DATA BOOK 1990/91

INTRODUCTION

General Instrument Corporation is a major multinational company manufacturing a wide range of products from data systems, broadband communications, and components to semiconductor products. The corporation, which has been in existence over 50 years, has manufacturing and sales locations throughout the world serving all major electronic markets.

The Power Semiconductor Division has manufacturing facilities in the United States and the Far East and is one of the leading producers of discrete semiconductor devices. These devices include low and medium power rectifiers from standard thru ultrafast recovery, bridge assemblies and transient voltage suppressors. We offer the widest selection of rectifier package types and junction structures including plastic encapsulated, glass passivated, superectifier, and surface mounted. Advanced junction technologies include double diffusion, double diffused fast recovery, narrow base epitaxial, PAR and Schottky.

Particular emphasis has been focused on the superectifier product family including our new super surface mounted devices. The superectifier, when introduced ten years ago increased rectifier reliability by several orders of magnitude. Today it still remains unmatched as the cost performance leader in axial leaded rectifiers. Now the superectifier features of metallurgically bonded junction, glass passivation, and flame retardant encapsulation are available in our line of super surface mounted rectifiers. For the ultimate in surface mounted rectifier reliability it's super surface mount.

The information contained in this data book is intended to provide the necessary technical and support data to assist the design engineer. It is our policy to maintain high standards of product manufacturing. The General Instrument logo (GI), printed on every component, ensures that it reaches the highest level of quality and reliability. In the complex and competitive semiconductor industry, high standards of quality using the latest methods of statistical quality control are of the utmost importance since they constitute, for our customer the assurance of reliable product performance.

Not every application problem can be solved using a standard device, in this case we often develop special products to meet the customer requirements. If in doubt, call your local Sales Office or our Application Engineering Laboratory for further information.

SYMBOLS

CJ	Junction Capacitance	ТJ	Junction Temperature
lF	Forward Current	TL	Maximum Lead Temperature
l(AV)	Average Forward Rectifier Current	tr	Rise Time
IFSM	Peak Forward Surge Current	trr	Reverse Recovery Time
lo	Mean Forward Current	VBR	Breakdown Voltage
IR	Reverse Current	VF	Forward Voltage
Irr	Reverse Recovery Current	VFR	Forward Recovery Voltage
IRSM	Maximum Non-Repetitive Peak Current	VR	Reverse Voltage
l⊤ l ² t	On-State Test Current	VRM	Maximum Recurrent Peak Reverse Volta
l ² t	Rating for Fusing	VRMS	RMS Input Voltage
PD	Steady State Power Dissipation	VRRM	Repetitive Peak Reverse Voltage
Ррк	Peak Power Dissipation	VRSM	Maximum Reverse Voltage
Røja	Thermal Resistance (Junction to ambient)		(Clamping Voltage) at IRSM
RØJC	Thermal Resistance(Junctiono to case)	VRWM	Working Peak Reverse Voltage
RØJL	Thermal Resistance (Junction to Lead)		(Stand-off Voltage)
TA	Ambient Temperature	Vz	Zener Voltage
Тс	Case Temperature	Zk	Dynamic Impedance

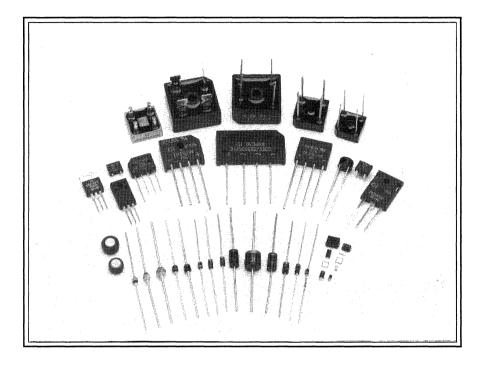
DRAWINGS

All dimensions in inches and (millimeters.) Figures not to scale.

TEMPERATURES

Ratings at 25° C ambient temperature unless otherwise specified.

The General Instrument data book is not a document for official acceptance tests. Relevant is only the detailed data sheet, which is available on request. The Manufacturer reserves the right to change the contained data at any time in order to improve performance and supply the best product possible.


CONTENTS

POWER SEMICONDUCTOR DIVISION

DATA BOOK 1990/1991

General Information	
Introduction	
Symbols	
Contents	-
Quality Assurance	-
Introduction	14
Test Conditions	15
High Reliability-Test Capabilities	16
Military Approved Rectifiers	
Introduction	19
List of approved JAN-JANTX devices	21
Sabattlar Beatifiare	
	52
Quick Selector Guide	55
Axial Plastic Schottky Rectifiers 0.6 to 5.0 AMP	59
Medium Current Schottky Rectifiers 5.0 to 40 AMP	79
Fast Efficient Rectifiers	
Introduction	181
Quick Selector Guide	183
Glass Passivated Fast Efficient Rectifiers 1.0 to 6.0 AMP Fast Efficient Superectifier 1.0 to 5.0 AMP	187
Plastic Fast Efficient Rectifiers 1.0 to 3.0 AMP	209
Medium Current Fast Efficient Rectifiers 6.0 to 30 AMP	225
Superectifiers	
Introduction	257
Quick Selector Guide	259
Zener Regulator Diode 1.5 Watt	301
Fast Recovery Superectifiers 0.4 to 3.0 AMP	305
	331
Glass Rectifiers	
Introduction	
Quick Selector Guide	365
Fast Recovery Glass Passivated Rectifiers 1.0 to 3.0 AMP	379
Plastic Rectifiers	
Introduction	
Quick Selector Guide	405
Plastic Rectifiers 8.0 to 30 AMP	425
	437
Bridge Rectifiers	
Introduction	466
Quick Selector Guide	408
Bridge Rectifiers 0.9 to 35 Amps	523
Surface Mounted Rectifiers	
	528
Quick Selector Guide	529
Surface Mounted Rectifier 0.5 to 5.0 AMP	532
Transient Voltage Suppressor	
Introduction	561
Application Notes	
Schottky Rectifier	599
Transient Voltage Suppressor	603
Surface Mount Superectifier	607
Thyristor Surge Suppressor /Transient Voltage Suppressor	
	615 619
Packaging	5.5
Information	623
Sales Offices and Distributors	220
	630
	500

1.5KA10 570	1.5KE16A	1N3611GP	1N4948GP
1.5KA10A 570	1.5KE170	1N3612GP 270	1N5059
1.5KA11 570	1.5KE170A	1N3613GP	1N5059GP
1.5KA11A 570	1.5KE18	1N3614GP 270	1N5060
1.5KA12 570	1.5KE180	1N39576GP 270	1N5060GP 282
1.5KA12A 570	1.5KE180A	1N4001 406	1N5061
1.5KA13 570	1.5KE18A	1N4001GP	1N5061GP
1.5KA13A 570	1.5KE20	1N4001P 408	1N5062 348
1.5KA15 570	1.5KE200	1N4002 406	1N5062GP
1.5KA15A 570	1.5KE200A586	1N4002GP 272	1N5391 412
1.5KA16 570	1.5KE20A 586	1N4002P 408	1N5391GP 286
1.5KA16A 570	1.5KE22 586	1N4003 406	1N5392 412
1.5KA18 570	1.5KE220586	1N4003GP 272	1N5392GP
1.5KA18A 570	1.5KE220A586	1N4003P 408	1N5393 412
1.5KA20 570	1.5KE22A	1N4004 406	1N5393GP 286
1.5KA20A 570	1.5KE24	1N4004GP 272	1N5394 412
1.5KA22 570	1.5KE24A	1N4004P	1N5394GP
1.5KA22A 570	1.5KE250	1N4005 406	1N5395 412
1.5KA24 570	1.5KE250A	1N4005GP	1N5395GP
1.5KA24A 570	1.5KE27	1N4005P 408 1N4006	1N5396 412 1N5396GP 286
1.5KA27 570 1.5KA27A 570	1.5KE27A		
1.5KA30 570	1.5KE30586 1.5KE300586	1N4006GP	1N5397 412 1N5397GP 286
1.5KA30A 570	1.5KE300	1N4006P	1N5397GP
1.5KA33 570	1.5KE30A	1N4007GP272	1N5498GP
1.5KA33A 570	1.5KE33	1N4007P	1N5399 412
1.5KA36 570	1.5KE33A	1N4245	1N5399GP
1.5KA36A 570	1.5KE350	1N4245GP	1N5400 414
1.5KA39 570	1.5KE350A	1N4246	1N5401
1.5KA39A	1.5KE36	1N4246GP	1N5402 414
1.5KA43 570	1.5KE36A	1N4247	1N5403 414
1.5KA43A 570	1.5KE39	1N4247GP	1N5404
1.5KA6.8 570	1.5KE39A	1N4248	1N5405 414
1.5KA6.8A 570	1.5KE40	1N4248GP	1N5406 414
1.5KA7.5 570	1.5KE400	1N4249	1N5407 414
1.5KA7.5A 570	1.5KE400A	1N4249GP 274	1N5408 414
1.5KA8.2 570	1.5KE40A	1N4383GP 280	1N5415 392
1.5KA8.2A 570	1.5KE43 586	1N4384GP	1N5416
1.5KA9.1 570	1.5KE43A 586	1N4385GP 280	1N5417 392
1.5KA9.1A 570	1.5KE47 586	1N4585GP 280	1N5418
1.5KE10 586	1.5KE47A 586	1N4586GP 280	1N5419
1.5KE100 586	1.5KE51 586	1N483B	1N5420
1.5KE100A 586	1.5KE51A586	1N485B 342	1N5550
1.5KE10A 586	1.5KE56 586	1N486B	1N5551 356
1.5KE11 586	1.5KE56A	1N4933 438	1N5552 356
1.5KE110 586	1.5KE6.8	1N4933GP 312	1N5553 356
1.5KE110A 586	1.5KE6.8A	1N4934	1N5554 356
1.5KE11A 586 1.5KE12 586	1.5KE62	1N4934GP	1N5614 350
1.5KE120 586	1.5KE68	1N4935GP 312	1N5615 382 1N5615GP 318
1.5KE120A	1.5KE68A	1N4936 438	
1.5KE12A 586	1.5KE7.5	1N4936GP	1N5616 350 1N5617 382
1.5KE13 586	1.5KE7.5A	1N4937	1N5617GP
1.5KE130 586	1.5KE75	1N4937GP	1N5618 350
1.5KE130A 586	1.5KE75A	1N4942	1N5619 382
1.5KE13A 586	1.5KE8.2	1N4942GP	1N5619GP
1.5KE15 586	1.5KE8.2A	1N4944	1N5620
1.5KE150 586	1.5KE82	1N4944GP	1N5621 382
1.5KE150A 586	1.5KE82A	1N4946	1N5621GP
1.5KE15A 586	1.5KE9.1	1N4946GP	1N5622 350
1.5KE16 586	1.5KE9.1A	1N4947	1N5623 382
1.5KE160 586	1.5KE91	1N4947GP 314	1N5623GP 318
1.5KE160A 586	1.5KE91A586	1N4948	1N5624 358

1N5624GP 296	1N6289A	3N259 492	5KP7.0 590
1N5625 358	1N6290	5KP10	
1N5625GP 296	1N6290A		5KP7.0A
		5KP100	5KP7.5 590
1N5626 358	1N6291 586	5KP100A 590	5KP7.5A 590
1N5626GP 296	1N6291A	5KP10A	5KP70 590
1N5627 358	1N6292	5KP11	5KP70A 590
1N5627GP 296	1N6292A 586	5KP110 590	5KP75 590
1N5817 62	1N6293 586	5KP110A	5KP75A
1N5818 62	1N6293A	5KP11A	
1N5819 62			5KP78 590
	1N6294	5KP12590	5KP78A 590
1N5820 68	1N6294A 586	5KP12A 590	5KP8.0 590
1N582168	1N6295	5KP13 590	5KP8.0A 590
1N5822 68	1N6295A	5KP13A	5KP8.5 590
1N645 344	1N6296 586	5KP14	5KP8.5A 590
1N646 344	1N6296A	5KP14A	5KP85 590
1N647 344	1N6297	5KP15 590	
			5KP85A 590
1N648 344	1N6297A	5KP15A	5KP9.0 590
1N649 344	1N6298 586	5KP16 590	5KP9.0A 590
1N6267 586	1N6298A	5KP16A 590	5KP90
1N6267A 586	1N6299 586	5KP17	5KP90A 590
1N6268 586	1N6299A	5KP17A	AGP15-200
1N6268A 586	1N6300	5KP18 590	AGP15-400
1N6269 586	1N6300A	5KP18A	AGP15-600
1N6269A 586	1N6301	5KP20 590	
			AGP15-800 290
1N6270 586	1N6301A586	5KP20A590	AR25A 434
1N6270A 586	1N6302 586	5KP22 590	AR25B 434
1N6271 586	1N6302A 586	5KP22A 590	AR25D 434
1N6271A 586	1N6303 586	5KP24 590	AR25G 434
1N6272 586	1N6303A 586	5KP24A 590	AR25J 434
1N6272A 586	1N6478 538	5KP26 590	AR25K 434
1N6273 586	1N6479 538	5KP26A 590	AR25M
1N6273A 586	1N6480	5KP28 590	ARS25A 434
1N6274	1N6481	5KP28A	
1N6274A 586	1N6482		ARS25B
		5KP30 590	ARS25D 434
1N6275 586	1N6483 538	5KP30A 590	ARS25G 434
1N6275A 586	1N6484	5KP33 590	ARS25J 434
1N6276 586	2KBP005M 492	5KP33A 590	ARS25K 434
1N6276A 586	2KBP01M 492	5KP36 590	ARS25M 434
1N6277 586	2KBP02M 492	5KP36A	AW02G 486
1N6277A 586	2KBP04M	5KP40 590	AW02M
1N6278 586	2KBP06M 492	5KP40A	AW04G
1N6278A 586	2KBP08M	5KP43 590	AW04G
1N6279 586		5KF43	AW04M
	2KBP10M	5KP43A 590	AW06G 486
1N6279A 586	2W005M 490	5KP45 590	AW06M 484
1N6280 586	2W01M 490	5KP45A 590	AW08G 486
1N6280A 586	2W02M 490	5KP48 590	AW08M 484
1N6281 586	2W04M 490	5KP48A	B125C1000M 476
1N6281A 586	2W06M 490	5KP5.0 590	B125C1500M 488
1N6282 586	2W08M 490	5KP5.0A 590	B125C3700/2200 496
1N6282A 586	2W10M 490	5KP51 590	B125C5000/3300 502
1N6283 586	3N246	5KP51A	B125C800M 470
1N6283A 586	3N247	5KP54 590	
1N6284			B125C800DM 472
	3N248	5KP54A590	B250C1000M 476
1N6284A 586	3N249 482	5KP58 590	B250C1500M 488
1N6285 586	3N250 482	5KP58A 590	B250C3700/2200 496
1N6285A 586	3N251 482	5KP6.0 590	B250C5000/3300 502
1N6286 586	3N252 482	5KP6.0A	B250C800M 470
1N6286A 586	3N253 492	5KP6.5 590	B250C800DM 472
1N6287 586	3N254	5KP6.5A 590	B380C1000M 476
1N6287A 586	3N255	5KP60 590	B380C1500M 488
1N6288	3N256 492	5KP60A	B380C3700/2200 496
1N6288A	3N257 492	5KP64 590	B380C5000/3300 502
1N6289	3N258 492		
1110203	014200 492	5KP64A590	B380C800M 470

B380C800DM 472	BVM104 800 E40	BZW04-111578	BZW04P28 578
B380C800DM 472 B40C1000M 476	BYM10A-800540 BYM11-100542	BZW04-111	BZW04P299 578
B40C1500M 478	BYM11-1000	BZW04-128	BZW04P31 578
B40C3700/2200 496	BYM11-200	BZW04-136	BZW04-33 578
B40C5000/3300 502	BYM11-200	BZW04-130	BZW04P342578
B40C1000M 476	BYM11-400	BZW04-145	BZW04P37 578
B40C800M 470	BYM11-50	BZW04-145578	BZW04P376
B40C800DM 470	BYM11-800	BZW04-154	BZW04P40 578
B80C1500M 488	BYM12-100	BZW04-154578	BZW04P40 578
B80C3700/2200 496	BYM12-150	BZW04-171578	BZW04P48 578
B80C5000/3300 502	BYM12-200	BZW04-188578	BZW04P53 578
B80C800M 470	BYM12-300	BZW04-19578	BZW04P58 578
B80C800DM 472	BYM12-400	BZW04-20578	BZW04P5V8 578
BA157GP 310	BYM12-50	BZW04-213578	BZW04P64 578
BA158GP 310	BYM12-30	BZW04-23578	BZW04P70 578
BA159DGP 310	BYM13-30	BZW04-239578	BZW04P78 578
BY159GP 310	BYM13-40	BZW04-256	BZW04P7V0 578
BY126MGP 294	BYM13-50	BZW04-26	BZW04P7V8 578
BA127MGP	BYM13-60	BZW04-273578	BZW04P85
BY133GP 284	BYV27-100 194	BZW04-28	BZW04P8V4 578
BY134GP	BY27-150 194	BZW04-299	BZW04P8V5 578
BY135GP	BYV27-200 194	BZW04-235	BZW04P94 578
BY206GP 308	BYV27-50 194	BZW04-33	BZW04P9V4 578
BY207GP 308	BYV28-50 200	BZW04-342	CG1 366
BV226MGP 204	BYV28-100 200	BZW04-37	CG2 372
BY226MGP 294 BY227MGP 294 BY228 374	BYV28-150	BZW04-376578	CG3 376
BV228 374	BYV28-200	BZW04-40	DF005M 474
BY296P 444	BYV32-50	BZW04-44578	DF005S 524
BY297P 444	BYV32-100	BZW04-48	DF01M 474
BY298P 444	BYV32-150	BZW04-53	DF01S 524
BY299P 444	BYV32-200 248	BZW04-58	DF02M 474
BY396P 452	BYV95A	BZW04-5V8578	DF02S 524
BY397P 452	BYV95B 386	BZW04-64578	DF04M 474
BY398P 452	BYV95C 386	BZW04-6V4578	DF04S 524
BY399P 452	BYV96D 386	BZW04-70	DF06M 474
BY448 370	BYV96E 386	BZW04-78	DF06S 524
BY458 370	BYW27-100GP 278	BZW04-7V0578	DF08M 474
BY500-100 454	BYW27-1000GP 278	BZW04-7V8578	DF08S 524
BY500-200 454	BYW27-200GP 278	BZW04-85	DF10M 474
BY500-400 454	BYW27-400GP 278	BZW04-8V5578	DF10S 524
BY500-600 454	BYW27-50GP 278	BZW04-94	DG1 366
BYM05-100 532	BYW27-600GP 278	BZW04P10578	DG2 372
BYM05-200 532	BYW27-800GP 278	BZW04P102578	DG3 376
BYM05-400 532	BYW29-50 236	BZW04P11578	EDF1AM 520
BYM05-50 532	BYW29-100	BZW04P111578	EDF1BM 520
BYM05-600 532	BYW29-150	BZW04P128578	EDF1CM 520
BYM06-100 534	BYW29-200	BZW04P13578	EDF1DM 520
BYM06-200 534	BYW32 390	BZW04P136578	EGL34A 536
BYM06-400 534	BYW33 390	BZW04P14578	EGL34B 536
BYM06-50 534	BYW34 390	BZW04P145578	EGL34C 536
BYM06-600 534	BYW35 390	BZW04P15578	EGL34D 536
BYM07-100 536	BYW36 390	BZW04P154578	EGL34F 536
BYM07-150 536	BYW72 398	BZW04P17578	EGL34G 536
BYM07-200 536	BYW73 398	BZW04P171578	EGL41A 544
BYM07-300 536	BYW74 398	BZW04P188578	EGL41B 544
BYM07-400 536	BYW75 398	BZW04P19578	EGL41C 544
BYM07-50 536	BYW76 398	BZW04P20578	EGL41D 544
BYM10A-100 540	BYX10GP 266	BZW04P213578	EGL41F 544
BYM10-1000 540	BYX55-350P 442	BZW04P23578	EGL41G 544
BYM10-200 540	BYX55-600P 442	BZW04P239578	EGP10A 210
BYM10-400 540	BZW04-10 578	BZW04P256578	EGP10B 210
BYM10-50 540	BZW04-102 578	BZW04P26578	EGP10C 210
BYM10-600 540	BZW04-11 578	BZW04P273578	EGP10D 210

EGP10F210	FEPF30DP 250	G3A	Gi822 456
EGP10G	FEPF30FP	G3B	GI824 456
EGP20A	FEPF30GP		GI826 456
		G3D	
EGP20B212	FEPF30HP 250	G3G	GI850 446
EGP20C212	FEPF30JP250	G3J	Gl851 446
EGP20D212	FEPF6AT 226	G3K	G1852 446
EGP20F212	FEPF6BT 226	G3M	GI854 446
EGP20G 212	FEPF6CT 226	G4A	GI856 446
EGP30A214	FEPF6DT 226	G4B	Gl910 448
EGP30B214	FEP30AP	G4D	Gl911 448
EGP30C	FEP30BP 252	G4G	GI912 448
	FEP30DF		
EGP30D214	FEP30CP	G4J362	Gl914 448
EGP30F214	FEP30DP 252	G4K	Gl916 448
EGP30G214	FEP30FP 252	G4M	Gl917 448
EGP50A216	FEP30GP 252	Gl1-1200	GL34A 532
EGP50B216	FEP30HP 252	GI1-1400	GL34B 532
EGP50C 216	FEP30JP252	GI1-1600	GL34D 532
EGP50D 216	FES8AT 232	GI1001190	GL34G 532
EGP50F	FES8BT	GI1002190	GL34J
EGP50G			GL34K
	FES8CT	GI1003190	
FE1A 188	FES8DT232	GI1004190	GL41A 540
FE1B	FES8FT 232	GI1101196	GL41B 540
FE1C 188	FES8GT 232	GI1102196	GL41D 540
FE1D	FES8HT 232	Gl1103196	GL41G 540
FE2A 192	FES8JT232	GI1104	GL41J 540
FE2B 192	FES16AT 240	GI1301	GL41K 540
FE2C 192	FES16BT	Gi1302	GL41M
FE2D192	EE01001		GLL4735
	FES16CT	GI1303206	
FE3A 198	FES16DT240	GI1304206	GLL4736
FE3B 198	FES16FT 240	Gl1401234	GLL4737 546
FE3C 198	FES16GT 240	Gi1402234	GLL4738 546
FE3D 198	FES16HT 240	GI1403234	GLL4739 546
FE5A	FES16JT240	GI1404	GLL4740 546
FE5B 202	FESF8AT 230	Gl2401246	GLL4741 546
FE5C 202	FESF8BT 230	Gl2402246	GLL4742 546
FE5D202	FESF8CT	Gi2402246	GLL4743
FE6A			GLL4744
	FESF8DT	Gl2404246	
FE6B 204	FESF8FT 230	Gl250-1	GLL4745 546
FE6C204	FESF8GT 230	Gl250-2	GLL4746 546
FE6D204	FESF8HT 230	Gl250-3	GLL4747 546
FEP16AT244	FESF8JT230	Gl250-4	GLL4748 546
FEP16BT244	FESF16AT 238	GI500416	GLL4749 546
FEP16CT244	FESF16BT 238	GI501416	GLL4750 546
FEP16DT	FESF16CT	GI502	GLL4751 546
	FESF16DT	GI504416	GLL4752
FEF 16GT244	FESF16FT238	GI506416	GLL4753 546
FEP16HT244	FESF16GT 238	GI508416	GLL4754 546
FEP16JT244	FESF16HT 238	GI510416	GLL4755 546
FEP6AT228	FESF16JT	GI750420	GLL4756 546
FEP6BT228	G1A	GI751420	GLL4757 546
FEP6CT	G1B	GI752420	GLL4758 546
FEP6DT	G1D	GI754	GLL4759 546
	G1G		GLL4760
FEPF16AT242		GI756420	
FEPF16BT242	G1J 352	GI758420	GLL4761 546
FEPF16CT242	G1K	Gl810	GLL4762 546
FEPF16DT242	G1M	Gl811	GLL4763 546
FEPF16FT242	G2A	Gi812	GP02-20
FEPF16GT242	G2B	Gl814	GP02-25
FEPF16HT242	G2D	Gl816	GP02-30
FEPF16JT242	G2G	Gl817	GP02-35
FEPF30AP	G2J	GI818	GP02-40
FEDE00DD 000	G2J	GI820456	GP02-40 262 GP08A 268
FEPF30BP			
FEPF30CP250	G2M 354	Gi821456	GP08B 268

GP08D268	J.JTX1N424828	J.JTX1N6120 A	KBPC15-08W 512
GP08G	J.JTX1N4249	JJTX1N6121A50	KBPC15-10 512
GP08J 268	J,JTX1N4942 30	J,JTX1N6122A50	KBPC15-10W 512
GP10A276	J,JTX1N4944 30	J,JTX1N6123A50	KBPC25-005 512
GP10B276	J,JTX1N4946 30	J,JTX1N6124A50	KBPC25-005W 512
GP10D	J,JTX1N4947 30	J,JTX1N6125A50	KBPC25-01 512
GP10G276 GP10J276	J.JTX1N4948	J,JTX1N6126A50	KBPC25-01W 512 KBPC2502 512
GP10K	J,JTX1N5415	J.JTX1N6127A50 J.JTX1N6128A50	KBPC2502 512
GP10M	J,JTX1N5417	JJTX1N6129A50	KBPC2504 512
GP10N	J.JTX1N5418 32	J.JTX1N6130A50	KBPC2504W 512
GP10Q276	J,JTX1N5419 32	J,JTX1N64524	KBPC2506 512
GP10T276	J,JTX1N5420 32	J,JTX1N64724	KBPC2506W 512
GP10V	J,JTX1N5550 34	J,JTX1N64924	KBPC2508 512
GP10W276 GP10Y276	J,JTX1N5551	J,JTX1N645-124 J,JTX1N647-124	KBPC2508W 512 KBPC2510 512
GP15A	J,JTX1N5552 34 J,JTX1N5553 34	J.JTX1N649-124	KBPC2510 512
GP15B	JJTX1N5554	KBL005	KBPC35005 512
GP15D	J,JTX1N5614	KBL01	KBPC35005W 512
GP15G	J.JTX1N5615	KBL02	KBPC3501 512
GP15J	J,JTX1N5616	KBL04	KBPC3501W 512
GP15K	J,JTX1N5617 36	KBL06	KBPC3502 512
GP15M	J,JTX1N5618	KBL08	KBPC3502W 512
GP20A292 GP20B292	J,JTX1N5619 36	KBL10	KBPC3504 512 KBPC3504W 512
GP20D	J,JTX1N5620	KBP01M482	KBPC3506 512
GP20G	J.JTX1N5622	KBP02M	KBPC3506W 512
GP20J	J,JTX1N5623	KBP04M	KBPC3508 512
GP30A298	J,JTX1N5624 40	KBP06M482	KBPC3508W 512
GP30B298	J,JTX1N5625 40	KBP08M482	KBPC3510 512
GP30D298	J,JTX1N5626 40	KBP10M482	KBPC3510W 512
GP30G	J,JTX1N5627 40	KBPC1005494	KBPC6005 506
GP30J	J,JTXV1N5802 42 J,JTXV1N5804 42	KBPC101494 KBPC102494	KBPC601 506 KBPC602 506
GP30M	JJTXV1N5806 42	KBPC102494	KBPC604 506
GPP1A	J.JTXV1N5807 44	KBPC106494	KBPC606
GPP1B556	J.JTXV1N5809 44	KBPC108494	KBPC608 506
GPP1D556	J,JTXV1N5811 44	KBPC110494	KBPC610 506
GPP1G556	J,JTX1N6113 48	KBPC10-005 512	KBPC8005 508
GPP1J556	J,JTX1N6114 48	KBPC10-005W512	KBPC801 508
GPP1K	J,JTX1N6115 48	KBPC10-01512	KBPC802 508 KBPC804 508
GPP1M556 GPP5A556	J,JTX1N6116 48	KBPC10-01W512 KBPC10-02512	KBPC806 508
GPP5B	J,JTX1N6117 48 J,JTX1N6118 48	KBPC10-02W512	KBPC808 508
GPP5D	JJTX1N6119	KBPC10-04512	KBPC810 508
GPP5G556	J.JTX1N6120 48	KBPC10-04W512	KBU4A 500
GPP5J556	J,JTX1N6121 48	KBPC10-06512	KBU4B 500
GPP5K556	J,JTX1N6122 48	KBPC10-06W512	KBU4D 500
J,JTX1N361126	J,JTX1N6123 48	KBPC10-08512	KBU4G 500
J,JTX1N361226	J,JTX1N6124 48	KBPC10-08W512	KBU4J 500 KBU4K 500
J,JTX1N361326 J,JTX1N361426	J,JTX1N6125 48 J,JTX4N6126 48	KBPC10-10512 KBPC10-10W512	KBU4K
J,JTX1N395726	J,JTX1N6127 48	KBPC15-005	KBU6A
J,JTX1N483B22	J.JTX1N6128	KBPC15-005W512	KBU6B 504
J,JTX1N485B22	J,JTX1N6129 48	KBPC15-01512	KBU6D 504
J,JTX1N486B 22	J,JTX1N6130 48	KBPC15-01W512	KBU6G 504
J,JTXM19500/469-01 46	J,JTX1N6113A 50	KBPC15-02512	KBU6J 504
J,JTXM19500/469-02 46	J,JTX1N6114A 50	KBPC15-02W512	KBU6K
J,JTXM19500/469-03 46 J.JTXM19500/469-04 46	J,JTX1N6115A 50 J,JTX1N6116A 50	KBPC15-04512 KBPC15-04W512	KBU6M 504 KBU8A 510
J.JTX1N4245	J.JTX1N6117A 50	KBPC15-06	KBU8B 510
J,JTX1N424628	J.JTX1N6118A 50	KBPC15-06W512	KBU8D 510
J,JTX1N424728	J,JTX1N6119A 50	KBPC15-08512	KBU8G 510

	·····		NUMERICAL INDE
2101 510			
3U8J	MBRF2060CT 136	P4KA7.5	P4KE180 574
3U8K	MBRF2090CT 144	P4KA7.5A	P4KE180A 574
3U8M	MBRF20100CT 138	P4KA8.2	P4KE18A 574
100A	MBRF2535CT 150	P4KA8.2A562	P4KE20 574
100B	MBRF2545CT 150	P4KA9.1562	P4KE200 574
100D	MBRF2550CT 152	P4KA9.1A	P4KE200A 574
100G410	MBRF2560CT 152	P4KA10	P4KE20A 574
100J	MBRF3035PT 158	P4KA10A	P4KE22 574
100K	MBRF3045PT 158	P4KA11	P4KE220 574
100M	MBRF3050PT 160	P4KA11A	P4KE220A 574
BR1035 100	MBRF3060PT 160	P4KA12	P4KE22A
BR1045 100	MBRF4035PT 172	P4KA12A	P4KE24 574
BR1050 102	MBRF4045PT 172	P4KA13	P4KE24A 574
BR1060 102	MBRF4050PT 174	P4KA13A	P4KE250 574
BR1090 104	MBRF4060PT 174	P4KA15	P4KE250A 574
BR10100 104	MBRF735 86	P4KA15A562	P4KE27 574
BR1535CT 118	MBRF745 86	P4KA16	
BR1545CT 118	MBRF750 88	P4KA16A	P4KE27A 574
BR1550CT 120	MBRF760 88	P4KA18	P4KE30 574
BR1560CT 120	MPG06A 332	P4KA18A	P4KE300 574
BR1635 126			P4KE300A 574
	MPG06B 332	P4KA20	P4KE30A 574
BR1645 126	MPG06D 332	P4KA20A562	P4KE33 574
BR1650 128	MPG06G	P4KA22	P4KE33A 574
BR1660 128	MPG06J 332	P4KA22A562	P4KE350 574
BR2035CT 140	MPG06K 332	P4KA24	P4KE350A 574
BR2045CT 140	MPG06M 332	P4KA24A562	P4KE36 574
BR2050CT 142	NP16AT 432	P4KA27	P4KE36A 574
BR2060CT 142	NP16BT 432	P4KA27A	P4KE39 574
BR2090CT 144	NP16DT 432	P4KA30	P4KE39A 574
BR20100CT 144	NP16GT 432	P4KA30A	P4KE400 574
BR2535CT 154	NP16JT 432	P4KA33	P4KE400A 574
BR2545CT 154	NP16KT 432	P4KA33A	P4KE43 574
BR2550CT 152	NP16MT 432	P4KA36	P4KE43A 574
BR2560CT 152	NPF16AT 430	P4KA36A	P4KE47 574
BR3035PT 162	NPF16BT	P4KA39	
BR3045PT 162	NPF16DT 430		P4KE47A 574
BR3050PT 164	NPF16GT 430	P4KA39A	P4KE51 574
BR3060PT 164		P4KA43	P4KE51A 574
	NPF16JT 430	P4KA43A562	P4KE56 574
BR4035PT 176	NPF16KT	P4KE10574	P4KE56A 574
BR4045PT 176	NPF16MT 430	P4KE100574	P4KE6.8 574
3R4050PT 178	NS8AT 428	P4KE100A574	P4KE6.8A 574
BR4060PT 178	NS8BT 428	P4KE10A574	P4KE62 574
BR73590	NS8DT 428	P4KE11	P4KE62A 574
BR74590	NS8GT 428	P4KE110	P4KE68 574
BR75092	NS8JT 428	P4KE110A574	P4KE68A 574
BR76092	NS8KT 428	P4KE11A574	P4KE7.5
3RF103594	NS8MT 428	P4KE12	P4KE7.5A 574
3RF1045 94	NSF8AT 426	P4K 5120	P4KE75 574
3RF105096	NSF8BT 426	P4KE120A	P4KE75A 574
BRF1060	NSF8DT 426	P4KE12A	P4KE8.2A 574
BRF1090	NSF8GT 426	P4KE13	P4KE82 574
3RF10100	NSF8JT	P4KE130	P4KE82A
BRF1535CT 114	NSF8KT		
BR1545CT 114		P4KE130A574	P4KE9.1
BRF1550CT 116	NSF8MT	P4KE13A574	P4KE9.1A 574
	P300A 418	P4KE15	P4KE91A 574
BRF1560CT 116	P300B 418	P4KE150574	P600A 422
BRF1635 122	P300D 418	P4KE150A574	P600B 422
BRF1645 122	P300G 418	P4KE15A574	P600D 422
BRF1650 124	P300J 418	P4KE16	P600G 422
BRF1660124	P300K 418	P4KE160	P600J
BRF2035CT 134	P300M 418	P4KE160A574	P600K 422
BRF2045CT 134	P4KA6.8 562	P4KE16A	P600M 422

P6KA6.8A	P6KE170 582	RG1G	DODOED 000
P6KA7.5	P6KE170A 582	RG1J	RGP25D 326 RGP25G 326
P6KA7.5A	P6KE18	RG1K	RGP25G
P6KA8.2	P6KE180	RG1M	RGP25K 326
P6KA8.2A	P6KE180A 582	RG2A	RGP25M 326
P6KA9.1	P6KE18A	RG2B	RGP30A 328
P6KA9.1A	P6KE20582	RG2D	RGP30B 328
P6KA10566	P6KE200 582	RG2G	RGP30D 328
P6KA10A	P6KE200A	RG2J	RGP30G 328
P6KA11	P6KE20A	RG2K	RGP30J 328
P6KA11A	P6KE22 582	RG2M	RGP30K 328
P6KA12566	P6KE22A	RG3A	RGP30M 328
P6KA12A	P6KE24 582	RG3B	RGPP1A
P6KA13566	P6KE24A 582	RG3D	RGPP1B 558
P6KA13A566	P6KE27582	RG3G	RGPP1D 558
P6KA15566	P6KE27A 582	RG3J	RGPP1G 558
P6KA15A566	P6KE30 582	RG3K	RGPP1J 558
P6KA16566	P6KR300 582	RG3M	RGPP1K 558
P6KA16A566	P6KE300A 582	RG4A	RGPP5A 558
P6KA18566	P6KE30A 582	RG4B	RGPP5B 558
P6KA18A566	P6KE33 582	RG4D	RGPP5D
P6KA20566	P6KE33A 582	RG4G	RGPP5G 558
P6KA20A566	P6KE36582	RG4J	RGPP5J 558
P6KA22566	P6KE36A 582	RG4K	RGPP5K 558
P6KA22A566	P6KE39 582	RG4M	RMPG06A 334
P6KA24566	P6KE39A 582	RGL34A534	RMPG06B 334
P6KA24A566	P6KE400582	RGL34B534	RMPG06D 334
P6KA27566	P6KE400A 582	RGL34D534	RMPG06G 334
P6KA27A566	P6KE43 582	RGL34G534	RMPG06J 334
P6KA30566	P6KE43A 582	RGL34J534	RS8AT 462
P6KA30A566	P6KE47 582	RGL41A542	RS8BT 462
P6KA33566	P6KE47A 582	RGL41B542	RS8DT 462
P6KA33A	P6KE51 582	RGL41D542	RS8GT 462
P6KA36	P6KE51A	RGL41G542	RS&JT 462
P6KA36A	P6KE56 582	RGL41J542	RS8KT 462
P6KA39	P6KE56A	RGL41K542	RS8MT 462
P6KA39A	P6KE6.8 582	RGL41M	RSF8AT 460
P6KA43566 P6KA43A566	P6KE6.8A	RGP02-12E	RSF8BT 460
P6KE10	P6KE62A	RGP02-14E	RSF8DT 460
P6KE100	P6KE68 582	RGP02-18E	RSF8GT 460
P6KE100A	P6KE68A	RGP02-182	RSF8JT 460
P6KE10A	P6KE7.5 582	RGP10A	RSF8KT 460
P6KE11	P6KE7.5A	RGP10B	RSF8MT 460
P6KE110	P6KE75	RGP10D	RW005G 518
P6KE110A	P6KE75A	RGP10G	RW01G 518
P6KE11A	P6KE8.2	RGP10J	RW02G 518 RW04G 518
P6KE12 582	P6KE8.2A	RGP10K	RW06G
P6KE120582	P6KE82	RGP10M	RW08G 518
P6KE120A	P6KE82A	RGP15A	SB020 60
P6KE12A	P6KE9.1 582	RGP15B	SB030 60
P6KE13582	P6KE9.1A	RGP15D	SB040 60
P6KE130	P6KE91 582	RGP15G	SB120 64
P6KE130A582	P6KE91A 582	RGP15J	SB130 64
P6KE13A582	RDF005M 516	RGP15K	SB14064
P6KE15582	RDF01M 516	RGP15M	SB150 64
P6KE150582	RDF02M 516	RGP20A	SB160 64
P6KE150A582	RDF04M 516	RGP20B324	SB190 66
P6KE15A582	RDF06M 516	RGP20D	SB1100
P6KE16582	RDF08M 516	RGP20G324	SB320
P6KE160582	RG1A	RGP20J324	SB330
P6KE160A582	RG1B	RGP25A326	SB34070
P6KE16A582	RG1D 384	RGP25B326	SB350

SB360 70	TGL41-10A 552	TGL41-8.2	70040 440 000
SB39072	TGL41-11 552	TGL41-8.2A552	ZGP10-110 302
SB3100 72	TGL41-110 552	TGL41-82552	ZGP10-110A 302
SB52074	TGL41-110A 552	TGL41-82A552	ZGP10-110B 302
SB53074	TGL41-11A 552	TGL41-9.1	ZGP10-120 302
SB540	TGL41-12 552	TGL41-9.1A552	ZGP10-120A 302
SB55074	TGL41-120 552	TGL41-91552	ZGP10-120B 302
SB56074	TGL41-120A 552	TGL41-91A552	ZGP10-130 302
SB590	TGL41-12A 552	UF4001	ZGP10-130A 302
SB5100	TGL41-13 552	UF4002	ZGP10-130B 302
SBL1030 108	TGL41-130 552	UF4003	ZGP10-140 302
SBL1040 108	TGL41-130A 552	UF4004	ZGP10-140A 302
SBL1030CT112	TGL41-13A 552	UF4005	ZGP10-140B 302
SBL1040CT112	TGL41-15 552	UF4006	ZGP10-150 302
SBL1630CT 132	TGL41-150 552	UF4007	ZGP10-150A 302 ZGP10-150B 302
SBL1640CT 132	TGL41-150A 552	UF5400	ZGP10-160 302
SBL2030PT148	TGL41-15A 552	UF5401	ZGP10-160A 302
SBL2040PT148	TGL41-16 552	UF5402	ZGP10-160B 302
SBLF3030PT166	TGL41-160 552	UF5403222	ZGP10-170 302
SBLF3040PT 166	TGL41-160A 552	UF5404	ZGP10-170A 302
SBL530 82	TGL41-16A 552	UF5405222	ZGP10-1708 302
SBL540 82	TGL41-170 552	UF5406	ZGP10-180
SBLF1030106	TGL41-170A 552	UF5407222	ZGP10-180A 302
SBLF1040106	TGL41-18 552	UF5408	ZGP10-180B 302
SBLF1030CT110	TGL41-180 552	W005G	ZGP10-190 302
SBLF1040CT110	TGL41-180A 552	W01G	ZGP10-190A 302
SBLF1630CT 130	TGL41-18A 552	W02G	ZGP10-190B 302
SBLF1640CT 130	TGL41-20 552	W04G	ZGP10-200 302
SBLF2030PT 146	TGL41-200 552	W06G	ZGP10-200A 302
SBLF2040PT 146	TGL41-200A 552	W08G480	ZGP10-200B 302
SBLF3030PT 166	TGL41-20A 552	W10G	
SBLF3040PT 166	TGL41-22 552	W005M	
SBLF530 80 SBLF540 80	TGL41-22A 552 TGL41-24 552	W01M478 W02M478	
SBLF530CT	TGL41-24	W04M478	
SBLF540CT	TGL41-27 552	W04M	
SD241P	TGL41-27A 552	W008M	
SGL41-20550	TGL41-30 552	W10M	
SGL41-30550	TGL41-30A 552	ZGL41-100548	
SGL41-40	TGL41-33	ZGL41-100A	
SGL41-50	TGL41-33A 552	ZGL41-110548	
SGL41-60	TGL41-36 552	ZGL41-110A548	
SRP100A	TGL41-36A 552	ZGL41-120548	
SRP100B 440	TGL41-39 552	ZGL41-120A548	
SRP100D 440	TGL41-39A 552	ZGL41-130548	
SRP100G 440	TGL41-43 552	ZGL41-130A548	
SRP100J440	TGL41-43A 552	ZGL41-140548	
SRP100K 440	TGL41-47 552	ZGL41-140A548	
SRP300A 450	TGL41-47A 552	ZGL41-150548	
SRP300B450	TGL41-51 552	ZGL41-150A548	
SRP300D450	TGL41-51A 552	ZGL41-160548	
SRP300G 450	TGL41-56 552	ZGL41-160A548	
SRP300J450	TGL41-56A 552	ZGL41-170548	
SRP300K450	TGL41-6.8 552	ZGL41-170A548	
SRP600A	TGL41-6.8A 552	ZGL41-180548	
SRP600B	TGL41-62 552	ZGL41-180A548	
SRP600D	TGL41-62A 552	ZGL41-190548	
SRP600J	TGL41-68 552	ZGL41-190A548	
SRP600G458 SRP600K458	TGL41-68A 552	ZGL41-200	
TGL41-10	TGL41-7.5552 TGL41-7.5A552	ZGL41-200A548	
TGL41-10	TGL41-7.5A	ZGP10-100	
TGL41-100	TGL41-75A	ZGP10-100A	
	102111011111111100E	20110-1000	

QUALITY ASSURANCE

QUALITY ASSURANCE

CUSTOMER INFORMATION

INTRODUCTION

Quality and Reliability of the Power Semiconductor Division extends its services to the areas of materials and product analysis, statistical quality control, reliability evaluation, quality inspection and development of new test methods.

Headquartered in New York, it assumes the responsibility for the development, implementation and administration of the Quality Assurance and statistical quality control programs for all operations of the Division, both domestic and foreign.

At our manufacturing plants, rigid and extensive in-process statistical quality controls are utilized such that the quality and reliability of our products are consistent and repeatable. The laboratories of our facilities are equipped with the latest high-level instrumentation and staffed with skilled technicians and engineers.

Professional expertise and the most modern scientific equipment maintains our position of excellence and leadership as the foremost producer of semiconductor devices, and assures that the quality levels of our products, from inspection and test of raw materials to final approval of completed devices, meet the highest standards of the industry.

We offer

- Top-flight specialists and modern facilities.
- Experienced Test and Reliability Engineers.
- Statistical Quality Control.
- Fully equipped laboratories able to perform all types of scientific investigation.

SERVICES OF THE MATERIALS AND DEVICE ANALYSIS SECTION

- Testing, inspection and evaluation of materials utilizing the facilities of the electrical, mechanical, high-reliability and chemical analysis departments of our laboratories.
- Research and development of testing methods.
- Inspection of materials to ensure compliance by suppliers and contractors to specifications.
- Failure analysis to determine the cause of breakdown in materials or components.
- Qualification testing of military devices in accordance with applicable military specifications. The laboratories are qualified to perform testing to MIL-S-19500, MIL-STD-750, MIL-STD-202, and also are qualified to MIL-STD-883 tests under MIL-M-38510. Qualification approvals (QPL listing) were awarded by the United States, Canadian and West German Departments of Defense.
- A continuing program of military reliability (JAN-TX) also is progress to assure conformance to the requirements for aerospace and the military.

TEST CONDITIONS

OPERATING LIFE

Conditions: Rated voltage, rated current, for 1000 hours at 25° C.

DC BLOCKING

Conditions: Rated voltage for 1000 hours at 100° C in inert environment.

STORAGE LIFE

Conditions: 100° C for 1000 hours in inert environment.

LEAD PULL

Conditions: Axial pull to destruction.

LEAD FATIGUE

Conditions: number of 90degree bends with 0.5 kg weight attached to lead.

MOISTURE RESISTANCE

Conditions: 85 °C, 85% Relative Humidity for 10 days.

FLAMMABILITY

SOLDERABILITY

Conditions: 95% coverage within 1.2 mm of device body.

TEMPERATURE CYCLING

Conditions: - 65° C to +175 °C.

SHOCK

Conditions: 5 blows of 1500g's.

VIBRATION (CONSTANT)

Conditions 20 g's at 60 Hz \pm 20 Hz.

ACCELERATION Conditions: 20,000 g's.

SALT ATMOSPHERE

Conditions: 5% solution for 24 hours at 35 °C.

Conditions: Encapsulating compound, General Instrument's proprietary formulas, GI-4B or GI-5A is self-extinguishing, recognized and registered by Underwriters' Laboratories, U.S.

MOISTURE CAPABILITIES OF DIODES, RECTIFIERS, AND BRIDGES

Conditions: $T = 25^{\circ} C$ to $85^{\circ} C$ in Operating Mode Suitability Tested by Reverse Leakage Current at Rated Voltage

	Yearly Average				
Device	≥ 95% RH	≥ 85% RH	100% RH 30 Days Continuous	95% RH 30 Days Continuous	Balance Occasional 100% RH
GPD	-				
GPR	-		•		
GP10					
GP15					
GP20					
GP30					
DO41					
WO Series					
KBP Series				8	
KBPC Series					
KBU Series					

HIGH RELIABILITY - TEST CAPABILITIES

- Barometric Pressure: This equipment simulates low atmospheric pressure encountered in non-pressurized environments up to 200,000 feet.
- Humidity: This equipment evaluates units in an accelerated manner, and monitors the effects of their resistance to high humidity and heat conditions. Typical RH of 90 to 98% is achieved.
- Salt (Spray) and Salt Atmosphere: The equipment provides an accelerated laboratory corrosion test simulating the effects of seacoast atmospheres. Salt concentration and velocity per day can be maintained between 10,000 and 50,000 mgm/m2/day. Salt Atmosphere - Salt spray 5% - 20% salt solution.
- Thermal Shock Temp.-Cycling: This test determines the resistance of devices to exposure at extremely high and low temperatures. Chamber limits - 74 °C to 250 °C.
- Mass Spectrometer Leak Detector (Fine Leak): To determine the effectiveness (or the hermeticity) of the seal on devices with internal cavities which are evacuated on contain air or gas. Machine limits 1 - 10⁻⁹ to 10 - 10⁻⁶ atm.
- Gross Leak: Determine seal leak greater than 10 - 10⁻⁶ATM cc/Sec.
- Constant Acceleration: Determines the effects of a centrifugal force on devices up to 700,000g under space environment (refrigerated vacuum).
- Shock: Subjects the devices to conditions resulting from sudden applied forces or abrupt changes in motion produced by rough handing, transportation or field operation from 10 to 4,500g.
- Vibration Fatigue: Tests the effects of vibration within the frequency range of 60 Hz at 0-70g.

- Vibration Noise: Measures the amount of electrical noise produced by the devices under vibration from 9-5kHz and 0-70g.
- Non-Operating Life: To determine the effects on devices at elevated temperatures. Temperature ranges up to 300 °C.
- Operating Life Test: To operate the devices under intended condition to screen and eliminate marginal devices and eliminate mortality.
 - Steady State Operating Life
 - ♦ Reverse Bias Operating Life
 - Intermittent Operating Life
- Solderability Lead Integrity (Lead Tension):

Determine the solderability on all devices from 0 to 400° C. Lead Tension - Designed to check the capabilities of the devices to withstand straight pulls.

Lead integrity (bending stress):

Check the quality of leads, welds and seals of the devices to withstand bends under specific weights.

- Lead Integrity (lead torque): Check the devices, leads and seals for resistance to twisting motion. Equipment limits from .5 cmkg to 100 mkg.
- Hi-Power Microscopic Inspection: Examine internal and external construction of our devices up to 600 times.
- Bond Strength: This determines strength of lead bonding between the active area of the device and connecting packaging lead.

MILITARY APPROVED RECTIFIERS

0.2 AMPERE TO 10 AMPERES

-18-

#1 IN PRICE, #1 IN SERVICE, #1 IN MILITARY

General Instrument Power Semiconductor Division, is the world's largest manufacturer of rectifiers and bridges, supplying over 2 billion annually. We're proud to be number one in *quality and reliability* as we are in being number one in *price and service*. And no one beats our delivery. Think bigger and better. Design-in General Instrument JAN, JANTX and JANTXV rectifiers and bridges, and see why we're The Decisive Factor in military rectifiers.

DELIVERY

As you well know, ensuring on time delivery, for those hard-to-get parts, is one of the most important and frustrating aspects of a purchasing agent's many responsibilities. We remove that stumbling block for all the JAN, JANTX, JANTXV devices we produce. As the world's largest rectifier manufacturer, you can ALWAYS count on JAN parts from stock. In addition, we have MORE BURN-IN CAPACITY THAN ANYONE, which guarantees shorter JANTX lead times. That's why you can count on General Instrument Power Semiconductor Division to be the Decisive Factor in your military project.

PRICING

WE ARE NOW, AND WILL ALWAYS BE, THE PRICE LEADER IN JAN, JANTX AND JANTXV MILITARY RECTIFIERS AND BRIDGES!

TECHNICAL ASSISTANCE

You'll find that buying from General Instrument Power Semiconductor Division makes a lot of sense. Consider the potential headaches we head off or eliminate with our technical assistance and support. Every one of our components is supplied with concise product data sheets that give engineers and designers complete details on electrical parameters, mechanical data, and maximum ratings as well as other vital information.

Equally important is our accessability. When questions arise with initial design, redesign, or current application, just pick up the telephone and call our applications engineering department at (516) 933-3164. We're extremely well staffed with experienced professionals to clearly and accurately answer every question.

AVAILABILITY

The following is intended as a quick guide and reference to the types of components General Instrument Power Semiconductor Division supplies:

JAN COMPONENTS

The most economical Hi-Rel device, JAN components are MIL qualified and subjected to environmental and life sample tests to assure quality conformance. JAN devices are 100 % tested, lot traceable and must pass a number of other tests (see comparison chart.) Aside from military circuits they are frequently used in commercial applications requiring superior potential life cycle performance that can not be guaranteed with standard commercial components.

JANTX AND JANTXV COMPONENTS

In addition to JAN processing, JANTX and JANTXV devices are subjected to extra environmental and electrical test as outlined in MIL-S-19500. (See comparison chart.) These screening procedures eliminate the possibility of infant mortality failures that might occur in the early stages of component system use.

PDA (percent defects allowable) requirements are applied to every lot, thereby assuring continuous quality and reliability. This effectively restricts the probability of shipping defective lots. The selection of TX and TXV components assures both *maximum component reliability and standardized reliability testing procedures.*

SPECIFICATION CONTROL DRAWINGS

Additional reliability testing, electrical screenings, or special markings are often required. General Instrument Power Semiconductor Division will guarantee that all those standards are met. We can guarantee this thanks to our state- of - the - art testing facility which provides the capability to screen devices to an equivalent "JANS" level.

HIGH RELIABILITY SCREENING SEQUENCE

GROUP A Testing - Group A testing is performed on each lot which consists of visual inspection mechanical inspections and specified electrical parametric testing **Group B Testing** - Group B Testing is performed on

each lot and consists of reliability testing. *Group C Testing* - Group C Testing is performed on a 6 month periodic basis, and consists of long term realiability and environmental testing.

Microscopic Inspection - 100% microscopic inspection is performed on all TXV device.

Traceability - Traceability is maintained per the applicable specification and MIL-S-19500.

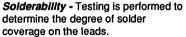
JAN, JANTX, JANTXV

High Temperature Storage (Non-operating) -Devices are stored in high temperatures ranging from 150°C to 200°C for stabilization.

Temperature Cycling - Devices are cycled for temperatures ranging from -65°C to +175°C to weed out structural weakness, i.e. welds, glass to metal seals and molecular lattice structure.

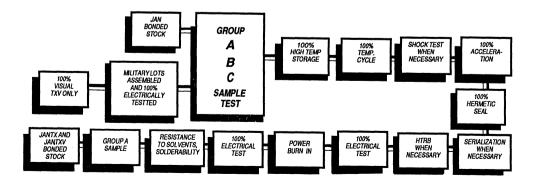
Shock- Specified devices are subjected to a mechanical shock test.

Acceleration - Specified devices are subjected to centrifuge.


Seal Leak (Fine) - Devices are tested with a helium mass spectrometer to locate any leaks down to 1×10^{-8} CC's per second leak rate. Seal Leak (Gross) - Devices are checked for leaks too large for detection by tracer gases.

100% Electrical Test - Devices are subjected to all parameters of the applicable specification. **High Temperature Reverse Bias** - Devices are subject to reverse bias for fourty eight hours under elevated temperature.

Power -Burn in - Devices are subjected to ninety six hours of burn-in to the conditions in the applicable specifications.

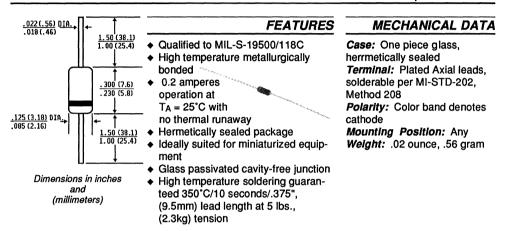

100% Delta Electrical Test - Devices are subjected to all parameters of the applicable specification and delta calculations are determined. Those devices not meeting the requirements are rejected.

Resistance to Solvents - Devices are exposed to various solvents to ensure marking permanency.

HIGH-RELIABILITY COMPARISON CHART

		011 01	
	JAN	JANTX	JANTXV
Microscopic Inspection			
(Internal Visual)	No	No	Yes
Tracebility (Lot)	Yes	Yes	Yes
100% Electrical Test	Yes	Yes	Yes
High Temp Storage			
(Non-Operating)	Yes	Yes	Yes
Temperature Cycling	No	Yes	Yes
Acceleration (When Applicable)	No	Yes	Yes
Seal Leak (Fine)	No	Yes	Yes
Seal Leak (Gross)	No	Yes	Yes
High Temp Reverse Bias			
(When Applicable)	No	Yes	Yes
Electrical Test (Read & Record)	No	Yes	Yes
Power Age (Burn-in)	No	Yes	Yes
Electrical Test (Read & Record)			
(with Delta Limits)	No	Yes	Yes
Group A Inspection			
per MIL-S-19500	Yes	Yes	Yes
Group B Inspection			
per MIL-S-19500	Yes	Yes	Yes
Group C Inspection			
per MIL-S-19500	Yes	Yes	Yes
PDA (Max. Pct. Def Allow.)			
thru Power Burn-in	No	Yes	Yes

QUALIFIED PRODUCTS LIST


PRODUCT'S QUALIFIED UNDER MILITARY SPECIFICATION MIL-S-19500

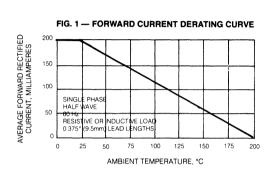
GOVERNMENT DESIGNATION	DETAIL SPEC	GOVERNMENT DESIGNATION	DETAIL SPEC
	DIODES	RECTIFIEF	RS (continued
JAN, JANTX, 1N483B	/118	JAN, JANTX, 1N5624	/432
JAN, JANTX, 1N485B	/118	JAN, JANTX, 1N5625	/432
JAN, JANTX, 1N486B	/118	JAN, JANTX, 1N5626	/432
		JAN, JANTX, 1N5627	/432
JAN, JANTX, 1N645	/240	JAN, JANTX, JANTXV, 1N5802	/477
JAN, JANTX, 1N647	/240	JAN, JANTX, JANTXV, 1N5804	/477
JAN, JANTX, 1N649	/240	JAN, JANTX, JANTXV, 1N5806	/477
JAN, JANTX, 1N645-1	/240	JAN, JANTX, JANTXV, 1N5907	/477
JAN, JANTX, 1N647-1	/240	JAN, JANTX, JANTXV, 1N5809	/477
JAN, JANTX, 1N649-1	/240	JAN, JANTX, JANTXV, 1N5811	/477
	RECTIFIERS	· · · · · · · · · · · · · · · · · · ·	BRIDGE
JAN, JANTX, 1N3611	/228	JAN, JANTX, M19500/469-01	/469
JAN, JANTX, 1N3612	/228	JAN, JANTX, M19500/469-02	/469
JAN, JANTX, 1N3613	/228	JAN, JANTX, M19500/469-03	/469
JAN, JANTX, 1N3614	/228	JAN, JANTX, M19500/469-04	/469
JAN, JANTX, 1N3957	/228		
		TRANSIENT VOLTAGE S	JPPRESSOR
JAN, JANTX , 1N4245	/286	IAN IANTY INCIDO	/E1C
JAN, JANTX, 1N4246	/286	JAN, JANTX, 1N6113,A JAN, JANTX, 1N6114,A	/516
JAN, JANTX, 1N4247	/286		/516 /516
JAN, JANTX, 1N4248	/286	JAN, JANTX, 1N6115,A	
JAN, JANTX, 1N4249	/286	JAN, JANTX, 1N6116,A JAN, JANTX, 1N6117,A	/516 /516
JAN, JANTX, 1N4942	/359		
JAN, JANTX, 1N4944	/359	JAN, JANTX, 1N6118,A	/516
JAN, JANTX, 1N4946	/359	JAN, JANTX, 1N6119,A	/516
JAN, JANTX, 1N4947	/359	JAN, JANTX, 1N6120,A	/516
JAN, JANTX, 1N4948	/359	JAN, JANTX, 1N6121, A	/516
IAN JANTY INCASE	(414	JAN, JANTX, 1N6122,A	/516
JAN, JANTX, 1N5415	/411	JAN, JANTX, 1N6123,A	/516
JAN, JANTX, 1N5416	/411	JAN, JANTX, 1N6124,A	/516
JAN, JANTX, 1N5417	/411	JAN, JANTX, 1N6125,A	/516
JAN, JANTX, 1N5418	/411	JAN, JANTX, 1N6126,A	/516
JAN, JANTX, 1N5419 JAN, JANTX , 1N5420	/411 /411	JAN, JANTX, 1N6127,A	/516
IAN IANTY INCOD	(100	JAN, JANTX, 1N6128,A	/516
JAN, JANTX, 1N5550	/420	JAN, JANTX, 1N6129,A	/516
JAN, JANTX, 1N5551	/420	JAN, JANTX, 1N6130,A	/516
JAN, JANTX, 1N5552	/420		/010
JAN, JANTX, 1N5553 JAN, JANTX, 1N5554	/420 /420		
, 0/111/1, 110004	/420		
JAN, JANTX, 1N5614	/427		
JAN, JANTX, 1N5616	/427		
JAN, JANTX, 1N5618	/427		
JAN, JANTX, 1N5620	/427		
JAN, JANTX, 1N5622	/427		

JAN AND JANTX 1N483B THRU 1N486B

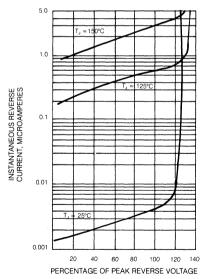
LOW POWER MINIATURE GLASS PASSIVATED SILICON DIODES VOLTAGE - 70 to 225 Volts CURRENT - 200 Milliamperes

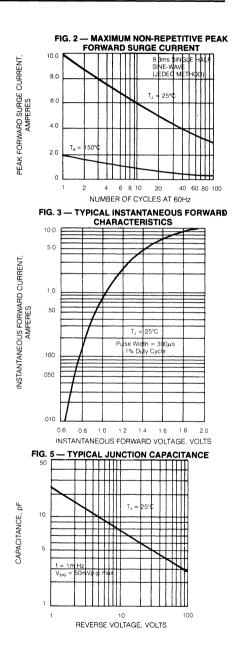
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%

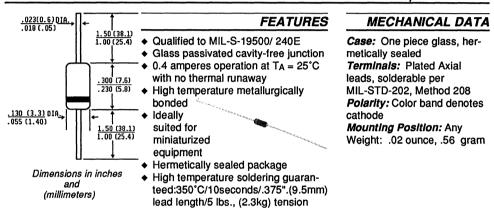

	SYMBOLS	JAN1N483B	JAN1N485B	JAN1N486B	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	70	180	225	Volts
Maximum RMS Voltage	VRMS	50	159	Volts	
Maximum DC Blocking Voltage	VDC	70	180	225	Volts
Minimum Reverse Breakdown Voltage at 100µA	VBR	80	200	250	Volts
Maximum Average Forward Recitified $T_A = 25^{\circ}C$ Current .375" (9.5mm) Lead Length at $T_A = 150^{\circ}C$	l(AV)			Milliamps	
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) $T_A = 150^{\circ}C$	IFSM			Amps	
Maximum Instantaneous Forward Voltage at 100mA	VF			Volts	
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	lR IR	25 5.0	25 5.0	25 5.0	nA μA
Typical Junction Capacitance (Note 1)	CJ		pf		
Typical Thermal Resistance (Note 2)	RØJA			·C/W	
Operating and Storage Temperature Range	TJ,TSTG		-65 to +200)	·C

NOTES:


1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.


2. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, P.C. Board Mounted.

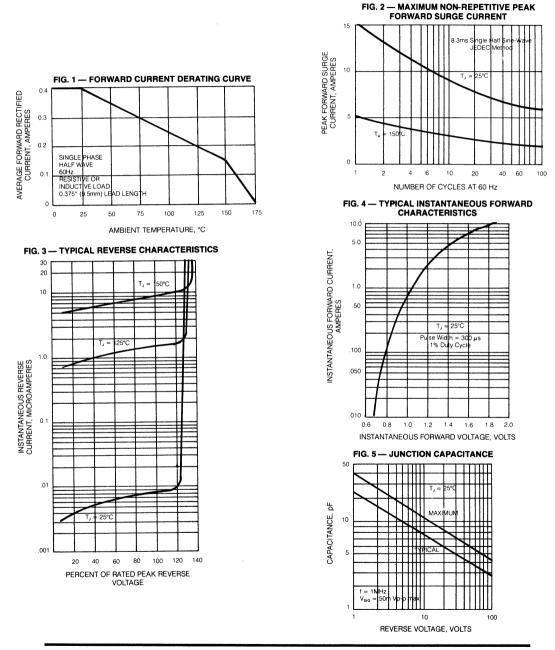
MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX 1N483B THRU 1N486B


GENERA

POWER SEMICONDUCTOR DIVISION

JAN AND JANTX 1N645 THRU 1N649 JAN AND JANTX 1N645-1 THRU 1N649-1

MINIATURE GLASS PASSIVATED SILICON DIODES VOLTAGE- 225 to 600 Volts CURRENT - 400 Milliamperes


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

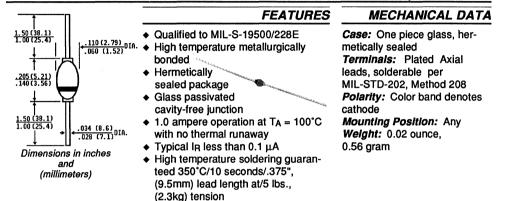
Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%

	SYMBOLS	JAN 1N645	JAN 1N645-1	JAN 1N647	JAN 1N647-1	JAN 1N649	JAN 1N649-1	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	225	225	400	400	600	600	Volts
Maximum RMS Voltage	VRMS	156	156	280	280	420	420	Volts
Maximum DC Blocking Voltage	VDC	225	225	400	400	600	600	Volts
Minimum Reverse Breakdown Voltage at 100µA		270	-	480	-	720		
50 μ A	VBR	-	270	-	480	-	720	Volts
Maximum Average Forward Recitified T _A =25°C					00			milli-
Current, .375" (9.5mm) Lead Length at $T_A = 150^{\circ}C$	I(AV)			1	50			Amps
Peak Forward Surge Current, 8.3.ms single half sine- wave superimposed on rated load								
(JEDEC Method) at T _A = 150°C	IFSM			5	.0			Amps
Maximum Instantaneous Forward T _A = 150°C				0.	95			
Voltage at 400 mA $T_A = 25^{\circ}C$	VF				.0			Volts
T _A = -55°C			·		20			
Maximum DC Reverse Current $T_A = 25^{\circ}C$		25	50	25	50	50	50	nA
at Rated DC Blocking Voltage T _A = 150°C	IR	15	25	15	25	25	25	μΑ
Maximum Average Reverse Current at Peak Reverse								
Voltage, Io=150 mA TA=150°C at .375" 9.5mm Lead Lengths	IR(AV)	100					μA	
Maximum Junction Capacitance (Note 1)	CJ	20.0				pf		
Typical Thermal Resistance (Note 2)	RØJA	80.0				.c/M		
Operating Junction Temperature Range	Tj	-65 to +175				.с		
Storage Ambient Temperature Range	TSTG			-65 to	o +200			.c

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 V_{DC}. 2. Thermal Resistance from Junciton to Ambient at .375", (9.5mm)lead lengths, P.C. Board mounted.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX 1N645 THRU 1N649 JAN AND JANTX 1N645-1 THRU 1N649-1

GENERAL INSTRUMENT



POWER SEMICONDUCTOR DIVISION

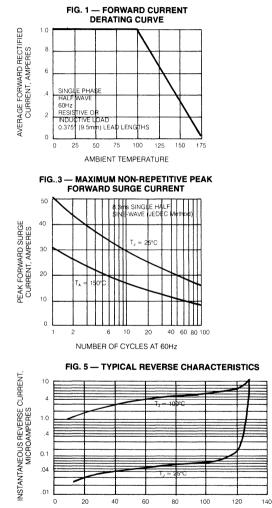
JAN AND JANTX 1N3611 THRU 1N3614 AND 1N3957

MINIATURE GLASS PASSIVATED JUNCTION SILICON RECTIFIER VOLTAGE - 200 to 1000 Volts CURRENT - 1.0 Ampere

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%

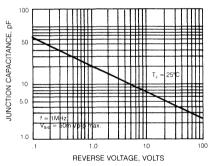
	SYMBOLS	JAN 1N3611	JAN 1N3612	JAN 1N3613	JAN 1N3614	JAN 1N3957	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
Minimum Reverse Breakdown Voltage at 100µA	VBR	240	480	720	920	1150	Volts
Maximum Average Forward Recitified Current .375" (9.5mm) Lead Length at T _A = 100°C	I(AV)	1.0					Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at T _A = 150°C	IFSM			Amps			
Maximum Instantaneous Forward $T_A = 25^{\circ}C$ Voltage at 1.0A $T_A = -65^{\circ}C'$	VF			Volts			
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR		μA				
Typical Reverse Recovery Time (Note 1)	TRR	2.0					
Typical Junction Capacitance (Note 2)	CJ	10.0					
Typical Thermal Resistance (Note 3)	Reja	50.0					.C\M
Operating Junction Temperature Range	Tj	-65 to +175					.c
Storage Ambient Temperature Range	TSTG		-	65 to +20	00		.c


NOTES:

1. Reverse Recovery Conditions: IF = 0.5A, IR = 1.0A, Irr = 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths P.C. Board mounted.

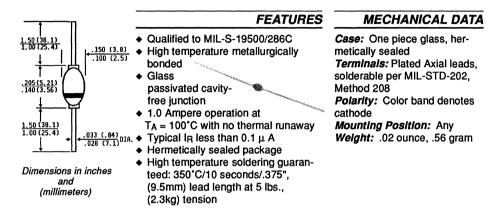

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX 1N3611 THRU 1N3614 AND 1N3957

PERCENT OF RATED PEAK REVERSE VOLTAGE

FIG. 2 --- TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS 20 10 INSTANTANEOUS FORWARD CURRENT, AMPERES 5.0 1.0 0.5 PULSEWIDTH 300 4 2% DUTY CYCI 0.1 .05 .01 1.0 1.2 1.6 1.8 2.0 .4 .6 .8 1.4 INSTANTANEOUS FORWARD VOLTAGE, VOLTS

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

GENERAL INSTRUMENT



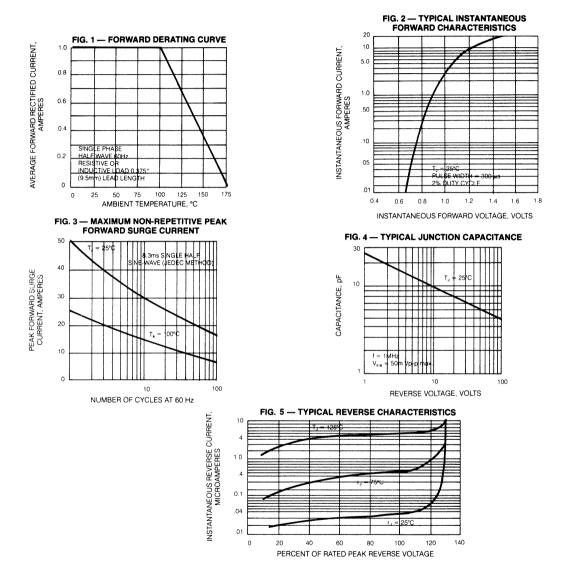
POWER SEMICONDUCTOR DIVISION

JAN AND JANTX 1N4245 THRU 1N4249

GLASS PASSIVATED JUNCTION MEDIUM SWITCHING RECTIFIERS VOLTAGE - 200 to 1000 Volts CURRENT - 1.0 Ampere

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	JAN 1N4245	JAN 1N4246	JAN 1N4247	JAN 1N4248	JAN 1N4249	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
Minimum Reverse Breakdown Voltage at 100µA	VBR	240	480	720	960	1150	Volts
Maximum Average Forward Recitified Current .375" (9.5mm) Lead Length at T _A = 100°C	I(AV)			Amps			
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at $T_A = 100^{\circ}$ C	IFSM	25.0					
Maximum Instantaneous Forward Voltage at 3.0A	VF			1.3			Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR	1.0 150					
Maximum Thermal Resistance (Note 3)	Reja	50.0					
Typical Junction Capacitance (Note 1)	CJ	15					
Maximum Reverse Recovery Time (Note 2)	TRR	5.0					μs
Operating and Storage Temperature Range	TJ, TSTG		-	65 to +17	75		.c

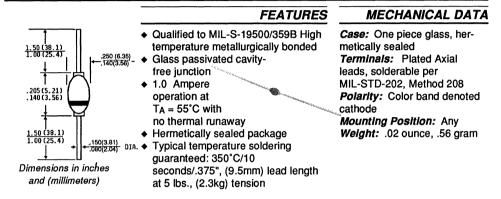
NOTES: 1. Measured at 1MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = 0.25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths P.C. Board mounted.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX 1N4245 THRU 1N4249

GENERAL INSTRUMENT



POWER SEMICONDUCTOR DIVISION

JAN AND JANTX 1N4942 THRU 1N4948

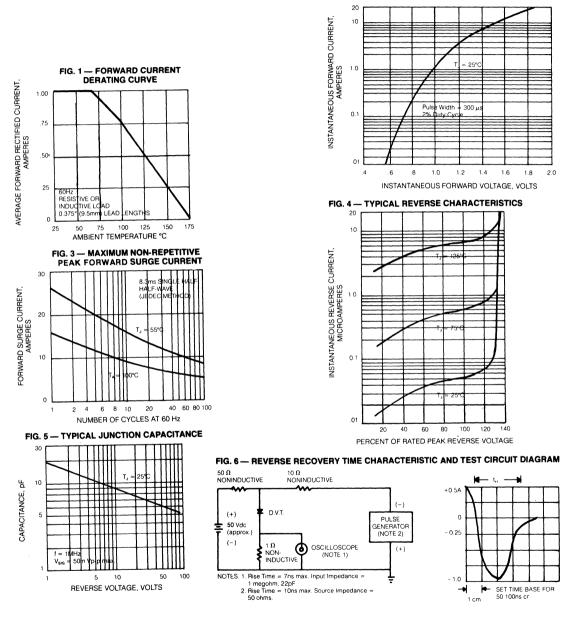
GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER VOLTAGE - 200 to 1000 Volts CURRENT - 1.0 Ampere

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. For capacitive load, derate current by 20%.

	SYMBOLS	JAN 1N4942	JAN 2 1N4944	JAN 1N4946	JAN 1N4947	JAN 1N4948	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
Minimum Reverse Breakdown Voltage at 100µA	VBR	220	440	660	880	1100	Volts
Maximum Average Forward Recitified Current .375" (9.5mm) Lead Length at T _A = 55°C	I(AV)	1.0					Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at $T_A = 100^{\circ}C$	IFSM	15.0					Amps
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VF			1.3 1.5			Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR -	1.0 200					μA
Maximum Reverse Recovery Time (Note 1) T _J = 25°C	T _{RR}	150 250 500					ns
Maximum Junction Capacitance (Note 2)	CJ	45	35	25	20	15	pf
Typical Thermal Resistance (Note 3)	RØJA	50.0					.C\M
Operating and Storage Temperature Range	TJ, TSTG		-	65 to +17	' 5		С

NOTES:

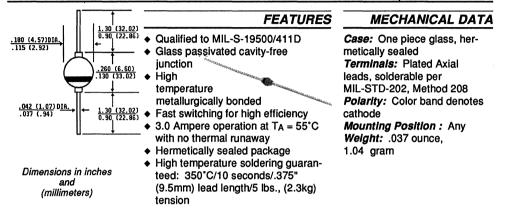

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = 25A

2. Measured at 1 MHz and appliede reverse voltage of 12 volts.

3. Thermal resistance from Junction to Ambient at .375"(9.5mm) lead lengths P.C.Board mounted.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX 1N4942 THRU 1N4948

FIG. 2 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS



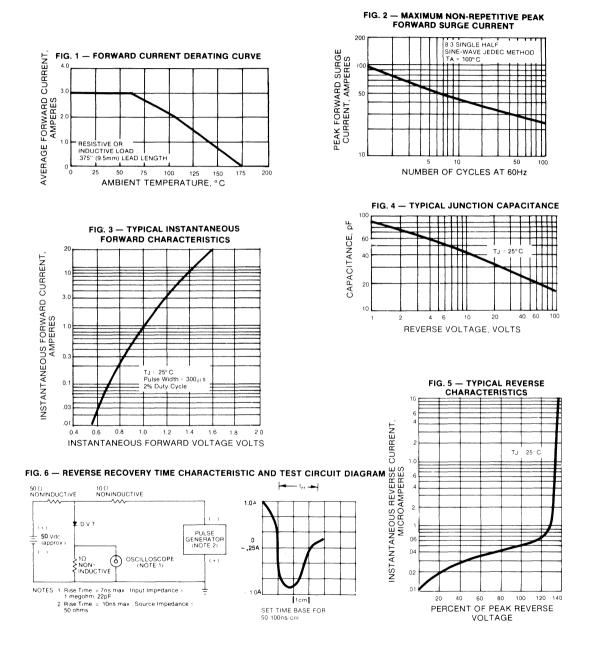
POWER SEMICONDUCTOR DIVISION

JAN AND JANTX 1N5415 THRU 1N5420

GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER VOLTAGE - 50 to 600 Volts CURRENT- 3.0 Amperes

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	JAN 1N5415	JAN 1N5416	JAN 1N5417	JAN1 1N5418	JAN 1N5419	JAN 1N5420	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	500	600	Volts
Minimum Reverse Breakdown Voltage at 100µA	VBR	55	110	220	440	550	660	Volts
Maximum Average Forward Recitified Current .375" (9.5mm) Lead Length at $T_A = 55$ °C	l(AV)	3.0						Amps
Peak Forward Surge Current, 8.3.ms single half sine-wave superimposed on rated load (JEDEC Method) at $T_A = 100^{\circ}C$	IFSM	80.0						Amps
Minimum Peak Reverse Power at 20 µs pw	Рвм			10	00			Watts
	VF	1.2 1.5 1.3						Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	l _R	1.0 20.0						μA
Maximum Junction Capacitance (Note 1)	CJ	550	430	250	165	140	120	pf
Maximum Reverse Recovery Time (Note 2)	TRR	150	150	150	150	250	400	ns
Maximum Thermal Resistance (Note 3)	RØJL		+	20	0.0			.CVM
Operating and Storage Temperature Range	TJ,TSTG			-65 to	+200			.с

NOTES :

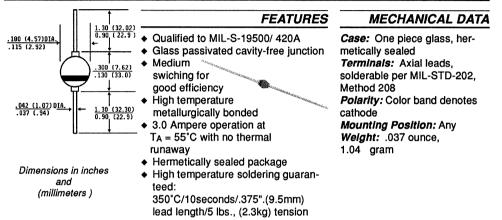
1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF = 1.0A, IR = 1.0A, Irr = .25A.

3. Thermal Resistance from Junction to Lead at .375",(9.5mm)lead lengths with both leads atached to heat sink.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX 1N5415 THRU 1N5420

GENERAL INSTRUMENT



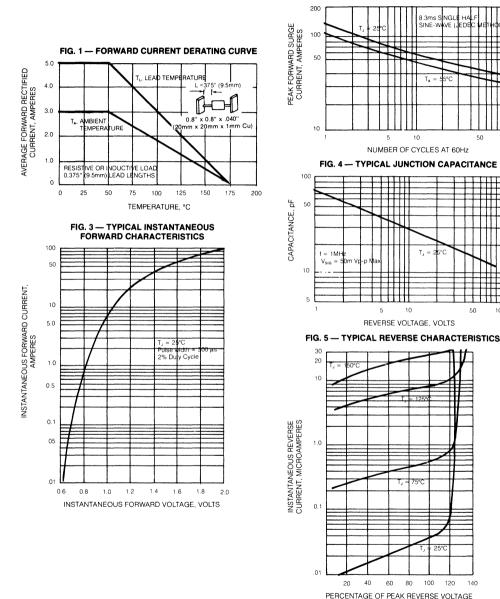
POWER SEMICONDUCTOR DIVISION

JAN AND JANTX 1N5550 THRU 1N5554

GLASS PASSIVATED JUNCTION MEDIUM SWITCHING RECTIFIER VOLTAGE - 200 to 1000 Volts CURRENT - 3.0 Amperes

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	JAN 1N5550	JAN 1N5551	JAN 1N5552	JAN 1N5553	JAN 1N5554	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
Minimum Reverse Breakdown Voltage at 50µA	VBR	240 480 660 880 1100					Volts
Maximum Average Forward Recitified Current .375" (9.5mm) Lead Length at $T_A = 55$ °C $T_L = 55$ °C	I(AV)			Amps			
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at T _A = 55°C	IFSM			Amps			
Maximum Instantaneous Forward $T_A = 25^{\circ}C$ Voltage at 9.0A $T_A = -55^{\circ}C$	VF	1.2 1.3 1.5					Volts
MaximumReverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR		μA				
Maximum Reverse Recovery Time (Note 1)	T _{RR}		μS				
Maximum Thermal Resistance (Note 2)	RØJ-L	22.0					·C/W
Operating Junction Temperature Range	Tj	-65 to +175					.c
Storage Ambient Temperature Range	TSTG			-65 to +	200		•C

NOTES:

1. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = .25A.

2. Thermal Resistance from Junction to Lead at .375", (9.5mm) lead lengths with both leads attached to heat sink.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX 1N5550 THRU 1N5554

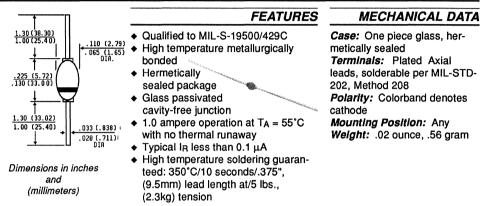
FIG. 2 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

Ť

100

TT

100


GENERAL INSTRUMENT

POWER SEMICONDUCTOR DIVISION

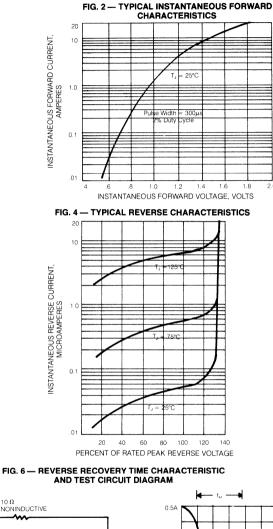
JAN AND JANTX 1N5615 THRU 1N5623

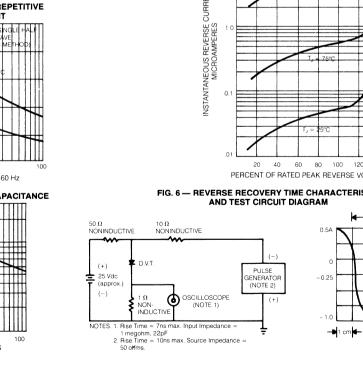
GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER VOLTAGE - 200 to 1000 Volts CURRENT - 1.0 Ampere

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz,resistive or inductive load. For capacitive load, derate current by 20%.

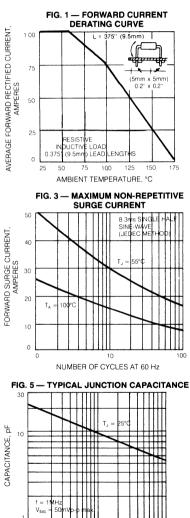
	SYMBOLS	JAN 1N5615	JAN 1N5617	JAN 1N5619	JAN 1N5621	JAN 1N5623	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
Minimum Reverse Breakdown Voltage at 50µA	VBR	220	440	660	880	1100	Volts
Maximum Average Forward Recitified Current .375" (9.5mm) Lead Length at $T_A = 55$ °C	l(AV)			1.0			Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at T _A = 100°C	IFSM			25.0			Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF			1.6			Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	I _R			0.5 25.0			μA
Maximum Reverse Recovery Time(Note 1)TJ = 25°C	T _{RR}	150	150	250	300	500	Ns
Maximum Junction Capacitance (Note 2)	CJ	45	35	25	20	15	pf
Maximum Thermal Resistance (Note 3)	al Resistance (Note 3) ReJL 38.0					.c\M	
Operating JunctionTemperature Range	T _J -65 to +175					.c	
Storage Ambient Temperature Range	TSTG		-	65 to +20	00		.c


NOTES:


1. Reverse Recovery Test Conditions: IF = 0.5 A, IR = 1.0A, Irr = 0.25A.

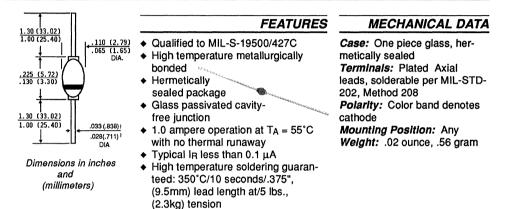
2. Measured at 1.0 MHz and applied reverse voltage of 12 Volts.

3. Thermal Resistance from Junction to lead at .375" (9.5mm) lead lengths P.C. Board mounted.


MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX 1N5615 THRU 1N5623

GENERAL INSTRUMENT

SET TIME BASE FOR 50/100ns/cm

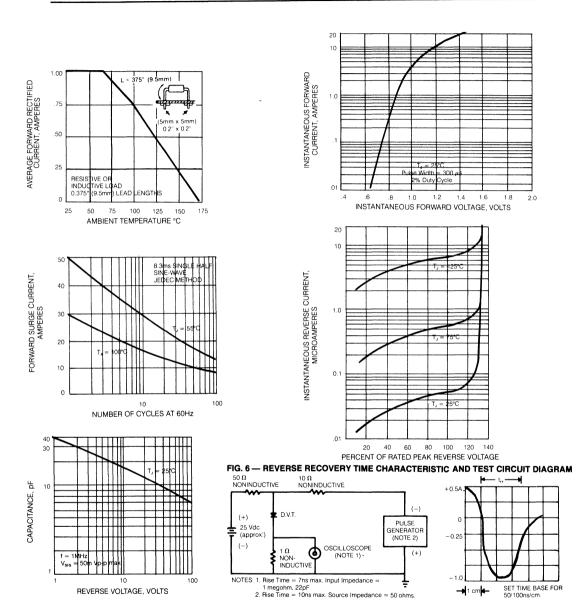

10 REVERSE VOLTAGE, VOLTS

JAN AND JANTX 1N5614 THRU 1N5622

GLASS PASSIVATED JUNCTION MEDIUM- SWITCHING RECTIFIER VOLTAGE - 200 to 1000 Volts CURRENT - 1.0 Ampere

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	JAN 1N5614	JAN 1N5616	JAN 1N5618	JAN 1N5620	JAN 1N5622	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
Minimum Reverse Breakdown Voltage at 50µA	VBR	220	440	660	880	1100	Volts
Maximum Average Forward Recitified Current .375" (9.5mm) Lead Length at $T_A = 55$ C	I(AV)			1.0			Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at T _A = 100°C	IFSM			30.0			Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF			1.3			Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR			0.5 25.0			μΑ
Maximum Reverse Recovery Time (Note 1)	T _{RR}			2.0			μs
Typical Junction Capacitance (Note 2)	CJ			15			pf
Maximum Thermal Resistance (Note 3)	RØJL			38.0			.c/M
Operating Junction Temperature Range	TJ		-	65 to +17	'5		.c
Storage Ambient Temperature Range	TSTG		-	65 to +20	0		.c

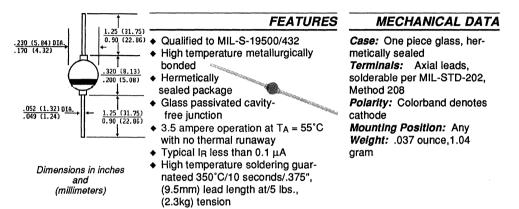
NOTES:

1. Reverse Recovery Test Conditions: IF = 0.5 A, IR = 1.0A, Irr = 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDC.

3. Thermal Resistance from Junction to lead at .375" (9.5mm) lead lengths P.C. Board mounted.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX 1N5614 THRU 1N5622



POWER SEMICONDUCTOR DIVISION

JAN AND JANTX 1N5624 THRU 1N5627

PASSIVATED JUNCTION SILICON RECTIFIER VOLTAGE - 50 to 800 Volts CURRENT - 3.5 Amperes

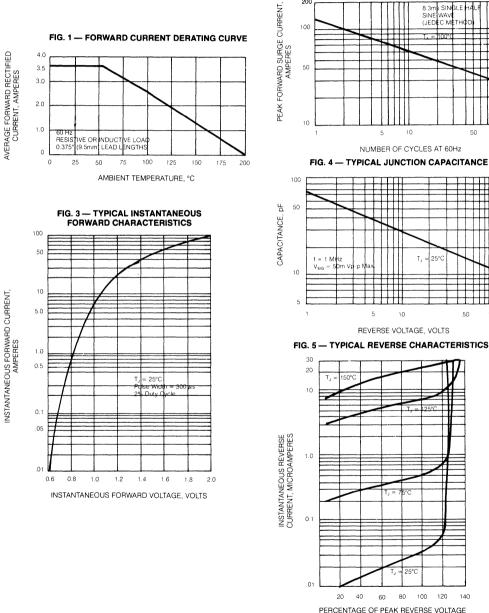
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	JAN 1N5624	JAN 1N5625	JAN 1N5626	JAN 1N5627	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	Volts
Minimum Reverse Breakdown Voltage at 50µA	VBR	240	460	660	880	Volts
Maximum Average Forward Recitified Current .375" (9.5mm) Lead Length at T _A = 55°C	I(AV)		3.	5		Amps
Peak Forward Surge Current, 8.3.ms single half sine-wave superimposed on rated load (JEDEC Method) at $T_A = 100^{\circ}C$	IFSM		12	5		Amps
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VF		1. 1.	-		Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR		1. 10	-		μA
Typical Junction Capacitance (Note 1)	CJ		40	.0		pf
Maximum Reverse Recovery Time (Note 2) TJ=25°C	TRR		5.	0		μs
Maximum Thermal Resistance (Note 3)	Røjl		18	.0		°C/W
Operating and Storage Temperature Range	Tj,Tstg		-65 to	+200		.c

NOTES:

1 Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.


2. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = 0.25A.

3. Thermal Resistance from Junction to Lead at .375", 9.5mm lead lengths, with both leads attached to heat sink.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX 1N5624 THRU 1N5627

200

FIG. 2 --- MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

50

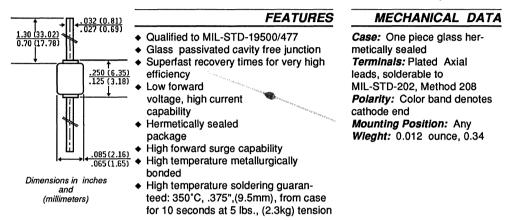
++

++ TT

100

100

GENER INSTRUME

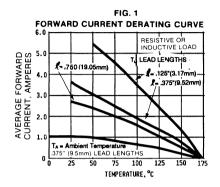

GENERA INSTRUMEN

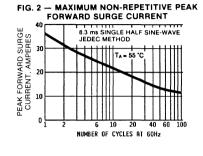
POWER SEMICONDUCTOR DIVISION

JAN, JANTX AND JANTXV 1N5802 THRU 1N5806

MINIATURE GLASS PASSIVATED FAST EFFICIENT SILICON RECTIFIER VOLTAGE RANGE - 50 to 150 Volts CURRENT- 1.0 Ampere

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

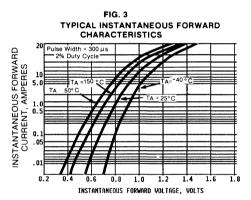
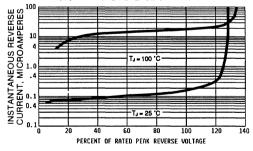
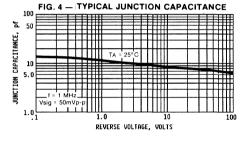

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%

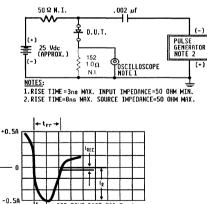

or capacitive load, derate current by 20%	SYMBOLS	JAN1N5802	JAN 1N5804	JAN1N5806	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	Volts
Maximum RMS Voltage	VRMS	35	70	105	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	Volts
Minimum Reverse Breakdown Voltage at 100µA	VBR	60	110	160	Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I(AV)		1.0 2.5		Amps
Peak Forward Surge Current, 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method) at $T_A = 55$ °C	IFSM		35.0		Amps
Maximum Instantaneous Forward 1.0A T _A = 25°C Voltage at 2.5A T _A = 25°C 1.0A T _A = 100°C 1.0A T _A = -65°C	Vfm			Volts	
Maximum DC Reverse Current T _A = 25°C at Rated DC Blocking Voltage T _A = 100°C	l _R IR		1.0 50.0		μΑ μΑ
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	TRR		25.0		ns
Maximum Forward Recovery Time at 250 mA	TFR		15.0		ns
Maximum Forward Voltage Recovery at 250 mA	VFR		2.2		Volts
Maximum Junction Capacitance (Note 2)	CJ		25.0		pf
Maximum Thermal Resistance (Note 3)	RØJL		36.0		•C/W
Operating Junction Temperature Range	Tj		-65 to +175		.c
Storage Ambient Temperature Range	Tstg	1	-65 to +200		.c

NOTES:

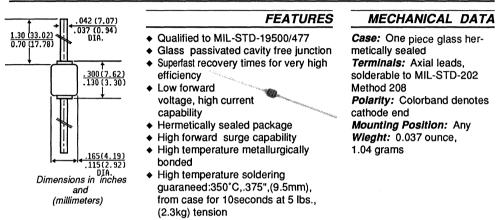
Reverse Recovery Test Condition: I_F = 0.5A, I_R = 0.5A, I_{RR} = 0.05A, di/dt = 65 A/µs.
 Measured at 1 MH_z and applied reverse voltage of 10 volts.
 Thermal Resistance from Junction to Lead at .375", (9.5mm) lead lengths, P.C. Board mounted.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN, JANTX AND JANTXV 1N5802 THRU 1N5806


FIG. 5-TYPICAL REVERSE CHARACTERISTICS

-> 1cm - SET TIME BASE FOR 5ns/cm



POWER SEMICONDUCTOR DIVISION

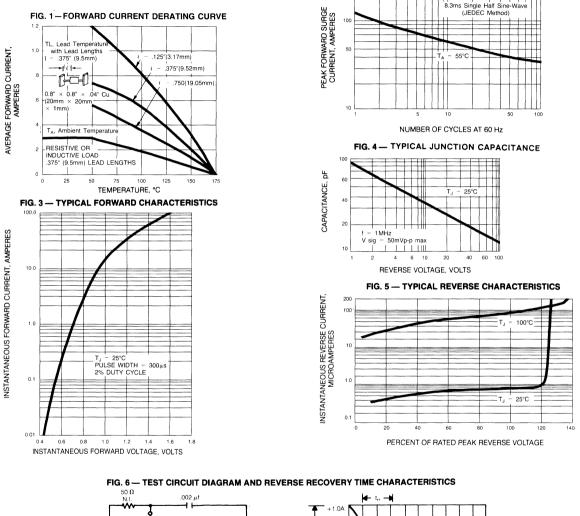
JAN, JANTX AND JANTXV 1N5807 THRU 1N5811

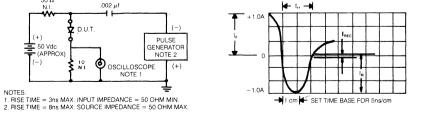
GLASS PASSIVATED FAST EFFICIENT SILICON RECTIFIERS VOLTAGE RANGE- 50 to 150 Volts CURRENT- 6.0 Amperes

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%

	SYMBOL	JAN 1N5807	JAN 1N5809	JAN 1N5811	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	Volts
Maximum RMS Voltage	VRMS	35	70	105	Volts
Maximum DC Blocking Voltage	VDC	50	70	150	Volts
Minimum Reverse Breakdown Voltage at 100µA	VBR	60	110	160	Volts
Maximum Average Forward Recitified Current $T_A = 55^{\circ}C$.375" (9.5mm) Lead Length at $T_L = 75^{\circ}C$	I(AV)		3.0 6.0		Amps
Peak Forward Surge Current, 8.3.ms single half sine-wave superimposed on rated load (JEDEC Method) at $T_A = 55$ °C	IFSM		125		Amps
Maximum Instantaneous Forward 4.0A T _A = 25°C Voltage at 6.0A T _A = 25°C 4.0A T _A = 100°C 4.0A T _A = -65°C	VF		0.875 0.925 0.800 1.075		Volts
Maximum DC Reverse Current T _A = 25°C at Rated DC Blocking Voltage T _A = 100°C	l _R		5.0 150		μA
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	TRR		30.0		ns
Maximum Forward Recovery Time at 500 mA	TFR		15.0		ns
Maximum Forward Voltage Recovery at 500 mA	VFR		2.2		Volts
Maximum Junction Capacitance (Note 2)	CJ		60.0		pf
Maximum Thermal Resistance (Note 3)	Røjl		22.0		.c/M
Operating Junction Temperature Range	TJ		-65 to +175		.c
Storage Ambient Temperature Range	Тята		-65 to +200		.c

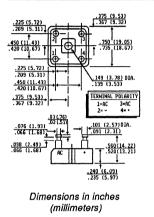

NOTES:


Reverse Recovery Test Condition: I_F = 1.0A, I_R = 1.0A, I_{RR} = 0.1A, di/dt = 100 A/μs.
 Measured at 1 MHz and applied reverse voltage of 10 volts.
 Thermal Resistance from Junction to Lead at .375", (9.5mm)lead lengths with both leads attached to heat sink..

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN, JANTX AND JANTXV 1N5807 THRU 1N5811 SERIES

200

FIG. 2 — MAXIMUM NON-REPETITIVE SURGE CURRENT



POWER SEMICONDUCTOR DIVISION

JAN AND JANTX M19500 /469-01 THRU /469-04

HIGH POWER SINGLE PHASE SILICON BRIDGE RECTIFIER VOLTAGE - 200 to 800 Volts CURRENT - 10 Amperes

FEATURES

- Qualified to MIL-S-19500/469
 Electrically isolated metal case for maximum heat dissipation
- Hermetically sealed internal diodes
- Low forward
- voltage drop
 - All external surfaces corrosion resistant
- Typical I_R less that 0.1 μ A
- High temperature soldering guaranteed 250°C/10 seconds at 5lbs.,(2.3kg) tension

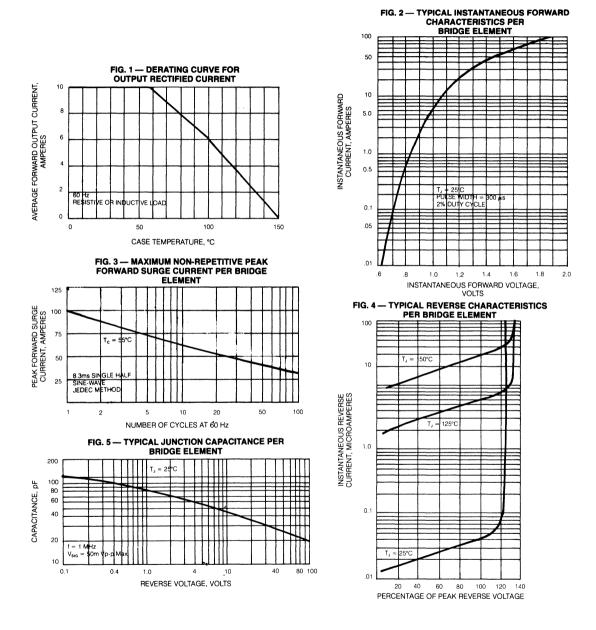
Terminals: Tinned plated, solderable per MIL-STD-202, Method 208 *Case:* Metal, electrically iso-

MECHANICAL DATA

lated *Mounting Position:* Any *Weight:* 1.0 ounce, 28.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

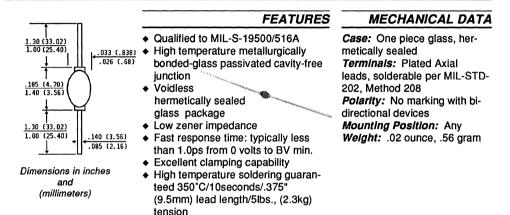

	SYMBOLS	JAN 469-01	JAN 469-02	JAN 469-03	JAN 469-04	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	Volts
Minimum Reverse Breakdown Voltage at 50µA	VBR	240	460	660	880	Volts
Maximum Average Forward Recitified Current .375" (9.5mm) Lead Length at $T_C = 55^{\circ}C$	I(AV)		10	0.0		Amps
Peak Forward Surge Current, 8.3.ms single sine-wave superimposed on rated load (JEDEC Method) at $T_C = 55^{\circ}C$ per leg	IFSM		1(00		Amps
Maximum Instantaneous Forward $T_C = 25^{\circ}C$ Voltage at 15.7A per leg $T_C = -65^{\circ}C$	VF			35 50		Volts
Maximum DC Reverse Current $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$	IR		-	.0 25		μA
Typical Junction Capacitance (Note 1)	CJ		6	0		pf
Maximum Reverse Recovery Time(Note 2)TJ=25°C	TRR		2	.0		μs
Dielectric With stand voltage (Note 3)			28	00		Volts
Maximum Junction Temperature TJ	TJ		+1	75		.c
Operating and Storage Temperature Range	Tc,Tstg		-65 to	+150		.c

NOTES: 1 Measured at 1.0 MHz and appliced reverse voltage of 4.0 VDc.

2. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = 0.25A.

3. Measured between metal case to terminal with a 10 µ Å maximum leakage limit.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX M19500 /469-01 THRU /469-04



POWER SEMICONDUCTOR DIVISION

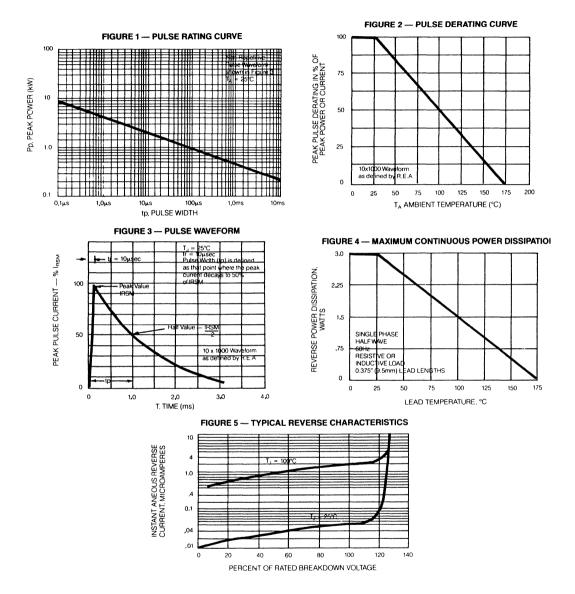
JAN AND JANTX 1N6113 THRU 1N6130

BI-DIRECTIONAL TRANSIENT VOLTAGE SUPPRESSORS VOLTAGE - 20 to 100 POWER - 500 Watts Peak

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave 60 Hz, resistive or inductive load.

		OPERATIN	G AND STO	ORAGE TEN	PERATATU	RE -65 to -	+175°C			
Туре	Breakdown Voltage @ It Min (Note 1)	Max DC Power Dissipation TL = 75°C (Note 2)	Test Current	Maximum Peak Surge Voitage @1ms	Maximum Peak Surge Current @1ms (Note 3)	Maximum Leakage current @T _A =			Maximum Tempuature Coefficient of VBR	Maximum Peak surge at 1ms
	(11018-1)	(11018 2)			(14018-3)	25'C		150°C		
	VBR	PD	lt	VSM	Ism	i _R	VR	l _R		PsM
	Voits	WATTS	mA	V _{РК}	Арк	μ A	Volts	μA	%/°C	WATTS
J and JTX, JV1N6113	18.0	3.0	65	29.0	17.2	1.0	15.2	100	.085	500
J and JTX, JV1N6114	19.8	3.0	50	31.9	15.7	1.0	16.7	100	.085	500
J and JTX, JV1N6115	21.6	3.0	50	34.8	14.4	1.0	18.2	100	.090	500
J and JTX, JV1N6116	24.3	3.0	50	39.2	12.8	1.0	20.6	100	.090	500
J and JTX, JV1N6117	27.0	3.0	40	43.6	11.5	1.0	22.8	100	.090	500
J and JTX, JV1N6118	29.7	3.0	40	47.9	10.4	1.0	25.1	100	.095	500
J and JTX, JV1N6119	32.4	3.0	30	52.3	9.6	1.0	27.4	100	.095	500
J and JTX, JV1N6120	35.1	3.0	30	56.2	8.9	1.0	29.7	100	.095	500
J and JTX, JV1N6121	38.7	3.0	30	62.0	8.1	1.0	32.7	100	.095	500
J and JTX, JV1N6122	42.3	3.0	25	67.7	7.4	1.0	35.8	100	.095	500
J and JTX, JV1N6123	45.9	3.0	25	73.5	6.8	1.0	38.8	100	.095	500
J and JTX, JV1N6124	50.4	3.0	20	80.7	6.2	1.0	42.6	100	.095	500
J and JTX, JV1N6125	55.8	3.0	20	89.3	5.6	1.0	47.1	100	100	500
J and JTX, JV1N6126	61.2	3.0	20	98.0	5.1	1.0	51.7	100	100	500
J and JTX, JV1N6127	67.5	3.0	20	108.1	4.6	1.0	56.0	100	100	500
J and JTX, JV1N6128	73.8	3.0	15	118.1	4.2	1.0	62.2	100	100	500
J and JTX, JV1N6129	81.9	3.0	15	131.1	3.8	1.0	69.2	100	100	500
J and JTX, JV1N6130	90.0	3.0	12	144.1	3.5	1.0	76.0	100	100	500

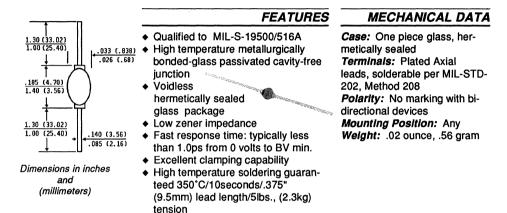

NOTES:

1. Breakdown Voltage Tolerance with no Suffix is + / -10%.

2. Lead Lengths of .375" (9.5mm).

3. Surge Current waveform per Figure 3 and Derate per figure 2.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX 1N6113 THRU 1N6130



POWER SEMICONDUCTOR DIVISION

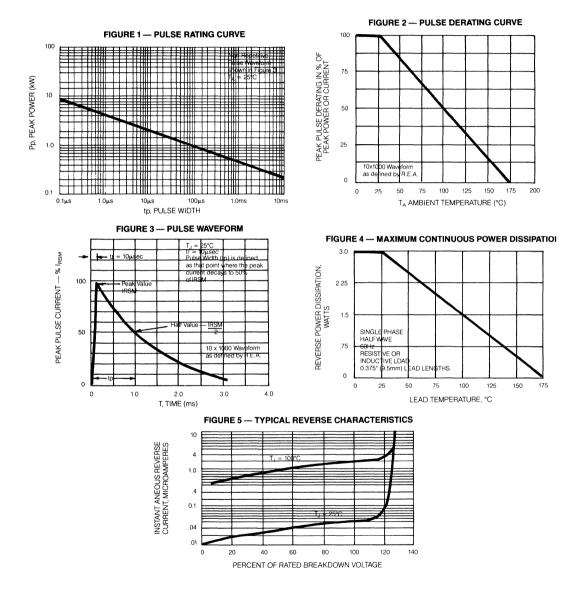
JAN AND JANTX 1N6113A THRU 1N6130A

BI-DIRECTIONAL TRANSIENT VOLTAGE SUPPRESSORS VOLTAGE - 20 to 100 POWER - 500 Watts Peak

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave 60 Hz, resistive or inductive load.

Туре	Breakdown Voltage @It Min (Note 1)	Max DC Power Dissipation TL = 75°C (Note 2)	Test Current	Maximum Peak Surge Voltage @1ms	Test Peak Surge Peak Surge Leakage Current Voltage Current current @1ms @1ms @T∡= (Note 3)				Maximum Temperature Coeffiicient of VBR	Maximum Peak surge at 1ms
	(Note I)	(NOLE 2)			(NOLE 3)	25°C		150°C		
	VBR	PD	lt	VsM	lsm	l _R	VR	l _R		PSM
	Volts	WATTS	mA	VPK	Арк	μ A	Volts	μA	%/C	WATTS
J and JTX, JV1N6113A	19.0	3.0	65	27.7	18.0	1.0	15.2	100	.085	500
J and JTX, JV1N6114A	20.9	3.0	50	30.5	16.4	1.0	16.7	100	.085	500
J and JTX, JV1N6115A	22.8	3.0	50	33.3	15.0	1.0	18.2	100	.090	500
J and JTX, JV1N6116A	25.7	3.0	50	37.4	13.4	1.0	20.6	100	.090	500
J and JTX, JV1N6117A	28.5	3.0	40	41.6	12.0	1.0	22.8	100	.090	500
J and JTX, JV1N6118A	31.4	3.0	40	45.7	10.9	1.0	25.1	100	.095	500
J and JTX, JV1N6119A	34.2	3.0	30	49.9	10.0	1.0	27.4	100	.095	500
J and JTX, JV1N6120A	37.1	3.0	30	53.6	9.3	1.0	29.7	100	.095	500
J and JTX, JV1N6121A	40.9	3.0	30	59.1	8.5	1.0	32.7	100	.095	500
J and JTX, JV1N6122A	44.7	3.0	25	64.6	7.7	1.0	35.8	100	.095	500
J and JTX, JV1N6123A	48.5	3.0	25	70.1	7.1	1.0	38.8	100	.095	500
J and JTX, JV1N6124A	53.2	3.0	20	77.0	6.5	1.0	42.6	100	.095	500
J and JTX, JV1N6125A	58.9	3.0	20	85.3	5.9	1.0	47.1	100	100	500
J and JTX, JV1N6126A	64.6	3.0	20	97.1	5.1	1.0	51.7	100	100	500
J and JTX, JV1N6127A	71.3	3.0	20	103.1	4.8	1.0	56.0	100	100	500
J and JTX, JV1N6128A	77.9	3.0	15	112.8	4.4	1.0	62.2	100	100	500
J and JTX, JV1N6129A	86.5	3.0	15	125.1	4.0	1.0	69.2	100	100	500
J and JTX, JV1N6130A	95.0	3.0	12	137.6	3.6	1.0	76.0	100	100	500


NOTES:

1. Breakdown Voltage Tolerance with Suffix A is + / -5%.

2. Lead Lengths of .375" (9.5mm).

3. Surge Current waveform per Figure 3 and Derate per figure 2.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES JAN AND JANTX 1N6113A THRU 1N6130A

SCHOTTKY RECTIFIERS 0.6 TO 40 AMPERES

LOW CURRENT AXIAL SCHOTTKY RECTIFIERS

ΤΥΡΕ	SB020 thru SB040	SB120 thru SB1100	1N5817 thru 1N5819	SB320 thru SB3100	1N5820 1N5822	SB520 thru SB5100
PACKAGE	MPG06	DO-41	DO-41	DO-201 AD	DO-201AD	DO-201AD
IO(A)	0.6	1.0	1.0	3.0	3.0	5.0
VR=20(V)	SB020	SB120	1N5817	SB320	1N5820	SB520
VR-30(V)	SB030	SB130	1N5818	SB330	1N5821	SB530
VR-40(V)	SB040	SB140	1N5819	SB340	1N5822	SB540
VR=50(V)		SB150		SB350		SB550
VR=60(V)		SB160		SB360		SB560
VR=90(V)		SB190		SB390		SB590
VR=100(V)		SB1100		SB3100		SB5100

MEDIUM CURRENT SCHOTTKY RECTIFIERS

SINGLE RECTIFERS

TYPE	SBLF530 thru SBLF540	SBL530 thru SBL540	MBRF735 thru MBRF760	MBR735 thru MBR760	SBLF1030 thru SBLF1040	SBL1030 thru SBL1040	MBRF1035 thru MBRF10100	MBR1035 thru MBR10100	MBRF1635 thru MBRF1660	MBR1635 thru MBR1660
PACKAGE	ITO-220	TO-220	ITO-220	TO-220	ITO-220	TO-220	ITO-220	TO-220	ITO-220	TO-220
BARRIER HEIGHT	LOW	LOW	HIGH	HIGH	LOW	LOW	нідн	HIGH	HIGH	HIGH
IO(A)	5.0	5.0	7.5	7.5	10.0	10.0	10.0	10.0	16.0	16.0
VR=30(V)	SBLF530	SBL530			SBLF1030	SBL1030				
VR=35(V)			MBRF735	MBR735			MBRF1035	MBR1035	MBRF1635	MBR1635
VR=40(V)	SBLF540	SBL540			SBLF1040	SBL1040				
VR=45(V)			MBRF745	MBR745			MBRF1045	MBR1045	MBRF1645	MBR1645
VR=(50(V)			MBRF750	MBR750			MBRF1050	MBR1050	MBRF1650	MBR1650
VR-60(V)			MBRF760	MBR760			MBRF1060	MBR1060	MBRF1660	MBR1660
VR=90(V)							MBRF1090	MBR1090		
VR=100(V)							MBRF10100	MBR10100		

-56-

MEDIUM CURRENT SCHOTTKY RECTIFIERS

DUAL RECTIFIERS

TYPE	SBLF530CT thru SBLF540CT	SBLF1030CT thru SBLF1040CT	SBL1030CT thru SBL1040CT	MBRF1535CT thru MBRF1560CT	MBR1535CT thru MBR1560CT	SBLF1630CT thru SBLF1640CT	SBL1630 thru SBL1640CT	MBRF2035CT thru MBRF20100CT	thru	MBRF2535CT thru MBRF2560CT	MBR2535CT thru MBR2580CT
PACKAGE	ITO-220CT	ITO-220CT	TO-220CT	ITO-220CT	TO-220CT	ITO-220CT	TO-220CT	ITO-220CT	TO-220CT	ITO-220CT	TO-220CT
BARRIER HEIGHT	LOW	LOW	LOW	HIGH	HIGH	LOW	LOW	HIGH	HIGH	HIGH	HIGH
IO(A)	5.0	10.0	10.0	15.0	15.0	16.0	16.0	20.0	20.0	30.0	30.0
VR=30(V)	SBLF530CT	SBLF1030CT	SBL1030CT			SBLF1630CT	SBL1630				
VR=35(V)				MBRF1535CT	MBR1535CT			MBRF2035CT	MBR2035CT	MBRF2535CT	MBR2535CT
VR=40(V)	SBLF540CT	SBF1040CT	SBL1040CT			SBLF1640CT	SBL1640CT				
VR=45(V)				MBRF1545CT	MBR1545CT			MBRF2045CT	MBR2045CT	MBRF2545CT	MBR2545CT
VR=50(V)				MBRF1550CT	MBR1550CT			MBRF2050CT	MBR2050CT	MBRF2550CT	MBR2550CT
VR=60(V)				MBRF1560CT	MBR1560CT			MBRF2060CT	MBR2060CT	MBRF2560	MBR2560CT
VR=90(V)								MBRF2090CT	MBR2090CT		
VR=100(V)								MBRF20100CT	MBR20100CT		

MEDIUM CURRENT SCHOTTKY RECTIFIERS

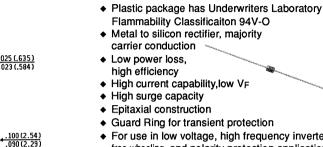
DUAL RECTIFIERS CONT.

TYPE	SBLF2030PT thru SBLF2040PT	SBL2030PT thru SBL2040PT	SBLF3030PT thru SBLF3040PT	SBL3030PT thru SBL3040PT	MBRF3035PT thru MBRF3060PT	MBR3035PT thru MBR3060PT	SD241P	MBRF4035PT thru MBRF4060PT	MBR4035PT thru MBR4060PT
PACKAGE	ITO-3P	TO-3P	ITO-3P	TO-3P	ITO-3P	TO-3P	TO-3P	ITO-3P	TO-3P
BARRIER HEIGHT	LOW	LOW	LOW	LOW	HIGH	нюн	нідн	HIGH	HIGH
IO(A)	20.0	20.0	30.0	30.0	30.0	30.0	30.0	40.0	40.0
VR=30(V)	SBLF2030PT	SBL2030PT	SBLF3030PT	SBL3030PT					
VR=35(V)					MBRF3035PT	MBR3035PT		MBRF4035PT	MBR4035PT
VR=40(V)	SBLF2040PT	SBL2040PT	SBLF3040PT	SBL3040PT					
VR=45V)					MBRF3045PT	MBR3045PT	SD241P	MBRF4045PT	MBR4045PT
VR=50(V)					MBRF3050PT	MBR3050PT		MBRF4050PT	MBR4050PT
VR=60(V)					MBRF3060PT	MBR3060PT		MBRF4060PT	MBR4060PT

-58-

AXIAL PLASTIC SCHOTTKY RECTIFIERS

.6 TO 5.0 AMPERES



SB020 THRU SB040

MINIATURE SCHOTTKY BARRIER RECTIFIERS

VOLTAGE - 20 - 40 Volts CURRENT - 0.6 Amperes

FEATURES

- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications.
- High temperature soldering guaraneed: 250 °C/10 seconds/.375" (9.5 mm) lead lengths at 5 lbs., (2.3 kg) tension
- Dimensions in inches and millimeters

MPG06

1.0 (25.4)

<u>.125 (3.18)</u> .115 (2.92)

(25.4) 1.0 MIN.

MTN.

025 C

MECHANICAL DATA

Case: Molded Plastic Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Band denotes cathode Mounting Position: Any Weight: 0.0064 ounces, .181 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%,

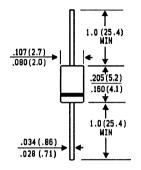
	SYMBOLS	SB020	SB030	SB040	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	Volts
Maximum RMS Voltage	VRMS	14	21	28	Volts
Maximum DC Blocking Voltage	VDC	20	30	40	Volts
Maximum Average Forward Rectified Current .375", 9.5mm Lead Length T _A = 60°C	l(AV)		0.6		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T _L = 70°C	IFSM	91291.01314.01 × 2014.044	20		Amps
Maximum Forward Voltage at .6A	VF	.55			Volts
Maximum Average Reverse Current at Peak Reverse Voltage TA = 25°C TA = 100°C	IR IR		0.5 10		mA mA
Typical Thermal Resistance (Note 1)	Røja		65.0		.c/w
Storage and Operating Temperature Range	TJ,TSTG	-65 to +125			.c

NOTES:

1. Thermal Resistance Junction to Ambient Vertical PC Board Mounting, 0.5", 1.27mm Lead Length.

Measured at 1 MHz and applied reverse voltage of 4.0 volts.

RATINGS AND CHARACTERISTIC CURVES SB020 THRU SB040



1N5817 THRU 1N5819

HIGH CURRENT SCHOTTKY BARRIER RECTIFIERS VOLTAGE - 20 - 40 Volts CURRENT - 1.0 Amperes

FEATURES

Dimensions in inches and millimeters

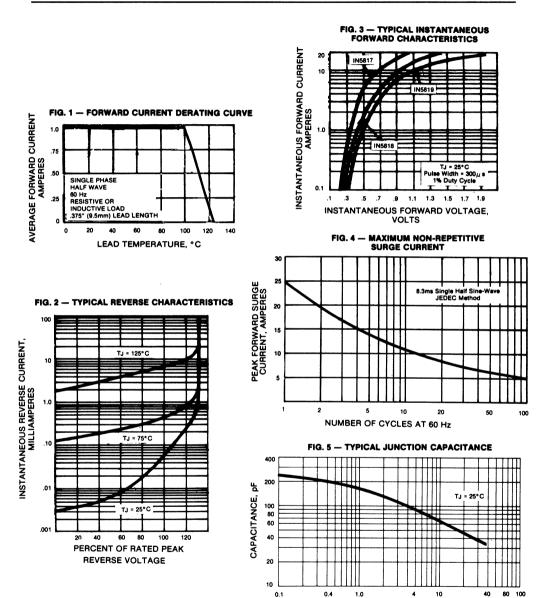
- Low cost
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- Guard Ring for transient protection
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications.
- High temperature soldering guaranteed: 250
 °C/10 seconds/.375" (9.5 mm) lead lengths at 5 lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Molded Plastic *Terminals:* Axial leads, solderable per MIL-STD-202, Method 208 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.012 ounces, .34 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

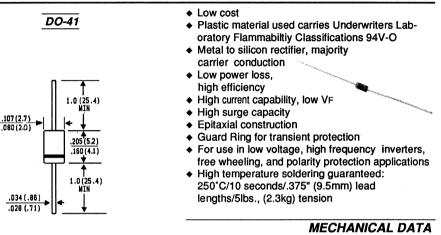

	SYMBOLS	1N5817	1N5818	1N5819	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	Volts
Maximum RMS Voltage	VRMS	14	21	28	Volts
Maximum DC Blocking Voltage	VDC	20	30	40	Volts
*Maximum Average Forward Rectified Current .375", 9.5mm Lead Length T _L = 90°C	l(AV)		1.0	• • • • • • • • • • • • • •	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T _L = 70°C	IFSM		25		Amps
Maximum Forward Voltage at 1.0A	VF	.45	.55	.60	Volts
Maximum Forward Voltage at 3.1A	VF	.75	.875	90	Volts
*Maximum Average Reverse Current at Peak Reverse Voltage TA = 25°C TA = 100°C	IR IR		mA mA		
Typical Thermal Resistance (Note 1)	Røja	80			.c/M
Typical Junction Capacitance (Note 2)	CJ	110			pf
*Storage and Operating Temperature Range	TJ,TSTG		·c		

NOTES:

1. Thermal Resistance Junction to Ambient Vertical PC Board Mounting, 0.5", 1.27mm Lead Length.

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

*JEDEC registered values


RATINGS AND CHARACTERISTIC CURVES 1N5817 THRU 1N5819

REVERSE VOLTAGE, VOLTS

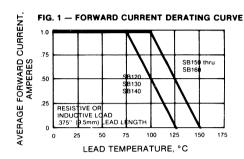
SB120 THRU SB160

MINIATURE SCHOTTKY BARRIER RECTIFIER VOLTAGE RANGE - 20 to 60 Volts CURRENT - 1.0 Ampere

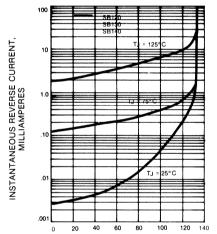
FEATURES

Dimensions in inches and (millimeters) Case: Molded Plastic Terminals: Axial leads, solderable per MIL-STD- 202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounces, .34 gram

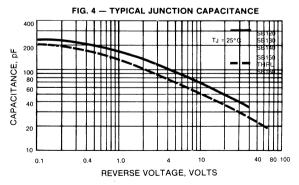
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

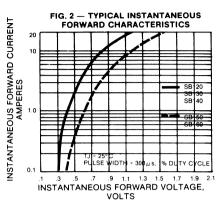

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

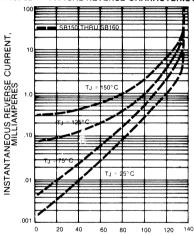
	SYMBOLS	SB120	SB130	SB140	SB150	SB160	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	50	60	Volts
Maximum RMS Voltage	VRMS	14	21	28	35	42	Volts
Maximum DC Blocking Voltage	VDC	20	30	40	50	60	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Length See Fig. 1	I(AV)	1.0					Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			40.0			Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF	.50 .70				0	Volts
Maximum Average Reverse Current at Rated DC Blocking Voltage TJ= 25°C TJ = 100°C	I _R I _R	0.5					mA mA
Maximum Thermal Resistance (Note 1)	Røjl	15					.c/M
Operating Temperature Range	TJ	-65 to +125 -65 to +150			+150	.c	
Storage Temperature Range	TSTG	-65 to +150					.c


NOTES:

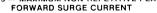
1. Thermal Resistance Junction to Lead Vertical PC Board Mounting .375" (9.5 mm) Lead Lengths.

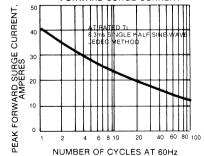

RATINGS AND CHARACTERISTIC CURVES SB120 THRU SB160



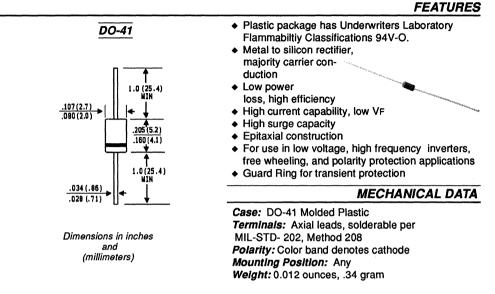


PERCENT OF RATED PEAK REVERSE VOLTAGE





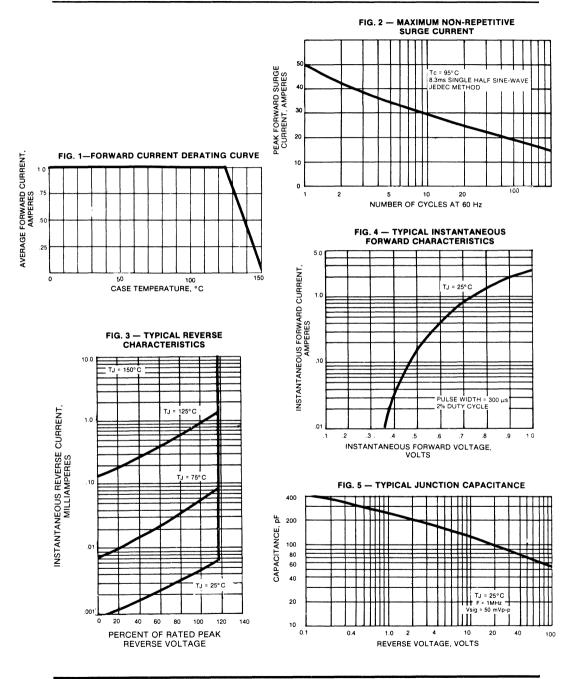
PERCENT OF RATED PEAK REVERSE VOLTAGE FIG. 5 — MAXIMUM NON-REPETITIVE PEAK



SB190 AND SB1100

MINIATUSRE SCHOTTKY BARRIER RECTIFIER VOLTAGE RANGE -90 and 100 Volts CURRENT -1.0 Amperes

VOLIAGE RANGE -90 and 100 voits CORRENT -1.0 Amperes

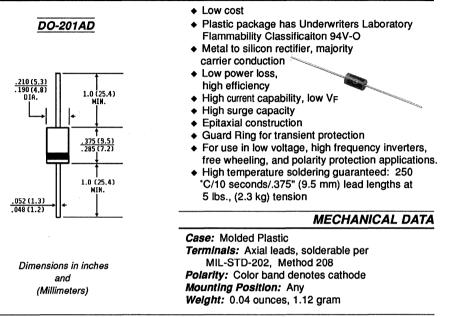


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	SB190	SB1100	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	90	100	Volts
Working Peak Reverse Voltage	VRWM	64	71	Volts
DC Blocking Voltage	VDC	90	100	Volts
Maximum Average Forward Rectified Current at T_{C} = 135°C	l(AV)	1.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	Ę	50	Amps
Peak Repetitive Reverse Surge Current (2.0us, 1KHz)	IRSM	1.0		Amps
Voltage Rate of Change, dv/dt (rated VR)	V/µs	10		V/µs
Maximum Forward Voltage (Note 1) I _F = 1A, T _L = 25°C I _F = 1A, T _L = 100°C	VF	-	.79 .69	Volts
Maximum Reverse Current at Peak Reverse Voltage $T_C = 100^{\circ}C$ (Note 1) Peak Reverse Voltage $T_L = 25^{\circ}C$	l _R IB	5		mA mA
Maximum Thermal Resistance, Junction to Lead	Rejl		15	.cw
Maximum Operating Junction Temperature	Tc	-65 t	o +150	.c
Maximum Storage Temperature	T _{STG}	-65 t	o +175	.c

NOTES: 1. Pulse Test Pulse Width 300 µs, Duty Cycle 2%. 2. 2.0us, 1.0KHz.



RATINGS AND CHARACTERISTIC CURVES SB190 AND SB1100

1N5820 THRU 1N5822

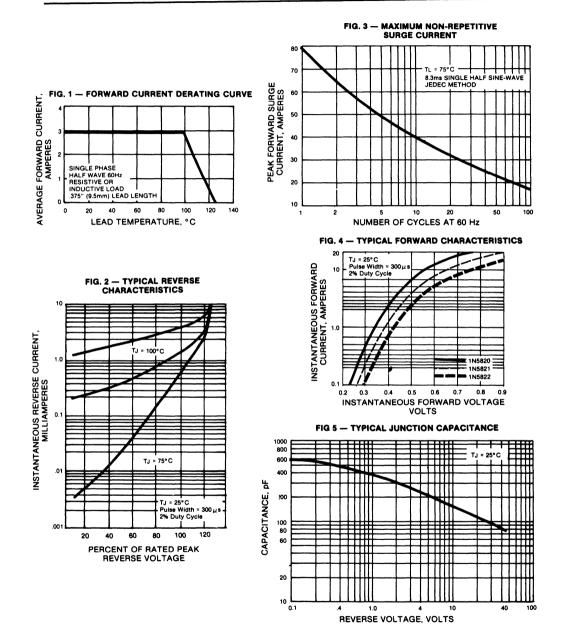
HIGH CURRENT SCHOTTKY BARRIER RECTIFIERS VOLTAGE - 20 to 40 Volts CURRENT - 3.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTIS

Ratings at 25 C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.


