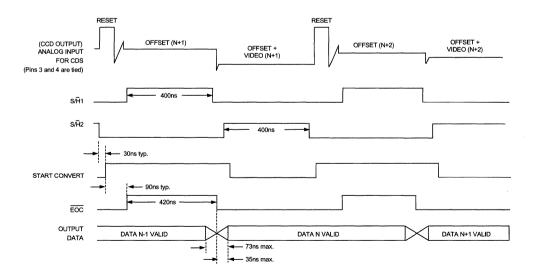
In normal operation, the output signal of the CCD is applied simultaneously to the inputs (pins 3 and 4) of both S/H amplifiers. S/H1 will normally be used to capture and hold each pixel's offset signal. Therefore, S/H1 is initially in its signal-acquisition mode (logic "1" applied to pin 11, S/H1 COMMAND). This is also called the sample or track mode. Following a brief interval during which the output of the CCD and the output of S/H1 are allowed to settle, S/H1 is driven into its hold mode by applying a logic "0" to pin 11. S/H1 is now holding the pixel's offset value.

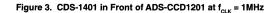
In most straightforward configurations, the output of S/H1 is connected to the summing node of S/H2 by connecting pin 7 (S/H1 ROUT) to pin 8 (S/H2 SUMMING NODE).

When the offset+video signal appears at the output of the CCD, S/H2 is driven into its signal acquisition mode by applying a logic "1" to pin 12 (S/ $\overline{H2}$ COMMAND). S/H2 employs a current-summing architecture that subtracts the output of S/H1 (the offset) from the output of the CCD (offset+video) while acquiring only the difference signal (i.e., the valid video). A logic "0" subsequently applied to pin 12 drives S/H2 into its hold mode, and after a brief transient settling time, the valid video signal appears at pin 22 (V OUT).

Timing Notes

See Figure 2, Typical Timing Diagram. It is advisable that neither of the CDS-1401's S/H amplifiers be in their sample/


track mode when large, high-speed transients (normally associated with clock edges) are occurring throughout the system. This could result in the S/H amplifiers being driven into saturation, and they may not recover in time to accurately acquire their next signal.


For example, S/H1 should not be commanded into the sample mode until all transients associated with the opening of the shunt switch have begun to decay. Similarly, S/H2 should not be driven into the sample mode until all transients associated with the clocking of pixel charge onto the output capacitor have begun to decay. Therefore, it is generally not a good practice to use the same clock edge to drive S/H1 into hold (holding the offset) and S/H2 into sample (to acquire the offset + video signal).

S/H's that are in their signal-acquisition modes should be left there as long as possible (so all signals can settle) and be driven into their hold modes before any system transients occur. In Figure 2, S/H1 is driven into the sample mode shortly after the transient from the shunt switch has begun to decay. S/H1 is then kept in the sample mode while the offset signal and the S/H output settle. S/H1 is driven into hold just prior to the system clock pulse(s) that transfers the next pixel charge onto the output capacitor.

As soon as the transients/noise associated with the charge transport begins to decay, S/H2 can be driven into the sample mode. S/H2 can then be left in the sample mode until just before the reset pulse for the output capacitor.

In Figure 2, S/H's 1 and 2 both have the same acquisition time. If the pixel-to-pixel amplitude variation of offset signals is much

less than that of video signals, it may not be necessary for the allocated acquisition time of S/H1 to be as long as that of S/H2.

As shown in the plot (Figure 4) of acquisition times vs. input signal step size, the S/H's internal to the CDS-1401 acquire smaller-amplitude signals quicker than they acquire larger-amplitude signals. In "maximum-throughput" applications, assuming "asymmetric" timing can be accommodated, each S/H should only be given the time it requires, and no more, to acquire its input signal. Leaving a S/H amp in the sample mode for a longer period of time has little added benefit.

As an example, the graph shows that it takes 160ns to acquire a 500mV step to within 10mV of accuracy and 260ns to acquire a 500mV step to within 0.5mV of accuracy. The figures in this graph are typical values at room temperature.

The CDS-1401 brings out 4 control lines that can be used to trigger an A/D converter connected to its output. If the A/D is a sampling type, system timing should be such that the A/D's input S/H amplifier is acquiring the output of the CDS-1401 at the same time the output is settling to its final value.

For most sampling A/D's, the rising edge of the start-convert pulse drives the internal S/H into the hold mode under the assumption the S/H has already fully acquired and is tracking the input signal. In this case, the same edge can not be used to drive S/H2 into the hold mode and simultaneously initiate the A/D conversion. The output of S/H2 needs time to settle its sample-to-hold switching transient, and the input S/H of the A/D needs time to fully acquire its new input signal.

As shown in Figure 1, output line A/D CLOCK1 (pin 18) is a slightly delayed version of the signal applied to pin 11 (S/H1 COMMAND), and $\overline{A/D}$ CLOCK1 (pin 17) is its complement. A/D CLOCK2 (pin 19) is a delayed version of the signal applied to pin 12 (S/H2 COMMAND), and $\overline{A/D}$ CLOCK2 (pin 20) is its complement. Any one of these signals, as appropriate, may be used to trigger the A/D conversion.

Figure 3 is a typical timing diagram for a CDS-1401 in front of DATEL's 12-bit, 1.2MHz sampling A/D, the ADS-CCD1201.

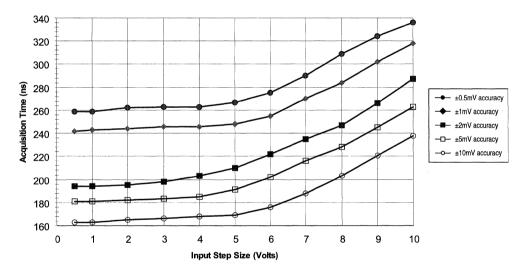


Figure 4. Acquisition Time versus Accuracy and Step Size

CALIBRATION PROCEDURE

Offset Adjust (Figure 5)

Offset and pedestal errors may be compensated for by applying external voltages to pin 1 (OFFSET ADJUST V1) and/ or pin 9 (OFFSET ADJUST V2) using either voltage-output DAC's or potentiometers configured to appear as voltage sources.

Offset and pedestal errors may also be compensated for by applying external currents to pin 2 (OFFSET ADJUST I1) and/ or pin 10 (OFFSET ADJUST I2) by using either current-output DAC's or potentiometers configured to appear as current sources.

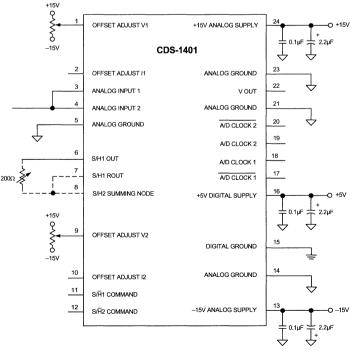
- 1. Connect pin 8 (S/H2 SUMMING NODE) either directly to pin 7 (S/H1 ROUT) or through a 200 Ohm potentiometer to pin 6 (S/H1 OUT).
- 2. Tie pins 3 (ANALOG INPUT 1) and 4 (ANALOG INPUT 2) to pin 5 (ANALOG GROUND).
- Adjust OFFSET ADJUST V1 or OFFSET ADJUST I1 (while S/H1 is in the hold mode) until pin 6 (S/H1 OUT) equals 0V.
- 4. Adjust OFFSET ADJUST V2 or OFFSET ADJUST I2 (while S/H2 is in the hold mode) until pin 22 (VOUT) equals 0V.
- 5. To negate the effect of output droop on the offset-adjust process, each S/H must be continually switched between its sample and hold modes and adjusted so its output equals zero immediately after going into the hold mode.

The sensitivity of the voltage offset adjustments is 100mV per Volt. The sensitivity of the current offset adjustments is 1V per mA. Pins 1, 2, 9 and 10 should be left open (floating) when not being used for offset adjustment.

Gross Offset Adjustment

For gross offset adjustments use pin 2 (OFFSET ADJUST I1) and/or pin 10 (OFFSET ADJUST I2). All connections made to pin 2 and pin 10 should be very short because these are very sensitive points.

Sourcing 1mA into OFFSET ADJUST I1 will cause a –1V offset change at pin 6 (S/H1 OUT). It will also cause a +1V offset change at pin 22 (V OUT) if pin 7 (S/H1 ROUT) is connected to pin 8 (S/H2 SUMMING NODE).

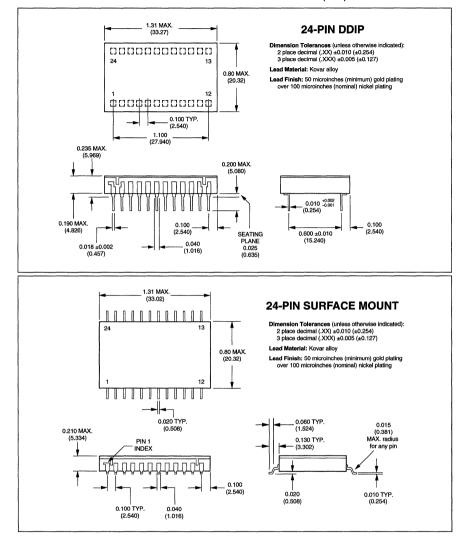

Sourcing 1mA into OFFSET ADJUST I2 will cause a -1V offset change at pin 22 (V OUT).

Gain Matching Adjustment (Differential Gain) between S/H1 and S/H2

The user can adjust the gain matching (differential gain) between S/H1 and S/H2 by leaving pin 7 (S/H1 ROUT) floating (open) and connecting a 200 Ohm potentiometer between pin 6 (S/H1 OUT) and pin 8 (S/H2 SUMMING NODE). Note, offset adjustment should take place before gain matching adjustment.

Apply a full-scale input to both pins 3 (ANALOG INPUT 1) and 4 (ANALOG INPUT 2). Adjust the 200 Ohm potentiometer (with both S/H's in the sample mode) until pin 22 (V OUT) is 0V.

If gain matching adjustment is not required, leave pin 6 (S/H1 OUT) floating (open) and tie pin 7 (S/H1 ROUT) to pin 8 (S/H2 SUMMING NODE).



4

DATEL

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	ANALOG INPUT	PACKAGE TYPE
CSD-1401MC	0 to +70°C	±10V	DDIP
CDS-1401MM	–55 to +125°C	±10V	DDIP
Accessories HS-24	Heat Sink for CD	S-1401 DDIP mo	dels
number 3-331272-8 (co	and mounting can be order component lead socket), 2 of surface mount packa	24 required. For	MIL-STD-883

PRELIMINARY PRODUCT DATA

14-Bit, Faster-Settling Correlated Double Sampling Circuit

DS-1402

FEATURES

- Use with 10 to 14-bit A/D converters
- 5 Megapixels/second minimum throughput (14 bits)
- ±2.5V input/output ranges, Gain = -1
- Low noise, 200µVrms
- Two independent S/H amplifiers
- Gain matching between S/H's
- Offset adjustments for each S/H
- Four external A/D control lines
- Small package, 24-pin ceramic DDIP
- Low power, 350mW
- Low cost

GENERAL DESCRIPTION

The CDS-1402 is an application-specific, correlated double sampling (CDS) circuit designed for electronic-imaging applications that employ CCD's (charge coupled devices) as their photodetector. The CDS-1402 has been optimized for use in digital video applications that employ 10 to 14-bit A/D converters. The low-noise CDS-1402 can accurately determine each pixel's true video signal level by sequentially sampling the pixel's offset signal and its video signal and subtracting the two. The result is that the consequences of residual charge, charge injection and low-frequency "kTC" noise on the CCD's output floating capacitor are effectively eliminated. The CDS-1402 can also be used as a dual sample-hold amplifier in a data acquisition system.

The CDS-1402 contains two sample-hold amplifiers and appropriate support/control circuitry. Features include independent offset-adjust capability for each S/H, adjustment for matching gain between the two S/H's, and four control

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	OFFSET ADJUST V1	24	+5V ANALOG SUPPLY
2	DO NOT CONNECT	23	ANALOG GROUND
3	ANALOG INPUT 1	22	V OUT
4	ANALOG INPUT 2	21	ANALOG GROUND
5	ANALOG GROUND	20	A/D CLOCK2
6	S/H1 OUT	19	A/D CLOCK2
7	S/H1 ROUT	18	A/D CLOCK1
8	S/H2 SUMMING NODE	17	A/D CLOCK1
9	OFFSET ADJUST V2	16	+5V DIGITAL SUPPLY
10	DO NOT CONNECT	15	DIGITAL GROUND
11	S/H1 COMMAND	14	ANALOG GROUND
12	S/H2 COMMAND	13	-5V ANALOG SUPPLY

lines for triggering the A/D converter used in conjunction with the CDS-1402. The CDS circuit's "ping-pong" timing approach (the offset signal of the "n-1" pixel can be acquired while the video output of the "nth" pixel is being converted) guarantees a minimum throughput, in a 14-bit application, of 5MHz. In other words, the true video signal (minus offset) will be available (continued on page 4-13)

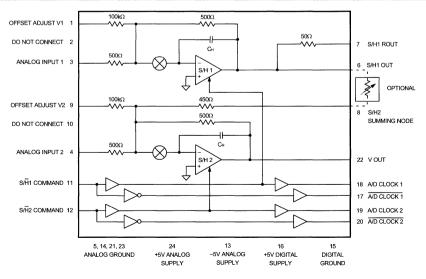


Figure 1. CDS-1402 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS		
+5V Analog Supply (Pin 24)	0 to +6.3	Volts		
-5V Analog Supply (Pin 13)	0 to -6.3	Volts		
+5V Digital Supply (Pin 16)	0 to +6	Volts		
Digital Inputs (Pins 11, 12)	-0.3 to +VDD +0.3	Volts		
Analog Inputs (Pins 3, 4)	±3.2	Volts		
Lead Temperature (10 seconds)	300	°C		

PHYSICAL/ENVIRONMENTAL

MIN.	TYP.	MAX.	UNITS			
0		+70	°C			
55	-	+125	°C			
-	5	-	°C/W			
	22		°C/W			
-65		+150	°C			
24-pin, metal-sealed, ceramic DDIP						
-	0 55 65	0 -55 5 22 -65 24-pin, metal-seal	0 +70 -55 +125 5 22 -65 +150			

FUNCTIONAL SPECIFICATIONS

(TA = +25°C, ±Vcc = ±5V, +Vbb = +5V, pixel rate = 5MHz, and a minimum warmup time of two minutes unless otherwise noted.)

		+25°C			0 to +70°C	>	-5	i5 to +125	°C	1
ANALOG INPUTS ①	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	±2.5			±2.5		_	±2.5		_	Volts
Input Resistance	12.0	500		12.5	500	_	12.0	500		Ohms
Input Capacitance		7	15	_	7	15		7	15	pF
		· ·	15		1	15		/	15	PF
DIGITAL INPUTS	-		_						_	_
Logic Levels			1							
Logic "1"	+2.0	- 1	_	+2.0			+2.0			Volts
Logic "0"		_	+0.8			+0.8	_		+0.8	Volts
Logic Loading "1"	_	_	+10	_		+10			+10	μA
Logic Loading "0"	_	_	-10	_	_	-10			-10	μΑ
PERFORMANCE										· · ·
	1		1							
Sample Mode Offset Error - S/H1 Gain Error - S/H1		±3 ±0.1		-	±4 ±0.2	_	_	±5 ±0.4		mV %
	_		_			_				
Pedestal - S/H1	-	±10		-	±10	-	-	±15	-	mV
Sample Mode Offset Error - S/H2	-	±3	-	-	±4		-	±5		mV
Gain Error - S/H2	-	±0.1		-	±0.2	-		±0.4	-	%
Pedestal - S/H2	-	±10			±10	-	_	±15	_	mV
Sample Mode Offset Error - CDS	_	±1	_		±4		_	±5		l mV
Differential Gain Error - CDS	I _	±0.1			±0.2	_	_	±0.4	_	%
Pedestal - CDS	_	±10	_		±10		_	±15		mV
Pixel Rate (14-bit settling) @	5			5	110	_	5	1 10	_	MHz
	5			э	_	-	5			
Input Bandwidth, ±2.5V										
Small Signal (-20dB input)	- 1	TBD		-	TBD	-		TBD	-	MHz
Large Signal (–0.5dB input)	-	TBD	-	-	TBD	-	_	TBD		MHz
Slew Rate		±500			±500	- 1		±500	- 1	V/µs
Aperture Delay Time	- 1	10	- 1		10			10		ns
Aperture Uncertainty	- I	5			5	_		5	_	ps rms
S/H Acquisition Time ①		Ŭ	1		Ű					ponno
(to ±0.01%, 5V step)	_	100			100			100		
	_	100	-	-	100	-	_	100	_	ns
Hold Mode Settling Time										
(to ±0.15mV)	-	TBD		-	TBD	-		TBD		ns
Noise	-	200	-	-	200	-		200	-	μVrms
Feedthrough Rejection	-	TBD	-		TBD	-		TBD	- 1	dB
Overvoltage Recovery Time	_	200		_	200			200		ns
S/H Saturation Voltage	_	±3.2		- 1	±3.2		_	±3.2	_	V
Droop Rate	-	±5	- 1	-	±10	-	-	±25	—	mV/µs
ANALOG OUTPUTS ®			L						.L	
Output Voltage Range	±2.5	_	_	±2.5		_	±2.5		_	Volts
Output Impedance	_	0.5	_	_	0.5	-	_	0.5	-	Ohms
Output Current	-		±20	_	-	±20	-		±20	mA
DIGITAL OUTPUTS	_1	J	L	I		L	L	I	L	1
Logic Levels	1			[T
Logic "1"	+3.9			+3.9			+3.9			Volts
	+3.9	-		+3.9	-		+3.9	-		
Logic "0"	- 1	-	+0.4	- 1	-	+0.4		-	+0.4	Volts
Logic Loading "1"	-	-	-4	-	-	-4	-	- 1	-4	mA
Logic Loading "0"	I	I	+4	-		+4	- 1		+4	mA

① Pins 3 and 4. ② See Figure 5 for relationship between input voltage, accuracy, and acquisition time. ③ Pins 6 and 22.

POWER REQUIREMENTS	+25°C			0 to +70°C			–55 to +125°C			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Power Supply Ranges										
+5V Analog Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
-5V Analog Supply	-4.75	-5.0	-5.25	-4.75	-5.0	-5.25	-4.75	-5.0	-5.25	Volts
+5V Digital Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Currents										
+5V Analog Supply	-	+35	+45	- 1	+35	+45	-	+35	+45	mA
-5V Analog Supply		-35	-45	-	-35	-45	_	-35	45	mA
+5V Digital Supply	-	+2	+5	_	+2	+5	_	+2	+5	mA
Power Dissipation		350	450	-	350	450	_	350	450	mW
Power Supply Rejection	_	60	_	_	60	_		60		dB

GENERAL DESCRIPTION (continued)

at the output of the CDS-1402 every 200ns. This correlates with the fact that an acquisition time of 100ns is required for each internal S/H amplifier (5V step acquired to $\pm 0.003\%$ accuracy). The input and output of the CDS-1402 can swing up to ± 2.5 Volts.

The functionally complete CDS-1402 is packaged in a single, 24-pin, ceramic DDIP. It operates from ±5V analog and +5V digital supplies and consumes 350mW. Though the CDS-1402's approach to CDS appears straightforward (see Description of Operation), the circuit actually exploits an elegant architecture whose tradeoffs enable it to offer widebandwidth, low-noise and high-throughput combinations unachievable until now. The CDS-1402, a generic type of circuit, can be used with most 10 to 14-bit A/D converters. However, DATEL offers A/D converters optimized for use with CDS-1402.

TECHNICAL NOTES

- To achieve specified performance, all popwer supply pins should be bypassed with 2.2µF tantalum capacitors in parallel with 0.01µF ceramic capacitors. All ANALOG GROUND (pins 5, 14, 21 and 23) and DIGITAL GROUND (pin 15) pins should be tied to a large analog ground plane beneath the package.
- In the CDS configuration, to avoid saturation of the S/H amplifiers, the maximum analog inputs and conditions are as follows:

ANALOG INPUT 1 < $\pm 3.2V$ (ANALOG INPUT 1 – ANALOG INPUT 2) < $\pm 3.2V$

- The combined video and reference/offset signal from the CCD array must be applied to S/H2, while the reference/ offset signal is applied to S/H1.
- 4. To use as a CDS circuit, tie pin 8 (S/H2 SUMMING NODE) to either pin 6 (S/H1 OUT), through a 100 Ohm potentiometer, or directly to pin 7 (S/H1 ROUT). In both cases, the CCD's output is tied to pins 3 (ANALOG INPUT 1) and 4 (ANALOG INPUT 2). As shown in Figure 5, the 100Ω potentiometer is for gain matching.
- To use as a dual S/H, leave pin 7 (S/H1 ROUT) and pin 8 (S/H2 SUMMING NODE) floating. Pin 6 (S/H1 OUT) will be the output of S/H1 and pin 22 (V OUT) will be the output of S/H2.
- 6. See Figure 4 for acquisition time versus accuracy and input voltage step amplitude.

FUNCTIONAL DESCRIPTION

Correlated Double Sampling

All photodetector elements (photodiodes, photomultiplier tubes, focal plane arrays, charge coupled devices, etc.) have unique output characteristics that call for specific analog-signalprocessing (ASP) functions at their outputs. Charge coupled devices (CCD's), in particular, display a number of unique characteristics. Among them is the fact that the "offset error" associated with each individual pixel (i.e., the apparent photonic content of that pixel after having had no light incident upon it) changes each and every time that particular pixel is accessed.

Most of us think of an offset as a constant parameter that either can be compensated for (by performing an offset adjustment) or can be measured, recorded, and subtracted from subsequent readings to yield more accurate data. Contending with an offset that varies from reading to reading requires measuring and recording (or capturing and storing) the offset each and every time, so it can be subtracted from each subsequent data reading.

The "double sampling" aspect of CDS refers to the operation of sampling and storing/recording a given pixel's offset and then sampling the same pixel's output an instant later (with both the offset and the video signal present) and subsequently subtracting the two values to yield what is referred to as the "valid video" output for that pixel.

The "correlated" in CDS refers to the fact that the two samples must be taken close together in time because the offset is constantly varying. Reasons for this phenomena are discussed below.

At the output of all CCD's, transported pixel charge (electrons) is converted to a voltage by depositing the charge onto a capacitor (usually called the output or "floating" capacitor). The voltage that develops across this capacitor is obviously proportional to the amount of deposited charge (i.e., the number of electrons) according to $\Delta V = \Delta Q/C$. Once settled, the resulting capacitor voltage is buffered and brought to the CCD's output pin as a signal whose amplitude is proportional to the total number of photons incident upon the relevant pixel.

After the output signal has been recorded, the floating capacitor is discharged ("reset", "clamped", "dumped") and made ready to accept charge from the next pixel. This is when the problems begin. (This is a somewhat oversimplified

explanation in that the floating capacitor is not usually "discharged" but, in fact, "recharged" to some predetermined dc voltage, usually called the "reference level". The pixel offset appears as an output deviation from that reference level.)

The floating capacitor is normally discharged (charged) via a shunt switch (typically a FET structure) that has a non-zero "on" resistance. When the switch is on, its effective series resistance exhibits thermal noise (Johnson noise) due to the random motion of thermally energized charge. Because the shunt switch is in parallel with the floating capacitor, the instantaneous value of the thermal noise (expressed in either Volts or electrons) appears across the cap. When the shunt switch is opened, charge/voltage is left on the floating cap.

The magnitude of this "captured noise voltage" is a function of absolute temperature (T), the value of the floating capacitor (C) and Boltzman's constant (k). It is commonly referred to as "kTC" noise.

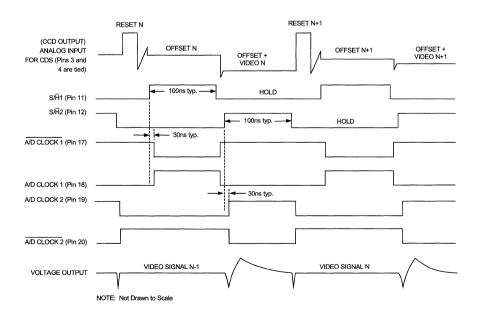
The second contributor to the constantly varying pixel offsets is the fact that, at high pixel rates, the floating capacitor never has time to fully discharge (charge) during the period in which its shunt switch is closed. There is always some "residual" charge left on the cap, and the amount of this charge varies as a function of what was the total charge held during the previous pixel. This amount of residual charge is, in fact, deterministic (if you know the previous charge and the number of time constants in the discharge period), however, it is less of a contributor than kTC noise.

The third major contributor to pixel offset is the fact that as the shunt FET is turned off, the voltage across (and the charge

stored on) its parasitic junction capacitances changes. The result is an "injection" of excess charge onto the floating cap causing a voltage step normally called a "pedestal".

The fourth major contributor to pixel offset is a low-frequency noise component (usually called 1/f noise or pink noise) associated with the CCD's output buffer amplifier.

Due to all of these contributing factors, "pixel offsets" vary from sample to sample in an inconsistent, unpredictable manner.


Traditional Approach to CDS

There are a number of techniques for dealing with the varyingoffset idiosyncrasy of CCD's. The most prevalent has been what can be called the "sample-subtract" technique. This approach requires the use of two high-speed sample-hold (S/H) amplifiers and a difference amplifier. The first S/H is used to acquire and hold a given pixel's offset. Immediately after that, the second S/H acquires and holds the same pixel's offset+video signal. After both the S/H outputs have fully settled, the difference amplifier subtracts the offset from the offset+video yielding the valid video signal.

CDS-1402 Approach (See Figure 1)

The DATEL CDS-1402 takes a slightly different, though clearly superior, approach to CDS. It can be called the "sample-subtract-sample" approach.

Note that the CDS-1402 has been configured to offer the greatest amount of user flexibility. Its two S/H circuits function independently. They have separate input and output pins. Each has its own independent control lines. The control-line

signals are delayed, buffered, and brought back out of the package so they can be used to control other circuit functions. Each S/H has two pins for offset adjusting (if required), one for current and one for voltage.

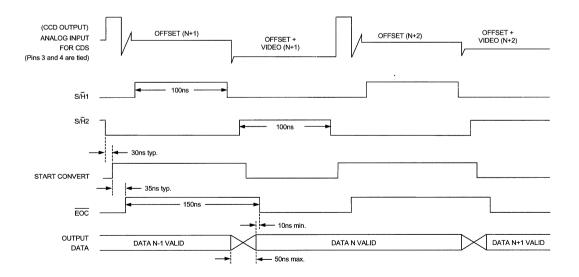
In normal operation, the output signal of the CCD is applied simultaneously to the inputs (pins 3 and 4) of both S/H amplifiers. S/H1 will normally be used to capture and hold each pixel's offset signal. Therefore, S/H1 is initially in its signal-acquisition mode (logic "1" applied to pin 11, S/H1 COMMAND). This is also called the sample or track mode. Following a brief interval during which the output of the CCD and the output of S/H1 are allowed to settle, S/H1 is driven into its hold mode by applying a logic "0" to pin 11. S/H1 is now holding the pixel's offset value.

In most straightforward configurations, the output of S/H1 is connected to the summing node of S/H2 by connecting pin 7 (S/H1 ROUT) to pin 8 (S/H2 SUMMING NODE).

When the offset+video signal appears at the output of the CCD, S/H2 is driven into its signal acquisition mode by applying a logic "1" to pin 12 (S/H2 COMMAND). S/H2 employs a current-summing architecture that subtracts the output of S/H1 (the offset) from the output of the CCD (offset+video) while acquiring only the difference signal (i.e., the valid video). A logic "0" subsequently applied to pin 12 drives S/H2 into its hold mode, and after a brief transient settling time, the valid video signal appears at pin 22 (V OUT).

Timing Notes

See Figure 2, Typical Timing Diagram. It is advisable that neither of the CDS-1402's S/H amplifiers be in their sample/


track mode when large, high-speed transients (normally associated with clock edges) are occurring throughout the system. This could result in the S/H amplifiers being driven into saturation, and they may not recover in time to accurately acquire their next signal.

For example, S/H1 should not be commanded into the sample mode until all transients associated with the opening of the shunt switch have begun to decay. Similarly, S/H2 should not be driven into the sample mode until all transients associated with the clocking of pixel charge onto the output capacitor have begun to decay. Therefore, it is generally not a good practice to use the same clock edge to drive S/H1 into hold (holding the offset) and S/H2 into sample (to acquire the offset + video signal).

S/H's that are in their signal-acquisition modes should be left there as long as possible (so all signals can settle) and be driven into their hold modes before any system transients occur. In Figure 2, S/H1 is driven into the sample mode shortly after the transient from the shunt switch has begun to decay. S/H1 is then kept in the sample mode while the offset signal and the S/H output settle. S/H1 is driven into hold just prior to the system clock pulse(s) that transfers the next pixel charge onto the output capacitor.

As soon as the transients/noise associated with the charge transport begins to decay, S/H2 can be driven into the sample mode. S/H2 can then be left in the sample mode until just before the reset pulse for the output capacitor.

In Figure 2, S/H's 1 and 2 both have the same acquisition time. If the pixel-to-pixel amplitude variation of offset signals is much less than that of video signals, it may not be necessary for the allocated acquisition time of S/H1 to be as long as that of S/H2.

CDS-1402

As shown in the plot (Figure 4) of acquisition times vs. input signal step size, the S/H's internal to the CDS-1402 acquire smaller-amplitude signals quicker than they acquire larger-amplitude signals. In "maximum-throughput" applications, assuming "asymmetric" timing can be accommodated, each S/H should only be given the time it requires, and no more, to acquire its input signal. Leaving a S/H amp in the sample mode for a longer period of time has little added benefit.

As an example, the graph shows that it takes 32ns to acquire a 500mV step to within 10mV of accuracy and 73ns to acquire a 500mV step to within 0.5mV of accuracy. The figures in this graph are typical values at room temperature.

The CDS-1402 brings out 4 control lines that can be used to trigger an A/D converter connected to its output. If the A/D is a sampling type, system timing should be such that the A/D's input S/H amplifier is acquiring the output of the CDS-1402 at the same time the output is settling to its final value.

For most sampling A/D's, the rising edge of the start-convert pulse drives the internal S/H into the hold mode under the assumption the S/H has already fully acquired and is tracking the input signal. In this case, the same edge can not be used to drive S/H2 into the hold mode and simultaneously initiate the A/D conversion. The output of S/H2 needs time to settle its sample-to-hold switching transient, and the input S/H of the A/D needs time to fully acquire its new input signal.

As shown in Figure 1, output line A/D CLOCK1 (pin 18) is a slightly delayed version of the signal applied to pin 11 (S/H1 COMMAND), and A/D CLOCK1 (pin 17) is its complement. A/D CLOCK2 (pin 19) is a delayed version of the signal applied to pin 12 (S/H2 COMMAND), and A/D CLOCK2 (pin 20) is its complement. Any one of these signals, as appropriate, may be used to trigger the A/D conversion.

Figure 3 is a typical timing diagram for a CDS-1402 in front of DATEL's 14-bit, 5MHz sampling A/D, the ADS-944.

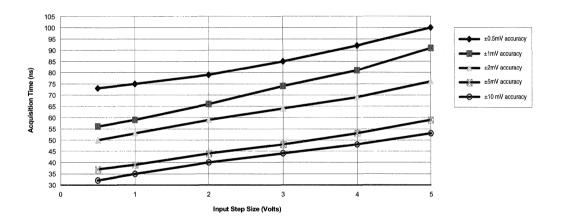


Figure 4. Acquisition Time versus Accuracy and Step Size

DATEL

CALIBRATION PROCEDURE

Offset Adjust (Figure 5)

Offset and pedestal errors may be compensated for by applying external voltages to pin 1 (OFFSET ADJUST V1) and/ or pin 9 (OFFSET ADJUST V2) using either voltage-output DAC's or potentiometers configured to appear as voltage sources.

- Connect pin 8 (S/H2 SUMMING NODE) either directly to pin 7 (S/H1 ROUT) or through a 100 Ohm potentiometer to pin 6 (S/H1 OUT).
- 2. Tie pins 3 (ANALOG INPUT 1) and 4 (ANALOG INPUT 2) to pin 5 (ANALOG GROUND).
- 3. Adjust OFFSET ADJUST V1 (while S/H1 is in the hold mode) until pin 6 (S/H1 OUT) equals 0V.
- 4. Adjust OFFSET ADJUST V2 (while S/H2 is in the hold mode) until pin 22 (V OUT) equals 0V.
- 5. To negate the effect of output droop on the offset-adjust process, each S/H must be continually switched between its sample and hold modes and adjusted so its output equals zero immediately after going into the hold mode.

The sensitivity of the voltage offset adjustments is 5mV per Volt. Pins 1 and 9 should be left open (floating) when not being used for offset adjustment.

Gain Matching Adjustment (Differential Gain) between S/H1 and S/H2

The user can adjust the gain matching (differential gain) between S/H1 and S/H2 by leaving pin 7 (S/H1 ROUT) floating (open) and connecting a 100 Ohm potentiometer between pin 6 (S/H1 OUT) and pin 8 (S/H2 SUMMING NODE). Note, offset adjustment should take place before gain matching adjustment.

Apply a full-scale input to both pin 3 (ANALOG INPUT 1) and pin 4 (ANALOG INPUT 2). Adjust the 100 Ohm potentiometer (with both S/H's in the sample mode) until pin 22 (V OUT) is 0V.

If gain matching adjustment is not required, leave pin 6 (S/H1 OUT) floating (open) and tie pin 7 (S/H1 ROUT) to pin 8 (S/H2 SUMMING NODE).

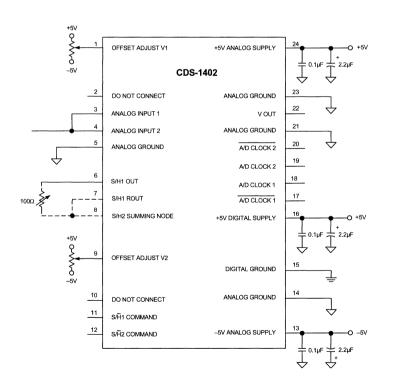
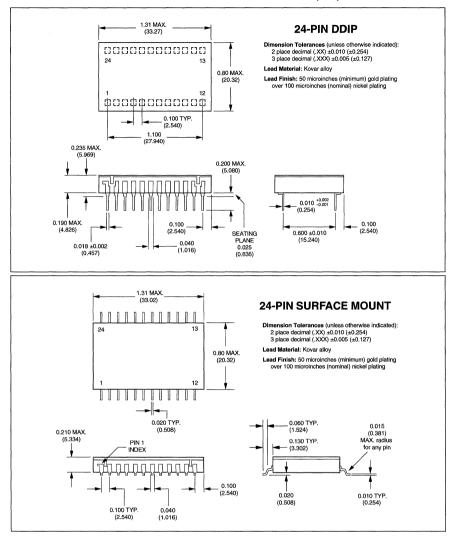



Figure 5. CDS-1402 Typical Connection Diagram

MECHANICAL DIMENSIONS INCHES (mm)

CDS-1402

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	ANALOG INPUT	PACKAGE TYPE			
CSD-1402MC	0 to +70°C	±2.5V	DDIP			
CDS-1402MM	–55 to +125°C	±2.5V	DDIP			
Accessories HS-24	Heat Sink for CDS-1402 DDIP models					
Receptacles for pc board mounting can be ordered through Amp Inc., part number 3-331272-8 (component lead socket), 24 required. For MIL-STD-883 products, or availability of surface mount packaging, contact DATEL.						

Analog Multiplexers

Table of Contents

Selection Guide	e	5-1
MV Series	Single-Ended, Low ON Resistance, CMOS Multiplexers	5-3
MVD Series	Differential, Low ON Resistance, CMOS Multiplexers	5-3
MX Series	Single-Ended, Input Protected, CMOS Multiplexers	5-8
MXD Series	Differential, Input Protected, CMOS Multiplexers	5-8
MX-1616	High-Speed, 16-Channel, Programmable Multiplexers	5-13
MX-818	High-Speed, 8-Channel, Programmable Multiplexers	5-13
MX-826	Precision, High-Speed, 8-Channel Multiplexers	5-18
MX-850	Precision, Higher-Speed, 4-Channel Multiplexers	5-21

Selection Guide

		Settling				Input L	.eakage		Maximum	
Model	Channels	Time to ±0.01% (μsec)	Access Time (nsec)	Input Range (Volts)	On Resistance (Ohms)	Off Channel (pA)	On Channel (pA)	Power Supplies (Volts)	Power Dissipation (mW)	Page
MX-850	4SE	0.04 ①	20	±10	90	20	400	+5, ±15	270	5-21
MX-826 3	8SE	0.150 2	20	±10	2500	_	_	+5, ±15	575	5-18
MX-818C	8SE/4D	0.8	130	±15	750	10	15	±15	540	5-13
MX-1616C	16SE/8D	0.8	130	±15	750	10	40	±15	900	5-13
MV-1606	16SE	2.4	300	±15	270	30	1000	±15	60	5-3
MVD-807	8D	2.4	300	±15	270	30	1000	±15	60	5-3
MV-808	8SE	2.8	350	±15	250	20	100	+5, ±15	28	5-3
MVD-409	4D	2.8	350	±15	250	20	50	+5, ±15	28	5-3
MX-1606	16SE	3.5	500	±15	1500	30	100	±15	45	5-8
MX-808	8SE	3.5	500	±15	1500	30	100	±15	45	5-8
MXD-409	4D	3.5	500	±15	1500	30	100	±15	45	5-8
MXD-807	8D	3.5	500	±15	1500	30	100	±15	45	5-8

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

① 80ns to ±0.001%.