	SYMBOLS	1N5820	1N5821	1N5822	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	Volts
Maximum RMS Voltage	VRMS	14	21	28	Volts
Maximum DC Blocking Voltage	VDC	20	30	40	Volts
*Maximum Average Forward Rectified Current .375", 9.5mm Lead Length T _L = 95°C	l(AV)		3.0		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) $T_L = 75^{\circ}C$	IFSM		80		Amps
Maximum Forward Voltage at 3.0 (Note 1)	VF	.475	.500	.525	Volts
Maximum Forward Voltage at 9.4 (Note 1)	VF	.850	.900	.950	Volts
*Maximum Average Reverse Current at Peak Reverse Voltage TA = 25°C (Note 1) TA = 100°C Typical Thermal Resistance (Note 2)	I _R I _R RØJL		2.0 20.0 20		mA mA °C/W
*Storage and Operating Temperature Range	TJ,TSTG		-65 to +125	5	.c

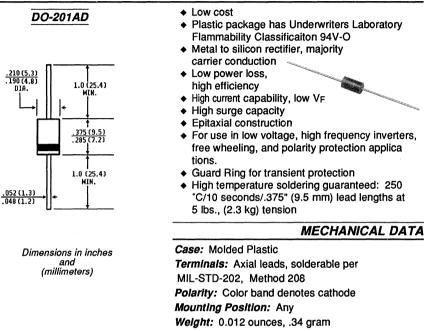
NOTES:

1. Measured at Pulse Width 300µ's. Duty Cycle 2%

2. Thermal Resistance Junction to Lead Vertical PC Board Mounting, .375" (9.5mm) Lead Lengths.

*JEDEC registered values

RATINGS AND CHARACTERISTIC CURVES 1N5820 THRU 1N5822


SB320 THRU SB360

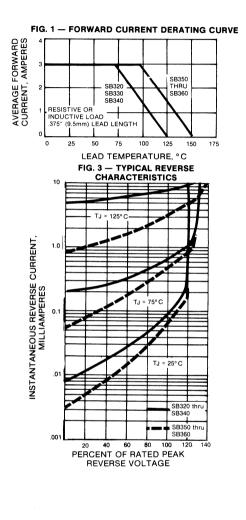
HIGH CURRENT SCHOTTKY BARRIER RECTIFIERS

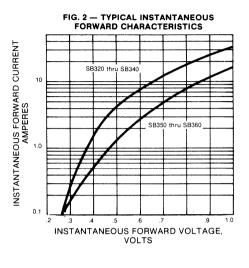
VOLTAGE - 20 to 60 Volts

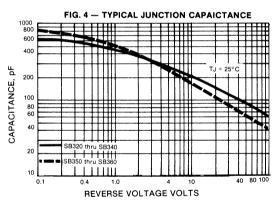
CURRENT - 3.0 Amperes

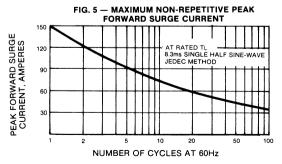
FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

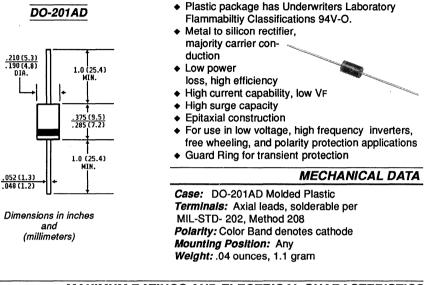

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	S SB320	SB330	SB340	SB350	SB360	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	50	60	Volts
Maximum RMS Voltage	VRMS	14	21	28	35	42	Volts
Maximum DC Blocking Voltage	VDC	20	30	40	50	60	Volts
Maximum Average Forward Rectified Current .375", 9.5mm Lead Length	l(AV)			3.0			Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			80			Amps
Maximum Forward Voltage at 3.0A	VF	.5	0		.7	4	Volts
Maximum Average Reverse Current at Peak Reverse Voltage TA = 25°C TA = 100°C	lR IR			0.5 20.0			mA mA
Maximum Thermal Resistance (Note 1)	Rejl	2	0		1	0	.c\M
Operating Temperature Range	TJ	-65 to	+125		-65 to	+150	.c
Storage Temperature Range	Тѕтс		-	65 to +15	50		·c


NOTES:


1. Thermal Resistance Junction to Lead Vertical PC Board Mounting, .375" (9.5 mm)Lead Length.

RATINGS AND CHARACTERISITC CURVES SB320 THRU SB360

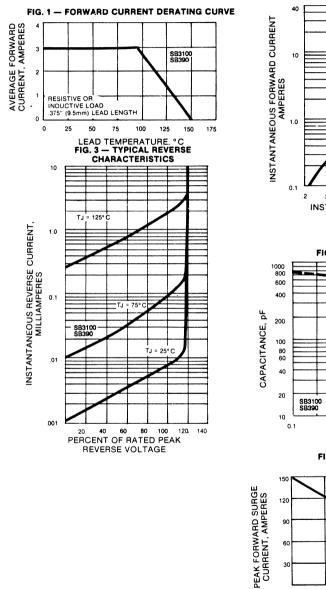


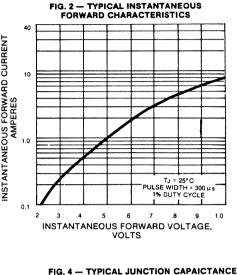
SB390 AND SB3100

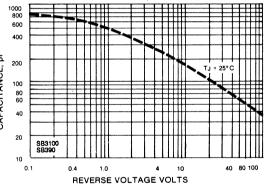
SCHOTTKY RECTIFIER

VOLTAGE RANGE -90 and 100 Volts CURRENT -3.0 Amperes

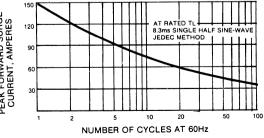
FEATURES


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


visitive or industive land. For expective land, donnte surrent by 200/


	SYMBOLS	SB390	SB3100	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	90	100	Volts
Maximum RMS Voltage	VRWM	64	71	Volts
Maximum DC Blocking Voltage	VDC	90	100	Volts
Maximum Average Forward Rectified Current at Tc= 135'C	I(AV)	3.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	1	50	Amps
Peak Repetitive Reverse Surge Current (2.0us, 1KHz)	IRSM	1.0		Amps
Voltage Rate of Change, dv/dt (rated V _R)	V/µs	1000		V/µs
Maximum Forward Voltage (Note 1) IF = 3A, TL = 25°C IF = 3A, TC = 100°C	VF	0.79 0.69		Volts
Maximum Instantaneous Reverse Current at Peak Reverse Voltage T _C = 100°C (Note 1) Peak Reverse Voltage T _C = 25°C	lR IR	.6 0.1		mA mA
Maximum Thermal Resistance, Junction to Lead	Røjl	1	0.0	•c/w
Maximum Operating Junction Temperature	Tc	-65 to +150		.c
Maximum Storage Temperature	Tstg	-65 to +175		.c

NOTES: 1. Pulse Test Pulse Width 300 µs, Duty Cycle 2%.


RATINGS AND CHARACTERISTIC CURVES SB390 THRU SB3100

SB520 THRU SB560

HIGH CURRENT SCHOTTKY BARRIER RECTIFIERS VOLTAGE - 20 to 60 Volts CURRENT - 5.0 Amperes

FEATURES

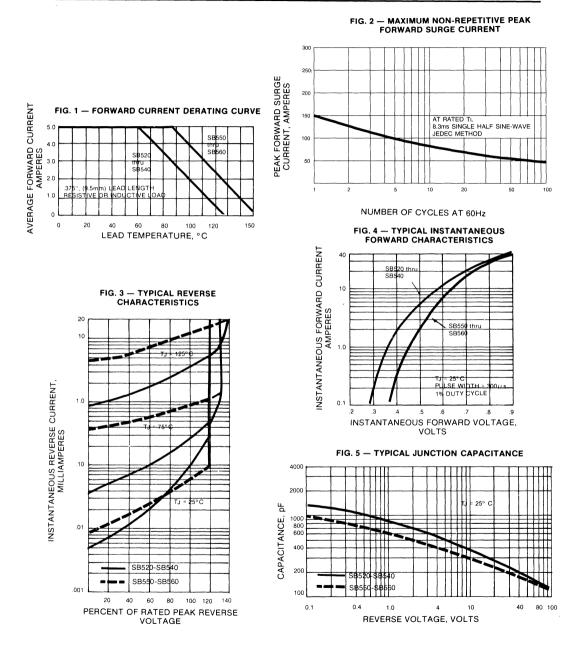
DO-201AD ٠ 190 (4.8) 1.0 (25.4) MTN. high efficiency low VF .375 (9.5) 1.0 (25.4) MIN. .052 (1.3) .048 (1.2)

Dimensions in inches and (millimeters)

- Low cost
 - Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Metal to silicon rectifier, majority carrier conduction
- Low power loss
- High current capability,
- High surge capacity
- Epitaxial construction
- Guard Ring for transient protection
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications.
- High temperature soldering guaranteed: 250 °C/10 seconds/.375" (9.5 mm) lead lengths at 5 lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Molded Plastic Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounces, .34 gram


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

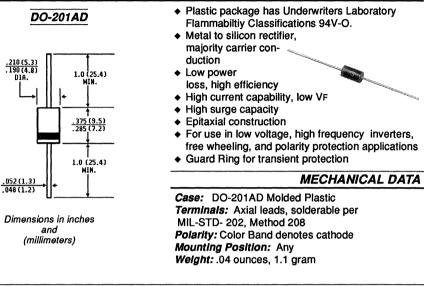
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%

	SYMBOLS	SB520	SB530	SB540	SB550	SB560	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	50	60	Volts
Maximum RMS Voltage	VRMS	14	21	28	35	42	Volts
Maximum DC Blocking Voltage	VDC	20	30	40	50	60	Volts
Maximum Average Forward Rectified Current .375", 9.5mm Lead Length T _L = 90°C	I(AV)			5.0			Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) $T_L = 70$ °C	IFSM			150			Amps
Maximum Forward Voltage at 5.0A	VF	.5	5		.6	7	Volts
Maximum Instantaneous Forward Voltage at DC Blocking Voltage TA = 25°C TA = 100°C	lR IR			0.5 50.0	25	.0	mA mA
Maximum Thermal Resistance (Note 1)	Røjl	1	5		1	0	.c\M
Operating Temperature Range	TJ	-65 to	+125	and a second	-65 to	+150	.c
Storage and Operating Temperature Range	TJ,TSTG		-	65 to +12	25		.c

NOTES:

1. Thermal Resistance Junction to Lead Vertical PC Board Mounting, .375" (9.5mm) Lead Length.

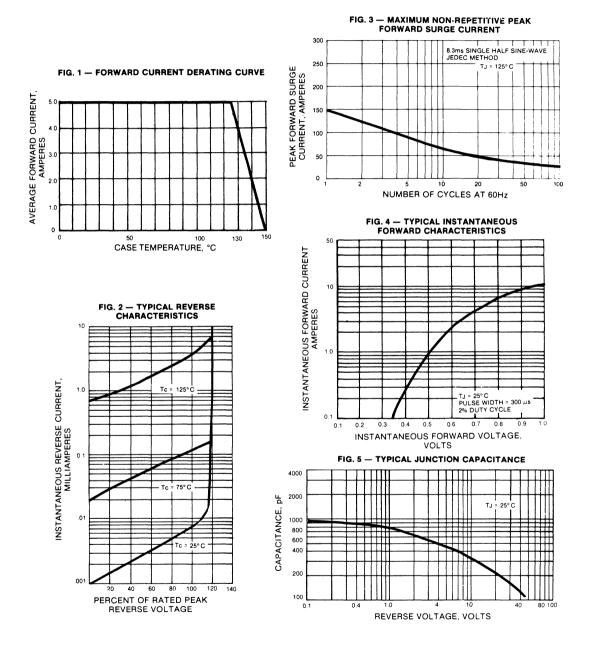
RATINGS AND CHARACTERISTIC CURVES SB520 THRU SB560



SB590 AND SB5100

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 90 and 100 Volts CURRENT - 5.0 Amperes


FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

	SYMBOLS	SB590	SB5100	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	90	100	Volts
Maximum RMS Voltage	VRWM	64	71	Volts
Maximum DC Blocking Voltage	VDC	90	100	Volts
Maximum Average Forward Rectified Current at .375" (9.5 mm) lead length, see fig. 1	l(AV)	5.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	1	50	Amps
Peak Repetitive Reverse Surge Current (2.0us, 1KHz)	IRSM	1.0		Amps
Voltage Rate of Change, dv/dt (rated VR)	V/µs	1000		V/µs
Maximum Forward Voltage (Note 1) IF = 5A, TL = 25°C IF = 5A, TC = 100°C	VF	0.79 0.69		Volts
Maximum Instantaneous Reverse Current at Peak Reverse Voltage T _C = 100°C (Note 1)	IR	20.0		mA
Peak Reverse Voltage T _C = 25°C	IR	0.6		mA
Maximum Thermal Resistance, Junction to Lead	Rejl	15.0		.c/w
Maximum Operating Junction Temperature	Tc	-65 to +150		·c
Maximum Storage Temperature	Tstg	-65 to +175		.c

NOTES: 1. Pulse Test Pulse Width 300 µs, Duty Cycle 2%.

RATINGS AND CHARACTERISTIC CURVES SB590 AND SB5100

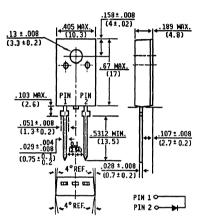
-78-

•

MEDIUM CURRENT SCHOTTKY RECTIFIERS

5 TO 40 AMPERES

SEE NEW ISOLATED PACKAGES


SBLF530 AND SBLF540

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 5.0 Amperes

FEATURES

IT0-220

Dimensions in inches and (millimeters)

- Isolated Plastic package has Underwriters Laboratory Flammability Classifications 94V-O
- Metal to silicon rectifier, majority carrier conduction

- high efficiency
 High current capability, low VF
- High surge capacity
- Epitaxial construction

Low power loss,

- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds/.25", (6.35mm) from case
- Guard Ring for transient protection
- Guard Hing for transferit protection
- Internal Insulation: 1.5K VRMS

MECHANICAL DATA

Case: ITO-220 Molded Plastic Terminals: Solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - Ib. max. Weight: .08 ounces, 2.24 grams

MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	SBLF530	SBLF540	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current See Fig.1	I(AV)	5.0		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	1'	75	Amps
Maximum Instantaneous Forward Voltage at 5.0A, See Fig. 1	VF	.55		Volts
Maximum Average Reverse Current at Tc = 25°C Rated Peak Reverse Voltage Tc = 100°C	IR	0.5 33.0		mA
Typical Thermal Resistance (Note 1)	RejC	3.5		•C/W
Operating and Storage Temperature Range	TJ, TSTG	-40 to +125		.c

NOTES:

1. Thermal Resistance from Junction to Case.

2. 300 µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBLF530 AND SBLF540

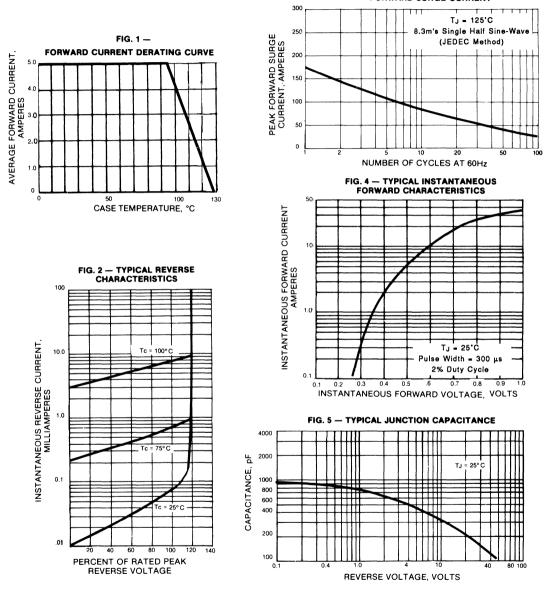
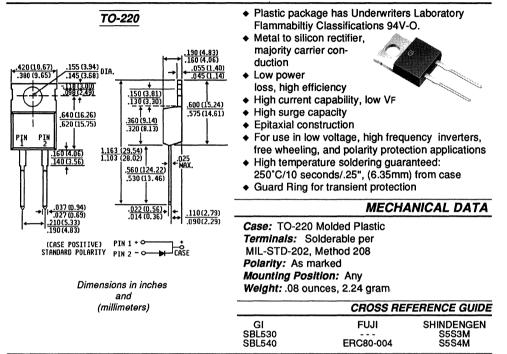


FIG. 3 — MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT


> GENERAL INSTRUMENT

SBL530 AND SBL540

SCHOTTKY RECTIFIER

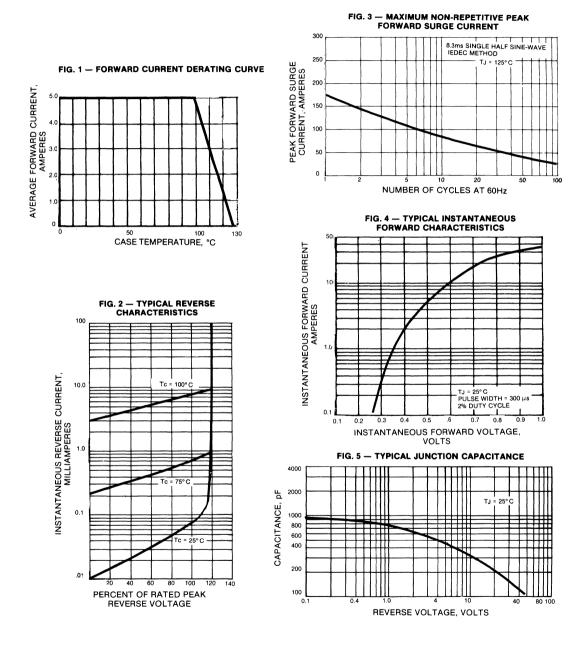
VOLTAGE RANGE - 30 and 40 Volts CURRENT - 5.0 Amperes

FEATURES

MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

Resistive or inductive load. For capacitive or inductive load, derate current by 20%.


	SYMBOLS	SBL530	SBL540	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current at Tc = 114'C	l(AV)	5.0		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	175		Amps
Maximum Instantaneous Forward Voltage at 5.0A, Tc = 25'C (Note 2)	VF	.55		Volts
Maximum Average Reverse Current at Tc = 25°C Rated Peak Reverse Voltage (Note 3)Tc = 100°C	IR	0.5 33.0		mA
Typical Thermal Resistance (Note 1)	RejC	3.0		.CW
Operating and Storage Temperature Range	TJ,TSTG	-40 to	o +125	.c

NOTES:

1. Thermal Resistance from Junction to Case.

2. 300 µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBL530 AND SBL540

SBLF530CT AND SBLF540CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 5.0 Amperes

FEATURES

Isolated Plastic package has Underwriters ITO-220 CT Laboratory Flammability Classifications 94V-O Metal to silicon rectifier. 158±.008 majority carrier conduction (4±.02) 189 MAX. (4.8) Low power loss, 13 ± .008 (3.3 ±0.2) high efficiency High current capability, low VF MAX. High surge capacity [17] Epitaxial construction For use in low voltage, high frequency inverters, <u>. 103</u> MAX. free wheeling, and polarity protection applications (2.6)• High temperature soldering guaranteed: ±.008 $\frac{.051 \pm .008}{(1.3 \pm 0.2)}$ 250°C/10 seconds/.25", (6.35mm) from case 107±.008 .029±.004 Guard Ring for transient protection (2.7±0.2) (0.75±0:1 Internal Insulation: 1.5k VRMS 2.54 .028 ±.008 4° REF .__|| MECHANICAL DATA (0.7±0.2) ____ Case: ITO-220 Molded Plastic PIN 2 PTN 1 O Terminals: Solderable per MIL-STD-202, PIN 3 4° REF Method 208 Polarity: As marked Dimensions in inches Mounting Position: Any

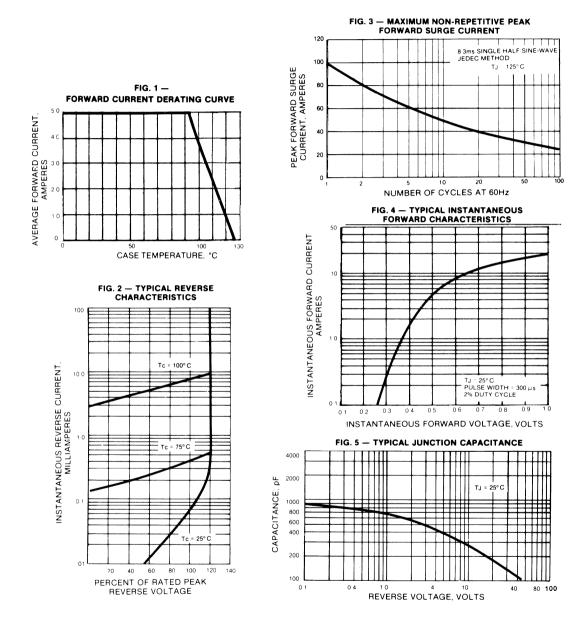
(millimeters) Weight: .08 ounces, 2.24 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Mounting Torque: 5 in. - lb. max.

Ratings at 25 'C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

and


SYMBOLS SBLF530CT SBLF540CT UNITS Maximum Recurrent Peak Reverse Voltage 30 40 Volts VRRM Maximum RMS Voltage VRMS 21 28 Volts Maximum DC Blocking Voltage VDC 30 40 Volts Maximum Average Forward Rectified Current See Fig. 1 5.0 Amps I(AV) Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) 100 FSM Amps Maximum Instantaneous Forward Voltage Per Leg IF = 2.5A, Tc = 25°C (Note 2) .55 Volts VF Maximum Average Reverse Current at TC = 25°C 0.5 Rated DC Blocking Voltage per element Tc= 100°C lR. 33.0 mΑ Typical Thermal Resistance (Note 1) ROJC °C/W 3.5 **Operating Temperature Range** Тс -40 to +125 ·C °C Storage Temperature Range TSTG -40 to+150

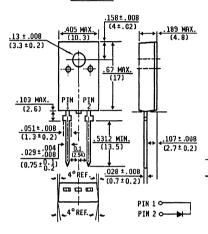
NOTES:

1. Thermal Resistance from Junction to Case per element.

2. 300 µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBLF530CT AND SBLF540CT

GENERAL INSTRUMENT


MBRF735 AND MBRF745

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 7.5 Amperes

FEATURES

ITO-220

 Isolated plastic package has Underwriters Laboratory Flammability Classifications 94V-O

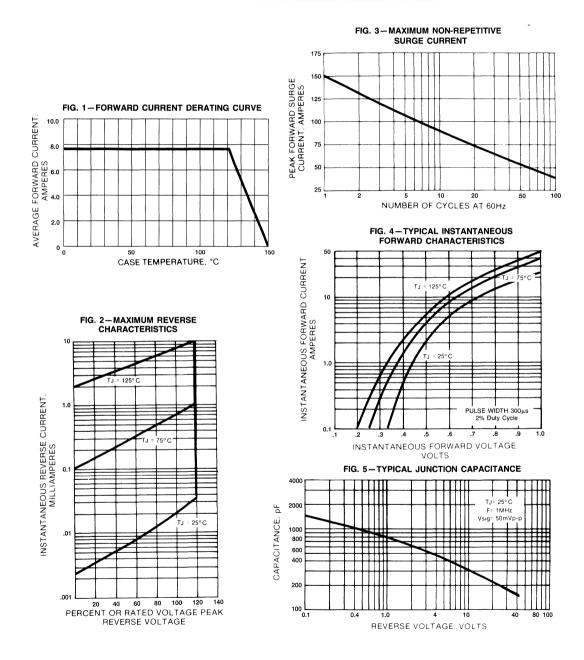
- Metal to silicon rectifier,
- majority carrier conduction
 Low power loss, high efficience
- Low power loss, high efficiency
 High current capability, low VF
- High current capability, I
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed:
 OF 10 (10 provide 10 provide
- 250°C/10 seconds/.25", (6.35mm) from case
- Guard Ring for transient protection
- Internal Insulation: 1.5k VRMs

MECHANICAL DATA

Case: ITO-220 Molded Plastic Terminals: Solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - Ib. max. Weight: .08 ounces, 2.24 grams

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	MBRF735	MBRF745	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum RMS Voltage	VRMS	25	32	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current see Fig. 1	l(AV)	7.5		Amps
Peak Foward Surge Current,8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRRM	1.0		Amps
Maximum Instantaneous Forward Voltage I _F = 7.5A, T _C = 125°C I _F = 15A, T _C = 125°C I _F = 15A, T _C = 25°C	VF	0.57 0.72 0.84		Voits
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element T _C =125 [•] C	IR	15		mA
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage (Note 2) $T_{C} = 25^{\circ}C$	IR	0.1		mA
Voltage Rate of Change	dv/dt	1000		V/µs
Typical Thermal Resistance, (Note 1)	Røjc	3.5		.cw
Maximum Operating Junction Temperature	TJ	-65 to +150		. C
Maximum Storage Temperature	TSTG	-65 to	+175	.c

NOTES: 1. Thermal Resistance Junction to Case.

2. 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs, 1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF735 AND MBRF745

MBRF750 AND MBRF760

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts

CURRENT - 7.5 Amperes

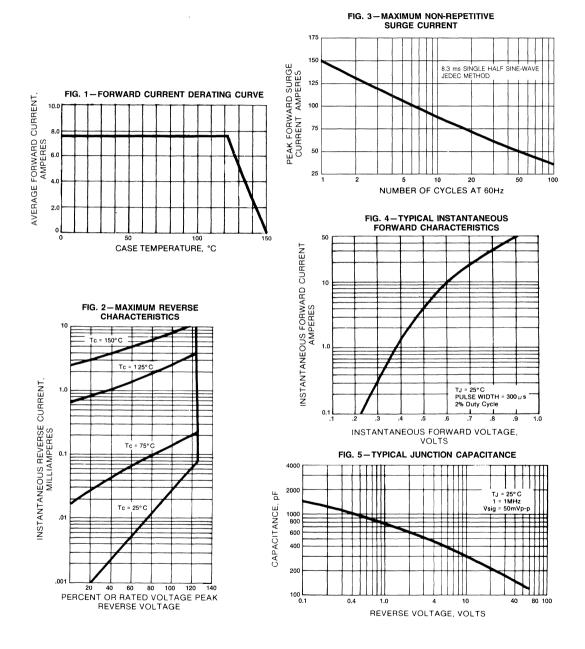
FEATURES

Isolated plastic package has Underwriters ITO-220 Laboratory Flammability Classifications 94V-O Metal to silicon rectifier. 58±.008 majority carrier conduction $(4\pm.02)$ (4.8) Low power loss, high efficiency 13 ± .008 (10 2) (3.3 ±0.2) High current capability, low VF High surge capacity MAX. Epitaxial construction For use in low voltage, high frequency inverters. free wheeling, and polarity protection applications .103 MAX. (2.6) High temperature soldering guaranteed: 250°C/10 seconds/.25", (6.35mm) from case 051±.008 (1.3±0.2) ٠ Guard Ring for transient protection .107±.008 Internal Insulation: 1.5k VRMs (2.7±0.2) 029 (0.75 ± MECHANICAL DATA .028 ±.008 REF. (0.7±0.2) Case: ITO-220 Molded Plastic ca da Terminals: Solderable per MIL-STD-202, PIN 1 0 Method 208 RFF PIN 2 O Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - Ib. max.

Dimensions in inches and (millimeters)

Weight: .08 ounces, 2.24 grams MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

1	SYMBOLS	MBRF750	MBRF760	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Voits
Maximum RMS Voltage	VRMS	35	42	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current see Fig. 1	I(AV)	-	7.5	Amps
Peak Foward Surge Current,8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRRM	.75		Amps
Maximum Instantaneous Forward Voltage I _F = 7.5A, T _C = 125°C I _F = 7.5A, T _C = 25°C	VF	0.65 0.75		Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element T _C =100°C	IR	50		mA
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage (Note 2) $T_C = 25^{\circ}C$	I _R	0.5		mA
Voltage Rate of Change	dv/dt	1000		V/µs
Typical Thermal Resistance, (Note 1)	RejC	3.5		.cw
Maximum Operating Junction Temperature	TJ	-65 to +150		.c
Maximum Storage Temperature	TSTG	-65 to	+175	.c


NOTES:

1. Thermal Resistance Junction to Case.

2. 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs, 1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF750 AND MBRF760

GENE INSTRUM

MBR735 AND MBR745 SCHOTTKY RECTIFIER VOLTAGE RANGE - 35 and 45 Volts CURRENT - 7.5 Amperes FEATURES Plastic package has Underwriters Laboratory TO-220 Flammabiltiv Classifications 94V-O. Metal to silicon rectifier, <u>30 (4.83)</u> majority carrier con-.155 (3.94) .145 (3.68) DIA. 120 (10.67) .055 (1.40) duction .380 (9.65) Low power -118 (3.00) .098 (2.49) .150 (3.81) loss, high efficiency .600 (15.24) High current capability, low VF .575 (14.61) 640 (16.26) .360 (9.14) 620 (15.75)

- High temperature soldering guaranteed: 250°C/10 seconds/.25", (6.35mm) from case

Case: TO-220 Molded Plastic Terminals: Solderable per MIL-STD- 202, Method 208

Dimensions in inches and (millimeters)

PIN 1 + 0

1.163 (29.54)

.<u>560 (124.22</u>)

.530 (13.46)

.022(0.56)+

.025 Max.

.110(2.79)

Ratinos at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20% SYMBOLS **MBR735** MBR745 UNITS Maximum Recurrent Peak Reverse Voltage 35 45 VRRM Volts Maximum RMS Voltage VRMS 24.5 31.5 Volts Maximum DC Blocking Voltage VDC 35 45 Volts Maximum Average Forward Rectified Current see Fig. 1 I(AV) 7.5 Amps Peak Foward Surge Current,8.3ms single half sinewave superimposed on rated load (JEDEC Method) 150 IFSM Amps Peak Repetitive Reverse Surge Current (Note 3) 1.0 IRRM Amps Maximum Instantaneous Forward Voltage IF = 7.5Å, Tc = 125℃ 0.57 IF = 15A, Tc = 125°C 0.72 Volts VF $I_F = 15A, T_C = 25^{\circ}C$ 0.84 Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element Tc=125°C IR 15 mA Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage (Note 2) Tc = 25°C IR 0.1 mA

Voltage Rate of Change 1000 dv/dt V/µs Typical Thermal Resistance, (Note 1) Rejc 3.0 'C/W Maximum Operating Junction Temperature ТJ -65 to +150 °C -65 to +175 °C Maximum Storage Temperature TSTG

NOTES:

PĮN PIN

60 (4.06) 40 (3.56)

.037 (0.94) .027 (0.69)

(CASE POSITIVE)

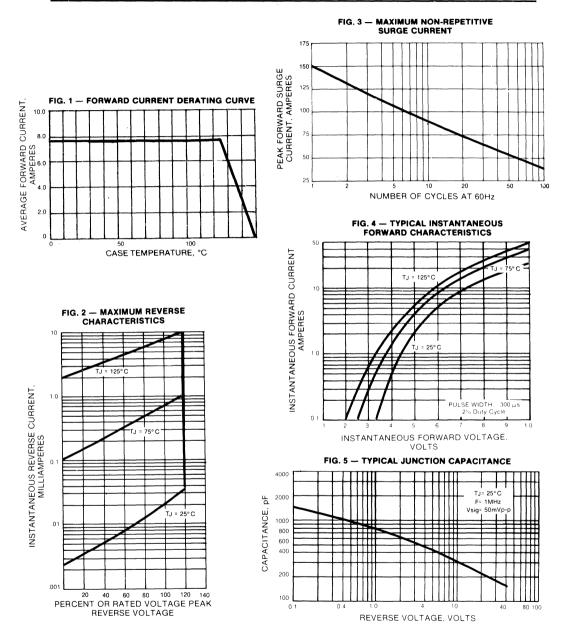
STANDARD POLARITY PIN 2 - 0-

.210(5.33) .190(4.83)

1. Thermal Resistance Junction to CASE.

300µs Pulse Width, 2% Duty Factor. 2.

3. 2.0µs, 1.0 KHz.

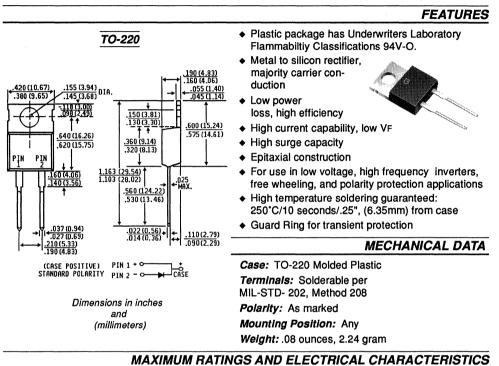

Polarity: As marked Mounting Position: Any Weight: .08 ounces, 2.24 gram MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

- High surge capacity
- Epitaxial construction

 For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications

- Guard Ring for trnsientr protection

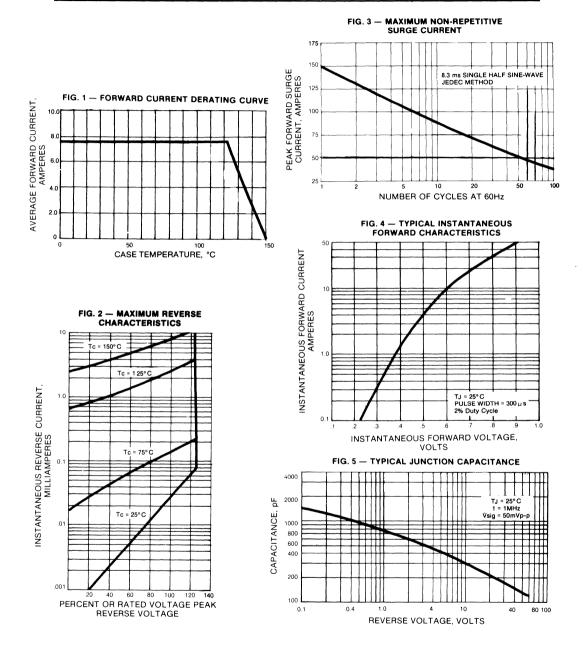
MECHANICAL DATA


RATINGS AND CHARACTERISTIC CURVES MBR735 AND MBR745

MBR750 AND MBR760

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 7.5 Amperes


Ratings at 25 'C ambient temperature unless otherwise specified. Resistive or inductive load.

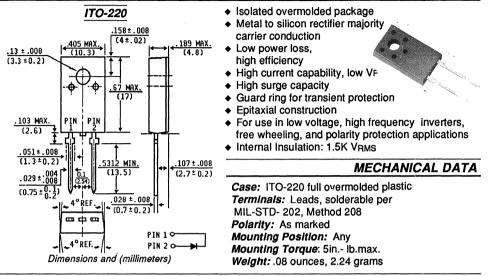
For capacitive or inductive load, derate current by 20%. SYMBOLS **MBR750 MBR760** UNITS Maximum Recurrent Peak Reverse Voltage VRRM 50 60 Volts 42 Maximum RMS Voltage VRMS 35 Volts Maximum DC Blocking Voltage VDC 50 60 Volts Maximum Average Forward Rectified Current 7.5 See Fig. 1 I(AV) Amps Peak Forward Surge Current, 8.3ms single half sine--wave superimposed on rated load (JEDEC Method) 150 IFSM Amps Maximum Instantaneous Forward Voltage (Note 2) IF = 7.5Å, Tc = 125°C VF .65 Volts IF = 7.5, Tc = 25°C .75 Maximum Average Reverse Current at Tc = 25°C 0.5 Rated Peak Reverse Voltage (Note 2) Tc = 100°C IR 50.0 mΑ ROJC Typical Thermal Resistance (Note 1) 3.0 'C/W Maximum Operating Storage Temperature Range Tc,Tstg -65 to +175 ·C

NOTES:

1. Thermal Resistance from Junction to Case.

2. 300 µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES MBR750 AND MBR760


GENERAL INSTRUMENT

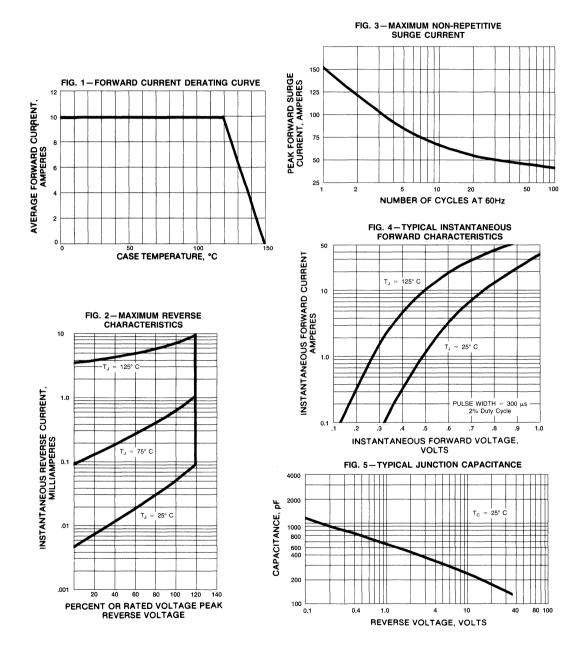
MBRF1035 AND MBRF1045

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 10.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

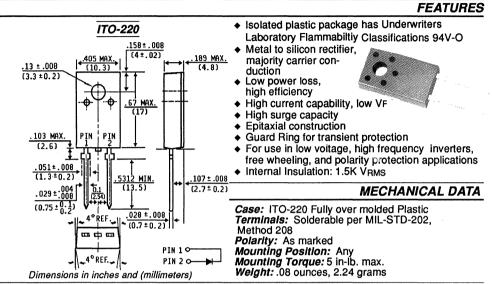

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	MBRF1035	MBRF1045	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Working Peak Reverse Voltage	VRMS	25	32	Volts
DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current see Fig. 1	I(AV)	10		Amps
Peak Repetitive Forward Current , (Square Wave 20 KHz) at T_C = 135 C	IFSM	20		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (2.0us, 1KHz)	IRSM	1.0		Amps
Voltage Rate of Change, dv/dt (rated V _R)	dv/dt	1000		V/µs
Maximum Forward Voltage (Note 1) IF = 10A, Tc = 125°C IF = 20A, Tc = 125°C IF = 20A, Tc = 25°C	VF	0.57 0.72 0.84		Volts
Maximum Instantaneous Reverse Current at Peak Reverse Voltage T_{C} = 125 [•] C (Note 1)	IR	15		mA
Maximum Instantaneous Reverse Current at Peak Reverse Voltage $T_{C} = 25^{\circ}C$	IR	0.1		mA
Maximum Thermal Resistance, Junction to Case	ReJC	2.2		.cw
Maximum Operating Junction Temperature	Тс	-65 to	o +150	.c
Maximum Storage Temperature	TSTG	-65 to	.c	

NOTES: 1. Pulse Test Pulse Width 300 µs, Duty Cycle 2%.

2. 2.0us, 1.0KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF1035 AND MBRF1045

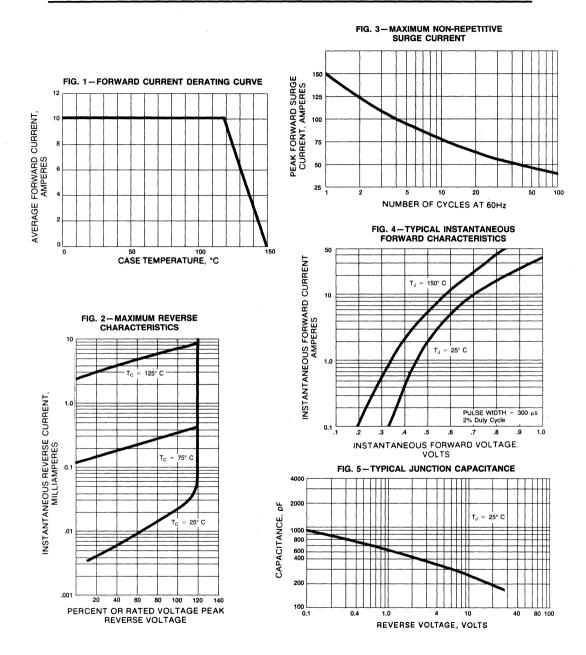


GENERAL INSTRUMENT

MBRF1050 AND MBRF1060

SCHOTTKY RECTIFIER

VOLTAGE RANGE -50 and 60 Volts CURRENT -10.0 Amperes


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

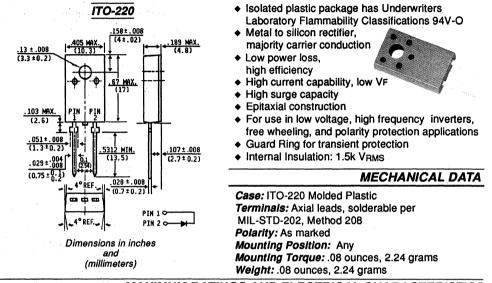
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%

	SYMBOLS	MBRF1050	MBRF1060	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Working Peak Reverse Voltage	VRMS	35	42	Volts
DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current	I(AV)	1	10	Amps
Peak Repetitive Forward Current , (Square Wave 20 KHz) at T _C = 135 [•] C	IFSM	2	20	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	1	50	Amps
Peak Repetitive Reverse Surge Current (2.0us, 1KHz)	IRSM	1.0		Amps
Voltage Rate of Change, dv/dt (rated V _R)	V/µs	1000		V/µs
Maximum Forward Voltage (Note 1) I _F = 10A, T _C = 125°C I _F = 20A, T _C = 125°C I _F = 20A, T _C = 25°C	VF	0.70 0.85 0.95		Volts
Maximum Instantaneous Reverse Current at Peak Reverse Voltage T_{C} = 125°C (Note 1)	IR	25		mA
Maximum Instantaneous Reverse Current at Peak Reverse Voltage T _C = 25°C	IR		0.1	mA
Maximum Thermal Resistance, Junction to Case	ReJC	2.2		.c\M
Maximum Operating Junction Temperature	Tc	-65 te	o +150	.c
Maximum Storage Temperature	Tstg	-65 t	o +175	·c

NOTES:

1. Pulse Test Pulse Width 300 µs, Duty Cycle 2%.

RATINGS AND CHARACTERISTIC CURVES MBRF1050 AND MBRF1060

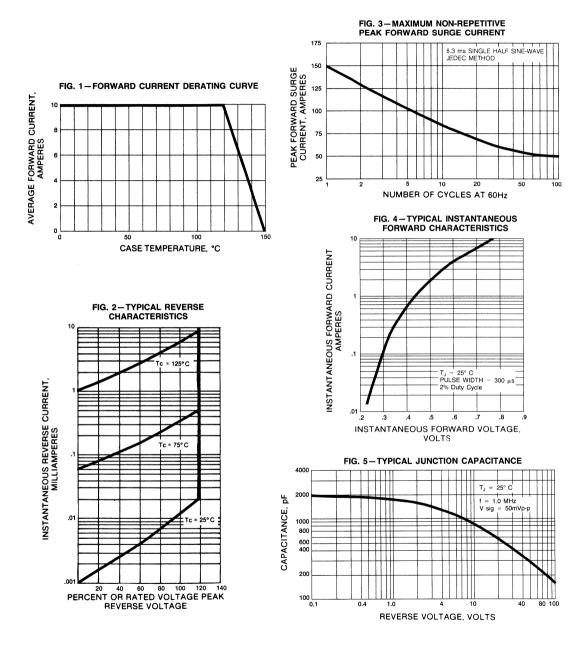

GENERAL INSTRUMENT

MBRF1090 AND MBRF10100

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 90 and 100 Volts CURRENT - 10.0 Amperes

FEATURES

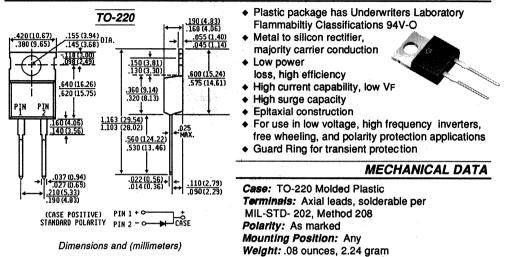

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	MBRF1090	MBRF10100	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	90	100	Volts
Working Peak Reverse Voltage	VRMS	64	71	Volts
DC Blocking Voltage	VDC	90	100	Volts
Maximum Average Forward Rectified Current see Fig. 1	I(AV)		0	Amps
Peak Repetitive Forward Current , (Square Wave 20 KHz) at T _C = 125°C	IFSM	20		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (2.0us, 1KHz)	IRSM	1.0		Amps
Voltage Rate of Change, dv/dt (rated V _R)	V/µs	1000		V/µs
Maximum Forward Voltage (Note 1) I _F = 10A, T _C = 25°C I _F = 10A, T _C = 125°C I _F = 20A, T _C = 125°C I _F = 20A, T _C = 25°C	VF	0.80 0.70 0.85 0.95		Volts
Maximum Instantaneous Reverse Current at Peak Reverse Voltage T _C = 125 C (Note 1) Peak Reverse Voltage T _C = 25 C	l _R lR	25 0.1		mA mA
Maximum Thermal Resistance, Junction to Case	Rejc	2.0		.CW
Maximum Operating Junction Temperature	Tc	-65 to +150		.c
Maximum Storage Temperature	T _{STG}	-65 to +175		.c

NOTES: 1. Pulse Test Pulse Width 300 µs, Duty Cycle 2%.

RATINGS AND CHARACTERISTIC CURVES MBRF1090 AND MBRF10100

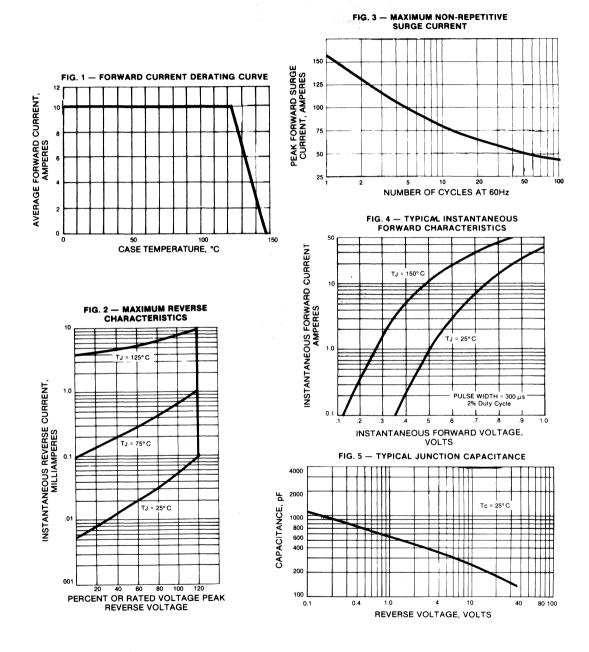

GENERAL INSTRUMENT

MBR1035 AND MBR1045

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 10.0 Amperes

FEATURES

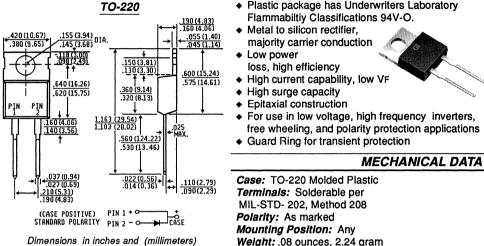

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	MBR1035	MBR1045	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Working Peak Reverse Voltage	VRWM	35	45	Volts
DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current see Fig. 1	I(AV)	10		Amps
Peak Repetitive Forward Current , (Square Wave 20 KHz) at T_C = 135 C	IFSM	20		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (2.0us, 1KHz)	IRSM	1.0		Amps
Voltage Rate of Change, dv/dt (rated VR)	dv/dt	1000		V/µs
Maximum Forward Voltage (Note 1) $I_F = 10A, T_C = 125^{\circ}C$ $I_F = 20A, T_C = 125^{\circ}C$ $I_F = 20A, T_C = 25^{\circ}C$	VF	0.57 0.72 0.84		Volts
Maximum Instantaneous Reverse Current at Peak Reverse Voltage T_{C} = 125°C (Note 1)	IR	15		mA
Maximum Instantaneous Reverse Current at Peak Reverse Voltage $T_C = 25^{\circ}C$	IR	0.1		mA
Maximum Thermal Resistance, Junction to Case	RejC	2.0		.c\M
Maximum Operating Junction Temperature	Тс	-65 te	o +150	. C
Maximum Storage Temperature	TSTG	-65 t	o +175	.c

NOTES: 1. Pulse Test Pulse Width 300 µs, Duty Cycle 2%.

RATINGS AND CHARACTERISTIC CURVES MBR1035 AND MBR1045

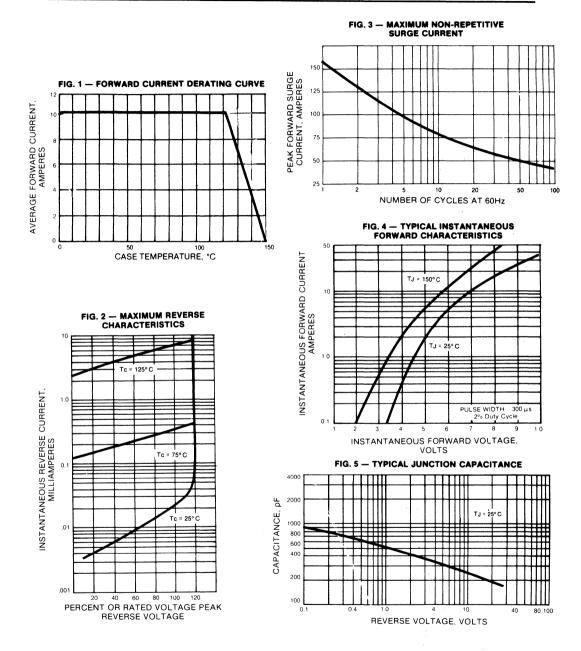

GENE

MBR1050 AND MBR1060

SCHOTTKY RECTIFIER

VOLTAGE RANGE -50 and 60 Volts CURRENT -10.0 Ampères

FEATURES Plastic package has Underwriters Laboratory



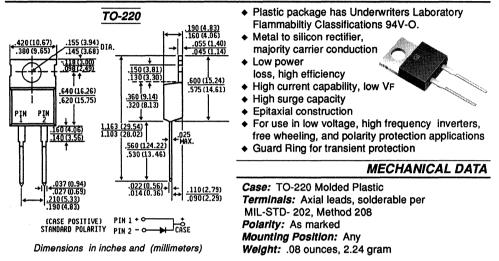
Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%. CYMBOLS MBR1050 MBR1060 L						
				UNITS		
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts		
Working Peak Reverse Voltage	VRWM	50	60	Volts		
DC Blocking Voltage	VDC	50	60	Volts		
Maximum Average Forward Rectified Current						
see Fig. 1	I(AV)	1	0	Amps		
Peak Repetitive Forward Current,						
(Square Wave 20 KHz) at Tc = 135°C	IFSM	20		Amps		
Peak Forward Surge Current						
8.3ms single half sine-wave superimposed						
on rated load (JEDEC Method)	IFSM	150		Amp		
Peak Repetitive Reverse Surge Current				,		
(2.0us, 1KHz)	IRSM	1.0		Amp		
Voltage Rate of Change, dv/dt (rated V _R)	V/µs	1000		V/µs		
Maximum Forward Voltage (Note 1)						
IF = 10A, Tc = 125°C		0.	70			
I _F = 20A, T _C = 125°C	VF	0.	85	Volte		
I _F = 20A, T _C = 25°C		0.	95			
Maximum Instantaneous Reverse Current at						
Peak Reverse Voltage T _C = 125°C (Note 1)	IR	2	25	mA		
Maximum Instantaneous Reverse Current at						
Peak Reverse Voltage T _C = 25°C	IR	0.1		mA		
Maximum Thermal Resistance,						
Junction to Case	RØJC	2	2.0	.cw		
Maximum Operating Junction Temperature	Tc	-65 to	o +150	.c		
Maximum Storage Temperature	Tstg	-65 to	o +175	.c		

NOTES: 1. Pulse Test Pulse Width 300 µs, Duty Cycle 2%.

RATINGS AND CHARACTERISTIC CURVES MBR1050 AND MBR1060



MBR1090 AND MBR10100

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 90 and 100 Volts CURRENT -10.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

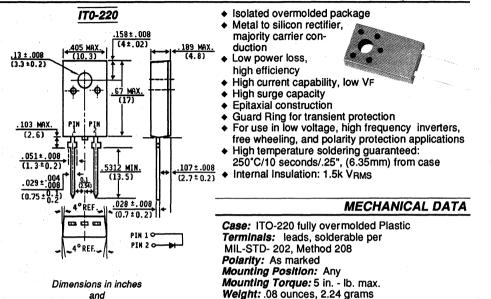
Ratings at 25°C ambient temperature unless otherwise specified.	. Resistive or inductive load.	For capacitive load, derate current by 20%.

	SYMBOLS	MBR1090	MBR10100	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	90	100	Volts
Working Peak Reverse Voltage	VRWM	90	100	Volts
DC Blocking Voltage	VDC	90	100	Volts
Maximum Average Forward Rectified Current				
see Fig. 1	l(AV)		10	Amps
Peak Repetitive Forward Current,				
(Square Wave 20 KHz) at T _C = 125°C	IFSM		20	Amps
Peak Forward Surge Current				
8.3ms single half sine-wave superimposed				
on rated load (JEDEC Method)	IFSM	1	50	Amps
Peak Repetitive Reverse Surge Current				
(2.0us, 1KHz)	IRSM		.0	Amps
Voltage Rate of Change, dv/dt (rated V _R)	V/μs	1	000	V/µs
Maximum Forward Voltage (Note 1)				
I _F = 10A, T _C = 25°C	1	0	.80	
I _F = 10A, T _C = 125°C		0	.70	
I _F = 20A, T _C = 125°C	VF	0	.85	Volts
I _F = 20A, T _C = 25°C		0	.95	
Maximum Instantaneous Reverse Current at				
Peak Reverse Voltage T _C = 125'C (Note 1)	IR		25	mA
Peak Reverse Voltage T _C = 25°C	IR		0.1	mA
Maximum Thermal Resistance,				
Junction to Case	RejC		2.0	•C/M
Maximum Operating Junction Temperature	Tc	-65 t	o +150	.C
Maximum Storage Temperature	TSTG	-65 t	o +175	.c

NOTES: 1. Pulse Test Pulse Width 300 µs, Duty Cycle 2%.

FIG. 3-MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT 8.3 ms SINGLE HALF SINE-WAVE JEDEC METHOD 150 PEAK FORWARD SURGE CURRENT, AMPERES 125 FIG. 1-FORWARD CURRENT DERATING CURVE AVERAGE FORWARD CURRENT, AMPERES 10 100 75 8 50 6 25 4 1 2 20 5 10 50 100 NUMBER OF CYCLES AT 60Hz 2 FIG. 4-TYPICAL INSTANTANEOUS 0 INSTANTANEOUS FORWARD CURRENT AMPERES FORWARD CHARACTERISTICS 10 CASE TEMPERATURE, °C FIG. 2-TYPICAL REVERSE CHARACTERISTICS 100 = 125° C TJ = 25°C PULSE WIDTH = 300 με 2% DUTY CYCLE Tc INSTANTANEOUS REVERSE CURRENT, MILLIAMPERES 10 .0 .3 .5 .6 7 .8 9 INSTANTANEOUS FORWARD VOLTAGE, VOLTS = 75° C Tc 1.0 - TYPICAL JUNCTION CAPACITANCE FIG. 5 4000 TJ = 25°C 2000 CAPACITANCE, pF V sig = 50mVp-p .1 = 25° C 1000 тc 800 600 400 ПП 200 .01 20 40 60 80 100 120 140 PERCENT OR RATED VOLTAGE PEAK REVERSE VOLTAGE 100 0.1 0.4 10 40 80 100

RATINGS AND CHARACTERISTIC CURVES MBR1090 AND MBR10100


REVERSE VOLTAGE, VOLTS

SBLF1030 AND SBLF1040

SCHOTTKY RECTIFIER

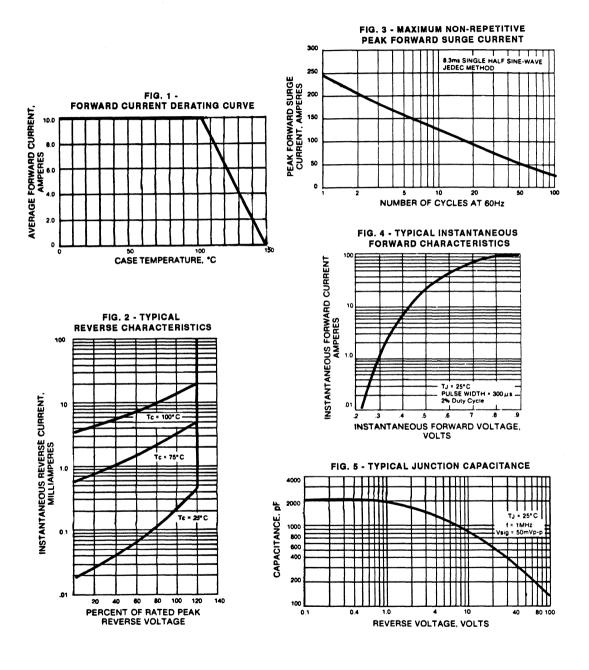
VOLTAGE RANGE - 30 and 40 Volts CURRENT - 10 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 'C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

(millimeters)

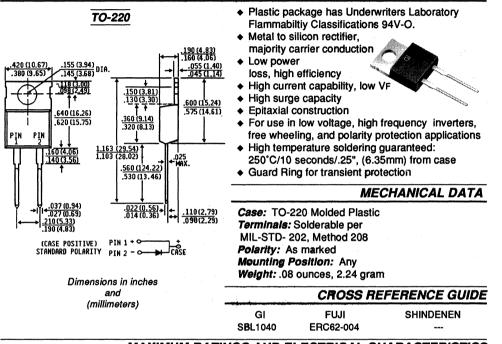

	SYMBOLS	SBLF1030	SBLF1040	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current See Fig. 1	I(AV)	10		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250		Amps
Maximum Instantaneous Forward Voltage IF = 10A, Tc = 25°C (Note 2)	VF	.(50	Volts
Maximum Average Reverse Current at $Tc = 25^{\circ}C$ Rated DC Blocking Voltage per element $Tc = 100^{\circ}C$	IR	1.0 50.0 3.5 -40 to +125		mA
Typical Thermal Resistance (Note 1)	ReJC			.c/M
Operating and Storage Temperature Range	Tc,Tstg			.c

NOTES:

1. Thermal Resistance from Junction to Case,

2. 300 µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBLF1030 AND SBLF1040



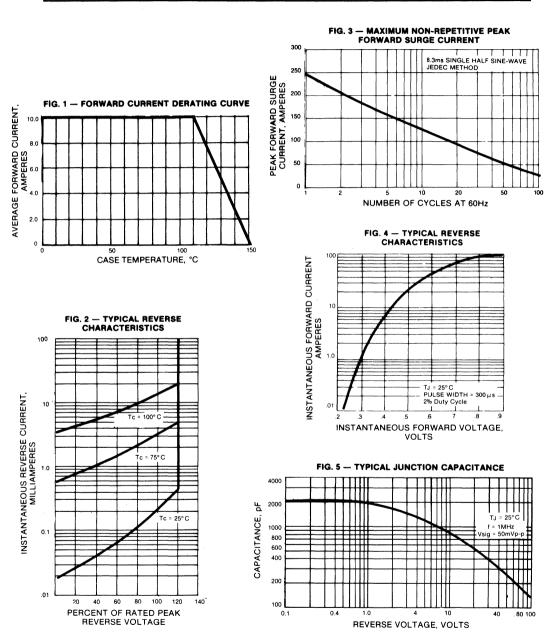
SBL1030 AND SBL1040

SCHOTTKY RECTIFIER

FEATURES

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 10 Amperes

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25 'C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

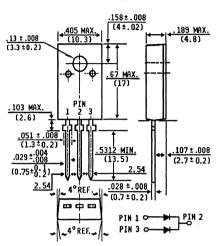
	SYMBOLS	SBL1030	SBL1040	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current see Fig. 1	I(AV)	10		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250		Amps
Maximum Instantaneous Forward Voltage IF = 10A, Tc = 25°C (Note 2)	VF	.60		Volts
Maximum Average Reverse Current at TC = 25°C Rated DC Blocking Voltage per element TC = 100°C	lR	1.0 50.0		mA
Typical Thermal Resistance (Note 1)	RejC	3.0		.cw
Operating and Storage Temperature Range	Tc,Tstg	-40 to	o +125	.c

NOTES:

1. Thermal Resistance from Junction to Case.

2. 300 µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBL1030 AND SBL1040


SBLF1030CT AND SBLF1040CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 10 Amperes

FEATURES

ITO-220 CT

Dimensions in inches and (millimeters) Isolated Plastic package has Underwriters Laboratory Flammability Classifications 94V-0

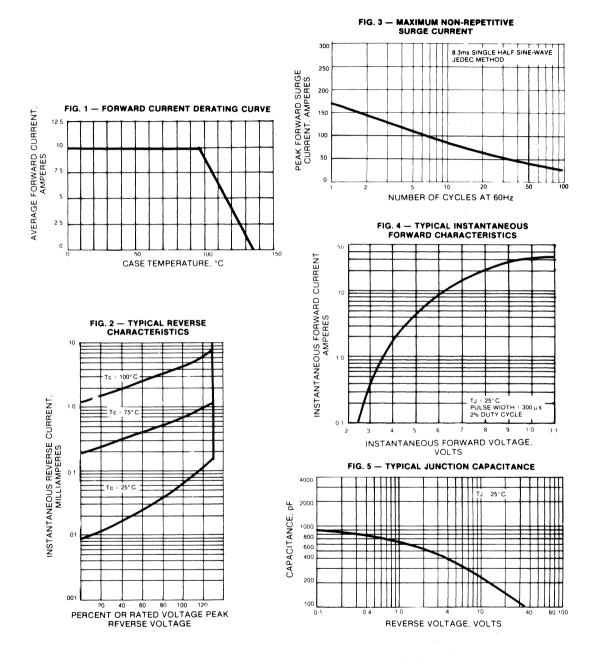
- Metal to silicon rectifier, majority carrier conduction
 Low power loss,
- high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- Dual rectifier construction, positive center-tap
- Guard Ring for transient protection
- Internal Insulation: 1.5k VRMS

MECHANICAL DATA

Case: ITO-220 Molded Plastic Terminals: Solderable per MIL-STD- 202, Method 208 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - Ib. max. Weight: .08 ounces, 2.24 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

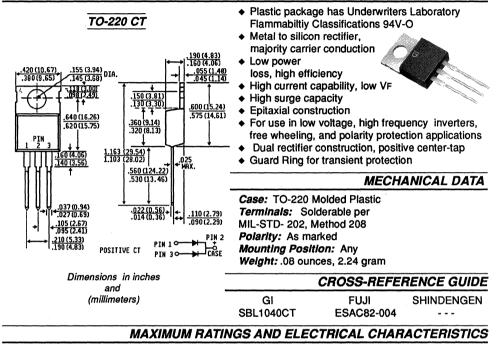

	SYMBOLS	SBLF1030CT	SBLF1040CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current See Fig. 1	I(AV)	10	0.0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	1	75	Amps
Maximum Instantaneous Forward Voltage Per Leg $I_F = 5.0A$,Tc = 25°C (Note 2)	VF	.55		Volts
Maximum Average Reverse Current at Tc = 25°C Rated DC Blocking Voltage per element Tc= 100°C	IR	0.5 50.0		mA
Typical Thermal Resistance (Note 1)	RejC	3.5		.c\M
Operating Temperature Range	Tc	-40 to +125		.с
Storage Temperature Range	TSTG	-40 t	o+150	.c

NOTES:

1. Thermal Resistance from Junction to Case per element.

2. 300µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBLF1030CT AND SBLF1040CT


GENERAL INSTRUMENT

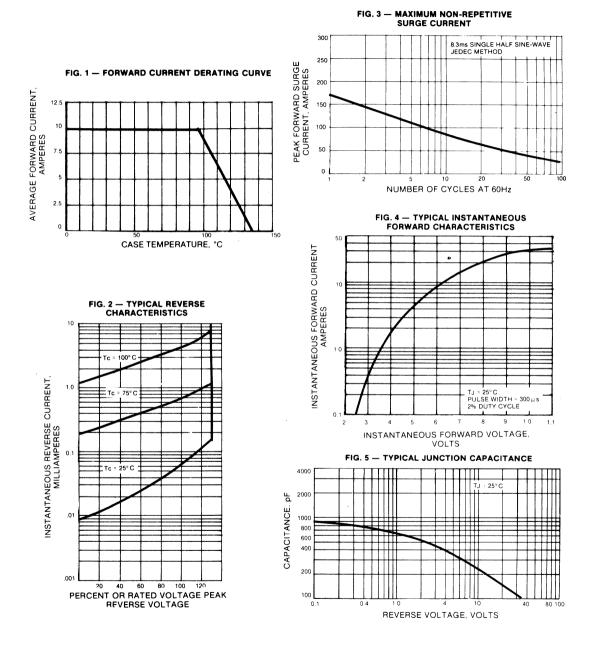
SBL1030CT AND SBL1040CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 10 Amperes

FEATURES

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


For capacitive or inductive load, derate current by 20%.

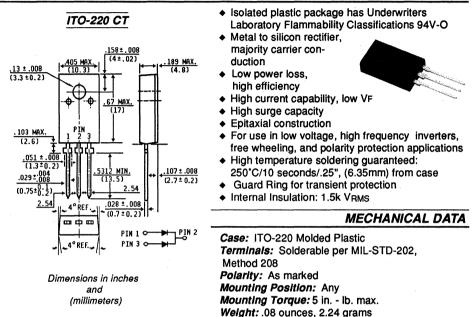
	SYMBOLS	SBL1030CT	SBL1040CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current See Fig. 1	l(AV)	10	0.0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	175		Amps
Maximum Instantaneous Forward Voltage Per Leg $I_F = 5.0A, TC = 25^{\circ}C$ (Note 2)	VF	.55		Volts
Maximum Average Reverse Current at Tc = 25°C Rated DC Blocking Voltage per element Tc= 100°C	IR	0.5 50.0		mA
Typical Thermal Resistance (Note 1)	RejC	3.0		.cw
Operating Temperature Range	Tc	-40 to +125		.с
Storage Temperature Range	Tstg	-40 t	0+150	.c

NOTES:

1. Thermal Resistance from Junction to Case.

2. 300µus Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBL1030CT AND SBL1040CT



MBRF1535CT AND MBRF1545CT

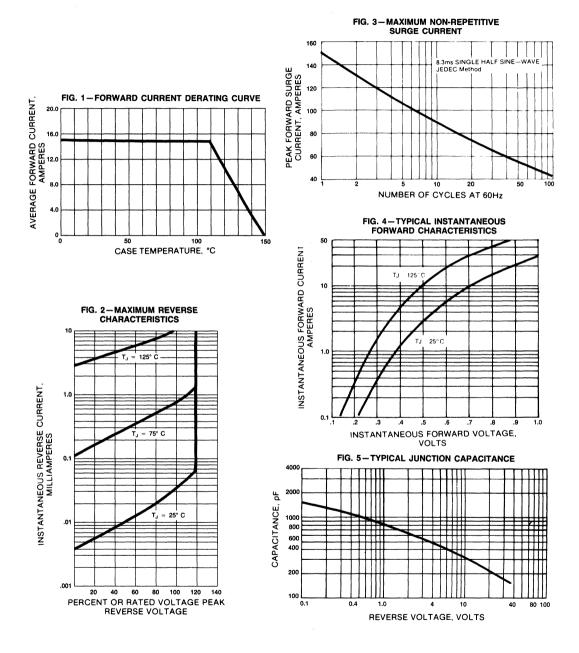
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 15 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified. Resistive or inductive load.

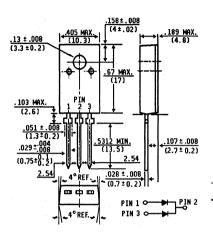

For capacitive or inductive load, derate current by 20%.

· · ·	SYMBOLS	MBRF1535CT	MBRF1545CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Working Peak Reverse Voltage	VRWS	25	32	Volts
DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current See Fig. 1	I(AV)	15	.0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	15	50	Amps
$\begin{array}{l} \mbox{Maximum Instantaneous Forward Voltage} \\ \mbox{Per Leg } I_F = 7.5A, T_C = 125 \mbox{'C} \mbox{ (Note 2)} \\ I_F = 15A, T_C = 125 \mbox{'C} \\ I_F = 15A, T_C = 25 \mbox{'C} \end{array}$	VF	.057 0.72 0.84		Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element $T_C = 125$ °C	IR	15.0		mA
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element Tc = 25°C	IR	0.1		mA
Voltage Rate of Change, (Rated V _R)	dv/dt	1000		V/µs
Typical Thermal Resistance (Note 1)	Rejc	3.5		.cw
Maximum Operating Junction Temperature	Tc	-65 to +150		.c
Maximum Storage Temperature	TSTG	-65 to	+150	.с

NOTES: 1. Thermal Resistance from Junction to Case per element.

2. 300 us Pulse Width, 2% Duty Factor.

GENERAL INSTRUMENT


MBRF1550CT AND MBRF1560CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 15 Amperes

FEATURES

ITO-220 CT

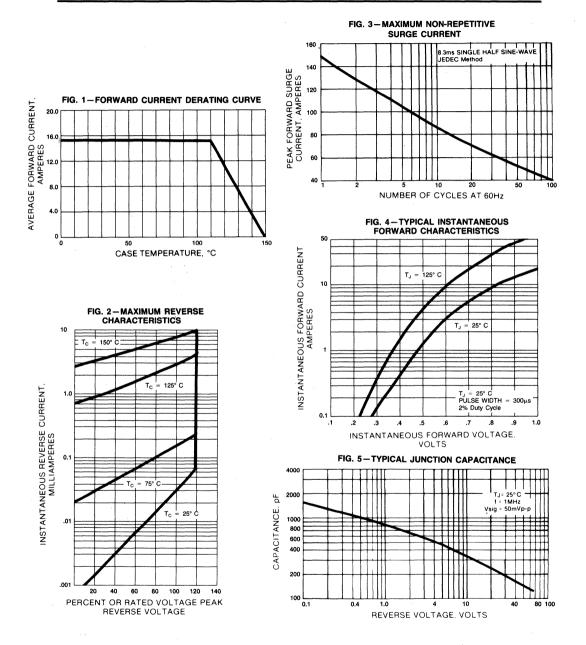
Dimensions in inches and (millimeters)

- Isolated plastic package has Underwriters Laboratory Flammability Classifications 94V-O
- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- + High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds/.25", (6.35mm) from case
- Guard Ring for transient protection
- Internal Insulation: 1.5k VRMs

MECHANICAL DATA

Case: ITO-220 Molded Plastic Terminals: Solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - Ib. max. Weight: .08 ounces, 2.24 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25 °C ambient temperature unless otherwise specified. Resistive or inductive load.

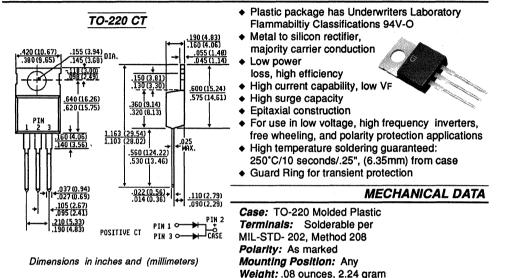
For capacitive or inductive load, derate current by 20%.

	SYMBOLS	MBRF1550CT	MBRF1560CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Working Peak Reverse Voltage	VRWS	35	42	Volts
DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current See Fig.1	I(AV)	15.0		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Maximum Instantaneous Forward Voltage Per Leg I _F = 7.5A,Tc = 125°C (Note 2) I _F = 7.5A, Tc = 25°C	VF	.65 .75		Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element T _C = 100 °C	IR	50.0		mA
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element Tc = 25°C	IR	1.0		mA
Voltage Rate of Change, (Rated V _R)	dv/dt	1000		V/µs
Typical Thermal Resistance (Note 1)	ReJC	3.5		.cw
Maximum Operating Junction Temperature	Tc	-65 to +150		.c
Maximum Storage Temperature	TSTG	-65 to	+150	.c

NOTES: 1. Thermal Resistance from Junction to Case per element.

2. 300 µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES MBRF1550CT AND MBRF1560CT



MBR1535CT AND MBR1545CT

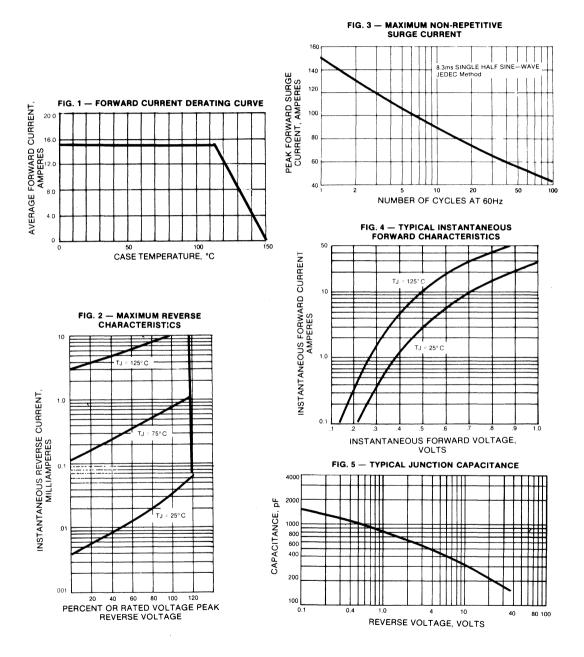
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 15 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	MBR1535CT	MBR1545CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Working Peak Reverse Voltage	VRWM	24.5	31.5	Volts
DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at T_{C} = 105°C	I(AV)	15	5.0	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRSM	1.0		Amps
Maximum Instantaneous Forward Voltage Per Leg I _F = 7.5A, T _C = 125°C (Note 2) I _F = 15A, T _C = 125°C I _F = 15A, T _C = 25°C	VF	0.57 0.72 0.84		Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element $T_C = 125^{\circ}C$	lR	15		mA
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element $T_C = 25^{\circ}C$	IR	0.1		mA
Voltage Rate of Change, (Rated V _{R)}	dv/dt	1000		V/µs
Typical Thermal Resistance (Note 1)	RejC	3.0		.cw
Maximum Operating Junction Temperature	Tj	-65 to	+150	.c
Maximum Storage Temperature	Tstg	-65 to	o +175	.c

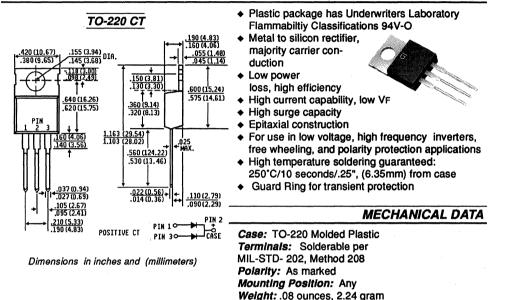
NOTES:

1. Thermal Resistance Junction to CASE.

2. 300 µs Pulse Width, 2% Duty Factor.

3. 2.0 µs, 1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBR1535CT AND MBR1545CT



MBR1550CT AND MBR1560CT

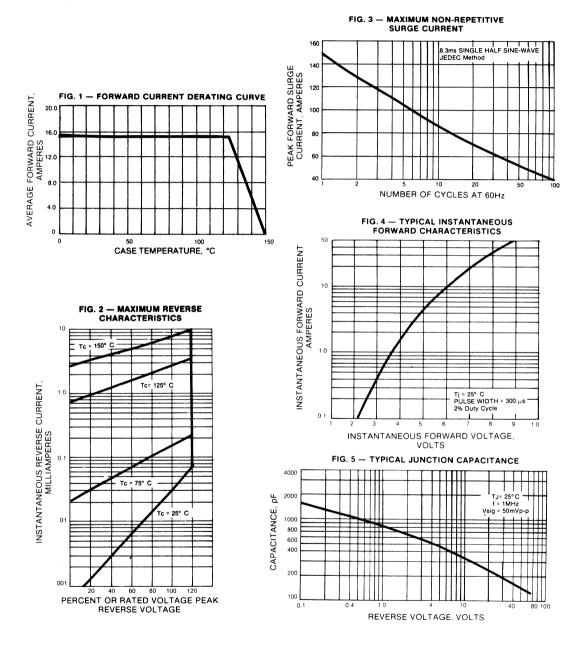
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 15 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified. Resistive or inductive load.


For capacitive or inductive load, derate current by 20%.

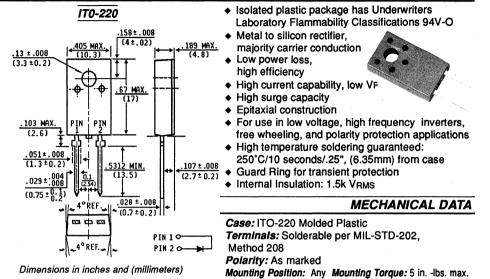
	SYMBOLS	MBR1550CT	MBR1560CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum RMS Voltage	VRMS	35	42	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current at T _C = 105°C	I(AV)	15.0		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Maximum Instantaneous Forward Voltage Per Leg I _F = 7.5A,Tc = 125°C (Note 2) I _F = 7.5A, T _c = 25°C	VF	.65 .75		Volts
Maximum Average Reverse Current at $Tc = 25^{\circ}C$ Rated DC Blocking Voltage per element $Tc = 100^{\circ}C$	IR	1.0 50.0		mA
Typical Thermal Resistance (Note 1)	RejC	3.0		.CW
Operating Temperature Range	Tc	-65 to +150		.с
Storage Temperature Range	Tstg	-65 to	+150	.c

NOTES:

1. Thermal Resistance from Junction to Case.

2. 300 µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES MBR1550CT AND MBR1560CT

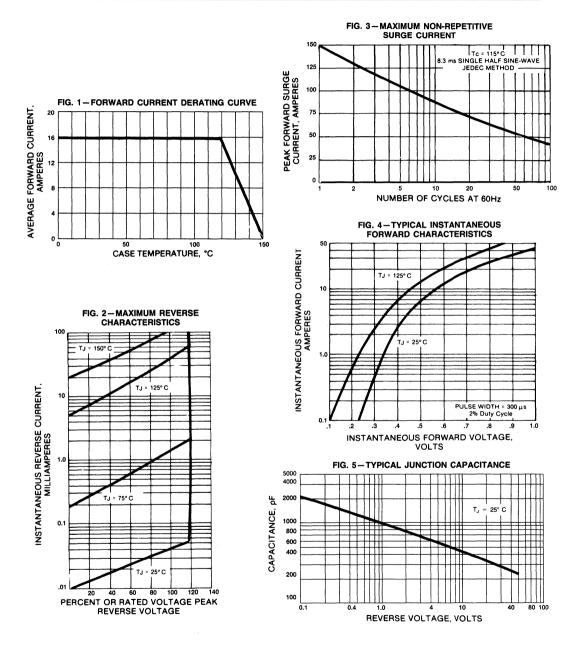


MBRF1635 AND MBRF1645

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 16 Amperes

FEATURES


Weight: .08 ounces, 2.24 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

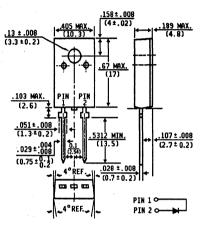
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	MBRF1635	MBRF1645	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Working Peak Reverse Voltage	VRMS	25	32	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current See Fig.1	I(AV)	16	3.0	Amps
Peak Repetitive Forward Current, Square Wave 20 KH _Z , 50% Duty Cylce at $T_C = 125$ C	IFSM	32.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (2.0µs, 1KHz)	IRSM	1.0		Amps
Voltage Rate of Change, (rated V _R)	dv/dt	10	000	V/µs
Maximum Forward Voltage(Note 1) $I_F=16A$, $T_C=125$ C $I_F = 16A$, $T_C = 25$ C	VF VF	1	57 63	Volts Volts
Maximum Instantaneous Reverse Current at Peak Reverse Voltage T_{C} = 125°C (Note 1)	IR	40		mA
Maximum Instantaneous Reverse Current at Peak Reverse Voltage T _C = 25°C	IR	0.2		mA
Maximum Thermal Resistance, Junction to Case	ReJC	2.0		۴Ċ/W
Maximum Operating Junction Temperature	TJ	-65 to	o +150	.c
Maximum Storage Temperature	TSTG	-65 to	o +175	.C.

NOTES: 1.Pulse Test Pulse Width 300 µs, Duty Cycle 2%.

RATINGS AND CHARACTERISTIC CURVES MBRF1635 AND MBRF1645

GENERAL INSTRUMENT


MBRF1650 AND MBRF1660

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 16 Amperes

FEATURES

 Isolated plastic package has Underwriters Laboratory Flammability Classifications 94V-O

- Metal to silicon rectifier, majority carrier conduction
 Low power loss,
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds/.25", (6.35mm) from case
- Guard Ring for transient protection
- Internal Insulation: 1.5k VRMS

MECHANICAL DATA

Case: ITO-220 Molded Plastic *Terminals:* Solderable per MIL-STD- 202, Method 208

Polarity: As marked

Mounting Position: Any Mounting Torque: 5 in. - lbs. max. Weight: .08 ounces, 2.24 grams

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	MBRF 1650	MBRF1660	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Working Peak Reverse Voltage	VRMS	35	42	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current See Fig.1	l(AV)	1	6.0	Amps
Peak Repetitive Forward Current, Square Wave 20 KHz, 50% Duty Cylce at T _C = 125°C	IFSM	32.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (2.0µs, 1KHz)	IRSM	1.0		Amps
Voltage Rate of Change, (rated V _R)	dv/dt	1000		V/µs
Maximum Forward Voltage(Note 1) IF=16A, Tc=125'C	VF	0.65		Volts
I _F = 16A, T _C = 25°C	VF	0.75		Volts
Maximum Instantaneous Reverse Current at Peak Reverse Voltage T _C = 100°C (Note 1)	IR	50		mA
Maximum Instantaneous Reverse Current at Peak Reverse Voltage $T_{C} = 25^{\circ}C$	le	1.0		mA
Maximum Thermal Resistance, Junction to Case	RejC	2.0		°C/W
Maximum Operating Junction Temperature	TJ	-65 to +150		.c
Maximum Storage Temperature	TSTG	-65 t	0 +175	.c

NOTES:

1. Pulse Test Pulse Width 300 µs, Duty Cycle 2%.

RATINGS AND CHARACTERISTIC CURVES MBRF1650 AND MBRF1660

GENERAL

MBR1635 AND MBR1645

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 16 Amperes

FEATURES

TO-220 190 (4.83) 160 (4.06) 420 (10.67) 055 (1.40) .155 (3.94) .145 (3.68) DIA. .380 (9.65) 118 (3.00) .150 (3.81) 130 (3.30) .600 (1⁵.24) .575 (14.61) .640 (16.26) 360 (9.14) 620 (15.75) PTN PIN 1.163 (29.54) 1.103 (28.02) 025 Max. 560 (124.22 .530 (13.46) .037 (0.94) 022(0.56) .110(2.79) 10 (5.33) PIN 1 + O (CASE POSITIVE) TASE F STANDARD POLARITY PIN 2 - 0-

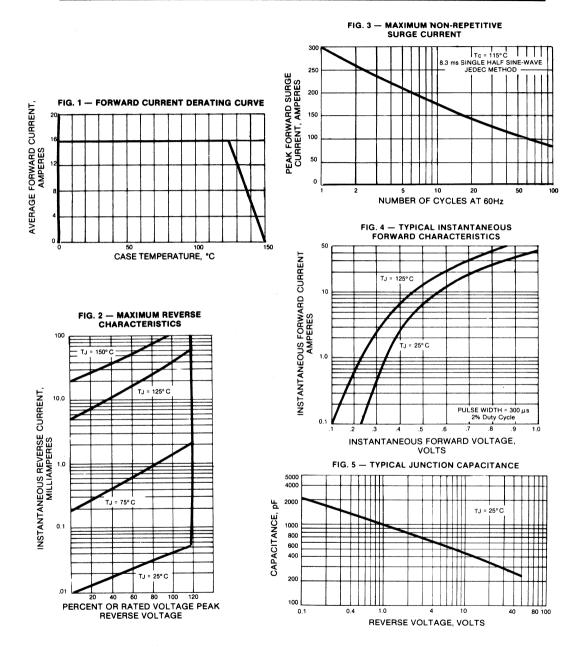
Dimensions in inches and (millimeters)

 Plastic package has Underwriters Laboratory Flammability Classifications 94V-O.

- Metal to silicon rectifier, majority carrier conduction
- ◆ Low power
- loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds/.25", (6.35mm) from case
- Guard Ring for transient protection

MECHANICAL DATA

Case: TO-220 Molded Plastic Terminals: Solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Weight: .08 ounces, 2.24 gram


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

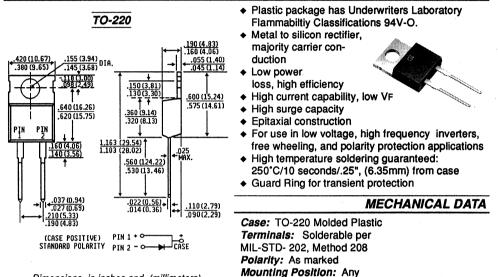
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	MBR1635	MBR1645	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Working Peak Reverse Voltage	VRWM	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at T_{C} = 125°C	I(AV)	16.0		Amps
Peak Repetitive Forward Current, Square Wave 20 KHz, 50% Duty Cylce at $T_C = 125^{\circ}C$	IFSM	32.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (2.0μs, 1KHz)	IRSM	1.0		Amps
Voltage Rate of Change, (rated V _R)	dv/dt	1000		V/µs
Maximum Forward Voltage(Note 1) I _F =16A, T _C =125 [•] C I _F = 16A, T _C = 25 [•] C	VF VF	0.57 0.63		Volts Volts
Maximum Instantaneous Reverse Current at Peak Reverse Voltage T_{C} = 125°C (Note 1)	lR	40		mA
Maximum Instantaneous Reverse Current at Peak Reverse Voltage $T_{C} = 25^{\circ}C$	IR	0.2		mA
Maximum Thermal Resistance, Junction to Case	RejC	1.5		.c\M
Maximum Operating Junction Temperature	Tj	-65 to	+175	.c
Maximum Storage Temperature	Tstg	-65 to	+175	. .

NOTES:

1. Pulse Test Pulse Width 300 µs, Duty Cycle 2%.

RATINGS AND CHARACTERISTIC CURVES MBR1635 AND MBR1645



MBR1650 AND MBR1660

SCHOTTKY RECTIFIER

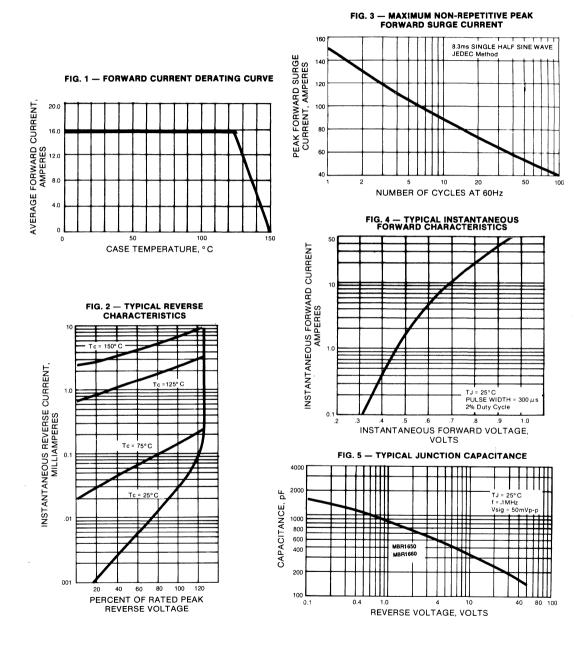
VOLTAGE RANGE - 50 and 60 Volts CURRENT - 16 Amperes

FEATURES

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Weight: .08 ounces, 2.24 gram


Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

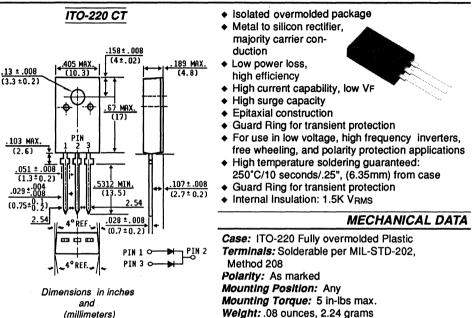
	SYMBOLS	MBR1650	MBR1660	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum RMS Voltage	VRMS	35	42	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current see Fig. 1	I(AV)	16.0		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Maximum Instantaneous Forward Voltage Per Leg IF = 16A, Tc = 125°C (Note 2) IF = 16A, Tc = 25°C	VF	.65		Volts
Maximum Average Reverse Current at Tc = 25°C		1.0		
Rated DC Blocking Voltage per element Tc= 100°C	I _R	50.0		mA
Typical Thermal Resistance (Note 1)	ReJC	3.0		'C/W
Operating Temperature Range	Тс	-65 to +150		.c
Storage Temperature Range	Tstg	-65 te	o +150	.с

NOTES:

1. Thermal Resistance from Junction to Case.

2. 300 µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES MBR1650 AND MBR1660

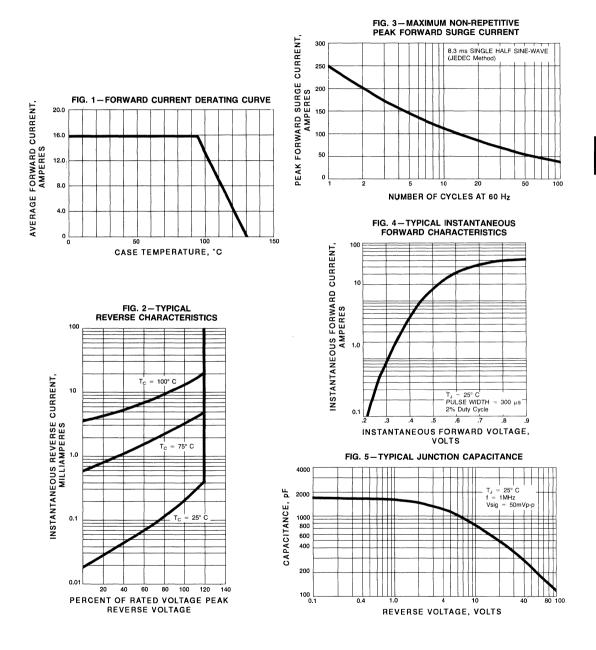


SBLF1630CT AND SBLF1640CT

SCHOTTKY RECTIFIER GE RANGE - 30 and 40 Volts CURRENT - 16 A

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 16 Amperes

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

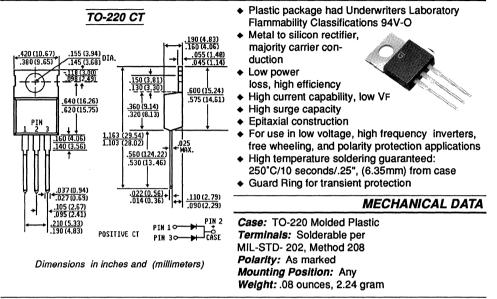

Ratings at 25 'C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	SBLF1630CT	SBLF1640CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current See Fig. 1	l(AV)	16	5.0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250		Amps
Maximum Instantaneous Forward Voltage Per Leg I _F = $8.0A$,Tc = 25 °C (Note 2)	VF	.55		Volts
Maximum Average Reverse Current at Tc = 25°C Rated DC Blocking Voltage per element Tc= 100°C	IR	1.0 50.0		mA
Typical Thermal Resistance (Note 1)	RejC	2.2		.CW
Operating Temperature Range	Tc	-40 to +125		.c
Storage Temperature Range	TSTG	-40 te	o+150	.c

NOTES:

1. Thermal Resistance from Junction to Case per element.

2 300 µs Pulse Width, 2% Duty Factor.


RATINGS AND CHARACTERISTIC CURVES SBLF1630CT AND SBLF1640CT

SBL1630CT AND SBL1640CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT -16 Amperes

FEATURES

CROSS REFERENCE GUIDE

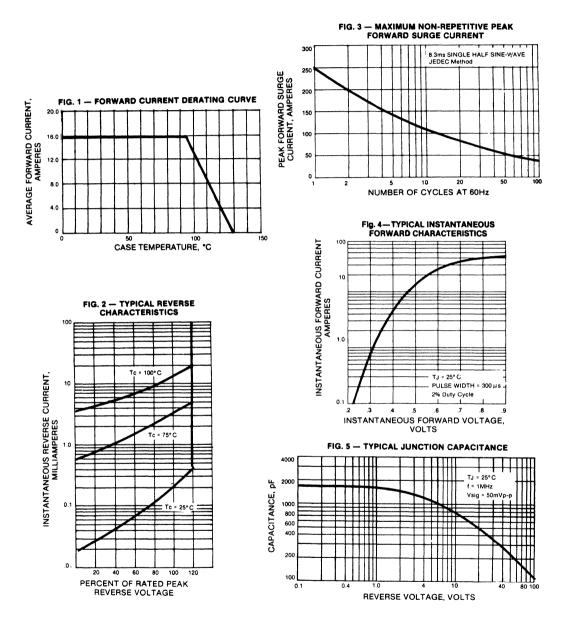
GI SBL1640CT ESAD82-004

SHINDENGEN

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

FUJI

Ratings at 25 'C ambient temperature unless otherwise specified. Resistive or inductive load.


For capacitive or inductive load, derate current by 20%.

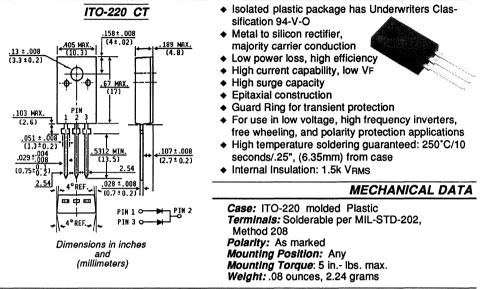
	SYMBOLS	SBL1630CT	SBL1640CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current at TC = 95°C	I(AV)	16.0		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250		Amps
Maximum Instantaneous Forward Voltage Per Leg I _F = $8.0A$,Tc = 25°C (Note 2)	VF	.55		Volts
Maximum Average Reverse Current at $Tc = 25^{\circ}C$ Rated DC Blocking Voltage per element $Tc = 100^{\circ}C$	IR	0.5 50.0		mA
Typical Thermal Resistance (Note 1)	RejC	3.0		•C/W
Operating Temperature Range	Тс	-40 to +125		.c
Storage Temperature Range	TSTG	-40 to+150		.C

NOTES:

1. Thermal Resistance from Junction to Case.

2 300 µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBL1630CT AND SBL1640CT

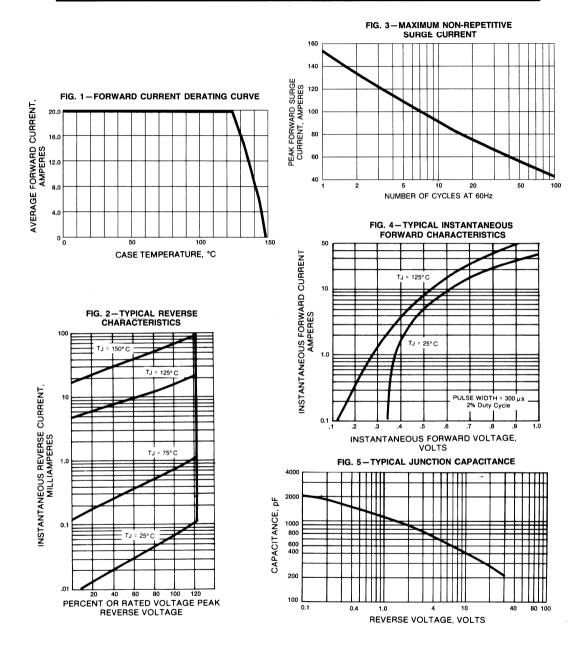

GENERAL INSTRUMENT

MBRF2035CT AND MBRF2045CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 20 Amperes

FEATURES

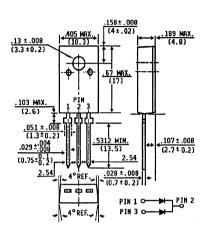

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	MBRF2035CT	MBRF2045CT	UNITS
Maximum Recurrent Peak Reverse Voltage		35	45	Volts
Working Peak Reverse Voltage	VRM	24.5	31.5	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current See Fig.1	I(AV)	20		Amps
Peak Forward Surge Current				
e.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRRM	1.0		Amps
Maximum Forward Voltage				
Per Leg IF = 10A, Tc = 125°C		0.	57	
I _F = 20A, T _C = 125°C	VF	0.72 0.84		Volts
$I_F = 20A, T_C = 25^{\circ}C$				
Maximum Instantaneous Reverse Current at				
Rated DC Blocking Voltage per element Tc = 125°C	IR	25		mA
Maximum Instantaneous Reverse Current at				
Rated DC Blocking Voltage T _C = 25°C	la la	0.1		mA
Voltage Rate of Change, (Rated V _R)	dv/dt	1000		Vµs
Typical Thermal Resistance (Note 1)	ReJC	2.2		.cw
Maximum Operating Junction Temperature	TJ	-65 to +150		.c
Maximum Storage Temperature	Tstg	-65 to	-65 to +175	

NOTES: 1. Thermal Resistance to Case per element. 2. 300 µs Pulse Width 300 µs, 2% Duty Factor. 3. 2.0 µs, 1KHz.

GENERAL INSTRUMENT


MBRF2050CT AND MBRF2060CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 20 Amperes

FEATURES

<u>ITO-220 CT</u>

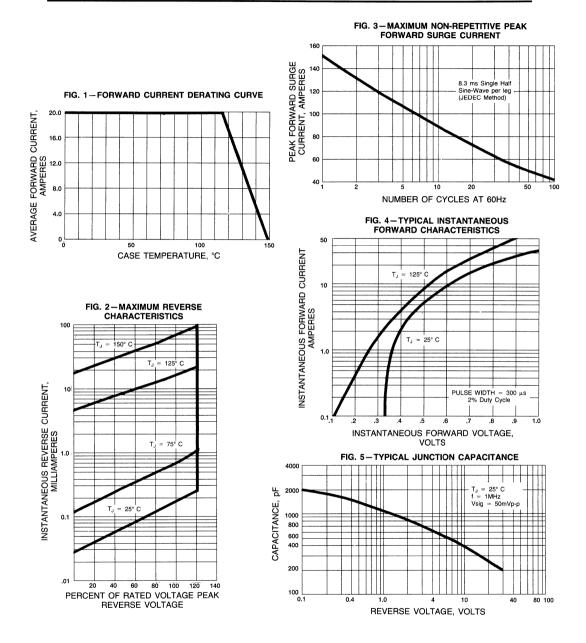
 Isolated plastic package has Underwriters Laboratory Flammability Classification 94 V-O

- Metal to silicon rectifier, majority carrier conduction
- ♦ Low power loss,
- high efficiency
 High current capability, low VF
- High current capability, low \
 High surge capacity
- Flight surge capacity
 Epitexial construction
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds/.25", (6.35mm) from case
- Guard Ring for transient protection
- Internal Insulation:1.5k VRMS

MECHANICAL DATA

Case: ITO-220 fully over molded Plastic Terminals: Lead solderable per MIL-STD-202 Method 208 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in-lbs max. Weight: .08 ounces, 2.24 grams

Dimensions in inches and (millimeters)


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTCS

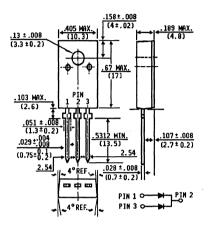
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	MBRF2050CT	MBRF2060CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Working Peak Reverse Voltage	VRM	50	60	Volts
Maximum DC Blocking Voltage	V _{DC}	50	60	Volts
Maximum Average Forward Rectified Current See Fig.1	l(AV)	20		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRRM	1.0		Amps
$ \begin{array}{ll} \mbox{Maximum Forward Voltage} \\ \mbox{Per Leg (Note 2)} & \mbox{I}_{F} = 10A, \mbox{T}_{C} = 125^{\circ}C \\ \mbox{I}_{F} = 20A, \mbox{T}_{C} = 125^{\circ}C \\ \mbox{I}_{F} = 20A, \mbox{T}_{C} = 25^{\circ}C \end{array} $	VF	0.	70 85 95	Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element $T_C = 125^{\circ}C$	IR	25		mA
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage $T_C = 25^{\circ}C$	IR	o	.1	mA
Voltage Rate of Change, (Rated V _R)	dv/dt	1000		V/µs
Typical Thermal Resistance (Note 1)	ReJC	2.2		.c\M
Maximum Operating Junction Temperature	Tj	-65 to +150		°C
Maximum Storage Temperature	Tstg	-65 to	+175	.c

NOTES: 1. Thermal Resistance Junction to Case.

2. 300 µs Pulse Width 300 us, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES MBRF2050CT AND MBRF2060CT


MBRF2090CT AND MBRF20100CT

SCHOTTKY RECTIFIER

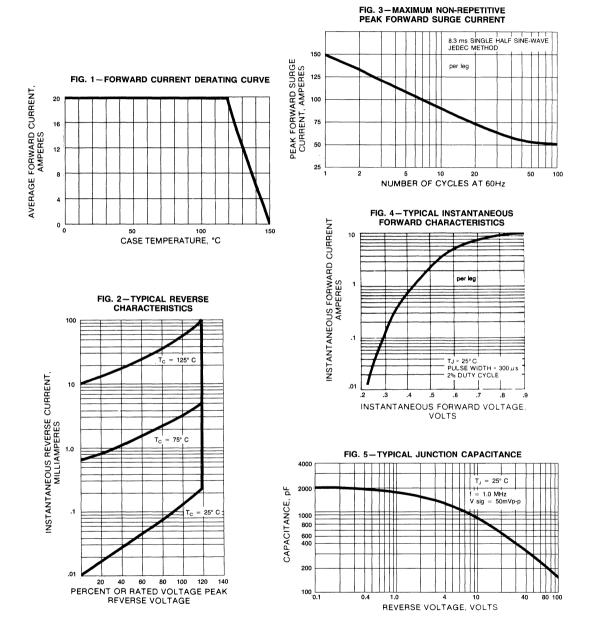
VOLTAGE RANGE -90 and 100 Volts **CURRENT -** 20 Amperes

FEATURES

ITO-220CT

Dimensions in inches and (millimeters)

 Isolated plastic package has Underwriters Laboratory Flammability Classifications 94V-O

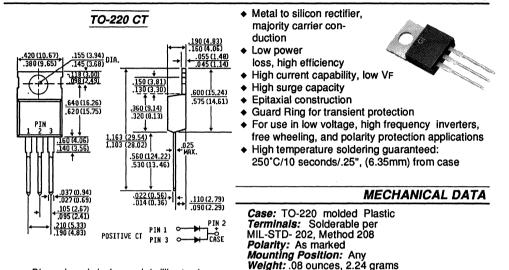

- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters. free wheeling, and polarity protection applications
- Guard Ring for transient protection ٠
- Internal Insulation: 1.5k VBMS

MECHANICAL DATA

Case: ITO-220 Molded Plastic Terminals: Solderable per MIL-STD- 202. Method 208 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - Ibs. max. Weight: .08 ounces, 2.24 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

	SYMBOLS	MBRF2090CT	MBRF20100CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	90	100	Volts
Working Peak Reverse Voltage	VRMS	64	71	Volts
DC Blocking Voltage	VDC	90	100	Volts
Maximum Average Forward Rectified Current See Fig.1	l(AV)	20		Amps
Peak Repetitive Forward Current , (Square Wave 20 KHz) at T _C = 125°C	IFSM	40		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (2.0us, 1KHz)	IRSM	1.0		Amps
Voltage Rate of Change, dv/dt (rated V _R)	V/µs	1000		V/µs
Maximum Forward Voltage (Note 1)				
IF = 10A, Tc = 25°C		0.	80	
I _F = 10A, T _C = 125°C		0.	70	
I _F = 20A, T _C = 125°C	VF	0.	85	Volts
I _F = 20A, T _C = 25°C		0.95		
Maximum Instantaneous Reverse Current at				
Peak Reverse Voltage T _C = 125 C (Note 1)	I _R	25.0		mA
Peak Reverse Voltage T _C = 25°C	I _R	0.1		mA
Maximum Thermal Resistance,				
Junction to Case per element	Rejc	2.2		·c/W
Maximum Operating Junction Temperature	Tc	-65 to +150		.c
Maximum Storage Temperature	TSTG	-65 to +175		.c


RATINGS AND CHARACTERISTIC CURVES MBRF2090CT AND MBRF20100CT

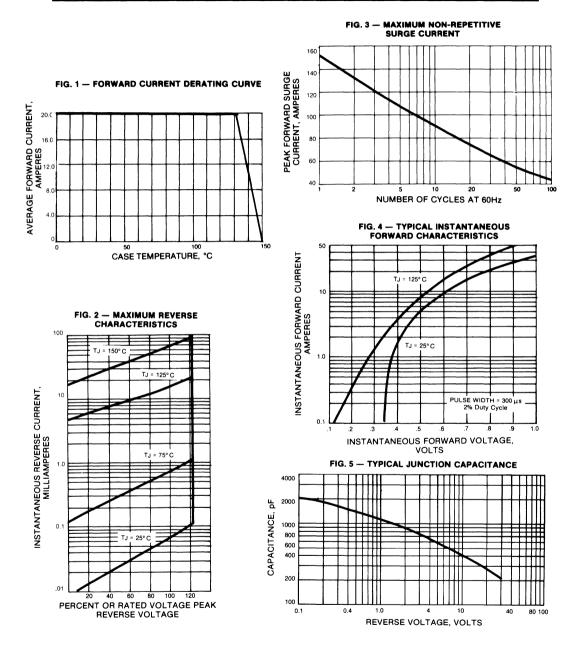
MBR2035CT AND MBR2045CT

SCHOTTKY RECTIFIER VOLTAGE RANGE - 35 and 45 Volts CURRENT - 20 Amperes

FEATURES

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

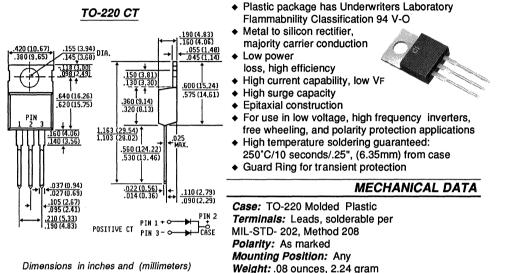
	SYMBOLS	MBR2035CT	MBR2045CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Working Peak Reverse Voltage	VRM	24.5	31.5	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current See Fig.1	l(AV)	20		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRRM	1.0		Amps
$ \begin{array}{ll} \mbox{Maximum Forward Voltage} \\ \mbox{Per Leg (Note 2)} & I_F = 10A, \ T_C = 125^{\circ}C \\ & I_F = 20A, \ T_C = 125^{\circ}C \\ & I_F = 20A, \ T_C = 25^{\circ}C \end{array} $	VF	0.57 0.72 0.84		Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element $T_C = 125^{\circ}C$	IR	15		mA
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage T _C = 25°C	IR	c	.1	mA
Voltage Rate of Change, (Rated V _R)	dv/dt	1000		Vµs
Typical Thermal Resistancec (Note 1)	Røjc	2.0		.CW
Maximum Operating Junction Temperature	TJ	-65 to +150		.с
Maximum Storage Temperature	TSTG	-65 to	o +175	.c

NOTES: 1. Thermal Resistance Junction to CASE.

2. 300 µs Pulse Width 300 us, 2% Duty Factor.

3. 2.0 µs, 1KHz.

RATINGS AND CHARACTERISTIC CURVES MBR2035CT AND MBR2045CT



MBR2050CT AND MBR2060CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 20 Amperes

FEATURES

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

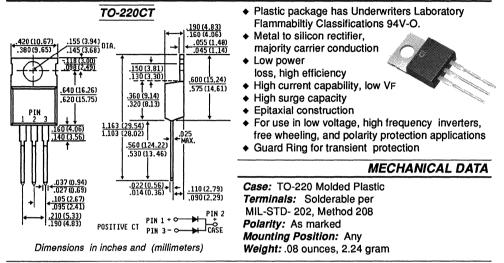
	SYMBOLS	MBR2050CT	MBR2060CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Working Peak Reverse Voltage	VRM	50	60	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current See Fig.1	I(AV)	20		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRRM	1.0		Amps
$ \begin{array}{ll} \mbox{Maximum Forward Voltage} \\ \mbox{Per Leg} & (\mbox{Note 2}) & \mbox{I}_F = 10\mbox{A}, \mbox{T}_C = 125\mbox{`C} \\ \mbox{I}_F = 20\mbox{A}, \mbox{T}_C = 125\mbox{`C} \\ \mbox{I}_F = 20\mbox{A}, \mbox{T}_C = 25\mbox{`C} \\ \end{array} $	VF	0.70 0.85 0.95		Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element $T_C = 125^{\circ}C$	l _R	15		mA
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage $T_{C} = 25^{\circ}C$	IR	0	.1	mA
Voltage Rate of Change, (Rated V _R)	dv/dt	1000		Vµs
Typical Thermal Resistance (Note 1)	Rejc	2.0		.CW
Maximum Operating Junction Temperature	TJ	-65 to +150		.c
Maximum Storage Temperature	TSTG	-65 to	o +175	.c

NOTES: 1. Thermal Resistance to CASE.

2. 300 µs Pulse Width 300 us, 2% Duty Factor.

3. 2.0 µs, 1KHz.

RATINGS AND CHARACTERISTIC CURVES MBR2050CT AND MBR2060CT



MBR2090CT AND MBR20100CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE -90 and 100 Volts CURRENT - 20 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	MBR2090CT	MBR20100CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	90	100	Volts
Working Peak Reverse Voltage	VRWM	90	100	Volts
DC Blocking Voltage	VDC	90	100	Volts
Maximum Average Forward Rectified Current at Tc= 125°C	l(AV)	2	:0	Amps
Peak Repetitive Forward Current , (Square Wave 20 KHz) at T _C = 125°C	IFSM	4	0	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	1.	50	Amps
Peak Repetitive Reverse Surge Current				
(2.0us, 1KHz)	IRSM	1.0		Amps
Voltage Rate of Change, dv/dt (rated V _R)	V/µs	1000		V/µs
$\begin{array}{l} \mbox{Maximum Forward Voltage (Note 1)} \\ I_F = 10A, \ T_C = 25^{\circ}C \\ I_F = 10A, \ T_C = 125^{\circ}C \\ I_F = 20A, \ T_C = 125^{\circ}C \\ I_F = 20A, \ T_C = 25^{\circ}C \end{array}$	VF			Volts
Maximum Instantaneous Reverse Current at Peak Reverse Voltage T _C = 125°C (Note 1) Peak Reverse Voltage T _C = 25°C	l _R I _R	150 0.15		mA mA
Maximum Thermal Resistance, Junction to Case	Røjc	2	2.0	•c/M
Maximum Operating Junction Temperature	Тс	-65 te	o +150	.c
Maximum Storage Temperature	TSTG	-65 to	o +175	.c

NOTES: 1. Pulse Test Pulse Width 300 µs, Duty Cycle 2%.

RATINGS AND CHARACTERISTIC CURVES MBR2090CT AND MBR20100CT

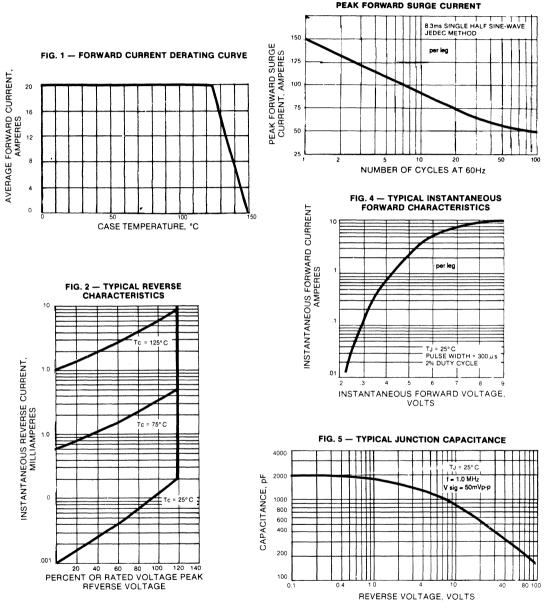


FIG. 3 - MAXIMUM NON-REPETITIVE

GENERAL INSTRUMENT

SBLF2030PT AND SBLF2040PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 20 Amperes

FEATURES

 Dual rectifier construction, positive center-tap Isolated plastic package has Underwriters ٠ Laboratory Flammability Classifications 94V-O Metal to silicon rectifier. majority carrier con-.06 (1 duction Low power loss. PER high efficiency 10° 🗋 High current capability, low VF 35⁰ High surge capacity

- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds/.17", (4.3mm) lead lengths at 5 lbs. (2.3kg) tension
- Internal Insulation: 1.5k VRMs

MECHANICAL DATA

Case: ITO-3P Molded Plastic Terminals: Lead solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - Ib. max. Weight: .47 ounces, 13.2 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	SBLF2030PT	SBLF2040PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current See Fig. 1	I(AV)	20.0		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250		Amps
Maximum Instantaneous Forward Voltage Per Leg I _F = 10.0, Tc = 25°C (Note 2)	VF	.55		Volts
Maximum Average Reverse Current at Tc = 25°C		1.0		
Rated DC Blocking Voltage per element Tc= 100°C	IR	50.0		mA
Typical Thermal Resistance (Note 1)	ReJC	2.0		.c\M
Operating and Storage Temperature Range	Tc,Tstg	-40 to	+125	.c

NOTES:

1. Thermal Resistance from Junction to Case per element.

ITO-3P

.217(5.5)

.807

.670(17.0) .630(16.0)

224 (5.70)

Dimensions in inches and

(millimeters)

4ºREF

.2°REF

1.17(2.8) .095(2.4)

.028 (.70)

582 (14.8)

PI

-138(3.50) 122(3.10) DIA

.800(20.2)

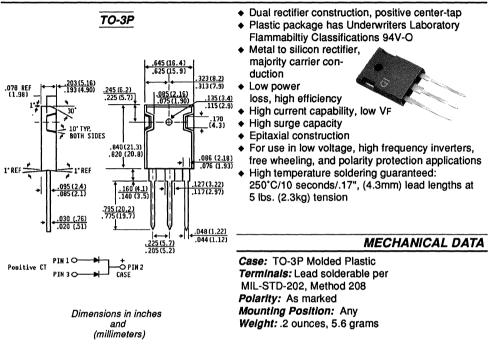
.043(1.1

224 (5.70

PIN 1 O

PIN 3 O

RATINGS AND CHARACTERISTIC CURVES SBLF2030PT AND SBLF2040PT



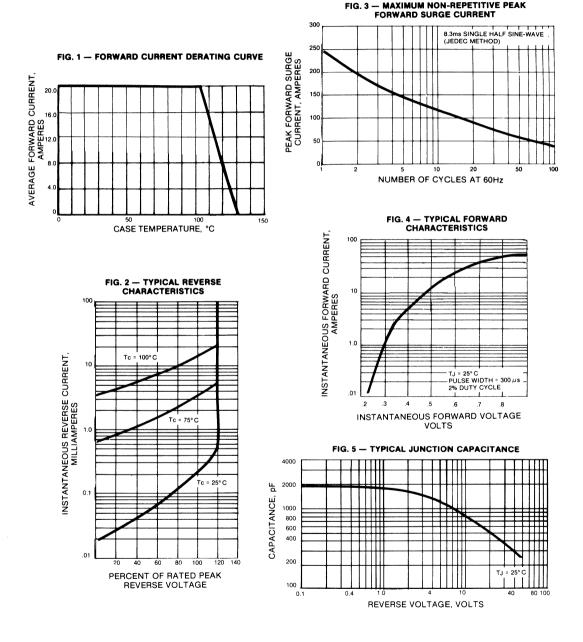
SBL2030PT AND SBL2040PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 20 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

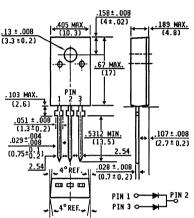

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

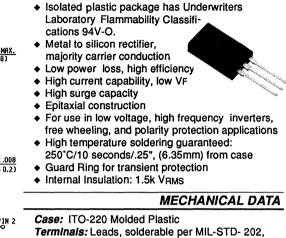
	SYMBOLS	SBL2030PT	SBL2040PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current See Fig. 1	I(AV)	20	0.0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	2	50	Amps
Maximum Instantaneous Forward Voltage Per Leg IF = 8.0, TC = 25°C (Note 2)	VF	.55		Volts
Maximum Average Reverse Current at Tc = 25°C		1.0		
Rated DC Blocking Voltage per element Tc= 100°C	IR	50.0		mA
Typical Thermal Resistance (Note 1)	Rejc	1.5		.c\M
Operating and Storage Temperature Range	Tc,Tstg	-40 to	o +125	.c

NOTES:

1. Thermal Resistance from Junction to Case.

RATINGS AND CHARACTERISTIC CURVES SBL2030PT AND SBL2040PT


MBRF2535CT AND MBRF2545CT


SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 30 Amperes

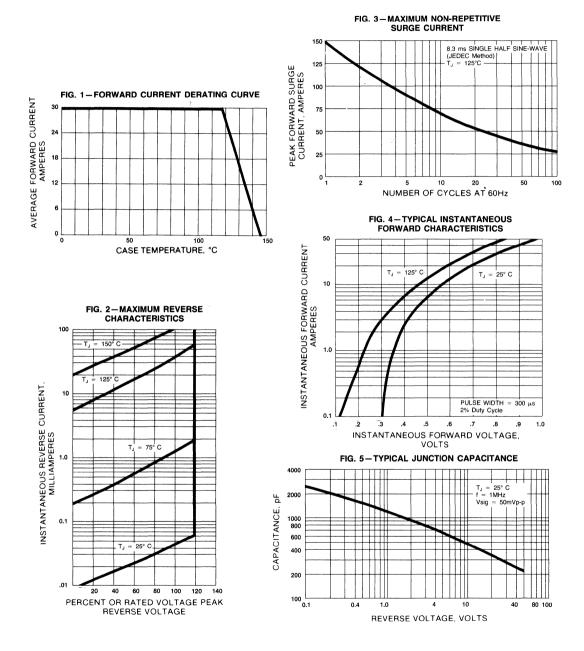
FEATURES

ITO-220 CT

Method 208 *Polarity:* As marked *Mounting Position:* Any *Mounting Torque:* 5 in.- lb. max. *Weight:* .08 ounces, 2.24 grams

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

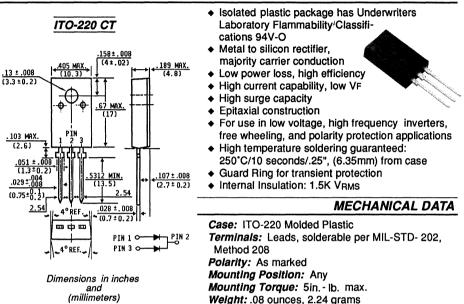

	SYMBOLS	MBRF2535CT	MBRF2545CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Working Peak Reverse Voltage	VRWM	24.5	31.5	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current see Fig. 1	I(AV)	3	0	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	1:	50	Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRRM	1.0		Amps
Maximum Forward Voltage Per Leg IF = 30A, T _C = 125°C (Note 2) I _F = 30A, T _C = 25°C	VF		73	Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage (Note 2) T _C = 125°C	İR	4	10	mA
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage $T_C = 25^{\circ}C$	IR	0	.2	mA
Typical Thermal Resistance, (Note 1)	Rejc	0.2		.cw
Voltage Rate of Change, (Rated V _R)	dv/dt	10	000	V/us
Maximum Operating Junction Temperature	Тс	-65 to	+ 150	. .
Maximum Storage Temperature	TSTG	-65 to	o +175	.c

NOTES: 1. Thermal Resistance Junction to CASE per element.

2. 300 µs Pulse Width, 2%, Duty Factor

3. 2.0µs, 1KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF2535CT AND MBRF2545CT

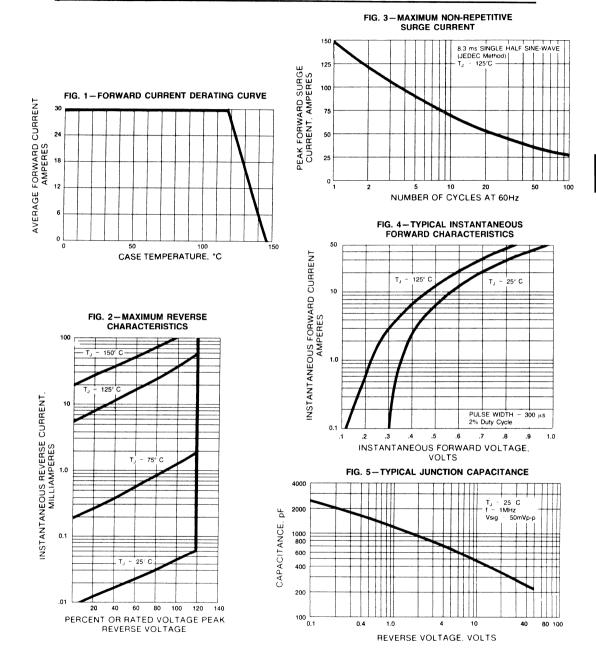

GENERAL INSTRUMENT

MBRF2550CT AND MBRF2560CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 30 Amperes

FEATURES



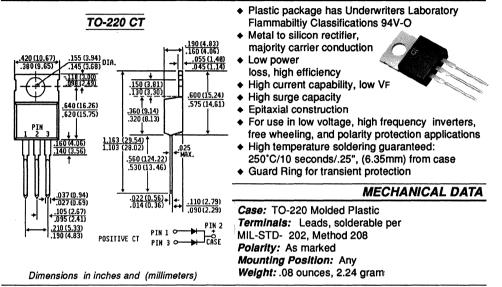
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	MBRF2550CT	MBRF2560CT	UNITS
Maximum Recurrent Peak Reverse Voitage	VRRM	50	45	Volts
Working Peak Reverse Voltage	VRMS	35	42	Volts
Maximum DC Blocking Voltage	VDC	60	60	Volts
Maximum Average Forward Rectified Current see Fig. 1	I(AV)	30	0.0	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150 1.0		Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRRM	1.0		Amps
Maximum Forward Voltage Per Leg I _F = 15.0A, T _C = 125°C (Note 2) I _F = 15.0A, T _C = 25°C	VF	.65 .75		Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage(Note 2) T _C = 125°C	IR			mA
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage T _C = 25°C	IR	1.0		mA
Typical Thermal Resistance, (Note 1)	Rejc	1.8		•C/W
Voltage Rate of Change, (Rated V _R)	dv/dt	10	1000	
Maximum Operating Junction Temperature	Tc	-65 to	+ 150	.c
Maximum Storage Temperature	Tstg	-65 to	o +175	.c

NOTES: 1. Thermal Resistance Junction to Case per element. 2. 300 µs Pulse Width, 2%, Duty Factor 3. 2.0 µs, 1KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF2550CT AND MBRF2560CT



MBR2535CT AND MBR2545CT

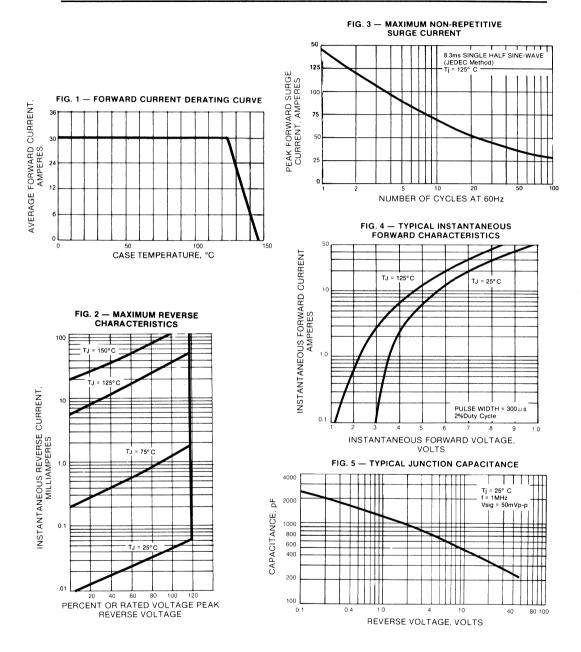
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 30 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	MBR2535CT	MBR2545CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Working Peak Reverse Voltage	VRWM	24.5	31.5	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current			·	
see Fig. 1	I(AV)	3	0	Amps
Peak Forward Surge Current				
8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRRM	1.0		Amps
Maximum Forward Voltage				
Per Leg I _F = 30A, T _C = 125 C (Note 2)		0.	73	
I _F = 30A, T _C = 25°C	VF	0.	82	Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Volltage(Note 2) T _C = 125 °C	IR	0.82 40		mA
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage $T_{C} = 25^{\circ}C$	IR	0.2		mA
Typical Thermal Resistance, (Note 1)	RejC	1	.5	°C/W
Voltage Rate of Change, (Rated V _R)	dv/dt	10	000	V/us
Maximum Operating Junction Temperature	Tc	-65 to	+ 150	. C
Maximum Storage Temperature	TSTG	-65 to	o +175	.c

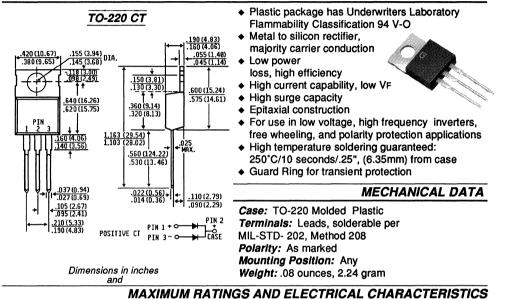
NOTES:

1. Thermal Resistance Junction to CASE.

2. 300 us Pulse Width, 2%, Duty Factor

3. 2.0us, 1KHz.

RATINGS AND CHARACTERISTIC CURVES MBR2535CT AND MBR2545CT


GENERAL INSTRUMENT

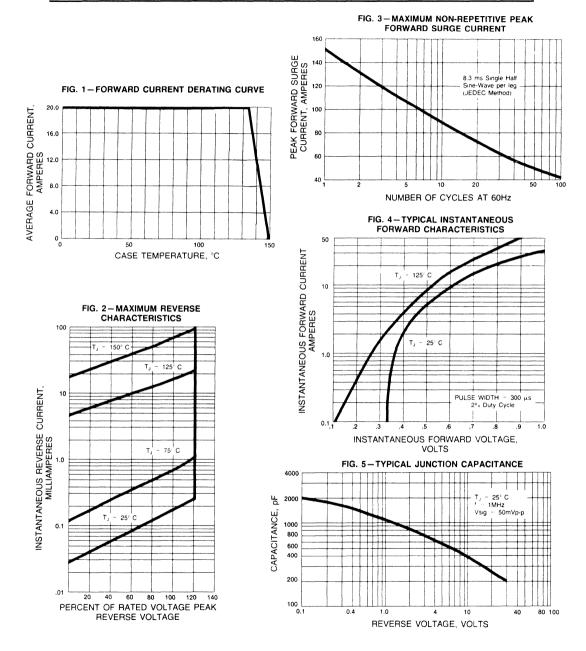
MBR2050CT AND MBR2060CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 20 Amperes

FEATURES

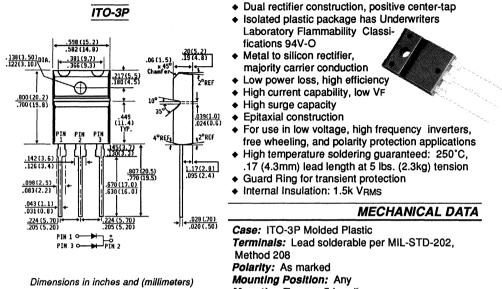
Ratings at 25'C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	MBR2050CT	MBR2060CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Working Peak Reverse Voltage	VRM	50	60	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current See Fig.1	l(AV)	2	0	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRRM	1.0		Amps
$ \begin{array}{ll} \mbox{Maximum Forward Voltage} \\ \mbox{Per Leg} & (\mbox{Note 2}) & \mbox{I}_F = 10\mbox{A}, \mbox{T}_C = 125\mbox{`C} \\ \mbox{I}_F = 20\mbox{A}, \mbox{T}_C = 125\mbox{`C} \\ \mbox{I}_F = 20\mbox{A}, \mbox{T}_C = 25\mbox{`C} \\ \end{array} $	VF	0.	70 85 95	Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per element $T_C = 125^{\circ}C$	IR	15		mA
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage $T_{C} = 25^{\circ}C$	IR	0.1		mA
Voltage Rate of Change, (Rated V _R)	dv/dt	1000		Vµs
Typical Thermal Resistance (Note 1)	ReJC	2	.0	.c/M
Maximum Operating Junction Temperature	TJ	-65 to	+150	.c
Maximum Storage Temperature	T _{STG}	-65 to	+175	.c

NOTES: 1. Thermal Resistance to Case.

2. 300 µs Pulse Width 300 us, 2% Duty Factor.

3. 2.0 µs, 1KHz.


GENERAL INSTRUMENT

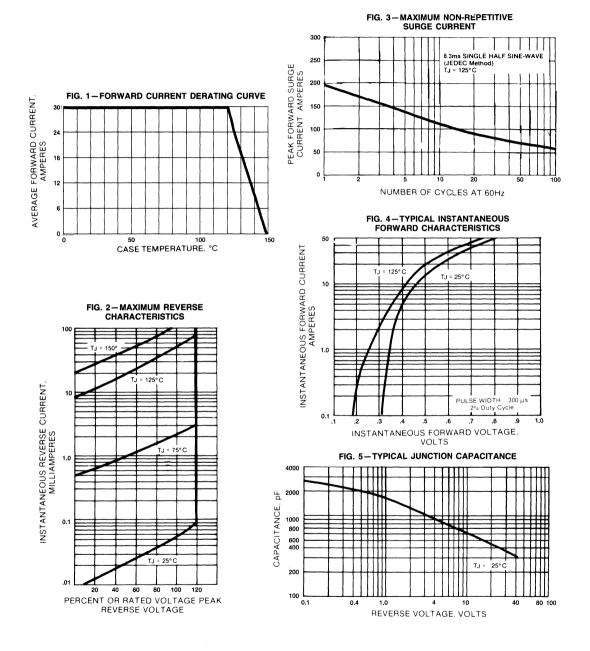
MBRF3035PT AND MBRF3045PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 30 Amperes

FEATURES

Mounting Torque: 5 in. - Ib. max. *Weight:* .47 ounces, 13.2 grams

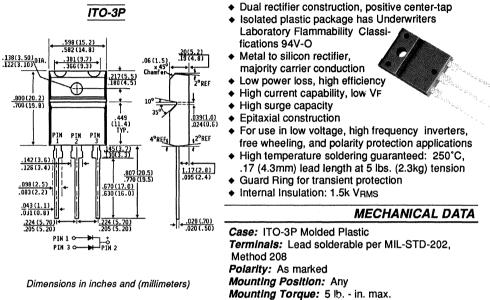

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	MBRF3035PT	MBRF3045PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum RMS Voltage	VRMS	25	32	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current (see Fig. 1)	I(AV)	3	0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	20	00	Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRSM	2.0		Amps
Maximum Instantaneous Forward Voltage Per Leg IF = 20A, TC = 125°C (Note 2) IF = 30A, TC =125°C IF 30A, TC = 25°C	VF	0.60 0.72 0.76		Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Tc =25°C Voltage per element Tc = 125°C	IR	1 .	.0 60	mA
Maximum Thermal Resistance (Note 1)	RejC	1	.7	.cw
Voltage Rate of Change, (Rated V _R)	dv/dt	10	000	V/us
Maximum Operating Temperature Range	Tc	-65 to	o +150	. .
Maximum Storage Temperature Range	Tstg	-65 to	+175	.c

NOTES: 1. Thermal Resistance from Junction to Case per element.

RATINGS AND CHARACTERISTIC CURVES MBRF3035PT AND MBRF3045PT

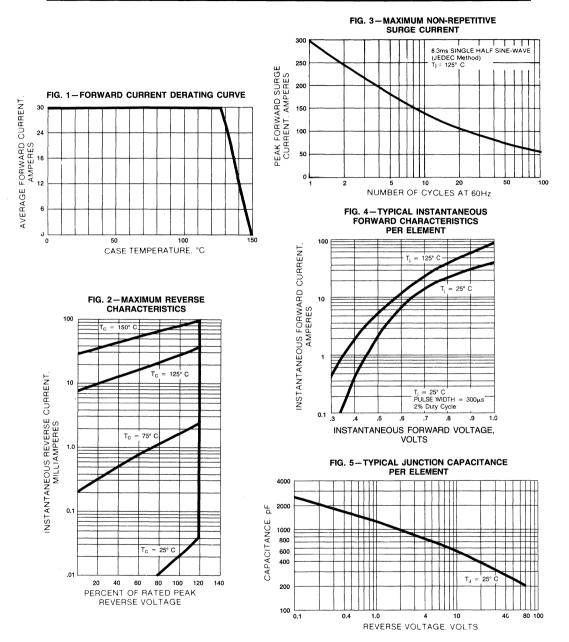

GENERAL INSTRUMENT

MBRF3050PT AND MBRF3060PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 30 Amperes

FEATURES


Weight: .47 ounces, 13.2 grams

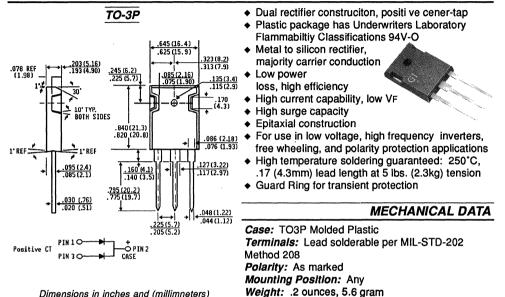
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	MBRF3050PT	MBRF3060PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum RMS Voltage	VRMS	35	42	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current (see Fig. 1)	I(AV)	3	30	
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	3	00	Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRSM	2.0		Amps
Maximum Instantaneous Forward Voltage Per Leg IF = 15A, TC = 125°C IF 15A, TC = 25°C	VF	1	5 75	Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Tc =25°C Voltage per element Tc= 125°C	l _R	-	.0 00	mA
Maximum Thermal Resistance (Note 1)	Røjc	1	.7	.cw
Voltage Rate of Change, (Rated VR)	dv/dt	1000		V/us
Maximum Operating Temperature Range	Tc	-65 to	-65 to +150	
Maximum Storage Temperature Range	TSTG	-65 to	o +175	.c

NOTES: 1. Thermal Resistance from Junction to Case per element.

RATINGS AND CHARACTERISTIC CURVES MBRF3050PT AND MBRF3060PT


GENERAL INSTRUMENT

MBR3035PT AND MBR3045PT

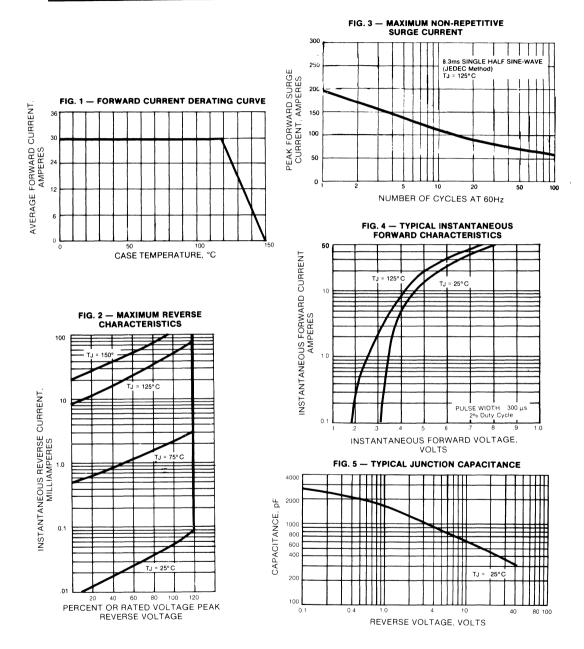
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts **CURRENT -** 30 Amperes

FEATURES

Dimensions in inches and (millimneters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

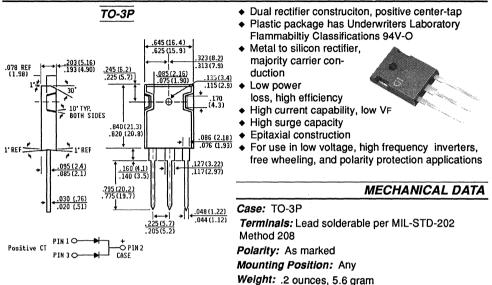

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%

•				
	SYMBOLS	MBR3035PT	MBR3045PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum RMS Voltage	VRMS	24.5	31.5	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current see Fig. 1	I(AV)	3	0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	20	00	Amps
Peak Repetitive Reverse Surge Current (Note 3)	IRSM	2.0		Amps
Maximum Instantaneous Forward Voltage Per Leg I _F = 20A, Tc = 125°C (Note 2) I _F = 30A, Tc = 125°C I _F = 30A, Tc = 25°C	VF	0.60 0.72 0.76		Volts
Maximum Instantaneous Reverse Current at $Tc = 25^{\circ}C$ Rated DC Blocking Voltage pert element $Tc = 125^{\circ}C$	IR	1.0 60		mA
Maximum Thermal Resistance (Note 1)	RejC	1.4		.c\M
Voltage Rate of Change, (Rated V _R)	dv/dt	1000		V/us
Maximum Operating Temperature Range	Тс	-64 to	+150	.c
Maximum Storage Temperature Range	T _{STG}	-65 to	+175	.c

NOTES:

1. Thermal Resistance from Junction to Case.

2. Measured at 1MHz and applied reverse voltage of 4.0 volts.


RATINGS AND CHARACTERISTIC CURVES MBR3035PT AND MBR3045PT

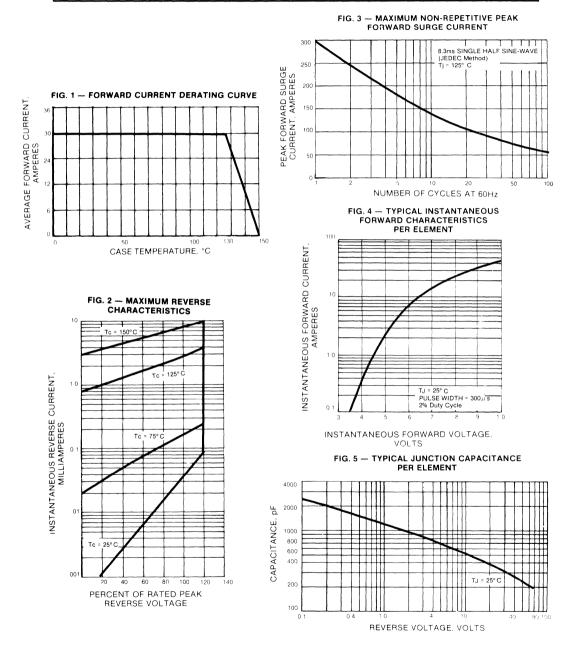
MBR3050PT AND MBR3060PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 30 Amperes

FEATURES

Dimensions in inches and (millimneters)


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

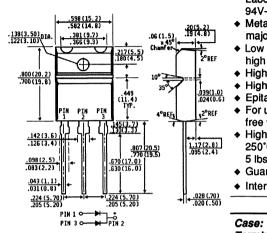
Ratings at 25 'C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	MBR3050PT	MBR3060PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum RMS Voltage	VRMS	35	42	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current see Fig. 1	I(AV)	3	0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	300		Amps
Maximum Instantaneous Forward Voltage Per Leg I _F = 20A, Tc = 25'C (Note 2) I _F = 20A, TC = 25'C	VF	.65 .75		Volts
Maximum Average Reverse Current at $Tc = 25^{\circ}C$ Rated Peak Reverse Voltage (Note 3) $Tc = 100^{\circ}C$	IR	-	.0 00	mA
Typical Thermal Resistance (Note 1)	Røjc	2	.0 /	.cw
Maximum Operating Temperature Range	Тс	-65 to	+ 150	.c
Maximum Storage Temperature Range	TSTG	-65 to	o +175	.c

NOTES:

1. Thermal Resistance from Junction to Case.

RATINGS AND CHARACTERISTIC CURVES MBR3050PT AND MBR3060PT


SBLF3030PT AND SBLF3040PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 30 Amperes

FEATURES

ITO-3P

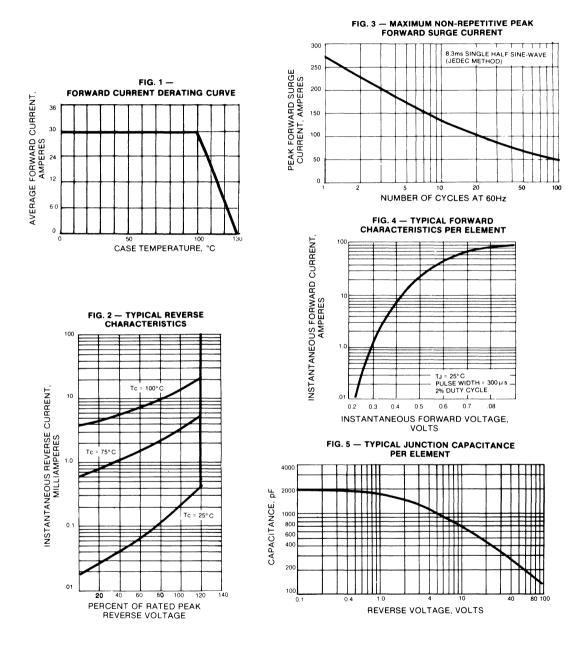
Dimensions in inches and (millimeters)

- Dual rectifier construction, positive center-tap
- Isolated Plastic package has Underwriters Laboratory Flammability Classifications 94V-O
- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability. low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds,17 (4.3mm) lead lengths at 5 lbs., (2.3kg) tension
- Guard Ring for transient protection
- Internal Insulation: 1.5k VRMS

MECHANICAL DATA

Case: ITO-3P Molded Plastic Terminals: Lead solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - lb. max. Weight: .47 ounces, 13.2 ounces

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

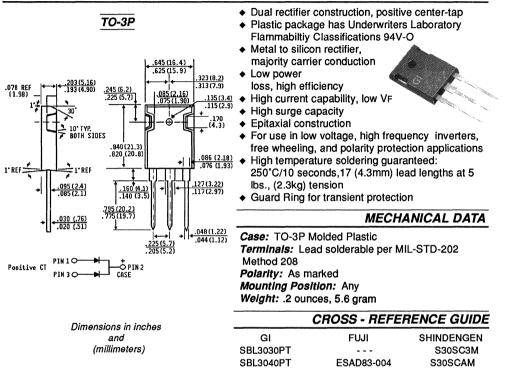

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	SBLF3030PT	SBLF3040PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current See Fig. 1	I(AV)	30		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	275		Amps
Maximum Instantaneous Forward Voltage Per Leg I _F = 15.0A,Tc = 25°C (Note 2)	VF	.55		Volts
Maximum Average Reverse Current at Tc = 25°C		1.0		
Rated DC Blocking Voltage per element Tc = 100°C	IR	75		mA
Maximum Thermal Resistance (Note 1)	RejC	2	2.5	
Operating and Storage Temperature Range	Tc,Tstg	-40 to	+125	.c

NOTES:

1. Thermal Resistance from Junction to Case per element.

RATINGS AND CHARACTERISTIC CURVES SBLF3030PT AND SBLF3040PT

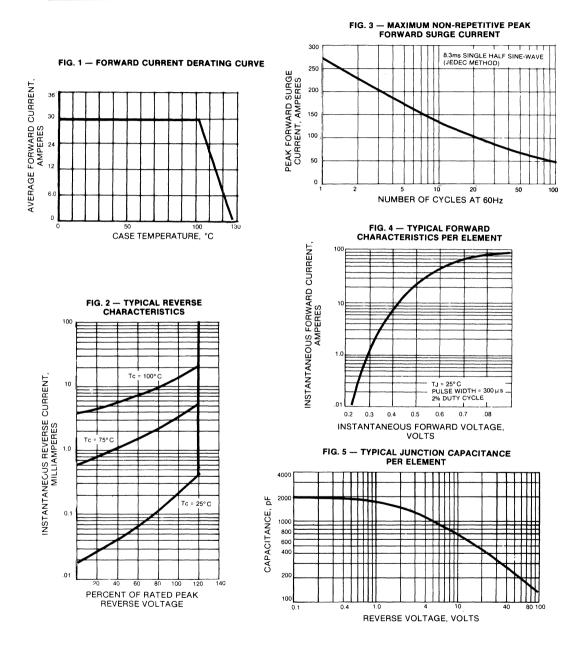


SBL3030PT AND SBL3040PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 30 Amperes

FEATURES

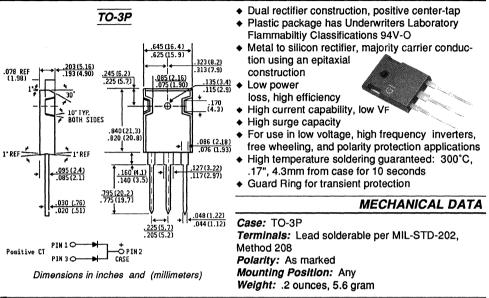

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTIC S

Ratings at 'C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	SBL3030PT	SBL3040PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current at Tc = 100°C	I(AV)	30		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	275		Amps
Maximum Instantaneous Forward Voltage Per Leg IF 5 =15, Tc = 25°C (Note 2)	VF	.55		Volts
Maximum Average Reverse Current at Tc = 25°C Rated DC Blocking Voltage per element Tc = 100°C	IR	1.0 75		mA
Maximum Thermal Resistance (Note 1)	RejC	2.0		.c\M
Operating and Storage Temperature Range	T _C ,T _{STG}	-40 to +125		.с

NOTES:

1. Thermal Resistance from Junction to Case.

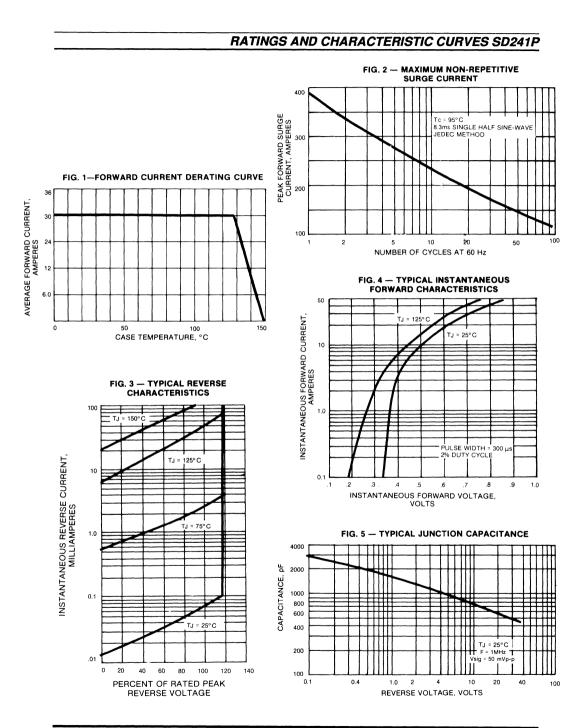


RATINGS AND CHARACTERISTIC CURVES SBL3030PT AND SBL3040PT

SD241P

SCHOTTKY RECTIFIERS VOLTAGE RANGE - 45 Volts CURRENT - 30 Amperes

FEATURES

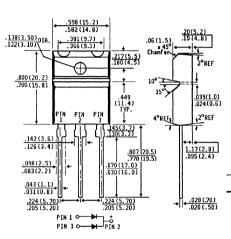

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%

	SYMBOLS	SD241P	UNITS
Maximum Recurrent Peak Reverse Voltage at T _C = 25'C	VRRM	45	Volts
Maximum Blocking Voltage at T _C = 25°C	VDC	45	Volts
Maximum Average Forward Rectified Current see Fig. 1	I(AV)	30	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	400	Amps
Peak Repetitive Reverse Surge Current (2.0us, 1KHz)	IRSM	2.0	Amps
Maximum Instantaneous Forward Voltage Pulse Width = 300 us, Duty Cycle = 1% IF = 10A, T _C = 125°C IF = 20A, T _C = 125°C	VF	.47 .60	Volts
Maximum Instantaneous Reverse Current Pulse Width = 400 us, Duty Cycle = 1% at 35V T _C = 25°C T _C = 125°C	IR	25	mA
Maximum Voltage Rate of Change at 35V	dv/dt	1000	V/µs
Package Thermal Resistance (Note 1)	Røjc	1.4	.c
Maximum Operating TemperatureRange	Tc	-65 to +150	.c
Maximum Storage Temperature	Tstg	-65 to +175	.c

NOTES:

1. Thermal Resistance Junction of Case.


MBRF4035PT AND MBRF4045PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 40 Amperes

FEATURES

ITO-3P

Dimensions in inches and (millimeters)

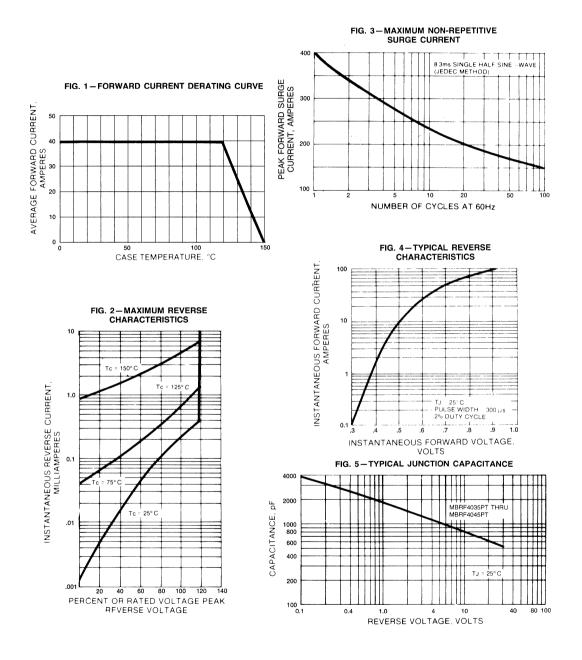
• Dual rectifier constrution, positive center-tap

- Isolated plastic package has Underwriters Laboratory Flammability Classifications 94V-O
- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- Guard Ring for transient protection
- ◆ Internal Insulation: 1.5k VRMS

MECHANICAL DATA

Case: ITO-3P

Terminals: Leads solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - Ib. max. Weight: .47 ounces, 13.2 ounces


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

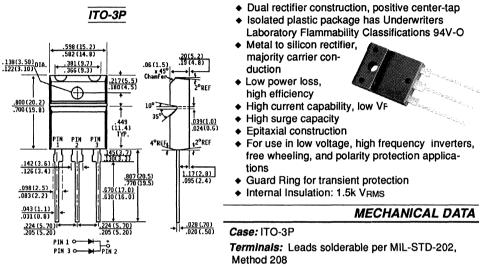
Ratings at 25 °C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive or inductive load, derate current by 20%

	SYMBOLS	MBRF4035PT	MBRF4045PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum RMS Voltage	VRMS	25	32	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current See Fig.1	I(AV)	40		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	400		Amps
Maximum Instantaneous Forward Voltage Per leg I _F = 20A, T _C = 125°C (Note 2) I _F = 20A, T _C = 25°C	VF	.60 .70		Volts
Maximum Average Reverse Current at Tc = 25°C Rated Peak Reverse Voltage (Note 2) Tc = 100°C	IR	10 100		mA
Typical Thermal Resistance (Note 1)	RejC	1.6		.CW
Maximum Operating Temperature Range	Tc	-65 to +150		.c
Maximum Storage Temperature Range	TSTG	-65 to +175		.c

NOTES: 1. Thermal Resistance from Junction to Case per element. 2. 300 μs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES MBRF4035PT AND MBRF4045PT



MBRF4050PT AND MBRF4060PT

SCHOTTKY RECTIFIER

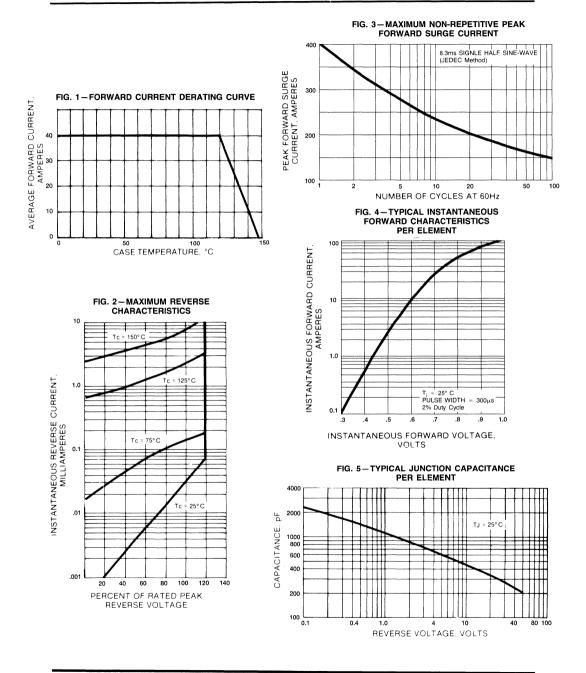
VOLTAGE RANGE - 50 and 60 Volts CURRENT - 40 Amperes

FEATURES

Dimensions in inches and (millimeters)

Terminals: Leads solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any

Mounting Torque: 5 in. - lb. max. *Weight:* .47 ounces. 13.2 ounces


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

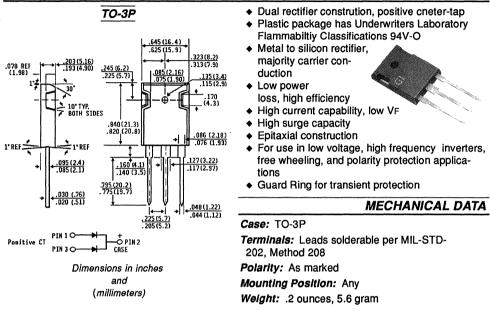
Ratings at 25 °C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%

	SYMBOLS	MBRF4050PT	MBRF4060PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum RMS Voltage	VRMS	35	42	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current See Fig.1	I(AV)	40		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	400		Amps
Maximum Instantaneous Forward Voltage Per leg I _F = 20A, T _C = 125°C (Note 2) I_F = 20A, TC = 25°C	VF	.70 .80		Volts
Maximum Average Reverse Current at Tc = 25°C Rated Peak Reverse Voltage (Note 2) Tc = 100°C	IR	10 100		mA
Typical Thermal Resistance (Note 1)	ReJC	1.6		•C/W
Maximum Operating Temperature Range	Tc	-65 to +150		.с
Maximum Storage Temperature Range	Tstg	-65 to	-65 to +175	

NOTES:

1. Thermal Resistance from Junction to Case per element.

RATINGS AND CHARACTERISTIC CURVES MBRF4050PT AND MBRF4060PT

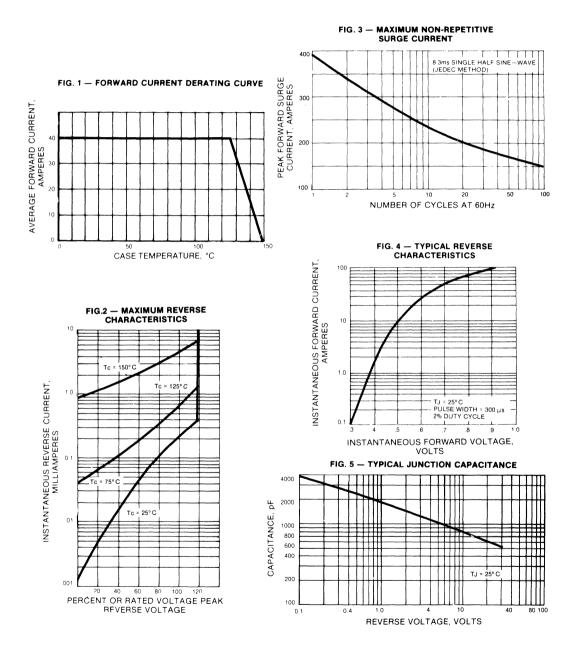


MBR4035PT AND MBR4045PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 40 Amperes

FEATURES


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

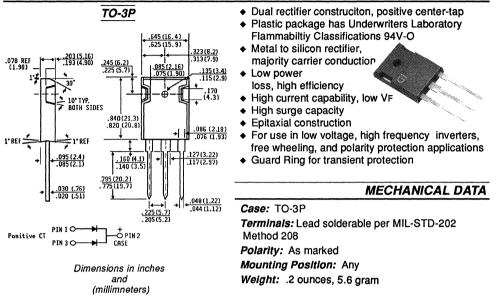
Ratings at 25 'C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%

	SYMBOLS	MBR4035PT	MBR4045PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum RMS Voltage	VRMS	24.5	31.5	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at Tc = 125°C	I(AV)	40		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	4	00	Amps
Maximum Instantaneous Forward Voltage at $T_c = 125^{\circ}C$ 20.0 A, $T_c = 25^{\circ}C$ (Note 2)	VF	.60 .70		Volts
Maximum Average Reverse Current at Tc = 25°C Rated Peak Reverse Voltage (Note 3) Tc = 100°C	IR	10 100		mA
Typical Thermal Resistance (Note 1)	RØJC	1.4		.CW
Maximum Operating Temperature Range	Tc	-65 to +150		.c
Maximum Storage Temperature Range	TSTG	-65 to +175		.c

NOTES:

1. Thermal Resistance from Junction to Case.

RATINGS AND CHARACTERISTIC CURVES MBR4035PT AND MBR4045PT

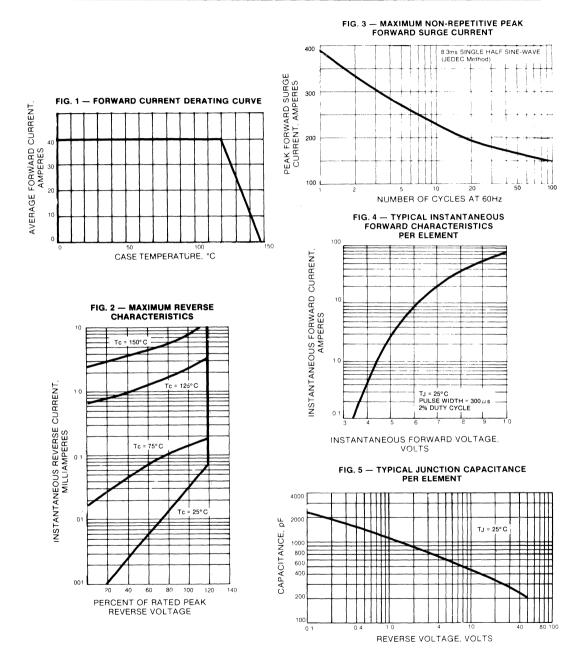


MBR4050PT AND MBR4060PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 40 Amperes

FEATURES


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive or inductive load, derate current by 20%.

	SYMBOLS	MBR4050PT	MBR4060PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum RMS Voltage	VRMS	35	42	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current at $T_{C} = 120^{\circ}C$	I(AV)	40		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	400		Amps
Maximum Instantaneous Forward Voltage Per Leg I _F = 20A, Tc = 25°C (Note 2) I_F = 20A, TC = 25°C	VF	.70 .80		Volts
Maximum Average Reverse Current at $Tc = 25^{\circ}C$ Rated Peak Reverse Voltage (Note 3) $Tc = 100^{\circ}C$	IR	10 100		mA
Typical Thermal Resistance (Note 1)	Røjc	1.4		.CW
Maximum Operating Temperature Range	Tc	-65 to + 150		. C
Maximum Storage Temperature Range	T _{STG}	-65 to	+175	.c

NOTES:

1. Thermal Resistance from Junction to Case.

RATINGS AND CHARACTERISTIC CURVES MBR4050PT AND MBR4060PT

· · ·

.

FAST EFFICIENT RECTIFIERS

1 AMPERE TO 30 AMPERES

SEE NEW ISOLATED PACKAGES

4

-182-

	LOW CURRENT AXIAL FAST EFFICIENT RECTIFIERS									
TYPE	FE1A thru FE1D	Gl1001 thru Gl1004	FE2A thru FE2D	BYV27-50 thru BYV27-200	Gl1101 thru Gl1104	FE3A thru FE3D	BYV28-50 thru BYV28-200	FE5A thru FE5D	FE6A thru FE6D	Gl1301 thru Gl1304
PACKAGE	DO-204AP	DO-204AP	DO-240AP	DO-204AP	DO-204AP	G4	G4	G4	G4	G4
lo(A)	1	1	2	2	2.5	3.0	3.5	5.0	6.0	6.0
VR=50(V)	FE1A	GI1001	FE2A	BYV27-50	GI1101	FE3A	BYV28-50	FE5A	FE6A	Gl1301
VR=100(V)	FE1B	Gi1002	FE2B	BYV27-100	GI1102	FE3B	BYV28-100	FE5B	FE6B	Gl1302
VR=150(V)	FE1C	Gl1003	FE2C	BYV27-150	GI1103	FE3C	BYV28-150	FE5C	FE6C	Gl1303
VR=200(V)	FE1D	GI1004	FE2D	BYV27-200	Gl1104	FE3D	BYV28-200	FE5D	FE6D	Gl1304
VR=300(V)										
VR=400(V)										
VR=500(V)										
VR=600(V)										
VR=800(V)										
VR=1000(V)										

LOW CURRENT AXIAL FAST EFFICIENT RECTIFIERS

TYPE	EGP10A thru EGP10D	EGP20A thru EGP20D	EGP30A thru EGP30D	EGP50A thru EGP50D	UF4001 thru UF4007	UF5400 thru UF5408
PACKAGE	DO-41	DO-15	GP-20	GP-20	DO-41	DO-201AD
lo(A)	1.0	2.0	3.0	5.0	1.0	3.0
VR=50(V)	EGP10A	EGP20A	EGP30A	EGP50A	UF4001	UF5400
VR=100(V)	EGP10B	EGP20B	EGP30B	EGP50B	UF4002	UF5401
UV=150(V)	EGP10C	EGP20C	EGP30C	EGP50C		
VR=200(V)	EGP10D	EGP20D	EGP30D	EGP50D	UF4003	UF5402
VR=300(V)	EGP10F	EGP20F	EGP30F	EGP50F		UF5403
VR=400(V)	EGP10G	EGP20G	EGP30G	EGP50G	UF4004	UF5404
UV=500(V)					UF5005	UF5405
VR=600(V)					UF5006	UF5406
VR=800(V)					UF5007	UF5407
VR=1000(V)						

CONT.

-184-

MEDIUM CURRENT FAST EFFICIENT RECTIFIERS

SINGLE RECTIFIERS

TYPE	FESF8AT thru FESF8JT	FES8AT thru FES8JT	Gi1401 thru Gi1404	BYW29-50 thru BYW29-200	FESF16AT thru FESF16JT	FES16AT thru FES16JT
PACKAGE	ITO-220	TO-220	TO-220	TO-220	ITO-220	TO-220
IO(A)	8	8	8	8	16	16
VR=50(V)	FESF8AT	FESBAT	Gl1 401	BYW29-50	FESF16AT	FES16AT
VR=100(V)	FESF8BT	FES8BT	Gi1 402	BYW29-100	FESF16BT	FES16BT
VR=150(V)	FESF8CT	FES8CT	Gi1 403	BYW29-150	FESF16CT	FES16CT
VR=200(V)	FESF8DT	FES8DT	Gi1 404	BYW29-200	FESF16DT	FES16DT
VR=300(V)	FESF8FT	FES8FT			FESF16FT	FES16FT
VR=400(V)	FESF8GT	FES8GT			FESF16GT	FES16GT
VR=500(V)	FESF8HT	FESSHT			FESF16HT	FES16HT
VR=600(V)	FESF8JT	FES8JT			FESF16JT	FES16JT

MEDIUM CURRENT FAST EFFICIENT RECTIFIERS

DUAL RECTIFIERS

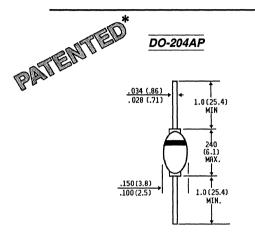
1

TYPE	FEPF6AT THRU FEPF6DT	FEP6AT THRU FEP6DT	FEPF16AT THRU FEPF16JT	FEP16AT THRU FEP16JT	Gi2401 THRU Gi2404	BYV32-50 THRU BYV32-200	FEPF30AP THRU FEPF30JP	FEP30AP THRU FEP30JP
PACKAGE	ITO-220CT	TO-220CT	ITO-220CT	TO-220CT	TO-220CT	TO-220CT	ITO-3P	TO-3P
IO(A)	6	6	16	16	16	18	30	30
VR=50(V)	FEPF6AT	FEP6AT	FEPF16AT	FEP16AT	GI2401	BYV32-50	FEPF30AP	FEP30AP
VR=100(V)	FEPF6BT	FEP6BT	FEPF16BT	FEP16BT	GI2402	BYV32-100	FEPF30BP	FEP30BP
VR=150(V)	FEPF6CT	FEP6CT	FEPF16CT	FEP16CT	GI2403	BYV32-150	FEPF30CP	FEP30CP
VR=200(V)	FEPF6DT	FEP6DT	FEPF16DT	FEP16DT	Gl2404	BYV32-200	FEPF30DP	FEP30DP
VR=300(V)			FEPF16FT	FEP16FT			FEPF30FP	FEP30FP
VF=400(V)			FEPF16GT	FEP16GT			FEPF30GP	FEP30GP
VR=500(V)			FEPF16HT	FEP16HT			FEPF30HP	FEP30HP
VR=600(V)			FEPF16JT	FEP16JT			FEPF30JP	FEP30JP

-186-

GLASS PASSIVATED FAST EFFICIENT RECTIFIERS

1.0 AMPERE TO 6.0 AMPERES


FE1A THRU FE1D

GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 200 Volts

Current - 1.0 Amperes

FEATURES

* Brazed-lead assembly is covered by

by Patent No.3,752,701 of 1973

Glass passivated cavity-free junction Superfast recovery times-epitaxial construction

- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed
- Low Leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Unitized glass hemetically sealed Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Welaht: 0.02 ounce, 0.6 gram

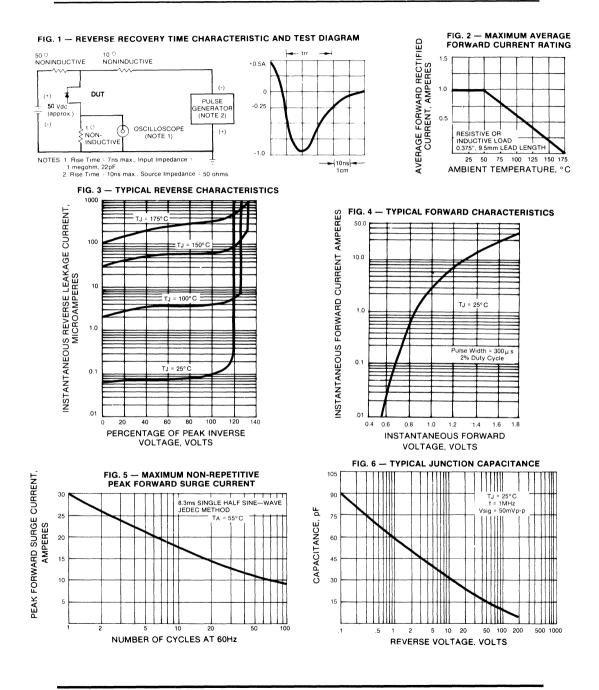
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

Patent No. 3,930,306 of 1976 and glass composition

Dimensions in inches and (millimeters)

	SYMBOLS	FE1A	FE1B	FE1C	FE1D	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100 150 200			Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at TL = 75°C	l(AV)	1.0 30.0				Amps
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method) T _A = 55°C	IFSM	30.0 0.95				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF		0.9	95	Volts	
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR		2. 50	-		μA
Maximum Reverse Recovery Time (Note 1)	T _{RR}		35	.0		Ns
Typical Junction Capacitance (Note 2)	CJ		45.0			pf
Typical Thermal Resistance (Note 3)	RØJA	65				•C/W
Operating and Storage Temperature Range	TJ, TSTG		-65 to +	-175		.c

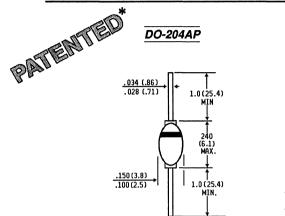

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths.

RATINGS AND CHARACTERISTIC CURVES FE1A THRU FE1D


GI1001 THRU GI1004

GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 200 Volts

Volts Current - 1.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

Glass passivated cavity-free junction

- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed
- Low Leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Unitized glass hemetically sealed *Terminals:* Axial leads, solderable per MIL-STD-202, Method 208

Polarity: Color band denotes cathode

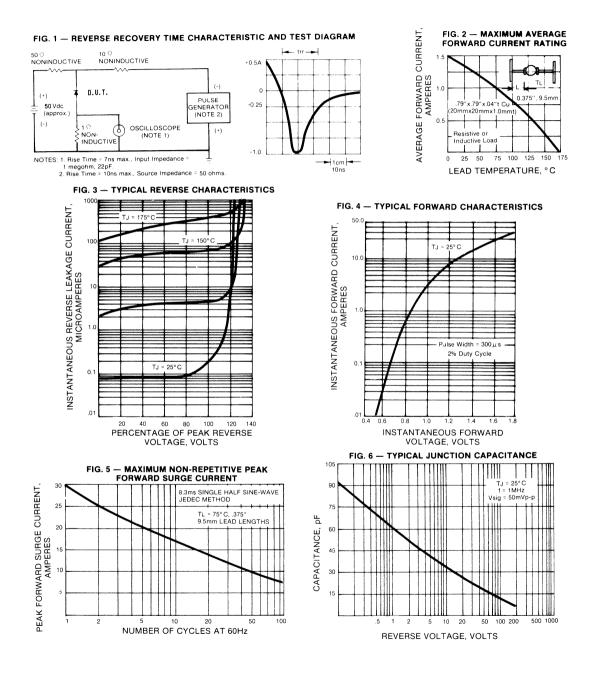
Mounting Position: Any *Weight:* 0.02 ounce, 0.6 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, dera	te current by 20%.
---------------------------	--------------------

	SYMBOLS	GI1001	GI1002	GI1003	GI1004	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_L = 75^{\circ}C$	l(AV)		1.	0		Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	1.0 30.0 .975 2.0				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF		.9	75		Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR		2. 5			μА
Maximum Reverse Recovery Time (Note 1)	T _{RR}		2	5		Ns
Typical Junction Capacitance (Note 2)	CJ		45	.0		pf
Typical Thermal Resistance (Note 3)	RØJL		20			.c\M
Operating and Storage Temperature Range	Tj,Tstg		-65 to -	150 200 0 /5 0 2 5 .0 0		.c

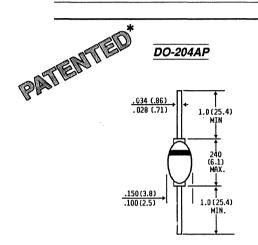

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

2. Measured at 1.0 MHZ and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths.

RATINGS AND CHARACTERISTIC CURVES GI1001 THRU GI1004



FE2A THRU FE2D

GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 200 Volts Current - 2.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

Glass passivated cavity-free junction

- Superfast recovery times-epitaxial construction
- ◆ Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed
- Low Leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Unitized glass hemetically sealed Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.02 ounce, 0.6 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	FE2A	FE2B	FE2C	FE2D	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_L = 75^{\circ}C$	I(AV)		2	.0		Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load (JEDEC Method) T _A = 55°C	IFSM	2.0 50.0 0.95 2.0 50.0				Amps
Maximum Instantaneous Forward Voltage at 2.0A	VF		0.95			
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR		_			μΑ
Maximum Reverse Recovery Time (Note 1)	T _{RR}		35	5.0		Ns
Typical Junction Capacitance (Note 2)	CJ		45	5.0		pf
Typical Thermal Resistance (Note 3)	RØJA		60			.C/M
Operating and Storage Temperature Range	Tj,Tstg		-65 to -	+175		.c

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES FE2A THRU FE2D FIG. 2 - MAXIMUM AVERAGE FIG. 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM FORWARD CURRENT RATING AVERAGE FORWARD RECTIFIED CURRENT, AMPERES trr -50 ☉ NONINDUCTIVE 10.1 3.0 NONINDUCTIVE +0.5A 2.5 1-2.0 D.U.T. 0 (\cdot) PULSE 50 Vdc -0.25 1.5 approx (NOTE 2) 1.0 10 OSCILLOSCOPE (+) BESISTIVE OF S NON-(NOTE 1) 0.5 INDUCTIVE LOAD INDUCTIVE 0.375", 9.5mm LEAD LENGTH -10 NOTES: 1 Rise Time 7ns max., Input Impedance 25 50 75 100 125 150 175 - 10ns 1 megohm, 22pF. 2 Rise Time - 10ns max., Source Impedance - 50 ohms. 1cm AMBIENT TEMPERATURE, °C FIG. 3 — TYPICAL REVERSE CHARACTERISTICS 1000 ^{50.0} — TYPICAL FORWARD CHARACTERISTICS INSTANTANEOUS FORWARD CURRENT AMPERES 175° C INSTANTANEOUS REVERSE LEAKAGE CURRENT, тı TJ = 150° 100 10.0 MICROAMPERES 10 =т. 100° C = 1.0 1.0 TJ = 25°C Pulse Width = 300 µ s 0.1 2% Duty Cycle TJ = 25°C 0.1 01 01 40 60 80 100 120 140 20 0.4 0.6 1.2 1.6 1.8 0.8 1.0 1.4 PERCENTAGE OF PEAK INVERSE INSTANTANEOUS FORWARD VOLTAGE, VOLTS VOLTAGE, VOLTS FIG. 6 - TYPICAL JUNCTION CAPACITANCE 105 FIG. 5 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT AMPERES PEAK FORWARD SURGE CURRENT 90 60 8.3ms SINGLE HALF SINE-WAVE JEDEC METHOD ТJ TJ = 25°C f = 1MHz Н 75 50 TA = 55°C CAPACITANCE. Vsig = 50mVp 11111 40 60 45 30 30 20 10 15 500 1000 180 1 2 5.10 20 50 100 REVERSE VOLTAGE, VOLTS 200 20 50 .1 1 2 5 .5 NUMBER OF CYCLES AT 60Hz

BYV27-50 THRU BYV27-200

GLASS PASSIVATED FAST EPITAXIAL RECTIFIERS Current - 2.0 Amperes

Voltage - 50 to 200 Volts

1.0 (25.4)

240

(6.1) MAX.

1.0 (25.4)

MTN.

FEATURES

- Glass passivated cavity-free junction Superfast recovery times-epitaxial construction Low forward voltage, high current capability
 - Capable of meeting environmental standards of MIL-S-19500
 - Hermetically sealed
 - Low Leakage
 - High surge capability
 - High temperature metallurgically bonded, no compression contacts
 - High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3ka) tension

MECHANICAL DATA

Case: Unitized glass hermetically sealed Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.02 ounce, 0.6 gram

Dimensions in inches and (millimeters)

DO-204AP

.034 (.86)

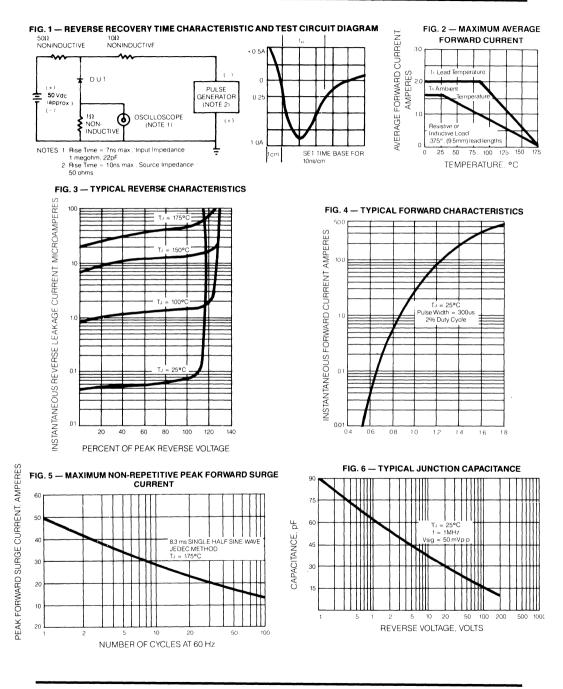
.150 (3.8)

100(2.5)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	BYV27-50	BYV27-100	BYV27-150	BYV27-200	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Reverse Avalanche Voltage at 100 µ A	Vрк	55	110	165	220	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _L = 85°C	I(AV)		2	105 140 150 200 165 220 0		Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load (JEDEC Method) T _A = 175 [•] C	IFSM		70 105 140 100 150 200 110 165 220 2.0 2.0 2.0 50.0 0.88 1.07 1.0 150.0 25.0 25.0 45.0 25.0			Amps
	VF					Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 165^{\circ}C$	IR					μΑ
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	T _{RR}		25	5.0		Ns
Typical Junction Capacitance (Note 2)	CJ		45	5.0		pf
Typical Thermal Resistance (Note 3)	RØJL		2	20		.c\M
Operating and Storage Temperature Range	TJ, TSTG		-65 to -	+175		.c

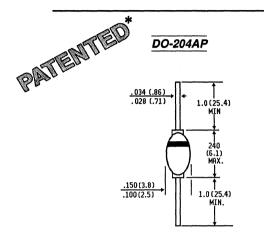

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths.

RATINGS AND CHARACTERISTIC CURVES BYV27-50 THRU BYV27-200



GI1101 THRU GI1104

GLASS PASSIVATED FAST EFFICIENT RECTIFIER Voltage - 50 to 200 Volts Current - 2.5 Amperes

FEATURES

- Glass passivated cavity-free junction
- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed
- Low Leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs.. (2.3kg) tension

MECHANICAL DATA

Case: Unitized glass hemetically sealed Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode

Mounting Position: Any *Weight:* 0.02 ounce, 0.6 gram

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

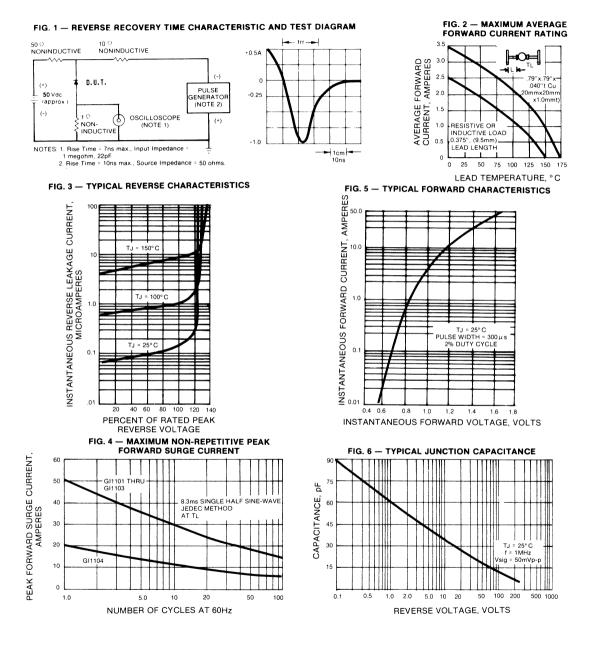
Ratings at 25 C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.

	SYMBOLS	GI1101	GI1102	GI1103	GI1104	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _L = 75°C	l(AV)		2.5	-	(Note 3) 2.0	Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		50		20	Amps
Maximum Instantaneous Forward Voltage at 2.0A	VF		.975		(Note 4) 1.25	Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR		2.0 50.0		10.0 200	μA
Maximum Reverse Recovery Time (Note 1)	TRR	,	25		50	Ns
Typical Junction Capacitance (Note 2)	С		45.0			pf
Typical Thermal Resistance (Note 5)	RØJL		20			.CW
Operating and Storage Temperature Range	TJ,TSTG		-65 to +17	5	-65 to +150	·c

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.


2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. T_L = 55 C, .375* (9.5mm) Lead Length.

4. IFM = 1.0ADC.

5. Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths.

RATINGS AND CHARACTERISTIC CURVES GI1101 THRU GI1104

FE3A THRU FE3D

GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 200 Volts

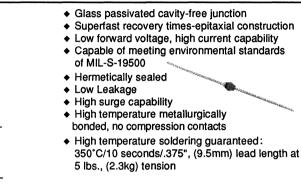
1.0 MIN.

(25.4)

.300'(7.6) MAX.

1.0 MIN.

(25.4)


G4

.180 (4.6)

.042 (1.07

Current - 3.0 Amperes

FEATURES

MECHANICAL DATA

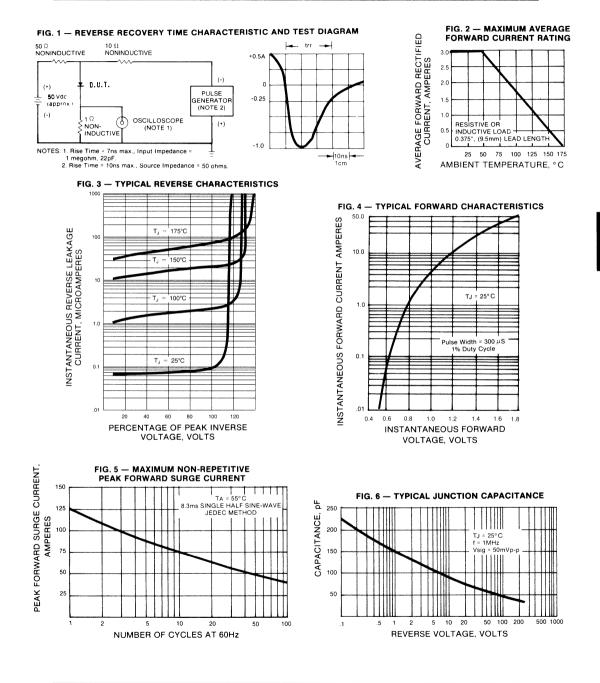
Case: Unitized glass hemetically sealed Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.037 ounce, 1.04 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

Dimensions in inches and (millimeters)

	SYMBOLS	FE3A	FE3B	FE3C	FE3D	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	I(AV)		3	.0		Amps
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method) T _A = 55°C	Ifsm		12	5.0		Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF		0.	95		Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR		-	.0 0.0		μΑ
Maximum Reverse Recovery Time (Note 1) T _J = 25°C	TRR		3	5.0		Ns
Typical Junction Capacitance (Note 2)	CJ		10	0.0		pf
Typical Thermal Resistance (Note 3)	Reja		£	55		.c/M
Operating and Storage Temperature Range	TJ,TSTG		-65 to	+175		.c

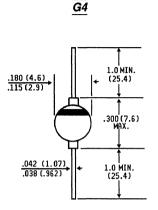

NOTES:

1. Reverse Recovery Test Conditions : $I_F = 0.5A$, $I_R = 1.0A$, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths.

RATINGS AND CHARACTERISTIC CURVES FE3A THRU FE3D



BYV28-50 THRU BYV28-200

GLASS PASSIVATED FAST EPITAXIAL RECTIFIERS Voltage - 50 to 200 Volts Current - 3.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

- Glass passivated cavity-free junction
- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed
- Low Leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

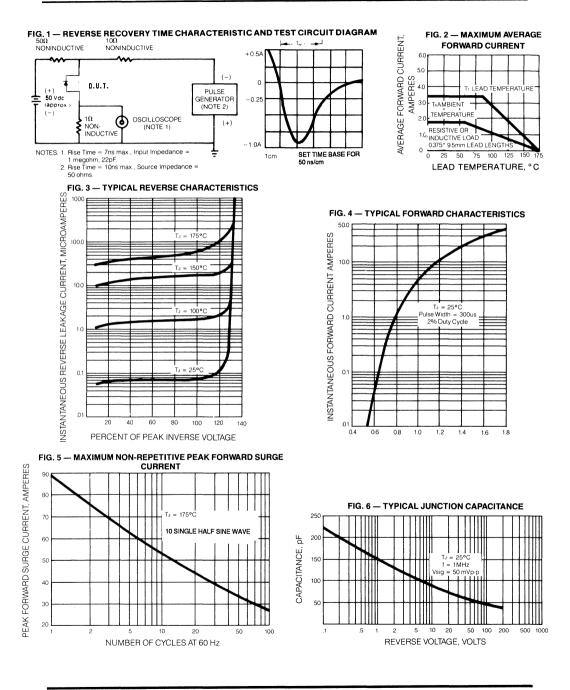
MECHANICAL DATA

Case: Unitized glass hemetically sealed Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.037 ounce, 7.04 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	BYV28-50	BYV28-100	BYV28-150	BYV28-200	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Reverse Avalanche Voltage at 100 μ A	Vрк	55	110	165	220	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _L = 85°C	I(AV)		3.	5		Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load (JEDEC Method) T _A = 175⁺C	IFSM		35 70 105 140 50 100 150 200			Amps
	VF			0 39 1 0		Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 165^{\circ}C$	1 _R			-		μA
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	T _{RR}		30	0.0		Ns
Typical Junction Capacitance (Note 2)	С		1(00		pf
Typical Thermal Resistance (Note 3)	RØJL		2	0		.c\M
Operating and Storage Temperature Range	TJ, TSTG		-65 to -	⊦175		.C

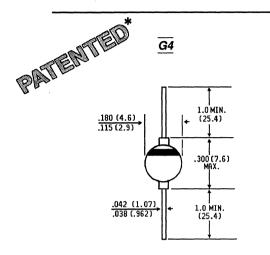

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths.

RATINGS AND CHARACTERISTIC CURVES BYV28-50 THRU BYV28-200



FE5A THRU FE5D

GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 200 Volts Current - 5.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973 Glass passivated cavity-free junction

- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- · Hermetically sealed
- Low Leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

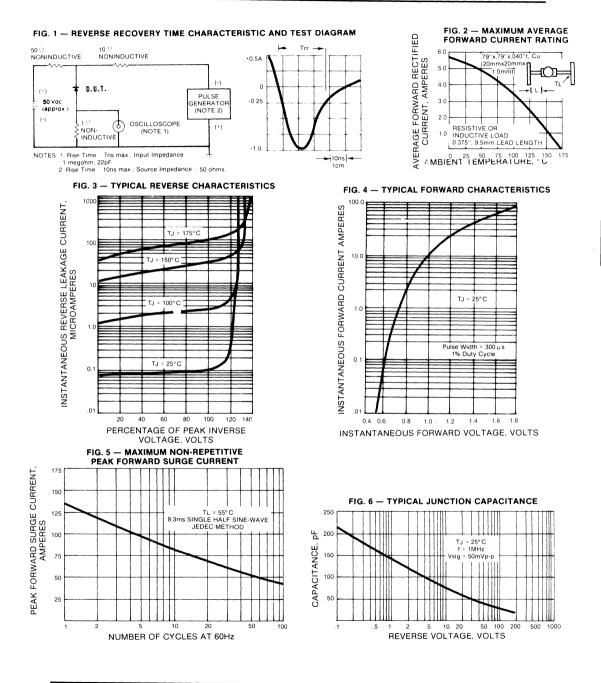
MECHANICAL DATA

Case: Unitized glass hemetically sealed Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.037 ounce, 1.04 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	FE5A	FE5B	FE5C	FE5D	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _L = 55°C	l(AV)		5	.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) $T_A = 55^{\circ}C$	IFSM		Amps			
Maximum Instantaneous Forward Voltage at 5.0A	VF		Volts			
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR		μΑ			
Maximum Reverse Recovery Time (Note 1)						
T _J = 25 °C	TRR		35	5.0		Ns
Typical Junction Capacitance (Note 2)	CJ		pf			
Typical Thermal Resistance (Note 3)	RØJL			.CW		
Operating and Storage Temperature Range	TJ,TSTG		-65 to	+175		.c

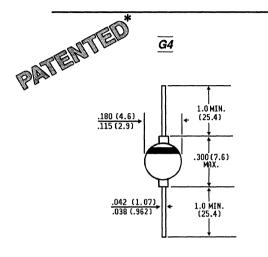

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDc.

3. Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES FE5A THRU FE5D



FE6A THRU FE6D

GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 200 Volts Current - 6.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Brazed - lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- Glass passivated cavity-free junction
- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards ٠ of MIL-S-19500
- Hermetically sealed
- Low Leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Unitized glass hemetically sealed Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.037 ounce, 1.04 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	FE6A	FE6B	FE6C	FE6D	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _L = 55°C	l(AV)		6	.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T _A = 55°C	IFSM		15	0.0		Amps
Maximum Instantaneous Forward Voltage at 6.0A	VF		Volts			
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR		μA			
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	T _{RR}		Ns			
Typical Junction Capacitance (Note 2)	CJ		pf			
Typical Thermal Resistance (Note 3)	RØJL			.c/M		
Operating and Storage Temperature Range	TJ,TSTG		-65 to	+175		.с

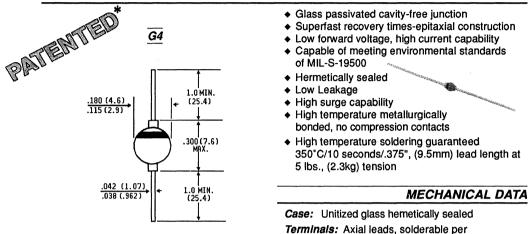
NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

Measured at 1.0 MHz and applied reverse voltage of 4.0 V_{DC}.
 Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

FIG. 2 - MAXIMUM AVERAGE FIG. 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM AVERAGE FORWARD RECTIFIED FORWARD CURRENT RATING trr ____ 50 O 10 C 9.0 NONINDUCTIVE NONINDUCTIVE +0 5A CURRENT, AMPERES 7 4 h L 6.0 20mm x 20mm 0 D.D.T. x 1.0mmt,Cu PULSE 50 Vdc -0.25 4.5 (approx (NOTE 2) 3.0 (-) 1.0 OSCILLOSCOPE (+) RESISTIVE OR NON (NOTE 1) 1.5 INDUCTIVE LOAD 0.375", 9.5mm LEAD LENGTH INDUCTIVE -10 NOTES: 1 Rise Time - 7ns max., Input Impedance 75 100 125 150 175 50 25 + 10ns + 1 megohm, 22pF 2. Rise Time = 10ns max., Source Impedance = 50 ohms. 1cm LEAD TEMPERATURE, °C FIG. 3 - TYPICAL REVERSE CHARACTERISTICS FIG. 4 — TYPICAL FORWARD CHARACTERISTICS 1000 100.0 INSTANTANEOUS REVERSE LEAKAGE CURRENT, MICROAMPERES INSTANTANEOUS FORWARD CURRENT AMPERES TI = 175°C 100 10.0 TJ = 150° C 10 ТJ 25° C 1.0 ТJ = 100° C 1.0 Pulse Width = 300 μ s 1% Duty Cycle 0.1 TJ = 25°C 0.1 .01 .01 120 100 20 40 60 80 140 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 PERCENTAGE OF PEAK INVERSE INSTANTANEOUS FORWARD VOLTAGE, VOLTS VOLTAGE, VOLTS FIG. 5 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT PEAK FORWARD SURGE CURRENT, 150 FIG. 6 - TYPICAL JUNCTION CAPACITANCE TL = 55°C SINGLE HALF SINE-WAVE JEDEC METHOD Ч 125 250 CAPACITANCE, AMPERES TJ = 25°C 100 200 = 1 MHz Vsig = 50mVp-p 75 150 50 100 25 50 2 5 10 20 50 100 50 100 200 500 1000 2 20 .1 .5 1 5 10 NUMBER OF CYCLES AT 60Hz REVERSE VOLTAGE, VOLTS

RATINGS AND CHARACTERISTIC CURVES FE6A THRU FE6D



GI1301 THRU GI1304

GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 200 Volts

FEATURES

Dimensions in inches and (millimeters)

* Brazed - lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

Terminals: Axial leads, so MIL-STD-202, Method 208

Polarity: Color band denotes cathode

Current - 6.0 Amperes

Mounting Position: Any *Weight:* 0.037 ounce, 1.04 gram

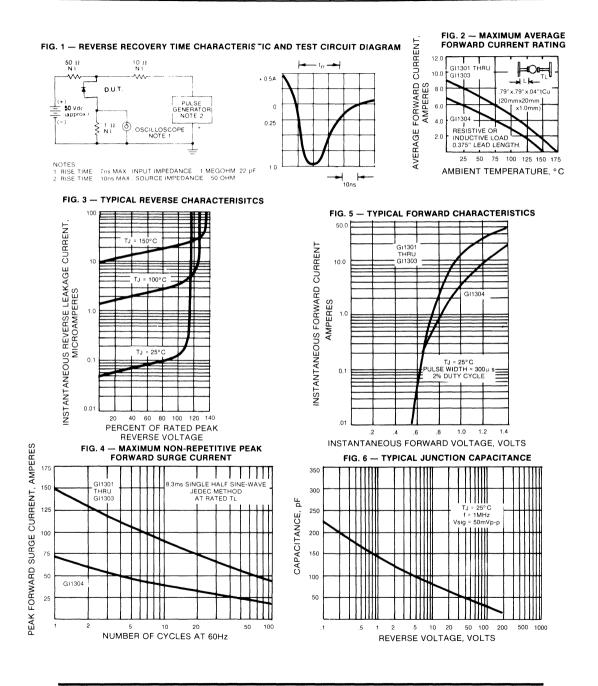
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	GI1301	GI1302	GI1303	GI1304	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	70 105		Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _L = 75°C	l(AV)		6.0		(Note 3) 5.0	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		150		70	Amps
Maximum Instantaneous Forward Voltage at 6.0A	VF		0.925	(Note 4) 1.25	Volts	
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR		5.0 150.0		20.0 500	μA
Maximum Reverse Recovery Time (Note 1)	T _{RR}		30	50	Ns	
Typical Junction Capacitance (Note 2)	С		95			
Typical Thermal Resistance (Note 5)	RØJL		18			
Operating and Storage Temperature Range	TJ,TSTG		-65 to +17	5	-65 to +150	.с

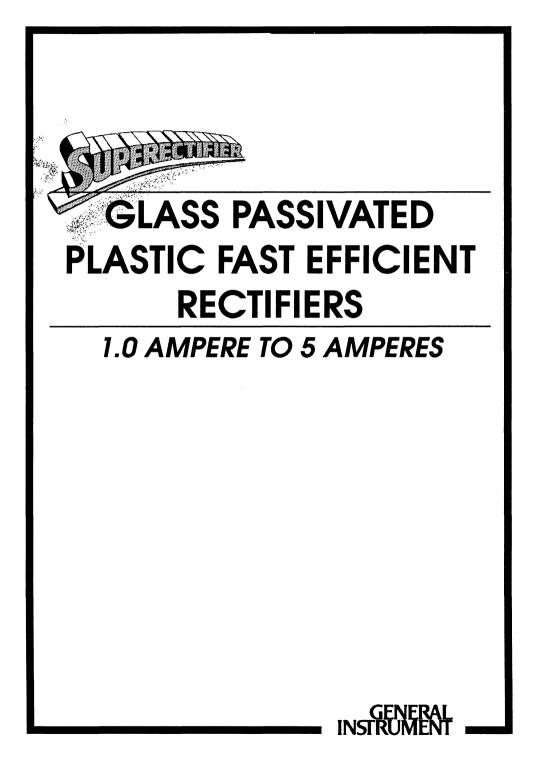
NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.


2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

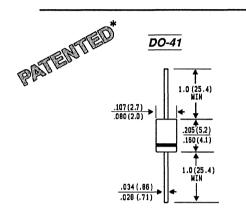
3. TL = 55°C, .375" (9.5mm) Lead Length.

4. IFM = 3.0ADC.


5. Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths.

RATINGS AND CHARACTERISTIC CURVES GI1301 THRU GI1304

-208-



EGP10A THRU EGP10G

GLASS PASSIVATED JUNCTION FAST EFFICIENT RECTIFIER Voltage - 50 to 400 Volts

Current - 1.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3, 752, 701 of 1973

Glass passivated cavity-free junction

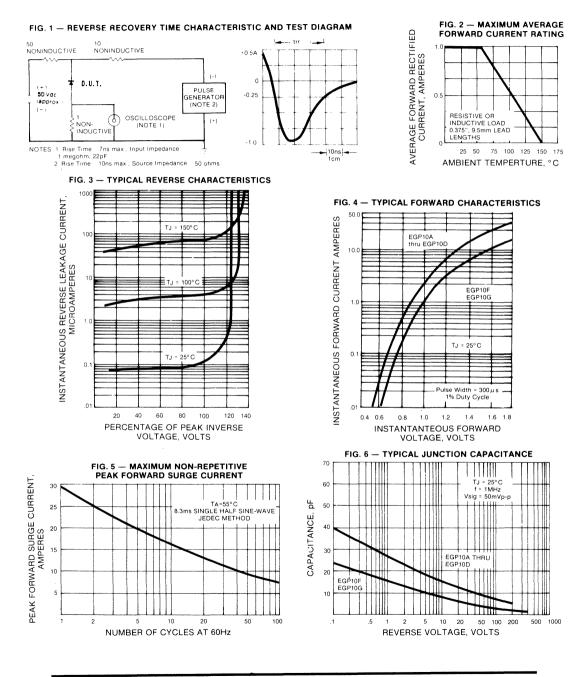
- Superfast recovery times for high efficiency
- Low forward voltage, high current capability
- Capable of meeting envionmental standards of MIL-S-19500
- Low leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- Plastic package has Underwriters Laboratories Flammability Classification 94V-O
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, 0.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

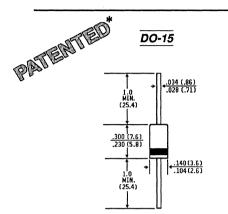

	SYMBOLS	EGP 10A	EGP 10B	EGP 10C	EGP 10D	EGP 10F	EGP 10G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	I(AV)	1.0						
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load $T_A = 55^{\circ}C$	Ігѕм	30,0						Amps
Maximum Instantaneous Forward Voltage a 1.0A	VF	0.95 1.25					.25	Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR	5.0 50.0						μΑ
Typical Reverse Recovery Time (Note 1) TJ = 25°C	TRR	50.0						Ns
Typical Junction Capacitance (Note 2)	CJ	20.0 10.0					.0	pf
Operating and Storage Temperature Range	TJ,TSTG	-65 to +150						·c

NOTES:

1. Reverse Recovery Test Conditions : IF = .5A, IR = 1A, Irr = .25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

RATINGS AND CHARACTERISTIC CURVES EGP10A THRU EGP10G



EGP20A THRU EGP20G

GLASS PASSIVATED FAST EFFICIENT RECTIFIER Current - 2.0 Amperes

Voltage - 50 to 400 Volts

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

Glass passivated cavity-free junction

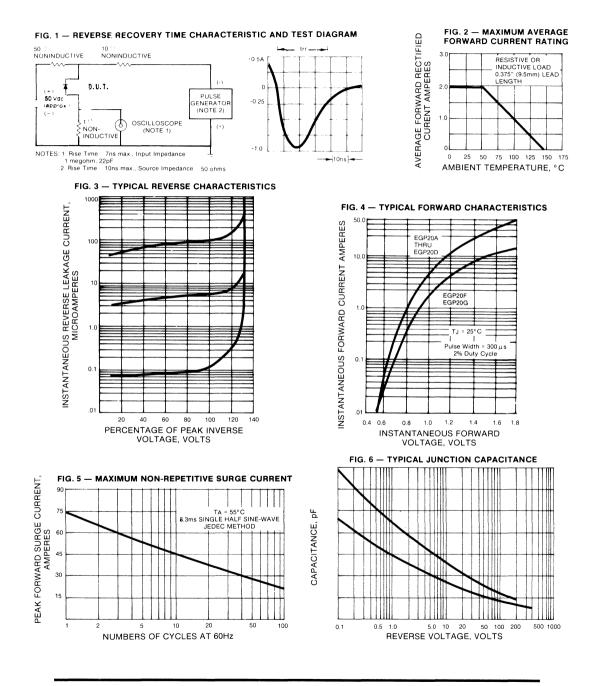
- Superfast recovery times for high efficiency
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Low leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- Plastic package has Underwriters Laboratories Flammability Classification 94V-O
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.015 ounce, 0.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

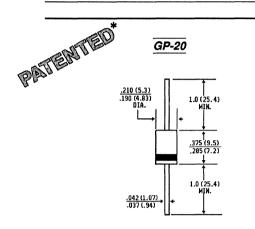

	SYMBOLS	EGP 20A	EGP 20B	EGP 20C	EGP 20D	EGP 20F	EGP 20G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	Volts
Maximum Average Forward Recufied Current .375", (9.5mm) Lead Lengths at T _A = 55°C	I(AV)	2.0						Amps
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load $T_A = 55^{\circ}C$	IFSM	75.0						Amps
Maximum Instantaneous Forward Voltage a 2.0A	VF	0.95 1.25					25	Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR	5.0 50.0						μA
Typical Reverse Recovery Time (Note 1) TJ = 25°C	TRR	50.0						Ns
Typical Junction Capacitance (Note 2)	CJ	70.0 40.0					0	pf
Operating and Storage Temperature Range	TJ,TSTG	-65 to +150						·c

NOTES:

1. Reverse Recovery Test Conditions : IF = .5A, IR = 1A, Irr = .25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

RATINGS AND CHARACTERISTIC CURVES EGP20A THRU EGP20G



EGP30A THRU EGP30G

GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 400 Volts Current - 3.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

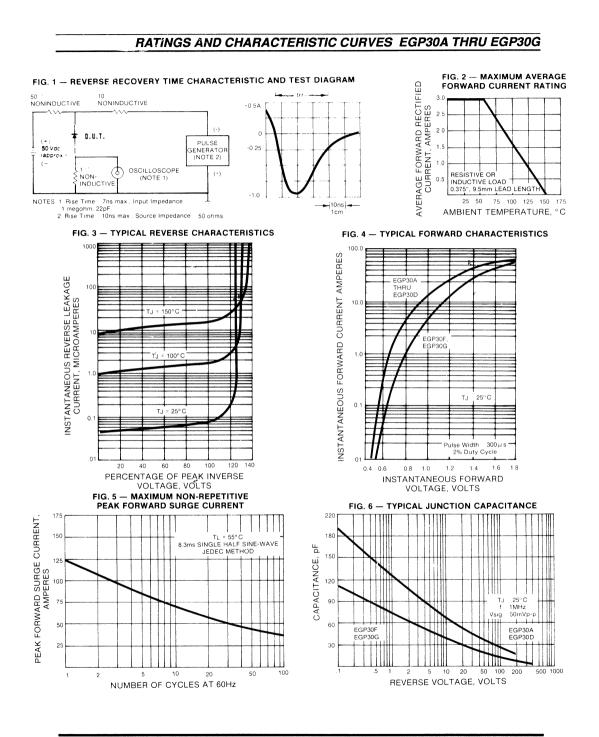
Glass passivated cavity-free junction

- Superfast recovery times for high efficiency
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Low leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- Plastic package has Underwriters Laboratories Flammability Classification 94V-O
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.03 ounce, 0.8 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

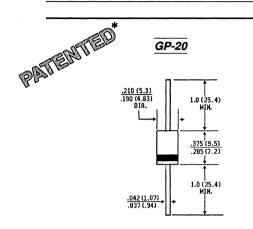

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	EGP 30A	EGP 30B	EGP 30C	EGP 30D	EGP 30F	EGP 30G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	I(AV)	3.0						Amps
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load $T_A = 55^{\circ}C$	IFSM	125.0						Amps
Maximum Instantaneous Forward Voltage a 3.0A	VF	0.95 1.25					25	Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR	5.0 50.0						μΑ
Typical Reverse Recovery Time (Note 1) TJ = 25°C	TRR	50.0						ns
Typical Junction Capacitance (Note 2)	CJ	90.0 55.0					.0	pf
Operating and Storage Temperature Range	TJ, TSTG	-65 to +150						.c

NOTES:

1. Reverse Recovery Test Conditions : IF = .5A, IR = 1A, Irr = .25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.



EGP50A THRU EGP50G

GLASS PASSIVATED FAST EFFICIENT RECTIFIER Current - 5.0 Amperes

Voltage - 50 to 400 Volts

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

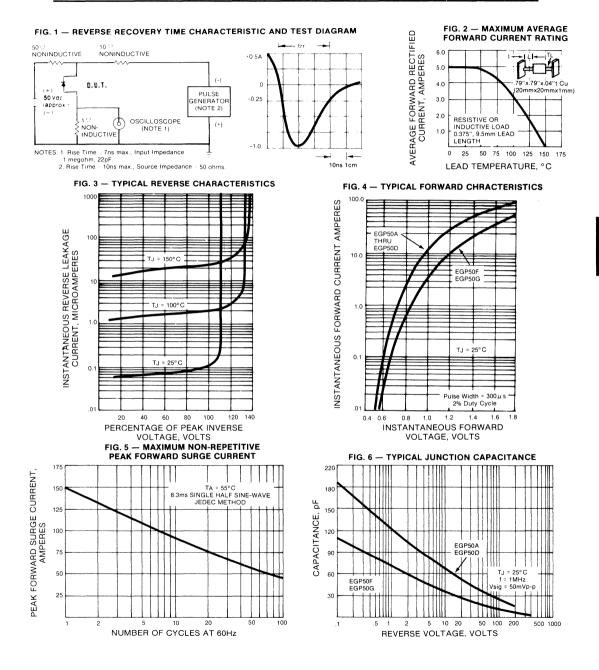
Glass passivated cavity-free junction

- Superfast recovery times for high efficiency
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Low leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- Plastic package has Underwriters Laboratories Flammability Classification 94V-O
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.03 ounce, 0.8 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	EGP 50A	EGP 50B	EGP 50C	EGP 50D	EGP 50F	EGP 50G	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	Volts	
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	Volts	
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	Volts	
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _L = 55°C	I(AV)	5.0							
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load $T_L = 55^{\circ}C$	IFSM	150.0							
Maximum Instantaneous Forward Voltage a 5.0A	VF		0	.95		1.2	25	Volt	
Maximum DC Reverse Current $T_A = 25^{\circ}C_{\odot}$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR				5.0 0.0			μΑ	
Typical Reverse Recovery Time (Note 1) TJ = 25°C	T _{RR}			5	0.0			Ns	
Maximum Thermal Resistance (Note 3)	RØJL			2	20			.C/A	
Typical Junction Capacitance (Note 2)	CJ			1	00			pf	
Operating and Storage Temperature Range	TJ, TSTG			-65 to	+150			.c	

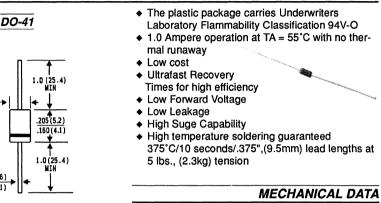
NOTES: 1. Reverse Recovery Test Conditions : IF = .5A, IR = 1A, Irr = .25A.

Measured at 1.0 MHZ and applied reverse voltage of 4.0 Volts.
 Thermal Resistance from Junction to Lead at .375", 9.5mm Lead Lengths.

RATINGS AND CHARACTERISTIC CURVES EGP50A THRU EGP50G

-218-

PLASTIC FAST EFFICIENT RECTIFIERS


1 AND 3 AMPERES

UF4001 THRU UF4007

ULTRAFAST MINIATURE PLASTIC SILICON RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere

FEATURES

Case: JEDEC DO-41 Molded plastic Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes Cathode End Weight: 0.012 ounce, 0.3 gram Mounting Position: Any

Dimensions in inches and (millimeters)

.107(2.7)

.034 (.86) .028 (.71)

->

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Resistive or inductive load. For capacitive load, derate current by 20%.

		UF	UF	UF	UF	UF	UF	UF	
	SYMBOLS	6 4001	4002	4003	4004	4005	4006	4007	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375" (9.5mm) Lead Length $T_A = 55$ °C	I(AV)	1.0							Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	30.0							Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF			1.0		1	1.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR				10.0 50.0	-			μA
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	Trr			50.0	2	1	75.0		Ns
Typical Junction Capacitnance (Note 2)	CJ			20			15		pF
Typical Thermal Resistance (Note 3)	RØJA	25.0						.c\/	
Operating and Storage Temperature Range,	TJ,TSTO	-65 to +150						.c	

NOTES:

1. Reverse Recovery Test Conditions: IF =.5A, IR = 1A, Irr = .25A.

2. Meaasured at 1 MHz and applied reverse voltage of 4.0 Volts.,

3. Thermal Resistance from Junction to Ambient, .375", 9.5mm Lead Lengths.

RATINGS AND CHARACTERISTIC CURVES UF4001 THRU UF4007

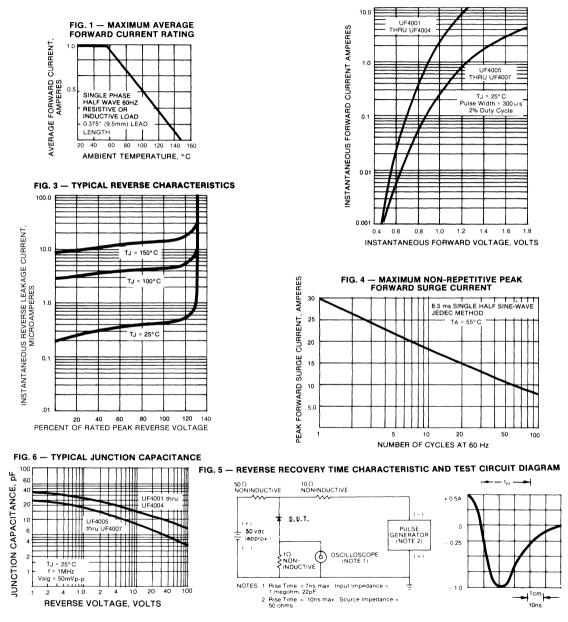
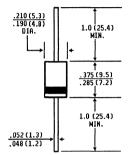


FIG. 2 - TYPICAL FORWARD CHARACTERISTICS


UF5400 THRU UF5408

ULTRAFAST PLASTIC SILICON RECTIFIER

Voltage - 50 to 1000 Volts Current - 3.0 Amperes

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- Ultrafast recovery times for high efficiency
- Low forward voltage, high current capability
- Low leakage

Low cost

- High surge capability
- Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
- High temperature soldering guaranteed 250°C,.25", 6.35mm from case for 10 seconds

MECHANICAL DATA

Case: JEDEC DO-201AD, molded plastic *Terminals:* Axial Leads solderable per MIL-STD-202, Method 208

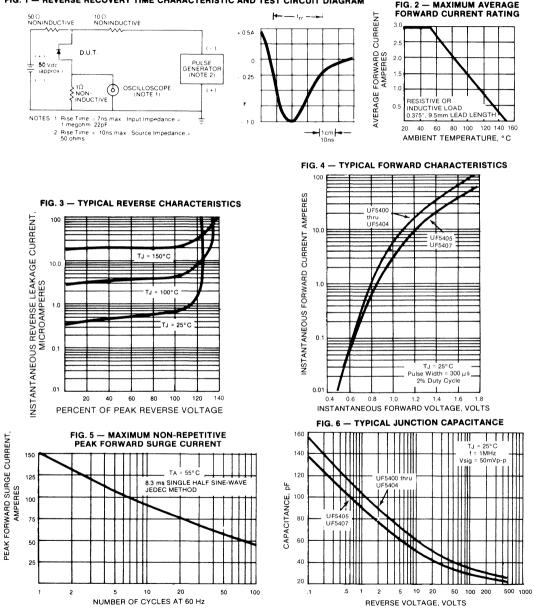
Polarity: Color Band denotes Cathode Mounting Position: Any

Weight: 0.04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	UF 5400	UF 5401	UF 5402	UF 5403	UF 5404	UF 5405	UF 5406	UF 5407	UF 5408	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	300	400	500	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35 70 140 210 280 350 420 560 7 ⁻							710	Volts	
Maximum DC Blocking Voltage	VDC	50 100 200 300 400 500 600 800 10							1000	Volts	
Maximum Average Forward Rectified Current .375" , (9.5 mm) Lead Length at $T_A = 55$ °C	I(AV)	3.0									Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T _A = 55°C	IFSM	150.0								1	Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF				1.0				1.4		Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR).0).0				μA
Maximum Reverse Recovery Time (Note 1) T _J = 25°C	T _{RR}				5	0.0			75.0		Ns
Typical Junction Capacitance (Note 2)	CJ	75 50.0)	pf		
Maximum Thermal Resistance (Note 3)	Rejl	20.0								.cw	
Operating and Storage Temperature Range	TJ,TSTG	i				-65 to	+150	1			.c


NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

2. Measure at 1MHz and applied reverse voltage of 4.0 volts.

3. Thermal Resistance Junction to Lead.

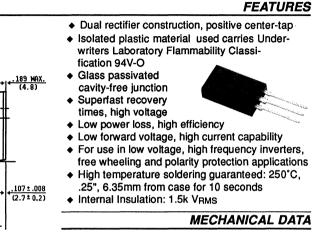
RATINGS AND CHARACTERISTIC CURVES UF5400 THRU UF5408

FIG. 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

GENERAL INSTRUMENT 1

MEDIUM CURRENT FAST EFFICIENT RECTIFIERS

6 TO 30 AMPERES


SEE NEW ISOLATED PACKAGES

FEPF6AT THRU FEPF6DT

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 200 Volts Current - 6.0 Amperes

Case: ITO-220 Fully overmolded plastic Terminals: Lead solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in.-Ib. max. Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

ITO-220 CT

<u>.13 ± .00</u>8

(3.3 ±0.2)

. 103 MAX

.029

PIN 1 C

PIN 3 O

FEPF6

(0.75±0:1

(1.3±0.2

2.54

PTN 2

4° REF

REI

H PIN 2

FENF6

Dimensions in inches and (millimeters)

PIN

PIN 3 O-

158±.008

 $(4 \pm .02)$

.028 ±.008

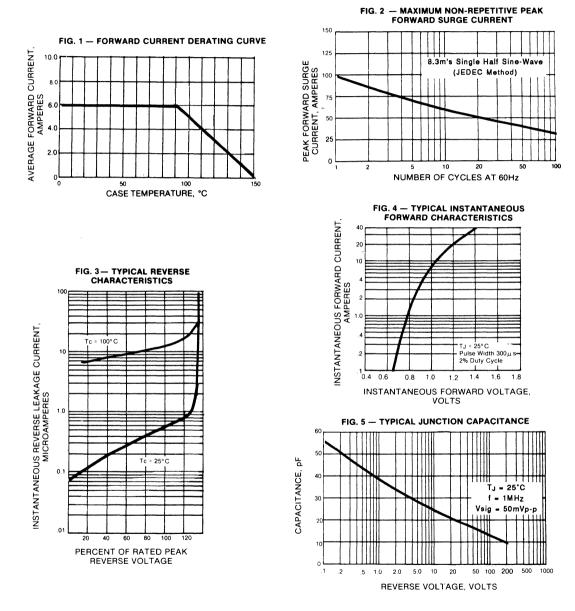
(0.7±0.2

PIN 1 C

PIN 30

PIN 2

-

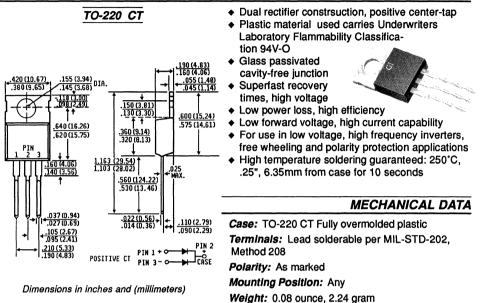

FEDF6

	SYMBOLS	FEPF6AT	FEPF6BT	FEPF6CT	FEPF6DT	UNITS			
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts			
Maximum RMS Voltage	VRMS	35	35 70 105 140						
Maximum DC Blocking Voltage	VDC	50	50 100 150 200						
Maximum Average Forward Rectified Current See Fig.1	I(AV)			Amps					
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		Amps						
Maximum Instantaneous Forward Voltage at 6.0A	VF		0.9	50		Volts			
Maximum DC Reverse CurrentTc = 25°Cat Rated DC Blocking VoltageTc = 100°C	IR		5. 50	-		μΑ			
Maximum Reverse Recovery Time (Note 1)									
T _J = 25°C	TRR		35	.0		Ns			
Typical Thermal Resistance (Note 2)	Rejc		5.	.0		.c/M			
Operating and Storage Temperature Range	TJ, TSTG	·····	-65 to +	-150		.c			

NOTES: 1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

2. Thermal Resistance from Junction to Case per element.

RATINGS AND CHARACTERISTIC CURVES FEPF6AT THRU FEPF6DT



FEP6-T SERIES

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 200 Volts Current - 16 Amperes

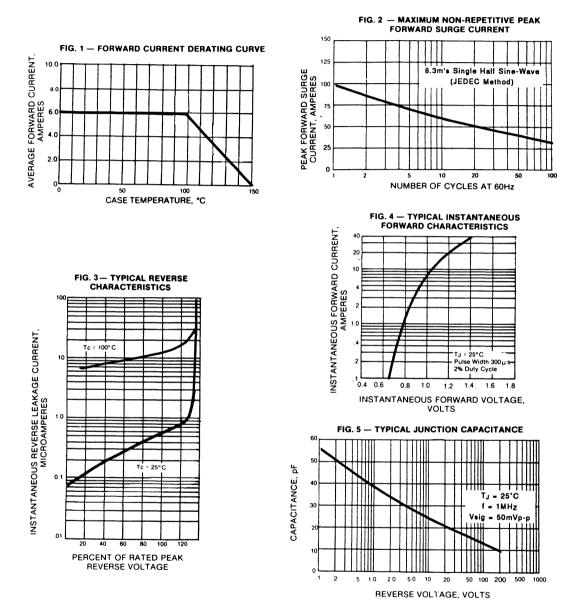
FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25'C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.

	SYMBOLS	FEP6AT	FEP6BT	FEP6CT	FEP6DT	UNITS				
Maximum Recurrent Peak Reverse Voltage	VRRM	50	50 100 150 200							
Maximum RMS Voltage	VRMS	35	35 70 105 140							
Maximum DC Blocking Voltage	VDC	50	50 100 150 200							
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at 100°C	I(AV)		+	Amps						
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		Amps							
Maximum Instantaneous Forward Voltage at 3.0A	VF		0.9	75		Volts				
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR		-	.0).0		μΑ μΑ				
Maximum Reverse Recovery Time (Note 1) T _J = 25°C	T _{RR}		35	5.0		Ns				
Typical Thermal Resistance (Note 3)	Rejc		5.5							
Operating and Storage Temperature Range	TJ, TSTG		-65 to -	+150		.c				


NOTES:

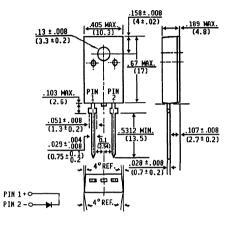
1. Reverse Recovery Test Conditions : IF = 5.0A, IR = 1.0A, IRR = 25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

3. Thermal Resistance from Junction to Case.

RATINGS AND CHARACTERISTIC CURVES FEP6AT THRU FEP6DT

GENERAL INSTRUMENT


FESF8AT THRU FESF8JT

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 600 Volts Current - 8.0 Amperes

FEATURES

ITO-220

- Isolated plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated cavity-free junction
- Low power loss, high efficiency
- ♦ Low leakage
- High surge capability
- Superfast recovery times, high voltage

- High temperature soldering guaranteed: 250°C, .25", 6.35mm from case for 10 seconds
- Internal Insulation: 1.5K VRMS

MECHANICAL DATA

Case: ITO-220 fully overmolded plastic Terminals: Lead solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in.- lbs. max. Weight: 0.08 ounce, 2.24

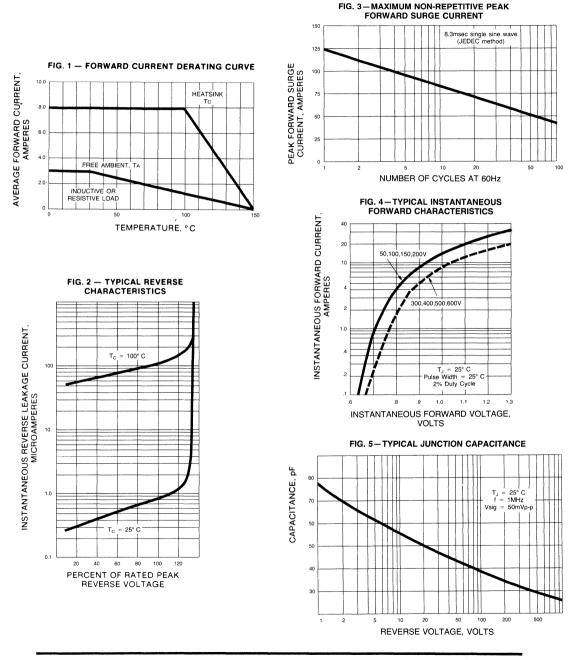
Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.

	SYMBOLS	FESF 8AT	FESF 8BT	FESF 8CT	FESF 8DT	FESF 8FT	FESF 8GT	FESF 8HT	FESF 8JT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current See Fig.1	I(AV)	8.0								Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	125								Amps
Maximum Instantaneous Forward Voltage at 8.0A	VF			0.95			1.3		1.5	Volts
Maximum DC Reverse Current $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$	lR					0.0 00				μA
Maximum Reverse Recovery Time (Note 2) T _J = 25°C	T _{RR}	35 50							Ns	
Typical Junction Capacitance (Note 1)	CJ				6	5				pf
Typical Thermal Resistance (Note 3)	RejC	2.2							.C\M	
Operating and Storage Temperature Range	T _J ,T _{STG}	-65 to +150								.с

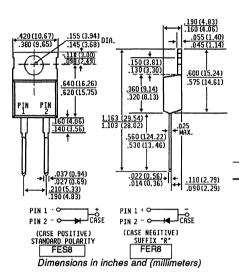

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

3. Thermal Resistance Junction to Case.

RATINGS AND CHARACTERISTIC CURVES FESF8AT THRU FESF8JT SERIES



GENERAL

FES8AT THRU FES8JT

FAST EFFICIENT GLASS PASSIVATED RECTIFIER Voltage - 50 to 600 Volts Current - 8.0 Amperes

FEATURES

- Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated cavity-free junction
- Low power, high efficiency
- Low Leakage
- High surge capability
- Superfast recovery times,

 High voltage
 High temperature soldering guaranteed 250°C,.25", 6.35mm from case for 10 seconds

MECHANICAL DATA

Case: TO-220 molded plastic *Terminals:* Lead solderable per MIL-STD-202, Method 208 *Polarity:* As marked

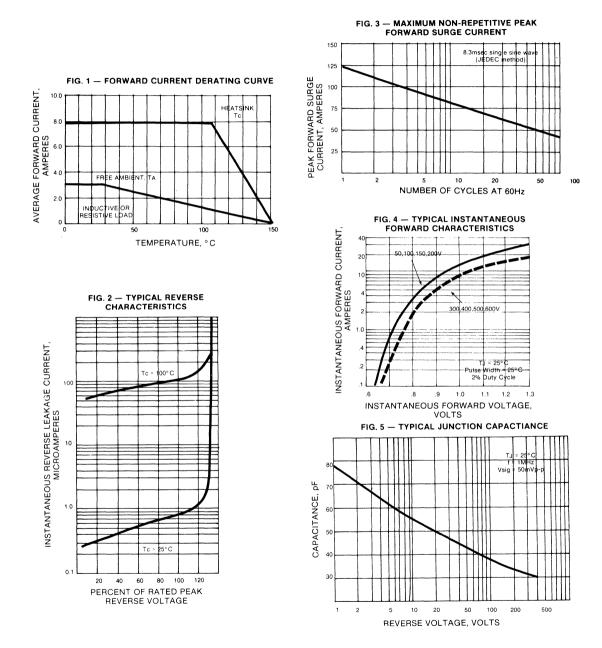
Mounting Position: Any

Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.


		FES	FES	FES	FES	FES	FES	FES	FES	
	SYMBOL	S 8AT	8BT	8CT	8DT	8FT	8GT	8HT	8JT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50 100 150 200 300 400 500 60						600	Volts	
Maximum Average Forward Rectified Current at T _C = 100°C	l(AV)	8.0								Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	125								Amps
Maximum Instantaneous Forward Voltage at 8.0A	VF			0.95		1	1.3		1.5	Volts
Maximum DC Reverse Current $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$	IR					0.0 00				μA
Maximum Reverse Recovery Time (Note 2) T _J = 25°C	T _{RR}	35 50							Ns	
Typical Junction Capacitance (Note 1)	CJ	65							pf	
Typical Thermal Resistance (Note 3)	RejC	3.0							.c\M	
Operating and Storage Temperature Range	TJ,TSTO	-65 to +150							.c	

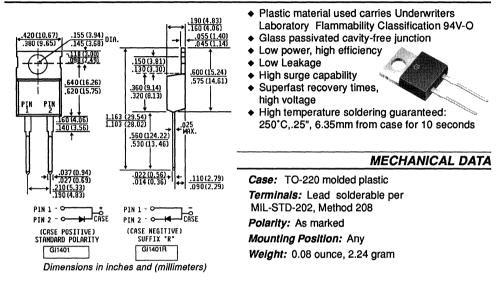
NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2.. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

3. Thermal Resistance Junction to CASE.

RATINGS AND CHARACTERISTIC CURVES FES8AT THRU FES8JT SERIES



GI1401 THRU GI1404

8.0 AMPERE GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 200 Volts Current - 8.0 Amperes

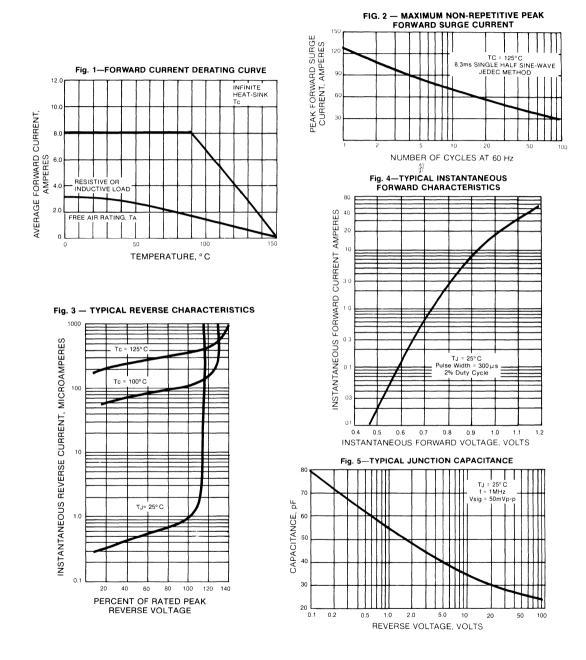
FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.

	SYMBOLS	GI1401	GI1402	GI1403	Gl1404	UNITS			
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts			
Maximum RMS Voltage	VRMS	35	35 70 105 140						
Maximum DC Blocking Voltage	VDC	50	50 100 150 200						
Maximum Average Forward Rectified Current at $T_C = 125^{\circ}C$	l(AV)		8.0						
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			Amps					
Maximum Instantaneous Forward Voltage $I_F = 4A, T_J = 100^{\circ}C$ $I_F = 8A, T_J = 100^{\circ}C$ $I_F = 4A, T_J = 25^{\circ}C$									
IF = 8A, TJ = 25°C	VF		.975						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IR		5. 15			μA			
Maximum Reverse Recovery Time (Note 1)									
T _J = 25°C	T _{RR}			Ns					
Typical Junction Capacitance (Note 2)	CJ			pf					
Typical Thermal Resistance (Note 3)	ReJC			.C\M					
Operating and Storage Temperature Range	TJ,TSTG		-65 to +	-150		.c			

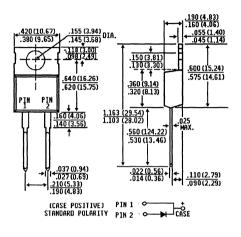

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

3. Thermal Resistance Junction to CASE.

RATINGS AND CHARACTERISTIC CURVES GI1401 THRU GI1404



BYW29-50 THRU BYW29-200

8.0 AMPERE GLASS FAST EFFICIENT PASSIVATED RECTIFIER Voltage - 50 to 200 Volts Current - 8.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

 Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O

- Glass passivated cavity-free junction
- Low power, high efficiency
- Low Leakage
- High surge capability
- Superfast recovery times, high voltage

 High temperature soldering guaranteed 300°C, 6.35mm from case for 10 seconds

MECHANICAL DATA

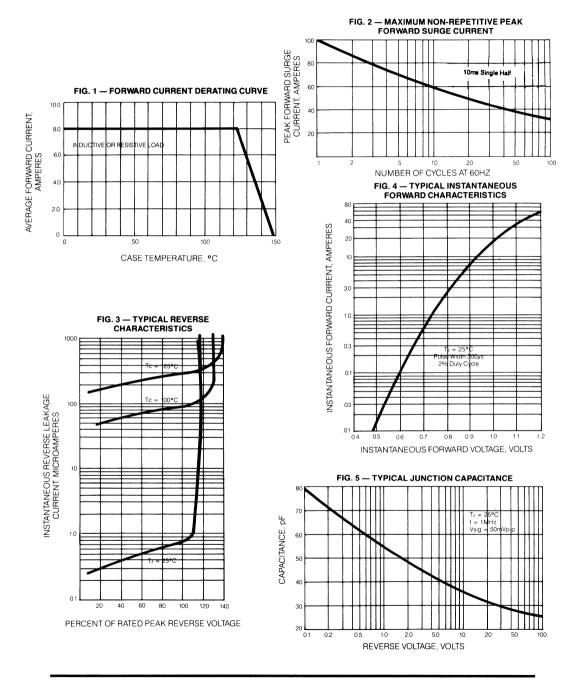
Case: TO-220 molded plastic Terminals: Lead solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.

	SYMBOLS	BYW29-50 B	YW29-100	BYW29-150	BYW29-200	UNITS			
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts			
Maximum RMS Voltage	VRMS	35	70	105	140	Volts			
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts			
Maximum Average Forward Rectified Current at Tc = 125°C	I(AV)		8.0						
Peak Forward Surge Current 10ms single half sine-wave superimposed TJ = 150°C	IFSM			Amps					
Maximum Instantaneous Forward Voltage IF = 20A, TJ = 25°C IF = 8A, TJ = 150°C	VF			Volts					
Maximum DC Reverse Current $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$						μA			
Maximum Reverse Recovery Time (Note 2)	T _{RR}		2	5		Ns			
Typical Junction Capacitance (Note 1)	CJ		4	5		pf			
Maximum Thermal Resistance (Note 3)	RejC		3.0						
Operating and Storage Temperature Range	TJ, TSTG		-65 to -	-150		.c			

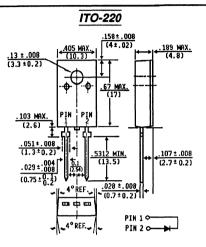

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions : I_F = 1A to 30V, with -di/dt = 100A/µs.

3. Thermal Resistance Junction to CASE.

RATINGS AND CHARACTERISTIC CURVES BYW29-50 THRU BYW29-200



FESF16AT THRU FESF16JT

FAST EFFICIENT GLASS PASSIVATED RECTIFIER Voltage - 50 to 600 Volts Current - 16 Amperes

FEATURES

- Isolated plastic material used carries Under writers Laboratory Flammability Classification 94V-O
- Glass passivated cavity-free junction
- Low power loss, high efficiency
- Low forward voltage. high current capability
- High surge capability
- Superfast recovery times, high voltage
- High temperature soldering guaranteed: 250°C, .25". 6.35mm from case for 10 seconds
- Internal Insulation: 1.5k VRMs

MECHANICAL DATA

Case: ITO-220 Fully overmolded plastic Terminals: Lead solderable per MIL-STD-202 Method 208

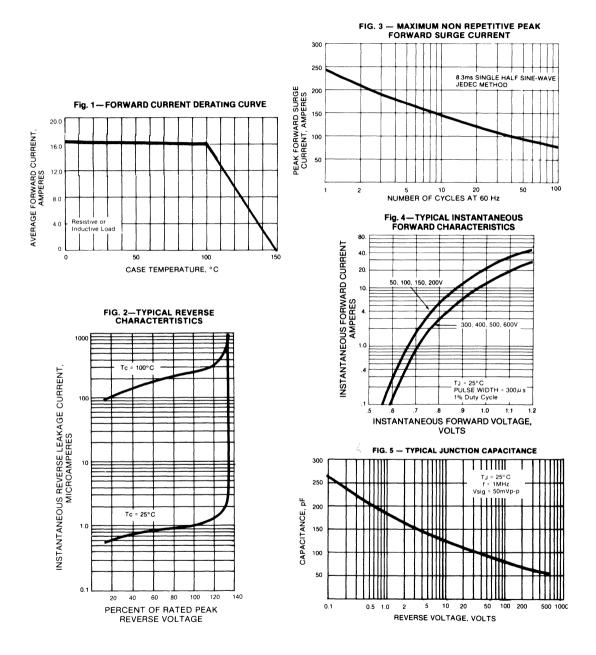
Polarity: As marked Mounting Position: Any

Mounting Torque: 5 in. - Ib. max.

Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

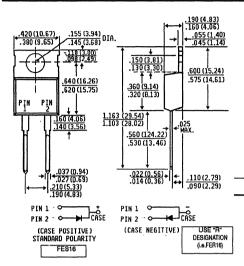

Dimensions in inches and (millimeters)

	SYMBOLS	FESF 16AT	FESF 16BT	FESF 16CT	FESF 16DT	FESF 16FT	FESF 16GT	FESF 16HT	FESF 16JT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35 70 105 140 210 280 350 42						420	Volts	
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current See Fig.1	I(AV)	16.0								Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250								Amps
Maximum Instantaneous Forward Voltage at 16A	VF			.95			1.3	1.	5	Volts
Maximum DC Reverse Current $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$	IR.					0.0 00				μA
Maximum Reverse Recovery Time (Note 2) T _J = 25°C	TRR	35 50							Ns	
Typical Junction Capacitance (Note 1)	CJ				6	5				pf
Thermal Resistance (Note 3)	ReJC	1.7							.c\M	
Operating and Storage Temperature Range	TJ,TSTG	-65 to +150							.c	

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions : |F = 0.54, |R = 1.04, recover to 0.25A. 3. Thermal Resistance Junction to Case.

RATINGS AND CHARACTERISTIC CURVES FESF16AT THRU FESF16JT



FES16AT THRU FES16JT

FAST EFFICIENT GLASS PASSIVATED RECTIFIER Voltage - 50 to 600 Volts Current - 16 Amperes

FEATURES

Dimensions in inches and (millimeters)

 Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O

- Glass passivated cavity-free junction
- Low power, high efficiency
- Low forward voltage, high current capability
- High surge capability
- Superfast recovery times, high voltage
- High temperature soldering guaranteed: 250°C, .25" (6.35mm) from case for 10 seconds

MECHANICAL DATA

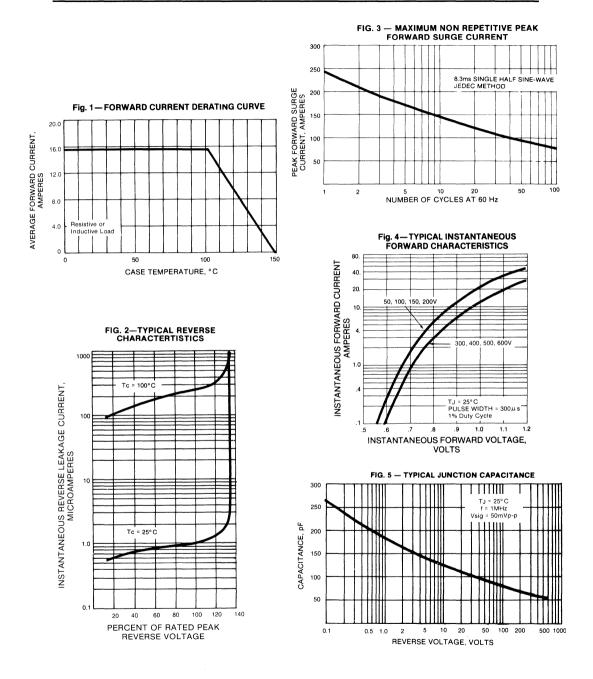
Case: TO-220 molded plastic Terminals: Lead solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.

	SYMBOL	FES	FES 16BT	FES 16CT	FES 16DT	FES 16FT	FES 16GT	FES 16HT	FES 16JT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	
Maximum RMS Voltage	VRMS	RMS 35 70 105 140 210 280 350 420						420	Volts	
Maximum DC Blocking Voltage	VDC	50 100 150 200 300 400 500 60						600	Volts	
Maximum Average Forward Rectified Current at T _C = 100°C	I(AV)				16	6.0	•			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	İFSM	sm 250								Amps
Maximum Instantaneous Forward Voltage at 16A	VF			.975			1.3	1.	5	Volts
Maximum DC Reverse Current $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$	lR					0.0 00				μΑ
Maximum Reverse Recovery Time (Note 2) T _J = 25°C	T _{RR}	35 50							Ns	
Typical Junction Capacitance (Note 1)	CJ				6	5				pf
Thermal Resistance (Note 3)	RejC	0 1.50							.C\M	
Operating and Storage Temperature Range	TJ,TSTO	3			-65 to	+150)			.c

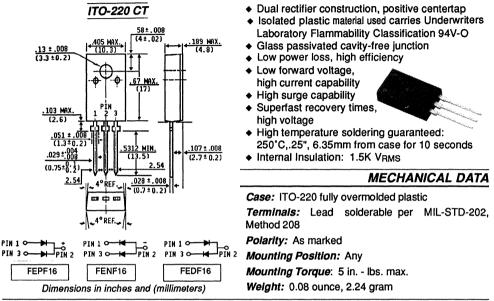

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

3. Thermal Resistance Junction to CASE.

RATINGS AND CHARACTERISTIC CURVES FES16AT THRU FES16JT SERIES



FEPF16AT THRU FEPF16JT

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

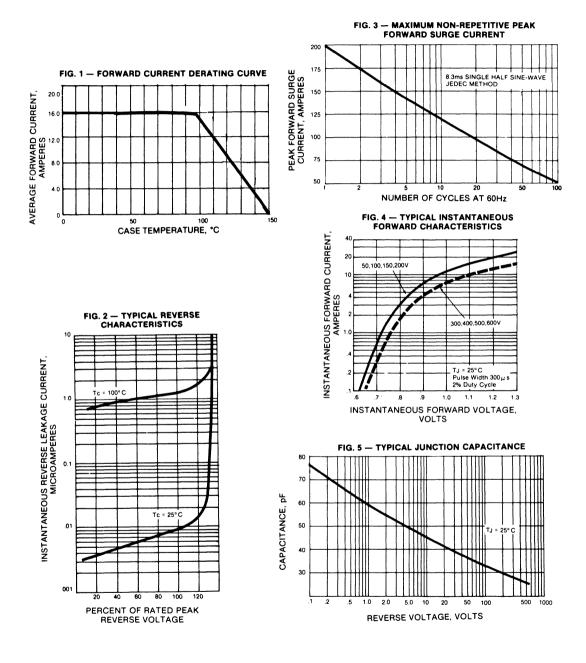
Voltage - 50 to 600 Volts Current - 16 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.

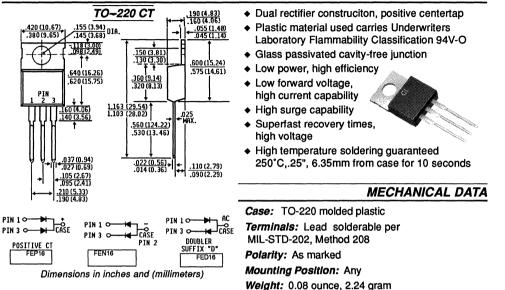

		FEPF	FEPF	FEPF	FEPF	FEPF	FEPF	FEPF	FEPF	
Marine Barris Barli Barris Value	SYMBOLS			16CT	16DT	16FT	16GT	16HT	16JT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50 100 150 200 300 400 500 60						600	Volts	
Maximum Average Forward Rectified Current See Fig.1	I(AV)				16	.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	200								Amps
Maximum Instantaneous Forward Voltage at 8.0A per element	VF			.950		1	.3	1.	5	Volts
Maximum DC Reverse Current $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$	IR					0.0 00				μA
Maximum Reverse Recovery Time (Note 2) T _J = 25°C	T _{RR}	35 50							Ns	
Typical Junction Capacitance (Note 1)	CJ	65							pf	
Thermal Resistance (Note 3)	RejC	2.2							.cw	
Operating and Storage Temperature Range	TJ, TSTG				-65 to	+150	1			.с

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

Reverse Recovery Test Conditions : IF = 0.5Å, IR = 1.0A, recover to 0.25A.

3. Thermal Resistance Junction to Case per element,

RATINGS AND CHARACTERISTIC CURVES FEPF16AT THRU FEPF16JT SERIES



GENERAL INSTRUMENT

FEP16AT THRU FEP16JT

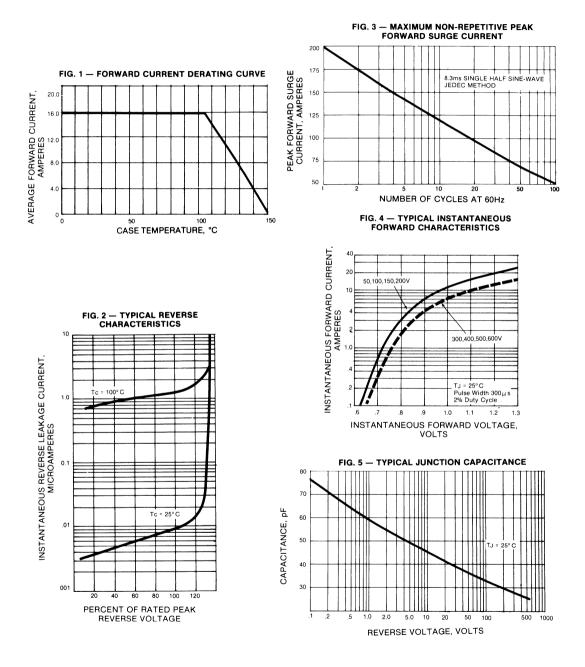
FAST EFFICIENT GLASS PASSIVATED RECTIFIER Voltage - 50 to 600 Volts Current - 16 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.


	SYMBOLS	FEP S 16AT	FEP 16BT	FEP 16CT	FEP 16DT	FEP 16FT	FEP 16GT	FEP 16HT	FEP 16JT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current at $T_C = 100^{\circ}C$	I(AV)	16.0							Amps	
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	200							Amps	
Maximum Instantaneous Forward Voltage at 8.0A	VF	.975 1.3 1.5				5.	Volts			
Maximum DC Reverse Current $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$	l _R	10.0 500							μΑ	
Maximum Reverse Recovery Time (Note 2) T _J = 25°C	T _{RR}	35 50						Ns		
Typical Junction Capacitance (Note 1)	CJ	65						pf		
Thermal Resistance (Note 3)	ReJC	3.0						.cw		
Operating and Storage Temperature Range	TJ,TSTO	G -65 to +150						.c		

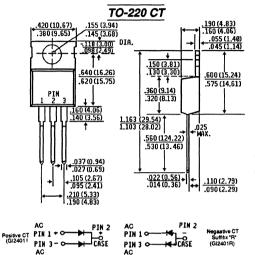
NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2.. Reverse Recovery Test Conditions : IF = 0.5A, IB = 1.0A, recover to 0.25A.

3. Thermal Resistance Junction to CASE.

RATINGS AND CHARACTERISTIC CURVES FEP16AT THRU FEP16JT



GI2401 THRU GI2404

GLASS PASSIVATED FAST EFFICIENT RECTIFIER Current - 16 Amperes

Voltage - 50 to 200 Volts

FEATURES

Dimensions in inches and (millimeters)

 Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O

Glass passivated cavity-free junction

 Low power, high efficiency

- High surge capability
- Superfast recovery times, high voltage

 High temperature soldering guarenteed 250°C, .25", 6.35mm from CASE for 10 seconds

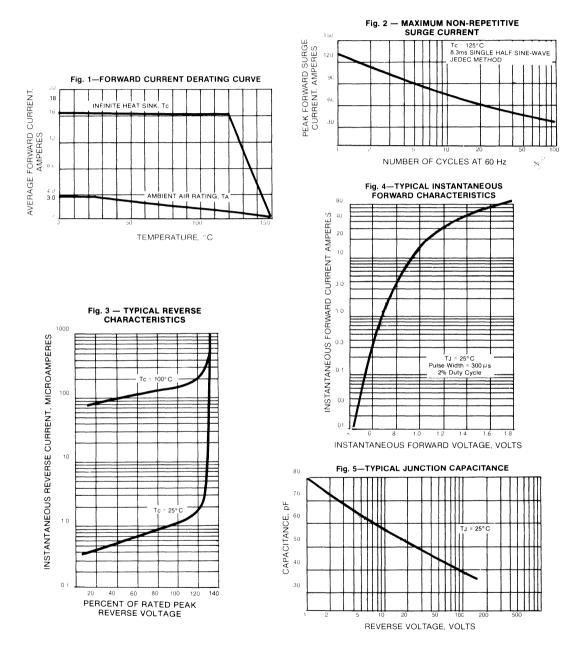
MECHANICAL DATA

Case: TO-220 molded plastic Terminals: Lead solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.


	SYMBOLS	GI2401	GI2402	GI2403	GI2404	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts	
Maximum RMS Voltage	VRMS	35 70 105 140				Volts	
Maximum DC Blocking Voltage	VDC	50	Volts				
Maximum Average Forward Rectified Current at T _C = 125 [°] C	I(AV)		Amps				
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		Amps				
Maximum Instantaneous Forward Voltage $I_F = 4A, T_J = 100^{\circ}C$ $I_F = 8A, T_J = 100^{\circ}C$ $I_F = 4A, T_J = 25^{\circ}C$ $I_F = 8A, T_J = 25^{\circ}C$	VF		Volts				
	VF		VOIIS				
Maximum DC Reverse Current $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$	IR		5.0 150 5			μA	
Maximum Reverse Recovery Time (Note2)	T _{RR}		Ns				
Msximum Junction Capacitance (Note 1)	CJ		pf				
Maximum Thermal Resistance (Note 3)	Rejc		.C\M				
Operating and Storage Temperature Range	TJ, TSTG		-65 to +150				

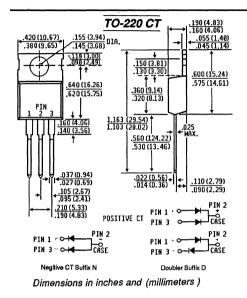
NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2... Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

3. Thermal Resistance Junction to CASE.

RATINGS AND CHARACTERISTIC CURVES GI2401 THRU GI2404



BYV32-50 THRU BYV32-200

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 150 Volts Current - 18 Amperes

FEATURES

- Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated cavity-free junction
- Low power, high efficiency
- Low forward voltage
- high current capability
- High surge capability
- Superfast recovery times, high voltage
- High temperature soldering guaranteed 300°C, 6.35mm from case for 10 seconds

MECHANICAL DATA

Case: TO-220 molded plastic **Terminals:** Lead solderable per MIL-STD-202, Method 208

Polarity: As marked

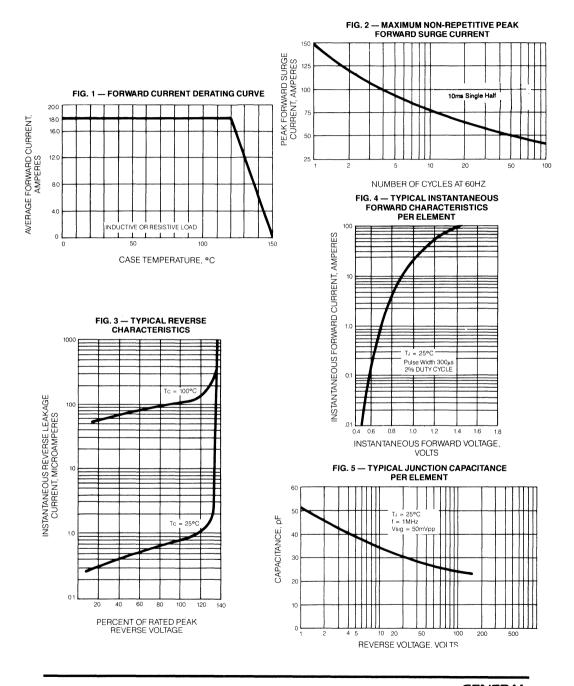
Mounting Position: Any *Weight:* 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.

	SYMBOLS	BYV32-50	BYV32-100	BYV32-150	BYV32-200	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50 100 150 200				Volts
Maximum RMS Voltage	VRMS	35 70 105 140				Volts
Maximum DC Blocking Voltage	VDC	50	200	Volts		
Maximum Average Forward Rectified Current at $T_{C} = 120^{\circ}C$	l(AV)			Amps		
Peak Forward Surge Current 10ms single half sine-wave superimposed TJ = 150°C	IFSM			Amps		
Maximum Instantaneous Forward Voltage IF = 20A, IF = 5,0A, TJ = 100°C	VF		Volts			
Maximum DC Reverse Current $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$	IR		μA			
Maximum Reverse Recovery Time (Note 2) TJ = 25°C	T _{RR}		Ns			
Typical Junction Capacitance (Note 1)	CJ		pf			
Maximum Thermal Resistance per diode (Note 3)	RØJC			.C\M		
Operating and Storage Temperature Range	Tj,Tstg			.c		

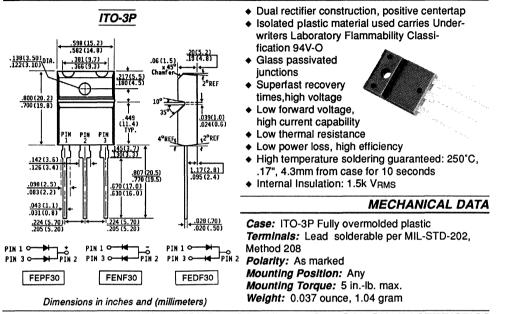

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions : IF = 1A to 30V, with -di/dt = 100A/µs.

3. Thermal Resistance Junction to CASE.

RATINGS AND CHARACTERISTIC CURVES BYV32-50 THRU BYV32-200



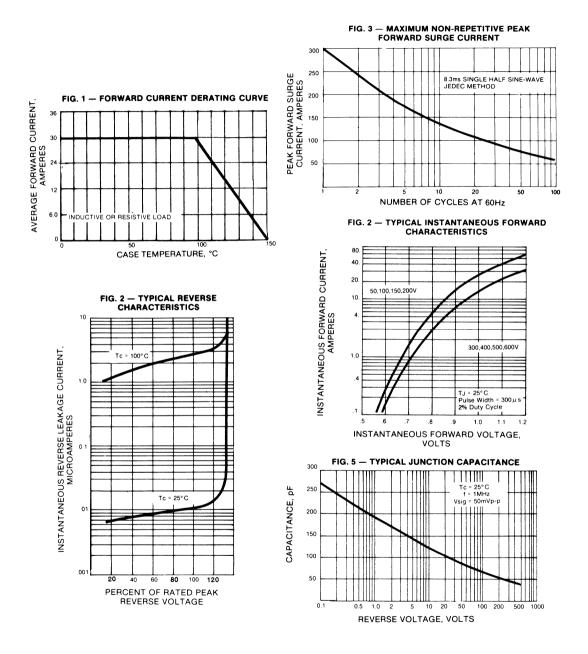
FEPF30AP THRU FEPF30JP

FAST EFFICIENT GLASS PASSIVATED RECTIFIER Voltage - 50 to 600 Volts Current - 30 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

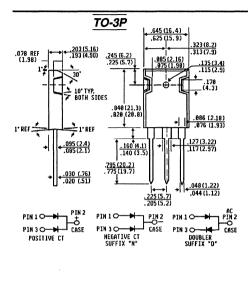

	evupor	FEPF	FEPF	FEPF	FEPF	FEPF	FEPF 30GP	FEPF 30HP	FEPF 30JP	
Maximum Recurrent Peak Reverse Voltage	SYMBOL:	5 30A	100	30CP	30DP	30FP 300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current See Fig.1	I(AV)	30.0							Amps	
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	300							Amps	
Maximum Instantaneous Forward Voltage at 15.0A per element	VF	0.95			1.3 1		.5	Volts		
Maximum DC Reverse Current $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$	IR	10.0 500							μA	
Maximum Reverse Recovery Time (Note 2) T _J = 25°C	T _{RR}	35 50							Ns	
Typical Junction Capacitance (Note 1)	CJ	150							pf	
Thermal Resistance (Note 3)	Rejc	1.5							.c\M	
Operating and Storage Temperature Range	TJ,TSTG	-65 to +150							.C	

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

3. Thermal Resistance Junction to Case per element.

RATINGS AND CHARACTERISTIC CURVES FEPF30AP THRU FEPF30JP SERIES



GENERAL INSTRUMENT

FEP30AP THRU FEP30JP

FAST EFFICIENT GLASS PASSIVATED RECTIFIER Voltage - 50 to 600 Volts Current - 30 Amperes

FEATURES

Dimensions in inches and (millimeters)

- Dual rectifier construction, positive centertap
- Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
- · Glass passivated junctions
- Superfast recoveary times, high voltage
- Low forward voltage, high current capability
- Low thermal resistance
- Low power loss, high efficiency
- High temperature soldering guaranteed: 250°C,.17", 4.3mm from case for 10 seconds

MECHANICAL DATA

Case: TO-3P

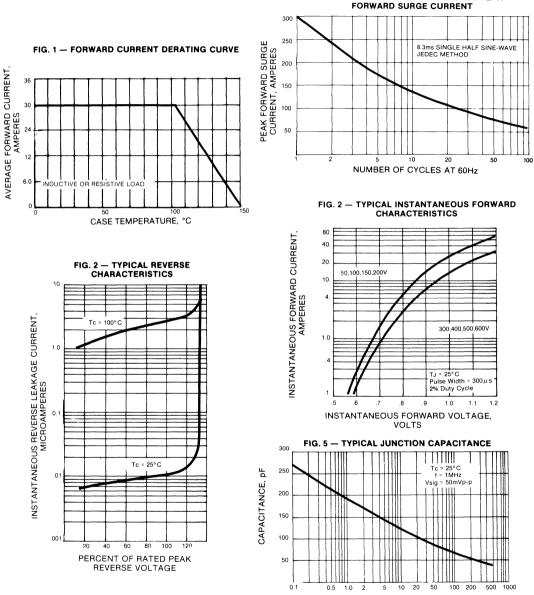
Terminals: Lead solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Weight: .2 ounces, 5.6 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	0////2001	FEP	FEP	FEP	FEP	FEP	FEP	FEP	FEP	
	SYMBOL	· · · · · ·		30CP	30DP	30FP	30GP	30HP	30JP	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current at Tc = 100'C	I(AV)				30	0.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	300								Amps
Maximum Instantaneous Forward Voltage at 15.0A	VF			0.95			1.3	1.	5.	Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IR).0)0				μA
Maximum Reverse Recovery Time (Note 2) T _J = 25°C	T _{RR} 35 50						Ns			
Typical Junction Capacitance (Note 1)	CJ	j 150						pf		
Thermal Resistance (Note 3)	ReJC	RØJC 1.0						.c\M		
Operating and Storage Temperature Range	TJ,TSTG				-65 to	+150)			.c

NOTES:


1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

3. Thermal Resistance Junction to CASE per element..

FIG. 3 - MAXIMUM NON-REPETITIVE PEAK

REVERSE VOLTAGE, VOLTS

-254-

SUPERECTIFIERS

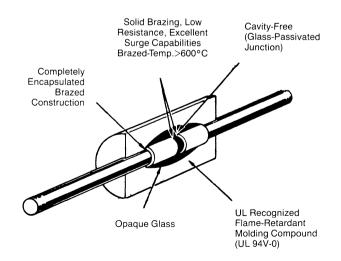
0.25 TO 3.0 AMPERES 50 VOLTS TO 4000 VOLTS

.25 to 3.0 Amperes 50 Volts to 4000 Volts

Introduction

No other .25 to 3.0 Ampere rectifiers of any kind— plastic, glass, or metal— can match (or even approach) SUPERECTIFIER's combination of features...the result of General Instrument's unique glass-plastic construction:

- Brazed at greater than 600°C at both leads and cell eliminates all soft solders
- Exclusive UL recognized flame-retardant epoxy molding compound rated 94V-0, the highest available
- Patented glass passivation
- Reliability proved equal to military requirements
- Hermetically sealed construction
- Cost effective construction at plastic prices


General Instrument's SUPERECTIFIER is exactly that...a super rectifier. There is nothing else in the world like it.

In cell construction, most other rectifiers rated up to 3.0 Amperes **are soft soldered** or **are only pressure** contacted. SUPERECTIFIER is made into an entirely solid unit with its leads and cell brazed at temperatures greater than 600°C. All other rectifiers fail at half that temperature.

In cell protection, conventional plastic rectifiers use either varnish, silicon rubber or a thin film of silicon oxide to protect the junction. SUPERECTIFIER uses a patented glass passivation to seal its junction hermetically.

In device encapsulation, again SUPERECTIFIER is the only one that won't go up in flames. It is one of the few rectifiers using an exclusive flame-RETARDANT molding compound, rated UL 94V-0, the highest rating available. Other plastic rectifiers use flame-ENHANCING compounds. Here again, SUPERECTIFIER's superiority is manifest. With this construction it exceeds environmental standards of MIL-S-19500.

In summary, SUPERECTIFIER is the world's only rectifier with totally brazed construction, with a patented glass passivated junction, and with flame-retardant molding encapsulation.