@ 300ns to ±0.003%.

③ MIL-STD-883 models available.

5-1

For literature or technical assistance

or contact your local DATEL Sales Office or Representative

MV/MVD Series Low ON Resistance

CMOS, Analog Multiplexers

FEATURES

- ±0.01% accuracy
- Low "ON" resistance
- Break-before-make switching
- Dielectrically isolated CMOS technology
- Single-ended or differential inputs
- Fast settling times
- DTL/TTL/CMOS compatible
- 350kHz sampling rates

GENERAL DESCRIPTION

The MV and MVD Series analog multiplexers are 4, 8 and 16channel monolithic devices featuring a low ON resistance of 270 Ohms. These units are manufactured with CMOS technology using the dielectric isolation process. There are 8 and 16-channel single-ended models and 4 and 8-channel differential models in this Series. Channel addressing is done with a 2, 3 or 4-bit binary code. An inhibit input enables or disables the entire device to permit expansion of the numbers of channels by using several devices together. Another important feature is break-before-make switching, which ensures that no two channels are ever momentarily shorted together.

With a high impedance load, transfer accuracies of ±0.01% can

be achieved at channel sampling rates up to 350kHz. These multiplexers are ideal for multichannel data acquisition systems where the multiplexer operates into a high-impedance load such as a sample-hold, buffer amplifier, or instrumentation amplifier.

These multiplexers are packaged in 16 and 28-pin ceramic DIP's. Standard versions operate over 0 to +70°C while the MVD-409M and the MV-1606M operate from -55 to +125°C. The MV and MVD Series are similar in specifications to DATEL's MX and MXD Series multiplexers. The MX and MXD Series are recommended where input over-voltage protection to 20 Volts above supply voltage is required and where higher channel ON resistance can be tolerated.

INPUT/OUTPUT CONNECTIONS

	FUN	CTION		FUNCTION		
PIN	MV-808	MVD-409	PIN	MV-808	MVD-409	
1	CA2	CA2	16	CA1	CA1	
2	+5V	+5V	15	-Vs	-Vs	
3	INHIBIT	INHIBIT	14	+Vs	+Vs	
4	CA4	B OUT	13	1 IN	1A IN	
5	8 IN	4B IN	12	OUT	A OUT	
6	7 IN	3B IN	11	2 IN	2A IN	
7	6 IN	2B IN	10	3 IN	3A IN	
8	5 IN	1B IN	9	4 IN	4A IN	

	FUNC	CTION		FUNG	CTION
PIN	MV-1606	MVD-807	PIN	MV-1606	MVD-807
1	+Vs	+Vs	28	OUT	A OUT
2	N.C.	B OUT	27	-Vs	-Vs
3	N.C.	N.C.	26	8 IN	8A IN
4	16 IN	8B IN	25	7 IN	7A IN
5	15 IN	7B IN	24	6 IN	6A IN
6	14 IN	6B IN	23	5 IN	5A IN
7	13 IN	5B IN	22	4 IN	4A IN
8	12 IN	4B IN	21	3 IN	3A IN
9	11 IN	3B IN	20	2 IN	2A IN
10	10 IN	2B IN	19	1 IN	1A IN
11	9 IN	1B IN	18	INHIBIT	INHIBIT
12	GND	GND	17	CA1	CA1
13	N.C.	N.C.	16	CA2	CA2
14	CA8	N.C.	15	CA4	CA4

NOTES: CA = Channel address V_S = Supply voltage N.C. = No connection

	+V _S GND -V _S	
CH 1 IN	CMOS SWITCHES	ουτ
CH N IN	SWITCH DRIVER CIRCUITS	+5V (MV-808, MVD-409 Only)
CA1 CA2 CA4 CA8	CHANNEL ADDRESS INPUT BUFFERS DECODER	
ļ	INHIBIT	
	Figure 1 MV Series Eurotional Block Disgram	

Figure 1. MV Series Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	MV-808	MV-1606 MV-1606M	MVD-409 MVD-409M	MVD-807
Power Supply				
Analog	±20V	±20V	±20V	±20V
Digital	+30V	_	+30V	-
Input Voltage				
Analog	±IV _S + 2VI	±IV _S + 2VI	±IV _S + 2VI	±IVs + 2VI
Digital	±Vs	±IV _S + 4VI	±Vs	$\pm IV_{S} + 4VI$
Power Dissipation	780mW	1200mW	780mW	1200mW

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C and ±15V supplies (and +5V supply for MV-808 and MVD-409), unless otherwise noted.)

ANALOG INPUTS	MV-808	MV-1606 MV-1606M	MVD-409 MVD-409M	MVD-807
Number of Channels	8	16	4	8
Туре	Single-ended	Single-ended	Differential	Differential
Input Voltage Range	±15V	±15V	±15V	±15V
Channel ON				
Resistance ①	250Ω	270Ω	250Ω	270Ω
Resistance Over Temperature (maximum) @	500Ω	500Ω	500Ω	500Ω
Leakage	100pA	1nA	50pA	1nA
Channel OFF				
Input Leakage	20pA	30pA	20pA	30pA
Output Leakage	100pA	1nA	50pA	1nA
Input Capacitance	4pF	10pF	4pF	10pF
Output Capacitance	20pF	52pF	10pF	30pF
DIGITAL INPUTS ③				
Logic "0" Threshold (maximum)	+0.4V	+0.8V	+0.4V	+0.8V
Logic "1" Threshold (minimum) @	+4.0V	+2.4V	+4.0V	+2.4V
Input Current (maximum, high or low)	1µA	1µA	1µA	1μA
Channel Address Coding	3 bits	4 bits	2 bits	3 bits
Channel Inhibit (all channels OFF)	Logic "1"	Logic "0"	Logic "1"	Logic "0"
PERFORMANCE		L	L	<u>.</u>
Transfer Error (maximum)	±0.01%	±0.01%	±0.01%	±0.01%
Crosstalk (10kHz)	-86dB	-86dB	-86dB	-86dB
Common Mode Rejection			120dB	120dB
Settling Time (20V to ±0.1%)	1.1µs	1.2µs	1.1µs	1.2µs
Settling Time (20V to ±0.01%)	2.8µs (5)	2.4µs	2.8µs ©	2.4µs
Turn ON Time	350ns	300ns	350ns	300ns
Turn OFF Time	250ns	220ns	250ns	220ns
Inhibit/Enable Delay	300ns	300ns	300ns	300ns
Break-Before-Make Delay	100ns	80ns	100ns	80ns
POWER REQUIREMENTS				
Power Supply Voltage	±15V	±15V	±15V	±15V
Power Supply Current (maximum)	+0.5, -1mA	+3, –1mA	+0.5, -1mA	+3, –1mA
Digital Supply Voltage	+5V	-	+5V	—
Digital Supply Current (maximum)	+1mA		+1mA	-
PHYSICAL/ENVIRONMENTAL		·	-	
Operating Temperature Range	0 to +70°C	0 to +70°C	0 to +70°C	0 to +70°C
MV-1606M and MVD-409M Operating Temperature Range	_	-55 to +125°C	-55 to +125°C	_
Storage Temperature Range	-65 to +150°C	-65 to +150°C	-65 to +150°C	-65 to +150°C
Package	16-pin DIP	28-pin DIP	16-pin DIP	28-pin DIP

Footnotes:

① For MV-1606M, typical value is 170 Ohms.

 $\circledast\,$ For MV-1606M, maximum value is 400 Ohms.

③ Channel address and inhibit inputs.

③ For MV-808 and MVD-409: to drive from DTL/TTL logic, 1k pull-up resistors to +5V should be used.

⑤ Settling to ±0.025%.

TECHNICAL NOTES

- The transfer accuracy of the MV Series multiplexers depends on both the source resistance and load resistance. For example, with zero source resistance and assuming 500 Ohms maximum channel ON resistance, the load impedance must be at least 5 megohms to achieve 0.01% accuracy. In practice, it is recommended that a load impedance of 10⁸ Ohms or more be used. This is a typical input impedance value for most IC operational amplifiers connected in the follower mode or for IC sample-holds (see DATEL's SHM-1C-1, SHM-LM-2, or SHM-20). Source resistance should be kept as low as possible so that accuracy or settling time are not degraded. Less than 250 Ohms is recommended.
- For differential operation, either two unity-gain buffers or an instrumentation amplifier (such as DATEL's AM-551) is recommended as the output load. To maintain high CMR, source impedance unbalance must be kept to a minimum, and amplifiers with high CMR should be used.
- 3. The maximum analog input overvoltage for the MV series is ±IV_S + 2VI. It should be noted that the logic (channel address) inputs are protected with resistors and clamp diodes but the analog inputs are not. Because the analog inputs are not protected, the low ON resistance is achieved.

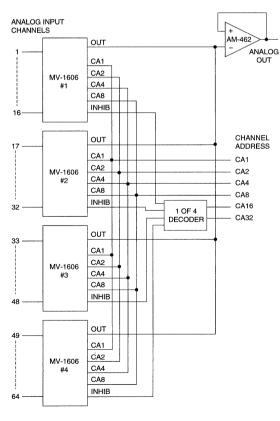


Figure 2. Expansion to 64 Channels

- 4. Channel expansion is accomplished by use of the inhibit input of the multiplexers. To expand the number of channels, use multiple multiplexers with the inhibit inputs connected to a decoder. See Figure 2.
- For the MV-808 and MVD-409, it is recommended that 1k pull-up resistors to the +5V logic supply be used when the logic inputs are driven from DTL or TTL circuits. Only these two models require a +5V logic supply.

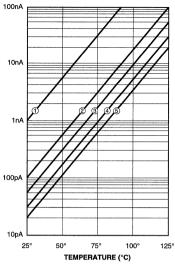
CHANNEL ADDRESSING

MV-808, MVD-807

	,					
	CA 2		MVD-807 Inhibit	MV-808 Inhibit	ON Channel	
х	х	х	0	1	None	
0	0	0	1	0	1	
0	0	1	1	0	2	
0	1	0	1	0	3	
0	1	1	1	0	4	
1	0	0	1	0	5	
1	0	1	1	0	6	
1	1	0	1	0	7	
1	1	1	1	0	8	

MV-1606

WIV-1606						
		CA			ON	
8	4	2	1	Inhibit	Channel	
x	х	х	х	0	None	
0	0	0	0	1	1	
0	0	0	1	1	2	
0	0	1	0	1	3	
0	0	1	1	1	4	
0	1	0	0	1	5	
0	1	0	1	1	6	
0	1	1	0	1	7	
0	1	1	1	1	8	
1	0	0	0	1	9	
1	0	0	1	1	10	
1	0	1	0	1	11	
1	0	1	1	1	12	
1	1	0	0	1	13	
1	1	0	1	1	14	
1	1	1	0	1	15	
1	1	1	1	1	16	


MVD-409

CA2	CA1	Inhibit	ON Channel
х	x	1	None
0	0	0	1
0	1	0	2
1	0	0	3
1	1	0	4

MV/MVD Series

PERFORMANCE GRAPHS

① MV-1606, MVD-807 CHANNEL OFF OUTPUT LEAKAGE

② MV-808 CHANNEL OFF OUTPUT LEAKAGE

- ③ MVD-409 CHANNEL OFF OUTPUT LEAKAGE
- ④ MV-1606, MVD-807 CHANNEL OFF INPUT LEAKAGE

⑤ MV-808, MVD-409 CHANNEL OFF INPUT LEAKAGE

Figure 3. Leakage Current vs. Temperature

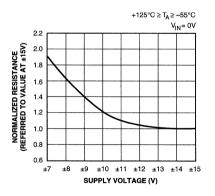


Figure 4. Normalized ON Resistance vs. Supply Voltage

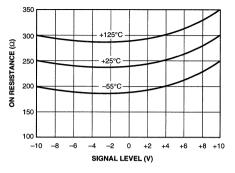


Figure 5. ON Resistance vs. Temperature

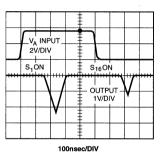


Figure 6. Break-Before-Make Delay (topen)

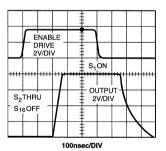


Figure 7. Enable Delay (ton(EN), toff(EN))

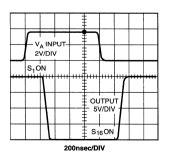
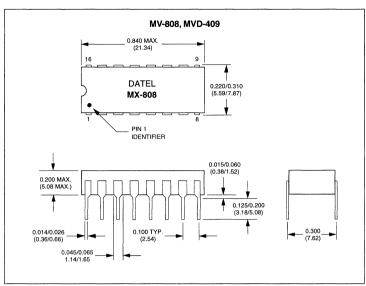
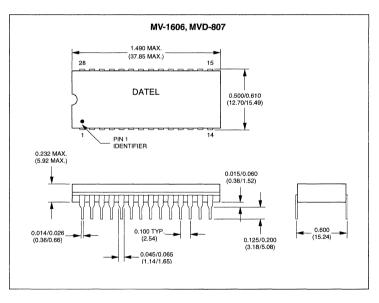




Figure 8. Access Time

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL	CHANNELS	OPERATING TEMP. RANGE
MV-808	8 S.E.	0 to +70°C
MV-1606	16 S.E.	0 to +70°C
MV-1606M	16 S.E.	–55 to +125°C
MVD-409	4 Diff.	0 to +70°C
MVD-409M	4 Diff.	–55 to +125°C
MVD-807	8 Diff.	0 to +70°C

5

MX/MXD Series 4/8/16-Channel, Input Protected CMOS, Analog Multiplexers

FEATURES

- 200kHz sampling rates
- ±0.01% accuracy
- Dielectrically isolated CMOS technology
- Break-before-make switching
- Single-ended or differential inputs
- Overvoltage protection, ±35V
- DTL/TTL/CMOS compatible
- 7.5mW standby power

GENERAL DESCRIPTION

The MX and MXD Series analog multiplexers are 4, 8, and 16channel monolithic devices manufactured with a dielectrically isolated complementary MOS process. The circuits incorporate analog and digital input protection which protects the units from both overvoltage and loss of power. The digital inputs are DTL/TTL/CMOS compatible and address the proper channel by means of a 2, 3, or 4-bit binary code. An inhibit input enables or disables the entire device and thus permits expansion of the number of channels by using several devices together. Another important feature of these multiplexers is the use of break-before-make switching to ensure that no two channels are ever momentarily shorted together.

Transfer accuracies of $\pm 0.01\%$ can be achieved at channel sampling rates up to 200kHz and over $\pm 10V$ signal ranges. These multiplexers are ideal for multichannel data acquisition systems where the multiplexer operates into a high-impedance load such as a sample-hold, buffer amplifier, or instrumentation amplifier.

Power consumption is only 7.5mW at standby and 15mW at 100kHz switching rates. Power supply range is \pm 5V to \pm 20V. The devices are packaged in 16 or 28-pin DIP's and operate over the 0 to \pm 70°C temperature range.

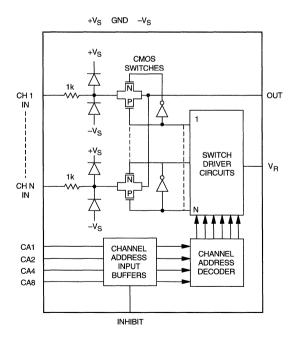


Figure 1. MX Series Functional Block Diagram

5-8

INPUT/OUTPUT CONNECTIONS

	FUN	CTION		FUN	CTION
PIN	MX-808	MXD-409	PIN	MX-808	MXD-409
1	CA1	CA1	16	CA2	CA2
2	INHIBIT	INHIBIT	15	CA4	GND
3	-Vs	-Vs	14	GND	+Vs
4	1 IN	1A IN	13	+Vs	1B IN
5	2 IN	2A IN	12	5 IN	2B IN
6	3 IN	3A IN	11	6 IN	3B IN
7	4 IN	4A IN	10	7 IN	4B IN
8	OUT	A OUT	9	8 IN	B OUT

	FUNCTION			FUN	CTION
PIN	MX-1606	MXD-807	PIN	MX-1606	MXD-807
1	+Vs	+Vs	28	OUT	A OUT
2	N.C.	B OUT	27	-Vs	-Vs
3	N.C.	N.C.	26	8 IN	8A IN
4	16 IN	8B IN	25	7 IN	7A IN
5	15 IN	7B IN	24	6 IN	6A IN
6	14 IN	6B IN	23	5 IN	5A IN
7	13 IN	5B IN	22	4 IN	4A IN
8	12 IN	4B IN	21	3 IN	3A IN
9	11 IN	3B IN	20	2 IN	2A IN
10	10 IN	2B IN	19	1 IN	1A IN
11	9 IN	1B IN	18	INHIBIT	INHIBIT
12	GND	GND	17	CA1	CA1
13	VR	VR	16	CA2	CA2
14	CA8	N.C.	15	CA4	CA4
NOTE	ES: CA = Channe	el address \	/ _S = Su	pply voltage	

V_R = Reference voltage N.C. = No connection

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	MX-808	MX-1606	MXD-409	MXD-807
Voltage Between Supply Pins	40V	40V	40V	40V
V _{REF} to Ground, V + to Ground	+20V	+20V	+20V	+20V
nput Overvoltage				
Digital	±IV _S + 4VI	±IV _S + 4VI	$\pm IV_{S} + 4VI$	±lVs + 4VI
Analog	±IV _S + 20VI	±IV _S + 20VI	$\pm IV_{S} + 20VI$	±IV _S + 20VI
Power Dissipation	725mW	1200mW	725mW	1200mW

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C, ±15V supplies and R source <1k, unless otherwise noted.)

ANALOG INPUTS	MX-808	MX-1606	MXD-409	MXD-807
Number of Channels	8	16	4	8
Туре	Single-ended	Single-ended	Differential	Differential
nput Voltage Range	±15V	±15V	±15V	±15V
Channel ON				
Resistance	1.5kΩ	1.5kΩ	1.5kΩ	1.5kΩ
Resistance Over Temperature (maximum)	2kΩ	2kΩ	2kΩ	2kΩ
Leakage	100pA	100pA	100pA	100pA
Channel OFF				
Input Leakage	30pA	30pA	30pA	30pA
Output Leakage	0.1nA	0.1nA	0.1nA	0.1nA
Input Capacitance	12pF	12pF	12pF	12pF
Output Capacitance	25pF	50pF	12pF	30pF
DIGITAL INPUTS ①				
Logic "0" Threshold (maximum)	+0.8V	+0.8V	+0.8V	+0.8V
Logic "1" Threshold, TTL (minimum) @	+0.0V +4.0V	+0.0V +4.0V	+4.0V	+0.0V +4.0V
Logic 1 Threshold, CMOS (minimum) ③	+4.00	+4.0V +6.0V	+4.0V	+4.0V +6.0V
Input Current (maximum, high or low)	5uA	+0.0V 5uA	5uA	5µA
Channel Address Coding	3 bits	4 bits	2 bits	3 bits
Channel Inhibit (all channels OFF)	Logic "0"	Logic "0"	Logic "0"	Logic "0"
	Logic U	Logic U	Logic U	LOGIC U
PERFORMANCE				
Transfer Error (maximum)	±0.01%	±0.01%	±0.01%	±0.01%
Crosstalk (1kHz)	0.005%	0.005%	0.005%	0.005%
Common Mode Rejection	_	—	120dB	120dB
Settling Time (20V to ±0.1%) ④	1.2µs	1.2µs	1.2µs	1.2µs
Settling Time (20V to ±0.01%) ④	3.5µs	3.5µs	3.5µs	3.5µs
furn ON Time	500ns	500ns	500ns	500ns
Turn OFF Time	300ns	300ns	300ns	300ns
nhibit/Enable Delay	300ns	300ns	300ns	300ns
Break-Before-Make Delay	80ns	80ns	80ns	80ns
POWER REQUIREMENTS				
Rated Power Supply Voltage	±15V	±15V	±15V	±15V
Power Supply Voltage Range	±5 to ±20V	±5 to ±20V	±5 to ±20V	±5 to ±20V
Quiescent Current (maximum)	+2, -1mA	+2, -1mA	+2, -1mA	+2, -1mA
Power Consumption (10kHz sampling)	7.5mW	7.5mW	7.5mW	7.5mW
	7.587	7.500		/.5////
PHYSICAL/ENVIRONMENTAL				
Operating Temperature Range	0 to +70°C	0 to +70°C	0 to +70°C	0 to +70°C
Storage Temperature Range	-65 to +150°C	-65 to +150°C	-65 to +150°C	-65 to +150°C
Package	16-pin DIP	28-pin DIP	16-pin DIP	28-pin DIP

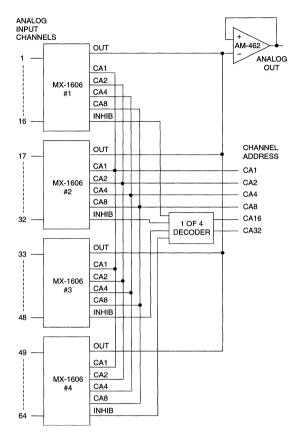
Footnotes:

① The digital inputs are the channel address inputs and the inhibit input.

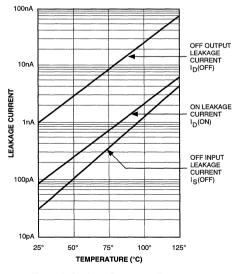
② To drive from DTL/TTL circuits, 1k pull-up resistors to +5V are recommended. With models MX-1606 and MXD-807, pin 13 should be left open.

③ For a +6.0V threshold with models MX-1606 and MXD-807, pin 13 is connected to +10V.

Twith a load impedance of >100 megohms in parallel with 2pF.


5

MX/MXD Series



TECHNICAL NOTES

- The transfer accuracy of these multiplexers depends on both the source resistance and the load resistance. With zero source resistance, and assuming 2k Ohms maximum channel ON resistance, the load impedance should be at least 20 megohms to achieve 0.01% accuracy. In practice, it is recommended that a load impedance of at least 100 megohms be used to minimize errors. This can be done by using a good high-gain, high-CMR operational amplifier (such as DATEL's AM 462) as a buffer. Source resistance should be kept as low as possible so that accuracy is not affected; less than 1k Ohms is recommended. Higher source resistance, in addition to affecting accuracy, will degrade the settling time of the multiplexer.
- For differential operation, two buffer amplifiers or a good quality instrumentation amplifier should be used. To maintain high CMR, source impedance unbalance should be kept to a minimum, the highest possible load impedance should be used, and an amplifier with high CMR should be chosen.
- Channel expansion is accomplished using the inhibit input of the multiplexer. A logic "0" on this input disables the multiplexer. The expansion technique shown in Figure 2 applies to all of the multiplexer models.
- 4. The reference terminal (V_R) sets the noise immunity level of the input logic for models MX-1606 and MXD-807. In most cases, this terminal is left open (TTL inputs). For higher level inputs (+6V minimum), this terminal should be connected to +10V. When addressing from DTL/TTL logic, use 1k Ohm pull-up resistors to the +5V supply.

Figure 3. Leakage Current vs. Temperature

CHANNEL ADDRESSING

	MX-1606					
8	C 4	A 2	1	Inhibit	ON Channel	
х	х	х	х	0	None	
0	0	0	0	1	1	
0	0	0	1	1	2	
0	0	1	0	1	3	
0	0	1	1	1	4	
0	1	0	0	1	5	
0	1	0	1	1	6	
0	1	1	0	1	7	
0	1	1	1	1	8	
1	0	0	0	1	9	
1	0	0	1	1	10	
1	0	1	0	1	11	
1	0	1	1	1	12	
1	1	0	0	1	13	
1	1	0	1	1	14	
1	1	1	0	1	15	
1	1	1	1	1	16	

M	IX-	80	8.	м	X	D-	80	7

4	CA 2		Inhibit	ON Channel		
х	х	х	0	None		
0	0	0	1	1		
0	0	1	1	2		
0	1	0	1	3		
0	1	1	1	4		
1	0	0	1	5		
1	0	1	1	6		
1	1	0	1	7		
1	1	1	1	8		
			1	1		

	MXD-409						
2	:А 1	Inhibit	ON Channel				
x	х	0	None				
0	0	1	1				
0	1	1	2				
1	0	1	3				
1	1	1	4				

5-10 DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For immediate assistance 800-233-2765

PERFORMANCE GRAPHS

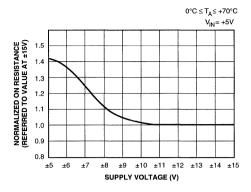


Figure 4. Normalized ON Resistance vs. Supply Voltage

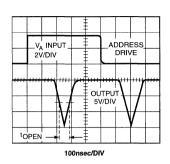


Figure 6. Break-Before-Make Delay (topen)

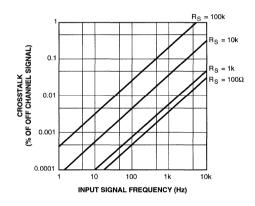


Figure 5. Crosstalk vs. Frequency of Input Signal

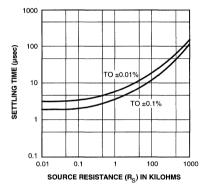
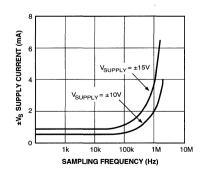
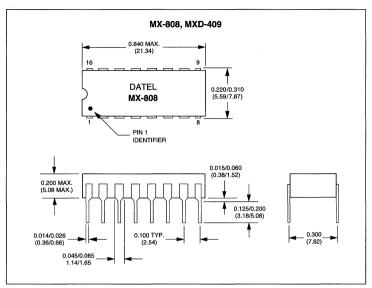


Figure 7. Settling Time vs. Source Resistance (20V Step)




Figure 8. Supply Current vs. Sampling Frequency

MX/MXD Series

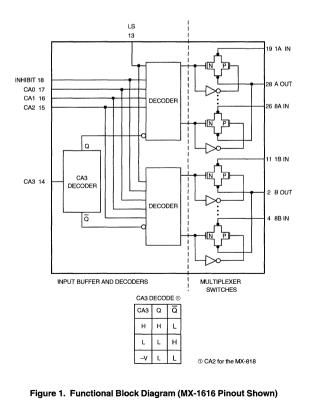
MECHANICAL DIMENSIONS

INCHES (mm)

ORDERING INFORMATION

MODEL	CHANNELS	OPERATING TEMP. RANGE
MX-808	8 S.E.	0 to +70°C
MX-1606	16 S.E.	0 to +70°C
MXD-409	4 Diff.	0 to +70°C
MXD-807	8 Diff.	0 to +70°C

MX-1616, MX-818 High-Speed, CMOS, Programmable Analog Multiplexers


FEATURES

- 800 nanoseconds settling time to ±0.01%
- Programmable SE or differential input modes
- Break-before-make switching
- Dielectrically isolated CMOS technology
- TTL/CMOS compatible channel addressing

GENERAL DESCRIPTION

The MX-1616 and MX-818 are high-speed, high-performance analog multiplexers manufactured with a dielectrically isolated CMOS process. Both devices achieve transfer accuracies of $\pm 0.01\%$ at channel sampling rates of up to 1.25MHz over $\pm 10V$ signal ranges. These multiplexers are ideal for high-speed, multichannel data acquisition systems where the multiplexer operates into a high-impedance load such as a sample-hold, buffer amplifier or instrumentation amplifier.

A unique feature of these circuits is the ability of the user to program their inputs for either single-ended or differential operation. The MX-1616 is user programmable either as a single-ended 16-channel or as a differential 8-channel multiplexer while the MX-818 is user programmable either as a single-ended 8-channel or as a differential 4-channel multiplexer.

Digital inputs are user selectable for either TTL or CMOS compatibility. The proper channel is addressed by means of a 3 or 4-bit binary word. An inhibit function enables or disables the entire device, permitting expansion of the number of channels by using several devices together. Another important feature of these devices is the use of break-before-make switching to ensure that no two channels are ever momentarily shorted together.

These multiplexers are packaged in 18 and 28-pin ceramic DIP's and operate over the 0 to $+70^{\circ}$ C operating temperature range.

INP	υτ/οι	ITPUT	CONNECTIONS
-----	-------	-------	-------------

M	X-1	61	6

PIN FUN 1 +Vs 2 B O 3 N.C	UT	PIN 28 27	FUNCTION A OUT
2 BO	UT		
1 1	-	27	V
3 N.C			–Vs
		26	8A IN
4 8BI	IN	25	7A IN
5 7BI	IN	24	6A IN
6 6BI	IN	23	5A IN
7 5BI	IN	22	4A IN
8 4BI	IN	21	3A IN
9 3BI	IN	20	2A IN
10 2BI	IN	19	1A IN
11 1BI	IN	18	INHIBIT
12 GNI	D	17	CA0
13 LS		16	CA1
14 CA3	3	15	CA2

	MX-818						
PIN	FUNCTION	PIN	FUNCTION				
1	+V _S	18	A OUT				
2	B OUT	17	-Vs				
3	4B IN	16	4A IN				
4	3B IN	15	3A IN				
5	2B IN	14	2A IN				
6	1B IN	13	1A IN				
7	GND	12	INHIBIT				
8	LS	11	CA0				
9	CA2	10	CA1				
NOT	ES: CA = Channel address	LS =	Logic select				

V_S = Supply voltage N.C. =

N.C. = No connection

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	MX-1616C	MX-818C
Voltage Between Supply Pins Analog Input Voltage Digital Input Voltage:	33Vdc ±IV _S ± 2VI	33Vdc ±IV _S ± 2VI
ΠL ①	-6V < Logic "1" < +6V	-6V < Logic "1" < +6V
CMOS @	$CA3 = \pm V_S \pm 2V +V_S + 2V GND - 2V$	$CA2 = \pm IV_S \pm 2VI +V_S + 2V GND - 2V$
Power Dissipation	1200mW	725mW

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C and ±15V supplies, unless otherwise noted.)

ANALOG INPUTS	MX-1616C	MX-818C
Number of Channels	16 single-ended 8 differential	8 single-ended 4 differential
Input Voltage Range Channel ON	±15V	±15V
Resistance (max.) 3	750Ω	750Ω
Resistance Over Temp. (max.) ③ Leakage	1kΩ 40pA	1kΩ 15pA
Channel OFF	40pA	тэрж
Input Leakage	10pA	10pA
Output Leakage	35pA	15pA
Input Capacitance (max.) Output Capacitance (max.)	10pF 25pF	5pF 10pF
	2001	Торг
DIGITAL INPUTS 10 2		F
Logic "0" Threshold (max.)	.0.9\/	10.91/
TTL CMOS	+0.8V +0.3V _{DD}	+0.8V +0.3V _{DD}
Logic "1" Threshold (min.)	10.0400	10.0100
TTL	+2.4V	+2.4V
CMOS	+0.7V _{DD}	+0.7V _{DD}
Input Leakage Current (max.)	1	1
High Low	1μΑ 25μΑ	1μΑ 20μΑ
Channel Address Coding	4 bits	3 bits
Channel Inhibit		
(all channels OFF)	Logic "0"	Logic "0"
PERFORMANCE		
Transfer Error (max.) Settling Time	±0.01%	±0.01%
10V Step to ±0.1%	250ns	250ns
10V Step to ±0.01% Access Time (max.)	800ns	800ns 130ns @
Enable Delay ON (max.)	130ns ④ 175ns	175ns
Enable Delay OFF (max.)	175ns	175ns
Break-Before-Make Delay	20ns	20ns
POWER REQUIREMENTS		• • • • • • • • • • • • • • • • • • •
Rated Power Supply Voltage	±15V	±15V
Quiescent Current (max.) Power Dissipation (max.)	±30mA 900mW	±18mA 540mW
PHYSICAL/ENVIRONMENT	AL	
Operating Temperature Range	0 to +70°C	0 to +70°C
Storage Temperature Range	-65 to +155°C	-65 to +155°C
Package	28-pin DIP	18-pin DIP

Footnotes:

- For TTL compatibility, the LS (logic select) pin (MX-1616 pin 13, MX-818 pin 8) is grounded or left open.
- ② For CMOS compatibility, the LS (logic select) pin (MX-1616 pin 13, MX-818 pin 8) is tied to the system logic supply (+V_{DD}).
- ③ Vin = ±10V, lout = −100µA
- ④ 225nsec maximum at full rated operating temperature.

TECHNICAL NOTES

- 1. The transfer accuracy of the MX-1616 and MX-818 depends upon both the source and the load resistances. With zero source resistance and assuming $1k\Omega$ maximum channel ON resistance, the load impedance must be at least $10M\Omega$ to achieve 0.01% accuracy. This can be done by using a good high-gain, high-CMR operational amplifier as a buffer. Source resistance should be kept as low as possible so that accuracy and settling time are not degraded. Less than 500 Ω is recommended.
- For differential operation, two buffer amplifiers or a good instrumentation amplifier should be used. To maintain high CMR, source impedance unbalance should be kept to a minimum, the highest possible load impedance should be used and an amplifier with high CMR should be chosen.
- 3. These devices have the added feature of being programmable for single-ended or differential operation. The MX-1616 is user programmed for single-ended 16-channel operation by connecting A OUT (pin 28) to B OUT (pin 2) and using CA3 (pin 14) as a digital address input. To program the MX-1616 for differential 8-channel operation, CA3 (pin 14) is simply connected to -Vs (pin 27). The MX-818 may be programmed as a single-ended 8-channel multiplexer by connecting A OUT (pin 18) to B OUT (pin 2) and using CA2 (pin 9) as a digital input address, or as a differential 4-channel multiplexer by connecting CA2 (pin 9) to -Vs (pin 17). Refer to the truth tables for channel addressing.
- Both devices are selectable for either TTL or CMOS compatibility. For TTL compatibility, the LS (logic select) pin (MX-1616 pin 13, MX-818 pin 8) is left open or grounded. For CMOS compatibility, the LS pin should be connected to the system logic supply (+V_{DD}).
- Channel expansion is accomplished by the use of the inhibit input of the multiplexers. To expand the number of channels, use multiple multiplexers with the inhibit inputs connected to a decoder.

CHANNEL ADDRESSING

MX-1616 USED AS 16-CHANNEL MULTIPLEXER

USE CA3 AS A DIGITAL ADDRESS INPUT					ON CHA	NNEL TO
3	2	1	0	Inhibit	Output A	Output B
x	х	х	х	0	None	None
0	0	0	0	1	1A	
0	0	0	1	1	2A	
0	0	1	0	1	ЗA	
0	0	1	1	1	4A	
0	1	0	0	1	5A	
0	1	0	1	1	6A	
0	1	1	0	1	7A	_
0	1	1	1	1	8A	
1	0	0	0	· 1	_	1B
1	0	0	1	1	_	2B
1	0	1	0	1	_	3B
1	0	1	1	1		4B
1	1	0	0	1	—	5B
1	1	0	1	1		6B
1	1	1	0	1		7B
1	1	1	1	1	—	8B

MX-1616 USED AS DUAL 8-CHANNEL MULTIPLEXER

		NECT C		ON CHAN	NNEL TO
2	1	0	Inhibit	Output A	Output B
X	Х	х	0	None	None
0	0	0	1	1A	1B
0	0	1	1	2A	2B
0	1	0	1	ЗA	3B
0	1	1	1	4A	4B
1	0	0	1	5A	5B
1	0	1	1	6A	6B
1	1	0	1	7A	7B
1	1	1	1	8A	8B

MX-818 USED AS 8-CHANNEL MULTIPLEXER

U		A2 AS A DRESS I	DIGITAL NPUT	ON CHANNEL TO		
2	1	0	Inhibit	Output A	Output B	
X	Х	x	0	None	None	
0	0	0	1	1A		
0	0	1	1	2A	—	
0	1	0	1	ЗA		
0	1	1	1	4A		
1	0	0	1	—	1B	
1	0	1	1	_	2B	
1	1	0	1		3B	
1	1	1	1		4B	

MX-818 USED AS DUAL 4-CHANNEL MULTIPLEXER

CONNECT CA2 TO -V SUPPLY			ON CHAP	NNEL TO
1	0	Inhibit	Output A	Output B
х	х	0	None	None
0	0	1	1A	1B
0	1	1	2A	2B
1	0	1	ЗA	ЗB
1	1	1	4A	4B

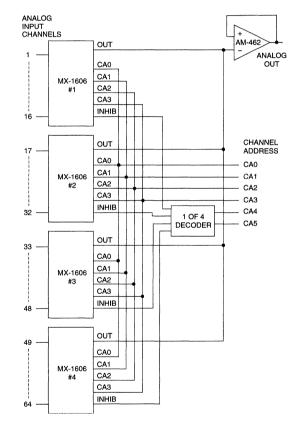
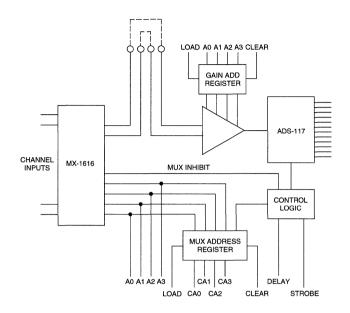
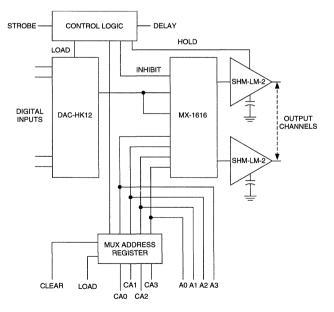
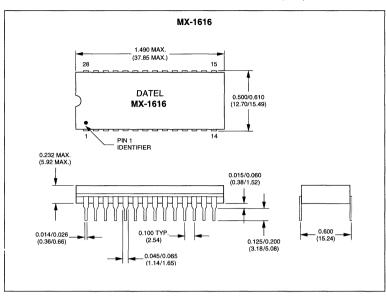
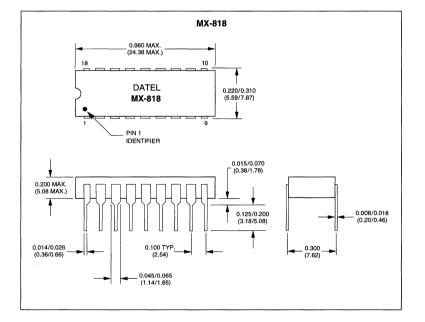



Figure 2. Expansion to 64 Channels


MX-1616, MX-818

APPLICATIONS




NOTE: This application diagram shows a high-speed data acquisition system with 8 differential inputs and 12-bit resolution that utilizes the MX-1616. If the control logic is timed so that the sampling A/D section is converting one analog value while the mux-amplifier section is allowed to settle to the next input value, throughput rates approaching 1MHz can be achieved. The MX-1616 is used with DATEL's ADS-117, a 12-bit sampling A/D with a 2MHz conversion rate.

NOTE: The switches in a CMOS multiplexer will conduct equally well in either direction, making it feasible to use them as single input-selected multiple output switches. The circuit shown is capable of sample rates of 78kHz for inputs of ±10V. The MX-1616 is used with DATEL's DAC-HK12, a 12-bit hybrid D/A with input registers and the SHM-LM-2, a low-cost monolithic sample-hold.

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL	CHANNELS	OPERATING TEMP. RANGE
MX-818C	8 S.E. or 4 Diff.	0 to +70°C
MX-1616C	16 S.E. or 8 Diff.	0 to +70°C

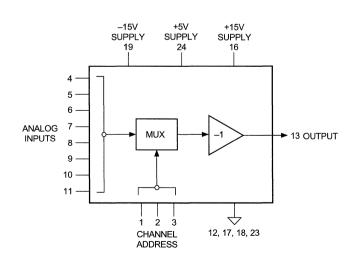
MX-826 Precision, High-Speed 8-Channel, Analog Multiplexers

FEATURES

- 170ns maximum settling time to ±0.1%
- 225ns maximum settling time to ±0.01%
- 400ns maximum settling time to ±0.003%
- 8 Channels single-ended inputs
- 395mW power dissipation
- Small, 24-pin DDIP package

GENERAL DESCRIPTION

The MX-826 is a precision, high-speed multiplexer characterized for 10, 12 and 14-bit applications. The performance benchmarks are its 225 nanoseconds maximum settling time to $\pm 0.01\%$ accuracy and its unprecedented specification of accuracy to $\pm 0.003\%$.


The MX-826 provides eight single-ended inputs. Channel addressing is done by a three-bit binary code and breakbefore-make switching assures that no two channels are ever momentarily shorted together.

The MX-826 operates from \pm 15V and +5V power supplies. Models are available in two operating temperature ranges: 0 to +70°C and -55 to +125°C. MIL-STD-883 screening is optional.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	AO	24	+5V SUPPLY
2	A1	23	GROUND
3	A2	22	N.C.
4	IN1	21	N.C.
5	IN2	20	N.C.
6	IN3	19	-15V SUPPLY
7	IN4	18	GROUND
8	IN5	17	GROUND
9	IN6	16	+15V SUPPLY
10	IN7	15	N.C.
11	IN8	14	N.C.
12	GROUND	13	OUTPUT

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS		
+15V Supply, Pin 16	0 to +18V		
-15V Supply, Pin 19	0 to -18V		
+5V Supply, Pin 24	–0.5 to +7V		
Digital Inputs, Pins 1, 2, 3	-0.3 to +5.5V		
Analog Inputs, Pins 4-11	-15 to +15V		
Lead Temperature (10s)	300°C		
Short Circuit to Ground , Pin 13	Continuous		

FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range and over the operating power supply range unless otherwise specified.)

INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range Digital Input, Logic Levels	±10	±10.5	-	Volts
Logic 1 Logic 0 Logic Loading	+2.0	_	+0.8	Volts Volts
Logic 1 Logic 0	-	-	+10 -10	μΑ μΑ
OUTPUTS				
Output Range Output Current Stable Capacitive Load Output Impedance DC	±10.0 ±15 100 —	±10.5 — 0.1	 	Volts mA pF Ohms
PERFORMANCE				
Gain	- 1	-1	—	V/V
Gain Error, 25°C Gain Tempco	-	-	±0.03	%FS
-55 to +125°C	_	±0.5	±5	ppm/°C
Offset, 25°C	_	±0.1	±0.5	mV
Offset Voltage Drift		<5	±15	µV/°C
Slew Rate	±250	±300	-	V/μs
Cross Talk				
100kHz	-	-90	-83	dB
1MHz	-	-80	-75	dB
Bandwidth		0.5		
3dB Small Signal Full Power	8	8.5 4.5		MHz MHz
Input Impedance	2.45	4.5	2.55	kΩ
Output Settling Time	2.45	2.5	2.00	N22
(10V step, +25°C) 500Ω Load				
±0.1% 10 Bits	_	100	170	ns
±0.01% 12 Bits	-	150	225	ns
±0.003% 14 Bits	-	300	400	ns
(20V step, + 25°C) 1kΩ Load				
±0.1% 10 Bits	-	150	200	ns
±0.01% 12 Bits	-	200	300	ns
±0.003% 14 Bits	-	600	720	ns
Switching Characteristics		45	05	
Break-Before-Make Delay Turn On Time	8	15 20	25 50	ns
Turn Off Time		20	50	ns ns
Harmonic Distortion		20		110
DC to 500kHz, 10Vp-p	_	-90	80	dB
Signal-to-Noise Ratio				
With Distortion	-	72	69	dB
Without Distortion	-	80	75	dB

POWER REQUIREMENTS	MIN	ТҮР	МАХ	UNITS
Range				
+15V Supply	+14.5	+15	+15.5	Volts
-15V Supply	-14.5	-15	-15.5	Volts
+5V Supply	+4.75	+5	+5.25	Volts
Current (Quiescent)				
+15V Supply		+13	+21	mA
-15V Supply	- 1	-13	-21	mA
+5V Supply	-	<1	+1	mA
Power Supply Rejection Ratio	86	-	- 1	dB
Power Dissipation	-	395	575	mW
PHYSICAL/ENVIRONMMEN	TAL	L		
Operating Temp. Range, Case				
MC Model	0	-	+70	°C
MM Model	-55	_	+125	°C
Storage Temp. Range	-65	-	+150	°C

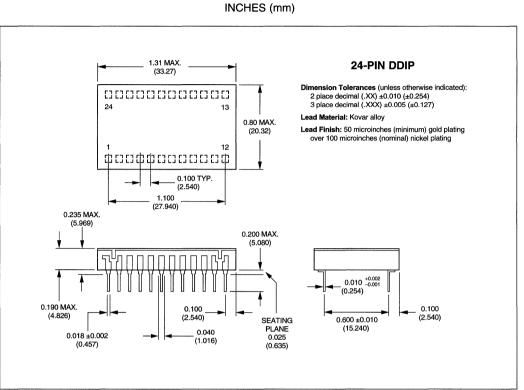
TECHNICAL NOTES

Package Type Weight

1. Bypass the $\pm 15V$ and +5V power supplies with a 1µF, 25V tantalum electrolytic capacitors in parallel with a 0.1µF ceramic capacitors.

24-pin, metal-sealed, ceramic DDIP

0.42 oz. (12 grams)


- Analog signals up to ±15V may be present while the MUX power supplies are off.
- The absence of an RON specification or output leakage specification is related to the architecture of the switching network. The inputs see a constant 2.5k Ohm input impedance whether the channel is on or off.
- Typical recovery time from an overvoltage condition of >±3V is approximately 200 nanoseconds from a negative overdrive and 700 nanoseconds from a positive overdrive.
- 5. Double-level multiplexing may be used to provide up to 64 channels (nine MX-826's required).

On	MUX Address				
Channel	A2	A1	A0		
1	0	0	0		
2	0	0	1		
3	0	1	0		
4	0	1	1		
5	1	0	0		
6	1	0	1		
7	1	1	0		
8	1	1	1		

Table 1. Channel Addressing

5

D[°]**DATE**L[°]

MECHANICAL DIMENSIONS

ORDERING INFORMATION

MODEL NO.	CHANNELS	OPER. TEMP. RANGE
MX-826MC	8SE	0 to +70°C
MX-826MM	8SE	-55 to +125°C
MX-826/883	8SE	-55 to +125°C

Precision, Higher-Speed 4-Channel, Analog Multiplexers

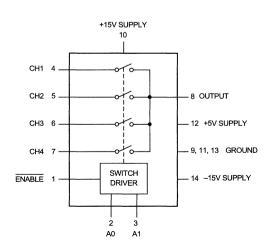
FEATURES

- 50ns settling time to ±0.01%
- 70ns settling time to ±0.003%
- 100ns settling time to ±0.001%
- 4 Channels, single-ended inputs
- 100mW power dissipation
- Small, 14-pin DIP package

GENERAL DESCRIPTION

The MX-850 is a precision, high-speed multiplexer characterized for 10, 12, 14 and 16-bit applications. The performance benchmarks are its 50 nanosecond maximum settling time to $\pm 0.01\%$ accuracy and its unprecedented $\pm 0.001\%$ accuracy specification.

Packaged in a miniature, 14-pin, ceramic DIP, the MX-850 operates from \pm 15V and +5V supplies and consumes a maximum 270mW. Models are available for either 0 to +70°C or -55 to +125°C operation.


Table 1. Channel Addressing

ON		MUX ADDRES	S
CHANNEL	EN	A 1	A 0
Disable	1	х	х
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	ENABLE
2	AO
3	A1
4	CH1 INPUT
5	CH2 INPUT
6	CH3 INPUT
7	CH4 INPUT
8	OUTPUT
9	GROUND
10	+15V SUPPLY
11	GROUND
12	+5V SUPPLY
13	GROUND
14	-15V SUPPLY

5

DATEL

ABSOLUTE MAXIMUM RATINGS

PARAMETER	LIMITS	UNITS	
+15V Supply, Pin 10	-0.5 to +16.5	Volts	
-15V Supply, Pin 14	+0.5 to -16.5	Volts	
+5V Supply, Pin 12	-0.5 to +7	Volts	
Digital Inputs, Pins 1, 2, 3	-0.5 to +6	Volts	
Analog Inputs, Pins 4, 5, 6, 7	-10.5 to +10.5	Volts	
Analog Input Current	±20	mA	
Lead temperature (10 seconds)	300	°C	
Switching Frequency/Duty Cycle	10/50	MHz/%	

FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range and over the operating power supply range unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Analog Signal Range	±10		_	Volts
On Resistance, +25°C	10	18	90	Ohms
0 to +70°C		10	120	Ohms
–55 to +125°C			140	Ohms
Ron versus Vin		See Fi		Unina
Input Leakage Current (Off)			guic 2	
+25°C	_	±0.02	±0.2	nA
0 to +70°C		10.0L	±10	nA
-55 to +125°C		_	±25	nA
Output Leakage Current (Off)				
+25°C	_	±0.02	±0.2	nA
0 to +70°C	-	_	±20	nA
–55 to +125°C	-		±40	nA
On Channel Leakage Current				
+25°C	-	±0.4	±1	nA
0 to +70°C	-	-	±25	nA
–55 to +125°C	-	-	±35	nA
Channel Input Capacitance				
Off	-	4	6	pF
On	-	10	12	pF
Channel Output Capacitance				
On	-	8	10	pF
Nonlinearity	-		±0.001	%FSR
Large signal bandwidth (-3dB)	80	100	-	MHz
DIGITAL INPUTS		1		
Logic levels				
Logic "1"	+2.0		-	Volts
Logic "0"	-	-	+0.8	Volts
Logic Loading "1"	-	-	+10	μA
Logic Loading "0"	-	-	-10	μA
SWITCHING CHARACTERIS	TICS			
Access Time	_	_	20	ns
Break-Before-Make Delay Time	-	-	10	ns
Enable Delay (On, Off)	-	3	10	ns
Settling Time, 10M Load		l		
10V step to ±0.1%	-	25	30	ns
10V step to ±0.01%	-	40	50	ns
10V step to ±0.003%	-	60	70	ns
10V step to ±0.001%	-	80	100	ns
Settling Time, 5k Load				
10V step to ±0.1%	-	25	30	ns
10V step to ±0.01%		40	50	ns
10V step to ±0.003%	-	60	70	ns
10V step to ±0.001%	-	80	100	ns
Settling Time, 10M Load				
20V step to ±0.1%		30	35	ns
20V step to ±0.01%		50	60	ns
20V step to ±0.003% 20V step to ±0.001%	-	75 100	85 120	ns ns

SWITCHING CHAR. (cont.)	MIN.	TYP.	MAX.	UNITS		
Settling Time, 5k Load						
20V step to ±0.1%	-	30	35	ns		
20V step to ±0.01%	· _	50	60	ns		
20V step to ±0.003%	-	75	85	ns		
20V step to ±0.001%	-	100	120	ns		
Crosstalk ①						
10kHz (20Vp-p)	-	-105	-100	dB		
1MHz (20Vp-p)	- 1	-94	-92	dB		
10MHz (5Vp-p)		76	-71	dB		
20MHz (3Vp-p)	-	-64	62	dB		
POWER REQUIREMENTS						
Power Supply Range						
+15V Supply	+14.5	+15	+15.5	Volts		
-15V Supply	-14.5	-15	-15.5	Volts		
+5V Supply	+4.75	+5	+5.25	Volts		
Power Supply Current,						
Quiescent						
+15V Supply		+3	+4	mA		
-15V Supply	_	-10	-12	mA		
+5V Supply		+3	+3.5	mA		
Power Supply Rejection Ratio	80	90	_	dB		
Power Supply Dissipation,						
Quiescent	1					
+25°C		207	270	mW		
0 to +70°C	_	_	270	mW		
–55 to +125°C	_		280	mW		
Pd versus Frequency		See Fi	gure 4			
PHYSICAL/ENVIRONMENTA	L					
Operating Temp. Range, Case						
MX-850MC	0	_	+70	°C		
MX-850MM	-55	_	+125	°Č		
Storage Temperature Range	-65	_	+150	°Č		
Package Type		in, metal-sea		•		
Weight	.+P	0.1 ounces				
	I		(=			

① See Figures 3a and 3b.

TECHNICAL NOTES

- Proper operation of the MX-850 multiplexer is dependent upon good board layout and connection practices. Bypass supplies as shown in the connection diagrams. Mount bypass capacitors directly to the supply pins whenever possible.
- 2. All grounds pins (9, 11, 13) should be tied together and connected to ground as close to the multiplexer as possible.
- 3. When power is off, current limit input signals on pins 4, 5, 6, and 7 to 20mA. Failure to current limit can cause permanent damage to the device since, when powering up or down it is possible that two switches might be on at the same time. Excessive current (greater than 20mA) will flow from the more positive input to the more negative input, permanently damaging the device. Applications in which the power supply for the multiplexer also powers the signal sources may not require limiting resistors. See Figure 4.

MX-850

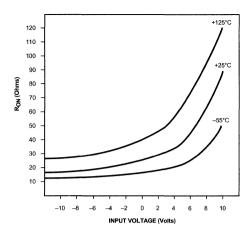


Figure 2. Channel On Resistance Versus Input Voltage

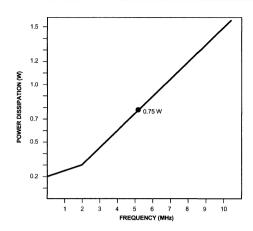


Figure 4. Power Dissipation Versus Switching Frequency

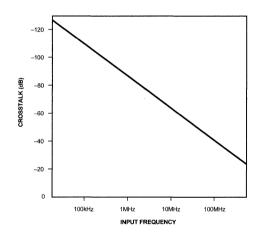


Figure 3a. Small Signal Crosstalk Versus Input Frequency

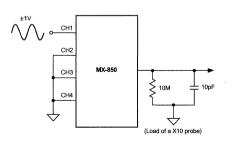


Figure 3b. Crosstalk Test Circuit

CURRENT LIMITING RESISTORS

As noted in Technical Note 3, some current limiting technique must be employed to protect the device. The following lists the suggested resistor values for the current limiting resistors shown in Figure 5.

Input Range	Limiting Resistors
±10V	R = 500Ω
±5V	R = 250Ω
≤±1V	No current limiting needed

Other current limiting circuits can be used, such as a current limited op amp drive, depending upon the application.

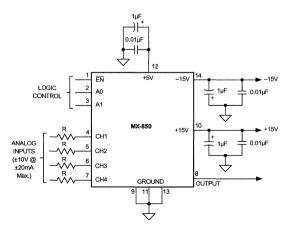
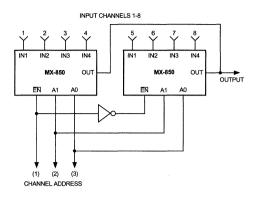
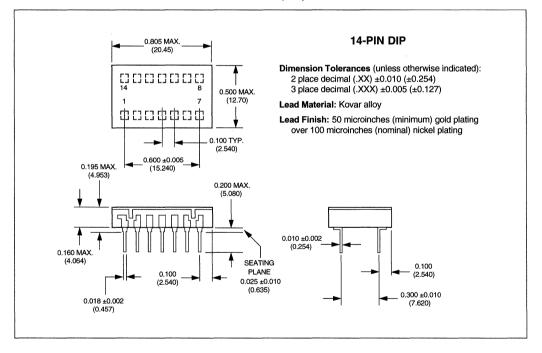



Figure 5. Typical Connections

5

Table 2. 8 Channel Addressing


ON	м	UX ADDRE	ss
CHANNEL	1	2	3
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1

CHANNEL EXPANSION

The MX-850's ENABLE input provides a means of channel expansion. As shown in Figure 6 and in Table 2, multiple multiplexers may be used by using the ENABLE input as an address line.

Figure 6. Cascading Multiple MX-850's

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL	OPERATING TEMP. RANGE
MX-850MC	0 to +70°C
MX-850MM	-55 to +125°C

Digital-to-Analog Converters

Table of Contents

Selection Guide	9	6-1
DAC-HF Series	Ultra-Fast, 8/10/12-Bit D/A Converters	6-3
DAC-HK Series	High-Performance, 12-Bit DAC's with Input Registers	6-7
DAC-HP Series	16-Bit, High-Performance D/A Converters	6-11
DAC-HZ Series	12-Bit, Industry-Standard D/A Converters	6-15

Selection Guide

Model ①	Resolution (Bits)	Settling Time (µsec)	Output	Differential Linearity Error, Max. (LSB)	Integral Linearity Error, Max. (LSB)	Coding	Power Supplies (Volts)	Maximum Power Dissipation (mW)	Page
DAC-HF8B	8	0.025	+5, ±2.5mA	±0.5	±0.5	Bin	±15	750	6-3
DAC-HF10B	10	0.025	+5, ±2.5mA	±0.5	±0.5	Bin	±15	825	6-3
DAC-HF12B	12	0.05	+5, ±2.5mA	±0.5	±0.5	Bin	±15	975	6-3
DAC-HK12B	12	3	+5/10, ±2.5/5/10V	±0.75	±0.5	Bin, 2C	+5, ±15	1000 @	6-7
DAC-HZ12B	12	3	+5/10, ±2.5/5/10V	±0.75	±0.5	CBin	±15	500	6-15
DAC-HZ12D	3-Digit	3	+2.5/5/10V	±0.25	±0.25	CBCD	±15	500	6-15
DAC-HP16B	16	15	+10, ±5/10V	±2	±2	CBin	±15	675 ②	6-11

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated. $\odot\,$ MIL-STD-883 models available for all listed products except DAC-HZ Series.

2 Typical.

For literature or technical assistance

or contact your local DATEL Sales Office or Representative

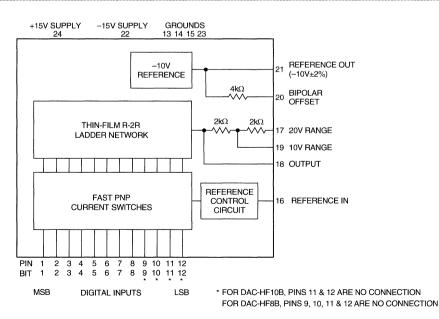
DAC-HF Series Ultra-Fast, 8/10/12-Bit Digital-to-Analog Converters

FEATURES

- 8, 10 and 12-Bit resolutions
- Settling times to 25ns
- ±20ppm/°C max. gain tempco
- Unipolar or bipolar operation
- Current output
- Internal feedback resistors
- High-reliability MIL-STD-883 models

GENERAL DESCRIPTION

The DAC-HF Series of hybrid DAC's are ultra high-speed, current output devices. They incorporate state-of-the-art performance in a miniature package, achieving maximum output settling times of 25ns for the 8 and 10-bit models and 50ns for the 12-bit model. They can be used to drive a resistor load directly for up to $\pm 1V$ output or a fast operational ampifier (such as DATEL's AM-500) for higher voltage outputs with submicrosecond settling times. A tapped feedback resistor and a bipolar offset resistor are included internally to give five programmable output voltage ranges with an external operational amplifier.


The DAC-HF design combines proven hybrid construction techniques with advanced circuit design to realize high-speed current switching. The design incorporates fast PNP current switches driving a low-impedance R-2R thin-film ladder network. The nichrome thin-film resistor network is deposited by electron beam evaporation on a low-capacitance substrate to assure high-speed performance. The resistors are then functionally trimmed by laser for optimum linearity.

INPUT/OUTPUT CONNECTIONS, DAC-HF12B

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 (MSB)	24	+15V SUPPLY
2	BIT 2	23	GROUND
3	BIT 3	22	-15V SUPPLY
4	BIT 4	21	REFERENCE OUT
5	BIT 5	20	BIPOLAR OFFSET
6	BIT 6	19	10V RANGE
7	BIT 7	18	OUTPUT
8	BIT 8	17	20V RANGE
9	BIT 9 *	16	REFERENCE IN
10	BIT 10 *	15	GROUND
11	BIT 11 *	14	GROUND
12	BIT 12 (LSB) *	13	GROUND

* See note in Figure 1

DAC-HF Series

ABSOLUTE MAXIMUM RATINGS, ALL MODELS

+18V
-18V
+15V
300°C

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C and ±15V supplies unless otherwise noted.)

DESCRIPTION	8B 10B 12B
INPUTS	······································
Resolution, Bits	8 10 12
Coding, Unipolar Output	Straight binary
Coding, Bipolar Output	Offset binary
Input Logic Level, Bit ON ("1")	+2.0V to +5.5V at +40µA
Input Logic Level, Bit OFF ("0")	0V to +0.8V at -2.6mA
PERFORMANCE	
Nonlinearity Error, max.	±0.012%
T _{MIN} to T _{MAX}	±0.024%
Differential Nonlinearity Error, max.	±0.012%
T _{MIN} to T _{MAX}	±0.024%
Monotonicity	Guaranteed over oper. temp. range
Gain Tempco, max.	±20ppm/°C
Offset Tempco, Bipolar, max.	±10ppm/°C of FSR @
Zero Tempco, max.	±1.5ppm/°C of FSR 2
Settling Time, ns max. 3	25 25 50
Power Supply Sensitivity	±0.01%/% Supply
OUTPUTS	
Output Current Range, Unipolar	0 to +5mA
Output Current Range, Bipolar	±2.5mA
Output Compliance Voltage	±1.2V
Output Voltage Ranges ①	0 to -5V
	0 to -10V
	±2.5V ±5V
	±10V
Output Resistance	400 Ohms ±20%
Output Capacitance	15pF
Output Leakage Current, All Bits OFF	15nA
POWER REQUIREMENTS	
Supply Voltages	±15V ±0.5V
Positive Quiescent Current, max.	35mA 40mA 50mA
Negative Quiescent Current, max.	15mA 15mA 15mA
PHYSICAL ENVIRONMENTAL	
Operating Temperature Range, Case	0°C to +70°C (BMC)
- F	-55°C to +125°C (BMM, 883)
Storage Temperature Range	-65°C to +150°C
Package Type	24-pin ceramic DDIP
Weight	0.22 ounces (6.3 grams)

Footnotes

① With external operational amplifier.

② FSR is Full Scale Range, or the difference between minimum and maximum output values.

③ Full-scale current change to $\pm 1LSB$ with 400 Ω load.

TECHNICAL NOTES

- Proper operation of the DAC-HF Series converters is dependent on good board layout and connection practices. Bypass supplies as shown in the connection diagrams. Mount bypass capacitors close to the converter, directly to the supply pins where possible.
- 2. Use of a ground plane is particularly important in high-speed D/A converters as it reduces high-frequency noise and aids in decoupling the digital inputs from the analog output. Avoid ground loop problems by connecting all grounds on the board to the ground plane. The remainder of the ground plane should include as much of the circuit board as possible.
- 3. When the converter is configured for voltage output with an external operational amplifier, keep the leads from the converter to the output amplifier as short as possible.
- 4. The high-speed current switching technique used in the DAC-HF Series inherently reduces the amplitude and duration of large transient spikes at the output ("glitches"). The most severe glitches occur at half-scale, the major carry transition from 011 ... 1 to 100 ... 0 or vice versa. At this time, a skewing of the input codes can create a transition state code of 111 ... 1. The duration of the "transition state code" is dependent on the degree of skewing, but its effect is dependent on the speed of the DAC (an ultra-fast DAC will respond to these brief spurious inputs to a greater degree than a slow DAC).

Minimize the effects of input skewing by using a high-speed input register to match input switching times. The input register recommended for use with the DAC-HF is easily implemented with two Texas Instruments SN74S174 hex Dtype flip-flops. This register will reduce glitches to a very low level and ensure fast output settling times.

- 5. Test the DAC-HF using a low-capacitance test probe (such as a 10X probe). Take care to assure the shortest possible connection between probe ground and circuit ground. Long probe ground leads may pick up environmental E.M.I. causing artifacts on the scope display, i.e., signals that do not originate at the unit under test.
- 6. Passive components used with the DAC-HF may be as indicated here: 0.1μ F and 1μ F bypass capacitors should be ceramic type and tantalum type respectively; the 400Ω output load is a $\pm 0.1\%$, $10ppm/^{\circ}$ C, metal-film type; adjustment potentiometers are ceremet types; other resistors may be $\pm 10\%$ carbon composition types.
- 7. Output voltage compliance is ±1.2V to preserve the linearity of the converter. In the bipolar mode, the DAC-HF can be operated with no load to give an output voltage of ±1.0V. In the unipolar mode, the load resistance must be less than 600 Ω to give less than +1.2V output. The specified output currents of 0 to +5mA and ±2.5mA are measured into a short circuit or an operational amplifier summing junction.

CONNECTION AND CALIBRATION

CALIBRATION PROCEDURE

Unipolar Output Current

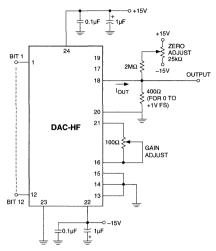
- 1. Connect the converter as shown in Figure 2.
- Set all inputs low and adjust the ZERO ADJUST potentiometer for a reading of 0V at the output.
- Set all inputs high and adjust the GAIN ADJUST potentiometer for a reading of -F.S. + 1LSB (See Table 1).

Bipolar Output Current

- 1. Connect the converter as shown in Figure 3.
- Set all inputs low and adjust the OFFSET ADJUST potentiometer for an output reading of +F.S. (See Table 2).
- 3. Set all inputs high and adjust the GAIN ADJUST potentiometer for an output reading of -F.S. + 1LSB (See Table 2).

UNIPOLAR	INPUT CODING	ANALOG OUTPUT			
SCALE	STRAIGHT BINARY	0 to 1V F.S.	0 to -5V F.S.	0 to -10V F.S.	
-F.S. + 1LSB	1111 1111 1111	+0.9998V	-4.9988V	-9.9976V	
3/4F.S.	1100 0000 0000	+0.7500V	-3.7500V	-7.5000V	
-1/2F.S.	1000 0000 0000	+0.5000V	-2.5000V	-5.0000V	
-1/4F.S.	0100 0000 0000	+2.5000V	-1.2500V	-2.5000V	
-1LSB	0000 0000 0001	+0.0002V	-0.0012V	-0.0024V	
0	0000 0000 0000	0.0000V	0.0000V	0.0000V	

Table 1. 12-Bit Unipolar Output Coding


Table 2.	12-Bit	Bipolar	Output	Coding
TUDIC L.		Dipolai	output	county

BIPOLAR	INPUT CODING	ANALOG OUTPUT			
SCALE	OFFSET BINARY	±0.5V F.S.	±2.5V F.S.	±5V F.S.	±10V F.S.
-F.S. + 1LSB	1111 1111 1111	+0.4998V	-2.4988V	-4.9976V	-9.9951V
-1/2F.S.	1100 0000 0000	+0.1250V	-1.2500V	-2.5000V	-5.0000V
-1LSB	1000 0000 0001	+0.0002V	-0.0012V	-0.0024V	-0.0049V
0	1000 0000 0000	V0000.0	0.0000V	0.0000V	0.0000V
+1/2F.S.	0100 0000 0000	-0.1250V	+1.2500V	+2.5000V	+5.0000V
+F.S 1LSB	0000 0000 0001	0.4998V	+2.4988V	+4.9976V	+9.9951V
+F.S.	0000 0000 0000	-0.5000V	+2.5000V	+5.0000V	+10.0000V

Table 3. Programmable Outp	out Range Pin Connections

OUTPUT VOLTAGE RANGE	FEEDBACK CONNECTIONS	CONNECT THESE PINS TOGETHER
0 to –5V	PIN 19	PIN 17 to PIN 18 PIN 20 to PIN 23
0 to -10V	PIN 19	PIN 20 to PIN 23
±2.5V	PIN 19	PIN 17 to PIN 18 PIN 20 to PIN 18
±5V	PIN 19	PIN 20 to PIN 18
±10V	PIN 17	PIN 20 to PIN 18

In all programmable output ranges, pin 18 connects to external operational amplifier inverting input.

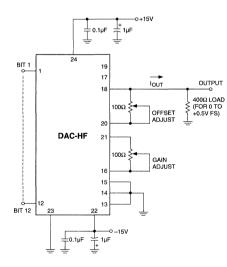
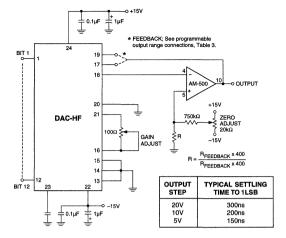
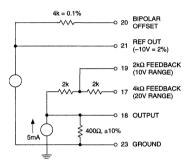
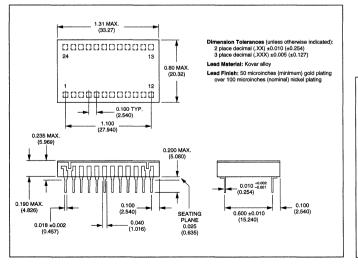
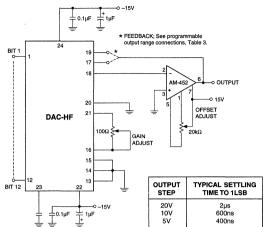



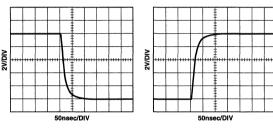
Figure 3. Bipolar Current Output Connections

DAC-HF Series

APPLICATIONS

Figure 4. Unipolar Ultra-Fast Voltage Output Circuit


Figure 6. Equivalent Output Circuit

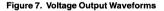

MECHANICAL DIMENSIONS INCHES (mm)

Figure 5. Unipolar Fast Voltage Output Circuit

DAC-HF with AM-500, ±5V output full scale (10V) step

ORDERING INFORMATION

MODEL	OPERATING TEMP. RANGE	BITS
DAC-HF8BMC	0 to +70°C	8
DAC-HF8BMM	–55 to +125°C	8
DAC-HF8/883 (1)	–55 to +125°C	8
DAC-HF10BMC	0 to +70°C	10
DAC-HF10BMM	–55 to +125°C	10
DAC-HF10/883 (1)	–55 to +125°C	10
DAC-HF12BMC	0 to +70°C	12
DAC-HF12BMM	–55 to +125°C	12
DAC-HF12/883 ①	–55 to +125°C	12
① Contact DATEL for 88	3 product specification.	

DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For immediate assistance 800-233-2765

6-6

DAC-HK Series

High-Performance, 12-Bit DAC's with Input Registers

FEATURES

- 12-Bit resolution
- Integral nonlinearity error ±1/2LSB, max.
- Differential nonlinearity error ±3/4LSB, max.
- MIL-STD-883 high-reliability versions available
- Input register
- 3µs fast settling time
- · Guaranteed monotonicity over full temperature range

GENERAL DESCRIPTION

The DAC-HK Series hybrid D/A converters are highperformance 12-bit devices with a fast settling voltage output. They incorporate a level-controlled input storage register and are specifically designed for systems applications such as data bus interfacing with computers. When the "load" input is high, data in the storage register is held, and when the load input is low, data is transferred through to the DAC. There are two basic models available by coding option: binary and two's complement. The output voltage ranges are externally pinprogrammable and include: 0 to +5V, 0 to +10V, ±2.5V, ±5V and ±10V.

The DAC-HK Series contains a precision zener reference circuit. This eliminates code-dependent ground currents by routing current from the positive supply to the internal ground node as determined by the R-2R ladder network. The internal feedback resistors for the on-board amplifier track the ladder network resistors, enhancing temperature performance. The excellent tracking of the resistors results in a differential nonlinearity tempco of $\pm 2ppm/^{\circ}C$ maximum. The temperature coefficient of gain is $\pm 20ppm/^{\circ}C$ maximum, and the tempco of zero is $\pm 5ppm/^{\circ}C$ maximum.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 (MSB)	24	REFERENCE OUT
2	BIT 2	23	GAIN ADJUST
3	BIT 3	22	+15V SUPPLY
4	BIT 4	21	GROUND
5	BIT 5	20	SUMMING JUNCTION
6	BIT 6	19	20V RANGE
7	BIT 7	18	10V RANGE
8	BIT 8	17	BIPOLAR OFFSET
9	BIT 9	16	LOAD
10	BIT 10	15	VOLTAGE OUTPUT
11	BIT 11	14	-15V SUPPLY
12	BIT 12 (LSB)	13	+5V SUPPLY

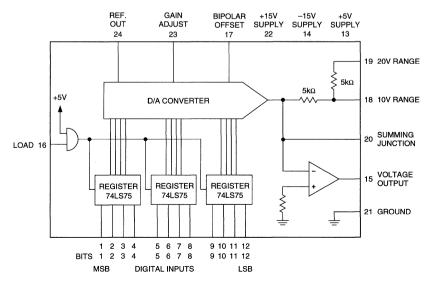


Figure 1. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

+18V
–18V
+5.25V
+5.5V
±20mA
300°C

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C and ±15V and +5V supplies unless otherwise noted.)

INPUTS	
Resolution	12 bits
Coding, Unipolar Output	Straight binary
Coding, Bipolar Output	Offset binary, two's complement 1
Input Logic Level, Bit ON ("1")	+2.0V to +5.5V
Input Logic Level, Bit OFF ("0")	0V to +0.8V
Logic Loading	1 LSTTL load
Load Input @	High ("1") = hold data
	Low ("0") = transfer data
Load Input Loading	3 LSTTL loads
PERFORMANCE @	
Nonlinearity Error, max.	±1/2LSB
Differential Nonlinearity Error, max.	±3/4LSB
Gain Error, Before Trimming	±0.1% ^③
Zero Error, Before Trimming	±0.1% of FSR 3
Gain Tempco, max.	±20ppm/°C
Zero Tempco, Unipolar, max.	±5ppm/°C of FSR
Offset Tempco, Bipolar, max.	±10ppm/°C of FSR
Diff. Nonlinearity Tempco, max.	±2ppm/°C of FSR
Monotonicity	Guaranteed over temperature
Settling Time, 5V Change	Зµз
Settling Time, 10V Change	3µs
Settling Time, 20V Change	4µs
Settling Time, 1LSB Change	800ns
Slew Rate	±20V/µs
Power Supply Rejection	±0.002%FSR/%
OUTPUTS	
Output Voltage Ranges, Unipolar (5)	0 to +5V, 0 to +10V
Output Voltage Ranges, Bipolar (5)	±2.5V
	±5V
	±10V
Output Current	±5mA min.
Output Impedance	0.05 Ohm
POWER REQUIREMENTS	· · · · · · · · · · · · · · · · · · ·
Power Supply Voltages [©]	+15V, ±0.5V at 15mA
	-15V, ±0.5V at 30mA
	+5V, ±0.25V at 65mA
PHYSICAL ENVIRONMENTAL	
Operating Temperature Range, Case	0°C to +70°C (BGC, BMC)
	-55°C to +125°C (BMM, 883)
Storage Temperature Range	-65°C to +125°C
Package Type	24-pin DDIP
Weight	0.22 ounces (6.3 grams)

Footnotes:

- ① For two's complement coding, order the "-2" model as described in Ordering Information.
- 2 Logic levels are the same as for data inputs.
- ③ Initial errors are trimmable to zero. See Connection Diagram.
- ④ FSR is full scale range and is 10V for 0 to +10V output range, 20V for ±10V output range, etc.
- 5 By external pin connection.
- ⑥ For ±12V, +5V operation, contact factory.