FAMILIES OF GENERAL INSTRUMENT **SUPERECTIFIER**

Glass Passivated Junction Plastic Rectifiers 0.25 to 1.75 AMPERES

Types: 1N3611GP thru 1N3614GP 1N4001GP thru 1N4007GP 1N4245GP thru 1N4249GP 1N5059GP thru 1N5062GP 1N5391GP thru 1N5399GP GI250-1 GP02-20 GP08A GP10A GP15A

BY126GP BY133GP BYX10GP thru GI250-4 thru GP02-40 thru GP08J thru GP10Y thru GP15M

BY126GP and BY127GP and BY227GP thru BY135GP BYW27-50GP thru BYW27-1000GP

Features:

High Temperature Metallurgically Bonded

- ٠ Plastic Package has Underwriters Laboratory Classification 94V-0
- ٠ Glass Passivated Junction overmolded in epoxy packages for easy handling
- Io rated current operation at 55°C Ambient Temperature with no Thermal Runaway. ٠
- Capable of meeting Environmental Standards of MIL-S-19500
- High Temperature Soldering Guaranteed 350°C/10 Second/.375" 9.5mm Lead Length at 5 lbs. 2.25 kg Tension
- Tin Plated Axial Leads, Solderable per MIL-STD-202 method 208

Glass Passivated Junction Plastic Rectifiers 2.0 to 3.0 AMPERES

1N5624GP thru 1N5627GP Types: GP20A thru GP20.1 GP25A thru GP25M thru GP30M

GP30A

Features:

- High Temperature Metallurgically Bonded
- Plastic Package has Underwriters Laboratory Classification 94V-0
- ۵ Glass Passivated Junction overmolded in epoxy packages for easy handling
- I_O rated current operation at 55°C Ambient Temperature with no Thermal Runaway
- Typical I_B less than 0.1 "A
- Capable of meeting Environmental Standards of MIL-S-19500
- Tin Plated Axial Leads, Solderable per MIL-STD-202 method 208
- High Temperature Soldering Guaranteed 350°C/10 Second/.375" 9.5mm Lead Length at 5 lbs. 2.25 kg Tension

Fast Recovery Glass Passivated Junction Plastic Rectifiers 0.50 to 3.0 AMPERES

Types:	1N4942GP thru 1N4948 RGPO2-12 thru RGPO2-	
	RGP10A thru RGP10	M BY206GP and BY207GP
	RGP15A thru RGP15	м
	RGP20A thru RGP20	ل.
	RGP25A thru RGP25	м

Features:

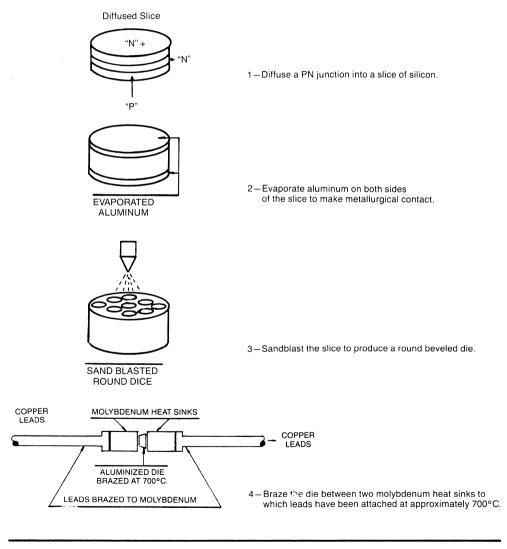
- High Temperature Metallurgically Bonded
- Fast switching for High Rectification Efficiency to 100kHz
- Plastic Package has Underwriters Laboratory Classification 94V-0
- Capable of meeting Environmental Standards of MIL-S-19500
- ٠ Includes all Advantages of the SUPERECTIFIER Design
- Tin Plated Axial Leads, Solderable per MIL-STD-202 method 208
- High Temperature Soldering Guaranteed: 350°C/10 Second/.375" 9.5mm Lead Length at 5 lbs. 2.25 kg Tension

QUICK GUIDE TO SUPERECTIFIERS

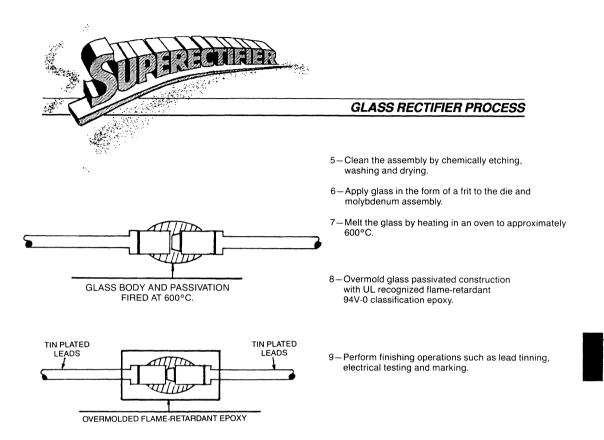
TYPE	RGP01* -12 thru -20	GP02 -20 thru -40	Gl250 -1 thru -4	BYX10GP		thru	BA157GP* thru BA159GP*	GP08A thru GP08J	GP10A thru GP10M	1N3611GP thru 1N3614GP	1N4001GP thru 1N4007GP	1N4245GP thru 1N4249GP	1N4933GP* thru 1N4937GP*
CASE	DO41	DO41	DO41	DO41		DO41	DO41	DO41	DO41	DO41	DO41	DO41	DO41
I _o (A)	0.5	0.25	0.25	.36		0.4	0.5	0.8	1.0	1.0	1.0	1.0	1.0
@T _A (C°)	55	55	75	40		55	55	55	55	100	75	55	75
V _R = 1000 (V)			GI250-1		V _R = 50 (V)			GP08A	GP10A		1N4001GP		1N4933GP
V _B = 1200 (V)	RGO2-12				V _R = 100 (V)			GF08B	GP10B		1N4002GP		1N4934GP
V _R = 1400 (V)	RGO2-14				V _R = 200 (V)			GP08D	GP10D	1N3611GP	1N4003GP	1N4245GP	1N4935GP
V _R = 1600 (V)	RGO2-16			BYX10GP	V _R = 300 (V)			GP08G					
V _R = 1800 (V)	RGO2-18				V _R = 400 (V)	BY206GP	BA157GP		GP10G	1N3612GP	1N4004GP	1N4246GP	1N4936GP
V _R = 2000 (V)	RGO2-20	GP02 -20	GI250 -2		V _R = 500 (V)			GP08J					
V _R = 2500 (V)		GP02 -25			V _R = 600 (V)	BY207GP	BA158GP		GP10J	1N3613GP	1N4005GP	1N4247GP	1N4937GP
V _R = 3000 (V)		GP02 -30	GI250 -3		V _R = 800 (V)		BA159DGP		GP10K	1N3614GP	1N4006GP	1N4248GP	
V _R = 3500 (V)		GP02 -35			V _R = 1000 (V)		BA159GP		GP10M	1N3957GP	1N4007GP	1N4249GP	
V _R = 4000 (V)		GP02 -40	GI250 -4										
SURGE (A)	20	15	15	15		15	20	25	30	30	30	25	30
VF (V)	1.8	3.0	3.5	1.6		1.3	1.3	1.3	1.1	1.1	1.1	1.2	1.2

*Fast Recovery

QUICK GUIDE TO SUPERECTIFIERS


TYPE	1N4383GP thru 1N4586GP	1N5059GP thru 1N5062GP	AGP15-200 thru AGP15-800	GP15A thru GP15M	1N5391GP thru 1N5399GP	BY126GP thru BY127GP	RGP15A* thru RGP15M*	BY226GP thru BY227GP	GP20A thru GP20J	RGP20A thru RGP20J *	RGP25A thru RGP25M*	1N5624GP thru 1N5627GP	GP30A thru GP30M	RGP30A* thru RGP30M*
CASE	DO15	DO15	DO15	DO15	DO15	DO201AE	DO15	DO201AE	GP20	GP20	DO201AD	DO201AD	DO201AD	DO201AD
Io (A)	1.0	1.0	1.5	1.5	1.5	1.5	1.5	1.75	2.0	2.0	2.5	3.0	3.0	3.0
@T_(°C)	5	55	55	55	70	55	55	55	55	55	55	70	55	55
V _R = 50 (V)				GP15A	1N5391GP		RGP15A		GP20A	RGP20A	RGP25A		GP30A	RGP30A
V _P = 100 (V)				GP15B	1N5392GP		RGP15B		GP20B	RGP20B	RGP25B		GP30B	RGP30B
V _R = 200 (V)	1N4383GP	1N5059GP	AGP15-200	GP15D	1N5393GP		RGP15D		GP20D	RGP20D	RGP25D	1N5624GP	GP30D	RGP30D
V _R = 300 (V)					1N5394GP									
V _R = 400 (V)	1N4384GP	1N5060GP	AGP15-400	GP15G	1N5395GP		RGP15G		GP20G	RGP20G	RGP25G	1N5625GP	GP30G	RGP30G
V _R = 500 (V)					1N5396GP									
$V_{R} \approx 600 (V)$	1N4384GP	1N5061GP	AGP15-600	GP15J	1N5397GP	BY126GP	RGP15J	BY226GP	GP20J	RGP20J	RGP25J	1N5626GP	GP30J	RGP30J
V _R = 800 (V)	1N4585GP	1N5062GP	AGP15-800	GP15K	1N5398GP		RGP15K				RGP25K	1N5627GP	GP30K	RGP30K
V _R = 1000 (V)	1N4586GP			GP15M	1N5399GP		RGP15M				RGP25M		GP30M	RGP30M
$V_{\textrm{R}}\!>\!1000~(\textrm{V})$						BY127GP		BY227GP						
SURGE (A)	50	50	50	50	50	50	50	60	65	65	100	125	125	125
V _R (V)	1.2	1.2	1.2	1.1	1.4	1.3	1.3	1.3	1.1	1.3	1.3	1.0	1.1	1.3

*Fast Recovery

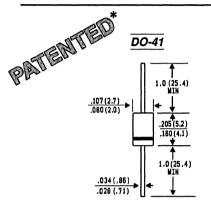


GLASS RECTIFIER PROCESS

Package Design

The small size of the superectifier package with its capability up to 3 Amperes permits greater packing densities in electronic assemblies and equipment, while increasing reliability. Furthermore, only high temperature brazing operations are used to withstand the 600°C required to melt and fuse the glass. This technique eliminates solder construction and tremendously enhances mechanical strength and temperature cycling capability, increasing operating and storage temperature range while reducing thermal resistance.

Reliability


Specified reliability data on Superectifier devices are available from the General Instrument Semiconductor Components Division Reliability Department. The basic design of the superectifier devices and the strict positive controls over materials and manufacturing processes provide assurance of failure-free performance under the most severe conditions. Processing facilities have been geared to follow the procedural requirements of Military Standard 750 and are capable of withstanding environmental extremes in excess of MIL-S-19500. Assurance of production uniformity and reliability is provided by a test technique called "Operational Load Line Testing", which has proven product reliability with over 1 Billion Superectifiers now in use.

GP02-20 THRU GP02-40

MINIATURE HIGH VOLTAGE GLASS PASSIVATED JUNCTION RECTIFIER Voltage - 2000 to 4000 Volts Current - 0.25 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction in D0-41 package
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass *Terminals:* Axial leads, solderable per MIL-STD-202, Method 208

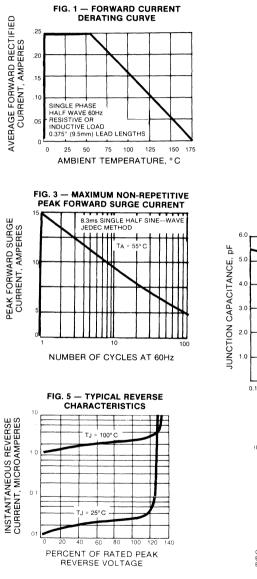
Polarity: Color band denotes cathode

Mounting Position: Any *Weight:* 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25'C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	GP02 -20	GP02 -25	GP02 -30	GP02 -35	GP02 -40	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	2000	2500	3000	3500	4000	Volts
Maximum RMS Voltage	VRMS	1400	1750	2100	2450	2800	Volts
Maximum DC Blocking Voltage	VDC	2000	2500	3000	3500	4000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	I(AV)		Amps				
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load at T _A = 55°C	IFSM		Amps				
Maximum Instantaneous Forward Voltage at 1.0A	VF			3.0			Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR			5.0 50.0			μA
Typical Reverse Recovery Time (Note 2)	TRR			2.0			μs
Typical Junction Capacitance (Note 1)	CJ		pf				
Typical Thermal Resistance (Note 3)	Reja	130					
Operating and Storage Temperature Range	TJ, TSTG		.c				


NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = .25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES GP02-20 THRU GP02-40

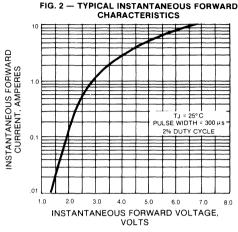
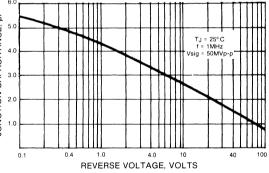
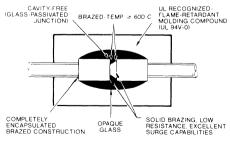
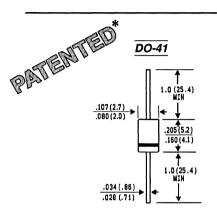




FIG. 4 — TYPICAL JUNCTION CAPACITANCE



GI250-1 THRU GI250-4

MINIATURE HIGH VOLTAGE GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 1000 to 4000 Volts Current - 0.25 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

 High temperature metallurgically bonded constructed rectifiers

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction in D0-41 package
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any

Weight: 0.012 ounce. .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	Gl250-1	GI250-2	Gl250-3	Gi250-4	UNITS		
Maximum Recurrent Peak Reverse Voltage	VRRM	1000	2000	3000	4000	Volts		
Maximum RMS Voltage	VRMS	700	1400	2100	2800	Volts		
Maximum DC Blocking Voltage	VDC	1000	2000	3000	4000	Volts		
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 75°C								
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load at $T_A = 75$ °C	IFSM		Amps					
Maximum Instantaneous Forward Voltage at 0.25A	VF		3.	.5		Volts		
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR		-	.0).0		μA		
Typical Reverse Recovery Time (Note 2)	T _{RR}		2	.0		μs		
Typical Junction Capacitance (Note1)	CJ		3.0					
Typical Thermal Resistance (Note 3)	RØJA		1:	30		.c/M		
Operating and Storage Temperature Range	TJ, TSTG		-65 to -	+175		.c		

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

Reverse Recovery Test Conditions : |_F = 0.5A, |_R = 1.0A, |_T c.25A.
 Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES GI250-1 THRU GI250-4

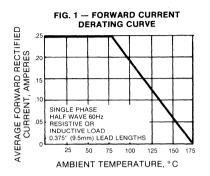
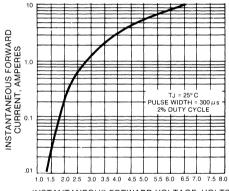



FIG. 3 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

FIG. 5 - TYPICAL REVERSE CHARACTERISTICS 10 INSTANTANEOUS REVERSE CURRENT, MICROAMPERES TJ = 100° C 10 TI = 25° C 0 01 0 20 100 120 140 40 60 80 PERCENT OF RATED PEAK REVERSE VOLTAGE

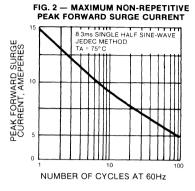


FIG. 4 - TYPICAL JUNCTION CAPACITANCE

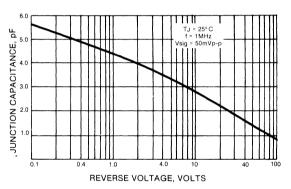
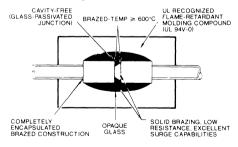



Fig. 6-SUPERECTIFIER

BYX10GP MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER Voltage - 1600 Volts Current - .36 Amperes **FEATURES** PATENTER High temperature metallurgically bonded constructed rectifier DO-41 Plastic package has Underwriters Laboratory Flammability Classification 94V-0 Glass passivated cavity-free junction in D0-41 package .107 (2.7) .080(2.0) ◆ .36 Ampere operation at T_A = 40°C with no .205 (5.2) thermal runaway .150(4.1) Typical I_R less than 0.1 μ A Capable of meeting environmental standards of MIL-S-19500 1.0(25.4)MIN High temperature soldering guaranteed .034 (.86) 350°C/10 seconds/.375", (9.5mm) lead length at .028 (.71)

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

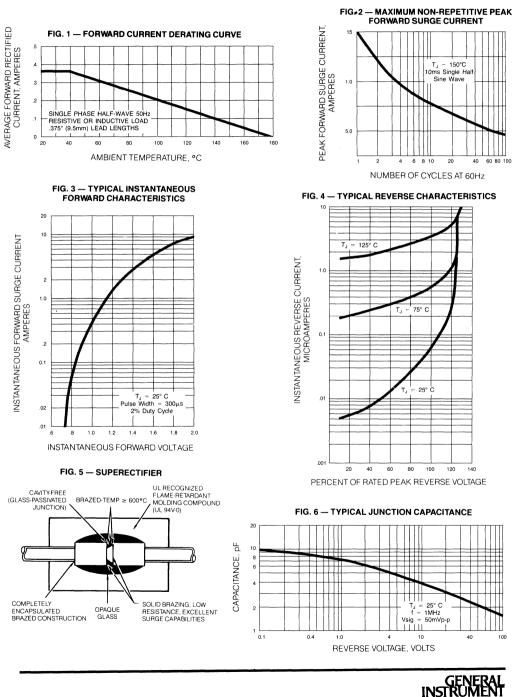
MECHANICAL DATA

Case: Molded plastic over glass *Terminals:* Axial leads, solderable per MIL-STD-202, Method 208 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

5 lbs., (2.3kg) tension

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	BYX10GP	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	1600	Volts
Maximum Working Reverse Voltage	VRMS	800	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 40°C	I(AV)	0 .36	Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load	IFSM	15	Amps
Maximum Instantaneous Forward Voltage at 2.0A	VF	1.6	Volts
Maximum Peak Reverse Current at Rated Perak Working Reverse Voltage $T_A = 25^{\circ}C$	IR	1.0	μA
Maximum Reverse Recovery Time (Note 1)	T _{RR}	2.0	μs
Typical Junction Capacitance (Note 2)	CJ	5.0	pf
Typical Thermal Resistance (Note 3)	Røja	45.0	.C\M
Operating and Storage Temperature Range	TJ, TSTG	-65 to +175	.c

NOTES:

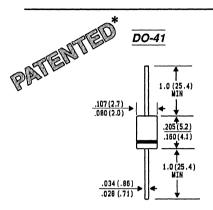
1. Measured on IF = 0.5A, IR = 1.0A, Irr = 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES BYX10GP SERIES

100


40 60 80 100

GP08A THRU GP08J

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 50 to 600 Volts Current - 0.8 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Fast switching for high efficiency
- Glass passivated cavity-free junction in D0-41 package
- 0.8 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	GP08A	GP08B	GP08D	GP08G	GP08J	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts	
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts	
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts	
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	I(AV)	v) 0.8						
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	25.0						
Maximum Instantaneous Forward Voltage at 0.8A	VF			1.3			Volts	
Maximum Full Load Reverse Current Full Cycle Average at T _A = 55°C	I _{R(AV)}			30.0			μA	
Maximum DC Reverse Current T _A = 25°C				5.0				
at Rated DC Blocking Voltage T _A = 125°C	IR			50.0			μΑ	
Typical Reverse Recovery Time (Note 1)	T _{RR}			1.0			μS	
Typical Junction Capacitance (Note 2)	CJ	8.0						
Typical Thermal Resistance (Note 3)	Reja	45.0						
Operating and Storage Temperature Range	T _J ,T _{STG}		-	65 to +1	75		.c	

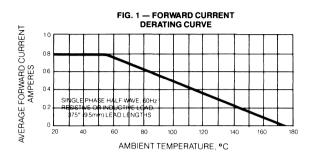
NOTES:

1. Measured on $I_F = 0.5A$, $I_R = 1.0A$, Irr = .25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES GP08A THRU GP08J



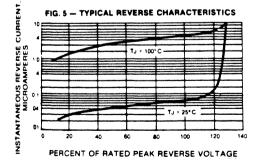


FIG. 3 — MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT 8 3ms SINGLE HALF SINE-WAVE JEDEC METHOD

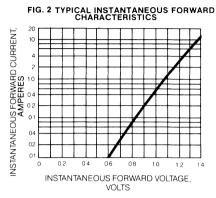
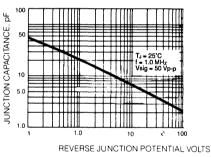
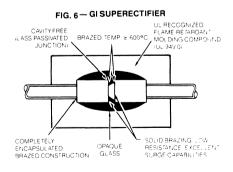
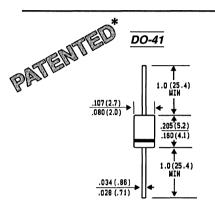




FIG. 4 — TYPICAL JUNCTION CAPACITANCE



1N3611GP THRU 1N3614GP AND 1N3957GP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 200 to 1000 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction in D0-41 package
- 1.0 Ampere operation at T_A = 75°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

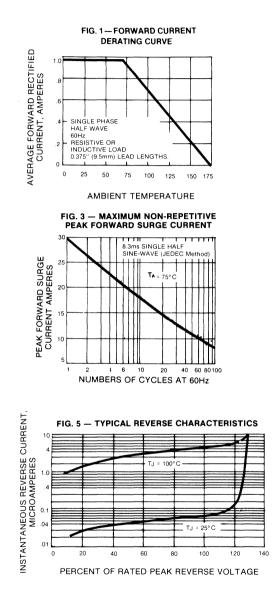
Case: Molded plastic over glass *Terminals:* Axial leads, solderable per MIL-STD-202, Method 208 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N 3957GP	UNITS				
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 75°C	I(AV)		Amps				
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		Amps				
Maximum Instantaneous Forward Voltage at 1.0A	Vf			1.0			Volts
*Maximum DC Reverse Current T _A = 25°C at Rated DC Blocking Voltage T _A = 150°C	IR			1.0 300.0			μΑ
Typical Reverse Recovery Time (Note 1)	T _{RR}		1	2.0			μs
Typical Junction Capacitance (Note 2)	CJ		pf				
Typical Thermal Resistance (Note 3)	RØJA	_	.C\M				
Operating and Storage Temperature Range	TJ, TSTG			.c			

NOTES:


1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = .25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

* JEDEC Registered Values

RATINGS AND CHARACTERISTIC CURVES 1N3611GP THRU 1N3614GP AND 1N3957GP

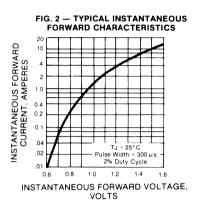


FIG. 4 - TYPICAL JUNCTION CAPACITANCE

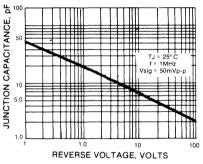
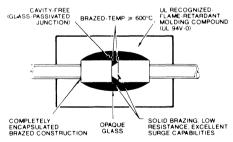
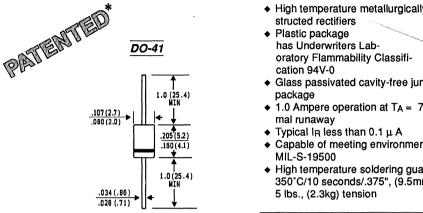



FIG. 6 - GI SUPERECTIFIER


1N4001GP THRU 1N4007GP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts

Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3, 752, 701 of 1973

High temperature metallurgically bonded con-

- Glass passivated cavity-free junction in D0-41
- 1.0 Ampere operation at TA = 75°C with no ther-
- Capable of meeting environmental standards of
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at

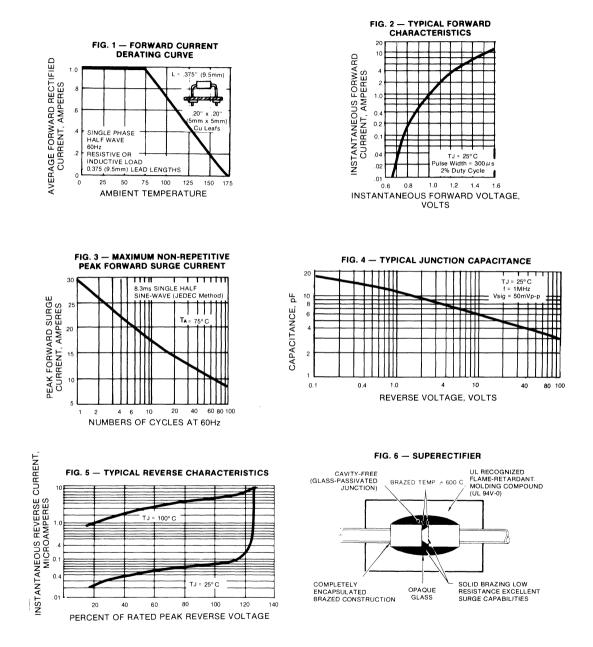
MECHANICAL DATA

Case: Molded plastic over glass Terminals: Axial leads, solderable per MIL-STD-202. Method 208 Polarity: Color band denotes cathode Mounting Position: Anv Weight: 0.012 ounce, 0.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N 4001GP	1N 4002GP	1N 4003GP	1N 4004GP	1N 4005GP	1N 4005GP	1N 4007GP	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
*Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 75°C	I(AV)	1.0							
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	30.0							
Maximum Instantaneous Forward Voltage at 1.0A	VF				1.1				Volts
*Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length T _A = 75°C	IR(AV)				30.0				μA
*Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR				5.0 50.0				μA
Typical Reverse Recovery Time (Note 1)	TRR	2.0							μs
Typical Junction Capacitance (Note 2)	CJ	8.0							pf
Typical Thermal Resistance (Note 3)	RØJA	45.0							.C/M
Operating and Storage Temperature Range	TJ,TSTO	rg -65 to +175							.c

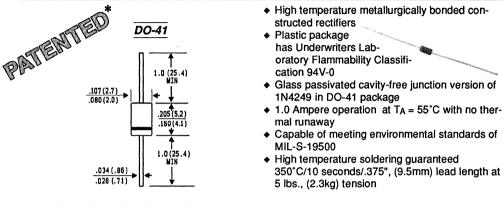

NOTES: 1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDC.

3. Thermal Resistance from Junction to Ambient at .375"

(9.5mm) Lead Lengths, P.C. Board Mounted. * JEDEC Registered Values

RATINGS AND CHARACTERISTIC CURVES 1N4001GP THRU 1N4007GP


1N4245GP THRU 1N4249GP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 200 to 1000 Volts Current - 1.0 Ampere

FEATURES

MECHANICAL DATA

Dimensions in inches and (millimeters)

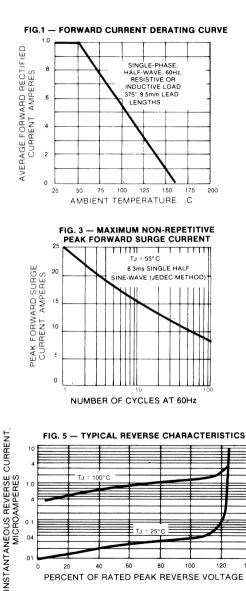
* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N 4245GP	1N 4246GP	1N 4247GP	1N 4248GP	1N 4249GP	UNITS	
* Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts	
* Maximum RMS Voltage	VRMS	V _{RMS} 140 280 420 560 700						
* Maximum DC Blocking Voltage	VDC	200	Volts					
* Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	I(AV)			Amps				
 Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) 	IFSM		Amps					
* Maximum Instantaneous Forward Voltage at 1.0A	VF			1.2			Volts	
* Maximum Full Load Reverse Current Full Cycle Average .375" (9.5mm) Lead Length T _A = 55°C	IR(AV)			50.0			μΑ	
* Maximum Reverse Current at Rated DC Blocking Voltage TA = 25°C TA = 25°C	IR			1.0 25.0			μΑ	
Typical Junction Capacitance (Note 1)	CJ			8.0			pf	
Typical Thermal Resistance (Note 2)	Reja	45.0						
* Operating Temperature Range	TJ	-65 to +160						
* Storage Temperature Range	TSTG		(m	.c				


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

* JEDEC registered values

RATINGS AND CHARACTERISTIC CURVES 1N4245GP THRU 1N4249GP

TJ = 25°C

PERCENT OF RATED PEAK REVERSE VOLTAGE

80

100

120

140

60

0.1

.04

.01

0

20

40

FIG. 2 - TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

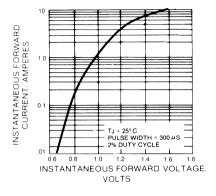


FIG. 4 - TYPICAL JUNCTION CAPACITANCE

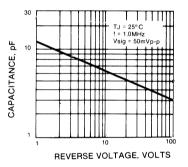
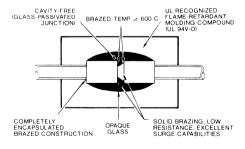
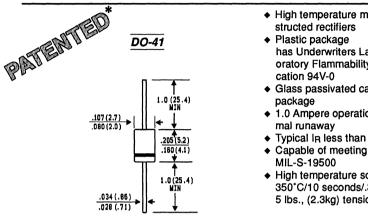



FIG. 6 - SUPERECTIFIER



GP10A THRU GP10Y

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER Current - 1.0 Ampere Voltage - 50 to 1600 Volts

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

High temperature metallurgically bonded con-

has Underwriters Laboratory Flammability Classifi-

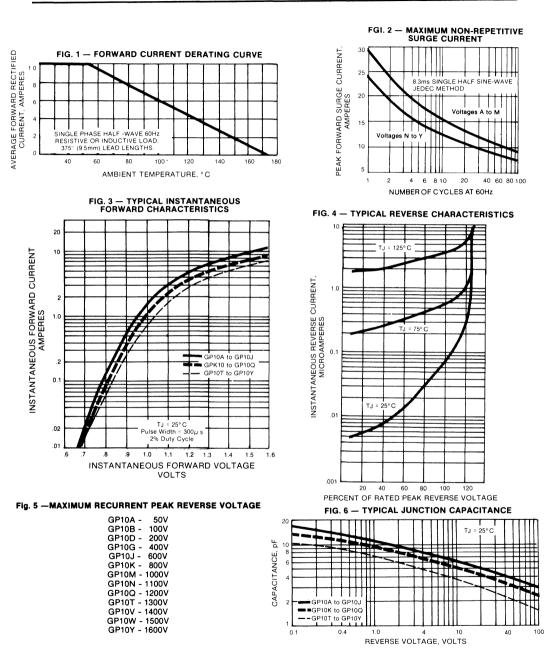
- Glass passivated cavity-free junction in D0-41
- 1.0 Ampere operation at TA = 55°C with no ther-
- Typical In less than 0.1 µ A
- Capable of meeting environmental standards of
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave 60HZ, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	A	B	D	G	J	K	M	N	1	0	T	V	W	Y	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM		50) to	16	00	Vo	lts	, S	99	Fi	g !	5.			Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55$ °C	l(AV)								1.0	D						Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			3(0.0							25	5.0			Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF		1.1 1.2 1.3								Volts					
Maximum Full Load Reverse Current, Full Cycle Average, .375", (9.5mm) Lead Lengths at TA= 75°C	IR(AV)		30.0								μA					
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR	5.0 50.0								μA						
Typical Reverse Recovery Time (Note 1)	TRR	2.0							μs							
Typical Junction Capacitance (Note 2)	CJ		8.	0			Τ		7.	.0		Τ		5	.0	pf
Typical Thermal Resistance (Note 3)	RØJA								45	.0						.c\M
Operating and Storage Temperature Range	TJ, TSTG	-65 to +175						·c								

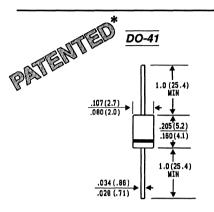
NOTES:

1. Reverse Recovery Test Condition: IF = 0.5A, IR = 1.0A, Irr = 25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES GP10A THRU GP10Y



BYW27-50GP THRU BYW27-1000GP

GLASS PASSIVATED JUNCTION PLASTIC MINIATURE RECTIFIER

Voltage - 50 to 1000 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

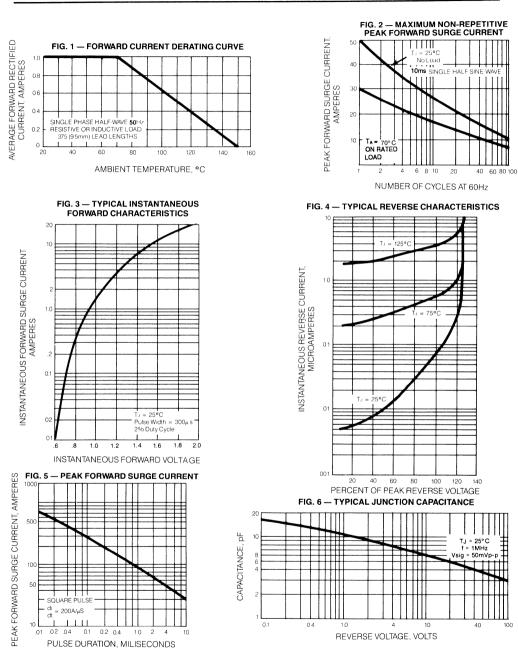
* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction in D0-41 package
- 1.0 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, 0.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

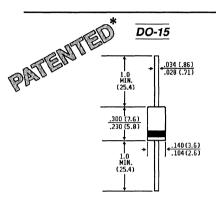

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	BYW27 50GP							UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 70^{\circ}C$	I(AV)				1.0				Amps
Peak Forward Surge Current 10ms single half sine-wave no load	IFSM				50.0				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF				1.0				Volts
Maximum DC Reverse Current at Rated DC Blocking Voltage $T_A = 25^{\circ}C$	IR				200				nA
Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length $T_A = 100^{\circ}C$	I _{R(AV)}				15.0				μA
Typical Reverse Recovery Time (Note 1)	TRR				20.0				μs
Typical Junction Capacitance (Note 2)	CJ				8.0				pf
Typical Thermal Resistance (Note 3)	Reja				45.0				·C/W
Operating and Storage Temperature Range	TJ, TSTG			-6	5 to +'	150			.c

NOTES: 1. Measured on Tektronix Type S recovery plug-in. Tektronix 545 Scope (or equiv.) . IFM = 20mA, IRM = 1.0mA.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.


RATINGS AND CHARACTERISTIC CURVES BYW27-50GP THRU BYW27-1000GP

1N4383GP THRU 1N4385GP 1N4585GP AND 1N4586GP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER Voltage - 200 to 1000 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

High temperature metallurgically bonded constructed rectifiers

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction in DO-15 package
- 1.0 Ampere operation at T_A = 100°C with no thermal runaway
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.015 ounce,0.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single half wave , 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N 4383GP	1N 4384GP	1N 4385GP	1N 4585GP	1N 4586GP	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
* Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
* Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
* Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths	I(AV)			1.0			Amps
* Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at T _A = 100°C	IFSM			50.0			Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.0					Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR	5.0 250					μΑ
* Typical Reverse Recovery Time (Note 2)	TRR	2.0					μs
Maximum Full Load Reverse Current Full Cycle Average at .375"(9.5mm) Lead Lengths, TA = 100°C	IR(AV)	275	250	225	200	200	μA
Typical Junction Capacitance (Note 1)	CJ	15.0					pf
Typical Thermal Resistance (Note 3)	RØJA	25.0					'C/W
* Operating and Storage Temperature Range	TJ,TSTG	-65 to +175					.c

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2 Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = 0.25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

JEDEC registered values

RATINGS AND CHARACTERISTIC CURVES 1N4383GP THRU 1N4385GP 1N4585GP AND 1N4586GP

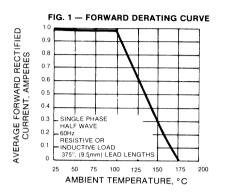


FIG. 3 - TYPCIAL FORWARD CHARACTERISTICS

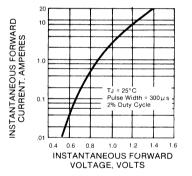
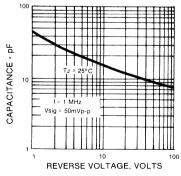
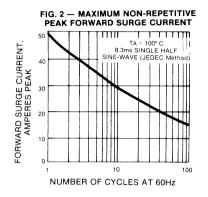
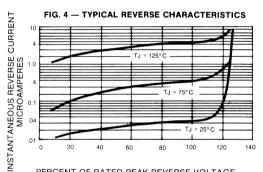
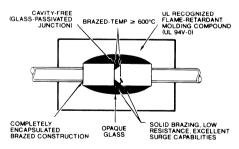
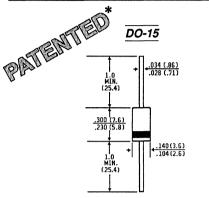





FIG. 5 - TYPICAL JUNCTION CAPACITANCE



PERCENT OF RATED PEAK REVERSE VOLTAGE

FIG. 6 - SUPERECTIFIER


GENERA INSTRUMEN

1N5059GP THRU 1N5062GP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 200 to 800 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- Plastic package
 has Underwriters Lab oratory Flammability Classifi cation 94V-0
- Glass passivated cavity-free junction version of 1N5059 thru 1N5062 in D0-15 package
- 1.0 Ampere operation at T_A = 75°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

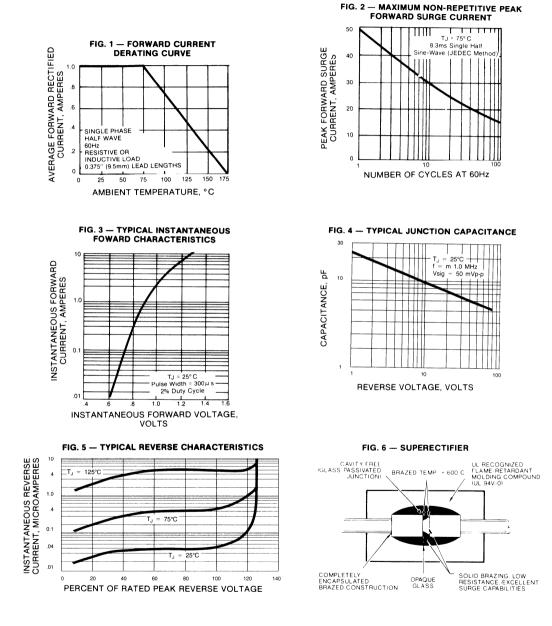
Case: Molded plastic over glass *Terminals:* Plated Axial leads, solderable per MIL-STD-202, Method 208 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.015 ounce,0.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60Hz Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N5059GP	1N5060GP	1N5061GP	1N5062GP	UNITS	
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	Volts	
Maximum RMS Voltage	VRMS	140	280	420	560	Volts	
*Maximum DC Blocking Voltage	VDC	200	400	600	800	Volts	
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 75°C	l(AV)		1.	0		Amps	
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		Amps				
*Maximum Instantaneous Forward Voltage at 1.0A $T_A = 75$ °C	VF	1.2					
*Maximum Full Load Reverse Current, Full Cycle Average,.375" (9.5mm) Lead Lengths at $T_A = 25$ °C $T_A = 75$ °C	I _{R(AV)}		μΑ				
*Maximum DC Reverse Current T _A = 25°C			5	.0			
at Rated DC Blocking Voltage T _A = 175°C	IR	300.0					
Typical Reverse Recovery Time (Note 1)	T _{RR}	2.0					
Typical Junction Capacitance (Note 2)	CJ	15.0					
Typical Thermal Resistance (Note 3)	Røja	25.0					
*Operating and Storage Temperature Range	TJ, TSTG		.c				

NOTES


1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

JEDEC Registered Value

RATINGS AND CHARACTERISTIC CURVES 1N5059GP THRU 1N5062GP

BY133GP THRU BY135GP MINIATURE GLASS PASSIVATED JUNCTION **PLASTIC RECTIFIER** Voltage - 200 to 1300 Volts Current - 1.0 Ampere FEATURES PATENTED High temperature metallurgically bonded con-DO-15 structed rectifiers Plastic package has Underwriters Lab-.034 (.86) oratory Flammability Classifi-1.0 MIN. (25.4) cation 94V-0 Glass passivated cavity-free junction in DO-15 package .300 (7.6) 1.0 Ampere operation at T_A = 75°C with no thermal runaway .140 (3.6) Typical IR less than 0.1 µA 1.0 Min Capable of meeting environmental standards of (25.4) MIL-S-19500 High temperature soldering guaranteed: ٠ 350°C/10 seconds/.375", (9.5mm) lead length at Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3.996.602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3, 752, 701 of 1973

5 lbs., (2.3kg) tension

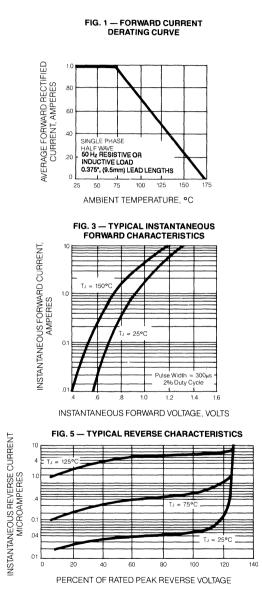
MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.015 ounce, 0.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave 60 HZ, resistive or inductive load For capacitive load, derate current by 20%.

	SYMBOLS	BY133GP	BY134GP	BY135GP	UNITS
Maximum Non-Recurrent Peak Reverse Voltage	Vrsm	1600	800	200	Volts
Maximum Recurrent Peak Reverse Voltage	VRRM	1300	600	200	Volts
Maximum RMS Voltage	VRMS	910	420	140	Volts
Maximum DC Blocking Voltage at T _A = 150°C	VDC	1300	600	200	Volts
*Maximum Average Forward Rectified Current 375", (9.5mm) Lead Lengths at T _A = 75°C	l(AV)		1.0		Amps
Peak Forward Surge Current 10 ms single half sine-wave superimposed on rated load T _A = 25°C	IFSM		50.0		Amps
Maximum Instantaneous Forward Voltage at 2.0A T _A = 75°C	VF		1.2		Volts
	IR		5.0 200		μA
Maximum Full Load Reverse Current FullCycle $T_A = 25^{\circ}C$ Average, .375", (9.5 mm) Leads Length at $T_A = 75^{\circ}C$			5.0 200		μA
Typical Junction Capacitance (Note 1)	CJ		15.0		pf
Typical Reverse Recovery Time (Note 2)	TRR		2.0		μs
Typical Thermal Resistance (Note 3)	RØJA		25.0		°C/W
Operating and Storage Temperature Range	TJ, TSTG		-65 to +175	;	.c


NOTES:

Measured at 1.0 MHz and applied reverse voltage of 4.0 VDc. 1.

Reverse Recovery Test Condition: IF = 0.5A, IR = 1.0A, Irr = 0.25A. 2

- 3. Thermal Resistance from Junction to Ambient at .375"
- (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES BY133GP THRU BY135GP

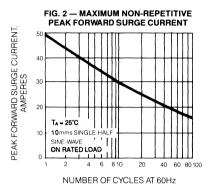


FIG. 4 - TYPICAL JUNCTION CAPACITANCE

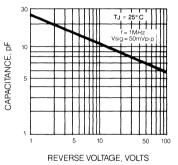
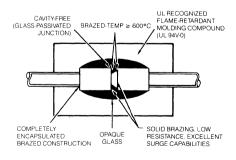
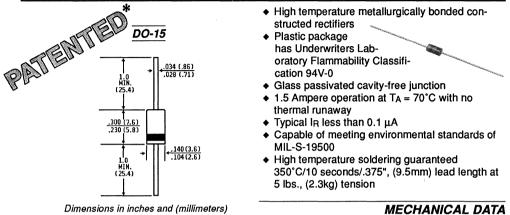



FIG. 6 - SUPERECTIFIER



1N5391GP THRU 1N5399GP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER Current - 1.5 Amperes

Voltage - 50 to 1000 Volts

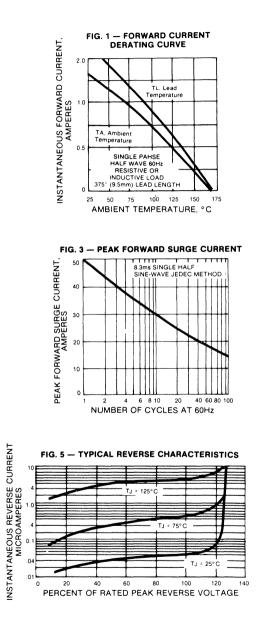
FEATURES

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weiaht: 0.015 ounce.0.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.Single phase, half wave 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	1N53 91GP	1N53 92GP	1N53 93GP	1N53 94GP	1N53 95GP	1N53 96GP	1N53 97GP	1 N53 98GP	1N53 99GP	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	300	400	500	600	800	1000	Volts
* Maximum RMS Voltage	VRMS	35	70	140	210	280	350	420	560	700	Volts
* Maximum DC Blocking Voltage	VDC	50	100	200	300	400	500	600	800	1000	Volts
* Maximum Average Forward Rectified Curren .375", (9.5mm) Lead Lengths at T _A = 70°C	t I(AV)					1.5					Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM					50.0					Amps
Maximum Instantaneous Forward Voltage at 1.5A,T _A = 70°C	VF					1.4					Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR	5.0 300.0							μA		
* Maximum Full Load Reverse Current Full Cycle Average, 375", (9.5mm) Lead Length atT _A = 70°C	IR(AV)					300.0					μA
Typical Reverse Recovery Time (Note 2)	TRR					2.0					μs
Typical Junction Capacitance (Note 1)	CJ					15.0					pf
Typical Thermal Resistance (Note 3)	Røja					30.0					.C/A
Operating and Storage Temperature Range	TJ,TSTG				-65	5 to +1	75				.c

NOTES:1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

Reverse Recovery Test Condition: Ir = 0.5A, In = 1.0A, Irr = 0.25A.
 Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

* JEDEC regfistered values

RATINGS AND CHARACTERISTIC CURVES SERIES 1N5391GP THRU 1N5399GP

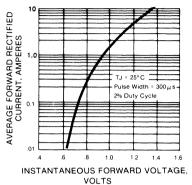


FIG. 2 — TYPICAL FORWARD CHARACTERISTICS

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

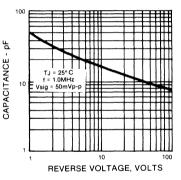
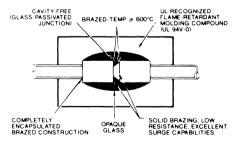
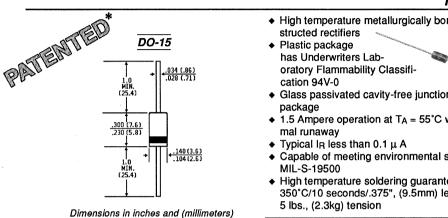



FIG. 6 - SUPERECTIFIER



GP15A THRU GP15M

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER Voltage - 50 to 1000 Volts Current - 1.5 Amperes

FEATURES

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3, 752, 701 of 1973

High temperature metallurgically bonded con-

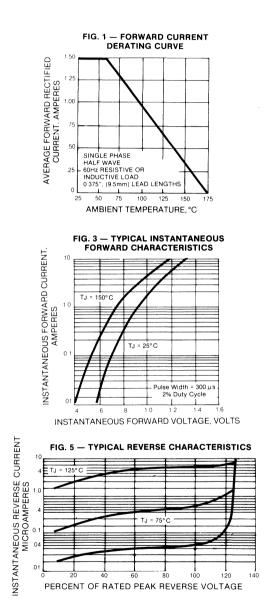
- Glass passivated cavity-free junction in D0-15
- 1.5 Ampere operation at T_A = 55°C with no ther-
- Capable of meeting environmental standards of
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.015 ounce, 0.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	GP 15A	GP 15B	GP 15D	GP 15G	GP 15J	GP 15K	GP 15M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55^{\circ}C$	I(AV)		,,		1.5				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	50.0						Amps	
Maximum Instantaneous Forward Voltage at 1.5A	VF	1.1						Volts	
Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length $T_A = 55$ °C	IR(AV)				100.0	l			μA
Maximum Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR				5.0 200.0				μA
Typical Reverse Recovery Time (Note 2)	T _{RR}				2.0				μs
Typical Junction Capacitance (Note 1)	CJ	15.0					pf		
Typical Thermal Resistance (Note 3)	RØJA	A 25.0					.C\W		
Operating and Storage Temperature Range	TJ, TSTG			-6	5 to +	175			.c

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

Reverse Recovery Conditions I_F = 0.5A, I_F = 1.0A, recover to 0.25A.
 Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES GP15A THRU GP15M

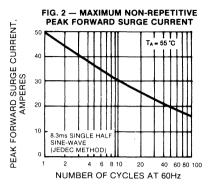
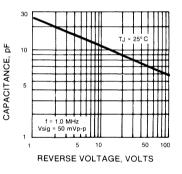
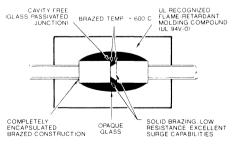
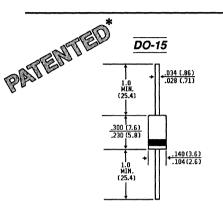




FIG. 4 - TYPICAL JUNCTION CAPACITANCE



AGP15-200 THRU AGP15-800

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC CONTROLLED AVALANCHE RECTIFIER

Voltage - 200 to 800 Volts Current - 1.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

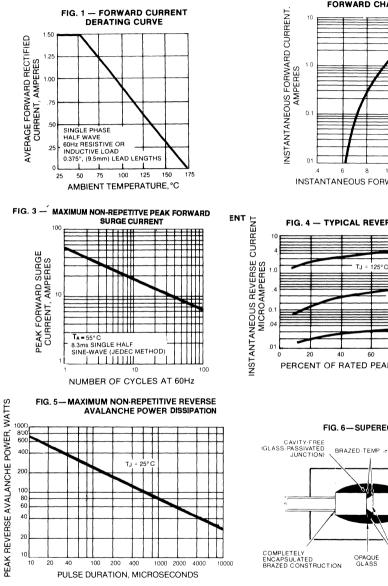
* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

 High temperature metallurgically bonded constructed rectifiers

- Controlled Avalanche characteristic combined with the ability to dissipate reverse power
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction in D0-15 package
- 1.5 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.0154 ounce,.4 gram


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

• • •						
	SYMBOLS	AGP15-200	AGP15-400	AGP15-600	AGP15-800	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	Volts
Mininum Avalanche Breakdown Voltage at 100 μ A	VBR	240	450	675	880	Volts
Maximum Avalanche Breakdown Voltage at 100 μ A	VBR	500	750	1000	1200	Volts
Maximum Peak Power Dissipation in the Avalanche Region 20 μs Pulse	Ргм		Watts			
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	I(AV)		Amps			
Peak Forward Surge Current8.3ms single half sine- wave superimposed on rated load (JEDEC Method	1			Amps		
Maximum Instantaneous Forward Voltage at 1.5A	VF		1.	.1		Volts
Maximum Reverse Current at Rated DC Blocking Voltage	IR		5	.0		μA
Maximum Full Load Reverse Current, Full Cycle Average,.375", (9.5mm) Lead Length at $T_A = 55$ C	IR(AV)			μA		
Typical Reverse Recovery Time (Note 2)	TRR			μs		
Typical Junction Capacitance (Note 1)	CJ			pf		
Typical Thermal Resistance (Note 3)	RØJA		25	5.0		.C\M
Operating and Storage Temperature Range	TJ, TSTG		-65 to	+175		.c

NOTES: 1. Measured at 1 MHZ and applierd reverse vsoltage of 4.0 Volts. 2. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A. 3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES AGP15-200 THRU AGP15-800

FORWARD CHARACTERISTICS TJ = 25°C Pulse Width = 300 µs 2% Duty Cycle 10 1.2 1.4 16

FIG. 2 - TYPICAL INSTANTEOUS

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

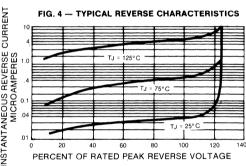
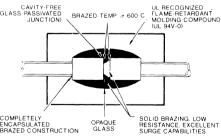
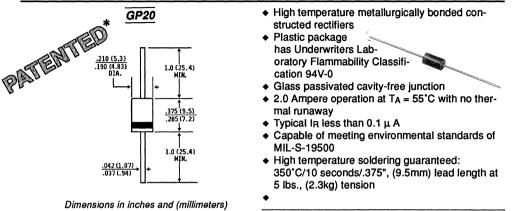



FIG. 6-SUPERECTIFIER



GP20A THRU GP20J

GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 50 to 600 Volts Current - 2.0 Amperes

FEATURES

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Band denotes cathode Mounting Position: Any Weight: 0.03 ounce, 0.8 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified 60 Hz Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	GP 20A	GP 20B	GP 20D	GP 20G	GP 20J	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	I(AV)			2.0			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			65.0			Amps
Maximum Instantaneous Forward Voltage at 2.0A	VF		1.2	1		1.1	Volts
Maximum Reverse Current at Rated DC Blocking Voltage T _A = 25°C	IR			5.0			μA
Maximum Full Load Reverse Current, Full Cycle Average, 375" (9.5mm) Lead Length T _A = 55°C	IR(AV)			100			μA
Typical Reverse Recovery Time (Note 1)	T _{RR}			2.5			μs
Typical Junction Capacitance (Note 2)	CJ			40			pf
Typical Thermal Resistance (Note 3)	Reja	16.0					.C\M
Operating and Storage Temperature Range	TJ, TSTG			-65 to +1	75		.с

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = 0.25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES GP20A THRU GP20J

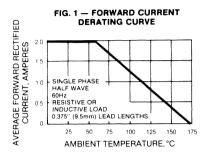
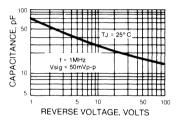
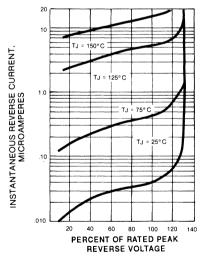




FIG. 3 - TYPICAL JUNCTION CAPACITANCE

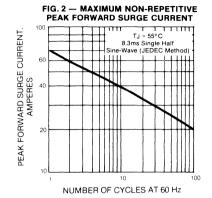


FIG. 4 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

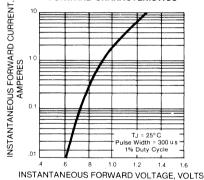
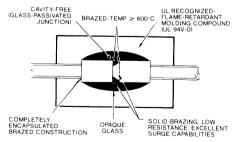
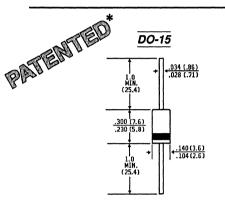



FIG. 6 - SUPERECTIFIER



BY126MGP, BY127MGP / BY226MGP, BY227MGP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER Current - 1.5 and 1.75 Amperes Voltage - 650 to 1250 Volts

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3, 752, 701 of 1973

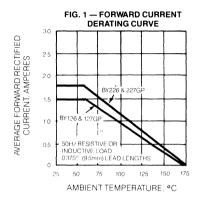
- High temperature metallurgically bonded constructed rectifiers
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction in D0-15 package
- ♦ 1.5 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375". (9.5mm) lead length at 5 lbs., (2.3kg) tension

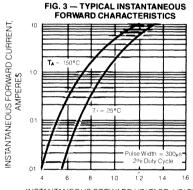
MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.015 ounce, 0.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 50 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	BY126MGP	BY127MGP	BY226MGP	BY227MGP	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	650	1250	650	1250	Volts
Maximum RMS Voltage	VRMS	455	875	455	875	Volts
Maximum DC Blocking Voltage	VDC	650	1250	650	1250	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	I(AV)	1.	5	1.	.75	Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load at T _A = 25°C	IFSM	50.0			60.0	Amps
Maximum Instantaneous Forward Voltage at 5.0A	VF		1	.5		Volts
Maximum Reverse Current at Rated DC Blocking Voltage T _A = 25°C	IR		5	.0		μΑ
Maximum Full Load Reverse Current, Full Cycle Average, .375" (9.5 mm)Lead Length at T _A = 55 °C	IR(AV)		10	0.0		μA
Typical Reverse Recovery Time (Note 2)	TRR		2	.0		μs
Typical Junction Capacitance (Note 1)	CJ			pf		
Typical Thermal Resistance (Note 3)	Reja			.C/M		
Operating and Storage Temperature Range	Tj,Tstg		-65 to -	+175		.c


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

Reverse Recovery Test Conditions: Ir = 0.5A, IR = 1.0A, recover to 0.25A.
 Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES BY126MGP, BY127MGP, BY226MGP & BY227MGP

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

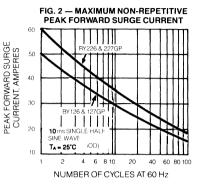
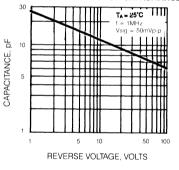



FIG. 4 - TYPICAL JUNCTION CAPACITANCE

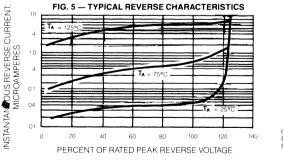
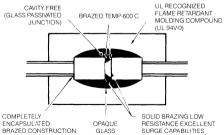
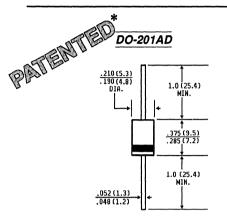



FIG. 6 — SUPERECTIFIER



1N5624GP THRU 1N5627GP

GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER Voltage - 200 to 800 Volts Current -3.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction in D0-201AD package
- 3.0 Ampere operation at T_A = 70°C with no t hermal runaway
- Typical In less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.04 ounce, 1.12 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N5624GP	1N5625GP	1N5626GP	1N5627GP	UNITS								
* Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	Volts								
* Maximum DC Blocking Voltage	VDC	200	400	600	800	Volts								
* Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 70°C	I(AV)		3.	0		Amps								
 Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) 	IFSM		125							125				
* Maximum Instantaneous Forward Voltage at 3.0A T _A = 25°C T _A = 70°C	VF		1.	-	Volts									
Maximum Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	I _{R(AV)}	30	5.		00	μΑ								
Maximum Full Load Reverse Current, Full Cycle Average,.375" (9.5mm) Lead Length T _A = 70°C	IR		20	00		μA								
Typical Reverse Recovery Time (Note 2)	TRR		3.0											
Typical Junction Capacitance (Note 1)	CJ		40.0											
Typical Thermal Resistance (Note 3)	RØJA		15	5.0		.C/M								
Operating and Storage Temperature Range	TJ, TSTG		-65 to -	-175		.с								

NOTES:

1. Measured at 1.0 MHz and applied reverse voltahge of 4.0 $V_{\text{DC}}.$

2. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

* JEDEC Registered Value

RATINGS AND CHARACTERISTIC CURVES 1N5624GP THRU 1N5627GP

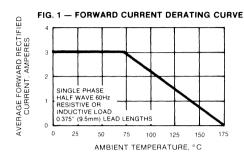


FIG. 3 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

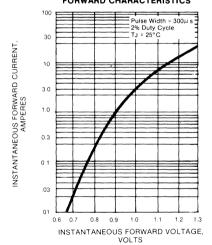
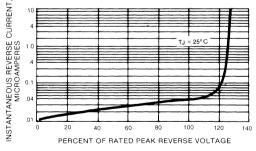



FIG. 5-TYPICAL REVERSE CHARACTERISTICS

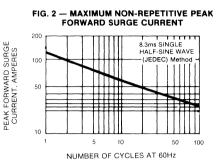


FIG. 4- TYPICAL JUNCTION CAPACITANCE

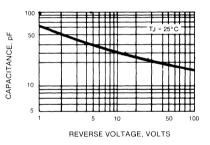
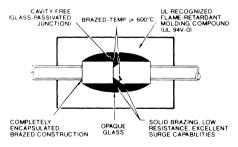
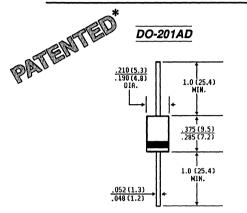



FIG. & -- SUPERECTIFIER



GP30A THRU GP30M

GLASS PASSIVATED SILICON JUNCTION PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts Current - 3.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction in D0-201AD package
- 3.0 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

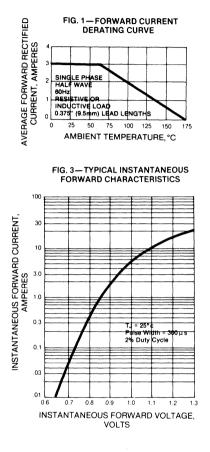
MECHANICAL DATA

Case: Molded plastic over glass Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.04 ounce, 1.12 grams

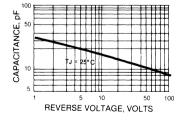
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	GP 30A	GP 30B	GP 30D	GP 30G	GP 30J	GP 30K	GP 30M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55$ C	I(AV)				3.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				125			1	Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF		1.2	T		1.1			Volts
Maximum Reverse Current at Rated DC Blocking Voltage	IR				5.0				μA
Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length $T_A = 55$ °C	I _{R(AV)}				100				μA
Maximum Reverse Recovery Time (Note 2) TJ = 25°C	TRR				3.0				μs
Typical Junction Capacitance (Note1)	CJ				40.0				pf
Typical Thermal Resistance (Note 3)	RØJA				15.0				.C\M
Operating and Storage Temperature Range	TJ, TSTO			-6	5 to +'	175			.c


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.


2. Reverse Recovery Test Conditions: IF = .5A, IR = 1A, Irr = .25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES GP30A THRU GP30M

FIG. 2 - MAXIMUM NON-REPETITIVE SURGE CURRENT

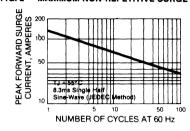


FIG. 4 — TYPICAL REVERSE CHARACTERISTICS

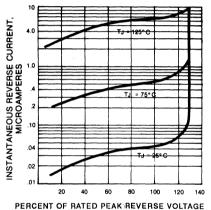
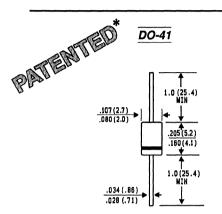


FIG. 6 – SUPERECTIFIER CAVITY-FREE GLASS-PSUVATED JUNCTION BRAZED-TEMP = 600°C COMPLETELY ENCAPSULATED DRADUE COMPLETELY ENCAPSULATED BRAZED CONSTRUCTION OPAQUE GLASS SULID BRAZING. LOW RESISTANCE EXCELLENT SURGE CAPABILITIES

-300-

SUPERECTIFIER ZENER REGULATOR DIODE

1.5 WATT 100 TO 200 VOLTS



ZGP10-100 THRU ZGP10-200

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC ZENER REGULATOR DIODE

Voltage - 100 to 200 Volts Power Rating - 1.5 Watts

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

 High temperature metallurgically bonded constructed rectifiers

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Low zener impedance
- Excellent clamping capability
- Glass passivated cavity-free junction in DO-41 package
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass

Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208

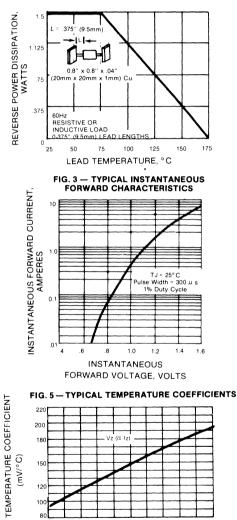
Polarity: Color band denotes cathode

Mounting Position: Any *Weight:* 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

OPERATING AND STORAGE TEMPERATURE TJ, TSTG -65°C to +175°C


	Zene	r					Ma	dmum Reve	rse	Maximum	Maximum	
	Breakdo	own		Maximur	m Zener			Current at		Forward	Continuous	
	Voltaç	Voltage			Dynamic			leasuremen	Voltage	Regulator		
TYPE	at 5m	A		Impe	dance		Voltage, VR			at .50A	Current*	
	MIN	MAX	Izt	ZZT	lzĸ	ZZK	VR	25°C	100°C	VF	Izm	
	Vo	ts	mA	Ohms	mA	Ohms	Volts	μ A	μ A	Volts	mA	
ZGP10-100	80	120	5	500	.25	5000	60	0.5	100	1.0	10.	
ZGP10-110	88	132	5	600	.25	5000	70	0.5	100	1.0	9.1	
ZGP10-120	96	144	5	700	.25	5000	80	0.5	100	1.0	8.3	
ZGP10-130	104	156	5	800	.25	5000	90	0.5	100	1.0	7.7	
ZGP10-140	112	168	5	900	.25	5500	100	0.5	100	1.0	7.1	
ZGP10-150	120	180	5	1000	.25	6000	110	0.5	100	1.0	6.6	
ZGP10-160	140	170	5	1100	.25	6500	120	0.5	100	1.0	6.3	
ZGP10-170	136	204	5	1200	.25	7000	130	0.5	100	1.0	5.9	
ZGP10-180	144	216	5	1300	.25	7000	140	0.5	100	1.0	5.6	
ZGP10-190	152	228	5	1400	.25	7500	150	0.5	100	1.0	5.3	
ZGP10-200	160	240	5	1500	.25	8000	160	0.5	100	1.0	5.0	

Standard + - 20%, Suffix A=+-10%, Suffix B+-5%.

*Temperature rating at specified regulator current is TL = 30°C

**Maximum continuous power dissipation at TL = 75 C lead length .375", 9.5mm is 1.5 Watts

RATINGS AND CHARACTERISTIC CURVES ZGP10-100 THRU ZGP10-200

100

80

100 110 120 130 140

150 160 170 180 190 200

Vz, ZENER VOLTAGE (VOLTS)

0vz/

FIG. 1 - MAXIMUM CONTINUOUS POWER DISSIPATION

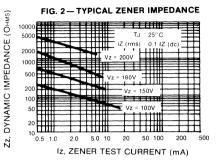
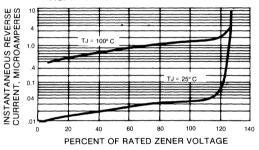
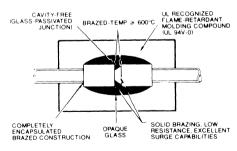
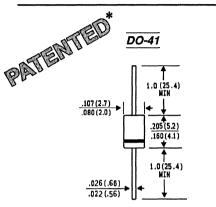




FIG. 4- TYPICAL REVERSE CHARACTERISTICS

-304-

FAST-RECOVERY SUPERECTIFIERS

.40 AMPERES THRU 3.0 AMPERES 50 VOLTS TO 2000 VOLTS



PHOTOFLASH RECTIFIER RGP02 SERIES

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

Voltage - 1200 to 2000 Volts Current - 0.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

 High temperature metallurgically bonded constructed rectifiers

- For use in high frequency rectifier circuits
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Fast switching for high efficiency
- Glass passivated cavity-free junction in D0-41 package
- 0.5 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

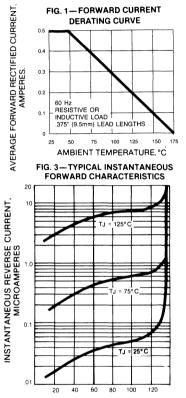
MECHANICAL DATA

Case: Molded plastic over glass Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

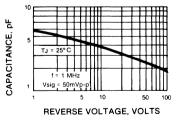
Ratings at 25°C ambient temperature unless otherwise specified.Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	RGP02 -12 E	RGP02 -14 E	RGP02 -16 E	RGPO2 -18E	RGPO2 -20 E	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	1200	1400	1600	1800	2000	Volts
Maximum RMS Voltage	VRMS	840	980	1120	1260	1400	Volts
Maximum DC Blocking Voltage	VDC	1200	1400	1600	1800	2000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	l(AV)			0 .5			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load at $T_A = 25$ °C	IFSM	20.0					
Maximum Instantaneous Forward Voltage at 0.1A	VF			1.8			Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR			5.0 50.0			μΑ
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	TRR			300			ns
Typical Junction Capacitance (Note 2)	CJ	5.0					
Typical Thermal Resistance (Note 3)	Reja	50.0					'C/W
Operating and Storage Temperature Range	TJ, TSTG		-	65 to +17	75		.c


NOTES:

1. Reverse Recovery Test Conditions : I_F = 0.5A, I_R = 1.0A, Irr =.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.


3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES RGP02 SERIES

PERCENT OF RATED PEAK REVERSE VOLTAGE

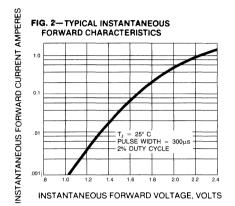


FIG. 4 --- MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

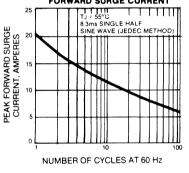
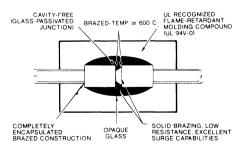
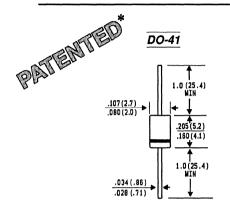



FIG. 6-SUPERECTIFIER



BY206GP THRU BY207GP

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

Voltage - 350 to 600 Volts Current - 0.4 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- For use in high frequency rectifier circuits
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Fast switching for high efficiency
- Glass passivated cavity-free junction in D0-41 package
- 0.4 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass *Terminals:* Axial leads, solderable per MIL-STD-202, Method 208 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	BY206GP	BY207GP	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	350	600	Volts
Maximum RMS Voltage	VRMS	210	350	Volts
Maximum DC Blocking Voltage	VDC	300	500	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55$ °C	I(AV)	0	Amps	
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load at $T_A = 25^{\circ}C$	IFSM	15		Amps
Maximum Instantaneous Forward Voltage at 2.0A T _J = 150 °C	VF	1	.5	Volts
Maximum Full Load Reverse Current $T_{A=55}$ °CFull Cycle AVerage at $T_J = 125$ °C	lR	2.0 200	2.0 125	μА
Maximum Reverse Recovery Time (Note 1)	T _{RR}	1	.0	μs
Typical Junction Capacitance (Note 2)	CJ	15.0		pf
Typical Thermal Resistance (Note 3)	Reja	45.0		.C/M
Operating and Storage Temperature Range	TJ,TSTG	-65	to +175	.c

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.4A, VR = 50V di/dt = 0.4/US.

2. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES BY206GP THRU BY207GP

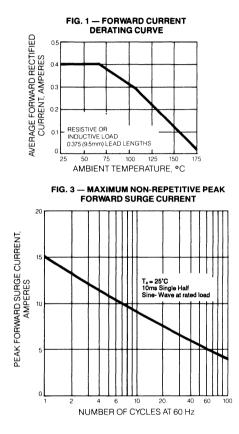


FIG. 5 - REVERSE RECOVERY TIME CHARACTERISTIC

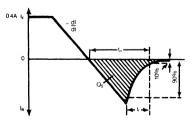


FIG. 2 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

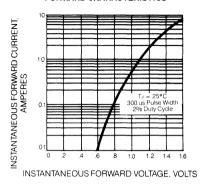


FIG. 4 - TYPICAL JUNCTION CAPACITANCE

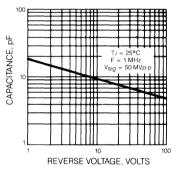
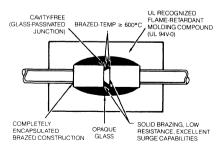
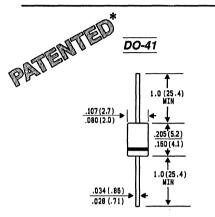



FIG. 6 - SUPERECTIFIER



BA157GP THRU BA159GP

MINIATURE GLAS® PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

Voltage - 400 to 1000 Volts Current - 0.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- For use in high frequency rectifier circuits
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Fast switching for high efficiency
- Glass passivated cavity-free junction in D0-41 package
- 0.5 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

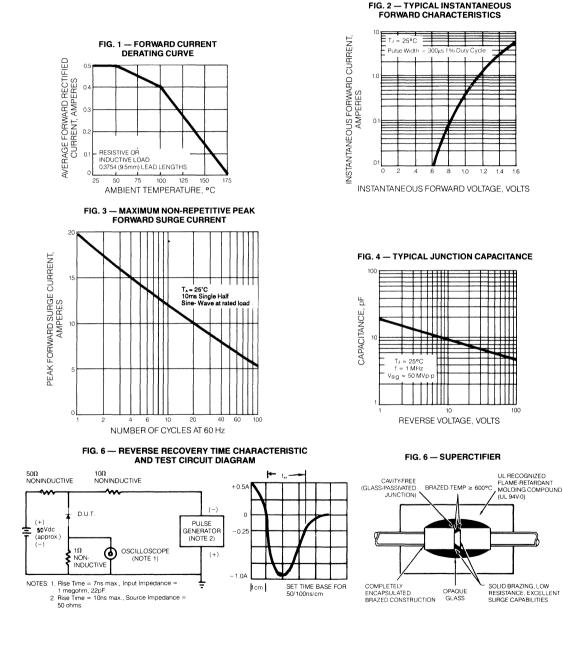
MECHANICAL DATA

Case: Molded plastic over glass Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	BA157GP	BA158GP	BA159DGP	BA159GP	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	400	600	800 0	1000	Volts
Maximum RMS Voltage	VRMS	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	l(AV)		Amps			
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load at T _A = 25°C	IFSM		Amps			
Maximum Instantaneous Forward Voltage at 1.0A	VF		1	.5		Volts
Maximum DC Reverse Current at Rated DC Blocking Voltage	IR		5	.0		μA
Maximum Reverse Recovery Time (Note 1)	TRR	150	250	500	500	ns.
Typical Junction Capacitance (Note 2)	CJ		pf			
Typical Thermal Resistance (Note 3)	Røja			.c/M		
Operating and Storage Temperature Range	TJ,TSTG		-65 to -	+175		.c

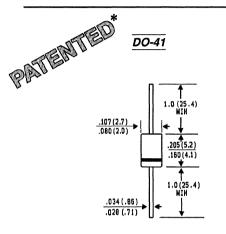

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES BA157GP THRU BA159GP



1N4933GP THRU 1N4937GP

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 50 to 600 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

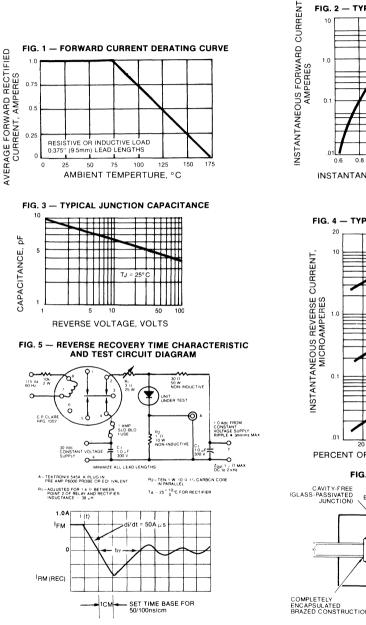
* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3, 752, 701 of 1973

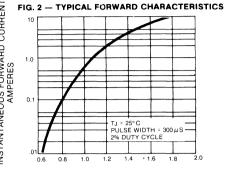
- High temperature metallurgically bonded constructed rectifiers
- For use in high frequency rectifier circuits
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Fast switching for high efficiency
- Glass passivated cavity-free junction in D0-41 packade
- 1.0 Ampere operation at T_A = 75°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, 0.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	1N 4933GP	1N 4934GP	1N 4935GP	1N 4936GP	1N 4937GP	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
* Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
* Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
* Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 75°C	I(AV)			1.0			Amps
 Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) 	IFSM	30.0					
* Maximum Instantaneous Forward Voltage at 1.0A	VF			1.2			Volts
* Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR			5.0 100			μΑ
* Maximum Reverse Recovery Time (Note 1) TJ = 25°C	T _{RR}	200					
Typical Junction Capacitance (Note 2)	CJ	15.0					
Typical Thermal Resistance (Note 3)	Reja	50.0					
* Operating and Storage Temperature Range	TJ, TSTG		-	65 to +17	75		.c

NOTES: 1. Reverse Recovery Test Conditions : IF = 1.0A, VR = 30 Volts. 2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted *JEDEC Regiestered Values.

RATINGS AND CHARACTERISTIC CURVES 1N4933GP THRU 1N4937GP

INSTANTANEOUS FORWARD VOLTAGE VOLTS

FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

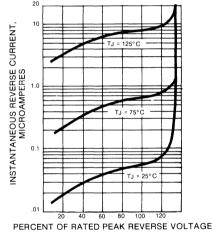
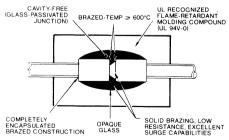
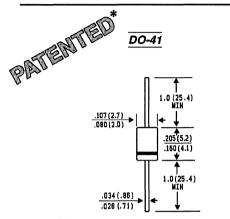



FIG. 6 - SUPERECTIFIER



1N4942GP THRU 1N4948GP

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 200 to 1000 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- For use in high frequency rectifier circuits
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Fast switching for high efficiency
- Glass passivated cavity-free junction in D0-41 package
- 1.0 Ampere operation at TA = 55°C with no thermal runaway
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, 0.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N 4942GP	1N 4944GP	1N 4946GP	1N 4947GP	1N 4948GP	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
* Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
* Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
* Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55 °C	I(AV)			1.0			Amps
* Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			Amps			
* Maximum Instantaneous Forward Voltage at 1.0A	VF			1.3			Volts
* Maximum DC Reverse Current T _A = 25°C at Rated DC Blocking Voltage T _A = 150°C	IR			1.0 200			μΑ
* Maximum Reverse Recovery Time (Note 1) TJ = 25°C	T _{RR}	150	150	250	250	500	nS
Typical Junction Capacitance (Note 2)	CJ	15.0					pf
Typical Thermal Resistance (Note 3)	Reja	50.0					.c/M
* Operating and Storage Temperature Range	TJ, TSTG		-65	to +175			.c

NOTES:

1. Reverse Recovery Test Conditions : $I_F = 0.5A$, $I_R = 1.0A$, $I_T = 0.25A$. 2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.
 * JEDEC refistered values

RATINGS AND CHARACTERISTIC CURVES 1N4942GP THRU 1N4948GP

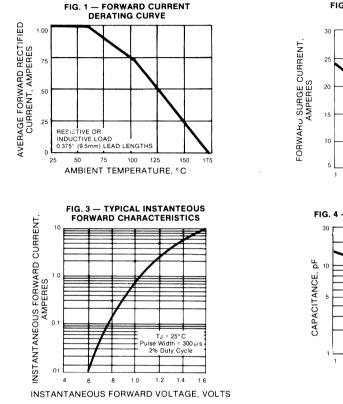


FIG. 5 — REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

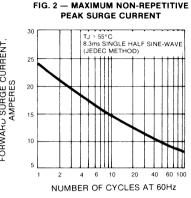
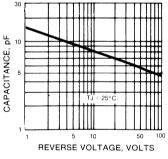
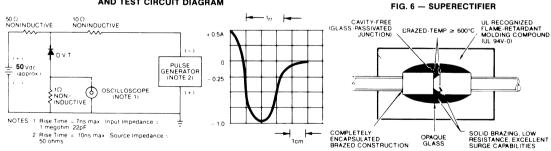
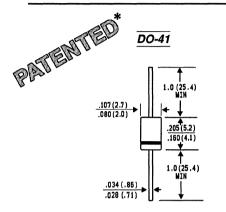




FIG. 4 — TYPICAL JUNCTION CAPACITANCE


RGP10A THRU RGP10M

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC FAST SWITCHING PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts

Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- For use in high frequency rectifier circuits
 Plastic package
- has Underwriters Laboratory Flammability Classification 94V-0
- Fast switching for high efficiency
- Glass passivated cavity-free junction in D0-41 package
- 1.0 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

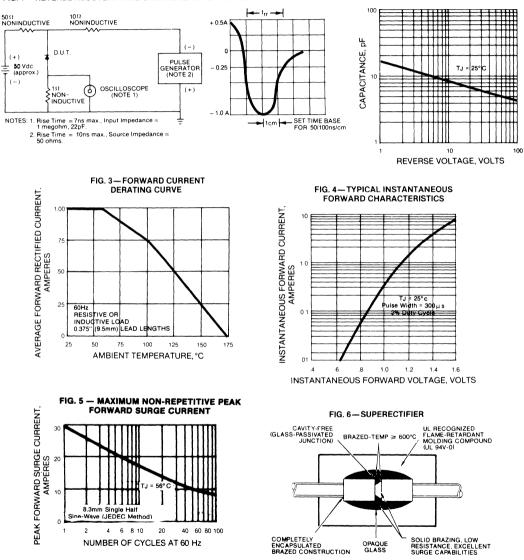
MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, 0.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	RGP 10A	RGP 10B	RGP 10D	RGP 10G	RGP 10J	RGP 10K	RGP 10M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55^{\circ}C$	I(AV)				1.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				30.0				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.3							Volts
Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length $T_A = 55$ C	IR(AV)				100				μA
Maximum DC Reverse CurrentTA = 25°Cat Rated DC Blocking VoltageTA = 150°C	IR	5.0 200							μA
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	TRR	150	150	150	150	250	500	500	nS
Typical Junction Capacitance (Note 2)	CJ	15.0							pf
Typical Thermal Resistance (Note 3)	Reja	50.0							.C/M
Operating and Storage Temperature Range	TJ,TSTO	G -65 to +175							.c


NOTES: 1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

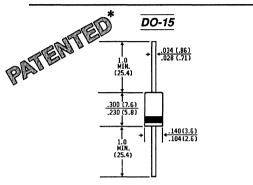
3. Thermal Resistance from Junction to Ambient at .375"

(9.5mm) Lead Lengths, P.C. Board Mounted. -316-

RATINGS AND CHARACTERISTIC CURVES RGP10A THRU RGP10M

FIG. 1-REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

GENERAL INSTRUMENT


FIG. 2-TYPICAL JUNCTION CAPACITANCE

1N5615GP THRU 1N5623GP

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

Voltage - 200 to 1000 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Fast switching for high efficiency
- Glass passivated cavity-free junction
- 1.0 Ampere operation at T_A = 55°C with no thermal runaway
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

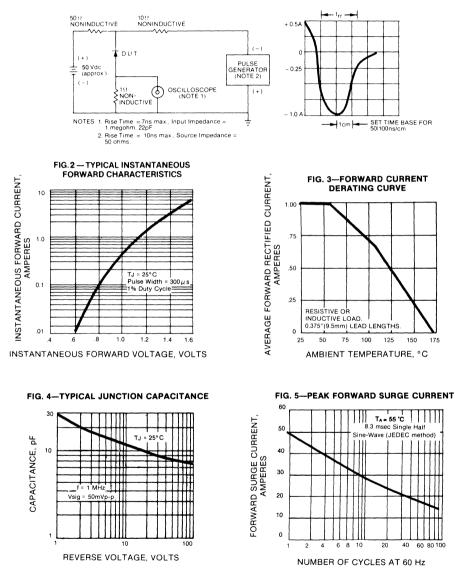
Case: Molded plastic over glass *Terminals:* Axial leads, solderable per MIL-STD-202, Method 208 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Welght:* 0.015 ounce, .4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N 5615GP	1N 5617GP	1N 5619GP	1N 5621GP	1N 5623GP	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
* Maximum RMS Voltage	VRMS	140 280 420 560 700					
* Maximum DC Blocking Voltage	VDC	200 400 600 800 1000					
* Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	I(AV)			1.0		•	Amps
 Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) 	IFSM			50.0			Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.2					
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR	0.5 25.0					
* Maximum Reverse Recovery Time (Note 1) TJ = 25'C	T _{RR}	150	150	250	300	500	nS
Typical Junction Capacitance (Note 2)	CJ	25.0					
Typical Thermal Resistance (Note 3)	Reja	30.0					'C/W
* Operating and Storage Temperature Range	TJ, TSTG	-65 to +175					

NOTES:


1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

JEDEC regfistered values

RATINGS AND CHARACTERISTIC CURVES 1N5615GP THRU 1N5623GP

FIG. 1-REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

GI810 THRU GI818 MINIATURE GLASS PASSIVATED JUNCTION PLASTIC FAST SWITCHING RECTIFIER Voltage - 50 to 1000 Volts Current - 1.0 Ampere **FEATURES** PATENTED High temperature metallurgically bonded constructed rectifiers Plastic package DO-15 has Underwriters Laboratory Flammability Classifi-034 (.86) 028 (.71) cation 94V-0 1.0 MIN. (25.4) Fast switching for high efficiency Glass passivated cavity-free junction in D0-15 package ♦ 1.0 Ampere operation at T_A = 75°C with no <u>300 (7.6)</u> 230 (5.8) thermal runaway

- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

Dimensions in inches and (millimeters)
* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602

.140(3.6) .104(2.6)

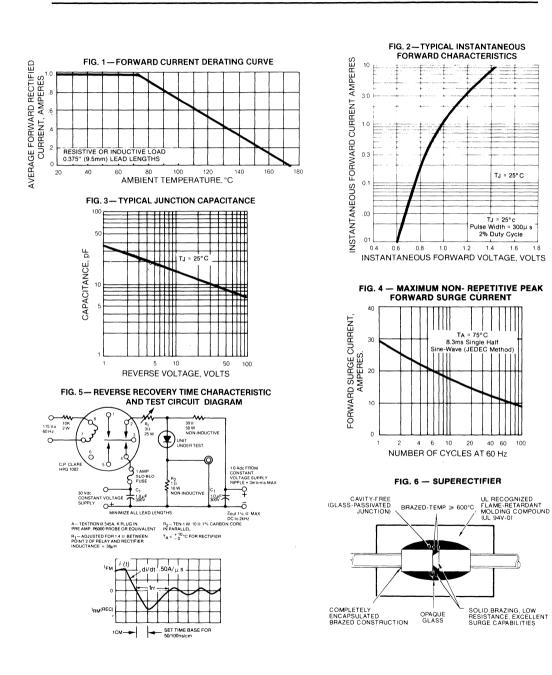
of 1975; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

(25.4)

MECHANICAL DATA

Case: Molded plastic over glass *Terminals:* Axial leads, solderable per MIL-STD-202, Method 208 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.015 ounce, 0.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25 Cambient temperature unless otherwise specified.Resistive or inductive load. For capacitive load, derate current by 20%.

SYMBOLS	GI 5 810	GI 811	GI 812	GI 814	GI 816	GI 817	GI 818	UNITS
VRRM	50	100	200	400	600	800	1000	Volts
VRMS	35	70	140	280	420	560	700	Volts
VDC	50	100	200	400	600	800	1000	Volts
I(AV)	1.0							Amps
IFSM	30.0							Amps
VF	1.2							Volts
IR	10.0 100							μA
T _{RR}	750							ns
CJ	25.0						pf	
Røja	30.0						.C/M	
TJ,TSTG	-65 to +175						.c	
	VRRM VRMS VDC I(AV) IFSM VF IR TRR CJ RØJA	SYMBOLS #10 VRRM 50 VRMS 35 VDC 50 I(AV) - IFSM - VF - IR - TRR - CJ -	SYMBOLS #70 #71 VRRM 50 100 VRMS 35 70 VDC 50 100 I(AV) 100 100 I(AV) 100 100 IR 100 100 TRR 0 0 CJ 100 100	SYMBOLS 810 811 812 VRRM 50 100 200 VRMS 35 70 140 VDC 50 100 200 I(AV) 50 100 200 I(AV) 50 100 200 IFSM 50 100 200 VF 50 100 200 IR 7 7 7 TRR 5 5 5 CJ 5 5 5 RØJA 5 5 5	SYMBOLS and VRRM 50 611 612 814 VRRM 50 100 200 400 VRMS 35 70 140 280 VDC 50 100 200 400 I(AV) 100 200 400 I(AV) 1.0 200 400 IFSM 30.0 1.0 IFSM 30.0 VF 1.2 IR 100 100 100 IR 750 50 100 30.0 ReJA 30.0 30.0 30.0 30.0	SYMBOLS and VRRM 50 811 812 814 816 VRRM 50 100 200 400 600 VRMS 35 70 140 280 420 VDC 50 100 200 400 600 I(AV) 1.0 200 400 600 I(AV) 1.0 200 400 600 VF 1.0 1.0 1.0 IFSM 30.0 1.0 1.0 IR 100 1.0 1.0 IR 100 1.0 1.0 IR 100 1.0 1.0 IR 100 1.0 1.0 IR 25.0 1.0 1.0 R@JA 30.0 1.0 1.0	SYMBOLS 810 811 912 914 816 817 VRRM 50 100 200 400 600 800 VRMS 35 70 140 280 420 560 VDC 50 100 200 400 600 800 VLRMS 35 70 140 280 420 560 VDC 50 100 200 400 600 800 I(AV) 1.0 1.0 1.0 1.0 1.0 1.0 IFSM 30.0 1.2 1.0	SYMBOLS 870 871 872 874 876 877 878 VRRM 50 100 200 400 600 800 1000 VRMS 35 70 140 280 420 560 700 VDC 50 100 200 400 600 800 1000 VDC 50 100 200 400 600 800 1000 I(AV) 1.0 1.0 1.0 100 100 100 100 100 100 100 1000

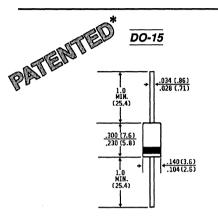
NOTES: 1. Reverse Recovery Test Conditions : $I_F = 1.0A$, $V_R = 30V$.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

^{2.} Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

RATINGS AND CHARACTERISTIC CURVES GI810 THRU GI818

GENERAL INSTRUMENT


1.8

RGP15A THRU RGP15M

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC FAST SWITCHING RECTIFIER

Voltage - 50 to 1000 Volts Current - 1.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

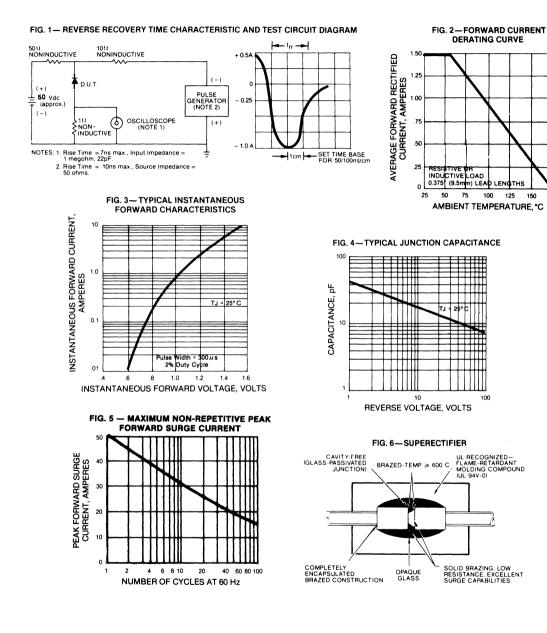
- High temperature metallurgically bonded constructed rectifiers
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction in D0-15 package
- 1.5 Ampere operation at T_A = 55°C with no thermal runaway
- Fast switching for high efficiency
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.015 ounce, 0.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

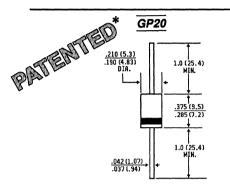

	SYMBOLS	RGP 15A	RGP 15B	RGP 15D	RGP 15G	RGP 15J	RGP 15K	RGP 15M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55$ C	I(AV)	1.5							Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	50.0							Amps
Maximum Instantaneous Forward Voltage at 1.5A	VF	1.3							Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR	5.0 200							μΑ
Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length $T_A = 55^{\circ}C$	IR(AV)	100							μA
Maximum Reverse Recovery Time (Note 2) TJ = 25°C	TRR	150	150	150	150	250	500	500	nS
Typical Junction Capacitance (Note 1)	CJ	25.0						pf	
Typical Thermal Resistance (Note 3)	Reja	30.0							.C/M
Operating and Storage Temperature Range	TJ, TSTO	-65 to +175							.c

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

Reverse Recovery Test Conditions: IF = .5A, IR = 1A, Irr = .25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES RGP15A THRU RGP15M


GENERAL INSTRUMENT 175

RGP20A THRU RGP20J

FAST SWITCHING **GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER** Current - 2.0 Amperes

Voltage - 50 to 600 Volts

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- · High temperature metallurgically bonded constructed rectifiers
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Fast switching for high efficiency
- Glass passivated cavity-free junction
- ♦ 2.0 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- · Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plateed Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Band denotes cathode Mounting Position: Any Weight: 0.03 ounce, 0.8 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25'6 ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	RGP 20A	RGP 20B	RGP 20D	RGP 20G	RGP 20J	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55'C	I(AV)			2.0			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			65.0			Amps
Maximum Instantaneous Forward Voltage at 2.0A	VF		Volts				
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR			5.0 100			μΑ
Maximum Full Load Reverse Current, Full Cycle Average, 375" (9.5mm) Lead Length $T_A = 55$ °C	IR(AV)			100			μA
Maximum Reverse Recovery Time (Note 2) TJ = 25°C	T _{RR}	150 250			250	nS	
Typical Junction Capacitance (Note 1)	CJ	35					pf
Typical Thermal Resistance (Note 3)	Røja	22.0					.c/M
Operating and Storage Temperature Range	TJ,TSTG	-65 to +175					.c

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

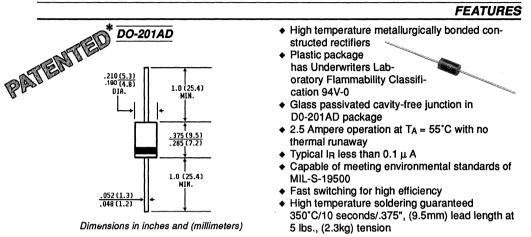
2. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = 0.25A.

RATINGS AND CHARACTERISTIC CURVES RGP20A THRU RGP20J

INSTANTANEOUS FORWARD CURRENT, AMPERES

PEAK FORWARD SURGE CURRENT, AMPERES

FIG. 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM



RGP25A THRU RGP25M

GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts Current -2.5 Amperes

FEATURES

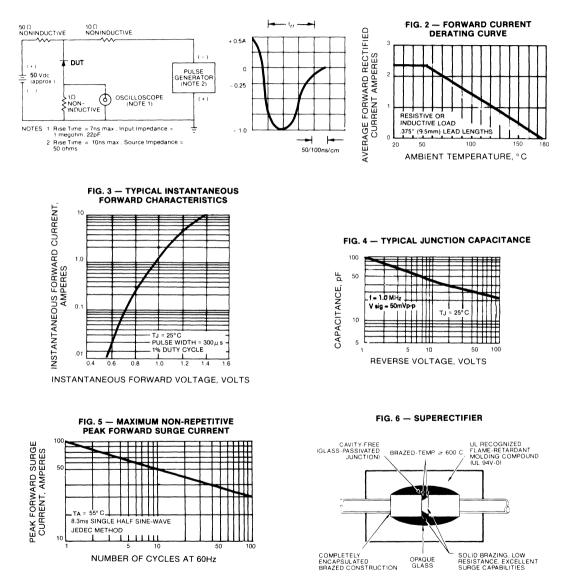
* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.04 ounce, 1.12 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

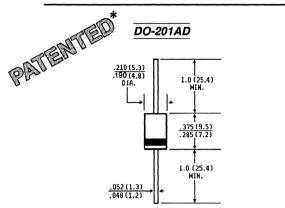

	SYMBOLS	RGP 25A	RGP 25B	RGP 25D	RGP 25G	RGP 25J	RGP 25K	RGP 25M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55^{\circ}C$	I(AV)				2.5			•	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				100				Amps
Maximum Instantaneous Forward Voltage at 2.5A	VF				1.3				Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR				5.0 200				μΑ
Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length $T_A = 55$ °C	IR(AV)				100				μA
Maximum Reverse Recovery Time (Note 2) T _J = 25°C	TRR	150	150	150	150	250	500	500	ns
Typical Junction Capacitance (Note1)	CJ 60.0					pf			
Typical Thermal Resistance (Note 3)	Reja	RØJA 16.0				.C\M			
Operating and Storage Temperature Range	TJ,TSTG -65 to +175				.c				

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts. NOTES:

2. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = .25A.

RATINGS AND CHARACTERISTIC CURVES RGP25A THRU RGP25M

FIG. 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM



RGP30A THRU RGP30M

GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts Current - 3.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

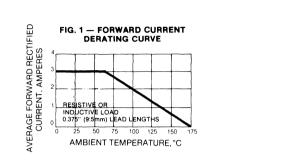
* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

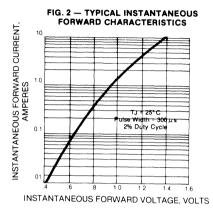
- High temperature metallurgically bonded constructed rectifiers
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction in D0-201AD package
- 3.0 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- Fsst switching for high efficiency
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass *Terminals:* Axial leads, solderable per MIL-STD-202, Method 208 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.04 ounce, 1.12 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25'C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	RGP 3 30A	RGP 30B	RGP 30D	RGP 30G	RGP 30J	RGP 30K	RGP 30M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55^{\circ}C$	I(AV)				3.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				125				Amps
Maximum Instantaneous Forward Voltage a t 3.0A	VF				1.3				Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR				5.0 100				μΑ
Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length $T_A = 55$ °C	IR(AV)				100				μA
Maximum Reverse Recovery Time (Note 2) TJ = 25°C	TRR	150	150	150	150	250	500	500	ns
Typical Junction Capacitance (Note1)	CJ				60.0				pf
Typical Thermal Resistance (Note 3)	RØJA 16.0				.C/M				
Operating and Storage Temperature Range	T _J ,T _{STG} -65 to +175				.с				

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = .25A.

RATINGS AND CHARACTERISTIC CURVES RGP30A THRU RGP30M

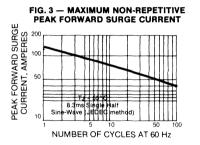
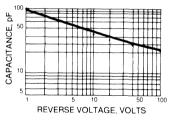
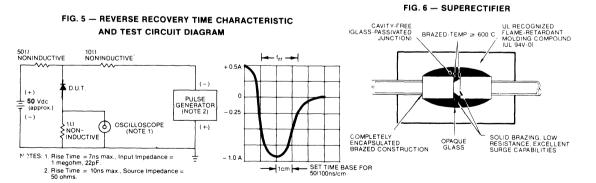




FIG. 4 - TYPICAL JUNCTION CAPACITANCE

-330-

MINIATURE GLASS PASSIVATED CHIP PLASTIC RECTIFIER 1.0 AMPERE 50 VOLTS TO 1000 VOLTS GENERAL IRUMENT

INST

MPG06A THRU MPG06M

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC SILICON RECTIFIER

Voltage - 50 to 1000 Volts Current- 1.0 Ampere

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94 V-O
- Low forward voltage, high current capability
- Glass passivated chip
- High Surge Capability
- 1.0 Ampere operation at T_A = 25°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- High temperature soldering guaranteed:250°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass passivated chip Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.0064 ounce, .181 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load.

Dimensions in inches

and (millimeters)

.100(2.54)

.090 (2.29)

1.0 (25.4)

MIN.

.<u>125 (3. 18)</u> .115 (2. 92)

1.0 (25.4) MIN.


		MPG	MPG	MPG	MPG	MPG	MPG	MPG	
	SYMBOLS	5 06A	06B	06D	06G	06J	06K	06M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		50	170	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, .375" (9.5mm) Lead Length at $T_A = 25$ C	I(AV)				1.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) $T_A = 25^{\circ}C$	IFSM				40.0				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF				1.1				Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR				5.0 50.0				μA
Typical Junction Capacitance (Note 1)	CJ	10.0						pf	
Typical Reverse Recovery Time (Note 2)					0.6				μs
Thermal Resistance Typical					65.0				
Maximum (Note 3)	RØJA				85.0				.c/M
Operating and Storage Temperature Range	TJ, TSTG			-5	0 to +1	50			.c

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditons: IF = 0.5A, I_R = 1,0A, Irr = 0.25A.

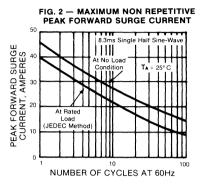


FIG. 4 - TYPICAL JUNCTION CAPACITANCE

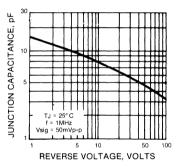


FIG. 5 — TYPICAL REVERSE CHARACTERISTICS

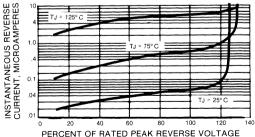
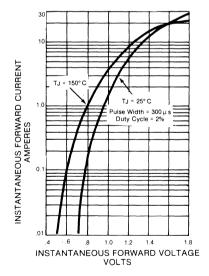



FIG. 3 - TYPICAL FORWARD CHARACTERISTICS

RMPG06A THRU RMPG06J

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC SILICON RECTIFIER

Voltage - 50 to 600 Volts Current- 1.0 Ampere

FEATURES

.100(2.54) 1.0 (25.4) MIN. <u>.125 (3.18)</u> .115 (2.92) 1.0 (25.4) MIN. 025 r . 635) .023(.584)

Dimensions in inches and (millimeters)

- Plastic package has Underwriters Laboratory Flammability Classification 94 V-O
- Low forward voltage drops, high current capability
- Glass passivated chip
- High Surge Capability
- 1.0 Ampere operation at TA = 25°C with no thermal runaway
- Typical In less than 0.1 µ A

 High temperature soldering guaranteed:250°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass passivated chip Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.0064 ounce, .181 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

		RMPG	RMPG	RMPG	RMPG	RMPG	
	SYMBOLS	06A	06B	06D	06G	06J	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	50	70	200	400	600	Volts
Maximum Average Forward Rectified Current, .375" (9.5mm) Lead Length at $T_A = 25$ °C	l(AV)			1.0			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T _A = 25°C	IFSM			30.0			Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF			1.3			Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR			5.0 50.0			μA
Typical Junction Capacitance (Note 1)	CJ			6.6			pf
Maximum Reverse Recovery Time (Note 2) TJ = 25°C	T _{RR}		15	0		200	ns
Thermal Resistance Typical Maximum (Note 3)	RØJA			67.0 85.0			·c/w
Operating and Storage Temperature Range	TJ, TSTG	-50 to +150					.c

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts. 2. Reverse Recovery Test Conditons: $I_F = 0.5A$, $I_R = 1.0A$, $I_T = 0.25A$.

RATINGS AND CHARACTERISTIC CURVES RMPG06A THRU RMPG06J

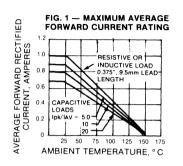


FIG. 2 — MAXIMUM NON REPETITIVE PEAK FORWARD SURGE CURRENT

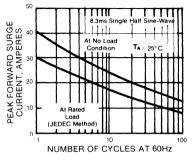
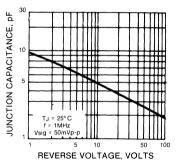



FIG. 4 - TYPICAL JUNCTION CAPACITANCE

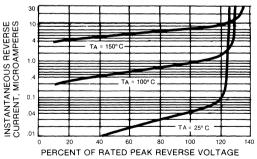
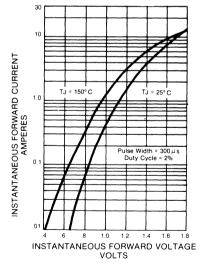



FIG. 3 — TYPICAL FORWARD CHARACTERISTICS

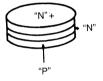
-336-

GLASS PASSIVATED RECTIFIERS

0.2 AMPERE TO 3.0 AMPERES 50 VOLTS TO 1600 VOLTS

GLASS PASSIVATED RECTIFIER 0.2 to 3.0 Amperes 50 Volts to 1600 Volts

Device Design


The Glass Passivated Rectifier is a hermetically sealed, cavity-free, diffused junction rectifier with unsurpassed operating and surge characteristics at high temperature.

Cavity-free construction with a specially developed extremely pure glass in direct contact with the silicon junction plus durable heat sink design obviate the need for solder joints and compression contact parts. The carefully matched expansion characteristics of the glass and metal parts in combination with the direct contact of the glass and silicon junction make the active rectifying elements impervious to surface contamination, moisture or other external chemical agents. Further, the long term degradation associated with organic junction protection is avoided.

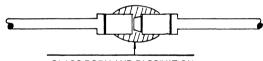
There are many steps necessary to produce such a device:

1 – Diffuse a PN junction into a slice of silicon

Diffused Slice

2-Evaporate aluminium on both sides of the slice to make metallurgical contact

EVAPORATED ALUMINUM


SAND BLASTED ROUND DICE

3-Sandblast the slice to produce a round beveled die

GLASS PASSIVATED RECTIFIERS

- 4-Braze the die between two molybdenum heat sinks to **Glass Passivated Rectifier** which leads have been attached at approximately 700°C. MOLYBDENUM HEAT SINKS COPPER LEADS ALUMINIZED DIE BRAZED AT 700°C LEADS BRAZED TO MOLYBDENUM 5-Clean the assembly by chemically etching. washing and drying. 6-Apply glass in the form of a frit to the die and molybdenum assembly. 7-Melt the glass by heating in an oven to approximately Glass Passivated Rectifier 600°C
- 8-Perform finishing operations such as lead tinning, electrical testing and marking.

GLASS BODY AND PASSIVATION FIRED AT 600°C.

Package Design

The small size of the glass package with its capability up to 3 Ampere permits greater packing densities in electronic assemblies and equipment, while increasing reliability. Furthermore, only high temperature brazing operations are used to withstand the 600°C required to melt and fuse the glass. This technique eliminates solder construction and tremendously enhances mechanical strength and temperature cycling capability, increasing operating and storage temperature range while reducing thermal resistance.

Reliability

Specified reliability data on Glass Passivated Rectifier devices are available from the General Instrument Semiconductor Components Division Reliability Department. The basic design of the Glass Passivated rectifier and the strict positive controls over materials and manufacturing processes provide assurance of failure-free performance under the most severe conditions. Processing facilities have been geared to follow the procedural requirements of Military Standard 750. Glass Passivated rectifiers are capable of withstanding environmental extremes in excess of MIL-S-19500E and of meeting requirements of MIL-STD-883, MIL-Q-9858 and MIL-I-45208. Assurance of production uniformity and reliability is provided by a test technique called "Operational Load Line Testing," which has proven product reliability with over 1 Billion Glass Passivated rectifiers now in use.

COPPER

I FADS

FAMILIES OF GENERAL INSTRUMENT **GLASS PASSIVATED RECTIFIERS**

Glass Passivated Silicon Diodes 0.2 to 0.4 AMPERES

Tvpes:

1N483B thru 1N486B 1N645 thru 1N649

- Features:
- High Temperature Metallurgically Bonded
- High Efficiency and Rectification Radio
- Ideally Suited for Miniaturized Equipment
- Case: One Piece Glass, Hermetically Sealed
- Tin Plated Axial Leads, Solderable per MII-STD-202/208
- ♦ Operating from--65 C to +175 C
- Low Leakage

Glass Passivated Silicon Rectifiers 1.0 to 3.0 AMPERES

Types:

Features: Glass Passivated Junction High Mechanical Strength

Storage up to 200 C

Hermetically Sealed

Low Leakage

Voidless Construction

Avalanche Operation

- 1N4245 thru 1N4249 1N5059 thru 1N5062 1N5614 thru 1N5622 1N5550 thru 1N5554 1N5624 thru 1N5627 G1A thru G1M G2A thru G2M G3A thru G3M G4A thru G4M
 - High Conductance Tin Plated Axial Leads, Solderable per MIL-STD-202/208

Glass Passivated Fast Recovery Silicon Rectifiers 1.0 to 3.0 AMPERES Types:

Features:

- 1N4942 thru 1N4948 1N5615 thru 1N5623 1N5415 thru 1N5420 RG1A thru RG1M RG2A thru RG2M RG3A thru RG3M RG4A thru RG4M BVV95 thru BVV96 BYW32 thru BYW36 BYW72 thru BYW76
- Glass Passivated Junction
- Fast Switching for High Rectification Efficiency to 100 kHz
- High Mechanical Strength
- Low Leakage
- Hermetically Sealed
- Storage up to 200 C
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208

Glass Passivated High Voltage Silicon Rectifiers 0.3 to 3.0 AMPERES Types:

Features

 All Advantages of a Hermetically Sealed Glass passivated junction

CG1, DG1 CG1.DG1 CG2, DG2 CG3, DG3, GI1-1200 thru GI1-1600 BY448, BY458, BY228

- Especially designed for Clamper/Damper Applications in television /CRT
- Low Leakage
- High Mechanical Strength
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208

QUICK GUIDE TO GLASS PASSIVATED RECTIFIERS

TYPE	1N483B thru 1N486B	1N645 thru 1N649	1N4245 thru 1N4249	1N4942* thru 1N4948*	1N5059 thru 1N5062	1N5614 thru 1N5622	1N5615* thru 1N5623*	G1A thru G1M	RG1A* thru RG1M*	TYPE
CASE	DO204MB	DO204MB	DO204AP	DO204AP	DO204AP	DO204AP	DO204AP	DO204AF	DO204AP	CASE
I ₀ (A)	0.2	0.4	1.0	1.0	1.0	1.0	1.0	1.0	1.0	۱ _۰ (A)
@ T _A (°C)	25	25	55	55	55	55	55	100	55	@T _A (°C)
V _n = 50 (V)	1N483B							G1A	RG1A	V _R = 50 (V)
$V_{R} = 100 (V)$	1N485B							G1B	RG1B	V _R = 100 (V)
V _R = 200 (V)	1N486B	1N645	1N4245	1N4942	1N5059	1N5614	1N5615	G1D	RG1D	V _R = 200 (V)
V _R = 300 (V)		1N646								V _H = 300 (V)
V _R = 400 (V)		1N647	1N4246	1N4944	1N5060	1N5616	1N5617	G1G	RG1G	$V_{H} = 400 (V)$
$V_{R} = 500 (V)$		1N648								V _R = 500 (V)
$V_{R} = 600 (V)$		1N649	1N4247	1N4946	1N5061	1N5618	1N5619	G1J	RG1J	V _R = 600 (V)
V _R = 800 (V)			1N4248	1N4947	1N5062	1N5620	1N5621	G1K	RG1K	V _R = 800 (V)
$V_{R} = 1000 (V)$			1N4249	1N4948		1N5622	1N5623	G1M	RG1M	$V_{R} = 1000 (V)$
$V_{\rm B} > 1000 (V)$										$V_{\scriptscriptstyle \rm H} > 1000~(V)$
SURGE (A)	2.0	15	25	30	50	50	50	50	30	SURGE (A)
V _F (V)	1.0	1.0	1.2	1.3	1.2	1.2	1.2	1.1	1.3	$V_{F}(V)$

*Fast Recovery

QUICK GUIDE TO GLASS PASSIVATED RECTIFIERS

TYPE	CG1 and DG1	G2A thru G2M	RG2A* thru RG2M*	CG2 AND DG2	1N5624 thru 1N5627	1N5550 thru 1N5559	1N5415* thru 1N5420*	G3A thru G3M	G4A thru G4M	RG3A* thru RG3M*	RG4A thru RG4M	CG3 and DG3	TYPE
CASE	DO204AP	DO204AF	DO204AP	DO204AP	GPR3	GPR4	GPR4	GPR3	GPR4	GPR3	GPR4	GPR3	CASE
I. (A)	1.5	2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	I _o (A)
T _A (°C)	55	70	55	50	70	55	55	70	70	55	50	50	T _A (°C)
V _R = 50 (V)		G2A	RG2A				1N5415	G3A	G4A	RG3A	RG4A		V _R = 50 (V)
V _R = 100 (V)		G2B	RG2B				1N5416	G3B	G4B	RG3B	RG4B		$V_{R} = 100 (V)$
V _B = 200 (V)		G2D	RG2D		1N5624	1N5550	1N5417	G3D	G4D	RG3D	RG4D		V _R = 200 (V)
V _n = 300 (V)										·			V _R = 300 (V)
$V_{R} = 400 (V)$		G2G	RG2G		1N5625	1N5551	1N5418	G3G	G4G	RG3G	RG4G		$V_{R} = 400 (V)$
V _R = 500 (V)							1N5419						V _R = 500 (V)
V _R = 600 (V)		G2J	RG2J		1N5626	1N5552	1N5420	G3J	G4J	RG3J	RG4J		V _H = 600 (V)
V _R = 800 (V)		G2K	RG2K		1N5627	1N5553		G3K	G4K	RG3K	RG4K		V _R = 800 (V)
V _R = 1000 (V)		G2M	RG2M			1N5554		G3M	G4M	RG3M	RG4M		$V_{\rm H} = 1000 (V)$
$V_{R} > 1000 (V)$	CG1/DG1			CG2/DG2								CG3/DG3	$V_{\scriptscriptstyle m R} > 1000~(V)$
SURGE (A)	40	50	50	40	125	100	80	125	125	100	100	100	SURGE (A)
V _F (V)	1.0	1.2	1.3	1.1	1.0	1.2/1.3	1.1	1.1	1.1	1.3	1.3	1.2	V _F (V)


*Fast Recovery

1N483B THRU 1N486B

LOW POWER MINIATURE GLASS PASSIVATED SILICON RECTIFIER

Voltage - 70 to 225 Volts Current - 200 Milliamperes

FEATURES

Dimension in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- 0.2 Ampere operation at T_A = 25°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Hermetically sealed package
- Glass passivated cavity-free junction
- Ideally suited for miatrauized equipment
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N483B	1N485B	1N486B	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	70	180	225	Volts
Maximum RMS Voltage	VRMS	50	127	159	Volts
*Maximum DC Blocking Voltage	VDC	70	180	225	Volts
*Maximum Reverse Breakdown Voltage at 100 μ A	VBR	80	200	250	Volts
Maximum Average Forward Rectified Current TA = 25	C		200		Mili
.375", (9.5mm) Lead Lengths at T _A = 150°	C I(AV)		50.0		Amps
*Peak Forward Surge Current 8.3ms single half sine-					
-wave superimposed on rated load (JEDEC Method)	IFSM			Amps	
*Maximum Instantaneous Forward Voltage at 100mA	VF			Volts	
*Maximum DC Reverse Current T _A = 25°C				nĄ	
at Rated DC Blocking Voltage T _A = 150°C	C IR		5.0		μÀ
Typical Reverse Recovaery Time (Note 4)	T _{RR}			μs	
Typical Junction Capacitance (Note 1)	CJ			pf	
Typical Thermal Resistance (Note 3)	Reja			.c/M	
*Operating and Storage Temperature Range	TJ, TSTG		-65 to +200)	.c

NOTES:

2. Available to JAN and JANTX Military Specificaitons MIL-S-19500/118C.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

4. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = .25A

*JEDEC Registered Values

^{1.} Measured at 1 MHz and applied reverse voltage of 4.0 VDc.

RATING AND CHARACTERISTIC CURVES 1N483B THRU 1N486B

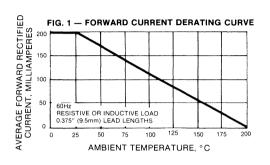
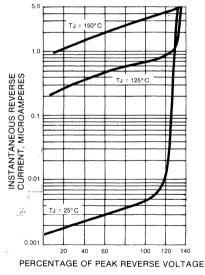
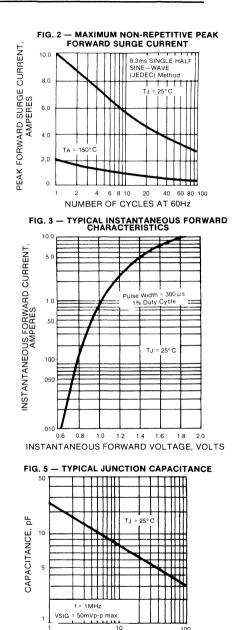
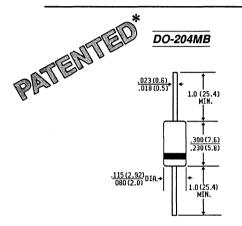




FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

REVERSE VOLTAGE, VOLTS


100

1N645 THRU 1N649

MINIATURE GLASS PASSIVATED SILICON RECTIFIER Current- 400 Milliamperes

Voltage - 225 to 600 Volts

FEATURES

Dimension in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

 High temperature metallurgically bonded compression contacts as found in diode-con structed rectifiers

- 0.4 Ampere operation at TA = 25°C with no therrmal runaway
- Hermetically sealed package
- Glass passivated cavity-free junction
- Ideally suuited for miniaturized equipment
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weiaht: .02 ounce. .56 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N645	1N646	1N647	1N648	1N649	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	225	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	156	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	225	300	400	500	600	Volts
*Minimum Avalanche Breakdown Voltage at $T_A = 100^{\circ}C$	VBR	275	360	480	600	720	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 25$ °C $T_A = 150$ °C	I(AV)			400 150			Mili- Amps
Peak Forward Surge Current 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	15.0					Amps
*Maximum Instantaneous Forward Voltage at 400mA	VF	1.0					Valts
*Maximum DC Reverse Current T _A = 25°C		200					nĄ
at Rated DC Blocking Voltage TA= 100°C	IR	15	15	20	20	25	μA
Typical Junction Capacitance (Note 1)	CJ		pf				
Typical Thermal Resistance (Note 3)	Røja			'C/W			
Operating Temperature Range	TJ	-65 to +175					•C
Storage Temperature Range	Tstg	-65 to +200					·C

NOTES:

Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.
 Available to Jan and Jan TX Military Specifications MIL-STD-19500/240.

Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.
 JEDEC Registered Values

JEDEC Registered Values

RATING AND CHARACTERISTIC CURVES 1N645 THRU 1N649

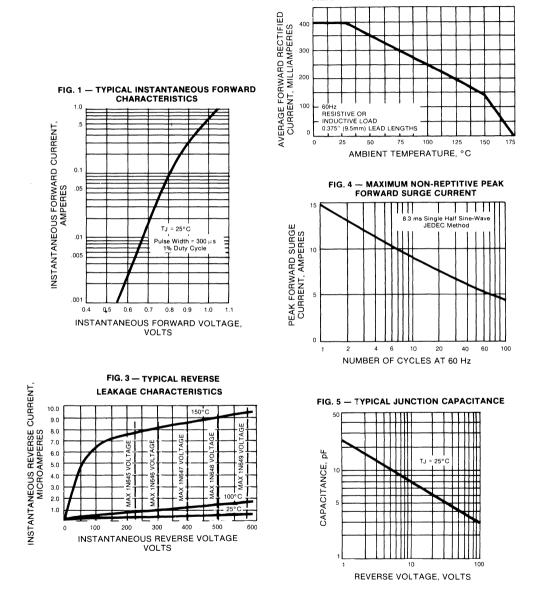
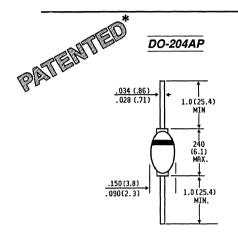


FIG. 2 - FORWARD CURRENT DERATING CURVE



1N4245 THRU 1N4249

MINIATURE GLASS PASSIVATED SILICON RECTIFIER

Voltage - 200 to 1000 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

High temperature metallurgically bonded constructed rectifiers

- 1.0 Ampere operation at T_A = 55°C with
- no thermal runaway
 Typical I_R less than 0.1 μ A
- Hermetically sealed package
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 grams

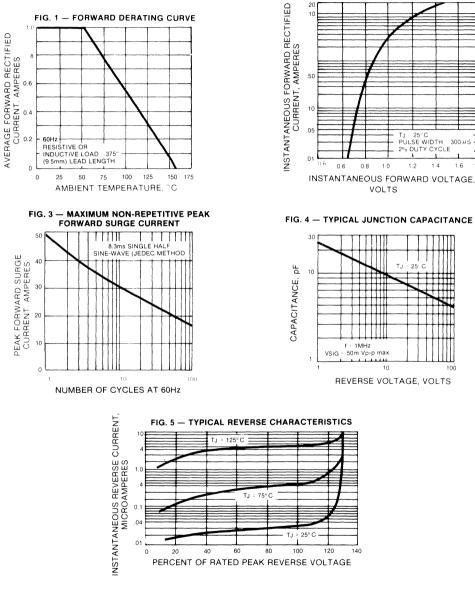
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N4245	1N4246	1N4247	1N4248	1N4249	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55$ °C	I(AV)			1.0			Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed				50.0			
on rated load (JEDEC Method)	IFSM		Amps				
*Maximum Instantaneous Forward Voltage at 1.0A	VF		Volts				
*Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Lengths at $T_A = 55$ °C	IR(AV)			50.0			μA
*Maximum Reverse Current T _A = 25°C				1.0			
at Rated DC Blocking Voltage T _A = 125°C	IR			25.0			μA
Typical Junction Capacitance (Note 2)	CJ	15.0					pf
Typical Thermal Resistance (Note 3)	RØJA	40.0					.C/M
*Operating Temperature Range	TJ	-65 to +160					.c
*Storage Temperature Range	Tstg		-	65 to +20	00		.C

NOTES:

1. Available to JAN and JAN TX Military Specifications MIL-S-19500 / 286C


2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

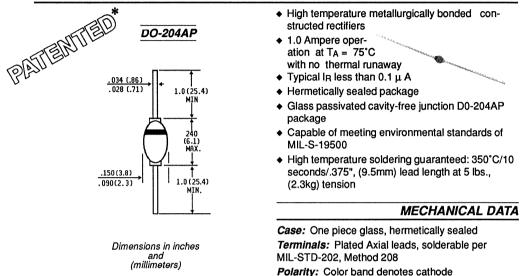
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

*JEDEC Registered Values

RATING AND CHARACTERISTIC CURVES 1N4245 THRU 1N4249

FIG. 2 - TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

1.8


GENER INSTRUME

1N5059 THRU 1N5062

MINIATURE GLASS PASSIVATED SILICON RECTIFIER

Voltage - 200 to 800 Volts Current - 1.0 Ampere

FEATURES

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

Weight: .02 ounce, .56 grams MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Mounting Position: Any

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

		SYMBOLS	1N5059	1N5060	1N5061	1N5062	UNITS
*Maximum Recurrent Peak Reverse	Voltage	VRRM	200	400	600	800	Volts
Maximum RMS Voltage		VRMS	140	280	420	560	Volts
*Maximum DC Blocking Voltage		VDC	200	400	600	800	Volts
*Maximum Average Forward Rectifie .375", (9.5mm) Lead Lengths at T _A =	l(AV)		1.0			Amps	
*Peak Forward Surge Current 8.3ms single half sine-wave superim on rated load (JEDEC Method)	posed	IFSM		50.0)		Amps
*Maximum Instantaneous Forward Vo	Itage at 1.0A	VF		Volts			
*Maximum Full Load Reverse Currer Average .375", (9.5mm) Lead Lengths at	it, Full Cycle T _A = 25°C T _A = 75°C	Inun	150	5.0		00	
	$T_A = 75^{\circ}C$	IR(AV)	150		μΑ		
at Rated DC Blocking Voltage		l _R	300	5.0		00	μΑ
Typical Reverse Recovaery Toime (Note 1)	T _{RR}		2.0)		μs
Typical Junction Capacitance (Note	CJ			pf			
Typical Thermal Resistance (Note 3	RØJA	40.0					
*Operating and Storage Temperature Range		TJ,TSTG	-65 to +175				


NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = .25A

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.
 *JEDEC Registered Values

RATING AND CHARACTERISTIC CURVES 1N5059 THRU 1N5062

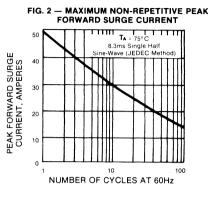


FIG. 4 - TYPICAL JUNCTION CAPACITANCE

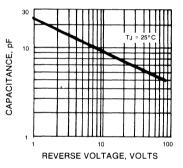
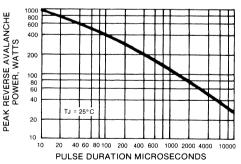
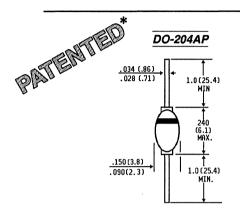



FIG. 6 — MAXIMUM NON-REPETITIVE REVERSE AVALANCHE POWER DISSIPATION



1N5614 THRU 1N5622

MINIATURE GLASS PASSIVATED MEDIUM-SWITCHING SILICON RECTIFIER

Current - 1.0 Ampere Voltage - 200 to 1000 Volts

FEATURES

Dimensions in inches and (miilimeters)

Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

High temperature metallurgically bonded constructed rectifiers

- 1.0 Ampere operation at $T_A = 55^{\circ}C$ with no thermal runaway
- Typical I_R less than 0.1 µ A
- Hermetically sealed package
- Capable of meeting environmental standards of ٠ MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

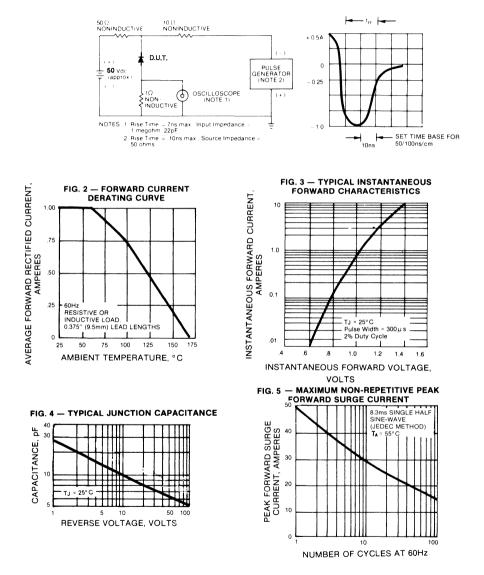
MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202. Method 208 Polarity: Color band denotes cathode Mounting Position: Any

Weight: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	1N5614	1N5616	1N5618	1N5620	1N5622	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
*Minimum Avalanche Breakdown Voltage at 50 µ A	VBR	220	440	660	880	1100	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55$ °C	I(AV)			1.0			Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			50.0			Amps
*Maximum Instantaneous Forward Voltage at 1.0A	VF			1.2			Volts
*Maximum DC Reverse Current $T_A = 25$ °C at Rated DC Blocking Voltage $T_A = 100$ °C $T_A = 200$ °C	IR			0.5 25.0 1500		<u></u>	μА
*Maximum Reverse Recovery Time (Note 1)	TRR			2.0			μs
Typical Junction Capacitance (Note 2)	CJ	45	35	25	20	15	pf
Typical Thermal Resistance (Note 4)	RØJA	RØJA 40.0		'Ċ/W			
*Operating Temperature Range	TJ	TJ -65 to +175			.c		
*Storage Temperature Range			-	65 to +20	0		.c

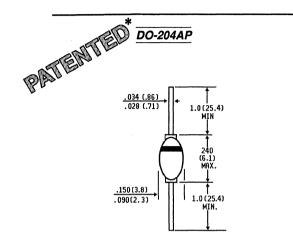
NOTES: 1. Reverse Recovery Test Conditions: IF = .5A, I_R = 1.0A, Irr = .25A.
 2. Measured at 1 MHz and applied reverse voltage of 12 volts.
 3. Available to Jan and Jan TX Military Specifications MIL-S-19500/427.

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

*JEDEC Registered Values

RATING AND CHARACTERISTIC CURVES 1N5614 THRU 1N5622

FIG. 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM



G1A THRU G1M

MINIATURE GLASS PASSIVATED SILICON RECTIFIER

Voltage - 50 to 1000 Volts Current- 1.0 Ampere

FEATURES

 High temperature metallurgically bonded constructed rectifiers

- Glass passivated cavity-free junction in D0-204AP package
- 1.0 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 grams

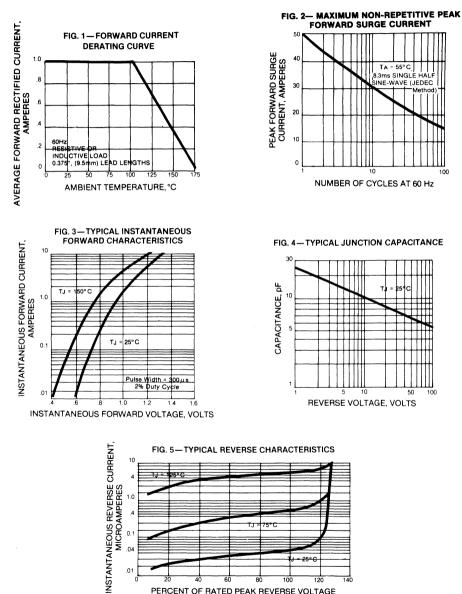
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

and glass composition by Patent No.3.752,701 of 1973


	SYMBOLS	G1A	G1B	G1D	G1G	G1J	G1K	G1M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	70	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, .375" (9.5mm) Lead Length at $T_A = 55^{\circ}C$	I(AV)				1.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				50.0				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF		1.2			1.1			Volts
Maximum Full Load Reverse Current, Full Cycle Average, .375", (9.5mm) Lead Length at T _A = 100°C	IR(AV)				200				μA
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR.	2.0 100						μA	
Typical Reverse Recovery Time (Note 1) T _J = 25°C	TRR				2.0				μs
Typical Junction Capacitance (Note 2)	CJ				15.0				pf
Typical Thermal Resistance (Note 3)	Røja				40.0				.C\M
Operating and Storage Temperature Range	TJ,TSTG			-6	5 to 1	75			.C

NOTES:

1. Measured with $I_F = 0.5A$, $I_R = 1.0A$, Irr = .25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

RATINGS AND CHARACTERISTIC CURVES G1A THRU G1M

PERCENT OF RATED PEAK REVERSE VOLTAGE

G2A THRU G2M

MINIATURE GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 50 to 1000 Volts Current- 2.0 Amperes

FEATURES

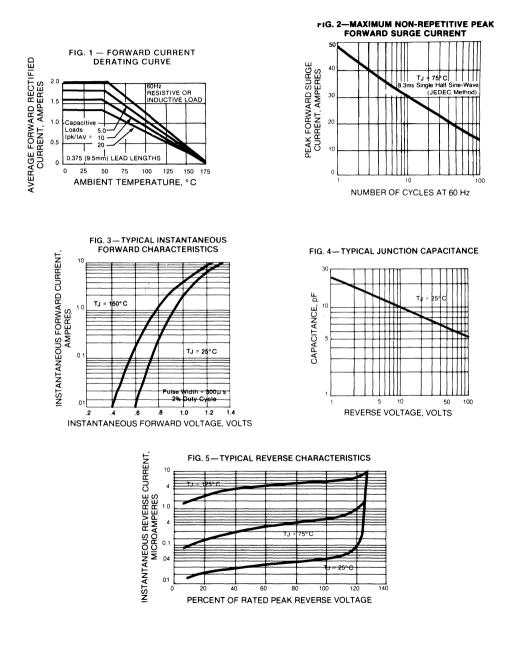
PATENTED High temperature metallurgically bonded constructed rectifiers Glass passivated cavity-free junction in DO-204AP D0-204AP package / 2.0 Ampere operation at TA = 75°C with no ther-.034 (.86) mal runaway .028 (.71) 1.0(25.4) Typical In less than 0.1 μ A MIN Capable of meeting environmental standards of MIL-S-19500 Fast switching for high efficiency 240 (6.1) High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension .150(3.8) .090(2.3) 1 .0 (25.4) MIN. **MECHANICAL DATA** Case: One piece glass, hermetically sealed Terminals: Axial leads, solderable per Dimensions in inches MIL-STD-202, Method 208 and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and alass composition by Patent No.3,752,701 of 1973

Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25'C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%

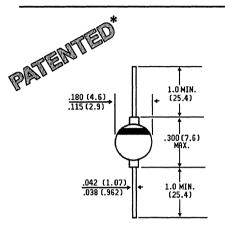

	SYMBOLS	G2A	G2B	G2D	G2G	G2J	G2K	G2M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, .375" (9.5mm) Lead Length at $T_A = 75$ °C	I(AV)	2.0							Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				50				Amps
Maximum Instantaneous Forward Voltage at 2.0A	VF	1.2 1.1						Volts	
Maximum Full Load Reverse Current, Full Cycle Average, .375", (9.5mm) Lead Length at TA = 100°C	IR(AV)	100							μΑ
Maximum DC Reverse Current at Rated DC Blocking Voltage	IR	1.0							μA
Typical Reverse Recovery Time (Note 1) T _J = 25°C	TRR	2.0							μs
Typical Junction Capacitance (Note 2)	CJ	15.0						pf	
Typical Thermal Resistance (Note 3)	Reja	40.0							.cw
Operating and Storage Temperature Range	TJ,TSTG	-65 to 175							.c

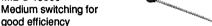
NOTES:

1. Measured with $I_F = .5A$, $I_R = 1A$, Irr = .25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

RATINGS AND CHARACTERISTIC CURVES G2A THRU G2M




1N5550 THRU 1N5554

GLASS PASSIVATED SILICON RECTIFIER Voltage - 200 to 1000 Volts Current - 3.0 Amperes

FEATURES

- Glass passivated cavity-free junction
- High temperaturae metallurgically bonded
- Hermetically sealed package
- Capable of meeting environmental standards of
- MIL-S-19500 Medium switching for

High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .037 ounce, 1.04 grams

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

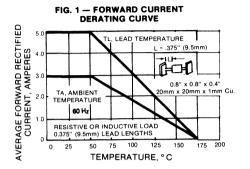
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N5550	1N5551	1N5552	1N5553	1N5554	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
*Minimum Reverse Breakdown Voltage at 50 µ A	VBR	240	- 460	660	880	1100	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55$ °C	l(AV)			3.0			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			100			Amps
* Maximum Instantaneous Forward Voltage at 3.0A	VF	1.0 1.1					Volts
*Maximum DC Reverse Current $T_A = 25$ °C at Rated DC Blocking Voltage $T_A = 100$ °C $T_A = 200$ °C	IR	1.0 25.0 1500					
*Maximum Junction Capacitance (Note 2)	CJ	150	120	100	90	85	pf
*Maximum Reverse Recovery Time (Note 1) TJ = 25°C	TRR	2.0 4.0.				μs	
Typical Thermal Resistance (Note 4)	Reja		.CW				
*Operating and Storage Temperature Range	TJ,TSTG		.c				

NOTES:

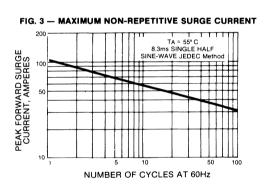
1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = 25A.

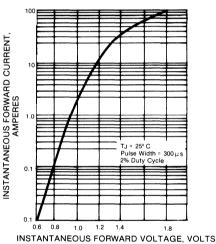

2. Measured at 1 MHz and applied reverse voltage of 12.0 volts.

3. Available to JAN and JAN TX Military Specifications MIL-ST-19500/420A.

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads mounted between heat sinks.