TECHNICAL NOTES

- It is recommended that these converters be operated with local supply bypass capacitors of 1μF (tantalum type) at the +15V, -15V and +5V supply pins. The capacitors should be connected as close to the pins as possible. In high RFI noise environments, these capacitors should be shunted with 0.01μF ceramic capacitors.
- The analog, digital and power grounds should be separated from each other as close as possible to pin 21 where they all must come together.
- The "load" control pin is a level-triggered input which causes the register to hold data with a high input and transfer data to the DAC with a low input.
- A setup time of 50ns minimum must be allowed for the input data. The DAC output voltage begins to change when the register output changes.
- If the reference output terminal (pin 24) is used, an operational amplifier in non-inverting mode should be used as a buffer. Current drawn from pin 24 should be limited to ±10µA in order not to affect the T.C. of the reference

CALIBRATION PROCEDURE

Select the desired output voltage range and connect the converter as shown in the Output Range Selection Table and the Connection Diagrams. Refer to the Coding Tables.

Unipolar Operation

- Zero Adjustment. Set the input digital code to 0000 0000 0000 and adjust the ZERO ADJ. potentiometer to give 0.0000V output.
- Gain Adjustment. Set the input digital code to 1111 1111 1111 (straight binary) and adjust the GAIN ADJ. potentiometer to give the full-scale output voltage shown in Table 1.

Bipolar Operation

- 1. Offset Adjustment. Set the digital input code to 0000 0000 0000 (offset binary) or 1000 0000 0000 (two's complement) and adjust the OFFSET ADJ. potentiometer to give the negative full-scale output voltage shown in Table 2.
- 2. Gain Adjustment. Set the digital input code to 1111 1111 1111 (offset binary) or 0111 1111 1111 (two's complement) and adjust the GAIN ADJ. potentiometer to give the positive full-scale output voltage shown in Table 2.

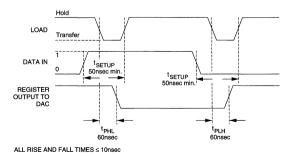
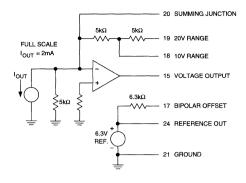



Figure 2. DAC-HK Timing

CONNECTION DIAGRAMS

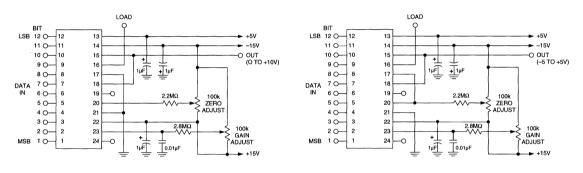
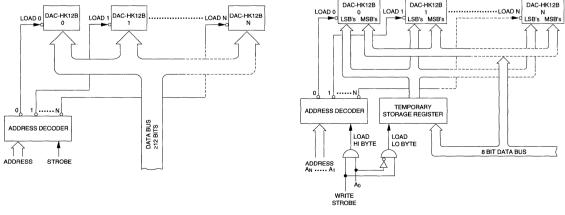



Figure 5. Bipolar Operation (±5V)

APPLICATIONS

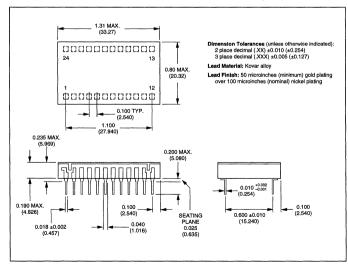
Figure 6. Interfacing to ≥12-Bit Data Bus

Figure 7. Interfacing to 8-Bit Data Bus

CODING TABLES

STRAIGHT BINARY			OUTPUT RANGES		
MSB		LSB	0 TO +10V	0 TO +5V	
1111	1111	1111	+9.9976	+4.9988	
1100	0000	0000	+7.5000	+3.7500	
1000	0000	0000	+5.0000	+2.5000	
0100	0000	0000	+2.5000	+1.2500	
0000	0000	0001	+0.0024	+0.0012	
0000	0000	0000	0.0000	0.0000	

Table 1. Unipolar Operation


Table 2. Bipolar Operation

OFFSET BINARY		TWO'S COMPLEMENT			OUTPUT RANGES			
MSB		LSB	MSB		LSB	±10V	±5V	±2.5V
1111	1111	1111	0111	1111	1111	+9.9951	+4.9976	+2.4988
1100	0000	0000	0100	0000	0000	+5.0000	+2.5000	+1.2500
1000	0000	0000	0000	0000	0000	0.0000	0.0000	0.0000
0100	0000	0000	1100	0000	0000	5.0000	-2.5000	-1.2500
0000	0000	0001	1000	0000	0001	-9.9951	-4.9976	-2.4988
0000	0000	0000	1000	0000	0000	-10.0000	-5.0000	-2.5000

Table 3. Output Range Selection

RANGE	CONNECT	OGETHER	
±10V	15 & 19	17 & 20	
±5V	15 & 18	17 & 20	
±2.5V	15 & 18	17 & 20	19 & 20
+10V	15 & 18	17 & 21	
+5V	15 & 18	17 & 21	19 & 20

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL	OPERATING TEMP. RANGE
Binary Co	ding
DAC-HK12BGC	0 to +70°C
DAC-HK12BMC	0 to +70°C
DAC-HK12BMM	-55 to +125°C
DAC-HKB/883	55 to +125°C
Two's Complem	ent Coding
DAC-HK12BGC-2	0 to +70°C
DAC-HK12BMC-2	0 to +70°C
DAC-HK12BMM-2	-55 to +125°C
DAC-HKB-2/883	-55 to +125°C

The MIL-STD-883 units are available under DESC Drawing Number 5962-89528. Contact DATEL for 883 product specifications

DAC-HP Series

16-Bit, High-Performance Digital-to-Analog Converters

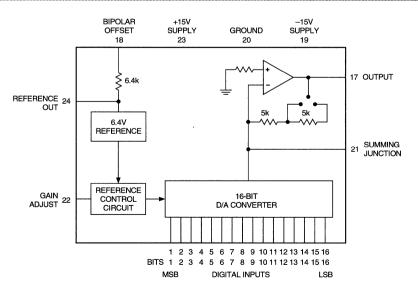
FEATURES

- 16-Bit resolution
- 3 Output voltage ranges
- ±15ppm/°C maximum gain tempco
- Integral nonlinearity error ±0.003%FSR, max.
- 14 Bits monotonic from +10°C to +40°C
- High-reliability MIL-STD-883 models available

GENERAL DESCRIPTION

The DAC-HP Series are high-resolution hybrid digital-to-analog converters with voltage outputs. The Series has 16-bit binary resolution with $\pm 0.003\%$ integral nonlinearity. These units are self-contained, including a low-tempco Zener reference circuit and an output amplifier, in a miniature 24-pin DDIP package.

The DAC-HP Series offers both unipolar and bipolar modes with outputs of 0 to +10V and $\pm 5V$ respectively. Devices with a bipolar output range of $\pm 10V$ are also available and are designated with a "-1" suffix after the model designation. Input coding is complementary binary and complementary offset binary.


The DAC-HP design incorporates thin and thick-film hybrid technology. The design also includes an on-board amplifier and a precision Zener reference circuit. This eliminates code dependent ground currents by routing currents from the positive supply to the internal ground node as determined by the R-2R ladder network. The internal feedback resistors for the on-board amplifier track the ladder network resistors, enhancing temperature stability and performance. The excellent tracking of the resistors results in tempcos for differential nonlinearity, gain and zero of $\pm 2, \pm 15$ and $\pm 5ppm/^{\circ}C$ max., respectively.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 (MSB)	24	REFERENCE OUT
2	BIT 2	23	+15V SUPPLY
3	BIT 3	22	GAIN ADJUST
4	BIT 4	21	SUMMING JUNCTION
5	BIT 5	20	GROUND
6	BIT 6	19	-15V SUPPLY
7	BIT 7	18	BIPOLAR OFFSET
8	BIT 8	17	OUTPUT
9	BIT 9	16	BIT 16 (LSB)
10	BIT 10	15	BIT 15
11	BIT 11	14	BIT 14
12	BIT 12	13	BIT 13

The DAC-HP Series operates off of $\pm 15V$ supplies and offers models with temperature performance covering the 0 to $+70^{\circ}C$ commercial or -55 to $+125^{\circ}C$ military temperature ranges. High reliability MIL-STD-883 versions are also available.

6

ABSOLUTE MAXIMUM RATINGS

Positive Supply, Pin 23	+18V	
Negative Supply, Pin 19	–18V	
Digital Input Voltage, Pins 1–16	+5.5V	
Output Current, Pin 17	±20mA	
Lead Temperature (soldering, 10s)	300°C	

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C and ±15V supplies unless otherwise noted.)

INPUTS	
Resolution	16 bits
Coding, Unipolar Output	Complementary binary
Coding, Bipolar Output	Complementary offset binary
Input Logic Level, Bit ON ("0") ①	0V to +0.8V at -1mA
Input Logic Level, Bit OFF ("1") ①	+2.4V to +5.5V at +40µA
Logic Logic Level, Bit OFF (1)	1 TTL load
PERFORMANCE @	
Nonlinearity Error, max.	±0.003% of FSR
Monotonicity, +10°C to +40°C	14 bits
Gain Error, Before Trimming	±0.1%
Zero Error, Before Trimming	±0.1% of FSR
Gain Tempco, max. ³	±15ppm/°C of FSR
Gain Tempco, max. BGC	±20ppm/°C of FSR
Zero Tempco, Unipolar, max.	±5ppm/°C of FSR
Offset Tempco, Bipolar, max.	±8ppm/°C of FSR
Differential Nonlinearity	
Tempco, max.	±2ppm/°C of FSR
Settling Time, 10V Change @	15µs
Slew Rate	±20V/µs
Power Supply Rejection	±0.003%FSR/% ⁽⁵⁾
OUTPUTS	
Output Voltage Range, Unipolar ®	0 to +10V
Output Voltage Range, Bipolar	±5V
Output Voltage Range, "-1" Suffix	±10V
Output Current, min. @	±5mA
Output Impedance	0.05Ω
POWER REQUIREMENTS	L
Quiescent, All Bits High	+15V, ±0.5V at 20mA
	-15V, ±0.5V at 25mA
	±12V operation ®
PHYSICAL ENVIRONMENTAL	· · · · · · · · · · · · · · · · · · ·
Operating Temperature Range, Case	0°C to +70°C (BMC, BGC)
	-55°C to +125°C (BMM, 883)
Storage Temperature Range	-65°C to +150°C
Package Type	24-pin DDIP
Weight	0.22 ounces (6.3 grams)
	oile oundoo (oilo granio)

Footnotes

- ① Drive from TTL output with only the DAC-HP as load.
- O FSR is full-scale range and is 10V for 0 to +10V or –5V to +5V outputs, 20V for ±10V output, etc
- ③ For all models except DAC-HP16BGC
- ④ Settling to ±0.5mV
- (5) ±0.006%FSR/% maximum over full military temperature range for MM and 883 models.
- ③ Unipolar output range for suffix "-1" models, 0 to +10V, is reached at the 1/2 scale point.
- ⑦ Pin 17.
- ⑧ For ±12V operation, consult factory.

TECHNICAL NOTES

- 1. It is recommended that these converters be operated with local supply bypass capacitors of 1μ F (tantalum type) at the +15V and -15V supply pins. The capacitors should be connected as close to the pins as possible. In high-frequency noise environments, an additional 0.01μ F ceramic capacitor should be used in parallel with each tantalum bypass.
- 2. When laying out the circuit board for this device, isolate the analog, digital and power grounds as much as possible from each other before joining them at pin 20.
- 3. If the reference output (pin 24) is used, it must be buffered by an operational amplifier in the noninverting mode. See Figure 2. Current drawn from pin 24 should be limited to ±10μA in order that the temperature coefficient of the reference circuit not be affected. This is sufficient current for the bias current requirements of most popular operational amplifier types.

CALIBRATION PROCEDURE

For bipolar operation, connect Bipolar Offset (pin 18) to Summing Junction (pin 21). For unipolar operation, connect Bipolar Offset (pin 18) to Ground (pin 20). In making the following adjustments, refer to the Coding Tables and Connection Diagrams.

- 1. Zero Adjustment. Set the input digital code to 1111 1111 1111 1111 and adjust the ZERO ADJ. potentiometer to give 0.00000V output for unipolar operation or –FS output for bipolar operation.
- Gain Adjustment. Set the input digital code to 0000 0000 0000 0000 and adjust the GAIN ADJ. potentiometer to give +FS – 1LSB output for either unipolar or bipolar operation.

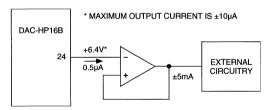


Figure 2. Use of Reference Output

CODING TABLES

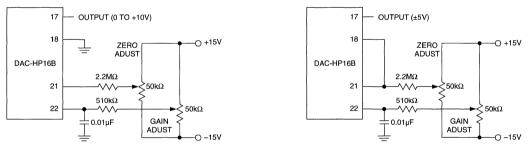

MSB	INPUT	CODE	LSB	SCALE	OUTPUT VOLTAGE	OUTPUT VOLTAGE SUFFIX "-1"
0000	0000	0000	0000	+FS – 1LSB	+4.99985V	+9.99969V
0011	1111	1111	1111	+1/2FS	+2.50000	+5.00000
0111	1111	1111	1111	0	0.00000	0.00000
1011	1111	1111	1111	-1/2FS	-2.50000	-5.00000
1111	1111	1111	1110	–FS + 1LSB	-4.99985	-9.99969
1111	1111	1111	1111	–FS	-5.00000V	-10.00000V

Table 1. Bipolar Output - Complementary Offset Binary

Table 2. Unipolar Output - Complementary Binary

	INPUT CODE			SCALE	OUTPUT	
MSB			LSB		VOLTAGE	
0000	0000	0000	0000	+FS – 1LSB	+9.99985V	
0011	1111	1111	1111	+3/4FS	+7.50000	
0111	1111	1111	1111	+1/2FS	+5.00000	
1011	1111	1111	1111	+1/4FS	+2.50000	
1111	1111	1111	1110	+1LSB	+153µV	
1111	1111	1111	1111	0	0	

CONNECTION DIAGRAMS

Figure 3. Unipolar Operations

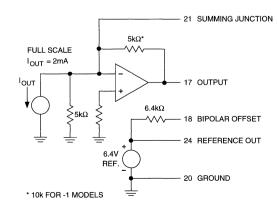
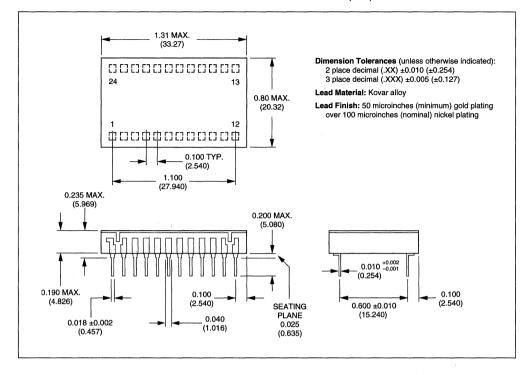



Figure 5. Output Circuit

MECHANICAL DIMENSIONS Inches (mm)

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE
DAC-HP16BGC	0 to +70°C
DAC-HP16BMC	0 to +70°C
DAC-HP16BMM	-55 to +125°C
DAC-HPB/883	-55 to +125°C
DAC-HP16BGC-1	0 to +70°C
DAC-HP16BMC-1	0 to +70°C
DAC-HP16BMM-1	-55 to +125°C
DAC-HPB-1/883	–55 to +125°C
	re available under DESC Drawing ntact DATEL for 883 product

DAC-HZ Series

12-Bit, Industry-Standard Digital-to-Analog Converters

FEATURES

- 12-Bit binary and 3-digit BCD models
- 7 Output ranges
- 3µs V_{OUT} settling time 300ns I_{OUT} settling time
- Guaranteed monotonicity over full temperature range
- Integral nonlinearity ±1/2LSB (binary) and ±1/4LSB (BCD), maximum
- Differential nonlinearity ±3/4LSB (binary) and ±1/4LSB (BCD), maximum
- High-reliability QL versions available

GENERAL DESCRIPTION

The DAC-HZ Series are high-performance, monolithic, 12-bit binary and 3-digit BCD, digital-to-analog converters. The DAC-HZ Series are complete and self-contained with a precision internal reference and fast output operational amplifier. Pin programmable output voltage and current ranges are provided for a high degree of application flexibility; the binary versions offer 5 output voltage ranges and two current ranges while the BCD models offer 3 and 1 output ranges, respectively.

The DAC-HZ Series contains a precision embedded Zener reference circuit. This eliminates code-dependent ground currents by routing current from the positive supply to the internal ground node as determined by the R-2R ladder network. The internal feedback resistors for the on-board amplifier track the ladder network resistors, enhancing temperature performance. The excellent tracking of the resistors results in temperature coefficients for differential nonlinearity, zero and gain of ± 2 , ± 3 and ± 20 ppm/°C maximum, respectively.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 (MSB)	24	REFERENCE OUT
2	BIT 2	23	GAIN ADJUST
3	BIT 3	22	+15V SUPPLY
4	BIT 4	21	GROUND
5	BIT 5	20	CURRENT OUTPUT
6	BIT 6	19	20V RANGE
7	BIT 7	18	10V RANGE
8	BIT 8	17	BIPOLAR OFFSET
9	BIT 9	16	REFERENCE IN
10	BIT 10	15	VOLTAGE OUTPUT
11	BIT 11	14	-15V SUPPLY
12	BIT 12 (LSB)	13	NO CONNECTION

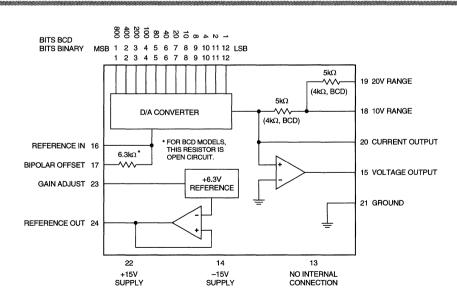


Figure 1. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

Positive Supply, Pin 22	+18V	
Negative Supply, Pin 14	–18V	
Digital Input Voltage, Pins 1-12	+5.5V	
Output Current, Pin 15	±20mA	
Lead Temperature (soldering, 10s)	300°C	

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C and ±15V supplies unless otherwise noted.)

INPUTS	DAC-HZ12B (BINARY)	DAC-HZ12D (BCD)			
Resolution	12 binary bits	3 BCD digits			
Coding, Unipolar Output	Comp. binary	Comp. BCD			
Coding, Bipolar Output	Comp. off. binary	—			
Input Logic Level, Bit ON ("0")	0V to +0.8	3V at –1mA			
Input Logic Level, Bit OFF ("1")	+2.4V to +5.	.5V at +40μA			
Logic Loading	1 TT	L load			
PERFORMANCE ^①					
Voltage Output Nonlinearity	±1/2LSB max.	±1/4LSB max.			
Differential Nonlinearity	±3/4LSB max	±1/4LSB max.			
Gain Error, Before Trimming	±0.1% ^②	*			
Zero Error, Before Trimming	±0.1% of FSR [@]	*			
Gain Tempco, maximum	±20ppm/°C	*			
Zero Tempco, Unipolar, max.	±3ppm/°C of FSR	*			
Offset Tempco, Bipolar, max.	±10ppm/°C of FSR	*			
Diff. Nonlinearity Tempco, max.	±2ppm/°C of FSR	*			
Monotonicity	Over oper. temp. range	*			
Settling Time, lout to ±1/2LSB 3	300ns	*			
Settling Time, Vout to ±1/2LSB	3µs @	*			
Slew Rate	±10V/μs	*			
Power Supply Rejection	±0.006%FSR/%Sup.	*			
OUTPUTS					
Output Current, Unipolar	0 to -2mA, ±20%	0 to -1.25mA, ±10%			
Output Current, Bipolar	±1mA, ±20%	-			
Compliance Voltage, lout	±2.5V	*			
Output Impedance, Iout, Unipolar	2kΩ	*			
Output Impedance, lout, Bipolar	2kΩ	-			
Output Voltage Ranges, Unipolar	0 to +5V	0 to +2.5V			
	0 to +10V	0 to +5V 0 to +10V			
Output Voltage Ranges, Bipolar	±2.5V	-			
	±5V	_			
	±10V	-			
Output Current, Vout	±5mA min.	*			
Output Impedance, Vout	0.05Ω	*			
POWER REQUIREMENTS					
Power Supply Voltages		5V at 16mA			
		5V at 20mA			
Power Dissipation, maximum		peration [©] DmW			
PHYSICAL ENVIRONMENT					
	1	-55°C to +125°C			
Operating Temp. Ranges, Case Storage Temp. Pange		-55°C to +125°C o +150°C			
Storage Temp. Range	-65°C t	0+150-0			
Thermal Impedance θjc	7 4	°C/W			
θjc θca					
	36.6°C/W				
Package Type	24-ni	n DDIP			

* Specifications same as first column.

- No equivalent specifications

Footnotes

- \oplus FSR is full-scale range and is 10V for 0 to +10V or –5V to +5V outputs, 20V for $\pm 10V$ output, etc.
- Initial gain and offset errors are trimmable to zero. See Connection Diagrams.
 Current output mode.
- S Current output mode.
- \bigcirc For ±12V operation of binary models, contact factory.

TECHNICAL NOTES

- The DAC-HZ12 Series converters are designed and factory calibrated to give ±1/2LSB linearity (binary version) and ±1/4LSB linearity (BCD version) with respect to a straight line between end points. This means that if zero and full scale are exactly adjusted externally, the relative accuracy will be ±1/2LSB (±1/4LSB, BCD version) everywhere over the full output range without any additional adjustments.
- 2. These converters must be operated with local supply bypass capacitors from +15V to ground and -15V to ground. Tantalum type capacitors of 1 μ F are recommended and should be mounted as close as possible to the converter. If the converters are used in a high-frequency noise environment, a 0.01 μ F ceramic capacitor should be used across each tantalum capacitor.
- 3. When operating in the current output mode, the equivalent internal current source of 2mA (1.25mA, BCD) must drive both the internal source resistances and the external load resistor. A 300ns output settling time is achieved for the voltage across a 100 Ω load resistor; for higher value resistors the settling time becomes longer due to the output capacitance of the converter. For fastest possible voltage output for a large transition, an external fast-settling amplifier such as DATEL's AM-500 should be used in the inverting mode. Settling time of less than 1µs can be achieved. See application diagram.

CALIBRATION PROCEDURE

- 1. Select the desired output range and connect the converter as shown in the Output Range Selection tables and the connection diagrams.
- 2. To calibrate, refer to the coding tables. Note that complementary coding is used.

3. Zero and Offset Adjustments

For unipolar operation set all digital inputs to "1" (+2.0 to +5.5V) and adjust the ZERO ADJ. potentiometer for zero output voltage or current. For bipolar operation set all digital inputs to "1" and adjust the OFFSET ADJ. potentiometer for the negative full scale (for voltage out) or positive full scale (for current out) output value shown in the coding table.

4. Gain Adjustment

Set all digital inputs to "0" (0V to +0.8V) and adjust the GAIN ADJ. potentiometer for the positive full scale (for voltage out) or negative full scale (for current out) output value shown in the coding table.

OUTPUT RANGE SELECTION TABLES

Table 1. DAC-HZ12B Binary Output Range Selection

VOUT RANGE	CONNECT THESE PINS TOGETHER						
±10V	15 & 19	17 & 20		16 & 24			
±5V	15 & 18	17 & 20		16 & 24			
±2.5V	15 & 18	17 & 20	19 & 20	16 & 24			
+10V	15 & 18	17 & 21		16 & 24			
+5V	15 & 18	17 & 21	19 & 20	16 & 24			
±1mA	_	17 & 20	—	16 & 24			
–2mA	-	17 & 21		16 & 24			

Voltage output is at pin 15; current output is at pin 20.

Table 2. DAC-HZ12D BCD Output Range Selection

VOUT RANGE	CONNECT THESE PINS TOGETHER							
+10V	15 & 19	17 & 21	_	16 & 24				
+5V	15 & 18	17 & 21		16 & 24				
+2.5V	15 & 18	17 & 21	19 & 20	16 & 24				
-1.25mA		17 & 21		16 & 24				

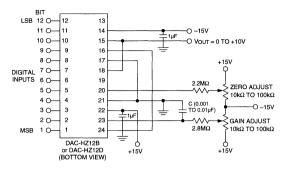
Voltage output is at pin 15; current output is at pin 20.

UNIPOLAR OUTPUT CODING TABLES

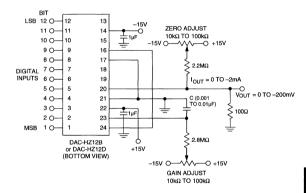
Table 3. Unipolar Output, Complementary Binary

BINARY INPUT CODE			UNIPOLAR OUTPUT RANGES				
MSB		LSB	0 to +10V	0 to +5V	0 to –2mA		
0000	0000	0000	+9.9976V	+4.9988V	-1.9995		
0011	1111	1111	+7.5000	+3.7500	-1.5000		
0111	1111	1111	+5.0000	+2.5000	-1.0000		
1011	1111	1111	+2.5000	+1.2500	-0.5000		
1111	1111	1110	+0.0024	+0.0012	-0.0005		
1111	1111	1111	0.0000	0.0000	0.0000		

Table 4. Unipolar Output, Complementary BCD


BCD	INPUT	CODE	UNIPOLAR OUTPUT RANGES				
мѕв		LSB	0 to +10 VOLTS	0 to +5 VOLTS	0 to +2.5 VOLTS	0 to –2 mA	
0110	0110	0110	+9.990	+4.995	+2.498	-1.2488	
1000	1010	1111	+7.500	+3.750	+1.875	-0.9375	
1010	1111	1111	+5.000	+2.5000	+1.250	-0.6250	
1101	1010	1111	+2.5000	+1.250	+0.625	-0.3125	
1111	1111	1110	+0.0100	+0.005	+0.003	-0.0013	
1111	1111	1111	0.0000	0.0000	0.0000	0.0000	

BIPOLAR OUTPUT CODING TABLE


Table 5. Bipolar Output, Complementary Offset Binary

INPUT CODE			BIF	BIPOLAR OUTPUT RANGES					
MSB		LSB	±10V	±5V	±2.5V	±1mA			
0000	0000	0000	+9.9951	+4.9976	+2.4988	-0.9995			
0011	1111	1111	+5.0000	+2.5000	+1.2500	-0.5000			
0111	1111	1111	0.0000	0.0000	0.0000	0.0000			
1011	1111	1111	-5.0000	-2.5000	-1.2500	+0.5000			
1111	1111	1110	-9.9951	-4.9976	-2.4988	+0.9995			
1111	1111	1111	-10.0000	-5.0000	-2.5000	+1.0000			

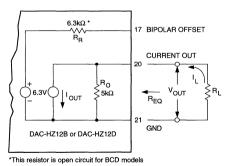

CONNECTION DIAGRAMS

Figure 3. Unipolar Current Output Connections

 $V_{OUT} = \pm 2.5 V Maximum$

(Output compliance voltage)

 $R_{EQ} = R_{O} = 5k$ for unipolar operation

R_{EQ} = R_R II R_O = 2.8k for bipolar operation

I_{OUT} = 2mA binary = 1.25mA BCD

Figure 4. Equivalent Current Mode Output Circuit

DAC-HZ Series

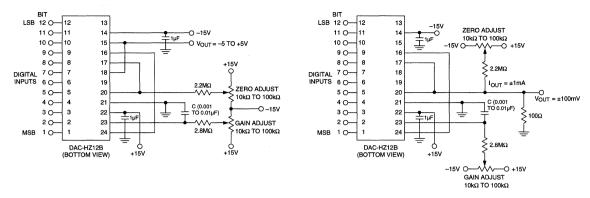
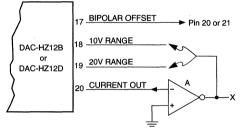
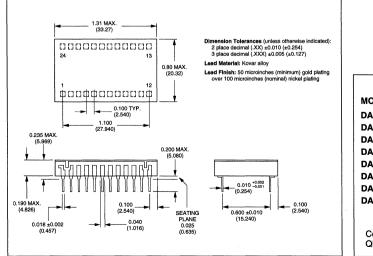



Figure 6. Bipolar Current Output Connections


B DATE

Refer to the output range selection tables, Tables 1 and 2. Wherever pin 15 appears, use pin X of the external amplifier and scale as desired.

A = External high-speed inverting op amp; use DATEL's AM-500 for less than 1 μ sec output settling.

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL	OPERATING TEMP. RANGE	OUTPUT CODING						
DAC-HZ12BGC	0 to +70°C	Binary						
DAC-HZ12BMC	0 to +70°C	Binary						
DAC-HZ12BMM	–55 to +125°C	Binary						
DAC-HZ12BMM-QL	–55 to +125°C	Binary						
DAC-HZ12DGC	0 to +70°C	BCD						
DAC-HZ12DMC	0 to +70°C	BCD						
DAC-HZ12DMM	–55 to +125°C	BCD						
DAC-HZ12DMM-QL	–55 to +125°C	BCD						
Contact DATEL for information concerning our QL high-reliability screening program.								

Operational & Instrumentation Amplifiers

Table of Contents

Selection Guid	e	7-1
AM-1435	Ultra-Fast, Wideband Operational Amplifiers	7-3
AM-500	High-Speed, Wideband Operational Amplifiers	7-7
AM-551	High-Speed, Programmable-Gain Instrumentation Amplifiers	7-10

Selection Guide

Operational Amplifiers

Model	Open Loop Gain (000)	Gain Bandwidth Product (MHz)	Slew Rate (V/µsec)	Input Offset Voltage (mV)	Offset Voltage Drift (µV/°C)	Input Bias Current (nA)	Output (±V@±mA)	Power Dissipation (±V@±mA)	Page
AM-500	1000	130	±1000	±0.5	±1	±1	10/50	15/22	7-7
AM-1435	100	1000	±300	±2	±5	±20µA	7/14	15/22	7-3

Listed specifications are typical at $T_A = +25^{\circ}C$, with nominal supplies, unless otherwise indicated.

Instrumentation Amplifiers

Model	Input Impedance (10 ¹² Ω)	Slew Rate (V/µsec)	Settling Time, G=1 (µsec)	Gain	Gain Accuracy (%, Max.)	Gain Nonlinearity (%, Max.)	Input Offset Voltage (±mV, Max.)	Output (±V@±mA)	Power Dissipation (±V@±mA)	Page
AM-551 ①	1 2	±23	3	1-1000	±0.04	±0.01	1 x gain	11/5	15/27	7-10

Listed specifications are typical at $T_A = +25^{\circ}$ C, with nominal supplies, unless otherwise indicated. ① 2-stage design. Front-end gain is resistor programmable. Back-end gain of 1 or 10 is pin selectable ② CMV = ±11V, CMRR = 100dB. For literature or technical assistance

or contact your local DATEL Sales Office or Representative

AM-1435 Ultra-Fast, Wideband Operational Amplifiers

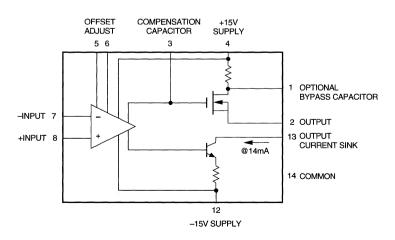
FEATURES

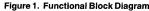
- 70 nanosecond settling to ±0.01%
- 1GHz gain bandwidth product
- 100dB open loop gain
- 80dB minimum CMRR
- –55 to +125°C operation
- Industry standard

GENERAL DESCRIPTION

DATEL's AM-1435 is an ultrafast settling, wideband operational amplifier. Utilizing precision thin-film hybrid construction and differential input operational amplifier design techniques, the AM-1435 achieves a settling time of only 70 nanoseconds for a 10V step to $\pm 0.01\%$ accuracy. High-speed performance is optimized with high open-loop gain, flat frequency response beyond 10kHz, and a roll-off of 6dB/ octave to beyond 100MHz. Typically, gain bandwidth product is 1GHz, and slew rate is $\pm 300V/microsecond$.

AM-1435's dc characteristics include a dc open loop gain of 100dB, 1M Ω input impedance, and an initial input offset voltage of only ±2mV. Input offset voltage drift is typically ±5 μ V/°C. Also featured is a minimum common mode rejection ratio of 80dB and full power frequency of 8MHz.


The AM-1435 is designed specifically for applications requiring high accuracy in the amplification of complex wideband waveforms. Such applications include radar and sonar signal processing, video instrumentation, ultrafast A/D and D/A converters and sample-hold amplifiers.


Power supply requirements are $\pm 15V$ at 30mA maximum quiescent current. Models are specified for operation over the commercial (0 to $+70^{\circ}$ C) and military (-55 to $+125^{\circ}$ C) temperature ranges. A high-reliability version manufactured and screened to DATEL's QL screening program is also available. The package is a 14-pin ceramic DIP.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	OPTIONAL BYPASS CAPACITOR
2	OUTPUT
3	COMPENSATION CAPACITOR
4	+15V SUPPLY (+V _S)
5	OFFSET ADJUST
6	OFFSET ADJUST
7	INPUT
8	+INPUT
9	N.C.
10	N.C.
11	N.C.
12	–15V SUPPLY (–V _S)
13	OUTPUT CURRENT SINK
14	COMMON
	1

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C and ±15V supplies, unless otherwise noted.)

INPUT	MIN.	TYP.	MAX.	UNITS
Differential Between Inputs Common Mode Voltage Range ① Common Mode Rejection Ratio		 ±8.5	±4 —	Volts Volts
1MHz DC Input Impedance	80	70 100	-	dB dB
Input Impedance Common Mode Differential Mode Input Bias Current Input Offset Current Input Offset Voltage @		1∥2 2.5∦2 ±20 ±0.3 +2		MΩ∥pF kΩ∥pF μA μA mV
PERFORMANCE		±2	±0	111
DC Open Loop Gain ③	90	100		dB
Input Offset Voltage Drift Input Bias Current Drift Input Offset Current Drift Input Voltage Noise		±5 ±50 ±2	±25 ±100 —	µV/°C nA/°C nA/°C
0.01Hz to 10Hz 100Hz to 10kHz 10Hz to 1MHz	=	15 1.6 5.2		μVp-p μVrms μVrms
Input Current Noise ④ 0.01Hz to 10Hz 100Hz to 10kHz 10Hz to 1MHz		2.5 2.5 3.5		nAp-p nArms nArms
Power Supply Rejection Ratio	-	±0.15	_	mV/V
DYNAMIC CHARACTERISTI	cs	r		
Gain Bandwidth Product Unity Gain Bandwidth Full Power Frequency Settling Time	700 	1000 150 10		MHz MHz MHz
10V to ±0.025% © 10V to ±0.01% © 5V to ±1.0%		60 70 25	75 	ns ns ns
5V to ±0.1% 1V to ±1.0% 1V to ±0.1% Slew Rate ®		40 10 20 ±300	60 — —	ns ns Ns V/µs
Overshoot Propagation Delay Rise Time (10V step)	-	1 5 40		ns ns
Overload Recovery Time	-	50	-	ns
OUTPUT		1		
Output Voltage ③ Output Current ③ Stable Capacitative Load ⑦	±5 ±10 —	±7 ±14 1000	- - -	Volts mA pF
POWER REQUIREMENTS				
Rated Supply Voltages Quiescent Current	±12	±15 ±22	±16 ±30	Volts mA

Footnotes:

- 0 Specified for dc linear operation. Common mode voltage range prior to fault condition is $\pm10V$ maximum.
- 2 Adjustable to zero.
- $3 R_L = 500 \Omega$.
- ④ Referred to input.
- ⑤ C1 = 0.5pF.
- 6 C1 = 1pF.

7-4

- ⑦ C1 = 3pF, noise gain >2.
- Requires 18°C/W heat sink above +85°C.

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS
Operating Temp. Range, Case AM-1435MC	0	_	+70	°℃ ℃
AM-1435MM, MM-QL ® Storage Temp. Range Package Type	-55 -65 14-r	in, metal-se	+125 +150 aled, ceramic	νČ

TECHNICAL NOTES

- The use of good high-frequency circuit board layout techniques is required for rated performance. The extensive use of a ground plane for all common connections is recommended. Lead lengths should be kept to a minimum with point-to-point connections wired directly to the amplifier pins. 1µF tantalum bypass capacitors should be used at the ±15V supply pins.
- Operation of the AM-1435MM and MM-QL over the +85 to +125°C temperature range requires additional thermal dissipation to achieve rated performance. Use of an 18°C/W heat sink is recommended.
- 3. No input protection is provided so as to maximize frequency response. As a result, several precautions must be observed. Do not apply the positive supply voltage before the negative supply. Do not apply signals to either input prior to power-up. If frequency response is not critical, installation of an external input-protection circuit is recommended.
- 4. A 1 μ F bypass capacitor (C4) connected from OPTIONAL BYPASS CAPACITOR (pin 1) to COMMON (pin 14) may be required to inhibit output oscillation when driving capacitive loads.
- To ensure stable operation when the noise gain is less than 10, a 2pF compensation capacitor (C1) must be connected between pins 3 and 7. The value of the compensation capacitor may be application sensitive.
- 6. The AM-1435 is a prime choice as a current-to-voltage converter due to its excellent E_{OS} and I_{OS} temperature coefficient ratings. Input bias currents are easily compensated by adding a resistor from pin 8 to ground, which is equal to the parallel combination of the feedback resistor and input impedance.

ABSOLUTE MAXIMUM RATINGS, ALL MODELS

Positive Supply, Pin 4 Negative Supply, Pin 12	+18V -18V	
Lead Temperature (soldering, 10s)	300°C	

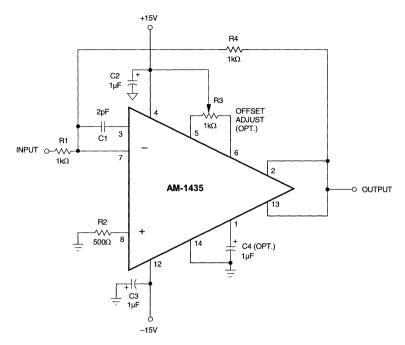


Figure 2. Typical Connection Diagram

TYPICAL CONNECTION AND COMPENSATION

The typical connection diagram (above) shows the AM-1435 in a unity-gain inverting configuration. When used in any conventional operational-amplifier configuration, the AM-1435 (as a non-inverting amplifier) requires a noise gain of at least two (noise gain = 1 + R4/R1).

The 2pF compensation capacitor, C1, at pin 3 is required for stable operation when the noise gain is less than 10. Compensation for bias current is provided by R2 and its value is determined by the formula:

 $R2 = \frac{(R1) \times (R4)}{R1 + R4}$

The offset adjust potentiometer R3 and the compensation capacitor C4 are optional. Note, however, that C4 should be implemented when driving capacitive loads to prevent oscillation of the output stage.

Operation of the AM-1435 at low impedances requires careful attention to include the feedback resistor as a part of the total output load.

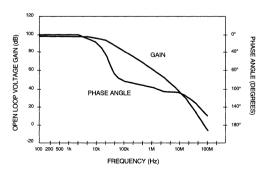


Figure 3. Gain and Phase vs. Frequency (Uncompensated)

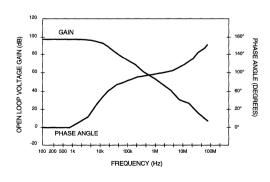
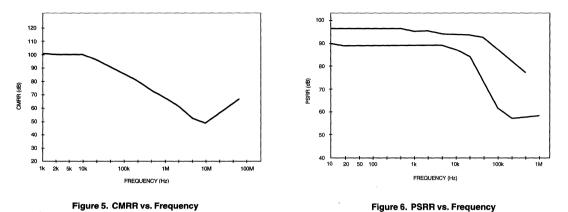
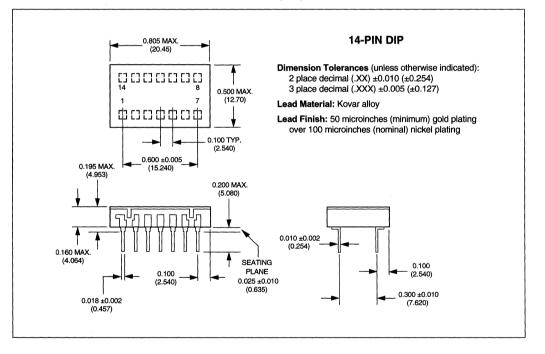



Figure 4. Gain and Phase vs. Frequency (Compensated 2pF)


7-6

PERFORMANCE CHARTS

MECHANICAL DIMENSIONS INCHES (mm)

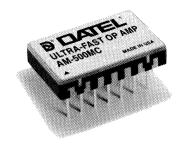
ORDERING INFORMATION

MODEL	OPERATING TEMP. RANGE
AM-1435MC	0 to +70°C
AM-1435MM	-55 to +125°C
AM-1435MM-QL	-55 to +125°C

AM-500 High-Speed, Wideband Operational Amplifiers

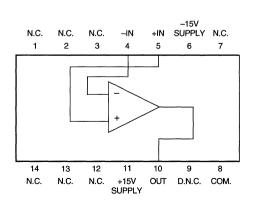
FEATURES

- 200 nanosecond settling to ±0.01%
- ±1000V/µsec slew rate
- 100MHz minimum gain bandwidth product
- 10⁶ open loop gain
- ±1µV/°C offset drift
- ±50mA output current


GENERAL DESCRIPTION

The AM-500 Series amplifiers are fast-settling operational amplifiers for use in inverting applications. A unique feedforward amplifier design combines the characteristics of a low-drift dc amplifier with those of a very fast ac amplifier. For optimum fast-settling performance, this amplifier has an open loop gain roll-off of 6dB per octave to beyond 100MHz.

Output settling time is 200 nanoseconds maximum to $\pm 0.01\%$ for a 10V step change. Slew rate is 1000V/microsecond for positive output transitions and 1800V/microsecond for negative transitions. This high slew rate permits undistorted reproduction of a full-load, 20V peak-to-peak sinewave out to 16MHz. Gain bandwidth product is 100MHz minimum.


AM-500 Series dc characteristics include a dc open loop gain of 10⁶, 30 megohm input impedance, and \pm 1 nanoampere bias current. Input offset voltage is \pm 0.5mV, and input offset voltage drift is \pm 1 microvolt/°C. Although these amplifiers do not operate differentially, a dc offset voltage in the range of \pm 5V can be applied to the positive input terminal.

Power supply requirements are $\pm 15V$ at 22mA quiescent current. The amplifiers will operate over a supply range of ± 10 to $\pm 18V$. Output current capability is $\pm 50mA$ with output short-circuit protection. Four versions are available: AM-500GC and AM-500MC for 0 to $+70^{\circ}$ C operation; AM-500MM for -55 to $+125^{\circ}$ C operation; and AM-500MM-QL for highreliability operation over the military temperature range.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION		
1	N.C.		
2	N.C.		
3	N.C.		
4	-INPUT		
5	+INPUT		
6	-15V SUPPLY		
7	N.C.		
8	COMMON		
9	DO NOT CONNECT		
10	OUTPUT		
11	+15V SUPPLY		
12	N.C.		
13	N.C.		
14	N.C.		
NOTE: Do not connect pin 9 to ground or any other pin.			

Figure 1. AM-500 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	MIN.	TYP.	MAX.	UNITS
+15V Supply (Pin 11)	_	+18	_	Volts
-15V Supply (Pin 6)	-	-18		Volts
Analog Inputs (Pins 4, 5)	-	±18	-	Volts
Lead Temperature (soldering, 10 seconds)	-	300	-	°C
Short Circuit to Ground		Conti	nuous	

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C and ±15V supplies, unless otherwise noted.)

			r	· · · · · · · · · · · · · · · · · · ·
INPUT	MIN.	TYP.	MAX.	UNITS
Input Common Mode				
Voltage Range ①	_	_	±5	Volts
Differential Input Impedance	1	30	_	megohms
Input Bias Current	· _	±1	±4	nA
Input Offset Current	_	±0.5	±8	nA
Input Offset Voltage	_	±0.5	±3	mV
PERFORMANCE				I
DC Open Loop Gain	105	106	_	V/V
Input Offset Voltage Drift				
0 to +70°C		±1	±5	µV/°C
–55 to +125°C		±5	±10	μV/°C
Input Bias Current Drift			110	^µ ", U
-55 to +70°C	_	-20	_	pA/°C
+70 to +125°C		Doubles e	Very 10°C	
Input Voltage Noise 2	<u> </u>	Doublese		
0.01Hz to 1Hz	_	5	25	μVp-p
100Hz to 10kHz		1	5	μVrms
1Hz to 10MHz		20	100	μVrms
Power Supply Rejection Ratio		20	100	μνιπο
(-55 to +125°C)	60	—	-	dB
DYNAMIC CHARACTERISTIC	cs			
Gain Bandwidth Product	100	130	_	MHz
Slew Rate (positive going)	800	1000	_	V/µs
Slew Rate (negative going)	800	1800		V/µs
Full Power Bandwidth (20Vp-p)	000	16		MHz
Settling Time (±10V step) ③				101112
To ±0.01% (+25°C)	_	_	200	ns
To ±0.01% (-55 to +125°C)			600	ns
To $\pm 0.1\%$ (-55 to +125°C)	_	100	300	ns
To ±1.0% (-55 to +125°C)		70	200	
Overload Recovery Time		10	30	ns
			30	μs
OUTPUT	· · · · · · · · · · · · · · · · · · ·		·····	r
Output Voltage	±10	- 1	_	Volts
Output Current (S.C. protected)	±25	±50	- 1	mA
Stable Capacitive Load	-	100	_	pF
Output Impedance	-	25	-	Ω
POWER REQUIREMENTS	I	1		I
Voltage (rated performance)		±15	_	Volts
Voltage (operating)	±10		±18	Volts
Quiescent Current		+22	±10 ±37	mA
	L	166	107	

Footnotes:

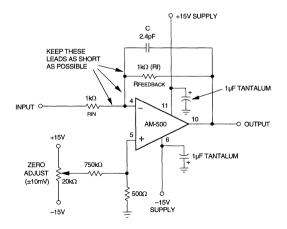
1 dc only

2 -3dB single-pole bandwidth

 $31k\Omega$ input and feedback resistors, 2.4pF feedback capacitor

PHYSICAL/ENVIRONMENTAL

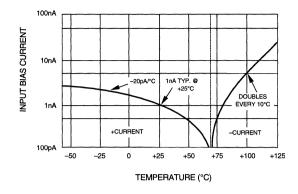
PARAMETERS	MIN.	TYP.	MAX.	UNITS
Operating Temp. Range, Case				
AM-500GC, MC	0	_	+70	°C
AM-500MM, MM-QL	-55	-	+125	°C
Storage Temp. Range	-65	_	+150	°C
Thermal Impedance		1		
θuc	-	48	I	°C/W
θς	- 1	57	-	°C/W
Package Type	14-pin ceramic DIP			
Weight	0.09 ounces (2.5 grams)			


TECHNICAL NOTES

- 1. Figure 2 shows the connection of the AM-500 Series for fast settling operation with a closed loop gain of -1. It can be used for fast settling at closed loop gains up to -10. The equivalent resistance seen by the summing junction should be 500 Ω or less. For gains greater than -1, use an input resistor of 500 Ω and pick a feedback resistor for the required closed loop gain (1k Ω for -2, 1.5k Ω for -3, etc.).
- 2. Use a small feedback capacitor across the feedback resistor. Determine C in nanofarads using the following formula: 1 + |G|

$$C = \frac{1}{0.816Rf}$$

where G is closed loop gain and Rf is in $k\Omega$.


- 3. Summing point leads must be kept as short as possible. Input and feedback resistors should be soldered close to the body of the amplifier directly to the summing point (pin 4). Summing point capacitance to ground must be kept very low.
- 4. Low output impedance power supplies should be used with 1µF tantalum bypassing capacitors at the amplifier supply terminals. The amplifier has internal 0.03µF ceramic bypass capacitors.
- 5. Although these amplifiers are designed for inverting mode only, a dc voltage in the range of ±5V may be applied to the positive input terminal to offset the amplifier.
- 6. For interrupted power applications, apply power to the AM-500 three (3) seconds before operating the device.

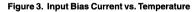
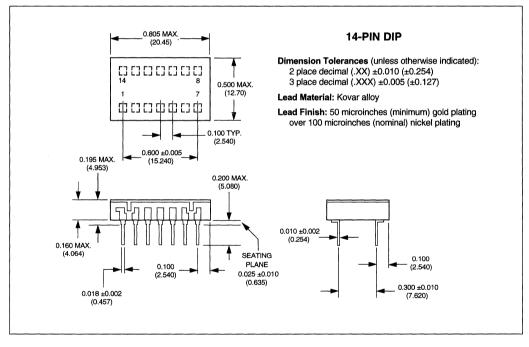


Figure 2. Connection for Fast Settling with Gain of -1


7-8

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL	OPERATING TEMP. RANGE
AM-500GC	0 to +70°C
AM-500MC	0 to +70°C
AM-500MM	–55 to +125°C
AM-500MM-QL	–55 to +125°C

AM-551 High-Speed, Programmable-Gain Instrumentation Amplifiers

FEATURES

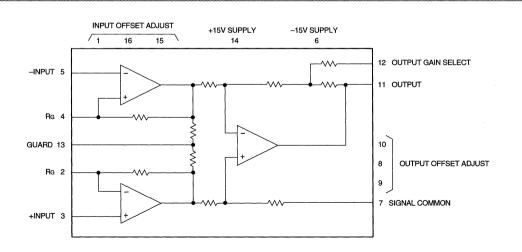
- 1 to 50 gain range
- ±0.01% maximum nonlinearity
- 3µs settling time
- 100dB CMRR
- 600kHz small signal bandwidth
- Resistor and pin programmable

GENERAL DESCRIPTION

DATEL's AM-551 is a high-performance, programmable-gain instrumentation amplifier manufactured with hybrid thin-film technology. Gain is adjustable over a range of 1 to 50 with a single external resistor and a simple user-selectable pin-strapping option. Maximum gain nonlinearity is $\pm 0.01\%$.

The AM-551 dynamic characteristics include a settling time of 3µs for a 20V step to ±0.01% accuracy. Slew rate is ±23V/µs, and small signal bandwidth is 600kHz. Other specifications include a CMRR of 100dB, a 1012Ω input impedance and a minimum output voltage swing of ±11V. Maximum offset drift is ±15µV/°C.

The AM-551 is a functionally complete device containing a high-impedance variable-gain voltage follower input stage followed by a differential output stage with user-selectable gains of 1 or 10. High-accuracy, ultra-low-drift, thin-film technology is used for all interconnected resistor networks.


The combination of accuracy, speed and rugged hybrid construction make the AM-551 an ideal choice for applications involving the amplification of low-level signals produced by thermocouples, strain gages and RTD's, high-performance data acquisition systems.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	INPUT OFFSET ADJUST
2	R _G (Gain Resistor)
3	+INPUT
4	R _G (Gain Resistor)
5	-INPUT
6	–15V SUPPLY
7	SIGNAL COMMON
8	OUTPUT OFFSET ADJ. WIPER
9	OUTPUT OFFSET ADJUST
10	OUTPUT OFFSET ADJUST
11	OUTPUT
12	OUTPUT GAIN SELECT
13	GUARD
14	+15V SUPPLY
15	INPUT OFFSET ADJUST
16	INPUT OFFSET ADJ. WIPER

Power requirements are $\pm 15V$, and all devices are cased in miniature, 16-pin ceramic DIP's. Models are available for commercial (0 to $+70^{\circ}$ C) or military (-55 to $+125^{\circ}$ C) operating temperature ranges.

Figure 1. AM-551 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	MIN.	TYP.	MAX.	UNITS
+15V Supply (Pin 14)	_	+18	_	Volts
-15V Supply (Pin 6)		-18		Volts
Input Voltage Range		±18	- 1	Volts
Differential Input Voltage Range		±30	_	Volts
Lead Temperature (soldering, 10 seconds)	_	300	-	°C
Output Short Circuit		Conti	nuous	

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C and ±15V supplies, unless otherwise noted.)

		l	·	
INPUT	MIN.	TYP.	MAX.	UNITS
Common Mode Voltage Range Input Impedance	±11		_	Volts
(differential or common mode)	_	1012	-	Ω
Input Bias Current	-	-	±100	pА
Input Offset Current	-	_	±20	pA .
Input Offset Voltage (unadj.) ①		-	±1	mV x gain
PERFORMANCE				
Gain Range ②	1	_	50	V/V
Gain Equation ③		G = (1 + 2	0k/R _G) G ₂	
Gain Accuracy				
G = 1	-	-	±0.04	%
G = 10	-	-	±0.1	%
G = >10 Coin Nonlincerity	_	-	±0.2	%
Gain Nonlinearity Gain Tempco ④	_		±0.01 ±50	% ppm/°C
Offset Voltage Drift		_	±30 ±15	µV/°C
Input Bias Current Drift		Doublos	very 10°C	μν/Ο
		20		nV/√Hz
Input Voltage Noise (dc to 100Hz) Power Supply Rejection Ratio	70	82	-	dB
Common Mode Reject. Ratio (5)	70	02		UD
1kHz	_	70	_	dB
100Hz	_	90	_	dB
DC	_	100	_	dB
Slew Rate	±9	±23		V/µs
Small Signal Bandwidth (-3dB)				
G=1	_	600	- 1	kHz
G = 10	-	600	-	kHz
G = 50	-	200	-	kHz
Settling Time (20V to ±0.01%)				
G = 1	-	3	-	μs
G = 10	-	4	-	μs
G = 50	_	11		μs
OUTPUT				
Output Voltage Range 6	±11		_	Volts
Output Current	±5	-	-	mA
Output Impedance ⑦	-	0.5	-	Ω
Output Offset Voltage (unadj.) ①	—	-	±1	mV x gain
POWER REQUIREMENTS				
Rated Power Supply Voltages	_	±15		Volts
Power Supply Range	±5	- 1	±18	Volts
Supply Current	-	-	±27	mA
Eastratas			l	

Footnotes:

- ① Adjustable to zero.
- ② To 0.01% accuracy. Higher gains are achievable, but performance will degrade.
- ③ See Technical Note 3.
- ④ Tempco of $R_G = \pm 0$ ppm/°C. For $R_G = \infty$, gain tempco = ±5ppm/°C.
- $1k\Omega$ source imbalance.
- \mathbb{B} R_L = 2k Ω .
- $\ensuremath{\mathfrak{O}}$ At 1kHz, for all gain ranges.

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS
Operating Temp. Range, Case			70	
AM-551MC AM-551MM	-55	_	+70 +125	0° 0°
Storage Temp. Range	-65	_	+150	°č
Package Type		16-pin ce	ramic DIP	

TECHNICAL NOTES

 A 100kΩ trimpot may be used for both input and output offset adjusts. The trimpot is connected across the INPUT OFFSET ADJUST pins (pins 1, 15) and the wiper is connected to pin 16.

For output offset adjust, the trimpot is connected across the OUTPUT OFFSET ADJUST pins (pins 10, 9) with the wiper connected to pin 8.

- For unity gain, R_G is left open and OUTPUT GAIN SELECT (pin 12) is tied to OUTPUT (pin 11). To avoid oscillation in the unity-gain configuration, the connection between OUTPUT GAIN SELECT and OUTPUT should be kept as short as possible.
- 3 Gain selection is accomplished in two stages. The input stage gain (G₁) is selected by an external gain resistor (R_G) connected across the R_G pins (pins 2, 4), and is expressed as follows: 20k

$$G_1 = 1 + \frac{20k}{R_G}$$

The output stage gain (G₂) is selected by external pinstrapping. For G₂ = 1, connect OUTPUT GAIN SELECT (pin 12) to OUTPUT (pin 11). For G₂ = 10, connect OUTPUT GAIN SELECT (pin 12) to SIGNAL COMMON (pin 7).

The total gain of the amplifier is as follows:

$$G_t = G_1 \times G_2 = \left(1 + \frac{20k}{R_G}\right)G_2$$

 Both power supplies should be bypassed to ground with 0.1µF ceramic capacitors.

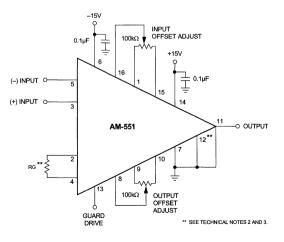
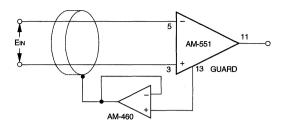
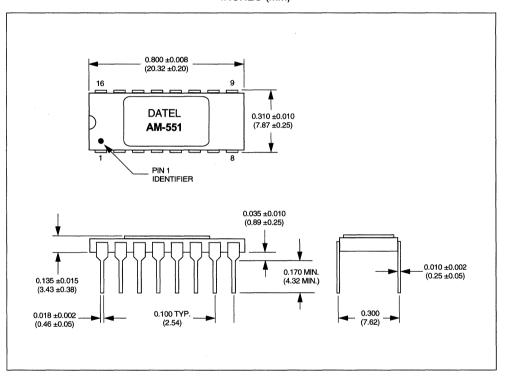



Figure 2. Typical Connections



GUARD DRIVE CONNECTION

A GUARD (pin 13) is provided to improve ac common mode rejection by compensating for unbalanced capacitance due to long input leads. Use of the guard function is recommended whenever input leads are longer than a few inches. In cases in which the input leads are very long or when system bandwidth is very high, the addition of a buffer amplifier is recommended. The diagram to the right shows a typical guard drive connection to the AM-551 using DATEL's AM-460.

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL AM-551MC AM-551MM OPERATING TEMP. RANGE 0 to +70°C

-55 to +125°C

Complete Data Acquisition Systems

Table of Contents

Selection Guide	e	8-1
HDAS-16/8	12-Bit, 50kHz, Complete Data Acquisition Systems	8-3
HDAS-524/528	12-Bit, 400kHz, Complete Data Acquisition Systems	8-10
HDAS-75/76	12-Bit, 75kHz, Complete Data Acquisition Systems	8-15

Selection Guide

Model ①	Resolution (Bits)	Input Channels	Throughput Rate, Min. (kHz)	Differential Linearity Error, Max. (LSB)	Integral Linearity Error, Max. (LSB)	Total Harmonic Distortion (dB)	Power Supplies (Volts)	Maximum Power Dissipation (Watts)	Page
HDAS-16	12	16SE	50	±1	±1	-	+5, ±15	1.25	8-3
HDAS-8	12	8D	50	±1	±1	-	+5, ±15	1.25	8-3
HDAS-75	12	8SE	75	±1	±1	73	+5, ±15	0.7	8-15
HDAS-76	12	4D	75	±1	±1	73	+5, ±15	0.7	8-15
HDAS-528	12	8SE	400	±0.75	±0.75	73	+5, ±15	3	8-10
HDAS-524	12	4D	400	±0.75	±0.75	73	+5, ±15	3	8-10

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated. \odot MIL-STD-883 models available for all listed products except HDAS-524.

8-1

For literature or technical assistance

or contact your local DATEL Sales Office or Representative

HDAS-16, HDAS-8

12-Bit, 50kHz, Complete Data Acquisition Systems

FEATURES

- Miniature 62-pin cermanic package
- 12-Bit resolution, 50kHz throughput
- Full-scale input range from 50mV to 10V
- Three-state outputs
- 16 S.E. or 8 differential input channels
- Auto-sequencing channel addressing
- MIL-STD-883 versions
- No missing codes

GENERAL DESCRIPTION

Using thin and thick-film hybrid technology, DATEL offers complete low-cost data acquisition systems with superior performance and reliability.

The HDAS-8 (with 8 differential input channels) and the HDAS-16 (with 16 single-ended input channels) are complete, highperformance, 12-bit data acquisition systems in 62-pin packages. Each HDAS may be expanded up to 32 singleended or 16 differential channels by adding external multiplexers.

Internal channel address sequencing is automatic after each conversion, or the user may supply external channel addresses.

Internal HDAS circuitry includes:

- Analog input multiplexer (16 S.E. or 8 diff.)
- Resistor-programmable instrumentation amplifier
- Sample-and-hold circuit complete with MOS hold capacitor
- 10 Volt buffered reference
- 12-bit A/D converter with three-state outputs and control logic

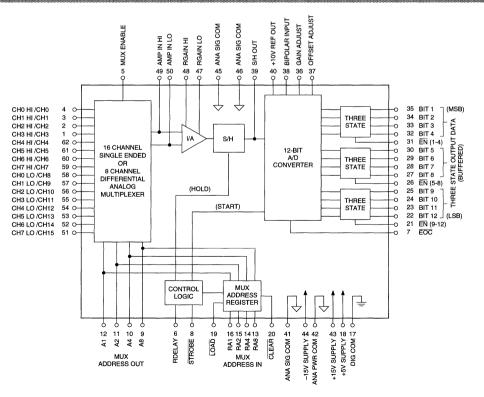


Figure 1. HDAS-16 and HDAS-8 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	MIN.	TYP.	MAX.	UNITS
+15V Supply (pin 43)	-0.5	_	+18	Volts
-15V Supply (pin 44)	+0.5	_	-18	Volts
+5V Supply (pin 18)	-0.5	-	+7	Volts
Analog Inputs ①	-35	-	+35	Volts
Digital Inputs	-0.5	-	+7	Volts
Thermal Resistances:	1			
Junction-Case	- 1	-	15	°C/Watt
Case-Ambient	- 1	-	15	°C/Watt
Junction-Ambient		- 1	30	°C/Watt
Lead Temp. (10 seconds)	-	— .	300	°C

FUNCTIONAL SPECIFICATIONS

(The following specifications apply over the operating temperature range and power supply range unless otherwise indicated.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Signal Range, Unipolar				
Gain = 1	0	_	+10	Volts
Gain = 200	-	_	+50	mV
Signal Range, Bipolar				
Gain = 1	-10	_	+10	Volts
Gain = 200	-50	_	+50	mV
Input Gain Equation 2	(Gain = 1 + (2	0kΩ/RGAIN)
Gain Equation Error	-	_	±0.1	%
Instrumentation Amplifier				
Input Impedance	108	1012	-	Ohms
Input Bias Current:				
+25°C			±250	рА
-55 to +125°C		Doubles e	very 10°C	
Input Offset Current:				
+25°C			±1	nA
-55 to +125°C		Doubles e	very 10°C	
Multiplexer				
Channel ON Resistance	-	-	2	kΩ
Channel OFF Input Leakage		±30	-	pА
Channel OFF Output Leakage	-	±1	-	nA
Channel ON Leakage	-	±100	-	pА
Input Capacitance				
HDAS-16, Channel ON		100	-	pF
HDAS-8, Channel ON	-	50	-	pF
+25°C, Channel OFF	-	5	-	pF
Input Offset Voltage				
Gain = 1, +25°C			±2 ain) ±20ppm	mV /**
-55 to +125°C (max.) Gain = 200, +25°C	(±:		±20ppm ±100	mV
-55 to +125°C (max.)			± 100 ain) ± 20 ppm	
Common Mode Range	±10		ain) ±20ppin I	Volts
CMRR, Gain = 1, at 60Hz	70	82		dB
Input Voltage Noise, Gain = 1	10	02		ub
(Referred to input)	_	150	200	μVrms
Channel Crosstalk	_	_	-80	dB
PERFORMANCE	L	I		L
Resolution	12			Bits
Integral Nonlinearity	12	-	_	DIIS
0 to +70°C	_		±1	LSB
-55 to +125°C			±1	LSB
Differential Nonlinearity	-		T 1	100
0 to +70°C	_	_	±1	LSB
-55 to +125°C			±1	LSB
No Missing Codes	Overt	he operating	temperature	
IN MISSING COUCS		ne operating	temperature	anye

DEDEODMANCE (cont.)	BAINI	TYD	MAX.	
PERFORMANCE (cont.)	MIN.	TYP.	MAX.	UNITS
Unipolar Zero Error				
+25°C ③	-	-	±0.1	%FSR
-55 to +125°C	-	-	±0.3	%FSR
Bipolar Zero Error				
+25°C ③		-	±0.1	%FSR
-55 to +125°C		-	±0.3	%FSR
Bipolar Offset Error				
+25°C ③	-	—	±0.1	%FSR
–55 to +125°C	-	- 1	±0.3	%FSR
Gain Error				
+25°C ③	-	-	±0.2	%
-55 to +125°C	-	_	±0.3	%
DYNAMIC CHARACTERIST	ICS			
Acquisition Time, Gain = 1				
+25°C	-	9	10	μs
-55 to +125°C		_	15	μs
Aperture Delay Time	-	_	500	ns
Aperture Uncertainty		_	1	ns
S/H Droop Rate		_	±1	μV/μs
Feedthrough	-	-	±0.01	%
A/D Conversion Time				
+25°C		6	8	μs
–55 to +125°C	-	_	10	μs
Throughput Rate				
+25°C	50	66	. —	kHz
-55 to +125°C	33	_	_	kHz
DIGITAL INPUTS				
	[
Logic Levels (Pins 8, 13–16, 19–21, 26, 31)				
	+2.0		+5.5	Volts
Logic 1	+2.0	_	+5.5	Volts
Logic 0 (Pin 5)		_	+0.0	VOILS
Logic 1	+4.0		+5.5	Volts
Logic 0	0	_	+5.5	Volts
Logic Loading	U U	_	+0.0	VOIIS
(Pins 5, 8, 13–16, 19–21,				
26, 31)				
Logic 1	_	_	±10	μA
Logic 0	_	_	±10	μΑ
Multiplexer Address Set-up Time	20	_		ns
ENABLE to Data Valid Delay		20	30	ns
STROBE @	40	_	_	ns
OUTPUTS	L	i	L	L
	Г — — — — — — — — — — — — — — — — — — —			
Logic Levels (Output Data)	104			Valta
Logic 1	+2.4	-	-	Volts Volts
Logic 1 (pin 7)	+2.5	-	+0.4	
Logic 0 (Pins 9, 10, 11, and 12)	-	_	+0.4	Volts
	105			Valta
Logic 1 Logic 0	+2.5	_	+0.4	Volts Volto
	-	-	±0.4	Volts
Logic Loading			400	
Logic 1	-	_	-400	μA
Logic 0	-	-	+4	mA
Internal Reference:		.10.00	. 10.04	Velte
Voltage, +25°C	+9.99	+10.00	+10.01	Volts
Drift External Current	-	-	±20	ppm/°C
External Current	Otrojekt k !	ony (uningle of	1	mA (hinolar)
Output Data Coding	Straight bin	ary (unipolar) OF OUSET DIN	ary (pipolar)

FUNCTIONAL SPECIFICATIONS (Continued)

				1
POWER REQUIREMENTS	MIN.	TYP.	MAX.	UNITS
Power Supply Ranges				
+15V Supply	+14.5	+15.0	+15.5	Volts
-15V Supply	-14.5	-15.0	-15.5	Volts
+5V Suppy	+4.75	+5.0	+5.25	Volts
Power Supply Currents	ł			1
+15V Supply	-	-	+33	mA
–15V Supply	_	-	-30	mA
+5V Suppy	- 1	- 1	+15	mA
Power Dissipation	-	-	1.25	Watts
PHYSICAL/ENVIRONMENT	AL			
Operating Temp. Range, Case				
MC Models	0	- 1	+70	°C
MM/883 Models	-55	-	+125	°C
Storage Temperature Range	-65	-	+150	°C
Weight		1.4 ounces	(39.7 grams))
Package Type		62-pin ce	rmanic DIP	

Footnotes:

- ① Analog inputs will withstand ±35V with power on. If the power is off, the maximum safe input (no damage) is ±20V.
- ② The gain equation error is guaranteed before external trimming and applies at gains less than 50. This error increases at gains over 50.
- 3 Adjustable to zero.
- ④ STROBE pulse width must be less than EOC period to achieve maximum throughput rate.

TECHNICAL NOTES

- Input channels are protected to 20 Volts beyond the power supplies. All digital output pins have one second shortcircuit protection.
- To retain high system throughput rates while digitizing low-level signals, apply external high-gain amplifiers for each channel. DATEL's AM-551 is suggested for such amplifier-per-channel applications.
- The HDAS devices have self-starting circuits for freerunning sequential operation. If, however, in a power-up condition the supply voltage slew rate is less than 3V per microsecond, the free running state might not be initialized. Apply a negative pulse to the STROBE, to eliminate this condition.
- 4. For unipolar operation, connect BIPOLAR INPUT (pin 38) to S/H OUT (pin 39). For bipolar operation, connect BIPOLAR INPUT (pin 38) to +10V REFERENCE OUT (pin 40).
- RDELAY may be a standard value 5% carbon composition or film-type resistor.
- RGAIN must be very accurate with low temperature coefficients. If necessary, fabricate the gain resistor from a precision metal-film type in series with a low value trim resistor or potentiometer. The total resistor temperature coefficient must be no greater than ±10ppm/°C.
- 7. ANALOG SIGNAL COMMON, POWER COMMON and DIGITAL COMMON are connected internally. For optimal performance, tie all ground pins (17, 41, 42, 45, 46) directly to a large analog ground plane beneath the package.
- For HDAS-16, tie pin 50 to a "signal source common" if possible. Otherwise tie pin 50 to pin 41 (ANA SIG COM).

INPUT/OUTPUT CONNECTIONS

			J
PIN NO.	HDAS-16		HDAS-8
1	CH3 IN	С	H3 HIGH IN
2	CH2 IN	C	H2 HIGH IN
3	CH1 IN	l c	H1 HIGH IN
4	CH0 IN		HO HIGH IN
5	MUX ENABLE		*
6	RDELAY		*
7			*
-	EOC		
8	STROBE		
9		TIPLEXER	
10		DDRESS	*
11	A2	OUT	*
12	A1		*
13	RA8 MUL	TIPLEXER	*
14	RA4 AI	DRESS	*
15	RA2	IN	*
16	RA1		*
17	DIGITAL COMMON		*
18	+5V SUPPLY		*
19			*
	CLEAR		*
20			
21	ENABLE (Bits 9-12)	1	<u> </u>
22	BIT 12 (LSB)		*
23	BIT 11		*
24	BIT 10		*
25	BIT 9		*
26	ENABLE (Bits 5-8)		*
27	BIT 8		*
28	BIT 7		*
29	BIT 6		*
30	BIT 5		*
31			*
	ENABLE (Bits 1-4)		*
32	BIT 4		
33	BIT 3		
34	BIT 2		*
35	BIT 1 (MSB)		*
36	GAIN ADJUST		*
37	OFFSET ADJUST		*
38	BIPOLAR INPUT		*
39	SAMPLE/HOLD OUT		*
40	+10V REFERENCE O	ит	*
41	ANALOG SIGNAL CO	1	*
41	ANALOG SIGNAL CO		*
	+15V SUPPLY		
43		1	*
44	-15V SUPPLY		
45	ANALOG SIGNAL CO		
46	ANALOG SIGNAL CO	MMON	*
47	RGAIN LOW		*
48	RGAIN HIGH		*
49	AMP. IN HIGH ①		*
50	AMP. IN LOW 1		*
51	CH15 IN	0	CH7 LOW IN
52	CH14 IN		CH6 LOW IN
53	CH13 IN		CH5 LOW IN
50 54	CH12 IN		CH4 LOW IN
55	CH11 IN		CH3 LOW IN
56	CH10 IN		CH2 LOW IN
57	CH9 IN		CH1 LOW IN
58	CH8 IN		CHO LOW IN
59	CH7 IN		H7 HIGH IN
60	CH6 IN	C	H6 HIGH IN
61	CH5 IN		H5 HIGH IN
62	CH4 IN		H4 HIGH IN
-		····	

Same as HDAS-16

① Caution: Pins 49 and 50 do not have overvoltage protection; therefore, protected multiplexers, such as DATEL's MX-1606 and MX-808 are recommended. See the General Operation description.

Table 1. Description of Pin Functions

FUNCTION	LOGIC STATE	DESCRIPTION
DIGITAL INPUTS		
STROBE	1 to 0	Initiates acquisition and conversion of analog signal
LOAD	0	Random address mode initiated on falling edge of STROBE
	1	Sequential address mode
CLEAR	0	Allows next STROBE pulse to reset MULTIPLEXER ADDRESS to CH0 overriding LOAD COMMAND
MUX ENABLE	0 1	Disables internal multiplexer Enables internal multiplexer
MUX ADDRESS IN		Selects channel for random address mode 8, 4, 2, 1 natural binary coding
DIGITAL OUTPUTS		
EOC (STATUS)	0	Conversion complete
	1	Conversion in process
ENABLE (1-4)	0	Enables three-state outputs bits 1-4
	1	Disables three-state outputs bits 1-4
ENABLE (5-8)	0	Enables three-state outputs bits 5-8
	1	Disables three-state outputs bits 5-8
ENABLE (9-12)	0	Enables three-state outputs bits 9-12
	1	Disables three-state outputs bits 9-12
MUX ADDRESS OUT		Output of multiplexer address register 8, 4, 2, 1 natural binary coding
ANALOG INPUTS		DESCRIPTION
CHANNEL INPUTS		Limit voltage to ±20V beyond power supplies
BIPOLAR INPUT	-	For unipolar operation, connect to pin 39 (S/H OUT). For bipolar operation, connect to in 40 (+10V OUT)
AMP. IN LOW		These pins are direct inputs to the
amp. In high	,	instrumentation amplifier for external channel expansion beyond 16SE or 8D channels.
ANALOG OUTPUTS		
S/H OUT		Sample/hold output
+10V REFERENCE C	DUT	Buffered +10V reference output
ADJUSTMENT PINS		
ANALOG SIGNAL CO	DMMON	Low level analog signal return
GAIN ADJUSTMENT		External gain adjustment. See calibration instructions.
OFFSET ADJUSTME	NT	External offset adjustment. See calibration instructions.
RGAIN	a. (Jesas Jugas	Optional gain selection point. Factory adjusted for G = 1 when left open.
RDELAY		Optional acquisition time adjustment when connected to +5V. Factory adjusted for 9µs. Must be connected to +5V either directly or through a resistor.

8-6

Table 2. Calibration Table

UNIPOLAR RANGE	ADJUST	INPUT VOLTAGE
0 to +5V	ZERO GAIN	+0.6mV +4.9982V
0 to +10V	ZERO GAIN	+1.2mV +9.9963V
BIPOLAR RANGE		
±2.5V	OFFSET GAIN	-2.4994V +2.4982V
±5V	OFFSET GAIN	4.9988V +4.9963V
±10V	OFFSET GAIN	-9.9976V +9.9927V

CALIBRATION PROCEDURES

- 1. Offset and gain adjustments are made by connecting two 20k trim potentiometers as shown in Figure 2.
- Connect a precision voltage source to pin 4 (CH0 IN). If the HDAS-8 is used, connect pin 58 (CH0 LOW IN) to analog ground. Ground pin 20 (CLEAR) and momentarily short pin 8 (STROBE). Trigger the A/D by connecting pin 7 (EOC) to pin 8 (STROBE). Select proper value for RGAIN and RDELAY by referring to Table 3.
- Adjust the precision voltage source to the value shown in Table 2 for the unipolar zero adjustment (ZERO + 1/2LSB) or the bipolar offset adjustment (-FS + 1/2LSB). Adjust the offset trim potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001.
- 4. Change the output of the precision voltage source to the value shown in Table 2 for the unipolar or bipolar gain adjustment (+FS 1 1/2LSB). Adjust the gain trim potentiometer so that the output flickers equally between 1111 1111 1111 0 and 1111 1111.