*JEDEC Registered Values


RATINGS AND CHARACTERISTIC CURVES 1N5550 THRU 1N5554



SUBJUCTION SUBJUCTION

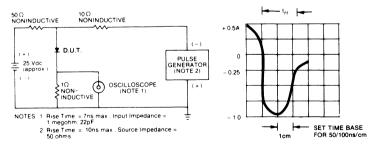
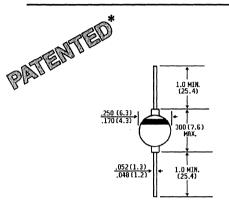

FIG. 2 - TYPICAL REVERSE CHARACTERISTICS

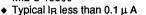
FIG. 4 - TYPICAL FORWARD CHARACTERISTICS



1N5624 THRU 1N5627

GLASS PASSIVATED SILICON RECTIFIER Voltage - 200 to 800 Volts Current - 3.0 Amperes

FEATURES



Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

Glass passivated cavity-free junction

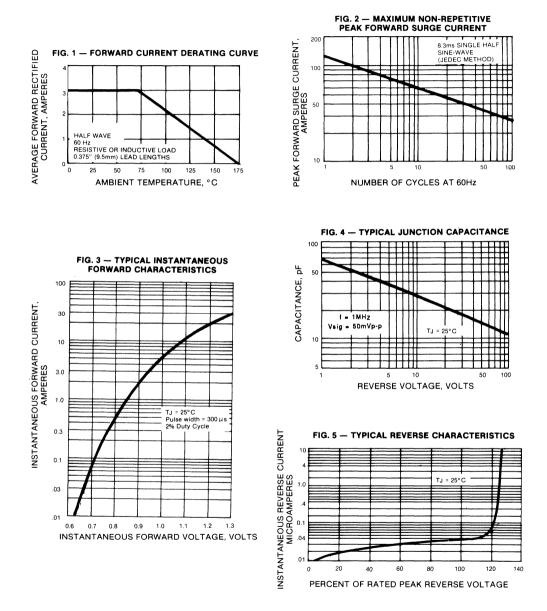
- High temperaturae metallurgically bonded constructed rectifiers
- Hermetically sealed package ٠
- Capable of meeting ٠ environmental standards of MIL-S-19500

- 3.0 Ampere operation at TA = 70°C with no thermal runaway
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .04 ounce, 1.1 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N5624	1N5625	1N5626	1N5627	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	Volts
*Maximum DC Blocking Voltage	VDC	200	400	600	800	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 70°C	I(AV)		Amps			
Peak Forward Surge Current 8.3ms single half sine- wave superimposed on rated load (JEDEC Method			Amps			
Maximum Instantaneous Forward Voltage at 3.0A* TA = 25°C TA = 70°C	VF		Volts			
*Maximum Reverse Current T _A = 25°C at Rated DC Blocking Voltage T _A = 175°C	la la	300	μΑ			
*Maximum Full Load Reverse Current, Full cycle Average, .375", (9.5mm) lead length at T _A = 70°C	IR(AV)	150			100	μΑ
Typical Junction Capacitance (Note 1)	CJ		pf			
Typical Thermal Resistance (Note 3)	RØJA		.CW			
*Operating Temperature Range	TJ		.c			
*Storage Temperature Range	TSTG		.c			

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 V_{DC}. 2. Available to JAN and JAN TX Military Specifications MIL-S-19500/432.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads attaached between heatsinks. *JEDEC Registered Values

RATING AND CHARACTERISTIC CURVES 1N5624 THRU 1N5627

GENERAL INSTRUMENT

G3A THRU G3M

GLASS PASSIVATED SILICION RECTIFIER

Voltage - 50 to 1000 Volts Current- 3.0 Amperes

FEATURES

> Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973 High temperature metallurgically bonded constructed rectifiers

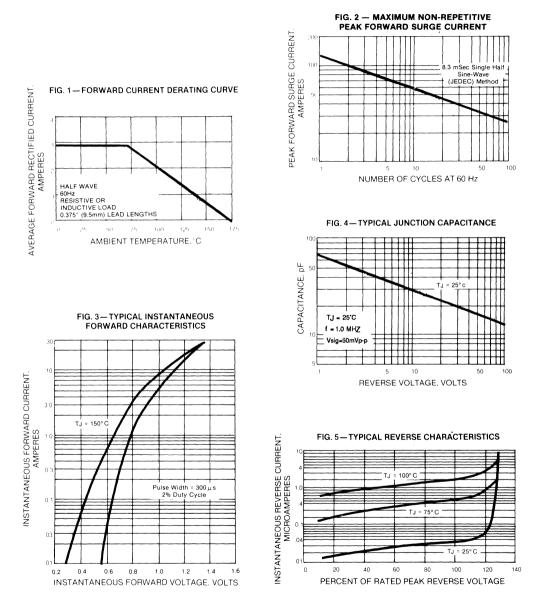
- Glass passivated cavity-free junction in sealed package
- 3.0 Ampere operation at T_A = 70°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .04 ounce,1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%


	ŞYMBOLS	G3A	G3B	G3D	G3G	G3J	G3K	G3M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, .375" (9.5mm) Lead Length at $T_A = 70^{\circ}C$	I(AV)	3.0							Amps
Peak Forward Surge Current									
8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	125							Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF		1.2			1.1			Volts
Maximum Full Load Reverse Current, Full Cycle Average, .375", (9.5mm) Lead Length at $T_A = 70^{\circ}C$	IR(AV)				200				μA
Maximum DC Reverse Current T _A = 25°C					5.0				
at Rated DC Blocking Voltage T _A = 150°C	IR				100				μA
Typical Reverse Recovery Time (Note 1)	TRR	3.0						μs	
Typical Junction Capacitance (Note 2)	CJ	40.0						pf	
Typical Thermal Resistance (Note 3)	Reja		15.0						.cw
Operating and Storage Temperature Range	TJ,TSTG			-6	5 to +1	75			.c

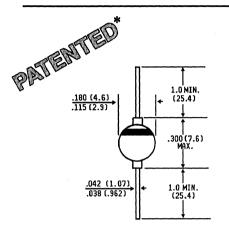
NOTES:

1. Measured with $I_F = .5A$, $I_R = 1A$, Irr = .25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads mounted between heatsinks.

RATINGS AND CHARACTERISTIC CURVES G3A THRU G3M



G4A THRU G4M

GLASS PASSIVATED SILICON RECTIFIER

Voltage - 50 to 1000 Volts Current- 3.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- Glass passivated cavity-free junction in sealed package
- 3.0 Ampere operation at T_A = 70°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .037 ounce,1.04 grams

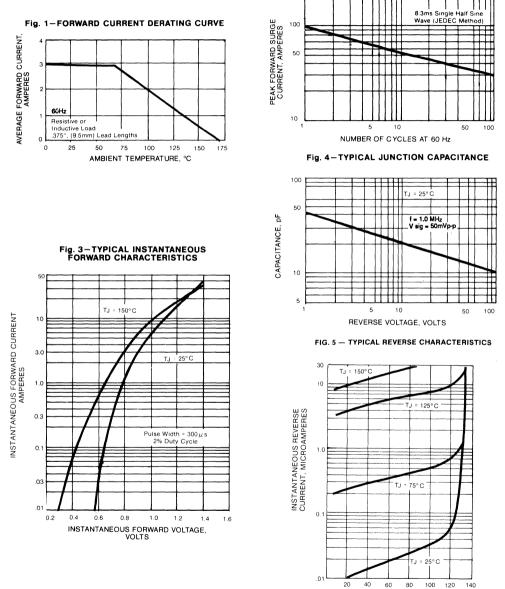
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%

	SYMBOLS	G4A	G4B	G4D	G4G	G4J	G4K	G4M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, .375"			•						
(9.5mm) Lead Length at T _A = 70°C	I(AV)				3.0				Amps
Peak Forward Surge Current									
8.3ms single half sine-wave superimposed									
on rated load (JEDEC Method)	IFSM	100					Amps		
Maximum Instantaneous Forward Voltage at 3.0A	VF	1.1					Volts		
Maximum Full Load Reverse Current Full Cycle									
Average, .375", (9.5mm) Lead Length at T _A = 70°C	IR(AV)				200				μA
Maximum Average Reverse Current at Peak TA = 25°C					5.0				
Reverse Voltage T _A = 100°C	IR(AV)				100				μA
Maximum DC Reverse Current T _A = 25°C					1.0				
at Rated DC Blocking Voltage T _A = 100°C	IR				100				μΑ
Typical Reverse Recovery Time (Note 2) T _J = 25°C	TRR	3.0				μs			
Typical Junction Capacitance (Note 1)	CJ	40.0				pf			
Typical Thermal Resistance (Note 3)	RØJA	15.0				.CW			
Operating and Storage Temperature Range	TJ, TSTG			-6	5 to +1	75			.c

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.


2. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = .25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths with botyh leads mounted between heatsinks...

RATINGS AND CHARACTERISTIC CURVES G4A THRU G4M

200

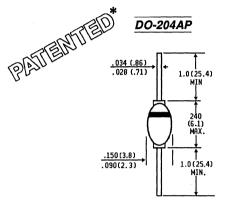
FIG. 2 – MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

PERCENTAGE OF PEAK REVERSE VOLTAGE

÷

HIGH VOLTAGE GLASS PASSIVATED RECTIFIERS

1.0 AMPERE TO 3.0 AMPERES 1200 VOLTS TO 1600 VOLTS



CG1 AND DG1

MINIATURE CLAMPER / DAMPER GLASS PASSIVATED JUNCTION SILICON RECTIFIER

Voltage - 1400 to 1500 Volts Current - 1.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

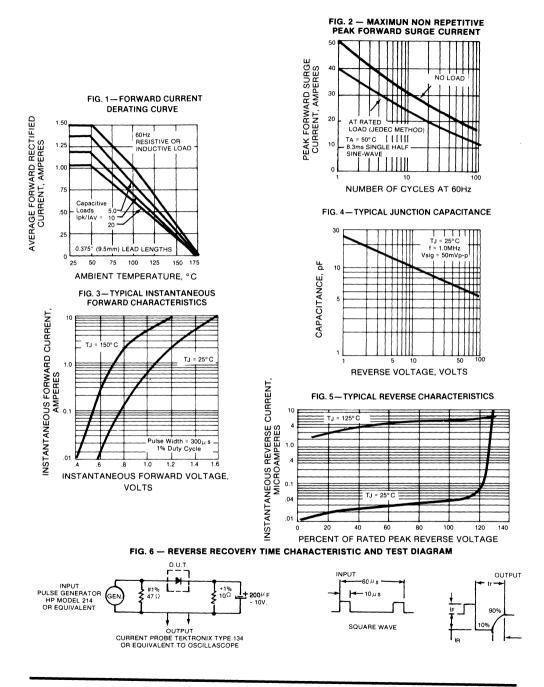
- Specially designed for clamping circuits horizantal deflection systems and damper applications
- High temperature metallurgically bonded constructed rectifiers
- Glass passivated cavityfree junction in D0-204AP package
- 1.5 Ampere operation at T_A = 50°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Hermetically sealed package
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Welght: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

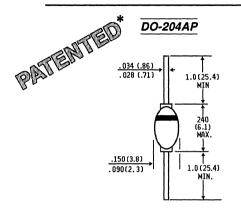

	SYMBOLS	CG1	DG1	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	1400	1500	Volts
Maximum RMS Voltage	VRMS	980	1050	Volts
Maximum DC Blocking Voltage	VDC	1400	1500	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 50^{\circ}C$	l _(AV)	1.	.5	Amps
Peak Forward Surge Current 8.3ms single half sine -wave superimposed on rated load (JEDEC Method)	IFSM	40	Amps	
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.	Volts	
Maximum DC Reverse Current $T_A= 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR		.0 00	μA
Maximum Full Load Reverse Current Full Cycle Average, .375", (9.5mm) Lead Length T _A = 100 °C	IR(AV)	50.0		μA
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	T _{RR}	15.0	20.0	μs
Typical Junction Capacitance (Note 2)	CJ	15	pf	
Typical Thermal Resistance (Note 3)	Røja	40.0		.c\M
Operating Storage Temperature Range	TJ,TSTG	-65 to	.c	

NOTES:

1. Reverse Recovery Test Conditions : $I_F = 0.5A$, $I_R = 50ma$.

2. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

RATINGS AND CHARACTERISTIC CURVES CG1 AND DG1



GI1-1200 THRU GI1-1600

MINIATURE GLASS PASSIVATED JUNCTION SILICON RECTIFIER Voltage - 1200 to 1600 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

 High temperature metallurgically bonded cor structed rectifiers

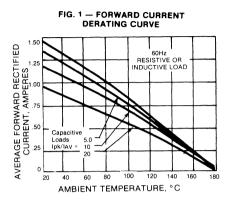
- Glass passivated cavityfree junction in D0-204AP package
- 1.0 Ampere operation at
- $T_A = 75^{\circ}C$ with no thermal runaway
- Typical I_R less than 0.1 μ A
- Hermetically sealed package
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3ka) tension

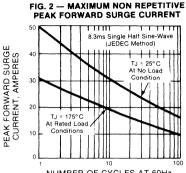
MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz Resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	GI1-1200	GI1-1400	GI1-1600	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	1200	1400	1600	Volts
Maximum RMS Voltage	VRMS	840	980	1120	Volts
Maximum DC Blocking Voltage	VDC	1200	1400	1600	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 75$ °C	l(AV)		1.0		Amps
Peak Forward Surge Current 8.3ms single half sine -wave superimposed on rated load (JEDEC Method)	IFSM		Amps		
Maximum Instantaneous Forward Voltage at 1.0A 3.14A	VF		Volts		
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	lR		μA		
Maximum Reverse Recovery Time (Note 1)	TRR		25.0		μs
Maximum Forward Recovery Time (Note 2)	T _{FR}	1.0			μs
Typical Junction Capacitance (Note 3)	CJ	15.0			pf
Typical Thermal Resistance (Note 4)	Røja		40.0		.C/M
Operating Storage Temperature Range	TJ,TSTG		-65 to +175	5	.c


NOTES:

Measured on Tektronix Type "S" recovery plug-in Tektronix 545 Scope or equivalent IFM = 20 mA, IRM = 2mA.
 Measured on Tektronix Type "S" recovery plug-in, Tektronix 545 or equivalent, IFM = 20mA.

3. Measured at 1 MHz and applied reverse voltage of 4.0 VDc.

RATINGS AND CHARACTERISTIC CURVES GI1-1200 THRU GI1-1600

NUMBER OF CYCLES AT 60Hz

FIG. 3 — TYPICAL INSTANTANEOUS FOWARD CHARACTERISTICS

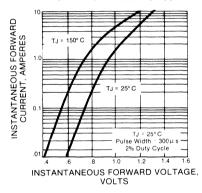
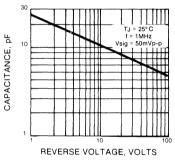
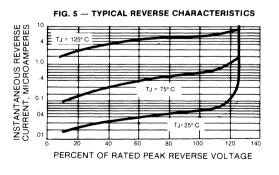
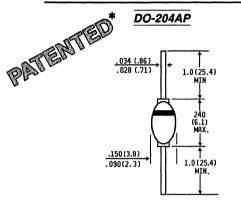




FIG. 4 — TYPICAL JUNCTION CAPACITANCE

BY448 AND BY458


MINIATURE GLASS PASSIVATED JUNCTION CLAMPER / DAMPER SILICON RECTIFIER Current - 1.5 Amperes

Voltage - 1200 to 1500 Volts

GENERAL DESCRIPTION

These silicon Glass Passivated Clamper / Damper Rectifiers are designed for TV Applications such as clamping circuits in horizontal deflection systems and damper applications.

The glass passivated construction and Dual Heat - Sink design assures reliable and stable operation.

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

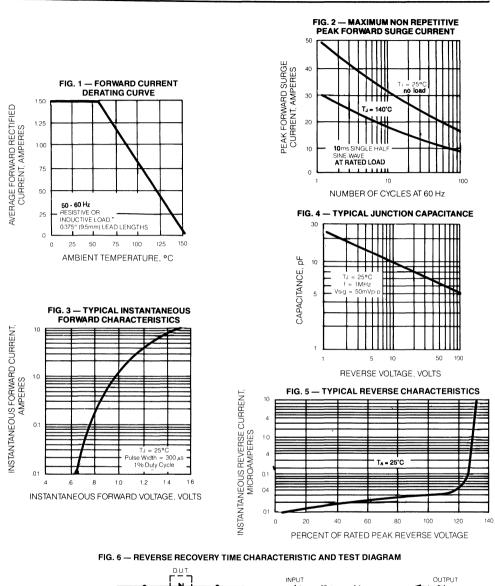
FEATURES

- High temperature metallurgically bonded constructed rectifiers
- Glass passivated cavity- free junction in D0-204AP package
- 1.5 Ampere operation at TA = 50°C with no thermal runaway
- Typical IR less than 0.1 µ A
- Hermetically sealed package
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

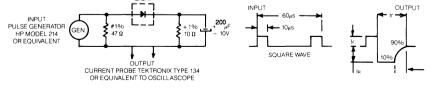
MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 50 - 60 Hz, resistive or inductive load.. For capacitive load, derate current by 20%.

	SYMBOLS	BY458	BY448	UNITS	
Maximum Non Recurrent Peak Reverse Voltage	VRSM	1400	1650	Volts	
Maximum Recurrent Peak Reverse Voltage	VRRM	1200 1500		Volts	
Maximum DC Blocking Voltage	VDC	1200	1500	Volts	
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 50^{\circ}C$	l(AV)	1.5		Amps	
Peak Forward Surge Current 10ms single half sine -wave superimposed on rated load	IFSM	30.0		Amps	
Maximum Instantaneous Forward Voltage at 3.0A	VF	1	Volts		
Working Peak Forward Current at TA = 75°C	1FWM	4.0		Amps	
Peak Repetitive Forward Current at TA = 75°C	IRFM	8	.0	Amps	
Maximum Peak Reverse Current $T_A = 25^{\circ}C$ at Rated Peak Reverse Voltage $T_A = 140^{\circ}C$	IR	-	.0 00	μΑ	
Maximum Reverse Recovery Time (Note 1) TJ = 140°C	T _{RR}	2	0.0	μs	
Typical Junction Capacitance (Note 2)	CJ	15.0		pf	
Typical Thermal Resistance (Note 3)	Reja	40.0		.C\M	
Operating Temperature Range	TJ	-65 to +150		.c	
Storage Temperature Range	Tstg	-65 to +200		.c	


NOTES: 1. Measured with IF = 0.5A, IR = 50ma. 2. Measured at 1 MHz and applied reverse voltage of 4.0 VDc.

3. Thermal Resistance from Junction to Ambient at .375"

^{(9.5}mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES BY448 AND BY458

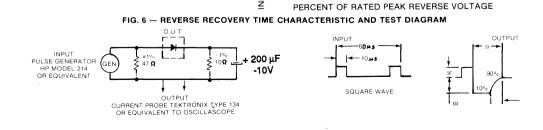
CG2 AND DG2 MINIATURE CLAMPER / DAMPER GLASS PASSIVATED JUNCTION SILICON RECTIFIER Voltage - 1400 to 1500 Volts Current - 2.0 Amperes **FEATURES** Specially designed for clamping circuits in horizon-PATENTER tal deflection systems and damper applications DO-204AP High temperature metallurgically bonded Glass passivated cavity- free junction in a .034 (.86) D0-204AP package .028 (.71) 1.0(25.4) 2.0 Ampere operation MIN at TA = 50°C with no thermal runaway Typical I_R less than 0.1 μ A Hermetically sealed package Capable of meeting environmental standards of MIL-S-19500 High temperature soldering guaranteed: .150(3.8) 1.0(25.4) 090(2.3) 350°C/10 seconds/.375", (9.5mm) lead length at MIN. 5 lbs., (2.3kg) tension **MECHANICAL DATA** Dimensions in inches and Case: One piece glass, hermetically sealed (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	CG2	DG2	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	1400	1500	Volts	
Maximum RMS Voltage	VRMS	980 1050		Volts	
Maximum DC Blocking Voltage	VDC	1400 1500		Volts	
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 50^{\circ}C$	l(AV)	2	.0	Amps	
Peak Forward Surge Current 8.3ms single half sine -wave superimposed on rated load (JEDEC Method)	IFSM	40.0		Amps	
Maximum Instantaneous Forward Voltage at 2.0A	VF	1.1		Volts	
Maximum DC Reverse Current $T_A= 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR	-	.0 00	μA	
Maximum Full Load Reverse Current Full CycleAverage, .375", (9.5mm) Lead Length $T_A = 100$ °C	IR(AV)	20	00	μΑ	
Maximum Reverse Recovery Time (Note 1) T _J = 25°C	TRR	15.0	20.0	μs	
Typical Junction Capacitance (Note 2)	CJ	15.0		pf	
Typical Thermal Resistance (Note 3)	Reja	40.0		'C/W	
Operating Storage Temperature Range	TJ, TSTG	-65 to	+175	.C	

NOTES:

1. Measured with IF = 0.5A, IR = 50mA.

2. Measured at 1 MHz and applied reverse voltage of 4.0 VDc.

RATINGS AND CHARACTERISTIC CURVES CG2 AND DG2 FIG. 2 — MAXIMUN NON REPETITIVE PEAK FORWARD SURGE CURRENT 50 TA = 25° C NO LOAD PEAK FORWARD SURGE CURRENT, AMPERES FIG. 1 - FORWARD CURRENT 30 AVERAGE FORWARD RECTIFIED CURRENT, AMPERES DERATING CURVE 20 2.0 60Hz RESISTIVE OR TA = 50° C 8.3ms SINGLE HALI NDUCTIVE LOAD 1.6 10 SINE-WAVE (JEDEC Method 1.0 Capaciti 1111 0 Loads 50 10 100 Ipk/IAV ic 0.5 NUMBER OF CYCLES AT 60Hz 20 0.375 (9.5mm) LEAD LENGTHS 0 25 75 125 150 175 FIG. 4-TYPICAL JUNCTION CAPACITANCE 50 100 AMBIENT TEMPERATURE, °C 30 TJ = 25°C f = 1.0MHz Ч 50mVr 10 /sia CAPACITANCE, FIG. 3-TYPICAL INSTANTANEOUS 5 FORWARD CHARACTERISTICS NSTANTANEOUS FORWARD CURRENT 10 1 150° C ТJ TJ = 25° C 100 5 1.0 AMPERES REVERSE VOLTAGE, VOLTS INSTANTANEOUS REVERSE CURRENT, MICROAMPERES FIG. 5-TYPICAL REVERSE CHARACTERISTICS 10 0 125° C тJ 4 width 300.0.5 1.0 1% Duty Cycle .01 4 .4 .6 .8 1.0 1.2 1.4 1.6 INSTANTANEOUS FORWARD VOLTAGE, 0.1

.04 .01

n

20

40

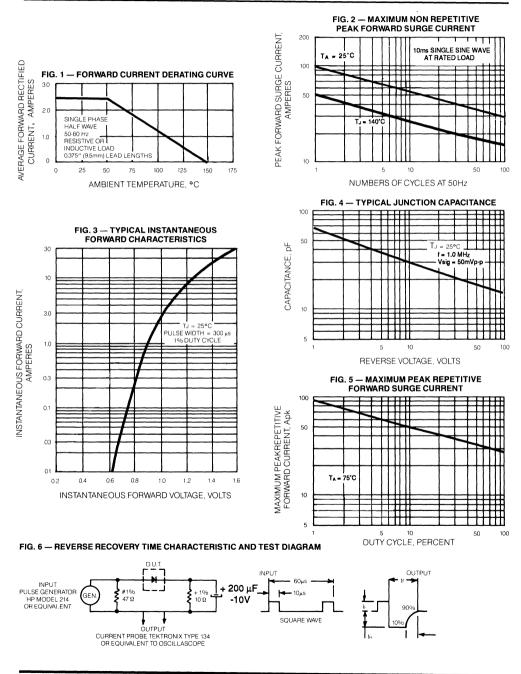
60

VOLTS

= 25

100

40

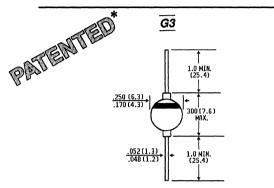

BY228 SERIES GLASS PASSIVATED JUNCTION CLAMPER / DAMPER SILICON RECTIFIER Voltage - 1500 Volts Current - 2.5 Amperes **GENERAL DESCRIPTION** These silicon Glass Passivated Clamper / Damper Rectifiers are designed for TV Apapplications. The glass passivated construc tion and Dual Heat - Sink design assures reliplications, such as clamping circuits in able and stable operation. horizontal deflection systems and damper **FEATURES** High temperature metallurgically bonded constructed rectifiers G3 PATENTED Glass passivated cavityfree junction 1.0 MIN. (25.4) 2.5 Ampere operation at TA = 50°C with no thermal runawav Typical In less than 0.1 µ A 300 (7.6) Hermetically sealed package Capable of meeting environmental standards of MIL-S-19500 High temperature soldering guaranteed: 350°C/10 * seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension .052(1.3) 048(1.2) 1.0 MIN. (25.4) **MECHANICAL DATA** Case: One piece glass, hermetically sealed Terminals: Axial leads, solderable per Dimensions in inches MIL-STD-202, Method 208 and Polarity: Color band denotes cathode (millimeters) Mounting Position: Any Weight: .04 ounce, 1.1 gram MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 50 - 60 Hz, resistive or inductive load.. For capacitive load, derate current by 20%.

	SYMBOLS	BY228	UNITS
Maximum Non Repetitive Peak Reverse Voltage	VRSM	1650	Volts
Maximum Recurrent Peak Reverse Voltage	VRRM	1500	Volts
Maximum RMS Voltage	VRMS	1050	Volts
Maximum DC Blocking Voltage	VDC	1500	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 50^{\circ}C$	I(AV)	2.5	Amps
Peak Forward Surge Current 10ms single half sine -wave superimposed on rated load	IFSM	50.0	Amps
Maximum Instantaneous Forward Voltage at 5.0A	VF	1.6	Volts
Working Peak Forward Current at T _{A =} 75°C	IFWM	5.0	Amps
Peak Repetitive Forward Surge Current at T _A = 75°C	IFRM	10.0	Amps
Maximum Peak Reverse Current $T_A = 25^{\circ}C$ at Rated Peak Reverse Voltage $T_J = 140^{\circ}C$	IR	5.0 200	μΑ
Maximum Reverse Recovery Time (Note 1)	T _{RR}	20.0	μS
Maximum Forward Recovery Time (Note 3)	TFR	1.0	μS
Typical Junction Capacitance (Note 2)	CJ	40.0	pf
Typical Thermal Resistance (Note 4)	Reja	20.0	.c/M
Operating Temperature Range	TJ	-65 to +150	.c
Storage Temperature Range	TSTG	-65 to +200	.c

NOTES: 1. Measured with IF = 1.0A, IR = 50mA, di/dt = 50mA/µs.. 2. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

3. Measured with IF = 5.0A with tr - 0.1 μ s


RATING AND CHARACTERISTIC CURVES BY228 SERIES

CG3 AND DG3

GLASS PASSIVATED JUNCTION CLAMPER / DAMPER SILICON RECTIFIER

Voltage - 1400 to 1500 Volts Current - 3.0 Ampere

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

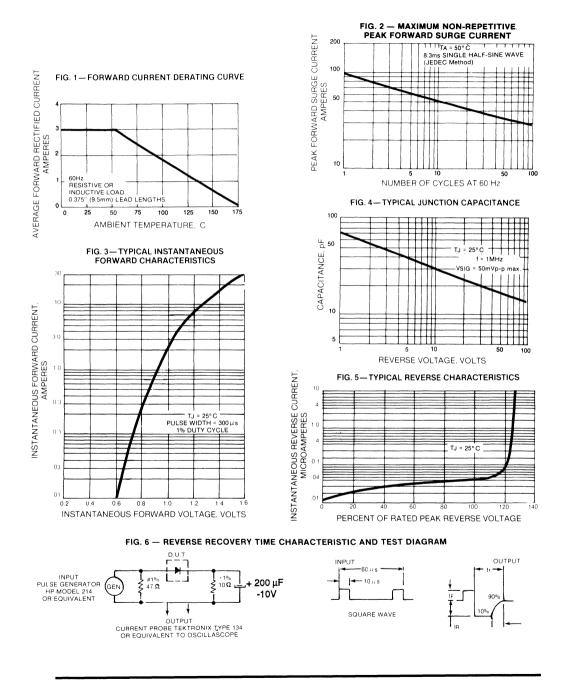
- Specially designed for clamping circuits horizontal deflection systems and damper applications
- High temperature metallurgically bonded contracted activities
- structed rectifiers
 Glass passivated cavity-free junction
- ◆ 3.0 Ampere operation at T_A = 50°C with no
- thermal runaway
- Typical I_R less than 0.1 μ A
 Hermetically sealed package
- ◆ Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	CG3	DG3	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	1400	1500	Volts	
Maximum RMS Voltage	VRMS	980 1050		Volts	
Maximum DC Blocking Voltage	V _{DC}	1400	1500	Volts	
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 50^{\circ}C$	l(AV)	3.	.0	Amps	
Peak Forward Surge Current 8.3ms single half sine -wave superimposed on rated load (JEDEC Method)	IFSM	10	Amps		
Maximum Instantaneous Forward Voltage at 3.0A	VF	1.	.2	Volts	
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR	5. 10	.0 00	μA	
Maximum Full Load Reverse Current Full Cycle Average, .375", (9.5mm) Lead Length T _A = 70 °C	IR(AV)	20	00	μΑ	
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	T _{RR}	15.0	20.0	μs	
Typical Junction Capacitance (Note 2)	CJ	4.0		pf	
Typical Thermal Resistance (Note 3)	Røja	20.0		.C/M	
Operating Storage Temperature Range	TJ, TSTG	-65 to	.c		

NOTES:

1. Measured with $I_F = 0.5A$, $I_R = 50mA$.

2. Measured at 1 MHz and applied reverse voltage of 4.0 VDc.

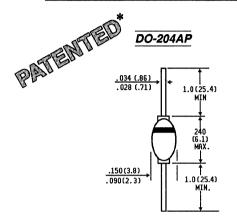
RATINGS AND CHARACTERISTIC CURVES CG3 AND DG3

GENERAL INSTRUMENT

-378-

FAST RECOVERY GLASS PASSIVATED RECTIFIERS

1.0 AMPERE TO 3.0 AMPERES 50 VOLTS TO 1000 VOLTS



1N4942 THRU 1N4948

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

Voltage - 200 to 1000 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

High temperature metallurgically bonded constructed rectifiers

- Glass passivated cavity-free junction in D0-204AP package
 1.0 Ampere operation
- at $T_A = 55^{\circ}C$ with no thermal runaway
- Typical IB less than 0.1 µ A
- Capable of meeting environmental standards of MIL-S-19500
- Fast switching for high efficiency
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 grams

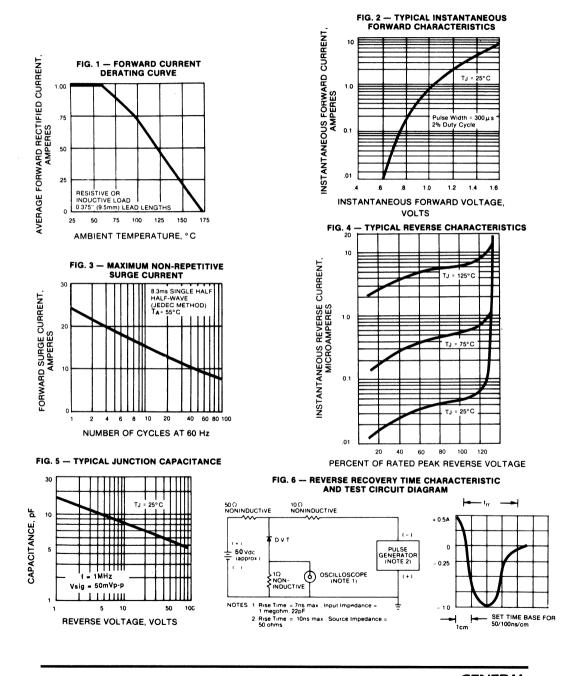
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N4942	1N4944	1N4946	1N4947	1N4948	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
*Minimum Avalanche Breakdown Voltage at 50 μ A	VBR	220	440	660	880	1100	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	l(AV)			Amps			
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		Amps				
*Maximum Instantaneous Forward Voltage at 1.0A at 2.0A, T _A = 40°C	VF VF			25.0 1.3 2.5			Volts Volts
*Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 175^{\circ}C$	IR IR		μΑ μΑ				
*Maximum Reverse Recovery Time (Note 1)TJ=25*C	TRR	150	150	250	250	500	ns
Typical Junction Capacitance (Note 2)	CJ	15.0					pf
Typical Thermal Resistance (Note 4)	Røja	50.0					.cw
*Operating and Storage Temperature Range	TJ,TSTG		-	65 to +17	'5		.C

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IB = 1.0A, Irr = 25A.

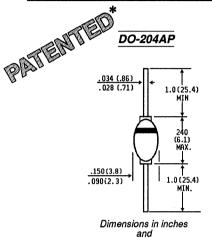

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

3. Available to JAN and JAN TX Military Specifications MIL-ST-19500/359

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

*JEDEC Registered Values

RATINGS AND CHARACTERISTIC CURVES 1N4942 THRU 1N4948



1N5615 THRU 1N5623

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

Voltage - 200 to 1000 Volts Current - 1.0 Ampere

FEATURES

(millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973 High temperature metallurgically bonded constructed rectifiers
 Glass passivated cavity-free junction in a

- D0-204AP package ◆ 1.0 Ampere operation at T_A = 55°C with no
- thermal runaway
 Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- Fast switching for high efficiency
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

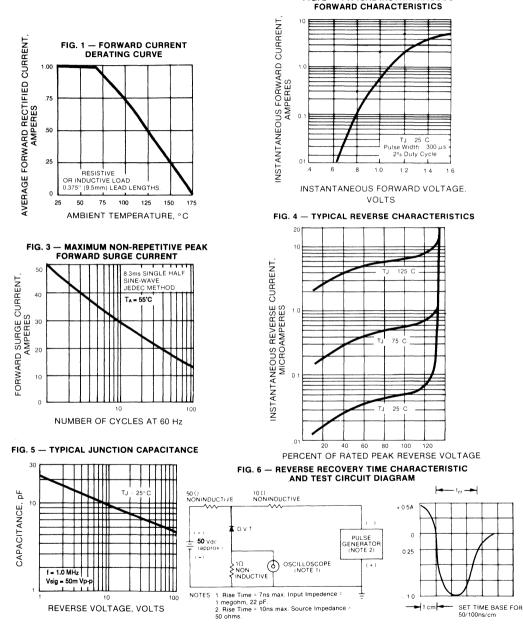
Ratings at 25 C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	S 1N5615	1N5617	1N5619	1N5621	1N5623	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
*Minimum Avalanche Breakdown Voltage at 50 µ A	VBR	220	440	660	880	1100	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55$ °C	I(AV)		Amps				
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			Amps			
*Maximum Instantaneous Forward Voltage at 1.0A	VF			1.2			Volts
*Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$ $T_A = 200^{\circ}C$	IR			μA			
*Maximum Reverse Recovery Time (Note 1)TJ=25*C	TRR	150	150	250	300	500	ns
*Maximum Junction Capacitance (Note 2)	CJ	45	35	25	20	15	pf
Typical Thermal Resistance (Note 4)	RØJA	1	50.0				
*Operating Temperature Range	TJ		-65 to +175				
*Storage Temperature Range	TSTG		-	65 to +20	0		.с

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = 25A.

2. Measured at 1 MHz and applied reverse voltage of 12 volts.


3. Available to JAN and JAN TX Military Specifications MIL-S-19500/429.

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

*JEDEC Registered Values

RATINGS AND CHARACTERISTIC CURVES 1N5615 THRU 1N5623

FIG. 2 - TYPICAL INSTANTANEOUS

GENERAL INSTRUMENT

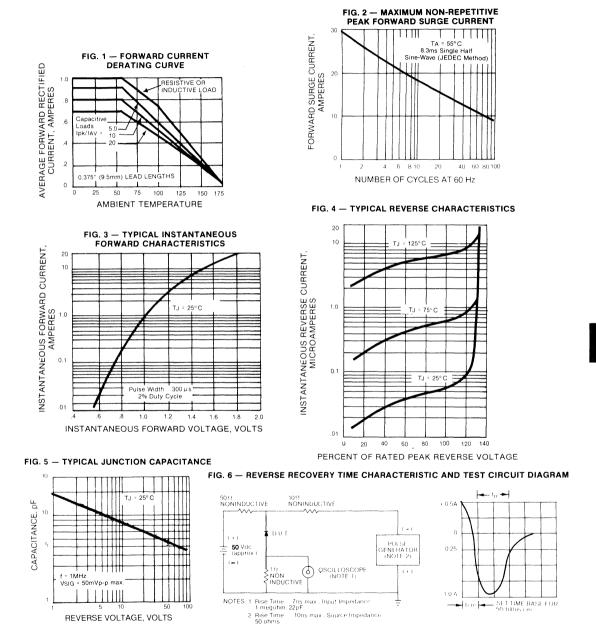
RG1A THRU RG1M MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER Voltage - 50 to 1000 Volts Current- 1.0 Ampere **FEATURES** High temperature metallurgically bonded PATENTE constructed rectifiers Glass passivated cavity-free junction in a DO-204AP D0-204AP package 1.0 Ampere operation at TA = 55°C with no . 034 (.86) .028 (.71) thermal runaway 1.0 (25.4) Typical I_R less than 0.1 μ A · Capable of meeting environmental standards of MIL-S-19500 Fast switching for high efficiency (6.1) High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., .150(3.8) (2.3kg) tension 1.0 (25.4) .090(2.3)MIN. **MECHANICAL DATA** Case: One piece glass, hermetically sealed Terminals: Axial leads, solderable per Dimensions in inches

Dimensions in incries and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973 *Case:* One piece glass, hermetically seale *Terminals:* Axial leads, solderable per MIL-STD-202, Method 208 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive laod, derate current by 20%.

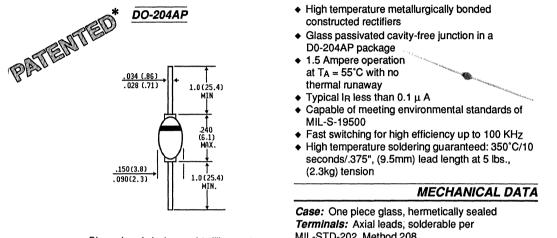

	SYMBOLS	RG1A	RG1B	RG1D	RG1G	RG1J	RG1K	RG1M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, .375"									
(9.5mm) Lead Length at T _A = 55°C	I(AV)				1.0				Amps
Peak Forward Surge Current									
8.3ms single half sine-wave superimposed									
on rated load (JEDEC Method)	FSM				30				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF				1.3				Volts
Maximum Full Load Reverse Current,									
Full Cycle Average, .375", (9.5mm) T _A = 25°C					1.0				
Lead Length at $T_A = 100^{\circ}C$	IR(AV)				100				μA
Maximum DC Reverse Current		Ļ							
at Rated DC Blocking Voltage	IR				2.0				μΑ
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	TRR		150			200	250	500	ns
Typical Junction Capacitance (Note 2)	Cj				15.0				pf
Typical Thermal Resistance (Note 3)	Røja		50.0						.cw
Operating and Storage Temperature Range	Tj,Tstg			-6	5 to +1	75			.с

NOTES:

1. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = .25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDC.

RATINGS AND CHARACTERISTIC CURVES RG1A THRU RG1M



BYV95 AND BYV96 SERIES

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

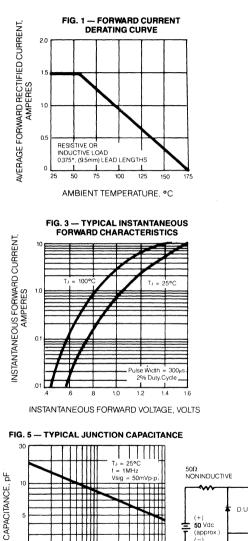
Voltage - 200 to 1000 Volts Current- 1.5 Amperes

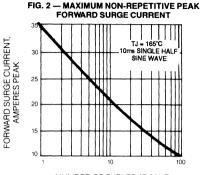
FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973 Case: One piece glass, hermetically sea Terminals: Axial leads; solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 grams

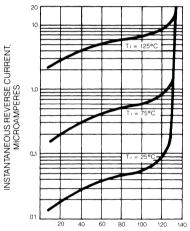
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

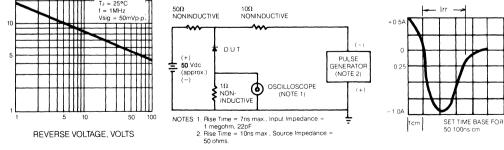

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	BYV95A	BYV95B	BYV95C	BYV96D	BYV96E	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
Minimum Avalanche Breakdown Voltage at 100 μ A	VBR	300	500	800	900	1100	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55$ C	I(AV)			1.5			Amps
Peak Forward Surge Current '10ms single half sine- wave superimposed on rated load	IFSM		Amps				
Maximum Instantaneous Forward Voltage at 3.0A T _A = 25°C T _J = 165°C	VF	1.6					Volts
Maximum Full Load Reverse Current, Full Cycle Average, .375", (9.5mm) $T_J = 25^{\circ}C$ Lead Length at $T_J = 165^{\circ}C$	IR(AV)		1.35 1.0 150				
Maximum DC Reverse Current, at rated DC Blocking Voltage	I _R		2.0				μA
Maximum Reverse Recovery Time (Note 1)TJ = 25°C	TRR		250			300	ns
Typical Junction Capacitance (Note 2)	CJ	10.0					pf
Typical Thermal Resistance (Note 3)	RØJA	50.0					.CW
Operating Temperature Range	TJ		-	65 to +17	'5		.c
Storage Temperature Range	TSTG		-	65 to +20	0		.C

NOTES: 1. Measured with $I_F = 0.5A$, $I_R = 1.0A$, Irr = .25A.

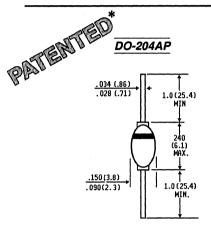
2. Measured at 1 MHz and applied reverse voltage of 4.0.Vpc.


RATING AND CHARACTERISTIC CURVES BYV95 AND BYV96 SERIES


NUMBER OF CYCLES AT 60HZ

PERCENT OF RATED PEAK REVERSE VOLTAGE

FIG. 6 — REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM



RG2A THRU RG2M

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

Voltage - 50 to 1000 Volts Current- 2.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973 High temperature metallurgically bonded constructed rectifiers

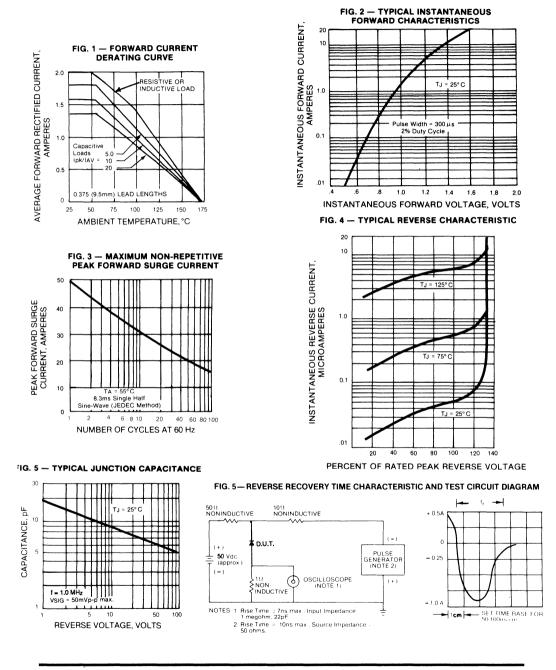
- Glass passivated cavity-free junction in a D0-204AP package
- 1.0 Ampere operation at T_A = 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- Fast switching for high efficiency
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25'C ambient temperature unless otherwise specified. Single phase,half wave, 60Hz, resistive or inductive load.

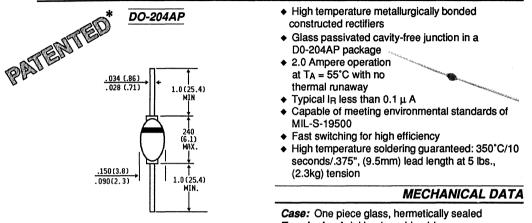

	SYMBOLS	RG2A	RG2B	RG2D	RG2G	RG2J	RG2K	RG2M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current									
.375", (9.5mm) Lead Lengths at T _A = 55°C	I(AV)	I			2.0				Amps
Peak Forward Surge Current									
8.3ms single half sine-wave superimposed									
on rated load (JEDEC Method)	IFSM				50.0				Amps
Maximum Instantaneous Forward Voltage at 2.0A	VF				1.3				Volts
Maximum Full Load Reverse Current									
Full Cycle Average, .375", (9.5mm) TA = 25°C					1.0				
T _A = 100°C	IR(AV)				100				μA
Maximum DC Reverse Current,									
at Rated DC Blocking Voltage	l _R				5.0				μA
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	T _{RR}		150			200	250	500	ns
Typical Junction Capacitance (Note 2)	CJ				15.0				pf
Typical Thermal Resistance (Note 3)	Reja				50.0				.C\M
Operating and Storage Temperature Range	TJ,TSTG			-6	5 to +1	75			.c

NOTES:

1. Measured with $I_F = 0.5A$, $I_R = 1.0A$, $I_{T} = 25A$.

2. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

RATINGS AND CHARACTERISTIC CURVES RG2A THRU RG2M



BYW32 THRU BYW36

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

Voltage - 200 to 600 Volts Current- 2.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973 Case: One piece glass, hermetically sea Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	5 BYW32	BYW33	BYW34	BYW35	BYW36	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current							
.375", (9.5mm) Lead Lengths at T _A = 55'C	I(AV)			2.0			Amps
Peak Forward Surge Current							
10ms single half sine-wave superimposed							
on rated load at T _A = 25°C	IFSM		Amps				
Maximum Instantaneous Forward Voltage at 1.0A	VF		Volts				
Maximum DC Reverse Current							
at Rated DC Blocking Voltage	IR	5.0					μA
Maximum Full Load Reverse Current							
Full Cycle Average, .375", (9.5mm) TA = 25°C				5.0			
Lead Length T _A = 100 °C	IR(AV)	50.0					μΑ
Maximum Reverse Recovery Time (Note 1) TJ = 25'C	T _{RR}		ns				
Typical Junction Capacitance (Note 2)	CJ	15.0					pf
Typical Thermal Resistance (Note 3)	ROJA	50.0					.cw
Operating Temperature Range	TJ	-65 to +175					.c
Storage Temperature Range	Tstg	-65 to 200					.c

NOTES:

1. Measured with IF = 0.5A, IR = 1.0A, Irr = 25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

RATING AND CHARACTERISTIC CURVES BYW32 THRU BYW36

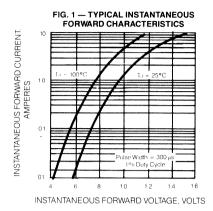
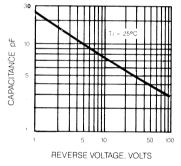



FIG. 3 - TYPICAL JUNCTION CAPACITANCE

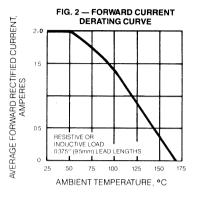
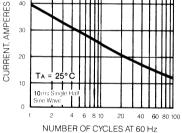



FIG. 4 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT 50 40 30 20

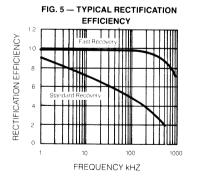
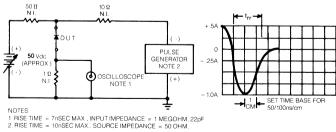



FIG. 6 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM

PEAK FORWARD SURGE

GENER INSTRUME

1N5415 THRU 1N5420 FAST SWITCHING GLASS PASSIVATED SILICON RECTIFIER Voltage - 50 to 600 Volts Current - 3.0 Amperes **FEATURES** PATENTED Glass passivated cavity-free junction High temperaturae metallurgically bonded Hermetically sealed package Capable of meeting environmental 1.0 MIN. standards of (25.4)

MIL-S-19500 Fast switching for high efficiency

Dimensions in inches and (millimeters)

.042 (1.07)

.038 (.962)

.300 (7.6)

MAX.

1.0 MIN.

(25.4)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .037 ounce, 1.04 grams

High temperature soldering guaranteed:

350°C/10 seconds/.375", (9.5mm) lead length

MECHANICAL DATA

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

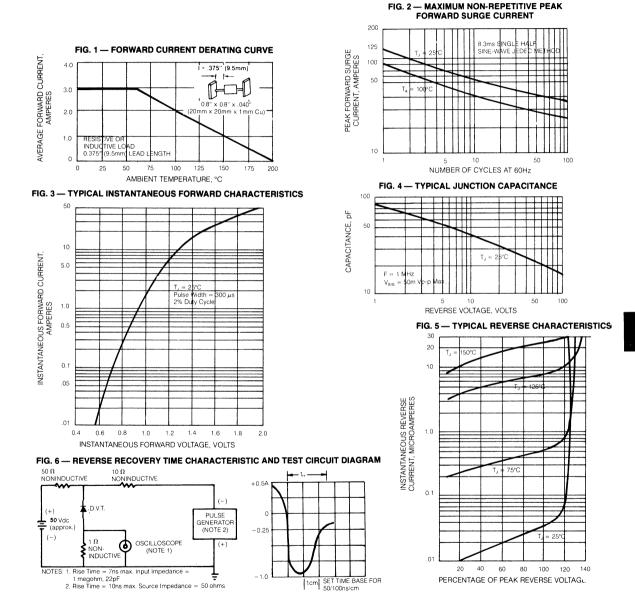
at 5 lbs., (2.3kg) tension

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N5415	1N5416	1N5417	1N5418	1N5419	1N5420	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	500	600	Volts
Maximum RMS Voltage	VRMS	35 70 140 280 350 420					420	Volts
*Maximum DC Blocking Voltage	VDC	50 100 200 400 500 600					600	Volts
*Minimum Reverse Breakdown Voltage at 50 µ A	VBR	55 110 220 440 550 660					660	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A = 55°C	l(AV)	3.0						Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at T _A = 100°C	IFSM	80.0						Amps
Maximum Instantaneous Forward Voltage at 3.0A* at 9.0A	VF	1.10 1.50						Volts
Maximum DC Reverse Current ${}^{*}T_{A} = 25^{\circ}C$ at Rated DC Blocking Voltage $T_{A} = 100^{\circ}C$ ${}^{*}T_{A} = 175^{\circ}C$	IR	1.0 20.0 2.0						μΑ μΑ mA
*Maximum Junction Capacitance (Note 2)	CJ	200	175	150	120	110	100	pf
*Maximum Reverse Recovery Time (Note 1) TJ = 25°C	TRR	150 250 400					ns	
Typical Thermal Resistance (Note 4)	RØJA	17.0						.CW
*Operating and Storage Temperature Range	TJ,TSTG	-65 to 175						.c

NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = 25A.


2. Measured at 1 MHz and applied reverse voltage of 12.0 volts.

3. Available to JAN and JAN TX Military Specifications MIL-S-19500/411D.

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads to heat sink.

*JEDEC Registered Values

RATINGS AND CHARACTERISTIC CURVES 1N5415 THRU 1N5420

RG3A THRU RG3M FAST SWITCHING GLASS PASSIVATED SILICON RECTIFIER Voltage - 50 to 1000 Volts Current - 3.0 Amperes **FEATURES** PATENTED High temperature metallurgically bonded constructed rectifiers Glass passivated cavity-free junction Hermetically sealed package 3.0 Ampere operation 1.0 MIN (25.4) at $T_A = 55^{\circ}C$ with no thermal runaway Typical I_R less than 0.1 μ A .250 (6.3) Capable of meeting environmental standards of 300 (7.6) MIL-S-19500 MAY Fast switching for high efficiency High temperature soldering guaranteed 350°C/10 .052(1 seconds/.375", (9.5mm) lead length at 5 lbs., 1.0 1.0 MIN (25.4) .048 (1.2) (2.3ka) tension MECHANICAL DATA Dimension in inches Case: One piece glass, hermetically sealed and

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .04 ounce, 1.1 grams

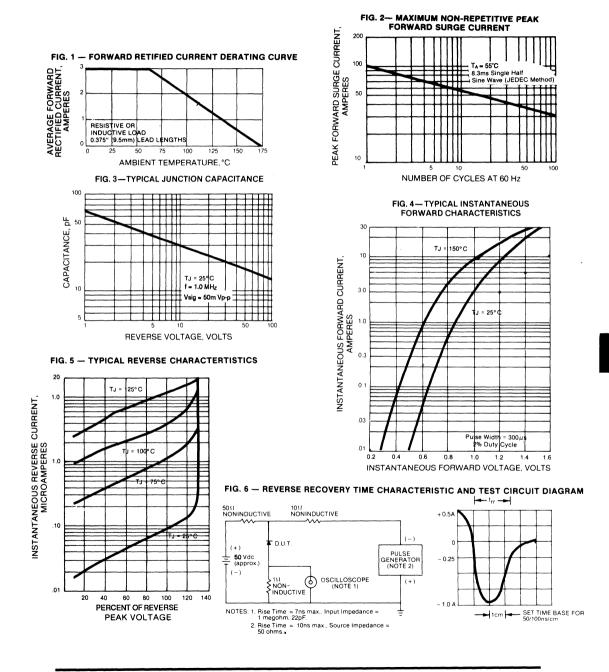
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

(millimeters)

	SYMBOLS	RG3A	RG3B	RG3D	RG3G	RG3J	RG3K	RG3M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	220	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55$ °C	I(AV)				3.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				100				Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF				1.3				Volts
Maximum Average Reverse Current $T_A = 25^{\circ}C$ at Rated Peak Reverse Voltage $T_A = 100^{\circ}C$	IR(AV)				2.0 100				μΑ
Maximum DC Reverse Current at Rated DC Blocking Voltage $T_A = 25$ C	IR				5.0				μΑ
Maximum Reverse Recovery Time (Note 1) TJ = 25'C	TRR		150			250	400	500	ns
Typical Junction Capacitance (Note 2)	CJ				40.0				pf
Typical Thermal Resistance (Note 3)	RØJA				22.0				.CW
Operating and Storage Temperature Range	TJ,TSTO			-6	5 to +1	75			.c

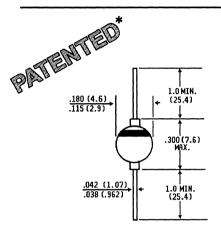

NOTES:

1. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = .25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads attached to heat sink.

RATINGS AND CHARACTERISTIC CURVES RG3A THRU RG3M



RG4A THRU RG4M

FAST SWITCHING GLASS PASSIVATED SILICON RECTIFIER

Voltage - 50 to 1000 Volts Current- 3.0 Amperes

FEATURES

Dimensions in inches and (milimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- Glass passivated cavity-free junction
- Capable of meeting environmental standards of MIL-S-19500
- Fast switching for fast efficiency
- 3.0 Ampere operation at T_A = 50°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Hermetically sealed package
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

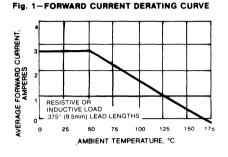
MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Welght: .037 ounce, 1.04 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	RG4A	RG4B	RG4D	RG4G	RG4J	RG4K	RG4M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 50^{\circ}C$	I(AV)				3.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				100				Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF				1.3				Volts
Maximum Reverse Current at Rated DC Blocking Voltage $T_A = 25^{\circ}C$	IR				5.0				μA
Maximum Average Reverse Current T _A = 25°C at Peak Reverse Voltage T _A =100°C	IR(AV)				2.0 100				μA
Typical Junction Capacitance (Note 2)	CJ				50.0				pf
Maximum Reverse Recovery Time (Note 1) TJ = 25 °C	TRR		150			250	500	500	nS
Typical Thermal Resistance (Note 3)	Reja	1		ang ang ang ang ang ang ang ang ang ang	17.0	+		•	.CW
Operating and Storage Temperature Range	TJ,TST	3		-6	5 to +1	75			.c

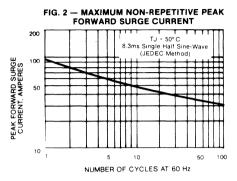

NOTES:

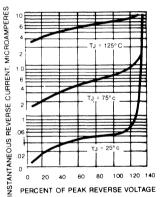
1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = 25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

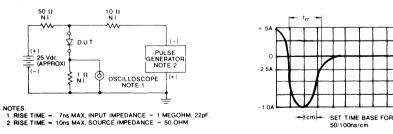
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads to heat sink.

RATINGS AND CHARACTERISTIC CURVES RG4A THRU RG4M




Fig. 3-TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

INSTANTANEOUS FORWARD CURRENT AMPERES 10 3.0 1.0 0: - 25° C ТJ Pulse Width : 300 µ s 1% Duty Cycle 0. .03 .01 1.4 1.6 1.3 1.2 04 0.6 0.8 10 INSTANTANEOUS FORWARD VOLTAGE, VOLTS


Fig. 4-TYPICAL JUNCTION CAPACITANCE

100 Ч 60 Ħ CAPACITANCE. 25 τ 40 TTT f = 1.0 MHz Vsig = 50MVp-p 20 10 2 6 10 20 40 60 100 4 REVERSE VOLTAGE, VOLTS

Fig. 5-TYPICAL REVERSE CHARACTERISTICS

BYW72 THRU BYW76 FAST SWITCHING GLASS PASSIVATED SILICON RECTIFIER Voltage - 200 to 600 Volts Current- 3.0 Amperes **FEATURES** High temperature metallurgically bonded PATENTED constructed rectifiers Glass passivated cavity-free junction Hermetically sealed package ♦ 3.0 Ampere operation . 1.0 MIN. (25.4) at TA = 45°C with no thermal runaway Typical I_R less than 0.1 μ A .250 (6.3) Capable of meeting environmental standards of 300'(7.6) MIL-S-19500 High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., <u>.052(</u>1.3) (2.3kg) tension 1.0 MIN (25.4) 048(1 2) MECHANICAL DATA Case: One piece glass, hermetically sealed Dimension in inches

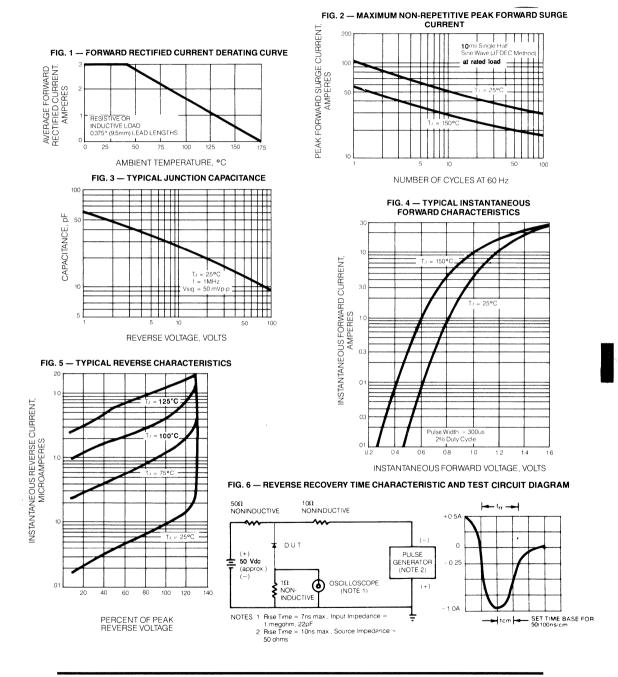
Dimension in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No.3,752,701 of 1973 *Case:* One piece glass, hermetically sealed *Terminals:* Plated Axial leads, solderable per MIL-STD-202, Method 208 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* .04 ounce, 1.1gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	S BYW72	BYW73	BYW74	BYW75	BYW76	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 45^{\circ}C$	I(AV)			3.0			Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load	IFSM			60.0			Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF			1.1			Volts
Maximum Average Reverse Current at Rated Peak Reverse Voltage T _A = 100°C	IR(AV)			50.0			μA
Maximum DC Reverse Current at Rated DC Blocking Voltage $T_{A}= 25^{\circ}C$	l _R			5.0			μA
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	TRR			200			nS
Typical Junction Capacitance (Note 2)	CJ			40.0			pf
Typical Thermal Resistance (Note 3)	ReJC			22.0			.cw
Operating Temperature Range	Tj		-	65 to +17	'5		.с
Storage Temperature Range	TSTG		-	65 to +30	0		.C


NOTES:

1. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = 25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads attached to heat sink.

RATING AND CHARACTERISTIC CURVES BYW72 THRU BYW76

GENERAL INSTRUMENT

-400-

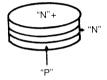
PLASTIC RECTIFIERS

1.0 AMPERE TO 25.0 AMPERES 50 to 1000 Volts

PLASTIC RECTIFIER 1.0 to 25 Amperes 50 Volts to 1000 Volts

Principle of Construction

General Instrument has produced successfully for many years Plastic Rectifiers. The key factor of our Plastic Rectifiers is the use of the cell concept.


The small size allows many cells to be processed simultaneously in batch form.

This method ensures accurate pretesting of the cells before final assembly, and allows General Instrument to produce high volume of Rectifiers economically.

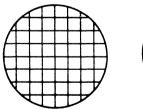
The cell construction consists of the following steps:

1-Diffusing a PN junction into a slice of silicon.

Diffused Slice

2-Metallizing the slice of silicon.

Metallized Slice

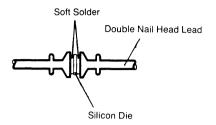


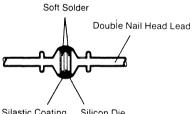
Gold and Nickel Plating

3 - Scribing and breaking the slice into individual dies, for the 1.0 Ampere devices we use a sandblast technology for the 3.0 thru 25.0 Ampere devices we use a saw technology.

Scribed Wafer

Sandblasted Round Dice




PLASTIC RECTIFIERS

4-Soldering the die between two Double Nail Head Leads.

Soldering die between Double Nail Head Lead

- 5-Cleaning the assembly by chemical etching, washing and drying.
- 6-Passivating the finished rectifier with silastic.

Silastic Coating Silicon Die

7-Overmolding by General Instrument proprietary 4B flame retardant molding compound.

8-Lead tinning, electrical testing marking and packing.

ł,

- Plastic Body Soft Solder
 - Double Nail Head Lead Silastic Silicon Die

Double Nail Head Plastic Rectifier

FAMILIES OF GENERAL INSTRUMENT PLASTIC RECTIFIERS

Miniature Plastic Silicon Rectifiers 1.0 to 1.5 AMPERES

Types:

1N4001 thru 1N4007 M100A thru M100M 1N5391 thru 1N5399

Features:

- Low Cost
- Diffused Junction
- Low Leakage
- High Current Capability
- Easily Cleaned with Freon, Alcohol, Chlorothene and similar Solvents
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208
- Case: Jedec DO 41
- ♦ High Temperature Soldering Guaranteed 265°C/10 Seconds/.375", 10mm Lead Length at 2.25 kg Tension

Plastic Power Rectifiers 3.0 to 6.0 AMPERES

Types:

1N5400 thru 1N5408 P300A thru P300M G 1500 thru G 1510 G1750 thru G1758 P600A thru P600M

Features:

- High Surge Current Capability
- Void-Free Plastic Packages
- High Current Operation
- Typical Ir less than 1µA
- High Temperature Soldering Guaranteed 265°C/10 Seconds/.375", 10mm Lead Length at 2.25 kg Tension
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208

8.0 to 25.0 AMPERES **High Current Silicon Rectifiers**

Types:

NS8AT thru NS8MT NP16AT thru NP16MT AR25A thru AR25M ARS25A thru ARS25M

Features:

- High Surge Capability
- High Current Capability
- Low Forward Voltage
- Low Leakage

Fast Recovery Plastic Silicon Rectifiers 1.0 to 8.0 AMPERES

Types: BY396B thru BY399B BY500-100 thru BY500-800 G 1820 thru G 1826 G 1850 thru G 1856 G 1910 thru G1917

1N4933 thru 1N4937 RS8AT thru RS8MT SRP100A thru SRP100K SRP300A thru SRP300K SRP600A thru SRP600K

Features:

- High Surge Current Capability
- Void-Free Plastic Packages
- High Current Operation
- Typical Ir less than .1µA
- High Temperature Soldering Guaranteed 265°C/10 Seconds/.375", 10mm Lead Length at 2.25 kg Tension
 Controlled Soft Recovery Guarantees low RFI and high Efficiency Switching Characteristics of
- SRP100A thru SRP100K, SRP300A thru SRP300K, BY296P thru BY299P, BY500-100 thru BY500-800 ٠ and SRP600A thru SRP600K
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208

QUICK GUIDE TO PLASTIC RECTIFIERS

TYPE	1N4001 thru 1N4007	M100A thru M100M	1N4933* thru 1N4937*	SRP100A' thru SRP100K'	BYX55-350P* and BYX55-600P*	1N5391 thru 1N5399	BY296P* thru BY299P*	1N5400 thru 1N5408	P300A thru P300M	GI500 thru GI510	GI910* thru GI917*	GI850* thru GI856*	SRP300A* thru SRP300K	BY396P* thru BY399P*
CASE	DO41	DO41	DO41	DO41	DO201AD	DO41	DO201AD	DO201AD	DO201AD	DO201AD	DO201AD	DO201AD	DO201AD	DO201AD
I _o (A)	1.0	1.0	1.0	1.0	1.2	1.5	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
@T_ (°C)	75	100	75	55	55	75 at T_L	55	105	105	95	90	90	55	50
V _R = 50 (V)	1N4001	M100A	1N4933	SRP100A		1N5391		1N5400	P300A	GI500	GI910	GI850	SRP300A	
V _R = 100 (V)	1N4002	M100B	1N4934	SRP100B		1N5392	BY296P	1N5401	P300B	GI501	GI911	GI851	SRP300B	BY396P
V _R = 200 (V)	1N4003	M100D	1N4935	SRP100D		1N5393	BY297P	1N5402	P300D	GI502	GI912	GI852	SRP300D	BY397P
V _R = 300 (V)						1N5394		1N5403						
V _R = 400 (V)	1N4004	M100G	1N4936	SRP100G	BYX55-350P	1N5395	BY298P	1N5404	P300G	GI504	GI914	GI854	SRP300G	BY398P
V _R = 500 (V)						1N5396		1N5405						
V _R = 600 (V)	1N4005	M100J	1N4937	SRP100J		1N5397		1N5406	P300J	GI506	GI916	G1856	SRP300J	
V _R = 800 (V)	1N4006	M100K		SRP100K	BYX55-600P	1N5398	BY299P	1N5407	P300K	GI508	GI917		SRP300K	BY399P
V _R = 1000 {V}	1N4007	M100M				1N5399		1N5408	P300M	GI510				
V _B >1000 (V)														
SURGE (A)	30	50	30	30	40	50	70	200	200	100	100	100	150	100
VF (V)	1.1	1.0 1 1	1.2	1.3	1.25	1.4	1.3	1.2	1.1	1.1	1.25	1.25	1.3	1.25

Fast Recovery

QUICK GUIDE TO PLASTIC RECTIFIERS

TYPE	BY500-100* thru BY500-800*	GI750 thru GI758	P600A thru P600M	GI820* thru GI826*	SRP600A* thru SRP600K*	NS8AT thru NS8MT	RS8AT* thru RS8KT*	NP16AT thru NP16KT	AR25A thru AR25M
CASE	DO201AD	P600	P600	P600	P600	TO220	TO220	TO220CT	AR25
I₀ (A)	5.0	6.0	6.0	5.0	6.0	8.0	8.0	16	25.0
@T _A (°C)	45	60	60	55	55	100Tc	100Tc	100T _c	150Tc
V _R = 50 (V)		GI750	P600A	GI820	SRP600A	NS8AT	RS8AT	NP16AT	AR25A
V _R = 100 (V)	BY500-100	GI751	P600B	GI821	SRP600B	NS8BT	RS8BT	NP16BT	AR25B
V _R = 200 (V)	BY500-200	GI752	P600D	GI822	SRP600D	NS8DT	RS8DT	NP16DT	AR25D
V _R = 400 (V)	BY500-400	GI754	P600G	GI824	SRP600G	NS8GT	RS8GT	NP16GT	AR25G
V _R = 600 (V)	BY500-600	GI756	P600J	GI826	SRP600J	NS8JT	RS8JT	NP16JT	AR25J
V _R = 800 (V)	BY500-800	GI758	P600K		SRP600K	NS8KT	RS8KT	NP16KT	AR25K
V _R = 1000 (V)			P600M			NS8MT	RS8MT	NP16MT	AR25M
$V_{B} >$ = 1000 (V)									
SURGE (A)	200	400	400	300	300	175	150	300	400
V _F (V)	1.35	.9/.95	.9/1.0	1.0	1.3	1.1	1.3	1.1	1.0

*Fast Recovery

GENERAL INSTRUMENT

1N4001 THRU 1N4007

MINIATURE PLASTIC SILICON RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere

.205 (5.2)

.160 (4.1)

1.0(25.4)

MIN

FEATURES

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
 Low cost construction utilizing void-free molded
 - Low cost construction utilizing void-nee molded plastic technique
- Low cost
- Diffused junction
- Low leakage
- High current capability
- Easily cleaned with Freon, Alcohol, Chlorothene and similar solvents

 High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-41, molded plastic case Terminals: Plated axial leads, solderable per MIL-S-202, Method 208 Polarity: Color band denotes cathode end Weight: 0.012 ounce, 0.3 gram Mounting Position: Any Handling precautions: None

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Dimension in inches

and

(millimeters)

DO-41

.107 (2.7

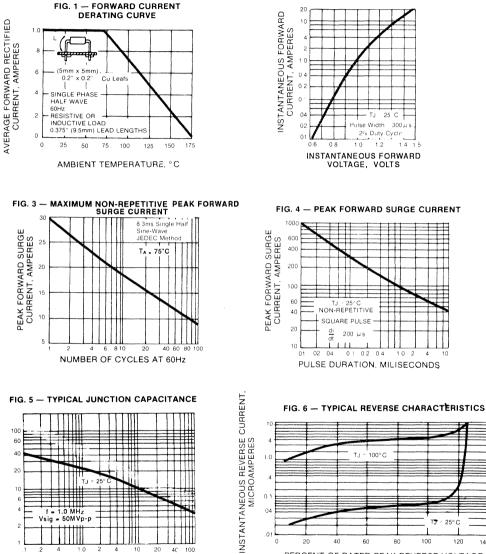
OB0(2.0)

.034 (.86)

.028 (.71)

· · · · · · · · · · · · · · · · · · ·	SYMBOLS	1N 4001	1N 4002	1N 4003	1N 4004	1N 4005	1N 4006	1N 4007	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
*Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A = 75$ °C	l(AV)				1.0				Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				30.0				Amps
*Maximum Instantaneous Forward Voltage at 1.0A	VF				1.1				Volts
*Maximum Full Load Reverse Current Full Cycle Average .375", (9.5mm) lead lengths at $T_L = 75$ °C	I _{R(AV)}				30.0				μА
*Maximum DC Reverse Current T _A = 25°C					5.0				·
at Rated DC Blocking Voltage T _A = 100°C	IR				50.0				Αų
Typical Reverse Recovery Time (Note 1) T _A = 25°C	T _{RR}				30.0				μs
Typical Junction Capacitance (Note 2) T _J = 25°C	CJ				15.0				pf
Typical Thermal Resistance (Note 3)	Reja				26.0				.cw
*Operating and Storage Temperature Range,	TJ,TSTG			-50	0 to +1	75			.C

NOTES:


1. Measured on Tektronix Type "S" recovery plug-in. Tedtronix 545 Scope or equivalent, IFM = 20mA, IRM =1mA

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resestance from Junction to Ambiient at. 375" (9.5mm) lead lengths, P.C. Board mounted.

*JEDEC Registered Value

RATINGS AND CHARACTERISTIC CURVES 1N4001 THRU 1N4007

4C

REVERSE VOLTAGE, VOLTS

FIG. 2 - TYPICAL FORWARD CHARACTERISTICS

с

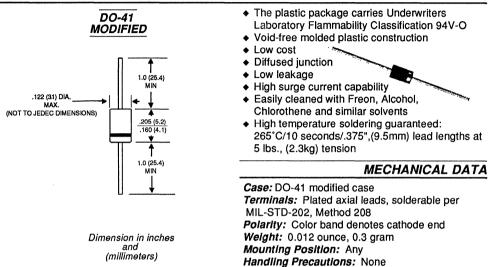
300 µ s

14 15

GENERA INSTRUMEN

- 25° C

PERCENT OF RATED PEAK REVERSE VOLTAGE


.01

1N4001P THRU 1N4007P

MINIATURE PLASTIC SILICON RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N 4001P	1N 4002P	1N 4003P	1N 4004P	1N 4005P	1N 4006 P	1N 4007P	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
*Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A = 75$ C	I(AV)				1.0		1		Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				30.0				Amps
*Maximum Instantaneous Forward Voltage at 1.0A	VF				1.1				Volts
*Maximum Full Load Reverse Current Full Cycle Average .375", (9.5mm) lead lengths at T _L = 75°C	IR				30.0				μA
*Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	İB				5.0 50.0				μA
Typical Reverse Recovery Time (Note 1) TA = 25°C	T _{BB}				30.0				μs
Typical Junction Capacitance (Note 2) TJ = 25'C	CJ				30.0				pf
Typical Thermal Resistance (Note 3)	Reja	1			50.0				°C/W
*Operating and Storage Temperature Range,	TJ,TSTO	G		-5	0 to +1	75			.c

NOTES:

1. Measured on Tektronix Type "S" recovery plug-in. Tektronix 545 Scope or equivalent, IFM = 20mA, IRM =1mA

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resestance from Junction to Ambient at. 375" (9.5mm) lead lengths, P.C. Board mounted.

*JEDEC Registered Value

RATINGS AND CHARACTERISTIC CURVES 1N4001P THRU 1N4007P

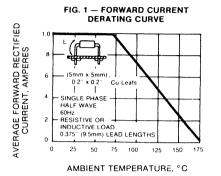


FIG. 3 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

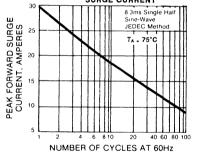
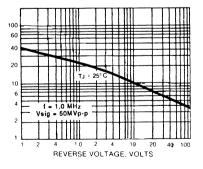
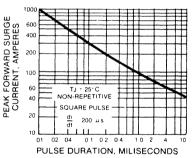


FIG. 5 --- TYPICAL JUNCTION CAPACITANCE

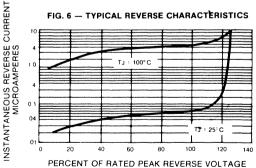


FIG. 2 - TYPICAL FORWARD CHARACTERISTICS 20 INSTANTANEOUS FORWARD 10 CURRENT, AMPERES 2 1.0 04 0.2 0 .04 TJ 25 C 02 Pulse Width 300 µ s 2% Duty Cycle 01 14 15 0.6 0.8 10 12 INSTANTANEOUS FORWARD VOLTAGE, VOLTS

FIG. 4 -- PEAK FORWARD SURGE CURRENT

GENER

M100A THRU M100M

MINIATURE PLASTIC SILICON RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere

FEATURES

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Low cost construction utilizing void-free molded plastic technique
- Low cost
- Diffused junction
- Low leakage
- High surge capability

High temperature soldering guaranteed: 265°C/10 seconds/.375".(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-41, molded plastic case Terminals: Plated axial leads, solderable per MIL-ST-202, Method 208 Polarity: Color band denotes cathode end Weight: 0.012 ounce, 0.3 gram Mounting Position: Any

Dimensions in inches and (millimeters)

DO-41

.107 (2.7)

.080(2.0)

.034 (.85) .028 (.71) 1.0 (25.4) MIN

.205 (5.2)

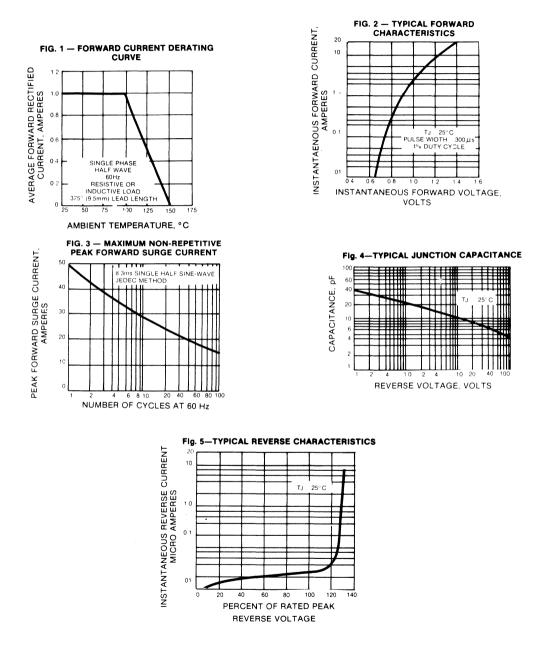
.160(4.1)

1.0(25.4) MIN

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS		M100 B	M100 D	M100 G	M100	M100 K	M100 M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A = 100$ °C	I(AV)				1.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				50.0				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF			1.0			1	.1	Volts
Maximum Full Load Reverse Current Full Cycle Average .375", (9.5mm) lead lengths at $T_A = 55$ C	I _{R(AV)}				100				μΑ
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR				1.0 50.0				μA
Typical Reverse Recovery Time (Note 2)	T _{RR}				2.0				μs
Typical Junction Capacitance (Note 1) TJ = 25°C	CJ				30.0				pf
Typical Thermal Resistance (Note 3)	Reja				26.0				.c\M
Operating and Storage Temperature Range	TJ,.TSTO	3		-5	0 to +1	50			.c

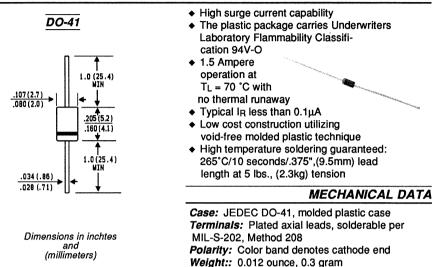

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDC.

2. Measured with IF = 0 .5A, IR = 1.0 A, Irr = .25A

3. Thermal Resestance from Junction to Ambiient at . 375" (9.5mm) lead lengths, P.C. Board mounted.

RATINGS AND CHARACTERISTIC CURVES M100A THRU M100M



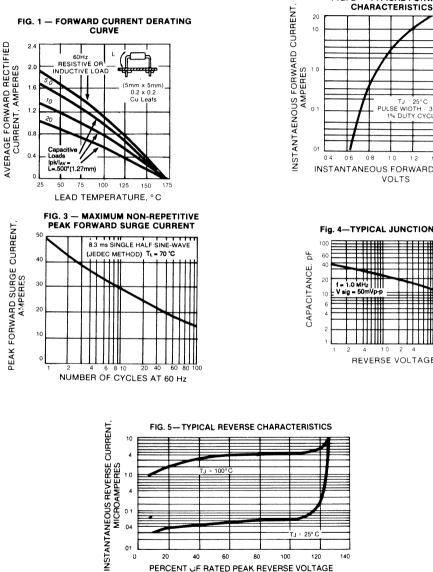
1N5391 THRU 1N5399

MINIATURE PLASTIC SILICON RECTIFIER CURRENT - 1.5 Amperes VOLTAGE - 50 to 1000 Volts

FEATURES

Mounting Position: Any MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

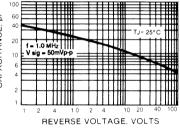
Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	1N 5391	1N 5392	1N 5393	1N 5394	1N 5395	1N 5396	1N 5397	1N 5398	1N 5399	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	300	400	500	600	800	1000	Volts
*Maximum RMS Voltage	VRMS	35	70	140	210	280	350	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	50	100	200	300	400	500	600	800	1000	Volts
*Maximum Average Forward Rectified Current .500, (12.7mm) lead lengths at $T_L = 70$ °C	I(AV)					1.5			•	•	Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM					50.0					Amps
*Maximum Instantaneous Forward Voltage at 1.5A, T _A = 70°C	VF					1.4					Volts
* Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR					5.0 300					μA
*Maximum Full Load Reverse Current Full Cycle Average,.375",(9.5mm) Lead Length at $T_L=70$ C	1.					300					μA
Typical Reverse Recovery Time (Note 2)	TRR					2.0					μs
Typical Junction Capacitance (Note 1)	CJ					15.0					pf
Typical Thermal Resistance (Note 3)	Reja					26.0					.CW
*Maximum DC Blocking Voltage Temperature	TA	+150								.c	
*Operating Junction Temperature Range	TJ	-50 to +170								.c	
*Storage Temperature Range	TSTG				-5	0 to +	175				.c

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDC.

2. Measured with IF = 0.5A, IR = 1.0A, Irr = .25a.

3. Thermal Resistance from Junction to Ambient at ,375" (9.5mm) lead lengths, P.C. Board mounted. *JEDEC Registered Value.


RATINGS AND CHARACTERISTIC CURVES 1N5391 THRU 1N5399

. 25°C PULSE WIDTH - 300 -1% DUTY CYCLE 12 14 16 INSTANTANEOUS FORWARD VOLTAGE.

FIG. 2 - TYPICAL FORWARD

Fig. 4-TYPICAL JUNCTION CAPACITANCE

υ

20

40

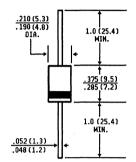
60

80

PERCENT UF RATED PEAK REVERSE VOLTAGE

100

120


140

1N5400 THRU 1N5408

MEDIUM CURRENT SILICON RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

High surge current capability

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Void-free plastic in DO-201AD package

- 3.0 Ampere operation at $T_L = 105$ °C with no thermal runaway
- Typical In less than 0.1µA
- High temperature soldering guaranteed: 265°C/10 seconds/.375",(9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

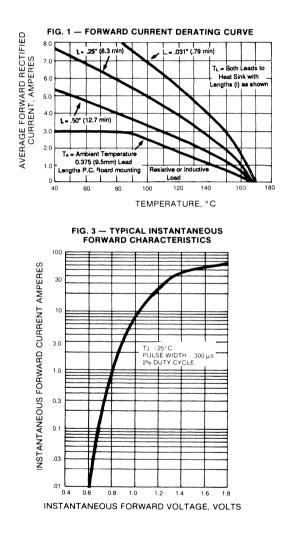
Case: JEDEC DO-201AD Molded plastic Terminals: Plated Axial leads, solderable per MIL-S-202, Method 208 Polarity: Band denotes cathode Weight: 0.04 ounce, 1.1 gram Mounting Position: Any

Dimensions in inches and (millimeters)

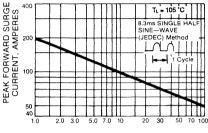
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N 5400	1N 5401	1N 5402	1N 5403	1N 5404	1N 5405	1N 5406	1N 5407	1N 5408	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	300	400	500	600	800	1000	Volts
*Maximum RMS Voltage	VRMS	35	70	140	210	280	350	420	560	700	Volts
*Maximum DC Blocking Voltage to T _A = 150°C	VDC	50	100	200	300	400	500	600	800	1000	Volte
*Maximum Average Forward Rectified Current .5", (12.5mm) lead lengths at T _L = 105°C	I(AV)					3.0					Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM					200					Amps
*Maximum Instantaneous Forward Voltage at 3.0A	VF					1.2					Volte
* Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 150^{\circ}C$	IR					10.0 500					μA
*Maximum Full Load Reverse Current Full Cycle Average, .5", (12.5 mm) Lead Length at TL = 105°C	I _{R(AV)}					500					μA
Typical Junction Capacitance (Note 1) $T_J = 25^{\circ}C$						28.0					pf
*Typical Thermal Resistance (Note 2)	ROJA					15.0					.CN
*Operating Jucntion Temperature Range	TJ				-50	0 to +1	70				.c
*Storage Temperature Range,	TSTG				-50	0 to +1	75				.c


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.


2. Thermal Resistance from Junction to Ambient at ,375" (9.5mm) lead lengths, P.C. Board mounted.

*JEDEC Registered Value.

RATINGS AND CHARACTERISTIC CURVES 1N5400 THRU 1N5408

FIG. 2-MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

NUMBER OF CYCLES AT 60Hz

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

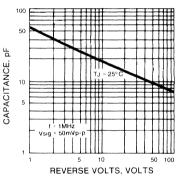
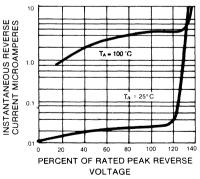
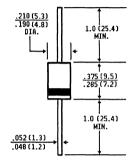



FIG. 5 - TYPICAL REVERSE CHARACTERISTICS



GI500 THRU GI510

MEDIUM CURRENT SILICON RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Typical I_R less than 0.1 μA
- Void-free DO-201AD package
- High current operation 3 Amperes at T_A = 95°C
- High temperature soldering guaranteed: 265°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC D0-201AD Molded plastic

Terminals: Plated Axial leads, solderable per MIL-S-202, Method 208

Polarity: Band denotes cathode

Weight: 0.04 ounce, 1.1 gram

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	G I 500	GI 501	G 502	GI 504	GI 506	GI 508	GI 510	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A = 95^{\circ}C$	I(AV)				3.0	•		•	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				100				Amps
	VF				1.1 1.0				Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR				5.0 50.0				Αμ
Typical Junction Capacitance (Note 2) TJ = 25°C	CJ				28.0				pf
Typical Reverse Recovery Time (Note 3)	T _{RR}				2.5				μs
Typical Thermal Resistance (Note 1)	Reja				15.0				.c\M
Operating and Storage Temperature Range	TJ, TSTO	3		-5	0 to +'	175			.c

NOTES:

1. Thermal Resistance from Junction to applied at ambient .375" (9.5mm) lead lengths, P.C. Board mounted. .

2. Measured at 1MHz and applied reverse voltage of 4.0 volts.

3. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = 0.25A

RATINGS AND CHARACTERISTIC CURVES GI500 THRU GI510

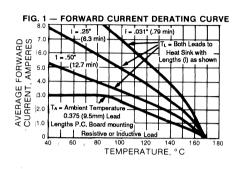
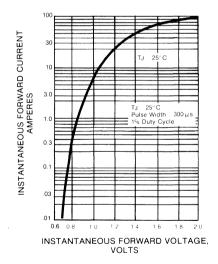



FIG. 3 - TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

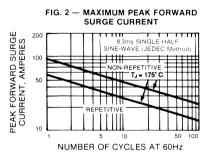
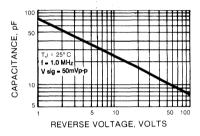
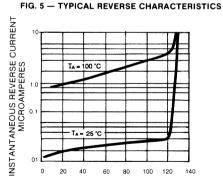
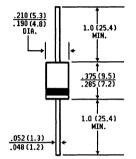




FIG. 4 - TYPICAL JUNCTION CAPACITANCE

20 40 60 80 100 120 PERCENT OF RATED PEAK REVERSE VOLTAGE


P300A THRU P300M

MEDIUM CURRENT SILICON RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Typical I_R less than 0.1 μ A
- Void-free DO-201AD package
- 3.0 Ampere operation at T_A = 90°C with no thermal runaway
- High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

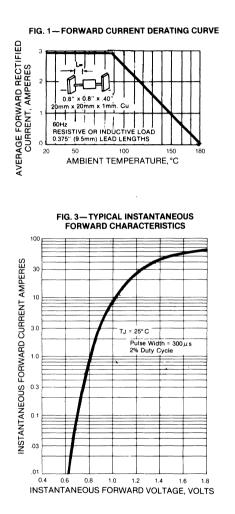
MECHANICAL DATA

Case: JEDEC DO-201AD Molded plastic Terminals: Plated Axial leads, solderable per MIL-S-202, Method 208 Polarity: Band denotes cathode Weight: 0.04 ounce, 1.1 gram Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	P300 A	P300 B	P300 D	P300 G	P300 J	P300 K	P300 M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A = 90$ °C	I(AV)				3.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				200				Amps
Maximum Instantaneous Forward Voltage at 3.0A TJ = 25°C	VF				1.2				Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR				5.0 25.0				μA
Typical Junction Capacitance (Note 1) TJ = 25°C	CJ				28.0				pf
Typical Reverse Recovery Time (Note 2)	T _{RR}				2.5				μs
Typical Thermal Resistance (Note 3)	Reja				15.0				.cw
Operating and Storage Temperature Range	TJ,TSTO	3		-5	0 to +1	75			.c


NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = .25A

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, P.C. Board mounted.

RATINGS AND CHARACTERISTIC CURVES P300A THRU P300M

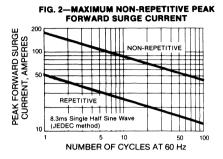


FIG. 4-TYPICAL JUNCTION CAPACITANCE

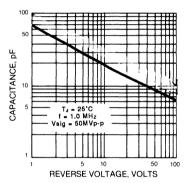
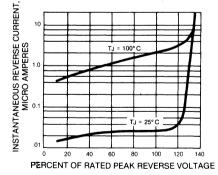



FIG. 5-TYPICAL REVERSE CHARACTERISTICS

GI750 THRU GI758

HIGH CURRENT PLASTIC SILICON RECTIFIER

VOLTAGE - 50 to 800 Volts CURRENT - 6.0 Amperes

FEATURES

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- High Current Capability

Uniform Molded Body

- Diffused Junction
- Completely Insulated Case

 High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic

Terminals: Plated Axial leads, solderable per MIL-STD -202, Method 208

Polarity: Band denotes cathode

Weight: 0.07 ounce, 2.1 gram

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Dimensions in inches

and (millimeters)

360 (9.1)

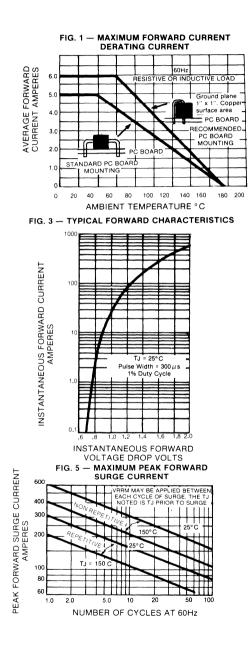
1.0 MIN. (25.4)

<u>.360⁷(9.1)</u> .340 (8.6)

1.0 MIN (25.4)

.052 (1.3)

	SYMBOLS	LS GI750 GI751 GI752 GI754 GI756 GI758						
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	Volts
Maximum Average Forward Rectified Current at $T_A = 60^{\circ}C$ P.C. Board Mounting (Fig. 1) $T_L = 60^{\circ}C$.125", (3.18mm) Lead Lengths (Fig. 2)	I(AV)				3.0 2.0			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			4	100			Amps
Maximum Instantaneous Forward Voltage at 6.0A 100A	VF				0.90 .25		0.95 1.30	Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR	5.0						μA mA
Typical Thermal Resistance (Note 1)	Rejl	RØJL 10.0						.cw
Operating and Storage Temperature Range	TJ,TSTG			-50 t	0 +175			.C


NOTES:

1. Thermal Resistance from Junction to Lead at .50"(12.7mm) lead lengths,

with both leads attached to heat sinks.

-420-

RATINGS AND CHARACTERISTIC CURVES GI750 THRU GI758

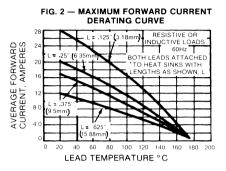


FIG. 4 -- TYPICAL REVERSE CHARACTERISTICS

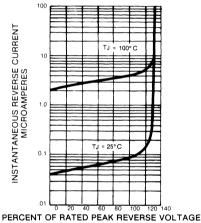
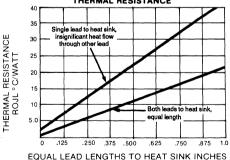



FIG. 6 — TYPICAL STEADY STATE THERMAL RESISTANCE

P600A THRU P600M

HIGH CURRENT PLASTIC SILICON RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 6.0 Amperes

FEATURES

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- High Current Capability
- Diffused Junction
- Completely Insulated Case
- Uniform Molded Body
- High Surge Capability
- High temperature soldering guaranteed: 265°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

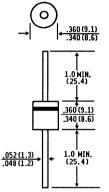
Case: Molded plastic

Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208

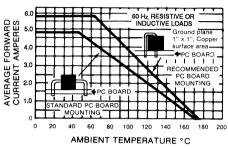
Polarity: Band denotes cathode

Weight: 0.07 ounce, 2.1 gram

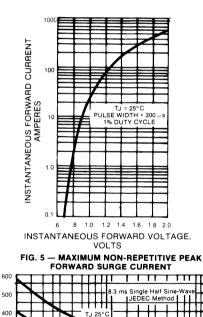
Mounting Position: Any


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load.


	SYMBOLS	P600A	P600B	P600D	P600G	P600J	P600K	P600M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375" $T_A = 60^{\circ}C$.375" (9.5mm) Lead Lengths (Fig 1) $T_L = 60^{\circ}C$.375" (9.5mm) Lead Lengths (Fig 2)	I(AV)	6.0 22.0							Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	400							Amps
Maximum Instantaneous Forward Voltage at 6.0A 100A	VF							1.0 1.4	Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR	5.0 1.0						μA mA	
Typical Thermal Resistance (Note 1) Operating and Storage Temperature Range	ROJL			E	10.0 0 to +1	75			.C\M
Operating and Storage remperature hange	13,1510			-01	J (U + I	15			

NOTES:


1. Thermal Resistance from Junction to Lead at .50"(12.7mm) lead lengths, with both leads attached to heat sinks.

Dimensions in inches and (millimeters)

tt

TT

10

NUMBER OF CYCLES AT 60 Hz

20

50 100

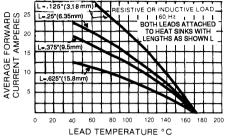
TJ = 150°C

5

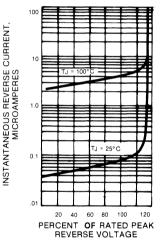
2

AMPERES

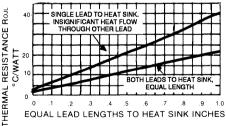
PEAK SURGE CURRENT


300

200

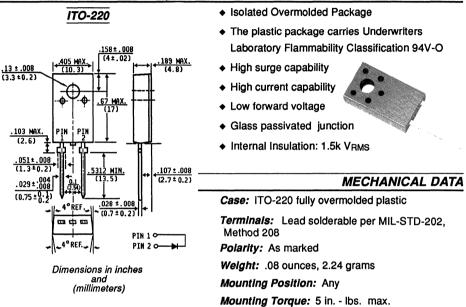

100

1


FIG. 1 - OUTPUT CURRENT VS AMBIENT TEMPERATURE FIG. 2 - OUTPUT CURRENT VS LEAD TEMPERATURE

-424-

PLASTIC RECTIFIERS


8.0 AMPERE TO 30 AMPERES 50 VOLTS TO 1000 VOLTS

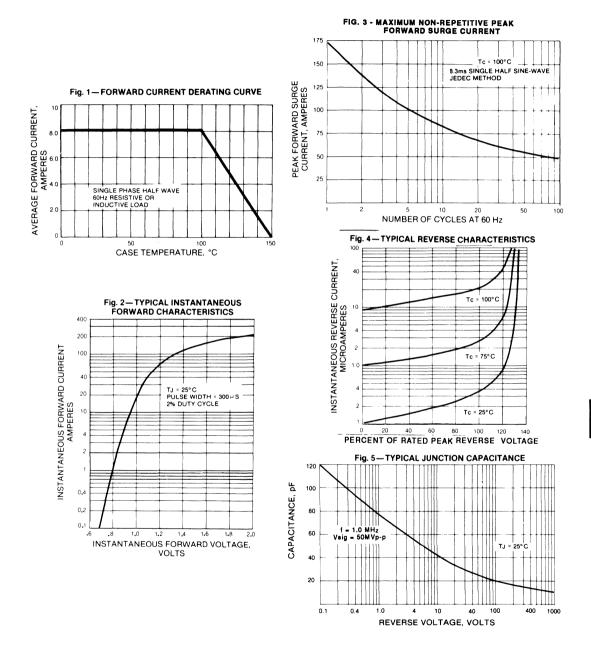
NSF8AT THRU NSF8MT

ALL PURPOSE GLASS PASSIVATED RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 8.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

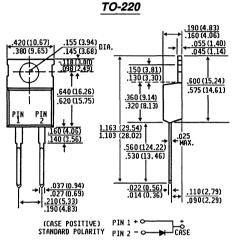

	SYMBOLS	NSF8 AT	NSF8 BT	NSF8 DT	NSF8 GT	NSF8 JT	NSF8 KT	NSF8 MT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at $T_{C} = 100$ °C	I(AV)	8.0							Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	175							Amps
Maximum Instantaneous Forward Voltage at 8.0A	VF	1.1							Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IR(AV)	10.0 100							μA
Typical Junction Capacitance (Note 2)	CJ	55							pf
Typical Thermal Resistance (Note 1)	Rejc	3.0							.CW
Operating and Storage Temperature Range,	Tc,Tstg	G -65 to +150							.c

NOTES:

1. Thermal Resistance Junction to Case.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.

RATING AND CHARACTERISTIC CURVES NSF8AT THRU NSF8MT


GENERAL

NS8AT THRU NS8MT

HIGH CURRENT PLASTIC SILICON RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 8.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- High current capability
- High surge capability
- Low forward voltage
- Glass passivated chip junction
- High temperature soldering guaranteed: 265°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: TO-220 molded plastic

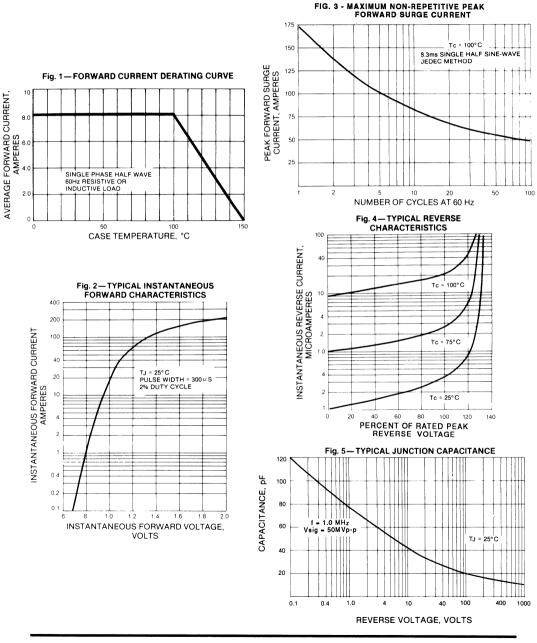
Terminals: Lead solderable per MIL-STD-202, Method 208

Polarity: As marked

Weight: 0.08 ounce, 2.24 gram

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

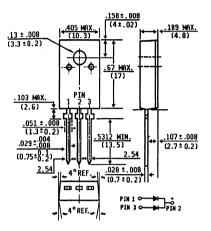
	SYMBOLS	NS8 AT	NS8 BT	NS8 DT	NS8 GT	NS8 JT	NS8 KT	NS8 MT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current $T_{C} = 100^{\circ}C$	I(AV)	8.0							Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	175							Amps
Maximum Instantaneous Forward Voltage at 8.0A	VF	1.1							Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IR	10.0 100							μA
Typical Junction Capacitance (Note 2) T _J = 25°C	CJ	55.0						pf	
Typical Thermal Resistance (Note 1)	Rejc	3.0							.cw
Operating and Storage Temperature Range	TJ,.TSTO	G -50 to +150							.c

NOTES:

1. Thermal Resistance from Junction to Case.

2. Measured at 1 MHz and applied reversed voltage of 4.0 volts.

RATINGS AND CHARACTERISTIC CURVES NS8AT THRU NS8MT


GENERAL INSTRUMENT

NPF16AT THRU NPF16MT

ALL PURPOSE GLASS PASSIVATED RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 16.0 Ampere

FEATURES

ITO-220 CT

Dimensions in inches and (millimeters)

- Isolated Overmolded package
- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Dual rectifier construction
- Dual glass passivated chip junctions
- High surge capability
- Low forward voltage
- High current capability
- Internal Insulation: 1.5k VRMS

MECHANICAL DATA

Case: ITO-220 Fully overmolded plastic Terminals: Lead solderable per MIL-STD-202, Method 208 Polarity: As marked

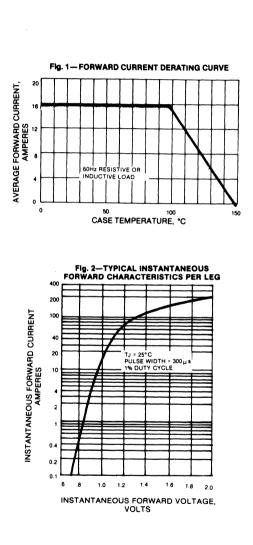
Weight: 0.08 ounce, 2.24 gram

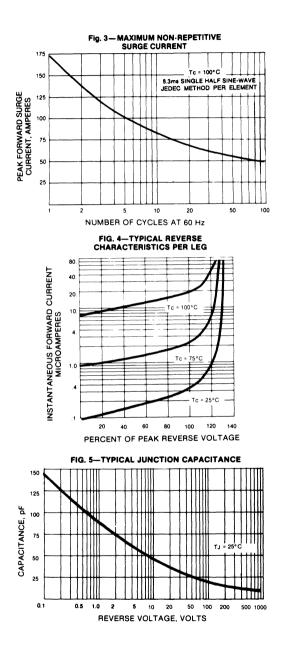
Mounting Position: Any

Mounting Torque: 5 in. - Ibs.max.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

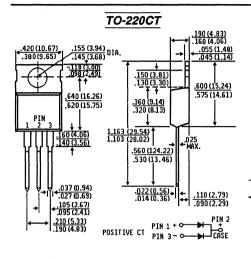

	SYMBOLS	NPF16 AT	NPF16 BT	NPF16 DT	NPF16 GT	NPF16 JT	NPF16 KT	NPF16 MT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at Tc= 100°C	I(AV)	16.0							Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) per leg	IFSM	175							Amps
Maximum Instantaneous Forward Voltage at 8A per leg	VF	1.1							Volts
Maximum Reverse Current at Rated DC Blocking VoltageTC = 25°CPer legTc = 100°C	IR	10.0 100							μA
Typical Junction Capacitance (Note 2) TJ = 25°C	CJ	55.0							pf
Typical Thermal Resistance (Note 1)	ReJC	3.0							.CW
Operating and Storage Temperature Range	Tc,Tstg	-65 to +150						.C	


NOTES:

1. Thermal Resistance from Junction to Case.

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

RATING AND CHARACTERISTIC CURVES NPF16AT THRU NPF16MT



GENERAL

NP16AT THRU NP16MT

HIGH CURRENT PLASTIC SILICON RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 16.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Dual rectifier construction, postive center-tap
- Dual glass pssivated chip junctions
- High surge capability
- Low forward voltage
- High temperature soldering guaranteed: 265°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: TO-220CT molded plastic

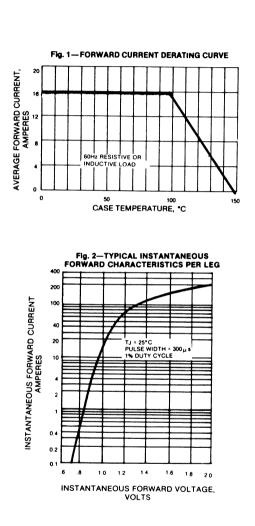
Terminals: Lead solderable per MIL-STD-202, Method 208 *Polarity:* As marked

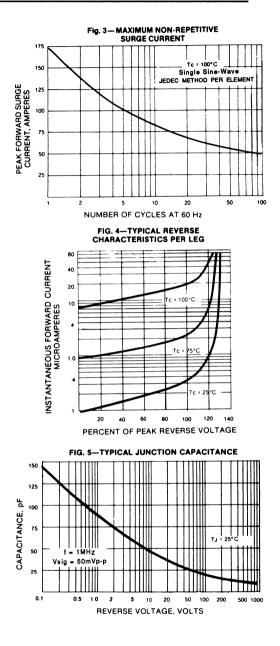
Weight: 0.08 ounce, 2.24 gram

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

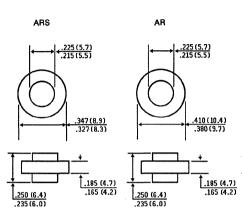

	SYMBOLS	NP16 AT	NP16 BT	NP16 DT	NP16 GT	NP16 JT	NP16 KT	NP16 MT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at $T_c = 100^{\circ}C$ per Device	I(AV)	16.0							Amps
Peak Forward Surge Current 8.3ms single sine-wave superimposed on rated load (JEDEC Method)	IFSM	300.0							Amps
Maximum Instantaneous Forward Voltage at 8A per leg	VF				1.1				Volts
Maximum Reverse Current at Rated DC Blocking Voltage $T_c = 25^{\circ}C$ Per leg $T_c = 100^{\circ}C$	IR	10.0							μA
Typical Junction Capacitance (Note 2)	CJ	55.0							pf
Typical Thermal Resistance per leg (Note 1)	ReJC	3.0							.CW
Operating and Storage Temperature Range	Tc,Tstg			-5	5 to +1	50			.c


NOTES:

1. Thermal Resistance from Junction to Case for each element.

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts for each element.

RATINGS AND CHARACTERISTIC CURVES NP16AT THRU NP16MT



GENERAL

ARS25 / AR25 SERIES

HICH CURRENT PLASTIC SILICON RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 25.0 Amperes

FEATURES

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Low cost construction utilizing void-free molded plastic technique
- Low cost
- Diffused junction
- Low leakage
- High surge capability
- High temperature soldering guaranteed: 250°C for 10 seconds

MECHANICAL DATA

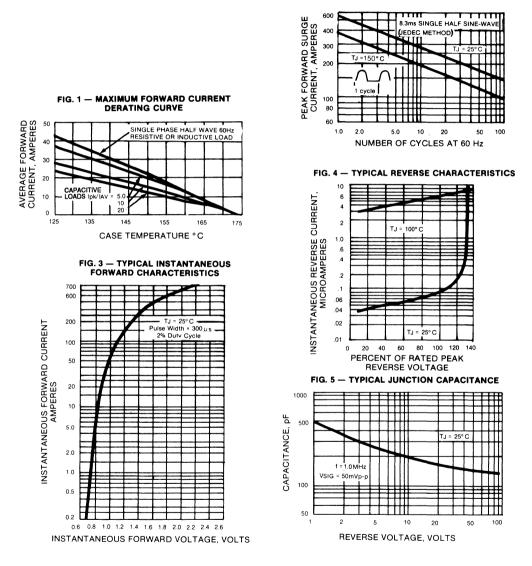
Case: Transfer, molded plastic case Terminals: Plated terminals, solderable per MIL-STD-202, Method 208 Polarity: Color Ring denotes cathode end Weight: 0.07 ounce, 1.8 gram Mounting Position: Any

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS		ARS25B AR25B	ARS25D AR25D	ARS25G AR25G	ARS25J AR25J		ARS25M AR25M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (4.5mm) lead lengths at $T_C = 150^{\circ}C$	I(AV)				25.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at T _J = 150°C	IFSM				400				Amps
Maximum Instantaneous Forward Voltage at 25.0A	VF				1.0				Volts
Maximum DC Reverse Current $T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$	IR				5.0 250				μA
Typical Reverse Recovery Time (Note 2)	TRR				3.0				μs
Typical Junction Capacitance (Note 1) TJ = 25°C	CJ				300				pf
Typical Thermal Resistance (Note 3)	Rejc				1.0				.cw
Operating and Storage Temperature Range,	TJ,TSTO			-5	0 to +1	75			.c
Polarity and Voltage Denotation Color Band		Red	Yellow	Silver	Orange	Green	Blue	Violet	


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

2. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = .25A.

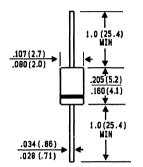
3. Thermal Resistance from Junction to Case, single side cooled.

RATINGS AND CHARACTERISTIC CURVES ARS25 / AR25 SERIES

FIG. 2 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

FAST RECOVERY PLASTIC RECTIFIERS

1.0 AMPERE TO 8.0 AMPERES 50 VOLTS TO 1000 VOLTS



1N4933 THRU 1N4937

MINIATURE PLASTIC FAST SWITCHING RECTIFIER VOLTAGE - 50 to 600 Volts CURRENT - 1.0 Ampere

FEATURES

DO-41

Dimension in inches and (millimeters) + Low cost

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Fast switching for high efficiency
- Void-free plastic molded case
- 1.0 Ampere operation at T_A = 75°C with no thermal runaway
- High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-41, molded case *Terminals:* Plated Axial leads, solderable per MIL-STD-202, Method 208

Polarity: Color band denotes cathode

Mounting Position: Any

Weight: 0.012 ounce, 0.34 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N4933	1N4934	1N4935	1N4936	1N4937	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
*Maximum RMS Voltage	VRMS	35	70	145	280	420	Volts
*Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at T _A = 75°C	I(AV)			1.	.0		Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at T _A = 75°C	IFSM			Amps			
*Maximum Instantaneous Forward Voltage at 1.0A	VF			1	.2	_	Volts
*Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR				.0 00		μA
*Maximum Reverse Recovery Time (Note 1) TJ = 25°C	TRR			20	00		nS
*Maximum Reverse Recovery Current (Note 1)	I _{RM} (Rec)		Amps				
Typical Junction Capacitance (Note 2)	CJ			pf			
Typical Thermal Resistance (Note 3)	Røja			.c\M			
*Operating and Storage Temperature Range,	TJ, TSTG			-50 to	+150		.c

NOTES:

1. Reverse Recovery Test Conditions: IF = 1.0A, VR = 30V., di/dt = 50A/µs.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, P.C. Board mounted.

*JEDEC registered values

RATINGS AND CHARACTERISTIC CURVES 1N4933 THRU 1N4937

INSTANTANEOUS FORWARD CURRENT

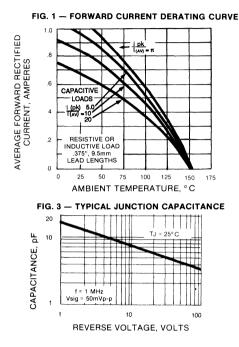
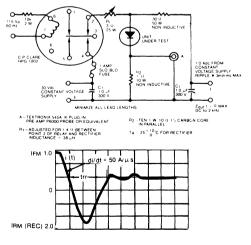



FIG. 5 — REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

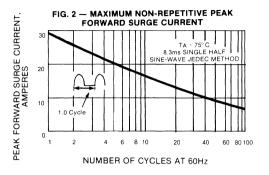
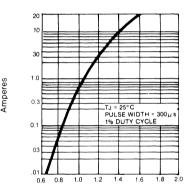
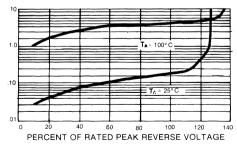
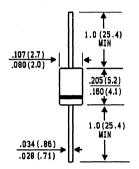




FIG. 4 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

INSTANTANEOUS FOWARD VOLTAGE, VOLTS

FIG. 5-TYPICAL REVERSE CHARACTERISTICS


GENERAL INSTRUMENT

SRP100A THRU SRP100K

SOFT RECOVERY FAST SWITCHING PLASTIC RECTIFIER VOLTAGE - 50 to 800 Volts CURRENT - 1.0 Ampere

FEATURES

DO-41

Dimension in inches and (millimeters)

- High surge current capability
- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- ◆ Void-free plastic in DO-41 package
- 1.0 Ampere operation at TA = 55°C with no thermal runaway
- Fast switching for high efficiency
- High temperature soldering guaranteed: 265°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-41 molded plastic *Terminals:* Plated Axial leads, solderable per MIL-ST-202, Method 208 *Polarity:* Band denotes cathode

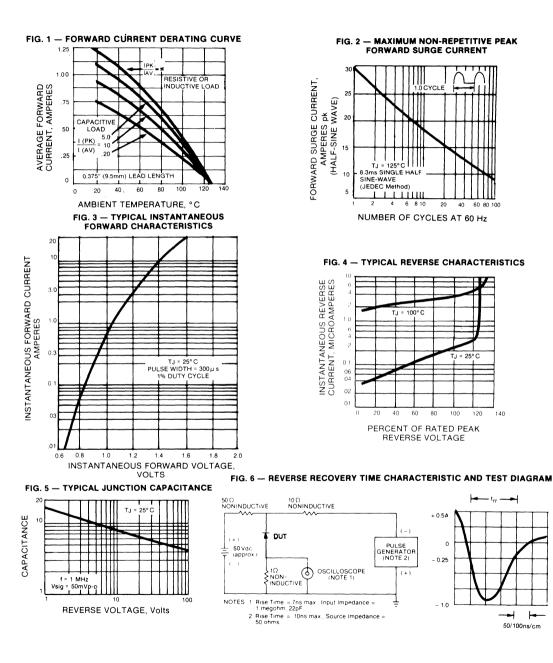
Mounting Position: Any

Weight: 0.012 ounce, 0.34 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	SRP 100A	SRP 100B	SRP 100D	SRP 100G	SRP 100J	SRP 100K	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35 70 140 280 420 560						Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A = 55^{\circ}C$	I(AV)			1.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	30.0						Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF			1.3				Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR			10.0 200				μA
Maximum Reverse Recovery Time (Note 2) TJ = 25°C	TRR			100		2	00	ns
Typical Junction Capacitance (Note 1) TJ = 25°C	CJ	12.0						pf
Typical Thermal Resistance (Note 3)	RØJA	41.0						.CW
Operating Temperature Range	TJ	50 to +125						
Storage Temperature Range	Tstg		-5	i0 to +1	50			.c


NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = .25A.

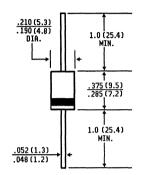
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, P.C. Board mounted.

RATINGS AND CHARACTERISTIC CURVES SRP100A THRU SRP100K

140

- t_{rr} --

50/100ns/cm


BYX55-350P AND BYX55-600P

SOFT RECOVERY, FAST SWITCHING PLASTIC RECTIFIER

VOLTAGE - 350 to 600 Volts CURRENT - 1.2 Amperes

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- The plastic package carries Underwriters Laboratory Flammability Classification 94V-0
- ◆ Void-free plastic package
- High surge current capability
- 1.2 Ampere at T_A = 55°C with no thermal runaway
- Fast switching for high efficiency
- High temperature soldering guaranteed: 265°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

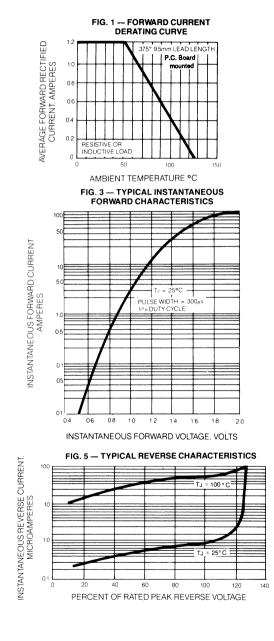
MECHANICAL DATA

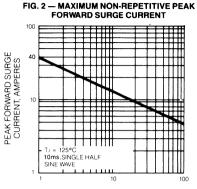
Case: JEDEC DO-201AD molded plastic Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	BYX55-350P	BYX55-600P	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	350	600	Volts	
Maximum RMS Voltage	VRMS	210	350	Volts	
Maximum DC Blocking Voltage	VDC	300	500	Volts	
Maximum Average Forward Rectified Current .375", (4.5mm) lead lengths at $T_A = 55^{\circ}C$	l(AV)	1	.2	Amps	
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load at $T_J = 125$ °C	IFSM	4	0.0	Amps	
Maximum Instantaneous Forward Voltage at 5.0A	VF	1.	1.25		
MaximumReverse Current $T_A = 25^{\circ}C$ at Rated DC BlockingVoltage $T_A = 100^{\circ}C$	l _R		0.0 50	μA	
Maximum Reverse Recovery Time (Note 2) T _A = 25°C	T _{RR}	3	50	ns	
Typical Junction Capacitance (Note 1)	CJ	2	8.0	pf	
Typical Thermal Resistance (Note 3)	Røja	1	5.0	'C/W	
Operating Temperature Range	TJ	-50 to	-50 to +125		
Storage Temperature Range	T _{STG}	-50 to	o +150	.c	


NOTES:


2. Reverse Recovery TESt Conditions: IF = 1.0A, VR = 30V, di/dt = 20 A/us..

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths with both leads to heat sink.

^{1.} Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.

RATINGS AND CHARACTERISTIC CURVES BYX55-350P AND BYX55-600P

NUMBER OF CYCLES AT 50 Hz

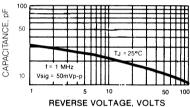
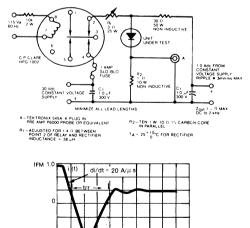
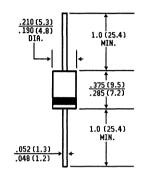



FIG. 6 — REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM


IRM (REC)

BY296P THRU BY299P

SOFT RECOVERY PLASTIC RECTIFIER VOLTAGE - 100 to 800 Volts CURRENT - 2.0 Amperes

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Void-free plastic package
- 2.0 Ampere operation at T_A = 55°C with no thermal runaway
- Fast switching for high efficiency
- High temperature soldering guaranteed:
- 265°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic *Terminals:* Axial leads, solderable per MIL-ST-202, Method 208

Polarity: Color band denotes cathode

Mounting Position: Any

Weight: .04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	BY296P	BY297P	BY298P	BY299P	UNITS			
Maximum Recurrent Peak Reverse Voltage	VRRM	100	200	400	800	Volts			
Maximum RMS Voltage	VRMS	70	560	Volts					
Maximum DC Blocking Voltage	VDC	100	200	400	800	Volts			
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A = 55$ °C	I(AV)			2.0		Amps			
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load	IFSM		7	' 0.0		Amps			
Maximum Repetitive Peak Forward Surge (Note 1)	IFRM		1	0.0		Amps			
Maximum Instantaneous Forward Voltage at 3.0A	VF			1.3		Volts			
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR			0.0 500		μA			
Maximum Reverse Recovery Time (Note 3) TJ = 25°C	TRR		Į	500		ns			
Maximum Forward Recovery Time at 100mA	TFR			μs					
Typical Junction Capacitance (Note 2)TJ = 25°C	CJ		pf						
Typical Thermal Resistance (Note 4)	RØJA		.CW						
Operating Temperature Range	TJ		-50 to +125						
Storage Temperature Range	TSTG		-50	to +150		.c			

NOTES:

1. Repetitive Peak Forward Surge Current at f<15KHz.

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

3. Reverse Recovery Tset Conditions: IF = 10mÅ, IR = 10mÅ, Irr = 1.0mÅ

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths with both leads to heat sink.

RATINGS AND CHARACTERISTIC CURVES BY296P THRU BY299P

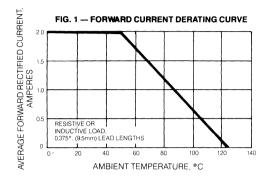


FIG. 3 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

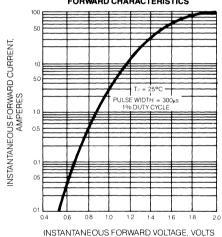
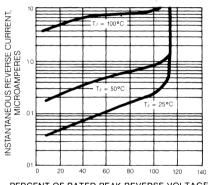
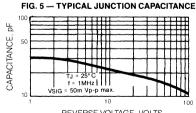




FIG. 2 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT 200 PEAK FORWARD SURGE CURRENT, AMPERES 100 50 TI = 25°C 10 ms SINGLE HAL SINE WAVE 10 5 10 50 100 NUMBER OF CYCLES AT 60Hz

FIG. 4 --- TYPICAL REVERSE CHARACTERISTICS

PERCENT OF RATED PEAK REVERSE VOLTAGE

REVERSE VOLTAGE, VOLTS

GI850 THRU GI856

SOFT RECOVERY, FAST SWITCHING PLASTIC RECTIFIER VOLTAGE - 50 to 600 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

- + High surge current capability
- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Fast switching for high efficiency
- Void-free plastic molded case
- High current operation
- High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

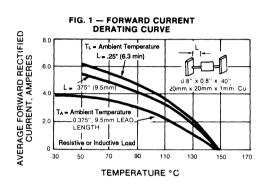
MECHANICAL DATA

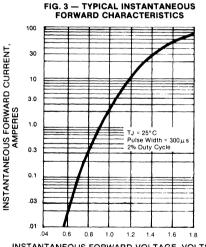
Case: JEDEC DO-201AD molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode Mounting Position: Any Weight: .04 ounce, 1.1 grams

Dimensions in inchestand (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	GI850	Gl851	GI852	GI854	GI856	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts	
Maximum RMS Voltage	VRMS	35	70	420	Volts			
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts	
Maximum Non-repetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	Volts	
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at T _A = 90°C	l(AV)			3	.0		Amps	
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		100					
Maximum Instantaneous Forward Voltage at 3A TJ = 25°C at 9.4A TJ = 175°C	VF				25. 10		Volts	
Maximum DC Reverse Current T _A = 25°C				10).0			
at Rated DC Blocking Voltage T _A = 100°C	IR	150	150	200	250	300	μA	
Typical Junction Capacitance T _J = 25°C (Note 1)	CJ			28	3.0		pf	
Maximum Reverse Recovery Time (Note 2) T _J = 25°C	T _{RR}		ns					
Maximum Reverse Recovery Current (Note 2)	IRM(REC)			Amps				
Typical Thermal Resistance (Note 3)	RØJA			15	5.0		.CVM	
Operating and Storage Temperature Range,	TJ,TSTG			-50 to	+150		.c	


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditions: IF = 1.0A, VR = 30V, di/dt = 50A/µs.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, with both leads to heat sink.

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

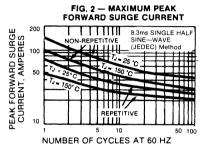
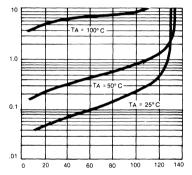
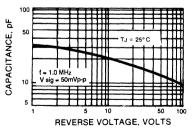
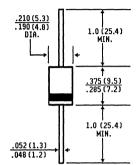




FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

PERCENT OF RATED PEAK REVERSE VOLTAGE

FIG. 5 - TYPICAL JUNCTION CAPACITANCE



GI910 THRU GI917

SOFT RECOVERY MEDIUM-SWITCHING PLASTIC RECTIFIER VOLTAGE - 50 to 800 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Void-free plastic
- High current opera-
- tion 3.0 Amperes at T_A = 90°C
- Fast switching for high efficiency
- High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-201AD molded plastic Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color Band denotes cathode Mounting Position: Any Weight: 0.04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25'C ambient temperature unless otherwise specified Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	GI910	Gl911	Gl912	Gl914	Gl916	Gl917	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A = 90^{\circ}C$	I(AV)			3.0			······	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			100				Amps
Maximum Instantaneous Forward3.0A TJ = 25°CVoltage at9.4A TJ = 175°C	VF			1.25 1.10				Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR			10.0 300			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	μA
Typical Junction Capacitance (Note 1) TJ = 25°C	CJ			28.0				pf
Maximum Reverse Recovery Time T _J = 25°C (Note 2)	TRR			750				ns
Maximum Reverse Recovery Current	IRM(REC)			2.0				Amps
Typical Thermal Resistance (Note 3)	RØJA			15.0				.c\M
Operating and Storage Temperature Range	TJ,TSTG			50 to +1	50			.c

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditions: IF = 1.0A, VR = 30V di/dt = 50 A/µs.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, both leads to a heat sink.

RATINGS AND CHARACTERISTIC CURVES GI910 THRU GI917

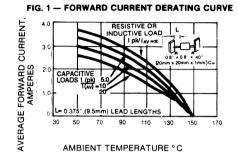
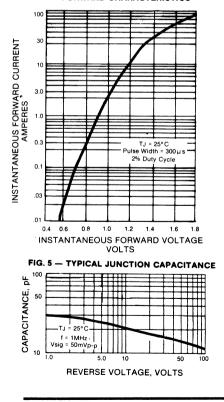
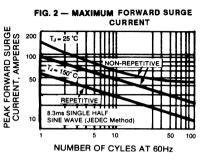
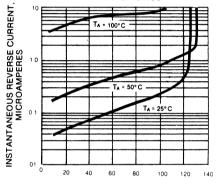
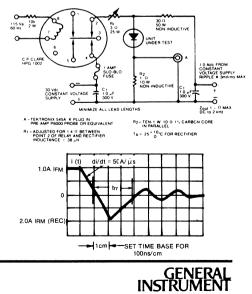
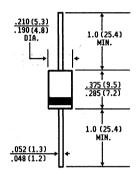





FIG. 3 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS





SRP300A THRU SRP300K

SOFT-RECOVERY, FAST-SWITCHING PLASTIC RECTIFIER VOLTAGE - 50 to 800 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

Dimension in inches and (millimeters)

- High surge current capability
- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- ◆ Void-free plastic package
- 3.0 Ampere operation at T_A = 55°C with no thermal runaway

- Fast switching for high efficiency
- High temperature soldering guaranteed: 265°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-201AD molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208

Polarity: Color Band denotes cathode

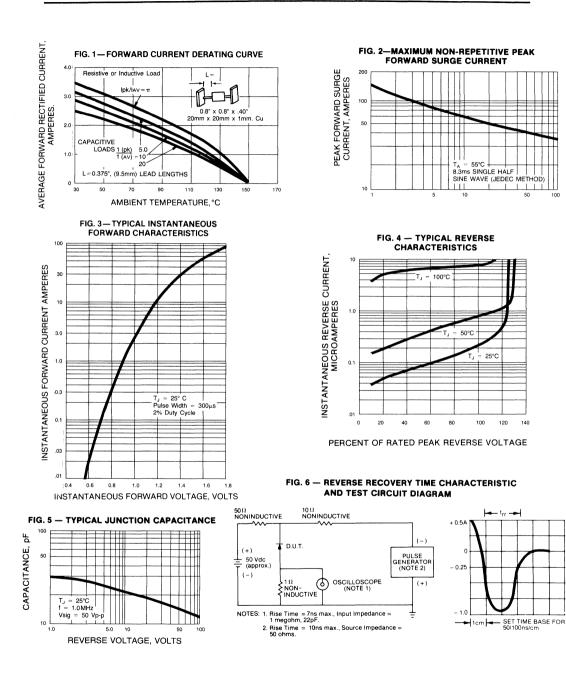
Mounting Position: Any

Weight: 0.04 ounce, 1.1 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 HZ, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	SRP 300A	SRP 300B	SRP 300D	SRP 300G	SRP 300J	SRP 300K	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A = 55^{\circ}C$	l(AV)			3.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			150				Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF			1.3				Volts
Maximum DC Reverse Current T _A = 25°C				10.0				
at Rated DC Blocking Voltage T _A = 100°C	IR		200		300	400	500	μA
Maximum Reverse Recovery Time (Note 2) TJ = 25°C	TRR	100	100	150	150	200	200	ns
Typical Junction Capacitance (Note 1)TJ = 25°C	CJ	28.0						pf
Typical Thermal Resistance (Note 3)	Reja	15.0						.cw
Storage and Operating Temperature Range,	TJ,TSTG		-5	i0 to +1	50			.c


NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF = 0. .5A, IR = 1.0A, Irr = .25A.

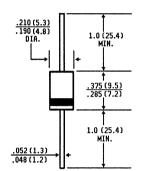
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths with both leads to heat sink.

RATINGS AND CHARACTERISTIC CURVES SRP300A THRU SRP300K

50

140

100


BY396P THRU BY399P

SOFT RECOVERY, FAST SWITCHING PLASTIC RECTIFIER

VOLTAGE - 100 to 800 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Void-free plastic package
- 3.0 Ampere operation at TA = 50°C with no thermal runaway
- Fast switching for high efficiency
- High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-201AD molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color Band denotes Cathode end Mounting Position: Any Weight: .04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	BY396P	BY397P	BY398P	BY399P	UNITS			
Maximum Recurrent Peak Reverse Voltage	VRRM	100	200	400	800	Volts			
Maximum RMS Voltage	VRMS	70	140	280	560	Volts			
Maximum DC Blocking Voltage	VDC	100	100 200 400 800						
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at T _A = 50°C	l(AV)			3.0		Amps			
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load at $T_A = 25^{\circ}C$	IFSM		Amps						
Maximum Repetitive Peak Forward Surge (Note 1)	IFRM		1	0.0		Amps			
Maximum Instantaneous Forward Voltage at 3.0A	VF		1.25						
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR			0.0 500		μA			
Maximum Reverse Recovery Time (Note 3)TJ=25°C	T _{RR}		5	00.0		ns			
Maximum Forward Recovery Time 100mA TJ =25°C	TFR		μs						
Typical Junction Capacitance (Note 2)	CJ		pf						
Typical Thermal Resistance (Note 4)	RØJA		.CW						
Operating Temperature Range	TJ		.c						
Storage Temperature Range	TSTG		-50	to +150	******				

NOTES:

1. Repetitive Peak Forward Surge Current at f<15KHz,

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

3. Reverse Recovery Test Conditions: IF = 10mÅ, IR = 10mÅ, Irr = 1.0mÅ.

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths with both leads to heat sink.

RATINGS AND CHARACTETISTIC CURVES BY396P THRU BY399P

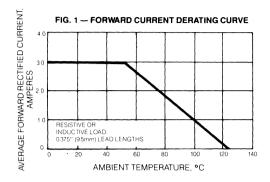
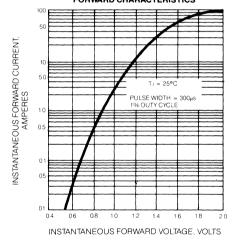
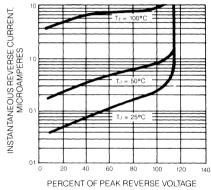
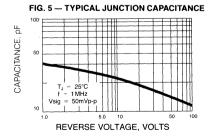
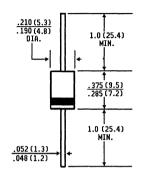





FIG. 3 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS


BY500-100 THRU BY500-600

SOFT RECOVERY, FAST SWITCHING PLASTIC RECTIFIER

VOLTAGE - 100 to 800 Volts CURRENT - 5.0 Ampere

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- Fast switching for high efficiency
- High current 5.0 Ampere operation at TL = 45°C
- Void-free plastic package
- High temperature soldering guaranteed: 265°C/10 seconds /.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension
- (9.5mm) lead lengths at 5 lbs., (2.3kg) tension
 Especially designed for applications such as
- Switch Mode Power Supplies, Inverters, Converters, TV Scanning, Ultrasonic-Systems, speed controlled DC Motors, Iow RF Interference and free Wheeling Rectifiers

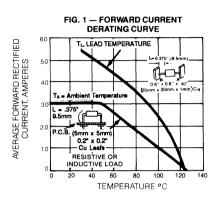
MECHANICAL DATA

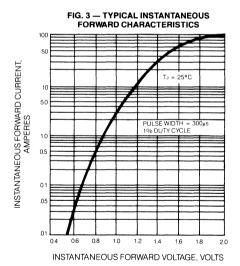
Case: JEDEC DO-201AD molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color Band denotes Cathode end Mounting Position: Any Weight: .04 ounce, 1.1 gram

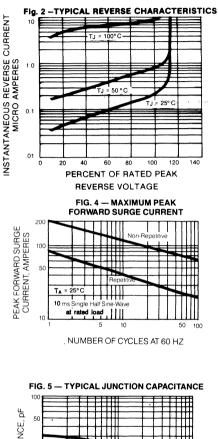
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

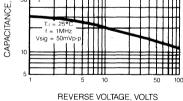
Ratings at 25°C ambient temperature unless otherwise specified Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	BY500-100	BY500-200	BY500-400	BY500-600	UNITS			
Maximum Recurrent Peak Reverse Voltage	VRRM	100	100 200 400 800						
Maximum RMS Voltage	VRMS	70	Volts						
Maximum DC Blocking Voltage	VDC	100	200	400	800	Volts			
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at T _L = 45°C	l(AV)		5.0						
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load at $T_A = 25^{\circ}C$	IFSM		2	200		Amps			
Maximum Repetitive Peak Forward Surge	IFRM		1	0.0	Amps				
Maximum Instantaneous Forward Voltage at 5.0A	VF		1	.35	Volts				
MaximumDC Reverse Current $T_A = 25^{\circ}C$ at Rated DC BlockingVoltage $T_A = 100^{\circ}C$	IR			0.0 1.0		μA mA			
Maximum Reverse Recovery Time (Note 3) TJ=25°C	TRR			200		ns			
Maximum Reverse Recovery Current (Note 3)	IRM(REC)		2.0						
Typical Junction Capacitance T _J = 25°C (Note 2)	CJ		pf						
Typical Thermal Resistance (Note 1)	Røja		.C\M						
Operating Temperature Range	TJ			.c					
Storage Temperature Range	Tstg		-50	to +150		.с			

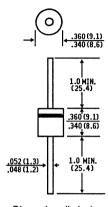

NOTES:


1. Thermal Resistance from Junction to Ambient at 375", (9.5mm) lead lengths with both leads to heat sink.


2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.


3. Reverse Recovery Test Conditions: IF = 1.0A, VR = 30V di/dt = 50A/µs.

RATINGS AND CHARACTERISTIC CURVES BY500-100 THRU BY500-600



GI820 THRU GI826

HIGH CURRENT FAST SWITCHING PLASTIC RECTIFIER VOLTAGE - 50 to 600 Volts CURRENT - 5.0 Amperes

FEATURES

Dimensions iin inches and (millimeters)

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- High surge current capability
- High current operation
- Fast switching for high efficiency
- Diffused junction
- Completely insulated case
- Uniform molded body
- High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color Band denotes cathode

Mounting Position: Any

Weight: 0.07 ounce, 2.1 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	GI820	GI821	GI822	Gi824	GI826	UNITS		
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts		
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts		
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts		
Maximum Non-repetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	Volts		
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A = 55^{\circ}C$	I(AV)		5.0						
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			Amps					
Maximum Instantaneous Forward Voltage at 5.0A at 15.7A TJ = 150°C	VF				10 05		Volts		
Maximum Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR).0 .0		μA mA		
Typical Junction Capacitance T _J = 25°C (Note 3)	CJ			3	00		pf		
Maximum Reverse Recovery Time (Note 1) TJ = 25'C	T _{RR}		nS						
Maximum Reverse Recovery Current (Note 1)	IRM(REC)		Amps						
Typical Thermal Resistance (Note 2)	Reja			10	0.0		.CW		
Operating and Storage Temperature Range,	TJ, TSTG			-50 to	+150		.c		


NOTES:

1. Reverse Recovery Test Conditions: IF = 1.0A, VR = 30V, di/dt = 50A/µs.

2 Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, with both leads to heat sink.

3. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

RATINGS AND CHARACTERISTIC CURVES GI820 THRU GI826

SRP600A THRU SRP600K

HIGH CURRENT SOFT RECOVERY FAST-SWITCHING PLASTIC RECTIFIER

VOLTAGE - 50 to 800 Volts CURRENT - 6.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- High surge current capability
- High current operation
- Void-free plastic package
- Fast switching for high efficiency
- High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead lengths at
 - 265°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color Band denotes cathode

Mounting Position: Any

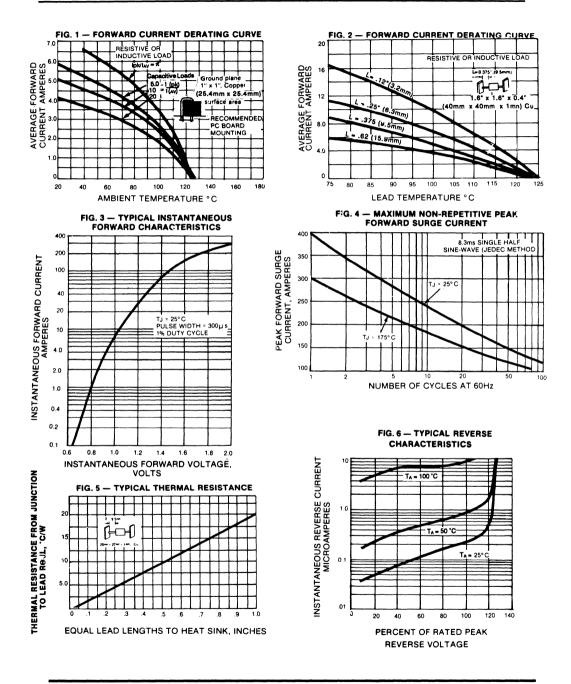
Weight: 0.07 ounce, 2.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	SRP 600A	SRP 600B	SRP 600D	SRP 600G	SRP 600J	SRP 600K	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A = 55$ C	I(AV)	6.0				Amps		
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			300				Amps
Maximum Instantaneous Forward Voltage at 6.0A	VF	1.3				Volts		
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR	10.0 1.0			μA mA			
Maximum Reverse Recovery Time (Note 1) T _J = 25°C	TRR	100	100	150	150	200	200	ns
Typical Junction Capacitance (Note 2) T _J = 25°C	CJ			300				pf
Typical Thermal Resistance (Note 3)	Reja	10.0			.CW			
Operating Temperature Range	TJ	- 50 to +125			.c			
Storage Temperature Range	TSTG	-50 to +150			.c			

NOTES:

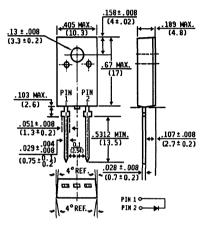

1. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = .25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, with both leads to heat sink.

a hay bhas a wear

RATINGS AND CHARACTERISTIC CURVES SRP600A THRU SRP600K


RSF8AT THRU RSF8MT

FAST SWITCHING GLASS PASSIVATED RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 8.0 Amperes

FEATURES

ITO-220

Dimensions in inches and (millimeters)

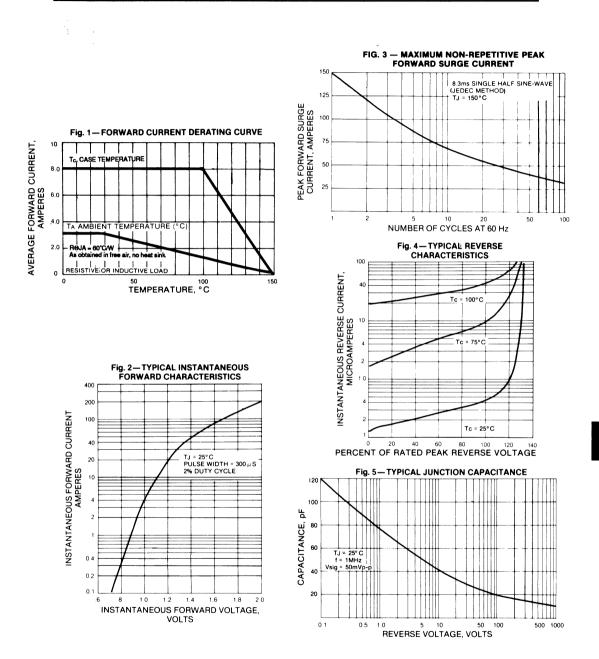
- Isolated Overmolded Package
- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- High surge capacity
- High current capability
- Low forward voltage
- Fast switching for high efficiency
- Glass passivated junction
- Internal Insulation: 1.5k VRMS

MECHANICAL DATA

Case: ITO-220 fully overmolded plastic Terminals: Lead solderable per MIL-STD-202, Method 208 Polarity: As marked Weight: .08 ounces, 2.24 grams Mounting Position: Any Mounting Torque: 5 in. - lbs. max.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

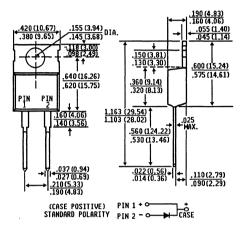

	SYMBOLS	RSF8 AT	RSF8 BT	RSF8 DT	RSF8 GT	RSF8 JT	RSF8 KT	RSF8 MT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at Tc = 100°C	I(AV)				8.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150					Amps		
Maximum Instantaneous Forward Voltage at 8.0A	VF	1.3				Volts			
Maximum Reverse CurrentTc = 25°Cat Rated DC Blocking VoltageTc = 100°C	IR	10.0 250				μA			
Maximum Reverse Recovery Time (Note 2) TJ = 25°C	TRR		150)	200		250	500	ns
Typical Junction Capacitance (Note 1)	CJ				55				pf
Typical Thermal Resistance (Note 3)	RejC	C 3.0				.cw			
Operating and Storage Temperature Range	Tc,Tstg	G -65 to +150				.c			

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDC.

2. Reverse Recovery Test Conditions : IF = 0.5A, IR = 1.0A, Irr = .25A.

3. Thermal Resistance from Junction to Case.


RATING AND CHARACTERISTIC CURVES RSF8AT THRU RSF8MT

RS8AT THRU RS8MT

HIGH CURRENT FAST SWITCHING PLASTIC RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 8.0 Amperes

FEATURES

TO-220

Dimensions in inches and (millimeters)

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
- High forward surge capability
- High current operation
- Low forward voltage drop
- Fast switching for high efficiency
- Glass passivated chip junction
- High temperature soldering guaranteed: 265°C/10 seconds/.25",(6.35mm) lead lengths at 5 lbs., (2.3kg) tension

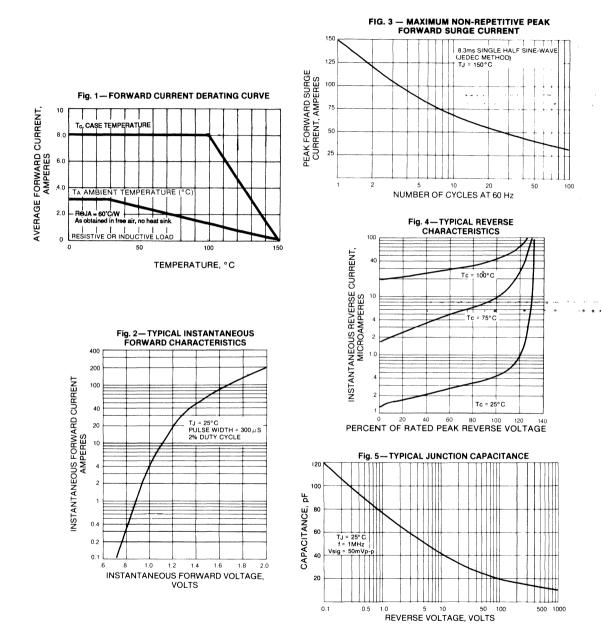
MECHANICAL DATA

Case: JEDEC TO-220 molded plastic Terminals: Plated Leads solderable per MIL-STD-202, Method 208 Polarity: As marked Welght:: .08 ounces, 2.224 grams Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	RS8 AT	RS8 BT	RS8 DT	RS8 GT	RS8 JT	RS8 KT	RS8 MT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at $T_{C} = 100$ C	I(AV)				8.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				150				Amps
Maximum Instantaneous Forward Voltage at 8.0A	VF	1.3				Volts			
Maximum Reverse CurrentTJ = 25°Cat Rated DC Blocking VoltageTC = 100°C	IR	10.0 250			μA				
Maximum Reverse Recovery Time (Note 2) TJ = 25°C	TRR		150)	200		250	500	ns
Typical Junction Capacitance (Note 1)	CJ				55				pf
Typical Thermal Resistance (Note 3)	RejC				3.0				.CW
Operating and Storage Temperature Range,	TJ,TSTO	rg -50 to +150				.c			


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

Reverse Recovery Test Conditions : I_F = 0.5A, I_R = 1.0A, Irr = .25A.

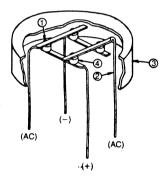
3. Thermal Resistance from Junction to Case attached to heat sink.

RATINGS AND CHARACTERISTIC CURVES RS8AT THRU RS8MT

GENERAL

BRIDGE RECTIFIERS 0.9 AMPERE TO 35 AMPERES 50 VOLTS TO 1000 VOLTS

BRIDGE RECTIFIERS 0.9 to 35 Amperes 50 Volts to 1000 Volts


Families of General Instrument Bridge Rectifiers

All types of rectifier cells, which are produced by GENERAL INSTRUMENT, are available in bridge configurations, molded in various plastic packages.

The basic types of packages are

- Round Plastic Package (Fig. 1)
- IN-LINE Plastic Package (Fig. 2)
- DUAL-IN-LINE Plastic Package (Fig. 3)
- Square Plastic Package for Chassis Mounting (Fig. 4)

These bridge families are available with different terminals, such as wire leads, FASTON or soldering lugs.

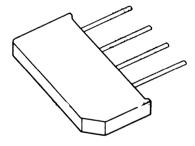


Fig. 2 IN-LINE Bridge

- ITEM DESCRIPTION
- 1. Solder Preforms
- 2. Formed Copper Leads 3. Plastic Case
- 4. Cells or GPP Chips

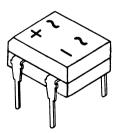


Fig. 3 DUAL-IN-LINE Bridge

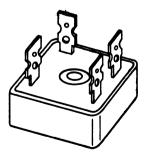


Fig. 4 Chassis Mounted Bridge

FAMILIES OF GENERAL INSTRUMENT BRIDGE RECTIFIERS

Dual-In-Line Single Phase Bridge Rectifiers 0.9 to 1.0 AMPERE

Typec	٠
IVDES	٠

DF005M	thru DF10M
RDF005M	thru RDF08M
	(Fast Recovery)

Features:

- Surge Overload Rating 50 Amperes Peak
- Ideal for Printed Circuit Board
- **Reliable Low Cost Construction** ٠

Features:

- B40C80DM B380C800DM
- Tinned Copper Leads Solderable to MIL-STD-202 Method 208 ٠ **Glass Passivated Chip Junctions** ٠
- Plastic Package has Underwriters Laboratory Flammability Classification 94V-0 ٠
- All bridge series are UL recognized under component index, file number E54214

Miniature Single-Phase Bridge Rectifiers 1.5 to 2 AMPERES

Types:

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		 Surge Overload Rating 50 and 60 Amperes Peak
W005M 2W005M B40C800 (M) B40C1000 (M) B40C1500 (M) W005G AW02G RW005G	thru W10M thru 2W10M thru B250C800 (M) thru B380C10000 (M) thru B380C1500 (M) thru W10G* thru AW08G* thru RW08G* (Fast Rec	 Ideal for Printed Circuit Board Reliable Low Cost Construction Leads are Solderable to MIL-STD-202 Method 208 Plastic Package has Underwriters Laboratory Flammability Classification 94V-0 All bridge series are UL recognized under component index, file number E54214
In-Line Single	Phase Bridge Recti	ifiers 1.0 to 8.0 AMPERES
Ŭ	er nuse bridge neer	
Types:		Features:
KBP005M	thru KBP10M*	 Surge Overload Rating from 50 to 300 Amperes Peak
	About OKDD10M4*	To I do al fair Deinte d'Oliversit De and

- 2KBP005M thru 2KBP10M* thru KBU4M KBU4A thru KBL10 **KBL005** thru KBU6M KBU6A thru KBU8M KBU8A B40C3700 2200 thru B380C3700/2200 B40C5000 3300 thru B380C5000 3300 3N249 thru 3N252* 3N253 thru 3N259*
- Ideal for Printed Circuit Board
- Reliable Low Cost Construction utilizing molded Plastic
- Leads are Solderable to MIL-STD-202 Method 208 ٠
- ٠ Plastic Package has Underwriters Laboratory Flammability Classification 94V-0
- All bridge series are UL recognized under component index file number E54214

*These series have Glass Passivated Chip Junctions

High Current Single Phase Bridge Rectifiers 3.0 to 35 AMPERES

Types:

KBPC1005 thru KBPC110 SUPERECTIFIER Construction KBPC6005 thru KBPC610 KBPC8005 thru KBPC810 SUPERECTIFIER Construction KBPC10-005 thru KBPC10 -10 KBPC15-005 thru KBPC15 -10

KBPC25-005 thru KBPC25 -10 KBPC35-005 thru KBPC35 -10

- Features: High Capability of Surge Overload Rating ٠
- Insulated Case for Maximum Heat Dissipation ٠
- Low Forward Voltage Drop ٠
- Copper Leads or Faston Terminals ۵
- Simple Installation thru Screw hole for NBR6 Screw
- Leads or Terminals are Solderable to MIL-STD-202 Method 208 ٠
- Plastic Package has Underwriters Laboratory Flammability Classification 94V-0
- All bridge series are UL recognized under component index, file number E54214

QUICK GUIDE TO BRIDGE RECTIFIERS

1,	, (A)	1.0	1.5	1.5	1.0	2.0	2.0	2.0	4.0	4.0	6.0	8.0	I. (A)
@	Г _А (°С)	40	25	50	75	25	50	55	50	65	40	100T _c	@ T _A (°C)
SUF	RGE (A)	50	50	50	30	60	60	60	200	200	250	300	SURGE (A)
V _R =	50 (V)	DF005M	W005M VG	KBP005M	3N246	2W005M	2KBP005M	3N253	KBL0051	KBU4A	KBU6A	KBU8A	V _R = 50 (V)
V _R =	100 (V)	DF01M	W01M IG	KBP01M	3N247	2W01M	2KBP01M	3N254	KBL01*	KBU4B	KBU6B	KBU8B	V _R = 100 (V)
' V _R =	200 (V)	DF02M	W02M VG	KBP02M	3N248	2W02M	2KBP02M	3N255	KBL02	KBU4D	KBU6D	KBU8D	V _R = 200 (V)
$V_R =$	400 (V)	DF04M	W04M VG	KBP04M	3N249	2W04M	2KBP04M	3N256	KBL04	KBU4G	KBU6G	KBU8G	V _R = 400 (V)
V _R =	600 (V)	DF06M	W06M \G	KBP06M	3N250	2W06M	2KBP06M	3N257	KBL06	KBU4J	KBU6J	KBU8J	V _R = 600 (V)
V _R =	800 (V)	DF08M	W08M VG	KBP08M	3N251	2W08M	2KBP08M	3N258	KBL08	KBU4K	KBU6K	KBU8K	V _R = 800 (V)
V _R =	1000 (V)	DF10M	W10M VG	KBP10M	3N252	2W10M	2KBP10M	3N259	KBL10	KBU4M	KBU6M	KBU8M	$V_{R} = 1000 (V)$

QUICK GUIDE TO BRIDGE RECTIFIERS

I ₀ (A)	3.0	6.0	8.0	10	15	25	35	I. (A)
@T _A (°C)	50 .	. 100 .	50	55	55	55	55	@ T _A (°C)
SURGE (A)	50	200	125	200	300	300	400	SURGE (A)
V _R = 50 (V)	KBPC1005=	KBPC6005	KBPC8005	KBPC10-005	KBPC15-005	KBPC25-005	KBPC35-005	V _R = 50 (V)
$V_{R} = 100 (V)$	KBPC101=	KBPC601	KBPC801	KBPC10-01	KBPC15-01	KBPC25-01	KBPC35-01	V _R = 100 (V)
V _R = 200 (V)	KBPC102=	KBPC602	KBPC802	KBPC10-02	KBPC15-02	KBPC25-02	KBPC35-02	V _R = 200 (V)
$V_{R} = 400 (V)$	KBPC104■	KBPC604	KBPC804	KBPC10-04	KBPC15-04	KBPC25-04	KBPC35-04	V _R = 400 (V)
V _R = 600 (V)	KBPC106=	KBPC606	KBPC806	KBPC10-06	KBPC15-06	KBPC25-06	KBPC35-06	$V_{R} = 600 (V)$
V _R == 800 (V)	KBPC108=	KBPC608	KBPC808=	KBPC10-08	KBPC15-08	KBPC25-08	KBPC35-08	V _R = 800 (V)
$V_{R} = 1000 (V)$	KBPC110	KBPC610	KBPC810	KBPC10-10	KBPC15-10	KBPC25-10	KBPC35-10	V _R = 1000 (V)

SUPERECTIFIER construction

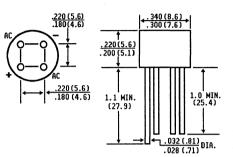
QUICK GUIDE TO BRIDGE RECTIFIERS

Io (A)	0.8	1.0	1.5	1.5	3.7	5.0	I _o (A)
@T _A (°C)	45	45	45	45	45	45	@T _A (°C)
SURGE (A)	45	45	45	90	100	200	SURGE (A)
V _{RMS} = 40 (V)	B40C8001)2)	B40C1000')	B40C1500	B40C1500 C	B40C3700/2200	B40C5000/3300	V _{RMS} = 40 (V)
V _{RMS} = 80 (V)	B80C8001)2)	B80C10001)	B80C1500	B80C1500 C	B80C3700/2200	B80C5000/3300	V _{RMS} = 80 (V)
V _{RMS} = 125 (V)	B125C8001)2)	B125C10001)	B125C1500	B125C1500 C	B125C3700/2200	B125C5000/3300	V _{RMS} = 125 (V)
V _{RMS} = 250 (V)	B250C8001)2)	B250C10001)	B250C1500	B250C1500 C	B250C3700/2200	B250C5000/3300	V _{RMS} = 250 (V)
V _{RMS} = 380 (V)	B380C8001)2)	B380C10001)	B380C1500	B380C1500 C	B380C3700/2200	B380C5000/3300	V _{RMS} = 380 (V)

1) M Indicates Miniature Package

2) DM Indicates Dual-Inline Package (IC-Leads)

· . .


. . . .

и

B40C / B80C / B125C / B250C / B380C 800M SERIES

MINIATURE SINGLE - PHASE SILICON BRIDGE RECTIFIER Voltage - 65 to 600 Volts Current - 0.9 Amperes

FEATURES

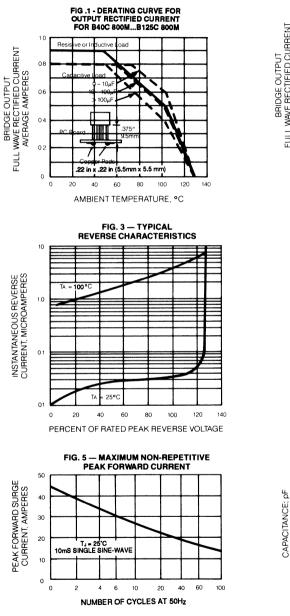
Dimensions in inches and (millimeters)

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- High case dielectric strength
- Typical I_R less than 0.1 μ A
- High overload surge current
- Ideal for printed circuit board
- High temperature soldering guaranteed
- 250°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique *Terminals:* Plated Leads solderable per MIL-STD-202, Method 208 *Mounting Position:* Any *Weight:* 0.05 ounce, 1.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. 50 Hz or 60 Hz, resistive or inductive load.

	SYMBOLS	B40	B80	B125	B250	B380	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	65	125	200	400	600	Volts
Maximum RMS Inpur Voltage R + C-Load	VRMS	40	80	125	250	380	Volts
Maximum Average Forward OutputCurrent for							
free air operation at $T_A = 45^{\circ}C$ R + L-Load				0.9			
C - Load	I(AV)			0.8			Amps
Maximum DC Blocking Voltage	VDC	65	125	200	400	600	Volts
Maximum Repetitive Peak Reverse Voltage	VRRM	65	125	200	400	600	Volts
Maximum Peak Working Voltage	VRWM	90	180	300	600	900	Volts
Maximum Non-Repetitve Peak Voltage	VRSM	100	200	350	600	1000	Volts
Maximum Repetive Peak Forward Surge Current	IFRM			10.0			Amps
Peak Forward Surge Current							
Single Sine wave on rated load at T _J = 125°C	IFSM			45.0			Amps
Rating for Fusing at T _J = 125°C (t<100ms)	l ² t			10.0			A ² S
Minimum Series Resistor C-Load V _{RMS} = + 10%	Rt	1.0	2.0	4.0	8.0	12.0	ohms
Maximum Load Capacitance +50%							
-10%	CL	5000	2500	1000	500	200	μF
Maximum Instantaneous Forward Voltage Drop							
per element at 0.9A	VF			1.0			Volts
Maximum Reverse Current at rated Repetitive							
Peak Voltage per element T _A = 25°C	IR			10.0			μA
Typical Thermal Resistance (Note 1)	Reja			36.0			.c/M
Operating Temperature Range	TJ	-40 to +125					
Storage Temperature Range	TSTG		-	40 to +15	50		.c

NOTES:

 Thermal Resistance from Junction to Ambient mounted on P.C Board at .375" (9.5mm) Lead Lengths with 0.2" x 0.2" (5.5mm and 5.5mm)Copper Pads.

RATINGS AND CHARACTERISTIC CURVES B40C THRU B380C 800M

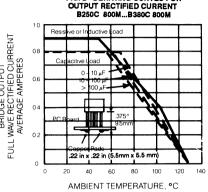


FIG. 2 - DERATING CURVES FOR

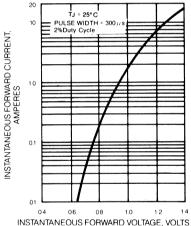
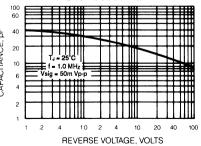
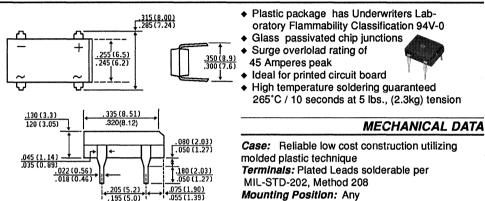



FIG. 6 — TYPICAL JUNCTION CAPACITANCE PER BRIDGE ELEMENT



B40C / B80C / B125C / B250C / B380C 800 DM SERIES

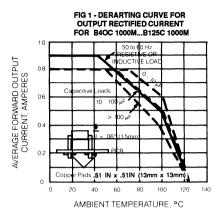
MINIATURE GLASS PASSIVATED SINGLE - PHASE BRIDGE RECTIFIER Voltage - 65 to 600 Volts Current - 0.9 Amperes

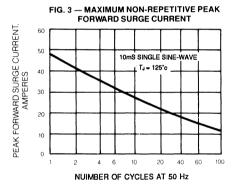
FEATURES

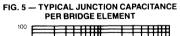
Weight: 0.04 ounce, 1.0 gram

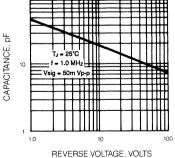
Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

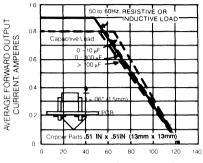

Ratings at 25°C ambient temperature unless otherwise specified. 50 Hz or 60 Hz, resistive or inductive load.

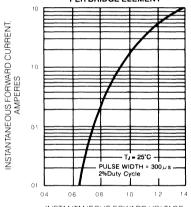

	SYMBOLS	B 40	B80	B125	B250	B380	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	65	125	200	400	600	Volts
Maximum RMS Input Voltage R + C-Load	VRMS	40	80	125	250	380	Volts
Maximum Average Forward Output Current for							
free air operation at T _A = 45°C R + L-Load				0.9			
C - Load	I(AV)			0.8			Amps
Maximum DC Blocking Voltage	VDC	65	125	200	400	600	Volts
Maximum Repetitive Peak Reverse Voltage	VRRM	90	180	300	600	900	Volts
Maximum Peak Working Voltage	VRWM	90	180	300	600	900	Volts
Maximum Non-Repetitve Peak Voltage	VRSM	100	200	350	650	1000	Volts
Maximum Repetive Peak Forward Surge Current	IFRM			10.0			Amps
Peak Forward Surge Current							
Single Sine wave on rated load at T _J = 125°C	IFSM			45.0			Amps
Rating for Fusing at T _J = 125 C (t<100ms)	l ² t			10.0			A ² S
Minimum Series Resistor C-Load V _{RMS} = + 10%	Rt	1.0	2.0	4.0	8.0	12.0	ohms
Maximum Load Capacitance +50%							
-10%	CL	5000	2500	1000	500	200	μF
Maximum Instantaneous Forward Voltage Drop							
per element at 0.9A	VF			1.0			Volts
Maximum Reverse Current at rated Repetitive							
Peak Voltage per element T _A = 25°C	IR			10.0			μΑ
Typical Thermal Resistance (Note 1)	Røja			40.0			.c/M
Operating Temperature Range	Tj		-	40 to +12	25		.c
Storage Temperature Range	TSTG		-	40 to +15	50		.c


NOTES:


1. Thermal Resistance from Junction to Ambient mounted on P.C Board 0.5" x 0.5" (13mm x 13mm) Copper pads.

RATINGS AND CHARACTERISTIC CURVES B40C THRU B380C 800 DM



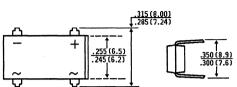


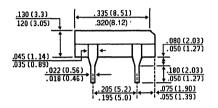
AMBIENT TEMPERATURE, °C

FIG. 4 — TYPICAL FORWARD CHARACTERISTICS PER BRIDGE ELEMENT

INSTANTANEOUS FOWARD VOLTAGE.

FIG. 6 — TYPICAL REVERSE CHARACTERISTICS





DF005M THRU DF10M

MINIATURE GLASS PASSIVATED SINGLE - PHASE SILICON BRIDGE RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
- Glass passivated chip junctions Surge overload rating of 50 Amperes peak

- Ideal for printed circuit board
- High temperature soldering guaranteed: 265° C /10 seconds at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique

Terminals: Plated Lead solderable per MIL-STD-202, Method 208

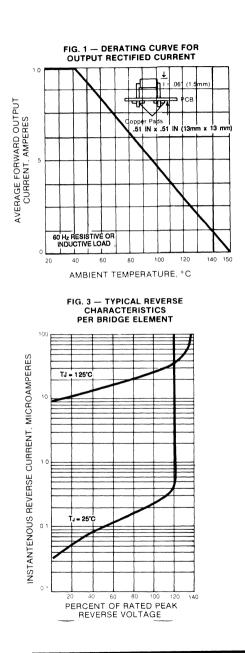
Polarity: Polarity symbols marked on body

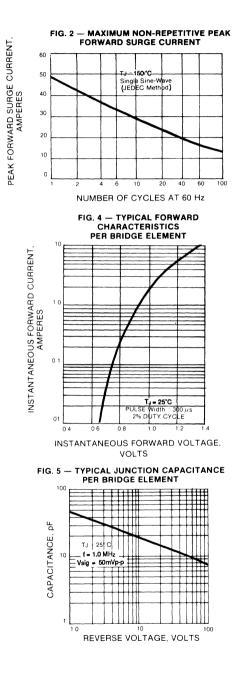
Weight:: 0.04 ounce, 1.0 gram

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified 60 Hz, resistive or inductive load.


	SYMBOLS	DF 005M	DF 01M	DF 02M	DF 04M	DF 06M	DF 08M	DF 10M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Output Rectified Current at $T_A = 40^{\circ}C$	I(AV)				1.0				Amps
Peak Forward Surge CurrentSingle sine-wave superimposed onrated load (JEDEC Method)	IFSM				50.0				Amps
Rating for fusing (t<8.35ms)	l ² t				10.0				A ² s
Maximum Instantaneous Forward Voltage drop per element at 1.0A	VF				1.1				Volts
Maximum Reverse Current T _A = 25°C					10.0				
at Rated DC Blocking Voltage per element TA = 125°C	IR				500				μA
Typical Junction Capacitance per element (Note 1)	CJ				25.0				pf
Typical Thermal Resistance (Note 2)	Reja				40.0				.CW
Operating and Storage Temperature Range,	TJ,TSTO	3		-5	5 to +1	50			.c


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Thermal Resestance from Junction to Ambient mounted on P.C. Board with 0,5" x 0.5" (13mm x13mm) Copper Pads.

RATINGS AND CHARACTERISTIC CURVES DF005M THRU DF10M

B40C / B80C / B125C / B250C / B380C 1000M

MINIATURE SINGLE - PHASE SILICON BRIDGE RECTIFIER Voltage - 65 to 600 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
 - High case dielectric strength
- Typical I_R less than 0.1 μ A
- High overload surge current
- Ideal for printed circuit board
- High temperature soldering guaranteed 250°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique Terminals: Plated Leads solderable per MIL-STD-202, Method 208 Mounting Position: Any Welght: 0.05 ounce, 1.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 50Hz or 60 Hz, resistive or inductive load.

	SYMBOLS	B40	B80	B125	B250	B380	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	65	125	200	400	600	Volts
Maximum RMS Inpur Voltage R + C-Load	VRMS	40	80	125	250	380	Volts
Maximum Average Forward Output Current for free air operation at $T_A = 45^{\circ}C$ R + L-Load			•	1.2			
C - Load	I(AV)			1.0			Amps
Maximum DC Blocking Voltage	VDC	65	125	200	400	600	Volts
Maximum Repetitive Peak Reverse Voltage	VRRM	90	180	300	600	800	Volts
Maximum Peak Working Voltage	VRWM	90	180	300	600	900	Volts
Maximum Non-Repetitve Peak Voltage	VRSM	100	200	350	600	1000	Volts
Maximum Repetive Peak Forward Surge Current	IFRM			10.0			Amps
Peak Forward Surge CurrentSingle Sine wave on rated load (JEDEC) Method) at $T_J = 125^{\circ}C$	IFSM			45.0			Amps
Rating for Fusing at T _J = 125°C (t<100ms)	l ² t	****		10.0			A ² S
Minimum Series Resistor C-Load V _{RMS} = -or+ 10%	RtW	1.0	2.0	4.0	8.0	12.0	ohms
Maximum Load Capacitance +50% -10%	CL	5000	2500	1000	500	200	μF
Maximum Instantaneous Forward Voltage Drop per element at 1.0A	VF			1.0			Volts
Maximum Reverse Current at rated Repetitive Peak Voltage per element $T_A = 25^{\circ}C$	IR			10.0			μA
Typical Thermal Resistance (Note 1)	Reja			36.0			.c\M
Operating Temperature Range	TJ		-	40 to +12	25		.с
Storage Temperature Range	TSTG		-	40 to +15	50		.c

NOTES:

 Thermal Resistance from Junction to Ambient mounted on P.C Board at .375" (9.5mm) Lead Lengths with 0.2" x 0.2" (5.5mm x 5.5mm) Copper Pads..

RATINGS AND CHARACTERISTIC CURVES B40C 1000 THRU B380C 1000M

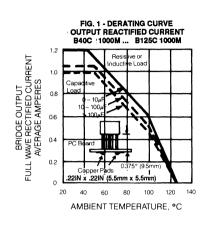


FIG. 3 — TYPICAL

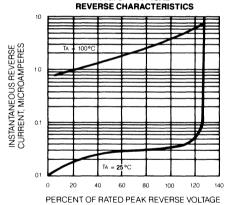


FIG. 5 - MAXIMUM NON-REPETITIVE PEAK FORWARD CURRENT 50 PEAK FORWARD SURGE CURRENT, AMPERES 40 30 20 TJ = 125'C SINGLE SINE-WAV E (JEDEC Method) 10 0 2 6 10 20 40 60 100 1 4 NUMBER OF CYCLES AT 50Hz

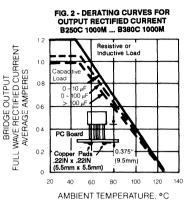


FIG. 4 - TYPICAL FORWARD CHARACTERISTICS

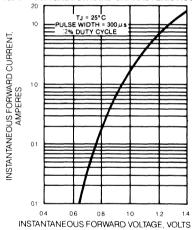
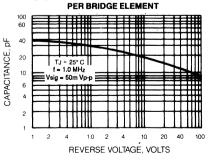
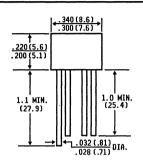
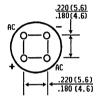



FIG. 6 - TYPICAL JUNCTION CAPACITANCE





W005M THRU W10M

MINIATURE SINGLE - PHASE SILICON BRIDGE RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 1.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
- High case dielectric strength
- Typical IR less than 0.1 μ A
- High overload surge capability
- Ideal for printed circuit board
- High temperature soldering guaranteed: 250° C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique

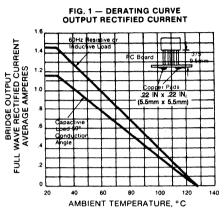
Terminals: Plated Leads solderable per MIL-STD-202, Method 208

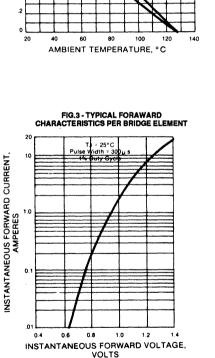
Weight: 0.05 ounce, 1.3 grams

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.


SYM	BOLS	W 005M	W 01M	W 02M	W 04M	W 06M	W 08M	W 10M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at .375", (9.5mm) lead length at $T_A = 25^{\circ}C$	I(AV)				1.5				Amps
Peak Forward Surge Current Single sine-wave superimposed onrated load (JEDEC Method)	IFSM				50.0				Amps
Rating for fusing (t<8.3ms)	121				10.0				A ² s
Maximum Instantaneous Forward Voltage drop per element at 1.0A	VF				1.0				Volts
Maximum DC Reverse Current T _A = 25°C		1			10.0				μA
at Rated DC Blocking Voltage T _A = 100°C	I R				1.0				mA
Typical Junction Capacitance per element (Note 1)	CJ				24.0				pf
Typical Thermal Resistance (Note 2)	Reja				36.0				.cw
Operating Temperature Range	TJ			-50) to + '	125			.c
Storage Temperature Range,	TSTG			-5	0 to +1	50			.c


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

 Thermal Resistance from Junction to Ambient at .375", (9.5mm) lead lengths mounted on P.C. Board with, .2" x .2" (5.5 mm x5.5 mm) Copper Pads.

RATINGS AND CHARACTERISTIC CURVES W005M THRU W10M

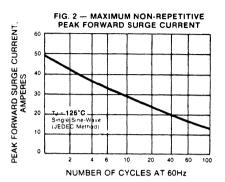


FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

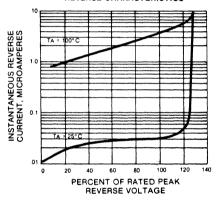
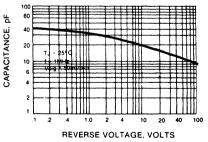
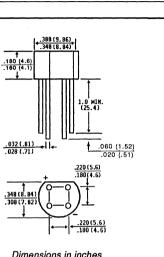



FIG. 5 - TYPICAL JUNCTION CAPACITANCE PER BRIDGE ELEMENT



W005G THRU W10G

MINIATURE GLASS PASSIVATED SINGLE-PHASE SILICON BRIDGE RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 1.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

- Glass passivated chip junctions
- Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
- High case dielectric strength
- Typical I_R less than 0.1 μ A
- High overload surge capability
- Ideal for printed circuit board
- High temperature soldering guaranteed: 265° C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

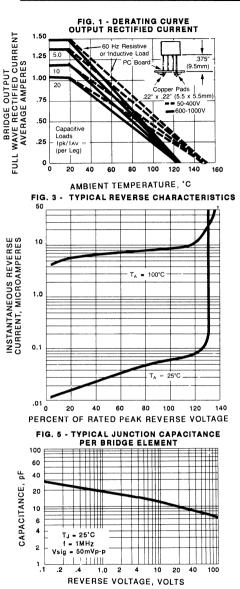
MECHANICAL DATA

Case: Molded plastic *Terminals:* Leads solderable per MIL-STD-202, Method 208 *Weight:* 0.04 ounce, 1.1 grams

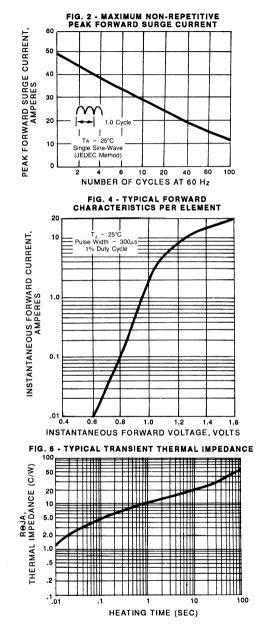
Mounting Position: Any

Weight: 0.04 ounce, 1.1 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

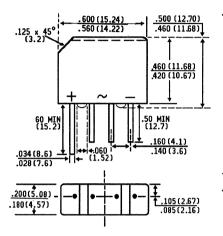

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.

	SYMBOLS	W 005G	W 01G	W 02G	W 04G	W 06G	W 08G	W 10G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at .375", (9.5mm) lead length at $T_A = 25^{\circ}C$	I(AV)				1.5				Amps
Peak Forward Surge Current Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				50.0				Amps
Rating for fusing (t<8.3ms)	l ² t				10.0				A ² s
Maximum Instantaneous Forward Voltage Drop per element at 1.0 Amperes	VF				1.0				Volts
Maximum DC Reverse Current at Rated T _A = 25°C					5.0				
DC Blocking Voltage per Bridge Element T _A = 125°C	IR				500				μA
Typical Junction Capacitance per element (Note 1)	CJ				14.0				pf
Typical Thermal Resistance (Note 2)	Reja				36.0				.c/M
Operating Temperature Range	TA		-5	5 to +1	50	-5	5 to +1	125	.c
Storage Temperature Range	TSTG				-55	to +15	0		.с


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Thermal Resistance from Junction to Ambient at .375", 9.5mm lead length P.C. Board mounting.



RATINGS AND CHARACTERISTIC CURVES W005G THRU W10G

KBP005M THRU KBP10M 3N246 THRU 3N252

MINIATURE GLASS PASSIVATED SINGLE - PHASE SILICON BRIDGE VOLTAGE - 50 to 1000 Volts CURRENT - 1.5 Amperes

Dimensions in inches and (millimeters) This series is UL recognized under component index, file number E54214

- Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
- Glass passivated chip junctions
 Surge overload rating -
- 30 Amperes peak
- Ideal for printed circuit board
- High temperature soldering guaranteed : 265° C /10 seconds at 5 lbs., (2.3kg) tension

MECHANICAL DATA

FEATURES

Case: Reliable low cost construction utilizing molded plastic technique

Terminals: Plated Lead solderable per MIL-STD-202, Method 208

Polarity: Polarity symbols marked on case

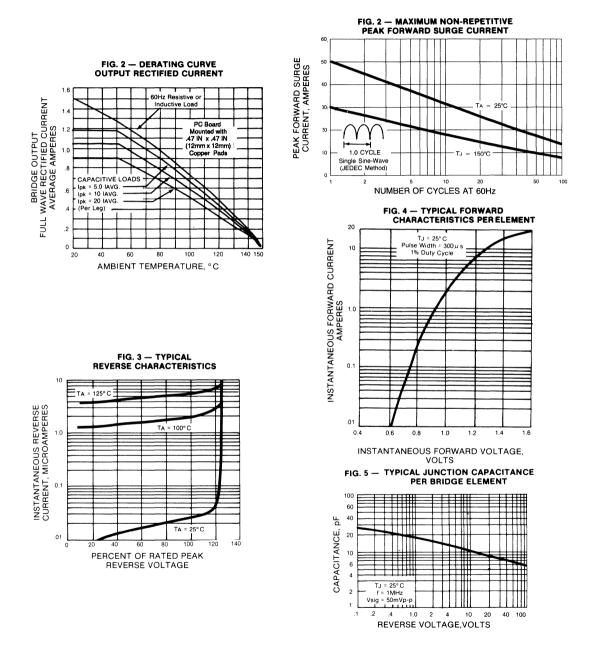
Mounting postition: Any

Weight: 0.06 ounce, 1.70 gram

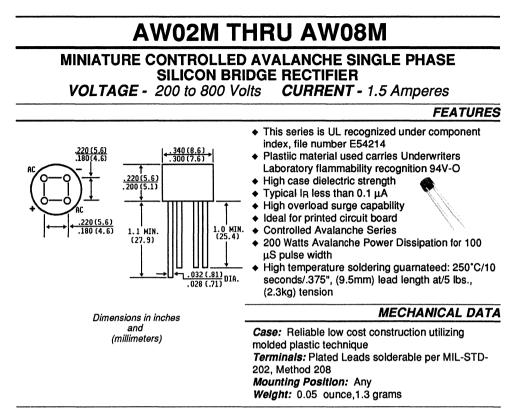
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.

		SYMBOLS	KBP005M 3N246	KBP01M 3N247	KBP02M 3N248	KBP04M 3N249	KBP06M 3N250	KBPO8M 3N251	KBP10M 3N252	UNITS
* Maximum Recurrent Peak Reverse Voltag	e	VRRM	50	100	200	400	600	800	1000	Volts
* Maximum RMS Voltage		VRMS	35	70	140	280	420	560	700	Volts
* Maximum DC Blocking Voltage		VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Output Rectifie at 1	ed Current Г _A = 40°C	I(AV)				1.5				Amps
* Peak Forward Surge Current Single sine-w superimposed on rated load (JEDEC Meth		IFSM				30.0				Amps
Rating for fusing (t<8.35ms)		l ² t				10.0				A ² s
* Maximum Instantaneous Forward Voltage per Bridge Element at	drop 1.0A 1.57A	VF				1.0 1.3				Volts
* Maximum DC Reverse Current at Rated DC Blocking Voltage	T _A = 25°C T _A = 125°C	IR				10.0 500				μA
Typical Junction Capacitance per element ((Note 1)	CJ	1			15.0				pf
Typical Thermal Resistance (Note 2)		RØJA				28.0				.CW
*Operating and Storage Temperature Range	9	TJ,TSTO	i		-5	5 to +1	150			.c


NOTES:

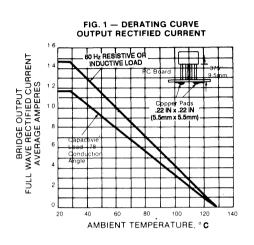
1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

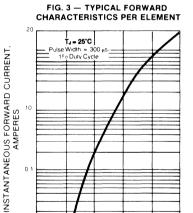

2. Thermal Resistance from Junction to Ambient mounted on P.C. Board with, .47" x .47" (12mm x12mm) Copper Pads.

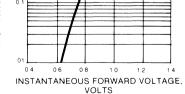
* JEDEC Reggistered Values

RATINGS AND CHARACTERISTIC CURVES KBP005M THRU KBP10M / 3N246 THRU 3N252

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISICS


Ratings at 25°C ambient temperature unless otherwise specified. 60Hz,resistive or inductive load. For capacitive load, derate current by 20%


	SYMBOLS	AW02M	AWO4M	AW06M	AW08M	UNITS		
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	Volts		
Maximum RMS Voltage	VRMS	140	280	420	560	Volts		
Maximum DC Blocking Voltage	VDC	200	400	600	800	Volts		
Minimum Avalanche Breakdown Voltage at 100µA	VBR	250	450	Volts				
Maximum Avalanche Breakdown Voltage at 100 µA	VBR	700	900	Volts				
Maximum Average Forward Output Current .375" (9.5mm) Lead Length at $T_A = 55$ C	l(AV)		1.	5	•	Amps		
Peak Forward Surge Current,Single half sine -wave superimposed on rated load (JEDEC Method)	IFSM		50.0					
Rating for fusing (t<.00835)	l ² t		10	.0		A ² s		
Maximum Instantaneous Forward Drop per element at 1.0A	VF		1.	0		Volts		
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR		10 1.			μA mA		
Typical Junction Capacitance per element (Note 1)	CJ		24.0					
Typical Thermal Resistance (Note 2)	Reja		36.0					
Operating Temperature Range	Tj		-50 to +125					
Storage Temperature Range	Tstg		-50 to	+150		.c		


NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Thermal Resistance from Junction to ambient at .375", (9.5mm) lead lengths mounted on P.C. Board with .2" x .2" (5.5mm x 5.5mm) Copper Pads.

RATINGS AND CHARACTERISTIC CURVES AW02M THRU AW08M

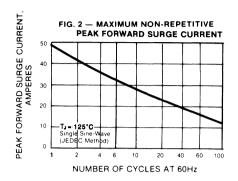


FIG. 4 -- TYPICAL REVERSE CHARACTERISTICS

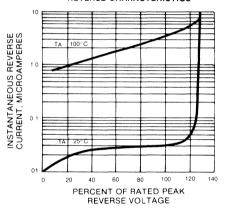
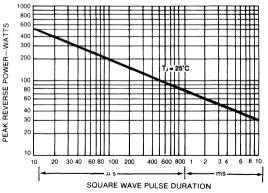
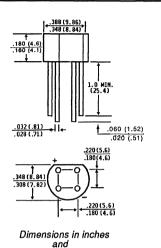
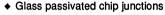



FIG. 5 — MAXIMUM NON-REPETITIVE AVALANCHE SURGE POWER


AW02G THRU AW08G SERIES


MINIATURE GLASS PASSIVATED CONTROLLED AVALANCHE SINGLE - PHASE SILICON BRIDGE RECTIFIER

VOLTAGE - 200 to 800 Volts CU

CURRENT - 1.5 Amperes

FEATURES

- Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
- High case dielectric strength
- 200 Watts Avalanche Power Dissipation for 100 μ's

- Typical IR less than 0.1 µ A
 High overload surge capability
- Ideal for printed circuit board
- High temperature soldering guaranteed: 265° C/10 seconds /.375", (9.5mm) lead length/5lbs., (2.3 kg) tension

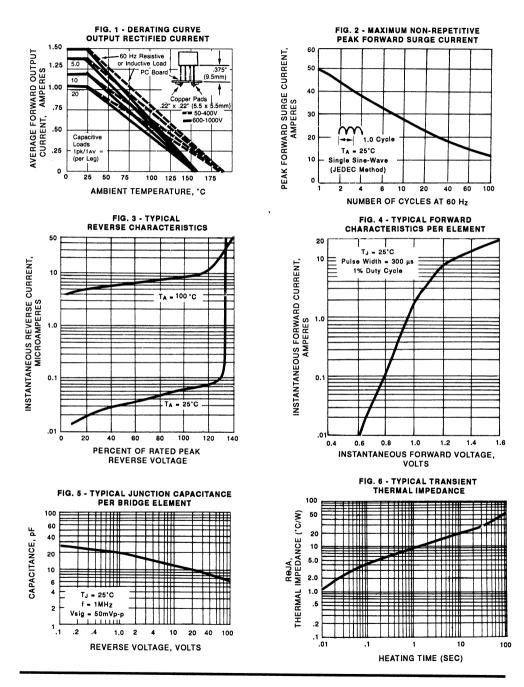
MECHANICAL DATA

Case: Molded plastic Terminals: Leads solderable per MIL-STD-202, Method 208 Mounting Position: Any Weight: 0.04 ounce, 1.1 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.

(millimeters)

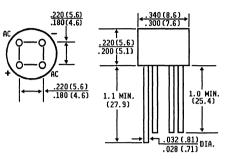

	SYMBOLS	AW 02G	AW 04G	AW 06G	AW 08G	UNITS		
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	Volts		
Maximum RMS Voltage	VRMS	140	280	420	560	Volts		
Maximum DC Blocking Voltage	VDC	200	400	600	800	Volts		
Minimum Avalanche Breakdown Voltage at 100 µA	VBR	250	450	650	850	Volts		
Maximum Avalanche Breakdown Voltage at 100 μ A	VBR	700	900	1100	1300	Volts		
Maximum Average Forward Rectified Current at .375", (9.5mm) lead length at $T_A = 25^{\circ}C$	I(AV)		1.5	5		Amps		
Peak Forward Surge Current Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		50.	50.0				
Rating for fusing (t<8.3ms)	l ² t		10.	0		A ² s		
Maximum Instantaneous Forward Voltage Drop per element at 1.0 Amperes	VF		1.0)		Volts		
Maximum DC Reverse Current at Rated $T_A = 25$ °C DC Blocking Voltage per Bridge Element $T_A= 125$ °C			5.0 50	-		μА		
Typical Junction Capacitance per element (Note 1)	CJ		pf					
Typical Thermal Resistance (Note 2)	Røja		.CW					
Operating Temperature Range	TA	-55 t	o +150	-55 to -	·c			
Storage Temperature Range	TSTG		-55 to	+150	.c			

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Thermal Resistance from Junction to Ambient at .375", 9.5mm lead length P.C. Board mounting.

RATINGS AND CHARACTERISTIC CURVES AW02G THRU AW08G



194

B40C / B80C / B125C / B250C / B380C 1500M SERIES

MINIATURE SINGLE - PHASE SILICON BRIDGE RECTIFIER Voltage - 65 to 600 Volts Current - 1.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

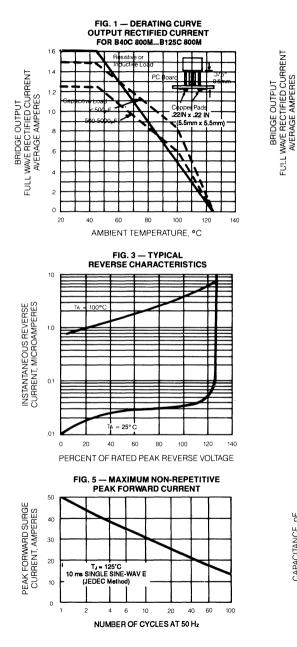
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- High case dielectric strength
- Typical I_R less than 0.1 μ A
- High overload surge current
- Ideal for printed circuit board
- High temperature soldering guaranteed 250°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

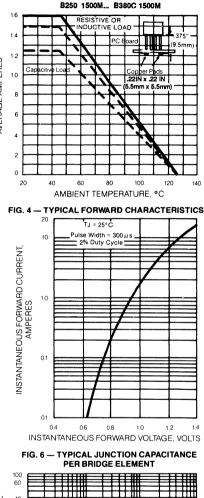
MECHANICAL DATA

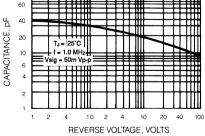
Case: Reliable low cost construction utilizing molded plastic technique Terminals: Plated Leads solderable per MIL-STD-202, Method 208 Mounting Position: Any Welght: 0.05 ounce, 1.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 50 Hz or 60 Hz, resistive or inductive load.


	SYMBOLS	B40	B80	B125	B250	B380	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	65	125	200	400	600	Volts
Maximum RMS Input Voltage R + C-Load	VRMS	40	80	125	250	380	Volts
Maximum Average Forward Output Current for							
free air operation at $T_A = 45^{\circ}C$ R + L-Load C - Load	I(AV)			1.6 1.5			Amps
Maximum DC Blocking Voltage	VDC	65	125	200	400	600	Volts
Maximum Repetitive Peak Reverse Voltage	VRRM	90	180	300	600	800	Volts
Maximum Peak Working Voltage	VRWM	90	180	300	600	800	Volts
Maximum Non-Repetitve Peak Voltage	VRSM	100	200	350	650	1000	Volts
Maximum Repetive Peak Forward Surge Current	IFRM	10.0					
Peak Forward Surge CurrentSingle Sine wave on rated load at TJ = 125°C	IFSM	50.0					
Rating for Fusing at T _J = 125°C (t<100ms)	l ² t			12.5			A ² S
Min.Series Resistor C-Load V _{RMS} = + or -10%	Rt	1.0	2.0	4.0	8.0	12.0	ohms
Maximum Load Capacitance +50% -10%	CL	5000	2500	1000	500	200	μF
Maximum Instantaneous Forward Voltage Drop per element at 1.5A	VF	1.0					
Maximum Reverse Current at rated Repetitive Peak Voltage per element $T_A = 25$ C	IR	10.0					
Typical Thermal Resistance (Note 1)	Reja			36.0			.C\M
Operating Temperature Range	TJ		-,	40 to +12	25		.c
Storage Temperature Range	TSTG			40 to +15	50		.c


NOTES:


 Thermal Resistance from Junction to Ambient mounted on P.C Board at .375" (9.5mm) Lead Lengths with 0.2" x0.2" (5.5mm x 5.5mm) Copper Pads.

RATINGS AND CHARACTERISTIC CURVES B40C 1500M THRU B380C 1500M SERIES

FIG. 2 - DERATING CURVE OUTPUT RECTIFIED CURRENT

GENERAL INSTRUMENT

2W005M THRU 2W10M

MINIATURE SINGLE - PHASE SILICON BRIDGE RECTIFIER

VOLTAGE - 50 to 1000 Volts

O MIN.

.032(.81) .028(.71)DIA.

220

.180 [4.6]

340 (8.6)

200 (5.1)

1.1 MIN. (27.9) CURRENT - 2.0 Amperes

FEATURES

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
- High case dielectric strength
- Typical IR less than 0.1 μ A
- High overload surge capability
- Ideal for printed circuit board
- High temperature soldering guaranteed 265° C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

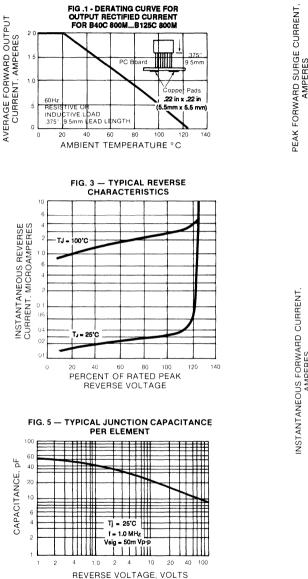
MECHANICAL DATA

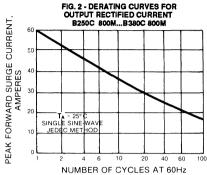
Case: Reliable low cost construction utilizing molded plastic technique resulting in an inexpensive product *Terminals:* Plated Leads Solderable per MIL-STD-202, Method 208 *Mounting Position:* Any *Handling precautions:* None *Weight:* 0.05 ounce, 1.3 grams Polarity: Polarity symbols marked on case

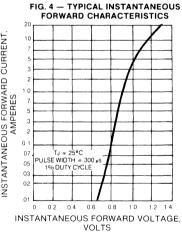
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%

Dimensions in inches and (millimeters)


SY	MBOLS	2W0 05M	2W 01M	2W 02M	2W 04M	2W 06M	2W 08M	2W 10M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375",(9.5mm) lead length at $T_A = 25^{\circ}C$	I(AV)				2.0				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)	IFSM				60.0				Amps
Rating for fusing (t<8.3ms)	l ² t				15.0				A ² s
Maximum Instantaneous Forward Voltage drop per element at 2.0A	VF				1.1				Volts
Maximum DC Reverse Current T _A = 25°C					10.0				μA
at Rated DC Blocking Voltage per element T _A = 100°C	IR				1.0				mA
Typical Junction Capacitance per element (Note 1)	CJ				30.0				pf
Typical Thermal Resistance (Note 2)	Reja	1			36.0				.C\M
Operating Temperature Range	TJ			-50) to +	125			.c
Storage Temperature Range	TSTG			-5	0 to +1	150			.c


NOTES:


 Thermal Resistance from Junction to Ambiient at .375", 9.5mm lead length mounted on P.C. Board with, .2" x .2" (5.5 mm x5.5 mm) Copper Pads.

^{1.} Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

RATINGS AND CHARACTERISTIC CURVES 2W005M THRU 2W10M

2KBP005M THRU 2KBP10M 3N253 THRU 3N259

MINIATURE GLASS PASSIVATED SINGLE - PHASE SILICON BRIDGE RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 2.0 Amperes

.500 (12.70)

.460 (11.68)

460 (11.68) 420 (10.67)

160 (4.1)

.140 (3.6)

05 (1

085(2.16)

50 MIN (12.7)

FEATURES

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
- Glass passivated chip junctions
- Typical I_R less than 0.1 μ A
- Built -in printed circuit board stand-offs
- High case dielectric strength
- Ideal for printed circuit board
- High temperature soldering guaranteed: 265° C /10 seconds at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique

Terminals: Plated Lead solderable per MIL-STD-202, Method 208

Mounting postition: Any Weight: 0.06 ounce, 1.70 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz Resistive or inductive load.

Dimensions in inches

and

(millimeters)

<u>600 (15.24)</u> 560 (14.22)

.125 x

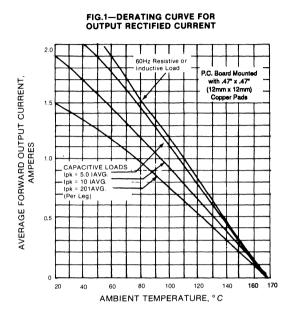
60 MI

.034(8.6)

.200(5.08)

.180(4.57)

	SYMBOLS	2KBP 005M 3N253	2KBP 01M 3N254	2KBP 02M 3N255	2KBP 04M 3N256	2KBP 06M 3N257	2KBP 08M 3N258	2KBP 10M 3N259	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
* Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
* Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
* Maximum Average Forward Output Rectified Current at T _A = 55 °C		2.0							
* Peak Forward Surge CurrentSingle sine-wave superimposed onrated load (JEDEC Method)		60.0							Amps
Rating for fusing (t<8.35ms)	l ² t	15.0							A ² s
* Maximum Instantaneous Forward Voltage drop per element at 3.14A	VF				1.1				Volts
* Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage per element $T_A = 125^{\circ}C$	IR				10.0 500				μA
Typical Junction Capacitance per element (Note 1)		25.0							pf
Typical Thermal Resistance (Note 2)	RØJA				30.0				.c\M
*Operating and Storage Temperature Range,	TJ,TST	G		-5	5 to +1	65			.c


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Thermal Resistance from Junction to Ambient mounted on P.C. Board with, .47" x .47" (12mm x12mm) Copper Pads.

JEDEC Reggistered Values

RATINGS AND CHARACTERISTIC CURVES 3N253 THRU 3N259 / 2KBP005M THRU 2KBP10M

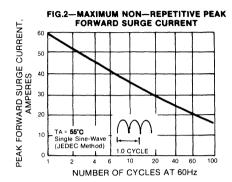


FIG. 4 — TYPICAL FORWARD

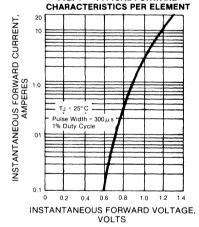
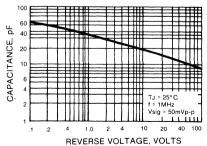
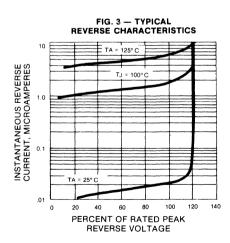
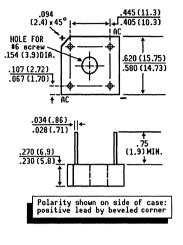




FIG.5-TYPICAL JUNCTION CAPACITANCE PER ELEMENT



KBPC1005 THRU KBPC110

GLASS PASSIVATED SINGLE- PHASE SILICON BRIDGE RECTIFIER

VOLTAGE - 50 to 1000 Volts **CURRENT - 3.0** Amperes

FEATURES

Dimensions in inches and (millimeters)

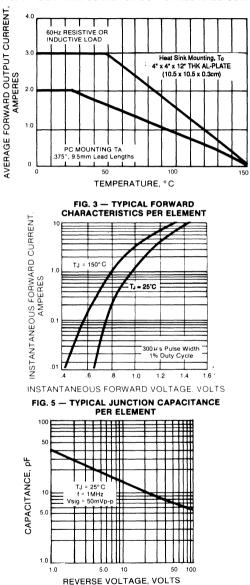
- This series is UL recognized under component index, file number E54214
- High temperature metalluragically bonded internal rectifiers
- Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
- Glass passivated cavity free rectifier junctions
- Typical I_R less than 0.1 μ A
- High temperature soldering guaranteed: 265° C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Void-free plastic package Terminals: Plated leads solderable per MIL-STD-202, Method 208 Mounting: Thru hole for #6 screw Mounting Position: Anv Weight: 0.2 ounces, 5.5 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified 60 Hz, resistive or inductive load. For capaacitive load, derate current by 20%.


	SYMBOLS	KBPC 1005	KBPC 101	KBPC 102	КВРС 104	KBPC 106	КВРС 108	КВРС 110	UNITS
Maximum Recurrent Peak Reverse Voltage		50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward $T_c=50^{\circ}C(Note 1)$ Rectified Output Current at $T_A = 25^{\circ}C(Note 2)$		3.0 I(AV) 2.0						Amps	
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)		50.0							Amps
Maximum Instantaneous Forward Voltage drop per element at 1.5A	VF				1.1				Volts
Maximum DC Reverse Leakage T _A = 25°C					10.0				μA
at Rated DC Blocking Voltage per element $T_A = 100^{\circ}C$	IR	50.0							μA
Typical Junction Capacitance per element (Note 3)	CJ	20.0							pf
Typical Thermal Resistance (Note 1)		10.0							.cw
Operating Temperature Range	TJ			-50) to + '	150			.c
Storage Temperature Range	Tstg			-5	0 to +1	50			.c

NOTES:

1. Bridge mounted on a 4" x 4" x .11 THK (10.5cm x 10.5cm x 0.3cm.) AL. PLate 2. Bridge molunted on P.C. Board .375", (9.5mm) lead lengths with .47" sq. (12 mm sq.) Copper Pads

Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

RATINGS AND CHARACTERISTIC CURVES KBPC1005 THRU KBPC110

FIG. 1 - DERATING CURVE FOR OUTPUT RECTIFIED CURRENT

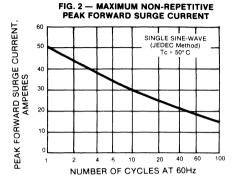
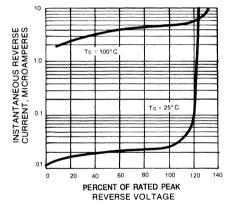
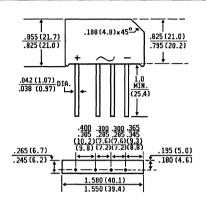



FIG. 4 — TYPICAL REVERSE CHARACTERISTICS



B40C / B80C / B125C / B250C / B380C 3700 / 2200 SERIES

SINGLE - PHASE SILICON BRIDGE RECTIFIER Voltage - 65 to 600 Volts Current - 3.7 Amperes

FEATURES

 Plastic package has Underwriters Laboratory Flammability Classification 94V-0

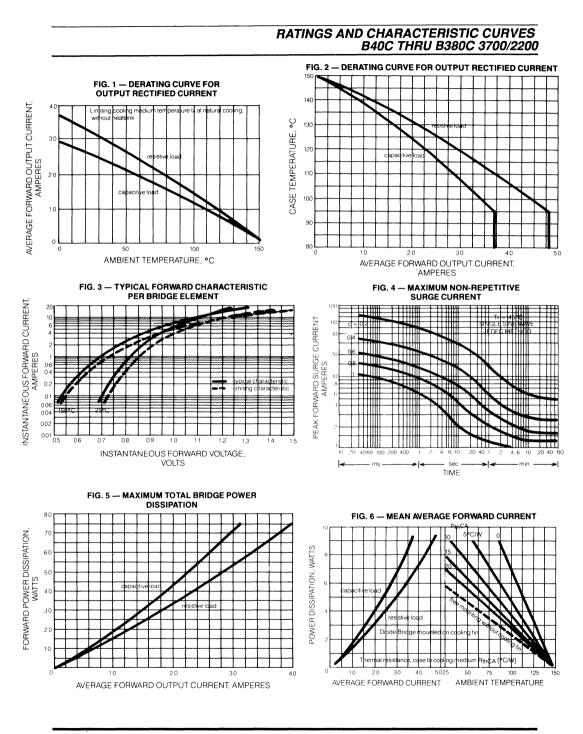
- High surge current capability
- Typical I_R less than 0.1 μ A
- Typical IR less than 0.1 μ A
 Ideal for BC beard mounting
- ◆ Ideal for P.C. board mounting
- Built -in P.C. Board Stand-offs
- High temperature soldering guaranteed: 250°C for 5 seconds

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique *Terminals:* Plated Leads solderable per MIL-STD-202, Method 208 *Mounting Position:* Any *Weight:* 0.92 ounce, 25.3 grams

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

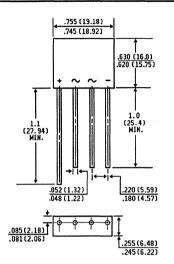

Ratings at 25 °C ambient temperature unless otherwise specified. 50 Hz or 60 Hz, resistive or inductive load.

		SYMBOLS	B40	B80	B125	B250	B380	UNITS
Maximum Recurrent Peak Reverse	Voltage	VRRM	65	125	200	400	600	Volts
Maximum RMS Input Voltage R + C	-Load	VRMS	40	80	125	250	380	Volts
Maximum Average Forward Output	Current for							
natural cooling operation at TA = 45	CR+L-Load				2.7			
	C - Load	I(AV)			2.2			Amps
on Chassis = 31_{IN}^2 , 200_{cm}^2 , T_A = 45°C	C - Load				3.7			
	R + L-Load				4.8			
Maximum DC Blocking Voltage (Not	e 1)	V _{DC}	65	125	200	400	600	Volts
Maximum Repetitive Peak Reverse	Voltage (Note 1)	VRRM	100	90	300	600	800	Volts
Maximum Repetive Peak Forward S	urge Current	IFRM			15.0			Amps
Peak Forward Surge Current Single	Sine wave on							
rated load at	Tj = 25°C				100			
	T _A = 150°C	IFSM			80.0			Amps
Rating for Fusing at (t<10ms)	TJ = 25°C				50.0			_
	Tj = 150°C	l ² t			32.0			A ² S
Minimum Series Resistance at VRM	3	Rt	0.6	1.2	1.4	2.8	4.2	ohms
Maximum Reservoir Capacittor		CL	5000	2500	1000	600	300	μF
Maximum Instantaneous Forward V	oltage Drop							
per element at 3.OA		VF			1.0			Volts
Maximum Reverse Current at rated	Repetitive							
Peak Voltage	T _A = 25°C				10.0			μΑ
-	Tj = 150°C	IR			6.0			mA
Typical Thermal Resistance (Note 2	2)	Røja			3.0			.c/M
Operating and Storage Temperature	Range	TJ, TSTG		-	50 to +15	50		.c

NOTES:

1. Valid for each bridge element

2. Thermal Resistance from Junction to Ambient with bridge mounted on a 3"sq. x .11" THK (7.5 cm.sq. x 0.3 cm) AL.Plate



KBL005 THRU KBL10

SINGLE - PHASE SILICON BRIDGE RECTIFIERS VOLTAGE - 50 to 1000 Volts CURRENT - 4.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
- Ideal for printed circuit board
- Reliable low cost construction utilizing molded plastic technique
- Surge overload rating of 200 Amperes peak
- High temperature soldering guaranteed: 250° C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

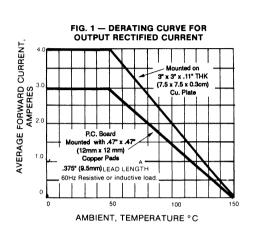
Case: Reliable low cost construction utilizing molded plastic technique

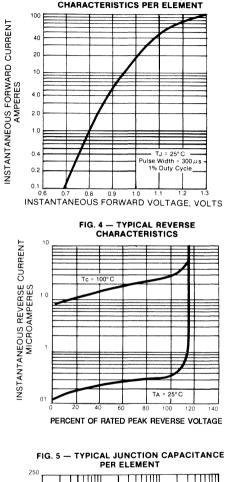
Terminals: Plated Lead solderable per MIL-STD-202, Method 208

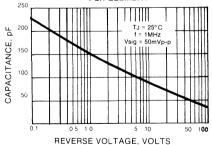
Mounting Position: Any *Weight:* 0.2 ounce, 5.6 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

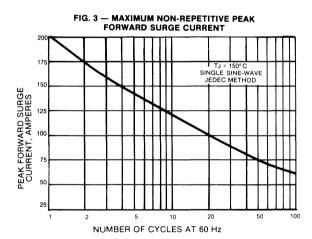
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load, 60 Hz,. For capacitive load, derate current by 20%.


	SYMBOLS	KBL 005	KBL 01	KBL 02	KBL 04	KBL 06	KBL 08	KBL 10	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward OutputCurrent at $T_A = 50^{\circ}C$	I(AV)				4.0				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)	IFSM	200							Amps
Maximum Instantaneous Forward Voltage drop per element at 4.0A	VF	F 1.1							Volts
	IR	10.0 I _R 1.0					μA mA		
Typical Thermal Resistance (Note 1)		A 10.0							.cw
Operating and Storage Temperature Range	TJ,TSTO	à		-50	to +1	50			.c


NOTES:


1. Thermal Resistance from Junction to Ambient with units mounted on a 3" x .11" THK (7.5cm. x 0.3cm.) Cu. Plate."

RATINGS AND CHARACTERISTIC CURVES KBL005 THRU KBL10



GENERAL INSTRUMENT

KBU4A THRU KBU4M

165 (4 2)

205 (6.6)

→ .052 (1.3) → .048 (1.2)

.165(4.2)

.085 (2.2)

455 (11.3)

.260(6.6)

SILICON SINGLE - PHASE SILICON BRIDGE RECTIFIERS VOLTAGE - 50 to 1000 Volts CURRENT - 4.0 Amperes

FEATURES

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
- Ideal for printed circuit board
- Reliable low cost construction utilizing molded plastic technique
- Surge overload rating of 200 Amperes peak
- High temperature soldering guaranteed: 250° C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique

Terminals: Plated Lead solderable per MIL-STD-202, Method 208

Mounting Position: Any Mounting Torgue: 5 in. lb. max. Weight: 0.3 ounce, 8.0 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Resistive or inductive load, 60 Hz,. For capacitive load, derate current by 20%

895 (22.7

£

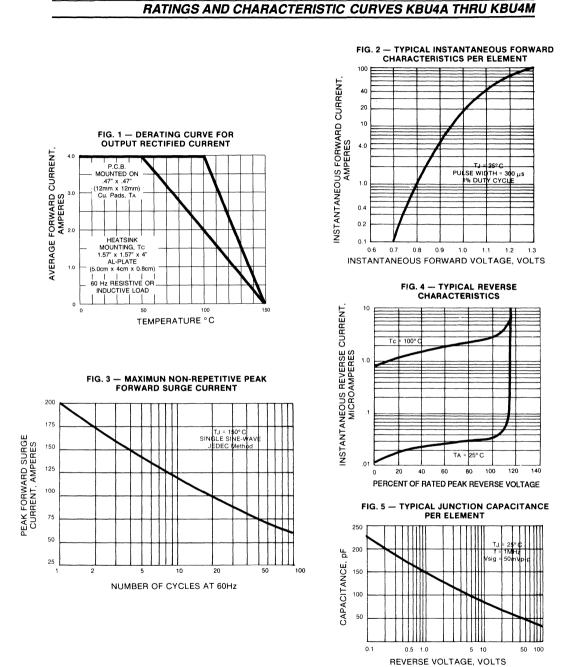
.075(1.9)R.TYP (2 PLACES)

Dimensions in inches

and (millimeters)

.160 (4.1)

.760 .700 (17.8) (19.3) .660 (16.8)

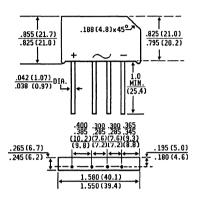

(25.4)

.180 (4.6

		SYMBOLS	KBU 34A	KBU 4B	KBU 4D	KBU 4G	KBU 4J	KBU 4K	KBU 4M	UNITS
Maximum Recurrent Peak Reverse Voltage		VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage		VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		VDC	50	100	200	400	600	800	1000	Volts
· · · · · · · · · · · · · · · · · · ·	Гс= 100°С Г _А = 50°С	I(AV)		•	-	4.0 4.0				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)		IFSM	200							Amps
Maximum Instantaneous Forward Voltage dro per element at 4.0A	qq	VF	1.0							Volts
Maximum DC Reverse Leakage at Rated DC Blocking Voltage per element	T _A = 25'C Tc = 100'C	IR				10.0 1.0				μA mA
Typical Themal Resistance (Note 1)		Rejc				3.3				.cw
Operating and Storage Temperature Range		TJ.TSTG			-5) to +1	50			.c

NOTES:

1. Thermal Resistance from Junction to Case with units mounted on a 2.0" x 1.6 "x 0.3" THK (5cm. x 4cm. x0.8cm.) Al. Plate.



GENERAL INSTRUMENT

B40C / B80C / B125C / B250C / B380C 5000 / 3300

SINGLE - PHASE SILICON BRIDGE RECTIFIERS Voltage - 65 to 600 Volts Current - 5.0 Amperes

FEATURES

 Plastic package has Underwriters Laboratory Flammability Classification 94V-0

- High surge
- current capability
- Typical I_R less than 0.1 μ A
- Ideal for printed circuit board
- Built -in printed board stand-offs
- High temperature soldering guaranteed: 250°C for 5 seconds

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique *Terminals:* Plated Leads solderable per MIL-STD-202, Method 208 *Mounting Position:* Any *Weight:* 0.92 ounce, 25.3 gram

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 50 Hz or 60 Hz, resistive or inductive load.

	SYMBOLS	B40	B80	B125	B250	B380	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	65	125	200	400	600	Volts
Maximum RMS Input Voltage R + C-Load	VRMS	40	80	125	250	380	Volts
$ \begin{array}{l} \mbox{Maximum Average Forward Output Current for} \\ \mbox{natural cooling operation at } T_A = 45^{\circ}C \ R + L-Load \\ \mbox{C - Load} \\ \mbox{on Chassis = 31 IN}^2, 200_{cm}{}^2, T_A = 45^{\circ}C \\ \mbox{C - Load} \\ \mbox{R + L-Load} \\ \end{array} $	I(AV)		<u></u>	4.0 3.3 5.0 6.0			Amps
Maximum DC Blocking Voltage (Note 1)	VDC	65	125	200	400	600	Volts
Maximum Repetitive Peak Reverse Voltage (Note 1)	VRRM	100	190	300	600	900	Volts
Maximum Repetive Peak Forward Surge Current	IFRM	30.0					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	l _{FSM} I ² T		9 99 - 1994 - 1	Amps A ² S			
Minimum Series Resistance at VRMS	Rt	0.15	0.3	0.6	1.2	1.8	ohms
Maximum Reservoir Capacitor	CL	1000	5000	5000	2500	1000	μF
Maximum Instantaneous Forward Voltage Drop per element at 5.0A	VF	1.1				•	Volts
Maximum Reverse Current at rated Repetitive Peak Reverse Voltage T _A = 25°C T _J = 150°C	IR	10.0 6.0					
Typical Thermal Resistance (Note 2)	RØJA			3.0			.C\M
Operating and Storage Temperature Range	TJ, TSTG		-;	50 to +15	50		.c

NOTES:

1. Valid for each bridge element

2. Thermal Resistance from Junction to Ambient with unit mounted on 3"sq. x .11" THK (7.5 cm.sq. x 0.3 cm.) Al Plate

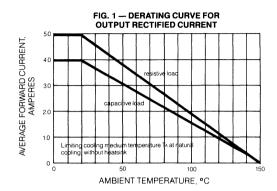
RATINGS AND CHARACTERISTIC CURVES B40C thru B380C 5000 / 3300

100

60

лr

PEAK FORWARD SURGE CURRENT.


AMPERES

ШГ

- ms

40.60

fill

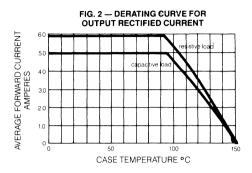


FIG. 4 — MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

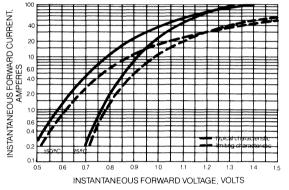


FIG. 3 - TYPICAL INSTANTANEOUS FORWARD

CHARACTERISTIC PER BRIDGE ELEMENT

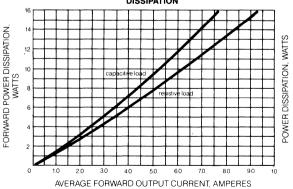
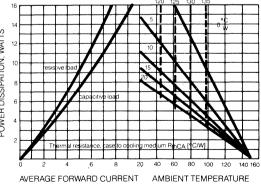
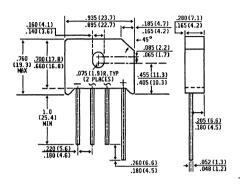



FIG. 6 -- MEAN AVERAGE FORWARD CURRENT CASE TEMPERATURE

sec

TIME



_ min _

KBU6A THRU KBU6M

SINGLE - PHASE SILICON BRIDGE RECTIFIERS VOLTAGE - 50 to 1000 Volts CURRENT - 6.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
- Ideal for printed circuit board
- Reliable low cost construction utilizing molded plastic technique
- Surge overload rating of 250 Amperes peak
- High temperature soldering guaranteed: 250° C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique

Terminals: Plated Lead solderable per MIL-STD-202, Method 208

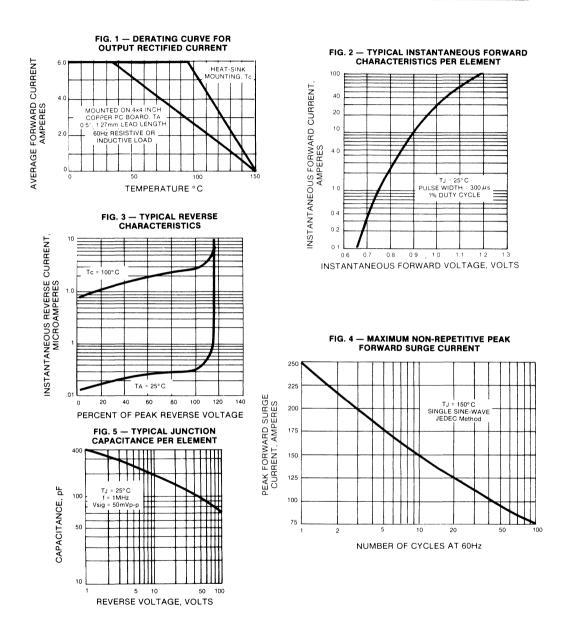
Mounting Position: Any

Mounting Torgue: 5 in. lb. max.

Weight: 0.3 ounce, 8.0 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz Resistive or inductive load. For capacitive load, derate current by 20%.

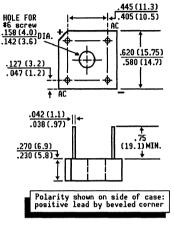

		SYMBOL	KBU 5 6A	KBU 6B	KBU 6D	KBU 6G	KBU 6J	KBU 6K	KBU 6M	UNITS
Maximum Recurrent Peak Reverse Voltage	9	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage		VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		VDC	50	100	200	400	600	800	1000	Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$		I(AV)				6.0 6.0				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)		IFSM				250				Amps
Maximum Instantaneous Forward Voltage drop per element at 6.0A		VF				1.0				Volts
Maximum DC Reverse Leakage $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_C = 100^{\circ}C$		IR	10.0 200						μA	
Typical Thermal Resistance (Note 1)		ROJC	NC 4.7						.CW	
Operating and Storage Temperature Range		TJ,TSTO			-5	0 to +1	50			.c

NOTES:

1. Thermal Resistance from Junction to Case with units mounted on a 2.6" x 1.4 x .06" THK

(6.5cm. x 3.5cm. x.15cm.) Al. Plate.

RATINGS AND CHARACTERISTIC CURVES KBU6A THRU KBU6M



GENERAL INSTRUMENT

KBPC6005 THRU KBPC610

SINGLE - PHASE SILICON BRIDGE RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 6.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory Flammability recognition 94V-O
- High surge capability
- Ideal for printed circuit board
- Typical I_R less than .1 μ A
- High temperature soldering guaranteed 250° C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique

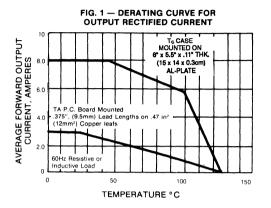
Terminals: Plated Lead solderable per MIL-STD-202, Method 208

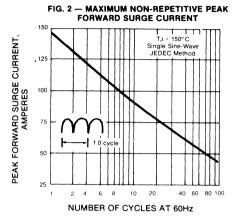
Mounting Position: Any

Weight: 0.2 ounce, 5.5 gram Mounting Torque: 5 in. lb. max.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Resistive or inductive load, 60 Hz,. For capacitive load, derate current by 20%


	SYMBOLS	KBPC 6005	KBPC 601	KBPC 602	KBPC 604	KBPC 606	KBPC 608	KBPC 610	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		50	100	200	400	600	800	1000	Volts
					6.0 3.0				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method) at TJ=150	СІғѕм	150							Amps
Maximum Instantaneous Forward Voltage drop per element at 3.0A					1.2				Volts
Maximum Reverse Leakage T _A = 25'C		10.0						μA	
at Rated DC Blocking Voltage T _A = 100°C		1.0							mA
Maximum A.C Operating Junction Temperature		+150						.c	
Typical Thermal Resistance (Note 1)	Rejc	8.0						.cw	
DC Operating Temperature Range		-50 to +125						.c	
Storage Temperature Range	TSTG	1		-5	0 to +1	50			.c


NOTES:

1. Unit mounted on 6" x 5.5" x .11" THK (15 cm. x 14 cm.x 0.3 cm.) Al. Plate

2. Unit mounted on P.C. Board at .375", (9.5mm) lead lengths.

RATINGS AND CHARACTERISTIC CURVES KBPC6005 THRU KBPC610

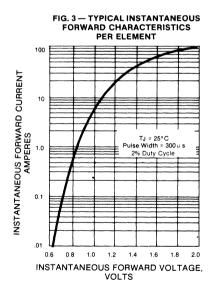
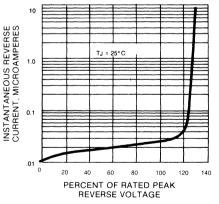



FIG. 4 — TYPICAL REVERSE CHARACTERISTICS PER ELEMENT

KBPC8005 THRU KBPC810

GLASS PASSIVATED SINGLE - PHASE SILICON BRIDGE RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 8.0 Amperes

52(13.2)

|**↓.48 (12.2)** ∣AC

770 (19.56)

730 (18, 54)

.75 (19.1) MIN.

290 (7.37)

210 (5.33)

HOLE FOR #6 screw .156 (1.27)DIA:

.290 (7.37)

AC I.

.052(1.3) .048(1.2)

.300 (7.6)

FEATURES

- This series is UL recognized under component index, file number E54214
 - High temperature metallurgically bonded
 - Glass passivated cavity-free rectifier junctions
 - Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
 - Typical I_R less than 0.1 μ A
 - High temperature soldering guaranteed: 265° C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Void-free plastic package *Terminals:* Leads, solderable per MIL-STD-202, Method 208

Mounting : Thru hole for #6 screw

Mounting Position: Any

Weight: 0.24 ounce, 6.9 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load, 60 Hz,. For capacitive load, derate current by 20%.

Polarity shown on side of case: positive lead by beveled corner

Dimensions in inches

and (millimeters)

	SYMBOLS	KBPC 8005	КВРС 801	KBPC 802	КВРС 804	KBPC 806	KBPC 808	КВРС 810	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
	I(AV)				8.0 3.0				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)	IFSM				125				Amps
Maximum Instantaneous Forward Voltage drop per element at 3.0A					1.2				Volts
Maximum DC Reverse LeakageTA = 25°Cat Rated DC Blocking VoltageTc = 125°C		10.0 100						μA	
Typical Junction Capacitance per element (Note 3)	CJ	1			30.0				pf
Typical Thermal Resistance (Note 4)	RØJC				6.0				.cw
Operating and Storage Temperature Range	TJ.TSTO	3		-5	0 to +1	50			.c


NOTES:

1. Unit mounted on 8.7" sq. x 24"THK (22cm. sqv 0.6 cm) Al Plate.

2. Unit mounted P.C. board at .375", 9.5mm lead lengths.

3. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

4. Thermal Resistance from Junction to Case with units mounted on a 8.6" x 8.6" x 2.4" THK (22 x 22 x 0.6 cm).

RATINGS AND CHARACTERISTIC CURVES KBPC8005 THRU KBPC810

KBU8A THRU KBU8M

SINGLE - PHASE SILICON BRIDGE RECTIFIERS VOLTAGE - 50 to 1000 Volts CURRENT - 8.0 Amperes

FEATURES

- This series is UL recognized under component index, file number E54214
 - Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
 - Ideal for printed circuit board
 - Reliable low cost construction utilizing molded plastic technique
 - Surge overload rating of 300 Amperes peak
 - High temperature soldering guaranteed: 250° C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique

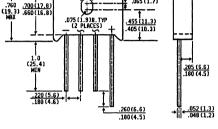
Terminais: Plated Leads solderable per MIL-STD-202, Method 208

Mounting Position: Any

Mounting Torgue: 5 in. lb. max.

Weight: 0.3 ounce, 8.0 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified Resistive or inductive load, 60 Hz., For capacitive load, derate current by 20%

·		SYMBOL	KBU 5 8A	KBU 8B	KBU 8D	KBU 8G	KBU 8J	KBU 8K	KBU 8M	UNITS
Maximum Recurrent Peak Reverse Voltage		VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage		VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		VDC	50	100	200	400	600	800	1000	Volts
J	Tc= 100°C T _A = 45°C	I(AV)		•		8.0 6.0				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)		IFSM				300				Amps
Maximum Instantaneous Forward Voltage dr per element at 8.0A	ор	VF				1.0				Volts
Maximum DC Reverse Leakage at Rated DC Blocking Voltage per element	T _A = 25°C Tc = 100°C	IR				10.0 300				·μA
Typical Thermal Resistance (Note 1)		ROJC	ReJC 5.0						.CW	
Operating and Storage Temperature Range		TJ, TSTO			-5	0 to +1	50			.c

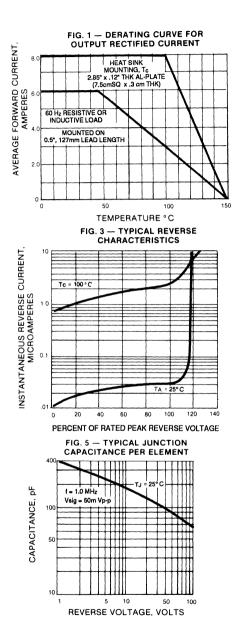
NOTES:

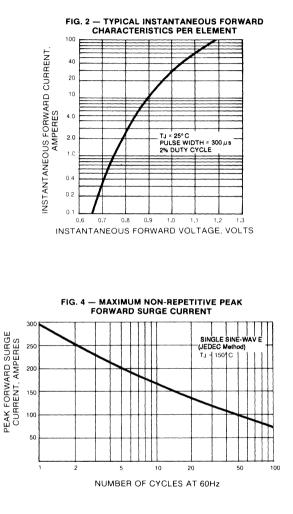
1. Thermal Resistance from Junction to Case with units mounted on a 3" x .11" THK (7.5cm. sq. x 0.3 cm.) Al. Plate"

895 (22.7)

Ŧ

.160 (4.1)


.185(4.7) .165(4.2)


45°

.085 (2.2)

Dimensions in inches and (millimeters)

RATINGS AND CHARACTERISTIC CURVES KBU8A THRU KBU8M

KBPC10, 15,25,35 SERIES

HIGH CURRENT SINGLE - PHASE SILICON BRIDGE RECTIFIERS

FEATURES

- This series is UL recognized under component index, file number E54214
- The plastic material used carries Underwriters Laboratory flammability recognition 94V-O
- Integrally molded heatsink provide very low thermal resistance for maximum heat dissipation
- Universal 4-way terminals; snap-on, wrap -around, solder or P.C. board mounting
- Surge overload ratings to 400 Amperes
- ◆ Terminals solderable per MIL-STD-202, Method 208
- Typical I_R less than 0.1 μ A
- High temperature soldering guaranteed: 250° C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Molded plastic with heatsink integrally mounted in the bridge encapsulation *Terminals:* Either plated .25" (6.35mm). Faston or plated copper leads .040" (1.02mm) diameter. Suffix letter "W" added to indicate leads

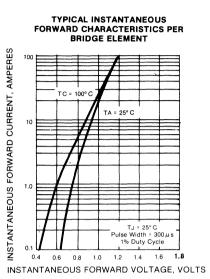
Weight: .706 ounce, 20 gram

Mounting Position: Bolt down on heat-sink with silicone thermal compound between bridge and mounting surface for maximum heat transfer efficiency **Mounting Torque:** 20 in. lb. max.

Polarity: Polarity symbols molded on body

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

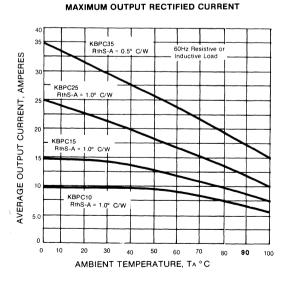
Ratings at 25°C ambient temperature unless otherwise specified . 60 Hz, resistive or inductive load. For capaacitive load, derate current by 20%.


				-005	-01	-02	-04	-06	-08	-10	
Maximum Recurrent Peak Rev	erse Voltage		VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage			VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage)		VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward	KB		10.0								
Rectified Output Current at	KB					15.0					
at T _C = 55°C		KBPC25					25.0				
	KB	PC35	l(AV)				35.0				Amps
Peak Forward Surge Current S		PC10					200				
sine-wave superimposed on		PC15					300				
rated load (JEDEC Method)	KB	1.	300								
	KB	IFSM				400				Amps	
Rating (non-repetitive, for t greater than 1 ms and less		PC10 PC15					160 375				
than 8.3 ms) For Fusing		PC25					375				
		PC35	l ² t	1			660				A ² s
Maximum Instantaneous Forward Voltage drop per	KBPC10 KBPC15	5.0A 7.5A									
element at	KBPC25	12.5A									
specified current	KBPC35	17.5A	VF				1.2				Volts
Isolation Voltage from case to	leads		2500						Vac		
Maximum Reverse DC Curren	nt										
at Rated DC Blocking Voltage	e per element	IR				10.0				μA	
Typical Thermal Resistance (N	Note 1)	RØJC	C 2.0						.c/M		
Operating and Storage Tempe	erature Range,	TJ,TSTO	3		-5	0 to +	150			. C	

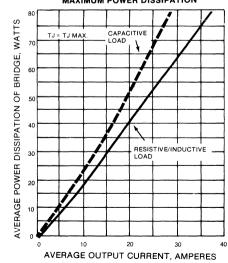
NOTES: 1. Thermal Resistance from Junction to Case.

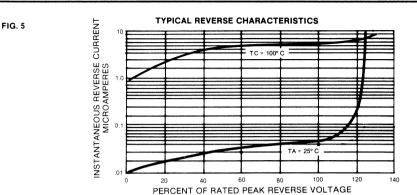
RATINGS AND CHARACTERISTIC CURVES KBPC 10, 15, 25, 35 SERIES

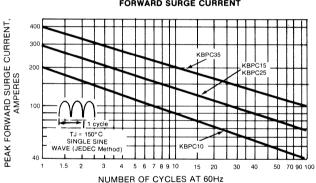
FIG. 2



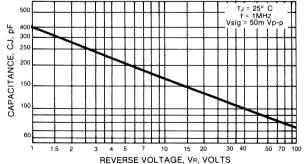
MAXIMUM OUTPUT RECTIFIED CURRENT AVERAGE FORWARD OUTPUT CURRENT, AMPERES KBPC35 9" x 3.5" x 4.6" AL-wing Plate (23 x 9 x 11.8 cm) 35 30 KBPC25 5" x6" x 4.9" Al-wing Plate /(12.8 x 15.2 x 12.4 cm) 25 20 5" x 4" x 3" Al-wing Plate (12.7 x 10.2 x 7.3 cm) KBPC15 15 KBPC10 10 6" x 2.2" x 2.2". Al, wing Plate (15 x 5.7 x 5.5 cm) 5 60Hz Resistive or Inductive 0 100 125 150 175 75 200 0 25 50 CASE TEMPERATURE Tc, °C

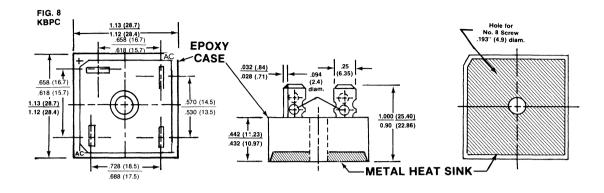

FIG. 3




MAXIMUM POWER DISSIPATION

RATINGS AND CHARACTERISTIC CURVES KBPC 10, 15, 25, 35 SERIES


FIG. 6



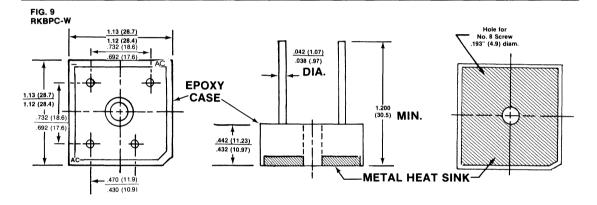
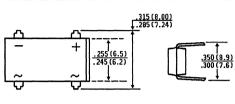

MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

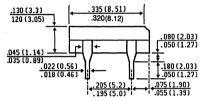
FIG. 7

NOTES:

- Corrosion resistant terminals designed for .250 female quick connector, wrap around or solder.
 A thin film of silicone thermal compound is recommended between the bridge case and mounting surface for
- improved thermal conduction.

A. Higher dielectric strengths available. Consult factory.
 4. These bridges are also available in fast recovery and in positive and negative center tap and in doubler configurations. Consult Factory.
 Dimensions in inches and (millimeters).




RDF005M THRU RDF08M

MINIATURE FAST RECOVERY GLASS PASSIVATED SILICON BRIDGE

VOLTAGE - 50 to 800 Volts CURRENT - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
- Glass passivated chip junctions
- Surge overload rating -50 amperes peak

- Ideal for printed circuit board
- High temperature soldering guaranteed: 265° C /10 seconds at 5 lbs., (2.3kg) tension
- Fast switching for high efficiency

MECHANICAL DATA

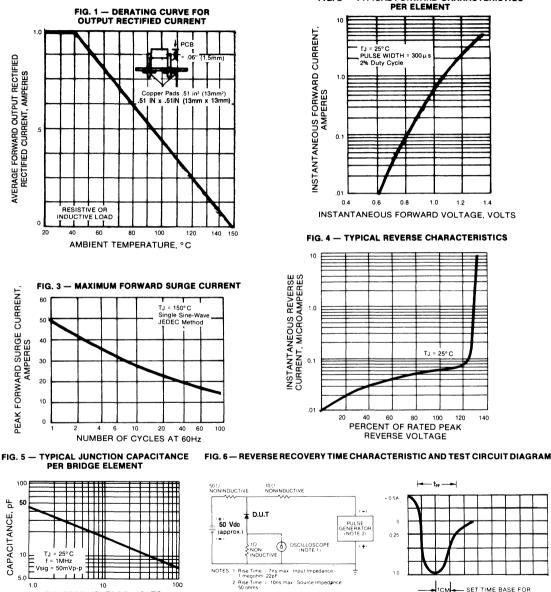
Case: Reliable low cost construction utilizing molded plastic technique results in inexpensive product

Terminals: Lead solderable per MIL-ST-202, Method 208 Polarity: Polarity symbols marked on body Weight: 0.04 ounce, 1.0 gram Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	RDF 005M	RDF 01M	RDF 02M	RDF 04M	RDF 06M	RDF 08M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage		50	100	200	400	600	800	Volts
Maximum Average Forward Output Rectified Current at $T_A = 40^{\circ}C$				1.	0			Amps
Peak Forward Surge CurrentSingle sine-wave superimposed onrated load (JEDEC Method)	IFSM			50	0			Amps
Rating for fusing (t<8.35ms)		10.0						A ² s
Maximum Instantaneous Forward Voltage drop per Bridge Element at 1.0A				1.	3			Volts
Maximum Reverse Current $T_A = 25^{\circ}$ at Rated DC Blocking Voltage $T_A = 125^{\circ}$	-	10.0 1.0						μA mA
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	T _{RR}		200		35	0		Ns
Typical Thermal Resistance (Note 2)				40	.0			.CW
Operating and Storage Temperature Range,				-55 to	+150			.c


NOTES:

1. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = .25A.

2. Thermal Resestance from Junction to Ambiient mounted on P.C. Board with, .51"sq. (13mm sq.) Copper Pads.

RATINGS AND CHARACTERISTIC CURVES RDF005M THRU RDF08M

FIG. 2 - TYPICAL FORWARD CHARACTERISTICS

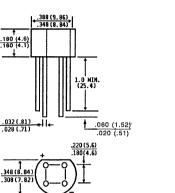
1CM

SET TIME BASE FOR 50/100ns/cm

1111

10

REVERSE VOLTAGE, VOLTS


100

1.0

RW005G THRU RW08G

MINIATURE FAST RECOVERY GLASS PASSIVATED SINGLE - PHASE SILICON BRIDGE RECTIFIER VOLTAGE - 50 to 800 Volts CURRENT - 1.5 Amperes

FEATURES

- · Glass passivated chip junctions
- Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
- High case dielectric strength
- Typical I_R less than 0.1 μ A
- Fast switching for high efficiency
- High overload surge capability
- Ideal for printed circuit board
- High temperature soldering guaranteed: 265° C/10 seconds /.375", (9.5mm) lead length/5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Molded plastic Terminals: Leads solderable per MIL-STD-202, Method 208 Mounting Position: Any

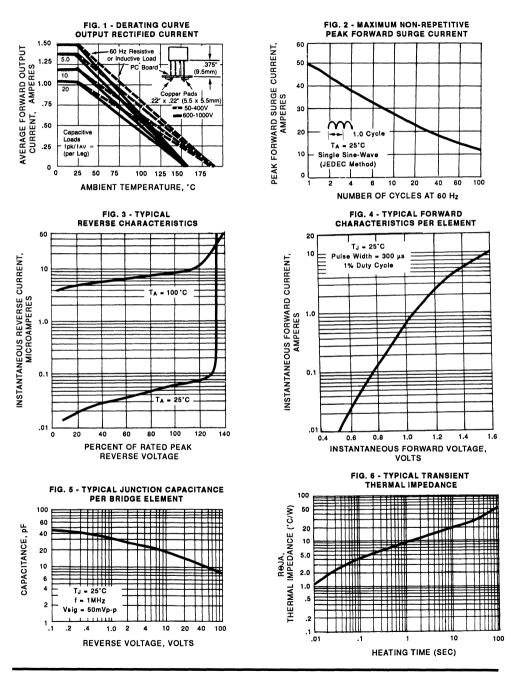
Weight: 0.04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.

Dimensions in inches and (millimeters)

	SYMBOLS	RW 005G	RW 01G	RW 02G	RW 04G	RW 06G	RW 08G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	Volts
Maximum Average Forward Rectified Current at .375", (9.5mm) lead length at $T_A = 25$ °C	I(AV)			1.	5		,	Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)	IFSM			Amps				
Rating for fusing (t<8.3ms)	l ² t	10.0						A ² s
Maximum Instantaneous Forward Voltage Drop per element at 1.0 Amperes				1.	3			Volts
Maximum DC Reverse Current at Rated $T_A = 25^{\circ}C$ DC Blocking Voltage per Bridge Element $T_A = 125^{\circ}C$				5. 50	-			μΑ
Typical Junction Capacitance per element (Note 1)		25.0						pf
Maximum Reverse Recovery Time per element (Note 3) TJ = 25°C				200		3	50	ns
Typical Thermal Resistance (Note 2)				36	.0			.c\M
Maximum DC Operating Temperature Range			-55	to +150)	-55 to	+125	.c
Storage Temperature Range	TSTG		-55 1	o +150		-55 to	+125	.c

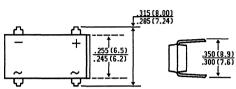

NOTES:

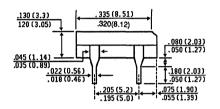
1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Thermal Resistance from Junction to Ambient at .375", 9.5mm lead length P.C. Board mounting.

3. Reverse Reecovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr= 0.25A.

RATINGS AND CHARACTERISTIC CURVES RW005G THRU RW08G




EDF1AM THRU EDF1DM

MINIATURE GLASS PASSIVATED FAST EFFICIENT SILICON BRIDGE

VOLTAGE - 50 to 200 Volts CURRENT - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
- Glass passivated chip junctions
- Surge overload rating -50 amperes peak

- Ideal for printed circuit board
- High temperature soldering guaranteed: 265° C /10 seconds at 5 lbs., (2.3kg) tension
- Superfast recovery ttimes for high efficiency

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique results in inexpensive product

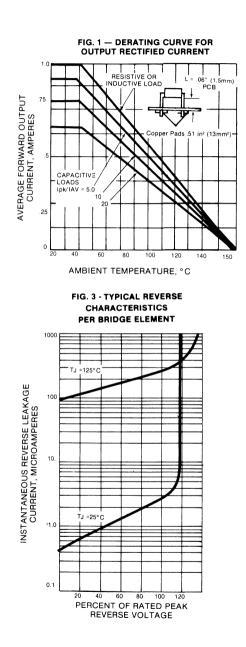
Terminals: Lead solderable per MIL-ST-202, Method 208

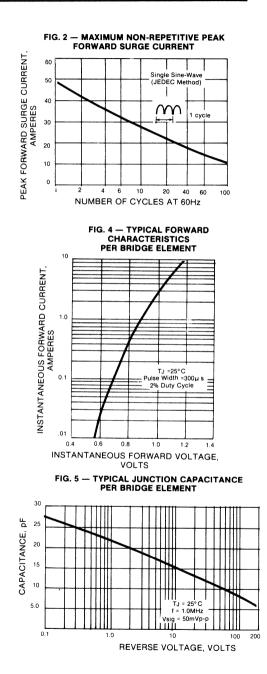
Polarity: Polarity symbols marked on body

Weight: 0.04 ounce, 1.0 gram Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	EDF1AM	EDF1BM	EDF1CM	EDF1DM	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	150	200	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Output Rectified Current at T _A = 40°C	I(AV)			1.0		Amps
Peak Forward Surge CurrentSingle half sine-wave superimposed onrated load (JEDEC Method)	IFSM			Amps		
Rating for fusing (t<8.35ms)	l ² t			A ² s		
Maximum Instantaneous Forward Voltage drop per Bridge Element at 1.0A	VF		1	1.05		Volts
Maximum Reverse Current T _A = 25°C				μA		
at Rated DC Blocking Voltage T _A = 125'C	IR			1.0		mA
Maximum Reverse Recovery Time (Note 1) TJ = 25'C	T _{RR}			ns		
Typical Thermal Resistance (Note 2)	Reja			.cw		
Operating and Storage Temperature Range,	Tj, Tstg		-55	to +150		.c


NOTES:

1. Reverse Recovery Test Conditions: IF = 0.5A, IR == 1.0A, Irr = .25A.

2. Thermal Resestance from Junction to Ambilient mounted on P.C. Board with, 51"sq. (13mm sq.) Copper Pads.

RATINGS AND CHARACTERISTIC CURVES EDF1AM THRU EDF1DM

GENERAL INSTRUMENT

-522-

SURFACE MOUNT BRIDGE RECTIFIER

1.0 AMPERE 50 VOLTS TO 1000 VOLTS


DF005S THRU DF10S

MINIATURE GLASS PASSIVATED SINGLE-PHASE SILICON SURFACE MOUNT BRIDGE

VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere

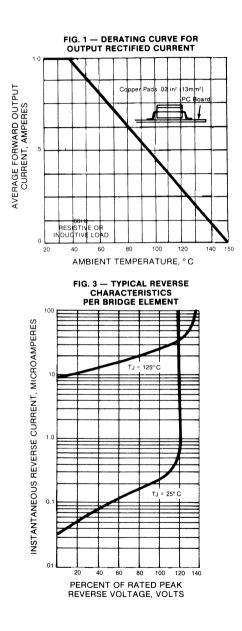
- This series is UL recognized under component index file number E54214
 - Plastic material used carries Underwriters Laboratory recognition 94V-0
 - Glass passivated chip- junctions
 - Surge overload rating 50 amperes peak
 - Ideal for printed circuit board
 - High temperature soldering guaranteed 300°C/10 seconds at 5 lbs., (2.3kg) tension

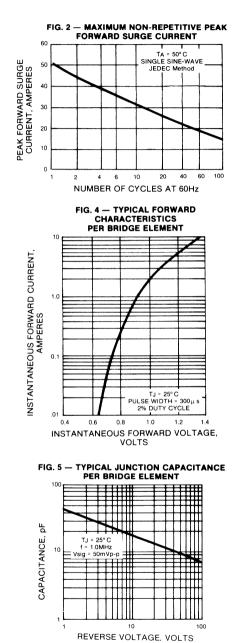
Dimensions in inches and (millimeters) MECHANICAL DATA

Case: Molded Plastic

Terminals: Lead solderable per MIL-STD-202, Method 208 Polarity: Polarity symbols marked on body Weight: 0.04 ounce, 1.0 gram Mounting Position: Any

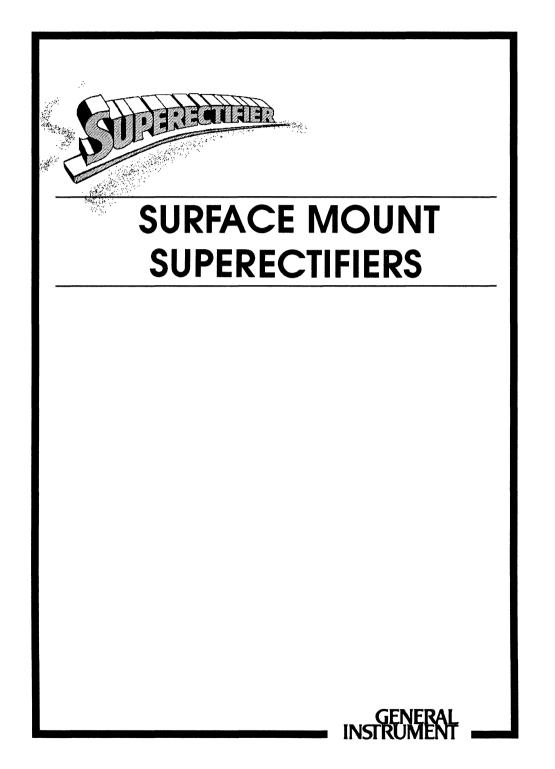
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

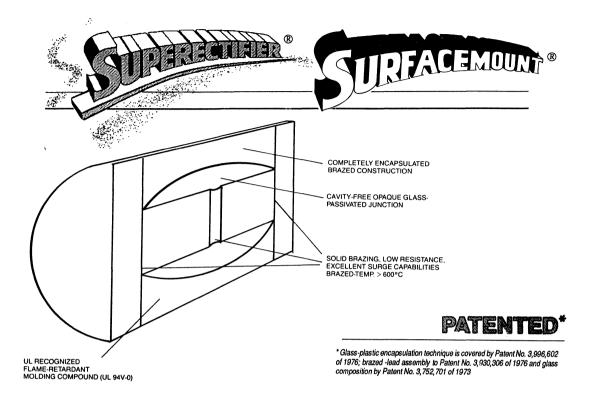

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.


	SYMBOLS	DF0 055	DF 01S	DF 02S	DF 04S	DF 06S	DF 08S	DF 10S	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		50	100	200	400	600	800	1000	Volts
Maximum Average Forward Output Rectified Current at $T_A = 40^{\circ}C$	I(AV)				1.0				Amp
Peak Forward Surge CurrentSingle half sine-wave superimposed onrated load (JEDEC Method)	IFSM				50.0				Amps
Rating for fusing (t<8.35ms)					10.0				A ² s
Maximum Instantaneous Forward Voltage drop per element at 1.0A	VF				1.1				Volts
Maximum Reverse Current T _A = 25°C					10.0				μA
at Rated DC Blocking Voltage per element TA = 125°C	IR				0.5				mA
Typical Junction Capacitance per element (Note 1)	CJ				25.0				pf
Operating Temperature Range		-55 to +150						.c	
Storage Temperature Range,	TSTG			-5	5 to +1	50			.c

NOTE:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.


RATINGS AND CHARACTERISTIC CURVES DF005S THRU DF10S



GENERAL INSTRUMENT

-526-

Our surface mount SUPERECTIFIER has redefined the concept of time and space. Passivated silicon SUPERECTIFIERs (IN6478-IN6484 and GL41A-GL41M) are 1 amp, 50-1000 PRV, leadless, surface mounted devices that provide new space options, from increased surface density to reduced board size. Component placement speeds can be an order of magnitude higher. Our surface mount SUPEREC-TIFIERs feature:

Brazing at greater than 600°C at both terminal and celleliminates all soft solders

Exclusive UL recognized flame-retardant epoxy molding compound rated 94V-0, the highest available rating. (hermetically sealed construction.)

No other 1 Ampere rectifier of any kind - plastic, glass or metal-can match our surface mount SUPERECTIFIER features.

The way we make our surface mount SUPERECTIFIER is what makes them the best.

In cell construction, most other rectifiers rated up to 1 Ampere are soldered or are only pressure contacted. Our surface mounted SUPERECTIFIER is made into an entirely solid unit with leads and cell brazed at temperatures greater than 600°C. All other rectifiers fail at half that temperature!

Conventional plastic rectifiers use either varnish, silicone rubber or a thin film of silicon oxide to protect the junction. Our surface mount SUPERECTIFIER uses a patented glass passivation to seal its junction hermetically.

In device encapsulation, our surface mount SUPEREC-TIFIER uses a flame-RETARDANT molding compound, rated UL 94V-0, the highest rating available. In fact, it is the only plastic rectifier that exceeds environmental standards of MIL-S-19500.

In summary, the General Instrument surface mount SUPERECTIFIER is the world's only rectifier with totally brazed construction, with a patented glass passivated junction, and with flame-retardant molding encapsulation.

SURFACE MOUNT SUPERRECTIFIERS

Surface Mount Superectifiers

Features:

- High Temperature Metallurgically Bonded
- Plastic Package has Underwriters Laboratory Classification 94V-0
- Glass Passivated Junction
- Exceeds Environmental Standards of MIL-STD-19500
- High Temperature Soldering Guaranteed for all present methods, including wave and vapor reflow soldering

Types:

ECLAL ECRAC	0 E ama Ultrafaat Daaayany Timaa
RGL34A-RGL34J	0.5 amp., Fast Recovery Times
GL34A-GL34J	0.5 amp., Standard Recovery Times
EGL41A-EGL41G	1 amp, Ultrafast Recovery Times
RGL41A-RGL41M	1 amp, Fast Recovery Times
GL41A-GL41M	1 amp, Standard Recovery Times
1N6478-1N6484	1 amp, Standard Recovery Times

EGL34 - EGB4G 0.5 amp Ultrafast Recovery Times

Quick Guide To Surface Mount Superectifiers

TYPE	1N6478 thru 1N6484	GL41A thru GL41M	RGL41A thru RGL41M	EGL41 + thru EGL41G +	GL34A thru GL34J	RGL34A thru RGL34J	EGL34A thru EGL34G
CASE	GL41	GL41	GL41	GL41	GL34	GL34	GL34
L (A)	1.0	1.0	1.0	1.0	0.5	0.5	0.5
, ,⊺ . (°C)	75	75	55	75	75	55	75
V. = 50 (V)	1N6478	GL41A	RGL41A	EGL41A	GL34A	RGL34A	EGL34A
V. = 100 (V)	1N6479	GL41B	RGL41B	EGL41B	GL34B	RGL34B	EGL34B
V. = 150 (V)				EGL41C		_	EGL34C
V. = 200 (V)	1N6480	GL41D	RGL41D	EGL41D	GI34D	RGL34D	EGL34D
V. = 300 (V)				EGL41F			EGL34F
V. = 400 (V)	1N6481	GL41G	RGL41G	EGL41G	GL34G	RGL34G	EGL34G
V = 600 (V)	1N6482	GL41J	RGL41J		GL34J	RGL34J	
V. = 800 (V)	1N6483	GL41K	RGL41K				
V. = 1000 (V)	1N6484	GL41M	RGL41M				
SURGE (A)	30	30	30	30	10	10	10
V. (V)	1.0	1.1/1.2	1.3	1.0/1 25	1.1	1.3	1.25

'Fast Recovery

+ Ultrafast Recovery

Silicon Chips

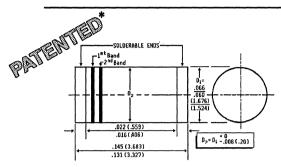
General Instrument's Silicon Chips are available in a large variety of current and voltage types. Chips with standard, fast, and ultrafast recovery times are available.

Each General Instrument chip is a glass passivated junction which offers easily solderable metallization as well as high surge current capability, making them ideal for hybrid circuit applications.

Types:

GPP	1 and 5 amp, standard recovery times
RGPP	1 and 5 amp, fast recovery times
EFR	1, 3, 5, and 8 amp, ultrafast recovery times

	Standard	Recovery	Fast Re	ecovery		Recovery		
TYPE	GPP1A thru GPP1M	GPP5A thru GPP5K	RGPP1A thru RGPP1K	RGPP5A thru RGPP5K	EFR1A thru EFR1D	EFR3A thru EFR3D	EFR5A thru EFR5D	EFR8A thru EFR8D
I _a (A)	1.0	5.0	1.0	5.0	1.0	3.0	5.0	8.0
(it T _A (°C)	75	100	75	100	75	75	75	75
V _{i2} = 20 (V)								
V _{i3} = 30 (V)								
V _R = 40 (V)								
V _R = 50 (V)	GPP1A	GPP5A	RGPP1A	RGPP5A	EFR1A	EFR3A	EFR5A	EFR8A
V _H = 60 (V)								
V _R = 100 (V)	GPP1B	GPP5B	RGPP1B	RGPP5B	EFR1B	EFR3B	EFR5B	EFR8B
V ₁₃ = 150 (V)					EFR1C	EFR3C	EFR5C	EFR8C
V _R = 200 (V)	GPP1D	GPP5D	RGPP1D	RGPP5D	EFR1D	EFR3D	EFR5D	EFR8D
$V_{B} = 400 (V)$	GPP1G	GPP5G	RGPP1G	RGPP5G				
V _{FI} = 600 (V)	GPP1J	GPP5J	RGPP1J	RGPP5J				
V _{F1} = 800 (V)	GPP1K	GPP5K	RGPP1K	RGPP5K				
V _R = 1000 (V)	GPP1M							
SURGE (A)	60	150	30	150	50	75	125	300
V _F (V)	1.1	1.1	1.3	1.3	0.9	0.9	0.9	0.9



-531-

BYM05-50 THRU BYM05-600 **GL34A THRU GL34J**

SURFACE MOUNT GLASS PASSIVATED SILICON RECTIFIER Voltage - 50 to 600 Volts Current - 0.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

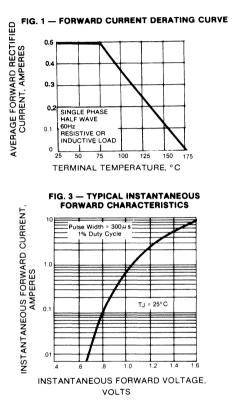
*Glass-plastic encapsulation technique is covered by Patent No. 3.996.602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973.

- For surface mounted applications
- High temperature metallurgically bonded no compression contacts as found in diode-constructed rectifiers
- Glass passivated junction
- Plastic package has Underwriters Lab-٠ oratory Flammability Classification 94V-0
- Capable of meeting environmental standards of ٠ MIL-S-19500
- High temperature soldering guaranteed: 450°C/5 seconds at terminals. Complete device submersible temperature of 260°C for 10 seconds in solder bath

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Terminals, solderable per MIL-STD-202, Method 208 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.036 gram. 0.0014 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	BYM05								
	SYMBOLS	-50	-100	-200	-400	-600	UNITS		
Standard recovery time device: 1 st band is white		GL34A	GL34B	GL34D	GL34G	GL34J			
Maximum Recurrent Peak Reverse Voltage		50	100	200	400	600	Volts		
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts		
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts		
Maximum Average Forward Rectified Current at T _{T =} 75°C	I _(AV)		0.5						
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)			Amps						
Maximum Instantaneous Forward Voltage at 0.5A	VF		1.1						
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$		5.0 50.0					μA		
Maximum Full Load Reverse Current, Full Cycle Average, at T _A = 75°C			μA						
Typical Junction Capacitance (Note 1)	CJ		pf						
Maximum Thermal Resistance R _{thJL} (Note 2) R _{thJA} (Note 3)			70.0 150.0						
Operating and Storage Temperature Range		-65 to +175					.c		
Polarity Color Bands (2 nd Band)		Gray	Red	Orange	Yellow	Green			

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

Thermal resistance junction to terminal, 5.0mm² copper pads to each terminal.
 Thermal resistance junction to ambient, 5.0mm² copper pads to each terminal.

RATINGS AND CHARACTERISTIC CURVES BYM05-50 THRU BYM05-600 GL34A THRU GL34J

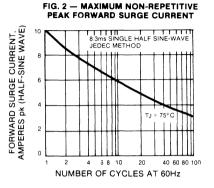
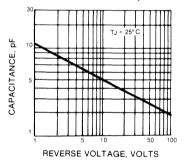
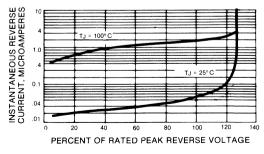
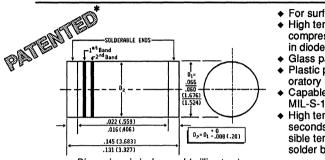




FIG. 4 - TYPICAL JUNCTION CAPACITANCE



BYM06-50 THRU BYM06-600 RGL34A THRU RGL34J

SURFACE MOUNT GLASS PASSIVATED FAST SWITCHING SILICON RECTIFIER Voltage - 50 to 600 Volts Current - 0.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

*Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973.

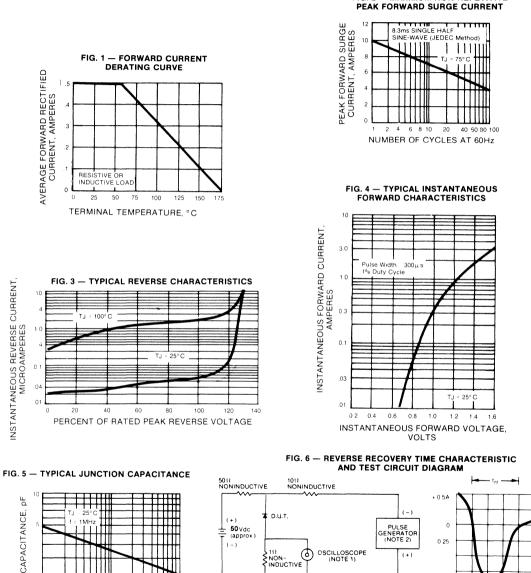
- For surface mounted applications
- High temperature metallurgically bonded no compression contacts as found in diode-constructed rectifiers
- Glass passivated junction

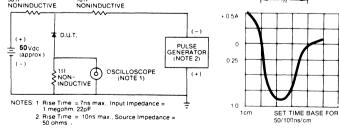
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 450°C/5 seconds at terminals. Complete device submersible temperature of 260°C for 10 seconds in solder bath

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated terminals, solderable per MIL-STD-202, Method 208 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.036 gram, 0.0014 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

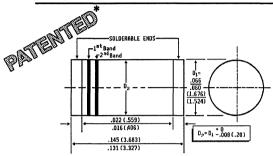

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	BYM06							
	SYMBOLS	-50	-100	-200	-400	-600	UNITS	
Fast switching device: 1 st band is red		RGL34A	RGL34B	RGL34D	RGL34G	RGL34J		
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts	
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts	
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts	
Maximum Average Forward Rectified Current at T _T = 55°C				Amps				
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			10.0			Amps	
Maximum Instantaneous Forward Voltage at 0.5A			Volts					
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$			μA					
Maximum Full Load Reverse Current, Full Cycle Average, at $T_A = 55$ °C				μA				
Maximum Reverse Recovery Time (Note 1) T _A = 25°C	T _{RR}	150 250		250	ns			
Typical Junction Capacitance (Note 2)				pf				
Maximum Thermal Resistance (Note 3) (Note 4)		70 150.0					•c/w	
Operating and Storage Temperature Range				-65 to +1	75		.с	
Polarity Color Bands (2 nd Band)		Gray	Red	Orange	Yellow	Green		

 NOTES: 1. Reverse Recovery Test Conditions IF = 0.5A, IR = 1.0A, Irr = .25A.
 2. Measured:
 3. Thermal resistance from junction to terminal, 5mm² copper pads to each terminal.
 4. Thermal resistance from junction to ambient, 5mm² copper pads to each terminal. 2. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

RATINGS AND CHARACTERISTIC CURVES BYM06-50 THRU BYM06-600 RGL34A THRU RGL34J

FIG. 2 - MAXIMUM NON-REPETITIVE



BYM07-50 THRU BYM07-400 EGL34A THRU EGL34G

SURFACE MOUNT GLASS PASSIVATED FAST EFFICIENT SILICON RECTIFIER Voltage - 50 to 400 Volts Current - 0.5 Amperes

Dimensions in inches and (millimeters)

*Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

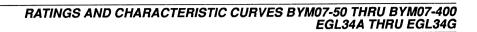
- For surface mounted applications
- High temperature metallurgically bonded no compression contacts as found in diode-constructed rectifiers
- Glass passivated junction
- Plastic package has Underwriters Lab-
- oratory Flammability Classification 94V-0
- Fast switching for high efficiency
- High temperature soldering guaranteed: 450°C/5 seconds at terminals. Complete device submersible temperature of 260°C for 10 seconds in solder bath

MECHANICAL DATA

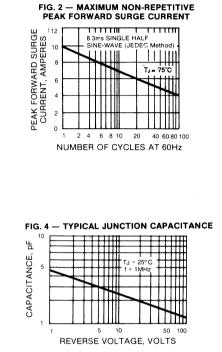
FEATURES

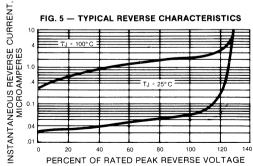
Case: Molded plastic over glass Terminals: Plated terminals, solderable per MIL-STD-202, Method 208 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.036 gram, 0.0014 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

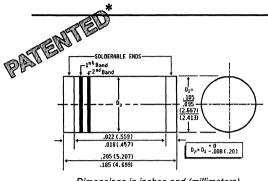

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz resistive or inductive load. For capacitive load, derate current by 20%.

	BYM07							
	SYMBOLS	-50	-100	-150	-200	-300	-400	UNITS
Fast Efficient device: 1 st band is green		EGL34A	EGL34B	EGL34C	EGL34D	EGL34F	EGL34G	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	Volts
Maximum Average Forward Rectified Current at $T_T = 75$ °C	I(AV)			0	.5			Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	10.0					Amps	
Maximum Instantaneous Forward Voltage at 0.5A		1.25						Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR	5.0 50.0					μA	
Maximum Reverse Recovery Time (Note 1) TJ = 25°C		50.0						nS
Typical Junction Capacitance (Note 2)	CJ	4.0						pf
Maximum Thermal Resistance (Note 3) (Note4)	Røjl Røja						.cw	
Operating and Storage Temperature Range		-65 to +175					.c	
Polarity Color Bands (2 nd Band)		Gray	Red	Pink	Orange	Brown	Yellow	


NOTES: 1. Reverse Recovery Test Conditions : IF = 0.5A, Ir= 1.0A, Irr = .25A


2. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

Thermal resistance from junction to terminal, 5.0mm² copper pads to each terminal.
 Thermal resistance from junction to ambient, 5.0mm² copper pads to each trerminal.



1N6478 THRU 1N6484

SURFACE MOUNT GLASS PASSIVATED SILICON RECTIFIER

Voltage - 50 to 1000 Volts

FEATURES

Dimensions in inches and (millimeters)

*Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973.

For surface mounted applications

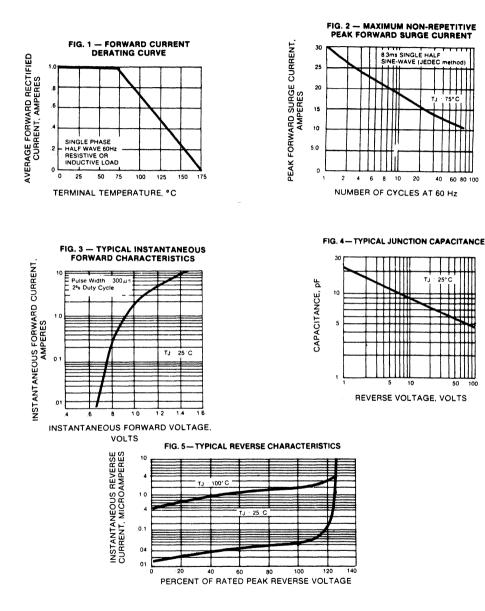
Current - 1.0 Ampere

- High temperature metallurgically bonded no compression contacts as found in diode-constructed rectifiers
- Glass passivated junction
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 450°C/5 secondsat terminals. Complete device submersible temperature of 265°C for 10 seconds in solder bath

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated terminals, solderable per MIL-STD-202, Method 208 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.116 gram, 0.0046 ounce

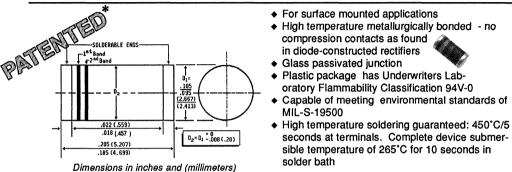
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Standard recovery time device: 1 st band is white	YMBOLS	1N 6478	1N 6479	1N 6480	1N 6481	1N 6482	1N 6483	1N 6484	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
* Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
* Maximum Average Forward Rectified Current at $T_T = 75$ °C	I(AV)				1.0				Amps
 Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T_A = 75 °C 	IFSM				30.0				Amps
* Maximum Instantaneous Forward Voltage at 1.0A $T_A = 75^{\circ}C$ $T_A = 25^{\circ}C$	VF				1.0 1.1				Volts
* Maximum DC Reverse Current T _A = 25°C at Rated DC Blocking Voltage T _A = 125°C	IR				10.0 200				μA
* Maximum Full Load Reverse Current, Full Cycle Average,at T _A = 75°C	IR(AV)				100				μA
Typical Junction Capacitance (Note 1)	CJ				15				pf
* Maximum Thermal Resistance (Note 2) (Note 3)	RØJL RØJA				20.0 50.0				.c/w
* Operating and Storage Temperature Range	TJ,TST	3		-6	5 to +'	175			.c
Polarity Color Bands (2 nd Band)		Gray	Red	Orange	Yellow	Green	Blue	Violet	

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 V_{DC}.
 2. Thermal resistance from junction to terminal, 6.0mm² copper pads to each terminal.
 3. Thermal resistance from junction to ambient, 6.0mm² copper pads to each terminal.

JEDEC Registered Values


RATINGS AND CHARACTERISTIC CURVES 1N6478 THRU 1N6484

BYM10-50 THRU BYM10-1000 **GL41A THRU GL41M**

SURFACE MOUNT GLASS PASSIVATED SILICON RECTIFIER Voltage - 50 to 1000 Volts Current - 1.0 Ampere

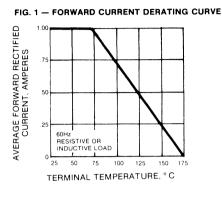
FEATURES

*Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3.752.701 of 1973.