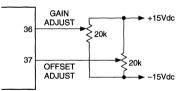


Figure 2. External Adjustment

GENERAL OPERATION

The HDAS devices accept either 16 single-ended or 8 differential input signals. For single-ended circuits, the AMP IN LOW (pin 50) input to the instrumentation amplifier must terminate at ANALOG SIGNAL COMMON (pin 41). For differential circuits, both the HIGH and LOW signal inputs must terminate externally for each channel. Tie unused channels to the ANALOG SIGNAL COMMON (pin 41). To obtain additional channels, connect external multiplexers to the AMP IN HIGH (pin 49) and AMP IN LOW (pin 50). Using this scheme, the HDAS-16 can provide 32 single-ended expansion channels while the HDAS-8 can provide up to 16 differential expansion channels. DATEL's MX Series multiplexers are recommended.

The acquisition time is the amount of time the multiplexer, instrumentation amplifier, and sample/hold require to settle within a specified range of accuracy after STROBE (pin 8) goes low. The acquisition time period can be observed by measuring how long EOC is low after the falling edge of STROBE (see Figure 4). For higher gains, increase the acquisition time. Do this by connecting a resistor from RDELAY (pin 6) to $\pm 5V$ (pin 18). An external resistor, RGAIN, can be added to increase the gain value. The gain is equal to 1 without an RGAIN resistor. Table 3 refers to the appropriate RDELAY and RGAIN resistors required for various gains.

The HDAS devices enter the hold mode and are ready for conversion as soon as the one-shot (controlling acquisition time) times out. An internal clock is gated ON, and a startconvert pulse is sent to the 12-bit A/D converter, driving the EOC output high. The HDAS devices can be configured for either bipolar or unipolar operation (see Table 2). The conversion is complete within a maximum of 10 microseconds. The EOC now returns low, the data is valid and sent to the three-state output buffers. The sample/hold amplifier is now ready to acquire new data. The next falling edge of the STROBE pulse repeats the process for the next conversion.

MULTIPLEXER ADDRESSING

The HDAS devices can be configured in either random or sequential addressing modes. Refer to Table 5 and the subsequent descriptions. The number of channels sequentially addressed can be truncated using the MUX ADDRESS OUT (pins 9, 10, 11 and 12) and appropriate decoding circuitry for the highest channel desired. The decoding circuit can drive the CLEAR (pin 20) function low to reset the addressing to channel 0.

Table 3. Input Range Parameters (Typical)

INPUT RANGE ① ②	GAIN	RGAIN (Ω)	RDELAY (Ω) ③	THROUGHPUT (4)	SYSTEM ACCURACY (% OF FSR)
±10V	1	OPEN	0 (SHORT)	66.6kHz	±0.009
±5V	2	20.0k	0 (SHORT)	66.6kHz	±0.009
±2.5V	4	6.667k	0 (SHORT)	66.6kHz	±0.009
±1V	10	2.222k	0 (SHORT)	66.6kHz	±0.009
±200mV	50	408.2	7k	40.0kHz	±0.010
±100mV	100	202.0	21k	25.6kHz	±0.011
±50mV	200	100.5	51k	14.5kHz	±0.016

Notes

 $\mathsf{RGAIN}\;(\Omega) = \;\frac{20,000}{(\mathsf{GAIN}-1)}\;$

RDELAY (Ω) = [Total Acquisition Delay (µs) x 1000] – 9000

.

0 The analog input range to the A/D converter is 0 to +10V for unipolar signals and ±10V for bipolar signals.

© Full scale can be accommodated for analog signal ranges of ±50mV to ±10V.

③ For gains between 1 and 10, RDELAY (pin 6) must be shorted to +5V (pin 18).

Throughput period equals acquisition and settling delay, plus A/D conversion period (10 microseconds maximum).

0 to +5V	MSB	1111	LSB
4 0000			
+4.9900	1 111	1111	1111
+2.5000	1000	0000	0000
+0.0012	0000	0000	0001
0.0000	0000	0000	0000
	+0.0012	+0.0012 0000	+0.0012 0000 0000

	OFFS	SET BIN	ARY*		
INPUT	±10V	±5V	MSB		LSB
+FS – 1LSB	+9.9951	+4.9976	1111	1111	1111
+1/2FS	+5.0000	+2.5000	1100	0000	0000
+1LSB	+0.0049	+0.0024	1000	0000	0001
ZERO	0.0000	0.0000	1000	0000	0000
–FS + 1LSB	-9.9951	-4.9976	0000	0000	0001
–FS	-10.000	-5.0000	0000	0000	0000

* For 2's complement coding, add an inverter to the MSB line.

Table 5. Mux Channel Addressing

		PIN				
		MUX AD	DRESS	1		
5	13	14	15	16	N N	
MUX					ON CHANNEL	
ENABLE	RA8	RA4	RA2	RA1	NONE	
0	x	x	X	X	NONE	
1	0	0	0	0	0	
1	0	0	0	1	1	
1	0	0	1	0	2	
1	0	0	1	1	3	HDAS-8
1	0	1	0	0	4	(3-BIT ADDRESS)
1	0	1	0	1	5	AUUNESSI
1	0	1	1	0	6	
1	0	1	1	1	7	
1	1	0	0	0	8	
1	1	0	0	1	9	
1	1	0	1	0	10	HDAS-16
1	1	0	1	1	11	(4-BIT
1	1	1	0	0	12	ADDRESS)
1	1	1	0	1	13	
1	1	1	1	0	14	
1	1	1	1	1	15	

HDAS-16, HDAS-8

RANDOM ADDRESSING

Set pin 19 (LOAD) to logic 0. The next falling edge of STROBE will load the MUX CHANNEL ADDRESS present on pin 13 to pin 16. Digital address inputs must be stable 20ns before and after falling edge of the STROBE pulse.

FREE RUNNING SEQUENTIAL ADDRESSING

Set pin 19 (\overline{LOAD}) and pin 20 (\overline{CLEAR}) to logic 1 or leave open. Connect pin 7 (\overline{EOC}) to pin 8 (\overline{STROBE}). The falling edge of \overline{EOC} will increment channel address. This means that when the \overline{EOC} is low, the digital output data is valid for the previous channel (CHn - 1) rather than the channel indicated on MUX ADDRESS OUTPUT. The HDAS will continually scan all channels.

Example:

<u>CH4</u> has been addressed and a conversion takes place. The EOC goes low. That channel's (CH4's) data becomes valid, but MUX ADDRESS OUTPUT is now CH5.

TRIGGERED SEQUENTIAL ADDRESSING

Set pin 19 (LOAD) and pin 20 (CLEAR) to logic 1 <u>or leave</u> open. Apply a falling edge trigger pulse to pin 8 (STROBE). This negative transition causes the contents of the address counter to be incremented by one, followed by an A/D conversion in 9 microseconds.

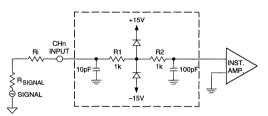
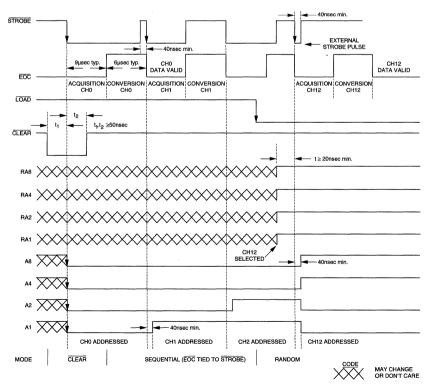
INPUT VOLTAGE PROTECTION

۱

As shown in Figure 3, the multiplexer has reversed biased diodes which protect the input channels from being damaged by overvoltage signals. The HDAS input channels are protected up to 20V beyond the supplies and can be increased by adding series resistors (Ri) to each channel. The input resistor must limit the current flowing through the protection diodes to 10mA.

The value of Ri for a specific voltage protection range (Vp) can be calculated by the following formula:

NOTE: Increased input series resistance will increase multiplexer settling time significantly.

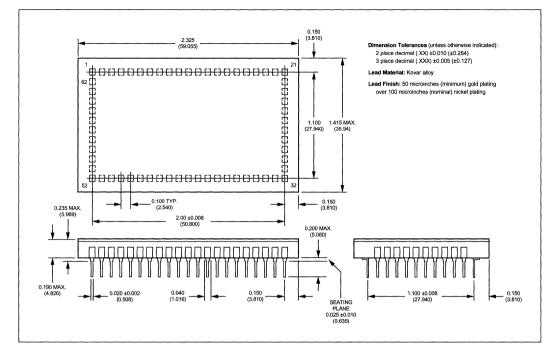

Figure 3. Multiplexer Equivalent Circuit

Figure 4. HDAS Timing Diagram

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL NO.	OPERATING TEMP. RANGE
HDAS-16MC	0 to +70°C
HDAS-16MM	–55 to +125°C
HDAS-16/883	–55 to +125°C
HDAS-8MC	0 to +70°C
HDAS-8MM	–55 to +125°C
HDAS-8/883	–55 to +125°C
Part #3-331272-4 (board mounting can be ordered through AMP Inc., Component Lead Spring Socket), 62 required. c. for MIL-STD-883 product specifications.

HDAS-524, HDAS-528 12-Bit, 400kHz, Complete

Data Acquisition Systems

FEATURES

- 12-Bit resolution, 400kHz throughput
- 8 Channels single-ended or 4 channels differential
- Miniature, 40-pin, ceramic DDIP
- Full scale input range from 100mV to 10V
- Three-state outputs
- No missing codes

GENERAL DESCRIPTION

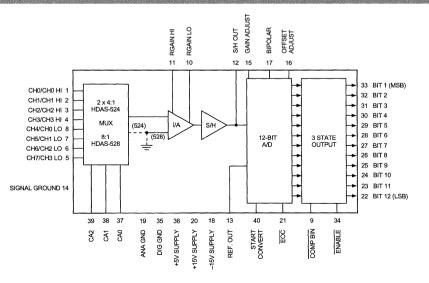
The HDAS-524 and HDAS-528 are complete data acquisition systems. Each contains an internal multiplexer, instrumentation amplifier, sample-hold, analog-to-digital converter and three-state outputs. Packaged in miniature, 40-pin, double-dip packages, the HDAS-524/528 have a low power dissipation of 2.6 Watts.

The HDAS-524 provides 4 differential inputs, and the HDAS-528 provides 8 single-ended inputs. An internal instrumentation amplifier is characterized for gains of 1, 2, 4, 8, 10 and 100. The gain range is selectable through a single external resistor.

HDAS-524/528 OPERATION

The HDAS devices accept either 8 single-ended or 4 differential input signals. Tie unused channels to SIGNAL GROUND, pin 14. Channel selection is accomplished using the multiplexer address pins as shown in Table 1. Obtain additional channels by connecting external multiplexers.

The acquisition time is the amount of time the multiplexer, instrumentation amplifier and sample-hold require to settle within a specified range of <u>accuracy</u>. The acquisition time can be measured by how long EOC is low before the rising edge


Continued on page 8-12

INNOVATION and EXCELLENCE

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	CH0/CH0 HI	40	START CONVERT
2	CH1/CH1 HI	39	CA2
3	CH2/CH2 HI	38	CA1
4	СН3/СН3 НІ	37	CA0
5	CH7/CH3 LO	36	+5V SUPPLY
6	CH6/CH2 LO	35	DIGITAL GROUND
7	CH5/CH1 LO	34	ENABLE
8	CH4/CH0 LO	33	BIT 1 (MSB)
9	COMP BIN	32	BIT 2
10	RGAIN LO	31	BIT 3
11	RGAIN HI	30	BIT 4
12	S/H OUT	29	BIT 5
13	+10V REFERENCE OUT	28	BIT 6
14	SIGNAL GROUND	27	BIT 7
15	GAIN ADJUST	26	BIT 8
16	OFFSET ADJUST	25	BIT 9
17	BIPOLAR	24	BIT 10
18	-15V SUPPLY	23	BIT 11
19	ANALOG GROUND	22	BIT 12 (LSB)
20	+15V SUPPLY	21	EOC

Figure 1. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	MIN.	TYP.	MAX.	UNITS
+15V Supply, Pin 20	0	_	+18	Volts
-15V Supply, Pin 18	0		-18	Volts
+5V Supply, Pin 36	-0.5	_	+7	Volts
Digital Inputs, Pins 9, 34, 37-40	-0.3		+VDD +0.3	Volts
Analog Inputs, Pins 1-8	-15		+15	Volts
Lead Temperature (10 seconds)		-	300	°C

FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range with $\pm 15V$ and $\pm 5V$ supplies unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS	
Number of Inputs					
HDAS-524	1	4 differen	tial inputs		
HDAS-528	8 single-ended inputs				
Input Voltage Ranges					
Gain = 1		0 to +10)V, ±10V		
Gain = 100		0 to +100m	IV, ±100mV		
I.A. Gain Ranges		1, 2, 4, 8	, 10, 100		
Input Impedance					
CH On, CH Off	1011	1012	-	Ohms	
Input Capacitance					
(-524) CH On, CH Off		-	12	pF	
(-528) CH On, CH Off	-		25	pF	
Input Bias Current	-	-	±200	рА	
Input Offset Current	-	- 1	±50	pА	
Input Offset Voltage		-	±10	mV	
Common Mode Voltage Range	±11	-		Volts	
CMRR, G = 1, @ 10Hz,				ļ	
Vcm = 1Vp-p	72	80	-	dB	
Voltage Noise (RMS)					
Gain = 1	-	-	200	μV	
Gain = 8		-	50	μV	
MUX Crosstalk @125kHz	-72		-	dB	
MUX ON Resistance	Deuble	450	500	Ohms	
Bias Current Tempco		s (max.) ever			
Offset Current Tempco		s (max.) ever			
Offset Voltage Tempco	(±30pp	om/°C x gain		(max.)	
Input Gain Equation		GAIN = -	$\frac{2KS2}{RGAIN}$ +1		
DIGITAL INPUTS					
Logic Levels				1	
Logic 1	+2.0	—		Volts	
Logic 0	-	-	+0.5	Volts	
Logic Loading			Ì		
Logic 1	-	-	+5	μA	
Logic 0	-	-	-600	μA	
OUTPUTS	·				
Logic Levels					
Logic 1	+2.4	-	-	Volts	
Logic 0	-	-	+0.4	Volts	
Logic Loading					
Logic 1	-		-160	μA	
Logic 0	-	-	+6.4	mA	
Internal Reference]			
Voltage, +25°C	+9.9	+10.0	+10.1	Volts	
Drift	-	±5	±35	ppm/°C	
External Current	-	-	1.5	mA	
Output Coding	S	traight binary		L	
	Comp. binary/Comp. offset binary				

Footnotes:

HDAS-524, HDAS-528

PERFORMANCE	MIN.	TYP.	MAX.	UNITS	
Resolution	12	_	_	Bits	
Integral Nonlinearity, +25°C	<u>'</u>	_	±0.75	LSB	
0 to +70°C			±0.75	LSB	
-55 to +125°C		_	±0.75 ±1.5	LSB	
Differential Nonlinearity, +25°C	_	-	1		
	-	_	±0.75	LSB	
0 to +70°C	- 1	-	±0.75	LSB	
-55 to +125°C	_		±1	LSB	
F.S. Abs. Accuracy, +25°C	-	±0.13	±0.3	%FSR	
0 to +70°C	- 1	±0.15	±0.5	%FSR	
–55 to +125°C	-	±0.25	±0.78	%FSR	
Unipolar Zero Error, +25°C	-	±0.074	±0.15	%FSR	
Unipolar Zero Tempco		±15	±30	ppm/°C	
Bipolar Zero Error, +25°C	-	±0.074	±0.15	%FSR	
Bipolar Zero Tempco	-	±5	±10	ppm/°C	
Bipolar Offset Error, +25°C		±0.1	±0.25	%FSR	
Bipolar Offset Tempco	- 1	±20	±40	ppm/°C	
Gain Error, +25°C	i	±0.1	±0.25	%	
Gain Tempco	-	±20	±40	ppm/°C	
Harmonic Distortion (–FS)					
(DC to 5kHz, 10Vp-p) ①		-73	-65	dB	
No Missing Codes	Over	operating te			
		- p 0.041119 10			
SIGNAL TIMING	r	r	1		
Enable to Data Valid Delay	-	-	10	ns	
MUX Address Set-up Time	400	-	-	ns	
Start Convert Pulse Width	50	100	-	ns	
Data Valid After		}	ļ		
EOC Signal Goes Low		-	20	ns	
Conversion Time, +25°C	- 1	-	800	ns	
0 to +70°C	-	-	850	ns	
–55 to +125°C	-	-	880	ns	
Throughput Rates ①					
Gain = 1	400	_	_	kHz	
Gain = 2	325	_	_	kHz	
Gain = 4	275	_	_	kHz	
Gain = 8	225	_	_	kHz	
Gain = 10	175	_	_	kHz	
Gain = 100	40	_	_	kHz	
S/H PERFORMANCE	r				
Acquisition Time					
Full-Scale Step to ±0.01%	-	500	900	ns	
Full-Scale Step to ±0.1%	-	400	750	ns	
Aperture Delay	-50	-20	0	ns	
Aperture Uncertainty	-	-	±150	ps	
Slew Rate	±70	±90	-	V/µs	
Hold Mode Settling Time					
To ±1mV	-	100	200	ns	
To ±10mV	-	75	150	ns	
Feedthrough Rejection	80	88	_	dB	
Droop Rate ①	_	±0.1	±100	μV/µs	
POWER SUPPLIES	L	I	L	<u> </u>	
and the second					
Range, +15V Supply	+14.25	+15.0	+15.75	Volts	
-15V Supply	-14.25	-15.0	-15.75	Volts	
+5V Supply	+4.75	+5.0	+5.25	Volts	
Current, +15V Supply	-	+78	+90	mA	
-15V Supply	-	-72	-82	mA	
+5V Supply	-	+75	+95	mA	
Power Dissipation	-	2.6	3	Watts	
Power Supply Rejection	-	-	±0.05	%FSR/%V	
PHYSICAL/ENVIRONMENT	Δ1	l	I	L	
	r	r			
Oper. Temp. Range, Case, -MC,	0	-	+70	°C	
-MM, 883	55	-	+125	°C	
Storage Temp. Range	-65		+150	°C	
Package Type			amic DDIP		
Weight		0.56 ounces	s (16 grams)		
	0.56 ounces (16 grams)				

 $[\]odot\,$ Specifications valid at +25°C and over the temperature ranges of 0 to +70°C or –55 to +125°C.

HDAS-524/528 OPERATION (Continued)

of the START CONVERT pulse for continuous operation. Higher gains require the use of the RGAIN resistor to increase the acquisition time. The gain is equal to 1 without an RGAIN resistor. Table 2 refers to the appropriate RGAIN resistors for various throughputs.

The HDAS devices enter the hold mode and are ready for conversion upon the start convert going high. The conversion is complete within a maximum of 800ns ($+25^{\circ}$ C). EOC returns low, the data is valid and sent to the three-state output buffers. The sample/hold is now ready to acquire new data.

Table 1. MUX Chanr	nel Addressing
--------------------	----------------

MUX A	DDRES	S PINS		
39 CA2	38 CA1	37 CA0	CHANNEL	
0	0	0	0	
0	0	1	1	HDAS-524
0	1	0	2	(2-BIT ADDRESS)
0	1	1	3	
1	0	0	4	
1	0	1	5	HDAS-528
1	1	0	6	(3-BIT ADDRESS)
1	1	1	7	

Table 2. Input Range Parameters

INPUT RANGE	GAIN	RGAIN	THROUGHPUT
0 to +10V	1	OPEN	400kHz
0 to +5V	2	2kΩ	325kHz
0 to +2.5V	4	665Ω	275kHz
0 to +1.25V	8	287Ω	225kHz
0 to +1V	10	221Ω	175kHz
0 to +100mV	100	20Ω	40kHz
±10V	1	OPEN	400kHz
±5V	2	2kΩ	325kHz
±2.5V	4	665Ω	275kHz
±1.25V	8	287Ω	225kHz
±1V	10	221Ω	175kHz
±100mV	100	20Ω	40kHz

$$\mathsf{R}_{\mathsf{GAIN}} = \frac{2k\Omega}{(\mathsf{GAIN} - 1)}$$

$$GAIN = \frac{2KS2}{R_{GAIN}} + 1$$

Table 3. Zero and Gain Adjust

INPUT RANGE	ZERO ADJUST +1/2LSB	GAIN ADJUST +FS – 1 1/2LSB
0 to +10V	+1.22mV	+9.9963V
±10V	+2.44mV	+9.9927V

CALIBRATION PROCEDURE

 Connect the converter per Figure 2 and Tables 2 and 3 for the appropriate input range. Apply a pulse of 100 nanoseconds (typical) to the START CONVERT input (pin 40) at a rate of 100kHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

Apply a precision voltage reference source between the analog input and SIGNAL GROUND (pin 14). Adjust the output of the reference source per Table 3. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0000 with the COMP BIN (pin 9) tied high (straight binary) or between 1111 1111 1111 and 1111 1110 with the COMP BIN (pin 9) tied low (complementary binary).

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with COMP BIN (pin 9) tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with COMP BIN (pin 9) tied low (complementary offset binary).

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 on0000 0000 0001 and 0000 0000 for complementary coding.

 To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

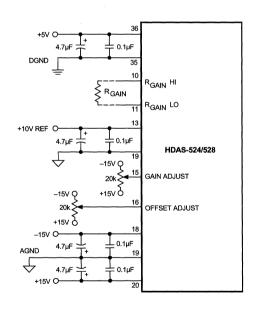


Figure 2. Typical Connection Diagram

Notes:

- 1. For unipolar operation, connect pin 12 to pin 17.
- 2. For bipolar operation, connect pin 13 to pin 17.
- 3. Position R_{GAIN} as close as possible to pins 10 and 11. Use RN55C, 1% resistors.
- 4. If gain and offset adjusts are not used, connect pin 15 to ground and leave pin 16 open.

TECHNICAL NOTES

- Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital ground pins are not connected to each other internally. Avoid ground-related problems by connecting the analog, signal and digital grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital grounds separately to the power supplies. This prevents contamination of the analog ground by noisy digital ground currents.
- Double-level multiplexing allows expanding the multiplexer channel capacity of the HDAS-528 from 8 single-ended channels to 128 single-ended channels or the HDAS-524 from 4 differential channels to 32 differential channels.
- Obtain straight binary/offset binary output coding by tying COMP BIN (pin 9) to +5V or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie pin 9 to ground. The COMP BIN signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- 4. To enable the three-state outputs, connect ENABLE (pin 34) to a logic "0" (low). To disable, connect pin 34 to a logic "1" (high).

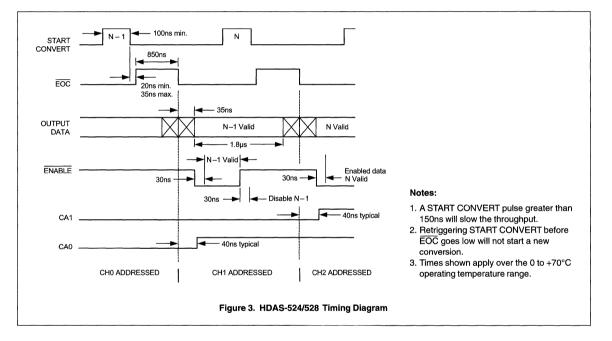
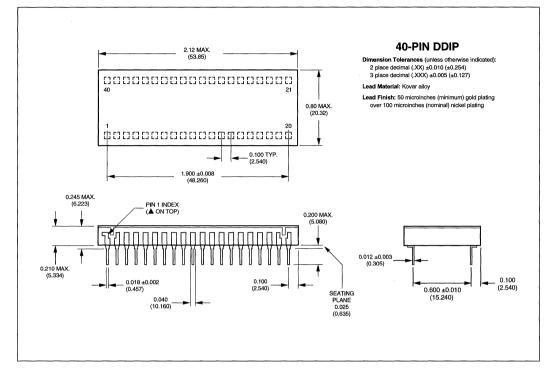


Table 4. Output Coding


		STRAIGHT BINARY	COMP. BINARY		
UNIPOLAR SCALE	INPUT RANGE 0 to +10V	OUTP MSB LSB	UT CODING MSB LSB	INPUT RANGE ±10V	BIPOLAR SCALE
+FS – 1LSB	+9.9976V	1111 1111 1111	0000 0000 0000	+9.9951V	+FS – 1LSB
+7/8FS	+8.7500V	1110 0000 0000	0001 1111 1111	+7.5000V	+3/4FS
+3/4FS	+7.5000V	1100 0000 0000	0011 1111 1111	+5.0000V	+1/2FS
+1/2FS	+5.0000V	1000 0000 0000	0111 1111 1111	0.0000V	0
+1/4FS	+2.5000V	0100 0000 0000	1011 1111 1111	-5.0000V	-1/2FS
+1/8FS	+1.2500V	0010 0000 0000	1101 1111 1111	-7.5000V	3/4FS
+1LSB	+0.0024V	0000 0000 0001	1111 1111 1110	-9.9951V	–FS + 1LSB
0	0.0000V	0000 0000 0000	1111 1111 1111	-10.0000V	–FS
		OFFSET BINARY	COMP. OFF. BINARY		

HDAS-524, HDAS-528

MECHNICAL DIMENSIONS

INCHES (mm)

ORDERING INFORMATION

MODEL NO.	INPUT	OPERATING TEMP. RANGE
HDAS-524MC	4D Channels	0 to +70°C
HDAS-524MM	4D Channels	–55 to +125°C
HDAS-528MC	8SE Channels	0 to +70°C
HDAS-528MM	8SE Channels	–55 to +125°C
HDAS-528/883	8SE Channels	–55 to +125°C
		n be ordered through AMP Inc Socket), 40 required.

8-14 DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048-1194 (U.S.A.) Tel: 508-339-3000 Fax: 508-339-6356 • For immediate assistance 800-233-2765

FEATURES

- 12-Bit resolution, 75kHz throughput
- 8 Channels single-ended or 4 channels differential
- Miniature 40-pin DDIP
- Full-scale input range from 100mV to 10V
- · High-impedance output state
- No missing codes

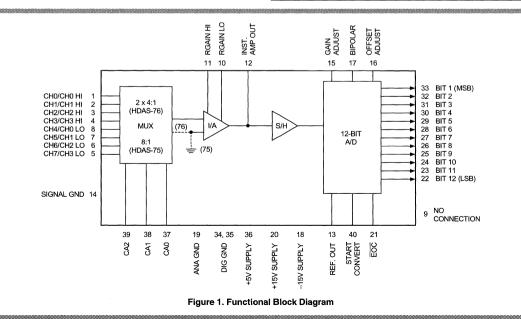
GENERAL DESCRIPTION

The HDAS-75 and HDAS-76 are complete data acquisition systems. Each contains an internal multiplexer, instrumentation amplifier, sample-hold, analog-to-digital converter and three-state outputs. Packaged in miniature, 40-pin, double-dip packages and requiring \pm 15V and \pm 5V supplies, each system dissipates a mere 500 milliwatts.

The HDAS-76 provides 4 differential inputs, and the HDAS-75 provides 8 single-ended inputs. An internal instrumentation amplifier is characterized for gains of 1, 2, 4, 8, 10 and 100. The gain range is selectable through an external resistor.

TECHNICAL NOTES

- Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital ground pins are connected to each other internally. Avoid ground-related problems by connecting the analog, signal and digital grounds to one point, the ground plane beneath the converter.
- 2. Double-level multiplexing allows expanding the multiplexer channel capacity of the HDAS-75 from 8 to 128 single-ended channels or the HDAS-76 from 4 to 32 differential channels.


HDAS-75, HDAS-76

12-Bit, 75kHz, Complete Data Acquisition Systems

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	CH0/CH0 HI	40	START CONVERT
2	CH1/CH1 HI	39	CA2
3	CH2/CH2 HI	38	CA1
4	CH3/CH3 HI	37	CA0
5	CH7/CH3 LO	36	+5V SUPPLY
6	CH6/CH2 LO	35	DIGITAL GROUND
7	CH5/CH1 LO	34	DIGITAL GROUND
8	CH4/CH0 LO	33	BIT 1 (MSB
9	NO CONNECTION	32	BIT 2
10	RGAIN LO	31	BIT 3
11	RGAIN HI	30	BIT 4
12	INST. AMP OUT	29	BIT 5
13	+10V REFERENCE OUT	28	BIT 6
14	SIGNAL GROUND	27	BIT 7
15	GAIN ADJUST	26	BIT 8
16	OFFSET ADJUST	25	BIT 9
17	BIPOLAR	24	BIT 10
18	-15V SUPPLY	23	BIT 11
19	ANALOG GROUND	22	BIT 12 (LSB)
20	+15V SUPPLY	21	EOC

HDAS-75, HDAS-76

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	MIN.	TYP.	MAX.	UNITS
+15V Supply, Pin 20	0	_	+18	Volts
-15V Supply, Pin 18	0	-	-18	Volts
+5V Supply, Pin 36	-0.5	_	+7	Volts
Digital Inputs, Pins 37-40	-0.3	-	+6	Volts
Analog Inputs, Pins 1–8	-25	-	+25	Volts
Lead Temperature (10 seconds)	-	—	300	°C

FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range with $\pm 15V$ and +5V supplies unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS			
Number of Inputs		L		L			
HDAS-75		8 single-er	ded inputs				
HDAS-76		4 differen					
Input Voltage Ranges			'				
Gain = 1	0 to +10V, ±10V						
Gain = 100	0 to +100mV, ±100mV						
I.A. Gain Ranges	1, 2, 4, 8, 10, 100						
Input Impedance							
CH On, CH Off	1011	1012	-	Ohms			
Input Capacitance							
(-75) CH On, CH Off		_	25	pF			
(-76) CH On, CH Off	-	-	12	pF			
Input Bias Current	—		±200	pА			
Input Offset Current	_	-	±50	pА			
Input Offset Voltage		—	±10	mV			
Common Mode Voltage Range	±11	-	-	v			
CMRR, G = 1, @10Hz,							
Vcm = 1Vp-p	75	80		dB			
Voltage Noise (RMS)							
Gain = 1		- 1	200	μV			
Gain = 8 MUX Crosstalk @125kHz	_	_	50 72	μV dB			
MUX Crosstalk @ 125kHz MUX ON Resistance	_	450	-72 500	Ohms			
Bias Current Tempco	Doubler	(max.) ever					
Offset Current Tempco							
Offset Voltage Tempco	Doubles (max.) every 10°C above +70°C (±30ppm/°C x gain) ±20ppm/°C (max.)						
• .	(TOOD!	$G = -\frac{2}{3}$		(110.)			
Input Gain Equation			lain				
DIGITAL INPUTS							
Logic Levels							
Logic 1	+2.4			Volts			
Logic 0		-	+0.8	Volts			
Logic Loading							
Logic 1		-	+30	μA			
Logic 0		-	-30	μA			
OUTPUTS							
Logic Levels							
Logic 1	+2.4	_		Volts			
Logic 0	-	-	+0.4	Volts			
Logic Loading							
Logic 1	_	-	-500	μA			
Logic 0	_	-	+1.6	mA			
Internal Reference							
Internal Reference Voltage, +25°C	+9.9	+10.0	+10.1	Volts			
	+9.9	+10.0 ±5	+10.1 ±35	Volts ppm/°C			
Voltage, +25°C	+9.9 						

Footnotes:

0 Specifications valid at +25°C and over the temperature ranges of 0 to +70°C or –55 to +125°C.

PERFORMANCE	MIN.	TYP.	MAX.	UNITS
Resolution	12	-	-	Bits
Integral Nonlinearity, +25°C			±1	LSB
0 to +70°C	-		±1	LSB
–55 to +125°C	-		±1.5	LSB
Differential Nonlinearity, +25°C			±1	LSB
0 to +70°C			±1	LSB
-55 to +125°C		-	±1	LSB
F.S. Abs. Accuracy, +25°C		±0.13	±0.3	%FSR
0 to +70°C		±0.15	±0.5	%FSR
-55 to +125°C		±0.25	±0.78	%FSR
Unipolar Zero Error, +25°C		±0.074	±0.15	%FSR
Unipolar Zero Tempco		±15	±30	ppm/°C
Bipolar Zero Error, +25°C	_	±0.074	±0.15	%FSR
Bipolar Zero Tempco	_	±5	±10	ppm/°C
Bipolar Offset Error, +25°C		±0.1	±0.25	%FSR
Bipolar Offset Tempco		±20	±40	ppm/°C
Gain Error, +25°C	_	±0.1	±0.25	%
Gain Tempco	_	±20	±40	ppm/°C
Harmonic Distortion (-FS)			± 10	PP.10
(DC to 5kHz, 10Vp-p) ①	_	-73	-65	dB
No Missing Codes	 	operating te		
	Over	operating te	inperature r	ange
SIGNAL TIMING				
MUX Address Set-up Time	400		-	ns
Start Convert Pulse Width	0.05	1	-	μs
Data Valid Before				
EOC Signal Goes Low	300	-	-	ns
Conversion Time, +25°C	-		12	μs
0 to +70°C	—		13	μs
-55 to +125°C			13	μs
Throughput Rates ①				
Gain = 1	75	80	-	kHz
Gain = 2	60	70	-	kHz
Gain = 4	50	60	-	kHz
Gain = 8	45	50	_	kHz
Gain = 10	40	45	-	kHz
Gain = 100	10	20	-	kHz
S/H PERFORMANCE				L
Acquisition Time				
Full-Scale Step to ±0.01%	_	1.4	1.8	μs
Full-Scale Step to ±0.1%		0.8	1.4	μs
Aperture Delay	50	-20	0	ns
Aperture Uncertainty	_		±200	ps
Slew Rate	±70	±90		ν/μs
Hold Mode Settling Time	10	100		1/µ3
To ±1mV		200	400	ns
To ±10mV	_	150	300	ns is
	80		300	dB
Feedthrough Rejection	00	88	+100	1 .
Droop Rate ①		L	±100	μV/μs
POWER SUPPLIES			[T
	+14.25	+15.0	+15.75	Volts
Range, +15V Supply		-15.0	-15.75	Volts
-15V Supply	-14.25			
-15V Supply +5V Supply	-14.25 +4.75	+5.0	+5.25	Volts
-15V Supply +5V Supply Current, +15V Supply		+5.0 +15	+5.25 +20	Volts mA
-15V Supply +5V Supply		+5.0	+5.25	
-15V Supply +5V Supply Current, +15V Supply -15V Supply +5V Supply		+5.0 +15 –10 +25	+5.25 +20 -15 +35	mA mA mA
–15V Supply +5V Supply Current, +15V Supply –15V Supply		+5.0 +15 –10	+5.25 +20 –15	mA mA
-15V Supply +5V Supply Current, +15V Supply -15V Supply +5V Supply		+5.0 +15 –10 +25	+5.25 +20 -15 +35	mA mA mA
-15V Supply +5V Supply Current, +15V Supply -15V Supply +5V Supply Power Dissipation	+4.75 — — — — —	+5.0 +15 –10 +25	+5.25 +20 -15 +35 700	mA mA mA mW
-15V Supply +5V Supply Current, +15V Supply -15V Supply +5V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMENTA	+4.75 — — — — — — — — —	+5.0 +15 –10 +25	+5.25 +20 -15 +35 700 ±0.01	mA mA mA mW
-15V Supply +5V Supply Current, +15V Supply -15V Supply +5V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMENT/ Oper. Temp. Range, Case, -MC	+4.75 — — — — — — — — — — — — — — — — — — —	+5.0 +15 –10 +25	+5.25 +20 -15 +35 700 ±0.01 +70	mA mA mW %FSR/%V
-15V Supply +5V Supply Current, +15V Supply -15V Supply +5V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMENTA Oper. Temp. Range, Case, -MC -MM, 883	+4.75 NL 0 55	+5.0 +15 –10 +25	+5.25 +20 -15 +35 700 ±0.01 +70 +125	mA mA mW %FSR/%V °C °C
-15V Supply +5V Supply Current, +15V Supply -15V Supply +5V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMENT/ Oper.Temp. Range, Case, -MC	+4.75 — — — — — — — — — — — — — — — — — — —	+5.0 +15 –10 +25	+5.25 +20 -15 +35 700 ±0.01 +70 +125 +150	mA mA mW %FSR/%V

HDAS-75/76 OPERATION

The HDAS devices accept either 8 single-ended or 4 differential input signals. Tie unused channels to SIGNAL GROUND, pin 14.

Channel selection is accomplished using the multiplexer address pins as shown in Table 1. Obtain additional channels by connecting external multiplexers.

The acquisition time is the amount of time the multiplexer, instrumentation amplifier and sample-hold require to settle within a specified range of accuracy after the start convert goes high. The acquisition time can be measured by how long EOC is low before the rising edge of the START CONVERT pulse for continuous operation. Higher gains require the use of the RGAIN resistor to increase the acquisition time. The gain is equal to 1 without an RGAIN resistor. Table 2 refers to the appropriate RGAIN resistors for various throughputs.