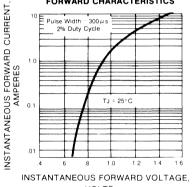
MECHANICAL DATA Case: Molded plastic over glass Terminals: Plated Terminals, solderable per MIL-STD-202, Method 208 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type

Mounting Position: Any Handling Precautions: None Weight: 0.116 gram, 0.0046 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

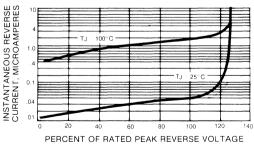

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

				BYM10	2		BY	M10A	
	SYMBOLS	-50	-100	-200	-400	-600	-800 -	1000	UNITS
Standard recovery device: 1 st band is WHITE		GL41A	GL41B	GL41D	GL41G	GL41J	GL41K	GL41M	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volte
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current T _T = 75°C	I(AV)				1.0				Amp
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				30.0				Amp
Maximum Instantaneous Forward Voltage at 1.0A	VF				1.1		1.	2	Volte
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR				10.0 50.0				μA
Maximum Full Load Reverse Current, Full Cycle Average, at $T_A = 75^{\circ}C$	IR(AV)				30.0				μA
Typical Junction Capacitance (Note 1)	CJ				15.0				pf
Maximum Thermal Resistance (Note 2) (Note 3)	Røjl Røja				30.0 75.0				•c/v
Operating and Storage Temperature Range	TJ,TST	Э		-6	5 to +	175			.c
Polarity Color Bands (2 nd Band)		Gray	Red	Orange	e Yellow	Green	Blue	Violet	

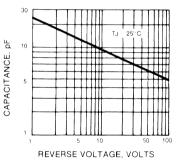

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4,0 Vpc.

Thermal resistance from junction to terminal, 6.0mm² copper pads to each terminal.
 Thermal resistance from junction to ambient, 6.0mm² copper pads to each terminal.

RATINGS AND CHARACTERISTIC CURVES BYM10-50 THRU BYM10-1000 GL41A THRU GL41M

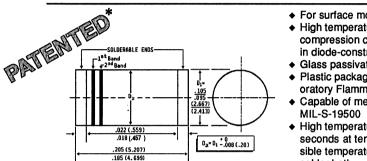


VOLTS



PEAK FORWARD SURGE CURRENT, AMPERES 30 = 75°C ТJ 25 3ms SINGLE HALF CINE EDEC METHOD 20 15 10 5.0 2 4 68 10 20 40 60 80 100 NUMBER OF CYCLES AT 60Hz

FIG. 2 -- MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT


FIG. 4 - TYPICAL JUNCTION CAPACITANCE

BYM11-50 THRU BYM11-1000 **RGL41A THRU RGL41M**

SURFACE MOUNT GLASS PASSIVATED FAST SWITCHING SILICON RECTIFIER Voltage - 50 to 1000 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

"Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973.

- For surface mounted applications
- High temperature metallurgically bonded no compression contacts as found in diode-constructed rectifiers
- Glass passivated junction
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Capable of meeting environmental standards of
- High temperature soldering guaranteed: 450°C/5 seconds at terminals. Complete device submersible temperature of 260°C for 10 seconds in solder bath

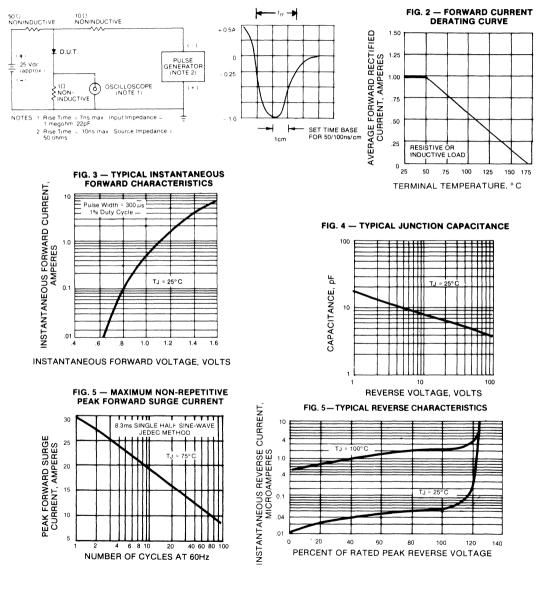
MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Terminals, solderable per MIL-STD-202, Method 208 Polarity: Two bands indicate cathode

1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.116 gram, 0.0046 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25th ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

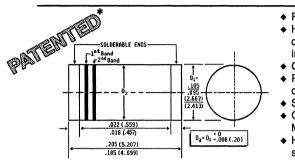

				BYM11				
SYMBOLS	- 50	-100	-200	-400	-600	-800-	1000	UNITS
	RGL 41A	RGL 41B	RGL 41D	RGL 41G	RGL 41J	RGL 41K	RGL 41 M	
VRRM	50	100	200	400	600	800	1000	Volts
VRMS	35	70	140	280	420	560	700	Volts
VDC	50	100	200	400	600	800	1000	Volts
I(AV)				1.0				Amps
IFSM				30.0				Amps
VF				1.3				Volts
IR				5.0 50.0				μA
IR(AV)				50.0				μΑ
T _{RR}		150			250	500	500	ns
CJ				15.0			-	pf
RØJL RØJA				30.0 75.0				.c/w
TJ,TSTG			-65	5 to +1	75			.c
1	Grav	Red	Orange	Vellow	Green	Blue	Violet	
	VRRM VRMS VDC I(AV) IFSM VF IR IR(AV) TRR CJ RØJL RØJA	41A VRMS 50 VDC 50 I(AV) - IFSM - VF - IR - IR(AV) - RØJL - RØJA -	RGL 41A RGL 41B VRRM 50 100 VRMS 35 70 VDC 50 100 I(AV)	SYMBOLS 50 -100 -200 RGL 41A 41B 41D VRRM 50 100 200 VRMS 35 70 140 VDC 50 100 200 I(AV) 50 100 200 I(AV) - - - IR - - - IR - - - IR(AV) - - - IR(AV) - - - RQL - - - RQJA - - -	SYMBOLS 50 -100 -200 -400 RGL 41A 41B 41D 41G VRMM 50 100 200 400 VRMM 50 100 200 400 VRMM 50 100 200 400 VRMS 35 70 140 280 VDC 50 100 200 400 I(AV) 1.0 200 400 IFSM 30.0 VF 1.3 IR 50.0 13.3 50.0 IR(AV) 50.0 TS0.0 TS0.0 RMA 150 50.0 TS0.0 ReJL 30.0 30.0 30.0 75.0 TRR 150 50.0 15.0 ReJA 75.0 75.0 75.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SYMBOLS 50 -100 -200 -400 -600 -600 RGL 41A RGL 41B RGL 41D RGL 41G RGL 41J RGL 41J RGL 41J RGL 41J RGL 41J RGL 41J RGL 41K VRRM 50 100 200 400 600 800 VRMS 35 70 140 280 420 560 VDC 50 100 200 400 600 800 I(AV) - 1.0 200 400 600 800 I(AV) - 50.0 100 200 400 600 800 I(AV) - - 50.0 - 50.0 - - - - - - - - 50.0 -	SYMBOLS 50 -100 -200 -400 -600 -800- 1000 RGL 41A RGL 41B RGL 41D RGL 410 RGL 410 RGL 413 RGL 414 RGL 410 RGL 413 RGL 414 RGL 416 RGL 4100 ROU 1000

2. Thermal resistance from junction to terminal, 6.0mm² copper pads to each terminal.

oads to each terminal

4. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

RATINGS AND CHARACTERISTIC CURVES BYM11-50 THRU BYM11-1000 RGL41A THRU RGL41M


FIG. 1 -- REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

BYM12-50 THRU BYM12-400 EGL41A THRU EGL41G

SURFACE MOUNT GLASS PASSIVATED FAST EFFICIENT SILICON RECTIFIER Voltage - 50 to 400 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

*Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973.

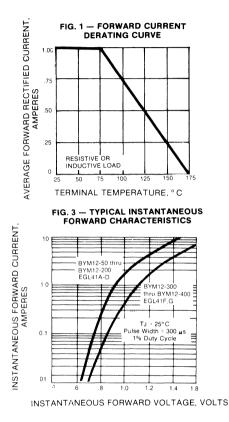
- For surface mounted applications
- High temperature metallurgically bonded no compression contacts as found in diode-constructed rectifiers
- Glass passivated junction

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Superfast recovery times for high efficiency
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 450°C/5 seconds at terminals. Complete device submersible temperature of 265°C for 10 seconds in solder bath

MECHANICAL DATA

Case: Molded plastic over glass Terminals: Solderable per MIL-STD-202, Method 208 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.116 gram, 0.0046 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

· · · · · · · · · · · · · · · · · · ·				BYM12				
	SYMBOLS	-50	-100	-150	-200	300	-400	UNITS
Fast efficient devices: 1 st band is green		EGL 41 A	EGL 41B	EGL 41C	EGL 41D	EGL 41F	EGL 41G	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	Volts
Maximum Average Forward Rectified Current at Tr = 75°C	I(AV)		•	1	.0	•		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			30).0			Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF			1.0		1.	25	Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR			-	.0).0			μA
Maximum Reverse Recovery Time (Note 1) TJ = 25°C	T _{RR}				50			ns
Typical Junction Capacitance (Note 2)	CJ			1	5.0			pf
Maximum Thermal Resistance RthJL (Note 3) RthJA (Note 4)	Røjl Røja				30 30			·c/w
Operating and Storage Temperature Range	TJ,TSTG	G -65 to +175				.c		
Polarity Color Bands (2 nd Band)		Gray	Red	Pink	Orange	Brown	Yellow	

NOTES: 1. Reverse Recovery Test Conditions $I_F = .5A$, $I_R = 1.0A$, Irr = .25A. 3. Thermal resistance junction to terminal, $6.0mm^2$ copper pads to each terminal. -5442. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

 Thermal resistance junction to ambient, 6.0mm² copper pads to each terminal.

RATINGS AND CHARACTERISTIC CURVES BYM12-50 THRU BYM12-400 EGL41A THRU EGL41G

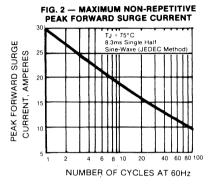
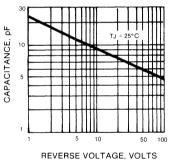
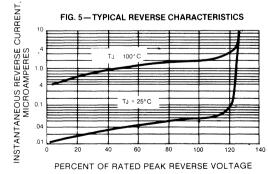
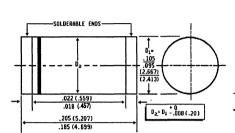




FIG. 4 - TYPICAL JUNCTION CAPACITANCE



GLL4735 THRU GLL4763

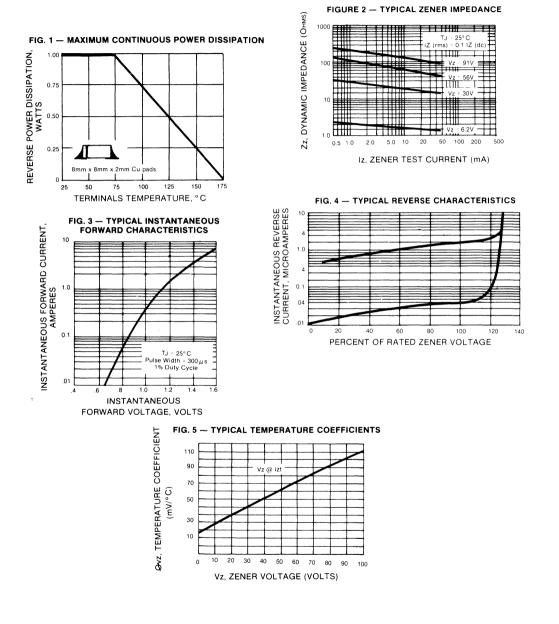
1.0 WATT SURFACE MOUNT GLASS PASSIVATED ZENER Voltage- 6.2-91.0 Volts Power Rating - 1.0 Watt

FEATURES

- For surface mounted applications
- Plastic package has Underwriter Labaoratory Flammability Classification 94 V-O
- Glass passivated junction
- Low zener impedance
- Excellent clamping capability
- High temperature soldering guaranteed: 250°C/10 seconds/ at terminals

MECHANICAL DATA

Case: Molded plastic Terminals: Solderable per MIL-STD-202, Method 208 Polarity: Red band denotes cathode Mounting Position: Any Handling Precautions: None Weight: 0.116 grams, 0.0046 ounce


The plastic material covering the glass passivated junction

OPERATING AND STORAGE TEMPERATURE RANGE -65°C to +175°C

Туре	*Nominal Zener Voltage @lzt Vz Volts	Maximum DC Power Dissipation @T _T = 75'C PD Watts	Test Current İzt mA		num Dyn npedence ZZK@ OHMs		Maximum Leakage @TA = IR μΑ	Current	Maximum Surge Current @TA = 25°C (Note 1) IR MApk	Maximum Forward Voltage @200mA @T _A = 25°C Volts
GLL4735	6.2	1.0	41.0	2.0	700	1.0	10.0	3.0	730.0	1.2
GLL4736	6.8	1.0	37.0	3.5	70O	1.0	10.0	4.0	660.0	1.2
GLL4737	7.5	1.0	34.0	4.0	700	0.5	10.0	5.0	605.0	1.2
GLL4738	8.2	1.0	31.0	4.5	700	0.5	10.0	6.0	550.0	1.2
GLL4739	9.1	1.0	28.0	5.0	700	0.5	10.0	7.0	500.0	1.2
GLL4740	10	1.0	25.0	7.0	700	0.25	10.0	7.6	454.0	1.2
GLL4741	11	1.0	23.0	8.0	700	0.25	5.0	8.4	414.0	1.2
GLL4742	12	1.0	21.0	9.0	700	0.25	5.0	9.1	380.0	1.2
GLL4743	13	1.0	19.0	10.0	700	0.25	5.0	9.9	344.0	1.2
GLL4744	15	1.0	17.0	14.0	700	0.25	5.0	11.4	305.0	1.2
GLL4745	16	1.0	15.5	16.0	700	0.25	5.0	12.2	285.0	1.2
GLL4746	18	1.0	14.0	20.0	750	0.25	5.0	13.7	250.0	1.2
GLL4747 GLL4748	20 22	1.0 1.0	12.5	22.0	750 750	0.25	5.0	15.2 16.7	225.0	1.2
GLL4748 GLL4749	22	1.0	11.5 10.5	23.0 25.0	750 750	0.25 0.25	5.0 5.0	16.7	205.0 190.0	1.2 1.2
GLL4749 GLL4750	24 27	1.0	9.5	25.0 35.0	750	0.25	5.0	20.6	170.0	1.2
GLL4750 GLL4751	30	1.0	9.5 8.5	35.0 40.0	1000	0.25	5.0	20.6	150.0	1.2
GLL4751 GLL4752	33	1.0	7.5	40.0	1000	0.25	5.0	22.8	135.0	1.2
							1			
GLL4753 GLL4754	36 39	1.0	7.0 6.5	50.0 60.0	1000 1000	0.25 0.25	5.0 5.0	27.4 29.7	125.0 115.0	1.2
GLL4754	39 43	1,0	6.0					29.7		1.2
GLL4755 GLL4756	43 47	1.0 1.0	5.5	70.0 80.0	1500 1500	0.25 0.25	5.0 5.0	32.7	110.0 95.0	1.2 1.2
GLL4750	47 51	1.0	5.5	95.0	1500	0.25	5.0	35.8	95.0 90.0	1.2
GLL4757	56	1.0	4.5	110.0	2000	0.25	5.0	42.6	80.0	1.2
GLL4758 GLL4759	62	1.0	4.5	125.0	2000	0.25	5.0	42.6	70.0	1.2
GLL4759 GLL4760	68	1.0	4.0	125.0	2000	0.25	5.0	51.7	65.0	1.2
GLL4760	75	1.0	3.3	175.0	2000	0.25	5.0	56.0	60.0	1.2
GLL4761	82	1.0	3.0	200.0	3000	0.25	5.0	62.2	55.0	1.2
GLL4763	91	1.0	2.0	250.0	3000	0.25	5.0	69.2	50.0	1.2
000			2.0	200.0		0.20				

*Standard Voltage Tolerance±10%, Suffix A .5% Note 1 : Surge Current is non-repetitive, 8.3 ms pulse width square wave or equivalent sine-wave superimposed on I_{ZT} per JEDEC method.

RATINGS AND CHARACTERISTIC CURVES GLL4735 THRU GLL4763

ZGL41-100 THRU ZGL41-200

1.0 WATT SURFACE MOUNT GLASS PASSIVATED ZENER Voltage- 100 - 200 Volts Power Rating - 1.0 Watt

FEATURES

- For surface mounted applications
- Plastic package has Underwriters Labaoratory Flammability Classification 94 V-O
- Glass passivated junction
- Low zener impedance
- Excellent clamping capability
- High temperature soldering guaranteed: 250°C/10 seconds/ at terminals

MECHANICAL DATA

Case: Molded plastic Terminals: Solderable per MIL-STD-202, Method 208 Polarity: Red band denotes cathode Mounting Position: Any Handling Precautions: None Weight: 0.116 grams, 0.0046 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

SOLDERABLE ENDS

.022 (.559)

.205 (5.207)

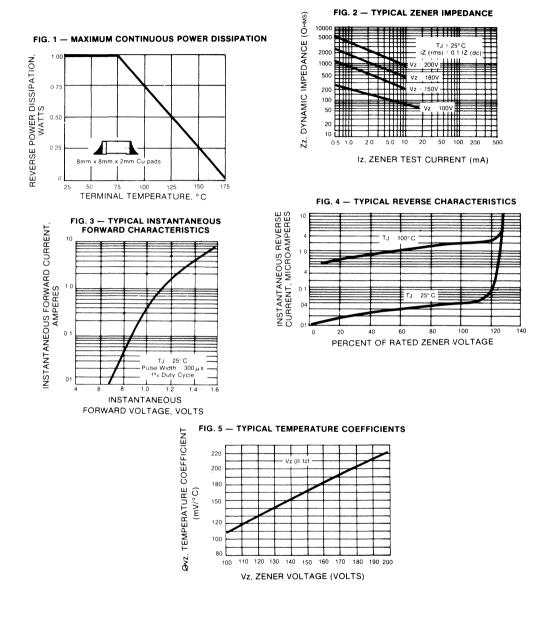
D'14

.<u>105</u> .095 -(2.667) (2.413)

Dimensions in inches

and (millimeters)

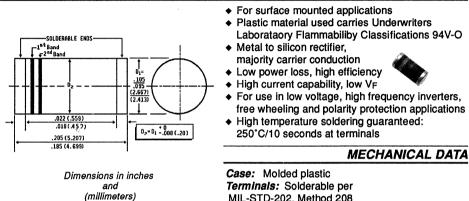
+ 0 D₂= D₁ - .008(.20)


ТҮРЕ	*NOMINAL ZENER VOLTAGE @ Izt Vz	MAXIMUM DC POWER DISSIPATION @ T _T =75 PD	TEST CURRENT IZT	ZZT	MAXIMUM D' IMPEDAN ZZK @		MAXIMUM REVERSE LEAKAGE CURRENT @ T _A =25 C Ja Ja Ja		MAXIMUM SURGE CURRENT @T _{A=} 25 C (NOTE 1) V _F	MAXIMUM FORWARD VOLTAGE @ 200mA @ T _A =25 C
	VOLTS	WATTS	mA	OHMS	OHMS	mA	μÂ	VOLTS	mAdc	VOLTS
ZGL41-100	100	1.0	3.7	250	3100	0.25	1.0	76.0	10.0	1.5
ZGL41-110	110	1.0	3.4	300	4000	0.25	1.0	83.6	9.1	1.5
ZGL41-120	120	1.0	3.1	380	4500	0.25	1.0	91.2	8.3	1.5
ZGL41-130	130	1.0	2.9	450	5000	0.25	1.0	98.8	7.7	1.5
ZGL41-140	140	1.0	2.7	525	5500	0.25	1.0	106.4	7.1	1.5
ZGL41-150	150	1.0	2.5	600	6000	0.25	1.0	114	6.7	1.5
ZGL41-160	160	1.0	2.3	700	6500	0.25	1.0	121.6	6.3	1.5
ZGL41-170	170	1.0	2.2	800	6750	0.25	1.0	129.2	5.9	1.5
ZGL41-180	180	1.0	2.1	900	7000	'0.25	1.0	136.98	5.6	1.5
ZGL41-190	190	1.0	2.0	1050	7500	0.25	1.0	144.4	5.3	1.5
ZGL41-200	200	1.0	1.9	1200	8000	0.25	1.0	152	5.0	1.5

The plastic material covering the glass passivated junction carries U/L recognition 94V-O OPERATING AND STORAGE TEMPERATURE RANGE -65°C to +175°C

* Standard Voltage Tolerance + 10%, Suffix A + 5%.

RATINGS AND CHARACTERISTIC CURVES ZGL41-100 THRU ZGL41-200



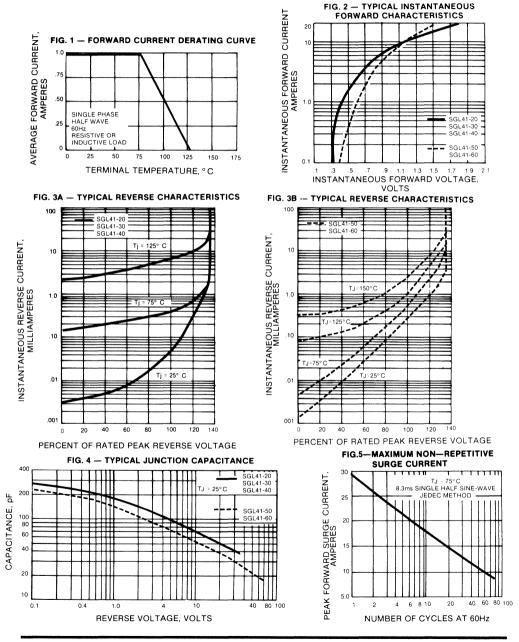
BYM13-20 THRU BYM13-60 SGL41-20 THRU SGL41-60

SURFACE MOUNT SCHOTTKY RECTIFIER Voltage - 20 to 60 Volts Current - 1.0 Amperes

FEATURES

MIL-STD-202, Method 208 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.116 gram, 0.0046 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

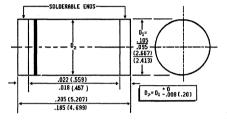
				BYM13			
	SYMBOLS	-20	-30	-40	-50	-60	UNITS
Schottky devices: 1st band is orange		SGL41-20	SGL41-30	SGL41-40	SGL41-50	SGL41-60	
Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	50	60	Volts
Maximum RMS Voltage	VRMS	14	21	28	35	42	Volts
Maximum DC Blocking Voltage	VDC	20	30	40	50	60	Volts
Maximum Average Forward Rectified Current at T _T = 75°C	I(AV)			1.0			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			30.0			Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF		.50		.70		Volts
Maximum Reverse Current $T_J = 25^{\circ}C$ at Rated DC Blocking Voltage $T_J = 100^{\circ}C$	IR			0.5 10			mA
Typical Junction Capacitance (Note 1)	CJ		110		80		pf
Maximum Thermal Resistance R _{thJL} (Note 2) R _{thJA} (Note 3)	Røjl Røja			30 75	•		.c\m
Operating Temperature Range	TJ			-65 to +1	25		.c
Storage Temperature Range	TSTG			-65 to +1	75		.c
Polarity Color Bands (2 nd Band)		Gray	Red	Orange	Yellow	Green	

NOTES:

Measured at 1 MHz and applied reverse voltage of 4.0 V_{DC}.
 Thermal resistance junction to terminal, 6.0mm² copper pads to each terminal.
 Thermal resistance junction to ambient, 6.0mm² copper pads to each terminal.

RATINGS AND CHARACTERISTIC CURVES BYM13-20 THRU BYM13-60 SGL41-20 THRU SGL41-60

GENERAL INSTRUMENT


TGL41 SERIES

SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR

Voltage - 6.8 to 200 Volts

FEATURES

- For surface mounted applications
- Plastic material used carries Underwriters Laborataory Flammabiliby Classifications 94V-O
- Glass passivated junction
- Excellent clamping capability
- Fast response time: typically less than 1.0ps from 0 volts to BV min.
- Typical I_R less than 1 μ A above 10V
- High temperature soldering guaranteed: 250°C/10 seconds at terminals

Dimensions in inches and (millimeters)

MECHANICAL DATA

Case: Molded plastic Terminals: Solderable per MIL-STD-202, Method 208 Polarity: Blue band denotes cathode Mounting Position: Any Handling Precautions: None Weight: 0.116 gram, 0.0046 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

RATINGS	SYMBOL	VALUE	UNITS
Peak Power Dissipation at T _A = 25°C, Tp = 1ms (Note 1)	Ppk	Minimum 400	Watts
Steady State Power Dissipation at TT = 75°C (Note 2)	PD	1.0	Watt
Peak Forward Surge Current, 8.3ms single half Sine-Wave Superimposed on Rated Load (JEDEC Method) (Note 3)	IFSM	40.0	Amps
Operating and Storage Temperature Range	TJ, TSTG	-65 to +175	.с

NOTES:

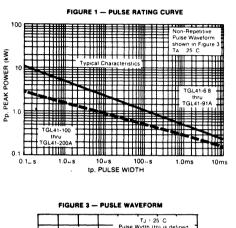
1. Non-repetitive current pulse, per Fig. 3 and derated above $T_A = 25^{\circ}C$ per Fig. 2.

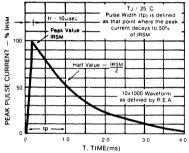
2. Mounted on 8.0 mm² copper pads to each terminal.

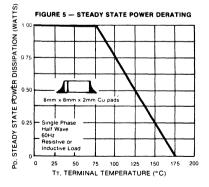
3. 8.3ms single half sine-wave duty cycle = 4 pulses per minutes maximum.

ELECTRICAL CHARACTERISTICS (T_A = 25 ° C UNLESS OTHERWISE NOTED)

		down Votia 'BR Note 1)	age @IT (mA)	Working Peak Reverse Voitage	Maximum Reverse Leakage at	Maximum Reverse Current Irsm	Maximum Reverse Voltage at Irsm	Maximum Temperatrue Coefficient
DEVICE	MIN	MAX		V _{RWM} (Volts)	VRWM IR (µLA)	(Note 2) (Amps)	(Clamping Voltage) VRSM (Volta)	of VBR (%:/`C)
TGL41-6.8	6.12	7.48	10	5.50	1000	37	10.8	0.060
TGL41-6.8A	6.45	7.14	10	5.80	1000	38	10.5	0.060
TGL41-7.5	6.75	8.25	10	6.05	500	34	11.7	0.064
TGL41-7.5A	7.13	7.88	10	6.40	500	35	11.3	0.064
TGL41-8.2	7.38	9.02	10	6.63	200	32	12.5	0.068
TGL41-8.2A	7.79	8.61	10	7.02	200	33	12.1	0.068
TGL41-9.1	8.19	10.0	1.0	7.37	50	29	13.8	0.071
TGL41-9.1A	8.65	9.55	1.0	7.78	50	30	13.4	0.071
TGL41-10	9.00	11.0	1.0	8.10	10	27	15.0	0.076
TGL41-10A	9.50	10.5	1.0	8.55	10	28	14.5	0.076
TGL41-11	9.90	12.1	1.0	8.92	5.0	25	16.2	0.078
TGL41-11A	10.5	11.6	1.0	9.40	5.0	26	15.6	0.078
TGL41-12	10.8	13.2	1.0	9.72	5.0	23	17.3	0.081
TGL41-12A	11.4	12.6	1.0	10.2	5.0	24	16.7	0.081
TGL41-13	11.7	14.3	1.0	10.5	5.0	21	19.0	0.084
TGL41-13A	12.4	13.7	1.0	11.1	5.0	22	18.2	0.084
TGL41-15	13.5	16.5	1.0	12.1	5.0	18.20	22.0	0.087
TGL41-15A	14.3	15.8	1.0	12.8	5.0	18.90	21.2	0.087
TGL41-16	14.4	17.6	1.0	12.9	5.0	17.00	23.5	0.089
TGL41-16A	15.2	16.8	1.0	13.6	5.0	17.80	22.5	0.089
TGL41-18	16.2	19.8	1.0	14.5	5.0	15.10	26.5	0.091
TGL41-18A	17.1	18.9	1.0	15.3	5.0	15.90	25.2	0.091
TGL41-20	18.0	22.0	1.0	16.2	5.0	13.70	29.1	0.093
TGL41-20A	19.0	21.0	1.0	17.1	5.0	14.40	27.7	0.093
TGL41-22	19.8	24.2	1.0	17.8	5.0	12.50	31.9	0.095
TGL41-22A	20.9	23.1	1.0	18.8	5.0	13.10	30.6	0.095
TGL41-24	21.6	26.4	1.0	19.4	5.0	11.50	34.7	0.097
TGL41-24A	22.8	25.2	1.0	20.5	5.0	12.00	33.2	0.097
TGL41-27	24.3	29.7	1.0	21.8	5.0	10.20	39.1	0.099
TGL41-27A	25.7	28.4	1.0	23.1	5.0	10.70	37.5	0.099
TGL41-30	27.0	33.0	1.0	24.3	5.0	9.20	43.5	0.100
TGL41-30A	28.5	31.5	1.0	25.6	5.0	9.70	41.4	0.100
TGL41-33	29.7	36.3	1.0	26.8	5.0	8.40	47.7	0.101
TGL41-33A	31.4	34.7	1.0	28.2	5.0	8.80	45.7	0.101
TGL41-36	32.4	39.6	1.0	29.1	5.0	7.70	52.0	0.102
TGL41-36A	34.2	37.8	1.0	30.8	5.0	8.00	49.9	0.102
TGL41-39	35.1	42.9	1.0	31.6	5.0	7.10	56.4	0.103
TGL41-39A	37.1	41.0	1.0	33.3	5.0	7.40	53.9	0.103
TGL41-43	38.7	47.3	1.0	34.8	5.0	6.50	61.9	0.104
TGL41-43A	40.9	45.2	1.0	36.8	5.0	6.70	59.3	0.104


		own Voltage		Working Peak Reverse	Maximum Reverse	Maximum Reverse Current	Maximum Reverse Voltage	Maximum Temperature
	Vi Volt	BR s (Note 1)	@IT (mA)	Voltage VRWM	Leakage at Vrww	IRSM (Note 2)	at IRSM (Clamping Voltage)	Coefficient of V _{BR}
DEVICE	MIN.	MAX.	((Volts)	ir (μA)	Amps	VRSM (Volts)	(% / °C)
TGL41-47	42.3	51.7	1.0	38.1	5.0	5.90	67.8	0.104
TGL41-47A	44.7	49.4	1.0	40.2	5.0	6.20	64.8	0.104
TGL41-51	45.9	56.1	1.0	41.3	5.0	5.40	73.5	0.105
TGL41-51A	48.5	53.6	1.0	43.6	5.0	5.70	70.1	0.105
TGL41-56	50.4	61.6	1.0	45.4	5.0	5.00	80.5	0.106
TGL41-56A	53.2	58.8	1.0	47.8	5.0	5.20	77.0	0.106
TGL41-62	55.8	68.2	1.0	50.2	5.0	4.50	89.0	0.107
TGL41-62A	58.9	65.1	1.0	53.0	5.0	4.70	85.0	0.107
TGL41-68	61.2	74.8	1.0	55.1	5.0	4.10	98.0	0.107
TGL41-68A	64.6	71.4	1.0	58.1	5.0	4.30	92.0	0.107
TGL41-75	67.5	82.5	1.0	60.7	5.0	3.70	108.0	0.108
TGL41-75A	71.3	78.8	1.0	64.1	5.0	3.90	103.0	0.108
TGL41-82	73.8	90.2	1.0	66.4	5.0	3.40	118.0	0.108
TGL41-82A	77.9	86.1	1.0	70.1	5.0	3.50	113.0	0.108
TGL41-91	81.9	100.0	1.0	73.7	5.0	3.00	131.8	0.109
TGL41-91A	86.5	95.50	1.0	77.8	5.0	3.20	125.0	0.109
TGL41-100	90.0	110.0	1.0	81.0	5.0	1.39	144.0	0.109
TGL41-100A	95.0	105.0	1.0	85.5	5.0	1.46	137.0	0.109
TGL41-110	99.0	121.0	1.0	89.2	5.0	1.27	158.0	0.110
TGL41-110A	105.0	116.0	1.0	94.0	5.0	1.32	152.0	0.110
TGL41-120	108.0	132.0	1.0	97.2	5.0	1.16	173.0	0.110
TGL41-120A	114.0	126.0	1.0	102.0	5.0	1.21	165.0	0.110
TGL41-130	117.0	143.0	1.0	105.0	5.0	1.07	187.0	0.110
TGL41-130A	124.0	137.0	1.0	111.0	5.0	1.12	179.0	0.110
TGL41-150	135.0	165.0	1.0	121.0	5.0	.93	215.0	0.111
TGL41-150A	143.0	158.0	1.0	128.0	5.0	.97	207.0	0.111
TGL41-160	144.0	176.0	1.0	130.0	5.0	.87	230.0	0.111
TGL41-160A	152.0	168.0	1.0	136.0	5.0	.91	219.0	0.111
TGL41-170	153.0	187.0	1.0	138.0	5.0	.82	244.0	0.111
TGL41-170A	162.0	179.0	1.0	145.0	5.0	.85	234.0	0.111
TGL41-180	162.0	198.0	1.0	146.0	5.0	.78	258.0	0.111
TGL41-180A	171.0	189.0	1.0	154.0	5.0	.81	246.0	0.111
TGL41-200	180.0	220.0	1.0	162.0	5.0	.70	287.0	0.111
TGL41-200A	190.0	210.0	1.0	171.0	5.0	.73	274.0	0.111


ELECTRICAL CHARACTERISTICS ($T_{A} = 25^{\circ}C$ unless otherwise noted)


NOTES:

1. VBR measured after IT applies for 300 μs IT = Square Wave Pulse or equivalent. 2. Surge Current Waveform per Figure 3 and Derate per Figure 2.

RATINGS AND CHARACTERISTIC CURVES TGL41 SERIES

J.

FIGURE 2 - PULSE DERATING CURVE

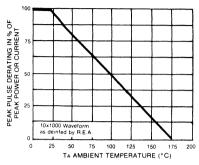


FIGURE 4 - TYPICAL JUNCTION CAPACITANCE

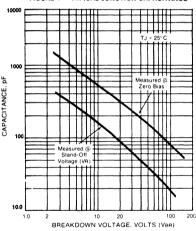
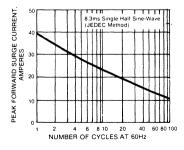
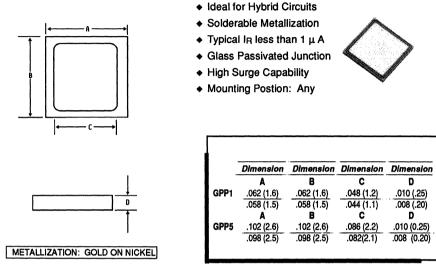



FIGURE 6 - MAXIMUM NON-REPETITIVE SURGE CURRENT

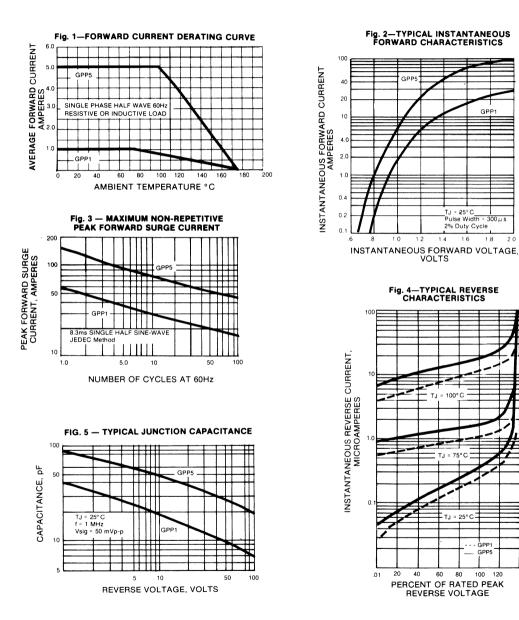


GPP1 & GPP5 SERIES

GLASS PASSIVATED RECTIFIER CHIPS Voltage - 50 to 1000 Volts Current - 1.0 and 5.0 Amperes

FEATURES

Dimensions in inches and (millimeters)


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS		GPP1 B GPP5 B	GPP1D GPP5D	GPPG GPP5G	GPP1J GPP5J	GPP1K GPP5K	GPP1M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current (Note 1) GPP1 T _A = 75°C GPP5 T _A = 100°C	I(AV)				1.0 5.0				Amps
Peak Forward Surge Current 8.3ms single half si -wave superimposed on rated load (JEDEC Method GPP1 GPP5					60.0 150.0				Amps
Maximum Instantaneous Forward Voltage at specified current GPP1 I _F = 1.0A GPP5 I _F = 5.0A	VF				1.1 1.1				Volts
Maximum Reverse Leakage Current at Rated DC Blocking Voltage GPP1 GPP5	IR				5.0 10.0				μA
Operating and Storage Temperature Range	TJ, TSTO	3		-6	5 to +	175			·c

NOTES:

1. Actual rating is heat sink dependent.

RATINGS AND CHARACTERISTIC CURVES GPP1A THRU GPP1M **GPP5A THRU GPP5K**

GPP

300 (1 5

1.8

2.0

TJ = 25°C Pulse Width

2% Duty Cycle

1.6

14

TJ = 100°C

75

25° C


60 80 100 120

GPP1 GPPS

RGPP1 & RGPP5 SERIES

FAST RECOVERY GLASS PASSIVATED RECTIFIER CHIPS Voltage - 50 to 800 Volts Current - 1.0 and 5.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 HZ, resistive or inductive load. For capacitive load, derate current by 20%.

	RGPP1A RGPP5A	RGPP1B RGPP5B	RGPP1D RGPP5D	RGPP1G RGPP5G	RGPP1J RGPP5J	RGPP1K RGPP5K	UNITS
Maximum Recurrent Peak Reverse Voltage	50	100	200	400	600	800	Volts
Maximum RMS Voltage	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	50	100	200	400	600	800	Volts
Maximum Average Forward Rectified Current (Note 1) RGPP1 $T_A = 75$ °C RGPP5 $T_A = 100$ °C				1.0 5.0			Amps
Peak Forward Surge Current 8.3ms single half sine -wave superimposed on rated load (JEDEC Method) RGPP1 RGPP5				30.0 150.0			Amps
Maximum Forward Voltage at Rated Forward Current (Pulse Width = 300 µs, Duty Factor = 1%)		:		1.3			Volts
Maximum Reverse Leakage Current at Rated DC Blocking Voltage T _A = 25°C RGPP1 RGPP5				10.0 25.0			μА
Maximum Reverse Recovery Time (Note 2)		19	50	200	250	350	ns
Operating and Storage Temperature Range TJ, TSTG				-65 to +1	50		·c

NOTES:

1. Actual rating is heat sink dependent.

2. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = 0.25A.

RATINGS AND CHARACTERISTIC CURVES RGPP1A THRU RGPP1K RGPP5A THRU RGPP5K

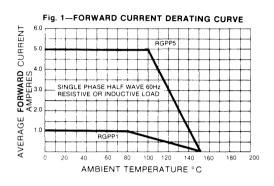
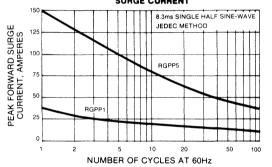
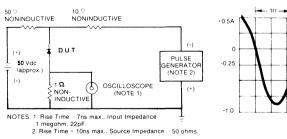




FIG. 3 -- MAXIMUM NON-REPETITIVE SURGE CURRENT

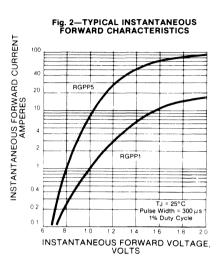


Fig. 4-TYPICAL REVERSE CHARACTERISTICS

► 10ns -

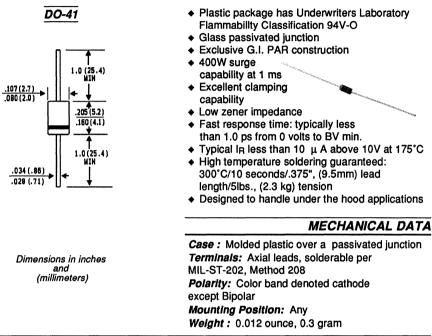
-560-

TRANSIENT VOLTAGE SUPPRESSORS

General Instrument Transient Voltage Suppressors are the state-ofthe-art in semiconductor surge protection for modern electronic equipment.

Because TVS devices are semiconductors, there is no inherent wear out mechanism. When overstressed, they short circuit at the changing voltage and protect the associated equipment. The clamping voltage is close to the operating voltage enabling a high degree of protection while assuring the devices are off until their operation is required.

General Instrument TVS units are available in four power ranges: 400,600,1500, and 5,000 watts with a wide variety of voltages.


P4KA SERIES

AUTOMOTIVE TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 6.8 to 43 Volts

400 Watt Peak Power 1.0 Watt Steady State

FEATURES

DEVICES FOR BIPOLAR APPLICATIONS

For Bidirectional use C or CA Suffix for types P4KA6.8 thru types P4KA43. Electrical characteristics apply in both directions

MAXIMUM RATINGS AND CHARACTERISTICS

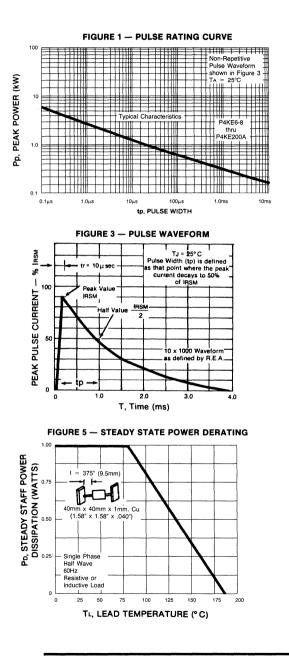
1

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

RATING	SYMBOL	VALUE	UNITS
Peak Power Dissipation at T _A = 25°C, Tp = 1ms (Note 1)	Ppk	Minimum 400	Watts
Steady State Power Dissipation at T _L = 75'C Lead Lengths .375", (9.5mm) (Note 2)	PD	1.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (Note 3)	IFSM	40.0	Amps
Operating and Storage Temperature Range	TJ,TSTG	-65 to +185	. C

-562-

NOTES:


1. Non-repetitive current pulse, per Fig. 3 and derated above $T_A = 25^{\circ}C$ per Fig. 2. 2. Mounted on Copper Leaf area of 1.57 in² (40mm²).

3. 8.3ms single half sine-wave, duty cycle =4 pulses per Minutes maximum

	Breakdown Voltage		Working Peak Reverse	Maximum Reverse	T _C = 150°C Maximum Reverse	Maximum Reverse Current	Maximum Reverse Voltage	Maximum Temperature	
		BR	@h	Voltage	Leakage	Leakage	IRSM	at I _{RSM}	Coefficeint
DEVICE	Volts Min	(Note1) Max	(mA)	at V _{RWM} (Volts)	at V _{RWM} Ir(µA)	at V _{RWM} IR(µA)	(Note 2) (Amps)	(Clamping Voltage) V _{RSM} (Volta)	ofV _{BR} (%/℃)
P4KA6.8	6.12	7.48	10	5.50	300	1000	39.8	10.8	0.057
P4KA6.8A	6.45	7.14	10	5.80	300	1000	41.0	10.5	0.057
P4KA7.5	6.75	8.25	10	6.05	150	500	36.8	11.7	0.06
P4KA7.5A	7.13	7.88	10	6.40	150	500	38.1	11.3	0.061
P4KA8.2	7.38	9.02	10	6.63	50	200	34.4	12.5	0.065
P4KA8.2A	7.79	8.61	10	7.02	50	200	35.5	12.1	0.065
P4KA9.1	8.19	10.0	1.0	7.37	10	50	32.2	13.8	0.068
P4KA9.1A	8.65	9.55	1.0	7.78	1.0	50	32.1	13.4	0.068
P4KA10	9.00	11.0	1.0	8.10	1.0	10	28.7	15.0	0.073
P4KA10A	9.50	10.5	1.0	8.55	1.0	5.0	29.7	14.5	0.073
P4KA11	9.90	12.1	1.0	8.92	1.0	5.0	26.5	16.2	0.075
P4KA11A	10.5	11.6	1.0	9.40	1.0	5.0	27.6	15.6	0.075
P4KA12	10.8	13.2	1.0	9.72	1.0	5.0	24.9	17.3	0.076
P4KA12A	11.4	12.6	1.0	10.2	1.0	5.0	25.8	16.7	0.078
P4KA13	11.7	14.3	1.0	10.5	1.0	5.0	22.6	19.0	0.081
P4KA13A	12.4	13.7	1.0	11.1	1.0	5.0	23.6	18.2	0.081
P4KA15	13.5	16.3	1.0	12.1	1.0	5.0	19.6	22.0	0.084
P4KA15A	14.3	15.8	1.0	12.8	1.0	5.0	20.3	21.2	0.084
P4KA16	14.4	17.6	1.0	12.9	1.0	5.0	18.3	23.5	0.086
P4KA16A	15.2	16.8	1.0	13.6	1.0	5.0	19.1	22.5	0.086
P4KA18	16.2	19.8	1.0	14.5	1.0	5.0	16.2	26.5	0.088
P4KA18A	17.1	18.9	1.0	15.3	1.0	5.0	16.9	25.5	0.088
P4KA20	18.0	22.0	1.0	16.2	1.0	5.0	14.8	29.1	0.090
P4KA20A	19.0	21.0	1.0	17.0	1.0	5.0	15.5	27.7	0.090
P4KA22	19.8	24.2	1.0	17.8	1.0	5.0	13.5	31.9	0.092
P4KA22A	20.9	23.1	1.0	18.8	1.0	5.0	14.1	30.6	0.092
P4KA24	21.6	26.4	1.0	19.4	1.0	5.0	12.4	34.2	0.094
P4KA24A	22.8	25.2	1.0	20.5	1.0	5.0	13.0	33.2	0.094
P4KA27	24.3	29.7	1.0	21.8	1.0	5.0	11.0	39.1	0.096
P4KA27A	25.7	28.4	1.0	23.1	1.0	5.0	11.5	37.5	0.096
P4KA30	27.0	33.0	1.0	24.3	1.0	5.0	9.9	43.5	0.097
P4KA30A	28.5	31.5	1.0	24.5	1.0	5.0	10.4	41.4	0.097
P4KA33	20.5	36.3	1.0	26.8	1.0	5.0	9.0	47.7	0.098
P4KA33A	31.4	34.7	1.0	28.2	1.0	5.0	9.4	45.7	0.098
P4KA36	31.4	39.6	1.0	29.1	1.0	5.0	8.3	52.0	0.099
P4KA36 P4KA36A	32.4 34.2	39.6	1.0	29.1 30.8	1.0	5.0	8.6	49.9	0.099
P4KA30A P4KA39	34.2 35.1	42.9	1.0	30,8	1.0	5.0	7.6	56.4	0.100
P4KA39 P4KA39A	37.1	42.9	1.0	33.3	1.0	5.0	8.0	53.9	0.100
P4KA43	37.1	47.3	1.0	34.8	1.0	5.0	7.0	61.9	0.100
P4KA43 P4KA43A	40.9	47.3	1.0	34.8	1.0	5.0	7.0	59.3	0.101
I 4ILA4SA	40.9	+0.2	1 1.0	0.0	1 1.0	0.0	1.0	09.0	1 0101

NOTES:
1. V_{BR} measured after IT applied for 300 μs , IT = Square Wave Pulse or equivalent.
2. Surge Current Waveform per Figure 3 and Derated per Figue 2.
3. V_F = 3.5 V max., I_F = 25A for all types on 1/2 Square or Equivalent Sine Wave PW = 8.33 ms, Duty Cycle = 4 Pulses per Minute Maximum

RATING AND CHARACTERISTIC CURVES P4KA

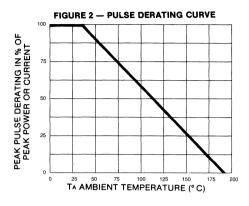
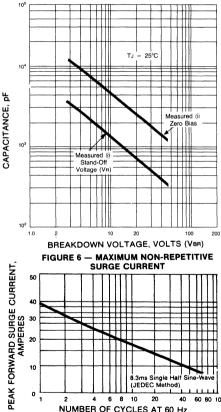
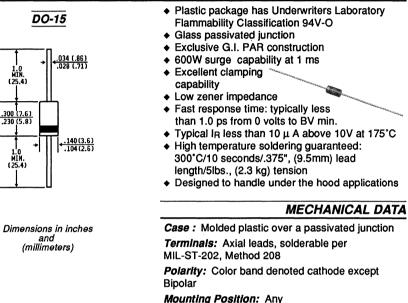




FIGURE 4 - TYPICAL JUNCTION CAPACITANCE

-565-


P6KA SERIES

AUTOMOTIVE TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 6.8 to 43 Volts

600 Watt Peak Power 5.0 Watt Steady State

FEATURES

Weight: 0.015 ounce, 0.4 gram

DEVICES FOR BIPOLAR APPLICATIONS

For Bidirectional use C or CA Suffix for types P6KA6.8 through types P6KA43. Electrical characteristics apply in both directions

MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

1.0 Min.

RATING	SYMBOL	VALUE	UNITS
Peak Power Dissipation at T _A = 25°C, Tp = 1ms (Note 1)	Ppk	Minimum 600	Watts
Steady State Power Dissipation at T _L = 75°C Lead Lengths .375", (9.5mm) (Note 2)	PD	5.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (Note 3)	IFSM	100	Amps
Operating and Storage Temperature Range	TJ,TSTG	-65 to +185	

NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above TA = 25°C per Fig. 2.

2. Mounted on Copper Leaf area of 1.57 in² (40mm²).

3. 8.3ms single half sine-wave, duty cycle = 4 pulses per Minutes maximum.

DEVICE	V	down Volt BR (Note1) Max	age @l⊤ (mA)	Working Peak Reverse Voitage (Voits)	Maximum Reverse Leakage at V _{RWM} I _R (μΑ)	Tc = 150°C Maximum Reverse LeakageIrsm at Vravm Ir(µA)	Maximum Reverse Current IRSM (Note 2) (Amps)	Maximum Reverse Voltage at I _{RSM} (Clamping Voltage) V _{RSM} (Volta)	Maximum Temperature Coefficent of VBR (% / °C)
Dalkaga	0.40	7.40	40		500	4000			0.057
P6KA6.8	6.12	7.48	10	5.50	500	1000	59.7	10.8	0.057
P6KA6.8A	6.45	7.14	10	5.80	500	1000	61.4	10.5	0.057
P6KA7.5 P6KA7.5A	6.75 7.13	8.25 7.88	10 10	6.05 6.40	250 250	500 500	58.1	11.7	0.061 0.061
P6KA8.2	7.13	9.02	10	6.63	100	200	57.1	11.3	0.061
P6KA8.2A	7.38	9.02 8.61	10	7.02	100	200	51.6	12.5	0.065
	8.19	10.0		7.02		50	53.3	12.1	0.065
P6KA9.1			1.0	7.37	25		46.7	13.8	0.068
P6KA9.1A P6KA10	8.65 9.00	9.55 11.0	1.0	8.10	25	50 10	48.1	13.4	0.068
P6KA10A	9.50	10.5	1.0	8.55	5.0	10	43.0	15.0	0.073
P6KA11	9.50	10.5	1.0	8.92	5.0	5.0	44.5	14.5	0.075
P6KA11A	10.5	11.6	1.0	9.40	2.0	5.0	39.8	16.2	0.075
			1		2.0	1	41.3	15.6	
P6KA12	10.8	13.2	1.0	9.72	2.0	5.0	37.3	17.3	0.076
P6KA12A	11.4	12.6	1.0	10.2	2.0	5.0	38.6	16.7	0.078
P6KA13	11.7	14.3	1.0	10.5	2.0	5.0	35.9	19.0	0.081
P6KA13A	12.4	13.7	1.0	11.1	2.0	5.0	35.4	18.2	0.081
P6KA15	13.5	16.3	1.0	12.1	. 2.0	5.0	29.3	22.0	0.084
P6KA15A	14.3	15.8	1.0	12.8	2.0	5.0	30.4	21.2	0.084
P6KA16	14.4	17.6	1.0	12.9	2.0	5.0	27.4	23.5	0.086
P6KA16A	15.2	16.8	1.0	13.6	2.0	5.0	28.7	22.5	0.086
P6KA18	16.2	19.8	1.0	14.5	2.0	5.0	24.3	26.5	0.088
P6KA18A	17.1	18.9	1.0	15.3	2.0	5.0	25.6	25.2	0.088
P6KA20	18.0	22.0	1.0	16.2	2.0	5.0	22.2	29.1	0.090
P6KA20A	19.0	21.0	1.0	17.1	2,0	5.0	23.3	27.7	0.090
P6KA22	19.8	24.2	1.0	17.8	2.0	5.0	20.2	31.9	0.092
P6KA22A	20.9	23.1	1.0	18.8	2.0	5.0	21.1	30.6	0.092
P6KA24	21.6	26.4	1.0	19.4	2.0	5.0	18.6	34.7	0.094
P6KA24A	22.8	25.2	1.0	20.5	2.0	5.0	19.4	33.6	0.094
P6KA27	24.3	29.7	1.0	21.8	2.0	5.0	16.5	39.1	0.096
P6KA27A	25.7	28.4	10	23.1	2.0	5.0	17.2	37.5	0.096
P6KA30	27.0	33.0	1.0	24.3	2.0	5.0	14.8	43.5	0.097
P6KA30A	28.5	31.5	1.0	25.6	2.0	5.0	15.6	41.4	0.097
P6KA33	29.7	36.3	1.0	26.8	2.0	5.0	13.5	47.7	0.098
P6KA33A	31.4	34.7	1.0	28.2	2.0	5.0	14.1	45.7	0.098
P6KA36	32.4	39.6	1.0	29.1	2.0	5.0	12.4	52.0	0.099
P6KA36A	34.2	37.8	1.0	30.8	2.0	5.0	12.9	49.9	0.099
P6KA39	35.1	42.9	1.0	31.6	2.0	5.0	11.4	56.4	0.100
P6KA39A	37.1	41.0	1.0	33.3	2.0	5.0	12.0	53.9	0.100
P6KA43	38.7	47.3	1.0	34.8	2.0	5.0	10.4	61.9	0.101
P6KA43A	40.9	45.2	1.0	36.8	2.0	5.0	10.9	59.3	0.101

ELECTRICAL CHARACTERISITCS (TA = 25°C unless otherwise noted)

NOTES:

1. VBR measured after IT applied for 300 μ s. IT = Square Wave Pulse or equivalent. 2. Surge Current Waveform per Figure 3 and Derate per Figure 2. 3. VF = 3.5 V max., IF = 50A for all types on 1/2 Square or Equivalent Sine Wave. PW = 8.3ms, Duty Cycle = 4 Pulses per Minute maximum.

RATING AND CHARACTERISTIC CURVES P6KA SERIES

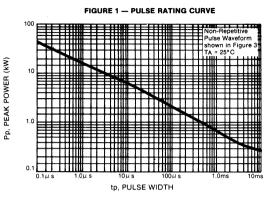
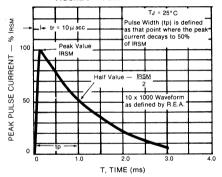
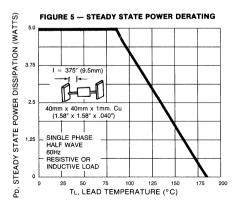
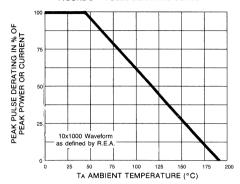





FIGURE 3 --- PULSE WAVEFORM

FIGURE 2 - PULSE DERATING CURVE

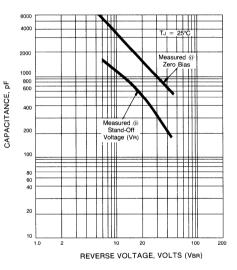
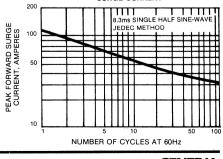



FIGURE 6 — MAXIMUM NON-REPETITIVE SURGE CURRENT

GENERAL INSTRUMENT

-569-

1.5KA SERIES

AUTOMOTIVE TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 6.8 to 43 Volts

1500 Watt Peak Power 5.0 Watt Steady State

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated junction
- Exclusive G.I. PAR construction
- 1500W surge capability at 1 ms
- Excellent clamping capability
- Low zener impedance
- Fast response time: typically less than 1.0 ps from 0 volts to BV min.
- Typical I_R less than 20 μ A above 10V at 175°C
- High temperature soldering guaranteed:
- 300°C/10 seconds/.375", (9.5mm) lead length/5lbs., (2.3 kg) tension
- Designed to handle under the hood applications

MECHANICAL DATA

Case : Molded plastic over a passivated junction Terminals: Axial leads, solderable per MIL-ST-202, Method 208 Polarity: Color band denoted cathode except Bipolar Mounting Position: Any Weight : 0.045 ounce, 1.2 grams

DEVICES FOR BIPOLAR APPLICATIONS

For Bidirectional use C or CA Suffix for types 1.5KA6.8 thru types 1.5KA43 Electrical characteristics apply in both directions

MAXIMUM RATINGS AND CHARACTERISTICS

RATING	SYMBOL	VALUE	UNITS
Peak Power Dissipation at T _A = 25°C, Tp = 1ms (Note 1)	Ppk	Minimum 1500	Watts
Steady State Power Dissipation at TL = 75°C Lead Lengths .375", (9.5mm) (Note 2)	PD	5.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (Note 3)	IFSM	200	Amps
Operating and Storage Temperature Range	TJ,TSTG	-65 to +185	

NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above TA = 25 C per Fig. 2.

2. Mounted on Copper Leaf area of 0.79 in² (20mm²).

DO-201

1.0 (25.4)

MIN

.375 (9.5) .285 (7.2)

1.0 (25.4)

MIN.

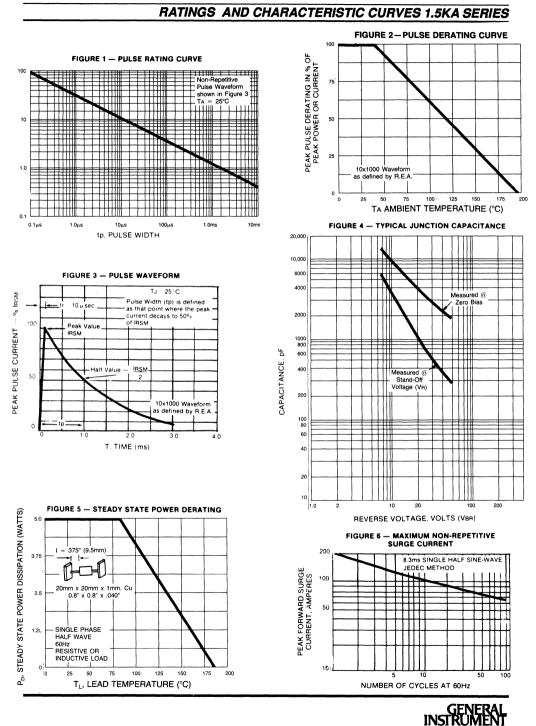
Dimensions in inches

and (millimeters)

.210 (5.3)

.042 (1.07)

3. 8.3ms single half sine-wave, duty cycle = 4 pulses per Minutes maximum.



				Working Peak	Meximum	T _c = 150°C Maximum	Maximum Reverse	Maximum Reverse	Maximum
	Bree VBR	akdown Vo @	ltage	Reverse Voltage	Reverse Leakage	Reverse Leskage	Current IRSM	Voltage at less	Temperature Coefficeint
DEVICE	Volts () MIN		ГГ (mA)	at V _{RWM} (Volts)	at V _{RWM} Ir(μΑ)	at V _{RWM} IR(µA)	(Note 2) (Amps)	(Clamping Voltage) VRSM (Volts)	of Van (%/*C)
1.5KA6.8	6.12	7.48	10	5.50	500	2000	149	10.8	0.057
1.5KA6.8A	6.45	7.14	10	5.80	500	2000	153	10.5	0.057
1.5KA7.5	6.75	8.25	10	6.05	250	1000	137	11.7	0.061
1.5KA7.5A	7.13	7.88	10	6.40	250	1000	143	11.3	0.061
1.5KA8.2	7.38	9.02	10	6.63	100	400	129	12.5	0.065
1.5KA8.2A	7.79	8.61	10	7.02	100	400	133	12.1	0.065
1.5KA9.1	8.19	10.0	1.0	7.37	25	100	117	13.8	0.068
1.5KA9.1A	8.65	9.55	1.0	7.78	25	100	120	13.4	0.068
1.5KA10	9.00	11.0	1.0	8.10	5	20	107	15.0	0.073
1.5KA10A	9.50	10.5	1.0	8.55	5	20	111	14.5	0.073
1.5KA11	9.90	12.1	1.0	8.92	2	10	99.5	16.2	0.075
1.5KA11A	10.5	11.6	1.0	9.40	2	10	103	15.6	0.076
1.5KA12	10.8	13.2	1.0	9.72	2	10	93.2	17.3	0.076
1.5KA12A	11.4	12,6	1.0	10.2	2	10	96.5	19.0	0.078
1.5KA13	11.7	14.3	1.0	10.5	2	10	84.8	18.2	0.081
1.5KA13A	12.4	13.7	1.0	11.1	2	10	88.6	22.0	0.081
1.5KA15	13.5	16.3	1.0	12.1	2	10	73.3	21.2	0.084
1.5KA15A	14.3	15.8	1.0	12.8	2	10	76.0	23.5	0.084
1.5KA16	14.4	17.6	1.0	12.9	2	10	68.6	23.5	0.086
1.5KA16A	15.2	16.8	1.0	13.6	2	10	71.6	22.5	0.086
1.5KA18	16.2	19.8	1.0	14.5	2	10	60.8	26.5	0.088
1.5KA18A	17.1	18.9	1.0	15.3	2	10	64.0	25.2	0.088
1.5KA20	18.0	22.0	1.0	16.2	2	10	55.4	29.1	0.090
1.5KA20A	19.0	21.0	1.0	17.1	2	10	58.2	27.7	0.090
1.5KA22	19.8	24.2	1.0	17.8	2	10	50.5	31.9	0.092
1.5KA22A	20.9	23.1	1.0	18.8	2	10	52.7	30.6	0.092
1.5KA24	21.6	26.4	1.0	19.4	2	10	46.5	34.7	0.094
1.5KA24A	22.8	25.2	1.0	20.5	2	10	48.6	33.2	0.094
1.5KA27	24.3	29.7	1.0	21.8	2	10	41.2	39.1	0.096
1.5KA27A	25.7	28.4	1.0	23.1	2	10	43.4	37.5	0.096
1.5KA30	27.0	33.0	1.0	24.3	2	10	37.0	43.5	0.097
1.5KA30A	28.5	31.5	1.0	25.6	2	10	38.9	41.4	0.097
1.5KA33	29.7	36.3	1.0	26.8	2	10	33.8	47.7	0.098
1.5KA33A	31.4	34.7	1.0	28.2	2	10	35.3	45.7	0.098
1.5KA36	32.4	39.6	1.0	29.1	2	10	31.0	52.0	0.099
1.5KA36A	34.2	37.8	1.0	30.8	2	10	32.3	49.9	0.099
1.5KA39	35.1	42.9	1.0	31.6	2	10	28.6	56.4	0.100
1.5KA39A	37.1	41.0	1.0	33.3	2	10	29.9	53.9	0.100
1.5KA43	38.7	47.3	1.0	34.8	2	10	26.0	61.9	0.101
1.5KA43A	40.9	45.2	1.0	36.8	2	10	27.2	59.3	0. 101
		L	L		ــــــ			١	

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

NOTES:

NOTES:
 Ven measured after IT applied for 300 μs. IT = Square Wave Pulse or eqivalent.
 Surge current Waveform per Figure 3 and Derate per Figure 2.
 VF = 3.5V mas., IF = 100A for all types per 1/2 Square or Equivalent Sine Wave. PW = 8.3 ms, Duty Cycle = 4 Pulses per Minute Maximum.

-572-

-573-

P4KE SERIES

GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 6.8 to 400 Volts 1.0 Watt Steady State 400 Watt Peak Power

FEATURES

 Plastic package has Underwriters Laboratory Flammability Classification 94V-O Glass passivated junction in DO-41 package 400W surge capability at 1 ms Excellent clamping capability Low zener impedance Fast response time: typically less than 1.0 ps from 0 volts to BV min. Typical I_R less than 1 μ A above 10V High temperature soldering guaranteed: 300°C/10 seconds/.375", (9.5mm) lead length/5lbs., (2.3 kg) tension **MECHANICAL DATA** Case : Molded plastic over glass passivated iunction

Terminals: Axial leads, solderable per MIL-ST-202, Method 208 Polarity: Color band denoted cathode except Bipolar Mounting Position: Any Weight: 0.012 ounce, 0.3 gram

DEVICES FOR BIPOLAR APPLICATIONS

For Bidirectional use C or CA Suffix for types P4KE7.5 thru types P4KE400 Electrical characteristics apply in both directions

MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

Dimensions in inches

and

(millimeters)

DO-41

.107(2.7)

.034 (.86)

.028 (.71)

(25.4) 1 0

.205 (5.2)

.160 (4.1)

1.0(25.4)

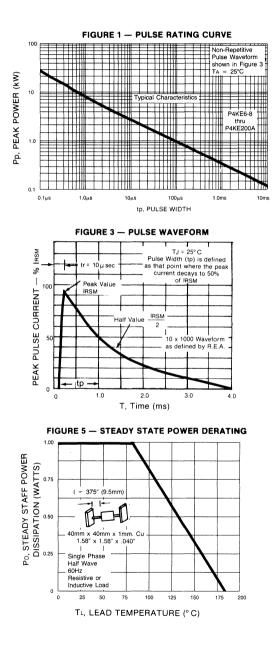
MIN

RATING	SYMBOL	VALUE	UNITS
Peak Power Dissipation at T _A = 25°C, Tp = 1ms (Note 1)	Ppk	Minimum 400	Watts
Steady State Power Dissipation at T _L = 75°C Lead Lengths .375", (9.5mm) (Note 2)	PD	1.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (Note 3)	IFSM	40.0	Amps
Operating and Storage Temperature Range	TJ,TSTG	-65 to +175	•Ċ

NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above $T_A = 25^{\circ}C$ per Fig. 2. 2. Mounted on Copper Leaf area of 1.57 in² (40mm²).

3. 8.3ms single half sine-wave, duty cycle = 4 pulses per Minutes maximum



					1			
				Working		Maximm		
	Breakdown Voltage			Peak	Maximum	Reverse	Maximum Reverse Voltage at I _{RSM}	Maximum
	Van Volts (Note 1)		@IT (mA)	Reverse Voltage	Reverse Leakage	Current Iasw		Temperatuure Coefficient
Device	MIN	MAX		V _{RWM} (Volts)	at V _{RWM} I _R (µA)	(Note 2) (Amps)	(Clamping Voltage) V _{RSM} (Volts)	of Van (%C)
P4KE6.8	6.12	7.48	10	5.50	1000	38	10.8	0.057
P4KE6.8A	6.45	7.14	10	5.80	1000	40	10.5	0.057
P4KE7.5	6.75	8.25	10	6.05	500	36	11.7	0.061
P4KE7.5A	7.13	7.88	10	6.40	500	37	11.3	0.061
P4KE8.2	7.38	9.02	10	6.63	200	33	12.5	0.065
P4KE8.2A	7.79	8.61	10	7.02	200	35	12.1	0.065
P4KE9.1	8.19	10.0	1.0	7.37	50	30	13.8	0.068
P4KE9.1A P4KE10	8.65 9.00	9.55 11.0	1.0 1.0	7.78 8.10	50 10	31 28	13.4 15.0	0.068 0.073
P4KE10 P4KE10A	9.00	10.5	1.0	8.55	10	20	14.5	0.073
P4KE11	9.90	12.1	1.0	8.92	5.0	26	16.2	0.075
P4KE11A	10.5	11.6	1.0	9.40	5.0	27	15.6	0.075
P4KE12	10.8	13.2	1.0	9.72	5.0	24	17.3	0.076
P4KE12A	11.4	12.6	1.0	10.2	5.0	25	16.7	0.078
P4KE13	11.7	14.3	1.0	10.5	5.0	22	19.0	0.081
P4KE13A	12.4	13.7	1.0	11.1	5.0	23	18.2	0.081
P4KE15	13.5	16.3	1.0	12.1	5.0	19	22.0	0.084
P4KE15A	14.3	15.8	1.0	12.8	5.0	20	21.2	0.084
P4KE16	14.4	17.6	1.0	12.9	5.0	18	23.5	0.086
P4KE16A	15.2	16.8	1.0	13.6	5.0	19	22.5	0.086
P4KE18	16.2	19.8	1.0	14.5	5.0	16	26.5	0.088
P4KE18A	17.1	18.9	1.0	15.3	5.0	17	25.5	0.088
P4KE20	18.0	22.0 21.0	1.0	16.2	5.0	14	29.1	0.090
P4KE20A	19.0		1.0	17.1	5.0	15	27.7	0.090
P4KE22 P4KE22A	19.8 20.9	24.2 23.1	1.0 1.0	17.8 18.8	5.0 5.0	13 14	31.9 30.6	0.092 0.092
P4KE22A P4KE24	20.9	26.4	1.0	19.4	5.0	14	30.8	0.092
P4KE24A	22.8	25.2	1.0	20.5	5.0	13	33.2	0.094
P4KE27	24.3	29.7	1.0	21.8	5.0	11	39.1	0.096
P4KE27A	25.7	28.4	1.0	23.1	5.0	11.2	37.5	0.096
P4KE30	27.0	33.0	1.0	24.3	5.0	10	43.5	0.097
P4KE30A	28.5	31.5	1.0	25.6	5.0	10	41.4	0.097
P4KE33	29.7	36.3	1.0	26.8	5.0	9	47.7	0.098
P4KE33A	31.4	34.7	1.0	28.2	5.0	9	45.7	0.098
P4KE36	32.4	39.6	1.0	29.1	5.0	8	52.0	0.099
P4KE36A	34.2	37.8	1.0	30.8	5.0	8.4	49.9	0.099
P4KE39	35.1	42.9	1.0	31.6	5.0	7.4	56.4	0.100
P4KE39A	37.1	41.0	1.0	33.3	5.0	7.8	53.9	0.100
P4KE43	38.7	47.3	1.0	34.8	5.0	6.8	61.9	0.101
P4KE43A	40.9	45.2	1.0	36.8	5.0	7.1	59.3 67.9	0.101
P4KE47 P4KE47A	42.3 44.7	51.7 49.4	1.0 1.0	38.1 40.2	5.0 5.0	6.2 6.5	67.8 64.8	0.101 0.101
P4KE47A P4KE51	44.7 45.9	49.4 56.1	1.0 1.0	40.2 41.3	5.0	6.5 5.7	64.8 73.5	0.101
P4KE51 P4KE51A	45.9 48.5	53.6	1.0	41.3	5.0	5.7 6.0	73.5	0.102
P4KE56	48.5 50.4	61.6	1.0	45.6 45.4	5.0	5.2	80.5	0.102
P4KE56A	53.2	58.8	1.0	47.8	5.0	5.5	77.0	0.103
P4KE62	55.8	68.2	1.0	50.2	5.0	4.7	89.0	0.104
P4KE62A	58.9	65.1	1.0	53.0	5.0	5.0	85.0	0.104
P4KE68	61.2	74.8	1.0	55.1	5.0	4.3	98.0	0.104
P4KE68A	64.6	71.4	1.0	58.1	5.0	4.6	92.0	0.104
P4KE75	67.5	82.5	1.0	60.7	5.0	3.9	108.0	0.105
P4KE75A	71.3	78.8	1.0	64.1	5.0	4.1	103.0	0.105
						l		

		akdown Vol		Working Peak	Maximum	Meximm Reverse	Newbourn David	Maximum Temperatuure
	VBR Volts (Not	te 1)	@1T (mA)	Reverse Voltage V _{RWM}	Reverse Leakage at V _{RVM}	Current IRSM (Note 2)	Maximum Reverse Voltage at I _{RSM} (Clamping Voltage)	Coefficient of VBR
Device	MIN	MAX		(Volts)	I _R (μA)	(Amps)	V _{RSM} (Volts)	(%C)
P4KE82	73.8	90.2	1.0	66.4	5.0	3.6	118.0	0.105
P4KE82A	77.9	86.1	1.0	70.1	5.0	3.7	113.0	0.105
P4KE91	81.9	100.0	1.0	73.7	5.0	3.2	131.8	0.106
P4KE91A	86.5	95.50	1.0	77.8	5.0	3.4	125.0	0.106
P4KE100	90.0	110.0	1.0	81.0	5.0	2.9	144.0	0.106
P4KE100A	95.0	105.0	1.0	85.5	5.0	3.1	137.0	0.106
P4KE110	99.0	121.0	1.0	89.2	5.0	2.7	158.0	0.107
P4KE110A	105.0	116.0	1.0	94.0	5.0	2.8	152.0	0.107
P4KE120	108.0	132.0	1.0	97.2	5.0	2.4	173.0	0.107
P4KE120A	114.0	126.0	1.0	102.0	5.0	2.5	165.0	0.107
P4KE130	117.0	143.0	1.0	105.0	5.0	2.2	187.0	0,107
P4KE130A	124.0	137.0	1.0	111.0	5.0	2.3	179.0	0.107
P4KE150	135.0	165.0	1.0	121.0	5.0	2.0	215.0	0.108
P4KE150A	143.0	158.0	1.0	128.0	5.0	2.0	207.0	0.108
P4KE160	144.0	176.0	1.0	130.0	5.0	1.8	230.0	0.108
P4KE160A	152.0	168.0	1.0	136.0	5.0	1.9	219.0	0.108
P4KE170	153.0	187.0	1.0	138.0	5.0	1.7	244.0	0.108
P4KE170A	162.0	179.0	1.0	145.0	5.0	1.8	234.0	0.108
P4KE180	162.0	198.0	1.0	146.0	5.0	1.6	258.0	0.108
P4KE180A	171.0	189.0	1.0	154.0	5.0	1.7	246.0	0.108
P4KE200	180.0	220.0	1.0	162.0	5.0	1.5	287.0	0.108
P4KE200A	190.0	210.0	1.0	171.0	5.0	1.53	274.0	0.108
P4KE220	198.0	242.0	1.0	175.0	5.0	1.16	344.0	0.108
P4KE220A	209.0	231.0	1.0	185.0	5.0	1.22	328.0	0.108
P4KE250	225.0	275.0	1.0	202.0	5.0	1.11	360.0	0.110
P4KE250A	237.0	267.0	1.0	214.0	5.0	1.16	344.0	0.110
P4KE300	270.0	330.0	1.0	243.0	5.0	0.93	430.0	0.110
P4KE300A	285.0	315.0	1.0	256.0	5.0	0.97	414.0	0.110
P4KE350	315.0	385.0	1.0	284.0	5.0	0.79	504.0	0.110
P4KE350A	332.0	368.0	1.0	300.0	5.0	0.83	482.0	0.110
P4KE400	360.0	440.0	1.0	324.0	5.0	0.70	574.0	0.110
P4KE400A	380.0	420.0	1.0	342.0	5.0	0.73	548.0	0.110

NOTES:
1. V_{BR} measured after I_T applied for 300 μs , I_T = Square Wave Pulse or equivalent.
2. Surge Current Waveform per Figure 3 and Derated per Figure 2.
3. V_F = 3.5 V at I_F = 25A (P4KE6.8 thru P4KE91A)
V_F = 5.0 V at I_F = 25A (P4KE100 thru P4KE400A) on 1/2 Square or Equivalent SIne Wave. PW = 8.3ms, Duty Cycle = 4. Pulses per Minute Maximum
4. For Bipolar types moving V_R of 10 volts and under, the I_R limit is doubled.

RATINGS AND CHARACTERISTIC CURVES P4KE SERIES

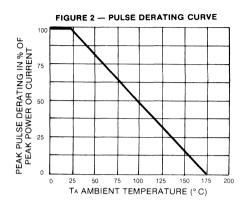
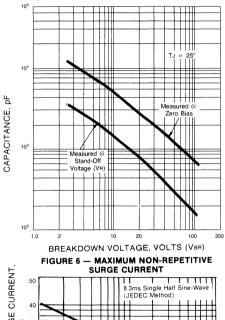
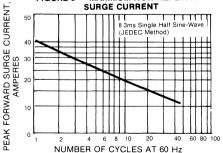
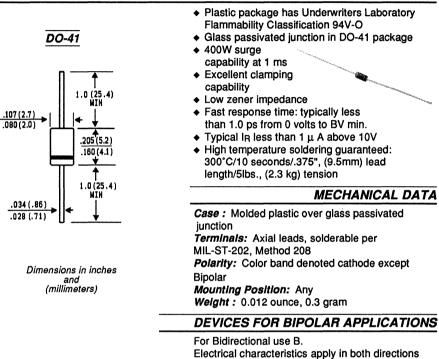




FIGURE 4 - TYPICAL JUNCTION CAPACITANCE


GENERAL INSTRUMENT

BZW04 SERIES

GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 6.8 to 440 Volts 400 Watt Peak Power 1.0 Watt Steady State

FEATURES

MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

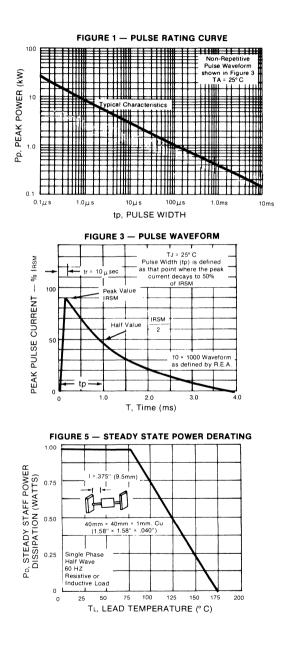
RATING	SYMBOL	VALUE	UNITS
Peak Power Dissipation at T _A = 25°C, Tp = 1ms (Note 1)	Ppk	Minimum 400	Watts
Steady State Power Dissipation at T _L = 75°C Lead Lengths .375", (9.5mm) (Note 2)	PD	1.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (Note 3)	IFSM	40.0	Amps
Operating and Storage Temperature Range	TJ,TSTG	-65 to +175	.C

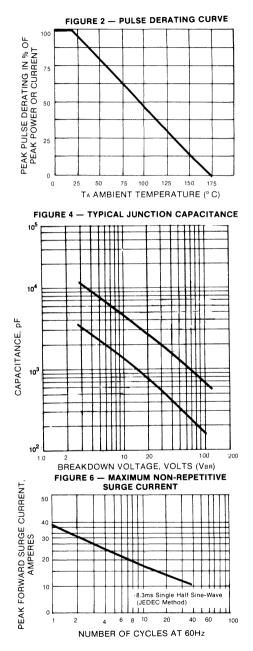
NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above TA = 25°C per Fig. 2.

2. Mounted on Copper Leaf area of 1.57 in² (40mm²).

3. 8.3ms single half sine-wave, duty cycle =4 pulses per Minutes maximum.




		kdown Volt		Working Peak	Maximum	Maximm Reverse		Maximum
	Ven Volts (N		@IT (mA)	Reverse Voltage V _{RWM}	Reverse Leakage at V _{RVM}	Current Insu (Note 2)	Maximum Reverse Voltage at I _{nam} (Clamping Voltage	Temperatuure Coefficient of ver
Device	MIN	MAX		(Volts)	l _R (μA)	(Amps)	V _{RSM} (Volts)	(%C)
BZW04P5V8	6.45	7.48	10	5.8	1000	38	10.5	.057
BZW04-5V8	6.45	7.14	10	5.8	1000	38	10.5	.057
BZW04P6V4	7.13	8.25	10	6.4	500	35.4	11.3	.061
BZW04-6V4	7.13	7.88	10	6.4	500	35.4	11.3	.061
BZW04P7V0	7.79	9.02	10	7.02	200	33	12.1	.065
BZW04-7V0 BZW04P7V8	7.79	8.61 10.0	10 1	7.02 7.78	200 50	33 30	12.1 13.4	.068
BZW04F7V8 BZW04-7V8	8.65 8.65	9.55	1	7.78	50	30	13.4	.073
BZW04P8V5	9.50	9.55	1	8.55	10	27.6	14.5	.073
BZW04-8V5	9.50	10.5	1	8.55	10	27.6	14.5	.075
BZW04P9V4	10.5	12.1	1	9.4	5	25.7	15.6	.075
BZW04P10	11.4	13.2	1	10.2	5	24	16.7	.078
BZW04-10	11.4	12.6	1	10.2	5	24	16.7	.078
BZW04P11	12.4	14.3	1	11.1	5	22	18.2	.081
BZW04-11	12.4	13.7	1	11.1	5	22	18.2	.081
BZW04P13	14.3	16.5	1	12.8	5	19	21.2	.084
BZW04-13	14.3	15.8	1	12.8	5	19	21.2	.084
BZW04P14	15.2	17.6	1	13.6	5	17.8	22,5	.086
BZW04-14	15.2	16.8	1	13.6	5	17.8	22.5	.086
BZW04P15	17.1	19.8	1	15.3	5	16	25.2	.088
BZW04-15	17.1	18.9	1	15.3	5	16	25.2	.088
BZW04P17	19.0	22.0	1	17.1	5	14.5	27.7	.090
BZW04-17	19.0	21.0	1	17.1	5	14.5	27.7	.090
BZW04P19	20.9	24.2	1	18.8	5	13.0	30.6	.092
BZW04-19	20.9	23.1	1	18.8	5	13.0	30.6	.092
BZW04P20	22.8	26.4	1	20.5	5	12.0	33.2	.094
BZW04-20	22.8	25.2	1	20.5	5	12.0	33.2	.094
BZW04P23	25.7	29.7	1	23.1	5	10.7	37.5	.096
BZW04-23	25.7	28.4	1	23.1	5	10.7	37.5	.096
BZW04P26	28.5	33.0	1	25.6	5	9.6	41.5	.097
BZW04-26	28.5	31.5	1	25.6	5	9.6	41.5	.097
BZW04P28	31.4	36.3	1	28.2	5	8.8	45.7	.098
BZW04-28	31.4	34.7	1	28.2	5	8.8	45.7	.098
BZW04P31	34.2	39.6	1	30.8	5	8.0	49.9	.099
BZW04-31	34.2	37.8	1	30.8	5	8.0	49.9	.099
BZW04P33 BZW04-33	37.1 37.1	42.9 41.0	1 1	33.3 33.3	5	7.4	53.9 53.9	.100 .100
BZW04-33 BZW04P37	40.9	41.0	1	36.8	5	6.7	53.9 59.3	.100
BZW04F37 BZW04-37	40.9	42.3	1	36.8	5	6.7	59.3	.101
BZW04P40	44.7	51.7	1	40.2	5	6.2	64.8	.101
BZW04-40	44.7	49.4	1	40.2	5	6.2	64.8	.101
BZW04P44	48.5	56.1	1	43.6	5	5.7	70.1	.102
BZW04-44	48.5	53.6	1	43.6	5	5.7	70.1	.102
BZW04P48	53.2	61.6	1	47.8	5	5.2	77.0	.103
BZW04-48	53.2	58.8	1	47.8	5	5.2	77.0	.103
BZW04P53	58.9	68.2	1	53.0	5	4.7	85.0	.104
BZW04-53	58.9	65.1	1	53.0	5	4.7	85.0	.104
BZW04P58	64.6	74.8	1	58.1	5	4.3	92.0	.104
BZW04-58	64.6	71.4	1	58.1	5	4.3	92.0	.104
BZW04P64	71.3	82.5	1	64.1	5	3.9	103.0	.105
BZW04-64	71.3	78.8	1	64.1	5	3.9	103.0	.105
BZW04P70	77.9	90.2	1	70.1	5	3.5	113.0	.105
BZW04-70	77.9	86.1	1	70.1	5	3.5	113.0	.105
BZW04P78	86.5	100	1	77.8	5	3.2	125.0	.106
BZW04-78	86.5	95.5	1	77.8	5	3.2	125.0	.106

	Breakdown Voltage VBR @IT Volts (Note 1) (mA)				Maximm Reverse Current Issu	rse A Maximum Revers Voltage at IRSM 2) (Clamping Voltage	Coefficient	
Device	MIN	MAX		V _{RWM} (Volts)	at V _{RWM} Ir(µA)	(Note 2) (Amps)	(Clamping Voltage V _{RSM} (Volts)	
BZW04P85	95.0	110	1	85.5	5	2.9	137.0	.106
BZW04-85	95.0	105	1	85.5	5	2.9	137.0	.106
BZW04P94	105	121	1	94.0	5	2.6	152.0	.107
BZW04-94	105	116	1	94.0	5	2.6	152.0	.107
BZW04P102	114	132	1	102.0	5	2.4	165.0	.107
BZW04-102	114	126	1	102.0	5	2.4	165.0	.107
BZW04P111	124	143	1	111.0	5	2.2	179.0	.107
BZW04-111	124	137	1	111.0	5	2.2	179.0	.107
BZW04P128	143	165	1	128.0	5	2.0	207.0	.108
BZW04-128	143	158	1	128.0	5	2.0	207.0	.108
BZW04P136	152	176	1	136.0	5	1.8	219.0	.108
BZW04-136	152	168	1	136.0	5	1.8	219.0	.108
BZW04P145	161	187	1	145.0	5	1.7	234.0	.108
BZW04-145	161	179	1	145.0	5	1.7	234.0	.108
BZW04P154	171	198	1	154.0	5	1.6	246.0	.108
BZW04-154	171	189	1	154.0	5	1.6	246.0	.108
BZW04P171	190	220	1	171.0	5	1.5	274.0	.108
BZW04-171	190	210	1	171.0	5	1.5	274.0	.108
BZW04P188	209	242	1	188.0	5	1.4	301.0	.108
BZW04-188	209	231	1	188.0	5	1.4	301.0	.108
BZW04P213	237	275	1	213.0	5	1.5	344.0	.110
BZW04-213	237	263	1	213.0	5	1.5	344.0	.110
BZW04P239	266	308	1	239.0	5	1.5	384.0	.110
BZW04-239	266	294	1	239.0	5	1.5	384.0	.110
BZW04P256	285	330	1	256.0	5	1.2	414.0	.110
BZW04-256	285	315	1	256.0	5	1.2	414.0	.110
BZW04P273	304	352		273.0	5	1.2	438.0	.110
BZW04-273	304	336	1	273.0	5	1.2	438.0	.110
BZW04P299	332	385	1	299.0	5	0.9	482.0	.110
BZW04-299	332	368	1	299.0	5	0.9	482.0	.110
BZW04P342	380	440	1	342.0	5	0.9	548.0	.110
BZW04-342	380	420	1	342.0	5	0.9	548.0	.110
BZW04P376	418	484	1	376.0	5	0.9	603.0	.110
BZW04-376	418	462		376.0	5	0.8	603.0	.110
52110-570				070.0		0.0	000.0	

NOTES: 1. V_{BR} measured after I_T applied for 300 µs , I_T = Square Wave Pulse or equivalent. 2. Surge Current Waveform per Figure 3 and Derated per Figue 2. 3. V_F = 3.5 V at I_F = 25A (BZW04-5V8 thru BZW04-91) V_F = 5.0 V at I_F = 25A (BZW04P102 thru BZW04-376) on 1/2 Square or Equivalent SIne Wave. PW = 8.3 ms, Duty Cycle = 4 Pulses per Minute Maximum.

RATINGS AND CHARACTERISTIC CURVES BZW04 SERIES

GENERAL INSTRUMENT

P6KE SERIES GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 6.8 to 400 Volts 600 Watt Peak Power 5.0 Watt Steady State

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated junction in DO-15 package

 600W surge capability at 1 ms

- Excellent clamping capability
- Low zener impedance
- Fast response time: typically less than 1.0 ps from 0 volts to BV min.
- Typical I_R less than 1 μ A above 10V
- High temperature soldering guaranteed: 300°C/10 seconds/.375", (9.5mm) lead length/5lbs., (2.3 kg) tension

MECHANICAL DATA

Case : Molded plastic over glass passivated junction Terminals: Axial leads, solderable per MIL-ST-202, Method 208 Polarity: Color band denoted cathode except Bipolar Mounting Position: Any Weight : 0.015 ounce, .4 gram

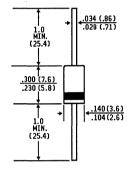
DEVICES FOR BIPOLAR APPLICATIONS

For Bidirectional use C or CA Suffix for types P6KE7.5 thru types P6KE400 Electrical characteristics apply in both directions

MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

RATING	SYMBOL	VALUE	UNITS
Peak Power Dissipation at T _A = 25°C, Tp = 1ms (Note 1)	Ppk	Minimum 600	Watts
Steady State Power Dissipation at T _L = 75°C Lead Lengths .375", (9.5mm) (Note 2)	PD	5.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (Note 3)	IFSM	100	Amps
Operating and Storage Temperature Range	TJ,TSTG	-65 to +175	.c

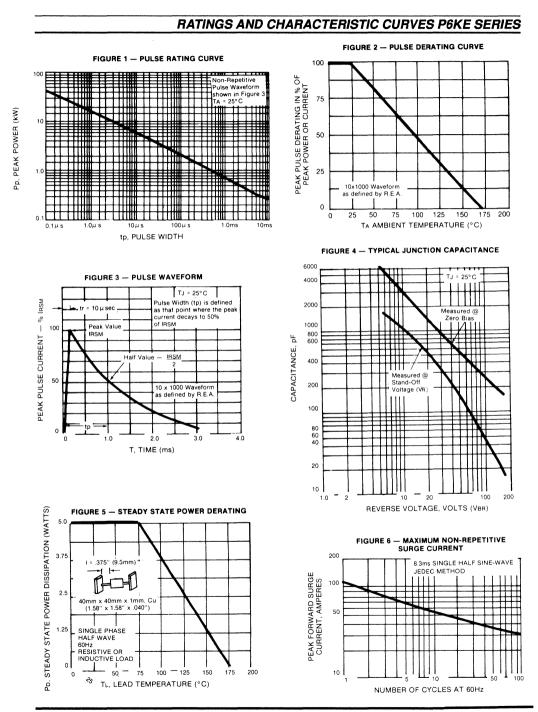

NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above $T_A = 25^{\circ}C$ per Fig. 2.

Mounted on Copper Leaf area of 1.57 in² (40mm²).

3. 8.3ms single half sine-wave, duty cycle = 4 pulses per Minutes maximum.

-582-


DO-15

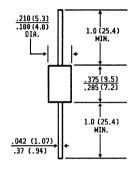
Dimensions in inches and (millimeters)

	Va		@IT	Working Peak Reverse	Maximum Reverse	Maximum Reverse Current	Maximum Reverse	Maximum Temperatuure
Device	Volts (N MIN	MAX	(mA)	Voltage V _{RWM} (Volts)	Leakage at V _{RWM} I _R (μΑ)	I _{RSM} (Note 2) (Amps)	Voltage at I _{RSM} (Clamping Voltage) V _{RSM} (Volts)	Coefficient of _{VBR} (%C)
P6KE6.8	6.12	7.48	10	5.50	1000	56	10.8	0.057
P6KE6.8A	6.45	7.14	10	5.80	1000	57	10.5	0.057
P6KE7.5	6.75	8.25	10	6.05	500	51	11.7	0.061
P6KE7.5A	7.13	7.88	10	6.40	500	53	11.3	0.061
P6KE8.2	7.38	9.02	10	6.63	200	48	12.5	0.065
P6KE8.2A	7.79	8.61	10	7.02	200	50	12.1	0.065
P6KE9.1	8.19	10.0	1.0	7.37	50	44	13.8	0.068
P6KE9.1A	8.65	9.55	1.0	7.78	50	45	13.4	0.068
P6KE10	9.00	11.0	1.0	8.10	10	40	15.0	0.073
P6KE10A	9.50	10.5	1.0	8.55	10	41	14.5	0.073
P6KE11	9.90	12.1	1.0	8.92	5.0	37	16.2	0.075
P6KE11A	10.5	11.6	1.0	9.40	5.0	38	15.6	0.075
P6KE12	10.8	13.2	1.0	9.72	5.0	35	17.3	0.078
P6KE12A	11.4	12.6	1.0	10.2	5.0	36	16.7	0.078
P6KE13	11.7	14.3	1.0	10.5	5.0	32	19.0	0.061
P6KE13A P6KE15	12.4 13.5	13.7 16.5	1.0 1.0	11.1 12.1	5.0	33 27	18.2 22.0	0.081
P6KE15 P6KE15A	13.5	15.8	1.0	12.1	5.0 5.0	27	22.0	0.084 0.084
P6KE15A P6KE16	14.3	15.6	1.0	12.8	5.0	26	21.2	0.084
P6KE16A	14.4	16.8	1.0	13.6	5.0	20	23.5	0.086
P6KE18	16.2	19.8	1.0	14.5	5.0	27	26.5	0.088
P6KE18A	17.1	19.8	1.0	14.5	5.0	23	25.2	0.088
P6KE20	18.0	22.0	1.0	16.2	5.0	24	29.1	0.090
P6KE20A	19.0	21.0	1.0	17.1	5.0	22	27.7	0.090
P6KE22	19.8	24.2	1.0	17.8	5.0	19	31.9	0.092
P6KE22A	20.9	23.1	1.0	18.8	5.0	20	30.6	0.092
P6KE24	21.6	26.4	1.0	19.4	5.0	17	34.7	0.094
P6KE24A	22.8	25.2	1.0	20.5	5.0	18	33.2	0.094
P6KE27	24.3	29.7	1.0	21.8	5.0	15	39.1	0.096
P6KE27A	25.7	28.4	1.0	23.1	5.0	16	37.5	0.096
P6KE30	27.0	33.0	1.0	24.3	5.0	14	43.5	0.097
P6KE30A	28.5	31.5	1.0	25.6	5.0	14.4	41.4	0.097
P6KE33	29.7	36.3	1.0	26.8	5.0	12.6	47.7	0.098
P6KE33A	31.4	34.7	1.0	28.2	5.0	13.2	45.7	0.098
P6KE36	32.4	39.6	1.0	29.1	5.0	11.6	52.0	0.099
P6KE36A	34.2	37.8	1.0	30.8	5.0	12.0	49.9	0.099
P6KE39	35.1	42.9	1.0	31.6	5.0	10.6	56.4	0.100
P6KE39A	37.1	41.0	1.0	33.3	5.0	11.2	53.9	0.100
P6KE43	38.7	47.3	1.0	34.8	5.0	9.6	61.9	0.101
P6KE43A	40.9	45.2	1.0	36.8	5.0	10.1	59.3	0.101
P6KE47	42.3	51.7	1.0	38.1	5.0	8.9	67.8	0.101
P6KE47A	44.7	49.4	1.0	40.2	5.0	9.3	64.8	0.101
P6KE51	45.9	56.1	1.0	41.3	5.0	8.2	73.5	0.102
P6KE51A	48.5	53.6	1.0	43.6	5.0	8.6	70.1	0.102
P6KE56	50.4	61.6	1.0	45.4	5.0	7.4	80.5	0.103
P6KE56A P6KE62	53.2	58.8	1.0	47.8	5.0	7.8	77.0	0.103
P6KE62 P6KE62A	55.8 58.9	68.2 65.1	1.0	50.2	5.0	6.8	89.0	0.104
P6KE68	58.9 61.2	74.8	1.0 1.0	53.0 55.1	5.0	7.1	85.0	0.104 0.104
P6KE68A	64.6	74.8	1.0	55.1	5.0 5.0	6.1 6.5	98.0 92.0	0.104
P6KE75	67.5	82.5	1.0	60.7	5.0	5.5	108.0	0.104
P6KE75A	71.3	78.8	1.0	64.1	5.0	5.8	103.0	0.105
	, 1.5	, 0.0		07.1	0.0	0.0	100.0	0.100
I					L			

	Breskdown Voltage Van Volts (Note 1)		ge @IT (mA)	Working Peak Reverse Voltage	Maximum Reverse Leakage	Maximm Reverse Current Insm (Note 2)	Maximum Reverse Voltage at I _{RBM}	Coefficient
Device	MIN	MAX		V _{RWM} (Volts)	at V _{RWM} I _R (μΑ)	(Note 2) (Amps)	(Clamping Voltage) V _{RSM} (Volts)	of V _{BR} (%C)
Device P6KE82 P6KE82A P6KE91A P6KE91A P6KE100 P6KE100A P6KE100A P6KE120A P6KE120A P6KE120A P6KE130A P6KE130A P6KE160A P6KE160A P6KE160A P6KE160A P6KE180A P6KE200 P6KE220A P6KE220A P6KE250A	MIN 73.8 77.9 81.9 86.5 90.0 95.0 95.0 95.0 105.0 108.0 114.0 117.0 124.0 117.0 124.0 135.0 144.0 152.0 153.0 153.0 153.0 153.0 153.0 153.0 153.0 153.0 153.0 153.0 154.0 155.0 157.	90.2 86.1 100.0 95.5 110.0 121.0 116.0 132.0 132.0 132.0 132.0 137.0 165.0 158.0 158.0 158.0 158.0 158.0 168.0 179.0 198.0 189.0 198.0 198.0 220.0 221.0 221.0 221.0 223.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	(Volts) 66.4 70.1 77.8 81.0 85.5 89.2 94.0 97.2 102.0 105.0 111.0 121.0 128.0 130.0 136.0 138.0 145.0 145.0 145.0 154.0 162.0 171.0 175.0 185.0 202.0 214.0	k(μA) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	(Amps) 5.1 5.3 4.5 4.8 4.2 4.4 3.8 4.0 3.5 3.6 3.2 3.3 2.8 2.9 2.6 2.7 2.5 2.6 2.7 2.5 2.6 2.3 2.4 2.1 2.2 1.75 1.83 1.67 1.75	V _{RSM} (Volts) 118.0 113.0 131.8 125.0 144.0 137.0 158.0 152.0 173.0 165.0 179.0 215.0 207.0 230.0 244.0 234.0 244.0 234.0 245.0 245.0	(%C) 0.105 0.105 0.106 0.106 0.106 0.107 0.108 0.1010 0.1010 0.1010 0.108 0.108 0.108 0.108 0.108 0.108 0.1010 0.110
P6KE300 P6KE300A P6KE350 P6KE350A P6KE400 P6KE400A	270.0 285.0 315.0 332.0 360.0 380.0	330.0 315.0 385.0 368.0 440.0 420.0	1.0 1.0 1.0 1.0 1.0 1.0	243.0 256.0 284.0 300.0 324.0 342.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.4 1.45 1.2 1.25 1.05 1.1	430.0 414.0 504.0 482.0 574.0 548.0	0.110 0.110 0.110 0.110 0.110 0.110 0.110

NOTES:

GENERAL


1.5KE SERIES

GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 6.8 to 400 Volts 1500 Watt Peak Power 5.0 Watt Steady State

FEATURES

DO-201

Dimensions in inches and (millimeters)

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated junction in Molded Plastic package
- 1500W surge capability at 1 ms
- Excellent clamping capability
- Low zener impedance
- Fast response time: typically less than 1.0 ps from 0 volts to BV min.
- Typical I_R less than 1 μ A above 10V
- High temperature soldering guaranteed: 300°C/10 seconds/.375", (9.5mm) lead length/5lbs., (2.3 kg) tension

MECHANICAL DATA

Case : Molded plastic over glass passivated junction Terminals: Axial leads, solderable per MIL-STD-202, Method 208 Polarity: Color band denoted cathode except Bipolar Mounting Position: Any Weight : 0.045 ounce, 1.2 grams

DEVICES FOR BIPOLAR APPLICATIONS

For Bidirectional use C or CA Suffix for types 1.5KE7.5 thru types 1.5KE400 Electrical characteristics apply in both directions

MAXIMUM RATINGS AND CHARACTERISTICS

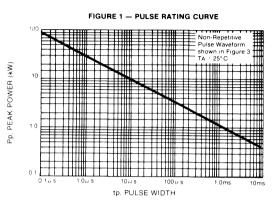
RATING	SYMBOL	VALUE	UNITS
Peak Power Dissipation at T _A = 25°C, Tp = 1ms (Note 1)	Ppk	Minimum 1500	Watts
Steady State Power Dissipation at T _L = 75°C Lead Lengths .375", (9.5mm) (Note 2)	PD	5.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (Note 3)	IFSM	200	Amps
Operating and Storage Temperature Range	TJ, TSTG	-65 to +175	.c

-586-

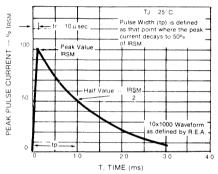
NOTES:

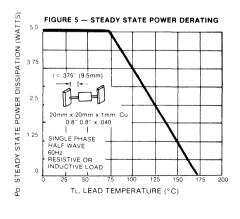
1. Non-repetitive current pulse, per Fig. 3 and derated above $T_A = 25$ C per Fig. 2.

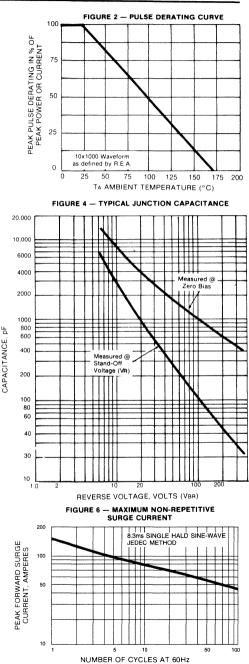
2. Mounted on Copper Leaf area of 0.79 in² (20mm²).

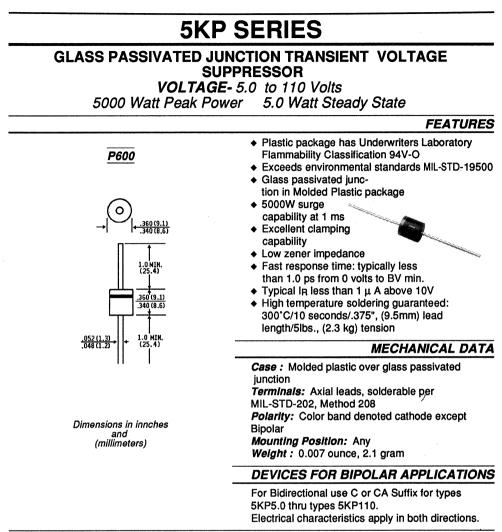

3. 8.3ms single half sine-wave, duty cycle =4 pulses per Minutes maximum

LEEC TYCE Walkers Lestown Walkers Lestown						(
INBCR7A I.SKE57A I.SKE57A I.SKE75 G.457 B.258 I.SKE75 G.75 B.255 I.SKE75 G.75 B.255 I.SKE75 G.75 B.255 I.SKE75 G.73 T.88 I.O G.40 S00 I.32 II.3 O.061 IN8289A I.SKE32A 7.78 B.02 I.O G.63 200 I24 I2.1 0.065 IN8297A I.SKE32A 7.79 B.0 I.O 7.37 S0 I109 I.3.8 0.068 IN8277A I.SKE10 9.00 I.I.0 I.O 8.155 I.O IO.3 I.4.5 0.073 IN8272 I.SKE11A 9.00 I.2.1 I.O 8.25 0 9.0.0 I.6.7 0.075 IN8273A I.SKE12A I.0.8 I.O 9.40 S.O 9.0.0 I.6.7 0.076 IN8274A I.SKE13A I.2.4 I.0.7 I.0.1 I.0.0 I.0.7 I.0.0 I.0.7 I.0.0 I.0.0	TYPE	PART	Va (Volts)	(Note 1)	-	Reverse Voitage Vriww	Reverse Leakage at V _{RWM}	Reverse Surge Current I _{RSM} (Note 2)	Voltage at Insm (Clamping Voltage)	Temperature
INBCR7A I.SKE57A I.SKE57A I.SKE75 G.457 B.258 I.SKE75 G.75 B.255 I.SKE75 G.75 B.255 I.SKE75 G.75 B.255 I.SKE75 G.73 T.88 I.O G.40 S00 I.32 II.3 O.061 IN8289A I.SKE32A 7.78 B.02 I.O G.63 200 I24 I2.1 0.065 IN8297A I.SKE32A 7.79 B.0 I.O 7.37 S0 I109 I.3.8 0.068 IN8277A I.SKE10 9.00 I.I.0 I.O 8.155 I.O IO.3 I.4.5 0.073 IN8272 I.SKE11A 9.00 I.2.1 I.O 8.25 0 9.0.0 I.6.7 0.075 IN8273A I.SKE12A I.0.8 I.O 9.40 S.O 9.0.0 I.6.7 0.076 IN8274A I.SKE13A I.2.4 I.0.7 I.0.1 I.0.0 I.0.7 I.0.0 I.0.7 I.0.0 I.0.0	1N6267	1 54 56 9	6 1 2	7 49	10	5.50	1000	120	10.9	0.057
IN2288 1.5KE7.5 6.75 8.25 10 6.05 500 128 11.7 0.061 IN8288A 1.5KE8.2 7.38 9.02 10 6.63 200 120 12.5 0.065 IN8290A 1.5KE8.2 7.38 9.02 10 6.63 200 124 12.1 0.065 IN8270A 1.5KE8.1 8.0 10 7.02 200 124 12.1 0.065 IN8270A 1.5KE9.1 8.05 1.0 7.78 50 103 14.4 0.068 IN8271 1.5KE114 0.50 10.5 1.0 8.52 0.93.0 16.2 0.075 IN8274 1.5KE12 10.8 13.2 10 9.72 5.0 90.0 16.7 0.078 IN8274 1.5KE13 11.4 12.6 10 10.2 5.0 90.0 16.7 0.078 IN827A 1.5KE13 11.4 12.6 10 12.8 5.0										
INCEGRA I.SKEF.2A 7.13 7.08 10 6.40 500 132 11.3 0.061 INCEGRA I.SKEB.2A 7.39 9.02 10 6.63 200 124 12.5 0.065 INCEZOR I.SKEB.2A 7.79 8.0 10 7.02 200 124 12.1 0.065 INSEZTA I.SKEB.1A 8.65 9.55 1.0 7.78 50 110 10.0 15.0 0.653 INSEZTA I.SKE110 9.00 11.0 1.0 8.55 10 103 14.5 0.073 INSEZTA I.SKE114 10.5 11.6 10 9.40 5.0 96.0 15.6 0.075 INSEZTA I.SKE12 10.8 13.2 1.0 9.72 5.0 87.0 17.3 0.076 INSEZTA I.SKE13 1.35 1.0 12.1 5.0 82.0 18.2 0.081 INSEZTA I.SKE16 1.5.3										
IN2289 I.SKEB2 7.78 9.02 10 6.63 200 120 12.5 0.085 IN6289A I.SKE9.2 7.79 8.0 10 7.02 200 124 12.1 0.065 IN6270A I.SKE9.1 8.19 10.0 7.37 50 109 13.8 0.068 IN6271 I.SKE10 9.00 11.0 10.855 10 103 14.4 0.068 IN6272 I.SKE114 9.50 10.5 1.0 8.52 5.0 93.0 16.2 0.075 IN6272A I.SKE12 10.8 13.2 1.0 9.40 5.0 96.0 15.6 0.075 IN8274 I.SKE12A 13.7 1.0 11.1 5.0 87.0 17.3 0.076 IN8274 I.SKE13A 1.5.8 1.0 12.8 5.0 91.0 0.081 IN8275 I.SKE16 14.4 17.6 1.0 12.8 5.0 64.0 23.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>						1				
INB289A 1.5KEB2A 7.79 8.0 10 7.02 200 124 121 0.068 INB270A 1.5KE91A 8.65 9.55 1.0 7.78 50 119 13.8 0.068 INB271A 1.5KE91A 8.65 9.55 1.0 7.78 50 112 13.4 0.068 IN8271A 1.5KE10A 9.00 11.0 1.0 8.15 10 103 14.5 0.073 IN8272A 1.5KE12 10.8 10.2 5.0 90.0 16.7 0.078 IN827A 1.5KE12 10.8 10.2 5.0 90.0 16.7 0.078 IN827A 1.5KE13 11.7 14.3 1.0 10.5 5.0 79.0 19.0 0.081 IN827A 1.5KE15 1.3.7 1.0 11.1 5.0 82.0 18.2 0.061 IN827A 1.5KE16 1.4.4 1.7.6 1.0 12.9 5.0 64.0 2.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>						1				
IN8270 I.SKE9.1 8.19 10.0 1.0 7.78 50 109 13.8 0.068 IN8271 I.SKE10 9.00 11.0 1.0 8.10 10 100 15.0 0.073 IN8271 I.SKE10 9.00 11.0 1.0 8.55 10 103 14.5 0.073 IN8272 I.SKE11 10.5 1.0 9.40 5.0 95.0 16.2 0.075 IN8273 I.SKE12 11.4 12.6 1.0 10.2 5.0 90.0 16.7 0.076 IN8274 I.SKE13 11.7 14.3 1.0 10.5 5.0 70.0 18.0 0.081 IN8274 I.SKE15 13.5 15.5 1.0 12.8 5.0 71.0 21.2 0.084 IN8276 I.SKE16 14.4 17.6 1.0 12.8 5.0 76.0 22.5 0.066 IN8276 I.SKE16 14.4 17.6 1.0						1				
IN8271 I.5KE10 9.00 11.0 1.0 8.10 10 100 15.0 0.073 IN8272 I.5KE11 9.90 12.1 1.0 8.55 10 103 14.5 0.073 IN8272 I.5KE11 10.5 11.6 1.0 9.40 5.0 96.0 15.6 0.075 IN8273 I.5KE12 11.4 12.6 1.0 10.2 5.0 90.0 18.7 0.078 IN8274 I.5KE13 11.7 1.4.3 1.0 10.5 5.0 79.0 19.0 0.081 IN8276 I.5KE154 12.4 13.7 1.0 11.1 5.0 82.0 18.2 0.061 IN8276 I.5KE16 14.4 17.6 1.0 12.8 5.0 71.0 21.2 0.086 IN8276 I.5KE18 16.2 18.8 1.0 13.6 5.0 65.5 26.2 0.089 IN8276 I.5KE20 19.0 21.0					1	1				
IN8271A 1.5KE10A 9.50 10.5 1.0 8.55 10 103 14.5 0.073 IN8272A 1.5KE11 9.90 12.1 1.0 8.92 5.0 93.0 16.2 0.075 IN8273A 1.5KE12 10.8 13.2 1.0 9.72 5.0 87.0 17.3 0.076 IN8273A 1.5KE12 10.8 10.2 1.0 9.72 5.0 87.0 17.3 0.076 IN8274 1.5KE13A 11.4 12.6 1.0 10.5 5.0 79.0 18.0 0.061 IN8275A 1.5KE16A 13.5 16.5 1.0 12.8 5.0 71.0 21.2 0.084 IN8276A 1.5KE16A 15.2 16.8 1.0 13.6 5.0 67.5 26.5 0.066 IN8277A 1.5KE18 16.2 19.8 1.0 14.5 5.0 54.5 26.5 0.068 IN8277A 1.5KE20 18.0 <t< td=""><td>1N6270A</td><td>1.5KE9.1A</td><td>8.65</td><td>9.55</td><td>1.0</td><td>7.78</td><td>50</td><td>112</td><td>13.4</td><td>0.068</td></t<>	1N6270A	1.5KE9.1A	8.65	9.55	1.0	7.78	50	112	13.4	0.068
INE272 1.5KE11 9.90 12.1 1.0 9.40 5.0 93.0 16.2 0.075 INE272 1.5KE11 10.5 11.6 1.0 9.40 5.0 96.0 15.6 0.075 INE273 1.5KE12A 11.4 12.6 1.0 10.2 5.0 90.0 16.7 0.076 INE274 1.5KE13 12.4 13.7 1.0 11.1 5.0 82.0 18.2 0.061 INE274 1.5KE16 13.5 1.0 12.1 5.0 64.0 22.0 0.084 INE276 1.5KE16 14.4 17.6 1.0 12.9 5.0 64.0 23.5 0.066 IN8277 1.5KE18 16.2 19.8 1.0 14.5 5.0 56.5 26.5 0.068 IN8278 1.5KE20 18.0 21.0 1.0 17.1 5.0 54.0 27.7 0.990 IN8278 1.5KE24 19.0 21.0 17.8 <td>1N6271</td> <td>1.5KE10</td> <td>9.00</td> <td>11.0</td> <td>1.0</td> <td>8.10</td> <td>10</td> <td>100</td> <td>15.0</td> <td>0.073</td>	1N6271	1.5KE10	9.00	11.0	1.0	8.10	10	100	15.0	0.073
IN6272A 1.5KE11A 10.5 11.6 1.0 9.40 5.0 96.0 15.6 0.075 IN6273 1.5KE12 10.8 13.2 1.0 9.72 5.0 87.0 17.3 0.076 IN6274 1.5KE13 11.7 14.3 1.0 10.5 5.0 79.0 18.2 0.061 IN6274 1.5KE15 13.5 16.5 1.0 12.1 5.0 82.0 18.2 0.061 IN6275A 1.5KE16 14.3 15.8 1.0 12.8 5.0 71.0 21.2 0.084 IN6276A 1.5KE16 15.2 16.8 1.0 13.6 5.0 67.0 22.5 0.066 IN6277 1.5KE18 16.2 19.8 1.0 14.5 5.0 59.5 26.2 0.089 IN6278 1.5KE20 18.0 10.0 17.1 5.0 47.0 31.9 0.092 IN6279A 1.5KE24 2.9 2.1 10 </td <td>1N6271A</td> <td>1.5KE10A</td> <td>9.50</td> <td>10.5</td> <td>1.0</td> <td>8.55</td> <td>10</td> <td>103</td> <td>14.5</td> <td>0.073</td>	1N6271A	1.5KE10A	9.50	10.5	1.0	8.55	10	103	14.5	0.073
1N6273 1.5KE12 10.8 13.2 1.0 9.72 5.0 87.0 17.3 0.076 1N6274 1.5KE12A 11.4 12.6 10.0 10.2 5.0 90.0 16.7 0.078 1N8274 1.5KE13A 12.4 13.7 1.0 11.1 5.0 82.0 18.2 0.061 1N8275A 1.5KE15A 13.5 16.5 1.0 12.8 5.0 71.0 21.2 0.084 1N8276 1.5KE16 14.4 17.6 10.1 12.9 5.0 64.0 22.5 0.066 1N8276 1.5KE18 16.2 19.8 1.0 14.5 5.0 51.5 29.1 0.090 1N8278 1.5KE20 18.0 21.0 1.0 17.1 5.0 54.0 27.7 0.900 1N8279A 1.5KE220 19.0 21.0 1.0 17.1 5.0 54.0 27.0 0.900 1N8279A 1.5KE24 21.6 <td< td=""><td>1N6272</td><td>1.5KE11</td><td>9.90</td><td>12.1</td><td>1.0</td><td>8.92</td><td>5.0</td><td>93.0</td><td>16.2</td><td>0.075</td></td<>	1N6272	1.5KE11	9.90	12.1	1.0	8.92	5.0	93.0	16.2	0.075
IN6273A 1.5KE12A 11.4 12.6 1.0 10.2 5.0 90.0 16.7 0.078 IN6274 1.5KE13 11.7 14.3 1.0 10.5 5.0 79.0 19.0 0.081 IN6274 1.5KE13 11.2.4 13.7 1.0 11.1 5.0 68.0 22.0 0.084 IN6275 1.5KE16 14.3 15.8 1.0 12.1 5.0 64.0 22.0 0.084 IN6276 1.5KE16A 15.2 16.8 1.0 13.6 5.0 67.0 22.5 0.066 IN6277A 1.5KE18 16.2 19.8 1.0 15.3 5.0 59.5 26.2 0.089 IN6278 1.5KE20 18.0 12.0 1.0 17.1 5.0 54.0 27.7 0.909 IN6279A 1.5KE24 19.0 21.0 1.0 17.8 5.0 47.0 31.9 0.092 IN6280A 1.5KE24 21.6										
1N6274 1.5KE13 11.7 14.3 1.0 10.5 5.0 79.0 19.0 0.081 1N6275 1.5KE15 13.5 16.5 1.0 12.1 5.0 68.0 22.0 0.084 1N6276 1.5KE15 14.4 17.6 1.0 12.9 5.0 64.0 23.5 0.066 1N6276 1.5KE18 16.2 16.8 1.0 12.9 5.0 64.0 23.5 0.066 1N6277 1.5KE18 16.2 19.8 1.0 14.5 5.0 50.5 26.2 0.069 1N6278 1.5KE20A 18.0 22.0 1.0 17.1 5.0 54.0 27.7 0.900 1N6279 1.5KE22A 19.8 24.2 1.0 17.8 5.0 47.0 31.9 0.092 1N6280 1.5KE24A 21.6 26.4 1.0 19.4 5.0 43.5 0.94 1N6280 1.5KE27 24.3 29.7 1.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td></td>									F	
1N6274A 1.5KE13A 1.2.4 13.7 1.0 11.1 5.0 82.0 18.2 0.084 1N82755 1.5KE155 13.5 16.5 1.0 12.1 5.0 68.0 22.0 0.084 1N82756 1.5KE165 14.3 15.8 1.0 12.8 5.0 64.0 23.5 0.066 1N8276 1.5KE16 14.4 17.6 1.0 13.6 5.0 65.5 26.5 0.066 1N8277 1.5KE18A 17.1 18.9 1.0 15.3 5.0 54.0 27.7 0.090 1N6278A 1.5KE20 19.0 21.0 1.0 17.1 5.0 54.0 27.7 0.090 1N6278A 1.5KE22 19.8 24.2 1.0 17.8 5.0 47.0 31.9 0.092 1N6280 1.5KE24 21.6 26.4 1.0 19.4 5.0 43.0 34.7 0.094 1N6280 1.5KE24 21.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></t<>						1				
1N6275 1.5KE15 13.5 16.5 1.0 12.1 5.0 68.0 22.0 0.084 1N6276 1.5KE16A 14.4 17.6 1.0 12.9 5.0 64.0 21.2 0.084 1N6276 1.5KE16A 15.2 16.8 1.0 12.9 5.0 64.0 22.5 0.066 1N6277 1.5KE18 16.2 19.8 1.0 14.5 5.0 56.5 26.5 0.068 1N6278 1.5KE20 18.0 22.0 1.0 16.2 5.0 51.5 29.1 0.090 1N6278 1.5KE24 19.0 21.0 1.7.8 5.0 47.0 31.9 0.092 1N6279 1.5KE24 20.9 23.1 1.0 18.8 5.0 49.0 30.6 0.092 1N6280 1.5KE24 21.6 26.4 1.0 19.4 5.0 43.0 34.7 0.094 1N6280 1.5KE30 27.7 28.0 20.5						1				
1N6275A 1.5KE15A 14.3 15.8 1.0 12.8 5.0 71.0 21.2 0.084 1N6276 1.5KE16 14.4 17.6 1.0 13.6 5.0 64.0 23.5 0.066 1N6277 1.5KE18 16.2 19.8 1.0 13.6 5.0 67.0 22.5 0.068 1N6277 1.5KE18 16.2 19.8 1.0 14.5 5.0 59.5 26.2 0.089 1N6278 1.5KE20 18.0 22.0 1.0 16.2 5.0 51.5 29.1 0.090 1N6279 1.5KE24 20.9 21.0 1.0 17.8 5.0 47.0 31.9 0.092 1N6280 1.5KE24 21.6 26.4 1.0 19.4 5.0 43.0 34.7 0.094 1N6281 1.5KE27 25.7 28.4 1.0 23.1 5.0 43.0 34.7 0.096 1N62821 1.5KE30 27.0 33.0<		1								
1N6276 1.5KE16 14.4 17.6 1.0 12.9 5.0 64.0 23.5 0.066 1N6277 1.5KE16A 15.2 16.8 1.0 13.6 5.0 67.0 22.5 0.066 1N6277 1.5KE18 17.1 18.9 1.0 14.5 5.0 56.5 26.2 0.089 1N6278 1.5KE20 18.0 22.0 1.0 17.1 5.0 54.0 27.7 0.090 1N6279 1.5KE24 19.0 21.0 1.0 17.1 5.0 47.0 31.9 0.092 1N6279 1.5KE24 21.6 26.4 1.0 19.4 5.0 43.0 34.7 0.094 1N6281 1.5KE24 22.8 25.2 1.0 21.8 5.0 38.5 39.1 0.096 1N6282 1.5KE30 27.0 33.0 1.0 24.3 5.0 34.5 43.5 0.097 1N6282 1.5KE30 27.7 33.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
1N6276A 1.5KE16A 15.2 16.8 1.0 13.6 5.0 67.0 22.5 0.066 1N6277 1.5KE18 16.2 19.8 1.0 14.5 5.0 56.5 26.5 0.068 1N6278 1.5KE20 18.0 22.0 1.0 16.2 5.0 51.5 29.1 0.090 1N6278 1.5KE20 19.0 21.0 1.0 17.1 5.0 54.0 27.7 0.090 1N6279 1.5KE22 19.8 24.2 1.0 17.8 5.0 47.0 31.9 0.092 1N6280 1.5KE24 20.9 23.1 1.0 18.8 5.0 49.0 30.6 0.092 1N6281 1.5KE24 21.6 26.4 1.0 18.8 5.0 45.0 33.2 0.094 1N6281 1.5KE27 24.3 29.7 1.0 21.8 5.0 36.5 39.1 0.096 1N6282 1.5KE30 27.0 33.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>						1				
IN6277 I.5KE18 16.2 19.8 1.0 14.5 5.0 56.5 26.5 0.068 IN6278 I.5KE20 18.0 22.0 1.0 15.3 5.0 59.5 26.2 0.089 IN6278 I.5KE20 18.0 22.0 1.0 16.2 5.0 51.5 29.1 0.090 IN6279 I.5KE22 19.8 24.2 1.0 17.8 5.0 47.0 31.9 0.092 IN6279A 1.5KE24 20.9 23.1 1.0 18.8 5.0 47.0 31.9 0.092 IN6280A 1.5KE24 21.6 26.4 1.0 19.4 5.0 43.0 34.7 0.094 IN6281 1.5KE27 24.3 29.7 1.0 21.8 5.0 38.5 39.1 0.096 IN6282 1.5KE30 27.0 33.0 1.0 24.3 5.0 36.0 41.4 0.097 IN6283 1.5KE33 31.4 34.7 </td <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>1</td> <td></td> <td></td> <td></td> <td>1 1</td>					4	1				1 1
1N6277A 1.5KE18A 17.1 18.9 1.0 15.3 5.0 59.5 26.2 0.089 1N6278 1.5KE20 18.0 22.0 1.0 16.2 5.0 51.5 29.1 0.090 1N6278A 1.5KE20A 19.0 21.0 1.0 17.1 5.0 54.0 27.7 0.090 1N6279A 1.5KE22A 20.9 23.1 1.0 18.8 5.0 47.0 31.9 0.092 1N6280 1.5KE24A 22.6 26.4 1.0 19.4 5.0 43.0 34.7 0.094 1N6280A 1.5KE24A 22.8 25.2 1.0 20.5 5.0 45.0 33.2 0.094 1N6281A 1.5KE27 24.3 29.7 1.0 21.8 5.0 34.5 43.5 0.097 1N6282A 1.5KE30 27.0 33.0 1.0 26.8 5.0 36.0 41.4 0.097 1N6282A 1.5KE33 31.4										
1N6278 1.5KE20 18.0 22.0 1.0 16.2 5.0 51.5 29.1 0.090 1N6279 1.5KE20A 19.0 21.0 1.0 17.1 5.0 54.0 27.7 0.090 1N6279 1.5KE22A 20.9 23.1 1.0 17.8 5.0 47.0 31.9 0.092 1N6280 1.5KE24A 20.6 26.4 1.0 19.4 5.0 43.0 34.7 0.094 1N6280 1.5KE24A 22.8 25.2 1.0 20.5 5.0 45.0 33.2 0.094 1N6281A 1.5KE27 24.3 29.7 1.0 21.8 5.0 38.5 39.1 0.096 1N6282 1.5KE30 27.0 33.0 1.0 24.3 5.0 34.5 43.5 0.097 1N6282 1.5KE33 29.7 36.3 1.0 28.6 5.0 31.5 47.7 0.098 1N6283 1.5KE33 31.4 34.										
IN6278A 1.5KE20A 19.0 21.0 1.0 17.1 5.0 54.0 27.7 0.090 IN6279A 1.5KE22 19.8 24.2 1.0 17.8 5.0 47.0 31.9 0.092 IN6279A 1.5KE24 20.9 23.1 1.0 18.8 5.0 49.0 30.6 0.092 IN6280 1.5KE24 21.6 26.4 1.0 19.4 5.0 43.0 34.7 0.094 IN6281A 1.5KE27 24.3 29.7 1.0 21.8 5.0 38.5 39.1 0.096 IN6282 1.5KE30 27.0 33.0 1.0 24.3 5.0 34.5 43.5 0.097 IN6283 1.5KE33 29.7 36.3 1.0 25.6 5.0 36.0 41.4 0.097 IN6283 1.5KE36 32.4 39.6 1.0 29.1 5.0 29.0 52.0 0.099 IN6284 1.5KE36 32.4 39.										
1N6279 1.5KE22 19.8 24.2 1.0 17.8 5.0 47.0 31.9 0.092 1N6280 1.5KE24 20.9 23.1 1.0 18.8 5.0 49.0 30.6 0.092 1N6280 1.5KE24 21.6 26.4 1.0 19.4 5.0 43.0 34.7 0.094 1N6280 1.5KE27 24.3 29.7 1.0 21.8 5.0 38.5 39.1 0.096 1N6281 1.5KE27 25.7 28.4 1.0 23.1 5.0 40.0 37.5 0.096 1N6282 1.5KE30 27.7 35.3 1.0 24.3 5.0 34.5 43.5 0.097 1N6283 1.5KE33 29.7 36.3 1.0 28.8 5.0 31.5 47.7 0.098 1N6283 1.5KE33 31.4 34.7 1.0 28.2 5.0 33.0 45.7 0.098 1N6284 1.5KE36 34.2 37.8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td>								1	1	
1N6279A 1.5KE22A 20.9 23.1 1.0 18.8 5.0 49.0 30.6 0.092 1N6280 1.5KE24 21.6 26.4 1.0 19.4 5.0 43.0 34.7 0.094 1N6280 1.5KE24 22.8 25.2 1.0 20.5 5.0 45.0 33.2 0.094 1N6281 1.5KE27 24.3 29.7 1.0 23.1 5.0 40.0 37.5 0.096 1N6282 1.5KE30 27.0 33.0 1.0 24.3 5.0 34.5 43.5 0.097 1N6282 1.5KE33 29.7 36.3 1.0 26.6 5.0 31.5 7.0 098 1N6283 1.5KE33 29.7 36.3 1.0 28.2 5.0 33.0 45.7 0.098 1N6284 1.5KE33 34.2 37.8 1.0 30.8 5.0 29.0 52.0 0.099 1N6285A 1.5KE433 34.7 47.3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
1N6280 1.5KE24 21.6 26.4 1.0 19.4 5.0 43.0 34.7 0.094 1N6280A 1.5KE24A 22.8 25.2 1.0 20.5 5.0 45.0 33.2 0.094 1N6281 1.5KE27A 25.7 28.4 1.0 21.8 5.0 38.5 39.1 0.096 1N6282 1.5KE30 27.0 33.0 1.0 24.3 5.0 34.5 43.5 0.097 1N6282 1.5KE30 29.7 36.3 1.0 25.6 5.0 36.0 41.4 0.097 1N6283 1.5KE33 29.7 36.3 1.0 26.8 5.0 31.5 47.7 0.098 1N6283 1.5KE36 32.4 39.6 1.0 29.1 5.0 29.0 52.0 0.099 1N6285 1.5KE36 34.2 37.8 1.0 30.8 5.0 26.5 56.4 0.100 1N6285 1.5KE39 35.1 42.9<	1 1					1		F Contraction of the second se		
1N6280A 1.5KE27 24.3 29.7 1.0 21.8 5.0 45.0 33.2 0.094 1N6281 1.5KE27 24.3 29.7 1.0 21.8 5.0 38.5 39.1 0.096 1N6281A 1.5KE27A 25.7 28.4 1.0 23.1 5.0 40.0 37.5 0.096 1N6282A 1.5KE30A 25.7 33.0 1.0 24.3 5.0 34.5 43.5 0.097 1N6282A 1.5KE30A 28.5 31.5 1.0 25.6 5.0 36.0 41.4 0.097 1N6283 1.5KE33A 31.4 34.7 1.0 28.2 5.0 33.0 45.7 0.098 1N6284 1.5KE36A 34.2 37.8 1.0 20.8 5.0 30.0 49.9 0.099 1N6285 1.5KE39A 37.1 41.0 1.0 33.3 5.0 28.0 53.9 0.100 1N6286A 1.5KE43 38.7 <										
1N6281 1.5KE27 24.3 29.7 1.0 21.8 5.0 38.5 39.1 0.096 1N6281A 1.5KE30 25.7 28.4 1.0 23.1 5.0 40.0 37.5 0.096 1N6282 1.5KE30 27.0 33.0 1.0 24.3 5.0 34.5 43.5 0.097 1N6282 1.5KE30A 28.5 31.5 1.0 25.6 5.0 36.0 41.4 0.097 1N6283 1.5KE33A 31.4 34.7 1.0 28.2 5.0 33.0 45.7 0.098 1N6284 1.5KE36A 34.2 37.8 1.0 30.8 5.0 30.0 49.9 0.099 1N6285 1.5KE39 35.1 42.9 1.0 31.6 5.0 26.5 56.4 0.100 1N6285 1.5KE39 37.1 41.0 1.0 33.3 5.0 28.0 53.9 0.101 1N6286 1.5KE43 38.7 47.3	1 1					1				
1N6281A 1.5KE27A 25.7 28.4 1.0 23.1 5.0 40.0 37.5 0.096 1N6282 1.5KE30 27.0 33.0 1.0 24.3 5.0 34.5 43.5 0.097 1N6282A 1.5KE30A 28.5 31.5 1.0 25.6 5.0 36.0 41.4 0.097 1N6283A 1.5KE33A 31.4 34.7 1.0 28.2 5.0 33.0 45.7 0.098 1N6284A 1.5KE36A 32.4 39.6 1.0 29.1 5.0 29.0 52.0 0.099 1N6285A 1.5KE39 35.1 42.9 1.0 31.6 5.0 26.5 56.4 0.100 1N6285A 1.5KE39 37.1 41.0 1.0 33.3 5.0 28.0 53.9 0.100 1N6285A 1.5KE43 38.7 47.3 1.0 36.8 5.0 25.3 59.3 0.101 1N6286A 1.5KE47 42.3										
1N6282 1.5KE30 27.0 33.0 1.0 24.3 5.0 34.5 43.5 0.097 1N6283 1.5KE30A 28.5 31.5 1.0 25.6 5.0 36.0 41.4 0.097 1N6283 1.5KE33A 29.7 36.3 1.0 28.6 5.0 31.5 47.7 0.098 1N6283A 1.5KE33A 31.4 34.7 1.0 28.2 5.0 33.0 45.7 0.098 1N6284A 1.5KE36A 34.2 37.8 1.0 30.8 5.0 30.0 49.9 0.099 1N6285 1.5KE39A 37.1 41.0 1.0 33.3 5.0 28.0 53.9 0.100 1N6286 1.5KE433 38.7 47.3 1.0 34.8 5.0 24.0 61.9 0.101 1N6286 1.5KE47 42.3 51.7 1.0 36.1 5.0 22.2 67.8 0.101 1N6287A 1.5KE47A 44.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>•</td><td></td><td></td></t<>						1		•		
1N6283 1.5KE33 29.7 36.3 1.0 26.8 5.0 31.5 47.7 0.098 1N6283A 1.5KE33A 31.4 34.7 1.0 28.2 5.0 33.0 45.7 0.098 1N6284A 1.5KE36 32.4 39.6 1.0 29.1 5.0 29.0 52.0 0.099 1N6284A 1.5KE36 34.2 37.8 1.0 30.8 5.0 30.0 49.9 0.099 1N6285 1.5KE39 35.1 42.9 1.0 31.6 5.0 26.5 56.4 0.100 1N6286 1.5KE43 38.7 47.3 1.0 34.8 5.0 24.0 61.9 0.101 1N6286 1.5KE43 40.9 45.2 1.0 36.8 5.0 23.2 67.8 0.101 1N6287 1.5KE47 42.3 51.7 1.0 36.1 5.0 23.2 64.8 0.101 1N6288 1.5KE51 45.9 56.1										
1N6283A1.5KE33A31.434.71.028.25.033.045.70.0981N62841.5KE3632.439.61.029.15.029.052.00.0991N62841.5KE36A34.237.81.030.85.030.049.90.0991N62851.5KE39A37.141.01.031.65.026.556.40.1001N6285A1.5KE39A37.141.01.033.35.028.053.90.1001N6286A1.5KE43338.747.31.034.85.024.061.90.1011N6286A1.5KE47A40.945.21.036.85.025.359.30.1011N62871.5KE4742.351.71.036.15.022.267.80.1011N62881.5KE4744.749.41.040.25.023.264.80.1011N62881.5KE51A45.956.11.041.35.020.473.50.1021N62881.5KE56A53.258.81.047.85.018.680.50.1031N6289A1.5KE56A53.258.81.047.85.019.577.00.1031N62901.5KE6255.868.21.050.25.016.989.00.1041N62911.5KE6861.274.81.055.15.015.398.00.1041N6292 <td< td=""><td>1N6282A</td><td>1.5KE30A</td><td>28.5</td><td>31.5</td><td>1.0</td><td>25.6</td><td>5.0</td><td>36.0</td><td>41.4</td><td>0.097</td></td<>	1N6282A	1.5KE30A	28.5	31.5	1.0	25.6	5.0	36.0	41.4	0.097
1N6284 1.5KE36 32.4 39.6 1.0 29.1 5.0 29.0 52.0 0.099 1N6284A 1.5KE36A 34.2 37.8 1.0 30.8 5.0 30.0 49.9 0.099 1N6285 1.5KE39A 35.1 42.9 1.0 31.6 5.0 26.5 56.4 0.100 1N6285A 1.5KE39A 37.1 41.0 1.0 33.3 5.0 28.0 53.9 0.100 1N6286A 1.5KE433 38.7 47.3 1.0 34.8 5.0 24.0 61.9 0.101 1N6286A 1.5KE47A 40.9 45.2 1.0 36.1 5.0 22.2 67.8 0.101 1N6287 1.5KE47A 44.7 49.4 1.0 40.2 5.0 23.2 64.8 0.101 1N6288 1.5KE51 45.9 56.1 1.0 41.3 5.0 21.4 70.1 0.102 1N6288 1.5KE56 50.4 <t< td=""><td>1N6283</td><td>1.5KE33</td><td>29.7</td><td>36.3</td><td>1.0</td><td>26.8</td><td>5.0</td><td>31.5</td><td>47.7</td><td>0.098</td></t<>	1N6283	1.5KE33	29.7	36.3	1.0	26.8	5.0	31.5	47.7	0.098
1N6284A 1.5KE36A 34.2 37.8 1.0 30.8 5.0 30.0 49.9 0.099 1N6285 1.5KE39 35.1 42.9 1.0 31.6 5.0 26.5 56.4 0.100 1N6285A 1.5KE39A 37.1 41.0 1.0 33.3 5.0 28.0 53.9 0.100 1N6286 1.5KE433 38.7 47.3 1.0 34.8 5.0 24.0 61.9 0.101 1N6286A 1.5KE43A 40.9 45.2 1.0 36.8 5.0 25.3 59.3 0.101 1N6287A 1.5KE47A 44.7 49.4 1.0 40.2 5.0 23.2 64.8 0.101 1N6288 1.5KE51 45.9 56.1 1.0 41.3 5.0 21.4 70.1 0.102 1N6289A 1.5KE56 50.4 61.8 1.0 45.4 5.0 18.6 80.5 0.103 1N6289A 1.5KE62 58.8 <	1N6283A	1.5KE33A	31.4	34.7	1.0	28.2	5.0	33.0	45.7	0.098
IN6285 1.5KE39 35.1 42.9 1.0 31.6 5.0 26.5 56.4 0.100 IN6285A 1.5KE39A 37.1 41.0 1.0 33.3 5.0 28.0 53.9 0.100 IN6286 1.5KE43 38.7 47.3 1.0 34.8 5.0 24.0 61.9 0.101 IN6286 1.5KE43A 40.9 45.2 1.0 36.8 5.0 22.2 67.8 0.101 IN6287 1.5KE47A 44.7 49.4 1.0 40.2 5.0 23.2 64.8 0.101 IN6288 1.5KE51 45.9 56.1 1.0 41.3 5.0 20.4 73.5 0.102 IN6289 1.5KE56 50.4 61.8 1.0 43.6 5.0 21.4 70.1 0.102 IN6289 1.5KE56 50.4 61.8 1.0 47.8 5.0 18.6 80.5 0.103 IN6289 1.5KE62 55.8 68.2	1N6284	1.5KE36	32.4	39.6	1.0	29.1	5.0	29.0	52.0	0.099
1N6285A 1.5KE39A 37.1 41.0 1.0 33.3 5.0 28.0 53.9 0.100 1N6286 1.5KE43 38.7 47.3 1.0 34.8 5.0 24.0 61.9 0.101 1N6286 1.5KE43 40.9 45.2 1.0 36.8 5.0 24.0 61.9 0.101 1N62867 1.5KE474 42.3 51.7 1.0 36.1 5.0 22.2 67.8 0.101 1N6287 1.5KE47A 44.7 49.4 1.0 40.2 5.0 23.2 64.8 0.101 1N6288 1.5KE51 45.9 56.1 1.0 41.3 5.0 20.4 73.5 0.102 1N6289 1.5KE56 50.4 61.8 1.0 43.6 5.0 21.4 70.1 0.102 1N6289 1.5KE62 53.8 81.0 47.8 5.0 18.6 80.5 0.103 1N6290 1.5KE62 58.8 68.2 1.	1N6284A	1.5KE36A	34.2	37.8	1.0	30.8	5.0	30.0	49.9	0.099
1N6286 1.5KE43 38.7 47.3 1.0 34.8 5.0 24.0 61.9 0.101 1N6286A 1.5KE43A 40.9 45.2 1.0 36.8 5.0 25.3 59.3 0.101 1N6287 1.5KE47 42.3 51.7 1.0 36.1 5.0 22.2 67.8 0.101 1N6287 1.5KE47 44.7 49.4 1.0 40.2 5.0 23.2 64.8 0.101 1N6288 1.5KE51 45.9 56.1 1.0 41.3 5.0 20.4 73.5 0.102 1N6288 1.5KE51 48.5 53.6 1.0 43.6 5.0 21.4 70.1 0.102 1N6289 1.5KE56 50.4 61.8 1.0 47.8 5.0 18.6 80.5 0.103 1N6290 1.5KE62 55.8 68.2 1.0 50.2 5.0 16.9 89.0 0.104 1N6290 1.5KE62 58.9 65.1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>									1	
1N6286A 1.5KE43A 40.9 45.2 1.0 36.8 5.0 25.3 59.3 0.101 1N6287 1.5KE47 42.3 51.7 1.0 36.1 5.0 22.2 67.8 0.101 1N6287 1.5KE47 42.3 51.7 1.0 36.1 5.0 22.2 67.8 0.101 1N6288 1.5KE51 45.9 56.1 1.0 40.2 5.0 23.2 64.8 0.101 1N6288 1.5KE51A 45.9 56.1 1.0 41.3 5.0 20.4 73.5 0.102 1N6288 1.5KE565 50.4 61.8 1.0 43.6 5.0 21.4 70.1 0.102 1N6289A 1.5KE56A 53.2 58.8 1.0 47.8 5.0 19.5 77.0 0.103 1N6290 1.5KE62A 58.9 65.1 1.0 53.0 5.0 17.7 85.0 0.104 1N6291 1.5KE68 61.2 7										
1N6287 1.5KE47 42.3 51.7 1.0 36.1 5.0 22.2 67.8 0.101 1N6287A 1.5KE47A 44.7 49.4 1.0 40.2 5.0 23.2 64.8 0.101 1N6288 1.5KE51 45.9 56.1 1.0 41.3 5.0 20.4 73.5 0.102 1N6288 1.5KE51 48.5 53.6 1.0 43.6 5.0 21.4 70.1 0.102 1N6289 1.5KE56 50.4 61.8 1.0 45.4 5.0 18.6 80.5 0.103 1N6290 1.5KE56A 53.2 58.8 1.0 47.8 5.0 19.5 77.0 0.103 1N6290 1.5KE62A 58.9 65.1 1.0 53.0 5.0 17.7 85.0 0.104 1N6291 1.5KE68 61.2 74.8 1.0 55.1 5.0 15.3 98.0 0.104 1N6292 1.5KE75 67.5 82.5								1	1	
1N6287A 1.5KE47A 44.7 49.4 1.0 40.2 5.0 23.2 64.8 0.101 1N6288 1.5KE51 45.9 56.1 1.0 41.3 5.0 20.4 73.5 0.102 1N6288 1.5KE51 48.5 53.6 1.0 43.6 5.0 21.4 70.1 0.102 1N6289 1.5KE56 50.4 61.8 1.0 45.4 5.0 18.6 80.5 0.103 1N6289A 1.5KE56A 53.2 58.8 1.0 47.8 5.0 19.5 77.0 0.103 1N6290 1.5KE62A 58.9 65.1 1.0 53.0 5.0 16.9 89.0 0.104 1N6290 1.5KE62A 58.9 65.1 1.0 53.0 5.0 17.7 85.0 0.104 1N6291 1.5KE68 61.2 74.8 1.0 55.1 5.0 16.3 92.0 0.104 1N6292 1.5KE75 67.5 82						1				
1N6288 1.5KE51 45.9 56.1 1.0 41.3 5.0 20.4 73.5 0.102 1N6288A 1.5KE51A 48.5 53.6 1.0 43.6 5.0 21.4 70.1 0.102 1N6289A 1.5KE56A 50.4 61.8 1.0 43.6 5.0 21.4 70.1 0.102 1N6289A 1.5KE56A 53.2 58.8 1.0 45.4 5.0 18.6 80.5 0.103 1N6289A 1.5KE56A 53.2 58.8 1.0 47.8 5.0 19.5 77.0 0.103 1N6290A 1.5KE62 55.8 68.2 1.0 50.2 5.0 16.9 89.0 0.104 1N6291 1.5KE62 58.9 65.1 1.0 53.0 5.0 17.7 85.0 0.104 1N6291 1.5KE68 61.2 74.8 1.0 55.1 5.0 16.3 92.0 0.104 1N6292 1.5KE75 67.5 <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td>1</td><td>1</td><td></td></td<>					1	1		1	1	
IN6288A 1.5KE51A 48.5 53.6 1.0 43.6 5.0 21.4 70.1 0.102 IN6289 1.5KE56 50.4 61.8 1.0 45.4 5.0 18.6 80.5 0.103 IN6289A 1.5KE56A 53.2 58.8 1.0 47.8 5.0 19.5 77.0 0.103 IN6290 1.5KE62 55.8 68.2 1.0 50.2 5.0 16.9 89.0 0.104 IN6290A 1.5KE62 55.8 68.2 1.0 50.2 5.0 16.9 89.0 0.104 IN6291A 1.5KE68 61.2 74.8 1.0 55.1 5.0 17.7 85.0 0.104 IN6291A 1.5KE68 64.6 71.4 1.0 58.1 5.0 15.3 98.0 0.104 IN6292 1.5KE75 67.5 82.5 1.0 60.7 5.0 13.9 108.9 0.105 IN6292A 1.5KE75 71.3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></td<>									1	
1N6289 1.5KE56 50.4 61.8 1.0 45.4 5.0 18.6 80.5 0.103 1N6289A 1.5KE56A 53.2 58.8 1.0 47.8 5.0 19.5 77.0 0.103 1N6290 1.5KE62 55.8 68.2 1.0 50.2 5.0 16.9 89.0 0.104 1N6290 1.5KE62 55.8 68.2 1.0 50.2 5.0 16.9 89.0 0.104 1N6291 1.5KE68 61.2 74.8 1.0 55.1 5.0 15.3 98.0 0.104 1N6291 1.5KE68 61.2 74.8 1.0 55.1 5.0 15.3 98.0 0.104 1N6291 1.5KE68 64.6 71.4 1.0 58.1 5.0 16.3 92.0 0.104 1N6292 1.5KE75 67.5 82.5 1.0 60.7 5.0 13.9 108.9 0.105 1N6292A 1.5KE75A 71.3 78.										
1N6289A 1.5KE56A 53.2 58.8 1.0 47.8 5.0 19.5 77.0 0.103 1N6290 1.5KE62 55.8 68.2 1.0 50.2 5.0 16.9 89.0 0.104 1N6290 1.5KE62 55.8 68.2 1.0 50.2 5.0 16.9 89.0 0.104 1N6291A 1.5KE62A 58.9 65.1 1.0 53.0 5.0 17.7 85.0 0.104 1N6291A 1.5KE68A 61.2 74.8 1.0 55.1 5.0 15.3 98.0 0.104 1N6291A 1.5KE68A 64.6 71.4 1.0 58.1 5.0 16.3 92.0 0.104 1N6292 1.5KE75 67.5 82.5 1.0 60.7 5.0 13.9 108.9 0.105 1N6292A 1.5KE75A 71.3 78.8 1.0 64.1 5.0 14.6 103.9 0.105 1N6293A 1.5KE82 73.8										
1N6290 1.5KE62 55.8 68.2 1.0 50.2 5.0 16.9 89.0 0.104 1N6290A 1.5KE62A 58.9 65.1 1.0 53.0 5.0 17.7 85.0 0.104 1N6291A 1.5KE68A 61.2 74.8 1.0 55.1 5.0 15.3 98.0 0.104 1N6291A 1.5KE68A 64.6 71.4 1.0 58.1 5.0 16.3 92.0 0.104 1N6292A 1.5KE75 67.5 82.5 1.0 60.7 5.0 13.9 108.9 0.105 1N6292A 1.5KE75A 71.3 78.8 1.0 64.1 5.0 14.6 103.9 0.105 1N6293A 1.5KE82 73.8 90.2 1.0 66.4 5.0 12.7 118.0 0.105 1N6293A 1.5KE82A 77.9 86.1 1.0 70.1 5.0 13.3 113.0 0.105				1		1		1		\$ 1
1N6290A 1.5KE62A 58.9 65.1 1.0 53.0 5.0 17.7 85.0 0.104 1N6291 1.5KE68 61.2 74.8 1.0 55.1 5.0 15.3 98.0 0.104 1N6291A 1.5KE68A 64.6 71.4 1.0 58.1 5.0 16.3 92.0 0.104 1N6292A 1.5KE75 67.5 82.5 1.0 60.7 5.0 13.9 108.9 0.105 1N6292A 1.5KE75A 71.3 78.8 1.0 64.1 5.0 14.6 103.9 0.105 1N6293A 1.5KE82 73.8 90.2 1.0 66.4 5.0 12.7 118.0 0.105 1N6293A 1.5KE82A 77.9 86.1 1.0 70.1 5.0 13.3 113.0 0.105										
1N6291 1.5KE68 61.2 74.8 1.0 55.1 5.0 15.3 98.0 0.104 1N6291A 1.5KE68A 64.6 71.4 1.0 58.1 5.0 16.3 92.0 0.104 1N6291A 1.5KE75 67.5 82.5 1.0 60.7 5.0 13.9 108.9 0.105 1N6292A 1.5KE75A 71.3 78.8 1.0 64.1 5.0 14.6 103.9 0.105 1N6293A 1.5KE82 73.8 90.2 1.0 66.4 5.0 12.7 118.0 0.105 1N6293A 1.5KE82A 77.9 86.1 1.0 70.1 5.0 13.3 113.0 0.105										
1N6291A 1.5KE68A 64.6 71.4 1.0 58.1 5.0 16.3 92.0 0.104 1N6292 1.5KE75 67.5 82.5 1.0 60.7 5.0 13.9 108.9 0.105 1N6292A 1.5KE75A 71.3 78.8 1.0 64.1 5.0 14.6 103.9 0.105 1N6293 1.5KE82 73.8 90.2 1.0 66.4 5.0 12.7 118.0 0.105 1N6293A 1.5KE82A 77.9 86.1 1.0 70.1 5.0 13.3 113.0 0.105										
1N6292 1.5KE75 67.5 82.5 1.0 60.7 5.0 13.9 108.9 0.105 1N6292A 1.5KE75A 71.3 78.8 1.0 64.1 5.0 14.6 103.9 0.105 1N6293A 1.5KE82 73.8 90.2 1.0 66.4 5.0 12.7 118.0 0.105 1N6293A 1.5KE82A 77.9 86.1 1.0 70.1 5.0 13.3 113.0 0.105										
1N6292A 1.5KE75A 71.3 78.8 1.0 64.1 5.0 14.6 103.9 0.105 1N6293 1.5KE82 73.8 90.2 1.0 66.4 5.0 12.7 118.0 0.105 1N6293A 1.5KE82A 77.9 86.1 1.0 70.1 5.0 13.3 113.0 0.105										
1N6293 1.5KE82 73.8 90.2 1.0 66.4 5.0 12.7 118.0 0.105 1N6293A 1.5KE82A 77.9 86.1 1.0 70.1 5.0 13.3 113.0 0.105				1		1			1	
1N6293A 1.5KE82A 77.9 86.1 1.0 70.1 5.0 13.3 113.0 0.105				1						1
)	1						1 1
						73.7			131.0	0.106
				L	<u> </u>					


JEDEC Type Number	GENERAL PART NUMBER		lown Voltage* Van (Note 1) Max	@IT (mA)	Working Peak Reverse Voltage Vrws (Votts)	Maximum Reverse Leakage at Vrivia In (µA)	Maximum Reverse Surge Current Inse (Note 2) (Amps)	Maximum Reverse Voitage at Insu Clamping Voitage) Vязы (Voits)	Maximum Temperature Coefficinet of Van (%/°C)V _{RSM} (Volts)
1N6294A	1.5KE91A	86.5	95.5	1.0	77.8	5.0	12.0	125.0	0.106
1N6295	1.5KE100	90.0	110.0	1.0	81.0	5.0	10.4	144.0	0.106
1N6295A	1.5KE100A		105.0	1.0	85.5	5.0	11.0	137.0	0.106
1N6296	1.5KE110	99.0	121.0	1.0	89.2	5.0	9.5	158.0	0.100
1N6296A	1.5KE110A	106.0	116.0	1.0	94.0	5.0	9.9	152.0	0.107
1N6297	1.5KE120	108.0	132.0	1.0	97.2	5.0	8.7	173.0	0.107
1N6297A	1.5KE120A	114.0	126.0	1.0	102.0	5.0	9.1	165.0	0.107
1N6298	1.5KE130	117.0	143.0	1.0	106.0	5.0	8.0	187.0	0.107
1N6298A	1.5KE130A	124.0	137.0	1.0	111.0	5.0	8.4	179.0	0.107
1N6299	1.5KE150	136.0	165.0	1.0	121.0	5.0	7.0	215.0	0.108
1N6299A	1.5KE150A	143.0	158.0	1.0	128.0	5.0	7.2	207.0	0.106
1N6300	1.5KE160	144.0	176.0	1.0	130.0	5.0	6.5	230.0	0.106
1N6300A	1.5KE160A	152.0	168.0	1.0	136.0	5.0	6.8	219.0	0.108
1N6301	1.5KE170	153.0	167.0	1.0	138.0	5.0	6.2	244.0	0.108
1N6301A	1.5KE170A	162.0	179.0	1.0	145.0	5.0	6.4	234.0	0.108
1N6302	1.5KE180	162.0	198.0	1.0	146.0	5.0	5.8	258.0	0.108
1N6302A	1.5KE180A	171.0	189.0	1.0	154.0	5.0	6.1	246.0	0.108
1N6303	1.5KE200	180.0	220.0	1.0	162.0	5.0	5.2	287.0	0.108
1N6303A	1.5KE200A*	190.0	210.0	1.0	171.0	5.0	5.5	274.0	0.108
	1.5KE220	196.0	242.0	1.0	175.0	5.0	4.3	344.0	0.108
	1.5KE220A*	209.0	231.0	1.0	185.0	5.0	4.6	328.0	0.108
	1.5KE250	225.0	275.0	1.0	202.0	5.0	5.0	360.0	0.110
	1.5KE250A	237.0	263.0	1.0	214.0	5.0	5.0	344.0	0.110
	1.5KE300	270.0	330.0	1.0	243.0	5.0	5.0	430.0	0.110
	1.5KE300A	285.0	315.0	1.0	256.0	5.0	5.0	414.0	0.110
	1.5KE350	315.0	385.0	1.0	284.0	5.0	4.0	504.0	0.110
	1.5KE350A	333.0	368.0	1.0	300.0	5.0	4.0	482.0	0.110
	1.5KE400	360.0	440.0	1.0	324.0	5.0	4.0	574.0	0.110
	1.5KE400A	380.0	420.0	1.0	342.0	5.0	4.0	548.0	0.110


NOTES:
1. V_{BR} measured after I_T applied for 300 μs , I_T = Square Wave Pulse or equivalent.
2. Surge Current Waveform per Figure 3 and Derated per Figue 2.
3. V_F = 3.5 V max., I_F = 100A (1.5KE 6.8 thru 1.5KE91A) V_F = 5.0 V max., I_F 100A (1.5KE100 thru 1.5KE91A)
V_F = 5.0 V max., I_F 100A (1.5KE100 thru 1.5KE400A) per 1/2 Square or Equivalent SIne Wave PW = 8.3 ms, Duty Cycle = 4 Pulses per Minute Maximum
* Bidirectional versions are UL approved





MAXIMUM RATINGS AND CHARACTERISTICS

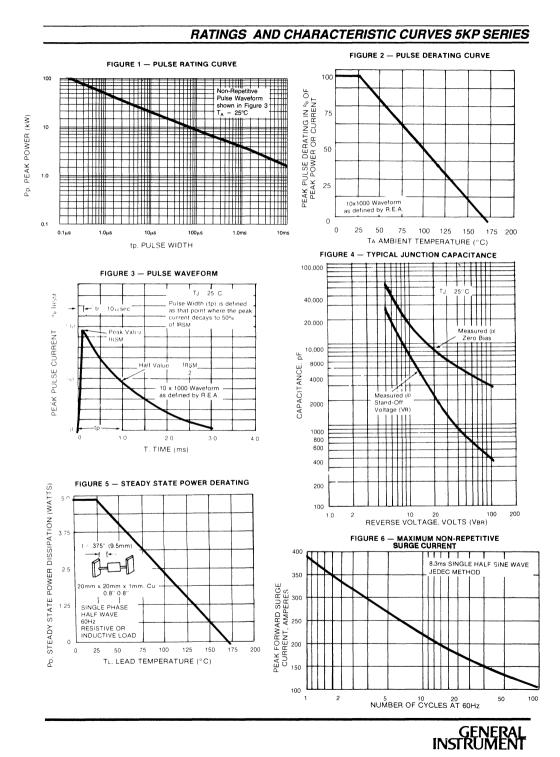
Ratings at 25°C ambient temperature unless otherwise specified.

RATING	SYMBOL	VALUE	UNITS
Peak Power Dissipation at T _A = 25°C, Tp = 1ms (Note 1)	Ppk	Minimum 5000	Watts
Steady State Power Dissipation at T _L = 75°C Lead Lengths .375", (9.5mm) (Note 2)	PD	5.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (Note 3)	IFSM	400	Amps
Operating and Storage Temperature Range	TJ, TSTG	-55 to +175	.c

NOTES: 1. Non-repetitive current pulse, per Fig. 3 and derated above $T_A = 25$ C per Fig. 2. 2. Mounted on Copper Leaf area of 0.79 in² (20mm²).

3. 8.3ms single half sine-wave, duty cycle = 4 pulses per Minutes maximum

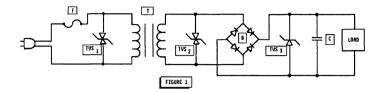
-590


	1	Breakdown Voltage Ven Volts (Note 1)		Working Peak Reverse Voltage	Maximum Reverse Leakage	Maximm Reverse Current Iasm	Maximum Reverse Voltage at _{IRSM}	Maximum Temperatuure Coefficient
Device	MIN	MAX	(mA)	V _{RWM} (Volts)	at V _{RWM} I _R (µA)	(Note 2) (Amps)	(Clamping Voltage V _{RSM} (Volts)	of V _{BR} (%C)
5KP5.0	6.40	7.30	50	5.0	2000	520	9.6	0.057
5KP5.0A	6.40	7.00	50	5.0	2000	543	9.2	0.057
5KP6.0	6.67	8.15	50	6.0	5000	439	11.4	0.061
5KP6.0A	6.67	7.37	50	6.0	5000	485	10.3	0.061
5KP6.5	7.22	8.82	50	6.5	2000	407	12.3	0.065
5KP6.5A	7.22	7.98	50	6.5	2000	447	11.2	0.065
5KP7.0	7.78	9.51	50	7.0	1000	378	13.3	0.068
5KP7.0A	7.78	8.60	50	7.0	1000	417	12.0	0.068
5KP7.5	8.33	10.2	5.0	7.5	250	350	14.3	0.073
5KP7.5A	8.33	9.21	5.0	7.5	250	388	12.9	0.073
5KP8.0	8.89	10.9	5.0	8.0	150	333	15.0	0.075
5KP8.0A	8.89	9.83	5.0	8.0	150	367	13.6	0.075
5KP8.5	9.44	11.5	5.0	8.5	50	314	15.9	0.078
5KP8.5A	9.44	10.4	5.0	8.5	50	347	14.4	0.078
5KP9.0	10.0	12.2	5.0	9.0	20	295	16.9	0.081
5KP9.0A	10.0	11.1	5.0	9.0	20	325	15.4	0.081
5KP10	11.1	13.6	5.0	10.0	15	266	18.8	0.084
5KP10A	11.1	12.3	5.0	10.0	15	294	17.0	0.084
5KP11	12.2	14.9	5.0	11.0	10	249	20.1	0.086
5KP11A	12.2	13.5	5.0	11.0	10	274	18.2	0.086
5KP12	13.3	16.3	5.0	12.0	10	227	22.0	0.088
5KP12A	13.3	14.7	5.0	12.0	10	251	19.9	0.088
5KP13	14.4	17.6	5.0	13.0	10	210	23.8	0.090
5KP13A	14.4	15.9	5.0	13.0	10	232	21.5	0.090
5KP14	15.6	19.1	5.0	14.0	10	194	25.8	0.092
5KP14A	15.6	17.2	5.0	14.0	10	215	23.2	0.092
5KP15	16.7	20.4	5.0	15.0	10	188	26.9	0.094
5KP15A	16.7	18.5	5.0	15.0	10	206	24.4	0.094
5KP16	17.8	21.8	5.0	16.0	10	176	28.8	0.096
5KP16A 5KP17	17.8	19.7 23.1	5.0 5.0	16.0	10 10	176 164	26.0 30.5	0.096 0.097
5KP17 5KP17A	18.9	20.9	5.0	17.0 17.0	10	164	27.6	0.097
5KP18	20.0	20.9	5.0	17.0	10	155	32.2	0.098
5KP18	20.0	24.4	5.0	18.0	10	172	32.2 29.2	0.098
5KP20	20.0	27.1	5.0	20.0	10	139	35.8	0.099
5KP20A	22.2	24.5	5.0	20.0	10	159	32.4	0.099
5KP20A	24.4	29.8	5.0	20.0	10	127	39.4	0.100
5KP22A	24.4	26.9	5.0	22.0	10	141	35.5	0.100
5KP24	26.7	32.6	5.0	24.0	10	116	43.0	0.101
5KP24A	26.7	29.5	5.0	24.0	10	128	38.9	0.101
5KP26	28.9	35.3	5.0	26.0	10	107	46.6	0.101
5KP26A	28.9	31.9	5.0	26.0	10	119	40.0	0.101
5KP28	31.1	38.0	5.0	28.0	10	99	50.1	0.102
5KP28A	31.1	34.4	5.0	28.0	10	110	45.4	0.102
5KP30	33.3	40.7	5.0	30.0	10	93	53.5	0.102
5KP30A	33.3	36.8	5.0	30.0	10	103	48.4	0.103
5KP33	36.7	44.9	5.0	33.0	10	85	59.0	0.104
5KP33A	36.7	40.6	5.0	33.0	10	94	53.3	0.104
5KP36	40.0	48.9	5.0	36.0	10	78	64.3	0.104
5KP36A	40.0	44.2	5.0	36.0	10	85	58.1	0.104
5KP40	44.4	54.3	5.0	40.0	10	70	71.4	0.105

ELECTRICAL CHARACTERISTICS (ta = 25°C unless otherwise noted)

	Volts (Note	BR 1)	@IT (mA)	Working Peak Reverse Voltage VRWM	Maximum Reverse Leakage at V _{RMM}	Maximm Reverse Current I _{RSM} (Note 2)	Maximum Reverse Voltage at I _{RSM} (Clamping Voltage	Maximum Temperatuure Coefficient of V _{BR}
Device	MIN	MAX		(Voits)	l _R (μA)	(Amps)	V _{RSM} (Volts)	(%C)
5KP40A	44.4	49.1	5.0	40.0	10	78	64.5	0.105
5KP43	47.8	58.4	5.0	43.0	10	65	76.7	0.105
5KP43A	47.8	52.8	5.0	43.0	10	72	69.4	0.105
5KP45	50.0	61.1	5.0	45.0	10	62	80.3	0.106
5KP45A	50.0	55.3	5.0	45.0	10	69	72.7	0.106
5KP48	53.3	65.2	5.0	48.0	10	58	85.5	0.106
5KP48A	53.3	58.9	5.0	48.0	10	65	77.4	0.106
5KP51	56.7	69.3	5.0	51.0	10	55	91.1	0.107
5KP51A	56.7	62.7	5.0	51.0	10	61	82.4	0.107
5KP54	60.0	73.3	5.0	54.0	10	52	96.3	0.107
5KP54A	60.0	66.3	5.0	54.0	10	57	87.1	0.107
5KP58	64.4	78.7	5.0	58.0	10	49	103.0	0.107
5KP58A	64.4	71.2	5.0	58.0	10	53	93.6	0.107
5KP60	66.7	81.5	5.0	60.0	10	47	107.0	0.108
5KP60A	66.7	73.7	5.0	60.0	10	52	96.8	0.108
5KP64	71.1	96.9	5.0	64.0	10	44	114.0	0.108
5KP64A	71.1	78.6	5.0	64.0	10	49	103.0	0.108
5KP70	77.6	95.1	5.0	70.0	10	40	125.0	0.108
5KP70A	77.8	86.0	5.0	70.0	10	44	113.0	0.108
5KP75	83.3	102.0	5.0	75.0	10	37	134.0	0.108
5KP75A	83.3	92.1	5.0	75.0	10	41	121.0	0.108
5KP78	86.7	106.0	5.0	78.0	10	36	139.0	0.108
5KP78A	86.7	95.8	5.0	78.0	10	40	126.0	0.108
5KP85	94.9	115.0	5.0	85.0	10	33	151.0	0.108
5KP85A	94.4	104.0	5.0	85.0	10	36	137.0	0.110
5KP90	100	122.0	5.0	90.0	10	31	160.0	0.110
5KP90A	100	111.0	5.0	90.0	10	34	146.0	0.110
5KP100	111	136.0	5.0	100.0	10	28	179.0	0.110
5KP100A	111	123.0	5.0	100.0	10	31	162.0	0.110
5KP110	122	149.0	5.0	110.0	10	26	196.0	0.112
5KP110A	122	135.0	5.0	110.0	10	28	177.0	0.112

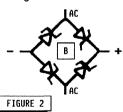
ELECTRICAL CHARACTERISTICS (ta = 25°C unless otherwise noted)


NOTES: 1. V_{BR} measured after I_T applied for 300 ms. I_T = Square Wave Pulse or equivalent. 2. Surge Current waveform per Figure 3 and Derate per Figure 2. 3. Vf = 3.5 Volts max I_F = 100A for all types on 1/2 square or Equivalent Sine Wave. PW = 8.3ms. Duty Cycle = 4 Pulse per Minute maximum. 4. For bipolar types with V_R 10 Volts and under, the I_R limit is doubled.

-593-

Transient Voltage Suppressors may be used at various points in a circuit to provide various degrees of protection. The following is a typical linear power supply with transient voltage suppressor units placed at different points. All provide protection of the load.

Transient Voltage Suppressor 1 provides maximum protection. However, the system will probably require replacement of the line fuse (F) since it provides a dominant portion of the series impedance when a surge is encountered.


Transient Voltage Suppressor 2 provides excellent protection of circuitry excluding the transformer (T). However, since the transformer is a large part of the series impedance, the chance of the line fuse opening during the surge condition is reduced.

Transient Voltage Suppressor 3 provides the load with complete protection. It uses a unidirectional Transient Voltage Suppressor, which is a cost advantage. The series impedance now includes the line fuse, transformer, and bridge rectifier (B) so failure of the line fuse is further reduced. If only Transient Voltage Suppressor 3 is in use, then the bridge rectifier is unprotected and would require a higher voltage and current rating to prevent failure by transients.

Any combination of these three, or any one of these applications, will prevent damage to the load. This would require varying trade-offs in power supply protection versus maintenance (time changing the fuse).

An additional method is to utilize the Transient Voltage Suppressor units as a controlled avalanche bridge. This reduces the parts count and incorporates the protection within the bridge rectifier.

The wattage ratings are available in 400 watts (P4KE, BZW04), 600 watts (P6KE), 1500 watts (1.5KE Series) and 5000 watts (5KP Series).

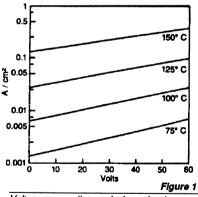
For voltage ranges not seen on specification sheet, please consult factory or the nearest sales office.

APPLICATION NOTES

DESIGN GUIDELINES FOR SCHOTTKY RECTIFIERS

Known limitations of Schottky rectifiers -- including limited high temperature operation, high leakage and limited voltage range -- can be measured and controlled, allowing wide application on switch mode power supplies.

Jon R. Schleisner Senior Marketing Engineer General Instrument Corp., Power Semiconductor Division Hicksville, New York


Schottky rectifiers have been used in the power supply industry for approximately 15 years. During this time, significant fiction as well as fact has been associated with this type of rectifier. The primary assets of Schottky devices are switching speeds approaching zero-time and very low forward voltage drop (Vf). This combination makes Schottky barrier rectifiers ideal for the output stages of switching power supplies. On the negative side, Schottky devices are also known for limited high-temperature operation, high leakage and limited voltage range (BVR). Though these limitations exist, they are quantifiable and controllable, allowing wide application of these devices in switch mode power supplies.

High leakage, when associated with standard P-N junction rectifiers, usually indicates "badness," implying poor reliability. In a Schottky device, leakage at high temperature (75 °C and greater) is often on the order to several milliamps, depending on chip size. In the case of Schottky barrier rectifiers, high-temperature leakage and forward voltage drop are controlled by two primary factors: the size of the chip's active area and the barrier height (ϕ B).

Design of a Schottky rectifier can be viewed as a tradeoff. A high barrier height device exhibits low leakage at high temperature, however, the forward voltage drop increases. These parameters are also controlled by the die size and resistivity of the starting material. A larger die will lower the Vf but raise the leakage if all other parameters are held constant. The resistivity of the starting material must be chosen in a range where the breakdown voltage (BVR) is not degraded at the low end and the forward end of the resistivity range. Since a larger chip size is obviously more expensive, this is not the primary method for controlling these parameters. Chip size is usually set to a dimension where the current density through the die is kept at a safe level.

Barrier Height (\u03c6 B), A Factor

General Instrument produces two product lines of Schottky barrier rectifiers. One line is referred to as the "MBR" series, a high-temperature, low-leakage, relatively high Vf type of Schottky device with a high barrier height (ϕ B). The second line is the "SBL" series, designed to operate at lower temperature (125°C or less); however, while leakage current is higher, forward voltage drop (V_f) is significantly lower and they are designed with

Voltage versus die area leakage barrier height = 0.71 volts

a low- ϕB barrier height. The low- ϕB - line SBL series uses a nichrome battier metal with a barrier height of $\phi B = 0.64$ eV. The high- ϕB MBR series uses a nichrome-platinum barrier metal to achieve barrier height ($\phi B = 0.71$ eV). Both series are guard-ring protected against excessive transient voltages.

Both the low- and high-barrier-height Schottky devices are valuable in a variety

of applications. When the true operating temperature of the Schottky rectifier exceeds 125°C, the high-barrier-height series must be used to avoid thermal runaway. This occurs when excessive self-heating of the rectifier causes large leakage currents, resulting in additional self-heating. The process becomes a form of positive thermal feedback and may lead to damage in the rectifier or inappropriate functioning of the circuit utilizing the device.

Using a high-barrier-height (MBR) component prevents this anomaly, but sacrifices higher forward voltage. Operating the low barrier height (SBL) series at a junction temperature of 125° C or less prevents thermal runaway from occurring. If the junction temperature (Ti) in the application can be kept below 125° C, a decision on the use of a low- or high-barrier-height Schottky device must be made.

The following procedure has been developed to provide an analytical method of selecting the most efficient Schottky barrier device for a given application.

Calculating The Barrier Height (\u03b8 B) of Schottky Rectifiers

Calculating the barrier height of a Schottky rectifier where o B is not given is a straightforward process. The following two equations will yield an excellent engineering approximation of the barrier height,

B:

$$\phi B = (-KT/q) LN \left(J / R^*T \right) \qquad (1)$$

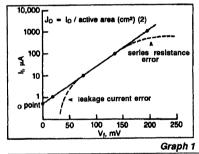
$$J_{0} = I_{0} / ACTIVE AREA (cm2)$$

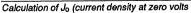
$$\phi B = barrier height (eV) \qquad (2)$$

$$K = Boltsman's constant = 8.62 x 105 eV/^{0} K$$

T = ambient temperature in degrees Kelvin $J_o = current density at zero volts$ $R^* = Richardon's constant = 112 / cm^2 k^2$

 $I_{o} = forward current at zero volts$


To solve Equation One, the current density Jo (Equation Two) must be found first:


$$J_{o} = I_{o} / ACTIVE AREA (cm2)$$
(2)

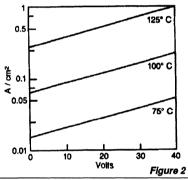
General Instrument provides the active area of its Schottky die in its product literature. If a manufacturer does not supply this information, decapsulating the device under question and measuring it with a precision caliper can provide an approximation of the active Schottky area, assuming 90% of the total chip area is active.

Total die area x 0.9 = active area (3)

The calculation of Io is done graphically (Graph 1). A minimum of three low-current room-temperature forward voltage drop Vf measurements are needed. This data is graphed on semi-log paper (Graph 1) where the vertical axis (log scales) is the current and the horizontal axis (linear scale) is the measured Vf. When these points are graphed, the result should be a true straight line. If the graph curves downward (see the dotted line on the left side of Graph 1), it indicates that the lowest measurement current is being affected by the rectifier's room temperature leakage. In this case, the current level at which the Vf measurements are taken should be increased to "swamp" out the contribution of low level leakage on the measurement. If the current levels are raised excessively, the series resistance of the device in question will influence the measurements. This causes a downward curve us represented by the dotted line on the right side of Graph 1. Again, the results should yield a true straight line.

The point where the line intercepts the vertical axis is the current at zero volts (Io). Jo is then calculated:

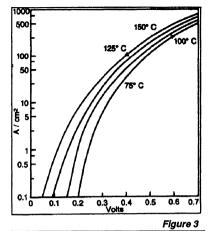
$$J_{o} = I_{o} / ACTIVE AREA (cm^{2})$$
(2)

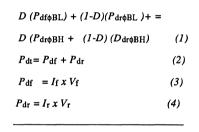

This result is then placed into the first equation:

$$\phi B = (-KT/q)LN (J_{0}/R^{*}T^{2})$$
(1)

The results of the calculation are usually in the range of 0.6 eV to 0.8 eV. Results well outside this range indicate either a defective rectifier, measurement, or calculation error.

Selecting Efficient Schottky Devices


Normalized graphs of the low (SBL) and high (MBR) barrier height processes are provided. The vertical axis on all graphs is in amperes per square centimeter (A/ cm²). The horizontal axis provides forward voltage drop for the low and high barrier parts. Two additional graphs have the horizontal axis labeled for reverse voltage (Vr) for both the low and high barrier series. The graphs for the low barrier (SBL) series parts have curves for operation at 75 °C, 100 °C and 125 °C.


Voltage versus die area leakage barrier heitght = 0.64 volts

These curves may be used in two ways. If the die size, barrier height, temperature and forward current (If) are known, Vf can be graphically calculated. Using the leakage curves, and knowing the reverse voltage (Vr) to which the device will be subjected, it is possible to find the leakage current. Conversely, if the circuit parameters are set, the curves will provide the die size in A/cm^2 equations, making it possible to analytically select either a low- or high-barrier-height rectifier for maximum circuit efficiency. Most Schottky rectifiers are used in switch mode power supplies.

To select a Schottky rectifier that yields maximum efficiency, it is necessary to determine the "duty cycle equilibrium point," or the duty cycle point at which both a low- and high-barrier-height part will dissipate precisely the same amount of power:

Die area current versus forward voltage drop barrier height = 0.71

- $D = duty \ cycle \ forward \ conduction$
- 1-D = duty cycle reverse blocking
- $I_{f} = forward \ current$
- I_r= reverse current
- $P_{df} = power dissipation in forward$
- $P_{dr} = power \ dissipation \ in \ reverse$
- $P_{dt} = total power dissipation$
- $V_{f} = forward voltage drop$
- $V_r = reverse \ voltage$
- $\phi BL = low barrier height$
- $\phi BH = high \ barrier \ height$

The following is an example of the use of this equation :

Given the need for a 30-volt Schottky capable of operating at 10 amperes, the choice is between a SBL1040 (ϕ BL = 0.64) or a MBR1045 (ϕ BH = 0.71). These two devices were chosen for convenience in this example because of their equal die size (0.0477cm² active area).

The equilibrium point must be calculated for 75°C, 100°C and 125°C. For demonstration purposes, only the 75°C equilibrium point will be calculated in detail; the other two points are calculated in the same manner. The reverse leakage (l_r) and forward voltage drop (V_f) are derived from **Graphs 1** through 4 using the temperature, die size and ϕ B given above.

For the low-barrier-height SBL1040:

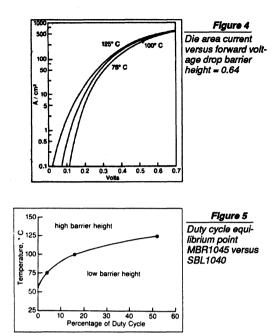
 $P_{dr} = V_r x I_r = watts$ (4) 30 V x (1.9 x 10⁻³ A) = 0.057 W $P_{dr} = If x Vf = watts$ (3) (3) 10 A x 0.46 V = 4.6 W

For the high-barrier-height MBR1045:

Solving for the equilibrium point at 75° C:

LOW BARRIER HIGH BÁRRIER

 $\begin{array}{l} (D \ x \ P_{df\phi BL}) + [(1-D) \ x \ P_{df\phi BL}] = \\ (D \ x \ P_{df\phi BH}) + [(1-D) x_{df\phi BH}] \\ (D \ x \ 4.6 \ W) + [(1-D) \ 0.057W] = \\ (D \ x \ 5.65W) + [(1-D) \ 0.00429W] \\ 0.05271 = 1.1027 \ D \\ D = 0.0478 \\ D\% = 0.0478 \ x \ 100 \end{array}$


duty cycle equilibrium point, D = 4.78%

Switching loss is assumed to be equal on both sides of the equation and thus is ignored. This procedure is then repeated for 100°C and 125 °C. After calculating the equilibrium point for 100 °C and 125° C, the results are:

	DUTY CYCLE EQUIBRIUM
TEMP	POINT %
75°C	4.78%
100°C	15.93%
125°C	52.42%

The results of these calculations are graphed in Figure 5. To the left of the equilibrium curve, the high-barrier-height

MBR1045 is most efficient; to the right of the equilibrium curve, the low-barrierheight SBL1040 is more efficient. This is easy to understand because the high-bar

rier-height part exhibits lower reverse power loss and at a low duty cycle more time is spent in the reverse mode.

With the duty cycle higher than the equilibrium point, the part spends a larger percentage of time in the forward mode, and the low-barrier-height type part has a lower Vf and the forward power losses are reduced.

With knowledge of the application, including expected duty cycle and temperature, it is possible to choose the most efficient Schottky barrier rectifier, constructing a graph similar to Figure 1.

It is thus easy to graph the duty cycle versus temperature, as in Figure 5, and by knowing the application (expected duty cycle and temperature), make the intelligent choice of the most efficient Schottky rectifier for the application in question.

This analysis technique enables the design engineer to make an efficient and cost-effective choice of Schottky rectifier in duty-cycle-based systems. In addition, light has hopefully been shed on the difference in design philosophies between the low- and high- ϕB style of Schottky rectifiers.

SELECTING THE OPTIMUM VOLTAGE TRANSIENT SUPPRESSOR

Although the published data for several translent suppressors may appear similar enough to make the devices seem interchangeable, careful analysis can rule out nearly identical parts whose use could prove disastrous.

Jon R. Schleisner, Senior Marketing Engineer General Instrument, Power Semiconductor Division Hicksville, New York

Transient voltage suppressors (TVS) are specialized zener diodes intended to clamp the voltage appearing across a line, thereby preventing transient spikes from damaging sensitive components. They accomplish this conducting when the voltage across the line exceeds the zeneravalanche rating. Because transient voltages can be quite high, suppressors must be able to handle large avalanche currents. This means that care must be taken in the construction of the package and assembly process to ensure that the suppressor can tolerate high energy levels for short periods.

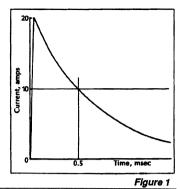
Typical transient voltage suppressors carry peak ratings of 400, 600, 1500 or 5000 watts. These wattages translate to 0.55, 0.80, 2.10 or 7.00 joules of energy during a 1-millisecond period. Avalanche ratings generally range from a few volts to several hundred volts. Key operating parameters include:

◆ Breakdown voltage (VBR), the voltage at which a given device breaks down in its avalanche mode. This voltage is usually characterized at a test current (I t) of 1 milliamp and is often specified as a range with minimum (VBR min) and maximum (VBR max) voltages listed.

Working peak reverse voltage (V_{RWM}),

the voltage at which the device's leakage current is measured. This voltage is always at least 10 percent lower than the mimimum breakdown voltage. Suppressors with a breakdown-voltage rating of less than 10 volts can exhibit leakage currents as high as 1 milliamp, but suppressors with higher breakdown ratings typically exhibit leakage currents of 5 microamps or less. ◆ Maximum reverse surge current (IRSM), the maximum current that the suppressor is guaranteed to withstand without incurring damage. This parameter is usually characterized with a 1-millisecond exponential waveform.

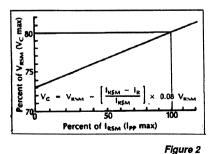
◆ Maximum r)verse voltage (VRSM), also called the maximum clamping voltage, the maximum voltage that can appear across the suppressor when the maximum rated surge current is flowing through it.


◆ Maximum breakdown-voltage temperature coefficient (%VBR / ° C), the maximum allowable change in the breakdown voltage as a function of the temperature.

Design Criteria

The best way to demonstrate the selection process is through a hypothetical example. In this example, the device to be protected is an integrated circuit, IC_x , which is designed to operate on a nominal rail voltage of 15 volts, and which has an absolute maximum voltage rating of 22 volts. The first step in the selection process is to determine the energy (joules) or power (watts) contained in the surge against which the device is to be protected, and the duration of that surge.

Transients are by definition nonrepetitive, with energy levels that are difficult to ascertain. Moreover, they generally result from an unexpected failure elsewhere in the system or from natural phenomenon such as lightning. Because of this, determining energy content and duration of the surge is the most difficult step in the transient-suppressor selection process.


Some surges, however, are predictable. The surge produced by a solenoid driver is a good example. If the inductance of the coil is known and the load on the solenoid is defined, it is possible to calculate or measure the duration and magnitude of the surge. Whenever possible, a "hands

Waveform of an exponential -decay transient pulse with a peak current and a 0.5-millisecond pulse width at the half-peak-current point

on" measurement of the worst-case transient condition should be made. For the sake of discussion, assume that the transient being presented to IC_x has a peak current of 20 amps with a classic exponential decay, as shown in Figure 1, and a duration of 0.5 milliseconds, measured at 50 percent of the peak current.

With this data in hand, the next step is to examine manufacturer's data sheets to find a transient suppressor able to handle the anticipated surge. The breakdown voltage and maximum reverse surge current ratings published in the data sheets are key selection criteria. Since IC x has a nominal 15-volt operating voltage, the minimum breakdown voltage must be greater than 15 volts. However, since it carries a 22-volt absolute maximum voltage rating, the suppressor's maximum breakdown voltage must be less than 22 volts. The foregoing assumes a relatively stable ambient temperature, such as that usually experienced in an office environment. If the product in which ICx is used is expected to see wider temperature

The clamping characateristic of a typical transient suppressor

fluctuations, the minimum breakdown voltage would have to be based on the lowest expected temperature. The resulting voltage would determined by multiplying the difference between the expected temperature and room temperature by the temperature coefficient.

Waveshape	Equation	K Factor
	l _{PK} e ^{−1/1.44} *	1.4
	Inc	1.0
	Ι _{ΡΚ} (Ưτ)	0.5
0.5 lpc	l _{PK} sin (π t) e− ^{ντ}	0.86
1 	l _{PK} sin ([π/τ] t)	0.637

Energy = $\int_{0}^{T} V_{c}(t) I(t) \Delta t = K V_{c} I$

Figure 3

The energy contained in a transient pulse depends on its wave shape

With the minumum and maximum permissible breakdown voltages in hand, examine the clamping-voltage ratings published in the manufacturer's data sheets to identify suppressors falling within the required range. It is possible that there is no device that falls well within the upper and lower limits. If the device with the closest voltage rating falls about the upper voltage limit, a very close examination of its parameters must be made. Most reputable semiconductor manufacturers apply a one-percent guardband around voltage ratings as a safety margin. In this example, the guardband raises the absolute maximum rail voltage from 22 volts to 22.22 volts.

This small increase may not seem like much, but can make the difference in selecting a transient suppressor.

Selecting the Best Transient Suppressor

Consider a situation in which the only suppressor that comes close to meeting the protection need of IC carries a maximum clamping-voltage rating of 22.5 volts. The actual voltage at which the suppressor will clamp depends on the actual current flowing through it, as shown in Figure 2, and can be predicted using the following equation:

 $V_{RSM} - [(I_{RSM} - I_R)/(I_{RSM})] \times (0.08)V = V_C$

For the sake of discussion, consider the General Instrument type P6KE16A transient suppressor, which carries a 22.5-volt maximum clamping-voltage rating.

$$22.5 - [(27 - 20)/27] \times 0.08 (22.5) = 22.03$$

volts

Although the resulting clamping voltage is still greater than the 22-volt absolute maximum voltage rating carried by IC x, it is well within the 22.22-volt rating provided by the one-percent guardband. Thus, although carrying a maximum clampingvoltage rating 0.5 volt higher than the maximum voltage rating carried by ICx, this suppressor can be safely used in this application.

The same, however, cannot be said of all 22.5-volt suppressors. Another device in the same family, the P4KE16A, has slightly different current ratings and yields considerably different results:

$$22.5 - [(19 - 20)/19] \times 0.08 (22.5) = 22.59$$
volts

Clearly, with a 22.59-volt clamping voltage, this device cannot be used because it exceeds the maximum clamping-voltage rating plus guardband of ICx.

The next step in the selection process is to verify the transient suppressor's power rating. There are two approaches that can be taken:

1. Since the waveform of the transient is a classic exponential decay with a 0.5-millisecond duration at the half-peak current point, a graphic plot of peak power versus time can be used. This graph is often published in manufacturer's data sheets and if it is available for the device under consideration, one need only compare the anticipated current against the current shown in the graph. Using the peakpower versus time graph published for the P6KE series suppressors, it can be seen that with a 0.5-millisecond time-constant decay, a P6KE device can handle a peak power of 792 watts.


Using Ohm's law and a 22-volt clamping voltage, this translates to:

I = P/V = 792/22 = 36 ampsSince the anticipated peak reverse current with a 0.5-millisecond time constant is 20 amps, it is clear that a P6KE device can easily withstand the anticipated peak power of the surge.

2. Calculate the energy in joules contained in the transient and compare it to the maximum energy rating of the transient suppressor. The energy in the transient, of course, depends on its wave shape, as shown in Figure 3. The amount of energy a given transient suppressor can handle, on the other hand, depends on its energy rating and the duration of the pulse, as shown in Figure 4. In this example, the waveform has an exponential shape with a 20-amp peak current and a 0.5-millisecond half-peak-power point. Using these data, the energy calculations are as follows:

 $E = V_C(t) \times I(t) \times A(t) - KV_C \times I \times \tau$ where, in this example, $V_C = 2V$ I = 20A $\tau = 0.5 \text{ msec}$ K = 1.4 (from Figure 3) $Thus E = 1.4 \times 22 \times 20 \times (0.5 \times 10^{-3}) = 0.308J$

The maximum single-pulse energy rating for a P6KE series is 0.83 joules for a pulse of 1 millisecond duration. Referring to Equation 4, the energy rating for a 0.5-millisecond pulse becomes 0.7 x 0.83 J, or 0.581 joules. Clearly, then, a P6KE device can easily handle the 0.308-joule energy contained in the anticipated transient pulse.

Figue 4

Enery-handling capacity of a transient volatage suppressor as a function of the transient's duration

Conclusion

The above example assumes a nonrepetitive transient, or, if repetitive, each pulse is separated from the others by an interval of least 20 seconds. Under these conditions, however, the procedures outlined provide a straightforward and reliable method of selecting the best transient voltage suppressor for a given application.

SUPERECTIFIER DESIGN BRINGS NEW LEVEL OF RELIABILITY TO SURFACE MOUNT COMPONENTS

By: Joseph M. Beck, Senior Applications Engineer

Surface Mount technology is here to stay. After years of plodding through cautious experimentation, many manufacturers now have fully automated production lines in place.

SOLDERABLE

These production lines place circuit components at speeds that until recently would have been unthinkable. Finally being realized are the benefits of what was once considered a "Voo Doo" manufacturing technology.

Component manufacturers have learned a great deal over the past several years as well. Initially most

surface mount components were nothing more than retrofit, lead formed versions of their conventional leaded, through-hole counterparts. For most manufacturers this was the quickest and least costly method of "developing" a line of surface mountable components.

It was soon discovered, however, that this approach to component assembly would be unacceptable. Surface mount technology placed new demands upon circuit components. Electrically, the same power was being required from smaller and smaller packages. Package geometries and dimensions became critical in relation to pick and place equipment and circuit board mounting. In addition, the construction of these devices needed to be such that they would suffer no ill effects when subjected to the rigors of the new assembly environment that surface mount technology presented. Encountered in this environment was extremely high-speed pick and place equipment, component adhesive attachment, immersion in molten solder and rapid temperature changes associated with reflow soldering processes. All this meant that component manufacturers would have to re-think their approach to device fabrication. Yes, components needed to be smaller: but they also needed to be more reliable.

> UL RECOGNIZE FLAME RETARD MOLDING COMPOUND (UL 94-Y 0)

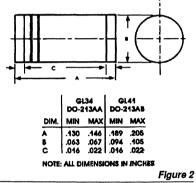
CAVITY FREE OPAQUE GLASS-PASSIV

At General Instrument. the development of new surface mount components is not something that is taken lightly. It is realized that in order to produce a truly reliable surface mount product one must first consider all relevant aspects of the technology. Only when this process has been completed can a product be developed which is surface

Figure 1 SUPERECTIFIER construction

mountable, and inherently reliable.

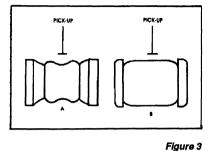
Surface Mount Superectifier ®


General Instrument manufactures surface mount rectifiers in the popular MELF (metalized electro face) package style. These devices, denoted as SUPERECTIFIERS, are available with a wide variety of electrical characteristics. The main difference, however, between these rectifiers and other MELF style devices lies in the area of device construction. Figure 1 shows the unique construction employed in the manufacture of the SUPERECTIFIER.

The construction of the SUPERECTIFIER does not internally utilize any soft solders. All interconnects are accomplished by the use of a high temperature brazing process (600°C). Hence, any chances of solder void occurrence or internal solder reflow during circuit board processing are eliminated. In addition, the silicon rectifier junction is completely encapsulated by a cavity-free glass. This glass encapsulation ensures that the rectifier junction is hermetically isolated from humidity and other harmful environmental intrusions.

The resultant sub-assembly could be considered to be a fully functional surface mount rectifier. In fact, many component manufacturers offer MELF devices which have this appearance; namely, an oblong glass bead with two protruding metal end terminations. However, in order that the device have a uniform shape, the General Instrument sub-assembly is over molded with epoxy. The result is a smooth, perfectly cylindrical package.

Two Sizes


Two different size SUPERECTIFIER MELF packages are available. General Instrument designation GL34 and GL41 are for 0.5 ampere and 1.0 ampere rectifier types, respectively. JEDEC mechanical specifications DO-213AA and DO213AB detail the dimensions of the GL34 and GL41, respectively. Figure 2 gives these package dimensions.

Dimensional outline

MANUFACTURING CONSIDERATIONS

Pick and Place--Surface mount SUPER-ECTIFIERS are supplied on tape and reel in accordance with JEDEC standard RS-481A. Removal of the devices from the embossed carrier tape is easily accomplished by all vacuum pick-up mechanisms which utilize a compliant tip. The compliant tip will form a tight seal around the cylindrical MELF design once contact with the device has been made. This is not always the case, however, when MELF devices with a non-uniform package outline are used. Figure 3 shows two such MELF outlines. Figure 3A is a device with a concave package outline. This type of package is difficult to consistently remove from the carrier tape as the exact position of pick-up on the component body is critical. Figure 3B is that of the most common form of MELF packaging. This type of construction utilizes a non-transparent glass body which is

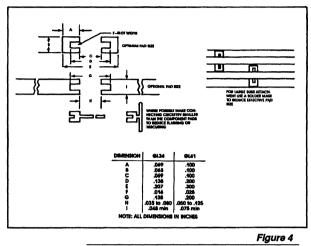
Non-uniform MELF outlines

often characterized by pitting and surface irregularities. The irregularities make it difficult for a vacuum pick-up to form a tight seal around the device body. The result is that components are often dropped onto the production room floor instead of being placed on the targeted circuit board. General Instrument solves these problems with a smooth surface and perfectly cylindrical package outline.

Bonding Pads - The geometries and dimensions of bonding pads are critical to the proper mounting, soldering and overall performance of all surface mount components. Figure 4 gives the recommended pad layouts for GL34 and GL41 MELF outlines. Use of these pad layouts will be primary assistance in the following three areas:

◆ Surface mount technology by nature dictates that smaller component packages dissipate the same power as their larger through-hole counterparts. Hence, adequate bonding pad land area is required in order to aid the component package in the dissipation of this power. The recommended pad layouts provide the needed land area for GL34 and GL41 devices to operate safely at their maximum ratings.

Component adhesive attachment allows the package to shift slightly from its original placement position prior to adhesive curing. In addition, most adhesives tend to spread during the curing process which also may allow package misalignment. The geometry of the recommended pad layouts will tend to minimize such movements. This assumes, of course, that the package was originally positioned correctly.


 During reflow soldering, solder surface tension can have a significant effect on the movement and final position of components in relation to their bonding pads. The recommended pad layouts will actually make use of the solder surface tensions to bring MELF devices into alignment with the two bonding pad land areas. This means that MELF devices which are initially placed in slight misalignment on their bonding pads will reposition themselves during solder reflow until a position of alignment is reached.

Soldering-Surface mount SUPERECTIFIERS are capable of withstanding all present forms of wave and reflow soldering. The following guidelines should be followed, however, in order to ensure overall package integrity:

◆ GL34--Maximum temperature at device and terminations not to exceed 400°C for 5 seconds. Complete device submersible temperature not to exceed 260°C for 10 seconds in solder bath.

◆ GL41--Maximum temperature at device end terminations not to exceed 450°C for 5 seconds. Complete device submersible temperature not to exceed 265°C for 10 seconds in solder bath.

General Instrument's surface mount SUPERECTIFIERS combine superb electrical performance with unmatched levels of reliability. The construction of the SUPER-ECTIFIER virtually eliminates all problems associated with highspeed pick and place of MELF components. In addition, SUPER-

Recommended pad layout

SURFACE MOUNT SUPERECTIFIER AVAILABILITY: PART NUMBER CURRENT(A) VOLTAGE(V) TRR(na) PACKA GENERAL PURPOSE	
CENEDAL DUDDOSE	×
OENERAL FURFOOD	
GL34A-M 0.5 50-1000 GL34	
1N6478-84 1.0 50-1000 GL41 GL41A-M 1.0 50-1000 GL41	
FAST RECOVERY	
RGL34A-M 0.5 50-1000 150-500 GL34 RGL41A-M 1.0 50-1000 150-500 GL41	
ULTRA FAST RECOVERY	
EGL41A-G 1.0 50-400 50 GL41 EGL34A-G 0.5 50-400 50 GL34	

ECTIFIER construction ensures that performance and reliability are never compromised when the device is subjected to the demands of surface mount assembly techniques or when other seemingly harmful environments are encountered. Quite simply, no other surface mount rectifier comes close to offering all the advantages of the SUPERECTIFIER MELF.

All surface mount components are small and save space. However, performance and reliability should never be considered necessary trade-offs in order to utilize surface mount technology. Use of General Instrument surface mount SUPERECTIFIERs requires no such sacrifices; no trade-offs.

-610-

Protection of Power Supply and Data Lines Via Thyristor Surge Suppressor and TVS Devices

by Jon Schleisner

The Power Semiconductor Division of General Instrument (PSD), a mainstay in the arena of axial rectifiers, Schottky diodes, TVS, and surface mount technology, has extended its product line. PSD has entered the exciting and growing market of solid state "crowbar" type protection products.

Protection of power supply and data lines against transients is an art still in evolution. The advent of microprocessor- driven telephone systems based on sensitive electronics (instead of charcoal compressive microphones) has changed the criteria for protection. MOVs, gas tubes, and carbon blocks have been the staple components for protection schemes for decades.

These older protection devices have several advantages and disadvantages versus their solid state counterparts. The common advantages are low cost and the ability to absorb tremendous amounts of energy. The disadvantages include slow turn-on times, lack of totally controllable breakover (gas tube) and avalanche (MOV, carbon block) voltages, and an inherent wear-out mechanism (use them and you lose them).

The advantages of the General Instrument's TVS and Thyristor Surge Suppressor devices are speed of response (pico- and nanoseconds), control of avalanche (Zener) voltage, and breakover voltage. Solid state protectors do not shift in parametric value unless stressed beyond their rated limits and driven to destruction The disadvantage of solid state protection are generally lower power handling capacity and higher costs.

The cost factor is rendered moot if the slow protection device (MOV or gas tube) acts too slowly to protect the system to which it is dedicated.

The power limitations can be overcome. to a great degree, with some imaginative engineering. Thyristor Surge Suppressors and TVS devices are specified differently. Table 1 lists all the pertinent TVS and Thyristor Surge Suppressor device parameters for comparison. While both devices are used for transient protection, their electrical behavior is quite different.

<u>TVS ByR</u> - The voltage at which the part goes into reverse breakdown at a specified test current, usually 1 or 10 milliamps. <u>Thyristor Surge Suppressor BVR</u> - The voltage at which the Thyristor Surge Suppressor device begins to conduct current, equivalent to the TVS BVR.

Thvristor Surge Suppressor VBO- The voltage at which, when reaching the specified IBO, causes the device to "fire" or "fold back" in the low-voltage forward mode.

<u>Thyristor Surge Suppressor IBO</u> - The required current at VBO that causes the devices to "break over or fold back".

<u>TVS V_{RSM}</u> - The maximum specified voltage at Ipp, the TVS max clamping voltage.

<u>TVS IRSM</u> - The max rated current to test the VC parameter.

Thyristor Surge Suppressor Vt - The voltage drop across the device at the specified It, after the device folds back. It- The specified current at which Vt is tested.

In - This is a leakage spec with VR set to less than BVR or VBR on TVS or Thyristor Surge Suppressor devices.

Thyristor Surge Suppressor IH - This is a spec. that is unique to "Thyristor Surge Suppressor" technology. After the device has been "fired," when the current starts to decay and passes below a critical value (usually several hundred milliamps), the device turns off and resumes its normal high impedance state

There is no TVS equivalent to IH (holding current). This function is important; it places certain critical limitations on application of the Thyristor Surge Suppressor device. Consider a power supply output with a 1-amp current limit. If this line is protected with a Thyristor Surge Suppressor device with an IH=500mA, problems will arise. If the is fired, it will never shut off. The available current from the power supply is greater than IH. hence the part will stay turned on until power is momentarily removed. This classic condition requires attention whenever designing in a Thyristor Surge Suppressor device in a protection system.

This aspect of Thyristor Surge Suppressor device performance makes it ideal for protection of data lines from lightning and other true transient voltage conditions. Typical data lines have current limiting set rather low. The telephone system in North America has a current limit of 250mA, so maintaining IH250mA will ensure device turn-off after the passage of the transient.

Fig. 1 & 2 highlight differences in TVS and Thyristor Surge Suppressor device performance.

The following figures provide an explanation of circuit applications:

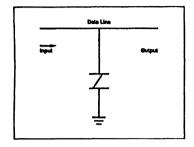


FIGURE 1.

The simplest and most direct application of a Thyristor Surge Suppressor device across a medium to slow data line. If a positive transient strike exceeds VBO with sufficient IBO, the Thyristor Surge Suppressor device will fire, absorbing the transient.

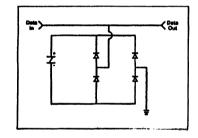
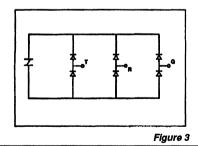



Figure 2

The same approach as Figure 1 with the addition of steering diodes to absorb bidirectional transients. Most transients are bidirectional in nature.

This is a further extension of Figure 2. With the terminals marked T (Tip), R (Ring), and G (Ground), this becomes the classic telephone line protection scheme.

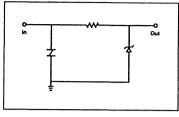


Figure 4

This is data line protection where the turn on transient approaching VBO (225 -260V) cannot be tolerated. The resistor limits the current through the TVS to VBO - VC/R, the duration of this pulse is typically less than 1 usec, so a small TVS can be used.

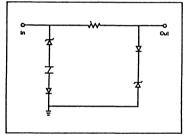


Figure 5

Similar to Figure 4, but designed to have reduced parasitic capacitance across the data line.

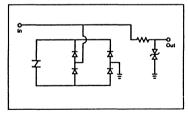
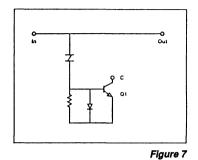
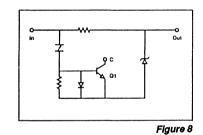




Figure 6

This circuit is a bidirectional version of Figure 4 with the low capacitance benefits of Figure 5.

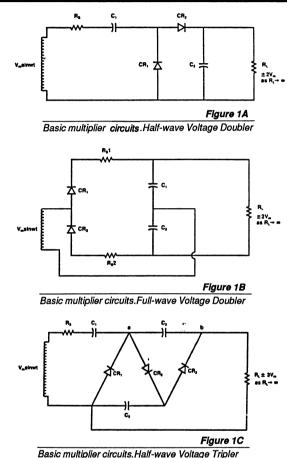
This is a power supply protection circuit. The open collector of Q1 is connected to the power source at the input and should be used to shut off the power supply output for a few milliseconds. This permits the current through the Thyristor Surge Suppressor device to fall below IH before restart begins.

This circuit is equivalent to Figure 7 with the addition of TVS clamp at the output. This prevents VBO from appearing at the protection circuit's output.

General Instrument's Power Semiconductor Division will support your design efforts and assist in applying these new solid state protection devices. More protection performance for your dollarthat is our goal.

-614-

.

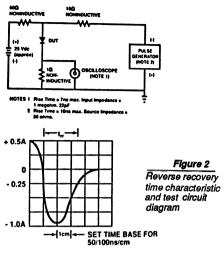

Using Rectifiers In Voltage MultiplierCircuits

By Joseph M. Beck Sr. Applications Engineer

Systems designs frequently call for a high voltage, low current power source that needs only minimal regulation. A few familiar examples are CRT circuits, electrostatic copiers, and photoflash applications. Required voltages typically range from 10 to 30KV and the current demand rarely exceeds 5 milliamperes.

When your design requires this type of power source, you may want to consider a voltage multiplier circuit. They are inexpensive, easy to design, versatile, and can provide virtually any output voltage that is an odd or even multiple of the input voltage.

This article explores the basic operation of multiplier circuits and discusses guidelines for electronic component selection. Since General Instrument Corporation is the industry's leading manufacturer of rectifier products, we will place special emphasis on selecting rectifier diodes for multiplier circuits.



BASIC OPERATING PRINCIPLES

Most voltage multiplier circuits, regardless of their topology, consist chiefly of rectifiers and capacitors. Figure 1 shows three basic multiplier circuits.

The operating principle of all three circuits is essentially the same. Capacitors connected in series are charged and discharged on alternate half-cycles of the supply voltage. Rectifiers and additional capacitors are used to force equal voltage increments across each of these series capacitors. The multiplier circuit's output voltage is simply the sum of these series capacitor voltages. A wide variety of alternating signal inputs are used with multiplier circuits. The most popular are sine and square wave inputs. For simplicity, this discussion will be limited to sine wave inputs; the calculations become somewhat more involved with asymmetrical signals.

Voltage Doublers - Figure 1A shows a halfwave voltage doubler circuit. It functions as follows. On the negative half-cycle of the input voltage, capacitor C1 charges, through rectifier CR1, to a voltage of Vm. On the positive half-cycle, the input voltage, in series with the voltage of C1 (Vc1=Vm), charges capacitor C2

through rectifier CR2 to the desired output voltage of 2Vm. Capacitor C1, which aides in the charging of capacitor C2, sees alternating current ("AC Cap") while C2 sees only direct current ("DC cap"). In this circuit, the output voltage and the input signal have the same ripple frequency.

The same operating principle extends to the full-wave voltage doubler circuit of figure 1B. On the negative half-cycle of the input voltage, capacitor C2 is charged through rectifier CR2 to a voltage of Vm. On the positive half-cycle, capacitor C1 is also charged to a voltage of Vm, through rectifier CR1. The series voltages of capacitors C1 and C2 (Vc1=Vc2=Vm) yield the desired output voltage: 2Vm. In this case, capacitors C1 and C2 are "DC capacitors"; they see no alternating current. The output ripple frequency of the full-wave doubler is twice that of the input signal.

Voltage Tripler - Higher output voltages are possible through the use of a half-wave voltage tripler circuit, shown in figure 1C. This circuit operates as follows. On the negative half- cycle of the input voltage, capacitor C1 charges through rectifier CR1 to a voltage of Vm. On the positive half-cycle, the input voltage, in series with the stored voltage on C1 (Vc1=Vm), charges capacitor C2 through rectifier CR2 to a voltage of 2Vm. On the next negative half-cycle, the charge on C1 is replenished. At the same time, the input voltage, in series with the stored voltage on C2 (Vc2=2Vm), charges capacitor C3 through CR3 to a voltage of 2Vm (Vc3=Vb-Va=(Vm +Vc2)-Vc1=2Vm). Vc1 and Vc3, in series, provide the output voltage of 3Vm. In this case, the output ripple frequency is equal to that of the input signal.

Although half-wave and full-wave multiplier circuits can provide equivalent output voltages, there are some fundamental differences that should be considered. First, the full-wave circuit has the advantage of higher output ripple frequency (twice that of the halfwave circuit). In addition, the full-wave circuit provides better voltage regulation than the half-wave circuit, since the latter relies upon one capacitor (C1 in figure 1A) to provide the charging energy to a single DC load capacitor (C2 in figure 1A). The full-wave circuit, however, requires that the secondary side of the transformer be capable of withstanding high voltages (approximately 1/2 of the output voltage). For this reason, the half-wave multiplier is usually the preferred circuit when high voltage outputs (Vo=kilovolts) are required.

DESIGN GUIDELINES

Capacitor selection - The size of capacitors used in multiplier circuits is directly proportional to the frequency of the input signal. Capacitors used in off-line, 60Hz applications are usually in the range of 1.0 to 20uF while those used in higher frequency applications, say 10KHz, are typically in the range of .02 to .06uF. In practice, it is usually easier, and less costly, to use the same large capacitance value for all capacitors, both "AC" and "DC" type. The overall capacitive reactance of the circuit must be considered, however, to determine the largest permissible value.

The voltage rating of capacitors is determined solely by the type of multiplier circuit. In the half-wave doubler circuit of figure 1A, C1 must be capable of withstanding a maximum voltage of Vm, while C2 must withstand a voltage of 2Vm. In the full-wave doubler circuit of figure 1B, both C1 and C2 must withstand voltages of Vm. The half-wave voltage tripler of figure 1C requires C1 to withstand a voltage of Vm, and both C2 and C3 to withstand voltages of 2Vm. A good rule of thumb is to select capacitors whose voltage rating is approximately twice that of the actual peak applied voltage. For example, a capacitor which will see a peak voltage of 2Vm should have a voltage rating of approximately 4Vm.

Rectifier Diode Selection

Several basic device parameters should be considered:

Repetitive Peak Reverse Voltage (Vrrm) -Repetitive peak reverse voltage is the maximum allowable instantaneous value of reverse voltage across the rectifier diode. Applied reverse voltages below this maximum value will produce only negligible leakage cur-

rents through the device. Voltages in excess of this maximum value, however, can cause circuit malfunction --- and even permanent component damage --- because significant reverse currents will flow through the device. For example, General Instrument's GP02-40 rectifier diode has a peak reverse voltage rating (Vrrm) of 4,000 volts, maximum. Applied reverse voltages of 4KV or less will produce a maximum reverse leakage current, IR, of 5 microamperes through the device when operated at room temperature (25 ° C). In most cases, this leakage current is considered negligible, and the device is said to be completely blocking (IR=0).

In the case of the three circuits of figure 1, the maximum reverse voltage seen by each rectifier diode is 2Vm. So devices must be selected with reverse voltage (Vrrm) ratings of at least 2Vm.

Reverse Recovery Time (trr) - In general terms, reverse recovery time is a measure of the time needed for a rectifier diode to reach a state of complete blocking (IR=0) upon the application of a reverse bias. Ideally, this time should be zero. In reality, however, there's a finite period of time in which a stored charge at the diode junction must be "swept away" before the device can enter its blocking mode. This stored charge is directly related to the amount of forward current flowing through the device just prior to the application of the reverse bias. Fortunately, since operating currents are very low in multiplier circuits, reverse recovery times are kept to a minimum. Nevertheless, trr plays an important role in multiplier design.

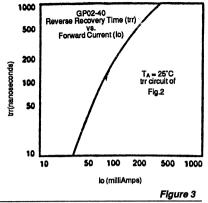

When selecting rectifier diodes, the frequency of the input signal to the multiplier network must be considered. For symmetrical signal inputs, the device chosen must be capable of switching at speeds faster than the rise and fall times of the input. If the reverse recovery time of the rectifier is too long, the efficiency and regulation of the circuit will suffer. In the worst case, insufficient recovery speeds will result in excessive device heating, as reverse power loses in the rectifier become significant. Continued operation in this mode usually results in permanent damage to the device. The reverse recovery time (trr) specification is very dependent upon the circuit and the conditions being used to make the measurement. Several industry standard trr test circuits exist (figure 2 is the test circuit used for the GP02-40). Therefore, it's very important to note which test circuit is being referenced, as the same device may measure differently on different test circuits. Furthermore, the trr specification should be used for qualitative, not quantitative purposes, since conditions specified for trr measurement rarely reflect those found in actual "real life" circuit operation. The trr specification is most valuable when comparing two or more devices that are measured on the same circuit, under the same conditions.

Figure 3 shows the relationship between forward current and trr in the GP02-40. As you can see, decreasing current flow in the multiplier circuit makes it possible to use higher input frequencies. An increase in current flow has the opposite effect. Ideally, the multiplier network load should draw no current.

Peak Forward Surge Current (Ifsm) - A peak forward surge current rating is given for most rectifier diodes. Most often, this rating corresponds to the maximum peak value of a single half- sine wave (50 or 60Hz) which, when superimposed upon the devices rated load current (JEDEC method), can be conducted, without damage by the rectifier. This rating becomes important when considering the large capacitance associated with multiplier circuitry.

Surge currents can develop in multiplier circuits, due to capacitive loading effects. The large step-up turns ratio between primary and secondary of most high voltage transformers causes the first multiplier capacitor (C1, secondary side) to be reflected as a much larger capacitance into the primary. For example, a transformer with a turns ratio of 25 will cause a 1.0 uF capacitance to be reflected into the primary circuitry as a capacitance of (1.0)(25) uF, or 625uF. At circuit turn-on, large currents will be developed in the primary side as this effective capacitance begins charging.

On the secondary side, significant surge currents can flow through the rectifiers during initial capacitor charging at turn-on. The addition of a series resistance (Rs in figure 1) can greatly reduce these current surges, as well

Trr as a function of forward current

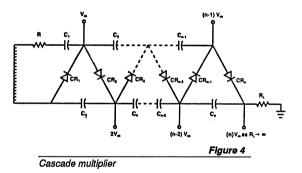
as those in the primary circuitry. For example, the GP02-40 has a forward surge rating, Ifsm, of 15 amperes. Considering a maximum secondary voltage of 260 Vrms, 60Hz, the calculation of Rs is as follows:

> RS ≥ Vpeak/Ifsm eq.1 RS ≥ (1.41)(260)/15 RS ≥ 24.4 ohm

Other Parameters - Of lesser significance are the forward current rating, lo, and maximum forward voltage, Vf.

Forward current, Io - As stated earlier, in the ideal multiplier configuration the load will draw no current. Ideally, the only significant current flow through the rectifiers occurs during capacitor charging. Therefore, devices with very low current ratings (hundreds of milliamperes) can be used. It must be noted, however, that the forward current and forward surge current ratings are related, since both are a function of silicon die area. Generally speaking, devices with a high surge current rating, lism, will also have a high forward current, lo, rating, and vice versa.

Forward Voltage, Vf - In practice, the forward voltage drop, Vf, of the rectifiers does not have a significant effect on the multiplier network's overall efficiency. For instance, the GP02-40 has a typical forward drop of 2.0 volts when measured at a current of 100 milliamperes. A half wave doubler with an 8KV output will have less than .05 percent (2x2V/8KV) loss in efficiency due to the forward voltage drops.


HIGHER ORDER CASCADE MULTIPLIER

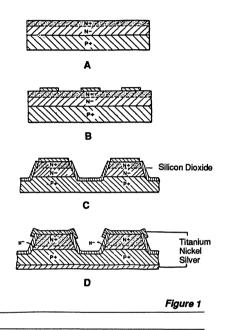
Still higher voltages are possible by using the cascade multiplier circuit shown in figure 4. The output voltage is calculated as:

Vo = (n)(Vm), as *IL* -- 0 eq.2 where n = number of capacitors or diodes, assuming equal value capacitors, ideal diodes and symmetrical signal input.

In theory, one can obtain any incremental output voltage increasing the value of n. In practice, however, voltage regulation and efficiency become increasingly poor as n increases. The potential for voltage arcing must also be considered as the value of n increases, and when higher output voltages are required. Careful mechanical design can minimize arcing, to a large extent.

From a pure circuits standpoint, voltage multipliers are relatively easy to design. The selection of circuit components, however, is one facet of the "overall design" that should not be taken for granted or trivialized. Careful consideration of all component parameters is the only way to ensure both reliable and predictable circuit performance. Put another way, ideal circuits require ideal circuit components.

To find the ideal rectifier for your voltage muitiplier, consult the *General Instrument Power Semiconductor Division Data Book. You can obtain a copy by phoning 516-933-3165, or by writing to General Instrument Corp., Power Semiconductor Division, 600 West John Street, Hicksville, NY 11802.*

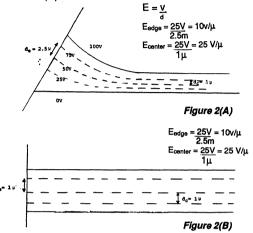

Transient Voltage Suppressors Ideally Suited for Automotive Applications or Harsh Environments

Gloria M.Luna Automotive Applications Engineer

The combination of durability and high temperature performance has come together in the form of General Instrument's new, patented PAR (Passivated Anisotropic Rectifier)* process. Transient voltage suppressors produced by this process exhibit high temperature reverse bias stability, excellent transient energy capability, and low dynamic impedance, and are ideally suited for the harsh environments of automotive applications. In a standard diffused junction process, there are several conditions present that could affect the integrity of a device. These conditions become critical to the performance of the device as the junction temperature is increased and the device is stressed to the limits of its operation. They include the presence of a high field at the surface of the junction when a voltage is applied. The electric field (V/cm) that occurs over the depletion laver of a device determines the voltage capability of the device:

$$E(x) = \frac{dV(x)}{dx}$$

This field is not only present in the bulk of the device but also at the surface. When this electric field sees ionic contaminants on top of the surface and along the edge of the die, the contaminants will ionize and the resulting charge will distort the original field. This distortion can increase local leakage current and cause localized breakdown as well as thermal runaway. By growing an oxide directly on the surface of the junction layer, these contaminants can be eliminated. In addition, by employing a positive bevel angle construction, the field at the surface would be diminished to a point where it could not contribute to device degradation.General Instrument engineers have combined these features in a process that provides reliable devices under the high temperature conditions of the automotive environment as well as one that lends itself to state-of-the-art semiconductor manufacturing processes. Thus came the development of the PAR process.



PROCESS TECHNOLOGY

As illustrated in Figure 1(A), we begin with a P+ device and an N- surface layer. We then diffuse in a shallow N+ laver. deposit and subsequently etch a silicon nitride layer that functions as a mask as shown in Figure 1(B). The resulting pattern is then anisotropically etched to form a mesa structure on the top side of the wafer. By utilizing this anisotropic process we are able to achieve a uniform 45 degree angle all around each die.We oxidize the silicon surface where there is no nitride, which results in a grown silicon dioxide layer that is ten times as thick as the silicon nitride. This oxide layer forms around the mesas but not on the original nitride as shown in Figure 1(C). As the N+ layer is driven deeper into the junction, a phenomenon occurs which results in a curvature between the N+ and the N- surface layers as illustrated by Figure 1(D). This curvature is essential in achieving higher breakdown voltages. The final step includes the removal of the top silicon nitride layer and the sintering of a metalization layer

*patented by General Instrument

composed of titanium, nickel, and silver deposited on the top and bottom surfaces. This is also illustrated in Figure 1(D).

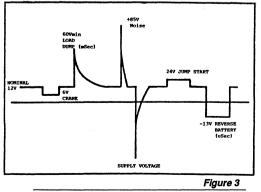
This process is notable for the following reasons:

1. Reverse current measurements remain stable and uniform.

2. Complete stability during high temperature reverse bias and thermal cycling

3. Low electrical contact resistance.

This process results in several important features unique to the PAR construction. First, particle contamination is virtually eliminated by the use of a grown oxide to passivate the junction. Second, by utilizing a positive bevel angle construction, we are able to lower the field at the surface. Due to the fact that the reverse breakdown voltage of a device is determined by the width of the high ohmic region, the curvature of the N+/N- junction becomes an important design criteria in obtaining higher breakdown voltages at the surface of the silicon. This promotes a breakdown along the bulk of the junction rather than at the edge . As illustrated in Figure 2(A),


the curviture of the junction results in an increase in the distances of the equipotential lines at the surface. By calculation, all of the breakdown occurs at the bulk of the device rather than at the edge because the field at the edge does not excede the critical value of the layers of material outside of the silicon near the junction (greater than 10V/u). In contrast, the equipotential lines for a standard diffused junction device are illustrated in Figure 2(B). With the breakdown occuring at the edge of the junction, the incidence of high leakage and localized breakdown associated with field distortion is increased, particularly when the device is exposed to extreme environmental and operating conditions. In addition, this tailored junction affords the following advantages:

1. By having the breakdown occur over the large bulk area of the device, large energy surges can be safely handled without damage or deterioration to the device.

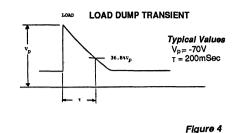
2. By modifying the edge of the device, the results under high temperature reverse bias are excellent.

AUTOMOTIVE TRANSIENTS

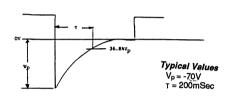
Electronic devices that operate in the automotive environment are subjected to very extreme conditions. Temperature, humidity, exposure to various liquids, vibration, voltage changes, and surge voltages are just some of the factors to be considered in the automotive environment. Temperatures can rise to as high as 200 degrees C in the engine compartment and as low as -20 degrees C. As a result, it is necessary that any electronic device be able to withstand these conditions and operate within reasonable limits so as not to degrade the performance of any system it may be operating in. Transients in the automotive environment cover a wide range of energy levels and time durations, as illustrated in Figure 3. These transients are distributed throughout the electrical system of an automobile and can occur at any time.

Some of the most serious types of transients are:

1. A load dump transient occurs when the alternator load is suddenly dropped due to battery disconnection. Voltages can range from 30 to 125V for up to 400 ms. This is considered the worst of all types of transients and was made a test requirement for all electrical systems and modules designed for the automotive industry back in the 1970's. See Figure 4

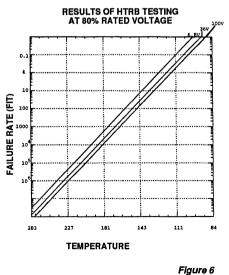

2. Transient voltages generated when the inductive loads (relays, solenoids, and switches) are turned off. See Figure 5.

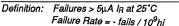
3. Transient voltages generated when the ignition switch is turned off.4. Transient voltages generated by inductive or capacitive coupling when electrical equipment (such as the ignition system) is turned on.


By connecting a transient voltage suppressor across the output of a circuit or connecting them within the circuit, you can protect delicate components and systems by clamping these transient voltages. Because the failure threshold level of a system is determined by its weakest component, it is wise to insure that a TVS would be able to withstand all of these conditions.

RELIABILITY

Due to this increased focus on reliability under harsh environmental conditions. the ability to quantify reliability has become an important criteria in selecting components. Failure modes fall into two broad categories -- those related to defects in the silicon die, and those related to packaging of the die.Die defects relate to field distortion, oxide defects, surface charge or microcracking. By using devices manufactured with the PAR process, the incidence of these types of failures is greatly reduced. These failures can be provoked by high temperature reverse bias testing. In this test, the devices are reverse biased by applying 80% of the rated reverse voltage to the device and heating the device to at least 150 degrees C. This test can run anywhere from 250 to 1000 hours to insure device durability.Shown in Figure 6 are the results of HTRB testing on PAR produced transient voltage suppressors





INDUCTIVE LOAD TRANSIENT

Figure 5

rated at 6.8V, 36V, and 100V. In addition, reverse leakage remains within a very tight distribution and very little drift is observed in values before and after test.Packaging defects can occur from fatiguing of the bond or the presence of atmospheric vapor onto the die surface. Particularly in the automotive environment, semiconductor devices can be subject to thermal and electrical stress causing cracking, separation or voiding of the bond between the die and the lead. These conditions can lead to degrading operation and eventually, thermal runaway.By thermally cycling the device from low (typically -65 degrees C) to elevated temperatures (typically 150 degrees to 170 degrees C) with a dwell time of 5 minutes at each temperature, the bond can be stressed to the point of failure to insure the integrity of the device. The results of temperature cycling for PAR devices is shown in Figure 7.

PART NUMBERS

The devices are available in three different power ranges utilizing the following part numbers: P4KA (400 Watts) P6KA (600 Watts) 6.8V to 43V 6.8V to 43V 1.5KA (1500 Watts) 6.8V to 43V TAGL41 (400 Watts Surface Mount) 6.8V to 43V **RESULTS OF TEMPERATURE CYCLING TESTING**

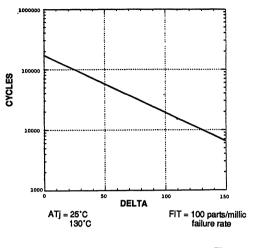
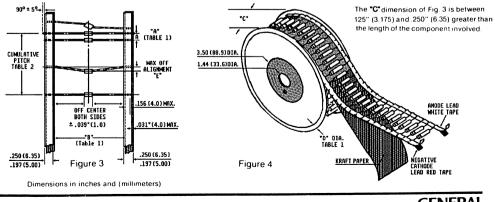


Figure 7

PACKAGING BULK - TAPE AND REEL

PKG. CODE	PACKAGING DESCRIPTION
1	. Bulk
3	. 26MM Horizontal Taping and Ammo Packing
4	. Standard Horizontal Reel, Class 1 (Metric 52.4MM)
6	. Avisert, Cathode Up, Cathode First Off Reel
8	. Avisert, Cathode Up, Cathode First Off Ammo Pack
10	. Avisert, Cathode Down, Anode First Off Reel
12	. Avisert, Cathode Down, Anode First Off Ammo Pack
14	. Panasert, Cathode Up, Cathode First Off Reel
15	. Panasert, Cathode Up, Anode Off First, Ammo Pack
16	. Panasert, Cathode Up, Cathode First Off Ammo Pack
18	. Panasert, Cathode Down, Anode First Off Reel
20	. Panasert, Cathode Down, Anode First Off Ammo Pack
22	. Bulk Pack for Special Axial-Leaded Formed Devices
23	. Standard Horizontal Ammo Pack, Class I (Metric 52.4mm)
25	. GL41 SMD 12MM Tape, 7" Diameter Paper Reel
26	. GL41 SMD 12MM Tape, 13" Diameter Paper Reel
27	. SMD, 16 MM Tape, 7" Diameter Reel
28	. Special Carton Packing method for Tube Packaging Products
32	. GL34 SMD, 8MM Tape, 7" Diameter Paper Reel
33	. GL34 SMD, 8MM Tape, 13" Diameter Paper Reel
34	. Tab Mounted EFR8 Chip, 16MM, 13" Diameter Reel
35	. Bulk, Axial-Leaded Conductive Packaging
36	. Standard Horizontal Reel, Class 1 (Metric 52.4MM)
	Conductive Packaging
37	. Bulk, TO-220, TO3P Conductive Tubes
38	. Bulk, Conductive Packaging for Bridge Rectifier
39	. Miscellaneous Non-Standard T&R Packaging
40	. Euroform, Reel, Cathode First Off Reel, Lead Coated
42	. Euroform, Reel, Cathode Last Off Reel, Lead Coated
44	. Standard Horizontal Reel (Metric) 5MM Component Spacing
	for DO-201 Packages
45	. Tube Packaging for TO-220, TO-3P, and In Line Bridge Rectifier
46	. GL41 SMD 12MM Tape, 7" Diameter Plastic Reels
47	. GL41 SMD 12MM Tape, 13" Diameter Plastic Reels
48	. GL34 SMD 8MM Tape, 7 " Diameter Plastic Reels
49	. GL34 SMD 8MM Tape, 13" Diameter Plastic Reels

Also available for all packaging Electro-Static-Protection by adding the number "50" to the existing codes. For example, "51" would be Bulk, Electro-Static Packaging. "54" would be T/R, Electro-Static Packaging.

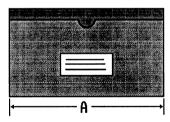

REEL PACKAGING

COMPONENT CASE TYPE	UNITS PER REE	SP	PONENT ACING ' FIG. 1	SP	able 1 [APE ACING FIG. 1	DIM	IEEL ENSION ' FIG.2	ALIC	X. OFF GNMEN "FIG. 1	T GROS	S WEIGHT R REEL
	ea.	in.	mm	in.	mm	In.	mm	in.	mm	lbs.	kg.
1.5KA (PAR)	2000	.200	5.0	2.06	52.4	12.0	305	.047	1.2	7.1	3.2
DO15	3500	.200	5.0	2.06	52.4	12.0	305	.047	1.2	4.00	1.81
DO201AD	1200	.395	10.0	2.06	52.4	12.0	305	.047	1.2	3.60	1.63
DO204AP	4000	.200	5.0	2.06	52.4	12.0	305	.047	1.2	5.80	2.60
DO204MB	4000	.200	5.0	2.06	52.4	12.0	305	.047	1.2	3.74	1.70
DO41	5000	.200	5.0	2.06	52.4	12.0	305	.047	1.2	4.80	2.20
G3/G4	1500	.395	10.0	2.06	52.4	12.0	305	.047	1.2	4.80/4.40	2.20/2.00
GL34 Surface Mount	2500/7000	.157	4.0	_	—	7/13	178/330	See Fig	g. 6	.471/1.49	.214/.68
GL41 Surface Mount	1500/5000	.157	4.0		—	7/13	178/330	See Fig	.6	.471/1.49	.214/.68
GP10E Vertical	2000	.500	12.7	_		12.0	305	.079	2.0	2.29	1.04
GP10E Horizontal	4000	.200	5.0	2.06	52.4	12.0	305	.047	1.2	3.04	1.38
GP20	1200	.395	10.0	2.06	52.4	12.0	305	.047	1.2	4.40	2.00
MPG06	5000	.200	5.0	2.06	52.4	12.0	305	.047	1.2	3.74	1.70
P600	700	.395	10.0	2.06	52.4	12.0	305	.047	1.2	5.00	2.30

Axial leaded devices are packed in accordance with EIA Standard RS-296-E and the diagrams given below which refer to these specifications.

Table 2

Meinc Spec								
Component	Components Spacing	Inside Tape	Cumulative					
Body Diameter	"A"(Lead to Lead)	Spacing "B"	Pitch Tolerance					
0mm to 5mm	5.0mm+0.5mm	26mm+0.75mm						
(0" to .197")	(.197*+.020*)	(1.024"+.030")	Not to					
0mm to 5mm	5.0mm+0.5mm	52.4mm+1.5mm	Exceed 1.5mm					
(0°to.197°)	(.197"+.020"	(2.062"+.059")	(.059°) over					
5.01mm to 10mm	10mm+0.5mm	52.4mm+1.5mm	6 Consecutive					
(.197" to .394")	(.394" ± .020")	(2.062"±.059")						

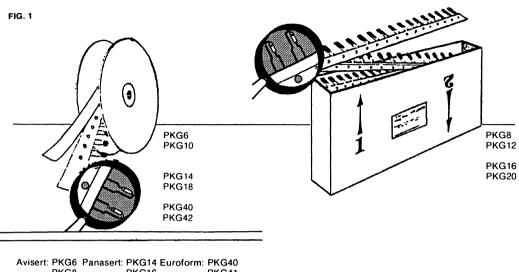


GENERA INSTRUMEN

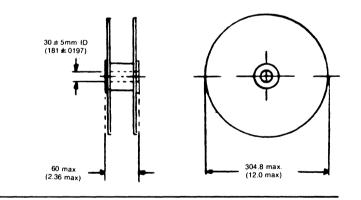
DEVICE TYPE		BOX	BOX SIZE		GROSS WEIGHT	
		INCHES	CM	EA.	LBS.	KG
GL34 SURFACE MOUNT		8.0 x 3.5 x 1.0	20.3 x 8.8 x 2.54	8000	0.55	0.25
GL41 SURFACE MOUNT		8.0 x 3.5 x 1.0	20.3 x 8.8 x 2.54	4000	1.03	0.47
DO15		11.75 x 5.125 x 2.5	29.8 x 13.0 x 6.3	4000	3.85	1.75
DO201AD		11.75 x 5.125 x 2.5	29.8 x 13.0 x 6.3	1500	4.41	2.0
DO204AP		11.75 x 5.125 x 2.5	29.8 x 13.0 x 6.3	4000	3.75	1.7
DO204MB		11.75 x 5.125 x 2.5	29.8 x 13.0 x 6.3	5000	3.15	1.45
DO41/MPG06		11.75 x 5.125 x 2.5	29.8 x 13.0 x 6.3	5000	2.38/2.20	1.08/1.0
G4/G3		11.75 x 5.125 x 2.5	29.8 x 13.0 x 6.3	3000/2000	5.07 / 5.29	2.3/2.4
GP20		11.75 x 5.125 x 2.5	29.8 x 13.0 x 6.3	1500	3.75	1.7
J,JTX1N483B, 1N645, 1N64	5-1	8.0 x 3.5 x 1.0	20.3 x 8.8 x 2.54	1000	0.77	0.35
J, JTX1N3611, 1N4245, 1N5		8.0 x 3.5 x 1.0	20.3 x 8.8 x 2.54	500	0.55	0.25
J. JTX1N4942, 1N5615, 1N5	802	8.0 x 3.5 x 1.0	20.3 x 8.8 x 2.54	500	0.55	0.25
J. JTX1N5415, 1N5550, 1N5	625, 1N5807	12.0 x 3.6 x 2.5	30.4 x 9.1 x 6.3	1000	2.50	1.1
P600	•	11.75 x 5.125 x 2.5	29.8 x 13.0 x 6.3	750	3.7 2	1.69
P6KE		11.75 x 3.5 x 1.0	29.8 x 8.8 x 2.54	2000	1.93	0.87
DF-M/DF-S ANTI-STAT	IC PLASTIC TUBES	19.0 LENGTH	48.2 LENGTH	50	0.12	0.05
TO-220, CT ANTI-STAT	TIC PLASTIC TUBES	20.5 LENGTH	52.0 LENGTH	50	0.306	0.14
TO3P ANTI-STAT	TIC PLASTIC TUBES	20.5 LENGTH	52.0 LENGTH	30	0.572	0.26
KBPM/2KBPM ANTI-STAT	IC PLASTIC TUBES	18.5 LENGTH	47.0 LENGTH	30	0.21	0.09
AR,ARS PLASTI	C BAGS			200	0.84	0.38
WM, WG PLAST	C BAGS			100	0.37	0.17
GPP1, EFR1, 3, 5 CHP 1	RAY	2.0 x 2.0 x .35	5.1 x 5.1 x 0.9	100	0.042	0.019
GPP5, EFR8 CHIP	TRAY	2.0 x 2.0 x .35	5.1 x 5.1 x 0.9	100	0.044	0.020
BC PAPER	BOX	9.2 x 5.0 x 2.5	23.4 x 12.7 x 6.3	100	3.08	14
KBU4,6,8 PVC T	RAY	12.2 x 6.1 x 1.5	30.9 x 15.5 x 3.8	250	4.63	2.1
KBL PVC T	RAY	12.2 x 6.1 x 1.5	30.9 x 15.5 x 3.8	300	4.19	1.9
KBPC1035W PVC T	RAY	12.4 x 12.4 x 1.4	31.4 x 31.4 x 3.6	100	5.07	2.3
KBPC8 PVC T	RAY	12.4 x 12.4 x 1.1	31.4 x 31.4 x 2.9	200	3.31	1.5
KBPC1.KBPC6 PVC T	RAY	12.4 x 12.4 x .88	31.4 x 31.4 x 2.2	250	1.94/2.64	.88/1.2
KBPC 10/35 PVC 1		12.4 x 12.4 x 1.4	31.4 x 31.4 x 3.6	100	5.29	2.4

AMMO BOX PACKAGING

NEW BULK PACKAGES



Packaging	Available	Packaging	Dimension	Dimension	Dimension	Quantity
	Product Outlines	Codes	"A"	"B"	"C"	Box
26MM Horizontal	DO-41	PKG 3	9.7″	1.7″	3.7"	3K
Ammo Pack	Gl, DO-15		(247MM)	(44MM)	(95MM)	1.5K
52MM Horizontal Ammo Pack	G1, DO-41 DO15 DO201AD, G3 P600	PKG 23	10.0″ (254MM)	3.1″ (79MM)	4.3″ (110MM)	3K 2K 1K 3K
Vertical (Avisert, Panasert) Ammo Pack	GP10-E, RGP10-E 0.25" (0.65MM) Lead Diameter Only	PKG 8, 9 12, 13, 16 17, 20, 21	12.9″ (328MM)	1.7″ (42MM)	7.9 " (200MM)	2К

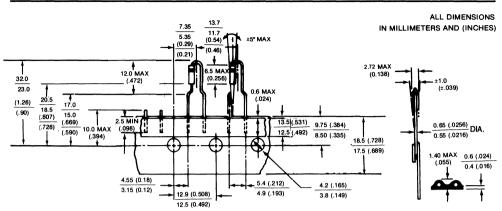


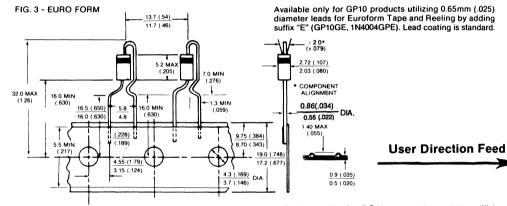
PACKAGING METHODS FOR VERTICLE TAPING

Avisert:	PKG6 I	Panasert:	PKG14	Euroform:	PKG40	
	PKG8		PKG16		PKG41	
	PKG10		PKG18		PKG42	
	PKG12		PKG20		PKG43	

FIG. 2

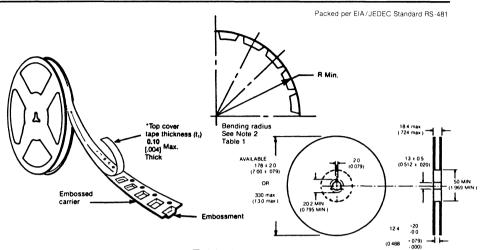
ALL DIMENSIONS IN MILLIMETERS AND INCHES


Package per EIA JEDEC standard RS-468 Available on reels or fan fold box (ammo pack)


Available only for DO41 case style products utilizing 0.65mm (.025") or 0.76mm (.30") diameter leads for Panasert and Avisert Tape and Reeling.

Available only for GP10 products only utilizing 0.65mm (.025") diameter leads for Euroform Tape and Reeling by adding suffix "E" (GP10GE, 1N4004GPE)

VERTICLE REEL PACKAGING



Available only for DO41 case style products utilizing 0.65mm (.025) or 0.76mm (.30) diameter leads for Panasert and Avisert Tape and Reeling. Lead coating is not available.

Standard polarity cathode oriented away from sproket holes (Optional polarity cathode oriented toward sproket holes)

SURFACE MOUNT PACKAGING

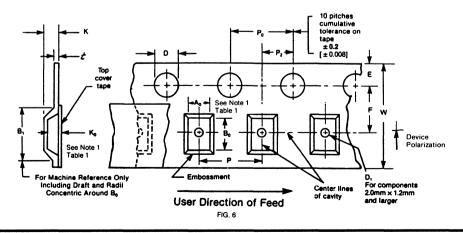


Table 1

		8, 12, 16, MM Embossed Tape						All Dimension	s in Millimete	ers and (Inches)
	Tape Size	D	E	Po	t	Ao Bo Ko				
	8, 12, MM	1.5 (.059)	1.75±0.10 (.069±.004)	4.0±.10 (.157 ±.004)	0.400 (.016)	See Note 1 Table 2				Constant Dimensions
Product Type	Tape Size	Max. B ¹	Min. D'	F	Max. K	P2	Min. R	w	Р	Variable
GL34	8MM	4.2 (.165)	1.0 (.039)	3.5±0.05 (.138±.002)	2.4 (.094)	2.0±0.05 (.079±.002)	25 (.984)	8.0±.30 (.315±.012)	4.0±0.10	Dimensions
GL41	12MM	8.2 (.323)	1.5 (.059)	5.5±0.05 (.217±.002)	4.5 (.177)	(.0791.002)	30 (1.181)	12.0±.30 (.472±.012)		

Notes:

1. Ao Bo Ko are determined by component size. The clearance between the component and the cavity must be within 0.05 min. to 0.5 max. for 8MM tape and 0.05 min to 0.650 max. for 12 MM tape. In addition the components cannot rotate more than 20° within the determined cavity. 2. Tape and components will pass around radius "R" without damage.

SALES OFFICES

PSD SALES OFFICES

Southeast Regional Sales Office

General Instrument Corporation 6855 Jimmy Carter Blvd. Norcross, GA 30071 Tel: (404) 446-1265 Fax: (404) 446-1286

Northeast Regional Sales Office

General Instrument Corporation 120 Andrews Road Hicksville, NY 11802 Tel: (516) 933-3200 Fax: (516) 433-4412

Central Regional Sales Office

General Instrument Corporation 85 W. Algonquin Rd. Suite 300 Arlington Heights, IL 60005 Tel:(708)364-5880 Fax:(708)364-0649

Western Regional Sales Office

General Instrument Corporation 21601 Vanowen Street, Suite 205 Canoga Park, CA 91303 Tel: (818) 992-0982 Fax: (818) 992-1658

ALABAMA

Electramark 4950 Corporate Drive Suite 130L Huntsville, 35805 Tel: (205) 830-4400 Fax: (205) 830-4406

ARIZONA

Fred Board Associates 7353 Sixth Avenue Scottsdale, 85252 Tel: (602) 994-9388 Fax: (602) 994-9477

Fred Board Associates 1041 W. Comababi Tucson, 85704 (602) 299-1508

CALIFORNIA Prosales 5625 Ruffin Road Suite 200 San Diego, 92123 Tel: (619) 571-1133 Fax: (619) 571-1313

Ewing-Foley 895 Sherwood Avenue Los Altos, 94022-9990 Tel: (415) 941-4525 Fax: (415) 941-5109

Ewing-Foley 185 Linden Avenue Auburn, 95603 Tel: (916) 885-6591 Fax: (916) 885-6594

Select Electronics 14730 Beach Blvd. Bldg. F, Suite 106 La Mirada, 90638 Tel: (714) 739-8891 Fax: (714) 739-1604

CANADA Pipe-Thomson Ltd. 5468 Dundas St. West Suite 206 Islington, Ontario M9B 6E3 Tel: (416) 236-2355 Fax: (416) 236-3387

Davetek Marketing 37-4429 Kingsway Burnaby, B.C. V5H 2A1 Tel: (604) 430-3680 Fax: (604) 435-5490

COLORADO Lindberg Associates 6140 E. Evans Avenue Denver, 80222 Tel: (303) 758-9033 Fax: (303) 758-5863

FLORIDA

C* Associates 251 Mailland Avenue Suite 101 Altamonte Springs, 32701 Tel: (407) 831-1717 Fax: (407) 831-8767

C Associates 23083 S.W. 61st Street Boca Raton, 33428 Tel: (407) 488-6090 Fax: (407) 451-4927

GEORGIA

Electramark 6030 Unity Drive Suite H Norcross, 30071 Tel: (404) 446-7915 Fax: (404) 263-6389 Metcom Associates, Corp. 2 Talcott Road Park Ridge, 60068 Tel: (312) 696-1490 Fax: (312) 696-2568

INDIANA

UNITED STATES

ILLINOIS

Valentine & Associates 1000 North Madison Avenue P.O. Box 242 Greenwood, 46142 Tel: (317) 888-2260 Fax: (317) 881-4904

Valentine & Associates 1638 Lincolnway East Southbend, 46613 Tel: (219) 288-7070 Fax: (219) 233-1779

Valentine & Associates 629 W. Lincoln Road Kokomo, 46902 Tel: (317) 453-1118 Fax: (317) 453-1007

IOWA

Dy-Tronix Inc. 23 Twixt Town Road Cedar Rapids, 52402 Tel: (319) 377-8275 Fax: (319) 377-9163

KANSAS Dy-Tronix Inc.

1999 Amidon Suite 322 Wichita, 62703 Tel: (316) 838-0884 EASYLINK 62914257

Dy-Tronix Inc. 5001 College Blvd. Suite 106 Leawood, 66211 Tel: (913) 339-6333 Fax: (913) 339-9449

MASSACHUSETTS

Comp. Rep. Assoc. Inc. 100 Everett Street Westwood, 02090 Tel: (617) 329-3454 Fax: (617) 329-6395

MEXICO Panamtek

Av. Union No. 163-402 Sector Juarez C.P. 44100, Guadalajara, Jalisco Tel: 1152-36-303029 Fax: 1152-36-303115

MICHIGAN

Rathsburg Associated 34605 Twelve Mile Rd. Farmington Hills, 48331-3262 Tel: (313)489-1500 Fax: (313) 559-1405

MINNESOTA

High Technology 11415 Valleyview Road Eden Prairie, 55344 Tel: (612) 944-7274 Fax: (612) 944-3229

MISSOURI

Dy-Tronix Inc. 3407 Bridgeland Bridgeton, 63044 Tel: (314) 291-4777 Fax: (314) 291-3861

NEW JERSEY (TRI-STATE)

Janco Technology 71 Grand Avenue Palisades Park, 17650 Tel: (201) 941-4008 Fax: (201) 941-4631

NEW MEXICO

Q.A. Electronics 7101 Prospect Place N.E. Suite 10 Albuquerque, 87110 Tel: (505) 888-1121 Fax: (505) 883-9044

NEW YORK

Quality Components Inc. 116 E. Fayette Street Manlius, 13104 Tel: (315) 682-8885 Fax: (315) 682-2277

Quality Components Inc. 3343 Harlem Road Buffalo, 14225 Tel: (716) 837-5430 Fax: (716) 837-0662

NORTH CAROLINA

Zucker Associates Inc. P.O. Box 19868 Raleigh, 27619 Tel: (919) 782-8433 Fax: (919) 782-8476

OHIO

Makin & Associates Inc. 3165 Linwood Road Cincinnati, 45208 Tel: (513) 871-2424 Fax: (513) 871-2524

Makin & Associates Inc. 32915 Aurora Road Solon, 44139 Tel: (216) 248-7370 Fax: (216) 248-7372

Makin & Associates Inc. 6400 Riverside Drive Bldg. A Dublin, 43017 Tel: (614) 793-9545 Fax: (614) 793-0256

OKLAHOMA

Comptech Sales, Inc. 9810 E. 42nd Street Suite 219 Tulsa, 74146 Tel: (918) 622-7744 Fax: (918) 660-0340

OREGON

Electronic Component Sales 15255 S.S. 72nd Avenue Suite "C" Tigard, 97224 Tel: (503) 245-2342 Fax: (503) 684-6436 PENNSYLVANIA

Bresson Associates 107 Forrest Avenue Narberth, 19072 Tel: (215) 664-6460 Fax: (215) 664-7020

Russell F. Clark 10517 Lindberg Avenue Pittsburg, 15235 Tel: (412) 242-9500 Fax: (412) 242-9505

PUERTO RICO

Isla Caribe Electro Sales Inc. Calle Alejandrino C#5 Villa Clementina Guaynabo, 00657 Tel: (809) 720-4430 Fax: (809) 720-1097

TEXAS

Comptech Sales, Inc. 2401 Gateway Drive Suite 114 Irving, 75063 Tel: (214) 751-1181 Fax: (214) 550-8113

Comptech Sales, Inc. 11130 Jollyville Road Suite 200 Austin, 78759 Tel: (512) 343-0300 Fax: (512) 345-2530

Comptech Sales, Inc. 15415 Katy Freeway Suite 102 Houston, 77094 Tel: (713) 492-0005 Fax: (713) 492-6116

SALES OFFICE

UTAH

Lindberg Associates 3760 S. Highland Drive Salt Lake City, 84106 Tel: (801) 227-2643

WASHINGTON

Electronic Component Sales 9311 S.E. 36th Street Mercer Island, 98040-3795 Tel: (206) 232-9301 Fax: (206) 232-1095

WISCONSIN

Metcom Assoc. Corp. 237 S. Curtis Road West Allis, 53214 Tel: (414) 476-1300 Fax: (414) 476-4368

EUROPEAN HEADQUARTERS AND GERMANY, AUSTRIA AND SWITZERLAND General Instrument Deutschland GmbH Freischutzstraße 96 8000 Munchen 81 Tel.: 089/95997-0

Telex: 524523 Fax: 089/9570489

FRANCE, PORTUGAL AND SPAIN

General Instrument France 9/11 Rue G. Enesco 94008 Creteil Cedex Tel.: 33 (1) 43771263 Telex: 262435 Fax: 011-33-143-99-1524

ITALY

General Instrument Italia S.R.L. Via Cantu 11-20092 Cinisello Balsamo (Milano) Fax:02/66010324 Telex:320348 Fax:(852)3-7239239

UNITED KINGDOM

General Instrument (UK) Limited, Power Semiconductor Div. Chelworth Industrial Estate Cricklade, Swindon, Witshire, England SN6 6HQ, Tel: (0793)752307 FAX: (0793) 751419

Power Semiconductor Div. Semitron Industries Limited, Chelworth Industrial Estate, Cricklade, Swindon, Wiltshire, England SN6 6HQ, Tel: (0793) 751151 FAX: (0793) 751808 Telex: 44848

HONG KONG

General Instrument Hong Kong Ltd. Room 1104-1107, Tower B, Mandarin Plaza 14 Science Museum Road Tsimshatsui, East, Kowloon, Hong Kong Tel.: 3-7226577 Telex: 54606 GIHKHX Fax: (852)3-7239239

JAPAN

General Instrument Japan, Ltd. 5F4-1-13 Toronomon Minato-Ku, Tokyo, Japan 105 Tel.:(03)437-0281 Fax:9-011-81-3434-3938(GIJ)

General Instrument Japan, Ltd. Toyosaki Bldg. 7F, 18-21, Chayamachi, Kita-Ku Osaka, Japan 530 Tel.: 06-375-0606 Fax: 06-375-0693

SINGAPORE

General Instrument HK Ltd. 1 Marine Parade Central #03-09 Parkway Builder's Centre Singapore 1544 Tel: 3444711 Telex: GISPORE RS 24424 Fax: (65) 3446878

TAIWAN

General Instrument of Taiwan, Ltd. 233 Pao Chiao Road Tsin Tien, Taipei, Taiwan Tel: 9145531/9171469 Telex: 34297 GITSEAMK Fax: 9146697/9175991

GERMANY

Distributors

Electronic 2000 Vertriebs-AG Stahlgruberring 12 8000 Munchen 82 Tel.: 089/42001-0 Telex: 522561 Fax: 089/42001129

Elkose GmbH Bahnhofstr. 44 7141 Moglingen Tel.: 07141/4870 Telex: 7-264472 Fax: 07141/487210

Enatechnik GmbH Schillerstr. 14 2085 Quickborn Tel.: 04106/612-0 Telex: 213590 Fax: 04106/612268

ITALY

Agent and Distributor

Marche Abruzzi Area

Adimpex Adriatica importazioni/Esportazione S.R.L. Box 116-S516-KM314-785 60022 Castelfidardo (AN) Tel.:071/7819012/013 Telex: 561183 Fax: 071/7819077

Distributors: Emilia

Hellis di B. Prati S.A.S. Via S. Benedetto 22/24 41049 Sassuolo (Modena) Tel.: 0536/802562-804104 Fax: 0536/802343

Malpassi S.R.L. Via Baravelli, 1 40012 Calderara di Reno (BO) Tel.: 051/727252-727378 Telex: 583118 Fax: 051/727515 Rutrorik Elektromische Bauelemente GmbH RSC-Halbleiter GmbH Industriestr. 2 7536 Ispringen Tel.: 07231/8010 Telex: 783650 Fax: 07231/82282

Semitron W Rock GmbH Im Gut 1 7891 Kussaberg 6 Tel.: 07742/7011 Telex: 7-921472 Fax: 07742/6901

Servitronic GmbH Uhlandstr. 20-25 1000 Berlin 12 Tel.: 030/8826402 Telex: 1-83557 Fax: 030/8825934 Setron Schiffer Elektronik Friedrich-Seele-Str. 3A 3300 Braunschweig Tel.: 0531/80980 Telex: 952812 Fax: 0531/8098789

Spoerle Elektronik KG Max-Planck-Str. 1-3 6072 Dreieich Tel.: 06103/3040 Telex: 4-17903/417983 Fax: 06103/304201

Distributor for MIL-DIODEN

Asternetics GmbH Wettersteinstr. 2 8028 Taufkirchen Tel.: 089/6129000 Telex: (17) 896047 Fax:089/6128198

Lazio 3C E. Elettronica S.R.L. V.le Laurentina, 50 00142 Roma Tel.:06/5412303/4 Telex:610005 Fax:06/5424033

Lombardia

Distrel S.R.L. Via Rizzo,8 20151 Milano Tel.:02/38001087 380820 Fax:02/38001154

Kontron Instruments S.P.A. Via Fantoli, 16/15 20138 Milano Tel.: 02/50721 Telex: 312288 Fax: 02/5060918 Lombardia Lasi Elettronica S.P.A. Via F. Testi 280 20124 Milano Tel.:02/66101370 Fax:02/66101385

Moxel S.R.L. Via Frova, 34 20092 Cinisello Balsamo (Milano) Tel.: 02/61290521 Telex: 352045 Fax: 02/6172582

SCEL S.R.L. Via Stelvio 9 20026 Novate Milanese Tel.: 02/3546252 Telex: 351582 Fax: 02/3542262 Piemonte

Adveco S.r.l. P.za Bendini, 5 10097 Collegno (TO), Italy Tel: 011/4053277 Telex: 011/4050488

RG2 Elettronica Via Rosa Luxemburg 12/14 10093 Collegno (TO), Italy Tel: 011/725665/712289 Telex: 224335/Telefax: 011/726705

TOSCANA

Welt Electronic Via R. Bardazzi, 62/68 50127 Firenze, Italy Tel: 055/4379933-4376989 Telex: 580347 Telefax: 055/435728

Veneto

Idac Elettronica S.P.A. Via Verona,8 35010 Busa Di Vigona(PD) Tel.:049/8931644 Telefax:049/8931689

UNITED KINGDOM

Distributors

Farnell Electronic Components Limited Canal Road Leeds Yorkshire LS12 2TU Tel: 0532 790101 Fax: 0532 636311 Tix: 55147

Hunter Electronic Components Ltd. Unit 3, Central Estate Denmart Street Maindenhead Berkshire SL6 7BN Tel: 0628 75911 Fax: 0628 75611 Tix: 848946

Polar Electronics Limited Cherry Court Industrial Estate Leighton Buzzard Bedfordshire LU7 8YY Tel: 0525 377093 Fax: 0525 378367 Tlx: 825238

FRANCE, PORTUGAL AND SPAIN Distributors

France C.C.I. 5 Rue Marcelin Berthelot 92164 Anthony Tel.: (1) 46662182 Telex: 203881 Fax: (1) 40969296

C.C.I. 67 Rue Bataille 69008 Lyon Tel.: (16) 78744456 Telex: 375456 Fax: (16) 78760891

Mecodiis 3 Allee Des Erables 94042 Creteil Cedex France Tel: (1) 43-99-44-00 Fax: (1) 43-99-98-28 Tlx: 262-061 Rodgers Agencies 126 Orangefield Crescent Belfast BT6 9GJ Tel: 0232 704985 Fax: 0232 792563

RS Components Limited P.O. Box 99 Corby Northants NN17 9RS Tel: 0536 201234 Fax: 0536 201501 Tlx: 342512

STC Electronics Distribution Edinburgh Way Harlow Essex CMO 2DF Tel: 0279 626777 Fax: 0279 626777 ext: 3233 or 0279 441687 Tlx: 818801

PEP 6-9 Rue Ambroise Croizat 91120 Palaiseau Tel.: (1) 64470031 Telex: 603341 Fax: (1) 64470084

Silec Codicom 52 Quai Des Carrieres 94222 Charenton le Pont Tel.: (1) 43/759592 Telex: 680363 Fax: (1) 48934414

Silec D.E.L. 8 Rue des Freres Bertranc B.P. 59 69632 Venissieux Cedex Tel: (16) 78008697 Telex: 340189 Fax: (16) 78090291 VSI Electronics UK Ltd. Roydonbury Industrial Estate Horsecroft Road Harlow Essex CM19 5BY Tel.: 0279/29666 Telex: 81387

Young Electronics Services Beech House Knaves Beech Estate High Wycombe Buckinghamshire Tel: 0628 6531417 Fax: 0628 810823

PORTUGAL

Componenta Rua Luis De Camoes 128 1300 Lisboa Portugal Tel: 351-1-36212-83/84 Fax: 351-1-363-76-55/Tlx: 61512

SPAIN

Amitron SA Avda De Valladolid 47D 28008 Madrid Spain Tel: (91) 542-09-06/541-54-02 Fax: (91) 248-79-58 Tix: 4550

Sutelco S.A. Pilar de Zaragoza, 23 Madrid 02028/Spain Tel.: 245-86-01 Telex: 43852 Fax: 245-8120

OTHER COUNTRIES FOR COUNTRIES NOT INDICATED

General Instrument Agencies Freischutzstr. 96 8000 Munchen 81 Tel.: 089/95997-0 Telex: 5-24523 Fax: 089/9570489

AUSTRIA

Elbatek GmbH Eitnergasse 6 1-1232 Wien Tel.: 0222/863211 Telex: 1-133128 Fax: 0222/8652142

BELGIUM/HOLLAND

Rodelco B.V. Electronics P.O. Box 6824 4802 HV Breda, Holland Tel.: 076/784911 Telex: 54195 Fax: 076/710029

Lemaire Rodelco Limburg-Stirumlaan 243 1810 Wemmel/Belgium Tel.: 02/4600560 Telex: 24610 Fax: 02/4600271

DENMARK

A/S Nordisk Elektronik Transformervey, 17 DK-2730 Herlev Tel.:042/842000 Telex: 35200 Fax:044/921552

FINLAND

Komdel OY PL 52 SF-02211 Espoo 21 Tel.: (90) 885011 Telex: 121926 Fax: 90/885327

ISRAEL

SMD Electronics P.O. Box 3075 Netanya 42130 Tel.: 053/616243 Fax: 053/620935

NORWAY Nordisk Elektronik A/S P.O. Box 130 1364 Hvalstad Tel.: 02/846210 Telex: 17546 Fax: 02/846545

SOUTH AFRICA Plessey South Africa Ltd. Components Division P.O. Box 8174 Elandsfontein 1406 Tel.: 011/8232950 Telex: 431421 Fax: 011/8232818

SWEDEN Bexab Technology AB Box 523 S-18325 Taby

S-18325 Taby Tel.: 08/7680560 Telex: 10912 Fax: 08/7581929

SWITZERLAND

Elbatex AG Hardstr. 72 CH-5430 Wettingen Tel.: 056/275111 Telex: 58068 Fax: 056/271924

HONG KONG

Astec Agencies Ltd. Rm 2004 Nam Fung Centre 264-298 Castle Peak Road Tsuen Wan, N.T. Hong Kong Tel: 852-4155818 Fax: 852-4155742 Tix: 37528 ASAG HX

INDIA

A.T.E. Enterprises Ltd. 36 SDF II,Seepz,Andheri(E) Bombay 400 096, India Tel: (022) 6349032/6300195 Tlx: (011) 79080 DIPIN

KOREA

Olympia Commercial Co., Ltd. Rm 2A, Shinbong Bldg. 835-6, Yuksamdong, Kangnam-Ku Seoul, Korea Tel: 82-2-5673362 Fax: 82-2-5527036

SINGAPORE

B.B.S. Electronics PTE. Ltd. 1 Genting Link #05-03 Perfect Industrial Bldg Singapore 1334 Tel: 65-7488400 Fax: 65-7488466 Tix: R55510 BBSEL

TAIWAN

Tekfield Enterprise Co., Ltd. 12F-3, No. 271, SEC. 3, Roosevelt Road Taipei, Taiwan, R.O.C. Tel: 886-2-3623153/3629664 Fax: 886-2-3623476

Wei Keng Ind., Co., Ltd. Rm B2, FI 7, No 126 Sec 4 Nanking E. Road Taipei, Taiwan R.O.C. Tel: 886-2-7763512 Fax: 886-2-7519366 Tix: 29463 WEKIND

AUTHORIZED NATIONAL AND REGIONAL DISTRIBUTOR HEADQUARTERS

DISTRIBUTOR	ADDRESS	CITY/STATE	TELEPHONE NO.
ACI Electronics	200 Newton Road	Plainview, NY 11803	(516) 293-6630
Advent Electronics	7110 Lyndon Street	Rosemont, IL 60018	(708) 298-4210
All American Transistor	16251 N.W. 54th Avenue	Miami, FL 33041	(305) 621-8282
Almo Electronics	5417 E. LaPalma Avenue	Anaheim, CA 92807	(714) 777-4711
Arrow Electronics	25 Hub Drive	Melville, NY 11746	(516) 694-6800
Bell Industries	11812 San Vincente, Suite 300	Los Angeles, CA 90049	(213) 826-6778
Future Electronics	237 Hymus Boulevard	Pointe Claire, CN H9R5C7	(514) 694-7710
Hallmark Electronics	11333 Pagemill Road	Dallas, TX 75243-8399	(214) 343-5000
Hammond Electronics	1230 W. Central Avenue	Orlando, FL 32805	(407) 849-6060
Jaco Electronics	145 Oser Avenue	Hauppauge, NY 11788	(516) 273-5500
Marshall Industries	9674 Telstar Avenue	El Monte, CA 91731-3004	(818) 459-5500
Nu Horizons Electronics	6000 New Horizons Blvd.	Amityville, NY 11701	(516) 226-6000
Pioneer/Washington	9100 Gaither Road	Gaithersburg, MD 20877	(301) 921-0660
Pioneer/Cleveland	4800 E. 131st Street	Cleveland, OH 44105	(216) 587-3600
Solid State	46 Ferrand Street	Bloomfield, NJ 07003	(201) 429-8700
Zeus Components	100 Midland Avenue	Port Chester, NY 10573	(914) 937-7400

GENERAL INSTRUMENT POWER SEMICONDUCTOR DIVISION

Power Semiconductor Division Headquarters 600 West John Street, CS620, Hicksville, NY 11802-1620, (516) 933-3333 • TWX: 310-376-8690 • FAX: 516-933-3881

North Eastern Regional Sales Office: 120 Andrews Road, Hicksville, NY 11801-1702, (516) 933-3200 • TWX: 310-376-7238 • FAX: 516-433-4412

South Eastern Regional Sales Office: 6855 Jimmy Carter Blvd., Suite 2250, Norcross, GA 30071, (404) 446-1265 • TWX: 510-101-3222 • FAX: 404-446-1286

Central Regional Sales Office: 85 W. Algonquin Road, Suite 300, Arlington Hts., IL 60005, (708) 364-5880 • TWX: 910-222-0431 • FAX: 708-364-0649

Western Regional Sales Office: 21601 Vanowen Street, Suite 205, Canoga Park, CA 91303, (818) 992-0982 • TWX: 910-322-1980 • FAX: 818-992-1658

INTERNATIONAL SALES OFFICES

Germany, Austria and Switzerland General Instrument Deutschland GmbH, Freischützstraße 96, 8000 München 81, W. Germany, Tel: (0-89) 95997-0 • Telex: 524523 • FAX: 9-011-49-89-957-0489

France General Instrument France, 9/11 Rue G. Enesco, 94008 Creteil, Tel: 33 (1) 43771263 • Telex: 262435 • FAX: (33) 143991524 Italy General Instrument Italia S.R.L., Via Cantu 11-20092 Cinisello Balsamo, Milano, Tel: 02/66010274-66010285-66010287 • Telex: 320348 • FAX: 02/66010324

United Kingdom General Instrument (UK) Ltd., Power Semiconductor Div., Chelworth Industrial Estate, Cricklade, Swindon, Wiltshire, England SN6 6HQ • Tel: (0793) 752307 • FAX: (0793) 751419 Power Semiconductor Div.-Semitron Industries Ltd., Chelworth Industrial Estate, Cricklade, Swindon, Wiltshire, England SN6 6HQ Tel: (0793) 751151 • FAX: (0793) 751808 • Telex: 44848

Taiwan General Instrument of Taiwan, Ltd., 233 Pao Chiao Road, Hsin Tien, Taipei, Taiwan, Tel: 9113860

• FAX: 9-011-8862-917-5991 Japan General Instrument Japan, Ltd., 5F4-1-13 Toranomon, Minato-Ku, Tokyo, Japan, 105 Tel: (03) 437-0281

• FAX: 9-011-81-3434-3938 (GIJ)

Hong Kong General Instrument Hong Kong Ltd., Rm. 1104-1107, Tower B, Mandarin Plaza, 14 Science Museum Road, Tsimshatsui East, Kowloon, Hong Kong, Tel: 3-7226577 • Telex: 54606 GIHKHX • FAX: (852) 3-7239239