Table 1. MUX Channel Addressing

39	DDRES 38 CA1	S PINS 37 CA0	CHANNEL	
0	0	0	0	
0	0	1	1	HDAS-76
0	1	0	2	(2-BIT ADDRESS)
0	1	1	3	
1	0	0	4	
1	0	1	5	HDAS-75
1	1	0	6	(3-BIT ADDRESS)
1	1	1	7	

Table 2. Input Range Parameters

INPUT RANGE	GAIN	RGAIN	THROUGHPUT	
0 to +10V	1	OPEN	75kHz	
0 to +5V	2	2kΩ	60kHz	
0 to +2.5V	4	665Ω	50kHz	
0 to +1.25V	8	287Ω	45kHz	
0 to +1V	10	221Ω	40kHz	
0 to +100mV	100	20Ω	10kHz	
±10V	1	OPEN	75kHz	
±5V	2	2kΩ	60kHz	
±2.5V	4	665Ω	50kHz	
±1.25V	8	287Ω	45kHz	
±1V	10	221Ω	40kHz	
±100mV	100	20Ω	10kHz	
$R_{GAIN} = \frac{2k\Omega}{(GAIN)}$	$\frac{2k\Omega}{(GAIN - 1)}$ $GAIN = \frac{2k\Omega}{R_{GAIN}} + 1$			

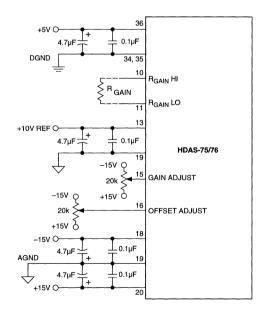
Table 3. Zero and Gain Adjust

INPUT RANGE	ZERO ADJUST +1/2LSB	GAIN ADJUST +FS – 1 1/2LSB
0 to +10V	+1.22mV	+9.9963V
±10V	+2.44mV	+9.9927V

CALIBRATION PROCEDURE

 Connect the converter per Figure 2 and Tables 2 and 3 for the appropriate input range. Apply a pulse of 1µs (typical) to the START CONVERT input (pin 40) at a rate of 75kHz. This rate is chosen to reduce flicker if LEDs are used on the outputs for calibration purposes.

2. Zero Adjustments


Apply a precision voltage reference source between the analog input and SIGNAL GROUND (pin 14). Adjust the output of the reference source per Table 3. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001.

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001.

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111.

 To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

Figure 2. Typical Connection Diagram

Notes:

- 1. For unipolar operation, connect pin 12 to pin 17.
- 2. For bipolar operation, connect pin 13 to pin 17.
- 3. Ground pin 15 if gain adjust is not used.
- 4. Leave pin 16 open if offset adjust is not used.
- 5. Position R_{GAIN} as close as possible to pins 10 and 11. Use RN55C, 1% resistors.

HDAS-75, HDAS-76

TIMING

The EOC output signal, when high, indicates that a conversion is in process. During a conversion, the digital output buffers are in a high-impedance state, preventing data from being read. A START CONVERT input received during a conversion has no effect on the existing conversion. As shown in Figure 3, data can be read while START CONVERT is high and EOC is low. The A/D conversion begins on the falling edge of a start convert command. If START CONVERT stays low after EOC becomes low, the output buffers stay in a high-impedance state. Valid data can be read 150ns maximum after START CONVERT goes high. Figure 4 shows how to use the START CONVERT pulse to control when the output data becomes valid.

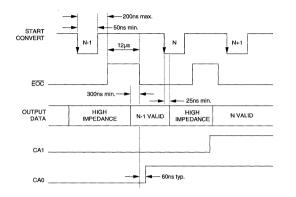
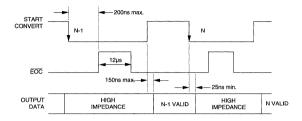
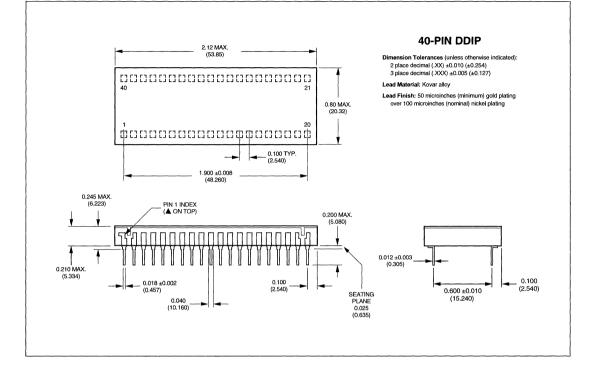



Figure 3. Data Valid with START CONVERT Immediately Returned High

Figure 4. Data Valid with START CONVERT Returned High Later

Notes:


- 1. A START CONVERT pulse greater than 5µs will slow the overall throughput.
- 2. Retriggering START CONVERT before EOC goes low will not initiate a new conversion.
- 3. Timing specifications apply over the full operating temperature range.

Tab	le 4.	Output	Coding
-----	-------	--------	--------

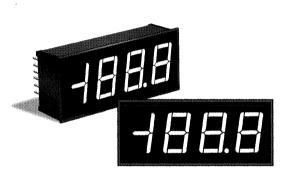
		STRAIGHT BINARY		
UNIPOLAR SCALE	INPUT RANGE 0 to +10V	OUTPUT CODING MSB LSB	INPUT RANGE ±10V	BIPOLAR SCALE
+FS – 1LSB	+9.9976V	1111 1111 1111	+9.9951V	+FS – 1LSB
+7/8FS	+8.7500V	1110 0000 0000	+7.5000V	+3/4FS
+3/4FS	+7.5000V	1100 0000 0000	+5.0000V	+1/2FS
+1/2FS	+5.0000V	1000 0000 0000	0.000V	0
+1/4FS	+2.5000V	0100 0000 0000	-5.0000V	-1/2FS
+1/8FS	+1.2500V	0010 0000 0000	-7.5000V	-3/4FS
+1LSB	+0.0024V	0000 0000 0001	-9.9951V	-FS + 1LSB
0	0.0000V	0000 0000 0000	-10.000V	–FS
		OFFSET BINARY		

MECHNICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

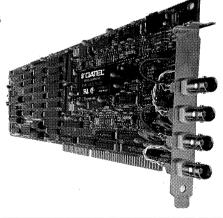
annels 0 to +70°C annels -55 to +125°C annels -55 to +125°C
annels -55 to +125°C
Innels 0 to +70°C
innels -55 to +125°C
innels -55 to +125°C
mounting can be ordered through AMP Inc., nent Lead Socket), 40 required.

8


Other DATEL Products

High-Quality Modular DC/DC Converters

- · Low cost! Stock delivery!
- "Plug-in" convenience from 3 to 70 Watts
- · Single/dual/triple/quad outputs. Isolated and non-isolated
- Standard outputs: 3.3/5/5.2/12/15 Volts
- Wide-range inputs: 4.6-13.2V, 9-36V, 18-72V
- Full EMI/EMC capabilities
- UL, CSA, IEC approvals
- · Extensive ap notes on theory, testing and applications
- · Call us for application-specific "mods" and specials!



Digital Panel Voltmeters and Instruments

- 3 1/2 and 4 1/2 digit resolutions
- · LED (7 colors) or LCD (optional backlight) displays
- · Miniature, panel or board-mount, 12-pin DIP packages
- · Industry's only "low-power" LED meters
- Self-powered instruments: 4-20mA, 60/400Hz, 12/24Vdc, etc.
- Smart displays. "Plug-on" application boards
- "Plug-in" ac voltage and frequency meters
- · Full set of Application Notes

Computer Analog I/O Boards

- For PCI, EISA, PC/ISA, VME and Multibus
- 12/14/16-bit A/D and D/A converters to 10MHz
- 1-256 input channels. Simultaneous S/H with 1-16 A/D's
- Streaming data acquisition to 64M with no lost samples
- On-board DSP's for data pre-processing
- · COMM ports link directly to array processors
- Virtual Instruments: Arbitrary waveform generators (2-16 channels) Programmable power supplies Power-supply test cards
- Windows and LabVIEW® bridge software

For literature or technical assistance 800-233-2765 or contact your local DATEL Sales Office or Representative

Tunable Active Filters

Table of Contents

Selection Guide		9-1
FLJ-D Series	Digitally (BCD) Programmable Active Filters	9-2
FLJ-D5/6	Digitally (Binary) Programmable Active Filters	9-2
FLJ-V Series	Voltage-Tunable Active Filters	9-2
FLJ-R Series	Resistor-Tunable Active Filters	9-2
FLJ-UR Series	Resistor-Tunable Active Filters	9-2
FLJ-HR Series	Resistor-Tunable Active Filters	9-3
FLT-U2	Universal Active Filter	9-11

Selection Guide

Model	Tuning Technique	Poles	Filter Type ①	Low Pass	High Pass	Band Pass	Band Reject	Rolloff (dB/Octave)	Frequency Cutoff Range (f _C)	Page
FLT-U2 2	Resistors	2	BU, CH, BE, CA	Х	X	X		12	0.001Hz-200kHz	9-11
FLJ-D Series	3-Digit BCD	2	BU, CH, BE	Х	X	X	X	12	0.1Hz-160kHz	9-2
FLJ-UR Series	Resistors	2,4	BU, CH	Х	X	X	X	12, 24, 42	40Hz-20kHz	9-2
FLJ-V Series	Voltage	4	BU	Х	X	X		12, 24	20Hz-100kHz	9-2
FLJ-HR Series ③	Resistors	2,4	BU, CH, BE, CA	Х	X	X		12, 24, 42	10Hz-100kHz	9-3
FLJ-D5/D6	3-Bit Binary	5,6	СН	Х				60, 80	10Hz-20kHz	9-2
FLJ-R Series	Resistors	6, 8	CA	Х		X		100, 135	10Hz-20kHz	9-2

Listed specifications are typical at TA = +25°C, with nominal supplies, unless otherwise indicated.

① BU = Butterworth, BE = Bessel, CA = Cauer/elliptical, CH = Chebyshev

(2) Commercial and military temperature ranges available.

③ High-reliability and military temperature range models available.

9

Digitally Programmable and Resistor/Voltage-Tunable Active Filters

	Digitally P	rogrammable	Voltage-Tunable	Resistor-Tunable			
Parameter ①	FLJ-DC, D1, D2 Models	FLJ-D5, D6 Models	FLJ-VL, VB, VH Models	FLJ-R Series	FLJ-UR Series		
Frequency Control	3-Digit BCD	3-Bit Binary	FLJ-VL/VH, 0.01-10V FLJ-VB, 0.1-10V	6 or 8 Resistors	2 or 4 Resistors		
Filter Characteristics	LP, HP, BP, BR	LP	FLJ-VL, LP BU BE	0	Orahalaa		
Filter Types	CH, BE, BU	СН	FLJ-VB, BP BU FLJ-VH, HP BU	See below	See below		
Frequency Range	FLJ-DC, 0.1Hz-159.9kHz FLJ-D1, 1.0Hz-1.599kHz FLJ-D2, 100Hz-159.9kHz	Suffix "1" Models, 10Hz-2kHz Suffix "2" Models, 100Hz-20kHz	FLJ-VL, 100Hz-100kHz FLJ-VB, 200Hz-20kHz FLJ-VH, 20Hz-20kHz	See below	See below		
Input/Output Range	±10 Volts	±10 Volts	FLJ-VL/VH, ±10 Volts FLJ-VB, ±2 Volts	±10 Volts	±10 Volts		
Input Impedance	300kΩ	50kΩ min.	50k Ω min.	50k Ω min.	50kΩ min.		
Gain	-1 to -10	1	1	1	1		
Number of Poles	2 (1-pole pair)	FLJ-D5LA1/2, 5 FLJ-D6LA1/2, 6	FLJ-VL/VH, 4 FLJ-VB, 2-pole pair	See below	See below		
Rolloff	LP/HP, 12dB/octave BP/BR 6dB/octave	FLJ-D5LA1/2, 60dB/octave FLJ-D6LA1/2, 80dB/octave	FLJ-VL/VH, 24dB/octave FLJ-VB, 12dB/oct. (Q=5)	See below	See below		
Attenuation Volume		FLJ-D5LA1/2, 60dB (1.8fc) FLJ-D6LA1/2, 74dB (1.9fc)		See below	See below		
Q	1/3 < Q < 106/fc	-	FLJ-VB, Q = 5	See below	See below		
Noise	HP, 100μVrms LP, 35μVrms BP, 30μVrms	140µVrms max.	300µVrms	140µVrms max.	140µVrms max.		
Ripple		0.13dBp-p		0.15dBp-p	0.28dBp-p (CH)		
Distortion	0.002%	0.05%	0.1% max.	See below	See below		
Slew Rate	±8V/µsec	-			±2V/µsec		
Supply Voltages	+5, ±15 Volts	±15 Volts	±15 Volts	±15 Volts	±15 Volts		
Power Dissipation	780mW	990mW max.	1080mW	975mW	240-600mW		
Operating Temp.	-20 to +70°C	-20 to +70°C	-20 to +70°C	-20 to +70°C	-20 to +70°C		
Package	40-pin QDIP	40-pin QDIP	40-pin QDIP	40-pin QDIP	20-pin SIP		

Support Products: FLJ-ACO1 Oscillator Adapter for the FLJ-DC, D1 and D2. FLJ-ACR1/2 BCD Logic Controlled Resistor Networks for FLJ-UR Series.

FLJ-R/UR Series

		Frequency Range						
Model	Characteristic and Type	Suffix "1" Models	Suffix "2" Models	Poles	Rolloff (dB/octave)	Distortion (%)	Q	Attenuation Volume
FLJ-R3BA1/2	BP, CA	10Hz-2kHz	100Hz-20kHz	3-pole pair	-	0.005	4.3	18dB/oct.
FLJ-R8LA1/2	LP, CA	10Hz-2kHz	100Hz-20kHz	8	135	0.005	-	86dB (1.6fc)
FLJ-R8LB1/2	LP, CA	10Hz-2kHz	100Hz-20kHz	8	100	0.005	-	92dB (2fc)
FLJ-UR4LA1/2	LP, BU	40Hz-1.6kHz	400Hz-20kHz	4	24	0.01	-	24dB (2fc)
FLJ-UR4LB1/2	LP, CH	40Hz-1.6kHz	400Hz-20kHz	4	42	0.01	-	55dB (2fc)
FLJ-UR4HA1/2	HP, BU	40Hz-1.6kHz	400Hz-5kHz	4	24	0.1	-	24dB (0.5fc)
FLJ-UR4HB1/2	HP, CH	40Hz-1.6kHz	400Hz-5kHz	4	42	0.1	-	55dB (0.5fc)
FLJ-UR2LH1/2	LP, BU	40Hz-1.6kHz	400Hz-20kHz	2	12	0.1	-	12dB (2fc)
FLJ-UR1BA1/2	BP, BU	40Hz-1.6kHz	400Hz-10kHz	1-pole pair	-	0.01	1.8-50	17.5dB @
FLJ-UR2BA1/2	BP, BU	40Hz-1.6kHz	400Hz-10kHz	2-pole pair	-	0.01	5	35dB @
FLJ-UR2EA1/2	BR, BU	40Hz-1.6kHz	400Hz-10kHz	2-pole pair	-	0.01	5	_

1 Characteristics: LP = Lowpass, HP = Highpass, BP = Bandpass, BR = Bandreject (notch) Types: CH = Chebyshev, BE = Bessel, BU = Butterworth, CA = Cauer/Elliptical

2 For bandpass filters, attenuation volume spec applies at both 2fc and 0.5fc.

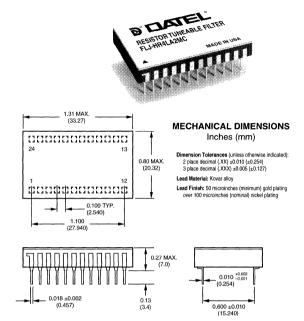
FLJ-HR Series Resistor-Tunable Active Filter

FEATURES

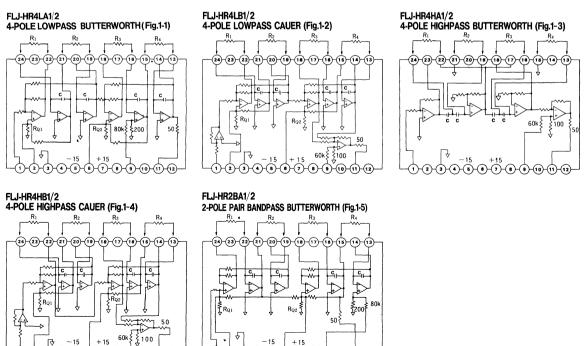
- · Cutoff or center frequency is set by only four resistors
- High-reliability (QL) versions
- Wide operating temperature ranges
- Small, 24-pin ceramic DDIP package
- · A variety of functions and families

GENERAL DESCRIPTION

DATEL's FLJ-HR Series are a new type of resistor-tunable active filters designed to have long life and high-reliability features. The FLJ-HR Series are packaged in 24-pin ceramic DDIP's and operate over the -40 to +85°C (MC version) temperature range. Units that operate over the -55 to +125°C military temperature range (MM versions) and devices with high-reliability screening (-QL versions) are also available. All versions have passed very severe qualification tests to prove their high reliability and longevity. The FLJ-HR Series employ state-variable methods, as does DATEL's FLJ-UR Series, to allow system designers to expand their functions. The cutoff or center frequency can easily be set by only four external resistors.


(10-(11)

(12


(2)-(3)-(4)-(5)

1

(4)-(5)-(6)-(7)-(8)-(9)

BLOCK DIAGRAMS

(i)-(7)

-8-9-10-(1)-(12)

FLT-HR Series

SPECIFICATIONS

Typical at Rf=31.8k Ω , +25°C and ±15Vdc supplies unless otherwise specified.

COMMON SPECIFICATIONS TO ALL MODELS ABSOLUTE RATINGS Supply voltage (±Vs)±18V

Input voltage	······±Vs
FREQUENCY CHARACTERISTICS	
fc accuracy	±3% max.
fc setting By 4 external F	Rf resistors
INPUT CHARACTERISTICS	
Input Impedance	50kΩ min.
Input Voltage	±10V min.

OUTPUT CHARACTERISTICS

Output Impedance	-100Ω max.
Output Voltage ······	±10V min.
Load Resistance	- 10kΩ min.
Offset Voltage ±30mV max. Zero	adjustable

POWER SUPPLY, TEMPERATURE RANGE AND PACKAGE

Supply Voltage ······	±15V
Supply Voltage Range Suffix 1 model	±1.5V to ±18V
Supply Voltage Range Suffix 2 model	
Operating Temperature -MC	
Operating Temperature -MM ······	
Storage Temperature	
Package	······24-pin DDIP

Poles/characteristics		4-pole lowpass	4-pole lowpass	4-pole highpass	4-pole highpass	2-pole pair bandpass		
	Туре		Butterworth	Cauer	Butterworth	Cauer	Butterworth	
	Model		FLJ-HR4LA1/2	FLJ-HR4LB1/2	FLJ-HR4HA1/2	FLJ-HR4HB1/2	FLJ-HR2BA1/2	
fc(-3d	IB) charact	eristics						
Range -	Suffix	1 model	10Hz to 1.6kHz	*Same as left	*Same as left	*Same as left	*Same as left	
Range -	Suffix	2 model	100Hz to 100kHz	*	100Hz to 50kHz	*	*	
Pass ba	and charac	teristics						
Gain -	fc <	20kHz	0±0.3dB max.	*	0±0.5dB max.	*	0±1dB max.	
Gain -	fc ≧	20kHz*1	0±0.3dB max.	*	0±1dB max.	*	0±2dB max.	
	Ripple		-	0.28dBp-p	_	0.28dBp-p	-	
Upper-lim	nit fc	suffix 1		-	100kHz±1dB	*		
(small sig	inal)	suffix 2	-	_	400kHz±1dB	*	-	
Rollo	ff characte	ristics		•				
·····	Rolloff		24dB/oct	42dB/oct equiv.	24dB/oct	42dB/oct equiv.	12dB/oct BW	
Attenuation (1/2 fc or 2 f		or 2 fc)	24dB	55dB 24dB		55dB	35dB	
	Q		_	_	-	- '	5±5%	
Minir	mum atten	uation		46dB	-	46dB	-	
Atter	nuation at	1 MHz	70dB min.	60dB min.	_		70dB min.	
Outpu	ut characte	ristics		·····				
	Offset drif	t	5μV/°C	16µV/°C	10µV/°C	5μV/°C	*	
Distorti	on roto	suffix 1	0.004%	0.01%	0.02%	0.04%	0.004%	
Distorti	on rate	suffix 2	0.003%	0.005%	0.02%	*	0.002%	
Siew rate -	suffix	1 model	-		10V/µsec	*	-	
Diem Lare -	suffix	2 model		-	25V/µ sec	*	_	
Noise -	suffix	1 model	100µVrms max.	150µVrms max.	200µVrms max.	300µVrms max.	100µVrms max.	
140158 -	suffix	2 model	100µVrms max.	150µVrms max.	200µVrms max.	300µVrms max.	120µVrms max.	
Qui	iescent cu	rrent						
Current -	Suffix	1 model	±1.5mA	±2mA	±1mA	±2mA	±1.5mA	
Current -	Suffix	2 model	±15mA	±20mA	±10mA	±20mA	±15mA	

*1. suffix 2 model only

TECHNICAL NOTES

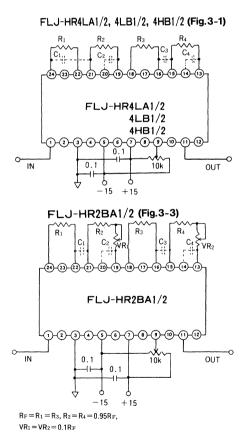
- 1. Do not use a switching regulator; instead, use a wellregulated $\pm 15V$ power supply. Install 0.01μ F ceramic and 4.7μ F tantalum supply bypass capacitors in parallel as close to the filter as possible.
- Use metal film resistors of 1% tolerance for fc setting. When making a higher-order filter, use more accurate resistors. Connect external resistors with short leads as close to the filter as possible.
- Use external capacitors with good stability and high dielectric resistance. It is recommended to use multi-layer ceramic capacitors or plastic film capacitors.
- 4. The relationship between fc and external resitors/ capacitors: Cutoff or center frequency can be set by 4 external resistors. The values of the 4 external resistors (Rf) can be calculated as follows for normal use.

$$\begin{aligned} \mathsf{Rf} &\doteq \quad \frac{15.9 \times 10^3}{\mathsf{fc} \ (\mathsf{Hz})} \quad (\mathsf{k}\,\Omega) \quad \mathsf{Suffix 1 model} \\ \mathsf{Rf} &= \quad \frac{159 \times 10^3}{\mathsf{fc} \ (\mathsf{Hz})} \quad (\mathsf{k}\,\Omega) \quad \mathsf{Suffix 2 model} \end{aligned}$$

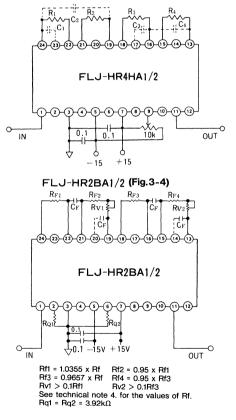
In the applications given later, the resistance of the 4 resistors may be changed. R1 to R4 shown in the block diagrams are the external resistors explained here. The fc setting range can be expanded to a lower band by adding 4 external capacitors.

Rf =	159 (Cf+0.01) fc	(kΩ)	Suffix 1 model
Rf =	159 (Cf+0.001) fc	(kΩ)	Suffix 2 model

where Cf is measured in μ F and fc in Hz. See Fig. 3-1 and 3-2.


9-4

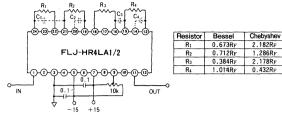
5. How to tune fo:


As shown in the specifications, the fc or fo setting accuracy is 3% depending on the accuracy of the elements used. There is no practical problem in tuning when they are used as a lowpass or a highpass filter. However, bandpass filters may require sharp tuning. Such filters can be tuned with external trimmers as shown in Figure 3-3 as follows:

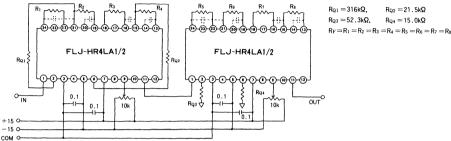
- An input signal of 1.0734 x fo is provided.
- Tune VR1 until a lissajous composed with the input signal and the output of pin 21 shows a Y = -X straight line on an oscilloscope in the XY mode.
- Then tune VR2 until a lissajous composed of the input signal and the output of pin 11 shows a Y = X straight line.
- 6. How to change Q value of FLJ-HR2BA1/2: Basically it is not recommended to change the value of Q of FLJ-HR2BA1/2. However, it is possible to change the value of Q to 10 (standard Q is 5) by adding two additional external resistors Rq1 and Rq2. It is also necessary to change the values of Rf1, Rf2, Rf3 and Rf4. See Fig. 3-4.
- 7.No offset adjustment is required when the FLJ-HR Series is used with AC coupling connections. In the case of DC coupling, offset can be adjused with an external trimmer. See Fig. 3-1, -2 and -3. All pins not used should be left open.

BASIC CONNECTIONS (Fig.3)

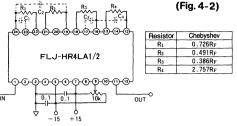
FLJ-HR4HA1/2 (Fig.3-2)



FLT-HR Series



APPLICATIONS


1. A 4-pole lowpass Bessel or Chebyshev (0.5dB ripple) (Fig. 4-1)

3. An 8-pole lowpass Butterworth (Fig. 4-3)

2. A 4-pole highpass Chebyshev (0.5dB ripple)

 Resistor
 Butterworth
 Bessel
 Chebyshev

 R1
 1.416RF
 0.526RF
 2.519RF

 R2
 0.706RF
 0.601RF
 2.232RF

1.093RF

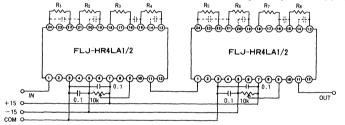
R₃ R4

R₅

R6

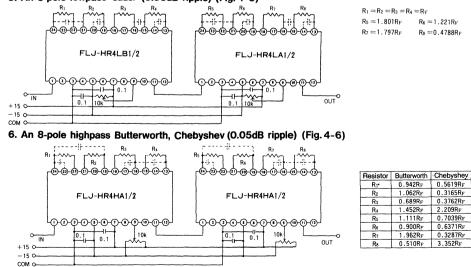
R7

Rs

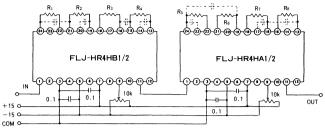

0.915RF 0.233RF 1.839RF

0.900RF 0.390RF 0.7504RF 0.391RF 0.428RF 5.237RF

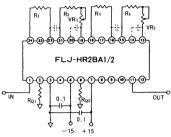
2.561RF 0.488RF 0.1733RF


1.277RF 0.6543RF 1.111RF 0.673RF 2.972RF

4. An 8-pole lowpass Butterworth, Bessel or Chebyshev (0.05dB ripple) (Fig. 4-4)

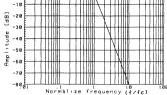

5. An 8-pole lowpass Cauer (0.53dB ripple) (Fig. 4-5)

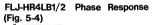
9-6

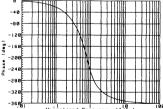


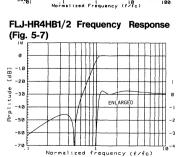
7. An 8-pole highpass Cauer (0.53dB ripple) (Fig. 4-7)

8. A 2-pole pair bandpass Butterworth (Fig. 4-8.)

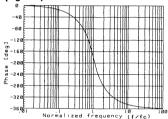


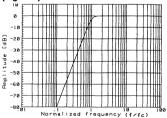

$$\begin{split} R_1 = & R_2 = R_3 = R_4 = R_F \\ R_5 = & 0.845 R_F \quad R_6 = & 0.538 R_F \\ R_7 = & 0.422 R_F \quad R_8 = & 2.751 R_F \end{split}$$

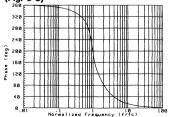

 $\begin{array}{l} R_1 = 1\,.0355 R_F \ R_2 = 0\,.95 R_1 \ R_3 = 0\,.9657 R_F \ R_4 = 0\,.95 R_3 \\ VR_1 \geq 0\,.1 R_1 \ VR_2 \geq 0\,.1 R_3 \ R_{Q1} = R_{Q2} = 3\,.92 k \Omega \end{array}$

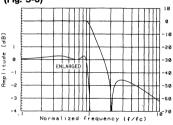


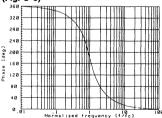
FLJ-HR4LA1/2 Frequency Response (Fig. 5-1)

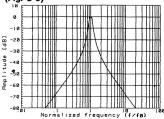


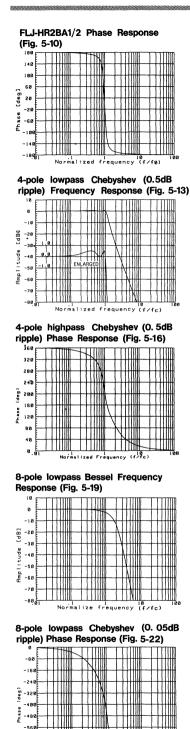


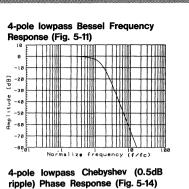

FLJ-HR4LA1/2 Phase Response (Fig. 5-2)

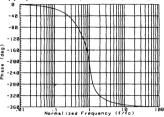

FLJ-HR4HA1/2 Frequency Response (Fig. 5-5)

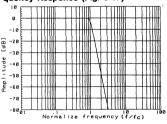

FLJ-HR4HB1/2 Phase Response (Fig. 5-8)

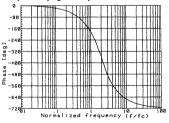

FLJ-HR4LB1/2 Frequency Response (Fig. 5-3)

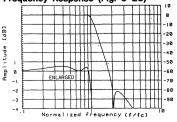

FLJ-HR4HA1/2 Phase Response (Fig. 5-6)

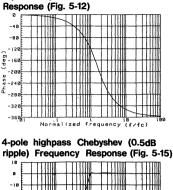



FLJ-HR2BA1/2 Frequency Response (Fig. 5-9)

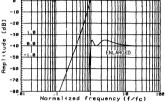

FLT-HR Series

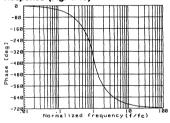



8-pole lowpass Butterworth Freauency Response (Fig. 5-17)

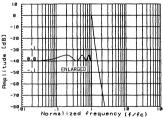


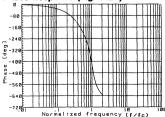
8-pole lowpass Bessel Phase Response (Fig. 5-20)


8-pole lowpass Cauer (0.53dB ripple) Frequency Response (Fig. 5-23)



4-pole lowpass Bessel Phase


 \land


8-pole lowpass Butterworth Phase Response (Fig. 5-18)

8-pole lowpass Chebyshev (0. 05dB ripple) Frequency Response (Fig. 5-21)

8-pole lowpass Cauer (0.53dB ripple) Phase Response (Fig. 5-24)

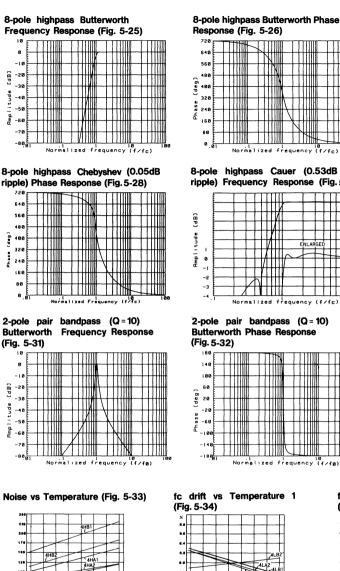
9-8

-64

-72

Ш

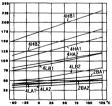
Normalized Frequency (f/fc)

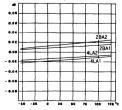

[BD]

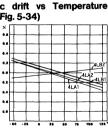
tude

hase

[BD]

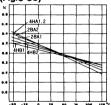

FLT-HR Series

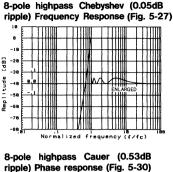

174 Normalized frequency (f/fc) 8-pole highpass Cauer (0.53dB ripple) Frequency Response (Fig. 5-29) 8 -10 -50 -30 TITL 40 ENLARGED -50 ++ -68 ΗTT -70 TTTT -88 -90 Normalized frequency (f/fc) 2-pole pair bandpass (Q = 10) **Butterworth Phase Response**


	180		TT	THE	1.77	-	TT		111110
	140		+++		+++	IN-	+++		-++++
	100		++		-+-++		+++	-	-+++++++++
-	60		╢		+++		+++		
[deg]	20		$\parallel \parallel$		+		+++		
۵.	-20		\dagger		+++				
Phas	-60		11		111		111		
	-100		Ш	III			Ш		
	-140								
	-188	91		- 1		1		10	100.

Normalized frequency (f/fg)

Passband gain drift vs Temperature 1 (Fig. 5-36)





Passband gain drift vs Temperature 2 (Fig. 5-37)

- curr	~ _	(1.1)		 .,		-	
0.08							
						Т	T
0.00				-4LB	1	1	
0.04	+			 4LB	-	+	-
8.92	+			 	_	+	-
0.00	-			 4HB	1	-	-
- 0.02							
- 0.04				4HB	2		
-0.06				4HA	1		
- 0.08	-	-		4HA	2	F	7
	- 60 -1	16 (-	 • 7		190	120

fo drift vs Temperature 2 (Fig.5-35)

649 568 486 (deg) 408 320 222 249 Ē 166 66 | | | 174 ø Normalized frequency (f/fc)

FLT-HR Series

RELIABILITY TESTS AND SCREENING

RELIABILITY TESTS

Reliability tests in compliance with MIL-STD-883 test methods are conducted on all products before they are released. The accompanying tables illustrate these qualification tests.

Group	Sub G.	Test	Method	Condition	Sample*	Notes	Group	Sub G.	Test	Method	Condition	Sample*	Notes
Α.	1.	Mechanical dimensions	2016		2 (0)		1		Lead	2004	-B2	3 (0)	
		Anti solvents	2015		4 (0)				Fine leak	1014	A	3 (0)	
		Internal visual	2014		2 (0)				Gross leak	1014	С	3 (0)	
		Bond strength	2011	C or D	2 (0)		1	2.	Package insulation	-		3 (0)	600Vdc, 100nA
		Die shear strength	2019		2 (0)			3.	Salt spray	1009		5 (0)	24 hrs.
		Solderability	2003		2 (0)	Solder temp. 240 °C + 5°C	1						
	2.	Static discharge	3015		3	Category A.	D.	1.	Vibration	2007	в	5 (0)	20 to 200Hz, 50g
		Final electrical	-			-			Shock	2002	в	5 (0)	1500g, 0.5mSec.
				1 1					Final electrical	-		5 (0)	
В.	1.	External visual	2009		5 (0)		1		External visual	2009		5 (0)	
		Temperature cycle	1010	C	5 (0)	-65 to +150°C, 10 cycles			Fine leak	1014	A	5 (0)	
		Constant acceleration	2001	A	5 (0)	5000g Y1,1 min.			Gross leak	1014	С	5 (0)	
		Fine leak	1014	A	5 (0)								
		Gross leak	1014	C	5 (0)		E.	1.	Temperature cycle	1010	С	5 (0)	-65 to +150°C, 500cycles
		Final electrical] -		5 (0)				Final electrical	-		5 (0)	
	2.	Normal life	1005	в	5 (0)	+125°C 1000 hrs.			External visual	2009		5 (0)	
		Final electrical	-		5 (0)		1		Fine leak	1014	A	5 (0)	
C.	1.	Heat shock	1011	C	3 (0)	-65 to +150°C, 15 cycles			Gross leak	1014	С	5 (0)	
		Stabilization bake	1008	С	3 (0)	+150°C 1 hrs.							

*Number of samples (defects allowed)

SCREENING

Wide operating temperature range versions of FLJ-HR Series are suffixed with MM and can operate from -55°C to +125°C. These versions are also screened in compliance with MIL-STD-883 test methods and can be ordered with a -QL suffix. Example: FLJ-HR4LA1MM-QL.

Test	Process	Method
1. Internal visual	Precap visual check with x10 to x80 microscope.	2017
2. Stabilization bake	+150 °C, 24 hrs.	1008
3. Temperature cycle	Low temp.: -65 °C +0/-10 °C High temp.:+150°C -0/+15°C >10 minutes, 10cycles	1010
4. Constant acceleration	5000g, Y1, 1 minute	2001
5. Pre burn-in test	Electrical performance	-
6. Burn-in	+85°C, 48 hrs.	1015
7. Final electrical	Per specifications	-
8. Leak, fine gross	Helium gas FC-43, +125°C	1014
9. External visual		2009

ORDERING GUIDE

1. MC version: -40°C to+85°C operating temperature range

Filter type	Low fc type 10Hz to 1.6kHz	High fc type 100Hz to 50kHz/100kHz
4-pole lowpass Butterworth	FLJ-HR4LA1MC	FLJ-HR4LA2MC
4-pole lowpass Cauer	FLJ-HR4LB1MC	FLJ-HR4LB2MC
4-pole highpass Butterworth	FLJ-HR4HA1MC	FLJ-HR4HA2MC
4-pole highpass Cauer	FLJ-HR4HB1MC	FLJ-HR4HB2MC
2-pole pair bandpass Butter- worth	FLJ-HR2BA1MC	FLJ-HR2BA2MC

2. MM version: -55°C to+125°C operating temperature range Example: FLJ-HR4LA1MM

3. QL screening version Example: FLJ-HR4LA1MM-QL

FLT-U2 Universal Active Filter

FEATURES

- State variable filter
- Output to 200kHz
- 2-Pole response
- LP, BP or HP functions
- Q range from 0.1 to 1,000
- Resonant frequency accuracy ±5%
- Frequency stability ±0.01%/°C
- · Low-noise operational amplifiers
- –55 to +125°C operation
- Low cost

GENERAL DESCRIPTION

The FLT-U2 is a universal active filter that uses the state-variable active-filter principle to implement a second order transfer function. Three committed operational amplifiers are used for the second-order function, while a fourth uncommitted operational amplifier can be used as a gain stage, summing amplifier, buffer amplifier, or to add another independent real pole.

Two-pole lowpass, bandpass and highpass transfer functions are available simultaneously from three different outputs, and notch and allpass functions are available by combining these outputs in the uncommitted operational amplifier. To realize higher order filters, several FLT-U2s can be cascaded. Frequency tuning is done by two external resistors and Q tuning by a third external resistor. For resonant frequencies below 50Hz, two external tuning capacitors must be added. Precise tuning of the resonant frequency is done by varying one of the resistors around its calculated value.

The internal operational amplifiers in the FLT-U2 have 3MHz gainbandwidth products and a wideband input noise specification of only $10NV/\sqrt{Hz}$. This results in considerably improved operation

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	Rq	16	NO PIN
2	R _{IN}	15	NO PIN
3	HIGHPASS OUTPUT	14	STAGE 2 INPUT
4	+15V SUPPLY	13	BANDPASS OUTPUT
5	LOWPASS OUTPUT	12	–15V SUPPLY
6	+IN BUFFER	11	BUFFERED OUTPUT
7	STAGE 3 INPUT	10	-IN BUFFER
8	NO PIN	9	GROUND

over most other competitive active filters which employ lowerperformance amplifiers. By proper selection of external components, any of the popular filter types such as Butterworth, Bessel, Chebyshev or Elliptic may be designed.

Two models are available for operation over the commercial, 0 to $+70^{\circ}$ C, and military, -55 to 125° C, temperature ranges.

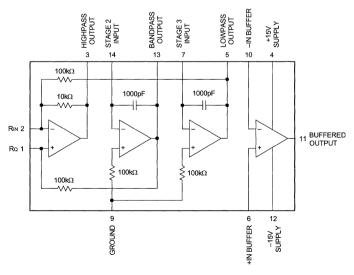


Figure 1. Functional Block Diagram

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C and ±15V supplies unless otherwise noted.)

FILTER CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS		
Frequency Range ①		10-6 to 200		kHz		
Q Range ①		0.1 to 1.000				
fo Accuracy		±5		%		
fo Temperature Coefficient		±0.01		%/°C		
Voltage Gain ①		0.1 to 1.0		V/V		
AMPLIFIER CHARACTERIS	TICS					
Input Offset Voltage	_	±0.5	±6	mV		
Input Bias Current		±40	±500	nA		
Input Offset Current		±5	±200	nA		
Input Impedance		5	-	MΩ		
Input Com. Mode Voltage Range	±12	-	-	Volts		
Input Voltage Noise, wideband	—	10		nV/√Hz		
Output Voltage Range	±10			Volts		
Output Current	±5	_	-	mA		
Open Loop Voltage Gain		300,000				
Common Mode Rejection Ratio		100	-	dB		
Power Supply Rejection		10	-	μ٧/٧		
Unity Gain Bandwidth		3	-	MHz		
Slew Rate		±1	-	V/µs		
POWER SUPPLY REQUIREMENTS						
Voltage, rated performance	_	±15	_	Volts		
Voltage Range, operating	±5	-	±18	Volts		
Quiescent Current		-	±11.5	mA		
PHYSICAL/ENVIRONMENTA	AL.					
Operating Temperature Range						
FLT-U2	0 to +70°C					
FLT-U2-M	-55 to +125°C					
Storage Temperature Range	-55 to +125°C					
Package	Ceramic 16-pin DIP (double spaced)					

Footnote:

① $f_0Q = 5 \times 10^5$ optimally.

TECHNICAL NOTES

- The FLT-U2 has simultaneous lowpass, bandpass and highpass transfer functions. The chosen output for a particular function will be at unity gain based on Tables II and III. This means that the other two unused outputs will be at other gain levels. The gain of the lowpass output is always 10dB higher than the gain of the bandpass output.
- 2. When tuning the filter and checking it over its frequency range, the outputs should be checked with a scope to make sure there is no waveform clipping present, as this will affect the operation of the filter. In particular, the lowpass output should be checked since its gain is the highest.
- 3. Check f₁, the center frequency for bandpass and the cutoff frequency for lowpass or highpass, at the bandpass output (pin 13). Here the peaking frequency can easily be determined for high-Q filters and the 0° or 180° phase frequency can easily be determined for low-Q filters (depending on whether inverting or noninverting).
- 4. Tuning resistors should be 1% metal-film types with 100ppm/°C temperature stability or better for best performance. Likewise, external tuning capacitors should be NPO ceramic or other stable capacitor types.

THEORY OF OPERATION

The FLT-U2 block diagram is shown in Figure 2. This is a second-order state-variable filter using three operational amplifiers. Lowpass, bandpass and highpass transfer functions are simultaneously produced at its three output terminals. These three transfer functions are characterized by the following second order equations:

$$H(S) = \frac{K_1}{S^2 + \frac{\omega_0}{Q}S + \omega_0^2} \text{ LOWPASS } \frac{\omega_0}{Q}$$

$$H(S) = \frac{K_2S}{S^2 + \frac{\omega_0}{Q}S + \omega_0^2} \text{ BANDPASS }$$

$$H(S) = \frac{K_3S^2}{S^2 + \frac{\omega_0}{Q}S + \omega_0^2} \text{ HIGHPASS }$$

where K₁, K₂ and K₃ are arbitrary gain constants.

A second-order system is characterized by the location of its poles in the s-plane as shown in Figure 3. The natural radian frequency of this system is ω_0 . In Hertz this is $f_0 = \frac{\omega_0}{2\pi}$.

The resonant radian frequency of the circuit is different from the natural radian frequency and is:

$$\omega_1 = \omega_0 \sin \theta = \sqrt{\omega_0^2 - \sigma_1^2}$$

The damping factor d determines the amount of peaking in the filter frequency response and is defined as:

The point at which the peaking becomes zero is called critical damping and is $d = \sqrt{2}/2$.

Q is found from d and is a measure of the sharpness of the resonance of the peaking:

$$Q = \frac{1}{2d}$$
Also,
$$Q = \frac{f_0}{-3dB \text{ Bandwidth}} = \frac{\omega_0}{2\sigma_1}$$

For high-Q filters, the natural frequency and resonant frequency are approximately equal.

$$\omega_1\approx\omega_0\quad \text{or}\quad f_1\approx f_0$$

This is true since $\omega_1 = \omega_0 \sin \theta$ and $\sin \theta \approx 1$ as the poles move close to the j_{ω} axis in the s-plane.

For high Q's (Q > 1), we therefore have for the second order filter:

- f₀ ≈ Bandpass center frequency
 - ≈ Lowpass corner frequency
 - ≈ Highpass corner frequency

In the simplified tuning procedure which follows, the tuning is accomplished by independently setting the natural frequency and Q of the filter. This is done most simply by assuming unity gain for the output of the desired filter function. Unity gain means a gain of one (\pm) at dc for lowpass, at center frequency for bandpass, and at high frequency (f >> fo) for highpass. Unity gain does not apply to all outputs simultaneously but only to the chosen output based on the component values given in the tables. Figure 4 shows the relative gains of the three simultaneous outputs assuming the bandpass gain is set to unity. Note that lowpass gain is always 10dB higher than bandpass gain.

SIMPLIFIED TUNING PROCEDURE

- Select the desired transfer function (lowpass, bandpass or highpass) and inverted or noninverted output. From this determine the filter configuration (inverting or noninverting) using Table 1.
- 2. Starting with the desired natural frequency and Q (determined from the filter transfer function or s-plane diagram), compute f_0Q . For $f_0Q > 104$, the actual realized Q will exceed the calculated value. At $f_0Q = 104$, the increase is about 1%, and at $f_0Q = 10^5$ it is about 20%.
- 3. Inverting Configuration. Using the value of Q from Step 2, find R_1 and R_3 from Table II. R_2 is open, or infinite.
- 4. Noninverting Configuration. Using the value of Q from Step 2, find R_2 and R_3 from Table III. R_1 is open, or infinite.
- 5. Using the value of f_0 from Step 2, set the natural frequency of the filter by finding R_4 and R_5 from the equation:

$$R_4 = R_5 = \frac{5.03 \times 10^7}{f_0}$$

where R₄ and R₅ are in Ohms and f₀ is in Hertz. The natural frequency varies as $\sqrt{R_4R_5}$ and therefore one value may be increased and the other decreased and the natural frequency will be constant if the geometric mean is constant. To maintain constant bandwidth at the bandpass output while varying center frequency, fix R₄ and vary R₅.

 For f₀ < 50Hz, the internal 1000pF capacitors should be shunted with external capacitors across pins 5 & 7 and 13 & 14. If equal value capacitors are used, R₄ and R₅ are then computed from:

$$R_4 = R_5 = \frac{5.03 \times 10^{10}}{f_0 C}$$
 (C in pF)

For unequal value capacitors this becomes:

$$R_4 = R_5 = \frac{5.03 \times 10^{10}}{f_0 \sqrt{C1C2}} \quad (C_1 \text{ and } C_2 \text{ in } pF_1)$$

In both cases, the capacitance is the sum of the external values and the internal 1000pF values.

Table I. Filter Configuration

	LP	BP	HP
Inverting Input	Inverting	Non-Inv.	Inverting
Noninverting Input	Non-Inv.	Inverting	Non-Inv.

Table II. Inverting Configuration

	R ₁	R ₂	R ₃
Lowpass	100k	Open	<u>100k</u> 3.8Q – 1
Bandpass	Q x 31.6k	Open	<u> </u>
Highpass	10k	Open	<u>100k</u> 6.64Q - 1

Table III. Noninverting Configuration

	R ₁	R ₂	R ₃
Lowpass	Open	316k Q	<u>100k</u> 3.16Q - 1
Bandpass	Open	100k	<u>100k</u> 3.48Q – 1
Highpass	Open	<u>31.6k</u> Q	<u>100k</u> 0.316Q – 1

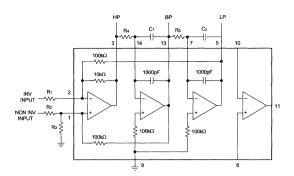


Figure 2. FLT-U2 Block Diagram

Figure 3. S-Plane Diagram

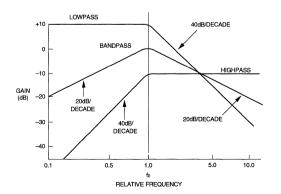


Figure 4. Relative Gains of Simultaneous Outputs, Q = 1

SIMPLIFIED TUNING PROCEDURE (continued)

7. This procedure is based on unity gain output for the desired function. For additional gain, the fourth (uncommitted) operational amplifier should be used as an inverting or noninverting gain stage following the selected output. See Figure 5. A third pole on the real axis of the s-plane may also be added to the transfer function by adding a capacitor to the gain stage as shown in Figure 6.

FILTER DESIGN EXAMPLES

Bandpass Filter with 1kHz Center Frequency Q = 10 and Inverted Output

- 1. From Table I, the noninverting configuration is chosen to realize an inverted bandpass output $f_0Q = 104$ which means the realized Q will be about 1% higher than calculated.
- 2. From Table III, using Q = 10, we find:

Ę

$$R_2 = 100k\Omega$$

$$R_3 = \frac{100k\Omega}{3.48Q - 1} = \frac{100k\Omega}{33.8} = 2.96k\Omega$$

3. Using f_0 of 1kHz, R_4 and R_5 are found from the equation:

$$\mathsf{R}_4 = \mathsf{R}_5 = \frac{5.03 \times 10^7}{1000} = 50.3 \mathrm{k}\Omega$$

4. This completes the filter design which is shown in Figure 7. To choose the nearest 1% standard value resistors either 49.9k or 51.1k Ohms could be used; likewise one value of 49.9k and one of 51.1k could be used giving the geometric mean of $\sqrt{R_4R_5} = \sqrt{49.9k} \times 51.1k = 50.5k$ which is even closer. But due to the filter ±5% frequency tolerance, it may be better to hold R₄ constant while varying R₅ to tune it exactly.

Three-Pole Noninverting Butterworth Lowpass Filter with dc Gain of 10 and Cutoff Frequency of 5kHz

The s-plane diagram of the 3-pole Butterworth filter is shown in Figure 8. We will use a second-order filter to realize the two complex conjugate poles and the uncommitted operational amplifier to provide the third real axis pole and a dc gain of 10.

- 1. From Table I, the noninverting filter configuration would normally be used to give a noninverting lowpass output. In this case, however, we choose an inverting uncommitted op amp with a gain of 10 and therefore we use the inverting configuration for the filter. By comparing the second-order portion of the Butterworth function $S^2 + \omega_0 S = \omega_0^2$ to the standard second-order function $S^2 + \omega_0 S = \omega_0^2$ we find Q = 1. foQ is then 5 x 10³ so that Q will not exceed its specified value.
- 2. From Table II, using Q = 1, we find:

$$R_1 = 100k\Omega$$

$$R_3 = \frac{100k}{3.80\Omega - 1} = 35.7k\Omega$$

3. Using f_0 of 5kHz, R_4 and R_5 are found from the equation:

$$R_4 = R_5 = \frac{5.03 \times 107}{5000} = 10.1 \text{k}\Omega$$

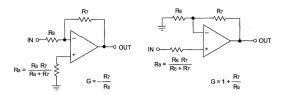
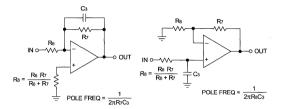
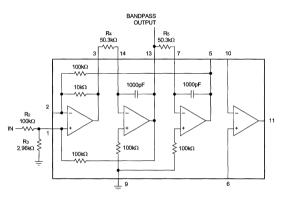




Figure 5. Uncommitted Op Amp Gain Configurations

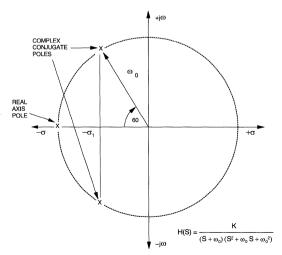


Figure 8. S-Plane diagram of 3-Pole Butterworth Lowpass Filter

FILTER DESIGN EXAMPLES (continued)

- 4. For the uncommitted output amplifier, a gain of -10 is required. This defines $R_7/R_6 = 10$ and we arbitrarily choose $R_6 = 2k$, $R_7 = 20k\Omega$. R_8 becomes approximately $2k\Omega$.
- 5. The final step is to realize the real axis pole of the Butterworth filter. This pole is at 5kHz and is set by using capacitor C₃ across the feedback resistor R₇:

$$C_3 = \frac{1}{2\pi f R_7} = \frac{1}{6.28 \times 5 \times 10^3 \times 20 \times 10^3} = 1590 \text{pF}$$

6. This completes the 3-pole Butterworth filter which is shown in Figure 9.

Highpass Filter with Gain of -1, 20kHz **Cutoff Frequency, and Critical Damping**

1. From Table I, the inverting configuration must be used to realize a highpass gain of -1. An s-plane diagram of this function is shown in Figure 10. Critical damping requires the pole positions to be on a line 45° with respect to the real axis and this results in no frequency peaking. The damping factor d is:

d = cos
$$\theta$$
 = cos 45° = 0.707
and Q = $\frac{1}{2d} = \frac{1}{2(0.707)} = 0.707$

Because this is a low-Q system, the natural frequency will not be the same as the highpass cutoff frequency f1. From Figure 10:

$$f_0 = \frac{f_1}{\cos \theta} = \frac{20 \text{kHz}}{(0.707)} = 28.3 \text{kHz}$$

Then $f_0Q = 0.707 \times 28.3 \times 10^3 = 2 \times 10^4$, and the Q will exceed its desired value by slightly more than 1%.

2. From Table II, using Q = 0.707 we find:

_

$$H_{1} = 10k\Omega$$

$$R_{2} = open$$

$$R_{3} = \frac{100k\Omega}{6.64Q - 1} = \frac{100k\Omega}{3.69} = 27.1k\Omega$$

3. Using $f_0 = 28.3$ kHz, R₄ and R₅ are found from the equation:

$$\mathsf{R}_4 = \mathsf{R}_5 = \frac{5.03 \text{ x } 10^7}{28.3 \text{ x } 10^3} = 1.78 \text{k}\Omega$$

4. This completes the highpass filter design which is shown in Figure 11. When using this filter, care should be exercised so that clipping does not occur due to excessive input levels. If clipping occurs, the filter will not operate properly. Clipping will first occur at the lowpass output around for since its gain is 20dB higher than the highpass output. The signal level should be reduced so that clipping does not occur anywhere in the frequency range used. If a higher signal level is required, the highpass output should be amplified by a gain stage using the uncommitted operational amplifier.

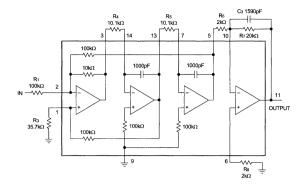


Figure 9. Three-Pole Butterworth Lowpass Filter Example

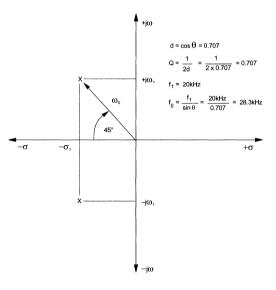


Figure 10. S-Plane Diagram of Highpass Filter with Critical Damping

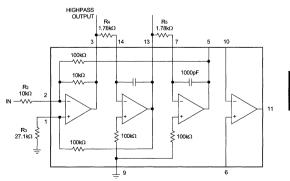
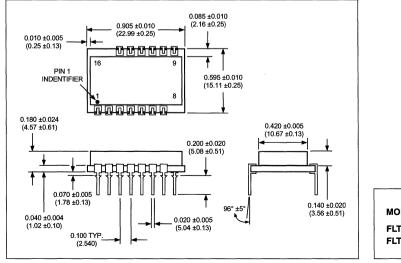


Figure 11. Highpass Filter Example

ADVANCED FILTERS

All of the common filter types can be realized using cascaded FLT-U2 stages. This includes multi-pole Butterworth, Bessel, Chebyshev and Elliptic types. The basic procedure is to implement each pole pair with a single FLT-U2 and cascade enough units to realize all poles. A real-axis pole is implemented by an uncommitted operational amplifier stage. Each stage should be separately tuned with an oscillator and scope and then the stages connected together and checked. See Figure 12.


A notch filter can be constructed in several ways. The first way is to use the FLT-U2 as an inverting bandpass filter and sum the output of the filter with the input signal by means of the uncommitted operational amplifier. This produces a net subtraction at the center frequency of the bandpass which produces a null at the output of the amplifier. See Figure 13. Likewise, lowpass and highpass outputs (which are always in phase) can be combined with each other through an external operational amplifier. The highpass output must have some gain added to it, however, so that its gain is equal to that of the lowpass output. A third method is to use two separate FLT-U2s, one as a two-pole lowpass filter and the other as a two-pole highpass filter. Again, the outputs are combined through an operational amplifier. This method permits independent tuning of the two sections to get the best null response.

Further discussion of filter designs is beyond the scope of this data sheet and the user is referred to the various texts on filter design, some of which are listed below.

Estep, G.J., *The State Variable Active Filter Configuration Handbook*, 2nd Edition, Agoura, CA., 1974.

Reference Data for Radio Engineers, Howard W. Sams & Co., Inc., 5th Edition.

Christian, E. and Eisenmann, E., *Filter Design Tables and Graphs*, McGraw-Hill Book Co., 1974.

MECHANICAL DIMENSIONS INCHES (mm)

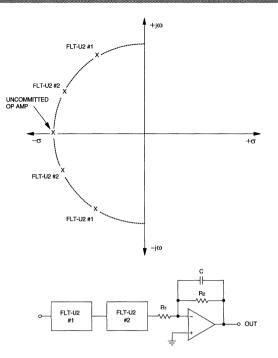


Figure 12. Realization of a Complex Multi-Pole Filter

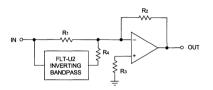
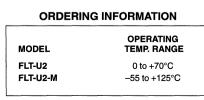
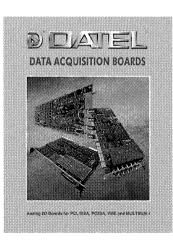



Figure 13. Realization of a Notch Filter

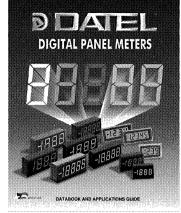
For literature or technical assistance

or contact your local DATEL Sales Office or Representative

Other DATEL Literature



Modular DC/DC Converters


NEW 152-page, full-color catalog! Data sheets and applications for high-quality, low-cost, modular DC/DC Converters: 3-50W, single/dual/triple outputs, wide-range inputs (4.6-13.2V, 9-36V, 18-72V), isolated and non-isolated, many 3.3V devices. New Products: 5W in 1" x 1"; 40W/12A, non-isolated, 5V-to-3.3V; 20W triples in 2" x 2"; 30W triples. 50 pages on theory, testing and applications. Quality assurance, custom capabilities and EMI/EMC facilities described.

Computer Analog I/O Boards

NEW 216-page catalog! Data sheets, applications and sample software for industry's leading line of high-speed analog I/O boards for PCI, EISA, PC/ISA, VME and Multibus. Streaming data acquisition with FIFO's, RAM's, COMM ports and DSP's. 1-256 input channels. 12/14/16-bit A/D's to 10MHz. Simultaneous sampling with 2-16 A/D's. Arbitrary waveform generators (2-16 channels). Programmable power supplies. Power-supply test cards. Windows and LabVIEW® bridge software.

Digital Panel Voltmeters & Instruments

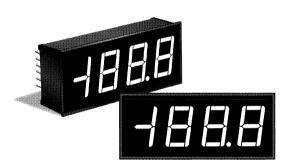
NEW 100-page, full-color catalog! Selection guides, performance specs and a full set of application notes for 200 3 1/2 and 4 1/2 digit, low-cost, miniature, panel or board-mount DPM's. 12-pin DIP packages. LED/LCD displays. LCD meters operate from +5V or 9V batteries. 7 LED colors. New, lowpower LED meters compete with LCD's. Ap notes for ammeters, tachometers, battery monitors, 4-20mA, etc. Includes "plug-in" ac meters, "plug-on" application boards, self-powered instruments and smart displays.

Application Notes

DATEL publishes a set of 8 application notes for data acquisition applications as listed below. Our DC/DC Converter and Panel Meter catalogs also include extensive applications sections.

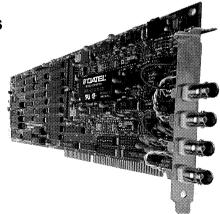
- AN-1 High-Speed A/D Converter Designs: Layout and Interfacing Pitfalls
- AN-2 Picking the Right S/H Amp for Various Data Acquisition Needs
- AN-3 Data Converters: Getting to Know Dynamic Specs
- AN-4 Understanding Data Converter Frequency Domain Specifications
- AN-5 Subranging ADC's: Architectures, Specifications and Testing
- AN-6 Seeing is Believing: A/D Converters Make the Difference in Imaging Applications
- AN-7 Modifying Start Convert Pulses Using Commercially Available Devices
- AN-8 Heat Sinks for DIP Data Converters

For literature or technical assistance 800-233-2765


or contact your local DATEL Sales Office or Representative

High-Quality Modular DC/DC Converters

- · Low cost! Stock delivery!
- "Plug-in" convenience from 3 to 70 Watts
- · Single/dual/triple/quad outputs. Isolated and non-isolated
- Standard outputs: 3.3/5/5.2/12/15 Volts
- Wide-range inputs: 4.6-13.2V, 9-36V, 18-72V
- Full EMI/EMC capabilities
- UL, CSA, IEC approvals
- Extensive ap notes on theory, testing and applications
- · Call us for application-specific "mods" and specials!



Digital Panel Voltmeters and Instruments

- 3 1/2 and 4 1/2 digit resolutions
- · LED (7 colors) or LCD (optional backlight) displays
- · Miniature, panel or board-mount, 12-pin DIP packages
- · Industry's only "low-power" LED meters
- Self-powered instruments: 4-20mA, 60/400Hz, 12/24Vdc, etc.
- · Smart displays. "Plug-on" application boards
- "Plug-in" ac voltage and frequency meters
- · Full set of Application Notes

Computer Analog I/O Boards

- · For PCI, EISA, PC/ISA, VME and Multibus
- 12/14/16-bit A/D and D/A converters to 10MHz
- 1-256 input channels. Simultaneous S/H with 1-16 A/D's
- Streaming data acquisition to 64M with no lost samples
- · On-board DSP's for data pre-processing
- · COMM ports link directly to array processors
- Virtual Instruments: Arbitrary waveform generators (2-16 channels) Programmable power supplies Power-supply test cards
- Windows and LabVIEW[®] bridge software

800-233-2765 or contact your local DATEL Sales Office or Representative

For literature or technical assistance

Part Number Index

Model	Page	Model	Page	Model	Page	Model	Page
ADC-207LC	2-3	ADS-927GM	1-71	AM-500MM	7-7	FLJ-VB	9-2
ADC-207LM		ADS-927MC		AM-500MM-QL		FLJ-VH	
ADC-207LM-QL		ADS-927MM		AM-551MC		FLJ-VL	
ADC-207MC		ADS-929/883		AM-551MM		FLT-U2	
ADC-207MM		ADS-929GC		CDS-1401MC		FLT-U2-M	
ADC-207MM-QL		ADS-929GM		CDS-1401MM		HADS-16/883	
ADC-228/883		ADS-929MC		CDS-1401MM		HDAS-16MC	
ADC-228MC		ADS-929MO		CDS-1402MO		HDAS-16MM	
ADC-228MM		ADS-929MM		DAC-HF10/883		HDAS-524MC	
ADC-304		ADS-930MM		DAC-HF10BMC		HDAS-524MIC	
ADC-304-3		ADS-930MM		DAC-HF10BMM		HDAS-528/883	
ADC-305-1		ADS-931MC		DAC-HF12/883		HDAS-528/MC	
ADC-305-3				DAC-HF12/863		HDAS-528MIC	
		ADS-932MC					
ADC-317		ADS-932MM		DAC-HF12BMM		HDAS-75/883	
ADC-B207/208		ADS-937MC		DAC-HF8/883		HDAS-75MC	
ADC-HX/883		ADS-937MM		DAC-HF8BMC		HDAS-75MM	
ADC-HX12BGC		ADS-941MC		DAC-HF8BMM		HDAS-76/883	
ADC-HX12BMC		ADS-941ME		DAC-HK12BGC		HDAS-76MC	
ADC-HX12BMM		ADS-942AMC		DAC-HK12BGC-2		HDAS-76MM	
ADC-HX12BMM-QL		ADS-942AME		DAC-HK12BMC		HDAS-8/883	
ADC-HZ/883		ADS-942MC	===	DAC-HK12BMC-2		HDAS-8MC	
ADC-HZ12BGC		ADS-942ME		DAC-HK12BMM		HDAS-8MM	
ADC-HZ12BMC		ADS-943MC		DAC-HK12BMM-2		HS-24/32/40	
ADC-HZ12BMM		ADS-943MM		DAC-HKB-2/883		MSH-840MC	
ADC-HZ12BMM-QL		ADS-944/883		DAC-HKB/883		MSH-840MM	
ADS-112/883		ADS-944MC		DAC-HP16BGC		MV-1606	
ADS-112MC		ADS-944MM		DAC-HP16BGC-1		MV-1606M	
ADS-112MM		ADS-945		DAC-HP16BMC		MV-808	
ADS-117/883		ADS-945EX		DAC-HP16BMC-1		MVD-409	
ADS-117MC		ADS-946MC		DAC-HP16BMM		MVD-409M	
ADS-117MM		ADS-946MM		DAC-HP16BMM-1		MVD-807	
ADS-118AMC		ADS-B118		DAC-HPB-1/883		MX-1606	
ADS-118AMM		ADS-B119		DAC-HPB/883		MX-1616C	
ADS-118MC		ADS-B916/917		DAC-HZ12BGC		MX-808	
ADS-118MM		ADS-B919/929		DAC-HZ12BMC		MX-818C	
ADS-119/883		ADS-B926/927	1-63/71	DAC-HZ12BMM		MX-826/883	5-18
ADS-119GC	1-23	ADS-B931	1-95	DAC-HZ12BMM-QL	6-15	MX-826MC	5-18
ADS-119GM		ADS-B932	1-103	DAC-HZ12DGC		MX-826MM	5-18
ADS-119MC	1-23	ADS-B937	1-111	DAC-HZ12DMC	6-15	MX-850MC	5-21
ADS-119MM	1-23	ADS-B943	1-135	DAC-HZ12DMM	6-15	MX-850MM	5-21
ADS-325A	1-31	ADS-B944	1-143	DAC-HZ12DMM-QL	6-15	MXD-409	5-8
ADS-916GC	1-39	ADS-B945	1-151	EVB-SHM12	3-3	MXD-807	5-8
ADS-916GM	1-39	ADS-B946	1-159	EVB-SHM14	3-9	SHM-12L	3-3
ADS-916MC	1-39	ADS-BCCD1201	1-167	FLJ-D1	9-2	SHM-12LM	3-3
ADS-916MM		ADS-BCCD1202	1-175	FLJ-D2	9-2	SHM-12S	3-3
ADS-917GC	1-47	ADS-CCD1201MC	1-167	FLJ-D5	9-2	SHM-14L	3-9
ADS-917GM	1-47	ADS-CCD1201MM	1-167	FLJ-D6		SHM-14LM	
ADS-917MC	1-47	ADS-CCD1202MC	1-175	FLJ-DC	9-2	SHM-14S	3-9
ADS-917MM	1-47	ADS-CCD1202MM	1-175	FLJ-HR2BA1MC	9-3	SHM-20C	3-15
ADS-919GC	1-55	ADS-EVAL1(112)	1-3	FLJ-HR2BA2MC	9-3	SHM-30C	3-18
ADS-919GM	1-55	ADS-EVAL1(117)	1-9	FLJ-HR4HA1MC	9-3	SHM-43MC	3-21
ADS-919MC	1-55	ADS-EVAL3		FLJ-HR4HA2MC	9-3	SHM-43MM	3-21
ADS-919MM	1-55	ADS-EVAL4(941)	1-117	FLJ-HR4HB1MC		SHM-4860/883	3-24
ADS-926/883	1-63	ADS-EVAL4(942)		FLJ-HR4HB2MC	9-3	SHM-4860MC	
ADS-926GC		ADS-EVAL4(942A)		FLJ-HR4LA1MC		SHM-4860MM	3-24
ADS-926GM		AM-1435MC		FLJ-HR4LA2MC	9-3	SHM-49MC	
ADS-926MC		AM-1435MM		FLJ-HR4LB1MC		SHM-49MM	3-27
ADS-926MM		AM-1435MM-QL		FLJ-HR4LB2MC		SHM-945MC	
ADS-927/883		AM-500GC		FLJ-R Series		SHM-945MM	
ADS-927GC		AM-500MC		FLJ-UR Series			

Placing an Order

When ordering a DATEL product, use the complete model number (including any part-number suffixes indicating product options) as well as a description of the product and its options. You may enter orders by telephone, FAX or letter directly with Company Headquarters (Mansfield, MA, U.S.A.) or with any authorized DATEL field sales representative. Minimum order value and minimum per shipment amount are both \$100.

Outside the U.S.A. and Canada

Place overseas orders directly with a DATEL Sales Subsidiary Office (in Germany, France, the United Kingdom or Japan) or with an authorized DATEL sales representative. International orders received directly at DATEL Headquarters in the U.S.A. will be treated as if placed through the appropriate overseas sales representative. In countries without a local DATEL sales representative, orders should be placed directly with Company Headquarters and confirmed by air mail.

Field Sales Representatives

DATEL has direct sales offices in the United States (Mansfield, MA), Germany (Munich), France (Montigny Le Bretonneux), England (Basingstoke) and Japan (Tokyo and Osaka). We employ an extensive network of field sales representatives throughout the U.S.A., Canada, Europe, the Far East and other areas of the world. Only these sales representatives are authorized by DATEL to solicit sales, and any information or data received from sources other than DATEL or its authorized representatives is not considered binding.

Prices

All prices are F.O.B. Mansfield, MA, U.S.A. in U.S. dollars. Applicable federal, state and local taxes are extra and paid by the buyer. Prices are subject to change without notice.

Quotations

Price and delivery quotations made by DATEL or any of its authorized representatives are valid for 30 days unless otherwise stated.

Discounts

Quantity discounts are available when appropriate quantities of products are ordered in a single order. OEM discounts are available on a per-order or contract basis. Consult Company Headquarters or your local representative for quotations or additional details.

Terms

Net 30 days.

Acknowledgements and Delivery

DATEL acknowledges all orders, including delivery and billing information, upon receipt. We ship all products in rugged commercial containers suitable for ensuring safe delivery under normal shipping conditions. Unless shipping specifications accompany an order, we will use the best available method. Shipping charges are normally prepaid by DATEL and billed to the customer except for air-freight shipments which are sent collect. When appropriate, product data sheets and/or instructions are included with each shipment.

Order Cancellation

All orders placed with DATEL are binding and subject to cancellation charges if cancelled either before or after the scheduled shipping date. Refer to DATEL's standard Terms and Conditions for specific charges.

Warranty

DATEL warrants that all of its products are free from defects in material or workmanship under normal use and service for a period of one year from date of shipment. DATEL's obligations under this warranty are limited to replacing or repairing, at our option, at our factory or facility, any of the products which shall within the applicable period after shipment be returned to us, transportation charges prepaid, and which are, after examination, disclosed to the satisfaction of DATEL to be thus defective. The warranty does not apply to any products or equipment which have been repaired or altered, except by DATEL, or which have been subjected to misuse, negligence or accident. Under no circumstances shall DATEL's liability exceed the original purchase price. The aforementioned provisions do not extend the original warranty period of any product which has either been repaired or replaced by DATEL.

Returns

Before returning any products, for any reason, you must receive a return material authorization (RMA) number and shipping instructions from DATEL. Items should not be returned via air freight collect as they will not be accepted. If you do not return materials as directed above, considerable delay will be added to processing the return.

Returns Outside the U.S.A. and Canada

Contact either DATEL Headquarters, a DATEL Sales Subsidiary Office or your local DATEL sales representative for authorization and shipping instructions before returning any materials.

Certificates of Compliance

DATEL will supply a standard Certificate of Compliance when requested to do so by a customer. Requests must be specified on the original purchase order.

Corporate Office

DATEL, Inc.

11 Cabot Boulevard Mansfield, MA 02048-1194 Tel: 508-339-3000 Fax: 508-339-6356

International Sales Offices

DATEL GmbH

Postfach 150826 D-80045 Munchen Germany Tel: 89-544334-0 Fax: 89-536337

DATEL S.A.R.L.

Zone d'Activities du Pas du Lac Nord 9, Rue Michael Faraday 78180 Montigny Le Bretonneux, France Tel: 1-34-60-01-01 Fax: 1-30-58-21-30

DATEL (UK) LTD.

Unit 15, Campbell Court Business Park Campbell Road, Bramley, Tadley Hampshire, RG26 5EG, England Tel: (01256) 880444 Fax: (01256) 880706

DATEL KK

Meiji Seimei Gotanda Building, 3F 2-27-4 Nishigotanda Shinagawa-Ku, Tokyo 141, Japan Tel: 3-3779-1031 Fax: 3-3779-1030

Yachiyo Building, Higashikan 2-Kita 1-21, Tenjinbashi Kita-Ku, Osaka 530, Japan Tel: 6-354-2025 Fax: 6-354-2064

BELATEL SAMPLING AND

ADS-944MC

MADEINUS

Corporate Office

DATEL, Inc.

11 Cabot Boulevard Mansfield, MA 02048-1194 Tel: 508-339-3000 Fax: 508-339-6356

International Sales Offices

DATEL GmbH

Postfach 150826 D-80045 Munchen Germany Tel: 89-544334-0 Fax: 89-536337

DATEL S.A.R.L.

Zone d'Activities du Pas du Lac Nord 9. Rue Michael Faraday 78180 Montigny Le Bretonneux, France Tel: 1-34-60-01-01 Fax: 1-30-58-21-30

DATEL (UK) LTD.

Unit 15, Campbell Court Business Park Campbell Road, Bramley, Tadley Hampshire, RG26 5EG, England Tel: (01256) 880444 Fax: (01256) 880706

DATEL KK

Meiji Seimei Gotanda Building, 3F 2-27-4 Nishigotanda Shinagawa-Ku, Tokyo 141, Japan Tel: 3-3779-1031 Fax: 3-3779-1030

Yachiyo Building, Higashikan 2-Kita 1-21, Tenjinbashi Kita-Ku, Osaka 530, Japan Tel: 6-354-2025 Fax: 6-354-2064

DATEL SAMPLING AID

ADS-944MC

MADE IN USA